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FOREWORD 

Digital Signal Processing (DSP) is concerned with the representation of signals (and the information that 

they contain) by sequences of numbers, and the transformation or processing of such signal 

representations by numerical computation procedures. 

Since the late 1950's, scientists and engineers in research labs have been touting the virtues of digital signal 

processing, but practical considerations have prevented widespread application. Now, with the availability 

of integrated circuits, such as Texas Instruments' TMS320, digital signal° processing is leaving the 

1aboratory and entering the world of application. The reasons for this are numerous and compelling. 

Perhaps the most important reason is that extremely sophisticated signal processing functions can be 

implemented using digital techniques. Indeed, many of the important DSP techniques are difficult or 

impossible to implement using analog (continuous-fime) methods. It is almost equally important that VLSI 

technology is best suited to the implementation of digital systems, which are inherently more reliable, more 

compact, and less sensitive to environmental conditions and component aging than analog systems. 

Another advantage of the discrete-time approach is the possibility of time sharing a single processing unit 

among a number of different signal processing functions. This is particularly efficient and cost effective in 

large systems having many input and output channels. Indeed, until recently, digital processing was· only 

cost effective where it could be applied in large systems. Now, however, with VLSI techniques, low-cost 

processors such as the TMS32010 are available and a wealth of opportunities exist for the application of 

DSP techniques. 

The potential applications will be found in any area where signals arise as representations of information. In 

many cases, the signals represent information about the state of some physical system (including human 

beings). Often, the objective in processing the signal is to prepare the signal for digital transmission to a 

remote location or for digital storage of the information for later reference. On the other hand, the signal 

may be processed to remove distortions introduced by transducers, the signal generation environment, or 

by a transmission system. Still another important class of applications arises when information is 

automatically extracted from the signal so as to control another system or to infer something about the 

properties of the system which generated the signal. Some of the more important areas where the above 

types of processing are of interest include speech communication, geophysical exploration, 

instrumentation for chemical analysis, image processing for television, audio recording and reproduction, 

biomedical instrumentation, acoustical noise measurements, sonar, radar, automatic testing of systems, 

and consumer electronics. 

In areas such as speech communication research and geophysical exploration, digital signal processing 

techniques already have been widely applied using general-purpose digital computers. In other areas, 

economic factors or processing speed have had limited applications up to recent times. Now, however, 

these limitations are subsiding rapidly and digital signal processing will soon be widely used in all the above 

mentioned areas and many more. 

Ronald W. Schafer 
Russell M. Mersereau 
Thomas P. Barnwell, Ill 

Atlanta Signal Processors, Inc. 

and 

Georgia Institute of Technology 
School of Electrical Engineering 
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1. INTRODUCTION 

1.1 GENERAL DESCRIPTION 

The TMS32010 is the first member of the new TMS320 digital signal processing family, designed to 

support a wide range of high-speed or numeric-intensive applications. This 16/32-bit single-chip 

microcomputer combines the flexibility of a high-speed controller with the numerical capability of 

an array processor, thereby offering an inexpensive alternative to multichip bit-slice processors. 

The TMS320 family contains the first MOS microcomputers capable of executing five million -

instructions per second. This high throughput is the result of the comprehensive, efficient, and 

easily programmed instruction set and of the highly pipelined architecture. Special instructions have 

been incorporated to speed the execution of digital signal processing (DSP) algorithms. 

Development support is available for a variety of host computers. This includes a macro assembler, 

linker, simulator, emulator, and evaluation module. 

1.2 TYPICAL APPLICATIONS 

The TMS320 family's unique versatility and power give the design engineer a new approach to a 

variety of complicated applications. In addition, these digital signal processors are capable of 

providing the multiple functions often required for a single application. For example, the TMS320 

family can enable an industrial robot to synthesize and recognize speech, sense objects with radar 

or optical intelligence, and perform mechanical operations through digital servo loop computations. 

Some typical applications of the TMS320 family are listed below. 

SIGNAL PROCESSING 

• Digital filtering 

• Correlation 

• Hilbert transforms 

• Windowing 

• Fast Fourier transforms 

• Adaptive filtering 

• Waveform generation 

• Speech processing 

• Radar and sonar processing 

• Electronic counter measures 

• Seismic processing 

INSTRUMENTATION 

• Spectrum analysis 

• Digital filtering 

• Phase-locked loops 

• Averaging 

• Arbitrary waveform generation 

• Transient analysis 

TELECOMMUNICATIONS 

• Adaptive equalizers 

• µ./A law conversion 

• Time generators 

• High-speed modems 

• Multiple-bit-rate modems 

• Amplitude, frequency, and phase 

modulation/demodulation 

• Data encryption 

• Data scrambling 

• Digital filtering 

• Data compression 

• Spread-spectrum communications 

NUMERIC PROCESSING 

• Fast multiply/divide 

• Double-precision operations 

• Fast scaling 

• Non-linear function 

computation 

(i.e., sin x, eX) 

IMAGE PROCESSING 

• Pattern recognition 

• Image enhancement 

• Image compression 

• Homomorphic processing 

• Radar and sonar processing 

HIGH-SPEED CONTROL 

• Servo links 

e Position and rate control 

• Motor control 

• Missile guidance 

• Remote feedback control 

• Robotics 

SPEECH PROCESSING 

• Speech analysis 

• Speech synthesis 

• Speech recognition 

• Voice store and forward 

• Vocoders 

• Speaker authentification 
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1.3 KEY FEATURES 

With an excellent combination of features, the TMS320 family of high-peformance digital signal 
processors is a cost-effective alternative to custom VLSI devices and bit-slice systems. 

• 200-ns instruction cycle 

• 288-byte on-chip data RAM 

• Microprocessor version - TMS32010 

• Microcomputer version - TMS320M10 - (3K-byte on-chip program ROM) 

• External program memory expansion to a total of SK bytes at full speed 

• 16-bit instruction/ data word 

• 32-bit ALU/accumulator 

• 16 x 16-bit multiply in 200 ns 

• 0 to 15-bit barrel shifter 

• Eight input and eight output channels 

• 16-bit bidirectional data bus with 40-megabits-per-second transfer rate 

• Interrupt with full context save 

• Signed two's complement fixed-point arithmetic 

• 2.7-micron NMOS technology 

• Single 5-V supply 

• 40-pin DIP 

The TMS320M10 and the TMS32010 are exactly the same with one exception: the TMS320M10 
contains an on-chip masked ROM while the TMS32010 utilizes off-chip prograrn memory. 

NOTE 

Throughout this document, TMS32010 will refer to both the TMS32010 and the 
TMS320M10 except where otherwise indicated. 

1.4 HOW TO USE THE TMS32010 MANUAL 
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It is the intent in the design of this user's guide that it be an effective reference book that provides 
information for both the hardware and the software engineer about the TMS32010 digital signal 
processor, its architecture, instruction set, electrical specifications, interface methods, and 
applications. 
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(mnemonic) (title of instruction) (mnemonic) 
Addressing: 

Operands: 

Operation: 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Description: 

Words: 
Cycles: 

·Example: 

1183 

BEFORE INSTRUCTION AFTER INSTRUCTION 
31 0 31 0 

In the architecture section (Section 2), the design of the device and its hardware features are 

described. The instruction section (Section .3) .explains individual instructions in detail.· The 
following format is used for the instruction descriptions in Section 3.4.3 to provide ease of reading 

and application. 

Section 4 on methodology for application development describes the tools, such as an. emulator or 

evaluation module, that are available for developing an individual system and gives an example of 

TMS32010 software development. In the processor resource. management section (Section 5), the 
engineer finds a description of the common algorithms or practices to be used for any application. 

He becomes familiar with interface techniques in the input/ output design techniques section 

(Section 6). 

The set of macros in the macro language extensions section (Section 7) aids the engineer in 

programming and in providing templates for further software development. Another special format 

is used for the macro descriptions in Section 7 .2. Each macro instruction is named, followed by a 

summary table. A flowchart serves to clarify the macro source which is given. Examples of macro 

use are also presented. This macro description format is as folloW5: 
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(mnemonic) (title of macro) (mnemonic) 
TITLE: (macro) 

NAME: (mnemonic) 

OBJECTIVE: 

ALGORITHM: 

CALLING 
SEQUENCE: 

ENTRY 
CONDITIONS: 

EXIT 
CONDITIONS: 

PROGRAM DATA 
MEMORY MEMORY 
REQUIRED: (#words) REQUIRED: (#words) 

STACK EXECUTION 
REQUIRED: (# levels) TIME: (#cycles) 

FLOWCHART: 

SOURCE: 

EXAMPLE·1: 

EXAMPLE2: 

Section 8 on digital signal processing contains an overview of signal processing theory, algorithms, 
and potential applications. The TMS32010 data sheet appears as Appendix A and the SMJ3201 O 
data sheet as Appendix B. Data descriptions of the evaluation module, macro assembler/linker, 
simulator, and emulator are presented in Appendix C. 

1.4.1 Glossary of Basic TMS32010 Hardware Terms 

Table 1-1 lists in alphabetical order the TMS32010 basic hardware units, the symbol for the unit (if 
any), and the function of that particular unit. ' 

1-4 
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TABLE 1-1 - TMS32010 HARDWARE TERMINOLOGY 

UNIT 

Accumulator 

Arithmetic Logic Unit 

Auxiliary Registers 

Auxiliary Register Pointer 

Data Bus 

Data Memory Page Pointer 

DataRAM 

Interrupt Flag Register 

Interrupt Mode Register 

Multiplier 

Overflow Flag Register 

Overflow Mode Register 

P Register 

Program Bus 

Program Counter 

Program ROM 

Shifter 

Stack 

T Register 

SYMBOL FUNCTION 

ACC 32-bit accumulator 

ALU Two~port 32-bit arithmetic logic unit 

ARO, AR1 Two 16-bit registers for indirect addressing of data 

memory and loop counting control. Nine LSBs of each 
register are configured as bidirectional counters 

ARP 

DBus 

DP 

INTF 

INTM 

ov 

OVM 

p 

PBus 

PC 

T 

Single-bit register containing address of current 
auxiliary register 

16-bit bus routing data from random access memory 

Single-bit register containing page address of data RAM 
( 1 page = 128 words) 

144 X 16 bit word on-chip random access memory 

containing data 

Single-bit flag register that indicates an interrupt 
request has occurred (is pending) 

Singie-bit mode register that masks the interrupt flag 

16 X 16-bit parallel hardware multiplier 

Single-bit flag register that indicates an overflow in 
arithmetic operations 

Single-bit mode register that defines a saturated or 
unsaturated mode in arithmetic operations 

32-bit register containing product of multiply operations 

16-bit bus routing instructions from program memory 

12-bit register containing address of program memory 

1 536 X 16-bit word read only memory containing pro­

gram code ITMS320M 10 only) 

Two shifters: one is a variable 0-15-bit left-shift barrel 
shifter that moves data from the RAM into the ALU. 
The other shifter acts on the accumulator. '!If hen it is 
being stored in data RAM; it can left-shift by 0, 1, or 4 
bits. 

4 X 12-bit registers for saving program counter contents 
in subroutine and interrupt calls 

16-bit register containing multiplicand during multiply 
operations 

• 
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1.4.2 References 

1-6 

The following list of references, including textbooks, contains useful information regarding 
functions, operations, and applications of digital processing. These books, in turn, list other 
references to many useful technical papers. 

Andrews, H.C., Hunt, B. R., DIGITAL IMAGE RESTORATION. Englewood Cliffs, N.J.: 
Prentice-Hall, Inc., 1977. 

Brigham, E. Oran, THE FAST FOURIER TRANSFORM. Englewood Cliffs, N.J.: Prentice-Hall, 
Inc., 1974. 

Hamming, R.W., DIGITAL FILTERS. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1977. 

Morris, L. Robert, DIGITAL SIGNAL PROCESSING SOFTWARE. Ottawa, Canada: Carleton 
University, 1983. 

Oppenheim, Alan V. (Editor), APPLICATIONS OF DIGITAL SIGNAL PROCESSING. 
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1978. 

Oppenheim, Alan V., Schafer, R.W., DtGITAL SIGNAL PROCESSING. Englewood Cliffs, 
N.J.: Prentice-Hall, Inc., 1975. 

Rabiner, Lawrence R., Gold, Bernard, THEORY AND APPLICATION OF DIGITAL SIGNAL 
PROCESSING. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1975. 

Rabiner, Lawrence R., Schafer, R.W., DIGITAL PROCESSING OF SPEECH SIGNALS. 
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1978. 
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2. ARCHITECTURE 

The TMS320 family utilizes a modified Harvard architecture for speed and flexibility (see Figure 2-1 ). 

In a strict Harvard architecture, program and data memory lie in two separate spaces, permitting a 

full overlap of the instruction fetch and execution. The TMS320 family's modification of the Harvard 
architecture allows transfers between program and data spaces, thereby increasing the flexibility of 

the device. This modification permits coefficients stored in program memory to be read into the 
RAM, eliminating the need for a separate coefficient ROM. It also makes available immediate 

instructions and subroutines based on computed values. 

The TMS32010 utilizes hardware to implement functions that other processors typically perform in 

software. For example, the TMS32010 contains a hardware multiplier to perform a multiplication in • 
a single 200-ns cycle. There is also a hardware barrel shifter for shifting data on its way into the 

ALU. Finally, extra hardware has been included so that the auxiliary registers, which provide 
indirect data RAM addresses, can be configured in an autoincrement/decrement mode for single-
cycle manipulation of data tables. This hardware-intensive approach gives the design engineer the · 

type of power previously unavailable on a single chip. 

2.1 ARCHITECTURAL OVERVIEW 

1183 

The TMS32010 microcomputers combine the following elements onto a single.chip: 

• Volatile 144 x 16-word read/write data memory 

• Non-volatile 1536 X 16-word program memory (TMS320M10 only) 

• Double-precision 32-bit ALU/accumulator 

• Fast 200-ns multiplier 

• Barrel shifter for shifting data memory words into the ALU 

• Shifter that shifts the accumulator into the data RAM 

• 16-bit data bus for fetching instruction words from off-chip at full speed 

• 4 X 12-bit stack that allows context switching 

• Autoincrementing/decrementing registers for indirect data addressing and loop counting 

• Single-vectored interrupt 

• On-chip oscillator 

This section provides a description of these elements. The generic term 'TMS32010' is used to refer 
collectively to the TMS32010 and TMS320M10. 
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FIGURE 2-1 - BLOCK DIAGRAM OF THE TMS320M10 
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2.1.1 Harvard Architecture 

The TMS32010 utilizes a modified Harvard architecture in which program memory and data memory 
lie in two separate spaces. This permits .a full overlap of instruction fetch and execution. 

Program memory can lie both on-chip (in the form of the 1536 X 16-word ROM) and off-chip. The 
maximum amount of program memory that can be directly addressed is 4K X 16-bit words. 

Instructions in off-chip program memory are executed at full speed. Fast memories with access 
times of under 100 ns are required. 

Data memory is the 144 X 16-bit on-chip data RAM. Instruction operands are fetched. from this 
RAM; no instruction operands can be directly fetched from off-chip. However, data can be written • 
into the data RAM from a peripheral by using the IN instruction or read from program memory by 
using the TBLR (table read) instruction. The OUT instruction will write a word from the data RAM 
to a peripheral, while a TBLW instruction will write a data RAM word to program memory 
(presumably, off-chip). 

Figure 2-2 outlines the overlap of the instruction prefetch and execution. On the falling edge of 
CLKOUT, the program counter (PC) is loaded with the instruction (load PC2) to be prefetched while 
the current instruction (execute 1) is decoded and is started to be executed. The next instruction is 
then fetched (fetch 2) while the current instruction continues to execute (execute 1 ). Even as 
another prefetch occurs (fetch 3), both the current instruction (execute 2) and the previous 
instruction are still executing. This is possible because of a highly pipelined internal operation. 

CLKOUT I ___ _ 
LOAD 

L 
PC 1 
..... FETCH 1 • • 

LOAD 

PC 2 

EXECUTE 1 

..... FETCH2 • • 
LOAD 

PC 3 

EXECUTE 2 

,.__. FETCH 3 

• • 
FIGURE 2-2 - HARVARD ARCHITECTURE 

EXECUTE 3 

2.2 ARITHMETIC ELEMENTS 
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There are four basic arithmetic elements: the ALU, the accumulator, the multiplier, and the shifters. 
All arithmetic operations are performed using two's complement arithmetic (see Section 5.1.3). 

Most arithmetic instructions will access a word in the data RAM, either directly or indirectly, and 
pass it through the. barrel shifter. This shifter can left-shift a word 0 to 15 bits, depending on the 
value specified by the instruction. The data word then enters the ALU where it is loaded into or 
added/subtracted from the accumulator. After a result is obtained in the accumulator, it can be 
stored in the data RAM. Since the accumulator is 32 bits, both halves must be stored separately. A 
parallel left-shifter is present at the accumulator output to aid in scaling results as they are being 
moved to the data RAM. 
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2.2.1 ALU 

The ALU is a general-purpose arithmetic logic unit that operates with a 32-bit data word. The unit 
will add, subtract, and perform logical operations. The accumulator is always the destination and 
the primary operand. The result of a logical operation is shown in Table 2-1. A data memory value is 
the operand for the lower half of the accumulator (bits 15 through 0). Zero is the operand for the 
upper half of the accumulator. 

TABLE 2-1 - ACCUMULATOR RESULTS 

FUNCTION 
ACCUMULATOR RESULT 

ACC BITS 31 THROUGH 16 ACC BITS 15 THROUGH 0 

XOR (zero)<±) (ACC bits 31-16) (data memory value) @ (ACC bits 15-0) 

AND (zero) . (ACCbits31-16) (data memory value) . (ACC bits 1 5-0) 

OR (zero) + (ACC bits 31-16) (data memory value) + (ACC bits 1 5-0) 

2.2.1.1 Overflow Mode (OVMJ 

The OVM register is directly under program control, i.e., it is set by the SOVM instruction and reset 
by the ROVM instruction. If an overflow occurs when set, the most positive or the most negative 
representable value of the ALU will be loaded into the accumulator. Whether it is the most positive 
or the most negative value is determined by the overflow sign. If an overflow occurs when reset, the 
accumulator is unmodified. (See the SOVM instruction in Section 3.4.3 for further information and 
an example.) 

In signal processing, arithmetic overflows can create special problems. Since overflows can cause 
swings between very large and very small numbers, they will often result in erratic system behavior. 
The TMS32010 has been designed with a special overflow mode to compensate for this behavior. 
When the overflow mode register (OVM) is set by the SOVM instruction (i.e., 1 - OVM), an 
overflow will cause the largest/smallest representable value of the ALU to be loaded into the 
accumulator. This models the saturation processes inherent in analog systems. When the overflow 
mode register (OVM) is reset by the ROVM instructions (i.e., 0 - OVM), overflow results are loaded 
into the accumulator without modification. 

The OVM register can be stored in data memory as a single-bit register that is part of the status 
register (see Section 2.7). It should not be confused with the overflow flag (QV), explained in 
Section 2.2.2.1. ' 

2.2.2 Accumulator 

2-4 

The accumulator stores the output from the ALU and is also often an input to the ALU. It operates 
with a 32-bit word length. The accumulator is divided into a high-order word (bits 31 through 16) 
and a low-order word (bits 15 through 0). Instructions are provided for storing the high and low­
order accumulator words in data memory (SACH and SACL). 
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2.2.2.1 Accumulator Status 

Accumulator overflow status can be read from the accumulator overflow flag register (QV). This 
register will be set if an overflow occurs in the accumulator. Since the OV register is part of the 
status register (see Section 2.7), OV status can be stored in data memory. Once the overflow flag 
register is set, only the execution of the branch on overflow (BV) instruction or direct modification 
of the status register can clear it. This feature permits the examination of overflow results outside of 
time-critical loops. 

A variety of other accumulator conditions can be tested by the branch instructions given ·in Table 
2-2. These instructions will cause a branch to be executed if the condition is met. 

TABLE 2-2 - ACCUMULATOR TEST CONDITIONS 

INSTRUCTION ACCUMULATOR CONDITION TESTED 

BLZ <O 
BLEZ 1'0 
BGZ >O 
BGEZ ~o 
BNZ <>O 
BZ =0 

-

2.2.3 Multiplier 

The 16 X 16-bit parallel multiplier consists of three units: the T register, the P register, and the 
multiplier array. The T register is a 16-bit register that stores the multiplicand, while the P register is 
a 32-bit register that stores the product. 

In order to use the multiplier, the multiplicand must first be loaded into the T register from the data 
RAM by using one of the following instructions: LT, LTA, or LTD. Then the MPV (multiply) or the 
MPVK (multiply immediate) instruction is executed. If the MPV instruction is used, the multiplier 
value is a 16-bit number from the data RAM. If the MPVK instruction is used, the multiplier value is 
a 13-bit immediate constant deri~ from the MPVK instruction word; this 13-bit constant is right 
justified and sign extended. After execution of the MPV or MPVK instruction, the product will be 
found in the P register. The product can then be added to, subtracted from, or loaded into the 
accumulator by executing one of the following instructions: APAC, SPAC, LTA, LTD, or PAC. 

Pipelined multiply and accumulate operations at 400-ns rates can be accomplished with the 
LTA/L TD and MPV /MPVK instructions (see Section 3.4.3 for greater detail). 

There is no convenient way to restore the contents of the P register without altering other registers. 
For this reason, special hardware has been incorporated in the TMS32010 to inhibit an interrupt 
from occurring until the instruction following the MPV or MPVK instruction has been executed. 
Thus, the MPV or MPVK.instruction should always be followed by instructions that combine the P 
regist~r with the accumulator: PAC, APAC, SPAC, LTA, or LTD. This is almost always done as a · 
logical consequence of the TMS32010 instruction set. 

2.2.4 Shifters 
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There are two shifters available for manipulating data: a barrel shifter for shifting data from the data 
RAM into the ALU and a parallel shifter for shifting the accumulator into the data RAM. 
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2.2.4.1 Barrel Shifter 

The barrel shifter performs a left-shift of 0 to 15 places on all data memory words that are to be load­
ed into, subtracted from, or added to the accumulator by the LAC, SUB, and ADD instructions. 

The barrel shifter zero-fills the low-order bits and sign-extends the 16-bit data memory word to 32 
bits by what is called an arithmetic left-shift. An arithmetic left-shift means that the bits to the left of 
the MSB of the data word are filled with ones if the MSB is a one or with zeros if the MSB is a zero. 
This is different from a logical left-shift where the bits to the left of the MSB are always filled with 
zeros. A small amount of code is required to perform an arithmetic right-shift or a logical right-'shift 
(see Section 5.1.2). 

The following examples illustrate the barrel shifter's function: 

EXAMPLE 1: 

Data memory location 20 holds the two's complement number:> 7EBC 

The load accumulator (LAC) instruction is executed, specifying a left-shift of 4: 

LAC 20,4 

The accumulator would then hold the following 32-bit signed two's complement number: 

31 16 15 0 

0 0 0 7 E B C 0 

Since the MSB of> 7EBC is a zero, the upper accumulator was zero-filled. 

EXAMPLE 2: 

Data memory location 30 holds the two's complement number: > 8EBC 

The LAC .instruction is executed, specifying a left-shift of 8: 

LAC 30,8 

The accumulator would then hold the following 32-bit signed two's complement number: 

31 16 15 0 

F F 8 E B C 0 0 

Since the MSB of > 8EBC is a one, the upper accumulator was filled with ones. 
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There are also instructions that perform operations with the lower half of the accumulator and a 
data word without first sign-extending the data word (i.e., treating it as a 16-bit rather than a 32-bit 
word). The mnemonics of these instructions typically end with an "S," indicating that sign­
extension is suppressed (e.g., ADDS, SUBS). Along with the instructions that operate on the 
upper half of the accumulator, these instructions allow the manipulation of 32-bit precision 
numbers; 

2.2.4.2 Parallel Shifter 

The parallel shifter is activated only by the store high-order accumulator word (SACH) instruction. 
This shifter left-shifts the entire 32-bit accumulator and places 16 bits into the data RAM, resulting 
in a loss of the accumulator's high-order bits. This shifter can execute a shift of only 0, 1, or 4 .• 
Shifts of 1 and 4 were chosen to be used with multiplication operations (see Section 5.1 ;3.1 ). No 
right-shift is directly implemented. The following example illustrates the accumulator shifter's 
function: 

EXAMPLE: 

The accumulator holds the 32-bit two's complement number: 

31 16 15 

A 3 4 B 7 8 C D 

The SACH instruction is executed, specifying that a left-shift of four be performed on the 
high-order accumulator word before it is stored in data memory location 40: 

SACH 40,4 

Data memory location 40 then contains the following number: > 3487. The accumulator still 
retains > A34B78CD. 

2.3 DATA MEMORY 

Data memory consists of the 144 words of 16-bit width of RAM present on-chip. All non-immediate 
data operands reside within this RAM. 

Sometimes it is convenient to store data operands off-chip and then read them into the on-chip 
RAM as they are needed. Two means are available for doing this. First, there are the table read 
(TBLR) and the table write (TBLW) instructions. The table read (TBLR) instruction can transfer 
values from program memory, either on-chip ROM or off-chip PROM/RAM, to the on-chip data 
RAM. The table write (TBLW) instruction transfers values from the data RAM to program memory, 
presumably in the form of off-chip RAM. These instructions take three cycles to execute. The IN 
and OUT instructions provide another method. The IN instruction reads data from a peripheral and 
transfers it to the data RAM. With some extra hardware, the IN instruction, together with the OUT 
instruction, can be used to read and write from the data RAM to large amounts of external storage 
addressed as a peripheral (see Section 3.4.3). This method is faster since IN and OUT take only two 
cycles to execute. 

2.3.1 Data Memory Addressing 

There are three forms of data memory addressing: indirect, direct, and immediate. 
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2.3.1.1 Indirect Addressing 

Indirect addressing uses the lower eight bits of ·the auxiliary registers as the data memory address 
(see Section 2.4.1 ). This is sufficient to address all 144 data words; no paging is necessary with 
indirect addressing. The current auxiliary register is selected by the auxiliary register pointer (ARP). 
In addition, the auxiliary registers can be made to autoincrement/ decrement during any given 
indirect instruction. The increment/decrement occurs AFTER the current instruction is finished 
executing. 

Some examples of indirect addressing are given below. ARO and AR1 are predefined assembler 
constants with values of 0 and 1, respectively. 

Each of the following examples should be viewed as a complete program sequence, rather than 
separate isolated statements. Indirect addressing is indicated by an asterisk(*) in these examples 
and in the TMS32010 assembler. 

EXAMPLE 1: 

LARP ARO 

LARK AR0,5 
ADD* 

ADD*+ 

ADD*-

ADD* 

EXAMPLE 2: 

LARK ARO, 10 
LARK AR1,20 
LARP 1 

ADD *,0,ARO 

ADD*+ ,O,AR1 

Load ARP with a zero. This sets ARO as the 
current auxiliary register. 
Load ARO with a 5. 
Add contents of data memory location 5 to 
accumulator. 
Add contents of data memory location 5 to 
accumulator and increment ARO. ARO now 
equals 6. 
Add contents of data memory location 6 to 
accumulator and decrement ARO. ARO now 
equals 5. 
Add contents of data memory location 5 to 
accumulator. 

Load ARO with the value 10. 
Load AR 1 with the value 20. 
Set ARP to one. This selects AR1 as the current 
auxiliary register. 
Add contents of data memory location 20 to 
accumulator with no shift, then load ARP with 
0, selecting ARO as the current auxiliary register. 
Add contents of . data memory location 10 to 
accumulator with no shift, then increment ARO 
to have value 11, and load ARP with 1, selecting 
AR1 as the current auxiliary register. 

2.3.1.2 Direct Addressing 

2-8 

In direct addressing, seven bits of the instruction word are concatenated with the data page pointer 
(DP) to form ~he data memory address. Thus, direct addressing uses the following paging scheme: 

DP 
0 
1 

MEMORY LOCATIONS 
0 - 127 

128 - 144 
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Usually the second page of data memory contains infrequently accessed system variables, such as 
those used by the interrupt routine. 

DP is part of the status register and thus can be stored in data memory (see Section 2.7). 

2.3.1.3 Immediate Addressing 

The TMS32010 instruction set contains special "immediate" instructions, such as MPYK, LACK, 
and LARK. These instructions derive data from part of the instruction word rather than from the 
data RAM. 

2.4 REGISTERS 

2.4.1 Auxiliary Registers 
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There are two 16-bit hardware registers, the auxiliary registers, that are not part of the 144 X 16-bit 
data RAM. These auxiliary registers can be used for three functions: temporary storage, indirect 
addressing of data memory, and loop control. 

Indirect addressing utilizes the least significant eight bits of an auxiliary register as the data memory 
address (see Section 2.3.1.1 ). 

The branch on auxiliary register not zero ( BANZ) instruction permits these registers to also be used 
as loop counters. BANZ checks if an auxiliary register is zero. If not, it decrements and branches. 
Thus, loops can be implemented as follows: 

LOOP 

LARP 

LARK 

ADD 
BANZ 

ARO Load ARP with 0, selecting ARO as the current auxiliary 
register. 

AR0,5 Load ARO with 5. 

* Indirectly add data memory to accumulator. 
LOOP 

The above program segment adds data memory locations 5 through 0 to the accumulator. 

When the auxiliary registers are autoincremented/decremented by an indirect addressing 
instruction or by BANZ, the lowest nine bits are affected, one more than the lowest eight bits used 
for indirect addressing (see Figure 2-3A). This counter portion of an auxiliary register is a circular 
counter, as shown in Figures 2-38 and 2-3C. 

1 COUNTER :.. . 
15 9: 8 7 0 

AR'-~-----i~'--~--
INDIRECT ADDRESS ... . 

FIGURE 2-3A - AUXILIARY REGISTER COUNTER 
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15 8 0 

AR UNAFFECTED 1 1 1 1 1 1 1 1 1 

15 8 

INCREMENT 

0 

AR UNAFFECTED 0 0 0 0 0 0 0 0 0 

FIGURE 2-38 - AUTOINCREMENT 

15 8 0 

AR UNAFFECTED 111111111 

DECREMENT 

15 8 0 

AR UNAFFECTED 0 0 0 0 0 0 0 0 0 

FIGURE 2-3C - AUTODECREMENT 

FIGURE 2-3 - INDIRECT ADDRESSING AUTOtNCREMENT/DECREMENT 

The upper seven bits of an auxiliary register (i.e., bits 9 through 15) are unaffected by any 
autoincrement/decrement operation. This includes autoincrement of 111111111 (the lowest nine 
bits go to 0) and autodecrement of 000000000 (the lowest nine bits go to 111111111 ) ; in each case, 
bits 9 through 15 are unaffected. 

The auxiliary registers can be saved in and loaded from the data RAM with the SAR (store auxiliary 
register) and LAR (load auxiliary register) instructions. This is useful for performing context saves. 
SAR and LAR transfer entire 16-bit values to and from the auxiliary registers even though indirect 
addressing and loop counting utilize only a portion of the auxiliary register. 

2.4.2 · Auxiliary Register Pointer 

The auxiliary register pointer (ARP) is a single bit which is part of the status register. It indicates 
which auxiliary register is current as follows: 

ARP CURRENT AUXILIARY REGISTER 
0 ARO 
1 AR1 

As part of the status register, the ARP can be stored in memory. · 

2.5 PROGRAM MEMORY 

2-10 

Program memory consists of up to 4K words of 16-bitwidth. The TMS320M10has1536 words of 
on-chip ROM, while the TMS32010 is ROMless. Program memory mode of operation is controlled 
by the MC/MP pin. 
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2.5.1 Modes of Operation 

There are two modes of operation defined by the state of the MC/MP pin: the microcomputer 
mode and the microprocessor mode. A .one (high) level on this pin places the device in the 

microcomputer mode, and a zero (low) level places a device in the microprocessor mode. 

Table 2-3 illustrates the program memory capability_Qf the TMS32010 microcomputers for each of 
the two modes of operation enabled by the MC/MP pin. Figure 2-4 shows the memory map for 
each setting of the MC/MP pin. 

2.5.1.1 Microcomputer Mode (TMS320M10J 

The microcomputer mode is defined by a one level on the MC/MP pin. Even though the 
TMS320M10 has a 1536 X 16.;.bit on-chip ROM, only locations 0 through 1523 are available for the •. 

user's program. Locations 1524-1535 are reserved by Texas Instruments for testing purposes. The 
device architecture allows for an additional 2560 words of program memory to reside off-chip. 

2.&.1.2 Microprocessor Mode (TMS320M10 and TMS32010) 

The microprocessor mode is clefined by a zero level on the MC/MP pin. All 4K words of memory 

are external in. this mode. 

TABLE 2-3 - PROGRAM MEMORY FOR THE TMS320 FAMILY 

MODEL 
PROGRAM MICROCOMPUTER MICROPROCESSOR 

MEMORY OPTIONS MODE MEMORY MODE MEMORY 

MC/MP=1 MC/MP=O 

TMS320M10 Microcomputer and 1 536 words on-chip ROM 4096 words of external 
microprocessor modes and 2560 words of external memory 

memory 

TMS32010 Microprocessor mode only Not available 4096 words of external 

1183 

memory 

After reset, the TMS32010 microcomputers will begin execution at location 0. Usually~ branch 
instruction to the reset routine is contained in locations 0 and 1 . Upon interrupt, the TMS32010 
microcomputers will begin execution at location 2. 
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ADDRESS 

0 

1 

2 

1523 
1524 

1535 
1536 

4095 

MICROCOMPUTER MODE 

MC/MP= 1 

16-BIT WORD 

RESET 1 ST WORD I RESET 2ND WORD 

INTERRUPT INTERNAL 

MEMORY 

SPACE 

_J_ 
INTERNAL 

MEMORY 

SPACE 

RESERVED 

FOR TESTING 

' EXTERNAL 

MEMORY 

SPACE 

~ 

ADDRESS 

0 

2 

4095 

MICROPROCESSOR MODE 

MC/MP= o 
16-BIT WORD 

RESET 1 ST WORD 

RESET 2ND WORD 

INTERRUPT 

7 7 

FIGURE 2-4 - TMS320 FAMILY MEMORY MAP 

EXTERNAL 

MEMORY 

SPACE 

2.5.2 Using External Program Memory 

2-12 

Twelve output pins are available for addressing external memory. These pins are coded A11 (MSB) 
through AO (LSB) and contain the buffered outputs of the program counter or the 1/0 port address. 
When an instruction is fetched from off-chip, the MEN (memory enable) strobe will be generated to 
enable the external memory. The instruction word is then transferred to the TMS32010 by means of 
the data bus. (See Section 2.8.) 

When in the microcomputer mode, the TMS320M10 will internally select address locations 1535 
and below from the on-chip program memory. The MEN strobe will still become active in this mode, 
and the address lines A 11 through AO will still output the current value of the program counter 
although the instruction word will be read from internal program memory. 

Figure 2-5 gives an example of external program memory expansion. Even when executing from ex­
ternal memory, the TMS32010 performs at its full 200-ns instruction cycle. Fast memories under 
100-ns access time must be used. 

MEN is never active at the same time as the WE or DEN signals. In effect, MEN will go low every 
clock cycle except when an 1/0 function is being performed by the IN, OUT, or TBLW instructions. 

In these multicycle instructions, MEN goes low during the clock cycles in which WE or DEN do not 
go low. 
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--
TMS32010 

-...... MC/MP ~ 

-- MEN 
WE 

(Only for 

RAM) 

DATA LINES 
L ...... 
I 

16 
ADDRESS LINES 

_L_ ....... 

12 
~ 

....... 

OUTPUT 

ENABLE 

--~ 
1 --

4K X 16 · 

STATIC RAM 

AND/OR PROM 

CHIP 

SELECT 

w RITE 

ABLE EN 

FIGURE 2-5 - EXTERNAL PROGRAM MEMORY EXPANSION EXAMPLE 

2.6 PROGRAM COUNTER AND STACK 

The program counter (PC) and stack enable the user to perform branches, subroutine calls, and 
interrupts, and to execute the table read (TBLR) and table write (TBLW) instructions (see Section 

3.4.3). 

2.6.1 Program Counter 

The program counter (PC) is a 12-bit register that contains the program memory address of the next 
instruction to be executed. The device reads the instruction from the program memory location 
addressed by the PC and increments the PC in preparation for the next instruction prefetch. The PC 

is initialized to zero by activating the reset (RS) line. 

In order to permit the use of external program memory, the PC outputs are buffered to the output 
pins, A11 through AO. The PC outputs appear on the address bus during all modes of operation. 
The nine MSBs (A 11 through A3) of the PC have unique outputs assigned to them, while the three 
LSBs are multiplexed with the port address field, PA2 through PAO. The port address field is used 
by the 1/0 instructions, IN and OUT. 

Program memory is always addressed by the contents of the PC. The contents of the PC can be 
changed by a branch instruction if the particular branch condition being tested is true. Otherwise, 
the branch instruction simply increments the PC. All branches are absolute, rather than relative, 
i.e., a 12-bit value derived from the branch instruction word is loaded directly into the PC in order to 

accomplish the branch. 

2.6.2 Stack 

1183 

The stack is 12 bits wide and four layers deep. The PUSH instruction pushes the twelve LSBs of the 
accumulator onto the top of stack (TOS). The POP instruction pops the TOS into the twelve LSBs 

of the accumulator. Following the POP instruction, the TOS can be moved into data memory by 
storing the low-order accumulator word (SACL instruction). This allows expansion of the stack into 
the data RAM. From the data RAM, it can easily be copied into program RAM off-chip by using the 
TBLW instruction. In this way, the stack can be expanded to very large levels. 

If the XDS/320 Emulator is used, one level of the stack is reserved by the emulator, reducing the 
number of available stack levels to three. 
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2.6.2.1 Stack Overlow 

Up to four nested subroutines or interrupts can be accommodated by the device without a stack 
overflow if the TBLR and TBLW instructions are not executed. Since TBLR and TBLW utilize one 
level of the stack, only three nested subroutines or interrupts can be accommodated without stack 
overflow occurring if TBLR or TBLW are executed. If there is a stack overflow, the deepest level of 
stack will be lost. If the stack is overpopped, the value at the bottom of the stack will become 
copied into higher levels until it fills the stack. 

To handle subroutines and interrupts of much higher nesting levels, part of the data RAM or 
external RAM can be allocated to stack management. In this case, the top of the stack (TOS) is 
popped immediately at the start of a subroutine or interrupt routine and stored in RAM. At the end 
of the subroutine or interrupt routine, the stack value stored in RAM is pushed back onto the TOS 
before returning to the main routine. 

2.7 STATUS REGISTER 

2-14 

The status register, shown in Figure 2-6, consists of five status bits. These status bits can be 
individually altered through dedicated instructions. In addition, the entire status register can be 
saved in data memory through the SST instruction. New values can be reloaded into the status 
register using the LST instruction, with the execption of the INTM bit. The INTM bit cannot be 
changed through the LST instruction. It can only be changed by the instructions, EINT and DINT 
(enable, disable interrupts). 

OV OVM INTM ARP DP 

FIGURE 2-6 - TMS32010 STATUS REGISTER 

Accumulator Oveflow Flag Register 
(OV) 

Overflow Mode Bit (OVM) 

Interrupt Mask Bit (INTM) 

- Zero indicates that the accumulator has not 
overflowed. One indicates that an overflow in the 
accumulator has occurred. (See Section 2.2.2.1 ). 
The BV (branch on overflow) instruction will clear 
this bit and cause a branch if it is set. 

- Zero means the overflow mode is disabled. One 
means the overflow mode is enabled (see Section 
2.2.1.1 ). The SOVM instruction loads the OVM bit 
with a one; the ROVM instruction loads the OVM bit 
instruction with a zero. 

- ~ero means an interrupt is enabled. One means an 
interrupt is disabled. The EINT·instruction loads the 
INTM bit with a zero; DINT loads the INTM bit with 

_a one. When an interrupt is executed, the INTM 
r~ister is automatically set to one before_the 
jotecrupt service routine begins. (See Section 2.10.) 
Note that the INTM bit can only be altered by 
executing the EINT and DINT instructions. Unlike 
the rest of the status bits, the INTM bit cannot be 
loaded with a new value by the LST instruction. 
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2.7.1 

Auxiliary Register Pointer (ARP) 

Data Memory Page Pointer (OP) 

- Zero selects ARO. One selects AR1. The ARP also 

can be changed by executing the _MAR or LARP 
instruction, or by instructions that permit the 
indirect addressing option. 

- Zero selects first 128 words of data memory, i.e., __ 
page zero. One selects last 16 words of data -­
memory, i.e., page one. The DP can also be 
changed by executing either the LDP or the LDPK 
instruction. 

Saving Status Register ____ - _--

The contents of the status register can be stored in data memory by executing the SST-instru.ction. 

If the SST instruction is executed using the direct addressing mode, the device automatically stores 

this information on page one of data memory at the location specified by the instruction. Thus, an 

SST instruction using the direct addressing mode can only specify an address less than 16, since 

the second page of memory contains only 16 words. If the indirect addressing mode is selected, 

then the contents of the status register may be stored in· any RAM location selected by the auxiliary 

register. 

The SST instruction does not modify the contents of the status register. Figure 2-7 shows the 

position of the status bits as they appear in the appropriate data RAM location after execution of the 

SST instruction. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

OV OVM INTM 1 _ 1 1-.ARP 1_ 1 1 I II DP I 
I I I = don't care 

FIGURE ~7 - STATUS WORD AS STORED BY SST INSTRUCTlON 

The-LST instruction may be executed to load the status register. LST does not assume-status bits 

are on page one, so the DP must be set to one for the LST instruction to access status bits stored 

on page one. The interrupt rnask bit cannot be changed by-the LST instruction~ However, all other 

status bits can be changed-by this instruction. 

2.8 INPUT/OUTPUT FUNCTIONS 

-- 2.8.1 IN and OUT 
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Input and output of data to and from a peripheral is accomplished by the IN and OUT instructions. 

Data is transferred over the 16-bit data bus to and from the data memory by two independent 

strobes: data enable (DEN) and write enable (WE). 

The bidirectional exterl)el data bus is always in a high-impectance_mode, except when WE goes low. 

WE will go low during the first cycle of the OUT instruction and the second cycle of the TBLW 

instruction. 

As shown in Figure 2-8, 1281/0 bits are available for interfacing to peripheral devices: eight 16-bit 

multiplexed input ports and eight 16-bit multiplexed output ports. 
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TMS32010 

A2-AO I 
PA2-PAO PDRT 

DATA BUS 116) 

ADDRESS u--------u ,___ __ ~, DECODER 

174LS1381 

FIGURE 2-8 - EXTERNAL DEVICE INTERFACE 

16 110 BITS PER PORT 

Execution of an IN instruction generates the DEN strobe for transferring data from a peripheral 
device to the data RAM (see Figure 2-9A). The IN instruction is the only instruction for which 
DEN will become active. Execution of an OUT instruction generates the WE strobe for transferring 
data from the data RAM to a peripheral device (see Figure 2-98). WE becomes active only during 
the OUT instruction and the table write (TBLW) instruction. See Appendix A, the TMS32010 Data 
Sheet, for further timing information. 

IN INSTRUCTION 

PREFETCH 

MENl._ ____ _ 

DEN 

DATA IN 

VALID NEXT INSTRUCTION 

,.•---•• PREFETCH • • 

FIGURE 2-9A - INPUT INSTRUCTION TIMING 
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OUT INSTRUCTION 

• PREFETCH • 

DATA OUT 
VALID NEXT INSTRUCTION .. PREFETCH .. 

MENI .. ____ _ I 
WE 

FIGURE 2-98 - OUTPUT INSTRUCTION TIMING 

FIGURE 2-9 - INPUT/OUTPUT INSTRUCTION TIMING 

The three multiplexed LSBs of the address bus, PA2 through PAO, are used as a port address by the 
IN and OUT instructions. The remaining higher order bits of the address bus, A11 through A3, are 
held at logic zero during execution of these instructions. 

2.8.2 Table Read (TBLR) and Table Write (TBLW) 
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The TaLR and the TBLW instructions allow words to be transferred between program and data 
spaces. TBLR is used to read words from on-chip program ROM or off-chip program ROM/RAM 
into the data RAM. TBLW is used to write words from on-chip data RAM to off-chip program 
RAM. 

Execution of the TBLR instruction generates MEN strobes to read the word from program memory 
(see Figure 2-10A). Execution of a TBLW instruction generates a WE strobe (see Figure 2-108). 
Note that the WE strobe will be generated and the appropriate data transferred even if the 
TMS320M10 is in the microcomputer mode and a TBLW is performed to a program location less 
than 1535. 

The dummy prefetch is a prefetch of the instruction following the TBLR or TBLW instructions and 
is discarded. The instruction following TBLR or TBLW is prefetched again at the end of the 
execution of the TBLR or TBLW instructions. 

TBLR 

INSTRUCTION 

PREFETCH 

MEN'~------_. I 

DUMMY 

PREFETCH 

DATA TRANSFERRED 

FROM PROGRAM 

MEMORY 

I 
.. 

NEXT 

INSTRUCTION 

PREFETCH 

I __ I 
FIGURE 2-10A - TABLE READ INSTRUCTION TIMING 

TBLW 

INSTRUCTION 

PREFETCH 

MENl _____ I I 

DUMMY 

PREF ETCH 

DATA NEXT 

TRANSFERRED TO INSTRUCTION 

PROGRAM MEMORY PREFETCH 

__ r 

FIGURE 2-10B - TABLE WRITE INSTRUCTION TIMING 

FIGURE 2-10 - TABLE READ AND TABLE WRITE INSTRUCTION TIMING 
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2.8.3 Address Bus Decoding 

Since all three interface stro MEN, WE, and DEN, are mutually exclusive there are some very 
important considerations for those es1gns u 11ze externa program memory. Since the OUT 
and TBLW instructions use only the WE signal to indicatevalid data, these instructions cannot be 
distinguished from one another on the basis of the interface .. strobes. Unless the address bus is 
decoded, execution of TBLW instructions will write data to peripherals and execution of OUT 
instructions will overwrite program memory locations 0 through 7. See Section 54 for an example 
of this decoding logic. 

No matter what decoding logic is used, it will not be possible to use TBLW to uniquely write to 
program memory locations 0 through 7. This is because the address bus will be identical for OUT· 
and TBLW, and there will be no way to distinguish between the two instructions. 

2.9 BIO PIN 

The BIO pin is an external pin which supports bit test and jump operations. When a low is present 
on this pin, execution of the BIOZ instruction will cause a branch to occur. This pin is sampled every 
clock cycle and is not latched. 

The BIO pin is useful for monitoring peripheral device status. It is especially useful as an alternative 
to using an interrupt when it i_s necessary not to disturb time-critical loops. 

2.10 INTERRUPTS 

2-18 

The TMS32010's interrupt i!Jl.enerated either by applying a negative-going edge to the interrupt 
(INT) pin or by holding the INT pin low, A diagramniatic explanation of the TMS32010's internal 
interrupt circuitry is presented in Figure 2-11. 

ftS--....--------1 I 
I INTERRUPT 

,,_.-------1~--------------......... 

TMS32010 

CLR 
5V D Q 

ta = O interrupts enabled 

a = 1 interrupts disabled 

INi"ER­
RUPT 
FLAG 

* </> = phase of internal clock 

5V 

t/I* 

EINT 

CLR 
CLOCK a 
INTERRUPT 

MODE 
REGISTERt 
D 

D Q 

SYNC 
FF 

"ei 

FIGURE2-11 - SIMPLIRED INTERRUPT LOGIC DIAGRAM 

ACKNOWLEDGE 

INTERNAL 

INTERRUPT 

PROCESSOR 

INTERRUPT 
1-.---ii...... .. 

ACTIVE 
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The Sync FF is a synchronizing flip-flop used to synchronize the external interrupt signal to the 

TMS32010's internal interrupt circuitry. When interrupts are enabled, an interrupt becomes active 

either due to a low voltage input on the INT pin or.when a negative-edge has been latched into the 

interrupt flag. 

If the interrupt mode register (INTM) is set, then an interrupt active signal to the internal interrupt 

processor (llPJ becomes valid. The llP begins interrupt servicing by causing a branch to location 2 in 

program memory. It will delay interrupt servicing in each of the following cases: 

1 ) Until the end of all cycles of a multicycle instruction, 

2) Until the instruction following the MPV or MPYK has completed execution, 

3) ,Until the instruction following EINT has been executed (when interrupts have been pre­

- viously disabled). This allows the RET instruction to be executed after interrupts becol'Tl!l 

enabled at the end of an interrupt routine. 

When the interrupt service routine begins, the HP sends out an internal interrupt acknowledge 

signal. This presets the INTM register (disabling interrupts) and clears the interrupt flag. 

Figure 2-11 also shows that DINT or a hardware reset will set the INTM register, disabling 

interrupts, while EINT will clear the INTM register. Interrupts will continue to be latched while they 

are disabled. Note that DINT or EINT do not affect the interrupt flag. 

Figure 2-12 shows the instruction sequence that occurs once an interrupt becomes active. The 

dummy fetch is an instruction that is fetched but not executed. This instruction will be fetched and 

executed after the interrupt routine is completed. 

~LKOUT I ... __ _ I I I 
INT \ 1 CLOCK CYCLE MIN I 

FETCH FETCH DUMMY FETCH 
FETCH 

INSTRUCTION 
INSTRUCTION N INSTRUCTION N + 1 INSTRUCTION N + 2 002 

EXECUTE N EXECUTE N+1 DUMMY CYCLE EXECUTE 002 

FIGURE 2-12 - INTERRUPT TIMING 

See Section 2. 14 for interrupt system design ,recommendations. 

~.11 RESET 

The reset function is enabled when an active low is.placed on the RS pin for a minimum of five clock 

cycles (see Figure 2-13). The control lines for DEN, WE, and MEN are then forced high, and the 

data bus (D15 through 00) is tristated. The PC and the address bus (A11 throug_h_AO) are then 

synchronously cleared after the next complete clock cycle from the falling edge of RS. The RS pin 

also disables the interrupt, clears the interrupt flag register, and leaves the overflow mode register 

unchanged. The TMS32010 can be held in the reset state indefinitely. 
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.. 5 CLOCK CYCLES MIN_.... 

Rsl ____ r 
FIGURE 2-13 - RESET TIMING 

2.12 CLOCK/OSCILLATOR 
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The TMS32010 can use either its internal oscillator or an external frequency source for a clock. 

Use of the internal oscillator is achieved by connecting a crystal across X1 and X2/CLKIN. The 
frequency of CLKOUT and the cycle time of the TMS32010 is one-fourth of the crystal fundamental 
frequency (see Figure 2-14). 

X1 X2/CLKIN 

--. ....... a..._­
CRYSTAL 

FIGURE 2-14 - INTERNAL CLOCK 

An external frequency source can be used by injecting the frequency directly into X2/CLKIN with 
X1 left unconnected. If an external frequency source is used, a pull-up resistor may be necessary 
(see Figure 2-15). This is because the high-level voltage of the CLKIN input must be a minimum of 
2.8 V while a standard TTL gate, for example, can have a high-level output voltage as low as 2.4 V. 
The size of the pull-up resistor will depend on such things as the frequency source's high-level 
output voltage and current and the number of other devices the frequency source will be driving. 
The resistor should be made as large as possible while still having the CLKIN input specification 
~. 

X2/CLKIN 

SIGNAL 
GENERATOR 

+Vee 

FIGURE 2-15 - EXTERNAL FREQUENCY SOURCE 

The delay time between CLKIN and CLKOUT is not specified. This delay time can vary by as much a 
one CLKOUT cycle and is very temperature dependent. Hardware designs which depend upon this 
delay time should not be used. 
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2~13 PIN DESCRIPTIONS 

Definitions of the TMS32010 pin assignments and descriptions of the function of each pin are 

presented in Table 2-4. Figure 2-16 illustrates the TMS32010 pin assignments. 

SIGNAL PIN 1/0 

30 

10 

X2/CLKIN 8 IN 

X1 7 OUT 

CLKOUT 6 OUT 

31 OUT 

32 OUT 

33 OUT 

TABLE 2-4-TMS32010 PIN DESCRIPTIONS 

DESCRIPTION 

POWER SUPPLIES 

Supply voltage ( + 5 V NOM) 

Ground reference 

CLOCKS 

Crystal input pin for internal oscillator (X2). Also input pin for ex­

ternal oscillator (CLKIN). 

Crystal input pin for internal oscillator 

Clock output signal. The frequency of CLKOUT is one-fourth of the 

oscillator input (external oscillator) or crystal frequency (internal 

oscillator). Duty cycle is 50 percent. 

CONTROL 

Write Enable. When active (low), WE indicates that valid output 

data from the TMS32010 is available on the data bus. WE is only 

active during the first cycle of the OUT instruction and the second 

cycle of the TBLW instruction (see Section 3.4.3). MEN and DEN 

will always be inactive (high) when WE is active. 

Data Enable. When active (low), DEN indicates that the 

TMS32010 is accepting data from the data bus. DEN is only ac­

tive during the first cycle of the IN instruction (see Section 3.4.3). 

MEN and WE will always be inactive (high) when DEN is active. 

Memory Enable. MEN will be active low on every machine cycle 

except when WE and DEN are active. MEN is a control signal 

generated by the TMS32010 to enable instruction fetches from 

program memory. MEN will be active on instructions fetched from 

both internal and external memory. 
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TABLE 2-4 -TMS32010 PIN DESCRIPTIONS (CONTINUED) 

SIGNAL PIN 1/0 DESCRIPTION 

INTERRUPTS 

RS 4 IN Reset. When an active low is placed on the RS pin for a minimum 
of five clock cycles, DEN, WE, and MEN are forced high, and the 
data bus (015 through DO) is tristated. The program counter (PC) 
and the address bus (A 11 through AO) are then synchronously - cleared after the n~xt complete clock cycle from the falling edge of 
RS. RS also disables the interrupt, clears the interrupt flag register, 
and leaves the overflow mode register unchanged. The TMS32010 
can be held in the reset state indefinitely. 

INT 5 IN Interrupt. The interrupt signal is generated by applying a negative-
going edge to the INT pin. The edge is used to latch the interrupt 
flag register (INTF) until an interrupt is granted by "the device. An 
active low level will also be sensed. (See Section 2.10.) 

BIO 9 IN 1/0 Branch Control. If BIO is active Oowl upon execution of the 
BIOZ instruction, the device will branch to the address specified by 
the instruction (see Section 2.9). 

PROGRAM MEMORY MODES 

MC/MP 3 IN Microcomputer/Microprocessor Mode. A high on the MC/MP pin 
enables the microcomputer mode. In this mode, the user has 
available 1524 words of on-chip program memory. (Program 
memory locations 1 524 through 1535 are reserved.) The 
microcomputer mode also allows an additional 2560 words of 
program memory to reside off-chip. A low on the MC/MP pin 
enables the microprocessor mode. In this mode, the entire 
memory space is external, i.e., addresses 0 through 4095. (See 
Section 2.3.1.) 

.·. 

BIOIRECTIONALOATA BUS 

D15 18 110 D15 (MSB) through DO (LSB). The data bus is always in the high-
D14 17 1/0 impedance state except when WE is active (low). 
D13 16 1/0 
012 15 1/0 
011 14 1/0 
D10 13 110 
D9 12 1/0 
D8 11 1/0 
D7 19 110 
D6 20 1/0 
05 21 1/0 
D4 22 1/0 
D3 23 1/0 
D2 24 1/0 
D1 25 1/0 
DO 26 1/0 
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TABLE 2-4-TMS32010 PIN DESCRIPTIONS (CONCLUDED) 

SIGNAL PIN 1/0 
\ DESCRIPTION 

PROGRAM MEMORY ADDRESS BUS AND 
PORT ADDRESS BUS 

A11 27 OUT Program memory A 11 (MSB) through AO (LSB) and port 

A10 28 OUT addresses PA2 '(MSB) through PAO (LSB). Addresses A 11 

A9 29 OUT through AO are always active and never go to high im-
AS 34 OUT pedance. During execution of the IN and OUT instructions, 
A7 35 OUT pins A2 through AO carry the port addresses PA2 through 
A6 36 OUT 
A5 37 OUT PAO. -
A4 38 OUT 
A3 39 OUT 
A2/PA2 40 OUT 
A1 /PA1 1 OUT 
AO/PAO 2 OUT 

A1/PA1 40 A2/PA2 

AO/PAO 2 39 A3 

MC/MP 3 38 A4 

RS 4 37 A5 

INT 5 36 A6 

CLKOUT 6 35 A7 

X1 7 34 AS 

X2/CLKIN 8 33 MEN 

BIO 9 32 i5EN 
V55 10 31 WE 

DB 11 30 Vee 

D9 12 29 A9 

D10 13 28 A10 

D11 14 27 A11 

D12 15 26 DO 

D13 16 25 D1 

014 17 24 D2 

D15 18 23 D3 
07 19 22 04 

D6 20 21 D5 

FIGURE 2-18 - TMS32010 PIN ASSIGNMENTS 
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2.14 INTERRUPT SYSTEM DESIGN 

2-24 

For systems using asynchronous interrupts on the TMS32010, the external hardware shown in 
Figure 2-17 is recommended to ensure proper execution of interrupts. This hardware synchronizes 
interrupt input signals with the rising edge of CLKOUT on the TMS32010. The pulse width required 
for the interrupt input signal is tc(C), which is one TMS32010 clock cycle, plus sufficient setup time 
for the flip-flop (dependent upon the flip-flop used). 

RESET 

INTERRUPT .INPUT SIGNAL 
(ACTIVE LOW) 

r--

l 
D 

p 
a 

SN74ALS74 

r> c 

I 
+5 v 

INT 

TMS32010 

CLKOUT 

FIGURE 2-17 - INTERRUPT HARDWARE DESIGN 
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3. INSTRUCTIONS 

The TMS32010's comprehensive instruction set supports both numeric- intensive operations, such 

as signal processing, and general-purpose operations, such as high-speed control. The instruction 

set, shown in Table 3-2, consists primarily of single-cycle single-word instructions, permitting exe­

cution rates of up to five million instructions per second. Only infrequently used branch and 1/0 

instructions are multicycle. 

The TMS32010 also contains a number of instructions that shif:t data as part of an arithmetic oper­

ation. These all execute in a singltt cycle and are ve_ry useful for scaling data in parallel with other 

operations. 

3.1 INTRODUCTION 

The instruction set contains a full set of branch instructions. Combined with the Boolean opera-

tions and shifters, these instructions permit the bit manipulation and bit test capability needed for ·-·· 

high-speed control operations. Double-precision operations are also supported by the instruction ._ 

set. Some examples are ADDH (add to high-order accumulator) and ADDS (add to accumulator 

with sign extension suppressed), which allow easy manipulation of 32-bit numbers. 

The TMS32010's hardware multiplier allows the MPV instruction to be executed in a single cycle. 

The SUBC (conditional subtract for divide) instruction performs the shifting and conditional 

branching necessary to implement a divide efficiently and quickly. 

Two special instructions, TBLR (table read) and TBLW (table write), allow crossover between data 

memory and program memory. The TBLR instruction transfers words stored in program memory to 

the data RAM. This eliminates the need for a coefficient ROM separate from the program ROM, 

thus permitting the user to make efficient trade-offs as to the amount of ROM dedicated to pro­

gram or coefficient store. The accompanying instruction, TBLW, transfers words in· internal data 

RAM to an external RAM. In conjunction with TBLR, this instruction allows the use of external 

RAM to expand the amount of data storage. 

When a very large amount of external data must be addressed (i.e., >4K words), TBLR and TBLW 

can no longer serve as a means of expanding the data RAM. Then it becomes necessary to address 

external data RAM as a peripheral by using the IN and OUT instructions; these instructions permit a 

data word to be read into the on-chip RAM in only two cycles. This procedure requires a minimal 

amount of external logic and permits the accessing of almost unlimited amounts of data RAM. This 

is very useful for pattern recognition applications, such as speech recognition or image processing, 

3.2 ADDRESSING MODES 

Three main addressing modes are available with the TMS32010 instruction set direct, indirect, and 

immediate addressing. 

3.2.1 Direct Addressing Mode 

In direct addressing, seven bits of the instruction word concatenated with the data page pointer 

form the data memory address. This implements a paging scheme in which the first page contains 

128 words and the second page contains 16 words. In a typical application, infrequently accessed 

variables, such as those used when performing an interrupt service routine, are stored on the sec­

ond page. 

3.2.2 Indirect Addressing Mode 

Indirect addressing forms the data memory address from the least significant eight bitS of one of 

two auxiliary registers, ARO and AR1. The auxiliary register pointer (ARP) selects the current auxil­

iary register. The auxiliary registers can be automatically incremented or decremented in parallel 

with the execution of any indirect instruction to permit single-cycle manipulation of data tables. 
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3.2.3. Immediate Addressing Mode 

The TM53201 O instruction set contains special "immediate" instructions. These instructions derive 
data from part of the instruction word rather than from the data RAM. The constant in all immediate 
instructions may refer to values supplied by an external reference symbol. Some very useful im­
mediate instructions are multiply immediate (MPYK), load accumulator immediate (LACK), and 
load auxiliary register immediate (LARK). 

3.3 INSTRUCTION ADDRESSING FORMAT 
The following sections describe the opcode format for the various addressing modes of the 
TMS32010. 

3.3.1 Direct Addressing Format 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

OPCODE I 0 I dma 

Bit 7 = 0 defines direct addressing mode. The opcode is contained in bits 15 through 8. Bits 6 
through 0 contain data memory address. 

The 7 bits of the data memory address (dma) field can directly address up to 128 words (1 page) of 
data memory. Use of the data memory page pointer is required to address the full 144 words of data 
memory. 

Direct addressing can be used with all instructions requiring data operands except for the immediate 
operand instructions. 

3.3.2. Indirect Addressing Format 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

OPCODE 1 

Bit 7 = 1 defines indirect addressing mode. The opcode is contained in bits 15 through 8. Bits 6 
through 0 contain indirect addressing control bits. 

Bit 3 and bit O control the Auxiliary Register Pointer (ARP). If bit 3 = 0, then the contents of bit 0 
are loaded into the ARP after execution of the current instruction. If bit 3 = 1, then the contents of 
the ARP remain unchanged. ARP = 0 defines the contents of ARO as a memory address. ARP = 
1 defines the contents of AR 1 as a memory address. 

Bit 5 and bit 4 control the auxiliary registers. If bit 5 = 1, then ARP defines which auxiliary register is 
to be incremented by 1 after execution. If bit 4 = 1, then the ARP defines which auxiliary register is 
to be decremented by 1 after execution. If bit 5 and bit 4 are zero, then neither auxiliary register is in­
cremented or decremented. Bits 6, 2, and 1 are reserved and should always be programmed to zero. 

Indirect addressing can be used with a1'1 instructions requiring data operands, except for the im­
mediate operand instructions. 

3.3.3 Immediate Addressing Format 

3-2 

Included in the TM532010's instruction set are five immediate operand instructions (LDPK, LARK, 
MPYK, LACK, and LARP). In these instructions, the operand is contained within the instruction 
word. 
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3.3.4 Examples of Opcode Format 

1 ) ADD 9,5 Add to accumulator the contents of memory 

location 9 left-shifted 5 bits. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I o 0 0 0 I 0 1 0 1 1a1 a 0 0 1 0 0 1 

Note: Opcode of the ADD instruction is 0000 and appears in bits 15 through 12. Shift code of 5 appears in bits 11 through 8. Data mem­

ory address 9 appears in bits 6 through 0. 

2) ADD *+ ,8 Add to accumulator the contents of data memory address defined by 

contents of current auxiliary register. This data is left-shifted 8 bits 

before being added. The current auxiliary register is auto-incremented 

by 1. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 o o 011 lo 1 o 1 o o o 

Other variations of indirect addressing are as follows: 

3) ADD*, 8 As in example 2, but with no auto-increment; opcode would be 

>0888 

4) ADD* - , 8 As in example 2, except that current auxiliary register is decremented 

by 1; opcode would be > 0898 

5) ADD* + , 8, 1 As in example 2, except that the auxiliary register pointer is loaded 

with the value 1 after execution; opcode would be >OBA 1 

6) ADD* + , 8, 0 As in example 2, except that the auxiliary register pointer is loaded 

with the vatue 0 after execution; opcode would be > 08AO 

3.4 INSTRUCTION SET 

The following sections include the symbols and abbreviations that are used in the instruction set 

summary and in the instruction descriptions, the complete instruction set summary, and a descrip­

tion of each instruction. 

All numbers are assumed to be decimal unless otherwise indicated. Hexidecimal numbers are 

specified by the symbol "> " before the number. 

3.4.1. Symbols and Abbreviations 

DATn and PRGn are assumed to have the symbolic value of n. They are used to represent any sym­

bol with the value n. 

1183 
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TABLE 3-1 - INSTRUCTION SYMBOLS 

SYMBOL MEANING 

ACC Accumulator 
AR Auxiliary register (ARO and AR 1 are predefined assembler symbols equal to 0 and 1 , 

respectively .J 
ARP Auxiliary register pointer 

D Data memory address field 
DATn Label assigned to data memory location n 
dma Data memory address 
DP Data page pointer 
I Addressing mode bit 

INTM Interrupt mode flag bit 
K Immediate operand field 

>nn Indicates nn is a hexadecimal number. All others are assumed to be decimal values. 
OVM Overflow (saturation) mode flag bit 

p Product (Pl register 
PA Port address (PAO through PA7 are predefined assembler symbols equal to 0 through 

7, respectively) 
PC Program counter 

pma Program memory address 
PRGn Label assigned to program memory location n 

R 1-bit operand field specifying auxiliary register s 4-bit left-shift code 
T T register 

TOS Top of stack 
x 3-bit accumulator left-shift field - Is assigned to 
I I Indicates an absolute value 

< > Items within angle brackets are defined by user. 
[ ] Items within brackets are optional. 
( ) Indicates "contents of" 
{ } Items within braces are alternative items; one of them must be entered. 
<> Angle brackets back-to-back indicate "not equal". 

Blanks or spaces are significant. 

3-4 
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3.4.2 Instruction Set Summary 

The instruction set summary in the following table consists primarily of single-cycle single-word in­

structions. Only infrequently used branch and 1/0 instructions are multicycle. 

TABLE 3-2 - INSTRUCTION SET SUMMARY 

ACCUMULATOR INSTRUCTIONS 

MNEMONIC DESCRIPTION NO. NO. OPCODE 

CYCLES WORDS INSTRUCTION REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

ABS Absolute value of 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 

accumulator 
ADD Add to accumulator 1 1 0 0 0 0 ~s~ I < D > 

with shift 
ADDH Add to high-order 1 1 0 1 1 0 0 0 0 0 I L._ D > ..... 

accumulator bits 
ADDS Add to accumulator 1 1 0 1 1 0 0 0 0 1 . I < D > 

with no sign extension 
AND AND with accumulator 1 1 0 1 1 1 1 0 0 1 I < D > 
LAC Load accumulator 1 1 0 0 1 0 ~s~ I < D > 

with shift 
LACK Load accumulator 1 1 0 1 1 1 1 1 1 0 ~ K 

_.,, .,. . 

immediate 
OR OR with accumulator 1 1 0 1 1 1 1 0 1 0 I < D > 
SACH Store high-order 1 1 0 1 0 1 1 ~x~ I < D > 

accumulator bits with 
shift 

SACL Store low-order 1 1 0 1 0 1 0 0 0 0 I < 0 > 
accumulator bits 

SUB Subtract from 1 1 0 0 0 1 ~s~ I ...::... D > ..... 

accumulator with 
shift 

SUBC Conditional subtract 1 1 0 1 1 0 0 1 0 0 I < D ~ 

(for divide) 
SUBH Subtract from high- 1 1 0 1 1 0 0 0 1 0 I ..-:::.. D > 

order accumulator bits 
SUBS Subtract from accumu- 1 1 0 1 1 0 0 0 1 1 I < D > 

lator with no sign 
extension 

XOR Exclusive OR with 1 1 0 1 1 1 1 0 0 0 I 
,,,._ 

D > ...._-

accumulator 
ZAC Zero accumulator 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 

ZALH Zero accumulator and 1 1 0 1 1 0 0 1 0 1 I L_ D 
_.,, 

..... ,,,. 

load high-order bits 
ZALS Zero accumulator and 1 1 0 1 1 0 0 1 1 0 I L._ D > ..... 

load low-order bits 
with no sign extension 

-
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TABLE 3-2 - INSTRUCTION SET SUMMARY (CONTINUED) 

AUXILIARY REGISTER AND DATA PAGE POINTER INSTRUCTIONS • 
MNEMONIC DESCRIPTION 

LAA Load auxiliary 
register 

LARK Load auxiliary 
register immediate 

LARP Load auxiliary 
register pointer 
immediate 

LDP Load data memory 
page pointer 

LDPK Load data memory 
page pointer 
immediate 

MAR Modify auxiliary 
register and pointer 

SAR Store auxiliary 
register 

MNEMONIC DESCRIPTION 

B 

BANZ 

Branch uncof!ditionally 

Branch on auxiliary 
register not zero 

BGEZ Branch if accumulator 
;;;i.o 

BGZ 

BIOZ 

Branch if accumulator 
>O 

Branch on BIO= 0 

BLEZ Branch if accumulator 
..;o 

BLZ Branch if accumulator 
<O 

BNZ Branch if accumulator 
+o 

BV Branch on overflow 

• 
BZ Branch if accumulator 

=O 

CALA Call subroutine from 
accumulator 

CALL Call subroutine 
immediately 

RET Return from sub­
routine 

NO. NO. 
CYCLES WORDS 

1 

l 

OPCODE 
INSTRUCTION REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0011100Rl""'<--­

O 1 1 1 0 0 0 R ...,~..,.---

D---> 

K--->~ 

011010001000000K 

011011111~<--- D--->.,. 

011011100000000K 

0 1 1 0 1 0 0 0 I E'<--- D---'>~ 

0 0 1 1 0 0 0 R I ~<--- D--..,...-> 

BRANCH INSTRUCTIONS 

NO. NO. 
CYCLES WORDS 

2 2 

2 2 

2 2 

2 2 

2 2 

2 2 

2 2 

2 2 

2 2 

2 2 

2 

2 2 

2 

OPCODE 
INSTRUCTION REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0. < BF.ANCH ADDRESS--->-

j i 
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 < BAANC~ ADDRESS > 
1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 < BF ANCH ADDRESS > 
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 < BF ANCH ADDRESS --7 

1111011000000000 
0 0 0 0 < BF ANCH ADDRESS > 

1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 < B~ANCH ADDRESS --7 

1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 < B~ANCH ADDRESS > 
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 < BRANCH ADDRESS > 
1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 E:'. BRjANCH ADDRESS > 
1 1~1 1 1 
0 0 0 0 ~ 
0 1 1 1 1 1 1 

1~A0 Q Q Q Q Q 0 Q 
B,rNCH ADDRESS --->-
1•100 0 1100 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 < BRjANCH ADDRESS > 
0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 



TABLE 3-2 - INSTRUCTION SET SUMMARY (CONCLUDED) 

T REGISTER, P REGISTE~. AND MULTIPLY INSTRUCTIONS 

MNEMONIC DESCRIPTION NO. NO. OPCODE 
. CYCLES WORDS INSTRUCTION REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

APAC Add P register to 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 ·· 1 1 

accumulator 
LT Load T register 1 1 0 1 1 0 1 0 1 0 I < . D ;;, 

LTA LT A combines LT and 1 1 0 1 1 0 1 1 0 0 I ( D > 
APAC into one instruc-
ti on 

LTD LTD combines LT, 1 1 0 1 1 0 1 0 1 1 I L... D > .... 
APAC, and DMOV irito 
one instruction 

MPV Multiply with T 1 1 0 1 1 0 1 1 0 1 I ( D > 
register; store product 
in P register 

£_ 
_,,,, 

MPYK Multiply T register 1 1 1 0 0 ..... K .,.. 
with immediate oper-
and; store produet in 
P register 

PAC Load accumulator from 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 
P register 

SPAC Subtract P register 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 
from accumulator 

CONTROL INSTRUCTIONS 

MNEMONIC DESCRIPTION NO. NO. OPCODE 
CYCLES WORDS INSTRUCTION REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

DINT Disable interrupt 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 

EINT Enable interrupt 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 

LST Load status register 1 1 0 1 1 1 1 0 1 1 I < D > 
NOP No operation 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 

POP Pop stack to 2 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 
accumulator 

PUSH Push stack from 2 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 

accumulator 
ROVM Reset overflow mode 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 

SOVM Set overflow mode 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 

SST Store Status register 1 1 0 1 1 1 1 1 0 0 I E D > 

1/0 AND DATA MEMORY OPERATIONS 

MNEMONIC DESCRIPTION NO. NO. OPCODE 
CYCLES WORDS INSTRUCTION REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

OMOV Copy contents of data 1 1 0 1 1 0 1 0 0 1 I ( D > 
memory location into 
next location 

IN Input data from port 2 1 0 1 0 0 0 ~PA~ I < D . ,,, 
OUT Output data to port 2 1 0 1 0 0 1 ~PA~ I ( D > 
TBLR Table read from 3 1 0 1 1 0 0 1 1 1 I ( D > 

program memory to 
data RAM 

TBLW Table write from 3 I 0 1 1 1 1 1 0 1 I < D > 
data RAM to program 
memory 

1183 3-7 



3.4.3 Instruction Descriptions 

3-8 

Ea.ch instruction in the instruction set summary is described in the following pages. The instructions 
are listed in alphabetical order. An example is provided with each instruction. 

Each instruction begins with an assembler syntax expression. Since the cC:>mment field which con­
cludes the syntax is optional, it is not included in the syntax expression. A syntax example is given 
below that shows the spaces that are included and required in the syntax expression, and the op­
tional comment field along with its preceding spaces that has been omitted. 

[<label> J .·. ~CK f <constant> 

Spaces · 

[<comment>). 

Spaces and comment 
field not included 
in the syntax expressions 
for this section. 
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Absolute Value of Accumulator 

Assembler Syntax: [<label>] ABS 

Operands: None 

· Operation: lf(ACC}< 0 
Then - (ACC) - ACC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I o 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 

Description: If accumulator is greater than zero, then the accumulator is unchanged by the execution of • 
this instruction. If the accumulator is less than zero, then the accumulator will be replaced 
by its two's complement value. Note that the hexadecimal number > 80000000 is a special 
case. When the overflow mode is not set, the ABS of >80000000 is >80000000. When in 
the overflow mode, the ABS of> 80000000 is> 7FFFFFFF. · 

Words: 1 
Cycles: 1 

Example: ABS 

BEFORE INSTRUCTION AFTER INSTRUCTION 
31 0 31 0 

ACC I> 0 0 0 0 . 1 2 3 4 ACC I> 0 0 0 0 1 2 3 4 

and 

ACC I> F F F F F F F F ACC I> 0 0 0 0 0 0 0 1 
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ADD Add to Accumulator with Shift 

Assembler Syntax: 
Direct Addressing: <dma >[,<shift>] 
Indirect Addressing: 

[<label>] 
[<label> J 

ADD 
ADD {*I*+ I* - }[,<shift>[, <ARP>]] 

Operands: 0 ~ shift~ 15 
O~dma~ 127 
ARP= 0or1 

Operation: (ACC) + (dma) x 2shift ..,.. ACC 

Encoding: 15 14 13 12 11 

Direct: 0 0 0 0 

Indirect: 0 0 0 0 

10 9 8 7 6 5 4 3 2 1 

SHIFT 

SHIFT 1 

DATA MEMORY 
ADDRESS 

SEE SECTION 3.3 

0 

ADD 

Description: Contents of data memory address are left-shifted and added to accumulator. During 
shifting, low-order bits are zero-filled, and high-order bits are sign-extended. The result is 
stored in the accumulator. 

Words: 1 
Cycles: 1 

Example: ADD DAT1 ,3 
or 
ADD *,3 If current auxiliary register contains the value 1 . 

BEFORE INSTRUCTION 
DATA 

MEMORY 21 
1 

ACC 71 

AFTER INSTRUCTION 
DATA 

MEMORY I 21 
1 

ACC 231 

Note: If the contents of data memory address DAT2 is > 8BOE, then the following instruction sequence 
will leave accumulator with the value> FFF8BOEO. 

ZAC Zero accumulator 
ADD DAT2,4 ACC = > FFFBBOEO 

3-10 1183 



ADDH Add to High-Order Accumulator ADDH 
Assembler S.yntax: 

Direct Addressing: [<label>] ADDH <dma> 
Indirect Addressing: [<label>] ADDH { * I * + I * - }[,<ARP>] 

Operands: O<dma< 127 
ARP = 0 or 1 

Operation: (ACC) + (dma) x 2 16 - ACC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: 0 1 1 0 0 0 0 olol DATA MEMORY 
ADDRESS 

Indirect: 0 1 l 0 0 0 0 ol 1 SEE SECTION3.3 

Description: Add contents of data memory address to upper half of the accumulator (bits 31 through 16) . 

Words: 1 
Cycles: 1 

Example: ADDH DAT5 
or 
ADDH * If current auxiliary register contains the value 5. 

BEFORE INSTRUCTION AFTER INSTRUCTION 
DATA DATA 

MEMORY >41 MEMORY >41 
5 5 

ACC >O 0 0 0 0 0 1 31 ACC >O 0 0 4 0 0 1 31 

' Note: This instruction can be used in performing 32-bit arithmetic. 

1183 
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ADDS 

Assembler Syntax: 
Direct Addressing: 

Add to Low Accumulator 
with Sign-Extension Suppressed 

[<label>] ADDS <dma> 
Indirect Addressing: [<label>] ADDS {*I*+ I* - }[,<ARP>] 

Operands: Osdmas 127 
ARP = 0 or 1 

Operation: (ACC) + (dma) - ACC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: 0 1 J 0 0 0 0 1 I 0 I DATA MEMORY 
ADDRESS 

Indirect: 0 1 1 0 0 0 0 1 I 1 SEE SECTION 3.3 

ADDS 

Description: Add contents of specified data memory location with sign-extension suppressed. The data is 
treated as a 16-bit positive integer rather than a two's complement integer. Therefore, there 
is no sign-extension as there is with the ADD instruction. 

Words: 1 
Cycles: 1 

Example: ADDS DA T11 
or 
ADDS* If current auxiliary register contains the value 11 . 

DATA 
MEMORY 

11 

ACC 

BEFORE INSTRUCTION 

>F 0 0 6 

>O 0 0 0 0 0 0 3 

DATA 
MEMORY 

11 

ACC 

AFTER INSTRUCTION 

>F 0 0 6 

>O 0 0 0 F 0 0 9 j 

Notes: The following routines illustrate the difference between the ADD and ADDS instructions. Data 
memory location DAT1 contains> E007. 

ZAC ZeroACC 
ADDS DAT1 ACC = >OOOOE007 

ZAC ZeroACC 
ADD DAT1 ,0 ACC = > FFFFE007 

The ADDS instruction can be used in implementing 32-bit arithmetic. 
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AND AND with Low-Order Bits of Accumulator 

Assembler Syntax: 
Direct Addressing: 
Indirect Addressing: 

[<label>] 
[<label>) 

Operands: 0 < dma < 127 
ARP = 0 or 1 

AND 
AND 

<dma> 
{ * I * + I * - } [, <ARP>] 

Operation: Zero. AND. high-order ACC bits:. (dma). AND. low-order ACC bits - ACC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: 0 1 1 1 1 0 0 1 I 0 I DATA MEMORY 
ADDRESS 

Indirect: 0 1 1 1 1 0 0 1 I 1 SEE SECTION 3.3 

AND 

Description: The low-order bits of the accumulator are ANDed with the contents of the specified data 
memory address and concatenated with all zeroes AN Ded with the high-order bits of the 
accumulator. The AND operation follows the truth table below. 

DATA MEMORY BIT 

Words: 1 
Cycles: 1 

Example: AND DAT16 

0 
0 
1 
1 

ACC BIT (BEFORE) ACC BIT (AFTER) 

0 0 
1 0 
0 0 
1 1 

or 
AND* If current auxiliary register contains the value 16. 

DATA 
MEMORY 

16 

ACC 

BEFORE INSTRUCTION 

>O 0 F F · 

>1 2 3 4 5 6 7 8 

DATA 
MEMORY 

16 

ACC 

AFTER INSTRUCTION 

>O 0 FF 

>O 0 0 0 0 0 7 8 

Note: This instruction is useful for examining bits of a word for high-speed control applications. 
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APAC Add P Register to Accumulator APAC 
r 

Assembler Syntax: [<label>] APAC 

Operands: None 

Operation: (ACC) + (P)- ACC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 1 1 1 0 0 0 1 1 1 1 

Description: The contents of the P register, the result of a multiply, are added to the contents of the 
accumulator and the result is stored in the accumulator. 

Words: 1 
Cycles: 1 

Example: APAC 

p 

BEFORE INSTRUCTION 

64 

ACC I 
~~~~~~~~......-

32 

p 

AFTER INSTRUCTION 

64 

ACC~'~~~~~-96___. 

Note: This instruction is a subset of the L TA and LTD instructions. 
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Branch Unconditionally B'· 

Assembler Syntax: [<label>] B <pma> 

Operands: 0 .<: pma< 212 

Operation: pma-PC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 oJ PROGRAM MEMORY ADDRESS 

Description: Branch to location in program is specified by the program memory address (pma). Pma can. 
be either a symbolic or a numeric address. 

Words: 2 
Cycles: 2 

Example: 

1183 

B PRG191 191 is loaded into the program counter and program continues running from 
that location. 
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BANZ Branch on Auxiliary Register Not Zero 

Assembler Syntax: [<label>] BANZ <pma> 

Operands: 0 .tE; pma < 212 

Operation: If (AR bits 8 through 0) < > O 
Then (AR) - 1 -- AR and pma -- PC 
Else (PC) + 2 -- PC 

(AR) - 1 -- AR 

Encoding: 15 14 13 12 11 10 9 8 7 

1 1 1 1 0 1 0 0 0 

6 

0 

5 4 3 

0 0 0 

2 1 

0 0 

0 0 0 o1 PROGRAM MEMORY ADDRESS 

BANZ 

0 

0 

Description: If the lower nine bits of the current auxiliary register are not equal to zero, then the auxiliary 
register is decremented,· and the address contained in the following word is loaded into the 
program counter. If these bits equal zero, the current program counter is incremented and 
AR also is decremented. Branch to location in program is specified by the program memory 
address (pma). Pma can be either a symbolic or numeric address. 

Words: 2 
Cycles: 2 

Example: BANZ PRG35 

BEFORE INSTRUCTION 

AR 

PC 461 

or 

AR ol 

PC 461 

AFTER INSTRUCTION 

AR .__I ___ ___;._____....10 I 

PC I 351 

ARI >1 F Fl 

PC 481 

Note: This instruction can be used for loop control with the auxiliary register as loop counter. The auxiliary 
register is decremented after testing for zero. Thi auxiliary registers also behave as modulo 512 
counters. 
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BGEZ Branch if Accumulator Greater Than · 
or Equal t_o Zero BGEZ 

Assembler Syntax: [<label>] BGEZ <pma> 

Operands: O<pma< 212 

Operation: If (ACC) ~O 
Thenpma-PC 
Else (PC) + 2 - PC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 

0 0 0 oJ PROGRAM MEMORY ADDRESS 

Description: If the contents of the accumulator are greater than or equal to zero, branch to the specified 
program memory location. Branch to location in program is specified by the program 

Words: 2 
Cycles: 2 

. Example: 

1183 

memory address (pmal. Pma can be either a symbolic or a numeric address. · 

BGEZ PRG217 217 is loaded into the program counter if the accumulator is greater than 
or equal to zero. 
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BGZ Branch if Accumulator Greater Than Zero BGZ 

Assembler Syntax: [<label> 1 BGZ <pma> 

Operands: O~pma< 212 

Operation: If ( ACC) > 0 
Thenpma-PC 
Else (PC) + 2 - PC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 oJ PROGRAM MEMORY ADDRESS 

Description: If the contents of the accumulator are greater than zero, branch to the specified program 
memory location. Branch to location in program specified by the program memory address 
(pma). Pma can be either a symbolic or a numeric address. 

Words: 2 
Cycles: 2 

Example: BGZ PRG342 342 is loaded into the program counter if the accumulator is greater than zero. 
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BIOZ Branch on 1/0 Status Equal to Zero Bl·OZ 

Assembler Syntax: [<label>] BIOZ <pma> 

Operands: o~ pma< 212 

Operation: If BIO= 0 
Then pma-PC 
Else (PC) + 2 - PC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 

0 0 0 ol PROGRAM MEMORY ADDRESS 

Description: If the BIO pin is active low, then branch to specified memory location. Otherwise, the 
program counter is incremented to the next instruction. Branch to location in program is 
specified by the program memory address (prna). Pma can be either a symbolic or a numeric 
address. 

Words: 2 
Cycles: 2 

Example: BIOZ PRG64 If the 810 pin is active low, then a branch to location 64 occurs. Otherwise, the 
program counter is incremented. 

Note: This instruction can be used in conjunction with the BIO pin to test if peripheral is ready to deliver an 
input. This type of interrupt is preferable when performing time-critical loops. 
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BLEZ Branch if Accumulator Less Than 
or Equal to Zero BLEZ 

Assembler Syntax: [<label>] BLEZ <pma> 

Operands: 0" pma< 212 

Operation: If (ACC)" 0 
Then pma-PC 
Else (PC) + 2- PC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 

0 0 0 0 ~ PROGRAM MEMORY ADDRESS 

Description: If the contents of the accumulator are less than or equal to zero, branch to the specified 
program memory location. Branch to location in program is specified by the program 
memory address (pma). Pma can be either a symbolic or a numeric address. 

Words: 2 
Cycles: 2 

Example: 

3-20 

BLEZ PRG63 63 is loaded into the program counter if the accumulator is less than or 
equal to zero. 
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BLZ Branch if Accumulator Lass Than Zaro BLZ 

Assembler Syntax: [<label>] BLZ <pma> 

Operands: O ~ pma< 212 

Operation: If (ACC)< 0 
Then pma-PC 
Else (PC) + 2 - PC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 ol PROGRAM MEMORY ADDRESS 

Description: If the contents of the accumulator are less than zero, branch to the specified program 

memory location. Branch to location in program is specified by the program memory 

address (pma). Pma can be either a symbolic or numeric address. 

Words: 2 
Cycles: 2 

Example: BLZ PRG481 481 is loaded into the program counter if the accumulator is less than zero. 

1183 3-21 

-



-

BNZ Branch if Accumulator Not Equal to Zero BNZ 

Assembler Syntax: [<label>] BNZ <pma> 

Operands: 0 <Et pma < 2 12 

Operation: If (ACC) <> 0 
Then pma-PC 
Else (PC) + 2- PC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

0 0 0 oJ PROGRAM MEMORY ADDRESS 

Description: If the contents of the accumulator are not equal to zero, branch to the specified 
program memory location. Branch to location in program is specified by the program 
memory address (pma). Pma can be either a symbolic or numeric address. 

Words: 2 
Cycles: 2 

Example: BNZ PRG320 320 is loaded into the program counter if the accumulator does not equal zero. 
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· BV Branch on Overflow BV 
l 

Assembler Syntax: [<label>] BV <pma> 

Operands: O ~ pma < 212 

Operation: If overflow flag = 1 
Then pma-PC !!Ind 0-overflow flag 
Else (PC) + 2 - PC 

Encoding: 15 14 13 . 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 

0 0 0 ol PROGRAM MEMORY ADDRESS 

Description: If the overflow flag has been set, then a branch to the program address occurs and the 

overflow flag is cleared. Otherwise, the program counter is incremented to the next instruc­

tion. Branch to location in program is specified by the program memory address (pma). 

Pma can be either a symbolic or a numeric address. 

Words:2 
Cycles: 2 

Example: BV PRG610 If an overflow has occurred since the overflow flag was last cleared, then 610 is 
loaded into the program counter. Otherwise, the program counter is 

incremented. 
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BZ Branch if Accumulator Equals Zero BZ 

Assembler Syntax: [<label>] BZ <pma> 

Operands: o~ pma< 212 

Operation: If CACC) = 0 
Then pma-PC 
Else CPC) + 2-PC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

0 0 0 al PROGRAM MEMORY ADDRESS 

Description: If the contents of the accumulator are equal to zero, branch to the specified program 
memory location. Branch to location in program is specified by the program memory 
address (pma). Pma can be either a symbolic or numeric address. 

Words: 2 
Cycles: 2 

Example: BZ PRG102 102 is loaded into the program counter if accumulator is equal to zero. 

3-24 
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CALA Call Subroutine Indirect CALA 

Assembler Syntax: [<label>] CALA 

Operands: None 

Operation: (PC}+ 1 -TOS 
(ACC bits 11 through 0) - PC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 

Description: The current program counter is incremented and pushed onto the top of the stack. Then, -

the contents of the 12 least significant bits of the accumulator are loaded into the PC. 

Words: 1 
Cycles: 2 

Example: CALA 

PC 

ACC 

STACK 

BEFORE INSTRUCTION 

25 

83 

32 
75 
84 
49 

PC 

ACC 

AFTER INSTRUCTION 

83 

83 

STACKI .._ _______ E __ 

Note: This instruction is used to perform computed subroutine calls. 
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CALL Call Subroutine Direct CALL 
Assembler Syntax: [<label>] CALL <pma> 

Operands: 0 s pma <212 

Operation: (PC)+ 2 -TOS 
pma-PC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 oT PROGRAM MEMORY ADDRESS 

Description: The current program counter is incremented and pushed onto the top of the stack. Then, 
the program memory address is loaded into the PC. 

Words: 2 
Cycles: 2 

Example: CALL PRG109 

PC 

STACK 

3-26 

BEFORE INSTRUCTION 

33 

71 
48 
16 
80 

PC 

AFTER INSTRUCTION 

109 

STACK l.___ ______ :_~i___. 
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DINT Disable Interrupt DINT 

Assembler Syntax: [<label> 1 DINT 

Operands: None 

Operation: 1-INTM 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 o 1 1 1 1 111100000011 

Description: The interrupt-mode flag (INTM) bit is set to logic 1. When this flag is set, any further 

Words: 1 
Cycles: 1 

maskable interrupts are disabled. -

Example: DINT 

1183 
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DMOV Data Move in Memory DMOV 
Assembler Syntax: 

Direct Addressing: [<label>] DMOV <dma> 
Indirect Addressing: [<label>] DMOV {*I*+ I*- }I,<ARP>J 

Operands: O~dma~ 127 
ARP=O or 1 

Operation: (dma) - dma + 1 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: 0 1 1 0 1 0 0 1 I 0 I DATA MEMORY 
ADDRESS 

Indirect: 0 1 1 0 1 0 0 1 I 1 SEE SECTION 3.3 

Description: The contents of the specified data memory address are copied into the contents of the next 
higher address. 

Words: 1 
Cycles: 1 

Example: DMOV OATS 
or 
DMOV * If current auxiliary register contains the value 8. 

BEFORE INSTRUCTION 
DATA .--~~~~~~~----. 

ME~ORY I 431 

DATA 
ME~ORY .__I _____ ___.2 I 

AFTER INSTRUCTION 
DATA 

MEMORY I 43 I 
8 

DATA 
ME~ORY l.__ ______ 43 ....... 1 

Note: DMOV is an instruction that can be associated with z-1 in signal flow graphs. It is a subset of the LTD 
instruction. See LTD for more information. 
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EINT Enable Interrupt EINT 

Assembler Syntax: [<label>] EINT 

Operands: None 

Operation: 0-INTM 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I o 1 1 1 1 1 1 1 1 0 0 0 0 0 1 ol ? F ~ 2.. 

Description: The interrupt-mode flag (INTM) in the status register is cleared to logic 0. When this flag is 

Words: 1 
Cycles: 1 

not set, maskable interrupts are enabled. -

Example: EINT 
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IN Input Data from Port 

Assembler Syntax: 
Direct Addressing: [<label>] 

[<label>] 
IN 
IN 

<dma>,<PA> 
Indirect Addressing: {*I*+ I* - }, <PA>[, <ARP>] 

Operands: 

Operation: 

0sdma:S127 
OsPAs7 
ARP=O or 1 

PA--address lines PA2-PAO 
Data bus D15-DO-dma 

- Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 . 3 2 1 0 

Direct: 0 1 0 0 PORT DATA MEMORY 
O ADDRESS O ADDRESS 

Indirect: 0 1 0 0 o I A~g~~ssl 1 I SEE SECTION 3.3 

IN 

Description: The IN instruction reads data from a peripheral and places it in data memory. It is 
a two-cycle instruction. During the first cycle, the port address is sent to address 
lines A2/PA2-AO/PAO. DEN goes low during the same cycle, strobing in the data 
which the addressed peripheral places on the data bus, D15-DO. 

Words: 1 
Cycles: 2 

Example: IN STAT,PA5 Read in word from peripheral on port address 5. 

LARK 1, 20 
LARP 1 
IN *-,PA1 ,0 

Store in data memory location STAT. 

Load AR1 with decimal 20. 
Load ARP with 1. 
Read in word from peripheral on port address 1 . 
Store in data memory location 20. Decrement 
AR1to19. LoadtheARPwithO. 

Notes: When the TMS32010 outputs address onto the three LSBs of address lines, the nine MSBs are 
zeroed. 

3-30 

lnstructi~uses the DEN line to ~w during the first clock cycle of this instruction's ex­
ecution. MEN remains high when DEN is active. 
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LAC Load Accumulator with Shift LA.C 

Assembler Syntax: 
Direct Addressing: [<label>] LAC <dma> [,<shift>] 

Indirect Addressing: [<label>] LAC {*I*+ I* - }[,<shift>[, <ARP>]] 

Operands: 0~shift~15 

0~dma~127 

ARP=O or 1 

Operation: (dma) x 2shift -Ace 

j 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: I 0 0 1 ol SHIFT I 0 I DATA MEMORY 
ADDRESS 

Indirect: 0 0 1 oj SHIFT 1 SEE SECTION 3.3 

Description: Contents of data memory address are left-shifted and loaded into the accumulator. During 

shifting, low-order bits are zero-filled and high-order bits are sign-extended. 

Words: 1 
Cycles: 1 

Example: LAC DAT6,4 
or 
LAC *,4 If current auxiliary register contains the value 6. 

BEFORE INSTRUCTION AFTER INSTRUCTION 
DATA 

1183 

DATA 
MEMORY 

6 

ACC 

1. I 

al 

MEMORY 1 I 
6 '--~~~~~~~---'-

ACC 
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LACK Load Accumulator with Eight-Bit Constant LACK 

Assembler Syntax: [<label>] LACK <constant> 

Operands: Osconstants255 

Operation: constant-ACC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0 

0 1 1 1 1 1 1 ol 8-BIT CONSTANT 

Description: The eight-bit constant is loaded into the accumulator right-justified. The upper 24 bits of the 
accumulator are zeros (i.e., sign extension is suppressed). 

Words: 1 
Cycles: 1 

Example: LACK 15 

ACC 

BEFORE INSTRUCTION 

31 

AFTER INSTRUCTION 

ACC 151 

Note: If a constant longer than eight bits is used, the XDS/320 assembler will truncate it to eight bits. No 
error message will be given. 
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LAR 

Assembler Syntax: 
Direct Addressing: 
Indirect Addressing: 

[<label>] 
[<label>] 

Operands: O ~ dma ~ 127 
AR = 0or1 
ARP= 0or1 

Operation: (dmal-AR 

Load Auxiliary Register 

LAR 
LAR 

<AR>, < dma > 
<AR>,{*I *+I*- }[,<ARP>] 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: 0 0 1 1 1 
AUXILIARY! 0 

DATA MEMORY 
REGISTER ADDRESS 

Indirect: 0 0 1 1 1 AUXILIARYi 1 SEE SECTION 3.3 
REGISTER · 

LAR 

Description: The contents of the specified data memory address.are loaded into the designated auxiliary 

register. 

Words: 1 
Cycles: 1 

Example: LAR ARO,DAT19 

BEFORE INSTRUCTION 
DATA 

ME~~RY I 1sl 

ARO 61 

also, LARP 0 
LAR ARO,* -

DATA 
321 MEMORY I 

7 

ARO 11 

AFTER INSTRUCTION 
DATA 

Ml:~~RY I 1s j 

ARO 

DATA 
321 MEMORY I 

7 

ARO 321 

Notes: ARO is not decremented after the LAR instruction. Generally as in the above case, if indirect 

addressing with autodecrement is used ·with LAR to load the current auxiliary register, the new 

value of the auxiliary register is not decremented as a result of instruction execution. The analagous 

case is true with autoincrement. 

1183 

LAR and its companion instruction SAR (store auxiliary registers) should be used to store and load · 

the auxiliary during subroutine calls and interrupts. 

If an auxiliary register is not being used for indirect addressing, LAR and SAR enable it to be used 

as an additional storage register, especially for swapping values between data memory locations. 
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LARK Load Auxiliary Register with Eight-Bit Constant 

Assembler Syntax: [<label>] LARK <AR>, <constant> 

Operands: 

Operation: 

Encoding: 

Direct: 

0 ~ constant ~ 255 
AR = 0 or 1 

constant-AR 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 0 AUXILIARY! 8-BIT CONSTANT REGISTER 

LARK 

Description: The eight-bit positive constant is loaded into the designated auxiliary register right-justified and zero-filled (i.e., sign-extension suppressed). 

Words: 1 
Cycles: 1 

Example: LARK AR0,21 

BEFORE INSTRUCTION 

ARO oj ARO 

AFTER INSTRUCTION 

21 l 
Notes: This instruction is useful for loading an initial loop counter value into an auxiliary register for use with the BANZ instruction. 
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If a constant longer than eight bits is used, the XDS/320 assembler will truncate it to eight bits. No error message will be given. 
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LARP Load Auxiliary Register Pointer Immediate LARP 

Assembler Syntax: [<label> 1 LARP <constant> 

Operands: 0 ~ constant ~ 1 . 

Operation: constant - ARP 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 : CONSTANT: 
I 1-BIT I 

Description: Load a one-bit constant identifying the desired auxiliary register into the auxiliary register • 

pointer. · 

Words: 1 
Cycles: 1 

Example: LARP 1 Any succeedil')g instructions will use auxiliary register 1 for indirect addressing. 

Note: This instruction is a subset of MAR. 

1183 
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LOP Load Data Memory Page Pointer LOP 
Assembler Syntax: 

Direct Addressing: [<label>] LOP <dma> 
Indirect Addressing: [<label>] LOP { * I * + I * - }[, <ARP>] 

Operands: Osdmas127 
ARP=O or 1 

Operation: LSB of (dma) - DP (DP= 0 or l) 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: 0 1 1 0 1 1 1 1 I 0 I DATA MEMORY 
ADDRESS 

Indirect: 0 1 1 0 1 1 1 1 I 1 SEE SECTION 3.3 

Description: The least significant bit of the contents of the specified data memory address is loaded into 
the data memory page pointer register (DP). All higher-order bits are ignored in the data 
word. DP = 0 defines page 0 which contains words 0-127. DP = 1 defines page 1 which 
contains words 128-143. 

Words: 1 
Cycles: 1 

Example: LOP 

3-36 

or 
LOP 

DAT1 

*,1 

LSB of location DAT1 is loaded into data page pointer. 

LSB of location currently addressed by auxiliary register is loaded into 
data page pointer. ARP is set to one. 
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LDPK Load Data Page Pointer Immediate 

Assembler Syntax: [<label>] LDPK <constant> 

Operands: 0 ::S constant .::S 1 

Operation: constant-DP 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Description: The one-bit constant is loaded into the data memory page pointer register (DP). DP = 0 

defines page 0 which contains words 0-127. DP = 1 defines page 1 which contains words 

128-143. 

Words: 1 
Cycles: 1 

Example: LDPK 0 Data page pointer is set to zero. 

1183 
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LST Load Status from Data Memory LST 

Assembler Syntax: 
Direct Addressing: [<label> J LST <dma> 
Indirect Addressing: [<label> J LST {*I*+ I* - }[,<ARP>] • 

Operands: O::sdma::s127 
ARP=O or 1 • 

Operation: (dma)-status bits 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: 0 1 1 1 1 0 1 1 I 0 I DATA MEMORY 
ADDRESS 

Indirect: 0 1 1 1 1 0 1 1 I 1 SEE SECTION 3.3 

Description: Restores the contents of the status register as saved by the· store status (SST) instruction 
from a data memory word. 

Words: 1 
Cycles: 1 

Example: LARP 0 
LST *, 1 

The data memory word addressed by the contents of auxiliary 
register 0 replaces the status bits. The auxiliary register pointer 
becomes 1. 

Note: This instruction is used to load the TMS32010's status bits after interrupts and subroutine calls. 

3-38 

These status bits include the Overflow Flag (OV) bit, Overflow Mode (OVM) bit, Auxiliary Register 
Pointer (ARP) bit, and the Data Memory Page Pointer (DP) bit. The Interrupt Mask bit cannot be 
changed by the LST instruction. These bits were stored (by the SST instruction) in the data memory 
word as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 I 1 I 1 IARPI 1 I 1 I 1 1 I 1 I 1 I 1 I DP I 
See SST. 
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LT Load T Register 

Assembler Syntax: 
Direct Addressing: [<label> 1 LT <dma> 
Indirect Addressing: [<label> 1 LT { * I * + I * - }[, <ARP> 1 

Operands: 0=::;dma=:=127 
ARP=O or 1 

Operation: (dma)-T 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

o!ol DATA MEMORY 
Direct: 0 1 1 0 1 0 1 ADDRESS 

Indirect: 0 1 1 0 1 0 1 o 11 I SEE SECTION 3.3 

Description: LT loads the T register with the contents of the specified data memory location. 

Words: 1 
Cycles: 1 

Example: LT 
or 
LT 

DATA 
MEMORY 

24 

T 

DAT24 

* If current auxiliary register contains the value 24. 

BEFORE INSTRUCTION 

621 

AFTER INSTRUCTION 
DATA 

MEMORY I 62 I 
24 ~. ~~~~~~~--'· 

T 621 

Note: LT is used to load the T register in preparation for a multiplication. See M PY, LT A, and LTD. 
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LTA Load T Register and Accumulate Previous Product LTA 
Assembler Syntax: 

Direct Addressing: [<label>] LTA <dma> 
Indirect Addressing: [<label>] LTA {*I*+ I* - }[,<ARP> 1 

Operands: Osdmas127 
ARP=O or 1 

Operation: (dma)-T 
(ACC) + (P)-ACC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: 0 1 1 0 1 1 0 0 I 0 I DATA MEMORY 
ADDRESS 

Indirect: 0 1 1 0 1 1 0 o 11 I SEE SECTION 3.3 

Description: The contents of the specified data memory address are loaded into the T register. Then, the 
P register, containing the previous product of the multiply operation, is addedto the accu­
mulator, and the result is stored in the accumulator. 

Words: 1 
Cycles: 1 

Example: LTA DAT24. 
or 
LTA * If current auxiliary register contains the value 24. 

BEFORE INSTRUCTION 
DATA 

MEMORY_ 621 24 '-----~~~~~~---' 

T 31 
p 

15 f 

ACC sl 

AFTER INSTRUCTION 
DATA 

MEMORYj 62J 24 ~-~~~~~~~---J. 

T 621 

p 151 
ACC 20 I 

Note: This instruction is a subset of the LTD.instruction. 
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LTD · Load T Register, Accumulater Previous 
Product, and Move Data Memory 

Assembler Syntax: 
Direct Addressing: l<labe1>l 

C<label>J Indirect Addressing: 

Operands: 

Operation: 

Encoding: 

Direct: I 
Indirect: 

0 :s dma :s 127 
ARP=O or 1 

(dma)-T 
(ACC)+(P)-ACC 
(dma)-dma + 1 

15 14 13 12 11 

0 1 1 0. 1 

0 1 1 0 1 

10 

0 

0 

LTD 
LTD 

9 

1 

1 

8 

1 

1 

<dma> 
{*I*+ I*~}[, <ARP>] 

7 6 5 4 3 2 1 

I 0 1 
DATA MEMORY 

ADDRESS 

I 1 I SEE SECTION 3.3 

LTD 

0 

I 
· Description: The T register is loaded with the contents of the specified data memory address. Then, the 

contents of the P register are addedto the accumulator. Next, the contents of the specifi8d 

data memory address are transferred to the next higher data memory address. 

Words: 1 
Cycles: 1 

Example: LTD DA T24 
or 
LTD* IF current auxiliary register contains the value 24. 

BEFORE INSTRUCTION 
DATA 

MEMORY 621 
24 

DATA ol MEMORY 
25 

T 31 

p 151 

ACC 51 

1183 

AFTER INSTRUCTION 
DATA 

MEMORY I 021 
24 

DATA 
MEMORY I 02 I 

25 

T I 62 I 
p 15 J 

ACC 20 I 
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MAR Modify Auxiliary Register MAR 
Assembler Syntax: [<label>] MAR { * I * + I * - }[,<ARP> J 

Operands: ARP= 0 or 1 

Operation: Current auxiliary register is incremented, decremented, or remains the same. Aux­
iliary register pointer is loaded with the next ARP. 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: 

- Indirect: 

0 1 1 o 1 o o olol DATA MEMORY 
ADDRESS 

0 1 1 0 1 0 0 0 I 1 I SEE SECTION 3.3 

Description: This instruction utilizes the indirect ad~ressing mode to increment/decrement the auxiliary 
registers and to change the auxiliary register pointer. It has no other effect. 

Words: 1 
Cycles: 1 

Example: MAR *, 1 
MAR*­
MAR *+,O 

Load ARP with 1. 
Decrement current auxiliary register (in this case, AR1) 
Increment current auxiliary register (AR1 ), load ARP with 0. 

Note: In the direct addressing mode, MAR is a NOP. Also, the instruction LARP is a subset of MAR (i.e., 
MAR * ,0 performs the same function as LARP 0). 
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MPV Multiply ·MPV 
· ·. Assembler Syntax:. 

Direct Addressing: [<label>] MPV <dma> 
Indirect Addressing: [<label>] MPV { * I * + I * - }[,<ARP>] 

Operands: Osdmas127 
ARP=O or 1 

Operation: (T) x (dma)- P 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 ,. 0 

Direct: 0 1 1 0 1 1 0 1 I 0 I DATA MEMORY I ADDRESS 

Indirect: 0 1 1 0 1 1 0 1 I 1 I SEE SECTION 3.3 

Description: The contents of the T register are multiplied by the contents of the specified data memory 
address, and the result is stored in the P register. 

Words: 1 
Cycles: 1 

Example: MPV DAT13 
or 
MPV* If current auxiliary register contains the value 13. 

BEFORE INSTRUCTION 
DATA 

MEMORY I 11 
13 

T 

p 361 

AFTER INSTRUCTION 
DATA 

MEMORY I 71 
13 

T 

p 

Note: During an interrupt, all registers except the P register can be saved. However, the TMS32010 has 
hardware protection against servicing an interrupt between an MPV or MPYK instruction and the 
following instruction. For this reason, it is advisable to follow MPV and MPYK with LTA, LTD, PAC, 
APAC, or SPAC. 

1183 

No provisions are made for the condition of > 8000 X > 8000. If this condition arises, the product 
will be > COOOOOOO. 
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MPYK Multiply Immediate MPYK 

Assembler Syntax: [<label>] MPYK <constant> 

Operands: (-212) <constant< 212 

Operation: (T) x constant-P 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 a a I 13-BIT CONSTANT 

Description: The contents of the T register are multiplied by the signed 13-bit constant and the result 
- loaded into the P register. 

Words: 1 
Cycles: 1 

Example: MPYK - 9 

BEFORE INSTRUCTION 

T 11 

p 

AFTER INSTRUCTION 

T 11 

p 

Note: No provision is made to save the contents of the P register during an interrupt. Therefore, this 
instruction should be followed by one of the following instructions: PAC, APAC, SPAC, LTA, or 
LTD. Provision is made in hardware to inhibit interrupt during MPYK until the next instruction is 
executed. 
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NOP No Operation NOP 
Assembler Syntax: [<label>] NOP 

Operands: None 

Operation: None 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I o 1 1 1 1 1 1 1 1 o o o o o o o 

Description: No operation is performed. 

Words:1 -
Cycles: 1 

Example: NOP 

Note: NOP is useful as a "pad" or temporary instruction during program development. 
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OR OR with Low-Order Bits of Accumulator 

Assembler Syntax: 
.Direct Addressing: [<label>] 

[<label> 1 
OR 
OR 

<dma> 
Indirect Addressing: {*I*+ I* - }[,<ARP>] 

Operands: 

Operation: 

Osdmas127 
ARP=O or 1 

Zero. OR. high-order ACC bits: (dma). OR. low-order ACC bits-ACC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: 

Indirect: 

0 1 1 1 o 1 ojol DATA MEMORY 
ADDRESS 

0 1 1 1 1 0 1 0 I 1 I SEE SECTION 3.3 

OR 

Description The low-order bits of the accumulator are ORed with the contents of the specified data 
memory address concatenated with all zeroes ORed with the high-order bits of the ac­
cumulator. The result is stored in the accumulator. The OR operation follows the truth 
table below. 

DATA MEMORY BIT ACC BIT (BEFORE) ACC BIT (AFTER) 

Words: 1 
Cycles: 1 

Example: OR DA T88 
or 

0 
0 
1 
1 

0 0 
1 1 
0 1 
1 1 

OR * Where current auxiliary register contains the value 88. 

BEFORE INSTRUCTION 
DATA 

MEMORY I >F 0 0 0 
88 

ACC >O O 1 0 0 0 0 2 I 

AFTER INSTRUCTION 
DATA 

MEMORY I >F 0 0 0 
88 

ACC >O 0 .1 () F 0 0 2 I 

Note: This instruction is useful for comparing selected bits of a data word. 
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OUT ' Output Data to Port 

Assembler Syntax: 
Direct Addressing: <dma>,<PA> 
Indirect Addressing: 

. [<label>] 
[<label>] 

OUT 
OUT {*I*+ I* - },<PA>[,<ARP>] 

Operands: Osdmas127 
OsPAs7 
ARP=O or 1 

Operation: PA- address lines PA2-PAO 
(dma)-data bus D15-DO 

· Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: 0 1 0 0 1 PORT 0 DATA MEMORY 
··ADDRESS ADDRESS 

Indirect: 0 1 0 0 1 I Arig~Jssl 1 I SEE SECTION 3.3 

OOT 

Description: The OUT instruction transfers data from data memory to an external peripheral. The 
first cycle of this instruction places the port address onto address lines A2/PA2-AO/PAO. 
During the same cycle, WE goes low and the data word is placed on the data bus D15-DO. 

Words: 1 
Cycles: 2 

Example: OUT 120, 7 Output data word stored in memory location 120 to 
peripheral on port address 7. 

OUT * ,5 Output data word referenced by current auxiliary 
register to peripheral on port address 5. 

Notes: When the TMS32010 sends the port address onto the three LSBs of the address lines, the nine 
MSBs are set to zero. 

1183 

The OUT instruction causes the WE line to go low during the first clock cycle of this instruc­
tion's execution. MEN remains high during the first cycle. 
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PACMAtJ Load Accumulator with P Register PAC 
Assembler Syntax: [<label>] PAC 

Operands: None 

Operation: (P)-ACC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I o 1 1 1 1 1 1 1 1 0 0 0 1 1 1 01 

Description: The contents of the P register resulting from a multiply are loaded into the accumulator. 

- Words:1 
Cycles: 1 

Example: PAC 

p 

ACC 

3-48 

BEFORE INSTRUCTION 

144 

23 

p 

ACC 

AFTER INSTRUCTION 

1441 

1441 
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POP Pop Top of Stack to Accumulator 

Assembler Syntax: [<label> J POP 

Operands: None 

Operation: (TOS)-ACC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 

Description: The contents of the top of stack are loaded into the accumulator. The next element on the -
stack becomes the top of the stack. 

Words: 1 
Cycles: 2 

Example: POP 

ACC 

STACK 

BEFORE INSTRUCTION 

a2 I 

~I 
ACC 

STACK 

AFTER INSTRUCTION 

451 

~I 
Note: The 12 bits of the stack are put into the accumulator in bits 11 through 0, and bits 31 through 12 are 

zeroed. There is no provision to check stack underflow. 
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PUSH Push Accumulator onto Stack PUSH 

Assembler Syntax: [<label>] PUSH 

Operands: None 

Operation: (ACC)-TOS 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I o 1 1 1 1 1 1 1 1 0 0 1 1 0 01 

Description: The contents of the lower 12 bits ( 11-0) of the accumulator are pushed onto the top of the 
hardware stack. 

Words: 1 
Cycles: 2 

Example: PUSH 

ACC 

STACK 

BEFORE INSTRUCTION 

11 

ii 
AFTER INSTRUCTION 

ACC 

STACK 

Note: There is no provision for detecting a stack overflow. Therefore, if the stack is already full, the 
contents of the bottom stack element will be lost upon execution of PUSH. 
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RET Return from Subroutine 

Assembler Syntax: [<label>) RET 

Operands: None 

Operation: (TOS)-PC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I a 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 I 
Description: The top element is popped off of the stack and loaded into the program counter. 

Words: 1 
Cycles: 2 

· Example: RET 

PC 

BEFORE INSTRUCTION 

961. PC 

AFTER INSTRUCTION 

371 

Note: This instruction is used in conjunction with CALL and CAL.A for subroutines. 

1183 

RET 

-
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ROVM Reset (Clear) Overflow Mode Register ROVM 
Assembler Syntax: [<label>] ROVM 

Operand: None 

Operation: 0-0VM 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I o 1 1 1 1 1 1 1 1 o o o 1 o 1 ol 

Description: This instruction will reset the TMS32010 from the overflow mode it was placed in by the 
· SOVM instruction. The overflow mode will set the accumulator and the ALU to their highest 

positive/ negative value when an overflow occurs. 

Words: 1 
Cycles: 1 

Example: ROVM 

Note: See SOVM. 

3-52 
1183 



SACH Store Accumulator High with Shift SACH 
Assembler Syntax: 

Direct Addressing: <dma>[, <shift> J 
Indirect Addressing: 

[<label>] 
[<label> 1 

SACH 
SACH {*I*+ I* - }[,<shift>[, <ARP>]] 

Operands: 

Operation: 

Osdmas 127 
shift = 0, 1 , or 4 
ARP=O or 1 

(ACC) x 2 - (16-shift) - drna 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: 0 1 0 1 1 SHIFT I 0 I DATA MEMORY 
ADDRESS 

Indirect: 0 1 0 1 1 SHIFT I 1 I SEE SECTION 3.3 

Description: Store the upper half of the accumulator in data memory with shift. The shift can only be 0, 
1, or 4. 

Words: 1 
Cycles: 1 

Example: SACH DA T70, 1 
or 
SACH *, 1 If current auxiliary register contains the value 70. 

BEFORE INSTRUCTION 

>042080011 ACC 

DATA 
MEMORY al 

70 ....__~~~~~~~---'-

ACC 

DATA 
MEMORY 

70 

AFTER INSTRUCTION 

>O 4 2 0 8 0 0 1 I 
>O 8 4 1 

Notes: The SACH instruction copies the entire accumulator into a shifter. It then shifts this entire 32'-bit 
number 0, 1 , or 4 bits and copies the upper 16 bits of the shifted product into data memory. The 
accumulator itself remains unaffected. 

-

For example, the following instruction sequence will store > 8F35 in data memory location DAT1. · 
Location DAT2 contains the number> A8F3. DAT3 contains> 5000. 

ZALH DAT2 ACC = > A8F30000 

ADDS DAT3 ACC = >A8F35000 

SACH DAT1,4 DAT1 = >8F35 

ACC = >A8F35000 
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SACL Store Accumulator Low 

Assembler Syntax: 
Direct Addressing: [<label>] 

[<label>] Indirect Addressing: 

Operands: Osdmas127 
ARP=O or 1 
Shift= 0 

SACL 
SACL 

Operation: (ACC bits 15 through 0) - dma 

<dma> [,<shift> r 
{*I*+ I* - }[,<shift>[,<ARP>]] 

Encoding: 15 14 13 12 11 10 9 8 7 6 5- 4 3 2 1 0 

Direct: 0 0 o ooolol 

Indirect: o 1 o 1 o o o al 

DATA MEMORY 
ADDRESS 

SEE SECTION 3.3 

Description: Store the low-order bits of the accumulator in data memory. 

Words: 1 
Cycles: 1 

DAT71 Example: SACL 
or 
SACL * If current auxiliary register contains the value 71 . 

BEFORE INSTRUCTION AFTER INSTRUCTION 

ACC >O 4 2 0 8 0 0 1 I ACC >O 4 2 0 8 · 0 0 1 

DATA 
MEMORY I 1 I 

71 

DATA 
MEMORY I >8 0 0 1 

71 

SACL 

Note: There is no shift associated with this instruction, although a shift code of zero MUST be specified 
if the ARP is to be changed. 
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SAR 

Assembler Syntax: 
Direct Addressing: [<label>] 

[<label>] Indirect Addressing: 

Operands: 

Operation: 

Osdmas127 
AR=O or 1 
ARP=O or 1 

(AR)-dma 

Stora Auxiliary Rapister 

SAR 
SAR 

<AR>,<dma> 
<AR>, { * I * + I * - }[,<ARP> 1 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: 0 0 1 1 0 AUXILIARY 0 DATA MEMORY 
REGISTER ADDRESS 

Indirect: 0 0 1 1 0 AUXILIARY 1 SEE SECTION 3.3 
REGISTER 

SAR 

Description: The contents of the designated auxiliary register are stored in the specified data memory 
location. 

Words: 1 
Cycles: 1 

Example: SAR ARO,DAT101 

ARO 

DATA 
MEMORY 

101 

also, 

BEFORE INSTRUCTION 

371 

LARP ARO 
SAR ARO,*+ 

ARO sl 
DATA 

MEMORY ol 
5 

ARO 

DATA 
MEMORY 

101 

ARO 

DATA 
MEMORY 

5 

WARNING 

AFTER INSTRUCTION 

371 

al 
sl 

Special problems arise when SAR is used to store the current auxiliary register with in­
direct addressing if autoincrement/decrement is used. 

(continued) 

1183 

• 



-

SAR 
LARP 
LARK 
SAR 

ARO 
AR0,10 
ARO,*+ or SAR ARO,*-

In this case, SAR ARO, * + will cause the value 11 to be stored in location 10. SAR 
ARO, * - will cause the value 9 to be stored in location 10. 

Note: For more information, see LAR. 
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SAR 
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SOVM Set Overflow Mode Register SOVM 

Assembler Syntax: [<label>] SOVM 

Operands: None:: 

Operation: 1-0VM 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

lo 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 I 

Description: When placed in the.overflow mode, the TMS32010 will set the accumulator and ALU .•.. 
to their highest positive/negative value if an overflow/underflow occurs. The highest 

Words: 1 
Cycles: 1 

positive value is > 7FFFFFFF, and the lowest negative value is >80000000. 

Example: SOVM 
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SPAC Subtract P Register from Accumulator SPAC 
Assembler Syntax: [<label> 1 SPAC 

Operands: None 

Operation: (ACC) - (P) - ACC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I o 1 1 1 1 1 1 1 1 0 0 1 0 0 0 ol 
Description: The contents of the P register are subtracted from the contents of the accumulator, and the 

result is stored in the accumulator. 

Words: 1 
Cycles: 1 

Example: SPAC 

3-58 

p 

BEFORE INSTRUCTION 

36l 

ACC ...... 1 ______ 6__,0 I 

p 

AFTER INSTRUCTION 

36 l 

ACC '~-----2__,4 J 
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SST 
Assembler Syntax: 

Direct Addressing: 
Indirect Addressing: 

[<label>] 
[<label> 1 

Operands: Osdmas 15 
ARP=O or 1 

Store Status 

SST 
SST 

<dma>· 
{ * I * + I * - }[, <ARP>] 

Operation: status bits - specified data memory word on page 1 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

Direct: 0 1 1 1 1 1 0 0 I 0 I DATA MEMORY 
ADDRESS 

Indirect: 0 1 1 1 1 1 0 0111 SEE SECTION 3.3 

0 

Description: The status bits are saved into the specified data memory address on page 1. 

Words: 1 
Cycles: 1 

Example: SST 
or 
SST 

DAT1 

*,1 

• f 

IF current auxiliary register contains the value 1. 

SST 

Note: This instruction is used to load the TMS3201 O's status bits after interrupts and subroutine calls. 
These status bits include the Overflow Flag (OV) bit, Overfrow Mode (OVM) bit, Interrupt Mask 

(INTM) bit, Auxiliary Register Pointer (ARP) bit, and the Data Memory Page Pointer (OP) bit. These 

bits are stored (by the SST instruction) in the data memory word as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I ov I OVM I 1 NTM I 1 1 . 1 I . 1 I ARP I 1 1 1 I 1 I 1 I 1 I 1 I DP I 

Note: See LST. 
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SUB Subtract from Accumulator with Shift 

Assembler Syntax: 
Direct Addressing: 
Indirect Addressing: 

[<label>] 
[<label>] 

SUB 
SUB 

Operands: Osshift s 15 
Osdma s 127 
ARP=O or 1 

Operation: (ACC) - [(dma) x 2 shift] - ACC 

Encoding: 15 14 13 12 11 10 9 8 

Direct: 0 0 0 1 I SHIFT· 

Indirect: . I 0 0 0 1 I SHIFT 

<dma>[, <shift>] 
{*I*+ I* - }[,<shift:>[,<ARP>]] 

7 6 5 4 3 2 1 0 

I 0 I DATA MEMORY 
ADDRESS 

I 1 I . SEE SECTION 3.3 . 

·s·······.·e·· ··U·· 
,·• 

Description: Contents of data memory address are left-shifted and subtracted from the accumulator. 
During shifting, the low-order bits of data are zero-filled and the high-order bit is sign­
extended. The result is stored in the accumulator. 

Words: 1 
Cycles: 1 

DAT59 Example: SUB 
or 
SUB .. ' If current auxiliary register contains the value 59 • 

3-60 

ACC 

BEFORE INSTRUCTION 

361 

DATA 
MEMORY I . 11 I 59 ~------~~~~~~--'· 

ACC 

AFTER INSTRUCTION 

191 
DATA 

ME~~RY .._l -----'--_11_l 
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SUBC Conditional Subtract 

Assembler Syntax: 
Direct Addressing: <dma> 
Indirect Addressing: 

[<label>] 
[<label>] 

SUBC 
SUBC {*I*+ I* - }[,<ARP>] 

Operands: 0 < dma < 127, 
ARP= 0 or1 

Operation: (ACC)-[(dma) x 215]-adder output 

If (high-order bits of adder output)~ 0 
Then (adder output) * 2 + 1 - ACC 
Else (ACC) x 2 - ACC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: o 1 1 o o 1 o olol 

Indirect: 0 1 1 0 0 1 0 0111 

DATA MEMORY 
ADDRESS 

SEE SECTION 3.3 

S'UBC 

Description: This instruction performs conditional subtraction which can be used for division in 

algorithms. 

Words: 1 
Cycles: 1 

Note: The next instruction after SUBC cannot use the accumulator. 
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SUB.H Subtract from High-Order Accumulator 

Assembler Syntax: 
Direct Addre~sing: [<label>] SUBH <dma> 
Indirect Addressing: [<label>] SUBH {*I*+ I* - }[,<ARP>] 

Operands: Osdma:s127 
ARP=O or 1 

Operation: (ACC) - [(drna) x 216] - ACC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: 0 1 1 0 0 0 1 o!oj DATA MEMORY_ 
1-ADDRESS 

Indirect: 0 1 1 0 0 0 1 o 11 I SEESECTION 3.3 I 
Description: Subtract the contents of specified data memory location from the upper half of the 

accumulator. The result is stored in the accumulator. 

Words: 1 
Cycles: 1 

DAT33 Example: SUBH 
or 
SUBH * If current auxiliary register contains the value 33. 

BEFORE INSTRUCTION 
DATA 

MEMORY I 51 
33 

31 16 15 0 

ACC 111 al 

-- AFTER INSTRUCTION 
DATA 

MEMORY I 51 
33 

31 16 15 0 

ACC ol 

Note: The SUBH instruction can be used for performing 32-bit arithmetic. 

I 
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SUBS Subtract from Low Accumulator 
with Sign-Extension Suppressed 

Assembler Syntax: 
Direct Addressing: 
Indirect Addressing: 

[<label> 1 
[<label> 1 

Operands: Osdmas127 
ARP=O or 1 

Operation: (ACC) - (dma) - ACC 

Encoding: 15 14 13 12 11 

Direct: 0 1 1 0 0 

Indirect: 0 1 1 0 0 

SUBS 
SUBS 

10 9 

0 1 

0 1 

8 

1 

1 

<dma> 
{ * I * + I * - } [, <ARP>] 

7 6 5 4 3 2 1 

I 0 I DATA MEMORY 
ADDRESS 

I 1 I SEE SECTION 3.3 

SUBS 

0 

I 

Description: Subtract contents of a specified data memory location from accumulator with sign­

extension suppressed. The data is treated as a 16-bit positive integer rather than a two's 

complement integer. 

Words: 1 
Cycles: 1 

Example: SUBS 
or 
SUBS 

1183 

ACC 

DATA 
MEMORY 

61 

DAT61 

* If current auxiliary register contains the value 61 . 

BEFORE INSTRUCTION 

>O 0 0 0 F 1 0 5 

>F 0 0 3 

AFTER INSTRUCTION 

ACC >O 0 0 0 0 1 0 2 I 
DATA 

MEMORY I >F 0 0 3 
61 
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TBLR 

Assembler Syntax: 
Direct Addressing: [<label> J 

[<label> 1 Indirect Addressing: 

Operands: 

Operation: 

0sdmas127 
ARP=O or 1 

.(PC)+ 1 -TOS 

Table Read 

TBLR 
TBLR 

<dma> 
{ * I * + I* - }[, <ARP> 1 

(ACC) - PC - address lines A 11 through AO 
data bus 015 through oo- dma 

Encoding: 

Direct: 

Indirect: 

(TOS) - PC 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 

0 1 

1 0 0 1 1 1 1 o I 

1 0 0 

DATA MEMORY 
ADDRESS 

SEE SECTION 3.3 

TBLR 

Description: This instruction transfers a word from anywhere in program memory h.e., internal ROM, 
external ROM, external RAM) to the specified location in data memory. The three-cycle 
instruction is as follows: 

Words: 1 
Cycles: 3 

Prefetch: 

Cycle 1: 

Cycle2: 

Cycle3: 

Example: TBLR DAT4 

MEN goes low and the TBLR instruction opcode 
is fetched. The previous instruction is executing. 

MEN goes low. The address of the next instruc­
tion is placed onto address bus, but data bus is 
not read. Program counter is pushed onto stack. 
Twelve LSBs of the accumulator contents are 
loaded into the program counter. 

MEN goes low. Contents of program counter are 
buffered to address lines. Address memory loca­
tion is read and is copied into specified RAM loca­
tion. The new program counter is popped from 
the stack. 

MEN goes low. Next instruction opcode is 
pref etched. 

TBLR * If current auxiliary register contains the value 4. 

(Continued) 
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TBLR 

BEFORE INSTRUCTION 

ACC _1~~~~~~1_11 

PROGRAM I 
MEMORY 3061 17 ________ ,_..... 

DATA 
MEMORY I 751 4 ________ ___.... 

ACC 

'A.FTER INSTRUCTION 

11 I 
PROGRAM r-----------. 
MEMORY I . 306 I 

17 ---------

DATA 
MEMORY I 306 I 

4 ---------

TBLR 

Note: This instruction is useful for reading coefficients that have been stored in program ROM, or time­

dependent data stored in RAM. 
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TB.LW 

Assembler Syntax: 
Direct Addressing: [<label>] 

[<label>] Indirect Addressing: 

Operands: Osdmas127 
ARP=O or 1 

Operation: <PC> + 1 -Tos 

Table Write 

TBLW 
TBLW 

<dma> 
{ * I * + I * - }£,<ARP> 1 

(ACC) - PC - addresS lines A 11 through AO 
(dma)-data bus D15 through DO 
(TOS)-PC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

Direct: 0 1 1 1 1 1 0 1 I 0 I DATA MEMORY 
ADDRESS 

Indirect: I 0 1 1 1 1 1 0 1 I 1 I SEE SECTION 3.3 

TBLW 

0 

Description: This instruction transfers a word from the specified location in data memory to a location in 
external program RAM. The three-cycle instruction is as follows: 

Words: 1 
Cycles: 3 

Pref etch: 

Cycle 1: 

Cycle2: 

Cycle3: 

Example: TBLW DAT4 

MEN goes low and the TBLR instruction opcode 
is fetched. The previous instruction is executing. 

MEN goes low. The address of the next instruc­
tion is placed onto address bus, but data bus is 
not read. Program counter is pushed onto stack. 
Twelve LSBs of. the accumulator contents are 
loaded into the program counter. 

WE goes low. Contents of program counter are 
buffered to address lines. Contents of specified 
data memory address are placed on the data bus. 
The new program counter is popped off of stack. 

MEN goes low. Next instruction opcode is 
pref etched. 

TBLW * If current auxiliary register contains the value 4. 

(Continued) 
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TBLW TBLW 

BEFbRE INSTRUCTION AFTER INSTRUCTION 

ACC 11 I ACC 11 I 
DATA 

751 
DATA 

751 MEMORY I MEMORY I 
4 4 

PROGRAM I 
3061 

PROGRAM' 
751 MEMORY MEMORY 

17 17 

Note: The TBLW and. OUT instructions use the same external signals and thus cannot be distin­

guished when writing to program memory addresses 0 through 7. 
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XOR Exclusive-OR with Low-Order Bits of Accumulator 

Assembler Syntax: 
Direct Addressing: 
Indirect Addressing: 

[<label>] 
[<label>] 

Operands: Osdmas127 
ARP=O or 1 

XOR 
XOR 

<dma> 
{*I*+ I* - }[,<ARP>] 

Operation: Zero. XOR. high-order ACC bits: (dma). XOR. low-order ACC bits-ACC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Direct: 0 1 1 1 1 0 0 ojoj DATA MEMORY 
ADDRESS 

Indirect: 0 1 1 1 1 0 0 o 11 I SEE SECTION 3.3 

XOR 

Description: The low-order bits of the accumulator are exclusive-ORed with the specified data memory 
address and concatenated with the exclusive-OR of all zeroes and the high-order bits 
of the accumulator. The exclusive-OR operation follows the truth table below: 

DATA MEMORY BIT ACC BIT (BEFORE) ACC BIT (AFTER) 

Words: 1 
Cycles: 1 

Example: XOR DAT45 
or 

0 
0 
1 
1 

0 0 
1 1 
0 1 
1 0 

XOR * If current auxiliary register contains the value 45. 

BEFORE INSTRUCTION 
DATA 

MEMORY I >F . F. 0 0 
45 

ACC >O F F F 0 F F F 

AFTER ·INSTRUCTION 
DATA 

MEMORY >F F 0 0 
45 

ACC >O F F F F 0 F. F I 

Note: This instruction is useful for toggling or setting bits of a word for high-speed control. Also, the one's 
complement of a word can be found by exclusive-ORing it with all ones. 
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ZAC Zero the Accumulator 

Assembler Syntax: [<label>] ZAC 

Operands: None 

Operation: 0 - ACd 

Encoding: 15 14 13 12 11 1 O 9 8 7 6 5 4 3 · 2 1 O 

0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 

Description: The accumulator is cleared (zeroed). 

Words: 1 
Cycles: 1 

Example: ZAC 

1183 

BEFORE INSTRUCTION 

ACC I A F i F F F . F F F I 
AFTER INSTRUCTION 

ACC I 0 0 0 0 . 0 0 0 0 I 

ZAC 

-
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ZALH Zero ~ccumulator and Load High 

Assembler Syntax: 
Direct Addressing: 
Indirect Acfdressing: 

[<label> J 
[<label>} 

Operands: Osdmas127 
ARP=O or 1 

Operation: (dma) x 216-ACC 

Encoding: 15 14 13 12 11 

Direct: 0 1 1 0 0 

Indirect: 0 1 1 0 0 

10 

1 

1 

ZALH 
ZALH 

9 8 7 

<dma> 
{*I*+ I* - }[,<ARP> J 

6 5 4 3 2 1 0-

0 , I 0 I DATA MEMORY 
ADDRESS 

0 , I 1 SEE SECTION 3.3 

ZALH 

Description: ZALH clears the accumulator and loads the contents of the specified data memory location 
into the upper half of the accumulator. The lower half of the accumulator remains clear. 

Wo~ds: 1 · 
Cycles: 1 

Example: ZALH DA T29 
or 
ZALH * ff current auxiliary register contains the value 29. 

BEFORE INSTRUCnON 
DATA -~~~~~~~~----. 

MEMORY I . >3 F 0 0 
29 

'ACC >O 0 7 7. F F F F 

AFTER INSTRUCTION 
DATA 

MEMORY >3 F 0 0 
29 

ACC 

Note: ZALH can be used for implementing 32-bit arithmetic. 
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ZALS 

Assembler Syntax: 

Zero Accumulator and Load low 
with Sign-Extension Suppressed 

Direct Addressing: [<label>] ZALS <dma> 
Indirect Addressing; [<label>] ZALS { * I * + I * - }[,<ARP> 1 

Operands: 0sdm~s127 
ARP=O or 1 

Operation: (dma)-:ACC 

Encoding: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

Direct: 0 1 1 0 0 1 1 0 I 0 I DATA MEMORY 
ADDRESS 

Indirect: 0 1 : 1 0 0 1 1 o I 1 I SEE SECTION 3.3 

ZALS 

0 

Description: Clear accumulator and load contents of specified data memory location into lower half of the 

accumul$tor. The data is treated as a 16-bit positive integer rather than a two's complement 

integer. Therefore, there is no sign-extension as with the LAC instruction. 

Words: 1 
Cycles: 1 

Example: ZALS DA T22 
or 
ZALS * · If current auxiliary register contains the value 22. 

BEFORE INSTRUCTION 
DATA -~_._~~~~~~-

MEMORY I .>F 7 F F 
22 

ACC >7 F F 0 0 0 3 3 

AFTER INSTRUCTION 
DATA 

MEMORY >F 7 F F 
22 

ACC >O 0 0 0 F 7 F FI 

Notes: The following routine reveals the difference between the_ ZALS and the LAC instruction. Data 

memory locatio~ 1 contains the number> FA37. 
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ZALS 
ZAC 
LAC 

DAT1 

DAT1 

(ACC) = > OOOOFA37 
ZeroACC 
(ACC) = > FFFFFA37 

ZALS is useful for 32-bit arithmetic operations. 
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4. METHODOLOGY FOR APPLICATION DEVELOPMENT 

4.1 OUTLINE OF DEVELOPMENT PROCESS 

A number of development tools are required for designing a system with a microprocessor. This 
section describes the facilities which are available for the TMS32010 and illustrates how to use them 
for developing an application. A typical application development flowchart is shown in Figure 4-1 . 

SYSTEM SPECIFICATION 

SYSTEM DESIGN 

CODE PROGRAM 

SOFTWARE LIBRARIES 

TRANSLATE TO MACHINE CODE 

EXECUTE XDS/320 ASSEMBLER 

VERIFY PROGRAM 

OR 

XDS/320 SIMULATOR 

HARDWARE/SOFTWARE INTEGRATION 

XDS/320 EMULATOR 

END 

FIGURE 4-1 - FLOWCHART OF TYPICAL APPLICATION DEVELOPMENT 

After defining the specifications of the system, the designer should draw a flowchart of the 
software and a block diagram of the hardware. The processor's performance is then evaluated to 
determine the feasibility of implementing the algorithm via the TMS32010 Evaluation Module. The 
full algorithm is coded using assembly language. The program is assembled and then verified using 
the XDS/320 Macro Assembler and Linker and, optionally, the XDS/320 Simulator. Several 
iterations of the program are usually required to correctly code the algorithm. The verified program 
is integrated intb the hardware, and the prototype system is. debugged by using the XDS/320 
Emulator. 
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4.2 DESCRIPTION OF DEVELOPMENT FACILITIES 

Five development facilities aid in the design and implementation of TMS32010 applications. Each of 
the following five development facilities provides a tool for one of the steps involved in developing 
an application: 

• The TMS32010 Evaluation Module is used to appraise the performance of the processor. A 
software library capability is used to simplify and standardize code development. 

• The XDS/320 Assembler and Linker translates an assembly language program into a loadable 
object module. 

• The XDS/320 Simulator accepts downloaded object code and executes the program via a 
simulated TMS32010 in a debug mode, thus allowing software debug before attempting 
hardware debug. 

• The XDS/320 Emulator integrates the processor into the hardware design by providing a 
means to debug both software and hardware together. 

4.2.1 TMS32010 Evaluation Module 

The TMS32010 Evaluation Module (EVM) is a single board which enables a user to determine 
inexpensively if the TMS32010 meets the speed and timing requirements of his application. The 
EVM is a stand-alone module which contains all the tools necessary to evaluate the TMS32010. 

Communication to a host computer and to several peripherals is provided on the EVM. Dual EIA 
ports allow the EVM to be connected to a terminal and a host computer. The EVM can also be 
configured with a line printer· on one port; the other port is connected to either a terminal or a host 
computer. As either the host computer or the terminal feeds the assembly language program to the 
EVM, the EVM assembles the code. A built-in cassette tape interface can also be used to save code 
on tape to be reloaded at a later time. An EPROM programmer is also provided for saving code. 
Alternatively, code can be executed directly by the EVM through its target connector. 

The EVM can accept either source or object code from a host computer or terminal. A lin~oriented 
text editor, an assembler which permits symbolic addressing of memory locations, and a reverse 
assembler that changes machine code back into assembly language instructions are provided for 
programming ease. The debug mode gives access to all of the TMS32010's registers and memory. 
Eight breakpoints on program addresses and the ability to singl~step program execution have been 
incorporated for monitoring device operation. 

4.2.2 XDS/320 Macro Assembler/Linker 

4-2 

The XDS/320 Macro Assembler translates TMS32010 assembly language into executable object 
code. The assembler allows the programmer to work with mnemonics rather than hexadecimal 
machine instructions and to reference memory locations with symbolic addresses. This allows 
software to be designed more efficiently and reliably. 

The XDS/320 Macro Assembler supports macro calls and definitions along with conditional 
assembly. It provides the user with a comprehensive set of error diagnostics. The XDS/320 Macro 
Assembler produces a listing and an object file, and will optionally print a symbol table/ cross­
refererice listing. 

Assembler directives which affect program assembly are provided for the user. Some directives 
affect the location counter and make sections of the program relocatable. Constants for data and 
text are ·defined by using directives. Symbols defined in one assembly can be used in another 
assembly with the REF and DEF directives. These external symbols allow separate modules to be 
linked together. 
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The XDS/320 Linker permits a program to be designed and implemented in separate modules which 
will later be lin~ together to form the complete program. This allows the same modules (i.e., a 

filter module) tQ be used in many programs. The Hnker.assigns values to relocatable code, creating 
an object file which can be executed by the simulator or emulator. 

The linker resol1/es external definitions and references from different assemblies, and thereby links 
several module$ together. More than one assembly rnay be linked together to create a module 
which may be l~nked again to the main program. An intermediate partial linkage does not require 
that all external references be resolved, but in the final linking process, there should be no 
unresolved references. Another function of the linker is to assign absolute values to relocatable 
code. The final butput of the linker can then be loaded into either the simulator or the emulator. 

A source code 1 macro library can be maintained in a directory to be assembled with the main 
program. This allows commonly used routines to be accessed by more than one program and to be 
used to decrease program development time. The mnemonics are macro calls which expand into 

assembly code.: 

The macro library typically should contain user-defined macros and the macros defined in Section 

7. These macros simplify the generation of an assembly language program. Examples include -
comparing a word in memory to a word in the accumulator, shifting right, and moving numbers • · ~ 
between registEtrs. 

The XDS/320 Macro Assembler and Linker are currently available on several host computers, 
including the T11990(DX10) VAX(VMS) and IBM MVS and CMS operating systems. Currently in 
development isi software to support the VAX(UNIX), DEC PDP11(RSX), IBM PC(DOS) and Tl 
professional computer (DOS) operating system. Contact your local Tl representative for availability 
or further detaUs. 

4.2~3 XDS/320 Simuilator 
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The XDS/320 Simulator is a software program that simulates operation of the TMS32010 to allow 
program verification. The debug mode enables the user to monitor the state of the simulated 
TMS32010 while the program is executing. 

The simulator program uses the TMS32010 object code, produced by the XDS/320 Macro 
Assembler/ Linker. Input and output files may be associated with the port addresses of the 1/0 
instructions in ~rder to simulate 1/0 devices which will be connected to the processor. The interrupt 
flag can be set periodically at a user-defined interval for simulating an interrupt signal. Before 
initiating progr$m execution, breakpoints may be defined, and the trace mode set up. 

During program execution, the internal registers and memory of the simulated TMS32010 are 
modified as •h instruction is interpreted by the host computer. Execution is suspended when 
either 1) a breakpoint or error is encountered, 2) the step count goes to zero, or 3) a branch to 'self' 
is detected. Orilce program execution is suspended, the internal registers and both program and 
data memorie8 can be inspected and/or modified. The trace memory can also be displayed. A 
record of the simulation session can be maintained in a journal file, so that it may be replayed to 
regain the same machine state during another simulation session. 

The XDS/320 Simulator is currently available for the VAX(VMS). 
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4.2.4 XDS/320 Emulator 

The XDS/320 Emulator is a self-contained system that has all the features necessary for real-time 
in-circuit emulation. This allows integration of the user hardware and software in the debug mode. 
Three EIA ports have been provided on the emulator to interface with a host system. The first EIA 
port provides a connection for a computer, the second port for a terminal, and the third port for a 
printer or a PROM programmer. Using a standard EIA port, the object file produced by the macro 
assembler/linker can be downloaded into the emulator, which can then be ·controlled through a 
terminal. In addition, source code can be downloaded to the emulator. A line-by-line assembler with 
forward and reverse referencing labels is provided on the XDS to assemble the source. 

A pin-compatible target connector plugs into the TMS32010 socket to enable real-time emulation. 
Three clock options are available. First, a 20-MHz clock is available on the emulator. In addition, an 
external clock source can be used by attaching a crystal to the target connector, or by connecting a 
signal generator to the emulator. 

The emulator operates in one of three memory modes: 1) software development mode, 2) 
microcomputer mode, or 3) microprocessor mode. In the software development mode, the entire 
BK bytes of program memory reside within the emulator. In the microcomputer mode, 3K bytes 
reside within the emulator while 5K bytes reside on the target system. The microprocessor mode is 
used when all 8K bytes of program memory exist on the target system. 

By setting breakpoints based on internal conditions or external events, execution of the user's 
program can be suspended and control given to the XDS monitor. While in the monitor, all registers 
and memory locations can be inspected and modified. Single-step execution is also available. A 
single read or write to an 1/0 port can be performed to test peripheral devices in the prototype 
system. Full trace capabilities at full speed and a reverse assembler that translates machine code 
back into assembly instructions are also included to increase debugging productivity. 

4.3 APPLICATION DEVELOPMENT PROCESS EXAMPLE 

The design and implementation of a TMS32010-based discrete-time filter is presented below to 
illustrate the development process. The filter design is derived from the system, specification, using 
digital signal processing theory. A macro library is used to help code the pr~ram. The assembler 
and simulator verify that the program executes the filter properly. The processor is then integrated 
into the prototype system by using the emulator. 

4.3.1 System Specification 

Table 4-1 defines the specifications of the discrete-time filter. 

TABLE 4· 1 - FILTER SPECIFICATIONS 

PARAMETER VALUE UNIT 

Sample frequency (f 5 ) 10 kHz 

Corner frequency lfcol 2 kHz 

Attenuation at f=fco -2 dB 

Attenuation at f= 1.2 fco -15 dB 

Passband ripple ± 1.5 dB 
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4.3.2 System Design 

The equation for the above discrete-ti e filter was derived as follows: 
y(n)= -.2302699x(n) + .155917 x(n-1) + .2211667x(n-2) + .1119031 x(n-3) 

- . 1124507 x( n-4) - . 14857 43 x n-5) + .2046856 x( n-6) + . 7 409326 x( n-7 I 
+ 1.0 x(n-8) + .7409326 x(n-9) .2046856 x(n-10) - .1485743 x(n-11) 
- .1124507x(n-121 + .1119031 x(n-13) + .2211667x(n-14) 
+ .1559177 :x(n-151 - .2302699 x(n-16). 

where x(n) is the current sample, 

4.3.3 ode Development 

x(n - 1 I is the sample from the previous period, 
+ 

x( n - 16 I is the sample from the previous 16th period. 

he TMS32010' software development cycle is generally a three-step process for the purpose of 
ranslating the filter equation into TMS32010 assembly language. First, a flowchart of the program 
s drawn. Then, the example is coded in a high-level language, FORTRAN, to provide structure and 
o test if the algorithm is correct before implementing it in assembly language. Finally, the program... · ·· · 

• s coded and tested in assembly language using some of the macro library routines. 

4.3.3.1 Discrete-Time Filter Flowchart 

igure 4-2 is a flowchart for the software implementation of the discrete-time filter. 

BEGIN 

INITIALIZE CONSTANTS 

YES 

INPUT DATA 

FILTER INPUT 

SHIFT DATA 

OUTPUT FILTERED DAT A 

FIGURE 4-2- FLOWCHART OF FILTER IMPLEMENTATION 
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4.3.3.2 FORTRAN Program 

The following FORTRAN program implements the specified digital filter and provides 1000 outputs. 

PROGRAM FILTER 

g y(n)=-.2302699 x(n) + .1559177 x(n-1) + .2211667 x(n-2) +.1119031 x(n~3) c - .1124507 x(n-4) - .1485743 x(n-5) + .2046856 x(n-6) + .7409326 x(n-7) 
c + 1.0 x(n-8) + .7409326 x(n-9) + .2046856 x(n-10) - .1485743 x(n-11) 
c - .1124507 x(n~12) + .1119031 x(n-13) + .2211667 x(n-14) 
C + .1559177 x(n-15) - .2302699 x(n-16). 

·c 
REAL*4 X(l7),CX(l7),Y ' c 

c Initialize the constants for the filter equation 
c 

DATA 
1 

ex /-.2302699,.1559177,.2211667,.1119031,-.1124so1, 
-.1485743,.2046856,.7409326,l.0,.7409326, 

c 

c 

1 
1 

I = 0 
100 

• 2046856 r - .1485743 r - .1124507 I ,1119031, • 2211667 I 
.1559177,-.2302699/ 

I = I + 1 

C Input sampled data 
c 

READ (55,110) IX 
110 FORMAT (I6) 

X(l) = IX 
c 
C Filter data 
c 

c 

y = 0 

DOJ=l,17 
Y = Y + CX(J)*X(J) 

END DO 

C Shift data to new variables 
c 

c 

DO J = 16,1,-1 
X(J} = X(J-1} 

END DO 

C Output filtered data 
c 

TYPE *,Y 
c 

IF (I .LE. 1000) GO TO 100 
200 END 

4.3.3.3 Assembly Language Program Using Relocatable Code 

4-6 

The same discrete-time filter can be implemented in TMS32010 assembly language using 
relocatable code. The FORTRAN program should not be directly translated into assembly language. 
Assembly language code can be made more efficient than the FORTRAN implementation by taking 
advantage of the processor's architecture. The assembly language implementation of the 
FORTRAN program is described in the following paragraphs. 
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* 
* 
* 
* 
* 

Two library maqros (PROG and MAIN) have been used in the example program to simplify the 

coding process and to standardize the program structure. One advantage of using macros for 

standardizing program structure is that different programmers can easily trade relocatable modules 

if. they have usetf the same structure .. The PROG macro begins the module with an . IDT directive. 

This directive gi"9s the module a name to be used later during link and also initializes some values in 

the assembler's symbol table. The macro MAIN labels the beginning of the main routine, initializes 

the constants ONE and MINUS, and defines the variables XRO and XR1. 

The coefficients !in the equation are converted to integer arithmetic for this program. To maintain a 

maximum amouot of accuracy, the coefficients should be factored by 2** - 15, which will create a 

015 number. After factoring the filter equation, it becomes: 

y(n) = [ --)545x(n) + 5109 x(n-1) + 7247 x(n-2) + 3667 x(n-3) 

- 3685ix(n-4) - 4868x(n-5) + 6707 x(n-6} + 24279 x(n-7) 
+ 32767 x(n-8) + 24279 x(n-9) + 6706 x(n-10) - 4868 x(n-11) 
- 3685!x(n-12) + 3667 x(n-13) + 7247 x(n-14) + 5109 x(n-15) 

- 7545;x(n-16)]*2** - 15. 

Contents are listed in program memory in a table so as to define the coefficients in data memory. 

Constants are t~en read into data memory using the TBLR instruction. The user loads a one in the T 
register to access the table. The MPYK instruction puts the address of the table into the P register. 

Then, the PACi instruction loads it into the accumulator. A loop is set up to move all of the 

.constants into data memory. 

The BIO pin is ~nnected to the FIFO empty line. A BIOZ instruction is used to synchronize the 

external hardware with the program. As long as the FIFO buffer is empty, the processor polls the 

device until data is available. 

The sampled d$1 is read into data memory, and the filter equation is calculated. If the equation is 

coded in a loop) both of the auxiliary registers must be used as pointers. By starting one of the lists 

at location zero.in data memory, the pointer for that list can also be used as the loop counter. The 

calculation time~can be reduced by a factor of two if the equation is implemented using straight-line 

code. The user must decide whether program size or execution time is mare important in his 

application. 

The data is shifted in memory as the equation is computed, making a separate loop to do the shift 
operation unnecessary. A 0.5 is added to the result to round up the number before storing the 

result. The output is written to a D/A converter. Then the whole process is repeated. 

The following assembly language program imp1ert1ents the digital filter: 

The MLIB directive is used to reference a file containing the 
source code. for the two macros, PROG and MAIN. 

MLIB ' I MACRO. SRC I 

PROG :FLTR 

* REAL : 4 X( 17) I CX( 1 7) I y 
'* 

Xl 
Xl7 
CXl 
CX17 

DSEG 
BSS 
BSS 
BSS 
BSS 

BEGIN DATA SEGMENT 
, 16 16 WORDS NAME Xl 
' 1 1 WORD NAME Xl 7 
i 16 16 WORDS NAME CXl 
. 1 1 WORD NAME CXl 7 
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y BSS 1 1 WORD NAME Y 
DEND END DATA SEGMENT 

* 
B FLTR 
RET 

* 
COEF DATA -7545,5109,7247,3667,-3685,-4868 

DATA 6707,24279,32767,24279,6707 
DATA -4868,-3685,3667,7247,5109,-7545 

* 
MAIN FLTR 

******************************************************************** 
* DATA ex /-.2302699,.1559177,.2211667,.1119031,-.1124507, 
* 1 -.1485743,.2046856,.7409326,1.0,.7409326, 
* 1 .2046856,-.1485743,-.1124507,.1119031,.2211667, 
* 1 .1559177,-.2302699/ 
******************************************************************** 
* 
* 
* 
* 
* 
* 

ONE is a data memory location containing a 1. COEF is the address 
where the filter coefficient table begins. The next four lines of 
code put the value of COEF in the accumulator so that TBLR can be 
used for reading in the coefficients. 

LT. ONE 
MPYK COEF 
PAC 
LARK AR0,16 
LARK ARl,CXl 

RCONST LARP 1 

* 
* 
* 
* WAIT 

* 

TBLR *+,ARO 
ADD ONE 
BANZ RCONST 

Test FIFO to see if it is empty. The next line of code branches on 
itself till the BIO pin goes low. 

BIOZ WAIT 

* Input sampled data 
* IN Xl ,PAO 
* ******************************************************************* 
* DO J = 1, 17 
* Y = Y + CX(J)*X(J) Compute filter equation 
* END DO 

* * DO J = 1,16 
* X(J) = X(J-1) Shift variables 
* END DO 
******************************************************************* 
* 
* 
* 
* 
* 

LOOP 

X17 is the data memory address of X(17). 
CX17 is the data memory address of CX(17). 

LARK ARO,X17 

LARK AR1,CX17 
ZAC 
LT *-,ARl 
MPY *-,ARO 
LTD *,ARl 
MPY *-,ARO 



BANZ LOOP 
APAC 

* 
* Round up 
* ADD ONE,14 
* 
* Output results 
* 

SACH Y,1 
OUT Y,PAl 
B WAIT 

4.3.3.3.1 Assembler Output 

The XDS/320 Macro Assembler requires a source file which contains the assembly language 
program. Two output files are created by the assembler. One output file is a listing file that prints 
the object code ~nd the source statement for each instruction. The other output file contains the 
object code in standard 990 tagged format. The listing file for the filter program is shown below, 
although certain comment statements have been deleted. Object code followed by an apostrophe -
indicates that the; code is relocatable (i.e., the B Fl TR statement). 

LISTING FILE 

FLTR 320 FAMILY MACRO ASSEMBLER 2.0 83.010 9:20:28 2/21/83 
PAGE 0001 

0001 
0002 
0003 
0004 0000 
0005 
0006 
0001 
0007 
0008 
0009 
0010 0000 
0011 0000 
0012 0010 
0013 0011 
0014 0021 
0015 0022 
0016 0023 
0017 
0018 0000 F900 

0001 0014 1 

0019 0002 7F8D 
0020 
0021 0003 E287 

0004 13F5 
0005 1C4F 
0006 OE53 
0007 F19B 
0008 ECFC 

0022 0009 1A33 
OOOA 5ED7 
OOOB 7FFF 
OOOC 5ED7 
OOOD 1A33 

0023 OOOE ECFC 
OOOF F19B 

* 
* * 

* 
* 
* 
Xl 
X17 
CXl 
CX17 
y 

* COEF 

The MLIB directive is used to reference a file con­
taining source code for the two macros, PROG and MAIN. 

MLIB 'MACRO.SRC' 

PROG FLTR 
IDT 'FLTR' 

REAL 4 X{17),CX{17),Y 

DSEG BEGIN DATA SEGMENT 
BSS 16 16 WORDS NAME Xl 
BSS 1 1 WORD NAME X17 
BSS 16 16 WORDS NAME CXl 
BSS 1 1 WORD NAME CX17 
BSS 1 1 WORD NAME Y 
DEND END DATA SEGMENT 

B FLTR 

RET 

DATA -7545,5109,7247,3667,-3685,-4868 

DATA 6707,24279,32767,24279,6707 

DATA -4868,-3685,3667,7247,5109,-7545 
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0024 

0010 OE53 
0011 1C4F 
0012 13F5 
0013 E287 

0025 
0001·0014 
0002 
0003 0014' 
0004 0014 7E01 
0005 0015 5023 11 

0006 0016 7F89 
0007 0017 1023" 
0008 0018 5024 11 

0009 0023 
0010 0023 
0011 0024 
0012 0025 
0013 0026 
0014 
0015 
0016 0027 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 0019 6A23" 
0040 OOlA 8003 
0041 OOlB 7F8E 
0042 OOlC 7010 
0043 0010 7111 
0044 OOlE 6881 
0045 OOlF 67AO 
0046 0020 0023 11 

0047 0021 F400 
0022 001E 1 

* 
MAIN FLTR 
PSEG 
DEF FLTR 

PROG SEG 
ENTRY POINT 

FLTR EQU $ 
LACK 1 
SACL ONE,O 
ZAC 

MAKE CONSTANT ONE 
SAVE IT 
ZERO ACCUMULATOR 
MAKE -1 

ONE 
MINUS 
XRO 
XRl 

SUB ONE,O 
SACL MINUS,0 
DSEG 

SAVE IT 

BSS 1 CONSTANT ONE 
BSS 1 CONSTANT -1 
BSS 1 TEMP 0 
BSS 1 TEMP 1 
DEF ONE,MINUS ALLOW EXTERNAL USE 
DEF XRO,XRl OF VARIABLE 
DEND END OF DATA . 

************************************************************ 
* DATA ex /-.2302699,.1559177,.2211667,.1119031,-.11 
* 1 -.1485743,.2046856,.7409326,1.0,.7409326 
* 1 .2046856,-.1485743,-.1124507,.1119031,.2 
* 1 .1559177,-.2302699/ 
************************************************************ 
* * ONE is a data memory location containing a 1. COEF is the 
* address where the filter coefficient table begins. The next 
* four lines of code put the value of COEF in the accumulator 
* so that TBLR can be used for reading in the coefficients. 
* 

LT ONE 
MPYK COEF 
PAC 
LARK AR0,16 
LARK ARl,CXl 

RCONST LARP 1 
TBLR *+,ARO 
ADD ONE 
BANZ RCONST 

* 
* Test FIFO to see if it is emE!Y· The next line of code 
* branches on itself till the BIO pin goes low. 
* 

0048 
0049 
0050 
0051 
0052 0023 F600 WAIT 

0024 0023 1 

BIOZ WAIT 

0053 
0054 
0055 
0056 0025 4000 11 

0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 

* * Input sampled data 
* 

IN Xl,PAO 
* 
************************************************************ 
* 
* 
* 
* 

DO J = l, 17 
Y = Y + CX(J)*X(J) 

END DO 

* DO J = 1,16 

Compute filter equation 

* X(J) = X(J-1) Shift variables 
* END DO 
************************************************************ 



0067 
0068 
0069 
0070 
0071 0026 7010 
0072 
0073 0027 7121 
0074 0028 7F89 
0075 0029 6A91 
0076 002A 6D90 
0077 002B 6B81 
0078 002C 6D90 
0079 002D F400 

002E 002B' 
0080 002F 7F8F 
0081 
0082 
0083 
0084 0030 OE23 11 

0085 
0086 
0087 
0088 0031 5922 11 

0089 0032 4922 11 

0090 0033 F900 
0034 0023 1 

* * X17 is the data memory address of X(l7). 
* CX17 is the data memory address of CX(17). 
* 
* 

LOOP 

*' 

LARK ARO,X17 

LARK 
ZAC 
LT 
MPY 
LTD 
MPY 
BANZ 

APAC 

AR1,CX17 

*-,ARl 
*-,ARO 
*,ARl 
*-,ARO 
LOOP 

* Round up 

* ADD ONE, 14 

* * Output results 

* SACH Y,1 
OUT Y,PAl 
B WAIT 

THE FOLLOWING SYMBOLS ARE UNDEFINED 
*+ 
*-
$$LAB 
* 

NO ERRORS, NO WARNINGS 

Although the symbols above are undefined, this is a natural result of the macros used and should be 
ignored. 

The following example is the tagged object code produced by the XDS/320 Assembler. The tags 
are used by the. linker when it is producing a link module. 

TAGGED OBJECT CODE 

K0035FLTR M0027$DATA 000050014FLTR W00230NE 00007F43AF FLTR 
W0025XRO OOOOW0026XR1 OOOOW0024MINUS OOOOAOOOOBF900C0014B7F8D7F1A9F FLTR 
BE287Bl3F5BlC4FaOE53BF19BBECFCBlA33B5ED7B7FFFBSED7BlA33BECFCBF19B7F036F FLTR 
BOE53BlC4FB13FSBE287A0014B7E01#5023007FB7F89#1023007F#5024007F7F281F FLTR 
A0019#6A23007FBaOo3B7F8EB7010B7111B6881B67A0#0023007FBF400C001E7F250F FLTR 
BF600C0023#4000007FB7010B7121B7F89B6A91B6D90B6B81B6D90BF400C002B7FlDSF FLTR 
B7F8F#OE23007F#5922007F#4922007FBF900C00237F6E6F FLTR 

FLTR 2/21/83 9:20:28 ASM320 2.0 83.010 FLTR 

4.3.3.3.2 Program Linkage 

1183 

The linker must be executed even if the program is contained in a single module. The control file 
required by the Onker specifies the task name, defines the starting location for the data and program 
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segments, and indicates the object files to be linked. The control file which was used to link the 
example program is as follows: 

FORMAT ASCII 
TASK DEV 
PROGRAM > 0000 
DATA >OOOO 
INCLUDE S4USR.LVK111 .Fl TR.OBJ 
END 

Two files are produced by the linker. The linked object file is an output file containing the load 
module. The link listing file is an output file containing a listing of the command control file, a map 
of the segments and modules which were linked, and a cross-reference listing of the externally 
defined variables. The link listing file and the linked object file are shown below. The object file can 
be loaded into the simulator or emulator for program debugging. 

LINK LISTING FILE 

DX/9900 LINKER VERSION 2.0.0 82.312 2/21/83 9:29:30 
COMMAND LIST 

FORMAT ASCII 
TASK DEV 
PROGRAM >0000 
DATA >0000 
INCLUDE S4USR.LVK111.FLTR.OBJ 
END 
DX/9900 LINKER VERSION 2.0.0 82.312 2/21/83 9:29:30 
LINK MAP 

CONTROL FILE = S4USR.LVK111.FLTR.CF 

LINKED OUTPUT FILE = S4USR.LVK111.FLTR.LINKOBJ 

LIST FILE= S4USR.LVK111.FLTR.LINKLIS 

OUTPUT FORMAT = ASCII 

1 ---->OVERWRITTEN SEGMENTS IN MODULE DEV 
DX/9900 LINKER VERSION 2.0.0 82.312 2/21/83 9:29:30 

PHASE 0 

MODULE 

FLTR 
$DATA 

DEV 

NO ORIGIN 

1 0000* 
1 0000* 

MODULE ORIGIN = 0000 

LENGTH 

0035 
0027 

TYPE 

INCLUDE 

LENGTH = 0000 

DATE 

2/21/83 

D E F I N I T I 0 N S 

PAGE 1 

PAGE 2 

PAGE 3 

TIME CREATOR 

9:20:28 ASM320 

NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME 

*FLTR 
*XRl 

.0014* 1 *MINUS 0024* 1 *ONE 
0026* 1 

0023* 1 *XRO 

VALUE NO 

0025* 1 

LENGTH OF REGION FOR TASK = 0000. 
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NUMBER OF WARNINGS MESSAGES PRINTED = 1 

NUMBER OF RECORDS FOR MODULE DEV = 6 

TOTAL CARDS PRINTED = 6 

**** LINKING COMPLETED 2/21/83 9:29:34 

The following object file is an output produced by the linker: 

LINKED OBJECT FILE 

KOOOODEV 9QOOOBF900B0014B7F8DBE287B13F5BlC4FBOE53BF19BBECFC7FlC4F DEV 
BlA33BSED7B7FF~BSED7BlA33BECFCBF19BBOE53BlC4FB13FSBE28790014B7E017FOAOF DEV 
B5023B7F89Bl023B502490019B6A23B8003B7F8EB7010B7111B6881B67AOB00237FlB8F DEV 
BF400B001EBF600B0023B4000B7010B7121B7F89B6A91B6D90B6B81B6D90BF4007F177F DEV 
B002BB7F8FBOE23B5922B4922BF900B00237F80BF DEV 

DEV 2/21/83 9:29:30 MPPLINK 82.312 DEV 

4.3.3.4 Assembly Language Program Using Absolute Code 

Through the use of the macros, PROG and MAIN, the above program is well structured and 
relocatable. During link time, the program and data memory locations for the coefficient CX (i.e., 
the value for the constant COEF), the data memory location of the variable X, and the program 
memory location of the MAIN program, FL TR, can be established. 

In contrast to the relocatable code approach is one that uses absolute code. Although the use of 
absolute code makes it somewhat easier to write a single program, this program is not relocatable. 
The same progr~m that was coded in relocatable code in Section 4.3.3.3 is shown below coded· in 
absolute code. 

* 
* 
* 
* 
* 
* 
* 
* Xl 
X17 
CX17 
y 
ONE 
* 
* 

SOURCE FILE 

IDT 1 FLTR 1 

IDT is a directive which assigns a name to the module. The EQU 
directive assigns values to constants. The constants below 
will refer to locations in data memory. Unlike the above 
program, these data memory locations are fixed and cannot be 
changed at link time. As a result, this module would be very 
difficult to use as part of another program. 

EQU 17 
EQU 33 
EQU 16 
EQU 34 
EQO 127 

AO~G 10 

* The AORG directive establishes the location in program memory where 
* the code se.quence will begin. In this case, the following section 
* of code will begin at program memory location 10. This contrasts 
* withthe above program (Section 4 13.3.3) which allows the block of 
* memory the program will occupy to be established during link time. 

* 
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LARK AR0,16 
LARK ARl,O 

* 
RCONST LARP 1 

TBLR *+,ARO 
ADD ONE 
BANZ RCONST 

* 
WAIT BIOZ WAIT 
* 

IN Xl,PAO 
* 

LARK ARO,Xl7 
LARK AR1,CX17 
ZAC 
LT *-,ARl 
MPY *-,ARO 

* 
LOOP LTD *,AR! 

MPY *-;ARO 
BANZ LOOP 
APAC 

* 
ADD ONE, 14 

* 
SACH Y,l 
OUT Y,PAl 
B WAIT 

Below is the listing file for this program using absolute code. 

LISTING FILE 

FLTR 320 FAMILY MACRO ASSEMBLER 1.0 10:16: 5 12/22/82 
PAGE 0001 
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0001 
0002 * 

IDT 'FLTR' 

0003 * IDT is a directive which assigns a name to the module. The EQU 
0004 * directive assigns values to constants. The constants below * 
0005 * will refer to locations in data memory. Unlike the above * 
0006 * program, these data memory locations are fixed and cannot be 
0007 * changed at link time. As a result, this module would be very 
0008 * difficult to use as part of another program. 
0009 * 
0010 
0011 
0012 
0013 
0014 
0015 
0016 OOOA 
0017 * 

0011 
0021 
0010 
0022 
007F 

Xl 
X17 
CX17 
y 
ONE 
* 

EQU 17 
EQU 33 
EQU 16 
EQU 34 
EQU 127 

AORG 10 

0018 * The AORG directive establishes the location in program memory 
0019 * where * the code sequence will begin. In this case, the fol-
0020 * lowing section of code will begin at program memory location 
0021 * 10. This contrasts with the above program (Section 4.3.3.3) 
0022 * which allows the block of memory the program will occupy to 
0023 * be established during link time. 
0024 * 
0025 OOOA 7010 
0026 OOOB 7100 

LARK AR0,16 
LARK ARl,O 



0027 * 
0028 oooc 6881 RCONST LARP 1 
0029 0000 67AO TBLR *+,ARO 
0030 OOOE 007F ADD ONE 
0031 OOOF F400 BANZ RCONST 

0010 oooc 
0032 * 
0033 0011 F600 WAIT BIOZ WAIT 

0012 0011 
0034 * 
0035 0013 4011 IN Xl,PAO 
0036 * 
0037 0014 7021 LARK AR0,Xl7 
0038 0015 7110 LARK AR1,CX17 
0039 0016 7F89 ZAC 
0040 0017 6A91 LT *-,ARl 
0041 0018 6D90 MPY *-,ARO 
0042 * 
0043 0019 6B81 LOOP LTD *,ARl 
0044 OOlA 6D90 MPY *-,ARO 
0045 OOlB F400 BANZ LOOP 

OOlC 0019 -0046 0010 7F8F APAC 
0047 * 
0048 OOlE OE7F ADD ONE,14 

0049 * 
0050 OOlF 5922 SACH y ,1 
0051 0020 4922 OUT Y,PAl 
0052 0021 F900 B WAIT 

0022 0011 
0053 0023 
0054 0023 
NO ERRORS, NO WARNINGS 
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5. PROCESSOR RESOURCE MANAGEMENT 

5.1 FUNDAMENTAL OPERATIONS 

An understanding of how to use the instructions to perform common tasks is necessary in . order to 

make efficient use of the instruction set. The following sections discuss implementations of some 
fundamental operations using the TMS32010 instruction set. 

6.1.1 Bit Manipulation 

* 

A specified bit of a word from data memory can either be set, cleared, or tested. Such bit 

manipulations are accomplished ,by using the built-in shifter and the logic instructions, AND, OR, 

and XOR. In the first example, operation~ on single bits are performed on the data word VALUE. In 

this and the following examples, data memory location ONE contains the value 1 and MINUS 
contains the value 1 (all bits set). 

* Clear bit S of data memory location VALUE 

* 

* 

LAC 
XOR 
AND 
SACL 

ONE,S 
MINUS 
VALUE 
VALUE 

* Set bit 12 of VALUE 
* LAC ONE,12 

OR VALUE 
SACL VALUE 

* * Test bit 3 of VALUE 

* LAC 
AND 
BZ 

ONE,3 
VALUE 
BIT3Z 

ACC = >00000020 
Invert accumulator; ACC = >OOOOFFDF 
Bit S of VALUE is zeroed 

ACC = >00001000 
Bit 12 of VALUE is set 

ACC = >00000008 
Test bit 3 of.VALUE 
Branch to BIT3Z H bit is clear 

More than one bit can be set, cleared, or tested at one time if the necessary mask exists in data 

memory. In the next example, the six low-order bits in the word VALUE are cleared if. MASK 

contains the value 127. 

* * Clear lower six bits of VALUE 
* LAC 

XOR 
AND 
SACL 

6.1.2 Data Shift 

MASK· 
MINUS 
VALUE 
VALUE 

ACC = >0000003F 
Invert accumulator; ACC = >OOOOFFCO 
Clear lower six bits 

-

There are two types of shifts:· logical and arithmetic. A logical shift is implemented by filling the _ 

empty bits to th[e left of the MSB with zeros, regardless of the value of the MSS. An arithmetic shift 

fills the empty bits to the left of the MSB with ones if the MSB is one, or with zeros if the MSB is 

zero. The second typ8 of bit padding is referred to as sign extension. 

The hardware shift which is built into the ADD, SUB, and LAC instructions performs an arithmetic 

left shift on· a 16-bit word. This feature can also be used to peform right shifts. A right shift of n is 

implemented· by peforming a left shift of 16-n and saving the upper word of the accumulator. 
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The first example performs an arithmetic right shift of seven on a 16-bit number in the accumulator. 

SACL 
LAC 
SACH 
LAC 

TEMP 
TEMP,9 
TEMP 
TEMP 

Move number to memory 
Shift left (16-7) 
Save high word in memory 
Return number back to accumulator 

* 
* 
* 

* 

The second example performs a logical right shift of four on a 32-bit number stored in the 
accumulator. The 32-bit results of the shift are then stored in data memory. In this example, the 
accumulator initially contains the hex number> 9D84C182. The variables, SHIFTH and SHIFTL, will 
receive the high word (> 0908) and low word (> 4C1 B) of the shifted results. 

Shift the lower word 

SACH SHIFTH 
SACL SHIFTL 
LAC SHIFTL,12 
SACH SHIFTL 
LAC MINUS ,12 
XOR MINUS 
AND SHIFTL 

SHIFTH = >9D84 Initial values 
SHIFTL = >C1B2 
ACC = >FC1B2000 
SHIFTL = >FClB 
ACC = >FFFFFOOO 
ACC = >FFFFOFFF 
ACC = >OOOOOClB 

* Shift the upper word 
* ADD 

SACL 
SACH 
LAC 
XOR 
AND 
SACL 

SHIFTH,12 
SHIFTL 
SHIFTH 
MINUS, 12 
MINUS 
SHIFTH 
SHIFTH 

ACC = >F9D84ClB 
SHIFTL = >4ClB Final low-order value 
SHIFTH = >F9D8 
ACC = >FFFFFOOO 
ACC = >FFFFOFFF 
ACC = >000009D8 
SHIFTH = >09D8 Final high-order value 

An arithmetic right shift of four can be implemented using the same routine as shown above, except 
with the last four lines omitted. 

5.1.3 Fixed-Point Arithmetic 

5-2 

Computation on the TMS32010 is based on a fixed-point two's complement representation of 
numbers. Each 16-bit number is evaluated with a sign bit, i integer bits, and 15-i fractional bits. Thus 
the number: 

0 0000010 r100000 

decimal point 

has a value of 2.625. This particular number is said to be represented in a OB format (8 fractional 
bits). Its range is between -128 ( 1000000000000000) and 127 .996 (0111111111111111 ) . The 
fractional accuracy of a OB number is about .004 (one part in 2**8 or 256). 

Although particular situations (e.g., a combination of dynamic range and accuracy requirements) 
must use mixed notations, it is more common to work entirely with fractions represented in a Q15 

I 

format or integers in a QO format. This is especially true for signal processing algorithms where 
multiply-accumulate operations are domina~t. The result of a fraction times a fraction remains a 
fraction, and the result of an integer times a'I' integer remains an integer. No overflows are possible. 

! 

I 

! 



The difficulty comes during accumulations of the resulting products. In these si~uations, the 
programmer must understand the physical process which underlies the mathematics in order to take 
care of potential overflow conditions. The following sections discuss some of the techniques involved 
in using this kind of number representation. 

6.1.3.1 Multiplication 

There are a wide variety of situations which might be encountered when multiplying two numbers. 
Three of these scenarios are illustrated below: 

CASE I -- FRACTION * FRACTION 

015 * 015 = 030 

0100000000000000 = 0.5 in 015 notation 
* 0100000000000000 = 0.5 in 015 

00 01000000000000 0000000000000000 = 0.25 in 030 

Ldecimal point 

Note: Two sign bits remain after the multiply. 

Generally, the programmer will not want to maintain full precision. In fact, he will probably want to 
save a single-precision (16-bit) result. Unfortunately, the upper half of the result does not contain a 
full 15 bits of fractional precision since the multiply operation actually creates a second sign bit. In 
order to recover that precision, the product must be shifted left by one bit. The following code 
excerpt illustrates an implementation of this example: 

LT 
MPY 
PAC 
SACH 

OPl 
OP2 

ANS,1 

OPl = >4000 (0.5 in Q15) 
OP2 = >4000 (0.5 in Ql5) 

ANS = >2000 (0.25 in Ql5) 

The MPYK instruction in the TMS320 will allow the programmer the ability to multiply by a 13-bit 
signed constant. In fractional notation, this means he can multiply a 015 number by a 012 number. 
This case requires the programmer to shift the resulting number left by four bits to maintain full 
precision. 

LT 
MPYK 
PAC 
SACH 

OPl 
2048 

ANS,4 

OPl = )4000 (O.S in QlS) 
OP2 = )0800 (O.S in Ql2) 

ANS = )2000 (0.25 in QlS) 
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CASE II-- INTEGER* INTEGER 

00*00 = 00 

0000000000010001 = 17 in 00 
* 1111111111111011 = 5 in 00 

11111111111111111111111110101011L=~85~-i-n_o_o 
_ decimal point 

Note: In this case, the extra sign bit does not come into play, and the desired product is entirely in the lower half of the product. The 
following program illustrates this example. 

LT OPl 
MPY OP2 
PAC 
SACL ANS 

OPl = )0011 (17 in QO) 
OP2 = )0005 ( 5 in QO) 

ANS = )0055 (85 in QO) 

CASE 111 -- MIXED NOTATION 

014 * 014 = 028 

0110000000000000 = 1.50 in 014 
* 0011000000000000 = 0.75 in 014 

OOZO 1 0010000000000000000000000000 = 1 .125 in 028 

decimal point 

The maximum magnitude of a 014 number is just under two. Thus, the maximum magnitude of the 
product of two 014 numbers is four. Two integer bits are required to allow for this possibility, leav­
ing a maximum precision for the product of 13 bits. In general, the following rule applies: 

The product of a number with i integer bits and f fractional bits and a second number with j 
integer bits and g fractiof!al bits will be a number with (i + j) integer bits and (f + g) fractional 
bits. The highest precision possible for a 16-bit representation of this number will have (i + jl 
integer bits and ( 15- i - j) fractional bits. 

If, however, the programmer has a prior knowledge of the physical system which is being 
modelled, he may be able to increase the precision with which the number is modelled. For exam­
ple, if he knows that the above product can be no more than 1.8, he could represent the product as 
a 014 number rather than the theoretical worst case of 013. The following program illustrates the 
above example: 

LT 
MPY 
PAC 
SACH 

OPl 
OP2 

ANS,l 

OPl = >6000 (1.5 in Ql4) 
OP2 = >3000 (.75 in Ql4) 

ANS = >2400 {1.125 in Ql3) 



The techniques which have been illustrated1above alt truncate the result of the multiplication to the 

desired precision. The error Which is generated as a result amounts to minus one full LSB. This is 

true whether the truncated number is positive or negative. · It is possible to implement a simple 

rounding technique to reduce this potential error by a factor of two. This is illustrated by the 

following code sequence: 

LT OPl 
MPY OP2 OPl * OP2 
PAC 
ADD ONE,14 ROUND UP 
SACH ANS,l 

The error generated in this example is plus one-half LSB whether ANS is positive or negative. 

5.1.3.2 Addition 

During the process of multiplication, the programmer is not concerned about overflows end needs 

only to adjust his decimal point following the operation. Addition is a much more complex process. 

First, both operands of an addition must be represented in the same Q-point notation. Second, the 

programmer must either allow enough head room in his result to accomodate bit growth or he must 

be prepared. to handle oveflows. If the· operands are only 16 bits long, the result may have to be 

represented as a double-precision number. The following example illustrates two approaches to 

adding 16-bit numbers: 

LAC 
ADD 
SACH 
SACL 

Maintaining 32-Bit Results: 

OPl 
OP2 
AN SHI 
ANS LO 

.QlS 
Ql5 
High-order 16 bits of result 
Low-order 16 bits of result 

Adjusted Decimal Point to Maintain 16-Bit Results: 

LAC 
ADD 
SACH 

Opl,15 
OP2, 15 
ANS 

Ql4 number in ACCH 
Ql4 number in ACCH 
Ql4 

Double-precision operands present a more complex problem. In this case, actual arithmetic 

overflows or underllows might occur. The TMS32010 provides the programmer with the facility to 

check for the occtirrence of these conditions using the BV instruction. A· second technique is the 

use of saturation mode operations which will saturate the result of overflowing accumulations to 

the most positiVe or most negative number. Unfortunately, both techniques will result in a loss of 

precision. The best technique involves a thorough understanding of the underlying physical process 

and care in selecting number representations. 

&.1.3.3 Division 

Binary division •is the inverse of multiplication. Multiplication consists of a series of shift arid· add 
operations, while division can be broken down into a series of subtracts and shifts. The following 

example illustrates this process: 

Given an 8-bit accumulator, suppose the problem is to divide the number 10:by 3. The process 

consists of gradually shifting the divisor relative to the dividend, subtracting at each stage, and 

inserting bits into the quotient if the subraction was successful. · 
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1. First line up the LSB of the divisor with the MSB of the dividend. 

00001010 
-00011000 
11110010 

2. Since the result is negative (the subtraction was unsuccessful), throw away the result, shift 
the dividend, and try again. 

00010100 
-00011000 

\ 11111000 

3. The result is still negative. Throw away the result, shift, and try again. 

00101000 
-00011000 
00010000 

4. The answer is now positive. Shift the ·result and add one to set up the fourth .and final 
subtraction. ---'-"' -~- · 

00100001 
-00011000 
00001001 

5. The answer is again positive. Shift the result and add one. The most significant four bits 
represent the remainder, while the least significant four bits represent the quotient. 

00010011 

\ \___,Quotient = 0011 
· Re~ai~~er = 0001 

111·1>~~ 
l~}i; 

The TMS32010 does not have an explicit divide instruction. However it is possible to implement an 
efficient flexible divide capability using the conditional subtract instruction, SUBC. The only 
restriction for the use of this instruction is that both operands be positive. tt is also very important 
that the programmer understand the characteristics of his potential operands, such as whether the 
quotient can be represented as a fraction and the accuracy to which the quotient is to be computed. 
Each of these considerations can affect how the SUBC is used. 

The examples below illustrate two different situations. 

DIV1 
CASE 1 - NUMERATOR< DENOMINATOR DIV1 

TITLE: 

NAME: 

OBJECTIVE: 

6-6 

Division Routine I 

DIV1 

To divide two binary two's complement numbers of any sign where the 
numerator is less than the denominator 
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ALGORITHM: ((((((A-B)*2) + 1)-8)*2) + 1)-8 ... = C 

if, A- 8> = O,(((A- 8)~2) + 1 )- B > = 0 ... 

where A= denominator, B =numerator, C =quotient 

CALLING 
SEQUENCE: CALLDN1 

ENTRY 
CONDITIONS~ Numerator< Denominator 

EXIT -
CONDITIONS: Quotient stored in data memory locatioA labelled QUOT 

PROGRAM 
MEMORY 
REQUIRED: 22 words, excluding macros 

STACK 
REQUIRED: None 

FLOWCHART: DIV1 

DATA 
MEMORY 
REQUIRED: 4 words 

EXECUTION 
TIME: 61-64 machine cycles 

CALL DIV1 SUBTRACT DENOMINATOR 

CALCULATE SIGN 

OF QUOTIENT 1-.b 

MAKE NUMERATOR AND 

DENOMINATOR POSITIVE 

ALIGN NUMERATOR 

FOR DIVISION 

INITIALIZE 

LOOP COUNTER 

FOR 1 5 CYCLES 

CONDITIONALLY 

NEGATE 

QUOTIENT 

RETURN 

FIGURE 5-1 - DIVISION .ROUTINE I FLOWCHART 

------

NO 

NO 

COUNT= 

COUNT -1 
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SOURCE: 

* DIVl 

* KPDVNG 

* 

* 

* DONE 

EXAMPLE: 

LAR:P 0 
U' ~-~ERA Get sign of quotient 

~·=-· DENOM 
L_!A:Cff 'l'EHSGN Save sign of quotient 
:: DENO}{} 

SAeL ---BENOM ~Make denominator positive 
ZALH NUMERA ( -- Align numerat()r 
tiS-- ) ---~ Make numerator positive 

~LARK 0,14 

l SUBC DENOM 
BANZ KPDVNG 

SACL QUOT 
-LAC TEMSUl\1 
~ 

~--

sinr- QUOT 
~':::·.-QUOT 

RET 

15-cycle divide loop 

Done if sign positive 

Negate quotient if negative 

CALL DIVl 

BEFORE INSTRUCTION AFTER INSTRUCTION 

NUMERA I 21 

DEN OM 42 

QUOT 0 

I 
I 
I 

NUMERA 21 I 

DENOM ~I -------~~~-4_2~ 

QUOT ...._l_~~--·5__. 
(0.1 0 0) 

DIV2 CASE 2 - SPECIFY ACCURACY OF QUOTIENT 

TITLE: Division Routine II 

NAME: DIV2 

OBJECTIVE: To divide two binary two's complement numbers-of any sign, specifying the 
fractional accuracy of the quotient 

ALGORITHM: ((((((A- 8)*2l + 1) - 8)*2) + 1) - 8 ... = C 
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if A- B> =0,(((A- Bl*2l + 1)- B > =0, ... 

where A= numerator, B =denominator, C =quotient 

CALLING 
SEQUENCE: CALL DIV2 

ENTRY 
CONDITIONS: FRAC specifies accuracy of quotient 

EXIT 
CONDITIONS: Quotient stored in data memory location labelled QUOT 

PROGRAM 
MEMORY 
REQUIRED: 24 words, excluding macros 

STACK 
REQUIRED: None 

FLOWCHART: DIV2 

CALL DIV2 

CALCULATE SIGN 

OF QUOTIENT 

MAKE NUMERATOR 

AND DENOMINATOR 

POSITIVE 

INITIALIZE 

LOOP COUNTER 

( 1 5 + ACCURACY!• 

LOAD 

NUMERATOR 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 

Swords 

TIME: 67 - 70 + 3*FRAC clocks 

SUBTRAC"f 

DENOMINATOR 

CONC>ITIONALL Y 

NEGATE 

QUOTIENT 

RETURN 

FlGUR£ 5-2 - DIVISION ROUTINE H FLOWCttMf 

-
NO 

COUNT= 

COUNT -1 

NO 
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SOURCE: 

* DIV2 LARP 0 
LT NUMERA Get sign of quotient 
MPY DENOM 
PAC 
SACH TEMSGN Save sign of quotient 
LAC DENOM 
ABS 
SACL DENOM Make denominator positive 
LACK 15 
ADD FRAC 
SACL FRAC Compute loop count 
LAC NUMERA Align numerator 
ABS Make numerator positive 
LAR O,FRAC 

* KPDVNG SUBC DENOM 16 + FRAC cycle divide loop 
BANZ KPDVNG 

* SACL QUOT 
LAC TEMSGN 
BGEZ DONE Done if sign positive 

* 
ZAC - SUB QUOT 
SACL QUOT Negate quotient if negative 

* 
DONE; RET 

EXAMPLE: 

CALL DIV2 

BEFORE INSTRUCTION AFTER INSTRUCTION 

NUMERA 11 NUMERA 11 

DEN OM 8 DEN OM 8 'I 
FRAC 3 FRAC 3 I 
QUOT 17 QUOT 1.375 

(1.0 1 1) 
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6.1.4 Subroutines 

When a subroutine call is made using the CALL or CALA instruction, the PC + 1 (return address) 

is saved on the top of the stack. At the end of the subroutine, a RET instruction is executed which 

updates the PC with the value saved on the stack. The program will then resume execution at the 

instruction following the subroutine call. 

There are two occasions in which a lev~ of stack must be reserved for the machine's use. First, the 

TB LR and TB LW instructions use one level of stack. Second, when interrupts are enabled, the PC 
is saved on the stack during the interrupt routine. If a system is designed to use both interrupts and 

a TBLR or TBLW instruction, only two levels of stack are available for nesting subroutine calls. 

NOTE 

If the hardware emulator will be used for system development, the level of stack which is 

reserved for TBLR and TBLW will be used by the emulator to store a return address 

whenever the program execution is suspended by the emulator. Therefore, if neither the 

TBLR or TBLWinstruction is used, one level of stack must still be reserved for use by the 

emulator. 

Subroutine calls can be nested deeper than two levels if the return address is removed from the 

stack and saved in dElta memory. The POP instruction moves the top of stack (TOSJ into the 

accumulator and pops the stack up one level. The return address can then bestored in data memory .·· · 

until the end of the subroutine when it is put back into the accumulator. The PUSH instruction will -

push the stack down one level and then move the accumulator onto the TOS. Therefore, when the 

RET instruction is executed, the PC is updated with the return address. This procedure will allow a 

second subroutine to be called inside the first routine without using another level of stack. 

The POP and PUSH instructions can also be uSed to pass arguments to a subroutine. DATA 

directives following the subroutine call create a list of constants and/or variables to be passed to the 

subroutine; After the subroutine is called, the TOS points to the list of arguments following the CALL 

instruction. By moving the argument pointer from the TOS into the accumulator, the list of 

arguments can be read into data memory using the TBLR instruction. Between each TBLR 

instruction, the accumulator must be incremented by one to point to the next argument in the list. To 

create the return address, the argument pointer is incremented past the last element in the argument 

list. The PUSH instruction moves the return address onto the TOS, and the RET instruction updates 

the PC. 

The following example illustrates a call which passes two arguments to a subroutine. 

CALL CBI TS 
DATA VALUE 
DATA >OFFF 

********************************************************** 
* Clear Bits * 
* This subroutine clears the bits of a data word desig• * 
* nated by a mask. The bits set to one in the mask * 
* indicate the bits in the data word to be cleared. All * 
* other bits remain unchanged. Two arguments are passed * 
* to this subroutine: * 
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* 1st argument = address of data word * * 2nd argument = mask * 
* * * Calling sequence: CALL CBITS * * DATA 1st argument * * DATA 2nd argument * 
********************************************************** 
CBITS SAR 

POP 
TBLR 
LAR 
ADD 
TBLR 
ADD 
PUSH 

LARP 
LAC 
XOR 
AND 
SACL 

LAR 
RET 

ARO,XRO 

XR1 
ARO,XR1 
ONE 
XR1 
ONE 

0 
XR1 
MINUS 
* 
* 
ARO,XRO 

Save ARO in temporary location 

Hold return address 
1st argument = pointer to data 
Put 1st argument into ARO 

2nd argument = mask 

Put return address on Tos· 

Load mask into accumulator 
Invert mask 
Clear bits 

Restore ARO 

5.1.6 Computed GO TOs 
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The CALA instruction executes a subrqutine call based on the address contained in the 
accumulator. This instruction can be used to perform a computed GO TO. The address of the 
subroutine can be computed from a data value to determine which one of several routines will be 
executed. The return at the end of each of these routines will cause program execution to resume 
with the instruction following the CALA command. It should be noted that the CALA instruction 
will use a level of stack, because it is an indirect subroutine call and not just an indirect branch. 

The example below illustrates how to compute a call to one of several routines. The subroutines are 
defined first, and then a table of branches to each subroutine is created. The main part of the 
program inputs a data value of 0, 1, or 2. The appropriate address in the table is calculated in the 
accumulator. An indirect subroutine call causes the proper branch in the table to be executed. 

SUB1 IN DAT1,PAO 
RET 

SUB2 IN DAT1,PA1 
RET 

SUB3 IN DAT1,PA2 
RET 

TBL1 B SUB1 
B SUB2 
B SUB3 

LT ONE 
MPYK TBL1 Get address of table 
PAC 
IN VALUE,PA4 Input data from PA4 
LT VALUE 
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MPYK 
APAC 
CALA 
LAC 

2 

DATl 

Calculate off set 

Go to designated subroutine 
Return here after subroutine 

6.2 ADDRESSING AND LOOP CONTROL WITH AUXILIARY REGISTERS 

There are two auxiliary registers on the TMS32010. The auxiliary registers can be used either as loop 
counters or as pointers for indirect addressing. 

6.2.1 Auxiliary Register Indirect Addressing 

In the indirect addressing mode, the auxiliary register pointer (ARP) is used to determine which 
auxiliary register is selected. The LARP instruction sets the ARP equal to the value of the immediate 
operand. The value of the ARP can also be changed in the indirect addressing mode; the ARP is 
updated after the instruction has been executed. 

The contents of the auxiliary register are interpreted as a data memory address when the indirect 
addressing mode is used. A sequential list of data can easily be accessed in the indirect mode by 
using the autoincrement or autodecrement feature of the auxiliary registers. If the auxiliary register 
contains a data memory address, the counter can be used to increment through the entire address .• 
space. The auxiliary register should not be used as a general purpose incrementer, because only the 
lower nine bits of the register actually count. A special instruction, MAR, allows the auxiliary 
register which is selected by the ARP to be incremented or decremented without implementing any 
other operation in parallel. 

There are three instructions (LARK, LAR, SAR) which either load or store a value into an auxiliary 
register, independent of the value of the ARP. The first operand in each of these instructions 
determines which auxiliary register is to be either loaded or stored. This operand does not affect the 
value of the ARP for subsequent instructions. 

The example below illustrates using an auxiliary register in the indirect addressing mode to input 
data into a block of memory. 

LARK ARO,DATBLK Initialize ARO as a pointer to 
DATBLK (an area of 8 words in 
data memory) 

LARP 0 Select ARO 
LACK 8 Initialize accumulator as a counter 

LOOP IN *+,PAO Input data 
SUB ONE Decrement counter (ONE contains 

value 1) 
BNZ LOOP Repeat until count=O 

6.2.2 Loop. Counter 

An auxiliary register can also be used as a loop counter. The BANZ instruction will test and then 
decrement the auxiliary register selected by the ARP. Because the test for zero occurs before the 
auxiliary register is decremented, the value loaded into the auxiliary register must be one less than 
the number of times the loop should be executed. The maximum number of loops which can be 
counted is 512, because only nine bits of each auxiliary register are implemented as counters. 
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The example below inputs data and calculates the sum while the auxiliary register is used to count 
the number of loops. The accumulator will contain the result. 

LARK AR0,3 Initialize ARO as a counter 
LARP 0 Select ARO 
ZAC Clear accumulator 

LOOP IN DATA1,PA2 Input data value 
ADD DATAl Add data to accwnulator 
BANZ LOOP Repeat loop four times 

5.2.3 Combination of Operational Modes 

Both indirect addressing and loop counting can be performed at the same time to implement loops 
efficiently. If the data block is defined to start at location 0 in data memory, the same auxiliary which 
is counting the number of loops can also be the pointer for indirect addressing. 

The example below illustrates using the same auxiliary register as both a counter and a pointer. Data 
locations 0 through 7 are loaded with input data. 

LARK 
LOOP IN 

BANZ 

AR0,7 
*,PAO 
LOOP 

ARO points to end of data block 
Input data 
Repeat loop 8 times 

The data block does not have to start at zero if one auxiliary register is used for counting and the 
other auxiliary register is used as a pointer. The following example illustrates how both auxiliary 
registers can be used at once. 

LARK AR0,7 Initialize ARO as a counter 
LARK ARl,DATBLK ARl points to start of DATBLK, 

data memory area 
ZAC 

LOOP LARP 1 Point to ARl 
ADD *+,ARO Calculate sum of data in block; 

BANZ LOOP 
point to ARO 
Repeat loop 8 times 

5.3 MULTIPLICATION AND CONVOLUTION 

The hardware multiplier will peform a 16 X 16-bit multiply and produce a 32-bit result. This section 
will discuss the features of the multiplier and give examples which illustrate how to efficiently use 
the multiply instructions. 

6.3.1 Pipelined Multiplications 
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A·single multiply operation consists of three steps on theTMS32010. First, one of the operands is 
loaded into the T register from data memory using the LT instruction. The second step is performed 
by specifying the second operand using either the MPV or MPVK instruction. MPV obtains the 
second operand from data memory, and MPVK uses an immediate operand as the other operand to 
be multiplied. The third step moves the output from the (product) P register to the accumulator by 
using one of three instructions, PAC, APAC, or SPAC. The PAC instruction loads the accumulator 



with the value from the P register; the APAC instruction adds the product register to the 
accumulator; and the SPAC instruction subtracts the P register from the accumulator. Since each 
of the steps is a one-clock cycle, a single multiply-accumulate operation takes 600 ns. 

If several multiplies are to be performed consecutively, the first and third steps of the multiplication 
process can be done in parallel. This method reduces the time of a multiply-accumulate operation to 
400 ns. Multiplication can be pipelined by using the LTA instruction. This instruction loads the T 
register with the first operand for the next multiplication and adds the P register to the accumulator 
for the current multiplication. 

The example below performs a pipelined multiplication. 

********************************************************** 
* The equation to be calculated is: * 
* t = Aw + Bx + Cy + Dz * 
********************************************************** 

ZAC 
LT w 
MPY A 
LTA x ACC = Aw 
MPY B 
LTA y ACC = Aw+ Bx 
MPY c 
LTA z ACC = Aw+Bx+Cy 
MPY D 
APAC ACC = Aw+Bx+Cy+Dz 
SACH Tl 
SACL T2 Store results 

5.3.2 Moving Data 

When implementing a digital filter, the variables in the equation represent the inputs and outputs at 
discrete times. Typically this type of data structure is implemented as a shift register where the data 
at time t is shifted to the position previously occupied by the data at time t-1 . If consecutive 
addresses in data memory correspond to consecutive time increments, then shifts can be 
accomplished simply by moving the data item at location d to that corresponding to d + 1 . The 
DMOV command allows a data word to be written into the next higher memory location in a single 
cycle without affecting the accumulator. Therefore, if the variables are placed in consecutive 
locations, a DMOV command can be used to move each of the variables before the next calculation 
is peformed. 

The data move operation is combined with the L TA instruction to create the LTD instruction. This 
instruction performs three operations in parallel. The operand of the instruction is loaded into the T 
register; the operand is also written into the next higher memory location; and the P register is 
added to the accumulator. When using the LTD instruction, the order of the multiply and 
accumulate operations becomes important because the data is being moved while the calculation is 
being performed. The oldest input variable must be multiplied by its constant and loaded into the 
accumulator first. Then the input, which is one time-unit delay less, is multiplied and accumulated. 
This process is repeated until the entire equation has been computed. 

The following example illustrates the input variables being moved in memory as the results are 
calculated: 
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6.3.3 

********************************************************** 
*The following equation is used to implement a filter: * 
* y(n)=[Ax(n-l)+Bx(n-2)+Cx(n-3)+Dx(n-4)1 * 2**-16 * 
********************************************************** 

START IN Xl,PAO Input sample 
ZAC 
LT X4 x(n-4) 
MPY D 
LTD X3 ACC=Dx4; x(n-4)=x(n-3) 
MPY c 
LTD X2 ACC=Dx4+Cx3; x(n-3)=x(n-2) 
MPY B 
LTD Xl ACC=Dx4+Cx3+Bx2; x(n-2)=x(n-1) 
MPY A 
APAC ACC=Dx4+Cx3+Bx2+Axl 
SACH y 
OUT Y,PAl Output results 
B START 

Product Register 

The product register stores the results of a multiplication until another multiplication is peformed. A 
user may want to use the multiplier during the interrupt routine, but the product register must be 
restored with the vak,Je it c;ontained before the interrupt occurred. It is easy to save the product 
register in data memory, but it is very difficult to restore the product register with the value that was 
saved in memory. A harc:tw#e featµre has been built into the interrupt logic to prevent an interrupt 
from occurring immediately after a multiply instruction (MPV or MPVK). If the contents of the 
product register are always transferred into the accumulator on the instruction following the 
multiply, the product register could be changed during the interrupt routine without having to be 
restored before returning from the interrupt. Therefore, a PAC, A.PAC, SPAC, L TA, or LTD should 
always follow a MPV or MPVK instruction. This rule should be followed whenever the multiplier is 
being used during the interrupt routine. 

The value of the product r~ster can be restored if the contents are saved in memory, but it is a very 
time-consuming process. If the magnitude of the value saved in memory is greater than fifteen bits, 
it must be factored into two smaller numbers in order to restore the product register. 

5.4 MEMORY CONSIDERATIONS OF HARVARD ARCHITECTURE 

The memory organization on the TMS32010 is referred to as a Harvard architecture. This means 
that the program memory is separate from the data memory. This type of architecture allows the 
next instruction fetch to occur while the current instruction is fetching data and executing the 
operation. While the concept of a Harvard architecture increases the speed of the machine, there 
are disadvantages in having the program memory totally separate from data memory. The 
instruction set, therefore, includes instructions which transfer a word between data memory and 
program memory. The foUowing sections ·mustrate how to make efficient use of the ablility to 
exchange data between memories. 

5.4.1 Moving Constants into Data Memory 
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Most signal processors have a separate memory space for storing constants. By allowing communi­
cation between data and program memory, the TMS32010 is able to incorporate a constant 
memory capability with its program memory. This method allows a more efficient use of memory 
space. The portion of memory not used for storing constants is available for use as program space. 



There are five immediate instructions in the instruction set which provide an efficient way to 
execute operations using constants. Two immediate instructions, LARP and LDPK, modify the 
program context. 

LARP changes the auxiliary register pointer, and LDPK changes the data page pointer. Three other 
immediate instructions, LACK, LARK, and MPYK, allow constants to be used in calculations. 
LACK and LAAK both require an unsigned operand with a magnitude no greater than eight bits. 
The MPYK instruction allows a 13-bit signed number as an operand. 

A 16-bit data value can be moved from program memory to data memory using the TBLR 
instruction. TBLR requires that the program memory address (the source) be in the accumulator, 
while the data memory address (the destination) is obtained from the operand of the instruction. 
The TBLR instruction is commonly used to look up values in a table in program memory. The 
address of the value in the table is computed in the accumulator before executing the instruction. 
TBLR then moves the value into data memory. TBLR is a three-cycle instruction and, therefore, 
takes longer than an immediate instruction. However, it has more flexibility since it operates on 

· 16-bit constants. 

The example below illustrates bringing the cosine value of a variable into data memory. 

* First, a table containing the cosine values is created in 
* program memory. 

COSINE DATA 

START IN 
LACK 
ADD 
TBLR 

X,PAO 
COSINE 
x 
cosx 

Load table address 
Calculate program memory address 
Move value into data memory 

Note: If the address of COSINE is larger than 255, the address can be loaded into the accumulator by loading the T regiSter with a 
one and then "rnultplying by the constant COSINE. 

&.4.2 Data Memory Expansion 
Often it is necessary to expand data storage capability by using external memory. If the storage 
requirements are small, additional memory can be added as a RAM extension of the program 
memory address space. This technique is very efficient in terms of additional hardware 
requirements, but it has two drawbacks. It requires that the combination of the memory required to 
store the program and accomodate ·data be limited to 4096 words. It also tends to limit system 
throughput, since access to data in program memory is relatively slow. The minimum memory 
access time using this technique is four clocks (800 ns), but six clocks ( 1200 ns) is a more likely 
average. 

A system requiring larger ll'lemOries or faster data access can be implemented by treating . the 
expanded data memory as an 1/0 device. Since the TMS32010 lacks the capability to address a 
large 1/0 address space (it is limited to eight devices), this technique also requires the use of an 
external address register. This register can be implemented as a counter to allow efficient access to 
contiguous data buffers. See Section 6.1.3 on 1/0 design techniques for more details. 
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6.4.3 Program Memory Expansion 
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Using the MC/ MP pin on the TMS32010, the applications engineer can choose between two 
distinct techniques for structuring his program memory address space. (See Figure 5-3.) In the 

microcomputer mode, the internal masked ROM is active and consumes the low 1536 words of the 
address space. The remaining 2560 words can be implemented using external memory. If the 
microprocessor mode is selected, the entire 4096 word address space is assumed to exist external to 

the chip. 

MC MODE 

TMS32010 
(1.5K PM) 

FIGURE 5-3A - USE OF INTERNAL PROGRAM MEMORY 

DATA LINES 
.-. _L _.. -

16 TMS32010 

ADDRE1S LINES 
4K X 16 

MC/MP -- STATIC RAM 

~ AND/OR PROM 

MEN 
WE OUTPUT 

ENABLE 
j CHIP 

~ 

_.::l ./ 
SELECT 

(ONLY FOR 1-
RAM) 

FIGURE 5-38 - USE OF EXTERNAL PROGRAM MEMORY 

FIGURE 5-3 - TECHNIQUES FOR EXPANDING PROGRAM MEMORY 

' 

WR ITE 

ABLE EN 

In the microcomputer mode, only the upper 2.5K words of external program memory are used. In 
the microprocessor mode, all 4K words of external memory are used. With some types of memory 
elements, additional chip-select logic may be necessary. 

External program memory may utilize either RAM or ROM. In either case, system operation at the 
full 5-MHz clock rate requires that the memory exhibit an access time of less than 100 ns. If RAM is 
used, it may be loaded either via the TMS32010 itself using a boot ROM, or via a dual RAM port 
from an independent controller. 
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8. -_ INPUT/OUTPUT DESIGN TECHNIQUES 

An interrupt~driven sampled d~ interface is the most -common for signal processing applications, 
but other -types• of peripherals. can also be. •used. This section illustrates several examples and 
discusses some 01 ·the hardware and _saftware issues which- should be considered when designing 
an 1/0 system for the TM$32010. - -

8.1 PERIPHERAL DEVICE TYPES 

Using a three-bi£ port address, the TMS32010 is capable of accessing eight different input devi~ 
and eight different output devices. The _port numb&r is placed on the external address lines· during 
the second cycle of the instruction. The address lines can be decoded to select one of several 
devices attached to the data bus or to activate a single control line. Three classes of peripherals are 
discussed below. 

I. 1.1 Registers 

A register can be used for several different functions. The most_ simplistic interface uses a 16-bit 
dual port transceiver. Such a register aHows two-way communication between the TMS32010 and 
another processor. Handshaking between the processors can be implemented by using interrupts 
on the TMS32010. In Figure 6-1, the acknowledge line from the other processor is connected to the 
BIO pin in order to synchronize the TMS32010. 

ADDRESS BUS 
74LS138 - _L 

3 
INTERRUPT --- -- •• .---g-

--- p 
R !----" 

R T 
E M 0 
G s c DATA BUS I DATA BUS 

E --- .L 
_L 3 

~----,.- s - , 
s 16 16 2 

T 0 s 
E 1 BIO 0 

r-'- R 0 1---i 
R 

~ 
ACKNOWLEDGE --
FIGURE 8-1 - COMMUNICATION BETWEEN PROCESSORS 

In a more complicated configuration, a shift register can be used to convert a serial data stream into 
_ parallel data to be compati~e with the 1/0 instructions. An analog device which can be interfaced 
- to this proC8SSQr is a coded'. It is simply an A/D converter and D/A converter which is designed to 
operate in a tel~mmunications environment. This serial device produces eight-bit logarit'1mically7 
weighted digital data. Consequently, a codec interface must include a mechanism for_ serial to 
parallel conversion and a facility for code conversion. A shift register can provi~e the parallel input 
to the TMS3201:0. The code conv9rter forA/D data can be implemented either in hardware using a 
256 X 16-bit ROM or in software. 
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Another example of a register-based 1/0 system is a very simple A/D channel where the output of 
an AID converter is buffered using a single parallel register. This requires that the A/D system be 
serviced before the next data sample overwrites the previous sample stored in the register. 
Unfortunately, a routine which only services a single data word for every interrupt can be very time 
consuming. The service overhead time can be reduced by multiword buffering (see Section 6.1.2 
for discussion of FIFOs and interrupts). 

6.1.2 FIFOs 

The use of FIFOs instead of registers offers three definite advantages as follows: 

1 ) Single address access to multiple data words, 
2) Reduction of 1/0 overhead (since several words can be accessed for each interrupt),· 
3) Preservation of temporary information in data stream. 

Figure 6-2 illustrates the use of a FIFO in a typical analog subsystem. 

ANALOG DIGITAL 

ANALOG 

SIGNAL 
__.,_ ANTI-ALIASING 

FILTER 

DATA 
A/D CONVERTER 

DATA 
-. __. 
~ 

CLOCK 74LS222 

l INPUT FIFO 

SAMPLE READY 

DATA 
OU 

BUS1 lo-16 • EN 

TPUT 

ABLE 
~ 

~ 
BIO 

TMS32010 DEN 1---1 

FIGURE 6-2 - TYPICAL ANALOG SYSTEM INTERFACE 

6.1.3 Extended Memory Interface 
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The peripheral which requires the most hardware to implement is a large memory. Because the 
address lines only access locations 0-7 during an 1/0 operation an external address counter must be 
used to provide an address for the memory. It is also advisable to provide a buffer between the data 
bus of the TMS32010 and that of the memory itself. Although this buffer is probably not necessary 
for high;..speed static memories, it is required for slower devices and large arrays where the drive 
capacity of the TMS32010 may be marginal. 

Figure 6-3 gives an example of one way to extend data memory by using the IN and OUT 
instructions. The.design consists of 16K words of static RAM, addressed by the lower 14 bits of a 
16-bit counter. The location to address in this RAM is loaded into the counter by doing an OUT 
instruction to port 0. This loads the data bus into the counters. The appropriate data memory 
location is addressed by the lower 14 bits of the data. Bit 15 (MSB) of the data is loaded into the 
counters to determine whether to count up or down through data memory. Memory can then be 
read from or written to sequentially by doing an IN or OUT instruction to port 1. The MSB in the 
counters determines whether the memory address should be incremented (MSB = 0) or 
decremented (MSB = 1) after a read or write of data memory. Memorv will continue to be 
addressed sequentially until new data is loaded into the counters. 
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FIGURE 6-3 - TMS32010 EXTENDED MEMORY INTERFACE 

Dynamic memories can also be used. However, those devices may impose software constraints on 
the system designer. For example, memory cycle times may not allow consecutive IN/OUT/IN 
instruction sequences. Memory refresh represents another problem. Since this processor has no 
capability to enter a "wait" state, memory refresh must be generated with external hardware. 

6.2 INTERRUPTS 

An interrupt routine allows the current process to be suspended while an 1/0 device is being 
serviced. The processor's execution may be suspended on a high-priority basis by using the INTpin. 
Otherwise, a lower priority interrupt can be serviced by using a software polling technique. 

6.2.1 Software Methods 

The BIOZ instruction can be used to poll (or test) the BIO pin to see if a device needs to be serviced. 
This method allows for a critical loop or set of instructions to be executed without a variation in 
execution time. Because the test for interrupts occurs at defined points in the program, context 
saves requirements are minimal. 

The BIO pin can be used to monitor the status of a peripheral. If the FIFO full status line is 
connected to the BIO pin, the FIFO is serviced only when the FIFO is full. In the following example, 
the FIFO contains 16 data words. The BIO pin is tested after each time-critical function has been 
executed. 
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BIOZ SKIP 
CALL SERVE 

SKIP 

The subroutine does not have to save the registers or the status, because a new procedure will be 
executed ·after the device is serviced. 

SERVE LACK AR0,15 
LACK ARl,TABLE 

LOOP LARP 1 
IN PAO,*+,ARO 
BANZ LOOP 
RET 

The FIFO must be serviced before another word is input or data may be lost. This fact determines 
the frequency at which the polling must take place. 

6.2.2 Hardware Methods 
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The INT pin causes execution to be suspended at any point in the program . except after a multiply 
instruction (see Section 4.1.3.3). The hardware interrupt can be masked at critical points in the 
program with the DINT instruction. If an interrupt occurs while the INTM (disabled interrupt mask) 
equals one, the interrupt will not be serviced until the interrupts are enabled again. If an interrupt is 
pending when an enable interrupt operation occurs, the interrupt is serviced after the execution of 
the instruction following the EINT command. 

When an interrupt is serviced, the INTF (interrupt flag) is cleared, INTM is set to one, the current PC 
is pushed on the TOS, and the PC is set to 2. The user must save the context of the machine before 
servicing the peripheral. The context should be restored and the interrupts enabled prior to 
returning from the interrupt routine. The following paragr~phs illustrate a technique for 
implementing an interrupt-driven analog input channel. It also shows the impact of multiple-level 
data buffering on system 1/0 overhead. 

Generally, the class of analog systems which can be reasonably supported by .the TMS32010 will 
have information bandwidths of less than 20 kHz. The desired sample rate can be generated by 
dividing the 5 MHz CLKOUTsignal from the TMS32010. It is advisable to provide at least a one-level 
data buffer to insure the integrity of the data which is read by the processor. If an 8-kHz sample rate 
is used (for example), the system must then respond to an analog interrupt every 125 ms. The 1/0 
overhead incurred by this arrangement can be computed by determining the number of clock times 
the TMS32010 will spend in the interrupt routine servicing each sample, and dividing by 625. For 
example, a typical interrupt routine might look like the following: 

INT SST STATUS Save status 
SACL ACCL Save accumulator low 
SACH ACCH Save accumulator high 
IN SAMP,ADC Read from ADC 
LAC COUNT Update sample counter 
ADD ONE 
SACL COUNT 
LACK LIMIT Check whether LIMIT clocks 
SUB COUNT received 
BGZ OK 



DONE 

OK 

LACK 
SACL 
ZALH 
ADDS 
LST 
EINT 
RET 

1 
FLAG 
ACCH 
ACCL 
STATUS 

YES ===> Set flag 

Restore accumulator high 
Restore accurnu.lator low 
Restore status 
Enable subsequent interrupts 

The overhead required to service this system is 18/625 = 2.9 percent. This overhead burden can be 
reduced by using a FIFO to buffer the data. In this case, the TMS32010 need only be interrupted 
when the buffer has filled. If a 16-level FIFO is used in our example above, this interrupt will occur 
every 2 ms, and the overhead burden will be reduced to about 0.5 percent. 

If two different kinds of devices are being serviced by the same interrupt routine, the BIO pin can be 
used to determine which device needs to be serviced. 
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7. MACRO LANGUAG~ EXTENSIONS 

The basic instruction set of the TMS32010 has been extended via the XDS/320 Macro Assembler to 

facilitate coding of commonly used asiembly language coristructs. In this section, a set of macros 
. designed to ease assembly language coding is described. Some macros call routines from the set of· 

utility routines described in Secti<)ll 7 .5. 

7.1 CONVENTIONS USED IN MAcRO DESCRIPnONS 

1183 

In the macro descriptions, the following.conventions are used: 

A A previously definedt memory label 

B Another previously definedt label 

A:A + 1 Like A, except refers to a double word 

B:B + 1 Like B, except refers to a double word 

TMP A temporary locatic:m (previously defined) 

·AR Auxiliary· register 1 or auxiliary registor 0 

@AR Data RAM location pointed to by the selected auxiliary register 

@AA: @AR + 1 Double word, starting at location painted to by the selected auxiliary 
register 

@AR - 1: @AR · Double word,. starting at one before the location pointed to by the 
selected auxiliary register 

AR1 

@AR1 

ARO 

@ARO 

AC 

AC low 

AC high 

@AC 

p 

T 

ARP 

Auxiliary register 1 

Data RAM location pointed to by AR1 

Auxiliary register O. 

Data RAM location pointed to by ARO 

Accumulator 

Low-order 16 bit$ of the accumulator 

High-order 16 bits of the accumulator 

Data RAM location pointed to by the accumulator 

p register 

T register 

Auxiliary register pointer 

• 
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* 

* + 

* -

Cfl 

c 

Indirect operand 

Indirect reference and increment 

Indirect reference and decrement 

Field f optional (i.e., may be replaced by a null operand) 

Constant. (It may be written as C{ n< C< m} to. indicate a -range limit 
between n and m. C1 and C2 will be used as constants when two are 
required in a description. 

t Some mac:roe generate dlfferwrt ce>de 1111quencm for constant operands and memory operands. Memory operands can be confused with 
c:oil8tanbl unleaa the memory labels (operand names) have bean defined to the aa.rnbler prior to their uae In a macro call. This limitation 
c:oiraepondS to the requirement in some higher-level languages like PASCAL that varjablea be dac:l..t prior to their uae In 8Xpf811iona. 

7.2 MACRO SET SUMMARY 

Table 7-1 lists alp~abetically all the macros described in Section·7-3. 

TABLE 7-1 - MACRO INDEX 

MNEMONIC DESCRIPTION PAGE 

ACTAR Move Accumulator to Auxiliary Register 7-7 
ADAR Add Variable to Auxiliary Register 7-9 
ADDX Double-Word Add 7-11 
ART AC Move Auxiliary Register to Accumulator 7-14 
BIC Clear Bits in Data Word 7-16 
BIS Set Bits in Data Word 7-18 
BIT Test Bits in Data Word 7-20 
CMP Compare Two Words 7-22 
CMPX Compare Two Double Words 7-24 
D.EC Decrement Word 7-26 
DECX Double-Word Decrement 7-28 
INC Increment Word 7-31 
INCX Double-Word Increment 7-33 LA CARY Load Accumulator from Address in 

Accumulator 7-36 
LASH Arithmetic Left Shift 7-38 
LASX Double-Word Arithmetic L$ft Shift 7-40. 
LAXARY Load Double Word into Accumulator from 

Address in Accumulator 7-42 
LCAC Load Constant into Accumulator 7-44 LCACAR Load Constant to Accumulator from Program 

Address in Accumula.tor 7-48 LCAR Load Constant 'into Auxiliary Register 7-50 LCAX Load Double-Word Constant into Accumulator 7-53 LCAXAR Load Double-Word Constant to Accumulator 
from Program Memory 7-55 

LCP Load Constant into P Register 7-57 
LCPAC Load Constant into P Register and 

Accumulator 7-59 

7-2 
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TABLE 7-1 - MACRO INDEX (CONTINUED) 

MNEMONIC DESCRIPTION PAGE 

LDAX Load Double Word 7-61 
LTK Load Constant into T Register 7-64 
MAX Select Maximum of Two Words 7-66 
MAXX Select Maximum of Two Double Words 7-68 
MIN Select Minimum of Two Words 7-70 
MINX Select Minimum of Two Double Words 7-72 
MOV Move Word in Data Meniory 7-74 
MOVCON Move Constants to Data Memory 7-76 
MOVDAT Move Words to Data Memory 7-80 
MOVE Move Data Array '7-85 
MOVROM Move Words to Program Memory 7-90 
MOVX Move Double Word 7-95 
NEG Arithmetic Negation 7-98 
NEGX Double-Word Arithmetic Negation 7-100 
NOT · Boolean Not 7-103 
RASH Arithmetic Right Shift 7-105 
RASX Double-Word Arithmetic Right Shift 7-107 
REPCON Move One-Word Constant into Array 7-109 
RIPPLE Ripple Data Array One Position 7-111 
RLSH Right Logical Shift 7-115 
RLSX Double-Word Logical Right Shift 7-117 
SACX Store Double Word 7-119 
SAT Saturate Data Word between Upper and Lower 

Bounds 7-122 
SBAR Subtract Variable from Auxiliary Register 7-126 
SBIC Clear Single Bit in Data Word 7-129 
SBIS Set Single Bit in Data Word 7-131 
SBIT Test Single Bitin Data Word 7-133 -STOX Convert.Single Word to Double Word 7-135 
SUBX Double-Word Subtract 7-137 
TST Test Word 7-140 
TSTX Test Double Word 7~142 

XTOS Convert Double Word to Single Word 7-145 

Table 7-2 summarizes all the legal parameters of the macros described in Section 7-3. 
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TABLE 7-2 - MACRO SET SUMMARY 

MACRO OPERAND 0 OPERAND OPERAND TYPES* .. CONSTANT RANGE 
INSTRUCTION NUMBER p SIZEt 

T c s * *+ *- AC AR LOWEST HIGHEST 
ACT AR 1 x 

temJ!lra_!Y_ 2 x 1 x 
ADAR 1 .. x 

- 32.768 .1 32767 2 1 x x 
3 x 1 x tenm_ora_!Y_ 

ADDX 1 2 x x x x 
ART AC 1 x 

tem...e._lrl!!Y_ 2 x 1 x 
BIC 1 1 x x x x 

2 1 x x 
BIS 1 1 x x x x 

2 1 x x 
BIT 1 1 x x x x 

2 c. 1 x x x x 
CMP 1 1 x x x x 

2 1 x x x x 
CMPX 1 2 x x x x 

2 2 X· x x x 
DEC 1 x 1 x x x 

2 x x 
DECX 1 x 2 x x x x x 
INC 1 x 1 x x ' x 

2 x x 
INCX 1 x 2 x x x x x 
LA CARY ## 1 x 

1 x x 0 15 . 
LASH 1 1 x 

2 1 x 
3 x 0. 15 

LASX 1 2 x .· 

2 2 x - 3 x 0 15 
LAX ARY ## 2 
LCAC 1 1 x x -32768 32767 

2 x x 0 15 
LCACAR ## 1 x 

1 x x 0 15 
2 x 1 x temporary 

LCAR 1 x 
2 1 x x -32768 32767 

LCAX 1 2+ x -2**31 2"*31-1 
LCAXAR ## 2 x 

1 x 2 x temJ!oraiy_ 
LCP 1 1 x x -4096 ·. 4095 
LCPAC 1 1 x x -4096 4095 
LDAX 1 2 x x x x 
LTK , 1 x x -32768 32767 
MAX 1 1 x 

2 1 x 
MAXX 1 2 x 

2 2 x 
MIN 1 1 x 

2 1 x 
MINX 1 2 x 

2 2 x 
MOV 1 1 x x x x x 

2 1 x x x x x 
MOVCON 1 7 x 

2 7 x x x 
MOVDAT 1 ? x x x 

program - 2 ? x x x 
data 3 x x -32768 32767 

7-4 
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TABLE 7-2 - MACRO SET SUMMARY (Concluded) 

MACRO OPERAND 0 OPERAND OPERAND TYPES* CONSTANT RANGE 

INSTRUCTION NUMBER p SiZEt 
T c s • •+ ·- AC AR LOWEST HIGHEST 

MOVE 1 7 x x j( 

data - 2 7 x x x 
data 3 x x -32768 32767 

MOVROM 1 7 x x x 
data - 2 7 x x x 
program 3' x x -32768 32767 

MOVlf 1 2 x x x x x 
2 2 x x x x x 

NEG 1 1 x x 
•NEGX 1 2 x x x x 
NOT 1 x 1 x x x x x 
RASH 1 1 x 

2 1 x 
3 x 0 15 

RASX 1 2 x 
2 2 x 
3 x 0 15 

.REPCON 1, x -32768 32767 

2 7 x 
3 x -32768 32767 

RIPPLE 1 7 x 
2 x -32768 32767 

3 x dumm__y a!9_ument 

RLSH 1 1 x 
2' 1 x 
3 x 0 15 

RLSX 1 
. 

2 x 
2 2 x 
3 x 0 15 

SACX 1 2 x x x x 
SA"f 1 1 x 

2 1 x x -32768' 32767 

3 1 x x -32768 32767 

SBAR 1 x 
2 1 x x -32768 32767 

3 x 1 x tem.R_ora~ 

SBIC 1 ·X 0 15 

2 1 x x 
SBIS 1 x 0 15 

2 1 x x 
SBIS 1 x 0 15 

2 1 x x 
SBIT 1 x 0 15 

2 1 x x x x 
STOX 1 1 x 

2 2 x 
SUBX 1 2 x x x x 
TST 1 1 x x x x 
.TSTX 1 2 x x x x 
XTOS 1 2 x 

2 1 x 

. NOTES: 

t Blank in size field means that operand is not a data (program) location, but is a field in an instruction (i.e., has no word size). 

*· C Constant 
S Symbolic address 
•, • +, • - Indirect through the selected address register (ARP) 

AC Operand .is the AC (usually shown in the instruction as null or blank operand:· MOV ,A) 

AR An address register (ARO or AR1) 
+ 32-bit constant expressed as a two-word constant list: (C1 ,C2) 

7 Variable length operand (length given by argument 3) 

## Implied operand 'in accumulator 
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7.3 MACRO DESCRIPTIONS 

7-6 

Each macro instruction is named, followed by a summary tabl~. A flowchart for clarifying the macro 
source· then follows and specific exarnples of all legal forms. · 

The macros described in this section use a number of assembler symbols for internal purposes 
during macro expansion. Most of these internal symbols and any operands the user supplies to the 
macros are entered into the assembler symbol table as undefined (unless they are user-d8tined 
already) and will be printed at the end of the assembler printed output as undefined. This is not an 
error. Only undefined symbol errors flagged under assembly language statements in the program 
listing are actual fatal errors. Only these errors will be tallied in the assembly error count. Undefined. 
symbols listed after the program are for information only. 
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ACT AR Move Accumulator to Auxiliary Register - Macro 

TITLE: Move Accumulator to Auxiliary Register 

NAME: ACT AR 

OBJECTIVE: Pass data word to named auxiliary register from accumulator 

ALGORITHM: (ACC)- temp (XRO) 
(temp)-AR 

CALLING 
SEQUENCE: ACTAR AR [,TEMP] 

ENTRY 
CONDITIONS: AR= 0,1;0~TEMP~ 127 

EXIT 
CONDITIONS: Accumulator stored in auxiliary register; 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

FLOWCHART: 

1183 

ARP now points to auxiliary register specified 

3 words 

None 

ACT AR 

SAVE ACC IN 
TEMPORARY 

MOVE VALUE FROM 
TEMPORARY TO 
AUX. REGISTER 

SET ARP 

END 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

ASSIGN XRO TO 
TEMPORARY 

1 word 

3 cycles 

ACT AR 

• 



ACTAR 
SOURCE: 

*MOVE AC TO AR 
* ACT AR $MACRO A,T 

$IF T.L=O ASSIGN XRO AS TEMP 

7-8 

$ASG 'XRO' TO T.S 
$ENDIF 
SACL :T: ,0 
LAR :A:,:T: 
LARP :A: 
$END 

EXAMPLE 1: 

0013 
0001 0009 5004 11 

0002 OOOA 3804 11 

0003 OOOB 6880 

EXAMPLE 2: 

0015 
0001 oooc 5000 11 

0002 OOOD 3800 11 

0003 OOOE 6880 

STORE AC TO :T: 
RE-LOAD :A: 
LOAD AR POINTER 

ACTAR ARO 
SACL XRO,O 
LAR ARO,XRO 
LARP ARO 

ACTAR O,C 
SACL C,O 
LAR O,C 
LARP 0 

STORE AC TO XRO 
RE-LOAD ARO 
LOAD AR POINTER 

STORE AC TO C 
RE-LOAD 0 
LOAD AR POINTER 

ACTAR 
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ADAR Add Variable to Auxiliary Register - Macro 

TITLE: Add Variable to Auxiliary Register 

NAME: ADAR 

OBJECTIVE: Add data word to named auxiliary register 

ALGORITHM: (AR)+ (dmal-ACC 
(ACC)-AR 

.CALLING 
SEQUENCE: ADAR AR, B [,TEMP] 

ENTRY 
CONDITIONS: AR::: 0,1;0~B~127;0~TEMP~127 

EXIT 
CONDITIONS: Sum of memory location and auxiliary register is stored in named auxiliary 

regis~er 

PROGRAM 
MEMORY 
REQUIRED: 5 - 7 words (plus LDAC$ 

routine) 

STACK 
REQUIRED: 0 - 2 levels 

FLOWCHART: ADAR 

1183 

BEGIN 

STORE AUXILIARY 
REGISTER IN 
TEMPORAIW 

LOAD VARIABLE 
INTO ACC 

NO LET XRO BE 
TEMPORARY 

YES CALL LCAC TO 
LOAD CONSTANT 

INTO ACC 

DATA 
MEMORY 
REQUIRED: 2 words 

EXECUTION 
TIME: 5 -17 cycles 

ADD TEMPORARY 
TOACC 

SAVE ACC IN 
TEMPORARY 

STORE TEMPORARY 
IN AUXILIARY 

REGISTER 

END 

ADAR 

• 
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ADAR 
,SOURCE: 

*ADD TO AR 
* ADAR $MACRO A,B,T 

$IF T.L=O USE XRl AS TEMP 
$ASG 'XRl' TO T.S 
$ENDIF 
SAR :A:, :T: STORE :A: 
$IF B.SA&$UNDF 
LCAC :B: LOAD CONST :B: INTO AC 

7-10 

$ELSE 
LAC :B: ,0 LOAD VAR :B: INTO AC 
$ENDIF 
ADD :T:,O ADD TEMP :T: TO AC 
SACL :T:,O STORE :T: 
LAR :A:, :T: LOAD BACK INTO :A: 
$END 

EXAMPLE 1: 

0007 ADAR A, 3 
0001 0006 3103 11 SAR A,XRl 
0002 LCAC 3 
0001 0003 V$1 EQU 3 
0002 0007 7E03 LACK V$1 
0003 0008 0003 11 ADD lral,O 
0004 0009 5003 11 SACL XRl,0 
0005 OOOA 390311 LAR A,XRl 

EXAMPLE 2: 

0009 
0001 OOOB 3008 
0002 oooc 200411 

0003 OOOD 0008 
0004 OOOE 5008 
0005 OOOF 3808 

EXAMPLE 3: 

0011 
0001 0010 3003" 
0002 0011 2005" 
0003 0012 0003" 
0004 0013 5003 11 

0005 0014 3803" 

ADAR ARO,C,B 
SAR ARO,B 
LAC C,0 
ADD B,O 
SACL B,O 
LAR ARO,B 

ADAR O,D 
SAR O,XRl 
LAC D,O 
ADD XRl,O 
SACL XRl,O 
LAR O,XRl 

STORE A 
LOAD CONSTANT 3 INTO AC 

LOAD AC WITH V$1 
ADD TEMP XRl TO AC 
STORE XRl 
LOAD BACK INTO A 

STORE ARO 
LOAD VARIABLE C INTO AC 
ADD TEMP B TO AC 
STORE B 
LOAD BACK INTO ARO 

STORE 0 
LOAD VARIABLE D INTO AC 
ADD TEMP XRl TO AC 
STORE XRl 
LOAD BACK INTO 0 

ADAR 
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ADDX Double-Word Add - Macro 

TITLE: Double-Word Add 

NAME: ADDX 

OBJECTIVE: Add double word to accumulator 

ALGORITHM: ADDX * - causes- (ACC) + (@AR:@AR + 1) - ACC 

CALLING 

ADDX * - - causes- (ACC) + (@AR - 1 :@AR) - ACC 
(AR) - 2-AR 

ADDX * + - causes- (ACC) + (@AR:@AR + 1) - ACC 
(AR)+ 2-AR 

ADDX A - causes- (ACC) + (A:A + 1 ) - ACC 

SEQUENCE: ADDX {A,*,* - ,* +} 

ENTRY 
CONDITIONS: O~A~ 127 

EXIT 
CONDITIONS: Accumulator contains updated value after addition; auxiliary register is 

updated if necessary 

PROGRAM DATA 
MEMORY MEMORY 
REQUIRED: 2words REQUIRED: None 

STACK EXECUTION 
REQUIRED: None TIME: 2 cycles 

1183 

ADDX 

• 
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ADDX 
FLOWCHART: ADDX 

SOURCE: 

ADD @AR 
AND @AR+1 

*ADD DOUBLE PRECISION 

* 

ADD @AR 
AND @AR+1 

AR = AR+2 

YES 

BEGIN 

ADD A AND A+1 

ADDX $MACRO A ADD DOUBLE PRECISION 
$VAR ST,SP,SM 
$ASG 1 *+ 1 TO SP.S 
$ASG '*-' TO SM.S 
$ASG '*' TO ST.S 
$IF A.SV=ST.SV 
ADDH *+ ADD HIGH 
ADDS *- ADD LOW '*' 
$ELSE 
$IF A.SV=SP.SV 
ADDH *+ ADD HIGH 
ADDS *+ ADD LOW '*+' 
$ELSE 
$IF A.SV=SM.SV 
ADDS *- ADD LOW 
ADDH *- ADD HIGH 1 *- 1 

$ELSE 
ADDH :A: ADD :A: HIGH 
ADDS :A:+l ADD :A: LOW 
$ENDIF 
$ENDIF 
$ENDIF 
$END 

7-12 

ADD@AR 
AND @TAR-1 

AR = AR-2 

ADDX 
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ADDX 

EXAMPLE 1: 

0011 ADDX A 
0001 0006 6007 ADDH·A ADD A HIGH 
0002 0007 6108 ADDS A+l ADD A LOW 

EXAMPLE 2: 

0013 ADDX * 
0001 0008 60AS. ADDH *+ ADD HIGH 
0002 0009 6198 ADDS *- ADD LOW 1 * 1 

EXAMPLE 3: 

0015 ADDX *-
0001 OOOA 619S ADDS *- ADD LOW 
0002 OOOB 6098 ADDH *- ADD HIGH '*-' 

EXAMPLE 4: 

0017 ADDX *+ 
0001 oooc 60AS ADDH *+ ADD HIGH 
0002 OOOD 61A8 ADDS *+ ADD LOW 1 *+ 1 

-
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ART AC Move Auxiliary Register to Accumulator - Macro 

TITLE: Move Auxiliary Register to Accumulator 

NAME: ART AC 

OBJECTIVE: Load data from auxiliary register into accumulator 

ALGORITHM: (AR) - temp 
(temp)-ACC 

CALLING 
SEQUENCE: ARTAC AR [,TEMP] 

ENTRY 
CONDITIONS: AR = 0, 1; 0~TEMP~127 

EXIT 
CONDITIONS: Accumulator contains same value as auxiliary register 

PROGRAM 
MEMORY 
REQUIRED: 2words 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 

1 word 

STACK 
REQUIRED: None TIME: 2 cycles 

- FLOWCHART: ARTAC 

7-14 

STORE AUXILIARY 
REGISTER IN 
TEMPORARY 

LOAD TEMPORARY 
INTO ACC 

END 

NO ASSIGN XRO AS 
TEMP LOCATION 

ART AC 
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ARTAC 
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•SOURCE: 

*COPY AR TO AC 
* ARTAC $MACRO A,T 

$IF T.L=O USE XRO AS TEMP 
$ASG 1xR0 1 TO T.S 
$ENDIF 
SAR :A:,:T: SAVE :A: 
LAC :T :: , 0 LOAD INTO AC 
$END 

EXAMPLE 1: 

0013 ARTAC ARO 
0001 0008 300411 SAR ARO,XRO 
0002 0009 200411 LAC XRO,O 

EXAMPLE 2: 

0014 *** 
0015 ART AC o,c 
0001 OOOA 300011 SAR o,c 
0002 0008 2000 11 LAC C,O 

ARTAC 

;,., 

SAVE ARO 
LOAD INTO AC 

SAVE 0 
LOAD INTO AC 

• 
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BIC Clear Bits in Data Word - Macro 

TITLE: Clear Bits in Data Word 

NAME: BIC 

OBJECTIVE: Clear bits in data word specified by one bit in mask 

ALGORITHM: (data) .AND .. NOT. (mask) - data 

CALLING 
SEQUENCE: BIC mask,data 

ENTRY 
CONDITIONS: 0 ~ mask~ 127; 0 ~ data ~ 127 

EXIT 
CONDITIONS: Data word contains initial value with specified bits cleared 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

4words 

None 

FLOWCHA.RT: BIC 

SOURCE: 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

BEGIN 

LOAD MASK INTO 
ACC 

INVERT 
MASK 

AND ACC WITH 
DATA 

RESTORE. DATA 
WORD 

END 

*BIT CLEAR - CLEAR BITS IN B WHERE A HAS ZEROS 
* BIC 
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$MACRO A,B 
LAC :A:,O 

BIT CLEAR 
LOAD :A: 

1 word 

4 cycles 

BIC 
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BIC 
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XOR MINUS 
AND :8: : 
SACL :8: ,0 
$END . 

EXAMPLE 1: 

0014 ' 
0001 OOOA 2008~ 

0002 0008 780311 

0003 oooc 7901: 
0004 OOOD 5001: 

EXAMPLE 2: 

0016 
0001 OOOE 2001:" 
0002 OOOF 780311 

0003 0010 7900:11 

0004 0011 5000!11 

EXAMPLE 3: 

0018 
0001 0012 200111 

0002 0013 7803!" 
0003 0014 7901 
0004 0015 SOOi: 

INVERT MASK 
-AND :8: 
SAVE RESULT IN :8~ 

8IC 8,A 
LAC 8,0 
XOR MINUS 
AND A 
SACL A,0 

8IC D,C 
LAC D,0 
-XOR MINUS 
AND C 
SACL C,O 

8IC D,A 
LAC D,O 
XOR MINUS 
AND A 
SACL A,O 

LOAD 8 
INVERT MASK 
AND A 
SAVE RESULT IN A 

LOAD D 
INVERT MASK 
AND C 
SAVE RESULT IN C 

LOAD D 
INVERT MASK 
AND A 
SAVE RESULT IN A 

BIC 
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BIS Sat Bits In Data Word - Macro 

TITLE: Set Bits in Data Word 

NAME: BIS 

OBJECTIVE: Set bits in data word specified by one bit in mask 

ALGORITHM: (data) .OR. (mask) - data 

CALLING 
SEQUENCE: BIS mask.data 

ENTRY 
CONDITIONS: 0 < mask< 127; 0 < data < 127 

EXIT 
CONDITIONS: Data word contains initial value with specified bits set 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

3words 

None 

FLOWCHART: BIS 

SOURCE: 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

BEGIN 

LOAD ACC WITH 
MASK 

OR MASK WITH 
DATA 

RESTORE DATA WORD 
TO MEMORY 

END 

*SET BITS IN B CORRESPONDING TO ONES IN A 
* BIS 

7-18 

$MACRO A,B 
LAC :A: ,0 
OR :B: 
SACL :B: ,0 
$END 

BIT SET 
LOAD :A: 
OR WITH :B: 
SAVE BACK TO :A: 

BIS 

None 

3 cycles 

1183 



BIS 

1183 

EXAMPLE 1: 

0014 
0001 OOOA 2008 
0002 OOOB 7A01 
0003 oooc 5001 

EXAMPLE 2: 

0016 
0001 OOOD 2001 11 

0002 OOOE 7A00 11 

0003 OOOF 5000 11 

BIS B,A 
LAC B,O 
OR A 
SACL A,0 

BIS D,C 
LAC D,O 
OR C 
SACL C,0 

LOAD B 
OR WITH A 
SAVE BACK TO B 

LOAD D 
OR WITH C 
SAVE BACK TO D 

BIS 

• 

-
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BIT Test Bits in Data Word - Macro 

TITLE: Test Bits in Data Word 

NAME: BIT 

OBJECTIVE: Test bits in data word specified by one bit in mask 

ALGORITHM: (data) .AND. (mask) - ACC 

CALLING 
SEQUENCE: BIT mask,data 

ENTRY 
CONDITIONS: 0 ~mask~ 127; 0 ~data~ 127 

EXIT 
CONDITIONS: ACC contains zero if no bits of mask are set in data word: any bits masked 

that are set in data word will be set in ACC 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

2words 

None 

- FLOWCHART: BIT 

SOURCE: 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

BEGIN 

LOAD MASK INTO 
ACC 

AND ACC WITH 
DATA WORD 

END 

*BIT TEST - BITS IN B TESTED BY MASK IN A 
* BIT 
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$MACRO A,B 
LAC :A: ,0 
AND :B: 
$END 

BIT TEST 
LOAD :A: I MASK 
AND WITH :B: 

None 

2 cycles 

BIT 

1183 



BIT 

1183 

EXAMPLE: 

0014 
0001 OOOA 2008 
0002 OOOB 7901 

BIT B,A 
LAC B,O 
AND A 

LOAD B, MASK 
AND WITH A 

BIT 

7-21 
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CMP Compare Two Words - Macro 

TITLE: Compare Two Words 

NAME: CMP 

OBJECTIVE: Load word into accumulator; then subtract the other word, allowing 
comparison 

ALGORITHM: CMPX A,B - causes- (A) - (B) - ACC 

CALLING 
SEQUENCE: CMP {A,*,* - I*+ },{B, *, * - ,* +} 

ENTRY 
CONDITIONS: 0 ~A~ 127; 0 ~ B ~ 127 

EXIT 
CONDITIONS: Accumulator contains value of second word subtracted from the first 

word; auxiliary register is updated if necessary 

PROGRAM 
MEMORY 
REQUIRED: 2words 

STACK 
REQUIRED: None 

.,: FLOWCHART: CMP 

7-22 

SOURCE: 

*COMPARE A TO B 

* CMP $MACRO A,B 
LAC :A: ,0 
SUB :B:,O 
$END 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

BEGIN 

LOAD ACC WITH 1 ST 
WORD 

SUBTRACT 2ND 
WORD 

COMPARE 
LOAD :A: 
SUBTRACT :B: 

END 

None 

2 cycles 

CMP 
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CMP CM.P 
EXAMPLE 1: 

0007 CMP · A,B 
0001 0006 2001 LAC A,O LOAD A 
0002 0007 1008• SUB B,O SUBTRACT B 

EXAMPLE 2: 

0009 CMP *,B 
0001 0008 2088; LAC *,O LOAD * 
0002 0009 1008 SUB B,O SUBTRACT B 

EXAMPLE 3: 

0011 CMP C,*+ 
0001 OOOA 2004 11 LAC c,o LOAD C 
0002 OOOB 10A8 SUB *+,0 SUBTRACT *+ 

EXAMPLE 4: 

0013 CMP * * I 

0001 oooc 2088: LAC *,O LOAD * 
0002 OOOD 1088 SUB *,O SUBTRACT * 

.. 
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CMPX Compare Two Double Words - Macro 

TITLE: Compare Two Double Words 

NAME: CMPX 

OBJECTIVE: Load double word into accumulator; then subtract the other double word, 
allowing comparison 

ALGORITHM: CMPXA,B -causes- (A:A+1) - (8:8 +1) -ACC 

CALLING 
SEQUENCE: CMPX {A,*,* - ,* + },{B, *,* - , * +} 

ENTRY 
CONDITIONS: 0<A<127; 0 < B < 127 

EXIT 
CONDITIONS: Accumulator contains value of second double word subtracted from the 

first double word; auxiliary register is updated if necessary. 

PROGRAM 
MEMORY 
.REQUIRED: 

STACK 
REQUIRED: 

4words 

None 

FLOWCHART: CMPX 

7-24 

SOURCE: 

*COMPARE A TO B, DOUBLE 
* CMPX $MACRO A,B 

LDAX :A: 
SUBX :B: 
$END 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

BEGIN 

LOAD 1 ST DOUBLE 
WORD INTO ACC 

SUBTRACT .2ND 
DOUBLE WORD 

FROM ACC 

END 

COMPARE DOUBLE 
LOAD DOUBLE :A: 
SUBTRACT DOUBLE :B: 

None 

4 cycles 

CMPX 
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CMPX CMPX 

EXAMPLE 1: 

0011 CMPX A,B 
0001 LDAX A LOAD DOUBLE A 
0001 0006 6507 ZALH A LOAD HIGH A 
0002 0007 6108 ADDS A+l LOAD LOW A 
0002 SUBX B SUBTRACT DOUBLE B 
0001 0008 6209 SUBH B SUBTRACT HIGH 
0002 0009 630A SUBS B+l SUBTRACT LOW 

EXAMPLE 2: 

0013 CMPX C,* 
0001 LDAX C LOAD DOUBLE C 
0001 OOOA 6500 11 ZALH C LOAD HIGH C 
0002 OOOB 6101 11 ADDS C+l LOAD LOW C 
0002 SUBX * SUBTRACT DOUBLE * 
0001 OOOC 62A8 SUBH *+ SUBTRACT HIGH 
0002 OOOD 6398 SUBS *- SUBTRACT LOW 

EXAMPLE 3: 

0015 CMPX *-,D 
0001 LDAX *- LOAD DOUBLE *-
0001 OOOE 6698 ZALS *- LOAD LOW 
0002 OOOF 6098 ADDH *- LOAD HIGH I *- 1 

0002 SUBX D SUBTRACT DOUBLE D 
0001 0010 6202 11 SUBH D SUBTRACT HIGH 
0002 0011 6303 11 SUBS D+l SUBTRACT LOW 

EXAMPLE 4: 

0017 CMPX *+,*+ -0001 LDAX *+ LOAD DOUBLE *+ 
0001 0012 65A8 ZALH *+ LOAD HIGH 
0002 0013 61A8; ADDS *+ LOAD LOW 1 *+ 1 

0002 SUBX *+ SUBTRACT DOUBLE *+ 
0001 0014 62A8, SUBH *+ SUBTRACT HIGH 
0002 0015 63A8: SUBS *+ SUBTRACT LOW 

EXAMPLE 5: 

0019 CMPX *-,*-
0001 LDAX *- LOAD DOUBLE *-
0001 0016 6698; ZALS *- LOAD LOW 
0002 0017 6098 ADDH *- LOAD HIGH I *- 1 

0002 SUBX *- SUBTRACT DOUBLE *-
0001 0018 6398 SUBS *- SUBTRACT LOW 
0002 0019 6298 SUBH *- SUBTRACT HIGH 

1183 
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DEC Decrement Word - Macro 

TITLE: Decrement Word · 

NAME: DEC 

OBJECTIVE: Decrement word or accumulator 

ALGORITHM: DEC ~causes-+ (ACC) - 1 - ACC 

CALLING 
SEQUENCE: 

ENTRY 

DEC A - causes- (A) - 1 - (A) 

DEC ,AR - causes- (AR) - 1 - AR 

DEC [A][,ARJ 

CONDITIONS: 0 ~A~ 127; AR =0, 1 

EXIT 
CONDITIONS: Specified word or auxiliary register is decremented; auxiliary register 

pointer will point tCl specified auxiliary register 

PROGRAM 
MEMORY 
REQUIRED: 

i 

STACK 
REQUIRED: 

1 - 3 words 

None 

FLOWCHART: DEC 

7-26 

LOAD ACC WITH 
VARIABLE 

SUBTRACT ONE 
FROM ACC 

SAVE ACC IN 
VARIABLE 

DATA 
MEMORY 
REQUIRED: 1 word 

EXECUTION. 
TIME: 1 ·- 3 cycles 

BEGIN 

SUBTRACT ONE 
FROM ACC 

POINT TO AUX. 
REG. SPECIFIED 

BY 2ND ARGUMENT 

SUBTRACT ONE 
FROM AUXILIARY 

REGISTER 

DEC 
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DEC 
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SOURCE: 

*DECREMENT THE ACCUMULATOR, AN AUXILIARY 
*REGISTER, OR MEMORY 

* DEC $MACRO A,B 
$IF A.L=O 
$IF B.L=O 
SUB ONE,O 
$ELSE 
LARP :B: 
MAR *- · 
$ENDIF 
$ELSE. 
LAC :A: ,0 
SUB ONE,O 
SACL :A: ,0 
$ENDIF 
$END 

EXAMPLE 1: 

0007 
0001 0006 2001 
0002 0007 100011 

0003 0008 5001 

EXAMPLE 2: 

0009 
0001 0009 6881 
0002 OOOA 6898 

EXAMPLE 3: 

0011 
0001 OOOB 100011 

EXAMPLE 4: 

0015 
0001 OOOF 6880 
0002 0010 6898 . 

.DECREMENT 

DECREMENT AC 

LOAD ARP WITH :B: 
DECREMENT 

LOAD :A: 
DECREMENT 
SAVE :A: 

DEC A 
LAC A,0 
SUB ONE,0 
SACL A,O 

DEC ,A 
LARP A 
MAR *-

DEC 
. SUB ONE,0 

DEC ,ARO 
LARP ARO 
MAR *-

LOAD A 
DECREMENT 
SAVE A 

LOAD ARP WITH A 
DECREMENT 

DECREMENT THE ACCUMULATOR 

LOAD ARP WITH ARO 
DECREMENT 

DEC 

-
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DECX Double-Word Decrement - Macro 

TITLE: Double-Word Decrement 

NAME: DECX 

OBJECTIVE: Decrement double word or accumulator 

ALGORITHM: DECX * - causes- (@AR:@AR + 1) - 1 - @AR:@AR + 1 

CALLING 

DECX * - - causes- (@AR - 1 :@AR) - 1 - @AR - 1 :@AR 
(ARl - 2-AR 

DECX * + - caus~s- (@AR:AR:@AR + 1) - 1 - @AR:@AR + 1 
(AR)+ 2-AR 

· DECX A - causes- (A:A + 1) - 1 - A:A + 1 

DECX - causes- (ACC) - 1 - ACC 

SEQUENCE: DECX [A,*,* - , * + J 

ENTRY 
CONDITIONS: 0 <A< 127 

EXIT 
CONDITIONS: Specified double word is decremented; 

auxiliary register is updated as necessary 

PROGRAM DATA 
MEMORY ·MEMORY 
REQUIRED: 1 - Swords REQUIRED: 

STACK EXECUTION 
REQUIRED: None TIME: 

7-28 

1 word 

1 - 5 cycles 

DECX 
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DECX 
FLOWCHART: DECX 

1183 

DECREMENT 
ACC 

SOURCE: 

DECREMENT 
@AR AND 
· @AR-1 

AR = AR-2 

*DECREMENT DOUBLE 

* DECX $MACRO A 
$VAR ST,SP,SM 
$ASG 1 *+ 1 TO SP.S 
$ASG 1 *- 1 TO SM.S 
$ASG 1 * 1 TO ST.S 
$IF A.L=O 
SUB ONE,0 
$ELSE 
$IF A.SV=SM.SV 
ZALS *-
ADDH *+ 
SUB ONE,O 
SACX *-
$ELSE 
$IF A.SV=SP.SV 
LDAX * 
SUB ONE,O 
SACX *+ 

BEGIN 

DECREMENT 
A AND A+1 

END 

DECREMENT DOUBLE 

DECREMENT AC 

LOAD I *- 1 

DECREMENT 
SAVE 1 *- 1 

LOAD 1 *1 

DECREMENT 
SAVE 1 *+ 1 

DECREMENT 
@AR AND 
@AR+1 

DECX 

DECREMENT 
@AR AND 
@AR+1 
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DECX 

>7~0 

$ELSE 
$IF A.SV=ST.SV 
LDAX * 
SUB · ONE,0 
SACX * 
$ELSE 
LDAX :A: 
SUB ONE,0 
SACX :A: 
$ENDIF 
$END 

EXAMPLE 1: 

0011 
0001 
0001 0006 6507 
0002 0007 6108 
0002 . 0008 '10()4it 
0003 
0001·0009 5807 
0002 OOOA 5008 

EXAMPLE 2: 

0013 
0001 
0001 OOOB 6SA8 
Q002 oooc 61913 .. 
0002 OOOD 100411 

000.3 ·.· ...... ·. 
0001 OOOE 58A8 
0002 OOO·F 5098 

EXAMl'l.E 3: 

0015 
0001 0010 6698 
0002 0011 60A8 
0003 0012 1004" 
0004 
0001 0013 5098 
0002 0014 5898 

EXAMPLE 4: 

0011 
0001 
0001 0015 65A8 
00020016 6198 
0002. 0017 1004it 
0003. 
0001 0018 SSAS . 
0002 0019 SOA.8 

EXAMPLE 6: 

0019 . ' 
0001001A 100411 

-LOAD 1* 1 

DECREMENT···· 
SAVE '*' 

LOAD :Ac 
DECREMENT 
SAVE ':A: 

DECX A 
LDAX A 

ZALH A 
ADDS A+l 

SUB . ONE,O 
SACX A 
SACHA,0 
SACL A+l,O 

DECX * 
LDAX * 

ZALH.*+ 
ADDS *­

SUB ONE,o· 
SACX * 

SACH *+,0 
SACI.l *-,0 

DECX *-· , ·.ZALS *;;.. < 

ADDH.*+ 
. SUB OtlE,O 

SACX *­
SlCL *-,0 
SACH *;.,O 

DECX.*+ 
LDAX * 

ZALH *+ 
ADDS *;,, 

SUB ONE,O 
SACX *+ 

SACH *+,O 
SACL *+,0 

DECX 
SUB ONE,O 

LOAD A 
LOAD HIGH A 
LOAD LOW A 
DECREMENl' 
SAVE A 
STORE HIGH 

. STORE LOW 

LOAD 1*1 

LOAD HIGH 
LOAD LOW '*' 

-DECREMENT 
SAVE 1 * 1 

STORE HIGH 
STORE LOW 

LOAD 1*- 1 

DECltEMENT 
SAVE 1 *-i 
STORE LOW 
STORE HIGH 

LOAD '*' 
LOAD HIGH 
LOAD LOW '* 1 

DECREMENT 
SAVE 1 *+ 1 

STORE HIGH 
STORE LOW 

DECREMENT AC 

... 

DECX 

. ,;, . 
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INC Increment Word - Macro 

TITLE: Increment Word 

NAME: INC 

OBJECTIVE: Increment word or accumulator 
' 
ALGORITHM: INC - causes- (ACC) + 1 - ACC 

INC A - causes- (Al + 1 - (A) 

INC ,AR - causes- (AR) + 1 - AR 

CALLING 
SEQUENCE: INC [Al[,ARl 

ENTRY 
CONDITIONS: 0 <A< 127; AR = 0, 1 

EXIT 
CONDITIONS: Specified word or auxiliary regist~r is incremented; auxiliary register 

pointer specifies the named auxiliary register 

PROGRAM 
MEMORY 
REQUIRED: 

·STACK 
REQUIRED: 

1 - 3words 

None· 

FLOWCHART: INC 

1183 

· LOAD ACC WITH 
VARIABLE 

ADD ONE TO 
ACC 

SAVE ACC IN 
VARIABLE 

DATA 
MEMORY 
REQUIRED: 1 word 

EXECUTION 
TIME: 1 - 3 cycle 

POINT TO AU.X. 
REG. SPECIFIED 

BY 2ND ARGUMENT 

ADD ONE TO 
ACC 

ADD ONE TO 
AUX. REGISTER 

END 

INC 

-
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INC 
SOURCE: 

*INCREMENT AC, AR, OR MEM 

* INC $MACRO A,B 
$IF A.L=O 
$IF B.L=O 
ADD ONE,O 
$ELSE 
LARP :B: 
MAR *+ 
$ENDIF 
$ELSE 
LAC :A: ,0 
ADD ONE,0 
SACL :A: ,0 
$ENDIF 
$END 

EXAMPLE 1: · 
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0007 
0001 0006 2001 
0002 0007 0000 11 

0003 0008 5001 

EXAMPLE 2: 

0009 
0001 0009 6881 
0002 OOOA 68A8 

EXAMPLE 3: 

OOll 
0001. OOOB 000011 

EXAMPLE 4: 

0015 
0001 OOOF 6880 
0002 0010 68A8 

INCREMENT 

INCREMENT AC 

LOAD ARP WITH :B: 
INCREMENT 

LOAD :A: 
INCREMENT 
SAVE :A: 

INC A 
LAC A,0 
ADD ONE,O 
SACL A,O 

INC ,ARl 
LARP ARl 
MAR *+ 

INC 
ADD ONE,O 

INC ,ARO 
LARP ARO 
MAR *+ 

LOAD A 
INCREMENT 
SAVE A 

LOAD ARP WITH ARl 
INCREMENT 

INCREMENT 

LOAD ARP WITH ARO 
INCREMENT 

INC 
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.. lNCX 
Double-Word Increment - Macro 

TITLE: Double-Word Increment 

NAME: INCX 

OBJECTIVE: Increment double word or accumulator 

ALGORITHM: INCX* -causes- (@AR:@AR + 1) + 1 - @AR:@AR + 1 

INCX*- -causes- (@AR -1:@AR) + 1-@AR-1:@A 
(AR) - 2-AR 

INCX*+ -causes- (@AR:@ AR+ 1) + 1 - @AR:@AR + 1 
(AR)+ 2-AR 

INCXA -causes- (A:A+ 1) + 1 - A:A + 1 

INCX -causes- (ACC) + 1 - ACC 

CALLING 
SEQUENCE: INCX [A,*,* - , * + J 

ENTRY 
CONDITIONS: 0<;A<127 

EXIT 
· CQNDITIONS: Specified double word is incremented; 

auxiliary register is updated as necessary 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

1 - 5words 

None 

DATA 
MEMORY 
REQUIR.~D: 1 word 

EXECUTION 
TIME: 1 - 5 cycles 
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INCX 
FLOWCHART: INCX 
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INCREMENT 
ACC 

INCREMENT 
@AR AND 

@AR-1 

AR= AR-2 

SOURCE: 

*INCREMENT DOUBLE 
* INCX $MACRO A 

$VAR ST,SP,SM 
$ASG 1 *+ 1 TO SP.S 
$ASG 1 *- 1 TO SM.S 
$ASG 1 * 1 TO ST.S 
$IF A.L=O 
ADD ONE,O 
$ELSE 
$IF A.SV=SM.SV 
ZALS *-
ADDH *+ 
ADD ONE,O 
SACX *-
$ELSE 
$IF A.SV=SP.SV 
LDAX * 
ADD ONE,O 
SACX *+ 

BEGIN 

INCREMENT 
A AND A+1 

END 

INCREMENT DOUBLE 

INCREMENT AC 

LOAD 1 *- 1 

INCREMENT 
SAVE 1 *- 1 

LOAD 1 * 1 

INCREMENT 
SAVE 1 *+ 1 

INCREMENT 
@AR AND 
@AR+1 

INCREMENT 
@AR AND 
@AR+1 

AR = AR+2 

INCX 
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INCX 
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$ELSE 
$IF A.SV=ST.SV 
LDAX * 
ADD ONE,0 
SACX * 
$ELSE 
LDAX :A: 
ADD ONE,O 
SACX :A: 
$ENDIF 
$END 

EXAMPLE 1: 

0011 
0001 
0001 0006 6507 
0002 0007 6108 
0002 0008 0004 11 

0003 
0001 0009 5807 
0002 OOOA 5008 

EXAMPLE 2: 

0013 
0001 
0001 0008 65A8 
0002 oooc 6198 
0002 OOOD 000411 

0003 
0001 OOOE SSAB 
0002 OOOF 5098 

EXAMPLE 3: 

0015 
0001 0010 6698 
0002 0011 60A8 
0003 0012 0004 11 

0004 
0001 0013 5098 
0002 0014 5898 

EXAMPLE 4: 

0017 
0001 
0001 0015 65A8 
0002 0016 6198 
0002 0017 0004 11 

0003 
0001 0018 58A8 
0002 0019 SOA8 

EXAMPLE 5: 

0019 
0001 OOlA 0004 11 

LOAD 1 * 1 

INCREMENT 
SAVE '*' 

LOAD :A: 
INCREMENT 

·SAVE :A: 

INCX A 
LDAX A 

ZALH A 
ADDS A+l 

ADD ONE,0 
SACX A 

SACH A,O 
SACL A+l,O 

INCX * 
LDAX * 

ZALH *+ 
ADDS *-

ADD ONE,0 
SACX * 

SACH *+,0 
SACL *-,0 

INCX *-
ZALS *-
ADDH *+ 
ADD ONE,O 
SACX *-

SACL *-,0 
SACH *-,0 

INCX *+ 
LDAX * 

ZALH *+ 
ADDS *-

ADD ONE,O 
SACX *+ 

SACH *+,0 
SACL *+,0 

INCX 
ADD ONE,0 

INCX 

LOAD A 
LOAD HIGH A 
LOAD LOW A 
INCREMENT 
SAVE A 
STORE HIGH 
STORE LOW 

LOAD '*' 
LOAD HIGH 
LOAD LOW 1 * 1 

INCREMENT 
SAVE 1 * 1 

STORE HIGH 
STORE LOW -
LOAD 1*- 1 

INCREMENT 
SAVE 1*- 1 

STORE LOW 
STORE HIGH 

LOAD 1 * 1 

LOAD HIGH 
LOAD LOW 1 * 1 

INCREMENT 
SAVE 1 *+ 1 

STORE HIGH 
STORE LOW 

INCREMENT AC 
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LA CARY Load Accumulator 
from Address in Accumulator - Macro LA CARY 

TITLE: Load Accumulator from Address in Accumulator 

NAME: LA CARY 

OBJECTIVE: Load accumulator from array in data RAM; the address of the data RAM 
location is in the accumulator; tt'!e data wiU be left-shifted in the 
accumulator · 

ALGORITHM: (ACC) - AR1 
(@AR1) * 2shift-ACC 

CALLING 
SEQUENCE: LACARY [shift] 

ENTRY 
CONDITIONS: 0 ~shift< 16; 0~(ACC)~143 

EXIT 
CONDITIONS: Data RAM location pointed to by accumulator is stored in the 

accumulator; AR 1 is overwritten 

PROGRAM 
MEMORY 
REQUIRED: 4 words 

STACK 
REQUIRED: None 

FLOWCHART: LACARY 
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BEGIN 

LOAD ARRAY 
POINTER INTO AUX. 

REGISTER . 

LOAD ACC 
WITH SHIFT 

END 

DATA 
MEMORY 
REQUIRED: 1 word 

EXECUTION 
TIME: 4 cycles· 

LOAD ACC 
WITHOUT SHIFT 
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LA CARY 
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SOURCE: 

*LOAD AC FROM ADDRESS IN AC 

* LACARY $MACRO A 
ACTAR ARl 
$IF A.L=O 
LAC *,O 
$ELSE 
LAC *I :A: 
$ENDIF 
$END 

EXAMPLE 1: 

0011 
0001 
0001 0006 5006 11 

0002 0007 3906 11 

0003 0008 6881 
0002 0009 2888 

EXAMPLE 2: 

0013 
0001 
0001 OOOA 5006 11 

0002 OOOB 3906 11 

0003 oooc 6881 
0002 OOOD 2088 

AC TO ARl 

LOAD 

LOAD AND SHIFT 

LACARY 8 
ACTAR ARl 

SACL XRO,O 
LAR ARl,XRO 
LARP ARl 

LAC *,8 

LA CARY 
ACTAR ARl 

SACL XRO,O 
LAR ARl,XRO 
LARP ARl 

LAC *,O 

AC TO ARl 
STORE AC TO XRO 
RE-LOAD ARl 
LOAD AR POINTER 
LOAD AND SHIFT 

AC TO ARl 
STORE AC TO XRO 
RE-LOAD ARl 
LOAD AR POINTER 
LOAD 

LA CARY 

-
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LASH Arithmetic Left Shift - Macro 

TITLE: Arithmetic Left Shift 

NAME: LASH 

OBJECTIVE: Move word from one data location to another with an arithmetic left shift 

ALGORITHM: (A)* 2shift - B 

CALLING 
SEQUENCE: LASH A,B,shift 

ENTRY 
CONDITIONS: OllitAllit127;01litBllit127;01litshift< 16 

EXIT 
CONDITIONS: B contains the shifted value of A 

PROGRAM 
MEMORY 
REQUIRED: 2 words 

STACK 
REQUIRED: None 

FLOWCHART: LASH 

SOURCE: 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

BEGIN 

LOAD ACC WITH 
A, SHIFTED N 

SAVE ACC AT 
LOCATION B 

END 

*MOVE A TO B (SINGLE-VAR) WITH N (CONST) BIT 
*LEFT ARITHMETIC SHIFT 

7-38 

* LASH $MACRO A,B,N 
LAC :A:,:N: 
SACL :B: I 0 
$END 

MOVE WITH LEFT ARITH. SHIFT 
LOAD :A: LEFT SHIFT 
STORE TO :B: 

None 

2 cycles 

LASH 

1183 



LASH 
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EXAMPLE: 

0013 
0001 0008 2507 
0002 0009 5008 

LASH A,B,5 
LAC A,5 
SACL B,O 

LOAD A LEFT SHIFT 
STORE TO B 

LASH 
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LASX Double-Word Arithmetic Left Shift - Macro 

TITLE: Double.,.Word Arithmetic Left Shift 

NAME: LASX 

OBJECTIVE: Move double word from one data location to another in data memory with 
left shift 

ALGORITHM: (A:A + 1) * 2shift- 8:8 + 1 

CALLING 
SEQUENCE: LASX A,8,shift 

ENTRY 
CONDITIONS: 0 ~A~ 126; 0 ~ 8~.126; 0 ~shift< 16 

EXIT 
CONDITIONS: 8:8+1 contains shifted value of A:A + 1' 

PROQRAM 
MEMORY 
REQUIRED: Swords 

STACK 
REQUIRED: None 

FLOWCHART: LASX 
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DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

BEGIN 

LOAD ACC WITH 
A+1, SHIFTED N 

SAVE ACC LOW IN 
B+'i. SAVE ACC. 

NIGH IN B 

CREATE MASK 
(16-NI O'S; 

(NI 1'S 

ZERO SIGN-EX­
TENDED BITS IN B 

ADD A, SHIFTED N 
TO B 

END 

1 word 

8 cycles 

LASX 

1183 



LASX 

1183 

SOURCE: 

*MOVE A TO B (DOUBLE VAR) WITH N (CONST) BIT 
*LEFT ARITHMETIC SHIFT 

* LASX $MACRO A,B,N 
LAC :A:+l,:N: 
SACL :B:+l,O 
SACH :B: ,0 
LAC MINUS I :N: 
NOT 
AND :B: 
ADD :A:,:N: 
SACL :B: ,0 
$END 

EXAMPLE: 

0011 
0001 0006 2308 
0002 0007 500A 
0003 0008 5809 
0004 0009 2305 11 

0005 
0001 OOOA 7805 11 

0006 OOOB 7909 
0007 oooc 0307 
0008 OOOD 5009 

MOVE DOUBLE WITH ARITH. SHIFT 
LOAD LOW, SHIFT LEFT 
SAVE IN LOW 
SAVE HIGH OVERFLOW 
GET MASK 

TAKE SIGNIFICANT BITS 
ADD IN SHIFT HIGH PART 
SAVE HIGH 

LASX A,B,3 
LAC A+l,3 
SACL B+l,O 
SACH B,0 
LAC MINUS~3 

NOT 
XOR MINUS 

AND B 
ADD A,3 
SACL B,O 

LOAD LOW, SHIFT LEFT 
SAVE IN LOW 
SAVE HIGH OVERFLOW 
GET MASK 

INVERT 
TAKE SIGNIFICANT BITS 
ADD IN SHIFT HIGH PART 
SAVE HIGH 

LASX 

-
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LAXARY Load Double-Word into Accumulator 
from Address in Accumulator - Macro LAXARY 

TITLE: Load Double Word into Accumulator from Address in Accumulator 

NAME: LAXARY 

OBJECTIVE: Load accumulator from double-word array in data RAM; the address of 
the first RAM location is in the accumulator 

ALGORITHM: (ACC) - AR1 

CALLING 

(@AR1) - ACC high 
(@AR1 + 1) - ACC low 

SEQUENCE: LAXARY 

ENTRY 
CONDITIONS: 0 Et (ACC) < 143 

EXIT 
CONDITIONS: Double word pointed to by accumulator is stored in the accumulator; AR1 

is overwritten 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

5words 

None 

FLOWCHART: LAXARY 

SOURCE: 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

BEGIN 

LOAD ARRAY 
POINTER INTO AUX. 

REGISTER 

LOAD DOUBLE 
WORD INTO ACC 

END 

*LOAD DOUBLE AC FROM ADDRESS IN AC 
* LAXARY $MACRO 

ACTAR ARl AC TO ARl 
LDAX *+ LOAD DOUBLE 
$END 
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1 word 

5 cycles 
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LAXARV 
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EXAMPLE: 

0011 
0001 
0001 0006 '5006 11 

0002 0007 3906 11 

0003 0008 6881 
0002 
0001 0009 65A8 
0002 OOOA 61A8 

LAXARY 
ACTAR ARl 

SACL XRO,O 
LAR ARl,XRO 
LARP ARl 

LDAX *+ 
ZALH *+ 
ADDS *+ 

AC TO ARl 
STORE AC TO XRO 
RE-LOAD ARl 
LOAD AR POINTER 
LOAD DOUBLE 
LOAD HIGH 
LOAD LOW 1 *+ 1 

LAXARV 

-
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LCAC Load Constant into Accumulator - Macro 

TITLE: Load Constant into Accumulator 

NAME: LCAC 

OBJECTIVE: Move constant value into accumulator with possible left shift 

ALGORITHM: Constant - ACC 
if shift - (ACC) -

temp * 2shift- ACC 

CALLING 
SEQUENCE: LCAC constant,shift,temp 

ENTRY 
CONDITIONS: -32768 ~constant~ 32767; 0 ~shift< 16; 

0~temp~127 

EXIT 
CONDITIONS: Accumulator contains value of the constant 

DATA 
MEMORY 

PROGRAM 
MEMORY 
REQUIRED: 1 - 5 words + LDAC$ routine REQUIRED: 0 - 2 words 

STACK 
REQUIRED: 
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2 levels with LDAC$ 
EXECUTION 
TIME: 1 - 15 cycles 

LCAC 
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LCAC 
FLOWCHART: LCAC 

NO 

1183 

BEGIN 

CALL LDAC$ TO 
LOAD CONST ANT 

INTO ACC 

SAVE ACC IN 
TEMPORARY 

RELOAD TEMPORARY 
WITH SHIFT 

END 

BUILD EQU 
STATEMENT 

LOAD ACC 
IMMEDIATE 

USE XRO AS 
TEMPORARY 

LCAC 

-
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LCAC 
SOURCE: 

* *LOAD CONSTANT TO AC 
* LCAC A LOAD CONSTANT A 
* LCAC A,B 
* LCAC A,B, T 

LOAD CONSTANT A, SHIFTED B, USE TEMP XRO 
LOAD CONSTANT A, SHIFTED B, USE TEMP T 

* LCAC $MACRO A,B,T 
$IF A.SA&$REL 
CALL LDAC$ LOAD AC WITH: 
REF LDAC$ 
DATA :A: :A: 
$ELSE 
$IF A.SA&$UNDF 
$VAR L,Q 
$ASG '$$LAB' TO L.S 
$ASG L.SV+l TO L.SV 

V$~L.SV: EQU· :A: 
$ASG 'V$' TO Q.S 
$ASG :Q.S::L.SV: TO A.S 
$ENDIF 
$IF (A.SV<256)&(A.SV>-l) 
LACK :A: LOAD AC WITH :A: 
$ELSE 
CALL LDAC$ LOAD AC WITH: 
REF LDAC$ 
DATA :A: :A: 
$ENDIF 
$ENDIF 
$IF B.L#=O 
$IF (B.V>O) 
$IF T.L=O XRO AS TEMP 
$ASG 'XRO' TO T.S 
$ENDIF 
SACL :T:,O STORE UNSHIFTED CONSTANT 
LAC :T:,:B: LOAD SHIFTED 
$ENDIF 
$ENDIF 
$END 

EXAMPLE 1: 

0012 
0001 0001 
0002 0007 7E01 
0003 0008 5003" 
0004 0009 2503 11 

LCAC 1,5 
V$2 EQU 1 

LACK V$2 
SACL XRO,O 
LAC XR0,5 

EXAMPLE 2: 

0014 LCAC 128,0 
0001 0080 V$3 EQU 128 
0002 OOOA 7E80 LACK V$3 

EXAMPLE 3: 

0018 LCAC -1000,5 
0001 FC18 V$5 EQU -1000 
0002 OOOE F800 CALL LDAC$ 

OOOF 0000 
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LOAD AC WITH V$2 
STORE UNSHIFTED CONSTANT 
LOAD SHIFTED 

LOAD AC WITH V$3 

LOAD AC WITH: 

LCAC 
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LCAC 
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0003 
0004 0010 FC18 
0005 0011 5003 11 

0006 0012 2503 11 

EXAMPLE 4: 

0022 
0001 0016 7E07 
0002 0017 5008 
0003 0018 2608 

REF LDAC$ 
DATA V$5 
SACL XRO,O 
LAC XR0,5 

LCAC A,6,B 
LACK A 
SACL B,O 
LAC B,6 

V$5 
STORE UNSHIFTED CONSTANT 
LOAD SHIFTED 

LOAD AC WITH A 
STORE UNSHIFTED CONSTANT 
LOAD SHIFTED 

LCAC 

-
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LCACAR Load Constant to Accumulator 
from Address in Accumulator - Macro LCACAR 

TITLE: Load Constant to Accumulator from Program Address in Accumulator 

NAME: LCACAR 

OBJECTIVE: Load accumulator from array in program RAM; the address of the 
program ROM location is in the accumulator; the data will be left-shifted 
in the accumulator 

ALGORITHM: (@ACC) - temp 
(temp) * 2shift - ACC 

CALLING 
SEQUENCE: 

ENTRY 

LCACAR [CH, TEMP] 

CONDITIONS: 0 ~shift< 16; 0 ~TEMP~ 127; 0 ~ (ACC) ~ 4095 

EXIT 
CONDITIONS: Program ROM location pointed to by accumulator is stored in the 

accumulator 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

2words 

1 level 

FLOWCHART: LCACAR 
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LOAD TEMPORARY 
TO ACC WITH 

NO SHIFT 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

LOAD TEMPORARY 
TO ACC WITH SHIFT 

END 

1 word 

4 cycles 

USE XRO AS 
TEMP STORAGE 
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LCACAR 
SOURCE: 

*LOAD CONSTANT ADDRESS BY AC IN AC 
* (IN ROM) 

* LCACAR $MACRO A,T 
$IF T.L=O ASSIGN TEMP 
$ASG 1XR0 1 TO T.S 
$ENDIF 
TBLR :T: READ FROM ROM TO :T: 

1183 

$IF A.L=O 
LAC :T:,O LOAD :T: UNSHIFTED 
$ELSE 
LAC :T:,:A: LOAD :T: SHIFTED 
$ENDIF 
$END 

EXAMPLE 1: 

0011 
0001 0006 6706 11 

0002 0007 2806 11 

EXAMPLE 2: 

0013 
0001 0008 6707 
0002 0009 2407 

EXAMPLE 3: 

0015 
0001 OOOA 6706 11 

0002 OOOB 2006 11 

EXAMPLE 4: 

0017 
0001 oooc 6700 11 

0002 OOOD 2000 11 

LCACAR 8 
TBLR XRO 
LAC XR0,8 

LCACAR 4,A 
TBLR A 
LAC A,4 

LCACAR 
TBLR XRO 
LAC XRO,O 

LCACAR ,C 
TBLR C 
LAC C,0 

READ FROM ROM TO XRO 
LOAD XRO SHIFTED 

READ FROM ROM TO A 
LOAD A SHIFTED 

READ FROM ROM TO XRO 
LOAD XRO UNSHIFTED 

READ FROM ROM TO C 
LOAD C UNSHIFTED 

LCACAR 

-
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LCAR Load Constant into Auxiliary Reqister - Macro 

TITLE: Load Constant into Auxiliary Register 

NAME: LCAR 

OBJECTIVE: Move constant value into auxiliary register 

ALGORITHM: Constant - AR 

CALLING 
SEQUENCE: LCAR AR,constant 

ENTRY 
CONDITIONS: -32768 ~constant~ 32767; AR = 0, 1 

EXIT 
CONDITIONS: Auxiliary register contains value of the constant 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

7,..50 

1 - 3 words ( + LDAR$0 and 
LDAR$1 routines) 

2 levels with LOAR$ 

DATA 
MEMORY 
REQUIRED: 0 - 2 words 

EXECUTION 
TIME: 1 - 13 cycles 

LCAR 
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LCAR 
FLOWCHART: LCAR 

1183 

YES 

BEGIN 

CALL LDAR$0 OR 
LDAR$1 TO PUT 
DATA IN AUX. 

REGISTER 

END 

SOURCE: 

*LOAD CONSTANT (TO AR0/1) 
* LCAR ARO/l,CONSTANT 

* LCAR $MACRO A,B 
$IF B.SA&$REL 
CALL LDAR$:A.V: LOAD :A: WITH: 
REF LDAR$:A.V: 
DATA :B: :B: 
$ELSE 
$IF B.SA&$UNDF 
$VAR L,Q 
$ASG 1 $$LAB 1 TO L.S 
$ASG L.SV+l TO L.SV 

V$:L.SV: EQU :B: 
$ASG 1V$ 1 TO Q.S 
$ASG :Q.S::L.SV: TO B.S 
$ENDIF 
$IF {B.SV<256)&(B.SV>-1) 
LARK :A:,:B: LOAD :A: WITH :B: 
$ELSE 
CALL LDAR$:A.V: LOAD :A: WITH: 
REF LDAR$:A.V: 
DATA :B: :B: 

CREATE 
VARIABLE 

WITH VALUE 
OF NUMBER 

LOAD AUX. 
REGISTER 

IMMEDIATE 

LCAR 

• 
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LCAR 
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$ENDIF 
$ENDIF 
$END 

EXAMPLE 1: 

0010 
0001 0006 7007 

EXAMPLE 2: 

0012 
. 0001 0007 FBOO 

0008 0000 
0002 
0003 0009 0000 11 

EXAMPLE 3: 

LCAR O,A 
LARK 0,A 

LCAR l,C 
CALL LDAR$l 

REF LDAR$1 
DATA C 

0014 LCAR ARl,-1000. 
0001 FC18 V$1 EQU -1000 
0002 OOOA F800 CALL LDAR$1 

OOOB 0000 
0003 
0004 OOOC FC18 

EXAMPLE 4: 

REF LDAR$1 
DATA V$1 

0016 LCAR AR0,3333 
0001 ODOS V$2 EQU 3333 
0002 OOOD FBOO CALL LDAR$0 

OOOE 0000 
0003 
0004 OOOF ODDS 

REF LDAR$'0 
DATA V$2 

LCAR 

LOAD 0 WITH A 

LOAD 1 WITH: 

c 

LOAD ARl WITH: 

V$1 

LOAD ARO WITH: 

V$2 
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LCAX Load Double-Word Constant into Accumulator - Macro 

TITLE: Load Double-Word Constant into Accumulator 

NAME: LCAX 

OBJECTIVE: Move double-word constant value into accumulator 

ALGORITHM: Constant - ACC 

CALLING 
SEQUENCE: LCAX (upper,lower) 

ENTRY 
CONDITIONS: - 32768 <;upper<; 32767; - 32768 <;lower<; 32767 

EXIT 
CONDITIONS: Accumulator contains value of the constant 

DATA PROGRAM 
MEMORY 
REQUIRED: 2 words + LDAX$ routine 

MEMORY 
REQUIRED: 3 words 

STACK 
REQUIRED: 2 levels 

FLOWCHART: LCAX 

( BEGIN ) 

I 
CALL LDAX$ WITH 

CONSTANTS IN 
NEXT TWO WORDS 

I 
READ FIRST 

(UPPER) CONST ANT 

j_ 

INCREMENT 
ARGUMENT 

POINTER 

1 

1183 

EXECUTION 
TIME: 18 cycles 

1_ 
READ SECOND 

(LOWER) CONST ANT 

I 
INCREMENT RETURN 

ADDRESS 

1 
LOAD TWO WORDS 

INTO ACC 

I 
RETURN 

I 
( END ) 

LCAX 

-
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LCAX 
SOURCE: 

*LOAD DOUBLE CONSTANT (TO AC) 
* LCAX (HIGH VALUE,LOW VALUE} 
* LCAX $MACRO A 

CALL LDAX$ 
~EF LDAX$ 
DATA :A: 
$END 

EXAMPLE 1: 

0010 
0001 0006 F800 

0007 0000 
0002 
0003 0008 0080 

0009 0003 

EXAMPLE 2: 

0012 
0001 OOOA F800 

OOOB 0000 
0002 
0003 OOOC FC18 

OOOD 0005 

EXAMPLE 3: 

0014 
0001 OOOE F800 

OOOF 0000 
0002 
0003 0010 0007 
0011 0009 

LOAD DOUBLE 

DATA LIST 

LCAX (128,3} 
CALL LDAX$ 

REF LDAX$ 
DATA 128,3 

.LCAX (-1000,5) 
CALL LDAX$ 

REF LDAX$ 
DATA -1000,5 

LCAX (A,B} 
CALL LDAX$ 

REF LDAX$ 
DATA A,B 

LCAX 

LOAD DOUBLE 

DATA LIST 

LOAD DOUBLE 

DATA LIST 

LOAD DOUBLE 

DATA LIST 
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LCAXAR Load Double-Word Constant to Accumulator 
from Program Memory - Macro LCAXAR 

TITLE: Load Double-Word Constant to Accumulator from· Program Memory 

NAME: LCAXAR 

OBJECTIVE: Load accumulator from double-word array in program RAM; the address 
of the first program ROM location is in the accumulator 

ALGORITHM: (@ACC)-+ temp 
(@ACC + 1 ) - temp+ 1 
(temp:temp + 1) - ACC 

CALLING 
SEQUENCE: LCAXAR [TEMP] 

ENTRY 
CONDITIONS: 0 <TEMP< 127; 0 < (ACC) < 4095 

EXIT 
CONDITIONS: Program ROM double-word location pointed to by 

accumulator is stored in the accumulator 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

Swords 

1 level 

FLOWCHART: LCAXAR 

1183 

YES 

READ DOUBLE WORD 
FROM PROGRAM 

MEMORY INTO TEMP 

LOAD DOUBLE WORD 
FROM TEMPORARY 

INTO ACC 

END 

NO 

DATA 
MEMORY 
REQUIRED: 2 words 

EXECUTION 
TIME: 9 cycles 

ASSIGN XRO 
AND XR1 AS 

TEMP STORAGE 
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LCAXAR 
SOURCE: 

*LOAD FROM ROW AT ADDRESS IN ACCUMULATOR, 
*DOUBLE CONSTANT TO ACCUMULATOR 
* LCAXAR $MACRO T 

$IF T.L=O ASSIGN TEMP 
$ASG 'XRO' TO T.S 
$ENDIF 
TBLR :T: READ HIGH PART OF :T: 
ADD ONE,0 
TBLR :T:+l 
LDAX :T: 
$END 

EXAMPLE 1: 

0011 
0001 0006 6706 11 

0002 0007 0004 11 

0003 0008 6707 11 

0004 
. 0001 00096506 11 

0002 OOOA 6107" 

EXAMPLE 2: 

0013 
0001 OOOB 6700" 
0002 oooc 0004 11 

0003 OOOD 670111 

0004 
0001 OOOE 6500 11 

0002 OOOF 6101" 

INCREMENT AC 
READ LOW PART OF :T: 
LOAD TO AC 

LCAXAR 
TBLR XRO 
ADD ONE,O 
TBLR XRO+l 
LDAX XRO 

ZALH XRO 
ADDS XRO+l 

LCAXAR C 
TBLR C 
ADD ONE,0 
TBLR C+l 
LDAX C 

ZALH C 
ADDS C+l 

READ HIGH PART OF XRO 
INCREMENT AC 
READ LOW PART OF XRO 
LOAD TO AC 
LOAD HIGH XRO 
LOAD LOW XRO 

READ HIGH PART OF C 
INCREMENT AC 
READ LOW PART OF c 
LOAD TO AC 
LOAD HIGH C 
LOAD LOW C 

LCAXAR 
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LCP Load Constant into P Register - Macro 

TITLE: Load Constant into P Register 

NAME: LCP 

OBJECTIVE: Move constant value into P register 

ALGORITHM: 1 *constant - P 

CALLING 
SEQUENCE: LCP constant 

ENTRY 
CONDITIONS: - 4096 ~ constant~ 4095 

EXIT 
CONDITIONS: P register contains value of the constant; 

T register contains value 1 

PAOGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

2 words 

None 

FLOWCHART: LCP. 

SOURCE: 

BEGIN 

DATA 
MEMORY 
REQUIRED: 1 word 

EXECUTION 
TIME: 2 cycles 

LOAD T REGISTER 
WITH ONE 

LOAD P REGISTER 
WITH CONST ANT 

END 

*LCP LOAD A CONSTANT TO THE P REGISTER 

* LCP 
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$MACRO A 
LT ONE 
MPYK :A: 
$END 

LOAD A ONE 
MAKE CONSTANT 

LCP 

-
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LCP LCP 

EXAMPLE 1:. 

0013 LCP A 
0001 0008 6AOl 11 LT ONE LOAD A ONE 
0002 0009 8007 MPYK A MAKE CONSTANT 

EXAMPLE 2: 

0015 LCP -4096 
0001 OOOA 6A01 11 LT ONE LOAD A ONE 
0002 OOOB 9000 MPYK -4096 MAKE CONSTANT 

.EXAMPLE 3: 

0017 LCP 4095 
0001 OOOC 6A01 11 LT ONE LOAD A ONE 
0002 OOOD 8FFF MPYK 4095 MAKE CONSTANT 

EXAMPLE 4: 

0019 LCP -4000 
0001 OOOE 6A01 11 LT ONE LOAD A ONE 
0002 OOOF 9060 MPYK -4000 MAKE CONSTANT 

-
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LCPAC Load Constant into P Register 
and Accumulator - Macro 

TITLE: Load Constant into P Register and Accumulator 

NAME: LC PAC 

OBJECTIVE: Move constant value into P register and accumulator 

ALGORITHM: 1 * constant-P 
(P)-ACC 

CALLING 
SEQUENCE: LCPAC constant 

ENTRY 
CONDITIONS: - 4096 <; constant<; 4095 

EXIT 
CONDITIONS: P register and accumulator contain value of the constant; 

T register contains the value 1 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
, REQUIRED: 

3 words 

None 

FLOWCHART: LCPAC 

SOURCE: 

BEGIN 

DATA 
MEMORY 
REQUIRED: 1 word 

EXECUTION 
TIME: 3 cycles 

LOAD T REGISTER 
WITH ONE 

LOAD P REGISTER 
(MULTIPLY 

ARGUMENT) 

LOAD P REGISTER 
INTO ACC 

END 

*LCPAC LOAD A CONST TO P AND AC REGISTERS 
* LCPAC $MACRO A 

1183 

LC PAC 
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LCPAC LCPAC 
LT ONE LOAD A ONE 
MPYK :A: MAKE CONSTANT 
PAC TO THE AC 
$END 

EXAMPLE 1: 

0013 LCPAC A 
0001 0009 6A01 11 LT ONE LOAD A ONE 
0002 OOOA 8007 MPYK A MAKE CONSTANT 
0003 0008 7F8E PAC TO THE AC 

EXAMPLE 2: 

0015 LCPAC -4096 
0001 OOOC 6A01" LT ONE LOAD A ONE 
0002 OOOD 9000 MPYK -4096 MAKE CONSTANT 
0003 OOOE 7F8E PAC TO THE AC 

EXAMPLE 3: 

0017 LCPAC 4095 
0001 OOOF 6AOl 11 LT ONE LOAD A ONE 
0002 0010 SFFF MPYK 4095 MAKE CONSTANT 
0003 0011 7F8E PAC TO THE AC 

EXAMPLE 4: 

0019 LC PAC -4000 
0001 0012 6A01 11 LT ONE LOAD A ONE 
0002 0013 9060 MPYK -4000 MAKE CONSTANT 
0003 0014 7F8E PAC TO THE AC 
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LDAX Load Double Word - Macro 

TITLE: Load Double Word 

NAME: LDAX 

OBJECTIVE: Load double word into accumulator 

ALGORITHM: LOAX * - causes- (@AR:@AR + 1)-+ ACC 

CALLING 

LDAX * - - causes- (@AR - 1: @AR) - ACC 
(AR) - 2-AR 

LDAX * + - causes- (@AR:@ AR+ 1) - ACC 
(AR)+ 2-AR 

LDAX A - causes- (A:A + 1) - ACC 

SEQUENCE: LDAX {A,* I* - I* + } 

ENTRY 
CONDITIONS: 0 ~A~ 127 

EXIT 
CONDITIONS: Accumulator contains value of double word; 

auxiliary register is updated if necessary 

PROGRAM DATA 
MEMORY MEMORY 
REQUIRED: 2words REQUIRED: 

STACK EXECUTION 
REQUIRED: None TIME: 

··LDAX 

None 

2cycles 
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LDAX 
FLOWCHART: LDAX 

SOURCE: 

LOAD <@AR 
AND @AR+ 1 

LOAD <@AR 
AND @AR+ 1 

AR= AR+2 

*LOAD DOUBLE PRECISION 
* LDAX $MACRO A LOAD DOUBLE 

$VAR ST,SP,SM 
$ASG '*' TO ST.S 
$ASG '*+' TO SP.S 
$ASG 1 *• 1 TO SM.S 
$IF A.SV=ST.SV 
ZALH *+ LOAD HIGH 
ADDS *- LOAD LOW '*' 
$ELSE 
$IF A.SV=SP.SV 
ZALH *+ LOAD HIGH 
ADDS *+ LOAD LOW '*+' 
$ELSE. 
$IF A.SV=SM.SV 
ZALS *- LOAD LOW 
ADDH *: LOAD HIGH '*-' 
$ELSE 
Z~LH :A: LOAD HIGH :A: 
ADDS :A:+l LOAD LOW :A: 
$ENDIF 
$ENDIF 
$ENDIF 
$END 

BEGIN 

LOAD 
A AND A+1 

END 

LOAD @AR 
. AND @AR+1 

AR= AR+2 

LDAX 

I 

7-62 1.183 



LDAX LDAX' 

EXAMPLE 1: 

0011 LDAX A 
0001 0006 6507 ZALH A LOAD HIGH A 
0002 0007 6108 ADDS A+l LOAD LOW A 

EXAMPLE 2: 

0013 LDAX * 
0001 0008 65A8 ZALH *+ LOAD HIGH 
0002 0009 6198 ADDS *- LOAD LOW 1 * 1 

EXAMPLE 3: 

0015 LDAX *-
0001 OOOA 6698 ZALS *- LOAD LOW 
0002 OOOB 6098 ADDH *- LOAD HIGH •*-• 

EXAMPLE 4: 

0017 LDAX *+ 
0001 OOOC 65A8 ZALH *+ LOAD HIGH 
0002 OOOD 61A8 ADDS *+ LOAD LOW 1 *+ 1 

-
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LTK Load Constant into T Register - Macro 

TITLE: Load Constant into T Register 

NAME: LTK 

OBJECTIVE: Move constant value into T register 

ALGORITHM: Constant-T 

CALLING 
SEQUENCE: L TK constant 

ENTRY 
CONDITIONS: - 32768 ~ constant~ 32767 

EXIT 
CONDITIONS: T register contains value of the constant 

DATA PROGRAM 
MEMORY 
REQUIRED: 3 words ( + L TK$ routine) 

MEMORY 
REQUIRED: 2 words 

STACK 
.REQUIRED: 2 levels 

FLOWCHART: L TK 

7-64 

SOURCE: 

*LOAD CONSTANT TO T 

* LTK $MACRO A 
CALL LTK$ 
REF LTK$ 
DATA :A: 
$END 

EXECUTION 
TIME: 13 cycles 

BEGIN 

MOVE CONST ANT 
TO DAT A MEMORY 

LOAD T REGISTER 
WITH VALUE IN 
DATA MEMORY 

END 

LOAD :A: TO T 
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LTK LTK 

EXAMPLE 1: 

0012 LTK A 
0001 0009 .F800 CALL LTK$ LOAD A TO T 

OOOA 0000 
0002 REF LTK$ 
0003 OOOB 0007 DATA A 

EXAMPLE 2: 

0014 LTK >7FFF 
0001 OOOC F800 CALL LTK$ LOAD >7FFF TO T 

DODD 0000 
0002 REF LTK$ 
0003 DODE 7FFF DATA >7FFF 

EXAMPLE 3: 

0016 LTK >8000 
0001 OOOF F800 CALL LTK$ LOAD >8000 TO T 

0010 0000 
0002 REF LTK$ 
0003 0011 8000 DATA >8000 

-
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MAX Select Maximum of Two Words - Macro 

TITLE: Select Maximum of Two Words 

NAME: MAX 

OBJECTIVE; Load maximum of two words into accumulator 

ALGORITHM: If (A)> (8) then (A)-ACC 
else (8) - ACC 

CALLING 
SEQUENCE: MAX A,8 

ENTRY 
CONDITIONS: 0 <A< 127; 0 < 8 < 127 

EXIT 
CONDITIONS: Accumulator contains maximum value of two words 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

Swords 

None 

FLOWCHART: MAX 
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BEGIN 

COMPARE 1ST 
ARGUMENT AND 2ND 

ARGUMENT 

LOAD 2ND 
ARGUMENT INTO ACC 

END 

DATA 
MEMORY 
REQUIRED: None 

EXECUTION 
TIME: 5 - 7 cycles 

LOAD 1ST 
ARGUMENT INTO 

ACC 

MAX 
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MAX 

1.183 

SOURCE: 

*SE.LECT MAXIMUM OF SINGLE A OR B 
*A AND B ARE VARIABLES * ' 
MAX $MACRO A,B 

LAC :A: ,0 LOAD :A: 
SUB :B:,O COMPARE :B: 
$VAR L,Ll,L2 
$ASG 1 $$LAB 1 TO L.S 
$ASG L.SV+2 TO L.SV UNIQUE LABEL 
$ASG L.SV-1 TO Ll.V 
$ASG L.SV TO L2.V 
BGZ L$:Ll.V: BRANCH IS :A:>:B: 
LAC :B:,O LOAD :B: 
B L$ :L2. V: TO CONTINUE 

L$:Ll.V: LAC :A:,O LOAD :A: 
L$:L2.V: EQU $ CONTINUE 

$END 

EXAMPLE: 

0011 
0001 0006 2007 
0002 0007 1008 
0003 0008 FCOO 

0009 OOOD 1 

0004 OOOA 2008 
0005 OOOB F900 

OOOC OOOE 1 

0006 OOOD 2007 
0007 OOOE 1 

MAX A,B 
LAC A,O 
SUB B,O 
BGZ L$1 

LAC B,0 
B L$2 

L$1 LAC A,0 
L$2 EQU $ 

LOAD A 
COMPARE B 
BRANCH IS A>B 

LOAD B 
TO CONTINUE 

LOAD A 
CONTINUE 

MAX 

···-

7-67 



MAXX Select Maximum of Two Double Words - Macro 

TITLE: Select Maximum of Two Double Words 

NAME: IVIAXX 

OBJECTIVE: Load maximum of two double words into accumulator 

ALGORITHM: lf(A:A + 1.J > (B:B + 1) then (A:A + 1 >.-Ace 
else (B:B + 1) - ACC 

CALLING 
SEQUENCE: MAXX A,B 

ENTRY 
CONDITIONS: O< = A<,Pl6,171126;0< = B< = 126 

EXIT 
CONDITIONS: Accumulator contains maximum value of two double words; saturation 

mode is reset 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

14words 

None 

FLOWCHART: MAXX 

7-68 

BEGIN 

COMPARE lST 
ARGUMENT AND .2ND 

ARGUMENT 

LOAD 2ND. 
ARGUMENT INTO ACC 

END 

DATA 
MEMORY 
REQU1RED: None 

EXECUTION 
TIME: 10 - 12 cycles 

LOAD 1ST 
ARGUMENT INTO 

ACC 

MAXX 
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MAXX 
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SOURCE: 

*SELECT MAX OF DOUBLE A OR B {VARIABLES} 

* MAXX $MACRO A,B 
SOVM 
LDAX :A: 
SUBX :B: 
$VAR L,Ll,L2 

SET OVERFLOW MODE 
LOAD :A: 
COMPARE TO :B: 

$ASG '$$LAB' TO L.S 
$ASG L.SV+2 TO L.SV UNIQUE LABEL 
$ASG L.SV-1 TO Ll.V 
$ASG L.SV TO L2.V · 
BGZ L$:Ll.V: BRANCH IF :A:>:B: 
LDAX :B: LOAD :B: 
B L$:L2.V: TO CONTINUE 

L$:Ll.V: LDAX :A: LOAD :A: 
L$:L2.V: ROVM CONTINUE 

$END 

EXAMPLE: 

0013 MAXX C,D 
0001 0013 7F8B SOVM SET OVERFLOW MODE 
0002 LDAX C LOAD C 
0001 0014 6500 11 ZALH C LOAD HIGH C 
0002 0015 6101 11 ADDS C+l LOAD LOW C 
0003 SUBX D COMPARE TO D 
0001 0016 6202 11 SUBH D SUBTRACT HIGH 
0002 0017 6303 11 SUBS D+l SUBTRACT LOW 
0004 0018 FCOO BGZ L$3 BRANCH IF C>D 

0019 001E 1 

0005 LDAX D LOAD D 
0001 OOlA 6502 11 ZALH D LOAD HIGH D 
0002 OOlB 6103 11 ADDS D+l LOAD LOW D 
0006 OOlC F900 B L$4 TO CONTINUE 

OOlD 0020 1 

0007 L$3 LDAX c· LOAD C 
0001 OOlE 6500 11 ZALH C LOAD HIGH C 
0002 OOlF 6101 11 ADDS C+l LOAD LOW C 
0008 0020 7F8A L$4 ROVM CONTINUE 

MAXX 

-
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MIN Select Minimum of Two Words - Macro 

TITLE: Select Minimum of Two Words 

NAME: MIN 

OBJECTIVE: Load minimum of two words into accumulator 

ALGORITHM: If (A)< (8) then (A) - ACC 
else (8) - ACC 

CALLING 
SEQUENCE: MIN A,8 

ENTRY 
CONDITIONS: 0 ~A~ 127; 0 ~ 8 ~ 127 

EXIT 
CONDITIONS: Accumulator contains minimum value of two words 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

Swords 

None 

- . FLOWCHART: MIN 
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BEGIN 

COMPARE 1ST 
ARGUMENT AND 2ND 

ARGUMENT 

LOAD 2ND 
ARGUMENT INTO ACC 

END 

DATA 
MEMORY 
REQUIRED: None 

EXECUTION 
TIME: 5 - 7 cycle 

LOAD 1ST 
ARGUMENT INTO 

ACC 

MIN 
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MIN 
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SOURCE: 

*SELECT MINUMUM OF SINGLE A OR B (VARIABLES) 

* MIN $MACRO A,B 
LAC :A: ,0 
SUB :B: ,0 
$VAR L,Ll,L2 

LOAD :A: 
COMPARE TO :B: 

$ASG '$$LAB' TO L.S 
$ASG L.SV+2 TO L.SV 
$ASG L.SV-1 TO Ll.V 
$ASG L.SV TO L2.V 
BLZ L$:Ll.V: BRANCH IF :A:<:B: 
LAC :B:~O LOAD :B: 
B L$:L2.V: TO CONTINUE 

L$:Ll.V: LAC :A:,O LOAD :A: 
L$:L2.V: EQU $ CONTINUE 

$END 

EXAMPLE: 

0011 MIN A,B 
0001 0006 2007 LAC A,0 
0002 0007 1008 SUB B,O 
0003 0008 FAOO BLZ L$1 

0009 OOOD' 
0004 OOOA 2008 LAC B,O 
0005 OOOB F900 B L$2 

OOOC OOOE' 
0006 0000 2007 L$1 LAC A,0 
0007 OOOE' L$2 EQU $ 

LOAD A 
COMPARE TO B 
BRANCH IF A<B 

LOAD B 
TO CONTINUE 

LOAD A 
CONTINUE 

MIN 

-
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MINX Select Minimum of Two Double Words - Macro 

TITLE: Select Minimum of Two Double Words 

NAME: MINX 

OBJECTIVE: Load minimum of two double words into accumulator 

ALGORITHM: If (A:A + 1) < (B:B + 1) then (A:A + l) - ACC 
else (B:B + 1) -ACC 

CALLING 
SEQUENCE: MINX A,B 

ENTRY 
CONDITIONS: 0" A" 126; 0" B" 126 

EXIT 
CONDITl.ONS: Accumulator contains minimum value of two double words; saturation 

mode is reset 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

14 words 

None 

FLOWCHART: MINX 
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BEGIN 

COMPARE 1ST 
ARGUMENT AND 2ND 

ARGUMENT 

LOAD 2ND 
ARGUMENT 
INTO ACC 

END 

DATA 
MEMORY 
REQUIRED: None 

EXECUTION 
TIME: 10 - 12 cycles 

LOAD 1ST 
ARGUMENT INTO 

ACC 

MINX 
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SOURCE: 

*SELECT MINIMUM OF DOUBLE A OR B (VARIABLES) 

* MINX $MACRO A,B 
SOVM 
LDAX :A: 
SUBX :B: 
$VAR L,Ll,L2 

SET OVERFLOW MODE 
LOAD :A: 
COMPARE TO :B: 

$ASG 1 $$LAB 1 TO L.S 
$ASG L.SV+2 TO L.SV 
$ASG L.SV-1 TO Ll.V 
$ASG L.SV TO L2.V 
BLZ L$:Ll.V: BRANCH IF :A:<:B: 
LDAX :B: LOAD :B: 
B L$ :L2. V: TO CONTINUE 

L$:Ll.V: LDAX :A: LOAD :A: 
L$:L2.V: ROVM CONTINUE 

$END 

EXAMPLE: 

0011 MINX A,B 
0001 0005 7F8B SOVM SET OVERFLOW MODE 

0002 LDAX A LOAD A 
0001 0006 6507 ZALH A LOAD HIGH A 
0002 0007 6108 ADDS A+l LOAD LOW A 
0003 SUBX B COMPARE TO B 
0001 0008 6209 SUBH B SUBTRACT HIGH 
0002 0009 630A SUBS B+l SUBTRACT LOW 
0004 OOOA FAOO BLZ L$1 BRANCH IF A<B 

OOOB 0010 1 

0005 LDAX B LOAD B 
0001 oooc 6509 ZALH B LOAD HIGH B 
0002 OOOD 610A ADDS B+l LOAD LOW B 
0006 OOOE F900 B L$2 TO CONTINUE 

OOOF 0012 1 

0007 L$1 LDAX A LOAD A 
0001 0010 6507 ZALH A LOAD HIGH A 
0002 0011 6108 ADDS A+l LOAD LOW A 
0008 0012 7F8A L$2 ROVM CONTINUE 

MINX 

-
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MOV Move Word in Data Memory - Macro 

TITLE: Move Word in Data Memory 

NAME: MOV 

OBJECTIVE: Copy word from one location to another in data memory 

ALGORITHM: (A) - B or 
(@ACC) - B 

CALLING 
SEQUENCE: 

ENTRY 

MOV [AJ,8 

CONDITIONS: 0 ~A~ 127;0 ~ B ~ 127 

EXIT 
CONDITIONS: Word at B contains value of word located at A; 

7-74 

ARO may be overwritten; accumulator is overwritten 

LOAD ACC WITH 
DATA WORD OF 

SOURCE 

SAVE ACC IN 
LOCATION OF 
DESTINATION 

END 

NO 
MOVE ACC TO 
AUX. REGISTER 

LOAD ACC WITH 
WORD POINTED 

TO BY AUX. 
REGISTER 

MOV 
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SOURCE: 

*MOVE ONE WORD (A TO B) 

* MOV $MACRO A,B 
$IF A.L=O 
SACL XRO,O 
LAR ARO,XRO 
LARP ARO 
LAC *,O 
$ELSE 
LAC :A: ,0 
$ENDIF 
SACL :B: ,0 
$END 

EXAMPLE 1: 

0012 
0001 0006 2001 
0002 0007 5008 

EXAMPLE 2: 

0014 
0001 0008 2088 
0002 0009 5008 

EXAMPLE 3: 

0016 
0001 OOOA 2000 11 

0002 OOOB 50A8 

EXAMPLE 4: 

0018 
0001 oooc 5004 11 

0002 0000 3804 11 

0003 OOOE 6880 
0004 OOOF 2088 
0005 0010 5001 11 

EXAMPLE 5: 

0020 
0001 0011 2098 
0002 0012 5008 

EXAMPLE 6: 

0022 
0001 0013 20A8 
0002 0014 5001 

EXAMPLE 7: 

0024 
0001 0015 2001 11 

0002 0016 5098 

IF A IS AC 
SAVE AC 
LOAD TO ARO 
SELECT ARO 
LOAD * 

LOAD :A: 

STORE :B: 

MOV A,B 
LAC A,O 
SACL B,O 

MOV *,B 
LAC *,O 
SACL B,O 

MOV C,*+ 
LAC C,0 
SACL *+,O 

MOV ,D 
SACL XRO,O 
LAR ARO,XRO 
LARP ARO 
LAC *,O 
SACL D,0 

MOV *- ,B 
LAC *-,0 
SACL B,O 

MOV *+,A 
LAC *+,O 
SACL A,O 

MOV D,*-
LAC D,O 
SACL *-,0 

LOAD A 
STORE B 

LOAD * 
STORE B 

LOAD C 
STORE *+ 

SAVE AC 
LOAD TO ARO 
SELECT ARO 
LOAD * 
STORE D 

LOAD *­
STORE B 

LOAD *+ 
STORE A 

LOAD D 
STORE *-

MOV 

-

7-75 



-

MOVCON Move Constants in Data Memory - Macro MOVCON 
TITLE: Move Constants to Data Memory 

NAME: MOVCON 

OBJECTIVE: Move list of constants to data memory 

ALGORITHM: For each constant in list, 
C-A[i] (data memory location) 

CALLING 
~ SEQUENCE: MOVCON C LAI, *1 or 

MOVCON (C1 ,C2, ... Cn) LAI, *1 

ENTRY 
CONDITIONS: 0 ~A~ 143; -32768 ~ C ~ 32767 

EXIT 
CONDITIONS: Data memory addresses starting at specified locations are filled with 

constants; ARO and AR 1 may be overwritten 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 
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8 words ( + MOVC$ routines) 

2 levels 

DATA 
MEMORY 
REQUIRED: 3 words 

EXECUTION 
TIME: (max) 9 + (7 x 

of C's) cycles 
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MOVCON 
FLOWCHART: MOVCON 

1.183 

SOURCE: 

MOVE LIST OF 
CONSTANTS1 
CALL MOVC:;; 

MOVCON $MACRO A,B 
$VAR ST 
$ASG '*' TO ST.S 
$IF B.L=O 
ACTAR ARl 
$ASG '*' TO B.S 
$ENDIF 

MOVE LIST OF 
CONSTANTS; 

CALL MOVC$1 

$IF A.A&$POPL A IS LIST OF CONST 
$IF B.SV=ST.SV 
CALL MOVC$1 MOVE CONSTANTS 
REF MOVC$1 
$ELSE 
CALL MOVC$ MOVE CONSTANTS 
REF MOVC$ 
DATA :B: TO :B: 
$ENDIF 
DATA :A.V: LENGTH OF LIST 
DATA :A: CONSTANT LIST 
$ELSE 
LCAC :A: 
SACL :B:, 0 STORE CONSTANT 
$ENDIF 
$END 

ACC POINTS TO 
DESTINATION; 
MOVE ACC TO 

AR1 

LOAD SINGLE 
CONSTANT 
INTO ACC 

MOVE ACC TO 
DESTINATION 

MOVCON 

-
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MOVCON 
EXAMPLE 1: 

0012 
0001 
0001 0001 V$1 

MOVCON l,B 
LCAC 1 

EQU 1 
0002 0006 7E01 
0002 0007 5008 

EXAMPLE 2: 

0014 
0001 
0001 0003 
0002 0008 7E03 
0002 0009 5088 

EXAMPLE 3: 

0016 
0001 
0001 OOOA 5004J' 
0002 OOOB 3904 11 

0003 oooc 6881 
0002 
0001 0006 
0002 OOOD 7E06 
0003 OOOE 5088 

EXAMPLE 4: 
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0018 
0001 OOOF F800 

0010 0000 
0002 
0003 0011 0008 
0004 0012 0004 
0005 0013 0020 

0014 OOOF 
0015 0002 
0016 OOOD 

EXAMPLE 5: 

0020 
0001 0017 F800 

0018 0000 
0002 
0003 0019 0003 
0004 OOlA 0016 

OOlB 0001 
OOlC 0038 

EXAMPLE 6: 

0022 
0001 
0001 OOlD 5004 11 

0002 OOlE 3904 11 

0003 OOlF 6881 
0002 0020 F800 

0021 0000 
0003 
0004 0022 0003 

LACK V$1 
SACL B,O 

MOVCON 3,* 
LCAC 3 

V$2 EQU 3 
LACK V$2 
SACL *,O 

MOVCON 6, . 
ACTAR ARl 

SACL XRO,O 
LAR ARl,XRO 
LARP ARl 

LCAC 6 
V$3 EQU 6 

LACK V$3 
SACL *,O 

LOAD AC WITH V$1 
STORE CONSTANT 

LOAD AC WITH V$2 
STORE CONSTANT 

STORE AC TO XRO 
RE-LOAD ARl 
LOAD AR POINTER 

LOAD AC WITH V$3 
STORE CONSTANT 

MOVCON (32,15,2,13),B 
CALL MOVC$ MOVE CONSTANTS 

REF MOVC$ 
DATA B 
DATA 4 
DATA 32,15,2,13 

MOVCON { 22 , 1 , 56), * 

TO B 
LENGTH OF LIST 
CONSTANT LIST 

CALL MOVC$1 MOVE CONSTANTS 

REF MOVC$1 
DATA 3 
DATA 22,1,56 

MOVCON (33,34,35), 
ACTAR ARl 

SACL XR0,0 
LAR ARl,XRO 
LARP ARl 

CALL MOVC$1 

REF MOVC$1 
DATA 3 

LENGTH OF LIST 
CONSTANT LIST 

STORE AC TO XRO 
RE-LOAD ARl 
LOAD AR POINTER 
MOVE CONSTANTS 

LENGTH OF LIST 

MOVCON 
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0005 0023 0021 
0024 0022 
0025 0023 

DATA 33,34,35 

MOVCON 
CONSTANT LIST 

-
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MOVDAT Move Words in Data Memory - Macro MOVDAT 
TITLE: Move Words to Data Memory 

NAME: MOVDAT 

OBJECTIVE: Copy data from program memory to data memory 

ALGORITHM: For number of elements in array, 

CALLING 

MOVDAT 
MOVDAT 
MOVDAT 

MOVDAT 
MOVDAT 
MOVDAT 

MOVDAT 
MOVDAT 

A,B,C - causes- (A)-@B 
A,*,C -causes- (A)-@AR1 
A, ,C - causes- (A) - @ACC 

*,B,C - causes- (@ARO)-@B 
*, * ,C ..:.. causes- (@ARO) - @AR1 
*, ,C - causes- (@ARO)-@ACC 

,B,C - causes- (@ACC)-@B 
, * ,C - causes- (@ACC) - @AR1 

SEQUENCE: MOVDAT [Al*J,[Bl*H ,CJ 

ENTRY 
CONDITIONS: 0 ~ B + C ~ 143; 0 ~A< 4095 

EXIT 
CONDITIONS: Elements of B contain data from program memory starting at A; ARO and 

AR1 maybe overwritten 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 
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12 words ( + routines) 

2 levels 

DATA 
MEMORY 
REQUIRED: 3 words 

EXECUTION 
TIME: (max) 31 + (7x 

length) cycles 
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..... 
clo .... 

ACC CONTAINS I NO 
DESTINATION; MOVE ...__,. 

ACC TO AR1 

MOVETO RAM; 
CALL MOVE$A 

MOVE TO RAM; 
CALL MOVE$$ 

NO 

NO. 

MOVE TO RAM; 
CALL MOVE$B 

I 

BEGIN 

MOVE TO RAM; 
CALL MOVE$8 

NO 

YES 

ACC CONTAINS 
DESTINATION; MOVE 

ACC TO AR1 

LOAD AUX. 
REG. TO ACC 

MOVE FIRST 
WORD 

YES -

LOAD SOURCE 
ADDRESS TO 

ACC 

MOVE SECOND 
WORD 

;:t! 3: 
~o 
~< >c 
~)> .. -I 
s: 
~ 
~ 

3: 
0 
< c 
l> 
·-1 
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.MOVDAT 
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SOURCE: 

*MOVE L(CONST) WORDS FROM A(ROM ITEM) 
*TO B(RAM VAR) 
*ROM ITEM IS: 
* MOVDAT $MACRO A,B,L 

$VAR ST 
$ASG 1 * 1 TO ST.S 
$IF B.L=O 
ACTAR ARl 
$ASG 1 * 1 TO B.S 
$ENDIF 
$IF L.V<3 ONE OR TWO WORDS 
$IF A.SV=ST.SV A = * 
ARTAC ARO 
$ELSE 
$IF A.L#=O A = PROGRAM ADDRESS 
LCAC :A: 
$ENDIF 
$ENDIF 
$IF B.SV=ST.SV 
LARP 1 
TBLR *+ READ FIRST WORD 
$ELSE 
TBLR :B: 
$ENDIF 
$IF L.V=2 TWO WORDS 
ADD ONE,O INCREMENT POINTER 
$IF B.SV=ST.SV 
TBLR *+ READ NEXT WORD 
$ELSE 
TBLR :B:+l 
$ENDIF 
$ENDIF 
$ENDIF 
$IF L.V>2 
$IF A.L=O 
ACTAR ARO 
$ASG 1 * 1 TO A.S 
$ENDIF 
$IF B.SV=ST.SV 
$IF A.SV#=ST.SV 
CALL MOVC$A MOVE 
REF MOVC$A 
DATA :A: FROM :A: 
$ELSE 
CALL MOVC$$ MOVE 
REF MOVC$$ 
$ENDIF 
$ELSE 
$IF A.SV#=ST.SV 
CALL MOVA$B MOVE 
REF MOVA$B 
DATA :A: FROM :A: 
$ELSE 
CALL MOVC$B MOVE 
REF MOVC$B 
$ENDIF 
DATA :B: TO :B: 
$ENDIF 
DATA :L: FOR :L: WORDS 
$ENDIF 
SEND 

MOVDAT 

) 
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EXAMPLE 1: 

0012 
0001 
0001 0006 7E01 
0002 0007 6708 

EXAMPLE 2: 

0014 
0001 
0001 0008 3004" 
0002 0009 2004 11 

0002 OOOA 6708 
0003 OOOB 0002 11 

0004 oooc 6709 

EXAMPLE 3: 

0016 
0001 
0001 OOOD 3004 11 

0002 OOOE 2004" 
0002 OOOF 6881 
0003 0010 67A8 
0004 0011 0002" 
0005 0012 67A8 

EXAMPLE 4: 

0018 
0001 0013 FBOO 

0014 0000 
0002 
0003 0015 0000 11 

0004 0016 0008 

EXAMPLE 5: 

0020 
0001 
0001 0017 5004 11 

0002 0018 3904 11 

0003 0019 6881 
0002 OOlA F800 

OOlB 0000 
0003 
0004 OOlC 0005 

EXAMPLE 6: 

0022 
0001 OOlD 6708 

EXAMPLE 7: 

0024 
0001 
0001 OOlE 5004 11 

0002 OOlF 3804 11 

0003 0020 6880 
0002 0021 F800 

0022 0000 

MOVDAT A,B 
LCAC A 

LACK A 
TBLR B 

MOVDAT *,B,2 
ARTAC ARO 

SAR ARO,XRO 
LAC XRO,O 

TBLR B 
ADD ONE,O 
TBLR B+l 

MOVDAT *,*,2 
ARTAC ARO 

SAR ARO,XRO 
LAC XRO,O 

LARP 1 
TBLR *+ 
ADD ONE,O 
TBLR *+ 

MOVDAT C,*,B 
CALL MOVC$A 

REF MOVC$A 
DATA C 
DATA B 

MOVDAT *, ,5 
ACTAR ARl 

SACL XRO,O 
LAR ARl,XRO 
LARP ARl 

CALL MOVC$$ 

REF MOVC$$ 
DATA 5 

MOVDAT ,B 
TBLR B 

MOVDAT ,*,5 
ACTAR ARO . 

SACL XRO,O 
LAR ARO,XRO 
LARP ARO 

CALL MOVC$$ 

LOAD AC WITH A 

SAVE ARO 
LOAD INTO AC 

INCREMENT POINTER 

SAVE ARO 
LOAD INTO AC 

READ FIRST WORD 
INCREMENT POINTER 
READ NEXT WORD 

MOVE 

FROM C 
FOR B WORDS 

STORE AC TO XRO 
RE-LOAD ARl 
LOAD AR POINTER 
MOVE 

FOR 5 WORDS 

STORE AC TO XRO 
RE-LOAD ARO 
LOAD AR POINTER 
MOVE 

MO VD AT 

• 
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MOVDAT MOVDAT 
0003 REF MOVC$$ 
0004 0023 0005 DATA 5 FOR 5 WORDS 

EXAMPLE 8: 

0026 MOVDAT D,* 
0001 LCAC D 
0001 0024 F800 CALL LDAC$ LOAD AC WITH: 0025 0000 
0002 REF LDAC$ 
0003 0026 0001" DATA D D 
0002 0027 6881 LARP 1 
0003 0028 67A8 TBLR *+ READ FIRST WORD 

EXAMPLE 9: 

0028 MOVDAT D, ,3 
0001 ACTAR AlU 
0001 0029 5004" SACL XRO,O STORE AC TO XRO 
0002 002A 3904" LAR ARl,XRO RE-LOAD ARl 
0003 002B 6881 LARP ARl LOAD AR POINTER 
0002 002C F800 CALL MOVC$A MOVE 

002D 0000 
0003 REF MOVC$A 
0004 002E 0001" DATA D FROM D 
0005 002F 0003 DATA 3 FOR 3 WORDS 

EXAMPLE 10: 

0030 MOVDAT *,* 
0001 ARTAC ARO 
0001 0030 3004" SAR ARO,XRO SAVE ARO 
0002 0031 2004 11 LAC XRO,O LOAD INTO AC 
0002 0032 6881 LARP 1 •• 0003 0033 67A8 TBLR *+ READ FIRST WORD 

EXAMPLE 11: 

0032 MOVDAT *,*,9 
0001 0034 F800 CALL MOVC$$ MOVE 

0035 0000 
0002 REF MOVC$$ 
0003 0036 0009 DATA 9 FOR 9 WORDS 

7--84 
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MOVE Move Data Array - Macro 

TITLE: Move Data Array 

NAME: MOVE 

OBJECTIVE: Copy data from one array to another in data memory. 

ALGORITHM: For number of elements in array, 
(A[i]) - B[i] 

CALLING 
SEQUENCE: MOVE A,B,length 

ENTRY 
CONDITIONS: 0 ~A + length~ 143;0 ~ B + length~ 143 

EXIT 
CONDITIONS: Elements of B contain corresponding elements of A; 

ARO or AR1 may be overwritten 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

1183 

5 - 7 words ( + MOV$ routines) 

2 levels 

DATA 
MEMORY 
REQUIRED: 1 - 3 words 

EXECUTION 
TIME: (max) 29 + (7 x 

length) cycles 

MOVE 

-
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MOVE 
FLOWCHART: MOVE 

MOVE DOUBLE­
WORD SOURCE 

TO 
DESTINATION 

CALL MOVA$ 
TO PERFORM 

TRANSFER 

CALL MOV$$ TO 
PERFORM TRANSFER 

SOURCE: 

*MOVE L(CONST) WORDS FROM A(RAM VAR) 
*TO B(RAM VAR) 
* MOVE $MACRO A,B,L 

$IF (L.V<2)&(B.L#=O} 
MOV :A:, :B: MOVE SINGLE 
$ENDIF 
$IF (L.V=2)&(B.L#=O) 
MOVX :A:,:B: MOVE DOUBLE 
$ENDIF 

END 

MOVE SINGLE­
WORD SOURCE 

TO DESTINATION 

CALL MOVAB$ 
TO PERFORM 

TRANSFER 

CALL MOVB$ 
TO PERFORM 

TRANSFER 

MOVE 

7..S6 
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$IF (L.V>2}++(B.L=O) 
$VAR ST 
$ASG 1 * 1 TO ST.S 
$IF (A.L#=O)&(B.L#=O) 
$IF (A.SV#=ST.SV)&(B.SV#=ST.SV) 
CALL MOVAB$ MOVE 
REF MOVAB$ 
DATA :A: 
DATA :B: 
DATA :L.V: 
$ENDIF 
$ENDIF 

FROM :A: 
TO :B: 
FOR :L.V: WORDS 

$IF (A.SV#=ST.SV)&(A.L#=O) 
$IF (B.L=O)++(B.SV=ST.SV) 
$IF B.L=O 
ACTAR ARl 
$ENDIF 
CALL MOVA$ 
REF MOVA$ 
DATA :A: 
DATA :L.V: 
$ENDIF 
$ENDIF 

AC TO ARl 

MOVE 

FROM :A: 
FOR :L.V: WORDS 

$IF (B.SV#=ST.SV)&(B.L#=O} 
$IF (A.L=O)++(A.SV=ST.SV) 
$IF A.L=O 
ACTAR ARO 
$ENDIF 
CALL MOVB$ 
REF MOVB$ 
DATA :B: 
DATA :L.V: 
$ENDIF 
$ENDIF 

MOVE AC TO ARO 

MOVE 

TO :B: 
FOR :L.V: WORDS 

$IF (A.L=O)++(A.SV=ST.SV) 
$IF (B.L=O)++(B.SV=ST.SV) 
$IF A.L=O 
ACTAR ARO 
$END IF 
$IF B.L=O 
ACTAR ARl 
$ENDIF 
CALL MOV$$ 
REF MOV$$ 
DATA :L.V: 
$ENDIF 
$ENDIF 
$ENDIF 
$END 

AC TO ARO 

AC TO ARl 

MOVE 

FOR :L.V: WORDS 

EXAMPLE 1: 

0012 
0001 
0001 0006 2001 
0002 0007 5008 

EXAMPLE 2: 

0014 
0001 
0001 
0001 0008 65A8 
0002 0009 6198 

MOVE A,B 
MOV A,B 

LAC A,0 
SACL B,O 

MOVE *,B,2 
MOVX *,B 

LDAX * 
ZALH *+ 
ADDS *-

MOVE SINGLE 
LOAD A 
STORE B 

MOVE DOUBLE 
LOAD DOUBLE * 
LOAD HIGH 
LOAD LOW 1 * 1 

MOVE 

-
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MOVE MOVE 
0002 SACX B STORE .·DOUBLE * 
0001 OOOA 5808 SACH B,O STORE HIGH 
0002 OOOB 5009 SACL B+l,O STORE LOW 

EXAMPLE 3: 

··0016 MOVE C,*,B 
0001 OOOC F800 CALL MOVA$ MOVE 

OOOD 0000 
0002 REF MOVA$ 
0003 OOOE 0000" DATA C FROM C 
0004 OOOF 0008 DATA 8 FOR 8 WORDS 

EXAMPLE 4: 

0018 MOVE * , , 5 
0001 ACTAR ARl AC TO ARl 
0001 0010 5004 11 SACL XRO,O STORE AC TO XRO 
0002 0011 3904" LAR ARl,XRO RE-LOAD ARl 
0003 0012 6881 LARP ARl LOAD AR POINTER 
0002 0013 F800 CALL MOV$$ ·MOVE 

0014 0000 
0003 REF MOV$$ 
0004 0015 0005 DATA 5 FOR 5 WORDS 

EXAMPLE 5: 

0020 MOVE ,B 
0001 MOV ,B MOVE SINGLE 
0001 0016 5004 11 SACL XRO,O SAVE AC 
0002 0017 3804" LAR ARO,XRO LOAD TO ARO 
0003 0018 6880 LARP ARO SELECT ARO 
0004 0019 2088 . LAC *,O LOAD * 
0005 OOlA 5008 SACL B,0 STORE B 

-~ ' ·.EXAMPLE 6: 

0022 MOVE ,*,5 
0001 ACTAR ARO AC TO ARO 
0001 0018 5004 11 SACL XRO,O STORE AC TO XRO 
0002 OOlC 3804 11 LAR ARO,XRO RE-LOAD ARO 
0003 OOlD 6880 LARP ARO LOAD AR POINTER 
0002 OOlE F800 CALL MOV$$ MOVE 

OOlF 0000 
0003 REF MOV$$ 
0004 0020 0005 DATA 5 FOR 5 WORDS 

EXAMPLE 7: 

0024 MOVE D,* 
0001 MOV D * , MOVE SINGLE 
0001 0021 2001 11 LAC D,O LOAD D 
0002 0022 5088 SACL *,O STORE * 

EXAMPLE 8: 

0026 MOVE D, ,3 
0001 ACTAR ARl AC TO ARl 
0001 0023 5004 11 SACL XRO,O STORE AC TO XRO 
0002 0024 390411 LAR ARl,XRO RE-LOAD ARl 
0003 0025 6881 LARP ARl LOAD AR POINTER ;.: 

0002 0026 F800 CALL MOVA$ MOVE 
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MOVE 
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0027 0000 
0003 
0004 0028 0001 11 

0005 0029 0003 

REF MOVA$ 
DATA D 
DATA 3 

MOVE 

FROM D 
FOR 3 WORDS 

-
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MOVROM Move Words to Program Memory - Macro MOVROM 

TITLE: Move Words to Program Memory 

NAME: MOVROM 

OBJECTIVE: Copy data from data memory to program memory 

ALGORITHM: For _number of elements in array, 

CALLING 

MOVROM 
MOVROM 
MOVROM 

MOVROM 
MOVROM 
MOVROM 

MOVROM 
MOVROM 

A,B,C - causes- (A) - @B 
A,* ,C - causes- (A) - @AR1 
A, ,C - causes- (A) - @ACC 

*,B,C -causes- (@ARO)-@B 
*,*,C -causes- (@ARO)-@AR1 
*, ,C -causes- (@ARO)-@ACC 

,B,C - causes- (@ACC) - @B 
, * ,C - causes- (@ACC) - @AR1 

SEQUENCE: MOVROM [A, *],[B, *][,length] 

ENTRY 
CONDITIONS: 0 <A + length< 143; 0 < B < 4095 

-~EXIT 
CONDITIONS: Program memory starting at B contains data elements starting at A; ARO 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

7-90 

and AR 1 may be overwritten 

8 words ( + TBW$ routines) 

2 levels 

DATA 
MEMORY 
REQUIRED: 3 words 

EXECUTION 
TIME: (max) 31 + (7 x 

length) cycles 
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MOVROM 
FLOWCHART: MOVROM 

MOVE DATA TO 
PROGRAM MEMORY; 

CALL TBW$0 

SOURCE: 

MOVE DATA TO 
PROGRAM MEMORY; 

CALL TBW$$ 

*MOVE L(CONST) WORDS FROM A(RAM VAR) 
*TO B(ROM VAR) 
* MOVROM $MACRO A,B,L 

$VAR ST 
$ASG 1 * 1 TO ST.S 
$IF L.V=O DEFAULT 0 TO 1 
$ASG 1 TO L.V 
$END IF 
$IF A.L=O 
ACTAR ARO AC TO ARO 
$END IF 
$IF B.L=O 

1183 

MOVE DATA TO 
PROGRAM MEMORY; 

CALL TBW$1 

YES 

M.OVROM 

LENGTH = 1 

ACC POINTS TO 
SOURCE· MOVE 

ACC TO ARO 

ACC POINTS TO 
DESTINATION; MOVE 

ACC TO AR1 

MOVE DATA TO· . 
PROGRAM MEMORY; 

CALL TBW$01 -



·.MOVROM. 

-... ·_ 

·-.. 

ACTAR ARl 
$ENDIF 

AC TO ARl 

$IF (B.SV=ST.SV)++(8.L=O) ,. 
$IF (A.SV=ST.SV)++(A.L=O) .· 
CALL TBW$01 MOVE RAM~>ROM 
REF TBW$01 
DATA :L.V: 
$ELSE 
CALL TBW$1 
REF TBW$1 
DATA :A: . 
DATA :L.V: 
$ENDIF 
$ELSE 

'< 

FOR :L.V: WORDS 

MOVE RAM.->ROM 

FROM :A: 
FOR :L.V: WORDS 

$IF (A.SV=ST.SV)++(A.L=O) 
CALL TBW$0 MOVE RAM->ROM . I 
REF TBW$0 
DATA :B: 
DATA :L.V: 
$ELSE 
CALL TBW$$ 
REF TBW$$ 
. DATA :A: 
D1''}'.A :B: 
DATA :L.V: 
$ENDIF 
.$ENDIF 
$END 

EXAMPLE 1: 

0012 
0001 -0006. F800 . 

0007 0000 
0002 
0003 0008 0001 ( 
0004 0009 0008 
0005 OOOA 0001 

EXAMPLE 2: 

0014· 
0001 OOOB F800 

oooc 0000 " 
0002 
0003 OOOD 0008 
0004 OOOE 0002 

EXAMPLE 3: 

0016 
0001 OOOF FSOO 

0010 0000 
0002 
0003 0011 0000 11 

0004 0012 0008 

EXAMPLE 4: 

0018 
0001 
0001 0013 5004 11 

0002 0014 390411 

TO :B: 
·FOR :L.V: W~DS 

MOVE RAM->ROM 

FROM :A: -. 
TO :B: 
FOR :L.V: WORDS 

MOVROM A.,B 
CALL T8W$$ ·. 

REF TBW$$ 
DATA A. 
DATA·B 
DATA l. 

MOVROM *,B,2 
CALL TBW$0 

REF .TBW$0 
DATA B 
DATA 2 

MOVROM C,*,B 
CALL TBW$1 

REF TBW$1 
DATA C 
DATA 8 

MOVROM *I ,5 
ACTAR ARI 

SACL XRO,O 
LAR ARl,XRO 

MOVE RAM->ROM 

FROM A 
TO~B 

FOR 1 WORDS 

MOVE RAM->ROM 

TO B 
FOR 2 WORDS 

. ( 
MOVE RAM->ROM 

FROM C 
FOR 8 WORDS 

AC TO ARl 
STORE AC TO XRO 
RE~LOAD ARl' 

MOVROM 
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MOVROM MOVROM 
0003 0015 6881 LARP.ARl LOAD AR POINTER 
0002 0016 F800 CALL TBW$01 MOVE RAM'->ROM 

0017 0000 
0003 REF TBW$01 
0004 0018 0005 DATA 5 FOR 5 WORDS 

EXAMPLE 5: 

0020 MOVROM ,B 
0001 ACTAR ARO AC TO ARO 
0001 0019 5004 11 SACLXRO,O ·STORE AC TO XRO 
0002 OOlA 3804" LAR ARO,XRO RE-LOAD ARO 
0003 OOlB 6880 LARP ARO LOAD AR POINTER 
0002 OOlC F800 CALL TBW$0 MOVE RAM->ROM 

0010 0000 
0003 REF TBW$0 
0004 OOlE 0008 DATA B TO B 
0005 OOlF 0001 DATA 1 FOR 1 WORDS 

EXAMPLE 6: 

·' 0022 MOVROM ,*,5 
0001 ACTAR ARO AC TO ARO 
0001 0020 5004" SACL XRO,O STORE AC TO XRO 
0002 0021 3804 11 LAR ARO,XRO RE-LOAD ARO 
0003 0022 6880 LARP ARO LOAD AR POINTER 
0002 0023 FSOO CALL TBW$01 MOVE RAM->ROM 

0024 0000 
0003 REF TBW$01 
0004 0025 0005 DATA 5 FOR 5 WORDS 

EXAMPLE 7: 

0024 MOVROM D,* 
0001 0026 F800 CALL TBW$1 MOVE RAM->ROM • 0027 0000 
0002 ·REF TBW$1 
0003 0028 0001" DATA D FROM D 
0004 0029 0001 DATA 1 FOR 1 WORDS 

EXAMPLE 8: 

0026 MOVROM D, ,3 
·0001 ACTAR ARl AC TO ARl 
0001. 002A 5004 11 SACL XRO,O STORE AC TO XRO 
0002 0028 3904" LAR ARl,XRO RE-LOAD ARl 
0003 002C6881 LARP ARl LOAD AR POINTER 
0002 002D F800 CALL TBW$1 MOVE RAM->ROM 

002E 0000 
0003 REF TBW$1 
0004 002F 0001 11 DATA D FROM D 
0005 0030 0003 DATA 3· FOR 3 WORDS 

EXAMPLE 9: 

0028 MOVROM *,* 
0001 0031 FBOO CALL TBW$01 MOVE RAM->ROM 

0032 0000 . 
0002 REF TBW$01 
0003 0033 0001 DATA 1 FOR 1 WORDS 
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MOVROM 

7-94 

EXAMPLE 10: 

0030 . . . . 
0001 0034 F800 

0035 0000 
0002 
0003 0036 0001 

/ 

MOVROM *,*,l 
CALL TBW$01 

REF TBW$.01 
DATA 1 

MOVROM 

MOVE RAM->ROM 

FOR 1 WORDS 
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MOVX Move Double Word - Macro 

TITLE: Move Double Word 

NAME: MOVX 

OBJECTIVE: Copy double word from one location to another in data memory 

ALGORITHM: (A:A + 1) - B:B + 1 or 
(@ACC:@ACC + 1) - B:B + B 

CALLING 
SEQUENCE: MOVX [AJ,B 

ENTRY 
CONDITIONS: 0~A~126;0~B~126 

EXIT 
CONDITIONS: Double word at B contains value of double word located at A; ARO may 

be overwritten 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

FLOWCHART: 

1183 

4 - Swords 

None. 

MOVX 

LOAD DOUBLE­
WORD SOURCE 

INTO ACC 

STORE DOUBLE WORD 
OF ACC INTO 
DESTINATION 

END 

NO 

DATA 
MEMORY 
REQUIRED: 0 - 2 words 

EXECUTION 
TIME: 4 - 8 cycles 

MOVE ACC TO 
AUX. REGISTER 

LOAD ACC WITH 
DOUBLE. WORD 
POINTED TO BY 
AUX. REGISTER 

MOVX 

-

·.· '· 
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MOVX 
SOURCE: 

*MOVE DOUBLE FROM A TO B 
* 
MOVX $MACRO A,B 

$IF A.L=O 
SACH XRO,O 
SACL XRl,O 
LAR ARO,XRO 
LARP ARO 
LDAX * 
$ELSE 
LDAX :A: 
$ENDIF 
SACX :B: 
$END 

EXAMPLE 1: 

0011 
0001 
0001 0006 6501 
0002 0007 6102 
0002 
0001 0008 5808 
0002 0009 5009 

EXAMPLE 2: 

0013 
0001 
0001 OOOA65A8 
0002 OOOB 619S 
0002 
0001 oooc 580S 

·0002 OOOD 5009 

EXAMPLE 3: 

0015. 
0001 
0001 OOOE 6500 11 

0002 OOOF 6101 11 

0002 
0001 0010 SSAS 
0002 0011 SOAS 

EXAMPLE 4: 

7-96 

0017 
0001 0012 SS06" 
0002 0013 5007 11 

0003 0014 3S06" 
0004 0015 6880 
0005 
0001 0016 65A8 
0002 0017 6198 
0006 
0001 OOlS 5802" 
0002 0019 5003 11 

MOVE DOUBLE 
A IN AC 

SAVE AC TO XRO 
TO ARO 
SELECT ARO 
LOAD * 

LOAD DOUBLE :A: 

STORE DOUBLE :A: 

MOVX A,B 
LDAX A 

ZALH A 
ADDS A+l 

SACX B 
SACH B,O 
SACL B+l,O 

MOVX *,B 
LDAX * 

ZALH *+ 
ADDS *­

SACX B 
SACH B,0 
SACL B+l,O 

MOVX C,*+ 
LDAX C 

ZALH C 
ADDS C+l 

SACX *+ 
SACH *+,O 
SACL *+,0 

MOVX ,D 
SACH XRO,O 
SACL XRl,O 
LAR ARO,XRO 
LARP ARO 
LDAX * 

ZALH *+ 
ADDS *­

SACX D 
SACH D,O 
SACL D+l,O 

LOAD DOUBLE A 
LOAD HIGH A 
LOAD LOW A 
STORE DOUBLE A 
STORE HIGH 
STORE LOW 

LOAD DOUBLE * 
LOAD HIGH 
LOAD LOW 1 * 1 

STORE DOUBLE * 
STORE HIGH 
STORE LOW 

LOAD DOUBLE C 
LOAD HIGH C 
LOAD LOW C 
STORE DOUBLE C 
STORE HIGH 
STORE LOW 

SAVE AC TO XRO 
TO ARO 
SELECT ARO 
LOAD * 
LOAD HIGH 
LOAD LOW '*' 
STORE DOUBLE 
STORE HIGH 
STORE LOW 

MOVX 
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MOVX MOVX 
EXAMPLE 5: 

0019 MOVX *-,B 
0001 LDAX *- LOAD DOUBLE *-
0001 OOlA 6698 ZALS *- LOAD LOW 
0002 OOlB 6098 ADDH *- LOAD HIGH 1*- 1 

0002 SACX B STORE DOUBLE *-
0001 OOlC 5808 SACH B,O STORE HIGH 
0002 OOlD 5009 SACL B+l,O STORE LOW 

EXAMPLE 6: 

0021 MOVX *+,A 
0001 LDAX *+ LOAD DOUBLE *+ 
0001 OOlE 65A8 ZALH *+ LOAD HIGH 
0002 OOlF 61A8 ADDS *+ LOAD LOW I *+I 
0002 SACX A STORE DOUBLE *+ 
0001 0020 5801 SACH A,0 STORE HIGH 
0002 0021 5002 SACL A+l,O STORE LOW 

EXAMPLE 7: 

0023 MOVX D,*-
0001 LDAX D LOAD DOUBLE D 
0001 0022 6502 11 ZALH D LOAD HIGH D 
0002 0023 6103 11 ADDS D+l LOAD LOW D 
0002 SACX *- STORE DOUBLE D 
0001 00245098 SACL *-,0 STORE LOW 
0002 0025 5898 SACli *-,0 STORE HIGH 

-
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NEG Arithmetic Negation - Macro 

TITLE: Arithmetic Negation 

NAME: NEG 

OBJECTIVE: Find negative value of argument 

ALGORITHM: - (A) - A 

CALLING 
SEQUENCE: NEG A 

ENTRY 
CONDITIONS: 0 ~A~ 127 

EXIT 
CONDITIONS: Data word A contains the negative of its previous value 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

3words 

None 

FLOWCHART: NEG 

SOURCE: 

*NEGATE VAR A 
* NEG 

7-98 

$MACRO A 
ZAC 
SUB :A:,O 
SACL :A: I 0 
$END 

NEGATE 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

BEGIN 

ZERO ACC 

SUBTRACT A 
FROM ACC 

SAVE A 

END 

ZERO AC 
SUBTRACT :A: 
RESTORE 

NEG 

None 

3 cycles 
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NEG 

1183 

EXAMPLE: 

0015 
0001 OOOC 7F89 
0002 OOOD 1001 11 

0003 OOOE 5001 11 

NEG D 
ZAC 
SUB D,O 
SACL D,O 

ZERO AC 
SUBTRACT D 
RESTORE 

NEG 

-
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NEGX Double-Word Arithmetic Negation - Macro 

TITLE: Double-Word Arithmetic Negation 

NAME: NEGX 

OBJECTIVE: Find negative value of double-word argument 

ALGORITHM: NEGX * - causes- - (@AR:@AR + 1) -@AR+ 1 

CALLING 

NEGX * - - causes- - (@AR - 1 :@AR) - @AR - 1 :@AR 
(AR)~ 2-AR 

NEGX * + - causes- - (@AR:@AR + 1) - @AR:@AR + 1 
(AR)+ 2-AR 

NEGX A - causes- - (A:A + 1) - A:A + 1 

SEQUENCE: NEGX {A,*,* - , * +} 

ENTRY 
CONDITIONS: 0 ~A~ 127 

EXIT 
CONDITIONS: Specified data words contain negative of previous value; auxiliary register 

is updated as necessary 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

7-100 

5words 

None 

DATA 
MEMORY 
REQUIRED: None 

EXECUTION 
TIME: 5 cycles 

NEGX 
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NEGX 
FLOWCHART: NEGX 

SOURCE: 

NEGATE @AR 
AND @AR+1 

AR = AR-2 

*NEGATE DOUBLE WORD 

* 

NEGATE @AR 
AND @AR+1 

YES 

YES 

NEGX $MACRO A NEGATE DOUBLE 

1183 

$VAR ST,SP,SM 
$ASG '*+ 1 TO SP.S 
$ASG '*-' TO SM.S 
$ASG '*' TO ST.S 
ZAC 
$IF A.SV=SM.SV 
SUBS *­
SUBH *+ 
SACX *­
$ELSE 
$IF A.SV=SP.SV 
SUBX * 
SACX *+ 
$ELSE 
$IF A.SV=ST.SV 
SUBX * 
SACX * 
$ELSE 
SUBX :A: 
SACX :A: 
$ENDIF 
$END 

SUBTRACT '*-• 
SAVE '*-' 

SUBTRACT '*' 
SAVE '*+' 

SUBTRACT '*' 
SAVE '*' 

SUBTRACT :A: 
SAVE :A: 

NEGATE 
A AND A+1 

END 

NEGATE @AR 
AND@AR+1 

AR = AR+2 

NEGX 

-
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NEGX NEGX 

EXAMPLE 1: 

0011 NEGX A 
0001 0006 7F89 ZAC 
0002 SUBX A SUBTRACT A 
0001 0007 6207 SUBH A SUBTRACT HIGH 
0002 0008 6308 SUBS A+l SUBTRACT LOW 
0003 SACX A SAVE A 
0001 0009 5807 SACH A,O STORE HIGH 
0002 OOOA 5008 SACL A+l,O STORE LOW 

EXAMPLE 2: 

0013 NEGX * 
0001 OOOB 7F89 ZAC 
0002 SUBX * SUBTRACT '*' 
0001 OOOC 62A8 SUBH *+ SUBTRACT HIGH 
0002 OOOD 6398 SUBS *- SUBTRACT LOW 
0003 SACX * SAVE 1 * 1 

0001 OOOE SSAB SACH *+,O STORE HIGH 
0002 OOOF 5098 SACL *-·,o STORE LOW 

EXAMPLE 3: 

0015 NEGX *-
0001 0010 7F89 ZAC 
0002 0011 6398 SUBS *-
0003 0012 62A8 SUBH *+ SUBTRACT '*-• 
0004 SACX *- SAVE 1 *- 1 

0001 0013 5098 SACL *-,0 STORE LOW 
0002 0014 5898 SACH *-,0 STORE HIGH 

EXAMPLE 4: 

0017 NEGX *+ 
0001 0015 7F89 ZAC 
0002 SUBX * SUBTRACT '*' 
0001 0016 62A8 SUBH *+ SUBTRACT HIGH 
0002 0017 6398 SUBS *- SUBTRACT LOW 
0003 SACX *+ SAVE 1 *+' 
0001 0018 SSAB SACH *+,0 STORE HIGH 
0002 0019 SOA8 SACL *+,O STORE LOW 
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NOT Boolean Not - Macro 

TITLE: Boolean Not 

NAME: NOT 

OBJECTIVE: Calculate one's complement of accumulator or data word 

ALGORITHM: (A) .XOR. - 1 - A 

CALLING 
SEQUENCE: NOT [AJ 

ENTRY 
CONDITIONS: 0 ~A~ 127 

EXIT 
CONDITIONS: A (accumulator) contains one's complement of previous value 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REOU1RED: 

3words 

None 

FLOWCHART: NOT 

1183 

LOAD ACC 
WITHA 

INVERT ACC 

SAVE A 

END 

DATA 
MEMORY 
REQUIRED: 1 word 

EXECUTION 
TIME: 1 - 3 cycles 

NO 
INVERT ACC 

NOT 

-
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NOT 
SOURCE: 

*NOT AC OR WORD A 
* NOT $MACRO A 

$IF A.L#=O 
LAC :A:,O 
XOR MINUS 
SACL :A: ,0 
$ELSE 
XOR MINUS 
$ENDIF 
$END 

EXAMPLE 1: 

0011 
0001 0006 7803 11 

EXAMPLE 2: 

7-104 

0017 
0001 OOOD 2000 11 

0002 OOOE 7803 11 

0003 OOOF 5000 11 

INVERT 

LOAD AC 
INVERT 
RESTORE 

INVERT 

NOT 
XOR MINUS 

NOT C 
LAC C,O 
XOR MINUS 
SACL C,O 

INVERT 

LOAD AC 
INVERT 
RESTORE 

NOT 
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RASH Arithmetic Right Shift - Macro 

TITLE: Arithmetic Right Shift 

NAME: RASH 

OBJECTIVE: Move shifted data from one location to another in data memory 

ALGORITHM: (A) * 2 - shift- B 

. CALLING 
SEQUENCE: RASH A,B,shift 

ENTRY 
CONDITIONS: 0 4it A 4it 127; 0 4it B 4it 127; 0 4it shift < 16 

EXIT 
CONDITIONS: B contains shifted value of A 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

2words 

None 

FLOWCHART: RASH 

SOURCE: 

BEGIN 

DATA 
MEMORY 
REQUIRED: None 

EXECUTION 
TIME: 2 cycles 

LOAD ACC WITH 
A, SHIFTED 16-N 

SiWE ACC HIGH 
IN B . 

END 

*MOVE A TO B (SINGLE-VAR) WITH N (CONST) BIT 
*RIGHT ARITHMETIC SHIFT 
* RASH $MACRO A,B,N MOV.E WITH RIGHT ARITH. SHIFT 

LAC :A:,16-:N: LOAD :A: RIGHT SHIFT 
SACH :B:,O STORE HIGH TO :B: 
$END 

1183 

RASH 
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RASH 
EXAMPLE: 

0011 

7-106 

0001 0006 2007 
0002 0007 5808 

RASH A,B,3 
LAC A,16-3 
SACH B,O 

LOAD A RIGHT SHIFT 
STORE HIGH TO B 

RASH 
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RASX Double-Word Arithmetic Right Shift - Macro 

TITLE: Double-Word Arithmetic Right Shift 

NAME: RASX 

OBJECTIVE: Move shifted double word from one location to another in data memory 

ALGORITHM: (A:A + 1) * 2shift- B:B + 1 

CALLING 
SEQUENCE: RASX A,B,shift 

ENTRY 
CONDITIONS: O~A~ 126;0~ B~ 126;0~shift< 16 

EXIT 
CONDITIONS: Double word at B contains shifted value of double word at A 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

10 words 

None 

FLOWCHART: RASX 

SOURCE: 

BEGIN 

DATA 
MEMORY 
REQUIRED: 1 word 

EXECUTION 
TIME: 10 cycles 

SHIFT RIGHT A+ 1 
TO B + 1, LOGICAL 

LOAD ACC WITH A, 
SHIFTED 16-N 

SAVE ACC HIGH 
IN B 

ADD ACC LOW 
TO B+1 

END 

*MOVE A TO B (DOUBLE VAR) WITH N (CONST) BIT 
*RIGHT ARITHMETIC SHIFT 
* RASX $MACRO A,B,N MOVE DOUBLE WITH ARITH. SHIFT 

1183 

RASX 

-
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RASX 
RLSH 
LAC 
SACH 
OR 
SACL 
$END 

:A:+l, :B:+l, :N: 
:A: , 16- :N: LOAD HIGH:, ~IGHT SHIFT 
:B:, 0 SAVE IN :l3: HIGH 
:B:+l COMBINE WI'l'~ :B: LOW 
:B:+l,O SAVE BACK 

EXAMPLE: 

0011 
0001 
0001 0006 2008 
0002 ·0007 580A 
0003 0008 2003 11 

0004 
0001 0009 7803 11 

0005 OOOA 790A 
0006 OOOB 500A 
0002 oooc 2D07 
0003 OOOD 5809 
0004 OOOE 7AOA 
0005 OOOF 500A 

RASX A,B,3 
RLSH A+l,B+l 3 

LAC A+l, 16 3 
SACH B+l,O 
LAC MINUS, 
NOT 

LOAD, RIGHT SHIFT 
SAVE HIGH PART 

6-3 GET MASK 

XOR MINUS 
AND B+l 
SACL B+l,O 

LAC A,16-3 
SACH B,O 
OR B+l 
SACL B+l,O 

INVERT 
APPLY MASK 
STORE BACK TO B+l 
LOAD HIGH, RIGHT SHIFT 
SAVE IN B HIGH 
COMBINE WITH B LOW 
SAVE BACK 

RASX 
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REPCON Move_ One-Word Constant into Array - Macro -REPCON 

TITLE: Move One..:Word Constant into Array 

NAME: REPCON 

OBJECTIVE: Initialize an array in data memory with a cohstant 

ALGORITHM: Constant -ACC 

CALLING 

For number of elements in array, 
(ACC) - data memory 

SEQUENCE: REPCON constant,array,length 

ENTRY 
CONDITIONS: -32768 ~constant~ 32767; 0 ~array + length~ 143 

EXIT 
_CONDITIONS: Array contains constant in each location 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

2 - 4 words ( + SETS$ and 
LAC$ routines) 

2 levels 

FLOWCHART: REPCON 

1183 

CALL SETS$ FOR 
MULTIPLE WORDS 

END 

YES 

DATA 
MEMORY 
REQUIRED: 0 - 3 words 

EXECUTION 
TIME: (max) 27 + (4 x 

length) cycles 

LOAD CONSTANT 
INTO ACC 

PLACE VALUE 
IN ACC INTO 
DESTINATION 

7-109 
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-

RE PC ON 
SOURCE: 

*REPLICATE CONSTANTS 
*A IS A CONSTANT 
*B IS A MEM LOCATION 
*L IS LENGTH TO REPLICATE 
* REPCON $MACRO A,B,L 

$IF L.V<2 
LCAC :A: 
SACL :B: ,0 
$ELSE 

LOAD CONSTANT 
SET IT 

CALL SETS$ 
REF SETS$ 
DATA :A: 

CALL FOR SET MEMORY 

DATA :L: 
DATA :B: 
$ENDIF 
$END 

EXAMPLE 1: 

0014 
0001 0008 F800 

oooc 0000 
0002 
0003 OOOD FF04 
0004 OOOE OOOA 
0005 OOOF 0001 

EXAMPLE 2: 

0016 
0001 
0001 0002 
0002 0010 7E02 
0002 0011 5008 

7 .. 110 

CONSTANT 
LENGTH 
DESTINATION 

REPCON -252,A,10 
CALL SETS$ 

REF SETS$ 
DATA -252 
DATA 10 
DATA A 

REPCON 2,B,l 
LCAC 2 

V$1 EQU 2 
LACK V$1 
SACL B,O 

CALL FOR SET MEMORY 

CONSTANT 
LENGTH 
DESTINATION 

LOAD CONSTANT 

LOAD AC WITH V$1 
SET IT 

REPCON 
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RIPPLE Ripple Data Array One Position - Macro RIPPLE 

TITLE: Ripple Data Array One Position 

NAME: RIPPLE 

OBJECTIVE: Move each element of array in data memory to next higher location 

ALGORITHM: (array element N - 1) - array element N 
(array element N -2)- array element N-1 

CALLING 

(array element 2) - array element 3 
(array element 1 ) - array element 2 

SEQUENCE: RIPPLE array [,length[,inline]] 

ENTRY 
CONDITIONS: 0 ~array + length~ 143; inline = any string 

EXIT 
CONDITIONS: All array elements N contain value of previous location N - 1; ARO and 

AR1 may be overwritten 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

·1193 

lnline - length words; 
looped - 4 + RIP$ function 
(23 words) 

2 levels (looped) 

DATA 
MEMORY 
REQUIRED: 3 words 

EXECUTION 
TIME: lnline - length 

cycles; looped - · 
30 + (4 * length) 
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RIPPLE 
FLOWCHART: RIPPLE 

SOURCE 1: 

BEGIN 

NO 

CALL RIP$ FOR 
LOOPED VERSION OF 

DATA SHIFT 

END 

RIPPLE $MACRO A,L,C 
$IF (L.V<4)++(C.L#=O) 
INRIP :A:,:L: 
$ELSE 

YES 

CALL RIP$ CALL FOR RIPPLE LOOP 
REF RIP$ 
DATA :L: FOR :L:-1 WORDS 
DATA :A: FROM :A:+:L:-1 
$ENDIF 
$END 

SOURCE 2: 

*RIPPLE DOWN ARRAY 
*A IS ARRAY LOCATION 
*L IS LENGTH OF ARRAY 
* INRIP $MACRO A,L 

$IF L.V>l6 
INRIP :A:+l6,:L:-16 
$ENDIF 
$IF L.V>lS 
DMOV :A:+lS 
$ENDIF 
$IF L.V>l4 
DMOV :A:+l4 
$ENDIF 
$IF L.V>l3 
DMOV :A:+l3 
$ENDIF 
$IF L.V>l2 

SHIFT ONE 
WORD 

DECREMENT 
ARRAY LENGTH 

RIPPLE 
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RIPPLE 
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DMOV :A:+l2 
$ENDIF 
$IF L.V>ll 
DMOV :A:+ll 
$ENDIF 
$IF L.V>lO 
DMOV :A:+lO 
$ENDIF 
$IF L.V>9 
DMOV :A:+9 
$ENDIF 
$IF L.V>B 
DMOV :A:+8 
$ENDIF 
$IF L.V>7 
DMOV :A:+7 
$ENDIF 
$IF L.V>6 
DMOV :A:+6 
$ENDIF 
$IF L.V>S 
DMOV :A:+S 
$ENDIF 
$IF L.V>4 
DMOV :A:+4 
$ENDIF 
$IF L.V>3 

. DMOV :A:+3 
$ENDIF ·. . 
$IF L.V>2 
DMOV :A:+2 
$ENDIF 
$lF L.V>l 
DMOV :A:+l 
$ENDIF 
$IF L.V>O 
mmv :A: 
$ENDIF 
$END 

EXAMPLE 1: 

0007 
0001 
0001 0006 6909 
0002 0007 6908 
0003 0008 6907 

EXAMPLE 2: 

0009 
0001 0009 F800 

OOOA 0000 
0002 
0003 OOOB 0004 
0004 oooc 0007 

EXAMPLE 3: 

0011 
0001 
0001 OOOD 690B 
0002 OOOE 690A 

· llPPLE A,3 
INllIP .l,l 

DMOV A+2 
l>MOV A+l 
DMOV l 

JtIPPLE A,4 
CALL RIP$ 

llF ltIP$ 
DATA ' 
DA'l'A A. 

aIPPL! A,5;t 
IlaIP A,5 

DiK>v .-.+4 
DMOV A.+3 

CALL FOR RIPPLE LOOP 

FOR 4•1 WORDS 
FROM A+4-1 

RIPPLE 

-
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RIPPLE 
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0003 OOOF 6909 
0004 0010 6908 
0005 0011 6907 

-DMOV A+2 
DMOV A+l 
DMOV A 

RIPPLE 
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RLSH Right Logical Shift - Macro 

TITLE: Right Logical Shift 

NAME: RLSH 

OBJECTIVE: Move right-shifted data from one location to another in data memory 

ALGORITHM: [(A)* 2-shift] .and. [216- shift-1] - B 

CALLING 
SEQUENCE: RLSH A,B,shift 

ENTRY 
CONDITIONS: 0 ~A~ 127; 0 ~ B ~ 127; 0 ~shift< 16 

EXIT 
CONDITIONS: B contains shifted value of A 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

6words 

None 

FLOWCHART: RLSH 

SOURCE: 

BEGIN 

DATA 
MEMORY 
REQUIRED: 1 word 

EXECUTION 
TIME: 6 cycles 

LOAD ACC WITH A, 
SHIFTED 1 6-N 

SAVE ACC HIGH 
IN B 

REMOVE SIGN 
EXTENSION IN B 

END 

*MOVE A TO B (SINGLE VAR) WITH N (CONST) BIT 
*RIGHT LOGICAL SHIFT 
* RLSH $MACRO A,B,N 

LAC :A: , 16- :N: 
SACH :B: ,0 

1183 

MOVE WITH RIGHT LOGICAL SHIFT 
LOAD, RIGHT SHIFT 
SAVE HIGH PART 

RLSH 

• 
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RLSH RLSH 
LAC MINUS,16-:N: GET MASK 
NOT 
.AND : B : APPLY MASK 
SACL :B:, 0 STORE BACK TO :B: 
$END 

EXAMPLE: 
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0011 
0001 0006 2D07 
0002 0007 5808 
0003 0008 2003 11 

0004 
0001 0009 7803" 
0005 OOOA 7908 
0006 OOOB 5008 

RLSH A,B,3 
LAC A,16-3 
SACH B,O 
LAC MINUS,16.,.3 
NOT 

XOR MINUS 
AND B 
SACL B,O 

LOAD, RIGHT SHIFT 
. SAVE HIGH PART 

GET MASK 

INVERT 
APPLY MASK 
STORE BACK TO B 
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RLSX Doubl•Word Logical Right Shift - Macro 

. TITLE: Double-Word Logical Right Shift 

NAME: RLSX 

OBJECTIVE: Move right-shifted double word from one location to another in data 
memory 

ALGORITHM: [(A:A + 1)*2-shift].and.[216-shift-1]-B:B + 1 

CALLING 
SEQUENCE: RL$X A,B,shift 

ENTRY 
CONDITIONS: 0 <A< 126; 0 < B < 126; 0 <shift< 16 

EXIT 
CONDITIONS: Double word at B contains shifted value of double word at A 

PROGRAM 
MEMORY 

. REQUIRED: 

.STACK 
REQUIRED: 

14words 

None 

FLOWCHART: RLSX 

1183 

BEGIN 

DATA 
MEMORY 
REQUIRED: 1 word 

EXECUTION 
TIME: 14 cycles 

SHIFT RIGHT A+ 1 
TO B + 1, LOGICAL 

LOAD ACC WITH A, 
SHIFTED 16-N 

SAVE ACC HIGH 
. IN B 

ADD ACC LOW 
TO 8+1 

ZERO-EXTENDED 
SIGN IN B 

END 

RLSX 

-

1-117 



RLSX 
SOURCE: 

*MOVE A TO B (DOUBLE VAR) WITH N(CONST) BIT 
*RIGHT LOGICAL SHIFT 
* 
RLSX $MACRO A,B,N MOVE DOUBLE WITH LOGICAL SHIFT 

RLSH :A:+l,:B:+l,:N: SHIFT RIGHT LOWER 
LAC :A:,16-:N: GET UPPER (RIGHT SHIFT) 
SACH :B:,O SAVE IN :B: HIGH 
OR :B:+l COMBINE LOW PARTS 
SACL :B:+l,O SAVE IN :B: LOW 
LAC MINUS,16-:N: GET.MASK 
NOT 
AND :B: MASK HIGH :B: 
SACL :B:,O SAVE BACK lN :B: 
$END 

EXAMPLE: 

0011 
0001 
.0001 0006 2D08 . 
0002 0007 580A 
0003 0008 2D05 11 

0004 
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0001 0009 7805 11 

0005 OOOA 790A 
0006 OOOB SODA 
0002 oooc 2D07 
0003 OOOD 5809 
0004 OOOE 7AOA 
0005 OOOF SODA 
0006 0010 2D05 11 

0007 
0001 0011 7805 11 

0008 0012 7909 
0009 0013 5009 

RLSX A,B,3 
RLSH A+l,B+l,3 

LAC A+l,16-3 
SACH B+l,O 
LAC MINUS,16-3 
NOT 

XOR MINUS 
AND B+l 
SACL B+l,O 

LAC A,16-3 
SACH B,O 
OR B+l 
SACL B+l,O 
LAC MINUS I 16-3 
NOT 

XOR MINUS 
AND B 
SACL B,0 

SHIFT RIGHT LOWER 
LOAD, RIGHT SHIFT 
SAVE HIGH PART 
GET MASK 

INVERT 
APPLY MASK 
STORE BACK TO B+l 
GET UPPER (RIGHT SHIFT) 
SAVE IN B HIGH 
COMBINE LOW PARTS 
SAVE IN B LOW 
GET MASK 

INVERT 
MASK HIGH B 
SAVE BACK IN B 

RLSX 
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SACX Store Double Word - Macro 

TITLE: Store Double Word 

NAME: SACX 

OBJECTIVE: Store double word from accumulator 

ALGORITHM: SACX * "'-causes- (ACC) - @AR:@AR + 1 

CALLING 

SACX * - - causes- (ACC) -@AR-1 :@AR 
(AR) - 2-AR 

SACX * + - causes- (ACC) - @AR:@AR + 1 
(AR)+ 2-AR 

SACX A - causes- (ACC) - A:A + 1 

SEQUENCE: SACX {A,* I* - I* + } 

ENTRY 
CONDITIONS: 0 ~A~ 127 

EXIT 
CONDITIONS: Specified double word contains value from accumulator; 

auxiliary register is updated if necessary 

PROGRAM 
MEMORY-· 
REQUIRED: 2 words 

STACK 
REQUIRED: 
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None 

DATA 
MEMORY 
REQUIRED: None 

EXECUTION 
TIME: 2 cycles 

SACX 

-
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SACX 
FLOWCHART: SACX 

BEGIN 

STORE TO @AR .._ ____ ......;.Y.;;;,;ES~ 
AND@AR+1 

STORE TO @AR YES 
AND @AR+1 

AR = AR+2 

STORE TO A AND A+ 1 

SOURCE: 

*STORE DOUBLE 
* SACX $MACRO A STORE DOUBLE 

$VAR ST,SP,SM 
$ASG '*' TO ST.S 
$ASG '*·' TO SM.S 
$ASG '*+' TO SP.S 
$IF A.SV=ST.SV 
SACH *+,O STORE HIGH 
SACL *~,O STORE LOW 
$ELSE 
$IF A.SV=SP.SV 
SACH *+,O STORE HIGH 
SACL *+, 0 STORE LOW 
$ELSE 
$IF A.SV=SM.SV 
SACL *-,0 STORE LOW 
SACH *-,0 STORE HIGH 
$ELSE 
SACH :A: ,0 STORE HIGH 
SACL :A:+l,O STORE LOW 
$ENDIF 
$ENDIF 
$ENDIF 
$END 

END 

YES STORE TO @AR 
AND @AR"-1 

AR= AR-2 

SACX 

7-120 1183 



SACX SACX 

EXAMPLE 1: 

0011 SACX A 
0001 0006 5807 SACH A,0 STORE HIGH 
0002 0007 5008 SACL A+l,O STORE LOW 

EXAMPLE 2: 

0013 SACX * 
0001 0008 58A8 SACH *+,O STORE HIGH 
0002 0009 5098 SACL *-,0 STORE LOW 

EXAMPLE 3: 

0015 SACX *-
0001 OOOA 5098 SACL *-,0 STORE LOW 
0002 OOOB 5898 SACH *-,0 STORE HIGH 

EXAMPLE 4: 

0017 SACX *+ 
0001 OOOC SSAS SACH *+,0 STORE HIGH 
0002 0000 SOA8 SACL *+,0 STORE LOW 

-
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SAT Saturate Data Word between Upper and Lower Bounds - Macro 

TITLE: Saturate Data Word between Upper and Lower Bounds 

NAME: SAT 

OBJECTIVE: Insure that a data word falls within boundary conditions 

ALGORITHM: If (A)> upper, then upper - A 
Else if (A) < lower, then lower - A 

CALLING 
SEQUENCE: SAT data,lower,upper 

ENTRY 
CONDITIONS: 0 <data< 127; -32768 <lower< upper< 32767 

EXIT 
CONDITIONS: Data word contains value within bounds; staturation mode is reset 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

7-122 

DATA 
MEMORY 

16 - 24 words ( + LDAC$ routine) REQUIRED: 2 words 

EXECUTION 
2 levels TIME: 10 - 48 cycles 

SAT 
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SAT 
FLOWCHART: SAT 

1183 

LOAD UPPER 
BOUND INTO 

ACC 

LOAD LOWER 
BOUND INTO 

ACC 

SAVE 
BOUNDARY 
VALUE IN 

DATA WORD 

YES 

SOURCE: 

*SATURATE VALUE IN A BETWEEN VALUES 
*A IS A VARIABLE 

B AND C 

*B AND C ARE VARIABLES OR CONSTANTS 

* SAT $MACRO A,B,C 
$VAR L,Ll,L2,L3 
$ASG 1 $$LAB 1 TO L.S 
$ASG L.SV+3 TO L.SV 
$ASG L.SV-2 TO Ll.V 
$ASG L.SV-1 TO L2.V 

GET A LABEL 

$ASG L.SV TO L3.V 
SOVM SET OVERFLOW MODE 
$IF C.SA&$UNDF 
LCAC :C: 
$ELSE 
LAC :C: ,0 
$ENDIF 
SUB :A: ,0 
BGEZ L$ :Ll. V: 
$IF C.SA&$UNDF 
LCAC :C: 
$ELSE 

LOAD UPPER BOUND :C: 

LOAD UPPER BOUND :C: 

COMPARE TO :A: 
BRANCH IF :A:<=:C: 

RELOAD :C: AS VALUE 

BEGIN 

COMPARE UPPER 
BOUND WITH 
DATA WORD 

COMPARE LOWER 
BOUND WITH 
DATA WORD 

SAT 

-
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SAT SAT 
LAC :C:,O RELOAD :C: AS VALUE 
$ENDIF 
B L$ : L2. V: BRANCH TO CONTINUE 

L$:Ll.V: EQU $ CHECK LOWER 
$IF B.SA&$UNDF 
LCAC :B: LOAD LOWER BOUND :B: 
$ELSE 
LAC :B:,O LOAD LOWER BOUND :B: 
$ENDIF 
SUB :A:,O COMPARE TO :A: 
BLEZ L$:L3.V: BRANCH IF :A:>:B: 
$IF B.SA&$UNDF 
LCAC :B: RELOAD :B: AS VALUE 
$ELSE 
LAC :B:,O RELOAD :B: AS VALUE 
$ENDIF 

L$:L2.V: SACL :A:,O RESTORE :A: 
L$:L3.V: ROVM CONTINUE 

$END 

EXAMPLE 1: 

0011 SAT A,2S,SO 
0001 ooos 7F8B SOVM SET OVERFLOW MODE 
0002 LCAC SO LOAD UPPER BOUND SO 
0001 0032 V$4 EQU SO 
0002 0006 7E32 LACK V$4 LOAD AC WITH V$4 
0003 0007 1007 SUB A,0 COMPARE TO A 
0004 0008 FDOO BGEZ L$1 BRANCH IF A<=SO 

0009 OOOD 1 

0005 0032 LCAC 50 RELOAD 50 AS VALUE 
0001 0032 V$5 EQU SO 

- 0002 OOOA 7E32 LACK V$5 LOAD AC WITH V$S 
0006 OOOB F900 B L$2 BRANCH TO CONTINUE 

oooc 0012 1 

0007 OOOD 1 L$1 EQU $ CHECK LOWER 
0008 OOOD 1 LCAC 2S LOAD LOWER BOUND 25 
0001 0019 V$6 EQU 25 
0002 OOOD 7E19 LACK V$6 LOAD AC WITH V$6 
0009000E 1007 SUB A,O COMPARE TO A 
0010 OOOF FBOO BLEZ L$3 BRANCH IF A>2S 

0010 0013 1 

0011 0019 LCAC 25 RELOAD 2S AS VALUE 
0001 0019 V$7 EQU 2S 
0002 0011 7E19 LACK V$7 LOAD AC WITH V$7 
0012 0012 5007 L$2 SACL A,O RESTORE A 
0013 0013 ?FSA L$3 ROVM CONTINUE 

EXAMPLE 2: 

0013 SAT A,C,D 
0001 0014 7F8B SOVM SET OVERFLOW MODE 
0002 OOlS 2002 11 LAC D,O LOAD UPPER BOUND D 
0003 0016 1007 SUB A,O COMPARE TO A 
0004 0017 FDOO BGEZ L$8 BRANCH IF A<=D 

001a 001c 1 

ooos 0019 2002 11 LAC D,O RELOAD D AS VALUE 
0006 OOlA F900 B L$9 BRANCH TO CONTINUE 

OOlB 0021 1 

0007 001c 1 L$8 EQU $ CHECK LOWER 
0008 OOlC 2000 11 LAC c,o LOAD LOWER BOUND C 
0009 OOlD 1007 SUB A,0 COMPARE TO A 
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SAT 

~ 
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0010 OOlE FBOO 
OOlF 0022' 

0011 0020 2000 11 

0012 0021 5007 L$9 
0013 0022 7F8A L$10 

BLEZ L$10 

LAC C,O 
SACL A,O 
ROVM 

BRANCH IF A>C 

RELOAD C AS VALUE 
RESTORE A 
CONTINUE 

SAT 

-
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SBAR Subtract Variable from Auxliary Register - Macro 

TITLE: Subtract Variable from Auxiliary Register 

NAME: SBAR 

OBJECTIVE: Subtract data word from named auxiliary register 

ALGORITHM: (ACAR) - (dma) - ACC 
(ACC)-AR 

CALLING 
SEQUENCE: SBAR AR, B [,TEMP] 

ENTRY 
CONDITIONS: AR = 0, 1; 0 ~ B ~ 127; 0 ~TEMP~ 127 

EXIT 
CONDITIONS: Difference between memory location and auxiliary register is stored in 

named auxiliary register 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 
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5 - 7 words (plus LDAC$ routine) 

0 - 2 levels 

DATA 
MEMORY 
REQUIRED: 2 words 

EXECUTION 
TIME: 5 - 17 cycles 

SBAR 
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SBAR 
FLOWCHART: SBAR 

BEGIN 

NO LET XRO BE 

1183 

STORE AUXILIARY 
REGISTER IN 
TEMPORARY 

LOAD ACC WITH 
TEMPORARY 

SUBTRACT VARIABLE 
FROM ACC 

SAVE ACC IN 
TEMPORARY 

RELOAD AUXILIARY 
REGISTER 

END 

SOURCE: 

*SUB FROM AR 
*A IS ARl OR ARO 
*B IS CONST OR VAR 
* SBAR $MACRO A,B,T 

$IF T.L=O ASSIGN TEMP 
$ASG 'XRl' TO T.S 
$ENDIF 
SAR :A:, :T: SAVE :A: 
$IF B.SA&$UNDF 
$ASG -B.V TO B.V 
LCAC :B.V: LOAD - :B: VALUE 
ADD :T:, 0 ADD :T: VALUE 
$ELSE 
LAC :T:,O LOAD :T: 
SUB :B:,O SUB :B: VALUE 

.TEMPORARY 

CALL LCAC 
TO LOAD 

CONSTANT 
IN Ace· 

ADD TEMP TO 
ACC 

SBAR 
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-

SBAR· 
$ENDIF 
SACL :T: ,0 
LAR :A:, :T: 
$END 

EXAMPLE 1: 

0007 
0001 0006 3103 11 

0002 
0001 FFFD V$1 
0002 0007 F800 

0008 0000 
0003 
0004 0009 FFFD 
0003 OOOA 0003 11 

0004 0008 5003 11 

0005 oooc 3903 11 

EXAMPLE 2: 

0009 
0001 OOOD 3008 
0002 OOOE 2008 
0003 OOOF 100411 

0004 .0010 5008 
0005 0011 3808 

EXAMPLE 3: 

0011 
0001 0012 3003 11 

0002 0013 2003 11 

0003 0014 1005 11 

0004 0015 5003 11 

0005 0016 3803 11 

7-128 

RESTORE 
RELOAD :A: 

SBAR ARl,3 
SAR ARl,XRl 
LCAC -3 

EQU -3. 
CALL LDAC$ 

· REF LDAC$ 
DATA V$1 

ADD XiU,O 
SACL XRl,O 
LAR ARl,XRl 

SBAR ARO,C,I 
SAR ARO,B 
LAC B;O 
SUB C,O 
SACL B,0 
LAR ARO,B 

SBAR O~D 
SAR O,XR1 
LAC XRl,O 
SUB D,O 
SACL XR1 1 0 
LAR O,XRl 

SAVI AIU 
LOAD -3 VlLlll 

LOAD AC WITM: 

vu 
ADD X~l V.i.1.UI 
lESTOltl 
RILOM> Ul 

SA.VI UO 
LOAI> I 
SUI C VAl,.UI 
RISTOlll 
RELOAD UO 

SAVI 0 
LOAD Dl 
sua IJ V.U.UI 
ltlSTOl.I 
ltlLOlD 0 

SBAR 
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SBIC Clear Single Bit . in Data Word - Macro 

TITLE: Clear Single Bit in Data Word 

NAME: SBIC 

OBJECTIVE: Clear bit in data word specified by bit position argument 

ALGORITHM: (A) .AND .. NOT. 2bit-. (A) 

CALLING 
SEQUENCE: SBIC bit,A 

ENTRY 
CONDITIONS: 0 ~A~ 127; 0 ~bit~ 15 

EXIT 
CONDITIONS: A contains initial value with specified bit cleared 

PROGRAM 
MEMORY 
REQUIRED: 4words 

STACK 
REQUIRED: None 

FLOWCHART: SBIC 

1183 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

BEGIN 

SET SINGLE BIT 
IN ACC 

INVERT 
ACC 

CLEAR BIT OF 
DATA WORD 

INACC 

RESTORE DATA TO 
MEMORY 

END 

2words 

4 cycles 

SBIC 

-
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SBIC 

SOURCE: 

*BIC·A SELECTED BIT 
*A IS BIT NUMBER 
*B IS VAR 
* SBIC $MACRO A,B 

LAC ONE, :A: 
XOR MINUS 
AND :B: 
SACL :B: ,0 
$END 

EXAMPLE 1: 

0012 
0001 OOOA 2802 11 

0002 oooa 7803 11 

0003 oooc 7900 11 

0004 OOOD 5000 11 

EXAMPLE 2: 

0014 
0001 OOOE 2302 11 

0002 OOOF 7803 11 

0003 0010 7901 11 

0004 0011 5001'' 

EXAMPLE 3: 
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0016 
0001 0012 2C02 11 

0002 0013 7803 11 

0003 0014 7908 
0004 0015 5008 

SINGLE BIT CLEAR 
GET SELECT BIT 
INVERT MASK 
AND :B: 
STORE TO :B: 

SBIC B,C 
LAC ONE,B 
XOR MINUS 
AND C 
SACL C,O 

SBIC 3,D 
LAC ONE,3 
XOR MINUS 
AND D 
SACL D,O 

SBIC 12,B 
LAC ONE,12 
XOR MINUS 
AND B 
SACL B,O 

GET SELECT BIT 
INVERT MASK 
AND C 
STORE TO C 

GET SELECT BIT 
INVERT MASK 
AND D 
STORE TO D 

GET SELECT BIT 
INVERT MASK 
AND B 
STORE TO B 

SBIC 

1183 



SBIS Set Single Bit in Data Word - Macro 

TITLE: Set Single Bit in Data Word 

NAME: SBIS 

OBJECTIVE: Set bit in data word specified by bit position argument 

ALGORITHM: (data) .OR. 2bit - data 

. CALLING. 
SEQUENCE: SBIS bit,A 

ENTRY 
CONDITIONS: 0 ~A~ 127; 0 ~bit~ 15 

EXIT 
CONDITIONS: A contains initial value with specified bit set 

PROGRAM 
MEMORY 
REQUIRED: 3words 

STACK 
REQUIRED: None 

FLOWCHART: SBIS 

1183 

SOURCE: 

*SET SELECTED BIT 
*A IS BIT NUMBER 
*B IS VAR 
* SBIS $MACRO A,B 

LAC ONE, :A: 
OR :B: 
SACL :B: ,0 
$END 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

BEGIN 

SET SINGLE BIT 
IN ACC 

OR ACC WITH 
DATA WORD 

RESTORE DATA WORD 
TO MEMORY 

END 

SINGLE BIT SET 
GET SELECT BIT 
SET TO :B: 
RESTORE 

1 word 

3 cycles 

SBIS 

-
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SBIS SBIS 
EXAMPLE 1: 

0012 SBIS B,C 
0001 0009 2802 11 LAC ONE,B GET SELECT BIT 
0002 OOOA 7A00 11 OR c SET TO C 
0003 OOOB 5000 11 SACL C,O RESTORE 

EXAMPLE 2: 

0014 SBIS 3,D 
0001 oooc 2302" LAC ONE,3 GET SELECT BIT 
0002 0000 7A01 11 OR D SET TO D 
0003 OOOE 5001" SACL D,O RESTORE 

EXAMPLE 3: 

0016 SBIS 12,B 
0001 OOOF 2C02 11 LAC ONE,12 GET SELECT BIT 
0002 0010 7A08 OR B SET TO B 
0003 0011 5008 SACL B,O RESTORE 
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SBIT Test Single Bit in Data Word - Macro 

TITLE: Test Single Bit in Data Word 

NAME: SBIT 

OBJECTIVE: Test bit in data word specified by bit position argument 

ALGORITHM: data .AND. 2bit- ACC 

CALLING 
SEQUENCE: SBIT bit,A 

ENTRY 
CONDITIONS: 0 < A< 127; 0 < bit< 15 

EXIT 
CONDITIONS: ACC contains zero if specified bit is cleared, non-zero else 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

2words 

None 

FLOWCHART: SBIT 

1183 

SOURCE: 

*TEST SELECTED BIT 
*A IS BIT NUMBER 
*B IS VAR TO TEST 
* SBIT $MACRO A,B 

LAC ONE, :A: 
AND :B: 
$END 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

BEGIN 

SET SINGLE BIT 
IN ACC 

AND ACC WITH 
DATA WORD 

END 

SINGLE BIT TEST 
GET BIT :A: 
TEST FOR IT 

1 word 

2 cycles 

SBIT 

-
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SBIT 

EXAMPLE: 
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0014 
0001 OOOA 2302 11 

0002 OOOB 7901 11 

SBIT 3,D 
LAC ONE,3 
AND D 

GET BIT 3 
TEST FOR IT 

SBIT 
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STOX Convert Single Word to Double Word - Macro 

TITLE: Convert Single Word to Double Word 

NAME: STOX 

OBJECTIVE: Convert single word to a double word and save 

ALGORITHM: (A) - B:B + 1 

CALLING 
SEQUENCE: STOX single,double 

ENTRY 
CONDITIONS: 0 ~ single~ 127 ; 0 ~ double~ 127 

EXIT 
CONDITIONS: Double word contains value of single word 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

3words 

None 

FLOWCHART: STOX 

SOURCE: 

*SINGLE TO DOUBLE (A TO B) 
* 

BEGIN 

DATA 
MEMORY 
REQUIRED: None 

EXECUTION 
TIME: 3 cycles 

LOAD SINGLE WORD 
INTO ACC 

SAVE AS 
DOUBLE WORD 

END 

STOX $MACRO A,B 
LAC :A:,O 
SACX :B: 
$END 

LOAD SINGLE 
STORE DOUBLE 
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STOX. 
EXAMPLE: 

0011 

7~136 

0001 0006 2007 
0002 
0001 0007 5802 11 

0002 0008 5003 11 

STOX A,D 
LAC A,O 
SACX D 

SACH D~O 
SACL D+l,0 

LOAD SINGLE 
STORE DOUBLE 
STORE HIGH 
STORE LOW 

STOX 
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SUBX Doubla:..Word Subtract - Macro 

TITLE: Double-Word Subtract 

NAME: SUBX 

OBJECTIVE: Subtract double word from accumulator 

ALGORITHM: SUBX * - causes- (ACC) - (@AR:@AR + 1) - ACC 

CALLING 

SUBX * - - causes- (ACC) - (@AR-1:@AR) - ACC 
(AR) - 2-AR 

SUBX * + - causes- (ACC) - (@AR:@AR + 1) - ACC 
(AR)+ 2-AR 

SlJBX A - causes- (ACC) - (A:A + 1 ) - ACC 

SEQUENCE: SUBX {A,*,*-,*+} . 

ENTRY 
CONDITIONS: 0 4' A 4' 127 

·.EXIT 
CONDITIONS: Accumulator contains updated value after subtraction; 

auxiliary register is updated if necessary 

PROGRAM 
MEMORY 
REQUIRED: 

·STACK 
REQUIRED: 

uaa 

2words 

None 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

None 

2cycles 

SUBX 

-

7-1~7 



SUBX 
FLOWCHART: SUBX 

SUBTRACT @AR 
AND @AR+ 1 

YES 

SUBTRACT @AR YES 
AND @AR+1 

AR = AR+2 

SUBTRACT A AND A+ 1 

SOURCE: 

*SUBTRACT DOUBLE 
* 
SUBX $MACRO A SUBTRACT DOUBLE 

$VAR ST,SM,SP 
$ASG '*' TO ST.S 
$ASG '*+' TO SP.S 
$ASG '*-' TO SM.S 
$IF A.SV=ST.SV 
SUBH *+ SUBTRACT HIGH 
SUBS *- SUBTRACT LOW 
$ELSE 
$IF A.SV=SP.SV 
SUBH *+ SUBTRACT HIGH 
SUBS *+ SUBTRACT LOW 
$ELSE 
$IF A.SV=SM.SV 
SUBS *- SUBTRACT LOW 
SUBH *- SUBTRACT HIGH 
$ELSE 
SUBH :A: SUBTRACT HIGH 
SUBS :A:+l SUBTRACT LOW 
$ENDIF 
$ENDIF 
$ENDIF 
$END 
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END 

YES SUBTRACT @AR 
AND @AR-1 

AR = AR-2 

SUBX 
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SUBX SUBX 

EXAMPLE 1: 

0011 SUBX A 
0001 0006 6207 SUBH A SUBTRACT HIGH 
0002 0007 6308 SUBS A+l SUBTRACT LOW 

EXAMPLE 2: 

0013 SUBX * 
0001 0008 62A8 SUBH *+ SUBTRACT HIGH 
0002 0009 6398 SUBS *- SUBTRACT LOW 

EXAMPLE 3: 

0015 SUBX *-
0001 OOOA 6398 SUBS *- SUBTRACT LOW 
0902 OOOB 6298 SUBH *- SUBTRACT HIGH 

EXAMPLE 4: 

0017 SUBX *+ 
0001 OOOC 62A8 SUBH *+ SUBTRACT HIGH 
0002 0000 63A8 SUBS *+ SUBTRACT LOW 

EXAMPLE 5: 

0019 SUBX 3 
0001 OOOE 6203 SUBH 3 SUBTRACT HIGH 
0002 OOOF 6304 SUBS 3+1 SUBTRACT LOW 

-
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TST Test Word - Macro 

TITLE: Test Word 

NAME: TST 

OBJECTIVE: Load word into accumulator, allowing comparison with zero 

ALGORITHM: (A)-ACC 

CALLING 
SEQUENCE: · TST {A,*,* - , * + } 

ENTRY 
CONDITIONS: 04itA~127 

EXIT 
CONDITIONS: Accumulator contains value of word 

PROGRAMM 
MEMORY 
REQUIRED: 1 word 

STACK 
REQUIRED: None 

FLOWCHART: TST 

SOURCE: 

*TEST SINGLE VAR 
* TST $MACRO A 

LAC :A: ,0 
$END 

EXAMPLE 1: 

0007 
0001 0006 2001 

7-140 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

BEGIN 

LOAD ACC WITH 
WORD 

END 

COMPARE TO ZERO 
LOAD IT 

TST A 
LAC A,0 LOAD IT 

None 

1 cycle 

TST 
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TST TST 
EXAMPLE 2: 

0009 TST * 
0001 0007 2088 LAC *,O LOAD IT 

EXAMPLE 3: 

0011 TST c 
0001 0008 200411 LAC C,0 LOAD IT 

EXAMPLE 4: 

0013 TST *+ 
0001 0009 20A8 LAC *+,0 LOAD IT 

-
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TSTX Test Double Word - Macro 

TITLE: Test Double Word 

NAME: TSTX 

OBJECTIVE: load double word into accumulator, allowing comparison with zero 

ALGORITHM: TSTX* -causes- (@AR:@AR + 1) - ACC 

TSTX * - - causes- (@AR - 1 :@AR) - ACC 
(AR) - 2 _:·AR 

TSTX * + - causes- (@AR:@ AR+ 1) - ACC 
(AR)+ 2-AR 

TSTXA -causes- (A:A + 1) - ACC 

CALLING 
SEQUENCE: TSTX {A,*,* - , * + } 

ENTRY 
CONDITIONS: O~A~ 127 

EXIT 
CONDITIONS: Accumulator contains value of double word; 

auxiliary register is updated if necessary 

PROGRAM 
MEMORY 
REQUIRED: 

STACK 
REQUIRED: 

7-142 

2words 

None 

DATA 
MEMORY 
REQUIRED: 

EXECUTION 
TIME: 

None 

2 cycles 

TSTX. 
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TSTX 
FLOWCHART: TSTX 

1183 

LOAD @AR 
AND @.&:R+ 1 

SOURCE: 

*TEST DOUBLE VAR 

* TSTX $MACRO A 
LDAX :A: 
$END 

EXAMPLE 1: 

0011 
0001 
0001 0006 6507 
0002 0007 6108 

EXAMPLE 2: 

0013 
0001 
0001 0008 65A8 
0002 0009 6198 

EXAMPLE 3: 

0015 
0001 
0001 OOOA 6698 
0002 OOOB 6098 

LOAD @AR 
AND @.&:R+ 1 

AR = AR+2 

LOAD A AND A+1 

COMPARE TO ZERO DOUBLE 
LOAD IT DOUBLE 

TSTX A 
LDAX A 

ZALH A 
ADDS A+l 

TSTX * 
LDAX * 

ZALH *+ 
ADDS *-

TSTX *­
LDAX *­

ZALS *-
ADDH *-

END 

LOAD IT DOUBLE 
LOAD HIGH A 
LOAD LOW A 

LOAD IT DOUBLE 
LOAD HIGH 
LOAD LOW 1 * 1 

LOAD IT DOUBLE 
LOAD LOW 
LOAD HIGH 1 *- 1 

LOAD @AR 
AND @AR+1 

AR= AR+2 

TSTX 

-
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TSTX 
EXAMPLE 4: 

0017 

7-144 

0001 
0001 OOOC 65A8 
0002 OOOD 61A8 

TSTX *+ 
LDAX *+ 

ZALH *+ 
ADDS *+ 

LOAD IT DOUBLE 
LOAD HIGH 
LOAD LOW I *+I 

TSTX 
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XTOS· Convert Double Word to Single Word - Macro 

TITLE: Convert Double Word To Single Word 

NAME: XTOS 

OBJECTIVE: Convert double word to a single word and save 

ALGORITHM: If (A:A + 1) > 32767 then 32767 - B 
Else if (A:A + 1 ) < - 32768 then - 32768 - B 

Else (A+1) - B 

CALLING 
SEQUENCE: XTOS double,single 

ENTRY 
CONDITIONS: 0 ~ single~ 127 ; 0 ~ double~ 127 

EXIT 
CONDITIONS: Single word contains value of double word or saturation value 

PROGRAM 
MEMORY 
REQUIRED: 27 words ( + LDAC$ routine) 

STACK 
REQUIRED: 2 levels 

1183 

DATA 
MEMORY 
REQUIRED: 2 words 

EXECUTION 
TIME: 33 - 50 cycles 

XTOS 
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XTOS 
FLOWCHART: XTOS 

LOAD -32768 
INTO ACC 

BEGIN 

COMPARE DOUBLE 
WORD WITH 32767 

COMPARE DOUBLE 
WORD WITH -32768 

LOAD DOUBLE WORD 
INTO ACC 

SAVE ACC LOW IN 
SINGLE WORD 

END 

SOURCE: 

*DOUBLE TO SINGLE (A TO B) 
* XTOS $MACRO A,B 

$VAR L,Ll,L2,L3 
$ASG 1 $$LAB 1 TO L.S 
$ASG L.SV+3 TO L.SV GET LABEL 
$ASG L.SV-2 TO Ll.V 
$ASG L.SV-1 TO L2.V 
$ASG L.SV TO 13.V 
LCAC 32767 GET BIGGEST SINGLE 
SUBX :A: COMPARE :A: 
BGEZ L$:Ll.V: IF :A: >= 32767 THEN 
LCAC 32767 SATURATE AT 32767 
B L$ :L3. V: JUMP TO DONE 

L$:Ll.V: LCAC -32768 GET MOST NEG SINGLE 
SUBX :A: COMPARE :A: 
BLEZ L$:L2.V: IF :A: <= -32768 THEN 
LCAC -32768 SATURATE AT -32768 
B L$ :L3. V: JUMP TO DONE 

L$:L2.V: LDAX :A: LOAD :A: 
L$:L3.V: SACL :B:,O RESTORE TO :B: 

$END 
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LOAD 32767 
INTO ACC 

XTOS 
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XTOS 
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EXAMPLE: 

0013 XTOS C,B 
0001 LCAC 32727 
0001 7FD7 V$11 EQU 32727 
0002 0021 F800 CALL.LDAC$ 

0022 0000 
0003 
0004 0023 7FD7 
0002 0024 
0001 0024 6200 11 

0002 0025 6301 11 

0003 0026 FDOO 
0027 002D' 

0004 0028 
0001 7FD7 
0002 0028 F800 

0029 0000 
0003 
0004 002A 7FD7 
0005 002B F900 

002C 003B' 
0006 002D 
0001 8000 
0002 002D F800 

002E 0000 
0003 
0004 002F 8000 
0007 0030 
0001 0030 6200 11 

0002 0031 6301 11 

0008 0032 FBOO 
0033 0039' 

0009 0034 
0001 8000 
0002 0034 F800 

0035 0000 
0003 
0004 0036 8000 
0010 0037 F900 

0038 003B' 
0011 0039 
0001 0039 6500 11 

0002 003A 6101 11 

REF LDAC$ 
DATA V$11 

SUBX C 
SUBH C 
SUBS C+l 

BGEZ 1$8 

LCAC 32727 
V$12 EQU 32727 

CALL LDAC$ 

REF LDAC$ 
DATA V$12 

B L$10 

L$8 LCAC -32768 
V$13 EQU -32768 

CALL LDAC$ 

REF LDAC$ 
DATAV$13 

SUBX C 
SUBH C 
SUBS C+l 

BLEZ L$9 

LCAC -32768 
V$14 EQU -32768 

CALL LDAC$ 

L$9 

REF LDAC$ 
DATA V$14 

B L$10 

0012 0038 5009 L$10 

LDAX C 
ZALH C 
ADDS C+l 

SACL B,0 

GET BIGGEST SINGLE 

LOAD AC WITH: 

V$11 
COMPARE C 
SUBTRACT HIGH 
SUBTRACT LOW 
IF C >= 32767 THEN 

SATURATE AT 32767 

LOAD AC WITH: 

V$12 
JUMP TO DONE 

GET MOST NEGATIVE SINGLE 

LOAD AC WITH: 

V$13 
COMPARE C 
SUBTRACT HIGH 
SUBTRACT LOW 
IF C <= -32768 THEN 

SATURATE AT -32768 

LOAD AC WITH: 

V$14 
JUMP TO DONE 

LOAD C 
LOAD HIGH C 
LOAD LOW C 
RESTORE TO B 

XTOS 

.•..... ··.·. 

,~· 
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7.4 STRUCTURED PROGRAMMING MACROS 

The program structure macros, PROG AND MAIN, need to be used with most of the other macros 
described in Section 7 .3 in order to set up internal symbols and utility variables used by those. 
macros. 

PROG Begin Program - Macro PROG 
PROG - Begin Program 

The program directive does two things. First, it defines the module IDT name (the name of the module 
printed on the link editor memory map listing). More importantly, it initiali:z:es several internal symbols used 
in many of the macros from Section 7 .3. Syntax is as follows: 

PROG<name> 

Where < name> is a string of up to six characters. This name is used to generate: 

IDT'< name>' 

To end the module, use the assembly language END statement: 

END 

SOURCE: 

* * Prog Routine Initializes Internal Variables, and * Outputs IDT Statement 
* 
PROG $MACRO A 

$VAR Q 
$ASG I I I I TO Q • s 
IDT :Q: :A: :Q: 

* * Initialize unique label counter 
* 

* 

$ASG '$$LAB' TO Q.S 
$ASG 0 TO Q.SV 

* Assign unique values to indirect symbols 
* 

$ASG '*' TO Q.S 
$ASG >FOFO TO Q.SV 
$ASG '*+' TO Q.S 
$ASG >FOFl TO Q.SV 
$ASG 1 *- 1 TO Q.S 
$ASG >FOF2 TO Q.SV 
$END 
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MAIN Begin Main Procedure - Macro MAIN 
MAIN- Begin Main Procedure 

MAIN<name> 

The MAIN directive begins the main procedure. < name> is the label (created by the macro) of the first . 

instruction of the main routine (up to six characters). MAIN allocates the variables.ONE, MINUS, XRO,and 

XR1 in data RAM (in the DSEG), and initializes ONE to 1, and MINUS to -1. 

1183 

SOURCE: 

* * Main Procedure Definition Macro 

* * A is Main Program Name (<G CHAR) 

* MAIN $MACRO 
PSEG 
DEF :A: 

:A: EQU $ 

* * Initialize Variables 
* 

* 

LACK 1 . 
SACL ONE,O 
ZAC 
SUB ONE,O 
SACL MINUS,0 

* Data Segment 
* 
ONE 
MINUS 
XRO 
XRl 

DSEG 
BSS 1 
BSS 1 
BSS 1 
BSS 1 
DEF ONE,MINUS 
DEF XRO,XRl 
DEND 
$END 

A 
PROG SEG 
ENTRY POINT 

MAKE CONSTANT ONE 
SAVE IT 
ZERO ACCUMULATOR 
MAKE -1 
SAVE IT 

CONSTANT ONE 
CONSTANT -1 
TEMP 0 
TEMP 1 
ALLOW EXTERNAL USE 
OF VARIABLES 
END OF DATA 

EXAMPLES OF PROG AND MAIN USAGE: 

* 
* 
* 

MLIB 'MACROS' 

PROG MACTST 

Declare directory of macros, 
including PROG and MAIN 
Set up symbol table variables 
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DSEG 
VARl BSS 1 
VAR2 BSS 1 

* 
* 
* DENO 

User's program variables 

* 
* 
* 
* 
* 
* 
* 

I 
Interrupt Routine (user defined) 

I 
MAIN. START Start of main routine 

* 
: I 

. * Main Program - Instructions and Macros 

: I 
END 

LISTING: 
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0001 0000 
0002 
0003 
0001 
0004 
0005 
0006 0000 
0007 0000 
0008 0001 
0009 
0010 
0011 
0012 0002 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0001 0000 
0002 
0003 0000 1 

0004 0000 7E01 
0005 0001 5002 11 

0006 0002 7F89 
0007 0003 1002 11 

0008 0004 5003 11 

0009 0002 
0010 0002 
0011 0003 
0012 0004 
0013 0005 
0014 
0015 
0016 0006 
0021 

MLIB 
* PROG 

IDT 
* 
* DSEG 
VAR,! BSS 1 
VAR2 BSS 1 

* 
* 
* DENO 

'MACROS' 

MA CT ST 
1MACTST 1 

Declare directory of macros, 
including PROG and MAIN 
Set up symbol table variables 

User's program variables 

* 
* 
* 
* 

I 
Interrupt Routine (user defined) 

* 
* 
* 

START 

ONE 
MINUS 
XRO 
XRl 

* 

I 
MAIN START 

PSEG 
DEF START 

EQU $ 
LACK 1 
SACL ONE,O 
ZAC 
SUB ONE,O 
SACL MINUS,O 
DSEG 
BSS 
BSS 
BSS 
BSS 
DEF 
DEF 
DENO 

1 
1 
1 
1 
ONE,MINUS 
XRO,XRl 

Start of main routine 
PROG SEG 

ENTRY POINT 

MAKE CONSTANT ONE 
SAVE IT 
ZERO ACCUMULATOR 
MAKE -1 
SAVE IT 

CONSTANT ONE 
CONSTANT -1 
TEMP 0 
TEMP 1. 
ALLOW EXTERNAL USE 
OF VARIABLES 
END OF DATA 
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0022 * 
0023 * I 0024 * 
0025 * Main Program - Instructions and Macros 
0026 * I 0027 * 
0028 END 

7.6 UTILITY SUBROUTINES 

The subroutines in this section are called by many of the macros described in Section 7 .3. 
Subroutines are used to save program space. Instead of inserting the code into each macro, the 
code occurs as a separate subroutine. Since the code is not expanded with each macro call, 
program space is saved. These routines should be assembled separately from the calling program 
and linked with the main program. 

SOURCE FILE OF UTILITY SUBROUTINES: 

1183 

IDT 'SUBR' 
* * SUBROUTINES USED AS UTILITIES IN VARIOUS MACRO LANGUAGE EXTENSIONS 
* AND SIGNAL PROCESSING LANGUAGE MACROS. 

* 

* 

REF ONE,MINUS 
REF XRO,XRl 

* LDAC$ - Load the accumulator with value found in program memory 
* at location pointed to by address on the top of the stack. 

* DEF LDAC$ 
LDAC$ POP 

* 
* 

TBLR XRO 
ADD ONE 
PUSH 
LAC XRO 
RET 

* RIP$ - SUBROUTINE USED FOR LOOPED VERSION OF RIPPLE MACRO 

* DEF RIP$ 
RIP$ POP 

TBLR XRO 
LAR ARO,XRO 
LARP ARO 
MAR *-
SAR ARO,XRO 
ADD ONE 
TBLR XRl 
LAR ARl,XRl 
SACL XRl 
LAC XRO 
SAR ARl,XRO 

. ADD XRO 
SACL XRO 
LAR ARl,XRO 

RIP$L LARP ARl 
DMOV *-,ARO 
BANZ RIP$L 
LAC XRl 
ADD ONE 

1st argument = length 
RO = count 

Decrement count 
Store L-1 in XRO 
Increment argument pointer 
2nd argument = address 
Save address in Rl 
Save argument pointer 
ACC = L-1 
Get address from Rl 
ACC = address + L-1 
Save address 
Rl = address pointer 

Shift data 

Restore argument pointer 
Decrement argument pointer 
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* 

PUSH 
RET 

Put return address on top ot stack 

* LDAX$ - Load accumulator with double word 
* DEF LDAX$ 
LDAX$ POP 

TBLR XRl 
ADD ONE 
TBLR XRO 
ADD ONE 
PUSH 
ZALH XRl 
ADDS XRO 
RET 

* 

Get address of constants 
Read upper half 

Read lower half 

Load upper half 
Load lower half 

* LDAR$0 - Load Auxiliary Register 0 with word from program memory 
* 

DEF LDAR$0 
LDAR$0 POP 

TBLR XRO 

* 

LAR ARO,XRO 
ADD ONE 
PUSH 
RET 

Get address of word 
Read word into data memory 
Load into ARO 

Restore return address 

* LDAR$1 - Load Auxiliary Register 1 with word from program memory 
* DEF LDAR$1 
LDAR$1 POP 

* 

TBLR XRO 
LAR ARl,XRO 
ADD ONE 
PUSH 
RET 

Get address of word 
Read word into data memory 
Load into ARl 

Restore return address 

* LTK$ - Load T Register with word from program memory 
* DEF LTK$ 
LTK$ POP 

* 

TBLR XRO 
LT XRO 
ADD ONE 
PUSH 
RET 

Get address of word 
Read word into data memory 
Load word into T register 

Restore return address 

* Instructions for MOVE macro. There are four different entry 
* positions, but all of them use code starting at MOV$M to do * actual data transfer. 
* 
* * MOVAB$ - MOVE A,B 
* MOVAB$ POP 

TBLR XRO 
LAR ARO,XRO 
ADD ONE 

MOVB$$ TBLR XRO 

* * MOVA$ 
* 
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LAR ARl,XRO 
ADD ONE 
B MOV$M 

- MOVE A,* 

Read A into ARO 

Read B into ARl 

Move data 
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MOVA$ POP 
TBLR XRO 

* 

LAR ARO,XRO 
ADD. ONE 
B MOV$M 

* MOVB$ - MOVE *,B 
* MOVB$ POP 

* * MOV$$ 
* MOV$$ 
MOV$M 

MOV$L 

B MOVB$$ 

- MOVE *,* 

POP 
TBLR XRO 
SACL XRl 
LARP 0 
LAC *+,0,ARl 
SACL *+,0,ARO 
LAC XRO 
SUB ONE 
SACL XRO 
BNZ MOV$L 
LAC XRl 
ADD ONE 
PUSH 
RET 

Move A into ARO 

Move B into ARl 

Read number of elements to move 
Save return address 

Move @ARO to ACC 
Move ACC to @ARl 

Decrement loop counter 

Loop back for anpther move 

Restore· return address 

DEF MOVAB$,MOVA$,MOVB$,MOV$$ 
* * SETS$ - Move constant into L positions of data memory 
* SETS$ POP 

TBLR XRO 
ADD ONE 
TBLR XRl 
LAR ARO,XRl 
LARP 0 
MAR *-
ADD ONE 
TBLR XRl 
LAR AR1,XR1 
SACL XR1 
LAC XRO 

SET$L LARP 1 

* 

SACL *+,O,ARO 
BANZ SET$L 
LAC XRl 
ADD ONE 
PUSH 
RET 
DEF SETS$ 

Get 1st argument - constant 

Get 2nd argument - count 
Use ARO as counter 

Get .. 3rd argument - destination 
Use AR1 as pointer 
Save return address 
Load constant into accumulator 

Move constant to data memory 
Repeat L times 

Restore return address 

* MOVC$ AND MOVC$1 - Move list of constants to data memory 
* MOVC$ POP 

TBLR XRO 
LAR ARl,XRO 
ADD ONE 
B MOVC$M 

MOVC$1 POP 
MOVC$M TBLR XRO 

LAR ARO,XRO 
LARP 0 
MAR *-

Get argument pointer 
1st argument = destination 
.Use ARl as pointer 
Increment argument pointer 

Read length of.data 
ARO is loop counter 

Decrement counter 

... -·· .. 

. ·~· ' 

~~·._; 
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ADD ONE Increment argument pointer 
MOVC$L LARP 1 

TBLR *+,ARO Read constant 
ADD ONE 
BANZ MOVC$L Loop for length of data 
PUSH Restore return address 
RET 
DEF MOVC$,MOVC$1 

* * ~outines for MOVDAT macro 
* * MOVA$B - MOVDAT A,B,L 
* 
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MOVA$B POP 
TBLR XRO 
LAR ARO,XRO 
ADD ONE 

MOVCB$ TBLR XRO 

* 

LAR ARl,XRO 
ADD ONE 
B MOV$$M 

1st Argument is source 

Increment pointer 
Next argument is destination 

Increment pointer 

* MOVC$A - MOVDAT A,*,L or MOVDAT A,,L 
* MOVC$A POP 

TBLR XRO Read source argument 
LAR ARO,XRO 
ADD ONE Increment pointer 
B MOV$$M 

* * MOVC$B - MOVDAT *,B,L or MOVDAT ,B,L 
* MOVC$B POP 

B MOVCB$ Get destination argument 
* * MOVC$$ - MOVDAT ,*,Lor MOVDAT *,,Lor MOVDAT *,*,L 
* MOVC$$ POP 
MOV$$M SAR ARO,XRO 

TBLR XRl 
LAR ARO,XRl 
LARP 0 
MAR *-
SACL XRl 
LAC XRO 

MOV$$L LARP 1 
TBLR *+,ARO 
ADD ONE 
BANZ MOV$$L 
l..AC XRl 
ADD ONE 
PUSH 
RET 

Save source location 
Read length 

Decrement count 
Save return address 
Load start address 

Move to data memory 
Update source pointer 
Loop on array length 

Restore return address 

DEF MOVA$B,MOVC$A,MOVC$B,MOVC$$ 
* * MOVROM routines 
* * TBW$$ - MOVROM A,B,L 
* TBW$$ POP 

TBLR XRO 
LAR ARO,XRO 
ADD ONE 

TBW0$ TBLR XRO 

Read source address 

Update pointer 
Read destination address 
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LAR ARl,XRO 
ADD ONE 
B TBW$M 

Update pointer 

* TBW$1 - MOVROM A,*,L or MOVROM A,,L 
* TBW$1 POP 

TBLR XRO 
LAR ARO,XRO 
ADD ONE 

Read source address 

Update pointer 
B TBW$M 

* 
* TBW$0 - MOVROM *,B,L or MOVROM ,B,L 
* 
TBW$0 POP 

B TBW0$ Read destination address 
* 
* TBW$$ - MOVROM *,*,L or MOVROM *,,Lor MOVROM ,*,L 
* 
TBW$01 POP 
TBW$M SAR ARl,XRO Save destination address 

TBLR XRl Read length of move 
LAR ARl,XRl 
LARP 1 
MAR *- Decrement counter 
SACL XRl Save return address 
LAC XRO Load destination address 

TBW$L LARP 0 
TBLW *+,ARl Move data 
ADD ONE Increment pointer 
BANZ TBW$L Loop on length 
LAC XRl 
ADD ONE 
PUSH Restore return address 
RET 
DEF TBW$$,TBW$1,TBW$0,TBW$01 
END 

* End of subroutines 
-
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8. DIGITAL Sl.GNAL PROCESSING 

All of the digital $ignal processing information presented in this Section 8 has been provided to 
Texas Instruments by Ronald W. Schafer, Russell M. Mersereau, and Thomas P. Barnwell, Ill, of 
Atlanta Signal Processors, Inc., and of Georgia Institute of Technology, School of Electrical 
Engineering. 

The purpose of this section is to review the fundamentals of digital signal processing in order to 
highlight some of the important features of the digital approach and to illustrate how DSP 
techniques can be applied. The important issues in sampling analog signals wiU be presented, 
followed by a discussion of the basic theory of discrete signals and systems. A description of the 
basic algorithms that are widely used in applications of DSP techniques is also provided, along with 
some examples of how DSP can be used in the areas of speech and audio processing and in 
communications. Referral to references listed in Section 8. 7 is indicated by brackets surrounding a 
refererice number. 

8.1 A-TO-D AND D-TO-A CONVERSION 

In most applications, signals originate in analog form, i.e., as continuously varying patterns or 
waveforms. Thus, the first step in applying DSP techniques to a signal is to convert from 
continuous to discrete form, thereby obtaining a representation of the signal in terms of a sequence 
or array of numbers. In practice, this is called analog-to-digital (A-to-0) conversion. 

Once the signal has been represented in discrete form, it can be processed or transfomlecl into 
another sequence or set of numbers by a numerical computation procedure (see Figure 8-1 ) • There 
is also the· possibility of converting from the discrete representation back to analog form using a 
digital-to-analog (D-to-A) converter. This last stage is often not necessary, especially when the 
purpose of digital processing is to automatically extract information from the signal. The study of 
digital signal processing is concerned with both the A-to-D and D-to-A conversion processes as 
well as with the analysis and design of numerical processing algorithms. Although it is important to 
fully understand both aspects, they can be treated somewhat independently. 

- A-TO-D .. .NUMERICAL .. D-TO-A -
(t) - CONVERTER - l'ROCESSOR - CONVERTER -. 

Ya(t) 

FIGURE 8-1 - BLOCK DIAGRAM OF DIGITAL SIGNAL PROCESSING 

A-to-D conversion is conveniently analyzed by representing it as in Figure 8-2. First, it involves a 
sampling operation wherein a sequence x[n] is obtained by periodically sampling an analog signal. 
The samples are: 

x[n] = x8 (nT), --00 < n < +oo. 
(1) 

where Tis th~ sampling period, n is an integer, and 1 /Tis the sampling frequency or sampling rate 
with units of samples/s. (The sampling rate is often stated in units of frequency, i.e., Hz or kHz.) In 
most practical settings, these samples must be represented using binary numbers with finite 
precision. This involves quantizing the sample values. Thus, the sequence of quantized samples is: 

x[n] = Q[x[n]] 
(2) 

where Q[ ] ·is a nonlinear transformation, such as rounding or truncating to the nearest allowed 
amplitude level. 
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SAMPLER QUANTIZER .. 
Xa(t) - x[n] = x(nT) - "<n) 

A-TO-D CONVERTER 

FIGURE 8-2 - ANALOG-TO-DIGITAL CONVERSION PROCESS 

8.1.1 Sample Analysis 

8-2 

The important considerations in the sampling operation can be illustrated by a sinusoidal signal: 
(3) 

The resulting sequence of samples is: 
(4) 

With this signal, it is simple to illustrate that there is a fundamentally unique problem in the 

sampling process, i.e., a given sequence of samples can be obtained by sampling an infinite number 

of anE1log signals. For example, consider the signal: 

Xr(t) = cos((w 0 + 21l'r/T)t) 
(5) 

where r is any positive or negative integer. If the sampling period is T, the sampled sequence is: 

xr[n] = cos((w0 + 21Tr/T)nT) = cos(w 0nT + 21Trn) 

Using a familiar trigonometric identity, xr[nl can be expressed as: 

xr[n] = cos(w0nT) · cos(21Tm) - sin(w 0nT) · sin(21Trn) 

and since both n and r are integers: 

Xr(n] = COS(wonT) = XQ(n) 

(6) 

(7) 

(8) 

Thus, the sequences ><r[n] are all identical to XQ[n], or in other words, the frequencies (w0 + 2nr/T) 

are indistinguishable from the frequency co0 after sampling. This is illustrated in Figure 8-3, where · 

two cosine waves are shown passing through the same sample points. The descriptive term for this 

confused identity is 'aliasing.' The frequency domain representations of the cosine and its aliases 

are shown in Figure 8-4. The positive and negative frequency components of the cosine wave at + 
- c:i>o are shown together.with frequency components at + - (co0 + 2n/T) and at + - (coo -

2n/T) which produce the identical set of samples when the sampling rate is 1 /T. · 
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The ambiguity of this situation can be removed by imposing a constraint on the size of w0 relative to 

the sampling frequency oos = 2n/T (in radians/s). If 000 < n/T, then all of the frequencies oor = (ooo 

+ 2nr /T) will be larger in magnitude than w0 . Thus, there is no ambiguity if it is determined in 

advance that oos > 2oo0 , i.e., SAMPLING MUST OCCUR AT A RATE THAT IS GREATER THAN 

lWICE THE HIGHEST FREQUENCY IN THE SIGNAL This is true in general for any signal whose 

Fourier transform is bandlimited, as explained in the following paragraphs. 

If the above condition is met, it is possible to recover xa(t) from x[n] by continuously interpolating 

between the samples, using an interpolation formula of the form: 

8-3 
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00 

X'a(t) = 1: x[n] · Pa(t-nT) (9) 
n=-00 

If Pa(t) is a square pulse of duration T, the resulting interpolated waveform (reconstructed signal) 
has a staircase appearance, as in Figure 8-5. This is a good model for the output of most practical 
D-to-A converters. A better approximation to the original analog signal can be obtained by 
smoothing th_e sharp pulses with a lowpass filter. [1-4] If the effective pulse shape in (9) is: 

Pa(t) = 
• 7r 

Sin T t 

!t 
T 

(10) 

then the original signal Xa(t) can be recovered from the samples x[n] if the Fourier transform of Xa(t) 
is bandlimited (i.e., identically zero above some frequency which is less than n/T). 
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8.1.2 Sample Quantization 

The other aspect of A-to-D conversion is concerned with the quantization of the samples. Figure 

8-6 shows an eight-level quantizer which illustrates the important aspects of the quantization 

operation. Each quantization level is represented by a binary number (three bits in this case). 

Although the assignment of binary codes to the quantization levels is arbitrary, it is obviously 

advantageous to assign binary symbols in a scheme which permits convenient implementation of 

arithmetic operations on the samples (e.g .•. two's complement, as in Figure 8-6). 

Once the number of quantization levels has been fixed (usually between 28 and 21&·for most signal 

processing applications), the binary numerical representation of the samples is related to the 

amplitude of the analog signal by the quantization stepsize A. The choice of A depends upon the 

peak-to-peak amplitude range of the signal. If the 8-bit code is used, then A should be chosen so 

that: 

fl· 2B =Peak-to-peak signal amplitude 
(11) 

With this constraint, the maximum error in a sample value would be + - A/2, so that in general, 

the average quantization error will be proportional to A. This points up a fundamental dilemma in 

quantization, i.e., for a fixed stepsize, the relative error becomes large as the sample amplitude 

decreases. Thus, if signal amplitude varies widely (i.e., the signal has a wide dynamic range), then it 
may be necessary to use a large number of quantization levels to keep the relative quantization error 

within acceptable limits. Alternative approaches, often used in speech processing, are the use of 

either a nonuniform set of quantization levels or the adaptation of the stepsize to the amplitude of 
the input signal. [21 
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In the uniform stepsize non-adaptive case, it is often useful to represent the quantized signal as: 

x[n] = x[nl + e[n] 
(12) 

where e[n] is, by definition, the quantization error. This model for A-to-0 conversion is depicted in 
Figure 8-7. As seen above: 

-LV2 ~ e[n] < +!S./2 (13) 

As a result, the root mean squared value of e[nJ is proportional to I:::., which in turn is inversely 
proportional to 2B where B is the number of bits in the binary coded samples. Thus, the signal-to­
quantization noise ratio defined as: 

SNR = 10 . lo. . . ·(sig~al power) (14) 
910 noise power 

increases by 6 dB for each doubling of the number of quantization levels (i.e., for each additional bit 
in the word length). 

Another important point is that from the viewpoint ·of statistical measurements, the sequence of 
noise samples appears to be uniformly distributed in amplitude and uncorrelated from sample to 
sample whenever the number of quantization levels (bits) is large. Thus, the modei of the A-to-D 

. ' . ' converSion operation in Figure 8-7 consists of an ideal sampler whose output samples are corrupted 
by an additive white noise whose power increases exponentially as the number of bits/sample 
decreases. · 

SAMPLER 
Xa(t) . ------ x(n] "=' x(nT) 

A-TO-D CONVERTER 

FIGURE 8-7 - QUANTIZATION AS ADDITIVE NOISE 

"" x(n) 

- 8.2 BASIC THEORY OF DISCRETE SIGNALS AND SYSTEMS 

Since signals are represented in discrete form as sequences of samples, a discrete system or digital 
signal processor is simply a computational algorithm for transforming an input sequence of samples 
into an output sequence. 

8.2.1 Linear Systems 

8-6 

As in analog systems, a linear system is one which obeys the principle of superposition, and a time­
invariant (or in general, shift-invariant) system is one for which the input-to-output transformation 
algorithm does not change with time. Linear time-invariant systems are exceedingly important 
because they are relatively easy to design and because they can be used to perform a wide variety of · 
signal processing functions. 

' As a direct consequence of linearity and time invariance, . the output sequence for any linear time-
invariant system is obtained from the input sequence by the repeated evaluation of the convolu.tion 
svm relation: 

00 
y[n] = l: h [k] · x [n-k] --00<n<oo 

! k=-00 

where h[n] is the response of the system to the unit sample (or impulse) sequence: 

{ 1 n = 0 
0 [n] = 0 n =F 0 

(15) . 

(16) 



The convolution sum equation i~ very similar in form to the convolution integral that describes the 
operation of a continuous-time linear time-invariant system. In contrast to the analog system, 
however, the convolution sum equation (15) serves not only as a theoretical description of discrete 
linear time-invariant systems in general, but it can be used to implement certain types of linear 
systems. 

8.2.2 Fourier Transform Representations 

As in the analog case, Fourier analysis is a valuable tool in the theory and design of discrete signals 
and systems. The discrete-time Fourier transform representation is defined. by the equations: 

oo (17A) 
X(ejw T) = ~ x (n] . e-jwnT 

n=-oo 

x[n] = 2: j X(ejwT)ejwnTdw 
-rr 

(178) 

The first equation ( 17 A) is a direct Fourier transform of the sequence x[n], and the second equation 
(178) is the inverse Fourier transform. A notable property of X(eiooT) is that it is always a periodic 
function of oo with period 2n/T. 

In the analog case, the Laplace transform is often more useful and convenient than the Fourier 
transform, because it can be used to represent a wider class of signals and because algebraic 
expressions involving the Laplace transform are less cumbersome than those involving Fourier 
transforms. For these same reasons, the z-transform is often preferred to the Fourier transform for 
discrete sequences. The z-transform representation is defined by: 

\ 

00 

X(z) = ~ x [n) z-n 
n=-oo 

x[n] = -21. <j X(z)zn-ldz 
1TJ c 

where C is a closed contour lying in the region of convergence of the power series in (18A) . 

Comparison of the Fourier transform ( 17 A) and the z-transform (18A) shows that: 

X(ejwT) = X(z) I . 
z = eJwT 

(18A) 

(188) 

(18C) 

i.e., the Fourier transform, when it exists, is just the z-transform evaluated on a circle of radius one 
in the complex z-plane. 

One of the most important reasons for the use of frequency domain representations is the result 
that if y[n] is the output of a linear time-invariant system, then its z-transform (and thus its Fourier 
transform) satisfies the equation: 

Y(z) = H(z) · X(z) (19) 

where H(z) and X(z) are the z-transforms of the unit sample response of the system and the input to 
the system, respectively. Many of the design techniques which are available are based upon 
approximating a desired transfer function H(z). 

Another advantage of the Fourier transform representation is that it provides a very convenient 
means of showing the relationship between a sequence of samples and the original analog signal 
from which the samples were obtained. Specifically, if x[n] = Xa (nT), then: 

X(ejwT) = i ~ Xa(w + 27Tk/T) 
k=-00 

(20) 

where X8 (oo) is the Fourier transform of the analog signal Xa(t). (1] 
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From this relationship between the Fourier transform of the sequence x[n] and the Fourier 
transform of the analog signal, it is clear that what is true for the cosine wave is also true in general. 
That is, there is a possibility that the images of the analog Fourier transform may overlap and since 
they are added together, it would be impossible to unscramble the effects of this aliasing distortion. 
Figure 8-8 illustrates the implications of (20) for two sampling rates. Figure 8-8A shows a 
bandlimited analog Fourier transform where Xa(c.o) = 0 for lool > ooN. The frequency ooN is often 
called the Nyquist frequency. Figure 8-88 shows the Fourier transform of a sequence of samples 
where the sampling frequency c.c>S = 2n/T is such that ooS > 2ooN. Figure 8-8c shows the case when 
ooS > 2ooN. No aliasing distortion occurs if Xa(oo) is bandlimited and if the sampling frequency is 
greater than twice the Nyquist frequency. Thus, it is essential that analog signals be bandlimited to 
the proper frequency before sampling. Even if the signal is 'naturally' bandlimited, it is well to 
remember that since additive noise may have a much broader spectrum than the signal, analog 
lowpass filtering is almost always necessary prior to sampling. Since it is generally desirable to 
minimize the sampling rate so as to minimize the computational intensity of the processor, sharp 
cutoff analog filters may be required. In situations where the expense of such filters is prohibitive, 
but sufficient nu.merical processing capability is available, it is possible to use low-order analog 
filters and sample at a higher sampling rate to avoid aliasing. Then, the resulting sequence of 
samples can be filtered digitally and the sampling rate reduced appropriately by decimating 
(throwing away samples) the digitally filtered sequence. [2] Such techniques are also useful in 
implementing low-noise A-to-D conversion systems, using delta modulation or other simple 
digitizing systems. [5] 
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8.3 DESIGN AND IMPLEMENTATION OF DIGITAL FILTERS 
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Linear filtering is one of the most important digital signal processing operations. As in the analog 
system, digital filters can be used for separating signals from noise, for compensating for previous 
linear distortions, for separating signal components from an additive combination of signals, and in 
modeling of many classes of signals. Some of the important techniques for implementation and 
design of digital filters are presented in the following paragraphs. 

8.3.1 Digital Filter Structures 

There are two classes of linear shift-invariant systems. The first class contains all such systems for 
which the unit sample response is of finite length, e.g., h[n] = 0 for n > 0 and for n > M. Such 
systems are called finite duration impulse response (FIR) systems. For such systems, it is clear from 
the convolution sum equation (15) that: 

M (21) 
y[n] = ~ h[k] · x[n-k] 

k=O 

so that the computation of each value of the output sequence requires M + 1 multiplications and M 
additions, i.e., the accumulation of M + 1 products. Thus, the convolution sum expression can be -
used to implement FIR systems. · 

Systems which have infinite duration impulse responses are called llR systems. In general, it is not 
feasible to use the convolution sum expression to compute the output of such systems. However, 
an interesting and useful class of llR systems does exist. These are systems ·whose input and output 
satisfy a linear constant coefficient difference equation of the form: 

N M a2) 
y[n] = ~ aky[n-k] + ~ bkx[n-k] 

k=1 k=O 

For such systems, this equation can be used recursively to compute the output from the input 
sequence and N previously computed output samples. When all the ak'S are zero, (22) reduces to 
(21) so that (22) turns out to be a general description of all computationally feasible (i.e., realizable) 
linear time-invariant systems. 

By finding the z-transform of both sides of (22), the transfer function of this class of systems is 
easily found to be: M 

~ bkz-k (23) 

H(z) = k=O 
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Since bkx[n-kl has z-transform bkz-kX(z), there is a direct correspondence between terms in the 
numerator and denominator of H(z) in (23) and terms in the difference equation (22). 

Block diagrams may be used to depict the computational procedure for implementing a digital filter. 
Figure 8-9 depicts two systems whose input and output satisfy the difference equation (22) and 

~ 

thus have the same transfer function (23). The operation of addition and multiplication are 
. represented in standard block diagram notation while the delays are represented by systems with 
transfer functins z -1. (M = N = 4 is used for convenience only.) Figure 8-9A shows the direct 
repr8$entation of the difference equation (22). This is sometime$ called the Direct Form I structure 
for a system with transfer function (23). If N = 0 (i.e., all the ak's are zero), then the system is a FIR 
system. Thus, the left half of Figure 8-9A is illustrative of the general Direct Form implementation of 
a FIR system. Also note that in general the left half implements the numerator (or zeros) of H(z) 
while the right half implements the denominator (or poles) of the transfer function. 

x(n] y[n] 

z-1 z-1 . 

FIGURE 8-9A - DIRECT FORM I 
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x[n] 

z-1 

FIGURE B-98 - DIRECT FORM II 

FIGURE 8-9 - DIRECT FORMS I AND 11 

y(n] 

Figure 8-98 is obtained from Figure 8-9A. For linear time-invariant systems in cascade, the overall 

transfer function is the product of the individuai transfer functions. Thus, the overaH transfer 

function is the same regardless of the order in which the systems are CSSC?Bded. H the two 

subsystems of Figure 8-9A are interchanged, the delay chains of the two systems can be combined. 

This structure is often called the Direct Form II, Both forms require the same number of arithmetic __ 

operations, but the Direct Form II requires up to 50 percent fewer memory registers for storing the -

past values of the input and output. It is important to understand that although both forms have the --- - -

same overall transfer function, they correspond to different difference equations. The difference 

equation for Figure 8-9A is given in (22) while the set of difference equations represented by Figure 

8-98 is: -
N 

w[n] = l: akw[n-k] + x[n] 
k=1 

M 
y[n] = ~ bkw[n-k] 

k=O 

(24A) 

(248) 

Other structures (sets of difference equations) can be found for implementing a given rational 

transfer function such as (23). The cascade form is obtained by factoring the numerator and 

denominator of H(z) into second-order factors and pairing numerator and denominator f.actors to -

form: 

(26) 

For simplicity it is assum~ that N is even. When N is odd or when M ¢. N, some of the coefficients _ 
in (25) will be zero. The structure suggested by {25) can be implemented with a cascade of second­

order seCt:ions implemented in any desired form. Figure 8-10 shows an examp_le for-N = 4. 

s .. 11 
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FIGURE 8-10 - CASCADE STRUCTURE FOR N = 4 

The corresponding set of difference equations is: 

vo[nJ = A· x[n] 

wk[n] = a1kWk[n-1] + a2kWk[n-2] + Yk-1 [n] 

y[n] = YN [n] 

2 

k = 1, 2, ... , N/2 

k = 1, 2, ... , N/2 

y[n) 

(26A) 

(268) 

(26C) 

(260) 

Still another form for the general transfer function of (25) is ob~ined from a partial fraction 
expansion of H(z) in the form of: 

N 
2 bok + b1kz-1 

H(z) = Ao+ ~ 
k=1 1 - a1 kz-1 - a2kz-2 

The set of difference equations corresponding to this form of the transfer function is: 

wk[n] = a1kwk[n-1] + a2kWk[n-2] + x[n] 

Yk[n] = bokwk[n] + b1kwk[n-1] 

N 
2 

y[n] = Aox[n] + ~ Yk[n] 
k=1 

k = 1, 2, ... , N/2 

k = 1, 2, ... , N/2 

(27) 

(28A) 

(288) 

- (28C) 

There is literally an infinite number of alternative structures for implementing a ·digital filter with a 
given transfer function, but the ones discussed above are the most commonly used because of the 
ease with which they can be obtained from the transfer function and, in the case of the cascade and 
parallel forms, because they are relatively insensitive to coefficient quantization and round-off 
errors. It is important to note that the basic arithmetic process in digital filtering is multiplication of a 
delayed sequence value by a fixed coefficient, followed by the accumulation of the result. This is a 
built-in operation of the TMS32010; ' 
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8.3.2 Digital Filter Design 
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A number of ways to implement a linear time-invariant system .. having a rational transfer function 

have been presented. Designing the system to meet a set of prescribed specifications is equally 

important. The specifications for a filter design are most frequently applied to the frequency 

response of the filter, i.e., to the Fourier transform of the impulse response. For example, a 

frequency selective filter, such as a lowpass, bandpass, highpass, or bandstop filter, may be 

required; or an approximation of a differentiator frequency response (i.e., jw), or a 90-degree phase 

shift, or in the case of compensators or equalizers, an approximation of the reciprocal of some given 

frequency response may be desired. In all these cases, the designer is concerned with finding the 

bk'S in the FIR case, or the ak'S and bk'S in the llR case, so that the corresponding H(eiwT) 

approximates a desired function according to some approximation error criterion. Many 

approximation techniques exist, and it is possible to design very accurate approximations to a wide 

variety of frequency responses. 

A valuable collection of digital filter design programs is available from IEEE Press. [6] A reader who 

wants to use these programs or to write design programs is encouraged to consult the texts and 

reference books [1,3,7] on digital signal processing to obtain a complete understanding of each 

method. The following paragraphs include a survey of the important techniques, along with the 

advantages and limitations of each one. 

The design of llR filters has traditionally been based upon the transformation of an analog filter 

approximation to a digital filter. The basic approaches are impulse invariance arid bilinear 

transformation. The former approach is based upon defining the unit sample response of the digital 

filter to be the sequence obtained by sampling the impulse response of an analog filter. In this case, 

the analog filter must be designed so that the resulting digital filter will meet its specifications. 

Because of the aliasing inherent in sampling, the impulse invariance method is not effective for 

highpass or bandstop filter types, and the detailed shape of the analog frequency response is 

preserved only in highly bandlimited cases, such as lowpass filters with high stopband attenuation. 

In the bilinear transformation method, the system function H(z) of the digital filter is obtained by an 

algebraic (bilinear) transformation of the system function (Laplace transform of the impulse 

response) of an analog filter, i.e., the Laplace variables is replaced by 2(1 - z - 1 )/(1 + z - 1 ). 

Because the bilinear transformation causes a warping of the jw-axis of the s-plane onto the unit -

circle of the z-plane, the bilinear transformation method is useful primarily for the design of - · 

frequency selective filters where the frequency response consists of flat passbands and stopbands. 

The passband and stopband cutoff frequencies of the analog filter must be 'prewarped' so that the 

resulting digital filter meets its specifications. Because the bilinear transformation maps the entire 

jw-axis of the s-plane onto the unit circle, the equiripple amplitude response of an elliptic filter will 

be preserved. Thus, optimal magnitude responses can be obtained for llR filters using bilinear 

transformation of analog elliptic filters. 
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A major reason that the above methods are widely used is the existence of a· variety of 
approximation methods for analog frequency selective filters. That is, one can use the Butterworth, 
Bessel, Chebyshev, or elliptic filter approximation methods for. the analog filter and then simply 
transform the •analog· filter to a digital filter by either the impulse invariance or bilinear 
transformation methods. As an illustration of this general method, Figure 8-11 A shows the 
magnitude response and Figure 8-11 B shows the phase response of a fourth-order elliptic filter 
obtained by the bilinear transformation method. The difference equations for implementation of this 
filter as a cascade of two second-order Direct Form II sections are: 

Yo[n] = 0.11928·x[n] 

w1[n] = 0.34863·w1[n-1] -0.17168·w1[n-2] +yo[n] 

Yl [n] = w1 [n] + 1.8345 · w1 [n-1] + w1 [n-2] 

w2[n] = -0.12362 · w2[n-1] - 0.71406 · w2[n-2] + Y1 [n] 

Y2[n] = w2[n] + 1.26185 · w2[n-1] + w2[n-2] 

y[n] = Y2[n] 

(29A) 

(298) 

(29C) 

(290) 

(29E) 

(29F) 

The block diagram representation for the above set of difference equations is identical to Figure 
8-10, with the appropriate identification of the coefficients. 

co 
:2 
w 
Q 
:::> ... 
z 
C1 
<( 
:E 
C1 
0 _, 

0 

-30 

-60 

-90 

NORMALIZED FREQUENCY (RADIANS/SAMPLE) 
FIGURE 8-11A - LOG MAGNITUDE OF FREQUENCY RESPONSE 

1183 



1183 

ti) 
z 
::$ 
c 
C[ 

!5 
UJ 
..I 
c,, 
z 
C[ 

"' U) 
C[ 
::c 
A. 

4 

2 

0 

-2 

-4 --~~~~-1-~~~~~-+---~~~--11--~~~~-1-~~~~---1 
0 

NORMALIZED FREQUENCY (RADIANS/SAMPLE) 

FIGURE 8-118 - PHASE ANGLE OF FREQUENCY RESPONSE 
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It is relatively simple to design llR filters .using tables of analog filter designs and a calculator. 

Alternatively, a program for designing llR digital filters by bilinear transformation of Butterworth, ' .•. 

Chebyshev, and elliptic filters has been given by Dehner in the IEEE Press Book. 16, Section 6.11 

The bilinear transformation method can be termed a 'closed form' solution to the HR digital filter 

de6ign problem in the sense that an analog filter can be found in a non-iterative manner to meet a 

set of prescribed approximation error specifications, and then the digital filter can be obtained in a 

straightforward way by applying the. bilinear transformation. 

Another approach is as follows: 

1) Define ah ideal frequency response function, 

2) Set up an approximationerror criterion, 

3) Pick an implementation structure, i.e., order of numerator and denominator of H(z), 

cascade, parallel, or direct form, 

4) Vary the filter coefficients sYs'tematically to minimize the approximation error criterion, 

5) If the approximation is not good enough, increase the order of the system and repeat the 

design proeess. 
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A variety of such iterative design techniques have been proposed for both llR and FIR filters. 
Deczky has developed a design program which minimizes a pth-order error norm. It is capable of 
both magnitude and group delay (negative derivative of phase with respect to frequency) 
approximations. [6, Section 6.2) Another optimization program for magnitude approximations only 
has been written by Dolan and Kaiser. [6, Section 6.3) Both this program and the Deczky program 
assume that the transfer function H(z) is a product of second-order factors. 

Somewhat different approaches have been developed for the design of FIR filters, since there really 
is no counterpart of the FIR filter for the analog system. In addition, FIR discrete-time filters can 
have an exactly linear phase response. Since a linear phase response corresponds to only a delay, 
attention can be focused on approximating the desired magnitude response without concern for the 
phase. In most llR design methods, . the phase is ignored, and one is forced to accept whatever 
phase distortion is imposed by the design procedure. The condition for linear phase of a casual FIR 
system is the symmetry condition: 

h[n] = ±h[M-n] O~n~M 
(30) 

= 0 otherwise 

In the case of the + sign in (30), the frequency response will be: 

. T (M) -JW -
H(ejwT) = R(wT) · e 2 

(31) 

where R(c.c>T) is a real function of frequency. Such frequency responses are appropriate for 
approximating frequency selective filters. In· the case of the minus sign in (30): 

. T (M) . -Jw -
H(eJwT) = jl(wT) · e 2 

(32) 

where Hoo T) is also a real function of frequency. Such frequency responses are required for 
approximating differentiators and ·Hilbert transformers (90-degree phase shifters). 

The most straightforward approach to the design of FIR filters is a technique often called the 
'window method.' In this approach, an ideal frequency response function is first defined. Then, the 
corresponding ideal impulse response is determined by evaluating the inverse Fourier transform of 
the ideal frequency response. (In picking the ideal frequency response, the linear phase condition 
may or may not be applied depending on what is most appropriate.) The ideal impulse response will 
in general be of infinite length. An approximate impulse response is computed by truncating the 
ideal impuse response to a finite number of samples and tapering the remaining samples with a 
window function. With appropriate choice of the window function, a smooth approximation to the 
ideal frequency response is obtained even at points of discontinuity. Many window functions have 
been proposed, but the most useful window·for filter design is perhaps the one proposed by Kaiser 
[8) since it has a parameter which, in conjunction with the window length, can be used 
systematically to trade off between approximation error in slowly varying regions ·of the ideal 
response (e.g., the stopband) and sharpness of transition at discontinuities of the ideal frequency 
response. A program for window design of FIR frequency selective filters is given by Rabiner and 
McGonegal [6, Section 5.2) 
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FIR filters designed by the window method are not optimal, but in many cases the flexibility and 

simplicity of the method outweigh the relatively small cost of increased filter length. In cases where 

optimal designs are required for computationally efficient implementations, the Parks-McClellan 

algorithm can be used to obtain equiripple or Chebyshev-type approximations. Such designs are 

optimal in the sense of having the sharpest transitions between passbands and stopbands for a 

given filter length and approximation error. This iterative algorithm is based upon the principles of 

the Remez exchange algorithm. A program written by McClellan, Parks, and Rabiner is capable of 

designing frequency selective FIR filters as well as differentiators and 90-degree phase shifters. [6, 

Section 5.1] An example of the type of filters obtainable by this method is shown in Figure 8-12. 

Only the magnitude response is shown since the phase is linear. The impulse response of this 

system is given in Figure 8-13. With the symmetry of h[k], the difference equation for computing 

the filtered output is: 

15 
y[n] = h[16] · x[n-16] + ~ h[k] [x[n-k] + x[n+k-32]] 

k=O 

where h[k] is as given in Figure 8-13. (Note that M = 32.) 
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NOTE: This FIR lowpass filter was designed by the Parks-McClellan algorithm IM = 32). The phase is linear with slope corresponding to 

a delay of 16 samples. 

FIGURE 8-12 - FREQUENCY RESPONSE OF FIR LOWPASS FILTER 
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IMPULSE RESPONSE OF EQUIRIPPLE LOWPASS FILTER 

H(O) . = 58211200E-02 = H(32) 
H(1) = 12569420E-01 = H(31) 
H(2) = 11188270E-01 = H(30) 
H(3) = 49952310E-02 = H!29) 
H(4) = 14605940E-01 = H(28) 
H(5) = 29798820E-02 = H(27) 
H(6) = 22352550E-01 = H(261 
H(7) = 42574740E-02 = H(25) 
H(8) = 30249490E-01 = H(24) 
H(9) = 17506790E-01 = H(23) 
H(10) = 37882950E-01 = H(22) 
H(11) = 41403080E-01 = H(21) 
H!12) = 44224020E-01 = H(20) 
H(13) = 91748770E-01 = H(19) 
H(14) = 48421950E-01 = H(18) 
HI 1 5) = 31334940E-OO = H( 17) 
H(16) = 54989020E-OO = H(16) 

FIGURE 8-13 - IMPULSE RESPONSE OF EQUIRIPPLE LOWPASS FILTER 

8.4 QUANTIZATION EFFECTS 
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When digital filters are implemented on any computer, the finite precision of the machine can lead 
to deviations from ideal performance. Problems which arise are due to quantization of the 
coefficients of the difference equation and roundoff of products prior to accumulation or roundoff 
of accumulated products. 

When a discrete system is designed to meet a certain set of specifications, the design program 
usually will compute the filter coefficients using floating-point arithmetic and the output of the 
design program will be a set of coefficients specified to at least 32-bit floating-point precision. 
When these coefficients are used in a fixed-point implementation, it is generally necessary to 
quantize the coefficients to fewer bits, e.g., 16 bits. The resulting frequency response will differ 
from the original design. It may not meet the original specifications and may even be unstable. This · 
is analogous to the component tolerance problem in implementing analog active filters. Sensitivity 
of the frequency response to errors in a given coefficient is dependent upon the nature of the 
\desired frequency response, and thus it is difficult to obtain theoretical results with wide generality. 
However, it is well established both theoretically and experimentally ·that the direct-form 
implementation structures for· high-order· filters are in general much more sensitive to coefficient 
quantization errors than the equivalent cascade or parallel-form implementations using second­
order sections. Therefore, these structures are generally to be preferred in small word-length 
implementations. 

The design program of Dehner [6, Section 6.1 J has an option for optimizing filter response with . 
constraints on word length. Steiglitz and ladendorf have also given an . iterative program for 
designing finite word-length llR filters. [6, Section 6.4) A program for finite word-length design of 
FIR filters has been written by Heute. [6, Section 5.4) 

Another source of imperfection in implementing digital filters is the 'roundoff noise' that results 
from quantization of intermediate computations in the difference equation. This problem is 
particularly acute in llR filters, where the recursive nature of the implementation algorithm leads to a 
required word-length that increases linearly with time or to errors which propagate to future 
computations. For example, with 16-bit input samples and 16-bit coefficients, the first output value 
wiH require up to 32-bits for its representation, and in a recursive filter, the next output value will 
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require 32 + 16, etc. Thus, the products continually must be reduced to fit the word length of the 

processor. However, the TMS320 has a full 32~bit accumulator so that 16.;bit by 16-bit products 

need not be rounded before addition. Thus,· in.implementing digital filters, each output value can be 

computed with 32~bit precision and then rounded to 16-bits for output or for storage of delayed 

variables. 

It can be seen from (21) and (22) that in implementing digital filters, the basic operation is a multiply 

followed by an accumulate (addition.· of the. product to the sum of pr8viously computed products). 

An obvious additiornil problem is the danger of overflow of the accumulator word length. Overflow 
can be eliminated as a problem by using floating-point arithmetic. However, thi~ leads to 

quantization of both sums and products, and implementation for floating-point arithmetic.leads to 

much higher costs•in processors like tile TMS320. 

Rounding in digital filter implementations leads to errors in the output of the filters. In many cases, 
· these ·errors can be modeled as additive noise which is generated by noise sources in the filter 

structure .. (This is analogous to thermal noise generated by resistors in analog active filters.) In other 

cases, the nonlinear nature of the quantization of products or overflow can lead to a much different 

effect, i.e., periodic patterns of error samples are generated in the output. These 'limit cycles' are 

particularly troublesome in situations where the input becomes zero for lengthy intervals. Certain 

structures have been found which are free of limit cycle behavior. However, thes8 require 

somewhat more computation than the standard forms. [91 An important point is that limit cycles 

cannot exist in the output of FIR filters, Sinee there is no feedback, the output of a FlR system 

obvio1,1sly becomes zero if the input is zero over an interval equal to or greater than the length of the 

unit sample response. [1,3,71 · 

8.5 SPECTRUM ANALYSIS 

Spectrum analysis is another major area of digital signal processing. Spectrum analysis consists of a 
collection of techniques which are directed either toward the computation of the Fourier transform 

of.a deterministic signal or toward estimation of the power spectral density of a random signal. In 

the following paragraphs are presented the importarit concepts and algorithm6 in discrete-time 

~pectrum analysis. 

. a.&.1 Discrete Fourier Transform (OFT) 
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The discrete Fourier transform (OFT) of a finite length sequence is defined as: 

N-1 . 
X[k] = l: x[n]e-J27Tkn/N O~k~N-1 (34) 

n=O 

The OFT is simply a sampled version of the discrete-time Fourier transform of x[n], i.e.: 

. X[k] = X(ejwk T) 
(35) 

where Cc>k = 2nk/(NT), k = 0, 1, ... ,N - 1. Thus, the OFT is a set of samples of the discrete-time 

Fourier transform at N equally spaced frequencies from zero frequency up to (but not including) the. 

sampling frequency ws =· 2n/T. 

The inverse discrete Fourier transform (IOFT) is: 

1 N-1 .. . 
x[nl = ""'" :t X[kJej21rkn/N O~n~N-1 

. N k=O 
(36) 

The OFT (34) and its inverse (36) provide an exact Fourier representation for finite length 

sequences. However, an impOrtant property of the IOFT relation (36) is that if it is evaluated for 

values of n outside :the interval 0 < n < N ...,. 1, the result is not zQro but rather a periodic repetition 

of x[n]. Thus, the OFT analysis and synthesis pair, (34) and (36), can also be thought of as a Fourier 

series representation for periodic sequences. Whether (34) and (36) represent a finite-length 

8-19 

-



sequence or a periodic sequence is only a matter of what is assumed about the sequence outside 
the interval O 4it n 4it N - 1. Nevertheless, (36) does repeat periodically outside the interval if it is 
evaluated there, and it is this property that leads to a need to be careful. in its use and also to 
efficient computational algorithms for its evaluation.[11 

8.6.2 Fast Fourier Transform (FFTI 

The fast Fourier transform (FFT) is a generic term for a collection of algorithms for efficiently 
evaluating the OFT or IOFT. These algorithms are all based upon the general principle of breaking 
down the computation of the N accumulations of N products (N2 multiplications and additions) 
called for by either (34) or (36) into a number of smaller OFT-like computations. Because of the 
periodicity and the symmetry of the quantities e-j2pkn/N, many of the multiplications and additions 
can be eliminated. In fact, by increasing the control and indexing aspects of the algorithm, the 
amount of numerical computation can be reduced to be proportional to N.log N rather than 
proportional to N2. For large N, the savings in arithmetic computation can be several orders of 
magnitude. 

The basic arithmetic operation in a FFT algorithm is a (complex) multiply-accumulate operation, 
which can be easily and efficiently realized with the TMS32010. The details of many FFT algorithms 
can be foun~ in references and textbooks on digital signal processing. [1,3,71 

A number of FORTRAN programs for FFT algorithms are contained in the IEEE Press Book. [6, 
Section 11 They range in complexity from very simple programs where N must be a power of two, to 
more complex (and thus . more efficient) mixed radix algorithms. Although these programs cannot 
be run directly on the TMS32010, they do serve as a convenient and readable description of the 
algorithm which could.be translated readily into a TMS32010 program. 

8.6.3 Uses of the OFT and FFT 
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Since highly efficient computation of the OFT is possible, and since Fourier analysis is such a 
fundamental concept in signal and system theory, it is natural that many uses have been found for 
the OFT. One major class of applications is in the computation of convolutions or correlations. If 
x[n] and h[n] are convolved to produce y[n] (i.e., linear filtering), then the Fourier transforms of 
these sequences are related by: 

Y(ejwT) = H(ejwT) . X(ejwT) (37) 

Since the OFT is just a sampled version of the discrete-time Fourier transform, it is also true that: 

Y[k] = H[k] · X[k] O~ k ~ N-1 (38) 

and if x[nJ, h(nJ, and the y[nJ resulting from their convolution are all less than or equal to N in 
length, then y[nJ can be computed as the IDFT of Y[k] in (38). Due to the great efficiency of the 
FFT, it may be more efficient in some cases to compute X[k] and H[k], multiply them together, and 
then compute y[n] using the IFFT than to compute y[n] directly by discrete convolution. Such a 
scheme is depicted .in Figure 8-14. Since correlations can be computed by time-reversing one of the 
sequences before convolution, Figure 8-14 also represents a technique for computing both auto­
and cross-correlation functions. 

When the lengths of the sequences are larger than the available random access memory, or when 
real-time operation with minimal delay is required, there are schemes whereby the output can be 
computed in sections. [1,3,71 
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FFT IFFT 
x[n) Xlkl yin) 

Hlkl 

FFT 

hlnl 

FIGURE 8-14 - A DISCRETE CONVOLUTION USING THE FFT 

Another use of the DFT/FFT is in the computation of estimates of the Fourier transform or the 

power spectrum of an analog signal. The three basic concerns in this application are depicted in 

Figure 8-15. First, the analog signal ><a(t) must be sampled, and thus the spectrum of ><a(t) must be 

lowpass-filtered so as to minimize the aliasing distortion introduced by the sampling operation. The 

second major concern is a result of the fact that the DFT/FFT applies to finite length sequences. 

Thus, no matter how many samples of the input signal are available, there will always be a need to 

truncate the input signal to a practical length for the FFT computation. This can be represented as a 

windowing operation, i.e., a finite length sequence is obtained from x[n] by: 

y[n] = w[n] · x[n] 

= 0 

Thus, the Fourier transform of y[n] is: 

O~n~N-1 

otherwise 

Y(eiwT) = _1_ j X(eiBT). W(eHw-8)T)dO 
21T -1T 

(39) 

(40)-

where X(eicc>T) is the Fourier transform of the input signal, and W(eicc>T) is the Fourier transform of 

the window. From (40), it is clear that Y(eicc>T) is a 'blurred' or 'smeared' version of the desired 

X(eicc>T), and that it is desirable that W(eicc>T) be highly concentrated around zero frequency so that 

it 'looks like' an impulse compared to the detailed variations of X(eicc>T). Then, Y(eicc>T) will not differ 

appreciably from the desired X(eicc>T). This can .be accomplished by adjusting the length N and the 

shape of the window w[n]. [1-3) 

In cases where the signal is modeled realistically as a stationary random process, . the above 

procedure can be used as a basis for the estimation of the power spectrum. In order to smooth the 

statistical irregularities that arise in computing Fourier transforms of finite-length segments of a 

random signal, it is common to compute discrete· Fourier transforms of windowed segments of the 

signal, and then average the squared magnitude of·each transform. [1-31 
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In situations where the signal is non-stationary, it is also common to compute discrete Fourier 
transforms of SUcCessive (either overlapping Or nOn""Overlapping) segments of the waveform, but 
instead of averaging the transforms, each transf0rm is thought of as being representatiVe of the 
signalin the time interval to which it corresponds. This leads to the concept of a short-time or 
running Fourier transform which is a function of both time and frequency. [2J This approach to 
sPectrum analysis is widely used in speech, radar, a.nd sonar sigilal processing. Figure 8"-16 shows 
an example of a running spectrum of a doppler radar signal. The plot shows a succession of DFTs of 
the complex radar return signal. Evident in the plot is a strong tirtle"'.varying component due to target 
rotation along with considerable noise. [101 

f 

-11' 0 
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FIGURE 8-18 - SHORT-TIME FOURIER ANALYSIS OFA DOPPLER RADAR SIGNAL 
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8.5.4 Autoregressive Model 
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Another approach to spectrum analysis is based upon the assumption of a functional model for the 

signal, and the subseQuent estimation of the parameters of the rTt<>del. (61 A widely used model 

assumes that the signal x[n] is the output of a discrete-time linear system whose input and output 

satisfy a difference equation -of: 
N 

x[n] = I: akx[n-k] + G · u[n] 
k=1 

(41) 

where the spectrum of the model input u[n] is flat. Estimation of the model parameters requires that 

an estimate be made of the filter coefficients ak, the gain constant G, and perhaps some properties 

of the input to the model u[nl. The transfer function of the difference equation (41) is: 

H(z) = --~---
1 - I: akz-k 

k=1 

(42) 

Thus, such models are often called all-pole models. Three basic types of excitations are generally 

assumed for the model. When purely transient signals consisting of damped oscillations are 

modeled, it is generally appropriate to use a unit impulse as the input to the model. When periodic 

signals (such as voiced speech) are modeled, the input is assumed to be a periodic impulse train. In 

cases where the signal is random and continuing in nature, the input is assumed to be white noise 

with unit variance. In all these cases; since the inputs all have flat spectra, _the transfer function of 

the system determines the spectrum of the output of the model. Thus, if a given signal is assumed 

to t:>e :the output of the above-model, then the-determination of H(z) for the model is tantamount to 

determining the spectrum of the signal. 

A number of techniques for determining the parameters Bk of H(z) have been developed. Terms, 

such as .. autoregressive modeling, linear predictive analysis, linear predictive coding (LPC), the Burg 

method, maximum entropy method (MEM), and maximum likelihood method (MLM), are all 

associated with methods of estimating the parameters of such all-pole signal models. Although the 

details of these methods differ, it· is fair to say that most of the available methods can be shown to 

be equivalent to the solution of a set of N linear equations: 

N 
I: ak · R [k,m] = R [O,m] m = 1, 2, ... , N -(43)-

k=1 

where R[k,m] is a correlation-type function: 

R[k,m] =_ I: x[n-k] · x[n-ml (44) 
n - -

where the sum is carried out over a finite interval of the signal. Both the computation of Rlk,m] and 

the solution of the set of linear equations by techniques such as the Levinson recursion (2, 11, 121 

involve the repetitive use of the basic multiply-accumulate operation. These computations can be 
easily and efficiently implemented on the TMS32010; 

Because the computation of the correlations R[k,m] can be based upon either a small or a large 

number of samples of the signal, either a short-time or a long'."time estimate of the signal model (and 

thus of the signal spectrum) can be obtained. -Thus, the autoregressive modeling approach can be 

applied to either stationary or nonstationary signals just as in the case of Fourier analysis. As an 

example, Figure 9.;17- shaws a spectrum estimate for several successive short segments of -a speech -

signal. The spectral peaks, which correspond to poles of the model transfer function, result from 

resonanees of the vocal system which produced the speech signal. These resonances are called 

'formant frequencies', and they are characteristic of the sound being produced during each 

respective analysis interval. Spectrum analysis of this typ8 is a cornerstone of much of the recent 

work in speech synthesis and speech recognition. -c2, 121 
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FIGURE 8-17 - SPECTRUM ESTIMATION FOR SPEECH SIGNALS 

8.6 POTENTIAL DSP APPLICATIONS FOR THE TMS32010 

From the ·discussion of the fundamentals of digital signal processing, it can be seen that the 
architecture of the TMS32010 is especially well suited to implementation of the basic DSP 
algorithms . for recursive and nonrecursive linear filtering, discrete Fourier transformation, 
autoregressive modeling, and spectrum analysis. In the following paragraphs will be described 
some of the basic applications of DSP techniques and the TMS32010 in the areas of speech and 
audio processing and communications. 

8.6.1 Speech and Audio Processing · 

8-24 

In the field of speech and audio processing, there are three major application areas: 1 ) digital coding 
for storage and transmission, 2) automatic recognition and classification of speech and speakers, 
and 3) · processing for enhancement and modification of speech signals. 

The speech and audio coding area is very diverse, and its importance is growing rapidly as both 
storage (recording) and transmission systems are rapidly moving in the digital direction. In all digital 
coding applications, the basic concern is to encode sampled speech (or audio) signals with as low a 
bit-rate as possible while maintaining an acceptable level of perceived quality; Generally, this must 
be done within limits on the size, complexity, and cost of the encoding and decoding system. 

The 'digital audio' area is rapidly becoming a major area of commercial exploitation of DSP. In this 
field, the emphasis is on high quality reproduction of the signal. Signals are typically sampled with 
14-to-16 bit precision at sampling rates upwards of 40 kHz. Potential areas of application of DSP 
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techniques by the TMS32010 include the use of digital filtering together with simple -A-to-0 

conVerters such as delta modulators operating at very high sampling rates to obtain high ·quality 

sampling and quantization at low cost, the use of digital filters for changing sampling rates, and 

high-speed coding and decoding (in the information theory sense) of iamples for error protection 

and detection. A variety of other applications in the audio area are possible if the audio signal is 
available in digital form. These include delay and reverberation systems and sophisticated mixing 

and editing systems. Another example· is in the implementation of electronic musical inStrlimants. 

The speech coding area is wide in range and diverse due to the fact that the quality of the ericoded 

speech is not the only criterion in many applications. Often, simplicity of hardware implementation, 

bit-rate for transmission or Storage, or robustness_ to errors in transmission are major concerns. This 

has led to the development of a multitude of coding schemes, all of which exploit one or rnonl of the 

basic algorithms of DSP discussed above, and each of which has its own set of advantages and _-
disadvantages. - -

Perhaps the simplest class of coders is based upon the principle of faithful reproduction Of the 

speech waveform. Such schemes as deltamodulation, differential PCM, and nonlinear companding 
are examples. These systems may involve adaptive or fixed quantizers and adaptive or fixed 

predictors to achieve data rates ranging from aboUt 10 kbits/s to well over 1 megabit/s. Recursive 
and nonrecursive digital filtering and autoregressive spfictrum analysis are fundamental to most of 
these systems. 

Another class of speech coders combines the principle of waveform replication with knowledge of 
the ear's lack of sensitive to certain frequency domain distortions to obtain high perceptual quality 

at bit rates in the 5-to-10 kbit/s range. Examples-include sub-band coding, where the speech is 

broken up into frequency bands before quantization, and transform coding, where blocks of speech 

samples are transformed using the- cosine transform (a close-.. relative of the OFT) and -then the 
transform values are quantized rather than the speech samples themselves. In the former case, the 

basic operations are digital filtering and adaptive quantization, and in the latter case, the basic 
operations are Fourier transformation and adaptive quantization. These systems may ·be too 
complex to be implemented with a single TMS32010 chip. However, several processors can be used 

together since it is relatively straightforward to divide the system into parts which can operate in -·-· ·-· --· 
parallel or in pipeline fashion. 

In the-third class of speech coding systems, there is no attempt to replicate the waveform'. of the 

speech signal. Instead, the objective is to incorporate both the physics of speech production and 
the psychophysics of speech perception into a system which produces speech which is intelligible 

and otherwise perceptually acceptable. Such systems are often called vocoders, and there-are many 

such schemes~ However, recent interest centers primarily on the class of linear .predictive (LPC) 

vocoders. These systems are based upon an autoregressive all-pole model of the form di9cussed 

earlier. The LPC vocoder analyzer system involves the estimation of the coefficients of the digital 
filter in- the model and the estimation of the parameters of the- excitation to the model. The 

computation of the- correlation values and the recursive solution for the filter coefficients are basic 

operations that can be efficiently implemented on the TMS3201 O. Speech is encoded in this system 

by quantizing the parameters of the model. Speech is decoded from these parameters by~ actually 
controlling a simulation of the model with the time-varying estimated parameters. This model 
consists of an all-pole digital filter excited by either white noise or a periodic impulse train. The 

TMS3201 O is capable of generating the excitation as well as implementing thrcomputations of the 
difference equation in real-time at speech sampling rates. (Alternatively, special purpose LPC 

speech_synthesizer chips, such as the Texas Instruments TMS5100, 5200, or 5220, also can be used 
for speech synthesis ·from an LPC model.) 
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One of the most exciting areas of speech processing is the area of voice input to computers. This 
includes a wide range of considerations, such as isolated word recognition, connected speech 
recognition, speaker verification, and speaker identification. These systems typically break down 
into a 'front end' analysis or feature extraction stage, then a pattern comparison stage, followed by 
a classification stage. Features used to represent speech signals for pattern recognition generally 
are derived from an LPC spectrum· analysis or a short:-time Fourier spectrum analysis. Distance 
measures .for comparing speech patterns are generally in the. form of an inner product of feature 
vectors, which involves simply a multiply-accumulate operation. Another important operation is the 
time alignment of speech patterns so as to take into accountdifferences in articulation and speaking 
rate.This is often accomplished using a dynamic programming algorithm. All of these operations 
can be rec:idily accomplished in real-time at speech sampling rates ui~ing a system composed of 

.several TMS32010 processors. 

8.6.2 Communications 

8-26 

Digital signal processing has made a · major impact in the general area of communications. In 
addition to applications such as speech waveform coding, DSP hardware is being used in the 
design of digital moderns for communicating discrete information over voice-grade telephone 
channels, for signal conversion, and for the digital realization of such familiar components as filters, 
correlators,. frequency references, and mixers. 

As a specific example, a TMS32010 chip might be applied in the implementation of a digital modem 
operating on a voice-grade telephone line. Digital processing has had a major impact on the design 
of highspeed digital moderns, not only because of cost, but also because these systems need to be 
adaptive. In fact, all modems operating over voice-grade telephone lines at data rates in excess of 
1200 bits/s require some sort of adaptive channel equalization. The frequency response of such 
telephone lines extends from about 300 Hz to 3300 Hz. While the magnitude response is far from 
flat, the more serious consideration for the modem designer is the group delay response, which 
ranges from between 0millisecondsat1000 Hz to approximately2.5 milliseconds at 3300 Hz. At a 
transmission rate of 2400 pulses per second, the effect of this irregular group delay is to smear each 

· received ·pulse over several pulse intervals. This phenomenon is known as 'intersymbol 
interference.' It can be removed by convolving the received signal with a function which is the 
inverse of the channel impulse response. Unfortunately, the details of that response depend upon 
the characteristics of the line, and thus they will change every time a new connection is made and 
will vary during the course of a lengthy transmission. The solution is to pass the signal through an 
adaptive equalizer, simply a FIR filter whose coefficients bk are systematically updated. 

A simplified block diagram of a digital· modem, shown in Figure 8-18, will be helpful before 
considering the operation of the adaptive equalizer in more detiaL At the transmitter, the bit stream 
is converted into a waveform using either phase-shift keying (PSK) or a combination of PSK and 
amplitude-shift keying (ASK). The resulting sequence is typically complex. This complex signal is 
fiJtered and modulated to a center frequency, which after 0-to-A conversioh will be centered at 
about 1800 Hz. These are all tasks which can be implemented easily on the TMS32010. At the 
receiver, the signal is demodulated, filtered, and passed through the adaptive equali~er. The output 
of the equalizer is decoded in order to reproduce the desired bit stream and this· decision is. also fed 
back to the adaptive equalizer. · 
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In describing the operation of the adaptive equalizer, the kth filter coefficient at time n is denoted as 
bk[n]. Then if x[n] and y[n] denote the input and output, respectively, of the equalizer: 

M 
y[n] = ~ bk[n] · x[n-k] (45) 

k=O 
The filter coefficients are updated according to: 

bk[n+l] = bk[n-] + 2µ · x*[n-k] · e[n] k = 0, 1, ... IM (46) 

where * denotes complex conjugation and where e[n] is the difference between the actual and the 
desired value for y[n]. When the connection between the transmitter and the receiver is first made, -· 
a standard preamble is transmitted, which is used to adapt the receiver coefficients. During the 
period of actual information transmission, the error is calculated under the assumption that the 
signal is being correctly received and this information is fed back to the adaptive equalizer. The 
stepsize parameterµ controls the rate of adaption, the stability of the equalizer, and its immunity to 
noise. The fundamental operation of the adaptive equalizer involves (complex) sums and products. 
This is a task for which the TMS32010 is ideally suited. 
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PROGRAMMABLE 
PRODUCTS 

• 160-ns Instruction Cycle 

e 144-Word On-Chip Data RAM 

• ROMless Version - TMS32010 

• 1.5K-Word On-Chip Program ROM -
TMS320M10 . 

• External Memory Expansion to A Total of 
4K Words at Full Speed 

• 16-Bit Instruction/Data Word 

• 32-Bit ALU I Accumulator 

• 16 x 16-Bit Multiply in 160-ns 

• 0 to 15-Bit Barrel Shifter 

• Eight Input and Eight Output Channels 

• 16-Bit BidirectiQnal Data Bus with 
50-Megabits-per-Second Transfer Rate 

• Interrupt with Full Context Save 

• Signed Two's Complement Fixed-Point 
Arithmetic 

• NMOS Technology 

• Single '5-V Supply 

• Two Versions Available 
TMS32o10-20 . 20.5 MHz Clock 
TMS32010-25 . . . 25.0 MHz Clock 

description 

The TMS32010 is the first member of the new 
TMS320 digital signal processing family, designed 
to support a wide range of high-speed or numeric­
intensive applications. This 16/32-bit single-chip 
microcomputer combines the flexibility of a high­
speed controller with the numerical capability of an 
array processor, thereby offering an inexpensive 
alternative to multichip bit-slice processors. The 
TMS320 family contains the first MOS 
microcomputers capable of executing better than 
6 million instructions per second. This high 
throughput is the result of the comprehensive, 

·· efficient, and easily programmed instruction set and 
of the highly pipelined architecture. Special 
instructions have been incorporated to speed the 
execution of _digital signal processing (DSP) 
algorithms. 

The TMS320 family's unique versatility and power 
give the design engineer a new approach to a 

SIGNATURE 

A11-AO/ 

PA2-PAO 

BIO 

CLKOUT 

D15-DO 

DEN 

iN'f 
MC/MP 

MEN 

RS 

Vee 
Vss 
WE 

X1 

X2/CLKIN 
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MAY 1983-REVISED FEBRUARY 1986 

TMS32010 ..• N PACKAGE 
ITOPVIEW) 

A1/PA1 A2/PA2 

AO/PAO A3 

MC/MP A4 

R5 A5 

INT A6 

CLKOUT A7 

X1 AS 
X2/CLKIN MEN 

Bin DEN 

vss WE 

DS Vee 
D9 A9 

D10 A10 

D11 A11 

D12 DO 

D13 D1 

D14 D2 

D15 D3 

D7 D4 

D6 D5 

PIN NOMENCLATURE 

1/0 DEFINITION 

OUT External address bus. 1/0 port address 

multiplexed o~er PA2-PAO. 

IN External polling input for bit test and 
jump operations. 

OUT System clock output,% crystal/CLKIN 

frequency. 

1/0 16-bit data bus. 

OUT Data enable indicates the processor 

accepting input data on D15-DO. 

IN Interrupt. 

IN Memory mode select pin. High selects 

microcomputer mode. Low selects 

microprocessor mode. 

OUT Memory enable indicates that D 1 5-DO 

will accept external memory 
instruction. 

IN Reset used to initialize the device. 

IN Power. 

IN Ground. 

OUT Write enable indicates valid data on 

D15-DO. 
IN Crystal input. 

IN Crystal input or external clock input. 
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functional block diagram 
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variety of complications. In addition, these microcomf)µters are capable of providing the multiple func­

tions often required for a single application. For example, the TMS320 family can enable an industrial robot 

to synthesize and recognize speech, sense objects with radar or optical intelligence, and perform mechanical 

operations through digital servo loop computations. 

architecture 

The TMS320 family utilizes a modified Harvard architecture for speed and flexibility. ln a strict Harvard architecture, 

program a11d data memory lie in two separate spaces, permitting a full overlap of the instruction fetch and 

execution. The TMS320 family's modification of the Harvard architecture allows transfers between program and 

data spaces, thereby increasing the flexibility of the device. This modification permits coefficients stored in program 

memory to be read into the RAM, eliminating the need for a separate coefficient ROM, It also makes available 

immediate instructions and subroutines based on computed values. 

The TMS32010 utilizes hardware to implement functions that other processors typically perform in software. 

For example, this device contains a hardware multiplier to perform a multiplication in a single 160-ns cycle. There 

is also a hardware barrel shifter for shifting data on its way into the ALU. Finally, extra hardware has b9en included 

so that auxiliary registers, which provide indirect data RAM addresses, can be configu~ed in an 

autoincrement/ decrement mode for single-cycle manipulation of data tables. This hardware-intensive approach 

gives the design engineer the type of power previously unavailable on a single chip. 

32-bit ALU/accumulator 

The TMS32010 contains a 32-bit ALU and accumulator that support double-precision arithmetic. The ALU operates 

on 16-bit words taken from the data RAM or derived from immediate instructions. Besides the usual arithmetic 

instructions, the ALU ·can perform Boolean operations, providing the bit manipulation ability required of a high­

speed·. controller. 

shifters 

A barrel shifter is available for left-shifting data 0 to 15 places before it is loaded into, subtracted from, or added 

to the accumulator. This shifter extends the high-order bit of the data word and zero-fills the low-order bits for 

two's complement arithmetic. A second shifter left-shifts the upper half of the accumulator 0, 1, or 4 places 

whiie it is being stored in the data RAM. Both shifters are very useful for scaling and bit extraction . 

. .. 16 x 16-bit parallel rnultiplier 

The TMS32010's multiplier performs a 16x16-bit, two's complement multiplication in one 160-ns instruction 

cycle. The 16-bit T Register temporarily stores the multiplicand; the P Register stores the 32-bit result. Multiplier 

values either come from the data memory or are derived immediately from the MPYK (multiply immediate) 

instruction word. The fast on-chip multiplier allows the TMS32010 to perform such fundamental operations as 

convolution, correlation, and filtering at the rate of better than 3 million samples per second. 

program memory expansion 

The TMS320M10 is equipped with a 1536-word ROM which is mask-programmed at the factory with a customer's 

program. It can also execute from an additional 2560 words of off-chip program memory at full speed. This memory 

expansion capability is especially useful for those situations where a customer has a number of different applications 

that share the same subroutines. In this case, the common subroutines can be stored on-chip while the application 

specific code is stored off-chip. 

The TMS320M10 can operate in either of the following memory modes via the MC/MP pin: 

Microcomputer Mode IMC) - Instruction addresses 0-1535 fetched from on-chip ROM. Those with addr8$S9s 

1536-4095 fetched from off-chip memory at full speed. 

Microprocessor Mode IMP) - Full speed execution from all 4096 off-chip instruction addresses. 

. TEXAS ..ff 
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The TMS32010 is identical to the TMS320M10, except that the TMS32010 operates only in the microprocessor 
mode; Henceforth, TMS32010 refers to both versions. 

The ability of the TMS32010 to execute at full speed from off-chip memory provides the following important 
benefits: 

• Easier prototyping and development work than is possible with a device that can address only on-chip 
ROM, 

• Purchase of a standard off-the-shelf product rather than a semi-custom mask-programmed device, 
• Ease of updating code, 
• Execution from external RAM, 
• Downloading of code from another microprocessor, and 
• Use of off-chip RAM to expand data storage capability. 

input/ output 

The TMS32010's 16-bit parallel data bus can be utilized to perform 1/0 functions at burst rates of 50 million 
bits per second. Available for interfacing to peripheral devices are 128 input and 128 output bits consisting of 
eight 16-bit multiplexed input ports and eight 16-bit multiplexed output ports. In addition, a polling input for 
bit test and jump operations (BIO) and an interrupt pin (INT) have been incorporated for multi-tasking. 

interrupts and subroutines 

The· TMS32010 contains a four-level hardware stack for saving the contents of the program counter during 
interrupts and subroutine calls. Instructions are available for saving the TMS32010's complete context. The 
instructions, PUSH stack .from accumulator; and POP stack to accumulator permit a level of nesting restricted 
only by the amount of available RAM. The interrupts used in the TMS32010 are maskable. 

instruction set 

The. TMS32010's comprehensive instruction set supports both numeric-intensive operations, such as signal 
processjng, and general purpose operations, such as high-speed control. The instruction set, explained in Tables 
1 ·and 2, consists primarily of single-cycle single-word instructions, permitting execution rates of better than 6 
million instructions per second. Only infrequently used branch and 1/0 instructions are multicycle. 

Th~ TMS32010 also contains a number of instructions that shift data a part of an arithmetic operation. These 
all execute in a single cycle and are very useful for scaling data in parallel with other operations. 

Three main addressing modes are available with the TMS32010 instruction set: direct, indirect, and immediate 
addressing. 

direct addressing 

In direct addressing, seven bits of the instruction word concatenated with the data page pointer form the data 
memory address. This implements a paging scheme in which the first page contains 128 words and the second 
page contains 16 words. In a typical application, infrequently accessed variables, such as those used for servicing 
an interrupt, are stored on the second page. The instruction format for direct addressing is shown below. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

OPCODE 0 dma 

TEXAS .. 
INSTRUMENTS 
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Bit 7 = 0 defines direct addressing mode. The opcode is contained in bits 15 through 8. Bits 6 through O contain 
data memory address. 

The seven bits of the data memory address (dma) field can directly address up to 128 words (1 page) of data 
memory. Use of the data memory page pointer is required to address the full 144 words of data memory. 

Direct addressing can be used with all instructions requiring data operands except for the immediate operand 
instructions. 

indirect addressing 
Indirect addressing forms·the data memory address from the least significant eight bits of o.ne of two auxiliary 
registel'S, ARO and AR1. The auxiliary register pointer (ARP) selects the current auxiliary register. The auxifiary 
registers can be automatically incremented or decremented in parallel with the execution of any indirect instructian 
to permit single-cycle manipulation of data tables. The instruction format for indirect addressing is as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

OPCODE 

Bit 7 = 1 defines indirect addressing mode. The opcode is contained in bits 15 through 8. Bits 7 through 0 
contain indirect addressing control bits. 

Bit 3 and bit 0 control the Auxiliary Register Pointer (ARP). If bit 3 = 0, then the content of bit 0 is laaded 
into the ARP. If bit 3 = 1, then content of ARP remain unchanged. ARP = 0 defines the contents of ARO 
as memory address. ARP = 1 defines the contents of AR1 as memory address. 

Bit 5 and bit 4 control the auxillary registers. If bit 5 = 1, then the ARP defines which auxiUary register is to 
be incremented by 1. If bit 4 = 1, then the ARP defines which auxiliary register is to be decremented by 1. 
If bit 5 and bit 4 are zero, then neither auxiliary register is incremented or decremented. Bits 6, 2, and fire 
reserved and should always be programmed to zero. · 

Indirect addressing can be used with all instructions requiring data operands, except for the immediate QJ)erand 
instructions. · 

immediate addressing 

The TMS32010 instruction set contains special "immediate" instructions. These instructions derive data from 
part of the instruction word rather than from the data RAM. Some very useful immediate instructions are multiply 
immediate (MPYK), load accumulator immediate (LACK), and load auxiliary register immediate (LARK). 

TABLE 1. INSTRUCTION SYMBOLS 

SYMBOL MEANING 
ACC Accumulator 

D Data memory address field 

I Addressing mode bit 

K Immediate operand field 

PA 3-bit port address field 

R 1-bit operand field specifying auxiliary register 

s 4-bit left-shift code 

x 3-bit accumulator left-shift field 

TEXAS. 
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MNEMONIC 

ABS 

ADD 

ADDH 

ADDS 

AND 

LAC 

LACK 

OR 

SACH 

SACL 

SUB 

SUBC 

SUBH 

SUBS 

XOR 

ZAC 

ZALH 

ZALS 

MNEMONIC 

LAA 

LARK 

LARP 

LOP 

LDPK 

MAR 

SAR 

TABLE 2. TMS32010 INSTRUCTION SET SUMMARY 

ACCUMULATOR INSTRUCTIONS 

NO. NO. 
OPCODE 

DESCRIPTION INSTRUCTION REGISTER 
CYCLES WORDS 

1514131211109 8 7 6 5 ·4. 3 2 1 0 

Absolute value of accumulator 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 

Add to accumulator with shi~ 1 1 0 0 0 0 +-s+ I ... D • 
Add to high-order accumulator bits 1 1 0 1 1 0 0 0 0 0 I ... D • 
Add to accumulator with no sign 

1 1 0 1 1 0 0 0 0 1 I ... D • extension 

AND with accumulator 1 1 0 1 1 1 1 0 0 1 I ... D--+ 

Load accumulator with shift 1 1 0 0 1 0 +-s+ I ... D--+ 

Load accumulator immediate 1 1 0 1 1 i 1 1 1 0 ... K • 
OR with accumulator 1 1 0 1 1 1 1 .0 1 0 I ... D--+ 

Store high-order accumulator bits with 

shift 
1 1 0 1 0 1 1 •x• I ... D • 

Store low-order accumulator bits 1 1 0 1 0 1 0 0 0 0 I ... D • 
SUbtract from accumulator with shift 1 1 0 0 0 1 +-s+ I ... D--+ 

Conditional subtract (for divide) 1 1 0 1 1 0 0 1 0 0 I ... D--+ 

Subtract from high-order accumulator bits 1 1 0 1 1 0 0 0 1 0 I 4 D--+ 

Subtract from accumulator with no sign 

extension 
1 1 0 1 1 0 0 0 1 1 I ... D • 

Exclusive OR with accumulator 1 1 0 1 1 1 1 0 0 0 I ... D • 
Zero accumulator 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 

Zero accumulator and load high-order bits 1 1 0 1 1 0 0 1 0 1 I 4 D • 
Zero accumulator and load low-order bits 

with no sign extension 
1 1 0 1 1 0 0 1 1 0 I ... D • 

AUXILIARY REGISTER AND DATA PAGE POINTER INSTRUCTIONS 

NO. NO. 
DESCRIPTION 

CYCLES WORDS 

Load auxiliary register 1 1 

Load auxiliary register immediate 1 l 

Load auxiliary register pointer immediate 1 1 

Load data memory page pointer 1 1 

Load data memory page pointer immediate 1 1 

Modify auxiliary register and pointer 1 1 

Store auxiliary register 1 1 

TEXAS" 
INSTRUMENTS 

OPCODE 

INSTRUCTION REGISTER 

151413121110 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 1 0 0 R I ... D • 
0 1 1 1 0 0 0 R • K.--+ 

0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 K 

0 1 1 0 1 1 1 1 I ... D • 
0 1 1 0 ,, 

1 1 0 0 0 0 0 0 0 0 K 

0 1 1 0 1 0 0 0 I ... D • 
0 0 1 1 0 0 0 R I +--D--+ 
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B 

BANZ 

BGEZ 

BGZ 

BIOZ 

BLEZ 

BLZ 

BNZ 

BV 

BZ 

CALA 

CALL 

RET 

MNEMONIC 

APAC 

LT 

LTA 

LTD 

MPV 

MPYK 

PAC 

SPAC 
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TABLE 2. TMS32010 INSTRUCTION SET SUMMARY (CONTINUED) 

BRANCH INSTRUCTIONS 

OPCODE 
NO. NO. 

INSTRUCTION REGISTER DESCRIPTION 
CYCLES WORDS 

151413121110 9 8 7 6 5. 4 3. 2 1 .. 0 

1 1 - 1 1 1 0 0 1 0 0 0 0 0 0 0 0 
Branch unconditionally 2 2 

0 0 0 0 +-- BRANCH ADDRESS ---+ 
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 

Branch on auxiliary register not zero 2 2 
0 0 0 0 +--BRANCH ADDRESS ---+ 
1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 

Branch if accumulator =:: 0 2 2 
0 0 0 0 +-- BRANCH ADDRESS ---+ 
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

Branch if accumulator > 0 2 2 
0 0 0 0 +--BRANCH ADDRESS---+ 

1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 
Branch on Bio = 0 2 2 

0 0 0 0 +--BRANCH ADDRESS~ 

. 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 
Branch if accumulator s 0 2 2 

0 0 0 0 +-- BRANCH ADDRESS---+ 

1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 
Branch if accumulator < 0 2 2 

0 0 0 0 +-- BRANCH ADDRESS---+ 

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
Branch if accumulator * 0 2 2 

0 0 0 0 +-- BRANCH ADDRESS --+ 
1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 

Branch on overflow 2 
; 2 

0 0 0 0 +--BRANCH ADDRESS---+ 

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
Branch if accumulator = 0 2 2 

0 0 0 0 +--BRANCH ADDRESS--+ 

Call subroutine from accumulator 2 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
Call subroutine immediately 2 2 

0 0 0 0 +-- BRANCH ADDRESS---+ 

Return from subroutine or interrupt routine 2 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 
..;.;. 

T REGISTER. P REGISTER. AND MULTIPLY INSTRUCTIONS 

OPCODE 
NO. NO. 

INSTRUCTION REGISTER DESCRIPTION 
CYCLES WORDS 

151413121110 9 8 7 6 5 4 3 2 1 0 

Add P register to accumulator 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 

Load T register 1 1 0 1 1 0 1 0 1 0 I 4 D .. 
L TA combines LT and APAC into one 

instruction 
1 1 0 1 1 0 1 1 0 0 I 4 D--+ 

LTD combines LT, APAC, and DMOV into 
1 1 

one instruction 
0 1 1 0 1 0 1 1 I 4 D .. 

Multiply with T register, store product in 
1 1 0 1 1 0 1 1 0 1 I 4 D .. 

P register 

Multiply T register with immediate 
1 1 0 0 

..._ K .... 
1 - ~ 

operand; store product in P register 

Load accumulator from P register 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 

Subtract P register from accumulator 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 -

TEXAS. 
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TABLE 2. TMS32010 INSTRUCTION SET SUMMARY (CONCLUO.EO) 

CONTROL INSTRUCTIONS 

NO. NO. 
OPCODE 

MNEMONIC DESCRIPTION 
CYCLES WORDS 

IN.STRUCTION REGISTER 
151413121110 9 8 7 6 5 4 3 2 1 0 

DINT Disable interrupt 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 
EINT Enable interrupt 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 
LST Load status register 1 1 0 1 1 1 1 0 1 1 I 4 D • NOP No operation 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 
POP POP stack to accumulator 2 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 
PUSH PUSH stack from accumulator 2 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 
ROVM Reset overflow mode 1 1 0 t 1 1 1 1 1 1 1 0 0 0 1 0 1 0 
SOVM Set overflow mode 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 
SST Store status register 1 1 0 1 1 1 1 1 0 0 I 4 D---+ 

1/0 AND DATA MEMORY OPERATIONS 

OPCODE 
NO. MNEMONIC DESCRIPTION 

NO. 
INSTRUCTION REGISTE.R 

CYCLES WORDS 
151413121110 9 8 7 6 5 4 3 2 1 0 

DMOV 
Copy contents of data memory location 

1 1 0 1 1 0 1 0 0 1 I +--D ~. into next location 
IN Input data from port 2 1 0 1 0 0 0 •PA+ I +--D • OUT Output data to port 2 1 0 1 0 0 1 •PA+ I +--D • 
TBLR 

Table read from program memory to data 
3 1 0 1 1 0 0 1 1 1 I +--D • RAM 

TBLW 
Table write ftom data RAM to program 

3 1 0 1 1 1 1 1 0 1 I 4 D • 

development systems and software support 

Texas Instruments offers concentrated development support and complete documentation for designing a 
TMS3201Q-based microprqcessor system. When developing an application, tools are provided to evaluate the 
performance of the processor, to develop the algorithm implementation, and to fully integrate the design's software 
and hardw~re modules. When questions arise, additional support can be obtained by calling the nearest Texas 
Instruments Regional Technology Center (RTC). 

Sophisticated development operations are performed with the TMS32010 Evaluation Module (EVM), Macro 
Assembler/Linker, Simulator, and Emulator (XDS). In the initial phase of developing an application, the evaluation 
module is usiad to characterize the performance of the TMS32010. Once this evaluation phase is completed, 
the macro assembler and linker are used to translate program modules into object code and link them together. 
This puts the program modules into a form which can be loaded into the TMS32010 Evaluation Module, Simulator, 
or Emulator. The simulator provides a quick means for initially debugging TMS32010 software while the emulator 
provides real-time in-circuit emulation necessary to perform system level debug efficiently. 

A complete list of TMS32010 software and hardware development tools are given in Table 3. 

TEXAS. 
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TABLE 3. TMS32010 SOFlWARE AND HAR.DWARE SUPPORT 

HOST OPERATING PART 
COMPUTER SYSTEM NUMBER 

MACRO ASSEMBLERS/LINKERS 

DEC VAX VMS TMDS3240210-<MJ 

DEC VAX B.erkeley UNIX 4.1 TMDS3240220-08 

DEC VAX Berkeley UNIX 4.2 TMDS3240230-08 

IBM MVS TMDS3240310-<MJ 

IBM CMS TMDS324032(M)B 

Tl/IBM PC MS/PC-DOS TMDS3240810-02 

SIMULATORS 

DEC VAX VMS TMDS3240211-0B 

Tl/IBM PC MS/PC-DOS TMDS3240811-02 

DIGITAL FILTER DESIGN PACKAGE (DFDPI 

TIPC MS-DOS DFDP-Tl001 

IBM PC PC-DOS DFDP-IBM001 

HARDWARE 

Evaluation Module IEVMI RTC/EVM320A-03 

Analog Interface Board IAIBI RTC/EVM320C-06 

Emulator TMDS3262210 

absolut!t maximum ratings over specified temperature range (unless otherwise noted)f 

Supply voltage, Vee* ............................................................... -0.3 v to 7 v 
All input voltages .................................................................. - 0.3 V to 15 V 

Output voltage ...•............................................ ; ................... - 0.3 V to 15 V 

Continuous power dissipation ................................................................ 1.5 W 

Air temperature range above operating device ............................................ 0°C to 70°C 

Storage temperature range ....................................................... -55°C to + 150°C 

t Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to th8 device. This is a stress rating 

only and functional operation of the device at these or any other conditions beyond those indicated in the "Rl9commended Operating 

Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect 

device reliability. * All voltage values are with respect to VSS· 

recommended operating conditions 

Vee 

Vss 

V1H 

V1L 

loH 

IOL 

TA 

Supply voltage 

Supply voltage 

l All inputs except CLKIN 
High-level input voltage l CLKIN 

Low-level input voltage (all inputs) 

High-level output current (all outputs) 

Low-level output current (all outputs) 

Operating free-air temperature 

TEXAS .Jf 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

MIN NOM 'MAX UNIT 

4.75 5 s:25 v 
0 v 

2 
v 

2.8 

0.8 v 

300 p.A 

2 mA 

0 70 oc 

9 
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JMS320t0 
DIGITAL SIGNAL PROCESSOR 

electrical characteristics over specified temperature range (unless otherwise noted) 

PARAMETER TEST CONDITIONS MIN TY Pt 

VoH High-level output voltage IOH =MAX 2.4 3 

Vol Low-level output voltage IOL =MAX 0.3 

Vo= 2.4 V 
loz Off-state output current Vee= MAX 

Vo= 0.4 V 

11 Input current v1 = Vss to Vee 

•cc* 
TA= 0°C 180 

Supply current Vee= MAX 
TA = 70°C 

Data bus 25 
Ci Input capacitance 

All others f = 1 MHz, 15 

Data bus 25 
Co Output capacitance 

All others 
All other pins 0 V 

10 

t All typical values except for Ice are at Vee = 5 V, TA = 25°C. 
t Ice characteristics are inversely proportional to temperature; i.e., Ice decreases approximately linearly with temperature. 
§ Value derived from characterization data and is not tested. 

CLOCK CHARACTERISTICS AND TIMING 

The TMS32010 can use either its internal oscillator or an external frequency source for a clock. 

internal clock option 

MAX 

0.5 

20 

-20 

±50 

275 

235§ 

UNIT 

v 
v 

µA 

µA 

mA 

mA 

pF 

pF 

The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN (see Figure 1 ). The frequency 
of CLKOUT is one-fourth the crystal fundamental frequency. The crystal should be fundamental mode, and parallel 
resonant, with an effective series resistance of 30 ohms, a power dissipation of 1 mW, and be specified at a 
load capacitance of 20 pF. 

TMS32010-20 TMS32010:.25 
PARAMETER TEST CONDITIONS UNIT 

MIN NOM MAX MIN NOM MAX 

Crystal frequen~!x_ 0°c - 10°c ' 6.7 20.5 6.7 25.0 MHz 

C1, C2 0°c - 10°c 10 10 pF 

X1 X2/CLKIN 

CRYSTAL -------...o-
+C2 

FIGURE 1. INTERNAL CLOCK OPTION 

TEXAS. 
INSTRUMENlS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 
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TMS320t0 
··DIGITAL SIGNAL. PROCESSOR 

external clock option 

An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X1 left 

unconnected. The external frequency injected must conform to the specifications listed iii the table below. 

timing requirements over recommended operating conditions 

PARAMETER 
TMS32010-20 TMS32010-25 

MIN NOM MAX MIN NOM MAX 

tel MCI Master clock cycle time 48.78 150 40 150 

tr( MCI Rise time master clock input 5 10 5 10 

tf(MCI Fall time master clock input 5 10 5 10 

lwlMCPI Pulse duration master clock 0.475tctCl 0.525tctCl o.475tc1c1 0.525tc1c1 • 

. twlMCLI Pulse duration master clock low, tclMCI = 50 ns 20 18 

twlMCHI .. Pulse duration master clock high, tc(MCI = 50 ns 20 18 

switching characteristics over recommended operating conditions 

PARAMETER TEST CONDITIONS 
TMS32010-20 TMS32010-25 

MIN NOM MAX MIN 

tel Cl CLKOUT cycle timet 195.12 160 

tr( Cl CLKOUT rise time RL = 870 0 10 

tf(CI CLKOUT fall time CL = 100 pf, 8 

lwlCLI Pulse duration, CLKOUT low See Figure 2 92 

twlCHI Pulse duration, CLKOUT high 90 

ldlMCCI Delay tine CLKINt to CLKOUTl :a: 25 60 25 

t tc1c1 is the cycle time of CLKOUT, i.e., 4*tclMCI 14 times CLKIN cycle time if an external oscillator is used). 

* Values given were derived from characterization data and are not tested. 

TEXAS 'f 
INSTRUMENTS 
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NOM 

10 

8 

74 

72 

MAX 

60 

UNIT 

ns 

ns 

ns 

ns 

ns 
ns 

UNIT 

ns 

ns 

ns 

ns 

ns 

ns 

11 
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TMS32010 
·DIGITAL SIGNAL PROCESSOR 

PARAMETER MEASUREMENT INFORMATION 

V = 2.14V 

RL = 870 0 

FROM OUTPUT o--­
TEST 

---oPOINT 

2.ov .... 
1.88 y.-

2.ov-
0.a v 

UNDER TEST 

I CL= 100 pF. 

':" 

FIGURE 2. TEST LOAD CIRCUIT 

YtH CMINI 

0 

Cal INPUT 

0 

(bl OUTPUTS 

FIGURE 3. VOLTAGE REFERENCE LEVELS 

TEXAS.,,, 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 
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TMS32010 
DIGITAL SIGNAL PROCESSOR 

clock timing 

~ ~tr( MC) fil '1 tw(MCHl ~ .. tw(MCPlt 
I ~ tc(MC)i-_ _,'1• I ( I 

X2/CLKIN 1 ~ ,---, ____ i,.---, ____ / 
•• '1 ._ __ __.-.... • 

... ., tw(MCLl 
: tf(MCl...I i.. 
1- •Mt--------tw(CH)-------iftf• 
-.. -h11-td(MCClt r- -. 

\_/ 

., I I 

i'{-J' ~ \ <- 1 . A-:;----s-,-4t_t-1_({~---.~ 
~ tf(Cl -.! -r.- tr(Cl l 

CLKOUT 

1
1 
I• t - 1 ,. w(CL)------~ I 

--------------------tc1Cis _______________ ,.. 

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 
t td(MCCl and tw(MCP) are referenced to an intermediate level of 1.5 volts on the CLKIN waveform. 

MEMORY AND PERIPHERAL INTERFACE TIMING 

switching characteristics over recommended operating conditions 

PARAMETER 
TEST 

CONDITIONS 
MIN TYP MAX 

td1 
Delay time CLKOUTI to 

address bus valid (see Note) 
10t 50 

--- - --·- ---·--- . - --- - -
%t«.1_ci-5t~ ~%tc1c1+15 td2 Delay time CLKOUT I to MEN I 

Delay time CLKOUT I to ~I 
·--- - ---

-101 td3 15 

Delay time CLKOUTI to i5ENI 
--- ·------·--

% tc(C) - 5 t lft' bt'% tc{C)+ 15 td4J -----
td5 Delay time CLKOUTI to DENI -10t 15 

-·-- ----~·---·---·---

tds Delay time CLKOUT I to WE I RL = 870 0, %tcJ_CJ_- 5tJL MS % t«.1_C..l + 1 5 

td7 Delay time CLKOUT I to WE I CL = 100 pF, -10t 15 

td8 
Delay time CLKOUT I to See Figure 2 

/140 %tc(C)+65 
data bus OUT valid 

Time after CLKOUTI that data 
%tc1c1-5t((r tdg 

bus starts to be driven 

Time after CLKOUTI that data 
f0%tc1c1+aot td10 bus stops being driven 

tv Data bus OUT valid after CLKOUT I %tc1c1-10 lfo 

NOTE: Address bus will be valid upon WE!, DENI, or MENI. 
t These values were derived from characterizatioh data and are not tested. 

timing requirements over recommended operating conditions 

PARAMETER 
TEST 

MIN TYP MAX 
CONDITIONS 

tsu!Dl Setup time data bus valid prior to CLKOUT i RL = 870 0, 50 

tsu(A-MDl Address bus setup time prior to MENi or DENi CL = 100 pF, Y4lc(Cl-45 S'° 

th(Dl Hold time data bus held valid after CLKOUT i See Figure 2 

NOTE: Data may be removed from the data bus upon MENi or DEN i preceding CLKOUT!~ 
' . . . -

TEXAS 'I 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

0 

UNIT 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

UNIT 

ns 

ns 

ns 
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DIGIT AL .· SIGIAL PROCESSOR 

memory read 

14 
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CLKOUT \ I \ I·\ I \ I \ -r 
i--td2......, _I . 

td3--.I ~ - I __,.. !4-td3 

2 !rl 3 I 4 MEN 

A11-AO 5 6 7 

( 9 ) ( 8 

• 10 )r---' ' 015-DO 

LEGEND: 

1. TBLR INSTRUCTION PREFETCH 7. ADDRESS BUS VALID 

2. DUMMY PREFETCH 8. ADDRESS BUS VALID 

3. DATA FETCH 9. INSTRUCTION IN VALID 

4 . . NEXT INSTRUCTION. PREFETCH 10 . INSTRUCTION IN VALID 

. 5. ADDRESS aus VALID 11. DATA IN VALID 

6. ADDRESS BlJS VALID 12. INSTRUCTION IN VALID 

NOTE: Timing m~asurements are referenced to.and from a low. voltage of 0.8 volts and a l!igh voltage of 2.0 volts, unless.otherwise noted. 
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--~~~~~~ ,....,,. ,_.~....;.~~~--~ 
5 6 

,. .·· 

1--::t'\t~ ~~td7 ;~t~.r 

3 

7 

--------------~,--~~ ,~~~~~ 

~:.m.i 1t~~o~ ~ ( 8 ) (-9---) ~ 10 -~( 11 ) • 

LEGEND: 

1. TBLW INSTRUCTION PREFETCH , 7. ADDRESS BUS VALID 
2. DUMMY PREFETCH a( INSTRUCTION IN VALID 
3. NEXT INSTRUCTION PREFETCH 9. INSTRUCTION IN VALID 
4. ADDRESS BUS VALID 10. DATA OUT VALID 
5. ADDRESS BUS VALID 11. INST.RUCTION IN VALID 
6. ADDRESS BUS VALID 

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherlll(ise noted. 
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I 
I 
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j.--td4-----f td5.....I f4--

--~~~~--x t------~----

14- ts u ( D) :(.J L 
I -:;i ,.-th(D) 

DEN 

D15-DO ) ¢ 7 }>-------c 

LEGEND: 

1. IN INSTRUCTION PREFETCH 5. ADDRESS BUS VAL(D 

2. NEXT INSTBUCTION PREFETCH 6. INSTRUCTION IN VALID 

3. ADDRESS BUS VALID 7. DATA IN VALID 

4. PERIPHERAL ADDRESS VALID 8. INSTRUCTION IN VALID 

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 
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LEGEND: 

1. OUT INSTRUCTION PREFETCH 5. ADDRESS BUS VALID 
2. NEXT INSTRUCTION PREFETCH 6. INSTRUCTION IN VALID 
3. ADDRESS BUS VALID 7. DATA OUT VALID 
4. PERIPHERAL ADDRESS VALID 8. INSTRUCTION IN VALID 

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 
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RESET (RS) TIMING 

TMS32010 
DIGITAL SIGNAL PROCESSOR 

timing requirements over recommended operating conditions 

PARAMETER MIN NOM MAX UNIT 

tsltlfl_l Reset (RSI setup time prior to CLKOUT. See Note. 50 ns 

tw(R) RS pulse duration stc1c1 ns 

switching characteristics over recommended operating conditions 

TEST 
PARAMETER CONDITIONS 

MIN TYP MAX . UNIT 

td11 Delay time DENI, WEI, and MEN! from RS 
RL = 870 0, 

¥.ztc1c1+sot ns 

tdis(R) Data bus disable time after RS 
CL = 100 pF, 

%tc1c1+soT ns 
See Figure 2 

NOTE: RS can occur anytime during a clock cycle. Time given is minimum to ensure synchronous operation. 

t These values were derived from characterization data and are not tested. 

reset timing 

CLKOUT 

RS 

D15-DO 

ADDRESS 
BUS 

Ktsu(RI ~tsu(Rl 

'{ i 
'4----s~ 
111~------tw(R)------.,• 

I 
See I 
Note 5 I 

~ ,.._td11 

tdis(Rl---1 ~ · 

--< DOAUTTA \~~~~~~~~~~~~~'~'r--~~~~~~~~--c(DATAINFROM}-{DATAINFROM 
• ( ~;J • PC ADDR 0 . . PC ADDA PC+ 1 

DATA SHOWN RELATIVE TO WE SS \ __ r\_ 
AB = ADDRESS BUS -------

AB= PC AB = PC + 1 

NOTES: 1. RS forces DEN, ~. and ·MEN high and tristates data bus DO through D 15. AB outputs (and program counter) are synchronously .cleared to 

zero after the next complete CLK cycle from IRS. 

2. RS must be maintained for a minimum of five clock cycles. 

3. Resumption of normal program will commence after one complete CLK cycle from I RS. 

4. Due to the synchronizing action on RS, time to execute the function can vary dependent upon when I RS or JRS occur in the CLK cycle. 

5. Diagram shown is for definition purpose only. DEN, WE, and MEN are mutually ex.elusive. 

6. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 

7. During a write cycle, Rs may produce an invalid write address. 

TEXAS..., 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001 
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TMS32010 
DIGITAL SIGNAL PROCESSOR 

INTERRUPT (INT) -TIMING 

timing requirements over recommended operating conditions 

PARAMETER MIN TVP MAX UNIT 
tf(INT) Fall time INT 15 ns 
tw(INTI Pulse duration il'ilT 

tel Cl ns 
tsu(INTI Setup time INTI before CLKOUTI 50 ns 

interrupt timing 

I \ I \ I \_ 
r -I tsullNTI 

CLKOUT 

INT ~ I 
tt(INT)---1 ~ 

tw(INTI ~ 
NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 

1/0 (810) TIMING 

timing requirements over recommended operating conditions 

PARAMETER MIN TVP MAX 
tf(IQJ_ Fall time BiO 15 
tw(IOI Pulse duration BIO tc(CI 
tsu(IO) Setup time 8101 •before CLKOUTI 50 

BiO timing 

CLKOUT I \ I \ I \_ 
~ ~ tsu(IO) 

~ I 
two1-.i ~ I 

14 tw(IOI ., 
NOTE: Timing measurements are· referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 

TEXAS.,, 
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UNIT 
ns 

ns 

ns 
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input synchronization requirements 

TMS32010 
DIGITAL SIGNAL PROCESSOR 

For systems using asynchronous inputs to the INT and BIO pins on the TMS32010, the external hardware shown 

in the diagrams below is recommended to ensure proper execution of interrupts and the BIOZ instruction. This 

hardware synchronizes the INT and BIO input signals with the rising edge of CLKOUT on the TMS32010. The 

pulse width require~ for these input signals is tc(C), which is one TMS32010 clock cycle, plus sufficient 

setup time for the flip-flop (dependent upon the flip-flop used). 

INTERRUPT INPUT SIGNAL 

(ACTIVE LOW) 

BIO INPUT SIGNAL 
(ACTIVE LOW) 

l 
p 

D a 
SN74ALS74 

r--~ c 

+Jv 

1 
p 

D a 
SN74ALS74 

r--~ c 

Jv 

TNT 

TMS32010 

CLKOUT 

iiO 

TMS32010 

CLKOUT 

Tl standard symbolization for devices without on-chip ROM 

SYMBOLIZATION 

line1: (al. (bl TMS32010NL 

line 2: (cl ©1983 Tl !di DCU8327 

line 3: le) 24655 

TEXAS 'f 
INSTRUMENTS 

MEANINGS OF SYMBOLS 

(al Texas Instruments trademark 

lbl Standard device number 
(cl Tl design copyright 
(di Tracking mark and date code 

lel Lot code 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 
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TMS32010 
DffllTAL SIGNAL PROCESSOR 

MECHANICAL DATA 

40-pin plastic dual-in".'lina package 

EITHER OR BOTH 
INPEXMARKS 

0,51 (0.020) 
· MIN . . .. . -r 

_l ~5.il8((!.200)MAX 
-'SEATINGPLANE,_- . .·. · ' . J ~ , . , - · . 2,92 (0.115) .MIN 

90" 0,28 ± 0,08 . 0,467 ± 0,076 . . .. 
(0.011±0.003)ii (0.018 ± 0.0031--f,... ~ . . · j 0,84 (0.033) MIN 

. . . . 2,41 (0.095) PIN SPACING 2.54 (0.1001 T.P. . . · · 1,40 (0.055) 
(See Note Al 1,52 (0.060) NOM . 

NOTES: a. Each pin cantatlna la located wlttiln 0,284 to.0101 of ltl bile longltuilnal position. 
b. Al lnear dlmenllona. ara In mlmlMltn aftcl par9thetlca1y In lndJe•. · 

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possibl8. 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 a HOUSTON. TEXAS 77001 
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MILITARY 
PRODUCTS 

MIL-STD-883B Processing 

Same Features and Specifications as 
TMS32010 over 0°C - 70°C Temperature 

Range 

Currently Microprocessor Mode Only (All 

Program Memory Is Extended) 

Extended Temperature Version Available in 

Near Future 

288-Byte On-Chip Data RAM 

External Memory Expansion to Total of SK 

Bytes at Full Speed 

16-Bit Instruction/Data Word 

32-Bit ALU/Accumulator 

16 x 16-Bit Multiply in One Instruction Cycle 

0 to 15-Bit Barrel Shifter 

Eight Input and Eight Output Channels 

16-blt Bidirectional Data Bus with 
40-Megabits-per-Second Transfer Rate 

SMJ32010 
DIGITAL SIGNAL PROCESSOR 

SMJ32010 ••• JDL PACKAGEt 

ITOPVIEWI 

A2/PA2 

A3 

A4 

AS 

A6 

A7 

X1 AB 

X2/CLKIN MEN 

em DEN 

vss we 
DB Vee 
D9 A9 

D10 A10 

D11 A11 

D12 DO 

D13 D1 

D14 D2 

D15 D3 

D7 D4 

D6 

MAY 1983 

• Interrupt with Full Context Save t Also available in a 44-pad leadless ceramic chip carrier (type FK). 

• Signed Two's Complement Fixed-Point 

Arithmetic 

• 2. 7-Micron NMOS Technology 

• Single 5-V Supply 

description 

The SMJ32010 is a member of the new TMS320 

digital signal processing family, designed to support 

a wide range of high-speed or numeric-intensive ap­

plications. This 16/32-bit single-chip microcomputer 

combines the flexibility of a high-speed controller with 

the numerical capability of an array processor, thereby 

offering an inexpensive alternative to multichip bit­

slice processors. The TMS320 family contains the first 

MOS microcomputers capable of executing five million 

instructions per second. This high throughput is the 

result of the comprehensive, efficient, and easily pro­

grammed instruction set and of the highly pipelined 

architecture. Special instructions have been incor­

porated to speed the execution of digital signal pro­

cessing (DSPI algorithms. 

The TMS320 family's unique versatility and power 

give the design engineer a new approach to a variety 

of complicated applications. In addition, these 

microcomputers are capable of providing the multiple 

ADVANCE INFORMATION 

SIGNATURE 

A11-AO/ 

PA2-PAO 

BIO 

CLKOUT 

D15-DO 

DEN 

INT 

MC/MP 

MEN 

RS 

Vee 
Vss 
WE 

X1 

X2/CLKIN 

This document contains Information on • new product. 
Speclllcatlon1 are subject to change without notice. TEXAS 

INSIRUMEN1S 

PIN NOMENCLATURE 

1/0 DEFINITION 

OUT External address bus. 1/0 port address 

multiplexed over PA2-PAO. 

IN External polling input for bit test and 

jump operations. 

OUT System clock output, Y. crystal/CLKIN 

frequency. 

1/0 16-bit data bus. 

OUT Data enable indicates the processor 

accepting input data on D15-DO. 

IN Interrupt. 

IN Memory mode select pin. High selects 

microcomputer mode. Low selects 

microprocessor mode. 

OUT Memory enable indicates that D 1 5-DO 

will accept external memory 

instruction. 

IN Reset used to initialize the device. 

IN Power. 

IN Ground. 

OUT Write enable indicates valid data on 

D15-DO. 

IN Crystal input. 

IN Crystal input or external clock input. 

Copyright © 1983 by Texas Instruments Incorporated 

POST OFFICE BOX 225012 a DALLAS, TEXAS 75265 
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·SMJ32010 
'DtGITAL :SIGNAL PRO·CESSOR 

functions often required for a single application. For example, the TMS320 family can enable an industriai robot to 
synthesize and recognize speech, sense objects with radar or optical intelligence, and.!)erform mechanical operations· 
through digital servo loop computations. 

· SMJ32010 SIGNAL PROCESSOR SCREENING AND LOT PERFORMANCE 

-

B-4 

SCREEN METHOI) 

Internal Visual (Precai>I 
2010 Condition B 
See Note. 

Stabilization Bake 
1008 Test Condition C 
(24 hours) 

1010 Condition C Temperature Cycling 
(50 cycles) 

Constant Acceleration 
2001 Condition A 
(MINI in Y1 Plane 

Seal Fine and Gross 1014 

Interim Electrfoal Ti Data Sheet 
Electrical Specifications 
1015 

Burn-In 125°C (160 hours MINI 
PDA = 10% 

Final Electrical Tests Tl Data Sheet 
Electrical Specifications 

(A) Static. tests: 
(11 25 °C (Subgroup 1, Table 1, 50051 
(2) MAX and MIN Rated Operating 

TelJlperature (Subgroups 2 and 3, 
Table 1, 50051 

(8) Switching tests: 
(1) 25°C.(Subgroup 9, Table 1, 50051 
(21 MAX and MIN Rated Operating 

Temperature (Subgroups 10 and 11, 
Table 1, 5005) 

(Cl Functional tests: 
(1) 25 °c (Subgroup 7, Table 1, 50051 
121 .·MAX and MIN Rated Operating 

Temperature (Subgroup 8, Table 1, 
5005) 

Quality Conformance 
5005 Class B ln~pection Group A 

(Al Static tests: 
(1) 25 °C (Subgroup 11 
(21 Temperature (Subgroups 2 and .3) 

(Bl Switching tests: 
(1) 25 °C (Subgroup 91 
(2) Temperature 

(Subgroups 10 and 111 
!Cl Functional tests: 

(11 25 °C (Subgroup 71 
External Visual 2009 

NOTE: 40x precilp stl'!ISS test in lieu of 100x pracap per Mil-STD-883 Method 5004, Paragraph 3.3. 

11 · - ' 
INSIR~NTS 

POST OFFICE BOX 226012 • DALLAS TEXA!: 7!';~FO 

RQMT 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

lTPD 

7% 
10% 

7% 

10% 

7% 
100% 
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SMJ32010 SIGNAL PROCESSOR NOMENCLATURE 

EXAMPLE: SMJ 
1. PREFIX------------~ 

Must contain three or four letters 

SMJ-Class B, Method 5004 

JANB - JM38510/JANB Qualified* 

2. CIRCUIT DESIGNATOR------------' 

Must contain five digits 
32010 

32010 

3. PACKAGETYPE-----------~--.....J 

Must contain two letters 
JD - Side Braze 
FK - Chip Carrier 

4. TEMPERATURE RANGE-------------...J 

Must contain one letter only 

L - 0 °C to. 70 °C (extended temperature available in near future) 

• FUture product. 

SMJ32010 
DIGITAL SIGNAL PROCESSOR 

JD L 

Texas lnatrument• reserves th.• right to make changes at any time In order to Improve design and to supply the beet product poeslbla. 

TEXAS 
INSTRUMENTS 

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265 



-

8-6 



APPENDIX C 

DEVELOPMENT SUPPORT/PART 
ORDER INFORMATION 

C-1 
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TMS32010 EVALUATION MODULE 

• Target Connector for FulJ Jn-Circuit Emulation . • Up to Eight Instruction Breakpoints 

• Debug Monitor Including · Over .60 Commands • Flexible Single Step with Software Trace 
with Full Prompting 

• Execution from EVM Program Memo..Y or Target 
• Reverse Assembler Memory 

• Transparency Mode for Host CPU Upload/ • Event Counter for One Breakpoint 
1)9wnload 

The Evaluation Module (EVM) is a single board which enables· a user to determine inexpensively if the 
TMS32010 meets the speed and timing requirements of the application. The EVM is a stand-alone.module 
whch contains all the tools necessary to evaluate the TMS32010 as well as to provide full in-circuit 
iJmulation via a target connector. A powerful firmware package contains a debug monitor, editor, 
assembler, reverse assembler, EPROM programmer, communication software to talk to two EIAports, and 
an audio cassette interface. The resident assembler will convert incoming source text into executable code 
in just one pass by automatically resolving labels after the first assembly pass is completed. The EVM can. 
be·configured with a dumb terminal, power supplies, and either a host computer, or· an audio cassette. 
Either.source or object code can be downloaded into the EVM via the EIA ports provided on the board. 

PART NUMBER POWER SUPPLIES (TM990/518A) UNITS 

RTe/EVM 320A-03 OUTPUT A: +5 voe (+/- 3%) 4.0A 
B: +12 voe(+/- 3%) 0.6A 
e: -12 voe (+/- 3%} 0.4A 

C.:.3 
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XDS/320 MACRO ASSEMBLER/LINKER 

• Macro Capabilities • Complete Error Diagnostics 

• Library Functions • Symbol Table and Cross Reference 

• Conditional Assembly •Available on Several Host Computers 

• Relocatable Modules • Written in PASCAL 

The XDS/320 Macro Assembler translates TMS32010 assembly language into executable object code. 
The assembler allows the programmer to work with mnemonics rather than hexidecimal machine 
instructions and to reference memory locations with symbolic addresses. The· macro assembler supports 
macro calls and definitions along with conditional assembly. 

The XDS/320 Linker permits a program to be designed and implemented in separate modules which will 
later be linked together to form the complete program. The linker assigns values to relocatable code, 
creating an object file which can be executed by the simulator or emulator. · 

The XDS/320 Macro Assembler and Linker are currently available on several host computers, including 
Tl990(DX10), VAX(VMS), and IBM (MVS and CMS) operating systems. Currently in development is soft­
ware to supp0rt the VAX(UNIX), DEC PDP11 (RSX), IBM PC (DOS), and Tl professional computer (DOS) 
operating system. Contact your local Tl representative for availability or further details. 

HOST 
OPERATING 

PART NUMBER MEDIUM 
SYSTEM 

Tl990 DX10 TMDS3240120-08 1600 BPI MAG TAPE 
DEC VAX VMS TMDS3240210-08 1600 BPI MAG TAPE 

IBM MVS TMDS3240310-08 1600 BPI MAG TAPE 
IBM CMS TMDS3240320-08 1600 BPI MAG TAPE 

For additional host support, please contact your local Tl Field Sales Office. 
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XDS/320 SIMULATOR 

• Trace and Breakpoint Capabilities 

• Full Access to Simulated Registers and Memories 

• 1/0 Device Simulation 

• Runs Object Code Generated by XDS/320 Macro 
Assembler I Linker 

•Available on VAX (VMS) 

• Written in FORTRAN 

The XDS/320 Simulator is a software program that simulates operation of the TMS32010 to allow 
program verification. The debug mode enables the.user to monitor the state of the simulated TMS32010 
while the program is executing. The simulator program uses the TMS32010 object code, produced by the 
XDS/320 Macro Assembler/Linker. During program execution, the internal registers and memory of.the 
simulated TMS32010 are modified as each instruction is interpreted by the host computer. Once program 
execution is suspended, the internal registers and both program and data memories can be inspected and/ 
or modified. The XDS/320 Simulator is currently available on the VAX (VMS). 

HOST 
OPERATING 

PART NUMBER SYSTEM MEDIUM 

DEC VAX VMS TMDC3240211-08 1600 BPI MAG TAPE 

C-5 
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XDS/320 EMULATOR 

• 20-MHz Operation (Full In-Circuit Emulation) 

• Up to Ten Software Breakpoints 

• 4K Words of Program Memory for User Code 

• Full Emulation of Microcomputer or Micro­
processor Modes 

• Use of Target System Crystal, Internal Crystal, or 
External Ctock Signal 

• Hardware Breakpoint on Program, Data, or 1/0 
Conditions 

• 2K of Full-Speed Hardware Trace 

• Single Step 

• Assembler/Reverse Assembler 

• Host-Independent Upload/Download Capabilities 
to/from Program or Data Memory 

• Ability to Inspect and Modify All Internal 
Registers, Program and Data Memory 

• Multi-Microprocessor Development 

The XDS/320 Emulator is a self-contained system that has all the features necessary for real-time in-circuit 
emulation. This allows integration of the hardware and software in the debug mode. By setting breakpoints 
based on internal conditions or external events, execution of the program can be suspended and control 
given to the debug mode. In the debug mode, all registers and memory locations can be inspected and 
modified. Single-step execution is available. Full trace capabilities at full speed and a reverse assembler that 
translates machine code back into assembly instructions are also included to increase debugging 
productivity. The system ptovides three EIA ports so that the emulator can be interfaced with a host 
computer, terminal, printer, or PROM programmer. Using a standard EIA port, the object file produced by 
the macro assembler/linker can be downloaded into the emulator. The emulator then can be controlled 
through a terminal. 

PART NUMBER 
TMDS3262210 
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TMS320 NOMENCLATURE 

TMS 328 10 JD L 

PREFIX-. --------' 
TMS = standard prefix 

FAMILY------...._--...--.,.--------' 
320 = signal processing family 

L TEMPERATURE RANGE 
L = 0 ° C to 70 ° C 

PACKAGE TYPE 

·•DEVICE-----------------' 
10 = Microprocessor 
M10 = Microcomputer (masked ROM) 

DEVELOPMENT FLOWCHART 

JD= ceramic 
side-brazed 

N =plastic 
dual-in-line 

TMxtxxxx 
Engineering prototypes that are not representative of the final 
device's electrical specifications 

TMP*XXXX 0 

TMSXXXX 

Final silicon die that conforms to. device's electrical specifications 
but has not completed quality and reliability verification 

. Fully qualified production devices 

trMX units shipped against the following disclaimer: 
11 Experimental product and its reliability has not been characterized. 
21 Product is sold "as is." 
31 Not warranted to be exemplary of final production version if or when released by Texas Instruments. 

*TMP units shipped against the following disclaimer: 
11 · Customer understands that the product purchased hereunder has not been fully characterized and the expectation of quality and 

reliability cannot be defined; therefore, Texas Instruments standard warranty refers only to the device's specifications. 
21 No warranty of merchantability or fitness is expressed or implied. • . 
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TI Sales Offices 
ALABAMA: Huab¥111e, 500 Wynn Driwo, Suill! 514, 
Huntsville, AL 35805, (205) 837· 75.lO. 

ARIZONA: ""-D:, P.O. Box 35160, 8102 N. 23111 Aw.., 
Suill! A, Phoenix, AZ 85021, (602) 995·1007. 

CALIR>RNIAr El s.a-io, 831 S. Douilaa St., El Squndo, 
CA 90245, (213) 973-2571; Irvine, 17891 Cartwriaht Rd., 
Irvine, CA 92714, (714) 660-1200; S.C- 1900 ftJint 
w .. t Way, Suill! 171, Sacramento, CA 95815, (916) 929-1521; 
Sea ..... 4333 v- Ridae Ave., Suill! 8., San Die8<>, CA 
92123, (714) 278-9600; Sala a-. 5353 Betsy a... Dr., 
Santa Clara, CA 95054, (408) 980-9000; W......... Hmo, 
21220 Erwin St., Woodland Hilla, CA 91367, (213) 704-7759. 

COLORADO: 1>eawoi 9725 E. Hampden St., Suill! .JOI, o...-. co 80231, (303) 695-2800. 

CONNECl'IClTl"t Walllaafanl, 9 Barnes lnduotrial Park 
Rd., Barnes Industrial Park, Wallingbd, CT 06492, (203) 
269-0074. 

FLORIDA: C-.- 2280 U.S. Hwy. 19 N., Suill! 232, 
Clearwall!r, FL 33515, (813) 796-1926; Ft. l.aadenlale, 2765 
N. W. 62nd St., Ft. l.auclenlale, FL 33309, (305) 973-8502: 
M.ldlall, 2601 Maitland Cenm Parkway, Maitland, FL 32751, 
(305) 646.9600. 

GEORGIA: AtI.ma, 3300 Northeut Expr., Building 9, 
Atlanta, GA 30341, (404) 452-4600. 

IWNOISr Ar11nst- l:feliljlts. 515 W. AlpKpiin, Arlinlt<>JI 
Hei&hts, IL 60005, 1312> 640-2934. 

INDIANAr l't. Wayne, 2020 Inwood Cir., Ft. Wayne, IN 
46805, (219) 424-5174: ..........,.., 2346 S. Lynhunt, Suill! 
)-400, Indianapolis, IN 46241, (317) 248-8555. 

IOWA: Ceolor Rlpldo, 373 Collins Rd. NE, Suill! 200, Cedar 
Rapids, IA 52402. (319) 395-9550. 

MARYLAND• a.Itimaoe, I Rutherfonl Pl., 7133 Ruthedixd 
Rd., Baltimore, MD 21207, (301) 944-8600. 

MASSACHUSETJ'S: Wallham. 504 Tottm fbnd Rd., 
Waltham, MA 02154, (617) 890-7400. 

MICHIGAN: ............. Hmo, 33737 W. 12 Mile Rd., 
Farmington Hills, Ml 48018, (313) 553-1500. 

MINNESOl'A: Edina, 7625 Parklawn, F.dina, MN 55435, 
(612) 8.J0..1600. 

MISSOURI: Knia City, 8080 Won! Pkwy., Kansas City, 
MO 64114, (816) 523-2500: St. Louil, 11861 Westline 
lnduotrial Driwo, St. Louis, MO 63141, (314) 569-7600. 

NEW JQUIEY: Cluk, 292 T~inal Aw.. West, C1arlt, NJ 
07066, (201) 57+9800. 

NEW MEXICO:~. 5907 Alice NSE. Suill! E., 
Albuqueique, NM 87110, (505) 265-8491. 

NEW '!!ORK: Eur Syncme, 6700 Old Collamer Rd., Eut 
Syrac .... NY 13057, (315) 463-9291: Wba, 112 Nanticoke 
Ave •• P.O. Box 618, Endi!:ott, NY 13760, (607) 754-3900; 
Melville, I Huntinllton Quadran(lle, Suill! 3CIO, P.O. Box 
2936, Melville, NY 11747, (516) 454-6600; ..........,_., 201 
South Aw.., l\Ju&hkeepoie, NY 12601, (9141473·2900: Roe...._, 1210 Jeff.non Rd., Rochnm, NY 14623, (716) 
424-5400. 

NORTH CAROLINA: Chalaae, 8 Woodlawn <men, 
Woodlawn Rd., Charlotte, NC 28210, (704) 527-0930: 
Raleiilh, 3000 Hiahwoods Blvd., Suill! 118, Raleiah, NC 
27625, (919) 876-2725. 

OHIO: 8-hwood. 23108 Commen:e Park Rd., Beachwood, 
OH 44122, (216) 464-6100; Daytm, Kinpley Blda .. 4124 
Linden Ave., Dayton, OH 45432, (513) 258-3877. 

OKLAHOMA: Tula, 7615 Eut 63111 Place, 3 Memorial 
Place, Tulia, OK 74133, (405) 250-0633. 

OREGON: a.-, 6700 SW 105th St., Suill! 110, 
Bmerton, OR 97005, (503) 643-6758 .. 

PENNSYLVANIA1 Ft. Wr+' • ..., 575 \lbainia Dr., Ft. 
Wuhinlton. PA 19034, (215) 643-6450; Coraopolis, PA 
l5108, 420 Romer Rd., 3 Airport Office PIC, (412) 771-8550. 

TEXAS: AUldn, 12501 R.Ran:h Blvd., P.O. Box 2909, 
Auatin, TX 78723, (512) 2S0.765S": 0.0.. P. 0. Box 1087, 
Richanloon, TX 75080: Hauoum, 9100 ~ Frwy., Suill! 
237, Houlton, TX 77036, (713) 778-6592: Sa Aaamlo, 1000 
Centtal Park South, San Antonio, TX 78232, (512) 496-1779. 

UTAH1 Salt t.lre Clly, 3672 Wat 2100 South, Salt Lab 
City, UT 84120, (801) 973-6310. 

VlllGINIAr l'llrfu, 3001 l'moperity, Faum, VA 22031, 
(703) 849-1400: Miilladma, 13711 Sutm's MiU Cilde, 
MidlothiAn, VA 23113, (804) 744-1007. 

WlscoNslN1 llroitield, 205 Bilhqio Way. Suile 214. 
Brookfield, WI 53005, (414) 784-3040. 

WASHING'ION: .......... 2723 15zi.d Ave., N.E. Bids- 6, 
Redmond, WA 98052, (206) 881·3080. 

CANADA: 0.-. 436 Mac Lum St., Otrna, Canada, 
K2POM8,(613) 233-ll77; Riclmoaol Hill, 280 Cenae St. E., 
Richmond HiU l.4CIBI, Ontario, Canada, (416) 1184-9181; St. 
Launnt, Ville St. Laurent Quebec, 9460 Tram Canada ~ •• 
St. Laurent, Quebec, Canada H4SIR7, (514) 334-3635. C 

TI Distributors 
ALABAMA: Hall-Mark (205) 837-8700. 

ARIZONA: l'hoenlx, Kieiultf (602) 243-4101; Manhall (602) 
9611-6181; Wyle (602) 249-2232; Tm, Kienaltf (602) 
624-9986. 

CALll'ORNIA: Lm A....-.o- Caumy, Am:itt (213) 
701· 7500, (714) 851-8961: Kierultf (213) 725-0325, (714) 
731-5711: Manhall (213) 999-5001, (213) 442-7204, (714) 
556-6400: R. V. Weathabd (714) 634·9600, (213) 849-3451, 
(714) 623·1261: Wyle (213) 322-8100, (714) 641·1600, S... 
..... Arrow (619) 565-4800; Kierultf (619) 278-2112; 
Manhall (619) 578·9600: R. V. Weatherfonl (619) 695-1700; 
Wyle (619) 565-9171; S... l'nDcllcn llliy A-. Armw (408) 
745-6600; Kierulff (415) 968-6292: Manhall (408) 732-llOO: 
Wyle (408) 727-2500; Sonia...,_, R. V. Warherbd (805) 
965-8551. 

COLOilADO: Artaw (303) 758-2100: Kierultf (303) 
790-4444; Wyle (303) 457-9953. 

CONNl!CTIClTI": Anart (203) 265-7741: bipicm. (203) 
797-9674: Kienalff (203) 265-lll5; Manhall (203) 265-3822: 
Mit..,.y (203) 795-0714. 

l'LORIDA1 ft .............. Anow (305) 776-7790: Diplomat 
(305) 971-7160: Hall·Maik (305) 971-9280; KietuUf (305) 
652-6950; Orllndo, Arrow (305) 725-1480: Dlplomat (305) 
725-4520; Hall-Modi: (305) 855-4020; Mit..,.y (305) 647-5747; 
T....,., Diplomat (813) 443-4514; Hall·Marlt (813) 576-8691: 
Kienaltf (813) 576-1966. 

GEORGIA• Anow (404) 449-8252; Hall-Mark 14041 
447-8000; Kierulff(404l 447-5252: Manhall (404) 923-5750. 

IWNOISr Ariow (312) 397.3440; Dlplomat (312) 595·1000; 
Hall-Mark (312) 860-Jsoo: Kienaltf (312) 640-0200: Neworli: 
(312) 638-4411. 

• TEXAS 
INSTRUMENTS 

Creating \Rful products 
and services tOt ~u. 

INDIANAr .............. Anatl .1317) 243;9353; On'­
(317) 634-8202; Ft. w.,.e. om- (219) 423-3422. 

IOWA1 Anow (319) 395-7230. 

KANSAS: "-Clly, Component~ (913) 
492-3555; Hall-Mark (913)·88M747; \\'i!ililli, l.Co"MP (316) 
265-9507. .· 

MAllYLANDi Anart (301) 247-5200: Oiplomar (301) 
995-1226; Hall·Mark (301) 796-9300; Kicrulff (301) 247-5020; 
Milpay (301) 468-6400. 

MASSACH1.JSE1TS Anatl (617) 933-8130: Dlp1omar (617) 
429-4120; Klelllltf (617) 667-8331: Manhall (617) 272-8200; 
Time (617) 935-8080. . . 

MICHIGAN• Detamt. Am:itt (30) 971;aloo; NeWmk (313) 
967-0600; a... Rlpldo, Anatl (616) 241-0912. . 

MINNl!SOl'Ar Anatl (612)·8.J0-1800; Hait-Martt (612) 
854-3223; Kienlltf (61Z) 941-7500. . 

MISSOURI•~ Clly, tooMP (816) 221;2400: St. ........ 
Anart (314) 567-68811; Hall-Martt (314) 291,5350; Kierulff 
(314) 7394155. 

NEW HAMPSHIRE: Anow (603) 668-6968. 

NEW JERSEY• Anatl (201) 575-5300, (li09) 235-1900; 
Dlp1omar (201) 785-1830; General .Radio (ll09) 964-8560: 
Hall-Mark (201) 575-4415, (ll09) 424-7300, ·JACO (201) 
778-4722, (800) 645-5130: Kierulff (201) ~75-6750; Manhall 
(201) 882-0320: Milpay (li09) 983·50l0, (800) 645-3956. 

NEW MEXICO. Anatl (505) 243-4566; 1-1 
Electtonia (505) 345-8U7. 

NEW '!!OIU<s 1-...._ Airart {516) 231-1000; Dlpm.. 
(516) 454-6334; Hall-M8ik..{Sl6) 737-0600; JACO (516) 
273-5500: MmhaU (516) 27.3-2424: Milpy (516) 546-5600, 
(800) 645-3986; Hall-Mad< (516) 737-0600; ............ AllOll 
(716) 275-0300; MmhaU (716) 235-7620; Roel-. Radio 
5uiiPY (716) 4s+7800:"~ Armw (315) 652-1000; 
Diplomm (315) 652-5000; Manhall (~) 754-1570. 

NOKl1I CAROLINA• Anart (919) 876-3132, (919) 
725-87ll; Hall·Marlt (919) 872-0712; Kiaulff (919) 852-9440. 

OHIO: ClndBmd, Gnham (513) 772-1661: Hall-Mark (513) 
563-5980; CleveW, Ar'- (216) 248-3990; Hall-Mark (216) 
473-2907: Kiaulff (216) 587-6558; c..i...i.I, Hall-Mark 
(614) 891-4555, o.,_ Am:itt (513) 435-5563: ESCO (513) 
226-1133: Manhall (513) 236-8088. . . 

OKLAHOMA: Anatl (918) 665-7700; Component Specialties 
(918) 664·2820: Hall-Mark (918) 665-3200; Kierulff (918) 
252-7537. 

ORl!GON: Kierultf (5o3) 641-9150; Wyle ('°3) 640-6000. 
PENNSYLVANIA: Anart (412) S56-7000; (215) 928-1800; 
Oonaal Radio (215) 922-7037; Hall-Mark (215) 355-7300. 

Tl!XASr Aiadil,· Anatl {5li) 835-4180; Component 
Specialties (512) 837-8922: Hall-Mark (512). 258-8848: KieNllf 
(5U) 835-2090; 0.0., Armw (214) 386-7500; Component 
Speciakiel (214) 357-65ll: Hall-Mui< (214) 341-1147; 
lmemotional Elecaonia (214) 233-?323; Kietultf (214) 
343-2400: El ....... 1-ional Elecaonia (915) 7711-9761; 
a.-. Anart (713) 491-4100; Component Specialties (7i3) 
771-7237; Hall-Mark 1713) 781.6100; H8rrioon f.quipment 
(713) 879-2600; ICieruUf (713) 530-70.lO. 

UTAHi Diplomat (801) 486-4134; Kiendlr (801) 973-6913; 
Wyle (801) 974-9953. . . 

VlllGINIA1 Anatl (804) 282-0413. 

WASHING'IONr Am1w (206) 643-4800; Kieru!IF (206) 
575-4420; Wyle (206) 453-8300. 

WISCONSIN: Anatl (414) 764-6600; Hall-Mui< (414) 
761-3000; Kierulff (414) 78+8160. 

., 

CANADA:~ Fucuae"(403) 259-6408; Vanih (401) 
230-1235; e..o-. Varali 1416) 561·93ll; .,__., CESCO 
t514l 735-5511; Futme 15141 ~T7to; a.-. CESCO (6131 
226-6905; Futme (613) 8io.aJll; 0-C Clly, CESCO (418) 
687-4231; T-CESCO (416) 661-0220; Futme (416) 
663-5563; V-Future (604) 438-5545; Vanih (604) 
873-3211; Wlimiper. Vara1i 12041 633-6190. BC 
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TI Worldwide 
Sales· Offices 
ALABAMA: Hun1aville, 500 w~ on..,, .Suire 514, 
Huncsville, AL JSSOS, (20S) 837· 7,530. 

ARIZONA: Phoenix, ~O. Box 35160; 8102 N. 23nl Ave .• 
Suire A. Phoenix, AZ 850ll, (602) 995:1007. 

CALIR>RNIA: El Sepnolo, 831 s. nou.i.s St.. El Segundo, 
CA 90245, (213) 973-2571; lnine, 17891. Cartwrilht Rd., 
Irvine, CA 92714. (714) 660-1200; S.C-. 1900 lbint 
West Way, Suire 171, 5'cnmerlto. CA 95815, (916) 929-1521; 
S... IJieF, 4333 View Ridae A..,., Suire B., San Diqo, CA 
92123, {714) 278-9600; Smta Clon, 5353 Betsy lbs Dr., 
Sanra Clara, CA 95054, {1()8) 980-9000; ~.Hilla. 
21220 Erwin St., Woodland Hills, CA 91367, (213) 704-7759. 

COlORADOi 0n- 9ns E. Hampden St., Suire JOI, o.n-. co 80231, (303) 695-lSOO. 

CONNECTICUT: Wallialfotd, 9 &mes lndusnial Park 
Rd., Barnes Industrial Park, Wallingbd, CT 06492, (203) 
269-0074. 

FLORIDA: C'-- 2280 U.S. Hwy; 19 N., Suire 232, 
C1carwarer, FL 33515, (813) 796,1926; Ft. ~. 276.5 
N. W. 62nd St., Ft. Lauderdale, FL 33JOIJ, (JOS) 973-8502; 
.M.ldoad, l601 MaitlandCenrer Parkway, Maitland, FL 32751, 
(JOSI 646-9600. · . 

GEORGIA: A ....... 3300 Northeast Expy., Building 9, 
Atlanta, GA 30341, (404) 452'4600. 

IWNOIS: ~ .W....., 515 W. Algonquin, Arlii>iton 
firiahcs, IL 60005, (312) 640.Z934. 

INDIANA: Ft. Wayne,.2020 Inwood Or., Ft. Wayne, IN 
46805, (219) 424,5174; ............. 2346 S. Lvnbullt, Suite 
J-400, Indianapolis, IN 46241, (317) 2'48-8555. 

IOWA: C.- ......... 373 Collins Rd. NE, Suire 200, Cedar 
Rapids, IA 524"2, (319) 395-9550. 

MARYLAND: ~. I Rutherford Pl., 7133 Rutherfutd 
Rd., l!akimott, MD 21207, (JOI) 9+f'8600. 

MASSAcuuSEns: Waldili!B. $04 Torren Pond .Rd., 
Wakham, MA 02154, 161718cJo-7400. 

MtcmGAN: ........... 33737 w. 12 Mile Rd., 
Farmi.,.ron Hills, Ml 48018, (313) 551-1500. 

MINNE$Ql"A1 IWiaia, 7625 Parklawn, Edina, MN 55435, 
(612) 830-1600. 

MISSOURI: ·Ku.. C'~ 8080 Wan! Pkwy., Kansas City, 
MO 64114, (816) 523-2500; St. 1-il, 11861. ~dine 
lndumial Drive, St. Louis, MQ6il41, (314) 569-7600. 

NEW )ERsEY: a.rk, 292 terminal A..,. West, Clark, NJ 
07066, (201) 574-9800. 

NEW MEXIOO: ~. 5907 Alice NSE, Suire E., 
Albuqunque, NM 87110, (505) 265-8491. 

NEW YORK: Eut 5-6700 Old Collamer Rd., East 
Syracuse, NY 13057, (315) 463-9291; Ealdlcott, 112 Nanticoke 
Ave., P.O. Box 618. Endicott. NY 13760, (607) 754-3900; 
~ l Hunri.,.ronQuadrangle, Suire JCIO, P.O. Box 
2936, Melvdle, NY 11747. (516) 45+6600; ~. 201 
South Ave., ~e. NY 12601, (914) 473-2900; . 
........... 1210.]effenon Rd., Rochesrer, NY 14623, (716) 
42+t41lQ. . 

N01f111 CAROUNA: Chulocre, 8 Woodlawn~. 
Woodlawn Rd., Charlotte, NC 28210, (704) 527-0930; 
RaJeiah, 3000 H;&h....,.jo Blvd., Suire 118 •. Raleill:, NC 
27625 •. (919) 876-2725. 

OHIO: llaCh_,., 23408 C.O...merce Park Rd., Beachwood. 
OH 44122, (216) 464-6100; Dayton, Kingsley Blda., 4124 
Linden Ave., Dayton, OH 45432, (513) 258·3877. . 

OKLAHC>MA: Tulta. 7615 East 63nl Place, 3 Memortal 
Place, Tulsa, OK 7413J, (405) 250·06H. 

OREGON: e.--. 6700 .SW IOSth St., Suire UO, 
Beawetton, OR 97005, (503) 643-6758. 

PENNSYLVANIA: Ft. WuhinPin. 575 \l'qinia Dr., Ft. 
Washington, PA 19034, (ZIS) 643-6450; Coraopolis, PA 
15108, 420 ROuser Rd., 3 Airport Office PK, (412) 771-8S50. 

TEXAS: Allllin.12501.Raearch mvd., P.O. Box 2909, 
Austin, TX 78723, (512) 2S0..7655; Dalloa. P. 0. Box 1087, 
Richardaon, TX 75080; ~. 9100 Southwest Frwy., Suire 
237, Houston, TX 77036, (713) 778-6592; Su Aatanlo,.1000 
Central Park South, San Antonio, TX 78232, (512) ~1779. 

UfAH: Salt Lake City, j672 West 2100 South, Salt Lake 
City, UT 84120, (801) 973-6310 .. 

VIRGINIA: Foirfu, 3001 l'rooperity, Fairfax, VA 22031, 
(703) 849-1400; Midlocbian, 13711 St¢ter's Mill Cin:le, 
Midlo<hian, VA 23113, (804) 744-1007. 

WISCONSIN: Btuoldield, 205 Bishops Way, Suib! 214, 
Brookfield, WI 53005, (414) 784·3040. 

WASHING10N: Redmond, 27i3 152nd Ave., N,E. Blda. 6, 
RedmOnd, WA 98052, (206) 881-3080. . 

CANADA: Ottawa, 436 Mac Laren St,. Ottawa, Canada, 
K2POM8,(613) 233-1177; Richmond Hill. 280 Centre St. E., 
Richmond Hill L4CIBI, Ontario, Canada, (416) 884-9181; St. 
Lau-. Ville St. Laurent Quebec, 9460 Tnms Canada Hwy., 
St. Laurent, Quebec, Canada H4SIR7, (Sl4) 334-3635. C 

ARGENTINA, Texu lnsmunents Aqientina S.A.l.C.F.: 
Esmetalda 130, ISth Floor, 1035 Buenos Aires, Argentina, 
394-2963. 

AUSTRALIA (&, NEW ZEAf,.AND). Texas lnstrumencs 
Australia Ltd.: 6·10 Taia-. Rd., North Ryde (S,dnev1 New 
South Wales, Australia 2113, 02 +887·1122; 5th Floor, 418 St. 
Kilda Road, Melbourne, Victoria, A-lia 3004, 
03 + U7-4677; J7l Philip Hill:way, Elirabeth, South Australia 
5112, 08 + 255-2066. 

AUSTRIA, Texas lns~cs Ges.m.b.H.: lndustriestrabe 
M6, A-2345 Brunn/Gebirle, 22l6-846210. 

BELGIUM, Texu I.ism.menu N. V. Belgium S.A.: Mercure 
Centre, Raketstraat 100, lilue de la fusee, 1130 Bruuels, 
Belgium, OV720.80.00. 

BRAZIL. T.Xas lnstnimencs Electroniccs do Brasil Ltda.: Av. 
Faria Lima, 2003, 20 0 Andar-Pinheiros, Cep-01451 Sao 
Paulo, Bnizil, 815-6166. 

DENMARK, Texu Jnstruments A/S, Marielundvej 46E, 
DK-2730 Herlev, Denmark, 2 • 91 7+ 00. 

FINLAND, Texas Instruments Finland OY: PL 56, 00510 
Helsinki 51, Finland, (90) 7013133. 

FRANCE, Texas 1.nstruniencs France: Heaclquarren and Prod. 
Plant, BP OS, 06270 Villeneuve-1..oubet, (93) W.01.01; Paris · 
Office, BP 67 8·10 Avenue Morane·Saulnier, 78!41 Velizy· 
Villacoublay. (3) 946-97·12; Lyon Sales Office, L'Oree 
D'Ecully, l!atiment B, Chemin de la Fottstiete, 69130 Ecully, . 
(7) 833-0!·40; Strasbourg Sales Office, Le Sebastopol 3, Qua1 
Kleber, 670SS StrasbourgCedex, (88) 22.·12-66; Renne., 23-25 
Rue du Puita Mauger, 35100 Rennes, (99) 79-54-81; Toulouse 
Sales Office, Le Peripole-2, Chemin du Pigeonnier de la 
Cepiere, 31100 Toulouse, (61) +4-18-19; Marseille Sales Office, 
Noilly Paradis-146 Rue Paradis, 13006 Marseille, (91) 
37-25-30. 
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GERMANY, Texiis lnstruniencs 0.Ucschland GmbH: Hag· 
aert\'"strasse 1, ()..8050 Freising, 08161-80!; Kurfuerstendamm 
195/196, ()..1000 Betlin IS, 030''8827365; Ill, Hagen 43/Kib­
belstrasse, D-4300 Essen, 0201-24250; Frankfurter Allee 6-8; · 
()..6236 Eschborn I, 06196-43074; Hamburxer Strasse II, 
()..2000 Hamburg 76, 040-2201154, Kimbhonrentrasse 2, 
()..3000 Hannover 51, 0511-648021; Arabellaltlllsse 15, D-8000 
Muenchen 81, 089-92341; Maybachstraue II, D-7302 Ost-
61dem 2/Nellingen, 0711·34030. 

HONG KONG ( + PEOPLES llEPUBLIC OF CHINA). 
Texas lnsnuments Asia Ltd.: 8th·Aoor, .Wotld Shipping Ctr., 
Harbour City, 7 Canton Rd., Kowloon, Hong Kong, 
3 + 722-1223, 

IRELAND, Texas Instruments (Ireland) Limited: 25 St. 
Stephens Green, Dublin 2, Eire, 01609222. 

ITALY, T"""' Instruments Semicqnduttori Italia Spa: Viale 
Delle Scierue, I, 02015 Cittaducale (Rieri), Italy, 0746 694. I; 
Via Salaria KM 24 (Palmzo Cosma), Monrerotondo Scalo 
(Rome), Italy, 06 9004395; V131e Europa, 38-44, 20093 
Cologno Moniese (Milano), 02 2S32S41; Corso Sviuera, 185, 
10100 Torino, Italy, 011 774545; Via J. Barozzi, 6, 45100 
Bologna, Italy, 051 3S585J. 

JAPAN, Texas Instruments Asia Ltd.: 4F Aoyama Fuji Bldg., 
6-12, Kita Ao,ama 3.chome, Minato-lw, Tokyo, Japan 107, 
OJ.498·2111; Osaka Branch, 5F, Nissho lwai Bldg., 30 
lmabashi 3-0.ome, H;gaohi.ku, Osaka, Japan S41, 
06-204-1881; Nagoya Branch, 7F Daini Toyota West Bldg., 
10-27, Meielti 4.0.0me, Nilcamura·ku, N._, Japan 450, 
052-583-8691. 

KOREA, Texas Instruments Supply Co.: Room 201, Kwane· 
poong Bldg., 24-1. HW3)8nd-Dong, Sung clong-ku, m Seoul, 
Korea, 02+ 464-621415. · · 

MEXICO.Texas Instruments de Mexico S.A.: Ponienre 116, 
No. 489, Colonia Vallejo, Mexico, D.F. 02300, 567-9200. 

MlDDLE EAST, Texas Instruments: No. U. lat Floor Mannai 
Bldg., Diplomatic Aiea, Maoaina. P.O. Box.26335, Bahrain, 
Arabian Gulf, 973 • 72 46 81. 

NEnlER.LANDS, Texas lnsmunencs Holland 8. V., P.O. &x 
12995, (Bullewijk) 1100 AZ Amsrenlam, Zuid..00.., Holland 
(020) 5602911. 

NORWAY, Texas lnsmunents Norway A/S: Kr. Augustsgt. 13, 
Oslo I, Norway, (2) 20 60·40. 

PHILIPPINES, Texas lnstrumencs Asia Ltd.: 14th Aoor, Ba· 
lepanti> Bldg., 8747 P:ueo de Roxas, Makoti, M~ Manila, · 
Philippines, 882465. 

PORTIJGAL, texu lnstrumencs Equipamento Electronico 
(fbrtugal), Lda.: Rua Eng. Frederico Ulrich, 2650 Moreira Da 
Maia, 4470 Maia, fbrtugal, 2-9481003. 

SINGAPORE ( + INDIA, INOONESIA, MALAYSIA, 
111AILAND), Texas lnstrumencs Asia Lnl.: P.O. Box 138, 
Unit #02.0S, Block 6, Kolam Ayer Industrial &t., Kallang 
Sector, Singapore 1334, Rqiublic of Singapore, 747-225S. 

SPAIN, Texas lnstiumentl Espana, S.A.: C/)oee Lazaro 
Galdiano No. 6, Madrid 16, ltl458.14.S8. C/Balmes, 89 
Barcelona-8, 253 60 00/253 29 02. 

SWEDEN, Texas lnstrumencs International Trade Corporation 
(Sven,efilialen): Box 39103, 10054 Stockholm, Sweden; 08 • 
235480. 

SWITZERLAND, Texas lnsnumencs, Inc. Riedstrasse 6, 
CH-8953 Oietikon (Zuerich) Swi..ertand, J.740 2220. 

TAIWAN, Texas lnstrumen~ Supply Co.: 10th Floor, fu. 
Shing Bldg., 71 Sung-Kiang Road, Taipei, Taiwan, ~blic of 
China, 02+ 521-9321. 

UNITED KINGDOM, Texas Instruments Limited: Manton 
Lane, Bedbd, MK41 7PA, England, 0234 67466; St. James 
House, WeHington Road North, Stockport, SK4 2RT, 
England, 061 442-8448. ~ 
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