TMS320C3x
User’s Guide

Literature Number: SPRU031F
2558539-9761 revision L
March 2004

{'f TEXAS
INSTRUMENTS



IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services
at any time and to discontinue any product or service without notice. Customers should obtain
the latest relevant information before placing orders and should verify that such information is
current and complete. All products are sold subject to TI's terms and conditions of sale supplied
at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI's standard warranty. Testing and other quality control techniques are
used to the extent Tl deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily
performed.

Tl assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate
design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any
Tl patent right, copyright, mask work right, or other Tl intellectual property right relating to any
combination, machine, or process in which Tl products or services are used. Information
published by Tl regarding third-party products or services does not constitute a license from Tl
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of the third
party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated
by Tl for that product or service voids all express and any implied warranties for the associated
Tl product or service and is an unfair and deceptive business practice. Tl is not responsible or
liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and
application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters  dataconverter.ticom  Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers  microcontroller.ti.com  Security www.ti.com/security
Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated



About This Manual

Preface

Read This First

This user’s guide serves as an applications reference book for the TMS320C3x
generation of digital signal processors (DSPs). These include the TMS320C30,
TMS320C31, TMS320LC31, TMS320C32, and TMS320VC33. Throughout the
book, all references to 'C3x refer collectively to the ’C30, 'C31/VC33, 'LC31 and
'C32.

This book provides information to assist managers and hardware/software
engineers in application development. It includes example code and hard-
ware connections for various applications.

The guide shows how to use the instructions set, the architecture, and the ’C3x
interface. It presents examples for frequently used applications and discusses
more involved examples and applications. It also defines the principles involved
in many applications and gives the corresponding assembly language code for
instructional purposes and for immediate use. Whenever the detailed explanation
of the underlying theory is too extensive to be included in this manual, appropriate
references are given for further information.

Notational Conventions

This document uses the following conventions.

[ Program listings, program examples, and interactive displays are shown in
a special typeface. Examples use a bold version of the special
typeface for emphasis; interactive displays use a bold version of the
special typeface to distinguish commands that you enter from items that the
system displays (such as prompts, command output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3

0014 0006 .even



Notational Conventions

Here is an example of a system prompt and a command that you might
enter:

C: csr -a /user/ti/simuboard/utilities

In syntax descriptions, the instruction, command, or directive is in bold
typeface and parameters are in an italic typeface. Portions of a syntax that
are in bold must be entered as shown; portions of a syntax that are in italics
describe the type of information that must be entered. Here is an example
of a directive syntax:

.asect section name”, address

The directive .asect has two parameters, indicated by section name and
address. When you use .asect, the first parameter is an actual section
name, enclosed in double quotes; the second parameter is an address.

Square brackets ([ and ]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
do not enter the brackets themselves. Here is an example of an instruction
that has an optional parameter:

LALK 16-bit constant [, shift]

The LALK instruction has two parameters. The first parameter, 16-bit
constant, is required. The second parameter, shift, is optional. As this syntax
shows, if you use the optional second parameter, you must precede it with a
comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the path-
name (they are not optional).

Braces ( {and} ) indicate a list. The symbol | (read as or) separates items
within the list. Here is an example of a list:

(] e | o)
This provides three choices: *, *+, or *—.

Unless the list is enclosed in square brackets, you must choose one item
from the list.

Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this direc-
tive is:

.byte value; [, ..., value,]

This syntax shows that .byte has at least one value parameter, but you
may supply additional value parameters, separated by commas.
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Information About Cautions

This book contains cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

The information in a caution is provided for your protection. Please read each
caution carefully.

Related Documentation From Texas Instruments

The following books describe the TMS320 floating-point devices and related
support tools. To obtain a copy of any of these Tl documents, call the Texas
Instruments Literature Response Center as indicated in the section If You
Need Assistance... on page vi. When ordering, please identify the book by its
title and literature number.

TMS320C3x General Purpose Applications User’s Guide (literature number
SPRU194) provides information to assist you in application development
for the TMS320C3x generation of digital signal processors (DSPs). It
includes example code and hardware connections for various appliances.
It also defines the principles involved in many applications and gives the
corresponding assembly language code for instructional purposes and for
immediate use.

TMS320C3x/C4x Assembly Language Tools User’s Guide (literature
number SPRUO035) describes the assembly language tools (assembler,
linker, and other tools used to develop assembly language code),
assembler directives, macros, common object file format, and symbolic
debugging directives for the 'C3x and 'C4x generations of devices.

TMS320C3x/C4x Optimizing C Compiler User’s Guide (literature number
SPRU034) describes the TMS320 floating-point C compiler. This C compiler
accepts ANSI standard C source code and produces TMS320 assembly
language source code for the 'C3x and ‘C4x generations of devices.
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Related Documentation from Texas Instruments / References

References

vi

TMS320C3x C Source Debugger User’s Guide (literature number
SPRU053) tells you how to invoke the ‘C3x emulator, evaluation module,
and simulator versions of the C source debugger interface. This book
discusses various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints. It also includes a tutorial that introduces basic debugger
functionality.

TMS320 DSP Development Support Reference Guide (literature number
SPRUO011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assembilers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

TMS320 Third-Party Support Reference Guide (literature number
SPRU052) alphabetically lists over 100 third parties that provide various
products that serve the family of TMS320 digital signal processors. A
myriad of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise can-
cellation, modems, etc.

The publications in the following reference list contain useful information
regarding functions, operations, and applications of digital signal processing
(DSP). These books also provide other references to many useful technical
papers. The reference list is organized into categories of general DSP, speech,
image processing, and digital control theory and is alphabetized by author.

(1 General Digital Signal Processing

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY:
McGraw-Hill Company, Inc., 1979.

Bateman, A., and Yates, W., Digital Signal Processing Design. Salt Lake
City, Utah: W. H. Freeman and Company, 1990.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1974.

Burrus, C.S., and Parks, T.W., DFT/FFT and Convolution Algorithms. New
York, NY: John Wiley and Sons, Inc., 1984.

Chassaing, R., and Horning, D., Digital Signal Processing with the
TMS320C25. New York, NY: John Wiley and Sons, Inc., 1990.

Digital Signal Processing Applications with the TMS320 Family, Vol. 1. Tex-
as Instruments, 1986; Prentice-Hall, Inc., 1987.
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If You Need Assistance . ..
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Tl Online http://www.ti.com

Semiconductor Product Information Center (PIC)  http://www.ti.com/sc/docs/pic/home.htm

DSP Solutions http://www.ti.com/dsps
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Microcontroller Home Page http://www.ti.com/sc/micro

Networking Home Page http://www.ti.com/sc/docs/network/nbuhomex.htm

1 North America, South America, Central America

Product Information Center (PIC) (972) 644-5580
Tl Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333  Fax: (214) 638-7742

U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285

U.S. Technical Training Organization (972) 644-5580
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Microcontroller Modem BBS (281) 274-3700 8-N-1

DSP Hotline (281) 274-2320  Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323

DSP Internet BBS via anonymous ftp to ftp:/ftp.ti.com/pub/tms320bbs

Networking Hotline Fax: (281) 274-4027

Email: TLANHOT®@micro.ti.com

1 Europe, Middle East, Africa

European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33130701169 Fax:+33130701032 Email: epic@ti.com
Deutsch +49 8161 8033 11 or +33 13070 11 68
English +3313070 1165
Francais +331307011 64
Italiano +3313070 1167
EPIC Modem BBS +3313070 1199
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
1 Asia-Pacific
Literature Response Center +852 2956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 25512804 Fax: +82 2551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/
O Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972  Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735  Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”
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Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.
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Chapter 1

Introduction

The TMS320C3x generation of digital signal processors (DSPs) are high-
performance CMOS 32-bit floating-point devices in the TMS320 family of
single-chip DSPs.

The 'C3x generation integrates both system control and math-intensive functions
on a single controller. This system integration allows fast, easy data movement
and high-speed numeric processing performance. Extensive internal busing and
a powerful DSP instruction set provide the devices with the speed and flexibility
to execute at up to 60 million floating-point operations per second (MFLOPS).
The devices also feature a high degree of on-chip parallelism that allows users
to perform up to 11 operations in a single instruction.
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TMS320C3x Devices

1.1 TMS320C3x Devices

1-2

The 'C3x family consists of three members: the 'C30, 'C31, 'C32, and 'VC33.
The 'C30, 'C31, 'C32, and 'VC33 can perform parallel multiply and arithmetic
logic unit (ALU) operations on integer or floating-point data in a single cycle.

The processors also possess the following features for high performance and
ease of use:

Note: VC33

The TMS320VC33 is logically and functionally a superset of the TMS320C31
making nearly all literature and documentation for the TMS320C31 applica—
ble. However, the electrical characteristics are different and are covered in
detail in the TMS320VC33 data sheet (literature number SPRS087).

General-purpose register file
Program cache
Dedicated auxiliary register arithmetic units (ARAU)

Internal dual-access memories

I N T Ay I

One direct memory access (DMA) channel (a two-channel DMA on the
TMS320C32) supporting concurrent 1/0

(1 Short machine-cycle time

General-purpose applications are greatly enhanced by the large address
space, multiprocessor interface, internally and externally generated wait states,
two external interface ports (one on the 'C31 and the *C32) two timers, two serial
ports (one on the ’C31, 'VC33, and the 'C32), and multiple-interrupt structure.
The *C3x supports a wide variety of system applications from host processor to
dedicated coprocessor.

High-level language is implemented more easily through a register-based archi-
tecture, large address space, powerful addressing modes, flexible instruction
set, and well-supported floating-point arithmetic.

Figure 1-1 shows a block diagram of 'C3x devices.



Figure 1-1. TMS320C3x Devices Block Diagram
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X2/CLKIN Address Address FSX0
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MU6-0 control registers FSRO
X1 2 low-power modes
(C31-C32) Serial port 1 (C30) ) g)l.(KX1
L | 1
FSX1
CLKR1
DR1
FSR1

TMS320C3x Key Specifications
The key specifications of the ’C3x devices include the following:

Performance up to 60 MFLOPS

Highly efficient C language engine

Large address space: 16M words x 32 bits

Fast memory management with on-chip DMA
Industry-exclusive 3-V versions available on some devices

I I I

TMS320C30

The 'C30 is the first member of the 'C3x generation. It differs from the
’C31/VC33 and 'C32 by offering 4K ROM, 2K RAM, a second serial port, and
a second external bus.

TMS320C31 and TMS320LC31

The ’C31 and 'LC31 are the second members of the ‘C3x generation. They are
low-cost 32-bit floating-point DSPs which have a boot-loader program, 2K RAM,
single external port, single serial port, and are available in 3.3-V operation
('LC31).

Introduction



TMS320C3x Devices

1.1.4 TMS320C32

1.1.5 TMS320VC33

1-4

The 'C32 is the newest member of the 'C3x generation. They are enhanced
versions of the ’C3x family and the lowest cost floating-point processors on the
market today. These enhancements include a variable-width memory inter-
face, two-channel DMA coprocessor with configurable priorities, flexible boot
loader, and a relocatable interrupt vector table.

The .VC33 is the fourth member of the .C3x generation. This is a low—cost
32-bit floating-point DSPs which has a boot-loader program, 34K RAM, single
external port, single serial port, and is fabricated in an ultra—low power
(3.3-V/1.8-V) CMOS process.
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1.2 Typical Applications

Table 1-2. Typical Applications of the TMS320 Family

Typical Applications

The TMS320 family’s versatility, realtime performance, and multiple functions
offer flexible design approaches in a variety of applications, which are shown
in Table 1-2.

General-Purpose DSP

Graphics/Imaging

Instrumentation

Digital filtering
Convolution

Correlation

Hilbert transforms

Fast Fourier transforms
Adaptive filtering
Windowing

Waveform generation

3-D transformations rendering
Robot vision

Image transmission/compression
Pattern recognition

Image enhancement
Homomorphic processing
Workstations

Animation/digital map

Bar-code scanners

Spectrum analysis
Function generation
Pattern matching
Seismic processing
Transient analysis
Digital filtering
Phase-locked loops

Voice/Speech

Control

Military

Voice malil

Speech vocoding
Speech recognition
Speaker verification
Speech enhancement
Speech synthesis
Text-to-speech
Neural networks

Disk control

Servo control

Robot control

Laser printer control
Engine control
Motor control
Kalman filtering

Secure communications
Radar processing

Sonar processing

Image processing
Navigation

Missile guidance

Radio frequency modems
Sensor fusion

Telecommunications

Automotive

Echo cancellation
ADPCM transcoders
Digital PBXs

Line repeaters
Channel multiplexing
Modems

FAX

Cellular telephones
Speaker phones
Digital speech
Interpolation (DSI)
X.25 packet switching

Engine control
Vibration analysis
Antiskid brakes
Anticollision
Adaptive ride control
Global positioning

Adaptive equalizers Video conferencing Navigation

DTMF encoding/decoding Spread spectrum Voice commands

Data encryption Communications Digital radio
Cellular telephones

Consumer Industrial Medical

Radar detectors Robotics Hearing aids

Power tools

Digital audio/TV
Music synthesizer
Toys and games
Solid-state answering
Machines

Numeric control
Security access
Power line monitors
Visual inspection
Lathe control

CAM

Patient monitoring
Ultrasound equipment
Diagnostic tools
Prosthetics

Fetal monitors

MR imaging
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Chapter 2

Architectural Overview

This chapter provides an architectural overview of the 'C3x processor. It includes
a discussion of the CPU, memory interface, boot loader, peripherals, and direct
memory access (DMA) of the 'C3x processor.
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Overview

2.1 Overview

The 'C3x architecture responds to system demands that are based on sophisti-
cated arithmetic algorithms that emphasize both hardware and software solu-
tions. High performance is achieved through the precision and wide dynamic
range of the floating-point units, large on-chip memory, a high degree of parallel-
ism, and the DMA controller.

Note: VC33

The TMS320VC33 is logically and functionally a superset of the TMS320C31
making nearly all literature and documentation for the TMS320C31 applica—
ble. However, the electrical characteristics are different and are covered in
detail in the TMS320VC33 data sheet (literature number SPRS087).

Figure 2-1 through Figure 2-3 show functional block diagrams of the *C30,
'C31/VC33, and 'C32 architectures, respectively.
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Figure 2-1. TMS320C30 Block Diagram
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Overview

Figure 2-2. TMS320C31 Block Diagram
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Figure 2-3. TMS320C32 Block Diagram
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Central Processing Unit (CPU)

2.2 Central Processing Unit (CPU)
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The 'C3x devices ('C30, 'C31/VC33, and 'C32) have a register-based CPU ar-
chitecture. The CPU consists of the following components:

Floating-point/integer multiplier

Arithmetic logic unit (ALU)

32-bit barrel shifter

Internal buses (CPU1/CPU2 and REG1/REG2)
Auxiliary register arithmetic units (ARAUS)
CPU register file

(I Y Y

Figure 2—-4 shows a diagram of the various CPU components.



Figure 2-4. Central Processing Unit (CPU)
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Central Processing Unit (CPU)

2.2.1

Floating-Point/Integer Multiplier

The multiplier performs single-cycle multiplications on 24-bit integer and 32-bit
floating-point values. The *C3x implementation of floating-point arithmetic allows
for floating-point or fixed-point operations at speeds up to 33-ns per instruction
cycle. To gain even higher throughput, you can use parallel instructions to perform
a multiply and an ALU operation in a single cycle.

When the multiplier performs floating-point multiplication, the inputs are 32-bit
floating-point numbers, and the result is a 40-bit floating-point number. When
the multiplier performs integer multiplication, the input data is 24 bits and yields
a 32-bit result. See Chapter 5, Data Formats and Floating-Point Operation, for
detailed information.

2.2.2 Arithmetic Logic Unit (ALU) and Internal Buses

The ALU performs single-cycle operations on 32-bit integer, 32-bit logical,
and 40-bit floating-point data, including single-cycle integer and floating-
point conversions. Results of the ALU are always maintained in 32-bit integer
or 40-bit floating-point formats. The barrel shifter is used to shift up to 32 bits
left or right in a single cycle. See Chapter 5, Data Formats and Floating-Point
Operation, for detailed information.

Four internal buses, CPU1, CPU2, REG1, and REG2 carry two operands from
memory and two operands from the register file, allowing parallel multiplies
and adds/subtracts on four integer or floating-point operands in a single cycle.

2.2.3 Auxiliary Register Arithmetic Units (ARAUs)

2-8

Two auxiliary register arithmetic units (ARAUO and ARAU1) can generate two
addresses in a single cycle. The ARAUs operate in parallel with the multiplier
and ALU. They support addressing with displacements, index registers (IR0 and
IR1), and circular and bit-reversed addressing. See Chapter 6, Addressing
Modes, for more information.



CPU Primary Register File

2.3 CPU Primary Register File

The 'C3x provides 28 registers in a multiport register file that is tightly coupled
to the CPU. Table 2-1 lists the register names and functions.

Al of the primary registers can be operated upon by the multiplier and ALU and
can be used as general-purpose registers. The registers also have some special
functions. For example, the eight extended-precision registers are especially
suited for maintaining extended-precision floating-point results. The eight auxiliary
registers support a variety of indirect addressing modes and can be used as
general-purpose 32-bit integer and logical registers. The remaining registers
provide such system functions as addressing, stack management, processor
status, interrupts, and block repeat. See Chapter 3, CPU Registers, for more

information.
Table 2-1. Primary CPU Registers

Register

Name Assigned Function Section Page
RO Extended-precision register 0 3.1.1 3-3
R1 Extended-precision register 1 3.141 3-3
R2 Extended-precision register 2 3.1.1 3-3
R3 Extended-precision register 3 3.1.1 3-3
R4 Extended-precision register 4 3.1.1 3-3
R5 Extended-precision register 5 3.1.1 3-3
R6 Extended-precision register 6 3.1.1 3-3
R7 Extended-precision register 7 3.141 3-3
ARO Auxiliary register 0 3.1.2 3-4
AR1 Auxiliary register 1 3.1.2 3-4
AR2 Auxiliary register 2 3.1.2 3-4
AR3 Auxiliary register 3 3.1.2 3-4
AR4 Auxiliary register 4 3.1.2 3-4
AR5 Auxiliary register 5 3.1.2 3-4
ARG Auxiliary register 6 3.1.2 3-4
AR7 Auxiliary register 7 3.1.2 3-4
DP Data-page pointer 3.1.3 3-4
IRO Index register 0 3.1.4 3-4
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CPU Primary Register File
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Table 2-1. Primary CPU Registers (Continued)

Register

Name Assigned Function Section Page
IR1 Index register 1 3.14 3-4
BK Block-size register 3.15 3-4
SP System-stack pointer 3.1.6 3-4
ST Status register 3.1.7 3-5
IE CPU/DMA interrupt-enable regis- 3.1.8 39

ter

IF CPU interrupt flag 3.1.9 3-11
IOF I/0O flag 3.1.10 3-16
RS Repeat start-address 3.1.11 3-17
RE Repeat end-address 3.1.11 3-17
RC Repeat counter 3.1.11 3-17

The extended-precision registers (R7-R0) can store and support operations
on 32-bit integers and 40-bit floating-point numbers. Any instruction that assumes
the operands are floating-point numbers uses bits 39-0. If the operands are
either signed or unsigned integers, only bits 31-0 are used; bits 39-32 remain
unchanged. This is true for all shift operations. See Chapter 5, Data Formats and
Floating-Point Operation, for extended-precision register formats for floating-
point and integer numbers.

The 32-bit auxiliary registers (AR7-ARO0) are accessed by the CPU and
modified by the two ARAUSs. The primary function of the auxiliary registers is
the generation of 24-bit addresses. They also can be used as loop counters
or as 32-bit general-purpose registers that are modified by the multiplier and
ALU. See Chapter 6, Addressing Modes, for detailed information and examples
of the use of auxiliary registers in addressing.

The data-page pointer (DP) is a 32-bit register. The eight least significant bits
(LSBs) of the data-page pointer are used by the direct addressing mode as a
pointer to the page of data being addressed. Data pages are 64K words long,
with a total of 256 pages.

The 32-bit index registers (IR0, IR1) contain the value used by the ARAU to
compute an indexed address. See Chapter 6, Addressing Modes, for examples
of the use of index registers in addressing.



CPU Primary Register File

The ARAU uses the 32-bit block size register (BK) in circular addressing to
specify the data block size.

The system-stack pointer (SP) is a 32-bit register that contains the address
of the top of the system stack. The SP always points to the last element pushed
onto the stack. A push performs a preincrement; a pop performs a postdecre-
ment of the system-stack pointer. The SP is manipulated by interrupts, traps,
calls, returns, and the PUSH and POP instructions. See Section 6.10, System
and User Stack Management, on page 6-29, for more information.

The status register (ST) contains global information relating to the state of the
CPU. Operations usually set the condition flags of the status register according
to whether the result is 0, negative, etc. These include register load and store
operations as well as arithmetic and logical functions. When the status register
is loaded, however, a bit-for-bit replacement is performed with the contents of
the source operand, regardless of the state of any bits in the source operand.
Following a load, the contents of the status register are identical to the contents
of the source operand. This allows the status register to be easily saved and
restored. See Table 3-2 on page 3-6 for a list and definitions of the status regis-
ter bits.

The CPU/DMA interrupt-enable register (IE) is a 32-bit register. The CPU
interrupt-enable bits are in locations 10-0. The DMA interrupt-enable bits are
in locations 26-16. A 1 in a CPU/DMA interrupt-enable register bit enables the
corresponding interrupt. A 0 disables the corresponding interrupt. See Sec-
tion 3.1.8 on page 3-9 for more information.

The CPU interrupt flag register (IF) is also a 32-bit register. A 1 in a CPU
interrupt flag register bit indicates that the corresponding interrupt is set. A
0 indicates that the corresponding interrupt is not set. See Section 3.1.9 on
page 3-11 for more information.

The I/O flag register (IOF) controls the function of the dedicated external pins,
XFO0 and XF1. These pins may be configured for input or output and may also
be read from and written to. See Section 3.1.10 on page 3-16 for more informa-
tion.

The repeat-counter (RC) is a 32-bit register that specifies the number of times
to repeat a block of code when performing a block repeat. When the processor
is operating in the repeat mode, the 32-bit repeat start-address register (RS)
contains the starting address of the block of program memory to repeat, and
the 32-bit repeat end-address register (RE) contains the ending address of the
block to repeat.
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Other Registers

2.4 Other Registers
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The program-counter (PC) is a 32-bit register containing the address of the
next instruction to fetch. Although the PC is not part of the CPU register file,
it is a register that can be modified by instructions that modify the program flow.

The instruction register (IR) is a 32-bit register that holds the instruction opcode
during the decode phase of the instruction. This register is used by the instruction
decode control circuitry and is not accessible to the CPU.



Memory Organization

2.5 Memory Organization

The total memory space of the 'C3x is 16M (million) 32-bit words. Program,
data, and I/O space are contained within this 16M-word address space, allowing
the storage of tables, coefficients, program code, or data in either RAM or
ROM. In this way, memory usage is maximized and memory space allocated
as desired.

2.5.1 RAM, ROM, and Cache

Figure 2-5 shows how the memory is organized on the ‘C30. RAM blocks 0
and 1 are each 1K Xx 32 bits. The ROM block, available only on the 'C30, is
4K x 32 bits. Each RAM and ROM block is capable of supporting two CPU
accesses in a single cycle.

Figure 2-6 shows how the memory is organized on the 'C31/VC33. RAM
blocks 0 and 1 are each 1K x 32 bits and support two accesses in a single
cycle. The VC33 has two additional 16K RAM blocks bringing the total on—chip
memory to 34K words (see the TMS320VC33 Data Sheet, literature number
SPRS087). A boot loader allows the loading of program and data at reset from
8-, 16-, 32-bit-wide memories or serial port.

Figure 2-7 shows how the memory is organized on the 'C32. RAM blocks 0
and 1 are each 256 x 32 bits and support two accesses in a single cycle. A
boot loader allows the loading of program and data at reset from 1-, 2-, 4-, 8-,
16-, and 32-bit-wide memories or serial port. The 'C32 enhanced external
memory interface provides the flexibility to address 8-, 16-, or 32-bit data indepen-
dently of the external memory width. The external memory width can be 8-, 16-,
or 32-bits wide.

The 'C3x’s separate program, data, and DMA buses allow for parallel program
fetches, data reads and writes, and DMA operations. For example, the CPU can
access two data values in one RAM block and perform an external program
fetch in parallel with the DMA controller loading another RAM block, all within
a single cycle.
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Figure 2-5. Memory Organization of the TMS320C30
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Memory Organization

Figure 2-6. Memory Organization of the TMS320C31/VC33
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Memory Organization

Figure 2—-7. Memory Organization of the TMS320C32 3'Co2E
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A 64 x 32-bit instruction cache is provided to store often-repeated sections
of code, which greatly reduces the number of off-chip accesses. This allows
for code to be stored off chip in slower, lower-cost memories. The external
buses are also freed for use by the DMA, external memory fetches, or other
devices in the system.

See Chapter 4, Memory and the Instruction Cache, for more information.
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Memory Organization

2.5.2 Memory Addressing Modes

The 'C3x supports a base set of general-purpose instructions as well as arithmetic-
intensive instructions that are particularly suited for digital signal processing and
other numeric-intensive applications. See Chapter 6, Addressing Modes, for more
information.

Four groups of addressing modes are provided on the 'C3x. Each group uses
two or more of several different addressing types. The following list shows the
addressing modes with their addressing types.

(1 General instruction addressing modes:
B Register. The operand is a CPU register.

B Shortimmediate. The operand is a 16-bit (short) or 24-bit (long) imme-
diate value.

B Direct. The operand is the contents of a 24-bit address formed by
concatenating the 8 bits of data-page pointer and a 16-bit operand.

B Indirect. An auxiliary register indicates the address of the operand.

(1 3-operand instruction addressing modes:
B Register. Same as for general addressing mode.

B Indirect. Same as for general addressing mode.

(1 Parallel instruction addressing modes:
B Register. The operand is an extended-precision register.
B Indirect. Same as for general addressing mode.

[ Branch instruction addressing modes:

B Register. Same as for general addressing mode.

B PC-relative. A signed 16-bit displacement or a 24-bit displacement is
added to the PC.
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Internal Bus Operation

2.6 Internal Bus Operation
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Much of the ’C3x’s high performance is due to internal busing and parallelism.
Separate buses allow for parallel program fetches, data accesses, and DMA
accesses:

(1 Program buses: PADDR and PDATA
(1 Data buses: DADDR1, DADDR2, and DDATA
(1 DMA buses: DMAADDR and DMADATA

These buses connect all of the physical spaces (on-chip memory, off-chip
memory, and on-chip peripherals) supported by the 'C3x. Figure 2-5,
Figure 2-6, and Figure 2—-7 show these internal buses and their connections
to on-chip and off-chip memory blocks.

The program counter (PC) is connected to the 24-bit program address bus
(PADDR). The instruction register (IR) is connected to the 32-bit program data
bus (PDATA). These buses can fetch a single instruction word every machine
cycle.

The 24-bit data address buses (DADDR1 and DADDR2) and the 32-bit data
data bus (DDATA) support two data-memory accesses every machine cycle.
The DDATA bus carries data to the CPU over the CPU1 and CPU2 buses. The
CPU1 and CPU2 buses can carry two data-memory operands to the multiplier,
ALU, and register file every machine cycle. Also internal to the CPU are register
buses REG1 and REG2, which can carry two data values from the register file
to the multiplier and ALU every machine cycle. Figure 2—-4 shows the buses
internal to the CPU section of the processor.

The DMA controller is supported with a 24-bit address bus (DMAADDR) and
a 32-bit data bus (DMADATA). These buses allow the DMA to perform memory
accesses in parallel with the memory accesses occurring from the data and
program buses.



External Memory Interface

2.7 External Memory Interface

2.71

TMS320C32 16- and 32-Bit Program Memory

The 'C30 provides two external interfaces: the primary bus and the expansion
bus. The ’C31/VC33 provides one external interface: the primary bus. The 'C32
provides one enhanced external interface with three independent multi-function
strobes. These buses consist of a 32-bit data bus and a set of control signals. The
primary and enhanced memory buses have a 24-bit address bus, whereas the
expansion bus has a 13-bit address bus. These buses address external program/
data memory or /O space. The buses also have external RDY signals for wait-
state generation. You can insert additional wait states under software control.
Chapter 9, External Memory Interface, covers external bus operation.

The "C3x family was designed for 32-bit instructions and 32-bit data operations.
This architecture has many advantages, including a high degree of parallelism
and provisions for a C compiler. However, the '‘C30 and 'C31/VC33 require a
32-bit-wide external memory even when the data requires only 8- or 16-bit-wide
memories. The 'C32 enhanced external memory interface overcomes this limi-
tation by providing the flexibility to address 8-, 16-, or 32-bit data independently
of the external memory width. In this way, the chip count and the size of external
memory is reduced. The number of memory chips can be further reduced by
the 'C32’s ability to allow code execution from 16- or 32-bit-wide memories. The
'C32 memory interface also reduces the total amount of RAM by allowing the
physical data memory to be 8, 16, or 32 bits wide. Internally, the ’C32 has a
32-bit architecture. So you can treat the 'C32 as a 32-bit device regardless of
the physical external memory width. The external memory interface handles the
conversion between external memory width and ’C32 internal 32-bit architec-
ture.

'C32F
The 'C32 executes code from either 16- or 32-bit-wide memories. When
connected to 32-bit memories, ‘C32 program execution is identical to that
of the ’C31/VC33. When connected to 16-bit zero wait-state memory, the
’C32 takes two instruction cycles to fetch a single 32-bit instruction. During
the first cycle, the 'C32 fetches the lower 16 bits. During the second cycle,
the ’‘C32 fetches the upper 16 bits and concatenates them with the previous-
ly fetched lower 16 bits. This process occurs entirely within the memory in-
terface andis transparent to you. An external pin, PRGW, dictates the exter-
nal program memory width.
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External Memory Interface

2.7.2 TMS320C32 8-, 16-, and 32-Bit Data Memory

'C32

The 'C32 external memory interface can load and store 8-, 16-, or 32-bit quanti-
ties into external memory and convert them into an internally-equivalent 32-bit
representation. The external memory interface accomplishes this without
changing the CPU instruction set. Figure 2-8 shows the supported external
memory widths, data types and sizes for zero wait-state memory and the asso-
ciated cycle count.

Figure 2-8. TMS320C32-Supported Data Types and Sizes and External Memory Widths
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Memory Width
8 16 32
Data 8 1-cycle read 1-cycle read 1-cycle read
Type 16 2-cycle read 1-cycle read 1-cycle read
Size 32 4-cycle read 2-cycle read 1-cycle read

To access 8-, 16-, or 32-bit data quantities (types) from 8-, 16-, or 32-bit-wide
memory, the memory interface uses either strobe STRBO or STRB1, depending
on the address location within the memory map. Each strobe consists of four pins
for byte enables and/or additional addresses. For a 32-bit memory interface, all
four pins are used as strobe byte-enable pins. These strobe byte-enable pins
select one or more bytes of the external memory. For a 16-bit memory interface,
the 'C32 uses one of these pins as an additional address pin, while using two
pins as strobe byte-enable pins. For an 8-bit memory interface, the ‘C32 uses
two of these pins as additional address pins while using one pin as strobe pin.
The 'C32 manipulates the behavior of these pins according to the contents of
the bus control registers (one control register per strobe). By setting a few bit
fields in this register, you indicate the data-type size and external memory width.
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Interrupts

Interrupts

The 'C3x supports four external interrupts (INT3-INTO), a number of internal
interrupts, and a nonmaskable external RESET signal. These can be used to
interrupt either the DMA or the CPU. When the CPU responds to the interrupt,
the IACK pin can be used to signal an external interrupt acknowledge. Section
7.5, Reset Operation, on page 7-21 covers RESET and interrupt processing.

The *’C30 and 'C31 external interrupts are level-triggered. To reduce external
logic and simplify the interface, the ‘C32 external interrupts are edge- and level-
or level-only triggered. The triggering is user-selectable through a bit in the
status register. The VC33 external interrupts are either edge or level-trig—
gered depending upon the state of the external EDGEMODE pin. See Sec-
tion 3.1.7, Status Register (ST), for more information.

Two external I/O flags, XFO and XF1, can be configured as input or output pins
under software control. These pins are also used by the interlocked operations
of the ‘C3x. The interlocked-operations instruction group supports multiproces-
sor communication. See Section 7.4, Interlocked Operations, on page 7-13 for
examples.
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2.9 Peripherals

All ’C3x peripherals are controlled through memory-mapped registers on a dedi-
cated peripheral bus. This peripheral bus is composed of a 32-bit data bus and
a 24-bit address bus. This peripheral bus permits straightforward communica-
tion to the peripherals. The ‘C3x peripherals include two timers and two serial
ports (only one serial port and one DMA coprocessor are available on the
‘C31/VC33 and one serial port and two DMA coprocessor channels on the
'C32). Figure 2-9 shows these peripherals with their associated buses and sig-
nals. See Chapter 12, Peripherals, for more information.

Figure 2-9. Peripheral Modules
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2.9.1 Timers

2.9.2 Serial Ports

Peripherals

The two timer modules are general-purpose 32-bit timer/event counters with
two signaling modes and internal or external clocking. They can signal internally
to the 'C3x or externally to the outside world at specified intervals or they can
count external events. Each timer has an I/O pin that can be used as an input
clock to the timer, as an output signal driven by the timer, or as a general-purpose
I/O pin. See Chapter 12, Peripherals, for more information about timers.

The bidirectional serial ports (two on 'C30, one each on the ‘C31/VC33 and 'C32)
are totally independent. They are identical to a complementary set of control reg-
isters that control each port. Each serial port can be configured to transfer 8, 16,
24, or 32 bits of data per word. The clock for each serial port can originate either
internally or externally. An internally generated divide-down clock is provided.
The pins are configurable as general-purpose I/O pins. The serial ports can also
be configured as timers. A special handshake mode allows 'C3x devices to
communicate over their serial ports with guaranteed synchronization.
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2.10 Direct Memory Access (DMA)

2-24

The on-chip DMA controller can read from or write to any location in the
memory map without interfering with the CPU operation. The 'C3x can inter-
face to slow, external memories and peripherals without reducing throughput
to the CPU. The DMA controller contains its own address generators, source
and destination registers, and transfer counter. Dedicated DMA address and
data buses minimize conflicts between the CPU and the DMA controller. A
DMA operation consists of a block or single-word transfer to or from memory.
See Section 12.3, DMA Controller, on page 12-48 for more information.
Figure 2—-10 shows the DMA controller and its associated buses.

The *C30 and 'C31/VC33 DMA coprocessors have one channel, while the ‘C32
DMA coprocessor has two channels. Each channel of the ’‘C32 DMA coproces-
sor is equivalent to the 'C30/31 DMA with the addition of user-configurable prior-
ities. Because the DMA and CPU have distinct buses on the 'C3x devices, they
can operate independently of each other. However, when the CPU and DMA
access the same on-chip or external resources, the bandwidth can be exceeded
and priorities must be established. The *C30 and 'C31/VC33 assign highest
priority to the CPU. The ‘C32 DMA coprocessor provides more flexibility by al-
lowing you to choose one of the following priorities:

(1 CPU: For all resource conflicts, the CPU has priority over the DMA.
(1 DMA: For all resource conflicts, the DMA has priority over the CPU.

(1 Rotating: When the CPU and DMA have a resource conflict during con-
secutive instruction cycles, the CPU is granted priority. On the following
cycle, the DMA is granted priority. Alternate access continues as long as
the CPU and DMA requests conflict in consecutive instruction cycles.

The DMA/CPU priority is configured by the DMA PRI bit fields of the corresponding
DMA global-control register. See Section 12.3, DMA Controller, on page 12-48 for
a complete description.
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Figure 2-10. DMA Controller
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2.11 TMS320C30, TMS320C31/VC33, and TMS320C32 Differences

Table 2-2 shows the major differences between the 'C32, ’C31/VC33, and the
'C30 devices.
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Table 2-2. Feature Set Comparison

TMS320C30, TMS320C31/VC33, and TMS320C32 Differences

Feature ’C30 ’C31/VC33 C32
External bus Two buses: One bus: One bus:
(1 Primary bus: 32-bit data [ 32-bit data

ROM
Boot loader
On-chip RAM

DMA

Serial ports
Timers

Interrupts

Interrupt vector
table

Package

Voltage

Temperature

32-bit data

24-bit address
STRB active for
0h-7FFFFFh and
80A000h-FFFFFFh

(1 Expansion bus:
32-bit data
13-bit address
MSTRB active for
800000h-801FFFh
IOSTRB active for
804000h-805FFFh

4k
No

2k
address:
809800h-809FFFh

1 channel
CPU greater priority than
DMA

2
2

Level-triggered

Fixed 0-3Fh

208 PQFP
181 PGA

5V

0° to 85°C (commercial)
—40 to 125°C (extended)
-55 125°C (military)

24-bit address
STRB active Oh—7FFFFFh
and 80A000h—-FFFFFFh

No
Yes

2k
address:
809800h—-809FFFh

1 channel
CPU greater priority than
DMA

1
2

Level-triggered

Microprocessor: 0-3Fh
fixed

Boot loader:
809C1h-809FFFh fixed

132 PQFP

5Vand 3.3V

0° to 85°C (commercial)
—40 to 125°C (extended)
-55 125°C (military)

24-bit address
STRBO active for
0h-7FFFFFh and
880000h—-8FFFFFh;

1 8-, 16-, 32-bit data in
8-, 16-, 32-bit-wide
memory
STRB1 active for
900000h—-FFFFFFh;

[ 8-, 16-, 32-bit data in
8-, 16-, 32- bit-wide
memory
IOSTRB active for
810000h-82FFFFh

No
Yes

512
address:
87FE00h-87FFFFh

2 channels
Configurable priorities

1
2

Level-triggered or com-
bination of edge- and
level-triggered

Relocatable

144 PQFP

5V

0° to 85°C (commercial)
—40 to 125°C (extended)
-55 125°C (military)
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Chapter 3

CPU Registers

The central processing unit (CPU) register file contains 28 registers that can
be operated on by the multiplier and arithmetic logic unit (ALU). Included in the
register file are the auxiliary registers, extended-precision registers, and index
registers.

Three registers in the ‘C32 CPU register file have been modified to support new
features (2-channel DMAs, program execution from 16-bit memory width, etc.)
The registers modified in the 'C32 are: the status (ST) register, interrupt-enable
(IE) register, and interrupt flag (IF) register.

Topic Page
3.1  CPU Multiport Register File ............ccoviiiiiiiiiiiiiiinn. 3-2
3.2 OtherBRegisters .........oiiiiiiiiiiii it ranin i enanannnns 3-18
3.3 Reserved Bits and Compatibility .....................cooiaa. 3-19
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CPU Multiport Register File

3.1 CPU Multiport Register File

The 'C3x provides 28 registers in a multiport register file that is tightly coupled to
the CPU. The program counter (PC) is not included in the 28 registers. All of these
registers can be operated on by the multiplier and the ALU and can be used as
general-purpose 32-bit registers.

Table 3-1 lists the registers’ names and assigned functions of the 'C3x.

Table 3—1. CPU Registers

Register
Register Machine
Symbol Value (hex) Assigned Function Name Section  Page
RO 00 Extended-precision register 0 3.1.1 3-3
R1 01 Extended-precision register 1 3.1.1 3-3
R2 02 Extended-precision register 2 3.1.1 3-3
R3 03 Extended-precision register 3 3.1.1 3-3
R4 04 Extended-precision register 4 3.1.1 3-3
R5 05 Extended-precision register 5 3.1.1 3-3
R6 06 Extended-precision register 6 3.1.1 3-3
R7 07 Extended-precision register 7 3.1.1 3-3
ARO 08 Auxiliary register 0 3.1.2 3-4
AR1 09 Auxiliary register 1 3.1.2 3-4
AR2 0A Auxiliary register 2 3.1.2 3-4
ARS 0B Auxiliary register 3 3.1.2 3-4
AR4 0C Auxiliary register 4 3.1.2 3-4
AR5 oD Auxiliary register 5 3.1.2 3-4
AR6 0E Auxiliary register 6 3.1.2 3-4
AR7 OF Auxiliary register 7 3.1.2 3-4
DP 10 Data-page pointer 3.1.3 3-4
IRO 11 Index register 0 3.1.4 3-4
IR1 12 Index register 1 3.1.4 3-4
BK 13 Block-size register 3.1.5 3-4
SP 14 System-stack pointer 3.1.6 3-4
ST 15 Status register 3.1.7 3-5
IE 16 CPU/DMA interrupt-enable 3.1.8 3-9
IF 17 CPU interrupt flags 3.1.9 3-11
IOF 18 I/O flags 3.1.10 3-16
RS 19 Repeat start-address 3.1.11 3-17
RE 1A Repeat end-address 3.1.11 3-17
RC 1B Repeat counter 3.1.11 3-17




CPU Multiport Register File

The registers also have some special functions for which they are particularly
appropriate. For example, the eight extended-precision registers are especially
suited for maintaining extended-precision floating-point results. The eight auxiliary
registers support a variety of indirect addressing modes and can be used as
general-purpose 32-bit integer and logical registers. The remaining registers
provide system functions, such as addressing, stack management, processor
status, interrupts, and block repeat. See Chapter 6, Addressing Modes, for more
information.

3.1.1 Extended-Precision Registers (R7-R0)

The eight extended-precision registers (R7-R0) can store and support operations
on 32-bit integer and 40-bit floating-point numbers. These registers consist of two
separate and distinct regions:

[J Bits 39-32: dedicated to storage of the exponent (e) of the floating-point
number.

(1 Bits 31-0: store the mantissa of the floating-point number:

W Bit 31: sign bit (s)
W Bits 30-0: the fraction (f)

Any instruction that assumes the operands are floating-point numbers uses
bits 39-0. Figure 3-1 illustrates the storage of 40-bit floating-point numbers
in the extended-precision registers.

Figure 3-1. Extended-Precision Register Floating-Point Format
39 32 31 30 0

Exponent Sign Fraction

< Mantissa >

For integer operations, bits 31-0 of the extended-precision registers contain
the integer (signed or unsigned). Any instruction that assumes the operands
are either signed or unsigned integers uses only bits 31-0. Bits 39-32 remain
unchanged. This is true for all shift operations. The storage of 32-bit integers
in the extended-precision registers is shown in Figure 3-2.

Figure 3-2. Extended-Precision Register Integer Format
39 32 31 0

Unchanged Signed or unsigned integer

CPU Registers 3-3
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3.1.2 Auxiliary Registers (AR7-ARO0)

The CPU can access the eight 32-bit auxiliary registers (AR7-AR0), and the
two auxiliary register arithmetic units (ARAUs) can modify them. The primary
function of the auxiliary registers is the generation of 24-bit addresses. However,
they can also operate as loop counters in indirect addressing or as 32-bit general-
purpose registers that can be modified by the multiplier and ALU. See Chap-
ter 6, Addressing Modes, for more information.

3.1.3 Data-Page Pointer (DP)

3.14

The data-page pointer (DP) is a 32-bit register that is loaded using the load data
page (LDP) instruction (see Chapter 13, Assembly Language Instructions). The
eight LSBs of the data-page pointer are used by the direct addressing mode as a
pointer to the page of data being addressed (see Section 6.3, Direct Addressing,
on page 6-4). Data pages are 64K-words long, with a total of 256 pages. Bits 31-8
are reserved; you must always keep these set to 0 (cleared).

Index Registers (IR0, IR1)

The 32-bit index registers (IR0 and IR1) are used by the ARAU for indexing
the address. See Chapter 6, Addressing Modes, for more information.

3.1.5 Block Size (BK) Register

The 32-bit block size register (BK) is used by the ARAU in circular addressing to
specify the data block size. See Section 6.7, Circular Addressing, on page 6-21
for more information.

3.1.6 System-Stack Pointer (SP)

3-4

The system-stack pointer (SP) is a 32-bit register that contains the address of the
top of the system stack. The SP always points to the last element pushed onto
the stack. The SP is manipulated by interrupts, traps, calls, returns, and the
PUSH, PUSHF, POP, and POPF instructions. Stack pushes and pops perform
preincrements and postdecrements on all 32 bits of the SP. However, only the
24 LSBs are used as an address. See Section 6.10, System and User Stack
Management, on page 6-29 for more information.
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3.1.7 Status (ST) Register

Figure 3-3. Status Register (TMS320C30 andTMS320C31/VC33)

The status (ST) register contains global information about the state of the CPU.
Operations usually set the condition flags of the status register according to
whether the result is 0, negative, etc. This includes register load and store
operations as well as arithmetic and logical functions. However, when the
status register is loaded, the contents of the source operand replace the ST’s
contents bit for bit, regardless of the state of any bits in the source operand.
Following an ST load, the contents of the status register are identical to the
contents of the source operand. This allows the status register to be saved
easily and restored. At system reset, a 0 is written to this register.

Figure 3-3 shows the format of the status register for the ‘C30 and 'C31/VC33
devices. Figure 3—4 shows the format of the status register for the ’‘C32 device.
Table 3-2 describes the status register bits, their names, and their functions.

'C30E 3°C31

31-16, 15 14 13 12, 11 10 9 8 , 7 6 5 4 . 1
. . . .
XX 'oxx xx |GIE | CC! CE|CF | xx | RM*OVM|LUF [ LV | UF* N z|v ]| c
, RW RW, RW RW RW,RW RW RW RW,RW RW RW RW
Notes: 1) xx = reserved bit, read as 0

2) R=read, W = write

Figure 3-4. Status Register (TMS320C32 Only) 3'082¢
31-16! 15 14 13 12 ! 1 10 9 8 ' 7 6 5 4 1 0
xx +PRGWI INT | oe | ooy cE | cF | xx | RMrowm|wr| v |urt N | z | v | c
s status | config ' ' '
"R RW RW RW,RW RW RW, RW RW RW RW,RW RW RW RW

Notes:

1) xx = reserved bit, read as 0
2) R=read, W = write

CPU Registers 3-5
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Table 3-2. Status Register Bits

Bit Name Reset Value Name Description
C 0 Carry flag Carry condition flag
\Y 0 Overflow flag Overflow condition flag
Z 0 Zero flag Zero condition flag
N 0 Negative flag Negative condition flag
UF 0 Floating-point under- Floating-point underflow condition flag
flow flag
LV 0 Latched overflow flag Latched overflow condition flag
LUF 0 Latched floating-point ~ Latched floating-point underflow condition flag
underflow flag
OVM 0 Overflow mode flag Overflow mode flag
The overflow mode flag affects only integer operations.
If OVM = 0, the overflow mode is turned off and integer
results that overflow are treated in no special way.
If OVM = 1, integer results overflowing in the positive
direction are set to the most positive, 2s-complement
number (7FFF FFFFh), and integer results overflowing
in the negative direction are set to the most negative
32-bit, 2s-complement number (8000 0000h).
RM 0 Repeat mode flag Repeat mode flag
If RM = 1, the PC is modified in either the repeat-block
or repeat-single mode.
CE 0 Cache enable CE enables or disables the instruction cache.
Set CE = 1 to enable the cache, allowing the cache to
be used according to the least recently used (LRU)
stack manipulation.
Set CE = 0to disable the cache, preventing cache
updates or modifications (no cache fetches can be
made). Cache clearing (CC = 1) is allowed when
CE =0.
Note: If aload of the status register occurs simultaneously with a CPU interrupt pulse trying to reset GIE, GIE is reset.
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Table 3-2. Status Register Bits (Continued)

CPU Multiport Register File

Bit Name Reset Value Name

Description

CF 0 Cache freeze

CC 0 Cache clear

GIE 0 Global interrupt-enable

INT config 0 Interrupt configuration

(‘C32 only)

Enables or disables the instruction cache

Set CF = 1 to freeze the cache (cache is not updated),
including LRU stack manipulation. If the cache is
enabled (CE = 1), fetches from the cache are allowed,
but modification of the cache contents is not allowed.
Cache clearing (CC = 1) is allowed. At reset, this bit
is cleared to 0, but it is set to 1 after reset.

When CF = 0, the cache is automatically updated by
instruction fetches from external memory. Also, when
CF =0, cache clearing (CC = 1) is allowed.

The following table summarizes the CE and CF bits:

CE CF Effect
0 Cache not enabled
1 Cache not enabled
1 0

1 1

Cache enabled and not frozen

Cache enabled but frozen
(cache read only)

CC =1 invalidates all entries in the cache. This bit is
always cleared after it is written to, and is always read
as 0. At reset, 0 is written to this bit.

If GIE = 1, the CPU responds to an enabled interrupt.

If GIE = 0, the CPU does not respond to an enabled
interrupt.

Sets the external interrupt signals INT3 — INTO for level-
or edge-triggered interrupts.

INT Config Effect

0 All the external interrupts (INT3 — INTO)
are configured as level-triggered
interrupts. Multiple interrupts may be
triggered when the signal is active for
a long period of time.

1 All the external interrupts (INT3 — INTO)
are configured as edge-triggered inter-
rupts. Edge and duration are required
for all interrupts to be recognized.

Note:

If a load of the status register occurs simultaneously with a CPU interrupt pulse trying to reset GIE, GIE is reset.
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Table 3-2. Status Register Bits (Continued)

Bit Name Reset Value Name Description

PRGW Dependent  Program width status Indicates the status of the external input PRGW pin.
on PRGW (‘C32 only) When the signal of the PRGW pin is high, the PRGW
pin level status bit is set to 1, indicating a 16-bit memory width.

The ‘C32 performs two fetches to retrieve a single 32-bit
instruction word. The PRGW bit is a read-only bit, and
can have the following values:

PRG Effect

0 Instruction fetches use one 32-bit exter-
nal program memory read.

1 Instruction fetches use two 16-bit exter-
nal program memory reads.

Note: If aload of the status register occurs simultaneously with a CPU interrupt pulse trying to reset GIE, GIE is reset.
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3.1.8 CPU/DMA Interrupt-Enable (IE) Register

The CPU/DMA interrupt-enable (IE) register of the ‘C30, 'C31/VC33, and 'C32

are 32-bit registers (see Figure 3-5 and Figure 3-6). The CPU interrupt-enable

bits are in locations 10-0 for 'C30 and 'C31/VC33 devices, and 11-0 for 'C32
devices. The direct memory access (DMA) interrupt-enable bits are in locations

26-16 for ‘C30 and ‘C31/VC33 devices, and 31-16 for 'C32 devices. A 1in a
CPU/DMA [E bit enables the corresponding interrupt. A 0 disables the corre-

sponding interrupt. At reset, 0 is written to this register.

Table 3-3 describes the interrupt-enable register bits, their names, and their

functions.
i i 3'C30F 3'C31E
Figure 3-5. CPU/DMA Interrupt-Enable (IE) Register E ¥ 3
(TMS320C30 and TMS320C31/VC33) T
31 30 29 28' 27 26 25 24 ! 2 22 21 20 ' 19 18 17 16
o Lol o b r | EDNT | ETNTS | ETINTO |} ERNTI | ExinTi | ERiTo | ExinTo | EnTs [ EwT2 | EnTi | EwTO
©mA) | vy [ (oma) ©oma) [ ©ma) [ ©ma) | ©ma) ! ©owma) [ ©oma) | ©ma) | Oma)
L} ) L}
. RIW RW RW , RW RW RW RW , RW RIW RW RIW
15 14 13 12 11 10 9 g ' 7 6 5 4 ' 3 2 1 0
' et | ETINTI | ETINTO ' ERINTT | EXinTt | ERINTO | EXinTo ' EINTS | ENT2 | ENT1 | EINTO
[ ox | xx | x| (CPU) (CPU) €U ' ©PY) | (CPU) [ ©PY) [ ©Py) ! cPY) | ©PY) [ (cPU) | (CPY)
. RW RW RW , RW RW RIW RW , RW RW RW RW

Notes: 1) xx = reserved bit, read as 0
2) R=read, W = write
'C32

Figure 3-6. CPU/DMA Interrupt-Enable (IE) Register (TMS320C32)

31 30 29 28 4 27 26 25 24
[
EINT3 | EINT2 | EINT1 | EINTO +EDINTO| EDINT1| ETINTT| ETINTO
(DMAT) [ (DMAT) | (DMA1)|(DMA1) + (DMAT) | (DMAO) | (DMAD) | (DMAO)
]

23 22 21 20, 19 18 17 16

ETINT1| ETINTO | ERINTO | EXINTO | EINT3 | EINT2 | EINT1 | EINTO
(DMA1)| (DMAT1) | (DMA1) | (DMAO) , (DMAO)| (DMAO) | (DMAO) |(DMAO)

RW RW RW RW'RW RW RW RW , RW RW RW RW ' RW RW RW RW

15 14 13 12 0 1 10 9 8 ' 7 6 5 4 '3 2 1 0
' eoinT1 | eointo | ETINTY [ ETinTo | ERINTO [ EXINTO ! EINT3 | ENT2 [ ENT1 | EINTO

o R R : (CPU) (CPU) (CPU) cpPu)y , X X (CPU) (CPU) | (CPY) (CPU) (CPU) (CPU)
. RW RIW RW  RW RW RW RW , RW RW RW RIW

Notes: 1) xx = reserved bit, read as 0
2) R=read, W = write
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3-10

Table 3-3. IE Bits and Functions

Reset
Abbreviation Value Description
EINTO (CPU) 0 CPU external interrupt 0 enable
EINT1 (CPU) 0 CPU external interrupt 1 enable
EINT2 (CPU) 0 CPU external interrupt 2 enable
EINT3 (CPU) 0 CPU external interrupt 3 enable
EXINTO (CPU) 0 CPU serial port 0 transmit interrupt enable
ERINTO (CPU) 0 CPU serial port 0 receive interrupt enable
EXINT1 (CPU) 0 CPU serial port 1 transmit interrupt enable ('C30 only)
ERINT1 (CPU) 0 CPU serial port 1 receive interrupt enable ('C30 only)
ETINTO (CPU) 0 CPU timer0 interrupt enable
ETINT1 (CPU) 0 CPU timer1 interrupt enable
EDINT (CPU) 0 CPU DMA controller interrupt enable
('C30 and 'C31/VC33 only)
EDINTO (CPU) 0 CPU DMAO controller interrupt enable ('C32 only)
EDINT1 (CPU) 0 CPU DMAT1 controller interrupt enable ('C32 only)
EINTO (DMA) 0 DMA external interrupt 0 enable ('C30 and 'C31/VC33
only)
EINT1 (DMA) 0 DMA external interrupt 1 enable ('C30 and 'C31/VC33
only)
EINT2 (DMA) 0 DMA external interrupt 2 enable ("'C30 and 'C31/VC33
only)
EINT3 (DMA) 0 DMA external interrupt 3 enable ('C30 and 'C31/VC33
only)
EINTO (DMAO) 0 DMAO external interrupt 0 enable ('C32 only)
EINT1 (DMAO) 0 DMAO external interrupt 1 enable ('C32 only)
EINT2 (DMAO) 0 DMAO external interrupt 2 enable ('C32 only)
EINT3 (DMAO) 0 DMAO external interrupt 3 enable ('C32 only)
EXINTO (DMA) 0 DMA serial port 0 transmit interrupt enable
('C30 and 'C31/VC33 only)
ERINTO (DMA) 0 DMA serial port 0 receive interrupt enable
('C30 and 'C31/VC33 only)
EXINT1 (DMA) 0 DMA serial port 1 transmit interrupt enable ('C30 only)
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Table 3-3. IE Bits and Functions(Continued)

Reset
Abbreviation Value Description

ERINT1 (DMA) 0 DMA serial port 1 receive interrupt enable ('C30 only)

EXINTO (DMAO) 0 DMAO serial port 1 transmit interrupt enable ('C32 only)

ERINTO (DMAT) 0 DMAT1 serial port 1 receive interrupt enable ('C32 only)

ETINTO (DMA) 0 DMA timer0 interrupt enable ('C30 and 'C31/VC33)

ETINT1 (DMA) 0 DMA timer1 interrupt enable ('C30 and 'C31/VC33 only)

ETINTO (DMAO) 0 DMAO timer1 interrupt enable ('C32 only)

ETINT1 (DMAOQ) 0 DMAO timer1 interrupt enable ('C32 only)

ETINTO (DMAT) 0 DMAT1 timer0 interrupt enable ('C32 only)

ETINT1 (DMAT) 0 DMAT1 timer1 interrupt enable ('C32 only)

EDINT (DMA) 0 DMA controller interrupt enable ('C30 and 'C31/VC33
only)

EDINT1 (DMAO) 0 DMAO-DMA1 controller interrupt enable ('C32 only)

EDINTO (DMAT1) 0 DMA1-DMAO controller interrupt enable ('C32 only)

EINTO (DMAT1) 0 DMAT1 external interrupt 0 enable ('C32 only)

EINT1 (DMA1) 0 DMAT1 external interrupt 1 enable ('C32 only)

EINT2 (DMA1) 0 DMAT1 external interrupt 2 enable ('C32 only)

EINT3 (DMAT) 0 DMA1 external interrupt 2 enable ('C32 only)

3.1.9 CPU Interrupt Flag (IF) Register

Figure 3-7, Figure 3-8, and Figure 3-9 show the 32-bit CPU interrupt flag reg-
isters (IF) for the ‘C30, ‘C31/VC33, and ‘C32 devices, respectively. A 1ina CPU
IF register bit indicates that the corresponding interrupt is set. The IF bits are
set to 1 when an interrupt occurs. They may also be set to 1 through software
to cause an interrupt. A 0 indicates that the corresponding interrupt is not set.
If a 0 is written to an IF register bit, the corresponding interrupt is cleared. At re-
set, 0 is written to this register. Table 3-4 describes the interrupt flag register
bits, their names, and their functions.
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'C30

Figure 3—7. TMS320C30 CPU Interrupt Flag (IF) Register

31-16 4 15-12¢ 11 10 9 8 + 7 6 5 4
| o vy oy | DINT [ TINTS | TINTO vRINTH| xiNT1| RINTO| XINTO

3 2 1 0
INT3 | INT2 | INT1 | INTO|

. .
: T RW R/W R/W RW , RW RW RW R/W R/W RW RW RW

Notes: 1) xx = reserved bit, read as 0
2) yy =reserved bit, set to 0 at reset; can store value
3) R=read, W = write

Figure 3-8. TMS320C31/VC33 CPU Interrupt Flag (IF) Register 031
31-16 + 1512, 11 10 9 8 7 6 5 4 3 2 1 0
| XX v yy vy | DINT |TINT1 | TINTO +  xx | XX | RINTO| XINTO + INT3 | INT2 | INT1 | INTO|

L)
) )
: : RW  RW  RW

RW RW RW R/W R/W R/W R/wW R/W

Notes: 1) xx = reserved bit, read as 0
2) yy =reserved bit, set to 0 at reset
3) R =read, W = write

Figure 3-9. TMS320C32 CPU Interrupt Flag (IF) Register 3'C32F
31-16 1+ 15-12, 11 10 9 8 7 6 5 4 3 2 1 0
ITTP 1+ xx DINT1| DINTO | TINT1 | TINTO +  xx | XX | RINTOl XINTO + INT3 | INT2 | INT1 | INTO|

L} L}
: " RW RW RW RW

RW RW R/W R/W R/W R/W R/W R/W

Notes: 1) xx = reserved bit, read as 0
2) R=read, W = write
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Table 3—-4. IF Bits and Functions

Bit Reset
Name Value Function
INTO 0 External interrupt 0 flag
INTH 0 External interrupt 1 flag
INT2 0 External interrupt 2 flag
INT3 0 External interrupt 3 flag
XINTO 0 Serial port 0 transmit flag
RINTO 0 Serial port 0 receive flag
XINT1 0 Serial port 1 transmit flag (‘C30 only)
RINT1 0 Serial port 1 receive interrupt flag (‘C30 only)
TINTO 0 Timer 0 interrupt flag
TINTA 0 Timer 1 interrupt flag
DINT 0 DMA channel interrupt flag (‘C30 and ‘C31/VC33 only)
DINTO 0 DMAO channel interrupt flag (‘C32 only)
DINT1 0 DMAT1 channel interrupt flag (‘C32 only)
ITTP 0 Interrupt-trap table pointer (see Section 3.1.9.1)
Allows the relocation of interrupt and trap vector tables (‘C32 only)
Note: If aload of the interrupt flag (IF) register occurs simultaneously with a set of a flag by an

interrupt pulse, the loading of the flag has higher priority and overwrites the value of the
interrupt flag register.
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3.1.9.1 Interrupt-Trap Table Pointer (ITTP)

'C32

Similar to the rest of the ‘C3x device family, the 'C32’s reset vector location
remains at address 0. However, the interrupt and trap vectors are relocatable.
This is achieved by the interrupt-trap table pointer (ITTP) bit field in the CPU
interrupt flag register, shown in Figure 3-9. The ITTP bit field dictates the
starting location (base) of the interrupt-trap vector table. This base address
is formed by left shifting by eight bits the value of the ITTP bit field. This shifted
value is called the effective base address and is referenced as EA[ITTP], as
shown in Figure 3-10. Therefore, the location of an interrupt or trap vector
is given by the addition of the effective base address formed by the ITTP bit
field (EA[ITTP]) and the offset of the interrupt or trap vector in the interrupt-
trap vector table, as shown in Figure 3—11. For example, if the ITTP contains
the value 100h, the serial port transmit interrupt vector is located at 10005h.
Note that the vectors stored in the interrupt-trap vector table are the addresses
of the start of the respective interrupt and trap routines. Furthermore, the
interrupt-trap vector table must lie on a 256-word boundary, since the eight
LSBs of the effective base address of the interrupt-trap vector table are 0.

See Section 7.6, Interrupts, on page 7-26 for more information on interrupt
vector tables.

Figure 3—-10. Effective Base Address of the Interrupt-Trap Vector Table
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CPU Multiport Register File

Figure 3—11.Interrupt and Trap Vector Locations ’032
EA (ITTP) + 00h Reserved
EA (ITTP) + 01h INTO
EA (ITTP) + 02h INT1
EA (ITTP) + 03h INT2
EA (ITTP) + 04h INT3
EA (ITTP) + 05h XINTO
EA (ITTP) + 06h RINTO
EA (ITTP) + 07h Reserved
EA (ITTP) + 08h Reserved
EA (ITTP) + 09h TINTO
EA (ITTP) + 0Ah TINTH
EA (ITTP) + 0Bh DINTO
EA (ITTP) + 0OCh DINT1
EA (ITTP) + ODh
Reserved
EA (ITTP) + 1Fh
EA (ITTP) + 20h TRAPO
EA (ITTP) + 3Bh TRAP27
EA (ITTP) + 3Ch TRAP28 (reserved)
EA (ITTP) + 3Dh TRAP29 (reserved)
EA (ITTP) + 3Eh TRAP30 (reserved)
EA (ITTP) + 3Fh TRAP31 (reserved)
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3.1.10 /O Flag (IOF) Register

The 1/O flag (IOF) register is shown in Figure 3—-12 and controls the function
of the dedicated external pins, XFO and XF1. These pins can be configured for
input or output. The pins can also be read from and written to. At reset, 0 is
written to this register. Table 3-5 describes the 1/O flags register bits, their
names, and their functions.

Figure 3—12. I/O Flag (IOF) Register

31-16 , 15-12 , 11-8 , 7 6 5 4 , 38 2 1 0
x x4 oxx L INXFT JOUTXF1[ JOXF1 | xx ) INXFo [ouTxFo| oxFo | xx |
: X . R R/W R/W \ R RW RW
Notes: 1) xx =reserved bit, read as 0
2) R=read, W = write
Table 3-5. IOF Bits and Functions
Reset
Bit Name Value Function
/OXFO 0 If 0, XFO is configured a general-purpose input pin.
If 1, XFO is configured a general-purpose output pin.
OUTXFO 0 Data output on XFO.
INXFO 0 Data input on XFO. A write has no effect.
/OXF1 0 If 0, XF1 is configured a general-purpose input pin.
If 1, XF1 is configured a general-purpose output pin.
OUTXF1 0 Data output on XF1.
INXF1 0 Data input on XF1. A write has no effect.
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3.1.11 Repeat-Counter (RC) and Block-Repeat (RS, RE) Registers

The repeat-counter (RC) register is a 32-bit register that specifies the number
of times a block of code is to be repeated when a block repeat is performed.
If RC contains the number n, the loop is executed n + 1 times.

The 32-bit repeat start-address (RS) register contains the starting address of
the program-memory block to be repeated when the CPU is operating in the
repeat mode.

The 32-bit repeat end-address (RE) register contains the ending address of
the program-memory block to be repeated when the CPU is operating in the
repeat mode.

Note: RE <RS

If RE< RS and the block mode is enabled, the code between RE and RS is
bypassed when the program counter encounters the repeat end (RE) ad-
dress.

CPU Registers 3-17
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3.2 Other Registers

3.2.1 Program-Counter (PC) Register

The program counter (PC) is a 32-bit register containing the address of the
next instruction fetch. While the program-counter register is not part of the
CPU register file, it can be modified by instructions that modify the program
flow.

3.2.2 Instruction Register (IR)

The instruction register (IR) is a 32-bit register that holds the instruction op-
code during the decode phase of the instruction. This register is used by the
instruction decode control circuitry and is not accessible to the CPU.
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Reserved Bits and Compatibility

3.3 Reserved Bits and Compatibility

To retain compatibility with future members of the ’C3x family of microprocessors,
reserved bits that are read as 0 must be written as 0. You must not modify the
current value of a reserved bit that has an undefined value. In other cases, you
should maintain the reserved bits as specified.

CPU Registers 3-19
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Chapter 4

Memory and the Instruction Cache

The 'C3x provides a total memory space of 16M (million) 32-bit words that contain
program, data, and I/O space. Two RAM blocks of 1K x 32 bits each (available
on the ’C30 and 'C31) or two RAM blocks of 256 x 32 bits (available on the ’C32)
and a ROM block of 4K x 32 bits (available only on the 'C30) or boot loader
(available on the ‘C31 and the ‘C32) permit two CPU accesses in a single cycle.
The VC33 contains four RAM blocks totaling 34K words plus an internal bootload-
er identical to the C31 bootloader.

A 64 x 32-bit instruction cache stores often-repeated sections of code, greatly
reducing the number of off-chip accesses and allowing code to be stored off-chip
in slower, lower-cost memories.

Note: VC33

The TMS320VC33 is logically and functionally a superset of the TMS320C31
making nearly all literature and documentation for the TMS320C31 applica—
ble. However, the electrical characteristics are different and are covered in
detail in the TMS320VC33 data sheet (literature number SPRS087).

Topic Page
L T 11 =Y 15 o T 4-2
4.2 Reset/Interrupt/Trap VectorMap ............covviiiiiiiiinnnnn, 4-14
4.3 InstructionCache ..........cciiiiiiiiiii it iiinaannns 4-19

4-1



Memory

4.1

4.1.1

4.1.1.1 TMS320C30 Memory Map 3'C30
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Memory

The 'C3x accesses a total memory space of 16M (million) 32-bit words of pro-
gram, data, and 1/O space and allows tables, coefficients, program code, or
data to be stored in either RAM or ROM. In this way, you can maximize memory
usage and allocate memory space as desired.

RAM blocks 0 and 1 are each 1K x 32 bits on the 'C30 and 'C31/VC33. The
ROM block is 4K x 32 bits on the ’C30. The ’C31/VC33 and 'C32 have a boot
ROM. By manipulating one external pin (MC/MP or MCBL/MP), you can config-
ure the first 1000h words of memory to address the on-chip ROM or external
RAM. Each on-chip RAM and ROM block can support two CPU accesses in a
single cycle. The separate program buses, data buses, and DMA buses allow for
parallel program fetches, data reads/writes, and DMA operations, which are cov-
ered in Chapter 11, Peripherals.

Memory Maps

The following sections describe the memory maps for the 'C30, 'C31/VC33,
and 'C32.

The memory map depends on whether the processor is running in micro-
processor mode (MC/MP = 0) or microcomputer mode (MC/MP = 1). The
memory maps for these modes are similar (see Figure 4-1 on page 4-4).
Locations 800000h-801FFFh are mapped to the expansion bus. When this
region is accessed, MSTRB is active. Locations 802000h-803FFFh are
reserved. Locations 804000h—805FFFh are mapped to the expansion bus.
When this region is accessed, IOSTRB is active. Locations 806000h—
807FFFh are reserved. All of the memory-mapped peripheral bus registers
are in locations 808000h-8097FFh. In both modes, RAM block 0 is located
at addresses 809800h-809BFFh, and RAM block 1 is located at addresses
809C00h-809FFFh. Locations 80A000h-0FFFFFFh are accessed over the
external memory port (STRB active).

(1 Microprocessor Mode

In microprocessor mode, the 4K on-chip ROM is not mapped into the 'C3x
memory map. Locations 0h—03Fh consist of interrupt vector, trap vector,
and reserved locations, all of which are accessed over the external memory
port (STRB active) (see Figure4-1 on page 4-4). Locations
040h-7FFFFFh are also accessed over the external memory port.



Memory

(1 Microcomputer Mode

In microcomputer mode, the 4K on-chip ROM is mapped into locations
0h-OFFFh. There are 192 locations (Oh—0BFh) within this block for interrupt
vectors, trap vectors, and a reserved space ('C30). Locations 1000h—
7FFFFFh are accessed over the external memory port (STRB active).

Section 4.1.2, Peripheral Bus Memory Map, on page 4-9 describes the peripheral
memory maps in greater detail and Section 4.2, Reset/Interrupt/Trap Vector Map,
on page 4-14 provides the vector locations for reset, interrupts, and traps.

Be careful! Access to a reserved area produces unpredictable
results.

Memory and the Instruction Cache 4-3
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Figure 4—1. TMS320C30 Memory Maps
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Oh

03Fh
040h

7FFFFFh
800000h

801FFFh
802000h

803FFFh
804000h

805FFFh
806000h

807FFFh
808000h

8097FFh
809800h

809BFFh
809C00h

809FFFh
80A000h

FFFFFFh

Reset, interrupt, trap vectors,
and reserved locations (64)
(external STRB active)

External
STRB active
(8.192M words)

Expansion bus
MSTRB active
(8K words)

Reserved
(8K words)

Expansion bus
IOSTRB active
(8K words)

Reserved
(8K words)

Peripheral bus
memory-mapped
registers
(6K words internal)

RAM block 0
(1K words internal)

RAM block 1
(1K words internal)

External
STRB active
(7.96M words)

Microprocessor mode

Oh

0BFh
0COh

OFFFh
1000h

7FFFFFh
800000h

801FFFh
802000h

803FFFh
804000h

805FFFh
806000h

807FFFh
808000h

8097FFh
809800h

809BFFh
809C00h

809FFFh
80A000h

FFFFFFh

Reset, interrupt, trap vectors,
and reserved locations (192)

ROM
(Internal)

—External
STRB active
(8.188M words)

Expansion bus
MSTRB active
(8K words)

Reserved
(8K words)

Expansion bus
IOSTRB active
(8K words)

Reserved
(8K words)

Peripheral bus
memory-mapped
registers
(Internal)

(6K words internal)

RAM block 0
(1K words internal)

RAM block 1
(1K words internal)

External
STRB active

(7.96M words)

Microcomputer mode

'C30




4.1.1.2 TMS320C31/VC33 Memory Map

The memory map depends on whether the processor is running in micropro-
cessor mode (MCBL/MP = 0) or microcomputer mode (MCBL/MP = 1). The
memory maps for these modes are similar (see Figure 4-2 on page 4-6).
Locations 800000h-807FFFh are reserved. All of the memory-mapped
peripheral bus registers are in locations 808000h—-8097FFh. In both modes,
RAM block 0 is located at addresses 809800h—809BFFh, and RAM block 1 is
located at addresses 809C00h-809FFFh. Locations 80A000h-0FFFFFFh
are accessed over the external memory port (STRB active).

(1 Microprocessor Mode

In microprocessor mode, the boot loader is not mapped into the 'C3x
memory map. Locations 0h—03Fh consist of interrupt vector, trap vector,
and reserved locations, all of which are accessed over the external
memory port (STRB active) (see Figure 4-2 on page 4-6). Locations
040h-7FFFFFh are also accessed over the external memory port.

(1 Microcomputer Mode

In microcomputer mode, the boot loader ROM is mapped into locations
0h-0FFFh. The last 63 words (809FC1h to 809FFFh) of internal RAM
Block 1 are used for interrupt and trap branches (see Figure 4-2 on page
4-6). Locations 1000h-7FFFFFh are accessed over the external
memory port (STRB active).

Section 4.1.2, Peripheral Bus Memory Map, on page 4-9 describes the
peripheral memory maps in greater detail and Section 4.2, Reset/Interrupt/
Trap Vector Map, on page 4-14 provides the vector locations for reset, inter-
rupts, and traps.

Be careful! Access to a reserved area produces unpredictable
results.
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Figure 4-2. TMS320C31/VC33 Memory Maps
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Oh

03Fh
040h

7FFFFFh
800000h

807FFFh
808000h

8097FFh
809800h

809BFFh
809C00h

809FFFh
80A000h

FFFFFFh

Reset, interrupt, trap vectors,
and reserved locations (64)
(external STRB active)

External
STRB active
(8.192M words)

Reserved
(32K words)

Peripheral bus
memory-mapped
registers
(6K words internal)

RAM block 0
(1K words internal)

RAM block 1
(1K words internal)

External
STRB active
(7.96M words)

Microprocessor mode

Oh

OFFFh
1000h

400000h

7FFFFFh
800000h

807FFFh
808000h

8097FFh
809800h

809BFFh
809C00h

809FCOh
809FC1h

809FFFh
80A000h

FFFO0Oh

FFFFFFh

Reserved for boot-
loader operationst

Boot 1 External

STRB
active
(8.188M words)

Boot 2

Reserved
(32K words)

Peripheral bus
memory-mapped
registers
(6K words internal)

RAM block 0
(1K words internal)

RAM block 1
(1K - 63 words internal)

User program interrupt
and trap branches
(63 words internal)

Boot 3

active

(7.96M words)

Microcomputer/boot-loader mode

T See Section 3.1 .3, Data-Page Pointer (DP), on page 3-4 for more information.

'C31




Memory

'C32F

4.1.1.3 TMS320C32 Memory Map

The memory map depends on whether the processor is running in micropro-
cessor mode (MCBL/MP = 0) or microcomputer mode (MCBL/MP = 1). The
memory maps for these modes are similar (see Figure 4-3 on page 4-8).
Locations 800000h-807FFFh, 809800h-80FFFh, and 830000H-87FDFFh are
reserved. Locations 810000h—-82FFFFh are mapped to the external bus with
IOSTRB active. All of the memory-mapped peripheral bus registers are in loca-
tions 808000h-8097FFh. In both modes, RAM block 0 is located at addresses
87FE00h-87FEFFh, and RAM block 1 is located at addresses 87FF00h-
87FFFFh. Locations 900000h—FFFFFFh are mapped to the external bus with
STRB1 active.

Unlike the fixed interrupt-trap vector table location of the 'C30 and 'C31/VC33
devices, the 'C32 has a user-relocatable interrupt-trap vector table. The inter-
rupt-trap vector table must start on a 256-word boundary. The starting location
is programmed through the interrupt-trap table pointer (ITTP) bit field in the CPU
interrupt flag (IF) register. See Section 3.1.9.1, Interrupt-Trap Table Pointer
(ITTP), on page 3-14.

(1 Microprocessor Mode

In microprocessor mode, the boot loader is not mapped into the 'C3x memory
map. Locations Oh—7FFFFFFh are accessed over the external memory port
(STRBO active) with location Oh containing the reset vector.

(1 Microcomputer Mode

In microcomputer mode, the on-chip boot loader ROM is mapped into
locations Oh—0FFFh. Locations 1000h—-7FFFFFh are accessed over the
external memory port (STRBO active).

The 'C32 boot loader has additional modes over the 'C31/VC33 boot loader to han-
dle the data types, sizes, and memory widths supported by the external memory
interface. The memory boot load supports data transfer with and without hand-
shaking. The handshake mode allows synchronous program transfer by using
two pins as data-acknowledge and data-ready signals.

See Section 4.1.2, Peripheral Bus Memory Map, on page 4-9 and Section 4.2,
Reset/Interrupt/Trap Vector Map, on page 4-14 for more information.

Be careful! Access to a reserved area produces unpredictable
results.
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Figure 4-3. TMS320C32 Memory Maps
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Oh

7FFFFFh
800000h

807FFFh
808000h

8097FFh
809800h

80FFFFh
810000h

82FFFFh
830000h

87FDFFh
87FEO0Oh

87FEFFh
87FF00h

87FFFFh
880000h

8FFFFFh
900000h

FFFFFFh

Reset-vector location

External memory
STRBO active
(8.192M words)

Reserved
(32K words)

Peripheral bus
memory-mapped registers
(6K words internal)

Reserved
(26K words)

External memory
IOSTRB active (128K)
(128K words)

Reserved
(319.5K words)

RAM block 0
(256 words internal)

RAM block 1
(256 words internal)

External memory
STRBO active
(512K words)

External memory
STRB1 active
(7.168M words)

Microprocessor mode

Oh

OFFFh
1000h

1001h

7FFFFFh
800000h

807FFFh
808000h

8097FFh
809800h

80FFFFh
810000h

810001h

82FFFFh
830000h

87FDFFh
87FEOOh

87FEFFh
87FF00h

87FFFFh
880000h

8FFFFFh
900000h

900001h

FFFFFFh

'C32

Reserved for
boot-loader operations

External memory
STRBO active
(8.188M words)

Reserved
(32K words)

Peripheral bus
memory-mapped registers
(6K words internal)

Reserved
(26K words)

External memory
IOSTRB active (128K)
(128K words)

Reserved
(319.5K words)

RAM block 0
(256 words internal)

RAM block 1
(256 words internal)

External memory
STRBO active
(512K words)

External memory
STRB1 active
(7.168M words)

Microcomputer/boot-loadermode
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4.1.2 Peripheral Bus Memory Map

The following sections describe the peripherial bus memory maps for the 'C30,
'C31/VC33, and 'C32.

’C30
The ‘C30 memory-mapped peripheral registers are located starting at address
808000h. Figure 4—4 on page 4-10 shows the peripheral bus memory map. The
shaded blocks are reserved.

4.1.2.1 TMS320C30 Peripheral Bus Memory Map

Memory and the Instruction Cache 4-9
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Figure 4-4. TMS320C30 Peripheral Bus Memory-Mapped Registers
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808000h
808004h
808006h
808008h
808020h
808024h
808028h
808030h
808034h
808038h
808040h

808042h
808043h
808044h
808045h
808046h

808048h

80804Ch

808050h

808052h
808053h
808054h
808055h
808056h

808058h
80805Ch
808060h

808064h

DMA global control

DMA source address

DMA destination address

DMA transfer counter

Timer 0 global control

Timer 0 counter

Timer 0 period

Timer 1 global control

Timer 1 counter

Timer 1 period register

Serial port 0 global control

FSX/DX/CLKX serial port 0 control

FSR/DR/CLKR serial port 0 control

Serial port 0 R/X timer control

Serial port 0 R/X timer counter

Serial port 0 R/X timer period

Serial port 0 data transmit

Serial port 0 data receive

Serial port 1 global control

FSX/DX/CLKX serial port 1 control

FSR/DR/CLKR serial port 1 control

Serial port 1 R/X timer control

Serial port 1 R/X timer counter

Serial port 1 R/X timer period

Serial port 1 data transmit

Serial port 1 data receive

Expansion-buscontrol

Primary-bus control

'C30




4.1.2.2 TMS320C31/VC33 Peripheral Bus Memory Map

Memory

'C31

The ’C31/VC33 memory-mapped peripheral registers are located starting at
address 808000h. Figure 4-5 shows the peripheral bus memory map. The
shaded blocks are reserved.

Figure 4-5. TMS320C31/VC33 Peripheral Bus Memory-Mapped Registers

808000h
808004h
808006h
808008h
808020h
808024h
808028h
808030h
808034h
808038h
808040h

808042h
808043h
808044h
808045h
808046h

808048h

80804Ch

808064h

DMA global control

DMA source address

DMA destination address

DMA transfer counter

Timer 0 global control

Timer 0 counter

Timer 0 period

Timer 1 global control

Timer 1 counter

Timer 1 period register

Serial port global control

FSX/DX/CLKX serial port control

FSR/DR/CLKR serial port control

Serial port R/X timer control

Serial port R/X timer counter

Serial port R/X timer period

Serial port data transmit

Serial port data receive

Primary-bus control

Memory and the Instruction Cache
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4.1.2.3 TMS320C32 Peripheral Bus Memory Map 7'C82

The 'C32’s memory-mapped peripheral and external-bus control registers are
located starting at address 808000h, as shown in Figure 4-6 on page 4-13. The
shaded blocks are reserved.
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Figure 4-6. TMS320C32 Peripheral Bus Memory-Mapped Registers

808000h

808004h

808006h

808008h

808010h

808014h

808016h

808018h

808020h

808024h

808028h

808030h

808034h

808038h

808040h

808042h

808043h
808044h
808045h
808046h

808048h

80804Ch

808060h

808064h

808068h
8097FFh

DMA 0 global control

DMA 0 source address

DMA 0 destination address

DMA 0 transfer counter

DMA 1 global control

DMA 1 source address

DMA 1 destination address

DMA 1 transfer counter

Timer 0 global control

Timer 0 counter

Timer 0 period

Timer 1 global control

Timer 1 counter

Timer 1 period register

Serial port global control

FSX/DX/CLKX serial port control

FSR/DR/CLKR serial port control

Serial port R/X timer control

Serial port R/X timer counter

Serial port R/X timer period

Serial port data transmit

Serial port data receive

IOSTRB bus control

STRBO bus control

STRB1 bus control

Memory and the Instruction Cache

Memory

'Cs2
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Reset/Interrupt/Trap Vector Map

4.2 Reset/Interrupt/Trap Vector Map

3'C30

)]

3'Ca2

4-14

The addresses for the reset, interrupt, and trap vectors are 00h—-3Fh, as shown
in Figure 4-7 and Figure 4-8. The reset vector contains the address of the reset
routine.

[ ’C30 and ’C31/VC33 Microprocessor and Microcomputer Modes

In the microprocessor mode of the 'C30 and 'C31/VC33 and the micro-
computer mode of the ’C30, the reset interrupt and trap vectors stored in
locations Oh—3Fh are the addresses of the starts of the respective reset,
interrupt, and trap routines. For example, at reset, the content of memory
location 00h (reset vector) is loaded into the PC, and execution begins
from that address (see Figure 4-8 on page 4-16).

[0 ’C31/VC33 Microcomputer/Boot-Loader Mode

In the microcomputer/boot-loader mode of the 'C31/VC33, the interrupt
and trap vectors stored in locations 809FC1h-809FFFh are branch in-
structions to the start of the respective interrupt and trap routines (see
Figure 4-9 on page 4-17).

[ ’C32 Microprocessor and Microcomputer/Boot-Loader Mode

The 'C32 has a user-relocatable interrupt-trap vector table. The interrupt-
trap vector table must start on a 256-word boundary. The starting location is
programmed through the interrupt-trap table pointer (ITTP) bit field in the
CPU interrupt flag (IF) register. See Section 3.1.9.1, Interrupt-Trap Table
Pointer (ITTP), on page 3-14. The reset vector is stored at location Oh in
microprocessor mode.



Reset/Interrupt/Trap Vector Map

Figure 4-7. Reset, Interrupt, and Trap Vector Locations for the TMS320C30 3'C30E
Microprocessor Mode
00h RESET
01h INTO
02h INT1
03h INT2
04h INT3
05h XINTO
06h RINTO
07h XINT1
08h RINT1
09h TINTO
0Ah TINTA
0Bh DINT
0Ch
Reserved
1Fh
20h TRAP 0
[}
[ ]
L]
3Bh TRAP 27
3Ch TRAP 28 (reserved)
3Dh TRAP 29 (reserved)
3Eh TRAP 30 (reserved)
3Fh TRAP 31 (reserved)
r 1
Note: Traps 28-31
Traps 28-31 are reserved; do not use them.
L )
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Reset/Interrupt/Trap Vector Map

Figure 4-8. Reset, Interrupt, and Trap Vector Locations for theTMS320C31/VC33

4-16

Microprocessor Mode

00h
01h
02h
03h
04h
05h
06h
07h
08h
09h
0Ah
0Bh
0Ch
1Fh
20h

3Bh
3Ch
3Dh
3Eh
3Fh

RESET

INTO

INTH

INT2

INT3

XINTO

RINTO

XINT1 (Reserved)

RINT1 (Reserved)

TINTO

TINTA

DINT

Reserved

TRAP O

TRAP 27

TRAP 28 (reserved

TRAP 29 (reserved

( )
( )
TRAP 30 (reserved)
( )

TRAP 31 (reserved

'C31

Note: Traps 28-31

Traps 28-31 are reserved; do not use them.




Figure 4-9. Interrupt and Trap Branch Instructions for the TMS320C31/VC33

Microcomputer Mode

809FC1h
809FC2h
809FC3h
809FC4h
809FC5h
809FC6h
809FC7h
809FC8h
809FC9h
809FCAh
809FCBh
809FCCh
809FDFh
809FEOh
809FE1h

809FFBh
809FFCh
809FFDh
809FFEh
809FFFh

=4
—'
o

=z
4

—
N

N

INT3

XINTO

RINTO

XINT1 (reserved)

RINT1 (reserved)

Reserved

TRAP O

TRAP 1

TRAP 27

TRAP 28 (reserved

TRAP 29 (reserved

TRAP 30 (reserved

(
(
(
(

TRAP 31

reserved

Reset/Interrupt/Trap Vector Map

'C31

Note: Traps 28-31

Traps 28-31 are reserved; do not use them.

Unlike the *C31/VC33’s microprocessor mode, the 'C31/VC33 microcomput-
er/boot loader mode uses a dual-vectoring scheme to service interrupts and
trap requests. In this dual vectoring scheme, a branch instruction rather than
a vector address is used.

Memory and the Instruction Cache
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Reset/Interrupt/Trap Vector Map

Figure 4-10. Interrupt and Trap Vector Locations for TMS320C32 ’032
EA (ITTP) + 00h Reserved
EA (ITTP) + 01h INTO
EA (ITTP) + 02h INT1
EA (ITTP) + 03h INT2
EA (ITTP) + 04h INT3
EA (ITTP) + 05h XINTO
EA (ITTP) + 06h RINTO
EA (ITTP) + 07h Reserved
EA (ITTP) + 08h Reserved
EA (ITTP) + 09h TINTO
EA (ITTP) + 0Ah TINT1
EA (ITTP) + 0Bh DINTO
EA (ITTP) + 0Ch DINT1
EA (ITTP) + ODh
Reserved
EA (ITTP) + 1Fh
EA (ITTP) + 20h TRAPO
EA (ITTP) + 3Bh TRAP27
EA (ITTP) + 3Ch TRAP28 (reserved)
EA (ITTP) + 3Dh TRAP29 (reserved)
EA (ITTP) + 3Eh TRAP30 (reserved)
EA (ITTP) + 3Fh TRAP31 (reserved)

Note: Traps 28-31

Traps 28-31 are reserved; do not use them.




Instruction Cache

4.3 Instruction Cache

A 64 x 32-bit instruction cache speeds instruction fetches and lowers system
cost by caching program fetches from external memory. The instruction cache
allows the use of slow, external memories while still achieving single-cycle access
performances. This reduces the number of off-chip accesses necessary and
allows code to be stored off-chip in slower, lower-cost memories. The cache
also frees external buses from program fetches so that they can be used by
the DMA or other system elements.

The cache can operate automatically, with no user intervention. Subsection
4.3.2 describes a form of the least recently used (LRU) cache update algorithm.

4.3.1 Instruction-Cache Architecture

The instruction cache (see Figure 4-12) contains 64 32-bit words of RAM; it
is divided into two 32-word segments. A 19-bit segment start address (SSA)
register is associated with each segment. For each word in the cache, there
is a corresponding single bit-present (P) flag.

When the CPU requests an instruction word from external memory, the cache
algorithm checks to determine if the word is already contained in the instruction
cache. Figure 4-11 shows how the cache-control algorithm partitions an
instruction address. The algorithm uses the19 most significant bits (MSBs) of
the instruction address to select the segment; the five least significant bits
(LSBs) define the address of the instruction word within the pertinent segment.
The algorithm compares the 19 MSBs of the instruction address with the two
SSA registers. If there is a match, the algorithm checks the relevant P flag. The
P flag indicates if a word within a particular segment is already present in cache
memory:

(1 P =1:the word is already present in cache memory

] P =0:the location cache is invalid

Figure 4—-11.Address Partitioning for Cache Control Algorithm
23 54 0

Segment start address Instruction word
(SSA) address within segment

If there is no match, one of the segments must be replaced by the new data. The
segment replaced in this circumstance is determined by the LRU algorithm. The
LRU stack (see Figure 4-12) is maintained for this purpose.
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Figure 4-12. Instruction-Cache Architecture
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Segment start P
address registers flags Segment words LRU
Stack
MRU segment number
I SSA register 0 I 0 Segment word 0
¢ ) 1 Segment word 1
19 . . LRU segment number
: : Segment 0
30 Segment word 30
31 Segment word 31
— 32—
SSA register 1 I 0 Segment word 0
1 Segment word 1
: Segment 1
30 Segment word 30
31 Segment word 31

The LRU stack determines which of the two segments qualifies as the least
recently used after each access to the cache. Each time a segment is accessed,
its segment number is removed from the LRU stack and pushed onto the top
of the LRU stack. Therefore, the number at the top of the stack is the most re-
cently used (MRU) segment number, and the number at the bottom of the stack
is the least recently used segment number.

At reset, the LRU stack is initialized with 0 at the top and 1 at the bottom. All
P flags in the instruction cache are cleared.

When a replacement is necessary, the LRU segment is selected for replace-
ment. Also, the 32 P flags for the segment to be replaced are set to 0, and the
segment’s SSA register is replaced with the 19 MSBs of the instruction address.
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4.3.2 Instruction-Cache Algorithm

When the ‘C3x requests an instruction word from external memory, one of two
possible actions occurs: a cache hit or a cache miss.

[ Cache Hit. The cache contains the requested instruction, and the following
actions occur:

B The instruction word is read from the cache.

B The number of the segment containing the word is removed from the
LRU stack and pushed to the top of the LRU stack (if it is not already at
the top), thus moving the other segment number to the bottom of the
stack.

[ Cache Miss. The cache does not contain the instruction. There are two
types of cache misses:

B Subsegment miss. The segment address register matches the instruc-
tion address, but the relevant P flag is not set. The following actions
occur in parallel:

The instruction word is read from memory and copied into the cache.

The number of the segment containing the word is removed from
the LRU stack and pushed to the top of the LRU stack (if it is not
already at the top), thus moving the other segment number to the
bottom of the stack.

The relevant P flag is set.

B Segment miss. Neither of the segment addresses matches the instruc-
tion address. The following actions occur in parallel:

The LRU segment is selected for replacement. The P flags for all
32 words are cleared.

The SSAregister for the selected segment is loaded with the
19 MSBs of the address of the requested instruction word.

The instruction word is fetched and copied into the cache. It goes
into the appropriate word of the LRU segment. The P flag for that
word is set to 1.

The number of the segment containing the instruction word is
removed from the LRU stack and pushed to the top of the LRU
stack, thus moving the other segment number to the bottom of
the stack.
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Only instructions may be fetched from the program cache. All reads and writes
of data in memory bypass the cache. Program fetches from internal memory
do not modify the cache and do not generate cache hits or misses. The pro-
gram cache is a single-access memory block. Dummy program fetches (for
example, those following a branch) are treated by the cache as valid program
fetches and can generate cache misses and cache updates.

Notes: Using Self-Modifying Code

Be careful when using self-modifying code. If an instruction resides in the
cache and the corresponding location in primary memory is modified, the
copy of the instruction in the cache is not modified.

You can use the cache more efficiently by aligning program code on 32-word
address boundaries. Do this with the .align directive when coding assembly
language.

4.3.3 Cache Control Bits

4-22

Three cache control bits are located in the CPU status register:

[ Cache Clear Bit (CC). Set CC = 1 to invalidate all entries in the cache. This
bit is always cleared after it is written to; it is always read as a 0. At reset,
the cache is cleared, and 0 is written to this bit.

[ Cache Enable Bit (CE). Set CE = 1 to enable the cache, allowing the
cache to be used according to the LRU cache algorithm. Set CE = 0 to dis-
able the cache; this prevents cache update modifications (thus, no cache
fetches can be made). At reset, 0 is written to this bit. Cache clearing (CC
= 1) is allowed when CE = 0.

[ Cache Freeze Bit (CF). Set CF = 1 to freeze both the cache and LRU
stack manipulation. If the cache is enabled (CE = 1) and the cache is
frozen (CF = 1), fetches from the cache are allowed, but modification of
cache contents is not allowed. Cache clearing (CC = 1) is allowed when
CF =1 or CF = 0. At reset, this CF bit is cleared to 0.

Table 4-1 shows the combined effect of the CE and CF.
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Table 4—1. Combined Effect of the CE and CF Bits

CE CF Effect
0 0 Cache not enabled
0 1 Cache not enabled
1 0 Cache enabled and not frozen
1 1 Cache enabled and frozen

When the CE or CF bits of the CPU status register are modified, the following
four instructions may or may not be fetched from the cache or external memory
(see Example 4-1).

When the CC bit of the CPU status register is modified, the following five instruc-
tions may or may not be fetched from the cache before the cache is cleared (see
Example 4-1).

Example 4-1. Pipeline Effects of Modifying the Cache Control Bits

Pipeline Operation

Cycle | Fetch | Decode | Read | Execute

Instructions may

n LDI 1000h, ST be fetched before

[ — cache is enabled
n+1 LDI 1h, R1 LDI 1000h, S or frozen.
n+2 LDI 2h, R2 LDI 1h, R1 LDI 1000h, ST Cache cleared
‘/

n+3 LDI 3h, R3 LDI 2h, R2 LDI 1h, R1 LDI 1000h, ST
Instructions may
be fetched before | |, 4 LDI 4h, R4 LDI 3h, R3 LDI 2h, R2 LDI 1h, R1
cache cleared. |

n+5 | LDI Sh, R5 LDI 4h, R4 LDI 3h, R3 LDI 2h, R2

n+6 LDI 5h, R5 LDI 4h, R4 LDI 3h, R3

n+7 LDI 5h, R5 LDI 4h, R4

n+8 LDI 5h, R5
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Chapter 5

Data Formats and Floating-Point Operation

In the ’C3x architecture, data is organized into three fundamental types: integer,
unsigned integer, and floating-point. The terms integer and signed integer are
equivalent. The 'C3x supports short and single-precision formats for signed and
unsigned integers. It also supports short, single-precision, and extended-
precision formats for floating-point data.

Floating-point operations make fast, trouble-free, accurate, and precise com-
putations. Specifically, the ‘C3x implementation of floating-point arithmetic facili-
tates floating-point operations at integer speeds, while preventing problems with
overflow, operand alignment, and other burdensome tasks that are common in
integer operations.

This chapter discusses data formats and floating-point operations supported

in the 'C3x.

Topic Page
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5.1 Integer Formats

The 'C3x supports two integer formats: a 16-bit short-integer format and a
32-bit single-precision integer format.

Note:

When extended-precision registers are used as integer operands, only bits
31-0 are used; bits 39-32 remain unchanged.

5.1.1 Short-Integer Format

The short-integer format is a 16-bit 2s-complement integer format for immediate-
integer operands. For those instructions that assume integer operands, this
format is sign-extended to 32 bits (see Figure 5-1). The range of an integer
si, represented in the short-integer format, is -219<si<215 - 1. In Figure 5-1,
s = signed bit.

Figure 5-1. Short-Integer Format and Sign-Extension of Short Integers
15 0

S

Short-integer format

31 16 15 0

S §$S S S S S S S S S S S S s s| s

Sign-extension of a short integer

5.1.2 Single-Precision Integer Format

In the single-precision integer format, the integer is represented in 2s-comple-
ment notation. The range of an integer sp, represented in the single-precision
integer format, is —231 < sp <231 — 1. Figure 5-2 shows the single-precision
integer format.

Figure 5-2. Single-Precision Integer Format
31 0
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5.2 Unsigned-Integer Formats

The 'C3x supports two unsigned-integer formats: a 16-bit short format and a
32-bit single-precision format.

Note:

In extended-precision registers, the unsigned-integer operands use only bits
31-0; bits 39-32 remain unchanged.

5.2.1 Short Unsigned-Integer Format

Figure 5-3 shows the16-bit, short, unsigned-integer format for immediate
unsigned-integer operands. For those instructions which assume unsigned-
integer operands, this format is zero filled to 32 bits. The range of a short
unsigned integer is 0 < si< 216,

Figure 5-3. Short Unsigned-Integer Format and Zero Fill
15 0

Short unsigned-integer format

31 16 15 0

000OO0OOOOOOOOOOOOO

Zero fill of a short unsigned integer

5.2.2 Single-Precision Unsigned-Integer Format

In the single-precision unsigned-integer format, the number is represented as
a 32-bit value, as shown in Figure 5-4. The range of a single-precision unsigned
integer is 0 < sp < 232,

Figure 5-4. Single-Precision Unsigned-Integer Format
31 0
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5.3 Floating-Point Formats

The *C3x supports four floating-point formats:

(1 A short floating-point format for immediate floating-point operands, consisting
of a 4-bit exponent, a sign bit, and an 11-bit fraction

[ ('C32 only) A short floating-point format for use with 16-bit floating-point
data types, consisting of a 2s-complement, 8-bit exponent field, a sign bit,
and a 7-bit fraction

[d A single-precision floating-point format by an 8-bit exponent field, a sign
bit, and a 23-bit fraction

[ An extended-precision floating-point format consisting of an 8-bit exponent
field, a sign bit, and a 31-bit fraction.

All’C3x floating-point formats consist of three fields: an exponent field (e), a
single-bit sign field (s), and a fraction field (f). The sign field and fraction field
may be considered as one unit and referred to as the mantissa field (man).

Figure 5-5. General Floating-Point Format
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Exponent Sign Fraction

}4 Mantissa )‘

The general equation for calculating the value in a floating-point number is:

X = 8s.f, X 2°

In the equation, s is the value of the sign bit, s is the inverse of the value of the
sign bit, fis the binary value of the fraction field, and e is the decimal equivalent
of the exponent field.

The mantissa represents a normalized 2s-complement number. In a normalized
representation, a most significant nonsign bit is implied, thus providing an addi-
tional bit of precision. The implied sign bit is used as follows:

[ If s =0, then the leading two bits of the mantissa are 01.
(O If s=1, then the leading two bits of the mantissa are 10.

If the sign bit, s, is equal to 0, the mantissa becomes 01.5, where fis the binary
representation of the fraction field. If s is 1, the mantissa becomes 10.f, where f
is the binary representation of the fraction field.

For example, if f =000000000015 and s = 0, the value of the mantissa (man)
is 01.00000000001». If s = 1 for the same value of £, the value of man is
10.000000000015.
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The exponent field is a 2s-complement number that determines the factor of 2
by which the number is multiplied. Essentially, the exponent field shifts the
binary point in the mantissa. If the exponent is positive, then the binary point is
shifted to the right. If the exponent is negative, then the binary point is shifted
to the left.

For example, if man = 01.000000000015 and the e = 111¢, then the binary point
is shifted 11 places to the right, producing the number: 01000000000015,
which is equal to 2049 decimal.

5.3.1 Short Floating-Point Format

In the short floating-point format, floating-point numbers are represented by a
2s-complement, 4-bit exponent field (e) and a 2s-complement, 12-bit mantissa
field (man) with an implied most significant nonsign bit (see Figure 5-6).

Figure 5-6. Short Floating-Point Format

15 12 11 10 0

Exponent Sign Fraction

< Mantissa ’l

Operations are performed with an implied binary point between bits 11 and 10.
When the implied most significant nonsign bit is made explicit, it is located to the
immediate left of the binary point. The floating-point 2s-complement number x
in the short floating-point format is given by the following:

X = 01.fx2¢€ ifs=0
X = 10.fx 2¢€ if s=1

You must use the following reserved values to represent 0 in the short floating-
point format:

e =-8
s= 0
f= 0

Data Formats and Floating-Point Operation 5-5



Floating-Point Formats

5.3.2 TMS320C32 Short Floating-Point Format for External 16-Bit Data

The following examples illustrate the range and precision of the short floating-
point format:

(2 -2-1) x 27 = 2.5594 x 102
1x2-7=7.8125x 10-3
(-1-2-1M) x2-7=_-7.8163 x 10-3
—2x 27 =-2.5600 x 102

Most positive:
Least positive:
Least negative:
Most negative:

X
X
X
X

'C32

To facilitate the handling of 16-bit floating-point data types, the ‘C32 uses a new
short floating-point format for external 16-bit data types. Note that the following
short floating-point format is used only in external 16-bit floating-point data
access. This format is different than the 16-bit immediate short floating-point
data format used in the ‘C32’s instruction set.

In the short floating-point format for external 16-bit data-type size, floating-point
numbers are represented by a 2s-complement, 8-bit exponent field (e), a sign bit
(s), and an 8-bit mantissa field (man) with an implied most significant nonsign bit.

Figure 5-7. TMS320C32 Short Floating-Point Format for External 16-Bit Data
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15 8 76 0

Exponent Sign Fraction

ki Mantissa —J

Operations are performed with an implied binary point between bits 7 and 6.
When the implied most significant nonsign bit is made explicit, it is located to the
immediate left of the binary point. The floating-point 2s-complement number x
in the short floating-point format is given by:

x = 01.fx2¢€ ifs=0
x = 10.f x 2¢€ if s=1
x =0 if e=-128

You must use the following reserved values to represent 0 in the ‘C32 short
floating-point format for external 16-bit data:

-128
0
0

e

f
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The following examples illustrate the range and precision of the ‘C32 short
floating-point format for external 16-bit data:

= (2-2-8) x 2127 = 3.3961775 x 1038

=1 x 2-127 = 5.8774717541 x 10-39

= (-1-2-8) x 2-127 = _5.9004306 x 10-39
= (-2 x 2127) = _3.4028236 x 1038

Most positive:
Least positive
Least negative:
Most negative:

Note that the floating-point instructions (such as LDF, MPYF, ADDF) and the
integer instructions (such as LDI, MPYI, ADDI) produce different results when
accessing the same memory location. The integer load instructions store the
value in the LSBs of the ‘C32’s registers. A bit field in the strobe control register
controls sign extension or zero fill of the MSBs of the integer value. On the other
hand, the floating-point load instructions store the value in the MSBs of the
‘C32’s registers. For example:

If AR1 = 4000h, R1 = 00 00000000h, the value stored at memory location
4000h is 0180h, and STRBO is configured for a physical memory size and data
type size of 16 bits.

The result of: ADDI *AR1,R1 is R1 = 00 00000180h, while

The result of: ADDF *AR1,R1 is R1 = 01 C0000000h (= - 3.0), since
-4.0+1.0=-3.0

5.3.3 Single-Precision Floating-Point Format

In the single-precision format, the floating-point number is represented by an
8-bit exponent field (e) and a 2s-complement 24-bit mantissa field (man) with
an implied most significant nonsign bit (see Figure 5-8).

Figure 5-8. Single-Precision Floating-Point Format

31 2423 22 0
Exponent Sign Fraction
« Mantissa N

Operations are performed with an implied binary point between bits 23 and 22.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point number x is given by

the following:

Xx = 01.fx2¢€ ifs=0

x = 10.fx 2¢ ifs=1
x=0 if e=-128

Data Formats and Floating-Point Operation 5-7
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You must use the following reserved values to represent 0 in the single-precision
floating-point format:

e =-128
s=0
f=0

The following examples illustrate the range and precision of the single-precision
floating-point format:

Most positive: x=(2-2-23) x 2127 = 3.4028234 x 1038
Least positive: ~ x=1x2-127 = 58774717 x 1039

Least negative:  x = (-1-2-23) x 2-127 = _ 58774724 x 10-39
Most negative:  x=-2x 2127 = —3.4028236 x 1038

5.3.4 Extended-Precision Floating-Point Format

In the extended-precision format, the floating-point number is represented by
an 8-bit exponent field (e) and a 32-bit mantissa field (man) with an implied
most significant nonsign bit (see Figure 5-9).

Figure 5-9. Extended-Precision Floating-Point Format
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39 32 31 30 0
Exponent Sign Fraction
< Mantissa ﬂ

Operations are performed with an implied binary point between bits 31 and 30.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point number x is given by
the following:

x = 01.fx2¢€ ifs=0
x =10.fx2¢ ifs=1
x =0 if e=-128

You must use the following reserved values to represent 0 in the extended-
precision floating-point format:

-128
0
0

e

f
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The following examples illustrate the range and precision of the extended-
precision floating-point format:

Most positive: X=(2-2-23)x 2127 = 3.4028234 x 1038

Least positive: ~ x=1x2-127 = 58774717541 x 1038

Least negative:  x = (-1-2-31) x 2-127 = _ 58774717569 x 10-39
Most negative:  x=-2x 2127 = _3.4028236691 x 1038

5.3.5 Determining the Decimal Equivalent of a TMS320C3x Floating-Point Format

To convert a ‘C3x floating-point number to its decimal equivalent, follow these
steps:

Step 1: Convert the exponent field to its decimal representation.

The exponent field is a 2s-complement number. To convert a 2s-
complement number, look at the MSB. If it is 0, then convert the
binary number to a decimal number. If the MSB is 1, then comple-
ment the binary number, add 1 to the result, and then convert this
binary number to a decimal number.

Step 2: Convert the mantissa field to its decimal representation.

The mantissa field is represented as a sign-mantissa number with an
implied 1 and an implied binary point between the sign bit and the frac-
tion field. If the sign bit is cleared (s = 0), form the mantissa by writing
01, and appending the bits in the fraction field after the binary point.
For example, if f= 10100000000, then man = 01.101000000005:

S Fraction

0 1 0 1 0 0 0 0 0 0 0 0

Rewrite the mantissa as:

Mantissa
0 1 [ 1 0 1 0 0 0 0 0 0 0 0

If the sign bit is set (s = 1), form the mantissa by writing 10 and appending the
bits in the fraction field after the binary point. For example, if f= 101000000002,
then man = 10.10100000000.

] Fraction

1 1 0 1 0 0 0 0 0 0 0 0
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Rewrite the mantissa as:

Mantissa

0 1 0 0 0 0 0 0 0 0

Step 3:

Shift the decimal point of the mantissa according to the value of the
exponent.

If the exponent is positive, shift the binary point to the right by the value
of the exponent. If the exponent is negative, shift the binary point to
the left.

For example, if e = 21 and the man = 01.11000000000», then the
shifted mantissa becomes 0111.0000000005, which is equivalent to
7 in decimal.

If, on the other hand, e =-21¢ and man = 01.100000000005, then the
shifted mantissa becomes 0.0110000000000», which is equivalent
to 3/8 in decimal.

The following examples illustrate how you can obtain the equivalent
floating-point value of a number in ‘C3x floating-point format. Each
of the examples uses the single-precision floating-point format.

Example 5-1. Positive Number

5-10

0 2 4 0 0 0 0 0 Hex value
0000 0010 0100 0000 0000 0000 0000 0000 Binary value
Exponent = 0000 0010, = 2
Sign = 0
Fraction = .10000,

Value = 01.1, x 22 = 0110,. = 6
L .

Fraction

Implied

Sign




Example 5-2. Negative Number

Floating-Point Formats

0 1 C 0 0 0 0 0
0000 0001 1100 0000 0000 00OOO 0000 0O0OO

Hex value
Binary value

Example 5-3. Fractional Number

Exponent = 0000 0001, =1
Sign = 1
Fraction = .10000,
Value = 10.1, x 21 = 101,. = -3
L Fraction
Implied
Sign
F B 4 0 0 0 0 0 Hex value

1111 1011 0100 0000 0OOO 0000 0OOO 0000

Binary wvalue

E—

Exponent = 1111 1011, = -5

Sign = 0 2-°
Fraction = .10000, | ,— 276
Value = 01.1, X 279 = .000011, = 3/64

Fraction
Implied
Sign

Data Formats and Floating-Point Operation

5-11



Floating-Point Formats

5.3.6 Conversion Between Floating-Point Formats

Floating-point operations assume several different formats for inputs and out-
puts. These formats often require conversion from one floating-point format to
another (for example, short floating-point format to extended-precision floating-
point format). Format conversions occur automatically in hardware, with no
overhead, as a part of the floating-point operations. Examples of the four con-
versions are shown in Figure 5-10 through Figure 5-13. When a floating-point
format 0 is converted to a greater-precision format, it is always converted to a
valid representation of 0 in that format. In Figure 5-10 through Figure 5-13,
s = sign bit of the exponent, y = short mantissa, and x = short exponent.

Figure 5-10. Converting from Short Floating-Point Format to Single-Precision
Floating-Point Format

15 12 11 10 0

s x x x |y |y y

Short floating-point format
31 27 24 23 22 12 11 0

SS S S S X X X y y y| O 0

Single-precision floating-point format

In this format, the exponent field is sign extended, and the 12 LSBs of the mantissa
field are filled with Os.

Figure 5-11. Converting from Short Floating-Point Format to Extended-Precision
Floating-Point Format

15 12 11 10 0

s x x x| vy|ly y

Short floating-point format

39 35 32 31 30 20 19 0

SS SS S XXX y y y| O 0

Extended-precision floating-point format

The exponent field in this format is sign extended, and the 20 LSBs of the mantissa
field are filled with Os.
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Figure 5-12. Converting from Single-Precision Floating-Point Format
to Extended-Precision Floating-Point Format

31 24 23 22 0

X X1y Y y

Single-precision floating-point format

39 32 31 30 8 7 0

X x|y |y y|O0 0

Extended-precision floating-point format

The 8 LSBs of the mantissa field are filled with 0s.

Figure 5-13. Converting from Extended-Precision Floating-Point Format
to Single-Precision Floating-Point Format

39 32 31 30 8 7 0

X x|y [y y |z z

Extended-precision floating-point format

31 24 23 22 0

X x|y |y y

Single-precision floating-point format

The 8 LSBs of the mantissa field are truncated.
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5.4 Floating-Point Conversion (IEEE Std. 754)

The ‘C3x floating-point format is not compatible with the IEEE standard 754
format. The IEEE floating-point format uses sign-magnitude notation for the
mantissa, and the exponent is biased by 127. In a 32-bit word representing a
floating-point number, the first bit is the sign bit. The next eight bits correspond
to the exponent, which is expressed in an offset-by-127 format (the actual expo-
nent is e —127). The next 23 bits represent the absolute value of the mantissa
with the most significant 1 implied. The binary point follows this most significant
1. In other words, the mantissa actually has 24 bits (see Figure 5-14). There are
several special cases, summarized below.

These are the values of the represented numbers in the IEEE floating-point
format:

x = (-1)S x 26127 x (01.f) if 0 < e<255

Figure 5-14. |IEEE Single-Precision Std. 754 Floating-Point Format
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31 30 23| 22 0

S e f

le
]‘

mantissa #1

The following five cases define the value v of a number expressed in the IEEE
format:

1) If e=255 and f#0, then v=NaN
2) If e=255 and f=0, then v = (-1)sinfinite
3) If 0<e<255 then v=(-1)sx2€-127(1.f)
4) If e=0 and f#0, then v=(-1)sx2-126(0.f)
5 If e=0 and f=0, then v=(-1)sx0
where
s = sign bit

e = the exponent field

f = the fraction field

NaN = not a number
For the above five representations, e is treated as an unsigned integer. Case
1 generates NaN (not an number) and is primarily used for software signaling.

Case 4 represents a denormalized number. Case 5 represents positive and
negative 0.
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Figure 5-15. TMS320C3x Single-Precision 2s-Complement Floating-Point Format

31 24 23 22 0

e S f

Note: Same format as for the 'C4x

In comparison, Figure 5-15 shows the the ‘C3x 2s-complement floating-point
format. In this format, two cases can be used to define value v of a number:

1) If  e=-128 thenv=20
2 If e=#-128 then v = ss.fp x 2€
where:
S = sign bit

e = the exponent field
f = the fraction field

For this representation, e is treated as a 2s-complement integer. The fraction
and sign bit form a normalized 2s-complement mantissa.

Note: Differentiating Symbols for IEEE and TMS320C3x Formats

To differentiate between the symbols that define these two formats, all IEEE
fields are subscripted with an IEEE (for example, e|ggE, S|IEgg, and so forth).
Similarly, all 2s-complement fields are subscripted with 2 (that is, ep, sp, f)

5.4.1 Converting IEEE Format to 2s-Complement TMS320C3x Floating-Point Format

The most common conversion is the IEEE-to-2s-complement format. This
conversion is done according to rules in Table 5-1.

Table 5-1. Converting IEEE Format to 2s-Complement Floating-Point Format

If these values are present Then these values equal
Description Case eggg sieee  fiEee en So fo
max neg co 1 255 1 any 7Fh 1 00 0000h
max pos co 2 255 0 any 7Fh 0 7F FFFFh
3 0< e|ggg <255 0 flEEE eiggg-7Fh 0 flEEE
4  O<epgg <255 1 20 elege-7Fh 1 flege+11
5 0< e|ggg <255 1 0 elegg-80h 1 0
zero 6 0 any any 80h 0 00 0000h

1 f1EEE = 1s complement of fiegg
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5-16

Case 1 maps the IEEE positive NaNs and positive infinity to the single-preci-
sion 2s-complement most positive number. Overflow is also signaled to allow
you to check for these special cases.

Case 2 maps the IEEE negative NaNs and negative infinity to the single-
precision 2s-complement most negative number. Overflow is also signaled
to allow you to check for these special cases.

Case 3 maps the IEEE positive normalized numbers to the identical value in
the 2s-complement positive number.

Case 4 maps the IEEE negative normalized numbers with a nonzero fraction
to the identical value in the 2s-complement negative number.

Case 5 maps the IEEE negative normalized numbers with a 0 fraction to the
identical value in the 2s-complement negative number.

Case 6 maps the IEEE positive and negative denormalized numbers and positive
and negative 0s to a 2s-complement 0.

Based on these definitions of the formats, two versions of the conversion routines
were developed. One version handles the complete definition of the formats. The
other ignores some of the special cases (typically the ones that are rarely used),
but it has the benefit of executing faster than the complete conversion. For this
discussion, the two versions are referred to as the complete version and the fast
version, respectively.
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5.4.1.1 IEEE-to-TMS320C3x Floating-Point Format Conversion

Example 5-4 shows the fast conversion from IEEE to 'C3x floating-point format.
It properly handles the general case when 0 < e < 255, and also handles 0s (that
is, e =0 and f= 0). The other special cases (denormalized, infinity, and NaN)
are not treated and, if present, will give erroneous results.

The fast version of the IEEE-to 'C3x conversion routine was originally developed
by Keith Henry of Apollo Computer, Inc. The other routines were based on this
initial input.

Example 5-4. IEEE-to-TMS320C3x Conversion (Fast Version)

* % X ok ok Xk % ok X o 3 kX X X 3k F

* % X

* %k X X

TITLE IEEE TO TMS320C3x CONVERSION (FAST VERSION)

SUBROUTINE FMIEEE

FUNCTION: CONVERSION BETWEEN THE IEEE FORMAT AND THE
TMS320C3x FLOATING-POINT FORMAT. THE NUMBER TO

BE CONVERTED IS IN THE LOWER 32 BITS OF RO.

THE RESULT IS STORED IN THE UPPER 32 BITS OF RO.
UPON ENTERING THE ROUTINE, AR1 POINTS TO THE
FOLLOWING TABLE:

(0) OXFF800000 <—— AR1
(1) 0OXFF000000
(2) 0x7F000000
(3) 0x80000000
(4) 0x81000000

ARGUMENT ASSIGNMENTS:

ARGUMENT | FUNCTION

___________ o
RO | NUMBER TO BE CONVERTED

AR1 | POINTER TO TABLE WITH CONSTANTS

REGISTERS USED AS INPUT: RO, ARl
REGISTERS MODIFIED: RO, R1
REGISTER CONTAINING RESULT: RO
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Example 5-4.IEEE-to-TMS320C3x Conversion (Fast Version) (Continued)

* NOTE: SINCE THE STACK POINTER SP IS USED, MAKE SURE TO
* INITIALIZE IT IN THE CALLING PROGRAM.
*
*
b CYCLES: 12 (WORST CASE) WORDS: 12
*
.global FMIEEE
*
FMIEEE AND3 RO, *AR1,R1 ; Replace fraction with 0
BND NEG ; Test sign
ADDI RO,R1 ; Shift sign
; and exponent inserting 0
LDIZ *+AR1 (1) ,R1 ; If all 0, generate C30 O
SUBI *+AR1(2) ,R1 ; Unbias exponent
PUSH R1
POPF RO ; Load this as a flt. pt. number
RETS
*
NEG PUSH R1
POPF RO ; Load this as a flt. pt. number
NEGF RO,RO ; Negate if orig. sign is negative
RETS

5-18

Example 5-5 shows the complete conversion between |IEEE and 'C3x formats.
In addition to the general case and the 0s, it handles the special cases as follows:

(O IfNaN (e = 255, f< >0), the number is returned intact.

O [finfinity (e = 255, f = 0), the output is saturated to the most positive or nega-
tive number, respectively.

(1 If denormalized (e = 0, f< >0), two cases are considered. If the MSB of f is
1, the number is converted to ‘C3x format. Otherwise an underflow occurs,
and the number is set to 0.
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Example 5-5. IEEE-to-TMS320C3x Conversion (Complete Version)

* % X X %

* Ok kX X ok Ok X

* %k X L T I S T B N

* % X ok ok

TITLE IEEE TO TMS320C3x CONVERSION (COMPLETE VERSION)

SUBROUTINE FMIEEE1l

FUNCTION: CONVERSION BETWEEN THE IEEE FORMAT AND THE TMS320C3x
FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED

IS IN THE LOWER 32 BITS OF RO. THE RESULT IS STORED

IN THE UPPER 32 BITS OF RO.

UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE:

(0) OXFF800000 <—— AR1
(1) OXFF000000
(2) 0X7F000000
(3) 0x80000000
(4) 0x81000000
(5) 0x7F800000
(6) 0x00400000
(7) OX007FFFFF
(8) 0x7F7FFFFF

ARGUMENT ASSIGNMENTS:

ARGUMENT | FUNCTION

___________ o
RO | NUMBER TO BE CONVERTED

AR1 | POINTER TO TABLE WITH CONSTANTS

REGISTERS USED AS INPUT: RO, ARl
REGISTERS MODIFIED: RO, R1
REGISTER CONTAINING RESULT: RO

NOTE: SINCE THE STACK POINTER SP IS USED, MAKE SURE TO
INITIALIZE IT IN THE CALLING PROGRAM.

CYCLES: 23 (WORST CASE) WORDS: 34

.global FMIEEEL

FMIEEE1 LDI RO,R1

AND
BZ
*
XOR
BNZ

*+AR1 (5) ,R1

UNNORM ; If e = 0, number is either 0 or
; denormalized

*+AR1 (5) ,R1

NORMAL ; If e < 255, use regular routine

Data Formats and Floating-Point Operation
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Example 5-5.IEEE-to-TMS320C3x Conversion (Complete Version) (Continued)

* HANDLE NaN AND INFINITY

* HANDLE

UNNORM

NEG1

TSTB
RETSNZ
LDI

LDFGT

LDFN
RETS

TSTB
LDFZ
RETSZ

XOR
BND
LSH

SUBI
PUSH
POPF
RETS
POPF
NEGF
RETS

* HANDLE

*

NORMAL

NEG

*+AR1(7) ,RO

RO, RO

*+AR1(8) ,RO

*+AR1(5) ,RO

0s AND UNNORMALIZED NUMBERS

*+AR1(6) ,RO
*+AR1(3),R0O

*+AR1(6) ,RO
NEG1
1,R0O

*+AR1(2) ,RO
RO
RO

RO
RO, RO

THE REGULAR CASES

AND3 RO, *AR1,R1
BND NEG

ADDI RO,R1

SUBI *+AR1(2) ,R1

PUSH R1
POPF RO
RETS

POPF RO
NEGF RO, RO
RETS

Return if NaN

If positive, infinity =
most positive number

If negative, infinity =
most negative number RETS

Is the MSB of f equal to 17
If not, force the number to 0
and return

If MSB of £ = 1, make it 0
Eliminate sign bit
& line up mantissa

Make e = —-127

Put number in floating point format

If negative, negate RO

Replace fraction with 0

Test sign

Shift sign and exponent inserting 0
Unbias exponent

Load this as a flt. pt. number

Load this as a flt. pt. number
Negate 1f original sign negative
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5.4.2 Converting 2s-Complement TMS320C3x Floating-Point Format to IEEE Format

This conversion is performed according to the following table:

Table 5-2. Converting 2s-Complement Floating-Point Format to IEEE Format

If these values are present

Then these values equal

Case €2 S2 fa e|EEE SIEEE flEEE
1 -128 00h 0 00 0000h
2 -127 00h 00 0000h
3 -126< g5 <127 0 eo+7Fh 0 f
4 -126< @5 <127 1 #0 es+7Fh 0 forlt
5 -126< @5 <127 1 0 €,+80h 1 00 0000h
6 127 1 0 FFh 1 00 0000h

T f = 2s-complement of f_

Case 1 maps a 2s-complement 0 to a positive IEEE 0.

Case 2 maps the 2s-complement numbers that are too small to be repre-
sented as normalized IEEE numbers to a positive IEEE 0.

Case 3 maps the positive 2s-complement numbers that are not covered by
case 2 into the identically valued IEEE number.

Case 4 maps the negative 2s-complement numbers with a nonzero fraction
that are not covered in case 2 into the identically valued IEEE number.

Case 5 maps all the negative 2s-complement numbers with a 0 fraction, except
for the most negative 2s-complement number and those that are not covered
in case 2, into the identically valued IEEE number.

Case 6 maps the most negative 2s-complement number to the IEEE negative
infinity.
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5.4.2.1 TMS320C3x-to-IEEE Floating-Point Format Conversion

The vast majority of the numbers represented by the *C3x floating-point format
are covered by the general IEEE format and the representation of 0s. The only
special case is e = —127 in the 'C3x format; this corresponds to a denormalized
number in IEEE format. It is ignored in the fast version, while it is treated properly
in the complete version. Example 5-6 shows the fast version, and Example 5-7

shows the complete version of the ‘C3x-to-IEEE conversion.

Example 5-6. TMS320C3x-to-IEEE Conversion (Fast Version)

L I S * %k kX F ok 3k X X X %

* ok Xk

* ok X X

b

TITLE TMS320C3x TO IEEE CONVERSION (FAST VERSION)

SUBROUTINE TOIEEE

FUNCTION: CONVERSION BETWEEN THE TMS320C3x FORMAT AND THE IEEE
FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED

IS IN THE UPPER 32 BITS OF RO. THE RESULT WILL BE IN

THE LOWER 32 BITS OF RO.

UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE:

(0) OXFF800000 <—— ARl
(1) OXFF000000
(2) 0x7F000000
(3) 0x80000000
(4) 0x81000000

ARGUMENT ASSIGNMENTS:

ARGUMENT | FUNCTION

__________ o
RO | NUMBER TO BE CONVERTED

AR1 | POINTER TO TABLE WITH CONSTANTS

REGISTERS USED AS INPUT: RO, ARl
REGISTERS MODIFIED: RO
REGISTER CONTAINING RESULT: RO

NOTE: SINCE THE STACK POINTER ‘'SP’ IS USED, MAKE SURE TO
INITIALIZE IT IN THE CALLING PROGRAM.
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Example 5-6. TMS320C3x-to-IEEE Conversion (Fast Version) (Continued)

CYCLES: 14 (WORST CASE) WORDS: 15

.global TOIEEE

*

TOIEEE LDF RO, RO ; Determine the sign of the number
LDFZ *+AR1 (4) ,RO ;  If 0, load appropriate number
BND NEG ;  Branch to NEG if negative (delayed)
ABSF RO ; Take the absolute value of the number
LSH 1,R0 ; Eliminate the sign bit in RO
PUSHF RO
POP RO ;  Place number in lower 32 bits of RO
ADDI *+AR1 (2) ,RO ;  Add exponent bias (127)
LSH -1,R0 ;  Add the positive sign
RETS
NEG POP RO ; Place number in lower 32 bits
; of RO
ADDI *+AR1 (2) ,RO ;  Add exponent bias (127)
LSH —-1,RO ;  Make space for the sign
ADDI *+AR1 (3),RO ; Add the negative sign
RETS
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Example 5-7. TMS320C3x-to-IEEE Conversion (Complete Version)

LR I T R R

* o

* o

* ok ok F Xk 3k

*

* ok F * * ok F X X

* ok kX

*

TITLE TMS320C3x TO IEEE CONVERSION (COMPLETE VERSION)

SUBROUTINE TOIEEE1

FUNCTION: CONVERSION BETWEEN THE TMS320C3x FORMAT AND THE IEEE
FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED

IS IN THE UPPER 32 BITS OF RO. THE RESULT WILL BE

IN THE LOWER 32 BITS OF RO.

UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE:

OxFF800000 <—— AR1
OxFF000000
0x7F000000
0x80000000
0x81000000
0x7F800000
0x00400000
0x007FFFFF
Ox7F7FFFFF

W JO0O Ul b wNEHOo

ARGUMENT ASSIGNMENTS:

ARGUMENT | FUNCTION

__________ o
RO | NUMBER TO BE CONVERTED

AR1 | POINTER TO TABLE WITH CONSTANTS

REGISTERS USED AS INPUT: RO, ARl
REGISTERS MODIFIED: RO
REGISTER CONTAINING RESULT: RO

NOTE: SINCE THE STACK POINTER ‘'SP’ IS USED, MAKE SURE TO
INITIALIZE IT IN THE CALLING PROGRAM.

CYCLES: 31 (WORST CASE) WORDS: 25

.global TOIEEE1l
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Example 5-7. TMS320C3x-to-IEEE Conversion (Complete Version) (Continued)

*
TOIEEE1l

CONT

NEG

LDF
LDFZ
BND
ABSF

LSH
PUSHF
POP
ADDI
LSH

TSTB
RETSNZ
TSTB
RETSZ
PUSH
POPF
LSH
PUSHF
POP
ADDI
RETS

POP
BRD
ADDI
LSH
ADDI
RETS

RO,RO
*+AR1 (4) ,RO
NEG

RO

1,R0O

RO

RO
*+AR1 (2) ,RO
—1,R0

*+AR1 (5) ,RO
*+AR1(7),R0O

RO

RO

—1,R0

RO

RO

*+AR1 (6) ,RO

RO

CONT
*+ARI (2) ,RO
—1,R0
*+AR1 (3) ,R0O

Determine the sign of the number
If 0, load appropriate number
Branch to NEG if negative (delayed)
Take the absolute value

of the number
Eliminate the sign bit in RO

Place number in lower 32 bits of RO

Add exponent bias (127)
Add the positive sign

If e > 0, return

If e =0 & f = 0, return

Shift £ right by one bit

Add 1 to the MSB of f

Place number in lower 32 bits of RO

Add exponent bias (127)
Make space for the sign
Add the negative sign

Data Formats and Floating-Point Operation
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5.5 Floating-Point Multiplication

5-26

A floating-point number o. can be written in floating-point format as in the following
formula, where a(man) is the mantissa and a(exp) is the exponent:

o = a(man) x 20(exp)

The product of o and b is ¢, defined as:

¢ = ax b=a(man) x b(man) x 2(c(exp) + b (exp))

thus:
c(man) = o(man) x b(man)
clexp) = ofexp) + b(exp)

During floating-point multiplication, source operands are in the single-precision
floating-point format. If the source operands are in short floating-point format,
they are converted to single-precision floating-point format. If the source oper-
ands are in extended-precision floating-point format, they are truncated to
single-precision format. These conversions occur automatically in hardware
with no overhead. All results of floating-point multiplications are in the extended-
precision format. These multiplications occur in a single cycle.

Figure 5-16 is a flowchart that shows the steps involved in floating-point multi-
plication. Each step is labelled with a number in parenthesis.

a

In step 1, the 24-bit source operand mantissas are multiplied, producing
a 50-bit result ¢(man). (Input and output data are always represented as
normalized numbers.)

In step 2, the exponents, a(exp) and b(exp), are added, yielding c(exp).

Step 3 checks for whether ¢(man) in extended-precision format is equal to
0. If c(man) is 0, step 7 sets c(exp) to —128, thus yielding the representation
for 0.

Steps 4 and 5 normalize the result.

If a right shift of 1 is necessary, then in step 8, c(man) is right-shifted one
bit, thus adding 1 to c(exp).

If a right shift of 2 is necessary, then in step 9, ¢(man) is right-shifted two
bits, thus adding 2 to c(exp). Step 6 occurs when the result is normalized.

In step 10, c(man) is set in the extended-precision floating-point format.

Steps 11 through 16 check for special cases of c(exp).



a

Floating-Point Multiplication

If c(exp) has overflowed (step 11) in the positive direction, then step 14
sets c(exp) to the most positive extended-precision format value. If c(exp)
has overflowed in the negative direction, then step 14 sets c(exp) to the
most negative extended-precision format value.

If c(exp) has underflowed (step 12), then step 15 sets c to 0; that is,
¢(man) = 0 and c(exp) = —128.
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Figure 5-16. Flowchart for Floating-Point Multiplication

o(man)

.

b(man)

'
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o(exp)

b(exp)
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Add exponents

c(man) = a(man) x b(man)
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.

.
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to no

(4) (5)
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(6)
No shift
to normalize
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Example 5-8 through Example 5-12 illustrate how floating-point multiplication
is performed on the 'C3x. For these examples, the implied most significant
nonsign bit is made explicit.

Example 5-8. Floating-Point Multiply (Both Mantissas = —2.0)

Let:

o = —2.0 x 2(€xP) = 10.00000000000000000000000 x 20 exP)
b = 2.0 x 2b(exp) = 10.00000000000000000000000 x 2b(exp)

Where:

o and b are both represented in binary form according to the normalized
single-precision floating-point format.

Then:

10.00000000000000000000000 x 20:(exp)
x 10.00000000000000000000000 x 2b(exp)

0100.000000000000000000000000000000000000000000000 x 2 ((exP) + blexp)

To place this number in the proper normalized format, it is necessary to shift
the mantissa two places to the right and add 2 to the exponent. This yields:

10.00000000000000000000000 x 2¢(exp)
x 10.00000000000000000000000 x 2b(exp)

0100.0000000000000000000000000000000000000000000000 x 2 (e{exp) + Kexp)

In floating-point multiplication, the exponent of the result may overflow. This can
occur when the exponents are initially added or when the exponent is modified
during normalization.
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Example 5-9. Floating-Point Multiply (Both Mantissas = 1.5)

Let:

o = 1.5 x2%ex0 = 01.0000000000000000000000 x 2%(exp)
b = 1.5 x2%exp) = 01.0000000000000000000000 x 2b(exo)

Where:

a and b are both represented in binary form according to the single-preci-
sion floating-point format.

Then:

10.00000000000000000000000 x 2*(exP)
x 10.00000000000000000000000 x 2&exp)

01.0000000000000000000000000000000000000000000000 x 2 ((exp) + Kexp) +2)

To place this number in the proper normalized format, it is necessary to shift
the mantissa one place to the right and add 1 to the exponent. This yields:

01.0000000000000000000000 x 2%(exp)
% 01.0000000000000000000000 x 2Xexp)

01. 00100000000000000000000000000000000000000000000 X 2 ((exD) + Kexp) + 1)

Example 5-10. Floating-Point Multiply (Both Mantissas = 1.0)

Let:

o = 1.0 x 2%ex0) = 01.00000000000000000000000 x 2°(exp)
b = 1.0 x 2%ex0) = 01.00000000000000000000000 x 2 exp)

Where:

a and b are both represented in binary form according to the single-preci-
sion floating-point format.

Then:

01.00000000000000000000000 x 2%(exP)
x 01.00000000000000000000000 x 2Xexp)

0001.0000000000000000000000000000000000000000000000 y 2 (&exd) + Kexp)

This number is in the proper normalized format. Therefore, no shift of the
mantissa or modification of the exponent is necessary.

The previous examples show cases where the product of two normalized
numbers can be normalized with a shift of 0, 1, or 2. The floating-point format
of the ‘C3x makes this possible.
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Example 5-11. Floating-Point Multiply Between Positive and Negative Numbers

Let:

o = 1.0x2%exd = 01.00000000000000000000000 x 2%(exP)
b = —2.0 x 28exp) = 10.00000000000000000000000 x 2exp)

Then:

01.00000000000000000000000 x 2*(exP)
x 10.00000000000000000000000 x 22exP)

1110.0000000000000000000000000000000000000000000000 x 2 ((exp) + Kexp)

The resultis: ¢ = —2.0 x 2(c(exp) + b(exp))

Example 5-12. Floating-Point Multiply by 0

All multiplications by a floating-point 0 yield a result of 0 (f= 0, s = 0, and
exp = —-128).
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5.6 Floating-Point Addition and Subtraction

5-32

In floating-point addition and subtraction, two floating-point numbers o and b
can be defined as:

o= oman) x 2 o{exp)
b = b(man) x 2 b(exp)
The sum (or difference) of o and b can be defined as:

c=ozxb
(o(man) % (b(man) x 2 —(o(exp) - b(exp))) x 2 o(exp), if oexp) = b(exp)
= (o(man) x 2 —(b(exp)—a(exp))) + b(man)) x 2 bexp), if o(exp) < b(exp)

Figure 5-17 shows the flowchart for floating-point addition. Because this flow-
chart assumes signed data, it is also appropriate for floating-point subtraction.
In this figure, it is assumed that o(exp) < b(exp).

[ In step 1, the source exponents, a(exp) and b(exp), are compared, and
c(exp) is set equal to the largest of the two source exponents.

(1 Instep 2, dis set to the difference of the two exponents.

[ In step 3, the mantissa with the smallest exponent, in this case a(man),
is right-shifted d bits to align the mantissas.

[ In step 4, after the mantissas have been aligned, they are added.

1 Insteps 5 through 7, a check for a special case of ¢(man). If c(man) is 0
(step 5), then c(exp) is set to its most negative value (step 8) to yield the
correct representation of 0. If ¢(man) has overflowed c (step 6), then in
step 9 c(man) is right-shifted one bit and 1 is added to c(exp). In step 10,
the result is normalized.

(O Steps 11 through 13 check for special cases of c(exp). If c(exp) has over-
flowed (step 11) in the positive direction, then step 14 sets c(exp) to the
most positive extended-precision format value. If ¢(exp) has overflowed
(step 11) in the negative direction, then step 14 sets c(exp) to the most
negative extended-precision format value. If ¢(exp) has underflowed (step
12), then step 15 sets cto 0; that is, c(man) = 0 and c(exp) = -128. If no
overflow or underflow occurred, then cis not modified.
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Figure 5-17. Flowchart for Floating-Point Addition
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Test for special cases of c(exp)

(11)

c(exp) overflow

c(exp) underflow

(12) (13)

c(exp) in range

v v v
) If c(man) >0, setcto0 (15)
set ¢ to most c(exp) = -128
positive value
c(man) =0
If c(man) < 0,
set ¢ to most
negative value
v (16)
| Set cto final result |
c=o+b
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The following examples describe the floating-point addition and subtraction
operations. It is assumed that the data is in the extended-precision floating-
point format.

Example 5-13. Floating-Point Addition

In the case of two normalized numbers to be summed, let

o = 1.5 = 01.1000000000000000000000000000000 x 20

b =0.5 = 01.0000000000000000000000000000000 x 21
It is necessary to shift b to the right by 1 so that o and b have the same exponent.
This yields:

b = 0.5 = 00.1000000000000000000000000000000 x 20

Then:

01.10000000000000000000000000000000 x 2
+00.10000000000000000000000000000000 x 20

010.00000000000000000000000000000000 x 20

As in the case of multiplication, it is necessary to shift the binary point one place
to the left and add 1 to the exponent. This yields:

01.1000000000000000000000000000000 x 20
+00.1000000000000000000000000000000 x 20

01.0000000000000000000000000000000 x 21
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Example 5-14. Floating-Point Subtraction

A subtraction is performed in this example. Let:
a = 01.0000000000000000000000000000001 x 20
b = 01.0000000000000000000000000000000 x 20

The operation performed is o.—b. The mantissas are already aligned because
the two numbers have the same exponent. The result is a large cancellation
of the upper bits, as shown below.

01.0000000000000000000000000000001 x 20
-01.0000000000000000000000000000000 x 20

00.0000000000000000000000000000001 x 20

The result must be normalized. In this case, a left shift of 31 is required. The
exponent of the result is modified accordingly. The result is:

01.0000000000000000000000000000001 x 20
- 01.0000000000000000000000000000000 x 20

01.0000000000000000000000000000000 x 2-31

Example 5-15. Floating-Point Addition With a 32-Bit Shift

This example illustrates a situation where a full 32-bit shift is necessary to
normalize the result. Let:

o = 01. 111111111111 1111111111111 x 2127
b = 10.0000000000000000000000000000000 x 2127
The operation to be performed is o + b.

01. 111111111111 1111111111111 x 2127
+10.0000000000000000000000000000000 x 2127

A1 1111111111111 x 2127

Normalizing the result requires a left shift of 32 and a subtraction of 32 from
the exponent. The result is:

01. 111111111111 1111111111111 x 2127
+10.0000000000000000000000000000000 x 2127

A1 1111111111111 x 2127
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Example 5-16. Floating-Point Addition/Subtraction With Floating-Point 0

When floating-point addition and subtraction are performed with a floating-
point 0, the following identities are satisfied:

at0 = a(aez0)
0£0=0
0-0=-a(az0)
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5.7 Normalization Using the NORM Instruction

The NORM instruction normalizes an extended-precision floating-point number
that is assumed to be unnormalized (see Example 5-17). Since the number is
assumed to be unnormalized, no implied most significant nonsign bit is assumed.
The NORM instruction:

1) Locates the most significant nonsign bit of the floating-point number
2) Left shifts to normalize the number
3) Adjusts the exponent

Example 5-17. NORM Instruction

Assume that an extended-precision register contains the value:
man = 00000000000000000001000000000001, exp = 0

When the normalization is performed on a number assumed to be unnormalized,
the binary point is assumed to be:

man = 0.0000000000000000001000000000001, exp =0

This number is then sign-extended one bit so that the mantissa contains 33 bits:

man = 00.0000000000000000001000000000001, exp =0

The intermediate result after the most significant nonsign bit is located and the
shift performed is:

man = 01.0000000000010000000000000000000, exp = -19

The final 32-bit value output after removing the redundant bit is:

man = 00000000000010000000000000000000, exp = —19
The NORM instruction is useful for counting the number of leading Os or leading
1s in a 32-bit field. If the exponent is initially 0, the absolute value of the final

value of the exponent is the number of leading 1s or 0s. This instruction is also
useful for manipulating unnormalized floating-point numbers.

Given the extended-precision floating-point value a to be normalized, the
normalization, norm (), is performed as shown in Figure 5-18.
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Figure 5-18. Flowchart for NORM Instruction Operation
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o

v

Test for special cases of c(man)

o(man) =0 Leading nonsignificant sign bits

(1) ()

c(exp)

k = # of leading
nonsignificant

sign bits

=-128 . .
Sign-extended o(man) 1 bit

c(man) = a(man) < <k
c(exp) = a(exp) —k

.

| Remove most significant nonsign bit |

g

Test for special cases of c(exp)

(6) @)

c(exp) c(exp) in
underflow range
L A 4
8 c(exp) =-128

No change to c(man)

i

Set c to final result |

v

¢ =norm(o)

(4)

(®)



Rounding (RND Instruction)

5.8 Rounding (RND Instruction)

The RND instruction rounds a number from the extended-precision floating-
point format to the single-precision floating-point format. Rounding is similar to
floating-point addition. Given the number a to be rounded, the following opera-
tion is performed first.

c = a(man) x 20(exXp) + (1 x 20(exp)-24)

Next, a conversion from extended-precision floating-point to single-precision
floating-point format is performed. Given the extended-precision floating-point
value, the rounding, rnd( ), is performed as shown in Figure 5-19.

Note:

RND, src, dst—where (src) = 0—does not set the 0 conditions flag (bit 2 in
the status register). Instead, it sets the underflow condition flag (bit 4 in the
status register). When required, check for the underflow condition instead of
the 0 condition.
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Figure 5-19. Flowchart for Floating-Point Rounding by the RND Instruction

" 1x2 o(exp) —24

+

Add o(man) and 1/2 of LSB

c(man) = o.(man) + 2-24

Y

Test for special cases of ¢(man)
c(man) =0 Overflow of ¢c(man) No special case
c(exp) = -128 c(man) = c(man) < < 1

c(exp) = o.(exp) + 1

.

Test for special cases of c(exp)

c(exp) overflow c(exp) in range

.

If c(man) > 0,
set ¢ to most positive
single-precision value
If c(man) < 0,
set ¢ to most negative
single-precision value

-

I Set eight LSBs of ¢(man) to 0 I

v
c=rnd(o)
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5.9 Floating-Point to Integer Conversion (FIX Instruction)

Using the FIX instruction, you can convert an extended-precision floating-
point number to a single-precision integer in a single cycle. The floating-point
to integer conversion of the value x is referred to here as fix(x). The conversion
does not overflow if a, the number to be converted, is in the range:

-231 < <231 _ 1

First, you must be certain that
o(exp) <30

If these bounds are not met, an overflow occurs. If an overflow occurs in the
positive direction, the output is the most positive integer. If an overflow occurs
in the negative direction, the output is the most negative integer. If o(exp) is
within the valid range, then a(man), with implied bit included, is sign-extended
and right-shifted (rs) by the amount

rs = 31 — oexp)

This right shift (rs) shifts out those bits corresponding to the fractional part of
the mantissa. For example:

If0<x<1,thenfix(x) =0
If -1 <x <0, then fix(x) = -1

Figure 5-20 shows the flowchart for the floating-point-to-integer conversion.
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Figure 5-20. Flowchart for Floating-Point to Integer Conversion by FIX Instruction

o

!

Test for special cases of a(exp)

o(exp) in range
rs =31 - a(exp)

I I

o(exp) > 30

Overflow Shift
If o(man) > 0, c=oa(man) >>rs
¢ = most positive integer

If o(man) < 0O,
¢ = most negative integer

! L

Set cto final result

c = fix(o)
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5.10 Integer to Floating-Point Conversion (FLOAT Instruction)

Integer to floating-point conversion, using the FLOAT instruction, allows
single-precision integers to be converted to extended-precision floating-point
numbers. The flowchart for this conversion is shown in Figure 5-21.

Figure 5-21. Flowchart for Integer to Floating-Point Conversion by FLOAT Instruction
o

v

c(man) = o
c(exp) =30

v

Test for special cases of c(man)

Leading nonsignificant

c(man) =0 sign bits
k = # leading
nonsignificant

- sign bits
c(exp) =-128 c(man) = c(man) < <k
c(exp) =30 -k
I Remove most significant nonsign bit I
I Set cto final result I
c = float (o)
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5.11 Fast Logarithms on a Floating-Point Device

5-44

The following TMS320C30/C40 function calculates the log base two of a number
in about half the time of conventional algorithms. Furthermore, the method can
easily be scaled for faster execution if less accuracy is desired. The method is
efficient because the algorithm uses the floating-point multipliers’ exponent/nor-
malization hardware in a unique way. The following is a proof of the algorithm.
The value of a floating point number X is given by:

X =2"EXP_old* mant_old

Since the bit fields used to store the exponent and mantissa are actually inte-
ger, the exponent is already in log2 (log base 2) form. In fact, the exponent is
nothing more than a normalizing shift value. By converting both sides of the
first equation to a logarithm, the logarithm of the value becomes the sum of the
exponent and mantissa in log form:

log2(X) = EXP_old + log2(mant_old) (Log base two)

Since EXP is in the exponent register, no calculation is needed and the value
can be used directly as an integer. To extract the value of the exponent, PUSH,
POP, and masking operations are used. The remaining mantissa conversion
is done by first forcing the exponent bits to zero using an LDE 1.0 instruction.
This causes the exponent term 2"EXP to equal 1.0, leaving 1.0 <= Value < 2.0.
Then, by using the following identity, the logarithm of the mantissa can be ex-
tracted from the final results exponent. If the value (mant_old) is repeatedly
squared, the sequence becomes:

X _new = mant_old"N

where:
1.0 X _new< 2N
N=1,2,48,16...

Since the hardware multiplier restructures the new value (X_new) during each
squaring operation, X_new is represented by a new exponent (EXP_new) and
mantissa (mant_new):

X _new =2"EXP_New * mant_new

By then applying familiar logarithm rules, we find that EXP_new holds the loga-
rithm of Old_mant. This is best shown by setting the previous two equations
equal to each other and taking the logarithm of both sides:

mant_old"N = 2 "EXP_new * mant_new

N=1,2,4,8,16...
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N*log2(mant_old) = EXP_new + log2(mant_new)
log2(mant_old) = EXP_new/N + log2(mant_new)/N

This last equation shows that the logarithm of mant_old is indeed related to
EXP_new. And as shown earlier, EXP_new can be separated from the new
mantissa and used as the logarithm of the original mantissa.

We also need to consider the divisor N, which is defined to be the series 1, 2,
4,8, 16..., and EXP_new is an integer. The division by N becomes a shift for
each squaring operation. What remains is to concatenate the bits of EXP_new
to EXP_old and then repeat the process until the desired accuracy is achieved.

5.11.1 Example of Fast Logarithm on a Floating-Point Device

Consider a mantissa value of 1.5 and an exponent value of 0 (giving an expo-
nent multiplier 270, or 1.0). The TMS320C30/C40 extended register bit pattern
for the algorithm sequence is shown below.

Table 5-3. Squaring Operation of FO = 1.5

Squaring Operation of FO = 1.5

Exp S Mantissa
00000000 0 1000000000000000000000000000000 X =1.5 Exp=0
00000001 0  0010000000000000000000000000000 XA2 =2.25 Exp=1
00000010 0  0100010000000000000000000000000 Xn4 =5.0625 Exp=2
00000100 0 1001101000010000000000000000000 X"8 =25.628906 Exp=4
00100100 0 0100100001101011101000001000000 XM6 =656.84083 Exp=9
00010010 0 1010010101010011111101110011111 X732  =431.43988-E3  Exp=18
00100101 0 0101101010110110101000010101001 X"64  =186.14037-E9  Exp=37
01001010 0 1101010110010010001010101100011 XM28  =34.648238-E21 Exp=74
XXXXXXXX s  MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

S

<— Exp—>

< Mantissa

Hand-calculated value of log2(1.5)

log2(1.5) = 0.58496250 = 1001010 111000000

xxxxxxx— first 7 bits (exponent)

mmm- quick 3 bits (mantissa)

If you compare the hand-calculated value and the binary representation of

log2(1.5), you find that the sequence of bits in the exponent (seven bits worth)
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are equivalent to the seven MSBs of the logarithm. If the exponent could hold
all the bits needed for full accuracy, then it would be possible to continue the op-
eration for all 24 bits of the mantissa. Since there are only eight bits in the expo-
nent and the MSBs are used for negative values, only seven iterations are pos-
sible before the exponent must be off-loaded and reinitialized to zero.

By concatenating EXP_new to the previous exponent, longer strings of bits can
be built for greater accuracy. The process is then repeated until the desired accu-
racy is achieved. Also remember that the original numbers exponent, which rep-
resents the whole number part of the result, becomes the eight MSBs of the final
result.

Another technique is to look at the three MSBs of the mantissa and apply a
roundup from the fourth bit. Those same MSBs can be used as a quick exten-
sion of the exponent (logarithm). To visualize this, consider the following tabu-
lated values and graph.

Mant  log2(Mant)

1.000 0.000 IS

1.250 0.322 ‘g 0585 F----------
1.500 0.585 i 0.5

1.7500 0.807

1.999 0.999

'
-
\

1.0 1.5 2.0
Mantissa

Figure 5-22. Tabulated Values for Mantissa
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Note:

The fractional part is the same at the endpoints.

In the middle, only a slight bowing exists which can either be ignored or optionally
rounded for better accuracy. The maximum actually occurs at a mantissa value
of

1

In(2.0)

or 1.442695. The value of log2(mant) at that point is 0.52876637, giving a maxi-
mum error of 0.086071.
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When finished, the bits representing the finished logarithm are in a fixed-point
notation and need to be scaled. This is done by using the FLOAT instruction fol-
lowed by a multiplication by a constant scaling factor. If the final result needs to
be in any other base, the scaling factor is simply adjusted for that base.

5.11.2 Points to Consider

The round-off accuracy of the first three squaring operations affect the final
result if >21 mantissa bits are desired. A RND instruction placed after the first
three MPYF RO0,RO0 instructions remedy this, but adds to the cycle count.

When the input value approaches 1.0, the result is driven close to zero and
accuracy suffers. In this case, an input range comparison and a branch to a
McLauren series expansion is used as a solution with minimal degradation in
speed. This is because the power series converges quickly for input values
close to 1.0.

If you only need to calculate a visual quality logarithm, such as in spectrum
analysis, the logarithm can often be calculated in one cycle. In this case the
mantissa is substituted directly into the fractional bits of the logarithm giving
a maximum error of 0.086 (about 3.5 bits). The one cycle arises from the need
to remove the 2’s compliment sign bit in the ’C3x’s mantissa.
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Figure 5-23. Fast Logarithm for FFT Displays

dhkkhkhkkhkhkhkdkhkhhkhkdhkhkdhkhkdhkhdhkhhbhrkdhkrkdhbhkdhrhdhkhdkrkdhrkdrhkdkrrdrrdkrdrrdrkdx *

* FAST Logarithm for FFT displays *
* >>>> NEED ONLY ADD ONE INSTRUCTION IN MANY CASES <<<< *

LR E SRR SRR SRS SRS SRS SRR SRR SRR EEEEEEEEEEEEEEEEEEEEEEEESEEEEEESS

| || ;

MPYF REAL, REAL, RO ; calculate the magnitude
MYPF IMAG, IMAG,R1 ; Note: sign bit is zero

ADDF R1,RO ;

ASH -1,R0 ; <-One instruction logarithm!
STR RO,OUT H scaled externally in DAC

|| | i

LR EEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEESEEEEEESEREEEEEEEEEESESEEEESEE]

* _log_E.asm DEVICE: TMS320C30 *
R R R R R R SR EEEE SRR R R EE RS EEEEEEEEEEEEEEEEEEEEEREEEEEEEEREEREEEEEEEEEEEEEES

.global log E

_log E:POP AR1 ; return address -> ARl
POPF RO ; X -> RO
LDF RO,R1 ; use R1 to accumulate answer
LDI 2,RC ; repeat 3x
RPTB loop ;
ASH 7,R1 ;
LDE 1.0,R0 ; EXP =0
MPYF RO, RO ; mant”®2
MPYF RO, RO ; mant”™4
MPYF RO, RO ; mant”8
MPYF  RO,RO ; mant”16
MPYF RO, RO ; mant”32
MPYF RO, RO ; mant”™64
MPYF RO, RO ; mant”128
PUSHF R1 ; PUSH EXP and Mantissa (sign is now data!)
POP RO ; POP as ianteger (EXP+FRACTION)
BD AR1 ;
FLOAT RO ; convert EXP+FRACTION to float
MPYF @CONST, RO ; scale the result by 2"°-24 and change base
ADDI 1,SP ; restore stack pointer
.data
CONST_ADR: .word CONST
CONST .long 0e7317219%h ; ;Base e hand calc w/1 1lsb round
.end
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Chapter 6

Addressing Modes

The 'C3x supports five groups of powerful addressing modes. Six types of
addressing that allow data access from memory, registers, and the instruction
word can be used within the groups. This chapter describes the operation,
encoding, and implementation of the addressing modes. It also discusses the
management of system stacks, queues, and dequeues in memory.
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Addressing Types

6.1 Addressing Types

6-2

You can access data from memory, registers, and the instruction word by using
five types of addressing:

J
i

J
a

Register addressing. A CPU register contains the operand.

Direct addressing. The data address is formed by concatenating the
eight least significant bits (LSBs) of the data-page (DP) register and the
16 LSBs of the instruction.

Indirect addressing. An auxiliary register contains the address of the
operand.

Immediate addressing. The operand is a 16-bit or 24-bit immediate value.

PC-relative addressing. A 16-bit or 24-bit displacement to the program
counter (PC).

Two specialized modes are available for use in filters, FFTs, and DSP algorithms:

a

a

Circular addressing. An auxiliary register is incremented/decremented
with regards to a circular buffer boundary.

Bit-reverse addressing. An auxiliary register is transferred to its bit-
reversed representation that contains the address of the operand.



6.2 Register Addressing

Register Addressing

In register addressing, a CPU register contains the operand, as shown in this

example:

ABSF R1

; Rl = |R1|

The syntax for the CPU registers, the assembler syntax, and the assigned
function for those registers are listed in Table 6-1.

Table 6-1. CPU Register Address/Assembler Syntax and Function

Register Name

Machine Address

Assigned Function

RO
R1
R2
R3
R4
R5
R6
R7
ARO
AR1
AR2
AR3
AR4
AR5
ARG
AR7
DP
IRO
IR1

00h
01h
02h
03h
04h
05h
06h
07h
08h
09h
0Ah
0Bh
0Ch
0Dh
0Eh
OFH
10h
11h
12h
13h
14h
15h
16h
17h
18h
19h
1Ah
1Bh

Extended-precision register 0
Extended-precision register 1
Extended-precision register 2
Extended-precision register 3
Extended-precision register 4
Extended-precision register 5
Extended-precision register 6
Extended-precision register 7
Auxiliary register 0

Auxiliary register 1

Auxiliary register 2

Aucxiliary register 3

Auxiliary register 4

Auxiliary register 5

Auxiliary register 6

Auxiliary register 7
Data-page pointer

Index register 0

Index register 1

Block-size register

Active stack pointer

Status register

CPU/DMA interrupt-enable
CPU interrupt flags

1/0 flags

Repeat start address

Repeat end address

Repeat counter
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6.3 Direct Addressing

In direct addressing, the data address is formed by the concatenation of the
eight LSBs of the data-page pointer (DP) with the 16 LSBs of the instruction
word (expr). This results in 256 pages (64K words per page), allowing you to
access a large address space without requiring a change of the page pointer.

The syntax and operation for direct addressing are:

Syntax

Operation:

Figure 6—1 shows the formation of the data address. Example 6-1 is an instruc-

: @expr

address = DP concatenated with expr

tion example with data before and after instruction execution.

Figure 6—1. Direct Addressing

DP —»

(Data-

page pointer)

31 16 15
Instruction expr
word

31 8 7 0
X X...X X page

31 24 23 v v

0 0 address
31 A\ 4
operand

Example 6-1. Direct Addressing

ADDI

Data

@0BCDEh, R7
Before Instruction
R7 | 00 0000 0000 |
DP | 8a |
memory
8ABCDEh | 1234 5678 |

After Instruction

R7 | 00 1234 5678|

DP | 8a |

8ABCDEh | 1234 5678 |
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6.4 Indirect Addressing

Indirect addressing specifies the address of an operand in memory through the
contents of an auxiliary register, optional displacements, and index registers as
shown in Example 6-2. Only the 24 LSBs of the auxiliary registers and index
registers are used in indirect addressing. The auxiliary register arithmetic units
(ARAUSs) perform the unsigned arithmetic on these lower 24 bits. The upper
eight bits are unmodified.

Example 6-2. Auxiliary Register Indirect

An auxiliary register (ARn) contains the address of the operand to be fetched.

Operation: operand address = ARn
Assembler Syntax: *ARn
Modification Field: 11000
31 24 23 0
ARn —P1 x X Address
31 i 0
Operand

The flexibility of indirect addressing is possible because the ARAUs on the
'C3x modify auxiliary registers in parallel with operations within the main CPU.
Indirect addressing is specified by a 5-bit field in the instruction word, referred
to as the mod field (shown in Table 6-2). A displacement is either an explicit
unsigned 8-bit integer contained in the instruction word or an implicit displace-
ment of 1. Two index registers, IR0 and IR1, can also be used in indirect
addressing, enabling the use of 24-bit indirect displacement. In some cases,
an addressing scheme using circular or bit-reversed addressing is optional.
Generating addresses in circular addressing is discussed in Section 6.7 on
page 6-21; bit-reversed addressing is discussed in Section 6.8 on page 6-26.

Table 6-2 lists the various kinds of indirect addressing, along with the value
of the modification (mod) field, assembler syntax, operation, and function for
each. The succeeding 17 examples show the operation for each kind of indi-
rect addressing. Figure 6-3 on page 6-20 shows the format in the instruction
encoding.
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Figure 6-2. Indirect Addressing Operand Encoding
MSB LSB

mod ARn disp

5 bits 3 bits 0, 5, or 8 bits

Note: Auxiliary Register

The auxiliary register (ARn) is encoded in the instruction word according to its
binary representation n (for example, AR3 is encoded as 115), not its register
machine address (shown in Table 6-1).
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Table 6-2. Indirect Addressing

(a) Indirect addressing with displacement

Indirect Addressing

Mod Field Syntax Operation Description

00000 *+ARnN(disp) addr = ARn + disp With predisplacement add

00001 *—ARnN(disp) addr = ARn - disp With predisplacement subtract

00010 *++ARn(disp) addr = ARn + disp With predisplacement add and modify
ARn = ARn + disp

00011 *——ARN(disp) addr = ARn - disp With predisplacement subtract and modify
ARn = ARn - disp

00100 *ARn++(disp) addr = ARn With postdisplacement add and modify
ARn = ARn + disp

00101 *ARn——(disp) addr = ARn With postdisplacement subtract and modify
ARn = ARn - disp

00110 *ARn++(disp)% addr = ARn With postdisplacement add and circular modify
ARn = circ(ARn + disp)

00111 *ARn-—(disp)% addr = ARn With postdisplacement subtract and circular modify

ARn = circ(ARn - disp)

(b) Indirect addressing with index register IR0

Mod Field Syntax Operation Description
01000 *+ARnN(IR0O) addr = ARn + IR0 With preindex (IRO) add
01001 *—~ARN(IR0) addr = ARn - IR0 With preindex (IR0) subtract
01010 *++ARN(IR0) addr = ARn + IR0 With preindex (IR0) add and modify
ARn = ARn + IR0
01011 *——ARN(IR0) addr = ARn - IR0 With preindex (IR0) subtract and modify
ARn = ARn - IR0
01100 *ARn++(IR0) addr = ARn With postindex (IR0) add and modify
ARn = ARn + IR0
01101 *ARn--(IR0) addr= ARn With postindex (IR0) subtract and modify
ARn = ARn- IR0
01110 *ARn++(IR0)%  addr = ARn With postindex (IR0) add and circular modify
ARn = circ(ARn + IR0)
01111 *ARn-—-(IR0)% addr = ARn With postindex (IRO0) subtract and circular modify
ARn = circ(ARn- IR0)
Legend: addr memory address ++ add and modify
ARn auxiliary registers ARO-AR7 —— subtract and modify
circ() address in circular addressing % where circular addressing is performed
disp displacement IRn index register IR0 or IR1
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Table 6-2. Indirect Addressing (Continued)

(c) Indirect addressing with index register IR1

Mod Field Syntax Operation Description

10000 *+ARnN(IR1) addr = ARn + IR1 With preindex (IR1) add

10001 *~ARN(IR1) addr = ARn - IR1 With preindex (IR1) subtract

10010 *++ARnN(IR1) addr = ARn + IR1 With preindex (IR1) add and modify
ARn=ARn + IR1

10011 *——ARN(IR1) addr = ARn - IR1 With preindex (IR1) subtract and modify
ARn = ARn - IR1

10100 *ARn++(IR1) addr = ARn With postindex (IR1) add and modify
ARn=ARn + IR1

10101 *ARn--(IR1) addr = ARn With postindex (IR1) subtract and modify
ARn = ARn - IR1

10110 *ARn++(IR1)% addr = ARn With postindex (IR1) add and circular modify
ARn = circ(ARn + IR1)

10111 *ARn--(IR1)% addr = ARn With postindex (IR1) subtract and circular modify

ARn = circ(ARn - IR1)

(d) Indirect addressing (special cases)

Mod Field Syntax Operation Description
11000 *ARn addr = ARn Indirect
11001 *ARn++(IR0)B addr = ARn With postindex (IR0) add

ARn = B(ARn + IR0)

and bit-reversed modify

Legend: addr

memory address
auxiliary registers ARO-AR7
where bit-reversed addressing is performed

bit-reversed address

circ() address in circular addressing

++ add and modify by 1

—— subtract and modify by 1

% where circular addressing is performed
IRn index register IR0 or IR1

Example 6-3 through Example 6-19 show the operation for each type of indirect
addressing.
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Example 6-3. Indirect Addressing With Predisplacement Add

The address of the operand to fetch is the sum of an auxiliary register (ARn) and
the displacement (disp). The displacement is either an 8-bit unsigned integer
contained in the instruction word or an implied value of 1.

disp

Operation: operand address = ARn + disp
Assembler Syntax: *+ARnN(disp)
Modification Field: 00000
31 24 23 0
ARn—¥ X X Address
31 8 7 0
0 0..0 0| Integer —p (+)
31 0

Operand

Example 6-4. Indirect Addressing With Predisplacement Subtract

The address of the operand to fetch is the contents of an auxiliary register
(ARnN) minus the displacement (disp). The displacement is either an 8-bit
unsigned integer contained in the instruction word or an implied value of 1.

Operation:

Assembler Syntax:

disp

operand address = ARn - disp

*~ARn(disp)

Modification Field: 00001
31 24 23 0
ARn —P X X Address
31 8 7 0 ‘
0 0...0 0| Integer [ p (o)
31 0

Operand
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Example 6-5. Indirect Addressing With Predisplacement Add and Modify

The address of the operand to fetch is the sum of an auxiliary register (ARn) and
the displacement (disp). The displacement is either an 8-bit unsigned integer
contained in the instruction word or an implied value of 1. After the data is
fetched, the auxiliary register is updated with the address generated.

Operation: operand address = ARn + disp
ARn = ARn + disp
Assembler Syntax: *++ARn (disp)
Modification Field: 00010
31 24 23 0
ARn—P| x X Address
31 8 7 0
disp| 0 0...0 0| Integer +—» (+)
31 0

Operand

Example 6-6. Indirect Addressing With Predisplacement Subtract and Modify

6-10

The address of the operand to fetch is the contents of an auxiliary register
(ARn) minus the displacement (disp). The displacement is either an 8-bit
unsigned integer contained in the instruction word or an implied value of 1.
After the data is fetched, the auxiliary register is updated with the address
generated.

Operation: operand address = ARn - disp
ARn = ARn - disp
Assembler Syntax: *——ARn(disp)
Modification Field: 00011
31 24 23 0
ARn —®| x X Address
31 8 7 0
disp| 0 0...0 0| Integer —p (-)
31 0
Operand
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Example 6-7. Indirect Addressing With Postdisplacement Add and Modify

The address of the operand to fetch is the contents of an auxiliary register (ARn).
After the operand is fetched, the displacement (disp) is added to the auxiliary
register. The displacement is either an 8-bit unsigned integer contained in the
instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = ARn + disp
Assembler Syntax: *ARn++(disp)
Modification Field: 00100
31 24 23 0
ARn —¥ x X Address
31 8 7 0 T
disp| O 0..0 0] Integer —p (+) ¢—o
31 vy ©

Operand

Example 6-8. Indirect Addressing With Postdisplacement Subtract and Modify

The address of the operand to fetch is the contents of an auxiliary register
(ARN). After the operand is fetched, the displacement (disp) is subtracted from
the auxiliary register. The displacement is either an 8-bit unsigned integer
contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = ARn - disp
Assembler Syntax: *ARn——(disp)
Modification Field: 00101
31 24 23 0
ARn —¥ x X Address
31 8 7 0 T
disp| 0 0...0 0| Integer I (-) 4o
31 Y 0
Operand
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Example 6-9. Indirect Addressing With Postdisplacement Add and Circular Modlify

The address of the operand to fetch is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is added to the
contents of the auxiliary register using circular addressing. This result is used
to update the auxiliary register. The displacement is either an 8-bit unsigned
integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = circ(ARn+disp)

Assembler Syntax: *ARnN ++ (disp)%
Modification Field: 00110

31 24 23 0

ARn —P X X Address
31 8 7 0 (%)
|

dISp 0 0...0 0 |nteger e (+) <4

31 0

Operand

Example 6-10. Indirect Addressing With Postdisplacement Subtract and Circular Modify

6-12

The address of the operand to fetch is the contents of an auxiliary register
(ARnN). After the operand is fetched, the displacement (disp) is subtracted from
the contents of the auxiliary register using circular addressing. This result is
used to update the auxiliary register. The displacement is either an 8-bit
unsigned integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = circ(ARn — disp)
Assembler Syntax: *ARn ——(disp)%
Modification Field: 00111
31 24 23 0
ARn —P X X Address
?
31 8 7 0 (%)
disp| 0 0..0 0| Integer | (‘_) <
31 Y _ O

Operand
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Example 6-11. Indirect Addressing With Preindex Add

The address of the operand to fetch is the sum of an auxiliary register (ARn)
and an index register (IR0 or IR1).

Operation: operand address = ARn + IRm
Assembler Syntax: *+ARn(IRm)
Modification Field: 01000 ifm=20

10000 if m=1

31 24 23 0
ARn —9 x X Address
31 24 23 0
IRm—» x X Index > (+)
31 i 0
Operand

Example 6-12. Indirect Addressing With Preindex Subtract

The address of the operand to fetch is the difference of an auxiliary register
(ARn) and an index register (IR0 or IR1).

Operation: operand address = ARn - IRm
Assembler Syntax: *~ARnN(IRm)
Modification Field: 01001 ifm=20
10001 if m=1
31 24 23 0
ARn —®| x X Address
31 24 23 0 ‘
IRm—p x X Index L » ()
31 l 0
Operand
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Example 6-13. Indirect Addressing With Preindex Add and Modify

The address of the operand to fetch is the sum of an auxiliary register (ARn) and
an index register (IR0 or IR1). After the data is fetched, the auxiliary register is
updated with the generated address.

Operation: operand address = ARn + IRm
ARn = ARn + IRm
Assembler Syntax: *++ARN(IRmM)
Modification Field: 01010 ifm=0
10010 ifm=1
31 24 23 0
ARn—» x X Address
31 24 23 0
IRm—p— x X Index —»  (+)
<
31 0
Operand

Example 6-14. Indirect Addressing With Preindex Subtract and Modify

6-14

The address of the operand to fetch is the difference between an auxiliary register
(ARn) and an index register (IR0 or IR1). The resulting address becomes the new
contents of the auxiliary register.

Operation: operand address = ARn — IRm
ARn = ARn - IRm
Assembler Syntax: *——ARN(IRm)
Modification Field: 01011 ifm=20
10011 ifm=1
31 24 23 0
ARN—p| x X Address
31 24 23 0
IRm —» x X Index —» ()
31 v 0

Operand
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Example 6-15. Indirect Addressing With Postindex Add and Modify

The address of the operand to fetch is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IR0 or IR1) is added
to the auxiliary register.

Operation: operand address = ARn
ARn=ARn + IRm

Assembler Syntax: *ARn++(IRm)

Modification Field: 01100 ifm=20

10100 ifm=1

31 24 23 0
ARn —P| x X Address
31 24 23 0 T
IRm —»| x X Index (+) 4o
31 N 0
Operand

Example 6-16. Indirect Addressing With Postindex Subtract and Modify

The address of the operand to fetch is the contents of an auxiliary register (ARn).
After the operand is fetched, the index register (IR0 or IR1) is subtracted from
the auxiliary register.

Operation: operand address = ARn
ARn = ARn - IRm

Assembler Syntax: *ARn——(IRm)

Modification Field: 01101 ifm=20
10101 ifm=1
31 24 23 0

ARn—¥ x X Address
31 24 23 0 T

IRm—¥ x X Index > (-) €—

31 0
Operand
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Example 6-17. Indirect Addressing With Postindex Add and Circular Modify

The address of the operand to fetch is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IR0 or IR1) is added
to the auxiliary register. This value is evaluated using circular addressing and
replaces the contents of the auxiliary register.

Operation: operand address = ARn
ARn = circ(ARn + IRm)
Assembler Syntax: *ARN++(IRM)%
Modification Field: 01110 ifm=20
10110 if m=1
31 24 23 0
ARn—¥ x X Address
f
31 24 23 0 (%)
IRm —»{ X Index (J‘r) <+
31 0
Operand

Example 6-18. Indirect Addressing With Postindex Subtract and Circular Modify

6-16

The address of the operand to fetch is the contents of an auxiliary register (ARn).
After the operand is fetched, the index register (IR0 or IR1) is subtracted from the
auxiliary register. This result is evaluated using circular addressing and replaces
the contents of the auxiliary register.

Operation: operand address = ARn
ARn = circ(ARn - IRm)
Assembler Syntax: *ARn--(IRmM)%
Modification Field: 01111 ifm=20
10111 ifm=1
31 24 23 0
ARn —¥ x X Address
?
31 24 23 0 (%)
IRm —¥ x X Index —> (l) <+
31 0
Operand
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Example 6-19. Indirect Addressing With Postindex Add and Bit-Reversed Modify

The address of the operand to fetch is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IR0) is added to the
auxiliary register. This addition is performed with a reverse-carry propagation
and can be used to yield a bit-reversed (B) address. This value replaces the
contents of the auxiliary register.

Operation: operand address = ARn
ARn = B(ARn + IR0)

Assembler Syntax: *ARn++(IR0)B
Modification Field: 11001
31 24 23 0
ARn—» x X Address
f
31 24 23 0 (|‘3)
IRm—¥ x X Index —> (+) 49
31 v 0

Operand
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6.5 Immediate Addressing

In immediate addressing, the operand is a 16-bit (short) or 24-bit (long) immediate
value contained in the 16 or 24 LSBs of the instruction word (expr). Depending
on the data types assumed for the instruction, the short-immediate operand can
be a 2s-complement integer, an unsigned integer, or a floating-point number. This
is the syntax for this mode:

Syntax: expr

Example 6-20 illustrates an instruction example with data before and after the
instruction is executed.

Example 6-20. Short-Immediate Addressing

SUBI 1,RO0
Before Instruction After Instruction

RO \ 00 0000 oooo\ RO \ 00 FFFF FFFF\

In long-immediate addressing, the operand is a 24-bit unsigned immediate
value contained in the 24 LSBs of the instruction word (expr). This is the syntax
for this mode:

Syntax: expr

Example 6-21 illustrates an instruction example with data from before and after
the instruction is executed.

Example 6-21. Long-Immediate Addressing

6-18

BR 8000h
Before Instruction After Instruction

PC | 0000 | PC | 8000 |
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6.6 PC-Relative Addressing

Program counter (PC)-relative addressing is used for branching. It adds the
contents of the 16 or 24 LSBs of the instruction word to the PC register. The
assembler takes the src (a label or address) specified by the user and generates
a displacement. If the branch is a standard branch, this displacement is equal to
[label — (instruction address +1)]. If the branch is a delayed branch, this displace-
ment is equal to [label — (instruction address+3)].

The displacement is stored as a 16-bit or 24-bit signed integer in the LSBs of
the instruction word. The displacement is added to the PC during the pipeline
decode phase. Notice that because the PC is incremented by 1 in the fetch
phase, the displacement is added to this incremented PC value.

Syntax: expr (src)

Example 6-22 illustrates an example with data from before and after the
instruction is executed.

Example 6-22. PC-Relative Addressing

BU NEWPC ; pc=1001h, NEWPC label = 1005h, displacement = 3
Before Instruction After Instruction
decode phase: execution phase:
PC | 1002) PC | 1005]

The 24-bit addressing mode encodes the program-control instructions (for
example, BR, BRD, CALL, RPTB, and RPTBD). Depending on the instruc-
tion, the new PC value is derived by adding a 24-bit signed value in the
instruction word with the present PC value. Bit 24 determines the type of
branch (D = 0 for a standard branch or D = 1 for a delayed branch). Some of
the instructions are encoded in Figure 6-3.
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Figure 6-3. Encoding for 24-Bit PC-Relative Addressing Mode
(a) BR, BRD: unconditional branches (standard and delayed)

31 25 2423

01100000 Displacement

(b) CALL: unconditional subroutine call

31 24 23

011000 1}f0 Displacement

(c) RPTB: repeat block

31 25 2423

01100100 Displacement

6-20
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6.7 Circular Addressing

Many DSP algorithms, such as convolution and correlation, require a circular
buffer in memory. In convolution and correlation, the circular buffer acts as a
sliding window that contains the most recent data to process. As new data is
brought in, the new data overwrites the oldest data by increasing the pointer
to the data through the buffer in counter-clockwise fashion. When the pointer
accesses the end of the buffer, the device sets the pointer to the beginning of
the buffer. For example, Figure 6—4a shows a circular buffer that holds six values.
Figure 6-4b shows how this buffer is implemented in the 'C3x memory space.
Figure 6-5 shows this buffer after writing three values. Figure 6-6 shows this
buffer after writing eight values.

Figure 6-4. Logical and Physical Representation of Circular Buffer

a) Logical representation b) Physical representation

Start Start

End
% End

Figure 6-5. Logical and Physical Representation of Circular Buffer after Writing Three Values

a) Logical representation b) Physical representation

Start End Start valueg
valueq
valueg
valueo
valueo
End
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Figure 6-6. Logical and Physical Representation of Circular Buffer after Writing Eight Values

a) Logical representation b) Physical representation
Start End Start valueg
valuey
valueg | values
valueo
values
valuep | value3 valueg
End values

To implement a circular buffer in the ’C3x, the following criteria must be satis-
fied (more than one circular buffer can be implemented on the 'C3x as long as
the size of the buffers are identical):

[ Specify the size of the circular buffer (R) by storing the length of the buffer
in the block-size register (BK). The size of the buffer must be less than or
equal to 64K (16 bits).

[ Align the start of the buffer to a K-bit boundary (that is, the K LSBs of the
starting address of the circular buffer must be 0) by satisfying the following
formula:

2Ks R
where:

R=length of circular buffer
K= number of Os in the LSBs of the circular buffer starting address

Example 6-23. Examples of Formula 2K > R

Length of Buffer BK Register Value  Starting Address of Buffer

31 31 XXXXXXXXXXXXXXXXXXX000002
32 32 XXXXXXXXXXXXXXXXXX0000002
1024 1024 XXXXXXXXXXXXX000000000005
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In circular addressing, index refers to the K LSBs (from the K-bit boundary criteria)
of the auxiliary register selected, and step is the quantity being added to or
subtracted from the auxiliary register. Follow these two rules when you use cir-
cular addressing:

(1 The step used must be less than or equal to the block size. The step size
is treated as an unsigned integer. If an index register (IR) is used as a step
increment or decrement, it is also treated as an unsigned integer.

(1 The first time the circular queue is addressed, the auxiliary register must
be pointing to an element in the circular queue.

The algorithm for circular addressing is as follows:

If 0 <index + step < BK: index = index + step.
Else if index + step > BK: index = index + step — BK.
Else if index + step < O: index = index + step + BK.

Figure 6-7 shows how the circular buffer is implemented and illustrates the
relationship of the quantities generated and the elements in the circular buffer.

Figure 6-7. Circular Buffer Implementation

Address Data
31 K K-1 0 Top of circular buffer
Effective base (EB) H...H 0...0 - Element 0
MSBs of ARn Element 1
31 K K-1 0
Auxiliary register (ARn) H...H L...L - Element (K LSBs of ARn)

MSBs of ARn  LSBs of ARn

31 K K-1 0 Last element
H...H LSBs BK — Last element + 1
MSBs of ARn

Example 6-24 shows circular addressing operation. Assuming that all ARs
are four bits, let ARO = 0000 and BK = 0110 (block size of 6). Example 6-24
shows a sequence of modifications and the resulting value of ARO.
Example 6-24 also shows how the pointer steps through the circular queue
with a variety of step sizes (both incrementing and decrementing).
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Example 6-24. Circular Addressing

*ARO ++(5)%
*ARO ++(2)%
*ARO-—-(3)%
*ARO++(6)%
*ARO--%
*ARO

Value
2nd —
5th —

4th,3rd —

1st —

; ARO = 0 (0Ovalue)
; ARO = 5 (1stvalue)
; ARO = 1 (2nd value)
; ARO = 4 (3rdvalue)
; ARO = 4 (4thvalue)
; ARO = 3 (5thvalue)
Data
Element 0
Element 1
Element 2
Element 3
Element 4

Element 5 (last element)

Last element + 1

Address

Circular addressing is especially useful for the implementation of FIR filters.
Figure 6-8 shows one possible data structure for FIR filters. Note that the ini-
tial value of ARO points to h(N-1), and the initial value of AR1 points to x(0).
Circular addressing is used in the ’C3x code for the FIR filter shown in

Example 6-25.

Figure 6-8. Data Structure for FIR Filters

6-24

Impulse response

Input samples

ARO —

h(N-1) x(N-1)
h(N-2) X(N-2)
h(2) x(2)
h(1) x(1)
h(0) x(0)

< ARI1
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Example 6-25. FIR Filter Code Using Circular Addressing

* Impulse Response

.sect ”Impulse Resp”
H .float 1.0

.float 0.99

.float 0.95

.float 0.1

Input Buffer
.usect ”“Input Buf”,128

Xoox

.data
HADDR .word H
XADDR .word X
N .word 128

Initialization

LDP HADDR

LDI @N, BK ; Load block size.

LDI @HADDR, ARO ; Load pointer to impulse re-
; Sponse.

LDI @XADDR, AR1 ; Load pointer to bottom of

; input sample buffer.

TOP LDF IN,R3 ;Read input sample.
STF R3, *AR1++% ;Store with other samples,
;and point to top of buffer.
LDF 0,RO ;Initialize RO.
LDF 0,R2 ;Initialize R2.
*
* Filter
*
RPTS N-1 ;Repeat next instruction.
MPYF3 *ARO++%, *AR1++%,RO0
| ADDF3 RO,R2,R2 ;Multiply and accumulate.
ADDF  RO,R2 ;Last product accumulated.
*
STF R2,Y ;Save result.
B TOP ;Repeat.

Addressing Modes 6-25



Bit-Reversed Addressing

6.8 Bit-Reversed Addressing

6-26

The ’C3x can implement fast Fourier transforms (FFT) with bit-reversed ad-
dressing. Whenever data in increasing sequence order is transformed by an
FFT, the resulting data is presented in bit-reversed order. To recover this data
in the correct order, certain memory locations must be swapped. By using the
bit-reversed addressing mode, swapping data is unnecessary. The data is ac-
cessed by the CPU in bit-reversed order rather than sequentially. For correct
bit-reversed access, the base address of bit-reversed access, the base ad-
dress must be located on a boundary given by the size of the FFT table. Similar
to circular addressing, the base address of bit-reversed addressing must fol-
low this criteria.

[0 Base address must be aligned to a K-bit boundary (that is, the K LSBs of
the starting address of the buffer/table must be 0) as follows:

2K> R
where:

R=length of table/buffer
K= number of Os in the LSBs of the buffer/table starting address

[ Size of the buffer/table must be less than or equal to 64K (16 bits)

The CPU bit-reversed operation can be illustrated by assuming an FFT table
of size 2N. When real and imaginary data are stored in separate arrays, the n
LSBs of the base address must be 0, and IR0 must be equal to 2"-1 (half of
the FFT size). When real and imaginary data are stored in consecutive
memory locations (Realg, Imaginaryg, Realy, Imaginary4, Realy, Imaginarys,
etc.), the n+1 LSBs of the base address must be 0, and IR0 must be equal to
2N (FFT size).

For CPU bit-reversed addressing, one auxiliary register points to the physical
location of data. Adding IR0 (in bit-reversed addressing) to this auxiliary register
performs a reverse-carry propagation. IR0 is treated as an unsigned integer.

To illustrate bit-reversed addressing, assume 8-bit auxiliary registers. Let AR2
contain the value 0110 0000 (96). This is the base address of the data in
memory assuming a 16-entry table. Let IR0 contain the value 0000 1000 (8).
Example 6-26 shows a sequence of modifications of AR2 and the resulting
values of AR2.
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Example 6-26. Bit-Reversed Addressing

*AR2++ (IR0O)B ; AR2 = 0110 0000 (Oth wvalue)
*AR2++ (IR0O)B ; AR2 = 0110 1000 (1st value)
*AR2++ (IRO)B ; AR2= 0110 0100 (2nd wvalue)
*AR2++ (IR0O)B ; AR2 = 0110 1100 (3rd value)
*AR2++ (IR0)B ; AR2 = 0110 0010 (4th value)
*AR2++ (IR0O)B ; AR2 = 0110 1010 (5th value)
*AR2++ (IR0O)B ; AR2 = 0110 0110 (6th wvalue)
*AR2 ; AR2 = 0110 1110 (7th value)

Table 6-3 shows the relationship of the index steps and the four LSBs of AR2.
You can find the four LSBs by reversing the bit pattern of the steps.

Table 6-3. Index Steps and Bit-Reversed Addressing

Bit-Reversed Bit-Reversed
Step Bit Pattern Pattern Step
0 0000 0000 0
1 0001 1000 8
2 0010 0100 4
3 0011 1100 12
4 0100 0010 2
5 0101 1010 10
6 0110 0110 6
7 0111 1110 14
8 1000 0001 1
9 1001 1001 9
10 1010 0101 5
11 1011 1101 13
12 1100 0011 3
13 1101 1011 11
14 1110 0111 7

15 1111 1111 15
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6.9 Aligning Buffers With the TMS320 Floating-Point DSP Assembly
Language Tools

To align buffers to a K-bit boundary, you can use the .sect or .usect assembly
directives to define a section in conjunction with the align memory allocation
parameter of the sections directive of the linker command file. For the FIR filter
of Example 6-25 with a length of 32, the linker command file is:

MEMORY

{
RAM origin = Oh, length = 1000h

}

SECTIONS

{

.text: > RAM
Impulse Resp ALIGN(64): > RAM
Input Buf ALIGN (64) : > RAM
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6.10 System and User Stack Management

The 'C3x provides a dedicated system-stack pointer (SP) for building stacks
in memory. The auxiliary registers can also be used to build a variety of more
general linear lists. This section discusses the implementation of the following
types of linear lists:

] Stack

The stack is a linear list for which all insertions and deletions are made at
one end of the list.

0 Queue

The queue is a linear list for which all insertions are made at one end of the
list and all deletions are made at the other end.

(1 Dequeue

The dequeue is a double-ended queue linear list for which insertions and
deletions are made at either end of the list.

6.10.1 System-Stack Pointer

The system-stack pointer (SP) is a 32-bit register that contains the address of
the top of the system stack. The system stack fills from low-memory address
to high-memory address (see Figure 6-9). The SP always points to the last
element pushed onto the stack. A push performs a preincrement, and a pop
performs a postdecrement of the system-stack pointer.

The program counter is pushed onto the system stack on subroutine calls,
traps, and interrupts. It is popped from the system stack on returns. The sys-
tem stack can be pushed and popped using the PUSH, POP, PUSHF, and
POPF instructions.

Figure 6-9. System Stack Configuration

Low memory

Bottom of stack

SP — Top of stack

(Free)

High memory
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6.10.2 Stacks

Stacks can be built from low to high memory or high to low memory. Two cases
for each type of stack are shown. Stacks can be built using the preincrement/
decrement and postincrement/decrement modes of modifying the auxiliary
registers (AR). Stack growth from high-to-low memory can be implemented in
two ways:

CASE 1: Stores to memory using *——ARn to push data onto the stack and
reads from memory using *ARn++ to pop data off the stack.

CASE 2: Stores to memory using *ARn-—to push data onto the stack and
reads from memory using * ++ARn to pop data off the stack.

Figure 6-10 illustrates these two cases. The only difference is that in case 1,
the AR always points to the top of the stack, and in case 2, the AR always points
to the next free location on the stack.

Figure 6-10. Implementations of High-to-Low Memory Stacks

Case 1 Case 2
Low memory Low memory
(Free) ARn — (Free)
ARn — Top of stack Top of stack
Bottom of stack Bottom of stack
High memory High memory

Stack growth from low-to-high memory can be implemented in two ways:

CASE 3: Stores to memory using *++ARn to push data onto the stack and
reads from memory using *ARn-—to pop data off the stack.

CASE 4: Stores to memory using *ARn++ to push data onto the stack and
reads from memory using *— —ARn to pop data off the stack.

Figure 6-11 shows these two cases. In case 3, the AR always points to the top
of the stack. In case 4, the AR always points to the next free location on the stack.
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Figure 6-11.Implementations of Low-to-High Memory Stacks

Case 3 Case 4
Low memory Low memory
Bottom of stack Bottom of stack
ARn — Top of stack Top of stack
(Free) ARn — (Free)
High memory High memory

6.10.3 Queues

A queue is like a FIFO. The implementation of queues is based on the manipu-
lation of auxiliary registers. Two auxiliary registers are used: one to mark the
front of the queue from which data is popped (or dequeued) and the other to
mark the rear of the queue where data is pushed. With proper management
of the auxiliary registers, the queue can also be circular. (A queue is circular
when the rear pointer is allowed to point to the beginning of the queue memory
after it has pointed to the end of the queue memory.)

Addressing Modes 6-31



6-32



Chapter 7

Program Flow Control

The TMS320C3x provides a complete set of constructs that facilitate software
and hardware control of the program flow. Software control includes repeats,
branches, calls, traps, and returns. Hardware control includes reset operation,
interrupts, and power management. You can select the constructs best suited
for your particular application.
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7.1 Repeat Modes

The repeat modes of the ‘C3x can implement zero-overhead looping. For many
algorithms, most execution time is spent in an inner kernel of code. Using the
repeat modes allows these time-critical sections of code to be executed in the
shortest possible time.

The 'C3x provides two instructions to support zero-overhead looping:

(O RPTB (repeat a block of code). RPTB repeats execution of a block of code
a specified number of times.

(1 RPTS (repeat a single instruction). RPTS fetches a single instruction once
and then repeats its execution a number of times. Since the instruction is
fetched only once, bus traffic is minimized.

RPTB and RPTS are 4-cycle instructions. These four cycles of overhead occur
during the initial execution of the loop. All subsequent executions of the loop
have no overhead (0 cycle).

Three registers (RS, RE, and RC) control the updating of the program-counter
(PC) when it is modified in a repeat mode. Table 7-1 describes these registers.

Table 7-1. Repeat-Mode Registers

Register Function

RS Repeat start-address register. Holds the address of the first instruction
of the block of code to be repeated.

RE Repeat end-address register. Holds the address of the last instruction
of the block of code to be repeated. RE = RS (see subsection 7.1.2).

RC Repeat-counter register. Contains 1 less than the number of times
the block remains to be repeated. For example, to execute a block
ntimes, load n - 1 into RC.

Correct operation of the repeat modes requires that all of the above registers
must be initialized correctly. RPTB and RPTS perform this initialization in
slightly different ways.
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7.1.1 Repeat-Mode Control Bits
Two bits are important to the operation of RPTB and RPTS:

(1 BRM bit. The repeat-mode (RM) flag bit in the status register specifies
whether the processor is running in the repeat mode.

B RM = 0: Fetches are not made in repeat mode.
B RM = 1: Fetches are made in repeat mode.

[ S bit. The S bit is internal to the processor and cannot be programmed,
but this bit is necessary to fully describe the operation of RPTB and RPTS.

m IfRM=1andS =0, RPTB is executing. Program fetches occur from
memory.

B IfRM=1and S =1, RPTS is executing. After the first fetch from
memory, program fetches occur from the instruction register.

7.1.2 Repeat-Mode Operation

Information in the repeat-mode registers and associated control bits controls
the modification of the PC during repeat-mode fetches. The repeat modes
compare the contents of the RE register (repeat-end-address register) with the
PC after the execution of each instruction. If they match and the repeat counter
(RC) is nonnegative, the RC is decremented; the PC is loaded with the repeat-
start-address, and the processing continues. The fetches and appropriate
status bits are modified as necessary. Note that the RC is never modified
when the RM flag is 0.

The repeat counter should be loaded with a value 1 less than the number of
times to execute the block; for example, an RC value of 4 executes the block
five times. The detailed algorithm for the update of the PC is shown in
Example 7-1.

Note: Maximum Number of Repeats

1) The maximum number of repeats occurs when RC = 8000 0000h. This
results in 8000 0001h repetitions. The minimum number of repeats occurs
when RC = 0. This results in one repetition.

2) RE must be greater than or equal to RS (RE > RS). Otherwise, the code
does not repeat even though the RM bit remains set to 1.

3) By writing a 0 into the repeat counter or writing 0 into the RM bit of the
status register, you can stop the repeating of the loop before completion.
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Example 7-1. Repeat-Mode Control Algorithm

if RM ==
if S ==
if first time through
fetch instruction from memory
else
fetch instruction from IR
RC - 1 — RC

if RC < 0
0 — ST(RM)
0 —> S
PC + 1 — PC
else if S == 0
fetch instruction from memory
if PC == RE
RC - 1 — RC
if RC 20
RS — PC
else if RC < O
0 — ST(RM)
0 —> S

PC + 1 — PC

If in repeat mode (RPTB or RPTS)
If RPTS

If this is the first fetch
Fetch instruction from memory
If not the first fetch

Fetch instruction from IR
Decrement RC

If RC is negative

Repeat single mode completed
Turn off repeat-mode bit
Clear S

Increment PC

If RPTB

Fetch instruction from memory
If this is the end of the block
Decrement RC

If RC is not negative

Set PC to start of block

If RC is negative

Turn off repeat mode bits
Clear S

Increment PC

7.1.3 RPTB Instruction

The RPTB instruction repeats a block of code a specified number of times.

The number of times to repeat the block is the RC (repeat count) register value
plus 1. Because the execution of RPTB does not load the RC, you must load this
register yourself. The RC register must be loaded before the RPTB instruction is
executed. A typical setup of the block repeat operation is shown in Example 7-2.

Example 7-2. RPTB QOperation

LDI 15,RC
RPTB  ENDLOOP
STLOOP
ENDLOOP

; Load repeat counter with 15
; Execute the block of code

; from STLOOP to ENDLOOP 16

; times
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All block repeats initiated by RPTB can be interrupted. When RPTB src
(source) instruction executes, it performs the following sequence:

1) Load the start address of the block into repeat-start-address register (RS).
This is the next address following the instruction:

RS + PC (program-counter) of RPTB + 1
2) Load the end address of the block into repeat-end-address register (RE).

1 In PC-relative mode, the end address is the 24-bit src operand plus
RS:

RE + src + PC of RPTB + 1
1 Inregister mode, the end address is the contents of the src register:
RE + srcregister
3) Set the status register to indicate the repeat-mode operation.

RM + 1

4) Indicate repeat-mode operation by clearing the S bit.
S+0

Note:

You can stop the loop from repeating before its completion by writing a 0 to
the repeat counter or writing a 0 to the RM bit of the status register.

7.1.4 RPTS Instruction

An RPTS src instruction repeats the instruction following the RPTS (src + 1)
times. Repeats of a single instruction initiated by RPTS are not interruptible,
because the RPTS fetches the instruction word only once and then keeps it
in the instruction register for reuse. An interrupt in this situation would cause
the instruction word to be lost. Refetching the instruction word from the instruction
register reduces memory accesses and, in effect, acts as a one-word program
cache. If you need a single instruction that is repeatable and interruptible, you can
use the RPTB instruction.

When RPTS srcis executed, the following sequence of operations occurs:

1) PC+1—>RS

2) PC+1—RE

3) 1 — RM status register bit

4) 1 — Shit

5) src — RC (repeat count register)
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The RPTS instruction loads all registers and mode bits necessary for the opera-
tion of the single-instruction repeat mode. Step 1 loads the start address of the
block into RS. Step 2 loads the end address into the RE (end address of the
block). Since this is a repeat of a single instruction, the start address and the end
address are the same. Step 3 sets the status register to indicate the repeat
mode of operation. Step 4 indicates that this is the repeat single-instruction
mode of operation. Step 5 loads src into RC.

7.1.5 Repeat-Mode Restrictions

Because the block-repeat modes modify the program counter, no other
instruction can modify the program counter at the same time. Two rules apply:

Rule 1: The last instruction in the block (or the only instruction in a block of
size 1) cannot be a Bcond, BR, DBcond, CALL, CALLcond, TRAP-
cond, RETlcond, RETScond, IDLE, RPTB, or RPTS. Example 7-3
shows an incorrectly placed standard branch.

Rule 2:  None of the last four instructions from the bottom of the block (or the
only instruction in a block of size 1) can be a BcondD, BRD, or
DBcondD. Example 7-4 shows an incorrectly placed delayed
branch.

If either of these rules is violated, the PC is undefined.

Example 7-3. Incorrectly Placed Standard Branch

7-6

LDI 15,RC ; Load repeat counter with 15
RPTB  ENDLOOP ; Execute the block of code
STLOOP ; from STLOOP to ENDLOOP 16

; times
ENDLOOP BR O0PS ; This branch violates rule 1
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Example 7-4. Incorrectly Placed Delayed Branch

LDI 15,RC
RPTB  ENDLOOP

Load repeat counter with 15
Execute block of code

L T

STLOOP from STLOOP to ENDLOOP 16
times
BRD O0PS ; This branch violates rule 2
ADDF
MPYF

ENDLOOP  SUBF

7.1.6 RC Register Value After Repeat Mode Completes

For the RPTB instruction, the RC register normally decrements to 0000 0000h
unless the block size is 1; in which case, it decrements to FFFF FFFFh. However,
if the RPTB instruction using a block size of 1 has a pipeline conflict in the instruc-
tion being executed, the RC register decrements to 0000 0000h. Example 7-5
illustrates a pipeline conflict. See Chapter 8 for pipeline information.

RPTS normally decrements the RC register to FFFF FFFFh. However, if the
RPTS has a pipeline conflict on the last cycle, the RC register decrements to
0000 0000h.

Note: Number of Repetitions

In any case, the number of repetitions is always RC + 1.

Example 7-5. Pipeline Conflict in an RPTB Instruction

EDC .word 40000000h ; The program is located in 4000000Fh
LDP EDC
IDI @EDC, ARO
LDI 15,RC Load repeat counter with 15

RPTB ENDLOOP
ENDLOOP  LDI *AR0O, RO

Execute block of code

The *AR0 read conflicts with

the instruction fetching

Then RC decrements to 0

If cache is enabled, RC decrements
to FFFF FFFFh
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7.1.7 Nested Block Repeats

7-8

Block repeats (RPTB) can be nested. Since the registers RS, RE, RC, and
ST control the repeat-mode status, these registers must be saved and restored
in order to nest block repeats. For example, if you write an interrupt service routine
that requires the use of RPTB, it is possible that the interrupt associated with the
routine may occur during another block repeat. The interrupt service routine can
check the RM bit to determine whether the block repeat mode is active. If this RM
is set, the interrupt routine must save ST, RS, RE, and RC, in that order. The inter-
rupt routine can then perform a block repeat. Before returning to the interrupted
routine, the interrupt routine must restore RC, RE, RS, and ST, in that order. If the
RM bit is not set, you do not need to save and restore these registers.

Note: Saving/Restoring Registers in Correct Order

The order in which the registers are saved/restored is important to guarantee
correct operation. The ST register must be restored last, after the RC, RE,
and RS registers. ST must be restored after restoring RC, because the RM
bit cannot be set to 1 if the RC register is 0 or —1. For this reason, if you
execute a POP ST instruction (with ST (RM bit) = 1) while RC = 0, the POP
instruction recovers all the ST register bits but not the RM bit that stays at 0
(repeat mode disabled). Also, RS and RE must be correctly set before you
activate the repeat mode.

The RPTS instruction can be used in a block repeat loop if the proper registers
are saved.

Because the program counter is modified at the end of the loop according to the
contents of registers RS, RE, and RC, no operation should attempt to modify
the repeat counter or the program-counter to a different value at the end of the
loop. It takes four cycles in the pipeline to save and restore these registers.
Hence, sometimes, it may be more economical to implement a nested loop by
the more traditional method of using a register as a counter and then using a
delayed branch or a decrement and branch-delayed instructions, rather than
using nested repeat blocks. Often implementing the outer loop as a counter and
the inner loop as RPTB instruction produces the fastest execution.
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7.2 Delayed Branches

The 'C3x offers three main types of branching: standard, delayed, and condi-
tional delayed.

Standard branches empty the pipeline before performing the branch, ensuring
correct management of the program counter and resulting in a 'C3x branch
taking four cycles. Included in this class are repeats, calls, returns, and traps.

Delayed branches on the 'C3x do not empty the pipeline, but rather execute
the next three instructions before the program counter is modified by the
branch. This results in a branch that requires only a single cycle, making the
speed of the delayed branch very close to that of the optimal block repeat
modes of the 'C3x. However, unlike block-repeat modes, delayed branches
may be used in situations other than looping. Every delayed branch has a stan-
dard branch counterpart that is used when a delayed branch cannot be used.
The delayed branches of the 'C3x are Bcond D, BRD, and DBcondD.

Conditional delayed branches use the conditions that exist at the end of the
instruction immediately preceding the delayed branch. They do not depend on
the instructions following the delayed branch. The condition flags are set by a
previous instruction only when the destination register is one of the extended-
precision registers (R0O-R7) or when one of the compare instructions (CMPF,
CMPF3, CMPI, CMPI3, TSTB, or TSTB3) is executed. Delayed branches
guarantee that the next three instructions will execute, regardless of other
pipeline conflicts.

When a delayed branch is fetched, it remains pending until the three subsequent
instructions are executed. The following instructions cannot be used in the three
instructions after a delayed branch (see Example 7-6):

Bcond DBcondD
BcondD IDLE
IDLE2
BR RETIlcond
BRD RETScond
CALL RPTB
CALLcond RPTS
DBcond TRAPcond

Delayed branches disable interrupts until the completion of the three instruc-
tions that follow the delayed branch regardless of whether the branch is or is
not performed.

Note: Incorrect Use of Delayed Branches

If delayed branches are used incorrectly, the PC is undefined.
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Example 7-6. Incorrectly Placed Delayed Branches

Bl: BD L1
NOP
NOP
B2: B L2 ; This branch is incorrectly placed.
NOP
NOP
NOP

For faster execution, it might still be advantageous to use a delayed branch
followed by NOP instructions by trading increased program size for faster
speed. This is shown in Example 7-7 where a NOP takes the place of the third
unused instruction after the delayed branch.

Example 7-7. Delayed Branch Execution

* TITLE DELAYED BRANCH EXECUTION
LDF* +AR1(5),R2 ; Load contents of memory to R2
BGED SKIP ; If loaded number >=0, branch
; (delayed)
LDFN R2,R1 ; If loaded number <0, load it to R1
SUBF 3.0,R1 ; Subtract 3 from R1
NOP ; Dummy operation to complete delayed
; branch
MPYF 1.5,R1 ; Continue here if loaded number <O
SKIP LDF R1,R3 ; Continue here if loaded number >=0
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7.3 Calls, Traps, and Returns

Calls and traps provide a means of executing a subroutine or function while
providing a return to the calling routine.

The CALL, CALLcond, and TRAPcond instructions store the value of the PC
on the stack before changing the PC’s contents. The RETScond or RETlcond
instructions use the value on the stack to return execution from traps and calls.
CALL is a 4-cycle instruction, while CALLcond and TRAPcond are 5-cycle
instruction.

[ The CALL instruction places the next PC value on the stack and places
the src (source) operand into the PC. The srcis a 24-bit immediate value.
Figure 7-1 shows CALL response timing.

(1 The CALLcond instruction is similar to the CALL instruction except for two
differences:

B Itexecutes only if a specific condition is true (the 20 conditions—
including unconditional—are listed in Table 13-12 on page 13-30).

B The srcis either a PC-relative displacement or is in register-addres-
sing mode.

The condition flags are set by a previous instruction only when the destination
register is one of the extended-precision registers (R0O-R7) or when one of
the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3)
is executed.

(1 The TRAPcond instruction also executes only if a specific condition is true
(same conditions as for the CALLcond instruction). When executing, the
following actions occur:

1) Interrupts are disabled with 0 written to bit GIE of the ST.
2) The next PC value is stored on the stack.

3) The specified vector is retrieved from the trap-vector table and is loaded
into the PC. The vector address corresponds to the trap number in the
instruction.

Using the RETlcond to return reenables interrupts by setting the bit field of
the status register.

(1 RETScond returns execution from any of the above three instructions by
popping the top of the stack to the PC. For RETScond to execute, the
specified condition must be true. The conditions are the same as for the
CALLcond instruction.
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(1 RETIcond returns from traps or calls like the RETScond, with the addition
that RETIcond also sets the GIE bit of the status register, which enables
all interrupts whose enabling bit is set to 1. The conditions for RETlcond
are the same as for the CALLcond instruction.

Functionally, calls and traps accomplish the same task — a subfunction is
called and executed, and control is then returned to the calling function. Traps
offer two advantages over calls:

[ Interrupts are automatically disabled when a trap is executed. This allows
critical code to execute without risk of being interrupted. Traps are generally
terminated with a RETIcond instruction to reenable interrupts.

[ You can use traps to indirectly call functions. This is particularly benefi-
cial when a kernel of code contains the basic subfunctions to be used by
applications. In this case, you can modify the functions in the kernel and
relocate them without recompiling each application.

Figure 7-1. CALL Response Timing

Fetch CALL Decode CALL Read CALL Execute CALL Fetch first
(store PC subroutine
\ \ \ \ on stack) | instruction \

s/ N\ L S S S
NIV ANIVERNIV ANV N A

ADDR /V tor add First instruction
| Vector address address >—

Data  pc )—Cnst1 )y
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7.4 Interlocked Operations

One of the most common parallel processing configurations is the sharing of
global memory by multiple processors. For multiple processors to access this
global memory and share data in a coherent manner, some sort of arbitration
or handshaking is necessary. This requirement for arbitration is the purpose
of the ’C3x interlocked operations.

The 'C3x provides a flexible means of multiprocessor support with five instruc-
tions, referred to as interlocked operations. Through the use of external signals,
these instructions provide powerful synchronization mechanisms. They also
guarantee the integrity of the communication and result in a high-speed opera-
tion. The interlocked-operation instruction group is listed in Table 7-2.

Table 7-2. Interlocked Operations

Mnemonic Description Operation
LDFI Load floating-point value into a register, Signal interlocked
interlocked src — dst
LDl Load integer into a register, interlocked Signal interlocked
src — dst
SIGI Signal, interlocked Signal interlocked
Clear interlock
STFI Store floating-point value to memory, Clear interlock
interlocked src — dst
ST Store integer to memory, interlocked Clear interlock
src — dst

The interlocked operations use the two external flag pins, XFO and XF1. XFO
must be configured as an output pin; XF1 is an input pin. When configured in
this manner:

(1 XFO signals an interlock operation request

1 XF1 acts as an acknowledge signal for the requested interlocked operation.
In this mode, XFO and XF1 are treated as active-low signals.

The external timing for the interlocked loads and stores is the same as for
standard loads and stores. The interlocked loads and stores may be extended
like standard accesses by using the appropriate ready signal (Wint or
XRDYint). (RDYjnt and XRDY;nt are a combination of external ready input and
software wait states. see Chapter 9, External Memory Interface, for more
information on ready generation.)
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The LDFI and LDII instructions perform the following actions:

1) Simultaneously set XFO to 0 and begin a read cycle. The timing of XFO is
similar to that of the address bus during a read cycle.

2) Execute an LDF or LDI instruction and extend the read cycle until XF1
is set to 0 and a ready (RDYjnt or XRDYjpt) is signaled. The read cycle
completes one H1/H3 cycle after the XF1 signal is detected.

3) Leave XFO set to 0 and end the read cycle.

Note: Timing Diagrams for LDFI and LDII

The timing diagrams for LDFI and LDIl shown on the data sheets depict a 0
wait state read cycle. Since the read cycle is extended for one H1/H3 cycle
after XF1 signal is detected, the data sheets show the XF1 signal sampled
one H1/H3 cycle before setting the XFO signal low.

For the sequence of steps described here, the read cycle finishes one H1/H3
cycle after the XF1 signal is detected.

The read/write operation is identical to any other read/write cycle except for
the special use of XFO and XF1. The src operand for LDFI and LDII is always
a direct or indirect memory address. XFO0 is set to 0 only if the src is located
off chip; that is, STRB, STRB0, STRB1, MSTRB, or IOSTRB is active, or the
srcis one of the on-chip peripherals. If on-chip memory is accessed, then XFO0
is not asserted, and the operation executes as an LDF or LDI from internal
memory.

The STFI and STl instructions perform the following operations:

1) Simultaneously set XFO to 1 and begin a write cycle. The timing of XFO is
similar to that of the address bus during a write cycle.

2) Execute an STF or STl instruction and extend the write cycle until a ready
(RDYijnt or XRDYjpt) is signaled.

As in the case for LDFI and LDII, the dst of STFI and STII affects XFO. If dst
is located off chip (STRB, STRB0O, STRB1, MSTRB, or IOSTRB is active) or
the dstis one of the on-chip peripherals, XFO is set to 1. If on-chip memory is
accessed, then XFO0 is not asserted and the operation executes as an STF or
STl to internal memory.

The SIGlI instruction functions as follows:

1) Sets XFOto 0
2) Idles until one H1/H3 cycle after XF1 is setto 0
3) Sets XFO to 1 and ends the operation
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Note: Timing Diagrams for SIGI

The timing diagrams for SIGI shown in the data sheets depict a zero wait
state condition. Since the device idles until one cycle after XF1 is signaled,
the data sheets show the XF1 signal sampled one H1/H3 cycle before setting
the XFO signal low.

For the sequence of steps described here, the device idles past one H1/H3
cycle after the XF1 signal is detected.

7.4.1 Interrupting Interlocked Operations

While the LDFI, LDII, and SIGl instructions are waiting for XF1 to be set to 0,
you can interrupt them. LDFI and LDII require a ready signal (RDYjnt or
XRDYijnt) in order to be interrupted. Because interrupts are taken on bus-cycle
boundaries (see Section 7.6 on page 7-26), an interrupt may be taken any time
after a valid ready. If the interrupted LDFI or LDII consists of a multicycle load,
the load stops and an unknown value might be loaded into the register.

Interrupting an LDFI, LDII, or SIGI instruction allows you to implement
protection mechanisms against deadlock conditions by interrupting an
interlocked load that has taken too long. Upon return from the interrupt, the
next instruction is executed. The STFI and STIl instructions are not
interruptible. Since the STFI and STII instructions complete when ready is
signaled, the delay until an interrupt can occur is the same as for any other
instruction.

7.4.2 Using Interlocked Operations

Note: Incorrect Use of Interlock Instructions

Do not place an STFI or STII back-to-back with an LDFI, LDII, or SIGI instruction
as follows:

STFI R1, *AR1 ;
LDFI *AR1, R2 ; Incorrect use of interlock instructions

See Section 7.4.3, Pipeline Effects of Interlocked Instructions, on page 7-19.

Interlocked operations can be used to implement a busy-waiting loop, to manipu-
late a multiprocessor counter, to implement a simple semaphore mechanism, or
to perform synchronization between two ’C3x devices. The following examples
illustrate the usefulness of the interlocked operations instructions.
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Example 7-8 shows the implementation of a busy-waiting loop. If location
LOCK is the interlock for a critical section of code, and a nonzero means the
lock is busy, the algorithm for a busy-waiting loop can be used as shown.

Example 7-8. Busy-Waiting Loop

LDI

BNZ

Ll: LDII

STII

Put 1 into RO

Interlocked operation begun
Contents of LOCK — R1

Put RO (= 1) into LOCK, XFO = 1
Interlocked operation ended
Keep trying until LOCK = 0

Example 7-9 shows how a location COUNT may contain a count of the number
of times a particular operation must be performed. This operation may be per-
formed by any processor in the system. If the count is 0, the processor waits
until it is nonzero before beginning processing. The example also shows the
algorithm for modifying COUNT correctly.

Example 7-9. Multiprocessor Counter Manipulation

CT: OR
LDTT
BZ CT

SUBI
STII

XFO =1

Interlocked operation ended
Interlocked operation begun
Contents of COUNT — R1

If COUNT = 0, keep trying
Decrement R1 (= COUNT)
Update COUNT, XFO = 1
Interlocked operation ended

Figure 7-2 illustrates multiple ‘C3x devices sharing global memory and using the
interlocked instructions as in Example 7-10, Example 7-11, and Example 7-12.
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Figure 7-2. Multiple TMS320C3xs Sharing Global Memory
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Sometimes it may be necessary for several processors to access some
shared data or other common resources. The portion of code that must access
the shared data is called a critical section.

To ease the programming of critical sections, semaphores may be used.
Semaphores are variables that can take only nonnegative integer values. Two
primitive, indivisible operations are defined on semaphores (with S being a

semaphore):
V(S) : S +1—>8
P(S) : P: if (S == 0), go to P

else S -1 — S

Indivisibility of V(S) and P(S) means that when these processes access and
modify the semaphore S; they are the only processes doing so.

To enter a critical section, a P operation is performed on a common semaphore,
say S (S is initialized to 1). The first processor performing P(S) will be able to enter
its critical section. All other processors are blocked because S has become 0.
After leaving its critical section, the processor performs a V(S), thus allowing
another processor to execute P(S) successfully.
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The 'C3x code for V(S) is shown in Example 7-10; code for P(S) is shown in
Example 7-11. Compare the code in Example 7-11 to the code in Example 7-9,
which does not use semaphores.

Example 7-10. Implementation of V(S)

V: LDII @S, RO

ADDI 1,R0
STII RO, @S

Interlocked read of S begins (XFO = 0)
Contents of S — RO

Increment RO (= S)

Update S, end interlock (XF0 = 0)

Example 7-11. Implementation of P(S)

P: OR 4,IO0OF
NOP

LDII @S, RO

BZ P

SUBI 1,RO
STII RO, @S

End interlock (XF0 = 1)

; Avoid potential pipeline conflicts when
executing out of cache, on-chip memory
or zero walt-state memory

Interlocked read of S begins

Contents of S — RO

If

; Decrement RO (= S)
; Update S, end interlock (XF0 = 1)

S = 0, go to P and try again

The SIGI operation can synchronize, at an instruction level, multiple 'C3xs.
Consider two processors connected as shown in Figure 7-3. The code for the
two processors is shown in Example 7-12.

Figure 7-3. Zero-Logic Interconnect of TMS320C3x Devices

"C3x #1

"C3x #2

XFO
XF1

A

\4

XF1
XFo

Processor #1 runs until it executes the SIGI. It then waits until processor #2
executes a SIGI. At this point, the two processors are synchronized and continue

execution.
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Example 7-12. Code to Synchronize Two TMS320C3x Devices at the Software Level

Time Code for ’C3x #1 Code for 'C3x #2

¢} ® ®
[ ] [ ]
[ J [ J
SIGl ®
[}
[ J
\J °
(WAIT) )
[}
[ J
\J °

@® <«—— Synchronization occurs — = SIGl
[ J [ J
[} [}
: . .
N [ J [ ]

7.4.3 Pipeline Effects of Interlocked Instructions

Before performing an interlocked instruction, the XF0O pin must be configured as
an output pin and the XF1 pin must be configured as an input pin through the
IOF register (see subsection 3.1.10, I/O Flag Register (IOF), on page 3-16).
After the XFO and XF1 pins are configured, no interlocked instruction can occur
in the following two instructions.
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Example 7-13. Pipeline Delay of XF Pin Configuration

XF1 sampled

Example 7-14. Incorrect Use of Interlocked Instructions

7-20

XF1 pin
sampled

PC

n+1

n+2

n+3

n+4

n+5

n+6

PC

n

n+1

n+2

n+3

n+4

| Fetch |
LDI 2h, IOF
NOP
NOP

LDII *AR1l, R1

Pipeline Operation

Decode

LDI 2h, IOF

NOP

NOP

LDII *AR1l, R1

Read

LDI 2h, IOF

NOP

NOP

LDII *AR1,

R1

Execute

XFO set as an
output pin and
XF1 set as an
input pin

LDI 2h, IOF

NOP
NOP

LDII *AR1l, R1

XFO driven low
and XF1 sampled

STFI and STl instructions drive the XFO0 pin high during its execution phase.
LDFI, LDII, and SIGl instructions sample the XF1 pin during its decode phase
while driving the XFO pin low during its read phase. Therefore, do not use an
LDFI, LDII, or SIGI instruction immediately after an STFI or STII instruction

(see Example 7-14).

| Fetch

STFI R1, *AR1l

Pipeline Operation

Decode

LDFI *AR1l, R2 STFI R1, *AR1l

LDFI *AR1l, R2

XFO pin
driven low

Read

STFI R1, *AR1l

LDFI *AR1,

R2

Execute

XFO pin
driven high

STFI R1, *AR1l

LDFI *AR1l, R2
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7.5 Reset Operation

The 'C3x supports a nonmaskable external reset signal (RESET), which is
used to perform system reset. This section discusses the reset operation.

At start-up, the state of the ‘C3x processor is undefined. You can use the RESET
signal to place the processor in a known state. This signal must be asserted low
for ten or more H1 clock cycles to guarantee a system reset. H1 is an output
clock signal generated by the ’C3x. (Check the datasheet for your device for the
specific signal descriptions and electrical characteristics.)

Reset affects the other pins on the device in either a synchronous or asynchro-
nous manner. The synchronous reset is gated by the 'C3x’s internal clocks. The
asynchronous reset directly affects the pins and is faster than the synchronous
reset. Table 7-3 shows the state of the 'C3x’s pins after RESET = 0. Each pin is
described according to whether the pin is reset synchronously or asynchronously.

Table 7-3. TMS320C3x Pin QOperation at Reset

Device
‘C31/
Signal Operation at Reset ‘C30 VC33 ‘C32
Primary Bus Interface Signals

D31-D0 Synchronous reset; placed in high-impedance state I - I
A23-A0 Synchronous reset; placed in high-impedance state I I I
R/W Synchronous reset; deasserted by going to a high level I I I
IOSTRB Synchronous reset; deasserted by going to a high level I I
STTO_B3/A_1 Synchronous reset; deasserted by going to a high level I
STTO_BZA_E Synchronous reset; deasserted by going to a high level I
STRBO_B1 Synchronous reset; deasserted by going to a high level V
STTO_BO Synchronous reset; deasserted by going to a high level P~
STTLBS/A_1 Synchronous reset; deasserted by going to a high level P~
STTLBZA_Z Synchronous reset; deasserted by going to a high level P~
STTLB1 Synchronous reset; deasserted by going to a high level I
STTLBO Synchronous reset; deasserted by going to a high level I
STRB Synchronous reset; deasserted by going to a high level I V-

RDY Reset has no effect I I I
HOLD Reset has no effect I I I
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Table 7-3. TMS320C3x Pin Operation at Reset (Continued)

Device
‘C31/

Signal Operation at Reset ‘C30 VC33 ‘C32
HOLDA Reset has no effect V I I
PRGW Reset has no effect I

Expansion Bus Interface
XD31-XDO0 Synchronous reset; placed in high-impedance state V
XA12-XA0 Synchronous reset; placed in high-impedance state I
XR/W Synchronous reset; placed in high-impedance state I
MSTRB Synchronous reset; deasserted by going to a high level I
XRDY Reset has no effect ¥

Control Signals
RESET Reset input pin I I I
INT3-INTO Reset has no effect I I P
TACK Synchronous reset; deasserted by going to a high level - I -
MC/MP or MCBL/MP  Reset has no effect - - -
SHZ Reset has no effect I I P
XF1-XFO0 Asynchronous reset; placed in high-impedance state - I -

Serial Port 0 Signals
CLKX0 Asynchronous reset; placed in high-impedance state V I V-
DX0 Asynchronous reset; placed in high-impedance state - I I
FSXO0 Asynchronous reset; placed in high-impedance state V I V-
CLKRO Asynchronous reset; placed in high-impedance state - I I
DRO Asynchronous reset; placed in high-impedance state V- I V-
FSRO Asynchronous reset; placed in high-impedance state - I I

Serial Port 1 Signals
CLKX1 Asynchronous reset; placed in high-impedance state V
DX1 Asynchronous reset; placed in high-impedance state V-
FSX1 Asynchronous reset; placed in high-impedance state V-
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Table 7-3. TMS320C3x Pin QOperation at Reset (Continued)

Device
‘C31/
Signal Operation at Reset ‘C30 VC33 ‘C32
CLKR1 Asynchronous reset; placed in high-impedance state I
DR1 Asynchronous reset; placed in high-impedance state I
FSR1 Asynchronous reset; placed in high-impedance state I
Timer0 Signal
TCLKO Asynchronous reset; placed in high-impedance state I P~ I
Timer1 Signal
TCLK1 Asynchronous reset; placed in high-impedance state I - V-
Supply and Oscillator Signals
Vpp Reset has no effect I < v
IODVpp Reset has no effect <
ADVpp Reset has no effect <
PDVpp Reset has no effect v
DDVpp Reset has no effect ¥
MDVpp Reset has no effect ¥
Vss Reset has no effect I - I
DVss Reset has no effect ¥ ¥
CVss Reset has no effect ¥ ¥
IVgs Reset has no effect ¥ ¥
Veep Reset has no effect v I
VsuBs Reset has no effect I v I
X1 Reset has no effect v v
X2/CLKIN Reset has no effect v V- v
HA1 Synchronous reset; will go to its initial state when RESET I I I
makes a 1 to 0 transition
H3 Synchronous reset; will go to its initial state when RESET I I I

makes a 1 to 0 transition
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Table 7-3. TMS320C3x Pin Operation at Reset (Continued)

Device
‘C31/
Signal Operation at Reset ‘C30 VC33 ‘C32
Emulation, Test, and Reserved
EMUO Undefined [ [ P
EMUA1 Undefined e e P
EMU2 Undefined [ [ P
EMUS3 Undefined [ P [
EMU4 Undefined V-
EMUS5 Undefined V
EMU6 Undefined I
RSV0 Undefined I
RSV1 Undefined I
RSV2 Undefined I
RSV3 Undefined I
RSV4 Undefined I
RSV5 Undefined I
RSV6 Undefined I
RSV7 Undefined I
RSV8 Undefined I
RSV9 Undefined I
RSV10 Undefined I
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At system reset, the following additional operations are performed:

(1 The peripherals are reset. This is a synchronous operation. Peripheral reset
is described in Chapter 12, Peripherals.

(1 The external bus control registers are reset. The reset values of the control
registers are described in Chapter 9, 'C30 and 'C31/VC33 External-
Memory Interface.

(1 The following CPU registers are loaded with 0:

B ST (CPU status register), except in the 'C32, the PRGW status bit field
is loaded with the status of the PRGW pin

B |E (CPU/DMA interrupt-enable flags)

B |F (CPU interrupt flags)

m IOF (I/O flags)

[ The reset vector is read from memory location Oh. On the 'C32, this is a
32-bit data read. Once read, this value is loaded into the PC. This vector
contains the start address of the system reset routine.

[ At this point, code location is dictated by the PC.

Multiple ’C3x devices, driven by the same system clock, may be reset and
synchronized. When the 1 to 0 transition of RESET occurs, the processor is
placed on a well-defined internal phase, and all of the ’'C3x devices come up
on the same internal phase and all internal memory locations.

Unless otherwise specified, all registers are undefined after reset.
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7.6

7.6.1

7-26

Interrupts

TMS320C30 and TMS320C31/VC33 Interrupt Vector Table

The 'C3x supports multiple internal and external interrupts, which can be used for
a variety of applications. Internal interrupts are generated by the DMA controller,
timers, and serial ports. Four external maskable interrupt pins include INTO -
INT3. Interrupts are automatically prioritized allowing interrupts to occur simulta-
neously and serviced in a predefined order. This section discusses the operation
of these interrupts.

Additional information regarding internal interrupts can be found in Sec-
tion 12.3.7, DMA and Interrupts, on page 12-65; Section 12.1.8, Timer Inter-
rupts on page 12-13; and Section 12.2.11, Serial-Port Interrupt Sources, on
page 12-34.

"C30E 3°C31

Table 7-4 and Table 7-5 contain the interrupt vectors. In the microprocessor
mode of the 'C30 and the 'C31/VC33 (Table 7-4) and the microcomputer
mode of the 'C31/VC33 (Table 7-5), the interrupt vectors contain the address-
es of interrupt service routines that should start executing when an interrupt
occurs. On the other hand, in the microcomputer/boot-loader mode of the
'C31/VC33, the interrupt vector contains a branch instruction to the start of the
interrupt service routine.



Table 7-4. Reset, Interrupt, and Trap-Vector Locations for the TMS320C30/
TMS320C31/VC33 Microprocessor Mode

Interrupts

'C30E 3'C31

Address Name Function
00h RESET External reset signal input
01h INTO External interrupt on the INTO pin
02h INTH External interrupt on the INTT pin
03h INT2 External interrupt on the INT2 pin
04h INT3 External interrupt on the INT3 pin
05h XINTO Internal interrupt generated when serial port
0 transmit buffer is empty
06h RINTO Internal interrupt generated when serial port
0 transmit buffer is full
07h XINT1t Internal interrupt generated when serial port
1 transmit buffer is empty
08h RINT1T Internal interrupt generated when serial port
1 transmit buffer is full
09h TINTO Internal interrupt generated by timer0
0Ah TINTA Internal interrupt generated by timer1
0Bh DINT Internal interrupt generated by DMA controller
0Ch Reserved
o o
B o
o .
1Fh Reserved
20h TRAP 0 Internal interrupt generated by TRAP 0
instruction
o
o
o
3Bh TRAP 27 Internal interrupt generated by TRAP 27
instruction
3Ch TRAP 28 (reserved)
3Dh TRAP 29 (reserved)
3Eh TRAP 30 (reserved)
3Fh TRAP 31 (reserved)

T Reserved on 'C31/VC33
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Table 7-5. Reset, Interrupt, and Trap-Branch Locations for the TMS320C31/VC33
Microcomputer Boot Mode

7-28

'C31

Address Name Function

809FCA1 INTO External reset signal input

809FC2 INT1 External interrupt on the INTO pin

809FC3 INT2 External interrupt on the INT1 pin

809FC4 INT3 External interrupt on the INT2 pin

809FC5 XINTO External interrupt on the INT3 pin

809FC6 RINTO Internal interrupt generated when
serial port 0 transmit buffer is
empty

809FC7 XINT1 (Reserved)

809FC8 RINT1 (Reserved)

809FC9 TINTO Internal interrupt generated by
timer0

809FCA TINTA Internal interrupt generated by
timer1

809FCB DINT Internal interrupt generated by DMA
controller

809FCC-809FDF Reserved

809FEO TRAPO Internal interrupt generated by
TRAP 0 instruction

809FE1 TRAP1 Internal interrupt generated by
TRAP 1 instruction

[ ] [ ]
[ ] [ ]

809FFB TRAP27 Internal interrupt generated by
TRAP 27 instruction

809FFC-809FFF Reserved




7.6.2 TMS320C32 Interrupt Vector Table

Interrupts

'Cs2

Similarly to the rest of the 'C3x device family, the 'C32’s reset vector location
remains at address 0. On the other hand, the interrupt and trap vectors are
relocatable. This is achieved by a new bit field in the CPU interrupt flag register
called the interrupt-trap table pointer (ITTP), shown in Figure 3-11 on page
3-15. The ITTP bit field dictates the starting location (base) of the interrupt-
trap-vector table. This base address is formed by left-shifting the value of the
ITTP bit field by eight bits. This shifted value is called the effective base address
and is referenced as EA[ITTP], as shown in Figure 7—-4. Therefore, the location
of an interrupt or trap vector is given by the addition of the effective base address
formed by the ITTP bit field (EA[ITTP]) and the offset of the interrupt or trap
vector in the interrupt-trap-vector table, as shown in Table 7-6. For example,
if the ITTP contains the value 100h, the serial-port transmit interrupt vector will
be located at 10005h. Note that the vectors stored in the interrupt-trap-vector
table are the addresses of the start of the respective interrupt and trap routines.
Furthermore, the interrupt-trap-vector table must lie on a 256-word boundary,
since the eight LSBs of the effective base address of the interrupt-trap-vector
table are 0.

Figure 7-4. Effective Base Address of the Interrupt-Trap-Vector Table

EA[ITTP] =

23 8 7 0
Bits 31-16 of the CPU interrupt flag register 00000000
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Table 7-6. Interrupt and Trap-Vector Locations for the TMS320C32

'C32

Address

Name

Function

EA[ITTP] + 00h
EA[ITTP] + 01h
EA[ITTP] + 02h
EA[ITTP] + 03h
EA[ITTP] + 04h
EA[ITTP] + 05h

EA[ITTP] + 06h

EA[ITTP] + 07h
EA[ITTP] + 08h
EA[ITTP] + 09h
EA[ITTP] + OAh
EA[ITTP] + 0Bh
EA[ITTP] + 0Ch
EA[ITTP] + ODh
EA[ITTP] + 1Fh
EA[ITTP] + 20h

EA[ITTP] + 3Bh
EA[ITTP] + 3Ch
EA[ITTP] + 3Dh
EA[ITTP] + 3Eh
EA[ITTP] + 3Fh

Reserved
INTO
INTH
INT2
INT3
XINTO

RINTO

Reserved
Reserved
TINTO
TINTA
DINTO
DINTH
Reserved
Reserved
TRAP O

o

TRAP 27

TRAP 28 (reserved)

TRAP 29 (reserved)

TRAP 30 (reserved)
( )

TRAP 31 (reserved

External interrupt on the INTO pin
External interrupt on the INT1 pin
External interrupt on the INT2 pin

External interrupt on the INT3 pin

Internal interrupt generated when serial port 0 transmit buffer

is empty

Internal interrupt generated when serial port 0 transmit buffer

is full

Internal interrupt generated by timerQ
Internal interrupt generated by timer1
Internal interrupt generated by DMA channel 0

Internal interrupt generated by DMA channel 1

Internal interrupt generated by TRAP 0 instruction

Internal interrupt generated by TRAP 27 instruction
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Interrupts

When two interrupts occur in the same clock cycle or when two previously
received interrupts are waiting to be serviced, one interrupt is serviced before
the other. The CPU handles this prioritization by servicing the interrupt with the
least priority. The priority of interrupts is handled by the CPU according to the
interrupt vector table. Priority is set according to position in the table—those with
displacements closest to the base address of the table are higher in priority.
Table 7-7 shows the priorities assigned to the reset and interrupt vectors.

Table 7-7. Reset and Interrupt Vector Priorities

Reset or Vector

Interrupt  Location  Priority = Function

RESET Oh 0 External reset signal input on the RESET pin

INTO 1h 1 External interrupt on the INTO pin

INTT 2h 2 External interrupt on the INT1 pin

INT2 3h 3 External interrupt on the INT2 pin

INT3 4h 4 External interrupt on the INT3 pin

XINTO 5h 5 Internal interrupt generated when serial-port 0 transmit buffer is empty
RINTO 6h 6 Internal interrupt generated when serial-port 0 receive buffer is full
XINT1t 7h 7 Internal interrupt generated when serial-port 1 transmit buffer is empty
RINT1T 8h 8 Internal interrupt generated when serial-port 1 receive buffer is full
TINTO 9h 9 Internal interrupt generated by timerQ

TINT1 0Ah 10 Internal interrupt generated by timer1

DINT/ 0Bh 11 Internal interrupt generated by DMA channel 0

DINTO

DINT1% 0Ch 12 Internal interrupt generated by DMA channel 1

T Reserved on 'C31/VC33 and 'C32
¥ Present on 'C32 only
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7.6.4 CPU Interrupt Control Bits

Three CPU registers contain bits that control interrupt operation:

(O Status (ST) register

The CPU global interrupt-enable bit (GIE) located in the CPU status register
(ST) controls all maskable CPU interrupts. When this bit is set to 1, the CPU
responds to an enabled interrupt. When this bit is cleared to 0, all CPU inter-
rupts are disabled. see Section 3.1.7 on page 3-5 for more information.

(O CPU/DMA interrupt-enable (IE) register

This register individually enables/disables CPU, DMA external, serial port,
and timer interrupts. See Section 3.1.8 on page 3-9 for more information.

(O CPU interrupt flag (IF) register

This register contains interrupt flag bits that indicate the corresponding
interrupt is set. See Section 3.1.9 on page 3-11 for more information.

7.6.5 Interrupt Flag Register Behavior

7-32

When an external interrupt occurs, the corresponding bit of the IF register is set
to 1. When the CPU or DMA controller processes this interrupt, the corresponding
interrupt flag bit is cleared by the internal interrupt acknowledge signal. However,
for level-triggered interrupts, if INTn is still low when the interrupt acknowledge
signal occurs, the interrupt flag bit is cleared for only one cycle and then set again,
because INTn is still low. Depending on when the IF register is read, it is also
possible that this bit may be 0 even though INTnis 0. When the 'C3x is reset,
0 is written to the interrupt flag register, clearing all pending interrupts.

The interrupt flag register bits can be read from and written to under software
control. Writing a 1 to an IF register bit sets the associated interrupt flag to 1.
Similarly, writing a 0 resets the corresponding interrupt flag to 0. In this way, all
interrupts may be triggered and/or cleared through software. Since the interrupt
flags may be read, the interrupt pins may be polled in software when an inter-
rupt-driven interface is not required.

Internal interrupts operate in a similar manner. In the IF register, the bit corre-
sponding to an internal interrupt can be read from and written to through software.
Writing a 1 sets the interrupt latch; writing a O clears it. All internal interrupts are
one H1/H3 cycle in length. If any previous bit value of the IF register needs to be
preserved, a modification to IF register should be performed with logic operations
(AND, OR, etc.) directly to IF.
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Figure 7-5. IF Register Modification

Correct Incorrect

LDl @MASK, RO LDI IF, R1

AND RO, IF AND @MASK, R1
LDIR1, IF

Note: IF Register Load Priority

If a load of the IF register occurs simultaneously with a set or reset of a flag
by an interrupt pulse, the loading of the flag has higher priority and overwrites
the IF register value.

7.6.6 Interrupt Processing

The *C3x allows the CPU and DMA coprocessor to respond to and process
interrupts in parallel. Figure 7-6 on page 7-34 shows interrupt processing
flow; for the exact sequence, see Table 7-8 on page 7-36.

For a CPU interrupt to occur, at least two conditions must be met:

[ Allinterrupts must be enabled globally by setting the GIE bit to 0 in the status
register.

(1 The interrupt must be enabled by setting the corresponding bitin the
IF register.

In the CPU interrupt processing cycle (left side of Figure 7-6), the corresponding
interrupt flag in the IF register is cleared, and interrupts are globally disabled
(GIE =0). The CPU completes all fetched instructions. The current PC is pushed
to the top of the stack. The interrupt vector is then fetched and loaded into the
PC, and the CPU starts executing the first instruction in the interrupt service
routine (ISR).
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Figure 7-6. CPU Interrupt Processing

7-34

Is an enabled

interrupt set

y

If enabled,
interrupt is
a CPU interrupt

Disable interrupts
GIE<~ 0

:

Clear interrupt flag

PC — *(++SP)

Complete all fetched instructions

PC « interrupt vector

.

CPU starts executing ISR routine

A

If enabled,
interrupt is
a DMA interrupt

Clear interrupt flag

DMA proceeds according
to SYNC bits

DMA continues

Note: CPU and DMA Interrupts

CPU interrupts are acknowledged (responded to by the CPU) on instruction
fetch boundaries only. If instruction fetches are halted because of pipeline
conflicts or execution of RPTS loops, CPU interrupts are not acknowledged

until the next instruction fetch.
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If you wish to make the interrupt service routine interruptible, you can set the
GIE bit to 1 after entering the ISR.

The interrupt acknowledge (IACK) instruction can be used to signal externally that
an interrupt has been serviced. If external memory is specified in the operand,
IACK drives the IACK pin and performs a dummy read. The read is performed
from the address specified by the IACK instruction operand. IACK is typically
placed in the early portion of an ISR. However, depending on your application,
it may be better to place it at the end of the ISR or not at all.

Note the following:

(1 Interrupts are disabled during an RPTS and during a delayed branch (until
the three instructions following a delayed branch are completed). Interrupts
are held until after the branch.

1 When an interrupt occurs, instructions currently in the decode and read
phases continue regular execution, unlike an instruction in the fetch
phase:

B [f the interrupt occurs in the first cycle of the fetch of an instruction, the
fetched instruction is discarded (not executed), and the address of
that instruction is pushed to the top of the system stack.

B If the interrupt occurs after first cycle of the fetch (in the case of a multi-
cycle fetch due to wait states), that instruction is executed, and the
address of the next instruction to be fetched is pushed to the top of
the system stack.

7.6.7 CPU Interrupt Latency

CPU interrupt latency, defined as the time from the acknowledgement of the
interrupt to the execution of the first ISR instruction, is at least eight cycles. This
is explained in Table 7-8 on page 7-36, where the interrupt is treated as an
instruction. It assumed that all of the instructions are single-cycle instructions.
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Table 7-8. Interrupt Latency

Cycle Description Fetch Decode Read Execute

1 Recognize interrupt in single-cycle fetched prog a + 1 prog a prog a—1 prog a-2
(prog a + 1) instruction

2 Clear GIE bit. Clear interrupt flag — interrupt prog a prog a—1
3 Read the interrupt vector table — — interrupt prog a
4 Store return address to stack — — — interrupt
5 Pipeline begins to fill with ISR instruction isr1 — — —
6 Pipeline continues to fill with ISR instruction isr2 isr1 — —
7 Pipeline continues to fill with ISR instruction isr3 isr2 isr1 —
8 Execute first instruction of interrupt service routine isrd4 isr3 isr2 isr1

7.6.8 External Interrupts

7-36

The four external maskable interrupt pins INTO—INT3 are enabled at the IF reg-
ister (Section 3.1.9, CPU Interrupt Flag (IF) Register, on page 3-11) and are syn-
chronized internally. They are sampled on the falling edge of H1 and passed
through a series of H1/H3 latches internally. These latches require the interrupt
signal to be held low for at least one H1/H3 clock cycle to be recognized by the
‘C3x. Once synchronized, the interrupt input sets the corresponding interrupt

flag register (IF) bit if the interrupt is active.

Figure 7-7 shows a functional diagram of the logic used to implement external

interrupt inputs.
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Figure 7-7. Interrupt Logic Functional Diagram

Internal interrupt

set signal EINTn(CPU)
Interrupt GIE(CPU)
flag (n)
INTh —— = Set Q Internal To
DQ DQ DQ interrupt f—  control
CLK CLK CLK RESET processor section
T T T Internal interrupt
lear/acknowl
b1 H3 H clear/acknowledge

signal
EINTn(DMA)

These interrupts are prioritized by the selection of one over the other if both
come on the same clock cycle (INTO the highest, INT1 next, etc.). When an
interrupt is taken, the status register ST(GIE) bit is reset to 0, disabling any other
incoming interrupt. This prevents any other interrupt (INTO — INT3) from assuming
program control until the ST(GIE) bit is set back to 1. On a return from an interrupt
routine, the RETI and RETIcond instructions set the ST(GIE) bit to 1.

On the ‘C30 and ‘C31/VC33, external interrupts are level triggered. On the
‘C32, external interrupts are edge or level triggered, depending on the INT
config bit field of the status register.

For an edge-triggered interrupt to be detected by the 'C32 the external pin
must transition from 1 to 0. And then, it needs to be held low for at least one
H1/H3 cycle (but it could be held low longer).

For a level-triggered interrupt to be detected by the 'C3x, the external pin must
be held low for between one and two cycles (1 < low-pulse width < 2). If the
interrupt is held low for more than two cycles, more than one interrupt might
be recognized. There is no need to provide an edge in this case.
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7.7 DMA Interrupts

Interrupts can also trigger DMA read and write operations. This is called
DMA synchronization. The DMA interrupt processing cycle is similar to that of
the CPU. After the pertinent interrupt flag is cleared, the DMA coprocessor
proceeds according to the status of the SYNC bits in the DMA coprocessor
global-control register.

If the interrupt in the CPU/DMA interrupt-enable (IE) register is enabled, the
interrupt controller automatically latches the interrupt and saves it for future
DMA use. The interrupt controller latches the interrupt, clears the flag in the IF
register, and informs the data that an interrupt has occurred. The DMA then pro-
ceeds with the transfer according to the previously configured CPU/DMA prior-
ity. Even if the DMA has not been started, the interrupt latch occurs, and the flag
is cleared, except when the start bits in the DMA control register have the reset
value 005 in START bits. DMA reset clears the interrupt internal latch.

7.7.1 DMA Interrupt Control Bits

7-38

Two registers contain bits used to control DMA interrupt operation:

(O CPU/DMA interrupt-enable register (IE). All DMA interrupts are controlled
by the most significant 16 bits in the IE register and by the SYNC bits of
the DMA channel control registers (see Section 12.3.3, DMA Registers,
on page 12-51). The DMA interrupts are not dependent upon ST(GIE) and
are local to the DMA.

(1 The DMA channel control register. Each DMA coprocessor channel uses
a channel control register to determine its mode of operation. This register
is shown in Section 12.3.3.

The IE is broken into several subfields that determine which interrupts can be
used to control the synchronization for each DMA channel. For example, the bits
in each of these fields allow you to select whether a DMA channel is synchro-
nized to a port, a timer, or an external interrupt pin. Note that the 'C32 has two
DMA channels while the 'C30 and 'C31/VC33 have a single DMA channel.

See Section 3.1.8, CPU/DMA Interrupt-Enable Register (IE), on page 3-9, for
a description of the IE.



DMA Interrupts

7.7.2 DMA Interrupt Processing

Figure 7-8 shows the general flow of interrupt processing by the DMA
coprocessor.

Figure 7-8. DMA Interrupt Processing

Is an enabled
interrupt set

If enabled in the IE
register, the interrupt Is
a DMA interrupt

:

Clear interrupt flag

DMA proceeds according
to DMA control register
SYNC bits

DMA continues

For more information about DMA interrupts, see Section 12.3.7, DMA Interrupts
on page 12-65.
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7.7.3 CPU/DMA Interaction

If the DMA is not using interrupts for synchronization of transfers, it is not
affected by the processing of the CPU interrupts. Detected interrupts are
responded to by the CPU and DMA on instruction fetch boundaries only.
Since instruction fetches are halted due to pipeline conflicts or when executing
instructions in an RPTS loop, interrupts are not responded to until instruction
fetching continues. It is therefore possible to interrupt the CPU and DMA simul-
taneously with the same or different interrupts and, in effect, synchronize their
activities. For example, it may be necessary to cause a high-priority DMA
transfer that avoids bus conflicts with the CPU (that is, a transfer that makes
the DMA higher priority than the CPU). This may be accomplished by using
an interrupt that causes the CPU to trap to an interrupt routine that contains
an IDLE instruction. Then, if the same interrupt is used to synchronize DMA
transfers, the DMA transfer counter can be used to generate an interrupt and
thus return control to the CPU following the DMA transfer.

Since the DMA and CPU share the same set of interrupt flags, the DMA may
clear an interrupt flag before the CPU can respond to it. For example, if the
CPU interrupts are disabled, the DMA can respond to interrupts and thus clear
the associated interrupt flags. Figure 7-9 shows the sequence of events in the
interrupt processing for both the CPU and DMA controllers.

Figure 7-9. Parallel CPU and DMA Interrupt Processing
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7.7.4 TMS320C3x Interrupt Considerations

Give careful consideration to ‘C3x interrupts, especially if you make modifications
to the status register when the global interrupt-enable (GIE) bit is set. This can
result in the GIE bit being erroneously set or reset as described in the following
paragraphs.

The GIE bit field of the status register is set to 0 (reset) by an interrupt. If a load
of the status register occurs simultaneously with a CPU interrupt pulse trying
to reset GIE, GIE will be reset.

Also, resetting GIE by an interrupt or TRAP instruction can cause a processing
error if any code, following within two cycles of the interrupt recognition, attempts
to read or modify the status register. For example, if the status register is being
pushed onto the stack, it will be stored incorrectly if an interrupt was acknowledged
two cycles before the store instruction.

When an interrupt signal is recognized, the 'C3x continues executing the
instructions already in the read and decode phases in the pipeline. However,
because the interrupt is acknowledged, the GIE bit is reset to 0, and the store
instruction already in the pipeline will store the wrong status register value.

For example, if the program is like this:
NOP
interrupt recognized -->LDI @V_ADDR,AR1
MPYI *AR1, RO
PUSH ST
POP ST
the PUSH ST instruction will save the ST contents in memory, which includes

GIE = 0. Since the device is expected to have GIE = 1, the POP ST instruction
will put the wrong status register value into the ST (see Table 7-9).
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Table 7-9. Pipeline Operation with PUSH ST

Cycle Description Fetch Decode Read Execute
1 NOP
2 LDI NOP
3 MPYI LDI NOP
4 Read location V_ADDR PUSH MPY] LDI NOP
5 Load AR1; recognize interrupt - PUSH MPYI LDI
6 Clear GIE bit; clear interrupt flag; read SP Interrupt  PUSH MPYI
7 Read interrupt vector table; save ST in stack Interrupt  PUSH
8 Store return address on stack Interrupt

The following example shows setting the GIE bit by a load instruction that is
immediately followed by an interrupt:

. ; GIE =

LDI 02000h, ST ; GIE =
interrupt recognized -->MPYI *AR1, RO ;

ADD *ARO, R1

In this example, the load of the status register or interrupt-flag register overwrites
the reset of the GIE bit by the interrupt (see Table 7-10).

Table 7-10. Pipeline Operation with Load Followed by Interrupt

Cycle  Description Fetch Decode Read Execute
1 LDI
2 Interrupt recognized - LDI
3 Interrupt resets GIE bit, clears interrupt flag, interrupt LDl
reads SP
4 GIE set by load instruction; interrupt vector table interrupt  LDI
read and ST saved on stack
5 Store return address on stack interrupt
6 Fetch first instruction of ISR with GIE = 1 ISR
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A similar situation may occur if the GIE bit = 1 and an instruction executes that
is intended to modify the other status bits and leave the GIE bit set. In the above
example, this erroneous setting would occur if the interrupt were recognized two
cycles before the POP ST instruction. In that case, the interrupt would clear the
GIE bit, but the execution of the POP instruction would set the GIE bit. Since the
interrupt has been recognized, the interrupt service routine will be entered with
interrupts enabled, rather than disabled as expected.
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One solution is to use an instruction that is uninterruptible such as RPTS as
follows to set the GIE:

RPTS 0
AND 2000h, ST ; Set GIE=1

Use the following to reset the GIE:

RPTS 0
AND ODFFFh, ST ; Set GIE=0

Another alternative incorporates the following code fragment, which protects
against modifying or saving the status register by disabling interrupts through
the interrupt-enable register:

Added instruction
to avoid pipeline
problems.

PUSH IE ; Save IE register e Added instructions to

LDI 0, IE ; Clear IE register  avoid pipeline problems
NOP ; e 2 NOPs or useful instructions
NOP ;

AND ODFFFh, ST ; Set GIE = 0 e Instruction that reads or
POP IE ; writes to ST register.

In summary, the next three instructions immediately following an instruction
that clears the GIE bit might be interrupted. Also, the next three instructions
immediately following an instruction that sets the GIE bit might not be interrupted
even if there is a pending interrupt (see Example 7-15). Similarly, the next three
instructions immediately following an instruction that clears an interrupt-enable
mask might be interrupted. Furthermore, the next three instructions immediately
following an instruction that sets an interrupt flag might be executed before the
interrupt occurs.

Example 7-15. Pending Interrupt

ILDI Oh, ST ; set GIE = 0

LDI 1h, R1

LDI 2h, R2

MPYI *AR1, RO ; interrupts still enabled
ADDI *AR1,R1 ; interrupts disabled here
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7.7.5 TMS320C30 Interrupt Considerations
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'C30

The 'C30 silicon revisions earlier than 4.0 have two unique exceptions to the
interrupt operation. This does not apply to 'C30 silicon revision 4.0 or greater,
any 'C31/VC383 silicon, or any 'C32 silicon.

On ’C30 silicon revisions earlier than 4.0:

(O The status register global interrupt-enable (GIE) bit may be erroneously
reset to 0 (disabled setting) if all of the following conditions are true:

B A conditional trap instruction (TRAPcond) has been fetched
W The condition for the trap is false.

W A pipeline conflict has occurred, resulting in a delay in the decode or
read phase of the instruction.

During the decode phase of a conditional trap, interrupts are temporarily
disabled to ensure that the trap executes before a subsequent interrupt. If a
pipeline conflict occurs and causes a delay in execution of the conditional
trap, the interrupt disabled condition may become the last known condition of
the GIE bit. If the trap condition is false, interrupts are permanently disabled
until the GIE bit is intentionally set. The condition is not present when the trap
condition is frue, because normal operation of the instruction causes the GIE
to be reset, and standard coding practice sets the GIE to 1 before the trap
routine is exited. Several instruction sequences that cause pipeline conflicts
have been found:

Bl 1DI mem, SP
TRAPcond n

Bl 1DI mem, SP
NOP
TRAPcond n

B STI SP, mem
TRAPcond n

W sTI Rx, *ARy
LDI *ARX, Ry
| |LDI *ARZ, Rw
TRAPcond n

Other similar conditions may also cause a delay in the execution. The
following solution is recommended to avoid or rectify the problem:
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Insert two NOP instructions immediately before the TRAP cond instruction.
One NORP is insufficient in some cases, as illustrated in the second bulleted
item, above. This eliminates the opportunity for any pipeline conflicts in the
immediately preceding instructions and enables the conditional trap
instruction to execute without delays.

Asynchronous accesses to the interrupt flag register (IF) can cause the
'C30 silicon revision prior to 4.0 to fail to recognize and service an inter-
rupt. This may occur when an interrupt is generated and is ready to be
latched into the IF register on the same cycle that the IF is being written
to by the CPU. Note that logic operations (AND, OR, XOR) may write to
the IF register.

The logic of ’C30 silicon revision earlier than 4.0 currently gives the CPU
write priority; consequently, the asserted interrupt might be lost. This is
true if the asserted interrupt was generated internally (for example, a direct
memory access (DMA) interrupt). This situation arises as a result of a deci-
sion to poll certain interrupts or a desire to clear pending interrupts due to a
long pulse width. In the case of a long pulse width, the interrupt may be
generated after the CPU responds to the interrupt and attempts to auto-
matically clear it by the interrupt vector process.

The recommended solution is to avoid using the interrupt polling technique,
and to design the external interrupt inputs to have pulse widths between
1 and 2 instruction cycles. The alternative to strict polling is to periodically
enable and disable the interrupts that would be polled, allowing the normal
interrupt vectoring to take place; this automatically clears the interrupt flag
without affecting other interrupts. If you must clear a pending interrupt, you
should use a memory location to indicate that the interrupt is invalid. The
interrupt service routine can read that location, clear it (if the pending inter-
rupt is invalid), and return immediately. The following code fragments
show how to handle a dummy interrupt due to a long interrupt pulse:
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ISR n:

ISR n_ START:

ISR n END:
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PUSH
PUSH
PUSH
LDI
LDI
BNN
STI
POP
POP
POP
RETI

LDI
AND
BNZ
LDI
LDI
STI

POP
POP
POP
RETI

ST

DP

RO

0, DP

@DUMMY INT, RO
ISR n START
DP, @DUMMY INT
RO

DP

ST

INT Fn, RO

IF, RO
ISR _n_END
0, DP
OFFFFh, RO

RO, @DUMMY INT

RO
DP
ST

Save registers

Clear Data-page Pointer

If DUMMY INT is 0 or positive,
go to ISR n_START

Set DUMMY INT = 0

Housekeeping, return from interrupt

Normal interrupt service routine
Code goes here

If ones in IF reg match
INT Fn, exit ISR
Otherwise clear

DP and set

DUMMY INT negative & exit

Exit ISR
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7.8 Traps

A trap is the equivalent of a software-triggered interrupt. In the *C3x, traps and
interrupts are treated identically, except in the way in which they are triggered.

7.8.1 Initialization of Traps and Interrupts
Traps and interrupts are triggered differently in the 'C3x:

(1 Traps are always triggered by a software mechanism, by the TRAPcond
(conditional trap) instructions.

1 Interrupts are always triggered by hardware events (for example, by exter-
nal interrupts, DMA interrupts, or serial-port interrupts).

The GIE bit in the ST register and the mask bits in the IE do not apply to traps.

7.8.2 Operation of Traps
Figure 7-10 shows the general flow of traps which is similar to interrupts.

Figure 7-10. Flow of Traps

Trap executed
(TRAPcond)

.

0 —>» GIE

Trap or interrupt service routine

v

Return executed
(RETIcond)

1 —>» GIE
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The RETIcond instruction manipulates the status flags as shown in block (3)
in Figure 7-10. RETlcond provides a return from a trap or interrupt.

The 'C3x supports 32 different traps. When a TRAPcond n instruction is
executed, the 'C3x jumps to the address stored in the memory location pointed
to by the corresponding trap-vector table pointer. The location of the trap-vector
table is shown in Table 7-4 on page 7-27 ('C30/'C31/VC33 microprocessor
mode), Table 7-5 ('C31/VC33 microcomputer boot mode) on page 7-28, and
Table 7-6 on page 7-30 for the 'C32.
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7.9 Power Management Modes

The following ’C3x devices have been enhanced by the addition of two power-
down modes: IDLE2 and LOPOWER:

d
l:I
l:I
l:I
l:I

'C30 silicon version 7.0 or greater
'LC31

'C31 silicon revision 5.0 or greater
'C32

'VC33

7.9.1 IDLE2 Power-Down Mode

The H1 instruction clock is held high until one of the four external interrupts is
asserted. In IDLE2 mode, the 'C3x devices supporting these modes behave as
follows:

l:I
d

No instructions are executed.
The CPU, peripherals, and internal memory retain their previous states.

The external bus output pins are idle:

B The address lines remain in their previous states.
B The data lines are in the high-impedance state.

B The output control signals are in their inactive state.
|

If a multicycle read or write does not preceed the IDLE2 opcode, that
access will be forzen onto the bus until IDLE2 is exited. This can be
advantageous for low power applications since the bus is frozen in an
active state. That is, the device pins are not floating, and therefore do
not require pullup or pulldowns.

When the device is in the functional (honemulation) mode, the clocks stop
with H1 high and H3 low (see Figure 7-11).

The devices remain in IDLE2 until one of the four external interrupts
(INT3-INTO) is asserted for at least one H1 cycle. When one of the four
interrupts is asserted, the clocks start after a delay of one H1 cycle. When
the clocks restart, they may be in the opposite phase (that is, H1 may be
high if H3 was high before the clocks were stopped; H3 may be low if H1
was previously low). The H1 and H3 clocks remain 180 degrees out of
phase with each other (see Figure 7-12).

During IDLE2 operations, the CPU recognizes one of the four external
interrupts if it is asserted for more than one H1 cycle. To avoid generating
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multiple false interrupts in level-triggered mode, the interrupt must be
asserted for fewer than three H1 cycles.

[ The interrupt service routine (ISR) must have been set up before placing
the device in IDLE2 mode, because the instruction following the IDLE2
instruction is not executed until the RETI (return from interrupt) instruction
is executed.

[ When the device is in emulation mode, the H1 and H3 clocks continue to
run normally and the CPU operates as if an IDLE instruction was
executed. The clocks continue to run for correct operation of the emulator.

Delayed Branch

For correct device operation, the three instructions following a
delayed branch should not include either IDLE or IDLE2 instructions.

Figure 7-11.IDLE2 Timing

Idle 2 execution
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N
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Figure 7-12. Interrupt Response Timing After IDLE2 Operation
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7.9.2 LOPOWER

In the LOPOWER (low-power) mode, the CPU continues to execute instructions,
and the DMA can continue to perform transfers, but at a reduced clock rate of
CLKIN frequency divided by 16.

A 'C31/VC33 with a CLKIN frequency of 32 MHz performs identically to a
2 MHz 'C31/VC33 with an instruction cycle time of 1,000 ns.

During the read phase of the. . .. The °’C31/VC33 and ’'C32. ..
LOPOWER instruction (Figure 7-13) Slow to 1/16 of full-speed operation.

MAXSPEED instruction (Figure 7-14) Resume full-speed operation.
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Figure 7-13. LOPOWER Timing
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Figure 7-14. MAXSPEED Timing
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Chapter 8

Pipeline Operation

Two characteristics of the’C3x that contribute to its high performance are:

1 Pipelining
(1 Concurrent I/O and CPU operation

The following four functional units control ‘C3x operation:

] Fetch
0 Decode
] Read
[ Execute

Pipelining is the overlapping or parallel operations of the fetch, decode, read,
and execute levels of a basic instruction.

The DMA controller decreases pipeline interference and enhances the CPU’s
computational throughput by performing input/output operations.

Topic Page
8.1 PipelineStructure .........ccoiiiiiiiiii i i 8-2
8.2 PipelineConflicts ........cciiiiiiiiiii i 8-4
8.3 Resolving Register Conflicts ..............ccciiiiiiiiiiiiinn... 8-19
8.4 Memory Access for Maximum Performance .................... 8-22
8.5 Clocking Memory ACCESSES . ... uuuuunrrrrrrrnnnnnnnreeennnnns 8-24
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8.1

Figure 8-1. TMS320C3x Pipeline Structure
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Pipeline Structure

The following list describes the four major units of the ‘C3x pipeline structure and
their functions:

Fetch unit (F)

Decode unit (D)

Read unit (R)

Execute unit (E)

Fetches the instruction words from memory
and updates the program counter (PC).

Decodes the instruction word and performs
address generation. Also, the decode unit controls
modification of the ARn registers in the indirect
addressing mode and of the stack pointer when
PUSH to/POP from the stack occurs.

If required, reads the operands from memory.

If required, reads the operands from the register
file, performs the necessary operation, and writes
results to the register file. If required, results of
previous operations are written to memory.

All instruction executions perform these four basic functions: fetch, decode, read,
and execute. Figure 8-1 illustrates these four levels of the pipeline structure. The
levels are indexed according to instruction and execution cycle. In the figure, per-
fect overlap in the pipeline, where all four units operate in parallel, occurs at cycle
(m). Levels about to be executed are at m +1, and those just previously executed
are at m-1. The ‘C3x pipeline controller supports a high-speed processing rate
of one execution per cycle. It also manages pipeline conflicts so that they are
transparent to you. You do not need to take any special precautions to ensure
correct operation.

CYCLE | Fetch

m-3
m-2
m-1
m

m+1
m+2

m+3

Note:

N <K X =

| Decode Read Execute
W J— —
X W -
Perfect
Y X w overlap
z Y X
- z Y
- - z

W, X, Y, Z = Instruction representations
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Pipeline Structure

For ‘C30 and ‘C31/VC33, priorities from highest to lowest have been assigned
to each of the functional units of the pipeline and to the DMA controller as fol-
lows:

Execute (highest)
Read

Decode

Fetch

DMA (lowest)

Uoooo

Despite the DMA controller’s low priority, you can minimize or even eliminate
conflicts with the CPU through suitable data structuring because the DMA con-
troller has its own data and address buses.

In the ‘C32, the DMA has configurable priorities. Therefore, priorities from
highest to lowest have been assigned to each of the functioned units of the
pipeline and to the DMA controller as follows:

DMA (if configured with highest priority)
Execute

Read

Decode

Fetch

DMA (if configured with lowest priority)

Uoouooo

A pipeline conflict occurs when an instruction is being processed, and is ready
to pass to the next higher pipeline level while that level is not ready to accept
a new input. In this case, the lower priority unit waits until the higher priority unit
completes executing the current function.
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8.2 Pipeline Conflicts

Pipeline conflicts in the 'C3x can be grouped into the following categories:

Branch conflicts Branch conflicts involve most of those instructions or
operations that read and/or modify the PC.

Register conflicts Register conflicts involve delays that can occur when
reading from, or writing to, registers that are used for
address generation.

Memory conflicts Memory conflicts occur when the internal units of the
"C3x compete for memory resources.

Each of these three types, including examples, is discussed in the following
subsections. In these examples, when data is refetched or an operation is
repeated, the symbol representing the stage of the pipeline is appended with
a number. For example, if a fetch is performed again, the instruction mnemonic
is repeated. When an access is detained for multiple cycles because the unit
is not ready, the symbol RDY indicates that a unit is not ready and RDY indi-
cates that a unit is ready. If the particular unit does not perform a function, the
nop label is placed in that stage of the pipeline.

8.2.1 Branch Conflicts

8-4

The first class of pipeline conflicts occurs with standard (nondelayed)
branches, that is, BR, Bcond, DBcond, CALL, IDLE, RPTB, RPTS, RETIcond,
RETScond, interrupts, and reset. Conflicts arise with these instructions and
operations because, during their execution, the pipeline is used only for the
completion of the operation; other information fetched into the pipeline is dis-
carded or refetched, or the pipeline is inactive. This is referred to as flushing
the pipeline. Flushing the pipeline is necessary in these cases to ensure that
portions of succeeding instructions do not inadvertently get partially executed.
TRAP cond and CALLcond are classified differently from the other types of
branches and are considered later.

Example 8-1 shows the code and pipeline operation for a standard branch.

Note: Dummy Fetch

In this example, one dummy fetch (an MPYF instruction) is performed before
the branch is decoded. After the branch address is available, a new fetch (an
OR instruction) is performed.
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Example 8-1. Standard Branch

BR THREE ; Unconditional branch
MPYF ; Not executed
ADD ; Not executed
SUBF ; Not executed
AND ; Not executed
THREE OR ; Fetched after BR is taken
STI

Pipeline Operation

PC Fetch Decode Read Execute
n BR - — - ____|Fetch held for
new PC value
n+1 MPYF BR -
n+1 (nop) (nop) BR -
/— 3—» PC

n+1 (nop) (nop) (nop) BR
3 OR (nop) (nop) (nop)

STI OR (nop) (nop)
Note:

Both RPTS and RPTB flush the pipeline, allowing the RS, RE, and RC registers
to be loaded at the proper time. If these registers are loaded without the use of
RPTS or RPTB, no flushing of the pipeline occurs. Thus, RS, RE, and RC can
be used as general-purpose 32-bit registers without pipeline conflicts. When
RPTB is nested because of nested interrupts, it may be necessary to load and
store these registers directly while using the repeat modes. Since up to four
instructions can be fetched before entering the repeat mode, you should follow
loads by a branch to flush the pipeline. If the RC is changing when an instruc-
tion is loading it, the direct load takes priority over the modification made by
the repeat mode logic.

Delayed branches are implemented to ensure the fetching of the next three
instructions. The delayed branches include BRD, BcondD, and DBconaD.
Example 8-2 shows the code and pipeline operation for a delayed branch.
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Example 8-2. Delayed Branch

BRD THREE ; Unconditional delayed branch
MPYF ; Executed

ADD ; Executed

SUBF ; Executed

AND ; Not executed

THREE MPYF ; Fetched after SUBF is fetched

Pipeline Operation

PC | Fetch | Decode | Read | Execute
n BRD - - -
No
n+1 MPYF BRD - — execute
delay
n+2 ADDF MPYF BRD - 3—» PC
n+3 SUBF ADDF MPYF BRD
3 MPYF SUBF ADDF MPYF

8.2.2 Register Conflicts
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Register conflicts involve reading or writing registers used for addressing.
These conflicts occur when the pertinent register is not ready to be used. Some
conditions under which you can avoid register conflicts are discussed in Sec-
tion 8.3 on page 8-19.

The registers comprise the following three functional groups:

Group 1 This group includes auxiliary registers (AR0-AR7), index
registers (IR0, IR1), and block-size register (BK).

Group 2 This group includes the data-page pointer (DP).

Group 3 This group includes the system-stack pointer (SP).

If an instruction writes to one of these three groups, the decode unit cannot use
any register within that particular group until the write is complete, that is, until
the instruction execution is completed. In Example 8-3, an auxiliary register
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is loaded, and a different auxiliary register is used on the next instruction. Since
the decode stage needs the result of the write to the auxiliary register, the
decode of this second instruction is delayed two cycles. Every time the decode
is delayed, a refetch of the program word is performed; the ADDF is fetched
three times. Since these are actual refetches, they can cause not only conflicts
with the DMA controller but also cache hits and misses.

A post-/preincrement/decrement of an AR register in an instruction is not

considered a write to a register. A write is in the form of an LDF, LDI, LDII, or
DB instruction.

Example 8-3. Write to an AR Followed by an AR for Address Generation

LDI 7,AR2 ;7 — AR2

NEXT MPYF *AR2,RO0 ; Decode delayed 2 cycles
ADDF
FLOAT

Pipeline Operation

PC | Fetch | Decode | Read | Execute |

n LDI _ Decode/address
generation held
until AR write is

n+1 MPYF LDI completed

n+2 ADDF MPYF P ARs written

n+2 ADDF MPYF

n+2 ADDF MPYF (nop) (nop)

n+3 FLOAT ADDF MPYF (nop)

The case for reads of these groups is similar to the cases for writes. If an
instruction must read a member of one of these groups, the use of that particular
group by the decode for the following instruction is delayed until the read is
complete. The registers are read at the start of the execute cycle and require only
a one-cycle delay of the following decode. For four registers (IR0, IR1, BK, or DP),
there is no delay. For all other registers, including the SP, the delay occurs.

Note that an address generation through the use of an AR register (*ARn,
*++ARn, *-ARn, etc.) in an instruction is not considered a read.
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In Example 8-4, two aukxiliary registers are added together, with the result going
to an extended-precision register. The next instruction uses a different auxiliary
register as an address register.

Example 8-4. A Read of ARs Followed by ARs for Address Generation

ADDI ARO,AR1,R1 ; ARO+AR1 — R1

NEXT MPYF *++AR2,RO0 ; Decode delayed one cycle
ADDF
FLOAT

Pipeline Operation

PC | Fetch |Decode| Read | Execute \

Decode/address
generation held
until AR is read

n ADDI — — —

n+1 MPYF ADDI

n+2 ADDF MPYF ADDI w——\
ARs read

n+2 ADDF MYPF (nop) ADDI ARO,AR1,RO
n+3 FLOAT ADDF MPYF (nop)

I 1
Note:

Loop counter auxiliary registers for the decrement and branch (DBR) instruc-
tions are regarded in the same way as they are for addressing. The operation
shown in Example 8-3 and Example 8-4 also can occur for this instruction.

8.2.3 Memory Conflicts

Memory conflicts can occur when the memory bandwidth of a physical memory
space is exceeded. For example, RAM blocks 0 and 1 and the ROM block can
support only two accesses per cycle. The external interface can support only
one access per cycle. Section 8.4, Memory Access for Maximum Performance,
on page 8-22 contains some conditions under which you can avoid memory
conflicts.
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Memory pipeline conflicts consist of the following four types:

Program wait A program fetch is prevented from beginning.

Program fetch Incomplete A program fetch has begun but is not yet
complete.

Execute only An instruction sequence requires three CPU

data accesses in a single cycle.

Hold everything A primary or expansion bus operation must
complete before another one can proceed.

These four types of memory conflicts are illustrated in examples and discussed
in the paragraphs that follow.

8.2.3.1 Program Wait
Two conditions can prevent the program fetch from beginning:

[0 The start of a CPU data access when:

B Two CPU data accesses are made to an internal RAM or ROM block,
and a program fetch from the same block is necessary.

B One of the external ports is starting a CPU data access, and a program
fetch from the same port is necessary.

(1 A multicycle CPU data access or DMA data access over the external bus
is needed.

Example 8-5 illustrates a program wait until a CPU data access completes.
In this case, *ARO and *AR1 are both pointing to data in RAM block 0, and the
MPYF instruction will be fetched from RAM block 0. This results in the conflict
shown in Example 8-5. Because more than two accesses can be made to
RAM block 0 in a single cycle, the program fetch cannot begin and must wait
until the CPU data accesses are complete.

Pipeline Operation 8-9
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Example 8-5. Program Wait Until CPU Data Access Completes

8-10

ADDF3 *ARO, *AR1,RO
FIX

MPYF

ADDF3

NEGB

Pipeline Operation

PC | Fetch | Decode | Read | Execute

n ADDF3 — — -

n+1 Flﬂ ADDF3 — - Fetch held
until data

n+2 (wai ﬂ FIX ADDF3 — access
completes

n+2 MPYF (nop) FIX ADDF3

n+3 ADDF3 MPYF (nop) FI Data
accessed

n+4 NEGB ADDF3 MPYF (nop)

Example 8-6 shows a program wait due to a multicycle data-data access or
a multicycle DMA access. The ADDF, MPYF, and SUBF are fetched from some
portion in memory other than the external port the DMA requires. The DMA
begins a multicycle access. The program fetch corresponding to the CALL is
made to the same external port that the DMA is using.

Either of two cases may produce this situation:

[ One of the following two memory boundaries is crossed:

B From internal memory to external memory
B From one external port to another

(1 Code that has been cached is executed, and the instruction prior to the
ADDF is one of the following (conditional or unconditional):

B A delayed branch instruction
B A delayed decrement and branch instruction

Even though the DMA has the lowest priority on 'C30 and ‘C31/VC33 or when con-
figured as such in the ’C32, multicycle access cannot be aborted. The program
fetch must wait until the DMA access completes.



Example 8-6. Program Wait Due to Multicycle Access

Pipeline Conflicts

ADDF ; code in internal memory

MPY ; code in internal memory

SUBF ; code in internal memory

CALL ; code in external memory

Pipeline Operation
PC Fetch | Decode | Read | Execute
n ADDF — — —
n+1 MPYF ADDF — —
n+2 SUBF MPYF ADDF -
2-cycle DMA

n+3 (wait) SUBF MPYF ADDF iaccess
n+3 CALL (nop) SUBF MPYF
n+4 - CALL (nop) SUBF

8.2.3.2 Program Fetch Incomplete

A program fetch incomplete occurs when an instruction fetch takes more than
one cycle to complete because of wait states. In Example 8-7, the MPYF and
ADDF are fetched from memory that supports single-cycle accesses. The
SUBF is fetched from memory requiring one wait state. One example that
demonstrates this conflict is a fetch across a bank boundary on the primary
port. See Section 9.5 on page 9-12.

Pipeline Operation 8-11
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Example 8-7. Multicycle Program Memory Fetches

8.2.3.3 Execute Only

8-12

Pipeline Operation

PC | Fetch | Decode | Read | Execute
n MPYF - - -
n+1 ADDF MPYF - -
n+2 RDY SUBF ADDF MPYF - f

1 wait state
n+2 RDY SUBF (nop) ADDF MPYF o required
n+3 ADDI SUBF (nop) ADDF

Note: PC = program counter

The execute-only type of memory pipeline conflict occurs when performing an
interlocked load or when a sequence of instructions requires three CPU data
accesses in a single cycle. There are two cases in which this occurs:

[d Aninstruction performs a store and is followed by an instruction that
performs two memory reads.

[ An instruction performs two stores and is followed by an instruction that
performs at least one memory read.

(1 Aninterlocked load (LDII or LDFI) instruction is performed, and XF1 = 1.

The first case is shown in Example 8-8. Since this sequence requires three
data memory accesses and only two are available, only the execute phase of
the pipeline is allowed to proceed. The dual reads required by the LDF || LDF
are delayed one cycle. In this case, a refetch of the next instruction can occur.
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Example 8-8. Single Store Followed by Two Reads

STFR 0, *AR1 ; RO — *AR1
LDF *AR2,R1 ; *AR2 — R1 in parallel with
|| LDF  *AR3,R2 ; *AR3 —>R2

Pipeline Operation

PC | Fetch | Decode | Read | Execute
n STF - _ _

Write must
n+1 LDF ||lLDF STF - — | complete

before the
n+2 W LDF ||LDF STF - L"(‘;;relgges can

x| omP
n+3 X W LDF||LDF STF [ 3 reads
X performed

n+4 X W LDF ||LDF (nop)
n+4 v X W LDF | |LDF

Note: W, X, Y = Instruction representations

Pipeline Operation 8-13
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Example 8-9 shows a parallel store followed by a single load or read. Since
two parallel stores are required, the next CPU data-memory read must wait
one cycle before beginning. One program-memory refetch can occur.

Example 8-9. Parallel Store Followed by Single Read

8-14

STF RO, *ARO ; RO — *ARO in parallel with
[| sTF R2,*AR1 ; R2 — *AR1

ADDF @SUM,R1 ; R1 + @SUM —R1

TACK

ASH

Pipeline Operation

PC | Fetch | Decode | Read | Execute |
n sTF ||sTF - - -
Read must wait
n+1 ADDF sTF||STF — — until the writes are
completed
n+2 IACK ADDF  STF||sTF -
Writes
n+3 ASH IACK appF / sTF||sTF&— | performed
n+4 ASH IACK ADDF (nop)
n+4 — ASH IACK ADDF

The final case involves an interlocked load (LDII or LDFI) instruction and XF1 = 1.
Since the interlocked loads use the XF1 pin as an acknowledge that the read
can complete, the loads might need to extend the read cycle, as shown in
Example 8-10. A program refetch can occur.



Example 8-10. Interlocked Load

Pipeline Conflicts

NOT
LDIT

ADDI
CMPI

R1,RO
300h,AR

*AR2,R2
RO,R2

PC

n+1
n+2
n+3
n+3

n+4

8.2.3.4 Hold Everything

| XF1 |

Pipeline Operation

Fetch \Decode | Read

NOT

LDII

ADDI

CMPI

NOT

LDITI

ADDI

CMPI

CMPI

XF1 =1,
read must wait

\ Execute
NOT —
LDII NOT/_
ADDI LDII
ADDI LDIl ¢—

XF1 =0,
read operation
is complete

Three situations result in hold-everything memory pipeline conflicts:

(1 A CPU data load or store cannot be performed because an external port
is busy.

(1 An external load takes more than one cycle.

(1 Conditional calls and traps, which take one more cycle than conditional
branches, are processed.

The first type of hold-everything conflict occurs when one of the external ports
is busy because an access has started, but is not complete. In Example 8-11,
the first store is a 2-cycle store. The CPU writes the data to an external port.
The port control then takes two cycles to complete the data-data write. The
LDF is a read over the same external port. Since the store is not complete, the
CPU continues to attempt LDF until the port is available.

Pipeline Operation 8-15
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Example 8-11. Busy External Port

STF RO, @DMA1
LDF @DMA2, RO

Pipeline Operation

PC | Fetch ’ Decode ‘ Read Execute
n STF — — _
n+1 LDF STF — —
n+2 W LDF STF —
n+2 W LDF (nop) STF T
2-cycle external bus
n+2 W LDF (nop) (HOP)i write access
n+3 X W LDF (nop)
n+4 Y X W LDF

Note: W, X, Y = Instruction representations
The second type of hold-everything conflict involves multicycle data reads.

The read has begun and continues until completed. In Example 8-12, the LDF
is performed from an external memory that requires several cycles to access.

8-16



Example 8-12. Multicycle Data Reads

Pipeline Conflicts

LDF @DMA, RO

PC

n

n+1

n+2

n+3

n+3

Note:

Pipeline Operation

| Fetch | Decode | Read
LDF - -
I LDF -

J I LDF

K (dummy) I LDF
K, J I

I, J, K = Instruction representations

Execute

2-cycle external bus
¢ read access

LDF

The final type of hold-everything conflict deals with conditional calls (CALLcond)
and traps (TRAPcond), which are different from other branch instructions.
Whereas other branch instructions are conditional loads, the conditional calls
and traps are conditional stores, which take one more cycle to complete than
conditional branches (see Example 8-13). The added cycle pushes the return
address after the call condition is evaluated.
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Example 8-13. Conditional Calls and Traps

Pipeline Operation

PC | Fetch | Decode | Read | Execute

n CALLcond — - -

n+1 I CALLcond — —

n+1 (nop) (nop) CALLcond -

n+1 (nop) (nop) (nop) CALLcond PC store
cycle

n+1 (nop) (nop) (nop) CALLcond T

n+2/CAIfLaddr I (nop) (nop) (nop)

Note: | = Instruction representation



Resolving Register Conflicts

8.3 Resolving Register Conflicts

If the auxiliary registers (AR7-ARO), the index registers (IR1-IR0), data-page
pointer (DP), or stack pointer (SP) are accessed for any reason other than
address generation, pipeline conflicts associated with the next memory access
can occur. The pipeline conflicts and delays are presented in Section 8.2 on
page 8-4.

Example 8-14, Example 8-15, and Example 8-16 demonstrate some common
uses of these registers that do not produce a conflict or ways that you can avoid
the conflict.

Example 8-14. Address Generation Update of an AR Followed by an AR for Address

Generation

LDF 7.0,R0O ; 7.0 > RO

MPYF  *++ARO (IR1),RO

ADDF *AR2,R0

FIX

MPYF

ADDF

Pipeline Operation
PC | Fetch | Decode | Read | Execute
n LDF - - -
n+1 MYPF LDF - -
n+2 ADDF MYPF LDF -
n+3 FIX ADDF MYPF LDF ARSs read
n+4 MPYF FIX AD]ﬂ MYPF
n+5 ADDF MYPF FIX ADDF

Note: W, X, Y, Z = Instruction representations
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Example 8-15. Write to an AR Followed by an AR for Address Generation Without a

8-20

Pipeline Conflict

LDI @TABLE, AR2

MPYF @VALUE,R1

ADDF R2,R1

MPYF  *AR2++,R1

SUBF

STF

Pipeline Operation

PC | Fetch | Decode | Read | Execute
n LDI - - -
n+1 MYPF LDI - -
n+2 ADDF MYPF LDI -
n+3 MYPF ADDF MYPF LDI /-m
n+4 SUBF MYPF ADDF MYPF
n+5 STF SUBF MYPF ADDF
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Example 8-16. Write to DP Followed by a Direct Memory Read Without a Pipeline Conflict

LDP TABLE ADDR

POP RO

LDF *-AR3 (2) ,R1

LDI @TABLE ADDR, ARO
PUSHF R6

PUSH R4

PC

n+1

n+2

n+3

n+4

n+5

Pipeline Operation

Fetch | Decode | Read
LDP - -
POP LDP -
LDF POP LDP
LDI LDF POP
PUSHF LDI LDF
PUSH PUSHF LDI

| Execute

DP written

LDP

POP

LDF

DP read

Pipeline Operation
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8.4 Memory Access for Maximum Performance

If program fetches and data accesses are performed so that the resources
being used cannot provide the necessary bandwidth, the pipeline is stalled
until the data accesses are complete. Certain configurations of program fetch
and data accesses yield conditions under which the 'C3x can achieve
maximum throughput.

Table 8-1 shows how many accesses can be performed from the different
memory spaces when it is necessary to do a program fetch and a single data
access and still achieve maximum performance (one cycle). Four cases
achieve 1-cycle maximization.

Table 8-1. One Program Fetch and One Data Access for Maximum Performance

Primary Expansion Bust
Bus Accesses From Dual or
Case No. Accesses Access Internal Memory Peripheral Accesses

1 1 1 —
2 1 — 1

2 from any combination of
internal memory

4 — 1 1

T The expansion bus is available only on the 'C30.

Table 8-2 shows how many accesses can be performed from the different
memory spaces when it is necessary to do a program fetch and two data
accesses and still achieve maximum performance (one cycle). Six conditions
achieve this maximization.
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Table 8-2. One Program Fetch and Two Data Accesses for Maximum Performance

Expansiont Or

Primary Bus Accesses From Dual-Access Peripheral Bus

Case No. Accesses Internal Memory Accesses

1 1 2 from any combination of internal memory —

2 1 program 1 data 1 data

3 1 data 1 data 1 program

4 1 data 1 program, 1 data 1 DMA

5 . 2 frgm same internal memory block and 1 from .

a different internal memory block

6 — 3 from different internal memory blocks —

7 — 2 from any combination of internal memory 1

8 1 program 2 data 1 DMA

9 1 DMA 2 data 1 program

T The expansion bus is available only on the C30.
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8.5

Clocking Memory Accesses

This section discusses the role of internal clock phases (H1 and H3) and how
the 'C3x handles multiple-memory accesses. The previous section discusses
the interaction between sequences of instructions; this section discusses the
flow of data on an individual instruction basis.

Each major clock period of 33.3 ns is composed of two minor clock periods of
16.67 ns, labeled H3 and H1. The active clock period for H3 and H1 is the time
when that signal is high. See Figure 8-2.

Figure 8-2. Minor Clock Periods

8.5.1

H Major clock period 4%

H1
4 minor
H1 clock period

H3

H3 <4 minor  —P»
clock period

The precise operation of memory reads and writes can be defined according
to these minor clock periods. The types of memory operations that can occur
are program fetches, data loads and stores, and DMA accesses.

Program Fetches

Internal program fetches are always performed during H3 unless a single data
store must occur at the same time due to another instruction in the pipeline. In that
case, the program fetch occurs during H1 and the data store occurs during H3.

External program fetches always start at the beginning of H3 with the address
being presented on the external bus. At the end of H1, the fetches are completed
with the latching of the instruction word.

8.5.2 Data Loads and Stores

8-24

Four types of instructions perform loads, memory reads, and stores:

2-operand instructions

3-operand instructions

Multiplier/ALU operation with store instructions
Parallel multiply and add instructions

Uooo
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See Chapter 6, Addressing Modes, for more information.

As discussed in Chapter 7, the number of bus cycles for external memory
accesses differs in some cases from the number of CPU execution cycles. For
external reads, the number of bus cycles and CPU execution cycles is identical.
For external writes, there are always at least two bus cycles, but unless there
is a port-access conflict, there is only one CPU execution cycle. In the following
examples, any difference in the number of bus cycles and CPU cycles is noted.

8.5.2.1 2-Operand Instruction Memory Accesses

All instructions whose bits 31-29 are 000 or 010 (see Figure 8-3) are 2-operand
instructions. In the case of a data read, bits 15-0 represent the src operand.
Internal data reads are always performed during H1. External data reads always
start at the beginning of H3 with the address presented on the external bus; they
complete with the latching of the data word at the end of H1.

In the case of a data store, bits 15-0 represent the dst operand. Internal data
stores are performed during H3. External data stores always start at the
beginning of H3 with the address and data being presented on the external bus.

Figure 8-3. 2-Operand Instruction Word

31 24 23 16 15 8 7 0
T

I I I I [ I I I I I I I I I I I I I I I I I I I I
0 X0 Operation G ast(src) sre(dst)

8.5.2.2 3-Operand Instruction Memory Reads

All instructions whose bits 31-29 are 001 (see Figure 8-4) are 3-operand
instructions. The source operands, src1 and src2, come from either registers
or memory. When one or more of the source operands are from memory, these
instructions are always memory reads.

Figure 8-4. 3-Operand Instruction Word

31 24 23 16 15 8 7 0
1 T T T T I — T

00 1 Operation T dst srct sre2

If only one of the source operands is from memory (either src? or src2) and is
located in internal memory, the data is read during H1. If the single memory
source operand is in external memory, the read starts at the beginning of H3,
with the address presented on the external bus, and completes with the latching
of the data word at the end of H1.
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8-26

If both source operands are to be fetched from memory, then memory reads
can occur in several ways:

[ If both operands are located in internal memory, the src1 read is performed
during H3 and the src2 read during H1, completing two memory reads in
a single cycle.

[ Ifsrctisininternal memory and src2is in external memory, the src2 access
begins at the start of H3 and latches at the end of H1. At the same time, the
src1 access to internal memory is performed during H3. Again, two memory
reads are completed in a single cycle.

[ [fsrctisin external memory and src2is in internal memory, two cycles are
necessary to complete the two reads. In the first cycle, both operands are
addressed. Since src1 takes an entire cycle to be read and latched from
external memory, the internal operation on src2 cannot be completed until
the second cycle. Ordering the operands so that src1 is located internally
is necessary to achieve single-cycle execution.

[ If sre1 and src2 are both from external memory, two cycles are required to
complete the two reads. In the first cycle, the src1 access is performed and
loaded on the next H3; in the second cycle, the src2 access is performed
and loaded on that cycle’s H1.

If src2is in external memory and src1 is in on-chip or external memory and is
immediately preceded by a single store instruction to external memory, a
dummy src2 read can occur between the execution of the store instruction and
the src2read, regardless of which memory space is accessed (STRB, MSTRB,
or IOSTRB). The dummy read can cause an externally interfaced FIFO address
pointer to be incremented prematurely, thereby causing the loss of FIFO data.
Example 8-17 illustrates how the dummy read can occur. Example 8-18 offers
an alternative code segment that suppresses the dummy read. In the alternative
code segment, the dummy read is eliminated by swapping the order of the
source operands.
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Example 8-17. Dummy sr2 Read

STI RO, *AR6 ; AR6 points to MSTRB space
ADDI3 *AR1, *AR3,R0 ; AR3 points to on-chip RAM (srcl)
; ARl points to MSTRB space (src2)
H1 _I l_l l_l I—I I
H3
Pipeline Operation
PC Fetch | Decode | Read | Execute
n STI
n+1 ADDI3 STI
n+2 ADDI3 STI
RO, *AR6 until the
n+3 - STI store is complete
n+4 - -
n+5 ADDI3 7 - 2-cycle dummy
load of src2
n+6 - —
n+7 ADDI3 - actual read of
n+8 ADDI3 src2 and srci

Two cycles are required for the MSTRB store. Two additional cycles are required
for the dummy MSTRB read of *AR3 (because a read follows a write). One cycle
is required for an actual MSTRB read of *AR3.
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Example 8-18. Operand Swapping Alternative

PC

n+1

n+2

n+3

n+4

n+5

n+6

n+7

n+8

8-28

Switch the operands of the 3-operand instruction so that the internal read is
performed first.

STI RO, *AR6 ; AR6 points to MSTRB space
ADDI3 *AR3, *AR1,RO0 ; AR3 points to on-chip RAM (src2)
; ARl points to MSTRB space (srcl)

TV I I S R S

L
S I e SN e M

Pipeline Operation

STI

Fetch | Decode | Read | Execute
ADDI3 STI
ADDI3 STI
- sT1d
2-cycle store
v

- - The read of src2 cannot start
until the store is complete

ADDI3 -
2-cycle read of src1 and src2
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8.5.2.3 Operations with Parallel Stores

The next class of instructions includes every instruction that has a store in parallel
with another instruction. Bits 31 and 30 for these instructions are equal to 1 1.

The instruction word format for operations that perform a multiply or ALU opera-
tion in parallel with a store is shown in Figure 8-5. If the store operation to dst2
is external or internal, it is performed during H3. Two bus cycles are required for
external stores, but only one CPU cycle is necessary to complete the write.

If the memory read operation is external, it starts at the beginning of H3 and
latches at the end of H1. If the memory read operation is internal, it is
performed during H1. Note that memory reads are performed by the CPU
during the read (R) phase of the pipeline, and stores are performed during the
execute (E) phase.

Figure 8-5. Multiply or CPU Operation With a Parallel Store
31 24 23 16 15 8 7 0
I I I

Operation| P |[d1]|d2| srct src2 sre3 srcd

1

—_

The instruction word format for instructions that have parallel stores to memory
is shown in Figure 8-6. If both destination operands, dst7 and dst2, are located
in internal memory, dst1 is stored during H3 and dst2 during H1, thus completing
two memory stores in a single cycle.

Figure 8-6. Two Parallel Stores

31 24 23 16 15 8 7 0
T T T 1 1

1 1| ST||ST src2 000| srct dsti dst2

[ If dst1is in external memory and dst2 is in internal memory, the dst7 store
begins at the start of H3. The dst2 store to internal memory is performed
during H1. Two bus cycles are required for the external store, but only one
CPU cycle is necessary to complete the write. Again, two memory stores
are completed in a single cycle.

(1 If dstisin internal memory and dst2is in external memory, an additional bus
cycle is necessary to complete the dst2 store. Only one CPU cycle is neces-
sary to complete the write, but the port access requires three bus cycles. In
the first cycle, the internal dst1 store is performed during H3, and dst2 is writ-
ten to the port during H1. During the next cycle, the dst2 store is performed
on the external bus, beginning in H3, and executes as normal through the
following cycle.
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i

If dst1 and dst2 are both written to external memory, a single CPU cycle
is still all that is necessary to complete the stores. In this case, four bus
cycles are required.

1) Inthe first cycle, both dst7 and dst2 are written to the port, and the ex-
ternal-bus access for dst1 begins.

a) The store for dst? is completed on the second cycle.
b) The store for dst2 begins on the third external-bus cycle.

c) The store for dst2is completed on the fourth external-bus cycle.

8.5.2.4 Parallel Multiplies and Adds

Memory addressing for parallel multiplies and adds is similar to that for 3-operand
instructions. The parallel multiplies and adds include all instructions with bits
31-30 = 10 (see Figure 8-7).

Figure 8-7. Parallel Multiplies and Adds

8-30

31

24 23
T

I
1

I I
0| Operation| P |d1|d2| srct src2 src3 src4

For these operations, src3 and src4 are both located in memory. If both operands

are

located in internal memory, src3 is performed during H3, and src4 is per-

formed during H1, thus completing two memory reads in a single cycle.

a

If src3is in internal memory and src4 is in external memory, the src4 access
begins at the start of H3 and latches at the end of H1. At the same time, the
src3 access to internal memory is performed during H3. Again, two memory
reads are completed in a single cycle.

If src3is in external memory and src4 is in internal memory, two cycles
are necessary to complete the two reads. In the first cycle, the internal src4
access is performed. During the H3 of the next cycle, the src3 access is
performed.

If src3 and src4 are both from external memory, two cycles are necessary
to complete the two reads. In the first cycle, the src3 access is performed;
in the second cycle, the src4 access is performed.



Chapter 9

TMS320C30 and TMS320C31/VC33
External-Memory Interface

This chapter describes the 'C30 and 'C31/VC33 external-memory interface.
See Chapter 10, Enhanced External-Memory Interface, for detailed informa-
tion on the 'C32 external bus operation.

Memories and external peripheral devices are accessible through two external
interfaces on the 'C30:

(4 Primary bus
(1 Expansion bus

On the 'C31/VC33, one bus, the primary bus, is available to access external
memories and peripheral devices. You can control wait-state generation, permit-
ting access to slower memories and peripherals, by manipulating memory-
mapped control registers associated with the interfaces and by using an external
input signal.

Note: VC33

The TMS320VC33 is logically and functionally a superset of the TMS320C31
making nearly all literature and documentation for the TMS320C31 applica—
ble. However, the electrical characteristics are different and are covered in
detail in the TMS320VC33 data sheet (literature number SPRS087).
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Overview

9.1

9-2

Overview

The 'C30 provides two external interfaces: the primary bus and the expansion
bus. The TMS320C31/VC33 provides one external interface: the primary bus.
The primary bus consists of a 32-bit data bus, a 24-bit address bus, and a set
of control signals. The expansion bus consists of a 32-bit data bus, a 13-bit
address bus, and a set of control signals. Each interface has the following
features:

[1 Separate configurations controlled by memory-mapped external interface
control registers

[ Hold request and acknowledge signal for putting the external memory inter-
face signals in high impedance mode and preventing the processor from
accessing the external bus

[ Selectable wait state that can be controlled through software, hardware,
or combination of software and hardware

[ Unified memory space for data, program, and I/O access
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9.2 Memory Interface Signals

This section describes the differences between the 'C30 and 'C31/VC33
memory interface signals.

'C30

9.2.1 TMS320C30 Memory Interface Signals

The TMS320C30 has two sets of control signals as follows:

[ Primary bus control signals: STRB, R/W, HOLD, HOLDA, RDY

Table 9-1 lists and describes the signals.

(1 Expansion bus control signals: MSTRB, IOSTRB, XR/W, XRDY

Table 9-2 lists and describes the expansion bus control signals.

Access is determined by an active strobe signal (STRB, MSTRB, or IOSTRB).
When a primary bus access is performed, STRB is low. The expansion bus of
the *C30 supports two types of accesses:

(1 Memory access signaled by MSTRB low. The timing for an MSTRB access
is the same as that of the STRB access on the primary bus.

(1 External peripheral device access is signaled by IOSTRB low.

Each of the buses (primary and expansion) has an associated control register.
These registers are memory-mapped as shown in Figure 9-1.

9.2.2 TMS320C31/VC33 Memory Interface Signals

The TMS320C31/VC33 has one set of control signals:

[ Primary bus control signals: STRB, R/W, HOLD, HOLDA, RDY

STRB is low when an external bus access is performed. The primary bus
control register controls its behavior (see Section 9.3).

TMS320C30 and TMS320C31/VC33 External-Memory Interface 9-3
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Table 9—1. Primary Bus Interface Signals

"C30E 7°C31

Signal Typet

Description

Value
After Reset

Idle Status

STRB 0/z
R/W o/z
HOLD |

HOLDA o/z
RDY I

A(23-0) 0/

D (31-0)  1/O/Z

Primary interface access strobe

Specifies memory read (active high) or write
(active low) mode

Hold external memory interface
Hold acknowledge for external memory interface

Indicates external primary interface is ready to
be accessed

Primary address bus. When the primary bus
address lines are not in high-impedance state
due to HOLD signal, they keep in the last exter-
nal primary bus access.

Primary data bus. These signals go to high-
impedance between write accesses.

1
1

NA¥

NA%

HI

HIZ

1
1

Ignored
1

Ignored

Address of last external
bus access

HIZ

t1  Input
O Output
Z High impedance

¥ NA means not affected.



Memory Interface Signals

Table 9-2. Expansion Bus Interface Signals °3°§
Value

Signal Typet Description After Reset Idle Status

MSTRB O/z Expansion bus memory access strobe 1 1

IOSTRB O/z Expansion bus peripheral-access strobe 1 1

XR/W O/z Specifies memory (active high) or write (active 1 1
low) mode

XRDY | Indicates external expansion interface is ready NA¥ Ignored
to be accessed

XA (12-0) (0] Expansion address bus. When the expansion HI Address of last external
bus address lines are not in high-impedance expansion bus access
state due to HOLD signal, they keep the last
external expansion bus access.

XD (31-0) I/0/Z  Expansion data bus. These signals go to high- HIZ HIZ

impedance between write accesses.

1 Input
O Output
Z High impedance

¥ NA means not affected.
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Figure 9—1. Memory-Mapped External Interface Control Registers

Peripheral
Address

808060h
808061h
808062h
808063h
808064h
808065h
808066h
808067h
808068h
808069h
80806Ah
80806Bh
80806Ch
80806Dh
80806Fh

Expansion-bus control ("C30 only)

Reserved

Reserved

Reserved

Primary-bus control
(C30,’C31/VC33)

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

'C30

'C31




Memory Interface Control Registers

9.3 Memory Interface Control Registers

9.3.1

Two memory interface control registers, the primary-bus control register and
the expansion-bus control register, are described in this section.

Primary-Bus Control Register

The primary bus control register is a 32-bit register that contains the control bits
for the primary bus (see Figure 9-2). Table 9-3 describes the register bits with
the bit names and functions.

Figure 9-2. Primary-Bus Control Register '030 ’031
31-161 15-13 121 11 10 9 8 +7 6 5 4.3 2 1 0
XX, XX ,  BNKCMP X WTCNT sWw | HiZ | NOHOLD | HOLDST
' ' R/W ' R/W RiwW R/W R/W R
Notes: 1) xx = reserved bit, read as 0

2) R=read, W = write

Note:

After changing the bit fields of the primary-bus control register, up to three
instructions are fetched before the primary bus is reconfigured because the

configuration change is performed in the execute stage of the pi

peline.

TMS320C30 and TMS320C31/VC33 External-Memory Interface

9-7



Memory Interface Control Registers

Table 9-3. Primary-Bus Control Register Bits

Abbreviation Reset Value Name Description

HOLDST 0 Hold status bit This bit signals whether the port is being
held (HOLDST = 1) or is not being held
(HOLDST = 0). This status bit is valid
whether the port has been held through
hardware or software.

NOHOLD 0 Port hold signal NOHOLD allows or disallows the port to be
held by an external HOLD signal. When
NOHOLD = 1, the 'C3x takes over the
external bus and controls it, regardless of
serviced or pending requests by external
devices. No hold acknowledge (HOLDA) is
asserted when a HOLD signal is received. It
is asserted if an internal hold is generated
(HIZ = 1).

HIZ 0 Internal hold When set (HIZ = 1), the port is put in hold
mode. This is equivalent to the external
HOLD signal. By forcing a high-impedance
condition, the ’C3x can relinquish the exter-
nal-memory port through software. HOLDA
goes low when the port is placed in the high-
impedance state.

SWwW 11 Software wait mode In conjunction with WTCNT, this 2-bit field
defines the mode of wait-state generation.
(See Table 9-5.)

WTCNT 111 Software wait mode This three-bit field specifies the number of
cycles to use when in software wait mode for
the generation of internal wait states. The
range is 0 (WTCNT =00 0) to 7 (WTCNT=1
1 1) H1/H3 cycles. (See Section 9.4.)

BNKCMP 10000 Bank compare This 5-bit field specifies the number of MSBs
of the address to be used to define the bank
size. (See Table 9-6.)




9.3.2 Expansion-Bus Control Register

Memory Interface Control Registers

The expansion-bus control register is a 32-bit register that contains control bits
for the expansion bus (see Figure 9-3 and Table 9-4).

Figure 9-3. Expansion-Bus Control Register 3'C30E

31-16 X 15-12 X 11-8 ' 7 8 5 4 1 3 2 1 0

XX ! XX ! XX ! WTCNT SWw XX XX XX
: : : R/W R/W
Notes: 1) xx = reserved bit, read as 0
2) R=read, W = write

Table 9-4. Expansion-Bus Control Register Bits
Abbreviation Reset Value Name Description
SWWwW 11 Software wait mode In conjunction with the WTCNT, 2-bit field

WTCNT 111 Software wait mode

defines the mode of wait-state generation.

(See Table 9-5.)

This 3-bit field specifies the number of cycles
to use when in software wait mode for the
generation of internal wait state. The range is

0 (WTCNT =00 0) to 7 (WTCNT = 1) H1/H3

cycles. (See Section 9.4.)

Note:

After changing the bit fields of the expansion-bus control register, up to three
instructions are fetched before the expansion bus is reconfigured because
the configuration change is performed in the execute stage of the pipeline.

TMS320C30 and TMS320C31/VC33 External-Memory Interface



Programmable Wait States

9.4 Programmable Wait States

9-10

The 'C3x has its own internal software-configurable ready-generation capability
for each strobe. This software wait-state generator is controlled by configuring
two bit fields in the primary or expansion bus interface control registers.

Use the WTCNT field to specify the number of software wait-states to generate
and use the SWW field to select one of the following four modes of wait-state
generation:

[0 External RDY wait states are generated solely by the external RDY line
ignoring software wait states.

(1 WTCNT-generated RDY,yicnt Wait states are generated solely by the soft-
ware wait-state generator ignoring external RDY signals.

(1 Logical-AND of RDY and RDY,yicnt Wait states are generated with a logical
AND of internal and external ready signals. Both signals must occur.

(1 Logical-OR of RDY and RDY,yicnt Wait states are generated with a logical
OR of internal and external ready signals. Either signal can generate the
ready signal.

The four modes are used to generate the internal ready signal, RDYiqs, that
controls accesses. As long as RDYjyt = 1, the current external access is
delayed. When RDY),; = 0, the current access completes. Since the use of
programmable wait states for both external interfaces is identical, only the
primary bus interface is described in the following paragraphs.

RDYyicnt is an internally-generated ready signal. When an external access is
begun, the value in WTCNT is loaded into a counter. WTCNT can be any value
from 0 through 7. The counter is decremented every H1/H3 clock cycle until
it becomes 0. Once the counter is set to 0, it remains set to 0 until the next
access. While the counter is nonzero, RDYyicnt = 1. While the counter is 0,
RDYwtcnt = 0.

Table 9-5 shows the truth table for each value of SWW and the different
combinations of RDY, RDY yicnt, and RDYjpq;.

Note:

At reset, the 'C3x is programmed with seven wait states for each external
memory access. These wait states are inserted to ensure the system can
function with slow memories. To maximize system performance when acces-
sing external memories, you need to decrease the number of wait states.

After changing the wait states, up to three instructions are fetched before the
change in the wait state occurs.




Programmable Wait States

Table 9-5. Wait-State Generation

Inputs Output
SWW Bit Field /RDYext /RDYwtcnt /RDYint Functional Description

00 0 X 0 Wait until external RDY is signaled
1 X 1

01 X 0 0 Wait until internal wait state generator

counts down to 0

X 1 1

10 0 0 0 Wait until first signal: external RDY or the
0 1 0 internal wait state generator (logical OR)
1 0 0
1 1 1

11 0 0 0 Wait until both external RDY is signaled

and wait state generator counts down to
0 (logical AND)
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9.5 Programmable Bank Switching

Programmable bank switching allows you to switch between external memory
banks without having to insert wait states externally due to memories that require
several cycles to turn off. Bank switching is implemented on the primary bus only.

The size of a bank is determined by the number of bits specified by the BNKCMP
field of the primary bus control register. For example, if BNKCMP = 16, the 16
MSBs of the address are used to define a bank (see Figure 9-4). Since
addresses are 24 bits, the bank size is specified by the eight LSBs, yielding a
bank size of 256 words. If BNKCMP > 16, only the 16 MSBs are compared. Bank
sizes from 28 = 256 to 224 = 16M are allowed. Table 9-6 summarizes the relation-
ship between BNKCMP, the address bits used to define a bank, and the resulting
bank size.

Figure 9-4. BNKCMP Example

v

% 24-bit address
23 8|7 0

Fi Number of bits to compare 4*— Defines bank size —ﬁ

Table 9-6. BNKCMP and Bank Size

9-12

BNKCMP MSBs Defining a Bank Bank Size (32-Bit Words)
00000 None 224 = 16M
00001 23 223 = gM
00010 23-22 222 = 4M
00011 23-21 221 = 2M
00100 23-20 220 = 1M
00101 23-19 219 = 512K
00110 23-18 218 = 256K
00111 23-17 217 = 128K
01000 23-16 216 = 64K
01001 23-15 215 = 32K
01010 23-14 214 = 16K
01011 23-13 213 = 8K
01100 23-12 212 = 4K
01101 23-11 211 = 2K
01110 23-10 210 = 1K
01111 23-9 29 =512
10000 23-8 28 =256
10001-11111 Reserved Undefined




Programmable Bank Switching

The 'C3x has an internal register that contains the MSBs (as defined by the
BNKCMP field) of the last address used for a read or write over the primary inter-
face. At reset, the register bits are set to 0. If the MSBs of the address being used
for the current primary interface read do not match those contained in this
internal register, a read cycle is not asserted for one H1/H3 clock cycle. During
this extra clock cycle, the address bus switches over to the new address, but
STRB is inactive (high). The contents of the internal register are replaced with
the MSBs being used for the current read of the current address. If the MSBs
of the address being used for the current read match the bits in the register, a
normal read cycle takes place.

If repeated reads are performed from the same memory bank, no extra cycles
are inserted. When a read is performed from a different memory bank, an extra
cycle is inserted. This feature can be disabled by setting BNKCMP to 0. The
insertion of the extra cycle occurs only when a read is performed. The
changing of the MSBs in the internal register occurs for all reads and writes
over the primary interface.

Figure 9-5 shows the addition of an inactive cycle when switches between
banks of memory occur.
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Figure 9-5. Bank-Switching Example

g . /

w0 !
X >|< _ XX

D L Read : Read { Read »

N\ /

I
| Extra
cycle

Note:

After changing BNKCMP, up to three instructions are fetched before the

change in the bank size occurs.
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9.6 External Memory Interface Timing

This section discusses functional timing of operations on the primary bus and the
expansion bus, the two independent parallel buses or the 'C3x devices.

The parallel buses implement three mutually exclusive address spaces distin-
guished through the use of three separate control signals: STRB, MSTRB, and
IOSTRB. The STRB signal controls accesses on the primary bus, and the
MSTRB and IOSTRB signals control accesses on the expansion bus. Since
the two buses are independent, you can make two accesses in parallel.

With the exception of bank switching and the external HOLD function (discussed
later in this section), timing of primary bus cycles and MSTRB expansion bus
cycles are identical and are discussed collectively. The abbreviation (M)STRB is
used in references that pertain equally to STRB and MSTRB. Similarly, (X)R/W,
(X)A, (X)D, and (X)RDY are used to symbolize the equivalent primary and expan-
sion bus signals. The IOSTRB expansion bus cycles are timed differently and are

discussed independently.

9.6.1 Primary-Bus Cycles

All bus cycles comprise integral numbers of H1 clock cycles. One H1 cycle is
defined to be from one falling edge of H1 to the next falling edge of H1. For
full-speed (zero wait-state) accesses, writes require two H1 cycles and reads
require one cycle; however, if the read follows a write, the read requires two
cycles.This applies to both the primary bus and the MSTRB expansion bus
access.

Note: Posted Write

The data written to external memory by CPU or DMA is “latched” into the bus
logic, allowing the CPU to continue with internal operation. Consequently,
writes to external memory effectively require only one cycle if no accesses to
that interface are in progress. However, if the next DMA or CPU access is to
the same external bus, the DMA or CPU waits and the write is considered a
2-cycle operation. This is normally referred to as posted-write.

The following discussions pertain to zero wait-state accesses unless otherwise
specified.

TMS320C30 and TMS320C31/VC33 External-Memory Interface 9-15
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The (M)STRB signal is low for the active portion of both reads and writes. The
active portion lasts one H1 cycle. Additionally, before and after the active portion
((M)STRB low) of writes only, there is a transition cycle of H1. This transition
cycle consists of the following sequence:

1) (M)STRB is high.
2) If required, (X)R/W changes state on H1 rising.

3) If required, address changes on H1 rising if the previous H1 cycle was the
active portion of a write. If the previous H1 cycle was a read, address
changes on the next H1 falling.

Figure 9-6 illustrates a read-read-write sequence for (M)STRB active and no
wait states. The data is read as late in the cycle as possible to allow maximum
access time from address valid. Although external writes require two cycles,
internally (from the perspective of the CPU and DMA) they require only one
cycle if no accesses to that interface are in progress. In the typical timing for
all external interfaces, the (X)R/W strobe does not change until (M)STRB or
IOSTRB goes inactive.



External Memory Interface Timing

Figure 9-6. Read-Read-Write for (M)STRB = 0

Note: (x) RDY is sampled low on rising edge of H1. Data is read next falling edge of H1.

Note: Back-to-Back Read Operations

(M)STRB remains low during back-to-back read operations.
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Figure 9-7 illustrates a write-write-read sequence for (M)STRB active and no
wait states. The address and data written are held valid approximately one-half

cycle after (M)STRB changes.

Figure 9-7. Write-Write-Read for (M)STRB = 0

o)

-

Write data >

Write data

-

\

Read
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Figure 9-8 illustrates a read cycle with one wait state. Since (X)RDY = 1, the
read cycle is extended. (M)STRB, (X)R/W, and (X)A are also extended one
cycle. The next time (X)RDY is sampled, it is 0.

Figure 9-8. Use of Wait States for Read for (M)STRB = 0

H3

H1

(M)STRB

XR/W

‘@_
)
QO
o
=
=.
T
Q
2
QO

X
g N e —NV
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Figure 9-9 illustrates a write cycle with one wait state. Since initially (X)RDY = 1,
the write cycle is extended. (M)STRB, (X)R/W, and (X)A are extended one cycle.

The next time (X)RDY is sampled, it is 0.

Figure 9-9. Use of Wait States for Write for (M)STRB = 0

Y avaww =

SN NS

Extra
cycle

(X)RDY
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9.6.2 Expansion-Bus I/O Cycles

In contrast to primary bus and MSTRB cycles, IOSTRB reads and writes are
both two cycles in duration (with no wait states) and exhibit the same timing.
During these cycles, address always changes on the falling edge of H1, and
IOSTRB is low from the rising edge of the first H1 cycle to the rising edge of
the second H1 cycle. The IOSTRB signal always goes inactive (high) between
cycles, and XR/W is high for reads and low for writes.

Figure 9-10 illustrates read and write cycles when IOSTRB is active and there
are no wait states. For IOSTRB accesses, reads and writes require @ minimum
of two cycles. Some off-chip peripherals might change their status bits when
read or written to. Therefore, it is important to maintain valid addresses when
communicating with these peripherals. For reads and writes when IOSTRB is
active, IOSTRB is completely framed by the address.

Figure 9-10. Read and Write for IOSTRB = 0

o _/./_\_/_\_/, NI N

v N S S D

XRW ! 1 } N

o @—4( R N
w_ N/ N\ [

é

[
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Figure 9-11 illustrates a read with one wait state when IOSTRB is active, and
Figure 9-12 illustrates a write with one wait state when IOSTRB is active. For
each wait state added, IOSTRB, XR/W, and XA are extended one clock cycle.
Writes hold the data on the bus one additional cycle. The sampling of XRDY

is repeated each cycle.

Figure 9-11. Read With One Wait State for IOSTRB = 0

N S A S

DNV D U an Ul
XR/W / \\ '

XA >‘< | | )‘(

XD E ; { Read ) E E

o — N
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Figure 9-12. Write With One Wait State for IOSTRB = 0

w_ A NS S A

XR/W \ ' ' : //
| : | . .
XD < Write data : :

- , ﬁ/ﬁ\ﬁ\i/l
' I L_Ex'tra_’l

cycle

TMS320C30 and TMS320C31/VC33 External-Memory Interface 9-23



External Memory Interface Timing

Figure 9-13 through Figure 9-23 illustrate the various transitions between
memory reads and writes, and I/O writes over the expansion bus.

Figure 9-13. Memory Read and I/O Write for Expansion Bus

Hs_/_\_/ﬁ_/j_/_\_/_
e R T
w T N
XA Memory adlliress I I 110 adldress I )‘@

. Z ! | l I
o Gy S T Y

XRDY \. |
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Figure 9-14. Memory Read and I/O Read for Expansion Bus

. ﬁ TN
wE | N\ : )% : : : <
1 ' ' ' ' 1
o T
XR/W ! !

XA >< Memory‘ address ‘ I/0 addréss ‘ ><

< Read ) < I/O read )

XD

S N4 | \Z
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Figure 9-15. Memory Write and I/O Write for Expansion Bus

H3

I : ! : I I ! : . I
H1 \ \ \
MSTRE \ / !
' : ‘ : |
IOSTRB | ! : : ‘ : ‘
_ | ' : ! l l : ' : |
XRW | : ; : y ; : ;

XA j( Memory address I/O address
1 1 - 1

XD ——< Memory write < 1/0O write >—

oo N\ / N
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Figure 9-16. Memory Write and I/O Read for Expansion Bus

H3

H1

MSTRB

IOSTRB

XR/W

XA l Memory address 1/0 address
1 . 1 - - 1

XD ——< Memory write < I/Olread —

s ./ N/

AN
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Figure 9-17. 1/O Write and Memory Write for Expansion Bus

H1

MSTRB

IOSTRB

XR/W

XA 1/0 address Memory address J(
1 ‘ t 1 1

/
AN

Memory write >—

\_ /

XD

- ./

1/0 write

A
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Figure 9—18. 1/O Write and Memory Read for Expansion Bus

TN

H1

MSTRB

IOSTRB

XR/W

XA I/0O address Memory address

XD < 1/O write ' Read

. — N/ ~
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Figure 9-19. I/O Read and Memory Write for Expansion Bus

External Memory Interface Timing
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Figure 9-20. I/0O Read and Memory Read for Expansion Bus

XR/W

XA >'< I/0 add‘ress ' X Memory address

XD i{ lOread D \ Read
w0y i N\ \ /
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Figure 9-21. I/O Write and I/O Read for Expansion Bus

H3 . . . . . .
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Figure 9-22. I/O Write and I/O Write for Expansion Bus

S SR NV NIV N o
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Figure 9-23. I/O Read and I/O Read for Expansion Bus
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Figure 9-24 and Figure 9-25 illustrate the signal states when a bus is inactive
(after an IOSTRB or (M)STRB access, respectively). The strobes (STRB,

MSTRB and IOSTRB) and (X)R/W) go to 1. The address is driven with last exter-
nal bus access, and the ready signal (XRDY or RDY) is ignored.

Figure 9-24. Inactive Bus States for IOSTRB

IOSTRB

XR/W | ‘

Write data

XRDY

\ : / XRDY ignored

Yy

Y S

Bus inactive
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Figure 9-25. Inactive Bus States for STRB and MSTRB

Write data

/
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9.6.3 Hold Cycles

Figure 9-26 illustrates the timing for HOLD and HOLDA. HOLD is an external
asynchronous input. There is a minimum of one cycle delay from the time when
the processor recognizes HOLD = 0 until HOLDA = 0. When HOLDA = 0, the
address, data buses, and associated strobes are placed in a high-impedance
state. All accesses occurring over an interface are completed before a hold is
acknowledged.

Figure 9-26. HOLD and HOLDA Timing
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Chapter 10

TMS320C32 Enhanced External Memory
Interface

'032 The 'C32 external memory interface provides greater flexibility by improving

the ’C3x core with several new features. This chapter describes these features
and enhancements in detail.
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TMS320C32 Memory Features

10.1 TMS320C32 Memory Features

10-2

The 'C32 external memory interface includes the following features:

a

a

One external pin, PRGW, configures the external-program-memory width
to 16 or 32 bits.

Two sets of memory strobes (STRB0O and STRB1) and one IOSTRB allow
zero glue-logic interface to two banks of memory and one bank of external
peripherals.

Separate bus control registers for each strobe-control wait-state genera-
tion, external memory width, and data-type size.

Each memory STRB handles 8-, 16- or 32-bit external data accesses
(reads and writes) to 8-, 16-, or 32-bit-wide memory.

Multiprocessor support through the HOLD and HOLDA signals, is valid for
all the STRBs.



TMS320C32 Memory Overview

10.2 TMS320C32 Memory Overview

The following sections describe examples, control register setups, and
restrictions necessary to fully understand the operation and functionality of the
external memory interface.

10.2.1 External Memory Interface Overview

The ’C32 memory interface accesses external memory through one 24-bit
address and one 32-bit data bus that is shared by three mutually-exclusive
strobes (STRBO, STRB1, and IOSTRB). Depending on the address accessed,
the C32 activates one of these strobes according to the memory map shown
in Figure 4-3 on page 4-8.

STRBO0 and STRB1 can access 8-, 16-, or 32-bit data from 8-, 16-, or 32-bit
wide memory. This is accomplished by four signals in each strobe:
STRBx_B3/A_4, STRBx_B2/A_o, STRBxB1, and STRBx_BO0. These signals
serve as byte-enable pins to access one byte, half word, or a full word from the
external memory. The first two signals also serve as additional address pins
to perform two or four consecutive accesses in 8-bit or 16-bit-wide external
memory. The '‘C32 controls the behavior of these pins through the data size
and memory width bit fields in the corresponding strobe control register, as
follows:

(1 Memory width (default value dependent on PRGW pin level)
B 8-bit-wide memory

m  STRBx_B3/A_4 and STRBx_B2/A_o as address pins
= STRBx_BO0 as byte-enable/chip-select signal
m  STRBx_ B1 unused

B 16-bit-wide memory

m  STRBx_B3/A_q as address pin
= STRBx_B1 and STRBx_BO0 as byte-enable signal
m  STRBx_B2 unused

B 32-bit-wide memory

= STRBx_B3, STRBx_B2, STRBx_B1, and STRBx_BO0 as byte-
enable signals
1 Data size

B 8-bit data, physical address = logical address shift right by 2
W 16-bit data, physical address = logical address shift right by 1
B 32-bit data, physical address = logical address
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IOSTRB can access 32-bit data from 32-bit wide memory. It does not have the
flexibility of STRBO and STRB1 since it is composed of a single signal:
IOSTRB. IOSTRB bus cycles are different from those of STRB0 and STRB1
and are discussed in Section 10.10. This timing difference accomodates
slower I/O peripherals.

The 'C32 memory interface parallel bus implements three mutually-exclusive
address spaces distinguished via three separate control signals as shown in
Figure 10-1. STRBO and STRB1 support 8-, 16-, or 32-bit data access in 8-,
16-, 32-bit-wide external memory and 16-, 32-bit program access in 16-/32-bit-
wide external memory. IOSTRB address space supports 32-bit data/program ac-
cess in 32-bit-wide external memory. Internally, the 'C32 has a 32-bit architecture,
hence, the memory interface packs and unpacks the data accessed accordingly.

Figure 10-1. Memory Address Spaces

32-bit
CPU

Strobe
control
registers

Program in 32-bit-wide memory

-
‘ | 8-, 16-, 32-bit data in
c32 I STRBO 8-, 16-, 32-bit-wide memory
——P
| Program in 16-, 32-bit-wide memory
|
PRGW pi :
pin
| - 8-, 16-, 32-bit data in
| STRBI 8-, 16-, 32-bit-wide memory
: Program in 16-, 32-bit-wide memory
Memory 1
interface i
| 32-bit data in 32-bit-wide
| IOSTRB memory
—»
|
|
d

10.2.2 Program Memory Access

10-4

The 'C32 supports program execution from 16- or 32-bit external memory
width. The PRGW pin configures the width of the external program memory.
When this pin is pulled high, the 'C32 executes from 16-bit wide memory.
When this pin is pulled low, the 'C32 executes from 32-bit wide memory. For
16-bit wide zero wait-state memory, the 'C32 takes two instruction cycles to
fetch a single 32-bit instruction. During the first cycle the lower 16 bits of the
instruction are fetched. During the second cycle, the upper 16 bits are fetched
and concatenated with the lower 16 bits. 32-bit memory fetches are identical
to those of the 'C30 and 'C31.
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The PRGW status bit field of the CPU status (ST) register reflects the setting
of the PRGW pin. Figure 10-2 depicts all the bit fields of the CPU status (ST)
register.

Figure 10-2. Status Register

'
31-16 + 15 14

13 12 + 11 10 9 8 + 7 6 5 4 + 3 2 1 0

' PRGW | INT ' , \
XX 1 Gatus | config GIE | cC : CE | CF | xx | RM :OVM LUF | Lv | UF : N |z ]|V |oc
'R RW RW RW!'!RW RW RW'!RW RW RW RW'!RW RW RW RW

Notes: 1) xx = reserved bit, read as 0

The status of the PRGW pin also affects the reset value of the physical memory
width bit fields of the STRB0 and STRB1 bus-control registers. The physical
memory width is set to 32-bit memory width if the PRGW pin is logic low after
the device reset. The physical memory width is set to 16-bit memory width if
the PRGW pin is logic high after the device reset (see Section 10.3 for more
information).

The cycle before and the cycle after changing the PRGW should not
perform a program fetch over the external memory interface.

10.2.3 Data Memory Access

The 'C32 can load and store 8-, 16-, or 32-bit data quantities from and into
memory. Because the CPU has a 32-bit architecture, the device internally
handles all 8-, 16-, or 32-bit data quantities as a 32-bit value. Hence, the external
memory interface handles the conversion between 8- and 16-bit data quantities
to the internal 32-bit representation. The external memory interface also
handles the storage of 32-, 16-, or 8-bit data quantities into 32-, 16-, or 8-bit wide
memories.

10.2.3.1 8-, 16-, or 32-Bit Integers Data Types

The 'C32 supports 8-, 16- or 32-bit integer data quantities. When 8- or 16-bit
integers are read from external memory, the value is loaded into the LSBs of
the register with the MSBs sign-extended or zero-filled. The polarity of the sign
ext/zero-fill bit field of the corresponding STRB control register controls the
sign extension or zero fill (see paragraphs 10.3.1.1 and 10.3.1.2). The 32-bit
integer data access is identical to that of the 'C30 and 'C31.
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10.2.3.2 16- or 32-Bit Floating-Point Data Types

10-6

The 'C32 supports 16- or 32-bit floating point data. For 16-bit floating-point
reads, the eight MSBs are the signed exponent and the eight LSBs are the
signed mantissa (see Section 5.3.2, ‘C32 Short Floating-Point Format for
External 16-Bit Data, on page 5-6). When a 16-bit floating-point value is loaded
into a 40-bit register, the external memory interface zero fills the least signifi-
cant 24 bits of the register. When a 16-bit floating-point value is used as a 32-bit
on-chip input operand, the external memory interface zero fills the 16 LSBs of
the 32-bit input operand. The 32-bit floating-point data access is identical to
that of the 'C30 and 'C31.
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10.3 Configuration

To access 8-, 16-, or 32-bit data (types) from 8-, 16-, or 32-bit wide memory, the
memory interface of the 'C32 device uses either strobe STRBO or STRB1 with
four pins each. These pins serve as byte-enable and/or additional-address pins.
In conjunction with a shifted version of the internal address presented to the exter-
nal address, the 'C32 can select a single byte from one external memory location
or combine up to four bytes from contiguous memory locations. The behavior of
these pins is controlled by the external memory width and the data type size. The
selected data size also determines the amount of internal-to-physical address
shift. You can assign these values to the 'C32 memory interface through bit fields
in the bus control registers.

10.3.1 External Interface Control Registers

The following sections describe the bus control registers used to manipulate
the byte addressability features of the ’C32. Figure 10-3 shows the external
interface control memory map.

Figure 10-3. Memory-Mapped External Interface Control Registers

Address Register
808060h IOSTRB control
808061h Reserved
808062h Reserved
808063h Reserved
808064h STRBO control
808065h Reserved
808066h Reserved
808067h Reserved
808068h STRB1 control
808069h Reserved
80806Fh Reserved
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10.3.1.1 STRBO Control Register

The STRBO control register (Figure 10-4) is a 32-bit register that contains the
control bits for the portion of the external bus memory space that is mapped to
STRBO. The following table lists the register bits with the bit names and functions.
At the system reset, OF10F8h is written to the STRBO control register if the PRGW
pin is logic low and 0710F8h is written to the STRBO control register if the PRGW
pin is logic high.

Figure 10-4. STRBO Control Register

31 28127 24 .23 22 21 20 19 18 17 16
- ' ' STBB STR_B Sign e?d/ Plimysicgl memory | .o type size
: : switch | config | zero fill . Wwidth
RIW ! RW ! RW RW RW . RW RIW
15 13 121 11 8.7 54 . 3 2 1 0
| XX | + BNKCMP WTCNT SWW [ HIZ |NOHOLD | HOLDST
' RW RIW RAV RW  RW R

Notes: 1) R=read, W = write

2) xx =reserved, read as 0

10.3.1.2 STRB1 Control Register

The STRB1 control register (Figure 10-5) is a 32-bit register that contains the
control bits for the portion of the external bus memory space that is mapped
to STRBH1. Figure 10-5 shows the register bits with their names and functions.
At system reset, OF10F8h is written to the STRB1 control register if the PRGW
pin is logic low and 0710F8h is written to the STRB1 control register if the
PRGW pin is logic high.

Figure 10-5. STRB1 Control Register

31 24'23 21 20 '19 18 17 16'15 13 '12 8'7 5 4' 32 0
X . , Physical | Data- 1 X X
o oxx SNV oy | type + xx + BNKCMP + WTCNT | SWw | xx
0 zero fill . . ' ' ' '
. , Width size ] , ,
v RW RW , RW RW v RW . RW RIW

Notes: 1) R=read, W = write
2) xx =reserved, read as 0
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The instruction immediately preceding a change in the data-size or
memory-width bit fields should not perform a multicycle store. Do
not follow a change in the data-size or memory-width bit fields with
a store instruction. Also, do not perform a load in the next two
instructions following a change in the data-size or memory-width
bit fields

10.3.1.3 IOSTRB Control Register

The IOSTRB control register (Figure 10-6) is a 32-bit register that contains the
control bits for the portion of the external bus memory space that is mapped to
IOSTRB. Unlike the STRBO and STRB1, there is no byte-enable signal for the
IOSTRB. The data access through the IOSTRB is always 32-bit. The following
table lists the register bits with the bit names and functions. At the system reset,
OF8h is written to the IOSTRB control register. The IOSTRB timing is identical
to the ‘C30 IOSTRB timing.

Figure 10-6. IOSTRB Control Register

31 16 115 12 111 8 7 514 3 2 0
| XX XX WTCNT SWW XX
RW RW

XX

] ] '

1 1 Il

' ' '

] ] ]
Notes: 1) R=read, W = write

2) xx =reserved, read as 0

Note:

After changing the bit fields of the IOSTRB control register, up to three
instructions are fetched before the IOSTRB bus is reconfigured.
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Table 10-1 describes the bits in the STRBO, STRB1, and the IOSTRB control
registers.

Table 10-1. STRBO0, STRB1, and IOSTRB Control Register Bits

Reset
Abbreviation Value Name Description

HOLDST 0 Hold status bit This bit signals whether the port is being held (HOLDST = 1),
or is not being held (HOLDST = 1). This status bit is valid
whether_the port has been held through hardware or soft-
ware. (STRBO conitrol register only)

NOHOLD 0 Port hold signal NOHOLD allows or disallows the port to be held by an exter-
nal HOLD signal. When NOHOLD = 1, the 'C3x takes over
the external bus and controls it, regardless of serviced or
pending requests by external devices. No hold acknowledge
(HOLDA) is asserted when a HOLD is received. However, it
is asserted if an internal hold is generated (HIZ = 1). (STRBO
control register only)

HIZ 0 Internal hold When set (HIZ = 1), the port is put in hold mode. This is
equivalent to the external HOLD signal. By forcing the high-
impedance condition, the 'C3x can relinquish the external
memory port through software. HOLDA goes low when the
port is placed in the high impendance state. (STRBO control
register only)

SWW 11 Software wait mode In conjunction with WTCNT, this 2-bit field defines the mode
of wait-state generation.

WTCNT 111 Software wait mode This 3-bit field specifies the number of cycles to use when
in the software wait mode for the generation of internal wait
state. The range is 0 (WTCNT =00 0) to 7 (WTCNT = 111)
H1/H3 cycles.

BNKCMP 10000 Bank compare This 5-bit field specifies the number of MSBs of the address to
be used to define the bank size. (STRBO and STRB1 control
registers only)

Data type size 11 (STRBO and STRBH1 Indicates the size of the data type written in memory.
control registers only) Bit 17 Bit 16 Data Type Size

0 0 8 bit

0 1 16 bit

1 0 Reserved
1 1 32 bit

10-10



Configuration

Table 10-1. STRBO, STRB1, and IOSTRB Control Register Bits (Continued)
Reset
Abbreviation Value Name Description
Physical 01 (STRBO and STRBH1 Indicates the size of the physical memory connected to the
memory width or control registers only)  device. The “reset” value depends on the status of the

11

PRGW pin. If the PRGW pin is logic low, the memory width
is configured to 32 bits (= 11o). If the PRGW pin is logic high,
the physical memory width is configured to 16 bits (= 015).
This field can have the following values:

Bit17 Bit16 Data Type Size

0 0 8 bit

0 1 16 bit (reset value if PRGW = 1)
1 0 Reserved

1 1 32 bit (reset value if PRGW = 0)

Setting the physical memory width field of the STRBO or
STRB1 control registers changes the functionality of the
STRBO or STRB1 signals.

[d When the physical memory width field is configured to 32
bits, the corresponding STRBx_B0-STRBx_B3 signals
are configured as byte-enable pins (see Figure 10-10
on page 10-20).

(1 When the physical memory width field is configured to
16 bits, the corresponding STRBx_B3/A-1 signal is
configured as an address pin while the STRBx_B0 and
STRBx_B1 signals are configured as byte-enable pins
(see Figure 10-14 on page 10-26).

(1 When the physical memory width field is configured to
8 bits, the STRBx_B3/A-3 and STRBx_B2/A-2 signals
are configured as byte-enable pins (see Figure 10-18
on page 10-32).

Once an STRBx_Bx signal is configured as an address pin,
it is active for any external memory access (STRBO, STRB1,
IOSTRB, or external fetch).
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Table 10-1. STRBO0, STRB1, and IOSTRB Control Register Bits (Continued)

Reset

Abbreviation Value Name Description

Sign ext/ 0 (STRBO and STRBH1 Selects the method of converting 8- and 16-bit integer data

zero-fill control registers only)  into 32-bit integer data when transferring data from external
memory to an internal register or memory location. This field
can have the following values:

Bit 20 Physical Memory Width

0 8- or 16-bit integer reads are sign-extended to
32 bits (reset value).

1 The MSBs of 8- or 16-bit integer reads are zero-
filled to make the number 32 bits.

STRB config 0 STRB configuration Activates the STRBO Bx signals when accessing data from
STRBO or STRB1 memory spaces. This mode is useful
when accessing a single external memory bank that stores
two different data types, each mapped to a different STRB.
This field can have the following values.

Bit 21 Physical Memory Width

0 STRBO_Bx signals are active for locations
O0h-7FFFFFh and 880000h-8FFFFFh.
STRB1_Bx signals are active for locations
900000h-FFFFFFh (reset value).

1 STRBO_Bx signals are active for locations
Oh-7FFFFFh, 880000h—8FFFFFh and
900000h—-FFFFFFh. STRB1_Bx signals are
active for locations 900000h—FFFFFFh.

A functional representation of this configuration is shown in

Figure 10-7 on page 10-13.

STRB switch 0 (STRBO control regis-  Defines whether a single cycle is inserted between back-to-

ter only)

back reads when crossing STRBO or STRB1 to STRB1 to
STRBO boundaries (switching STRBs). The extra cycle
toggles the strobe signal during back-to-back reads. Other-
wise, the strobe remains low during back-to-back reads.
This field has the following values:

Bit 22 Physical Memory Width

0 Does not insert a single cycle between back-
to-back reads that switch from STRBO to
STRB1 or vice-versa (reset value).

1 Inserts a single cycle between back-to-back
reads that switch from STRBO to STRB1 or
vice-versa (reset value).
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Figure 10-7. STRB Configuration

STRBO_Bx
}_ STRBO_Bx
STRB config @j
STRB1 Bx 4T7

STRB1_Bx

10.3.2 Using Physical Memory Width and Data-Type Size Fields

Consider a ‘C32 connected to two banks of external memory. In this configura-
tion, one bank is mapped to STRBO while the other bank is mapped to STRB1.
The STRBO bank of memory is 32 bits wide and stores 32-bit data types. The
STRB1 bank of memory is 16 bits wide and stores 16-bit data types. You can
transfer these configurations to the ’C32 by setting the physical memory width
and data-type size fields of the respective STRBO and STRB1 control registers.
You also must clear the STRB config bit field to 0 since the banks are separate
memories. Note that ‘C32 address pins A>zAo0A»1...A1Ag are connected to the
STRBO memory bank address pins Ao3A20Az1...A1Ap. But 'C32 address pins
AxsAsq...A1Ag A_y are connected to the STRB1 memory-bank address pins

Executing the following code on this device results in the data-access
sequence shown in Table 10-2.

1) LDI 4000h, AR1 ; ARl = 4000h

2) LDI *AR1++, R2 ; R2 = *4000h and ARl = AR1 + 1

3) ADDI *AR1++, R2 ; R2 = R2 + *400lh and ARl = AR1 + 1
4) ADDI *AR1++, R2 ; R2 = R2 + *4002h and AR1 = ARl + 1
5) ADDI *AR1++, R2 ; R2 = R2 + *4003h and ARl = AR1 + 1
6) LDI 900h, AR2 ; AR2 = 900h

7) LSH 12, AR2 ; AR2 = 900000h

8) LDI *AR2++, R3 ; R3 = *900000h and AR2 = AR2 + 1

9) ADDI *AR2, R3 ; R3 = R3 + 900001h
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By setting the bit fields of the STRBO bus control register with a physical-
memory width of 32 bits and a data type size of 32 bits, the external address
referring to the STRBO location is identical to the internal address used by the
‘C32 CPU. Alternatively, setting the bit fields of the STRB1 bus control register
with a physical memory width of 16-bit and a data-type size of 16-bit, the ad-
dress presented by the ‘C32 external pins is the internal address shifted right
by one bit with Ax3 driving Asz and As,. Since the STRB1 memory-bank address
pins AxsAxAs1...AjAg are connected to the ‘C32 address pins AooAsy...A1AxA_,
the address seen by the STRB1 memory bank is identical to the ‘C32 CPU
internal address.

Table 10-2. Data-Access Sequence for a Memory Configuration with Two Banks

Internal External Accessed
Instruction #  Address Bus Address Pins Active Strobe Byte Enable  Data Pins
2 4000h 4000h STRBO_B0/B1/B2/B3 D3y_g 4000h
() 4001h 4001h STRBO_B0/B1/B2/B3 D3y_g 4001h
(4) 4002h 4002h STRBO_B0/B1/B2/B3 D3i_g 4002h
(5) 4003h 4003h STRBO_B0/B1/B2/B3 D3i_g 4003h
(8) 900000h C80000h STRB1_B0/B1 and Dy59 900000h

STRB1_B3/A_{ =0
9) 900001h C80001h STRB1_B0/B1 and D159 900001h

STRB1_B3/A_1 =1

The ability of the ‘C32 device to select a single byte from a single external
memory location or combinations of bytes from several contiguous memory
locations dictates that the internal address seen by the CPU correspond to a
shifted version of the address presented to the external pins. The ‘C32 external
memory interface handles this conversion automatically as long as you configure
the bus control register to match the external memory configuration present in
your hardware implementation.

As seen in Figure 2-8 on page 2-20, ’C32 handles nine different memory
access cases. The following sections discuss these cases in detail.
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10.4 Programmable Wait States

The 'C3x has its own internal software-configurable ready-generation capability
for each strobe. This software wait-state generator is controlled by configuring
two fields in the primary or expansion bus interface control registers. Use the
WTCNT field to specify the number of software wait states to generate and use
the SWW field to select one of the following four modes of wait-state generation:

[0 External RDY. Wait states are generated solely by the external RDY line
ignoring software wait states.

O WTCNT-generated RDYwtcnt. Wait states generated solely by the software
wait-state generator ignoring external RDY signals.

O Logical-AND of RDY and RDYwtcnt. Wait states generated with a logical
AND of internal and external ready signals. Both signals must occur.

1 Logical-OR of RDY and RDYwtcnt. Wait states are generated with a logical
OR of internal and external ready signals. Either signal can generate ready.

The four modes are used to generate the internal ready signal, RDYjpt, that
controls accesses. As long as RDYjyt = 1, the current external access is
delayed. When RDY;jyt = 0, the current access completes. Since the use of
programmable wait states for both external interfaces is identical, only the
primary bus interface is described in the following paragraphs.

RDY,yicnt is an internally generated ready signal. When an external access is
begun, the value in WTCNT is loaded into a counter. WTCNT can be any value
from 0 through 7. The counter is decremented every H1/H3 clock cycle until
it becomes 0. Once the counter is set to 0, it remains set to 0 until the next
access. While the counter is nonzero, RDY ytent = 1. While the counter is 0,
RDYwtcnt = 0.

Table 10-3 shows the truth table for each value of SWW and the different
combinations of RDY, RDY ycnt, and RDYjp.

Note:

At reset, the ‘C3x is programmed with seven wait states for each external
memory access. These wait states are inserted to ensure the system can func-
tion with slow memories. To maximize system performance when accessing
external memories, you need to decrease the number of wait states.

After changing wait states, up to three instructions will be fetched before the
change in the wait-state occurs.
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Table 10-3. Wait-State Generation

Inputs Output
SWW Bit
Field /RDYext /RDYwtcnt /RDYint Functional Description
00 0 X 0 Wait until external RDY is signaled
1 X 1
01 X 0 0 Wait until internal wait state generator counts
downto 0
X 1 1
10 0 0 Wait until first signal: external RDY or the
0 1 0 internal wait state generator (logical OR)
1 0 0
1 1 1
11 0 0 0 Wait until both external RDY is signaled and
1 1 wait state generator counts down to 0 (logical
AND)
1 0 1
1 1 1
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10.5 Programmable Bank Switching

Programmable bank switching allows you to switch between external memory
banks without having to insert wait states externally due to memories that require
several cycles to turn off. Bank switching is implemented on STRBO and STRB1
only.

The size of a bank is determined by the number of bits specified to be examined
on the BNKCMP field of the primary bus control register. For example, if
BNKCMP = 16, the 16 MSBs of the address are used to define a bank (see
Figure 9-4). Since addresses are 24 bits, the bank size is specified by the eight
LSBs, yielding a bank size of 256 words. If BNKCMP > 16, only the 16 MSBs
are compared. Bank sizes from 28 = 256 to 224 = 16M are allowed. Table 9-6
summarizes the relationship between BNKCMP, the address bits used to define
a bank, and the resulting bank size.

Figure 10-8. BNKCMP Example

\h 24-bit address "L

23 817 0

Fi Number of bits to compare a‘: Defines bank size —Df

Table 10-4. BNKCMP and Bank Size

BNKCMP MSBs Defining a Bank Bank Size (32-Bit Words)
00000 None 224 = 16M
00001 23 223 = gM
00010 23-22 222 = 4M
00011 23-21 221 = oM
00100 23-20 220 = 1M
00101 23-19 219 = 512K
00110 23-18 218 = 256K
00111 23-17 217 = 128K
01000 23-16 216 = 64K
01001 23-15 215 = 32K
01010 23-14 214 = 16K
01011 23-13 213 = 8K
01100 23-12 212 - 4K
01101 23-11 211 = 2K
01110 23-10 210 = 1K
01111 23-9 29 =512
10000 23-8 28 - 256
10001-11111 Reserved Undefined
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The ’C3x has an internal register that contains the MSBs (as defined by the
BNKCMP field) of the last address used for a read or write over the primary inter-
face. At reset, the register bits are set to 0. If the MSBs of the address being used
for the current primary interface read do not match those contained in this inter-
nal register, a read cycle is not asserted for one H1/H3 clock cycle. During this
extra clock cycle, the address bus switches over to the new address, but STRB
is inactive (high). The contents of the internal register are replaced with the
MSBs being used for the current read of the current address. If the MSBs of the
address being used for the current read match the bits in the register, a normal
read cycle takes place.

If repeated reads are performed from the same memory bank, no extra cycles
are inserted. When a read is performed from a different memory bank, memory
conflicts are avoided by the insertion of an extra cycle. This feature can be
disabled by setting BNKCMP to 0. The insertion of the extra cycle occurs only
when a read is performed. The changing of the MSBs in the internal register
occurs for all reads and writes over the primary interface.

Figure 9-5 shows the addition of an inactive cycle when switches between
banks of memory occur.

Figure 10-9. Bank-Switching Example
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Note:

After changing BNKCMP, up to three instructions are fetched before the
change in bank size occurs.
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10.6 32-Bit-Wide Memory Interface

The ’C32 memory interface to 32-bit-wide external memory uses STRBx_B3
through STRBx_BO pins as strobe-byte-enable pins as shown in Figure 10-10.
In this manner, the ’C32 can read from, or write to, a single 32-, 16-, or 8-bit value
from the external 32-bit-wide memory.

Figure 10-10. TMS320C32 External Memory Interface for 32-Bit SRAMs

'C32

AXX

R/W

STRBx_B3

STRBx_B2

STRBx_B1
STRBx_BO

D(31-24)
D(23-16)
D(15-8)
D(7-0)

> AXX > AXX | Axx »—{ AxX

»{ WE »| WE »| WE »—| WE

»| CS cs »{ CS »{ CS
1/0(7-0) 1/0(7-0) 1/0(7-0) 1/0(7-0)

A A A A

A A A A

Case 1: 32-Bit-Wide Memory With 8-Bit Data-Type Size
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When the data-type size is 8 bits, the ’C32 shifts the internal address two bits
to the right before presenting it to the external-address pins. In this shift, the
memory interface copies the value of the internal-address A,3 to the external-
address pins Ags, Aso, and As¢. The memory interface activates the STRBx_B3
through STRBx_BO pins according to the value of the internal address bits A,
and Aq as shown in Table 10-5. Figure 10-11 shows a functional diagram of
the memory interface for 32-bit-wide memory with an 8-bit data-type size.



32-Bit-Wide Memory Interface

Table 10-5. Strobe Byte-Enable for 32-Bit-Wide Memory With 8-Bit Data-Type Size

Internal Internal  Active Strobe
Aq Ag Byte Enable
0 0 STRBx_B0
0 1 STRBx_B1
1 0 STRBx_B2
1 1 STRBx_B3

Figure 10-11. Functional Diagram for 8-Bit Data-Type Size and 32-Bit External-Memory
Width
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Table 10-6. Example of 8-Bit Data-Type Size

For example, reading from or writing to memory locations 904000h to

904004h involves the pins listed in Table 10-6.

Internal External Active Strobe Accessed

Address Bus Address Pins Byte Enable Data Pins
904000h E41000h STRB1_B0 D7_o
904001h E41000h STRB1_B1 Dis_g
904002h E41000h STRB1_B2 Do3_16
904003h E41000h STRB1_B3 D31_o4
904004h E41001h STRB1_BO D7

Case 2: 32-Bit-Wide Memory With 16-Bit Data-Type Size

When the data-type size is 16 bits, the 'C32 shifts the internal address one bit
to the right before presenting it to the external-address pins. In this shift, the
memory interface copies the value of the internal-address A,3 to the external-
address pins Asz and As». Also, the memory interface activates the STRBX-B3
through STRBx_BO pins according to the value of the internal address bit Ag
as shown in Table 10-7. Figure 10-12 shows a functional diagram of the
memory interface for 32-bit-wide memory with 16-bit data-type size.

Table 10-7. Strobe Byte-Enable for 32-Bit-Wide Memory With 16-Bit Data-Type Size

10-22

Internal Ag

Active Strobe Byte Enable

0
1

STRBx_B1 and STRBx_B0

STRBx_B3 and STRBx_B2
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Figure 10-12. Functional Diagram for 16-Bit Data-Type Size and 32-Bit External-Memory
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For example, reading or writing to memory locations 904000h to 904004h
involves the pins listed in Table 10-8.

Table 10-8. Example of 16-Bit Data-Type Size and 32-Bit-Wide External Memory

Internal External Accessed
Address Bus  Address Pins  Active Strobe Byte Enable Data Pins
904000h C82000h STRB1_B1 and STRB1_B0 Di5_¢g
904001h C€82000h STRB1_B3 and STRB1_B2 D31_16
904002h C82001h STRB1_B1 and STRB1_B0 D15_¢
904003h C82001h STRB1_B3 and STRB1_B2 D31_16
904004h C82002h STRB1_B1 and STRB1_B0 Di5_0

TMS320C32 Enhanced External Memory Interface
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Case 3: 32-Bit-Wide Memory With 32-Bit Data-Type Size

When the data size is 32 bits, the 'C32 does not shift the internal address
before presenting it to the external address pins. In this case, the memory
interface copies the value of the internal address bus to the respective external-
address pins. Also, the memory interface activates STRBx_B3 through
STRBx_BO0 pins during accesses. Figure 10-13 shows a functional diagram
of the memory interface for 32-bit-wide memory with 32-bit data size.

Figure 10-13. Functional Diagram for 32-Bit Data Size and 32-Bit External-Memory Width
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For example, reading or writing to memory locations 904000h to 904004h
involves the pins listed in Table 10-9.

Table 10-9. Example of 32-Bit-Wide Memory With 32-Bit Data-Type Size

Internal External Accessed
Address Bus  Address Pins  Active Strobe Byte Enable Data Pins
904000h 904000h STRB1_B0, STRB1_B1, D319

STRB1_B2, and STRB1_B3

904001h 904001h STRB1_B0, STRB1_B1, D31_g
STRB1_B2, and STRB1_B3

904002h 904002h STRB1_B0, STRB1_B1, D31_g
STRB1_B2, and STRB1_B3

904003h 904003h STRB1_BO, STRB1_B1, Da1-0
STRB1_B2, and STRB1_B3

904004h 904004h STRB1_B0, STRB1_B1, Da1_0
STRB1_B2, and STRB1_B3
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10.7 16-Bit-Wide Memory Interface

The 'C32 memory interface to 16-bit-wide external memory uses STRBx_B3 pin
as an additional address pin, A_;, while using STRBx_B0 and STRBx_B1 as
strobe byte-enable pins as shown in Figure 10-14. Note that the external-
memory address pins are connected to the ‘C32 address pins AxxAoq...A1AA_;.
In this manner, the ‘C32 can read/write a single 32-, 16-, or 8-bit value from the
external 16-bit-wide memory.

Figure 10-14. External-Memory Interface for 16-Bit SRAMs
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Case 4: 16-Bit-Wide Memory With 8-Bit Data-Type Size

10-26

When the data type size is 8 bits, the ’C32 shifts the internal address two bits
to the right before presenting it to the external-address pins. In this shift, the
memory interface copies the value of the internal-address Ao3 to the external-
address pins Aoz, Aoo, and Aosq. The memory interface also copies the value
of the internal-address A4 to the external STRBx_B3/A_4 pin. Furthermore, the
memory interface activates the STRBx_B1 and STRBx_BO pins according to
the value of the internal address bit Ay as shown in Table 10-10. Figure 10-15
shows a functional diagram of the memory interface for 16-bit-wide memory
with 8-bit data-type size.
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Table 10-10. Strobe-Byte Enable Behavior for 16-Bit-Wide Memory with 8-Bit Data-Type Size

Internal Ag Active Strobe Byte Enable
0 STRBx_BO
1 STRBx_B1

Figure 10-15. Functional Diagram for 8-Bit Data-Type Size and 16-Bit External-Memory Width
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For example, reading or writing to memory locations 4000h to 4004h involves
the pins listed in Table 10-11.
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Table 10-11. Example of 8-Bit Data-Type Size and 16-Bit-Wide External Memory

Internal External Accessed
Address Bus Address Pins STRBO_B3/A_4 Active Strobe Byte Enable Data Pins
4000h 1000h 0 STRBO_BO D7_o
4001h 1000h 0 STRBO_B1 Di5_g
4002h 1000h 1 STRBO_BO D7_o
4003h 1000h 1 STRBO_B1 Di5_g
4004h 1001h 0 STRBO_BO D7_o

Case 5: 16-Bit-Wide Memory With 16-Bit Data-Type Size
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When the data-type size is 16 bits, the 'C32 shifts the internal address one bit
to the right before presenting it to the external address pins. In this shift, the
memory interface copies the value of the internal-address A3 to the external-
address pins Ass and Ax,. Also, the memory interface copies the value of the
internal-address A; to the external STRBx_B3/A_4 pin. Moreover, the memory
interface activates the STRBx_B1 and STRBx_BO during accesses.
Figure 10-16 shows a functional diagram of the memory interface for 16-bit-
wide memory with 16-bit data-type size.
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Figure 10-16. Functional Diagram for 16-Bit Data-Type Size and 16-Bit External-Memory
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For example, reading or writing to memory locations 4000h to 4004h involves
the pins listed in Table 10-12.

Table 10-12. Example of 16-Bit-Wide Memory With 16-Bit Data-Type Size

Internal External Accessed
Address Bus Address Pins STRBO_B3/A_4 Active Strobe Byte Enable Data Pins
4000h 2000h 0 STRBO0_BO0 and STRBO_B1 D15-0
4001h 2000h 1 STRB0_B0 and STRBO_BT1 Di5-0
4002h 2001h 0 STRBO0_BO0 and STRBO_B1 D15-0
4003h 2001h 1 STRBO0_BO0 and STRBO0_B1 D15-0
4004h 2002h 0 STRBO0_BO0 and STRBO_B1 D15-0
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Case 6: 16-Bit-Wide Memory with 32-Bit Data-Type Size

Figure 10-17.

Functional Diagram for 32-Bit Data-Type Size and 16-Bit External-Memory

When the data type size is 32 bits, the ’C32 does not shift the internal address
before presenting it to the external address pins. In this case, the memory
interface copies the value of the internal address bus to the respective external
address pins. The memory interface also toggles STRBx_B3/A_4 twice to
perform two 16-bit memory accesses. In the consecutive memory accesses,
the memory interface activates STRBx_B1 and STRBx_BO0. In summary, the
memory interface seems to add one wait state to the 32-bit data access.
Figure 10-17 depicts a functional diagram of the memory interface for 16-bit

wide memory with 32-bit data type size.
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For example, reading or writing to memory locations 4000h to 4004h involves

the pins listed in Table 10-13.
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Table 10-13. Example of 16-Bit-Wide Memory With 32-Bit Data-Type Size

Internal External Accessed
Address Bus  Address Pins STRB0_B3/A_; Active Strobe Byte Enable Data Pins
4000h 4000h 0 STRBO0_B0 and STRBO_B1 D15_0
4000h 1 STRBO0_B0 and STRBO_B1 D15_0
4001h 4001h 0 STRBO0_B0 and STRBO_B1 D15_0
4001h 1 STRBO0_B0 and STRBO_B1 D15_0
4002h 4002h 0 STRBO0_B0 and STRBO_B1 D15_0
4002h 1 STRBO0_B0 and STRBO_B1 D15_0
4003h 4003h 0 STRBO0_B0 and STRBO_B1 D15_0
4003h 1 STRBO0_B0 and STRBO_B1 D15_0
4004h 4004h 0 STRBO0_B0 and STRBO_B1 D15_0
4004h 1 STRBO0_B0 and STRBO_B1 D15_g

TMS320C32 Enhanced External Memory Interface 10-31



8-Bit-Wide Memory Interface

10.8 8-Bit-Wide Memory Interface

'C32 memory interface to an 8-bit wide external memory uses STRBx_B3 and
STRBx_B2 pins as additional address pins, A_{ and A_,, respectively, while
using STRBx_BO as strobe byte-enable pin as shown in Figure 10-18. The
external-memory address pins are connected to the 'C32’s address pins
As1Aog...A1AgA_1A 5. In this manner, the 'C32 can read/write a single 32-, 16-,
or 8-bit value from the external 8-bit-wide memory.

Figure 10-18. External Memory Interface for 8-Bit SRAMs
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Case 7: 8-Bit-Wide Memory With 8-Bit Data-Type Size

10-32

Similarly to case 4, the 'C32 shifts the internal address two bits to the right
before presenting it to the external-address pins when the data type is 8-bit. As
in case 4, the memory interface copies the value of the internal-address Ass to
the external-address pins Asg, Ass, and A,¢. But in case 7, the memory interface
also copies the value of the internal-address A to the external STRBx_B3/A_4
pin and the value of Aq to the external STRBx_B2/A_». Moreover, the memory
interface only activates the STRBx_BO0 pin during the external memory access.
Figure 10-19 shows a functional diagram of the memory interface for 8-bit-wide
memory with an 8-bit data-type size.
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Figure 10-19. Functional Diagram for 8-Bit Data-Type Size and 8-Bit External-Memory
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For example, reading or writing to memory locations A04000h to A04004h
involves the pins listed in Table 10-14.

Table 10-14. Example of 8-Bit-Wide Memory With 8-Bit Data-Type Size

Internal External Active Strobe Accessed
Address Bus Address Pins STRBO_B3/A_; STRB0_B3/A_, Byte Enable Data Pins
A04000h E81000h 0 0 STRB1_B0 D7_o
A04001h E81000h 0 1 STRB1_B0 D7_o
A04002h E81000h 1 0 STRB1_B0 D7_o
A04003h E81000h 1 1 STRB1_B0 D7_o
A04004h E81001h 0 0 STRB1_B0 D7_o
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Case 8: 8-Bit Wide Memory With 16-Bit Data-Type Size

Figure 10-20. Functional Diagram for 16-Bit Data-Type Size and 8-Bit External-Memory
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When the data-type size is 16 bits, the ‘C32 shifts the internal address one bit
to the right before presenting it to the external-address pins. In this shift, the
memory interface copies the value of the internal-address A3 to the external-
address pins A3 and A,. Also, the memory interface copies the value of the
internal-address A, to the external STRBx_B3/A_1 pin. Furthermore, the
memory interface toggles STRBx_B2/A_» twice to perform two 8-bit memory
accesses. Moreover, the memory interface activates the STRBx_BO0 during
accesses. In summary, the memory interface adds one wait state to the 16-bit
data access. Figure 10-20 shows a functional diagram of the memory inter-

face for 8-bit-wide memory with 16-bit data-type size.
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For example, reading or writing to memory locations A04000h to A04002h
involves the pins listed in Table 10-15.

Table 10-15. Example of 8-Bit-Wide Memory With 16-Bit Data-Type Size

Internal External s =3 Active Strobe Accessed
Address Bus Address Pins >1nB0_B3/A_q  STRBO_B3/A_» Byte Enable Data Pins
A04000h D02000h 0 0 STRB1 B0 D7_o
D02000h 0 1 STRB1_BO D7_g
A04001h D02001h 1 0 STRB1 B0 D7_o
D02001h 1 STRB1_BO0 D7_g
A04002h D02002h 0 0 STRB1 B0 D7_g
D02002h 0 1 STRB1_BO D7_o

Case 9: 8-Bit-Wide Memory With 32-Bit Data-Type Size

When the data-type size is 32 bits, the ‘C32 does not shift the internal address
before presenting it to the external-address pins. In this case, the memory
interface copies the value of the internal-address bus to the respective external-
address pins. The memory interface also toggles STRBx_B3/A_; and
STRBx_B2/A_o to perform four 8-bit memory accesses. In the consecutive
memory accesses, the memory interface activates STRBx_BO0. In summary,
the memory interface adds three wait states to the 32-bit data access.
Figure 10-21 shows a functional diagram of the memory interface for 8-bit-
wide memory with 32-bit data-type size.
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Figure 10-21.
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Functional Diagram for 32-Bit Data-Type Size and 8-Bit External-Memory
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8-Bit-Wide Memory Interface

For example, reading or writing to memory locations A04000h to A04001h

involves the pins listed in Table 10-16.

Table 10-16. Example of 32-Bit Data-Type Size and 8-Bit-Wide Memory

Address Bus  Address Pins  STABOB3/Ay  STRBOB3/A, gulpiiie LoORte
A04000h A04000h 0 0 STRB1_BO D70
A04000h 0 1 STRB1_BO D70
A04000h 1 0 STRB1_BO D7_o
A04000h 1 1 STRB1_BO Do
A04001h A04001h 0 0 STRB1_BO D7_o
A04001h 0 1 STRB1_BO D70
A04001h 1 0 STRB1_BO D7_o
A04001h 1 1 STRB1_B0 D7
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10.9 External Ready Timing Improvement

The ready (RDY) timing should relate to the H1 low signal as shown in
Figure 10-22. This is equivalent to the 'C4x ready timing, which increases the
time between valid address and the sampling of RDY. This facilitates the memory
hardware interface by allowing a longer address decode-circuit response time to
generate a ready signal.

Figure 10-22. RDY Timing for Memory Read
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10.10 Bus Timing

This section discusses functional timing of operations on the external memory
bus. Detailed timing specifications are contained in the TMS320C32 Data
Sheet. The timing of STRBO and STRB1 bus cycles is identical and discussed
in subsection 10.10.1. The abbreviation STRBXx is used in references that per-
tain equally to STRBO and STRB1. The IOSTRB bus cycles are timed differently
and are discussed in subsection 10.10.2.

10.10.1 STRBO and STRB1 Bus Cycles

All bus cycles comprise integral numbers of H1 clock cycles. One H1 cycle is
defined from one falling edge of H1 to the next falling edge of H1. For full speed
(zero wait-state) accesses on STRBO and STRB1, writes take two H1 cycles
and reads take one cycle. However, if the read immediately follows a write, the
read takes two cycles. Writes to internal memory take one cycle if no other
accesses to that interface are in progress. The following discussion pertains
to zero wait-state accesses, unless otherwise specified.

The STRBx signal is low for the active portion of both reads and writes (one
H1 cycle). Additionally, before and after the active portions of writes only
(STRBx low), there is a transition of one H1 cycle. During this transition cycle
the following might occur:

(1 STRBx s high.
[ lf required, R/W changes state on the rising edge of H1.

[ If required, address changes on the rising edge of H1 if the previous H1
cycle performed a write. If the previous H1 cycle performed a read,
address changes on the falling edge of H1.

Figure 10-23 illustrates a zero wait-state read-read-write sequence for STRBx
active. The data is read as late in the cycle as possible to allow for the maximum
access time from address valid. Although external writes take two cycles, writes
to internal memory take one cycle if no other accesses to that interface are in
progress. Similar to typical external interfaces, the R/W signal does not change
until STRBO and STRB1 are deactivated.

TMS320C32 Enhanced External Memory Interface 10-39



Bus Timing

Figure 10-23. Read-Read-Write Sequence for STRBx Active
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Figure 10-24 shows a zero wait-state write-write-read sequence for STRBx
active. During back-to-back writes, the data is valid when STRBx changes for the
first write, but for subsequent writes the data is valid when the address changes.

Figure 10-24. Write-Write-Read Sequence for STRBx Active
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Figure 10-25 shows a one wait-state read sequence and Figure 10-26 shows
the write sequence for STRBx active. On the first H1 cycle, RDY is high; therefore,
the read or write sequence is extended for one extra cycle. On the second H1
cycle, RDY is low and the read or write sequence is terminated.

Figure 10-25. One Wait-State Read Sequence for STRBx Active
H3
H1

STRBx

R/W

\ Read /

DY 7

Extra cycle —»

A
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Figure 10-26. One Wait-State Write Sequence for STRBx Active
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10.10.2 IOSTRB Bus Cycles
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In contrast to STRBO and STRB1 bus cycles, IOSTRB full speed (zero wait-
state) reads and writes consume two H1 cycles. During these cycles, the
IOSTRB signal is low from the rising edge of the first H1 cycle to the rising edge
of the second H1 cycle. Also, the address changes on the falling edge of the
first H1 cycle and R/W changes state on the falling edge of H1. This provides
a valid address to peripherals that may change their status bits when read or
written while IOSTRB is active. Moreover, the IOSTRB signal is high between
IOSTRB read and write cycles.
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Figure 10-27 illustrates a zero wait-state read and write sequence for IOSTRB
active. During writes, the data is valid when IOSTRB changes.

Figure 10-27. Zero Wait-State Read and Write Sequence for IOSTRB Active
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| | | | | |
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RDY \ :/ I\ :/

Figure 10-28 depicts a one wait-state read sequence for IOSTRB active.
Figure 10-29 shows a one wait-state write sequence for IOSTRB active. For
each wait-state added, IOSTRB, R/W, and A are extended for one extra clock
cycle. Writes hold the data on the bus for one extra clock cycle. RDY is sampled
on each extra cycle and the sequence is terminated when RDY is low.
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Figure 10-28. One Wait-State Read Sequence for IOSTRB Active
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Figure 10-29. One Wait-State Write Sequence for IOSTRB Active
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Figure 10-30 and Figure 10-31 illustrate the transitions between STRBx
reads and IOSTRB writes and reads, respectively. In these transitions, the ad-
dress changes on the falling edge of the H1 cycle.
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Figure 10-30. STRBx Read and IOSTRB Write
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Figure 10-31. STRBx Read and IOSTRB Read
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Figure 10-32 and Figure 10-33 illustrate the transitions between STRBx
writes and IOSTRB writes and reads, respectively. In these transitions, the

address changes on the falling edge of the H3 cycle.

Figure 10-32. STRBx Write and IOSTRB Write
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Figure 10-34 through Figure 10-37 show the transitions between IOSTRB
writes/reads and STRBx writes/reads. In these transitions, the address
changes on the rising edge of the H3 cycle.

Figure 10-34. I0OSTRB Write and STRBx Write
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IOSTRB Write and STRBx Read

Bus Timing
Figure 10-35.
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Figure 10-37. IOSTRB Read and STRBx Read

I I I I
| | | |
| | |
STRBx i i i \ ! /
X I I I X I
I I I |
IOSTRB N\ / |
I I I I !
_ | | | |
R/W / I I I | I
I I I I
| | | | !
A
I I
|

I I
I I
D : < I/0 Read Read
I I |
I I
RDY NV

Figure 10-38 through Figure 10-40 illustrate the transitions between reads
and writes.
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Figure 10-38. IOSTRB Write and Read
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Figure 10-40. IOSTRB Read and Read
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10.10.3 Inactive Bus States

Figure 10-41 and Figure 10-42 show the signal states when a bus becomes
inactive after an IOSTRB or STRBx, respectively. The strobes (STRBO,
STRB1, IOSTRB, and R/W) are deasserted going to a high level. The address
bus preserves the last value and the ready signal (RDY) is ignored.

Figure 10-41. Inactive Bus States Following IOSTRB Bus Cycle
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Inactive Bus States Following STRBx Bus Cycle

Figure 10-42.
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Chapter 11

Using the TMS320C31/VC33 and
TMS320C32 Boot Loaders

The 'C31/VC33 and 'C32 have on-chip boot loaders that can load and execute
programs received from a host processor, standard memory devices (includ-
ing EPROM), or via serial port.

Topic Page
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TMS320C31/VC33 Boot Loader

11.1 TMS320C31/VC33 Boot Loader 3'Cat

This section describes how to use the 'C31/VC33 microcomputer/boot loader
(MCBL/MP) function. This feature is unique to the ’C31/VC33 and 'C32, and is
not available on the 'C30 devices.

11.1.1 TMS320C31/VC33 Boot-Loader Description

The boot loader lets you load and execute programs that are received from a
host processor, inexpensive EPROMs, or other standard memory devices. The
programs to be loaded reside in one of three memory-mapped areas identified
as Boot 1, Boot 2, and Boot 3 (see the shaded areas of Figure 4-2 on page 4-6),
or they are received by means of the serial port.

The boot loader supports user-definable byte, half-word, and word-data formats,
as well as 32-bit fixed-burst loads from the 'C31/VC33 serial port. See Section
12.2, Serial Ports, on page 12-15 for a detailed description of the serial-port op-
eration.

The boot-loader code starts at location 0x45 in the on-chip ROM. The source
code is supplied in Appendix B.

11.1.2 TMS320C31/VC33 Boot-Loader Mode Selection

The 'C31/VC33 boot loader functions as a memory boot loader or a serial-port
boot loader. The boot-loader function is selected by resetting the processor
while driving the MCBL/MP pin high. Use interrupt pins INT3 — INTO to select
the boot-load operation. Figure 11-1 shows the flow of this operation, which de-
pends on the mode selected (external memory or serial boot).

(1 The memory boot loader supports user-definable byte, half-word, and full-
word data formats, allowing the flexibility to load a source program from
memories having widths of 8-, 16-, or 32 bits. The source program must
reside in one of three memory locations as listed in Table 11-1.
Figure 11-2 shows the memory boot-loader flow.

[ The serial-port boot loader supports 32-bit fixed-burst transfers, with
externally generated serial-port clock and frame-sync signals. The format
of the incoming data stream is similar to that of the memory boot loader,
except the source memory width and memory configuration word are
omitted. Figure 11-3 shows the serial-port boot-loader flow.
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Table 11-1. Boot-Loader Mode Selection

INTO INT1 INT2 INT3 Loader Mode Memory Addresses
0 1 1 1 External memory Boot 1 address 0x001000
1 0 1 1 External memory Boot 2 address 0x400000
1 1 0 1 External memory Boot 3 address 0xFFF000
1 1 1 0 32-bit serial Serial port 0

Figure 11-1.TMS320C31/VC33 Boot-Loader Mode-Selection Flowchart
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11.1.3 TMS320C31/VC33 Boot-Loading Sequence

The following is the sequence of events that occur during the boot load of a
source program. Table 11-2 shows the structure of the source program.

1)

Select the boot loader by resetting the 'C31/VC33 while driving the
MCBL/MP pin high and the corresponding INT3-INTO pin low. The
MCBL/MP must stay high during boot loading, but can be changed any-
time after boot loading has terminated. No reset is necessary when chang-
ing the INT3-INTO pin, as long as the 'C31/VC33 is not accessing the
overlapping memory (Oh—FFFh) during this transition (see Section

11.1.6). The INT3-INTO pin can be driven low anytime after deasserting
the RESET pin (driven low and then high).

The status of the interrupt flag (IF) register’s INT3-INTO bit fields dictate
the boot-loading mode. The bits are polled in the order described in the
flow chart in Figure 11-1.

If only the IF register’s INT3 bit field is set, the boot loader configures the
serial port for 32-bit fixed-burst mode reads with an externally generated
serial-port clock and FSR. Then, it proceeds to boot load the source pro-
gram from the serial port. The transferred data-bit order supplied to the
serial port must begin with the most significant bit (MSB) and end with the
least significant bit (LSB). Figure 11-3 depicts the boot-loader serial-port
flow.

Otherwise, the boot loader attempts a memory boot load. Figure 11-2 shows
the boot-loader memory flow. If the IF register’s INTO bit field is set, the
source program is loaded from memory location 1000h. If the IF register’s
INT1 bit field is set, the source program is loaded from memory location
400000h. If the IF register’s INT2 bit field is set, the source program is loaded
from memory location FFFO00h.

The memory boot-load source program has a header indicating the boot
memory width and memory configuration control word. This word is copied
into the STRB control register to configure the external primary bus interface.

After reading the header, the boot loader copies the source-program blocks.
The source-program blocks have two entries preceding the source-program-
block data. The first entry in the source-program block indicates the size of
the block. A block size of zero signals the end of the source program code.
The second entry indicates the address where the block is to be loaded. The
boot loader cannot load the source program to any memory address below
1000h, unless the address decode logic is remapped.

The boot loader branches to the destination address of the first source
block loaded and begins program execution.



Figure 11-2.Boot-Loader Memory-Load Flowchart
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Figure 11-3.Boot-Loader Serial-Port Load-Mode Flowchart
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11.1.4 TMS320C31/VC33 Boot Data Stream Structure

Table 11-2 shows the data stream structure. The data stream is composed of
a header of 1 (serial-port load) or 2 (memory load) words and one or more blocks
of source data. The boot loader uses this header to determine the physical
memory width where the source program resides (memory load) and to configure
the primary bus interface before source program boot load. The blocks of
source data have two entries in addition to the raw data. The first entry in this
block indicates the size of the block. The second entry in this block indicates the
memory address where the boot loader copies this source block. Words 5
through n of the shaded entries in Table 11-2 contain the source data for the first
block.

Using the TMS320C31/VC33 and TMS320C32 Boot Loaders 11-7
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Table 11-2. Source Data Stream Structure

Wordt Content Valid Data Entries
1 Memory width (8, 16, or 32 bits) where source program resides 8h, 10h, or 20h, respectively
Value to set the STRB control register See subsection 10.7

Size of first data block. The block size is the number of 32-bit 0 < size < 224
words in the data block. A 0 in this entry signifies the end of the
source data stream

Destination address to load the first block A valid 'C31/VC33 24-bit address

5 First word of first block A ’'C31/VC33 valid instruction or any
32-bit wide data value (LSB first)

n Last word of first block A ’C31/VC383 valid instruction or any
32-bit wide data value

m Size of last data block. The block size is the number of 32-bit 0 < size < 224
words in the data block. If the next word following this block is
not 0, another block is loaded.

m + 1 Destination address to load the last block A valid 'C31/VC33 24-bit address

m + 2 First word of last block A ’C31/VC383 valid instruction or any
32-bit wide data value (LSB first)

j Last word of last source block

j+1  Zero word. If more than one source block was read, word j Oh
would be the last word of the last block. Each block consists
of header and data portions. The block’s header is shaded
darker than the block’s data section.

T Words 1 and 2 do not exist in serial-port boot load since the source program does not reside in memory.

Each source block of data can be loaded to different memory locations. Each
block specifies its own size and destination address. The last source block of
the data stream is appended with a zero word.
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11.1.4.1 Examples of External TMS320C31/VC33 Memory Loads

Table 11-3, Table 11-4, and Table 11-5 show memory images for byte-wide,
16-bit-wide, and 32-bit-wide configured memory (see Figure 4-2 on page 4-6).

These examples assume the following:

1 An INTO signal was detected after reset was deasserted (signifying an
external memory load from boot 1).

[ The source program header resides at memory location 0x1000 and
defines the following:

B Boot memory-type EPROMs that require two wait states and SWW = 11

B Aloader destination address at the beginning of the 'C31/VC33 in-
ternal RAM block 1

B A single block of memory that is 0x1FF in length

Table 11-3. Byte-Wide Configured Memory

Address Value Comments

0x1000 0x08 Memory width = 8 bits

0x1001 0x00

0x1002 0x00

0x1003 0x00

0x1004 0x58 Memory type = SWW = 11, WCNT = 2
0x1005 0x10

0x1006 0x00

0x1007 0x00

0x1008 OxFF Program block size in words = 0x1FF
0x1009 0x01

0x100A 0x00

0x100B 0x00

0x100C 0x00 Program load starting address = 0x809C00
0x100D 0x9C

0x100E 0x80

0x100F 0x00
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Table 11-4.

16-Bit-Wide Configured Memory

Address Value Comments

0x1000 0x10 Memory width = 16

0x1001 0x0000

0x1002 0x1058 Memory type = SWW = 11, WCNT = 2
0x1003 0x0000

0x1004 Ox1FF Program block size in words = 0x1FF
0x1005 0x0000

0x1006 0x9C00 Program load starting address = 0x809C00
0x1007 0x0080

Table 11-5. 32-Bit-Wide Configured Memory

11-10

Address Value Comments

0x1000 0x00000020 Memory width = 32

0x1001 0x00001058 Memory type = SWW = 11, WCNT = 2
0x1002 0x000001FF Program block size in words = 0x1FF
0x1003 0x00809C00 Program load starting address = 0x809C00

After reading the header, the loader transfers Ox IFF 32-bit words, beginning at
a specified destination address 0x 809C00. Code blocks require the same
byte and half-word ordering conventions. The loader can also load multiple
code blocks at different address destinations.

After loading all code blocks, the boot loader branches to the destination address
of the first block loaded and begins program execution. Consequently, the first
code lock loaded is a start-up routine to access the other loaded programs.

It is assumed that at least one block of code is loaded when the
loader is invoked. Initial loader invocation with a block size of
0x00000000 produces unpredictable results.
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11.1.4.2 Serial-Port Loading

Boot loads, by way of the 'C31/VC33 serial port, are selected by driving the
INT3 pin active (low) following reset. The loader automatically configures the
serial port for 32-bit fixed-burst-mode reads. It is interrupt-driven by the frame
synchronization receive (FSR) signal. You cannot change this mode for boot
loads. Your hardware must generate the serial-port clock and FSR externally.

As with memory loads, a header must precede the actual program to be loaded.
However, you need only supply the block size and destination address because
the loader and your hardware have predefined serial-port speed and data format
(that is, skip data words 0 and 1).

The transferred data-bit order must begin with the MSB and end with the LSB.

11.1.5 Interrupt and Trap-Vector Mapping

Unlike the microprocessor mode, the microcomputer/boot-loader (MCBL)
mode uses a dual-vectoring scheme to service interrupt and trap requests. Dual
vectoring was implemented to ensure code compatibility with future versions of
'C3x devices.

In a dual-vectoring scheme, branch instructions to an address, rather than
direct-interrupt vectoring, are used. The normal interrupt and trap vectors are
defined to vector to the last 63 locations in the on-chip RAM, starting at address
809FC1h. When the loader is invoked, the interrupt vector table is remapped
by the processor to the last 63 locations in RAM block 1 of the 'C31/VC33.
These locations are assumed to contain branch instructions to the interrupt
source routines.

Make sure that these locations are not inadvertently overwritten by
loaded program or data values.

Table 11-6 shows the MCBL/MP mode interrupt and trap instruction memory
maps.
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Table 11-6. TMS320C31/VC33 Interrupt and Trap Memory Maps

Address Description
809FC1 INTO

809FC2 INT1

809FC3 INT2

809FC4 INT3

809FC5 XINTO

809FC6 RINTO

809FC7 XINT1 (Reserved)
809FC8 RINT1 (Reserved)
809FC9 TINTO

809FCA TINTA

809FCB DINTO

809FCC-809FDF Reserved

809FEO TRAPO
809FE1 TRAP1

[ ] [ ]
809FFB TRAP27

809FFC-809FFF  Reserved

1-12
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11.1.6 TMS320C31/VC33 Boot-Loader Precautions

The boot loader builds a one-word-deep stack, starting at location 809801 h.

Avoid loading code at location 809801h.

The interrupt flags are not reset by the boot-loader function. If pending interrupts
are to be avoided when interrupts are enabled, clear the IF register before
enabling interrupts.

The MCBL/MP pin must remain high during the entire boot-loader execution,
but it can be changed subsequently at any time. The 'C31/VC33 does not need
to be reset after the MCBL/MP pin is changed. During the change, the
'C31/VC33 must not access addresses Oh-FFFh. The memory space
0h—FFFh will be mapped to external memory three clock cycles after changing
the MCBL/MP pin.

Using the TMS320C31/VC33 and TMS320C32 Boot Loaders 11-13



TMS320C32 Boot Loader

11.2 TMS320C32 Boot Loader 3032

This section describes how to use the 'C32 microcomputer/boot loader
(MCBL/MP) functions.

11.2.1 TMS320C32 Boot-Loader Description

The ’C32 boot loader is an enhanced version of that found in the '‘C31/VC33.
The boot loader can load and execute programs received from a host proces-
sor through standard memory devices (including EPROM), with and without
handshake, or through the serial port. The 'C32 boot loader supports 16- and
32-bit program external memory widths, as well as 8-, 16-, and 32-bit data-
type sizes and external memory widths.

The programs to be loaded reside in one of three memory-mapped areas identi-
fied as Boot 1, Boot 2, and Boot 3 (see shaded areas of Figure 4-3 on page 4-6)
or they are received by means of the serial port.

The boot-loader code starts at location 0x45 in the on-chip ROM. The source
code is supplied in Appendix C.

11.2.2 TMS320C32 Boot-Loader Mode Selection

11-14

The 'C32 boot loader functions as a memory boot loader, memory boot loader
with handshake, or a serial-port boot loader. The boot-loader mode selection
is determined by the status of the INT3-INTO pins immediately following reset.
Table 11-7 lists the boot-loader modes.

[ The memory boot loader supports user-definable byte, half-word, and full-
word data formats, allowing the flexibility to load a source program from
memories having widths of 8, 16, and 32 bits with or without handshaking.
The source programs to be loaded reside in one of the three memory loca-
tions: 1000h, 810000h, and 900000h (see Table 11-7).

[ The memory boot-load handshaking mode uses XFO0 as a data-acknowledge
signal and XF1 as a data-ready signal.

[ The serial-port boot loader supports 32-bit fixed-burst loads from the 'C32
serial port with an externally generated serial-port clock and frame sync
signals. The format is similar to that of the memory boot loader, except that
the source memory width is omitted.



Table 11-7. Boot-Loader Mode Selection

TMS320C32 Boot Loader

INTO INTH INT2 INT3 Boot Loader Mode Source Program Location
0 1 1 1 External memory Boot 1 address 1000h
1 0 1 1 External memory Boot 2 address 810000h
1 1 0 1 External memory Boot 3 address 900000h
1 1 1 0 32-bit fixed-burst serial Serial Port
0 1 1 0 External memory with handshake Boot 1 address 1000h,
XF0 and XF1 used in handshaking
1 0 1 0 External memory with handshake Boot 2 address 810000h,
XF0 and XF1 used in handshaking
1 1 0 0 External memory with handshake Boot 3 address 900000h,

XF0 and XF1 used in handshaking

11.2.3 TMS320C32 Boot-Loading Sequence

The following is the sequence of events that occur during the boot load of a
source program. Table 11-2 shows the structure of the source program.

1)

Select the boot loader by resetting the *C32 while driving the MCBL/MP pin
high and the corresponding INT3-INTO pins low. The MCBL/MP must stay
high during boot loading, but can be changed anytime after boot loading has

terminated. No reset is necessary when changing the INT3-INTO pin, as
long as the 'C32 is not accessing the overlapping memory (Oh—FFFh) during
this transition. In nonhandshake mode, one of the INT3-INTO pins can be
driven low any time after deasserting the RESET pin (driven low and then

high). While in handshake mode, two interrupt pins must be asserted before

deasserting the RESET pin.

The status of the IF register’s INT3—INTO bit fields dictates the boot-loading
mode. The bits are polled in the order described in the flowchart in
Figure 11-4.

If only the IF register’s INT3 bit field is set, the boot loader configures the
serial port for 32-bit fixed burst mode reads with an externally generated
serial-port clock and FSR. Then, it proceeds to boot load the source pro-
gram from the serial port. A header indicating the STRBO, STRB1, and
IOSTRB control registers precedes the actual program (see Table 11-2).
These header values are loaded into the corresponding locations at the
completion of the boot-load operation. The transferred data-bit order sup-
plied to the serial port must begin with the most significant bit (MSB) and
end with the least significant bit (LSB). Figure 11-5 depicts the boot-loader
serial-port flow.
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4)

Otherwise, the boot loader attempts a memory boot load. Figure 11-6
shows the boot-loader memory flow. If the IF register’s INTO bit field is set,
the source program is loaded from memory location 1000h. If the IF regis-
ter's INTT bit field is set, the source program is loaded from memory location
810000h. If the IF register’s INT2 bit field is set, the source program is
loaded from memory location 900000h. After determining the memory loca-
tion of the source program, the boot loader checks INT3 bit field in the IF
register. If this bit is set, all data transfers are performed with synchronous
handshake. The handshake protocol uses XFO0 as a data-acknowledge and
XF1 as a data-ready signals. 'C32’s XFO0 is an output pin while the XF1 is
an input pin. Figure 11-7 shows the handshake data-transfer operation.

The data-transfer operation occurs as follows:
a) The 'C32 boot loader waits until the host sets XF1 low to read in the
data. While the *C32 waits for XF1 to drop low, the IACK pin pulses

until XF1 is low. Setting XF1 low communicates to the ‘C32 that the
data is valid. The IACK pulse indicates that the 'C32 is waiting for data.

b) The boot loader sets XFO low after reading the data value. Dropping
XFO0 acknowledges to the host that the data was read.

c) The host sets XF1 high to inform the 'C32 that the data is no longer valid.
d) The C32 terminates the transfer by setting XFO0 high.

The memory boot-load source program has a header indicating the boot
memory width and the contents of the STRBO0, STRB1, and IOSTRB control
registers (see Table 11-2).

After reading the header, the boot loader copies the source-program
blocks. The source-program blocks have three entries preceding the
source-program-block data. The first entry in the source-program block
indicates the size of the block, the second entry indicates the address where
the block is to be loaded, while the third entry contains the destination-
memory strobe including a pointer that identifies the destination-memory
strobe (STRBO, STRBH1, or IOSTRB) and a value that describes the strobe
configuration for the memory width and data-type size. If the destination
memory is internal, the third entry should contain a zero. The boot loader
cannot load the source program to any memory address below 1000h,
unless the address decode logic is remapped.

Once all the program blocks are loaded into their respective address loca-
tions with the given data-type sizes, the boot loader sets the IOSTRB,
STRBO, and STRB1 control registers to the values read at the beginning
of the boot-load process.

The boot loader branches to the destination address of the first source
block loaded and begins program execution.
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Figure 11-4.TMS320C32 Boot-Loader Mode-Selection Flowchart
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Figure 11-5.Boot-Loader Serial-Port Load Flowchart
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Figure 11-6.Boot-Loader Memory-Load Flowchart
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( Begin program execution )
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Figure 11-7.Handshake Data-Transfer Operation
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11.2.4 TMS320C32 Boot Data Stream Structure

!

< [

Table 11-8 shows the data stream structure. The data stream is composed of
a header of three (serial-port load) or four (memory load) words and one or
more blocks of source data. The boot loader uses this header to determine the
physical memory width where the source program resides (memory load) and
to configure the STRBs after completion of source program boot load. The
blocks of source data have three entries in addition to the raw data. The first
entry in this block indicates the size of the block. The second entry in this block
indicates the memory address where the boot loader copies this source block.
The third entry contains the destination memory strobe configuration including
memory width and data-type size. This allows the boot loader to copy and store
8-, 16-, or 32-bit data values into 8-, 16-, or 32-bit wide memory. Words 8
through n of the shaded entries in Table 11-8 contain the source data for the
first block.
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Table 11-8. Source Data Stream Structure

TMS320C32 Boot Loader

Wordt Content Valid Data Entries

1 Memory width (8, 16, or 32 bits) where source program 8h, 10h, or 20h, respectively
resides

2 Value to set the IOSTRB control register at end of boot loader See Section 10.7 on page 10-26
process

3 Value to set the STRBO control register at end of boot loader See Section 10.3.1 on page 10-7
process

4 Value to set the STRB1 control register at end of boot loader See Section 10.6 on page 10-20
process

5 Size of the first data block. The block size is the number of 0 < size <224
words in the data block (word length is specified by the data-
type size). A 0 in this entry signifies the end of the source
data stream.

6 Destination address to load the first block A valid ‘C32 24-bit address

7 First block destination memory width and data-type size in SSSSSS6xh#t
the format given in the Valid Data Entries column.

8 First word of first block A ’C32 valid instruction or any 8-,

16-, or 32-bit wide data value
n Last word of first block A ’'C32 valid instruction or any 8-,
16-, or 32-bit wide data value

m Size of the last data block. The block size is the number of 0 < size < 224
words in the data block (word length is specified by the
data-type size). If the next word following this block is not 0,
another block is loaded.

m + 1 Destination address to load the last block A valid 'C32

24-bit address

T Word 1 does not exist in serial-port boot load since the source program does not reside in memory.

¥ The $SSSSS hexadecimal digits refer to the lower 24 bits of the strobe control register. The x hexadecimal digit identifies
the strobe as follows: 0 for IOSTRB, 4 for STRBO, and 8 for STRB1. SSSSSS6xh is cleared to 0 when loading the entire field
into internal memory.

Using the TMS320C31/VC33 and TMS320C32 Boot Loaders 11-21



TMS320C32 Boot Loader

Table 11-8. Source Data Stream Structure (Continued)
Wordt Content Valid Data Entries

m + 2 Last block destination memory width and data-type size in SSSSSS6xh#t
the format given in the Valid Data Entries column.

m + 3 First word of last block. A ’C32 valid instruction or any 8-,
16-, or 32-bit wide data value

j Last word of last source block

j+1 Zero word. Note that if more than one source block was read, Oh
word j shown above would be the last word of the last block.
Each block consists of header and data portions. The block’s
header is shaded darker than the block’s data section.

T Word 1 does not exist in serial-port boot load since the source program does not reside in memory.

¥ The SSSSSS hexadecimal digits refer to the lower 24 bits of the strobe control register. The x hexadecimal digit identifies
the strobe as follows: 0 for IOSTRB, 4 for STRBO, and 8 for STRB1. SSSSSS6xh is cleared to 0 when loading the entire field
into internal memory.

Each source block can be loaded into a different memory location. Each block
specifies its own size and destination address. The last source block of the
data stream is appended with a zero word. Because the 'C32’s STRBs can be
configured to support different external memory widths and data-type sizes,
each source block specifies its data-type size. The external memory width is
set when the boot loader reads the STRBx control register values in the source
data stream header.

To build a ’C32 boot data stream with the HEX30 utility provided with the
TMS320 floating-point code-generation tools, use the following steps:

(1 Compile/assemble code with -v32 switch using v4.7 or later of the
TMS320 floating-point C compiler/assembler. If the code-generation tools
are invoked with CL30 and -z switch, include =v32 switch in the linker
command file.

(1 Link as usual.

(1 Run Hex30 utility version 4.7 or later. The -v32 switch used in the compiler/
assembler will create a header in the COFF file, identifying it as a 'C32 for
the Hex30.
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11.2.5 Boot-Loader Hardware Interface

The hardware interface for the memory boot load uses the STRBX_ B3 through
STRBX_BO pins as strobe byte-enable pins (see Figure 11-8). The hardware
interface is independent of the boot source memory width. This interface
is identical to the 32-bit-wide memory interface described in Case 2, in Section
10.6 on page 10-20. For 16-bit memory widths, remove the two left-most
memory devices of Figure 11-8. For 8-bit memory widths, remove all but the
right-most of the memory devices of Figure 11-8.

Figure 11-8. External Memory Interface for Source Data Stream Memory Boot Load

i_ "_______.._._.._._.._.T.__'i—i
| . 1
Aoz [P Az > Azs : > Azs > A : :
Aoy [P Az > Aot > Ao > Azt Qi B¢
A20 [T A0 > A20 —> A20 — > Az o) &|&|
. . | . X . Y, ol
. | . - I . ] - _-9' -QI 'Ql
Ao > A, > A, > A2 —>1 Ay s 2|2
Al S = N s U e AR I IR
Ao l'Cﬂsl :Cﬂsl :% el «'a:elgl
| L4 1 | N I
- 1/0(7-0) 1/0(7-0) : 1/0(7-0) ! or-0f |
STRBX_B3 a a | ' S A |
STRBX B2 [~ {1 I S Sviauietl M 1
SIRBXB1 He—"F——————— [ 1 1T "~ 1
STRBX_BO
D(31-24) |
D(23-16) |+
D(15-8) |—+
D(7-0) |
11.2.6 TMS320C32 Boot-Loader Precautions Elad

The interrupt flags are not reset by the boot-loader function. If pending interrupts
are to be avoided when interrupts are enabled, clear the IF register before enabling
interrupts.

The MCBL/MP pin should remain high during the entire boot-loading execution,
but it can be changed subsequently at any time. The 'C32 does not need to be
reset after the MCBL/MP pin is changed. During the change, the *C32 should
not access addresses Oh—-FFh. The memory space Oh-FFFh is mapped to
external memory three clock cycles after changing the MCBL/MP pin.
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The 'C32 boot loader uses the following peripheral memory-mapped registers
as a temporary stack:

Timer0 counter register (808024h)

Timer0 period register (808028h)

DMAO source address register (808004h)
DMAO destination address register (808006h)
DMAO transfer counter register (808008h)

Uoooo

These memory-mapped registers are not reset by the boot-loading process.
Before using these peripherals, reprogram these registers with the appropriate
values.



Chapter 12

Peripherals

The 'C3x features two timers, a serial port (two serial ports for the ‘C30), and
an on-chip direct memory access (DMA) controller (2-channel DMA controller
on the 'C32). These peripheral modules are controlled through memory-
mapped registers located on the dedicated peripheral bus.

The DMA controller performs input/output operations without interfering with
the operation of the CPU, making it possible to interface the 'C3x to slow, exter-
nal memories and peripherals, analog-to-digital converters (A/Ds), serial
ports, and so forth, without reducing the computational throughput of the CPU.
The result is improved system performance and decreased system cost.

Topic Page
1 1200 T 11 1 1= 12-2
2 Y 4 - 1 I oY o - 12-15
12.3 DMA Controller . .....oviiiiiiiinierinrnnenrnrensnnensnnnnnnn 12-48

12-1
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12.1 Timers

The 'C3x has two 32-bit general-purpose timer modules. Each timer has two
signaling modes and internal or external clocking. You can use the timer
modules to signal to the ’C3x or the external world at specified intervals or to
count external events. With an internal clock, the timer can signal an external
A/D converter to start a conversion, or it can interrupt the ’‘C3x DMA controller
to begin a data transfer. The timer interrupt is one of the internal interrupts.
With an external clock, the timer can count external events and interrupt the
CPU after a specified number of events. Each timer has an I/O pin that you can
use as an input clock to the timer, as an output clock signal, or as a general-
purpose I/O pin.

Each timer consists of a 32-bit counter, a comparator, an input clock selector,
a pulse generator, and supporting hardware (see Figure 12-1). A timer counts
the cycles of a timer input clock with the counter register. When that counter
register equals the value stored in the timer-period register, it resets the
counter to 0 and produces a transition in the timer output signal. The timer input
clock can be driven by either half the internal clock frequency of the 'C3x or
an external clock on TCLKXx pin.

Figure 12-1. Timer Block Diagram
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12.1.1 Timer Pins

Each timer has one pin associated with the timer clock signal (TCLK) pin. This
pin (TCK) is used as a general-purpose 1/0 signal, as a timer output, or as an
input for an external clock for a timer. Each timer has a TCLK pin: TCLKO is
connected to timer0, TCLK1 to timer1.

12.1.2 Timer Control Registers
Three memory-mapped registers are used by each timer:

(1 Global-control register

The global-control register determines the operating mode of the timer,
monitors the timer status, and controls the function of the I/O pin of the timer.

(1 Period register

The period register specifies the timer’s signaling frequency.

(1 Counter register

The counter register contains the current value of the incrementing counter.
You can increment the timer on the rising edge or the falling edge of the
input clock. The counter is zeroed and can cause an internal interrupt
whenever its value equals that in the period register. The pulse generator
generates either of two types of external clock signals: pulse or clock. The
memory map for the timer modules is shown in Figure 12-2.
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Figure 12-2. Memory-Mapped Timer Locations

808020h Timer0 global controlt
808024h Timer0 counterd
808028h Timer0 periodt
808030h Timer1 global controlt
808034h Timer1 counter}
808038h Timer1 periodt

TSee Section 12.1.3
$See Section 12.1.4

12.1.3 Timer Global-Control Register

The timer global-control register is a 32-bit register that contains the global and
port control bits for the timer module. Figure 12-3 shows the format of the
timer global-control register. Bits 3-0 are the port control bits; bits
11-6 are the timer global-control bits. At reset, all bits are set to 0 except for
DATIN (which is set to the value read on TCLK). Table 12-1 describes the
timer global-control register bits, their names, and functions.

Figure 12-3. Timer Global-Control Register

[} [} [} [}
31 16'15 12' 11 10 9 8 ! 7 6 5 4' 3 2 1 0
| xx ' xx ! TSTAT [INV [CLKSRC C/P ¢ HID | GO | xx [ xx !DATIN | DATOUT | /O | FUNG |
' i R RW RW RW, RW RW i R RW  RW RW

Notes: 1) R =read, W = write
2) xx =reserved bit, read as 0
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Table 12-1. Timer Global-Control Register Bits Summary
Reset

Abbreviation Value Name Description

FUNC 0 Function Controls the function of TCLK.
If FUNC = 0, TCLK is configured as a general-purpose digital I/O
port.
If FUNC = 1, TCLK is configured as a timer pin.
See section 12.1.6 Timer Operation Modes on page 12-10 for a
description of the relationship between FUNC and CLKSRC.

[1le) 0 Input/output If FUNC = 0 and CLKSRC = 0, TCLK is configured as a general-
purpose 1/O pin.
If1/0 = 0, TCLK is configured as a general-purpose input pin.
If1/0 = 1, TCLK is configured as a general-purpose output pin.

DATOUT 0 Data output Drives TCLK when the 'C3x is in I/O port mode. You can use DAT-
OUT as an input to the timer.

DATIN xt Data input Data input on TCLK or DATOUT. A write has no effect.

GO 0 Go Resets and starts the timer counter.
When GO = 1 and the timer is not held, the counter is zeroed and
begins incrementing on the next rising edge of the timer input clock.
The GO bit is cleared on the same rising edge.
GO = 0 has no effect on the timer.

HLD 0 Counter hold When this bit is 0, the counter is disabled and held in its current

signal

state. If the timer is driving TCLK, the state of TCLK is also held.

The internal divide-by-2 counter is also held so that the counter can
continue where it left off when HLD is set to 1.

You can read and modify the timer registers while the timer is being
held. RESET has priority over HLD. The effect of writing to GO and
HOLD is shown below.

GO HLD Result

0 0  Alltimer operations are held. No reset is performed
(reset value).

0 1 Timer proceeds from state before write.

1 0  Alltimer operations are held, including zeroing of the

counter. The GO bit is not cleared until the timer is
taken out of hold.

Timer resets and starts.

Tx=0or1 (set to value read on TCLK)
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Table 12-1.

Timer Global-Control Register Bits Summary (Continued)

Abbreviation

Reset
Value

Name

Description

c/P

CLKSRC

INV

TSTAT

0

0

0

Clock/pulse
mode control

Clock source

Inverter control
bit

Timer status bit

When C/P = 1, clock mode is chosen, and the signal-
ing of the TSTAT flag and external output has a 50%
duty cycle.

When C/P = 0, the status flag and external output
will be active for one H1 cycle during each timer
period (see Figure 12-4 on page 12-8).

This bit specifies the source of the timer clock.

When CLKSRC = 1, an internal clock with a frequen-
cy equal to one-half of the H1 frequency is used to
increment the counter. The INV bit has no effect on
the internal clock source.

When CLKSRC = 0, you can use an external signal
from the TCLK pin to increment the counter. The ex-
ternal clock is synchronized internally, thus allowing
external asynchronous clock sources that do not ex-
ceed the specified maximum allowable external
clock frequency. This is less than f(H1)/2.

See section 12.1.6, Timer Operation Modes, on
page 12-10 for a description of the relationship be-
tween FUNC and CLKSRC.

If an external clock source is used and INV = 1, the
external clock is inverted as it goes into the counter.

If the output of the pulse generator is routed to TCLK
and INV = 1, the output is inverted before it goes to
TCLK (see Figure 12—1 on page 12-2).

If INV = 0, no inversion is performed on the input or
output of the timer. The INV bit has no effect, regard-
less of its value, when TCLK is used in I/O port
mode.

This bit indicates the status of the timer. It tracks the
output of the uninverted TCLK pin. This flag sets a
CPU interrupt on a transition from 0 to 1. A write has
no effect.

tx=0or1 (set to value read on TCLK)
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12.1.4 Timer-Period and Counter Registers

The 32-bit timer-period register is used to specify the frequency of the timer
signaling. The timer-counter register is a 32-bit register, which is reset to 0
whenever it increments to the value of the period register. Both registers are
set to O at reset.

Certain boundary conditions affect timer operation. These conditions are listed
below:

(1 When the period and counter registers are 0, the operation of the timer is
dependent upon the C/P mode selected. In pulse mode (C/P = 0), TSTAT
is set and remains set. In clock mode (C/P = 1), the width of the cycle is
2/f(H1), and the external clocks are ignored.

(1 When the counter register is not 0 and the period register = 0, the counter
counts, rolls over to 0, and behaves as described above.

(1 When the counter register is set to a value greater than the period register,
the counter may overflow when incremented. Once the counter reaches its
maximum 32-bit value (OFFFFFFFFh), it rolls over to 0 and continues.

Writes from the peripheral bus override register updates from the counter and
new status updates to the control register.

12.1.5 Timer Pulse Generation

The timer pulse generator (see Figure 12—-1 on page 12-2) can generate several
external signals. You can invert these signals with the INV bit. The two basic
modes are pulse mode and clock mode, as shown in Figure 12—4. In both modes,
an internal clock source f (timer clock) has a frequency of f(H1)/2, and an external-
ly generated clock source f (timer clock) can have a maximum frequency of
f(H1)/2.6. In pulse mode (C/P = 0), the width of the pulse is 1/f(H1).
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Figure 12-4. Timer Timing

(a) TSTAT and timer output (INV = 0) when CP=0 (pulse mode)

N

2/f(H1)
— fe—— 1/f(H1)
| |

Ih—»l— 1/f(CLKSRC) :

»l
P

>
I

T

TINT

T

TINT

period register/{(CLKSRC)

(b) TSTAT and timer output (INV = 0) when C/P =1 (clock mode)
[&——»— 1/f(CLKSRC)

2/f(H1)

T

TINT

»
»

period register/f(CLKSRC)

[&—— 2 x period register/f((CLKSRC) — ¥

T

TINT

The timer signaling is determined by the frequency of the timer input clock and
the period register. The following equations are valid with either an internal or
an external timer clock:

f(pulse mode) = f(timer clock) / period register

f(clock mode) = f(timer clock) / (2 x period register)

T

TINT

Note: Period register

If the period register equals 0, see Section 12.1.4.

Example 12-1 provides some examples of the TCLKx output when the period

register is set to various values and clock or pulse mode is selected.
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Example 12-1. Timer Output Generation Examples

(a) INV =0, C/P =0 (pulse mode)
timer period = 1
Also, _
INV =0, C/P =1 (clock mode)
timer period = 0

2H1

dn il

(b) INV =0, C/P =0 (pulse mode)
timer period = 2

4H1

o e
o

(c) INV=0, C/P=0 (pulse mode)
timer period = 3

|‘—6H1—’|
o e
M n - n n r

(d) INV =0, C/P =1 (clock mode)
timer period = 1

fe— 4H1 ¥
¥ 2H1p-

| 1 L L1 1

(e) INV =0, C/P =1 (clock mode)
timer period = 2

fe—— 8H1 ——»

[ 4H1 ¥ |
_I [ S e I I SR

(f) INV =0, C/P =1 (clock mode)
timer period = 3

je———— 12H1 — %

je— 6H1 —»
I 1 -
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12.1.6 Timer Operation Modes

The timer can receive its input and send its output in several different modes,

depending upon the setting of CLKSRC, FUNC, and 1/0. The four timer modes

of operation are defined in the following sections.

12.1.6.1 CLKSRC =1 and FUNC =0

Figure 12-5. Timer Configuration with CLKSRC = 1 and FUNC = 0

(@)

Timer

Input
Output

TSTAT

12-10

If CLKSRC = 1 and FUNC = 0, the timer input comes from the internal clock.
The internal clock is not affected by the INV bit in the global-control register.
In this mode, TCLK is connected to the 1/O port control, and you use TCLK as

a general-purpose I/O pin (see Figure 12-5).

O f1/0 =0, TCLK is configured as a general-purpose input pin whose state
you can read in DATIN. DATOUT has no effect on TCLK or DATIN. See

Figure 12-5 (a).

O Ifl/0 =1, TCLK is configured as a general-purpose output pin. DATOUT

is placed on TCLK and can be read in DATIN. See Figure 12-5 (b).

CLKSRC=1 (internal)
FUNC=0 (I/O pin)
I/0=0 (input)

(b)

CLKSRC = 1 (internal)
FUNC = 0 (I/O pin)
I/O = 1 (output)

Internal | External

Timer
Internal | External T Internal |
Internal | OuFt)put clock }
clock
—  —F<TCLK I |
\ 4 ‘ DATOUT v ‘
TSTAT
/0 port | \
control VO port
control
DATIN L
DATIN
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12.1.6.2 CLKSRC =1and FUNC =1

If CLKSRC = 1 and FUNC = 1 (see Figure 12-6), the timer input comes from
the internal clock, and the timer output goes to TCLK. This value can be inverted
using INV, and you can read in DATIN the value output on TCLK.

Figure 12-6. Timer Configuration with CLKSRC = 1 and FUNC = 1

Internal | External

Timer \
Internal ‘
In 4— clock ‘
Out > TOLK
\
TSTAT DATIN

CLKSRC =1 (internal)
FUNC =1 (timer pin)

12.1.6.3 CLKSRC =0and FUNC =0

If CLKSRC = 0 and FUNC = 0 (see Figure 12-7), the timer is driven according
to the status of the 1/0 bit.

[ If1/0 = 0, the timer input comes from TCLK. This value can be inverted
using INV, and you can read in DATIN the value of TCLK. See
Figure 12-7 (a).

[ If/O =1, TCLK is an output pin. Then, TCLK and the timer are both driven
by DATOUT. All 0-to-1 transitions of DATOUT increment the counter. INV
has no effect on DATOUT. You can read in DATIN the value of DATOUT.
See Figure 12-7 (b).

Figure 12-7. Timer Configuration with CLKSRC = 0 and FUNC = 0

CLKSRC = 0 (external) CLKSRC = 0 (external)
FUNC = 0 (/O pin) FUNC = 0 (VO pin)
/0 = 0 (input) /0 = 1 (output)
(@) (b)
Timer Internal | External Timer Internal | External
m < < }: TCLK - < } » TCLK
Out \ Out + \
v
TSTAT I/O port TSTAT I/O port
control control
DATIN DATOUT
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12.1.6.4 CLKSRC =0 and FUNC =1
If CLKSRC = 0 and FUNC = 1 (see Figure 12-8), TCLK drives the timer.
O [fINV =0, all 0-to-1 transitions of TCLK increment the counter.

O IfINV =1, all 1-to-0 transitions of TCLK increment the counter. You can
read in DATIN the value of TCLK.

Figure 12-8. Timer Configuration with CLKSRC = 0 and FUNC = 1

Timer Internal | External
In } TCLK
Out |
TSTAT DATIN

CLKSRC = 0 (external)
FUNC = 1 (timer pin)

12.1.7 Using TCLKx as General-Purpose I/O Pins

When FUNC = 0, TCLKx can be used as an /O pin. Figure 12-9 and
Figure 12-10 show how the TCLKXx is connected when it is configured as a
general-purpose /O pin. In Figure 12-9, the 1/O bit equals 0 and TCLK is
configured as an input pin whose value can be read in the DATIN bit. In
Figure 12-10, the I/O bit equals 1 and TCLK is configured as an output pin that
outputs the value you wrote in the DATOUT bit.

Figure 12-9. TCLK as an Input (I/O = 0)

\
Internal \ External
|
|
I
|

DATOUT (NC) o i <

DATIN
/0=0
FUNC =0

Figure 12-10. TCLK as an Output (I/O = 1)

Internal \ External

DATOUT —»—I—b—» TCLK
\

DATIN

/0 =1
FUNC =0
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12.1.8 Timer Interrupts

A timer interrupt is generated whenever the TSTAT bit of the timer control register
changes from a 0 to a 1. The frequency of timer interrupts depends on whether
the timer is set up in pulse mode or clock mode.

[ In pulse mode, the interrupt frequency is determined by the following

equation:

. _ _timer clock)
(interrupt) period register
where:

finterrupt) = interrupt frequency
ftimer clock) = timer frequency

1 In clock mode, the interrupt frequency is determined by the following

equation:
f .
£ _ (timer clock)
(interrupt) = "2 period register
where:

finterrupt) = interrupt frequency
ftimer clock) = timer frequency

The timer counter is automatically reset to 0 whenever it is equal to the value
in the timer-period register. You can use the timer interrupt for either the CPU
or the DMA. Interrupt-enable control for each timer, for either the CPU or the
DMA, is found in the CPU/DMA interrupt-enable register. Refer to Section 3.1.8,
CPU/DMA Interrupt-Enable Register (IE), on page 3-9 for more information.

When a timer interrupt occurs, a change in the state of the corresponding
TCLK pin is observed if FUNC = 1 and CLKSRC = 1 in the timer global-control
register. The exact change in the state depends on the state of the C/P bit. In
pulse mode (C/P = 0), the width of the pulse change is 1/f (H1). In clock mode
(C/P = 1), the width of the pulse change is the period register divided by the
frequency of the timer input clock.

12.1.9 Timer Initialization/Reconfiguration

The timers are controlled through memory-mapped registers located on the
dedicated peripheral bus. The general procedure for initializing and/or recon-
figuring the timers follows:

1) Halt the timer by clearing the GO/HLD bits of the timer global-control register.
To do this, write a 0 to the timer global-control register. Note that the timers
are halted on RESET.
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2) Configure the timer through the timer global-control register (with GO =
HLD = 0), the timer-counter register, and timer-period register, if necessary.

3) Start the timer by setting the GO/HLD bits of the timer global-control register.

Example 12-2 shows how to set up the ‘C3x timer to generate the maximum
clock frequency through the TCLKx pin.

Example 12-2. Maximum Frequency Timer Clock Setup

*

Timer0
TCTRL_RST
TCTRL_GD
TCNT

TPRD

*  Maximum Frequency Timer Clock Setup

.data

.word 808020h ; Timer global control address
.word 301h

.word 3Clh

.word 0 ; Timer counter value
.word 0 ; Timer-period value
.text

LDP Timer0

LD1 @Timer0,ARO ; Load data page pointer
LD1 0,RO

ST1 RO, *ARO ; Halt timer

LD1 @TCTRL_RST,RO ; Configure timer

ST1 RO, *ARO

LD1 @TCNT, RO

ST1 RO, *+ARO0 (4) ; Load timer counter

ILD1 @TPRD, RO

ST1 RO, **+ARO0 (8) ; Load timer period

LD1 @TCTRL_GO,RO

ST1 RO, *ARO ; Start timer
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Serial Ports

The 'C30 has two totally independent bidirectional serial ports. Both serial ports
are identical, and there is a complementary set of control registers in each one.
Only one serial port is available on the ‘C31/VC33 and the 'C32. You can config-
ure each serial port to transfer 8, 16, 24, or 32 bits of data per word simulta-
neously in both directions. The clock for each serial port can originate either inter-
nally, through the serial port timer and period registers, or externally, through a
supplied clock. An internally generated clock is a divide down of the clockout fre-
quency, f(H1). A continuous transfer mode is available, which allows the serial
port to transmit and receive any number of words without new synchronization
pulses.

Eight memory-mapped registers are provided for each serial port:

Global-control register

Two control registers for the six serial I/O pins
Three receive/transmit timer registers
Data-transmit register

Data-receive register

I I

The global-control register controls the global functions of the serial port and
determines the serial-port operating mode. Two port control registers control
the functions of the six serial port pins. The transmit buffer contains the next
complete word to be transmitted. The receive buffer contains the last complete
word received. Three additional registers are associated with the transmit/
receive sections of the serial-port timer. A serial-port block diagram is shown
in Figure 12-11 on page 12-16, and the memory map of the serial ports is
shown in Figure 12-12 on page 12-17.
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Figure 12-11.

12-16

Serial Port Block Diagram

44— Receive Section 4" ’47 Transmit Section ————
TSTA_Cr)LKR CLKX
Receive rTu7e=] =——=| TSTAT Transmit
timer (16) CLKR CLTX timer (16)
INT<—\ i N/ FSR FSX N/ /—>X|NT
Receive Clock FSIR | | F?X
Bit counter ~ [€——9 \ /  \ —»{ Bitcounter
(8/16/24/32) - (8/16/24/32)
L
v A\ 4 v A\ 4
| -
RSR ¢ * > XSR
(32) < > (32)
A
Load Load Load
control control
DX DX
DR DR
v DX
(32) 32)
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Figure 12-12. Memory-Mapped Locations for the Serial Ports

808040h Serial-port 0 global controlt
808042h Serial port 0 FSX/DX/CLKX control¥
808043h Serial port 0 FSR/DR/CLKR control§
808044h Serial port 0 R/X timer control
808045h Serial port 0 R/X timer counter#
808046h Serial port 0 R/X timer period|
808048h Serial port 0 data transmit*
80804Ch Serial port 0 data receivel
808050h Serial-port 1 global controlt
808052h Serial port 1 FSX/DX/CLKX control¥
808053h Serial port 1 FSR/DR/CLKR control§
808054h Serial port 1 R/X timer control
808055h Serial port 1 R/X timer counter#
808056h Serial port 1 R/X timer period|
808058h Serial port 1 data transmit
80805Ch Serial port 1 data receivell

Note: Serial port1 locations are reserved on the 'C31/VC33 and 'C32.
1 See Figure 12-13.
¥ See Figure 12-14.
§ See Figure 12-15.
1 See Figure 12-16.
# See Figure 12-17.
Il See Figure 12-18.
*See Figure 12-19.
Y See Figure 12-20.

12.2.1 Serial-Port Global-Control Register

The serial-port global-control register is a 32-bit register that contains the global-
control bits for the serial port. The register is shown in Figure 12-13. Table 12-2
shows the register bits, bit names, and bit functions.
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Figure 12-13. Serial-Port Global-Control Register

31 30 29 28) 27 26 25 24 ' 23 22 21 20 ! 19 18 17 16
x| x| x| xx} RRESET| XRESET| RINT| RTINT |  XINT | XTINT RLEN : XLEN FSRP FSXP
. RW RW RW RW , RW RIW RIW RW , RW RW RIW RW
15 14 13 2 ' 1 10 9 g8 ' 7 6 5 4 ' 3 2 1 0
DRP | DXP | CLKRP | CLKXP § RFSM |xFsm [ RVAREN | xvamen | BOLK | XCLK | s | BSR A XSH 1 Fsxout | xroY | RROY
RW RW RW RW 4+ RW RW  RW RW + RW RW RW R 1 R RIW R R

Notes: 1) R = read, W = write
2) xx = reserved bit, read as 0

Table 12-2. Serial-Port Global-Control Register Bits Summary

Abbreviation

Reset
Value Name

Description

RRDY

XRDY

FSXOUT

XSREMPTY

RSRFULL

0

Receive ready flag

Transmit ready flag

Transmit frame sync

configuration

Transmit-shift

register empty flag

Receive-shift register

full flag

If RRDY = 1, the receive buffer has new data and is ready to
be read. A three H1/H3 cycle delay occurs from the loading
of DRR to RRDY = 1. The rising edge of this signal sets RINT.

If RRDY = 0, the receive buffer does not have new data since
the last read. RRDY = 0 at reset and after the receive buffer is
read.

If XRDY = 1, the transmit buffer has written the last bit of data
to the shifter and is ready for a new word. A three H1/H3 cycle
delay occurs from the loading of the transmit shifter until
XRDY is set to 1. The rising edge of this signal sets XINT.

If XRDY = 0, the transmit buffer has not written the last bit of
data to the transmit shifter and is not ready for a new word.

FSXOUT = 0 configures the FSX pin as an input.
FSXOUT = 1 configures the FSX pin as an output.

If XSREMPTY = 0, the transmit-shift register is empty.
If XSREMPTY = 1, the transmit-shift register is not empty.
Reset or XRESET causes this bit to = 0.

If RSRFULL = 1, an overrun of the receiver has occurred. In
continuous mode, RSRFULL is set to 1 when both RSR and
DRR are full. In noncontinuous mode, RSRFULL is set to 1
when RSR and DRR are full and a new FSRis received. A read
causes this bit to be set to 0. This bit can be set to 0 only by a
system reset, a serial-port receive reset (RRESET = 1), or a
read. When the receiver tries to set RSRFULL to 1 at the same
time that the global register is read, the receiver dominates,
and RSRFULL is set to 1.

If RSRFULL = 0, no overrun of the receiver has occurred.
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Table 12-2. Serial-Port Global-Control Register Bits Summary (Continued)

Reset
Abbreviation Value Name Description
HS 0 Handshake If HS = 1, the handshake mode is enabled.

XCLK SRCE 0

RCLK SRCE 0

XVAREN 0
RVAREN 0
XFSM 0
RFSM 0
CLKXP

Transmit clock
source

Receive clock
source

Transmit data rate
mode

Receive data rate
mode

Transmit frame
sync mode

Receive frame
sync mode

CLKX polarity

If HS = 0, the handshake mode is disabled.

If XCLK SRCE = 1, the internal transmit clock is used.
If XCLK SRCE = 0, the external transmit clock is used.

If RCLK SRCE = 1, the internal receive clock is used.
If RCLK SRCE = 0, the external receive clock is used.

Specifies a fixed or variable data rate mode when transmitting.

With a fixed data rate, FSX is active for at least one XCLK
cycle and then goes inactive before transmission begins.

With variable data rate, FSX is active while all bits are being
transmitted. When you use an external FSX and variable data
rate signaling, the DX pin is driven by the transmitter when
FSX is held active or when a word is being shifted out.

Specifies a fixed or variable data rate mode when receiving.

If RVAREN = 0 (fixed data rate), FSX is active for at least one
RCLK cycle and then goes inactive before reception begins.

If RVAREN = 1 (controlled data rate), FSX is active while all
bits are being received.

Configures the port for continuous mode operation or standard
mode operation.

If XFSM = 1 (continuous mode), only the first word of a block
generates a sync pulse, and the rest are transmitted continuously
to the end of the block.

If XFSM = 0 (standard mode), each word has an associated
sync pulse.

Configures the port for continuous mode operation or standard
mode operation.

If RFSM = 1 (continuous mode), only the first word of a block
generates a sync pulse, and the rest are received continuously
to the end of the block.

If RFSM = 0 (standard mode), each word received has an
associated sync pulse.

If CLKXP = 0, CLKX is active high.
If CLKXP = 1, CLKX is active low.
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Table 12-2. Serial-Port Global-Control Register Bits Summary (Continued)

Reset

Abbreviation Value Name Description

CLKRP 0 CLKR polarity If CLKRP = 0, CLKR is active (high).
If CLKRP = 1, CLKR is active (low).

DXP 0 DX polarity If DXP = 0, DX is active (high).

If DXP = 1, DX is active (low).

DRP 0 DR polarity If DRP =0, DR is active (high).

If DRP =1, DR is active (low).

FSXP 0 FSX polarity If FSXP = 0, FSXis active (high).

If FSXP =1, FSXis active (low).

FSRP 0 FSR polarity If FSRP = 0, FSR is active (high).

If FSRP = 1, FSR is active (low).

XLEN 00 Transmit word length ~ These two bits define the word length of serial data trans-
mitted. All data is assumed to be right justified in the transmit
buffer when fewer than 32 bits are specified.

00 — 8bits 10 — 24 bits
01 — 16 bits 11 — 32 bits

RLEN 00 Receive word length  These two bits define the word length of serial data received.
All data is right justified in the receive buffer.

00 — 8hbits 10 — 24 bits
01 — 16 bits 11 — 32 bits

XTINT 0 Transmit timer If XTINT = 0, the transmit timer interrupt is disabled.

interrupt enable If XTINT = 1, the transmit timer interrupt is enabled.

XINT 0 Transmit interrupt If XINT = 0, the transmit interrupt is disabled.

enable If XINT = 1, the transmit interrupt is enabled.
Note: The CPU receive flag XINT and the serial-port-to-DMA
interrupt (EXINTO in the |E register) is the OR of the enabled
transmit timer interrupt and the enabled transmit interrupt.

RTINT 0 Receive timer If RTINT = 0, the receive timer interrupt is disabled.

interrupt enable

If RTINT = 1, the receive timer interrupt is enabled.
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Table 12-2. Serial-Port Global-Control Register Bits Summary (Continued)

Abbreviation

Reset
Value

Name

Description

RINT

XRESET

RRESET

0

0

Receive interrupt
enable

Transmit reset

Receive reset

If RINT = 0, the receive interrupt is disabled.
If RINT = 1, the receive interrupt is enabled.

Note: The CPU receive interrupt flag RINT and the serial-
port-to-DMA interrupt (ERINTO in the |E register) are the OR
of the enabled receive timer interrupt and the enabled receive
interrupt.

If XRESET = 0, the transmit side of the serial port is reset.

To take the transmit side of the serial port out of reset, set
XRESET to 1.

Do not set XRESET to 1 until at least three cycles after RESET
goes inactive. This applies only to system reset. Setting XRESET
to 0 does not change the contents of any of the serial-port control
registers. It places the transmitter in a state corresponding to the
beginning of a frame of data. Resetting the transmitter generates
a tfransmit interrupt. Reset this bit during the time the mode of the
transmitter is set. You can toggle XFSM without resetting the
global-control register.

If RRESET = 0, the receive side of the serial port is reset.

To take the receive side of the serial port out of reset, set RRE-
SET to 1.

Do not set RRESET to 1 until at least three cycles after RESET
goes inactive. This applies only to system reset. Setting RRESET
to 0 does not change the contents of any of the serial-port control
registers. It places the receiver in a state corresponding to the
beginning of a frame of data. Reset this bit at the same time that
the mode of the receiver is set. You can toggle without resetting
the global-control register.
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12.2.2 FSX/DX/CLKX Port-Control Register

This 32-bit port-control register controls the function of the serial port FSX, DX,
and CLKX pins. The register is shown in Figure 12—-14. Table 12-3 shows the
register bits, bit names, and bit functions.

Figure 12—-14. FSX/DX/CLKX Port-Control Register

]
31-16  ;  15-12 1 10 9 8 1 7 6 5 4 3 2 1 0
« : i FSX FSX FSX FSX ; DX DX DX | DX  CLKX | CLKX | cCLKX | CLKX
DATIN | DATOUT e} FUNC ' DATIN | paTouT | 70 | FUNC ' DATIN | DATOUT | 1O | FUNC
R RIW RIW RIW R RW  RW RW R RIW RW  RW

Notes: 1) R = read, W = write.

2) xx = reserved bit, read as 0.

Table 12-3. FSX/DX/CLKX Port-Control Register Bits Summary

Reset
Abbreviation Value Name Description
CLKX FUNC 0 Clock transmit Controls the function of CLKX.
function If CLKX FUNC = 0, CLKX is configured as a general-purpose
digital I/0O port.
If CLKX FUNC = 1, CLKX is configured as a serial port pin.
CLKX 1/0 0 Clock transmit If CLKX 1/O = 0, CLKX is configured as a general-purpose input
input/output pin.
mode If CLKX /O = 1, CLKX is configured as a general-purpose output
pin.
CLKX DATOUT 0 Clock transmit Data output on CLKX when configured as general-purpose
data ouput output.
CLKX DATIN xT Clock transmit Data input on CLKX when configured as general-purpose input.
data input A write has no effect.
DX FUNC 0 DX function DXFUNC controls the function of DX.
If DXFUNC = 0, DX is configured as a general-purpose digital
I/O port.
If DXFUNC = 1, DX is configured as a serial port pin.
DX I/0 0 DX input/output  If DX /0 =0,DXis configured as a general-purpose input pin.
mode If DX 1/O =1, DX is configured as a general-purpose output pin.
DX DATOUT 0 DX data output Data output on DX when configured as general-purpose output.
tx=0o0r1
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Table 12-3. FSX/DX/CLKX Port-Control Register Bits Summary (Continued)
Reset

Abbreviation Value Name Description

DX DATIN xT DX data input Data input on DX when configured as general-purpose input.
A write has no effect.

FSX FUNC 0 FSX function Controls the function of FSX.
If FSX FUNC = 0, FSXis configured as a general-purpose digital
I/O port.
If FSX FUNC = 1, FSX is configured as a serial port pin.

FSX 1/0 0 FSX input/output  If FSX /0 = 0, FSX is configured as a general-purpose input

mode pin.

If FSX /0 = 1, FSX is configured as a general-purpose output
pin.

FSX DATOUT 0 FSX data output ~ Data output on FSX when configured as general-purpose output.

FSX DATIN xt FSX data input Data input on FSX when configured as general-purpose input.
A write has no effect.

tx=0o0r1

12.2.3 FSR/DR/CLKR Port-Control Register

This 32-bit port-control register is controlled by the function of the FSR, DR,
and CLKR pins. At reset, all bits are set to 0. The register is shown in
Figure 12-15. Table 12-4 shows the register bits, bit names, and bit functions.

Figure 12-15. FSR/DR/CLKR Port-Control Register

' '
31 16 4 15 12, 11 10 9 8 ) 7 6 5 4 : 3 2 1 0
: ' FSR FSR FSR FSR : DR DR DR DR : CLKR CLKR CLKR | CLKR
xx X : DATIN | DATOUT /10 FUNC 4 DATIN | DATOUT /10 FUNC , DATIN DATOUT /0 FUNC
T T
' [ R R/W R/W R/W ' R R/W R/W R/W ' R R/W R/W R/W
' '

Notes: 1) R = read, W = write
2) xx = reserved bit, read as 0
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Table 12-4. FSR/DR/CLKR Port-Control Register Bits Summary

Reset
Abbreviation Value Name Description
CLKR FUNC 0 Clock receive Controls the function of CLKR.
function If CLKR FUNC = 0, CLKR is configured as a general-purpose
digital I/O port.
If CLKR FUNC = 1, CLKR is configured as a serial port pin.
CLKR /0 0 Clock receive If CLKR /O = 0, CLKR is configured as a general-purpose input
input/output pin.
mode If CLKR /O = 1, CLKR is configured as a general-purpose output
pin.
CLKR DATOUT 0 Clock receive Data output on CLKR when configured as general-purpose
data output output.
CLKR DATIN xt Clock receive Data input on CLKR when configured as general-purpose input.
data input A write has no effect.
DR FUNC 0 DR function Controls the function of DR.
If DR FUNC = 0, DR is configured as a general-purpose digital
I/O port.
If DR FUNC = 1, DR is configured as a serial port pin.
DR 1/0 0 DR input/output  If DR /0 =0,DRis configured as a general-purpose input pin.
mode liDRVO = 1,DRis configured as a general-purpose output pin.
DR DATOUT 0 DR data output Data output on DR when configured as general-purpose output.
DR DATIN xt DR data input Data input on DR when configured as general-purpose input.
A write has no effect.
FSR FUNC 0 FSR function FSR FUNC controls the function of FSR.
If FSR FUNC = 0, FSR is configured as a general-purpose digital
I/O port.
If FSR FUNC = 1, FSR is configured as a serial port pin.
FSR1/0 0 FSR input/output  If FSR /0 = 0, FSR is configured as a general-purpose input
mode pin.
If FSR1/O = 1, FSR s configured as a general-purpose output
pin.
FSR DATOUT 0 FSR data output  Data output on FSR when configured as general-purpose output.
tx=0o0r1.
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Table 12-4. FSR/DR/CLKR Port-Control Register Bits Summary (Continued)

Reset
Abbreviation Value Name Description
FSR DATIN xt FSR data input Data input on FSR when configured as general-purpose input.

A write has no effect.

tx=0o0r1.

12.2.4 Receive/Transmit Timer-Control Register

A 32-bit receive/transmit timer-control register contains the control bits for the
timer module. At reset, all bits are set to 0. Figure 12-16 shows the register.
Bits 5-0 control the transmitter timer. Bits 11 -6 control the receiver timer. The
serial port receive/transmit timer function is similar to timer module operation.
It can be considered a 16-bit-wide timer. Table 12-5 describes the register
bits, bit names, and bit functions.

Figure 12-16. Receive/Transmit Timer-Control Register

31 16: 15 12" 11 10 9 8 7 6 5 4 ! 3 2 1 0
' ' ' ' — | —
XX : XX ' RSTAT XX RCLKSRC | Rc/P ' RHLD RGO XSTAT xx ¢ XCLKSRC XC/P | XHLD | XGO
[ ' '
) ) L}
! ' R R/W R/W : R/W R/W R : R/W R/W R/W R/W
'

Notes: 1) R = read, W = write

2) xx = reserved bit, read as 0

Table 12-5. Receive/Transmit Timer-Control Register Register Bits Summary

Reset
Abbreviation Value Name Function
XGO 0 Transmit timer counter  Resets and restarts the transmit timer counter.
restart If XGO = 1 and the timer is not held, the counter is zeroed
and begins incrementing on the next rising edge of the timer
input clock.
The XGO bit is cleared on the same rising edge. Writing 0
to XGO has no effect on the transmit timer.
XHLD 0 Transmit counter hold If XHLD = 0, the counter is disabled and held in its current
signal state.

If XHLD = 1, the internal divide-by-two counter is also held so
that the counter continues where it left off.
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Table 12-5.

Receive/Transmit Timer-Control Register Register Bits Summary (Continued)

Abbreviation

Reset
Value

Name

Function

XC/P

XCLKSRC

XTSTAT

RGO

RHLD

RC/P

0

Transmit clock/pulse
mode control

Transmit clock source

Transmit timer status

Receive timer counter
restart

Receive counter hold
signal

Rclock/pulse mode
control

When XC/P = 1, the clock mode is chosen. The signaling of
the status flag and external output has a 50 percent duty
cycle.

When XC/P =0, the status flag and external output are active
for one CLKOUT cycle during each timer period.

Specifies the source of the transmit timer clock.

When XCLKSRC = 1, an internal clock with frequency equal
to one-half the CLKOUT frequency is used to increment the
counter.

When XCLKSRC = 0, you can use an external signal from
the CLKX pin to increment the counter.

The external clock source is synchronized internally, thus
allowing for external asynchronous clock sources that do
not exceed the specified maximum allowable external clock
frequency, that is, less than f(H1)/2.6.

Indicates the status of the transmit timer. It tracks what
would be the output of the uninverted CLKX pin.

This flag sets a CPU interrupt on a transition from 0to 1. A
write has no effect.

Resets and starts the receive timer counter.

When RGO is set to 1 and the timer is not held, the counter
is zeroed and begins incrementing on the next rising edge
of the timer input clock.

The RGO bit is cleared on the same rising edge. Writing 0
to RGO has no effect on the receive timer.

If RHLD = 0, the counter is disabled and held in its current
state.

If RHLD = 1, the internal divide-by-2 counter is also held so
that the counter will continue where it left off.

You can read and modify the timer registers while the timer
is being held. RESET has priority over RHLD.

When RC/P = 1, the clock mode is chosen. The signaling of
the status flag and external output has a 50% duty cycle.

When RC/P = 0, the status flag and external output are active
for one CLKOUT cycle during each timer period.
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Table 12-5. Receive/Transmit Timer-Control Register Register Bits Summary (Continued)

Reset
Abbreviation Value Name Function

RCLKSRC 0 Receive timer clock Specifies the source of the receive timer clock.

source When RCLKSRC = 1, an internal clock with frequency equal

to one-half the CLKOUT frequency is used to increment the
counter.

When RCLKSRC = 0, you can use an external signal from
the CLKR pin to increment the counter. The external clock
source is synchronized internally, allowing for external
asynchronous clock sources that do not exceed the speci-
fied maximum allowable external clock frequency (that is,
less than f(H1)/2.6).

RTSTAT 0 Receive timer status Indicates the status of the receive timer. It tracks what would
be the output of the uninverted CLKR pin.

This flag sets a CPU interrupt on a transition from 0 to 1. A
write has no effect.

12.2.5 Receive/Transmit Timer-Counter Register

The receive/transmit timer-counter register is a 32-bit register (see
Figure 12-17). Bits 15-0 are the transmit timer-counter, and bits 31-16 are
the receive timer-counter. Each counter is cleared to 0 whenever it increments
to the value of the period register (see Section 12.2.6). It is also set to 0 at reset.

Figure 12-17. Receive/Transmit Timer-Counter Register

31 16

Receive counter

Transmit counter

Note: All bits are read/write.
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12.2.6 Receive/Transmit Timer-Period Register

The receive/transmit timer-period register is a 32-bit register (see Figure 12-18).
Bits 15-0 are the timer transmit period, and bits 31-16 are the receive period.
Each register specifies the period of the timer and is cleared to 0 at reset.

Figure 12-18. Receive/Transmit Timer-Period Register
31 16

Receive period

15 0

Transmit period

Note: All bits are read/write.

12.2.7 Data-Transmit Register

When the data-transmit register (DXR) is loaded, the transmitter loads the word
into the transmit-shift register (XSR), and the bits are shifted out. The delay from
a write to DXR until an FSX occurs (or can be accepted) is two CLKX cycles.
The word is not loaded into the shift register until the shifter is empty. When DXR
is loaded into XSR, the XRDY bit is set, specifying that the buffer is available
to receive the next word. Four tap points within the transmit-shift register are
used to transmit the word. These tap points correspond to the four-data word
sizes and are illustrated in Figure 12-19. The shift is a left-shift (LSB to MSB)
with the data shifted out of the MSB corresponding to the appropriate tap point.

Figure 12-19. Transmit Buffer Shift Operation
« Shift direction «
31 24 23 16 15 8 7 0

| | | |
32-bit word tap 24-bit word tap 16-bit word tap 8-bit word tap

12.2.8 Data-Receive Register

When serial data is input, the receiver shifts the bits into the receive-shift register
(RSR). When the specified number of bits are shifted in, the data-receive register
(DRR) is loaded from RSR, and the RRDY status bit is set. The receiver is double-
buffered. If the DRR has not been read and the RSR is full, the receiver is frozen.
New data coming into the DR pin is ignhored. The receive shifter does not write over
the DRR. The DRR must be read to allow new data in the RSR to be transferred
to the DRR. When a write to DRR occurs at the same time that an RSR-to-DRR
transfer takes place, the RSR-to-DRR transfer has priority.
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Data is shifted to the left (LSB to MSB). Figure 12-20 illustrates what happens
when words less than 32 bits are shifted into the serial port. In this figure, it is
assumed that an 8-bit word is being received and that the upper three bytes
of the receive buffer are originally undefined. In the first portion of the figure,
byte ahas been shifted in. When byte bis shifted in, byte ais shifted to the left.
When the data-receive register is read, both bytes a and b are read.

Figure 12-20. Receive Buffer Shift Operation

« Shift direction «

31 24 23 16 15 8 7 0
After byte a ‘ X X X a ‘

After byte b ‘ X X a b ‘

12.2.9 Serial-Port Operation Configurations

Several configurations are provided for the operation of the serial-port clocks
and timer. The clocks for each serial port can originate either internally or exter-
nally. Figure 12-21 shows serial-port clocking in the /0O mode (CLKXFUNC
= 0) when CLKX is either an input or an output. Figure 12—-22 shows clocking
in the serial-port mode (CLKXFUNC=1). Both figures use a transmit section
for an example. The same relationship holds for a receive section.
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Figure 12-21. Serial-Port Clocking in I/O Mode

CLKX FUNC= 0 (/0O mode)
CLKX /0O =1 (CLKX, an output)
XCLK SRC =1 (internal CLK for timer)

(a)
Internal | External

TSTAT p— Internal |
dosk |

I » CLKX
XSR p

DATOUT —»——
DATIN—¢——

CLKX FUNC= 0 (I/O mode)
CLKX /O =0 (CLKX, an input)
XCLK SRC =1 (internal CLK for timer)

(©)

Internal | External

TSTAT l
e S
XSR ——% CLKX

DATOUT (NC)—o©
DATIN ————

12-30

CLKX FUNC= 0 (I/O mode)
CLKX /O =1 (CLKX, an output)
XCLK SRC = 0 (external CLK for timer)

(b)
Interna, External

TSTAT, |

«—{Tmerinfe— |
> CLKX

XSR »

DATAOUT—»—
DATIN—¢——

CLKX FUNC= 0 (I/O mode)
CLKX /O =0 (CLKX, an input)
XCLK SRC = 0 (external CLK for timer)

(d)

Internal | External

TSTAT, |
»—<— CLKX
XSR |

DATOUT (NC)— Y
DATIN—<———
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Figure 12-22. Serial-Port Clocking in Serial-Port Mode

CLKX FUNC= 1 (serial-port mode) CLKX FUNC= 1 (serial-port mode)
CLKX /O =1 (output serial-port CLK) CLKX /O =0 (input serial-port CLK)
XCLKSRC =0or1 XCLK SRC =1 (internal CLK for timer)
(a) (b)
Internal‘ External Internal‘ External
TSTAT — Internal TSTAT— Internal
“« clock | clock |

\
CLKX
XSR \ ()D“ XSR »-G | CLKX

DATOUT (NC) —o INV DATOUT (NC) —o
DATIN— ¢—— DATN— ¢—— INV
CLKX FUNC= 1 (serial-port mode)

=1
CLKX /O =0 (input serial-port CLK)
XCLK SRC =0 (external CLK for timer)

(©)

Internal | External

\
TSTAT
|
SEE
XSR »

DATOUT (NC) —o INV
DATIN—¢——

12.2.10 Serial-Port Timing

The formula for calculating the frequency of the serial-port clock with an inter-
nally generated clock depends upon the operation mode of the serial-port
timers, defined as:

f (pulse mode) = f (timer clock)/period register
f (clock mode) = f (timer clock)/(2 x period register)

An internally generated clock source f (timer clock) has a maximum frequency
of f(H1)/2. An externally generated serial-port clock f (timer clock) (CLKX or
CLKR) has a maximum frequency of less than f(H1)/2.6. See section 12.1.5
on page 12-7 for information on timer pulse/clock generation.

Transmit data is clocked out on the rising edge of the selected serial-port clock.
Receive data is latched into the receive-shift register on the falling edge of the
serial-port clock. All data is received MSB first and shifted to the left. If fewer than
32 bits are received, the data received is right-justified in the receive buffer.
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The transmit ready (XRDY) signal specifies that the data-transmit register
(DXR) is available to be loaded with new data. XRDY goes active as soon as
the data is loaded into the transmit-shift register (XSR). The last word may still
be shifting out when XRDY goes active. If DXR is loaded before the last word
has completed transmission, the data bits transmitted are consecutive; that is,
the LSB of the first word immediately precedes the MSB of the second, with
all signaling valid as in two separate transmits. XRDY goes inactive when DXR
is loaded and remains inactive until the data is loaded into the shifter.

The receive ready (RRDY) signal is active as long as a new word of data is
loaded into the data-receive register and has not been read. As soon as the
data is read, the RRDY bit is turned off.

When FSX is specified as an output, the activity of the signal is determined by
the internal state of the serial port. If a fixed data rate is specified, FSX goes
active when DXR is loaded into XSR. One serial-clock cycle later FSX turns
inactive and data transmission begins. If a variable data rate is specified, the
FSX pin is activated when the data transmission begins and remains active
during the entire transmission of the word. Again, the data is transmitted one
clock cycle after it is loaded into the data-transmit register.

An input FSXin the fixed data-rate mode must go active for at least one serial-
clock cycle and then inactive to initiate the data transfer. The transmitter then
sends the number of bits specified by the XLEN (bit field 19, serial-port global-
control register) bits. In the variable data-rate mode, the transmitter begins
sending from the time FSX goes active until the number of specified bits have
been shifted out. In the variable data-rate mode, when the FSX status changes
prior to all the data bits being shifted out, the transmission completes, and the
DX pin is placed in a high-impedance state. An FSR input is exactly comple-
mentary to the FSX.

When using an external FSX, if DXR and XSR are empty, a write to DXR results
in a DXR-to-XSR transfer. This data is held in the XSR until an FSX occurs.
When the external FSX is received, the XSR begins shifting the data. If XSR is
waiting for the external FSX, a write to DXR changes DXR, but a DXR-to-XSR
transfer does not occur. XSR begins shifting when the external FSX is received,
or when it is reset using XRESET.
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12.2.10.1 Continuous Transmit and Receive Modes

When you choose continuous mode, consecutive writes do not generate or
expect new sync pulse signaling. Only the first word of a block begins with
an active synchronization. Thereafter, data is transmitted as long as new
data is loaded into DXR before the last word has been transmitted. As soon
as TXRDY is active and all of the data has been transmitted out of the shift
register, the DX pin is placed in a high-impedance state, and a subsequent
write to DXR initiates a new block and a new FSX.

Similarly with FSR, the receiver continues shifting in new data and loading
DRR. If the data-receive buffer is not read before the next word is shifted in,
you will lose subsequent incoming data. You can use the RFSM bit to terminate
the receive-continuous mode.

12.2.10.2 Handshake Mode

The handshake mode (HS = 1) allows for direct connection between processors.
In this mode, all data words are transmitted with a leading 1 (see Figure 12-23).
For example, in order to transmit an 8-bit word, the first bit sent is a 1, followed
by the 8-bit data word.

Once the serial port transmits a word in this mode, it does not transmit another
word until it receives a separately transmitted 0 bit. Therefore, the 1 bit that
precedes every data word is a request bit.

Figure 12-23. Data Word Format in Handshake Mode
Data word (8 bits)

. A
/’ ¥

DX

Leading 1

After a serial port receives a word that has been read from the DRR (with the
leading 1), the receiving serial port sends a single 0 to the transmitting serial
port. The single 0 bit acts as an acknowledge bit (see Figure 12-24). This
single acknowledge bit is sent every time the DRR is read, even if the DRR
does not contain new data.

Figure 12-24. Single 0 Sent as an Acknowledge Bit

DX_@_
S

ingle 0
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When the serial port is placed in the handshake mode, the insertion and deletion
of a leading 1 for transmitted data, the sending of a 0 for acknowledgement of
received data, and the waiting for this acknowledge bit are all performed auto-
matically. Using this scheme, it is simple to connect processors with no external
hardware and to guarantee secure communication. Figure 12-25 is a typical
configuration.

In the handshake mode, FSX is automatically configured as an output. Con-
tinuous mode is automatically disabled. After a system reset or XRESET, the
transmitter is always permitted to transmit. The transmitter and receiver must
be reset when entering the handshake mode.

Figure 12-25. Direct Connection Using Handshake Mode

12.2.11
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'C3x #1 "'C3x #2
CLKX > CLKR
FSX > FSR
DX »{ DR
CLKR |« CLKX
FSR |« FSX
DR |« DX

Serial-Port Interrupt Sources

A serial port has the following interrupt sources:

(O Transmit-timer interrupt. The rising edge of XTSTAT causes a single-
cycle interrupt pulse to occur. When XTINT is 0, this interrupt pulse is
disabled.

(1 Receive-timer interrupt. The rising edge of RTSTAT causes a single-
cycle interrupt pulse to occur. When RTINT is 0, this interrupt pulse is
disabled.

(1 Transmitter-interrupt. Occurs immediately following a DXR-to-XSR
transfer. The transmitter interrupt is a single-cycle pulse. When the serial-
port global-control register bit XINT is 0, this interrupt pulse is disabled.

[ Receiver-interrupt. Occurs immediately following an RSR-to-DRR trans-
fer. The receiver interrupt is a single-cycle pulse. When the serial-port
global-control register bit RINT is 0, this interrupt pulse is disabled.

The transmit-timer interrupt pulse is ORed with the transmitter interrupt pulse
to create the CPU-transmit interrupt flag XINT. The receive-timer interrupt pulse
is ORed with the receiver interrupt pulse to create the CPU receive-interrupt flag
RINT.
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12.2.12 Serial-Port Functional Operation

The following paragraphs and figures illustrate the functional timing of the
various serial-port modes of operation. The timing descriptions are presented
with the assumption that all signal polarities are configured to be positive (that
is, CLKXP = CLKRP = DXP = DRP = FSXP = FSRP = 0). Logical timing, in situ-
ations where one or more of these polarities are inverted, is the same except
with respect to the opposite polarity reference points (that is, rising vs. falling
edges, etc.).

These discussions pertain to the numerous operating modes and configurations
of the serial-port logic. When it is necessary to switch operating modes or
change configurations of the serial port, you should do so only when XRESET
or RRESET are asserted (low), as appropriate. When transmit configurations
are modified, XRESET should be low, and when receive configurations are
modified, RRESET should be low. When you use handshake mode, however,
since the transmitter and receiver are interrelated, you should make any configu-
ration changes with XRESET and RRESET both low.

All of the serial-port operating configurations can be classified in two categories:
fixed data-rate timing and variable data-rate timing. Both categories support
operation in either burst or continuous mode.

Burst-mode operation with variable data-rate timing is similar to burst-mode
operation with fixed data-rate timing. With variable data-rate timing, however,
FSX/R and data timing differ slightly at the beginning and end of transfers.
Specifically, there are three major differences between fixed and variable data-
rate timing:

(1 FSX/R pulses typically last for the entire transfer interval in variable data-
rate timing operation, although FSR and external FSX are ignored after
the first bit transferred. FSX/R pulses in fixed data-rate mode typically last
only one CLKX/R cycle but can last longer.

(1 With variable data-rate timing, data transfer begins during the CLKX/R
cycle in which FSX/R occurs. With fixed data-rate timing, data transfer be-
gins in the CLKX/R cycle following FSX/R.

(1 With variable data-rate timing, frame sync inputs are ignored until the end
of the last bit transferred. With fixed data-rate timing, frame sync inputs are

ignored until the beginning of the last bit transferred.

The following paragraphs discuss fixed and variable data-rate operation and all
of their variations.
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12.2.12.1 Fixed Data-Rate Timing Operation

Fixed data-rate serial-port transfers can occur in two varieties: burst mode and
continuous mode. In burst mode, transfers of single words are separated by
periods of inactivity on the serial port. In continuous mode, there are no gaps
between successive word transfers; the first bit of a new word is transferred
on the next CLKX/R pulse following the last bit of the previous word. This occurs
continuously until the process is terminated. The following variations are
included in fixed data-rate timing operations.

(1 Fixed Burst Mode

In burst mode with fixed data-rate timing, FSX/FSR pulses initiate transfers,
and each transfer involves a single word. With an internally generated FSX
(see Figure 12-26), transmission is initiated by loading DXR. In this mode,
there is a delay of approximately 2.5 CLKX cycles (depending on CLKX and
H1 frequencies) from the time DXR is loaded until FSX occurs. With an
external FSX, the FSX pulse initiates the transfer, and the 2.5-cycle delay
effectively becomes a setup requirement for loading DXR with respect to
FSX. In this case, you must load DXR no later than three CLKX cycles before
FSX occurs. Once the XSR is loaded from the DXR, an XINT is generated.

Figure 12-26. Fixed Burst Mode

CLKX/R I | I | I | I | I | I | I | I | I | I | R/XVAREN =0

R/XFSM =0
FSR/FSX (external) | e |
FSX (internal) [ l

04/ P —— =X )
! ! I

DXR loaded XINT RINT

In receive operations, once a transfer is initiated, FSR is ignored until the
last bit. For burst-mode transfers, FSR must be low during the last bit, or
another transfer will be initiated. After a full word has been received and
transferred to the DRR, an RINT is generated.

(O Fixed Standard Mode

In fixed data-rate mode, you can perform continuous transfers even if
R/XFSM = 0, as long as properly timed frame synchronization is provided,
or as long as DXR is reloaded each cycle with an internally generated FSX
(see Figure 12-27).
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Figure 12-27. Fixed Standard Mode With Back-to-Back Frame Sync

cioor” LI LM LML ML rmrorer

FSX (Internal)

; R/XVAREN =0
FSR/FSX (External | RRRAXKE XX XXX
( ) ! WM RN RIXESM 2 0
DR/DX e e e e e — — — —(EX T X(EXEX
I T XINT XINT
DXR loaded XINT RINT RINT
with A
DXR loaded Load DXR with C Load DXR with
with B read DRR Dread DRR

For receive operations and with externally generated FSX, once transfers
have begun, frame sync pulses are required only during the last bit trans-
ferred to initiate another contiguous transfer. Otherwise, frame sync inputs
are ignored. Continuous transfers occur if the frame sync is held high. With
an internally generated FSX, there is a delay of approximately 2.5 CLKX
cycles from the time DXR is loaded until FSX occurs. This delay occurs
each time DXR is loaded; therefore, during continuous transmission, the
instruction that loads DXR must be executed by the N-3 bit for an N-bit
transmission. Since delays due to pipelining vary, you should incorporate
a conservative margin of safety in allowing for this delay.

Once the process begins, an XINT and an RINT are generated at the begin-
ning of each transfer. The XINT indicates that the XSR has been loaded from
DXR and can be used to cause DXR to be reloaded. To maintain continuous
transmission in fixed rate mode with frame sync, especially with an internally
generated FSX, DXR must be reloaded early in the ongoing transfer.

The RINT indicates that a full word has been received and transferred into
the DRR; RINT indicates an appropriate time to read DRR.

Continuous transfers are terminated by discontinuing frame sync pulses
or, in the case of an internally-generated FSX, not reloading DXR.

Fixed Continuous Mode

You can accomplish continuous serial-port transfers, without the use of
frame sync pulses, if R’XFSMis set to 1. In this mode, operation of the serial
port is similar to continuous operation with frame sync, except that a frame
sync pulse is involved only in the first word transferred, and no further frame
sync pulses are used. Following the first word transferred (see
Figure 12-28), no internal frame sync pulses are generated, and frame
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sync inputs are ignored. Additionally, you should set R/’XFSM prior to or
during the first word transferred; you must set R/’XFSM no later than the
transfer of the N-1 bit of the first word, except for transmit operations. For
transmit operations in the fixed data-rate mode, XFSM must be set no later
than the N-2 bit. You must clear R/’XFSM no later than the N-1 bit to be
recognized in the current cycle.

Figure 12-28. Fixed Continuous Mode Without Frame Sync
g O T Y T T Y T T Y N T e
CLKXR RIXFSM = 1

FSR/FSX (external)
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FSX (internal)

[ 1

DXR loaded

_____ —A :)(ANXBHd X BN X T X

IRE !

XINT | Set XINT XINT
R/XFSM RINT RINT
DXR loaded Load DXR Load DXR
read DRR read DRR

The timing of RINT and XINT and data transfers to and from DXR and
DRR, respectively, are the same as in fixed data-rate standard mode with
back-to-back frame syncs. This mode of operation also exhibits the same
delay of 2.5 CLKX cycles after DXR is loaded before an internal FSX is
generated. As in the case of continuous operation in fixed data-rate mode
with frame sync, you must reload DXR no later than transmission of the
N-3 bit.

Enabling or Disabling Frame Syncs in Fixed Mode

When you use continuous operation in fixed data-rate mode, you can set
and clear R/XFSM as desired, even during active transfers, to enable or
disable the use of frame sync pulses as dictated by system requirements.
Under most conditions, changing the state of R/’ XFSM occurs during the
transfer in which the R/’ XFSM change was made, provided the change
was made early enough in the transfer. For transmit operations with inter-
nal FSX in fixed data-rate mode, however, a 1-word delay occurs before
frame sync pulse generation resumes when clearing XFSM to 0 (see
Figure 12-29). In this case, one additional word is transferred before the
next FSX pulse is generated. The clearing of XFSM is recognized during
the transmission of the word currently being transmitted as long as XFSM
is cleared no later than the N-1 bit. The setting of XFSM is recognized as
long as XFSM is set no later than the N-2 bit.
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Figure 12-29. Exiting Fixed Continuous Mode Without Frame Sync, FSX Internal
\ \ \ | \

‘ 1st word ‘ 2nd word ‘ 3rd word ‘ 4th word ‘ 5th word ‘
\ \ \ \ \ \
CLKX {EpipEgNpipiyEpipiuipinixinipikiph
FSX ‘ ‘ ‘ | | |
(internal) 1 } } [ [
|

[ ] [
S — - OB EEOEEBETEOE

]

LOAD DXR SET XFSM RESET XFSM

12.2.12.2 Variable Data-Rate Timing Operation
The following variations are included in variable data-rate timing operations.

(J Variable Burst Mode

In burst mode with variable data-rate timing, FSX/FSR pulse lasts for the
entire duration of transfer. With an internally generated FSX (see
Figure 12-30), transmission is initiated by loading DXR. In this mode there
is a delay of approximately 3.5 CLKX cycles (depending on CLKX and H1
freqency) from the time DXR is loaded until FSX occurs. With an external
FSX, the FSX pulse initiates the transfer and the 3.5-cycle delay effectively
becomes a setup requirement for loading DXR with respect to FSX. There-
fore, in this case, you must load DXR no later than four CLKX cycles before
FSX occurs. Once the XSR is loaded from the DXR, an XINT is generated.

Figure 12-30. Variable Burst Mode

R/XVAREN = 1
clvR T LI LI LI LI LML LI LI LI LI LI RxFsM=o0
FSR/FSX (external) | K 4
FSX (internal) | ' |
DXDR —————————— —(E2DC A
DXR laded XILT RILT
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Figure 12-31.

FSR/FSX (External)

12-40

Ports

(1 Variable Standard Mode

When you transmit continuously in variable data-rate mode with frame sync,
timing is the same as for fixed data-rate mode, except for the differences
between these two modes as described in Section 12.2.12 Serial-Port
Functional Operation, on page 12-35. The only other exception is that you
must reload DXR no later than the N-4 bit to maintain continuous opera-
tion of the variable data-rate mode (see Figure 12-31); you must reload
DXR no later than the N-3 bit to maintain continuous operation of the fixed
data-rate mode.

Variable Standard Mode With Back-to-Back Frame Syncs

clkvR L L L Lrrrorr R/XVAREN = 1

» R/IXFSM =0

I E T 1% |

FSX (Internal)

RINT RINT

dE M

LoﬁﬁhDE? R Load DXR with C  Load DXR with D

Read DRR Read DRR

Continuous operation in variable data-rate mode without frame sync (see
Figure 12-32) is similar to continuous operation without frame sync in
fixed data-rate mode (see Figure 12-28). As with variable data-rate stan-
dard mode with back-to-back frame syncs, you must reload DXR no later
than the N-4 bit to maintain continuous operation. Additionally, when
R/XFSM is set or cleared in the variable data-rate mode, you must make
the modification no later than the N-1 bit for the result to be affected in the
current transfer.
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Figure 12-32. Variable Continuous Mode Without Frame Sync
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12.2.13 Serial-Port Initialization/Reconfiguration

The serial ports are controlled through memory-mapped registers on the dedi-
cated peripheral bus. A general procedure for initializing and/or reconfiguring
the serial ports follows.

1) Halt the serial port by clearing the XRESET and/or RRESET bits of the serial-
port global-control register. To do this, write a 0 to the serial-port global-
control register. The serial ports are halted on RESET.

2) Configure the serial port via the serial-port global-control register (with
XRESET = RRESET = 0) and the FSX/DX/CLKX and FSR/DR/CLKR port-
control registers. If necessary, configure the receive/transmit registers;
timer control (with XHLD = RHLD = 0), timer counter, and timer period.
Refer to section 12.2.14 for more information.

3) Start the serial-port operation by setting the XRESET and RRESET bits
of the serial-port global-control register and the XHLD and RHLD bits of
the serial-port receive/transmit timer-control register, if necessary.

12.2.14 TMS320C3x Serial-Port Interface Examples

In addition to the examples presented in this section, you can find DMA/serial
port initialization examples in Example 12-9 and Example 12-10 on pages
12-78 and 12-79, respectively.
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12.2.14.1 Handshake Mode Example

When using the handshake mode, the transmit (FSX/DS/CLKX) and receive
(FSR/DR/CLKR) signals transmit and receive data, respectively. Even if the
'C3x serial port is receiving data only with handshake mode, the transmit signals
are still needed to transmit the acknowledge signal. Example 12-3 shows the
serial-port register setup for the 'C3x serial-port handshake communication, as
shown in Figure 12-25 on page 12-34.

Example 12-3. Serial-Port Register Setup #1

Global control

Transmit port control
Receive port control
S _port timer control
S port timer count

S _port timer period

011x0x0xxxx00000000xx01100100b,

0111lh

0111lh

OFh

Oh

0lh (if two C3xs have the same system clock).

AV L | R | I

Note: x = user-configurable

12-42

Since FSX is set as an output and continuous mode is disabled when hand-
shake mode is selected, follow these steps:

1) Set the XFSM and RFSM bits to 0 and the FSXOUT bit to 1 in the global-
control register.

2) Setthe XRESET, RRESET, and HS bits to 1 in order to start the handshake
communication.

3) Set the polarity of the serial-port pins active (high) for simplification.

4) Although the CLKX/CLKR can be set as either input or output, set the
CLKX as output and the CLKR as input.

The rest of the bits are user-configurable as long as both serial ports have
consistent setup.

You need the serial-port timer only if the CLKX or CLKR is configured as an
output. Since only the CLKX is configured as an output, set the timer control
register to OFh. When you use the serial-port timer, set the serial timer register
to the proper value for the clock speed. The serial-port timer clock speed setup
is similar to the 'C3x timer. Refer to Section 12.1, Timers, on page 12-2 for
detailed information on timer clock generation.

The maximum clock frequency for serial transfers is f(CLKIN)/4 if the internal
clock is used and f(CLKIN)/5.2 if an external clock is used. If two 'C3xs have
the same system clock, the timer-period register should be set equal to or
greater than 1, which makes the clock frequency equal to f(CLKIN)/8.
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Example 12-4 and Example 12-5 are serial-port register setups for the above
case. (Assume two 'C3xs have the same system clock.)

Example 12-4. Serial-Port Register Setup #1

Global control OEBC0064h; 32 bits, fixed data rate, burst mode,
Transmit port control 0111h ; FSX (output), CLKX (output) = F(CLKIN) /8
Receive port control 0111h ; CLKR (input), handshake mode, transmit

S port timer
S port timer
S port timer

control
count
period

AV | | R R |

0Fh ; and receive interrupt is enabled.
Oh
0lh

Example 12-5. Serial-Port Register Setup #2

Global control = 0C000364h; 8 bits, variable data rate, burst mode,
Transmit port control = 0111h; FSX (output), CLKX (output) = f(CLKIN) /24
Receive port control = 0111lh ; CLKR (input), handshake mode, transmit

S port timer control = OFh; and receive interrupt is disabled.

S port timer count = ©0Oh

S port timer period > 01lh

Since the data has a leading 1 and the acknowledge signal is a 0 in the hand-
shake mode, the '‘C3x serial port can distinguish between the data and the
acknowledge signal. Even if the ’C3x serial port receives the data before the
acknowledge signal, the data is not misinterpreted as the acknowledge signal
and lost. Additionally, the acknowledge signal is not generated until the data
is read from the data-receive register (DRR); the 'C3x does not transmit the
data and the acknowledge signal simultaneously.

12.2.14.2 CPU Transfer With Serial Port Transmit Polling Method

Example 12-6 sets up the CPU to transfer data (128 words) from an array buffer
to the serial port 0 output register when the previous value stored in the serial-
port output register has been sent. Serial port 0 is initialized to transmit 32-bit
data words with an internally generated frame sync and a bit-transfer rate of
8H1 cycles/bit.
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Example 12-6. CPU Transfer With Serial Port Transmit Polling Method

TION

LDI
LDI
LDI
STI

LDI
LDI
STI

SPRESET .WORD 008C0044
SGCCTRL .WORD 048C0044H
SXCTRL .WORD 111H

STCTRL .WORD OOFH
STPERIOD .WORD 00000002h

ANDN 10H, IE

* SERIAL PORT INITIALIZATION

@SPORT, AR1L
@RESET, RO
4,IRO0

RO, *+AR1 (IRO)

* CPU WRITES THE FIRST WORD

@SOURCE, ARO
*ARO++,R1
R1,*+AR1 (8)

SERIAL-PORT
SERIAL-PORT
SERIAL-PORT

SERIAL-PORT
SERIAL-PORT

* TITLE: CPU TRANSFER WITH SERIAL-PORT TRANSMIT POLLING METHOD
*
.GLOBAL START
.DATA
SOURCE  .WORD _ARRAY
.BSS _ARRAY,128 ; DATA ARRAY LOCATED IN .BSS SECTION
; THE UNDERSCORE USED IS JUST TO MAKE IT
; ACCESSIBLE FROM C (OPTIONAL)
SPORT .WORD 808040H ; SERIAL-PORT GLOBAL CONTROL REG ADDRESS

RESET
GLOBAL CONTROL REG INITIALIZATION
TX PORT CONTROL REG INITIALIZA-

TIMER CONTROL REG INITIALIZATION
TIMER PERIOD

RESET .WORD OH SERIAL-PORT TIMER RESET VALUE
.TEXT
START LDP RESET LOAD DATA PAGE POINTER

DISABLE SERIAL-PORT TRANSMIT INTERRUPT TO CPU

SERIAL-PORT

TIMER RESET

LDI @SPRESET, RO

STI RO, *AR1 SERIAL-PORT RESET

LDI @SXCTRL, RO SERIAL-PORT TX CONTROL REG INITIALIZATON

STI RO, *+AR1 (3)

LDI @STPERIOD,RO SERIAL-PORT TIMER PERIOD INITIALIZATION

STI RO, *+AR1 (6)

LDI @STCTRL,RO SERIAL-PORT TIMER CONTROL REG INITIALIZATION
STI RO, *+AR1 (4)

LDI @SGCCTRL,RO SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
STI RO, *AR1

* CPU WRITES 127 WORDS TO THE SERIAL PORT OUTPUT REG

LDI 8,IRO
LDI 2,R0
LDI 126,RC
RPTB LOOP
WAIT AND *AR1,R0O,R2 ; WAIT UNTIL XRDY BIT = 1
BZ WAIT
LOOP STI R1,*+AR1 (IRO)
|| LDI *++ARO(1),R1
BU $
.END
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Serial Ports

Example 12-8 and Example 12-9 of Section 12.3.11 on page 12-76 use the
DMA synchronized to serial port interrupts to transfer data (128 words) from
an array buffer to the serial port0 output register.

12.2.14.4 Serial Analog Interface Chips Interface Example

The TLC320C4x analog interface chips (AIC) from Texas Instruments offer a
zero-glue-logic interface to the ‘C3x family of DSPs. The interface is shown in
Figure 12-33 as an example of the 'C3x serial-port configuration and operation.

Figure 12-33. TMS320C3x Zero-Glue-Logic Interface to TLC320C4x Example

TMS320C3x TLC320C4x
XFO > RESET WORD [—— VCC
CLKRO :ji SCLK
CLKX0 OUT+ [—® Analog
FSRoO [+ FSR OuUT- Out
DRO [¢ DR
FSXO0 [« FSX IN+ [¢— Analog
DX0 > DX IN- In
TCLKO > MCLK ?

GND

The 'C3x resets the AIC through the external pin XFO. It also generates the
master clock for the AIC through the timer 0 output pin, TCLKO. (Precise selec-
tion of a sample rate may require the use of an external oscillator rather than
the TCLKO output to drive the AIC MCLK input.) In turn, the AIC generates the
CLKRO and CLKXO0 shift clocks as well as the FSR0 and FSX0 frame synchro-
nization signals.

A typical use of the AIC requires an 8-kHz sample rate of the analog signal.
If the clock input frequency to the ’C3x device is 30 MHz, you should load the
following values into the serial port and timer registers.

Serial Port:
Port global-control register

FSX/DX/CLKX port-control register
FSR/DR/CLKR port-control register

Timer:

Timer global-control register
Timer-period register

0E970300h
00000111h
00000111h

000002C1h
00000001h

Peripherals
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12.2.14.5 Serial Analog-to-Digital (A/D) and Digital-to-Analog (D/A) Interface Example

The DSP201/2 and DSP101/2 family of D/As and A/Ds from Burr Brown also
offer a zero-glue-logic interface to the ’C3x family of DSPs. The interface is
shown in Example 12-7. This interface is used as an example of the 'C3x serial
port configuration and operation.

Example 12-7. TMS320C3x Zero-Glue-Logic Interface to Burr Brown A/D and D/A

Burr Brown DSP102 A/D Burr Brown DSP202 D/A
CASC +5V +5V —— CASC
'C3x
XCLK CLKRO CLKXO0 XCLK
SOUTA »{DRO DX0 SINA
+2.75V —»{ VINA VOUTAF—» +3V
SYNC SINB
»{FSRO
+2.75V —»{ VINB Fsxol< SYNC VOUTBF—» +3V
0SCo SSF |—+5V oy .
—] osct =V
+5V — SWL
1 MO CONV TCLKO CONV

i

22 pF T $ 22 pF

The DSP102 A/D is interfaced to the 'C3x serial-port receive side; the DSP202
D/A is interfaced to the transmit side. The A/Ds and D/As are hard-wired to run
in cascade mode. In this mode, when the ‘C3x initiates a convert command to
the A/D via the TCLKO pin, both analog inputs are converted into two 16-bit
words, which are concatenated to form one 32-bit word.

1) The A/D signals the 'C3x via the A/D’s SYNC signal (connected to the
FSRO pin) that serial data is to be transmitted.

2) The 32-bit word is then serially transmitted, MSB first, out the SOUTA serial
pin of the DSP102 to the DRO pin of the 'C3x serial port.

3) The 'C3x is programmed to drive the analog interface bit clock from the
CLKXO0 pin of the "C3x.
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4) The bit clock drives both the A/D’s and D/A’'s XCLK input.

5) The 'C3x transmit clock also acts as the input clock on the receive side of
the "C3x serial port.

6) Since the receive clock is synchronous to the internal clock of the ‘C3x, the
receive clock can run at full speed (that is, f(H1)/2).

Similarly, on receiving a convert command, the pipelined D/A converts the last
word received from the ‘C3x and signals the ‘C3x via the SYNC signal (connected
to the 'C3x FSXO0 pin) to begin transmitting a 32-bit word representing the two
channels of data to be converted. The data transmitted from the ‘C3x DXO0 pin is
input to both the SINA and SINB inputs of the D/A as shown in Example 12-7.

The 'C3x is set up to transfer bits at the maximum rate of about 8 Mbps, with a
dual-channel sample rate of about 44.1 kHz. Assuming a 32-MHz CLKIN, you
can configure this standard-mode fixed-data-rate signaling interface by setting
the registers as described below:

Serial Port:

Port global-control register 0EBC0040h
FSX/DX/CLKX port-control register 00000111h

FSR/DR/CLKR port-control register 00000111h

Receive/transmit timer-control register 0000000Fh
Timer:

Timer global-control register 000002C1h
Timer-period register 000000B5h
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12.3 DMA Controller

The DMA controller is a programmable peripheral that transfers blocks of data
to any location in the memory map without interfering with CPU operation. The
'C3x can interface to slow, external memories and peripherals without reducing
throughput to the CPU. The 'C3x DMA controller features are:

(1 Transfers to and from anywhere in the processor’'s memory map. For
example, transfers can be made to and from on-chip memory, off-chip
memory, and on-chip serial ports.

[ One DMA channel for memory-to-memory transfers in ‘C30 and
‘C31/VC33. Two DMA channels for memory-to-memory transfers in ‘C32.

(1 Concurrent CPU and DMA controller operation with DMA transfers at the
same rate as the CPU (supported by separate internal DMA address and
data buses).

(1 Source and destination-address registers with auto increment/decrement.

(1 Synchronization of data transfers via external and internal interrupts.

12.3.1 DMA Functional Description
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The DMA controller supports one (‘C30 and ‘C31/VC33) or two (‘C32) DMA chan-
nels that perform transfers to and from anywhere in the ‘C3x memory map.

Each DMA channel is controlled by four registers that are mapped in the ‘C3x
peripheral address space, as shown in Figure 12-35. The major DMA registers
are described in Section 12.3.3.

The DMA controller has dedicated on-chip address and data buses (see
Figure 2-5 through Figure 2-7 on pages 2-14 through 2-16 for a block dia-
gram of the peripherals of the ‘C3x). All accesses made by the DMA channels
are arbitrated in the DMA controller and take place over these dedicated
buses. The DMA channels transfer data in a sequential time-slice fashion,
rather than simultaneously, because they share common buses.

The DMA channels can run constantly or can be triggered by external (INT3-0)
or internal (on-chip timers and serial ports) interrupts.
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12.3.1.2 TMS320C32 Two-Channel DMA Controller

TMS320C30 and TMS320C31/VC33 DMA Controller

DMA Controller

'C30E 3'C31
The *C30 and 'C31/VC33 have an on-chip direct memory access (DMA) con-
troller that reduces the need for the CPU to perform input/output functions. The
DMA controller can perform input/output operations without interfering with the
operation of the CPU. Therefore, it is possible to interface the 'C30 and
’C31/VC33 to slow external memories and peripherals (A/Ds, serial ports, etc.)
without reducing the computational throughput of the CPU. The result is im-
proved system performance and decreased system cost.

'C32

The 'C32 has an improved DMA that supports two channels and configurable
priorities. The next sections discuss the new features.

The ’C32 has a two-channel (channel 0 and channel 1) DMA instead of a one-
channel DMA as in the ‘C30/'C31/VC33 devices. The 'C32’s DMA functions
similarly to that of the *C30/'C31/VC33 DMA but with the addition of DMA/CPU
priority scheme and inter-DMA priority mode. Although the 'C32 CPU supports
both floating-point and integer data access with different data size from the ex-
ternal memory, the 'C32’s DMA transfer is strictly an integer data transfer. The
integer data access of the ‘C32 DMA is the same as the CPU integer data access
— 32-bit internal and data size conversion at the external memory interface port.
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12.3.2 DMA Basic Operation
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If a block of data is to be transferred from one region in memory to another region
in memory (as shown in Figure 12-34), the following sequence is performed:

DMA Registers Initialization

1)

The source-address register of a DMA channel is loaded with the address
of the memory location to read from.

The destination-address register of the same DMA channel is loaded with
the address of the memory location to write to.

The transfer counter is loaded with the number of words to be transferred.

The DMA channel control register is loaded with the appropriate modes
to synchronize the DMA controller reads and writes with interrupts.

DMA Start

5)

The DMA controller is started through the DMA START field in the DMA
channel control register.

Word Transfers

6)

7)

The DMA channel reads a word from the source-address register and
writes it to a temporary register within the DMA channel.

After a read by the DMA channel, the source-address register is increm-
ented, decremented, or unchanged depending on the INCSRC or
DECSRC bit fields of DMA channel control register.

After the read operation completes, the DMA channel writes the temporary
register value to the destination-address pointed to by the destination-
address register.

After the destination-address has been fetched, the transfer-counter reg-
ister is decremented and the destination-address register is incremented,
decremented, or unchanged, depending on the INCDST or DECDST bit
fields of the DMA channel control register.

10) During every data write, the transfer counter is decremented. The block

transfer terminates when the transfer counter reaches zero and the write
of the last transfer is completed. The DMA channel sets the transfer-counter
interrupt (TCINT) flag in the DMA channel control register.
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After the completion of a block transfer, the DMA controller can be programmed
to do several things:

1 Stop until reprogrammed (TC = 1)
(1 Continue transferring data (TC = 0)

(1 Generate an interrupt to signal the CPU that the block transfer is complete
(TCINT =1)

The DMA can be stopped by setting the START bits to 00, 01, or 10. When the
DMA is restarted (START = 11), it completes any pending transfer.

Figure 12-34. DMA Basic Operation

External or Internal

7 N

memory
DMA Memory pointed to by DMA
channel source-address register

Temporary register

A

External or Internal
memory

A 4

Memory pointed to by DMA
destination-address register

12.3.3 DMA Registers
Each DMA channel has four registers designated as follows:

(1 Control register: contains the status and mode information about the
associated DMA channel

[0 Source-address register: contains the memory address of data to be
read

(1 Destination-address register: contains the memory address where data
is written

(1 Transfer-counter register: contains the block size to move

After reset, the control register, the transfer counter, and the auxiliary transfer-
counter registers are set to 0s and the other registers are undefined.

Figure 12-36 shows these registers for 'C30 and 'C31/VC33. Figure 12-37
shows these registers for 'C32.

The format of the DMA-channel control register is shown in Figure 12-35. The
text following the figure describes the functions of each field in the register.
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At reset, each DMA-channel control register is set to 0. This makes the DMA
channels lower-priority than the CPU, sets up the source address and destination
address to be calculated through linear addressing, and configures the DMA
channel in the unified mode.

Figure 12-35. Memory-Mapped Locations for DMA Channels

Address Register
808000h DMA 0 global control
808004h DMA 0 source address
808006h DMA 0 destination address
808008h DMA 0 transfer counter
808010h DMA 1 global controlt
808014h DMA 1 source addresst
808016h DMA 1 destination addresst
808018h DMA 1 transfer counterT
t°C32 only
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DMA Controller

The global-control register controls the state in which the DMA controller
operates. This register also indicates the status of the DMA, which changes
every cycle. Source and destination addresses can be incremented, decrem-
ented, or synchronized using specified global-control register bits. At system
reset, all bits in the DMA control register are cleared to 0. Figure 12-36 shows
the global-control registers for the 'C30 and 'C31/VC33 devices. Figure 12-37
and Figure 12-38 show the global-control registers for the ‘C32. Table 12-6

shows the register bits, bit names, and bit functions.

Figure 12-36. TMS320C30 and TMS320C31/VC33 DMA Global-Control Regi 03055 C31E
31 15014 12! 11 10 9 V7 6 5 4 '3 2 1 0
| x i x< ITCINT | TG | SYNG , DECDST| INCDST |DECSRC | INGSRG: STAT | START |
. VRW RW RW . RW R/W R/W RW + R R/W
Notes: 1) R = read, W = write
2) xx = reserved bit, read as 0
Figure 12-37. TMS320C32 DMAO Global-Control Register E
31 15 14 13 12! 11 0 9 8 | 7 6 5 4 '3 10
' PRIORITY | DMAO ¢ ' ]
XX : MODE PRI : TCINT TC SYNC : DECDST | INCDST DECSRC INCSRC: STAT START
\ RW RW , RW  RW RW 1+ RW RW RW RW ! R R/W
Notes: 1) R = read, W = write
2) xx = reserved bit, read as 0
Figure 12-38. TMS320C32 DMA1 Global-Control Register 3'C82f
31 15, 14 18 120 11 10 9 8 . 7 6 5 4 '3 1 0
' DMA1 ! ' '
XX : XX PRI :TCINT TC SYNC : DECDST | INCDST | DECSRC |INCSRC s« STAT START
: R/W : R/W R/W R/W : R/W R/W R/W R/W : R R/W
Notes: 1) R = read, W = write
2) xx = reserved bit, read as 0
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Table 12-6. DMA Global-Control Register Bits Summary

Reset
Abbreviation Value Name Description
START 00 DMA start control Controls the state in which the DMA starts and stops. The
DMA may be stopped without any loss of data.
The following table summarizes the START bits and DMA
operation:
Bit1 Bit0 Function

0 0 DMA read or write cycles in progress are
completed; any data read is ignored. Any
pending read or write is cancelled. The
DMA is reset so that when it starts, a new
transaction begins; thatis, a read is per-
formed (Reset value).

0 1 If aread or write has begun, it is completed
before it stops. If a read or write has not
begun, noread or write is started.

1 0 If a DMA transfer has begun, the entire
transfer is complete (including both read
and write operations) before stopping. If a
transfer has not begun, none is started.

1 1 DMA starts from reset or restarts from the
previous state.

When the DMA completes a transfer, the START bits remain
in 11 (base 2). The DMA starts when the START bits are set
to 11 and one of the following conditions applies:
(1 The transfer counter is set to a value different from 0x0.
1 The TC bit is set to 0.

STAT 00 DMA status Indicates the status of the DMA and changes every cycle.

The following table summarizes the STAT bits and DMA status.
Bit3 Bit2 Function

0 0 The DMA is being held between DMA
transfer (between a write and a read). This
is the value at reset.

0 1 DMA is being held in the middle of a DMA
transfer (between a read and a write).

1 0 Reserved.

1 1 DMA busy. DMA is performing a read or
write or waiting for a source or destination
synchronization interrupt.
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Table 12-6. DMA Global-Control Register Bits Summary (Continued)

Reset
Abbreviation Value Name Description
INCSRC 0 DMA source address If INCSRC =1, the source address is incremented after every
increment mode read.
DECSRC 0 DMA source address If DECSRC = 1, the source address is decremented after
decrement mode every read.
If INCSRC = DECSRC, the source address is not modified
after a read.
INCDST 0 DMA destination If INCDST = 1, the destination address is incremented after
address increment every write.
mode
DECDST 0 DMA destination If DECDST = 1, the destination address is decremented after
address decrement every write.
mode If INCDST = DECDST, the destination address is not modified
after a write.
SYNC 0 DMA synchronization Determines the timing synchronization between the events
mode initiating the source and destination transfers.
The following table summarizes the SYNC bits and DMA
synchronization.
Bit9 Bit8 Function
0 0 No synchronization. Enabled interrupts
are ignored (reset value).
0 1 Source synchronization. A read is per-
formed when an enabled interrupt occurs.
1 0 Destination synchronization. A write is per-
formed when an enabled interrupt occurs.
1 1 Source and destination synchronization. A
read is performed when an enabled interrupt
occurs. A write is then performed when the
next enabled interrupt occurs.
TC 0 DMA transfer mode Affects the operation of the transfer counter.
If TC = 0, transfers are not terminated when the transfer
counter becomes 0.
If TC = 1, transfers are terminated when the transfer
counter becomes 0.
TCINT 0 DMA transfer counter If TCINT = 1, the DMA interrupt is set when the transfer

interrupt mode

counter makes a transition to 0.

If TCINT = 0, the DMA interrupt is not set when the transfer
counter makes a transition to 0.
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Table 12-6. DMA Global-Control Register Bits Summary (Continued)

'C32

'C32

'C32

Reset
Abbreviation Value Name Description
DMAO PRI 00  CPU/DMA channel 0 (on the DMAO control register) (‘C32 only)
priority mode
00 CPU/DMA channel 1 (on the DMAT1 control register) (‘C32 only)
DMA1 PRI priority mode Configures CPU/DMA controller priority. (See Section 12.3.6

on page 12-64).

The following table explains the DMA PRI bits and CPU/

DMA priorities.

Bit 13 Bit12 Function

0 0 DMA has lower priority than the CPU
access. Ifthe DMA channel and the CPU
are requesting the same resource, the
CPU has priority (reset value).

0 1 Reserved.

1 0 Rotating arbitration, which sets priorities
be tween the CPU and DMA channel by
alternating their accesses (but not exactly
equally). Priority rotates between the CPU
and DMA accesses when they conflict
during consecutive instruction cycles.

1 1 DMA has higher priority than the CPU
access. Ifthe DMA channel and the CPU
are requesting the same resource, the
DMA has priority.

PRIORITY 0 DMA channels priority  If PRIORITY MODE = 0, fixed priority for the two DMA chan-
MODE mode nels. DMA channel 0 always has priority over DMA channel 1.

If priority mode = 1, rotating priority for the two DMA channels.
DMA channel 0 has priority after the device is reset. After
reset, the last channel serviced has the lowest priority. The ar-
bitration is performed at DMA service boundaries, that is,
after either a DMA read or DMA write.

See Section 12.3.5 on page 12-62 for more information.
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12.3.3.2 Destination-Address and Source-Address Registers

The DMA destination-address and source-address registers are 24-bit registers
whose contents specify destination and source addresses. As specified by
control bits DECSRC, INCSRC, DECDST, and INCDST of the DMA global-
control register, these registers are incremented, decremented, or remain
unchanged at the end of the corresponding memory access; that is, the source
register for a read and the destination register for a write (see Figure 12-39).
On system reset, 0 is written to these registers.

Figure 12-39. DMA Controller Address Generation

DMA

address <4—

bus

DMA

0 1 —
DMA source-address register INCSRC
DECSRC
A4

A4

DMA source-address
generator

address <¢—

bus

0 1
DMA destination-address register INCDST
DECDST
v

Y

—

DMA destination-address
generator
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12.3.3.3 Transfer-Counter Register
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The transfer-counter register is a 24-bit register that contains the number of
words to be transmitted. Figure 12-40 shows the transfer-counter operation.
It is controlled by a 24-bit counter that decrements at the beginning of a DMA
memory write. In this way, it can control the size of a block of data transferred.
The transfer-counter register is set to 0 at system reset. When the TCINT bit
of the DMA global-control register is set, the transfer-counter register causes
a DMA interrupt flag to be set when 0 is reached.

The counter is decremented after completing the destination-address fetch.
The interrupt is generated after the transfer counter is decremented and after
the completion of the write of the last transfer.

The decrementer checks whether the transfer counter equals 0 after the decre-
ment is performed. As a result, if the counter register has a value of 1, then the
DMA channel can be halted after only one transfer is performed. Thus, by set-
ting the transfer counter to 1, the DMA channel transfers the minimum possible
number of words (1 time). The value of the transfer counter is treated as an un-
signed integer. Transfers can be halted when a 0 value is detected after a decre-
ment. If the DMA controller channel is not halted after the transfer reaches zero,
the counter continues decrementing below 0. Thus, by setting the transfer
counter to 0, the DMA channel transfers the maximum possible number of
words (100 0000h times).
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Figure 12-40. Transfer-Counter Operation

Transfer-counter register

Decrementer

Compare
tooo

DMA interrupt generated

No

Yes

12.3.4 CPU/DMA Interrupt-Enable Register

The CPU/DMA interrupt-enable register (IE) is a 32-bit register located in the
CPU register file. The CPU interrupt-enable bits are in locations 10-1. The DMA
interrupt-enable bits are in locations 26-16. A 1 in a CPU/DMA interrupt-enable
register bit enables the corresponding interrupt. A 0 disables the corresponding
interrupt. At reset, 0 is written to this register.

Figure 12-41 shows the CPU/DMA interrupt-enable registers for the ‘C30 and

‘C31/VC33. Figure 12-42 shows the CPU/DMA interrupt-enable register for the
‘C32. Table 12-7 describes the register bits, bit names, and bit functions.
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Figure 12-41.

Interrupt-Enable Register

TMS320C30 and TMS320C31/VC33 CPU/DMA

'C31

31 30 29 28) 27 26 25 24 1 28 22 21 20 7 19 18 17 16
' EDINT | ETINTT | ETINTO ! ERINT1 | EXINT1 | ERINTO | EXINTO} EINT3 | EINT2 | EINT1 | EINTO
XX XX XX XXUXX DAy | (DMA) | (DMA) o (DMA) | (DMA) | (DMA) | (DMA) + (DMA) | (DMA) | (DMA) | (DMA)
. R/W R/W RW 1+ RW R/W RIW RW 1+ RW R/W RIW R/W
15 14 13 12 11 10 9 8 : 7 6 5 4 : 3 2 1 0
' EDINT | ETINT1 | ETINTO ! ERINT1 | EXINT1 | ERINTO | EXINTO! EINT3 | EINT2 | EINT1 | EINTO
0| 20| XX XXX cpu) | (CPU) | (CPU) 4 (CPU) | (GPU) | (CPU) | (CPU) , (CPU) | (CPU) | (GPU) | (CPU)
[] []
: R/W R/W RW + RW R/W R/W RW + RW R/W R/W R/W
Notes: 1) R =read, W = write
2) xx =reserved bit, read as 0
Figure 12-42. TMS320C32 CPU/DMA Interrupt-Enable Register 3
LAY
31 30 29 28 : 27 26 25 24 : 23 22 21 20 : 19 17 16
EINT3 EINT2 EINT1 | EINTO : EDINTO | EDINT1 | ETINT1 | ETINTO o ETINT1 | ETINTO | ERINTO | EXINTO o EINT3 EINT2 EINT1 | EINTO
(DMA1) | (DMAT1) | (DMAT1)| (DMA1)? (DMAT1) | (DMAO) | (DMAO) (DMAO): (DMA1) | (DMA1) | (DMA1) (DMAO):(DMAO) (DMAO) | (DMAO) | (DMAO)
R/W R/W R/W RW + R/W R/W R/W R/W : R/W R/W R/W R/W : R/W R/W R/W R/W
. . .
15 14 13 12, 11 10 9 8 4, 7 6 5 4, 3 1 0
55 . . 55 : EDINT1 | EDINTO ETINT1 ETINTO: ERINTO | EXINTO : EINT3 | EINT2 | EINT1 EINTO
, (CPU) | (CPU) (cPU) | (cPU) , X X | (CPU) | (CPU) , (CPU) | (CPU)| (CPU) | (CPU)
. . .
| RW RW RW RW R/W RW ¢ RW R/W RW
Notes: 1) R =read, W = write
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Table 12-7. CPU/DMA Interrupt-Enable Register Bits

Abbreviation

Reset

Value Description

EINTO (CPU
EINT1 (CPU
EINT2 (CPU
EINT3 (CPU
EXINTO (CPU)
ERINTO (CPU)
EXINT1 (CPU)

)

)

)

)
)
)
)

0(
0(

(
ERINT1 (CPU
ETINTO (CPU

(
ETINT1 (CPU
EDINT (CPU)

EDINTO (CPU)
EDINT1 (CPU)
EINTO (DMA)

EINT1 (DMA)
EINT2 (DMA)
EINT3 (DMA)

EINTO (DMAO)
EINT1 (DMAO)
EINT2 (DMAO)

(DMAO)
EXINTO (DMA)

ERINTO (DMA)

EXINT1 (DMA)

0

O O O O O o o o o o

o

O O o o o

CPU external interrupt 0 enable

CPU external interrupt 1 enable

CPU external interrupt 2 enable

CPU external interrupt 3 enable

CPU serial port 0 transmit interrupt enable

CPU serial port 0 receive interrupt enable

CPU serial port 1 transmit interrupt enable ('C30 only)
CPU serial port 1 receive interrupt enable ('C30 only)
CPU timer0 interrupt enable

CPU timer1 interrupt enable

CPU DMA controller
'C31/VC33 only)

interrupt enable ('C30 and

CPU DMAO controller interrupt enable ('C32 only)
CPU DMAT1 controller interrupt enable ('C32 only)

DMA external interrupt 0 enable ('C30 and 'C31/VC33
only)

DMA external interrupt 1 enable ('C30 and 'C31/VC33
only)

DMA external interrupt 2 enable ('C30 and 'C31/VC33
only)

DMA external interrupt 3 enable ('C30 and 'C31/VC33
only)

DMAO external interrupt 0 enable ('C32 only

'C32 only

)
DMAO external interrupt 1 enable ('C32 only)
)
DMAO external interrupt 3 enable ('C32 only)

(
(
DMAO external interrupt 2 enable (
(

DMA serial port 0 transmit interrupt enable
('C30 and 'C31/VC33 only)

DMA serial port 0 receive interrupt enable
('C30 and 'C31/VC33 only)

DMA serial port 1 transmit interrupt enable ('C30 only)
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12.3.5 TMS320C32 DMA Internal Priority Schemes

Table 12-7. CPU/DMA Interrupt-Enable Register Bits (Continued)

Abbreviation

Reset
Value Description

ERINT1 (DMA)
EXINTO (DMAO)
ERINTO (DMA1)
(DMA)
ETINT1 (DMA)
ETINTO (DMAO
ETINT1 (DMAO
(DMA1
ETINT1 (DMA1

EDINT (DMA)
EDINT1 (DMAO)
EDINTO (DMA1)

EINTO (DMA1)
EINT1 (DMA1)
EINT2 (DMA1)
( )

—_—_— = =

EINT3 (DMA1

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

DMA serial port 1 receive interrupt enable ('C30 only)
DMAO serial port 1 transmit interrupt enable ('C32 only)
DMAT1 serial port 1 receive interrupt enable ('C32 only)
DMA timer0 interrupt enable ('C30 and 'C31/VC33)
DMA timer1 interrupt enable ('C30 and 'C31/VC33 only)
DMAO timer1 interrupt enable ('C32 only)

DMAO timer1 interrupt enable ('C32 only)

DMAT1 timer0 interrupt enable ('C32 only)

DMAT1 timer1 interrupt enable ('C32 only)

DMA controller interrupt enable ('C30 and 'C31/VC33)
DMAO-DMA1 controller interrupt enable ('C32 only)
DMA1-DMAO controller interrupt enable ('C32 only)
DMAT1 external interrupt 0 enable ('C32 only)

DMAT1 external interrupt 1 enable ('C32 only)

DMAT1 external interrupt 2 enable ('C32 only)

DMAT1 external interrupt 2 enable ('C32 only)

'C32

Because all accesses made by the two DMA channels take place over one
common internal DMA data and address bus, a priority scheme for bus arbitra-
tion is required. Within the DMA controller, two priority schemes are used to
designate which channel is serviced next:

[ A fixed priority scheme with channel 0 always having the highest priority
and channel 1 the lowest

(1 A rotating priority scheme that places the most recently serviced channel
at the bottom of the priority list (default setup after reset)

12.3.5.1 Fixed Priority Scheme
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This scheme provides a fixed (unchanging) priority for each channel as follows:
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Priority Channel
Highest 0
Lowest 1

To select fixed priority, set the PRIORITY MODE bit (bit 14) of channel 0’s
DMA-channel control register to 1.
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12.3.5.2 Rotating Priority Scheme

In a rotating priority scheme, the last channel serviced becomes the lowest
priority channel. The other channel sequentially rotates through the priority list
with the lowest channel next to the last-serviced channel becoming the highest
priority on the following request. The priority rotates every time the channel
most recently granted priority completes its access. At system reset, the
channels are ordered from highest to lowest priority (0, 1).

To select this scheme, set the PRIORITY MODE bit (bit 14) of channel 0’'s DMA
control register to 0.

12.3.6 CPU and DMA Controller Arbitration
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The DMA controller transfers data on its own internal buses. Arbitration is neces-
sary only when a resource conflict exists between the DMA controller and the
CPU. The arbitration causes no delay. When there is no conflict, the CPU and
DMA controller accesses proceed in parallel.

All arbitration between the CPU and the DMA controller is on an access basis.
DMA controller internal memory access starts during H3 (see Section 8.5,
Clocking Memory Access, for more information).

When the CPU and DMA controllers request the same resource, priority is
determined as follows:

(1 Forthe ‘C30 and ‘C31/VC33, the CPU always has higher priority, thus the
DMA must wait until the CPU frees the resource.

(1 Forthe ‘C32, the DMA channel’'s DMA PRI bits (bits 12 and 13 of the channel
control register) define the arbitration rules (as shown in Table 12-8). The
CPU has higher priority than the DMA when DMA PRI = 00o; it has lower
priority than the DMA when DMA PRI = 11». They rotate priority when DMA
PRI = 01s.
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Table 12-8. TMS320C32 DMA PRI Bits and CPU/DMA Arbitration Rules

DMA PRI
(Bits 13-12)

Description

00

01

10
11

DMA access is lower priority than the CPU access. If the DMA
channel and the CPU request the same resource, then the CPU
has priority. (DMA PRI bits are set to 00, at reset.)

This setting selects rotating arbitration, which sets priorities between
the CPU and DMA channel by alternating their accesses, but not
exactly equally. Priority rotates between CPU and DMA accesses
when they conflict during consecutive instruction cycles. The first
time the DMA channel and the CPU request the same resource,
the CPU has priority. If, in the following instruction cycle, the DMA
controller and the CPU again request the same resource, the DMA
has priority. Alternate access continues as long as the CPU and
DMA requests conflict in consecutive instruction cycles. When
there is no conflict in a previous instruction cycle, the CPU has
priority.

Reserved

DMA access is higher priority than the CPU access. If the DMA
channel and the CPU request the same resource, the DMA has
priority.

12.3.7 DMA and Interrupts

The DMA controller uses interrupts in the following way:

[J It can send interrupts to the CPU or other DMA channel when a block
transfer finishes. See the TCINT bit field in the DMA global-control register
(Figure 12-36, Figure 12-37, or Figure 12-38 on page 12-53). The
EDINT bit field (C30 and 'C31/VC33) or the EDINTO and EDINT1 bit fields
('C32) in the interrupt-enable register must be set to allow the CPU to be
interrupted by the DMA.

[ It can receive interrupts from the external interrupt pins (INT3-0), the
timers, the serial ports, or other DMA channel.

This section explains how the DMA receives interrupts. This process is called

synchronization.

All of the interrupts that the DMA controller receives are detected by the CPU
interrupt controller and latched by the CPU in the appropriate interrupt-flag

register.
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The DMA and the CPU can respond to the same interrupt if the CPU is not
involved in any pipeline conflict or in any instruction that halts instruction fetching.
Refer to section 7.6.2, Interrupt Vector Table and Prioritization, on page 7-29 for
more details. It is also possible for different DMA channels to respond to the same
interrupt. If the same interrupt is selected for source and destination synchroniza-
tion, both read and write cycles are enabled with a single incoming interrupt.

12.3.7.1 Interrupts and Synchronization of DMA Channels

You can use interrupts to synchronize DMA channels. This section describes
the following four synchronization mechanisms:

(1 No synchronization (SYNC = 0 0)

When SYNC = 0 0, no synchronization is performed. The DMA performs
reads and writes whenever there are no conflicts. All interrupts are ignored
and are considered to be globally disabled. However, no bits in the DMA
interrupt-enable register are changed. Figure 12-43 shows the synchro-
nization mechanism when SYNC = 0 0.

Figure 12-43. Mechanism for No DMA Synchronization

12-66

| DMA channel performs a read |

| DMA channel performs a write |

Go to start

[ Source synchronization (SYNC =0 1)

When SYNC = 0 1, the DMA is synchronized to the source (see
Figure 12-44). A read is not performed until an interrupt is received by the
DMA. Then all DMA interrupts are disabled globally. However, no bits in
the DMA interrupt-enable register are changed.
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Figure 12-44. Mechanism for DMA Source Synchronization

| \dle until enabled interrupt is received |

v
| Disable DMA interrupts globally |

I Clear corresponding IF bit I

[ DMA channel performs a read |

| Enable DMA interrupts globally |

I DMA channel performs a write I

!

I Go to start I

[ Destination synchronization (SYNC =1 0)

When SYNC = 1 0, the DMA is synchronized to the destination. First, all
interrupts are ignored until the read is complete. Though the DMA interrupts
are considered globally disabled, no bits in the DMA interrupt-enable regis-
ter are changed. A write is not performed until an interrupt is received by the
DMA, while the read is performed without waiting for the interrupt.
Figure 12-45 shows the synchronization mechanism when SYNC = 1 0.

Figure 12-45. Mechanism for DMA Destination Synchronization

| DMA channel performs a read |

| Idle until enabled interrupt is received |

| Disable DMA interrupts globally |

[ Clear corresponding IF bit |
I

| DMA channel performs a write |

| DMA interrupts are enabled globally |

Go to start
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[ Source and destination synchronization (SYNC =1 1)

When SYNC = 1 1, the DMA is synchronized to both the source and
destination. A read is performed when an interrupt is received. Then, a
write is performed on the following interrupt. Figure 12-46 shows source
and destination synchronization when SYNC =1 1.

Figure 12-46. Mechanism for DMA Source and Destination Synchronization

[ Idle until enabled interrupt is received |

| Disable DMA interrupts globally |

|  Clear corresponding IF bit |

.

| DMA channel performs aread |

[ Enable DMA interrupts globally |

| Idle until enabled interrupt is received |

| Disable DMA interrupts globally |

| Clear corresponding IF bit |

v

| DMA channel performs a write |

il

| Enable DMA interrupts globally |

Go to start

12.3.8 DMA Memory Transfer Timing

12-68

The ’C30 and 'C31/VC33 devices provide one DMA channel, while the 'C32
device provides two DMA channels. The maximum data transfer rate that the
'C3x DMA sustains is one word every two cycles. In the 'C32, the two DMA
channels transfer data in a sequential time-slice fashion, rather than simulta-
neously, because the two channels share one common set of busses.
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The data transfer rate for a DMA channel (assuming a single-channel access
with no conflicts between CPU or other DMA channels) is as follows:

(1 On-chip memory and peripheral

B DMAread: One cycle
B DMA write: One cycle

1 External memory (STRB, STRBO0, STRB1, MSTRB)

B DMAread: Two cycles (one cycle external read followed by one
cycle load of internal DMA register)

B DMA write: Two cycles (identical to CPU write)
1 External memory (IOSTRB)

B DMAread: Three cycles (two-cycle external read followed by one
cycle load of internal DMA register)

B DMA write: Two cycles (identical to CPU write)

If the DMA started and is transferring data over either external bus, do not
modify the bus-control register associated with that bus. If you must modify the
bus-control register (see Chapter 9 or 10), stop the DMA, make the modifica-
tion, and then restart the DMA. Failure to do this may produce an unexpected
zero-wait-state bus access.

DMA memory transfer timing can be very complicated, especially if bus resource
conflicts occur. However, some rules help you calculate the transfer timing for
certain DMA setups. For simplification, the following section focuses on a single-
channel DMA memory transfer timing with no conflict with the CPU or other
DMA channels. You can obtain the actual DMA transfer timing by combining the
calculations for single-channel DMA transfer timing with those for bus resource
conflict situations.

12.3.8.1 Single DMA Memory Transfer Timing

When the DMA memory transfer has no conflict with the CPU or any other
DMA channels, the number of cycles of a DMA transfer depends on whether
the source and destination location are designated as on-chip memory,
peripheral, or external ports. When the external port is used, the DMA transfer
speed is affected by two factors: the external bus wait state and the read/write
conflict (for example, if a write is followed by a read, the read takes one extra
half-cycle. See Figure 12-48 footnote on page 12-72). Figure 12-47 through
Figure 12-49 show the number of cycles a DMA transfer requires from different
sources to different destinations. Entries in the table represent the number of
cycles required to do the T transfers, assuming that there are no pipeline conflicts.
A timing diagram for the DMA transfers accompanies each figure.
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12.3.9 DMA Initialization/Reconfiguration

You can control the DMA through memory-mapped registers located on the
dedicated peripheral bus. Following is the general procedure for initializing
and/or reconfiguring the DMA:

1) Halt the DMA by clearing the START bits of the DMA global-control register.
You can do this by writing a 0 to the DMA global-control register. The DMA
is halted on RESET.

2) Configure the DMA through the DMA global-control register (with
START = 00), as well as the DMA source, destination, and transfer-
counter registers, if necessary. Refer to Section 12.3.11 on page 12-76
for more information.

3) Start the DMA by setting the START bits of the DMA global-control register
as necessary.

12.3.10 Hints for DMA Programming

The following hints help you to improve your DMA programming and avoid un-
expected results:

(1 Reset the DMA register before starting it. This clears any previously
latched interrupt that may no longer exist.

[ Inthe event of a CPU-DMA access conflict, the CPU always prevails. Care-
fully allocate the different sections of the program in memory for faster
execution. If a CPU program access conflicts with a DMA access, enabling
the cache helps if the program is located in external memory. DMA on-chip
access happens during the H3 phase.

Note: Expansion and Peripheral Buses

The expansion and peripheral buses cannot be accessed simultaneously
because they are multiplexed into a common port (see Figure 2-1 on
page 2-3). This might increase CPU-DMA access conflicts.

(1 Ensure that each interrupt is received when you use interrupt synchroniza-
tion; otherwise, the DMA will never complete the block transfer.

(1 Use read/write synchronization when reading from or writing to serial ports
to guarantee data validity.

The following are indications that the DMA has finished a set of transfers:

(1 The DINT bit in the IF register is set to 1 (interrupt polling). This requires
that you set the TCINT bit in the DMA control register first. This interrupt-
polling method does not cause any additional CPU-DMA access conflict.
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[ The transfer counter has a zero value. However, the transfer counter is
decremented after the DMA read operation finishes (not after the write
operation). Nevertheless, a transfer counter with a 0 value can be used as
an indication of a transfer completion.

(1 The STAT bits in the DMA channel-control register are set to 005. You can
poll the DMA channel-control register for this value. However, because the
DMA registers are memory-mapped into the peripheral bus address
space, this option can cause further CPU/DMA access conflicts.

12.3.11 DMA Programming Examples

12-76

Example 12-8, Example 12-9, and Example 12-10 illustrate initialization
procedures for the DMA.

When linking the examples, you should allocate section memory addresses
carefully to avoid CPU-DMA conflict. In the C3x, the CPU always prevails in
cases of conflict. In the event of a CPU program/DMA data conflict, cache
enabling helps if the .fext section is in external memory. For example, when
linking the code in Example 12-8, Example 12-9, and Example 12-10, the
.fext section can be allocated into RAMO, .data into RAM1, and .bss into
RAM1, where RAMO corresponds to on-chip RAM block 0 and RAM1 corre-
sponds to on-chip RAM block 1.

In Example 12-8, the DMA initializes a 128-element array to 0. The DMA
sends an interrupt to the CPU after the transfer is completed. This program as-
sumes previous initialization of the CPU interrupt-vector table (specifically the
DMA-to-CPU interrupt). The program initializes the ST and IE registers for
interrupt processing.
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Example 12-8. Array Initialization With DMA

* TITLE:

*

DMA
RESET
CONTROL
SOURCE
DESTIN
COUNT
ZERO

START

ARRAY INITIALIZATION WITH

.GLO

BAL START

.DATA

.WOR!
.WOR!
.WOR!
.WOR!
.WOR!
.WOR!

D 808000H
D 0C40H

D 0C43H

D ZERO

D _ARRAY
D 128

.FLOAT 0.0

.BSS
.TEX

LDP
LDI
LDI
STI
LDI
STI
LDI
STI
LDI
STI
OR
OR
LDI
STI
BU 3
.END

_ARRAY, 128
T

DMA
@DMA, ARO
@RESET, RO
RO, *ARO
@SOURCE, RO
RO, *+ARO0 (4)
@DESTIN, RO
RO, *+ARO0 (6)
@COUNT, RO
RO, *+ARO0 (8)
400H, IE
2000H, ST
@CONTROL, RO
RO, *ARO

DMA

DMA GLOBAL-CONTROL REG ADDRESS

DMA GLOBAL-CONTROL REG RESET VALUE
DMA GLOBAL-CONTROL REG INITIALIZATION
DATA SOURCE ADDRESS

DATA DESTINATION ADDRESS

; NUMBER OF WORDS TO TRANSFER
; ARRAY INITIALIZATION VALUE 0.0 = 0x80000000

DATA ARRAY LOCATED IN .BSS SECTION

LOAD DATA PAGE POINTER
POINT TO DMA GLOBAL CONTROL REGISTER
RESET DMA

INITIALIZE DMA SOURCE-ADDRESS REGISTER
INITIALIZE DMA DESTINATION-ADDRESS REGISTER
INITIALIZE DMA TRANSFER COUNTER REGISTER
ENABLE INTERRUPT FROM DMA TO CPU

ENABLE CPU INTERRUPTS GLOBALLY

INITIALIZE DMA GLOBAL CONTROL REGISTER
START DMA TRANSFER

Example 12-9 sets up the DMA to transfer data (128 words) from the serial
port 0 input register to an array buffer with serial port receive interrupt (RINTO).
The DMA sends an interrupt to the CPU when the data transfer completes.

Serial port 0 is initialized to receive 32-bit data words with an internally generated

receive-bit clock and a bit-transfer rate of 8H1 cycles/bit.

This program assumes previous initialization of the CPU interrupt vector table
(specifically the DMA-to-CPU interrupt). The serial port interrupt directly affects
only the DMA; no CPU serial-port interrupt-vector setting is required.
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Example 12-9. DMA Transfer With Serial-Port Receive Interrupt

* TITLE DMA TRANSFER WITH SERIAL PORT RECEIVE INTERRUPT

*

DMA
CONTROL
SOURCE
DESTIN
COUNT
IEVAL
RESET1

SPORT
SGCCTRL
SRCTRL
STCTRL
STPERIOD
SPRESET
RESET

START

.GLOBAL START

.DATA

.WORD 808000H
.WORD 0D43H
.WORD 80804CH
.WORD _ARRAY
.WORD 128

.WORD 00200400H
.WORD 0D40H
.BSS _ARRAY, 128
.WORD 808040H
.WORD OA300080H
.WORD 111H
.WORD 3COH
.WORD 00020000H
.WORD 01300080H
.WORD OH

.TEXT

LDP DMA

* DMA INITIALIZATION

LDI
LDI
LDI
STI
LDI
STI
LDI
STI
LDI
STI
LDI
STI
LDI
STI
OR

OR

LDI
STI

@DMA , ARO
@SPORT, AR1
@RESET, RO
RO, *+AR1 (4)
@RESET1, R0
RO, *ARO
@SPRESET, RO
RO, *AR1
@SOURCE, RO
RO, *+ARO (4)
@DESTIN, RO
RO, *+ARO (6)
@COUNT, RO
RO, *+ARO (8)
@IEVAL, IE
2000H, ST
@CONTROL, RO
RO, *ARO

* SERIAL PORT INITIALIZATION

LDI
STI
LDI
STI
LDI
STI
LDI
STI

@SRCTRL, RO
RO, *+AR1 (3)
@STPERIOD, RO
RO, *+AR1 (6)
@STCTRL, RO
RO, *+AR1 (4)
@SGCCTRL, RO
RO, *AR1

DMA GLOBAL-CONTROL REG ADDRESS

; DMA GLOBAL-CONTROL REG INITIALIZATION
DATA SOURCE-ADDRESS: SERIAL PORT INPUT REG
DATA DESTINATION ADDRESS
NUMBER OF WORDS TO TRANSFER
IE REGISTER VALUE
DMA RESET

DATA ARRAY LOCATED IN .BSS SECTION
THE UNDERSCORE USED IS JUST TO MAKE IT
ACCESSIBLE FROM C (OPTIONAL)

SERIAL-PORT
SERIAL-PORT
SERIAL-PORT

GLOBAL-CONTRO