TMS32010
User’s Guide

Digital Signal Processor

Products

i
TeExas
INSTRUMENTS

P

INTRODUCTION

ARCHITECTURE

INSTRUCTIONS

METHODOLOGY FOR APPLICATION DEVELOPMENT
PROCESSOR RESOURCE MANAGEMENT]
INPUT/OUTPUT DESIGN TECHNIQUES

MACRO LANGUAGE INSTRUCTIONS

DIGITAL SIGNAL PROCESSING

- TMS32010 DATA SHEET

SMJ32010 DATA SHEET

DEVELOPMENT SUPPORT/PART ORDER INFORMATION

| .

 TMS32010
User’s Guide

- Digital Signal Processor Products

Texas
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments reserves the right to make changes at any time in
order to improve design and to supply the best product possible.

Texas Instruments assumes no responsibility for infringement of patents
or rights of others based on Texas Instruments applications assistance or
product specifications, since Tl does not possess full access to data con-
cerning the use or applications of customer’s products. Tl also assumes
no responsibility for customer product designs.

Copyright © 1983 by Texas Instruments Incorporated

SECTION

TABLE OF CONTENTS

PAGE
1. INTRODUCTION . .ttt ittt tinneeeaanassanatesaasnesesasssssssnssssennnnnnssesenans 11
1.1 General Descriptionciiiiiiiiiiieintetteeeeaeessanssssnesanssasasasssansns 1-1
1.2 Typical Applicationsc.ceiiieiiiiiiiiiiiiiiiii ittt raai et 11
1.3 KeyFeaturesouutnutininn ittt iiernsraesateaesnesansenssanssnssanssennes 1-2
1.4 HowToUsethe TMS32010Manualoiiiiiiiiiiiiiiiirieiinaaneanronnns 1-2
1.4.1 Glossary of Basic TMS32010 Hardware Termsceuueeeeecunneeeennnens 14
1.4.2 ReferONCESiiviriimianeeeaaasesssonssseastssssasssassasssnesnasnns 16
2. ARCHITECTURE. . ..t iiiititiietttteeeaeaeeaeaeesssessnsssssssenssssssnssnssnssnnnans 21
2.1 Architectural OVEIVIBW eiieeeniiineseeessseeeeseeeassnnnnsnsssssananaanns 21
_ 2.1.1 Harvard Architectureccvviiiiniaireoaerecnsonnioeesasssnasassnasanss 2-3
2.2 AHthMELCEIBMENTSeerunneeeeneeeennneeseeeennnaeereeneseesneeennnnns 23
b2 2% - K 6 24
2.2.1.1 Overflow Mode(OVM) .. .iviiiiii it iiiiieeeinsesseennnananssnnns 24
2.2.2 Accumulator...... Nttt et e et eieeaasaaeeeeaeaetaaatteaataartaaaaaaa 24
2.2.2.1 AccUmUIator Status.ccvvviriiinnnneeeereeerrenesrsrasnenenns 25
2.2.3 MUIIPHET « .. e v et etieee et aae e ee e e te e e st saaaesannarennaasnanes 25
b B = 1110 ¢ NP R 2-5
2.2.4.1 Barrel Shifterccoviiiiiieiniiiinnenrreeeeaesinseenssanasennas 26
2242 Parallel Shifteroviiiiiiiiiieieitiiitistiatseansassaasaaan 2-7
2.3 DataMemMOrY ...oviiitttaineeaaeeesaneetaesasetanassssennnssssssssnnsssserins 2-7
2.3.1 DataMemory Addressingcoiieeeeeieennneiannnnencnnannensnnnons 2-7
2.3.1.1 Indirect Addressingc.cciitiiiiinntriinaieenanaans veree.. 28
2.3.1.2 Direct Addressingceeeeeeertrersriiiiaansanaaanaaaaaaans 2-8
2.3.1.3 Immediate Addressing...........cciiiiiiiiriiiaiiiririantenanns 29
R R 1 1 - - S R R RS 2-9
2.4.1 Auxiliary Registersccuuiiieriiieeiinrenaerearesaanesssasssssnnens 29
2.4.2 Auxiliary Register POINterooviuiiiiiiiiiatiatiietierianeaainn, 2-10
2.5 ProgramMemOry ittt et 2-10
2.5.1 Modes of Operationouuviueiineriisesnneranasennsssasssssanassns 2-1
2.5.1.1 MicrocomputerModecciiiiiiiiiiiiiiienniiareenenes 2-11
2.5.1.2 MicroprocessorMode.ccciiiiieiiiiiiiiiiiiiiiniiianens 2-1
2.5.2 Using External ProgramMemorycoviiiiiiiiineriiiiiiiieenaannns 2-12
2.6 ProgramCounterandStack.............cocoviiiiiiniiiennes e erieneesiaeraaaae, 2-13
2.6.1 Program COUNTEroiueireeinanranernnssanssasassssasiosanssnannsanns 213
B 7 Vo< N 2-13
2.6.2.1 StackOVerfloW.covvvieenneerirasserenassssnasseaananananas 2-14
2.7 StatusRegister............cciuiiiiiiiiiiiritiieaat ittt ta i 2-14
2.7.1 Saving Status RegiStercccuerieniienireusieensennsrnssenseaseess 2716
2.8 INPUt/OULPUt FUNCHIONS ...t vveeren ettt e e aiia et aas e 2-15
281 INGNAOUT . .tttetiete e e e e e eeiaesasasaesasasnsnasnesssessssesseseasss 2-15
2.8.2 Table Read (TBLR) and Table Write (TBLW).........coiiiiiiiiiiiiiiiiinnenns 2-17
2.8.3 AddressBusDecodingt ceveas rerinenaranaa e . 2-18
D3 T =110) Tt TRt 2-18
2.10 INTEITUPES ieniunteiieie e et eeaaess st taesaassaseaasnasessessessasnenens 2-18
D11 RSB ..o oottt taaneesaanasesaanssssssesesasssssasssssnanssssssnassssesssssanas 2-19
2.12 ClOCK/OSCHIBLOTo ettt ettt ettt 2-20
2.13 PinDESCHPHONS ... cuvviieeta it titteasssaneeanasscsesatssassssasseannssassans 2-21
2.14 Interrupt System Designuiiiiiiii e 2-24
1183 iii

3.

INSTRUCTIONScciiiiiiiiiiennnns, e eiaaeiiaereieeeia e 3-1

0 I 1o Yo 11 e [o T 3-1
3.2 AddressingModes.ttt i i e e ettt 3-1
3.2.1 Direct AddressingMode ...ttt i i i i i 3-1
3.2.2 Indirect AddressingMode. ...ttt e 3-1
3.2.3 Immediate AddressingModec.i i ittt i e, 3-2
3.3 Instruction Addressing Formatottt i, 3-2
3.3.1 Direct Addressing Format. ...ttt rnnnaneaennns 3-2
3.3.2 Indirect Addressing Formatciiiiiiiineiiiiiiiiinneerennnnnnns 3-2
3.3.3 Immediate AddressingFormatc.iiiiiiiiiii it 3-2
3.3.4 Examplesof Opcode Format.ccvtiiitiiiiiiiie e iereaanannnnnn 3-3
B S - (¥ o1 (o o R - 33
3.4.1 Symbolsand Abbreviationsiiiiiiiiiii i i e, 3-3
3.4.2 Instruction Set SUMMANYoitiiiiiiiiiiiiiieeeeeeennanaaennnnannn 3-5
3.4.3 Instruction DeSCHiPtiONSciiiiiiiiineietinnnnnnnnneseeeennnnannns 3-8
METHODOLOGY FOR APPLICATION DEVELOPMENToiiiiiiiiiiiiiieeenennnnnns 4-1
4.1 Outline of Development ProCeSSciiiiittiineie e eeeeetnanenaennnns 4-1
4.2 Description of Development Facilities.coviiiiiiiins e eeeeeeeeeennnnnnns 4-2
4.2.1 TMS32010 Evaluation Module ettt eeaeiaeentereeataaaaaean 4-2
4.2.2 XDS/320 Macro Assembler/Linkerc.cciiiiiiiiiii 4-2
4.2.3 XDS/320 Simulator.uueiitii ittt e it 4-3
4.2.4 XDS/320 EMUIAtorottt et et e 4-4
4.3 Application Development Process Example.ccoiiiiiiiiiiirieinnnnnennnn. 4-4
4.3.1 System Specificationc.ciiuiiiiiiiiiiii it e e e 4-4
4.3.2 System DesigNciiii e e 45
4.3.3 CodeDevelopmentc.oiiiiiiiiiiiii ittt aaans 4-5
4.3.3.1 Discrete-TimeFilter Flowchart................coviiiiiriiiiiinnnnn. 4-5
4.3.3.2 FORTRAN Programouuuiiiiiitiiiie e eeaaeeeeenannn 4-6
4.3.3.3 Assembly Language Program Using RelocatableCode 4-6
4.3.3.4 Assembly Language Program Using AbsoluteCode 4-13
PROCESSOR RESOURCE MANAGEMENTttt et e e e 5-1
5.1 Fundamental Operationsoiiiiiitierteteeeeaeeeee e eeaeaannnnnns 5-1
5.1.1 BitManipulation.c.. ittt ettt 5-1
B.1.2 DataShiftcoiiiiiiiiiiiiiiii ittt ettt e e 5-1
5.1.3 Fixed-Point ArithmetiC.ottt eieeeeeeaannns 5-2
5.1.3.1 Multiplicationttt et 5-3
B5.1.3.2 Addition.o e e e 5-56
B5.1.3.3 DIVISION e, 5-5
5.1.4 Subroutines i i, 5-11
5.1.56 Computed GO TOS.oiitttit ittt iit et e e eeee e 5-12
5.2 Addressing and Loop Control with Auxiliary Registersccouvvieeeennn.. 5-13
5.2.1 Auxiliary Register Indirect Addressingcoveeeenneennnnennnnnn.. 5-13
L W oo o B ¥ - 5-13
5.2.3 Combination of Operational Modescccoiiiiiiirerninnnnnennn «. 5-14
5.3 Multiplicationand Convolutionc.iiuiiiiie e 5-14
5.3.1 Pipelined Multiplicationsttt 5-14
5.3.2 MoviNg Dataiiiiiii i e e s 5-15
5.3.3 Product Register.ouuuiniiiitt ittt e e e 5-16
5.4 Memory Considerations of Harvard Architecture e 5-16
5.4.1 Moving Constantsinto DataMemoryooviieeenneeninnnnnnnnn. 5-16
5.4.2 DataMemory EXpansionc.uuiinnniinine e 5-17
5.4.3 Program Memory EXpansionc.ueeiiieneeennnnneeeeee e, 5-18

1183

INPUT/OUTPUTDESIGN TECHNIQUES ...ttt iiinieeserreenannanenns 6-1
6.1 Peripheral DevViCe TYPESvuueinereaiarin et et tnaesaeinseanneaneenanenns 6-1
6.1.1 RegiSterscitiiititniieeerennnnensssseeseeeeensnasessssnnnnnnn . 61
e T | =0 - 6-2
6.1.3 ExtendedMemorylInterfacecciiiiiiiiiiiiiiiiiiiiiiiiiiiaaa, 6-2
6.2 INTEITUPLSovinenreneneaneneaennsnearanenens e e eeeeeeeeteenetanast e neeraae 6-3
6.2.1 SoftwareMethods............cccoiiiiiiiiiiiiiiiii it eeeenaaas 6-3
6.2.2 HardwareMethodsc.ciiiiiiiiiiiieennennnnnneeeerannssneeennnns 6-4
MACRO LANGUAGE EXTENSIONS ..ottt ittt ieeiieinnnnneerreseresonnnnnns 7-1
7.1 Conventions UsedinMacroDescriptionsccoiiiiiiiiiriniiininnranrnnnnns 7-1
7.2 MaCrO SOt SUMMAIY .. oot ietetttteeenaneeeeaseannnseesseesssesessssassenesnnsnes 7-2
7.3 MacroDesCriPtiONSovuueetieaeeeaneeseaaeeeaaaeeeaaaanaaeetaataaeteeieaanas 7-6
7.4 Structured Programming Macrosccotvuinrirrnennrnrnaiieinssnenassinas. 7-148
7.5 Utility SUDIOUtINESo i i et ittt e e 7-151
DIGITAL SIGNALPROCESSING ittt iiiiiinnnetessaneaannnnnnnsnnsnnnnnnnnns 8-1
8.1 A-to-Dand D-to-A Conversion P Ceeraeeas 8-1
8.1.1 Sample Analysisccoiurttiiiiiiiiiieteitiiiiiisiietsiatataataaaannns 8-2
8.1.2 SampleQuantizationcoiiiiiiiiiiiiiiiiiiiiii i e P 8-5
8.2 Basic Theory of Discrete Signalsand Systemsccciiiiiiiiiiiiiiiieneenn. 86
8.2.1 Linear SystemMSiiiiiitetnennanaenteretessneneansnnassnnnnnnnnanns 8-6
8.2.2 Fourier Transform Representations.coiiiiiiierrrerennnannnns 8-7
8.3 Design and Implementation of Digital Filters oo 89
8.3.1 Digital Filter Structurescciiiiiiiiiiiiiirteeernnenansereennanans 89
8.3.2 Digital Filter Designccviiiiiiiiiiiiii ittt ittt 8-13
8.4 Quantization Effectscciiiiiiiiieiiaieetettaaneretassartasessansrannanans 8-18
8.5 SpPeCtrumM ANElYSIS.ovit ittt i i i i i e 8-19-
8.5.1 Discrete Fourier Transform (DFT)vviiiiinniiiiiiiiaii i iinnnnnenaans 8-19
8.56.2 FastFourier Transform (FFT)coiiiiiiiiiiiiiiiiiiiiiieenee.... 820
8.5.3 Usesofthe DFTand FFT ...ttt iiiiiiiiianenennannneaas 8-20
8.5.4 AutoregressiveModelciiiiiiiiiiiiiiii e [8-23
8.6 Potential DSP Applications forthe TMS32010coiiiiiiiiiiiiiiiiiiiinn, 8-24
8.6.1 Speechand Audio Processingccoiiiiiiiiiiiinnniiiiinenennanens 8-24
8.6.2 COMMUNICAHONS .. .ovvvveniireereenneereennasssssnensssnasessnsesannsenns 8-26
- 8.7 References et e easeaeaeneeaanaeeaaaeeraa sttt et et e 8-28

LIST OF APPENDICES

APPENDIX PAGE
A TMS32010 Digital Signal ProcessorDataSheetcvviiiititeinnneeeannnnnns A-1
B SMJ32010 Digital Signal Processor DataSheetcoueuureeneeneeeiniinn, .. B-1
C TMS32010 Development Support and Part Order Informationc.vuueeunnnnvnn. C-1

LIST OF ILLUSTRATIONS

FIGURE PAGE
2-1 Block Diagram of the TMS320M10ttt it i e eeeeeanns 2-2
2-2 Harvard Architectureciiiiiiiiiiiiiiieaa seeieaeavraraiienees 2-3
2-3 Indirect Addressing Autoincrement/Decrementc.ui it 2-9
2-4 TMS320 Family Memory Mapttt ittt et e e e e e e e e 2-12
2-5 External Program Memory Expansion Examplecc.ouiineeeeennnnnn e, 2-13
2-6 TMS32010 Status Registeruuiuiiietin et ee et et e, 2-14
2-7 Status Word as Stored by SSTINStrUCHONuvrrn e 2-15
2-8 External Device Interfaceoiiiiiitiiiiiiie e eeeeaen 2-16
2-9 Input/Output Instruction TIMINGouutiinitineee e, Ceeimanad 2-16
2-10 Table Read and Table Write Instruction Timingcoiiiiitttiiineeeeennnnnnnn, 2-17
2-11 Simplified Interrupt Logic Diagram P 2-18
2-12 INterrupt TimMiNgttt ettt ettt 2-19
2-13 ReSEt TIMING ... itttttt ittt ettt ettt e e et et e et e 2-20
2-14 Internal CloCKciiiiii ittt ettt et et ettt e s 2-20
2-15 External FreqUenCy SOUICEotuininmnnnne e eeennnnnnnn 2-20
2-16 TMS32010 Pin ASSIGNMENTSuuttint ettt et et e e e e eaae e enaannn, 2-23
2-17 Interrupt Hardware Designcouuniiitiiit ettt e e ettt 2-24
4-1 Flowchart of Typical Application Development0 iiiiiiinnnnn... 4-1
4-2 Flowchart of Filter Implementation PP 4-5
5-1 Division RoutinelFlowchartttt e aieeseeeens 5-7
5-2 Division Routine ll Flowchart i 5-9
5-3 Techniques for Expanding ProgramMemoryouiiiiine e e, 5-18
6-1 Communication Between Processorsccoivviiiiiiiiiiiiiiiinnennannn.. . 6-1
6-2 Typical Analog System Interfaceoouinine it i, 6-2
6-3 TMS32010 Extended Memory Interfacecounnmnee e 6-3
8-1 Block Diagram of Digital Signal Processingcouuuiiinne e, 8-1
8-2 Analog-to-Digital Conversion Process............... . 8-2
8-3 Two Cosine Waves Sampled With Period Tcouinenrnmimie i 8-3
8-4 Frequency Components of Three CosineWavesconouuun.. R 8-3
8-5 D-to-A Conversion UsingaZero-Order Hold counuinmssieiia, 8-4
8-6 AnEight-Level (Three-Bit) QUantizer.vutineene e e e 8-5 -
8-7 Quantization as AdditiveNoise e et aaeiieeeeneneetanneennnn 8-6
8-8 Fourier Transform Sampling ittt e i 8-8
89 Direct Forms land Il i i e 8-10
8-10 Cascade Structurefor N = 4 ittt e e 8-12

8-11
8-12
8-13
8-14
- 8-15
8-16
8-17
8-18

TABLE

1183

Fourth-Order Elliptic Digital Filterottt nes 8-14

Frequency Response of FIR Lowpass Filteroiiiiiiiiiiiiiiininiienae 8-17
~ Impulse Response of Equiripple Lowpass Filter ..o, 8-18
A Discrete Convolution Usingthe FFTciiiiiiiiiiiiiiiii ittt neaanaes 8-21
Estimation of Fourier Transformofan AnalogSignalottt 8-22
Short-Time Fourier Analysis of a Doppler Radar Signalccooiiiiiiiiiiennen 8-22
Spectrum Estimation for Speech Signals S 8-24
Block Diagram of a DigitalModemociiiiiiiiiiiiiiiiineen Cereeeeeeeaees 8-27
LIST OF TABLES
PAGE
TMS32010 Hardware Terminologyoovuieiiiiiiii it 1-5
AcCUMUIGtOr RESUISt tvietiteaenaesaeataeraneaseansannsessansssnsanssannns ... 24
Accumulator TeSt CONAItiONSvvvvietierneenrinesnresssassssrossensasassansannns 25
Program Memory for the TMS320 Familyc.ooiniiniiiiiiiiiiiiiieaees 2-11
TMS32010 Pin Descriptions T T 2-21
INStruCtion SYMDOIS vi ettt i i e 34
Instruction Set SUMMANYovieiiiiiir it i ienaeaans e 35
Filter SPECIfiCatioNScuutiiinieeeieianiaearea ettt tiiaiastasasaasanaaeases 4-4
MACTO INAEX - . o oo ettt iaanasennneseaaaasesssssssessssssnnsnnssnsssssanasnannns 7-2
MaCro SEt SUMMAIYvviueennernuereasiansseareassaanesasssssssssanssssnnnannsss 74
vii

FOREWORD

Digital Signal Processing (DSP) is concerned with the representation of signals (and the information that
they contain) by sequences of numbers, and the transformation or processing of such signal
representations by numerical computation procedures. ‘

Since the late 1950’s, scientists and engineers in research labs have been touting the virtues of digital signal
processing, but practical considerations have prevented widespread application. Now, with the availability -
of integrated circuits, such as Texas Instruments’ TMS320, digital signal processing is leaving the
laboratory and entering the world of application. The reasons for this are numerous and compelling.
Perhaps the most important reason is that extremely sophisticated signal processing functions can be
implemented using digital techniques. Indeed, many of the important DSP techniques are difficult or
impossible to implement using analog (continuous-time) methods. It is almost equally important that VLSI
technology is best suited to the implementation of digital systems, which are inherently more reliable, more
compact, and less sensitive to environmental conditions and component aging than analog systems.
Another advantage of the discrete-time approach is the possibility of time sharing a single processing unit
among a number of different signal processing functions. This is particularly efficient and cost effective in
large systems having many input and output channels. Indeed, until recently, digital processing was only
cost effective where it could be applied in large systems. Now, however, with VLS| techniques, low-cost
processors such as the TMS32010 are available and a wealth of opportunities exist for the application of
DSP techniques.

The potential applications will be found in any area where signals arise as representations of information. In
many cases, the signals represent information about the state of some physical system (including human
beings). Often, the objective in processing the signal is to prepare the signal for digital transmission to a
remote location or for digital storage of the information for later reference. On the other hand, the signal
may be processed to remove distortions introduced by transducers, the signal generation environment, or
by a transmission system. Still another important class of applications arises when information is
automatically extracted from the signal so as to control another system or to infer something about the
properties of the system which generated the signal. Some of the more important areas where the above
types of processing are of interest include speech communication, geophysical exploration,
instrumentation for chemical analysis, image processing for television, audio recording and reproduction,
biomedical instrumentation, acoustical noise measurements, sonar, radar, automatic testing of systems,
and consumer electronics. :

In areas such as speech communication research and geophysical exploration, digital signal processing
techniques already have been widely applied using general-purpose digital computers. In other areas,
economic factors or processing speed have had limited applications up to recent times. Now, however,
these limitations are subsiding rapidly and digital signal processing will soon be widely used in all the above
mentioned areas and many more.

Ronald W. Schafer

Russell M. Mersereau

Thomas P. Barnwell, lli
Atlanta Signal Processors, Inc.

and

Georgia Institute of Technology
School of Electrical Engineering

INTRODUCTION

1. INTRODUCTION

1.1 GENERAL DESCRIPTION

The TMS32010 is the first member of the new TMS320 digital signal processing family, designed to
support a wide range of high-speed or numeric-intensive applications. This 16/32-bit single-chip
microcomputer combines the flexibility of a high-speed controller with the numerical capability of
an array processor, thereby offering an inexpensive alternative to multichip bit-slice processors.

The TMS320 family contains the first MOS microcomputers capable of executing five million
instructions per second. This high throughput is the result of the comprehensive, efficient, and
easily programmed instruction set and of the highly pipelined architecture. Special instructions have
been incorporated to speed the execution of digital signal processing (DSP) algorithms.

Development support is available for a variety of host computers. This includes a macro assembler,
linker, simulator, emulator, and evaluation module.

1.2 TYPICAL APPLICATIONS

The TMS320 family’s unique versatility and power give the design engineer a new approach to a
variety of complicated applications. In addition, these digital signal processors are capable of
providing the multiple functions often required for a single application. For example, the TMS320
family can enable an industrial robot to synthesize and recognize speech, sense objects with radar
or optical intelligence, and perform mechanical operations through digital servo loop computations.

Some typical applications of the TMS320 family are listed below.

SIGNAL PROCESSING TELECOMMUNICATIONS IMAGE PROCESSING
® Digital filtering ® Adaptive equalizers ® Pattern recognition
® Correlation ® /A law conversion ® Image enhancement
® Hilbert transforms ® Time generators ® Image compression
® Windowing ® High-speed modems ® Homomorphic processing
® Fast Fourier transforms ® Multiple-bit-rate modems ® Radar and sonar processing
® Adaptive filtering . [} Amplltut.ie, frequency,. and phase HIGH-SPEED CONTROL
® Waveform generation modulation/demodulation
® Speech processing ® Data encryption ® Servo links
® Radar and sonar processing ® Data scrambling @ Position and rate control
® Electronic counter measures ® Digital filtering ® Motor control
® Seismic processing ® Data compression ® Missile guidance
® Spread-spectrum communications ® Remote feedback control
® Robotics
INSTRUMENTATION NUMERIC PROCESSING SPEECH PROCESSING
® Spectrum analysis ® Fast multiply/divide ® Speech analysis
@ Digital filtering ® Double-precision operations ® Speech synthesis
® Phase-locked loops ® Fast scaling ® Speech recognition
® Averaging ® Non-linear function ® Voice store and forward
® Arbitrary waveform generation computation ® Vocoders
® Transient analysis (i.e., sin x, eX) ® Speaker authentification

1-1

1.3 KEY FEATURES

With an excellent combination of features, the TMS320 family of high-peformance digital signal
processors is a cost-effective alternative to custom VLS| devices and bit-slice systems.

200-ns instruction cycle

288-byte on-chip data RAM

Microprocessor version — TMS32010

Microcomputer version — TMS320M10 — (3K-byte on-chip program RQM)
External program memory expansion to a total of 8K bytes at full speed
16-bit instruction/data word

32-bit ALU/accumulator

16 x 16-bit multiply in 200 ns

0 to 15-bit barrel shifter |

Eight input and eight output channels

16-bit bidirectional data bus with 40-megabits-per-second transfer rate
Interrupt with full context save

Signed two’s complement fixed-point arithmetic

2.7-micron NMOS technology

Single 5-V supply

40-pin DIP

The TMS320M10 and the TMS32010 are exactly the same with one exception: the TMS320M10
contains an on-chip masked ROM while the TMS32010 utilizes off-chip program memory.

NOTE

Throughout this document, TMS32010 will refer to both the TMS32010 and the
TMS320M10 except where otherwise indicated.

1.4 HOW TO USE THE TMS32010 MANUAL

It is the intent in the design of this user’s guide that it be an effective reference book that provides
information for both the hardware and the software engineer about the TMS32010 digital signal
processor, its architecture, instruction set, electrical specifications, interface methods, and
applications.

1183

(mnemoniC) (title of instruction) (mnemoniC)

Addressing:

Operands:

Operation:

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Description:

Words:
Cycles:

- Example:

1183

BEFORE INSTRUCTION | AFTER INSTRUCTION
31 0 31 0

In the architecture section (Section 2), the design of the device and its hardware features are
described. The instruction section (Section 3) explains individual instructions in detail. The
following format is used for the instruction descriptions in Section 3.4.3 to provide ease of reading
and application.

- Section 4 on methodology for application development describes the tools, such as an emulator or

evaluation module, that are available for developing an individual system and gives an example of
TMS32010 software development. In the processor resource management section (Section 5), the
engineer finds a description of the common algorithms or practices to be used for any application.
He becomes familiar with interface techniques in the input/output design techniques section .

(Section 6).

The set of macros in the macro language extensions section (Section 7) aids the engineer in
programming and in providing templates for further software development. Another special format
is used for the macro descriptions in Section 7.2. Each macro instruction is named, followed by a
summary table. A flowchart serves to clarify the macro source which is given. Examples of macro
use are also presented. This macro description format is as follows:

(mnemoniC) (title of macro) (mnemoniC)

TITLE: (macro)

NAME: (mnemonic)

OBJECTIVE:

ALGORITHM:

CALLING

SEQUENCE:

ENTRY

CONDITIONS:

EXIT

CONDITIONS:

PROGRAM DATA

MEMORY MEMORY

REQUIRED: (# words) REQUIRED: (# words)

STACK EXECUTION

REQUIRED: (# levels) TIME: (# cycles)

FLOWCHART:

SOURCE:

EXAMPLE 1:

EXAMPLE 2:
Section 8 on digital signal processing contains an overview of signal processing theory, algorithms,
and potential applications. The TMS32010 data sheet appears as Appendix A and the SMJ32010
data sheet as Appendix B. Data descriptions of the evaluation module, macro assembler/linker,
simulator, and emulator are presented in Appendix C.

1.4.1 Glossary of Basic TMS32010 Hardware Terms

14

Table 1-1 lists in alphabetical order the TMS32010 basic hardware units, the symbol for the unit (if
any), and the function of that particular unit. ‘

1183

1183

TABLE 1-1 — TMS32010 HARDWARE TERMINOLOGY

UNIT SYMBOL FUNCTION

Accumulator ACC 32-bit accumulator

Arithmetic Logic Unit ALU Two-port 32-bit arithmetic logic unit

Auxiliary Registers ARO, AR1| Two 16-bit registers for indirect addressing of data
memory and loop counting control. Nine LSBs of each
register are configured as bidirectional counters

Auxiliary Register Pointer ARP Single-bit register containing address of current
auxiliary register

Data Bus D Bus | 16-bit bus routing data from random access memory

Data Memory Page Pointer DP Single-bit register containing page address of data RAM
(1 page = 128 words)

Data RAM - 144 X 16 bit word on-chip random access memory
containing data

Interrupt Flag Register INTF Single-bit flag register that indicates an interrupt
request has occurred (is pending)

Interrupt Mode Register INTM | Single-bit mode register that masks the interrupt flag

Multiplier - 16 X 16-bit parallel hardware multiplier

Overflow Flag Register ov Single-bit flag. register that indicates an overflow in
arithmetic operations

Overflow Mode Register OovM Single-bit mode register that defines a saturated or
unsaturated mode in arithmetic operations

P Register P 32-bit register containing product of multiply operations

Program Bus PBus | 16-bit bus routing instructions from program memory

Program Counter PC 12-bit register containing address of program memory

Program ROM - 1536 X 16-bit word read only memory containing pro-
gram code (TMS320M10 only)

Shifter - Two shifters: one is a variable 0-15-bit left-shift barrel
shifter that moves data from the RAM into the ALU.
The other shifter acts on the accumulator when it is
being stored in data RAM; it can left-shift by 0, 1, or 4
bits.

Stack - 4 X 12-bit registers for saving program counter contents
in subroutine and interrupt calls

T Register T 16-bit register containing multiplicand during multiply

operations

1.4.2 References

1-6

The following list of references, including textbooks, contains useful information regarding
functions, operations, and applications of digital processing. These books in turn, list other
references to many useful technical papers.

Andrews, H.C., Hunt, B. R., DIGITAL IMAGE RESTORATION. Englewood Cliffs, N.J.:
Prentice-Hall, Inc.,1977.

Brigham, E. Oran, THE FAST FOURIER TRANSFORM. Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1974.

Hamming, R.W., DIGITAL FILTERS. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1977.

Morris, L. Robert, DIGITAL SIGNAL PROCESSING SOFTWARE. Ottawa, Canada: Carleton
University, 1983.

Oppenheim, Alan V. (Editor), APPLICATIONS OF DIGITAL SIGNAL PROCESSING.
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1978.

Oppenheim, Alan V., Schafer, R.W., DIGITAL SIGNAL PROCESSING. Englewood Cliffs,
N.J.: Prentice-Hall, Inc., 1975.

Rabiner, Lawrence R., Gold, Bernard, THEORY AND APPLICATION OF DIGITAL SIGNAL
PROCESSING. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1975.

Rabiner, Lawrence R., Schafer, R.W., DIGITAL PROCESSING OF SPEECH SIGNALS.
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1978.

1183

ARCHITECTURE

2. ARCHITECTURE

The TMS320 family utilizes a modified Harvard architecture for speed and flexibility (see Figure 2-1).
In a strict Harvard architecture, program and data memory lie in two separate spaces, permitting a
full overlap of the instruction fetch and execution. The TMS320 family’s modification of the Harvard
architecture allows transfers between program and data spaces, thereby increasing the flexibility of
the device. This modification permits coefficients stored in program memory to be read into the
RAM, eliminating the need for a separate coefficient ROM. It also makes available immediate
instructions and subroutines based on computed values.

The TMS32010 utilizes hardware to implement functions that other processors typically perform in
software. For example, the TMS32010 contains a hardware multiplier to perform a multiplication in
a single 200-ns cycle. There is also a hardware barrel shifter for shifting data on its way into the 2
ALU. Finally, extra hardware has been included so that the auxiliary registers, which provide
indirect data RAM addresses, can be configured in an autoincrement/decrement mode for single-
cycle manipulation of data tables. This hardware-intensive approach gives the design engineer the
type of power previously unavailable on a single chip.

2.1 ARCHITECTURAL OVERVIEW

The TMS32010 microcomputers combine the following elements onto a single chip:
e Volatile 144 x 16-word read/write data memory

e Non-volatile 1536 X 16-word program memory (TMS320M10 only)

. Double-precision 32-bit ALU/accumulator

e Fast 200-ns multiplier

e Barrel shifter for shifting data memory words into the ALU

e Shifter that shifts the accumulator into the data RAM

e 16-bit data bus for fetching instruction words from off-chip at full speed

e 4 X 12-bit stack that allows context switching

e Autoincrementing/decrementing registers for indirect data addressing and loop counting
e Single-vectored interrupf

e On-chip oscillator

This section provides a description of these elements. The generic term ‘TMS32010’ is used to refer
collectively to the TMS32010 and TMS320M10.

1183 2-1

Z
5 =
o (&)
X - Q
O X X
Z : v
i6 12'LSB
V_V—E ——‘-—l
5ER | & MUX 16
EN —— g A12 i
— o -
BIO—— £ PC (12) INSTRUCTION
MC/MP —p— S
12 o
INT —— »
-1 2| PROGRAM
RS —— < ROM
STACK g (1536 x 16)
x 4x12
A11-A0/ —4— g
PA2-PAO 16
4,3 -)
PROGRAM BUS D15-DO

‘ ({16 g

Z.
16 : 16
' % 7y 16 {
T 4
ARO (16) I T(16).
ARP 7 DP i
AR1 (16) . 16
1 SHIFTER LTIPLIER |-qd]
) 4 (0-15) Mu
18
8 P(32)
8
ADDRESS
DATA RAM
(144 x16) ALU (32)
NOTE: 4
ACC = Accumulator DATA 132 {32
ARP = -Auxiliary register pointer A
ARO = Auxiliary register O ACC (32)
AR1 = Auxiliary register 1
DP = Data page pointer 32
PC = Program counter ,
P = P Register //16 + 732
T = T Register
SHIFTER (0, 1, 4) 16f |
BUS 16{
v DATA '

FIGURE 2-1 — BLOCK DIAGRAM OF THE TMS320M10

2.1.1 Harvard Architécture

The TMS32010 utiliies.a modified Harvard architecture in which program memory and data memory
lie in two separate spaces. This permits a full overlap of instruction fetch and execution.

Program memory can lie both on-chip (in the form of the 15636 X 16-word ROM) and off-chip. The
maximum amount of program memory that can be directly addressed is 4K X 16-bit words.

Instructions. in off-chip program memory are executed at full speed. Fast memories with access
times of under 100 ns are required.

Data memory is the 144 X 16-bit on-chip data RAM. Instruction operands are fetched from this
RAM; no instruction operands can be directly fetched from off-chip. However, data can be written
into the data RAM from a peripheral by using the IN instruction or read from program memory by
using the TBLR (table read) instruction. The OUT instruction will write a word from the data RAM
to a peripheral, while a TBLW instruction will write a data RAM word to program memory
(presumably, off-chip). ' .

Figure 2-2 outlines the overlap of the instruction prefetch and execution. On the falling edge of
CLKOUT, the program counter (PC) is loaded with the instruction (load PC2) to be prefetched while
the current instruction (execute 1) is decoded and is started to be executed. The next instruction is
then fetched (fetch 2) while the current instruction continues to execute (execute 1). Even as

" another prefetch occurs (fetch 3), both the current instruction (execute 2) and the previous

instruction are still executing. This is possible because of a highly pipelined internal operation.

CLKOUT l e o ‘ I

LOAD
PC 1
<4—& FETCH 1
EXECUTE 1
-~ — >
LOAD
PC 2
<«—» FETCH 2
- EXECUTE 2
< >
LOAD
PC 3
<—& FETCH 3
EXECUTE 3
- >

FIGURE 2-2 - HARVARD ARCHITECTURE

2.2 ARITHMETIC ELEMENTS

1183

There are four basic arithmetic ‘evlements: the ALU, the accumulator, the multiplier, and the sliif,t'ers,)
All arithmetic operations are performed using two’s complement arithmetic (see Section 5.1.3).

Most arithmetic instructions will access a word in the data RAM, either directly or indirectly, and
pass it through the barrel shifter. This shifter can left-shift a word 0 to 15 bits, depending on the
value specified by the instruction. The data word then enters the ALU where it is loaded into or
added/subtracted from the accumulator. After a result is obtained in the accumulator, it can be
stored in the data RAM. Since the accumulator is 32 bits, both halves must be stored separately. A
parallel left-shifter is present at the accumulator output to aid in scaling results as they are being
moved to the data RAM. '

2-3

2.21

ALU

The ALU is a general-purpose arithmetic logic unit that operates with a 32-bit data word. The unit
will add, subtract, and perform logical operations. The accumulator is always the destination and
the primary operand. The result of a logical operation is shown in Table 2-1. A data memory value is
the operand for the lower half of the accumulator (bits 15 through 0). Zero is the operand for the

upper half of the accumulator. : '

TABLE 2-1 — ACCUMULATOR RESULTS

ACCUMULATOR RESULT
ACC BITS 31 THROUGH 16 ACC BITS 15 THROUGH 0

FUNCTION

XOR (zero) (3) (ACC bits 31-16) (data memory value) (3) (ACC bits 15-0)
AND (zero) . (ACC bits 31-16) (data memory value) . (ACC bits 15-0)

OR (zero) + (ACC bits 31-16) (data memory value) + (ACC bits 15-0)

2.2.1.1 Overflow Mode (OVM)

222

2-4

The OVM register is directly under program control, i.e., it is set by the SOVM instruction and reset
by the ROVM instruction. If an overflow occurs when set, the most positive or the most negative
representable value of the ALU will be loaded into the accumulator. Whether it is the most positive
or the most negative value is determined by the overflow sign. If an overflow occurs when reset, the
accumulator is unmodified. (See the SOVM instruction in Section 3.4.3 for further information and
an example.) _

In signal processing, arithmetic overflows can create special problems. Since overflows can cause
swings between very large and very small numbers, they will often result in erratic system behavior.
The TMS32010 has been designed with a special overflow mode to compensate for this behavior.
When the overflow mode register (OVM) is set by the SOVM instruction (i.e., 1 = OVM), an
overflow will cause the largest/smallest representable value of the ALU to be loaded into the
accumulator. This models the saturation processes inherent in analog systems. When the overflow
mode register (OVM) is reset by the ROVM instructions (i.e., 0 = OVM), overflow results are loaded
into the accumulator without modification.

The OVM register can be stored in data memory as a single-bit register that is part of the status

register (see Section 2.7). It should not be confused with the overflow flag (OV), explained in
Section 2.2.2.1. '

Accumulator

The accumulator stores the output from the ALU and is also often an input to the ALU. It operates
with a 32-bit word length. The accumulator is divided into a high-order word (bits 31 through 16)
and a low-order word (bits 15 through 0). Instructions are provided for storing the high and low-
order accumulator words in data memory (SACH and SACL).

1183

2.2.2.1 Accumulator Status

2.2.3

224

1183

Accumulator overflow status can be read from the accumulator overflow flag register (OV). This
register will be set if an overflow occurs in the accumulator. Since the OV register is part of the
status register (see Section 2.7), OV status can be stored in data memory. Once the overflow flag
register is set, only the execution of the branch on overflow (BV) instruction or direct modification
of the status register can clear it. This feature permits the examination of overflow results outside of
time-critical loops. :

A variety of other accumulator conditions can be tested by the branch instructions given in Table
2-2. These instructions will cause a branch to be executed if the condition is met.

TABLE 2-2 — ACCUMULATOR TEST CONDITIONS

INSTRUCTION ACCUMULATOR CONDITION TESTED
BLZ <0
BLEZ <0
BGZ >0
BGEZ =0
BNZ <>0
BZ =0

Muiltiplier

The 16 X 16-bit parallel multiplier consists of three units: the T register, fhe P register, and the
multiplier array. The T register is a 16-bit register that stores the multiplicand, while the P register is
a 32-bit register that stores the product.

In order to use the multiplier, the multiplicand must first be loaded into the T register from the data
RAM by using one of the following instructions: LT, LTA, or LTD. Then the MPY (multiply) or the
MPYK (multiply immediate) instruction is executed. If the MPY instruction is used, the multiplier
value is a 16-bit number from the data RAM. If the MPYK instruction is used, the multiplier value is
a 13-bit immediate constant derived from the MPYK instruction word; this 13-bit constant is right
justified and sign extended. After execution of the MPY or MPYK instruction, the product will be
found in the P register. The product can then be added to, subtracted from, or loaded into the
accumulator by executing one of the following instructions: APAC, SPAC, LTA, LTD, or PAC.

Pipelinéd multiply and accumulate operations at 400-ns rates can be accomplished with the
LTA/LTD and MPY/MPYK instructions (see Section 3.4.3 for greater detail).

There is no convenient way to restore the contents of the P register without altering other registers.
For this reason, special hardware has been incorporated in the TMS32010 to inhibit an interrupt
from occurring until the instruction following the MPY or MPYK instruction has been executed.
Thus, the MPY or MPYK instruction should always be followed by instructions that combine the P
register with the accumulator: PAC, APAC, SPAC, LTA, or LTD. This is almost always done as a ’
logical consequence of the TMS32010 instruction set.

Shifters

There are two shifters available for manipulating data: a barrel shifter for shifting data from the data
RAM into the ALU and a parallel shifter for shifting the accumulator into the data RAM.

2.2.4.1 Barrel Shifter

2-6

The barrel shifter performs a left-shift of 0 to 15 placés on all data memory words that are to be load-
ed into, subtracted from, or added to the accumulator by the LAC, SUB, and ADD instructions.

The barrel shifter zero-fills the low-order bits and sign-extends the 16-bit data memory word to 32
bits by what is called an arithmetic left-shift. An arithmetic left-shift means that the bits to the left of
the MSB of the data word are filled with ones if the MSB is a one or with zeros if the MSB is a zero.
This is different from a logical left-shift where the bits to the left of the MSB are always filled with
zeros. A small amount of code is required to perform an arithmetic right-shift or a logical right-shift
(see Section 5.1.2).
The following examples. illustrate the barrel shifter’s function:

EXAMPLE 1:

Data memory location 20 holds the two's complement number: > 7EBC -

The load accumulator (LAC) instruction is executed, specifying a left-shift of 4:

LAC 20,4

The accumulator would then hold the following 32-bit signed two’s complement number:

31 16 15 0

0 0 0 7 E B CO

Since the MSB of > 7EBC is a zero, the upper accumulator was zero-filled.
EXAMPLE 2:
Data memory location 30 holds the two’s complement number: > 8EBC
The LAC }instruction is executed, specifying a left-shift of 8:

LAC 30,8

The accumulator would then hold the following 32-bit signed two’s complement number:

31 16 15 0

F F 8 E B C 0O

Since the MSB of > 8EBC is a one, the upper accumulator was filled with ones.

1183

There are also instructions that perform operations with the lower half of the accumulator and a
data word without first sign-extending the data word (i.e., treating it as a 16-bit rather than a 32-bit
word). The mnemonics of these instructions typically end with an “S,” indicating that sign-
extension is suppressed (e.g., ADDS, SUBS). Along with the instructions that operate on the
upper half of the accumulator, these instructions allow the manipulation of 32-bit precision
numbers. :

2.2.4.2 Parallel Shifter

The parallel shifter is activated only by the store high-order accumulator word (SACH) instruction.
This shifter left-shifts the entire 32-bit accumulator and places 16 bits into the data RAM, resulting
in a loss of the accumulator’s high-order bits. This shifter can execute a shift of only 0, 1, or 4.
Shifts of 1 and 4 were chosen to be used with multiplication operations (see Section 5.1.3.1). No
right-shift is directly implemented. The following example illustrates the accumulator shifter's
function: '

EXAMPLE:

The accumulator holds the 32-bit two’s complement number:

31 16 15 0

A 3 4 B 7.8 CD

The SACH instruction is executed, specifying that a left-shift of four be performed' on the
high-order accumulator word before it is stored in data memory location 40:

SACH 40,4

Data memory location 40 then contains the following number: > 34B7. The accumulator stlll
retains > A34B78CD.

23 DATA MEMORY

2.3.1

1183

Data memory consists of the 144 words of 16-bit width of RAM present on-chip. All non-immediate
data operands reside within this RAM.

Sometimes it is convenient to store data operands off-chip and then read them into the on-chip
RAM as they are needed. Two means are available for doing this. First, there are the table read
(TBLR) and the table write (TBLW) instructions. The table read (TBLR) instruction can transfer
values from program memory, either on-chip ROM or off-chip PROM/RAM, to the on-chip data
RAM. The table write (TBLW) instruction transfers values from the data RAM to program memory,
presumably in the form of off-chip RAM. These instructions take three cycles to execute. The IN
and OUT instructions provide another method. The IN instruction reads data from a peripheral and
transfers it to the data RAM. With some extra hardware, the IN instruction, together with the OUT
instruction, can be used to read and write from the data RAM to large amounts of external storage
addressed as a peripheral (see Section 3.4.3). This method is faster since IN and OUT take only two
cycles to execute.

Data Memory Addressing
There are three forms of data memory addressing: indirect, direct, and immediate.

2.3.1.1 Indirect Addressing

Indirect addressing uses the lower eight bits of the auxiliary registers as the data memory address
(see Section 2.4.1). This is sufficient to address all 144 data words; no paging is necessary with
indirect addressing. The current auxiliary register is selected by the auxiliary register pointer (ARP).
In addition, the auxiliary registers can be made to autoincrement/decrement during any given
indirect instruction. The increment/decrement occurs AFTER the current instruction is finished
executing.

Some examples of indirect addressing are given below. ARO and AR1 are predefined assembler
constants with values of 0 and 1, respectively.

Each of the following examples should be viewed as a complete program sequence, rather than
separate isolated statements. Indirect addressing is indicated by an asterisk (*) in these examples
and in the TMS32010 assembler.

EXAMPLE 1:
LARP ARO Load ARP with a zero. This sets AR0 as the
current auxiliary register.
LARK AR0,5 Load ARO with a 5.
ADD * Add contents of data memory location 5 to
accumulator.
ADD *+ Add contents of data memory location 5 to
accumulator and increment ARO. ARO now
equals 6.
ADD *— Add contents of data memory location 6 to
accumulator and decrement ARO. ARO now
equals 5.
ADD * Add contents of data memory location 5 to
accumulator.
EXAMPLE 2:

LARK ARO0,10 Load ARO with the value 10.
LARK AR1,20 Load AR1 with the value 20.

LARP 1 Set ARP to one. This selects AR1 as the current
auxiliary register.
ADD *,0,AR0 Add contents of data memory location 20 to

accumulator with no shift, then load ARP with
0, selecting ARO as the current auxiliary register.

ADD *+,0,AR1 Add contents of data memory location 10 to
accumulator with no shift, then increment ARO
to have value 11, and load ARP with 1, selecting
AR1 as the current auxiliary register.

2.3.1.2 Direct Addressing

In direct addressing, seven bits of the instruction word are concatenated with the data page pointer
(DP) to form the data memory address. Thus, direct addressing uses the following paging scheme:

DP MEMORY LOCATIONS
0 0 — 127
1 128 — 144

2-8 1183

Usually the second page of data memory contains infrequently accessed system variables, such as
those used by the interrupt routine. '

DP is part of the status register and thus can be stored in data memory (see Section 2.7).

2.3.1.3 Immediate Addressing

The TMS32010 instruction set contains special “immediate” instructions, such as MPYK, LACK,

and LARK. These instructions derive data from part of the instruction word rather than from the
data RAM. :

2.4 REGISTERS

2.4.1 Auxiliary Registers

There are two 16-bit hardware registers, the auxiliary registers, that are not part of the 144 X 16-bit
data RAM. These auxiliary registers can be used for three functions: temporary storage, indirect
addressing of data memory, and loop control.

Indirect addressing utilizes the least significant eight bits of an auxiliary register as the data memory
address (see Section 2.3.1.1).

The branch on auxiliary register not zero (BANZ) instruction permits these registers to also be used
as loop counters. BANZ checks if an auxiliary register is zero. If not, it decrements and branches.
Thus, loops can be implemented as follows:

LARP ARO Load ARP with 0, selecting ARO as the current auxiliary
register.
LARK ARO,5 Load ARO with 5.

LOOP ADD * Indirectly add data memory to accumulator.
BANZ LOOP

The above program segment adds data memory locations 5 through 0 to the accumulator.

When the auxiliary registers are autoincremented/decremented by an indirect addressing
instruction or by BANZ, the lowest nine bits are affected, one more than the lowest eight bits used
for indirect addressing (see Figure 2-3A). This counter portion of an auxiliary register is a circular
counter, as shown in Figures 2-3B and 2-3C.

COUNTER

15 9

AR

e e -

INDIRECT ADDRESS
—

FIGURE 2-3A — AUXILIARY REGISTER COUNTER

1183 2-9

15 8 0
AR | UNAFFECTED 111111111
3

INCREMENT
15 8 0
AR | ‘UNAFFECTED 000000000

FIGURE 2-3B — AUTOINCREMENT

15 8 0
AR] UNAFFECTED 111111111

DECREMENT

15 8 ‘ 0
AR | UNAFFECTED J 000000000

FIGURE 2-3C — AUTODECREMENT
FIGURE 2-3 — INDIRECT ADDRESSING AUTOINCREMENT/DECREMENT

The upper seven bits of an auxiliary register (i.e., bits 9 through 15) are unaffected by any
autoincrement/decrement operation. This includes autoincrement of 111111111 (the lowest nine
bits go to 0) and autodecrement of 000000000 (the lowest nine bits goto 111111111) ; in each case,
bits 9 through 15 are unaffected.

The auxiliary registers can be saved in and loaded from the data RAM with the SAR (store auxiliary
register) and LAR (load auxiliary register) instructions. This is useful for performing context saves.
SAR and LAR transfer entire 16-bit values to and from the auxiliary registers even though indirect -
addressing and loop counting utilize only a portion of the auxiliary register.

2.4.2 ' Auxiliary Register Pointer

The auxiliary register pointer (ARP) is a single bit which is part of the status register. It indicates
which auxiliary register is current as follows:

ARP ~ CURRENT AUXILIARY REGISTER
0 ARO
1 AR1

As part of the status register, the ARP can be stored in memory. °

2.5 PROGRAM MEMORY

Program memoi'y consists of up to 4K words of 16-bit width. The TMS320M10 has 1536 words of
on-chip ROM, while the TMS32010 is ROMless. Program memory mode of operation is controlled
by the MC/MP pin.

2-10 ’ 1183

2.5.1 Modes of Operation

There are two modes of operation defined by the state of the MC/MP pin: the mlcrooomputer
mode and the microprocessor mode. A one (high) level on this pin places the device in the
mlcrooomputer mode, and a zero (low) level places a device in the microprocessor mode.

Table 2-3 illustrates the program memory capability of the TMS32010 mlcrooomputers for each of
the two modes of operation enabled by the MC/MP pin. Figure 2-4 shows the memory map for
each setting of the MC/MP pin.

: 2.51 1 Microcomputer Mode (TMS320M10)

The microcomputer mode is defined by a one level on the MC/MP pin. Even though the
TMS320M10 has a 1636 X 16-bit on-chip ROM, only locations 0 through 1523 are available for the
user’s program. Locations 1524-1535 are reserved by Texas Instruments for testing purposes. The
device architecture allows for an additional 2560 words of program memory to reside off-chip.

2.5.1.2 Microprocessor Mode (TMS320M10 and TMS32010)

The microprocessor mode is defined by a zero level on the MC/ MP pin. All 4K words of memory
are external in this mode.

TABLE 2-3 — PROGRAM MEMORY FOR THE TMS320 FAMILY

MODEL ‘ PROGRAM MICROCOMPUTER MICROPROCESSOR
MEMORY OPTIONS ' MODE MEMORY MODE MEMORY
MC/MP =1 MC/MP=0
TMS320M10 | Microcomputer and 1536 words on-chip ROM 4096 words of exfernal
microprocessor modes and 2560 words of external | memory) B
, : memory

TMS32010 Microprocessor h".rode only | Not available 4096 words of external

' memory

After reset, the TMS32010 microcomputers will begin execution at location 0. Usually a branch
instruction to the reset routine is contained in locations 0 and 1. Upon interrupt, the TMS32010
microcomputers will begin execution at location 2.

1183 : » 2-11

MICROCOMPUTER MODE MICROPROCESSOR MODE

MC/MP = 1 - MC/MP = 0
ADDRESS . 16-BIT WORD ADDRESS 16-BIT WORD
o} RESET 1ST WORD (o] RESET 1ST WORD
1 RESET 2ND WORD 1 RESET 2ND WORD
2 INTERRUPT INTERNAL 2 INTERRUPT
MEMORY

g Z l

1523 EXTERNAL
1524)
INTERNAL MEMORY
MEMORY ’ SPACE
Zz Z SPACE Z Z
RESERVED
1535 FOR TESTING
1536
EXTERNAL
Z Z MEMORY
SPACE _
4095 4 4095

FIGURE 2-4 — TMS320 FAMILY MEMORY MAP

2.5.2 Using External Program Memory

2-12

Twelve output pins are available for addressing external memory. These pins are coded A11 (MSB)
through AO (LSB) and contain the buffered outputs of the program counter or the 1/0 port address.
When an instruction is fetched from off-chip, the MEN (memory enable) strobe will be generated to
enable the external memory. The instruction word is then transferred to the TMS32010 by means of
the data bus. (See Section 2.8.)

When in the microcomputer mode, the TMS320M10 will internally select address locations 1535
and below from the on-chip program memory. The MEN strobe will still become active in this mode,
and the address lines A11 through AO will still output the current value of the program counter
although the instruction word will be read from internal program memory.

Figure 2-5 gives an example of external program memory expansion. Even when executing from ex-
ternal memory, the TMS32010 performs at its full 200-ns instruction cycle. Fast memories under
100-ns access time must be used.

MEN is never active at the same time as the WE or DEN signals. In effect, MEN will go low every
clock cycle except when an 1/0 function is being performed by the IN, OUT, or TBLW instructions.

In these multicycle instructions, MEN goes low during the clock cycles in which WE or DEN do not
go low.

1183

DATA LINES
" e
TMS32010 16
_ ADDRESS LINES 4K X 16 -
—p—a] MC/MP - i > STATIC RAM
: 12 AND/OR PROM
—_— S
we MEN OUTPUT

ENABLE 4§ CHIP & WRITE

SELECT ENABLE

(Only for | :

RAM)

FIGURE 2-5 — EXTERNAL PROGRAM MEMORY EXPANSION EXAMPLE

2.6 PROGRAM COUNTER AND STACK

2.6.1

2.6.2

1183

The program counter (PC) and stack enable the user to perform branches, subroutine calls, and
interrupts, and to execute the table read (TBLR) and table write (TBLW) instructions (see Section
3.4.3).

Program Counter

The program counter (PC) is a 12-bit register that contains the program memory address of the next
instruction to be executed. The device reads the instruction from the program memory location
addressed by the PC and increments the PC in preparation for the next instruction prefetch. The PC
is initialized to zero by activating the reset (RS) line.

In order to permit the use of external program memory, the PC outputs are buffered to the output
pins, A11 through A0. The PC outputs appear on the address bus during all modes of operation.
The nine MSBs (A11 through A3) of the PC have unique outputs assigned to them, while the three
LSBs are multiplexed with the port address field, PA2 through PAQ. The port address field is used
by the 1/0 instructions, IN-and OUT.

Program memory is always addressed by the contents of the PC. The contents of the PC can be
changed by a branch instruction if the particular branch condition being tested is true. Otherwise,
the branch instruction simply increments the PC. All branches are absolute, rather than relative,
i.e., a 12-bit value derived from the branch instruction word is loaded directly into the PC in order to
accomplish the branch.

Stack

The stack is 12 bits wide and four layers deep. The PUSH instruction pushes the twelve LSBs of the
accumulator onto the top of stack (TOS). The POP instruction pops the TOS into the twelve LSBs
of the accumulator. Following the POP instruction, the TOS can be moved into data memory by
storing the low-order accumulator word (SACL instruction). This allows expansion of the stack into
the data RAM. From the data RAM, it can easily be copied into program RAM off-chip by using the
TBLW instruction. In this way, the stack can be expanded to very large levels.

If the XDS/320 Emulator is used, one level of the stack is reserved by the emulator, reducing the
number of available stack levels to three.

2-13

2.6.2.1 Stack Overlow

Up to four nested subroutines or interrupts can be accommodated by the device without a stack
overflow if the TBLR and TBLW instructions are not executed. Since TBLR and TBLW utilize one
level of the stack, only three nested subroutines or interrupts can be accommodated without stack
overflow occurring if TBLR or TBLW are executed. If there is a stack overflow, the deepest level of
stack will be lost. If the stack is overpopped, the value at the bottom of the stack will become
copied into higher levels until it fills the stack.

To handle subroutines and interrupts of much higher nesting levels, part of the data RAM or
external RAM can be allocated to stack management. In this case, the top of the stack (TOS) is
popped immediately at the start of a subroutine or interrupt routine and stored in RAM. At the end
of the subroutine or interrupt routine, the stack value stored in RAM is pushed back onto the TOS
before returning to the main routine.

2.7 STATUS REGISTER

2-14

The status register, shown in Figure 2-6, consists of five status bits. These status bits can be
individually altered through dedicated instructions. In addition, the entire status register can be
saved in data memory through the SST instruction. New values can be reloaded into the status
register using the LST instruction, with the execption of the INTM bit. The INTM bit cannot be
changed through the LST instruction. It can only be changed by the instructions, EINT and DINT
(enable, disable interrupts).

ov | owvm INTM ARP DP

FIGURE 2-6 — TMS32010 STATUS REGISTER

Accumulator Oveflow Flag Register - Zero indicates that the accumulator has not
- (OV) overflowed. One indicates that an overflow in the
~ accumulator has occurred. (See Section 2.2.2.1).
The BV (branch on overflow) instruction will clear
this bit and cause a branch if it is set.

Overflow Mode Bit (OVM) - Zero means the overflow mode is disabled. One
means the overflow mode is enabled (see Section
2.2.1.1). The SOVM instruction loads the OVM bit
with a one; the ROVM instruction loads the OVM bit
instruction with a zero.

Interrupt: Mask Bit (INTM) - Zero means an interrupt is enabled. One means
interrupt is disabled. The EINT instruction loads the
INTM bit with a zero; DINT loads the INTM bit with
a one. When an interrupt is executed, the INTM
register is automatically set _to _one before the
interrupt service routine begins. (See Section 2.10.)
Note that the INTM bit can only be altered by
executing the EINT and DINT instructions. Unlike
the rest of the status bits, the INTM bit cannot be
loaded with a new value by the LST instruction.

1183

271

28

- 2.8.1

1183

Auxiliary Register Pointer (ARP) - Zero selects ARO. One selects AR1. The ARP also
can be changed by executing the MAR or LARP
instruction, or by instructions that permit the
indirect addressing option.

Data Memory Page Pointer (DP) - Zero selects first 128 words of data memory, i.e.,
: page zero. One selects last 16 words of data
memory, i.e., page one. The DP can also be
changed by executing either the LDP or the LDPK
instruction.

Saving Status Register

‘The contents of the status register can be stored in data memory by executing the SST instruction.
If the SST instruction is executed using the direct addressing mode, the device automatically stores
this information on page one of data memory at the location specified by the instruction. Thus, an
SST instruction using the direct addressing mode can only specify an address less than 16, since
the second page of memory contains only 16 words. If the indirect addressing mode i is selected,

then the contents of the status register may be stored in any RAM location selected by the auxiliary
register. '

The SST instruction does not modify the contents of the status register. Figure 2-7 shows the

position of the status bits as they appear in the appropriate data RAM location after execution of the
SST instruction. ’

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OV OVM INTM 1 1 1 1. ARP 1 1 1 1 1 1 /11 DP

/// = don’t care

FIGURE 2-7 — STATUS WORD AS STORED BY SST INSTRUCTION

The LST instruction may be executed to load the status register. LST does not assume status bits
are on page one, so the DP must be set to one for the LST instruction to access status bits stored

on page one. The interrupt mask bit cannot be changed by the LST instruction. However, all other
status bits can be changed by this instruction.

INPUT/OUTPUT FUNCTIONS

IN and OUT

Input and output of data to and from a penpheral is accomplished by the IN and OUT instructions.
Data is transferred over the 16-bit data bus to and from the data memory by two mdependent
strobes: data enable (DEN) and write enable (WE). ,

The bldlrecﬁonal external data bus is always in a high-impedance mode, except when WE go&s low.

WE will go low during the flrst cycle of the OUT instruction and the second cycle of the TBLW
instruction.

As shown in Figure 2-8, 128 1/0 bits are available for interfacing to peripheral devices: eight 16-bit
multiplexed input ports and eight 16-bit multiplexed output ports.

2-15

H |

DATA BUS (16)

TMS32010

g
m|
4

s

A2-A0 /
PA2-PAO PORT

ADDRESS
DECODER

(=]
m
2!

1?

TI

| 8
|
gl

(74LS138)

4

O
m
2z

Tw)~ {IIIII
WE

16 1/0 BITS PER PORT

FIGURE 2-8 — EXTERNAL DEVICE INTERFACE

Execution of an IN instruction generates the DEN strobe for transferring data from a peripheral
device to the data RAM (see Figure 2-9A). The IN instruction is the only instruction for which
DEN will become active. Execution of an OUT instruction generates the WE strobe for transferring
data from the data RAM to a peripheral device (see Figure 2-9B). WE becomes active only during
the OUT instruction and the table write (TBLW) instruction. See Appendix A, the TMS32010 Data
Sheet, for further timing information.

DATA IN
IN INSTRUCTION VALUD NEXT INSTRUCTION
PREFETCH @———» PREFETCH
MEN '
DEN

FIGURE 2-9A — INPUT INSTRUCTION TIMING

: DATA OUT
OUT INSTRUCTION VALD NEXT INSTRUCTION

PREFETCH @—————® PREFETCH
- el
MEN
WE

~ FIGURE 2-9B — OUTPUT INSTRUCTION TIMING
FIGURE 2-9 — INPUT/OUTPUT INSTRUCTION TIMING

The three multiplexed LSBs of the address bus, PA2 through PAO, are used as a port address by the
IN and OUT instructions. The remaining higher order bits of the address bus, A11 through A3, are
held at logic zero during execution of these instructions.

2.8.2 Table Read (TBLR) and Table Write (TBLW)

The TBLR and the TBLW instructions allow words to be transferred between program and data
spaces. TBLR is used to read words from on-chip program ROM or off-chip program ROM/RAM
into the data RAM. TBLW is used to write words from on-chip data RAM to off-chip program
RAM.

Execution of the TBLR instruction generates MEN strobes to read the word from program memory
(see Figure 2-10A). Execution of a TBLW instruction generates a WE strobe (see Figure 2-10B).
Note that the WE strobe will be generated and the appropriate data transferred even if the
TMS320M10 is in the microcomputer mode and a TBLW is performed to a program location less
than 1535.

The dummy prefetch is a prefetch of the instruction following the TBLR or TBLW instructions and
is discarded. The instruction following TBLR or TBLW is prefetched again at the end of the
execution of the TBLR or TBLW instructions.

TBLR . DATA TRANSFERRED NEXT
INSTRUCTION DUMMY FROM PROGRAM INSTRUCTION
PREFETCH PREFETCH MEMORY PREFETCH
[P

v | _ | [

FIGURE 2-10A — TABLE READ INSTRUCTION TIMING

TBLW DATA NEXT

INSTRUCTION DUMMY TRANSFERRED TO INSTRUCTION
PREFETCH PREFETCH PROGRAM MEMORY PREFETCH
—eey - —e-
MEN I : I

FIGURE 2-10B — TABLE WRITE INSTRUCTION TIMING
FIGURE 2-10 — TABLE READ AND TABLE WRITE INSTRUCTION TIMING

1183 2-17

2.8.3 Address Bus Decoding

Since all three interface strobe(MEN, ﬁ, and DEN, are mutually exclusive') there are some very
important considerations for those desig utilize external program memory. Since the OUT

and TBLW instructions use only the WE signal to indicate valid data, these instructions cannot be
distinguished from one another on the basis of the interface strobes. Unless the address bus is
decoded, execution of TBLW instructions will write data to peripherals and execution of OUT
instructions will overwrite program memory locations 0 through 7. See Section 5-4 for an example
of this decoding logic. :

No matter what decoding logic is used, it will not be possible to use TBLW to uniquely write to
program memory locations 0 through 7. This is because the address bus will be identical for OUT"
and TBLW, and there will be no way to distinguish between the two instructions.

2.9 BIO PIN

2.10

2-18

The BIO pin is an external pin which supports bit test and jump operations. When a low is present
on this pin, execution of the BIOZ instruction will cause a branch to occur. This pin is sampled every
clock cycle and is not latched. -

The BIO pin is useful for monitoring peripheral device status. It is especially useful as an alternative
to using an interrupt when it is necessary not to disturb time-critical loops.

INTERRUPTS

The TMS32010’s interrupt |_g_enerated either by applying a negative-going edge to the interrupt
(INT) pin or by holding the INT pin low. A diagrammatic explanation of the TMS32010’s internal
interrupt circuitry is presented in Figure 2-11.

|
= T D¢ " { INTERRUPT
| DINT 1:"' ACKNOWLEDGE
! |
: EINT |
TMS32010 |
l | cw
| 5V — —dCLOCK Q= |
INTER- ' INTERRUPT | INTERNAL
' RUPT : MODE | INTERRUPT
NF. | FLAG REGISTERT | PROCESSOR
INT sv—1 B
| |
|
| >— D Q
| > |
SYNC |
| YN | |
| ¢* INTERRUPT
I ta=0 interrupts enabled I ACTIVE

Q = 1 interrupts disabled
* ¢ = phase of internal clock

FIGURE 2-11 — SIMPLIFIED INTERRUPT LOGIC DIAGRAM

1183

" The Sync FF is a synchronizing flip-flop used to synchronize the external interrupt signal to the
TMS32010’s internal interrupt circuitry. When interrupts are enabled, an interrupt becomes active
either due to a low voltage input on the INT pin or when a negative-edge has been latched into the
interrupt flag. ' ' ' EC

If the interrupt mode register (INTM) is set, theh an interrupt active signal to the internal interrupt
processor (lIP) becomes valid. The IIP begins interrupt servicing by causing a branch to location 2in
program memory. It will delay interrupt servicing in each of the following cases:

1) Until the end of all cycles of a multicycle instruction,
2) Until the instruction following the MPY or MPYK has completed execution,
3) _Until the in: ion following EINT has been executed (when interrupts ha n_pre-

viously disabled). This allows the RET instruction to be executed after interrupts become
enabled at the end of an interrupt routine.

-

When the interrupt service routine begins, the IIP sends out an internal interrupt acknowledge
signal. This presets the INTM register (disabling interrupts) and clears the interrupt flag.

Figure 2-11 also shows that DINT or a hardware reset will set the INTM register, disabling
interrupts, while EINT will clear the INTM register. Interrupts will continue to be latched while they
are disabled. Note that DINT or EINT do not affect the interrupt flag.

Figure 2-12 shows the instruction sequehoe that occurs once an interrupt becomes active. The
dummy fetch is an instruction that is fetched but not executed. This instruction will be fetched and
executed after the interrupt routine is completed.

CLKOUT

iNT \ 1 CLOCK CYCLE MIN / . .

FETCH FETCH DUMMY FETCH NSTEICTON
INSTRUCTION N INSTRUCTION N + 1 INSTRUCTION N +2 e
EXECUTE N EXECUTE N+1 _DUMMY CYCLE EXECUTE 002

FIGURE 2-12 — INTERRUPT TIMING

See Section 2.14 for interrupt system d,esign"' recommendations.

.11 RESET

The reset function is enabled when an active low is placed on the RS pin for a minimum of five clock
cycles (see Figure 2-13). The control lines for DEN, WE, and MEN are then forced high, and the
data bus (D15 through DO) is tristated. The PC and the address bus (A11 through AQ) are then
synchronously cleared after the next complete clock cycle from the falling edge of RS. The RS pin
‘also disables the interrupt, clears the interrupt flag register, and leaves the overflow mode register
unchanged. The TMS32010 can be held in the reset state indefinitely. ‘

'1_&3 ~ ‘ 2-19

@—5 CLOCK CYCLES MIN ———p»

FIGURE 2-13 — RESET TIMING

212 CLOCK/OSCILLATOR
The TMS32010 can use either its internal oscillator or an external frequency source for a clock.

Use of the internal oscillator is achieved by connecting a crystal across X1 and X2/CLKIN. The
frequency of CLKOUT and the cycle time of the TMS32010 is one-fourth of the crystal fundamental

frequency (see Figure 2-14).
Ij\xz/;;l

C1 1-\ IC2

FIGURE 2-14 — INTERNAL CLOCK

An external frequency source can be used by injecting the frequency directly into X2/CLKIN with
X1 left unconnected. If an external frequency source is used, a pull-up resistor may be necessary
(see Figure 2-15). This is because the high-level voltage of the CLKIN input must be a minimum of
2.8 V while a standard TTL gate, for example, can have a high-level output voltage as low as 2.4 V.
The size of the pull-up resistor will depend on such things as the frequency source’s high-level
output voltage and current and the number of other devices the frequency source will be driving.
The resistor should be made as large as possible while still having the CLKIN input specification
met.

X2/CLKIN

L—.w\,_o +Vce

SIGNAL
GENERATOR

FIGURE 2-156 — EXTERNAL FREQUENCY SOURCE
The delay time between CLKIN and CLKOUT is not specified. This delay time can vary by as much a

one CLKOUT cycle and is very temperature dependent. Hardware designs which depend upon this
delay time should not be used.

2-20 1183

2113 PIN DESCRIPTIONS

Definitions of the TMS32010 pin assignments and descriptions of the function of each pin are
presented in Table 2-4. Figure 2-16 illustrates the TMS32010 pin assignments.

TABLE 2-4 — TMS32010 PIN DESCRIPTIONS

SIGNAL | PIN | 1/O- DESCRIPTION
; POWER SUPPLIES
Vee 30 1 Supply voltage (+ 5 V NOM)
Vss 10 Ground referencg
; CLOCKS
X2/CLKIN 8 | IN Crystal input pin for internal oscillator (X2). Also input pin for ex-

ternal oscillator (CLKIN).
! X1 7 ouT Crystal input pin for internal oscillator
CLKOUT 6 ouT Clock output signal. The frequency of CLKOUT is one-fourth of the

oscillator input (external oscillator) or crystal frequency (internal
oscillator). Duty cycle is 50 percent. :

- CONTROL

3l

31 OUT | Write Enable. When active (low), WE indicates that valid output
data from the TMS32010 is available on the data bus. WE is only
active during the first cycle of the OUT instruction and the second
cycle of the TBLW instruction (see Se Section 3.4.3). MEN and DEN
will always be inactive (high) when WE is active.

O
m
Z

32 | oUT Data Enable. When active (low), ‘DEN indicates that the
TMS32010 is accepting data from the data bus. DEN is only ac-
tive during the first cycle of the IN instruction (see Section 3.4.3).
MEN and WE will always be inactive (high) when DEN is active.

<
m
P4

33 | ouT Memory Enable. N MEN will be active low on every machine cycle
except when WE and DEN are active. MEN is a control signal
generated by the TMS32010 to enable instruction fetches from
program memory. MEN will be active on instructions fetched from
both internal and external memory.

2-21

TABLE 2-4 — TMS32010 PIN DESCRIPTIONS (CONTINUED)

SIGNAL | PIN 1/0 DESCRIPTION
INTERRUPTS

RS 4 IN Reset. When an active low is / is placed on the RS pin for a minimum
of five clock cycles, DEN, WE, and MEN are forced high, and the
data bus (D15 through DO) is tristated. The program counter (PC)
and the address bus (A11 through A0) are then synchronously
cleared after the next complete clock cycle from the falling edge of
RS. RS also disables the interrupt, clears the interrupt flag register,
and leaves the overflow mode register unchanged. The TMS32010
can be held in the reset state indefinitely.

INT 5 IN Interrupt. The interrupt signal is generated by applying a negative-
going edge to the INT pin. The edge is used to latch the interrupt
flag register (INTF) until an interrupt is granted by the device. An
active low level will also be sensed. (See Section 2.10.)

BIO 9 | IN 1/0 Branch Control. If BIO is active (low) upon execution of the
BIOZ instruction, the device will branch to the address specified by
the instruction (see Section 2.9).

PROGRAM MEMORY MODES

MC/MP 3 IN Microcomputer/Microprocessor Mode. A high on the MC/MP pin
enables the microcomputer mode. In this mode, the user has
available 1524 words of on-chip program memory. (Program
memory locations 1524 through 1535 are reserved.) The
microcomputer mode also allows an additional 2560 words of
program memory to reside off-chip. A low on the MC/MP pin
enables the microprocessor mode. In this mode, the entire
memory space is external, i.e., addresses O through 4095. (See
Section 2.3.1.)

BIDIRECTIONAL DATA BUS

D15 18 I1/0 D15 (MSB) through DO (LSB). The data bus is always in the high-

D14 17 1/0 impedance state except when WE is active (low).

‘D13 16 1/0

D12 16 1/0

D11 14 1/0

D10 13 170

D9 12 1/0

D8 11 1/0

D7 19 1/0

D6 20 1/0

D5 21 1/0

D4 22 1/0

D3 23 1/0

D2 24 1/0

D1 25 1/0

DO 26 1/0

2-22

TABLE 24 — TMS32010 PIN DESCRIPTIONS (CONCLU DED)

SIGNAL | PIN | 1/0 : K DESCRIPTION
PROGRAM MEMORY ADDRESS BUS AND
PORT ADDRESS BUS
A1 27 ouT Program memory A11 (MSB) through AO (LSB) and port
A10 28 | our addresses PA2 {MSB) through PAO (LSB). Addresses A11
A9 29 out through AO are always active and never go to high im-
A8 34 ouT pedance. During execution of the IN and OUT instructions,
A7 35 out pins A2 through AO carry the port addresses PA2 through
A6 36 ouT PAO
A5 37 ouT '
A4 38 ouT
A3 39 ouT
A2/PA2 40 | OUT
A1/PA1 1 ouT
A0/PAO 2 ouT
PNVLZS I B U 40 [] A2/PA2
aorA0 (]2 39[]As
mcmP [(]3 38[A4
RS [(Ja 37[]as
INT []s 36[JAs
cukout []e 3 [] A7
x1 7 34 As
x2/cLKIN (] 8 33 [] MEN
Bio[Jo 32[])bEn
vss (J1o 31[JWe
ps (J11 30[]Vece
D9 [J12 29[] A9
p1o [J13 28|] A10
o1 [27 An
D12 [J15s 26 [7] po
p13 [J1e 2s[]o ‘
p14a [J17 24[Jo2
pis [(J1s 23[Jo3
p7 [(J1o 22[]oa
o6 [(J20 21[Jos

FIGURE 2-16 — TMS32010 PIN ASSIGNMENTS

223

2.14

2-24

INTERRUPT SYSTEM DESIGN

For systems using asynchronous interrupts on the TMS32010, the external hardware shown in
Figure 2-17 is recommended to ensure proper execution of interrupts. This hardware synchronizes
interrupt input signals with the rising edge of CLKOUT on the TMS32010. The pulse width required
for the interrupt input signal is tg(C), which is one TMS32010 clock cycle, plus sufficient setup time
for the flip-flop (dependent upon the flip-flop used).

RESET ——I

INTERRUPT INPUT SIGNAL o P Q INT
(ACTIVE LOW) sn74ALs74 |
- .
c
| TMS32010
+5V
CLKOUT

FIGURE 2-17 — INTERRUPT HARDWARE DESIGN

1183

INSTRUCTIONS

/3. INSTRUCTIONS

The TMS32010’s comprehensive instruction set supports both numeric- intensive operations, such
as signal processing, and general-purpose operations, such as high-speed control. The instruction
set, shown in Table 3-2, consists primarily of single-cycle single-word instructions, permitting exe-
cution rates of up to five million instructions per second. Only infrequently used branch and 1/0
instructions are multicycle. . :
The TMS32010 also contains a number of instructions that shift data as part of an arithmetic oper-
ation. These all execute in a single cycle and are very useful for scaling data in parallel with other
operations. w

3.1 INTRODUCTION

The instruction set contains a full set of branch instructions. Combined with the Boolean opera-
tions and shifters, these instructions permit the bit manipulation and bit test capability needed for _
high-speed control operations. Double-precision operations are also supported by the instruction -JEN
set. Some examples are ADDH (add to high-order accumulator) and ADDS (add to accumulator
with sign extension suppressed), which allow easy manipulation of 32-bit numbers.

The TMS32010’s hardware multiplier allows the MPY instruction to be executed in a single cycle.
The SUBC (conditional subtract for divide) instruction performs the shifting and conditional
branching necessary to implement a divide efficiently and quickly. :

Two special instructions, TBLR (table read) and TBLW (table write), allow crossover between data
memory and program memory. The TBLR instruction transfers words stored in program memory to
the data RAM. This eliminates the need for a coefficient ROM separate from the program ROM,
thus permitting the user to make efficient trade-offs as to the amount of ROM dedicated to pro-
gram or coefficient store. The accompanying instruction, TBLW, transfers words in internal data
RAM to an external RAM. In conjunction with TBLR, this instruction allows the use of external
RAM to expand the amount of data storage.

When a very large amount of external data must be addressed (i.e., > 4K words), TBLR and TBLW
can no longer serve as a means of expanding the data RAM. Then it becomes necessary to address
external data RAM as a peripheral by using the IN and OUT instructions; these instructions permit a
data word to be read into the on-chip RAM in only two cycles. This procedure requires a minimal »
amount of external logic and permits the accessing of almost unlimited amounts of data RAM. This
is very useful for pattern recognition applications, such as speech recognition or image processing.

3.2 ADDRESSING MODES

Three main addressing modes are available with the TMS32010 instruction set direct, ihdirect, ahd
immediate addressing. ‘ '

3.2.1 Direct Addressing Mode

In direct addressing, seven bits of the instruction word concatenated with the data page pointer
form the data memory address. This implements a paging scheme in which the first page contains
128 words and the second page contains 16 words. In a typical application, infrequently accessed
variables, such as those used when performing an interrupt service routine, are stored on the sec-

ond page.

3.2.2 Indirect Addressing Mode ‘

Indirect addressing forms the data memory address from the least significant eight bits of one of

two auxiliary registers, ARO and AR1. The auxiliary register pointer (ARP) selects the current auxil-
iary register. The auxiliary registers can be automatically incremented or decremented in parallel
with the execution of any indirect instruction to permit single-cycle manipulation of data tables.

3-1

3.2.3.

Immediate Addressing Mode

The TMS32010 instruction set contains special “immediate” instructions. These instructions derive
data from part of the instruction word rather than from the data RAM. The constant in all immediate
instructions may refer to values supplied by an external reference symbol. Some very useful im-
mediate instructions are multiply immediate (MPYK), load accumulator immediate (LACK), and
load auxiliary register immediate (LARK).

3.3 INSTRUCTION ADDRESSING FORMAT

3.3.1

33.2.

333

The following sections describe the opcode format for the varidus addressing modes of the
TMS32010.

Direct Addressing Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OPCODE 0] dma]

Bit 7 = 0 defines direct addressing mode. The opcode is contained in bits 15 through 8. Bits 6
through 0 contain data memory address.

The 7 bits of the data memory address (dma) field can directly address up to 128 words (1 page) of
data memory. Use of the data memory page pointer is required to address the full 144 words of data
memory.

Direct addressing can be used with all instructions requiring data operands except for the immediate
operand instructions.

Indirect Addressing Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OPCODE 1 | O |INCIDEC|ARP| 0 | O |ARP

Bit 7 = 1 defines indirect addressing mode. The opcode is contained in bits 15 through 8. Bits 6
through 0 contain indirect addressing control bits.

Bit 3 and bit 0 control the Auxiliary Register Pointer (ARP). If bit 3 = 0, then the contents of bit 0
are loaded into the ARP after execution of the current instruction. If bit 3 = 1, then the contents of
the ARP remain unchanged. ARP = 0 defines the contents of ARO as a memory address. ARP =
1 defines the contents of AR1 as a memory address.

Bit 5 and bit 4 control the auxiliary registers. I bit5 = 1, then ARP defines which auxiliary register is
to be incremented by 1 after execution. If bit 4 = 1, then the ARP defines which auxiliary register is
to be decremented by 1 after execution. If bit 5 and bit 4 are zero, then neither auxiliary register is in-
cremented or decremented. Bits 6, 2, and 1 are reserved and should always be programmed to zero.

Indirect addressing can be used with all instructions requiring data operands, except for the im-
mediate operand instructions.

Immediate Addressing Format

Included in the TMS32010’s instruction set are five immediate operand instructions (LDPK, LARK,
MPYK, LACK, and LARP). In these instructions, the operand is contained within the instruction
word.

1183

- 3.3.4 Examples of Opcode Format

1) ADD 9,5 Add to accumulator the contents of memory
location 9 left-shifted 5 bits.

1514131211"109876543210
0 o o o[{O0O 10 1/0/0 0O 1001

Note: Opcode of the ADD instruction is 0000 and appears in bits 15 through 12. Shift code of 5 appears in bits 11 through 8. Data mem-
ory address 9 appears in bits 6 through 0. .

2) ADD *+.,8 Add to accumulator the contents of data memory address defined by
contents of current auxiliary register. This data is left-shifted 8 bits

before being added. The current auxiliary register is auto-incremented
by 1. ’

15141312111098765'43210
o 0 0 0|1 O0OO|1]0 1 01000

Other variations of indirect addressing are as follows:

3) ADD*8 As in example 2, but with no auto-increment; opcode would be

> 0888
4) ADD* -,8 As in example 2, except that current auxiliary register is decremented

by 1; opcode would be > 0898

5) ADD* +,8,1 Asin example 2, except that the auxiliary register pointer is loaded
with the value 1 after execution; opcode would be > 08A1

6) ADD* + ,8,0 As in example 2, except that the auxiliary register pointer is loaded
: with the value 0 after execution; opcode would be > 08A0-

3.4 INSTRUCTION SET

The following sections include the symbols and abbreviations that are used in the instruction set
summary and in the instruction descriptions, the complete instruction set summary, and a descrip-
tion of each instruction. :

All numbers are assumed to be decimal unless otherwise indicated. Hexidecimal numbers are
specified by the symbol “>" before the number.

3.4.1. Symbols and Abbreviations

DATn and PRGn are assumed to have the symbolic value of n. They are used to represent any sym-
bol with the value n.

1183 33

TABLE 3-1 — INSTRUCTION SYMBOLS

SYMBOL

MEANING
ACC Accumulator
AR Auxiliary register (ARO and AR1 are predefined assembler symbols equal to 0 and 1,
respectively.)
ARP Auxiliary register pointer
- D Data memory address field
DATn Label assigned to data memory location n
dma Data memory address
DP Data page pointer
| Addressing mode bit
INTM Interrupt mode flag bit
K Immediate operand field _
>nn Indicates nn is a hexadecimal number. All others are assumed to be decimal values.
OVM Overflow (saturation) mode flag bit
P Product (P) register
PA ~ Port address (PAO through PA7 are predefined assembler symbols equal to 0 through
7, respectively) '
PC Program counter
pma Program memory address
PRGn Label assigned to program memory location n
R 1-bit operand field specifying auxiliary register
S 4-bit left-shift code
T T register
TOS Top of stack
X 3-bit accumulator left-shift field
- Is assigned to
|] Indicates an absolute value
< > Items within angle brackets are defined by user.
[1] - Items within brackets are optional.
() Indicates ‘‘contents of’’
{} ltems within braces are alternative items; one of them must be entered.
<> Angle brackets back-to-back indicate ““not equal”.

Blanks or spaces are significant.

34

- 183

3.4.2 Instruction Set Summary

The instruction set summary in the following table consists pnmanly of single-cycle single-word in-
structions. Only infrequently used branch and 1/0 instructions are multicycle.

TABLE 3-2 — INSTRUCTION SET SUMMARY

ACCUMULATOR INSTRUCTIONS
MNEMONIC DESCRIPTION NO. NO. OPCODE
CYCLES | WORDS INSTRUCTION REGISTER
51413121110 9 8 7 6 56 4 3 2 1.0

ABS Absolute value of 1 1 o111111110001000
accumulator

ADD Add to accumulator 1 1 0000 €«€5—> | < D >
with shift

ADDH Add to high-order 1 1 01 1 00000 | < D —>

: accumulator bits . :

ADDS Add to accumulator 1 1 01 10000 11| <— D >
with no sign extension

AND AND with accumulator 1 1 o111 10011 < D >

LAC Load accumulator 1 1 0010 €5s—> | < D —>
with shift ' _

LACK Load accumulator 1 1 01111110 <— K —> .
immediate

OR OR with accumulator 1 1 011110101 €&<——D—>

SACH Store high-order 1 1 01011 < X=>1 D —>
accumulator bits with
shift

SACL Store low-order 1 1 01 0100001 < D >
accumulator bits

SuUB Subtract from 1 1 0001 €«s—> 1 < >
accumulator with
shift

SUBC Conditional subtract 1 1.1 0110010011 D >
(for divide)

SUBH Subtract from high- 1 1 01100010 D —>
order accumulator bits

-‘SUBS Subtract from accumu- 1 1 011 000111 < D >
lator with no sign
extension .

XOR Exclusive OR with - 1 1 011 11000 1| < D >
accumulator

ZAC Zero accumulator 1 1 o111111110001001

ZALH Zero accumulatorand | 1 1 011t 00101 1| < D —>
load high-order bits

ZALS Zero accumulator and 1 1 01 1001101l < D >
load low-order bits
with no sign extension

3-5

3-6

TABLE 3-2 — INSTRUCTION SET SUMMARY (CONTINUED)

AUXILIARY REGISTER AND DATA PAGE POINTER INSTRUCTIONS

Ld

MNEMONIC DESCRIPTION NO. NO. OPCODE
CYCLES| WORDS INSTRUCTION REGISTER
151413121110 9 8 7 6 5 4 3 2 1 0
LAR Load auxiliary 1 1 001 1100 R I D —>
register ‘
LARK Load auxiliary 1 1 0111 00O0R K
register immediate
LARP Load auxiliary 1 1 01101 0O0O0T1TO0O0UO0OUO0O0G 0K
register pointer
immediate
LDP Load data memory 1 1 o110 11 1 11 D >
page pointer
LDPK Load data memory 1 1 011011 10000O0O0TO0T0 K
page pointer
immediate
MAR Modify auxiliary 1 1 0110100 0 I D
register and pointer :
SAR Store auxiliary 1 1 0 01 1 000 R I < D >
register
* BRANCH INSTRUCTIONS
MNEMONIC DESCRIPTION NO. NO. OPCODE
CYCLES| WORDS INSTRUCTION REGISTER
1514 13 121110 9 8| 7 6 54 3 2 1 0]
B Branch unconditionally 2 2 1111100 1,00000O0O0TU0
0 0 0 00 «<—— BRANCH ADDRESS ————> |
!
BANZ Branch on auxiliary 2 2 111 101 00, 00O0O0O0OUO0OTGO0CTO
register not zero 0 0 0 0 «<——— BRANCH ADDRESS ———>
BGEZ Branch if accumulator 2 2 t11 11101000 0O0UO0UO0TO0
=0 0 0 0 0 <—— BRANCH ADDRESS ————>
BGZ Branch if accumulator 2 2 111111 00/000O0UO0OUO0OTUO0TO0
>0 0 0 0 0 <—— BRANCH ADDRESS >
BIOZ Branch on BIO =0 2 2 111101 10/000O0O0OO0O0TUO0
0 0 0 0 <—— BRANCH ADDRESS ———>
BLEZ Branch if accumulator 2 2 1111101 1/0000000O0TO0
<0 0 0 0 0 <—— BRANCH ADDRESS >
BLZ Branch if accumulator 2 2 1111101 0/000O0O0O0UO0TUO0
<0 0 0 0 0 <—— BRANCH ADDRESS ——>
BNZ Branch if accumulator 2 2 111 1111 0{000O0O0UO0TGO00O0
#0 0 0 0 0 <——— BRANCHADDRESS ———>
BV Branch on overflow 2 2 1111010 1000000O0TUO0
° 0 0 0 0 <—— BRANCH ADDRESS ——>
BZ Branch if accumulator 2 2 11 11 17 11/000000O0O0T O
=0 : 0 00O BRANCH ADDRESS ——>
CALA Call subroutine from 2 1 011 1111110001100
accumulator
CALL Call subroutine 2 2 11111 0O0O0/(00O0O0O0UO0TG 0O
immediately 0 0 0 0 <—— BRANCH ADDRESS ———>
RET Return from sub- 2 1 0111111110001 10 1
routine

TABLE 3-2 - INSTRUCTION SET SUMMARY (CONCLUDED)

T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS

MNEMONIC DESCRIPTION NO. NO. OPCODE
|CYCLES | WORDS INSTRUCTION REGISTER

151413121110 9 8 7 6 56 4 3 2 1 0

APAC Add P register to 1 1 1111111100011 11
accumulator

LT Load T register 1 1 011010101 < D >

LTA LTA combines LT and 1 1 011 011001 <— D —>
APAC into one instruc- '
tion

LTD LTD combines LT, 1 1 011 0101 11| < D —>

APAC, and DMQOV into
one instruction i
MPY Multiply with T 1 1 o1 1011011 D >

register; store product
in P register
MPYK Multiply T register 1 1 100 K : >

with immediate oper-
and; store product in

P register

PAC Load accumulator from 1 1 o111111110001110
P register :

SPAC Subtract P register 1 1 o11111111001000O00

from accumulator

CONTROL INSTRUCTIONS

MNEMONIC DESCRIPTION NO. NO. OPCODE
CYCLES | WORDS INSTRUCTION REGISTER
151413121110 9 8 7 6 56 4 3 2 1 0
DINT Disable interrupt 1 1 011111111 0000O0O0T01
EINT Enable interrupt 1 1 o1 1111111 000O0O0O0OT11TO0
LST Load status register 1 1 o1 11101 11 D >
NOP No operation 1 1 011111111 000O0O0OO0CO
POP Pop stack to 2 1 o111111110011T1 101
accumulator
PUSH Push stack from 2 1 o1 11111110011 100
accumulator
ROVM Reset overflow mode 1 1 011111111 0001010
SOVM Set overflow mode 1 1 o1 111111100010 11
SST Store status register 1 1 011111001 < D >
1/0 AND DATA MEMORY OPERATIONS
MNEMONIC DESCRIPTION NO. NO. OPCODE
CYCLES| WORDS INSTRUCTION REGISTER
51413121110 9 8 7 6 5 4 3 2 1 0
DMOV Copy contents of data | 1 1 o011 0100 11 D —>
memory location into
next location)
IN Input data from port 2 1 0 1 0 00 <PA> | <— D >
ouT Output data to port 2 1 01 0 0 1 €PA> | <— D >
TBLR Table read from 3 1 0110011 11 < D >
program memory to
data RAM
TBLW Table write from 3 | o1 1111011 <« D >
data RAM to program
memory

1183 : 37

3.4.3 Instruction Descriptions

3-8

Each instruction in the instruction set summary is described in the following pages. The instructions
are listed in alphabetical order. An example is provided with each instruction.

Each instruction begins with an assembler syntax expression. Since the comment field which con-
cludes the syntax is optional, it is not included in the syntax expression. A syntax example is given
below that shows the spaces that are included and required in the syntax expression, and the op-
tional comment field along with its preceding spaces that has been omitted.

[<label>] LACK <constant> [<comment>] ,
Spaces Spaces and comment
field not included

in the syntax expressions
for this section.

1183

A B S Absolute Value of Accumulator : AB s

Assembler Syntax: [<label>] ABS
Operands: = None

Operation: If(ACC)< 0
Then — (ACC) = ACC

Encoding: 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0o 1 1 1 1 11110001000

Description: If accumulator is greater than zero, then the accumulator is unchanged by the execution of Jik}
this instruction. If the accumulator is less than zero, then the accumulator will be replaced ™
by its two’s complement value. Note that the hexadecimal number > 80000000 is a special
case. When the overflow mode is not set, the ABS of > 80000000 is > 80000000. When in
the overflow mode, the ABS of > 80000000 is > 7FFFFFFF.

Words: 1 |
Cycles: 1
Example: ABS
BEFORE INSTRUCTION AFTER INSTRUCTION
31 0 31 A 0

ACC(>0 0 0 0 1 2 3 4 ACC >0 0 0 01 2 3 4

and
ACC|I>F F F F FFFF ACC >0 0 0 0 0 0 0 1

ADD

Add to Accumulator with Shift 7 A D D

Assembler Syntax:
Direct Addressing: [<label>] ADD <dma>|[, <shift>]
Indirect Addressing: [<label>] ADD {*|*+|*-}[, <shift>[,<ARP>]]

Operands:

Operation:

- Encoding:
e

Direct:

Indirect:

Description:

Words: 1
Cycles: 1

Example:

. DATA
MEMORY
1

ACC

0 <shift< 15
0<dma<127
ARP =0or1

(ACC) + (dma) x 2shift -~ Acc

1 14 13 12 11 10 9 8 7 6 56 4 3 2 1 O

DATA MEMORY
0 0 0 O SHIFT 0 ADDRESS
0 0 0 O SHIFT 1| SEE SECTION 3.3

Contents of data memory address are left-shifted and added to accumulator. During
shifting, low-order bits are zero-filled, and high-order bits are sign-extended. The result is
stored in the accumulator.

ADD DAT1,3

or

ADD *,3 If current auxiliary register contains the value 1.

BEFORE INSTRUCTION AFTER INSTRUCTION
DATA
2 MEMORY 2
1

7 ACC 23|

Note: If the contents of data memory address DAT2 is >8BOE, then the following instruction sequence
will leave accumulator with the value > FFF8BOEOQ.

3-10

ZAC Zero accumulator
ADD DAT2,4 ACC = > FFF8BOEO

1183

A D D H Add to High-Order Accumulator

-ADDH

Assembler Syntax:
Direct Addressing: [<label>] ADDH
Indirect Addressing: [<label>] ADDH

Operands: 0<dma<127
ARP = 0Qor 1

Operation: (ACC) + (dma) x 2 16 - AccC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

<dma>

{*|*+|* -}, <ARP>]

o DATA MEMORY
 Indirect: 0o 1 t 0 0 O 0 01 SEE SECTION 3.3

:Description: Add contents of data memory address to upper half of the accumulator (bits 31 through 16).

Words: 1
Cycles: 1

Example: ADDH DAT5
or

ADDH * If current auxiliary register contains the value 5.

BEFORE INSTRUCTION

DATA
MEMORY | >4
5
ACC >0000001 3

AFTER INSTRUCTION

DATA

MEMORY >4
5

ACC | >00040013

* Note: This instruction can be used in performing 32-bit arithmetic.

1183

3-11

Add to Low A lat
AD D S with Sign?E:f:vnsi(:)(:lu;ntl::r:;sed : AD D S

Assembler Syntax: .
Direct Addressing: [<label>] ADDS <dma>
Indirect Addressing: [<label>] ADDS {*|*+|*-}.<ARP>]

Opérands: O<dma=<127
ARP = 0or 1

Operation: (ACC) + (dma) = ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Ot [0 1 a4 0 o oo 1{o| PATEIENORY

Indirect: [0 1 1 0 0 0 0 1|1| SEESECTION3.3

Description: Add contents of specified data memory location with sign-extension suppressed. The data is
treated as a 16-bit positive integer rather than a two’s complement integer. Therefore, there
is no sign-extension as there is with the ADD instruction.

Words: 1
Cycles: 1
Example: ADDS DAT11
or
ADDS * If current auxiliary register contains the value 11.
BEFORE INSTRUCTION AFTER INSTRUCTION
DATA DATA
MEMORY [>F 0 0 6 | MEMORY| >F 0 0 6 |
1 11
ACC | >00000003 | ACC | >0000FQ09

Notes: The following routines illustrate the difference between the ADD and ADDS instructions. Data
memory location DAT1 contains > E007.

ZAC Zero ACC
ADDS DAT1 ACC = >0000E007

~ZAC Zero ACC
ADD DAT1,0 ACC = >FFFFE007

The ADDS instruction can be used in implementing 32-bit arithmetic.

3-12 - . 1183

| A N D - AND with Low-Order Bits of Accumulator | ‘ AND

Assembler Syntax: ‘ ‘
Direct Addressing: [<label>] AND <dma>
Indirect Addressing: [<label>] = AND {*|*+]|*—}[,<ARP>]

Operands: 0<dma<127
: ARP =0 or 1

Operation: Zero. AND. high-order ACC bits:. (dma). AND. low-order ACC bits = ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA MEMORY
ADDRESS

Direct: 0o 1 1 1 1 0 0 1]0

Indirect: |0 1 1 1 1 0 0 1|1 SEE SECTION 3.3

" Description: The low-order bits of the accumulator are ANDed with the contents of the specified data
memory address and concatenated with all zeroes ANDed with the high-order bits of the
accumulator. The AND operation follows the truth table below.

DATA MEMORY BIT | ACCBIT(BEFORE) | ACC BIT (AFTER)

0 0 0
0 1 0
1 0 0
1 1 1
Words: 1
Cycles: 1
Example: AND DAT16
or
AND * If current auxiliary register contains the value 16.
BEFORE INSTRUCTION : AFTER INSTRUCTION
DATA | DATA
MEMORY | >00FF | MEMORY | >00FF |
16 < 16
aAcc [>12345678 | aAcc [>00000078]

- Note: This instruction is useful for examining bits of a word for high-speed control applications.

1183 | o : 3-13

APAC Add P Register to Accumulator A PAC

Assembler Syntax: [<label >] APAC

Operands: None

Operation: (ACC) + (P)= ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 17 1 1 1 1111000111 1|

B Description: The contents of the P register, the result of a multiply, are added to the contents of the
accumulator and the result is stored in the accumulator.

Words: 1
Cycles: 1

Example: APAC

BEFORE INSTRUCTION AFTER INSTRUCTION

P | 64 Pl 64 |
ACC | 32 ACC 96

Note: This instruction is a subset of the LTA and LTD instructions.

314 183

B

‘Branch Unconditionally

Assembler Syntax: | [<label>1] B <pm;>

Operands: 0 <pma< 212

Operation: pma— PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Description: Branch to location in program is specified by the program memory address (pma). Pma can

Words: 2
Cycles: 2

Example:

1183

1

0

11 1 1 1 001T0O0O0O0OOOO0ODO

PROGRAM MEMORY ADDRESS

be either a symbolic or a numeric address.

B PRG191 191 is loaded into the program counter and program continues running from

that location.

-3-16

BA N Z ‘ Brangh on Auxiliary Register Not Zero B A Nz ' |

Assembler Syntax: [<label>] BANZ <pma>
Operands: 0<pma< 212
Operation: If (AR bits 8 through 0) <> 0

Then (AR) - 1 — AR and pma — PC
Else (PC) + 2 — PC

(AR) — 1 — AR

Encoding: 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 11 1. 0 1 0000O0O0OOOO0OTO
| "0 0 0 O " PROGRAM MEMORY ADDRESS

Description: If the lower nine bits of the current auxiliary register are not equal to zero, then the auxiliary
register is decremented, and the address contained in the following word is loaded into the
program counter. If these bits equal zero, the current program counter is incremented and
AR also is decremented. Branch to location in program is specified by the program memory
address (pma). Pma can be either a symbolic or numeric address.

Words: 2
Cycles: 2

Example: BANZ PRG35

BEFORE INSTRUCTION AFTER INSTRUCTION

AR | 1 AR , 0
PC 46 PC 35
or

AR 0 AR ' >1FF
PC 46 PC 48

Note: This instruction can be used for loop control with the auxiliary register as loop counter. The auxiliary
register is decremented after testing for zero. The auxiliary registers also behave as modulo 512
‘counters.

3-16 ’ : 1183

| B G E Z Branch if ﬁ(:«:E:p:‘l:'I::ozl' eGr:;eater Than - B G E Z

~ Assembler Syntax: [<label>] BGEZ <pma>
Operands: 0<pma< 2 12
Operation: If (ACC) =0
Then pma— PC

Else (PC) + 2—~PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 1.1 1 1 10100000O0O00O
0 0 0 O PROGRAM MEMORY ADDRESS ,
, 3

Description: If the contents of the accumulator are greater than or equal to zero, branch to the specified
program memory location. Branch to location in program is specified by the program
memory address (pma). Pma can be either a symbolic or a numeric address.

Words: 2
Cycles: 2

Example: BGEZ PRG217 217 is loaded into the program counter if the accumulator is greater than
or equal to zero.

1183 3-17

B G Z Branch if Accumulator Greater Than Zero | B G Z

Assembler Syntax: [<label>1] BGZ <pma>
Operands: 0<pma< 212
Operation: If(ACC)> 0

Then pma— PC

Else (PC) + 2 —>PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 11 1 1 1000O0O0O0O0O0OTUO0ODO
O 0 0 O PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are greater than zero, branch to the specified program
memory location. Branch to location in program specified by the program memory address
(pma). Pma can be either a symbolic or a numeric address.

Words: 2
Cycles: 2

Example: BGZ PRG342 342 is loaded into the program counter if the accumulator is greater than zero.

3-18 ' 1183

B I OZ Branch on 1/0 Status Equal to Zero B |OZ

Assembler Syntax: [<label >] BIOZ < pmé >
Operands: @ O0<pma< 212

Operation: If BIO =0
Then pma-—>PC
Else (PC) + 2—PC

Encoding: 1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 11 1 0 1100O0O0O0OO0O0OOQO0CD0O
0O 0 O O PROGRAM MEMORY ADDRESS

Description: If the BIO pin is active low, then branch to specified memory location. Otherwise, the
program counter is incremented to the next instruction. Branch to location in program is
specified by the program memory address (pma). Pma can be either a symbolic or a numeric
address. '

Words: 2
Cycles: 2

Example: BIOZ PRG64 If the BIO pin is active low, then a branch to location 64 occurs. Otherwise, the
program counter is incremented.

Note: This instruction can be used in conjunction with the BIO pin to test if peripheral is reédy to deliver an
input. This type of interrupt is preferable when performing time-critical loops.

1183 3-19

B L E Z Branch if Accum;llator Less Than | ‘ B LE Z

or Equal to Zero

- Assembler Syntax: [<label>] BLEZ <pma>
Operands: 0<pma< 212
Operation: If (ACC)< 0

Then pma—PC
Else (PC) + 2—>PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1.1 01100000000
- 0 0 0 O PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are less than or equal to zero, branch to the specified
program memory location. Branch to location in program is specified by the program
memory address (pma). Pma can be either a symbolic or a numeric address.

Words: 2
Cycles: 2

Example: BLEZ PRG63 63 is loaded into the program counter if the accumulator is less than or
equal to zero.

3-20 1183

BLZ Branch if Accumulator Less Than Zero B LZ

Assembler Syntax: [<label >] BLZ <pma>
Operands: 0 < pma< 212
Operation: If (ACC)K O

Then pma-—>PC

Eise (PC) + 2—PC

Encoding: 15 14 13 12 11 10 9 8 7 6 56 4 3 2 1 0

1 1 1 1 1 01000000000
0 0 0 O PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are less than zero, branch to the specified program
memory location. Branch to location in program is specified by the program memory
address (pma). Pma can be either a symbolic or numeric address.

"Words: 2
Cycles: 2

Example: BLZ PRG481 481 is loaded into the program counter if the accumulator is less than zero.

1163 | | 3-21

BN Z Branch if Accumulator Not Equal to Zero B N Z

Assembler Syntax: [<label>] BNZ <pma>
Operands: 0<pma< 212
Operation: If (ACC)<>0

Then pma—PC
Else (PC) + 2—PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 11 1 1 11 000O0O0O0O0O0OTDO
0O 0 0 O PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are not equal to zero, branch to the specified
program memory location. Branch to location in program is specified by the program
memory address (pma). Pma can be either a symbolic or numeric address.

Words: 2
Cycles: 2

Example: BNZ PRG320 320 is loaded into the program counter if the accumulator does not equal zero.

3-22 1183

) BV ' Branch on Overflow | BV

Assembler Syntax: [<label>1] BV <pma>
' Operands: 0 < pma< 212
Operation: If overflow flag=1

Then pma—PC and O—overflow flag
Else (PC)+2 — PC ’ :

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 1 1. 0 101 00O0O0OO0OOOO
0O O 0 0 PROGRAM MEMORY ADDRESS

Description: If the overflow flag has been set, then a branch to the program address occurs and the
overflow flag is cleared. Otherwise, the program counter is incremented to the next instruc-
tion. Branch to location in program is specified by the program memory address (pma).
Pma can be either a symbolic or a numeric address. ‘

Words: 2
Cycles: 2

Example: BV PRG610 If an overflow has occurred since the overflow flag was last cleared, then 610 is

loaded into the program counter. Otherwise, the program counter is
incremented.

1183 3-23

BZ Branch if Accumulator Equals Zero ‘ B Z

Assembler Syntax: [<label >] BZ <pma>
Operands: 0<pma< 212
Operation: If (ACC) =0

Then pma—PC
Else (PC) + 2—PC

Encoding: 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 1 1 1 111 0000O0O0O0O0
0O 0 0 O PROGRAM MEMORY ADDRESS

Description: If the contents of the accumulator are equal to zero, branch to the specified program
memory location. Branch to location in program is specified by the program memory
address (pma). Pma can be either a symbolic or numeric address.

Words: 2
Cycles: 2

Example: BZ PRG102 102 is loaded into the program counter if accumulator is equal to zero.

3-24 1183

CALA

Call Subroutine Indirect

CALA

Assembler Syntax:

Operands:

Operation:

Encoding:

Description: The current program counter is incremented and pushed onto the top of the stack. Then,
the contents of the 12 least significant bits of the accumulator are loaded into the PC.

None

(PC) + 1 = TOS

(ACC bits 11 through 0) = PC

[<label>]

CALA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o 1 1 1

11000

1100

-Words: 1
Cycles: 2
~ Example: CALA
BEFORE INSTRUCTION
PC 25
ACC 83
STACK 32
75
84
49

AFTER INSTRUCTION

PC 83
ACC 83
STACK | 26
32

75

84

Note: This instruction is used to perform computed subroutine calls.

1183

3-25

CALL Call Subroutine Direct CALL

Assembler Syntax: [<label>] CALL <pma>
Operands: 0 < pma <212
Operation: (PC) + 2 = TOS
pma— PC
Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T 1.1 1 1 000O0O0O0O0OO0GO0TOO0
0O 0 0 o PROGRAM MEMORY ADDRESS

Description: The current program counter is incremented and pushed onto the top of the stack. Then,
the program memory address is loaded into the PC.

Words: 2
Cycles: 2

Example: CALL PRG109

BEFORE INSTRUCTION AFTER INSTRUCTION
PC 33 PC 109
STACK 71 STACK 35
48 71
16 48
80 16

3-26

1183

DI NT Disable Interruﬁt DI NT

Assembler Syntax: [<label>1] DINT

Operands: None

Operation: 1—INTM

Encoding: 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 1.1 1 1 111100000 O0N"1

Description: The interrupt-mode flag (INTM) bit is set to logic 1. When this flag is set, any further
maskable interrupts are disabled.

Words: 1
Cycles: 1

Example: DINT

1183 : 3-27

D M OV Data Move in Memory . D M ov

Assembler Syntax:
Direct Addressing: [<label >] DMOV <dma>
Indirect Addressing: [<label>] DMOV {*|*+|*-}I,<ARP>]

Operands:

Operation:

Encoding:

Direct:

Indirect:

0<dma< 127
ARP=0 or 1

(dma) = dma + 1

15 14 13 12 11 10 9 8 7 6 56 4 3 2 1 0

DATA MEMORY
O 1. 1 0 1 00 1]0 ADDRESS

0O 1 1 0 1 00 11 SEE SECTION 3.3

Description: The contents of the specified data memory address are copied into the contents of the next

Words: 1
Cycles: 1

higher address.

Example: DMOV DATS

or

DMOV =« If current auxiliary register contains the value 8.
BEFORE INSTRUCTION AFTER INSTRUCTION
DATA DATA
MEMORY 43 MEMORY 43
8 8
DATA DATA
MEMORY 2 MEMORY 43
9 9

Note: DMOV is an instruction that can be associated with Z-1in signal flow graphs. It is a subset of the LTD
instruction. See LTD for more information.

328

1183

EI NT Eﬁable Interrupt | EI NT

Assembler Syntax: [<label>] EINT

Operands: None
Operation: 0—INTM
Encoding: 15 14 13 12 11 10 9 8 7 6 56 4 3 2 10
o 1 1 1 1 11110000010 3> F &2

Description: The interrupt-mode flag (INTM) in the status register is cleared to logic 0. When this flagis

not set, maskable interrupts are enabled.
: ‘ K]

Words: 1 | '

Cycles: 1

Example: EINT

1es 329

l N 3 | Input Data from Port ‘ I N

Assembler Syntax:
Direct Addressing: [<label>] IN <dma>,<PA>
Indirect Addressing: [<label>] IN {*|*+|*-},<PA>[,<ARP>]

Operands: O<dma<127
O<PA<7
ARP=0 or 1

Operation: PA—address lines PA2-PAQ
Data bus D15-DO—dma

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4.3 2 1 0

0 PORT 0 DATA MEMORY
ADDRESS ADDRESS

Direct: 0O 1 0 O

Indirect: PORT
0O 1 0 0 O ADDRESS 1| SEE SECTION 3.3

Description: The IN instruction reads data from a peripheral and places it in data memory. It is
a two-cycle instruction. During the first cycle, the port address is sent to address
lines A2/PA2-A0/PAO. DEN goes low during the same cycle, strobing in the data
which the addressed peripheral places on the data bus, D15-DO.

Words: 1
Cycles: 2
Example: IN STAT,PA5 Read in word from peripheral on port address 5.
Store in data memory location STAT.
LARK 1,20 Load AR1 with decimal 20.
LARP 1 Load ARP with 1.
IN *-,PA1,0 Read in word from peripheral on port address 1.

Store in data memory location 20. Decrement
AR1 to 19. Load the ARP with 0.

Notes: When the TMS32010 outputs address onto the three LSBs of address lines, the nine MSBs are
zeroed.

Instruction causes the DEN line to go low during the first clock cycle of this instruction’s ex-
ecution. MEN remains high when DEN is active.

3-30 1183

LAC - Load Accumulator with Shift | LAC

. Assembler Syntax:
Direct Addressing: [<label >] LAC <dma>[, <shift>]
Indirect Addressing: [<label>] LAC {*|*+|* -}, <shift>[,<ARP>]]

‘Operands: 0 <shift<15
0<dma<127
ARP=0or 1

Operation: (dma) x 2shift »>ACC

E/ncoding:b15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o , 'DATA MEMORY
Indirect: [0 0 1 O SHIFT 1| SEE SECTION 3.3

Description: Contents of data memory address are left-shifted and loaded into the accumulator. During
shifting, low-order bits are zero-filled and high-order bits are sign-extended.

Words: 1
- Cycles: 1

Example: LAC DAT6,4
or

LAC *4 If current auxiliary register contains the value 6.
BEFORE INSTRUCTION AFTER INSTRUCTION
DATA DATA
MEMORY 1 MEMORY 1
6 : 6
ACC | - 0 ACC 16

1183 . 3-31

LAC K | Load Accumulator with Eight-Bit Constant LAC K -

Assembler Syntax: [<label>1] LACK <constant>
Operands: O=<constant<255

Operation: constant—ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 54 3 2 10
o 1 1 1 1 110 8-BIT CONSTANT

3 Description: The eight-bit constant is loaded into the accumulator right-justified. The upper 24 bits of the
accumulator are zeros (i.e., sign extension is suppressed). ‘

Words: 1
Cycles: 1

Example: LACK 15

BEFORE INSTRUCTION AFTER INSTRUCTION
ACC 31 ' ACC 15

Note: If a constant longer than eight bits is used, the XDS/320 assembler will truncate it to eight bits. No
error message will be given. »

3-32 : ' ' 1183

Load Auxiliary Register

LAR

' Assembler Syntax: .
Direct Addressing: [<label>] LAR <AR>,<dma> _
Indirect Addressing: [<label>] LAR <AR>,{*|*+|*-}[,<ARP>]
 Operands: 0 < dma < 127
AR =0or1
ARP = 0Oor1
Operation: (dma)—AR
‘Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10
N AUXILIAR DATA MEMORY
Direct: 0 0 1 1 1|geGISTER |0 ADDRESS
Indirect: | o o 1 1 1 [AUXILIARY))| sEE SECTION3.3
" Description: The contents of the specified data memory address are loaded into the designated auxiliary
‘ ’ register. ' :
Wdrd_?: 1
~ Cycles: 1
Example: LAR ARO,DAT19
BEFORE INSTRUCTION AFTER INSTRUCTION
DATA DATA
MEMORY 18 MEMORY 18
19 19
ARO 6 ARO 18
also, LARP O e
LAR ARO,* —
DATA DATA
MEMORY 32 MEMORY 32
7 7
ARO 7 ARO 32

Notes: ARO is not decremented after the LAR instructidn. Generally as in the above case, if indirect
addressing with autodecrement is used with LAR to load the current auxiliary register, the new

value of the auxiliary register is not decremented as a result of instruction execution. The analagous

case is true with autoincrement.

LAR and its companion instruction SAR (store auxiliary registers) should be used to store and load

the auxiliary during subroutine calls and interrupts.

If an auxiliary register is not being used for indirect addressing, LAR and SAR enable it to be used
as an additional storage register, especially for swapping values between data memory locations.

1183

3-33

LA R K Load Auxiliary Register with Eight-Bit Constant LA R K

Assembler Syntax: [<label>] LARK <AR>, <constant>

Operands: 0 < constant < 255
AR =0or1

Operation: constant— AR

Encoding: 5 14 13 12 11 10 9 8 7 6 56 4 3 2 1 0

. AUXILIARY]
Direct: o 1 1 1 o0 REGISTER 8-BIT CONSTANT

Description: The eight-bit positive constant is loaded into the designated auxiliary register right-justified
and zero-filled (i.e., sign-extension suppressed).

Words: 1
Cycles: 1

Example: LARK ARO0,21

BEFORE INSTRUCTION AFTER INSTRUCTION
ARO 0 ARO 21

Notes: This instruction is useful for loading an initial loop counter value into an auxiliary register for use
with the BANZ instruction.

If a constant longer than eight bits is used, the XDS/320 assembler will truncate it to eight bits. No
error message will be given.

3-34

1183

LAR P Load Auxiliary Register Pointer Inmediate LA RP

Assembler Syntax: [<label>] LARP < constant>

Operands: O<constant<1.

Operation: constant = ARP

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

' 1-BIT
0 1 1 0 1 0001000 0 O O|sONSTANT

Description: Load a one-bit constant identifying the desired auxiliary register into the auxiliary register ’
pointer. '

Words: 1
Cycles: 1

Example: LARP 1 Any succeeding instructions will use auxiliary register 1 for indirect addressing.

Note: This instruction is a subset of MAR.

1183 3-35

LD P Load Data Memory Page Pointer LD P

Assembler Syntax:
Direct Addressing: [<label>] LDP <dma>
Indirect Addressing: [<label >] LDP {*|*+|*-},<ARP>]

Operands: O<dma<127
ARP=0 or 1

Operation: LSB of (dma) = DP (DP =0 or 1)

Encoding: 15 14 13 12 11 10 9 8 7 6 5§ 4 3 2 1 0

. DATA MEMORY
Direct: 0 1 1 0 1 1 1 1{0 ADDRESS

Indirect: |0 1 1 0 1 1 1 1]1] SEESECTION33 |

Description: The least significant bit of the contents of the specified data memory address is loaded into
the data memory page pointer register (DP). All higher-order bits are ignored in the data
word. DP = 0 defines page 0 which contains words 0-127. DP = 1 defines page 1 which
contains words 128-143.

Words: 1
Cycles: 1
Example: LDP DAT1 LSB of location DAT1 is loaded into data page pointer.
or v
LDP *1 LSB of location currently addressed by auxiliary register is loaded into

data page pointer. ARP is set to one.

3-36 1183

LD PK Load Data Page Pointer Inmediate LD PK

Assembler Syntax: [<label>] LDPK <constant>
Operands: O<constant<1
‘Operation: constant—DP
Encoding: 15 1413121110 9 8 7 6 5 4 3 2 1 0
1-BIT
01101110000000000NSTANT

~
-3

Description: The one-bit constant is loaded into the data memory page pointer register (DP). DP =0
defines page 0 which contains words 0-127. DP = 1 defines page 1 which contains words
128-143. ' :

Words: 1
Cycles: 1

Example: LDPK 0 Data page pointer is set to zero.

1183 3-37

LST Load Status from Data Memory LST

Assembler Syntax:
Direct Addressing: [<label>] LST <dma>
Indirect Addressing: [<label>] LST {*|*+|*—}[,<ARP>]

]

Operands: O<dma=<127
ARP=0or 1

Operation: (dma) —status bits

Encoding: 15 14 13 12 11 10 9 8 7 6 56 4 3 2 1 0
3 | S DATA MEMORY
Direct: 0o 1 1 1 1 0 1 1]0 ADDRESS

Indirect: o 1 1 1 1 01 1|1 SEE SECTION 3.3

Description: Restores the contents of the status register as saved by the store status (SST) instruction

from a data memory word.
Words: 1
Cycles: 1
Example: LARP 0 The data memory word addressed by the contents of auxiliary
LST *1 register O replaces the status bits. The auxiliary register pointer
becomes 1.

Note: This instruction is used to load the TMS32010's status bits after interrupts and subroutine calls.
These status bits include the Overflow Flag (OV) bit, Overflow Mode (OVM) bit, Auxiliary Register
Pointer (ARP) bit, and the Data Memory Page Pointer (DP) bit. The Interrupt Mask bit cannot be
changed by the LST instruction. These bits were stored (by the SST instruction) in the data memory
word as follows:

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OVIOVM|INTM| 1| 1| 1|1 [ARP| 1 |1|{1|1]|1|1]|1]|DP

See SST.

3-38 1183

LT | Load T Register |

LT

Assembler Syntax:
Direct Addressing: [<label>] LT <dma>
Indirect Addressing: [<label>] LT {*|*+|*—}[,<ARP>]

Opeiands: O<dma=<127
ARP=0or 1

Operation: (dma)—T

Encoding: 1% 14 13 12 11 10 9 8 7 6 56 4 3 2 1 O

Dirct: |0 1 1 0 1 0 1 olo| DPATAMEMORY

Indirect: o 1 1 0 1 01 0|1 SEE SECTION 3.3

Description: LT loads the T register with the contents of the specifiéd data memory location.

Words: 1
Cycles: 1
Example: LT DAT24
or
LT * If current auxiliary register contains the value 24.
BEFORE INSTRUCTION AFTER INSTRUCTION
DATA DATA
MEMORY 62 MEMORY 62
24 24
T 3 T 62

Note: LT is used to load the T register in preparation for a multiplication. See MPY, LTA, and LTD.

1183

3-39

LTA

Load T Register and Accumulate Previous Product LTA »

Assembler Syntax:

Direct Addressing:
Indirect Addressing:

Operands:

Operation:

Encoding:

Direct:

Indirect:

O<dma=<127
ARP=0or 1

(dma)—T
(ACC) +(P)—~ACC

15 14 13 12 11

[<label >] LTA
[<label>] LTA

<dma>

{*|*+|*-},<ARP>]

10 9 8 7 6 5 4 3 2 1

0

o 1 1 0 1

10

0

0

DATA MEMORY
ADDRESS

1 0 01| SEESECTION3.3

]

Lo11'o1

Description: The contents of the specified data memory address are loaded into the T register. Then, the
P register, containing the previous product of the multiply operation, is added to the accu-
mulator, and the result is stored in the accumulator.

If current auxiliary register contains the value 24.

Words: 1
Cycles: 1
Example: LTA DAT24
i or
LTA *
BEFORE INSTRUCTION
DATA »
MEMORY [62|
24
T 3
P | 15|
ACC 5

DATA

AFTER INSTRUCTION

MEMORY 62 |
24
T 62
P 15 |
ACC 20

Note: This instruction is a subset of the LTD instruction.

3-40

1183

LT D ‘Load T Register, Accumulater Previous : LTD
Product, and Move Data Memory v ’

Assembler Syntax:
Direct Addressing: [<label>] LTD <dma>
Indirect Addressing: [<label>] LTD {*|*+|*-},<ARP>]

Operands: 0<dma=<127
’ ARP=0 or 1

Operation: (dma)—T

(ACC) +(P)—=ACC
(dma)—dma+1

Encoding: 15 14 13 12 11 10 9 8 7 6 56 43 2 10

. : | DATA MEMORY
Direct: 0 1 1 0 1 01 1]0 ADDRESS
Indirect: o 1 1 0 1 o 1 1|1 SEE SECTION 3.3

- Description: The T register is loaded with the contents of the specified data memory address Then the
contents of the P register are added to the accumulator. Next, the contents of the speclfled
data memory address are transferred to the next higher data memory address.

Words: 1
Cycles: 1

Example: LTD DAT24
or
LTD * IF current auxiliary register contains the value 24.

BEFORE INSTRUCTION AFTER INSTRUCTION

DATA DATA
MEMORY | 62 | MEMORY | 62 |
24 24
DATA DATA
MEI\éISORY | 0] MEI\éISORY [62 |
T 3| T | 62 |
P 15 | P 15 |
ACC | 5 | ACC | 20|

1183

3-41

M A R Modify Auxiliary Register M A R

Assembler Syntax: [<label >] MAR {*|*+|*-},<ARP>]
Operands: ARP=0or 1

~ Operation: Current auxiliary register is incremented, decremented, or remains the same. Aux-
_iliary register pointer is loaded with the next ARP.

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

. . DATA MEMORY
Direct: 0 1 1 0 1 0 0 00 ADDRESS

Indirect: |0 1 1 0 1 0 0 0[1] SEESECTION3.3 |

Description: This instruction utilizes the indirect addressing mode to increment/decrement the auxiliary
registers and to change the auxiliary register pointer. It has no other effect.

Words: 1

Cycles: 1

Example: MAR *,1 Load ARP with 1.
MAR *— Decrement current auxiliary register (in this case, AR1)
MAR *+,0 Increment current auxiliary register (AR1), load ARP with 0.

Note: In the direct addressing mode, MAR is a NOP Also, the instruction LARP is a subset of MAR (i.e.,
MAR *,0 performs the same function as LARP 0).

3-42 1183

MPY | * Multiply | "MPY

-~ Assembler Syntax:
Direct Addressing: [<label>] MPY <dma>
Indirect Addressing: [<label>] MPY {*|*+|*-}<ARP>]

Operands: O<dma=<1 27.
ARP=0 or 1

Operation: (T) x (dma)—P

Encoding: 15 14 13 12 11 10 9 8 7 6 56 4 3 2 1 0

Dirct: [0 1 1 0 1 1 0 1[0 DATAMEMORY -

‘Indirect: o 1 1 0 1 ﬁ1 0 111 SEE SECTION 3.3

Description: The contents of the T register are multiplied by the contents of the specified data memory
address, and the result is stored in the P register.

Words: 1
Cycles: 1
Example: MPY DAT13
or
MPY * If current auxiliary register contains the value 13.
BEFORE INSTRUCTION AFTER INSTRUCTION
DATA DATA
MEMORY | 7] MEMORY 7
13 13
T 6 T | G
P] 36 S 42

Note: During an interrupt, all registers except the P register can be saved. However, the TMS32010 has
hardware protection against servicing an interrupt between an MPY or MPYK instruction and the
following instruction. For this reason, it is advisable to follow MPY and MPYK with LTA, LTD, PAC,

APAC, or SPAC.

.

No provisions are made for the condition of >8000 X >8000. If this condition arises, the product
will be > C0000000.

1183 _] 3-43

M PY K Mulitiply Immediate M PY K

Assembler Syntax: [<label >1] MPYK <constant>
Operands: (-212) < constant< 212
Operation: (T) x constant—P

Encoding: 15 14 13 12 11 10 9 8 7 6 56 4 3 2 1 O

1 0 O 13-BIT CONSTANT

Description: The contents of the T register are multiplied by the signed 13-bit constant and the result

. loaded into the P register.

Words: 1
Cycles: 1

Example: MPYK -9

BEFORE INSTRUCTION AFTER INSTRUCTION
T 7 T 7
P 42 P —63

Note: No provision is made to save the contents of the P register during an interrupt. Therefore, this
instruction should be followed by one of the following instructions: PAC, APAC, SPAC, LTA, or

LTD. Provision is made in hardware to inhibit interrupt during MPYK until the next instruction is
executed.

3-44 1183

’ N o P No Opergtlon N 0 P

Assembler Syntax: [<label >‘] NOP

Operands: None

Operation: None

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 1 1 1 1 111 1000O0O0O0TO0

Description: No operation is performed.

" Words: 1
Cycles: 1

Example: NOP

Note: NOP is useful as a “‘pad’’ or temporary instruction during program development.

1183 ' 345

OR

OR with Low-Order Bits of Accumulator 0 R

Assembler Syntax:

Direct Addr

essing: [<label>] OR <dma>

Indirect Addressing: [<label>] OR {*|*+|*-}[,<ARP>]

Operands:

Operation:

Encoding:

O<dma<127
ARP=0 or 1

Zero. OR. high-order ACC bits: (dma). OR. low-order ACC bits—ACC

15 14 13 12 11 10 9 8 7 6 56 4 3 2 1 0

Direct:

DATA MEMORY
o 1 1 1 1 01 0f0 ADDRESS

Indirect:

o 1 1 1‘ 1 0 1 0]1 SEE SECTION 3.3

Description

The low-order bits of the accumulator are ORed with the contents of the specified data
memory address concatenated with all zeroes ORed with the high-order bits of the ac-
cumulator. The result is stored in the accumulator. The OR operation follows the truth
table below.

DATA MEMORY BIT | ACC BIT (BEFORE) ACC BIT (AFTER)

0 0 0

0 1 1
1 0 1
1 1 1

Words: 1
Cycles: 1

Example: OR DATS88
or
OR * Where current auxiliary register contains the value 88.

DATA DATA
MEMORY | >F 0 0 0 | MEMORY >F 0 0 0

88
ACC

BEFORE INSTRUCTION AFTER INSTRUCTION

88
>00100002 - ACC >0010F002

Note: This instruction is useful for comparing selected bits of a data word.

3-46

1183

o U T " Output Data to Port : o UT

Assembler Syntax: ‘
Direct Addressing: .[<label>] ouT <dma>,<PA>
Indirect Addressing: [<label>] OUT {*|*+|*-},<PA>[,<ARP>]

Operands: O<dma=<127
0<PA<7
ARP=0or 1

Operation: PA— address lines PA2-PAOQ
(dma)—~data bus D15-D0

- Encoding: %5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o PORT DATA MEMORY
Direct: 0 1 0 0 1|,ppRESs|O ADDRESS

PORT
0O 1 0 0 1 ADDRESS| ! SEE SECTION 3.3

Indirect:

Description: The OUT instruction transfers data from data memory to an external peripheral. The
first cycle of this instruction places the port address onto address lines A2/PA2-A0/PAO.
During the same cycle, WE goes low and the data word is placed on the data bus D15-DO.

Words: 1
Cycles: 2

Example: OUT 120,7 Output data word stored in memory location 120 to
peripheral on port address 7.
OUT *5 Output data word referenced by current auxiliary
register to peripheral on port address 5.

Notes: When the TMS32010 sends the port address onto the three LSBs of the address lines, the nine
MSBs are set to zero.

The OUT instruction causes the WE line to go low during the first clock cycle of this instruc-
tion’s execution. MEN remains high during the first cycle.

1183 3-47

P AC I\/\ A M Load Ac‘cumulater_with P Register | 7 P AC

Assembler Syntax: [<label >1] PAC
Operands: None
‘Operation: (P)— ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
o 1 1 1 1 11110001110

Description: The contents of the P register resulting from a multiply are loaded into the accumulator.

<l Words: 1
Cycles: 1

Example: PAC

BEFORE INSTRUCTION AFTER INSTRUCTION
P 144 P 144
ACC 23 ACC 144

3-48 . 1183

) Po P | -PopTop of Stack to Accumulator‘ - | POP

Assembler Syntax: [<label >] POP
Operands: None
Operation: (TOS) > ACC

Encoding: % 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o 1 1t 1 1t 11110011101

Description: The contents of the top of stack are loaded into the accumulator. The next element on the “
stack becomes the top of the stack. ‘

Words: 1

Cycles: 2
Example: POP
BEFORE INSTRUCTION AFTER INSTRUCTION
ACC 82 - ACC 45
STACK - 45 STACK 16
16 ' 7
7 33
33 33

‘Note: The 12 bits of the stack are put into the accumulator in bits 11 through 0, and bits 31 through 12 are
zeroed. There is no provision to check stack underflow. :

1183 349

P U S H Push Accurr;ulator onto Stack P U s H

Assembler Syntax: [<label>] PUSH

Operands: None

Operation: (ACC) —=TOS

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 1 1 1111001110 0]

Description: The contents of the lower 12 bits (11-0) of the accumulator are pushed onto the top of the

3 hardware stack.

S Words: 1

Cycles: 2

Example: PUSH ;
BEFORE INSTRUCTION AFTER INSTRUCTION

ACC | 7 | AcC | 7
STACK 2 'STACK 7
5 2

3 5

0 3

Note: There is no provision for detecting a stack overflow. Therefore, if the stack is already full, the
contents of the bottom stack element will be lost upon execution of PUSH.

3-50 1183

| RET Return from Subroutine | R ET

Assembler Syntax: [<label>] RET
Operands: None
Operation: (TOS)—PC
Encoding: 15 ~14 13 12 11 .10 9 8 7 6 5» 4 3 2 10
o 1 1 1 1 11110001101 - >F&P

Description: The top element is popped off of the stack and loaded into the program counter. ’

a3
Words: 1 -
Cycles: 2

" Example: RET

BEFORE INSTRUCTION AFTER INSTRUCTION

PC 96| PC 37
STACK 37 STACK 45
45 75

75 75

75 75

Note: This instruction is used in conjunction with CALL and CALA for subroutines.

1183 V 3-51

R OV M Reset (Clear) Overflow Mode Register | R OVM

Assembler Syntax: [<label>] ROVM
Operand: None
Operation: 0-0VM

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 1 1 1111000101 0]

, - Description: This instruction will reset the TMS32010 from the overflow mode it was placed in by the
- SOVM instruction. The overflow mode will set the accumulator and the ALU to their highest
- positive/ negative value when an overflow occurs.

Words: 1
Cycles: 1

Example: ROVM

Note: See SOVM.

3-52 1183

| SAC H | Store Accumulator High with Shift s AC H

Assembler Syntax:
Direct Addressing: [<label>] SACH <dma>[, <shift>]
Indirect Addressing: [<label>] SACH {*|*+|*-}I, <shift>[,<ARP>]]

Operands: O0O<dma<127
shift=0,1, or 4
ARP=0or 1

Operation: ~ (ACC) x 2 — (16-shift) > dma

Encoding: 1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N ' DATA MEMORY

 Direct: 0 1 0 1 1| SsHIFT |0 ADDRESS
Indirect: 0 1 0 1 1| SHIFT |1 SEE SECTION 3.3

. Deséription: Store the upper half of the accumhlator in data memory with shift. The shift can only be 0,
1,or4. , S '

Words: 1
Cycles: 1

Example: SACH DAT70,1
or :
SACH *,1 Ifcurrent auxiliary register contains the value 70.

BEFORE INSTRUCTION AFTER INSTRUCTION

ACC S04208001] ACC >0420800 1
DATA DATA
MEMORY 6 MEMORY >0 8 4 1

70 - 70

Notes: The SACH instruction copies the entire accumulator into a shifter. It then shifts this entire 32-bit
number 0, 1, or 4 bits and copies the upper 16 bits of the shifted product into data memory. The
accumulator itself remains unaffected.

For example, the following instruction sequence will store >8F35 in data memory location DAT1.
Location DAT2 contains the number > A8F3. DAT3 contains >5000. ' ‘

ZALH DAT2 ACC = >ASF30000
ADDS DAT3 ACC = > ASF35000
SACH DAT14 DAT1 = >8F35

ACC = > A8F35000
e | 353

SAC L Store Accumulator Low | SAC L

Assembler Syntax:
Direct Addressing: [<label>] SACL <dma>[, <shift>1"
Indirect Addressing: [<label >] SACL {*|*+|* -} <shift>[,<ARP>1]]
Operands: O0<dma=<127
: ARP=0 or 1
Shift=0
Operation: (ACC bits 15 through 0) = dma

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

’ L DATA MEMORY
Direct: 0o 1 0 1 0]0 0 O0}O ADDRESS

Indirect: 0O 1. 0 1 0|0 O0O}1 SEE SECTION 3.3

Description: Store the low-order bits of the accumulator in data memory.

Words: 1
Cycles: 1

Example: SACL DAT71
or

SACL * If current auxiliary register contains the value 71.
BEFORE INSTRUCTION AFTER INSTRUCTION
ACC | >04208001]| ACC | >04208001|
DATA DATA
MEI\;I1ORY | | 7] MEI\;I1ORY | >80 0 1 |

-Note: There is no shift associated with this instruction, although a shift code of zero MUST be specified
if the ARP is to be changed.

3-54 _ 1183

SA R Store Auxiliary Register SA R

Assembler Syntax:
Direct Addressing: [<label>] SAR <AR>,<dma>
Indirect Addressing: [<label>] SAR <AR>,{*|*+|*-},<ARP>]

Operands: O<dma=<127
: AR=0or 1
ARP=0 or 1
Operation: (AR) = dma

Encoding: 15 14 13 12 11 10 9 8 7 6 56 4 3 2 1 0

o AUXILIAR DATA MEMORY
Direct: 0 0 1 1 OlgeGisTer [°| — ADDRESS
Indirect: AUXILIARY]

0 o 1 1 oAUXILIARY),| sEE SECTION 3.3

Description: The contents of the designated auxiliary register are stored in the specified data memory
location.

Words: 1
Cycles: 1

Example: SAR ARO0,DAT101

BEFORE INSTRUCTION AFTER INSTRUCTION
ARO 37 ARO 37
DATA DATA
MEMORY 18 ‘MEMORY 37
101 101

also, LARP ARO
SAR ARO,*+

ARO 5 ARO 6
DATA DATA
MEMORY 0 MEMORY | 6]
5 5
WARNING

Special problems arise when SAR is used to store the current auxiliary register with in-
direct addressing if autoincrement/decrement is used.

(continued)

1183 ' 3-55

SAR

SAR

LARP ARO
LARK AR0,10
SAR ARO,*+ or SAR ARO,*—

In this case, SAR ARO, * + will cause the value 11 to be stored in location 10. SAR
ARO, * — will cause the value 9 to be stored in location 10.

Note: For more information, see LAR.

3-56

1183

S OVM | ‘ Set d#erflow,Mode Register _ s ov M

~ Assembler Syntax: [<label>] SOVM

- Operands: None B
Operation: 1-0VM
‘Encoding: 15 14 13 12 1.1 9 876543210

[0 1 1 1 1 1111000101 1]

Descriptionﬁ When placed in the overflow mode, the TMS32010 will set the accumdlator and ALU '
to their highest positive/negative value if an overflow/underflow occurs. The highest
positive value is >7FFFFFFF, and the lowest negative value is >80000000. :

Words: 1
Cycles: 1

Example: SOVM

1183 o 357

S P AC Subtragt P Register from Accumulatqr | ’ s PAC

Assembler Syntax: [<label >] SPAC

Operands: None

Operation: (ACC) - (P)— ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 1 1 1111001000 0]

Description: The contents of the P register are subtracted from the contents of the accumulator, and the
result is stored in the accumulator. »

Words: 1
Cycles: 1

Example: SPAC

BEFORE INSTRUCTION AFTER INSTRUCTION
P | 3] P [%]
AcC | 60| Acc [24

3-58 | : 1183

‘ SST | Store Status | SST

Assembler Syntax: ~
Direct Addressing: [<label>1] SST <dma>’
Indirect Addressing: [<label>] SST {*|*+|*—}[,<ARP>]

Operands: O<dma=<1b

‘ARP=0or 1
Operation: status bits —> specified data memory word on page 1
Encoding: 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
et - DATA MEMORY
Direct: o 1 » 1 1 1 1 0 0O ADDRESS

Indirect: [0 1 1 1 1 1 0 O[1] SEESECTION3.3 |

Description: The status bits are saved into the specified data memory address on page 1.

‘Words: 1
_ Cycles: 1 ,
Example: SST DAT1
or
SST *1 IF current auxiliary register contains the value 1.

Note: This instruction is used to load the TMS32010’s status bits after interrupts and subroutine calls.
These status bits include the Overflow Flag (OV) bit, Overflow Mode (OVM) bit, Interrupt Mask
(INTM) bit, Auxiliary Register Pointer (ARP) bit, and the Data Memory Page Pointer (DP) bit. These
bits are stored (by the SST instruction) in the data memory word as follows:

5 14 13 12 11 10 9 8 7 6 5 43210
[oviovm[iNtTm] 1] 1] 1 J1JaRP[1 J1] 1 [1]1]1]1]DP|

Note: See LST.

1183 - 3-59

s U B Subtract from Accumulator with Shift S U B

Assémbler Syntax:

Direct Addressing: [<label>] SuB <dma>[, <shift>]
Indirect Addressing: [<label>] SUB {*|*+|*—}[,<shift>[, <ARP>]]

Operands: O=<shift <15
: O<dma=<127
ARP=0 or 1

Operation: (ACC) — [(dma) x 2 shiftj—» Acc

Encodin9:1514131211109876543210

Direct: 0 0 0 1| SHIFT o| DPAISMEMORY
Indirect: [0 0 0 1 SHIFT | 1| SEE SECTION 3.3 |

Description: Contents of data memory address are left-shifted and subtracted from the accumulator.
During shifting, the low-order bits of data are zero-filled and the high-order bit is sign-
extended. The result is stored in the accumulator.

Words: 1
Cycles: 1
Example: SUB DAT59
or ,
SuUB * If current auxiliary register contains the value 59.
BEFORE lNSTRUCTION. AFTER INSTRUCTION
ACC : 36 ACC ‘ 19
DATA DATA
MEMORY 17 MEMORY | 17
59 59

3-60

1183

SUBC Conditional Subtract SUBC

Assembler Synthx: , :
Direct Addressing: [<label>] SUBC <dma>
Indirect Addressing: [<label>] SuBC {*|*+|*-},<ARP>]

Operands: 0<dma<127,
: ARP =0or1

Operation: (ACC)—[(dma) x 215]—adder output

If (high-order bits of adder'olut'put) >0
Then (adder output) *2 + 1 —=>ACC
Else (ACC) x 2—+ACC '

—

Encoding: 15 bi4 13 12 11 10 9 8 7 6 56 4 3 2 1 0
. DATA MEMORY

Indirect: |0 1 1 0 O 1 0 0| 1] SEESECTION3.3 |

Description: This instruction performs conditional subtraction which can be used for divisidn in
algorithms.

Wdrds: 1
Cycles: 1

‘Note: The next instruction after SUBC cannot use the accumulator.

1183 : , : 3-61'

- iy

SU B H Subtract from High-Order Accumulator

SUBH

Assembler Syntax:
— Direct Addressing: [<label>] SUBH
Indirect Addressing: [<label>] SUBH

Operands: O<dma=<127
ARP=0 or 1

Operation: (ACC) — [(dma) x 216] = ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

<dma>
{*|*+|*-},<ARP>]

ER

- DATA MEMORY
Indirect: [0 1 1 0 0 0 1 O|1| SEESECTION33

Description: Subtract the contents of specified data memory location from the upper half of the
accumulator. The result is stored in the accumulator.

Words: 1
Cycles: 1
Example: SUBH DAT33
or
SUBH * If current auxiliary register contains the value 33.
BEFORE INSTRUCTION AFTER INSTRUCTION
DATA DATA
MEMORY | 5 | MEMORY | 5 |
33 33
31 16 15 0 31 16 15 0
ACC | 17] 0] ACC | 12| 0]

Note: The SUBH instruction can be used for performing 32-bit arithmetic.

3-62

1183

SUBS | Suburactfrom Low Assumuletor SUBS

Assembler Syntax:
Direct Addressing:- [<label>] SUBS <dma>
Indirect Addressing: [<label>1 SUBS {*|*+|*—}[,<ARP>]

Operands: O0<dma=<127
ARP=0or 1

Operation: (ACC) — (dma)—> ACC
Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

. DATA MEMORY
Direct: 0 1 1 0 0 01 1]0 ADDRESS .

Indirect: [0 1 1 0 0 0 1 1|1]| SEESECTION3.3

Description: Subtract contents of a specified data memory location from accumulator with sign-
extension suppressed. The data is treated as a 16-bit positive integer rather than a two’s
complement integer.

Words: 1

Cycles: 1

Example: SUBS DAT61

. or .
SUBS * If current auxiliary register contains the value 61.
BEFORE INSTRUCTION AFTER INSTRUCTION
acc [>0000F105 | Acc [>00000102]
DATA DATA
MEMORY [>F 003 | MEMORY[>F 0 0 3 |
6 ‘ 61

1183 3-63

TB LR Tablé Read | TB LR

Assembler Syntax:
Direct Addressing: [<label >] TBLR <dma>
Indirect Addressing: [<label>] TBLR {*|*+|*-},<ARP>]

Operands: O=dma<127
ARP=0 or 1

Operatfon: - (PC)+1—=TOS
(ACC) — PC — address lines A11 through A0

data bus D15 through DO— dma

(TOS) > PC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct: 0 1 1 0 0 1 1 1fo| DAIAMEMORY

Indirect: 0 1 1 0 0 1 1 1[1] seesecTion3.3

Description: This instruction transfers a word from anywhere in program memory (i.e., internal ROM,
’ external ROM, external RAM) to the specified location in data memory. The three-cycle
instruction is as follows:

Prefetch: MEN goes low and the TBLR instruction opcode
: is fetched. The previous instruction is executing.

Cycle 1: MEN goes low. The address of the next instruc-
tion is placed onto address bus, but data bus is
not read. Program counter is pushed onto stack.
Twelve LSBs of the accumulator contents are
loaded into the program counter.

Cycle 2: MEN goes low. Contents of program counter are
buffered to address lines. Address memory loca-
tion is read and is copied into specified RAM loca-
tion. The new program counter is popped from

the stack.
Cycle 3: MEN goes low. Next instruction opcode is
prefetched.
Words: 1
Cycles: 3

Example: TBLR DAT4
TBLR * If current auxiliary register contains the value 4.

(Continued)

.3-64 1183

~ TBLR P TBLR

BEFORE INSTRUCTION "~ - AFTER INSTRUCTION

Acc [17] acc | 17
PROGRAM _ " PROGRAM
MEMORY . 306 MEMORY | 306
17 7 '
DATA DATA
MEIVLORY | ‘ 75| MEMORY | 306 |
4 .

Note: This mstructlon is useful for reading coefficients that have been stored in program ROM, or time-
dependent data stored in RAM.

1183 . B 3.65

TBLW

Table Write

TBLW

Assembler Syntax:
Direct Addressing:
Indirect Addressing:

Operands: O<dma=<127

[<label>] TBLW <dma>
[<label>] TBLW {*|*+|*-}[,<ARP>]

ARP=0 or 1

Operation: (PC) + 1 = TOS
(ACC) = PC —> address lines A11 through A0
(dma)—data bus D15 through DO

13

12 11 10 9 8 7 6 5 4 3 2 1 0

DATA MEMORY
t 1 1010 ADDRESS

(TOS)—-PC
ki .
- Encoding: 15 14
Direct: 0 1
Indirect: 0 1

1T 1 1.0 1]1 SEE SECTION 3.3

Description: This instruction transfers a word from the specified location in data memory to a location in
external program RAM. The three-cycle instruction is as follows:

Prefetch:
Cycle 1:
Cycle 2:
Cycle 3:
Words: 1
Cycles: 3

Example: TBLW DAT4

MEN goes low and the TBLR instruction opcode
is fetched. The previous instruction is executing.

MEN goes low. The address of the next instruc-
tion is placed onto address bus, but data bus is
not read. Program counter is pushed onto stack.
Twelve LSBs of the accumulator contents are
loaded into the program counter.

WE goes low. Contents of program counter are
buffered to address lines. Contents of specified
data memory address are placed on the data bus.
The new program counter is popped off of stack.

MEN goes low. Next instruction opcode is
prefetched.

TBLW * If current auxiliary register contains the value 4.

3-66

(Continued)

1183

TBLW TBLW
BEFORE INSTRUCTION AFTER INSTRUCTION
acc [17 acc | 17]
DATA - DATA
MEMORY | 75 MEMORY 75
4 ’ 4
PROGRAM PROGRAM
MEMORY | 306 MEMORY 75
17 - 1

Note: The TBLW and fOUT instructions use the same external signals and thus cannot be distin-
guished when writing to program memory addresses O through 7.

1183

e

3-67

XOR Exclusive-OR with wa-Order Bits of Accumulator XO R

Assembler Syntax:
Direct Addressing: [<label>] XOR <dma>
Indirect Addressing: [<label>] XOR {*|*+|*-}[,<ARP>]

Operands: O<dma=<127
ARP=0 or 1

Operation: Zero. XOR. high-order ACC bits: (dma). XOR. low-order ACC bits—ACC

vEncoding: 15 14 13 12 11 10 9 8 7 6 56 4 3 2 1 0

5 B
. Direct: DATA MEMORY
Indirect: o 1 1 1 1 00 O0f1 SEE SECTION 3.3

Descnptlon The low-order bits of the accumulator are exclusive-ORed with the specified data memory
address and concatenated with the exclusive-OR of all zeroes and the high-order bits
of the accumulator. The exclusive-OR operation follows the truth table below:

DATA MEMORY BIT | ACC BIT (BEFORE) | ACC BIT (AFTER)

- =000

0 0
1 1
0 1
1 0

Words: 1
Cycles: 1

Example: XOR DAT45
or
XOR * If current auxiliary register contains the value 45.

BEFORE INSTRUCTION AFTER INSTRUCTION
DATA DATA
MEMORY >F F 0 O MEMORY >F F 0 O
45 45
ACC >0FFFOFFF ACC >0FFFFOFF

Note: This instruction is useful for toggling or setting bits of a word for high-speed control. Also, the one’s
complement of a word can be found by exclusive-ORing it with all ones.

3.68 - " | 1183

ZAC . Zero the Accumulator ZAC

Assembler Syntax: ~ [<label>] ZAC
Operands: None |
' Operation: 0-— ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 1.1 1 1 11110001001

" Description: The écdumulat’or is cleared (zeroed).

Words: 1
Cycles: 1
~ Example: ZAC
BEFQRE INSTRUCTION ‘ AFTER INSTRUCTION
ACC A-FEFFFvFFF'ACCOOOOOOOO

1183 369

|

ZA LH Zero Accumulafor and Load High ZA L H

Assembler Syntax:
Direct Addressing: [<label>] ZALH <dma>
Indirect Addressing: [<label>] ZALH {*|*+|*—},<ARP>]

Operands: O<dma<127
ARP=0 or 1

Operation: (dma) x 216 - ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

. . . DATA MEMORY

Indirect: o 1 1 0 0 1 0 1}1 SEE SECTION 3.3

Description: ZALH clears the accumulator and loads the contents of the specified data memory location
into the upper half of the accumulator. The lower half of the accumulator remains clear.

Words: 1
Cycles: 1

Example: ZALH DAT29

or
ZALH * If current auxiliary register contains the value 29.

BEFORE INSTRUCTION AFTER INSTRUCTION
- DATA - DATA
MEMORY |- >3 F 0 O MEMORY >3 F 0 O
29 29
‘ACC >0077FFFF ACC >3 F000000O0

Note: ZALH can be used for implementing 32-bit arithrﬁetic.

- 3-70 _ 1183

ZALS S EaensonSuppressed ZALS

- Assembler Syntax:
Direct Addressing: [<label>] ZALS <dma>
Indirect Addressing: [<label>] ZALS {*|*+|*-},<ARP>]

Operands: 0<dma<127
ARP=0or 1

| Operation: (dma) = ACC

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o DATA MEMORY i
Direct: |0 1 1 0 0 1 1 0|0 ADDRESS -.

Indirect: |0 1 1 0 O 1 1 0]1] SEESECTION3.3

Description: Clear accumulator and load contents of specified data memory location into lower half of the
accumulator. The data is treated as a 16-bit positive integer rather than a two’s complement
integer. Therefore, there is no sign-extension as with the LAC instruction.

Words: 1
Cycles: 1

Example: ZALS DAT22
or
ZALS * If current auxiliary register contains the value 22.

BEFORE INSTRUCTION AFTER INSTRUCTION
DATA — DATA
MEMORY >F 7 F F MEMORY >F 7 F F
22 _ 22
ACC ">7FF00033 ACC >0000F7FF

Notes: The follbwing routine reveals the difference between the ZALS and the LAC instruction. Data
memory location 1 contains the number > FA37.

ZALS DAT1 (ACC) = > 0000FA37
ZAC Zero ACC
LAC - DAT1 . (ACC) = > FFFFFA37

ZALS is useful for 32-bit arithmetic operations.

1183 ; 3-71

3-72

1183

- METHODOLOGY _
FOR APPLICATION DEVELOPMENT

.4. METHODOLOGY FOR APPLICATION DEVELOPMENT

41 OUTLINE OF DEVELOPMENT PROCESS

A number of de{/elopment tools are required for designing a system with a microprocessor. This
section describes the facilities which are available for the TMS32010 and illustrates how to use them
for developing an application. A typical application development flowchart is shown in Figure 4-1.

/ BEGIN \
TMS32010 EVALUATION MODULE

R

SYSTEM SPECIFICATION

'

SYSTEM DESIGN

!

CODE PROGRAM ey

SOFTWARE LIBRARIES

y

TRANSLATE TO MACHINE CODE

EXECUTE XDS/320 ASSEMBLER

¥

VERIFY PROGRAM

¢ OR

XDS/320 SIMULATOR

]

HARDWARE/SOFTWARE INTEGRATION

XDS/320 EMULATOR

FIGURE 4-1 - FLOWCHART OF TYPICAL APPLICATION DEVELOPMENT

After defining the specifications of the system, the designer should draw a flowchart of the
software and a block diagram of the hardware. The processor’s performance is then evaluated to
determine the feasibility of implementing ‘the algorithm via the TMS32010 Evaluation Module. The
full algorithm is coded using assembly language. The program is assembled and then verified using
the XDS/320 Macro Assembler and Linker and, optionally, the XDS/320 Simulator. Several
iterations of the program are usually required to correctly code the algorithm. The verified program
is integrated into the hardware, and the prototype system is debugged by using the XDS/320
Emulator.

4.2 DESCRIPTION OF DEVELOPMENT FACILITIES

4.2.1

-

422

42

Five development facilities aid in the design and implementation of TMS32010 applications. Each of
the following five development facilities provides a tool for one of the steps involved in developing
an application: ,

e The TMS32010 Evaluation Module is used to appraise the performance of the pfocessor. A
software library capability is used to simplify and standardize code development.

e The XDS/320 Assembler and Linker translates an assembly language program into a loadable
object module.

e The XDS/320 Simulator accepts downloaded object code and executes the program via a
simulated TMS32010 in a debug mode, thus allowing software debug before attempting
hardware debug.

e The XDS/320 Emulator integrates the processor into the hardware d&slgn by providing a
means to debug both software and hardware together.

TMS32010 Evaluation Module

The TMS32010 Evaluation Module (EVM) is a single board which enables a user to determine
inexpensively if the TMS32010 meets the speed and timing requirements of his application. The
EVM is a stand-alone module which contains all the tools necessary to evaluate the TMS32010..

Communication to a host computer and to several peripherals is provided on the EVM. Dual EIA
ports allow the EVM to be connected to a terminal and a host computer. The EVM can also be
configured with a line printer-on one port; the other port is connected to either a terminal or a host
computer. As either the host computer or the terminal feeds the assembly language program to the
EVM, the EVM assembles the code. A built-in cassette tape interface can also be used to save code
on tape to be reloaded at a later time. An EPROM programmer is also provided for saving code.
Alternatively, code can be executed directly by the EVM through its target connector.

The EVM can accept either source or object code from a host computer or terminal. A line-oriented
text editor, an assembler which permits symbolic addressing of memory locations, and a reverse
assembler that changes machine code back into assembly language instructions are provided for
programming ease. The debug mode gives access to all of the TMS32010’s registers and memory.
Eight breakpoints on program addresses and the ability to single-step program execution have been
incorporated for monitoring device operation.

XDS/320 Macro Assembler/Linker

The XDS/320 Macro Assembler translates TMS32010 assembly language into executable object
code. The assembler allows the programmer to work with mnemonics rather than hexadecimal
machine instructions and to reference memory locations with symbolic addresses. This allows
software to be designed more efficiently and reliably.

The XDS/320 Macro Assembler supports macro calls and definitions along with conditional
assembly. It provides the user with a comprehensive set of error diagnostics. The XDS/320 Macro
Assembler produces a listing and an object file, and will optionally print a- symbol table/cross-
reference listing.

Assembler directives which affect program assembly are provided for the user. Some directives
affect the location counter and make sections of the program relocatable. Constants for data and
text are defined by using directives. Symbols defined in one assembly can be used in another
assembly with the REF and DEF directives. These external symbols allow separate modules to be
linked together.

1183

4.2.3

1183

The XDS/320 Linker permits a program to be designed and implemented in separate modules which
will later be linked together to form the complete program. This allows the same modules (i.e., a
filter module) ta be used in many programs. The linker assigns values to relocatable oode creating
an object file which can be executed by the simulator or emu|ator)

The linker resoIVes external deﬁnltlons and references from different assemblies, and thereby links
several modules together. More than one assembly may be linked together to create a module
which may be linked again to the main program. An intermediate partial linkage does not require
that all external references be resolved, but in the final linking process, there should be no
unresolved references. Another function of the linker is to assign absolute values to relocatable
code. The final output of the linker can then be loaded into either the simulator or the emulator.

A source code macro library can be maintained in a directory to be assembled with the main
program. This allows commonly used routines to be accessed by more than one program and to be
used to decrease program development time. The mnemonics are macro calls which expand |nto
assembly code _

The macro hbra'ly typically should contain user-defined macros and the macros defined in Section
7. These macros simplify the generation of an assembly language program. Examples include
comparing a word in memory to a word in the accumulator, shifting right, and moving numbers |
between reglsters

The XDS/320 ! Macro Assembler and Linker are currently avallable on several host computers,
including the TI990(DX10) VAX(VMS) and IBM MVS and CMS operating systems. Currently in
development is software to support the VAX(UNIX), DEC PDP11(RSX), IBM PC(DOS) and TI
professional computer (DOS) operating system. Contact your local Tl representative for availability

_ or further details.

XDS/320 Simulator

The XDS/320 Slmulator is a software program that simulates operation of the TMS32010 to allow
program verification. The debug mode enables the user to monitor the state of the simulated
TMS32010 while the program is executing.

The simulator program uses the TMS32010 object code, produced by the XDS/320 Macro
Assembler/ Linker. Input and output files may be associated with the port addresses of the 1/0
instructions in order to simulate 1/0 devices which will be connected to the processor. The interrupt
flag can be set periodically at a user-defined interval for simulating an interrupt signal. Before
initiating program execution, breakpoints may be defined, and the trace mode set up.

During program execution, the internal registers and memory of the simulated TMS32010 are
modified as each instruction is interpreted by the host computer. Execution is suspended when
either 1) a breakpoint or error is encountered, 2) the step count goes to zero, or 3) a branch to ‘self’

"is detected. Once program execution is suspended, the internal registers and both program and

data memories can be inspected and/or modified. The trace memory can also be displayed. A
record of the simulation session can be maintained in a journal file, so that it may be replayed to
regain the same machine state during another simulation session.

The XDS/320 Simulator is currently available for the VAX(VMS).

4.2.4 XDS/320 Emulator

The XDS/320 Emulator is a self-contained system that has all the features necessary for real-time
in-circuit emulation. This allows integration of the user hardware and software in the debug mode.
Three EIA ports have been provided on the emulator to interface with a host system. The first EIA
port provides a connection for a computer, the second port for a terminal, and the third port for a
printer or a PROM programmer. Using a standard EIA port, the object file produced by the macro
assembler/linker can be downloaded into the emulator, which can then be ‘controlled through a
terminal. In addition, source code can be downloaded to the emulator. A line-by-line assembler with
forward and reverse referencing labels is provided on the XDS to assemble the source.

A pin-compatible target connector plugs into the TMS32010 socket to enable real-time emulation.
Three clock options are available. First, a 20-MHz clock is available on the emulator. In addition, an
external clock source can be used by attaching a crystal to the target connector, or by connecting a
signal generator to the emulator.

The emulator operates in one of three memory modes: 1) software development mode, 2)
microcomputer mode, or 3) microprocessor mode. In the software development mode, the entire
8K bytes of program memory reside within the emulator. In the microcomputer mode, 3K bytes
reside within the emulator while 5K bytes reside on the target system. The microprocessor mode is
used when all 8K bytes of program memory exist on the target system.

By setting breakpoints based on internal conditions or external events, execution of the user’s
program can be suspended and control given to the XDS monitor. While in the monitor, all registers
and memory locations can be inspected and modified. Single-step execution is also available. A
single read or write to an 1/0 port can be performed to test peripheral devices in the prototype
system. Full trace capabilities at full speed and a reverse assembler that translates machine code
back into assembly instructions are also included to increase debugging productivity.

4.3 APPLICATION DEVELOPMENT PROCESS EXAMPLE

4.3.1

The design and implementation of a TMS32010-based discrete-time filter is presented below to
illustrate the development process. The filter design is derived from the system specification, using
digital signal processing theory. A macro library is used to help code the program. The assembler
and simulator verify that the program executes the filter properly. The processor is then integrated
into the prototype system by using the emulator.

System Specification
Table 4-1 defines the specifications of the discrete-time filter.

TABLE 4-1 — FILTER SPECIFICATIONS

PARAMETER VALUE UNIT
Sample frequency (fg) 10 kHz
Corner frequency (fco) v 2 kHz
Attenuation at f=fgq -2 dB
_Attenuation at f=1.2 f¢o -15 dB
Passband ripple +1.5 dB

1183

4.3.2 System Design.

The equation foi' the above discrete-time filter was derived as follows:

y(n)= —.2302699 x(n) + .1559177 x(n-1) + .2211667 x(n-2) + .1119031 x(n-3)
— .1124507 x(n-4) — .1485743 x(n-5) + .2046856 x(n-6) + .7409326 x(n-7)
+ 1.0 x(n-8) + .7409326 x(n-9) + .2046856 x(n-10) — .1485743 x(n-11)
— .1124507 x(n-12) + .1119031 x(n-13) + .2211667 x(n-14)
+ .1659177 x(n-15) — .2302699 x(n-16).
where x(n) is the current sample,
~ x(n—1) is the sample from the previous period,
¥

x(n — 16) is the sample from the previous 16th period.

4.3.3 Code Developlilenf

The TMS32010 software development cycle is generally a three-step process for the purpose of
translating the filter equation into TMS32010 assembly language. First, a flowchart of the program

s drawn. Then, the example is coded in a high-level language, FORTRAN, to provide structure and -
o test if the algorithm is correct before implementing it in assembly language. Finally, the program
|s coded and tested in assembly language using some of the macro library routines. i

4.3.3.1 | Discrete-Time Filter Flowchart

igure 4-2 is a flowchart for the software implementation of the discrete-time filter.

‘ BEGIN ,

INITIALIZE CONSTANTS

FIFO NOT FULL?

INPUT DATA

’

FILTER INPUT

¥

SHIFT DATA

)

OUTPUT FILTERED DATA

FIG‘U‘RE 4-2 - FLOWCHART OF FILTER IMPLEMENTATION

4.3.3.2 FORTRAN Program | |

oo o RN RoNe KooK Xe)

[pNe Kp]

nnn

anan

QO nNnan

The following FORTRAN program implementé the specified digital filter and provides 1000 outputs.

PROGRAM FILTER

y(n)=-.2302699 x(n) + .1559177 x(n-1) + .2211667 x(n-2) +.1119031 x(n-3)
- .1124507 x(n-4) - .1485743 x(n-5) + .2046856 x(n-6) + .7409326 x(n-7)
+ 1.0 x(n-8) + .7409326 x(n-9) + .2046856 x(n-10) - .1485743 x(n-11)

- .1124507 x(n-12) + .1119031 x(n-13) + .2211667 x(n-14)
+ .1559177 x(n-15) - .2302699 x(n-16).
REAL*4 X(17),CX(17),¥ ‘

Initialize the constants for the filter equation

DATA CX /-.2302699,.1559177,.2211667,.1119031,-.1124507,
1 _ -.1485743,.2046856, .7409326,1.0,.7409326,

1 .2046856,-.1485743,-.1124507,.1119031,.2211667,
1 .1559177,-.2302699/
I =

0
100 I=I+1

Input sampled data

READ (55,110) IX
110 FORMAT (16)
X(1) = IX

Filter data
Y=20
DO J =

1
Y=Y
END DO

,17
+ CX(J)*X(J)

Shift data to new variables
DO J = 16,1,-1

X(J) = x(J-1)

END DO
- Output filtered data
TYPE *,Y

IF (I .LE. 1000) GO TO 100
200 END

4.3.3.3 Assembly Language Program Using Relocatable Code

46

The same discrete-time filter can be implemented in TMS32010 assembly language using
relocatable code. The FORTRAN program should not be directly translated into assembly language. -
Assembly language code can be made more efficient than the FORTRAN implementation by taking
advantage of the processor's architecture. The assembly language implementation of the
FORTRAN program is described in the following paragraphs. '

1183

1183

Two library macros (PROG and MAIN) have been used in the example program to simplify the
coding process and to standardize the program structure. One advantage of using macros for
standardizing program structure is that different programmers can easily trade relocatable modules
if they have used the same structure. The PROG macro begins the module with an IDT directive.
This directive gives the module a name to be used later during link and also initializes some values in
the assembler’'s symbol table. The macro MAIN labels the beginning of the main routine, initializes
the constants ONE and MINUS, and defines the variables XR0O and XR1.

" The coefficients in the equation are converted to integer arithmetic for this program. To maintain a

* %

maximum amount of accuracy, the coefficients should be factored by 2** — 15, which will create a
Q15 number. After factoring the filter equation, it becomes:

y(n) = [—7545x(n) + 5109 x(n-1) + 7247 x(n-2) + 3667 x(n-3)
— 3685 x(n-4) - 4868x(n-5) + 6707 x(n-6) + 24279 x(n-7)
+ 32767 x(n-8) + 24279 x(n-9) + 6706 x(n-10) — 4868 x(n-11)
— 3685 x(n-12) + 3667 x(n-13) + 7247 x(n-14) + 5109 x(n-15)
— 7545 x(n-16)1*2** — 15,

Contants are listed in program memory in a table so as to define the coefficients in data memory.
Constants are then read into data memory using the TBLR instruction. The user loads a one in the T
register to access the table. The MPYK instruction puts the address of the table into the P register.
Then, the PAC instruction loads it into the accumulator. A loop is set up to move all of the
constants into data memory. ’

The BIO pin is connected to the FIFO empty line. A BIOZ instruction is used to synchronize the -
external hardware with the program. As long as the FIFO buffer is empty, the processor polls the
device until data is available.

The sampled data is read into data memory, and the filter equation is calculated. If the equation is
coded in a loop, both of the auxiliary registers must be used as pointers. By starting one of the lists
at location zero in data memory, the pointer for that list can also be used as the loop counter. The
calculation time can be reduced by a factor of two if the equation is implemented using straight-line
code. The user must decide whether program size or execution time is more important in his
application.

The data is shifted in memory as the equation is computed, making a separate loop to do the shift
operation unnecessary. A 0.5 is added to the result to round up the number before storing the
result. The output is written to a D/A converter. Then the whole process is repeated.

The following assembly language program implements the digital filter:

* The MLIB directive is used to reference a file containing the
: source code for the two macros, PROG and MAIN.
. -~ MLIB 'MACRO.SRC!
PROG - FLTR
REAL 4 X(17),CX(17),Y
DSEG BEGIN DATA SEGMENT
X1 BSS 16 16 WORDS NAME X1
X17 BSS 1 1 WORD NAME X17
CX1 BSS 116 16 WORDS NAME CX1
CX17 BSS 1 1 WORD NAME CX17

4-7

4-8

Y BSS 1 1 WORD NAME Y

DEND END DATA SEGMENT
*

B FLTR

RET
*

COEF DATA -7545,5109,7247,3667,-3685,-4868
DATA 6707,24279,32767,24279,6707

DATA -4868,-3685,3667,7247,5109,-7545
*

MAIN FLTR
khkAkkAhhhARkARAkrhhhhhhhhhhhrrkAhARhAARAAARARFAAR A A A AT AAK A AR A KA AARA kK k%
* DATA CX /-.2302699,.1559177,.2211667,.1119031,-.1124507,

* 1 -.1485743, .2046856, .7409326,1.0, . 7409326,
* 1 .2046856 ,-.1485743,-.1124507,.1119031, .2211667,
* 1 .1559177,-.2302699/

B R R e R e R e T T S L L T Lt L L L T T

* .
* ONE is a data memory location containing a 1. COEF is the address
* where the filter coefficient table begins. The next four lines of
* code put the value of COEF in the accumulator so that TBLR can be
* used for reading in the coefficients.
*

LT ONE

MPYK COEF

PAC

LARK ARO, 16

LARK AR1l,CX1
RCONST LARP 1

TBLR *+ ,ARO

ADD ONE

BANZ RCONST

*
* Test FIFO to see if it is empty. The next line of code branches on
* itself till the BIO pin goes low.
*
WAIT BIOZ WAIT
*
* Input sampled data
x ,
IN X1,PAO
k.3 ¢ .
kkkkhkkkkkkkkrhhhkhikhkhkhkkrkrhkkkhkrrrhrrxhkrrRRrkrrrkrrhxkhikxkkrrkrxrrrk
* DO J=1,17 ’
* Y =Y + CX(J)*X(J) Compute filter equation
* END DO
*
* DO J =1,16
* X(J) = X(J-1) Shift variables
* END DO

khkkkkkhhkkhkhkhkhhhhrAkiAkrhkhhhhkhkhhhhhhhhkhhkhkrrrhhhrhrrrkkhkhrhhrkkiiik

*

* X17 is the data memory address of X(17).
* CX17 is the data memory address of CX(17).
*

LARK ARO,X17

*
LARK AR1,CX17
ZAC
LT *-,AR1
MPY *- ARO
LOOP LTD * AR1
MPY *- ,ARO

BANZ LOOP
APAC

*

Round up

ADD ONE, 14

*

Output results

SACH Y, 1
our Y,Pal

B WAIT
4.3.3.3.1 Assembler Output

- The XDS/320 Macro Assembler requires a source file which contains the assembly language
program. Two output files are created by the assembler. One output file is a listing file that prints
the object code and the source statement for each instruction. The other output file contains the
object code in standard 990 tagged format. The listing file for the filter program is shown below,
although certain comment statements have been deleted. Object code followed by an apostrophe
indicates that the code is relocatable (i.e., the B FLTR statement).

LISTING FILE

FLTR 320 FAMILY MACRO ASSEMBLER 2.0 83.010 9:20:28 2/21/83
PAGE 0001
0001 * The MLIB directive is used to reference a file con-

0002 * taining source code for the two macros, PROG and MAIN.
0003 *
0004 0000 f MLIB 'MACRO.SRC'
0005 *
0006 PROG FLTR
0001 : IDT 'FLTR'
0007 %
0008 * REAL 4 X(17),CX(17),Y
0009 *
0010 0000 - DSEG BEGIN DATA SEGMENT
0011 0000 X1 BSS 16 16 WORDS NAME X1
0012 0010 X17 BSS 1 1 WORD NAME X17
0013 0011 . CX1 BSS 16 16 WORDS NAME CX1
0014 0021 CX17 BSS 1 1 WORD NAME CX17
0015 0022 Y BSS 1 1 WORD NAME Y
0016 0023 DEND END DATA SEGMENT
0017 *
0018 0000 F900 B FLTR
0001 0014’
0019 0002 7F8D RET
0020 * '
0021 0003 E287 COEF DATA -7545,5109,7247,3667,-3685,-4868
" 0004 13F5
0005 1C4F
0006 OES3
0007 F19B
0008 ECFC '
0022 0009 1A33 DATA 6707,24279,32767,24279,6707
000A 5ED7
000OB 7FFF
000C 5ED7
000D 1A33
0023 OOOE ECFC DATA -4868,-3685,3667,7247,5109,-7545
000F F19B '

4-10

0024
0025
0001
0002
0003
0004
0005
0006
0007
0008
000°
0010
0011
0012
0013
0014
0015
0016
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047

0048
0049
0050
0051
0052

0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066

0010
0011
0012
0013

0014

0014
0015
0016
0017
0018
0023
0023
0024
0025
0026

0027

0019
001a
001B
001cC
001D
001E
001F
0020
0021
0022

0023
0024

0025

0OE53
1C4F
13F5
E287

0014'
7E01
5023"
7F89
1023"
5024"

6A23"
8003
7F8E
7010
7111
6881
67A0
0023"
F400
001E'

F600
0023

4000"

MAIN FLTR

PSEG PROG SEG

DEF FLTR ENTRY POINT
FLTR EQU $

LACK 1 MAKE CONSTANT ONE

SACL ONE,O0 SAVE IT

ZAC ZERO ACCUMULATOR

SUB ONE,O MAKE -1

SACL MINUS,0 SAVE IT

DSEG
ONE BSS 1 CONSTANT ONE
MINUS BSS 1 CONSTANT -1
XRO BSS 1 TEMP 0
XR1 BSS 1 TEMP 1
: DEF ONE,MINUS ALLOW EXTERNAL USE

DEF XRO,XR1 OF VARIABLE

DEND END OF DATA ,
kkkkhkkAkkhkAhkhkkkhkhkhkhAhkhhhhkhkkhkkhkhhhkhhhkhkhkkhkrkkhkkrrkhhkhhkhkhhkikkhikhkikk
* DATA CX /-.2302699,.1559177,.2211667,.1119031,-.11
* 1 -.1485743, .2046856,.7409326,1.0, .7409326
* 1 .2046856,-.1485743,-.1124507,.1119031, .2
* 1 .1559177,-.2302699/

kkkhkkhkkkkkkkhkhkhhAAhhhhhkrAhkhhkhkkhkhhkhhhrkhhkhhhhkhkiiikkkkrkik
*

* ONE is a data memory location containing a 1. COEF is the
address where the filter coefficient table begins. The next
* four lines of code put the value of COEF in the accumulator
: so that TBLR can be used for reading in the coefficients.

*

LT ONE
MPYK COEF
PAC

LARK ARO,16

LARK AR1,CX1
RCONST LARP 1

TBLR *+,ARO

ADD ONE

BANZ RCONST

*

* Test FIFO to see if it is empty. The next line of code
* branches on itself till the BIO pin goes low.
*

WAIT BIOZ WAIT

*
Input sampled data

b

IN X1,PAO
*

AARAKRARAARKRAARRARRARARRAAARARKAARARAARAAARAAAARAAAARAARA A KA KA KAk
DO J = 1,17

Y = Y + CX(J)*X(J)
END DO

%

Compute filter equation

X(J) = X(J-1) Shift variables
END DO

*
*
*
* DO J=1,16
*
*
khkkkhkkkhhkhkhhhhhhhhrhhhkrkkhhhhhrkhrhAAAARAARAAAkdhAkhhki ki hiix

0067 * : .
0068 * X17 is the data memory address of X(17).
0069 -: CX17 is the data memory address of CX(17).
0070 :
0071 0026 7010 ° LARK ARO,X17
0072 * :
0073 0027 7121 LARK AR1,CX17
0074 0028 7F89 . ZAC
0075 0029 6A91 LT *- ARl
0076 002A 6D90 MPY *- ARO
0077 002B 6B81 LOOP LTD * ,AR1
0078 002C 6D90 - MPY *~ ARO
0079 002D F400 ‘ BANZ LOOP
002E 002B': '
0080 002F 7F8F APAC
0081 %k
0082 * Round up
0083 *
0084 0030 OE23" ADD ONE, 14
0085 : x
0086 ‘ * Output results
0087 *
0088 0031 5922" SACH Y,1
0089 0032 4922". ouT Y,PAl
0090 0033 F900 B WAIT
0034 0023':

THE FOLLOWING SYMBOLS ARE UNDEFINED
*+
K

SSLAB
NO ERRORS, NO WARNINGS

Although the symbols above are undefined, this is a natural result of the macros used and should be
ignored.

The following example is the tagged object code produced by the XDS/320 Assembler The tags
are used by the linker when it is producing a link module.

TAGGED OBJECT CODE

KOO35FLTR MOD27$DATA 000050014FLTR WOO230NE O00007F43AF FLTIR
WO025XR0O ~ 0000WO026XR1 0000WO0024MINUS OOO0AOOOOBF900C0014B7F8D7F1A9F FLIR
BE287B13F5B1C4FBOE53BF19BBECFCB1A33B5ED7B7FFFB5ED7B1A33BECFCBF19B7F036F FLTR
BOE53B1C4FB13F5BE287A0014B7E01#5023007FB7F89#1023007F#5024007F 7F281F FLTR
A0019#6A23007FBS8003B7F8EB7010B7111B6881B67A0#0023007FBF400C001E7F250F FLTR
BF600C0023#4000007FB7010B7121B7F89B6A91B6D90B6B81B6D90BF400C002B7F1DSF FLTR
B7F8FH#0E23007F#5922007F#4922007FBF900C00237F6E6F FLTR

FLTR 2/21/83 9:20:28 ASM320 2.0 83.010 : FLTR

4.3.3.3.2 Program Linkége

The linker must be executed even if the program is contained in a single module. The control file
required by the linker specifies the task name, defines the starting location for the data and program

1183 5 4§11

segments, and indicates the object files to be linked. The control file which was used to link the

example program is as follows:

FORMAT ASCII

TASK DEV

PROGRAM > 0000

DATA > 0000

INCLUDE S4USR.LVK111 .FLTR.OBJ
END

Two files are produced by the linker. The linked object file is an output file containing the load
module. The link listing file is an output file containing a listing of the command control file, a map
of the segments and modules which were linked, and a cross-reference listing of the externally
defined variables. The link listing file and the linked object file are shown below. The object file can

be loaded into the simulator or emulator for program debugging.

LINK LISTING FILE

DX/9900 LINKER VERSION 2.0.0 82.312 2/21/83 9:29:30 PAGE 1
COMMAND LIST

FORMAT ASCII

TASK DEV

PROGRAM >0000

DATA >0000

INCLUDE S4USR.LVK111.FLTR.OBJ

END

DX/9900 LINKER VERSION 2.0.0 82.312 2/21/83 9:29:30 PAGE 2
LINK MAP

CONTROL FILE = S4USR.LVK111.FLTR.CF

LINKED OUTPUT FILE = S4USR.LVK111l.FLTR.LINKOBJ

LIST FILE = S4USR.LVK11l1.FLTR.LINKLIS

OUTPUT FORMAT = ASCII

1 ---->OVERWRITTEN SEGMENTS IN MODULE DEV

DX/9900 LINKER VERSION 2.0.0 82.312 2/21/83 9:29:30 PAGE 3
PHASE 0 DEV MODULE ORIGIN = 0000 LENGTH = 0000

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR
FLTR 1 0000* 0035 INCLUDE 2/21/83 9:20:28 ASM320
SDATA 1 0000* 0027

DEFINITIONS

NAME VALUE NO NAME VALUE NO NAME VALUE NO

FLTR '0014 1 AMINUS 0024* 1 *ONE 0023*
XR1 0026 1
LENGTH OF REGION FOR TASK = 0000

4-12

1

NAME VALUE NO

XRO 0025 1

1183

NUMBER OF WARNINGS MESSAGES PRINTED

= 1
NUMBER OF RECORDS FOR MODULE DEV = 6
‘TOTAL CARDS PRINTED = 6
*%#%% LINKING COMPLETED 2/21/83 9:29:34

The following object file is an output produced by the linker:

LINKED OBJECT FILE

KOOOODEV 90000BF900B0014B7F8DBE287B13F5B1C4FBOES3BF19BBECFC7F1C4F DEV
B1A33B5ED7B7FFFB5ED7B1A33BECFCBF19BBOE53B1C4FB13F5BE28790014B7E017FOAOF DEV
B5023B7F89B1023B502490019B6A23B8003B7F8EB7010B7111B6881B67A0B00237F1B8F DEV
BF4OOBOO1EBF60080023B4000B7010B712157F89B6A9136D908688136D90BF4007F177F DEV
BO02BB7F8FBOE23B5922B4922BFS00B00237F80BF DEV
: DEV f 2/21/83 9:29:30 MPPLINK = 82.312 DEV

4.3.3.4 Assembly Language Program Using Absolute Code

Through the use of the macros, PROG and MAIN, the above program is well structured and
relocatable. During link time, the program and data memory locations for the coefficient CX (i.e.,
the value for the constant COEF), the data memory location of the variable X, and the program
memory location of the MAIN program, FLTR, can be established.

In contrast to the relocatable code approach is one that uses absolute code. Although the use of
absolute code makes it somewhat easier to write a single program, this program is not relocatable.
The same program that was coded in relocatable code in Section 4.3.3.3 is shown below coded in
absolute code.

SOURCE FILE

. IDT 'FLIR'
* IDT is a directive which assigns a name to the module. The EQU
* directive assigns values to constants. The constants below
* will refer to locations in data memory. Unlike the above
* program, these data memory locations are fixed and cannot be
* changed at link time. As a result, this module would be very
: difficult to use as part of another program.
X1 EQU 17
X17 EQU 33
CX17 EQU 16
Y EQU 34
2NE EQU 127
AORG 10
* : .
* The AORG directive establishes the location in program memory where
* the code sequence will begin. In this case, the following section
* of code will begin at program memory locatlon 10. This contrasts
* with the above program (Section 4,3.3.3) which allows the block of
* memory the program w111 occupy to 'be established during link time.
*

4-13

*x

RCONST

WAIT
*

LOOP

LARK

LARK

LARP
TBLR
ADD

BANZ

ARO,16
AR1,O

1

*+ ,ARO
ONE
RCONST

WAIT
X1,PAO

ARO,X17
AR1,CX17

*- ,AR1
*-,ARO

*,AR1
*- ,ARO
LOOP

ONE, 14
Y,1

Y,PAl
WAIT

Below is the listing file for this program using absolute code.

FLTR

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019

0020

4-14

0021
0022
0023
0024

X % % N %k X H

320 FAMILY MACRO ASSEMBLER 1.0

LISTING FILE

IDT 'FLTR'

10:16: 5 12/22/82
PAGE 0001

IDT is a directive which assigns a name to the module. The EQU
directive assigns values to constants. The constants below *
refer to locations
program, these data memory 1locations are fixed and cannot be
changed at link time. As a
difficult to use as part of another program.

will

0011
0021
0010
0022
007F

000A

*
*
*

% Ok k%

X1
X117
CX17
Y
ONE
*

EQU 17
EQU 33
EQU 16
EQU 34
EQU 127
AORG 10

in data memory. Unlike the above *

result, this module would be very

The AORG directive establishes the location in program memory

where * the code sequence

will begin. In this case, the fol-

lowing section of code will begin at program memory location
his contrasts with the above program (Section 4.3.3.3)
which allows the block of memory the program will occupy to
be established during link time. '

10. T

0025 000A 7010
0026 000B 7100

LARK ARO,16
LARK AR1,0

0027 *
0028 000C 6881 RCONST LARP 1

0029 000D 67A0 TBLR *+,ARO

0030 000E 007F ADD' ONE

0031 000F F400 BANZ RCONST
0010 000C '

0032 * ,

0033 0011 F600 WAIT BIOZ WAIT
0012 0011

0034 *

0035 0013 4011 IN X1,PAO

0036 * :

0037 0014 7021 LARK ARO,X17

0038 0015 7110 LARK AR1,CX17

0039 0016 7F89 ZAC

0040 0017 6291 LT *-,ARl

0041 0018 6D90 MPY *-,ARO

0042 *

0043 0019 6B81 LOOP LTD *,AR1
0044 001A 6D90 MPY *-,ARO

0045 001B F400 ‘ "BANZ LOOP
001C 0019

0046 001D 7F8F APAC

0047 Ck

0048 001E OE7F ADD ONE,1l4

0049 *

0050 001F 5922 SACH Y,1

0051 0020 4922 - ouT Y,PAl

0052 0021 F900 . B WAIT
0022 0011

0053 0023 :

0054 0023

NO ERRORS, NO WARNINGS

4-15

4-16

PROCESSOR RESOURCE MANAGEMENT

5. PROCESSOR RESOURCE 'MANAGEMENT

5.1 FUNDAMENTAL OPERATIONS

5.1.1

* %k Ok

*

* o *

5.1.2

* Ok %

An understanding of how to use the instructions to perform common tasks is necessary in order to
make efficient use of the instruction set. The following sections discuss implementations of some
fundamental operations using the TMS32010 instruction set.

Bit Manipulation

A specified bit of a word from data memory can either be set, cleared, or tested. Such bit
manipulations are accomplished by using the built-in shifter and the logic instructions, AND, OR,
and XOR. In the first example, operations on single bits are performed on the data word VALUE. In
this and the following examples, data memory location ONE contains the value 1 and MINUS
contains the value 1 (all bits set).

Clear bit 5 of data memory location VALUE

LAC ONE, 5 ACC = >00000020
XOR MINUS Invert accumulator; ACC = >0000FFDF
AND VALUE Bit 5 of VALUE is zeroed

SACL VALUE
Set bit 12 of VALUE »
LAC ONE, 12 ACC = >00001000
OR - VALUE Bit 12 of VALUE is set
SACL VALUE

Test bit 3 of VALUE

LAC ONE, 3 ACC = >00000008
AND VALUE Test bit 3 of VALUE
BZ BIT3Z Branch to BIT3Z if bit is clear

More than one bit can be set, cleared, or tested at one time if the necessary mask exists in data
memory. In the next example, the six low-order bits in the word VALUE are cleared if MASK
contains the value 127. '

Clear lower six bits of VALUE

LAC MASK- ACC = >0000003F
XOR MINUS Invert accumulator; ACC = >0000FFCO
AND VALUE Clear lower six bits

SACL VALUE

Data Shift

There are two types of shifts: logical and arithmetic. A logical shift is implemented by filling the .
empty bits to the left of the MSB with zeros, regardless of the value of the MSB. An arithmetic shift
fills the empty bits to the left of the MSB with ones if the MSB is one, or with zeros if the MSB is
zero. The second type of bit padding is referred to as sign extension.

The'hardware shift which is built into the ADD, SUB, and LAC instructions performs an arithmetic

left shift on a 16-bit word. This feature can also be used to peform right shifts. A right shift of n is
implemented by peforming a left shift of 16-n and saving the upper word of the accumulator.

5-1

5.1.3

The first example performs an arithmetic right shift of seven on a 16-bit number in the accumulator.

SACL TEMP ’ Move number to memory

LAC TEMP, 9 shift left (16-7)

SACH TEMP : Save high word in memory

LAC TEMP Return number back to accumulator

%

* ok

The second example performs a logical right shift of four on a 32-bit number stored in the
accumulator. The 32-bit results of the shift are then stored in data memory. In this example, the
accumulator initially contains the hex number >9D84C1B2. The variables, SHIFTH and SHIFTL, will
receive the high word (>09D8) and low word (>4C1B) of the shifted results.

Shift the lower word
SACH SHIFTH SHIFTH = >9D84 Initial values
SACL SHIFTL SHIFTL = >C1B2
LAC SHIFTL,12 ACC = >FC1B2000
SACH SHIFTL SHIFTL = >FC1B
LAC MINUS,12 ACC = >FFFFF000
XOR MINUS ACC = >FFFFOFFF
AND SHIFTL ACC = >00000C1B
Shift the upper word
ADD SHIFTH,12 ACC = >F9D84C1B
SACL SHIFTL SHIFTL = >4C1B Final low-order value
SACH SHIFTH SHIFTH = >F9D8
LAC MINUS,12 ACC = >FFFFF000
XOR MINUS ACC = >FFFFOFFF
AND SHIFTH ACC = >000009D8
SACL SHIFTH SHIFTH = >09D8 Final high-order value

An arithmetic right shift of four can be implemented using the same routine as shown above, except
with the last four lines omitted.

Fixed-Point Arithmetic

Computation on the TMS32010 is based on a fixed-point two’s complement representation of
numbers. Each 16-bit number is evaluated with a sign bit, i integer bits, and 15-i fractional bits. Thus
the number:

00000010,10100000

l__decimal point

has a value of 2.625. This particular number is said to be represented in a Q8 format (8 fractional
bits). Its range is between -128 (1000000000000000) and 127.996 (0111111111111111). The
fractional accuracy of a Q8 number is about .004 (one part in 2**8 or 256).

Although particular situations (e.g., a combination of dynamic range and accuracy requirements)
must use mixed notations, it is more common to work entirely with fractions represented in a Q15
format or integers in a Q0 format. This is especially true for signal processing algorithms where
multiply-accumulate operations are dominant. The result of a fraction times a fraction remains a
fraction, and the result of an integer times a+ integer remains an integer. No overflows are possible.

The difficulty comes during accumulations of the resulting products. In these situations, the
programmer must understand the physical process which underlies the mathematics in order to take
care of potential overflow conditions. The following sections discuss some of the techniques involved
in using this kind of number representation.

5.1.3.1 Multiplication

There are a wide variety of situations which might be encountered when multiplying two numbers
Three of these scenarios are illustrated below:

CASE | -- FRACTION * FRACTION
Q15 *Q15 = Q30

0100000000000000 = 0.5 in Q15 notation
* 0100000000000000 = 0.5 inQ15

00 01000000000000 0000000000000000 =0.25 in Q30

I__decimal point

Note: Two sign bits remain after the multiply.

Generally, the programmer will not want to maintain full precision. In fact, he will probably want to
save a single-precision (16-bit) result. Unfortunately, the upper half of the result does not contain a
full 15 bits of fractional precision since the multiply operation actually creates a second sign bit. In
order to recover that precision, the product must be shifted left by one bit. The following code
excerpt illustrates an implementation of this example:

LT oP1 OP1 = >4000 (0.5 in Q15)
MPY 0P2 OP2 = >4000 (0.5 in Q15)
PAC

SACH ANS,1 ANS

n

>2000 (0.25 in Q15)

The MPYK ins;ruction in the TMS320 will allow the programmer the ability to multiply by a 13-bit
signed constant. In fractional notation, this means he can multiply a Q15 number by a Q12 number.
This case requires the programmer to shift the resulting number Ieft by four bits to maintain full

precision.

LT ()31 OP1 = >4000 (0.5 in Ql5)
MPYK 2048 OP2 = >0800 (0.5 in Ql2)
PAC

SACH ANS,4 ANS

>2000 (0.25 in Q15)

(&3]

5-4

CASE Il -- INTEGER * INTEGER

Q0 *Q0 = Q0
0000000000010001 = 17 inQO0
*1111111111111011 =5 in Q0
11111111111111111111111110101011 in Q0

|_— decimal point

Note: In this case, the extra sign bit does not come into play, and the desired product is entirely in the lower half of the product. The

following program illustrates this example.

LT OP1 OP1 = >0011 (17 in QO)
MPY OP2 OP2 = >0005 (5 in Q0)
PAC

SACL ANS ANS = >0055 (85 in QO)

CASE lil -- MIXED NOTATION
Q14*Q14 = Q28

0110000000000000 = 1.50 inQ14
* 0011000000000000 = 0.75 inQ14

0001,001 000b000000000000000000000 =1.125in Q28

Z decimal point

The maximum magnitude of a Q14 number is just under two. Thus, the maximum magnitude of the
product of two Q14 numbers is four. Two integer bits are required to allow for this possibility, leav-
ing a maximum precision for the product of 13 bits. In general, the following rule applies:

The product of a number with i integer bits and f fractional bits and a second number with j
integer bits and g fractional bits will be a number with (i + j) integer bits and (f + g) fractional
bits. The highest precision possible for a 16-bit representation of this number will have (i + j)
integer bits and (15- i - j) fractional bits.

If, however, the programmer has a prior knowledge of the physical system which is being
modelled, he may be able to increase the precision with which the number is modelled. For exam-
ple, if he knows that the above product can be no more than 1.8, he could represent the product as
a Q14 number rather than the theoretical worst case of Q13. The following program illustrates the
above example:

LT OP1 OP1 = >6000 (1.5 in Q14)
MPY Op2 OP2 = >3000 (.75 in Q14)
PAC

SACH ANS,1 ANS

>2400 (1.125 in Q13)

The techniques which have been illustrated above all truncate the result of the multiplication to the
desired precision. The error which is generated as a result amounts to minus one full LSB. This is
true whether the truncated number is positive or negative. It is possible to implement a simple
rounding technique to reduce this potential error by a factor of two. This is illustrated by the
following code sequence:

LT OP1l .

MPY OP2 OP1 * OP2
PAC

ADD ONE,14 ROUND UP

SACH ANS,1
The error generated in this example is plus one-half LSB whether ANS is positive or negative.
5.1.3.2 Addition

During the process of multiplication, the programmer is not concerned about overflows and needs
only to adjust his decimal point following the operation. Addition is a much more complex process.
First, both operands of an addition must be represented in the same Q-point notation. Second, the
programmer must either allow enough head room in his result to accomodate bit growth or he must
be prepared to handle oveflows. If the operands are only 16 bits long, the result may have to be
represented as a double-precision number. The following example illustrates two approaches to
adding 16-bit numbers: .

Maintaining 32-Bit Results:

LAC OP1 Q15
ADD OoP2) Q15
SACH ANSHI High-order 16 bits of result
SACL ANSLO Low-order 16 bits of result

Adjusted Decimal Point to Maintain 16-Bit Results:

LAC OP1,15 Q14 number in ACCH
ADD OP2,15 Q14 number in ACCH
SACH ANS Q14

Double-precision operands present a more complex problem. In this case, actual arithmetic
overflows or underflows might occur. The TMS32010 provides the programmer with the facility to
check for the occurrence of these conditions using the BV instruction. A second technique is the
use of saturation mode operations which will saturate the result of overflowing accumulations to
the most positive or most negative number. Unfortunately, both techniques will result in a loss of
precision. The best technique involves a thorough understanding of the underlying physical process
and care in selecting number representations. - :

5.1.3.3 Division

Binary division is the inverse of multiplication. Multiplication consists of a series of shift and add
operations, while division can be broken down into a series of subtracts and shifts. The following
example illustrates this process: :

Given an 8-bit accumulator, suppose the problem is to divide the number 10 by 3. The process '

consists of gradually shifting the divisor relative to the dividend, subtracting at each stage, and
inserting bits into the quotient if the subraction was successful. - o

55

bl

Gt | kol

7/

1. First line up the LSB of the divisor with the MSB of the dividend.

00001010
-00011000
11110010

2. Since the result is negative (the subtraction was unsuccessful), throw away the result, shift
the dividend, and try again.

00010100
-00011000
\ 11111000

3. The result is still negative. Throw away the result, shift, and try again.

00101000
-00011000
0001 0000

4. The answer is now positive. Shift the r&sult and add one to set up the fourth .and final
subtraction. e

00100001
-00011000
00001001

5. The answer is again positive. Shift the result and add one. The most significant four bits
represent the remainder, while the least significant four bits represent the quotient.
00010011

- Quotient = 0011
Rema'pder = 0001

The TMS32010 does not have an explicit divide instruction. However it is possible to implement an
efficient flexible divide capability using the conditional subtract instruction, SUBC. The only
restriction for the use of this instruction is that both operands be positive. It is also very important
that the programmer understand the characteristics of his potential operands, such as whether the
quotient can be represented as a fraction and the accuracy to which the quotient is to be computed.

Each of these considerations can affect how the SUBC is used.

The examples below illustrate two different situations.

CASE 1 — NUMERATOR < DENOMINATOR

TITLE:

NAME:

Division Routine |

DIV1

OBJECTIVE: To divide two binary two’s complement numbers of any sign where the

6-6

numerator is less than the denominator

3 4

DIV1

ALGORITHM: ((((((A—B)*2)+1)-B)*2) +1)-B...=C

if, A—B> =0,(((A-B)*2)+1)-B> =0...

where A = denominator, B = numerator, C = quotient

CALLING
SEQUENCE: CALLDIV1

ENTRY
CONDITIONS: Numerator < Denominator

EXIT -

CONDITIONS: Quotient stored in data memory location labelled QUOT

PROGRAM
MEMORY
REQUIRED: 22 words, excluding macros

STACK
REQUIRED: None

DATA
MEMORY
REQUIRED: 4 words

EXECUTION
TIME: 61-64 machine cycles

FLOWCHART: DIV1

CALL DIV1

CALCULATE SIGN
OF QUOTIENT &

y

MAKE NUMERATOR AND
DENOMINATOR POSITIVE

ALIGN NUMERATOR
FOR DIVISION
INITIALIZE

LOOP COUNTER
FOR 15 CYCLES

'

SUBTRACT DENOMINATOR

CONDITIONALLY

DOES
COUNT
=07?

QUOTIENT NO

COUNT =
COUNT -1

NEGATIVE

NEGATE
QUOTIENT

!

FIGURE 5-1 — DIVISION ROUTINE | FLOWCHART

RETURN e

SOURCE:

*

DIVl LARP° O :
ET——NUMERA Get sign of quotient
~-MPY¥—DENOM :
PAC
SACH—TEMSGN Save sign of quotient

A€ DENOM

ABS

S?:EE—~~BE~NOM} —\?Make denominator positive
ZALH NUMERA" Align numerator

ABS- { ~~7 Make numerator positive

g LARK 0,14
*

KPDVNG- { SUBC DENOM 15-cycle divide loop
Z BANZ KPDVNG
*
SACL QUOT
-EAC—TEMSGN v
BGEZ—PONE Done if sign positive
*
ZAC
SUB~ QUOT
“-QUOT Negate quotient if negative
*
DONE RET
EXAMPLE:
CALL DIV1
BEFORE INSTRUCTION AFTER INSTRUCTION
NUMERA | 21 | NUMERA | | 21 |
DENOM | 42 | DENOM | 42 |
QuoT 0 QuOoT ' .5
(0.1 0 0)
D |V2 CASE 2 — SPECIFY ACCURACY OF QUOTIENT D Ivz
TITLE: .. Division Routine Il
NAME: DIV2

OBJECTIVE: To divide two binary two’s complement numbers of any sign, specifying the
fractional accuracy of the quotient

ALGORITHM: ((((((A—B)*2)+1)—B)*2) +1)=B...=C

5-8

if A—B> =0,(((A-B)*2)+1)-B> =0,...

where A = numerator, B = denominator, C = quotient

CALLING
SEQUENCE: CALL DIV2

 ENTRY :
CONDITIONS: FRAC specifies accuracy of quotient

EXIT

CONDITIONS: Quotient stored in data memory location labelled QUOT

PROGRAM
MEMORY '
REQUIRED: 24 words, excluding macros

STACK
REQUIRED: None

DATA

MEMORY

REQUIRED: 5 words
EXECUTION

TIME: 67 —70 + 3*FRAC clocks

FLOWCHART: DIV2

CALL DIV2

Y

CALCULATE SIGN
OF QUOTIENT

¥

MAKE NUMERATOR
AND DENOMINATOR
POSITIVE

y

INITIALIZE
LOOP COUNTER
(15 + ACCURACY)

y

LOAD
NUMERATOR

!

3

SUBTRACT
DENOMINATOR
CONDITIONALLY

NO

IS
QUOTIENT

NO

COUNT =
COUNT -1

NEGATIVE

NEGATE
QUOTIENT

RETURN

FIGURE 5-2 — DIVISION ROUTINE H FLOWCHARY

59

SOURCE:

DIV2 LARP 0
LT NUMERA Get sign of quotient
MPY DENOM .
PAC
SACH TEMSGN Save sign of quotient
LAC DENOM
ABS .
SACL DENOM Make denominator positive
LACK 15
ADD FRAC
SACL FRAC Compute loop count
LAC NUMERA Align numerator
ABS Make numerator positive
LAR 0,FRAC
*
KPDVNG SUBC DENOM 16 + FRAC cycle divide loop
BANZ KPDVNG
*
SACL QUOT
LAC TEMSGN
BGEZ DONE Done if sign positive
*
ZAC
5 SUB QUOT
SACL = QUOT Negate quotient if negative
*
DONE RET
EXAMPLE:
CALL DIV2
BEFORE INSTRUCTION AFTER INSTRUCTION
NUMERA | 1| NUMERA | 11
DENOM | 8 | DENOM | 8 |
FRAC 3 FRAC 3
QuoT 17 | QuoT | 1.375 |

(1.0 1 1)

5-10

5.1.4 Subroutines

When a subroutine call is made using the CALL or CALA instruction, the PC + 1 (return address)
is saved on the top of the stack. At the end of the subroutine, a RET instruction is executed which
updates the PC with the value saved on the stack. The program will then resume execution at the
instruction following the subroutine call.

There are two occasions in which a level of stack must be reserved for the machine’s use. First, the
TBLR and TBLW instructions use one level of stack. Second, when interrupts are enabled, the PC
is saved on the stack during the interrupt routine. If a system is designed to use both interrupts and
a TBLR or TBLW instruction, only two levels of stack are available for nesting subroutine calls.

NOTE

If the hardware emulator will be used for system development, the level of stack which is
reserved for TBLR and TBLW will be used by the emulator to store a return address
whenever the program execution is suspended by the emulator. Therefore, if neither the
TBLR or TBLW instruction is used, one level of stack must still be reserved for use by the
emulator.

Subroutine calls can be nested deeper than two levels if the return address is removed from the
stack and saved in data memory. The POP instruction moves the top of stack (TOS) into the
accumulator and pops the stack up one level. The return address can then be stored in data memory
until the end of the subroutine when it is put back into the accumulator. The PUSH instruction will | ©
push the stack down one level and then move the accumulator onto the TOS. Therefore, when the
RET instruction is executed, the PC is updated with the return address. This procedure will allow a
second subroutine to be called inside the first routine without using another level of stack.

The POP and PUSH instructions can also be used to pass arguments to a subroutine. DATA
directives following the subroutine call create a list of constants and/or variables to be passed to the
subroutine. After the subroutine is called, the TOS points to the list of arguments following the CALL
instruction. By moving the argument pointer from the TOS into the accumulator, the list of
arguments can be read into data memory using the TBLR instruction. Between each TBLR
instruction, the accumulator must be incremented by one to point to the next argument in the list. To
create the return address, the argument pointer is incremented past the last element in the argument
list. The PUSH instruction moves the return address onto the TOS, and the RET instruction updates
the PC.

The following example illustrates a call which passes two arguments to a subroutine.

CALL CBITS
DATA VALUE
DATA >OFFF

**

Clear Bits
This subroutine clears the bits of a data word desig-
nated by a mask. The bits set to one in the mask
indicate the bits in the data word to be cleared. All
other bits remain unchanged. Two arguments are passed
to this subroutine:

* % ¥k % F
S % Ok Ok %

5-11

5.1.5 Computed GO TOs

5-12

* lst argument = address of data word *
* 2nd argument = mask *
* « *
* Calling sequence: CALL CBITS *
* DATA 1st argument *
* DATA 2nd argument *
KikkkhkhhhhrhhhhhhRArArkhhrrhrxxkkhrrkirhihkxkirikrxkirkkkk
CBITS SAR ARO, XRO Save ARO in temporary location

POP Hold return address

TBLR XR1 lst argument = pointer to data

LAR ARO, XR1 Put 1st argument into ARO

ADD ONE '

TBLR XR1 2nd argument = mask

ADD ONE

PUSH Put return address on TOS

LARP 0

LAC XR1 Load mask into accumulator

XOR MINUS Invert mask

AND * Clear bits

SACL *

LAR ARO, XRO Restore ARO

RET

The CALA instruction executes a subrqutine call based on the address contained in the
accumulator. This instruction can be used to perform a computed GO TO. The address of the
subroutine can be computed from a data value to determine which one of several routines will be
executed. The return at the end of each of these routines will cause program execution to resume

- with the instruction following the CALA command. It should be noted that the CALA instruction

will use a level of stack, because it is an indirect subroutine call and not just an indirect branch.

The example below illustrates how to compute a call to one of several routines. The subroutines are
defined first, and then a table of branches to each subroutine is created. The main part of the
program inputs a data value of 0, 1, or 2. The appropriate address in the table is calculated in the
accumulator. An indirect subroutine call causes the proper branch in the table to be executed.

SUB1 IN DAT1,PAO
RET
SUB2 1IN DAT1,PAl
RET
SUB3 1IN DAT1,PA2
RET
TBL1 B SUB1
B SUB2
B SUB3
LT ONE
MPYK TBL1 Get address of table
PAC
IN VALUE,PA4 Input data from P24
LT VALUE

1183

MPYK 2 Calculate offset

APAC o
CALA Go to designated subroutine

LAC DAT1 - Return here after subroutine

5.2 ADDRESSING AND LOOP CONTROL WITH AUXILIARY REGISTERS

5.2.1

5.2.2

There are two auxiliary registers on the TMS32010. The auxiliary registers can be used either as loop
counters or as pointers for indirect addressing.

Auxiliary Register Indirect Addressing

In the indirect addressing mode, the auxiliary register pointer (ARP) is used to determine which
auxiliary register is selected. The LARP instruction sets the ARP equal to the value of the immediate
operand. The value of the ARP can also be changed in the indirect addressing mode; the ARP is
updated after the instruction has been executed. '

The contents of the auxiliary register are interpreted as a data memory address when the indirect
addressing mode is used. A sequential list of data can easily be accessed in the indirect mode by
using the autoincrement or autodecrement feature of the auxiliary registers. If the auxiliary register
contains a data memory address, the counter can be used to increment through the entire address .
space. The auxiliary register should not be used as a general purpose incrementer, because only the
lower nine bits of the register actually count. A special instruction, MAR, allows the auxiliary
register which is selected by the ARP to be mcremented or decremented without implementing any
other operation in para||e| : :

There are three mstructlons (LARK, LAR SAR) whnch either load or store a value into an auxnllary
register, independent of the value of the ARP. The first operand in each of these instructions
determines which auxiliary register is to be either loaded or stored. This operand does not affect the
value of the ARP for subsequent instructions.

The example below illustrates using an auxiliary reglster in the |nd|rect addressing mode to input
data into a block of memory.

LARK ARO,DATBLK Initialize ARO as a pointer to
' 'DATBLK (an area of 8 words in
data memory)

LARP 0 Select ARO
LACK 8 Initialize accumulator as a counter
LOOP ' IN *+,PAO Input data
SUB ONE Decrement counter (ONE contains
value 1).
BNZ LOOP Repeat until count=0

Loop Counter

An auxiliary register can also be used as a loop counter. The BANZ instruction will test and then

decrement the auxiliary register selected by the ARP. Because the test for zero occurs before the
auxiliary register is decremented, the value loaded into the auxiliary register must be one less than
the number of times the loop should be executed. The maximum number of loops which can be

counted is 512, because only nine bits of each auxiliary register are implemented as counters.

5-13

The example below inputs data and calculates the sum while the auxiliary register is used to count
the number of loops. The accumulator will contain the result.

LARK ARO,3 Initialize ARO as a counter
LARP 0] Select ARO
ZAC Clear accumulator

LOOP 1IN DATAl,PA2 Input data value
ADD DATAl Add data to accumulator
BANZ LOOP Repeat loop four times

5.2.3 Combination of Operational Modes

Both indirect addressing and loop counting can be performed at the same time to implement loops
efficiently. If the data block is defined to start at location 0 in data memory, the same auxiliary which
is counting the number of loops can also be the pointer for indirect addressing.

The example below illustrates using the same auxiliary register as both a counter and a pointer. Data
locations 0 through 7 are loaded with input data.

LARK ARO,7 ARO points to end of data block
LOOP IN * PAO Input data
BANZ LOOP Repeat loop 8 times

The data block does not have to start at zero if one auxiliary register is used for counting and the
other auxiliary register is used as a pomter The following example lllustrates how both auxiliary
registers can be used at once.

LARK ARO,7 Initialize ARO as a counter
LARK AR1,DATBLK AR1 points to start of DATBLK,
data memory area

ZAC
LOOP LARP 1 Point to ARl
ADD *+,AR0O Calculate sum of data in block;
, point to ARO
BANZ LooP Repeat loop 8 times

5.3 MULTIPLICATION AND CONVOLUTION

5.3.1

5-14

The hardware multiplier will peform a 16 X 16-bit multiply and produce a 32-bit result. This section
will discuss the features of the multiplier and give examples which illustrate how to efficiently use
the multiply instructions.

Pipelined Multiplications

A single multiply operation consists of three steps on the TMS32010. First, one of the operands is
loaded into the T register from data memory using the LT instruction. The second step is performed
by specifying the second operand using either the MPY or MPYK instruction. MPY obtains the
second operand from data memory, and MPYK uses an immediate operand as the other operand to
be muitiplied. The third step moves the output from the (product) P register to the accumulator by
using one of three instructions, PAC, APAC, or SPAC. The PAC instruction loads the accumulator

with the value from the P register; the APAC. instruction adds the product register to the
accumulator; and the SPAC instruction subtracts the P register from the accumulator. Since each
of the steps is a one-clock cycle, a single multiply-accumulate operation takes 600 ns.

If several multiplies are to be performed consecutively, the first and third steps of the multiplication
process can be done in parallel. This method reduces the time of a multiply-accumulate operation to
400 ns. Multiplication can be pipelined by using the LTA instruction. This instruction loads the T
register with the first operand for the next multiplication and adds the P register to the accumulator
for the current multiplication. :

The example below performs a pipelined multiplication.

****************'k***

* The equation to be calculated is: *
* t = Aw + Bx + Cy + Dz *
B L LT L L e T P e P e S S
ZAC
LT W
MPY A
. LTA X ACC = Aw
MPY B
LTA Y ACC = Aw+Bx
MPY C
LTA z ACC = Aw+Bx+Cy
MPY D
APAC ACC = Aw+Bx+Cy+Dz
SACH T1
SACL T2 Store results

5.3.2 Moving Data

When implementing a digital filter, the variables in the equation represent the inputs and outputs at
discrete times. Typically this type of data structure is implemented as a shift register where the data
at time t is shifted to the position previously occupied by the data at time t-1. If consecutive
addresses in data memory correspond to consecutive time increments, then shifts can be
accomplished simply by moving the data item at location d to that corresponding to d + 1. The
DMOV command allows a data word to be written into the next higher memory location in a single
cycle without affecting the accumulator. Therefore, if the variables are placed in consecutive
locations, a DMOV command can be used to move each of the variables before the next calculation
is peformed. '

The data move operation is combined with the LTA instruction to create the LTD instruction. This
instruction performs three operations in parallel. The operand of the instruction is loaded into the T
register; the operand is also written into the next higher memory location; and the P register is
added to the accumulator. When using the LTD instruction, the order of the multiply and
accumulate operations becomes important because the data is being moved while the calculation is
being performed. The oldest input variable must be multiplied by its constant and loaded into the
accumulator first. Then the input, which is one time-unit delay less, is multiplied and accumulated.
This process is repeated until the entire equation has been computed.

The following example'illustrates the input variables being moved in memory as the results are
calculated: ‘ ’

5-15

kkkkkkhhhkhkhkhkhkhhAAAAARARARARKAAARAAARAKARAAAAARARARAKAAAA

* The following equation is used to implement a filter: *
* y(n)=[Ax(n-1)+Bx(n-2)+Cx(n-3)+Dx(n-4)l * 2%%-16 *
*Ak

Fkkkkhhkhhkkkhkkhhhhr Kk ikkkkkkkkirkrkrrriiihirkkkkkkkkirkiiik
START IN X1,PAO Input sample
ZAC :
LT X4 x(n-4)
MPY D
LTD X3 ACC=Dx4; x(n-4)=x(n-3)
MPY o
LTD X2 ACC=Dx4+Cx3; x(n-3)=x(n-2)
MPY B
LTD X1 ACC=Dx4+Cx3+Bx2; x(n-2)=x(n-1)
MPY A
APAC ACC=Dx4+Cx3+Bx2+Ax1
SACH Y
ouT Y,PAl Output results
B START

5.3.3 Product Register

The product register stores the results of a multiplication until another multiplication is peformed. A
user may want to use the multiplier during the interrupt routine, but the product register must be
restored with the value it contained before the interrupt occurred. It is easy to save the product
register in data memory, but it is very difficult to restore the product register with the value that was
saved in memory. A hardware feature has been built into the interrupt logic to prevent an interrupt
from occurring immediately after a multiply instruction (MPY or MPYK). If the contents of the
product register are always transferred into the accumulator on the instruction following the
multiply, the product register could be changed during the interrupt routine without having to be
restored before returning from the interrupt. Therefore, a PAC, APAC, SPAC, LTA, or LTD should
always follow a MPY or MPYK instruction. This rule should be followed whenever the muiltiplier is
being used during the interrupt routine.

The value of the product register can be restored if the contents are saved in memory, but it is a very
time-consuming process. If the magnitude_ of the value saved in memory is greater than fifteen bits,
it must be factored into twoe smaller numbers in order to restore the product register.

5.4 MEMORY CONSIDERATIONS OF HARVARD ARCHITECTURE

'5.4.1

5-16

The memory organization on the TMS32010 is referred to as a Harvard architecture. This means
that the program memory is separate from the data memory. This type of architecture allows the
next instruction fetch to occur while the current instruction is fetching data and executing the
operation. While the concept of a Harvard architecture increases the speed of the machine, there
are disadvantages in having the program memory totally separate from data memory. The
instruction set, therefore, includes instructions which transfer a word between data memory and
program memory. The following sections illustrate how to make efficient use of the ablility to
exchange data between memories. :

Moving Constants into Data Memory

Most signal processors have a separate memory space for storing constants. By allowing communi-
cation between data and program memory, the TMS32010 is able to incorporate a constant
memory capability with its program memory. This method allows a more efficient use of memory
space. The portion of memory not used for storing constants is available for use as program space.

5.4.2

There are five immediate instructions in the instruction set which provide an efficient way to
execute operations using constants. Two immediate instructions, LARP and LDPK, modify the
program context.

LARP changes the auxiliary register pointer, and LDPK changes the data page pointer. Three other
immediate instructions, LACK, LARK, and MPYK, allow constants to be used in calculations.
LACK and LARK both require an unsigned operand with a magnitude no greater than eight bits.
The MPYK instruction allows a 13-bit signed number as an operand.

A 16-bit data value can be moved from program memory to data memory using the TBLR
instruction. TBLR requires that the program memory address (the source) be in the accumulator,
while the data memory address (the destination) is obtained from the operand of the instruction.
The TBLR instruction is commonly used to look up values in a table in program memory. The
address of the value in the table is computed in the accumulator before executing the instruction.
TBLR then moves the value into data memory. TBLR is a three-cycle instruction and, therefore,
takes longer than an immediate instruction. However, it has more flexibility since it operates on

- 16-bit constants.

The example below illustrates bringing the cosine value of a variable into data memory.

* First, a table containing the cosine values is created in
* program memory.

COSINE DATA

START iN X,PAO ,
LACK COSINE Load table address
ADD X Calculate program memory address
TBLR COsX Move value into data memory

Note: If the address of COSINE is larger than 255, the address can be loaded into the accumulator by loading the T register with a
one and then “multplying by the constant COSINE.

Data Memory Expansion

Often it is necessary to expand data storage capability by using external memory. If the storage
requirements are small, additional memory can be added as a RAM extension of the program
memory address space. This technique is very efficient in terms of additional hardware
requirements, but it has two drawbacks. It requires that the combination of the memory required to
store the program and accomodate data be limited to 4096 words. It also tends to limit system
throughput, since access to data in program memory is relatively slow. The minimum memory
access time using this technique is four clocks (800 ns), but six clocks (1200 ns) is a more likely
average. :

A system requiring larger memories or faster data access can be implemented by treating the
expanded data memory as an 1/0 device. Since the TMS32010 lacks the capability to address a
large 1/0 address space (it is limited to eight devices), this technique also requires the use of an
external address register. This register can be implemented as a counter to allow efficient access to
contiguous data buffers. See Section 6.1.3 on 1/0 design techniques for more details.

5-17

(&3]

5.4.3 Program Memory Expansion

5-18

Using the MC/ MP pin on the TMS32010, the applications engineer can choose between two
distinct techniques for structuring his program memory address space. (See Figure 5-3.) In the
microcomputer mode, the internal masked ROM is active and consumes the low 1536 words of the
address space. The remaining 2560 words can be implemented using external memory. If the
microprocessor mode is selected, the entire 4096 word address space is assumed to exist external to
the chip.

MC MODE

'u
=

FIGURE 5-3A — USE OF INTERNAL PROGRAM MEMORY

DATA LINES
< ,I Py
TMS32010 16
ADDRESS LINES 4K X 16
——{MC/MP £ STATIC RAM
12 AND/OR PROM
MEN —— :
WE OUTPUT
ENABLE
) CHIP WRITE
SELECT ENABLE
(ONLY FOR t
RAM)

FIGURE 5-3B — USE OF EXTERNAL PROGRAM MEMORY

FIGURE 5-3 — TECHNIQUES FOR EXPANDING PROGRAM MEMORY

In the microcomputer mode, only the upper 2.5K words of external program memory are used. In
the microprocessor mode, all 4K words of external memory are used. With some types of memory
elements, additional chip-select logic may be necessary.

External program memory may utilize either RAM or ROM. In either case, system operation at the
full 5-MHz clock rate requires that the memory exhibit an access time of less than 100 ns. If RAM is
used, it may be loaded either via the TMS32010 itself using a boot ROM, or via a dual RAM port
from an independent controller. '

1183

INPUT/OUTPUT DESIGN TECHNIQUES KNl

6. INPUT/OUTPUT DESIGN TECHNIQUES

An mterrupt-dnven sampled data interface is the most common for signal processung applications,
but other types of peripherals can also be used. This section illustrates several examples and

~ discusses some of the hardware and software issues which should be considered when designing

an 1/0 system for the TMS32010.

- 6.1 PERIPHERAL DEVICE TYPES

6.1.1

Using a three-bit port address, the TMS32010 is capable of accessing eight different input devices
and eight different output devices. The port number is placed on the external address lines during
the second cycle of the instruction. The address lines can be decoded to select one of several
devices attached to the data bus or to activate a single control line. Three classes of peripherals are
discussed below.

Registers

A register can be used for several different functions. The most simplistic interface uses a 16-bit

" dual port transceiver. Such a register allows two-way communication between the TMS32010 and

another processor. Handshaking between the processors can be implemented by using interrupts
on the TMS32010. In Figure 6-1, the acknowledge line from the other processor is connected to the
BIO pln in order to synchronize the TMS32010.

ADDRESS BUS
74LS138 — él
INTERRUPT
Y
P
R R T
o £ M
G s
c DATA BUS | DATA BUS 3
s 16 S 16 2
s T 0
E 1 —
0 R BIO
R 0
!
~ ACKNOWLEDGE l -

- FIGURE 6-1 — COMMUNICATION BETWEEN PROCESSORS

In a more complicated configuration, a shift register can be used to convert a serial data stream into
parallel data to be compatible with the 1/0 instructions. An analog device which can be interfaced
to this processor is a codec. It is simply an A/D converter and D/A converter which is désigned to
operate in a telecommunications environment. This serial device produces eight-bit logarithmically-
weighted digital data. Consequently, a codec interface must include a mechanism for serial to

parallel conversion and a facility for code conversion. A shift register can provide the parallel input -

to the TMS32010. The code converter for A/D data can be implemented either in hardware using a
256 X 16-bit ROM or in software.

6-1

Another example of a register-based 1/0 system is a very simple A/D channel where the output of
an A/D converter is buffered using a single parallel register. This requires that the A/D system be
serviced before the next data sample overwrites the previous sample stored in the register.
Unfortunately, a routine which only services a single data word for every interrupt can be very time
consuming. The service overhead time can be reduced by multiword buffering (see Section 6.1.2
for discussion of FIFOs and interrupts).

6.1.2 FIFOs

The use of FIFOs instead of registers offers three definite advantages as follows:
1) Single address access to multiple data words,
2) Reduction of I/0 overhead (since several words can be accessed for each interrupt),
3) Preservation of temporary information in data stream.

Figure 6-2 illustrates the use of a FIFO in a typical analog subsystem.

v ANALOG DIGITAL
ANALOG | ANTI-ALIASING DATA A/D CONVERTER DATA
SIGNAL FILTER — oo SaLS222
| _INPUT FIFO
SAMPLE READY o
D';E: OUTPUT
416 |ENABLE
i \
BIO
TMS32010 DEN

FIGURE 6-2 — TYPICAL ANALOG SYSTEM INTERFACE

6.1.3 Extended Memory Interface

The peripheral which requires the most hardware to implement is a large memory. Because the
address lines only access locations 0-7 during an |1/O operation an external address counter must be
used to provide an address for the memory. It is also advisable to provide a buffer between the data
bus of the TMS32010 and that of the memory itself. Although this buffer is probably not necessary
for high-speed static memories, it is required for slower devices and large arrays where the drive
capacity of the TMS32010 may be marginal.

Figure 6-3 gives an example of one way to extend data memory by using the IN and OUT
instructions. The design consists of 16K words of static RAM, addressed by the lower 14 bits of a
16-bit counter. The location to address in this RAM is loaded into the counter by doing an OUT
instruction to port 0. This loads the data bus into the counters. The appropriate data memory
location is addressed by the lower 14 bits of the data. Bit 15 (MSB) of the data is loaded into the
counters to determine whether to count up or down through data memory. Memory can then be
read from or written to sequentially by doing an IN or OUT instruction to port 1. The MSB in the
counters determines whether the memory address should be incremented (MSB = 0) or
decremented (MSB = 1) after a read or write of data memory. Memory will continue to be
addressed sequentially until new data is loaded into the counters.

1183

ﬁF LOAD 16 X 16 DATA RAM
ADDRESS
CounTER |
= (72LS193) ” A13-A0
(4 units) (IMS1420)
‘ (16 units)
A15 (MSB) (16Kx1 70-ns SRAM)
u D —l = WE
COUNT UP 1
WRITE RAM COUNT DOWN 6
P
READ. RAM
¥ 16
)) ' -
PA PA 16
DECODER DECODER |
(74LS138) (72LS138) _L
! Y |
! EXTERNAL
3__ 3 READ ONLY
' DATA BUS T(Bzciss!ts ?)
D15-DO - 3516
[ADDRESS BUS
TMS32010 511 4s - 16 » o
MEN v dcs

FIGURE 6-3 — TMS32010 EXTENDED MEMORY INTERFACE

Dynamic memories can also be used. However, those devices may impose software constraints on
the system designer. For example, memory cycle times may not allow consecutive IN/OUT/IN
instruction sequences. Memory refresh represents another problem. Since this processor has no
capability to enter a “wait" state, memory refresh must be generated with external hardware.

6.2 INTERRUPTS

6.2.1

An interrupt routine allows the current process to be suspended while an I/0 device is being
serviced. The processor’s execution may be suspended on a high-priority basis by using the INTpin.
Otherwise, a lower priority interrupt can be serviced by using a software polling technique.

Software Methods

The BIOZ instruction can be used to poll (or test) the BIO pin to see if a device needs to be serviced.
This method allows for a critical loop or set of instructions to be executed without a variation in
execution time. Because the test for interrupts occurs at defined points in the program, context
saves requirements are minimal.

The BIO pin can_be used to monitor the status of a peripheral. If the FIFO full status line is
connected to the BIO pin, the FIFO is serviced only when the FIFO is full. In the following example,
the FIFO contains 16 data words. The BIO pin is tested after each time-critical function has been
executed.

6-3

6.2.2

6-4

BIOZ SKIP
CALL SERVE
SKIP :

The subroutine does not have to save the registers or the status, because a new procedure will be
executed after the device is serviced.

SERVE LACK ARO,15
LACK ARl ,TABLE
1

LOOP LARP
IN PAO,*+,ARO
BANZ LoOoP
RET

The FIFO must be serviced before another word is input or data may be lost. This fact determines
the frequency at which the polling must take place.

Hardware Methods

The INT pin causes execution to be suspended at any point in the program except after a multiply
instruction (see Section 4.1.3.3). The hardware interrupt can be masked at critical points in the
program with the DINT instruction. If an interrupt occurs while the INTM (disabled interrupt mask)
equals one, the interrupt will not be serviced until the interrupts are enabled again. If an interrupt is
pending when an enable interrupt operation occurs, the interrupt is sennced after the execution of
the instruction following the EINT command.

When an interrupt is serviced, the INTF (interrupt flag) is cleared; INTM is set to one, the current PC
is pushed on the TOS, and the PC is set to 2. The user must save the context of the machine before
servicing the peripheral. The context should be restored and the interrupts enabled prior to
returning from the interrupt routine. The following paragraphs illustrate a technique for
implementing an interrupt-driven analog input channel. It also shows the lmpact of multiple-level
data buffering on system 1/0 overhead.

Generally, the class of analog systems which can be reasonably supported by the TMS32010 will
have. information bandwidths of less than 20 kHz. The desired sample rate can be generated by
dividing the 5 MHz CLKOUT signal from the TMS32010. It is advisable to provide at least a one-level
data buffer to insure the integrity of the data which is read by the processor. If an 8-kHz sample rate
is used (for example), the system must then respond to an analog interrupt every 125 ms. The 1/0
overhead incurred by this arrangement can be computed by determining the number of clock times
the TMS32010 will spend in the interrupt routine servicing each sample, and dividing by 625. For
example, a typical interrupt routine might look like the following:

INT SST STATUS Save status
SACL ACCL Save accumulator low
SACH ACCH Save accumulator high
IN SAMP ,ADC Read from ADC
LAC COUNT Update sample counter
ADD ONE
SACL = COUNT
LACK LIMIT Check whether LIMIT clocks
SUB COUNT received
BGZ OK

DONE LACK 1 YES ===> Set flag

, SACL FLAG :

OK ZALH ACCH Restore accumulator high
ADDS ACCL Restore accumulator low
LST STATUS Restore status
EINT Enable subsequent interrupts
RET :

The overhead required to service this system is 18/625 = 2.9 percent. This overhead burden can be
reduced by using a FIFO to buffer the data. In this case, the TMS32010 need only be interrupted
when the buffer has filled. If a 16-level FIFO is used in our example above, this interrupt will occur
every 2 ms, and the overhead burden will be reduced to about 0.5 percent.

If two different kinds of devices are being serviced by the same interrupt routine, the BIO pin can be
used to determine which device needs to be serviced.

6-6

MACRO LANGUAGE INSTRUCTIONS
' _

- 7. MACRO LANGUAGE EXTENSIONS

The basic instruction set of the TMS32010 has been extended via the XDS/320 Macro Assembler to
facilitate coding of commonly used assembly language constructs. In this section, a set of macros
‘designed to ease assembly language coding is described. Some macros call routines from the set of'_

utility routines described

in Section 7.5.

7.1 CONVENTIONS USED IN MACRO DESCRIPTIONS
In the macro descriptions, the following conventions are used:

1183

A
B

AA + 1

B:B + 1

T™MP

AR

@AR

@AR: @AR + 1

@AR — 1: @AR

AR1
@AR1
ARO
'@ARO
AC

AC low
AC high

@AC

ARP

A previously definedt memory label

Another previously definedt label

Like A, except refers to a double word
Like B, except refers to a double word

A temporary location (previously defined)
Auxiliary register 1 or auxiliary registor 0

Data RAM location pointed to by the selected auxiliary register

' Double word, starting at location pointed to by the selected auxiliary

register

Double word, starting at one before the location pointed to by the oy
selected auxiliary register

Auxiliary register 1

Data RAM location pointed to by AR1
Auxiliary register 0

Data RAM location pointed to by ARO
Accumulator

Low-order 16_ bits of the accumulator

High-order 16 bits of the accumulator

'Data RAM location pointed to by the accumulator

P register
T register

Auxiliary register pointer

Indirect operand

Indirect reference and increment
Indirect reference and decrement

Field f optional (i.e., may be replaced by a null operand)

Constant. (It may be written as C{n< C< m} to indicate a range limit
between n and m. C1 and C2 will be used as constants when two are

required in a description.

menmmdﬂemwdesequmeesforeonmmopusndsmdmwowmds. Memory operands can be confused with
oomtamsunleuthenmrylabels(operandnames)havebeendeﬁnedtottnmmblerpdortomeiruseinamoeall.Thislimimtion

corresponds to the requirement in some higher-level languages like PASCAL that variables be declared prior to their use in expressions.

7.2 MACRO SET SUMMARY
Table 7-1 lists alphabetically all the macros described in Section 7-3.

TABLE 7-1 — MACRO INDEX

MNEMONIC DESCRIPTION PAGE
ACTAR Move Accumulator to Auxiliary Register 7-7
ADAR Add Variable to Auxiliary Register 7-9
ADDX Double-Word Add 7-11
ARTAC Move Auxiliary Register to Accumulator 7-14
BIC Clear Bits in Data Word 7-16
BIS Set Bits in Data Word 7-18
BIT Test Bits in Data Word 7-20
CMP Compare Two Words 7-22
CMPX Compare Two Double Words 7-24
DEC Decrement Word 7-26
DECX Double-Word Decrement 7-28
INC Increment Word 7-31
INCX Double-Word Increment 7-33
LACARY Load Accumulator from Address in ,

Accumulator 7-36
LASH Arithmetic Left Shift 7-38
LASX Double-Word Arithmetic Left Shift 7-40
LAXARY Load Double Word into Accumulator from

Address in Accumulator 7-42
LCAC Load Constant into Accumulator 7-44
LCACAR Load Constant to Accumulator from Program

Address in Accumulator 7-48
LCAR Load Constant into Auxiliary Register 7-50
LCAX Load Double-Word Constant into Accumulator 7-563
LCAXAR Load Double-Word Constant to Accumulator

from Program Memory 7-55
LCP Load Constant into P Register 7-57
LCPAC Load Constant into P Register and

Accumulator 7-59

1183

TABLE 7-1 — MACRO INDEX (CONTINUED)

MNEMONIC DESCRIPTION PAGE
LDAX Load Double Word 7-61
LTK Load Constant into T Register 7-64
MAX Select Maximum of Two Words 7-66
MAXX Select Maximum of Two Double Words 7-68
MIN Select Minimum of Two Words 7-70
MINX Select Minimum of Two Double Words 7-72
MOV Move Word in Data Memory 7-74
MOVCON Move Constants to Data Memory 7-76
MOVDAT Move Words to Data Memory 7-80
MOVE Move Data Array -+ 7-85
MOVROM Move Words to Program Memory 7-90
MOvVX Move Double Word 7-95
NEG Arithmetic Negation 7-98
NEGX Double-Word Arithmetic Negation 7-100
NOT Boolean Not 7-103
RASH Arithmetic Right Shift 7-105
RASX Double-Word Arithmetic Right Shift 7-107
REPCON Move One-Word Constant into Array 7-109
RIPPLE Ripple Data Array One Position 7-111
RLSH Right Logical Shift 7-115
RLSX Double-Word Logical Right Shift 7-117
SACX Store Double Word 7-119
SAT Saturate Data Word between Upper and Lower

Bounds 7-122
SBAR Subtract Variable from Auxiliary Register 7-126
SBIC Clear Single Bit in Data Word 7-129
SBIS Set Single Bit in Data Word 7-131
SBIT Test Single Bit in Data Word 7-133
STOX Convert Single Word to Double Word 7-135
suBX Double-Word Subtract 7-137
TST Test Word 7-140
TSTX Test Double Word. 7-142
XTOS 7-145

1183

Table 7-2 summarizes all the legal parameters of the macros described in Section 7-3.

Convert Double Word to Single Word

7-3

TABLE 7-2 — MACRO SET SUMMARY

MACRO OPERAND 0 OPERAND OPERAND TYPES+. CONSTANT RANGE
INSTRUCTION NUMBER P sizet —
T S | *+]|*_] AC| AR LOWEST HIGHEST
ACTAR 1 X
2 X 1 X temporary
ADAR 1 X
2 1 X -32768 32767
3 X 1 X . temporary
ADDX 1 2 X X X X
ARTAC 1 X
2 X 1 X temporary
BIC 1 1 X X X
2 1 X1 X
BIS 1 1 X| x| x| x
2 1 X1 X
BIT 1 1 X X X X
. 2 1 X1 X| X| X
CMP 1 1 X X X X
) 2 1 X X X X
- CMPX 1 2 X X X X
2 2 X4 X X X
DEC 1 X 1 X X X
2 X X
DECX 1 X 2 X X X X X
INC 1 X 1 X X 4 X
2 X X
INCX 1 X 2 X X]- X X X
LACARY ## 1 X
1 X 0 15
LASH 1 1 X
2 1 X
3 0 15
LASX 1 2 X
2 2 X
3 0 15
LAXARY ## 2 :
LCAC 1 1 X -32768 32767
2 X 0] 15
LCACAR ## 1 X
' 1 X 0 15
2 X 1 X temporary
LCAR 1 X
2 1 X -32768 32767
LCAX 1 2% —-2**31 2**31-1
LCAXAR ## 2 X
1 X 2 X temporary
LCP 1 1 X —-4096 4095
LCPAC 1 1 X —4096 4095
LDAX 1 2 X X X X
LTK 1 1 X —32768 32767
MAX 1 1 X
: 2 1 X
MAXX 1 2 X
2 2 X
MIN 1 1 X
2 1 X
MINX 1 2 X
2 2 X
MoV 1 1 X X X X X
2 1 X X X X X
MOVCON 1 ?
. 2 ? X X X
MOVDAT 1 ? X X X
program — 2 ? X X X
data 3 X -32768 32767
7-4 1183

TABLE 7-2 — MACRO SET SUMMARY (Concluded)

MACRO OPERAND (0] OPERAND OPERAND TYPES# CONSTANT RANGE
INSTRUCTION NUMBER P sizet r :
T) Cl S * | *+] *—| AC| AR LOWEST HIGHEST
MOVE 1 7 X\| X X . g
data — 2 ? X1 X X] .
" data 3 X X -32768 32767
MOVROM 1 ? X| X X i
data — . 2 ? X| X X g
program 3 X X -32768 32767
MOVX 1 2 X X] X| X| X
) 2 2 X x| x| x] X
[NEG 1 1 X | X
NEGX 1 2 X] X] X} X
NOT 1 X 1 X| X X} X| X
RASH 1 1 X
2 1 X :
3 X 0 15
RASX 1 2 X
2 2 X
3 X 0 15
-REPCON 1 X —-32768 32767
2 ? - X
3 X —32768 32767
RIPPLE 1 ? X
2 X -32768 32767
3 X dummy argument
RLSH 1 1 X)
2 1 X
3 X 0 15
RLSX 1 2 ! X
2 2 X .
3 X 0 15
SACX 1 2 X| X| X| X
[SAT 1 1 X
2 1 X1 X -32768 32767
3 1 X | X —32768 . 32767
SBAR 1 X
2 1 X | X -32768 32767
3 X 1 X temporary
SBIC 1 X (o] 15
2 1 X X
SBIS 1 X 0 15
2 1 X | X
[SBIS 1 X 0 15
2 1 X | X
SBIT 1 X (¢} 15
2 1 X| X| X]| X
STOX 1 1 X
. 2 2 X |
SUBX 1 2 X1 X1 X X
TST 1 1 X| X| X} X
TSTX 1 2 X X|] X] X
XTOS 1 2 X
2 1 X
NOTES: - .
1 Blank in size field means that operand is not a data (program) location, but is a field in an instruction (i.e., has no word size).
+cC Constant
S Symbolic address
* *4 *_ |ndirect through the selected address register (ARP)
AC Operand is the AC (usually shown in the instruction as null or blank operand: MOV, A)
AR An address register (ARO or AR1)
$ 32-bit constant expressed as a two-word constant list: (C1,C2)
? Variable length operand (length given by argument 3)

Implied operand 'in accumulator

1183 7-5

7.3 MACRO DESCRIPTIONS

'7-6

Each macro instruction is named, followed by a summary table. A flowchart for clarifying the macro
source then follows and specific examples of all legal forms.

The macros described in this section use a number of assembler symbols for internal purposes
during macro expansion. Most of these internal symbols and any operands the user supplies to the
macros are entered into the assembler symbol table as undefined (unless they are user-defined
already) and will be printed at the end of the assembler printed output as undefined. This is not an
error. Only undefined symbol errors flagged under assembly language statements in the program
listing are actual fatal errors. Only these errors will be tallied in the assembly error count. Undefined
symbols listed after the program are for information only.

1183

ACTAR | Move Accumulator to Auxiligry Register — Macro_ ACTAR

——

TITLE: Move Accumulator to Auxiliary Register
NAME: ACTAR
- OBJ’ECTIVE: Pass data word to named auxiliary register from accumulator

ALGORITHM: (ACC) - temp (XRO)
- (temp) — AR

CALLING
SEQUENCE: ACTAR ARI[,TEMP]

ENTRY
CONDITIONS: AR = 0,1;0< TEMP <127

EXIT
CONDITIONS: Accumulator stored in auxiliary register;
ARP now points to auxiliary register specified

PROGRAM DATA

MEMORY MEMORY
REQUIRED: 3 words REQUIRED: 1 word
STACK EXECUTION
REQUIRED: None TIME: 3 cycles

FLOWCHART: ACTAR

1S
TEMPORARY ASSIGN XRO TO
LOCATION
QCATIO TEMPORARY
SAVE ACC IN —
TEMPORARY

MOVE VALUE FROM
TEMPORARY TO
AUX. REGISTER

)

SET ARP

1183 7-7

"SOURCE:

ACTAR __ACTAR

*MOVE AC TO AR
*

ACTAR $MACRO A,T :
SIF T.L=0 ASSIGN XRO AS TEMP

$ASG 'XRO' TO T.S
SENDIF
SACL :T:,0 STORE AC TO :T:
LAR :A:,:T: RE-LOAD :A:
LARP :A: LOAD AR POINTER
SEND
EXAMPLE 1:
0013 ACTAR ARO
0001 0009 5004" SACL XRO,0 STORE AC TO XRO
0002 000A 3804" LAR ARO,XRO RE-LOAD ARO
0003 000B 6880 LARP ARO LOAD AR POINTER
EXAMPLE 2:
0015 ACTAR O,C
0001 000C 5000" - SACL C,0 STORE AC TO C
0002 000D 3800" LAR O0,C - RE-LOAD 0
0003 OOOE 6880 LARP O LOAD AR POINTER

7-8 | 1183

ADAR Add Variable to A#xiliary Register — Macro | ADAR

TITLE: Add Variable to Auxiliary Register
NAME: ADAR
OBJECTIVE: Add data word to named auxiliary register

ALGORITHM: (AR) + (dma)—>ACC

(ACC) = AR
'CALLING ‘
SEQUENCE: ADAR AR, B [,TEMP]
ENTRY ; |
CONDITIONS: AR =0,1;0<B<127;0<TEMP <127
EXIT ‘
CONDITIONS: Sum of memory location and auxiliary register is stored in named auxiliary
register
PROGRAM o , DATA
MEMORY ’ , MEMORY
.REQUIRED: 5 — 7 words (plus LDAC$ REQUIRED: 2 words
‘ routine) ' ‘ _
STACK E : EXECUTION , ,
REQUIRED: 0 — 2levels : . TIME: 5 —17 cycles
FLOWCHART: ADAR |
THERE A : '
TR HIRSRA I s
‘ ¥
YES
. , SAVE ACC IN
_ o TEMPORARY
sogapee L | .
TEMPORARY - —
‘ STORE TEMPORARY
IN AUXILIARY
2ND ’ cawtcacto | R 5
ARRRNT 5 el L5A colsTANT
LOAD VARIlt\BLE
INTO ACC
|

1183

ADAR

ADAR

~SOURCE:

*ADD TO AR
*

ADAR SMACRO A,B,T

SIF T.L=0
SASG 'XR1!
SENDIF

SAR :A:,

USE XR1 AS TEMP
TO T.S

:T: STORE :A:

$IF B.SA&SUNDF

LCAC :B: LOAD CONST :B: INTO AC
SELSE
LAC :B:,0 LOAD VAR :B: INTO AC
SENDIF
ADD :T:,0 ADD TEMP :T: TO AC
SACL :T:,0 STORE :T:
LAR :A:,:T: LOAD BACK INTO :A:
$END
EXAMPLE 1:
0007 ADAR A,3
0001 0006 3103" SAR A,XR1 STORE A
0002 LCAC 3 LOAD CONSTANT 3 INTO AC
0001 0003 V$1 EQU 3
0002 0007 7EO3 LACK V$1 LOAD AC WITH VS$1
0003 0008 0003" ADD XR1,0 ADD TEMP XR1 TO AC
0004 0009 5003" SACL XR1,0 STORE XR1
0005 000A 3903" LAR A,XR1 LOAD BACK INTO A
EXAMPLE 2:
0009 ADAR ARO,C,B
0001 000B 3008 SAR ARO,B STORE ARO
0002 000C 2004" LAC C,0 LOAD VARIABLE C INTO AC
0003 000D 0008 ADD B,0 ADD TEMP B TO AC
0004 OOOE 5008 SACL B,0 STORE B
0005 00OF 3808 LAR ARO,B LOAD BACK INTO ARO
EXAMPLE 3:
0011 ADAR 0,D
0001 0010 3003" SAR O0,XR1 STORE 0
0002 0011 2005" LAC D,0 LOAD VARIABLE D INTO AC
0003 0012 0003" ADD XR1,0 ADD TEMP XR1 TO AC
0004 0013 5003" SACL XR1,0 STORE XR1

0005 0014 3803"

LAR 0,XR1 LOAD BACK INTO O

1183

AD DX v Double-Word Add — Macro | ADDX

TITLE: Double-Word Add

NAME: ADDX

OBJECTIVE: Add Houble word to accumulator

ALGORITHM: ADDX * —causes— (ACC) + (@AR:@AR+ 1)~ ACC

ADDX*— —causes~ (ACC) + (@AR — 1:@AR) - ACC
- (AR) — 2— AR

ADDX *+ —causes— (ACC) + (@AR:@AR+ 1) —> ACC
: (AR) + 2— AR

ADDXA —causes— (ACC) + (A:A+1)—ACC

CALLING :
SEQUENCE: ADDX {A**-,*+}

ENTRY
CONDITIONS: 0<A<127

EXIT ‘
CONDITIONS: Accumulator contains updated value after addition; auxiliary register is
updated if necessary

PROGRAM DATA

MEMORY MEMORY
REQUIRED: 2 words , REQUIRED: None
STACK . EXECUTION

REQUIRED: None v TIME: 2 cycles

1183 7-11

ADDX

ADDX

FLOWCHART: ADDX

ADD @AR <
AND @?R +1

ADD @AR
AND @AR+1

i

AR = AR+2

IS
ARGUMENT
% ?

ADD @AR
AND @AR-1

ADD A AND A+1

AR = AR-2

SOURCE:

*ADD DOUBLE PRECISION

%
ADDX

SMACRO A ADD DOUBLE PRECISION

$VAR ST, SP,SM

$ASG '*+' TO SP.S

$ASG '*-!' TO SM.S

$ASG '*! TO ST.S

$IF A.SV=ST.SV

ADDH *+ ADD HIGH
ADDS *- ADD LOW '*!
$ELSE :
$IF A.SV=SP.SV

ADDH *+ ADD HIGH
ADDS *+ ADD LOW '*+!
SELSE

$IF ‘A.SV=SM.SV

ADDS *- ADD LOW
ADDH *- ADD HIGH '*-!
$ELSE

ADDH :A: ADD :A: HIGH

ADDS :A:+1 ADD :A: LOW
SENDIF

$ENDIF

SENDIF

$END

7-12

1183

ADDX

EXAMPLE 1:

0011
0001 0006 6007

0002 0007 6108

EXAMPLE 2:

0013 ;
0001 0008 60A8
0002 0009 6198

EXAMPLE 3:
0015

0001 000A 6198
0002 000B 6098
EXAMPLE 4:
0017

0001 000C 6028
‘0002 000D 61A8

ADDX A
ADDH A
ADDS A+l

ADDX *
ADDH *+ .
ADDS *-

ADDX *-
ADDS *-
ADDH *-

ADDX *+
ADDH *+
ADDS *+

" ADD

ADD

ADD
ADD

ADD
ADD

ADD
ADD

_ADDX

A HIGH
A LOW

HIGH
LOW '*!

LOW
HIGH '*-!

HIGH
LOW '*+!

1183

7-13

ARTAC

Move Auxiliary Register to Accurﬁulator — Macro A RTAC

TITLE: Move Auxiliary Register to Accumulator

NAME: ARTAC

OBJECTIVE: Load data from auxiliary register into accumulator

ALGORITHM: (AR)—>temp
(temp) = ACC

CALLING

SEQUENCE: ARTAC ARI[,TEMP]

ENTRY

CONDITIONS: AR =0,1;0<TEMP< 127

EXIT

CONDITIONS: Accumulator contains same value as auxiliary register

PROGRAM
MEMORY
REQUIRED: 2 words

STACK
REQUIRED: None

DATA

MEMORY
REQUIRED: 1 word
EXECUTION

TIME: 2 cycles

FLOWCHART: ARTAC

7-14

IS
TEMPORARY
DESIGNATED ?

ASSIGN XRO AS
TEMP LOCATION

STORE AUXILIARY
REGISTER IN
TEMPORARY

'

LOAD TEMPORARY
INTO ACC

1183

ARTAC - - ARTAC

SOURCE:

:copy AR TO AC
ARTAC S$MACRO A,T

$IF T.L=0 USE XRO AS TEMP
$ASG 'XRO' TO T.S
$ENDIF
SAR :A:,:T: SAVE :A:
LAC :T:,0 LOAD INTO AC
$END
EXAMPLE 1:
0013 ARTAC ARO
0001 0008 3004" SAR ARO,XRO SAVE ARO
0002 0009 2004" LAC XRO,0 LOAD INTO AC
EXAMPLE 2:
0014 - kK
0015 : ARTAC O,C
0001 000A 3000" SAR 0,C SAVE 0

0002 000B 2000" Lac c,0 LOAD INTO AC

183 ' 7-15

BIC

BIC Clear Bits in Data Word — Macro
TITLE: Clear Bits in Data Word
NAME: BIC

OBJECTIVE: = Clear bits in data word specified by one bit in mask

ALGORITHM: (data) .AND. .NOT. (mask) - data

CALLING
SEQUENCE: BIC mask,data
ENTRY
CONDITIONS: 0 < mask < 127;0 < data< 127
EXIT

- CONDITIONS: Data word contains initial value with specified bits cleared
PROGRAM - DATA
MEMORY MEMORY
REQUIRED: 4 words REQUIRED: 1 word
STACK ' EXECUTION
REQUIRED: None o TIME: 4 cycles

FLOWCHART: BIC

‘ BEGIN ’

y
LOAD MASK INTO
ACC

|
INVERT
MASK
]

AND ACC WITH
DATA

'

RESTORE DATA
WORD

SOURCE:

:BIT CLEAR - CLEAR BITS IN B WHERE A HAS ZEROS

BIC SMACRO A,B BIT CLEAR
LAC :A:,0 LOAD :A:

7-16

1183

BIC BIC
¢ XOR MINUS INVERT MASK
AND :B: "AND :B:
SACL. :B:,0 SAVE RESULT IN
SEND
EXAMPLE 1:
0014 ‘ BIC B,A :
0001 000A 2008 LAC B,0 LOAD B
0002 000B 7803" XOR MINUS ~ INVERT MASK
0003 000C 7901 AND A " AND A
0004 000D 5001 SACL A,0 SAVE RESULT IN A
EXAMPLE 2:
0016 , BIC D,C §
0001 OOOE 2001" LAC D,O0 LOAD D -
0002 O0OOF 7803" XOR MINUS INVERT MASK
0003 0010 7900" AND C AND C
0004 0011 5000" SACL C,0 SAVE RESULT IN C
EXAMPLE 3:
0018 BIC D,A
0001 0012 2001" Lac D,0 LOAD D
0002 0013 7803" XOR MINUS INVERT MASK
0003 0014 7901 AND A AND A o
0004 0015 5001 SACL A,0 SAVE RESULT IN A

1183

747

BIS

Set Bits in Data Word ’— Macro _ Bls

TITLE:
NAME:

OBJECTIVE:

Set Bits in Data Word
BIS

Set bits in data word specified by one bit in mask

ALGORITHM: (data) .OR. (mask) —> data

CALLING _
SEQUENCE: BIS mask,data
ENTRY
CONDITIONS: 0 < mask € 127; O € data < 127
EXIT
CONDITIONS: Data word contains initial value with specified bits set
PROGRAM DATA
MEMORY MEMORY
REQUIRED: 3 words REQUIRED: None
STACK EXECUTION
REQUIRED: None TIME: 3 cycles
FLOWCHART: BIS
LOAD ACC WITH
MASK
|
OR MASK WITH
DATA
)
RESTORE DATA WORD
TO MEMORY

SOURCE:

:SET BITS IN B CORRESPONDING TO ONES IN A

BIS

SMACRO A,B BIT SET

LAC :A:,0 LOAD :A:

OR :B: OR WITH :B:
SACL :B:,0 SAVE BACK TO :A:
SEND

7-18

1183

BIS - BIS

EXAMPLE 1:

0014 ' BIS B,A

0001 000A 2008 LAC B,0 , LOAD B

0002 000B 7A01 OR A OR WITH A

0003 000C 5001 SACL A,0 SAVE BACK TO B

EXAMPLE 2;

0016 - BIS D,C *
0001 000D 2001" LAC D,0 LOAD D

0002 000OE 7A00" OR C OR WITH C

0003 000F 5000" SACL C,0 SAVE BACK TO D

183 : 7-19

BIT Test Bits in Data Word - Macro BIT

TITLE: Test Bits in Data Word
NAME: BIT
OBJECTIVE: Test bits in data word specified by one bit in mask

ALGORITHM: (data) .AND. (mask) = ACC

CALLING :
SEQUENCE: BIT mask,data

ENTRY
CONDITIONS: 0< mask< 127;0 <data< 127

EXIT
CONDITIONS: ACC contains zero if no bits of mask are set in data word: any bits masked
that are set in data word will be setin ACC

PROGRAM DATA

MEMORY X MEMORY
REQUIRED: 2 words REQUIRED: None
STACK EXECUTION
REQUIRED: None TIME: 2 cycles

FLOWCHART: BIT
LOAD MASK INTO
ACC

'

AND ACC WITH
DATA WORD

SOURCE:

*BIT TEST - BITS IN B TESTED BY MASK IN A
*

BIT SMACRO A,B BIT TEST
LAC :A:,0 LOAD :A:, MASK
AND = :B: AND WITH :B:
$END

7-20 1183

BIT | BIT

EXAMPLE:

0014 . BIT B,A
0001 000A 2008 LAC B,0 LOAD B, MASK

0002 000B 7901 AND A AND WITH A

1183 : | 7-21

CM P - Compare Two Words — Macro. | CM P

TITLE: Compare Two Words

NAME: CmP

OBJECTIVE: Load word into accumulator; then subtract the other word, allowing
comparison

ALGORITHM: CMPXA,B —causes— (A) — (B)—>ACC

CALLING
SEQUENCE: CMP {A,**— *+},{B**- *+}

ENTRY
CONDITIONS: 0<A<127;0<B<127

EXIT
CONDITIONS: Accumulator contains value of second word subtracted from the first
word; auxiliary register is updated if necessary

PROGRAM DATA

MEMORY MEMORY
REQUIRED: 2 words REQUIRED: None
STACK EXECUTION
REQUIRED: None TIME: 2 cycles

- FLOWCHART: CMP

LOAD ACC WITH 1ST
WORD

v

SUBTRACT 2ND
WORD

SOURCE:

*COMPARE A TO B
*

CMP SMACRO A,B COMPARE
LAC :A:,0 - LOAD :A:
SUB :B:,0 SUBTRACT :B:

7-22 " 1183

CMP | \ CMP
 EXAMPLE 1: | ‘
0007 | CMP - AB

0001 0006 2001 LAC A,0 LOAD A
0002 0007 1008 SUB B.0 SUBTRACT B
EXAMPLE 2:

0009 | CMP *,B

0001 0008 2088 LAC *,0 LOAD *
0002 0009 1008 SUBE B.0 SUBTRACT B
EXAMPLE 3:

0011 CMP C,*+

0001 000A 2004" LAC C,0 LOAD C
0002 000B 10A8 SUB *+.0 SUBTRACT *+
EXAMPLE 4:

0013 cMp K %

0001 000C 2088 LAC *,0 LOAD *
0002 000D 1088 SUB *.0 SUBTRACT *

1183 ' 7-23

CMPX = Comp;r; Two Double Words — Macro | CM PX

TITLE: Compare Two Double Words

NAME: CMPX

OBJECTIVE: Load double word into accumulator; ther subtract the other doublé word,
allowing comparison '

ALGORITHM: CMPXA,B —causes—~ (A:A+1) - (B:B +1) = ACC

CALLING
SEQUENCE: CMPX {A**—,*+},{B,**~,*+}

ENTRY
" CONDITIONS: 0<A<127;0<B<127

EXIT
CONDITIONS: Accumulator contains value of second double word subtracted from the
first‘double word; auxiliary register is updated if necessary.

PROGRAM - ' DATA

MEMORY MEMORY
.REQUIRED: 4 words REQUIRED: None
STACK EXECUTION

REQUIRED: None TIME: 4 cycles

FLOWCHART: CMPX

SUBTRACT 2ND
DOUBLE WORD
FROM ACC

SOURCE:

*COMPARE A TO B, DOUBLE
*

CMPX SMACRO A,B COMPARE DOUBLE
LDAX :A: LOAD DOUBLE :A:
SUBX :B: SUBTRACT DOUBLE :B:

SEND

. 7'24 1183

.CMPX

EXAMPLE 1:

0011
0001
0001
0002
0002
0001
0002

0006 6507
0007 6108

0008 6209
0009 630A

EXAMPLE 2:

- 0013
0001
0001
0002
0002
0001
0002

000A 6500"
000B 6101"

000C 6228
000D 6398

| EXAMPLE 3:

0015
0001
0001
0002
0002
0001
0002

O0OE 6698
000F 6098

0010 6202"
0011 6303"

EXAMPLE 4:
0017

0001
0001
0002
0002
0001
0002

0012 65A8
0013 61A8

0014 62A8,
0015 6328

EXAMPLE 5:

0019
0001
0001
0002
0002
0001
0002

0016 6698
0017 609&

0018 6398
0019 6298

CMPX A,B

LDAX A
ZALH A
ADDS A+l

SUBX B
SUBH B
SUBS B+l

CMPX C,*
LDAX C
ZALH C
ADDS C+1
SUBX *
SUBH *+
SUBS *=-

CMPX *-,D
LDAX *-
ZALS *-
ADDH *-
SUBX D
SUBH D
SUBS D+1

CMPX *+,%*+
LDAX *+
ZALH *+
ADDS *+.
SUBX *+
SUBH *+
SUBS *+

CMPX *;,*-

LDAX *-
ZALS *-
ADDH *-
SUBX *-
SUBS *-
SUBH *-

LOAD DOUBLE A
LOAD HIGH A

LOAD LOW A
SUBTRACT DOUBLE B
SUBTRACT HIGH
SUBTRACT LOW

LOAD DOUBLE C
LOAD HIGH C

LOAD LOW C
SUBTRACT DOUBLE *
SUBTRACT HIGH
SUBTRACT LOW

LOAD DOUBLE *-
LOAD LOW

LOAD HIGH '*-!'
SUBTRACT DOUBLE D
SUBTRACT HIGH
SUBTRACT LOW

LOAD DOUBLE *+
LOAD HIGH

LOAD LOW '*+!
SUBTRACT DOUBLE *+
SUBTRACT HIGH
SUBTRACT LOW

LOAD DOUBLE *-
LOAD LOW

LOAD HIGH '*-!
SUBTRACT DOUBLE *-
SUBTRACT LOW
SUBTRACT HIGH

CMPX

1183

7-25

'DEC

Decrement Word — Macro

DEC

<

7-26

TITLE: Decrement Word -
NAME: DEC
OBJECTIVE: Decrement word or accumulator
ALGORITHM: DEC - causes—> (ACC) — 1= ACC
DEC A —causes— (A) — 1= (A)
DEC ,AR —causes— (AR) — 1> AR
CALLING
SEQUENCE: DEC [All,AR]
ENTRY
CONDITIONS: 0<A<127; AR =0,1
BT
CONDITIONS: Specified word or auxiliary register is decremented; auxiliary register
pointer will point to specified auxiliary register
- PROGRAM DATA
'MEMORY : MEMORY
REQUIBED: 1 — 3 words REQUIRED: 1 word
- STACK : EXECUTION ,
REQUIRED: None o TIME: 1 — 3 cycles
' FLOWCHART: DEC
THERE
OAASR™ ASATA
GIVEN ?
l o
POINT TO AUX.
A REGISTER oy G SPECIFIED.
GIVEN 7.
J 'NO ‘
, SUBTRACT ONE
- SURRAREN “FROMAce ™ || FROMAUXiLiARY

’) .

1183

 DEC 7 | __ DEC

SOURCE:

*DECREMENT THE _ACCUMULATOR, AN AUXILIARY
*REGISTER, OR MEMORY
* .

DEC ~ $MACRO A,B DECREMENT
$IF A.L=0
$IF B.L=0 _
SUB ONE,O0 DECREMENT AC
$ELSE ,
LARP :B: LOAD ARP WITH :B:
MAR *- DECREMENT
SENDIF
SELSE.
LAC :A:,0 LOAD :A:
SUB ONE,O DECREMENT
SACL :A:,0 SAVE :A:
SENDIF - .
SEND
EXAMPLE 1:
0007 . DEC A
0001 0006 2001 LAC A,0 . LOAD A
0002 0007 1000" SUB ONE,O DECREMENT
0003 0008 5001 SACL R,0 SAVE A
EXAMPLE 2:
0009 DEC ,A
0001 0009 6881 LARP A LOAD ARP WITH A
0002 000A 6898 MAR *- DECREMENT
EXAMPLE 3:
0011 | DEC . ,
0001 OOOB 1000" . SUB ONE,0" DECREMENT THE ACCUMULATOR
EXAMPLE 4: |
0015 DEC ,ARO
0001 OOOF 6880 LARP ARO LOAD ARP WITH ARO
0002 0010 6898 MAR *- DECREMENT

7-27

DECX

Double-Word Decrement — Macro ‘ DECX

TITLE: Double-Word Decrement
NAME: DECX
OBJECTIVE: Decrement double word or accumulator
ALGORITHM: DECX* —causes—> (@AR:@AR+1) — 1 = @AR:@AR+1
DECX* - —causes> (@AR- 1:@AR) — 1— @AR - 1:@AR
(AR) — 2= AR
DECX*+ —causes> (@AR:AR:@AR+1) — 1— @AR:@AR+1
(AR) + 2—> AR
- DECX A —causes—~> (A:A+1) - 1—A:A+1
DECX —causes—~ (ACC) - 1—=ACC
CALLING
SEQUENCE: DECX[A,**—,*+]
ENTRY
CONDITIONS: 0<A<127
EXIT -
CONDITIONS: Specified double word is decremented;
auxiliary register is updated as necessary
PROGRAM DATA
MEMORY MEMORY
REQUIRED: 1 — B words REQUIRED: 1 word
‘STACK EXECUTION
REQUIRED: None TIME: 1 — 5 cycles

7-28

1183

DECX | _DECX

FLOWCHART: DECX

IS
DECREMENT THERE
ACC < ARGUMENT ?
' DECREMENT
@AR AND
)
1 “ear+1
DECREMENT
@AR AND
@AR+1
9
DECREMENT AR = AR+2 .
AAND A+1 v -
SOURCE:
*DECREMENT DOUBLE
*
DECX SMACRO A DECREMENT DOUBLE

$VAR ST,SP,SM

$ASG '*+' TO SP.S
$ASG '*-' TO SM.S
$ASG '*' TO ST.S

$IF A.L=0 ,
SUB ONE,O DECREMENT AC
$ELSE

$IF A.SV=SM.SV

ZALS *-

ADDH *+ LOAD '*-!
SUB ONE,O DECREMENT
SACX *- SAVE '*-!
$ELSE :
$IF A.SV=SP.SV

LDAX * LOAD '*!
SUB ONE,O DECREMENT
SACX *+ SAVE '*4!

1183 . ' ‘ 7-29

 DECX

DECX
SELSE : .
$IF A.SV=ST.SV
LDAX * : LOAD !'*! .
SUB " ONE,O0 DECREMENT
SACX * SAVE '*!
SELSE
LDAX :A: LOAD :A:
SUB ONE,O DECREMENT
SACX :A: SAVE :A:
SENDIF
SEND
EXAMPLE 1:
0011 DECX A
0001 LDAX A LOAD A
0001 0006 6507 ZALH A LOAD HIGH A
0002 0007 6108 ADDS A+l LOAD LOW A
0002 0008 1004" SUB ONE,O0 DECREMENT
0003 SACX A SAVE A
0001 0009 5807 SACH A,0 STORE HIGH
0002 000A 5008 SACL A+1,0 STORE LOW
- EXAMPLE 2:
0013 DECX *
0001 LDAX * LOAD '*!
0001 OOOB 65A8 ZALH *+ LOAD HIGH
0002 000C 6198 ADDS *- LOAD LOW '*!
0002 000D 1004" SUB ONE,O0 DECREMENT
0003 R SACX * ’ SAVE '*!
0001 OOOE 58A8 SACH *+,0 STORE HIGH
0002 OOOF 5098 SACL *-,0 STORE LOW
EXAMPLE 3:
0015 , - DECX *-
0001 0010 6698 ZALS *-
0002 0011 60A8 ADDH . *+ LOAD '*-!
0003 0012 1004 . SUB ONE,O DECREMENT
0004 SACX *- SAVE '*-!
0001 0013 5098 SACL *-,0 STORE LOW
0002 0014 5898 SACH *-,0 STORE HIGH
EXAMPLE 4:
0017 DECX *+
0001 LDAX * LOAD '*!
0001 0015 65A8 ZALH *+ LOAD HIGH ;
0002 0016 6198 ADDS *- LOAD LOwW '*!
0002 0017 1004" SUB ONE,O DECREMENT
0003 ° SACX *+ SAVE '*4!
0001 0018 58A8 SACH *+,0 STORE HIGH
0002 0019 50A8 SACL *+,0 STORE LOW
" 'EXAMPLE 5:
0019) DECX
0001 001A 1004" SUB ONE,O DECREMENT AC

7-30

1183

. INC . E . Increment Word — Macro o INC

TITLE: ~ Increment Word

NAME: ~ INC

oBJ ECTIVE: Increment word or accumulator

ALGORITHM: INC —causes— (ACC) + 1—>ACC
| INCA —causes— (A) + 1~ (A)

INC ,AR —causes— (AR) + 1= AR

CALLING
SEQUENCE: INC [Al[,ARI]

" ENTRY . o
CONDITIONS: 0<A<127; AR =0,1

EXIT |
CONDITIONS: Specified word or auxiliary register is incremented; auxiliary register
pointer specifies the named auxiliary register

PROGRAM . ' DATA

- MEMORY | MEMORY |

"REQUIRED: 1 - 3words REQUIRED: 1 word
-STACK - EXECUTION

REQUIRED: None o , TIME: 1 — 3cycle

"~ FLOWCHART: INC

IS
- THERE

"LOAD ACC WITH A1ST =
ARGUMENT ?

VARIABLE

IS
THERE

ASND POINT TO AUX. -
ARGUMENT ?

,ADDAOCbéE TO REG. SPECIFIED
BY 2ND ARGUMENT

] © 1

SAVE ACC IN ADD ONE TO ADD ONE TO
VARIABLE ACC : AUX. REGISTER

-

1183 » | - I 7-31

INC

INC

SOURCE:

*INCREMENT AC, AR, OR MEM

*

INC $MACRO A,B INCREMENT
$IF A.L=0
$IF B.L=0
ADD ONE,O INCREMENT AC
SELSE
LARP :B: LOAD ARP WITH :B:
MAR *+ INCREMENT
SENDIF
SELSE
LAC :A:,0 LOAD :A:
ADD ONE,O0 INCREMENT
SACL :A:,0 SAVE :A:
SENDIF '
SEND
EXAMPLE 1:
0007 INC A
0001 0006 2001 LAC A,0 LOAD A
0002 0007 ooOO" ADD ONE,O INCREMENT
0003 0008 5001 SACL A,0 SAVE A
EXAMPLE 2
0009 INC ,AR1
0001 0009 6881 LARP ARl LOAD ARP WITH ARl
0002 0O00OA 68A8 MAR *+ - INCREMENT
EXAMPLE 3:
0011 INC
0001 000B OOOO" ADD ONE,O INCREMENT
EXAMPLE 4:
0015 INC ,ARO
‘0001 OOOF 6880 LARP ARO LOAD ARP WITH ARO
0002 0010 68A8 MAR *+ INCREMENT

7-32

1183

INCX Double-Word Increment — Macro | _ - lNCX

TITLE: Double-Word Increment
NAME: INCX
OBJ ECTIVE: Incrément double word or accumulator

'ALGORITHM: INCX* —causes—™ (@AR:@AR+1) + 1= @AR:@AR+1

INCX*— —causes~> (@AR —1:@AR) + 1>@AR-1: @A
(AR) — 2—> AR

INCX*+ —causes~> (@AR:@AR+1) + 1~ @AR:@AR+1
(AR) + 2~ AR ‘

INCXA —causes™ (A:A+1) + 1> AA+1

INCX ~—causes> (ACC) + 1—>ACC

CALLING
SEQUENCE: INCX[A,**—,*+]

'ENTRY |
CONDITIONS: 0<A< 127

EXIT | |
" CONDITIONS: Specified double word is incremented;
auxiliary register is updated as necessary

PROGRAM DATA
MEMORY v : MEMORY

~ REQUIRED: 1 — 5words REQUIRED: 1 word
STACK EXECUTION

REQUIRED: None TIME: 1 — Bcycles

1183 7-33

INCX INCX

FLOWCHART: INCX

IS
THERE
AN
ARGUMENT ?

INCREMENT g NO
ACC

INCREMENT
@AR AND
@AR-1
AR = AR-2 INCREMENT
1 “@ArR+1
INCREMENT
@AR AND
@AR +1
9
INCREMENT AR = AR+2
A AND A +1

SOURCE:

*INCREMENT DOUBLE
*

INCX SMACRO A INCREMENT DOUBLE
_$VAR ST,SP,SM
$ASG '*+' TO SP.S
SASG '*-!' TO SM.S
SASG '*' TO ST.S

$IF A.L=0

ADD ONE,O INCREMENT AC
SELSE

$IF A.SV=SM.SV

ZALS *-

ADDH *+ LOAD '*-!
ADD ONE,O INCREMENT
SACX *- SAVE '*-!
$ELSE

$IF A.SV=SP.SV

LDAX * LOAD '*!
ADD ONE,O INCREMENT
SACX *+ SAVE '*4!

7-34 1183

INCX INCX
. SELSE

$IF A.SV=ST.SV ‘

LDAX * LOAD '*!

ADD ONE,O INCREMENT

SACX * SAVE '*!

$ELSE

LDAX :A: LOAD :A:

ADD ONE,O INCREMENT

SACX :A: -SAVE :A:

SENDIF

'$END
EXAMPLE 1:
0011 INCX A
0001 LDAX A LOAD A
0001 0006 6507 ZALH A LOAD HIGH A
0002 0007 6108 ADDS A+l LOAD LOW A
0002 0008 0004" ADD ONE,O INCREMENT
0003 SACX A SAVE A
0001 0009 5807 SACH A,0 STORE HIGH
0002 000A 5008 SACL A+1,0 STORE LOW
EXAMPLE 2:
0013 INCX *
0001 LDAX * LOAD '*!
0001 000B 65A8 ZALH *+ LOAD HIGH
0002 000C 6198 ADDS *- LOAD LOW '*!
0002 000D 0004" ADD ONE,O INCREMENT
0003 SACK * SAVE '*!
0001 OOOE 58A8 SACH *+,0 STORE HIGH
0002 O0OF 5098 SACL *-,0 STORE LOW
EXAMPLE 3:
0015 INCX *-
0001 0010 6698 ZALS *-
0002 0011 60A8 ADDH *+ LOAD '*-!
0003 0012 0004" ADD ONE,O INCREMENT
0004 SACX *- SAVE '*-!
0001 0013 5098 SACL *-,0 STORE LOW
0002 0014 5898 SACH *-,0 STORE HIGH
EXAMPLE 4:
0017 INCX *+
0001 LDAX * LOAD '*!
0001 0015 65A8 ZALH *+ LOAD HIGH
0002 0016 6198 ADDS *- LOAD LOW '*!
0002 0017 0004" ADD ONE,O INCREMENT
0003 SACX *+ SAVE !'*+!
0001 0018 58A8 SACH *+,0 STORE HIGH
0002 0019 50A8 SACL *+,0 STORE LOW
EXAMPLE 5:
0019 INCX
0001 001A 0004" ADD ONE,O INCREMENT AC

7-35

LACARY | from Addrel-:sa?nlxz::lrr:ﬂ:gr — Macro LACARY

TITLE: Load Accumulator from Address in Accumulator
NAME: LACARY

OBJECTIVE: Load accumulator from array in data RAM:; the address of the data RAM
location is in the accumulator; the data will be left-shifted in the
accumulator

ALGORITHM: (ACC)— AR1
(@AR1) * 2shift— ACC

CALLING
SEQUENCE: LACARY [shift]

ENTRY

CONDITIONS: 0 <shift< 16;0< (ACC)< 143

EXIT

CONDITIONS: Data RAM location pointed to by accumulator is stored in the
accumulator; AR1 is overwritten

PROGRAM DATA
MEMORY MEMORY
REQUIRED: 4 words REQUIRED: 1 word

STACK EXECUTION
REQUIRED: None TIME: 4 cycles

FLOWCHART: LACARY

LOAD ARRAY
POINTER INTO AUX.
REGISTER

IS A

’ LOAD ACC
SHIFT w
SPEGIFIED ? ITHOUT SHIFT

LOAD ACC
WITH SHIFT

END

7-36 _ 1183

LACARY _ | | | LACARY

SOURCE:

*LOAD AC FROM ADDRESS IN AC
*

LACARY SMACRO A

ACTAR ARl AC TO AR1

SIF A.L=0 :

LAC *,0 -LOAD

SELSE

LAC *,:A: LOAD AND SHIFT

SENDIF

SEND

EXAMPLE 1:

0011 LACARY 8
0001 ACTAR AR1 AC TO ARl
0001 0006 5006" SACL XRO,0 STORE AC TO XRO
0002 0007 3906" LAR AR1,XRO RE-LOAD ARl
0003 0008 6881 LARP ARl LOAD AR POINTER
0002 0009 2888 LAC *,8 LOAD AND SHIFT
EXAMPLE 2:
0013 LACARY
0001 ACTAR AR1 AC TO AR1
0001 000A 5006" © SACL XRO,0 STORE AC TO XRO
0002 000B 3906" LAR AR1,XRO RE-LOAD ARl
0003 000C 6881 LARP AR1 LOAD AR POINTER
0002 000D 2088 LAC *,0 LOAD

1183 7-37

LAS H Arithmetic Left Shift — Macro LAS H

TITLE: Arithmetic Left Shift

NAME: LASH

OBJECTIVE: Move word from one data location to another with an arithmetic left shift

ALGORITHM: (A) * 2shift—>B

CALLING

SEQUENCE: LASH A, B,shift

ENTRY

CONDITIONS: 0<A<127;0<B<127;0<shift< 16

EXIT

CONDITIONS: B contains the shifted value of A

PROGRAM DATA

MEMORY MEMORY
REQUIRED: 2 words REQUIRED: None
STACK EXECUTION
REQUIRED: None TIME: 2 cycles

FLOWCHART: LASH

LOAD ACC WITH
A, SHIFTED N

'

SAVE ACC AT
LOCATION B

SOURCE:

*MOVE A TO B (SINGLE-VAR) WITH N (CONST) BIT
*LEFT ARITHMETIC SHIFT
*

LASH S$MACRO A,B,N MOVE WITH LEFT ARITH. SHIFT
LAC :A:,:N: LOAD :A: LEFT SHIFT
SACL :B:,0 STORE TO :B:
SEND

7-38

1183

LASH

LASH

- EXAMPLE:

-0013
0001 0008 2507
0002 0009 5008

LASH A,B,5
LAC A,5
SACL B,0

LOAD A LEFT SHIFT
STORE TO B

1183

7-39

LASX Double-Word Arithmetic Left Shift — Macro : LASX

TITLE: Double-Word Arithmetic Left Shift
NAME: LASX

OBJECTIVE: Move double word from one data location to another in data memory with
left shift

ALGORITHM: (A:A + 1) * 2shift—=B:B + 1

CALLING

SEQUENCE: LASX A,B,shift

ENTRY

CONDITIONS: 0<A<126;0<B<126;0<shift< 16

EXIT) \

CONDITIONS: B:B + 1 contains shifted value of A:A + 1

PROGRAM DATA

MEMORY MEMORY
REQUIRED: 8 words REQUIRED: 1 word
STACK EXECUTION
REQUIRED: None TIME: 8 cycles

‘ FLOWCHART: LASX

LOAD ACC WITH
A+1, SHIFTED N

'

SAVE ACC LOW IN
B+1; SAVE ACC
HIGH IN B

ZERO SIGN-EX-
TENDED BITS IN B

)

ADD A, SHIFTED N
TOB

7-40) 1183

SOURCE:

LASX R _ LAsX

‘I*MOVE A TO B (DOUBLE VAR) WITH N (CONST) BIT
*LEFT ARITHMETIC SHIFT
* .

LASX S$MACRO A,B,N MOVE DOUBLE WITH ARITH. SHIFT
LAC :A:+1,:N: LOAD LOW, SHIFT LEFT

SACL :B:+1,0 SAVE IN LOW
SACH :B:,0 SAVE HIGH OVERFLOW
LAC MINUS,:N: GET MASK
NOT
AND :B: TAKE SIGNIFICANT BITS
ADD :A:,:N: ADD IN SHIFT HIGH PART
SACL :B:,0 SAVE HIGH
SEND
EXAMPLE:
0011 LASX A,B,3 »
0001 0006 2308 LAC 2+1,3 LOAD LOW, SHIFT LEFT
0002 0007 500A SACL B+1,0 SAVE IN LOW
0003 0008 5809 SACH B,0 SAVE HIGH OVERFLOW
0004 0009 2305" LAC MINUS,3 GET MASK
0005 _ NOT
0001 O00A 7805" XOR MINUS INVERT
0006 O00B 7909 AND B TAKE SIGNIFICANT BITS
0007 000C 0307 ADD A,3 ADD IN SHIFT HIGH PART
0008 000D 5009 SACL B,0 SAVE HIGH

1183 74

LAXARY lonipostotos o peomusr | Ay p Ry

TITLE: Load Double Word into Accumulator from Address in Accumulator
NAME: LAXARY
OBJECTIVE: Load accumulator from double-word array in data RAM; the address of

the first RAM location is in the accumulator
ALGORITHM: (ACC)- AR1

(@AR1) = ACC high

(@AR1 + 1) = ACC low
CALLING
SEQUENCE: LAXARY
ENTRY
CONDITIONS: 0<(ACC)< 143
EXIT
CONDITIONS: Double word pointed to by accumulator is stored in the accumulator: AR1

is overwritten
PROGRAM DATA
MEMORY MEMORY
REQUIRED: 5 words REQUIRED: 1 word
STACK EXECUTION
REQUIRED: None TIME: 5 cycles
FLOWCHART: LAXARY

LOAD ARRAY
POINTER INTO AUX.
REGISTER
]
LOAD DOUBLE
WORD INTO ACC
END
SOURCE:

*LOAD DOUBLE AC FROM ADDRESS IN AC
*

LAXARY $MACRO
ACTAR AR1 AC TO AR1
LDAX *+ LOAD DOUBLE
SEND

7-42

1183

LAXARY LAXARY
EXAMPLE:
0011 LAXARY
0001 . ACTAR ARl AC TO ARl
0001 0006 5006" SACL XRO,0 STORE AC TO XRO
0002 0007 3906" LAR AR1,XRO RE-LOAD ARl
0003 0008 6881 LARP ARl . LOAD AR POINTER
0002 LDAX *+ LOAD DOUBLE
0001 0009 65A8 ZALH *+ LOAD HIGH
0002 O00A 61A8 ADDS *+ LOAD LOW ‘'*+!

1183

7-43

LCAC

Load Constant into Accumulator — Macro

LCAC

TITLE: Load Constant into Accumulator
NAME: LCAC
OBJECTIVE: Move constant value into accumulator with possible left shift
ALGORITHM: Constant— ACC

if shift = (ACC) =

temp * 2shift—= ACC

CALLING
SEQUENCE: LCAC constant,shift,temp
ENTRY
CONDITIONS: —32768 < constant < 32767; 0 < shift < 16;

0<temp<127
EXIT
CONDITIONS: Accumulator contains value of the constant
PROGRAM DATA
MEMORY MEMORY
REQUIRED: 1 — 5words + LDACS routine REQUIRED: 0 - 2 words
STACK EXECUTION

2 levels with LDAC$ TIME: 1 — 15 cycles

- REQUIRED:
7

7-44

1183

LCAC | | LCAC

FLOWCHART: LCAC

BEGIN

YES CONSTANT
A RELOCATABLE
ADDRESS ?
NO
IS
CONSATANT YES BUILD EQU
NUMBER ? STATEMENT
NO
VAL{?E OF
YES LOAD ACC
CONSTANT
<O 'AND IMMEDIATE
<256 ?
NO
. , CALL LDACS$ TO
et LOAD CONSTANT
INTO ACC
USE XRO AS
TEMPORARY

SAVE ACC IN

TEMPORARY

]

RELOAD TEMPORARY
WITH SHIFT

. 7-45

LCAC

SOURCE:

*

*LOAD CONSTANT TO AC
* LCAC A

* LCAC A,B

: LCAC A,B,T

LCAC $MACRO A,B,T
$IF A.SA&SREL
CALL LDACS

REF LDACS

DATA :A:

$ELSE

SIF A.SA&S$SUNDF
SVAR L,Q

SASG '$SLAB' TO

LOAD CONSTANT A
LOAD CONSTANT A, SHIFTED B, USE TEMP XRO
LOAD CONSTANT A, SHIFTED B, USE TEMP T

LOAD AC WITH:
:A:

L.S

$ASG L.SV+1 TO L.SV

V$:L.SV: EQU :A:

$ASG 'VS$' TO Q.S

SASG :Q.S::L.SV

: TO A.S

SENDIF .
SIF (A.SV(ZSG)&(A.SV>-1)
LACK :A: LOAD AC WITH :A:
SELSE
CALL LDACS LOAD AC WITH:)
REF LDACS
DATA :A: :A:
SENDIF
SENDIF
$IF B.L#=0
S$IF (B.V>0)
SIF T.L=0 XRO AS TEMP
SASG 'XRO' TO T.S
SENDIF
SACL :T:,0 STORE UNSHIFTED CONSTANT
LAC :T:,:B: LOAD SHIFTED
SENDIF
SENDIF
SEND
EXAMPLE 1:
0012 LCAC 1,5
0001 0001 V$2 EQU 1
0002 0007 7EO01 LACK V§$2 LOAD AC WITH V$2
0003 0008 5003" SACL XRO,0 STORE UNSHIFTED CONSTANT
0004 0009 2503" LAC XRO,S5 LOAD SHIFTED
EXAMPLE 2:
0014 LCAC 128,0
0001 0080 V$3 EQU 128
0002 000A 7E80 LACK V$3 LOAD AC WITH VS3

EXAMPLE 3:

0018

0001 FC18

0002 OOOE F800
000F 0000

7-46

LCAC -1000,5

V$5 EQU -1000

CALL LDACS LOAD AC WITH:

LCAC

LCAC

0003

0004 0010 FC18
0005 0011 5003"
0006 0012 2503"

EXAMPLE 4:

0022

0001 0016 7EO07
0002 0017 5008
0003 0018 2608

REF LDAC$
DATA V$5

SACL XRO,0
LAC XRO,5

LCAC A,6,B
LACK A
SACL B,0
LAC B,6

v$5
STORE UNSHIFTED CONSTANT
LOAD SHIFTED

LOAD AC WITH A
STORE UNSHIFTED CONSTANT
LOAD SHIFTED

1183

7-47

L CA CA R from I;::gr Esosnisnt aAn(t:::mAu(;::‘OTu'—a tol\;lacro L CA CA R

TITLE: Load Constant to Accumulator from Program Address in Accumulator

NAME: LCACAR

OBJECTIVE: Load accumulator from array in program RAM; the address of the
program ROM location is in the accumulator; the data will be left-shifted
in the accumulator

ALGORITHM: ~ (@ACC) - temp
(temp) * 2shift - ACC

CALLING
SEQUENCE: LCACARICI[, TEMP]

ENTRY
CONDITIONS: 0 < shift< 16; 0 < TEMP < 127; 0 < (ACC) < 4095

EXIT
CONDITIONS: Program ROM location pointed to by accumulator is stored in the
: accumulator

PROGRAM : DATA

MEMORY MEMORY
REQUIRED: 2 words REQUIRED: 1 word
STACK EXECUTION
REQUIRED: 1 level TIME: 4 cycles

FLOWCHART: LCACAR

USE XRO AS

IS
TEMPORARY
STORAGE TE TORAGE

=
B
(%]

LOAD TEMPORARY
TO ACC WITH
NO SHIFT

LOAD TEMPORARY
TO ACC WITH SHIFT

7-48 « 1183

LCACAR R LCACAR

SOURCE:

*LOAD CONSTANT ADDRESS BY AC IN AC

* (IN ROM)
*
LCACAR $MACRO A,T
$IF T.L=0 ASSIGN TEMP
$ASG 'XRO' TO T.S |
$ENDIF ~ ,
TBLR :T: READ FROM ROM TO :T:
$IF A.L=0
LAC :T:,0 LOAD :T: UNSHIFTED
$ELSE
LAC :T:,:A: LOAD :T: SHIFTED
$ENDIF
$END
EXAMPLE 1:
0011 LCACAR 8
0001 0006 6706" TBLR XRO READ FROM ROM TO XRO
0002 0007 2806" LAC XRO,8 LOAD XRO SHIFTED
EXAMPLE 2:
0013 : LCACAR 4,A
0001 0008 6707 TBLR A READ FROM ROM TO A
0002 0009 2407 LAC 3,4 LOAD A SHIFTED
EXAMPLE 3:
0015 LCACAR
0001 000A 6706" TBLR XRO READ FROM ROM TO XRO
0002 000B 2006" LAC XRO,0 LOAD XRO UNSHIFTED
EXAMPLE 4:
0017 LCACAR ,C , .
0001 000C 6700" TBLR C READ FROM ROM TO C

0002 000D 2000" LAC C,0 LOAD C UNSHIFTED

1es 7-49

LCAR

Load Constant into Auxiliary Register — Macro

LCAR

TITLE: Load Constant into Auxiliary Register

NAME: LCAR

OBJECTIVE: Move constant value into auxiliary register

ALGORITHM: Constant—> AR

CALLING

SEQUENCE: LCAR AR, constant

ENTRY

CONDITIONS: - 32768 < constant <32767: AR = 0,1

EXIT

CONDITIONS: Aunxiliary register contains value of the constant

PROGRAM DATA

MEMORY MEMORY

REQUIRED: 1 — 3words (+ LDAR$0 and REQUIRED: 0 - 2 words
LDARS$1 routines)

STACK EXECUTION

REQUIRED: 2 levels with LDAR$ TIME: 1 — 13 cycles

7-50

1183

LCAR | ____LCAR

FLOWCHART: LCAR

CONSTANT
A RELOCATABLE
ADDRESS ?

IS

EAT
WAt
NUMBER ? OF NUMBER
VALUE OF
CONSTANT ‘RESTER
<256 AND IMMEDIATE

A
DATA IN AUX.
REGISTER

SOURCE:

*LOAD CONSTANT (TO ARO/1)
* LCAR ARO/1,CONSTANT
LCAR SMACRO A,B
SIF B.SA&SREL
CALL LDARS:A.V: LOAD :A: WITH:
REF LDARS$:A.V:
DATA :B: :B:
SELSE
S$IF B.SA&SUNDF
SVAR L,Q
$ASG 'SSLAB' TO L.S -
SASG L.SV+1l TO L.SV
V$:L.SV: EQU :B:
SASG 'V$' TO Q.S
$ASG :Q.S::L.SV: TO B.S

SENDIF

$IF (B.SV<256)&(B.SV>-1)

LARK :A:,:B: LOAD :A: WITH :B:
$ELSE

CALL LDARS:A.V: LOAD :A: WITH:
REF LDARS:A.V:
DATA :B: :B:

1183 7-51

' SENDIF
SENDIF
$END
EXAMPLE 1:
0010 LCAR 0,A
0001 0006 7007 LARK 0,A LOAD O WITH A
EXAMPLE 2:
. 0012 LCAR 1,C
0001 0007 F800 CALL LDARS1 LOAD 1 WITH:
0008 0000 '
0002 REF LDARS1
0003 0009 000O0" DATA C c
EXAMPLE 3:
0014 LCAR AR1,-1000
0001 FC18 V$1 EQU -1000
0002 000A F800 CALL LDARS1 LOAD AR1 WITH:
000B 0000 - -
0003 REF LDARS1
0004 000C FC18 DATA V$1 Vsl
EXAMPLE 4:
00l1e LCAR ARO, 3333
0001 0DO5 V$2 EQU 3333
0002 000D F800 CALL LDARSO LOAD ARO WITH:
000E 0000
0003 REF . LDARSO
0004 OOOF 0DO5 DATA V$2 vs2

7-52

1183

LCAX

Load Double-Word Constant into Accumulator — Macro

LCAX

TITLE: Load Double-Word Constant into Accumulator

NAME: LCAX

OBJECTIVE: Move double-word constant value into accumulator

ALGORITHM: Constant— ACC

CALLING

SEQUENCE: LCAX (upper,lower)

ENTRY :

CONDITIONS: - 32768 < upper < 32767; — 32768 < lower < 32767

EXIT

CONDITIONS: Accumulator contains value of the constant

PROGRAM DATA

MEMORY MEMORY

REQUIRED: 2 words + LDAXS routine REQUIRED: 3 words

STACK EXECUTION

REQUIRED: 2 levels TIME: 18 cycles
- FLOWCHART: LCAX

CALL LDAX$ WITH
CONSTANTS IN
NEXT TWO WORDS

y

READ FIRST
(UPPER) CONSTANT

y

INCREMENT
ARGUMENT
POINTER

1183

!

READ SECOND
(LOWER) CONSTANT

}

INCREMENT RETURN
ADDRESS

y

LOAD TWO WORDS
INTO ACC

¥

RETURN

=

LCAX

LCAX

- LCAX $MACRO A

SOURCE:

*LOAD DOUBLE CONSTANT (TO AC)
LCAX (HIGH VALUE,LOW VALUE)

*

CALL LDAXS$ LOAD DOUBLE
REF LDAXS
DATA :A: DATA LIST
SEND
EXAMPLE 1:
0010 LCAX (128,3)
0001 0006 F800 CALL LDAXS$ LOAD DOUBLE
0007 0000
0002 REF LDAX$
0003 0008 0080 DATA 128,3 DATA LIST
0009 0003
EXAMPLE 2:
0012 "LCAX (-1000,5)
0001 000A F800 CALL LDAXS LOAD DOUBLE
000B 0000
0002 REF LDAXS »
0003 o00O0C FcC18 DATA -1000,5 DATA LIST
000D 0005
EXAMPLE 3:
0014 LCAX (A,B)
0001 OOOE F800 CALL LDAXS LOAD DOUBLE
000F 0000
0002 REF LDAXS
0003 0010 0007 DATA A,B DATA LIST
0011 0009

1183

LCAXAR o oleWord Constan o secumueror | CAXAR

TITLE: Load Double-Word Constant to Accumulator from Program Memory
NAME: LCAXAR

OBJECTIVE: Load accumulator from double-word array in program RAM; the address
of the first program ROM location is in the accumulator

ALGORITHM: (@ACC)— temp
(@ACC+1)—>temp+1
(temp:temp + 1) = ACC

CALLING
SEQUENCE: LCAXAR [TEMP]

ENTRY
CONDITIONS: 0< TEMP < 127; 0 < (ACC) < 4095

EXIT
CONDITIONS: Program ROM double-word location pointed to by
accumulator is stored in the accumulator

PROGRAM DATA

MEMORY MEMORY
REQUIRED: 5 words REQUIRED: 2 words
STACK EXECUTION
REQUIRED: 1 level TIME: 9 cycles

FLOWCHART: LCAXAR

IS ASSIGN XRO
TEMPORARY AND XR1 AS
STORAGE TEMP STORAGE

NAMED ?

A SOUmEOrD
MEMORY INTO TEMP

'

LOAD DOUBLE WORD
FROM TEMPORARY
INTO ACC

1183 7-55

LCAXAR

SOURCE:

LCAXAR

*LOAD FROM ROW AT ADDRESS IN ACCUMULATOR,
*DOUBLE CONSTANT TO ACCUMULATOR
*

LCAXAR $MACRO T

$IF T.L=0 ASSIGN TEMP

$ASG 'XRO' TO T.S

SENDIF ' :

TBLR :T: READ HIGH PART OF :T:

- ADD ONE,O INCREMENT AC

TBLR :T:+1 READ LOW PART OF :T:

LDAX :T: LOAD TO AC

SEND

EXAMPLE 1:
0011 LCAXAR
0001 0006 6706" TBLR XRO READ HIGH PART OF XRO
0002 0007 0004" ADD ONE,O INCREMENT AC
0003 0008 6707" TBLR XRO+1 READ LOW PART OF XRO
0004 ' LDAX XRO LOAD TO AC
0001 0009 6506" ZALH XRO LOAD HIGH XRO
0002 000A 6107" ADDS XRO+1 LOAD LOW XRO
EXAMPLE 2:
0013 LCAXAR C
0001 000B 6&6700" TBLR C READ HIGH PART OF C
0002 000C 0004" ADD ONE,O INCREMENT AC
0003 000D 6701" TBLR C+1 READ LOW PART OF C
0004 LDAX C LOAD TO AC
0001 OOOE 6500" - ZALH C LOAD HIGH C
6101" ADDS C+1 LOAD LOW C

0002 00OQF

7-56

1183

LCP | ‘ Load Constant into P Regi;ter - ‘Macro LCP :

TITLE: Load Constant into P Register
- NAME: LCP
OBJECTIVE: Move constant value into P register

ALGORITHM: 1 *constant—>P

CALLING
SEQUENCE: LCP constant

ENTRY : ‘
CONDITIONS: -—4096 < constant < 4095

EXIT
CONDITIONS: P register contains value of the constant;
T register contains value 1

PROGRAM . DATA

MEMORY MEMORY
REQUIRED: 2 words REQUIRED: 1 word
STACK EXECUTION
REQUIRED: None: TIME: 2 cycles

FLOWCHART: LCP.

LOAD T REGISTER
WITH ONE

LOAD P REGISTER
WITH CONSTANT

SOURCE:

*LCP LOAD A CONSTANT TO THE P REGISTER
* i .

LCP SMACRO A '
LT ONE LOAD A ONE

MPYK :A: MAKE CONSTANT
SEND

1183 7-57

LCP

LCP

EXAMPLE 1:

0013
0001 0008 6AO1"
0002 0009 8007

EXAMPLE 2:

0015
0001 000A 6A01"
0002 000B 9000

EXAMPLE 3:
0017

0001 000C 6AO1"
0002 000D 8FFF
EXAMPLE 4:

0019

0001 OOOE 6A01"
0002 OOOF 9060

LCP A

LT ONE
MPYK A
LCP -4096
LT ONE
MPYK -4096
LCP 4095

LT ONE
MPYK 4095
LCP -4000
LT ONE
MPYK -4000

LOAD
MAKE

LOAD
MAKE

LOAD
MAKE

LOAD
MAKE

A ONE
CONSTANT

A ONE
CONSTANT

A ONE
CONSTANT

A ONE
CONSTANT

7-58

1183

LCPAC "and Accumulator . Macro. LCPAC

TITLE: ~ Load Constant into P Register and Accumulator
NAME: LCPAC
OBJECTIVE: Move constant value into P register and accumulator

ALGORITHM: 1 *constant—> P
(P)—= ACC

CALLING
SEQUENCE: LCPAC constant

ENTRY
, CONDITIONS: -—-4096 < constant < 4095

EXIT
CONDITIONS: P register and accumulator contain value of the constant;
T register contains the value 1

PROGRAM DATA

MEMORY MEMORY
-REQUIRED: 3 words REQUIRED: 1 word

STACK _ EXECUTION

REQUIRED: None TIME: 3 cycles

FLOWCHART: LCPAC

LOAD T REGISTER
WITH ONE
LOAD P REGISTER
(MULTIPLY
ARGUMENT)

'

LOAD P REGISTER
INTO ACC

SOURCE:

*LCPAC LOAD A CONST TO P AND AC REGISTERS
*
LCPAC SMACRO A

1183 | ' 7-59

LCPAC » LCPAC

LT ONE LOAD A ONE
MPYK :A: MAKE CONSTANT A
PAC TO THE AC
SEND
EXAMPLE 1:
0013 LCPAC A
0001 0009 6AO1" LT ONE LOAD A ONE
0002 000A 8007 MPYK A MAKE CONSTANT
0003 000B 7F8E PAC TO THE AC
EXAMPLE 2:
0015 LCPAC -4096
0001 000C 6AO1" LT ONE LOAD A ONE
0002 000D 9000 MPYK -4096 MAKE CONSTANT
0003 OOOE 7F8E PAC TO THE AC
EXAMPLE 3:
0017 LCPAC 4095
0001 OOOF 6a01" LT ONE LOAD A ONE
0002 0010 BFFF MPYK 4095 MAKE CONSTANT
0003 0011 7F8E PAC TO THE AC
EXAMPLE 4:
0019 LCPAC -4000
0001 0012 eAO1" LT ONE LOAD A ONE
0002 0013 9060 MPYK -4000 MAKE CONSTANT
0003 0014 7F8E PAC TO THE AC

7-60 1183

LDAX ‘ Loéd DoubI; Word — Macro) LDAX

TITLE: Load Double Word
NAME: LDAX

OBJECTIVE: Load double word into accumulator

- ALGORITHM: LDAX* — causes— (@AR:@AR+1)—=ACC
LDAX *— —causes~ (@AR-1:@ AR)—>ACC
(AR) — 2— AR

LDAX*+ - causes~ (@AR:@ AR+ 1)~ ACC
(AR) + 2—> AR

LDAX A —causes— (A:A+1)—>ACC

CALLING
SEQUENCE: LDAX {A,**—.,*+}

ENTRY
CONDITIONS: 0<A<127

EXIT
CONDITIONS: Accumulator contains value of double word;
auxiliary register is updated if necessary

PROGRAM DATA

MEMORY MEMORY
REQUIRED: 2 words REQUIRED: None
STACK EXECUTION
REQUIRED: None TIME: 2 cycles

1183 7-61

LDAX

LDAX

FLOWCHART: LDAX

LOAD

YES

AR
AND @AR+1 [®*

IS
ARGUMENT
%1y

AND

LOAD @AR

@AR+1

AR

AR+2

LOAD @AR

"AND @AR+1

A AND A+

AR = AR+2

SOURCE:

*LOAD DOUBLE PRECISION
*

LDAX

SMACRO A

$VAR ST,SP,SM
SASG '*!' TO ST.S
SASG '*+' TO SP.S
SASG '*-!' TO SM.S
SIF A.SV=ST.SV
ZALH *+

ADDS *-

SELSE

SIF A.SV=SP.SV
ZALH *+

ADDS *+

SELSE

SIF A.SV=SM.SV
ZALS *-

ADDH *-

SELSE

ZALH :A:

ADDS :A:+1
SENDIF

SENDIF

SENDIF

SEND

LOAD

LOAD
LOAD

LOAD
LOAD

LOAD
LOAD

LOAD
LOAD

DOUBLE

HIGH
LOW '*!

HIGH
LOW '*+!

LOW
HIGH '*-!

HIGH :A:
LOW :A:

7-62

1183

LDAX

EXAMPLE 1:

0011
0001 0006 6507
0002 0007 6108

EXAMPLE 2:
0013
0001 0008 65A8
0002 0009 6198
EXAMPLE 3:
0015
0001 000A 6698
0002 000B 6098
EXAMPLE 4:
0017

0001 000C 65A8
0002 000D 61A8

LDAX A
"ZALH A
ADDS A+l

LDAX *
ZALH *+
ADDS *-

LDAX *+
ZALH *+
ADDS *+

LoAx

LOAD HIGH A
LOAD LOW A

LOAD HIGH
LOAD LOW '*!

LOAD LOW
LOAD HIGH '*-!

LOAD HIGH
LOAD LOW '*+!

1183

7-63

LTK ’ Load Constant into T Register — Macro LTK =

TITLE: Load Constant into T Register
NAME: LTK
OBJECTIVE: Move constant value into T register

ALGORITHM: Constant— T

CALLING

SEQUENCE: LTK constant

ENTRY _

CONDITIONS: -32768 < constant < 32767

EXIT

CONDITIONS: T register contains value of the constant

PROGRAM DATA

MEMORY MEMORY
REQUIRED: 3 words (+ LTKS$ routine) REQUIRED: 2 words
STACK EXECUTION
"REQUIRED: 2 levels TIME: 13 cycles

FLOWCHART: LTK

MOVE_CONSTANT
TO DATA MEMORY

Y

LOAD T REGISTER
WITH VALUE IN
DATA MEMORY

SOURCE:

*LOAD CONSTANT TO T
*

LTK SMACRO A
CALL LTKS$ LOAD :A: TO T
REF LTKS$
DATA :A:
SEND

7-64 1183

LK

EXAMPLE 1:
0012 LTK A
0001 0009 F800 CALL LTKS ILOAD ATO T
000a 0000 ‘
0002 : REF LTKS
0003 000B 0007 DATA A
EXAMPLE 2:
0014 . LTK >7FFF :
0001 000C F800 CALL LTKS LOAD >7FFF TO T
000D 0000
0002 . REF LTKS
0003 OOOE 7FFF DATA >7FFF
'EXAMPLE 3:
0016 LTK >8000
0001 OOOF F800 CALL LTKS L.OAD >8000 TO T
0010 0000
0002 REF LTKS
0003 0011 8000 DATA >8000

1183

7-65

MAX Select Maximum of Two Words — Macro s MAX

TITLE: Select Maximum of Two Words

NAME: MAX
OBJECTIVE: Load maximum of two words into accumulator

ALGORITHM: I[f(A)> (B) then(A)— ACC

else (B) = ACC
CALLING
SEQUENCE: MAXA,B
ENTRY
CONDITIONS: 0<A<127:0<B<127
EXIT
CONDITIONS: Accumulator contains maximum value of two words
PROGRAM DATA
MEMORY MEMORY
REQUIRED: 8 words REQUIRED: None
STACK EXECUTION

REQUIRED: None TIME: 5 — 7 cycles

FLOWCHART: MAX

< BEGIN. ,

COMPARE 1ST
ARGUMENT AND 2ND
ARGUMENT

IS 1ST
ARGUMENT

LOAD 1ST
GREATER ARGUI\AI%I\(I:T INTO
THAN 2ND ?

LOAD 2ND
ARGUMENT INTO ACC

7-66 1183

MAX - __MAX
SOURCE:

*SELECT MAXIMUM OF SINGLE A OR B
*A AND B ARE VARIABLES
*

MAX $MACRO A,B

LAC :A:,0 LOAD :A:
SUB :B:,0 COMPARE :B:
SVAR L,L1,L2

SASG 'S$SLAB' TO L.S ,

$ASG L.SV+2 TO L.SV UNIQUE LABEL
$ASG L.SV-1 TO L1.V

$ASG L.SV TO L2.V

‘BGZ L$:L1.V: BRANCH IS :A:>:B:
LAC :B:,0 LOAD :B:
B L$:L2.V: TO CONTINUE
L$:L1.V: LAC :A:,0 LOAD :A:
L$:L2.V: EQU $ CONTINUE
$SEND
EXAMPLE:
0011 MAX A,B
0001 0006 2007 LAC A,O LOAD A
0002 0007 1008 SUB B,O COMPARE B
0003 0008 FCOO BGZ LS1 BRANCH IS A>B
0009 000D’
0004 000A 2008 LAC B,O0 LOAD B
0005 000B F900 B LS$2 TO CONTINUE
000C OOOE' :
0006 000D 2007 LS1 . LAC A,0 LOAD A
0007 000E' L$2 EQU § CONTINUE

1183 ' : 7-67

MAXX Select Maximufn of Two Double Words — Macro , MAXX

TITLE: Select Maximum of Two Double Words

- NAME: MAXX
OBJECTIVE: Load maximum of two double words into accumulator

ALGORITHM: If (A:A+1)> (B:B+1) then (A:A + 1) —> ACC
else (B:B+ 1) = ACC

 CALLING
SEQUENCE: MAXX A,B

ENTRY
CONDITIONS: 0< = A<,PI6,171126;0< = B< = 126

EXIT
CONDITIONS: Accumulator contains maximum value of two double words; saturation
~ mode is reset

PROGRAM DATA

MEMORY MEMORY

REQUIRED: 14 words ' . REQUIRED: None

STACK ' EXECUTION

REQUIRED: None TIME: 10 — 12 cycles

FLOWCHART: MAXX

,

COMPARE 1ST
ARGUMENT AND 2ND
ARGUMENT

IS 1ST
ARGUMENT
GREATER
THAN 2ND ?

LOAD 1ST
ARGUMENT INTO
: ACC

LOAD 2ND
ARGUMENT INTO ACC

7-68 1183

MAXX - MAXX
 SOURCE: | | -

*SELECT MAX OF DOUBLE A OR B (VARIABLES)
*

MAXX SMACRO A,B

SOVM SET OVERFLOW MODE
LDAX :A: LOAD :A: -
SUBX :B COMPARE TO :B:

$VAR L,L1,L2
$ASG 'SSLAB' TO L.S

$ASG L.SV+2 TO L.SV UNIQUE LABEL
$ASG L.SV-1 TO L1.V

$ASG L.SV - TO L2.V -

BGZ L$:L1.V: BRANCH IF :A:>:B:
- LDAX :B: LOAD :B:
B L$:L2.V: TO CONTINUE
L$:L1.V: LDAX :A: LOAD :A:
L$:L2.V: ROVM CONTINUE
SEND .
EXAMPLE:
0013 MAXX C,D
0001 0013 7F8B SOVM - SET OVERFLOW MODE
0002 LDAX C r LOAD C
0001 0014 &500" ZALH C LOAD HIGH C
0002 0015 6101" ADDS C+1 LOAD LOW C
0003 SUBX D COMPARE TO D
0001 0016 6202" SUBH D SUBTRACT HIGH
0002 0017 6303" SUBS D+1 SUBTRACT LOW
0004 0018 FCOO BGZ LS$3 BRANCH IF C>D
0019 OO1lE'
0005 LDAX D LOAD D
0001 001A &502" ZALH D LOAD HIGH D
0002 001B 6103" ADDS D+1 LOAD LOW D
0006 001C F900 B L$4 TO CONTINUE
001D 0020
0007 L$3 LDAX C- LOAD C
0001 OO01lE 6500" ZALH C © LOAD HIGH C
- 0002 O001F 6101 * ADDS C+1 LOAD LOW C
0008 0020 7F8A L$4 ROVM : CONTINUE

1183 : ‘ 7-69

Select Minimum of Two Words — Macro MIN

TITLE: Select Minimum of Two Words
NAME: MIN
OBJECTIVE: Load minimum of two words into accumulator
ALGORITHM: If(A)< (B) then(A)— ACC
else (B) > ACC
CALLING
SEQUENCE: MIN A,B
ENTRY
CONDITIONS: 0<A<127:0<B<127
EXIT
CONDITIONS: Accumulator contains minimum value of two words
PROGRAM DATA
MEMORY MEMORY
REQUIRED: 8 words REQUIRED: None
STACK EXECUTION
REQUIRED: None TIME: 5 — 7 cycle

- - FLOWCHART:

7-70

MIN

COMPARE 1ST
ARGUMENT AND 2ND
ARGUMENT

IS 1ST
ARGUMENT
TER

LOAD 1ST
GREA ARGUMENT INTO
THAN 2ND ? ACC

LOAD 2ND
ARGUMENT INTO ACC

1183

SOURCE:

*SELECT MINUMUM OF SINGLE A OR B (VARIABLES)
*

MIN SMACRO A,B

LAC :A:,0 LOAD :A:
SUB :B:,0 COMPARE TO :B:
$VAR L,L1,L2

$ASG '$SLAB' TO L.S
$ASG L.SV+2 TO L.SV
$ASG L.SV-1 TO L1.V
$ASG L.SV TO L2.V

BLZ L$:L1.V: BRANCH IF :A:<:B:
LAC :B:,0 LOAD :B:
B L$:L2.V: TO CONTINUE
LS$S:L1.V: LAC :A:,0 LOAD :A:
L$:L2.V: EQU $ CONTINUE
S$SEND
EXAMPLE:
0011 MIN A,B
0001 0006 2007 LAC A,0 LOAD A
0002 0007 1008 SUB B,O0 COMPARE TO B
0003 0008 FAOO BLZ L$1 BRANCH IF A<B
0009 000D’
0004 000A 2008 LAC B,O LOAD B
0005 000B F900 B L$2 TO CONTINUE
000C OOOE'
0006 000D 2007 L$1 LAC A,O ' LOAD A
0007 O00E' L$2 EQU $ CONTINUE

1183 7-71

MlNX Select Minimum of Two Double Words — Macro MINX

TITLE: Select Minimum of Two Double Words
NAME: MINX
OBJECTIVE: Load minimum of two double words into accumulator

ALGORITHM: If (A:A+1)< (B:B+1) then (A:A+1) = ACC
- else (B:B+ 1) = ACC

CALLING
SEQUENCE: MINX A,B

 ENTRY
CONDITIONS: 0<A<126;0<B<126

EXIT
CONDITIONS: Accumulator contains minimum value of two double words; saturation
mode is reset

PROGRAM DATA

MEMORY MEMORY

REQUIRED: 14 words REQUIRED: None

STACK EXECUTION

REQUIRED: None TIME: 10 — 12 cycles

FLOWCHART: MINX
(@@=)

)

COMPARE 1ST
ARGUMENT AND 2ND
ARGUMENT

IS 1ST LOAD 1ST
ARGUMENT ARGUMENT INTO
GREATER ACC
THAN 2ND ?

LOAD 2ND
ARGUMENT
INTO ACC

7-72 _ 1183

MINX

MINX

SOURCE:

*SELECT MINIMUM OF DOUBLE A OR B (VARIABLES)
*

MINX SMACRO A,B

SOVM SET OVERFLOW MODE
LDAX :A: LOAD :A:
SUBX. :B: COMPARE TO :B:
$VAR L,L1,L2 ‘
$ASG 'S$SLAB' TO L.S
SASG L.SV+2 TO L.SV
$ASG L.SV-1 TO L1.V
SASG L.SV TO L2.V '
BLZ L$:L1.V: BRANCH IF :A:<:B:
LDAX :B: LOAD :B:
B L$:L2.V: TO CONTINUE
L$:L1.V: LDAX :A: LOAD :A:
L$:L2.V: ROVM CONTINUE
SEND
EXAMPLE:
0011 MINX A,B
- 0001 0005 7F8B SOVM SET OVERFLOW MODE
0002 LDAX A LOAD A
0001 0006 6507 ZALH A LOAD HIGH A
0002 0007 6108 ADDS A+l LOAD LOW A
0003 SUBX B COMPARE TO B
0001 0008 6209 SUBH B SUBTRACT HIGH
0002 0009 630A SUBS B+l SUBTRACT LOW
0004 000A FAO0O BLZ LSl BRANCH IF A<B
000B 0010
0005 LDAX B LOAD B
0001 000C 6509 ZALH B LOAD HIGH B
0002 000D 6102 ADDS B+1 LOAD LOW B
0006 OOOE F900 B Ls2 TO CONTINUE
000F 0012
0007 L$1 LDAX A LOAD A
0001 0010 6507 ZALH A LOAD HIGH A
0002 0011 6108 ADDS A+l LOAD LOW A
0008 0012 7F8A LS$2 ROVM CONTINUE

713

MOV

Move Word in Data Memory — Macro

MOV

TITLE: Move Word in Data Memory
NAME: Mov
OBJECTIVE: Copy word from one location to another in data memory
ALGORITHM: (A)— Bor
(@ACC) — B
CALLING
SEQUENCE: MOV [A],B
ENTRY
CONDITIONS: 0<A<127:0<B<127
EXIT ‘
CONDITIONS: Word at B contains value of word located at A;
ARO may be overwritten; accumulator is overwritten
PROGRAM DATA
MEMORY MEMORY
REQUIRED: 2 — 5words REQUIRED: 0 — 1 words
STACK - EXECUTION
REQUIRED: None TIME: 2 — 5cycles
FLOWCHART: MOV
THE'EE A
ofouRCE AUX REGISTER
YES y
LOAD ACC WITH
LOAD ACC WITH WORD POINTED
DATA WORD OF
SOURCE TRE?;TS’%EI?«('
|

SAVE ACC IN

LOCATION OF -

DESTINATION

7-74

1183

MOV _ | MOV

SOURCE:

*MOVE ONE WORD (A TO B)
*

MOV $MACRO A,B

SIF A.L=0 IF A IS AC
SACL XRO,0 SAVE AC
LAR ARO,XRO LOAD TO ARO
LARP ARO SELECT ARO
LAC *,0 LOAD *
SELSE . :
LAC :A:,0 LOAD :A:
SENDIF
SACL :B:,0 STORE :B:
SEND
EXAMPLE 1:
0012 MOV A,B
0001 0006 2001 LAC A,O LOAD A
0002 0007 5008 SACL B,O0 STORE B
EXAMPLE 2:
0014 MOV *,B
0001 0008 2088 LAC *,0 LOAD *
0002 0009 5008 SACL B,O STORE B
EXAMPLE 3:
0016 MOV C,*+
0001 000A 2000" LAC C,0 LOAD C
0002 000B 50A8 SACL *+,0 STORE *+
EXAMPLE 4:
0018 MOV ,D
0001 000C 5004" SACL XRO,0 SAVE AC
0002 000D 3804" LAR ARO,XRO LOAD TO ARO
0003 OOOE 6880 LARP ARO SELECT ARO
0004 OOOF 2088 LAC *,0 LOAD *
0005 0010 5001" SACL D,0 STORE D
EXAMPLE 5:
0020 MOV *- B
0001 0011 2098 LAC *-,0 LOAD *-
0002 0012 5008 R SACL B,0 STORE B
EXAMPLE 6:
0022 MOV *+,A
0001 0013 20A8 ' LAC *+,0 LOAD *+
0002 0014 5001 SACL A,0 STORE A
EXAMPLE 7:
0024 MOV D,*-
0001 0015 2001" LAC D,0 LOAD D
0002 0016 5098 SACL *-,0 STORE *-

1183 ’ . . 7-75

M OVCON Move C;mstants in Data Mémory — Macro . MOVCON

TITLE: Move Constants to Data Memory
NAME: MOVCON
- OBJECTIVE: Move list of constants to data memory
ALGORITHM: For each constant in list,
C — Ali]l (data memory location)
CALLING
SEQUENCE: MOVCONC [LA|,*]or
MOVCON (C1,C2,...Cn) [LA|,*]
ENTRY
CONDITIONS: 0<A<143; —32768< C < 32767
EXIT :
CONDITIONS: Data memory addresses starting at specified locations are filled with
constants; ARO and AR1 may be overwritten
PROGRAM DATA
MEMORY MEMORY
REQUIRED: 8 words (+ MOVCS$ routines) REQUIRED: 3 words
. STACK : EXECUTION
REQUIRED: 2 levels TIME: (max)9 + (7 x

of C’s) cycles

7-76

1183

MOVCON | o MOVCON

FLOWCHART: MOVCON

ACC POINTS TO
DESTINATION;

1S

DESTINATION

MOVE ACC TO
AR1

SPECIFIED ?

IS
SOURCE LOAD SINGLE
A LIST OF CONSTANT
CONSTANTS ? INTO ACC
MOVE LIST OF IS
DESTINATION MOVE ACC TO
82[‘3 1I\-IIAOVCSé INDIRECT ? DESTINATION

MOVE LIST OF
CONSTANTS;
CALL MOVC31

pom gy

SOURCE:

"MOVCON SMACRO A,B
SVAR ST
SASG '*' TO ST.S
$IF B.L=0
ACTAR ARl
SASG '*' TO B.S
SENDIF
SIF A.A&SPOPL A IS LIST OF CONST
SIF B.SV=ST.SV i
CALL MOVCS1 MOVE CONSTANTS
REF MOVC$1
SELSE _
CALL MOVC$ MOVE CONSTANTS
REF MOVCS
DATA :B: : TO -B
SENDIF
'DATA :A.V: LENGTH OF LIST
DATA :A: : CONSTANT LIST
$ELSE B
LCAC :A: .
SACL :B:,0 ' STORE CONSTANT
SENDIF
$END

183 . 7-77

MOVCON

MOVCON

EXAMPLE 1:

0012
0001
0001 0001
0002 0006 7EO1
0002 0007 5008

EXAMPLE 2:

0014
0001
0001 0003
0002 0008 7EO3
0002 0009 5088

EXAMPLE 3:

0016
0001
0001 000a 5004"
0002 000B 3904"
0003 000C 6881
0002
0001 0006
0002 000D 7EO06
0003 OOOE 5088

EXAMPLE 4:

0018
0001 OOOF
0010
0002
0003
0004

0005

F800
0000

0011
0012
0013
0014
0015
0016

EXAMPLE 5:

0020

0001 0017 F800
0018 0000

0002

0003 0019 0003

0004 001A 0016
001B 0001
001C 0038

EXAMPLE 6:

0022
0001
0001
0002
0003
0002

0008
0004
0020
O000F
0002
000D

001D 5004"
O001E 3904"
O01F 6881
0020 F800
0021 0000
0003

0004 0022 0003

7-78

MOVCON 1,B
LCAC 1
V$1 EQU 1
LACK V$1
SACL B,0

MOVCON 3,*
LCAC 3
V$2 EQU 3
LACK V$2
SACL *,0

MOVCON 6,
ACTAR AR1
SACL XRO,0
LAR AR1,XRO
LARP ARl
LCAC 6
V$3 EQU 6
LACK V$3
SACL *,0

LOAD AC WITH V$1
STORE CONSTANT

LOAD AC WITH V$2
STORE CONSTANT

STORE AC TO XRO
RE-LOAD ARl
LOAD AR POINTER

LOAD AC WITH Vs$3
STORE CONSTANT

MOVCON (32,15,2,13),B .

CALL MOVC$

REF MOVCs
DATA B

DATA 4

DATA 32,15,2,13

MOVCON (22,1,56),*
CALL MOVC$1

REF MoOvCSl
DATA 3
DATA 22,1,56

MOVCON (33,34,35),
ACTAR. AR1
SACL XRO,0
LAR AR1,XRO
LARP AR1
CALL MOVCS$1

REF MOVCS$1
DATA 3

MOVE CONSTANTS

TO B
LENGTH OF LIST
CONSTANT LIST

MOVE CONSTANTS

LENGTH OF LIST
CONSTANT LIST

STORE AC TO XRO
RE-LOAD ARl
LOAD AR POINTER
MOVE CONSTANTS

LENGTH OF LIST

1183

ON

MOVC

0005 0023 0021
0024 0022
0025 0023

DATA 33,34,35

CONSTANT LIST

MOVCON

1183

'

7-79

MOVDAT | Move Words in Data Memory - Macro MOV DAT

TITLE: Move Words to Data Memory

NAME: MOVDAT

OBJECTIVE: Copy data from program memory to data memory

ALGORITHM: For n