

M68MDOS3(D2)
JUNE 1979

EXORdisk 11/111 Operating System User's Guide

The information in this document has been carefully
checked and is believed to be entirely reliable. No
responsibility, however. is assumed for inaccuracies.
Furthermore. such information does not convey to the
purchaser of the product described any license under the
patent rights of Motorola. Inc. or others.

Motorola reserves the right to change specifications
wi th out noti c e.

EXORciser®. EXbug, EXORdisk,
trademarks of Motorola, Inc.

Second Edition

EXORterm and MDOS are

Copyr i g h t 1979 by Motoro la, Inc.
First Edition, December 1978

MANUAL ORGANIZATION

The purpose of this guide is to provide the user with
the necessary information required to generate an MOOS
system, to use the MDOS command programs, and to produce
user-written programs that are compatible with MDOS. In
addition, a brief summary is presented of the MDOS-supported
software products which are currently available.

The User's Guide has been divided into two parts.
Chapters 1 and 2 are intended for the new user of MDOS who is
Just receiving his system. It is essentially a manual within
a manual that can be read as an entity by itself. It
provides the basic concepts that are necessary for the
installation of the EXORdisk and for the simplified operation
of MDOS. Chapters 2 through 28 contain descriptions and
examples of the basic forms of the most frequently used MDOS
commands in the order in which they would most likely be used
in a software development environment. The infrequently used
commands are also summarized in order to direct the user to
those chapters <command descriptions) as the need for their
use arises.

Chapters 2 through 28 are intended as a detailed
reference manual for those who need to know specific or
extended information about the MDOS commands, the system
structure, and the resident system functions.

Page ii

TABLE OF CONTENTS

MANUAL ORGANIZATION

TABLE OF CONTENTS .

PART I -- SIMPLIFIED MDOS USER'S GUIDE

1. INTRODUCTION

1. 1 Hardware Support Required
1.2 Additional Supported Hardware
1.3 Software Support Required
1.4 Program Compatibilit~
1.5 Hardware Installation

1. 5. 1 Four-drive s~stem installation
1. 5.2 Flopp~ disk controller installation

1.6 Software Installation

2. GENERAL SYSTEM OPERATION

2.1 System Initialization
2.2 Sign-on Message
2.3 Initialization Error Messages
2.4 Operator Command Format
2. 5 System Console

2. 5. 1 Carriage return ke~

2.5.2 Break key
2.5.3 Control-W
2.5.4 Control-X
2.5.5 DEL or RUBOUT
2.5.6 Control-D

2.6 Common Error Messages
2.7 Diskette File Concepts

2.7.1 File name specifications
2.7.1. 1 Famil~ names
2.7.1.2 Device specifications

2.7.2 File creation
2.7.3 File deletion
2.7.4 File protection .

2.8 Typical Command Usage Examples
2.8.1 DIR -- Directory display
2.8.2 EDIT -- Program editing
2.8.3 ASH or RASM -- Program assembling
2.8.4 DEL -- File deletion .
2.8.5 EXBIN -- Creating program load module
2.8.6 LOAD Program loading/execution
2.8.7 NAME File name changing
2.8.8 NAME File protection changing
2. 8.9 COPY Fi Ie copy ing. ..
2.8.10 BACKUP -- MDOS diskette creation

2.9 Other Available Commands .. .
2.9.1 BACKUP -- Diskette copying
2.9.2 EMCOPY -- EDOS file conversion
2.9.3 BLOKEDIT -- File rearrangement

Page

ii

iii

01-01

01-03
01-03
01-04
01-04
01-05
01-05
01-06
01-07

02-01

02-01
02-02
02-02
02-06
02-07
02-07
02-08
02-08
02-08
02-09
02-09
02-09
02-12
02-12
02-13
02-14
02-14
02-15
02-15
02-15
02-16
02-17
02-18
02-19
02-20
02-21
02-22
02-22
02-23
02-25
02-25
02-26

. 02-26
02-26

Page iii

TABLE OF CONTENTS Page

2.9.4 LIST -- File display 02-26
2.9.5 MERGE -- Fi Ie concatenation' 02-26
2.9.6 BINEX -- EXbug-Ioadablefile creation 02-27
2.9.7 FREE -- Available file space display 02-27
2.9.8 ECHO -- Echo console liD on printer ... 02-27
2.9.9 PATCH -- Executable program file patching 02-27
2.9.10 CHAIN -- MDOS command chaining. 02-27
2.9.11 REPAIR -- System table checking 02-28
2.9.12 DUMP -- Diskette sector display 02-28
2.9. 13 FORMAT -- Diskette reformatting 02-28
2.9.14 DOSGEN -- MDOS diskette generation . 02-28
2.9.15 ROLLOUT -~ Memorv rollout to diskette . 02-29

2. 10 MDOS-Supported Software Products . 02-29
~. 11 Paper Alignment 02-29

Page iv

TABLE OF CONTENTS

PART II -- ADVANCED MDOS USER'S GUIDE

3. BACKUP COMMAND

3. 1 Use .
3.2 Diskette Copying
3.3 File Reorganization
3.4 File Appending
3.5 Diskette Verification
3.6 Other Options .
3. 7 Messages
3.8 Precautions with BACKUP

3.8.1 BACKUP and the CHAIN process
3.8.2 Single/double-sided diskettes
3.8.3 Four-drive systems

3.9 Examples

4. BINEX COMMAND

4. 1 Use .
4.2 Error Messages
4.3 Examples

5. BLOKEDIT COMMAND

5. 1 Use .
5.2 BLOKEDIT Command File

5. 2. 1 Comment I j. nes
5.2.2 Command lines
5.2.3 Guoted lines

5. 3 Messages
5.4 Examples

6. CHAIN COMMAND

6. 1 Us e .
6.2 Tag Definition, ASSignment, and Substitution
6.3 Compilation Operators.

6.3.1 Compilation Comments
6. 3. 2 IF operator .
6.3.3 XIF and ELSE operators
6.3.4 ABORT operator

6.4 Execution Operators .
6.4.1 Execution Comments
6.4.2 Operator Breakpoints
6.4.3 Error status word
6.4.4 SET operator
6. 4. 5 TST operator
6.4.6 JMP operator
6.4.7 LBL operator
6.4.8 CMD operator

6. 5 Messages
6.6 Resuming an Aborted CHAIN Process

Page

03-01

03-01
03-02
03-03
03-08
03-10
03-11
03-13
03-17
03-17
03-18
03-18
03-18

04-01

04-01
04-02
04-02

05-01

05-01
05-01
05-02
05-02
05-03
05-03
05-05

06-01

06-01
06-02
06-04
06-05
06-05
06-07
06-08
06-08
06-09
06-09
06-10
06-11
06-11
06-12
06-13
06-13
06-13
06-16

Page v

TABLE OF CONTENTS

6.7 Examples

7. COPY COMMAND

7.1 Use.
7. 1. 1 Diskette-to-diskette copying
7. 1~2 Diskette-to-device copying
7.1.3 Device-to-diskette copying
7.1.4 Verification
7.1.3 Automatic verification

7.2 User-Defined- Devices
7.3 COPY Mode Summary
7. 4 Messages
7.5 Examples·

7.3.1 Diskette-to-diskette example
7.5.2 Diskette-to-device example
7.5.3 Device-to-diskette example

7.6 COPY with EXORtape Reader

8. DEL COMMAND

8. 1 Use . .
8.1.1 Single file name deletion
8.1.2 Multiple file name deletion
8.1.3 Family deletion ...

8.2 Options.
8.3 Me1!tsages
8.4 Examples

9. DIR COMMAND

9. 1 Use .
9.1.1 Families
9.1.2 System files
9.1.3 Entire directory entry
9.1.4 Segment descriptors
9. 1. 5 Other op t ions

9.2 Messages
9.3 Examples

10. DOSGEN COMMAND

10. 1 Use
10.2 Diskette Surface Test
10.3 Minimum System Generation
10.4 Messages
10.5 Examples.

Page

· 06-17

07-01

07-01
07-02
07-03
07-04
07-05
07-06

· 07-07

· 07-08
07-09

. · 07-10
07-10
07-11

· 07-12
07-13

08-01

08-01
08-02
08-02
08-02
08-03
08-03
08-04

09-01

09-01
09-02
09-02
09-02
09-04
09-04
09-03
09-06

10-01

10-01
. 10-04

10-04
10-05
10-07

Page vi

TABLE OF CONTENTS

11. DUMP COMMAND

11.1 Use
11. 1. 1 Physical Mode of operation
11. 1. 2 Logical Mode of operation
11.1.3 Sector change buffer

11.2 DUMP Command Set.
11. 2. 1 (1u i t -- (1

11.2.2 Select logical unit -- U
11.2.3 Open diskette file -- 0
11.2.4 Close diskette file -- C
11.2.5 Show sector -- S .
11.2.6 Print sector -- L
11.2.7 Read sector into change buffer -- R
11.2.8 Write change buffer into sector --
11.2.9 Fill change buffer -- F
11. 2. 10 Examine/change sector buffer

11. 3 Messages
11. 4 Examples

12. ECHO COMMAND

12. 1 Use
12.2 Messages

13. EMCOPY COMMAND

13. 1 Use
13.1.1 Single file copy
13.1.2 Entire diskette copy
13.1.3 Selected file copy

13.2 File Differences Between EDOS and MDOS
13.3 Messages
13.4 Examples.

14. EXBIN COMMAND

14. 1 Use
14.2 Execution Address Specification
14.3 Error Messages
14.4 Examples.

15. FORMAT COMMAND

15. 1 Use
15.2 Messages
15.3 Example

16. FREE COMMAND

16. 1 Use
16.2 Example

Page

11-01

11-01
11-01
11-02
11-02
11-03
11-04
11-04
11-04
11-05
11-05
11-06
11-07

W 11-07
11-08
11-08
11-09
11-12

12-01

12-01
12-01

13-01

13-01
13-02
13-02
13-03
13-04
13-04
13-05

14-01

14-01
14-02
14-02
14-03

15-01

15-01
15-02
15-02

16-01

16-01
16-02

Page vii

TABLE OF CONTENTS

17. LIST COMMAND

17.1 Use
17.1.1 Start/end specifications
17.1.2 Physical lin~ numbers
17.1,3 User-supplied. heading
17.1.4 Non-standard page formats

17.2 Messages
17.3 Examples

18. LOAD COMMAND

. ..

Page

17-01

17-01
17-02
17-02
17-03
17-03
17-04
17-05

18-01

18. 1 Use 18-01
18. 1. 1 Command-interpreter-loadable programs 18-03
18.1.2 Non-command-interpreter-loadable programs18-04
18.1.3 Programs in the User Memory Map 18-06
18.1.4 MDOS command line initialization 18-07
18.1.5 Entering the debug monitor 18-08

18.2 Error Messages 18-09
18.3 Examples. 18-11

19. MERGE COMMAND

19. 1 Use . . .
19. 1. 1 Merging non-memory-image files
19.1.2 Merging memory-image files
19.1.3 Other options

19.2 Messages
19.3 Examples

20. NAME COMMAND

20. 1 Use
20. 1. 1 Chang i ng
20.1.2 Changing

20.2 Error Messages
20.3 Examples ...

file names
file attributes

..

19-01

19-01
19-02
19-03
19-04
19-05
19-05

20-01

20-01
20-01
20-02

. 20-03
20-04

Page viii

21.

22.

23.

TABLE OF CONTENTS

PATCH COMMAND

21. 1 Use
21.2 PATCH Command Set

21. 2.1 Guit -- G
21.2.2 Set/display offset -- 0
21.2.3 Display single location
21.2.4 Display lowest address -- L
21.2.5 Display highest address -- H
21.2.6 Calculate relative address -- R
21.2.7 Dis-assemble operation code -- I
21.2.8 Set search mask and pattern -- M
21.2.9 Search for byte -- S .
21. 2. 10 Search for word -- W
21. 2. 11 Search for non-match ing byte -- N
21. 2. 12 Searc h for non-mate hi ng word -- X
21.2.13 Display range of locations -- P
21. 2.14 Set/display execution address -- G
21. 2. 15 Change locations
21. 2. 16 Instruction mnemonic decode mode

21.3 Special Considerations
21.4 Error Messages

REPAIR COMMAND

22. 1 Use
22.2 10, LCAT, CAT, Bootblock Sector Check
22.3 Directory Sector Check.
22.4 Retrieval Information Block Check
22. 5 CAT Regeneration Phase
22.6 CAT Replacement Phase
22. 7 Messages
22.8 Examp les .

ROLLOUT COMMAND

23. 1 Use
23. 1. 1 User Memory Map
23.1.2 Non-overlayed memory
23.1.3 Overlayed memory
23.1.4 Scratch diskette conversion

23.2 Messages
23.3 Examp les .

Page

21-01

21-01
21-02
21-02
21-03
21-03
21-04
21-04
21-05
21-05
21-07
21-08
21-08
21-09
21-09
21-09
21-10
21-10
21-12
21-15
21-16

22-01

22-01
22-03
22-08
22-11
22-15
22-18
22-19
22-19

23-01

23-01
23-02
23-03
23-03
23-05
23-06
23-08

Page ix

TABLE OF CONTENTS

24. SYSTEM DESCRIPTION .

24. 1 Diskette St~uctu~e
24.1. 1 Diskette Identification Block
24. 1.2 Cluste~ Allocation Table
24.1.3 Lockout Cluste~ Allocation Table
24. 1.4 Directory. .
24. 1. 5 Bootb loc k.

24.2 File St~ucture
24.2.1 Retrieval In~ormation Block
24.2.2 File fo~mats

24.3 Reco~d Structure.
24.3.1 Binary records
24.3.2 ASCII records
24.3.3 ASCII-converted-binary ~ecords .
24.3.4 File desc~iptor records

24.4 System Fi les
24.4.1 System overlays
24.4.2 System er~or message file

24.5 Memory Map . .
24.6 MOOS Command Interpreter
24. 7 Inte~rupt Handling
24.8 System Function Calls
24.9 MDOS E~uate File.

25. INPUT/OUTPUT FUNCTIONS FOR SUPPORTED DEVICES

25. 1 Supported Devices
25.2 Devic~ Dependent 1/0 Functions

25.2.1 Console input -- . KEVIN
25.2.2 Check for BREAK key -- .CKBRK
25.2.3 Console output -- . DSPLV •. DSPLX, .DSPLZ

/25.2.3.1 Example of console 1/0 ..
25.2.4 Printer output -- . PRINT •. PRINX

25.2.4.1 Example of printer output
25.2.5 Physical sector input -- . DREAD, .EREAD
25.2.6 Physical sector output -- . DWRIT •. EWRIT
25.2.7 Multiple sector input -- .MREAD, .MERED
25.2.8 Multiple sector output -- . MWRIT •. MEWRT
25.2.9 Diskette controller entry points

Page

24-01

24-01
24-02
24-03
24-03
24-04
24-06
24-07
24-07
24-10
24-11
24-11
24-12
24-13
24-14
24-15
24-16
24-17
24-17
24-20
24-21
24-23
24-25

25-01

25-01
25-01
25-02
25-04
25-05
25-06
25-07
25-08
25-09
25-11
25-12
25-13
25-13

25.3 Device Independent 1/0 Functions 25-13
25.3.1 1/0 Control Block --IOCB

25.3.1.1 IOCSTA Erro~ status .. .
25.3.1.2 IOCDTT Data transfer type
25.3.1.3 IOCDBP Data buffer pOinter
25.3.1.410CDBS Data buffe~ start ...
25.3.1.5 IOCDBE Data buffe~ end
25.3.1.6 IOCGDW Gene~ic device word
25.3.1.7 IOCLUN Logical unit number
25. '3. 1. 8 IOCNAM Fi Ie name
25.3.1.9 IOCSUF Suffix.
25.3.1.10 IOCMLS Maximum LSN referenced
25.3.1.11 IOCSDW Cur~ent SDW
25.3.1.12 IOCSLS Starting LSN of SDW ..

25-14
25-18
25-19
25-22
25-22
25-23
25-23
25-23
25-24
25-:-24
25-25
25-25
25-25

Page x

TABLE OF CONTENTS

25. 3. 1. 13 rOCLSN Next LSN
25.3.1.14 IOCEOF LSN of end-of-file
25.3.1. 15 IOCRIB PSN of RIB
25.3.1.16 IOCFDF File descriptor flags
25.3.1.17 IOCDEN Directory entry number
25.3.1.18 IOCSBP Sector buffer pointer
25.3. 1. 19 IOCSBS Sector buffer start. .
25.3.1.20 IOCSBE Sector buffer end.
25.3. 1. 21 IOCSBI Internal buffer pointer

25.3.2 Reserve a device -- .RESRV
25.3.3 Open a file -- . OPEN .
25.3.4 Input a record -- .GETRC .
25.3.5 Output a record -- .PUTRC
25.3.6 Close a file -- . CLOSE .
25.3.7 Release a device -- .RELES
25.3.8 Example of device independent 110
25.3.9 Specialized diskette 110 functions

25.3.9.1 Input logical sectors -- . GETLS
25.3.9.2 Output logical sectors -- .PUTLS
25.3.9.3 Rewind file -- .REWND
25.3.9.4 Example of logical sector 110

25.3.10 Error handling

Page

25-26
25-26
25-26
25-26
25-30
25-31
25-31
25-31
25-32
25-32
25-34
25-39
25-42
25-45
25-48
25-49
25-51
25-51
25-54
25-56
25-58
25-62

26. INPUTIOUTPUT PROVISIONS FOR NON-SUPPORTED DEVICES 26-01

~'!6. 1 Device Dependent 110 .
26.2 Device Independent 110

26.2.1 Controller Descriptor Block -- CDB
26.2. 1. 1 CDnIOC Current IOCB address
26.2.1.2 CDBSDA Software driver address
26.2.1.3 CDBHAD Hardware address.
26.2.1.4 CDBDDF Device descriptor flags
26.2.1.5 CDBVDT Valid data types
26.2.1.6 CDBDDA Device dependent area
26.2.1.7 CDBWST Working storage

26.2.2 Device drivers.
26.2.3 Example of device driver.
26.2.4 Adding a non-standard device

26-01
26-01
26-01
26-04
26-04
26-04
26-04
26-07
26-08
26-08
26-08
26-10
26-13

Page xi

TABLE OF CONTENTS Page

27. OTHER SYSTEM FUNCTIONS 27-01

28.

27. 1 Register Functions
27.1.1 Transfer X to B,A
27.1.2 Transfer B,A to X --
27.1.3 Exchange B,A ~ith X
27.1.4 Add B to X -- .ADBX
27.1.5 Add A to X -- .ADAX

. TXBA

. TBAX
. XBAX

27.1.6 Add B,A to X -- .ADBAX
27.1.7 Add X to B,A -- .ADXBA
27.1.8 Subtract B from X -- .SUBX
27.1.9 Subtract A from X -- . SUA X
27.1.10 Subtract B,A from X -- .SUBAX
27.1.11 Subtract X from B,A -- .SUXBA
27.1.12 Compare B,A ~ith X -- .CPBAX
27.1.13 Shift X right -- . ASRX
27.1.14 Shift X left -- . ASLX ...
27.1.15 Push X on stack -- .PSHX
27.1.16 Pull X from stack -- .PULX

27.2 Double-byte Arithmetic Functions.
27.2.1 Add A to memory -- .ADDAH
27.2.2 Subtract A from memory -- .SUBAM
27.2.3 Shift memory right -- .DMA
27.2.4 Shift memory left -- .HHA

27.3 Character String Functions .. .
27.3.1 String move -- . HOVE .. .
27.3.2 String comparison -- .CHPAR
27.3.3 Character-fill a string -- .STCHR
27.3.4 Blank-fill a string -- .STCHB

· 27-01
27-02
27-02
27-02
27-02
27-03

· 27-03
27-03
27-04

· 27-04
27-04

27.3.5 Test for alphabetic character '-- .ALPHA
27.3.6 Test for decimal digit -- .NUMD

· 27-05
27-05
27-05
27-05
27-06
27-06
27-06
27-07
27-07
27-07
27-08
.27-08
27-08
27-09
27-10
27-10
27-11
27-11
27-11 27.4 Diskette File Functions

27.4.1 Directory search -- .DIRSM · 27-14
· 27-17

27-20
27-25
27-28

27.4.2 Change file name/attributes -- . CHANG
27.4.3 Load program into memory -- . LOAD
27.4.4 Allocate diskette space -- .ALLOe
27.4.5 Deallocate diskette space -- .DEALC
27.4.6 Display system error message ~- .HDERR .

27.5 Other Functions
27.5.1 Process file name -- .PFNAM ...
27.5.2 Re-enter resident MDOS -- .MDENT .
27.5.3 Reload MDOS from diskette -- . BOOT
27.5.4 Set system error status ~ord . EWORD
27.5.5 Allocate user program memory -- .ALUSH

27-30
27-35
27-35
27-38
27-39
27-40
27-40

ERROR MESSAGES. . · 28-01

2B.l Diskette Controller Errors
2B. 1. 1 Errors during initialization
2B. 1.2 Errors after initialization

2B.2 Standard Command Errors
2B.3 Input/Ouput Function Errors .. .
2B.4 System Error Status Word
2B.5 Commands Affecting Error Status Word

28-01
28-01
28-05
2B-06

. . 28-18
28-19
28-20

Page xii

TABLE OF CONTENTS

APPENDICES

A. Cylinder-Sector/Physical Sector Conversion Table

B. ASCII Character Set

C. MOOS Command Syntax Summary

D. Diskette Controller Entry Points

E. Mini-Diagnostic Facility

F. Diskette Description. Handling, and Format

G. Directory Hashing Function

H. MDOS-Supported Software Products

H. 1 ASM -- Mb800 Assembler
H.2 ASM1000 -- M141000 Cross Assembler
H.3 ASM3870 -- M3870 Cross Assembler
H.4 BASIC -- BASIC Interpreter
H.5 E -- CRT Text Editor
H.b EDIT -- Text Editor.
H.7 EM3870 -- M3870 Emulator
H.8 FORM1000 -- M141000 ObJect File Conversion
H.9 FORT -- Relocatable FORTRAN Compiler
H. 10 MASM -- MACE Cross Assembler.
H. 11 MBUG -- MACE Loader and Debug Module
H. 12 MOTEST -- Component Tester Executive
H. 13 MPL -- MPL Compiler
H. 14 PPLO/PPHI -- PROM Programmer I .
H. 15 PROMPROG -- PROM Programmer II/III
H. 1b RASM -- Relocatable M6800 Macro Assembler
H. 17 RASM09 -- Relocatable M6809 Cross Assembler
H. 18 RLOAD -- Linking Loader
H. 19 SIM1000 -- 141000 Simulator
H.20 USE with MDOS

I. MOOS Equate File Listing

J. MOOS 3.00 Differences.
J.1 Impact of MDOS 3.00 on Previous MOOS Programs
J.2 Enhancements to MDOS 2.20/2.21
J.3 Enhancements to MDOS 3.00

K. IOCB Input Parameter Summary

L. EXORdisk II/III System Specifications

Page

A-01

B-01

C-01

0-01

E--01

F-01

G-01

H-01

H-02
H-04
H-07
H-09
H-10
H-11
H-13
H-14
H-16
H-18
H-20
H-21
H-22
H-24
H-2b
H-27
H-30
H-33
H-39
H-40

1-01

J-01
J-Ol
J-04
J-Ob

K-Ol

L-Ol

Page xiii

CHAPTER 1

1. INTRODUCTION

The EXORdisk II is a single-sided. single-density. dual
diskette drive storage s~stem designed for use with the
EXORciser or EXORterm. The EXORdisk III is a double-sided.
single-density. dual diskette drive storage system designed
for use with the EXORciser or EXORterm. The EXORdisk III can
be expanded into a four-drive system.

With either the EXORdisk II or EXORdisk III system, the
following items are also included: a floppy disk controller
module. a floppy disk interconnection cable assembly. and a
software disk operating system. An illustration of a typical
EXORdisk system is shown in Figure 1-1.

The M6800 Diskette Operating S~stem (MDOS) or M6809
Diskette Operating System (MDOS09), in conJunction with the
EXORciser and EXORdisk II or EXORdisk III, provides a
powerful and easy-to-use tool for software development. For
the remainder of this manual, all references to MDOS will
encompass both the M6800 version as well as the M6B09
version, unless otherwise specified.

MDOS is an interactive operating system that obtains
commands from the system console. These commands are used to
move data on the diskette. to process data, or to activate
user-written processes from diskette. All this can be
accomplished with a minimum of effort; and since MDOS is a
facilities oriented system, rather than a supervisory
oriented one. a minimum of overhead is imposed.

In addition. an extensive set of resident system
functions are provided for general development use. Such
functions as dynamic space allocation. random access to data
files, record I/O for supported and non-supported devices. as
well as many register. string. and other diskette-oriented
routines make MDOS a good basis for a user's application
system.

Page 01-01

Figure 1-1. Type ial EXORd isk system.

Page 01-02

INTRODUCTION 1. 1 -- Hardware Support Required

1. 1 Hardware Support Required

The minimum hardware configuration required to support
MOOS consists of:

an EXORciser or EXORterm with EXbug firmware
16K RAM
EXORdisk II/III dual diskette drive unit
EXORdisk II/III floppy disk controller module
Interconnect cable
ASR33 (TTY) or RS-232C compatible terminal

The EXORdisk II can read and write diskettes recorded in
an IBM-3740-similar format (single-sided, single-density).
The EXORdisk III can read and write all diskettes that the
EXORdisk II can handle. In addition, diskettes formatted in
the Motorola single-density, double-sided format can also be
read and written. The double-sided diskettes cannot be used
in the EXORdisk II.

The above minimum configuration will allow the user to
run any of the MOOS commands that reside on the MDOS system
diskette at the time of purchase. Other additional hardware
may be required to run the MOOS-Supported software products.
Such information is described in Appendix H.

1.2 Additional Supported Hardware

MOOS also supports a line printer and the reader/punch
(record) devices of the system console. The line printer
interfaces to the EXORciser through the printer interface
module (MEX68PI) which consists of two PIA's plus the
necessary buffering devices and address decoding. If the
printer interface from an EDOS system is used instead, it
must be modified for use with MOOS. The modifications
consist of adding the following lines to th~ printer
interface PIA:

1. Print select (high=selected) to PBO (pin 18 of PIA)
2. Paper out (low=paper available) to PBl (pin 11 of

PIA)

The system console's automatic reader/punch (record)
devices must be similar to a Teletypewriter's paper tape
reader and punch. For a complete description of the system
console requirements consult the "M6800 EXORciser User's
Gu ide 1/.

Page 01--03

INTRODUCTION 1.3 -- Software Support Required

1.3 Software Support Required

No additional software is required to run the operating
system as it comes shipped on the system diskette.

1.4 Program Compatibility

All of the MOOS commands and system files that are
shipped on the system· diskette must be used with that
particular version of MOOS. MOOS commands and system files
from other versions should never be intermixed.
MOOS-Supported software products (see Appendix H) with
version numbers 3.00 or greater must be used with MOOS 3.00.
They will not operate correctly with prior versions of MOOS.
In addition, prior versions of the M6800 Linking Loader
(RLOAD, through version 2.03) will not operate with MOOS
3.00. Prior versions of other MOOS-Supported software
products will work with MOOS 3.00.

Most user-written assembly language programs that were
developed independently of MOOS can be executed on an MOOS
system without reassembly; however, such programs will have
to be converted into the memory-image file format before they
can be loaded from diskette into memory (see section 2.8.~).
Programs need only be changed when transferred to MOOS if:

1. They make assumptions about the
pointer after initialization· of the stack

they are loaded into memory,

2. They are origined to load (initialize memory
while loading) below hexadecimal location
$20,

3. They make assumptions about the physical
structure of diskette tables Dr files,

4. They utilize the diskette for input/output,

5. TheV make assumptions about the contents of
,the SWI and IRG interrupt vectors.

If a user has pri.or EXORciser SUppOT't software products
which he has purchased from Motorola (e. g., editors,
assemblers, Dr compilers), that software must be upgT'aded to
be compatible with MOOS.

If a user has
previous versions of
consulted for a list
prior versions that may
3.00.

software that he has developed using
MOOS, then Appendix ~ should be

of differences between MOOS 3.00 and
affect programs running with MOOS

Page 01,-04

INTRODUCTION 1.5 -- Hardware Installation

1.5 Hardware Installation

The floppy disk controller module and drive unit should
be inspected upon receipt for broken, damaged, or missing
parts as well as for damage to the printed circuit board.
The packing materials should be saved in case reshipping is
necessary.

1. 5.1 Four-drive system installation

The 'ollowing procedure must be performed to install the
four diskette drive version of the EXORdisk III. This
section is not applicable to EXORdisk II systems or to
dual-drive EXORdisk III systems. This procedure must be
performed before the floppy disk controller module is
instailed (next section). It should be noted that in the
four-drive configuration, all diskette controller originated
lines must be terminated in the last drive of the daisy
chain. When facing the front of the disk drive units, drive
zero is on the left and drive one is on the right of one
unit, while drive two is on the le't and drive three is on
the right of the other unit. Before the following
modifications are made, both dual-drive units are identical.

1. The housings from both dual-drive units must be
removed.

2. In the dual-drive unit that is to contain drives
and one, the Terminator Network (Motorola
51NW9626AOl) should be removed from the socket
on printed circuit board (pcb) 'or drive zero.
drive one pcb socket XA22 should not have
Terminator Network installed.

zero
PIN

XA22
The
the

3. JPR 11 should be installed in the Jumper area of the
pcb for drive zero.

4. JPR 9 should be installed in the Jumper area 0' the
pcb for drive one.

5. The housing should be replaced on this dual-drive
unit and the drives marked as zero and one.

6. On the other dual-drive unit the Terminator
should be installed in socket XA22 of the
drive three. There should be no Terminator
installed on socket XA22 of the pcb 'or drive

Network
pcb for
Network
two.

7. JPR 11 in the Jumper area 0' the pcb for drive two
should be removed (i' installed>. JPR 8 should be
installed.

Page 01--05

INTRODUCTION 1.5 -- Ha~dwa~e Installation

8, JPR 9 in the Jumpe~ a~e of the pcb fo~ d~ive th~ee
should be ~emoved (if installed>. JPR 10 should be
installed.

9. The 50-pin ~ibbon cable that connects to P1 of the
Cont~olle~ Inte~connect Boa~d must be disconnected
and insulated against contact with conductive
material.

10. The housing on this dual-drive unit should be
replaced and the drives marked as two and three.

11. The 50-pin
should be
two/three.

ribbon cable (Motorola PIN 30BW1B24X01)
installed between drives ze~o/one and

1.5.2 Floppy disk controller installation

To install the floppy disk controller module into the
EXORciser, the following steps should be followed:

1. The PWR .keyswitch on the EXORciser should be
turned OFF. CAUTION: Inserting the floppy
disk controller module while power is applied
to the EXORciser system may result in damage
to components of the module.

2. Any other card
to addresses
through $EC07,
from 't!he system
address range.

in the EXORciser that responds
between hexadecimal $EBOO

inclusive. must be removed
or configured for a diffe~ent

3. The floppy disk controller module can then be
inserted into any available card slot. It is
desirable to keep all of the cards in the
EXORciser close together; it is specifically
recommended that dynamic memo~y boards be
kept as close to the MPU boa~d as possible.
When properly installed, the component sides
of all ca~ds should be facing the left-hand
side of the EXORciser chassis (as viewed f~om
the f~ont >. The EXORc i se~ moth erboard
connecto~s are offset and keyed to p~event

backwa~d installation of cards.

4. The interconnect cable should then be
attached to both the drive unit and the
diskette controller module. CAUTION: The
pin index mark on the connector must match up
with the index mark on the cable. Damage to
the module will result if the cable is
installed the wrong way.

Page 01-06

INTRODUCTION

5.

1.5 -- Hardware Installation

Power can now be applied to both the drive
unit and to the EXORciser -- the hardware is
installed. The operator should get into the
habit of turning on the power in the
following sequence: system console,
EXORciser, EXORdisk, and line printer. The
power off sequence should be the reverse:
line printer, EXORdisk, EXORciser, and system
console. No diskettes should be in a drive
while the drive's or the EXORciser's power is
being turned on or off.

1.6 Software Installation

There is no software installation that need be
performed. All MDOS software is included on the diskette
that is shipped with each EXORdisk. This diskette contains
the operating system and a set of commands that comprise
MDOS. It mayor may not contain any of the MOOS-supported
software products such as editors or assemblers. These
products are dependent on the mode of system purchase.

Page 01-07

CHAPTER 2

2. GENERAL SYSTEM OPERATION

This chapter provides the user with the basic concepts
that are necessary for the simplified and typical operation
of MOOS. It contains descriptions and examples of the
initialization procedures and of the basic forms of the most
frequently used commands. These examples clearly illustrate
h ow MOOS is used to ed ita program, to assemb lei t, to
convert it into a loadable module, to load it and execute it,
as well as some other useful operations. The commands are
presented in a sequence that is commonly followed in a
software development environment.

2.1 System Initialization

To initialize the operating system, power must first be
applied to the EXORciser and to the diskette drive unit. No
diskette should be in the drive while power is being turned
on or off on either the drive or the EXORciser. Once the
power is on, the following steps must be followed:

1. EXbug must be initialized and configured for
the proper speed of the system console. If
power has Just been turned on for the first
time, EXbug initialization is automatically
performed by the power-up interrupt service
routine in EXbug. If power is already on and
MOOS is to be re-initialized, then either the
ABORT or RESTART push buttons on the
EXORciser's front panel must be depressed to
initialize EXbug. The prompt "EXBUG V.R"
will be displayed by EXbug indicating it is
waiting for operator input. "V" indicates
the version and "R" the revision number of
the EXbug monitor in the system.

2. An MDOS diskette (one shipped from Motorola
or one that has been properly prepared by the
user (see section 2.8.10» must be placed in
drive zero. The door on the drive unit must
then be closed in order for the diskette to
begin rotating. For the side-by-side drives,
drive zero is on the left side, as seen from
the front. For the EDOS-converted systems
using the vertically stacked drives. drive
zero is the top one.

The diskette must be oriented properly before

Page 02-01

GENERAL SYSTEM OPERATION 2.1 -- System Initialization

being inserted into the drive. When the
diskette is inserted properly, the label is
facing up, and the edge of the diskette with
the long narrow slot in the protective
covering is inserted first. The labelled
edge will be the last edge to be covered up
as the diskette is inserted into the drive.

3. Operat~rs with EXbug 2 in their systems will
skip this step. The EXbug 1 command "MAID"
must be entered. An asterisk <*) prompt will
be displayed once MAID has been activated.

4. The MAID command "'E800;Q" must be entered if
the debug monitor is EXbug 1. For EXbug 2
monitors, the EXbug command "MDOS" must be
entered. Either command will give control to
the diskette controller at the specified
address. The controller will initialize the
drive electronics and then proceed to read
the Bootblock into memory. Once the
Bootblock has been loaded, control is
transferred to it. The Bootblock will then
attempt to load into memory the remainder of
the resident operating system.

2.2 Sign-on Message

If no errors occur during the initialization process,
MDOS will display the message:

MOOS VV.RR (M6800)
=

MDOS09 VV.RR (M6809)
=

meaning that MOOS has been successfully loaded from disk and
initialized. The "VV" and "RR" indicate the version and
revision numbers of the operating system, respectively. In
addition, an e~ual sign (=) is displayed as a prompt
indicating that MOOS is ready to accept commands from the
operator. The equal sign prompt is subsequently displayed
each time the MOOS command interpreter gets control. The
sign-on message showing the version and revision numbers is
only displayed when MOOS is reloaded from the diskette.

2.3 Initialization Error Messages
----------------------------~----

If for some reason the drive electronics are not
properly initialized, or if the diskette in drive zero cannot
be read pr~perly to load the Bootblock or the resident

Page 02-02

GENERAL SYSTEM OPERATION 2.3 -- Initialization Error Messages

operating system, then a two-character error message will be
displayed and control returned to the EXbug monitor.

The following
initialization. All

errors can be produced during
two-character messages begin with the

letter liEU.

Message

El

E2

E3

E4

E5

Probable Cause

A cyclical redundancy check (CRC)
error was detected while reading the
resident operating system into
memory.

The diskette has the write protection
tab punched out. During the
initialization process, certain
information is written onto the
diskette.

The diskette is not damaged and can
still be used for a system diskette;
however, the write protection tab
must first be covered with a piece of
opaque tape to allow writing on the
diskette.

The drive is not ready. The door is
open or the diskette is not yet
turning at the proper speed. If the
diskette has been inserted into the
drive with the wrong orientation, the
"not ready" error will be also
generated. If a double-sided
diskette is used in the EXORdisk II
drives, this error will also occur.

Closing the door, waiting a little
bit longer before entering the
"E800;G u or uMDOS u command, or
turning the diskette around so it is
properly oriented should eliminate
this error.

A deleted data mark was detected
while reading the resident operating
system into memory.

A timeout i nterrup t oc c urred. Th i s
indicates that a diskette controller
function was not completed within the
allotted time. This error can also
occur if the ABORT pushbutton is

Page 02-03

GENERAL SYSTEM OPERATION

E6

E7

ES

E9

2.3 -- Initialization Error Messages

depressed whil~ a diskette trans'er
is in progress.

The diskette controller has been
presented with a cylinder-sector
address that is invalid.

This error indicates some type o. a
hardware problem. For example, the
error can be caused by missing or
overlapping memory, bad memory, or
pending IROs that cannot be serviced.

A seek error occurred while trying to
read the resident operating system
into memory.

Like E6 errors. this one indicates
some type o' a hardware problem.

A data mark error was detected while
trying to read the resident operating
system into memory.

A CRC error was 'ound while reading
the address mark that identifies
sector locations on the diskette.

The diskette controller errors El, E4. EB. and E9
indicate that the diskette cannot be used to load the
operating system; however. a new operating system can be
generated on that diskette, making it use.ul again. Chapter
10. DOSGEN command, and chapter 15. FORMAT command, describe
ways in which damaged diskettes can be regenerated.
Depending on the extent of the errors, the diskette may be
used in drive one to recover any 'iles that may be on it
(section 2. S. 9>'

The diskette controller error E5 can occur for .a variety
of reasons. The most common reason, and the most .atal, is
the destruction of the addressing in~ormation on the
diskette. If the addressing in'ormation has been destroyed
(verified by using DUMP command to examine areas of
diskette), the FORMAT command may be used to rewrite the
addressing; howeyer. in'ormation on the damaged diskette
cannot be recovered. Occasionally. after a system has Just
been unpacked. the read/write head may have been positioned
past its normal restore point on cylinder zero. In this
case. trying the event which caused the error three or more
times may position the head to the proper place. If this
'ails, the head will have to be manually repositioned past
cylinder zero; however, this problem rarely occurs. The E5
errors can also occur if a user-written program accesses
drives 1-3 without using one o' the system functions and

Page 02-04

GENERAL SYSTEM OPERATION 2.3 -- Initialization Error Messages

without rirst restoring the read/write head on that drive.

Even arter the resident operating system has been
successrully read into memory, certain errors can occur in
th e sub seQ.uent i ni t ia Ii zat i on proc ed ure. Duri ng
initialization the resident operating system cannot access
the error message processor since it has not been
initialized. Messages similar in format to those generated
by the diskette controller are displayed to indicate such
errors. They differ from the diskette controller errors in
that the second character of the two-character message is a
non-numeric character. The following errors can occur during
initialization, but only arter the resident operating system
has been read into memory.

Message

E?

Probable cause

This error indicates that the
Retrieval Information Block CRIB) of
the resident operating system file
MOOS. SY is in error. The operating
system cannot be loaded.

The diskette probably is not an MOOS
system diskette, or the system files
have been moved from their original
p laces. The REPAIR command (Chapter
22) can be used to identify which
files are missing or if their places
have been changed.

EM This error indicates that there was
insufficient memory to accommodate
the resident portion of the operating
system.

The memory reQ.uirements described in
section 1. 1 should be reviewed. If
the minimum reQ.uirements are
satisfied, then the existing memory
should be carefully examined for bad
locations.

EI The version and revision of MOOS
already loaded into memory are not
the same as those on diskette. This
error usually occurs as the result of
switching diskettes in drive zero
without following the initialization
procedure outlined in section 2.1.
The error can also occur if the ID
sector has been damaged.

Page 02-05

GENERAL SYSTEM OPERATION 2.3 -- Initialization Error Messages

The error can be avoid.d if the
initialization procedure is followed
correctl~ every time a new system
diskette is inserted into drive zero.

ER The addresses of the R.trieval
Information Blocks of the MDOS
overlays are not the same as those at
the time of the last initialization.
This error may occur for the· same
reasons as the "EI" error.

EU An input/output system function
returned an error during the
initialization. Errors of this sort
indicate a possible memory problem or
the opening of the door to drive zero
while the initialization is taking
place.

EV One ·of the system files is missing or
cannot be loaded into memory. If a
system file is missing, the diskette
has been improperly generated or the
file was intentionally deleted. If a
fi Ie cannot be loaded, then the
diskette should be regenerated. The
diskette may be used in drive one to
save any files that may be on it
(section 2.B.9). This error may also
occur if the door to drive zero is
opened while initialization is in
progress.

2.4 Operator Command Format

After the sign-on message is displayed, MDOS is ready to
accept commands from the operator. The e~ual sign prompt (=)
indicates that the command interpreter is awaiting' input via
the console. Generally, the equal sign prompt will be
redisplayed after each command has finished its function.
The operator-entered command line must always indicate which
command is to be executed. In addition, the file names that
may be re~uired by the command must be specified. Some
commands also allow various options that can alter the way in
which their functions are performed. These options are also
entered on the command line. Each command line must be
terminated with a carriage return. The command line has the
following format:

<name 1> <name 2>, <name 3>, ,<name n>i<options>

where each <name i> (i=1 to n) has the form of a complete

Page 02-06

GENERAL SYSTEM OPERATION 2.4 -- Operator Command Format

MDOS file name (see section 2.7.1>. The name of the command
to be executed is always <name 1>. The remaining names and
the options may not be required, depending on the individual
command. The following lines:

DIR EDIT.CM: liE
FREE
MERGE FILE1: 1, FILE2: 0, FILE3: 1,FILE1: 1

are valid examples or MDOS command lines. Section 2.8
describes in a simplified form the basic format (i. e., the
command's name, what file names must be specified, and what
options are available) of the most frequently used commands.
PART II gives a complete and detailed description of all MDOS
commands. In addition, Appendix H contains a summary of the
command line formats of all MDOS-Supported software products.

Most frequently a "space" is used to separate <name 1>,
the command name, from the other names which are typically
separated by "commas". The "semicolon" always separates the
options from the rest of the command line. The "space" and
"comma" are the recommended separators since they make the
command line the most readablei however, any character that
will not be mistaken for an MDOS file name character, a
suffix delimiter, a logical unit number delimiter, or a
device name delimiter (see section 2.7.1) can be used as a
separator. The use of special characters, although
permitted, is not recommended because the command line
becomes very unreadable.

2. 5 System Console

The system console is used as the communications device
between the operator and the operating system. MDOS messages
are displayed on the console printer or display mechanism.
MDOS commands, as well as operator inputs prompted by the
commands, are entered via the keyboard. All command line
input and most input to the various commands requires upper
case, alphabetic characters. Numeric and special characters,
of course, are case independent. To allow corrections to be
made to any typed line before the terminating carriage return
is entered, several special keys on the keyboard can be used.
In addition, two other special keys serve to prematurely
ab ort a command i n ~ progress or to "freez e II th e d i sp lay of
messages on the console.

2. 5. 1 Carriage return key

The CARRIAGE RETURN key is used to terminate any
operator response to an MDOS input prompt. This is true for
the command line as well as all other input that may be
required from the operator by the various commands. The

Page 02-07

GENERAL SYSTEM OPERATION 2.5 -- System Console

CARRIAGE RETURN IIIill, automatically perform both carriage
return .nd line feed functions.

2.5.2 Break key

The BREAK key is used as a controlled-abort function
key. Most MOOS commands that take a long time to complete
their function periodically check to see ,if the BREAK key has
been depressed. If it has, the ~ommand IIIill come to a
premature, but controlled, termination point.

The BREAK key should be used, IIIhenever possible, as an
alternative to using the EXORciser's ABORT or RESTART
pushbuttons. The controlled abort that is achieved IIIith the
BREAK key ensures that all system tables are intact. Since
termination is delayed until all critical diskette accesses
have been completed, no file space is lost nor is any system
table destroyed. Such precautions cannot be guaranteed if
the ABORT or RESTART pushbuttons are used, since the operator
has no IIIay of knoliling IIIhether or not diskette data transfers
are in progress.

2.5.3 Control-W

Control-W is actually a combination of till 0 keys being
depressed simultaneously: the CONTROL or CTL key and theW
key. This combination is used to halt the display of
information on the system console or printer. All commands
that respond to the BREAK key abort function IIIill also be
"haltable" IIIith the, CTL-W key. Most MDOS commands that
display more than a felll lines of information on the console
IIIill occasionally check to see if the CTL-W key has been
depressed. If a CTL-W is detected, the command IIIill suspend
processing until any other key on the console keyboard is
depressed (except, of course, another CTL-W). This feature
is pa.ticularly useful to hold the display for vieliling on
systems that have a CRT. In addition, if output is being
directed to the printer, the CTL-W can be used to suspend
printing until the paper is realigned.

2.5.4 Control-X

Control-X is actually a combination of tlilO keys being
depressed simultaneously: the CONTROL orCTL key and the X
key. This combination is used to cancel the input line that
IIIas Just entered by the operator (before a carriage return is
depressed). All system input from the console supports
CTL-X. Any characters entered on the current input line thus
farlilill be deleted and input can be resumed from the
beginning of the line. A carriage return and line feed IIIill
be sent to the console, so that the operator has a positive

Page 02-08

GENERAL SYSTEM OPERATION 2.5 -- System Console

feedback that the line was cancelled.

2. 5. 5 DEL or RUB OUT

The DEL or RUBOUT key serves as a backspace key during
console input. If the operator detects an error in the
current input line <before a carriage return is depressed),
the DEL key will cause the preceding character to be removed
from the input line. The character that is removed will be
echoed back to the console so that the operator has a
positive feedback that a character was backed out of the
line.

2.5.6 Control-D

Control-D is actually a combination of two keys being
depressed simultaneously: the CONTROL or CTL key and the D
key_ This combination allows the operator to re-display the
current input line (before a terminating carriage return is
depressed). If the input line has had several characters
backed out (see DEL key above), the line is very unreadable.
The CTL-D key can, therefore, be used to show a "clean" copy
of the line for operator inspection. The newly displayed
line will be shown on the line following the current input
line. Operator input is not terminated with the CTL-D key.
Any remaining input must still be supplied, as well as the
terminating carriage return.

2.6 Common Error Messages

Many error messages are common to the MDOS commands. In
order to be aware of the most common errors, their
descriptions are included here. These common error messages
will be recognizable to the operator since they are prefaced
with a pair of asterisks <**) and a two-digit reference
number. Each command may, in addition, have a set of
specific error messages that will not be displayed by other
commands. These specific error messages will not have the
asterisks or two-digit reference number. Such messages are
explained along with each command's detailed description in
PART II. A summary of the standard error messages can be
found in Chapter 28. The messages are listed there in order
of their two-digit reference numbers.

WHAT?

The first name entered on the command line was
not the name of a file in the diskette's
d i rec tory. Most often th is error oc curs as th e
result of a mistyped command name.

Page 02-··09

GENERAL SYSTEM OPERATION 2.6 -- Common Error Messages

** 01 COMMAND SYNTAX ERROR

The syntax of the command line parameters could
not be interpreted. Most often this error refers
to undefined characters appearing in the options
field.

** 02 NAME REGUIRED

The file name required by the command as a
parameter was omitted from the command line.

** 03 <name> DOES NOT EXIST

The displayed file name was not found in the
diskette's directory. The file name must exist
prior to using the command. The <name> is
displayed to show which name of the multiple
names specified as parameters ca~sed the error.

** 04 FILE NAME NOT FOUND

The file name entered on the command line as a
parameter does not exist in the diskette's
directory. The file name must exist prior to
using the command. No file name is displayed,
since only one parameter is required by the
command.

** 05 <name> DUPLICATE FILE NAME

The displayed file name already exists in the
diskette's directory. The file name must not
exist prior to using the command. The <name> is
displayed to show which name of the multiple
names specified as parameters caused the error.

** 06 DUPLICATE FILE NAME

The file name entered on the command line as a
parameter already exists in the diskette's
directory. The file name must not exist prior to
using the command. No file name is displayed,
since only one parameter is required by the
command.

** 07 OPTION CONFLICT

The specified options were not valid for the type
of function that was to be performed by the
command. Several of the options are mutually
exclusive and cannot be specified at the same
time.

Page 02-10

GENERAL SYSTEM OPERATION 2.6 -- Common Error Messages

** 11 DEVICE NOT READY

Most frequently this indicates that a command is
trying to output to the printer while the printer
is not ready.

** 12 INVALID TYPE OF OBJECT FILE

Most frequently this indicates that an attempt
was made to load a program into memory whose file
does not have the "loadable" memory-image format,
e. g., a source file.

** 13 INVALID LOAD ADDRESS

An attempt was made to load a program into memory
that: 1) loads outside of the range of
contiguous memory established at initialization;
2) loads over the resident operating system; 3)
loads below hexadecimal location $20; or 4) loads
beyond hexadecimal location $FFFF.

** 25 INVALID FILE NAME

A file name was specified that contained a family
indicator <*>, that began with a device name
indicator (#), or that did not begin with an
alphabetic character.

** 41 INSUFFICIENT DISK SPACE

A command is trying to create a file or to write
into a file. Upon trying to allocate more file
space. insufficient room remains on the diskette
to accommodate the space requirements.

**PROM 110 ERROR--STATUS=nn AT h DRIVE i-PSN J

An unrecoverable error occurred while trying to
access the diskette. The error status "nn" is a
value returned by the diskette controller. The
errors are of the same type that cause the
initialization process to give control to EXbug;
however, instead of beginning with the letter
"E", the status (nn) begins with the digit "3".
The second digit of the status corresponds
directly to the diskette controller error number
discussed in section 2.3. The "E" has been
rep laced by the "3". Thus, status

Page 02-11

GENERAL SYSTEM OPERATION 2.6 -- Common Error Messages

31 is the same as El
32 is the same as E2

39 is the same as E9.

A memory address (only meaningful for system
diagnostics) is substituted for the letter "h"i
the drive number is substituted for the letter
"i"; and the physical sector number (PSN) at
which the error occurred is substituted for the
letter fI J".

2.7 Diskette File Concepts

In MDOS, a diskette file is a set of related information
that is recorded more or less contiguously on the diskette.
The information can be actual machine instructions that
comprise a command or user program. The information can also
be textual data, obJect program data, or any of the forms
described in Chapter 24. The following section describes how
files are named, created, deleted, and protected.

2.7.1 File name specifications

An MDOS file name specification consists of three parts:
a "file name", a "suffix", and a "logical unit number". File
names can be from one to eight alphanumeric characters in
length, the first of which must be alphabetic. The
alphabetic characters must be upper case letters. Valid file
names could look like the following:

DIR
ASM3870
BACKUP
SO
BLOKEDIT
Z

In most cases, all that need be specified when a file
name specification is called for is the file name. The
suffix and logical unit number are usually given appropriate
default values by the various commands.

The suffix can be either one or two characters in
length. Like file names, suffixes must begin with an upper
case alphabetic character. The rest of the suffix must be
alphanumeric. A suffix is used to explicitly refer to a
particular entry in the directory. That is, there may be
several entries with the same file name but with different
suffixes. In such cases, a file name reference alone would

Page 02-12

GENERAL SYSTEM OPERATION 2.7 -- Diskette File Concepts

be ambiguous. Thus, the suffix is used to differentiate
between entries with the same file name. Usually, suffixes
designate a particular format of the file. Thus, a source
file could have the suffix "SA". Its assembled obJect
version could have the same file name but with the suffix
"LX", and its executable version could have the same file
name but with the suffix "LO". MDOS commands usually supply
an appropriate default suffix when dealing with specific
files.

If both file name and suffix are specified. they must be
separated by a period <. >. The following are examples of
valid file name specifications using both file name and
suffix:

BL.OKEDIT.CM
Z.SA
PROC1.CF
DOCUMENT. Y

Since each diskette is a complete file system in itself,
with complete directory and system files, it is possible to
have directory entries with the same file names and suffixes
on separate diskettes. Thus, the logical unit number is
required to uniquely specify a directory entry on a given
drive. L.ogical unit numbers consist of a single decimal
digit (0, 1, 2, or 3>' In most cases, MDOS commands supply a
default value for the logical unit number. If a particular
drive must be identified, it must be entered by the operator
as a part of the file name specification. Logical unit
numbers follow either the file name or the suffix depending
on whether one or both are specified. The logical unit
number must be separated from the file name or from the
suffix by a colon (:). The following are examples of valid
file name specifications using logical unit numbers.

2.7.1.1 Family names

BL.OKEDIT. CM:O
TEST. X: 1
DIR: 1
Z456.D3:3
ASM:2

Some commands allow the operator to specify a family of
file names. Family indicators can occur in either the file
name or the suffix. An asterisk <*> is used as a family
indicator. The family indicator represents all or part of a
file name or suffix. For example,

FIL.E.*

would be a file name specification that includes all

Page 02-13

GENERAL SYSTEM OPERATION 2.7 -- Diskette File Concepts

directory entries with the File name "FILE
suFFix on the deFault drive. Similaply,

.. but tIIith an~

PROG*.SA

is a file name speciFication that includes all directory
entries with "PROG" as the First four characters of their
File names, regardless of what the remaining characters are,
and with suffix "SA" on the deFault drive. The asterisk
cannot have characters following it. Thus, the follotlling
file name specifications are invalid:

Not all
contain the
descriptions
indicators are

*PROG.SA
PROGRAM.*B

commands allow file
family indicator.

should be consulted
acceptab Ie.

2.7.1.2 Device speciFications

name
The
to

specifications to
individual command

see tIIhere family

Some commands allow the operator to enter a device
specification in the command line instead of a file name
specification. Device specifications consist of two parts:
a "device name" and an optional "logical unit number".
Device names are two characters long, both of which must be
alphabetic. A pound sign (#) is used as a leading character
to indicate that the subsequent two-character sequence is a
device name. For example,

are valid device names used for the line printer and the
console, respectively. A device specification may be entered
with a logical unit number. Logical unit numbers must follow
the device name and must be separated from it by a colon (:).
The individual command descriptions should be consulted to
see where device specifications are allowed.

2.7.2 File creation

MDOS files are never explicitly created by the operator.
All commands that write to output files will create them
automatically if they do not exist. Files will be created
according to the file name specification given on the command
line. That is, if explicit suffixes and logical unit numbers
are specified, the file will be created on the indicated
drive. Otherwise, the appropriate default values supplied by
the command will be used to create the file. Existing files
are unaffected by the creation of a netll file.

Page 02-14

GENERAL SYSTEM OPERATION 2.7 -- Diskette File Concepts

2.7.3 File deletion

Unlike file creation, file deletion is controlled
explicitly by the operator via the DEL command which is
described later. No other command program will delete
existing files on the diskette. Exceptions to this are
commands that automatically create an intermediate work file
to perform the command's function. These intermediate files
are deleted by the command as an automatic clean-up process.

2.7.4 File protection

All MDOS files can be configured with delete protection,
with write protection, or with no protection. Delete
protection will prevent the operator from inadvertently
deleting the file (the protection can be changed by the
operator so that the file can be deleted). Write protection
will prevent any command from writing to that file as well as
preventing deletion of the file. Normally, files are
unprotected, allowing both writing to or deletion of the
file. The NAME command, described later, can be used to set
or to change a file's protection.

2.8 Typical Command Usage Examples

The following sections give simple, but meaningful,
descriptions and examples of the most frequently used MDOS
commands in a typical software development environment. No
attempt is made in these sections to cover all capabilities
and options of the described commands. The detailed command
descriptions in PART II serve that purpose. After reading
this section, the operator should be able to go "on-line"
with MDOS and be able to display the directory of a diskette,
create a source program file, assemble it, and load it into
memory for testing. The commands to delete a file, to change
its name or protection, to copy it between diskettes or to
tape are also described. New MOOS diskette generation is
discussed in the last part of this section.

It is assumed in the subsequent discussion that the
system has been properly installed and initialized. Thus, a
system diskette with the MDOS commands resides in drive zero.
Command program files have a suffix of "CM" which is supplied
as a default to the first file name that is entered on the
command line. The default logical unit number that is
supplied is ":0". In the command examples that follow, it
will be seen that both suffix and logical unit number are not
specified for the command name.

of
The following notation will be used in the description

the command line formats as well as throughout the

Page 02-15

GENERAL SYSTEM OPERATION

remainder of the manual:

Notation

$nnnn

<>

[J

{}

2.8 -- Typical Command Usage Examples

Meaning

Hexadecimal number "nnnn".

Syntactic elements are printed in
lower case and are contained in
angle brackets, e. g., <options>,
<name>.

Optional elements are contained
in square brackets. If one of a
series of elements may be
selected, the available list of
elements will be separated by the
word "or" , e. g. , [<tagl> or
<tag2>l.

A required element that must be
selected from the set of elements
will be contained in curly
brackets. The elements will be
separated by the word "or".

All elements that appear outside of angle brackets «»
must be entered as is. Such elements are printed in capital
letters (if words) or printed as the actual characters (if
special characters). For example, the syntactical element
[;<options>l requires the semicolon (;) to be typed whenever
the <options> field is used.

2. 8. 1 OIR -- Oi rec tory d i sp lay

The OIR tommand is used to display
diskette's directory. Either the
selective parts of it can be displayed.
command line for the OIR command is:

the contents of a
entire directory or

The format of the

DIR [<name>] [;<options>J

The file name specification <name> indicates what to
display. The <options> specification indicates how to
display it. If DIR is entered by itself on the command line,
it will display on the system console the file names of all
user-generated files on drive zero. If no user-generated
files exist on drive zero, a message will be displayed
indicating that no directory entries wer. found. This is
normally the case when DIR is used without any options on the
system diskettes that are shipped with the new system. To
display the system and the user-generated files, the "S"
option can be placed into the options field:

Page 02-16

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

DIR is

If drive one's directory is to be displayed. then a ": 1"
must be typed in place of the file name specification:

DIR : liS

To direct the output of the DIR command to the printer,
only one other option letter need be specified --- "L". Thus.

DIR : liLS

will produce a listing of drive one's complete directory on
the printer. The "S" and "L" can be in any order, as long as
they follow the semicolon.

The DIR command can also be used to see if a specific
file name exists on a given drive. This is accomplished by
entering a complete file name specification (i. e., name,
suffix. and logical unit number>. Thus.

DIR EDIT.CM: 1

will perform a directory search for the indicated file name
specification on drive one. If the directory entry exists,
its file name and suffix will be displayed. Otherwise, a
message indicating that no entries were found will be
displayed. Directory searches for specific file names do not
require the tIS" option to distinguish between system files
and user files. Chapter 9 contains a complete description of
the DIR command's use.

2.8.2 EDIT -- Program editing

The EDIT command is used to create and/or to change
user-written source program and data files on diskette. The
EDIT command. although an MOOS-Supported product which may be
purchased separately. is mentioned here since it is such an
integral part of the software development environment. The
EDIT command, if not included on the MDOS system diskette.
must be copied from the diskette on which it was shipped (see
section 2.8.9>. Once the EDIT command resides orl the system
diskette. it is invoked with the following MDOS command line:

EDIT <name:>

If the EDIT command is not copied to the system diskette. it
can be invoked from the diskette in drive one with the
following command line:

EDIT: 1 <name:>

The only parameter supplied on the command line is the

Page 02-17

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

name of the file that is to be edited. If the file does not
exist, the EDIT command will create the file; if the file
already exis.ts, then it will be used. The suffix "SA", which
is typically used for ASCII source files, is automatically
supplied as a default if no suffix is entered on the command
line. Thus, the user need only specify the name of the file
to be edited. Upon completion of an edit, the file name will
be unchanged. That is, a user need not be concerned about
renaming his files between edits. A complete description of
the EDIT command's format and usage is found in the manual
accompanying the EDIT command diskette, "M6800 Co-Resident
Editor Reference Manual".

2.8.3 ASH or RASM -- Program assembling

The ASM and RASM commands for MOOS and RASM09 command
for MDOS09 (hereafter called the assemblers) are used to
assemble the source program files created with the EDIT
command. The assemblers translate these source programs into
obJect programs. The assemblers, although both
MOOS-Supported software products which may be purchased
separately, are mentioned here since they are such an
integral part of the software development environment. If
not included on the MOOS system diskette, the assemblers must
be copied from the diskette on which they were shipped (see
section 2. B. 9), Once the assemblers reside on the system
diskette, they are invoked with the following MOOS command
line:

{ASM or RASM or RASH09} <name> [;<options>l

If the assemblers are not copied to the system diskette in
drive zero, they can be invoked from the diskette in drive
one by using the following command line:

{ASH: 101' RASM:l or RASM09: 1} <name> [;<options>l

The only re~uired parameter is the name of the file that
is to be assembled. Normally, this would be the name of the
file specified in the previous description of the EDIT
command. The assemblers will automatically supply the
default suffix for both the source file that is read (SA) and
for the obJect file that is created (LX, assuming that the
OPT REL or OPT ABS assembler directive was not used). Such
an obJect file will be in the standard, EXbug-loadable
format. Such files cannot, however, be loaded by HODS (see
section 2.8.3). The obJect file will have the same file name
as <name>, but a different suffix will be assigned to it to
differentiate it from the source file.

Normally, a listing of the assembled program is desired.
The assemblers will not produce a source listing unless the
option to do so is specified in the <options> field. Thus,

Page 02-18

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

the command
TESTPROG with

As with

line to assemble a source program file named
source listing output would appear as:

{ASM or RASM or RASM09} TESTPROGiL

the DIR command. the "L" option directs the
printed output to the printer. If a printer is not
available, or if the program is short, the source listing can
be produced on the system console by using the following
option:

{ASM or RASM or RASM09} TESTPROGiL=#CN

If errors are detected during the assembly process. they
will be included on the source listing. If no source listing
is being produced. errors will automatically be displayed on
the console. Typically, the software development process
involves several iterations of the editing and assembly
processes before an error-free obJect file is produced. The
assemblers, however, require that the obJect file does not
exist prior to the assembly process. Therefore. if a
duplicate file name error message is displayed, the obJect
file already exists. It must first be deleted before the
assembly process can continue. The next section describes
the process of file deletion.

During the iterative process of editing/assembling to
obtain an error-free program. the obJect file created by the
assembler can be suppressed by specifying the option "-a" in
the options field. The command line

{ASM or RASM RASM09} TESTPROGiL-O

for example, will assemble the source program as in the above
examples creating the listing on the line printer; however,
the obJect file will not be created. Thus, the deletion of
the obJect file between repetitive assemblies is not required
since it is never created.

The "M6800 Resident Assembler Reference Manual" or the
"M6800/M6801/M6805/M6809 Macro Assembler Reference Manual"
should be consulted for a complete description of the
assemblers' function, usage, and command format.

2.8.4 DEL -- File deletion

The DEL command is used to delete file names from the
directory. The removal of a file's name from the directory
makes the file unaccessible to any other process. The file
itself is effectively deleted. Thus. in the subsequent
descriptions. the phrases "delete a file name" and "delete a
fi Ie" are equi va 1 ent. The format of th e command line for th e
DEL command is:

Page 02-19

GENERAL SVSTEMOPERATION 2.8 -- Typical Command Usage Examples

DEL <name>

which will cause the specified file to be deleted. If the
obJect file from the assembly process example above is to be
deleted, for instance, the following command line would be
entered:

DEL TESTPROG.LX

It should be noted that the suffix is specified. Since
the DEL command is a general purpose command, like the DIR
command, no default value for the suffix is supplied. Onl"
those commands that can validly make an assumption about the
type of file they will be dealing with (e.g., EDIT, ASM.
RASM) will supply default suffixes.

The DEL command will display a message indicating that
the file name was deleted or that the file name was not
found. Chapter 8 contains a complete description of the DEL
command's other capabilities.

2.8.5 EXBIN -- Creating program load module

The EXBIN command is used to convert the obJect file
from the assembly process (assumes no OPT REL or OPT ABS in
source file) into a file whose contents can be loaded into
memory for execution. MDOS can only load programs into
memory that are in memory-image files. Thus. the EXBIN
command must be invoked after an assembly process to create
the loadable file. The format of the command line for the
EXBIN command is:

EXBIN <name>

The <name> specified on the command line is the name of
the EXbug-loadable obJect file created by the assembler.
Only the file name need be specified. The default suffix
"LX" is automatically supplied by the EXBIN command. A file
in the memory-image format will be created by the EXBIN
process that has the same fil~name as <name>. but has the
suffix "LO" to differentiate its file type. The following
command line

EXBIN TESTPROG

will convert the file TESTPROG.LX:O to its memory-image
e~uivalent TESTPROG.LO:O. Thus. the processes of editing.
assembling, and obJect file conversion can all be performed
on a file by only referring to its file· name. The suffix
will be automaticall" supplied. Normally, EXBIN will not
display any messages. The next section will describe how to
load a program from a file into memory after it has been
converted into the proper format. Chapter 14 contains the

Page 02-20

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

complete description of the EXBIN command.

2.8.6 LOAD -- Program loading/execution

The LOAD command is used to load programs from a
memory-image file on the diskette into memory. After the
program has been loaded, the debug monitor can be given
c ontro I (for test i ng the program), or th e program can be
given control directly (for execution). The format of the
command line for program loading is:

LOAD <name~ [;<options~]

The name of the file whose contents are to be loaded is
given as <name~. The default suffix "LO" is automatically
supplied by the LOAD command. Thus, in normal software
develop~ent. only a file's original source program name is
re~uired to take a user through the four processes of
editing, assembling, obJect file conversion, and program
load ing.

The <options~ field of the LOAD command line is used to
specify whether the debug monitor or the loaded program is to
be given control, and whether or not the program overlays the
resident operating system. If the file TESTPROG from the
previous examples was origined to the hexadecimal memory
address $100. the following command line:

LOAD TESTPROGiV

would be used to load the program. The "V" option is used to
specify that the program to be loaded will overlay the
resident operating system. If the "V" option were left off
the command line. an error message would be displayed. The
absence of the "G" option letter means that the debug monitor
will be given control after the program is loaded. So, the
above example would be used to load TESTPROG into memory for
testing.

If, on the other hand. the program TESTPROG has already
been tested and works. the command line:

LOAD TESTPROGiVG

would be used to load and execute the program. No operator
intervention is re~uired to specify the starting execution
address. This is only true if the starting execution address
has been specified on the END statement of the source program
during the assembly process.

Typically. most user-written programs that have been
developed prior to receiving the MDOS system would be loaded
and tested in this fashion. Programs that are developed with

Page 02-21

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

MDOS as a basis (i. e., pTogTams that use the Tesident system
functions) aTe loaded without the "V" option. ChapteT 18
descTibes the details of the LOAD command and sh~uld be
consulted if mOTe infoTmation is Te~uiTed.

CAUTION: AFTER THE DEBUG MONITOR HAS BEEN ENTERED VIA
THE LOAD COMMAND, MDOS MUST NOT BE INITIALIZED VIA "E800iG"
OR "MDOS" UNTIL EITHER THE ABORT OR RESTART PUSHBUTTON HAS
BEEN DEPRESSED.

2.8.7 NAME -- File name changing

The NAME command allows file names and/oT suffixes to be
changed fTom theiT oTiginally assigned values. Often, as a
pTogTam is developed, its authoT decides that a file name
otheT than the oTiginal one would be mOTe apPTopTiate and
descTiptive. The fOTmat of the command line fOT changing a
file's name is:

NAME <name l>,<name 2>

This command line Te~uiTes the opeTatoT to enteT two
names. The fiTst 'name, <name 1>, specifies the cUTTent OT
OT i g inal name of the f i 1 e. Th e defaul t suffi x "SAil is
supplied automatically if none is given by the opeTatoT. The
second name, <name 2>, indicates the new name that is to be
assigned to the file now known by <name 1>. Thus, if the
file fTom the above examples, TESTPROG, weTe to be given a
mOTe descTiptive name, such as BLAK~ACK, the following
command would be used:

NAME TESTPRQG,BLAK~ACK

In this case, only the file name of the SOUTce file
would be changed. OtheT files with the name TESTPROG but
with suffixes otheT than "SA" would Temain unaffected. The
contents of the file that has its name changed aTe also
unaffected only the name in the diTectoTY is changed.

2.8.8 NAME File pTotection changing

The NAME command is also used to change the pTotection
attTibutes of a file. The command line fOTmat fOT changing a
file's pTotection is:

NAME <name>i<options>

The <name> entTY is Te~uiTed to identify the file whose
attTibutes aTe to be changed. The <options> field contains
the letteTs D, W, OT X to indicate how the pTotection
attTibutes aTe to be changed. The letteTs take on the
following meanings:

Page 02-22

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

D
W
X

Thus,
protected
be used:

Set delete protection
Set write protection
Set no protection (remove existing protection)

if the file TESTPROG (source file) is to be
against deletion, the following command line would

NAME TESTPROGiD

If the memory-image file that was produced from the
source of TESTPROG were to be write protected and delete
protected, the following command line would be used:

NAME TESTPROG.LOiDW

The protection on this file could later be removed with
the command line:

NAME TESTPROG.LOiX

Chapter 20 describes in more detail the other features
of the NAME command.

2.8.9 COpy -- File copying

The COPY command is used to make a duplicate copy of a
file on a single diskette, to move a file between two
different diskettes, or to move a file between the console
reader/punch (record) device and a diskette.

To make a duplicate copy of a file on the same diskette,
the following command line is used:

COPY <name 1>, <name 2>

where <name 1> specifies the current name of an existing
file, and <name 2> specifies the name of the duplicate copy.
The default suFfix "SA" and the default logical unit number
zero are supplied for <name 1> if those parts of the file
name specification are omitted. Normally, the destination
file, <name 2>, does not exist. The COPY command, however,
will alert the operator if <name 2> does exist, and ask him
if that file should be overwritten. If <name 2> has a
different logical unit number than the original file, the
File will be duplicated on the specified drive. If the
TESTPROG source file from the above examples is to be saved
in a file called TEMP, the following command line would be
used:

COPY TESTPROG,TEMP

The file TEMP will be created on the same drive as

Page 02-23

GENERAL SYSTEM OPERATION 2.8 -- Tvpical Command Usage Examples

TESTPROG, name1v, drive zero. To copV TESTPROG to drive one,
one need onlV specifv the logical unit number (:1) after the
second name.

The COPY command should be used to move the EDIT, ASH,
and RASM commands from their separate diskettes onto the
svstem diskette in drive zero. Since the names of the EDlT,
ASM, and RASM commands are to be kept the same, the second
name can be omitted completelv. All that needs to be
specified is the logical unit number. Thus,

COPY EDIT.CM:1,:0
COPY ASM.CM:1,:0
COPY RASM.CM: 1,:0

would be the commands that are entered
drive one contained these files.
explicitlv specified since neither the
commands are source programs.

if the disk.tte in
The suffixes "CM" are

EDIT, ASM, or RASM

A similar procedure would be followed to copv anv files
from a diskette in anv drive to the svstem diskette in drive
zero. If a diskette has been damaged or cannot be used to
initialize MDOS, it mav be placed in another drive in attempt
to save anv files that mav be on it. The COPY command should
be used to save files in this manner. If diskette controller
errors occur during such a save process, the files cannot be
recovered.

If a user has existing files on paper tape or cassette
that are written in one of the standard record formats (i.e.,
records that end with a carriage return, line feed, null
se~uence see section 24.3) and which can be read via the
console reader, the following command line can be used to
transfer those files to diskette:

COPY OCR,<name 2>iN

where <name 2> is the name of the diskette file into which
the tape file is to be written. The first parameter, OCR,
specifies the console reader device, and the "N" option
indicates that there is no MDOS header record on the tape
file.

The above process can be changed slightlv so that a file
on diskette can be written to the console punch (record)
device. FQr example,

COPY <name 1>,OCPiN

will transfer the file named bV <name 1> to the console punch
device, OCP, without the I'IDDS header information (tiN"
option). Chapter 7 describes in more detail the other
features of the COpy command.

Page 02-24

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

2.8.10 BACKUP -- MOOS diskette creation

New diskettes, or diskettes never before used on an MDOS
system, must first be prepared for use with MOOS. The
quickest way to generate a new MDOS diskette is to use the
BACKUP command. Usually, a copy is retained of the original
system diskette that was shipped with the EXORdisk II or III.
This diskette should be used to generate subsequent MDOS
diskettes. It is recommended that the original diskette not
be used for development purposes. It should serve only as
the master copy from which all other diskettes are generated.

A blank or scratch diskette should be placed into drive
one. The master system diskette should be resident in drive
zero. The following command line will then cause a complete
copy of the master diskette to be created:

BACKUP ;U

The "U" option specifies that the entire surface of the
diskette in drive zero is to be read and copied to the
diskette in drive one. This process ensures that
on the new diskette can be written to. Once
command has been invoked in this way, it will
following message:

BACKUP FROM DRIVE 0 TO 1?

to which the operator should respond with a "Y".
response will terminate the BACKUP process,
dis k ette in dr i ve one i ntac t. The "Y" resp onse
the diskette copy to take place.

all sectors
the BACKUP
display the

Any other
leaving the
will cause

As an added precaution, the two diskettes should be
compared against each other after the BACKUP command has
completed. This diskette verification is invoked with the
following command line:

If any messages are
process, the diskette
system diskette.

BACKUP iUV

displayed during the verification
in drive one should not be used as a

Chapter 3 describes the BACKUP command in detail.
Chapter 10 describes an alternative method of generating new
system diskettes.

2.9 Other Available Commands

Several other powerful commands are included with each
MDOS diskette. These commands are not needed initially in

Page 02-25

GENERAL SYSTEM OPERATION 2.9 -- Other Available Commands

becoming familiar ~ith the systemi bo~ever, .theu do
helpful and necessary tools for the advanced
developer. A brief description of these commands
here to shed some light on their utility.

provide
soft~are

is given

2.9.1 BACKUP -- Diskette copying

The BACKUP command allo~s making copies of entire MDOS
diskettes. Options exist for making complete copies, for
file reorganization to consolidate fragmented files and
available diskette space, for appending families of files
from one diskette to another, and for diskette comparisons.
Chapter 3 contains the complete description of the BACKUP
command.

2.9.2 EMCOPY -- EDOS file conversion

The EMCOPY command allo~s files from a user's EDOS 2
sustem diskette to be copied to and catalogued on an MDOS
diskette. Options exist for copying the entire diskette,
selected files, or single files. Chapter 13 contains the
complete description of the EMCOPY command.

2.9.3 BLOKEDIT -- File rearrangement

The BLOKEDIT command allo~s lines of text from one or
more ASCII files to be selectively copied into a ne~ file.
This command can be useful in generating ne~ program source
files bU copying routines from existing source files, or in
rearranging existing files by copying their lines into a ne~
sequence. Chapter 5 contains the complete description of the
BLOKEDIT command.

2.9.4 LIST -- File display

The LIST command is used to print any ASCII file on
either the system console or the printer. Options exist for
numbering lines, specifying page formats, printing headings,
and indicating starting and ending pOints. In addition,
files can be accessed by their logical sector numbe?s.for
rapid access to anu portion of a file. Chapter 17 contains
the complete description of the LIST command.

2.9.5 MERGE -- File concatenation

The MERGE command allo~s one
concatenated into a ne~ file. This
combining several smaller program
relocatable libraries to be used in

or more files to be
command is useful in
modules or in building

conJunction ~ith the

Page 02-26

GENERAL SYSTEM OPERATION 2.9 -- Other Available Commands

M6800 Linking Loader. Chapter 19 contains the complete
description of the MERGE command.

2.9.6 BINEX EXbug-loadable file creation

The BINEX command allows memory-image files to be
converted into an EXbug-loadable format for copying to tape.
This command performs the inverse operation of the EXBIN
command. BINEX is useful in the development of
non-diskette-resident software with MOOS, since the object
code can be written to tape after it has been tested.
Chapter 4 contains the complete description of the BINEX
command.

2.9.7 FREE -- Available file space display

The FREE command displays how many unallocated sectors
and how many empty directory entries are on a diskette.
Chapter 16 contains the complete description of the FREE
command.

2.9.8 ECHO -- Echo console I/O on printer

The ECHO command can be used on an EXORciser II system
to cause all input/output directed to the system console to
also be printed on the line printer. Chapter 12 contains the
complete description of the ECHO command.

2.9.9 PATCH -- Executable program file patching

The PATCH command allows changes to be made to
memory-image files. An obJect file can be "fixed" due to
minor bugs or assembly errors without having to re-edit and
re-assemble its corresponding source file. The "fixes" can
be entered using M6800 assembly language mnemonics or the
equivalent hexadecimal operation codes. Chapter 21 contains
the complete description of the PATCH command.

2.9.10 CHAIN -- MOOS command chaining

The CHAIN command allows predefined procedures to be
automatically executed. A procedure consists of any sequence
of MOOS command lines that have been put into a diskette
file. Instead of obtaining successive command lines from the
console, CHAIN will fetch commands from a file. This feature
allows complicated and lengthy operations to be defined once,
and then invoked any number of times, requiring no operator
intervention. The additional capabilities of conditional
directives to the CHAIN command at both compilation and

Page 02-27

GENERAL SYSTEM OPERATION 2.9 -- Other Available Commands

execution time, and the capability of string substitution,
permits an almost unlimited number of applications to be
handled by a CHAIN file. Chapter 6 contains the complete
description of the CHAIN command.

2.9.11 REPAIR -- System table checking

The REPAIR command allows the user to check and repair a
malfunctioning or a non-functioning MDOS diskette. Errors in
the system tables can be found, identified. and corrected
with this command. Since MDOS performance is directly
related to the correctness of these system tables, the REPAIR
command is a useful diagnostic utility. Chapter 22 contains
the complete description of the REPAIR command.

2.9.12 DUMP -- Diskette sector display

The DUMP command allows the user to examine the entire
contents of any physical sector on the diskette. The sector
can be displayed on either the system console or the printer.
The display contains both the hexadecimal and the ASCII
equivalent of every byte in the sector. The DUMP command
allows opening of files so that they can be examined using
logical sector numbers. Sectors can also be moved into a
temporary buffer where changes can be applied before they are
written back to diskette. Chapter 11 contains the complete
description of the DUMP command.

2.9.13 FORMAT -- Diskette reformatting

The FORMAT command attempts to rewrite the sector
addressing information on damaged diskettes. The command can
be used to reformat either single-sided or double-sided
diskettes; however, double-sided diskettes must be formatted
with this command before they can be used with MDOS.
Single-sided diskettes usually come pre-formatted in a
compatible format. The FORMAT command will only work on
systems that are operating at one of the standard clock
frequencies of 1 MHz, 1.5 MHz. or 2 MHz. Chapter 15 contains
the complete description of the FORMAT command.

2.9.14 DOSGEN -- MOOS diskette generation

The DOSGEN command allows specialized MDOS diskettes to
be prepared. Diskettes that have bad sectors can have those
sectors locked out so that the diskette can be used in an
MDOS environment. DOSGEN will also create all system tables
and files on the generated diskette. The DOSGEN command can
be used to generate system diskettes on either single-sided
or on appropriately formatted double-sided diskettes.

Page 02-28

GENERAL SYSTEM OPERATION 2.9 -- Other Available Commands

Chapter 10 contains the complete description o~ the DOSGEN
command.

2.9. 15 ROLLOUT -- Memory rollout to diskette

The ROLLOUT command is used for writing the contents of
memory to diskette. The ROLLOUT command supports the
dual-memory maps of EXORciser II as well as the single memory
map of EXORciser I. Options exist for writing memory
directly into a diskette file or for writing to a scratch
diskette. Chapter 23 contains the complete description of
the ROLLOUT command.

2. 10 MDOS-Supported Software Products

Although the preceding list of commands provides the
user with many powerful tools for software development. there
are many other Motorola products which are capable of running
in an MOOS environment, even though they were developed
independently. These products are called MDOS-Supported
software products. No attempt will be made in this User's
Guide to comprehensively describe any MOOS-Supported software
product. Appendix H contains a list (complete at time of
publication) of all products that can be invoked from an MOOS
diskette as a command. Each description will contain the
additional hardware requirements, if any, the command line
formats, and a brief discussion of the product's
capabilities. (MDOS-Supported software products will be
received on separate diskettes. Section 2.8.9 describes how
such products can be copied onto the system diskette.

2.11 Paper Alignment

All MDOS commands that output to the line printer will
return the paper to its original position upon termination.
Thus, if the paper is correctly aligned at the time MOOS is
initialized, then the paper will never have to be aligned
again. The paper should be placed so that the print line is
positioned three lines before a perforation (assuming
fan-fold forms). MOOS commands use the standard format of 66
lines/page.

Page 02-29

CHAPTER 3

3. BACKUP COMMAND

The BACKUP command allows making copies o~ entire MDOS
diskettes. Options exist for making complete copies, ~or

~ile reorganization to consolidate fragmented files and
available space, ~or appending ~amilies o~ files ~rom one
diskette to another, and for diskette comparisons. The
BACKUP command will only copy MDOS-generated diskettes. The
BACKUP command may also be used for cop~ing single-sided
diskettes onto double-sided diskettes.

3. 1 Use

The BACKUP command is invoked with the ~ollowing command
1 ine:

BACKUP [[:<s-unit>, l:<d-unit>l [;<options>l

where <s-unit> is the source logical unit number, <d-unit> is
the destination logical unit number. and <options> can be one
or more of the option letters described below.

If neither <s-unit> nor <d-unit> is specified on the
command line. then zero will be used as the source unit and
one will be used as the destination unit. Specifying only a
single logical unit number on the command line will cause
zero to be the source unit and the specified logical unit to
be the destination unit. Both <s-unit> and <d-unit> must be
valid logical unit numbers (0-3), <d-unit> cannot be zero.
and the two numbers cannot be the same.

BACKUP will always copy from the source unit to the
destination unit <unless diskette comparisons are specified).

If the command line is valid. the message:

BACKUP FROM DRIVE <s-unit> TO <d-unit>?

or

APPEND FROM DRIVE <s-unit> TO <d-unit>?

will be displayed where <s-unit> is the source unit number
and <d-unit> is the destination unit number. In either case,
a response of "Y" is required if BACKUP is to continue. Any
other response will return control to MDOS. Further BACKUP
action depends on the specified options. The options are
divided into "Main Options" and "Other Options". Main

Page 03-01

BACKUP COMMAND 3. 1 -- Use

Options are mutually exclusive. That is, only one Main
Option can be specified on the command line at a time. The
Other Options can be included with the Main Options as
described in section 3.6.

~ain Options

none

R

A

v

Other Options

C

D

I

L

N

S

U

v

z

Function

Copy all allocated space t~ destination
diskette.

Reorganize diskette so that files are
defragmented and free space is
consolidated on destination diskette.

Append (copy) selective files to
destination diskette.

Verify (compare) source and destination
diskettes.

Function

Continue if read/write errors occur.

Continue if deleted data mark errors
occur.

Change ID sector during copy-

Use line printer for bulk of message
printing.

Suppress printing of file names being
copied.

Suppress printing of byte offsets during
comparisons.

Include unallocated space in copy/verify
process.

If duplicate file name exists, delete
old, copy netll.

If duplicate file name existsl suppress
copy.

3.2 Diskette Copying

If no Main
BACKUP process

Options are
tIIill produce

specified, then the default
a physical sector copy of the

Page 03-0~

BACKUP COMMAND 3.2 -- Diskette Copying

source diskette on the destination diskette. Only the
allocated space from the source diskette will be copied. The
allocated space includes all file space and all areas locked
out in the Lockout Cluster Allocation Table (see Chapter 24).
Thus, only MDOS-generated diskettes can be copied using the
BACKUP command, since other diskettes will not have an
allocation table.

Since only the allocated space is copied, the minimum
amount of disk space is copied, and the BACKUP process is
completed in the minimum amount of time. Sometimes. however,
it is desirable to obtain a complete copy, and not Just a
copy of the allocated space. In such cases, the "UH option
can be used to force the copying of unallocated space as well
as the allocated space.

A typical BACKUP process dialogue would look like the
following:

=BACKUP
BACKUP FROM DRIVE 0 TO 1?
Y
=

and would produce a copy on the destination diskette of the
source diskette's allocated space.

If an EXORdisk III system is being used, then the
destination diskette cannot be a single-sided diskette if the
source diskette is a double-sided diskette. The error
message:

INVALID TO COPY/VERIFY FROM DOUBLE TO SINGLE SIDED

will be displayed and control returned to MDOS to indicate
this condition. The opposite. however. is allowed. That iSI
a single-sided diskette can be in the source drive with a
double-sided diskette in the destination drive.

3.3 File Reorganization

After an MDOS diskette has been used for a while, the
file structure may become fragmented and new files can become
scattered. The longer a diskette is used in a development
environment, the more the total system performance may be
degraded due to increased access time. File reorganization
is supplied by the BACKUP command and constitutes one way to
restructure MDOS diskettes, thereby improving the system's
efficiency.

Page 03-03

BACKUP COMMAND 3.3 -- File Reorganizatic

File reorganization improves system efficiency by:

1. Consolidating file segments.
2. Packing files more closely together,
3. Clustering related files together.
4. Operator selection to only copy desired files,
5. Reducing marginal diskette errors by rewriting

fi les,
6. Consolidating directory space.

File reorganization is specified with the Main Option
"Rn on the BACKUP command line. Thus,

BACKUP :<s-unit>,:<d-unit>iR

would invoke the BACKUP command to reorganize the files on
the source diskette in drive <s-unit> during the copy to the
destination diskette in drive <d-unit>. The source diskette
must be an MDOS diskette. It is unaffected by the
reorganization. The message

BACKUP FROM DRIVE <s-unit> TO <d-unit>?

is displayed before any copying takes place. Unlike the
complete copy process which will proceed immediately after
the "Y" respon~e is given by the operator, the reorganization
process will perform the following initialization procedure:
First the ID sector is copied (and optionally modified if the
IfI u option was specified). Second, the Lockout Cluster
Allocation Table (LCAT) and the Cluster Allocation Table
(CAT) are initialized (user locked out sectors are not copied
during the reorganization process). Third, the directory
sectors on the destination disk are zeroed. Fourth, the
Bootblock is copied. Fifth, all of the file names from the
source diskette's directory are read. They are then sorted
into alphabetical order, first by suffix, then by file name.
After the sorting has been completed the following message
will be displayed:

ENTER FILE COPY SELECTION COMMANDS:
SAVE (S), DELETE (D), PRINT (P), OUIT (0), NO MORE (CR)
5, D, p, O. (CR) :

indicating that the operator must enter file selection
commands to specify which files from the source diskette are
to be copied to the destination diskette. The first line of
the message indicates that BACKUP has reached the file
selection stage. The second line contains the function of
each file selection command as well as the letter that must
be used to issue that command. The third line is used as a
prompt for the current and subse~uent file selection
commands.

Page 03-(

BACKUP COMMAND 3.3 -- File Reorganization

Command Letter Function

SAVE S Include a certain file name or family

DELETE

PRINT

GUll'

NO MORE

D

P

of file names from the sorted
directory in the set of files to be
copied to the destination diskette.

Exclude a
of file
directory
copied to

certain file name or family
names from the sorted

from the set of files to be
the destination diskette.

Display the set of file names from
the sorted directory that are
eligible to be copied to the
destination diskette.

Terminate the BACKUP command and
return to MOOS. No copying will take
place; however, the destination
diskette has been affected due to the
reorganization option as explained
above.

(CR) Entered as a carriage return only.
No more commands will be entered.
The files to be copied have been
selected. If no file selection
commands were issued. all files in
the sorted directory will be (copied.
Begin the copy process.

Both the SAVE and DELETE commands re~uire file names to
be specified as parameters. The format of the SAVE and
DEL.ETE commands are the same. except, of course. for the
command letter:

{D or S} <name 1>(, <name 2>, ... ,<name n>l

The file names specified can contain the family indicator.
The default suffix "SA" will be supplied if none is
explicitly entered. For example. the SAVE command:

S *.CM.EGU. IOCB.*

will cause the family of files having the suffix "CM". the
file EGU.SA. and the family of files having the name IOCB to
be flagged as saved. The DELETE command:

will cause the family of files beginning with the letter "AU
and having a suffix of "eM", the file NOL.SA, and the family

Page 03-05

BACKUP COMMAND 3.3 -- Fil. Reorganization

of files named TEST with suffixes beginning with the letter
"L" to be flagged as deleted.

After a SAVE or DELETE command has been entered, each
file name of the sorted directory which has not already been
marked as "saved" or "deleted" and which matches one of the
<name i:> (1=1 to n) will be marked as "saved" or tldeleted".
After all the file names from the SAVE or DELETE command line
have been processed, a new prompt:

5, D, P, Q, (CR):

will be displayed. The operator can then enter further SAVE
or DELETE commands as well as any of the other valid commands
of the BACKUP file selection process.

Once a command other than SAVE or DELETE is entered one
of two things happens to the sorted directory. If at least
one SAVE command has been processed without error, then all
file names in the sorted directory not marked as "saved" will
be marked as "deleted". On the other hand, if no prior SAVE
commands were used, then all file names not marked as
tldeleted" will be eligible for copying <marked as "saved").

The GUIT command can be entered at any time in response
to the file selection command prompt. QUIT will cause the
BACKUP process to be terminated and control returned to MDOS.
The file selection commands entered thus far will have had no
effect on the destination diskette; however, due to the
reorganization option, the destination diskette will have had
its basic system tables initialized as described above.

The NO MORE command, entered as a carriage return only,
indicates that no more file selection commands will be given
by the operator. If no file selection commands have been
entered prior to the NO MORE command, then all file names in
the sorted directory will be eligible for copying to the
destination diskette. The copy process will begin.

The PRINT command will cause all names from the sorted
directory which have not yet been flagged as "deleted" to be
printed. The PRINT command also makes it impossible to enter
further SAVE, DELETE, or QUIT commands. The PRINT command
has its own sub-command structure that allows deletion of
file names from the sorted directory. Along with each file
name and suffix a two-digit, hexadecimal number that
indicates the position of the file name within the sorted
directory is displayed. Thus, the output from the PRINT
command could look like:

Page 03-06

BACKUP COMMAND 3.3 -- File Reorganization

00 BACKUP .CM
01 BINEX .CM
02 BLOKEDIT.CM
03 CHAIN .CM
04 COpy .CM
05 OEL . CM
060IR .CM
10 RLOAO .CM
1E FORLB .RO
1F EGU .SA
20 IOCB .SA

The range of numbers $07-1C. inclusive, is missing.
indicating that they have been excluded from the sorted
directory via prior SAVE and/or DELETE commands. If PRINT
were the first command to be entered, then all file names in
the sorted directory would be seen. and the range of numbers
would be without gaps.

After the PRINT command has displayed all of the file
names. a new prompt will be issued:

DELETE FILE NOS.

to which the operator can respond with a number. a series of
numbers or ranges of numbers separated by commas. a range of
numbers. or a single carriage return. The numbers must be
from the set of those displayed in front of the file names.
These numbers are used to indicate which files are to be
excluded from the sorted directory before files are copied to
the destination diskette. For example. the following entry:

01-03.1E.06

would cause the file names with numbers

01, 02. 03. 06, and 1E

to be removed from the sorted directory before the file copy
process begins. Another "DELETE FILE NOS." prompt will be
displayed if a number was entered in response to a previous
prompt. Thus. as many file names as desired can be excluded
from the sorted directory. A carriage return response to the
prompt has the same effect as the NO MORE command described
ab ove; i. e., it wi 11 end furth er command proc ess i n9 and cause
the file copy process to begin.

After the files to be copied have been selected, the
message

COPYING MOOS .SY

will be displayed. This message will in turn be followed by
similar messages for each of the eight remaining system files

Page 03-07

BACKUP COMMAND 3.3 -- File Reorganizati~

that must be copied to everv diskette. The MDOS familv of
svstem files are not shown in the sorted directorv since thev
must be copied. These svstem files are copied first so that
theV will be assured of residing in specific phvsical
locations re~uired bV the MDOS initialization process. After
the MDOS svstem files have been copied, the message:

STARTING TO COpy FILES

is displayed, followed bV messages of the form:

COPYING <name i>

as each file from the selected files list is copied to the
destination diskette.

Using the above example of the so.rted. directorv and the
file names deleted from it, the file copV messages would look
like:

COPYING MDOS . SY
COPYING MDOSOVO . SY
COPYING MDOSOVi .SY
COPYING MDOSOV2 . SY
COPYINGMDOSOV3.SY
COPYING MDOSOV4 . SY
COPYING MDOSOV5 .SY
COPYING MDOSOV6 .SY
COPYING MDOSER . SY
STARTING TO COpy FILES
COPYING BACKUP .CM
COPYING COPY . CM
COPYING DEL . CM
COPYING RLOAD . CM
COPYING EOU . SA
COPYING IOCB .SA
=

After all eligible files from the sorted directorv have
been copied, BACKUP will return control to MOOS. The
destination diskette will contain all of the selected files
packed togeth~r as closely as possible, leaving as much free
space as possible.

3.4 File Appending

The file append process allows selected single files or
families of files to be copied from the source diskette to
the destination diskette. The file append feature of the
BACKUP command is similar to the reorganization feature
except that the destination diskette is not initialized with
new system tables Dr svstem files. Only the file selection
and the file coPVing from the source diskette are performed.

Page 03-~

3.4 -- File Appending

The diskette in the destination drive is assumed to be a
valid MOOS diskette. The file append process is invoked by
using the Main Option "A" on the BACKUP command line:

BACKUP : <s-unit>, : <d-unit>i A

Instead of the "BACKUP FROM DRIVE <s-unit> TO <d-unit>?"
message normally displayed by BACKUP, the message:

APPEND FROM DRIVE <s-unit> TO <d-unit>?

is shown. The operator must respond with a "Y" if the file
append process is to continue. Like the file reorganization
process, the file append process allows the operator to
select which files are to be copied. The messages for file
selection and the commands to the file selection process are
explained in section 3.3, File Reorganization, and will not
be discussed again here. After all files have been selected.
they will be copied similar to the process described in
section 3.3; however, the MOOS family of system files is not
copied.

Since the destination diskette already contains entries
in its directory, a possibility of file name duplication
exists. In the event that one of the selected file names
from the sorted directory duplicates a file name in the
destination directory, the following message will be
displayed:

<name> DUPLICATION: IS IT TO BE COPIED?

The operator must respond with either an "N" or nyu. The "N"
response will prevent the file from being copied to the
destination diskette. The "Y" response will cause the
prompt:

NEW NAME:

to be shown, to which the operator can respond with the new
name that is to be assigned. If a valid file name and suffix
are entered, they will be used as the name of the destination
file. The default suffix "SA" will be supplied if none is
explicitly entered. If only a carriage return is given as a
response to the prompt, then the file on the destination
diskette will be deleted (if it is unprotected) before the
file from the source diskette is copied (which will retain
its original name. in this case). If the destination
diskette's duplicate file cannot be deleted, the message

CANNOT DELETE DUPLICATE NAME

will be displayed and the BACKUP command will be terminated.

The "Y" and HZ" options can be used in conJunction with

Page 03-09

3.4 -- File Appendin~

the "A" option to indicate an automatic procedure in the
event of file name duplication. The "vn option will
automatically cause an attempt to be made to delete the file
on the destination diskette before the copy takes place. If
the "V" option is in effect, the file name duplication
message from above takes on the following form:

<name> - DUPLICATION: IS COPYING

to indicate that a "V" was given as an automatic response to
the "IS IT TO BE COPIED?" portion of the message. The liZ"
option will cause the file name duplication message to take
on the form:

<name> - DUPLICATION: IS NOT COPIED

to indicate that an lIN" was given as an automatic response to
the filS IT TO BE COPIED?" portion of the message.

The file append process causes space to be allocated on
the destination diskette in contiguous blocks. If
insufficient contiguous space should remain on the
destination diskette for a given file, the file will not be
copied. The error message

OB~ECT FILE CREATION COPY ERROR

will be displayed and the BACKUP command will be terminated.
The destination diskette may have sufficient space to
accommodate the file. however, if the space is not
contiguous, the above error occurs. To copy the file, the
destination diskette should be run through the file
reorganization process described in section 3.3, or the file
must be copied via the COPY command (Chapter 7). After the
last file has been copied to the destination diskette,
control will be returned to MDOS.

3. 5 Diskette Verification

The Main Option "V" invokes the verify process of the
BACKUP command. The verify process allows a physical sector
comparison to be made between the diskettes in the source and
destination drives. The following command line, without the
presence of other options, will cause the verify process to
compare the diskettes' physical sectors based on the source
diskette's allocation table:

BACKUP :<s-unit>,:<d-unit>;V

If any bytes in any sectors fail to compare, a sector message
and a list of all offsets within the sector that did not
compare is printed:

Page 03-1(

BACKUP COI"1MAND 3.5 -- Diskette Verification

SECTOR nnnn
OFFSET ii DR<s-unit~-JJ DR<d-unitj-kk

where "ii" is the hexadecimal offset into physical sector
"nnnn", "JJ" is the hexadecimal contents of the sector's byte
on the source diskette, and "kk" is the hexadecimal contents
of the respective sector's byte on the destination diskette.
If all sectors compare, no messages are displayed. After the
verification has completed, control is returned to MDOS.

If an EXORdisk III system is being used,
diskette cannot be a single-sided diskette

the destination
if the source

such cases the diskette is a double-sided diskette. In
message

INVALID TO COPY/VERIFY FROM DOUBLE TO SINGLE SIDED

will be displayed and control returned to I"1DOS. The
opposite. however, is allowed; that is, a single-sided
diskette can be verified against a double-sided diskette.

3.6 Other Options

The Other Options described briefly in section 3. 1
cannot be used indiscriminately with any of the Main Options.
This section serves to fully explain the use of each Other
Option.

Other Valid with Function
Option Main Option

C an'l The "C" option will cause the copy or
verify process to continue even if a
retryable read/write error occurred which
could not be corrected. The retryable
errors include CRC, seek, data mark, and
address mark CRC errors. The "C" option
will not cause read/write errors on
Retrieval Information Blocks to be
ignored.

D am.l The "D" option will cause the copy or
verify process to continue even if a
deleted data mark error is detected.
This option allows the verification of
diskettes that have had bad sectors
locked out during the DOSGEN or REPAIR
process (such sectors are flagged with a
deleted data mark). The "D" option
permits a user to copy the maximum amount
of data from a bad source diskette to a
good destination diskette.

Page 03-11

BACKUP COMMAND 3.6 -- Other Option

Other Valid with Function
Option Main Option

I none, R The "I" option indicates that the
diskette's ID sector is to be modified by
prompting the operator. The "I" option
will cause the Follo~ing prompt messages
to be displayed. The operator can enter
ne~ information if that field of the ID
sector is to be changed. If the Field is
to remain the same as on the source
diskette, then only a carriage return
need be entered.

L any

N

s V

Prompt

DISK NAME:

DATE (MMDDYY) :

USER NAME:

Operator Response

Maximum of
characters
diskette ID.
is similar to
a File name.

eight
for

Format
that of

Six-digit numeric
date. No chec k is
made for valid months
or days of the month.

Maximum of
characters.

twenty

The "L" option causes the output from the
copy process or from the verification
process to be directed to the line
printer instead of the system console.

The "N" option will suppress the printing
of the file names as they are being
copied to the destination diskette. This
option will not suppress the printing of
error messages.

The tiS" option will suppress the printing
of the sector offset messages if sectors
do not compare.

Page 03-1

BACKUP COMMAND 3.6 -- Other Options

Other Valid with Function
Option Main Option

U none. V The "U" option indicates that all
physical sectors, both allocated and
unallocated, are to be copied or
verified. If "U" is not specified, only
the allocated sectors. as mapped in the
source diskette's allocation table, will
be used.

V A The "V" option will cause a "V" to be
automatically given as a response to the
file name duplication errol' message.
This will automatically force the
attempted deletion of the duplicate file
on the destination diskette before the
file is copied. The "V" and "Z" options
are mutually exclusive.

Z A The "Z" option will cause an "N" to be
automatically given as a response to the
file name duplication error message.
This will automatically prevent the file
on the source diskette from being copied
to the destination diskette. The "z" and
"V" options are mutually exclusive.

3. 7 Messages

The following messages can be displayed by the BACKUP
command. Not all messages are error messages, although error
messages are included in this list. The standard error
messages that can be displayed by all commands are not listed
here.

BACKUP FROM DRIVE <s-unit> TO <d-unit>?

This indicates BACKUP will copy to the
destination diskette in drive <d-unit> from the
source diskette in drive <s-unit> if a "V"
response is given. Any other response will cause
control to be returned to MOOS.

APPEND FROM DRIVE <s-unit> TO <d-unit>?

This indicates that BACKUP will perform the file
append process if a "V" response is given. Any
other response will cause control to be returned
to MDOS.

Page 03-13

BACKUP COMMAND

DISK NAME:

3.7 -- Message1

The "I" option has been specified. The operator
is expected to respond with a new disk ID or a
carr iage return.

DATE (MMDDVV) :

USER NAME:

The "I" option has been specified.
is expected to respond with a new
carriage return.

The operator
date or a

The "I" option has been specified. The operator
is expected to respond with a new user name or a
carriage return.

ENTER FILE COPY SELECTION COMMANDS:
SAVE (5), DELETE (D), PRINT (P), QUIT CQ), NO MORE (CR)
5, D, P, Q, (CR):

The "R" or "A" option has been specified. The
file selection process is activated. The third
line shows what the valid responses are.

5, D, P, (i, (CR):

SYNTAX ERROR

This is a subsequent prompt from the file
selection process. SAVE and DELETE commands can
be entered until a P (print), Q (quit), or
carriage return (NO MORE) is entered.

This indicates a mistake in a response to a
question or prompt from the BACKUP command. The
entire iine entered by the operator is ignored
and a new response must be made.

STARTING TO COPY FILES

This indicates that
directory are starting
option).

files
to be

from
copied

the
(R

sorted
or A

Page 03-1'

BACKUP COMMAND 3. 7 -- Messages

NO FILES TO COPV

This indicates that there are no file names in
the source directory (other than the MDOS system
files) or that all of the file names from the
sorted d i rec tory have been de 1 eted. No files are
copied if the "A" option is used. Only the MDOS
family of system files will be copied if the "R"
option is used.

<name> NOT FOUND

This indicates that a file name or a family of
file names specified by a SAVE or DELETE command
could not be found in the sorted directory.

COPYING <name)-

This indicates
<name)- is being
diskette.

that the file
copied to

name
the

specified by
destination

<name)- - DUPLICATION: IS IT TO BE COPIED?

NEW NAME:

This indicates that the file name specified by
<name)- already exists on the destination diskette
during the append process. Only a "Y" or tiN" is
accepted as a valid response.

This message is displayed if a "V" is given in
response to the preceding message. It allows the
operator to assign a new file name to the file
being copied from the source diskette. A
carriage return response (no file name) will
cause an automatic attempt to delete the
duplicate destination file to be made. rather
than assigning a new name to the source file.

<name> - DUPLICATION: IS COPYING

This indicates that the file name specified by
<name> already exists on the destination diskette
during the append process. The tlV" option caused
an automatic attempt to delete the duplicate
destination file to be made before the copy
continues.

Page 03-15

BACKUP COMMAND 3. 7 -- MessagE

<name> - DUPLICATION: IS NOT COPIED

This indicates that the file name specified by
<name> already exists on the destination diskette
during the append process. The "Zff option caused
the file to be skipped. The destination file is
unaffected.

OBJECT FILE CREATION COPY ERROR

This usually indicates that insufficient
contiguous space exists on the destination drive
for the file being copied (A option).
Occasionally, however, it may mean that an error
was detected in the reading or writing of the
file's Retrieval Information Block on the
destination diskette.

CANNOT DELETE DUPLICATE NAME

This indicates that the duplicate file name on
the destination diskette could not be deleted due
to its protection attributes.

DELETE FILE NOS. :

nn <name>

The PRINT command displays this prompt to allow
deletion of file names by entering their
displayed numbers. The prompt will be
redisplayed until a null response (carriage
return) is given.

After the PRINT command is chosen during the file
selection process, a list of all file names
eligible for copying is displayed. The "nn" is a
hexadecimal number that indicates the position of
the name with respect to the total sorted
directory. The <name>, of course, is the file's
name and suff i x.

SYSTEM SECTOR COpy ERROR

SECTOR nnnn

This indicates that ~ system sector could not be
read from or written to. BACKUP cannot continue
and control is returned to MDOS.

This indicates that the physical sectors u nnnn "
did not compare during the verify process.

Page 03-1

BACKUP COMMAND 3. 7 -- Messages

OFFSET ii DR<s-unit>-JJ DR<d-unit>-kk

This indicates which bytes did not compare during
the verify process. The "ii" is the hexadecimal
off set in tot h e sec tor, "J J" i s the hex a dec i ma I
contents of the byte on the source unit <s-unit>,
"kk" is the hexadecimal contents of the byte on
the destination unit <d-unit>.

DIRECTORY READ/WRITE ERROR

This indicates that an internal system error was
encountered while trying to access the directory
of the source diskette. Errors of this type
indicate a possible hardware problem.

SOURCE FILE COpy ERROR

This indicates that an internal system error was
encountered while reading a Retrieval Information
Block from a file on the source diskette. Errors
of this type indicate a possible hardware
prob lem.

INVALID TO COPY/VERIFY FROM DOUBLE TO SINGLE SIDED

This indicates that on an EXQRdisk III system,
the source diskette was double-sided while the
destination diskette was single-sided. This is
invalid.

3.8 Precautions with BACKUP

The following sections describe some of the precautions
that should be taken when using the BACKUP command in the
various environments that are supported by MDOS.

3.8.1 BACKUP and the CHAIN process

Since the BACKUP command has so many different paths
that can be taken, it is generally recommended that BACKUP
not be invoked from within a CHAIN process (see Chapter 6).
The BACKUP process is so important to the protection of
diskette files that the entire process should be supervised
by the operator.

Diskette verification from within a CHAIN process using
the BACKUP command is also infeasible. The CHAIN command
writes intermediate information to the diskette in drive zero
during its operation. Thus, if BACKUP with the "V" option is
invoked from within a CHAIN process, and if drive zero is
involved in the BACKUP process. then the two diskettes are

Page 03-17

BACKUP COMMAND 3. B -- PT"ecautions llIith BACKUI

guaT"anteed to be diffeT"ent.

3.8.2 Single/double-sided diskettes

On EXORdisk III systems the BACKUP command can be used
to copy OT" veT"ify fT"om a single-sided diskette (sOUT"ce
diskette) to a double-sided diskette (destination diskette);
hOllIeveT", the T"eveT"se is not allollled.

When a single-sided diskette is copied to a double-sided
diskette, the system tables (CAT and LCAT) aT"e automatically
adJusted so that they T"eflect the tT"ue amount of space
available on the double-sided diskette. When a veT"ify takes
place, the CAT and LCAT llIill be diffeT"ent betllleen th~ tllIO
diskettes; hOllIeveT", no veT"ification eT"T"OT" is displayed if the
allocated paT"ts of the tables aT"e the same.

3.8.3 FOUT"-dT"ive systems

The BACKUP command has the capability of copying to OT"
veT"ifying llIith any of the thT"ee dT"ives (1-3) in a fouT"-dT"ive
system. It is not possible, howeveT", for BACKUP to sense the
difference between a two-dT"ive and a four-dT"ive system.
Thus, due to the nature of the two-drive disk controllers
llIith EXORdisk II, it is possible to destroy a diskette in
drive one if BACKUP is invoked with the "R" option and if
non-zero numbers are specified on the command line foT"
<s-unit> and <d-unit>.

If the user has a tllIo-drive system, it does not make any
sense for him to enteT" logical unit numbers on the command
line IlIhen invoking the BACKUP command. since the proper
default is to copy from drive zero to drive one. If he were
to specify to copy from drive two to drive three with the "R"
option, then the diskette in drive one would be accessed and
subse~uentlv destroyed.

3.9 Examples

Many ~imes it is desirable to differentiate the two
identical copies of diskettes from each other by use of the
ID sector information. The ID sector's contents can be
chahged dUT"ing a diskette copy by using the "I" option.

=BACKUP ; I
BACKUP FROM DRIVE 0 TO 1?
V·
DISK NAME:NEWNAME
DATE(MMDDVV):010978
USER NAME:
=

Page 03-1

BACKUP COMMAND 3.9 -- Examples

All information to the right of the colons is supplied by the
operator. The destination diskette will be given the disk
name NEWNAME which will be printed on the heading lines of
subse~uent FREE and DIR command invocations (see Chapters 16
and 9. respectively>. The date of the disk copy that is
generated is January 9. 1978, and the same user name that was
assigned to the source diskette during a previous BACKUP or
during the initial OOSGEN process will be given to the
destination diskette <indicated by carriage return response
without any data).

The verification process using the two diskettes
generated above will cause an error when comparing the 10
sectors; however. the remainder of the diskettes are still
compared. The offset messages of the discrepancies can be
suppressed by also using the US" option. Thus, the
verification of the above example's generated diskettes would
show the following operator-system interactions:

=BACKUP iVS
SECTOR 0000
=

The following example assumes that no scratch or garbage
files exist on the source diskette. Then, the reorganization
process re~uires a minimum amount of operator interaction:

=BACKUP : 1. :2;R
BACKUP FROM DRIVE 1 TO 2?
Y
ENTER FILE COPY SELECTION COMMANDS:
SAVE (S). DELETE (D). PRINT <P), QUIT (0), NO MORE (CR)
S, D, P. O. (CR) :
COPYING MDOS .SY
etc.
STARTING TO COpy FILES
COPYING BACKUP .CM
etc.
=

It should be noted that no file selection commands were used.
The resulting destination diskette will contain all files
from the source diskette, but they may be in different places
on the surface of the diskette. Thus. a reorganization
process cannot be followed with a verification process for
the same diskette pair. The UN" option could have been used
in the above example to suppress the printing of the file
names as they were being copied.

The last example shows the file append process. The
example assumes that there is an MOOS diskette in drive 1.
Also, it assumes that the diskette in drive zero has a family
of files which are to be copied to the destination diskette.
The family has file names which start with the letters "FOR".

Page 03-19

BACKUP COMMAND 3.9 -- Examp 1~

The fol10llling shows the operator-system interactions:

=BACKUP ; A
APPEND FROM DRIVE 0 TO I?
Y
ENTER FILE SELECTION COMMANDS:
SAVE (S), DELETE (D), PRINT (P), QUIT (Q), NO MORE (CR)
S, D, p, Q, (CR):S FOR*.*
S, D, p, Q, (CR) : P
09 FORT . CM
OA FORTLIB .RO
OB FORTNEWS.SA
OC FORTEST1.SA
OD FORTEST2.SA
OE FORTEST3.SA
OF FORTEST4.SA
10 FORTEST5.SA
DELETE FILE NOS. :
B-E, 10
DELETE FILE NOS. :

STARTING TO COPY FILES
COPV I NG FORT . CM
COPYING FORTLIB .RO
COPYING FORTEST4.SA
FORTEST4.SA - DUPLICATION: IS IT TO BE COPIED?
V
NEW NAME:FTEST
=

The file selection command SAVE was used to flag all
file names beginning with FOR as eligible for copying. Then
the PRINT command was used to see the eligible list of file
names. The PRINT command terminates the use of the DELETE
and SAVE commands. Thus, the PRINT command's delete file
feature is used to remove any remaining file names from the
eligible list. File names OB, OC, OD, OE, and 10 were
delet!iJd in this manner. A null response is re(luired to
terminate the PRINT command's input prompting. The last file
to be copied turned out to have a duplicate file name
existing on the destination drive. The operator responded
with a "V" indicating that he wanted to copy the file anyway.
Since duplicate file names cannot exist, the append process
lets the operator rename the source file before it gets
copied. The new name assignedt~ the file on the destination
diskette wi.ll be FTEST.SA (default suffix aSSigned),

Page 03-.

CHAPTER 4

4. BINEX COMMAND

The BINEX command allows memory-image files to be
converted into an EXbug-loadable format for copying to tape.
This command performs the inverse operation of the EXBIN
command (see Chapter 14). BINEX is useful in the development
of non-diskette-resident software with MOOS, since the obJect
code can be written to tape after it has been tested.

4. 1 Use

The BINEX command is invoked with the following command
line:

BINEX <name l>(.<name 2>]

where <name 1> is the file specification of a memory-image
file that is to be converted. and <name 2> is the file
specification of a file that is to receive the results of the
conversion. Only <name 1> is required to be entered on the
command line. The default suffix "LO" and the default
logical unit number zero will be supplied for <name 1> if
those quantities are not explicitly given. The output file
specification, <name 2>, is optional. If <name 2> is
entered, it may be a partial file specification consisting of
only a file name. a suffix, or a logical unit number (or any
combination thereof). The unspecified parts of <name 2> will
be supplied from the respective parts of <name 1>, with the
exception of the suffix. The default suffix for <name 2> is
"LX" to indicate its EXbug-loadable format. If no file
specification is given for <name 2>. the output file will be
created with the same file name as <name 1> but with the
suffix "LX". If only a suffix is given for <name 2>, that
suffix will be used instead of the default "LX". If no
logical unit number is given for <name 2>, the output file
will be created on the same drive as given for <name 1>. In
any case, <name 2> must be a file specification for which no
entry already exists in the directory.

Standard error messages will be displayed if <name 2>
already exists. if <name 1> does not exist. or if <name 1> is
of the wrong file format. If no errors are found on the
command line. BINEX will write into the output file a name
record, or SO record. that contains the file name and suffix
of <name 2>. Then, BINEX will convert the content of <name
1> into displayable ASCII characters and output them to <name
2> in the form of the EXbug SI records (the "M6800 EXORciser
User's Guide" contains a description of this record format).

Page 04-01

BINEX COMMAND 4.1 -- USI

The terminating 59 record will contain the starting execution
address that was extracted from <name 1>'s load information.

The memor~-image file, <name 1>, is unaffected bV the
entire BINEX process. The output file, <name 2>, can then be
copied to tape (see Chapter 7, COPY Command) for use in a
non-diskette environment.

4.2 Error Messages

No special error messages are displayed bV the BINEX
command. Onl~ the standard error messages available to all
commands are used.

4.3 Examples

Most fre~uentl~, the default suffixes and logical unit
numbers suffice for BINEX operation. The following command
line

BINEX TE5TPROG

will produce the file TESTPROG.LX on logical unit zero from
the memory-image file TESTPROG.LO. also on logical unit zero.

If the output file is to be created on a different drive
than the input file, but the other default parameters are
still to be applied, then only a logical unit number need be
specified for <name 2> as in the following example:

BINEX TESTPROQ,:l

which will create the file TESTPROG.LX on logical unit one.

If the file to be converted happens to reside on a drive
other than zero, then that unit number will also be the
default value of the logical unit number for the output file.
Thus,

BINEX TESTPROG:2

will create TESTPROG.LX on drive two.

The last example illustrates the explicit naming 0' an
output file and input file. In any case involving default
values of which the operator is uncertain, it is always safe
to explicitl~ use the full file specifications. For example,

BINEX TESTPROG.LO:O,FILEX.LT:O

will create FILEX.LT on drive zero.

Page 04-0~

CHAPTER 5

5. BLOKEDIT COMMAND

The BLOKEDIT command allows lines of text from one or
more ASCII files to be selectively copied into a new file.
This command can be useful in generating new program source
files by copying routines from existing source files, or in
rearranging existing files by copying their lines into a new
sequence.

5. 1 Use

The BLOKEDIT command is invoked with the following
command line:

BLOKEDIT <name 1>, <name 2>

Both of the parameters are required by the BLOKEDIT command.
<name 1> is the file specification of a command file, and
<name 2> is the file specification of a new file which will
be created. The new file will be written into as directed by
commands in the command file.

Both file specifications are given the default suffix
"SA" and the default logical unit number zero. <name 1> must
be the name of a file that exists in the directory. <name 2>
must not already exist. A standard error message will be
displayed if either of these criteria is not met, or if
<name1> is of the wrong file format.

5.2 BLOKEDIT Command File

The command file specified by <name 1> is the
controlling factor in the execution of the BLOKEDIT command.
The command file contains the names of the source files that
are to be used for the extraction of data, the numbers of the
lines within a particular source file that are to be copied
into <name 2>. comments. and original text supplied by the
user that is also to be copied into <name 2>. The command
file must be created with the EDIT command. or a similar
command, prior to using the BLOKEDIT command.

There are three kinds of lines that can appear in the
command file:

1. Comment lines
2. Command lines
3. Ouoted lines

Page 05-01

BLOKEDIT COMMAND 5.2 -- BLOKEDIT Command Fi

The three types of lines that comprise the command file are
discussed in the follo~ing sections.

5.2.1 Comment lines

A comment line is a line ~hose first character is an
asterisk <*). For example:

* * THESE THREE LINES ARE BLOKEDIT COMMENT LINES

*
The occurrence of comment lines in the command file is
ignored by the BLOKEDIT command. Comment lines serve only to
document the command file.

5.2.2 Command lines

A command line is recognized by the fact that its first
character is an upper-case alphabetic character, a decimal
digit, or a double ~uote character. For example,

FILENAME: 1
5,75-80
It

are three valid command lines.

Command lines ~hich begin ~ith an upper-case alphabetic
character indicate that a source file is being named. Such
command lines are used to specify from ~hich file the
subse~uent lines are to be copied. A source file can only
be named by putting its file specification at the beginning
of a command line. Optionally, the suffix and/or logical
unit number can be specified in the standard format after the
file's name. The default values of "SAil and zero are
supplied automatically if no explicit references to suffix or
logical unit number are made.

Command lines ~hich begin with a decimal digit indicate
that the command line will contain one Dr more numbers.
These numbers represent the physical line numbers to be
copied from a source file which has been named using the
prior form of the command line. Physical line numbers can be
up to five digits in length and must be in the range 1-65535,
inclusive. More than one physical line number can appear on
a command line if it is followed by a comma. A range of
physical line numbers can be specified bV separating the
start and end of the range with a hyphen (-). For example,

Page 05-

BLOKEDIT COMMAND

5
12345
100-364
12,15,1-5,17-200,5-15.2,2

5.2 -- BLOKEDIT Command File

are valid forms of physical line number command lines. A
source file's physical line numbers can be printed using the
LIST command described in Chapter 17.

5.2.3 Quoted lines

A command line that begins with a double quote character
(") indicates the beginning or the end of quoted lines. Any
information that appears on the same line as the double quote
is ignored. A quoted line is any line bounded by a pair of
command lines which begin with a double quote character. All
quoted lines will be copied directly from the command file
into the new file. as is. Thus, it is possible to include
original lines of text that will be copied into the new file
in addition to the physical lines copied from the named
source files. The following example illustrates the use of
quoted lines:

II START OF QUOTED LINE SEQUENCE
LABEL LDAA *$FD SET MASK

LSRB .
STAB TAB+4
TAB.

* * COMMENTS IN GUOTED LINES GET WRITTEN OUl

* JMP EXIT.
II END OF QUOTED LINE SEGUENCE

The first and the last lines of the example will be discarded
by the BLOKEDIT command. The eight lines in between will be
written as is into the new file.

5.3 Messages

lhe following messages can be displayed by the BLOKEDIT
command. Not all messages are error messages, although error
messages are included in this list. The standard error
messages that can be displayed by all commands are not listed
here.

Page 05-03

BLOKEDIT COMMAND 5.3 -- Message·

CURRENT SOURCE FILE IS <name>

DONE.

A command line containing the name of a source
File has been processed. The name of source file
is sho~n as <name>. This message is used to
monitor the path of BLOKEDIT through the command
file.

NEW FILE LINE COUNT IS nnnnn

The command file has been exhausted (end of file
encountered) when this message is displayed. It
indicat-es that no more command lines 111111 be
processed. The number, of physical lines that
lIIere copied into the nelll file is given by the
decimal number "nnnnn". After this message is
displayed, control is returned to MDOS.

** 36 FILE EXHAUSTED BEFORE LINE FOUND

This message is displayed IIIhen the source file
being read lIIas exhausted (end of file
encountered) before a specified physical line
number was found. This is not a fata.l error.
The next command line from the command file lIIill
be processed.

** 38 INVALID LINE NUMBER OR RANGE

This error message can be displayed for several
reasons. A line in the command file did not
begin lIIith an asterisk, a double ~uotel a decimal
digit (0-9), or an alphabetic character (A-Z),
and the line was not a ~uoted line. If the
command line started lIIith a digit, then the
physical line number had a value outside of the
range 1- 65535, or the starting number of a line
number range was greater than the ending line
number of the range. In any case, this is a
fatal error. BLOKEDIT is terminated and control
returned to MDOS. The command line in error is
displayed prior to this message.

** 39 LINE NUMBER ENTERED BEFORE SOURCE FILE

This message indicates that the command file
contained a line lIIith a decimal digit in the
first position before a source file lIIas named.
Processing cannot continue, so the BLOKEDIT
command is terminated. The command line in error
is displayed prior to this message.

Page 05-0·

BLOKEDIT COMMAND 5.4 -- Examples

5.4 Examples

In the following example it is assumed that the three
source files EDIT. SA: 1, ASM.SA:O, and LOAD.SA:O contain some
special utility subroutines that are to be extracted and
placed into a new file UTILITY.SA:O. The physical line
numbers of the routines can be determined by listing the
source files on the console or printer (Chapter 17, LIST
Command>' Wi th that i nformat i on, the command f i 1 e
BLKCMD.SA:O is created using the EDIT command:

* * Define the first source file

* EDIT: 1
176-205
224,-230

* * Define the second source file

* ASM.SA:O
II Insert a PAGE directive to separate routines

PAGE
II

56-80.90-'101,150-163

* * Define the last source file

* LOAD
.. Insert another PAGE directive

PAGE
II

27,28,29,30,31,32,33,34.35,36
37
38
39
40

* * End of Command File

*
Then, the MDOS command line

BLOKEDIT BLKCMD,UTILITY

is used to invoke the BLOKEDIT command. During the
processing, BLOKEDIT will display the following messages:

CURRENT SOURCE FILE IS EDIT
CURRENT SOURCE FILE IS ASM
CURRENT SOURCE FILE IS LOAD
DONE. NEW FILE LINE COUNT IS
=

· SA: 1
· SA:O
· SA:O

104

Page 05-05

BLOKEDIT COMMAND 5.4 -- Exampll

The new file will contain the indicated lines from the
respective source files. Each set of lines copied from the
source files has been separated from the next file's set of
lines by a PAGE directive (causing paging when the UTILITY
file is assembled), The PAGE directive was inserted using
q,uoted lines.

SLOKEDIT can also be used to rearrange the lines of an
existing file by copying them in a given seq,uence into the
new file. The following command file:

PROGl
207-300,10-206,1-9

for example, could be used to shuffle the lines in the source
file PROG1.SA:0. First, lines 207-300 would be copied into
the new file. These would be followed by lines 10-206. which
would be followed by lines 1-9.

The last example illustrates an error message displayed
by SLOKEDIT. The command line in error is displayed prior to
the error message. Th. initial five-digit number in front of
the displayed command line gives the line's physical line
number within the file (as displayed with the LIST command,
Chap tel' 17 >.

=BLOKEDIT BLKCMD.TEHPEGU
CURRENT SOURCE FILE IS EGU .SA:O
00002 56-34
** 38 INVALID LINE NUMBER OR RANGE
=.

The error was caused by an invalid line number range. The
starting .numberof a range must be less than or eq,ual to the
ending number of the range.

Page 05-~

CHAPTER 6

6. CHAIN COMMAND

The CHAIN command allows predefined procedures to be
automatically executed. A procedure consists of any sequence
of MDOS command lines that has been put into a diskette file,
known as a CHAIN file. Instead of obtaining successive
command lines from the console, CHAIN will fetch commands
from the CHAIN file. This feature allows complicated and
lengthy operations to be defined once, and then invoked any
number of times, requiring no operator intervention. The
additional capabilities of conditional directives to the
CHAIN command at both compilation and execution time. and the
capability of string substitution. permit an almost unlimited
number of applications to be handled by a CHAIN file.

6. 1 Use

The CHAIN command is initially invoked by the following
command line:

CHAIN <name 1> [i<arg 1>, ,<arg n>J

The only required parameter is <name 1>. the file name
specification of the diskette file that contains the
procedure definition. The CHAIN file, <name 1>. is given the
default suffix "CF". permitting the file name to be
identified in the directory listing at a glance as being a
CHAIN file. The default logical unit number is zero. The
optional arguments. <arg i> (i = 1 to n), are CHAIN tag
definitions which can be used to modify the compilation,
content. or execution of a CHAIN file.

Two special forms of the CHAIN command line can be used
to restart an aborted CHAIN process. These command lines are
shown here. but are described in detail in section 6.6.

CHAIN N*
CHAIN *

CHAIN executes a compilation phase and an execution
phase. In the compilation phase, <name 1> is read from
beginning to end. An intermediate file, CHAIN.SY:O. is
created during the compilation. The intermediate file
consists of lines to be used in the execution phase of the
CHAIN process. This file will be automatically deleted upon
the subsequent successful completion of the CHAIN process.

During the execution phase, CHAIN basically intercepts

Page 06-01

CHAIN COMMAND 6.1 -- Use

the s~stem console input re~uests so that input can be
supplied from the intermediate file. Each time an input
re~uest is made b~ a command that is invoked b~ the CHAIN
process, the next line from the intermediate file will be
read and passed to the command. As far as the command is
concerned, it is receiving its input information from the
operator at the console.

The CHAIN command onl~ intercepts console input via the
MDOS s~stem function n.KEVIN" (see section 25.2). Therefore,
only programs (commands or user-written programs) that use
this s~stem function will receive their input from the
intermediate file. Programs which contain their own input
routines, or which use the device independent 110 functions
(see section 25.3) can be invoked bV the CHAIN process, but
the subse~uent input to those programs must be supplied
manuall~ via the console.

The CHAIN command cannot be invoked from within a CHAIN
process unless it is invoked from the last line of the
intermediate file. An error message will be displayed if
oth~r tvpes of CHAIN command recursion are attempted.

The CHAIN command will continue to supplV information
from the intermediate file until the end of the file is
encountered. If, at that point, the next input reQ.uest from
the console is bV the MOOS command interpreter, the CHAIN
process will be properly terminated, MOOS will be re-entered,
and commands will again be accepted from the operator at the
console. If, however, the end of the intermediate file is
encountered while a program is reQ.uesting console input, then
the CHAIN process is aborted, an error message is displayed.
and the currently active program will be stopped. Control
will then be given to the MOOS command interpreter.

The diskette in drive zero must remain in drive zero
throughout the execution of the CHAIN process, even if the
"CFn file is compiled from drives other than zero.

6.2 Tag Definition, ASSignment, and Substitution

The CHAIN command line can be parameterized
arguments that follow the CHAIN file specification.
argument has the following format:

<tag>[X<value>Xl

with
Each

where <tag> is the name bV which the argument is referenced
within the CHAIN file, and <value> is the value assigned to
that argument. As many arguments as fit on the command line
can be s~ecified. Multiple arguments must be separated by
commas. Tags ma~ be from one to thirt~-two characters in
length and can contain an~ displayable character except the

Page 06-0.

CHAIN COMMAND 6.2 -- Tag Definition, Assignment, and Substitution

period <.), the comma (,), the space (), or the percent sign
(~). A tag's value can be any series of displa~able

characters with the exception of the percent sign. A tag is
given a value by following the tag's name with the value
enclosed in percent signs. If no percent sign follows a
tag's name, it is assigned a null value. For example, the
command line

CHAIN TFILEiLIST,DAY%17%,TIME%02:30%

defines three tags: LIST, DAY and TIME. The tag LIST is
aSSigned a null value; the tag DAY is given the value 17; the
tag TIME is given the value 02:30.

CHAIN allows two uses to be made of tags. First, tests
can be perFormed within the CHAIN file to determine whether
or not a specific tag has been specified on the CHAIN command
line. Second, the value of a tag can be substituted for a
tag's occurrence within the CHAIN file. Thus, using the
above example, the CHAIN file could contain a test for the
presence of the tag LIST to determine if the CHAIN process
will produce output to a printer. The values of the tags DAY
and TIME could be substituted in one of the heading lines
that may be produced by the CHAIN process.

So fa,' in the discussion, the value of a tag has not
been used. The existence of a tag can be tested regardless
of a tag's value. A tag's value is substituted for each
occurrence of the tag's name contained between two delimiting
percent signs. The following example will illustrate tag
substitution. If a CHAIN file contains these statements:

RASM TESTPROG;H7.0PTION7.
PROGRAM ASSEMBLED ON 7.DATE7.
EXBIN TESTPROG7.START7.

then the tags OPTION,
respective values put
delimiting percent signs
intermediate file. If
CHAIN at its invocation,
would be compiled:

DATE. and START will have their
in place of their tag names and the
before each line is written into the
no tags were specified for the above
then the following intermediate file

RASM TESTPROGiH
PROGRAM ASSEMBLED ON
EXBIN TESTPROG

If the tags were given initial values via the CHAIN command
line as:

OPTIDNXXLGX,DATEXJANUARY 8, 1978X,STARTXil000X

then the following intermediate file would be compiled:

Page 06-03

CHAIN COMMAND 6.2 -- Tag Definition, Assignment, and Substituti

RASM TESTPROGiHXLG
PROGRAM ASSEMBLED ON ~ANUARY 8, 1978
EXBIN TESTPROGilOOO

Tag substitution is used he~e to specify the va~ious options
fo~ the assembly p~ocess, a date fo~ the heading line p~inted
du~ing the assembly, and the sta~ting execution add~ess for
the conve~ted obJect file. The use of tags and tag values,
therefo~e, is of g~eat impo~tance in the c~eation of
complicated and gene~al pu~pose CHAIN files.

To pass tag values from one CHAIN file to anothe~, a
fo~cing characte~ is used. The backslash cha~acte~ (\) is
used to indicate that the next cha~ac~e~ of a line is not to
be tested as a special cha~acte~ (i.e., to see if an ope~ato~
follows, o~ a valid tag). Thus, passing a tag f~om one CHAIN
file to anothe~ can be done with a series of statements like
the following:

RASM TESTPROGiHXOPTIONX
PROGAM ASSEMBLED ON XDATEX
CHAIN FILE2iSTART\XXSTARTX\X

The fi~st and last percent signs of the last line are not tag
~eplacement indicato~s. When the above lines a~e compiled,
the ~esultant inte~mediate file will not contain the
backslash cha~acte~s. If the value "XLG II is given to OPTION,
"01. 8. 78" to DATE, and "i 1000" to START, then the compiled
CHAIN file would appea~ as

RASM TESTPROGiHXLG
PROGRAM ASSEMBLED ON 01.8.78
CHAIN FILE2iSTARTX;1000X

The value of START would be passed f~om the fi~st CHAIN file
to the second CHAIN file. The second CHAIN pTocess can only
be invoked fTom the last line of the intermediate file.

6.3 Compilation Ope~ato~s

Two types of CHAIN ope~ato~s exist which can be used to
modify the procedu~e that is pe~fo~med th~ough the CHAIN
p~ocess: Compilation Ope~atoTs and Execution OpeTato~s.

Execution Operato~s a~e desc~ibed in section 6.4.
Compilation Ope~ato~s pe~mit the ope~atoT to pa~amete~i2e a
CHAIN file to pe~form manv diffe~ent p~ocedu~es. Fo~
example, a CHAIN file may contain the MDOS command lines to
assemble an enti~e system of p~og~ams. Based on the CHAIN
a~guments specified on the CHAIN command line, all o~ pa~t of
the system of p~og~ams may be assembled. The options for the
assembly p~ocess can also be supplied via a CHAIN a~gument
(see example in section 6.7).

Page 06-

CHAIN COMMAND 6.3 -- Compilation Operators

All Compilation Operators are included in the CHAIN 'ile
along with any other statements. Compilation Operators are
denoted by a slash (/) appearing in the first column of a
line. Any number of intervening spaces (including none) can
be placed between the slash and the operator. If an operator
is found which is not defined, the CHAIN process will be
aborted. The following Compilation Operators are defined:

Operator

* IFS
IFC
XIF
ELSE
ABORT

Function

Comment
Conditional "if set" test
Conditional "if clear" test
End conditional
Conditional alternative
Unconditional CHAIN abort

6.3.1 Compilation Comments

If the character following a slash is an asterisk <*),
then a Compilation Comment is indicated. The remainder of
the line following the asterisk contains the comment, which
can include any displayable characters. Compilation Comments
are not written into the intermediate file. They are,
however, displayed on the console immediately after they are
read from the CHAIN file. Compilation Comments are useful in
communicating to the operator what intermediate file is being
compiled for execution. The comment lines are only displayed
if the part of the file containing the comments is being
compiled into the intermediate file (see next section).

6.3.2 IF operator

If the characters following a slash are "IF", an IF
operator is denoted. There may be any number of intervening
spaces between the slash and the IF operator. This feature
allows a structured type of CHAIN file to be constructed that
will show by its physical appearance the range of the
conditional operators. The IF operator allows a test to be
made for the existence of one or more tags on the CHAIN
command line. If the test proves positive, or true, then the
lines from the CHAIN file following the IF operator will be
included in the intermediate 'ile (written to the CHAIN.SY
file). If, however, the test proves negative, or false, then
the subsequent lines will not be included in the intermediate
file. The lines from the CHAIN file will be included or
excluded following the IF operator until an ELSE or XIF
operator (explained below) is encountered.

The IF operator has two forms: IFS and IFC, which stand
for "if set" and "if clear", respectively. The IFS operator

Page 06-05

CHAIN COMMAND 6.3 -- Compilation Opel'atol'!

pl'oves positive if any of the tags listed as its opel'and hav.
been specified on the CHAIN command line. Fol' example,

IIFS LIST

will pl'ove positive if the tag LIST was mentioned on the
CHAIN command line. The same test will pl'ove negative if
LIST did not appeal'. Likewise, the IF opel'atol'

IIFC DAY

will pl'ove positive if the tag DAY was not specified on the
CHAIN command line. The test will pl'ove negative if DAY did
appeal'. Multiple IF opel'atol's can appeal' in sequence to see
if all tags of a cel'tain gl'OUp wel'e specified. Thus,

IIFS FLAG1
IIFS FLAG2
IIFS FLAG3

will pl'ove positive only if tags FLAG 1 , FLAG2, and FLAG3 wel'e
specified on the CHAIN command line.

MOTe than one tag can appeal' in the opel'and field of an
IF opel'atol'. A comma sepal'ating tag names on an IF line will
pel'fol'm an "i~clusive 0'1'" function. A pel'iod sepal'ating tag
names, on the othel' hand, will pel'fol'm an "and" function.
The "and" function has pl'ecedence ovel' the "0'1'" function.
That is, the commas (aT) can be thought of as gl'ouping the
pel'iods (and), Fol' example, the IF opel'atol' line

IIFS FLAG1.FLAG2.FLAG3

is equivalent to the pl'evious example of thl'ee successive IF
opel'atol's. The following line,

IIFS Fl. F2,FLAG3,TAG1. TAG2. LIST

which can be thought of as being evaluated by the following
gl'ouping,

(F1 and F2) 0'1' (FLAG3) 0'1' (TAG1 and TAG2 and LIST)

will pl'ove positive if the tags F1 and F2 aTe specified, 0'1'
if FLAG3 is specified, 0'1' if tags TAG1 and TAG2 and LIST aTe
specified.

If one IF
subsequent lines
opel'atol's, will be
0'1' XIF opel'atol'
used to modify the

opel'atol' has proven negative, then the
fl'om the CHAIN file, including other IF
ignored until eitbel' a cOl'l'esponding ELSE
is found. In this wa'l' the IF opel'atol' is
l'esultant intel'mediate file.

CHAIN COMMAND 6.3 -- Compilation Operators

6.3.3 XIF and ELSE operators

Two Compilation Operators can cause the range of an IF
operator to be ended. The XIF operator marks the end of a
series of conditionally compiled statements. The ELSE
operator reverses the sense of the IF's test condition. and
is used to indicate what is compiled if the test condition is
not met. The conditional IF operators can be nested to a
depth of sixteen levels. The following example shows the use
of XIF and ELSE:

IIFS LIST
LIST TESTFILEiLH
TEST PROGRAM HEADING LINE
IELSE
LIST TESTFILE
IXIF

In this example. the file TESTFILE will be listed on the
printer only if the tag LIST is specified on the CHAIN
command line. A heading line is also provided within the
CHAIN file if the LIST tag is used. If, however, LIST is not
specified, then the ELSE portion of the conditional operator
will be compiled, causing TESTFILE to be shown on the system
console instead.

If the above example were to be written without the ELSE
operator, one additional IF and XIF operator pair would have
to be used, as shown:

IIFS LIST
LIST TESTFILEiLH
TEST PROGRAM HEADING LINE
IXIF
IIFC LIST
LIST TESTFILE
IXIF

It can be seen that the use of the ELSE operator makes the
CHAIN file easier to understand.

Each IF operator must have a corresponding XIF operator.
The ELSE operator is available at the option of the user.
The following example shows how nested IF operators might
appear in a CHAIN file:

IIFS Fl
ASM TESTPROG
I IFS F2
EXBIN TESTPROG
I XIF
IXIF

Page 06-07

CHAIN COMMAND 6.3 --Compilation Operato

In this case, the tag Fl governs whether. or not the file
TESTPROG will be assembled. If Fl is specified, then the
assemb 1 y ~i 11 be performed. Then, if in add i ti on F2 is
specified on the CHAIN command line, the obJect file
conversion will also take place. The CHAIN file can be used,
therefore, to perform only the assembly, or the assembly and
the obJect file conversion, but not the obJect file
conversion by itself.

If, through the use of the conditional operators, a null
(empty) intermediate file is generated, then the Execution
Phase of the CHAIN command will be skipped. Control will be
given to the MOOS command interpreter, as if no CHAIN had
ever been executed.

6.3.4 ABORT operator

The ABORT operator provides a way of instantly returning
to MDOS during a CHAIN file's compilation. No messages will
be displayed as a result of encountering the ABORT operator.
It is the user's responsibility to include an explanation for
the ABORT throughthe'use of Compilation Comments.

The ABORT operator is typically employed in terminating
a CHAIN compilation if one or more critical tags have been
omitted from the CHAIN command line. For example, the
following CHAIN file will be aborted during the compilation
phase if both of the tags OPT and FILE are miSSing. The
Compilation Comments will indicate the reason for the
termination:

IIFS OPT. FILE
1* GOING TO ASSEMBLE XFILEX
RASM XFILEY.iXOPTY.
IELSE
1* BOTH "FILE" AND "OPT" MUST BE SPECIFIED
1* CHAIN TERMINATED
IABORT
IXIF

6.4 Execution Operators

Execution Operators can be used for the dynamic
adJustment of a ~HAIN process while it is being executed.
Through the use of these operators, the user can set values
in an error status word maintained by MOOS, test the word,
and, depending upon the results of the test, skip a portion
of the procedure. The error status word is accessed by all
MDOS commands to indicate whether or not they completed their
function without error.

All CHAIN Execution Operators are denoted by the

Page 06-

CHAIN COMMAND 6.4 -- Execution Operators

commercial at-sign (@) as the first character of a line. Any
number of intervening spaces (including none) can be placed
between the at-sign and the operator. If an operator 1s
found which is not defined, the CHAIN process will be
aborted. The following Execution Operators are defined:

Operator

*

Function

Comment
Operator breakpoint
Set error status word
Test error status word

SET
TST
JMP
LBL
CMD

Continue sequential processing at label
Define a label
Change state of CHAIN input echo

6.4. 1 Execution Comments

If the character following the at-sign is an asterisk
(*), then an Execution Comment is indicated. The remainder
of the line following the asterisk contains the comment,
which can include any displayable characters. Execution
Comments are compiled into the intermediate file and are not
displayed until they are encountered during the execution
phase. Execution Comments are used to relay information to
the operator during the actual execution of the intermediate
file. In conJunction with the Operator Breakpoint (next
section), these comments also serve as a means of passing
instructions to the operator for mounting paper into the
printer, swapping diskettes in drives one, two, or three,
load i n9 a cassette. etc.

6.4.2 Operator Breakpoints

A variation of the Execution Comment is the Operator
Breakpoint. If a period <.) is used instead of an asterisk
for the Execution Comment, then the normal Execution Comment
is displayedi however, instead of continuing with the
processing of the next line of the intermediate file, the BEL
($07) character is sent to the console to alert the operator.
The CHAIN process then waits for any key on the keyboard to
be depressed before continuing. For example, the following
compiled CHAIN file:

@* GOING TO ASSEMBLE PROGRAM
@. TURN ON PRINTER
RASM TESTPROGiLXG

would display the two comments during the execution of the
CHAIN process. Prior to starting the assembly, however, the
CHAIN process would pause allowing the operator time to ready

Page 06-09

CHAIN COH11AND 6.4 ~- E~ecution Operator1

the printer. Execution would not resume until after the
operator had depressed any key on the system console.

6.4.3 Error status word

Among the operating system's resident variables is a
two-byte error status word. Each MOOS command will set or
clear a bit within this status word to indicate the status of
the command's completion. The error status word has the
following format:

FED C B A 9 B 7 6 5 4 3 2 1 0

Error
Status

Error
Mask

L

Error Type

Bits 0-7 describe
error

Error Mask Flag
Bit B (S-A unused)

Error Status Flat
Bit F (C-E unused)

Normally, after the completion of each command, all bits of
the Error Status and the Error Type are cleared (= 0). The
Error Mask is not affected by MOOS commands. If an error
occurred during the command, the Error Status Flag (bit F)
will be set by the command. In addition, an Error Type will
be set into the lower half of the status word (bits 0-7).
The Error Type is used to indicate which error was detected
by the command.

Usuallq, the CHAIN process will abort anytime the Error
Status Flag is set by one of the commands invoked from the
intermediate file. The Error Mask can be used to inhibit
CHAIN process aborting due to command errors by setting the
Error Mask Flag (bit B) to a 1.

The Execution Operators can affect certain parts of the
status word. The following sqmbols are used to refer to the
various parts of the status word:

Page 06-1(

CHAIN COMMAND 6.4 -- Execution Operators

Word Designator Error Status Word Part

W Whole word (bits O-F)
T Error Type (bits 0-7)
M Error Mask (bits 8-B)
S Error Status (bits C-F)

6.4.4 SET operator

The SET operator can be used to place a certain bit
pattern into the system error status word. In particular,
the SET operator is the only way that the Error Mask Flag can
be set to inhibit CHAIN process abortions. The MOOS commands
will only set the Error Status and the Error Type. The SET
operator has the following format:

where <J> is the status word designator (explained above) and
<value> is a hexadecimal number that is to be placed into the
designated word part. The size of <value> must not be
greater than the size of the word part into which the it is
to be placed. If the status word designator is not
specified, then W, the whole word part. will be assumed. If
<value> is not specified, then zero will be assumed. As an
example of the SET operator, the following will set the Error
Mask Flag (bit B) to inhibit CHAIN process aborting due to
command execution errors:

@SET,M 8
@SET,W 800
@SET 800

All three forms will set bit B of the error status word;
however, the last two forms will, in addition, set to zero
all other parts of the error status word.

6.4.5 TST operator

The TST operator
word for a particular
following format:

is used to examine the error status
condition. This operator has the

@TST('<J>J <condition> (,<value>]

where <J> is the status word designator. <condition> is the
test condition to be performed, and <value> is a hexadecimal
number that is used as part of the test.

Use of the TST operator results in a true or false
condition based on the test performed. If the result of the

Page 06-11

CHAIN COMMAND 6.4 -- Execution Ope~ato,

test is t~ue, th~n the next se~uential line in the
inte~mediate file will be skipped. If the ~esult of the test
is false, howeve~, then the next se~uential line in the
inte~mediate file will be p~ocessed. In othe~ wo~ds, a false
condition has the same effect as if the TST ope~ato~ was not
p~ocessed at all.

If the status wo~d designato~ is not specified. then W,
the whole wo~d pa~t, will be assumed. The following test
conditions can be used in the <condition> field of the TST
ope~ato~:

<condition> Test pe~fo~med on wo~d part

EQ E~ual to <value>
NE Not e~ual to <value>
GT Greate~ than <value>
LT Less than <value>
GE G~eate~ than or e~ual to <value>
LE Less than o~ e~ual to <value>
BS Bit set (=1)

BC Bit clea~ (=0)

The first. si x tests a~e the standa~d ~elational tests
fo~ e~ualit",etc., that can be pe~fo~med with the <value>
and the deSignated wo~d pa~t. The last two tests (BS an'Cl-BC)
allow specific bits in the deSignated wo~d pa~t to be tested
fo~ being set CBS) or clea~ (BC)' The bits to be tested a~e
indicated b" the one bits f~om <value>.

The <value> pa~t of the TST ope~ato~ is a hexadecimal
number in the ~ange O-FFFF. The size of <value> must not be
greate~ than the size of the word part that is being tested.
No signed numbers can be used. That is, all comparisons and
tests a~e made with positive integers. If <value> is not
specified, then the default of ze~o will be used.

6.4.6 ~MP ope~ato~

The ~MP ope~ato~ allows skipping lines in the
intermediate file du~ing its execution. Used in conJunction
with the TST operator, the '-'MP operator can be turned into a
conditional Jump a~ound critical steps if certain conditions
are detected during the execution of the CHAIN process.

The ~P ope~ator has the following format:

@'-'MP <label>

where <label> must be defined via the label ope~ato~ LBL.
~umps can onl" be made in a fo~wa~d direction. That is, once
a line has been executed from the inte~mediate file, it

Page 06-:

CHAIN COMMAND 6.4 -- Execution Operators

cannot be Jumped to with the JMP operator, even if it has a
defined label. Jumps to undefined labels or backward Jumps
will cause the CHAIN process to be aborted.

6.4.7 LBL operator

The LBL operator is used to define a label within the
CHAIN file. All labels referenced by the JMP operator must
be defined with the LBL operator. The format of the LBL
operator is:

@LBL <label>

where <label> follows the same restrictions placed on tag
names (section 6.2). Labels that are multiply defined,
undefined, or backward references will be flagged as errors
during the CHAIN compilation phase. Such errors will cause
the CHAIN process to be aborted.

6.4.8 CMD operator

Normally, during the execution phase, as commands are
processed from the intermediate file, each command line is
displayed on the console. Likewise, all input requested by
the command that is supplied from the intermediate file will
be displayed on the console. The CMD operator can be used to
suppress console display of all input that originates from
the intermediate file. The CMD operator has the following
format:

@CMD {ON or OFF)

where either ON or OFF must be specified. The CMD operator
can be used as many times as needed within the intermediate
file. Initially during the execution phase, the ON form of
the CMD operator is in effect.

6.5 Messages

The following messages can be displayed by the CHAIN
command. The standard error messages that can be displayed
by all commands are not listed here. The messages are broken
up into two sections: those that can be displayed during the
compilation phase, and those that can be displayed during the
execution phase.

The following error messages can be displayed during the
compilation phase:

Page 06-13

CHAIN COMMAND 6.5 -- Message

ILLEGAL NESTING OF CHAIN COMMANDS

A CHAIN command bias found in the intermediate
file that did not coincide blith the last record
of the file. CHAIN processes can onlv invoke
another CHAIN command from the last line of the
intermediate file.

SOURCE SYNTAX ERROR

One of the source lines of the CHAIN file
contained a backslash (') as the last character
of the record, or an illegal tag reference bias
encountered.

ILLEGAL OPERATOR

The operator following a slash (I) bias not a
valid Compilation Operator, or the operator
follobling an at-sign (@) bias not a valid
Execution Operator.

INVALID CONDITIONAL EXPRESSION

An invalid tag reference or invalid tag separator
(other than period or comma) was used on a
conditional Compilation Operator statement.

INVALID NESTING OF CONDITIONALS

More than sixteen levels of conditionals blere
used. an une~ual number of IFs and XIFs exist, or
an ELSE operator bias used illegallv.

EXECUTION OPERATOR OPERAND ERROR

The operand of an execution operator bias invalid.

VALUE TOO LARGE FOR FIELD

A value bias specified for the Execution Operators
SET or TST that was larger than the status !IIord
part designator allo!lled.

END OF FILE REACHED BEFORE LAST XIF FOUND

The end of the CHAIN file bias encountered blh!le
searching for an XIF operator. Usuallv this
indicates an unbalanced number of IFs and XIFs.

UNDEFINED LABELS FOUND

A JMP operator referenced a label which bias never
defined with a LBL operator.

Page 06-1,

CHAIN COMMAND 6.5 -- Messages

OUTPUT RECORD BUFFER OVERFLOW

A line from the CHAIN file was encountered which,
after the substitution of all tag values,
exceeded eighty characters in length.

** 48 CHAIN OVERLAY DOES NOT EXIST

The MDOS system CHAIN overlay does not
entry in the directory. The REPAIR
(Chapter 22) should be used to check the
for other errors.

have an
command

diskette

The following messages can be displayed during the execution
phase:

END CHAIN

This message is displayed upon the successful
termination of a CHAIN process. The next console
input request will be obtained from the system
console again. The intermediate file,
CHAIN.SY:O, will have been deleted.

** 01 COMMAND SYNTAX ERROR

An Execution Operator was encountered that had an
illegal operand field.

** 08 CHAIN ABORTED BY BREAK KEY

The operator depressed the BREAK key during the
execution phase causing the CHAIN process to be
aborted.

** 09 CHAIN ABORTED BY SYSTEM ERROR STATUS WORD

The last executed program set an error status
into the system error status word which was not
masked by the SET operator. If no SET operators
are used in a CHAIN file, any error status word
change will cause the CHAIN process to be
aborted.

** 22 BUFFER OVERFLOW

The response obtained from the intermediate file
to an input request exceeded the maximum number
of characters that were acceptable to the input
request.

Page 06-15

CHAIN COMMAND 6. 5 -- MessagE

** 49 CHAIN ABORTED BY ILLEGAL OPERATOR

An illegal Execution Operator was encountered in
the intermediate file.

** 50 CHAIN ABORTED BY UNDEFINED LABEL

A JMP operator was encountered which referenced a
label that did not exist (Backward references are
treated as undefined labels>.

** 51 CHAIN ABORTED BY PREMATURE END OF FILE

An access to the intermediate file returned an
end-of-file condition when an input re~uest was
made bV a program that was invoked bV the CHAIN
process. All input that is expected bV the
program must be in the intermediate file.

6.6 Resuming an Aborted CHAIN Process

If a CHAIN process is aborted during the execution phase
for any reason. the CHAIN process can still be restarted.
Since the intermediate file is not deleted until the CHAIN
process has been successfully completed. this capability
eliminates the need to recompile the original CHAIN file.

The special CHAIN command line:

CHAIN *

will restart the execution phase with the line last fetched
from the intermediate file (the line that caused the error).
For example, if an assembly has been invoked bV the CHAIN
process for which a duplicate obJect file exists, the CHAIN
process ",i 11 normally be aborted. The operator could then
manually delete the duplicate file name and restart the CHAIN
process with the above special form of the command line.

If the failing command can never
line of the intermediate file can be
one used to resume the aborted CHAIN.
following special command line:

CHAIN N*

succeed. the current
bypassed, and the next

process by using the

If the next line of the intermediate file has been intended
as a kevin response for the proQram (which Just failed), the~
the process will generally abort againimmediatelv. BV using
the "N*" form of the special command line several times, the
invalid step can usually be bypassed and the CHAIN process
resumed at a valid MDOS command line.

Page 06-l

CHAIN COMMAND 6.6 -- Resuming an Aborted CHAIN Process

The Error Status Mask and the current state of the CMD
operator are lost when a CHAIN is aborted. These values
cannot be restored when an aborted CHAIN process is
restarted.

6.7 Examples

The following example shows a fairly complex CHAIN file
that incorporates most of the features described in this
chapter. This CHAIN file is used to assemble and create
loadable files of a system of program files that resides on
multiple diskettes. The primary assumption made is that an
MDOS system diskette is on drive zero and that the source
programs will be on drive one (although not all at the same
time >.

In this example the CHAIN process will display messages
to the operator if no parameters are supplied. It will also
display messages that indicate what path the compilation
phase is taking, based on the passed CHAIN tags.

lIFe ASH. LOAD
1*
1* THIS CHAIN REGUIRES AT LEAST ONE OF THE FOLLOWING
1* PARAMETERS:
1*
1* ASM -- CHAIN FOR ASSEMBLIES
1* LOAD CHAIN FOR PRODUCING MEMORY-IMAGE FILE
1*
1* AND ONE OR MORE OF THESE PARAMETERS:
1*
1* D1, D2 -- DISK 1 and DISK 2
1* ALL ALL FILES ON ALL DISKS
1* <name:> -- NAME OF FILE
1*
1* THE FOLLOWING ARE OPTIONAL PARAMETERS
1*
1* OPT -- ASSEMBLER OPTIONS
1*
IABORT
IELSE
I IFS ASM
1* CHAIN FOR ASSEMBLING PROGRAMS
I XIF
I IFS LOAD
1* CHAIN FOR MEMORY-FILE CREATION
1 XIF
IXIF
@SET,M B
IIFS ALL,Dl,PROG1,PROG2
@. INSERT DISK 1 INTO DRIVE 1 -- DEPRESS ANY KEY WHEN READY
1 IFS ALL, Dl,PROGl
1* PROGRAM PROGl

Page 06-17

CHAIN COMMAND

I IFSASM
DEL PROG1.RO: 1
RASM NOL,EGU,LIS,PROGl: liR'Y.OPT'Y.O=PROG1:1
I XIF
I IFS LOAD
@TST,S EO
@'-'MP SIU PPQM 1
DEL PROG1.LO: 1
RLOAD
IDONiBASEi CURP=\\$100i LOAD=PROG1:1
OB'-'Ai:::PROGl:l
CURP=\\$100iLOAD=PROG1:1
MO=4tLPiMAPF
EXIT
@LBL SKIPPGMl
I XIF
I XIF
I IFS ALL, Dl, PROG2
1* PROGRAM PROG2
I IFS ASH
DEL PROG2.RO:l
RASH NOL,EOU,LIS,PROG2: 1;RXOPTXO=PROG2:l
I XIF
I IFS LOAD
@TST,S EO
c!'-'MP ENDl
DEL PROG2.LO:l
RLOAD
I DONi BASEiCURP=\\$lOOiLOAD=PROG2:1
OB.JA=PROG2:l
CURP=\\$100iLOAD=PROG2:1
MO=#LPiMAPF
EXIT
@LBL ENDl
I XIF
I XIF
IXIF
IIFS ALL,D2,PROG3,PROG4

6.7 -- Examp h~l

@. INSERT DISK 2 INTO DRIVE 1 -- DEPRESS ANY KEY WHEN READY
I IFS ALL,D2,PROG3
1* PROGRAM PROG3
I IFS ASM
DEL PROG3.LX:l
RASH PROG3:1;'Y.OPTX
I XIF
I IFS LOAD
@TST,S EO
@'-'MP SKIPPGH3
DEL PROG3.LO:l
EXBIN PROG3: 1
@LBL SKIPPGM3
I XIF
I XIF
I IFS ALL,D2,PROG4

Page 06-1~

CHAIN COMMAND

/* PROGRAM PROG4
/ IFS ASM
DEL PROG4.LX: 1
RASM PROG4:1i%OPT%
/ XIF
/ IFS LOAD
@TST,S EG
@JMP END2
DEL PROG4.LO:l
EXBIN PROG4: 1
@LBL END2
/ XIF
/ XIF
/XIF

6.7 -- Examples

The tags ALL. Dl, D2, PROGI. PROG2. PROG3, and PROG4 are
used to identify which programs from the system of programs
are to be selected by the CHAIN process. All programs from
all diskettes can be selected by specifying ALL. A specific
program can be selected by specifying its name: either
PROG1, PROG2, PROG3, or PROG4. All programs on a specific
diskette can be selected by specifying Dl or D2.

The tags ASM and LOAD are used to select what process
the programs will go through. ASM specifies the programs
will be assembled. LOAD specifies link/loading or obJect
file conversion via EXBIN.

It should be noted that nested IFs have been indented
(spaces between slash and IF) to indicate their level of
nesting. This is optional, but makes the CHAIN file easier
to understand. Prior to the assembly and link/load or obJect
file conversion processes. a DEL command has been placed to
ensure that the output file from the process does not exist.
The first time that the CHAIN file is used. the DE.L cOlllmand
will cause an error to occuri however, the SET operator has
been used to inhibit CHAIN process aborting.

The TST operator is used after each assembly process to
check for errors. If an error occurred, then the error
status word will be non-zero in the portion indicated by the
ItS" deSignator. Thus, the test condition for being eQ.ual to
zero will be false, causing the JMP to be executed.
Therefore, if assembly errors occur. the link/load or obJect
file conversion process will be bypassed since it would only
generate an unusable file.

It should also be noted that the backslash character is
used in the RLOAD command CURP. Thus. the CHAIN forcing
character, which is also a backslash. must be entered.

The Operator Breakpoint is used to pause the CHAIN
process. This allows the operator time to insert the proper
diskette into drive one. Otherwise, if all programs from all

Page 06-19

CHAIN COMMAND 6. 7 -- Examp 1E

diskettes were to be assembled, there might not be sufficient
time for the operator to swap diskettes.

The following example illustrates what is displa~ed on
the s~stem console when the CHAIN is invoked without an~
parameters. Since this would produce an empt~ intermediate
file, the condition is tested for and an appropriate message
displa~ed. The name of the CHAIN file in the director~ is
SYSGEN. CF.

=CHAIN SYSGEN
THIS CHAIN REOUIRES AT LEAST ONE OF THE FOLLOWING
PARAMETERS:

ASM -- CHAIN FOR ASSEMBLIES
LOAD CHAIN FOR PRODUCING MEMORY-IMAGE FILE

AND ONE OR MORE OF THESE PARAMETERS:

Dl, D2 -- DISK 1 and DISK 2
ALL ALL FILES ON ALL DISKS
<name> -- NAME OF FILE

THE FOLLOWING ARE OPTIONAL PARAMETERS

OPT -- ASSEMBLER OPTIONS

=

The next example uses the same CHAIN file again;
however, this time the parameters for assembling (ASH),
memor~-image file creation (LOAD), and processing all files
in the s~stem (ALL) are specified. In addition, the options
field of the assembler will be initialized with the value
"LX" to produce a listing and a cross reference table on the
line printer.

=CHAIN SYSGENiASM,LOAD,ALL,OPTXLXX
CHAIN FOR ASSEMBLING PROGRAMS
CHAIN FOR MEMORY-FILE CREATION
PROGRAM PROGl
PROGRAM PROG2
PROGRAM PROG3
PROGRAM PROG4

@SETFOFF 0800
@. INSERT DISK 1 INTO DRIVE 1 -- DEPRESS ANY KEY WHEN READY
DEL PROG1. RO: 1
PROGl .RO:1 DELETED
RASM NOL,EOU,LIS,PROG1:1iRLXO=PROG1:1
MOOS MACROASSEMBLER 03.00
COPYRIGHT BY MOTOROLA 1977

@TST,FOOO 0000 0027
@,)MP 2F29

Page 06-:;;

CHAIN COMMAND

DEL PROG2.RO:l
PROG2 .RO: 1 DELETED
RASM NOL., EGU, LIS. PROG2: 1;RLXO=PROG2: 1
MDOS MACROASSEMBLER 03.00
COPYRIGHT BY MOTOROLA 1977

@TST,FOOO 0000 0027
@JMP 2F33

6.7 -- Examples

@. INSERT DISK 2 INTO DRIVE 1 -- DEPRESS ANY KEY WHEN READY
DEL PROG3.LX: 1
PROG3 .LX: 1 DELETED
RASM PROG3: 1iLX
MDOS MACROASSEMBLER 03.00
COPYRIGHT BY MOTOROLA 1977

@TST,FOOO 0000 0027
@JMP 2F41
DEL PROG4.LX: 1
PROG4 .LX:1 DELETED
RASM PROG4: 1iLX
MDOS MACROASSEMBLER 03.00
COPYRIGHT BY MOTOROLA 1977

@TST.FOOO 0000 0027
@JMP 2F4B
END CHAIN
=

From the example above, it can be seen that even though
the LOAD parameter was entered on the CHAIN command line, the
process to create memory-image files was not performed. This
resulted from the fact that the assembly process generated
errors in each program. Had no errors occurred, the
memory-image files would have been created. The operands of
the Execution Operators have been converted into hexadecimal
codes during the compilation to make it easier for the
execution phase overlay to process the intermediate file.

The last example uses the same CHAIN file againi
however, this time only a single program is processed, PROG3.
The operator does not need to know on which diskette this
program resides. The Operator Breakpoint is used to notify
the operator when a diskette is to be inserted into drive
one. In this example, no errors occurred during the assembly
process since the memory-image file is created.

Page 06-21

CHAIN COMMAND

=CHAIN SYSGENi ASM. LOAD, PROG3, OPTXLN=120X
CHAIN FOR ASSEMBLING PROGRAMS
CHAIN FOR MEMORY-FILE CREATION
PROGRAM PROG3

(tSET FOFF 0800

6.7 -- Example!

(t. INSERT DISK 2 INTO DRIVE 1 -- DEPRESS ANY KEY WHEN READY
DEL PROG3.LX:1
flROG3 . LX: 1 DELETED
RASM PROG3:1;LN=120
MDOS MACROASSEMBLER 03.00
COPYRIGHT BY MOTOROLA 1977

(tTST, FOOO 0000 0027
DEL PROG3.LO: 1
PROG3 . LO: 1 DELETED
EXBIN PROG3:1
(tLBL 2F29
END CHAIN
=

Page 06-2~

CHAPTER 7

7. COPY COMMAND

The COpy command allows files to be copied from one
diskette to another, from a diskette to another device. or
from another device to a diskette. It is not possible to
cop~ files between two non-diskette devices with the COPY
command. Options exist for cop~ verification and for the use
of non-standard devices.

7. 1 Use

The COPY command is invoked with the following command
line:

COPY <name l>[,<name 2>] [;<options>J

where <name 1> is the name of a source file or source device,
<name 2> is the name of a destination file or destination
device, and <options> ma~ specif~ the type of copying that is
to be performed. The following options are valid. Their use
is described explicitly in the next sections:

Option

B

C

D=<name 3>(, J

L

M

N

Function

Perform both the copy and the verify
processes when copying between two
diskette files.

Use binary record conversion during
the copy to a non-diskette device.

Use a user-defined device driver
instead of a standard MDOS-supported
device driver during the cop~ or
verif~ process. The driver is
located in a diskette file <name 3>.

List errors on the line printer
during file verification.

Go to debug monitor after loading
user-defined device driver file.

Use non-file format mode for the
non-diskette device.

Page 07-01

COpy COMMAND

v

W

7.1 -- U1

Verify source and destination files.
No copy is performed.

Use automatic
destination file
diskette.

overwrite
already exists

if
on

7. 1. 1 Diskette-to-diskette copying

In order to copy one diskette file into another, both
<name 1> and <nama 2> must be specified. Th~ source file
name specification, <name 1>, will be supplied with the
default suffix "SA~ and the default logical unit number zero
if those quantities are not explicitly given. The
destination file name sp$cification, <name 2>, need only be
specified with a file name, a suffix, or a logical unit
number (or any combination thereof); however, at least one
part of <name 2>'s file name specification must be entered.
The unspecified parts of <name 2> will be supplied from the
respective parts of <name 1>. Thus, if TESTPROG.SA:O is to
be copied to the diskette on drive one, then only the logical
unit number need be specified for <name 2>, since the file
name and suffix will be supplied from <name 1>:

COpy TESTPROG,:l

In this example the default values were first supplied for
<name 1>, and then the default values supplied for <name 2>.
There is no restriction in file format when copying from one
diskette file into another.

Only the "S", "L", "V" and the "W" options are valid
when copying between two diskette files. The "V" and "S"
options, as well as the "V" and "W" options, are mutually
exclusive. The "L" option is valid only valid with "V" or
"S". The "W" option is used to allow the destination
diskette file to be overwritten if its file name already
exists. If, in the above example, the file name
TESTPROG.SA: 1 already existed, then COPY would have displayed
the message

TESTPROG.SA:l EXISTS. OVERWRITE?

and await a response from the operator. A "V" response would
allow the COpy process to continue, and the file on drive 1
would be overwritten. Any other response would cause the
COPY command to be terminated, and the destination file would
be unaffected. The "W" option's presence will force the COpy
command to attempt the copy if the destination file name
exists, without. prompting the operator.

The other options are explained in subsequent sections.

Page 07-C

COPY COMMAND 7. 1 -- Use

7.1.2 Diskette-to-device cOP'Jing

If a diskette file is to be copied to another device,
both <name 1> and <name 2> must be specified on the command
line. The default assumptions for the source file are the
same as in diskette-to-diskette copying; however, <name 2>
must now indicate a destination device rather than a file.
The following are valid device specifications that can be
used for <name 2>:

Device
Name Associated Physical Device

#CN Console printer
#CP Console punch (record) device
#LP Line printer
#UD User-defined device

Unlike diskette-to-diskette copying, where <name 1>
could be the name of any diskette file, <name 1> can only be
an ASCII or binary record file (see section 24.3). Thus, not
ever'J diskette file can be copied to a non-diskette device.
If memory-image files are to be copied to a non-diskette
device, then they must first be converted via the BINEX
command (Chapter 4).

There are two modes for copying files to a non-diskette
device: file format mode and non-file format mode. The file
format mode is the default mode that the COPY command uses.
The file format mode will write one extra record to the
device before any data records are copied From the file.
This special record is called the File Descriptor Record
(FOR) and serves the same purpose as a directory entry for
diskette files: the FOR contains the diskette file's name,
suffix and file format (see section 24.3). The "N" option
inhibits the writing of the FDR to the output device, and is
used to indicate the non-file format mode. Thus, if an FDR
is to be written to the output device, the "N" option should
be omitted; if an FDR should not be written, the "N" should
be specified.

The output devices #CN and #LP can be used as the
destination device in the diskette-to-device copy mode.
However, the presence of the "N" option on the command line
when copying to these devices has no effect. The #CN and #LP
devices are not "file" devices since no FDR could ever be
read from them. Thus, the COPY command will automatically
force the non-file format mode to be in effect and suppress
the writing of the FDR.

Some output devices cannot support eight-bit binary
data. In such instances, the "C" option must be used when

Page 07-03

COpy COMMAND 7. 1 -- Use

binar" record files are being copied. The "C" option 'trIill
cause the binar" data to be converted into seven-bit ASCII
data (see section 24.3) which can be handled by the device.
The following table shows what the destination file format
will be. based on the file format of the source file and the
options specified:

Source File Destination File

ASCII ASCII.

Binar", no "C" Binar\l, if supported b" devicei else
ASCII-converted-binar".

Dinar", "C" ASClI-converted-binar".

In the non-file format mode (liN" option specified), onl"
ASCII record files can be copied.

The "V" and ilL" options are valid in this cop" mode.
The "W" and "Btt options are invalid since no diskette file is
being written to. The "D" and "M" options can be used, but
on1" if the device .UD is specified far <name 2> (see section
7.2),

7.1.3 Device-to-diskette cap"ing

If a file is to be copied from anather device to the
diskette. then <name 1> is re~uiredi hawever. depending an
the cop" mode chosen (file farmat ar non-file format) <name
2> is optional. If the file format mode is to be used (na
"N" option specified), then <name 2> can be omitted. In such
cases, the file name to be used for the diskette file is
taken out of the FDRi however, if <name 2> is specified
(still no "N" option), the source device will be read until
an FDR is found that matches <name 2> befare the cop" takes
p lace. In other words, in the fi Ie format mode, <name 2>
indicates the name of the file on the device which will be
capied to diskette. The name of the file can ani" be changed
with the NAME command (Chapter 20) after the file has been
copied to diskette.

If the "N tt option is specified, then na FDR processing
will be perfarmed. Therefare, <name 2> must indicate the
diskette file that is to be written to.

In either case ("N" option 01' no liN" option), <name 1>
will specif" the source device, and <name 2> will specif" the
destination diskette file. The default values "SA" and zero
will be supplied for <name 2>'s suffix and logical unit
numb.r, respectivel", if the~ ar~ not explicitl" entered bV
the operator. The valid device specificatians that can be

Page 07-0~

COPY COMMAND

used for <name 1> are:

Device
Name

#CR
#UD
#HR

Associated Physical Device

Console reader device
User-defined device
EXORtape (see section 7.6)

Only ASCII record files can be copied using the "N"
option. If paper tapes or cassettes have been generated in a
non-MDOS environment, they must conform to the MDOS format
for ASCII record files (section 24.3>' Most important is the
record termination sequence. Each record must end with a
carriage return, line feed, and null character combination.
Otherwise, leading data characters from the subsequent record
can be dropped. Next in importance is the end-of-file
indicator. The tape should contain the ASCII end-of-file
record (section 24.3) or generate a timeout condition
(section of erased or blank tape) to cause the console reader
to stop.

If binary records are to be copied, then the file format
mode must be used. The binary record copied to diskette will
always be in the binary format, never in the
ASClI-converted-binary format. The FDR contains the format
of the file on the device. Thus, the conversion from
ASClI-converted-binary to binary is performed automatically.
The "c" option, therefore, is invalid with this form of the
COPY command.

The "W" option can be specified to automatically
overwrite the diskette file «name 2» if it already exists.
The "D" and "M" options are only valid if <name 1> is the #UD
device. The liB" option is invalid, but the "V" and "L"
options are valid. The "L" option can only be specified if
"V" is specified.

7.1.4 Verification

The "V" option can be used to compare two files against
each other. No file copying will take place if this option
is specified. The "V" option is valid with all three modes
of the COPY command: diskette-to-diskette,
diskette-to-device, and device-to-diskette. If, however, a
device specification is being used for either <name 1> or
<name 2>, it must be a device that supports input. For
example, even though a file from diskette can be copied to
the line printer or the console punch, the "V" option is
invalid for those specific devices.

The verification process will display the message

Page 07-05

COpy COMMAND 7. 1 -- U

VERIFY IN PROGRESS

while the verification is taking place. If the files being
compared are toth diskette files, then the parts of the files
that do not compare will be displayed in the following
format:

SECTOR nnnn
OFFSET xx SRC-yy DST-zz

where "nnnn" is the logical sector number of the file, "xx"
is the offset into the sector. "yy" is the source file's byte
«name 1», and "zz" is the destination file's byte «name
2>>' All values are displayed in hexadecimal.

If memory-image files are being
files' RIBs will also be included in the
ensure that the load information matches.

compared, then the
verifv process to

In the event that only a sector number is displayed
during the verify process (no byte discrepancies shown), then
the two files are of different lengths. The files are
identical through the end-of-file of the shorter file. The
sector number displayed is one sector beyond the end-of-file
of the shorter file.

When verifying a diskette file with a non-diskette file,
the. mis-comparisons between the two files are displayed in a
slightly different format as shown below:

RECORD mmmmm
OFFSET kkk SRC-VV DST-zz

where "mmmmm" is the physical record number in the diskette
file (in decimal), "kkk" is the offset within the record
(also in decimal), and " yy " and fiZZ" are the same as
described above. If the two files being compared are of
different lengths, and if they are identical through the
end-of-file of the shorter file, then the offset portion of
the error message will not be printed.

The "L" option can be used in conJunction with the "V"
option to cause the mis-comparisons between the two files to
be printed on the line printer instead of the console.

7.1.5 Automatic verification

The "B" option can be used when copying from one
diskette file to another to automatically cause the two files
to be verified after the copy has taken place. Section 7. 1. 1
describes the copy process between two diskette files.
Section 7.1.4 describes the verification process.

Page 07-

COPY COMMAND 7. 1 -- Use

For example, the following command line:

COPY TESTPROG,: liB

performs exactly the same function as the following two
command lines:

COpy TESTPROG. : 1
COPY TESTPROG,: l;V

The "L" option can be specified along with the "B"
option to cause any errors during the verification process to
be printed on the line printer instead of the console.

7.2 User-Defined Devices

The COpy command allows the user to specify his own
device drivers. Such device drivers must follow the
specifications described in this section. The device name
#UD is used on the COPY command line to indicate that a
user-defined device driver is specified in the options field.
The "D" option is used to pass the file name of the device
driver to the COPY command. The "D" option has the following
format:

D=<name 3:>[, J

where the terminating comma is optional. If the "0" option
is the last option specified, then the comma need not be
supplied; however, if other options follow the "D" option,
then the comma must be present to serve as a terminator for
the file name specification of the device driver.

The device driver must be in a file that has the
memory-image format. <name 3> is a complete file name
specification. The default values of "La" and zero will be
supplied for the suffix and for the logical unit number. The
device driver must meet the requirements set forth in section
26.2 for entry points, for calling sequences, and for return
conditions. In addition. the following criteria must be
satisfied:

1. The first twelve bytes of the device driver
must contain the Controller Descriptor Block
(CDS) for the device (Chapter 26).

2. The device driver must not overlay the COpy
command. It is suggested that the device
driver load as close to the end of the COpy
command as possible. This address should be
$3000.

Page 07--0~

COPY COMMAND 7.2 -- User-Defined Devices

It may be necessary to set breakpoints in the
user-defined device driver to ensure that it is working
properly.· The tiM" option will cause the COPY command to
enter the debug monitor after the device driver has been
loaded into memory. This feature is especially useful during
the initial testing of the device driver.

The "M" option cannot be used without the "D" option.
If the "M" option is present, the debug monitor will display
one of the following messages depending on the version of the
EXbug firmware. The first message is displayed by EXbug 1,
the second by EXbug 2:

BJ.(.PT ERROR
P-2126 X-2161 A-OD B-80 C-CO S-226F

*
SWI P-2126 X-2161 A-OD B-80 C-CO S-226F
*E

These messages indicate that the user-defined device driver
has Just been loaded into memory. The actual numbers in the
pseudo-registers may differ and are inconse~uential. The
purpose of going to the debug monitor is to allow the user to
set breakpoints at critical places in the device driver to
verify that it is working properly. After the breakpoints
are set, control- is returned to the COpy command by entering
the EXbug command

iP

Then, when the user-defined device driver is accessed by the
COpy command, the set breakpoints will allow the user to
check the device driver's functions.

7.3 COpy Mode Summary

The following table summarizes the re~uirements for the
three COPY command modes. The following symbols are used in
the tab Ie:

Symbol

DK-DK
DK-DV
DV-m~

R
o
F
D

Meaning

Diskette-to-diskette copying
Diskette-to-device copying
Device-to-diskette copying
Re~uired
Optional
File name
Device name

Page 07-0e

COpy COMMAND

COpy
Mode

OK-OK

OK-DV

DV--Dl-"

Valid
Options

B,L,V,W

C,D,L,M,N,V

O,L.M,N.V.W

<name 1> <name 2>

R,F R,F

R.O O.F

7.3 -- COpy Mode Summary

Restrictions

V and W options are
mutually exclusive. V
and B options are
mutually exclusive.
L is only valid with
V or Bo

N option implies
ASCII record format.
C option implies
binary record format.
o option implies #UD
device name. V
option implies input
device. L option is
only valid with V.

D option implies #UO
device name. V
option implies input
device. Wand V
options are mutually
exc lusive. N option
requires <name 2>.
<name 2> causes
search for FOR on
device if no N
option. L option is
only valid with V.

7.4 Messages

The following messages can be displayed by the COpy
command. Not all messages are error messages. although error
messages are included in the list. The standard error
messages that can be displayed by all commands are not listed
here.

<name> EX ISTS. OVERWRITE?

The file named by <name> already exists in the
directory. Before overwriting the file, the
op erator must respond wi th a "Y". Any other
response will terminate the COpy command.

VERIFY IN PROGRESS

The "V" or "B" option was specified on the
command I ine. The two fi les are being compared.

Page 07-09

COpy COMMAND

SECTOR nnnn

RECORD mmmmm

7.4 -- Messag

T~o diskette files did not compare during the
verify process. "nnnn" indicates the logical
sector number (hexa~ecimal) of the failure.

Two files did not compare during the verify
proc.s.. One file is on diskette. the other file
is not. "mmmmm" indicates the physical record
number (decimal) in the diskette file where the
failure occurre~. The LIST command (Chapter 17)
can be used to display the records in a file with
their physical record numbers.

OFFSET {xx or kkk} SRC-yy DST-zz

7.5 Examples

This message indicates which bytes within a
logical sector or within a physical record of the
two files being compared do not match. The
offset "xx" is hexadecimal if comparing diskette
fi les. The offset .. k kk" is dec imal if comparing
a diskette file with a non-diskette file. The
byte in the source file is shown as "yy". The
byte in the destination file is shown as "zz".

The following examples have been separated into the
three COpy modes as illustrated in the table of section 7.3.

7. 5. 1 Diskette-to-diskette example

The following command line

COPY PROQS.RO:2 •. RN:I

will copy the file PROQS.RO from drive two into the file
PROQS.RN on drive one. A user response is re~uired to
continue the copy if the file on drive one already exists.
The user response can be suppressed. regardless of whether
the file on drive one exists. by adding the "W" option as
shown:

COPY PROQS.RO:2 •. RN: liW

No error results if the file on drive one does nat exist. In
either case. if the logical unit number had been omitted from
the <name 2> specification. the file wauld have been created
on drive two.

Page 07-

COpy COMMAND 7.5 -- Examples

The next example illustrates the display of the bytes
which do not compare when two files are compared with the "V"
option.

=COPY BLAKJACK: 1, :OiV
VERIFY IN PROGRESS
SECTOR 0000

=

OFFSET 10
OFFSET 11
OFFSET 12
OFFSET 13
OFFSET 14
OFFSET 15
OFFSET 16
OFFSET 17
OFFSET 18
OFFSET 76
OFFSET 77
OFFSET 78
OFFSET 79

7.5.2 Diskette-to-device example

The following command line

SRC-31
SRC-34
SRC-2B
SRC-54
SRC-53
SRC-31
SRC-38
SRC-OD
SRC-2B
SRC-45
SRC-4C
SRC-53
SRC-45

COPY TEXT,#CP

DST-02
DST-03
DST-04
DST-05
DST-06
DST-07
DST-08
DST-09
DST-OO
DST-55
DST-66
DST-77
DST-88

will copy the file TEXT. SA from drive zero to the console
punch (record) device. The punch device must be ready to
receive data before the command line is entered. Since no
"N" option was specified, an FDR record will be written
before any data records are copied.

Most h'equently, however, the user
files to the console punch for loading via
command. In such cases, the FDR should not
punch device. Then, the following command
used:

COPY TESTPROG.LX,#CPiN

will copy object
the EXbug LOAD

be written to the
line should be

where TESTPROG.LX is the output file from an assembly process
(in the EXbug-loadable format). The "N" option suppresses
the writing of the FDR. If the TESTPROG.LX file had a
non-ASCII file format, then an error message would have been
displayed.

The next example illustrates how source listings that
have been directed to diskette by the assembler (RASM) can be
printed on the line printer. Since the file already contains
page formatting, the LIST command would cause the printed
copy to look strange since LIST imposes its own page

Page 07-11

COPY COMMAND 7.5-- Examples

formatting. Thus, the Copy command should be used to print
source listings from diskette:

COPY TESTPROG.AL,ttLP

The console printer, .CN, could be
as well. The "N" option is not used
the printer (either .LP or .CN)
Copying to a "non-file" device will
non-file format mode. If the "N"
such a case, no erro~ would result.
redundant re~uest.

used instead of #LP Just
in this example because
is not a "file" device.
automatically set the

option were specified in
It would only be a

The last example illustrates how the command line would
appear if a user-defined device driver is used:

COPY TESTPROG.LX,#UDiND=TAPE

The user device is indicated via the #UD. The liD" option
must be present. Otherwise, an error would result. The file
TAPE.LO on drive zero will be used as the device driver file
for the user device.

7.5.3 Device-to-diskette example

Once a file has been copied to the console punch with an
FDR, it can be verified or copied back to diskette without
having to specify its name. The following command line:

COPY #CR

will cause COPY to search for the first FOR on the console
reader device. Once it is found, the file name contained in
the FDR will be used for <name 2>. If the file name does not
exist in the directory, it will be created before receiving
the data records from the console reader. If the file name
already exists in the directory, a message will be displayed
by the COPY command asking the operator if the file should be
over ... ri tten.

The command line

COPY.CR,TESTPROG.LX;VL

on the other hand, will search the console reader device for
an FDR that contains the file name TESTPROG.LX. The same
file name must also exist in the directory of the diskette in
drive zero so that the verification can take place. Anv
mis-comparisons between the two files will be printed on the
1 ine printer.

If the user has files in a format that can be read by
the console reader device, but which have no FDR, the "Nil

Page 07-1«2

COPY COMMAND 7.5 -- Examples

option must be used to copy those files to diskette:

COPY 4tCR,FILEliN

In this example, the file indicated by <name 2> will receive
the data from the console reader. No search is performed for
an FDR. If the file is on paper tape, then it must be in a
format that is compatible with the MDOS ASCII records
(section 24.3>' That is, a carriage return. line feed, null
sequence must terminate each record. Otherwise. one or two
data characters from the subsequent records may be lost.
This results from the fact that the detection of a carriage
return forces the device driver to turn off the reader. In
the amount of time it takes to turn the reader off. one or
two frames (characters) may have passed by the read head.

The following example illustrates how a user would set
breakpoints in his device driver to verify that it is
performing the functions of a driver as specified in section
26.2. The example shows EXbug 1 as the debug monitor:

=COPY 4tUD,TESTiNMD=DRIVER
BKPT ERROR
P-2126 X-2161 A-OD B-80 C-CO S-226F
*3056iV
*3064iV
*3082iV
*;P

The EXbug monitor is given control after the user's driver
file, DRIVER. LO:O, has been loaded into memory by the COPY
command. The user then sets three breakpoints (the addresses
for the breakpoints are, of course, meaningless in this
example -- they serve only to illustrate that breakpoints are
set). The HiP" command then returns control to the COPY
command. When one of the breakpoints is reached during the
execution of the COPY command. the normal breakpoint display
will be seen. At that point, the user can examine registers.
memory, etc., to ensure that his driver is functioning
properly.

7.6 COPY with EXORtape Reader

tape
tape
the

The COPY command will provide users with EXORtape paper
read ers an ad d it i ona I devi c e typ e. Users wi th paper

readers that are similar to the EXORtape can also use
COpy command without the requirement of a user-defined

device driver.

The EXORtape reader interfaces through a PIA on the
EXORdisk I interface module. The following steps must be
followed to permit the EXORdisk I Interface Module to be
accessed by the COPY command.

Page 07-13

COPY COMMAND 7.6 -- COPY with EXORtape Read

1. No boards may reside in the EXORciser that
respond to addresses at locations $EOOO-E7FF,
inc lusive.

2. The M68IFC's base address must be changed via
the five-position microswitch so that:

3.

85 is closed,
84 is closed,
83 is closed,
82 is open,
81 is open.

The M68IFC must
EXORciser's card
entire system.

be inserted into the
cage with power off on the

4. The EXORtape should then be connected via its
cable to P3 of the Interface Module. The
COPY command can now use the EXORtape reader
as an input device through the device name

#HR

in all instances that an input device is
valid.

For users without the M68IFC but with a compatible paper
tape reader (see "M68R680 EXORtape User's Guide"), a standard
PIA interface can be used if the PIA is configured to the
address $E404.

Page 07-

CHAPTER 8

8. DEL COMMAND

The DEL command is used to remove MDOS file names from a
directory and to deallocate all space that belongs to the
deleted entry. A single file name. a list of file names. or
a family of file names may be deleted with a single command.

8. 1 Use

The DEL command is invoked with the following command
line:

DEL [<name 1> (•.... ,<name n>]J [;<options>J

where each <name i> (i = 1 to n) can specify a specific file
name or a family of file names. The <options> field can be
one or both of the following option letters:

Option Function

S When family name specifications are used
include entries in the directory with the
"system fl attribute.

y Automatically delete all file names of a
family. Do not ask the operator if each
member of the family should be deleted.

The list of file names specified on the command line is
processed from left to right. As the list is processed, the
file names are searched for in the directory specified by the
logical unit numbers. If no logical unit number is
explicitly entered by the operator. zero will be supplied as
a default. No default suffix is supplied.

File names which are deleted by accident via the DEL
command may be restored if no other commands that affect the
directory or the allocation table have been run after the
deletion. The REPAIR command description (Chapter 22)
contains an example of the procedure that must be followed to
restore such file names. It is recommended, however. that
files be configured with delete protection or that adequate
backup copies be kept as an alternative to restoring file
names in this manner. especially since this restoration will
only work if the error is detected immediately after the file
name is deleted.

Page 08-01

DEL COMMAND 8. 1 -- USE

8.1.1 Single file name deletion

A single file name is deleted by specifying its name as
the only parameter on the command line. Both the file's name
and suffix must be supplied by the operator. If the file
name is not found in directory of the indicated (or default)
driVe, the message

<name> DOES NOT EXIST

will be displayed. If the file name is found in the
directory and if the file is unprotected. the message

<name> DELETED

will be
deleted.

displayed to verify that the file name has been
If the file is protected, the message

<name> IS PROTECTED

wi 11 be shown. In this case, the file name is not deleted.

B. 1.2 Multiple file name deletion

Multiple file names can be deleted by specifying more
than one name on the command line. Multiple file names must
be separated by commas or some other valid delimiter. Like
single file name deletion, multiple file name deletion will
cause one message to be displayed for each file name entered
on the command line to indicate whether it was deleted,
whether it did not exist. or whether it was protected and
could not be deleted. As many file names as can be
accommodated on the command line can be deleted at one time.

B. 1.3 Family deletion

In either the single or the multiple file name modes, a
file name specification can contain the family indicator.
The family of file names specified by such a designation will
then be considered for deletion. Unlike the single and
multiple file name modes. the operator will be prompted with
the message

DELETE <name> ?

for each file name that b.longs to the family. This permits
the operator to see all faMily members before they are
deleted. A "Y" response to the above prompt will cause the
file name to be deleted. Any other response will inhibit
deletion of that family member. Protected file names within
the family will be displayed with the standard protection

Page 08-0~

DEL COMMAND 8. 1 -- Use

message indicating that they cannot be deleted.

Without the presence of any options, only file names
lacking the "system" attribute will be considered as eligible
for deletion in the family mode.

A special case of the family mode is the absence of any
file name specification. In this case, the DEL command
processes the command line as if the following file name
specification had been given

.:0

which will make all non-system file names on drive zero
eligible for deletion.

A logical unit number may be entered on the command line
as the only part of the file name specification. In this
case, the family *. * will be eligible for deletion. Instead
of the default drive, however, the operator entered logical
unit number will be used.

8.2 Options

The "S" option is used to include file names with the
system attribute in the family mode of deletion. Normally,
the family mode excludes such file names. The "s" option has
no effect in the single or multiple file name modes.

The "V" option will inhibit the DEL command's prompt
asking if each family member is be deleted. The effect of
specifying the "V" option is to give an automatic "V"
response to the prompt; however, neither the prompt nor the
automatic response are displayed. The deletion messages
indicating which members of the family were deleted or
protected will still be shown.

The "V" and "S" options can be used concurrently.

8.3 Messages

The following messages can be displayed by the DEL
command. Not all messages are error messages; however, error
messages are included in the list. The standard error
messages that can be displayed by all commands are not shown
here.

<name> DOES NOT EXIST

This message is displayed for each file name on
the command line that is not found in a
directory.

Page 08-03

DEL COMMAND 8.3 -- Messag

<name> DELETED

This message is displayed fOT each file name that
is deleted. It is displayed in single, multiple,
OT family file name modes.

DELETE <name> ?

This pTompt is displayed wheneveT a family of
file names containing at least one membeT has
been specified on the command line. and the flV"
option is not pTesent. The opeTatoT must Tespond
with a flV" to delete each membeT of the family.

<name> IS PROTECTED

8.4 Examples

This message
cannot be
attTibutes.
multiple, OT

is displayed fOT each file name that
deleted due to its pToteetion

The message is displayed in single,
family file name modes.

To delete a single file name called TESTPROG.SA on dTive
zeTO, the following command line would be enteTed:

DEL TESTPROG.SA

The DEL command would then display the message

TESTPROQ.SA:O DELETED

afteT it has deleted the file name. To delete the thTee file
names: SCRATCH.SA on dTive one. TEST. LX on dTive two, and
PROQ.RO on dTive zeTO, the following command line would be
used. The system's Tesponses aTe also shown:

=DEL SCRATCH. SA: 1. TEST. LX:2,PROQ.RO
SCRATCH .SA:l DELETED
TEST . LX: 2 DELETED
PROQ .RO:O DELETED
=

The following command line

DEL *.SA.*.SA:l

will seaTch fOT all file names without the system attTibute
and with the suffix "SA" on dTives zeTO and one. AfteT a
file name is found, its complete name will be displayed along
with the pTompt asking if the file is to be deleted. The
opeTatoT has complete contTol oveT the deletion of any membeT
of the family since a Tesponse is TequiTed faT eveTY membeT.

Page 08-

DEL COMMAND

To delete all unprotected
without having to respond "Y"
command line could be used:

-file names on
to each prompt,

DEL :3iYS or DEL *.*:3iYS

8.4 -- Examples

drive three
the -following

In this case, unprotected file names with and without the
system attribute will be deleted.

Page 08--05

CHAPTER 9

9. DIR COMMAND

The DIR command displays MDOS file names from the
directory. The entire directory or selective parts of it may
be displayed. Options exist for displaying an entire
directory entry, its allocation information. and For
directing the output to the printer.

9. 1 Use

The DIR command is invoked with the following command
1 ine:

DIR [<name~) [i<options>J

where <name> can specify a specific file name or a family of
file names. The <options> field can be one or more of the
following option letters:

Option Function

L Direct output to line printer.

S

E

A

Include file names with the
attribute when displaying a family.

"system"

Display the entire directory entry for each
fi Ie name.

Display the associated allocation information
along with the entire directory entry.

Whenever the DIR command is invoked, regardless of
options or file name specifications, the drive number and the
ID from the diskette in the specified or default drive will
be displayed as a heading. This heading will serve to
identify the subse~uent output. The heading has the
following format:

DRIVE i DISK 1. D. xxxxxxxx

where "i" will be the logical unit number zero, one. two, or
three, and "XXXXXXXX" will be the eight-character ID that was
assigned to the diskette via the DOSGEN command (Chapter 10)
or the BACKUP command (Chapter 3).

Normally, without the presence of any options. the

Page 09-01

DIR COMMAND 9. 1 -- tJ

directory
its name
following
specified

entry specified by <name> will be searched for
and suffix displayed on the system console.

sections explain the various options that can
on the command line.

9. 1. 1 Fami lies

and
The

be

If <name> contains a family indicator in either the
suffix or the file name portion of the file name
specification, the entire family of file names will be
searched for in the directory and displayed. If no <name> is
specified at all, the default family U*. *: 0" will be used.
If only a logical unit number is specified, the family "*.*"
on the indicated logical unit will be used. If the "s"
option has not been specified, only file names without the
"system" attribute will be included in the display. This
eliminates the display of all MDOS system files and commands.

When <name> contains a family indicator (explicitlv or
bV default), the file names are displayed in the order in
which they are found in the directory. A file name's
position in the directory is a function of its name and
suffix. Appendix Q describes in more detail how names are
placed into the directorYI however, it should be noted here
that when a file's name or suffix is changed, its position in
the directory may also change. Thus, when the directory is
shown at different times, the order of the displayed names
may differ.

9.1.2 System files

File names with the "system" attribute will be included
in the output of the DIR command if the "S" option is
specified on the command line. If a specific file name is
being searched for «name> does not contain the family
indicator), then the "S" option has no effect.

The effect of the "S" option is identical to its effect
with the DEL command (Chapter 8). Thus, the same family of
file names displayed bV the DIR command will be affected by
the DEL command (if invoked with similar command line
parameters). This feature allows an operator to see ahead of
time what family of file names will be affected bV the DEL
command.

9.1.3 Entire directory entry

Normallv. DIR will only display a file's name and
suffix. The "E" option can be used to cause the entire
directory entry to be displayed. The presence of the nE n
option will cause each displayed line from the DIR command to

Page 09-

DIR COMMAND 9. 1 -- Use

look 1 ike:

FFFFFFFF.SS WDSCN# RRRR ZZZZ DD

where the symbols take on the following meanings:

Symbol

FFFFFFFF
SS
WDSCN#
RRRR
ZZZZ
DD

Meaning

File name
Suffix
Attributes
RIB address
File size
Directory entry number

The file name and suffix are. of course. obvious. The file
attributes are always displayed as a six-character field.
The presence of a letter or number in a specific position of
the attribute field indicates that the particular attribute
applies to the file. A period in a position of the attribute
field indicates that the particular attribute does not apply.
The following letters (and pOSitions) are defined in the
attribute field:

W D S C N #

File format (O=user defined.
2=memory-image.
3=binary record.
5=ASCI I record.
7=ASCII-converted-

binary record)
Non-compressed spaces
Contiguous space allocation
System file
Delete protection
Write protection

T h us, i f the II W II is dis P I aye d I the f i lei s wr i t e pro tee ted.
I f no" W" i s dis p I aye d , the f i lei s not wr i t e pro tee ted; i f
the "c" is displayed, the file is allocated contiguous space;
if no "c" is displayed. the file is segmented; etc.

The remainder of the fields of the directory entry
contain only hexadecimal numbers. The RRRR field contains
the physical sector number of the first sector of the file.
This sector is known as the file's Retrieval Information
Block (RIB). It is described in detail in Chapter 24. The
RIB contains the allocation information that describes where
the remainder of the file is located on diskette.

The ZZZZ field contains the file's size in sectors. Due
t·o the allocation scheme used by MOOS, this field will always

Page 09-03

DIR COMMAND 9. 1 -- Us

be a multiple of the basic unit of allocation (see Chapte~
24), The size is, the~efore, the phusiea! size of the file.
The logical file size, o~ the numbe~ of sectors from the
beginning to the end-of-file indicato~, may be smaller.

The DD field is an eight-bit coded field that desc~ibes
the directory ent~y's physical position within the directory.
It is interp~eted as follows:

7 6 5 4 3 2 1 o

. Position ~ithin secto~
(0-7)

. Physical sector numbe~
($3-$16)

9.1.4 Segment descripto~s

If the tlA n option is specified on the command line, then
in addition to having the entire directo~y ent~y displaved
fo~ each file name, the file's allocation info~mation will
also be shown. The allocation info~mation is contained in
the file's RIB and desc~ibes ~here each segment of the file
is located on the diskette. This info~mation is displayed
follo~ing the complete di~ecto~v ent~v. One line is sho~n
for each segment of the file. The format of the allocation
info~mation is

1515 pppp zzz

~he~e tlss" is the numbe~ of the segment
tlpppp" is the phvsical secto~ number
sta~ts the segment (hexadecimal), and "ZIZ"
the segment in secto~s (hexadecimal).
directory ent~v could appea~ as follo~s:

(0-56, dec imal),
of the secto~ that
is the size of
Fo~ example, a

FORLB .RO . DS .. 3 0490 0088 75 00 0490 080
01 0510 008

The file FORLB.RO consists of t~o segments. The fi~st
segment sta~ts in physical secto~ $490 and is $80 sectors
long. The second segment starts in physical sector $510 and
is 8 secto~s long. The file's physical size is $88 secto~s.

9.1.5 Other options

No~mally, the output from the DIR command is displayed
on the system console. The "L" option can be used to direct

Page 09-0

DIR COMMAND 9. 1 -- Use

the output to the line printer. The Tormat aT the display is
the same. Like other MDOS commands that direct output to the
line printer, the paging will be preserved by the DIR
command. Thus. once the paper in the printer has been
aligned, it will remain aligned after a directory has been
printed.

9.2 Messages

The Tollowing messages can be displayed by the DIR
command. The standard error messages that can be displayed
by all commands are not listed here.

DRIVE : i DISK I. D. xxxxxxxx

This is the directory command's heading line that
is displayed each time the command is invoked.
"i" is the logical unit number. "xxxxxxxx" is
the diskette's ID that was assigned to it when it
was generated.

TOTAL NUMBER OF SECTORS : dddd/$hhh

This message is displayed if either the "E" or
the "A" option was speciTied on the command line.
and if one or more directory entries were found.
It gives the total number of sectors that is
allocated to the files whose names are displayed.
"dddd" is the decimal value of the total. "hhh"
is the hexadecimal value of the total. This
message is displayed after all file names have
been printed.

TOTAL DIRECTORY ENTRIES SHOWN ddd/$hh

This message is shown at the end of each
directory search that found at least one file
name. It gives the total number of directory
entries included in the display. "ddd" gives the
decimal value aT the total. "hhu gives the
hexadecimal value aT the total.

NO DIRECTORY ENTRY FOUND

This message is displayed if the
on the command line does not
matches with directory entries
IT <name> contains a Tamily
message means that no members of
found on the diskette.

<name> specified
result in any

on the diskette.
ind i cator, the
that family were

Page 09-05

DIR COMMAND

NO SDW'S

9.2 -- Message

This message will only be displayed if the "A"
option is in effect and if an .invalid RIB is
found for a file. The message is displayed in
place of the segment descriptor information that
appears to the right of the entire directory
entry. When such a message is seen. it indicates
that the file has probably been damaged. Since
no segment descriptors are found in the RIB, the
file will not be accessible any longer. The
REPAIR command (Chapter 22) should be used to
check the remainder of the diskette, as well as
to remove the erroneous file.

NO TERMINATOR FOUND IN FILE'S R.1.B.

9.3 Examples

This message can only be displayed if the "A"
option ",as specified on the command line. Like
the previous message, this one indicates that a
file's RIB has been damaged. It indicates that
the terminator was missing from the RIB. The
allocation information displayed for the file is
meaningless since 56 segment descriptors have
been displayed. The file's content is no longer
accessible. The REPAIR command (Chapter 22)
should be used to check the remainder of the
diskette, as well as to remove the erroneous
file.

When the DIR command is invoked without any options on a
newly received system diskette, this is what will be seen on
the system console:

=DIR
DRIVE: 0 DISK I.D. : I1DOS0300
NO DIRECTORY ENTRY FOUND
=

A new system diskette has only file names with t.he "system"
attribute. Those file names will be excluded from the
directory search unless the "5" option is specified. Thus,
the default family *.*:0 (since no <name> was specified)
contains no members. Using the "5" option on the above
example would result in the following display:

Page 09-0

DIR COMMAND

=DIR is
DRIVE 0
BINEX .CM
LIST .CM
MDOSOVO .SY
DIR .CM
HERGE . CM
HDOSOV4.SY
HDOS . SY
MDOSOV6.SY
FREE . CM
EGU . SA
ROLLOUT .CM
DUMP . CM
EXBIN .CM
NAME . eM
MDOSOV1.SY
PATCH .CM
BLOKEDIT.CM
LOAD . CM
HDOSOV3.SY
HDOSER . SY
DEL . CM
ECHO . CH
CHAIN .CM
BACKUP . CM
REPAIR .CM
MDOSOV5.SY
DOSGEN . CM
EMCOPY . CM
COPY . CM
FORMAT .CM
TOTAL NUMBER
=

9.3 -- Examples

DISK 1. D. MDOS0300

OF ENTRIES SHOWN 030/$lE

No file attributes or file sizes are displayed since neither
the "E" nor the "A" option was specified.

If a diskette is in drive one which contains
MDOS-Supported software products (see Appendix H), the
following shows how the directory entries with suffix "CM" on
that drive can be displayed:

=DIR *.CM: liAS
DRIVE 1 DISK 1.0. : EDIT0300
ASM . CM . DSC. 2 OOBO 002C 70 00 OOBO 02C
EDIT .CM .DSC.2 0230 0018 72 00 0230 018
TOTAL NUMBER OF SECTORS : 0068/$044
TOTAL DIRECTORY ENTRIES SHOWN : 002/$02
=

Both the EDIT and ASH commands reside on drive one. From
their attributes it can be seen that those files are not
write protected, are delete protected. are system files. are

Page 09-07

DIR COMMAND 9.3 -- Examp l1u

contigouslfj allocated on diskette, and are of file format 2
(memorfj-iaage). The ASH command is located starting at
physical sector $BO and is $2C sectors long. The EDIT
command is located starting at sector $230 and is $18 sectors
long. Both files have onl.., one segment descriptor. The ASH
command's filename is the first directorfj entry in physical
sector $E (found by shifting its director.., entry number to
the right three bit positions). The EDIT command's director,
entry is in the same sector, but is the third entrfj in that
sector.

In all of the above examples, the "L" option could have
been used in addition to any other options to direct the
output from the DIR command to the line printer.

It is recommended that a copy of the director.., printout
containing the entire directorfj entry and the allocation
information be kept ~ith each diskette. Since files can
dynamically expand and contract, their location on diskette
may change. If something happens to the diskette to damage
the directory, there is no wa.., to recover any information
from it if a prior printout has not been saved. Normally.
the printout will never be needed. but as a precaution it is
indispensable.

Page 09-oe

CHAPTER 10

10. DOSGEN COMMAND

The DOSGEN command allows specialized MDOS diskettes to
be prepared. Diskettes that have bad sectors can have those
sectors locked out so that the diskette can be used in an
MDOS environment. DOSGEN will also create all system tables
and files on the generated diskette. The DOSGEN command can
be used to generate system diskettes on either single-sided
or appropriately formatted double-sided diskettes.

10. 1 Use

New single-sided diskettes, or single-sided diskettes
never before used on an MDOS system, must first be prepared
for use with MDOS. One way to generate a new MDOS diskette
is by invoking the BACKUP command (Chapter 3); however. the
BACKUP command does not perform the write/read test that can
be invoked via DOSGENi nor is there the guarantee that all
system files are copied to the destination diskette since the
operator can selectively prevent files from being copied.
Another way to generate a new MDOS diskette is by invoking
the DOSGEN command from an already up-and-running MOOS
system.

DOSGEN does not create the sec tOT' addressing
information. Single-sided diskettes usually come
pre-formatted in an IBM-3740-similar format with the
established sector addressing information. Double-sided
diskettes. however. must be formatted with the FORMAT command
(Chapter 15), since the double-sided format required by an
EXORdisk III is a non-standard single-density format. In
either case, whether single- or double-sided, other
information must be written on a new diskette in order to
make it recognizable by MDOS. DOSGEN creates the system
tables l~equired by MDOS (see Chapter 24>' These tables
include a skeleton directory; a bit map showing which sectors
of the diskette are available for space allocation; a lockout
map showing which sectors of the diskette are bad or locked
out by the user; and an identification sector containing a
name to identify the diskette, the generation date, and the
MDOS version number. The DOSGEN command also copies across
the required MDOS family of system files which must be
present on any diskette used in the MDOS environment. These
files and tables must not be moved or changed in any way
other than through the DOSGEN command and two other commands:
BACKUP (Chapter 3) and REPAIR (Chapter 22). Optionally. the
MDOS commands may be copied to the diskette.

Page 10-01

DOSGEN COMMAND 10.1 -- U1!

The DOSGEN command is invoked ... ith the follo ... ing command
line:

DOSGEN [:<unit>l [;<options>J

..,here <unit> is the logical unit number (1-3) of the drive
containing the diskette to be DOSGENed, and <options> can be
one or both of the option letters described belo ... :

Option Function

T Perform wri te/read test.

U Generate minimum system (user diskette).

If <unit> is not specified, logical unit one ... ill be
used as a default. Logical unit zero cannot be DOSGENed.

The diskette to be DOSGENed must be placed in the
logical unit specified on the command line (logical unit one,
if no <unit> ",as specified), DOSGEN will respond with the
following ~uestion asking if <unit> contains a diskette that
can be written to:

DOSGEN DRIVE <unit> ?

The response should be the letter "V", if the diskette in the
indicated <unit> is to be DOSGENed. Any other response will
terminate the DOSGEN command and return control to HODS. In
this case, the diskette in <unit> is not affected.

If a "Vat is given as a response, certain information for
the diskette's identification sector must be supplied by the
operator. This information is entered in response to the
follollling DOSGEN prompts:

Prompt Operator Input

DIS~ NAME: An alphanumeric name, a maximum of B
characters in length, ... hich will
appear on subse~uent heading lines
from the DIR and FREE commands. The
name must begin with an alphabetic
character.

DATE (MMDDVV): The date of generation in six-digit,
numeric form as indicated by the
parenthetical inset.

USER NAME: A maximum of twenty
character~ used for
information only.

displayable
descriptive

Page 10-(

DOSGEN COMMAND 10. 1 -- Use

The version and revision numbers of MDOS
automatically supplied by the DOSGEN command.

will be

The operator is then given a chance to lock out an area
of the diskette. This area will not be accessed by any MDOS
command or function since it is an allocated block without a
RIB. This permits the operator to set aside a part of the
diskette for his own use. All MDOS information must be in
files in order to be accessed by MDOS. The message

l.OCKOUT ADDITIONAL SECTORS?

is displayed to allow sector lockout. An "N" response will
cause DOSGEN to continue with the next step; no sectors will
be locked out, leaving as much diskette space as possible for
conventional file use. A "V" response will cause the
following messages to be shown:

ENTER STARTING SECTOR (HHH):
ENTER ENDING SECTOR (HHH):

The operator can respond with only a carriage return, which
wi 11 casue th e I oc k out request to be bypassed. Otherwi se,
the response must be a valid hexadecimal sector number for
each prompt. The sector numbers entered must meet the
following criteria in order te cause the specified diskette
area to be locked out:

1. The sector numbers must be hexadecimal.

2. The starting sector number must be the
physical sector number of the first cluster
to be locked out. The ending sector number
must be the physical sector number of the
last cluster to be locked out.

3. The starting sector number must be less than
or equal to the ending sector number. If the
two numbers are equal, only one cluster will
be locked out.

4. Both sector numbers must be greater than $18
and less than $7DO if generating a
single-sided diskette. or greater than $18
and less than $FA4 if generating a
double-sided diskette. In either case, the
locked out area should be located such that
the largest block of free space resides in
sectors with numbers less than that of the
start of the locked out area.

DOSGEN will then write the ID sector, an initialized
allocation table. a lockout table. an empty directory, and a
Bootblock to the destination diskette. Normally. DOSGEN will

Page 10-03

DOSGEN COMMAND 10.1 -- USE

then copy all files that have the "system" attribute from the
diskette in drive zero to the destination diskette. When
OOSGEN is finished, a complete MOOS system will have been
generated on the destination diskette.

10.2 Diskette Surface Test

If DOSGEN is invoked with the .fT" option. a ClJrite/read
test will be performed to ensure that the sectors on the
destination drive are good. Any sectors which fail the
write/read test will be flagged with the deleted data mark.
If sectors cannot be flagged in this manner, the diskette
~annot be generated. Such diskettes may be made usable again
by using the FORMAT command (Chapter 15>' If a sector can be
marked as bad, then the cluster to which the bad sector
belongs will be automatically locked out from MOOS usage.
This individual cluster lockout is independent of the area of
diskette that can be locked out by the operator. It ClJill
allow diskettes ClJith bad spots to be generated and made
usable as MDOS system diskettes.

Diskettes that have such bad sectors can be used as
normal diskettes with the following exception. The BACKUP
command should not be invoked ClJithout a Main Option (unless
the "0" option is used) to make a complete copy of the
allocated space. Without the "0" option, the complete copy
process wi 11 abort if a fatal read error occurs. Since the
complete copy is based on the allocation table, it is
inevitable that the bad sectors locked out via DOSGEN will be
read. Thus, the resultant copy of the diskette will always
be incomplete.. Therefore, BACKUP should always be run with
the fiR" option to force file reorganization. In this manner,
the bad sectors will never be read since they are not a part
of any allocated file.

Diskettes which have had bad sectors locked out should
not be used as the destination diskette ClJith BACKUP.

If sectors get locked out into which the MOOS system
files normally are copied (in the first several cylinders)
the OOSQEN process will fail. Such diskettes cannot be used
as MOOS system diskettes unless the FORMAT command (Chapter
15) can be used to correctly rewrite the bad sectors.

10.3 Minimum System Generation

If the OOSGEN command is invoked with the "U" option,
the resultant diskette "'ill not contain any of the MOOS
commands from drive zero. Only the MOOS family of system
files that must reside on every diskette used in an MDOS
environment will be copied. The "U" option is useful in
generating user diskettes which are to contain only data

Page 10-0"':

DOSGEN COMMAND 10.3 -- Minimum System Generation

files and will almost always be used in drives other than
zero.

10.4 Messages

The following messages can be displayed by the DOSGEN
command. Not all messages are error messages, although error
messages are included in the list. The standard error
messages that can be displayed by all commands are not listed
here.

DOSGEN DRIVE <unit> ?

DISK NAME:

This message permits the operator to exit the
DOSGEN command or allows him time to insert a
scratch diskette before continuing. A "yu
response wi 11 cause DOSGEN to continue. Any
other response will cause control to be returned
to MDOS.

This prompt is used to obtain the eight character
ID field that is subsequently displayed by all
DIR and FREE commands when used on the generated
diskette. The ID field has the same format as an
MDOS f i I e name.

DA TE (MMDDYY) :

USER NAME:

This prompt is used
diskette generation.
numeric characters.

to
The

obtain the
date must

date
be

of
six

This prompt is used to obtain the descriptive
information for the ID sector. Up to twenty
displayable characters may be entered.

LOCKOUT ADDITIONAL SECTORS?

This message allows the user to specify whether
or not he wishes to reserve a block of the
diskette for his own use. The block will be
excluded from use by MDOS. A "y u response will
cause the next two prompts to be issued. Any
other response will cause the lockout request to
be bypassed.

Page 10-05

DOSGEN COMMAND 10.4 -- Message

ENTER STARTING SECTOR (HHH):

This prompt is used to obtain the
hexadecimal sector number of the first
that is to be locked out.

ENTER ENDING SECTOR (HHH):

This prompt is used to
hexadecimal sector number
that is to be locked out.

ABOVE SECTORS HAVE BEEN LOCKED OUT

obtain
of the

the
last

starting
cluster

starting
cluster

This message will be displayed if valid starting
and ending sector numbers have been specified for
the area to be locked out.

INVALID SECTOR NUMBER

This message is displayed if either the starting
or ending sector number does not meet the
criteria set forth in section 10. 1. The operator
is given another chance to enter the sector
number range.

SECTOR nnnn LOCKED OUT

When a bad sector is detected during the
write/read test (liT" option), this message is
displayed to indicate which sector failed the
test. The " nnnn " is the hexadecimal. physical
sector number. The cluster in which the sector
resides will be automatically locked out.

COPYING FILE <name>

This message is displayed for each sgstem file as
it is being copied to the destination diskette.
It serves only to monitor the DOSGEN operation.

MDOS.SY DOES NOT START AT SECTOR $18

This message indicates that the destination
diskette cannot be generated. Either the
operator or the write/read test locked out
sec~ors which prevented the resident operating
system file MDOS.SY from residing at the
specified physical location. If the operator
locked out those sectors, the diskette should be
regenerated with a different range locked out.
If the write/read test locked out those sectors.
the diskette is unusable as a system diskette.
Chapter 15 should be consulted for making such a

Page 10-0

DOSGEN COMMAND 10.4 -- Messages

diskette usable again.

10.5 Examples

The following example shows
interaction during a DOSGEN process:

the operator-system

=DOSGEN iTU
DOSGEN DRIVE 1? Y
DISK NAME: USEROOOl
DATE (MMDDYY): 072578
USER NAME: SYSTEM DEVELOPMENT 1
LOCKOUT ADDITIONAL SECTORS? N
COPYING FILE MDOS .SY
COPYING FILE MDOSOVO .SY
COPYING FILE MDOSOVI .SY
COPYING FILE MDOSOV2 .SY
COPYING FILE MDOSOV3 .SY
COPYING FILE MDOSOV4 .SY
COPYING FILE MDOSOV5 .SY
COPYING FILE MDOSOV6 .SY
COPYING FILE MDOSER .SY
=

The diskette to be generated was tested with the write/read
test ("T" option) to ensure that all sectors were good. A
minimum system was generated (ItU" option>. The new ID,
USER0001, the generation date, July 25. 1978, and the
descriptive information. SYSTEM DEVELOPMENT I. were placed
into the ID sector. Since no additional sectors were locked
out, DOSGEN proceeded to copy the MDOS family of system files
that must reside on each diskette.

The following example shows what might happen if a bad
diskette is used in the generation process:

=DOSGEN :2;T
DOSGEN DRIVE 2? Y
DISK NAME: USER0002
DATE (MMDDYY): 072578
USER NAME: TEST SYST~M
SECTOR 0030 LOCKED OUT
SECTOR 0031 LOCKED OUT
SECTOR 0056 LOCKET OUT
LOCKOUT ADDITIONAL SECTORS? N
COPYING FILE MDOS .SY
MDOS.SY DOES NOT START AT SECTOR $18
=

Three bad sectors were found during the write/read test.
When the MDOS family of files was copied. it was detected
that the locked out sectors prevented the resident operating
system file MDOS.SY from residing at the specified physical

Page 10-07

DOSOEN COMMAND 10.5 -- Examples

location. If the operator locked out those sectors, the
diskette should be regenerated with a different range locked
out. If the write/read test locked out those sectors. the
diskette is unusable as a system diskette. Chapter 15 should
be consulted for making such a diskette usable again.

Page 10-0e

CHAPTER 11

11. DUMP COMMAND

The DUMP command allows the user to examine the entire
contents of any physical sector on the diskette. The sector
can be displayed on either the system console or the printer.
The display contains both the hexadecimal and the ASCII
equivalent of every byte in the sector. The DUMP command
allows the opening of files so that they can be examined
using logical sector numbers. Sectors can also be moved into
a temporary buffer where changes can be applied before they
are written back to diskette.

11.1 Use

The DUMP command is invoked with the following command
line:

DUMP [<name:>]

where the presence of the optional file name determines the
initial mode of operation. The DUMP command is an
interactive program that has its own command structure. Once
DUMP i s run n i n 9 , i t wi 1 I dis P I a y a colon (:) a san in put
prompt whenever it is ready to accept a command from the
operator. Commands exist for selecting logical units, for
opening and closing files, for displaying sectors, for
modifying single sectors, and for displaying the directory
and cluster allocation table.

11. 1. 1 Physical Mode of operation

If no <name:>
<name:> only consists
be in the "Physical
The heading

is specified on the command line, or if
of a logical unit number, then DUMP will
Mode" when it displays its input prompt.

PHYSICAL MODE

will be displayed prior to the prompt the first time that
DUMP is activated. From that point on, it is the operator's
task to keep track of which mode of operation DUMP is in.
The Physical Mode of operation means that all subsequent
commands referring to sector numbers will be interpreted as
physical sector numbers. The Physical Mode of operation
remains active as long as no files are opened.

If no <name:> is specified on the command line, DUMP will

Page 11-01

DVMP COMMAND 11. 1 -- u!

default to logical unit ze~o fo~ all subse~uent commands.
The unit ~ill ~emain selected until another unit selection I

comman~ is issued by the ope~ator. To ove~ride the default
unit selected, the operator can specify only a logical unit
numbe~ on the command line in place of <name:>. In this case.
the initial unit selected will be the logical unit number
ente~ed on the command line (0-3). The logical unit numbe~
must be p~eceded by a colon. the logical unit number
del imi ter.

When a logical unit numbe~ is specified on the
line, the diskette to be inspected with DUMP should
be in the indicated drive. If no diskette is
specified d~ive. the message

**PROM 1/0 ERROR-STATUS=33 AT h DRIVE i-PSN J

command
al~eady

in the

is displayed, indicating that the drive is not ready. The
"Uti command (section 11.2.2) must be used to ~esto~e the
diskette drive after the diskette has been inserted.

11.1.2 Logical Mode of ope~ation

If a <name:> which exists in the di~ectory is specified
on the command line. then DUMP will be in the "Logical Mode"
of ope~ation when it displays the input p~ompt. <name> must
contain an explicit suffix. No default suffix is supplied by
the DUMP command., The logical unit numbe~, howeve~. is given
a default value of zero if it is not specified on the command
line.

If the <name:> cannot be found in the di~ecto~y, a
standa~d e~~o~ message ~ill be displayed indicating that the
file name does not exist. In that case, the Physical Mode of
ope~ation will be ente~ed; howeve~, the physical mode message
will not be displayed since the e~~o~ message has al~eady

indicated that the file could not be opened.

The Logical Hodeof ope~ation means that all subse~uent
~eferences to sector numbe~s will be inte~preted as logical
secto~ numbe~s of the file <name:>. A special convention is
used when refe~ring to the RIB of a file. The logical secto~
number of the RIB is FFFF. Since logical sector number zero
is the first data secto~ of the file, the RIB has a logical
secto~ number of minus one (FFFF)' DUMP will remain in the
Logical Mode of ope~ation until the file is closed o~ until
anothe~ unit is selected.

11.1.3 Sector change buffer

Certain commands can ~efe~ence a temporary secto~ buffer
known as the "sector change buffer". This buffer is la~ge

Page 11-C

DUMP COMMAND 11. 1 -- Use

enough to accommodate one sector from diskette. The sector
change buffer can be used in either mode of operation. The
contents of the sector change buffer will not be destroyed or
altered unless the operator issues a command to do so.

Associated with the sector change buffer is a "sector
address validity flag". This flag indicates whether or not a
critical command has been executed between the time the
sector change buffer was read into and the time that the
sector change buffer is written back to diskette. When the
sector change buffer is read into, a sector address is
specified. This address is retained so that if the sector is
to be written back to diskette, the address need not be
specified again; however, certain actions, described under
the separate command descriptions that follow. can cause the
sector address to be invalidated. Then, the writing of the
sector change buffer requires a respecification of the
sector address into which the buffer is to be written.

The sector change buffer is very useful in modifying
sectors. Most frequently, the sector change buffer is used
in conjunction with the REPAIR command (Chapter 22) to fix
critical system tables which have been found in error. Of
course, this procedure is not recommended unless the operator
has detailed knowledge of the system table structure.
Situations do arise when critical file information can only
be recovered through the manual reconstruction of certain
system tables. The DUMP command's sector change buffer
provides the ideal means for doing this.

11.2 DUMP Command Set

Each command to DUMP must be entered by the operator
after the input prompt (:) is displayed on the system
console. Like all MOOS input, all DUMP commands must be
terminated by a carriage return. In the following command
descriptions these symbols are used:

Symbol Meaning

m,n Both "m" and "n" are one to four digit
hexadecimal numbers used for specifying a
sector number or a cluster number.

i

b

"i" is a one digit number used for
referring to the logical unit number.

"b" is a one or two digit hexadecimal
number used as an offset into the sector
change buffer.

Page 11-03

DUMP COMMAND

c

a

<str::>

<cr::>

11. 2. 1 au i t -... 0

11.2 -- DUMP Command Set

"c" is a one or two digit hexadecimal
number.

"a" is an

n<str:>" is
bV commas.
a group
Cluotes.

ASCII character.

a string of elements separated
Each element can be a "c" or

of "a"s enclosed in double

"<cr::>" is a carriage return.

The a command is used to terminate DUMP and return
control to MDOS. The format of the a command is simply the
letter "a". Anv information in the sector change buffer is
lost. The a command is val id in ei ther mode of operation.
If a file is open, it is unaffected by the execution of the a
command.

11.2.2 Select logical unit -- U

The U command is used to select the logical unit numbe~.
The format of the U command is

U i

where "i" can be any of the digits 0-3. The U command is
valid in eithe~ mode of operationl howeve~, if the current
mode of operation is the Logical Mode, then the file that is
open will be automatically closed. After the U command is
executed, the Physical Mode of operation will be in effect.
The sector address associated with the sector change buffer
is invalidated bV the V command.

If DUMP was invoked with only a logical unit number on
the command line, and if a diskette was not in the drive at
the time DUMP was invoked, then the U command must be used to
restore the diskette drive after a diskette has been inserted
into the drive. If this procedure is not followed. timeout
errors maV occur on that d~ive since the head may not have
been properly positioned to cylinder zero.

11.2.3 Open diskette file -- 0

The 0 command is used to open a file and thereby enter
the Logical Mode of operation. The format of the 0 command
is

o <name>

Page 11-0~

DUMP COMMAND 11.2 -- DUMP Command Set

where <name> consists of at least a file name and a suffix.
If no logical unit number is specified for <name>, the last
logical unit selected via the U command will be used as a
default. If a logical unit number is specified for <name>,
then it will become the selected unit number even if the
Physical Mode of operation is entered later. If a file is
currently open, it will be automatically closed when the 0
command is executed. If the file <name> is not found, then
the Physical Mode of operation will be in effect after an
error message is displayed. The sector address associated
with the sector change buffer is invalidated by the 0
command.

11.2.4 Close diskette file -- C

lhe C command is used to close the file that is
currently open. The format of the clo~e command is simply
the letter "C". If the current mode of operation is already
the Physical Mode, then no action results from the execution
of the C command. If a file is open, then the Physical Mode
of operation will be entered after the file is closed. The
sector address associated with the sector change buffer is
invalidated by the C command.

11.2.5 Show sector -- S

The S command is used to display a sector's contents on
the system console. There are several forms of the S
command.

Command Effect

S Display the contents of the sector change
buffer.

S8 Display the contents of the Cluster
Allocation Table. The sa command is only
valid in the Physical Mode of operation.

S m(,n] Display the contents of sector "m" or the
contents of sectors "m" thT'ough lin". The
values of "m" and "n" are either physical
or logical sector numbers depending on
the current mode of operation.

SD [m[,n]) Display the contents of the directory
sectors. The entire directory will be
displayed if no "m" and no "n" are given.
Otherwise, the logical sector "m" or the
logical sectors "m" through lin" of the
directory will be displayed. The SD

Page 11-05

DUMP COMMAND

SC m[,n]

11.2 -- DUMP Command Se

command is only valid in the Physical
Mode of operation.

Display the contents of cluster "m" or
the contents of clusters "m" through Un".
In this case, Om" and "n° are physical
cluster numbers rather than physical
sector numbers. The SC command is only
valid in the Physical Mode of operation.
For each cluster, four sectors will be
displayed.

The format of a displayed sector is shown in section 11.4.

11.2.6 Print sector -- L

The L command is used to print a sector's contents on
the line printer. There are several forms of the L command.

Command

L

Effect

Print the contents of the sector change
buffer.

LB Print the contents of the Cluster
Allocation Table. The LB command is only
valid in the Physical Mode of operation.

L m[,n] Print the contents of sector "mO or the
contents of sectors °mo through "nne The
values of Om" and °n° are either physical
or logical sector numbers depending on
th~ current mode of operation.

LD [m[,n]) Print the contents of the directory
sectors. The entire directory will be
printed if no Om" and no On" are given.
Otherwise, the logical sector °mo or the
logical sectors Om" through "n" of the
directory will be printed. The LD
command is only valid in the Physical
Mode of operation.

LC m[,n] Print the contents of cluster "m" or the
contents 0' clusters Om" through Un". In
this case, Om" and "n" ar. phYSical
cluster numbers rather than physical
sector numbers. The LC command is only
valid in the Physical Mode of operation.
For each cluster# 'our sectors will be
printed.

Page l1-C

DUMP COMMAND 11.2 -- DUMP Command Set

The format of a printed sector is shown in section 11.4.

11.2.7 Read sector into change buffer -- R

The R command is used to read a specified sector into
the sector change buffer. Once the sector is in the change
buffer, changes can be applied to it. The sector change
buffer can then be written back to diskette. The R command
has several forms. Each form of the R command will
initialize the sector address validity flag associated with
the sector change buffer. This flag allows the change buffer
to be re-written to the same sector from which it was read
without specifying the sector address again.

Command Effect

RB Read the Cluster Allocation Table into
the sector change buffer. The RB command
is only valid in the Physical Mode of
operation.

RD m Read the specified logical sector of the
directory into the change buffe~. The RD
command is only valid in the Physical
Mode of operation.

R m Read the specified sector into the change
buffer. The current mode of operation
will determine whether "m" is a logical
or a physical sector number.

11.2.8 Write change buffer into sector -- W

The W command is used to write the
sector change buffer into a sector.
several forms.

Command Effect

contents of the
The W command has

W Write the change buffer back into the
sector from which it was originally read.
This form of the W command is only valid
if the U, 0, C, or F commands have not
been used since the sector change buffer
was read into.

CAUTION: THE FOLLOWING FORMS OF THE W COMMAND
CAN DESTROY SYSTEM TABLES OR USER DATA IF USED
INDISCRIMINATELY. USE OF THE FOL.LOWING FORMS
SHOULD BE RESTRICTED TO DISKETTE REPAIR

Page 11-07

DUMP COMMAND 11.2 -~ DUMP Command Set

FUNCTIQNS.

WB

WD m

Write the contents 0' ~he sector
buffer into the Cluster Allocation
The WB command is only valid
Physical Mode of operation.

Write the contents of the sector
buffer into logical sector "m"
directory. The WD command is only
in the Physical Mode 0' operation.

change
Table.
in the

change 0' the
valid

W m Write the contents 0' the sector change
buf'er into sector "m". The current mode 0' operation will determine whether Om"
is a logical or a physical sector number.
I' the current mode 0' operation is the
Logical Mode, then writing past the
end-o'-file sector will cause the CAT and
the 'ile's RIB to be updated in the event
that additional diskette space is
allocated.

11.2.9 Fill change bu"er -- F

The F command is used to 'ill the sector change bu"er
with a certain bit pattern or a certain ASCII character. The
'ormat of the F command is:

where the 'irst
hexadecimal bit
the bu"er ",ith
associated "'ith
the F command.

F c or F "a"

'arm "'ill fill the bu'fer ",ith the
pattern "c", and the second 'orm "'ill fill
the character "a". The sector address
the sector change bu"er is invalidated by

11.2.10 Examine/change sector bu"er

A special command is used for examining/changing the
individual bytes 0' the sector change buffer. In order to
gain access to a specific byte of the sector change bu'fer,
the of'set must be speci'ied in the 'ollowing manner:

b/<cr>

where lib" is a hexadecimal number ($OO-7F)' The slash
character causes the location at offset lib" to be "opened"
and its contents displayed. After a particular location has
been opened in this manner, the change bu"er can be examined
or changed a byte at a time by using the 'ollowing commands:

Page 11-08

DUMP COMMAND 11.2 -- DUMP Command Set

[<str:>l<cr:>

or

[<str»A<cr:>

or

[<str:>]/<cr>

The element string <str> will cause successive bytes of the
change buffer to be changed to the respective values of
<str>. If <str> is not speciFied. no changes will be applied
to the change buffer. The <cr> only will cause the next
offset of the change buffer to be opened and displayed. The
"'~-<cr>" will cause the previous location of the change buffer
to be opened and displayed. The "/<cr>" will cause the
current location to be closed and the examine/change mode to
be terminated.

The initial command used to enter the examine/change
mode can also take on the following forms:

which will
at offset
Then the
displayed.
commands.

b/<str><cr:>

cause the locations of the change buffer starting
"b" to be changed according to the string <str>.

location after the last one changed will be
The operator can then enter other examine/change

IF the initial command has the form:

b/<str>/<cr>

then the same function will be performed as in the previous
command; however, instead of remaining in the examine/change
mode, the normal command mode is entered.

11. 3 Messages

The following messages can be displayed by the DUMP
command. Not all messages are error messages; however. error
messages are included in the list. The standard error
messages that can be displayed by all commands are not listed
here.

WHAT?

The command issued in response to the DUMP input
prompt was not recognized. A new input prompt is
displayed.

Page 11-09

DUMP COMMAND

SYNTAX ERROR

MODE ERROR

11. 3 -- Messagt

The command issued in response to the DUMP input
prompt was recogni zed; ho,-,ever, it ,-,as
parameterized illegally. A ne,-, input prompt is
displaved. The command has not been processed.

The S, C, or D ~ualifier ,-,as used ,-,ith the S, L,
R, or W command while in the Logical Mode of
operation. These forms of the commands are onlv
valid in the Phvsical Mode.

BOUNDARY ERROR

The offset "b" in the examine/chang.e command was
outside the range of the sector change buffer
($Oo-7F), or a subse~uent location was to be
displaved which was outside the range of the
sector change buffer. The examine/change mode is
terminated.

INVALID SECTOR ADDRESS

The sector address associated with the sector
change buffer has been invalidated. In this
case, the W command cannot be used without
specifving a sector address.

PHYSICAL MODE

This message is displaved initially when the DUMP
command is entered and the mode of operation is
the Physical Mode. If the message is not
displayed and if no error messages are shown, the
Logical Mode of operation is initial IV in effect.
Subse~uent mode changes must be kept track of bV
the operator.

** 21 END OF FILE

This message indicates that a logical sector
bevond the logical end-of-file was to be read
wi th one of the DUMP commands. In the Log ical
Hode of operation only sectors allocated to the
file can be read.

Page 11-:

DUMP COMMAND 11. 3 --- Messages

**PROM 110 ERROR-STATUS=36 AT h DRIVE i-PSN J

This message indicates that a physical sector
beyond the end of the diskette was to be accessed
with one of the DUMP commands. In the Physical
Mode of operation. only sectors 0-$701
(single-sided) or sectors O-$FA3 (double-sided)
can be accessed. A memory address (only
meaningful for system diagnostics) is substituted
for the letter "hili the logical unit number is
substituted for the letter "i"i and the physical
sector number (PSN) at which the error occurred
is substituted for the letter "J".

The display format of a sector's contents is shown in
section 11.4. The messages associated with that display are
explained here. The sector display will contain headings to
identify what sector is being displayed.

"UNIT" will always speciFy the currently selected
logical unit number.

The heading "CHANGE BUFFER" will be displayed if the
sector change buFFer is being shown.

The heading "CLUSTER ALLOCATION
B qualifier was used with either
Likewise. the heading "DIRECTORY"
qualiFier was used with either the S

MAP" indicates that the
the S or L command.
indicates that the D

or L command.

The heading "FILE=xxxxxxxx. xx" indicates that the
Logical Mode of operation is in effect. The file's name and
suffix are displayed to the right of the equal sign.

"PSN" gives the displayed sector's physical sector
number. regardless of the mode of operation. "LSN", or
logical sector number, is only shown if the directory is
being displayed or iF the current mode of operation is the
Log i cal Mode.

The digits 00-70 down the left edge of the display are
the hexadecimal oFfsets into the sector. The contents of the
sector are shown both in hexadecimal and in displayable
ASCII. Non-displayable characters are printed as periods
L>'

IF sectors are displayed
appear five sectors per page.
heading will be automatically
page. The paper al ignment
command is issued.

on the line printer. they will
The unit number and associated

printed at the top of each
will be restored once the G

Page 11-11

DUMP COMMAND 11 .. 4 -- Examples

11. 4 Examp les

The following example shows how the Cluster Allocation
Table is displayed with the DUMP command (a single-sided
diskette is used).

=DUMP
PHYSICAL MODE

SB
UNIT=O CLUSTER ALLOCATION MAP

PSN=OOOI
00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
10 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
20 FF FF FF FF FF FF FF FF FF FF FF FF FF FO 00 00
30 00 00 00 03 FF FF FF FF FF 00 00 00 00 00 OF FF
40 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
50 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
60 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
70 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

G

=

.............................. .-

...............................

...............................

...............................

...............................

...............................

...............................

...............................

The next example illustrates how the logical sectors
zero through three Dr the directory are displayed.

=DUMP
PHYSICAL MODE

SO 0,3
UNIT=O DIRECTORY

PSN=0003
00 42 49 4E 45 58 20 20 20
10 42 55 49 4C 44 20 20 20
20 4C 49 53 54 20 20 20 20
30 00 00 00 00 00 00 00 00
40 00 00 00 00 00 00 00 00
50 00 00 00 00 00 0000 00
60 00 00 00 00 00 00 00 00
70 00 00 00 00 00 00 00 00

PSN=0004
00 4D 44 4F 53 4F 56 30 20
10 46 4F 52 54 20 20 20 20
20 00 00 00 00 00 00 00 00
30 00 00 00 00 00 00 00 00
40 00 00 00 00 00 00 00 00
50 00 00 00 00 00 00 00 00
60 00 00 00 00 00 00 00 00
70 00 00 00 00 00 00 00 00

LSN=OOOO
43 4D 01 4C 72 00 00 00 BINEX CM. LT" ...
43 4D 01 6C 72 00 00 00 BUILD CM. IT" ...
43 4D 02 F8 72 00 00 00 LIST CM .. T" ...
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 ,.
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

LSN=OOOI
53 59 00 5C 72 00 00 00 MDOSOVO SY. \ T" ...
43 4D 02 74 72 00 00 00 FORT CM. tT" ...
00 00 00 00 00 00 00 00 ,.
00 00 00 00 00 00 00 00 '" ...
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 10

Page 11-12

DUMP COMMAND 11. 4 -- Examples

PSN=0005 LSN=0002
00 44 49 52 20 20 20 20 20 43 40 01 B8 72 00 00 00 OIR CM .. r ...
10 40 45 52 47 45 20 20 20 43 40 03 28 72 00 00 00 MERGE CM. (r . ..
20 52 4C 4F 41 44 20 20 20 43 4D 04 IC 72 00 00 00 RLOAD CM .. r ...
30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 "' ~

40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .. "'
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 "'
70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

PSN=0006 LSN=0003
00 4D 44 4F 53 4F 56 34 20 53 59 00 88 72 00 00 00 MDOSOV4 SY .. r ...
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ~

60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .. ~ e

70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
G

=

In the following examp Ie, the DUMP command is invoked
with a file name on the command 1 inei however, the ·fi Ie name
does not exist as it is specified (i. e. I a suffix of spaces).
The Physical Mode of operation is entered automatically.
Then the 0 command is used to open the f i 1 e. Sub sequent 1 y I

two sectors of the file are displayed. The logical sector
numbers allow a user to examine the file's contents without
knowing where the file is physically located on the diskette.

=DUMP MDOSER
** 04 FILE NAME NOT FOUND

o MOOSER.SY
S 1.2

UNIT=O FILE=MOOSER . SY

PSN=00A6 LSN=0001
00 81 30 36 81 44 55 50 4C 49 43 41 54 45 81 46 49 .06. DUPLICATE. FI
10 4C 45 81 4E 41 40 45 00 30 44 81 30 37 81 4F 50 LE. NAME. 00. 07. OP
20 54 49 4F 4E 81 43 4F 4E 46 4C 49 43 54 00 33 30 TIoN. CONFLICT. 30
30 81 30 38 81 43 48 41 49 4E 81 41 42 4F 52 54 45 .08. CHAIN. ABoRTE
40 44 81 42 59 81 42 52 45 41 4B 81 4B 45 59 00 33 D. BY. BREAK. KEY. 3
50 31 81 30 39 81 43 48 41 49 4E 81 41 42 4F 52 54 1. 09. CHAIN. ABORT
60 45 44 81 42 59 81 53 59 53 54 45 4D 81 45 52 52 ED. BY. SYSTEM. ERR
70 4F 52 81 53 54 41 54 55 53 81 57 4F 52 44 00 31 OR. STATUS. WORD. 1

PSN=00A7 LSN=0002
00 43 81 31 30 81 46 49 4C 45 81 49 53 81 44 45 4C C. 10. FILE. IS.DEL
10 45 54 45 81 50 52 4F 54 45 43 54 45 44 00 32 34 ETE.PROTECTED.24
20 81 31 31 81 44 45 56 49 43 45 81 4E 4F 54 81 52 . 11. DEVICE. NOT. R
30 45 41 44 59 00 30 45 81 31 32 81 49 4E 56 41 4C EADY.OE. 12. INVAL
40 49 44 81 54 59 50 45 81 4F 46 81 4F 42 4A 45 43 10. TYPE. of.OBJEC

Page 11-13

DUMP COMMAND 11. 4 -- Examp les

50
60
70

G
=

54 81 46 49 4C 45 OD 30 46 81 31 33 81 49 4E 56 T. FILE. OF. 13. INV
41 4C 49 44 81 4C 4F 41 44 61 41 44 44 52 45 53 ALID.LOAD.ADDRES
53 OD 31 33 61 31 34 61 49 4E 56 41 4C 49 44 81 S. 13. 14. INVALID.

The following example illustrates how the DUMP command
can be used to fI fix ff part of the MDOS system tab les that were
found to be in error by the REPAIR command (Chapter 22). No
discussion is given here of the REPAIR command; however, the
example does shotal what the REPAIR command displayed insofar
as diagnostic messages are concerned. These messages contain
the re~uired information needed by the operator so that the
DUMP command can be used to "fix" the bad sector. The REPAIR
command could shotal the following on the system console:

=REPAIR
DISK ID: MDOS0300
VERSION: 03
REVISION: 00
DATE: 072578
USER: SYS DEVELOPMENT DRVO
06 03 01 TESTPROG.SA 05BC 0581 0000
ILLEGAL ATTRIBUTE OR UNUSED BYTES. DELETE? N
33 GOOD FILES 00 FILES WITH BAD RIBS
RECONSTRUCTED C.A.T. MATCHES DISK
=

The first few lines show the contents of the ID sector. The
line that begins with "06 03 01" shows the contents of a
directory entry that has been found in error. The subse~uent
line shows the error that REPAIR det.ected. The error is in
the attribute bytes of the directory entry. Chapter 22
describes the format of the displayed directory entry. With
that information, the operator knows that the attribute field
is displayed as "0581". The error is in the least
significant byte of this field. It should be zero, not "B1"
as shown. From the other information displayed, it can be
seen that this directory entry is the second entry (01) in
the third sector (03) of the directory. With that
information the DUMP command is used to read the sector
containing the bad directory entry into the sector change
buffer. The buffer is modified so that ~he "81" becomes a
"00". In the following example, the sector ch_nge buffer is
displayed both before and after the modification.

Such repair functions must be performed with extreme
caution. The REPAIR command should always be run again after
a system sector has been changed in this talay to ensure that
the change was made correctly.

Page 11-14

DUMP COMMAND 11. 4 -- Examples

=DUMP
PHYSICAL MODE

RD 3
S
CHANGE BUFFER

PSN=0006
00 40 44 4F 53 4F 56 34 20 53 59 00 88 72 00 00 00 MDOSOV4 SYo 0 To 0 0

10 54 45 53 54 50 52 4F 47 53 41 05 BC 05 81 00 00 TESTPROGSAo 0 0 0 • 0

20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4

30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 _ ~ "

40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ,.
181

18 53
19 41
1A 05
1B BC
lC 05
lD 81 001

S
CHANGE BUFFER

PSN=0006
00 40 44 4F 53 4F 56 34 20 53 59 00 88 72 00 00 00 MOOSOV4 SY 0 0 Too 0

10 54 45 53 54 50 52 4F 47 53 41 05 BC 05 00 00 00 TESTPROGSA. 0 0 •• 0

20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '" c ..

60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

W
G

=

Page 11-15

CHAPTER 12

12. ECHO COMMAND

The ECHO command can only be used on an EXORciser II
system. ECHO causes all subsequent inputloutput that is
directed to the system console to also be printed on the line
printer. The ECHO command is also used to stop echoing
console 110 on the printer.

12. 1 Use

The ECHO command is invoked with the following command
line:

ECHO [i<options>J

where <options> can be the letter "N". If the ECHO command
is invoked without any options, then all subsequent input and
output to the system console via the MDOS console driver or
the EXbug entry points will be duplicated on the line
printer. The line printer will continue to receive a copy of
all console 110 until the ECHO command is invoked with the
"Nil option.

The "N" option wi 11 turn off the echo feature. No
paging is performed. Thus. if paper alignment is critical.
it will have to be manually reset after the echo feature is
disabled.

12.2 Messages

The following messages can be displayed by the ECHO
command.

ECHO NOT AVAILABLE WITH EXBUG 1

The ECHO command was invoked on
system. The command has no
systems.

** 11 DEVICE NOT READY

an EXORciser I
effect on such

The printer was not ready when the ECHO command
was invoked. The command has had no effect on
the system. The printer must be readied and the
ECHO command invoked again if the echo feature is
to be enabled.

Page 12-01

CHAPTER 13

13. EMCOPY COMMAND

The EMCOPY command allows files from a user's EDOS 2
system diskette to be copied to and catalogued on an MOOS
diskette. Options exist for copying the entire diskette,
selected files. or single files.

13. 1 Use

The EMCOPY command is invoked with the following command
line:

EMCOPY «name 1>J[,<name 2>J (;<options>J

where <name 1> is the name of an EDOS file, <name 2> can be a
new name that is to be used for <name 1> on the MDOS
diskette, and <options> can be one or more of the option
letters defined below. If neither of the two file names is
entered on the command line, then an <options> specification
must be present. The following option letters are available.
They are described in detail in the following sections.

Option Function

A

R

D

C

S

E

File is of the ASCII record format.

File is of the binary record format as
created by the Macro Assembler with the
OPT REL option.

Set the delete protection on the MOOS
fi Ie.

Create the MDOS file with contiguous
space allocation.

Copy selected files
diskette.

from

Copy the entire EOOS diskette.

the EDOS

For each of the different ways that EMCOPY can be used,
the EDOS diskette must always be in drive one and the MDOS
diskette in drive zero, regardless of whether a two-drive or
a four-drive system is being used.

Page 13--01

EMCOPV COMMAND 13.1 -- USE

13.1.1 Single file copy

IP a single EDOS Pile is to be copied to the MDOS
diskette. its name must be speciPied as <name 1~. Only EDOS
file names that meet the MDOS criteria for valid file names
can be copied (see section 2.7.1). Since EDOS file names are
only five characters long and have no suffixes. <name 1~ is
not specified with a suffix. Only the first five characters
of <name 1> will be used to search the EDOS directory. A
logical unit number should not be specified for <name 1~.

The options "E" or US" cannot be specified on the command
line if only the single file <name 1> is to be copied. An
error will be displayed if <name 1> cannot be found in the
EDOS directory.

If no <name 2> is given on the command line, then an
MOOS file with the name of <name 1> and the default suffix
"ED" will be used as the destination file on drive zero. The
default suffix can be overridden by specifying only a suffix
for <name 2:>. The default name can also be overridden by
specifying a file name for <name 2>.

In either case, whether an explicit or a default <name
2> is used. a file with that name must not already exist on
the MOOS diskette. A standard error message will be
displayed if <name 2> already exists.

If no option or if the "A" option is specified on the
command line, EMCOPV will assume that the EDOS file is in the
ASCII record format. The IfRIf option can be used to copy EDOS
files that were created by the EDOS Macro Assembler with the
relocatable option (OPT REL>' Obviously, nR" and "A" cannot
be specified at the same time. If the EOOS file is found
with the "Permanent Attribute" set, then the MDOS file will
be automatically created with delete protection. The delete
protection can be explicitly set for the MDOS file by using
the tiD" option on the command 1 ine.

13. 1. 2 Entire diskette copy

To copy all valid EDOS files from drive one to the MDOS
diskette in drive zero, no file name specification must be
given for <name 1>, no file name must be given for <name 2~
(however, a suff~x can be specified), and the "Elf option must
be specified.

The EDOS diskette will have its entire directory
searched, one entry at a time, for valid (MDOS compatible)
file names. When ~ valid name is found, it will be given the
default suffix "ED" or the explicit suffix specified b.., <name
2>, and copied to the MDOS diskette. Of course, a file with
that name cannot already exist on the MDOS diskette. This

Page 13-0~

EMCOPV COMMANO 13. 1 -- Use

process is repeated until all entries in the EDOS directory
have been examined.

As file names are processed from the EOOS directory one
of the following two messages will be displayed for each file
name. The message

COPVING FILE: <name>

indicates that the EO OS file identified by <name> is being
transferred to the MOOS diskette. The message

<name:>
** 25 INVALID FILE NAME

indicates that the file <name:> does not have a valid MOOS
file name and cannot be copied. If the file is to be copied.
it must first be renamed on an EOOS system using the RENAM
command.

The "C", "0", "R", or "A" options can be specified on
the command line. These options. explained in the previous
section. can be used to assign attributes to all files copied
from the EOOS diskette. If no options are specified. then
the MOOS files will use segmented allocation and be of the
ASCII record format. The delete protection will
automatically be set for files with the "Permanent Attribute"
on the EOOS diskette.

The liS" option cannot be specified at the same time as
the "E" option.

13.1.3 Selected file copy

To copy only selected files from the EOOS diskette. the
"s" option must be specified on the command line. Nothing
can be specified for <name 1> or <name 2> if the US" option
is used. Basically. the selected file copy mode works like
the entire diskette copy mode; however. the operator can
assign different attributes and suffixes to each file. as
well as deciding whether or not a particular file is to be
copied at all. Ouring the selected file copy mode. as valid
file names are found in the EOOS directory. the message

will be
the file
response
The next

COPV <name> ?

displayed. The operator must respond with a "V" if
is to be copied to the MOOS diskette. Any other
will cause that file to be bypassed and not copied.

valid file name will then be searched for.

If a "V" response is given to the above prompt, EMCOPY
will display two additional prompts:

Page 13-03

EMCOPY COMMAND

SUFFIX?
ATTRIBUTES?

13. 1 -- Us

The operator can assign an explicit suffix by entering it
after the "SUFFIX?" prompt, and he can assign explicit
attributes by entering the appropirate attribute letters (A,
C, 0, R) after the "ATTRIBUTES?" prompt. The default suffix
"ED" and the default attribute "A" can be assigned by
responding ~ith only a carriage return. If an invalid
attribute is entered by the operator, the "ATTRIBUTES?"
prompt ~ill be redisplayed, forCing the operator to enter ne~
attributes. This procedure ~ill continue until all entries
from the EDOS directory have been processed. At that time
the message

NO MORE FILES

will be displayed and control returned to MOOS.

13.2 File Differences Bet~een EDOS and MOOS

Both EDOS and MOOS systems support the ASCII and the
binary record format. The ASCII record format is primarily
used for source program files and obJect program files in the
EXbug-loadable format. The binary record format is used
primarily for the relocatable obJect output files created by
the Macro Assembler, RASM.

The EMCOPY command will transfer either type of file on
a sector-by-sector basis. Thus, after a file is copied to
the MOOS diskette, its sectors are still in the same internal
format; ho~ever, when an ASCII record file is processed by
the MOOS editor, it will be altered. Multiple spaces will be
compressed into a single byte, and the carriage return, line
feed, null seq,uence that terminates all ASCII records on EDOS
files ~ill be replaced by a single carriage return. Thus,
the resultant MOOS file ~ill be significantly smaller than
its original EDOS form.

Space compression is, of course, not performed on the
binary record files; however, were the same obJect file to be
produced by the MOOS Macro Assembler, it ~ould not be
identical to its EDOS counterpart. The carriage return, line
feed, null seq,uence would have been replaced by a single
carriage return.

13.3 Messages

The following messages can be displayed by the EMCOPY
comman.d. Not all messages are error messages, al though error
messages are included in the list. The standard error
messages that can be displayed by all commands are not listed

Page 13-0

EMCOPY COMMAND 13.3 -- Messages

here.

COPYING FILE: <name>

During the entire diskette copy mode, this
message monitors which files are being copied to
the MOOS diskette.

COpy <name> ?

SUFFIX?

ATTRIBUTES?

During the selected file copy mode, this prompt
allows the operator to choose which files get
copied. A "Y" response will cause <name::> to be
copied. Any other response will cause <name::> to
be bypassed.

This prompt allows the user to specify an
explicit two-character suffix during the selected
file copy mode. A response of carriage return
only will cause the default suffix "ED" to be
used.

This prompt allows the user to specify explicit
attributes during the selected file copy mode.
The attribute letters "A", "C", "0", or "R" can
be entered. A response of carriage return only
will cause the "A" attribute to be used.

NO MORE FILES

The EDOS directory has been exhausted during the
selected file copy mode.

13.4 Examples

The following example illustrates how the Single file
TESTP from an EDOS diskette would be copied into the file
TESTPROG.SA on an MOOS diskette.

EMCOPY TESTP,TESTPROG.SA

The MOOS file will be allocated segmented space. It will be
in the ASCII record format. The file may be delete protected
if the EOOS file had the "Permanent Attribute" set.

The following example shows how an entire EOOS diskette
is copied. The first two files are not copied since their
file names are not valid MDOS file names. It should be noted
that <name 1> is not specified. Thus, in order to specify a

Page 13-05

EMCOPY COMMAND 13.4 -- Examp 1 e1

suffix for <name 2>. the comma had
that <name 1> is null, or missing.
will be used instead of the default
copied to the HDOS diskette. Since
given, all files will be created in

to be entered to indicate
The <name 2> suffix "SA"
suffix "ED" ~or all file~

no other options were
the ASCII record format.

=EMCOPY •. SAiE
$DOS
** 25 INVALID FILE NAME
$DIR
** 25 INVALID FILE NAME
COP-YING FILE: PRNTX
COPYING FILE: 0120
COPYING FILE: OHEX
COPYING FILE: OXRF
COPYING FILE: ONOL

** 06 DUPLICATE FILE NAME
COPYING FILE: OLIS
COPYING FILE: ONMC
COPYING FILE: DASM
COPYING FILE: DUP05
COPYING FILE: 001K
COPYING FILE: OOPI
COPYING FILE: TITLE
COPYING FILE: PAGE
COPYING FILE: PCHO
COPYING FILE: RSMB

** 41 INSUFFICIENT DISK SPACE
=

The file ONOL was not copied because the MOOS file ONOL.SA
already existed. The file RSMB was partially copied. The
MOOS diskette lacked sufficient space for that EDOS file.
The EMCOPY is stopped at that point since subse~uent files
would probably not have room either. Files like RSMB, RLOAD,
ASHB, and EDIT on EDOS diskettes should not be copied to MDOS
diskettes, since those programs make assumptions about the
diskette structure. and will fail to work if copied and
executed (after EXBIN conve'rsion).

The last example shows how the selected file copy mode
is used. In this example, not all files have the same record
format. Thus, if they were copied with the liE" option, some
would be created with the wrong file format. The file PRNTX
is a binary record file. It is given the suffix "RO" (suffix
for relocatable obJect. files created by the Macro Assembler).
The file ONOL, on the othe'r hand, is an ASCII record file.
It is given the default suffix "ED" (from the above example,
ONOL. SA already existed on the MDOS diskette>. The invalid
file names f'rom the EDOS diskette are displayed, but they a're
not copied. A single ca'r'riage 'return is used in this example
to respond to the "COPY?" prompt to indicate a negative

Page 13-0j

EMCOPY COMMAND

response.

=EMCOPY ;S
$DOS
** 25 INVALID FILE NAME
$DIR
** 25 INVALID FILE NAME
COPY PRNTX?
Y
SUFFIX?
RO
ATTRIBUTES?
R
COPY 0120 ?

COPY OMEX ?

COPY OXRF ?

COPY ONOL ?
Y
SUFFIX?

ATTRIBUTES?

COPY OLIS ?

COPY ONMC ?

COPY DASM ?

COPY DUP05?

COPY 00lK ?

COpy OOPt ?

COPY TITLE?

COpy PAGE ?

COPY PCHO ?

COPY RSMB ?

NO MORE FILES
=

13.4 -- Examples

Page 13-07

CHAPTER 14

14. EXBIN COMMAND

The EXBIN command is used to convert files in the
EXbug-loadable format (e. g., obJect output from the assembly
process without the OPT REL or OPT ABS directive) into files
that can be loaded into memory for execution. The EXBIN
command performs the inverse operation of the BINEX command.

14. 1 Use

The EXBIN command is invoked with the following command
line:

EXBIN <name 1>[, <name 2>] [;<options>]

where <name 1> is the file specification of an EXbug-Ioadable
file that is to be converted, and <name 2> is the file
specification of a file that is to receive the results of the
conversion. Only <name 1> is required to be entered on the
command line. The default suffix "LX" and the default
logical unit number zero will be supplied for <name 1> if
those ~uantities are not explicitly given. The output file
specification, <name 2>, is optional. If <name 2> is
entered. it may be a partial file specification consisting of
only a file name. a suffix, or a logical unit number (or any
combination thereof). The unspecified parts of <name 2> will
be supplied from the respective parts of <name 1>, with the
exception of the suffix. The default suffix for <name 2> is
"LO" to indicate its memory-image format. If no file
specification is given for <name 2>, the output file will be
created with the same file name as <name 1> but with the
suf!f!ix "LO". If only a suffix is given for <name 2:>, that
suffix will be used instead of the default "LO". If no
logical unit number is given for <name 2>, the output file
will be created on the same drive as given for <name 1>. In
any case, <name 2> must be a file specification for which no
entry already exists in the directory.

Standard error messages will be displayed if <name 2>
already exists, if <name 1> does not exist, or if <name 1> is
of the wrong file format.

The <options> field can be used to specify a starting
execution address for the memory-image file. If no <options>
field is given. EXBIN will use the address contained in the
S9 record for the starting execution address.

EXBIN will ignore the SO, or name record, as well as any

Page 14-01

EXBIN COMMAND 14. 1 -- Use

null records from <name 1>. Null records consist of a
carriage return only. The content of the SI records will be
converted to its binary e~uivalent and written into <name 2>.

Since the EXbug-loadable files can contain S1 records
that would be loaded into non-adJacent blocks of memory based
on their address fields, the resulting memory-image file may
be larger (occuPV more diskette space) than <name 1>. This
results from the fact that <name 2> is a memory-image file.
All parts of memory which are not directly referenced by the
S1 records, but which are included between the lowest and the
highest address contained in all 51 records, will be a part
of the memory-image in the file <name2> (initialized to
binary zeroes).

The EXbug-loadable file, <name 1>, is unaffected bV the
entire EXBIN conversion process. The output file, <name 2>,
can then be loaded into memory directly from diskette using
the LOAD command (see Chapter 18).

14.2 Execution Address Specification

A starting execution address for the memory-image file
can be specified by entering a valid hexadecimal number in
the <options> field. The number must be in the range
$OOOO-FFFF (entered in the <options> field without the dollar
sign). In addition, the execution address must fall within
the range of addresses spanned bV the file. That is, the
starting execution address cannot be less than the lowest
address found in an SI record, and it cannot be greater than
the highest address. If an execution address is specified in
the <options> field, it will override any value contained in
the S9 record of <name 1>.

14.3 Error Messages

The following error messages can be displayed by the
EXBIN command. The standard error messages that can be
displayed by all commands are not listed here.

CHECKSUM ERROR

One of the S records from <name 1> contained an
invalid checksum.

Page 14-0:;

EXBIN COMMAND 14.3 -- Error Messages

RECORD FORMAT ERROR

One of the records From <name 1> was not in the
EXbug-loadable Format. Exceptions to this are
null records. or records which consist of only a
carriage return. Null records are simply dropped
and wi 11 produce no errors. Otherwise, only
records beginning with SO, S1, or S9 are
acceptable. IF all records do begin with these
characters when this error occurs, then something
else is wrong with their format. The "M6BOO
EXORciser User's Guide" contains a complete
description of the S record format.

SOURCE FILE NOT ASCII

The file <name 1> is not in the ASCII record
Format. EXbug-loadable Files must be ASCII.

START ADDRESS QUT-OF-RANGE

The starting execution address speciFied in the
<options> field or the address contained in the
S9 record is not within the range of memory
addresses spanned by the file.

** 30 INVALID EXECUTION ADDRESS

Normally, this standard error message has a
slightly different meaning. During the EXBIN
process, however, this error indicates that the
starting execution address given in the <options>
Field was not a valid hexadecimal number.

14.4 Examples

Most Frequently,
numbers suFfice For
command line

the default suFFixes and
the EXBIN operation.

EXBIN TESTPROG

logical unit
The Following

will produce the File TESTPROG.LO on logical unit zero 'rom
the EXbug-loadable file TESTPROG.LX, also on logical unit
zero. The starting execution address From the S9 record will
be used.

The following command line

EXBrN TESTPROG, :2.2100

will create the same file as in the previous example. In
this case, however, the file is created on logical unit two.

Page 14-03

EXBIN COMMAND 14.4 -- Exampl

The starting execution address $2100 talill be .assigned to the
output file, regardless of talhat is contained in the 59
record.

Page 14-1

CHAPTER 15

15. FORMAT COMMAND

The FORMAT command attempts to rewrite the sector
addressing information on diskettes. The FORMAT command can
be used to reformat either Single-sided or double-sided
diskettes; however, double-sided diskettes must be formatted
with this command before the~ can be used with MOOS.
Single-sided diskettes usually come pre-formatted in a
compatible format. The FORMAT command will only work on
systems that are operating at one of the standard clock
frequenc i es of 1 MHz I 1. 5 MHz, or 2 MHz.

15. 1 Use

The FORMAT command is invoked with the following command
1 ine:

FORMAT [:<unit:»

where <unit:> is an optional logical unit
specified, <unit:> can take on the values 1-3.
not specified, logical unit number one will be
defaul t.

number. If
If <unit::> is
used as a

If a user has a dual-drive EXORdisk II system, there is
no need for him to specify a <unit::> on the command line. If
he does, caution must be used since the specification of
logical unit number 2 on a EXORdisk II system will cause
logical unit number zero to be formatted due to the way the
disk controller works!

Since the FORMAT command will destroy all information on
the diskette in the specified drive, the prompt

FORMAT DRIVE <unit:>?

will be displayed, where <unit:> indicates the logical unit
number containing the diskette to be formatted. <unit:> is
either the number entered on the command line, or the default
value supplied by the command itself. Any response other
than "Y" will cause the FORMAT command to be terminated and
control returned to MOOS. In this case, the diskette in the
specified drive is unaffected. If the "Y" response is
entered, the operator should have placed a diskette that
needs to be formatted into the specified logical unit.

FORMAT will then proceed to:

Page 15-01

FORMAT COMMAND 15. 1 -- USE

1. Rewrite the soft sector addressing information on
each cylinder (Appendix F contains a description
of the diskette format).

2. Initialize every byte of each sector to the
hexadecimal value $E5.

3. Re-read each cylinder to verify that the CRe's
are good and that the diskette is readable.

The above process terminates when the diskette is
completel~ formatted or when a diskette controller error
occurs repeatedly. In the former case, control is returned
to MOOS. In the latter case. the FORMAT command will display
the diskette controller error with the standard "PROM 110"
error message. The diskette is not necessarily unusable if
such errors occur. The FORMAT command should be re-run after
having noted the physical sector number at which the error
occurred. If the same error occurs at the same physical
sector number after three attempts at running the FORMAT
command, then the oxide on the diskette is probably damaged.
The diskette is unusable in such cases. If the unusable
diskette is inspected carefully by manually turning the
diskette within its protective envelope. a mark or
indentation can usually be found on its surface.

The FORMAT command can be used to format Single-Sided
diskettes on the single- and double-sided Calcomp EXORdisk
11/111 systems or on the Single-sided Pertec EXORdisk II
systems; however, double-sided diskettes can only be
formatted on the double-sided Calcomp EXORdisk III systems.

15.2 Messages

The only messages that the FORMAT command can display
are the prompt shown above. asking if the diskette in the
specified <unit> is to be formatted, and the standard PROM
110 error message, indicating that a diskette controller
error was encountered during the formatting process.

15.3 Example

The following example shows the FORMAT command being
used repeatedly after an error is detected. Since the
physical sector number of the error keeps increasing, it
indicates that the FORMAT command is able to rewrite more and
more of the diskette; however, at one point, the physical
sector number is always the same. At that time the FORMAT
command is not used any 10nge1'" since the diskette in drive
one is unusable.

Page 15-0~

FORMAT COMMAND 15.3 -- Example

=FORMAT
FORMAT DRIVE I?
y

**PROM 110 ERROR-STATUS=38 AT 2006 ON DRIVE l-PSN 0108
=FORMAT
FORMAT DRIVE 1?
Y
**PROM 110 ERROR-STATUS=38 AT 2006 ON DRIVE I-PSN 01F2
=FORMAT
FORMAT DRIVE 1?
Y
**PROM 110 ERROR-STATUS=38 AT 2006 ON DRIVE I--PSN 0226
=FORMAT
FORMAT DRIVE l?
Y
**PROM I/O ERROR-STATUS~31 AT 2006 ON DRIVE I-PSN 0226
=FORMAT
FORMAT DRIVE 1?
Y
**PROM 110 ERROR-STATUS=31 AT 2006 ON DRIVE I-PSN 0226
=

Page 15-03

CHAPTER 16

16. FREE COMMAND

The FREE command displays the number of unallocated
sectors and the number of empty directory entries remaining
on a diskette.

16. 1 Use

The FREE command program is invoked with the following
command line:

FREE [:<unit>J [i<options>J

where <unit> can be the logical unit number 0, 1, 2, or 3,
and <options> can be the letter "L". If the <unit> is not
specified on the command line, the default value zero will be
used.

The FREE command normally displays its summary data on
the system console. The option "L", however, can be used to
direct this data to the line printer instead. After the FREE
command has determined the available space on the diskette,
the data will be displayed in the following format:

DRIVE i: xxxxxxxx
aaaa/$bbb SECTORS ccc/$dd FILES
eeee/$fff LARGEST CONTIGUOUS BLOCK

The symbols have the following meanings:

Symbol

i
xxxxxxxx
aaaa
$bbb
eec

$dd

eeee

$fff

Meaning

Logical unit number selected.
Eight character diskette 10.
Available sectors in decimal.
Available sectors in hexadecimal.
Available directory entries in
dec imal.
Available directory entires in
hexad ec ima 1.
Size of largest, available block of
contiguous sectors in decimal.
Size of largest, available block of
contiguous sectors in hexadecimal.

Page 16-01

FREE COMMAND 16.2 -- ExamplE

16.2 Example

The following example shows the output from the FREE
command as displayed on the system console (a double-sided
diskette is used).

=FREE :3
DRIVE 3: MDOS0300

=

3004/$BBC SECTORS 124/$7C FILES
0212/$OD4 LARGEST CONTIGUOUS BLOCK

The last example uses a single-sided diskette. No
<unit> is entered on the command line, so the default of zero
is used.

=FREE
DRIVE 0: MDOS0300

=

0820/$334 SECTORS 140/$8C FILES
0064/$040 LARGEST CONTIGUOUS BLOCK

Page 16-m

CHAPTER 17

17. LIST COMMAND

The LIST command is used to print any ASCII file on
either the system console or the printer. Options exist for
numbering lines, specifying page formats, printing headings,
and indicating starting and ending points. In addition,
files can be accessed by their logical sector numbers for
rapid access to any portion of a file.

17. 1 Use

The LIST command is invoked with the following command
1 ine:

LIST <name>[, [<start>J[,<end>JJ [;<options>l

where <name> is the file specification of an ASCII file that
is to be displayed, <start> and <end> are the optional
starting and ending points of the display, and <options> can
be one or more of the option letters described below.

Option Function

L Display file on line printer.

H

N

F

Get heading
console.

information from system

Display physical line numbers for each
line.

Use a non-standard page format.

The <name> parameter must be specified with the LIST
command. If no suffix is given, the default value "SA" will
be supplied. The default logical unit number is zero.

The following sections describe each of the options in
detail. The "L" option can be used with any other options to
specify that the output from the LIST command is to be
directed to the line printer. If the "L" option is missing,
the system console will be used instead.

If the ASCII file contains any non-displayable
characters, the LIST command will convert them into a percent
sign ('Y.) so that they will be visible. If records are.
contained in the file that are longer than the selected page

Page 17-01

LIST COMMAND 17. 1 -- U

format, they will be truncated on the right before they are
displayed.

17.1.1 Start/end specifications

The default starting point for the display is the first
physical line of <name~. The default ending point is the
last physical line. The <start~ specification can be used to
start the display of the file at a specific physical line
number or at a specific logical sector number. If the
<start~ specification is present on th.e command line it must
be in one of the following two formats:

Lnnnnn

or

Smmm

The "Lnnnnn" form is used to specify a starting physical line
number. The value Ifnnnnn" must be a 1-5 digit decimal number
in the range 1-65535, inclusive. The nSmmmn form is used to
specify a starting logical sector number. The value Itmmm"
must be a 1-3 digit hexadecimal number in the range $O-FFF,
inclusive. The default <start> specification is "L1n.

The <end> specification can be used to specify where the
display of the file is to stop. The <end> specification has
the same two forms as the <start> specification. If no
<start> specification is entered on the command line, then
the <end> specification can be of either formi however, if
the <start> specification is entered, then the <end>
specification must be of the same form. For example, it is
invalid to specify a <start> specification of logical sector
five and an <end> specification of phYSical line 216. The
<end> specification must be larger than the <start>
specification. The default <end> specification is the
logical end of the file.

17.1.2 Physical line numbers

Normally, the displayed file will not be shown with
physical line numbers. Only the actual data of the lines in
the file will be shown. The "N" option can be used to cause
physical line numbers to be generated by the LIST command and
displayed with each line of data from the file. The physical
line numbers will be printed as five digit decimal numbers.
If the standard page format is used, each data line that is
longer than the eighty characters will be displayed with
eight fewer data characters, truncated from the right. The
physical line numbers are useful when using the BLO~EDIT
command (Chapter 5) Dr when trying to find verify errors from

Page 17-

LIST COMMAND 17.1 -- Use

the COPY command
tape file.

(Chapter 7) between a diskette file and a

The physical line number option "N" is fairly
meaningless if the logical sector form of the <start>
specification is used. Since no count is available for the
number of lines between the beginning of the file and the
specified logical sector, the physical line numbers (if
printed) would only be relative to the part of the file that
was displayed. A partial line will usually be seen as the
first line since the records randomly cross sector
boundaries.

17.1.3 User-supplied heading

NO'rmally, the LIST command will print a page number and
the file name specification of the file being listed as a
heading. The "H" option can be used to cause additional
information to be displayed on the heading line. The "H"
option will cause the following prompt to be shown on the
system console before the file is listed:

ENTER HEADING:

The operator can then respond with a line of text that is to
be used as the heading. The maximum length of the entered
heading is 100 (decimal) characters. The heading line
containing the page number. file name specification. and
user-supplied text will automatically be printed on the
second line of each page.

17.1.4 Non-standard page formats

Normally. the LIST command will display a maximum of
eighty characters per line and sixty-six lines per page. The
"F" option can be used to override the standard page format.
The format of the "F" option is as follows:

F[ccc]. [pp]

where at least one of the two parameters must be present.
The "ccc" parameter is used to specify the number of columns
to be printed per line. It must be a decimal number in the
range 1-132, inc Ius i ve. The" pp" parameter is used to
specify the number of lines per page. It, too, must be a
decimal number. but in the range 10-99. inclusive. An error
message will be displayed if an illegal page format is given.
Either the line length or the page length can be specified
without the other (e. g. I "F20." or "F. 58", respectively>.
Only the line length need be specified if longer lines are to
be printed on a standard length page.

Page 17-03

LIST COMMAND 17.2 -- Messages

17. 2 Mes,sages

The following messages can be displayed by the LIST
command. Not all messages are errol' messages; however, errol'
messages are included in the list. The standard error
messages that can be displayed by all commands are not listed
here.

PAGE ddd <name>

This is the standard heading supplied
command. "ddd" is the decimal page
<name> is the file name specification
being printed.

ENTER HEADING:

by the LIST
number and
of the file

This message is
used to print
page. A maximum
be entered.

displayed when the "H" option is
additional heading text on each
of 100 (decimal) characters can

** 24 LOGICAL SECTOR NUMBER OUT OF RANGE

This errol' is caused when a <start> specification
references a logical sector number that is
greater than the logical sector number of the end
of file.

** 34 INVALID START/END SPECIFICATIONS

The <start> and <end> specifications on the
command line were not both of the same form ("L"
01' "S"), 01' the <end> specification had a value
that was less than the value of the <start>
specification. This errol' can also be caused if
the <start> 01' <end> specifications begin with
letters other than "L" 01' "SR.

** 35 INVALID PAGE FORMAT

The parameters of the "F" option did not meet the
criteria explained in section 17.1.4.

** 36 FILE EXHAUSTED BEFORE LINE FOUND

The <start> specification on
specified a physical line number
larger than the total number
file.

the command line
whose value was

of lines in the

Page 17-04

LIST COMMAND 17.3 -- Examples

17.3 Examples

The MDOS equate file is used in all of the following
examples. The following example shows what is probably the
most commonly used form of the LIST command. No options are
used. The default values for suffix. logical unit number,
<start> and <end> sp ec i f i cati ons. pag e format, and output
device are used. It is assumed that the BREAK key was
depressed to terminate the LIST command and return control to
MDOS in this example.

=LIST EGU

PAGE 001 EGU . SA: 0

* * TURN OFF THE LISTING

*

*

OPT NOL
PAGE

* MDOS VERSION 03.00 -- SYSTEM EGUATE FILE -- JULY 25,1978

* spe 3

*

The following example uses the <end> specification to
stop on the tenth line of the file. Since the default value
for the <start> specification is to be used, a null parameter
must be specified for it. This is done by entering the two
adJacent commas. The "Nil option causes the display of the
physical line numbers.

=LIST EGU,.LI0iN

PAGE 001 EGO . SA:O

* * TURN OFF THE LISTING

* OPT NOL
PAGE

*

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010

* MDOS VERSION 03.00 -- SYSTEM EGUATE FILE -- JULY 25.1978

=

* spe 3

*

The following example uses both
specifications to cause the display
thT'ough 40. inc I us i ve.

<start> and <end>
of physical lines 30

Page 17-05

LIST COMMAND 17.3 -- Example

=LIST EGU,L30,L40

PAGE 001 EGU . SA:O

* THE SAME CONCEPT AS THE "SKIP2" MACRO IS USED, EXCEPT THAT
* A "BIT TEST ACCUMULATOR A IMMEDIATE" OP CODE IS GENERATED.

* SKIP1 MACR

*

FCB $85
ENDM

* S CAL L

* SCALL MACR
IFEG NARG-1

=

MAC R 0 (SYSTEM FUNCTION CALL)

The following example illustrates how the logical sector
number can be used to rapidly access any part of a file.
When the <start> and <end> specifications refer to physical
line numbers, the file must be read from the beginning, a
record at a time, in order to find the correct lines;
however, the logical sector form of the <start> specification
permits the LIST command to go directly to the sector. The
physical line number aptian "N" is fairly meaningless if the
logical sector form of the <start> specification is used.
Since no count is available for the number of lines between
the beginning of the file and the specified logical sector,
the physical line numbers (if printed) would only be relative
to the part of the file that was displayed. A partial line
will usually be seen as the first line since the records
randomly cross sector boundaries. The BREAK key was used in
this example to terminate the display of the file.

=LIST EGU,S5

PAGE 001 EGU . SA: 0

TE" OP CODE IS GENERATED.

* SKIP1 MACR

*

FCB $85
ENDM

* S CAL L

* SCALL MACR
IFEG NARQ-1

=

MAC R 0 (SYSTEM FUNCTION CALL)

The fallowing example displays the MDoS e~uate file
using a nan-standard line length specification. Only the
first twenty characters of each line will be sh~wn. Notice

Page 17-(

LIST COMMAND 17.3 -- Examples

that this format also applies to the printed heading. The
BREAK key was used to terminate the display.

=LIST EGUiF20

PAGE 001 EGU . S

* * TURN OFF THE LISTI

*

*

OPT NOl.
PAGE

* MDOS VERSION 03.00

* =

The last example lists the first nine lines of the I'1DOS
equate file. In addition to the previously shown features,
the "H" option is used to specify a heading. This heading
would be printed at the top of each page if multiple pages
were pr i nted.

=LIST EGU"L9iHN
ENTER HEADING: THIS IS THE MDOS SYSTEM EGUATE FILE

PAGE 001 EGU .SA:O THIS IS THE MDOS SYSTEM EGUATE FILE

00001
00002
00003
00004
00005
00006
00007
00008
00009
=

* * TURN OFF THE LISTING

* OPT NOL
PAGE

* * MDOS VERSION 03.00 -- SYSTEM EGUATE FILE -- JULY 25,1978

* SPC 3

Page 17-07

CHAPTER 18

18. LOAD COMMAND

The LOAD command is used to load a program from a
memory-image file on the diskette into memory. Options exist
for entering the debug monitor after loading a program. for
automatically executing a program, for loading a program into
the User Memory Map of EXORciser II systems. and for loading
a program over the resident operating system.

18. 1 Use

The LOAD command is most frequently used to load a
program into memory for testing; however, certain types of
programs. specifically those that overlay MDOS, that load
outside range of contiguous memory knonw to MOOS, or that
execute in the User Memory Map of an EXORciser II system with
the dual memory map configured, can only be executed via the
LOAD command and one of its options (G). The LOAD command is
invoked with the following command line:

LOAD [<name>] [;<options>]

where <name> is the file name specification of a file from
which the program is to be loaded into memory, and <options>
specifies how to load the program. If <name> is specified,
it must be the name of a file that has the memory-image
format. The default suffix "LO" will be supplied if no
explicit suffix is given. The default logical unit number is
zero.

The <options> are divided into "Main Options" and "Other
Options". Main Options are mutually exclusive. That is,
only one Main Option can be specified on the command line at
a time. The Other Options can be included with anyone of
the Main Options. The following tables show both Main and
Other Options.

Page 18-01

LOAD COMMAND

Main Option

none

u

v

Other Option

none

«str»

lB. 1 -- u!

Function

Load program into contiguous
memory above MDOS; keep MDOS SWI
vector to allow system function
access.

Load program into User Memory Map
of an EXORciser II system with a
dual memory map configuration.

Allow program to load over MDOS
or anywhere else in memory.
disable MDOS's SWI vector.

Function

Enter debug monitor after loading
program.

Execute program after loading.

Initialize MDOS command line
buffer with the character string
<str> as indicated in the
enclosed parentheses.

The <options> are discussed in detail in the following
sections.

The LOAD command does not verify that memory exists for
the areas into which a program gets loaded.
Command-interpreter-Ioadable programs (section 18.1.1) are
guaranteed that memory exists since the memory was sized at
initialization time; however, programs loading into
discontiguous areas of memory or into the User Memory Map of
a dual memory map configuration are not guaranteed that
memory exists. The operator is responsible for knowing where
memory is configured in his system and where his programs are
loaded. Also, due to the nature of the diskette controller.
it is not possible for the LOAD command to compare what is
read from the file with what is stored into memory. Only
diskette controller read errors can be detected.

Programs brought into memory from the diskette will be
loaded in multiples of eight bytes. This fact must be
considered when programs are loaded into adJacent blocks of
memory close to other programs. or if programs are loaded
into the upper end of a block of memory.

Page lB~

LOAD COMMAND 18. 1 -- Use

18.1.1 Command-interpreter-Ioadable programs

Programs that can be loaded by the MOOS command
interpreter are usually loaded for testing by not specifying
anything in the <options> field. The "G" option can be used
to load and execute the program in one step; however. for
such programs this is awkward. They are usually loaded and
executed directly by the MOOS command interpreter by entering
their file names as the first file name specification on an
MOOS command line. The command line

LOAD TESTPROG

would attempt to load the file TESTPROG. LO from logical unit
zero above the resident operating system (the program must
have already been assembled at. or link/loaded and assigned
memory locations at the proper addresses so it loads above
MDOS). After the file was loaded, control would be given to
the debug monitor.

The following command lines

TESTPROG.LO

or

LOAD TESTPROGiG

would load the program from TESTPROG.LO from logical unit
zero and execute the program. It should be noted that these
two command lines will accomplish the same function. Since
the first form of the command line is shorter, especially if
the suffix were change to "CM", the second form is seldomly
used.

Command-interpreter-Ioadable
following requirements:

programs must meet the

1. The program must load above the resident
operating system; it must be origined to load
above hexadecimal location $lFFF. The program
can access the direct addressing area below
hexadecimal address $100 (aSCT) during execution;
however, that area of the memory cannot be loaded
into. Thus. variables in BSCT cannot be
initialized during loading. In addition. if a
program is going to use diskette I/O, none of the
locations below address $20 can be used by the
program for its own variables.

2. The program must load within the range of
contiguous memory that was established during
MDOS initialization. Such programs require an

Page 18-03

· LOAD COMMAND

additional eight bytes of memory beyond
highest loaded address to allow room for a
when the debug monitor is entered. These
bytes must be within the contiguous memory
knotllTl toMDOS.

lB. 1 -- USt

their
stack
eight
block

If either of these criteria is not met, the standard error
message will be displayed indicating that the program has an
invalid load address.

After the program is loaded (without any options), the
debug monitor will_ be entered (as seen by the input prompt of
the resident monitor>. The pseudo registers of the debug
monitor will have been initialized by the LOAD command to the
following values:

Pseudo register Contents

P
X
S

A,B,C
y
U=S
DP=O

Starting execution address
Lowest address loaded into
Highest address loaded into (eight
bytes greater than the highest actual
program location)
Indeterminate
Indeterminate (MDOS09)
I1DOS09 only
I"IDOS09 only

Normally, command-interpreter-Ioadable programs take
advantage of the fact that the stack pOinter is initialized
to the end of the program area by using that part of memory
for the actual stack during execution. Such stacks must be a
minimum of 80 (decimal) bytes in size.

In addition to setting up the pseudo registers. the LOAD
command will change the MOOS variable ENDUS$ (Chapter 24) to
contain the last address loaded into by the program. This
allows the program to dynamically allocate additional
contiguous memory for buffers, etc., via the It.ALUSM"
function (Chapter 27).

Caution must be exercised when loading a program and
entering the debug monitor. If MOOS is to be reinitialized,
the ABORT or RESTART pushbuttons must first be depressed
before the debug command "EBOOiQ" or "MDOS" is executed.

lB. 1.2 Non-command-interpreter-Ioadable programs

Programs are not loadable by the MDOS command
interpreter must be loaded into memory for either testing or
execution via the LOAD command. Normally, such programs will
overlay the resident operating system or will load into areas

Page lB-O~

LOAD COMMAND 18. 1 -- Use

outside of the contiguous memory
programs cannot be executed directly
interpreter.

known to
via the

MDOS. Such
MDOS command

The "V" option will inhibit the memory boundary tests
explained in the previous section. A program loaded with the
"V" option, however, must still meet the following
requirements:

1. The program must load above the RAM variables
required by the diskette controller. That is,
the program must be assembled to load above
hexadecimal location $lF. The program can access
the direct addressing area below hexadecimal
location $20 during execution; however, that area
of memory cannot be loaded into. Thus, variables
in the direct addressing area cannot be
initialized during loading if their addresses are
between $0000 and $OOlF, inclusive.

2. The program's ending load address, as calculated
from the parameters in the RIB, must not be
greater than $FFFF. Specifically, the starting
load address plus the number of sectors to load
minus one (expressed in numbers of bytes), plus
the number of bytes to load from the last sector
minus one. must be less than or equal to $FFFF
(see section 24.2).

If either of these criteria is not met, the standard error
messages will be displayed indicating that the program has an
invalid load address.

If the program is to be loaded for testing. only the "V"
option should be specified. Thus. the command line

LOAD TESTPROGiV

will cause the debug monitor to be entered after the program
is loaded from the file TESTPROG.LO from logical unit zero.
The pseudo registers will contain the following values:

Pseudo register Contents

P
X
S
A.B.C
Y
U=S
DP=O

Starting execution address
Lowest address loaded into
EXbug stack address
Indeterminate
Indeterminate (MDOS09)
MDOS09 only
MDOS09 only

Since the memory boundary check is bypassed with the "V"

Page 18-05

LOAD COMMAND lB. 1 -- U

option~ the p?ogram can be assembled to load anywhere above
location $lFi however, no check is made to veriFy that memory
exists where the program is loaded.

Once programs have been tested. they can be executed via
the LOAD command by speciFying the additional option "Gil, as
in the following command line:

LOAD TESTPROGiVG

The "Gil option will bypass entering the debug monitor and
cause control to be passed directly to the loaded program.
The stack pOinter is still configured as explained above.

If the "V" option is used (with or without the "G"
option), the SWI vector will be restored to its original
value that points back to the debug monitor. Thus, programs
loaded with the "V" option cannot use the resident MDOS
functions.

18.1.3 Programs in the User Memory Map

By using the "U" option as .hown in the following
command line, the LOAD command can be used to load a program
into the User Memory Map of an EXORciser II system that has
the dual memory map configured:

LOAD TESTPROGiU

If the dual memory map is not configured, an error message
will be displayed.

The only re~uirement placed on programs loading into the
User Memory Map is that the ending load address not be
greater than $FFFF. Otherwise, any memory locations
($OOOO-FFFF) can be loaded into; however, no check is made to
ensure that memory exists where the program is loaded. If
the "G" option omitted, the debug monitor will be entered
after the program is loaded. The debug monitor will display
the User Memory Map prompt, not the Executive Memory Map
prompt. The pseudo registers will contain the following
values:

Pseudo register Contents

P
X
S
A,B,C
Y
U=S
DP=O

Starting execution address
Lowest address loaded into
Highest address loaded into
Indeterminate
Indeterminate (MDOS09)
MD0509 only
MD0509 only

Page IB-

LOAD COMMAND lB. 1 -- Use

Caution must be exercised in starting execution of
programs loaded in this manner. Since the stack pointer
contains the address of the last loaded program location. use
of the debug monitor commands lfiP" or "iN" will cause seven
locations of the program to be destroyed. This may alter
program data or instructions. It is recommended that the
stack pointer first be changed via the Ifi 5" command; that the
"nnnniG" command be used to initiate execution; or that area
for the stack be provided at the end of the program.

The LOAD command's "G" option can be used in addition to
the "un option to give control to the program immediately
after it has been loaded:

LOAD TESTPROGiUG

The "M6800 EXORciser II User's Guide" should be consulted for
a complete discussion of the User Memory Map.

If the "U" option is used (with or without the "G"
option), the SWI vector will be restored to its original
va I ue that po i nts bac k to the deb ug man i tor. Thus. programs
loaded with the "U" option cannot use the resident MDOS
functions.

18.1.4 1'"1005 command line initialization

The Other Option «str» is used while testing
c ommand-i nterpreter-l oadab I e programs < sec t i on 18. 1. 1>' Such
programs usually obtain parameters via the initial command
line that activated the program. When testing such programs.
however, the command line buffer will contain the command
line that invoked the LOAD command. Thus. the «str» option
is used to allow testing of the loaded program as if it had
been invoked from the command line directly, simulating its
execution-time environment. The quantity <str> will be
placed into the MDOS command line buffer. The command line
buffer pointer. CBUFP$ <Chapter 24), will be adJusted to
point to a null character which precedes the string (a valid
terminator for the . PFNAM function. Chapter 27>' Any
displayable characters. except the right parenthesis ")". can
be included in the string <str>. The string will be
terminated with a carriage return after it is placed into the
command line buffer. Thus. the use of the null string "0".
will cause a single carriage return to be placed into the
buffer.

The «str» option can be used with any of the Main
Options; however. it only makes sense when no Main Option is
used (command-interpreter-Ioadable programs).

Page 18-07

LOAD COMMAND lB. 1 -- USE

18. 1. 5 Entering the debug moni tor

The LOAD command can be invoked without entering a file
specification. For example, the command line

LOAD

lIIil1 cause the debug monitor to be entered directly. For
MDOS, the message

BKPT ERROR
P-2131 X-2170 A-OD B-80 C-CO S-227F

*
or the message

SWI P-2131 X-2170 A-OD B-80 C-CO S-227F
E*

lIIill be displayed depending on IIIhether EXbug 1 or EXbug 2,
respectively, is in the system. The actual contents of the
pseudo registers may differ.

For MDOS09, the message

SWI P-2131 U-227F Y-FF34 X-2170 DP-OO A-OD B-BO C-CO
S-227F

lIIill be displayed.

If the LOAD command is invoked in this way, then at no
time should MDOS be reinitialized via the "EBOOiG" or "MOOS"
command without first depressing either the ABORT or RESTART
pushbuttons on the front panel of the EXORciser. If the LOAD
command lIIas entered as shown in the example above, MOOS can
be reentered lIIithout reinitialization by using the debug
monitor command "iP". The LOAD command has configured itself
so that the ";P" command lIIill cause a normal return to the
MDOS command interpreter.

If the "V" option lIIas used lIIithout a file name specified
on the command line, the "iP" command will cause MOOS to
reinitialize as if an "EBOOiG" or "MDOS" command had been
given to the debug monitor. The "V" option has the same
effect as using the ABORT or RESTART pushbuttons insofar as
the SWI vector configuration is concerned.

The ltV" option is invalid with this form of the LOAD
command.

The Other Options "G" and U«str»" are invalid IIIhen the
LOAD command is invoked without a file name specification on
the command line.

Page IS-Of

LOAD COMMAND 18.2 -- Error Messages

18.2 Error Messages

The
standard
messages
they are

LOAD command displays error messages from the
error message set. however, since some of these

have special significance to the LOAD command only.
listed here.

** 07 OPTION CONFLICT

This error message can be displayed for the
following reasons: More than one Main Option was
specified at the same time; the LOAD command was
invoked without a file name with the "un option;
or the "U" option was used on an EXORciser I
system or on an EXORciser II system without the
dual memory map configured.

Earlier versions of MDOS supported the "P" and
"M" options which were used as defaults if no
options were entered. The "P" option had same
effect as the null Main Option. The "Mil option
had the same effect as the null Other Option. If
"P" was used with any of the Main Options. or if
"M" was used with the "Gil option. then this
message would also be displayed.

** 12 INVALID TYPE OF OBJECT FILE

This error message is displayed if the file
specified on the command line was not a
memory--image file. In odd cases. this message is
also be displayed if the Retrieval Information
Block of the file has been damaged. If this is
the suspected cause, then the REPAIR command
(Chapter 22) should be run to verify that the RIB
is in erT'or.

Page 18--09

LOAD COMMAND 18.2 -- E~~o~ Message

** 13 INVALID LOAD ADDRESS

If the LOAD command was invoked with the null
Main Option, the p~og~am cannot be loaded fol' one
of the following l'easons:

1. It loads over the l'esident opel'ating
s~stem. That is. it loads below
hexadecimal location $2000.

2. It loads be~ondthe l'ange of contiguous
memor~ known to MOOS <established at
initialization time).

If the LOAD command was invoked with the Main
Option "V", the progl'am cannot be loaded because
it loads below hexadecimal location $20, 01' the
pl'ogram's ending load addl'ess is greater than
$FFFF.

If the LOAD command was invoked with the Main
Option "un. ending load add~ess is greatel' than
$FFFF.

In the cases where the ending load addl'ess
exceeds $FFFF, the RIB of the file has been
invalidl~ c~eated. Usuall~. this occurs when a
progl'am loads into the high~st memor~ location
($FFFF) but does not stal't loading at an add~ess

that is a multiple of eight. Since the only
information available to the LOAD command is the
starting load add~ess and the progl'am's size (a
multiple of eight b~tes). the ending load address
may exceed $FFFF (diskette controller forces the
multiple of eight b~te cl'itel'ionL Then, the
pl'ogl'am should be l'e-assembled Dr re-link/loaded
so that the starting load address is a multiple
of eight. If this is not the case, the REPAIR
command (Chaptel' 22) should be invoked to check
for other files that may also be in el'l'or.

** 30 INVALID EXECUTION ADDRESS

The the file from which a program is to be loaded
has an invalid RIB which must be fixed with
REPAIR. The stal'ting execution address lies
outside of the block of memory that would be
loaded by the program.

Page 18-1

LOAD COMMAND 18.3 -- Examples

18.3 Examples

The following command line:

LOAD TESTPROG:li (FILE1,FILE2iS=1000)

will load the program from the file TESTPROG.LO from logical
unit one into memory. The program must be origined to load
above the resident MDOS and below the end of contiguous
memory. The MDOS command line buffer will be initialized
with the string

FILE1,FILE2iS=1000

to allow the program to be tested as if it had been invoked
from the command line directly. After the program is loaded,
control is given to the debug monitor.

The next example illustrates how user-written programs
are executed from diskette directly. The program can load
anywhere in memory except below hexadecimal location $20.
The program cannot use any of the resident MDOS function~:

LOAD BLAKJACKiVG

The next example illustrates how the PROM Programmer I
program can be used for making PROMs of programs that load
above resident MDOS and the area re~uired by the command
interpreter and LOAD command. It is assumed that the program
in the file TPROM.LO loads above $2300. Since the contents
of memory are not destroyed during the initialization
procedure, MDOS can be reinitialized after loading the
program TPROM without losing the content of those memory
locations. Then. the LOAD command is used again to load and
execute a version of the Prom Programmer I program (origined
to load at location $20).

=LOAD TPROMiV
*E800iG
MDOS 03.00
=LOAD PPLOiVG
?

The command "E800JG" can be validly used since the program in
the file TPROM.LO was loaded with the "V" option. If no Main
Options are u~ed, the ABORT or RESTART pushbuttons would have
to be depressed first.

Page 18-11

CHAPTER 19

19. MERGE COMMAND

files to be
useful in

large file,

The MERGE command allows one or more
concatenated into a new file. This command is
combining several smaller program files into one
or in building relocatable libraries to be
conJunction with the M6800 Linking Loader (RLOAD).

used in

19. 1 Use

The MERGE command is invoked with the following command
line:

MERGE <name 1:>[.<name 2:>, ... ,<name n:>J,<dname:>Ci<options:>J

where <name i> (i=1 to n) are the names of the files to be
merged together. <dname> is the name of the destination file,
and <options> can be one or both of the options listed below.
A maximum of 38 (decimal> file names can be accommodated by
the MERGE command.

Option Function

W Use automatic overwrite if destination
file already exists on diskette.

<addr> Use hexadecimal <addr> as starting
execution address of destination file.

The <options> are described in detail in the following
sections.

Only <name 1> and <dname> are required. All file name
specifications on the MERGE command line must contain at
least a file name. For all <name i>, the default suffix "SA"
and the default logical unit number zero will be used if none
are explicitly given. The default suffix and logical unit
number for <dname> are taken from <name 1>.

MERGE will perform two different functions depending on
whether <dname> is the same as <name 1:> or not. If <dname:>
is different from <name 1:>, then all of the files specified
by <name i> will be combined into the destination file
<dname:>. Each of the <name i:> files will remain unaffected.
If <dname> is the same as <name 1:>, however, then MERGE will
append the files specified by <name 2> through <name n> to
the end of the file <name 1>. In this case, the file <name

Page 19-01

MERGE COMMAND 19. 1 -- Us

1> will be changed.

The file names <name 2> through <name n> are optional.
If they are specified, they must be of the same file format
and have similar allocation and space compression attributes
as <name 1>. In addition, their names cannot be the same as
that of <dname> unless <dname> is the same as <name 1>. If
file names <name 2> through <name n> are not specified, the
MERGE command performs the same function as the COPY command.
That is,

MERGE <name 1>,<dname>

is identical to the command line

COPY <name 1>,<dname>

assuming that <name 1> is not the same as <dname>.

Only four types of files can be processed by the MERGE
command. The files specified by <name i> must have one of
the following formats:

File format as File format
shown by DIR

o User-defined
2 Memory-image
3 Binary record
5 ASCII record

Memory-image files can be merged together. The file
<dname>, however, cannot exist in such cases because MERGE
must ensure that the destination file is allocated contiguous
space to accommodate the memory-images of all <name i> files.
If <dname> already exists, MERGE cannot ensure such
allocation. For all other file formats that <name i> can
assume, <dname> can already exist. In such cases where
<dname> is different from <name 1> and already exists in the
directory <and no "W" option on command line), the message

<dname> EX ISTS. OVERWRITE?

will be displayed. The operator must respond with a "yo if
MERGE is to perform the merge operation. An" other response
will terminate the MERGE command and return control to MOOS.

19.1.1 Merging non-memor,,-image files

If the files specified b" <name i> are all of the
user-defined format, the binary record format, or the ASCII
record format, then the destination file <dname> will be a

Page 19-C

MERGE COMMAND 19. 1 -- Use

direct concatenation of all of the source files. For
example, if five ASCII record files are merged, the
destination file can be represented by:

Destination File

File 1 File 2 : File 3: File 4 : File 5

. start of file end of file :

The same type of concatenation would take place if the
file format was either user-defined or binary record. The
MERGE command can be used in this manner to create one large
data or source program file from smaller files, or a library
file of relocatable obJect programs.

19.1.2 Merging memory-image files

If all of the files specified by <name i> are
memory-image format files, then the destination file <dname>
will be a memory-image file also; however, it will span all
memory locations between the lowest and the highest address
spanned by the <name i> files. If the files to be merged
occupy overlapping areas in memory, then the destination file
will contain the contents of the last file to be merged that
occupies those common locations. The MERGE command produces
a file that is the memory image of files I-n as if they were
loaded into memory in the sequence in which they appear on
the command line. Regions of memory spanned by <dname> that
are not "loaded" into by the <name i> files will contain
binary zeroes.

For example, if three memory-image files as described in
the following table were merged together,

<name i> Lowest Highest
file address address

-------- ------- -------
1 600 FFF
2 100 7FF
3 1200 13FF

then the resulting destination file can be represented by:

Page 19-03

MERGE COMMAND 19. 1 - Use

Memol'fJ
Location 1

o
o

6
o
o

8
o
o

F
F
F

12222222222222222222222211111111
12222222222222222222222211111111
12222222222222222222222211111111

1
2
o
o

1
3
F
F

333333331
333333331
33333333:

: ... Ovel'lafJed <name 1>

: Stal't of <dname> End of <dname> :

The numbel's in the bodfJ of the l'ectangle above indicate
the data of the respective <name i> file. Thus. "2'•
indicates the data of <name 2>, etc. Between locations $600
and $7FF, the data of <name 2> is seen. It overlayed any
infol'mation put into <dname> bfJ <name 1>. Since none of the
<name i> files spanned the addl'esses fl'om $1000 to $tlFF,
inclusive, that pal't of <dname> is initialized to binal'Y
zel'oes.

It should be noted that programs from memol'y-image files
loaded into memorfJ are always a multiple of eight bfJtes in
length. This is a function of the diskette contl'ollel'.
Regardless of the actual data of a file, a multiple of eight
bytes will always be loaded. This fact must be kept in mind
when merging files which span memorfJ locations that are close
together.

Memory-image files have associated with their load
information a starting execution addl'ess. If no <options>
field is specified on the MERGE command line, <dname> will
have the starting execution address of <name 1> assigned to
it. however, as can be seen from the above example, this
default execution address can be meaningless. An explicit
starting execution address can be specified in the <options>
field as a one to four digit hexadecimal number. The addl'ess
must lie within the range of memorfJ addresses spanned bfJ
<dname>.

19.1.3 Other options

The "W" option is used to allow the destination file to

c

be overwritten if its file name alreadfJ exists; the
"OVERWRITE" prompt is not displayed and MERGE performs its
expected function. If the "W" option is not used, the MERGE
command will prompt the operator before over..,riting the
destination file. The "W" option is not valid if <name 1> is C
a memorfJ-image file because the destination file cannot exist

Page 19-0Al

MERGE COMMAND 19. 1 -- Use

in that case.

19.2 Messages

The following messages can be displayed by the MERGE
command. Not all messages are error messages. although error
messages are included in the list. The standard error
messages that can be displayed by all commands are not listed
here.

<name> EX ISTS. OVERWRITE?

The specified file name already exists in the
directory. The operator is prompted before the
f i lei s overwr i tten. A "V" response wi 11 cause
the merge to take place. Any other response will
cause control be to returned to MDOS.

** 15 <name> HAS INVALID FILE TVPE

The file indicated by <name::> is not of the proper
format (i. e., ASCII record, binary record,
memory-image, or user-defined), or the RIB of the
file is damaged. A memory-image file's RIB is
considered to be damaged if the number of sectors
to load is zero, the number of bytes to load from
the last sector is zero, or if the ending load
address is larger than $FFFF. If a damaged RIB
is suspected. the REPAIR command (Chapter 22)
should be invoked to correct the error.

** 16 CONFLICTING FILE TVPES

The files specified by <name i> have different
file formats. They must all be the same format.
Even if th e format (ASC I I record, etc.) is the
same, the contiguous allocation attribute and the
space compression attribute must also agree
between all <name i::>. This error can also occur
if <dname::> (not the same as <name 1::» exists and
has a different file format than <name 1::>.

** 33 TOO MANV SOURCE FILES

More than 38 (decimal) file names were specified
for <name i::>.

19.3 Examples

The following example combines the first four files
specified on the command line into a new file (the last name
on the command line). The first four files all have the same

Page 19-05

MERGE COMMAND 19.3 ...;;- ExamplE

attributes. The last name is the name of a new file since
the OVERWRITE prompt was not displayed.

MERGE PART1,PART2:3.PART3:1,PART4:2,BOOK

The default suffix "SA" was used for each file name. The
destination file BOOK is created on the default logical unit
number used for PART1, unit zero.

The next example illustrates how a relocatable library
file can be constructed from various smaller files. The
library file already exists. It will have the files appended
to its end.

MERGE LIB. RO,DSKIO.RO,CNSIO. RO,FLOT. RO,LIB. RO

The last example illustrates how a patch file can be
attached to a test program file. A new starting execution
address is specified as $lF20.

MERGE TESTPROG.LO,PATCH1.LO,NEWTEST.LOi1F20

The file name NEWTEST.LO must not already exist. Both of the
other two file~ must be memory-i.age in format.

Page 19-(

CHAPTER 20

-20. NAME COMMAND

The NAME command allows the names, suffixes and/or
attributes of a file to be changed in the directory. A
single file name or a family of file names can be affected.
The contents o' a file remain unchanged.

20. 1 Use

The NAME command is invoked with the following command
line:

NAME <name 1> [,<name 2» [;<options»

where <name 1> is the 'ile name specification of an existing
file, <name 2> is the new name the file is to be given. and
<options> can be one or more o' the option letters listed
below.

Option Function

D Set delete protection

W Set write protection

X Remove protection

S Set system attribute

N Remove system attribute

The <options> are discussed in detail in the following
sections.

20. 1. 1 Chang i ng file names

If <name 2> is specified on the command line. the NAME
command will attempt to change the name and/or suffix of
<name 1>. <name 1> must always be specified. The default
suffix "SA" and the default logical unit number zero are
supplied if none are explicitly given for <name 1>.

If only a file name is specified for <name 2>. then only
<name 1>'5 file name will be changed; its suffix will remain
the same. For example, the following command line

Page 20-01

NAME COMMAND 20. 1 -- Use

NAME TESTPROQ.BLAKJACK

~ill change the file name TESTPROQ.5A:0 to the new name
BLAKJACK.SA. The default suffix and logical unit numbe~ we~e
applied to <name 1> befo~e pe~'o~ming the name change.
Likewise. if only a suffix is supplied fo~ <name 2>, then
<name 1>'s file name ~ill not be changed; only its suffix
~ill be affected. Thus. the following command line

NAME TESTPROQ.LX:l •. EY

~ill change the suffix of the file name TESTPROG.LX on d~ive
one to "EY II •

A logical unit number should not be specified fo~ <name
2> since the file <name 1> cannot be moved from one logical
unit to another when its name is being changed; however. if a
logical unit number is specified for <name 2>. it must ag~ee
~ith the logical unit number of <name 1>.

When changing file names. the family indicato~ can be
used in eithe~ the file name po~tion or in the suffix po~tion
of <name 1>. The family indjcato~ cannot appea~ in both
places. The family indicato~ can be used to change the names
o~ the suffixes of an enti~e family of file names. Fo~
example, the command line

NAME *.ED •. SA

would change all file names on d~ive ze~o that had the suffix
tiED" (as would be created by the EMCOPY command when it uses
the default suffix) so that they had the ne~ suffix "SAil.
Similarly. the command line

NAME TESTPROG.*:2.BLAKJACK

would change all files named TESTPROG (any suffix) on d~ive
t~o to have the new name BLAKJACK. The suffixes would remain
the same. preserving the identity of sou~ce. EXbug-loadable
ObJect. and memo~y-image files as deSignated bV thei~
~espective suffixes.

Rega~dless of how the NAME command is invoked to change
a file(s name and/o~ suffix, the new name must not al~eady

exist in th. directo~v. Simila~lv, the old name specified by
<name 1> must exist in the di~ecto~v. If eithe~ one of these
two conditions is not t~ue. one of the standa~d e~~o~
messages will be displayed.

20.1.2 Changing file att~ibutes

In addition to changing a file's name and/o~ suffix, the
NAME command can be used to change a file's att~ibutes. The

Page 20-0~

NAME COMMAND 20. 1 -- Use

way in which the attributes are to be changed is specified in
the <options:> field. Thus. it is possible to change both a
file's name and/or suffix and its attributes with the same
invocation of the NAME command.

The inherent attributes of a file that define its
physical format on the diskette (contiguous allocation. space
compress ion, memory-imag e. etc.) cannot be chang ed. These
attributes remain with a file from the time it is created
until the time it is deleted; however. the protection
attributes and the system attribute can be changed at any
time.

The protection attributes of a file are changed by
specifying the letter "X" (remove pT'otection), "W" (set write
protection), or "0" (set delete protection) in the <options:>
field. The system attribute is changed by specifying the
letter US" (set system attribute) or "N" (remove system
attribute). A maximum of five option letters can be
specified at one time. The option letters are processed from
left to right. For example. if a file with write protection
set is to have only delete protection set, the command line

NAME TESTPROG;XD

could be used. If the "X" and tiD" options were reversed. the
file would be unprotected.

If no <name 2:> is specified. then an <options> field
must be present. In such cases, the family indicator can be
used for both the file name and the suffix of <name 1:>.
Thus. a diskette can have all of its files protected or
unprotected with a single invocation of the NAME command.

20. 2 Error Messages

The following error messages can be displayed
NAME command. The standard error messages that
displayed by all commands are not listed here.

** 25 INVALID FILE NAME

by the
can be

This error message is displayed for the following
reasons: both <name 1> and <name 2:> were
specified on the command line and the family
indicator was present in both the file name and
the suffix portion of <name I:>; both <name I:> and
<name 2:> were entered with the family indicator;
or a device name was used for <name 1:> or <name
2:>.

Page 20--03

NAME COMMAND 20.3 -- ExamplE

20.3 Examples

The follobJing command line

NAME *.*:liX

bJill remove both delete and bJrite protection from everv file
named in the directory of drive one.

The next command line shobJS hObJ files' names and their
attributes can be changed at the same time.

NAME *.ED,.LX;X

This example will take all file names bJith the suffix "ED".
change it to "LX", and remove any protection that mav be
present.

The last example illustrates how a user-written program
can be incorporated as a system command file.

NAME TESTPROQ.LO:3,SURFACE.CMiSD

This command line changes both file name and suffix. In
addition, the system attribute and delete protection are set.
Thus, the program file named SURFACE. eM will now be treated
as a system fi Ie by the DIR, DEL, and DOSQEN pr'ograms.

Page 20-(

CHAPTER 21

21. PATCH COMMAND

The PATCH command allows changes to be made to
memory-image files. An obJect file can be "fixed" due to
minor bugs or assembly errors without having to re-edit and
re-assemble its corresponding source file. The "Fixes" can
be entered using M6BOO assembly language mnemonics or the
equivalent hexadecimal operation codes.

21. 1 Use

The PATCH command is invoked with the following command
line:

where
fi Ie.
number
<name:>.
if the

PATCH <name:>

<name:> is the File specification of a memory-image
The default suffix "LO" and the default logical unit
zero will be supplied if none are explicitly given for

One of the standard error messages will be displayed
file <name:> does not exist or if it is of the wrong

f i I e format.

The PATCH command is an interactive program that has its
own command structure. Once PATCH is running. it will
display a greater-than sign (:» as an input prompt to
indicate that a command must be entered by the operator.
Commands exist to assign an oFfset used as a base address for
accessing the file, to calculate the relative addresses for
branches, to dis-assemble opcodes, to search the File for
eight- or sixteen-bit patterns, to display and change
locations in the file, and to change the starting execution
address of the file.

If the file <name:> exists and is of the proper format,
the PATCH command will display the following:

nnnn cc
:>

The "nnnn" is the absolute hexadecimal address of the lowest
location of the memory-image file and is used as the initial
offset (section 21.2.2). The "cc" is the hexadecimal content
of that location. The second line is the PATCH input prompt.
The following sections describe the various commands that
comprise the PATCH command set.

Page 21-01

PATCH COMMAND 21.2 -- PATCH Command Se1

21.2 PATCH Command Set

Each command to PATCH must be entered by the operator
after the input prompt (:» is displayed on the system
console. Like all MOOS input, all commands must be
terminated by a carriage return. In the following command
descriptions these symbols are used:

Symbol Meaning

m,n Both "m" and Un" are one to four digit
hexadecimal numbers.

c

a

<str:>

i

*

<cr:>

21.2.1 ~uit -- 0

"c" is a one or two digit hexadecimal
number.

"all is an ASCII character.

"<str::>" is
by commas.
a group
quotes.

a string of elements separated
Each element can be a "c" or

of "a"s enclosed in double

"i" is a valid M6800 assembly
mnemonic (1'16809 assembly
mnemonic if using MD0509).

language
language

The period symbol represents the current
position within the file <name>. It
takes on the value of the current
absolute address minus the current
offset.

The asterisk represents the assembler
location counter when used in the operand
field of instructions.

lI<cr>" is a carriage return.

The G command is used to terminate PATCH and return
control to MOOS. The format of the G command is simply the
letter "0". Any changes to the fi Ie wh ich are sti 11 in
memory will be written into the file before PATCH is
terminated.

Page 21-m

PATCH COMMAND 21.2 -- PATCH Command Set

21.2.2 Set/display offset -- 0

The 0 command is used to display and/or change the value
of the current offset. The offset is used as a base address
to which the locatLbn parameters of the other PATCH commands
are added to arrive at an absolute address within the file.
The format of the 0 command is

If the parameters "m"
command will display
example,

[m[,nllO

and Un" are not specified, the 0
the current value of the offset. For

:>0
OFFSET=2000

If either of the parameters "m" or tin" are specified,
the current value of the offset will be changed to either the
single value "m", if only "mil is specified, or to the value
tim p Ius nil, if both parameters are present. Th e foIl owing
sequence of commands illustrates both forms of the 0 command:

:>AOIFO
>0
OFFSET=A01F
>1234,56780
:>0
OFFSET=68AC

21.2.3 Display single location

The command to display the contents of a single location
within the file has the following format

(m[,nll<cr>

If both "mil and "n" are omitted, only a single carriage
return is entered. This form of the command will cause the
next sequential location of the file to be displayed. Since
PATCH initializes the current location to the first location
of the file when first invoked, the carriage return by itself
can be used to step through the file showing a byte at a
time, as in the following example.

Page 21-03

PATCH COMMAND

=PATCH TESTPROG
2000 30
>
2001 32
>
2002 30
::-
2003 30
::-
2004 OE
>Q
=

21.2 "'-- PATCH Command 8t

If either "m" or Un" are entered prior to the carriage
return, the effect of the command will be to display the
contents of location "m plus the current offset" or the
contents of location "m plus nn. For example,

=PATCH TESTPROQ
2000 30
>0
OFF8ET=2000
>10
2010 2D
>100
2100 OD
>200,2000
2200 A6
>1000,1000
2000 30
>Q
=

21.2.4 Display lowest address -- L

The L command is used to change the current location to
the lowest address of the file. The contents of the lowest
address will also be displayed. The format of the L command
is simply the letter "L".

Initially, when the PATCH command is started, the lowest
address is shown automatically. The L command can be used to
return to this point of the file at any time. Locations at
addresses numerically less than "L" cannot be accessed since
they do not correspond to any diskette space allocated to the
file.

21.2.5 Display highest address -- H

The H command is used to change the current location to
the highest address of the file. The contents of the highest

Page 21-(

PATCH COMMAND 21.2 -- PATCH Command Set

address will also be displayed. The format of the H command
is simply the letter "H". Locations at addresses numerically
greater than "H" cannot be accessed since they do not
correspond to any diskette space allocated to the file.

21.2.6 Calculate relative address -- R

The R command is used to calculate the relative address
between any two locations in the file. The format of the R
command is

m[,nJR

The R command will calculate the relative address between the
current location in the file and the address "m plus the
current offset" or the address "m plus n". The following
example illustrates the use of the R command. It is assumed
that the locations used in the example are the second bytes
of branch instructions.

=PATCH LOG.CM
8200 00
:>DA
82DA 05
:>COR
REL. ADDR==0005
:>119
8319 F9
:>113R
REL ADDR=FFF9
:>G
=

The first relative address is in the forward direction. The
second relative address is in the backward direction. The
relative address is shown as a sixteen-bit number, even
though only eight bits are required for the operand of the
M6800 branch instructions.

21.2.7 Dis-assemble operation code -- I

The I command is used to convert a one-byte operation
code into its equivalent M6800 or M6809 assembly language
mnemonic. The format OT the I command is

el

where "c" is the one-byte hexadecimal operation code Tor
MDOS. For MDOS09, "c" may be a one'- or two-byte hexadecimal
operation code. IT two bytes. the first byte must be 00. 10.
or 11. The contents of the file are not aTfected by the I
command. For MDOS, the Tormat of the assembly language

Page 21-05

PATCH COMMAND 21. 2 -- PATCH Command Se1

mnemoni~ that is displayed is the following:

MMM ttA 01' BJ t#J-(HH 01' HHHH 01' RR}[,XJl

For MDOS09, the format of the assembly language mnemonic that
is displayed is the following:

MMM ttA 01' BJ [OJ-(HH 01' HHHH 01' RR 01' RRRR 01' RL 01' R,R}
[,RJl

The symbols take on the following meanings:

Symbol Meaning

MMM The three-character mnemonic 01' base
mnemonic.

A 01' B The accumulator specification for
accumulator instruction types.

o The immediate addressing mode operand
~ualifier (cannot appeal' concurrently
with II, XII, uRR II , uRRRR II , IIRLII, uR, RII, 01'

It,R II).

HH

HHHH

RR

, X

RRRR

RL

,R

A one-byte hexadecimal operand.

A two-byte hexadecimal operand.

A one-byte hexadecimal operand indicating
relative addressing mode (cannot appeal'
concurrently with ".11, ",X .. , 01' ",R").

The indexed addressing mode operand
~ualifier (cannot appear concurrently
with "#11, It HHHH It , 01' ItRR II >,

A two-byte hexadecimal operand indicating
relative addressing mode (cannot appeal'
concurrently with"." or It,R").

The operand is a register list (cannot
appear concurrently with II." or II,R II).

The operand is a register pail' (cannot
appeal' concurrently with 11.11 01' ",R").

The indexed addressing mode operand
~ualifier (cannot appear concurrently
with 11.11, IIRRII or ItRRRRIt).

The following example for the M6800 illustrates the
different types of displays that can be generated by the I

Page 21-0~

PATCH COMMAND

command.

=PATCH TESTPROG
2000 30
::>8Bl
ADDA ftHH
::>9B1
ADD A HH
>ABI
ADD A HH,X
>DBl
ADDA HHHH
::>531
COMB
>8Dl
BSR RR
>DDI
JSR HHHH
>291
BVS RR
::><1
=

21.2.8 Set search mask and pattern -- M

21.2 -- PATCH Command Set

The M command is used to initialize a sixteen-bit search
pattern and a sixteen-bit search mask for subsequent byte or
word searc h es (sec t ions 21. 2. 9,-21. 2. 12>' Th e format of the M
command is

CmJ[,nJM

where "m" is the search pattern and "n" is the search mask.
Initially, both the search pattern and the search mask are
set to zero. The M command can be used to set both pattern
and mask or to set either independently of the other. For
e xamp 1 e,

E5E5M

will set only the search pattern to the hexadecimal number
$E5E5. The search mask is unaffected; however, the command

, FFFFM

will set only the search mask to the hexadecimal number
$FFFF. The search pattern is unaffected. The command

E5E5,FFFFM

will set both the search pattern and the search mask.

Page 21-07

PATCH COMMAND 21.2 -- PATCH Command S

21.2.9 Search for byte -- S

The S command is used to search the file for a specific
eight-bit pattern. The format of the S command is

m,nS

where Pm" and Un" represent the starting and ending addresses
of the search. The addresses are both modified by the
current value of the offset. The pattern to be searched for
must have been specified via the M command (section 21.2.8).
Only the least significant bytes of the search pattern and
the search mask are used by the S command. The S command
will display all addresses that contain patterns which meet
the search criteria. The locations of the file included in
the search is from address "m plus offset" to "n plus
offset", inclusive. A match is indicated if a byte in the
file meets the following condition:

contents of address & search mask = search pattern

where the "&" indicates the logical "and" function. The
following example illustrates the use of the S command:

=PATCH TESTPROG
8200 30
>OOEE.FFFFM
>0, ID7S
82A7 EE
82AD EE
82AF EE
>0
=

21.2.10 Search for word W

The W command is similar to the S command; however,
instead of searching for only a single byte, a double byte,
or word, is searched for. The format of the W command is

m,nW

The address range searched with the W command is from "m plus
offset tt to Ifn p I us one p Ius offset ", inc Ius i ve. Thus, Itnlf
cannot be the highest address of the file, since Itn+1" would
be an illegal address. Otherwise, the W command functions
identically to the S command.

Page 21-'

PATCH COMMAND 21.2 -- PATCH Command Set

21. 2.11 Search for non-matching blJte -- N

The N command is similar in format and function to the S
command; however, instead of displaying all blJtes that meet
the search criteria, all bytes that do not meet the search
criteria are shown. This makes it easy to search through a
buffer of all zeroes, for e xamp I e, to find any non-z ero
1 ocat ions.

21. 2. 12 Search for non-match ing word -- X

The X command is similar in format and 'unction to the W
command; however, instead of displaying all double bytes that
meet the search criteria, all double bytes that do not meet
the search criteria are shown.

21. 2.13 Display range of locations -'- P

The P command prints the
locations on the system console.
is

m,nP

contents of a range 0'
The format of the P command

where locations "m plus offset" through"n plus offset",
inclusive, are the locations to be shown. The format of the
display is illustrated in the following example:

=PATCH TESTPROG
8200 30
>95,DOP
8290 0090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
82AO OOAO 00 00 00 00 00 3F 32 EE 04 FF 80 04 30 EE 00 EE ?2 0 ...
82BO OOBO 06 FF 80 06 CE 80 00 3F 05 24 05 SF 3F 20 3F lA ? $. ? ? -
82CO OOCO 3F 33 3F 05 24 03 7E 03 D3 7E 04 32 30 31 30 30 ?3?$ 20100
82DO
:>G
=

OODO 00 00 00 00 43 4F 4E 53 4F 4C 45 20 4C 4F 47 20 CONSOLE LOG

The contents of the locations are shown in both
hexadecimal and the e~uivalent displayable ASCII. If a
location contains a non-displayable character, it is shown as
a period (. >. The first four-digit number contains the
absolute address while the second 'our-digit number contains
the relative address of the locations <relative to the
beginning 0' the file>. Even though the starting location
requested was $95, the displalJed locations start at location
$90. A full sixteen locations are displayed 'or each line,
regardless of the re~uested starting and ending points 0' the
range.

Page 21-09

PATCH COMMAND 21.2 ~- PATCH Command Set

21.2.14 Set/display execution address -- G

The G command, is used to d isp lay .and/or change the value
of the file's starting execution address. The format of the
G command is

[m[,nJlG

If the parameters "m" and Un" are not specified, the G
command will display the current value of the execution
address. The following example illustrates this use of the G
command:

=PATCH TESTPROG
8200 30
:>G
EXEC ADR=8259
:>(1
=

If either of the parameters "m" or Un" are specified,
the current value of the execution address will be changed to
"m plus offset" or "m plus n". The execution address must be
within the range of addresses spanned by the file (between
addresses sh01lln 1IIith Land H commands). The foll01lling
example shows how the G command is used to change the
starting execution address:

21.2.15 Change locations

=PATCH TESTPROG
8200 30
>G
EXEC ADR=8259
>2G
>G
EXEC ADR=8202
>(1
=

Two commands exist that will open a specified location
within the file and allow the contents of that and subse~uent
locations to be examined or changed. The format of these
commands is

m[,nJ{1 or \)[<str>l

where the slash (I) and backslash (\) ch.aracters are used to
distinguish between the tldO commands. Both commands will
open the specified location ("m plus offset" or "m plus n").
The slash command will set the "increment" mode. The
bac Its lash command wi 11 set the "decrement" mode. The

Page 21-1(

PATCH COMMAND 21.2 -- PATCH Command Set

parameter <str> contains any changes that are to be applied
to the specified locations. If the "increment" mode is set
(slash command), any changes specified in <str> will be
applied to the opened location and each subsequent higher
location, one increment being applied for each element of the
string. If the "decrement" mode is set (backslash command),
any changes specified in <str> will be applied to the opened
location and each preceding lower location, one decrement
being applied for each element of the string. If any of the
elements of the string are null, an increment (or decrement)
will still be applied for those elements. Thus, if the
entire string is null (one null element), one increment (or
decrement) will be applied. The "increment" or "decrement"
modes will remain in effect until changed by another slash,
backslash, or parenthesis command (section 21. 2.16>'

The string <str> can contain either hexadecimal elements
or ASCII string elements, in any combination. For example,
the command

1500,O/AA, l,2E, "AABBCC"

will change the following locations to the indicated values:

Absolute
Address

1500
1501
1502
1503
1504
1505
1506
1507
1508

New value

$AA
$01
$2E
$41
$41
$42
$42
$43
$43

If the backslash command had been used instead, locations
$14FF, $14FE, etc., would have received the values $Ol., $2E,
etc.

An element of the string can be null (indicated by
successive commas). Null elements will not affect the
location that corresponds to that part of the string.

If an error is encountered in the string of elements
<str>, the entire command will be ignored and no changes will
be applied. An error message is printed to indicate that the
command was not parameterized properly.

Page 21-11

PATCH COMMAND 21.2 -~ PATCH Command St

21.2.16 Instruction mnemonic decode mode

The instruction mnemonic decode mode is similar to the
slash command explained above. Instead of using a slash,
however, the open-parenthesis character «) is used. This
command allows changes to be applied to a series of locations
in the file using M6800 or M6809 assembly language mnemonics
instead of the hexadec imal operation codes. The format of
the command is

m[,n](CilC)]

where "m" and Un" specify the starting location (either "m
plus offset" or "m plus n"), the open-parenthesis character
signifies the start of the instruction mnemonic decode mode,
"i" can be anv valid M6800 assemblv language mnemonic (116809
assembly language mnemonic for MDOS09), and the
close-parenthesis character indicates the end of the
instruction decode mode. Since the close-parenthesis is
optional, the user can remain in the instruction mnemonic
decode mode to enter several lines of instructions until a
close-parenthesis character is entered.

Once the open-parenthesis command has been issued, all
other PATCH commands are invalid until the close-parenthesis
command is issued, or until an error is encountered.

The format of the commands following the
open-parenthesis command is shown below:

<blanks>) <any> <cr>

or

<blanks> <opcode> [(blanks> <operand>] C(any>) <anv>] <cr>

The syntactic elements are described as follows:

Page 21-:

PATCH COMMAND

Element

<blanks:>

<any:>

<cr:>

<opcode:>

<operand:>

21.2 -- PATCH Command Set

Meaning

Any numb er of spac es. inc 1 ud i ng zero.

Any character besides a carriage
return or a close-parenthesis.

Carriage return.

Any valid assembly language
as specified in
"M6800/M6801/M6805/M6809

mnemonic
the

Macro
Assemblers Reference Manual"i no
space is allowed between the mnemonic
and the accumulator designator (e. g .•
LDAA is valid. LDA A is not).

Only valid
requires an
is required,
as <any:>.

if the instruction
operand. If no operand

the <operand:> is treated

The <operand:> field,
fOT'mat:

when required, has the following

C*J<arg:>C{+ or -}<arg:>J

or

C<arg:>({+ or -}<arg:>],]X

where the "*" indicates immediate addressing mode and ",X"
indicates the indexed addressing mode. The "+" or "-" allows
simple expressions to be used in the operand field. Each of
the arguments <arg> can be one of the following kinds of
elements:

Page 21-13

PATCH COMMAND

Element

'A

$HHHH

DO ... 0

'XBB ... B

*

o

21.2 -- PATCH. Command Se1

Meaning

A one-characte.r ASCII literal.

A one to four digit
numbel'.

hexadecimal

A decimal numbel'. any number of
digits in length; only the least
significant 8 01' 16 bits of the
converted number will be used.

A binary number, any number of digits
in length; only the least significant
8 01' 16 bits of the converted number
will be used.

The value of the current location
counter (identical to the "*" used by
M6800 assembler).

The value of the current ofFset.

For M00909. the <operand> field is expanded to allow
register lists, "indirect. auto-increment. auto-decrement, and
forced direct/extended. PATCH automatically generates direct
mode instructions only when the most significant byte of the
expression is zero. In all other cases. the direct mode must
be forced by the user. Reference "M6800/M6801/M6805/M6809
Macro Assemblers Manual. II

This format allows the operator to enter assembly
language mnemonics with comments after the operand field for
documenting the patch. The instruction mnemonic decode mode
automatically puts the PATCH command into the "increment"
mode.

As long as a close-parenthesis character is not
encountered. PATCH will remain in the instruction mnemonic
decode mode. A different input prompt is displayed to
distinguish the two different PATCH input modes; the normal
input prompt <» is replaced the by the instruction mnemonic
decode mode prompt <=».

The following M6800 example illustrates how the
instruction mnemonic decode mode is used to insert a patch
into a file:

Page 21-1~

PATCH COMMAND 21.2 -- PATCH Command Set

Line Console Display

01 =PATCH TESTPROG
02 8200 30
03 >0
04 OFFSET=8200
05 >F7
06 82F7 CE
07 >. (JMP $8317 GO TO THE PATCH AREA OF PROGRAM)
08 >8317,0(LOX #O+$A THE LOX OVERLAYED BY THE JMP
09 =>STX 0+$02
10 =>SWI THIS IS A SYSTEM FUNCTION CALL)
11 ./1D
12 . (BEG *+5 IF NO ERRORS, CONTINUE
13 =>JMP 0+$113 GO PROCESS ERROR
14 =>LDX X PICK UP THE POINTER
15 =>LDAA O,X GET A CHARACTER
16 =>CMPA #'1 IS IT UNIT 1?
17 =>BNE *-10 GO PROCESS ERROR
18 =>JMP $82FD RETURN TO MAIN CODE
19 =»
20 >G
21 =

In the above example, line 03 was used to display the
value of the current offset. Line 05 was used to display the
contents of location $F7, relative to the beginning of the
file. Line 07 was used to enter the instruction mnemonic
decode mode to modify the current location (offset + $F7).
Three locations were changed as a result of entering line 07.
Line 08 was used to reenter the instruction mnemonic decode
mode; however. this time absolute location $8317 was the
address where a patch was to be placed. Line 11 was used to
insert a hexadecimal constant into the location following the
previously entered SWI instruction. Line 12 was used to
return to the instruction mnemonic decode mode at the
location following the hexadecimal constant inserted using
line 11. Line 19 was used to finally exit the instruction
mnemonic decode mode. Line 20 was used to exit the PATCH
command and return control to MOOS. Comments were used
throughout the instruction mnemonic decode mode to document
what the patCh does.

21.3 Special Considerations

Th e per i od symb 0 I <.) can be used wi th any PATCH command
that requires an address as an argument. The value
associated with the period symbol is the absolute address of
the current location minus the value of the current offset.
Since the offset is automatically added to most of the
command parametersl the resulting value for the period symbol

Page 21-15

PATCH COMMAND 21. 3 --Special Consideratiol

will be the absolute address of the current location.

For example, the following uses of the period can save
time and eliminate remembering the address of the current
location:

Command Function

.,nO Sets the offset to the current location
if "n" is the value of the offset before
the command is entered .

. <cr> Displays the contents and the address of
the current location .

. I<str> Opens the current location and applies
the changes from the string <str>. It is
not necessary for the operator to count
the number of elements in <str> if the
next command is to apply more changes.
Long strings are usually changed by
initially using the "m,n/" form of the
change command. Then, subse~uent changes
use ".1". The same holds true for the
backslash and open-parenthesis commands
used with the period symbol.

. ,nS

m •. P

Search from the current location to the
address "n plus offset".

Display locations"m plus offset" to the
current location.

21.4 Errol' Messages

The follo~ing messages can be displayed by the PATCH
command. The standard errol' messages that can be displayed
by all commands are not listed here.

WHAT?

SYNTAX ERROR

The command issued in response to the PATCH input
prompt <» ~as not recognized. A ne~ input
prompt is displayed.

The command issued in response to the PATCH input
prompt <» was recognized; however, it was
parameterized illegally. A new input prompt is
displayed. The command has not been processed.

Page 21-

PATCH COMMAND 21.4 -- Error Messages

ILLEGAL ADDRESS

An address was specified which referenced a
location that was outside of the range of
addresses spanned by the file. Only addresses
between the lowest (L command) and the highest
address (H command) can be referenced by PATCH.
If new program area is to be allocated for
ad d i tiona 1 patc h spac e, a merge proc ess,
reassembly process, or link/load process must be
used to create the new space.

ILLEGAL OP CODE

The instruction mnemonic decoder did not
recognize a valid M6800 assembly language
mnemonic. The instruction mnemonic decode mode
is terminated. The current instruction was not
used to change the file. This error can also
occur if an invalid M6800 operation code is given
as the operand of the "I" command.

ILLEGAL OPERAND

An illegal operand was used in the operand field
of the instruction. The instruction mnemonic
decode mode is terminated. The current
instruction was not used to change the file.

INITIALIZATION ERROR

This error indicates some sort of internal system
malfunction. Errors of this type indicate a
hardware failure or damaged program files on the
diskette.

Page 21-17

CHAPTER 22

22. REPAIR COMMAND

The REPAIR command allows the user to check and repair a
malfunctioning or a non-functioning MDOS diskette. Errors
in the system tables can be found. identified, and corrected
with this command. Since MOOS performance is directly
related to the correctness of these system tables, the REPAIR
command is a useful diagnostic utility. The REPAIR command
works with either single-sided or double-sided MOOS
diskettes.

22. 1 Use

The REPAIR command is invoked with the following command
line:

REPAIR [:<unit>J

where <unit> is the logical unit number on which a diskette
that is to be "repaired" resides. If no <unit> is given.
logical unit number zero will be used as a default.

The REPAIR command runs through five different phases:

1. 10, LCAT, CAT. and Bootblock sector check phase.

2. Di rec tory sec tor c hec k phase,

3. Retr i eva 1 Informat i on 81 oc k chec k phase,

4. CAT regeneration phase, and

5. CAT rep lacement phase.

Each of the different phases is described in detail in the
following sections.

REPAIR progresses from each phase to the next carrying
along information that was obtained during a prior phase. If
errors are discovered, the operator will be notified via the
sy stem c onso 1 e. I f REPAIR can fix the error, the operator
will also be asked if the error should be corrected on the
diskette. Thus. the operator has complete control over any
changes that are made to the diskette. The operator can
suppress any action that may be suggested by the REPAIR
command as the means for correcting an error.

The amount of knowledge about the MOOS tables that is

Page 22,-01

REPAIR COMMAND 22. 1 -- Us

required by the operator depends upon two things: the amount
of actual damage on the diskette and the amount of
information the operator wants to recover from the damaged
tables.

If the operator merely permits REPAIR to perform every
suggested action to correct every error. then the resulting
diskette is guaranteed to have error free system tables. In
this case. the amount of systems knowledge required is
insignificant.

On the other hand, if the operator takes notes during
the REPAIR command on what tables are damaged, and if the
operator does not choose to delete those files that are
invalid. then a great deal about the the MDOS file structure
and system tables must be known to reconstruct the tables.
Chapter 24 describes the system structure in detail. It is
required reading for a complete understanding of all the
functions and the errors that the REPAIR command can perform
and detect.

The REPAIR command must be invoked from a working MDOS
diskette. Thus, if a given diskette cannot be used for
initialization, it must be placed into drives one, two. or
three. and another working diskette (of the same MDOS version
as the dammaged diskette) placed into drive zero before the
REPAIR command can be used.

REPAIR does not attempt
files. It only attempts to find
tab les.

to find errors within data
errors within the system

It is suggested that REPAIR be used for the following
reasons:

1. As a regular diskette checking utility. It never
hurts to run REPAIR as a preventative maintenance
tool to catch errors as they may be developing,
before serious malfunctions are noticed. If
nothing is wrong with a diskette. no operator
interaction is required. REPAIR will simply
return to MDOS after having displayed some
monitoring information.

2. If strange things start happening or if system
error messages are displayed without apparent
reason. If files or records within files
disappear or get scrambled. the system tables may
have been damaged.

3. If MDOS will not run at all.

Page 22-0

REPAIR COMMAND 22. 1 -- Use

4. After the ABORT or RESTART pushbuttons were
depressed to stop the system while diskette
transfers were in progress.

5. After a power failure occurred while diskette
transfers were in progress. Power failures
include those caused by inadvertently switching
off the EXORciser or EXORdisk II as well as those
that affect an entire installation.

6. After a diskette has had its system tables
repaired manually with the DUMP command. This
ensures that the tables were corrected properly.

22.2 ID. LCAT, CAT. Bootblack Sector Check

Phase 1 of REPAIR begins by checking the ID sector for
readability. If an error occurs during the read attempt,
REPAIR will display the following:

**PROM I/O ERROR-STATUS=31 AT 2C4C ON DRIVE 1-PSN 0000
ID SECTOR READ ERROR
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR?

The actual error status, address, and drive number of the
first line will vary depending on the type of read error that
was detected, the version of REPAIR being used. and the drive
in which the diskette resides. The same is true for all of
the PROM I/O error messages given in the examples of this
chapter. A response of either "N" or "V" must be made by the
operator. The "N" response will cause the message

ID SECTOR CANNOT BE CHECKED

to be displayed. Since the other system tables could still
be accessed, REPAIR will continue. If a "V" response is
given, the ID sector will be re-written in an attempt to
clear the error. If an error develops during the write, the
ID sector is considered unfixable; however, in this case, the
other system tables could still be accessed, so REPAIR will
continue.

If the ID sector can be read initially without error, or
if the ID sector can be rewritten without error, the contents
of the ID sector will be displayed as follows:

DISK ID:
VERSION:
REVISION:
DATE:
USER:

MDOS0300
03
00
072578
SVS DEVELOPMENT DISK

Each field within the ID sector is checked by the REPAIR

Page 22-03

REPAIR COMMAND 22.2 -- ID, LCAT, CAT, Bootblock Sector Chec

command. The following table shows what tests are made for
the respective fields:

Field Test Performed
----- --------------
DISK ID MDOS file name format
VERSION Same as MDOS.SY
REVISION Same as MDOS.BY
DATE ASCII numeric
USER Displayable ASCII
Remainder Binary zero, excluding MDOS RIB

address area

If the fields in the ID sector fail to meet the above
criteria, the field's name will be displayed as a prompt to
the operator to enter a correct value. If only a carriage
return is entered in response to such a prompt. the ID sector
field will not be changed. Otherwise, the entered field will
be checked for correctness and then stored into the ID
sec tor.

The version and reV1Sl0n numbers in the ID sector
compared against those of the resident operating system
on diskette. If the numbers are not identical, REPAIR
use the version/revision numbers from the MDOS file since
diskette cannot be initialized if they are not the same.
message:

are
file
will

the
The

VERSION AND REVISION NUMBERS IN ID SECTOR AND RESIDENT MDOS
FILE ARE DIFFERENT

THE NUMBERS IN THE ID SECTOR ARE CHANGED TO: vv.rr

to indicate the correcticin. The numbers "vv" and "1'1'" are
the version and revision numbers of the resident operating
system file, respectively. The operator has no control over
what the version/revision numbers are in the ID sector.
Thus. those two fields cannot be supplied by the operator.
In the event that a diskette controller error occurs when
trying to read the correct version/revision numbers from the
MDOS file, the message

**PROM I/O ERROR-STATUS=31 AT 2E8A ON DRIVE l-PSN 0019
RESIDENT MDOS CANNOT BE LOADED -- SECTOR READ ERROR

will be displayed. The diskette being repaired cannot be
used in drive zero since the operating system cannot be read;
however, REPAIR will continue to check the remaining system
tab les.

If the unused area of the ID sector has been damaged,
the message

ID UNUSED AREA NOT ZERO. ZERO IT?

Page 22-0

REPAIR COMMAND 22.2 -- ID. LCAT. CAT, Bootblock Sector Check

The operator must respond with either a "V" or an "N". The
"V" response will cause the ID sector's unused area to be
filled with binary zeroes. as it is supposed to be. The "N"
response will cause REPAIR to leave the ID sector alone.

After the ID sector has been checked.
examine the Lockout Cluster Allocation Table
readability. If the LCAT sector cannot be read.
display the following messages:

REPAIR will
(LCAT) for
REPAIR will

**PROM I/O ERROR-STATUS=31 AT 2EBA ON DRIVE I-PSN 0002
LOCKOUT C.A. T. READ ERROR
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR?

The operator must respond with either a "V" or "N" to the
last ~uest i on. I f an liN" is entered. REPAIR cannot c ont i nue
to check other system tables since subse~uent checking is
based on the validity of the LCAT. Thus. the message

DISK IS NOT FIXABLE

is displayed and control returned to MDOS. If a "V" response
is given. REPAIR will attempt to rewrite the LCAT sector. If
an error develops during the write, the sector will be
considered unfixable (as will the diskette). The message
shown above will be displayed and MDOS given control.

If the LCAT sectbr is readable. or if rewriting the
sector clears the error, REPAIR will proceed to check the
contents of the LCAT. The LeAT must show that the diskette's
system tables in the first cylinder are locked out
(unavailable for allocation by a file), and all regions of
the diskette that correspond to non-physical locations
(beyond the highest phYSical sector number) must be locked
out.

If either of these two criteria is not satisfied. the
LCAT will be considered destroyed. REPAIR will display the
message

LOCKOUT C.A.T. IN ERROR - RECONSTRUCT?

and await a response from the operator. An "N" response will
make the LCAT unfixable. REPAIR will display a message to
that effect and return to MOOS. A "V" response will cause a
new LCAT to be rebuilt by REPAIR. In order to build a new
LCAT, the entire diskette is read in an attempt to find any
deleted data marks. The deleted data marks signify bad
clusters found by the DOSGEN surf-ace test (Chapter 10). All
clusters containing deleted data marks will be locked out
again automatically by this process. In addition, the
operator can lock out an additional area of the diskette (for
the same reasons as specified in Chapter 10). After the
diskette's surface has been completely read, REPAIR will

Page 22-05

REPAIR COMMAND 22.2 -- ID, LCAT, CAT, Bo.atblack Secta ... Chee

display the message

WHICH SECTOR RANGE IS TO BE LOCKED OUT?

The ape ... ata ... can ... espand with a
that na additianal secta ... s a ... e
the ape ... ata ... can ... espond with

ca iage ... etu ... n to indicate
to be locked aut. Othe ... wise,
a ... ange of secto... numbe ... s

ente ... ed in the fa ... mat

mmm-nnn

whe ... e "mmm" and "nnn" are hexadecimal numbers of sectors that
start an a cluster boundary (sectar number is evenly
divisible by four). If an illegal sec tar numbe ... is entered,
or if the starting number is greater than the ending numbe ... ,
the above message will be ... edisplayed until the operato ...
ente ... s a valid range or a single car ... iage ... etu ... n. Only one
contiguous range of sectors can be locked aut. The same
cautions described in Chapte ... 10 ... egarding user-locked out
sectars apply herei howevel', in this case, since files
already l'eside on the disk with allocated space, the locked
out sectol's must not conflict with any files. If a diskette
did not have user-locked out sectors before, then sectars
must not be locked out dUl'ing the REPAIR process since they
could conflict with sectors already allocated. The REPAIR
command is not intended to be used for the normal lockout
procedure; that is the function of the DOSGEN command
(Chapter 10), If a diskette did have sectors locked out,
then the identical sectors must be locked out by the operator
again here.

After the LCAT has been rebuilt, or if it was good to
begin with, the Cluster Allocation Table (CAT) will be
checked. If the CAT sector cannot be l'ead, the following
message will be displayed:

**PROM 110 ERROR-STATUS=31 AT 2E8A ON DRIVE I-PSN 0001
C.A.T. READ ERROR
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR?

The operator must respond with either a nyu or an "N" to the
last ~uestion. If an "N" is entered, REPAIR cannot continue
to check the other system tables since subse~uent checking is
based on the validiy of the CAT. Thus the message,

DISK IS NOT FIXABLE

is displayed and control returned to MDOS. If a "Y" ... esponse
is given, REPAIR will attempt to rewrite the CAT secto.... If
an errol' develops during the write, the sector will be
considered unfixable (as will the diskette). The message
shown above will be displayed and MDOS given control.

If the CAT sector is readable, or if ... ew ... iting the

Page 22-(

REPAIR COMMAND 22.2 -- ID, LCAT, CAT, Bootblock Sector Check

sector cleared the error. REPAIR will proceed to check the
contents of the CAT. The CAT must show that all parts of the
diskette locked out by the LCAT are flagged as allocated (see
above for LCAT validity criteria). If the CAT contains an
error at this point. REPAIR will display the message

C.A.T. IN ERROR - RECONSTRUCT?

and await a response from the operator. An "N" response will
result in an unfixable diskette. REPAIR will show the
message

DISK IS NOT FIXABLE

and return control to MDOS.
CAT to be reconstructed
Phases 2 through 4.

A "Y" response will cause a new
from the information gathered in

After checking the CAT. REPAIR will attempt to read the
Bootblock sector. If the Bootblock sector cannot be read,
REPAIR will display the following message:

**PROM 1/0 ERROR-STATUS=31 AT 2EDC ON DRIVE I-PSN 0017
BOOT BLOCK SECTOR READ ERROR
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR?

The operator must respond with either a "Y" or "N" to the
last question. If an "N" is entered, REPAIR will display the
message

BOOT BLOCK SECTOR CANNOT BE CHECKED

before continuing. Since the Bootblock is not affected by
other system tables. REPAIR will continue to check the
remainder of the diskette; however, a diskette with a
damaged Bootblock sector cannot be used as an MDOS diskette
in drive zero. If a "yo is entered. REPAIR will attempt to
rewrite the sector in an attempt to clear the error. If an
error develops during the write, the sector is unfixable and
the diskette can never be used to initialize the system from
drive zero.

If the Bootblock sector is readable or if the error is
cleared by rewriting the sector, REPAIR will verify that the
sector contains a valid copy of the Bootblock program. If
the data is in error, the message

BOOT BLOCK SECTOR HAS BEEN DESTROYED
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR?

will be displayed. An "N" response wil leave the Bootblock
sector unchanged. A "yo response will cause a new Bootblock
to be written to the diskette. The REPAIR command will then
begin Phase 2.

Page 22-07

REPAIR COMMAND 22.3 -- Directory Sector Cheel

22.3 Directory Sector Check

Phase 2 of REPAIR deals entirely with the MDOS directory
sectors. Each of the directory $ectors is first checked for
readability. If a read error is found, the operator is
informed and given the choice of trying to clear the read
error via the following display:

**PROM 110 ERROR-STATUS=31 AT 2F38 ON DRIVE l-PSN 0013
DIRECTORY SECTOR READ ERROR
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR?

The actual numbers in the error message will depend on the
actual sector that is in error. If the operator responds
with an "N", or if the rewrite attempt ("Y" response) fails
to clear the error, the message

DISK IS NOT FIXABLE

will be displayed and control returned to MDOS. If the
sectors are all readable, or if the rewrite attempt
succeeded, each directory sector is examined again. This
time, each directory entry within each sector is tested
against the following criteria.

1. If the first byte of the directory entry is zero
(unused entry), then the remaining bytes of the
entry must be zero also.

2. If the first byte of the directory entry is the
hexadecimal number $FF (deleted entry), then the
second byte of the entry must be $FF also. If
the second byte is not $FF. and if the remainder
of the entry is valid. then the entry is the
result of an incomplete name change. It was
probably caused by a power failure or interrupt
(ABORT or RESTART pushbuttons) during the time
that the old name was deleted and the new name
was added to the directory. REPAIR will allow
the operator to delete the directory entry
entirely or to reassign a name to the partially
deleted entry. The name assigned must be the
same as the original one. Otherwise, the name
will probably be improperly placed in the
directory (criterion 5).

3. The physical sector number of the Retrieval
Information Block must the first sector of a
cluster, must not be the sector number of one of
the system tables checked in Phase 1 or 2, and
must not be greater than the highest valid
physical sector number.

Page 22-01

REPAIR COMMAND 22.3 -- Directory Sector Check

4. The directory entry's attribute field must have
the least significant byte (unused) set to zero.
In addition, the two unused bytes at the end of a
directory entry must be set to zero.

5. The calculated hash index for the file name and
suffix must locate the directory entry where it
currently resides. An error in the hash index
means that the directory entry is inaccessible.
Appendix G contains a detailed description of the
hashing method.

6. The system file MDOS.SY must have a Retrieval
Information Block in a specific physical sector.
In addition, the other files in the family
MDOS*.SY must be present in the directory.

If any directory entry fails to meet one of the first
five criteria, REPAIR will display the entry in error as well
as a message identifying the problem. The directory entry is
displayed in the following format:

PSN LSN EN NAME SUF RIB ATTR NU CHEXNAM HEXSUFJ

where the symbols have the following meanings:

PSN
LSN
EN
NAME
SUF
RIB
ATTR
NU
HEXNAM
HEXSUF

Meaning

Directory sector's physical sector number
Directory sector's logical sector number
Entry number within sector
File name
File suffix
Physical sector number of RIB
Attributes
Not used portion of directory entry
File name in hexadecimal
Suffix in hexadecimal

All of the fields are displayed as hexadecimal numbers with
the exception of the file name and suffix. If
non-displayable characters appear in either the file's name
or suffix, they will be shown as percent signs (X). In such
cases, the hexadecimal forms of the file name and suffix are
shown to the right of the directory entry.

In the following examples, the same directory entry is
used so that the changes from one to the other Can be more
easily detected. The first line always shows the directory
entry. The second line contains the error message and a
prompt to the user. If a "yo is entered, the entry will be
removed from the directory (and later the space associated
with that directory entry will be deallocated). An "N"

Page 22-09

REPAIR COMMAND 22.3 --Directory Sector Chec

response will leave the directory entry unchanged.

The following message is shown for directory entries
that fail to meet criterion 1. Not all bytes of the entry
are zero if first byte is zero.

03 00 00 XINEX .CM 014C 7200 0000 00494E4558202020434D
DIRECTORY ENTRY IN ERROR. DELETE?

The following message is shown for directory entries
that fail to meet criterion 2. The directory entry is the
result of an incomplete name change. Instead of asking the
operator if the file name should be deleted. REPAIR allows
the original name to be reassigned. If no name is entered in
response to the prompt (carriage return only). the directory
entry will fail criterion 2. so the entry will be redisplayed
as in the above example. If the original name is supplied.
the file's directory entry will be recreated in the
directory. The content of the file is unaffected; however,
if a name is assigned other than the original. criterion 5
will probably not be satisfied. The directory entry would
then be displayed again, with the corresponding error
message.

03 00 00 XINEX .CM 014C 7200 0000 FF494E4558202020434D
POSSIBLE INCOMPLETE NAME CHANGE
NEW NAME:

The following example illustrates a directory entry that
fails to meet criterion 3. The RIB address is of the
directory entry is invalid. In this case, the RIB address is
a sector that is not on a cluster boundary.

03 00 00 BINEX . CM 014D 7200 0000
INVALID RIB SECTOR NUMBER. DELETE?

The next example shows a directory entry that fails to
meet criterion 4. The directory entry's attribute field has
a non-zero unused byte.

03 00 00 BINEX .CM 014C 72FF 0000
ILLEGAL ATTRIBUTE OR UNUSED BYTES. DELETE?

The last example illustrates a directory entry that
fails to meet criterion 5. The hash index for the file name
and suffix places the directory entry into a different
directory sector than the one in which it appears (file's
original name is BINEX.CM).

03 00 00 AINEX . CM 014C 7200 0000
HASH OR NAME DUPLICATION ERROR. DELETE?

Criterion 6 does not deal 'with directory entries in
general. Rather, the specific names of the system files are

Page 22-1

REPAIR COMMAND 22.3 -- Directory Sector Check

searched for in the directory to ensure they exist. The
absence of anyone of the system files is noted by the
display of one of the following messages:

MDOS · SY DOES NOT EXIST
MDOSER · SY DOES NOT EXIST
MDOSOVO · SY DOES NOT EXIST
MDOSOVI · SY DOES NOT EXIST
MDOSOV2 · SY DOES NOT EXIST
MDOSOV3 · SY DOES NOT EXIST
MDOSOV4 · SY DOES NOT EXIST
MDOSOV5 · SY DOES NOT EXIST
MDOSOV6 · SV DOES NOT EXIST

In addition, if the resident operating system file does not
have a RIB in the proper physical sector, the diskette could
not be used for system initialization in drive zero. Thus,
the message

MDOS.SV DOES NOT START AT SECTOR $18

is displayed in such cases.

Since errors in the directory entries are not fatal
insofar as REPAIR is concerned (they can be if the diskette
is to be used for initialization or to run any programs),
Phase 3 is started after these checks have been completed.

22.4 Retrieval Information Block Check

Phase 3 of REPAIR checks the Retrieval Information
Blocks (RIBs) of all directory entries that have a valid RIB
address. If a RIB address is invalid in a directory entry,
then the RIB cannot be found. The RIBs are checked in the
order in which they are referenced in the directory. If a
RIB sector cannot be read, the following message will be
displayed:

**PROM I/O ERROR-STATUS=31 AT 30D8 ON DRIVE 1-PSN 0570
RIB READ ERROR
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR?

The operator must respond with either a "V" or an "N" to the
last question. If a "V" is entered, REPAIR will attempt to
rewrite the RIB. If the error is cleared, REPAIR will
continue. If an error occurs during the rewriting of the
RIB, or if an "N" was entered, REPAIR cannot check the RIB
any further. Thus, a message of the form

03 00 00 BINEX .CM 014C 5200 0000
RIB IN ERROR - DELETE FILE?

is displayed to allow the operator to delete the file

Page 22-11

REPAIR COMMAND 22.4 -- Retrieval Information Block Checl

completely so it is not allocated space in Phase 4. The
first line sh01lJS the director" entr" that belongs to the
file. It is in the same format as the directory entry
explained in the previous section. If the file is not
deleted ("N" response), it will not be affected, nor will the
allocation table be updated. If the file is deleted (nyu

response), then whatever space was allocated to it will be
marked as available for allocation in the reconstructed
allocation table. If a RIB is in error, the content of the
file is usually unaccessible unless the error is corrected by
the user. If this cannot be done, the file should be deleted
by responding with a Ny" to the above prompt.

If the RIB can be properly read, or if the RIB was
properly rewritten, then REPAIR will continue to check the
RIB for the following criteria. If the RIB fails to satisf"
the criteria, an error message will be shown, followed b" the
directory entry and a prompt that allows the file to be
deleted:

<cause of error>
03 00 00 BINEX .eM 014C 5200 0000
RIB IN ERROR - DELETE FILE?

The actual content of the directory entry, however, will
vary. The following messages can appear in place of the
<cause of error> field.

FIRST SDW IN ERROR

This error message will be displa"ed if the first
Segment Descriptor Word (SDW) does not contain
the cluster number of the RIB as its starting
cluster number. Since a RIB is the first
ph"sical sector of a file, it will always be in
the file's first cluster. This message will also
be displayed if the first SDW has the terminator
bit set to one.

SDW BOUNDS ERROR

This error message will be displayed if an SDW
has an invalid starting cluster number. Invalid
cluster numbers are those that include the s"stem
table area of the diskette as well as areas
be"ond the maximum physical sector number.

If an SDW describes a segment which doesn't lie
entirely within the boundaries of the diskette,
this message will also be shown. That is, the
contiguous clUsters adJacent to the starting
cluster of an SDW must also have valid cluster
numbers.

REPAIR COMMAND 22.4 -- Retrieval Information Block Check

RIB CLUSTER ALLOCATION DUPLICATION

This error message will be displayed if two SOWs
describe the same physical cluseter. All SOWs
must span unique segments of the diskette.

ILLEGAL SDW TERMINATOR

This error message will be displayed if the SOW
that acts as the terminator for the other segment
descriptors does not exist or if it contains a
logical sector number (used for monitoring the
logical end-of-file) that is not a part of the
allocated file.

NON-CONTIGUOUS SOW ERROR

This error
with the
SDWs that
diskette.

message will be displayed if files
contiguous allocation attribute have
describe a segmented area of the

NON-O BYTES AFTER SOW TERMINATOR

This error message will be displayed if bytes
following the terminating SDW are not zeT'O. Only
files in the memory-image format can have
non-zero bytes in the RIB following the
terminator, and then only beginning with the
117th (decimal) byte of the sector (117 is
relative to zero; zero being the first byte in
the RIB>'

BINARY LOAD FILE RIB ERROR

This error message can be displayed for a variety
of reasons. The RIB of memory-image files
contains special load information in the last
eleven bytes of the sector. If those bytes do
not meet the following specifications, this error
message will be displayed. The offsets used to
refer to the various bytes are relative to zero
(zero being the first byte of the RIB sector).
All offsets are given in decimal.

1. Byte 117, the number of bytes to load from
the last sector, must be non-zero, a multiple
of 8, and less than or equal to 128 ($80),

2. Bytes 118-119, the number of sectors to load.
must contain a number that is non-zero, less
than the total number of sectors allocated to
the file, and less than or equal to 512
($200>.

Page 22-13

REPAIR COMMAND 22.4 -- Retrieval Information Block Che~

3. Bytes 120-121, the starting load address, are
not checked. For programs loading in an
EXORciser I system, in the User Memory Map of
an EXORciser II system with the single memory
map configured, or in the Executive Memory
Map of an EXORciser II system with the dual
memory map configured, this value must be
greater than hexadecimal location $1F if the
program is to be loaded via the MDOS loader.
EXORciser II systems with the dual memory map
configured can have programs loaded into the
User Memory Map starting at location zero.

4. The ending load address is calculated from
bytes 117-121 in the following manner:

5.

EL = (NSL 1) * 128 + NBLS + SL. 1

where EL is the ending load address, NSL is
the number of sectors to load (bytes
118-119), NBLS is the number of bytes in the
last sector (byte 117), and SL is the
starting load address (bytes 120-121). The
ending load address must be less than 65536.

Bytes 122-123, the starting execution
address. must lie lIIithin the range of
addresses spanned by the program (greater
than Dr eltual to the starting load address,
and less than or eltual to the ending load
address).

6. Bytes 124-127 are not used and must be zero.

Because of the complexity of the errors that can occur
in a RIB, the REPAIR command will make no attempt to "fix" a
RIB. If a RIB error is detected, REPAIR will give the
operator a choice of deleting the file (thereby removing the
RIB and fixing the problem) Dr leaving the RIB alone.

No space can be allocated to files lIIith directory
entries that have invalid RIB addresses or to files that have
RIBs with detectable errors (since the allocation information
is contained in the RIB). Thus, when REPAIR goes through the
Phase 4, it will exclude all files with bad RIBs; however,
the REPAIR command lIIill not update the allocation table on
diskette if files with bad RIBs are left undeleted. Thus,
the files with bad RIBs should be deleted when REPAIR gives
the operator the option to do so (the DEL command must not be
used!), or they should be manually repaired via the DUMP
command (Chapter 11) before the diskette is used. The DUMP
command can be used to examine the damaged RIB and, if
necessary, to examine w·here a fi Ie's sectors actually are on
the diskette. DUMP's sector read, sector change, and sector

Page 22-.

REPAIR COMMAND 22.4 -- Retrieval Information Block Check

write commands can be used to reconstruct a valid RIB.
Sometimes, it will require less effort to recreate a file's
RIB (if the allocation map has been recently printed via the
DIR command) than to recreate the file itself.

After a RIB has been reconstructed, REPAIR should be run
again to ensure that there is no dual allocation with another
file.

After all of the RIBs have been checked, a summary is
displayed to monitor REPAIR's progress. The summary
information takes on the following format:

xx GOOD FILES yy FILES WITH BAD RIBS

where "xx" and "'1'1" are both hexadecimal numbers. The
display of this message indicates the end of Phase 3.

22.5 CAT Regeneration Phase

Phase 4 of the REPAIR command reconstructs a cluster
allocation table in memory from the RIBs of those files that
have no errors ("xx" in the Phase 3 summary message). Phase
4 consists of three passes.

Pass 1 of Phase 4 reads all valid RIBs. All clusters
that are allocated are retained in memory in a table called
Table 1. A second table, Table 2. also in memory, will
contain all clusters which have been allocated to more than
one file. If no dual allocation has occurred, Table 2 should
be empty at the end of Pass 1. If it is, the rest of Phase 4
is skipped.

If Pass 1 has determined that dual allocation occurred,
then Pass 2 of Phase 4 will read all RIBs a second time.
This time, the files which have clusters allocated in Table 2
are flagged so the file's names and conflicts can be shown in
Pass 3.

A summary message is displayed at the end of Pass 2 that
gives totals of the number of files with and without dual
allocation. The format of the summary message is

xx GOOD FILES yy FILES WITH DUPLICATIONS
zzzz ALLOCATION DUPLICATIONS

where "xx", "yy", and " ZZZZ " are all hexadecimal numbers.
The totals "xx" and "'1'1" refer to numbers of files. The
number "zzzz", however, refers to the number of clusters that
are common to the "'1'1" files. The actual message is
displayed on a single line.

Pass 3 of Phase 4 will perform an analysis of all files

Page 22-15

REPAIR COMMAND 22. 5 -- CAT Regeneration PhasE

that have allocation conflicts with each other. The files
are anal" zed two at a time. The resul t of the anal ys is wi 11
be displa"ed in the following format:

09 06 00 RASM . CM 031C 7200 0000
SIZE: OOlF CONFLICTS: 001F CLUSTERS

10 OD 01 FORLB .RO 05DO 6300 0000
SIZE: 0041 CONFLICTS: OOlF CLUSTERS

031C 0320 0324 0328 032C 0330 0334 0338 033C 0340 0344 0348
034C 0350 0354 0358 035C 0360 0364 0368 036C 0370 0374 0378
037C 0380 0384 0388 038C 0390 0394

The names of the files and the numeric data displa"ed differ,
of course, depending on the exact files involved.

The first line of the display contains the directory
entr" of a file with which other files have duplicate
allocation. The format of the directory entry is the same as
during Phase 2 (section 22.3), Since this line is extended
to the left further than the other lines, this file is
referred to in the following description as the "Outer file".
The second line of the displa" contains the total size of the
Outer file in clusters (SIZE) an~ the total number of
clusters that cause allocation conflicts (CONFLICTS). When
the total size is compared to the part of the file that is in
conflict, a relative indication can be obtained of the
fraction of the file that ma" be in error. The CONFLICTS
total for the Outer file includes the allocation conflicts
with all "Inner files" (described below).

The third and fourth lines of the displa" are of the
same format as the first two lines; however, these lines
describe an "Inner file" that has allocation conflicts with
the Outer file. Since more than one Inner file can be shown,
the CONFLICTS total for each Inner file contains onl" the
number of clusters in that file that cause allocation
conflicts with the Outer file.

Following the two-line description of the Inner file
will be a list of clusters (belonging to the Inner file) that
conflict with the Outer file. The starting physical sector
number is given for each cluster.

After the Outer file and one Inner file have been
displa"ed In this format, REPAIR will issue the following
prompt (data supplied to go along with the above example):

DELETE: NEITHER(1), BOTH(2), FORLB . RO(3), RASM . CH(4);

The above prompt allows the user to select the action that
REPAIR is to take b" entering a number from 1 to 4. Number 1
will cause neither the Inner nor the Outer file to be
deleted. Number 2 will cause both files to be deleted.
Number 3 will cause the Inner file to be deleted. Number 4

Page 22-1~

REPAIR COMMAND 22. 5 -- CAT Regeneration Phase

will cause the Outer file to be deleted.

As long as the Outer file is not deleted, all of the
files that have conflicts with it will be displa~ed as Inner
files. When all Inner files conflicting with the Outer file
have been displayed in this fashion, REPAIR will take the
next file in its list of files with allocation conflicts and
use it as an Outer file. This process continues until all
files with allocation conflicts have been dealt with.

Conflicting pairs of files will be printed only once.
An Inner file may subsequently be displayed as an Outer file
if it has additional conflicts with other files. As files
are deleted. other files that were originally in conflict
with it may no longer have allocation conflicts.

Usually, the REPAIR command will be used more than once
if files happen to have allocation conflicts. The first
time, the operator will pick the "NEITHER" selection from the
above prompt. In this way, he can accumulate the information
required to decide which files should be deleted and which
should be retained. The DUMP command may be used to examine
the conflicting clusters to see which file they actually
belong to. Then, REPAIR is run a second time to actually
delete the files in error. The files must not be deleted
with the DEL command since it deallocates the files' space in
addition to deleting the directory entries.

For files with allocation conflicts,
following statements may be true:

one of

1. The Outer file may have a correct RIB and contain
all valid data. Thus, the error is caused by the
Inner files that have allocation conflicts with
the Outer file.

2. The Outer file may have an incorrect or
overwritten RIB. In this case, the Inner files
having allocation conflicts with the Outer file
are all correct.

3. Some of the Outer file's existing space may have
been erroneously allocated to, and possibly
overwr i tten by I an Inner f i 1 e. In that case,
since the Inner file was written to last, the
Inner file contains valid data and has a valid
RID even though its space was allocated b~ error.

4. Some of the Inner file's existing space may have
been erroneously allocated to, and possibl~

overwritten by, an Outer file. In that case,
since the Outer file was written to last, the
Outer file contains valid data and has a valid
RIB even though its space was allocated b~ error.

the

Page 22-17

REPAIR COMMAND 22. 5 -- CAT Regene ... ation Pha!

5. A combination of 2, 3, and 4 may have occu ed.

It is necessa ... y to be knowledgeable of the MOOS file
st ... uctu ... e befo ... e allocation conflicts can be wisely ... esolved.
It should be noted that although space is allocated to a
file, the space may not necessarily have been written into.

If only an Oute ... file is displayed with nb Inne... files
at the beginning of Phase 4, then the use ... has locked out
secto ... s which conflict with files that already have allocated
space. REPAIR assumed that the correct secto ... s were
specified by the use ... during the Phase 1; however, if that is
not true, then this kind of a allocation conflict will be
seen.

22.6 CAT Replacement Phase

Phase 5 of the REPAIR command compa ... es the reconstructed
allocation table in memo ... y with the actual allocation table
on the diskette. If the two tables are identical (normal
case), REPAIR will display the message

RECONSTRUCTED C.A.T. MATCHES DISK

before terminating and returning control to MDOS.

If the ... econstructed table does not match the one on
diskette, and if no RIB errors remain, then the message

WRITE RECONSTRUCTED C.A.T. TO DISK?

will be displayed. The operator must respond with
"V" or an "N". The "V" response wi 11 cause
allocation table (the correct one) to be written

either
the
to

a
new
the

diskette. The "N" response will leave the erroneous system
either .table intact. MDOS will be given control after

response.

The allocation table that is written to the diskette is
a combination of Table 1 which was built du ... ing Pass 1 of
Phase 4, and the LCAT. If files with invalid RIBs we ... e
encountered during the REPAIR process which were not deleted,
in all probability the allocation tables will diffe.... REPAIR
will not update the diskette table until the files with
invalid RIBs are fixed or deleted (but they must not be
deleted with the DEL command -- only by the REPAIR command).
In such cases, REPAIR will display the message

INVALID RIBS RESULTED IN RECONSTRUCTED C.A. T. NOT MATCHING
DISK

as a ... eminder that the allocation table and some RIBs contain
errors. MDOS is given control after the message is

Page 22-1

REPAIR COMMAND

displayed.

22.7 Messages

The following messages
command. Only those messages
preceding sections are listed.

Y(VES) OR N(NO):

22.6 -- CAT Replacement Phase

can be displayed by the REPAIR
not already covered in the

The REPAIR command's prompts usually accept only
a "V" or "N" response from the operator. If any
other response is given. this message will be
d i sp lay ed, Fore i ng a new response to be entered.

22.8 Examples

The following example illustrates how REPAIR is used on
a working diskette in drive zero to verify that the system
tables are correct:

=REPAIR
DISK ID: MDOS0300
VERSION: 03
REVISION: 00
DATE: 072578
USER: SYS DEVELOPMENT DISK
31 GOOD FILES 00 FILES WITH BAD RIBS
RECONSTRUCTED C.A. T. MATCHES DISK
=

The next example illustrates how REPAIR is used once
Just to gather information about what is wrong with the
diskette. Then, DUMP is used to fix the directory, and
REPAIR run a second time to verify that the error was
corrected. The file LOG. CM is presumably a user-written
program that functions as a command; however, the attribute
area of the directory entry was created illegally or has been
destroyed.

Page 22-19

REPAIR COf'rlMAND 22.8 -- Example!

=REPAIR :2
DISK ID: MDOS0300
VERSION: 03
REVISION: 00
DATE: 072578
USER: SYS DEVELOPMENT DISK
OA 07 03 LOG . CM 0570 FFFF 0000
ILLEGAL ATTRIBUTE OR UNUSED BYTES. DELETE? N
NON-O BYTES AFTER SDW TERMINATOR
OA 07 03 LOG .CM 0570 FFFF 0000
RIB IN ERROR - DELETE FILE? N
2F GOOD FILES 01 FILES WITH BAD RIBS
INVALID RIBS RESULTED IN RECONSTRUCTED C.A.T. NOT

MATCHING DISK

The DUMP command (Chapter 11) can then be used to change
the directory entry. Since LOG.CM is a memory-image file,
the RIB contains load information after the terminator;
however, the attribute part of the directory entry was
destroyed. Thus, REPAIR could not detect the memory-image
format.

From the information shown for the directory entry. it
is determined t~at the directory entry for the file LOG. eM is
in physical sector $OA or directory logical sector 7. The
following sequence is used to "repair" the attribute field:

Page 22-2(

REPAIR COMMAND

=DUMP :2
PHYSICAL MODE
: RD 7
:S

CHANGE BUFFER

PSN=OOOA
00 42 41 53 49
10 46 52 45 45
20 45 51 55 20
30 4C 4F 47 20
40 00 00 00 00
50 00 00 00 00
60 00 00 00 00
70 00 00 00 00
: 3C/
3C FF 52,00/
:W
:G
=REPAIR :2

43
20
20
20
00
00
00
00

DISK ID: MDOS0300
VERSION: 03
REVISION: 00
DATE: 072578

20 20 20 43
20 20 20 43
20 20 20 53
20 20 20 43
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

USER: SYS DEVELOPMENT DISK

4D 01
4D 02
41 04
4D 05
00 00
00 00
00 00
00 00

30 GOOD FILES 00 FILES WITH BAD RIBS
RECONSTRUCTED C. A. T. MATCHES DISK
=

22.8 -- Examples

00 72 00 00 00 BASIC CM .. 1' ..

B4 72 00 00 00 FREE CM .. 1' ..

BO 65 00 00 00 EGU SA .. e ..
70 FF FF 00 00 LOG CM. p ...
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00 "
00 00 00 00 00

The REPAIR command was then invoked a second time to
enSUT'e that the "fix" was cOT'T'ectly applied. Since REPAIR
then T'ecognized the file LOG.CM as a memoT'y-image file, the
RIB eT'T'OT' disappeaT'ed automatically.

The same eT'T'OT' could have been cOT'T'ected without having
the detailed systems knowledge that was used in the above
example. If the file weT'e deleted, the eT'T'OT' would be fixed
and the diskette would be a valid MDOS diskette. The
following example shows the minimal-knowledge apPT'oach to
fixing the diskette:

=REPAIR :2
DISK ID: MDOS0300
VERSION: 03
REVISION: 00
DATE: 072578
USER: SYS DEVELOPMENT DISK
OA 07 03 LOG .CM 0570 FFFF 0000
ILLEGAL ATTRIBUTE OR UNUSED BYTES. DELETE? Y
2F GOOD FILES 00 FILES WITH BAD RIBS
WRITE RECONSTRUCTED C.A.T. TO DISK? Y
=

Page 22-21

REPAIR COMMAND 22.8 -- Examples

Since the file was deleted. the reconstructed allocation
table did not match the one on the diskette. Thus. a new one
was written to make the allocation table correct.

Th~ last example illustrates how a file Just having been
deleted by accident can be recreated if no other process is
invoked that causes a directory entry to be created or space
to be allocated or deallocated. Since the deletion only
removes the name from the directory and frees the allocated
space. all that needs to be done is to rebuild the directory
entry using DUMP, and to recreate the allocation table using
REPAIR. The following example shows the sequence of events
from the file's deletion through its directory entry
reconstruction. This example assumes that the operator knows
the file's position in the directory (from DEN of a directory
listing). Otherwise, the DUMP command IISD" would have to be
used to display the entire directory, allowing the operator
to search for the deleted entry visually.

=DEL TESTPROG.SA
TESTPROG.SA:O DELETED
=DUMP
PHYSICAL MODE
:RD 3
:S

CHANGE BUFFER

PSN=0006
00 4D 44 4F 53 4F 56
10 FF FF 53 54 50 52
20 00 00 00 00 00 00
30 00 00 00 00 00 00
40 00 00 00 00 00 00
50 00 00 00 00 00 00
60 00 00 00 00 00 00
70 00 00 00 00 00 00
: lO'"TE tt ,

:S
CHANGE BUFFER

PSN=0006
00 4D 44 4F 53 4F 56
10 54 45 53 54 50 52
20 00 00 00 00 00 00
30 00 00 00 00 00 00
40 00 00 00 00 00 00
50 00 00 00 00 00 00
60 00 00 00 00 00 00
70 00 00 00 00 00 00
:W
:Q
=REPAIR
DISK ID: MDOS0300
VERSION: 03

34 20
4F 47
00 00
00 00
00 00
00 00
00 00
00 00

34 20
4F 47
00 00
00 00
00 00
00 00
00 00
00 00

53 59 00 88 72 00 00 00 MDOSOV4 SY .. 1' ••

53 41 05 FC 05 00 00 00 .. STPROGSA
00 00 00 00 00 00 00 00 ,. ,. "

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00, ,.

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

53 59 00 88 72 00 00 00 MDOSOV4 SY .. r ..
53 41 05 FC 05 00 00 00 TESTPROGSA
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 ,.
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

Page 22-22

REPAIR COMMAND

REVISION: 00
DATE: 072578
USER: SYS DEVELOPMENT DISK
33 GOOD FILES 00 FILES WITH BAD RIBS
WRITE RECONSTRUCTED C. A. T. TO DISK? Y
=DIR TESTPROG.SAiA
DRIVE: 0 DISK 1.0. : MDOS0300
TESTPROG.SA 5 05FC 0004 31 00 05FC 004
TOTAL NUMBER OF SECTORS : 0004/$004
TOTAL DIRECTORY ENTRIES SHOWN : 001/$01
=

22.8 -- Examples

The above procedure should only be used as a last resort. It
can be avoided completely if an adequate backup copy is kept
of all files and if the protection attributes are set for
those files which are not to be deleted.

Page 22-23

CHAPTER 23

23. ROLLOUT COMMAND

The ROLLOUT command is used for writing the contents of
memory to diskette. The ROLLOUT command supports the single
and dual memory maps of EXORciser II as well as the single
memory map of EXORciser 1. Options exist for writing memory
directly into a diskette file or for writing to a scratch
diskette.

23. 1 Use

The ROLLOUT command is invoked with the following
command line:

ROLLOUT «name>] [;<options>J

where <name> is the name of a diskette file and <options> is
one of the options described below. The file name, if used.
is .given the default suffix "LO" and the default logical unit
numb er zero. In some cases, it is i nva lid to have the f i 1 e
name specified with logical unit number one (see section
23.1.4>. If a file name is specified on the command line, it
must be the name of a file which does not already exist in
the directory. Whenever the file is created, it will be in
the memory-image format and allocated contiguously on the
diskette.

There are four different ways in which the ROLLOUT
command can be used. Each of the four uses of ROLLOUT is
specified via the <options> field.

Option Function

U Write memory into a file from the User
Memory Map of an EXORciser II system that
has the dual memory map configured.

none Write memory into a File. Only memory
not overlayed by MDOS or ROLLOUT command
can be accessed.

V Write memory to scratch diskette (not to
a file>. Any memory block can be written
out.

D Copy the scratch diskette's data ("V"
option) into a diskette file.

Page 23-01

ROLLOUT COMMAND 23.1 -- Us

The ROLLOUT command cannot be invoked from within a
CHAIN file (Chapter 6). Since most of the processing is done
by a position-independent routine that must work without MOOS
being resident, the resident MDOS 1/0 functions cannot be
used. Therefore, the sp ec ia I keyboard keys CTL-X, CTL-D,
CTL-W, BREAK, and RUBOUT are non-functional during the
ROLLOUT commandJ however, each operator response must still
be terminated with a carriage return.

Caution must be used when writing out blocks of memory
that include the highest addressed memory location SFFFF.
Since MOOS can only load programs in a multiple of eight
bytes, the starting load address of such programs must be an
address that is a mul t ip 1 e of eight. Otherwi se, the end ing
load address will be greater than $FFFF.

23. 1. 1 User Memory Map

When the ROLLOUT command is invoked with the command
line

ROLLOUT <name>JU

the memory from the User Memory Map of an EXORciser II system
with the dual memory map configured will be written into the
diskette file <name> on the specified logical unit. If the
dual memory map is not configured, ROLLOUT will terminate
after displaying the following message:

USER MEMORY MAP NOT CONFIGURED

If the dual memory map is configured, then ROLLOUT will
continue and display the messages

START ADDRESS:
END ADDRESS:

The user responds by entering the starting and ending memory
addresses in the User Memory Map which are to be written into
the diskette file. The addresses must be input in
hexadecimal ($OOOO-FFFF), and the starting address must be
less than or e~ual to the ending address. If these two
conditions are not met, the message

INVALID ADDRESS RANGE

will be displayed and the operator will be given another
chance to enter the addresses. After having supplied the
memory range to be written to diskette, the message

ARE YOU SURE (Y, N, G)?

will be displayed. The operator must respond with a "yo to

Page 23-(

ROLLOUT COMMAND 23. 1 -_. Use

have the memory written into the diskette file. The memor~
block is only written into the file if sufficient contiguous
space can be allocated. ROLLOUT will then terminate and
return control to MDDS.

The "N" response will cause the memory start and end
address messages to be redispla~ed in order to allow another
set of addresses to be entered. The "G" response will
terminate the ROLLOUT command and return control to MDOS.

23.1.2 Non-overlayed memory

If the ROLLOUT command is invoked with the command line

ROLLOUT <name::>

then any block of memory not overlayed by MDOS or the ROLLOUT
command in either EXORciser I or II (single or Executive
memory map) can be written to the diskette file specified by
<name>. The file can be specified to reside on any logical
unit number.

As descr ibed in sec ti on 23. 1. 1, th e start/end address
message prompts will be displayed; however, in addition to
the criteria set forth in that section for valid addresses.
the address range must not have been overlayed by MDOS or the
ROLLOUT command. If an address range is specified that falls
into the overlayed memory, the message

START ADDRESS MUST BE GREATER THAN $nnnn

will be displayed. The "nnnn" is the last address that has
been used by MDOS or the ROLLOUT command. The operator is
then given a chance to re-enter the addresses. Otherwise.
the function of the ROLLOUT command is similar to the
function described in the previous section.

23.1.3 Overlayed memory

If the ROLLOUT command has been invoked with the command
line

ROLLOUT iV

then any block of memory can be subs~uently written to a
scratch diskette. A pOSition-independent routine will be
moved into memory. This routine can subse~uently be
activated by the user from the debug monitor after loading
his test program into memory. The routine will be used to
write memory to a scratch diskette that has been placed into
drive one.

Page 23-03

ROLLOUT COMMAND 23.1 -- USE

No file name specification can be entered with the "V"
option. The diskette that will be written to in drive one
must not contain an MOOS system that is to be Used again.
The system tables on that diskette will be overwritten. The
diskette will have to be regenerated in order to be used as
an MDOS system diskette.

ROLLOUT will display the following message once it has
been invoked with the "V" option:

LOAD ADDRESS:

to which the operator must respond with the starting
hexadecimal address of a memory block into which the ROLLOUT
command will attempt to move the position-independent
routine. The address must be for memory above that re~uired
by MDOS and the ROLLOUT command. If the address entered is
too low, ROLLOUT will display the message

LOAD ADDRESS MUST BE GREATER THAN $nnnn

"and return control to MDOS. "nnnn" is the hexadecimal
address of the last location in memory occupied by MOOS or
the ROLLOUT command. I f the entered address spec i fied spans
non-existent memory, ROLLOUT will display the standard e~~or
message

** 53 INSUFFICIENT MEMORY

and retu~n to MOOS.

Caution must be used in locating the
position-independent routine in memory. Since MOOS uses the
upper end of memo~y when the command interpreter is ~unning,

the routine should not be loaded within 100 (decimal) bytes
of the end of contiguous memory. Care must also be taken to
ensure that the program being tested does not destroy the
$200 locations occupied by the position-independent routine.

If the position-independent ~outine was successfully
transfe~~ed, ROLLOUT will terminate and ~eturn control to
MDOS. The use~ can then invoke the LOAD command to b~ing his
test program into memory. Then, whenever the time is ~eached
that memory is to be w~itten to diskette, the use~ need only
give cont~ol to the still resident position-independent
~outine at the add~ess that was entered in response to the
"LOAD ADDRESS" p~ompt discussed above. This is done via the
EXbug command

nnnn;G

When the position-independent routine receives cont~ol in
this manner, it will prompt the operator fo~ the starting and
ending addresses as desc~ibed in section 23. 1. 1. After the

Page 23-0A

ROLLOUT COMMAND 23. 1 -- Use

address range has been entered and the "V" response given to
the "ARE YOU SURE?" question, the message

DRIVE 1 SCRATCH?

will be displayed. At this point, a scratch diskette must be
placed into dr i ve one. A "Y" resp onse wi 11 then cause th e
block of memory to be written to the scratch diskette. Any
other response will give control to the debug monitor.

The liN" response to the "ARE VOU SURE?" prompt will
allow the address range to be reentered. The "0" response,
however, will return control to the debug monitor, rather
than to MDOS. After the block of memory has been rolled out,
the debug monitor will receive control again.

The ROLLOUT command can be
section 23. 1.4) to copy the raw
diskette into a file on drive zero.

subsequently used (see
data from the scratch

23.1.4 Scratch diskette conversion

If the ROLLOUT command is invoked with the command line

ROLLOUT <name'>iD

then the memory written to the scratch diskette with the "V"
option will be copied into the file <name.>. ROLLOUT will
assume that a scratch diskette is in drive one that has been
created via the ROLLOUT command with the "V" option. The
<name.> specified must be for logical unit zero. Since the
diskette in drive one is scratch, no file can be created
there.

The ROLLOUT command will display the following message
once it has been invoked with the "0" option:

DOES DRIVE 1 CONTAIN A MEMORY ROLLOUT?

to which the operator must respond with a "V" if the ROLLOUT
command is to continue. Any other response will terminate
the ROLLOUT command and return control to MOOS.

If the "V" response is given to the
ROLLOUT will check that the diskette in
generated with the "V" option. If an invalid
been placed into drive one, the message

INVALID DISKETTE IN DRIVE 1

above message,
drive one was
diskette has

will be displayed and ROLLOUT will be terminated. If a valid
diskette is found, then ROLLOUT will proceed to build a file
an drive zero that contains the memory information from the

Page 23-05

ROLLOUT COMMAND 23.1 -- U,

scratch diskette.

23.2 Messages

The following messages can be displaved by the ROLLOUT
command. Not all messages are error messages. although error
messages are included in this list. The standard error
messages that can be displaved by all commands are not listed
here.

START ADDRESS:

END ADDRESS:

The starting address of the block of memory to be
written out must be entered.

The ending address of the block of memory to be
written out must be entered.

INVALID ADDRESS RANGE

The starting address was greater than the ending
address, or one of the two addresses contained an
invalid hexadecimal number.

ARE VOU SURE (V, N, G)?

This message allows the operator to verify that
the starting/ending addresses entered are what he
wants. The "V" response will cause ROLLOUT to
continue. The "N" response will allow a new
address range to be entered. The "G" response
will terminate the ROLLOUT command.

DRIVE 1 SCRATCH?

This message is displayed by the
position-independent routine to allow the
operator a chance to insert a scratch diskette
into drive one. A "V" response will cause the
memorv to be written to the diskette. Any other
response will return control to the debug
monitor.

START ADDRESS MUST BE GREATER THAN $nnnn

The start/end addresses include memory occupied
bV MDOS and/or the ROLLOUT command. If this
memory is to be written out, the ROLLOUT command
should be invoked with the "V" option.
Otherwise, the start/end addresses must be
greater that "nnnn".

Page 23-1

23.2 -- Messages

LOAD ADDRESS MUST BE GREATER THAN $nnnn

The address specified for locating the
position-independent routine in memory includes
memory occupied by MOOS and/or the ROLLOUT
command. The address must be greater than $nnnn
shown in the message.

USER MEMORY MAP NOT CONFIGURED

The "U" option has been specified on an EXORciser
I system or on an EXORciser II system that has no
dual memory map configured.

LOAD ADDRESS:

The operator must specify an address at which the
position-independent routine will be located for
subsequent access via the debug monitor. The
load address entered will be the starting
execution address that is used to activate the
ROLLOUT routine from the debug monitor.

DOES DRIVE 1 CONTAIN A MEMORY ROLLOUT?

This message allows the operator time to insert
the scratch diskette created via a previous
ROLLOUT process with the "V" option into drive
one before ROLLOUT will convert the data into a
diskette file on drive zero. A "Y" response will
cause ROLLOUT to continue. Any other response
will cause control to be returned to MDOS.

INVALID DISKETTE IN DRIVE 1

This message indicates that the diskette in drive
one was not created by the ROLLOUT command with
th e "V" op t ion.

** 53 INSUFFICIENT MEMORY

The operator specified an address which started a
block of memory that does not exist or that
contains bad memory. This block is used to
receive a copy of the position-independent
routine that is given control 'rom the debug
monitor. $200 bytes of memory must be available
starting at the address entered by the operator.
The cautions listed in section 23.1.3 should also
be T'eviewed.

Page 23-07

ROLLOUT COMMAND 23.3 -- Example9

23.3 Examples

Tbe 'ollowing example shows the operator-system dialogue
'or writing a block 0' memory to a 'ile 'rom the User Memory
Map 0' an EXORciser II system with the dual memory map
configured:

=ROLLOUT UMBLOCKiU
START ADDRESS: 100
END ADDRESS: 7FF
ARE YOU SURE <V, N, G)? V
=

The 'ile named UMBLOCK.LO will be created on drive zero. It
will contain the block 0' memory 'rom $100 to $7FF,
inclusive, from the User Memory Map.

The 'ollowing example illustrates how a copy 0' the
diskette controller ROM can be written into a diskette 'ile:

=ROLLOUT DISKROM:2
START ADDRESS: E900
END ADDRESS: EBFF
ARE YOU SURE (V, N, G)? V
=

The 'ile named DISKROM.LO will be created on drive two. This
example is valid 'or either type 0' EXORciser system.

The 'ollowing example shows how the ROLLOUT command is
used to write memory to disk during a test session 0' a user
program that overlays MDOS. A maximum contiguous memory
range 0' 32K is assumed.

=ROLLOUT iV
LOAD ADDRESS: 7F90
** 53 INSUFFICIENT MEMORV
=ROLLOUT ;V
LOAD ADDRESS: 7DOO
=LOAD TESTPROGiV
* (User does testing here via EXbug)
*7DOOiG
START ADDRESS: 100
END ADDRESS: 5FFF
ARE YOU SURE (V, N. G)? N
START ADDRESS: 100
END ADDRESS: 2FFF
ARE YOU SURE (V, N. G)? V
DRIVE 1 SCRATCH? V

*
In the above example. the operator initially specified a
block of memory which was too small to receive the

Page 23-0£

ROLLOUT COMMAND 23.3 -- Examples

position-independent routine. $200 bytes are required to
contain the routine; however, since the end of memory is used
by the MDOS command interpreter, an additional block of
memory is allowed for the MDOS stack. Thus, the ROLLOUT
command had to be invoked again. Then, after loading and
testing his program. the operator invoked the routine via the
"7DOOiG" EXbug command. After entering the end address, the
user realized an error, and responded "Nil to the flARE YOU
SURE?" question. Testing can be continued after the block of
memory has been written to the diskette.

The last example illustrates how the scratch diskette
generated above is converted into a file:

=ROLLOUT TESTROLLiD
DOES DRIVE 1 CONTAIN A MEMORY ROLLOUT? Y
=

The file named TESTROLL.LO will be created on drive zero.

Page 23-09

CHAPTER 24

24. SYSTEM DESCRIPTION

This chapter contains the detailed descriptions of the
structure of an MDOS diskette~ the structure of MDOS files
and their formats~ the system overlays~ the memory map~ the
command interpreter~ interrupt handlers~ the system function
handler~ and the MDOS e~uate file. The subse~uent three
chapters contain the detailed descriptions of the individual
system functions and how they are parameterized.

24. 1 Di s k ette Struc ture

MDOS is based on a single- or double-sided,
Single-density flexible disk, or diskette. The diskette is
compact in size~ portable, fairly durable, and easily
inserted into and removed from the diskette drives. Due to
the diskette's portability and interchangeability. each
diskette is treated by MDOS as a complete, self-contained
entity. Each diskette has its own system tables. operating
system, and files.

Information on an MDOS diskette is stored in sectors 128
(decimal) bytes in size. As the diskette turns, the
read/write head in a stationary position will pass over 26
(decimal) sectors each revolution. The area accessible to
the stationary head on one side of the diskette is called a
track. The area accessible to the stationary head on both
sides of the diskette is called a cylinder. The head can be
positioned over 77 (decimal) discrete cylinders. Thus, there
are a total of 2002 (decimal) sectors on each surface of a
diskette. A single-sided diskette only has one surface that
can be read from and written to. A double-sided diskette has
two surfaces.

In order to minimize access time and yet provide for a
dynamic allocation scheme, all diskette space allocation is
done in terms of clusters~ rather than sectors. MDOS
clusters consist of four~ physically se~uential sectors. A
cluster is the smallest structural unit of information on the
diskette. Thus, the smallest possible size that a file can
have is one cluster.

The
statistics.

following table summarizes these diskette

Page 24-01

SYSTEM DESCRIPTION 24. 1 -- Diskette St~uctU~1

Single-sided Double-sided

Quantity Decimal Hex Decimal Hex
-------- -----~- -------

Su~faces/diskette 1 1 2 2
Bytes/secto~ 128 80 128 80
Secto~s/tT'ack 26 lA 26 1A
T~acks/cylindeT' 1 1 2 2
Secto~s/cylindeT' 26 lA 52 34
Cylinde~s/diskette 77 4D 77 4D
Secto~s/su~face 2002 7D2 2002 7D2
SectoT's/diskette 2002 7D2 4004 FA4
Secto~s/cluste~ 4 4 4 4
Clusters/diskette 500 IF4 1001 3E9

MDOS accesses sectors on the diskette via a physical
sector number (PSN)' The diskette controller decodes the PSN
into the appropriate cylinder/sector position. To avoid
confusion, all sector numbers given in this section ~ill
refer to physical sector numbers. If a need should arise to
convert between cylinder/sector and physical sector numbers,
Appendix A has been provided. It contains the physical
sector numbers of the first sector of each cylinder on each
surface.

A portion of each diskette is reserved for some special
system tables. These tables reside in the outermost cylindeT'
of the diskette, cylinder zeT'o. Each table, ~ith the
exception of the diT'ectory, occupies a single sectoT'. The
follo~ing table summaT'izes the location of the system tables:

System table

Diskette Identification Block
Cluster Allocation Table
Lockout ClusteT' Allocation Table
DirectoT'Y
Bootblack, MDOS RIB

24.1.1 Diskette Identification Block

PSN

$00
$01
$02
$03-16
$17, 18

The Diskette Identification Block is cT'eated du~ing
system generation. It contains an ID, the veT'sion and
revision number of the resident operating system, the date
the diskette was generated. a user name identification area,
and a dynamic area for the MDOS oveT'lay RIB addresses. The
ID is displayed by the DIR, FREE, and REPAIR commands. The

Page 24-0;

SYSTEM DESCRIPTION 24. 1 -- Diskette Structure

Diskette Identification Block has the following format:

Bytes Size Contents -_._-- --------

0-7 8 Diskette ID
8-9 2 Version number
$A-B 2 Revision number
$C-11 6 Generation date
$12--25 $14 User name
$26-39 $14 MDOS overlay RIB addresses
$3A-$7F $46 Zeroes

24.1.2 Cluster Allocation Table

The Cluster Allocation Table (CAT) contains a bit map of
the areas on the diskette that are available for new space
allocation. Each bit in the CAT represents a physical
cluster of diskette storage. The first bit of the first byte
of the CAT (bit 7 of byte 0) represents cluster O. The
subse~uent bits represent subsequent clusters. A bit set to
one indicates that the cluster is allocated. If a bit is set
to zero, it indicates that the corresponding cluster is
available for allocation. Since not all 128 bytes of the CAT
correspond to physical clusters. the parts of the CAT that
represent clusters beyond the physical end of the diskette
are marked as allocated so that they cannot be used by any
MDOS functions.

On single-sided diskettes. bytes 0-$3E of the CAT
correspond to the physical locations on the diskette;
however. in byte $3E. bits 0--3 are set to one since no
physical sectors correspond to those cluster numbers. Bytes
$3F-7F are set to all ones. The cluster division for
allocation only includes 2000 (decimal) sectors. Since there
are 2002 sectors. the last two physical sectors of a
single-sided diskette are not available for allocation
($7DO-7Dl >.

On double-sided diskettes, bytes 0-$7D correspond to the
phys i ca I I ocat ions on th e disk ettei however, in byte $7D.
bits 0-6 are set to one since no physical sectors correspond
to those c luster numbers. Bytes $7E and $7F are set to all
ones. The cluster division for allocation includes all
physical sectors (4004, decimal>' There are no unused
sectors on a double-sided diskette.

24.1.3 Lockout Cluster Allocation Table

The Lockout Cluster Allocation Table, or LCAT. is
similar to the CAT in structure; however. it is only used
during the DOSGEN and REPAIR processes. The LCAT provides a

Page 24-03

SYSTEM DESCRIPTION 24. 1 -- Diskette StructuT

map of which areas of the diskette have been flagged as bad
during the DOSGEN write/read test. In addition, the LCAT is
configured so that those sectors of the diskette occupied by
the system tables in cylinder zero and any user locked out
areas (see Chapter 10, DOSGEN command) are flagged as
unavailable for normal allocation.

24.1.4 Directory

The directory occupies twenty sectors. Each directory
sector contains eight entries of sixteen bytes each. Each
entry contains a file name, a suffix, the address of the
file's first cluster, the file's attributes, and some room
for expansion.

A file is one or more clusters containing related
information. This information may be ASCII source programs,
binary obJect records, user-generated data, etc. Each file
must reside wholly on a single diskette. Files are
identified to the system by their names, suffixes, and
logical unit numbers.

The name as stored in the directory consists of ten
bytes; however the MDOS command interpreter deals with an
eight-byte name. and a two-byte suffix. This is merely a
convention of the command interpreter and has no significance
in relation to the internal format of the directory. System
routines and functions dealing with file names as a parameter
use a ten-byte block which is always dealt with as a
monol i th ic item.

File names assigned by the user must be from one to
eight alphanumeric characters in length. The first character
must be alphabetic. A file's suffix is used to further
identify the file. The suffix is primarily used to identify
the format of the file content; however, this is purely a
convention; the attribute field of the directory entry
describes the file's physical format. Suffixes are
considered as an extension of the file name. They can be one
or two alphanumeric characters in length. The first
character of the suffix must be alphabetic. Both the file
name and the suffix. if shorter than their maximum allowable
lengths, are left Justified and space-filled in the directory
entry.

In most cases, the MDOS commands make certain default
assumptions about a file's suffix if it is not explicitly
specified by the operator; however, explicit suffixes can be
used whenever the default is to be overridden. The standard
MOOS default suffixes are:

Page 24-(

SYSTEM DESCRIPTION 24. 1 -- Diskette Structure

Suffix Implied meaning

AL Assembly listing file
CF Chain procedural file
eM Command file file
ED EDOS-converted file
LO Loadable, memory-image file
LX EXbug-loadable file
RO Relocatable obJect file
SA ASCII source file
SY Internally-used system file

Logical unit numbers identify the drive that contains
the file. Since each diskette carries with it its own
directory, different files with identical names and suffixes
can reside on different diskettes.

The standard format for specifying file names, suffixes
and logical unit numbers is:

<file name>. <suffix>:<logical unit number>

where the period C.) and colon (:) serve to delimit the start
of the suffix and the logical unit number fields,
respectively.

In addition to a name, each directory entry contains a
set of attributes which characterize the file's content. A
file's attributes include inherent attributes and assignable
attributes. The inherent attributes of a file describe its
allocation scheme (contiguous or segmented), the file format
(ASCII record, binary record, memory-image, or user-defined),
and whether space compression is used for ASCII records. The
file formats are described in section 24.3.

The assignable attributes include write protection,
delete protection, and the system file attribute. If a file
is wr i te protec ted, it cannot be wr i tten into or de leted. If
a file is delete protected, it cannot be deleted. If a file
has the system attribute, it will be included in the system
generation process (DOSGEN) and is handled differently by the
DEL and DIR commands.

The format of a directory entry is described in the
following table:

Page 24-05

SYSTEM DESCRIPTION 24. 1 -- Diskette Structur

Bvtes Size Contents

$0-7 8 File name
$8-9 2 Suffix
$A-B 2 PSN of first cluster
$C-D 2 Attributes
$E-F 2 Zeroes

The attribute field of a directory entry has the
following format:

F E D C B A 9 8 7 6 5 4 3 2 1 0

-------------------------~--------------------------------------

.

<-------- Not Used (=0) ------->
File format (O=user-defined,

2=memorv- imag e ,
3=binary record,
5=ASCI I record,
7=ASCII-converted-

binary record)

Non-compressed space bit
Contiguous allocation bit
System file bit
Delete protection bit
Write protection bit

Associated with each directory entry is an eight-bit
number, the directory entry number (DEN), which is a function
of the physical location of the entry within the directory.
The DEN is not found anywhere in the directory. It is a
calculated ~uantity and is interpreted as follows:

7 6 5 4 3 2 1 o

. ..

24.1.5 Bootblock

Position within sector
(0-7)

Physical sector number
($3-$16)

The Bootblack is a small loader program that is brought
into memory along with the next physical sector bV the
diskette controller during system initialization. The second

Page 24-0

SYSTEM DESCRIPTION 24. 1 -- Diskette Structure

sector that is loaded contains information regarding the size
of the res i dent op erat i ng sy stem. From th i s i nformati on, th e
Bootblock program configures the diskette controller to load
into memory the actual resident operating system.

24.2 File Structure

While the contents of a file can be thought of as a
logically contiguous block of information. the actual
diskette area allocated to the file mayor may not be
physically contiguous. Space can be allocated to one or more
groups of physically contiguous clusters on the diskette.
Each contiguous group of clusters is called a segment. This
segmentation allows the dynamic allocation and deallocation
of space to occur without having to move any of the
information contained in the file or in other files.

Each file must, therefore, have a table that describes
which segments are allocated to the file. This table is kept
in the first physical sector of each file and is called the
Retrieval Information Block (RIB). It is the address of the
RIB that is contained in the directory entry of a file.

MOOS accesses sectors within a file by logical sector
number (LSN). Since the first physical sector of a file is
not really a data sector, the RIB is given an LSN of minus
one ($FFFFL Therefore, logical sector zero of a file (the
first data sector) is actually the second physical sector of
the file. Logical sector numbers for data sectors are
numbered sequentially beginning with zero. Thus, even though
a file may be segmented (not physically contiguous on the
diskette), it is treated as a logically contiguous collection
of sectors when accessed by logical sector number. The
system 110 functions decode the LSN into the actual PSN.

24.2.1 Retrieval Information Block

For all files. the RIB contains a series of two-byte
entries called segment descriptor words (SDWs). A special
SDW is used as a terminator to indicate the end of the
segment descriptors within the RIB. Each SDW (other than the
terminator) contains two pieces of information: the cluster
number of the first cluster in the segment. and the length of
the segment. Since each segment consists of physically
contiguous clusters, this information is all that is needed
to describe where a segment of the file is located on the
diskette. A RIB can contain a maximum of 57 (decimal) SDWs
and one terminator.

The RIB of a memory-image file contains some additional
information that describes where the contents of the file are
to be loaded in memory. This information includes the

Page 24-07

SYSTEM DESCRIPTION 24.2 -- File St~uctu,

starting load add~ess, the number of sectors
number of bytes in the last sector, and
execution address.

to load, the
the starting

The memory-image file load information is described in
the following paragraphs. Both the content and the location
of each field are described. The offsets used to refer to
the various bytes are relative to zero (zero being the first
byte of the RIB sector). All offsets are given in decimal.

1. Byte 117, the number of bytes to load from
the last sector, must be non-zero, a multiple
of 8. and less than or equal to 128 ($80),

2. Bytes 118-119, the number of sectors to load,
must contain a number that is non-zero, less
than the total number of sectors allocated to
the file, and less than or equal to 512
($200>.

3. Bytes 120-121, the starting load address, a~e
not checked. For programs loading in an
EXORciser 1 system. in the User Memorv Map of
an EXORcier 11 system with the Single memory
map configured, or in the Executive Memory
Map of an EXORciser II system ~ith the dual
memory map configured, this value must be
greater than hexadecimal location $IF if the
program is to be loaded via the MOOS loader.
EXORciser II systems can have programs loaded
into the User Memory Map of the dual memory
map configuration starting at location zero.

4. The ending load address is calculated from
bytes 117-121 in the following manner:

5.

EL = (NSL 1) * 128 + NBLS + SL - 1

~here EL is the ending load address, NSL is
the number of sectors to load (bVtes
118-119), NBLS is the number of bytes in the
last sector (bvte 117), and SL is the
starting load address (bytes 120-121). The
ending load address must be less than 65536.

Bytes 122-123. the stal'ting execution
address, must lie within the range of
addresses spanned by the file <greater than
or equal to the starting load address, and
less than or ectual to the ending load
address) .

6. Bytes 124-127 are not used and must be zero.

Page 24-(

SYSTEM DESCRIPTION 24.2 -- File Structure

F

F

The following diagrams illustrate the format of a
segment descriptor word and the terminator.

SEGMENT DESCRIPTOR WORD

E D c B A 9 8 7 6 5 4 3 2 1 o

<------- Starting cluster number ------>
. Number of contiguous clusters 1

Zero (Non-terminator bit)

TERMINATOR

E D c B A 9 8 7 6 5 4 3 2 1 o

: <------- Logical sector number of logical end-of-file ----->

: One <Terminator bit)

The SDW terminator is used to monitor the logical
end-of-file. It contains the logical sector number of the
end-oF-file. The sector which is the end of a file may be
partially filled with null characters. Thus, no actual
end-of-file record will be found within a file. This feature
allows files to be merged together without having to read
through the entire file looking for an end-of-file record.

The actual format of a RIB is shown in the following
diagram. For non-memory-image files, the bytes following the
terminator must all be zero. Only memory-image files can
have non-zero bytes following the terminator, and then those
bytes must meet the six criteria listed above.

Page 24-09

SYSTEM DESCRIPTION 24.2 -- File Structurt

FED C B A 9 8 7 6 5 4 321 0

00 SDW 0

02 SDW 1

04

Other SOWs

TERMINATOR

Zeroes

74 : BYTES IN LAST SEC1'OR :

76 NUMBER OF SECTORS TO LOAD

78 STARTING LOAD ADDRESS

7A STARTING EXECUTION ADDRESS

7C ZERO

7E ZERO

24.2.2 File formats

MOOS deals with four types of file formats on diskette:
user-defined4 memory-image. binary record. and ASCII record.

User-defined files are dealt with by MDOS at the sector
level. MDOS will keep track of where the file is and will
only allow access to the file by logical sector number. The
user has the responsibility of formatting the data within the
sectors in the manner suited to his application.

Memory-image files include all files whose contents are
to be loaded into memory directly from the diskette by the
MOOS loader. Memory-image files are allocated contiguous
space on the diskette. The only information retained about
where the content is to be loaded is kept in the file's RIB.
The data within the sectors of the file contain no load or
record information. It is merely an image of a block of
memory to be loaded into. Due to the nature of the diskette
controller. MOOS programs can only be loaded in multiples of
eight bytes. A further restriction placed on memory-image

Page 24-1(

SYSTEM DESCRIPTION 24.2 -- File Structure

files is that their content cannot load below memory location
$20 if they are to reside in the single memory map of an
EXORciser I or EXORciser II system.

Binary record files are used primarily for the
relocatable object data produced by the Macro Assembler and
the relocatable FORTRAN compiler; however, the user can
create data files using this binary record format as well.

ASCII record files are used to contain all other
MDOS-supported data. Such files can be in either
space-compressed or non-space-compressed form. Normally,
MOOS will always create ASCII files with the
space-compression attribute to conserve diskette space.

The non-memory-image files can be allocated in either
contiguous or segmented fashion. Normally, MDOS will create
such files in a segmented manner to take advantage of the
dynamic allocation scheme. If files are segmented, they can
expand to the full capacity of the diskette when they need to
grow in size; however, if files have contiguously allocated
space, then they can only be expanded if they are allocated
space that is contiguous to the originally allocated space.
Normally. contiguous files are created with the maximum space
that they will ever need.

24.3 Record Structure

This section describes in detail the two record types
supported for diskette files. In addition. a special record
type used for copying binary files to a non-diskette device
is also discussed. The actual use of such records is fully
discussed in Chapter 25 which describes the supported 1/0
functions. All records supported by MDOS are terminated by a
carriage return, line feed, and null sequence; however. on
the diskette, only the carriage return character is retained
in order to conserve diskette space. When diskette files are
copied to a non-diskette device, the other two characters are
automatically supplied by MDOS.

24~3. 1 Binary records

Binary records are used primarily as output from the
Macro Assembler and the FORTRAN compiler, and for input to
the Linking Loader. Binary records contain a special record
header, a byte count, and a checksum. The checksum is a
two's-complemented sum of all bytes in the record from the
byte count through the last data byte, inclusive. A maximum
of 254 (decimal) data bytes can be contained in each binary
record.

The format of a binary record can be illustrated as

Page 24-11

SYSTEM DESCRIPTION 24.3 -- Record StructuT

follows:

----------------------~-------/ /-------------
: D I BC : DATA I CK : CR I

------------------------------/ /-------------
The symbols take on the Tollowing meanings:

Symbol Meaning

D The binary record header character "D"
($44>.

BC

DATA

A one byte "byte count" that contains the
number aT data bytes in the record plus
one (Tor the checksum byte).

A maximum oT 254 (decimal) data bytes.
Any eight-bit values are valid for the
data bytes.

CK The two's-complemented sum of the byte
count and all data bytes. CK is a one
byte Tield.

CR The terminating carriage return. For
non-diskette devices this will actually
be a carriage return, line feed, and null
seq,uence.

Since diskette Tiles
indicator in the RIB, the
on non-diskette devices.
following Tormat:

contain the logical end-o'-Tile
binary EOF record only will be seen

The binary EOF record has the

: E : BC : CK : CR :

The symbol "E" is the end-o'-file record header which is the
letter "E" ($45). The other symbols are the same as in the
above table. The EOF record has no data bytes. Thus. the
byte count will be equal to one.

24.3.2 ASCII records

ASCII records are used primarily for source Tiles on the
disketteihowever, EXbug-loadable format files are ASCII even
though they are obJect files output from the assemblers or
Link ing Loader.

ASCII records contain no record headers, byte counts. or

Page 24-J

SYSTEM DESCRIPTION 24.3 -- Record Structure

checksum fields. The first ASCII record in a file begins
with the first data character of a file and is terminated by
the first carriage return. All other ASCII records in the
file begin with the first data character following a carriage
return. When ASCII records are copied to non-diskette
devices. the terminating carriage return is actually a
combination of three control characters: carriage return.
line feed. and null. ASCII records should contain only
displayable characters.

When MDOS writes ASCII records to diskette. they
normally contain space compression characters to conserve
diskette space. A space compression character is indicated
by a data byte having the sign bit (bit 7) set to a one. The
remaining bits (0-6) contain a binary number representing the
number of spaces ($20) to be inserted in place of the
compressed character. MDOS automatically expands these
characters into spaces when such files are read. MDOS will
also automatically create these compressed characters when
such files are written.

Since MDOS maintains the logical end-of-file indicator
in a file's RIB. no ASCII EOF record will be seen in a
diskette file; however. when ASCII record files are written
to a non-diskette device. the following EOF record will be
supplied:

: 1A : CR I

where the "1A" symbol represents the end-of-file indicator.
It is the hexadecimal value $lA or SUB control character
(CTL-Z)' The CR symbol is the carriage return. line feed,
and null sequence.

If ASCII record files generated on another system are to
be processed by MDOS. it is important that the carriage
return. line feed, and null sequence be present at the end of
each record. Otherwise, it is possible for each data record
to lose one or two characters from its beginning.

24.3.3 ASClI-converted-binary records

A special form of the binary record exists when copying
to a non-diskette device that can only accept seven-bit data.
This record format is usually never kept in a diskette file.
The format of the ASClI-converted-binary record is identical
to the binary record; however. each byte, with the exception
of the special header character and the terminating carriage
return, I ine feed. and null. sequence, is converted into two
eight-bit bytes with bit seven set to zero. This is
accomplished by taking each half of the original byte and

Page 24-13

SYSTEM DESCRIPTION 24.3 -- Record Structur~

adding the bit mask 400110000 to the half~byte. The result
is a displayable two-byte se~uence. For example. the
hexad_cimal data byte $85 w~uld be converted into the two
byte se~uence $38 and $35.

24.3.4 File descriptor records

MDOS 1/0 operations with nan-diskette devices can be
one of two modes: file format or nan-file format.
non-file format made re~uires no special processing and
only the ASCII rec~rd format.

in
The

uses

The file format mode allows MDOS to treat the data an
certain non-diskette devices as a "file". similar to a file
an diskette. The File Descriptor Record (FOR) is employed to
serve the same function as a directory entry for a diskette
file. The FDR contains a file name, suffix, and a file
format descriptor. Thus, MDOS can search for a named file on
a cassette or paper tape, if it was originally created using
the file format made.

All FDRs are identical in format, regardless of the
record format of the data file. Since the FDR must be
acceptable to any device, it is written in the
ASCII-converted-binary form, even if the remaining data of
the file is in binary or ASCII. ' The FDR format is shawn in
the following diagram:

: H : BC I NAME I SUFX I NU I FDF I NU I CK I CR I

The symbols take on the following meanings:

Page 24-1·

SYSTEM DESCRIPTION 24.3 -- Record Structure

Symbol Meaning

H The FDR header character "H" ($48>.

BC A one-byte "byte count" that contains the
number of bytes in all fields from NAME
through CK, inclusive. This number is
fixed for FDR records at 17 (decimal).
This number reflects the real data bytes
in the unconverted binary form, not the
bytes written in the
ASCII-converted-binary form.

NAME The eight-character file name.

SUFX The two-character suffix.

NU

FDF

A two-byte field which is not used.
contains zeroes.

It

A two-byte field
attribute field
Only bits $8-$A
f i I e format.

similar in format to the
of a directory entry.
are used to describe the

CK The two's-complemented sum of the byte
count and all other data bytes. CK is a
one byte field.

CR The terminating
carriage return,

character sequence
line feed, and nUll.

of

The length of all fields of the FDR (except Hand CR) is
doubled when written (ASClI-converted-binary format). Thus,
if the CR field is counted as three characters (carriage
return, line feed, null>, th en th e ph Y si cal I eng th of an FDR
in the ASClI-converted-binary format is 36 (decimal) bytes.

24.4 System Files

On every MDOS diskette there are nine files which
comprise the operating system. These files contain the
resident operating system, a series of overlays to reduce the
main memory requirements of the system, and standard error
messages. The resident operating system file MDOS.SY must
reside in a fixed place on the diskette if the Bootblock
program is to work after being activated by the diskette
controller. The other system files must remain in fixed
positions after MDOS has been initialized since they are
referenced by their physical sector numbers.

Page 24-15

SYSTEM DESCRIPTION 24.4 --System File

24.4.1 System overlays

The system overlay files are loaded into memory into one
of the four overlay regions discussed in the subsequent
section. The overlay handler only brings an overlay into
memory if it is not already in memory at the time a specific
function is required. If an overlay remains in memory.
access to its function is faster than if it has be to loaded
from the diskette. The functions contained in the seven
overlay files are shown in the following table:

Overlay Function

MDOSOVO.SY Diskette space allocation and
deallocation.

MDOSOVI.SY Processing standard file names,
allocating contiguous memory,
reserving a device, releasing a
device, writing standard records,
writing FDRs, writing end-of-file
records, console reader/punch device
hand ling.

MDOSOV2.SY Reading standard records,
FDRs.

reading

MDOSOV3.SY Closing a file/device, rewinding
diskette files, changing file names
and attributes.

MDOSOV4.SY Opening a file/device.

MDOSOV5. SY CHAIN file execution.

MDOSOV6. SY Command line interpretation.

When MDOS is initialized, the directory is searched for
the seven overlays by name. The physical diskette addresses
are then retained so that a subsequent reference to an
overlay function does not involve another directory search.
Thus, MDOS must be reinitialized each time the diskette in
drive zero is changed so that the overlays can be located
again.

Overlays MDOSOVO and MDOSOVt use overlay region one.
Overlays MDOSOV2 and MDOSOV3 use overlay region two.
Overlays MDOSOV4 and MDOSOV5use overlay region three, and
overlay MDOSOV6 uses the User Program Area into which the
MDOS commands also are loaded. The overlay regions are shown
in the memory map diagram of section 24.5.

Page 24-:1

SYSTEM DESCRIPTION 24.4 -- System Files

24.4.2 System error message file

In an attempt to use English language descriptions Tor
the various error conditions that may arise, all standard
error messages are kept in the system file MDOSER.SY. This
file is accessed by the error message function .MDERR
(section 27.4>. The error messages are placed in this file
so that the most frequently used messages are near the
beginning.

If the error message file cannot be read or accessed,
the error message function will display a message indicating
that an invalid error message has been requested.

24. 5 Memory Map

The memory mapping of MDOS within the EXORciser system
is illustrated in the following diagram:

Page 24-17

SYSTEM DESCRIPTION

0000 I DISKETTE CONTROLLER VARIABLES I

0020

OOAE

UNUSED DIRECT ADDRESSING
AREA

COMMAND LINE BUFFER

OOFE COMMAND LINE BUFFER POINTER

0100

2000

3FFF

MDOS VARIABLES,
IOCBs and SYSTEM BUFFERS

SWI HANDLER
KERNEL SYSTEM FUNCTIONS

I CONTROLLER DESCRIPTOR BLOCKS

SUPPORTED DEVICE DRIVERS

RESIDENT SYSTEM FUNCTIONS

OVERLAY HANDLER

OVERLAY REGION 1

OVERLAY REGION 2

OVERLAY REGION 3

OVERLAY REGION 4
and

1 USER PROGRAM AREA 1

'"
'"

1 END OF MINIMUM SYSTEM MEMORY I ...
...

END OF CONTIGUOUS MEMORY

RAM Discontinuity

NON-MDOS RAM

EBOO DISKETTE CONTROLLER PROM

ECOO PIAs

FOOO EXbug MONITOR

FFFB INTERRUPT VECTORS

I
I.

1
1

I •
I
I

'" ...
...
...

24.5 -- Memory Ma,

Page 24-lE

SYSTEM DESCRIPTION 24. 5 -- Memory Map

Locations $OOOO-OOlF, inclusive, are reserved for the
variables of the diskette controller. These locations cannot
be initialized by a program loading from the diskette. In
addition, if a program re~uires the use of the diskette
functions (either directly through the diskette controller or
through the MOOS functions), then these locations cannot be
used by the program for storage. Locations $OOAE-OOFO,
inclusive, contain the MDOS command line as it was entered by
the operator. Command-interpreter-Ioadable programs must
load above location $lFFF. They can use the direct
addressing area for variable storage; however, this area
cannot be initialized while the program is being loaded into
memory. Programs that do not make use of MOOS system
functions can load anywhere in memory above location $OOlF.
If such programs do not use the diskette controller entry
points (Appendix 0), the direct addressing area below
location $0020 can be used, but only after the program is
resident in memory.

The MDOS variables (locations $FE and higher) contain
pointers to several areas in memory that might be required by
a user program. The absolute addresses of these pOinters
should be obtained from the MDOS equate file. The pointers
most often re~uired are:

Pointer Name

CBUFPS

ENDOS$

ENDUSS

ENDSY$

Content

The address
buffer to

in
the

the command
terminator of

line
the

command being
following the
scanned for by
this variable.

executed. Parameters
command name should be
using the contents of

The address of the last location of
resident MOOS. The value of this
address plus one is the first
location that a
command-interpreter-Ioadable program
can load into.

The address of the last location
loaded into by the current program.
The program can allocate additional
memory (between the last loaded
location and the end of contiguous
memory) via one of the system
functions.

The address of the last byte of
contiguous memory (RAM).

Page 24-19

SYSTEM DESCRIPTION

SWI$UV

IRG1JUV

24.5 -- Memo~~ Mi

The add~ess of a use~-defined SWI
handle~. This vecto~ must be
initialized b~ a use~p~ogram if it
is using SWls other than those
defined for MOOS system functions.
This vecto~ is set to point to an RTI
inst~uction each time the MDOS
command inte~p~ete~ is given cont~ol.

The address of a use~-defined IRG
handle~. This vecto~ must be
initialized by a user program if it
is using IRGs. This vector is set to
point to an RTI inst~uction each time
the MOOS command interprete~ is given
control. This vecto~ is not
availabale with MDOS09.

24.6 MOOS Command Interpreter

The MOOS command interpreter is one of the MOOS overlays
that gets control whenever MOOS has been initialized o~
whenever a command has completed and returned cont~ol to
MOOS. This overlay will cause the standard command line
input prompt (=) to be displayed whenever it is activated.

Once in control, the interp~ete~ waits for ope~ator
input. After a line has been entered, it is scanned for the
first valid file name specification. If no valid file name
is recognized, the standard message

WHAT?

will be displayed and a new input p~ompt shown. If the first
encountered file name specification contains a valid file
name, it will be used to search the directory. The default
suffix "CM" and the default logical unit number zero will be
supplied by the MOOS command interpreter if none are
explicitly entered by the operator. If the file name is not
found in the directory specified by the logical unit number.
the "WHAT?" message shown above will be displayed and another
input promp t sholiln. If the f i 1 e name is found, it must be
the name of a file that contains a
command-interpreter-loadable program. That is, the file must
be in the memory-image format and must have a starting load
address that is greate~ than the value contained in the MDOS
variable ENDOS$ (greate~ that $lFFFL If the file passes
these tests, its contents are automatically loaded into
memo~y and given control at the sta~ting execution address
contained in the file's RIB.

The loaded program can then extract paramete~s f~om the
MOOS command line buffer. The pointe~ into the buffer

Page 24-;

SYSTEM DESCRIPTION 24.6 -- MDOS Command Interpreter

(CBUFP$) was left pointing to the terminator that stopped the
scan for the first valid file name specification when the
MDOS command interpreter processed the input buffer. After
completing its function, the command can return to MOOS
through one of the system functions (.MOENT) which will pass
control back to the MDOS command interpreter, repeating the
cycle.

It should be noted here that commands invoked via the
MDOS command interpreter do not necessarily have to have the
suffix "eM" or reside on drive zero. If a user program with
an "LO" suffix is being tested, it can be loaded and executed
directly from the command line (if it meets th~ requirements
for command-interpreter-loadable programs) by explicitly
enter i ng the suff i x after the f i I e name. Simi lar I y. if a
required command does not happen to reside on drive zero, its
name can be followed with a logical unit number to cause it
to be looked for and loaded from the specified unit. For
example. the command line

OIR:2

will invoke the directory command from drive two to display
the directory of the diskette in drive zero.

Whenever the MOOS command interpreter regains control
after a command terminates, it checks that the diskette in
drive zero still has the same parameters (version number,
overlay RIB addresses) as the diskette used during the last
MDOS initialization. If these parameters differ. one of the
standard error messages EI, ER, EU, EV (Chapter 28) will be
displayed and control given to the debug monitor. MOOS will
then have to be reinitialized before the MOOS command
interpreter will accept further commands.

In addition, the following parameters are reinitialized
each time the MOOS command interpreter is given control. The
user-defined SWI and IRG vectors (SWISUV and IRQSUV) are
reset to point to an RTI instruction. (Only SWISUV is reset
for MOOS09.) Since the lIser program is no longer resident,
the interrupt handlers are deactivated. The stack pointer is
reset to the end of contiguous memory for the dUration of the
command interpreter's execution. The Error Status and Error
Type parts of the system error status word are set or cleared
depending on whether or not a valid command name was entered
on the command line.

24.7 Interrupt Handling

When MOOS initializes, it saves the contents of the SWI
vector required by the debug monitor. The SWI and IRQ
vectors are then changed to point into the MOOS function
handler. Both vectors are required to allow the operator to

Page 24-21

SYSTEM DESCRIPTION 24.7 -- Interrupt Handlin~

make full use of the debug facilities o' the debug monitor
while using MDOS system functions. Some versions of the
1'16800 MPU will give control to the address in the IRQ vector
i. an NMI occurs while an SWI is in progress. Since the
debug facilities of the debug monitor use NMI, continuing
from a system function call will result in passing control to
the address in the IRQ vector. Thus, MDOS must intercept
both SWI and IRG interrupts; however, MDOS can distinguish
the difference between this "pseudo-IRG" and a real IRG even
though both give control to the same address. Since MDOS
does not have any devices in the system that generate IRQ,
there is no true IRG interrrupt handler. User programs,
however, can configure the MDOS variable IRG$UV so that if a
real IRG occurs, the routine specified by the user will be
given control.

Such user-defined IRG handlers are accessible as long as
the MDOS command interpreter is not re-entered. Whenever
control is returned to the MDOS command interpreter, the
user-defined IRG vector will be changed to point back into
MDOS. Thus, IRGs cannot occur after the user program has
terminated. Otherwise, MDOS will hang up ina loop. This is
to be expected, since MOOS has no way of knowing what device
generated the IRG, where the device is, or how to respond to
the IRO. An IRO must not be pending or occur when the MOOS
command interp~eter is given control.

Since the 1'16809 MPU does not give control to the address
in the IRG vector if an NMI occurs while an SWI is in
progress, MDOS09 handles IRGs in a slightly different manner.
During initialization, the IRG vector is set up so that if an
IRO occurs, control is returned to EXbug after printing an
"EG" error message. If the user wishes to incorporate his
own IRG handler, he should save off the current value in the
IRO vector location (the one set up by MOOS) nad then insert
the address of his IRG handler. Only then is it safer to
allow IRGs. MDOS does not reset the IRG vector if control is
returned to it. Thus, the user must take responsibility 'or
restoring the original value upon completion of its interrupt
processing.

For 1'100909, the FIRG, SWI2 and SWI3 vectors are handled
in a similar manner. MDOS09 sets up these vectors so that
the respective messages IIEFII, "ES" and "EW" are printed i. an
interrupt occurs prior to the user having set up his own
interrupt handler.

Certain precautions must be remembered if a user program
is to process IRGs and use the MDOS system functions. Not
all MDOS system functions are re-entrant, thusl SCALLs should
not be used in an IRG handler. Also, the MDOS diskette
controller runs with interrupts inhibited for the duration o'
any diskette access. Thus, regardless of whether a single
sector or multiple sectors are being processed, interrupts

Page 24-2;;

SYSTEM DESCRIPTION

are inhibited throughout.
serviced within a definite
can be in progress. The
the diskette access.

24.7 -- Interrupt Handling

Therefore. an IRQ cannot always be
time window if diskette accesses
time is dependent on the length of

Another potential problem exists if NMI is to be used
while diskette functions are in progress. The NMI vector is
taken over by the diskette controller while the diskette
access is in progress. The NMI is used as a timeout
condition. Thus. if a user's system is generating NMls while
diskette accesses are going on, a timeout condition will
result and the user will not be able to process the NMI. It
is for this reason that no user-defined NMI vector is
provided by MDOS.

The system functions provided by MDOS are accessible
through use of the software interrupt or SWI instruction. A
full explanation regarding the MDOS SWls is given in the next
section; however, like the user-defined IRQ vector, MOOS
allows a user-defined SWI vector to be configured through the
variable SWI$UV. Like the user-defined IRQ handler, the
user-defined SWI handler is only accessible as long as the
MOOS command interpreter is not reentered. Whenever control
is returned to the MDOS command interpreter, the user-defined
SWI vector will be changed to point back into MDOS. Thus,
user-defined SWls cannot be processed after the user program
has terminated. This is to be expected, since MOOS commands
and user programs all load into one area of memory. Thus,
the user-defined SWI handler is not resident after the MOOS
command interpreter regains control.

24.8 System Function Calls

All of the system functions that MDOS commands use are
also available to the user and can be incorporated into his
program development. All MDOS system functions are accessed
via the software interrupt or SWI instruction. Each SWI must
be followed by a byte that contains the number of the
function to be executed. MDOS's resident software interrupt
handler can access up to 128 (decimal) functions; however,
not all of these functions are defined. An error message
will be printed if the software interrupt handler is
activated and the function number is not defined.

A special convention is used to allow the user to define
a maximum of 128 functions also (to be processed by the
user's software interrupt handler that is configured via
SWI$UV). If the sign bit of the function number byte (bit 7)
is set to one, a user-defined software interrupt is
indicated. All MOOS software interrupts have function number
bytes with the sign bit set to zero. The user-defined SWI
handler gets control with the registers on the stack as if it
intercepted the SWI directly. The B accumulator will have

Page 24-23

SYSTEM DESCRIPTION 24.8 -- System Function Call

the value o' the 'unction number (with the sign bit set to
zero) to facilitate indexing into the user's .unction table.

Since MDOS assumes control o. the SWI vector which is
normally used by EXbug, certain precautions muat be observed
when debugging programa using the debug monitor.

1. MDOS must not be initialized via the debug
monitor command "EBOOiQ" or ftMDOS" without 'irat
having depreased the ABORT or RESTART pushbuttona
on the EXORciser's .ront panel. Theae two
puahbuttons will restore EXbug's SWI vector.

2. The normal breakpOints can be uaed while teating
a program, regard leas o. whether MDOS system
.unctions are used or not; however. breakpoints
set by simply placing an SWI instruction into
memory via the memory change 'unction will cauae
a system function to be executed rather than a
breakpoint to occur. Breakpointa muat only be
set or cleared via the debug monitor commanda.

3. Breakpoints can be set on an SWI instruction that
ia an MOOS syatem 'unction calli however, be.ore
continuing .rom that particular breakpoint with
the lI i P" or "iN" commands, the breakpoint ahould
be cleared (this is only true for the newer
versiona o. the M6BOO MPU which do not give
control to the IRG vector when an NMI occurs
while an SWI ia executing).

4. MDOS system functiona cannot be traced or
single-stepped through with the EXbug commands
"iN" or "iT". Since these debug monitor
functions utilize the stack. parts o' MDOS will
be overwritten due to the internal uae of the
stack pointer within the sy~tem function handler.

MDOS aystem function calls or uaer-defined 'unction
calla are programmed by using the SWI instruction mnemonic
and the FCB asaembler directive. I. programs are assembled
with the MDOS equate 'ile (next section), the provided macro
de'initions with the namesSCALL and UCALL can be used to
generate the code for MDOS system functions and user-de'ined
functions. respectively. The macros require an argument to
be passed. This argument is the name or value o. the
function to be executed. The names o' MDOS'unctions are
assigned symbols in the MDOS equate file so that the use of
absolute numbers is not necessary. Use of the SCALL or UCALL
macro makes the program a bit easier to read. especially if
names are used for the macro arguments.

MDOS system functions receive their parameters in the
registers or in tables that ~re pointed to by the registers.

Page 24-~

SYSTEM DESCRIPTION 24.8 -- System Function Calls

Chapters 25 and 27 contain the detailed entry parameters and
exit conditions for all MOOS system functions.

Some system functions may not be able to perform their
expected action. These functions will return an indication
of whether a normal return or an abnormal return is being
made. This condition is always passed back in the processor
status <condition code) register. In addition, a status byte
may be returned in one of the parameter tables or registers.

Some of the more complex system functions involving
input or output can encounter fatal error conditions as well
as non-fatal error conditions. Fatal errors suggest that the
program is hopelessly confused. In these cases, the only
logical action is to display what the problem appears to be
and to re-enter the MOOS command interpreter. Non-fatal
errors can include such things as illegal record formats,
checksum errors, file protection violation, lack of space on
the diskette, etc. Such conditions are noted and returned to
the calling program. In these instances, it is the
responsibility of the calling program to identify the source
of the error and decide what the course of action should be.

24.9 MDOS Equate File

With each MDOS system diskette comes a file, EOU.SA,
known as the MDOS equate file. The MOOS equate file contains
the definitions of all symbols that are required by the
resident MDOS and all of the MOOS commands. Not all of these
symbols will be required by the user; however, the file is
left as is to make it as useful as possible.

The MDOS equate file contains the following
The sequence of the descriptions more or less
sequence of the file from beginning to end.
definitions are found at the beginning of the
file that are useful to the user.

Macro Name Function

def ini t ions.
follows the
Four macro
MDOS equate

SKIP2 To be used as an instruction. The
effect of the instruction is to
execute a branch to location *+3.
The "*" refers to the address of the
branch instruction. The condition
codes are changed as in a CPX
instruction; however, this branch
instruction requires only one byte of
memory.

SKIP! To be used as an
effect of the

instruction. The
instruction is to

Page 24-25

SYSTEM DESCRIPTION

SCALL

UCALL

24. 9' -- MDOS Equate Fi lj

execute a branch to location *+2.
The condition codes are changed as in
a BITA instruction; however, the
branch instruction requires only one
byte of memory.

To be used with a single argument to
execute a software interrupt (SWI) to
the MDOS system function handler.
This macro ensures that the sign bit
of the function byte is set to zero.
The symbols for the system functions
are defined later in the MOOS equate
file.

To be used with a single argument to
execute a software interrupt (SWI) to
the user-defined function handler.
This macro ensures that the sign bit
of the function byte is set to one.
The UCALL macro only makes sense if
the user has configured an SWI
handler.

All other macro definitions in the MOOS equate file are for
internal use.

Following the macro definitions is a list of names that
identifies all of the ~ystem functions accessible via the
SCALL macro (or an SWI instruction followed by a function
byte). These equates are defined using a macro that allows
the labels to sequence themselves. Thus, if one label is
removed from the list, the numbers aSSigned to the labels
will still be consecutive, ascending integers. The first
function is given the value of zero. Subsequent functions
are assigned a number one higher than the previous function.
If the SCALL macro is used in writing programs, it is
suggested that the system symbols for the system functions
also be used.

After the definitions of the system function symbols is
a set of equates for all of the ASCII control characters
including space and rubout characters. These symbols are
followed bg eQ.uates for the special MDOS delimiters used for
suffixes, options, logical unit numbers, device names, and
family indicators.

Next is a list of MDOS sector equates that defines where
the various system tables are located. In addition, the
sector size and the sectors/cylinder, etc., are defined.

Then, offsets into the various system tables are
defined. These eQ.uates are followed bg the definitions of
the fields in the I/O control block (IOCB), which, in turn,

SYSTEM DESCRIPTION 24.9 -- MDOS Equate File

are followed by another series of self-sequencing definitions
for the various I/O function error statuses.

Following the error statuses, the locations of all of
the MDOS internal variables are defined. These include the
locations of the variables needed by the user for accessing
the command buffer, the memory sizes established at
initialization, and the user-defined interrupt vectors.

After the variables is a series of equates that defines
the various bit positions of the IOCB, the offsets into the
controller descriptor block (CDB), bit definitions within the
CDB, and the offsets to the entry points of the device
drivers.

Lastly, the diskette controller variables, entry points,
and error statuses are equated to symbols. These equates are
followed by a partial list of the locations in EXbug required
by MDOS. The EXbug equate list is not complete. Thus, users
requiring other entry points into EXbug must provide them
within their programs.

If programs are being written that use the resident MDOS
functions, it is suggested that the MDOS equate file be
included as a part of the assembly (requires M6800 Macro
Assembler). Symbols within the MDOS equate file may have
their values changed by Motorola in subsequent versions of
MDOS; however. all attempts will be made to ensure a minimal
number of such changes. Therefore, the MDOS equate file
should not be copied from one version of MDOS to another.
Like the resident system and command files that comprise the
operating system. the MDOS equate file is associated with a
specific version and revision of the operating system.

A listing of the MDOS equate file is contained in
Appendix 1.

Page 24-2t

CHAPTER 25

25. INPUTIOUTPUT FUNCTIONS FOR SUPPORTED DEVICES

In the following description of the 110 functions for
supported devices these symbols will be used:

Symbol Meaning

A A accumulator
B B accumulator
X Index register
CC Condition code register
Z Zero flag of condition code register (bit

2)
C Carry flag of condition code register

(bit 0)
CR Carriage return

It is assumed that the reader is familiar with what
system functions are, how they are invoked, what precautions
must be taken when testing programs using system functions,
and how errors are handled by system functions (see section
24.8).

25. 1 Supported Devices

MDOS provides input and output functions to access the
following supported devices:

MDOS Name

eN
CP
CR
DK
LP

Physical Device

Console keyboard andlor display
Console punch
Console reader
Diskette drive
Line printer

The following sections describe the system functions that are
available for accessing these devices.

25.2 Device Dependent 110 Functions

MDOS provides system functions for directly accessing
the console keyboard, display, line printer, and diskette
drives. All of the functions are accessed by executing an
SWI instruction followed by a function byte. The value of

Page 25-01

INPUT/OUTPUT FUNCTIONS 25.2 -- Device Dependent 110 Function!

the function byte indicates the function to be executed and
can be obtained from the MOOS equate file. All system
functions that perform input/output operations require a
stack in the user program area. The size of the stack must
be at least 80 bytes (decimal). Each system function call
pushes seven bytes on the stack. Since function calls may be
nested ~ithin MOOS, a large stack is required. It should be
noted that EXbug does not have sufficient stack space
available; the stack area must be provided by the user
else~here.

The device dependent functions for the console and the
line printer use the device independent functions (section
25.3) via parameter tables held in the MOOS variable section
of memory. Any error conditions detected by these system
functions ~ill cause the calling program to be aborted, a
standard system error message to be displayed, and control to
be given to the MDOS command interpreter. Since MDOS manages
these parameter tables (reserving, opening, etc.), any error
except "Buffer Overflow" during a console input will be a
fatal error.

If, while accessing the console or the line printer, the
errors are to be handled by the calling program, the device
independent I/O functions (section 25.3) must be used
instead.

25.2.1 Console input -- . KEVIN

The .KEVIN function inputs a specified number of
characters from the system console keyboard. All characters
entered (with the following exceptions) are stored into an
input buffer. The function does not return until a
terminating carriage return is supplied from the keyboard.

The following characters are treated as special control
characters ~hen encountered by the . KEVIN function:

Character Value

RUB OUT or DEL $7F

Function

Removes last character
entered into buffer unless
buffer is empty. The removed
character is displayed on the
system console to indicate
that it has been removed from
the buffer. No action occurs
if the buffer is empty.

Page 25-0~

INPUTIOUTPUT FUNCTIONS

CTL-X or CAN $18

CTL-D or EDT $04

CTL-M or CR $OD

25.2 -- Device Dependent lID Functions

Deletes all characters from
the input buffer. A carriage
return/line feed is displayed
on the console to indicate
that a new input line must be
entered.

Displays the current contents
of the input buffer from the
first character to the last
character entered. The input
is not terminated. This
feature offers a means of
displaying a "clean" line
after many characters have
been backed out via the
RUBOUT key.

Terminates the input. The
carriage return is the last
character placed into the
input buffer. A carriage
return/line feed is displayed
on the console.

All characters are normally echoed on the console display
mechanism to indicate that they have been entered into the
input buffer; however, the following characters are echoed
but are not placed into the input buffer:

ENTRY PARAMETERS:

Character Value

Null $00
Line feed $OA
DC 1 $11
DC2 $12
DC3 $13
DC4 $14

B ~ The maximum number of characters to
be input from the keyboard (not
including the terminating CR).
Characters entered after the maximum
has already been input will not be
echoed on the console. nor will they
be placed into the input buffer. If
B = 0, then only a CR will be
accepted from the keyboard. The
function does not return until a CR
is entered.

x = The address of the input buffer that
is to receive the data obtained from

Page 25-03

INPUT/OUTPUT FUNCTIONS

EXIT CONDITIONS:

25.2 -- Device Dependen~ I/O FunctioT

the console keyboard. The buffer
must be large enough to accommodate
one more character than is specified
in B. This extra space must be
provided for the terminating carriage
return ~hich is placed into the
buffer. If X happens to contain the
address of the MDOS command line
buffer. then a special test is made
to ensure that B is less than 80
(decimal>. If B is greater than 79,
it ~ill be automatically changed to
79 to prevent the resident MDOS from
being over~ritten ~ith keyboard data.

A is indeterminate.

B = The number of characters input
including. the terminating CR).
= 0, then only a CR ~as entered.

X is unchanged.

CC is indeterminate.

(not
If B

The input buffer contains
data, including the

the entered
terminating

carriage return.

25.2.2 Check for BREAK key -- .CKBRK

The .CKBRK function examines the system ACIA for a
framing error status, indicating that the BREAK key has been
depressed since the last character ~as input from the console
keyboard. This function also checks to see if the CTL-W key
has been depressed. If the CTL-W is detected, the . CKBRK
function ~ill enter a loop ~aiting for any other character on
the keyboard to be entered before returning to the calling
program.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A, B, and X registers are unchanged.

C = 0, Z = 1 if no framing error (no
BREAK key) is detected. The
remainder of CC is indeterminate.

C = 1, Z = 0 if a framing error (BREAK
key) is detected. The remainder of
CC is indeterminate.

No indication is returned concerning the CTL-W key.

Page 25-(

INPUT/OUTPUT FUNCTIONS 25.2 -- Device Dependent I/O Functions

This feature merely allows the operator at the console to
pause the system.

The framing error cannot be cleared from the ACIA by
this function. The framing error can only be cleared upon
subse~uent reception of another character from the console
keyboard. Thus, if the . CKBRK func t i on is call ed more than
once without the ACIA having received any characters between
successive calls, the framing error status is detected in
each case (even though the BREAK key was depressed only
onc e >. As a resu I t, the BREAK key status is not detec ted if
the BREAK key is depressed during an input re~uest from the
system console, since it is the reception of another
character that clears the framing error status (and each
input re~uest must be terminated with a CR).

25.2.3 Console output -- . DSPLY, . DSPLX, .DSPLZ

The . DSPLY, . DSPLX, and . DSPLZ functions are all used to
display a specified character string on the system console.
The function . DSPLY displays a string that is terminated by a
carriage return character. The functions . DSPLX and .DSPLZ
display strings that are terminated by an EDT character,
facilitating the use of embedded carriage returns within the
string to output multiple-line messages with one function
call. Both . DSPLY and . DSPLX will send a carriage
return/line feed sequence to the console so that subsequent
input or output is performed on a new I ine. The. DSPLZ
function does not send the terminating carriage return/line
feed sequence so that subsequent input or output can be
performed on the same line as the displayed string.

ENTRY PARAMETERS:

EXIT CONDITIONS:

x = The address of a displayable ASCII
string. The string must be
terminated by a carriage return ($OD)
if using . DSPLY. Otherwise, the
string must be terminated by an EDT
($04>. The functions . DSPLX and
. DSPLZ will convert embedded carriage
return characters into carriage
return/line feed sequences
automati ca 11 y.

A and B registers are unchanged.

X = The address of the string's
terminating character.

CC is indeterminate.

Page 25-05

INPUT/OUTPUTFUNCTIONS 25.2 -- Device Dependent 110 Function!

25.2.3.1 Example of console 110

The following example illustrates the use of the .KEVIN
and . DSPLV system functions. The example initially displays
a message on the console to prompt the operator for input.
The entered string is then displayed back on the console, but
all characters have been reversed (the last character input
is the first character output, etc.). If only a carriage
return is entered, MDOS is given control via the system
function .MDENT. The system function .ADBX is used to add
the contents of the B accumulator to the X register. Both of
these functions are described in Chapter 27. A maximum
string length of ten is allowed. The example has been
assembled with the MDOS equate file.

It is assumed in this example that the program is
origined above location $lFFF since it is using the resident
MDOS functions. The program can either be loaded with the
LOAD command Dr invoked from the MDOS command interpreter
directly. At the time the program is loaded, the stack
pointer is automatically initialized to the last-loaded
program location. In this example, this location is used as
the top of the stack.

Page 25-0i

INPUT/OUTPUT FUNCTIONS 25.2 -- Device Dependent I/O Functions

START LDX #PROMPT
SCALL .DSPLY SHOW INPUT PROMPT

* * INPUT THE STRING FROM CONSOLE

* INPUT LDAB

*

LDX
SCALL
TSTB
BNE
SCALL

#10
#IBUFF
· KEYIN

SWAP
· MDENT

MAX 10 CHAR

GET INPUT STRING
CHECK FOR ZERO INPUT

EXIT IF NO INPUl

* INVERT STRING INTO OBUFF

* SWAP

LOOP

*

LDX
SCALL
LDAA
STAA
DEX
STS
LDS
PULA
STAA
DEX
DECB
BNE
LDS
LDX
SCALL
BRA

#OBUFF
· ADBX
:ltCR
X

STKSAV
:ltIBUFF-1

x

LOOP
STKSAV
:ltOBUFF
· DSPLY
INPUT

POINT TO END OF OBUFF
STORE TERMINATOR

SAVE STACK POINTER

GET CHAR
STORE CHAR
BUMP POINTER

LOOP UNTIL ZERO
RESTORE STACK

SHOW INVERTED STRING

* WORKING STORAGE

* IBUFF BSZ 10+1 INPUT BUFFER
OBUFF BSZ 10+1 OUTPUT BUFFER
PROMPT FCC "ENTER STRINGS < 11 CHARACTERS"

FCB CR
STKSAV FDB 0 SAVE AREA

BSZ 80 STACK SET HERE BY LOAD

* END START BEGIN EXECUTION AT THIS

25.2.4 Printer output -- . PRINT, .PRINX

LABEL

The . PRINT and .PRINX functions are both used to print a
specified character string on the line printer. The function
. PRINT prints a string that is terminated by a carriage
return character. The function .PRINX prints a string that
is terminated by an EOT character, facilitating the use of
embedded carriage returns within the string to print
multiple-line messages with one function call. Both
functions will send a carriage return/line feed se~uence to

Page 25-07

INPUT/OUTPUT FUNCTIONS 25.2 -- Device Dependent 1/0 Functiol

the printer at the end of each stl'ing. The . PRINX function
will, in addition, send a carl'iage return/line. feed sequence
for each embedded carriage retUl'n chal'acter.

ENTRY PARAMETERS:

EXIT CONDITIONS:

x = The address o~ a displayable ASCII
string. The string must be
terminated by a carriage return ($OD)
if using . PRINT. Otherwise, the
string must be terminated by an EOT
($04), The. PRINX function will
convert embedded carriage return
characters into carriage retul'n/line
feed sequences automatically.

A and B registers are unchanged.

X = The address of the string's
terminating character.

CC is indeterminate.

25.2.4.1 Example of printer output

The following example illustrates the use of the .PRINT
system function. The example will print strings of eighty
identical characters, beginning with spaces ($20) and
pl'oceeding through the entire displayable ASCII character
set. The system function . STCHR is used to fi 11 a buffer
with the character contained in the A accumulator. The
system function .I'1DENT is used to return control to MOOS.
Both of these functions are described in Chapter 27. The
example was assembled with the MDOS equate file.

It is assumed in this example that the program is
origined above location $lFFF since it is using the resident
MDOS fun~tions. The program can either be loaded with the
LOAD command or invoked from the MDOS command interpreter
directly. At the time the program is loaded, the stack
pointer is automatically initialized to the last-loaded
program location. In this example, this location is used as
the top of the stack.

Page 25-C

INPUT/OUTPUT FUNCTIONS

START
LOOP

*

LDAA
LDX
LDAB
SCALL
SCALL
INCA
CMPA
BNE
SCALL

,*SPACE
,*OBUFF
'*80
· STCHR
· PRINT

,*RUBOUT
LOOP
· MDENT

* WORKING STORAGE

* OBUFF BSZ
FCB
BSZ

* END

80
CR
80

START

25.2 -- Device Dependent I/O Functions

INITIAL CHAR

FILL BUFFER
PRINT THE STRING
BUMP CHARACTER
END OF DISPLAYABLE SE~UENCE

EXIT TO MDOS

OUTPUT BUFFER

STACK SET HERE BY LOAD

BEGIN EXECUTION AT THIS LABEL

25.2.5 Physical sector input -- . DREAD, .EREAD

The . DREAD and .EREAD functions are both used to read a
single physical sector from the diskette into a specified
buffer. For multiple physical sector input the functions in
section 25.2.7 should be used. The . DREAD function will only
return to the calling program if no diskette controller
errors are detected during the read attempt. The .EREAD
function, on the other hand. will return to the calling
program whether an error occurred or not. The .EREAD
function will return the error status that was detected by
the diskette controller.

In either case, if a diskette error occurred that was
retryable (CRC, deleted data mark, data address mark. or
address mark CRC errors), the following steps were taken in
an attempt to recover from the error:

1.

2.

The sector was reread five
repositioning the read head.

The read head was stepped
cylinder zero) a maximum of

times

outward
five

repositioned over the cylinder in
sector to be read resides, and another
attempts were performed.

without

<towards
cylinders.
which the
five read

3. The read head was stepped inward (towards
cylinder 76) a maximum of five cylinders.
repositioned over the cylinder in which the
sector to be read resides, and another five read
attempts were performed.

If an error occurs during the . DREAD function. the

Page 25-09

INPUTIOUTPUT FUNCTIONS 25.2 -- Device Dependent 1/0 Function!

standard "PROM 1/0" error message will be displalJed giving
the status of the error and the sector number that was being
accessed. Control will then be given to the MDOS command
interpreter. If an error occurs during the .EREAD function,
the EXIT CONDITIONS described below appllJ (for C = 1).

If either of these two functions is to access a diskette
in a drive which as not had the read head restored (via
functions .DIRSM, . OPEN, . LOAD or . CHANG, or via an MDOS
command), then the diskette controller firmware must be
invoked to restore t.he head. The RESTOR entrlJ point is
described in Appendix D. If the head is not restored
properly, it is possible to receive timeout errors.

The diskette controller variables below location $0020
will be changed blJ these functions.

ENTRY PARAMETERS:

EXIT CONDITIONS:

B = The logical unit number. Bits 2-7
are ignored.

x = The address of
parameter packet.
following format:

a five-blJte 1/0
The packet has the

o Return status

1 PhlJsical sector
number

2 to be read

3 Address of 128
blJte

4 sector buffer

C = 0 if no errors occurred. The
remainder of the CC is indeterminate.

The A register is indeterminate.

The X register is unchanged.

The B register contains the return
status returned in the packet ($30).

The first byte of the parameter
pa.c ket (Return Status) is set to $30
(ASCII zero). The remainder of the
parameter packet is unchanged.

The sector buffer
blJtes read from

contains the 128
the specified

Page 25-1~

INPUTIOUTPUT FUNCTIONS 25.2 -- Device Dependent 110 Functions

physical sector.

C = 1 if an error occurred <.EREAD only).
The remainder of the CC is
i ndetermi nate.

The A register is indeterminate.

The X register is unchanged.

The B register contains the return
status returned in the first byte of
the parameter packet.

The first byte of the parameter
packet contains the diskette
controller error ($31-$39). Section
28.1 has a complete description of
the diskette controller errors.

The contents of the 128 byte sector
buffer are indeterminate.

25.2.6 Physical sector output -- .DWRIT, .EWRIT

The . DWRIT and . EWRIT functions are both used to write a
single physical sector to the diskette from a specified
buffer. For multiple physical sector output the functions
described in section 25.2.8 should be used. The. DWRIT
function will only return to the calling program if no
diskette controller errors are detected during the write
attempt. The . EWRIT function, on the other hand, will return
to the calling program whether an error occurred or not. The
.EWRIT function will return the error status that was
detected by the diskette controller.

If an error oc c urred. the same type of recovery
procedure described in section 25.2.5 (. DREAD. . EREAD) was
attempted. In addition, the same precautions described for
those functions regarding the restoring of the read head
appl.., to the . DWRIT

ENTRY PARAMETERS:

EXIT CONDITIONS:

and . EWRIT functions .

Same as for . DREAD and .EREADi however,
the sector buffer must contain the
128 b..,tes that are to be written to
the diskette.

Same as for . DREAD and .EREADi however,
the the contents of the sector buffer
are unchanged after returning to the
ca 11 i ng program.

Page 25-11

INPUTIOUTPUT FUNCTIONS 25.2 -- Device Dependent 110 Functiol

25.2.7 Multiple sector input -- .MREAD, .MERED

The .MREAD an4 .MERED functions are both used to read a
multiple number of physically contiguous sectors from the
diskette into a specified buffer. The .MREAD function will
only return to the calling program if no diskette controller
errors are detected during the read attempt. The .MERED
function, on the other hand, will return to the calling
program IIIhether an error occurred Dr not. The. MERED
function lIIill return the error status that lIIas detected bV
the diskette controller.

If an error occurred, the same type of recovery
procedure described in section 25.2.5 <.DREAD, .EREAD) was
attempted. In addition, the same precautions regarding the
restoring of the read head described in that section apply to
the .MREAD and .MERED functions.

ENTRY PARAMETERS:

EXIT CONDITIONS:

B = The logical unit number. Bits 2-7
are ignored.

x = The address of a seven-byte 1/0
parameter pac keto The parameter
packet has the following format:

o Return status

1 I Starting physical I
sector number

2 to be read

3 Address of
multiple

4 sector buffer

5 Number of
sectors

6 to be read

The sector buffer must be an integral
number of sectors in size, and must
be large enough to accommodate the
number of sectors specified in bytes
5 and 6 of the parameter packet.

Same as for . DREAD and .EREADi however,
the sector buffer contains data from
the number of sectors specified in
bytes 5 and 6 of the parameter packet
(only if no error occurred).

Page 25-:

INPUT/OUTPUT FUNCTIONS 25.2 -- Device Dependent I/O Functions

25.2.8 Multiple sector output -- . MWRIT, .MEWRT

The . MWRIT and .MEWRT functions are both used to write a
multiple number of physically contiguous sectors from a
specified buffer to the diskette. The . MWRIT function will
only return to the calling program if no diskette controller
errors are detected during the write attempt. The .MEWRT
function, on the other hand, wi 11 return to the call ing
program whether an error occurred or not. The. MEWRT
function will return the error status that was detected by
the diskette controller.

If an error occurred, the same type of recovery
procedure described in section 25.2.5 (.DREAD •. EREAD) was
attempted. In addition. the same precautions regarding the
restoring of the read head described in that section apply to
the . MWRIT and .MEWRT functions.

ENTRY PARAMETERS:

EXIT CONDITIONS:

Same as for .MREAD and .MEREDi however,
the sector buffer must contain the
bytes that are to be written to the
diskette.

Same as for .MREAD and .MEREDi however.
the contents of the sector buffer are
unchanged after returning to the
calling program.

25.2.9 Diskette controller entry points

The diskette controller has various entry points that
allow the diskette to be accessed on a physical sector basis;
however, since these entry points are independent of MDOS.
they are d escr i bed ina separate sec t i on (Append i x DL That
appendix also describes some entry points for accessing the
line printer on an MOOS-independent basis.

25.3 Device Independent I/O Functions

The following sections describe functions which
facilitate writing software for input/output operations
independent of the physical hardware device. In addition.
these functions are used to access files on the diskette
without having to perform phYSical sector 1/0.

Through the use of a single parameter table. the I/O
Control Block or 10CB. a common set of functions can be
accessed independently of the I/O device. Thus, the same
function would be called for writing a record to a diskette
file or for writing a record to a line printer. The only
difference is in the initial parameterization of the IOCB.

Page 25-13

INPUTIOUTPUT FUNCTIONS 25.3 -- Device Indepen~ent 110 Function!

The normal sequence for calling the 110 functions,
regardless of the device being used, is:

· RESRV
· OPEN
· GETRC
· PUTRC
· CLOSE
· RELES

Reserve a device
Open a file
Read a record
Write a record
Close a file
Release a device

The readinglwriting of records, of course,
necessarily be used for the same device. Once the
open, the record 110 functions can be called as many
reQ.uired.

may not
file is
times as

Use of the device independent 110 functions
the diskette controller variables below location
changed, regardless of whether or not a diskette
being used for a given 110 process.

will cause
$0020 to be

device is

In order to fully describe each device independent 110
function. the structure of the IoCB must first be described.
In the description of the errors that can be returned by each
function. the names of the system symbols from the MDOS
equate fi Ie are used. These are noted in the description of
the status byte of the IOCB, section 25.3.1.1. A summary of
all possible input parameters that are reQ.uired by the twelve
different modes in which an IOCB can be used is contained in
Appendix K.

25.3.1 110 Control Block -- IOCB

The device independent 110 functions are parameterized
through the IoCB. The 110 functions, in turn, interface to a
device driver through anothe1' table, the Cont1'oller
Descriptor Block or COB (see section 26.2). It is only the
device d1'iver which interfaces di1'ectly to the device.

The IOCB is a table of flags. buffer pointe1's. and other
information which is maintained by the calling p1'og1'am fo1'
the duration of the 110 accesses that are to be pe1'formed.
Some of the ent1'ies in the IoCB must be initialized by the
p1'ogram before calling an 110 function. Other entries of the
IoCB a1'e initialized and changed by the 110 functions
themselves. The entries of the IOCB must not be changed
between 1/0 accesses unless specifically indicated in the
ENTRY PARAMETERS section of each 110 function's description.
The IOCB has the folloUling format:

Page 25-1~

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

Byte
7 6 5 4 3 2 1 o <-- Bit position

v ---------------------------------
00 Error status IOCSTA

01

02

03

04

05

06

07

08

09

OA

OB

OC

OD

10 : S : 0 : T : F :

Data buffer
pointer

Data buffer
start address

Data buffer
end address

Generic device word
or

COB address

: R : L.UN

File name
or

Maximum LSN referenced

File name continued

M 10CDTT - Data transfer
type

IOCDBP

10CDBS

10CDBE

IOCGDW

10CLUN -- Logical unit
number

10CNAM / IOCMLS

or IOCSDW
OE :Current segment descriptor word:

OF

10

11

12

13

File name continued
or

Starting LSN of SDW

File name continued
or

Next logical sector number

Suffix
or

14 I Logical sector number of EOF

15

16

Physical sector number
of file's RIB

17 : W : DIS: C : N FMT

18 <reserved; =0)

IOCSLS

IOCLSN

IOCSUF / IOCEOF

IOCRIB

10CFDF - File descrip­
tor flags

Page 25-15

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functio

7 b 5 4 3 2 1

19
(reserved; =0)

lA

IB PSN EN

lC (reserved; =0)

ID Initial new file size

IE

IF

20

21

22

23

24

or
Sector buffer pointer

Sector buffer
start address

Sector buffer
end address

Sector buffeT'
inteT'nal pOinter

o

IOCDEN - Director,
entr, number

IOCSBP

IOCSBS

IOCSBE

IoeSBI

Page 25-

INPUTIOUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions

IOCB FLAG DESCRIPTION SUMMARY

Field Name Bit

IOCDTT 10 6-7

IOCLUN

S 5

o 4

T 3

F 2

M 0-1

7
R 6

LUN 0-5

IOCFDF W F

D E

S D

C c

N B

Content

1/0 transfer flag
Bit 6: 1 =)- Outp ut transfer
Bi t 7: 1 =)- Input transfer

Sector/record flag
o =)- Record I/O
1 => Sector 1/0

Open/closed flag
o => File open
1 => File closed

Truncate flag
o => Ignore truncate action
1 => Truncate file upon closing

Non-file format flag
o => File format mode
1 => Non-file format mode

Mode flag
00 =)- Update mode, existing file
01 => Input mode, existing file
10 => Output mode, new file
11 => Update mode, any file

Not used (=0)
Reserved flag

o => IOCB released
1 => IOCB reserved

Logical unit number ($30-$39)

Write protection bit
o =)- No write protection
1 => Write protected

Delete protection bit
o => No delete protection
1 =)- Delete protected

System file bit
o => Non-system file
1 => System file

Contiguous allocation bit
o => Segmented allocation
1 => Contiguous allocation

Non-compressed space bit
o => Spaces compressed
1 => Spaces non-compressed

Page 25--17

INPUTIOUTPUT ·FUNCTIONS 25.3 -- Device Independent 1/0 Function~

IOCB FLAG DESCRIPTION SUMMARY continued

Field Name Bit

10CFDF FMT B-A

0-7

IOCOEN PSN B-F
EN B-A

0-7

25.3.1.1 IOCSTA

Content

File format
000 => User-defined format
001 => Use device's default format for

binary records
010 => Memory-image format
011 => Binary record format
100 => Undefined format
101 => ASCII record format
110 => Undefined format
111 => ASCII-converted-binary record

format
Not used (=0)

Physical sector number ($03-16)
Entry number within sector (0-7)
Not used (=0)

Error status

The IOCSTA byte contains the return status from an 110
function. A zero in this byte indicates that an 110 function
completed normally without any errors. A non-zero value
indicates that an 110 function encountered some sort of an
error. The following table contains all of the currently
defined values that can be returned in the IOCSTA. Along
with each value the system symbol e~uated to the value (MOOS
e~uate file), and the standard error message that would be
displayed if the error message function were invoked to show
a message are given. The two-digit reference number
displayed along with the error message should be used to
locate the error message's description in Chapter 29. It
should be noted that in order to decode the IOCSTA byte into
the proper error message, the error message function •. MOERR,
must be called with the B accumulator e~ual to zero. Section
27.4 describes the error message handler.

Page 25-U

INPUTIOUTPUT FUNCTIONS

IOCSTA
Value

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11

12
13
14
15

16
17

18
19

System
Symbol

I$NOER
I$NODV
I$RESV
I$NORV
I$NRDY
I$IVDV
I$DUPE
I$NONM
I$CLOS
I$EOF
I$FTYP
I$DTYP
I$EOM
I$BUFO
I$CKSM
I$WRIT
I$DELT
I$RANG

I$FSPC
I$DSPC
I$SSPC
I$IDEN

I$RIB
I$DEAL

I$RECL
I$SECB

25.3 -- Device Independent 1/0 Functions

Standard Error Message Displayed
by .MDERR (B=O, X=IOCB address)

Normal return, no error
** 28 DEVICE NAME NOT FOUND
** 18 DEVICE ALREADY RESERVED
** 19 DEVICE NOT RESERVED
** 11 DEVICE NOT READY
** 31 INVALID DEVICE
** 06 DUPLICATE FILE NAME
** 04 FILE NAME NOT FOUND
** 20 INVALID OPENICLOSED FLAG
** 21 END OF FILE
** 14 INVALID FILE TYPE
** 17 INVALID DATA TRANSFER TYPE
** 37 END OF MEDIA
** 22 BUFFER OVERFLOW
** 23 CHECKSUM ERROR
** 26 FILE IS WRITE PROTECTED
** 10 FILE IS DELETE PROTECTED
** 24 LOGICAL SECTOR NUMBER OUT OF

RANGE
** 41 INSUFFICIENT DISK SPACE
** 40 DIRECTORY SPACE FULL
** 42 SEGMENT DESCRIPTOR SPACE FULL
** 43 INVALID DIRECTORY ENTRY NO. AT

nnnn
** 32 INVALID RIB
** 44 CANNOT DEALLOCATE ALL SPACE,

DIRECTORY ENTRY EXISTS AT
nnnn

** 45 RECORD LENGTH TOO LARGE
** 52 SECTOR BUFFER SIZE ERROR

25.3.1.2 IOCDTT -- Data trans'er type

The IOCDTT byte contains the basic in'ormation about an
1/0 access: whether an input or an output trans'er is to
take place. whether sector or record 1/0 is to be per'ormed,
whether the 'ile is currently open or closed, whether a 'ile
(diskette only) should be truncated when it is closed, and
whether the 'ile or non-'ile 'ormat mode is to be used.

Page 25-19

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functiol

The format of the IOCDTT byte is shown below:

7 6 5 4 3 2 1 o

10 fSfOITfFf

.

Mode flag
Non-file format flag
Truncate flag
Open/closed flag
Sector/record flag
I/O transfer flag

Regardless of the type of device being accessed, the
non-file format flag (F) and the mode flag (M) are to be
initialized by the user. If the device is a diskette drive,
the user may also change the sector/record flag (S) or the
truncate flag (T) between I/O function calls. If the flags
are to be changed after the IOCDTT byte has been initialized,
care must be taken so that none of the system supplied flags
are destroyed. Flags must be ttor-ed tt into the IOCDTT to be
set, and "and-edit out of the IOCDTT to be cleared, once the
IOCB has been reserved.

The properties controlled by the various bits of the
IOCDTT are explained below.

10 (Bits 6-7) -- 1/0 transfer flag

These two bits are controlled exclusively by the
I/O functions themselves. They should not be set or
changed by the user in any case. If bit 6 is set to
one, the device driver recognizes an output transfer.
If bit 7 is set to one, the device driver recognizes
an input transfer. The device driver will not be
able to input or output a character if both of these
bits are zero or one.

Page 25-~

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions

S (Bit 5) -- Sector/record flag

This bit controls whether sector or record
processing is performed during an I/O function. For
non-diskette devices. this bit must always be zero.
For diskette devices. this bit can be in either
state. A one implies that logical sector I/O will be
performed. A zero implies that record I/O will be
performed; however, care must be taken that the
corresponding I/O function is called for the proper
state of the bit. That is, the record I/O functions
<. GETRC and. PUTRC) cannot be called if "5" is set to
one. Likewise. the logical sector 110 functions
(. GETLS and. PUTLS) cannot be called if "5" is set to
zero.

o (Bit 4) -- Open/closed flag

This bit is supplied by the system I/O functions
if they are properly called in their correct
sequence. The "0" bit must not be changed once I/O
transfers have been made. A one indicates that the
file (or device) is closed. A zero, on the other
hand, indicates that the file (or device) is open.

T (Bit 3) -- Truncate flag

The truncate flag is only applicable to I/O on a
diskette device. Normally, the user will not have to
set or change this bit; however, certain cases will
arise where changing of the truncate flag by the user
may be necessary (see .CLOSE function, section
25.3.6). The truncate flag is used as an indication
that new space was allocated to a diskette file. If
it is set to one, any unused parts of the newly
allocated space (space beyond the maximum logical
sector number referenced in IOCMLS) will be
deallocated (returned to the available diskette
space) when the file is closed. If the truncate flag
is zero. no truncation will occur upon closing.

A special case exists if IOCMLS contains the
value $FFFF when the truncate flag is set to one. In
addition to having all of the file's space
deallocated, the directory entry belonging to the
file is removed from the directory. The file is, in
effec t, de I eted.

Page 25-21

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independ.ent I/O Functionii

F (Bit 2) -- Non-file format flag

If "FIt is set to one. the non-file format mode
is indicated. In this mode. all I/O must be to a
non-d i ske.tte devi ceo No FDR (Fi Ie Descriptor Rec ord)
processing is performed. The only valid file format
that can be support.ed in this mode is ASCII (FMT = 5
of 10CFDFL

If the ItF" flag is set to zero, then the file
format mode is indicated. In this mode, 110 can be
either to a diskette or to a non~diskette device. If
a non-diskette device is being used. FDR processing
will be performed. That is, an FDR will be written
to the device if opened for output, or an FDR will be
searched for on the device if opened for input. The
file format mode (F = 0) must be used for accessing
the diskette.

1'1 (Bits 0-1) -- Mode flag

The mode flag can take on ~ne of four different
values:

00 => Open an existing file (diskette only) for
either input or output.

01 => Open an existing diskette file or open a
device for input only.

10 => Create a new diskette file or open a device
for output only.

11 => Open an existing file or create a new file
(diskette only) for either input or output.

The update modes (1'1 = 00 or 11) can only be used
when accessing diskette files. The way in which the
four different modes are u~ed is described in the
. OPEN function, section 25.3.3.

25.3.1.3 IOCDBP -- Data buffer pointer

This two-byte field of the 10CB is used as a working
storage area by the record I/O functions. This entry should
not be changed by the calling program once 1/0 functions have
been called.

25.3.1.4 10CDBS -- Data buffer start

This two-byte
the calling program

field of the 10CB must be initialized by
before any record 1/0 functions are

Page 25-2;;;

INPUTIOUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions

called. 10CDBS must be configured to contain the address of
the first byte of a buffer into which a record is to be read.
or from which a record is to be written. None of the 1/0
functions will alter IOCDBS. The data buffer may be used for
FDR processing by the . OPEN function (section 25.3.3) when
dealing with non-diskette devices.

25.3.1.5 10CDBE -- Data buffer end

This two-byte field of the IOCB must be initialized by
the calling program before any record 110 functions are
called. IOCDBE must be configured to contain the address of
the last byte of a buffer into which a record is to be read,
or from which a record is to be written. During record
input. IOCDBS and IOCDBE define the maximum size record that
the buffer can accommodate. During record output, IOCDBS and
IOCDBE describe the first and last byte of the record to be
written. None of the 1/0 functions will alter IOCDBE. The
data buffer may be used for FDR processing by the . OPEN
function (section 25.3.3) when dealing with non-diskette
devices.

25.3.1.6 IOCGDW -- Generic device word

This two-byte field of the IOCB serves a dual function.
Before any 1/0 functions can be invoked, IOCGDW must contain
the MDOS device name that is to be accessed (see section
25.1>. The device name consists of two ASCII characters.
Once the .RESRV function (section 25.3.2> has been called,
IOCGDW will contain the address of the controller descriptor
block (CDB, section 26.2.1) associated with that device.
After the CDB address has been put into IOCGDW, the contents
of this field must not be changed by the calling program.
Section 26.2 contains a description of how to configure the
IOCGDW field for non-supported devices.

25.3.1.7 IOCLUN -- Logical unit number

The IOCLUN byte contains two pieces of information.
Initially, the calling program must store the logical unit
number of the device to be accessed in this byte. The
logical unit number identifies a specific device within a
generic device family (e, g., drive zero of the family DK).
If there is only one device in a generic device family, a
logical unit number of zero must be placed in IOCLUN.
Logical unit numbers should be ASCII numbers in the range
$30-$39 (0-9), Bit "R" of IOCLUN indicates whether or not
the IOCB has been reserved (.RESRV function>. Initially,
when the logical unit number is stored in IOCLUN, bit uR"
will be set to zero. After the . RESRV function has been
successfully invoked. bit "Rtf will be set to one, indicating

Page 25-23

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functiol

that the IOCB has been reserved. The IOCLUN field must not
be changed by the calling program after the .RESRV function
has been called.

25.3.1.8 IOCNAM -- File name

These eight bytes of the IOCB serve a dual purpose. If
the non-file format mode is being used (F = 1 of IOCDTT),
IOCNAM is not used at ally however, in the file format mode,
IOCNAM must contain the name of the file to be accessed. The
file name must be in the valid MDOS file name format. Any
unused parts of the name must be spaces ($20). The file name
should be placed into IOCNAM before the .OPEN function is
invoked. After a file has been opened, the eight bytes will
be replaced with the four two-byte fields IOCMLS. IOCSDW,
IOCSLS, and IOCLSN (only if the device is diskette).

When dealing with non-diskette devices in the file
format mode, the IOCNAM entry can be configured so that the
first byte is a binary zero. In this case, the. OPEN
function will search for the first FDR on the non-diskette
device, and place the found file name (and suffix) into
IOCNAM (and IOCSUF).

25.3.1.9 IOCSUF -- Suffix

This two-byte field of the IOCB serves a dual purpose.
If the non-file format mode is being used (F = 1 of IOCDTT).
IOCSUF is not used at alIi however, in the file format mode.
IOCSUF must contain the suffix of the file to be accessed.
The suffix must be in the valid MDOS suffix format. Any
unused parts of the suffix must be spaces ($20). The suffix
should be placed into IOCSUF before the .OPEN function is
invoked (at the same time that the file name is placed into
IOCNAM)' After a file has been opened. IOCSUF will be
replaced with the two-byte field IOCEOF (only if the device
is diskette). If the device being accessed is the system
console. the first character of the IOCSUF field may be
changed by the user to a displayable ASCII character
($20-$5F). Then, whenever an input re~uest is made on that
device. the character will be displayed as an input prompt.

When dealing with non-dis~ette devices in the file
format mode. the IOCNAM entry can be configured so that the
first byte is a binary zero. In this case. the .OPEN
function will search for the first FDR on the non-diskette
device, and place the found file name (and suffix) into
IOCNAM (and IOCSUF).

Page 25-:

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions

25.3. 1. 10 IOCMLS -'- Max imum LSN referenced

This two-byte field of the IOCB overlays the first two
bytes of the IOCNAM after the . OPEN function has been called
<diskette liD only). It is a system-maintained field that
contains the maximum logical sector number ever referenced by
any of the liD functions. IOCMLS and the truncate flag (T of
IOCDTT) are used in determining the amount of newly allocated
diskette space that is to be deallocated from a file when it
is closed. Space will only be deallocated if the truncate
flag is set to a one. Since MDOS automatically sets the
truncate flag to a one if new diskette space is allocated to
a file. any unused space will always be returned to the
available space pool.

Normally, the user never changes the IOCMLS or the
truncate flag in the IOCDTT since the truncate flag is
automatically set whenever additional space allocation is
performed or whenever a new file is created. When accessing
an eXisting file using both input and output (M = 00 or 11 of
IOCDTT). however, the truncate flag may have to be set to one
by the user if the file is to be shortened or if the
end-of-file pointer in the RIB is to be updated. If an
extant file does not grow in size. the truncate flag will be
zero.

In addition, when files are to be deleted (upon a
subse~uent . CLOSE function call), the IOCMLS must be set to a
value of $FFFF and the truncate flag must be set to one.

25.3.1.11 IOCSDW -- Current SDW

The IOCSDW field overlays the second two bytes of IOCNAM
after the . OPEN function has been called (diskette 1/0 only).
This field contains the segment descriptor word which
identifies the current file segment that can be accessed. If
another segment of the file is to be accessed. the disk
driver will automatically reread the file's RIB and extract
the appropriate SDW into IOCSDW. The contents of IOCSDW
should never be changed by the calling program.

25.3.1.12 IOCSLS -- Starting LSN of SDW

The IOCSLS field overlays the third two bytes of IOCNAM
after the . OPEN function has been called (diskette 1/0 only).
This field contains the starting logical sector number of the
current segment descriptor word. The contents of IOCSLS
should never be changed by the calling program.

Page 25-25

INPUTIOUTPUT FUNCTIONS 25. 3 -- Device Independent 1/0 Functions

25.3.1. 13 IOCLSN -- Next LSN

The IOCLSN field overlays the fourth two bytes of IOCNAM
after the. OPEN function has been called (diskette 110 only>.
This field is never changed by the calling program if record
110 (S = 0 of IOCDTT) is being used. If logical sector 1/0
is being used (S = 1 of IOCDTT), then IOCLSN can be changed
by the calling program to specify which logical sectors are
to be read from or written to the file. This feature allows
the calling program to randomly access the file (by logical
sector number) without having to know physically where the
file resides un the diskette. After an 110 access has been
completed, IOCLSN will contain the logical sector number of
the next sector on the diskette to be accessed. When using a
multiple sector buffer. IOCLSN may have been incremented by
more than one, depending on the number of sectors processed.

25.3.1.14 IOCEOF -- LSN of end-of-file

The IOCEOF field overlays IOCSUF after the .OPEN
function has been called (diskette 110 only). IOCEOF is a
system-maintained parameter that represents the logical
sector number of the logical end-of-file. This value must
not be changed by the calling program once the . OPEN function
has been invoked.

25.3.1.15 IOCRIB -- PSN of RIB

This two-byte field of the IOCB is initialized with the
physical sector number of the file's RIB after the .OPEN
function has been called <diskette 110 only). The RIB is
used to access the file via its SDWs to allocate additional
space. to deallocate unused space, and to monitor the LSN of
the file's logical end-of-file. The IOCRIB entry should
never be changed by the calling program.

25.3.1.16 IOCFDF File descriptor flags

This two-byte field contains the flags that describe the
inherent and the changeab Ie attributes of a fi Ie. The format
of the IOCFDF entry is shown below:

Page 25-2~

INPUTIOUTPUT FUNCTIONS 25.3 -- Device Independent 110 Functions

F E D c B A 9 8 7 6 5 4 3 2 1 o

I W : 0 I SIC : N I FMT

<-------- Not Used (=0) ------->

File format bits
Non-compressed space bit
Contiguous allocation bit
System file bit
Delete protection bit
Write protection bit

The functions of the various bits are described below:

W (Bit F) -- Write protection bit

The "W" bit only applies to diskette files. If
this bit is set to one, the file can only be accessed
with input requests. Any 110 functions that attempt
to write to a file with the "W" bit set will return
an error. In addition, the file cannot be deleted.
If the "W" bit is set to zero, the file can be read
from. written to, or deleted (the ltD" bit must be
zero also). The "W" bit is one of the changeable
attributes of a file.

D (Bit E) -- Delete protection bit

The "D" bit only applies to diskette files. If
this bit is set to one, the file cannot be deleted.
If the "0" bit is set to zero, the file can be
deleted (the "W" bit must be zero also>. The "D" bit
is one of the changeable attributes of a file.

S (Bit D) -- System file bit

The "S" bit only applies to diskette files. If
this bit is set to one, the file is considered to be
a system file. System files are treated specially by
the DIR, DEL. and DOSGEN commands. If the ItS" bit is
set to zero. the file is not a system file. The itS"
bit is one of the changeable attributes of a file.

Page 25·-27

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 FunctioT

C (Bit C) -- Contiguous allocation bit

The "C" bit only applies to diskette files. If
this bit is set to one, only contiguous diskette
space can be allocated to the file. All files ~hose
contents are to be loaded into memory directly from
the diskette must be allocated contiguous space. If
the "C" bit is set to zero, the file may be allocated
segmented diskette space. The "C" bit is one of the
inherent attributes of a file. It is specified at
the time the file is created and cannot be changed
thereafter.

N (Bit B) -- Non-compressed space bit

The "N" bit only applies to diskette files. If
this bit is set to one, ASCII records ~ritten to the
file ~ill not have spaces compressed. If the I'N" bit
is set to zero, ASCII records ~ritten to the file
~ill have spaces compressed into a byte of the
following format:

7 6 4 3 2 1 o

Number of compressed spaces
Compression flag (=1)

All MDOS commands create ASCII files with space
compression (N = 0) in order to minimize the amount
of diskette space consumed. The "Nit bit is one of
the inherent attributes of a file. It is specified
at the time the file is created and cannot be changed
thereafter. The space compression attribute is only
meaningful if the file format is ASCII record (FMT =
5). For other formats. the space compression
attribute is ignored.

FMT (Bits a-A) -- File format bits

The file format bits describe the internal data
structure of the file. The file format is one of the
inherent attributes of a file. FMT is specified at
the time the file is created and cannot be changed
thereafter. The follo~ing table lists the values of
FMT and their meanings:

Page 25-.

INPUTIOUTPUT FUNCTIONS 25.3 -- Device Independent 110 Functions

FMT File format

o User-defined format.
valid for diskette

This
files.

format is only
The record 110

functions cannot be used to access files with
this format. Only logical sector 110 can be
performed with this format. The calling
program is responsible for extracting data
from the sectors according to his data
structure.

1 Use device's default format for binary
records. Each device has associated with its
CDB (section 26.2) a flag that indicates what
the default binary record format is (either
FMT = 3 or FMT = 7). Since some devices can
only process seven-bit data while other
devices can process both seven-bit and
eight-bit data, this format (FMT = 1) allows
a program to process binary records without
knowing the specific format supported by a
particular device. The program will always
be dealing with eight-bit data in memory.
The FMT field is automatically changed to
either a "3" or "7" depending on the device
by the . OPEN function.

2 Memory-image format. This format applies
only to diskette files. Any file whose
contents are to be loaded into memory
directly from the diskette must be in the
memory-image format. Due to the nature of
the diskette controller, memory-image format
files must be allocated contiguous diskette
space (C = 1 of IOCFDF>' MemorY'-image f i I es
have no record information within the data
sectors. All information concerning the
starting load address, number of bytes to
load. etc .• is contained in the file's RIB.
The load information must be written into the
RIB by the program that is creating the
memory-image file; the information is not
automatically supplied by any system
function. The load information must meet the
requirements defined in section 24.2. The
record 110 functions cannot be used to access
files with this format. Only logical sector
110 can be performed with this format.

Page 25-29

INPUTIOUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions

3 Binary record format. This format applies to
both diskette and non-diskette files;
however, non-diskette files can only be
accessed in the file ~ormat mode (F = 0 of
IOCDTT) using this format.

4 This format is undefined and should not be
used.

5 ASCII record format. This format applies to
both diskette and non-diskette files.
Non-diskette files of this format can be
accessed in either the file format or the
non-file format modes. ASCII record files
can be space compressed, but only if they
reside on diskette.

6 This format is undefined and should not be
used.

7 ASCII-converted-binary record format. This
format usually applies to non-diskette files.
This format is intended to be used for
writing binary record files from the diskette
to a non-diskette device that can only accept
seven-bit data bytes. Otherwise, this format
is identical to FMT = 3.

NOT USED (Bits 0-7) -- Reserved area

The least significant byte of the IOCFDF field
is reserved for future expansion. This byte must be
zero for all files.

25.3.1.17 IOCDEN -- Directory entry number

Associated with each directory entry is a number, the
directory entry number, which is a function of the physical
location of the entry within the directory_ The directory
entry number is not found anywhere in the directory, rather
it is a calculated quantity_ The two-byte IOCDEN field is
supplied by the system after the .OPEN function (section
25.3.3) has been called. It only applies to diskette files_
The contents of IOCDEN should never be changed by the calling
program. The IOCDEN field has the following format:

Page 25-3C

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

F E D C B A 9 8 7 6 5 4 3 2 1 o

PSN EN

<--------- Not Used (=0) ------->

Position within sector (0-7)

Physical sector number ($3-$16)

2:5.3. 1. 18 IOCSBP -- Sector buffer pOinter

The IOCSBP field only applies to diskette I/O. This
two-byte field of the IOCB serves a dual purpose. If an
existing file is being opened. the initial value of IOCSBP is
ignored. If a file is being created, this field must contain
the initial number of sectors that are to be allocated to the
file. If the value of zero is specified. MDOS will default
the initial file size to a full segment descriptor (32
clusters) and no error will occur during the file's initial
space allocation if fewer than 32 clusters are available. If
a non-zero (non-default) initial size is specified, however,
an error will occur if that initial size cannot be allocated.
The .ALLOe system function description (section 27.4)
contains a more detailed explanation of the allocation
mechanism.

After a file has been opened, the IOCSBP contains a
pointer into the sector buffer that is used by the record I/O
functions. Therefore. the contents of IOeSBP must not be
changed by the calling program once a file is open when using
the record I/O functions. If the sector I/O functions are
used. then IoeSBP can be altered by the calling program in
any way after a file is open.

25.3.1.19 IOeSBS -- Sector buffer start

This two-byte field of the lOeB only applies to diskette
I/O. It must be initialized by the calling program before
any of the I/O functions are invoked. IOeSBS must be
configured to contain the address of the first byte of a
buffer into which one or more 128-byte sectors can be read.
This sector buffer will be used for directory searches as
well as for data transfers. IOeSBS will not be altered by
any of the I/O functions.

25.3.1.20 IOCSBE -- Sector buffer end

This two-byte field of the lOeB only applies to diskette
I/O. It must be initialized by the calling program before

Page 25-31

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 110 Functiol

any of the 110 functions are invoked. IOCSSE must be
configured to contain the address of the last byte of a
sector buffer that is exactly large enough to accommodate an
integral number of 128-byte sectors. An error will occur if
the size of the sector buffer described by IOCSBS and IOCSBE
is not correct. Specifically, the following relationship
must be true:

IOCSBE-IoeSBS+l
--------------- = INTEGER (Maximum. of Sectors)

128

IOCSBE will not be altered by any of the 1/0 functions.

25.3.1.21 10CSBI -- Internal buffer pointer

This two-byte field of the IOCB applies only to diskette
110. IOCSBI is used to indicate the end of valid data within
sector buffers. Since partial buffers (an integral number of
sectors less than or e~ual to the maximum sector buffer size)
may be read or written, IOeSBI is used to locate the last
valid data byte within a sector buffer.

IOCSBI is initialized and changed by the 110 functions.
The contents of loess I must not be changed by the calling
program after a file has been opened when using the record
110 functions; however, when using logical sector 110, the
contents of IOCSBI may be changed. The value of IOCSSI will
always be less than or e~ual to the value of IOCSSE. The
following relationship must always be true:

IOCSBI-IoeSBS+l
--------------- = INTEGER (Actual # of Sectors)

1.28

25.3.2 Reserve a device -- .RESRV

The .RESRV system function links the appropriate
controller descriptor block (CDS) to the calling program's
IOCB. The .RESRV function must be called before any other of
the device independent 110 functions can be invoked. Section
26.2.4 should be consulted for a description of the impact on
the .RESRV call and the IOCB when using non-standard devices.

ENTRY PARAMETERS: x = The address of an IOCS.

IOCGDW must contain one of the valid
generiC device names: CN, CP, CR,
DK, or LP.

IOCLUN must contain the logical unit
number of the device to be reserved.

Page 25-~

INPUTIOUTPUT FUNCTIONS

EXIT CONDITIONS:

25.3 -- Device Independent 1/0 Functions

Bit IIR" of IOCLUN must be set to zero
(this will normally be the case when
the ASCII logical unit number.
$30-$39, is stored into IOCLUN).

All other entries of the IOCB need not be
initialized.

A is indeterminate.

B = The contents of the IOCSTA entrl:l. If
no errors occurred. B will be zero.
A non-zero value indicates that an
error oc c urred.

X is unchanged.

C =0 and Z = 1 if no errors occurred (B
= 0). The remainder of CC is
i nd etermi nate.

C = 1 and Z ~ 0 if an error occurred (B
not zero>. The remainder of CC is
i nd etermi nate.

The IOCB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The
following error statuses can be
returned: I$IVDV. I$RESV. I$NODV.

The remainder of the IOCB is not changed.

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = O.

IOCDTT has the "10" bits set to zero and
the 110" bit set to one ('ile closed).
The remainder of the IOCDTT is not
changed.

IOCGDW contains the address of the CDB
that is associated with the generic
device. The original contents of
IOCGDW are destroyed.

IOCLUN has the IIRII bit set to one (IOCB
reserved>. The remainder of IOCLUN
is not changed.

The remainder of the IOCB is not changed.

Page 25-33

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Function!

25.3.3 Open a file -- . OPEN

--------------------~------

The . OPEN function prepares a file for subse~uent access
by the record or logical sector I/O functions. Data cannot
be transferred between the file (or device) and the calling
program until the .OPEN function has been invoked. The
specific function performed by . OPEN depends on the device
type and on the contents of the IOCDTT entry (specifically,
the non-file format flag (F) and the mode flag (M».

There are four modes in which a file can be opened. The
input mode (M = 01 of IOCDTT) will allow only input re~uests
to be issued to the file. The output mode (M = 10 of IOCDTT)
will allow only output re~uests to be issued to the file, and
the update modes (M = 00 or 11 of IOCDTT) will allow both
types of re~uests to be issued to the file. The update modes
are only valid if the device type is DK.

The non-file format flag also has an effect on what
.OPEN does. If the file format mode is specified (F = 0 of
IOCDTT), then FDR processing will be performed. FDR
processing consists of searching for a file descriptor record
or a directory entry if the file is being opened for input.
FDR proceSSing consists of creating a file descriptor record
or a directory entry if the file is being opened for output.
One form of update mode processing (M = 11 of IOCDTT) will be
identical to the input mode processing if the file already
exists in the directory; or, it will be identical to the
output mode processing if the file does not exist in the
directory. The other form of update mode processing (M = 00
of IOCDTT) will always be the same as the input mode
processing since the file must exist for this mode.

If a memory-image file i~ being created, the load
information must be written into the RIB by the program that
is creating the file and must meet the re~uirements described
in section 24.2. The RIB can be accessed using logical
sector 1/0. It has the logical sector number $FFFF.

If the non-file format mode is specified (F = 1 of
IOCDTT)' then no FDR processing is performed. The non-file
format mode is invalid for diskette devices.

ENTRY PARAMETERS: x = The address of an IOCB which has been
properly reserved (i. e., no errors
occurred) via the .RESRV function.
Since the IOCB needs to be reserved
only once per device of a given
logical unit number, it is possible
to open and close a file and then
reopen another file using the same
IOCB without issuing another .RESRV
call. In these instances, the IOCB

Page 25-3·

INPUTIOUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions

must not contain information for an
ope n f i Ie (i. e., the fir s t f i Ie mu s t
have been properl'J closed>. The
.OPEN function does not force an
already-open file to be closed.

IOCOTT must have the "M" bits set for
input, output, or update modes. The
update modes are only valid for
diskette devices. In add i tion, the
"F" bit must specify file or non-file
format. The non-file format mode is
invalid for diskette devices. The
"5" bit must indicate the subsequent
access method to be used. Sector 110
is invalid for non-diskette devices.

IOCOBS must contain a buffer start
address unless diskette 110 (either
record or logical sector) or the
non-file format mode has been
specified in the IOCOTT. The data
buffer described by IOCOBS and IOCOBE
is used for FOR processing with
non-diskette devices. If used. it
must be large enough to accommodate
an FDR (section 24.3.4).

IOCOBE must contain a buffer end address
unless diskette 1/0 (either record or
logical sector) or the non-file
format mode has been specified in the
IOCOTT. The data buffer described by
10COBS and IOCDBE is used for FOR
processing with non-diskette devices.
If used, it must be large enough to
accommodate an FOR (section 24.3.4>.

10CNAM must contain a valid
MDOS-formatted file name unless the
non-file format mode has been
specified in the IOCDTT or unless the
first byte of file name is binary
zero. In the file format mode on a
non-diskette device being opened for
input. the . OPEN function will cause
a search to be performed for the
first FOR if the first byte of IOCNAM
is a binary zero. This file will
then be used by the subsequent record
input requests. Otherwise. the fi Ie
name supplied in IOCLUN, IOCNAM, and
IOCSUF is searched for or created
(depending on M of IOCOTT).

Page 25-35

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 110 FunctioJ

IOCSUF must contain
MDOS-formatted suffix

a val id
unless the

non-file format mode has been
specified in the IOCDTT or unless the
first byte of IOCNAM contained a
binary zero (see above>.

IOCFDF must only be initialized to
specify the file format (FMT bits) if
the output mode (M = 10 of IOCDTT) Dr
the update mode to a non-existing
file (M = 11 of IOCDTT) is indicated.
In addition. if the device type is
DK, the other bits of IOCFDF must be
specified for these two open modes.
A special case exists if the non-file
format mode is indicated in the
IOCDTT. In this instance, the FMT
bits of IOCFDF must be set to the
ASCII record format (FMT = 5>'

It is not recommended that diskette
files be created with the protection
attributes set, since they will
prevent a file from being deleted
upon closing if no information was
written into the file. The
protection attributes should be set
via the . CHANG system function or via
the NAME command.

IOCSBP must be initialized if the device
type is DK and either the output mode
(·M = 10 of IOCDTT) Dr the update mode
to a non-existing file (M=11 of
IOCnTT) is specified. A value of
zero will cause the default space to
be initially allocated to the file.
A non-zero value will cause that
number of sectors to be used for the
initial allocation.

A non-zero value in IOCSBP when
opening an existing file will have no
affect on the allocation of the file.
Existing files only change in size
when writing beyond the end-of-file
Dr when closing them with the
truncate flag set.

IOCSBS must contain the starting address
of a sector buffer only if the
device type is DK. The sector buffer
must be an integral number of sectors

Page 25-:

INPUT/OUTPUT FUNCTIONS

EXIT CONDITIONS:

25.3 -- Device Independent I/O Functions

in size (see section 25.3.1. 20>'

IOCSBE must contain
last byte of a
the device type
buffer must be
sectors in
2:5. 3. 1. 20 >.

A is indeterminate.

the address of the
sector buffer only if
is DK. The sector
an integral number of

size (see section

B = The contents of the IOCSTA entry. If
no errors occurred, B will be zero.
A non-zero value indicates that an
error occurred.

X is unchanged.

C = 0 and Z = 1 if no errors occurred (B
= 0), The remainder of CC is
i nd etermi nate.

C = 1 and Z = 0 if an error occurred (B
not zero). The remainder of CC is
i ndetermi nate.

The IOCB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The
following error statuses can be

The

returned: ISCKSM, ISCLOS, ISDSPC,
ISDTYP, ISDUPE, ISEOF, ISFSPC.
ISFTYP, IEOM, IIVDV, ISNONM,
ISNORV, I$NRDY, I$RIB, I$WRIT.

remainder of the
contents of the
(non-diskette device)
buffer <diskette
indeterminate.

IOCB and the
data buffer

and the sector
device) are

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = O.

IOCDTT has the "0" bit set to zero (file
open>. The "T" bit will have been
set to one if a new file had to be
created on the diskette. The" 10"
bits are indeterminate. The
remainder of IOCDTT is not changed.

Page 25-37

I NPUT/OUTPUT FUNCTIONS 25.3 -- Device Inde~endent 1/0 Function

10CDBP is indeterminate.

IOCNAH is unchanged if the device type is
not DK. If the device type is DK,
then IOCNAH will have been replaced
with the four entries IOCHLS, IOCSDW,
IOCSLS and IOCLSN.

IOCHLS contains the value $FFFF if the
device type is DK.

IOCSDW contains the first SDW from the
file's RIB if the device type is DK.

IOCSLS contains the value $FFFF if the
device type is DK.

IOCLSN contains the value zero if the
device type is DK.

IOCSUF is unchanged if the device type is
not DK. If the device type is DK,
then IOCSUF will have been replaced
with the IOCEOF entry.

IOCEOF contains the logical sector number
of the logical end-of-file if the
device type is DK.

IOCRIB contains the physical sector
number of the file's RIB if the
device type is DK.

IOCDEN contains the
entry number if the
DK.

file's directory
device type is

IOCFDF contains the FDF field from the
directory entry or the FDR (if open
mode is input or update to existing
file). Otherwise, the IOCFDF field
contains its initial value; however,
if the initial FMT bits contained a
"l", FMT will have been changed to
either a "3" or a "7" as described in
section 25.3.1.16.

IOCSBP contains the value of zero if the
device type is DK.

IOCSDI contains the value in IOCSBE.

The remainder of the IOCB is unchanged.

Page 25-3

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions

The contents of the data buffer
(non-diskette device) and the sector
buffer (diskette device) are
indeterminate.

25.3.4 Input a record -- .GETRC

The .GETRC function reads a record from an opened file
or device into a data buffer. The specific processing
performed by .GETRC depends on the FMT bits of IOCFDF and on
the device type. The record input function will process
three file formats: binary record (FMT = 3), ASCII record
(FMT = 5), and ASClI-converted-binary record (FMT = 7).

Binary records will be stripped of their record header
(see section 24.3), their byte count, and their checksums.
Only the data characters between the byte count and checksum
fields will be returned. If characters are encountered after
the checksum field of one binary record but before the header
field of the next record, they will be ignored.

ASCII records will be stripped of null characters, line
feeds, rubouts, and the device control characters DCI-DC4.
When reading records from the diskette, compressed spaces
(bytes with bit 7 set to 1) will be automatically expanded
into the appropriate number of spaces before being placed
into the data buffer. This automatic space expansion occurs
regardless of the compression bit in IOCFDF (bit "N">' A
carriage return will be the last data character in the data
buffer.

ASCII-converted-binary records are handled similarly to
binary records; however, the conversion of two seven-bit data
bytes into a single eight-bit data byte is automatically
performed.

The .GETRC function treats the system console (CN) in a
slightly different way than it does other devices, since the
input from this device is usually in an interactive mode with
the operator. In addition to the normal ASCII record
proc ess i ng, . GETRC wi 11 perform th e fo 11 owi ng. First, if th e
first byte of the IOCSUF field contains a displayable
character in the range $20-$5F, it will be automatically
displayed as an input prompt each time the .GETRC function is
invoked. Next, the special keyboard characters rub out ($7F),
cancel (CTL-X, $18), and EOT (CTL-D, $04) will cause the
standard MDOS keyboard functions to be performed (section
2.5). Rubout will delete the previously entered character,
cancel will delete the entire input line entered thus far,
and EOT will cause the input line entered thus far to be
red i sp lay ed on a new line of th e console. Lastl"", th e
carriage return character will cause a carriage return, line
feed. and null sequence to be sent to the console. All other

Page 25-39

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 FunctioT

data characters will be echGed back to the console display
mechanism as they are entered from the keVboard. This
function is the same as for the . KEVIN svstem function
described earlier in this chapter (section 25.2.1).

ENTRV PARAMETERS:

EXIT CONDITIONS:

x = The address of an IOCB which has been
properly reserved and opened (i.e .•
no errors Gccurred) via the .RESRV
and . OPEN functions, respectively.

IOCDTT must have the US" bit set to zero
(record I/O)' The mode flag (bit
"M") must specify either the input or
the update modes as configured prior
to opening the file.

IOCDBS must contain the address where the
first bvte of the record is to be
stored.

IOCDBE must contain the address where the
last byte of the maximum size record
is to be stored. The buffer
described bV IOCDBS and IOCDBE must
be large enough to accommodate the
largest possible record that may be
encountered in the file.

IOCSUF may be configured by the calling
program to contain a displayable
character in its first byte if the
input device is the system console.
In this case. the character will be
shown on the console as an input
prompt each time the .GETRC function
is invoked. IOCSUF must not be
changed after opening a file when
other devices are used.

IOCFDF must have been configured for a
valid file format on a previous . OPEN
call (FMT = 3, 5, or 7).

A is indeterminate.

B = The contents of the IOCSTA entry. If
no errors occurred, B will be zero.
A non-zero value indicates that an
error occurred.

X is unchanged.

C = 0 and Z = 1 if no errors occurred (B
= 0). The l"e"mainder of CC is

Page 25-4

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions

indeterminate.

C = 1 and Z = 0 if an error occurred (B
not zero). The remainder of CC is
indeterminate.

The 10CB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The
following error statuses can be
returned: I$BUFO, I$CKSM, I$CLOS,
I$DTYP, I$EDF, I$FTVP, I$EOM, I$NRDV,
I$RANG, I$SECB.

rOCDBP is indeterminate.

IOCMLS, IoCSDW, IOCSLS, IOCLSN, rOCSBP,
and 10CSBr are indeterminate if the
device type is DK. Otherwise,
10CNAM, 10CSBP, and 10CSBI are
unchanged.

The remainder of the IOCB is unchanged.

If a buffer overflow error occurred
(IOCSTA = I$BUFO), then the last data
character of the record (carriage
return) will be the last character of
the buffer. The first "n" characters
(n being the size of the data buffer
minus one) of the record are intact.
Otherwise, the contents of the data
buffer are indeterminate.

If the device
contents of

type
the

indeterminate.

is DK,
sector

then the
buffer are

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = O.

IOCDTT has the I/O transfer flag set to
indicate input (10 = 10). The
remainder of IOCDTT is unchanged.

IOCDBP contains the address of the last
character read into the input buffer.

IOCMLS, IOCSDW, IoCSLS, IOCLSN, IOCEOF,
rOCSBP, and IOCSBI contain the
system-maintained parameters as

Page 25-41

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independ~nt I/O Functions

described in section 25.3.1 if the
device type is DK. They reflect the
current diskette file pOinters.
IOCNAM, IOCSUF, IOCSBP, and IOCSBI
are unchanged if the device is not
DK.

The remainder of the IOCB is unchanged.

The data buffer contains the record.

The sector buffer contains data from the
logical sectors read. This number is
given by IOCLSN minus the valid
buffer size in sectors
«IOCSBI-IOCSBS+1)/128) if the device
is DK.

25.3.5 Output a record -- .PUTRC

The .PUTRC function writes a record from a data buffer
to an opened file or device. The specific processing
performed by .PUTRC depends on the FMT bits of IOCFDF and on
the device type. The record output function will process
three file formats: binary record (FMT = 3), ASCII record
(FMT = 5), and ASCII-converted-binary record (FMT = 7).

Binary records will be automatically supplied with their
record header (see section 24.3), a byte count, and a
checksum. In addition, a terminating carriage return is
supplied by the .PUTRC function. If the output device is a
non-diskette device, the terminating carriage return will
actually be a carriage return, line feed, null se~uence.
None of these automatically supplied fields are present in
the data buffer described by the IOCB.

ASCII records will be automatically space compressed if
the output device is diskette and if the "N" bit of IOCFDF is
zero. Otherwise. spaces will not be compressed. A carriage
return character will be automatically written to the output
device after the last data character has been sent unless the
last data character happens to be a carriage return. All
carriage returns, those encountered within the data buffer as
well as the automatically supplied terminating one, are
converted into a carriage return, line feed, null se~uence
when being written toa non-diskette device. The line feed
and null characters generated from embedded carriage returns
will not be written to the diskette.

ASCII-converted-binary records are handled similarly to
binary records; however, the conversion of one eight-bit data
byte into two seven-bit data bytes is automatically
performed.

Page 25-4~

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

If a record is being written into a diskette file,
additional space may be allocated to accommodate the
increased space requirements of the file. The file
allocation is done automatically. The amount of secondary
allocation will depend on the available file space; however,
an attempt will be made to allocate the default number of
clusters. If less space is available than the default, then
the largest available block will be allocated.

ENTRY PARAMETERS:

EXIT CONDITIONS:

x = The address of an IOCB which has been
properly reserved and opened (i. e.,
no errors occurred) via the .RESRV
and . OPEN functions, respectively.

IOCDTT must have the US" bit set to zero
(record 110>' The mode flag (bit
"M") must specify either the output
or the update modes as configured
prior to opening the file.

IOCDBS must contain the address of the
first byte of the record that is to
be wri tten.

IOCDBE must contain the address of the
last byte of the record that is to be
written. A terminating carriage
return is not required in the data
buffer.

IOCFDF must have been configured for a
valid file format during the previous
. OPEN call (FMT = 3, 5, OT' 7>' The
non-compressed space bit (bit "N")
determines whether or not spaces are
compressed (only applies to ASCII
files being written to diskette).

A is indeterminate.

B = The contents of the IOCSTA entry. If
no errors occurred, B will be zero.
A non-zero value indicates that an
error occurred.

X is unchanged.

C = 0 and Z = 1 if no errors occurred (B
= 0), The remainder of CC is
i ndetermi nate.

C = 1 and Z = 0 if an error occurred (B
not zero). The remainder of CC is
indeterminate.

Page 25-43

INPUTIOUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functio~

The IOCB is affected in the following manne'l' if
an er'l'or occurred:

IOCSTA contains the error status. The
following error sta~uses can be
returned: I$CLOS, I$DTVP, I$FTVP,
I$NRDV, I$RECL, I$RANQ, I$SECB,
IRIB, IFSPC, I$SSPC.

IOCDBP is indete'l'minate.

IOCMLS. IOCSDW, IOCSLS, IOCLSN, IOCEOF,
IOCSBP, and IOCSBI are indeterminate
if the device type is OK. IOCNAM,
IOCSUF, IOCSBP, and IOCSBI are
unchanged othe'l'wise.

The remainder of the IOCB is unchanged.

The contents of the data buffer are
unchanged.

The contents of the sector buffer a'l'e
indeterminate.

The IOCB is affected in the following manne'l' if
no errors occurred:

IOCSTA = O.

IOCDTT has the 1/0 transfer flag set to
indicate output (10 = 01), If
additional file space was allocated,
the truncate flag (T) is set to one
if it was not already one prio'l' to
the output transfer. The 'l'emainder
of IOCDTT is unchanged.

IOCDBP contains the address of the last
character in the data buffer (same as
IOCDBE).

IOCMLS, IOCSDW, IOCSLS, IOCLSN, IOCEOF.
IOCSBP, and IOCSBI contain the
system-maintained parameters as
desc'l'ibed in section 25.3.1 if the
device is DK. The" reflect the
current diskette file pOinters. If
.PUTRC has been called for the first
time. and if IOCMLS contained the
value $FFFF upon entr". IOCMLS talill
contain the value $0000 upon exiting
the function. In this tala". the file
will not be deleted upon closing,

Page 25-.I!

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 110 Functions

even if only a single record has been
written into the sector buffer.

IOCNAM, IOCSUF, 10CSBP, and 10CSBI
are unchanged if the device is not
OK.

The remainder of the IOCB is unchanged.

The contents of the data buffer are
unchanged.

The sector buFfer contains the data that
are going to be written to diskette
starting with the logical sector
specified by IOCLSN. The sector
buffer is not cleared aFter having
been wr i tten. Th us, the parts of the
sector buffer not affected by the
.PUTRC call will still contain the
data From the buffer last written.

25.3.6 Close a File -- . CLOSE

The. CLOSE function is used to signify completion of all
I/O transfers to a file or device in the current open mode.
Data cannot be transferred between the file (or device) and
the calling program after the .CLOSE function has been
invoked. The specific Function performed by .CLOSE depends
on the mode flag (M of IOCDTT), the 110 transfer flag CIO of
lOCDTT). and the device type.

If the IOCB has been opened in the input mode (M = 01 of
IOCDTTJ, then the . CLOSE function will simply change the IOCB
to indicate that the file is closed.

If the IOCB has been opened in the output mode (M = 10
of IOCDTT)' then . CLOSE will perForm the Following. For a
device type of DK •. CLOSE will zero-Fill any unused portions
of the unwritten sector bufFer to a sector boundary before
writing the buFfer to the diskette (only if record 110 is
being performed; logical sector I/O will not cause the last
sec tor buffer to be chang ed or wr i tten). All spac e that has
been newly allocated but not written into (those logical
sectors greater than IOCMLS) will normally be deallocated on
a cluster boundary and returned to the free space pool
(assumes that the truncate flag and IOCMLS have not been
changed by the calling program). The end-oF-file LSN will be
adjusted in the RIB. If the device is not DK, then . CLOSE
will cause an end-of-file record to be written to the device
(file format mode only). In the non-file format mode •. CLOSE
will only write an end-oF-file record to the device if it is
a file-type device (e. g. I an end-oF-file is written to CP but

Page 25-45

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Function!

not to LP orCN>' Fi le-t..,pe devices are those ..,h fch use a
medium that can bere-read later.

If the IOCB has been opened in the update modes (M = 00
or 11 of IOCDTT), then . CLOSE will perform the same functions
as in the input or the output mode depending on the last I/O
transfer t..,pe. The .GETRC and .GETLS functions will set 10
of IOCDTT to indicate an input transfer, while the .PUTRC and
.PUTLS functions will set 10 of IOCDTT to indicate an output
transfer. In the latter case, space is only deallocated if
the truncate flag (T of IOCDTT) is set to one (done
automaticall.., when new space is allocated, or done b.., user to
indicate file shortening or updating of end-of-file pOinter
in RIB),

ENTRY PARAMETERS:

EXIT CONDITIONS:

x = The address of an IOCB which has been
properl.., reserved and opened (i.e.,
no errors occurred) via the .RESRV
and . OPEN functions, respectivel..,.

Normal 1.." no additional parameters
are re~uired; however, when dealing
with diskette files in the update
mode (M = 00 or 11 of 10CDTT), the
truncate flag (T of IOCDTT) and the
maximum referenced logical sector
number (IOCMLS) can be configured bV
the calling program. Since the
update modes onl.., set the truncate
flag to one if a new file is cTeated
during the open pTocess or if
additional space is allocated during
the output process (file grows),
space will not be deallocated or the
end-of-file pointer updated from
existing files unless the truncate
flag and IOCMLS are explicitly set up
bV the calling program. When IOCMLS
is set to the value $FFFF (value set
up during .OPEN), then the file will
have its directory entr.., deleted in
addition to having all of its space
deallocated (if truncate flag is set
to one when . CLOSE is invoked >.

IOCDBS and IOCDBE must describe a valid
data buffer when dealing with
non-diskette devices. (output onl..,)
since an end-of-file record is
written (file-type devices only).

A is indeterminate.

B = The contents of the IOCSTA entr..,. If

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

no errors occurred. B will be zero.
A non-zero value indicates that an
error occurred.

X is unchanged.

C = 0 and Z = 1 if no errors occurred (B
= 0), The remainder of CC is
indeterminate.

C = 1 and Z = 0 if an error occurred (B
not zero). The remainder of CC is
indeterminate.

The IOCB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The

The

following error statuses can be
returned: I$CLOS, I$DELT, I$IDEN.
I$RANG, I$SECB, I$FSPC, I$SSPC,
IRIB, IDEAL.

remainder of
contents of

the 10CB and the
the data buffer and the

sector buffer are indeterminate.

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = O.

IOCDTT has
closed>.

the "0" bit set to one <file
The remainder of the IOCDTT

is unchanged.

IOCRIB will be zero if the file was
de I eted from th e disk ette. oth erwi se
it will be unchanged.

IOCEOF will contain the LSN of the
logical end-of-file if the device
type is D"'. IOCEOF wi 11 be unchanged
if the truncate flag was zero upon
entry.

The remainder of the IOCB is unchanged.

The contents of the data buffer and the
sector buffer are indeterminate.

Page 25--47

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 110 Functio

25.3.7 Release a device -- .RELES
----~--------~---------~---------

The .RELES function breaks the link between the
appropriate controller descriptor block and the calling
program's IOCB. The .RELES function should be the last 1/0
function called after all 1/0 has been completed.

ENTRY PARAMETERS:

EXIT CONDITIONS:

x = The address of of an IOCB which has
been properly reserved (i.e., no
errors occurred) via the .RESRV
function. If the. OPEN function has
been invoked at any time after
reserving the IOCB, the file (or
device) must first be closed via the
. CLOSE function before the IOCB can
be released.

A is indeterminate.

B = The contents of the IOCSTA entry. If
no errors occurred, B will be zero.
A non-zero value indicates that an
error occurred.

X is unchanged.

C = 0 and Z = 1 if no errors occurred (B
= 0), The remainder of CC is
indeterminate.

C = 1 and Z = 0 if an error occurred (B
not zero). The remainder of CC is
indetermi nate.

The IOCB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The
following error statuses can be
returned: I$NORV, I$CLOS.

The remainder of the IOCB and the
contents of the data buffer and the
sector buffer are unchanged.

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = O.

IOCGDW = o.

IOCLUN has the "R" bit set to zero (IOCB

Page 25-

INPUT/OUTPUT FUNCTIONS

The

25.3 -- Device Independent I/O Functions

released >. The remainder of IOCLUN
is unchanged.

remainder of
contents of

the IOCB and the
the data buffer and the

sector buffer are unchanged.

25.3.8 Example of device independent I/O

The following example uses the device independent I/O
functions described thus far. The 10CB shown below is used
in the example as the control block for writing to a diskette
file. The initial values set up in this 10CB are typical for
most output operations. A four-sector buffer is used to
allow a maximum of four sectors to be written to the diskette
each time it is accessed. The larger a sector buffer is, the
fewer will be the number of diskette accesses. The logical
unit number, file name, and suffix are going to be
initialized from an operator-supplied parameter on the
command line. The system symbols from the MDOS equate file
are used throughout this example.

OUTPUT EGU * START OF OUTPUT IOCB
FCB 0 IOCSTA
FCB DT$OPO+DT$CLS . IOCDTT
FDB 0 IOCDBP
FOB RBUFF IOCDBS
FOB RBUFFE IOCDBE
FCC 2,DK IOCGDW
FCB '0+0 IOCLUN DEFAULT = 0
FCC 8. IOCNAM
FCC 2,SA IOCSUF -- DEFAULT = SA
FDB 0 IOCRIB
FDB FD$FMA!<8 . IOCFDF -- ASCII
FDB 0 RESERVED
FOB 0 I DC DEN
FOB 0 IOCSBP
FOB SCTBUF IOCSBS
FDB SCTBUF+(SC$SIZ*4)-1 IOCSBE
FDB 0 IOCSBI

*
SCTBUF BSZ SC$SIZ*4 SECTOR BUFFER (4 SECTORS)
RBUFF BSZ 80 RECORD BUFFER
RBUFFE EGU *-1

The code that is shown below performs the following
functions. First, a file name specification which has been
entered on the MDOS command line is extracted from the
command line buffer and placed into the IOCB. This is
accomplished with the .PFNAM system function described in
Chapter 27. Then. the IOCB is reserved and opened. Next, an
input prompt is displayed on the system console and an line
of text is accepted from the keyboard. If the entered line

Page 25-49

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

consi.sted o-f onl\l a carriage return, the IOCB is closed,
released, and control returned to the MDOS command
interpreter (via the function . "DENT), Otherwise, the
entered line is written into the diskette file. The input
process is r.peated until only a carriage return is entered.

The error message -function, .MDERR, is used to displa\l
standard error messages if an invalid -file name specification
is entered, if a file name is missing, Dr if one of the I/O
-functions returns an error condition (e.g., if the -file name
already exists in the directory, or i-f insufficient diskette
space is available>. The function. ADBX is used to add the
contents of the B accumulator to the index register. Both of
these -functions are discussed in detail in Chapter 27.

In this example, the assumption is made that the program
is invoked from the MOOS command I ine. Thus, it must be
origined to load above location $lFFF. The stack painter is
automatically initialized through the loading process to
point to the last-loaded program location. The stack area
has been set up so that the de-fault value of the stack
pointer can be used without having to execute a load stack
pointer instruction.

* * DEFINE SOME WORKING STORAGE

* PFNPAK FOB
PROMPT FCB

*

0,0
': I EOT

PROCESS FILE NAME PACKET
INPUT PROMPT

* EXTRACT THE FILE NAME FROM THE COMMAND LINE

* START

* ERR!
ERR2

* ERR3

*

LDX
STX
LDX
STX
LDX
SCALL
TSTB
BEQ
ASLB
BCS
LDAB
BRA

LDAB
SCALL
BRA

CLRB
BRA

*OUTPUT+IOCLUN
PFNPAK+2 DESTINATION OF FILE NAME
CBUFP$ POINTER INTO CMD BUFFER
PFNPAK SOURCE OF FILE NAME
*PFNPAK
. PFNAM

STARTA

ERR 1
*7
ERR2

#5
. MDERR
MDOS

ERR2

FORMAT STANDARD FILE NAME
CHECK FOR ERRORS
EQ => GOOD NAME

CS => NAME MISSING
ILLEGAL NAME MSG NUMBER

NAME REQUIRED MSG NUMBER
DISPLAY STD ERROR MSG
EXIT THE PROGRAM

110 ERR MSG NUMBER; DECODED
FROM IOCSTA

* OPEN AND RESERVE THE IOCB -- CREATE THE OUTPUT FILE

*

Page 25-5(

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

STARTA LOX #OUTPUT
SCALL .RESRV
BCS ERR3 CS =::> ERROR
SCALl · OPEN
BCS ERR3 CS =::> ERROR

*
* GET LINE FROM CONSOLE

* LOOP LOX
SCALL
LOX
LDAB
SCALL
LDAA
CMPA
BEG
STX
DEX
SCALL
STX
LOX
SCALL
BCC
BRA

#PROMPT DISPLAY THE INPUT PROMPT. NO CR/LF
· DSPLZ
#RBUFF GET THE INPUT LINE
#RBUFFE-RBUFF
· KEYIN
X GET 1ST CHAR IN BUFFER
#CR CHECK FOR TERMINATOR
EXIT EG =::> THIS IS THE TERMINATING LINE
OUTPUT+IOCDBS . SETUP START RECORD POINTER

*

. CALC END OF RECORD BUFFER
· ADBX . 13 = NUMB CHARS INPUT
OUTPUT+IOCDBE . SETUP END RECORD POINTER
#OUTPUT
.PUTRC WRITE THE RECORD
LOOP CC =::> NO ERRORS
ERR3

* CLOSE AND RELEASE THE IOCBI RETURN TO MDOS

* EXIT LOX #OUTPUT POINT TO THE IOCB
SCALL · CLOSE
Bes ERR3 CS =::> ERROR
SCALL .RELES
BCS ERR3 CS =::> ERROR

MDOS SCALL · MDENT RETURN TO MDOS

* * LEAVE SOME ROOM FOR STACK

* BSZ
END

80
START

STACK SET HERE BY LOAD

25.3.9 Specialized diskette I/O functions

Three additional I/O functions exist that also use the
IOCB as a parameter table; however, they are dependent on the
device type being OK. An error will be returned if any other
device type is specified.

25.3.9.1 Input logical sectors -- .GETLS

The. GETLS function reads one or more logical sectors
from an opened file into a sector buffer.

ENTRY PARAMETERS: x = The address of an IOCB which has been

Page 25-51

INPUT/OUTPUT FUNCTIONS

EXIT CONDITIONS;

25.3 -- Device Independent I/O Functic

properly reserved and opened (i.e.,
no errors occurred) via the .RESRV
and . OPEN functions, respectively.

IOCDTT must have the "s" bit set to one
(sector I/O)' The mode flag (bit
"M") must specify either the input or
the update modes as configured prior
to opening the file.

IOCLSN must contain the logical sector
number that is to be read. The
actual number of sectors read depends
on the size of the sector buffer (see
beloUlL The data sectors of the file
begin Ulith logical sector zero. If
the RIB is to be accessed via the
.GETLS function, then IOCLSN must
contain the value $FFFF.

IOCSBS must contain the starting address
of a sector buffer. The sector
buffer must be an integral number of
sectors in size (see section
25.3.1.20). This buffer does not
necessarily have to be the same one I

used to open the fi Ie. The sector
buffer can be in a different location
for each .GETLS calli however, if the
sector buffer is to be moved after a
file has been opened, then IOCSBS,
IOCSBE, and IOCSSI must be changed by
the calling program.

IOCSBE must contain the address of the
last byte of a sector buffer. The
sector buffer must be an integral
number of sectors in size (see
section 25.3. 1. 20), The buffer
described by IOCSBS and IOCSBE
indicates the maximum number of
sectors that can be processed
starting Ulith the logical sector
whose number is in IOCLSN.

A is indeterminate.

B = The contents of the IOCSTA entry. If
no errors occurred, S will be zero.
A non-zero value indicates that an
error occurred.

X is unchanged.

Page 25-

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

C == 0 and Z == 1 if no errors occurred (B
= 0), The rema i nder of CC is
indeterminate.

C = 1 and Z = 0 if an error occurred (B
not zero>. The remainder of CC is
indeterminate.

The IOCB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The
following error statuses can be
returned: I$CLOS. I$DTVP, I$EOF,
I$SECB, I$RANG.

IOCMLS, IOCSDW, IOCSLS, IOCLSN, IOCSBP,
and IOCSBI are indeterminate.

The remainder of the IOCB is unchanged.

The contents of the sector buffer are
indeterminate.

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA == O.

IOCMLS. IOCSDW, and IOCSLS contain the
system-maintained parameters
described in section 25.3. 1.
reflect the current diskette
pointers.

as
They
file

IOCLSN has been incremented by the number
of sectors read into the buffer
«IOCSBI-IOCSBS+l)/128).

IOCSBP contains
the sector
IOCSBS) .

the starting address of
buffer (the same as

IOCSBI contains the address of the last
valid data byte in the sector buffer.
If only a partial segment was read
in tot h e b u f fer I I OC SB I will not b e
the same as IOCSBE (maximum end of
buffer). The following relationship
should be used to calculate the
number of sectors read:

IOCSBI-IOCSBS+l
--------------- = * SECTORS READ

Page 25-53

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Function!

128

The remainder of the IOCB is unchanged.

The sector buffer contains the data from
the sectors read beginning with the
logical sector whose number was in
IOCLSN.

25.3.9.2 Output logical sectors -- .PUTLS

The .PUTLS function writes one or more logical sectors
from a sector buffer to an opened file. Additional space may
be allocated to the file to accommodate the increased space
requirements. The space allocation is performed
automatically. The amount of secondary allocation will
depend on the available spacei however, an attempt will be
made to allocate the default number of clusters. If less
space is available than the default, then the largest
available block will be allocated.

ENTRY PARAMETERS: x = The address of an IOCB which has been
properly reserved and opened (i.e .•
no errors occurred) via the .RESRV
and . OPEN functions, respectively.

IOCDTT must have the US" bit set to one
(sector I/O). The mode flag (bit
"M") must specify either the output
or the update modes as configured
prior to opening the file.

IOCLSN must contain the logical sector
number that is to be written into.
The actual number of sectors written
depends on the size of the sector
buffer (see below), The data sectors
of the file begin with logical sector
zero. If the RIB is to be accessed
via the .PUTLS function, then IOCLSN
must contain the value $FFFF.

IOCSBS must contain the starting address
of a sector buffer containing the
data to be written. The sector
buffer must be an integral number of
sectors in size (see section
25.3.1.20). This buffer does not
necessarily have to be the same one
used to open the file. The sector
buffer can be in a different location
for each .PUTLS calli however, if the
sector buffer is to be moved after a

Page 25-5~

INPUT/OUTPUT FUNCTIONS

EXIT CONDITIONS:

25.3 -- Device Independent I/O Functions

file has been opened, then IOCSBS,
10CSBE, and IOCSBI must be changed by
the calling program.

10CSBE is not used during the .PUTLS
function; however. it should not have
been changed since the file was
opened (with restrictions mentioned
above for IOCSBS).

IOCSBI must contain the address of the
last data byte to be written from the
sector buffer. The sector buffer, as
described by IOCSBS and IOCSBI, must
be an integral number of sectors in
size (see section 25.3.1. 20>'

A is indeterminate.

B = The contents of the IOCSTA entry. If
no errors occurred, B will be zero.
A non-zero value indicates that an
error occurred.

X is unchanged.

C = 0 and Z = 1 if no errors occurred (B
= 0), The remainder of CC is
i nd etermi nate.

C = 1 and Z = 0 if an error occurred (B
not zero). The remainder of CC is
indeterminate.

The IOCB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The
following error statuses can be
returned: I$CLOS. I$DYTP. I$SECB,
I$RANG. I$RIB. I$FSPC, I$SSPC.

IOCMLS. IOCSDW. IOCSLS. IOCLSN. IOCEOF.
IOCSBP, and 10CSBI are indeterminate.

The remainder of
contents of
unchanged.

the
the

IOCB
sector

and the
buffer are

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = O.

Page 25-55

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functio

IOCMLS, IOCSDW, and IOCSLS contain the
system-maintained parameters
described in section 25.3.1.
reflect the current diskette
pointers.

as
They
file

IOCLSN has been incremented by the number
of sectors ~ritten
«IOCSBI-IOCSBS+l)/12S). If the
sector specified by the entry value
of IOCLSN or any of the sectors
written from the buffer was outside
of the range of the file's allocated
space, additional file space ~ill
have been allocated (if available).

IOCEOF contains the logical sector number
of the logical end-of-file. If
additional file space was allocated,
IOCEOF ~ill contain the new
end-of-fi Ie LSN. IOCEOF is unchanged
other~ise.

IOCSBP contains the starting address of
the sector buffer (the same as
IOCSBS)'

The remainder of IOCB and the contents of
the sector buffer are unchanged.

25.3.9.3 Rewind file -- .REWND

The .REWND function resets the pointers of the IOCB so
that subsequent I/O functions will access the diskette file
as if it had Just been opened, i.e., from the beginning.
Only files that have been opened in the update or input mode
can be re~ound. Files opened in the output mode ~ill cause
the .REWND function to return an error condition.

ENTRY PARAMETERS: x = The address of an IOCB ~hich has been
properly reserved and opened (i.e.,
no errors occurred) via the .RESRV
and . OPEN functions, respectively.

IOCDTT can have the liS" bit set to
indicate either record or sector 110.
The mode flag (bit "M") must specify
either input or update modes as
configured prior to opening the file.

IOCSBS must contain the starting address
of a sector buffer. The sector
buffer must be an integral number of

Page 25-

INPUT/OUTPUT FUNCTIONS

EXIT CONDITIONS:

25.3 -- Device Independent 1/0 Functions

sectors in
25. 3. 1. 20).

size
This

necessarily have to
used to open the
the sector buffer
after a file has
IOCSBS. IOeSBE. and

(see section
buffer does not
be the same one
file; however, if
is to be moved
been opened. then

IOeSB! must be
changed by the calling program.

IOCSBE must contain the address of the
last byte of a sector buffer. The
sector buffer must be an integral
number of sectors in size (see
section 25.3. 1. 20),

A is indeterminate.

B = The contents of the IOeSTA entry. If
no errors occurred, B will be zero.
A non-zero value indicates that an
error oc c urred.

X is unchanged.

e = 0 and Z = 1 if' no errors occurred (B
= 0), The remainder of CC is
i nd etermi nate.

e = 1 and Z = 0 if an error occurred (D
not zero>. The remainder of ce is
i ndetermi natE'.

The lOeB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The
same error statuses can be returned
as those that can be returned by the
. OPEN and . CLOSE functions.

IOCMLS, IOCSDW, IOCSLS, IOCLSN, IOCEOF,
IOCSBP, and IOCSB! are indeterminate.

The remainder of the IOCB is unchanged.

The contents of the sector buffer are
i nd etermi nate.

The lOeB is affected in the following manner if
no errors occurred:

IOCSTA = O.

IOCDTT has the "T" bit set to zero. If

Page 25-57

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Function!

the bit was set to one befo~e the
.REWND call was issued, space may
have been deallocated from the file
and the end-of-file pointe~ in the
RIB updated. The ~emainde~ of 10CDTT
is unchanged.

IOCMLS contains the value $FFFF.

IOCSDW contains the fi~st SDW from the
file's RIB.

IOCSLS contains the value $FFFF.

10CLSN contains the value zero.

IOCEOF contains the LSN of the logical
end-of-file from the file's RIB.

IOCSBP contains the value zero.

IOCSSI contains the value in 10CSBE.

The remainder of the IOCB is unchanged.

The contents of the sector buffer are
indete~minate.

The effect of rewinding a file is the
same as if a .CLOSE and a .OPEN
function were performed; however, the
.REWND function reopens the file
without having the calling program
re-specifv the file's name and
suffix. Thus, when the file is
rewound, the same space deallocation
and end-of-file pOinter
considerations take effect as if the
file were closed. Since the truncate
flag is set to zero after the .REWND
call (opening an existing file), the
calling program may have to reset the
flag if space is to be deallocated o~
the end-o'-file pointer updated upon
calling the subsequent . CLOSE
function.

25.3.9.4 Example of logical sector I/O

The following example uses
functions. The IOCS shown below is
the control block for reading from
file. The initial values set up in

the logical sector I/O
used in the example as
and writing to a diskette
this IOCB are similar to

Page 25-5~

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

those in the example given in section 25.3.8; however, the
sector I/O and update modes are specified in the IOCDTT
entry. Only a single sector is used for a sector buffer to
make the management of logical sectors easier (eliminates
calculation of the number of sectors read or written>' The
logical unit number, file name, and suffix are going to be
initialized by an operator-supplied parameter obtained from
the command line. The system symbols from the MDOS equate
file are used throughout this example.

TEXFIL EGU * . START OF TEXFIL IOCB
FCB 0 IOCSTA
FCB DT$OPU+DT$SIO+DT$CLS 10CDTT
FDB 0 IOCDBP
FDB 0 10CDBS
FDB 0 IOCDBE
FCC 2,DK IOCGDW
FCB '0+0 IOCLUN DEFAULT = 0
FCC 8, IOCNAM
FCC 2,SA IOCSUF -- DEFAULT = SA
FDB 0 IOCRIB
FDB FD$FMA!<8 . IOCFDF -- ASCI I
FOB 0 RESERVED
FOB 0 IOCOEN
FOB 0 10CSBP
FOB SECBUF 10CSBS
FOB SECBUF+SC$SIZ-l 10CSBE
FOB 0 10CSBr

* SECBUF BSZ SC$SIZ SECTOR BUFFER

The code that is shown below performs the following
functions. First. a file name specification which must have
been entered on the MOOS command line is extracted from the
command line buffer and placed into the IOCB. This is
accomplished with the .PFNAM system function described in
Chapter 27. Then, the IOCB is reserved and opened. Next,
one sector is read from the file and all upper case
alphabetic characters are converted into lower case
characters. A special check is made for punctuation marks
(period, exclamation point, and question mark) so that the
first alphabetic character following such punctuation is left
upper case. After all bytes within the sector have been
processed, they are rewritten into the same sector from which
they were read. The process is repeated until an end-of-file
condition is encountered. Finally, after the file is closed
and released, control is returned to the MOOS command
interpreter via the function .MDENT. Since the file does not
expand, it was opened in the update mode so that sectors
could be both read from and written to the file. It should
be noted that the logical sector number should be decremented
before a sector is written back from where it was read.

The error message function, . MOERR, is used to display

Page 25-59

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functic

standard error messages if an invalid file name specification
is entered, if a file name is missing. of if one of the 1/0
functions returns an error condition. The system function
. ALPHA is used to test for alphabetic characters. Both of
these functions are discussed in detail in Chapter 27.

In this example, the assumption is made that the program
is invoked from the MDOS command line. Thus, it must be
origined to load above location $lFFF. The stack pointer is
automatically initialized through the loading process to
point to the last-loaded program location. The stack area
has been set up so that the default value of the stack
pointer can be used ~ithout having to execute a load stack
pointer instruction.

* * DEFINE SOME WORKING STORAGE

* PFNPAK FDB
UCFLG FCB

*
*

0,0
o

PROCESS FILE NAME PACKET
UPPER CASE CONVERSION FLAG

* EXTRACT NAME FROM COMMAND LINE

* START LDX

* ERRl
ERR2

STX
LDX
STX
LDX
SCALL
TSTB
BEG
ASLB
BCS
LDAB
BRA

#TEXFIL+IOCLUN . DESTINATION
PFNPAK+2

OF NAME

CBUFP$
PFNPAK
#PFNPAK
· PFNAM

STARTA

ERRl
#7
ERR2

#5

SOURCE OF NAME

EXTRACT FILE NAME
CHECK FOR VALID NAME
EG =:> GOOD

CS =:> NAME MISSING
ILLEGAL NAME MSG NUMBER

NAME REGUIRED MSG NUMBER LDAB
SCALL
BRA

· HDERR
EXIT DISPLAY ERROR, THEN EXIT PROGRAM

* ERR3

*

CLRB
BRA

1/0 FUNCTION ERROR MSG NUMBER
ERR2

* RESERVE AND OPEN THE 10CB

* STARTA LDX

*

SCALL
BCS
SCALL
BCS

#TEXFIL
· RESRV
ERR3
. OPEN
ERR3

CS => ERROR

CS => ERROR

* READ A LOGICAL SECTOR INTO BUFFER

*

Page 25-

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

LOOP 1 LDX
SCALL
BCS

#TEXFIL
· GETLS
EOF CS => ERROR, POSSIBLE END OF FILE

* * CONVERT DATA WITHIN SECTOR BUFFER

* LOOP2

*

LDX
LDAA
BSR
STAA
INX
STX
CPX
BNE
LDAA
BSR
STAA

TEXFIL+IOCSBP .
X GET CHAR FROM BUFFER
CONVRT
X · PUT CHARACTER BACK

· INCREMENT BUFFER POINTER
TEXFIL+IOCSBP . SAVE POINTER
TEXFIL+IOCSBE . CHECK FOR LAST CHARACTER
LOOP2 NE => MORE DATA TO CONVERT
X CONVERT LAST CHARACTER
CONVRT
X

* WRITE LOGICAL SECTOR BACK INTO FILE

* LDX TEXFIL+IOCLSN . PICK UP LSN
DEX POINT BACK TO LAST READ SECTOR
STX TEXFIL+IOCLSN .
LDX #TEXFIL
SCALL · PUTLS WRITE THE SECTOR BACK
BCS ERR3 CS => ERROR
BRA LOOP 1 READ NEXT SECTOR AND CONTINUE

* * END-OF-FILE DETECTED ON INPUT

* EOF CMPB #I$EOF
BNE ERR3 NE => I/O ERROR
LOX #TEXFIL
SCALL · CLOSE
BCS ERR3 CS => ERROR
SCALL · RELES
DCS ERR3 CS => ERROR

EXIT

*
SCALL · MDENT RETURN TO MOOS COMMAND INTERPRETER

* CONVERT ALL UPPER CASE ALPHABETIC CHARACTERS TO LOWER
* CASE CHARACTERS. FIRST ALPHABETIC
* CHARACTER FOLLOWING A PERIOD, EXCLAMATION POINT, OR
* GUEST ION MARK IS NOT CHANGED.

* CONVRT SCALL
BCS
TST
BNE
DRAA

CHECK FOR U/C ALPHABETIC

NE => DON'T CONVERT
CONVERT TO L/C

CONVEX CLR
CONEX2 RTS

· ALPHA
CONTRM
UCFLG
CONVEX
#SPACE
UCFLG · RESET FLAG TO CONVERT NEXT ALFA

* CONTRM CMPA
BEG

#'.
SETFLG

PERIOD

Page 25-61

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Function!

CMPA
.' !

EXCLAMATION
BEG SETFLG
CMPA .'? . GUEST ION
BNE CONEX2

SETFLG INC UCFLG
BRA CONEX2

*
* SAVE SOME ROOM FOR STACK

* BSZ 80 STACK POINTER SET HERE BY LOAD

* END START

25.3.10 Error handling

All of the 1/0 functions discussed in this section use
the IOCB. The first entry of the IOCB will contain an error
status upon returning from one of these functions. The
calling program is responsible for processing these error
conditions. If the .rror status is to be decoded and
displayed as a message on the system console, the system
error message function •. HDERR, can be used. This function
is described in detail in Chapter 27; however, it should be
noted here that a common mistake is made in calling the error
message function with the value returned in the B accumulator
by the 110 functions. It is true that this value is the same
as IOCSTA's contents; however this is not the parameter that
should be used to invoke the error message function. The
error message function will decode the contents of IOCSTA
only if it is called with the B accumulator e~ual to zero and
with the X register pointing to the IOCB.

None of the 1/0 functions described here will return
control to the calling program if a diskette controller error
is detected (only applicable if the device type is DK).
These errors are fatal errors and will cause the program to
be aborted (1. e., the files 1IIili not be closed>. An error
message is displayed on the system console before giving
control to PmOS.

In order to guarantee the integrity of data files
(especially on the diskette), it cannot be stressed often
enough that it is necessary for the calling program to check
for an error condition after each 1/0 function call. A
common mistake is to fail to check for errors after a file
has been closed. Since output can still take place during
the closing, data at the end of the file can be lost without
being apparent. Another common mistake is to initialize the
IOCB with the "0" flag of IOCDTT and the "R" flag of IOCLUN
in the wrong sense. If the "R" flag is cleared before the
IOCB is r.eserv.ed, the "0" flag 1IIill be properl" set bV the
functions themselve-s.

Page 25-6;

CHAPTER 26

26. INPUT/OUTPUT PROVISIONS FOR NON-SUPPORTED DEVICES

It is assumed that the reader is familiar with the
device independent I/O functions described in section 25.3
before this chapter is read.

This chapter describes how the I/O functions interface
with the hardware device and how a user can interface
non-standard devices for use with the device independent 110
functi ons.

26. 1 Device Dependent 110

The device dependent I/O functions descT'ibed in Chapter
25 for accessing the console and the line printer cannot be
changed to access non-standard devices. These routines are a
part of MDOS and its basic environment requirements; however,
a user can construct his own device drivers that are accessed
by his programs. If the standard MDOS commands are to
utilize non-standard devices, the user should be using MODOS
(OEM MDOS) which can be configured to work in that manner.
The COPY command (Chapter 7) is an exception. It can load a
user-defined device driver into memory to copy a file from
that device to the diskette or from the diskette to that
device.

26.2 Device Independent I/O

This section describes how the device independent I/O
functions interface to the device drivers which, in turn,
interface directly to the hardware device. This description
applies to both standard and non-standard devices.

26.2.1 Controller Descriptor Block -- CDB

The Controller Descriptor Block, or COB, is a table that
describes a physical device and the types of input and output
operations that can be performed by the device. Unlike the
IOCB, the COB is configured only once for each device. It is
the memory location of the CDB that replaces the contents of
the IOCGDW entry of an IOCB after the .RESRV function has
been called. The format of the CDB is shown in the following
diagram.

Page 26-01

INPUT/OUTPUT PROVISIONS 26.2 -- Device Independent I

Byte
7 6 5 3 2 1 o

V ---------------------------------
00

01

02

03

04

05

06

07

os

09

OA

OB

IOCB address

Device driver
address

Hardware address

I RIO : I IF: W I S I LID I

IN: : S I

Device dependent
area

Working storage

<-- Bit position

CDSIOC

COBSOA

CDBHAO

CDSDDF - Device descrip­
tor flags

COBVDT - Valid data
types

CDSDDA

CDSWST

Page 26-

INPUTIOUTPUT PROVISIONS 26.2 -- Device Independent 110

CDB FLAG DESCRIPTION SUMMARY

Field Name Bit

CDBDDF R 7

o 6

I 5

F 4

w 3

S 2

L 1

D o

CDBVDT N 7

3-6
B 2

0-1

Content

Reservable device flag
o =~ Not reservable
1 =~ Reservable

Output device flag
o =~ Cannot perform output
1 => Can perform output

Input device flag
o => Cannot perform input
1 => Can perform input

File-type device flag
o => Cannot openlclose files
1 => Can openlclose files

Rewindable device flag
o => Cannot rewind files
1 => Can rewind files

System console flag
o => Not system console device
1 => System console device

Logical sector 110 flag
o => Cannot perform logical sector

110
1 => Can perform logical sector 110

Default binary record format flag
o => Binary record is default binary

format
1 => ASCII-converted-binary record is

default binary format

Non-file format flag
o => Non-file format mode is invalid
1 => Non-file format mode is valid

Not used <=0)
Binary 110 flag

o => Eight-bit data is invalid
1 => Eight-bit data is valid

Not used (=0)

Page 26-03

INPUTIOUTPUT PROVISIONS 26.2 -- Device Independent 1/0

26.2. 1. 1 CDBIOC -- Current IOCB address

These two-bytes of the CDB are reserved for expansion.
They are currently not being used by the device drivers.
These two bytes should be initialized to zero.

26.2.1.2 CDBSDA -- Software drivel' address

This two-byte field of the CDB must contain the starting
address of the device drivel' program that controls the
device. It is this address that is used to access the
individual device driver entry points. Therefore, this entry
must be provided in every COB. The format of the device
drivel' is explained in section 26.2.2.

26.2.1.3 CDBHAD -- Hardware address

These two bytes of the CDB are intended to contain the
lowest address of the hardware device (PIA or ACIA) used to
interface with the external device. The actual usage of this
CDB entry depends exclusively on the device drivel' program.
The device independent 1/0 functions do not access this
entry.

26.2.1.4 CDBDDF ~- Device descriptor flags

The CDBDDF byte contains the basic description about the
types of 1/0 accesses that the device can perform. The
format of the CDBDDF byte is shown below:

7 6 4 3 2 1 o

: RIO I I : F : W I S I L : D I

. ..

. ..

Default binary format
Logical sector 110 flag
System console flag
Rewindable device flag
File-type device flag
Input device flag
Output device flag
Reservable device flag

These flags are constant once defined. The flags are
interrogated by the various device independent 110 functions
in order to verify that the re~uested function can be
performed on the specified device. Tbe properties controlled
by the various bits of the CDBODF are explained below.

Page 26-04

INPUT/OUTPUT PROVISIONS 26.2 -- Device Independent 1/0

R (Bit 7) -- Reservable device flag

This bit determines whether a device can be
reserved by multiple IOCBs at the same time. Certain
devices, like diskette devices, by nature of their
operation, can allow input/output accesses to be
performed from different callers (IOCBs). Other
devices, like a line printer, cannot logically allow
multiple output accesses from different IOCDs to be
processed. If the "R" bit is set to one, it means
that the device is reservable. In other words, only
one IOCB can communicate with the device at a time.
If the "R" bit is set to zero, it means that the
device is non-reservable (i.e., the device can
communicate with multiple IOCBs).

o (Bit 6) -- Output device flag

This bit indicates whether a device can be used
by output functions. If the "0" bit is set to one,
then the device can be used for output. If the "0"
flag is set to zero, then the device cannot be used
for output.

I (Bit 5) -- Input device flag

This bit indicates whether a device can be used
by input functions. If the "I" bit is set to one,
then the device can be used for input. If the "I"
flag is set to zero, then the device cannot be used
for input.

F (Bit 4) -- File-type device flag

This bit determines whether or not a device can
open and close files. A file-type device (e. g. ,
diskette drive, and cassette or paper tape
reader/punch) will be handled differently by the
.OPEN and .CLOSE functions than a non-file-type
device (e. g. , console printer, line printer,
keyboard). In addition to having FDR processing
performed on them, file-type devices are also
sensitive to end-of-file records. Non-file-type
devices are not subJect to FDR processing, nor are
end-of-file records read from them or written to
them. A file-type device is indicated by the "F" bit
being set to one. Non-file-type devices have the "F"
bit set to zero.

Page 26-05

INPUTIOUTPUT PROVISIONS 26.2 -- Device Independent I,

W (Bit 3) -- Rewindable device fla~

This bit indicates whether the .REWND function
is valid for the device. In the current version of
MDOS, it may appear as if the "W" flag and the "Lit
flag are redundant, because only the diskette device
can be used for logical sector 110 and only the
diskette device can be "rewound"i however, in order
to allow for expansion, the .REWND function's
processing depends on the "W" flag. If the "W" flag
is set to one, the device can be rewound. If the "W"
flag is set to zero~ the device cannot be rewound.

S (Bit 2) -- System console flag

This flag distinguishes the system console from
all other devices. This is needed since the record
input function does special processing for the
certain control characters which are treated
differently when being input from another device.
These special characters are described in section
25.3.4. If the "S" bit is set to one, the device is
the system console. If the "s" bit is set to zero,
the device is not the system console.

L (Bit 1) -- Logical sector 110 flag

This flag is used to distinguish the diskette
drives from all other devices. Since the two
specialized 110 calls, .QETLS and .PUTLS, are only
valid for the diskette drives, a flag is necessary
that identifies that device. If the "L" flag is set
to one, logical sector 110 is valid (i. e. I the device
is the diskette driveL If the "L" flag is set to
zero, logical sector I/O is invalid <i.e., the device
is not the diskette drive).

Page 26-(

INPUTIOUTPUT PROVISIONS 26.2 -- Device Independent 1/0

o (Bit 0) -- Oe~ault binary record ~ormat ~lag

Some devices cannot receive or transmit
eight-bit data bytes. For those types o~ devices a
special record ~ormat has been designed so that
binary records can be processed. Devices that can
process eight-bit data can process either type o~
record format. The "0" bit c ontro Is th e d e~au I t
record ~ormat to be used when dealing with "binary"
records. The FMT field o~ the IOCFDF entry in the
IOCB has a special value that will cause the de~ault
binary record format to be used ~or the indicated
device. If the "D" bit is set to one. the default
record format will be the ASClI-converted-binary
format (only if binary records are being processed).
If the flO" bit is set to zero, then the default
record ~ormat will be the binary format (only if
binary records are being processed). I~ the device
can process eight-bit data, then the setting of the
"0" bit is independent o~ the device type; however,
~or devices which can only process seven-bit data,
the "0" bit must be set to one. Otherwise, the
device may respond unpredictably when binary data are
being transmitted to it.

26.2.1.5 COBVOT -- Valid data types

This byte o~ the CDB is an extension o~ the CDBDDF
entry. It contains some additional flags that govern the
types o~ 110 accesses that can be made on the device. The
~ormat o~ the CDBVDT entry is shown below.

7 6 5 4 3

: N :

2 1

: B :

o

Not used (=0)
Binary device flag
Not used (=0)
Non-file format flag

The properties controlled by the various bits of the
CDBVDT entry are explained below.

Page 26--07

INPUT/OUTPUT PROVISIONS 26.2 -- Device Independent If(

N (Bit 7) -- Non-file format flag

This bit indicates whether or not the device can
be used to perform FDR processing. Certain devices
(i.e., those with the file-type bit set to zero in
CDBDDF) can never perform FDR processing; however,
devices which are file-type devices can. in some
cases, be used in either the file format or the
non-file format mode (see IOCDTT description, section
25.3.1.2), If the tiN" bit is set to one. then the
device can be used in the non-fi Ie format mode. If
the "N" bit is set to zero, then the device cannot be
used in the non-file format mode. The diskette drive
is an example of a device that can only be used in
the file format mode. The console reader is an
example of a device that can be used in either mode.
The line printer is an example of a device that can
only be u.sed in the non-fi le format mode.

NOT USED (Bits 3-6, 0-1) Reserved area

These bits of the CDBVDT byte are reserved for
future expansion. They must be zero.

B (Bit 2) -- Binary device flag

This
eight-bit
one, then
is set to

bit indicates whether a device can process
data or not. If the "B" flag is set to

eight-bit data are valid. If the "B" flag
zero, then eight-bit data are invalid.

26.2.1.6 CDBDDA -- Device dependent area

These two-bytes of the CDB are available to the device
drivers as working storage. For the HDOS-supported devices,
this field has been provided for future expansion. For other
devices, this field can be used for whatever purposes are
deemed appropriate.

26.2.1.7 CDBWST -- Working storage

These two-bytes of the CDB are available to the device
drivers as working storage.

26.2.2 Device drivers

Each device type that is to be accessed via the device
independent 110 functions (section 25.3) must have its own
driver program. All device drivers must be accessible for
the following five functions:

Page 26-01

INPUT/OUTPUT PROVISIONS 26.2 -- Device Independent I/O

1. Turn the device on,
2. Turn the device off,
3. Perform device initialization,
4. Perform device termination,
5. Input and/or output a single character.

Not necessarily all of the five functions apply to each
device; however, an entry point must be provided in each
device driver for each of the five functions, regardless of
whether or not the function is performed.

Since the only address that is available to the device
independent I/O functions is the starting address of the
device driver (CDBSDA of CDB), the following convention must
be used by each device driver. The starting address
contained in the CDBSDA entry must be the address of the
beginning of a Jump table, one Jump for each of the five
functions listed above. An example of such Jump table is
given below:

DVDRVS

DEVIO

EGU
~MP

~MP

~MP

~MP

EGU

* DEVON
DEVOFF
DEVINT
DEVTRM

*

ADDRESS KEPT IN CDBSDA
DEVICE ON ROUTINE
DEVICE OFF ROUTINE
INITIALIZATION ROUTINE
TERMINATION ROUTINE
CHARACTER 1/0 ROUTINE

Each entry point to the device driver is accessed from
the device independent 1/0 functions by executing an indexed
subroutine call. .The offset (index value> is defined by the
displacement of the entry point from the beginning of the
device driver. Since these offsets must be the same for all
device drivers, a set of system symbols is defined in the
MDOS e~uate file for the device driver entry point of'sets.

The device on and off entry points are accessed at the
beginning and at the end of every record 1/0 function call
<. GETRC and . PUTRC>. These entry points allow the device
driver to turn the device on and of', respectively. If such
actions are not defined for the device, then the entry points
should Jump to a routine which simply exits the driver with a
"no error" status condition.

The device initialization and termination entry points
are called once by the .OPEN and . CLOSE functions,
respectively. These entry points are intended to allow
leader to be punched on a paper tape device, for example. If
such actions are not defined for the device, then the entry
points should Jump to a routine which simply exits the driver
with a "no error" status condition.

The character 1/0 entry point to the driver is used to
receive or transmit one byte of data. The transmitted or
received byte is passed between the I/O functions and the

Page 26-09

INPUT/OUTPUT PROVISIONS

device driver in the "B" accumulator. For devices that cari
process both input and output, the IOCB must be interrogated
("10" of IOCDTT) by the device driver to deteT'mine which
function is to be performed. Since the index register is
required to execute the Jump to subroutine instruction, the
address of the IOCB is passed to the device driver using the
following convention:

IOCPTR

JSR
FDB
BCS

FDB

DV$IO, X
IOCPTR
ERROR

IOCB

CALL TO DRIVER
POINTER TO IOCB'S POINTER
RETURN HERE FROM DRIVER

. ADDRESS OF IOCB

With this convention, the address pushed on the stack as
a result of executing the Jump to subroutine instruction will
point to the double byte which contains a pointer. It is the
data at the address identified by the pointer that is the
actual address of the 10CB itself. As a result, the device
driver cannot Just execute a return from subroutine
instruction to get back to the I/O function. This calling
sequence applies to all entry points into all device drivers.

Before returning to the 110 function, the device driver
must set an error status condition indicating the state of
the performed action. Two things must be configured by the
driver to indicate an error. First, the IOCSTA byte of the
IOCB must be initialized with one of the standard 1/0 error
statuses (section 25.3.1. 1). Second, the carrv condition
code must be set to one. If no error occurred, only the
carry condition code must be set to zero. The IOCSTA entry
of the 10CB need not be changed to zero since the 1/0
function will set a normal return status before exiting. The
"A" and "X" registers need not be preserved bV the device
driver in anv case. The "B" register returns the character
received if the device driver was called upon for an input
request.

26.2.3 Example of device driver

The following example illustrates a CDB and its
associated device driver for a high-speed papertape reader
(specifically, the EXORtape reader>. The system symbols from
the MOOS equate file are used throughout this example.
First, the CDB is shown:

Page 26-l

INPUT/OUTPUT PROVISIONS 26.2 -- Device Independent I/O

* * CONTROLLER DESCRIPTOR BLOCK (CDB>

* HR$CDB EGU
FDB
FDB
FDB
FCB
FCB
FDB
FDB

* o CDBIOC
HRDRV$ CDBSDA
$E404 CDBHAD
DD$RES+DD$INP+DD$OCF CDBDDF
VD$NFF+VD$BIN . CDBVDT
o CDBDDA
o . CDBWST

Logically. the paper tape reader should not be accessed
by multiple IOCBs at the same time. Thus, the device is
considered to be T'eservable (Bit UR" of CDBDDF set to 1>­
The paper tape reader is an input device only. Therefore,
bit "a" of CDBDDF is zero and bit "I" is one. The paper tape
reader is sensitive to end-of-file records. Thus. it must be
a file-type device (Bit "F" of CDBDDF set to 1). Bits "W".
"S". and "L" are all zero since the paper tape reader is not
rewindable (according to the definition in section 26.2.1.4).
is not the system console, and is not able to perform logical
sector I/O. The default binary format has been arbitrarily
identified as binary record.

The paper tape reader is capable of being used in the
non-file format mode and is capable of transmitting eight-bit
data to the device. Thus. both bits "N" and "B" of CDDVDT
are set to one.

The only other required field of the CDB is the address
of the device driver in CDBSDA. The remainder of the CDD is
reserved for expansion or is used for working storage by the
device driver.

Next, the device driver itself is shown. Of the five
entry points that are required by each device driver. only
two are used for the paper tape reader driver. The other
three (device on, device off, and device termination) are
dummy vectors that set a "no error" return status and then
return to the I/O function.

Page 26-11

INPUTIOUTPUT PROVISIONS 26.2 -- Device Independent III

* *DEVICE DRIVER ENTRY POINTS

* HRDRV$ EGU

*

*
*

*

CLC
BRA

CLC
BRA

,",SR

CLC
BRA

BSR
TAB
BCC
TSX
LDX
LDX
LDX
LDAA
STAA

RETURN TSX
LDX
INS
INS
,",MP

*

*
RETURN

RETURN

INITR

RETURN

GETCP

RETURN

O,X
O,X
O,X
#I$EOM
IOCSTA,X

x

TURN DEVICE ON

TURN DEVICE OFF

DEVICE INITIALIZATION

DEVICE TERMINATION

. CHARACTER INPUT
RETURN WITH CHAR IN uB"
CC =::> NO ERROR
CS =::> END OF MEDIA (TIMEOUT)
GET ADROF FDB FOLLOWING ,",SR
GET CONTENTS OF FDB
GET ADR OF IOCB
SET END OF MEDIA STATUS

RETURN TO CALLER
GET ADR OF FDB FOLLOWING ,",SR
AD~UST STACK FOR RETURN

,",UMP TO ADR FOLLOWING FDB

* READER INITIALIZATION ROUTINE
* INITR STX

*

LDX
CLR
CLR
LDAA
STAA
LDX
RTS

HR$CDB+CDBDDA
HR$CDB+CDBHAD
PTCTLiX
PTDTA,X
#$3C
PTCTL,X
HR$CDB+CDBDDA

SAVE INDEX REGISTER
GET THE PIA ADDRESS

. RESTORE INDEX REGISTER

* INPUT ONE CHARACTER

* GETCP STX
LPX
LDAA
LDAA
STAA
LDAA
STAA
CLR
CLR

GETCl LDAA

HR$CDB+CDBDDA . SAVE THE INDEX REGISTER
HR$CDB+CDBHAD . GET THE PIA ADDRESS
PTDTA.X CLR INTERRUPT
#$34 . STROBE READER
PTCTL,X
#$3C
PTCTL. X
HR$CDB+CDBWST . INIT THE TIMEOUT COUNTER
HR$CDB+CDBWST+l . AND CLEAR CARRY
PTCTL,X . READY TO READ?

Page 26-1

INPUT/OUTPUT PROVISIONS

BMI
DEC
BNE
DEC
BNE
SEC

GETC2 L.DAA
BCS

*

26.2 -- Device Independent I/O

GETC2 . MI => YES
HR$CDB+CDBWST+l . PL => CHECK TIMEOUT
GETCI . NE => KEEP LOOPING
HR$CDB+CDBWST
GETCI NE => KEEP LOOPING

SET CARRY FOR TIMEOUT
PTDTA.X GET CHAR
GETC4 CS => TIMEOUT

* IF ASCII FILE. STRIP PARITY

* TSX GET ADR OF IOCB
l.DX 2. X GET BACK TO 1ST LEVEL SUBRTN
L.DX O.X GET CONTENTS OF 2ND FDB
L.DX O,X GET ADR OF IOCB
LDAB IOCFDF,X PICK UP FILE ATTRIBUTES
ANDB #7 ISOLATE FMT BITS
CMPB #FM$FMA ASCII FILE?
BNE GETC3 NE => NO, LEAVE 8 BITS
ANDA #$7F STRIP PARITY IF ASCII

GETC3 CLC SET STATUS TO OK
GETC4 L.DX HR$CDB+CDBDDA RESTORE X

RTS

26.2.4 Adding a non-standard device

If the device driver defined in the above example is to
be used by a user~s program with the device independent 110
functions. then the only function that is treated differently
is the .RESRV function. Since .RESRV must be used to link
the IOCB with a known CDB. the .RESRV call is bypassed
altogether by the user program; however, before the . OPEN
function is invoked. the IOCB must be parameterized as if it
had been properly reserved.

Thus. the IOCGDW entry of the IOCB must be configured to
contain the address of the CDB with which communication is to
take place. In addition, bit "R" of IOCLUN must indicate
that the IOCB has been reserved. This information is also
found in the EXIT CONDITIONS description of the .RESRV
function (section 25.3.2).

Once the IOCB has been configured in this manner, the
other I/O functions can be used in the normal fashion.

Page 26-13

CHAPTER 27

27. OTHER SYSTEM FUNCTIONS

In the following description of the system functions
these symbols will be used:

Symbol Meaning

A A accumulator
B B accumulator
X Index register
S Stack pointer register
CC Condition code register
Z Zero flag of condition code register (bit

2)
C Carry flag of condition code register

(bit 0)
XH Most significant byte of X
XL Least significant byte of X
B,A The register pair B and A treated as a

sixteen bit register

For MDOS09, the registers Y, U and DP are unchanged by
the system function calls.

It is assumed that the reader is familiar with what
system functions are, how they are invoked, what precautions
must be taken when testing programs using system functions.
and how errors are handled by system functions (see section
24.8>'

The remainder of this chapter is devoted to the
description of all system functions not described thus far.
The description is divided into the following sections:
register functions. double-byte arithmetic functions.
character string functions. diskette file functions. and
miscellaneous functions.

27.1 Register Functions

The register functions are used by some of the other
system functions as an extension of the M6800 instruction
set. Many operations that involve the transfer and exhange
of information between the register pair "B,A" and the X
register are made feasible by the fact that the SWI
instruction (used for accessing system function handler)
automatically saves all registers on the stack. Since the
sixteen bit registers are pushed on the stack least

Page 27-01

OTHER SYSTEM FUNCTIONS 27. 1 -- Register Function!

significant byte first, most significant byte last, the
register pair "B,A" was chosen instead of "A,B". The
relationship of the B and A registers on the stack is then
identical to the other sixteen bit registers saved in this
fash i on (for th e M6800 on 1 y). For th e M6809, it is not
anticipated that the user will use the register system
functions as there are instructions to perform most of these
functions. However, the system function calls remain
identical between MOOS and MDOS09 to allow portability of
program written initially for the 6800.

27.1.1 Transfer X to B,A -- . TXBA

The . TXBA function transfers the contents of the X
register into the register pair B,A.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A contains XL.
a contains XH.
X is unchanged.
CC is indeterminate.

27.1.2 Transfer B,A to X -- .TBAX

The .TBAX function transfers the contents of the
register pair a,A into the X register.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unchanged.
XH contains B.
XL contains A.
CC is indeterminate.

27.1.3 Exchange B,A with X -- . XBAX

The . XaAX function exchanges the contents of the
register pair B,A with the contents of the X register.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A contains entry value of XL.
a contains entry value of XH.
XH contains entry value of a.
XL contains entry value of A.
CC is unchanged.

27.1.4 Add a to X -- .ADBX

Page 27-0;

OTHER SYSTEM FUNCTIONS 27. 1 -- Register Functions

The . ADBX function adds the contents of the B register
to the contents of the X register. The addition is performed
as if B were an unsigned binary number.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unchanged.
X has been incremented by the contents of

B.
CC has been set as in a normal unsigned

addition.

27.1.5 Add A to X -- .ADAX

The .ADAX function adds the contents of the A register
to the contents of the X register. The addition is performed
as if A were an unsigned binary number.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unchanged.
X has been incremented by the contents of

A.
CC has been set as in a normal unsigned

addition.

27.1.6 Add B,A to X -- .ADBAX

The .ADBAX function adds the contents of the register
pair B.A to the contents of the X register.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unchanged.
X has been incremented by the contents of

B, A.
CC has been set as in a normal unsigned

addition.

27.1.7 Add X to a,A -- .ADXBA

The .ADXBA function adds the contents of the X register
to the contents of the register pair B.A.

ENTRY PARAMETERS: None.

EXIT CONDITIONS: A has been incremented by XL.
B has been incremented by XH and C.

Page 27-03

OTHER SYSTEM FUNCTIONS 27. 1 -- Register Functiol

X is unchanged.
CC has been set as in a normal unsigned

addition.

27. 1.B Subtract B from X -- .SUBX

The .SUBX function subtracts the contents of the B
register from the contents of the X register. The
subtraction is performed as if B were an unsigned binary
number.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unchanged.
X has been decremented by the contents of

B.
CC has been set as in a normal, unsigned

subtraction.

27.1.9 Subtract A from X -- . SUA X

The .SUAX
register from
subtraction is
number.

function subtracts
the contents of the

performed as if A

the contents of the A
X register. The

were an unsigned binary

ENTRY PARAMETERS: None.

EXIT CONDITIONS: A is unchanged.
B is unchanged.
X has been decremented by the contents of

A.
CC has been set as in a normal unsigned

subtraction.

27.1.10 Subtract B,A from X -- .SUBAX

The .SUBAX function subtracts the contents of the
register pair B,A from the contents of the X register.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unchanged.
X has been decremented by the contents of

B, A.
CC has been set as in a normal unsigned

sub trac t ion.

OTHER SYSTEM FUNCTIONS 27. 1 -- Register Functions

27. 1. 11 Sub trac t X from B, A -- . SUXBA

The .SUXBA function subtracts the contents of the X
register from the contents of the register pair B,A.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A has been decremented by XL.
B has been decremented by XH and C.
X is unchanged.
CC has been set as in a normal unsigned

sub trac t ion.

27. 1. 12 Compare B, A wi th X -- . CPBAX

The .CPBAX function compares the contents of the
register pair B,A to the contents of the X register.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unchanged.
X is unchanged.
CC has been set as in a normal unsigned

subtraction.

27.1. 13 Shift X right -- . ASRX

The . ASRX function shifts the contents of the X register
to the right by one bit position. Bit 15 is held constant
and bit 0 is moved into C.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unchanged.
X is shifted right one bit position. The

sign bit is propagated into the lower
bits upon subsequent shifts.

C contains bit zero of the entry value of
X. The remainder of CC is
i nd etermi nate.

27.1.14 Shift X left -- . ASLX

The. ASLX function shifts the contents of the X register
to the left by one bit position. Bit 0 is filled with zero.

ENTRY PARAMETERS: None.

Page 27-05

OTHER SYSTEM FUNCTIONS

EXIT CONDITIONS: A is unchanged.
B is unchanged.

27.1 -- Register Functions

X is shifted left one bit position. Bit
zero is filled with zero.

C contains bit 15 of the entry value of
X. The remainder of CC is
indeterminate.

27.1.15 Push X on stack -- .PSHX

The .PSHX function pushes the contents of the X register
on the current stack.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unchanged.
X is unchanged.
CC is unchanged.
S has been decremented by 2. The

contents of XL have been pushed on
the stack followed by the contents of
XH.

27. 1. 16 Pu l1 X from stac k -- . PUl.X

The .PULX function pulls the contents from the stack
into the X register.

EN1'RY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unchanged.
XH contains the contents located at the

entr~ value of S + 1.
XL contains the contents located at the

entr~ value of S + 2.
CC is unchanged.
S has been incremented by 2.

27.2 Double-byte Arithmetic Functions

The double-byte arithmetic functions are used by some of
the other system functions and the MDOS commands as an
extension of the M6800 instruction set. These functions are
not as general purpose as the register functions, but they
are useful in special cases.

Page 27-0~

OTHER SYSTEM FUNCTIONS 27.2 -- Double-byte Arithmetic Functions

27.2.1 Add A to memory -- .ADDAM

The .ADDAM function increments a double byte in memory
by the contents of the A register. The addition is performed
as if A is an unsigned binary number.

ENTRY PARAMETERS:

EXIT CONDITIONS:

X = The address of most significant byte
of a double byte in memory.

A is indeterminate.
B is unchanged.
X is unchanged.
CC is indeterminate.
The double byte in

incremented by the
memory has been

contents of A.

27.2.2 Subtract A from memory -- .SUBAM

The .SUBAM function decrements a double byte in memory
by the contents of the A register. The subtraction is
performed as if A is an unsigned binary number.

ENTRY PARAMETERS:

EXIT CONDITIONS:

X = The address of the most significant
byte of a double byte in memory.

A is indeterminate.
B is unchanged.
X is unchanged.
CC is indeterminate.
The double byte in

decremented by the
memory has been

contents of A.

27.2.3 Shift memory right -- .DMA

The .DMA function shifts the contents of a double byte
in memory to the right by the number of bit positions
represented by the contents of the A register. The effect is
to divide the double byte by a power of 2. The exponent is
given by the value of the A register.

ENTRY PARAMETERS:

EXIT CONDITIONS:

X = The address of the most significant
byte of a double byte in memory.

A is unchanged.
B is unchanged.
X is unchanged.
CC is indeterminate.
The double byte in memory has been

shifted to the right by the number of
bits represented by the contents of
A. Zero bits are brought in from the

Page 27-07

OTHER SYSTEM FUNCTIONS 27.2 -- Double-byte A~ithmetic FunctioT

left as the shift takes place.

27.2.4 Shift memo~y left -- .MMA

The .MMA function shifts the contents of a double byte
in memory to the left by the number of bit positions
represented by the contents of the A register. The effect is
to multiply the double byte by a power of 2. The exponent is
given by the value of the A register.

ENTRY PARAMETERS:

EXIT CONDITIONS:

x = The address of the most significant
byte of a double byte in memory.

A is unchanged.
B is unchanged.
X is unchanged.
CC is indete~minate.
The double byte in memory has been

shifted to the left by the number of
bits represented by the contents of
A. Zero bits are brought in from the
right as the shift takes place.

27.3 Cha~acter String Functions

The cha~acte~ string functions are used by some of the
more complex system functions and the MDOS commands as macro
instructions or subroutines.

27.3.1 String move -- . MOVE

The . MOVE function t~ansfers ase~ies of contiguous
bytes in memory from one location into another location. The
move is made starting with the lowest add~essed byte of the
source string.

ENTRY PARAMETERS: B = The number of bytes to be
B is intially zero, 256
bytes will be moved.

moved. If
(decimal)

X = The address of the
four-byte parameter
parameter packet has
format:

first byte of a
pac keto The

the following

Page 27-(

OTHER SYSTEM FUNCTIONS

EXIT CONDITIONS:

o

1

2

3

27.3 -- Character String Functions

Address of
the

source string

Address of
the

destination string

A is indeterminate.
B = o.
X is unchanged.
CC is indeterminate.
The addresses of the source and

destination strings in the parameter
packet have both been incremented by
the entry value of B.

The source string has been moved into the
destination string.

27.3.2 String comparison -- .CMPAR

The .CMPAR function compares a series of contiguous
bytes in memory from one location with a series of bytes at
another location. The comparison is made starting with the
lowest addressed byte of the source string.

ENTRY PARAMETERS:

EXIT CONDITIONS:

B = The number of bytes to be compared.
If B is intially zero, 256 (decimal)
bytes will be compared.

X = The address of the first byte of a
four-byte parameter packet. The
parameter packet has the following
format:

o

1

2

3

Address of
the

source string

Address of
the

destination string

A is indeterminate.
B = The number of bytes remaining in the

string which did not compare. If B
is zero, the strings were identical.
If the strings mis-compared on the
first byte, B is unchanged.

Page 27-09

OTHER SYSTEM FUNCTIONS 27.3~- Character String Function~

X is unchanged.
Z = 1 if the strings compared (B = 0).

The remainder of CC is indeterminate.
Z = 0 if the strings mis-compared. The

remainder of CC is indeterminate.
The addresses of the source and

destination strings in the parameter
packet have both been incremented by
the entry value of B if the two
strings compared. Otherwise, the
source string pOinter will contain
the address of the character
following the mis-comparison, and the
destination string pOinter will
contain the address of the character
of the mis-comparison.

The source and destination strings are
unchanged.

27.3.3 Character-fill a string -- .STCHR

The .STCHR function stores a specific character into a
series of contiguous bytes in memory.

ENTRY PARAMETERS:

EXIT CONDITIONS:

A = The character to be stored into
stl' i ng.

the

B = The number of bytes to be filled with
the character. If B is initially
zero, 256 (decimal) bytes will be
filled.

X = The address of the first byte of
string to be filled.

A is unchanged.
B = O.
X is unchanged.
CC is indeterminate.

the

The string is filled with the character
in A .

27.3.4 Blank-fill a string . STCHB

The .STCHB function stores blanks ($20) into a series of
contiguous bytes in memory.

ENTRY PARAMETERS:

EXIT CONDITIONS:

B =

X =

The number of bytes to be filled
blanks. If, B is initially zero,
(decimal) bytes will be filled.
The address of the first byte of
string to be filled.

A = $20 (space>.

with
256

the

Page 27--l(

OTHER SYSTEM FUNCTIONS 27.3 -- Character String Functions

B = O.
X is unchanged.
CC is indeterminate.
The string is filled with blanks.

27.3.5 Test for alphabetic character -- . ALPHA

The . ALPHA function examines the character in the A
register for being an upper case alphabetic character (A-Z).

ENTRY PARAMETERS:

EXIT CONDITIONS:

A = The character to be tested.

A is unchanged.
B is unchanged.
X is unchanged.
C = 0 if A contains a valid alphabetic

character. The remainder of CC is
i ndetermi nate.

C = 1 if A contains an invalid alphabetic
character. The remainder of CC is
i nd etermi nate.

27.3.6 Test 'or decimal digit -- . NUMD

The .NUMD 'unction examines the character in the A
register for being a valid ASCII decimal digit (0-9).

ENTRY PARAMETERS:

EXIT CONDITIONS:

A = The character to be tested.

A is unchanged if it contained an invalid
digit. Otherwise. A contains the
binary equivalent of the decimal
digit Cbits 4-7 will be zero).

B is unchanged.
X is unchanged.
C = 0 if A contained a valid digit. The

remainder of CC is indeterminate.
C = 1 if A contained an invalid digit.

The remainder of- CC is indeterminate.

27.4 Diskette File Functions

The diskette file functions can be used in conJunction
with the device dependent 110 functions (section 25.2) for
diskette accessing. These functions are used by the device
independent 110 functions to perform directory searches and
diskette space allocation and deal location. The MDOS
commands use these functions for changing file names and
attributes and for loading programs from memory-image files
from the diskette into memory.

Page 27-11

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Function

All of the functions described in this section re~uire a
t~enty-five byte parameter table called the diskette file
table, or DFT. The format of the table is sho~n here so that
it ~ill not have to be repeated for each function. It will
be seen that the first sixteen bytes of the DFT are identical
in format with an MDOS directory entry. Also. the entire DFT
is of the same format as part of an IOCB (starting with
IOCLUN and ending ~ith IOCSBE)' The contents of the
individual fields are not described in this section since
they have been ade~uatelv discussed in sections 24.1.4 and
25.3.1. All of the diskette file functions ~ill change the
diskette controller variables below location $0020.

Page 27-1

OTHER SYSTEM FUNCTIONS

00

01

02

03

04

05

06

07

08

09

OA

OB

OC

Logical unit number

File Name

Suffix

Physical sector number
of file's RIB

00 : W : 0 : S : C : N FMT

OE

OF

10

11

12

13

14

15

16

17

18

(reserved; =0)

(reserved; =0)

PSN EN

(reserved; =0)

Initial new file size

Sector buffer
start address

Sector buffer
end address

27.4 -- Diskette File Functions

LUN

NAM

SUF

RIB

FDF - File descrip­
tor flags

RES

DEN - Directory
entry number

SIZ

SBS

SBE

Page 27--13

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Function'

27.4.1 Directory search -- .DIRSM

The .DIRSM function performs directory searches based on
various criteria. This function can be used for finding,
creating, or deleting directory entries on an MOOS diskette.

ENTRY PARAMETERS: B contains a function code that specifies
the action to be performed by .DIRSM.

x = The address of the DFT. All calls to
.DIRSM re~uire that LUN contains the
logical unit number to be accessed
(ASCII number 0-3, $30-$33), that SBS
contains the starting address of a
128 (decimal) byte sector buffer, and
that SBE contains the ending address
of the sector buffer. If the sector
buffer is larger than a single
sector, only the first 128 bytes will
be used.

The following function codes for the B
register are defined:

B = 1 indicates to search for and
retrieve the next, non-deleted
directory entry. The DFT must have
DEN = 0 for the initial call. The
DEN must then remain unchanged for
subse~uent calls since it is used to
determine where to resume the search.
The contents of the sector buffer
must also remain unchanged between
successive calls for this function
code.

B = 2 indicates to search for and
retrieve a directory entry with a
specific file name and suffix. The
DFT entries NAM and SUF are used to
specify the file name.

B = 4 indicates to create a new uni~ue
directory entry of a given name and
suffix. Initial diskette space
allocation is performed if the
directory entry is created. The DFT
entries NAM and SUF are used to
specify the directory entry to be
created. A search of the directory
is performed for this entry to ensure
that it does not already exist. The
DFT entries FDF and SIZ must also be

Page 27-1

OTHER SYSTEM FUNCTIONS

EXIT CONDITIONS:

27.4 -- Diskette File Functions

s p e c i fie d . FDF m us t s p e c i f y bot h the
inherent and the changeable
attributes to be initially assigned
to the file. SIZ is used to describe
the initial diskette space that is to
be allocated. If SIZ is zero, the
default space allocation will be
performed. If SIZ is non-zero, the
allocation will be performed using
the contents of SIZ as the minimum
number of sectors to be allocated.

B = 8 indicates a similar function to be
performed as for the 8=4 case;
however, in the event that a
directory entry already exists with
the NAM and SUF found in the DFT,
that file's directory entry
information will be returned in the
DFT. Otherwise, the DFT is
parameterized identically to the 8=4
case.

8 = 16 ($10) indicates that a specific
directory entry is to be deleted from
the directory. The DFT entries NAM
and SUF are used to specify the entry
to be deleted.

8 = 32 ($20) indicates to search for the
next, non-deleted directory entry
with a specific set of file
attr i b utes. Entr i es enc ountered with
different attributes will not be
returned by the search. The DFT must
have DEN = 0 for the initial call.
The DEN must then remain unchanged
for subse~uent calls since it is used
to determine where to resume the
search. The contents of the sector
buffer must also remain unchanged
between successive calls for this
function code. The FDF entry must
contain the specific attributes to be
searched for.

A is indeterminate.

B contains the return
following return
defined:

status.
statuses

The
are

8 = 0 indicates that no errors occurred
(normal return>.

Page 27-15

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functiol

B = 1 indicates that the directory entry
specified by LUN, NAM, and SUF was
not found in the directory.

B = 2 indicates that B contained an
invalid function code upon entry to
. DIRSM.

B = 3 indicates the physical end of the
directory was encountered during a
"search for next directory entry"
re~uest (Entrv value of B = 1 or 32).

B = 4 indicates that
full and cannot
entry.

the directory is
accomodate a new

B = 5 indicates that insufficient
diskette space exists to satisfy the
initial space re~uirements of SIZ
when attempting to create a new
directory entry. The .ALLOC function
(section 27.4.4) should be consulted
for a full description of the
allocation scheme and the reasons for
arriving at this error.

B = 7 indicates that an attempt was made
to create a duplicate entry in the
directory. The file name identified
by LUN, NAM, and SUF already exists
in the directory.

B = 8 indicates that
entry was created
LUN, NAM. and SUF.

a new directory
as specified by

B = 9 indicates that an attempt was made
to delete a protected file.

Xis unchanged.

C = 0 if no errors occurred (B = 0). The
remainder of CC is indeterminate.

C = 1 if an error occurred (B not zero).
The remainder of CC is indeterminate.

The DFT entries were changed in the
following manner depending on the
various entry values of B:

B = 1. If a non-deleted directory entry
was found, then NAM, SUF, RIB, FDF.

Page 27-

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

and RES contain the ;ull image 0; the
directory entry. DEN will contain
the computed directory entry number.
The remainder of the DFT is
unchanged. The sector bu;fer
contains the current directory
sector. I; no directory entry was
found, the directory entry fields NAM
through RES, inclusive, will be
unchanged. DEN and the contents 0;
the sector buf;er are indeterminate.

B = 2. The DFT is affected the same as
for B=1.

B = 4. I; a new d i rec tory entry was
created, RIB and DEN will re;lect the
appropriate values ;01' the new entry.
The sector bu;fer will contain the
current directory sector. I; a new
entry was not created (duplicate ;ile
name), then the DFT will be a;fected
in the same way as ;01' B=l.

B = 8. The exit conditions for this case
are the same as for B=4. In
addition, i; a duplicate entry
already existed in the directory, the
directory entry fields NAN through
RES, inclusive, will contain the ;ull
image of the duplicate entry. DEN
will also contain the duplicate
entry's directory entry number.

B = 16. If the entry is deleted, the
complete directory entry will be
returned in fields NAM through RES,
inclusive. In addition, RIB will be
zero. The contents of the sector
buffer are indeterminate. If the
entry is not deleted, all parameters
except RES and DEN will be unchanged.
RES, DEN and the contents 0; the
sector bu;;er will be indeterminate.

B = 32. The DFT is a;fected in the same
way as ;01' B=1.

27.4.2 Change ;ile name/attributes -- . CHANG

The . CHANG ;unction allows a directory entry to have its
name, suffix, and/or attribute fields changed.

Page 27-17

OTHER SYSTEM FUNCTIONS

ENTRY PARAMETERS:

EXIT CONDITIONS:

27.4 -- Diskette File Functions

B = A function code that specifies the
action to be taken btj . CHANG. If bit
o is set to one, .CHANG will change
the file nama and suffix fields of a
directortj entrtj. If bit 1 is set to
one, the function will change the
attribute field of a directortj entrtj.
Bits 2-7 are not used and should be
zero. Bits 0 and 1 are independent
of each other. Thus, . CHANG can be
used to change file name, suffix, and
attributes at the same time.

X = The address of a file table packet.
The packet has the following format:

o

1

2

3

Address of
old DFT

Address of
new DFT

The "old DFT" contains the LUN, NAM,
and SUF fields of an existing
directortj entrtj that is to be
changed. The 5BS contains the
starting address of a 128 (decimal)
byte sector buffer. SBE contains the
ending address of the sector buffer.
If the sector buffer is larger than
one sector, only the first 128 btjtes
wi 11 be used. The "new DFT" contains
the information that is to be placed
into the directory entrtj. LUN in
both DFTs must be the same (ASCII
number 0-3, $30-$33). The new DFT
must contain NAM, SUF, and/or FDF
fields as indicated btj the function
code in the B register. A sector
buffer is not required btj the new
DFT.

A is indeterminate.

B contains the return
following return
defined:

status.
statuses

The
are

B = 0 indicates that no errors occurred
(normal return).

Page 27-1E

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

B = 1 indicates that B contained an
invalid function code upon entry to
. CHANG.

B = 3 indicates that the directory entry
specified by LUN, NAM, and SUF of the
old OFT could not be found in the
directory. The old OFT directory
entry must exist in order for the
change to be possible.

B _. 4 indicates that the directory entry
specified by LUN, NAM, and SUF of the
new OFT already existed in the
directory. The new OFT directory
entry must have a unique file name
and suffix (only if changing the old
entry's file name) .

B = 5 indicates that an invalid attribute
change was attempted. Only the
changeable attributes (system file,
write protection, delete protection)
can be changed. The inherent
attributes of a file remain constant
for the duration of the file's
existence.

X is unchanged.

C - 0 if no errors occurred (B = 0>' The
remainder of CC is indeterminate.

C = 1 if an error occurred (B not zero).
The remainder of CC is indeterminate.

The four-byte file packet is unchanged.

The old OFT and its sector buffer have
been changed as a result of
performing a directory search (.DIRSM
UI it h B = 2). The new DFT has been
changed as a result of performing a
directory search LDIRSM with B = 4);
however, no diskette space allocation
was performed. A file name change is
affected by deleting the old
directory entry and by creating a new
d i rec tory entry. Th us. th e d i rec tory
entry's DEN (and its position within
the directory> may have changed;
however, no space is deleted or
reallocated.

Page 27-19

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functioy

27.4.3 Load program into memory -- . LOAD
---------------------------------------_.-

The .LOAD function reads a program from a memory-image
file from the diskette into memory. Control can be passed to
the resident debug monitor, to the calling program, or to the
loaded program. In addition, the program can be loaded into
the User Memory Map of EXORciser II systems with the dual
memory map configuration.

The . LOAD function does not verify that memory exists
for the areas into which a program gets loaded. Programs
which load above location $lF and below the end of contiguous
memory known to MOOS are guaranteed that memory exists since
the memory was sized during MOOS initialization; however,
programs loading beyond the end of contiguous memory known to
MOOS or programs loading into the User Memory Map of an
EXORciser II system with the dual memory map configured are
not guaranteed that memory ex ists. The operator is
responsible for knowing where memory is configured in his
system and where his programs are loaded. Also, due to the
nature of the diskette controller, it is not possible for the
. LOAD function to compare what is read from the file with
what is stored into memory. Only diskette controller read
errors can be detected during the load process.

Programs brought into memory from the diskette will be
loaded in multiples of eight bytes. This fact must be
considered when programs are loaded into adJacent blocks of
memory close to other programs, or if programs are loaded
into the upper end of a block of memory.

ENTRY PARAMETERS: B = A function code that specifies the
action to be performed by . LOAD.
This action includes selecting the
memory map; checking the limits of
the loaded program against the memory
map; and the passing of control to
the debug monitor, loaded program, or
calling program. The following
function codes are defined:

Bit 0 = 1 indicates that control is to be
given to the loaded program at its
starting execution address as
obtained from the file's RIB. Bit 0
is mutually exclusive with bits 1 and
2.

Bit 1 = 1 indicates that control is to be
given to the resident debug monitor
after the program is loaded. Bi t 1 I

is mutually exclusive with bits 0 and
2.

Page 27~~

OTHER SYSTEM FUNC1IONS 27.4 -- Diskette File Functions

Bit 2 = 1 indicates that control is to be
given to the loaded program at a
starting execution address specified
in the OFT, not at the address
contained in the file's RIB. The
starting execution address must be
specified in DEN of the DFT. Bit 2
is mutually exclusive ooith bits 0 and
1.

Bit 4 = 1 indicates that the program can
only be loaded above the resident
MOOS (location $lFFFJ and belooo the
last location of contiguous memory
established during MOOS
initialization. Programs loaded in
this manner require an additional
eight bytes of memory beyond the last
address loaded into by the program.
The MDOS variable ENOUS$ ooill be
changed to reflect the last address
loaded into by the program. The MDOS
SWI vector ooill be unchanged to allooo
access to MDOS system functions. Bit
4 is mutually exclusive with bits 5
and 7.

Bit 5 = 1 indicates that the program can
only be loaded into the User Memory
Map of an EXORciser II system with
the dual memory map configuration.
The MDOS SWI vector will be restored
to point back to the debug monitor if
control is passed to the loaded
program or to the monitor. If
control is returned to the calling
program, the MDOS SWI vector will be
unchanged. The only requirement
placed on programs loading into the
User Memory Map of a dual memory map
configuration is that the ending load
address not be greater than $FFFF.
Otherooise, any memory locations
($OOOO-FFFF) can be loaded into. Bit
5 is mutually exclusive with bits 4
and 7.

Bit 6 = 1 indicates that no directory
search is to be performed. The RIB
entry of the DFT contains the
physical sector number of the RIB of
the file from which the program is to
be loaded.

Page 27-21

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Function<

EXIT CONDITIONS:

Bit 7 = 1 indicates that the program can
be loaded anywhere in memor~ above
location $lF. The only other
re~uirement is that the ending load
address not exceed $FFFF. No checks
are made for overlaying the resident
MOOS or for loading into
discontiguous memory. As a result,
the MOOS SWl vector is restored to
point back into the debug monitor,
making MOOS system functions
unaccessible. This function re~uires
one of the control passage bits (0,
1, or 2) to be set to one. Control
must be passed to either the loaded
program or to the debug monitor.
Control cannot be returned to the
calling program. Bit 7 is mutually
exclusive with bits 4 and 5.

If none of bits 0-2 are set, then control
will be returned to the calling
program after the program is loaded.

x = The address of the DFT. All calls to
the . LOAD function re~uire that LUN
contains the logical unit number to
be accessed (ASCII number 0-3,
$30-$33), that SBS contains the
starting address of a 128 (decimal)
byte sector buffer, and that SBE
contains the ending address of the
sector buffer. If the sector buffer
is larger than one sector, only the
first 128 bytes will be used. For
all cases but one (Bit 6 set to 1),
the DFT must also contain the file
name and suffix in NAM and SUF. For
the Bit 6 case, NAM and SUF are not
re~uired. Instead, the physical
sector number of the file's RIB must
be placed into RIB.

A is indeterminate.

B contains the return status. The
following return statuses are defined
(only if control is returned to the
calling program):

B = 0 indicates that no errors occurred
(normal return>.

B = 1 indicates that B contained an

Page 27-2;

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

invalid function code upon entr~ to
. LOAD. An invalid function ma~ be
one that is not defined, or use of
more than one of the mutually
exclusive bits. This error will also
occur when attempting to load into
the User Memory Map in a s~stem which
does not have the dual memor~ map
configured.

B = 3 indicates that the directory entry
specified by LUN, NAM, and SUF ~as

not found in the directory.

B = 4 indicates that the directory entry
specified by LUN, NAM, and SUF does
not have the memory-image format.
Only programs from memory-image files
can be loaded from the diskette.

B = 5 indicates that an attempt was made
to load a program into an invalid
range of memory. If bit 4 was set,
the program must load above $lFFF and
eight bytes belo~ the end of
contiguous memory. If bit 5 ~as set,
the program must load ~ithin the
range $OOOO-$FFFF, inclusive, in the
User Memroy Map of an EXORciser II
system with the dual memory map
configured. If bit 7 ~as set, the
program must load within the range
$20-$FFFF, inclusive.

B = 6 indicates that the starting
execution address is invalid. The
starting execution address must be
within the range of memory loaded by
the program.

B = a diskette controller error status
($31-$39) if a diskette controller
error occurred during the load
attempt. This status can only be
returned if control ~as to be passed
back to the calling program (Bits 0-2
all zero and Bit 5 zero in entry
value of B) or if the program was to
be loaded into the User Memory Map of
a dual memor~ map configuration and
executed (Bit 5 set to one and bits 0
or 2 set to 1). Otherwi se, any
diskette controller errors that are
detected while the program is being

Page 27-23

OTHER SYSTEM FUNCTIONS 27.4 - Diskette File Functiol

loaded will cause the two-cha~acte~
diskette cont~olle~ e~~o~ message to
be displayed and cont~ol passed to
the debug monito~. These
two-cha~acte~ e~~o~ messages a~e
discussed in detail in section 28.1.

X is unchanged if cont~ol is ~etu~ned to
the calling p~og~am (Bits 0-2 all
ze~o in ent~y value of B).
Othe~wise, X will contain the
sta~ting load add~ess of the p~og~am

(lowest add~ess loaded into).

C = 0 if no e~~o~s occu~~ed (B = 0). The
~emainde~ of CC is indete~minate.

C = 1 if an e~ror occurred (B not zero).
The remainder of CC is indete~minate.

S is configured depending on which range
of memory is loaded into. If loading
above the resident MOOS (Bit 4 set to
one in entry value of B), the stack
pointer will contain the highest
address loaded into (eiJht bytes
greater than the highest program
location; twenty bytes for MDOS09).
If loading ove~ the resident MOOS or
into discontiguous memory (Bit 7 set
to one in entry value of B), the
stack pointer will contain the
address of the EXbug stack area. If
loading into the User Memo~y Map of
an EXORciser II system with the dual
memory map configured, the stack
pointer will contain the highest
address loaded into.

The DFT has been changed as if a
directory search has been performed
<. DIRSM wi thB = 2>' In addition,
RES contains the starting load
address and DEN contains the starting
execution address as found in the
file's RIB. The DFT contents can
only be accessed if control is
returned to the calling program.

If the resident debug monito~ is given control (Bit 1
set to one in entry value of B), the pseudo registers are
initialized as follows:

Page 27-~

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

Pseudo register Contents

P
S

X
A,B,C
Y
U=S
DP=O

Starting execution address
See description of S above. Contents
vary depending on load mode.
Starting load address.
Indeterminate.
Indeterminate (MDOS09)
MDOS09 only
MDOS09 only

This feature facilitates starting the execution of a program
from the debug monitor since the starting execution address
need not be remembered by the operator; however. caution must
be exercised if programs are loaded into the User Memory Map
of an EXORciser II with the dual memory map configured.
Since the stack pointer contains the address of the last
loaded program location, use of the debug commands "i P" or
"iN" will cause seven locations of the program to be
destroyed. This may alter program data or instructions. It
is recommended that the stack pointer first be changed via
the n;s" command; that the "nnnniG" command be used to
initiate execution; or that stack area be provided at the end
of the program area. For programs not loaded into the User
Memory Map of an EXORciser II system with the dual memory map
configured, this precaution does not apply.

Particular attention should be placed on programs that
load into the highest memory address $FFFF. Since the
diskette controller can only load programs in a multiple of
eight bytes, such programs should have a starting load
address that is a multiple of eight. Otherwise. the
calculated ending load address will be greater than $FFFF,
causing an error.

Caution must also be exercised if MDOS is to be
reinitialized from the debug monitor after having loaded a
program. The ABORT or RESTART pushbuttons must first be
depressed before the debug command "E800;G" or "MDOS" is
executed.

27.4.4 Allocate diskette space -- .ALLOC

The .ALLOe function allocates contiguous segments of
diskette space for a file. The file's Retrieval Information
Block and the system's Cluster Allocation Table are updated
to account for the allocated space. Since space allocation
is performed automatically by the device independent I/O
functions, the .ALLOC function should only be used by
programs that are doing physical sector 1/0 on MDOS
compatible diskettes.

Page 27-25

OTHER SYSTEM FUNCTIONS

ENTRY PARAMETERS:

EXIT CONDITIONS:

27.4 --Diskette File Function

X = The address of the DFT.

The DFT must contain
paramete1's:

the following

LUN must contain the logical unit number
on which the file resides (ASCII
number 0-3, $30-$33).

RIB must contain the physical sector
number of the file's RIB if the
directory entry has already been
created (additional space
allocation>. Otherwise, RIB must
contain the value zero to indicate
that no Retrieval Information Block
exists for the file (initial space
allocation">.

FDF should have the "c" bit set to
indicate whether space is to be
allocated contiguously to the already
existing space (RIB not zero). If
the "c" bit is set to zero,
additional space can be allocated
anywhere on the diskette. If RIB is
zero, the FDF entry is not re~uired.

SIZ must contain the number of sectors
that are to be allocated. If SIZ is
zero, the default allocation size (32
clusters) will be used.

SBS must contain the starting address of
a 128 (decimal) byte sector buffer.

SBE must contain the ending address of
the sector buffer. If the sector
buffer is larger than one sector,
only the first 128 bytes ..,ill be
used.

A is indeterminate.

B contains the return status. The return
statuses are taken from the set of
codes defined for the device
independent 1/0 functions. Only the
system symbols are given here for
those return statuses. The exact
values can be found from the MDOS
equate file, section 25.3.1. 1, or
section 28.3. The following return
statuses are defined:

Page 27-2

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

B = 0 indicates that no errors occurred
<normal return>.

B = I$RIB indicates that the file had an
existing Retrieval Information Block
that was invalid (see section 24.2>.

B = I$FSPC indicates that insufficient
space is available to accommodate the
allocation reqUirements. If SIZ
contained a non-zero value at the
entry to .ALLOe, this error indicates
that the specific amount of space
requested could not be allocated.
This can occur for two reasons.
First. if the file is segmented ("C"
of FDF set to zero), the number of
sectors specified in SIZ could not be
allocated in a single, contiguous
block anywhere. Second, if the file
is contiguous ("C" of FDF set to
one), the number of sectors specified
in SIZ could not be allocated
contiguously with the existing space.
If SIZ contained a zero value, this
error indicates that no space is
available at all on the diskette, or
that no space is available that is
contiguous to the existing space,
depending on "C" being zero or one in
FDF. If the default of 32 clusters
(SIZ = 0) cannot be allocated, .ALLOC
will allocate whatever space it can
without generating an error. If SIZ
is non-zero, an error will be
generated if the exact number of
sectors cannot be allocated.

B = I$SSPC indicates that the file's
Retrieval Information Block could not
accommodate the required number of
SDWs for the requested allocation.
This error occurs if a file is very
fragmented.

X is unchanged.

C = 0 if no errors occurred (9 = 0), The
remainder of CC is indeterminate.

C = 1 if an error occurred (9 not zero).
The remainder of CC is indeterminate.

The DFT is unchanged if an error

Page 27-27

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette Fil. Function

occurred. If no errors occurred, the
DFT has been changed in the follo..,ing
manner. Bytes 3 and 4 contain the
SOW of the last allocated segment.
Bytes 5 and 6 contain the starting,
logical sector number of the last
allocated segment. SUF contains the
logical sector number of the logical
end-of-file, and RIB, if originally
zero, contains the physical sector
number of the file's Retrieval
Information Dlock. The contents of
the sector buffer are indeterminate.

27.4.5 Deallocate diskette space -- .DEALC

The .DEALC function deallocates segments of diskette
space from a file. The file's Retrieval Information Block
and the system's Cluster Allocation Table are updated to
account for the deallocated space. Since space deallocation
is performed automatically by the device independent 110
functions, the .DEALe function should only be used by
programs that are doing physical sector 1/0 on MOOS
compatible diskettes.

ENTRY PARAMETERS: x = The address of the OFT.

The OFT must contain
parameters:

the follo..,ing

LUN must contain the logical unit number
on ..,hich the file resides (ASCII
number 0-3, $30-$33).

Bytes 1 and 2 must contain the file's
logical sector number beyond ..,hich
space is to be deallocated. If these
t..,o bytes contain the value $FFFF,
then the entire space belonging to
the file ..,ill be deallocated;
ho..,ever, in this special case, the
file's directory entry must already
have been flagged as deleted.

RIB must contain the
number of the
Information Block.

physical sector
file's Retrieval

DEN must contain the file's directory
entry number.

SDS must contain the starting address of
a 128 (decimal) byte sector buffer.

Page 27-:/

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

EXIT CONDITIONS:

SBE must contain the ending address of
the sector buffer. If the sector
buffer is larger than one sector,
only the first 128 bytes will be
used.

A is indeterminate.

B contains the return status. The return
statuses are taken from the set of
codes defined for the device
independent I/O functions. Only the
system symbols are given here for
those return statuses. The exact
values can be found from the MDOS
eq,uate file, section 25.3.1.1, or
section 28.3. The following return
statuses are defined:

B = 0 indicates that no errors occurred
(norma I retul'n >.

B = I$RIB indicates that the file had an
existing Retrieval Information Block
that was invalid (see section 24.2>.

B = I$RANG indicates that the maximum
referenced logical sector number
specified in bytes 1 and 2 does not
belong to the fi Ie. That is. the LSN
specified is greater than the number
of sectors belonging (allocated) to
the fi Ie.

B = I$IDEN indicates that an invalid DEN
was specified.

B = I$OEAL indicates that an attempt was
made to deallocate all of a file's
space (bytes 1 and 2 set to $FFFF),
but the directory entry for the file
was not flagged as deleted.

X is unchanged.

C = 0 if no errors occurred (B = 0>' The
remainder of CC is indeterminate.

C = 1 if an error occurred (B not zero).
The remainder of CC is indeterminate.

The OFT is only changed if the all of a
file's space was to be deallocated.
In that case, RIB will contain the

Page 27-29

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Function!

value zero. Otherwise, the DFT is
unchanged. The contents of the
sector buffer are indeterminate.

27.4.6 Display system error message -- .MDERR

The .MDERR function displays on the system console one
of the standard system error messages contained in the MDOS
error message file. The error message to be displayed is
indicated by an index number which is passed in one of the
registers. This index number will also be used to modify the
system error status word (see section 28.4).

Certain error messages contain references to external
parameters that must be supplied by the calling program
(e. g., a file name specification Dr an address>. These
parameters are shown in the list of error messages below as a
backslash character (\) followed by a numeric digit which
indentifies the format of the parameter. When an external
parameter reference is encountered in the message, the
corresponding parameter from the calling program will be
inserted into the message before it is displayed on the
system console. The following external parameters are
defined:

Page 27-31

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

Parameter reference Calling program specification

\0 The X register contains the address
of a standard MDOS file name. Eleven
bytes comprise an MOOS file name:
logical unit number (1 byte), file
name (eight bytes), suffix (two
bytes).

\1 The X register's contents are to be
converted into four displayable
hexadecimal digits.

\3 The X register contains an address of
a byte in memory whose contents are
to be converted into two displayable
hexadecimal digits.

\8 The return address on the stack is
decremented by two (pointing to the
system call of the error message
function) and converted into four
displayable hexadecimal digits. This
parameter allows the location of the
call to .MOERR to be incorporated
into the error message for system
diagnostic purposes.

The following table lists the standard error messages
from the MOOS error message file in order of their error
message index numbers <number required as entry parameter to
display the message), This number is not to be confused with
the two-digit decimal reference number that is displayed with
each message on the system console. The displayed reference
number only serves as a quick way of locating the error
messages' descriptions in Chapter 28.

Page 27-31

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functio1

INDEX
NUMBER

02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
lA
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28

ERROR MESSAGE

** 40 DIRECTORY SPACE FULL
** 41 INSUFFICIENT DISK SPACE
** 29 INVALID LOGICAL UNIT NUMBER
** 02 NAME REQUIRED
** 03 \0 DOES NOT EXIST
** 25 INVALID FILENAME
** 05 \0 DUPLICATE FILE NAME
** 28 DEVICE NAME NOT FOUND
** 31 INVALID DEVICE
** 01 COMMAND SYNTAX ERROR
** 46 INTERNAL SYSTEM ERROR AT \8
** 07 OPTION CONFLICT
** 12 INVALID TYPE OF OBJECT FILE
** 13 INVALID LOAD ADDRESS
** 42 SEGMENT DESCRIPTOR SPACE FULL
** 32 INVALID RIB
** 30 INVALID EXECUTION ADDRESS
** 14 INVALID FILE TYPE
** 36 FILE EXHAUSTED BEFORE LINE FOUND
** 24 LOGICAL SECTOR NUMBER OUT OF RANGE
** 34 INVALID START/END SPECIFICATIONS
** 35 INVALID PAGE FORMAT
** 38 INVALID LINE NUMBER OR RANGE
** 39 LINE NUMBER ENTERED BEFORE SOURCE FILE
** 06 DUPLICATE FILE N~ME
** 04 FILE NAME NOT FOUND
** 10 FILE IS DELETE PROTECTED
** 33 TOO MANY SOURCE FILES
** 16 CONFLICTING FILE TYPES
** 15 \0 HAS INVALID FILE TYPE
** 27 \0 IS WRITE PROTECTED
** 47 INVALID SCALL
** 18 DEVICE ALREADY RESERVED
** 19 DEVICE NOT RESERVED
** 11 DEVICE NOT READY
** 20 INVALID OPEN/CLOSED FLAG
** 21 END OF FILE
** 17 INVALID DATA TRANSFER TYPE
** 37 END OF MEDIA

Page 27-:

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

INDEX
NUMBER ERROR MESSAGE
------ -------------

29 ** 22 BUFFER OVERFLOW
2A ** 23 CHECKSUM ERROR
2B ** 26 FILE IS WRITE PROTECTED
2C ** 43 INVALID DIRECTORY ENTRY NO. AT \8
2D ** 44 CANNOT DEALLOCATE ALL SPACE. DIRECTORY

ENTRY EXISTS AT \8
2E ** 45 RECORD LENGTH TOO LARGE
2F ** 48 CHAIN OVERLAY DOES NOT EXIST
30 ** 08 CHAIN ABORTED BY BREAK KEY
31 ** 09 CHAIN ABORTED BY SYSTEM ERROR STATUS

WORD
32 ** 49 CHAIN ABORTED BY ILLEGAL OPERATOR
33 ** 50 CHAIN ABORTED BY UNDEFINED LABEL
34 ** 51 CHAIN ABORTED BY PREMATURE END OF FILE
35 ** 52 SECTOR BUFFER SIZE ERROR
36 ** 53 INSUFFICIENT MEMORY

In addition, two error messages have specific calling
sequences. These two messages have the following format when
displayed:

INDEX
NUMBER

00
01

ERROR MESSAGE

**UNIF. I/O ERROR -- STATUS = \3 AT \8
**PROM I/O ERROR -- STATUS = \3 AT h DRIVE i

- PSN J

The first case (index number 00) should be used for
displaying standard error messages as a result of the device
independent I/O functions. The. MDERR function expects the X
register to contain the address of an 10CB. The status byte
of the IOCB will be decoded into one of the standard system
error messages shown above. In the event that an illegal
status code is contained in the IOCB, the error message will
take on the form as shown above. The "\3" parameter will
contain the value of the status byte, and the "\8" parameter
will contain the address of the call to the error message
function.

The second case (index number 01) should be used for
displaying standard diskette controller error messages (as
returned by .EREAD, . EWRIT, .MERED, .MEWRT). The .MDERR
function expects the X register to contain the address of a
three-byte packet. The format of the packet is shown below:

Page 27-33

OTHER SYSTEM FUNCTIONS 27.4 --Diskette File Function!

o : Controller error status I

1 Address of
function call

2 I to sector 1/0 function

In addition, the .HDERR function will pick up the logical
unit number and the physical sector number from the diskette
controller variables in locations $0000-$0002, inclusive.
When the error message is displayed, the parameter "h" will
have been replaced with the address of the call to the error
message function, the parameter "in will have been replaced
with the logical unit number, and the parameter "J" will have
been replaced with the physical sector number at which the
error occurred.

ENTRY PARAMETERS:

EXIT CONDITIONS:

B = The index number of the error message
as shown in the above tables.

X may not have to be parameteri zed. If
the error message calls for an
external parameter, X will have to
contain the parameter or the address
of the parameter that is to be placed
into the errol' message. The contents
of X depend on the type of message
displayed as shown in the above
tab les.

A is indeterminate.

B is indeterminate.

X is indeterminate.

c = O. The remainder of CC is
i nd et eT'mi na te.

The Error Type of the system errol' status
word has been changed to contain the
index number of the displayed errol'
message. In add i tion, the Errol'
Status Flag of the system errol'
status word has been set to one.
Section 28.4 contains a complete
description of the system errol'
status word.

If the .HDERR function is called with an index number
for which no valid error message exists, or if the MOOS errol'
message file cannot be accessed on the diskette without an

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

error, a special message will be displayed.
the format:

** INVALID MESSAGE \3 AT \8

This message has

The "\3" parameter will have been replaced with the index
number of the error message that the .MDERR function was
trying to display. This mayor may not be a valid index
number, depending on whether or not the MDOS error message
file could be properly accessed. The "\8" parameter will
have been replaced with the address of the call to the .MDERR
system function. In the event that this message is
displayed. the Error Type portion of the system error status
word will contain the value $FF (the Error Status Flag will
also be set to one).

27. 5 Other Functions

The remaining system functions are so diverse that they
fail to fall into one of the previous categories. These
functions are used by the MDOS commands and are available for
user programs in order to extract file name or device
specifications from the MDOS command line. allocate program
memory in the remaining block of contiguous memory, set the
system error status word when non--standard error messages are
displayed so that CHAIN processing will work properly. and to
return control to the MDOS command interpreter.

27.5.1 Process file name -- .PFNAM

The .PFNAM fUnction scans a specified input buffer for a
file name or device specification. The information is
returned in a format which is called the standard MDOS file
name format. This format fits into the other parameter
tables required by the device independent I/O functions
(IOCB) and the diskette file functions (DFT). The .PFNAM
function will also recognize family indicators in either the
file name or the suffix.

Due to the nature of the free format of the MDOS command
line, any character that will not be confused with a device
name indicator, a family indicator, a suffix delimiter, a
logical unit delimiter. an option field delimiter, or an end
of line delimiter will be used to terminate the scan for a
valid file name or device specification.

The scan will never continue beyond an option delimiter
(i) or an end of line delimiter (carriage return), regardless
of the number of times .PFNAM is called with the scan pointer
pointing to such a character.

ENTRY PARAMETERS: x = The address of a file name packet.

Page 27-35

OTHERSVSTEM FUNCTIONS

EXIT CONDITIONS:

27.5 -- Other Functio~

This packet has the follotlling format:

o

1

------.---..... -------------
Address of

input buffer

2 Address of
standard

3 file name area

Since .PFNAM is designed to be called
more than once to extract multiple
file name Dr device specifications
from a single input buffer, the first
pOinter of the file name packet. Dr
scan pointer, must be pointing to a
character tIIhich pTeviously teTminated
the scan. When .PFNAM is called the
fiTst time, special caTe must be
taken to ensure that the fiTst byte
of the input buffer is a valid
terminator (this is automatically
handled by the MOOS command
interpreter in using the HODS command
line buffeT). This characteT is
normally a space OT a comma; hOtlleVeT,
any otheT valid terminator tIIill
suffice.

The second pointer of the file name
packet defines tIIheTe the standaTd
file name is to be placed. This area
must be eleven bytes long. The first
byte tIIill contain the logical unit
numbeT. The next eight bytes tIIlll
contain the device name or the file
name, and the last two bytes tIIi11
contain the suffix.

A = The chaTacteT that teTminated the
scan.

B contains the retuTn
follo ... ing return
defined:

status.
statuses

The
are

B = 0 indicates that a standaTd MOOS file
name specification ... as found.

Bit 0 = 1 indicates that a family
indicatoT ... as found in the file name.

Page 27-:::

OTHER SYSTEM FUNCTIONS 27. 5 -- Other Functions

Bit 1 = 1 indicates that a family
indicator was found in the suffix.

Bit 2 = 1 indicates that a device
specification was found.

Bits 3-6 are unused and will be zero.

Bit 7 = 1 indicates a null file name was
found. This does not necessarily
mean that a null suffix or a null
logical unit number was found.

Xis unchanged.

CC is indeterminate.

The scan pointer (first two bytes of file
packet) will contain the address of
the character that terminated the
scan.

The standard file name pointer (second
two bytes of file packet) will have
been incremented by eleven <points to
location following the suffix).

The standard file name area is only changed if a
c orresp ond i ng element is found in th e i np ut buffer. Thus. if
no logical unit number is found in the input buffer. the
logical unit part of the standard file name area will not be
changed. The same is true for the file name and for the
suffix fields. This feature allows appropriate default
values for the logical unit number, file name, and suffix to
be placed into the standard file name area before .PFNAM is
invoked. Then, after the input buffer is scanned. those
parts of the file name specification which were not
explicitly found will assume the default values which were
unchanged.

No delimiters of any sort are placed into the standard
file name area. The presence of device name indicators and
family indicators is indicated by the return status in the B
register only. The file name (or device name) and suffix
will be left Justified within the file name area. Unused
parts of the file name or suffix will be space-filled
automatically.

When th e scan is in i tiated, lead ing spac es in front of
the file name or device specification will be treated as a
sing I e space (ignored). Any spac e, however, enc ountered
after the first character of a specification is found will be
treated as a terminator.

Page 27-37

OTHER SYSTEM FUNCT IONS, 27.5 -- OtheT Function!

If the file name, su'Ffix, 01' logical unit numbeT
contains mOTe valid chaTacteTs than required, they will be
automatically flushed fTom the input stream. Thus, even if a
ten character file name is specified, only the first eight
characters will be returned in the file name area.

The following examples illustrate how .PFNAM extracts
the file name or device specification from the input buffer.
The left column shows a string as it is encounteTed in the
input buffeT. The double quotation marks delimit the staTt
and end of the string. It should be noted that an initial
terminator begins each string. The right column shows the
extracted information as it would appeal' in the standard file
name aTea. The dashes indicate unchanged paTts of the
standaTd file name aTea (those aTeas wheTe the default values
would be found>.

Input stTing

FILE,"
FILE1:0,"
F.SA,"
FILE.RO:1,"
: 0, ..
.LX:1,"

ExtTacted file name

-FILE
OFILEl
-F SA
lFILE RO
0----------
l--------LX

II FILENAMETOOLONG.AB:l,"
n FILE$AB: 1, II

lFILENAMEAB
-FILE

II ttLP, II

" .UD: 1, II

II FILE*. *: 1, II

-LP
IUD
IFILE

27.5.2 Re-enteT resident MOOS -- .MDENT

The .MDENT function passes contTol from a calling
pTogram to the MDOS command inteTpreteT. It is one of the
few functions which does not TetuTn contTol to the calling
pTogTam. .MDENT can only be used if the Tesident opeTating
system area has not be changed by the calling pTogTam (01' any
progTams that may have executed prior to it).,

ENTRY PARAMETERS:

EXIT CONDITIONS:

The diskette in dTive zeTO must not have
been Teplaced with anotheT diskette
since the last time MDOS was
initialized via the Tesident debug
monitor.

TheTe is no TetuTn
howeveT, the
peTformed:

fTom this
following

function;
actions are

The SWI and IRQ vectors aTe configured
for the MOOS function handler.

Page 27-3

OTHER SYSTEM FUNCTIONS 27.5 -- Other Functions

The user SWI and IRQ vectors maintained
by MDOS CSWI$UV and IRQ$UV) are reset
to point to an RTI instruction. The
user program is no longer resident,
thus user-defined SWI and IRG
interrupts cannot be processed after
MDOS regains control.

The end Or user memory pointer, END$US,
is reset.

The command line buffer is initialized.

The version/revision numbers of MDOS in
memory are compared with the
version/revision numbers in the ID
sector. The addresses of the system
overlays are also compared in this
fashion. If a discrepancy exists
between memory and the diskette,
EXbug is given control.

The system IOCBs for the
printer, and the MOOS error
file are configured.

console,
message

The input prompt (=) is displayed and a
new command line accepted from the
system console.

The system error status word is cleared
(Error Type and Error status Flag) if
a valid command is interpreted.

27.5.3 Reload MOOS from diskette -- . BOOT

The . BOOT function reloads the resident operating system
from the diskette in drive zero via the diskette controller
firmware. This function should be used if the resident
operating system has been changed by the current program CSWI
handler must still be intact>. This function should also be
used if the diskette in drive zero has been replaced with
another MOOS diskette since the last time MOOS was
initialized via the debug monitor. . BOOT is one of the few
functions that does not return control to the calling
program.

This function has the same effect as if the ABORT or
RESTART pushbuttons were depressed on the EXORciser and the
debug command "EBOOiG" or "MOOS" executed.

ENTRY PARAMETERS: A valid MOOS diskette must be ready in
drive zero.

Page 27-39

OTHER SYSTEM FUNCTIONS

EXIT CONDITIONS:

27.5 -- Other FunctioT

This function does not return to the
calling program. A new copy of MDOS
is brought from the diskette into
memory. All of the functions
performed during this type of
initialization are described in
section 2.1 and section 24.6.
Control is given to the MDOS command
interpreter after MOOS has been
initialized.

27.5.4 Set system error status word -- . EWORD

The . EWORD function configures the system error status
word with a specific error type. This allows a calling
program to indicate that an error occurred during its
execution. The system error status word can then be tested
from within a CHAIN procedure (Chapter 6).

ENTRY PARAMETERS:

EXIT CONDITIONS:

B = The value that is to be placed into
the Error Type field of the system
error status word. Any value is
valid. Section 28.4 describes the
format of the error status word.

A is unchanged.

B is unchanged.

X is unchanged.

CC is indeterminate.

The lower byte of the system error status
word contains the value passed in B.
The Error status Flag has also been
set to one. The remainder of the
error status word is unchanged.

27~5.5 Allocate user program memory -- .ALUSM

The .ALUSM function adJusts the MOOS pointer ENDUSS to
reflect the end of the user program area. This function
facilitates the dynamic allocation of variable buffer space
adJacent to the highest loaded program location so that
programs can take advantage of the variable amount of
contiguous memory that may be configured for a given
installation.

The user program area consists of all contiguous memory
between the end of the resident operating system and the end
of contiguous memory. The pointer ENDUSS is automatically

Page 27-"

OTHER SYSTEM FUNCTIONS 27.5 -- Other Functions

adJusted to reflect the end of a loaded program (only if the
program is loaded directly from the command line or via the
LOAD command without the "U" or "V" option>. Thus, the
program can obtain information about the remaining amounts of
memory without having to size memory itself.

ENTRV PARAMETERS:

EXIT CONDITIONS:

B contains a function code that specifies
the action to be taken by .ALUSM.
The following function codes (and
their impact the the X register) are
defined:

B = 0 indicates that the X register
contains the address of the last
address that is to be made a part of
the current user program area.

B = 1 indicates that the
contains the number
memory that are to be
the end of the current

X register
of bytes of
allocated to

user program.

B = 2 indicates that all of the remaining
contiguous memory is to be allocated
to the current user program area.

X contains the parameters as described
above.

A is unchanged.

B contains the return
following return
defined:

status.
statuses

The
are

B = 0 indicates that no errors occurred
(norma I return >.

B = 1 indicates that the allocation
request would have caused ENDUS$ to
be greater than ENDSV$. The user
program area cannot extend beyond the
end of contiguous memory in the
system.

B = 2 indicates that the allocation
request would have caused ENDUS$ to
be less than or equal to ENDOS$. The
allocated memory block must reside
completely above the address
contained in ENDOS$.

X contains an indeterminate value if an
error occurred (exit value of B not

Page 27-41

OTHER SYSTEM FUNCTIONS 27.5 -- OtheT Functioni

zero) OT if the entTY value of B was
zero.

X contains the old value plus one (value
before the call to .ALUSI'1) of ENDUS$
if the entry value of B was one.
Thus, X points to the starting
address of the newly allocated block.

X contains the number of bytes allocated
if the entry value of B was two.

Z = 1 and C = 0 if no errors occurred (B
= 0). The remainder of CC is
indeteTminate.

Z = 0 and C = 1 if an eTror occuTred (B
not zeTo). The remaindeT of CC is
indeterminate.

The MOOS vaTiable ENDUS$ is unchanged if
an error occurred. Otherwise, ENDUS$
will contain the following: if the
entry value of B was zero, ENDUS$
will contain the entry value of the X
Tegister; if the entTY value of B was
one, ENDUS$ will have been
incTemented by the entry value of the
X register; and if the entry value of
B was two, ENDUS$ will contain the
value of ENDSY$.

Page 27'-4~

CHAPTER 28

28. ERROR MESSAGES

This chaptel' contains a summary and an explanation of
all of the standard errol' messages that can be displayed
during the operation of MOOS. Standard el'ror messages
include those displayed by the diskette controller fil'mware
during initialization; the PROM 110 messages that can be
displayed when any fatal diskette el'l'or is detected by an
MDOS command or overlay, and the standard el'l'Ol' messages
displayed by the commands themselves. The standard command
error messages are recognizable by the fact that a pair of
asterisks followed by two-digit reference number is displayed
before the actual message. Explanations of messages without
the two-digit number should be looked for in the detailed
command descl'iptions in chapters 3-23.

28.1 Diskette Controller El'rol's

The diskette controller errors can be displayed in two
fOl'ms depending on the phase MOOS is in. During the
initialization phase, the erl'or messages from the controller
take on the form of the letter "E" followed by a decimal
digit 0-9. Control is given to the debug monitor after the
message is displayed. After MDOS has been properly
initialized, the diskette controllel' errors are identified by
the text "PROM 110 ERROR". Control is l'eturned to the MDOS
command interpretel'.

28.1.1 Errors during initialization

If for some reason the drive electronics are not
propel'ly initialized, or if the diskette in dl'ive zel'O cannot
be read propel'ly to load the Bootblock or the resident
operating system. then a two-character error message will be
displayed and control returned to the debug monitor. The
function resulting in the erl'or has been tried five times.
After th e fifth fa il ure, th e erl'or message is d i sp layed.

Message

El

Probable Cause

A cyclical redundancy check (CRC)
error was detected while reading the
resident operating system into
memory.

Page 28-01

ERROR MESSAQES

E2

E3

E4

E5

2B. 1 -- Diskette Controller Errol

The diskette has
tab punched
initialization
information is
diskette.

the write protection
out. During the
process, certain
written onto the

The diskette is not damaged and can
still be used for a system diskette;
however, the write protection tab
must first be covered with a piece of
opaque tape to allow writing on the
diskette.

The drive is not ready. The door is
open or the diskette is not yet
turning at the propel' speed. If the
diskette has been inserted into the
dri~e with the wrong orientation, the
"not ready" errol' will be also
generated. This errol' will also
occur if a double-sided diskette is
placed into a single-sided diskette
drive.

Closing the door, waiting a little
bit longer before entering the
"EBOO;Q" or "MDOS" command, or
turning the diskette around so it is
properly oriented should eliminate
th i s errol'.

A deleted data mark was detected
while reading the resident operating
system into memory.

A timeout interrupt occurred. This
indicates that a diskette controller
command was not completed within the
allotted time. This error is also
produced if a non-maskable interrupt
(such as depressing the ABORT
pushbutton on the EXORc.iser's front
panel) is generated during a diskette
operation.

Page 2B-4

ERROR MESSAGES

E6

E7

E8

E9

28.1 -- Diskette ContT'oller Errors

The diskette controller has been
presented with a cylinder-sector
ad dress that is i nval id. Th i s error
occurs when the sum of STRSCT and
NUMSCT (see Appendix D) is larger
than the total number of sectors on
the diskette.

This error indicates some type of a
hardware prob lem. For examp Ie. the
error can be caused by missing or
overlapping memory, bad memory, or
pending IRGs that cannot be serviced.

A seek error occurred while trying to
read the resident operating system
into memory.

Like E6 errors, this one indicates
some type of a hardware problem.

A data mark error was detected while
trying to read the resident operating
system into memory.

A CRC error was found while reading
the address mark that identifies
sector locations on the diskette.

The diskette controller errors El, E4. E8, and E9
indicate that the diskette cannot be used to load the
operating system; however, a new operating system can be
generated on that diskette, making it useful again. The
DOSGEN (Chapter 10) and/or FORMAT (Chapter 15) commands
should be consulted for generating a new diskette. Depending
on the extent of the errors, the diskette may be used in
drive one to recover any files that may be on it (see section
2. B. 9>'

The diskette controller error E5 can occur for a variety
of reasons. The most common reason, and the most fatal. is
the destruction of the addressing information on the
diskette. If the addressing information has been destroyed
(verified by using the DUMP command to examine areas of the
diskette), the FORMAT command may be used to rewrite the
addressing; however, information on the damaged diskette
cannot be recovered. Occasionally, after a system has Just
been unpacked, the read/write head may have been positioned
past its normal restore point on cylinder zero. In this
case, trying the event which caused the error three or more
times may position the head to the proper place. If this
fails, the head will have to be manually repOSitioned past
cylinder zero; however, this problem rarely occurs. The E5
errors can also occur if a user-written program accesses

Page 28-03

ERROR MESSAGES 28. 1 -- Diskette Controller Errors

drives 1-3 without using one of the system functions and
without first restoring the read/write head on that drive.

Even after the resident o~erating system has been
successfully read into memory, certain errors can occur in
the subsequent initialization procedure. During
initialization the re.ident operating system cannot access
the error message processor since it has nQt been
initialized. Messages similar in format to those generated
by the diskette controller are displayed to indicate such
errors. They differ from the diskette controller errors in
that the second character of the two-character message is a
non-numeric character. The following errors can occur during
initialization. but only after the resident operating system
has been read into memory.

Message

E?

Probable cause

This error indicates that the RIB of
the resident operating system file
MDOS.SY is in error. The operating
system cannot be loaded.

The diskette probably is not an MOOS
system diskette, or the system files
have been moved from their original
p laces. The REPAIR command (Chapter
22) can be used to identify which
files are missing 01" if their places
have been changed.

EM This error indicates that there was
insufficient memory to accommodate
the resident portion of the operating
system.

The memory requirements described in
section 1. 1 should be reviewed. If
the minimum requirements are
satisfied, then the existing memory
should be carefully examined for bad
locations.

Page 28-01.1

ERROR MESSAGES

EI

28.1 -- Diskette Controller Errors

The version and revision of MDOS
already loaded into memory is not the
same as that on diskette. This error
usually occurs as the result of
switching diskettes in drive zero
without following the initialization
procedure outlined in section 2.1.
This error can also occur is the ID
sector has been damaged.

The error can be avoided if the
initialization procedure is followed
correctly every time a new system
diskette is inserted into drive zero.

ER The addresses of the RIBs of the MDOS
overlays are not the same as those at
the time of the last initialization.
This error may occur for the same
reasons as the "EI" error.

EU An input/output system function
returned an error during the
initialization. Errors of this sort
indicate a possible memory
the opening of the door to
while the initialization
place.

problem or
drive zero
is taking

EV One of the system files is missing or
cannot be loaded into memory. If a
system file is missing, the diskette
has been improperly generated or the
file was intentionally deleted. If a
file cannot be loaded. then the
diskette should be regenerated. The
diskette may be used in drive one to
save any files that may be on it
(section 2.8.9). This error may also
occur if the door to drive zero is
opened while initialization is in
progress.

28.1.2 Errors after initialization

If a diskette controller error is detected after MDOS
has been initialized. then an error message of the following
format will be displayed.

**PROM I/O ERROR--STATUS=nn AT h DRIVE i-PSN J

This message indicates that an unrecoverable error occurred
while trying to access the diskette. The error status "nn"

Page 28-05

ERROR MESSAQES 28.1 -- Diskette Cont~olle~ E~~o,

is a value returned by the diskette controlle~. The e~ro~s
are of the same type that cause the initialization process to
give control to EXbugi howeve~, instead of beginning with the
lette~ "E", the status (nn) begins with the digit "3". The
second digit of the status cor~esponds di~ectly to the
diskette controlle~ error number discussed in the previous
section. The "E" has been replaced by the "3". Thus, status

31 is the same as E1
32 is the same as E2

39 is the same as E9.

A memory address (only meaningful for system diagnostics) is
substituted fo~ the letter "h"; the logical unit number is
substituted for the letter "ins and the physical secto~
numbe~ (PSN) at which the error occurred is substituted for
the letter "J".

Fo~ e~~o~s that are retryable (status 31, 34, 38, and
39), the following actions have been taken in an attempt to
bypass the erro~. First, the ROM firmwa~e t~ied to ~e-access
the sector five times. The head was then positioned a
maximum of five cylinders outward from the secto~ in error.
repositioned back over the sector, and anothe~ five accesses
attempted. Lastly, the head was positioned a maximum of five
cylinde~s inwa~d from the sector in error, repositioned back
ove~ the secto~, and another five accesses attempted.

Occassionally, if the diskette in drive ze~o was changed
without properly ~einitializing the system, or if an MDOS
system file is moved, renamed, o~ deleted from the di~ectory.
the e~ror messages El, ER, EU, or EV can be displayed and
control given to the debug monitor. These error messages a~e
explained in the p~evious section.

28.2 Standard Command Errors

The following list contains all of the standa~d error
messages than can be displayed by the MOOS commands. They
are listed in order of th.ir two-digit reference number for
easy location. This number is not to be confused with the
er~or message index numbe~ that is loaded into the B
accumulator when the system error message function (.HDERR,
section 27.4) is accessed.

In some cases. the erro~ message applies also to
user-w~itten programs using the device independent lID
functions. Then, the e~ro~ condition returned in the IOCB
entry I.OCSTA (section 25.3.1.20) will contain a value, which
when decoded by the .HDERR function. would ~esult in the

Page 28-1

ERROR MESSAGES 28.2 -- Standard Command Errors

standard error message being displayed.

The first error message is standard, but is only
displayed by the MDOS command interpreter, not by a command.
It has no number identifying it. The second error message is
only displayed if the MDOS error message function is called
with an invalid error message index number, or if the system
error message file cannot be accessed without error.

WHAT?

This message indicates that the first file name
specification entered on the command line was not
the name of a file in the diskette's directory.
Most often this error occurs as the result of a
mistyped command name.

Some c omman d s,
this message
command.

such as DUMP and
to indicate an

PATCH, d isp lay
unrecognizable

** INVALID MESSAGE mm AT nnnn

This message is displayed by the .MDERR system
function if it is called with an index number for
which no valid error message exists, or if the
MDOS error message file cannot be accessed on the
diskette without an error. The number "mm" shows
the index number of the error message that the
. MDERR function was trying to display. The
number "nnnn" shows the address of the call to
the .MDERR function.

** 01 COMMAND SYNTAX ERROR

The syntax of the command line parameters as seen
by the command could not be interpreted. Most
often this message refers to undefined characters
appearing in the <options> field of the command
1 ine.

If this message is displayed during the execution
phase of the CHAIN command, it may mean that an
execution operator was encountered that had an
illegal operand field.

** 02 NAME REGUIRED

One or mare of the file names required by the
command as parameters was omitted from the
command line.

Page 28-07

ERROR MESSAGES 28.2 -- Standard Command Errorj

** 03 <name> DOES NOT EXIST

The displayed file name was not found in the
diskette's directory. The file must exist prior
to using the command. The <name> is displayed to
show which file name of the multiple names
specified as parameters caused the error.

** 04 FILE NAME NOT FOUND

The file name entered on the command line as a
parameter does not exist in the diskette's
directory. The file must exist prior to using
the command. No file name is displayed since
only one parameter is re~uired by the command.

This error can also occur during the FDR
processing of the . OPEN function when a file is
being opened in the input or update modes.

** 05 <name> DUPLICATE FILE NAME

The displayed file name already exists in the
diskette's directory. The file must not exist
prior to using the command. The <name> is
displayed to show which file name of the multiple
names specified as parameters caused the error.

** 06 DUPLICATE FILE NAME

The file name entered on the command line as a
parameter already exists in the diskette's
directory. The file must not exist prior to
using the command. No file name is displayed
since only one parameter is re~uired by the
command.

This error can also occur during the FDR
processing of the . OPEN function when a diskette
file is being opened in the output mode.

** 07 OPTION CONFLICT

The specified options were not valid for the type
of function that was to be performed by the
command. Several of the options are mutually
exclusive and cannot be specified at the same
time. The specific command descriptions should
be consulted for the restrictions concerning the
various options.

Page 28-0:

ERROR MESSAGES 28.2 -- Standard Command Errors

** 08 CHAIN ABORTED BY BREAK KEY

This message is displayed by the CHAIN command to
indicate that the operator depressed the break
key during the execution phase, causing it to be
aborted.

** 09 CHAIN ABORTED BY SYSTEM ERROR STATUS WORD

The last program invoked from the CHAIN process
set an error status into the system error status
word which was not masked by a SET operator. If
no SET operators are used in a CHAIN file, any
error status word change will cause the CHAIN
process to be aborted.

** 10 FILE IS DELETE PROTECTED

An attempt was made to delete a file which had
the delete protection bit set in its directory
entry. The file is not deleted.

** 11 DEVICE NOT READY

Most frequently this error indicates that a
command is trying to output to the printer while
the printer is not ready or out of paper;
however, the message can apply to any of the
supported devices whether being used for input or
output.

** 12 INVALID TYPE OF OBJECT FILE

Most frequently this message indicates that an
attempt was made to load a program into memory
from a file which does not have the memory-image
attribute.

This message can also indicate that the RIB of a
memory-image file has been damaged (LOAD command,
Chapter 18).

Page 28-09

ERROR MESSAGES 28.2 -- Standard Command E1"ro

** 13 INVALID LOAD ADDRESS

This message indicates that an attempt was made
to load a program into memory which, depending on
the method of loading: 1) loads outside of the
range of contiguous memory established at
initialization; 2) loads over the resident
operating system; 3) loads below hexadecimal
location $20; or 4) loads beyond location $FFFF.
The latter case implies that the file's RIB may
be damaged. If this is the suspected cause, the
REPAIR command (Chapter 22) should be used to
correct the error. Programs which load into the
highest memory address ($FFFF) which do not have
a starting load address that is a multiple of
eight, can also cause this error.

** 14 INVALID FILE TYPE

The file name entered on the command line as a
parameter has the wrong file format (the numeric
portion of a displayed directory entry's
attribute field) for the intended operation. No
file name is displayed since only one parameter
is required by the command.

This error can also occur if a binary record
transfer is being requested to a device that does
not support binary transfers; if a non-record
format (e. g., memory-image format) is specified
when opening a non-diskette device; or if a
non-ASCII record format is specified when using
the non-file format mode.

** 15 <name> HAS INVALID FILE TYPE

The displayed file name has the wrong file format
(the numeric portion of a displayed directory
entry's attribute field) for the intended
operation. The <name> is displayed to show which
file name of the multiple names specified as
parameters caused the errol".

The MERGE command (Chapter 19) can display this
message if a memory-image file has an invalid
RIB. The REPAIR command (Chapter 22) should be
used to correct the error.

** 16 CONFLICTING FILE TYPES

A command was expecting files of the same format.
The files specified have different file formats
and/or attributes.

Page 28-

ERROR MESSAGES 28.2 -- Standard Command Errors

** 17 INVALID DATA TRANSFER TYPE

An attempt was made to read from an output device
or file, to write to an input device or file, to
perform record 1/0 with the logical sector mode
set, to perform logical sector I/O with the
record mode set, to open a non-input/output
device in the update mode, or to open a
non-diskette device in the update mode.

** 18 DEVICE ALREADY RESERVED

Bit "R" of the IOCLUN byte in an IOCB was set to
one when the .RESRV system function was called.

** 19 DEVICE NOT RESERVED

Bit fiR" of the IOCLUN byte in an IOCB was set to
zero when the . OPEN or .RELES system functions
were called.

** 20 INVALID OPEN/CLOSED FLAG

Bit "0" of the IOCDTT byte in an IOCB was set to
one when the . CLOSE, .GETRC •. GETLS, .PUTRC,
.PUTLS, .REWND, or .RELES system Function was
called. or bit "0" of the IOCDTT byte was set to
zero when the . OPEN system function was called.

** 21 END OF FILE

An end-of-file record was read from a
non-diskette device or an attempt was made to
read beyond the logical end-of-file in a diskette
file. Attempting to read from a diskette file
after the end-oF-File error has occurred will
result in the same error. Reading from a device
after the end-of-file error occurred mayor may
not result in the same error, depending on what
caused the initial end-of-file condition.
Reading a record from a diskette file which
contains no carriage returns will result in this
error.

** 22 BUFFER OVERFLOW

An attempt was made to read a record which was
larger than the data buffer provided for the
record. The overflow of the record is truncated.

During the CHAIN command's execution phase. a
supplied input response exceeded the maximum
number of characters acceptable for the input
request.

Page 28-11

ERROR MESSAGES 28.2 -- Standard Command Error!

** 23 CHECKSUM ERROR

A binary record or an ASClI-converted-binary
record was read whose calculated checksum did not
agree with the checksum byte contained in the
record.

This error can also occur during the FDR
processing of the . OPEN function. If the file
format mode is specified, and the device is read
in search of an FDR, any record that begins with
the FDR header character but which is not an FDR
(e. g., created in non-file format mode) will
cause this error.

** 24 LOGICAL SECTOR NUMBER OUT OF RANGE

An attempt was made to read a logical secto.r
beyond the physical end of the file. The
physical end of the file is the highest numbered
logical sector allocated to the file. This error
can also be caused if the IOCSDW and IOCSLS
entries of the IOCB are changed by the calling
program after the file has been opened.

** 25 INVALID FILE NAME

A file name was
family indicator
indicator (#), or
character.

specified that contained the
(*), began with a device name
began with a non-alphabetic

The NAME command (Chapter 20) limits the use of
the family indicator. Failure to do so may
result in this error.

** 26 FILE IS WRITE PROTECTED

An attempt was made to write into a file which
has the write protection attribute set in its
directory entry.

This error can also be caused by attempting to
open a diskette file in the update mode which
already has the write protection bit set.

** 27 <name) IS WRITE PROTECTED

The file <name) had the write protection
attribute set in its directory entry when an
attempt was made to write to the file.

Page 28-H

ERROR MESSAGES 28.2 -- Standard Command Errors

** 28 DEVICE NAME NOT FOUND

A device name was specified which is not defined
as an MOOS-supported device. This usuall~ occurs
if the device name is mistyped. The valid device
names for the 110 functions are CN, CR. CP. DK,
and LP. If a logical unit number is specified
for a proper device that is greater than the
number of units present for that device, then
this error may also occurr (e. g., specif~ing

units greater than 3 for for diskette drives or
units greater than 0 for other devices).

The COPY command (Chapter 7) will also accept the
device names HR and UD.

** 29 INVALID LOGICAL UNIT NUMBER

A logical unit number was specified that is
invalid. If the device is a diskette, the valid
109 i ca 1 un i t numb ers are zero through three. For
non-diskette supported devices only logical unit
numbers of zero are allowed.

** 30 INVALID EXECUTION ADDRESS

The starting execution address of a program in a
memory-image file is less than the lowest address
or greater than the highest address loaded into
by the program. This indicates a RIB error. The
REPAIR command (Chapter 22) should be used to
correct the error.

The EXBIN command (Chapter 14) uses this message
to refer to an illegal specification of an
execution address in the options field (i. e., a
non-hexadecimal digit).

** 31 INVALID DEVICE

an illegal
cannot be

The name
any of

does not

A valid device name was used in
con t ext. For e x amp Ie, the d e vic e LP
used in the context of an input device.
DK cannot be used on the command line of
the MOOS commands. The COpy command
allow the CN device to be used as an input
specification.

This message can also
perform logical sector
device, or an attempt to
110 on a device that
non-file format mode.

indicate an attempt to
110 on a non-diskette
perform non-file format
does not support the

Page 28'-13

ERROR MESSAGES 28.2 -- Standard Command Error

If a non-standard device is being interfaced to
the system using the device independent I/O
functions, this error can indicate that the
IOCGDW entry of an IOCB <address of CDB) is zero,
or that the address of the software driver
(CDBSDA of CDB) is zero.

** 32 INVALID RIB

An attempt was made to open a file <usually a
memory-image file) that has an invalid RIB. The
criteria for a valid RIB are explained in de~ail

section 24.2. The REPAIR command (Chapter 22)
should be used to correct the error.

** 33 TOO MANY SOURCE FILES

More file names were specified on
line than could be accommodated
which can accept multiple file
parameters.

the command
by a command

names as

** 34 INVALID START/END SPECIFICATIONS

The start and end specifications entered on the
command line for the LIST command did not start
with the letters "5" or "Ln. This error can
occur if the starting specification starts with
US" and the ending specification starts with "L",
or vice versa. If the end specification has a
value less than the value of the start
specification, then this error will also occur.

** 35 INVALID PAGE FORMAT

A non-standard page format
had an invalid number
lines/page. The specific
should be consulted for
spec ifications.

** 36 FILE EXHAUSTED BEFORE LINE FOUND

was specified which
of columns/line or
command description

the limits of these

A start specification entered on the command line
of the LIST command (Chapter 17) specified a
physical line number whose value was larger than
the total number of lines in the file. The same
type of error can be caused by a line number
specification in a BLOKEDIT command file (Chapter
5>'

Page 28-1

ERROR MESSAGES 28.2 -- Standard Command Errors

** 37 END OF MEDIA

A File Descriptor Record was being searched for
on a non-diskette device or a record output
transfer was taking place on a non-diskette
device when the device ran out of medium (e. g. ,
end of cassette or paper tape).

** 38 INVALID LINE NUMBER OR RANGE

A line number was encountered in the BLOKED!T
command file (Chapter 5) which did not begin with
an asterisk, a double quote. a decimal digit
(0-9), or an alphabetic character (A-Z), and the
line was not a quoted line. If the command line
started with a digit, then the physical line
number had a value outside of the range 1-65535,
or the starting number of a line number range was
greater than the ending line number of the range.

** 39 LINE NUMBER ENTERED BEFORE SOURCE FILE

A line number was encountered in the BLOKEDIT
command file (Chapter 5) before an input file was
opened.

** 40 DIRECTORY SPACE FULL

An attempt was made to add a new entry to the
directory when no empty directory entry could be
found (first byte equal to zero or to $FF). The
directory can accommodate 160 (decimal) entries.

Page 28-15

ERROR MESSAGES 28.2 -- Standard Command Error~

** 41 INSUFFICIENT DISK SPACE

While trying to write to a file or close a file,
an allocation request for more space returned
with insufficient room to accommodate the space
requirements. This can occur when trying to
extend a file whose attributes demand contiguous
space allocation. In this case, even though more
space may be available, on the diskette than is
actually required. the space is not adJacent to
the already allocated space. This error can also
occur when trying to create a file with
contiguous allocation on a diskette where the
largest available contiguous block is smaller
than the requested size. This error can also
occur if the diskette is 1007. full when a new
file is being created or when an existing file is
attempting to expand by even a single sector.
File reorganization (section 3.3) will
consolidate fragmented space, possibly increasing
the size of the available contiguous space.

** 42 SEGMENT DESCRIPTOR SPACE FULL

During an allocation request for additional
space. the file's Retrieval Information Block was
found to have the maximum number of Segment
Descriptors already in use. File reorganization
(section 3.3) will consolidate segment
descriptors.

** 43 INVALID DIRECTORY ENTRY NO. AT nnnn

An IOCB (or DFT) contained a value in its IOCDEN
(or DEN) entry which was outside of the allowable
limits of valid directory entry numbers. The
address "nnnn" gives the location of the call to
the error message function.

** 44 CANNOT DEALLOCATE ALL SPACE, DIRECTORY ENTRY EXISTS AT
nnnn

This message indicates a hardware or system
software malfunction if generated by one of the
MDOS commands. A directory entry must be flagged
as deleted prior to having the file's space
deallocated. The address "nnnn" gives the
location of the call to the error message
function.

Page 28-14

ERROR MESSAGES 28.2 -- Standard Command Errors

** 45 RECORD LENGTH TOO LARGE

An attempt was made to write a binary record or
an ASClI-converted-binary record which had more
than 254 (decimal) data bytes.

** 46 INTERNAL SYSTEM ERROR AT nnnn

This message indicates a hardware or system
software malfunction. Careful notes should be
made regarding the events leading up to this
error. Motorola Microsystems should be notified.
The address "nnnn" gives the location of the call
to the error message function.

** 47 INVALID SCALL

This message indicates that a program attempted
to access the MOOS SWI (system function) handler
with a function byte following the SWI
instruction that is not defined. If breakpoints
are patched into memory without using the EXbug
command "nnnniV", this error may occur if the SWI
vector is still configured for MOOS functions.

** 48 CHAIN OVERLAY DOES NOT EXIST

The CHAIN overlay's file name does not exist in
the directory. The REPAIR command (Chapter 22)
should be used to check the diskette for other
errors.

** 49 CHAIN ABORTED BY ILLEGAL OPERATOR

An illegal execution operator was encountered in
the intermediate file during the CHAIN command's
execution phase.

** 50 CHAIN ABORTED BY UNDEFINED LABEL

A JMP execution operator was encountered which
referenced a label that did not exist in the
intermediate file (forward direction only> during
the CHAIN command's execution phase.

** 51 CHAIN ABORTED BY PREMATURE END OF FILE

An access to the intermediate file returned an
end-of-file condition when an input request was
made by a program that was invoked by the CHAIN
process. All input that is expected by the
program must be supplied by the intermediate
file.

Page 28-17

ERROR MESSAGES 28.2 -- Standard Command ErroT

** 52 SECTOR BUFFER SIZE ERROR

The sector buffer pointers of an IOCB do not
describe a sector buffer that is an integral
number of sectors in size. When a file is
opened, the IOCSBS and the IOCSBE en.tries of the
IOCB must point to the first and last bytes of a
sector buffer. The following relationship must
be true:

IOCSBE-IOCSBS+l
--------------- = INTEGRAL NUMBER OF SECTORS

128

When using the logical sector 1/0 functions
(.GETLS, . PUTLS) , the above relationship must be
true also. In addition. the . PUTLS function
re~uires that the sector buffer to be output be
described bV the pointers IOCSBS and IOCSBI
(instead of IOCSBE). Then, the buffer described
by IOCSBS and IOCSBI must also be an integral
number of sectors in size.

** 53 INSUFFICIENT MEMORY

This message indicates that a command could not
allocate sufficient memory in the user program
area to complete its task. The minimum memory
re~uirements described in section 1. 1 is
sufficient for all MDOS commands. Thus. this
message indicates a problem ~ith the existing
memory, or tampering with the memory map. The
same is true for the MDOS-Supported soft~re
products that display this messagei however, the
memory re~uirements for the particular product
that displayed the error message should be
revie~ed (Appendix H), rather than those for the
standard MDOS commands in section 1. 1.

The ROLLOUT command (Chapter 23) may display this
message to indicate that the address given as the
destination of the position-independent routine
is outside of a valid addressing range (missing
memory).

28.3 InputlOuput Function Errors

The MDOS system functions that perform 110 through an
IOCB parameter table will return an error status in the
IOCSTA entry of the IOCB. These error conditions can be
decoded and displayed as messages bV the MDOS error message
function bV loading the B accumulator ~ith a zero and leaving
the IOCB's address in the X register. The errors are part of

Page 28-J

ERROR MESSAGES 28.3 -- Input/Outpu~ Function Errors

the standard error messages explained above. This section
contains the system symbols from the MDOS equate file that
are used to reference the I/O errors. The following table
shows the value of the IOCSTA byte, the system symbol equated
to that value from the MDOS equate file, and the error
message.

IOCSTA
Value

00
01
02
03
04
05
06
07
08
09
OA
013
OC
OD
OE
OF
10
11

12
13
14
15

16
17

18
19

System
Symbol

I$NOER
I$NODV
I$RESV
I$NORV
I$NRDY
I$IVDV
I$DUPE
I$NONM
I$CLOS
I$EOF
I$FTYP
I$DTYP
I$EOM
I$BUFO
I$CKSM
I$WRIT
I$DELT
I$RANG

I$FSPC
I$DSPC
I$SSPC
I$IDEN

I$RIB
I$DEAL

I$RECL
I$SECB

Standard Error Message Displayed
by .MDERR (B=O, X=IOCB address)

Normal return, no error
** 28 DEVICE NAME NOT FOUND
** 18 DEVICE ALREADY RESERVED
** 19 DEVICE NOT RESERVED
** 11 DEVICE NOT READY
** 31 INVALID DEVICE
** 06 DUPLICATE FILE NAME
** 04 FILE NAME NOT FOUND
** 20 INVALID OPEN/CLOSED FLAG
** 21 END OF FILE
** 14 INVALID FILE TYPE
** 17 INVALID DATA TRANSFER TYPE
** 37 END OF MEDIA
** 22 BUFFER OVERFLOW
** 23 CHECKSUM ERROR
** 26 FILE IS WRITE PROTECTED
** 10 FILE IS DELETE PROTECTED
** 24 LOGICAL SECTOR NUMBER OUT OF

RANGE
** 41 INSUFFICIENT DISK SPACE
** 40 DIRECTORY SPACE FULL
** 42 SEGMENT DESCRIPTOR SPACE FULL
** 43 INVALID DIRECTORY ENTRY NO. AT

nnnn
** 32 INVALID RIB
** 44 CANNOT DEALLOCATE ALL SPACE,

DIRECTORY ENTRY EXISTS AT
nnnn

** 45 RECORD LENGTH TOO LARGE
** 52 SECTOR BUFFER SIZE ERROR

28.4 System Error Status Word

Within the operating system's resident variables is a
two-byte error status word. Each MDOS command will set or
clear a bit within this status word to indicate the status of
the command's completion. The error status word has the
following format:

Page 28-19

ERROR MESSAGES 28.4 -- System Error Status Wor4

FED C B A 9 8 7 6 5 4 3 2 1 0

: Error
Status

.

.

Error
Mask

. " " .. " " " " " " "

" . " " " " " " " " " " " " " " .. " " " " . " " ... " .

Bits 0-7 describe
error

Error Mask Flag
Bit B (8-A unused)

Error Status Flag
Bit F (C-E unused)

Normally, after the completion of each command all bits of
the Error Status and the Error Type are cleared (= 0), If an
error occurred during the command, the Error Status Flag (bit
F) will be set by the command. In addition, an Error Type
will be set into the lower half of the status word (bits
0-7), The Error Type is used to indica.te which error was
detected by the command.

Usually, the CHAIN process will abort anytime the Error
Status Flag is set by one of the commands invoked from the
intermediate file; however, the Error Mask can be used to
inhibit CHAIN process aborting due to command errors. The
Error Mask Flag (bit B) will inhibit CHAIN process aborting
if it is set to one. The process of setting the Error Mask
is described in section 6.4.

28.5 Commands Affecting Error Status Word

All MOOS commands that are intended to be invoked bV the
CHAIN process have been programmed to configure error types
into the system error status word. These error types are
summarized here to facilitate the user who is taking
advantage of the TST execution operator' during the CHAIN
process.

All MDOS commands use the system function .HDERR for
displaying the common error messages. Thus, the error tvpes
that correspond to these messages will always be the same;
namely, the error message's index number used to call the

MDERR function (not the same as the displayed, two-digit,
el'l'or message refel'ence numbel'); however, commands have othel'
erl'or messages that are displayed independently of the .HDERR
function. These errol'S will cause a value to be set into the
El'l'ol' Type field of the el'l'or status WOl'd that is gl'eater
than or eltual to 128 ($80), It is these values, which al'e

Page 28-2

ERROR MESSAGES 28. 5 -- Commands Affecting Error Status Word

un i que to eac h command, that are summar i zed here. Th e
following table contains the name of the MDOS command or
system function that sets the Error Type. the value of the
Error Type in hexadecimal, and the error message or condition
that caused the error. If the text in the table is in
capital letters. it is an actual error message. If the text
is in upper/lower case letters. then it is an error
condition.

MDOS Function

MDOS Command
Interpreter

. MDERR

BACKUP

BINEX

BLOKEDIT

CHAIN

COpy

DEL

DIR

DOSGEN

DUMP

Error
Type

$80

$FF

$80
$81
$82
$83

$84
$85
$86
$87

$80

$81

$80
$81

$80
$81

Error Message or Condition

WHAT?

**INVALID MESSAGE mm AT nnnn

SOURCE FILE COpy ERROR
OBJECT FILE CREATION COpy ERROR
CANNOT DELETE DUPLICATE NAME
INVALID TO COPY/VERIFY FROM
DOUBLE TO SINGLE SIDED
DIRECTORY READ/WRITE ERROR
SYSTEM SECTOR COpy ERROR
SYNTAX ERROR
Sector verify error

Response other than
overwrite question
Verify error

<name> DOES NOT EXIST
<name> IS PROTECTED

NO DIRECTORY ENTRY FOUND

Ity" to

NO TERMINATOR FOUND IN FILE'S
R.I. B.

$82 *NO SDWS*

$80
$81

$80
$81
$82
$83
$84

INVALID SECTOR NUMBER
SECTOR xxxx LOCKED OUT

SYNTAX ERROR
MODE ERROR
BOUNDARY ERROR
INVALID SECTOR ADDRESS
WHAT?

Page 28-21

ERROR MESSAGES

ECHO

EMCOPY

EXBIN

FORMAT

FREE

LIST

LOAD

NAME

MERGE

PATCH

REPAIR

ROLLOUT

28.5 -- Commands Affecting Error Status Wor

$80
$81
$82
$83

$80

$80
$81
$82
$83
$84
$85

SOURCE FILE NOT ASCII
RECORD FORMAT ERROR
START ADDRESS OUT OF RANGE
CHECKSUM ERROR

Response other than
overwrite ~uestion

INITIALIZATION ERROR
WHAT?
SYNTAX ERROR
ILLEGAL OP CODE
ILLEGAL OPERAND
ILLEGAL ADDRESS

"Y" to

The following MDOS-supported commands (available at time of
publication) change the Error Type in the error status word:

Command

ASM

ASM 1 000

ASM3870

BASIC

Error
Type Error Message or Condition

The error message number of the
last encountered error will
appear in the Error Type.

The error message number of the
last encountered error will
appear in the Error Tvpe.

The error message number of the
last encountered error will
appear in the Error Tvpe.

Page 28-Cl

ERROR MESSAGES

FORM1000

FORT

MASM

MPL

RASM

RASM09

RLOAD

28.5 -- Commands Affecting E~~o~ Status Wo~d

$80

$80

$80
$81
$83
$84
$85
$86
$87
$88
$89
$8D
$8E
$8F
$90

Any compile~-detected e~~o~

Any compile~-detected e~~o~

The e~~o~ message numbe~ of
last encounte~ed e~~o~

appea~ in the E~~o~ Type.

The erro~ message number of
last encounte~ed er~o~

appear in the Error Type.

Illegal Commmand
Illegal command syntax
Use~ assignment e~ro~
Undefined intermediate file
Phasing e~~or
Section overflow
Undefined obJect file
Illegal object record
Local symbol table ove~flollJ

Undefined symbol
Multiply defined symbol
Illegal add~essing mode
Global symbol table ove~flollJ

the
will

the
will

Page 28-23

APPENDIX

A. Cylinder-Sector/Physical Sector Conversion Table

The following tables give the physical sector numbers
for the first sector of every cylinder. The first table is
for single-sided diskettes. All sectors are recorded on
surface zero, or the top surface, of a single-sided diskette.

The second table is for double-sided diskettes. The
physical sector numbers are given for the first sector of a
cylinder on each surface. Surface zero is the top surface
and surface one is the bottom surface.

The following notation is used in the table headings:

NOTATION

CYLINDER

PSN

DEC

HEX

SFC 0

SFC 1

MEANING

The numbers in these columns are the
cylinder numbers on the diskette.
They are given in both decimal and
hexadecimal.

The numbers in these columns are the
hexadecimal physical sector numbers
of the first sector on a cylinder
surface.

Numbers in these columns are decimal.

Numbers in
hexadecimal.

these columns

The top surface, surface zero.

are

The bottom surface, surface one.

Page A-Ol

APPENDIX A Cylinder-Sector/Phyaical Sector Conversion Tab

SINQLE-SIDED DISKETTES

CYLINDER PSN CYLINDER PSN
-------- --------

DEC HEX HEX DEC HEX HEX

00 00 000 39 27 3F6
01 01 OlA 40 28 410
02 02 034 41 29 42A
03 03 04E 42 2A 444
04 04 068 43 2B 45£
05 05 082 44 2C 478
06 06 09C 45 2D 492
07 07 OB6 46 2E 4AC
08 08 ODO 47 2F 4C6
09 09 OEA 48 30 4EO
10 OA 104 49 31 4FA
11 08 l1E 50 32 514
12 OC 138 51 33 52E
13 OD 152 52 34 548
14 OE 16C 53 35 562
15 OF 186 54 36 57C
16 10 lAO 55 37 596
17 11 IDA 56 38 5BO
18 12 1D4 57 39 5CA
19 13 lEE 58 3A 5E4
20 14 208 59 38 5FE
21 15 222 60 3C 61B
22 16 23C 61 3D 632
23 17 256 62 3E 64C
24 18 270 63 3F 666
25 19 28A 64 40 680
26 lA 2A4 65 41 69A
27 1B 2BE 66 42 6B4
28 1C 2D8 67 43 6CE
29 10 2F2 68 44 6EB
30 1E 30C 69 45 702
31 IF 326 70 46 71C
32 20 340 71 47 736
33 21 35A 72 48 750
34 22 374 73 49 76A
35 23 38E 74 4A 784
36 24 3A8 75 4B 79E
37 25 3C2 76 4C 7BB
38 26 3DC

Page A-

APPENDIX A Cylinder-Sector/Physical Sector Conversion Table

DOUBLE-SIDED DISKETTES

CYLINDER PSN CYLINDER PSN
-------- --------

DEC HEX SFC 0 SFC 1 DEC HEX SFC 0 SFC 1

0 000 000 01A 39 027 7EC 806
1 001 034 04E 40 028 820 83A
2 002 068 082 41 029 854 86E
3 003 09C OB6 42 02A 888 BA2
4 004 000 OEA 43 02B aBC 8D6
5 005 104 11E 44 02C 8FO 90A
6 006 138 152 45 02D 924 93E
7 007 16C 186 46 02E 958 972
8 008 lAO IBA 47 02F 98C 9A6
9 009 ID4 lEE 48 030 9CO 9DA
10 OOA 208 222 49 031 9F4 AOE
11 OOB 23C 256 50 032 A28 A42
12 OOC 270 28A 51 033 A5C A76
13 OOD 2A4 2BE 52 034 A90 AAA
14 OOE 2D8 2F2 53 035 AC4 ADE
15 OOF 30e 326 54 036 AF8 B12
16 010 340 35A 55 037 B2C B46
17 011 374 38E 56 038 B60 B7A
18 012 3A8 3C2 57 039 B94 BAE
19 013 3DC 3F6 58 03A Bca BE2
20 014 410 42A 59 03B BFC C16
21 015 444 45E 60 03C C30 C4A
22 016 47a 492 61 03D C64 C7E
23 017 4AC 4C6 62 03E C98 CB2
24 018 4EO 4FA 63 03F CCC CE6
25 019 514 52E 64 040 DOO DIA
26 01A 548 562 65 041 D34 D4E
27 01B 57C 596 66 042 D68 D82
28 01C 5BO 5CA 67 043 D9C DB6
29 OlD 5E4 5FE 68 044 DDO DEA
30 OlE 618 632 69 045 E04 EIE
31 01F 64C 666 70 046 E38 E52
32 020 680 69A 71 047 E6C E86
33 021 6B4 6CE 72 048 EAO EBA
34 022 6E8 702 73 049 ED4 EEE
35 023 71C 736 74 04A Foa F22
36 024 750 76A 75 04B F3C F56
37 025 784 79E 76 04C F70 F8A
38 026 7B8 7D2

Page A-03

APPENDIX

B. ASCII Character Set

BITS 4 TO 6 -- 0 1 2 3 4 :; 6 7

0 NUL DLE SP 0 (! P ,
P

B 1 SOH DCl 1 A G a q
I 2 STX DC2 II 2 B R b r
T 3 ETX DC3 # 3 C S c s
S 4 EOT DC4 $ 4 D T d t

:; ENG NAK 7- :; E U e u
0 6 ACK SYN 8< 6 F V f v

7 BEL ETB ,
7 G W 9 III

T 8 BS CAN (8 H X h x
0 9 HT EM) 9 I Y i Y

A LF SUB * J Z J z
3 B VT ESC + K [k {

C FF FS < L \ 1
D CR GS = M] m }

E SO RS)- N n ...
F SI US I ? 0 0 DEL

Page 8-01

APPENDIX

C. MOOS Command Syntax Summary

Chapter Command Line Options

3* BACKUP [[:<source unit:>, J:<destination unit:>] [i<options::>]
null - Normal copy
A 0- Append
R - Reorganize
V Verify

C - Disk error continue
D - Deleted data mark continue
I
L
N
S
U
y
Z

-- ID sec tor
- Line printer
- No printing

Sector number only
- Unallocated space
- Delete duplicate

Skip duplicate

4 BINEX <memory-image file>[,<EXbug-loadable file>]

5 BLOKEDIT <command file>,<new file:>

6 CHAIN <command fi Ie> C; <tag i::>Ci.<value i>i.] ...]
CHAIN N*
CHAIN *

7 COPY <source name>[,<destination name>] [i<options>]

8* DEL [(file>] [;(options>J

9* DIR [(file» [;(options»

B - Automatic verify after copy
C - Convert binary records
D=(file>[,] - Driver file
L Line printer
M Test driver via debug monitor
N Non-file format
V Verify
W Overwrite

S - System files
Y Yes. delete

A - Allocation information
E Entire entry
L Line printer
S - System files

Page C-Ol

APPENDIX C MDOS Command Syntax Summary

Chapter Command Line Options

10
Write/read surface test

DOSGEN t:<unit>J [;<options>]
T
U User diskette <minimum system files)

11 DUMP [<file>]

12 ECHO [;<options>]
N - Turn echo off

13 EMCoPY t<EDoS file>JC,<MDoS file>J [i<options>J
A ASCII record format
C Contiguous allocation
o Delete protection
E Entire disk copy
R Binary record format
S Selected file copy

14 EXBIN <EXbug lodadable file>[,<memory-image file>J Ci<start address)

15 FORMAT [:<unit>J

16 FREE [:<unit>] [i<options>J
L - Line printer

17 LIST <ASCII file>[,[<start>l[,<end>lJ [;<options>]
FCmmm]. [nnJ - Page format
H - Input heading
L - Line printer
N - Line numbers

18 LOAD [<memory-image file>] [i<options>J
null - 00 to EXbug
null - Load above MOOS
G - Load and go
U - EXORciser II User Memory Map
V - Overlay MOOS; discontiguous memory
«string» - Initialize command buffer

19 MERGE <file 1>[,<file 2>, ... ,<file n>],<destination file> [i<options
W - Overwrite
<start address>

20* NAME <old name>[,<new name>] [;<options>]

21 PATCH <memory-image file>

D Delete protection
N - Non-system file
S System file
W Write protection
X No protection

Page C-02

APPENDIX C MDOS Command Syntax Summa~y

Chapter Command Line Options

22 REPAIR [:<unitjl

23 ROLLOUT [<memory-image file>] [;<optionsJl
null - Memory above MDOS
D Build file from scratch diskette
U EXORciser II User Memory Map
V Any memory to scratch diskette

* These commands allow the family indicator in the file
name specification.

Page C-03

APPENDIX

D. Diskette Controller Entry Points

The floppy diskette controller module firmware is used
to control all of the EXORdisk 11/111 hardware functions.
The entry points to the various functions are described in
this section. Parameters required by the firmware functions
are stored in RAM in the locations described by the following
tab Ie:

Name Address Definition

CURDRV $0000

STRSCT $0001

NUMSCT $0003

LSCTLN $0005

CURADR $0006

FDSTAT $0008

This byte contains the binary logical
unit number of the drive to be selected
(zero through three) .

These two bytes contain the physical
sector number of the first sector to be
used (starting sector).

These two bytes contain the number of
sectors to be used. This number includes
a partial sector. if a partial sector
read is being requested. The sum of
STRSCT and NUMSCT cannot be greater than
$7D2 (Single-sided diskettes) or $FA4
(double-sided diskettes>.

This byte contains the number of bytes to
be read from the last sector during a
read operation. This number should be a
multiple of eight and cannot be greater
than 128 ($80). If a number is specified
that is not a multiple of eight. the next
larger multiple of eight bytes will be
read.

These two bytes contain the first address
in memory that is to be used during a
read or write operation. This location
is updated after each sector is read or
written. During write test operations.
these two bytes contain the address of a
two-byte data buffer.

This byte contains a status indication of
the performed function. If an error
occurred during a diskette operation. the
carry bit in the condition code register

Page D-01

APPENDIX D Diskette Controller Entry Points

SIDES $OOOD

will be set to one upon returning to the
calling program. In addition, FDSTAT
will contain a number indicating the
error type ($31 - $39). The error types
are explained in Chapter 28. If no error
occurs, then the carry bit of the
condition code register will be set to
zero and FDSTAT will contain the value
$30.

This byte contains an indication of the
type of diskette that is in a drive. If
the sign bit (bit 7) of this location is
set to one afteT a diskette has been
accessed, then the diskette is
single-sided. If the sign bit of this
location is set to zero after a diskette
has been accessed, then the diskette is
double-sided. In earlier versions of the
diskette controller firmware CEXDRdisk
II), this location will always have the
sign bit set to one.

For all of the firmware entry pOints described below,
the content of the registers is unspecified both upon entry
and exit from the routine. Each entry point is accessed by
executing a n Jump to subroutine" instruction (,",SR)' The
parameters must have been set up in RAM as indicated for each
specific function. It should be noted that the ROM routines
for the diskette functions run with the interrupt mask bit
set to one in the condition code register. The routines also
use the NtlI vector. Both the NMI vector and the interrupt
mask are restored before returning to the calling program.

Name Address Function

DSLDAD $E800 This entry point initializes the drive
electronics and loads the Bootblock and
MDDS retrieval information block from the
diskette in drive zero. The Bootblock is
given control after it has been loaded
from the diskette. It. in turn, causes
the rest of the operating system to be
loaded into memory. No parameters are
req,uired for this entry pOint. This
function does not return control to the
calling program. If an error occurs
during the Bootblock load process, the
error number will be displayed on the
system console and control passed to the
resident debug monitor. At least $120
bytes of memory are req,uired starting at
location zero. If less memory exists.

Page D-02

APPENDIX D

FDINIT $E822

CHKERR $E853

PRNTER $E85A

READSC $E869

READPS $E86D

Diskette Controller Entry Points

the Bootblock program may not be able to
display an error message indicating that
there is insufficient memory in the
system. The SWI vector must be
configured for the debug monitor before
this entry point can be used (e. g. • the
ABORT or RESTART pushbutton on the front
panel of the EXORciser must have been
depressed).

This entry point initializes the PIA and
SSDA. No parameters are required by this
routine and none are modified by it.

This entry point is used to check for a
diskette controller error if called
immediately after returning from another
ROM entry point. The routine will check
the state of the carry flag in the
condition code register. If the carry
flag is set to zero, the CHKERR routine
will simply return to the calling
program. If the carry flag is set to one
(an error occurred), then the routine
will print an "E" followed by the
contents of FDSTAT and two spaces on the
system console. Control is given to the
resident debug monitor after printing the
error message. CHKERR does not change
any of the parameters.

This entry point will print an "E"
followed by the contents of FDSTAT
followed by two spaces on the system
console. PRNTER does not change any of
the parameters.

This entry point causes the number of
sectors contained in NUMSCT beginning
with STRSCT from CURDRV to be read into
memory starting at the address contained
in CURADR. CURADR is updated to the next
address that is to be written into after
each sector is read. The parameter
LSCTLN is automatically set to 128 ($80)
so that a complete sector is read into
memory when the last sector is processed.
The parameters CURDRV. STRSCT, and NUMSCT
are not changed. FDSTAT will contain the
status of the read operation.

This entry point is similar to READSC
with the exception that the last sector
is only partially read according to the

Page D-03

APPENDIX D

RDCRC $E86F

RWTEST $E872

RESTOR $E875

SEEK $E878

WRTEST $E879

WRDDAM $E87E

WRVERF $E881

Diskette Controller Entry Point

contents of LSCTLN. If LSCTLN contains
128 ($80), then this entry point is
identical to READSC. The restrictions
placed on LSCTLN are described in the
preceding table of the parameters.

This entry point causes the number of
sectors contained in NUMSCT beginning
with STRSCT from CURDRV to be read to
check their CRCs. The contents of the
sectors are not read into memory. The
only parameter changed is FDSTAT.

This entry point causes the two bytes
located at the address (and at address +
1) contained in CURADR to be written into
alternating bytes of NUMSCT sectors
beginning with STRSCT of CURDRV. After
NUMSCT sectors are written in this
fashion, they are read back to verify
their CRCs. The only parameter changed
is FDSTAT.

This entry point causes the read/write
head on CURDRV to be positioned 'to
cylinder zero. The only parameter
required is CURDRV. The only parameter
changed is FDSTAT.

This entry point causes the read/write
head of CURDRV to be positioned to the
cylinder containing STRSCT (see Appendix
A>' The only parameter changed is
FDSTAT.

This entry point causes the two bytes of
data located at the address (and at
address + 1) contained in CURADR to be
written into alternating bytes of NUMSCT
sectors beginning with STRSCT of CURDRV.
The only parameter changed is FDSTAT.

This entry point causes a deleted data
mark to be written to NUMSCT sectors
beginning with STRSCT of CURDRV. The
only parameter changed is FDSTAT.

This entry point causes NUMSCT sectors
beginning at STRSCT of CURDRV to be
written from memory starting at the
address contained in CURADR. CURADR is
updated to the address of the next byte
to be read from memory after each sector
is written. After all sectors have been

Page D-C

APPENDIX D Diskette Controller Entry Points

WRITSC $E884

written to the diskette, they are read
back to verify their CRCs as checked by
the routine RDCRC. The only parameters
changed are CURADR and FDSTAT.

This entry point is identical to WRVERF
with the exception that the written
sectors are not read back to verify their
CRCs. The only parameters changed are
CURADR and FDSTAT.

When an error occurs, the physical sector number at
which the error occurred can be computed from the following
relationship:

PSN = STRSCT + NUMSCT - SCTCNT -1

where PSN is the physical sector number at which the error
occurred, and SCTCNT is a two-byte value contained in
locations $OOOB-OOOC.

The following entry points are also in the firmware but
have nothing to do with the diskette functions. These entry
points can be used to access a line printer.

Name Address Function

LPINIT $EBCO

LIST $EBCC

LDATA $EBE4

LDATA1 $EBF2

This entry point intializes the PIA from
a reset condition.

This entry point sends the contents of
the A accumulator to the line printer.
If the "paper empty" or "printer not
selected" status condition is detected,
the LIST entry point will return with the
carry flag of the condition code register
set to one. If these conditions are not
detected. the carry flag will be set to
zero.

This entry point sends a character string
to the line printer. The string is
pOinted to by the X register and must be
terminated with an EDT ($04). Prior to
printing the string, a carriage return
and a line feed are sent to the printer.
If a printer error is detected by LDATA,
it will loop until aborted or until the
error is corrected.

This entry point performs the same
function as LDATA with the exception that
the initial carriage return and line feed

Page D-05

APPENDIX D Diskette Cont~olle~ Ent~v Points

a~e not p~inted.

Fo~ a complete desc~iption of the
module the "FlopPV Disk Cont~olle~
should be consulted.

diskette cont~olle~
Module Use~'s Quide"

Page D-04

APPENDIX

E. Mini-Diagnostic Facility

A mini-diagnostic routine is available in the EXORdisk
II diskette controller firmware (version numbers less than
1.2>. This routine permits the user to execute any diskette
controller function a single time or continuously. The
parameters required by the mini-diagnostic routines are
similar to those used by the other diskette controller
functions (Appendix DL The reader should be familiar with
those parameters before attempting to use the
mini-diagnostics.

The following parameters and entry points are required
by the mini-diagnostic routine:

Name Address Definition

CURADR $0006

LDADDR $0020

EXADDR $0022

ONECON $0024

$0060-$0073

CLRTOP $EB90

This parameter is automatically set up by
the mini-diagnostic routine from LDADDR
(see below) before each execution of the
specified function.

These two bytes contain the data that
would normally be placed into CURADR.
The diagnostic routine will update CURADR
from LDADDR before each function is
executed.

These two
of the
(READSC,
executed

bytes must contain the address
entry point of the function

WRTEST, etc.) that is to be
by the diagnostic routine.

This byte should contain a zero if the
function is to be executed continuously.
A non-zero value in this location will
cause the function to only be executed
once.

This area contains a two-byte counter for
each of the possible states returned by a
function in FDSTAT. Locations $60-61
contain a counter for the status of "0";
locations $62-63 contain a counter for
the status of "l"i and so on.

This location is the entry point to the
mini-diagnostic routine that initially

Page E-Ol

APPENDIX E

TOP $EB98

Single Execution

Mini-Diagnostic Facili1

zeroes the counters in locations $60-73
before executing the function.

This location is the entry point to the
mini-diagnostic routine that ~ill leave
the counters at locations $60-73
unchanged before executing the function.

In order to execute a diskette function a single time,
the parameters CURDRV, STRSCT, NUMSCT, LSCTLN, and LDADDR
should be configured as required for the specific function.
The address of the specific function should then be placed
into EXADDR. The location ONECON should be initialized ~ith
a non-zero value. The stack register should be pointing to a
val id area in memory (the EXbug stac k is acceptab Ie). Then,
the debug monitor command

EB98iQ

~ill give control to the mini-diagnostic routine causing the
PIA and SSDA to be initialized, CURDRV to be restored, and
the function in EXADDR to be executed a single time. Upon
completion of the function, the letter "E" followed by a
digit "0" through "9" will be printed and control returned to
the debug moni tor. The d i sp laved message lIIi 11 i nd icate the
completion status of the function as returned in FDSTAT.

Continuous Execution

In order to execute a diskette function continuously,
the parameters CURDRV, STRSCT, NUMSCT LSCTLN, and LDADDR
should be configured as required for the specific function.
The address of the specific function should then be placed
into EXADDR. The location ONECON should be initialized to
the value of zero. The the debug monitor command

EB9B;Q (to start at TOP)

or

E890;9 (to start at CLRTOP and zero counters)

will give control to the mini-diagnostic routine. This will
cause the PIA and SSDA to be initialized, CURDRV to be
restored, and the function in EXADDR to be executed
continuously until one of the two-byte counters is
incremented to zero. When one of the t~o-byte counters
reaches zero, an "E" follo~ed by an error indication will be
printed at the console ~nd control returned to the debug
monitor. The error indication following the letter "E" will

Page E-l

APPENDIX E Mini-Diagnostic Facility

not be the normal value in the range 0-9. Rather, it will be
the ASCII character that corresonds to twice the value of the
normal error code $30-$39. Thus, the following correlation
exists between the normal error and the printed character
following the "E":

Normal Error

o
1
2
3
4
5
6
7
8
9

Printed character

b
d
f
h
J
I
n
p
r

If the user initializes a counter to the value $FFFF. for
example, the mini-diagnostic will run continuously until the
first error of the type monitored by the counter occurs.

Page E-03

APPENDIX

F. Diskette Description, Handling, and Format

The fie x i b led i s k ,or dis k e t t e , i s per ma n en t lye n c los e d
by a durable, plastic covering. This outside Jacket allows
the diskette to be handled and at the same time gives a
certain degree of protection for the oxide surface within.
The cDvering also provides rigidity to the diskette, allowing
it to be easily inserted into and removed from the diskette
drives.

To extend the usable life of a diskette and to maximize
trouble-free operation, the diskette should be handled with
reasonable care. The following points of diskette care
should be followed. Most manufacturers usually list these
points on the protective envelope of the diskette as a
reminder.

1. The diskette should be returned to its protective
envelope when not in a drive unit.

2. The diskette in its envelope should be stored
vertically. It should not be stacked or placed
under heavy pressure as this can cause warping of
the oxide surface.

3. Too many diskettes should not be forced into one
box.

4. The diskette should not be exposed to any
magnetizing force in excess of 50 oersted. The
50 oersted level can be reached about three
inches away from a typical source such as
electric motors, transformers, etc.

5. Diskettes should not be subJected to extremes of
heat. They should not be kept in direct
sunl i gh t. Warp i ng can resul t.

6. The label on the diskette should only be written
on with a felt-tipped pen. Pencils. ballpoint
pens, or extreme pressure from felt-tipped pens
can emboss the oxide surface within.

7. The physical oxide surface should never be
touched. Skin oils transferred to the surface in
this manner can attract and retain dust and other
contaminants.

Page F-01

APPENDIX F Diskette Description, Handling, and Forma

8. The surface of the diskette should never be wiped
or cleaned. Any physical contact with the
surface should be avoided.

9. The diskette should never be forced into the
drive. Neither should the diskette be folded or
bent.

10. The door on the diskette drive should not be
closed before the diskette has been inserted all
the way. Damage to the drive hub hole can
result. Likewise. the door on the drive should
be fully opened before the diskette is removed.

The diskette mayor may not have a write-protect hole
along the edge that is inserted first into the drive. This
hole is located 6.25 inches from the right edge as seen from
above the diskette. When the hole is not covered, the
diskette is write protected. The hole must be covered in
order to write on the diskette. An opaque adhesive-backed
label or tape can be used to cover the hole.

The single-sided diskette is recorded in a format that
is similar to the single-sided single-density format of an
IBM-3740 diskette. The detailed format description Is
contained in the IBM document number GA21-9190-3, "IBM
One-sided Diskette OEM Information", Appendix B. The format
described in that appendix is in reference to IBM part number
2305830.

The Single-sided format is similar to the IBM 3740
format insofar as the addressing information is concerned.
The usage and content of the actual sectors and cylinders is
not necessarily similar.

The double-sided diskette is recorded in the Motorola
Single-density double-sided format. This format is an
extension of the Single-sided single-density format onto the
other side of the diskette. Appendix A gives the location of
the phsyical sectors with respect to surface and cylinder for
both slngle- and double-sided diskettes.

Page F-C

file
into
of
not

APPENDIX

G. Directory Hashing Function

In order to speed up a directory search for a specific
name, a hashing function is used to map a file's name

one of the directory's sectors. As a result, the number
sectors that have to be read before a match is found or
found is minimized.

All ten bytes of the file name and suffix are used by
the hashing function. The function computes a number which,
when added to the physical sector number of the start of the
directory, is the sector number of the first sector used in a
linear search of the directory.

An entry in the directory will have in its first byte a
value of zero, indicating that this entry has never been
usedJ a value of $FF, indicating that the entry is deleted;
or an ASCII character, indicating the presence of a file
name.

Initially. all directory sectors are filled with zeroes.
New names are added sequentially to the sector identified by
the hashing function. New entries can be made into those
entries which have a zero or an $FF in their first byte.
Thus, a search for a name can stop whenever an entry is found
which has the first byte equal to zero.

A directory search begins in the sector identified by
the hashing function. If no entries within this sector
contain zero in their first byte, and if no match is found,
the next sector in the directory is searched. The sectors
will continue to be searched in this round-robin fashion
until a match or an entry with first byte of zero is found,
or until all sectors have been examined. The only time all
sectors of the directory are searched is if every entry
contains a valid file name or a deleted file name. Thus,
directory searches are faster if the directory has been
reorganized with the BACKUP command (section 3.3).

The following routine is similar to the one used in MOOS
to perform the directory hashing function. It is documented
here to allow users who wish to write disk-oriented programs
to access the directory without using MOOS.

Page G-Ol

APPENDIX G Directory Hashing Functio:

* * MOOS DIRECTORY HASHING FUNCTION

* * ENTRY: X = ADDRESS OF 10 BYTE FILE NAME
* AND SUFFIX

* * EXIT: A ACCUMULATOR CONTAINS THE

*
HASH CODE -- A NUMBER IN THE
RANGE 0-19. DECIMAL.

* TMPI RMB 1
TMP2
TMP3

RMB 1
RMB 1

* HASH LDAB
STAB
CLC
CLRB

HASH2 STAB
TPA
STAA
LDAB
SUBB
BPL
CLRB

HASH25 LDAA
TAP
ADCB
ROLB
INX
DEC
BNE
RORB
TBA
RORA
RORA
RORA
RORA
ABA
TAB
ANDB
CMPB
BLS
SUBB
CMPB
BHI
ASRA
ROLB

HASH3 STAB
RTS

#10
TMP3

TMPI

TMP2
O,X
#$25
HASH25

TMP2

TMP1

TMP3
HASH2

GET FILE CHAR
. MAKE IT UNIGUE

#X00011111
tU9
HASH3
#20
#9
HASH3

TMP3

Page G-O:

APPENDIX

H. MDOS-Supported Software Products

This Appendix contains a list of the MDOS-Supported
software products available at the time of publication.
These products are capable of running in an MDOS environment
even though some of them have been developed independently.
All MDOS-Supported products are purchased and shipped
separately from MDOS. At the time of publication, only the
following supported products are available for MDOS09:
RASM09, RLOAD. EDIT. and E.

These descriptions contain a brief discussion of how the
product is invoked from the MDOS command line. Any
additional hardware requirements are also noted. The
product's manual that is shipped along with its diskette
should be consulted for details about its operation.

Page H-Ol

APPENDIX

H. 1 ASH -- H6800 Assembler

The ASH command processes source program statements
written in the M6800 Assembly Language. The M6800 Assembler.
ASH, translates these source statements into obJect programs.

lOhe M6800 Assembler is invoked from the MDOS command
line as are other MDOS commands. No additional hardware
re~uirements are needed to run the assembler other than the
mlnlmum configuration used for MDOS. The format of the
command line is:

ASM <name> [i<options>J

where <name> is the name of source file. The source file
<name> is in the standard MOOS file name format

<file name> [.<suffix>] [:<logical unit number>]

The default values of "SA" and "0" are used if <suffix> and
<logical unit number> are not explicitlU entered.

The <options> may be one or more of the options listed
in the following table. All options except those that
control the destination of the source listing and the
destinatton of the obJect file can be specified from within
the source program with the OPT directive. Certain options
are automatically us.ed as a defau! t cond i tion. These
conditions can be reversed or overridden by preceding the
option letter with a minus sign (-). The following options
are recognized by the assembler:

OPTION DEFAULT
------ -------

Q -Q

L -L
L=4tCN, -L
0 0

O=<name>,
S

o
-s

ATTRIBUTE CONTROLLED BY OPTION

Printing of generated code from FCB.
FDB. and FCC directives
Print source listing on line printer
Print source listing on console
Create obJect file with name of
source file and suffix "LX" on same
logical unit as source file on
command line
Create obJect file with name <name>
Print symbol table

Certain options CL=, 0=) re~uire a terminating comma only if
other options follow. Options are specified without any
intervening blanks or separators.

Page H-(

APPENDIX H. 1

Each symbol in the symbol table requires eight bytes.
Thus. if th e minimum of 16K by tes of memory is used, th e
M6800 Assembler can accommodate about 300 (decimal) symbols.

For more details about the M6800 Assembler, the uM6BOO
Co-Resident Assembler Reference Manual" should be consulted.
The following enhancements have been made in the MDOS version
of the M6800 Assembler over the specifications in its
reference manual.

The symbols may contain the special characters period
<.) and d 0 liar s i 9 n ($ > i howe v e r • the doll a r s i 9 n may not b e
used as the first character of a symbol.

The END directive has been changed so that it now has
the following format:

END [<expression>]

where the value of the optional <expression> will be placed
into the S9 record of the obJect file. This record is used
to specify the starting execution address of the obJect file.
If no expression is specified, the value of zero will be
used.

Like other MDOS commands. the ASM command is sensitive
to the BREAK and CTL-W keys of the system console.

The obJect file produced is in the EXbug-loadable
format. The file must be converted into a memory-image file
before it can be loaded from the diskette into memory.

Page H-03

APPENDIX

H.2 ASMI000 -- M141000 CTOSS AssembleT

The ASMI000 command processes SOUTce pTogTam statements
written in the M141000 Assembly Language. The M141000 CTOSS
AssembleT. A6MI000, tTanslates these SOUTce statements into
obJect pTogTams that can be executed by the "141000
6imulatoT. 61"1000.

The M141000 CTOSS AssembleT is invoked fTom the MDOS
command line as aTe otheT MDOS commands; however, the CTOSS
Assembler Te~uiTes that the system has a minimum of 24K bytes
of memoTY. The fOTmat of the command line is:

A6MI000 <name l>t,<name 2>, ... ,<name n>l [;<options>J

wheTe <name i> aTe the names of SOUTce files. Each file name
in the list is in the standaTd MDOS file name fOTmat

<file name> t.<suffix>l t:<logical unit numbeT>l

The default values of "SA" and "0" are used if <suffix> and
<logical unit number> aTe not explicitly enteTed. Up to
twenty file names can be accommodated by the assembleT.

The <options> may be one OT more of the options listed
in the following table. All options except those that
contTol the destination of the source listing, the
destination of the obJect file, and the printing of error
messages on the printeT if no listing is desiTed, can be
specified from within the source program with the OPT
diTective. CeTtain options aTe automatically used as a
default condition. These conditions can be reveTsed or
oveTridden by pTeceding the option letteT with a minus sign
(-). The following options are Tecognized by the .ssembleT:

Page H-O

APPENDIX H.2

OPTION DEFAULT

C
D
E
F
G

H

L
L=#CN,
L=<name:>,

M

N=ddd,

o

O=<name:>,
P=dd,

S
T
U

x

C
D
-E
F
-G

-H

-L
-L
-L

-M

N=72

o

o
P=58

-S
-T
-U

-x

ATTRIBUTE CONTROLLED BY OPTION

Printing of macro calls
Printing of macro definitions
Printing of macro expansions
Printing of conditional directives
Printing of generated code from OPLA
directive
Input initial heading from the
console
Print source listing on line printer
Print source listing on console
Print source listing into diskette
file <name:> (default suffix is "AL".
default logical unit number is zero).
Such files should be printed with the
COPY command.
Print error messages only on line
printer
Set printed line length to "ddd"
(decimal)
Create obJect file with name <name 1:>
and suffix "AO" on same logical unit
as <name 1:> of command line
Create obJect file with name <name:>
Set number of printed lines per page
to "dd If (dec imal). A -P suppresses
pag ing.
Print symbol table
Print opcode usage statistics table
Print unassembled code between
conditional directives
Print cross reference table

Certain options (L=, N=, 0=, P=) re~uire a terminating comma
only if other options follow. Options are specified without
any intervening blanks or separators.

Each symbol in the symbol table re~uires ten bytes.
Thus, if the minimum of 24K bytes of memory is used, the
M141000 Cross Assembler can accommodate about 490 (decimal)
symbolsi however, if the cross reference option is specified,
the symbol table re~uirements differ. In this case, an
additional ten bytes are re~uired by each symbol for every
four references to that symbol. If any macro definitions are
used (either MACR or INST directives), the available symbol
table space will be smaller.

For more details about the M141000 Cross Assembler, the
"M141000 Cross Assembler Reference Manual" should be
consul ted.

Like other MDOS commands, the ASM1000 command is

Page H-05

APPEND I X H. j

sensitive to tbe 'BREAK and CTL-W ke\ls of the system console.

APPENDIX

H.3 ASM3870 -- M3870 Cross Assembler

The ASM3870 command processes source program statements
written in the M3870 Assembly Language. The M3870 Cross
Assembler, ASM3870, translates these source statements into
obJect programs that can be executed by the M3870 Emulator,
EM3870.

The M3870 Cross Assembler is invoked from the MOOS
command line as are other MDOS commands; however, the Cross
Assembler re~uires that the system has a minimum of 20K bytes
of memory. The format of the command line is:

ASM3870 <name l:>(,<name 2:>, ... ,<name nJ] [;<options:>]

where <name i:> are the names of source files. Each file name
in the list is in the standard MDOS file name format

<file name:> [.<suffix:>] [:<logical unit number:»

The default values of "SA" and "0" are used if <suffix:> and
<logical unit number:> are not explicitly entered. Up to
twenty file names can be accommodated by the assembler.

The <options> may be one or more of the options listed
in the following table. All options except those that
control the destination of the source listing, the
destination of the obJect file, and the printing of error
messages on the printer if no listing is desired, can be
specified from within the source program with the OPT
directive. Certain options are automatically used as a
default condition. These conditions can be reversed or
overridden by preceding the option letter with a minus sign
(-L The following options are recognized by the assembler:

Page H-07

OPTION DEFAULT

C
D
E
F
G

H

L
L=4tCN,
L=<name>,

1'1

N=ddd,

o

O=<name>.
P=dd,

5
U

X

C
D
-E
F
-G

-H

-L
-L
-L

-1'1

N=72

o

o
P=5B

-S
-U

-X

APPEND I X H.:

ATTRIBUT.E CONTROLLED BY OPTION

Printing of macro calls
Printing of macro definitions
Printing of macro expansions
Printing of conditional directives
Printing of generated code from DA
and DC directives
Input initial heading from the
console
Print source listing on l'ine printer
Print source listing on console
Print source listing into diskette
file <name> (default suffix is "AL" •
default logical unit number is zero).
Such files should be printed with the
COpy command.
Print error messages only on line
printer
Set printed line length to "ddd"
(decimal)
Create obJect file with name <name 1>
and suffix "LX" on same logical unit
as <name 1> of command line
Create obJect file with name <name>
Set number of printed lines per page
to "dd tl (decimal). A -P suppresses
paging.
Print symbol table
Print unassembled code between
conditional directives
Print cross reference table

Certain options (L=, N=. 0=, P=) re~uire a terminating comma
only if other options follow. Options are specified without
any intervening blanks or separators.

Each symbol in the symbol table re~uires ten bytes.
Thus, if the m1n1mum of 20K bytes of memory is used. the
1'13870 Cross Assembler can accommodate about 230 (decimal)
symbolsJ however, if the cross reference option is specified,
the symbol table re~uirements differ. In this case, an
additional ten bytes are re~uired bV each symbol for every
four references to that symbol. If any macro definitions are
used (I'1ACR directive), the available symbol table space will
be smaller.

For more details about the 1'13870 Cross Assembler, the
"1'13870 Cross Assembler Reference Manual" should be consulted.

Like other 1'1005 commands, the ASM3B70 command is
sensitive to the BREAK and CTL-W keys of the system console.

Page H-ot

APPENDIX

H.4 BASIC -- BASIC Interpreter

The BASIC command processes source program statements
written in the BASIC language. The BASIC interpreter, BASIC.
can be used to create, modify, and interpret these source
statements.

The BASIC interpreter is invoked from
line as are other MOOS commands; however,
requires that the system has a minimum
memory. The format of the command line is:

BASIC <name 1>[, <name 2>]

the MDOS command
the interpreter
of 20K bytes of

where <name 1> is the name of a source program file to be
loaded or created, and <name 2> can be the name of a file
into which the source program file is to be saved. Both file
specifications are of the standard MDOS file name format

<file name> [.<suffix>] [:<logical unit number>]

The default suffix "SA" and the default logical unit number
zero will be automatically supplied if none are explicitly
entered.

If <name 1> is the name of file which already exists in
the directory, then it must contain a valid BASIC program.
The contents of the file <name 1> will then be automatically
loaded into the work space. If <name 1> does not exist, it
will be used to save the contents of the work space when the
BASIC interpreter is terminated.

The file <name 2> can optionally be used to save the
contents of the work space if <name 1> is to be left
unchanged. If <name 2> is specified, it must be the name of
a file that does not already exist.

For a detailed description of the BASIC interpreter, the
"M6800 BASIC Interpreter Reference Manual" should be
consul ted.

Page H-09

APPENDIX

H.5 E -- CRT Text Editor

The E command can be used to create or to modify ASCII
record files on the diskette. Use of the Editor in
conJunction with the EXORterm 200/220 or EXORterm
150/EXORciser system allows the user to perform editing,
employing specifically designed features of the EXORterm.

The E command is invoked from the MDOS command line as
are other MOOS commands; however, the Editor re~uires that
the system has a minimum of 32K bytes of memory.

For a complete description of the E command's usage, the
"M6BOOEDITORM Resident Editor Reference Manual" should be
consulted.

Page H-j

APPENDIX

H.c EDIT -- Text Editor

The EDIT command can be used to create or to modify
ASCII record files on the diskette. The EDIT command is
invoked from the MOOS command line as are other MOOS
commands. No additional hardware requirements are needed to
run the EDIT command other than the minimum configuration
used for MDOS.

The EDIT command is invoked with the following command
line:

EDIT <name l>r,<name 2>J

where <name 1> is the name of the file to be edited and <name
2> can be the name of an output or scratch file. Both file
specifications are in the standard MOOS format:

<file name> (.<suffix>J [:<logical unit number>J

The default values "SA" and zero are used for the suffix and
the logical unit number, respectively, if they are not
explicitly entered.

If only <name 1> is specified on the command line, then
it will be the name of the file to be edited. If <name 1>
already exists, the input will be taken from it. If <name 1>
does not already exist, then it will be automatically
created, and all output written to it.

The second file name specification. <name 2>, can only
be used if the file to be edited already exists on the
diskette. Normally. <name 2> is not specified. In this
case, the EDIT program will automatically create a temporary
output file called SCRATCH. SA. The output file will be
created on the same logical unit number as <name 1>, unless a
specific logical unit number is entered for <name 2>. The
output file is used to receive the data from <name 1> after
it has been edited by the operator. When the edit process is
ended. any unedited portion of the input file <name 1> will
be copied into the output file. The output file will then
contain a complete copy of the input file plus any changes
that were made to it.

If the default output file is used. the file <name 1>
will be automatically deleted and the output file renamed so
it has the same name as the original input file. Thus. as
far as the operator is concerned. the file <name 1> now
contains the results of the edit. <name 1> will. therefore,

Page H.-11

APPENDIX H.b

al~avs be the name of the input file and need not be changed
as a result of editing it.

If, ho~ever, <name 2> ~as explicitly entered on the
command line, then <name 1> ~ill not be deleted when the EDIT
command is terminated. In this ~av, a set of changes can be
applied to the input file ~ithout affecting the original copy
of the file. The result of the edit ~ill be in <name 2>
after the edit is ended. If only a logical unit number is
entered for the <name 2> file name specification. then the
result of the edit ~ill be on the specified logical unit.

One of the standard MDOS error messages will be
displayed if the input file <name 1> is delete or ~rite
protected and <name 2> is not specified. Since a protected
file cannot be deleted, the edited output file SCRATCH.SA
~ill contain the results of the edit; however, the input file
must be manually deleted and the file SCRATCH. SA must be
manually renamed bV the operator.

If the file SCRATCH. SA already exists on
when the EDIT command is invoked ~ithout

specification, the error message

** 06 DUPLICATE FILE NAME

the diskette
a <name 2>

will be displayed. The file to receive the output, whether
explicitly entered on the command line or implicitly used as
SCRATCH. SA, cannot exist prior to the edit.

One of the standard error messages ~ill also be
displayed if during a cross-drive edit, <name 2> cannot be
renamed after the original file <name 1> has been deleted.
This can occur if <name 1> exists on both drives. In this
case, the edited output will again be intact in the file
SCRATCH. SA; however, it will have to be renamed manually.

For a complete description of the EDIT command's usage,
the IIM6800 Co-Resident Editor Reference Manual" should be
consulted.

The EDIT command has been changed slightly for MOOS from
the ~av it is described in the EDIT command's Manual. In an
attempt to conform to the MOOS keyboard controls, the RUBOUT
(DEL) kev can be used to backspace a character out of the
input buffer; however, the CTL-D key cannot be used to
re-displav the current line. In addition, the BREAK key can
be used to prematurely terminate printing of lines (T
command) and file searching (N command). Control will be
returned to the EDIT c.ommand processor. The CTL-W can also
be used to "hold II the lines for consoles that are CRTs. The
"F" command (punch nulls for leader) is invalid. The "AU
command appends 255 lines into the edit buffer.

Page H-l

APPENDIX

H.7 EM3870 -- M3870 Emulator

The EM3870 command is the controlling software for the
M3870 Emulator Module. It permits the user to load 3870
obJect programs from the diskette; to perform examine and
change operations on the various programmable registers and
memory; and to insert, to display and to remove breakpoints
in the user program.

The EM3870 Emulator is invoked from the MDOS command
line as are other MDOS commands; however, the Emulator
requires that the system has a minimum of 20K bytes of memory
as well as an M3870 Emulator Module. In addition, the user's
development system must not contain memory between locations
$DOOO through $DFFF, inclusive.

The EM3870 Emulator is invoked from the following
command line:

EM3870

For a complete description of the Emulator and its command
structure. consult the "MC3870 Development System User's
Guide".

Page H-13

APPENDIX

H.B FORM1000 -- M141000 ObJect File.ConveTsion

The FORM1000 command takes the output
M141000 CTOSS Assembler and conveTts the data
Tecord file. The Tesultant file can then
cassette OT papeT tape via the MOOS COPY
additional haTdware re~uirements are needed to
file conveTsion program otheT than the minimum
needed to Tun the M141000 Cross Assembler.

file fTom the
to an ASCII

be copied to
command. No

Tun the obJect
configuTation

The FORM1000 command is invoked with the following
command line:

FORM 1 000 <name 1>C,<name 2>3

wheTe <name 1> is the name of the obJect output file pToduced
bV the M141000 Cross Assembler, and <name 2> is the name of
the file that is to be produced. Both file specifications
take on the form:

<file name> C.<suffix>] C:<logical unit numbeT>l

If <name 2> is not specified on the command line, then <name
1>'s file name and logical unit number will be used as
default values for <name 2>. If either suffix is omitted
fTom the command line, then the default values "AD" and tlAF"
will be used fOT <name 1> and <name 2>, Tespectivelv. If the
logical unit number is not specified fOT <name 1>, then the
default value zeTO will be used.

Once the command has been invoked, the specified
diTectories will be seaTched to enSUTe that:

1. <name 1> exists, and
2. <name 2> does not exist.

If these conditions are met, <name 2> will be cTeated. <name
1> will be .read and its content conveTted into ASCII records
that are written into <name 2>. Each recoTd will be eightv
bVtes of data terminated bV a carriage Teturn. A total of
sixtV-six recoTds will be written into <name 2> (64 data
records and 2 OPLA records). The eightv-characteT TecoTds
have the following fOTmat:

Page H-l

APPENDIX H.B

COLUMN
o
1

xx XX.

XX XX.
ZZ ZZ.
ZZ ZZ.

4
7

· XX XX XX XX

· XX XX XX XX
· ZZ ZZ zz ZZ
· zz ZZ zz ZZ

5
4

YVV

VVY
YVY
VVV

6
o

PAD 000 THRU 015

PAD F48 THRU F63
OPLA TERMS 00 THRU 15
OPLA TERMS 16 THRU 31

where "XX" are the instruction operation codes. "VVV" are the
arithmetic sums of all "XX" or "ZZ" for that record. and "ZZ"
are output PLA initialization values.

During the processing of the command. the BREAK key can
be depressed at any time to cause a controlled termination of
the program; however. the partially-generated output file
will have to be deleted manually.

The output file, <name 2~. does not get created with
space compression as do other MDOS ASCII files. Therefore,
<name 2> must not be edited with the MOOS EDIT command since
the editor automatically creates space-compressed files.

Page H-15

APPENDIX

H.9 FORT -- Relocatable FORTRAN Compile~

The FORT command p~ocesses sou~ce p~og~am statements
~~itten in the M6800 FORTRAN Language. The FORTRAN compile~,
FORT, compiles these sou~ce statements into ~elocatable

obJect p~og~ams. The output f~om the FORTRAN compile~ must
be processed by the M6800 Linking Loade~ in o~de~ to obtain
an executable obJect file.

The FORTRAN compile~ is invoked f~om the MDOS command
line as are othe~ MDOS commands; ho~eve~, the compiler
~e~ui~es that a system has a minimum of 24K bytes of memory.
The fo~mat of the command line is

FORT <name l>C,<name 2>, ... ,<name n>l [i<options>l

~here <name i> are the names of sou~ce files. Each file name
in the list is in the standard MDOS file name fo~mat:

<file name> [.<suffix>] [:<logical unit number>]

The default values "SA" and zero a~e used if <suffix> and
<logical unit numbe~> are not explicitly ente~ed. Up to
t~entv file names can be accommodated by the compiler.

The <options> may be one Dr more of the options listed
in the follo~ing table. Ce'rtain options a~e automatically
used as a default condition. These conditions can be
reversed Dr ove~ridden by preceding the option letter ~ith a
minus sign (-). The follo~ing options a~e ~ecogized bV the
compiler:

Page H-14

APPENDIX H.9

OPTION DEFAULT

H -H

L -L
L=#CN, -L
L=<name:> -L

N=ddd,

o

O=<name:>,
P=dd,

S
X

N=80

o

o
P=58

-S
-X

ATTRIBUTE CONTROLLED BY OPTION

Input initial heading from the
console
Print source listing on line printer
Print source listing on console
Print source listing into diskette
file <name:> (default suffix "AL",
logical unit number zero). Such
files should be printed with the COPY
command.
Set printed line length to "ddd"
(decimal)
Create obJect file with name <name 1:>
and suffix "RO" on same logical unit
as <name 1:> of command line
Create obJect file with name <name:>
Set number of printed lines per page
to" d d " (dec i ma 1) . A -P sup pre sse s
paging.
Print symbol table
Conditional compilation of statements
beginning with letter "X"

Certain options (L=, N=, 0=, P=) require a terminating comma
only if other options follow. Options are specified without
any intervening blanks or separators.

For
consult
Manual" .

a
the

complete
"M6800

description of
Resident FORTRAN

the FORTRAN compiler
Compiler Reference

Page H-17

APPENDIX

H. 10 MASM -- MACE C~oss Assemble~

The MASM command p~ocesses sou~ce p~og~am statements
w~itten in a use~-defined assemblv language. The MACE C~oss
Assemble~, MASM, allows the use~ to define the mic~owo~d size
and inst~uction field fo~mats fo~ a pa~ticula~ ha~dwa~e
configu~ation as well as to p~ocess sou~ce statements w~itten
in this format. The obJect files c~eated bV the MACE C~oss
Assemble~ can be loaded via the MACE Loade~ and Debug Module
(MBUG)'

The MACE C~oss Assemble~ is invoked f~om the MDOS
command line as a~e othe~ MDOS commands; howeve~, the C~oss
Assemble~ ~e~ui~es that the svstem has a minimum of 32K bVtes
of memo~v. The fo~mat of the command line is:

MASM <name 1>[, <name 2>, ... ,<name n>J [;<options>J

where <name i> are the names of source files. Each file name
in the list is in the standa~d MDOS file name fo~mat

<file name> [.<suffix>] [:<logical unit numbe~>J

The default values of "SA" and "0" are used if <suffix> and
<logical unit numbe~> a~e not explicitlV ente~ed.

The <options> may be one o~ mo~e of the options listed
in the following table. Ce~tain options a~e automaticallv
used as a default condition. These conditions can be
~eve~sed or ove~~idden by p~eceding the option letter with a
minus sign (-). The following options a~e ~ecognized bV the
assemble~:

Page H-

APPENDIX H. 10

OPTION DEFAULT

D

D=<name>,

L
L=#CN,
L=<name>,

M

N=ddd,

0

O=<name>,
P=dd,

T=<name>.

x

D

D

-L
-L
-L

-M

N=72

0

0
P=58

-T

-x

ATTRIBUTE CONTROLLED BY OPTION

Build definition table in file <name
1)- from command line; default suffix
is "DT"; default logical unit number
taken from <name 1)-
Build definition table in file
<name>; default suffix is "DT" and
logical unit number is zero
Print source listing on line printer
Print source listing on console
Print source listing into diskette
file <name> (default suffix is "AL",
default logical unit number is zero).
Such files should be printed with the
COpy command.
Print error messages only on line
printer
Set printed line length to "ddd"
(decimal)
Create obJect file with name <name 1>
and suffix "AD" on same logical unit
as <name 1> of command line
Create obJect file with name <name>
Set number of printed lines per page
to" d d II (d e c i ma I) . A -P sup pre sse s
paging.
Specifies name of file containing
definition tables to be referenced
during the assembly phase; -T implies
tables are in memory
Print cross reference table

Certain options (D=, L=, N=. 0=, p=, T=) re~uire a
terminating comma only if other options follow. Options are
specified without any intervening blanks or separators.

Each symbol in the symbol table re~uires a
number of bytes depending on the complexity of the
definition. If the minimum of 32K bytes of memory
the MACE Cross Assembler can accommodate about 8K
tab Ie.

variable
microword
is used,
of symbol

For more details about the MACE Cross
"MACE 29/800 Development System User's
consul ted.

Assembler. the
Guide" should be

Like other MDOS commands, the MASM command is sensitive
to the BREAK and CTL-W keys of the system console.

Page H-19

APPENDIX

H.11 MBUG --MACE Loader and Debug Module
----------------------------------_._-----

The MBUG command allows a user to load a program from a
diskette file created by the MACE Cross Assembler into the
microprogram control storage. MBUG als~ allows the control
storage to be examined, changed, and written back into the
diskette file.

The MBUG command is invoked from the MDOS command line
as are other MOOS comma.nds; hOlilever. MBUG req,ui1'es that the
system has a minimum of 32~ bytes of memory. the Memo1'Y
Emulator. and the System Analyzer, The format of the command
line is

MBUG [<name l>][,<name 2>] [;<options>J

where <name 1> is the name of a file fTom which a pTogram is
to be loaded. and <name 2> is the name of an output file.
Both file names are in the standard MOOS file name format:

<file name> [.<suffix>] [:<logical unit number>]

The default value "AD" lIIill be used for the suffixes of <name
1> and <name 2> if none are explicitly entered. The default
logical unit number for <name 1> is zero. The default
logical unit number for <name 2> is taken from the logical
unit number of <name 1>.

Only tlilO letters can appeaT in the <options>
and "Oil. The "V" option indicates that <name 1>
verified against the cUTrent contents of memory.
specified. <name 1> must exist.

field: "V"
is to be
If "V" is

The "0" option indicates that all add1'esses entered will
be inte1'preted as octal. All displayed addresses lIIill also
be in octal. If "'G" is not specified, the hexadecimal base
will be used.

FOT a complete description of MBUG, consult the "MACE
29/800 Development System User's Guide",

Page H-2

APPENDIX

H. 12 MOT EST -- Component Tester Executive

The MDOS version of the MOTEST Component Tester has the
same functional capabilities as described in the "MOTEST
Component Tester Module Supplement". The operating procedure
of the MOTEST executive is described in that supplement.

The MOTEST executive program is invoked by the following
command line:

LOAD MOTSTiVG

This MDOS command will both load and execute the executive
program.

Since
identical,
supplied,
the amount

all versions of the MOT EST Component Tester are
regardless of the media on which they were

the conversion to diskette will greatly speed up
of time it requires to initially load the program.

If the program is on either paper tape or cassette. it
can be copied to the diskette by using the following MDOS
command:

COPY #CR,MOTST.LXiN

If the program is on an EDOS diskette, it can be copied to
the MDOS diskette by using the following command:

EMCOPY MOTST,.LX

Once the program is on an MDOS diskette. it must be converted
into a memory-image file for loading by using the following
MDOS command:

EXBIN MOTSTi200

Thereafer. the LOAD command can be used as described above.

Page H-21

APPENDIX

H.13 MPL -- MPL Compilel'

The MPL command pl'ocesses SOUl'ce pl'ogl'am statements
wl'itten in the M6800 MPL Language. The MPL compilel'. MPL.
compiles these SOUl'ce statements into assembly language
SOUl'ce pl'ogl'ams. The output fl'om the MPL compilel' must be
assembled with the M6BOO Macl'o Assemblel'. The output fl'om
the Macl'o Assemblel' must be pl'ocessed by the M6800 Linking
Loadel' in ol'del' to obtain an executable obJect file.

The MPL compiler is invoked fl'om the MDOS command line
as al'e other MDOS commands; howevel', the compilel' l'e4luires
that a system has a minimum of 56K bytes of memol'y. The
fOl'mat of the command line is

MPL <name l>[,<name 2>, ... ,<name n>l [;<options>l

whel'e <name i> al'e the names of SOUl'ce files. Each file name
in the list is in the standal'd MDDS file name fOl'mat:

<file name> [.<suffix>] [:<10g1cal unit numbel'>]

The default values "SA" and zero al'e used if <suffix> and
<logical unit number> al'e not explicitly entel'ed.

The <options> may be one or mOl'e of the options listed
in the following table. Cel'tain options are automatically
used as a default condition. The sense of an option can be
revel'sed bV pl'eceding the option letter with a minus sign
(->. The following options al'e recognized by the compilel':

OPTION

L

M

N

O=<name>

s

DEFAULT

-L

-M

-N

-0

s

ATTRIBUTE CONTROLLED BY OPTION

Produce SOUl'ce listing on the line
printer
Pl'int el'ror messages only on the line
pl'intel'
Se4luence numbers are present on each
SOUl'ce statement
Generate compilel' output (used faT'
subse4luent assembler input) in the
file <name>. The file is given the
default suffix "SAil and default
logical unit number zero. The "0"
option. if used, must be the last
option specified on the command line.
Include MPL statements as comments in
the output file

Page H-~

APPENDIX H. 13

Options are specified without any intervening blanks or
separators.

For a complete description of the MPL compiler consult
the "M6800 Resident MPL Compiler Reference Manual".

The symbol table requirements for the MPL compiler are
fairly complex; however. 6000 (decimal) bytes of symbol table
space are available. This is sufficient to accommodate
appro x imate 1 y 200 (dec ima I) symbol s.

Page H-23

APPENDIX

H. 14 PPLO/PPHI -- PROM Programmer I

----~-------------------------------

The MDOS version of the PROM Programmer I has the same
functional capabilities as described in the "PROM Programmer
Module Supplement". Both versions of the PROM programmer
(PROMP HI and PROMP LO) are provided on the MDOS diskette in
the files PPHI.LO and PPLO.LO, respectively. These files are
in the memory-image format to allow them to be loaded into
memory directly from the diskette.

The operating procedure for each version of the PROM
Programmer I is described in the above-mentioned Supplement;
however, the process of loading the PROM Programmer I from
the diskette is explained here.

Either version of the PROM programmer I can be loaded
and executed from the MDOS diskette by entering the MDOS
command line

LOAD PPHliVG or LOAD PPLO;VG

depending on which version is to be used. If a user program
on the diskette is to be placed into a PROM, the following
procedure can be used if the user program loads above the
resident operating system and MDOS command interpreter. The
file can be loaded into memory using the MDOS command

LOAD <name>iV

where <name> is the file name of the user's program. Since
MDOS does not destroy memory during initialization, the
system can be reinitialized and the PROM programmer loaded as
explained above.

If the user program overlays the resident MDOS, then it
must be "relocated" by changing the file's Retrieval
Information Block before loading it into memory. The
following se~uence of commands should be used to alter a user
programs's starting load address:

DUMP <name>
R FFFF
7B/mm,nnl
W
G

The values "mm" and "nn" represent the hexadecimal numbers of

Page H-2.t1

APPENDIX H. 14

the most significant and least significant bytes of the new
starting load address (above the resident MDOSL After the
offset load address has been configured in this manner, the
above procedure should be followed to load the user program
and then load and execute the PROM Programmer I.

A user program whose file has
fashion cannot be executed after
The file should be deleted after it
PROM.

been modified in this
being loaded into memory.
has been placed into the

If the user has the PROM Programmer I on a non-MDOS
diskette media, it can be copied to the MDOS diskette using
the following procedure.

If the PROM Programmer I is on cassette or paper tape
the commands

COpy #CR,PPHI.LXiN
COpy #CR,PPLO.LXiN

should be used. If the PROM Programmer I is on an EDOS
diskette the commands

EMCOPY PPHI,.LX
EMCOPY PPLO,.LX

should be used. After the files are on the MDOS diskette,
they must be converted into loadable memory-image files using
the commands:

EXBIN PPLOi20
EXBIN PPHli 1000

Page H-25

APPENDIX

H.15 PROMPROG -- PROM Programmer 11/111

The PROM Programmer 11/111 is the controlling soft~are
for the Universal EROM/PROM Programmer Module. It provides
the user ~ith a means of programming a variety of 4-bit and
a-bit PROMs and EROMs.

The PROM Programmer 11/111 is invoked from the MDOS
command line as are other MOOS commands; ho~ever, the PROM
Programmer re~uires that the system contains the PROM
Programmer 11/111 Module. The format of the command line is:

PROMPROG

For a complete description of the PROM Programmer 11/111 and
its command structure, the "PROM Programmer II/III Reference
Manual" should be consul ted.

Page H-2

APPENDIX

H. 16 RASH -- Relocatable M6800 Macro Assembler

The RASM command processes source program statements
written in the M6800/M6801 Assembly Language. The Macro
Assembler, RASM, translates these source statements into
obJect programs. If programs are assembled using the
relocatable option, the M6800 Linking Loader is re~uired to
create a file that can be loaded from diskette into memory.

the MDOS command
line as are other MOOS commands; however, the Macro Assembler
requires that the system has a minimum of 24K bytes of
memory. The format of the command line is:

The Macro Assembler is invoked from

RASM <name 1>[, <name 2>, ... ,<name n>] [;<options>l

where <name i> are the names of source files. Each file name
in the list is in the standard MDOS file name format

<file name> [. <suffix>] [:<logical unit number>l

The default values of "SA" and "0" are used if <suf'ix> and
<logical unit number> are not explicitly entered. Up to
twenty file names can be accommodated by the assembler.

The <options> may be one or more of the options listed
in the following table. All options except those that
control the destination of the source listing. the
destination 0' the object file, and the printing 0' error
messages on the printer if no listing is desired, can be
speci'ied 'rom within the source program with the OPT
directive. Certain options are automatically used as a
de'ault condition. These conditions can be reversed Dr
overridden by preceding the option letter with a minus sign
(-). The 'ollowing options are recognized by the assembler:

Page H-27

OPTION DEFAULT

A -A
C C
D D
E -E
F F
Q -9

H -H

L -L
L=.CN, -L
L=<name:>, -L

M -M

N=ddd, N=72

o 0

O=<name:>, 0
P=dd, P=S8

R -R
S -S
U -u
X -X
Z -z

APPENDIX H. 1~

ATTRIBUTE CONTROLLED BY OPTION

Memor..,-imageobJect file output
Printing of macro calls
Printing of macro definitions
Printing of macro expansions
Printing of conditional directives
Printing of generated code from FCB,
FDB. and FCC directives
Input initial heading from the
console
Print source listing on line printer
Print source listing on console
Print source listing into diskette
file <name:> (default suffix is "ALff',
default logical unit number is zero).
Such files should be printed ~ith
COPY command.
Print error messages onl.., on line
printer
Set printed line length to "ddd"
(decimal)
Create obJect file ~ith name <name 1:>
and suffix "LX" (non-relocatable)'
suffix "RO" (relocatable), or suffix
"LO" (memor..,-image) on same logical
unit as <name 1:> of command line
Create obJect file ~ith name <name>
Set number of printed lines per page
to "dd" (decimal>. A -P suppresses
paging.
Relocatable obJect file output
Print s..,mbol table
Print unassembled code bet~een
conditional directives
Print cro.s reference table
Use M6801 instruction mnemonics
instead of M6800 and create M6801
obJect output

Certain options (L=, N=, 0=, P=) re~uire a terminating comma
only if other options follo~. Options are specified ~ithout
an.., intervening blanks or separators.

Each symbol in the symbol table requires ten bytes.
Thus, if the minimum of 24K bytes of memory is used, the
Macro Assembler can accommodate about 195 (decimal) symbols;
ho~ever, if the cross reference option is specified, the
symbol table requirements differ. In this case. an
additional ten bytes are required by each symbol for every
four referen·ces to that symbol.· If macro definitions are
used (MACR directive), the available symbol table space ~ill
be smaller. For more details about the Macro Assembler, the

Page H-21

APPENDIX H. 16

IIM6800/M6801/M6809 Macro Assembler Reference Manual" should
be consulted.

Like other MOOS commands. the RASM command is sensitive
to the BREAK and CTL-W keys of the system console.

Page H-29

APPENDIX

H. 17 RASM09 -- Relocatable M6809 Cross Assembler

The RASM09 command processes source program statements
written in the Mb809 Assembly Language. The "6809 Cross
Assembler. RASM09. translates these source statements into
obJect programs. RASM09 is the resident macro assembler for
MDOS09. If programs are assembled using the relocatable
option. the Linking Loader is re~uired to create a file that
can be loaded from diskette by the M6809 Simulator.

The "6809 Cross Assembler is invoked from the MDOS
command line as are other MDOS commands; however. the Macro
Assembler re~uires that the system has a minimum of 32K bytes
of memory. The format of the command line is;

RASM09 <name 1>r.<name 2> •...• <name n>l [i<options>l

where <name i> are the names of source files. Each file name
in the list is in the standard MDOS file name format

<file name> [.<suffix>l [;<logical unit number>l

The default values of "SA" and "0" are used if <suffix> and
<logical unit number> are not explicitly entered. Up to
twenty file names can be accommodated by the assembler.

The <options> may be one or more of the options listed
in the following table. All options except those that
control the destination of the source listing. the
destination of the object file. and the printing of error
messages on the printer if no listing is desired, can be
specified from within the source program with the OPT
directive. Certain options are automatically used as a
default condition. These conditions can be reversed or
overridden by preceding the option letter with a minus sign
(-). The following options are recognized by the assembler;

Page H-3'

APPENDIX H. 17

OPTION DEFAULT

A -A
C C
D D
E -E
F F
G -G

H -H

L "'-L
L=4tCN, -L
L=<name:>, -L

M -M

N=ddd, N=72

0 0

O=<name>, 0
P=dd, P=58

R -R
S -S
U -u

X -x

ATTRIBUTE CONTROLLED BY OPTION

Memory-image obJect file output
Printing of macro calls
Printing of macro definitions
Printing of macro expansions
Printing of conditional directives
Printing of generated code from FCB.
FDB, and FCC directives
Input initial heading from the
console
Print source listing on line printer
Print source listing on console
Print source listing into diskette
file <name:> (default suffix is "AL",
default logical unit number is zero).
Such files should be printed with
COPY command.
Print error messages only on line
printer
Set printed 1 ine length to Itddd"
(decimal)
Create obJect file with name <name 1>
and suffix "LX" (non-relocatable),
suffix "RO" (relocatable>, or suffix
"LO" (memory-image) on same logical
unit as <name 1> of command line
Create obJect file with name <name>
Set number of printed lines per page
to "dd" (decimal. A -P suppresses
pag 1ng.
Relocatable obJect file output
Print symbol table
Print unassembled code between
conditional directives
Print cross reference table

Certain options (L=, N=, 0=, P=) re~uire a terminating comma
only if other options follow. Options are specified without
any intervening blanks or separators.

Each symbol in the symbol table re~uires ten bytes.
Thus. if the minimum of 32K bytes of memory is used. the
M6809 Cross Assembler can accommodate about 700 (decimal)
symbols; however, if the cross reference option is specified.
the symbol table re~uirements differ. In this case, an
additional ten bytes are re~uired by each symbol for every
four references to that symbol. If macro definitions are
used (MACR directive), the available symbol table space will
be smaller. For more details about th~ M6809 Cross
Assembler. the "M6800/M6801/M6809 Macro Assembler Reference
Manual" should be consulted.

Page H-31

APPENDIX H. 1

Like other MDOS commands, the RASM09 command is
sensitive to the BREAK and CTL-W keys of the system console.

Page H-3

APPENDIX

H. 18 RLOAD -- Link ing Loader

The RLOAD command combines relocatable object files
created by the M6800/M6801/M6805/M6809 Macro Assemblers or
the M6800 FORTRAN Compiler and produces an absolute object
file in either memory-image or EXbug-loadable format.

The Linking Loader is invoked from the MDOS command line
as are other MDOS commands; however, the Linking Loader
requires that the system has a minimum of 24K bytes of
memory. The format of the command line is

RLOAD

RLOAD works basically the same as described in the "M6800
Linking Loader Reference Manual"; however, the following
changes have been made in the MDOS version of RLOAD over the
specifications in the manual.

Some commands have been removed from RLOAD since they
were originally intended for a cassette version of the
Linking Loader which is no longer supported. These commands
are: EXBUG, 01, SRCH, SKIP, FILE. and MODU.

The STR. CUR (without backslash option), and END
commands allow the use of either a defined ASCT symbol or a
numeric constant to the right of the equal sign.

The default BSCT address that RLOAD will assign is $0020
if assembly language programs are being linked; however. the
default address of BSCT will become $0040 if FORTRAN programs
are linked. In addition, FORTRAN programs will be
automatically assigned memory locations so that DSCT and PSCT
fallon even addresses. Therefore. the CUR commands with the
backslash option (\) need not be used when linking FORTRAN
programs; however, if the CUR command with the backslash
option is used when linking FORTRAN programs. the user must
ensure that the supplied number is an even number.

Programs with uninitialized BSCT and/or DSCT will not be
allocated space on the diskette when an absolute.
memory-image file is created; however, all of the BSCT and
DSCT must be uninitialized for this feature to be of use.

The format of the load map is slightly improved over the
examples shown in the Linking Loader manual. Each program's
symbols are printed separately. in alphabetical order, so
that an individual symbol can be more easily located in the
printed maps.

Page H-33

APPENDIX H. 18

The following two cautions should be observed when RLOAD
is invoked from within a CHAIN file. Since CHAIN uses a
forcing character of a backslash (\), two backslash
characters have to be entered for the RLOAD commands that use
that character. Sustems which have a CRT as a console mau
lose the error messages displayed by RLOAD if errors are
inhibited within the CHAIN process. Since such errors are
not reflected in anu printed MAPs, it is possible to lose
sight of the fact that an error occurred, resulting in an
invalid output file.

Each symbol in RLOAD reQ.uires twelve bytes. If the
minimum memory configuration of 24K is used, about 85 entries
can be made into the local sumbol table and about 265 entries
can be made into the global sUmbol table; however, other
items besides symbols occupy this area. The exact symbol
table reQ.uirements can be calculated from the following:

SIZE = QST + largest LST

where SIZE is the total size of the symbol table in bytes and
GST and LST are computed from the formulas given below:

QST = 12 * (5 + AseT + Ne + XDEF + UXREF + NMOD)

LST = 12 * (5 + AseT + Ne + XDEF + XREF)

The symbols have the following meanings:

Symbol

GST
LST

ASCT
NC
XDEF
XREF
UXREF

NMOD

Meaning

Size of Global Symbol Table.
Size of Local Symbol Table. An LST is
created for each file loaded; however,
only one LST is kept in memory at anyone
time.

of absolute sections. Number
Number
Number
Number
Number
satisfied
definition.

of named common sections.
of external definitions.
of external references.

of external references not
(defined) by an external

Number of files loaded.

RLOAD divides the available memoru so that about three
fourths of it is available for the global symbol table and
one fourth is available for the local symbol table. The
global symbol table contains all of the external definitions
and all undefined external references from all loaded files.
The local symbol table contains the external definitions and
references that pertain to an individual program. Thus, if a
global symbol table overflows (GOV error), more memory should

Page H-::l

APPENDIX H. 18

be added to the system, or fewer
be made. If a local symbol
error), then more memory should
causing the error should be split

external definitions should
table overflow occurs (LOV
be added or the program
into smaller programs.

The following error messages are defined in the RLOAD
manual; however, some expansions and new causes for the
errors are I isted here. All error messages that are
generated by RLOAD take on the following format:

ERR-<cause>

where <cause> can be any of the following messages:

<cause> Explanation

BAE BSCT Assignment Error. The size of the base
section is greater than $100 bytes. This message
can be displayed only after a MAP or OB~ command.

COV Common Section Overflow Error. The size of a
common section is greater than $FFFF bytes.

GAE General Assignment Error. The Linking Loader
cannot assign absolute memory addresses for one
or more of the following reasons:

The combined length of all sections is
greater than $FFFF bytes.
Due to the location of ASCTs or user assigned
sections, the remaining unassigned sections
cannot be placed into unassigned areas of
memory.
The automatic sequence in which sections are
assigned memory locations <BSCT, CSCT, DSCT,
PSCT) results in the Linking loader being
unable to assign memory. User specified
starting and/or ending addresses can possibly
be used to override the automatic sequence of
assigning memory to force a successful
link/load.

GOV Global Symbol Table Overflow Error. The amount
of memory available for the global symbol table
was too small to accommodate all section
information and external definitions.

lAM Illegal Address Mode Error. A four-digit
hexadecimal number will be displayed following
this error message. This number is the address
of a reference to a global symbol which is used
in the program as a one-byte operandi however,
the most significant byte of this symbol's value

Page H-35

APPENDIX H. 1S

is not zero. One byte relocation ",i 11 be
performed on the byte located at the specified
address, using only the least significant byte of
the symbol's value. The obJect file should be
examined to ensure it can be executed.

ICM Illegal Command Error. An entered command ",as
not recognized by the Linking Loader.

lOR Illegal ObJect Record Error. A record in the
input file is not a valid relocatable obJect
record.

ISY Illegal Command Syntax Error. An error occurred
in the option or specification field of a
command. The following causes are examp les of
syntax errors:

A command separator other than a space,
semicolon, or carriage return was used.
A command (e.g., OB~A, DEF) ",as entered
without the re~uired e~ual sign.
A <name> was used when a <number> was
re~uired by the command (e. g., CURP=\LABEL).
An invalid section specification was used
with the DEF command.
A non-ASeT symbol was used to
the e~ual sign of a STR, CUR, or
A backslash was used with the
commands.

the right of
END command.
STR or END

An undefined global symbol was used to the
right of the equal sign of the EXIT command.
The file/module qualifier was invalid with
the LOAD or LIB command.
A logical unit number greater than 3 was
specified ",ith a file name.
A non-numeric logical unit number was
specified with a file name.
A numeric constant was used after the device
delimiter of the MO command.

LOV Local Symbol Table Overflo", Error. The amount of
memory available for the local symbol table ",as
too small to accommodate the section and symbol
information for a single program.

MDS Multiply Defined Symbol Error. The symbol in
error is shown follo",ing the MDS message. Only
one external definition (from files loaded or via
DEF command) can be encountered by the Linking
Loader. Only the first definition is valid and
will be used.

PHS Phasing Error. The value of a symbol's absolute

Page H-3

APPENDIX H. 18

address assigned at the end of Pass I <prior to
OBJ command) does not agree with the value
obtained during Pass II (after the OBJ command).
This error can also occur if a program is being
searched for during Pass II and it is not found.

SOV Section Overflow Error. The length of a section
is greater than $FFFF bytes (non-BSCT section).

UAE User Assignment Error. This error can occur for
anyone or more of the following reasons:

If the OBJA command is being used, the
starting load address is less than $0020.
If the OBJA command is being used, the
calculated ending load address is greater
than FFFF.
A user assigned start address for a section
is less than the user assigned end address
for that section.
The user assigned
section is too
section.

space (end-start) for a
small to contain the actual

The user assigned addresses for sections
overlap.
The execution address specified with the EXIT
command is less than the starting load
address or greater than the ending load
address of the program.
The user assigned starting/ending address for
BSCT is greater than $0100.

UDS Undefined Symbol Error. The symbol in question
is displayed following the UDS message. The
symbol was not defined during Pass I via a loaded
program's external defintiions or via a DEF
command. This error can occur after a LOAD, LIB,
DEF, STR, CUR, or END command. A value of zero
will be used for the undefined symbol.

UIF Undefined Intermediate File Error.
command was issued but no intermediate
been defined via the IF command.

The IFON
file has

In addition, some of the standard MOOS error messages
can be displayed by RLOAD. The following are the most
frequently seen messages:

** 03 <name> DOES NOT EXIST

The file <name> was
command but does not
logical unit.

used with the LOAD or LIB
exist on the specified

Page H-37

APPENDIX H. 18

** 05 <name> DUPLICATE FILE NAME

The file <name> was used with OB,",A, OB,",X, MO, OT'
IF commands. These commands T'e~uiT'e the named
file to not exist pT'ioT' to execution.

** 11 DEVICE NOT READY

A MAP command is tT'ying to wT'ite to the pT'inteT'
which is not T'eady.

** 14 INVALID FILE TYPE

The file specified with the LOAD OT' LIB command
was not a binaT'Y T'ecoT'd file.

** 24 LOGICAL SECTOR NUMBER OUT OF RANGE

DUT'ing Pass II (afteT' O~,",A comm.and), the pT'ogT'ams
loaded T'e~uiT'ed the accessing of allocated
diskette space outside of the T'ange that .as
calculated as sufficient dUT'ing Pass I. This can
OCCUT' if diffeT'ent files aT'e loaded dUT'ing the
two passes. This message will again OCCUT' when
the EXIT command is issued, T'esulting in the
output file being deleted.

** 41 INSUFFICIENT DISK SPACE

Any memoT'y-image file foT' which an appT'opT'iate
contiguous block of space does not exist will
cause this eT'T'OT'. Usually, this OCCUT'S when
cT'eating a file with initialized BSCT OT' DSCT at
low memoT'Y addT'esses and PSCT at high memoT'Y
addT'esses. If an inteT'mediate file is being used
(which also T'e~uiT'es disk space), it is suggested
that the link/load pT'ocess be T'un without the
inteT'mediate file (using CHAIN foT' example). Map
output files also T'e~uiT'e disk space and can
cause this eT'T'OT'.

Page H-3

APPENDIX

H. 19 SIMI000 -- 141000 Simulator

The SIMI000 command is the controlling software for the
M141000 Simulator Module. It permits the user to load 141000
object programs from the diskette, to examine and change the
various registers and memory, to debug the program, and to
rewrite the program with changes back to the diskette.

The SIMI000 Simulator is invoked from the MOOS command
line as are other MDOS commands; however, the Simulator
requires that the system has a minimum of 24K bytes of memory
as well as an M141000 Simulator Module.

The SIMI000 Simulator is invoked from the following
command line:

SIMI000

For a complete description of the Simulator and its command
structure. consult the "MC141000/1200 Simulator User's
Guide".

Page H-39

APPENDIX

H.20 USE with MDOS

Several versions of the Floppy Diskette Controller
Module are available for use with MDOS. If a crystal on the
controller board is used to generate timing for the diskette
interface, this section is not applicablei however, if the
memory clock from the EXORciser bus is being used to generate
the timing, the following precautions must be tak~n when
using MDOS and USE together.

The user clock must run at 1 MHz, plus or minus a few
percent (variable clock rate acceptable in Series II
versions), to permit loading user memory with a program from
a file from the diskette. If the user clock is not near 1
MHz, the obJect file should first be converted to an
EXbug-loadable file and copied to cassette or paper tape in
the regular MDOS environment. Then, the user can load the
tape via EXbug in his own environment running with the user
clock.

The other precaution is the possibility of having a PIA
or ACIA in the user memory generate an IRG when MDOS is
initializing. When memory resides at the same addresses in
both EXORciser and user system, the EXORciser memory responds
when such a redundant location is read; however, both
locations respond (one in each system) when the EXORciser
memory is written to. Thus, if an I/O device resides in the
user's system at an address that is within the range of
contiguous memory in the EXORciser system, the device will be
written to when MDOS sizes memory at initialization. It is
possible, therefore, to configure the I/O device to generate
an IRQ. MDOS does not run with IRQs pending. Thus, a switch
should be installed to allow the IRQ l.ine to be opened. This
has been done in the buffer box of USE2B.

For a more detailed discussion of USE and the Floppy
Diskette Controller Module one or more of the following three
manuals should be consulted: ItMEXUSE2B User's Guide",
"FlopPV Disk Contraller Module Use~'s Guide", or the appendix
o"f the "USe: User's Guide".

Page H-4C

APPENDIX

I. MDOS Equate File Listing

This appendix contains a modified listing of the MDOS
and MDOS09 equate files. Only the pertinent parts the
assembler output are shown. The leftmost column contains the
value of the location counter which represents the value
equated to the system symbol. The MDOS equate file can be
assembled on a user's system if the M6800 Macro Assembler is
available. The MDOS equate file is shown first. followed by
the MDOS09 equate file.

0000 A
0000 A

* * MDOS VERSION 03.00 -- SYSTEM EQUATE FILE -- ~ULY 25.1978
*
*
*DEFINE TYPE OF MDOS--RESIDENT MDOS ONLY

* MDOSF$ EQU 0 0 =:> MDOS. 1 =:> OEM MDOS
MDOS9$ EQU 0 0 =:> MDOS. 1 =:> MDOS09

* * S K I P 2 MAC R 0

* * THE GENERATED BYTE IS A "COMPARE INDEX IMMEDIATE".
* THE EXECUTION OF THE BYTE WILL CHANGE THE CONDITION CODE
* NO REGISTERS ARE AFFECTED. THUS. A ONE BYTE INSTRUCTION
* IS FORMED THAT SKIPS FORWARD TWO BYTES.

* SKIP2 MACR

*

FCB $8C
ENDM

* SKI P 1

*
MAC R 0

* THE SAME CONCEPT AS THE "SKIP2" MACRO IS USED, EXCEPT TH
* A "BIT TEST ACCUMULATOR A IMMEDIATE" OP CODE IS GENERATE

* SKIPl MACR

*

FCB $85
ENDM

* S CAL L

* SCALL MACR
IFEQ NARG-1
SWI

MAC R 0

FCB \0!.y'01111111
ENDC

* IFNE NARG-l

(SYSTEM FUNCTION CALL)

Page 1-01

APPENDIX I MOOS Equate File Listing

FAIL * UNDEFINED SWI CALL ARGUMENT *
ENDC
ENDM

* * U CAL L

* UCALL MACR
IFEG NARG-1
SWI

MAC R 0

FCB \0!+XI0000000
ENDC

* IFNE NARG-1
SCALL
ENDC
ENDM

* * S E G

* SEG MACR
IFNE NARG

\0 EGU *
ENDC

*

ORG *+1 .
ENDM

MAC R 0

(USER FUNCTION CALL)

(NUMBERING SEGUENTIAL EGUATES)

* S V S T E M

*
FUN C T ION D E FIN I T ION

* * SET LOCATION COUNT TO 0 FOR THE EGUATE DEFINITIONS

* 0000 A .$SAV SET * $0
SAVE OLD LOCATION COUNT

0000

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA
OOOB
OOOC
0000
OOOE
OOOF
0010
0011

*
*
*

ORG

SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG

· RESRV
.RELES
· OPEN
. CLOSE
· GETRC
· PUTRC
.REWND
· GETLS
· PUTLS
· KEVIN
. DSPLV
· DSPLX
· DSPLZ
· CKBRK
· DREAD
· DWRIT
· MOVE
· CMPAR

RESERVE A DEVICE
RELEASE A DEVICE
OPEN A FILE
CLOSE A FILE
READ A RECORD
WRITE A RECORD
POSITION TO BEGINNING OF FILE
READ LOGICAL SECTOR
WRITE LOGICAL SECTOR
CONSOLE INPUT
CONSOLE OUTPUT (TERM WI CR)
CONSOLE OUTPUT (TERM WI E01')
CONSOLE OUTPUT (TERM WI EOT, NO C
CHECK CONSOLE FOR BREAK KEV
EROM DISK READ
EROM DISK WRITE
MOVE A STRING
COMPARE STRINGS

Page 1-02

APPENDIX I

0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D
001E
001F
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
002B
002C
002D
002E
002F
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
003A
003B
003C
003D
003E
003F

0000

0000
0001
0002

*
*

SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEG
SEG
SEG
SEG
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEG
SEQ
SEQ
SEQ
SEG
SEQ
SEG
SEQ
SEQ
SEQ
SEQ
SEG
SEQ
SEG
SEG
SEQ
SEG
SEQ
SEG
SEQ
SEQ
SEG
SEG
SEG
SEG
SEQ
SEQ
SEQ

ORG

*ASCII

* A NULL EGU
A SOH EGU
A STX EGU

· STCHB
· STCHR
· ALPHA
· NUMD
· ADDAM
· SUB AM
· MMA
· DMA
· MDENT
· LOAD
· DIRSM
.PFNAM
· ALUSM
. CHANG
· MDERR
· ALLOC
· DEALC
· EWORD
· TXBA
· TBAX
· XBAX
· ADBX
· ADAX
· ADBAX
· ADXBA
· SUBX
· SUAX
· SUBAX
· SUXBA
· CPBAX
· ASRX
· ASLX
· PSHX
.PULX
· PRINT
· PRINX
· GETFD
· PUTFD
· PUTEF
· EREAD
· EWRIT
· MREAD
· MWRIT
· MERED
· MEWRT
· BOOT

· $SAV

MDOS Equate File Listing

STORE BLANKS
STORE CHARACTERS
CHECK ALPHABETIC CHARACTER
CHECK DECIMAL DIGIT
INCREMENT MEMORY (DOUBLE BYTE) BY
DECREMENT MEMORY (DOUBLE BYTE) BY
MULTIPLY (SHIFT LEFT) MEMORY BY A
DIVIDE (SHIFT RIGHT) MEMORY BY A
ENTER MDOS WITHOUT RELOADING
LOAD A FILE FROM DISK
DIRECTORY SEARCH AND MODIFY
PROCESS FILE NAME
ALLOCATE USER MEMORY
CHANGE NAME/ATTRIBUTES
MDOS ERROR MESSAGE HANDLER
ALLOCATE DISK SPACE
RETURN DISK SPACE
SET ERROR STATUS WORD FOR CHAIN
TRANSFER X TO B,A
TRANSFER B,A TO X
EXCHANGE B,A AND X
ADD B TO X
ADD A TO X
ADD B,A TO X
ADD X TO B,A
SUBTRACT B FROM X
SUBTRACT A FROM X
SUBTRACT B,A FROM X
SUBTRACT X FROM B,A
COMPARE B,A TO X
SHIFT X RIGHT (ARITHMETIC)
SHIFT X LEFT (ARITHMETIC/LOGICAL>
PUSH X ON STACK
PULL X FROM STACK
PRINT-TERMINATE WITH CR
PRINT-TERMINATE WITH EOT
READ FDR (RESIDENT MDOS ONLY)
WRITE FDR (RESIDENT MDOS ONLY)
WRITE EOF (RESIDENT MDOS ONLY)
DISK READ W/ ERR RETN
DISK WRITE W/ ERR RETN
MULTIPLE SECTOR READ
MULTIPLE SECTOR WRITE
MULTIPLE SECTOR READ W/ ERR RETUR
MULTIPLE SECTOR WRITE W/ ERR RETU
RELOAD MDOS

RESTORE LOCATION COUNTER

CON T R 0 L C H A R A CAT E R S

o
1
2

NULL
START OF HEADING
START OF TEXT

Page 1-03

APPENDIX I MOOS Equate File Listing

0003 A ETX EGU 3 END OF TEXT
0004 A EDT EGU 4 END OF TRANSMISSION
0003 A ENG EGU 5 ENGUIRY (WRU - WHO ARE YOU)
0006 A ACK EGU 6 ACKNOWLEDGE
0007 A BEL EGU 7 BELL
0008 A BS EGU 8 · BACKSPACE
0009 A HT EGU 9 HORIZONTAL TAB
OOOA A LF EGU $A LINE FEED
OOOB A VT EGU $B · VERTICAL TAB
OOOC A FF EGU $C FORM FEED
OOOD A CR EGU $D CARRIAGE RETURN
OOOE A SO EGU $E · SHIFT OUT
OOOF A SI EGU $F SHIFT IN
0010 A DLE EGU $10 DATA LINK ESCAPE
0011 A DCl EGU $11 DEVICE CONTROL 1
0012 A DC2 EGU $12 DEVICE CONTROL 2
0013 ADC3 EGU $13 DEVICE CONTROL 4
0014 A DC4 EGU $14 DEVICE CONTROL 4
0015 A NAK EGU $15 NEGATIVE ACKNOWLEDGe
0016 A SYN EGU $16 SYNCHRONOUS IDLE
0017 A ETB EGU $17 END OF TRANSMISSION BLOCK
0018 A CAN EGU $18 CANCEL
0019 A EM EGU $19 END OF MEDIUM
001A A SUB EGU $1A SUBSTITUTE
001B A ESC EGU $lB ESCAPE
001C A FS EGU $1C · FILE SEPARATOR
001D A GS EGU $1D GROUP SEPARATOR
001E A RS EGU $1E RECORD SEPARATOR
001F A US EGU $1F UNIT SEPARATOR
0020 A SPACE EGU $20 SPACE (WORD SEPARATOR)
007F A RUBOUT EGU $7F DELETE (RUB OUT)

* * S P E C I A L C H A R ACT E R E Q U ATE S

* 002E A SUFDLM EGU , SUFFIX DELIMETER
003B A OPTDLM EQU ' . OPTIONS DELIMETER ,
003A A DRVDLM EGU ' . LOGICAL DRIVER DELIMETER
0023 A DEVDLM EGU '. GENERIC DEVICE NAME DELIMETER
002A A FAMDLM EGU '* FAMILY NAME/SUFFIX DELIMETER
0080 A E$FATL EGU 1 !<7 FATAL ERROR BIT

* * M DOS SEC TOR EQUATES

* 0000 A SC$DID EQU 0 DISK ID PHYSICAL SECTOR NUMBER
0001 A SC$CAT EGU 1 CLUSTER ALLOCATION TABLE PHSYICAL
0002 A SC$LOK EGU 2 LOCKOUT CLUSTER TABLE PHYSICAL SE
0003 A SC$DIR EQU 3 DIRECTORY START PHYSICAL SECTOR N
0016 A SC$DRE EQU $16 DIRECTORY END PHYSICAL SECTOR NUM
0017 A SC$BB EQU $17 BOOT BLOCK PHYSICAL SECTOR NUMBER
0018 A SC$DOS EQU $18 OPERATING SYSTEM PHSYICAL SECTOR
0080 A SC.SIZ EGU 128 SECTOR SIZE IN BYTES
001A A SC$TRK EGU 26 NUMBER OF SECTORS/TRACK (SINGLE S
0034 A SC$TKD EGU 52 NUMBER OF SECTORS/CYLINDER (DOUBL
0004 A SC$CLS EQU 4 NUMBER OF SECTORS / CLUSTER

Page 1-04

APPENDIX I

07DO A SC$MAX EOU
OFA4 A SC$MXD EOU
0020 A DFCLS$ EOU

0000
0008
OOOA
OOOC
0012
0026

* * DIS K

* A DID$ID EOU
A DID$VN EOU
A DID$RN EOU
A DID$DT EOU
A DID$NM EOU
A DID$RB EOU

*

2000
4004
32

I D

o
8
10
12
18
38

* D IRE C TOR Y

0000
0008
OOOA
OOOC
OOOE

* A DIR$NM EOU
A DIR$SX EOU
A DIR$RB EOU
A DIR$AT EOU
A DIR$NU EOU

*

o
8
10
12
14

MDOS E~uate File Listing

MAXIMUM NO. OF USABLE SECTORS (SI
MAXIMUM NO. OF USABLE SECTORS <DO
DEFAULT NO. OF CLUSTERS

SEC TOR OFF SET S

OFFSET TO DISK ID (8 BYTES)
OFFSET TO VERSION NUMBER (2 BYTES
OFFSET TO REVISION NUMBER (2 BYTE
OFFSET TO DATE (6 BYTES)
OFFSET TO USER NAME (20 BYTES)
OFFSET TO RIB ADDRS. (20 BYTES)

E N TRY OFF SET S

OFFSET TO NAME (8 BYTES)
OFFSET TO SUFFIX (2 BYTES)
OFFSET TO RIB ADDRESS (2 BYTES)
OFFSET OF ATTRIBUTES (2 BYTES)
OFFSET TO NOT USED AREA (2 BYTES)

* R . I . B BIN A R Y F I L E OFF SET

0075
0076
0078
007A

0000
0001
0002
0004
0006
0008
OOOA
OOOB
OOOB
OOOD
OOOF
0011
0013
0013
0015
0017
001B
001D
001F
0021
0023

* A RIB$LB EOU
A RIB$SL EOU
A RIB$LA EOU
A RIB$SA EOU

*

117
118
120
122

* U N I FIE D

*
*
*
* A IOCSTA EOU

A IOCDTT EOU
A IOCDBP EOU
A IOCDBS EOU
A JOCDBE EGU
A IOCGDW EOU
A IOCLUN EGU
A IOCNAM EOU
A IOCMLS EGU
A IOCSDW EOU
A IOCSLS EOU
A IOCLSN EGU
A IOCSUF EOU
A IOCEOF EGU
A IOCRIB EOU
A IOCFDF EOU
A IOCDEN EOU
A IOCSBP EGU
A IOCSBS EGU
A IOCSBE EGU
A IOCSBI EOU

o
1
2
4
6
8
10
11
11
13
15
17
19
19
21
23
27
29
31
33
35

I/O

NUMBER OF BYTES IN LAST SECTOR
NUMBER OF SECTORS TO LOAD
MEMORY LOAD ADDRESS
START EXECUTION ADDRESS

CON T R 0 L B L 0 C K

OFF SET S

ERROR STATUS
DATA TRANSFER TYPE
DATA BUFFER POINTER
DATA BUFFER START ADDRESS
DATA BUFFER END ADDRESS
GENERIC DEVICE TYPE/CDB ADDRESS
LOGICAL UNIT NUMBER
FILE NAME
MAXIMUM REFERENCED LSN
CURRENT SEGMENT DESCRIPTOR WORD
1ST LOGICAL SECTOR OF CURRENT SEG
CURRENT LOGICAL SECTOR NUMBER
FILE NAME SUFFIX
LOGICAL END OF FIl.E
PHYSICAL DISK ADDRESS OF R. I.B.
FILE DESCRIPTOR FLAGS
DIRECTORY ENTRY NUMBER
SECTOR BUFFER POINTER/INITIAL SIZ
SECTOR BUFFER START ADDRESS
SECTOR BUFFER END ADDRESS
SECTOR BUFFER INTERNAL PTR

Page 1-05

APPENDIX I MDOS E~uate File Listing

0025 A 10CBLN EGU IOCSBI+2-IOCSTA. IOCB LENGTH

* * U N I FIE D I/O ERR 0 R STATUSE

0000

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA
OOOB
OOOC
OOOD
OOOE
OOOF
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019

0000

* 0000 A. $SAV SET

*

*
*
*

ORG

SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SE~

SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG

ORG

* M DOS

*
* AND

* 0100 A MDOS$ EGU
0050 A CBUFL$ EGU
OOAE A CBUFF$ EGU
OOFE A CBUFP$ EOU
0100 A VERS$$ EGU
0102 A REVS$$ EGU
0104 A KYI$SV EGU
0106 A ENDOS$ EGU
0108 A ENDUS$ EGU
010A A ENDSY$ EGU
010E A RIBBA$ EGU
0110 A ENDRV$ EGU
0112 A GDBA$ EGU

* $0

I$NOER
I$NODV
I$RESV
I$NORV
I$NRDY
I$IVDV
I$DUPE
I$NONM
I$CLOS
I$EOF
I$FTYP
I$DTYP
I$EOM
I$BUFQ
I$CKSM
I$WRIT
I$DELT
I$RANG
I$FSPC
I$DSPC
I$SSPC
I$IDEN
I$RIB
I$DEAL
I$RECL
I$SECB

. $SAV

REMEMBER THE CURRENT LOCATION COU
· RESET IT TO ZERO TO USE THE SEG M

· NO ERRORS, NORMAL RETURN
NO SUCH DEVICE
DEVICE RESERVED ALREADY
DEVICE NOT RESERVED
DEVICE NOT READY
INVALID DEVICE
DUPLICATE FILE NAME
FILE NAME NOT FOUND
INVALID OPEN/CLOSED FLAG
END OF FILE

· INVALID FILE TYPE
INVALID DATA TRANSFER TVPE

· END OF MEDIA
BUFFER OVERFLOW
CHECKSUM ERROR

· FILE IS WRITE PROTECTED
FILE IS DELETE PROTECTED
LOQICAL SECTOR NUMBER OUT OF RANG
NO DISK FILE SPACE AVAILABLE
NO DIRECTORY SPACE AVAILABL.E
NO SEGMENT DESCRIPTOR SPACE AVAIL
INVALID DIR. ENTRY NO.
INVALID RIB
CAN'T DEALLOCATE ALL SPACE
BINARY RECORD LENGTH TOO LRGE
SECTOR BUFFER SIZE ERROR

RESTORE THE LOCATION COUNTER

I N T ERN A L V A R I A B L E

L 0 CAT ION EOUATES

$100 START OF MDOS ASECT
80 COMMAND BUFFER LENGTH
MDOS$-CBUFL$-2. COMMAND BUFFER LOCATION
CBUFF$+CBUFL$. COMMAND BUFFER SCAN POINTER
MDOS$ VERSION •
VERS$$+2 REVISION.
REVS$$+2 SAVE AREA FOR KEVIN$ VECTOR
KYI$SV+2 END OF MDOS
ENDOS$+2 END OF USER PROGRAM AREA
ENDUS$+2 END OF SYSTEM (MDOS) RAM
ENDSY$+4 RIB BUFFER ADDRESS
RIBBA$+2 END OF MDOS ROM VARIABLES
ENDRV$+2 GENERIC DEVICE TABLE ADDRESS

Page 1-06

APPENDIX I

0114
0116
0118
011A
011C
011E
0120
0145
016A

A SYERR$ EGU
A SWI$SV EGU
A SWI$UV EGU
A IRG$UV EGU
A IRG$SV EGU
A CHFLG$ EGU
A SYIOCB EGU
A SYPOCB EGU
A SYEOCB EGU

*

MDOS E~uate File Listing

GDBA$+2 SYSTEM ERROR STATUS WORD
SYERR$+2 SWI VECTOR SAVE AREA
SWI$SV+2 SWI USER VECTOR
SWI$UV+2 IRG USER VECTOR
IRG$UV+2 IRG VECTOR SAVE AREA
IRG$SV+2 CHAIN FUNCTION FLAG WORD
CHFLG$+2 SYSTEM CONSOLE IOCB
SYIOCB+IOCBLN . SYSTEM PRINTER IOCB
SYPOCB+IOCBLN . ERR MSG FILE

*L 0 G I CAL U NIT N U M B E R - - BIT D E F.

* 0040 A LU$RES EGU 7.01000000 IOCB RESERVED FLAG

0000
0001
0002
0003
0004
0008
0010
0020
0040
0080

0000
0001
0002
0003
0005
0007
0008
0010
0020
0040
0080

0000
0002
0004
0006
0007
0008
OOOA
OOOC

* * I 0 C D T T

* A DT$OPP EGU
A DT$OPI EGU
A DT$OPO EGU
A DT$OPU EGU
A DT$NFF EGU
A DT$TRU EGU
A DT$CLS EGU
A DT$SIO EGU
A DT$OUT EGU
A DT$INP EGU

* * I 0 C F D F

* A FD$FMU EGU
A FD$FMD EGU
A FD$FML EGU
A FD$FMB EGU
A FD$FMA EGU
A FD$FMC EGU
A FD$CMP EGU
A FD$CON EGU
A FD$SYS EGU
A FD$DEL EGU
A FD$WRT EGU

*

7.00000000
7.00000001
7.00000010
7.00000011
7.00000100
7.00001000
7.00010000
7.00100000
7.01000000
7.10000000

7.00000000
7.00000001
7.00000010
7.00000011
7.00000101
7.00000111
7.00001000
7.00010000
7.00100000
7.01000000
7.10000000

BIT D E FIN I T ION S

OPEN UPDATE/INPUT
OPEN INPUT MODE
OPEN OUTPUT MODE
OPEN UPDATE MODE
NON-FILE FORMAT I/O FLAG
TRUNCATE FLAG
FILE OPEN/CLOSE FLAG
SECTOR I/O FLAG
OUTPUT TRANSFER TYPE
INPUT TRANSFER TYPE

BIT D E FIN I T ION S

USER DEFINED FORMAT (SECTOR I/O
DEFAULT OB~ECT REC'D FORMAT
BINARY LOAD FORMAT
BINARY RECORD FORMAT
ASCII RECORD FORMAT
ASCI-CONVERTED-BINARY REC'O FORM
SPACE COMPRESSION FLAG
CONTIGUOUS ALLOCATION FLAG
SYSTEM FILE ATTRIBUTE
DELETE PROTECTION ATTRIBUTE
WRITE PROTECTION ATTRIBUTE

* U N I FIE D I/O CON T R 0 L DES C R I

*
*
* A CDBIOC EGU

A CDBSDA EGU
A CDBHAD EGU
A CDBDDF EGU
A CDBVDT EGU
A CDBDDA EGU
A CDBWST EGU
A CDBLEN EGU

*

B L 0 C K OFF SET S

o
2
4
6
7
8
10
CDBWST+2

ADDRESS OF IOCB
SOFTWARE DRIVER ADDRESS
HARDWARE ADDRESS
DEVICE DESCRIPTOR FLAGS
VALID DATA TYPE
DEVICE DEPENDENT AREA
WORKING STORAGE
CDB LENGTH

Page 1-07

APPENDIX I

0001
0002
0004
0008
0010
0020
0040
0080

* C 'D B D D F

* A DD$FMC EGU
A DD$LOG EGU
A DD$CNS EGU
A DD$RWD EGU
A DD$OCF EGU
A DD$INP EGU
A DD$OUT EGU
A DD$RES EGU

* * C D B V D T
* 0004 A VD$BIN EGU

0008 A VD$GDB EGU
0010 A VD$SDA EGU
0080 A VD$NFF EGU

0000
0003
0006
0009
OOOC

0000
0001
0003
0005
0006
0008
OOOB
OOOD

* * D E V ICE
* A DV$ON EGU

A DV$OFF EGU
A DV$INT EGU
A DV$TRM EGU
A DV$IO EGU

* * DIS K
* A CURDRV EGU

A STRseT EGU
A NUMSCT EGU
A LSCTLN EGU
A CURADR EGU
A FDSTAT EGU
A SCTCNT EGU
A SIDES EGU

*

MDOS E~uate File Listing

BIT D E FIN I T ION S

'X00000001
'X00000010
'X00000100
'XOOOO 1 000
'X00010000
'XOO 1 00000 .
'XO 1 000000 .
'X 10000000

ASCII-CONVERTED-BINARY IS DEFAUL
LOGICAL SECTOR I/O FLAG
CONSOLE FLAG
REWIND FLAG
OPEN/CLOSE FLAG
INPUT DEVICE FLAG
OUTPUT DEVICE FLAG
RESERVABLE DEVICE FLAG

BIT D E FIN I T ION S

'X00000100 . BINARY OB~ECT FLAG
'X00001000 . TEMP GDB POINTER FLAG
'X00010000 TEMP SDA POINTER FLAG
'X10000000 NON-FILE FORMAT FLAG

D R I V E R E N TRY OFFSET

o
3
6
9
12

E ROM

o
1
3
5
6
8
11
$D

DEVICE ON OFFSET
DEVICE OFF OFFSET
DEVICE INTIALIZATION OFFSET
DEVICE TERMINATION OFFSET
DEVICE CHARACTER INPUT/OUTPUT OFF

EGUATES

CURRENT DRIVE NUMBER
STARTING PHYSICAL SECTOR NUMBER
NUMBER OF SECTORS TO OPERATE UPON
OF BYTES TO READ FROM LAST SECT
MEMORY ADDRESS FOR DISK TRANSFER
DISK TRANSFER STATUS
SECTOR COUNT USED IN DETERMINING
- ->SINGLEi + -> DOUBLE SIDED

* E R D M E N TRY POI N T S

E800
E822
E853
E85A
E869
E86D
E86F
E872
E875
E878
E87B
E87E
E881
E884

* A DSLOAD EGU
A FDINIT EGU
A CHKERR EGU
A PRNTER EGU
A READSC EGU
A READPS EGU
A RDCRC EGU
A RWTEST EGU
A RESTOR EGU
A SEEK EGU
A WRTEST EGU
AWRDDAM EGU
A WRVERF EGU
A WRITSC EGU

*

$E800
$E822
$E853
$E85A
$E869
$E86D
$E86F
$E872
$E875
$E878
$E87B
$E87E
$E881
$E884

BOOTSTRAP THE OPERATING SYSTEM
INITIALIZE THE DISK'S PIA AND SSD
CHECK AND PRINT ERROR FROM FDSTAT
PRINT ERROR FROM FDSTAT
READ SECTOR(S)
READ PARTIAL SECTOR
READ AND CHECK FOR CRC
WRITE/READ TEST
MOVE HEAD TO TRACK 0
POSITION HEAD TO TRACK OF "STRSCT
WRITE TEST
WRITE DELETED DATA MARK
WRITE AND VERIFY CRC
WRITE SECTDR(S)

Page 1-08

APPENDIX I

0031
0032
0033
0034
0035
0036
0037
0038
0039

* E ROM

* A ER$CRC EGU
A ER$WRT EGU
A ER$RDY EGU
A ER$MRK EGU
A ER$TIM EGU
A ER$DAD EGU
A ER$SEK EGU
A ER$DMA EGU
A ER$ACR EGU

*

ERR 0 R

'1
'2
'3
'4
'5
'6
'7
'8
'9

MDOS E~uate File Listing

E G U ATE S

DATA CRC ERROR
WRITE PROTECTED DISK
DISK NOT READY
DELETED DATA MARK ENCOUNTERED
TIMEOUT
INVALID DISK ADDRESS
SEEK ERROR
DATA ADDRESS MARK ERROR
ADDRESS MARK CRC ERROR

* MIS C ELL A N E 0 U S E ROM E G U ATE S

* 0005 A RETRY$ EGU 5 RETRY COUNT FOR DISK READ/WRITE E

EBCO
EBCC
EBE4
EBF2

F015
F018
F021
F024
FCFD
FF1F
FF4F
FF53
FFF8
FFFA
FFFC
FF8A
FOF3
FF16
FF18
FF1A
FF1B
FFIC
FFID
FF63
FCF4

* * LIN E P R I N T E R E ROM E G U ATE S

* A LPINIT EGU
A LIST EGU
A LDATA EGU
A LDATA1 EGU

*

$EBCO
$EBCC
$EBE4
$EBF2

INIT PRINTER PIA
PRINT CONTENTS OF 'A'
PRINT STRING. CR/LF
PRINT STRING, NO CR/LF

* E X BUG E G U ATE S FOR M DOS
* (PARTIAL LIST ONLY)

* A INCHNP EGU
A OUTCH EGU
A PCRLF EGU
A PDATA EGU
A SBIT$ EGU
A BRKPT$ EGU
A BKPIN$ EGU
A AECHO EGU
A IRG$VC EGU
A SWI$VC EGU
A NMI$VC EGU
A XSTAK$ EGU
A MAID$ EGU
A XREG$P EGU
A XREG$X EGU
A XREG$A EGU
A XREG$B EGU
A XREG$C EGU
A XREG$S EGU
A BRKPE$ EGU
A CNACI$ EGU

*

$F015
$F018
$F021
$F024
$FCFD
$FF1F
$FF4F
$FF53
$FFF8
$FFFA
$FFFC
$FF8A
$FOF3
$FF16
$FF18
$FFIA
$FF1B
$FFIC
$FFID
$FF63
$FCF4

INPUT CHARACTER (NO PARITY)
OUTPUT ONE CHARACTER
PRINT LF/CR
PRINT STRING
BIT 7 INDICATES IRG OCCURRED (IF
MAID'S BREAKPOINT TABLE <8 FDB'S)
EXBUG BREAKPOINTS IN MEMORY
INPUT CHARACTER ECHO FLAG (O=>ECH
IRG VECTOR
SWI VECTOR
NMI VECTOR
EXBUG STACK
MAID ENTRY POINT
MAID P-REG.
MAID X-REG.
MAID A-REG.
MAID B-REG.
MAID C-REG.
MAID S-REG.
END OF MAID BREAKPOINT TABLE
CONSOLE ACIA

* SPECIAL MACRO FOR THE CENTRONIX PRINTERS TO PRINT TITLES
* (NO LONGER USED)
TITLE MACR

TTL \0
ENDM

Page 1-09

APPENDIX I

TOTAL ERRORS 00000--00000

· $SAV 0000
· ADXBA 002A
· ASRX 0030
· CMPAR 0011
· DREAD OOOE
· EREAD 0039
· GETRC 0004
. MER ED 003D
. MWRIT 003C
· PRINX 0035
· PUTLS 0008
· STCHB 0012
· SUBX 002B
ACK 0006
BRKPT$ FF1F
CBUFP$ OOFE
CDBLEN OOOC
CHKERR E853
DCl 0011
DD$FMC 0001

·DD$RES 0080
DID$ID 0000
DIR$AT OOOC
DLE 0010
DT$OPI 0001
DT$SIO 0020
DV$ON 0000
ENDRV$ 0110
ER$ACR 0039
ER$RDV 0033
ETB 0017
FD$DEL 0040
FD$FML 0002
FDSTAT 0008
HT 0009
I$DELT 0010
I$EOM OOOC
I$NODV 0001
I$RANG 0011
I$SSPC 0014
IOCDBP 0002
IOCFDF 0017
IOCNAM OOOB
IOCSBS 001F
IRG$SV 011C
LDATAl EBF2
LU$RES 0040
NAK 0015
OSLOAD E800
RDCRC E86F
REVS$$ 0102
RIBBA$ 010E

· ADAX 0028
· ALLOC 0021
· BOOT 003F
· CPBAX 002F
· DSPLX OOOB
· EWORD 0023
· KEVIN 0009
.MEWRT 003E
· NUMD 0015
· PSHX 0032
· PUTRC 0005
· STCHR 0013
· SUXBA 002E
AECHO FF53
BS 0008
CDBDDA 0008
CDBSDA 0002
CNACI$ FCF4
DC2 0012
DD$INP 0020
DD$RWD 0008
DID$NM 0012
DIR$NM 0000
DRVDLM003A
DT$OPO 0002
DT$TRU 0008
DV$TRM 0009
ENDSV$ 010A
ER$CRC 0031
ER$SEK 0037
ETX 0003
FD$FMA 0005
FD$FMU 0000
FF OOOC
I$BUFO OOOD
I$DSPC 0013
I$FSPC 0012
I$NOER 0000
I$RECL 0018
I$WRIT OOOF
IOCDBS 0004
IOCGDW 0008
IOCRIB 0015
IOCSDW OOOD
IRG$UV 011A
LF OOOA
MAID$ FOF3
NMI$VC FFFC
OUTCH F018
READPS E86D
RIB$LA 0078
RS OOlE

· ADBAX 0029
· ALPHA 0014
· CHANG OOlF
, DEALC 0022
· DSPLV OOOA
· EWRIT 003A
· LOAD OOlB
· MMA 0018
· OPEN 0002
· PULX 0033
.RELES 0001
· SUAX 002C
· TBAX 0025
BEL 0007
CAN 0018
CDBDDF 0006
CDBVDT 0007
CR OOOD
DC3 0013
DD$LOG 0002
DEVDLM 0023
DID$RB 0026
DIR$NU OOOE
DT$CLS 0010
DT$OPP 0000
DV$INT 0006
E$FATL 0080
ENDUS$ 0108
ER$DAD 0036
ER$TIM 0035
FAMDLM 002A
FD$FMB 0003
FD$SVS 0020
FS 001C
I$CKSM OOOE
I$DTVP OOOB
I$FTVP OOOA
I$NONM 0007
I$RESV 0002
INCHNP F015
IOCDEN 001B
IOCLSN 0011
IOCSBE 0021
IOCSLS OOOF
IRG$VC FFF8
LIST EBCC
MDOS$ 0100
NULL 0000
PCRLF F021
READSC E869
RIB$LB 0075
RUB OUT 007F

MDOS Eq,uate File Listing

· ADBX 0027
· ALUSM 001E
.CKBRK OOOD
· DIRSM 001C
· DSPLZ OOOC
· GETFD 0036
· MDENT 001A
· MOVE 0010
· PFNAM 001D
· PUTEF 0038
.RESRV 0000
· SUBAM 0017
· TXBA 0024
BKPIN$ FF4F
CBUFF$ OOAE
CDBHAD 0004
CDBWST OOOA
CURADR 0006
DC4 0014
DD$OCF 0010
DFCLS$ 0020
DID$RN OOOA
DIR$RB OOOA
DT$INP 0080
DT$OPU 0003
DV$IO OOOC
EM 0019
ENG 0005
ER$DMA 0038
ER$WRT 0032
FD$CMP 0008
FD$FMC 0007
FD$WRT 0080
GDBA$ 0112
I$CLOS 0008
I$DUPE 0006
I$IDEN 0015
I$NORV 0003
I$RIB 0016
IOCBLN 0025
IOCDTT 0001
IOCLUN OOOA
IOCSBI 0023
IOCSTA 0000
KVI$SV 0104
LPINIT EBCO
MDOS9$ 0000
NUMSCT 0003
PDATA F024
RESTOR E875
RIB$SA 007A
RWTEST E872

· ADDAM 0016
· ASLX 0031
· CLOSE 0003
· DMA0019
· DWRIT OOOF
· GETLS 0007
.MDERR 0020
· MREAD 003B
· PRINT 0034
· PUTFD 0037
· REWND 0006
· SUBAX 002D
· XBAX 0026
BRKPE$ FF63
CBUFL$ 0050
CDBIOC 0000
CHFLG$ 011E
CURDRV 0000
DD$CNS 0004
DD$OUT 0040
DID$DT OOOC
DID$VN 0008
DIR$SX 0008
DT$NFF 0004
DT$OUT 0040
DV$OFF 0003
ENDOS$ 0106
EOT 0004
ER$MRK 0034
ESC 001B
FD$CON 0010
FD$FMD 0001
FDINIT E822
GS 0010
I$DEAL 0017
I$EOF 0009
I$IVDV 0005
I$NRDV 0004
I$SECB 0019
IOCDBE 0006
IOCEOF 0013
IOCMLS OOOB
IOCSBP 0010
IOCSUF 0013
LDATA EBE4
LSCTLN 0005
MDOSF$ 0000
OPTDLM 003B
PRNTER E85A
RETRV$ 0005
RIB$SL 0076
SBIT$ FCFD

Page 1-10

APPENDIX I MDOS Eq,uate File Listing

SC$BB 0017 SC$CAT 0001 SC$CLS 0004 SC$DID 0000 SC$DIR 0003
SC$DOS 0018 SC$DRE 0016 SC$LOK 0002 SC$MAX 07DO SC$MXD OFA4
SC$SIZ 0080 SC$TKD 0034 SC$TRK OOlA SCTCNT OOOB SEEK E878
SI OOOF SIDES OOOD SO OOOE SOH 0001 SPACE 0020
STRSCT 0001 STX 0002 SUB OOlA SUFDLM 002E SWI$SV 0116
SWI$UV 0118 SWI$VC FFFA SYEOCB 016A SYERR$ 0114 SYIOCB 0120
SYN 0016 SYPOCB 0145 US 001F VD$BIN 0004 VD$GDB 0008
VD$NFF 0080 VD$SDA 0010 VERS$$ 0100 VT OOOB WRDDAM E87E
WRITSC E884 WRTEST E87B WRVERF E881 XREG$A FFIA XREG$B FFIB
XREG$C FFIC XREG$P FF16 XREG$S FFID XREG$X FF18 XSTAK$ FF8A

Page 1-11

APPENDIX I MDOS09 Equate File Listing

ONLY.

* * 6809 MDOS VERSION 03.00 -- SYSTEM EGUATE FILE -- 01/26/79

*

* *DEFINE TYPE OF MDOS--RESIDENT MDOS ONLY

* 0000 A MDOSF$ EGU
0001 A MDOS9$ EGU

o
1

o => MDOS, 1 => OEM MDOS
. 0 => MDOS, 1 => MDOS09

*
* SKI P 2 MAC R 0
*
* THE GENERATED BYTE IS A "COMPARE INDEX IMMEDIATE".
* THE EXECUTION OF THE BYTE WILL CHANGE THE CONDITION CODES

*
*

NO REGISTERS ARE AFFECTED. THUS, A ONE BYTE INSTRUCTION
IS FORMED THAT SKIPS FORWARD TWO BYTES.

* SKIP2 MACR

*

FCB $8C .
ENDM

* SKI P 1

*
MAC R 0

* THE SAME CONCEPT AS THE "SKIP2" MACRO IS USED, EXCEPT THAT

* A "BIT TEST ACCUMULATOR A IMMEDIATE" OP CODE IS GENERATED.

* SKIPl MACR

*

FCB $85
ENDM

* S CAL L

* SCALL MACR
IFEG NARG-l
SWI

MAC R 0

FCB \O!.X01111111
ENDC

* IFNE NARG-l

(SYSTEM FUNCTION CALL)

FAIL * UNDEFINED SWI CALL ARGUMENT *
ENDC
ENDM

* * U CAL L

*
MAC R 0 (USER FUNCTION CALL)

Page 1-12

APPENDIX I

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA
OOOB
OOOC
OOOD
OOOE
OOOF
0010
0011
0012
0013
0014
0015
0016
0017

0000 A

UCALL MACR
IFEO NARG-l
SWI
FCB \0!+7.10000000
ENDC

* IFNE NARG-l
SCALL
ENDC
ENDM

* * SEQ

* SEQ MACR
IFNE NARG

\0 EOU *
ENDC

*

ORG *+1 .
ENDM

MAC R 0

MDOS09 E~uate File Listing

(NUMBERING SEQUENTIAL EQUATES)

* S V S T E M FUN C T ION D E FIN I T ION S
*
*
* SET
*
. $SAV

*
*
*

LOCATION COUNT TO 0 FOR THE EQUATE DEFINITIONS

SET
ORG

SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ

* $0

· RESRV
· RELES
· OPEN
· CLOSE
· GETRC
· PUTRC
· REWND
· GETLS
· PUTLS
· KEVIN
· DSPLY
· DSPLX
· DSPLZ
· CKBRK
· DREAD
· DWRIT
· MOVE
· CMPAR
· STCHB
· STCHR
· ALPHA
· NUMD
· ADDAM
· SUBAM

SAVE OLD LOCATION COUNT

RESERVE A DEVICE
RELEASE A DEVICE
OPEN A FILE
CLOSE A FILE
READ A RECORD
WRITE A RECORD
POSITION TO BEGINNING OF FILE
READ LOGICAL SECTOR
WRITE LOGICAL SECTOR
CONSOLE INPUT
CONSOLE OUTPUT (TERM WI CR)
CONSOLE OUTPUT (TERM WI EOT)
CONSOLE OUTPUT (TERM WI EOT. NO CR
CHECK CONSOL.E FOR BREAK KEY
EROM DISK READ
EROM DISK WRITE
MOVE A STRING
COMPARE STRINGS
STORE BLANKS
STORE CHARACTERS
CHECK ALPHABETIC CHARACTER
CHECK DECIMAL DIGIT
INCREMENT MEMORV (DOUBLE BYTE) BY
DECREMENT MEMORY (DOUBLE BYTE) BY

Page 1-13

APPENDIX I MDOS09 E~uate File Listing

0018 SEG · MMA MULTIPLY (SHIFT LEFT) MEMORY BY A
0019 SEG · DMA DIVIDE (SHIFT RlGHT) MEMORY BY A
OOlA SEG · MDENT ENTER MDOS WITHOUT RELOADING
001B SEG · LOAD LOAD A FILE FROM DISK
001C SEG · DIRSM DIRECTORY SEARCH AND MODIFY
0010 SEG · PFNAM PROCESS FILE NAME
001E SEG · ALUSM ALLOCATE USER MEMORY
001F SEG · CHANG CHANGE NAME/ATTRIBUTES
0020 SEG · MDERR MDOS ERROR MESSAGE HANDLER
0021 SEG · ALLOC ALLOCATE DISK SPACE
0022 SEG · DEALC RETURN DISK SPACE
0023 SEG · EWORD SET ERROR STATUS WORD FOR CHAIN
0024 SEG · TXBA TRANSFER X TO B,A
0025 SEG · TBAX TRANSFER B,A TO X
0026 SEG · XBAX EXCHANGE B,A AND X
0027 SEG · ADBX ADD B TO X
0028 SEG · ADAX ADD A TO X
0029 SEG · ADBAX ADD B,A TO X
002A SEG · ADXBA ADD X TO B,A
002B SEG · SUBX SUBTRACT B FROM X
002C SEG · SUAX SUBTRACT A FROM X
0020 SEG · SUBAX SUBTRACT B.A FROM X
002E SEG · SUXBA SUBTRACT X FROM B,A
002F SEG · CPBAX COMPARE B,A TO X
0030 SEG · ASRX SHIFT X RIGHT (ARITHMETIC)
0031 SEG · ASLX SHIFT X LEFT (ARITHMETIC/LOGICAL)
0032 SEG · PSHX PUSH X ON STACK
0033 SEG · PULX PULL X FROM STACK
0034 SEG · PRINT PRINT-TERMINATE WITH CR
0035 SEa · PRINX PRINT-TERMINATE WITH EDT
0036 SEG · GETFD READ FDR (RESIDENT MDOS ONLY)
0037 SEG · PUTFD WRITE FOR (RESIDENT MDOS ONLY)
0038 SEG · PUTEF WRITE EOF (RESIDENT MDOS ONLY)
0039 SEa · EREAD DISK READ W/ ERR RETN
003A SEG · EWRIT DISK WRITE W/ ERR RETN
003B SEa · MREAD MULTIPLE SECTOR READ
003C SEG · MWRIT MULTIPLE SECTOR WRITE
0030 SEa · MER ED MULTIPLE SECTOR READ W/ ERR RETURN
003E SEa · MEWRT MULTIPLE SECTOR WRITE W/ ERR RETURN

003F SEG · BOOT RELOAD MOOS

* 0000 ORG · $SAV RESTORE LOCATION COUNTER

* * A S C I I C 0 N T R OL C H A R A CAT E R S

* 0000 A NULL EGU 0 . NULL
0001 A SOH EGU 1 START OF HEADING
0002 A STX EGU 2 START OF TEXT
0003 A ETX EGU 3 END OF TEXT
0004 A EOT EGU 4 END OF TRANSMISSION
0005 A ENG EGU 5 ENGUIRY (WRU - WHO ARE YOU)
0006 A ACK EGU 6 ACKNOWLEDGE
0007 A BEL EGU 7 . BELL

Page 1-14

APPENDIX I

0008
0009
OOOA
OOOB
OOOC
0000
OOOE
OOOF
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
OOlA
001B
001C
0010
001E
OOlF
0020
007F

002E
003B
003A
0023
002A
0080

0000
0001
0002
0003

0016
0017
0018
0080
OOlA

0034
0004
0700
OFA4
0020

A BS EGU
A HT EGU
A LF EGU
A VT EGU
A FF EGU
A CR EGU
A SO EGU
A 51 EGU
A OLE EGU
A DCl EGU
A DC2 EGU
A DC3 EGU
A DC4 EGU
A NAK EGU
A SYN EGU
A ETB EGU
A CAN EGU
A EM EGU
A SUB EGU
A ESC EGU
A FS EGU
A GS EGU
A RS EGU
A US EOU
A SPACE EGU
A RUBOUT EGU

*

8
9
$A
$B
$C
$D
$E
$F
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$lA
$lB
$lC
$10
$1E
$lF
$20
$7F

* S P E C I A L

* A SUFDLM EQU
A OPTDLM EGU
A DRVDLM EGU
A DEVDLM EGU
A FAMDLM EGU
A E$FATL EGU

*

,
, . ,
, .
'tt

'*
1 !<7

MDOS09 Equate File Listing

BACKSPACE
HORIZONTAL TAB
LINE FEED
VERTICAL TAB
FORM FEED
CARRIAGE RETURN
SHIFT OUT
SHIFT IN
DATA LINK ESCAPE
DEVICE CONTROL 1
DEVICE CONTROL 2
DEVICE CONTROL 4
DEVICE CONTROL 4
NEGATIVE ACKNOWLEDGE
SYNCHRONOUS IDLE
END OF TRANSMISSION BLOCK
CANCEL
END OF MEDIUM
SUBSTITUTE
ESCAPE
FILE SEPARATOR
GROUP SEPARATOR
RECORD SEPARATOR
UNIT SEPARATOR
SPACE (WORD SEPARATOR)
DELETE (RUB OUT)

C H A R ACT E R E QUA T E S

SUFFIX DELIMETER
OPTIONS DELIMETER
LOGICAL DRIVER DELIMETER
GENERIC DEVICE NAME DELIMETER
FAMILY NAME/SUFFIX DELIMETER
FATAL ERROR BIT

* MOO S SEC TOR E G U ATE S

* A SC$DID EGU
A SC$CAT EGU
A SC$LOK EGU
A SC$DIR EGU

A SC$DRE EGU
A SC$BB EGU
A SC$DOS EGU
A SC$SIZ EGU
A SC$TRK EGU

A SC$TKD EGU
A SC$CLS EGU
A SC$MAX EGU
A SC$MXD EQU
A DFCLS$ EGU

o
1
2
3

$16
$17
$18
128
26

52
4
2000
4004
32

DISK 10 PHYSICAL SECTOR NUMBER
CLUSTER ALLOCATION TABLE PHSYICAL
LOCKOUT CLUSTER TABLE PHYSICAL SEC
DIRECTORY START PHYSICAL SECTOR NUM

DIRECTORY END PHYSICAL SECTOR NUM
BOOT BLOCK PHYSICAL SECTOR NUMBER
OPERATING SYSTEM PHSYICAL SECTOR N
SECTOR SIZE IN BYTES
NUMBER OF SECTORS/TRACK (SINGLE SID

NUMBER OF SECTORS/CYLINDER (DOUBLE
NUMBER OF SECTORS / CLUSTER
MAXIMUM NO. OF USABLE SECTORS (SI
MAXIMUM NO. OF USABLE SECTORS <DOU
DEFAULT NO. OF CLUSTERS

Page 1-15

APPENDIX I

* * DIS K

* 0000 A DID$ID EGU
0008 A DID$VN EGU
OOOA A DID$RN EGU

OOOC A DID$DT EGU
0012 A DID$NM EGU
0026 A DID$RB EGU

*

I D

o
8
10

12
18
38

MDOS09 Equate File Listing

SEC TOR OFFSETS

OFFSET TO DISK ID (8 BYTES)
OFFSET TO VERSION NUMBER (2 BYTES)
OFFSET TO REVISION NUMBER (2 ~YTES)

OFFSET TO DATE (6 BYTES)
OFFSET TO USER NAME (20 BYTES)
OFFSET TO RIB ADDRS. (20 BYTES)

* D IRE C TOR Y E N TRY OFFSETS

0000
0008
OOOA
OOOC
OOOE

* A DIR$NM EGU
A DIR$SX EGU
A DIR$RB EGU
A DIR$AT EGU
A DIR$NU EGU

* * R . I . B

* 0075 A RIB$LB EGU
0076 A RIB$SL EGU
0078 A RIB$LA EGU
007A A RIB$SA EGU

*

o
8
10
12
14

117
118
120
122

OFFSET TO NAME (8 BYTES)
OFFSET TO SUFFIX (2 BYTES)
OFFSET TO RIB ADDRESS (2 BYTES)
OFFSET OF ATTRIBUTES (2 BYTES)
OFFSET TO NOT USED AREA (2 BYTES)

BIN A R Y F I L E OFF SET S

NUMBER OF BYTES IN LAST SECTOR
NUMBER OF SECTORS TO LOAD
MEMORY LOAD ADDRESS
START EXECUTION ADDRESS

* U N I FIE D I/O CON T R 0 L B L 0 C K

0000
0001
0002
0004
0006
0008
OOOA
OOOB
OOOB
OOOD
OOOF
0011
0013
0013
0015
0017
001B
001D
001F
0021
0023
0025

*
*
*
* A IOCSTA EGU

A IOCDTT EGU
A IOCDBP EGU
A IOCDBS EGU
A IOCDBE EGU
A IOCGDW EGU
A IOCLUN EGU
A IOCNAM EGU
A IOCMLS EGU
A IOCSDW EGU
A IOCSLS EGU
A IOCLSN EGU
A IOCSUF EGU
A IOCEOF EGU
A IOCRIB EGU
A IOCFDF EGU
A IOCDEN EGU
A IOCSBP EGU
A IOCSBS EGU
A IOCSBE EGU
A IOCSBI EGU
A IOCBLN EGU

*

OFF SET S

o ERROR STATUS
1 DATA TRANSFER TYPE
2 DATA BUFFER POINTER
4 DATA BUFFER START ADDRESS
6 DATA BUFFER END ADDRESS
8 GENERIC DEVICE TYPE/CDB ADDRESS
10 LOGICAL UNIT NUMBER
11 FILE NAME
11 MAXIMUM REFERENCED LSN
13 CURRENT SEGMENT DESCRIPTOR WORD
15 1ST LOGICAL SECTOR OF CURRENT SEGM
17 CURRENT LOGICAL SECTOR NUMBER
19 FILE NAME SUFFIX
19 LOGICAL END OF FILE
21 PHYSICAL DISK ADDRESS OF R.I.B.
23 FILE DESCRIPTOR FLAGS
27 DIRECTORY ENTRY NUMBER
29 SECTOR BUFFER POINTER/INITIAL SIZE
31 SECTOR BUFFER START ADDRESS
33 SECTOR BUFFER END ADDRESS
35 SECTOR BUFFER INTERNAL PTR
IOCSBI+2-IOCSTA. IOCB LENGTH

Page 1-16

APPENDIX I MDOS09 Equate File Listing

* U N I FIE D I/O ERR 0 R S TAT USE S

* 0000 A .$SAV SET
ORG

0100
0050
OOAE
OOFE
0100
0102
0104
0106
0108
010A
010E
0110
0112
dl14
0116

*

*
*
*

SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG

ORG

* M DOS

*
* AND

* A MDOS$ EGU
A CBUFL$ EGU
A CBUFF$ EGU
A CBUFP$ EGU
A VERS$$ EGU
A REVS$$ EGU
A KYI$SV EGU
A ENDOS$ EGU
A ENDUS$ EGU
A ENDSY$ EGU
A RIBBA$ EGU
A ENDRV$ EGU
A GDBA$ EGU
ASYERR$ EGU
A SWI$SV EGU

* $0

I$NOER
I$NODV
I$RESV
I$NORV
I$NRDY
I$IVDV
I$DUPE
I$NONM
I$CLOS
I$EOF
I$FTYP
I$DTYP
I$EOM
I$BUFO
I$CKSM
I$WRIT
I$DELT
I$RANG
I$FSPC
I$DSPC
I$SSPC
I$IDEN
I$RIB
I$DEAL
I$RECL
I$SECB

. $SAV

REMEMBER THE CURRENT LOCATION COUN
RESET IT TO ZERO TO USE THE SEG MA

NO ERRORS, NORMAL RETURN
NO SUCH DEVICE
DEVICE RESERVED Al.READY
DEVICE NOT RESERVED
DEVICE NOT READY
INVALID DEVICE
DUPLICATE FILE NAME
FILE NAME NOT FOUND
INVALID OPEN/CLOSED FLAG
END OF FILE
INVALID FILE TYPE
INVALID DATA TRANSFER TYPE
END OF MEDIA
BUFFER OVERFLOW
CHECKSUM ERROR
FILE IS WRITE PROTECTED
FILE IS DELETE PROTECTED
LOGICAL SECTOR NUMBER OUT OF RANGE
NO DISK FILE SPACE AVAILABLE
NO DIRECTORY SPACE AVAILABLE
NO SEGMENT DESCRIPTOR SPACE AVAIL
INVALID DIR. ENTRY NO.
INVALID RIB
CAN'T DEALLOCATE ALL SPACE
BINARY RECORD LENGTH TOO LRGE
SECTOR BUFFER SIZE ERROR

RESTORE THE LOCATION COUNTER

I N T ERN A L V A R I A B L E

L 0 CAT ION E G U ATE S

$100 START OF MDOS ASECT
80 COMMAND BUFFER LENGTH
MDOS$-CBUFL$-2 . COMMAND BUFFER LOCATION
CBUFF$+CBUFL$. COMMAND BUFFER SCAN POINTER
MDOS$ VERSION #
VERS$$+2 REVISION #
REVS$$+2 SAVE AREA FOR KEVIN$ VECTOR
KYI$SV+2 END OF MDOS
ENDOS$+2 END OF USER PROGRAM AREA
ENDUS$+2 END OF SYSTEM (MDOS) RAM
ENDSY$+4 RIB BUFFER ADDRESS
RIBBA$+2 END OF MDOS ROM VARIABLES
ENDRV$+2 GENERIC DEVICE TABLE ADDRESS
GDBA$+2 SYSTEM ERROR STATUS WORD
SYERR$+2 SWI VECTOR SAVE AREA

Page 1-17

APPENDIX I

0118
011A
011C
0141
0166

A SWI$UV EOU
A CHFLG$ EOU
A SYIOCB EOU
A SYPOCB EOU
A SYEOCB EOU

* *L 0 G I C A

* 0040 A LU$RES EOU

* * I 0 COT T

* 0000 A DT$OPP EGU
0001 A DT$OPI EOU
0002 A DT$OPO EGU
0003 A DT$OPU EOU
0004 A DT$NFF EOU
0008 A DT$TRU EGU
0010 A DT$CLS EGU
0020 A DT$SIO EOU
0040 A DT$OUT EGU
0080 A DT$INP EOU

* * I 0 C F D F

0000
0001
0002
0003
0005
0007

0008
0010
0020
0040
0080

0000
0002
0004
0006
0007
0008
OOOA
OOOC

* A FD$FMU EOU
A FD$FMD EOU
A FD$FML EOU
A FD$FMB EOU
A FD$FMA EGU
A FD$FMC EGU

A FD$CMP EGU
A FD$CON EOU
A FD$SYS EGU
A FD$DEL EGU
A FD$WRT EGU

* * U N I F I

*
*
* A COBIOC EOU

A CDBSDA EGU
A CDBHAD EGU
A CDBDDF EGU
A CDBVDT EOU
A CDBDDA EGU
A CDBWST EGU
A CDBLEN EGU

E

* *CDBDDF

* 0001 A DD$FMC EGU

MDOS09 E~uate File Listing

SWI$SV+2 . SWI USER VECTOR
SWI$UV+2 . CHAIN FUNCTION FLAG WORD
CHFLG$+2 . SYSTEM CONSOLE IOCB
SYIOCB+IOCBLN . SYSTEM PRINTER IOCB
SYPOCB+IOCBLN . ERR MSG FILE

L U NIT N U M B E R - - B I T D E F.

;(01000000 . IOCB RESERVED FLAG

B I T D E FIN I T ION S

;(00000000 OPEN UPDATE/INPUT
;(00000001 OPEN INPUT MODE
;(00000010 OPEN OUTPUT MODE
;(00000011 OPEN UPDATE MODE
;(00000100 NON-FILE FORMAT I/O FLAG
;(00001000 . TRUNCATE FLAG
;(00010000 FILE OPEN/CLOSE FLAG
;(00100000 SECTOR I/O FLAG
;(01000000 OUTPUT TRANSFER TYPE
;(10000000 INPUT TRANSFER TYPE

BIT D E FIN I T ION S

;(00000000
;(00000001 .
;(00000010
;(00000011
;(00000101
;(00000111

;(00001000
;(00010000
;(00100000
;(01000000
;(10000000

D I I 0

B L 0

0
2
4
6
7
8
10
CDBWST+2

USER DEFINED FORMAT (SECTOR 110
DEFAULT OB~ECT REC'D FORMAT
BINARY LOAD FORMAT
BINARY RECORD FORMAT
ASCII RECORD FORMAT
ASCI-CONVERTED-BINARY REC'D FORMA

SPACE COMPRESSION FLAG
CONTIGUOUS ALLOCATION FLAG
SYSTEM FILE ATTRIBUTE
DELETE PROTECTION ATTRIBUTE
WRITE PROTECTION ATTRIBUTE

C 0 N T R 0 L D E S C

C K OFFSETS

ADDRESS OF IOCB
SOFTWARE DRIVER ADDRESS
HARDWARE ADDRESS
DEVICE DESCRIPTOR FLAGS
VALID DATA TYPE
DEVICE DEPENDENT AREA
WORKING STORAGE
CDB LENGTH

R I

BIT D E FIN I T ION S

;(00000001 . ASCII-CONVERTED-BINARY IS DEFAULT

Page 1-18

APPENDIX I

0002
0004
0008
0010
0020
0040
0080

0004
0008
0010
0080

0000
0003
0006
0009
OOOC

0000
0001
0003
0005

0006
0008
OOOB
OOOD

E800
E822
E853
E85A
E869
E86D
E86F
E872
E875
E878
E87B
E87E
E881
E884

A DD$LOG EGU
A DD$CNS EGU
A DD$RWD EGU
A DD$OCF EGU
A DD$INP EGU
A DD$OUT EGU
A DD$RES EGU

* * C D B V D T

* A VD$BIN EGU
A VD$GDB EGU
A VD$SDA EGU
A VD$NFF EGU

* * D E V ICE

* A DV$ON EGU
A DV$OFF EGU
A DV$INT EGU
A DV$TRM EGU
A DV$IO EGU

* * DIS K

* A CURDRV EGU
A STRSCT EGU
A NUMSCT EGU
A LSCTLN EGU

A CURADR EGU
A FDSTAT EGU
A SCTCNT EGU
A SIDES EGU

* * E ROM

* A OSLOAD EGU
A FDINIT EGU
A CHKERR EGU
A PRNTER EGU
A READSC EGU
A READPS EGU
A RDCRC EGU
A RWTEST EGU
A RESTOR EGU
A SEEK EGU
A WRTEST EGU
A WRDDAM EGU
A WRVERF EGU
A WRITSC EGU

* * E ROM

*

~00000010

~00000100

~00001000

~00010000

~00100000

~01000000

~10000000

~00000100

~00001000

~00010000

~10000000

MDOS09 Equate File Listing

LOGICAL SECTOR I/O FLAG
CONSOLE FLAG
REWIND FLAG
OPEN/CLOSE FLAG
INPUT DEVICE FLAG
OUTPUT DEVICE FLAG
RESERVABLE DEVICE FLAG

BIT D E FIN I T ION S

BINARY OBJECT FLAG
TEMP GDB POINTER FLAG
TEMP SDA POINTER FLAG
NON-FILE FORMAT FLAG

D R I V E R E N TRY OFF SET S

o
3
6
9
12

E ROM

o
1
3
5

6
8
11
$D

E N TRY

$E800
$E822
$E853
$E85A
$E869
$E86D
$E8bF
$E872
$E875
$E878
$E87B
$E87E
$E881
$E884

ERR 0 R

DEVICE ON OFFSET
DEVICE-OFF OFFSET
DEVICE INTIALIZATION OFFSET
DEVICE TERMINATION OFFSET
DEVICE CHARACTER INPUT/OUTPUT OFF

E G U ATE S

CURRENT DRIVE NUMBER
STARTING PHYSICAL SECTOR NUMBER
NUMBER OF SECTORS TO OPERATE UPON
OF BYTES TO READ FROM LAST SECTOR

MEMORY ADDRESS FOR DISK TRANSFER
DISK TRANSFER STATUS
SECTOR COUNT USED IN DETERMINING E
- ->SINGLEi + -> DOUBLE SIDED

POI N T S

BOOTSTRAP THE OPERATING SYSTEM
INITIALIZE THE DISK'S PIA AND SSDA
CHECK AND PRINT ERROR FROM FDSTAT
PRINT ERROR FROM FDSTAT
READ SECTOR(S)
READ PARTIAL SECTOR
READ AND CHECK FOR CRC
WRITE/READ TEST
MOVE HEAD TO TRACK 0
POSITION HEAD TO TRACK OF "STRSCT"
WRITE TEST
WRITE DELETED DATA MARK
WRITE AND VERIFY CRC
WRITE SECTOR(S)

E G U ATE S

Page 1-19

APPENDIX I

0031
0032
0033
0034
0035
0036
0037
003S
0039

0005

EBCO
EBCC
EBE4
EBF2

F015
F01S
F021
F024
FCFD

FF24
FF54
FF58

FFF2
FFF4
FFF6
FFF8
FFFA
FFFC
FFSF
FOF3
FF16
FF18
FFIA
FF1C
FFIE
FFIF
FF20
FF21
FF22
FF6S
FCF4
FF92

A ER$CRC EGU
A ER$WRT EGU
A ER$RDY EGU
A ER$MRK EGU
A ER$TIM EGU
A ER$DAD EGU
A ER$SEK EGU
A ER$DMA EGU
A ER$ACR EGU

* * MIS C E L

* A RETRY$ EGU

* * LIN E
* A LPINIT EGU

A LIST EGU
A LDATA EGU
A LDATAI EGU

*

'1
'2
'3
'4
'5
'6
'7
'S
'9

MDOS09 Elluate File Listing

DATA CRC ERROR
WRITE PROTECTED DISK
DISK NOT READY
DELETED DATA MARK ENCOUNTERED
TIMEOUT
INVALID DISK ADDRESS
SEEK ERROR
DATA ADDRESS MARK ERROR
ADDRESS MARK CRC ERROR

LANEOUS E ROM EGUATES

5 RETRY COUNT FOR DISK READ/WRITE ER

P R I N T E R E ROM EGUATES

$EBCO
$EBCC
$EBE4
$EBF2

INIT PRINTER PIA
PRINT CONTENTS OF 'A'
PRINT STRING, CR/LF
PRINT STRING, NO CR/LF

* E X BUG E G U ATE S FOR M DOS

A
A
A
A
A

A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

* (INCLUDES ALL REFERENCES BUT ROLLOUT)

* I NCHNP EGU $FOI5
DUTCH EGU $F01S
PCRLF EGU $F021
PDATA EGU $F024
SBIT$ EGU $FCFD

BRKPT$ EGU $FF24
BKPIN$ EGU $FF54
AECHO EGU $FF58

SW3$VC EGU $FFF2
SW2$VC EGU $FFF4
FIR$VC EGU $FFF6
IRG$VC EGU $FFF8
SWI$VC EGU $FFFA
NMI$VC EGU $FFFC
XSTAK$ EGU $FFSF
MAID$ EGU $FOF3
XREG$P EGU $FF16
XREG$U EGU $FFI8
XREG$Y EGU $FF1A
XREG$X EGU $FFIC
XREG$D EGU $FFIE
XREG$B EGU $FF1F
XREG$A EGU $FF20
XREG$C EGU $FF21
XREG$S EGU $FF22
BRKPE$ EGU $FF68
CNACI$ EGU $FCF4
LINES$ EGU $FF92

INPUT CHARACTER (NO PARITY)
OUTPUT ONE CHARACTER
PRINT LF/CR
PRINT STRING
BIT 7 INDICATES IRG OCCURRED (IF 0)

MAID'S BREAKPOINT TABLE (S FDB'S)
EXBUG BREAKPOINTS IN MEMORY
INPUT CHARACTER ECHO FLAG (O=>ECHO)

SWI 3 VECTOR
SWI 2 VECTOR
FAST IRG VECTOR
IRG VECTOR
SWI VECTOR
NMI VECTOR
EXBUG STACK
MAID ENTRY POINT
MAID P-REG.
MAID U-REG.
MAID Y-REG.
MAID X-REG.
MAID DP-REG.
MAID B-REG.
MAID A-REG.
MAID C-REG.
MAID S-REG.
END OF MAID BREAKPOINT TABLE
CONSOLE ACIA

SEARCH/LOAD/VERIFY BUFFER

Page 1-20

APPENDIX I

F9CF
FF02
FF67

A OCHAR$ EGU
A XPEED$ EGU
A CAS$ET EGU

*

$F9CF
$FF02
$FF67

MDOS09 Equate File Listing

OUTPUT CHAR ROUTINE WITHOUT NULL PAD
TERMINAL SPEED FLAG
PUNCH ON FL.AG

* SPECIAL MACRO FOR THE CENTRONIX PRINTERS TO PRINT TITLES
* (NO LONGER USED)
TITLE MACR

*

TTL \0
ENDM

OPT LIST

* SPECIAL OPTION -- TURN ON THE LISTING

* TITLE (SYMBOL TABLE)
END

TOTAL ERRORS 00000--00000
TOTAL WARNINGS 00000--00000

· $SAV 0000 · ADAX 0028 · ADBAX 0029 · ADBX 0027 · ADDAM 0016
· ADXBA 002A · ALLOC 0021 · ALPHA 0014 · ALUSM 001E · ASLX 0031
· ASRX 0030 · BOOT 003F · CHANG 001F · CKBRK OOOD . CLOSE 0003
· CMPAR 0011 · CPBAX 002F · DEALC 0022 · DIRSM 001C · DMA 0019
· DREAD OOOE · DSPLX OOOB · DSPLY OOOA · DSPLZ OOOC · DWRIT OOOF
· EREAD 0039 · EWORD 0023 · EWRIT 003A · GETFD 0036 · GETLS 0007
· GETRC 0004 · KEYIN 0009 · LOAD 001B · MDENT OOlA · MDERR 0020
· MERED 003D · MEWRT 003E · MMA 0018 · MOVE 0010 · MREAD 003B
. MWRIT 003C · NUMD 0015 · OPEN 0002 · PFNAM 001D · PRINT 0034
· PRlNX 0035 · PSHX 0032 · PULX 0033 · PUTEF 0038 .PUTFD 0037
.PUTLS 0008 · PUTRC 0005 · RELES 0001 · RESRV 0000 .REWND 0006
· STCHB 0012 · STCHR 0013 · SUAX 002C · SUBAM 0017 · SUBAX 002D
· SUBX 002B · SUXBA 002E · TBAX 0025 · TXBA 0024 · XBAX 0026
ACK 0006 AECHO FF58 BEL 0007 BKPIN$ FF54 BRKPE$ FF68
BRKPT$ FF24 BS 0008 CAN 0018 CAS$ET FF67 CBUFF$ OOAE
CBUFL$ 0050 CBUFP$ OOFE CDBDDA 0008 CDBDDF 0006 CDBHAD 0004
CDBlOC 0000 CDBLEN OOOC CDBSDA 0002 CDBVDT 0007 CDBWST OOOA
CHFLG$ 011A CHKERR E853 CNACl$ FCF4 CR OOOD CURADR 0006
CURDRV 0000 DCl 0011 DC2 0012 DC3 0013 DC4 0014
DD$CNS 0004 DD$FMC 0001 DD$lNP 0020 DD$LOG 0002 DD$OCF 0010
DD$OUT 0040 DD$RES 0080 DD$RWD 0008 DEVDLM 0023 DFCLS$ 0020
DlD$DT OOOC DID$ID 0000 DID$NM 0012 DID$RB 0026 DID$RN OOOA
DlD$VN 0008 DIR$AT OOOC DlR$NM 0000 DlR$NU OOOE DIR$RB OOOA
DIR$SX 0008 DLE 0010 DRVDLM 003A DT$CLS 0010 DT$INP 0080
DT$NFF 0004 DT$OPI 0001 DT$OPO 0002 DT$OPP 0000 DT$OPU 0003
DT$OUT 0040 DT$SIO 0020 DT$TRU 0008 DV$INT 0006 DV$IO OOOC
DV$OFF 0003 DV$ON 0000 DV$TRM 0009 E$FATL 0080 EM 0019
ENDOS$ 0106 ENDRV$ 0110 ENDSY$ 010A ENDUS$ 0108 ENG 0005
EOT 0004 ER$ACR 0039 ER$CRC 0031 ER$DAD 0036 ER$DMA 0038
ER$MRK 0034 ER$RDY 0033 ER$SEK 0037 ER$TIM 0035 ER$WRT 0032
ESC 001B ETB 0017 ETX 0003 FAMDLM 002A FD$CMP 0008
FD$CON 0010 FD$DEL 0040 FD$FMA 0005 FD$FMB 0003 FD$FMC 0007
FD$FMD 0001 FD$FML 0002 FD$FMU 0000 FD$SYS 0020 FD$WRT 0080
FDINIT E822 FDSTAT 0008 FF OOOC FIR$VC FFF6 FS OOtc

Page 1-21

APPENDIX I MDOS09 E~uate File Listing

GDBA$ 0112 GS 001D HT 0009 I$BUFO OOOD I$CKSM OOOE
I$CLOS 0008 I$DEAL 0017 I$DELT 0010 I$DSPC 0013 I$DTYP 0008
I$DUPE 0006 I$EOF 0009 I$EOM OOOC I$FSPC 0012 I$FTYP OOOA
I$IDEN 0015 I$IVDV 0005 I$NODV 0001 I$NOER 0000 I$NONM 0007
I$NORV 0003 I$NRDY 0004 I$RANG 0011 I$RECLOO18 I$RESV 0002
I$RIB 0016 I$SECB 0019 I$SSPC 0014 I$WRIT OOOF INCHNP F015
IOCBLN 0025 IOCDBE 0006 IOCDBP 0002 IOCDBS 0004 IOCDEN 001B
IOCDTT 0001 IOCEOF 0013 IOCFDF 0017 IOCGDW 0008 IOCLSN 0011
IOCLUN OOOA IOCMLS OOOB IOCNAM OOOB IOCRIB 0015 IOCSBE 0021
IOCSBI 0023 IOCSBP 001D IOCSBS 001F IOCSDW OOOD IOCSLS OOOF
IOCSTA 0000 IOCSUF 0013 IRO$VC FFF8 KYI$SV 0104 LDATA EBE4
LDATAI EBF2 LF OOOA LINES$ FF92 LIST EBCC LPINIT EBCO
LSCTLN 0005 LU$RES 0040 MAID$ FOF3 MDOS$ 0100 MDOS9$ 0001
MDOSF$ 0000 NAK 0015 NMI$VC FFFC NULL 0000 NUMSCT 0003
OCHAR$ F9CF OPTDLM 003B OSLOAD E800 OUTCH F018 PCRLF F021
PDATA F024 PRNTER E85A RDCRC E86F READPS E86D READSC EB69
RESTOR E875 RETRY$ 0005 REVS$$ 0102 RIB$LA 0078 RIB$LB 0075
RIB$SA 007A RIB$SL 0076 RIBBA$ 010E RS 001E RUB OUT 007F
RWTEST E872 SBIT$ FCFD SC$BB 0017 SC$CAT 0001 SC$CLS 0004
SC$DID 0000 SC$DIR 0003 SC$DOS 0018 SC$DRE 0016 SC$LOK 0002
SC$MAX 07DO SC$.MXD OFA4 SC$SIZ 0080 SC$TKD 0034 SC$TRK OOlA
SCTCNT OOOB SEEK E878 SI OOOF SIDES OOOD SO OOOE
SOH 0001 SPACE 0020 STRSCT 0001 STX 0002 SUB 001A
SUFDLM 002E SW2$VC FFF4 SW3$VC FFF2 SWI$SV 0116 SWI$UV 0118
SWI$VC FFFA SYEOCB 0166 SYERR$ 0114 SYIOCB 011C SYN 0016
SYPOCB 0141 US OOlF VD$BIN 0004 VD$GDB 0008 VD$NFF 0080
VD$SDA 0010 VERS$$ 0100 VT OOOB WRDDAM E87E WRITSC E884
WRTEST E87B WRVERF E881 XPEED$ FF02 XREG$A FF20 XREG$B FFIF
XREG$C FF21 XREG$D FFIE XREG$P FF16 XREG$S FF22 XREG$U FF18
XREG$X FFIC XREG$Y FFIA XSTAK$ FF8F

Page 1-22

APPENDIX

J. MDOS 3.00 Differences

The following appendix contains a description of the
differences between MDOS 3.00 and prior versions of MDOS.
The first part of the appendix contains those differences
that may have an impact on user-written programs which were
based on prior versions of MDOS. The second part of the
appendix contains the enhancements that are apparent to the
operator at the MDOS command level. These enhancements have
been separated by the version number of MDOS in which they
first appeared. All of the listed enhancements are
incorporated into MDOS 3.00.

J.l Impact of MDOS 3.00 on Previous MDOS Programs

MDOS version 3.00 accommodates both the single-sided and
the double-sided diskettes, a four-drive system, and multiple
sector I/O. There are several items which as a result of
these new features must be checked in all programs that have
been developed to use prior versions of MDOS. These items
are listed below.

1. A program making explicit checks for logical unit
numbers 0 and 1 must be changed to accommodate the
new numbers 2 and 3.

2. A program referring to the maximum number of sectors
on a diskette as 2000 (decimal) or 2002, or the
symbol from the MDOS equate file (SC$MAX), must be
changed to accommodate the possible larger diskette
sizes that can be encountered with the double-sided
systems. Once a diskette has been accessed, the
diskette controller variable SIDES (location $OOOD)
will have bit seven set or cleared to indicate the
number of sides on the diskette. If bit seven is
one, a sing le-si d ed disk ette has been ac cessed. If
bit seven is zero, a double-sided diskette has been
accessed. This variable is set up properly in all
versions of the MOOS diskette controller.

A single-sided diskette can be accessed in a
double-sided drive; however, a double-sided diskette
cannot be accessed in a single-sided drive.

A new symbol has been placed into the MDOS equate
file that gives the maximum number of sectors on a
double-sided diskette (SC$MXD).

Page J-Ol

APPENDIX '" MDOS 3.00 Diffe1'ences

The double-sided diskette has no unused secto1's as do
the single-sided diskettes, since an integ1'al numbe1'
of cluste1's exists.

3. A p1'og1'am using the IOCB fo1' diskette 110 must have
the full IOCB configu1'ed as desc1'ibed in all MDOS
manuals. This includes the until-now-unused ent1',
10CSBI.

4. A p1'og1'am using the IOCB fo1' diskette 110 will have
to be changed if the secto1' buffe1' at the time of the
. OPEN function call is not exactly an tnteg1'al numbe1'
of secto1's. In p1'evious ve1'sions of MDOS, the secto1'
size did not get chec~ed until a subse~uent 110
t1'ansfe1' was made (even though the ent1'Y pa1'amete1's
fo1' the . OPEN call specified that 10CSBS and 10CSBE
must be set up).

5. A p1'og1'am using the IOCB fo1' diskette 110 will have
to be changed if the secto1' buffe1' pointe1's (IOCSBS
and 10CSBE) a1'e alte1'ed afte1' the . OPEN function has
been called. Since .OPEN sets 10CSBI to the same
value as IOCSBE, moving the secto1' buffe1' 1'e~ui1'es
that all secto1' buffe1' pOinte1's (IOCSBS, IOCSBE, and
10CSBI) be changed acco1'dingl,.

6. A p1'og1'am accessing logical unit 1 without fi1'st
using the system function . OPEN, .DIRSM •. CHANQ, 01'
. LOAD, will have to be changed so that the 1'ead head
is 1'esto1'ed befo1'e the unit is accessed. P1'evious
ve1'sions of MDOS 1'esto1'ed both logical units 0 and 1
each time the system initialized and each time the
MDOS command inte1'p1'ete1' 1'eceived cont1'oli howeve1',
in MDOS 3.0 this is no 10nge1' t1'ue. Thus. the
diskette cont1'olle1' fi1'mwa1'e ent1'V point RESTOR must
be used to 1'est01'e the head on the unit to be
accessed if not using one of the above system
functions (which do the 1'esto1'e themselves). The
same is t1'ue if the p1'og1'am is to access units 2 01' 3
without fi1'st using one of these functions.

7. A p1'og1'am that has been designating logical unit
numbe1's in the diskette cont1'olle1' va1'iable CURDRV
(ioeation $0000) as eithe1' a ze1'O 01' a non-ze1'O value
(to access eithe1' unit 0 01' 1), will have to be
changed so that the actual bina1'Y numbe1' is used
instead. A non-ze1'O value no 10nge1' gua1'antees that
unit 1 will be accessed (phvsical 110).

8. If a p1'og1'am has
.ALUSM, the ent1'V
changed. Section
detailed desc1'iption
conditions.

been using the system function
and exit conditions have been
27.5.5 should be consulted fo1' a

of the cU1'1'ent ent1', and exit

APPENDIX ..) MDOS 3.00 Differences

9. Four new system functions have been provided for
multiple sector physical diskette 110. These new
functions are described in sections 25.2.7 and
25.2.8. The existing system functions have not had
their function numbers changed.

10. The device independent 110 functions (Unified 110
functions in previous versions of MDOS manuals) for
accessing the diskette have been enhanced with the
multiple sector 110 capability. Now, a sector buffer
can be larger than a single sector in order to
minimize the number of diskette accesses that must be
made (and therefore decrease the amount of time it
takes a program to run>. The following areas have
been affected:

IoeSBI, the lOeB sector buffer internal pOinter, is
now used. This pointer indicates the end of valid
data within the user's sector buffer. It is
initialized by the . OPEN function to point to the end
of the sector buffer (IOeSBE). It is changed by the
input functions to reflect the end of the valid data
(if only using a single sector, IOeSBI will always be
the same as 10eSBE).

loeSBE, the lOeB ending sector buffer pointer, still
points to the last byte in the sector buffer;
however. the sector buffer can be an integral number
of sectors in length (one or more).

No program modification will be re~uired if a program
is using record 110 and if the sector buffer stays in
the same place; however. changing the size of the
sector buffer should speed up the program.

Programs using logical sector 110 will not re~uire

modification if only a single sector is accommodated
by the buffer and if the sector buffer is always in
the same place. Thus, existing programs should be
minimally impacted. If the sector buffer changes
locations (single sector size), then the 10CSBI entry
must be adJusted along with the IOeSBE entry to
reflect the end of the valid data within the sector
buffer.

If the user supplies a sector buffer larger than one
sector, then he must realize that after a .GETLS
function. he may have more sectors in the buffer than
Just the logical sector number re~uested. IOCLSN
will be updated to point to the logical sector to be
read next (incremented by the number of sectors that
were read into the buffer). Upon return from the
.GETLS call, IOCSBI will point to the last valid data
byte within the sector buffer (less than or e~ual to

Page ,,)-03

APPENDIX ~ MOOS 3.00 Differences

IOCSBE)' Thus, the user must check IOCSBI to
determine the end of the data in the buffer and to
calculate the number of sectors rea~.

The .PUTLS function will write the logically
contiguous sectors from IOCSBS through IOCSBI from
the buffer to the file starting at I DC LSN. IOCMLS
and IOCLSN are updated as expected, and additional
space may have been allocated.

~.2 Enhancements to MOOS 2.20/2.21

MOOS 2.20 was released to support the dual memory map of
the EXORciser II system. Other enhancements, however, were
added to the MOOS commands at the same time. MOOS 2.21 is
almost identical to MDOS 2.20. A change was implemented to
aid in the proper sizing of contiguous memory during
initialization when running with the USE module.

1. A new command, ROLLOUT, was added to the standard

2.

command package. ROLLOUT allows the user to
write blocks of memory to a diskette.

A new command, ECHO, was added to the
command package. ECHO allows users
EXORciser II system to echo all
input/output to a line printer

standard
with an

console

3. The Bootblock program may generate a new error
message: EM. This message indicates that
insufficient contiguous RAM exists in the system
to load the resident MOOS.

4. When MDOS 2.20 or 2.21 initializes via the EBOO;Q
or MDOS command to the debug monitor, it sizes
memory using a techni~ue that will not change the
contents of memory. Thus, programs can be loaded
above MOOS, the system reinitialized, and another
program loaded with the first program image still
intact in memory (first program must load above
MOOS command interpreter and LOAD command).

5. The FREE command can be invoked with the "L"
option, causing its output to be directed to the
line printer.

6. The REPAIR command will default to drive zero if
no logical unit number is specified. In
addition, if a file with a RIB error is not
deleted, the user will not be able to update the
CAT on diskette. A message is displayed to that
effect during the last phase of the REPAIR
process.

Page ~-O

APPENDIX J MDOS 3.00 Dilferences

7. The COPY command allows users with an EXORtape
paper tape reader to use that device. In
addition, a user can provide his own device
driver to be used by COPY for an input or output
device.

8. The LOAD command allows files to be loaded into
the User Memory Map of an EXORciser II system
that has the dual memory map conligured. This is
done with the "un option. The "V" option now
allows programs to be loaded anywhere in memory
(not below $20 or beyond $FFFF, however>. In
addition, the stack pOinter is set to the EXbug
stack area when the "V" option is specilied.

9. The DEL command will display the logical unit
numbers along with the file names shown as being
deleted or protected. In addition, the command
line processing has been changed so that a null
file name among a list of multiple lile names is
invalid.

10. The BINEX command generates an SO record
containing the memory image file name and suffix.

12. All standard error messages are displayed with a
two-digit decimal reference number to allow them
to be easily looked up in the errol' message
chapter of the new MDOS manual. Most error
messages are still the same. However, the
wording was changed on several to make them more
unilorm. Also, the "AT nnnn" phrase that
accompanied many error messages has been removed
to make the messages less cryptic. A new error
message was added (as was a new error code) for
sector 1/0 functions that are called with a
sector buffer not 128 bytes in size.

13. The EXBIN command ignores null records (carriage
return only) if encountered in the EXbug-loadable
fi Ie.

14. The EOT character ($04) which was output by the
.PRINX •. DSPLX and . DSPLZ functions. is no longer
written to the output device.

15. The se~uence of line leed, carriage return, null
written to console andlor printer, has been
changed to carriage return, line feed, null to
eliminate the overprinting problem encountered on
certain printers with an 80 character buffer when
lines of 80 characters were printed.

16. The FORMAT command has been upgraded to function

Page J--05

APPENDIX ~ MOOS 3.00 Differences

with either a 1 MHz 01' a 2 MHz svstem.

17. The recovery of accidentallv deleted files has
been made easierfol' those users who refuse to
keep dil'ectol'V listings ol'backup copies. The
directory entry is onlv changed so that the first
two bvtes are changed to an $FF when deleted.
This l'etains S chal'actel's of name and suffix out
of the ol'iginal 10 to make the entrv visible in
the directol'V. In addition, the RIB is no longer
zel'o-filled when the file is del.ted. Thus, the
usel' has only to use DUMP to rebuild the two
FF-ed name bvtes in the dil'ectorv. Then, the
REPAIR pl'ogl'am must be run immediatelv afterwards
to l'econstl'uct the allocation table.

~.3 Enhancements to MDOS 3.00

MDOS 3.00 was l'eleased to support EXORdisk III
(foul'-drives, double-sided). The othel' maJol' enhancement was
the addition of multiple sector 110. The implementation of
this enhancement has considel'ably reduced the amount of time
it takes all MDOS commands to execute. Commands like LIST,
MERGE, COpy, DOSGEN, and EDIT shaw the greatest incl'eases in
speed. The ather enhancements al'e listed below.

1. The BAC~UP command has been modified to allow
single-sided diskettes to be copied onto
double-sided diskettes. A logical unit numbel'
specification can be entel'ed an the command line
to alia ... copying diskettes from units other than
zero to units ather than one. The "R" option no
10ngel' copies the LCAT fl'om the source diskette.
The destination diskette's LCAT is initialized
completelv. The "V" aptian no 10ngel' terminates
the verifv process if the svstem sectors in
cylindel' zel'O miscompare since the BREAK kev can
be used to abort the pl'ocess at anv time.

2. The COPY command's "VI' option will cause the
miscompal'isons to be displayed between sectol's 01'

recol'ds when verifving files. The "L" option can
be used to dil'ect this display to the line
printer. The "B~ option has been added to
automatically vel'ify files aftel' the copV has
completed (diskette-to-diskette copy only).

3. The DOSGEN command has been changed alIa ... logical
unit number specifications 1-3. Either single-
01' double-sided diskettes can be DOSGENed. The
wl'ite/read test has been changed to vel'ify that
the sectors lacked out indeed have the deleted
data mal'k wl'itten in them. The BREAK key is

Page

APPENDIX ~ MOOS 3.00 Oi~~erences

sensed at times other than the ~ile copy phase.
Only one sector range can be locked out by the
user. All input from the operator is entered on
the same line as the input prompts.

4. The FORMAT command has been changed to allow
logical units other than number one to be
formatted. Both single- and double-sided
diskettes can be formatted.

5. The REPAIR command has been changed so that it
will work with logical units 0-3 and with single­
and double-sided diskettes. In addition, the
version numbers between the resident MOOS and the
10 sector are compared and made the same. The
version and revision numbers can no longer be
changed by the operator. Several of the messages
have been changed.

Page ~-07

APPENDIX

K. IOCB Input Parameter Summary

The following appendix contains a summary of the twelve
different modes in which an IOCB can be used. The tables
show the entries of an IOCB labelled on the left. Across the
top of each table are the names of the valid device
independent I/O functions. Immediately underneath each I/O
Tunc t ion wi 11 beth e 1 etter "N" OT' "V". The "N" i nd icates
that the function cannot be used in the mode described by the
title line under each table. A "V" indicates that the
function can be used.

An "X" appears in those places where a given IOCB entry
is required as an input parameter to the function in whose
column the "X" appears. At the bottom of each table. the
values that must be placed into the IOCB entries are
summarized. Periods in the table serve as place holders to
show the columns.

Page K-Ol

APPENDIX K IOCB Input Parameter Summarv

R 0 9 P C R 9 P R
E P E U L E E U E
S E T T 0 L T T W
R N R R S E L L N
V C C E S S S D

VALID CALL V V V N V V N N V
IOCB ENTRY

IOCSTA
IOCDTT X
lOCDBP
IOCOBS X
IOCDBE X
IOCGDW X
IOCLUN X
IOCNAM/MLS X

ISDW X
ISLS X
ILSN X

IOCSUF/EOF X
IOCRIB
IOCFDF

IOCDEN
IOCSBP/SIZ
IOCSBS X
IaCSBE X
IOCSBI

Diskette Device -- Record Processing, Input (Existing File)

IOCDTT = DT$CLS + DT$OPI
IOC9DW = DK
IOCLUN = 0-3
IOCNAM = File name of existing fi,le
IOCSUF = Suffix
IaCSBS = Sector buffer start
IOCSBE = Sector buffer end
IOCDBS = Data buffer start
IOCDBE = Data buffer end

Page K-02

APPENDIX K IOCB Input Parameter Summary

R 0 G P C R G P R
E P E U L E E U E
S E T T 0 L T T W
R N R R S E L L N
V C C E S S S D

VALID CALL Y Y N Y V Y N N N
IOCB ENTRY

IOCSTA
IOCDTT X
IOCDBP
lOCDBS X
IOCDBE X
IOCGDW X
IOCLUN X
IOCNAM/MLS X

ISDW X
ISLS X
ILSN X

IOCSUF/EOF X
IOCRIB
IOCFDF X

IOCDEN
IOCSBP/SIZ X
IOCSBS X
IOCSBE X
IOCSBI

Diskette Device -- Record Procesing. Output (New file)

IOCDTT = DT$CLS + DT$OPO
IOCGDW = DK
IOCLUN = 0-3
IOCNAM = File name of new file
IOCSUF = Suffix
IOCFDF = FD$FMA or FD$FMB plus other optional attributes
IOCSIZ = 0 <Default size) or specific size
IOCSBS = Sector buffer start
IOeSBE = Sector buffer end
IOCOBS = Data buffer start
IOCOBE = Data buffer end

Page K-03

APPENDIX K IOCB Input Parameter Summa'

R 0 G P C R G P R
E P E U L E E U E
S E T T 0 L T T W
R N R R S E L L N
V C C E S S S D

VALID CALL V V V V V V N N V
IOCB ENTRY

IOCSTA
IOCDTT X
IOCDBP
IOCDBS X X
IOCDBE X X
IOCGDW X
IOCLUN X
IOCNAM/MLS X

ISDW X
ISLS X
ILSN X

IOCSUF/EOF X
IOCRIB
IOCFDF X

IOCDEN
IOCSBP/SIZ X
IOCSBS X
IOCSBE X
IOCSBI

Diskette Device -- Record Processing. Update (New File)

IOCDTT = DT$CLS + DT$OPU
IOCGDW = DK
IOCLUN = 0-3
IOCNAM = File name of ne~ file
IOCSUF = Suffix
IOCFDF = FD$FMA ar FD$FMB plus other optional attributes
IOCSIZ = 0 (Default size) ar specific size
IOCSBS = Sector buffer start
IOCSBE = Sector buffer end
IOCDBS = Data buffer start
IOCDBE = Data buffer end

Page K-

APPENDIX K IOCB Input Parameter Summary

R 0 G P C R G P R
E P E U L E E U E
S E T T 0 L T T W
R N R R S E L L N
V C C E S S 5 D

VALID CALL y y y y y y N N y

IOCB ENTRY
IOCSTA
IOCDTT X X
IOCDBP
IOCDBS X X
IOCDBE X X
IOCGDW X
IOCLUN X
IOCNAM/MLS X X

ISDW X
ISLS X
ILSN X

IOCSUF/EOF X
IOCRlB
IOCFDF

I DC DEN
IOCSBP/SIZ
IOCSBS X
IOCSBE X
IOCSBI

Diskette Device -- Record Processing, Update (Existing file)

IOCDTT = DT$CLS + DT$OPP
IOCGDW = DK
IOCLUN = 0-3
IOCNAM = File name
IOCSUF = Suffix
IOCSBS = Sector buffer start
IOCSBE = Sector buffer end
IOCDBS = Data buffer start
IOCDBE = Data buffer end

Page 1(-05

APPENDIX K IOCB Input PaT'ameteT' SummaT'~

R 0 G P C R G P R
E P E U L E E U E
S E T T 0 L T T W
R N R R S E L L N
V C C E S S S D

VALID CALL Y Y N N Y Y Y N y
IOCB ENTRY

IOCSTA
IOCDTT X
IOCDBP
IOCDBS
IOCDBE
IOCGDW X
IOCLUN X
IOCNAM/MLS X

ISDW X
ISLS X
ILSN X X

IOCSUF/EOF X
IOCRIB
IOCFDF

IOCDEN
IOCSBP/SIZ
IOCSBS X
IOCSBE X
IOCSBI

Diskette Device -- Logical SectoT' PT'ocessing. Input
(Existing file)

IOCDTT = DT$CLS + DT$OPI + DT$SIO
IOCGDW = DK
IOCLUN = 0-3
IOCNAM = File name of existing file
IOCSUF = Suffix
IOCLSN = StaT'ting logical sectoT' number to be read
IOCSBS = Sector buffer staT't
IOCSBE = SectoT' buffer end

Page K-O~

APPENDIX K IOCB Input Parameter Summary

R 0 G P C R G P R
E P E U L E E U E
S E T T 0 L T T W
R N R R S E L L N
V C C E S S S D

VALID CALL Y Y N N Y Y N Y N
IOCB ENTRY

IOCSTA
IOCDTT X
IOCDBP
IOCDBS
IOCDBE
IOCGDW X
IOCLUN X
IOCNAM/MLS X

ISDW X
ISLS X
ILSN X X

IOCSUF/EOF X
IOCRIB
IOCFDF X

IOCDEN
IOCSBP/SIZ X
IOCSBS X X
IOCSBE X
IOCSBI X

Diskette Device -- Logical Sector Processing, Output
(New file)

IOCDTT = DT$CLS + DT$OPO + DT$SIO
IOCGDW = DK
IOCLUN = 0-3
IOCNAM = File name of new file
IOCSUF = Suffix
IOCFDF = Optional attributes
IOCLSN = Starting logical sector number to be written
IOCSIZ = 0 (Default size) or specific size
IOCSBS = Sector buffer start
IOCSBI = Sector buffer end

Page 1(-07

APPENDIX K IOCB Input Pa~amete~ Summa,

R 0 G P C R G P R
E P E U L E E U E
S E T T 0 L T T W
R N R R S E L L N
V C C E S S S D

VALID CALL Y Y N N Y Y Y Y Y
IOCB ENTRY

IOCSTA
IOCDTT X
IOCDBP
IOCDBS
IOCDBE
IOCGDW X
IOCLUN X
IOCNAM/MLS X

ISDW X
ISLS X
ILSN X X X

IOCSUF/EOF X
IOCRIB
IOCFDF X

IOCDEN
IOCSBP/SIZ X
IOCSBS X X X
IOCSBE X X
IOCSBI X

Diskette Device -- Logical Secto~ P~ocessing, Update
(Ne", file)

IOCDTT = DT$CLS + DT.OPU + DT$SIO
IOCGDW = DK
IOCLUN = 0-3
IOCNAM = File name of ne", file
IOCSUF = Suffix
IOCFDF = Optional attributes
IOCLSN = Sta~ting logical secto~ numbe~
IOCSIZ = 0 (Default size) o~ specific size
IOCSBS = Secto~ buffe~ sta~t
IOCSBE = Secto~ buffer end
IOCSBI = Secto~ buffer end

Page 10(.-(

APPENDIX K IOCB Input Parameter Summary

R 0 G P C R G P R
E P E U L E E U E
S E T T 0 L T T W
R N R R S E L L N
V C C E S S S D

VALID CALL Y Y N N Y Y V V V
IOCB ENTRY

IOCSTA
IOCDTT X X
IOCDBP
IOCDBS
IOCDBE
IOCGDW X
IOCLUN X
IOCNAM/MLS X X

ISDW X
ISLS X
ILSN X X X

IOCSUF/EOF X
IOCRIB
IOCFDF

IOCDEN
IOCSBP/SIZ
IOCSBS X X X
IOCSBE X X
IOCSBI X

Diskette Device -- Logical Sector Processing. Update
(Existing File)

IOCDTT = DT$CLS + DT$OPP + DT$SIO
IOCGDW = OK
IOCLUN = 0-3
IOCNAM = File name of existing file
IOCSUF = Suffix
IOCLSN = Starting logical sector number
IOCSBS = Sector buffer start
IOCSBE = Sector buffer end
IOCSBI = Sector buffer end

Page K-09

APPENDIX 10\ IOCB Input Parameter Summary

R 0 G P C R G P R
E P E U L E E U E
S E T T 0 L T T W
R N R R S E L L N
V C C E S S S D

VALID CALL Y Y Y N Y Y N N N
IOCB ENTRY

IOCSTA
IOCDTT X
IOCDBP
IOCDBS X
IOCDBE X
IOCGDW X
IOCLUN X
IOCNAM/MLS

ISDW
ISLS
ILSN

IOCSUF/EOF X
IOCRIB
IOCFDF X

I DC DEN
IOCSBP/SIZ
IOCSBS
IOCSBE
IOCSBI

Non-diskette Device -- Non-file Format, Input

IOCDTT = DT$CLS + DT$NFF + DT$OPI
IOCGDW = CN or CR
IOCLUN = 0
IOCFDF = FD$FMA
IOCSUF = Display prompt if device is CN
IOCDBS = Data buffer start
IOCDBE = Data buffer end

Page 10\-10

APPENDIX K IOCB Input Parameter Summary

R a G P C R G P R
E P E U L E E U E
S E T T a L T T W
R N R R S E L L N
V C C E S S S D

VALID CALL Y Y N Y Y Y N N N
IOCB ENTRY

IOCSTA
IOCDTT X
IOCDBP
IOCDBS X X
IOCDBE X X
IOCGDW X
IOCLUN X
IOCNAM/MLS

ISDW
ISLS
ILSN

IOCSUF/EOF
IOCRIB
IOCFDF X

IOCDEN
IOCSBP/SIZ
IOCSBS
IOCSBE
IOCSBI

Non-diskette Device -- Non-file Format, Output

IOCDTT = DT$CLS + DT$NFF + DT$OPO
IOCGDW = LP, CN. Dr CP
IOCLUN = 0
IOCFDF = FD$FMA
IOCDBS = Data buffer start
IOCDBE = Data buffer end

Page 1(-11

APPENDIX K IOCB Input Parameter Summal

R 0 Q P C R Q P R
E P E U L E E U E
S E T T 0 L T T W
R N R R S E L L N
V C C E S S S D

VALID CALL Y Y Y N Y Y N N N
IOCB ENTRY

IOCSTA
IOCDTT X
IOCDBP
IOCDBS X X
IOCDBE X X
IOCQDW X
IOCLUN X
IOCNAM/MLS X

ISDW X
ISLS X
ILSN X

IOCSUF/EOF X
IOCRIB
IOCFDF

IOCDEN
IOCSBP/SIZ
IOCSBS
IOCSBE
IOCSBI

Non-diskette Device -- File Format, Input

IOCDTT = DT$CLS + DT$OPI
IOCQDW = CR
IOCLUN = 0
IOCDBS = Data buffer start (used for FDR processing)
IOCDBE = Data buffer end
IOCNAM = File name of existing file
IOCSUF = Suffix

Page K-:

APPENDIX K IOCB Input Parameter Summary

R 0 G P C R G P
E P E U L E E U
S E T T 0 L T T
R N R R S E L L
V C C E S S S

_. __ ._-------_._---_.
VALID CALL Y Y N Y Y Y N N
IOCB ENTRY

IOCSTA
IOCDTT X
IOCDBP
IOCDBS X X X
IOCDBE X X X
IOCGDW X
IOCLUN X
IOCNAM/MLS X

ISDW X
ISLS X
ILSN X

IOCSUF/EOF X
IOCRIB
JOCFDF X

JOCDEN
IOCSBP/SIZ
IOCSBS
IOCSBE
IOCSBI

Non-diskette Device -- File Format, Output

IOCOTT = OT$CLS + OT$OPO
IOCGOW = CP
IOCLUN = 0
IOCDBS = Data buffer start (used for FOR processing)
IOCOBE = Data buffer end
IOCNAM = File name
IOCSUF = Suffix
IOCFOF = FDFMA, FOFMB, FD$FMC, or FD$FMD (only)

R
E
W
N
D

N

Page 10(.-1:3

APPENDIX

L. EXORdisk 11/111 System Specifications

The following table lists the characteristics and
specifications of the EXORdisk 11/111 system.

CHARACTERISTICS

POWER REQUIREMENTS
AC Power

DC Power supplied by
EXORciser

BUS INTERFACE SIGNALS
Address. Control busses

Data bus

DISK-TO-CONTROLLER INTERFACE
SIGNALS

OPERATING TEMPERATURE

PHYSICAL CHARACTERISTICS
Disk Drive Unit

Width
Depth
Height
Weight

Floppy Disk Controller
Width
Height
Board thickness

CONNECTOR TYPES
Bus Connector (P1)

Disk Drive Unit
Connector (P2)

SPECIFICATIONS

110 Vac. 60 Hz. 3.4 Amps
110 Vac. 50 Hz, 3. 4 Amps
220 Vac, 50 Hz. 1.8 Amps

+ 5 Vdc @ 2. 75 Amps
+12 Vdc @ 20·mAmps
-12 Vdc @ 45 mAmps

TTL compatible

Bi-directional, three state
TTL compatible

Positive true TTL compatible

0-70 degrees Celsius

17.75 inches
23.5 inches
6.96 inches

48 pounds

9.75 inches
5. 75 inches
0.06 inches

Stanford Applied Engineering
SAC-43D/1-2 or equivalent

AMP PIN 88393-7 or
equivalent

Page L-Ol

SUGGESTION/PROBLEM REPORT

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Microsystems
p. O. Box 20912
Attention: Publications Manager

Mail Drop M374
Phoenix, Az. 85036

Comments
Product:

Please Print

Name

Company

Street

City

Hardware Support:
Software Support:

(800) 528-1908
(602) 962-3935

Manual:

Title

Division

Mail Drop Phone Number

State Zip

® MOTOROLA Semiconductor Products Inc.
p.o. BOX 20912 • PHOENIX, ARIZONA 85036 • A SUBSIDIARY OF MOTOROLA INC.

12405-2 PRINTED IN USA 1/26/81 IMPERIAL LITHO 892573 3000

	00-00
	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	00-09
	00-10
	00-11
	00-12
	00-13
	01-01_Introduction
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	02-01_Operation
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	03-01_BACKUP
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-01_BINEX
	04-02
	05-01_BLOKEDIT
	05-02
	05-03
	05-04
	05-05
	05-06
	06-01_CHAIN
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	07-01_COPY
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	08-01_DEL
	08-02
	08-03
	08-04
	08-05
	09-01_DIR
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01_DOSGEN
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01_DUMP
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	12-01_ECHO
	13-01_EMCOPY
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	14-01_EXBIN
	14-02
	14-03
	14-04
	15-01_FORMAT
	15-02
	15-03
	16-01_FREE
	16-02
	17-01_LIST
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	18-01_LOAD
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	19-01_MERGE
	19-02
	19-03
	19-04
	19-05
	19-06
	20-01_NAME
	20-02
	20-03
	20-04
	21-01_PATCH
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	21-12
	21-13
	21-14
	21-15
	21-16
	21-17
	22-01_REPAIR
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	22-12
	22-13
	22-14
	22-15
	22-16
	22-17
	22-18
	22-19
	22-20
	22-21
	22-22
	22-23
	23-01_ROLLOUT
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	24-01_System_Description
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	24-09
	24-10
	24-11
	24-12
	24-13
	24-14
	24-15
	24-16
	24-17
	24-18
	24-19
	24-20
	24-21
	24-22
	24-23
	24-24
	24-25
	24-26
	24-27
	25-01_IO_Functions
	25-02
	25-03
	25-04
	25-05
	25-06
	25-07
	25-08
	25-09
	25-10
	25-11
	25-12
	25-13
	25-14
	25-15
	25-16
	25-17
	25-18
	25-19
	25-20
	25-21
	25-22
	25-23
	25-24
	25-25
	25-26
	25-27
	25-28
	25-29
	25-30
	25-31
	25-32
	25-33
	25-34
	25-35
	25-36
	25-37
	25-38
	25-39
	25-40
	25-41
	25-42
	25-43
	25-44
	25-45
	25-46
	25-47
	25-48
	25-49
	25-50
	25-51
	25-52
	25-53
	25-54
	25-55
	25-56
	25-57
	25-58
	25-59
	25-60
	25-61
	25-62
	26-01_Non-Supported_IO
	26-02
	26-03
	26-04
	26-05
	26-06
	26-07
	26-08
	26-09
	26-10
	26-11
	26-12
	26-13
	27-01_Other_Sys_Functions
	27-02
	27-03
	27-04
	27-05
	27-06
	27-07
	27-08
	27-09
	27-10
	27-11
	27-12
	27-13
	27-14
	27-15
	27-16
	27-17
	27-18
	27-19
	27-20
	27-21
	27-22
	27-23
	27-24
	27-25
	27-26
	27-27
	27-28
	27-29
	27-30
	27-31
	27-32
	27-33
	27-34
	27-35
	27-36
	27-37
	27-38
	27-39
	27-40
	27-41
	27-42
	28-01_Error_Messages
	28-02
	28-03
	28-04
	28-05
	28-06
	28-07
	28-08
	28-09
	28-10
	28-11
	28-12
	28-13
	28-14
	28-15
	28-16
	28-17
	28-18
	28-19
	28-20
	28-21
	28-22
	28-23
	A-01
	A-02
	A-03
	B-01_ASCII_Chart
	C-01_MDOS_Cmd_Summary
	C-02
	C-03
	D-01_Diskette_Ctlr_Entry_Points
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01_Mini-Diagnostic
	E-02
	E-03
	F-01_Diskette_Descripton
	F-02
	G-01_Dir_Hashing_Function
	G-02
	H-01_MDOS_Supported_SW
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	H-21
	H-22
	H-23
	H-24
	H-25
	H-26
	H-27
	H-28
	H-29
	H-30
	H-31
	H-32
	H-33
	H-34
	H-35
	H-36
	H-37
	H-38
	H-39
	H-40
	I-01_MDOS_Equate_File
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	I-20
	I-21
	I-22
	J-01_MDOS_3.00_Differences
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	K-01_IOCB_Parameter_Summary
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	K-08
	K-09
	K-10
	K-11
	K-12
	K-13
	L-01_System_Specifications
	replyA
	xBack

