@ MOTOROLA M68MDOS3(D2)

L

EXORdisk 1I/11l
OPERATING SYSTEM

User’s Guide

MICROSYSTEMS

M&68MDOS3 (D)
JUNE 1979

EXORdisk I1I/III Operating System User ‘s Guide

The information in this document has been carefully

checked and is believed to be entirely veliable. No
responsibility, however, is assumed for inaccuracies.
Furthermore, such information does not convey to the

purchaser of the product described any license under the
patent rights of Motorola, Inc. or others.

Motorola reserves the right to change specifications
without notice.

EXORciser® , EXbug. EXORdisk, EXORterm and MDOS are
trademarks of Motorola, Inc.

Second Edition
Copyright 1979 by Motorola, Inc.
First Edition, December 1978

MANUAL ORGANIZATION

The purpose of this gquide is to provide the wuser with
the necessary information required to generate an MDOS
system, to use the MDOS command programs, and to produce
user—written programs that are compatible with MDOS. In
addition, a brief summary is presented of the MDOS-supported
software products which are currently available.

The User’s Guide has been divided into two parts.
Chapters 1 and 2 are intended for the new user of MDOS who is
Just receiving his system. It is essentially a manuval within
a manual that can be read as an entity by itself. It
provides the basic concepts that are necessary for the
installation of the EXORdisk and for the simplified operation
of MDOS. Chapters 2 through 28 contain descriptions and
examples of the basic forms of the most frequently used MDOS
commands in the order in which they would most likely be used
in a software development environment. The infrequently used
commands are also summarized in order to direct the user to
those chapters (command descriptions) as the need for their
use arises.

Chapters 2 through 2B are intended as a detailed
reference manual for those who need to know specific or
extended information about the MDOS commands., the system
structure, and the resident system functions.

Page

ii

TABLE OF CONTENTS

MANUAL ORGANIZATION .

TABLE OF CONTENTS .

PART I -—-— SIMPLIFIED MDOS USER'S GUIDE

ootrn Soten 2000n Semns Sesve Shene Sress Svmte S4RCS Semmg ASeve SmvRe SHewe S See4% SHISt Seent Seae Sades S Smss S48 SotES SaeFS Saere $0028 FAbee H0ms o R S PSRRI SHRED SHSm Seetd Sousd Seste

1. INTRODUCTION

1.

o b b et e

A bW

b

Hardware Support Required , .

Additional Supported Hardware .

Software Support Required

Program Compatibility

Hardware Installation .

1.5.1 Four—drive system 1nsta11at1on .
1.5.2 Floppy disk controller installation .
Software Installation . e e

2. GENERAL SYSTEM OPERATION

o

N

NN R
MW -

System Initialization .

Sign—-on Message . .
Initialization Error Messages .
Operator Command Format .

System Console .

Carriage return keg

Break key

Control—-W .

Control-X . . .

DEL or RUBOUT .

Control-D . .

Common Error Messages .

Diskette File Concepts

2.7.1 File name spec1F1cat10ns
2.7.1.1 Family names .
2.7.1.2 Device spechlcatlons .
.2 File creation

3 File deletion .

4 File protection . .

ical Command Usage Examples

DIR —— Directory display
EDIT —— Program editing

ASM or RASM —~- Program assemb11ng
DEL. — File deletion

NN
SRR N R
N DR -

y

LOAD —— Program leading/execution .
NAME —- File name changing ..
NAME —— File protection changing
COPY —— File copying . . .
.10 BACKUP —— MDOS diskette creatlon .
er Available Commands .

.1 BACKUP —- Diskette copg1ng

.2 EMCOPY —- EDOS file conversion

.3 BLOKEDIT —— File rearrangement

NONCORWU-

t

NNNONNUNNNNNRNNANNN
VISTONDOIDODTDOT NN N

EXBIN —— Creating program load mudule .

Page

ii

iii

01-01

01-03
01-03
01-04
01-04
01-05
01-05
01-06
01--07

02-01

02-01
02-02
02-02
02-06
02-07
02-07
02-08
02-08
02-08
02-09
02-09
02-09
o2-12
02—-12
02-13
02-14
02-14
02-15
02-195
02-15
02-16
02-17
02-18
02-19
0220
o2-21
o2-22
o2-22
02-23
02-25
02-25
02-26
02-26
02-26

Page

iii

TABLE OF CONTENTS Page

2.9.4 LIST —— File display 02-26
2.7.5 MERGE ~— File concatenation 02-26
2. 9.6 BINEX —— EXbug—loadable file creatlon .. 0227
2.9.7 FREE —— Available file space display . . 02-27
2.9.8 ECHO —— Echo console I/0 on printer . . . 02-27
2. 2.9 PATCH —— Executable program file patchlng o=2-27
2.9.10 CHAIN —— MDOS command chaining o=2-27
2.%.11 REPAIR -— System table checking 02-28
2.9.12 DUMP —— Diskette sector display 02-28
2.9.13 FORMAT -— Diskette reformatting 02-28
2.9.14 DOSGEN —— MDOS diskette generation . . . 02-28
2.92.15% ROLLOUT —— Memory rollout to diskette . 02-29
2. 10 MDOS-Supported SoFtware Products 02-29
2.11 Paper Alignment 02-29

Page iv

TABLE OF CONTENTS

PART II —— ADVANCED MDOS USER’S GUIDE

e i e Smet G4 A St A St Semes dnw S SHewh SR See94 S S5 S Febee CheeR B4Ry SoR MO Svere beien Soee et e LI Saere SH156 Suiet baond M Sar remes Swt

3. BACKUP COMMAND

Use .

Diskette Copg1ng

File Reorganization

File Appending .

Diskette Verification

Other Options

Messages .

Precautions w1th BACKUP .

3.8.1 BACKUP and the CHAIN prucess
3.8 2 Single/double—sided diskettes
3.8 3 Four—drive systems e
3.9 Examples

SESERRSRRERERER
TN ADWN -

4. BINEX COMMAND
4.1 Use
4. 2 Error Messages

4.3 Examples

3. BLLOKEDIT COMMAND

5.1 Use . .

5. 2 BLOKEDIT Command Flle
9. 2.1 Comment lines
5.2. 2 Command lines
5. 2.3 Quoted lines

5.3 Messages

5.4 Examples

6. CHAIN COMMAND .

Use

>0

Compilation Operators .
6.3.1 Compilation Comments
6.3 2 IF operator . . .
6.3.3 XIF and ELSE opprators
6.3. 4 ABORT operator .
—xecution Operators
Execution Comments
Operator Breakpoints
Error status word

SET operator

TST operator

JMP operator

LBL operator

CMD operator

6.5 Messages

&. 6 Resuming an Aborted CHAIN Process

E
b
=)
b,
b,
&
&
b

R
DN UDRWN

o

1 e
2 Tag DeFlnltlon. Assignment, and Substitution
3

Page

03-01

03-01
03-02
03-03
03-08
03-10
03-11
03-13
03-17
03-17
03-18
03-18
03-18

04-01

04-01
04--02
0402

05-01

05-01
05-01
05-02
05-02
0503
05-03
05-05

0601

06-01
06—-0&
06-04
06-05
06—-05
0607
06-08
06—-08
06-09
06—-09
06~10
0611
0611
06—12
06—-13
06-13
0613
06—16

Page

\4

10.

TABLE OF CONTENTS

6.7

Examples

COPY COMMAND

7.1

NNNN
AN]

?.2
2.3

Use .

7.1.1 stkettE*tD~d1skette copgxng

7.1.2 Diskette—to—-device copying
7.1.3 Device—-to—-diskette copying
7.1.4 Verification

7.1.5 Automatic ver191c3t1on
User—-Defined Devices

COPY Mode Summarg

Messages

Examples

7.5.1 D1skette to«d:skette example

7.5.2 Diskette—to-device example
7.5.3 Device—to—-diskette example
COPY with EXORtape Reader .

COMMAND .

Use . . .
81.1 S1ngle f:le name deletxon .

8.1.2 Multiple file name deletion .

8.1.3 Family deletion .
Options . e
Messages

Examples

COMMAND .

Use e

9.1.1 Families .

.2 Bystem files .

.3 Entire directory entrg
.4 Segment descriptors .
.5 Other options .
Messages ..

Examples

0009,
b alalie

DOSGEN COMMAND .

10.1 Use

10. 2 Diskette Sur?ace Test
10.3 Minimum System Generation
10. 4 Messages .

10.5 Examples .

Page

06—-17
07-01

07-01
07-02
07-03
07-04
07-05
07-06
07-07
07-08
07-09
07-10
07-10
07-11
07—-12
07-13

08-01

08-01
08-02
08-02
08-02
08-03
08-03
08-04

09-01

09-01
0902
0902
0902
09-04
09-04
09-05
0906

10-01

10-01
10-04
10-04
10-05
10-07

Page

vi

11.

13.

14.

15.

164.

TABLE OF CONTENTS

DUMP COMMAND .

11. 1 Use .
11.1.1 Phg51ca1 Mode of operatlon
11.1.2 Logical Mode of operatioaon
11.1.3 Sector change buffer

11. 2 DUMP Command Set .

11.2.1 Quit -——- Q@ . . .

11. 2.2 Select logical un1t - U .

11. 2.3 Open diskette file —— 0O

11. 2.4 Close diskette file —— C

11.2. 5 Show sector — § .

11.2. 6 Print sector — L
11.2. 7 Read sector into change bufFer —— R
11. 2.8 Write change buffer into sector —— W .
11.2.9 Fill change buffer —— F . . .

11. 2. 10 Examine/change sector buffer

11. 3 Messages .
11. 4 Examples

ECHO COMMAND .

12. 1 Use
12. 2 Messages

EMCOPY COMMAND .

13. 1 Use

13.1.1 51ngle flle copg .

13.1. 2 Entire diskette copy

13. 1.3 Selected file copy . .
13.2 File Differences Between EDDS and MDDS .
13.3 Messages .
13. 4 Examples

EXBIN COMMAND

14.1 Use

14. 2 Executlon Address 8pec1F1cat10n
14. 3 Error Messages

14. 4 Examples .

FORMAT COMMAND .

15. 1 Use

15. 2 Messages

15. 3 Example

FREE COMMAND .

14. 1 Use .
16. 2 Example

Page

11-01

11-01
11-01
11-02
11-02
11-03
11-04
11-04
11-04
1105
11-05
11-06
11-07
11-07
1108
11-08
11-09
i1—-12

12-01

12-01
12-01

13-01

13-01
13-02
13-02
13-03
13-04
13-04
13-05

14-01
14-01
14-02
14-02
14-03
15-01
15-01
15-02
1502
16-01

1601
16-02

Page wvii

17.

i8.

19.

20.

TABLE OF CONTENTS , Page

LIST COMMAND 1701
17.1 Use L L. s e s o170
17. 1.1 Start/end specifications 17-02
17.1.2 Physical line numbers 17-02
17. 1.3 User—supplied heading 17-03
17. 1. 4 Non—-standard page formats 17-03
17.2 Messages 17704
17.3 Examples 1705
LOAD COMMAND 1801
181 Use L. L oL 0L L0180
18. 1. 1 Command—interpreter—loadable programs . 18-03
18. 1. 2 Non—-command—interpreter—loadable programsi18—-04
18. 1.3 Programs in the User Memory Map 18-06
18. 1.4 MDOS command line initialization 18-07
18. 1.5 Entering the debug monitor 18-08
18. 2 Error Messages < . . . 18-09
18.3 Examples 1g-11
MERGE COMMAND 19-01
19.1 Use L. L L0 s s 1901
19. 1.1 Merging non—memory—image files 19-02
19. 1.2 Merging memory—image files 19-03
19. 1.3 Other options 19-04
19.2 Messages 19-05
19.3 Examples 19-05
NAME COMMAND 20-01
20.1 Use L . . 00 L. L L. L .. 2001
20.1.1 Changing file names 20-01
20. 1.2 Changing file attributes 20-02
20.2 Error Messages 20-03
20.3 Examples 2004

Page

viii

21.

TABLE OF CONTENTS

PATCH COMMAND

21.1 Use
21. 2 PATCH Command Set

21,
1.
21.
21.
21.
21.
21.
21.
21.
21.
21.
21
21.
1.
21.
21.

N

MUNNNNUNUNRNNNNUR

Quit —— Q@ . .

Set/display oFFset - 0

Display single location

Display lowest address —— L .
Display highest address —— H .
Calculate relative address —— R
Dis—assemble operation code — 1
Set search mask and pattern — M .
Search for byte —-— § .

NONTUADWUR -

. 10 Search for word — W . .
.11 Search for non—matching bgte —— N .
.12 Search for non-matching word —— X
.13 Display range of locations —— P .
.14 Set/display execution address —— G
.15 Change locations .
.16 Instruction mnemonic decode mode

21. 3 8pecial Considerations
21.4 Ervor Messages

REPAIR COMMAND .

22.1 Use L L0000
22.2 1D, LCAT. CAT, Bootblock Sector Check
22. 3 Directory Sector Check . .
22. 4 Retrieval Information Block Check
22. 959 CAT Regeneration Phase .
22. 6 CAT Replacement Phase
22. 7 Messages .
22.8 Examples
ROLLOUT COMMAND
23.1 Use
23. 1.1 User Memory Map
23. 1.2 Non—overlayed memory
23.1. 3 Overlayed memory . .
23.1. 4 Scratch diskette conversion
23. 2 Messages

23.3 Examples

Page

21-01

21-01
21-0
21-02
&1-03
21-03
21-04
21-04
21-05
21-05
21-07
21-08
21-08
21-09
21-09
21-09
21—-10
21—-10
21-12
21-195
21—-16

22-01

22-01
22-03
22-08
22-11
22-15
22—-18
22—-19
22-19

23-01

23-01
23-02
23-03
23-03
23-05
23-06
2308

Page

ix

24.

29.

TABLE OF CONTENTS
SYSTEM DESCRIPTION .
24. 1 Diskette Structure .
24.1. 1 Diskette Identxflcatxon Block
24.1. 2 Cluster Allocation Table . . .
24.1.3 Lockout Cluster Allocatlon Table .
24. 1.4 Directory
24. 1.5 Bootblock
24.2 File Structure . . . '
24 . 2. 1 Retrieval Informatxon Block
24.2.2 File formats .
24. 3 Record Structure .
24. 3.1 Binary records .
24.3. 2 ASCII records . .
24. 3. 3 ASCII-converted~b1narg recards .
24.3.4 File descriptor records
24. 4 System Files . .
24.4.1 System overlags
24. 4.2 System error message Flle
24. 5 Memory Map . . . ‘
24. 6 MDOS Command Interpreter .
24. 7 Interrupt Handling .
24. 8 System Function Calls
24. 9 MDOS Equate File .
INPUT/0UTPUT FUNCTIONS FOR SUPPORTED DEVICES .
25.1 Supported Devices . .
25. 2 Device Dependent 170 Functzons .
25. 2.1 Console input —— _KEYIN . . .
25. 2.2 Check for BREAK key —— . CKBRK
25. 2.3 Console output —— . DSPLY, .DSPLX. .DSPLZ
. 25.2.3.1 Example of console I/70 . . .
25.2. 4 Printer output —— . PRINT. .PRINX .
25.2.4.1 Example of printer output
29. 2.9 Physical sector input —— . DREAD. .EREAD
25.2. 6 Physical sector output —— . DWRIT., .EWRIT
25. 2.7 Multiple sector input -—— . MREAD, .MERED
25.2.8 Multiple sector ocutput —— . MWRIT, .MEUWRT
25. 2.9 Diskette controller entry poznts .
25. 3 Device Independent 1/0 Functions .
25. 3.1 1I/0 Control Block — IOCB . .
25.3. 1.1 10CSTA — Error status
25.3. 1.2 I0OCDTT —— Data transfer type .
25. 3. 1.3 I0CDBP —~—- Data buffer pointer
25.3.1. 4 I0CDBS ——- Data buffer start
25.3.1.5 I0OCDBE —— Data buffer end
25.3.1. 6 I10CGDW ~—~ Generic device word
25. 3. 1.7 I0CLUN -- Logical unit number
25.3.1.8 IOCNAM —— File name ..
295.3. 1.9 IOCSUF —— Suffix . .
25.3.1.10 10CMLS —— Maximum LSN referenced
25.3.1.11 10CSDW -~ Current SDW
23.3.1. 12 I0CSLS —— Starting LSN of snw .

Page

24-01

24-01
24-02
24-03
24-03
24-04
2406
24-07
24-07
24-10
24~-11
24-11
24-12
24-13
24-14
24-15
24-16
24-17
24-17
24-20
24-21

24-23
24-29

25-01

25-01
25-01
25-02
25-04
25-095
25-06
25-07
25-08
25-09
2511
25-12
25-13
25-13
25-13
25-14
25-18
25-19
25-22
25-22
25-23
25-23
25-23
25-24
25-24
25-25
25-25
25-295

Page

X

TABLE OF CONTENTS

5.
25.
29,
25.
29.
29.
29.
29.

SESERRRRREINRRS

RS I LI G B

25.
293.
25.
29.
295.

38

mmqom\mmaum,

3.1.13 IOCLSN —- Next LSN .

3.1. 14 I0OCEDOF ~- LSN of end-of- Fxle
3.1.15 IOCRIB —— PSN of RIB . .
3.1.16 I0CFDF —-— File descriptor flags
3.1.17 I0CDEN —-— Directory entry number
.3.1.18 I10CSBP ~— Sector buffer pointer
.3.1.19 10CSBS —— Sector buffer start
3.1.20 I0CSBE -— Sector buffer end .
3. 1. 21 10CSBI —— Internal buffer pointer
Reserve a device —— . RESRV . ..
Open a file —— . OPEN .

Input a record —— . GETRC

OQutput a record —— . PUTRC

Close a file — .CLOSE . . .

Release a device —— . RELES .

Example of device independent I/0
Specialized diskette I/0 functions .
3.9.1 Input logical sectors —— .GETLS .
.3.9.2 Dutput logical sectors —— . PUTLS .
.3.92.3 Rewind file -—— .REWND .

.3.9.4 Example of loglcal sector I/D

25.3.10 Error handling

26. INPUT/0QUTPUT PROVISIONS FOR NON-SUPPORTED DEVICES

26. 1 Device Dependent 1/0 . .
26. 2 Device Independent I1/0 .

26. 2.1
26.
26.
26.
26.
26.
26.
26.
26. 2.2
26. 2.3
26. 2. 4

Controller Descriptor Block ~-= CDB .
2.1.1 €CDBIOC —— Current IOCB address

2. 1.2 CDBSDA —— Software driver address
2. 1.3 COBHAD —— Hardware address .o
2.1. 4 CDBDDF —— Device descriptor flags
2. 1.5 CDBVDY —— Valid data types .
2.1. 6 CDBDDA —— Device dependent area
2.1.7 CDBUWST —— Working storage

Device drivers . o

Example of device dr1ver

Adding a8 non-—-standard device

Page

2526
25-26
25—-26
25—26
25-30
25-31
25-31
25-31
25-32
2532
25-34
25-39
25-42
25-45
£5—-48
25—-49
25-51
25-51
29—-54
2556
25-58
25—-62

26-01

26-01
26-01
26—01
26-04
26—04
26-04
26~-04
26—07
26—08
26—-08
26—08
26—10
26—13

Page

xi

27.

28.

TABLE OF CONTENTS

OTHER SYSTEM FUNCTIONS .

27.1 Register Functions .

27.1.1
27.1. 2 Transfer B,A to X — .TBAX ..
27.1.3 Exchange B, A with X —— . XBAX .
27.1.4 Add B to X —— . ADBX .
27.1.9 Add A to X —— . ADAX .
27.1. 6 Add B.A to X —— . ADBAX .
27.1.7 Add X to B,A —— . ADXBA . . .
27.1.8 Subtract B from X —— . SUBX .
27.1. %9 Subtract A from X —— . SUAX . .
27.1. 10 Subtract B,A from X —— . SUBAX .
27.1.11 Subtract X from B, A —— . SUXBA .
27.1.12 Compare B,A with X — . CPBAX
27.1.13 Shift X right —-— . ABRX
27.1.14 Shift X left —— . ASLX .
27.1.15 Push X on stack —— .PSHX
27.1.16 Pull X from stack —-— . PULX
27. 2 Double—byte Arithmetic Functlons .
27.2.1 Add A to memory -— . ADDAM . .
27. 2.2 Subtract A from memory -—— . SUBAM .
27. 2.3 Shift memory right —— . DMA .
27. 2. 4 Shift memory left —— . MMA
27.3 Character String Functions . . .
27.3.1 String move —-— . MOVE
27.3.2 String comparison —— CMPAR .
27.3. 3 Character—+ill a string -—— STCHR
27.3.4 Blank—-fill a string —— .STCHB .o
27.3.5 Test for alphabetic character — . ALPHA
27.3.6 Test for decimal digit —— . NUMD
27.4 Diskette File Functions e e
27.4.1 Directory search —— .DIRSM
27.4.2 Change file name/attributes —- . CHANG
27.4.3 Load program into memory —-— . LOAD
27.4.4 Allocate diskette space —— . ALLOC
27.4.9 Deallocate diskette space —— .DEALC
27.4. 6 Display sgstem error message —— . MDERR .
27.9 0Other Functions L.
27.5.1 Process file name —— PFNAM .o
27. 5.2 Re—enter resident MDUS -- . MDENT . .
27. 9.3 Reload MDOS #rom diskette —— . BOOT .
27.5. 4 Set system error status word —— . EWORD .
27.5.9% Allocate user program memory -—— . ALUSM .

Transfer X to BsA —— . TXBA .

ERROR MESSAGES .

28. 1 Diskette Controller Errors .

28.1.1
28.1.2

Errors during 1n1tzal1zat10n .
Errors after initialization

28. 2 Standard Command Errors

28. 3 Input/Ouput Function Errors

28. 4 System Error Status Word . . .
28. 5 Commands Affecting Error Status WOrd .

Page

27-01

27-01
27-02
27-02
27-02
27-02
27-03
27-03
27-03
27-04
27-04
27-04
27-05
27-05
27-05
27-05
27-06
27-06
27-06
27-07
27-07
27-07
27-08
27-08
27-08
27-09
27-10
2710
27-11
27-11
27~-11
27-14
27-17
27-20
27-25
27-28
27-30
27-35
27-35
27-38
2739
27-40
27-40

28-01

28-01
28-01
28-05
28-06
28-18
28—-19
28-20

Page

xii

TABL

APPENDIC

A Cyli
B. ASCI
C. MDOS
D. Disk
E. Mini
F. Disk
G. Dire

H. MDOS

QONOCUPLON -

IITITITIIITIIIIIICLLT
[Wry
QO

J. MDOS

J.1 Impact of MDOS 3. 00 on Prev:ous NDDS Programs

E OF CONTENTS

ES

nder—Sector/Physical Sector Conversion Table
I Character Set

Command Syntax Summary

ette Controller Entry Points

-Diagnostic Facility

ette Description, Handling, and Format

ctory Hashing Function

~Supported Software Products

ASM -—-- M6800 Assembler

ASM1000 —- M141000 Cross Assembler

ASM3870 —— M3870 Cross Assembler

BASIC —— BASIC Interpreter

E —— CRT Text Editor

EDIT —— Text Editor . . .

EM3870 ——- M3870 Emulater . .

FORM1000 —— M141000 Object F11e Conver51on
FORT —— Relocatable FORTRAN Compiler

MASM ——- MACE Cross Assembler . .
MBUG -—-—- MACE Loader and Debug Module .
MOTEST —— Component Tester Executive

MPL. —-— MPL Compiler . . c
PPLO/PPHI —-— PROM Programmer I .
PROMPROG -— PROM Programmer II/IITI . . .
RASM —-— Relocatable M&B0O0O Macro Assembler
RASMO? —— Relocatable M&BO? Cross Assembler
RLOAD —— Linking Loader .

SIM1000 —— 141000 Slmulator

USE with MDOS
Equate File Listing

3.00 Differences .

J.2 Enhancements to MDOS 2. 20/2. 21

J. 3

K. 10CB

L. EXOR

Enhancements to MDOS 3. Q0 .
Input Parameter Summary

disk II/III System Specifications

Page

A-01
B-01
C-01
D-01
E-01

F-01

Page

xiii

CHAPTER 1

1. INTRODUCTION

The EXORdisk Il is a single—sided, single—density, dual
diskette drive storage system designed for wuse with the
EXORciser or EXORterm. The EXORdisk III is a double—-sided,
single—density, dual diskette drive storage system designed
for use with the EXORciser or EXORterm. The EXORdisk III can
be expanded into a four-—-drive system.

With either the EXORdisk II or EXORdisk III system, the
following items are also included: a floppy disk controller
module, a floppy disk interconnection cable assembly, and a
software disk operating system. An illustration of a typical
EXORdisk system is shown in Figure 1-1.

The M&6800 Diskette Operating System (MDOS)Y or M680O9
Diskette Operating System (MDOSO?), in congjgunction with the
EXORciser and EXORdisk II or EXORdisk III., provides a
powerful and easy—-to-use tool for software development. For
the remainder of this manual, all references to MDOS5 will
encompass both the M&6BOO version as well as the M68B0O9
version, unless otherwise specified.

MDOS is an interactive operating system that obtains
commands from the system console. These commands are used to
move data on the diskette, to process data, or to activate
user—~written processes from diskette. All this can be
accomplished with a minimum of effort; and since MDOS is a
facilities oriented system, rather than a supervisory
oriented one, a minimum of overhead is imposed.

In addition. an extensive set of resident system
functions are provided for general development use. Such
functions as dynamic space allocation., random access to data
files, record 1/0 for supported and non—-supported devices, as
well as many register, string., and other diskette-oriented
Toutines make MDOS a8 good basis for a user’s application
system.

Page 01-01

Figure 1-1. Typcial EXORdisk system.

Page 01-02

INTRODUCTION 1.1 —— Hardware Support Required

1.1 Hardware Support Required

The minimum hardware configuration required to support
MDOS consists of:

—— an EXORciser or EXORterm with EXbug firmware
-— 16K RAM

—— EXORdisk II/III dual diskette drive unit

—— EXORdisk II/III floppy disk controller module
~—~ Interconnect cable

-— ASR33 (TTY) or RS-232C compatible terminal

The EXORdisk Il can read and write diskettes recorded in
an IBM-3740-similar format (single-sided, single—density).
The EXORdisk III can rtead and write all diskettes that the
EXORdisk II can handle. In addition, diskettes formatted in
the Motorola single—density, double—-sided format can also be
read and written. The double—sided diskettes cannot be used
in the EXORdisk 11I.

The above minimum configuration will allow the user to
Tun any of the MDOS commands that reside on the MDOS system
diskette at the time of purchase. Other additional hardware
may be required to run the MDOS-Supported software products.
Such information is described in Appendix H.

1.2 Additional Supported Hardware

MDOS also supports a line printer and the reader/punch
(record) devices of the system console. The line printer
interfaces to the EXORciser through the printer interface
module (MEX6BPI) which consists of two PIA‘’s plus the

necessary buffering devices and address decoding. If the
printer interface from an EDOS system is wused instead, it
must be modified for wuse with MDOS. The modifications
consist of adding the following 1lines to the printer

interface PIA:

1. Print select (high=selected) to PBO (pin 18 of PIA)
e, Paper out (low=paper available) +to PB1 (pin 11 of
PIaA)

The system console’s automatic reader/punch (record)
devices must be similar to a Teletypewriter’s paper tape

reader™ and punch. For a complete description of the system
consale Tequirements consult the "M68B0O0 EXORciser User’s
Guide".

Page 01-03

INTRODUCTION : 1.3 -~ Software Support Required

1.3 Software Support Required

No additional software is required to run the operating
system as it comes shipped on the system diskette.

1.4 Program Compatibility

All of the MDOS commands and system files that are
shipped on the system- diskette must be wused with that
particular version of MDOS. MDOS commands and system files
from other versions should never be intermixed.
MDOS~Supported software products (see Appendix H) with
version numbers 3. 00 or greater must be used with MDOS 3. 00.
They will not operate correctly with prior versions of MDOS.
In addition, prior versions of the M&6800 Linking Loader
(RLOAD, through version 2.03) will not operate with MDOS
3. 00. Prior wversions of other MDOS-Supported software
products will work with MDOS 3. 00.

Most wuser—~written assembly language programs that were
developed independently of MDOS can be executed on an MDOS
system without reassembly; however, such programs will have
to be converted into the memory-—image file format before they
can be loaded from diskette into memory (see section 2.8.5).
Programs need only be changed when transferred to MDUS if:

1. They make assumptions about the
initialization of the stack pointer after
they are loaded into memory.

2. They are origined to load (initialize memory
while loading) below hexadecimal location
$20,

3. They make assumptions about the physical
structure of diskette tables or files,

4, They vtilize the diskette for input/output.,

5. They make assumptions about the contents of
‘the SWI and IRQ interrupt vectors.

I# a user has prior EXORciser support software products
which he has purchased from Motorola (e.g.. editors,
assemblers, or compilers), that software must be upgraded to
be compatible with MDOS.

I+ a wuser has software that he has developed using
previous versions of MDOS, then Appendix J should be
consulted for a 1list of differences between MDOS 3. 00 and
prior versions that may affect programs running with MDOS
3. 00.

Page 01-04

INTRODUCTION 1.5 —— Hardware Installation

1.5 Hardware Installation

The floppy disk controller module and drive unit should
be inspected upon receipt for broken., damaged., or missing
parts as well as for damage to the printed circuit board.
The packing materials should be saved in case reshipping is
necessary.

1.5.1 Four—drive system installation

st swtne satmt Svame Sa0me Satms s s et ate Ghamt Sheme SoPws Seomy TS Setee Sesoe Seatn Soees Seeee e Seams Somee Sobse Sases v SeRY Sepms Seses Peeoe begen Supet Semes et Fmeia tasee

The following procedure must be performed to install the

four diskette drive version of the EXORdisk III. This
section is not applicable <to EXORdisk II systems or to
dual—drive EXORdisk III systems. This procedure must be
performed before the floppy disk controller module is

installed (next section). It should be noted +that in the
four—drive configuration, all diskette controller originated
lines must be terminated in the last drive of the daisy
chain. When facing the front of the disk drive units, drive
zero is on the left and drive one is on the right of one
unit, while drive two is on the left and drive three is on
the tight of the other unit. Before the following
modifications are made, both dual—-drive units are identical.

1. The housings from both duval—drive wunits must be
removed.

n3

In the dual—-drive unit that is to contain drives zero

and one; the Terminator Network (Motorola P/N
91INWFLE26A01) should be removed from the socket XAZ22
on printed circuit board (pcb) for drive zero. The

drive one pcb socket XA22 should not have the
Terminator Network installed.

w

JPR 11 should be installed in the jumper area of the
pcb for drive zervro.

4. JPR 9 should be installed in the jumper area of the
pcb for drive ane.

5. The housing should be replaced on this dval—-drive
unit and the drives marked as zero and one.

6. On the other dual~drive unit the Terminator Network
should be installed in socket XA22 of the pchb for
drive three. There should be no Terminator Network
installed on socket XA22 of the pcb for drive two.

7. JPR 11 in the jumper area of the pcb for drive two

should be removed (if installed). JPR 8 should be
installed.

Page 01-05

INTRODUCTION

10.

11.

1.5 - Hardware Install

JPR 2 in the Jjumper are of the pcb for drive three
should be removed (if installed). JPR 10 should be
installed.

The 50-~pin rtibbon cable that connects to Pl of the
Controller Interconnect Board must be disconnected
and insulated against contact with conductive
material.

The housing on this dval—-drive wunit should be
replaced and the drives marked as two and three.

The 50-pin ribbon cable (Motorola P/N 30BWiB24X01)
should be installed between drives zero/one and
two/three.

1.5.2 Floppy disk controller installation

To

install the +floppy disk controller module into the

EXORciser, the following steps should be followed:

1. The PWR keyswitch on the EXORciser should be
turned OFF. CAUTION: Inserting the floppy
disk controller module while power is applied
to the EXORciser system may result in damage
to components of the module.

2. Any other card in the EXORciser that responds
to addresses between hexadecimal $E800
through $ECO7, inclusive, must be removed
from the system or configured for a different
address range.

3. The floppy disk controller module can then be
inserted into any available card slot. It is
desirable to keep all of the cards in the
EXORciser «close together; it is specifically
recommended that dynamic memory boards be
kept as <close to the MPU board as possible.
When properly installed, the component sides
of all cards should be facing the left—-hand
side of the EXORciser chassis (as viewed from
the front). The EXORciser motherboard
connectors are offset and keyed to prevent
backward installation of cards.

4. The interconnect cable should then be
attached to both the drive wunit and the
diskette controller module. CAUTION: The
pin index mark on the connector must match up
with the index mark on the cable. Damage to
the module will result if the cable is
installed the wrong way.

Page

ation

01-06

INTRODUCTION 1.9 —— Hardware Installation

9. Power can now be applied to both the drive
unit and to the EXORciser —— the hardware is

installed. The operator should get into the
habit of turning on the power in the
following sequence: system console,
EXORciser, EXORdisk, and line printer. The

power off sequence should be the reverse:
line printer, EXORdisk, EXORciser, and system
console. No diskettes should be in a drive
while the drive’s or the EXORciser ‘s power 1is
being turned on or off.

1.6 Software Installation

There is no software installation that need be
performed. All MDOS software is included on the diskette
that is shipped with each EXORdisk. This diskette contains
the operating system and a set of commands that comprise
MDOS. It may or may not contain any of the MDOS—supported
software products such as editors or assemblers. These
products are dependent on the mode of system purchase.

Page 01-07

CHAPTER 2

coeee Setme oo vss Aot menes S4mse smenn Sraws bomaw Svees Smave Sowes Setes S Semee heves Sumke Srivy Sasme Svime Somst Amimt Sovee irees Some Sreee St

This chapter provides the user with the basic concepts
that are necessary for the simplified and typical operation

of MDOS. It contains descriptions and examples of the
initialization procedures and of the basic forms of the most
frequently used commands. These examples clearly illustrate

how MDOS is used to edit a program, to assemble 1it, to
convert it into a loadable module, to load it and execute it,
as well as some other uvseful operations. The commands are
presented in a sequence that is commonly followed in a
software development environment.

2.1 System Initialization

To initialize the operating system, power must first be
applied to the EXORciser and to the diskette drive unit. No
diskette should be in the drive while power is being turned
on or off on either the drive or the EXORciser. Once the
power is on, the following steps must be followed:

1. EXbug must be initialized and configured for
the proper speed of the system console. 1f
power has just been turned on for the first
time, EXbug initialization is automatically
performed by the power—up interrupt service
routine in EXbug. If power is already on and
MDOS is to be re—initialized, then either the
ABORT or RESTART pushbuttons on the
EXORciser’s front panel must be depressed to
initialize EXbug. The prompt “EXBUG V.R"
will be displayed by EXbug indicating it is
waiting for operator input. "V" indicates
the version and "R" the revision number of
the EXbug monitor in the system.

2. An MDOS diskette (one shipped from Motorola
or one that has been properly prepared by the
user (see section 2.8 10)) must be placed in
drive zero. The door on the drive unit must
then be closed in order for the diskette to
begin rotating. For the side-by—side drives,
drive zero is on the left side, as seen from
the front. For the EDOS—-converted systems
using the vertically stacked drives, drive
zero is the top one.

The diskette must be oriented properly before

Page

02-01

GENERAL SYSTEM OPERATION 2.1 —— System Initialization

being inserted into the drive. When the
diskette is inserted properly, the 1label is
facing wup, and the edge of the diskette with
the long narrow slot in the protective
covering is inserted first. The labelled
edge will be the last edge to be covered up
as the diskette is inserted into the drive.

3. Operators with EXbug 2 in their systems will
skip this step. The EXbug 1 command “MAID"
must be entered. An asterisk (#) prompt will
be displayed once MAID has been activated.

4. The MAID command “EBO0O0; 6" must be entered if
the debug monitor is EXbug 1. For EXbug 2
monitors, the EXbug command "MDOS" must be
entered. Either command will give control to
the diskette controller at the specified
address. The controller will initialize the
drive electronics and then proceed to rvead
the Bootblock into memory. Once the
Bootblock has been loaded, cantrol is
transferred to it. The Bootblock will then
attempt to load into memory the remainder of
the resident operating system.

2.2 Sign—on Message

-

I#f no errors occur during the initialization process,
MDOS will display the message:

MDOS VV.RR (M&6800O)

=

MDOS09? V. RR (M&BO?)

=

meaning that MDOS has been successfully loaded from disk and
initialized. The "W" and "RR" indicate the version and
revision numbers of the operating system, respectively. In
addition, an equal sign (=) 1is displayed as a prompt
indicating that MDOS is ready to accept commands from the
operator. The equal sign prompt is subsequently displayed
each time the MDOS command interpreter gets control. The
sign—on message showing the version and revision numbers is
only displayed when MDOS is reloaded from the diskette.

2.3 Initialization Ervor Méssages

I# +for some Teason the drive electronics are not
properly initialized, or if the diskette in drive zero cannot
be read properly to 1load the DBootblock or the resident

Page 0202

GENERAL SYSTEM OPERATION

operating system, then a two—character error message will be

2.3 —— Initialization Error Messages

displayed and control returned to the EXbug monitor.

The following
initialization. Al
letter "E".

LS ——

E2

E3

E4

ES

errors can be produced during
1 two-character messages begin with the

Probable Cause

cotre trace tmae o snsee vesne Soane et et s S wwre Svvme tmsot

A cyclical redundancy check (CRC)
error was detected while reading the
resident operating system into
memory.

The diskette has the write protection

tab punched out. During the
initialization process, certain
information is written onto the
diskette.

The diskette 1is not damaged and can
still be used for a system diskette;
however, the write protection tab
must first be covered with a piece of
opaque tape to allow writing on the
diskette.

The drive is not ready. The door is
open or the diskette is not yet
turning at the proper speed. I+ the
diskette has been inserted into the
drive with the wrong orientation, the
"not ready"” error will be also
generated. If a double—-sided
diskette is wused in the EXORdisk I1
drives, this error will also occur.

Closing the door, waiting a 1little
bit longer before entering the
"EBOO; 6" or "MDpas*" command, or
turning the diskette around so it is
properly oriented should eliminate
this error.

A deleted data mark was detected
while reading the resident operating
system into memory.

A timeout interrupt occurred. This
indicates that a diskette controller
function was not completed within the
allotted time. This error can also
occur if the ABORT pushbutton is

Page

02-03

GENERAL SYSTEM OPERATION 2.3 —— Initialization Error Messages

depressed while a diskette transfer
is in progress.

E& The diskette controller has been
presented with a cylinder—sector
address that is invalid.

This error indicates some type of a
hardware problem. For example, the
error can be caused by missing or
overlapping memory. bad memorty, or
pending IRQs that cannot be serviced.

E7 A seek error occurred while trying to
read the resident operating system
into memovry.

Like E& errors, this one indicates
some type of a hardware problem.

ES A data mark error was detected while
trying to read the resident operating
system into memory.

E9 A CRC error was found while reading
the address mark that identifies
sector locations on the diskette.

The diskette controller errors EI1, E4, EB8, and E?
indicate that the diskette cannot be wused to 1load the
operating system; however, a new operating system can be
generated on that diskette, making it useful again. Chapter
10, DOSGEN command, and chapter 15, FORMAT command, describe
ways in which damaged diskettes can be regenerated.
Depending on the extent of the errors, the diskette may be
used in drive one to recover any files that may be on it
{section 2.8.9).

The diskette controller error ED can occur for a variety

of reasons. The most common reason, and the most fatal, is
the destruction of the addressing information on the
diskette. If# ¢the addressing information has been destroyed

(verified by wuvsing DUMP command to examine areas of
diskette), the FORMAT command may be used to rewrite the
addressing; however, information on the damaged diskette
cannot be recovered. Occasionally, after a system has just
been unpacked, the read/write head may have been positioned
past its normal restore point on cylinder zero. In this
case, trying the event which caused the error three or more
times may position the head to the proper place. If this
fails, the head will have to be manually repositioned past
cylinder zero; however, this problem rarely occurs. The EO
errors can also occur if a wuser-written program accesses
drives 1-3 without wusing one of the system functions and

Page 02-04

GENERAL SYSTEM OPERATION 2. 3 —— Initialization Error Messages

without first restoring the read/write head on that drive.

Even after the resident operating system has been
successfully read into memory, certain errors can occur in
the subsequent initialization procedure. During
initialization the resident operating system cannot access
the error message Pprocessor since it has not been
initialized. Messages similar in format to those generated
by the diskette controller are displayed ¢to indicate such
erTors. They differ from the diskette controller errors in
that the second character of the two—character message is a
non—numeric character. The following errors can occur during
initialization, but only after the resident operating system
has been tTead into memory.

Message Probable cause

E? This error indicates that the
Retrieval Information Block (RIB) of
the resident operating system file
MDOS. SY is in error. The operating
system cannot be loaded.

The diskette probably is not an MDOS
system diskette, or the system files
have been moved from their original
places. The REPAIR command (Chapter
22) can be used to identify which
files are missing or if their places
have been changed.

EM This error indicates that there was
insufficient memory to accommodate
the resident portion of the operating
system.

The memory requirements described in
section 1.1 should be reviewed. If
the minimum requirements are
satisfied, then the existing memory
should be carefully examined for bad
locations.

EI The version and revision of MDOS
already loaded into memory are not
the same as those on diskette. This
error uwsually occurs as the result of
switching diskettes in drive zero
without following the initialization
procedure outlined in section 2.1.
The error can also occur if the ID
sector has been damaged.

Page 02-05

GENERAL SYSTEM OPERATION 2.3 —— Initialization Error Messages

The error can be avoided if the
initialization procedure is followed
correctly every time a new system
diskette is inserted into drive zero.

ER The addresses of the Retrieval
Information Blocks of the MDOS
overlays are not the same as those at
the time of the last initialization.
This error may occur for the same
reasons as the "EI" error.

EU An input/output system function
‘ returned an error during the
initialization. Errors of this sort

indicate a possible memory problem or
the opening of the door to drive zero
while the initialization is taking

place.
EV One of the system files is missing or
cannot be loaded into memory. I+ a

system file is missing, the diskette
has been improperly generated or the
file was intentionally deleted. If a
file cannot be 1loaded, then the
diskette should be regenerated. The
diskette may be used in drive one ¢to
save any files that may be on it
(section 2.8.9). This error may also
occur if the door to drive zero is
opened while initialization is in
progress.

2.4 Operator Command Format

After the sign—on message is displayed, MDOS is ready to
accept commands from the operator. The equal sign prompt (=)
indicates that the command interpreter is awaiting input via
the console. Generally, the equal sign prompt will be
redisplayed after each command has finished its function.
The operator—entered command line must always indicate which
command 1is to be executed. In addition, the file names that
may be required by the command must be specified. Some
commands also allow various options that can alter the way in
which their functions are performed. These options are also
entered on the command line. Each command line must be
terminated with a carriage return. The command line has the
following format:

<name 1> <name 2>, <name 3>,<name n>;<options>

where each <name 1i>» (i=1 to n) has the form of a complete

Page 02-06

GENERAL SYSTEM OPERATION 2.4 — 0Operator Command Format

MDODS file name (see section 2.7.1). The name of the command
to be executed is always <name 12 The remaining names and
the options may not be required, depending on the individual
command. The following lines:

DIR EDIT.CM: 1 E
FREE
MERGE FILELl: 1, FILE2:0,FILE3:1,FILE1:1

are wvalid examples of MDOS command lines. Section 2.8
describes in a simplified form the basic format (i.e., the
command ‘s name, what file names must be specified, and what
options are available) of the most frequently used commands.
PART II gives a complete and detailed description of all MDOS
commands. In addition, Appendix H contains a summary of the
command line formats of all MDOS-Supported software products.

Most frequently a "space" is used to separate <name 12,
the command name, from the other names which are typically

separated by "commas". The "semicolon" always separates the
options from the rest of the command line. The "space" and
"comma" are the recommended separators since they make the

command line the most readable; however, any character that
will not be mistaken for an MDOS file name character, a
suffix delimiter, @ logical wunit number delimiter, or a
device name delimiter (see section 2.7.1) can be used as a
separator. The wuse of special characters, although
permitted, is not recommended because the command 1line
becomes very unreadable.

2.5 Bystem Console

The system console is used as the communications device
between the operator and the operating system. MDOS messages
are displayed on the console printer or display mechanism.
MDOS commands, as well as operator inputs prompted by the
commands, are entered via the keyboard. All command line
input and most input to the various commands requires upper
case, alphabetic characters. Numeric and special characters,
of course, are case independent. To allow corrections to be
made to any typed line before the terminating carriage return
is entered, several special keys on the keyboard can be used.
In addition, two other special keys serve to prematurely
abort a command in " progress or to "freeze" the display of
messages on the console.

2.5.1 Carriage Teturn key

The CARRIAGE RETURN key is vused to terminate any

operator response to an MDOS input prompt. This is true for
the command line as well as all other input that may be
required from the operator by the various commands. The

Page 02-07

GENERAL SYSTEM OPERATION 2.5 -~ System Console

CARRIAGE RETURN will automatically perform both carriage
return and line feed functions.

2. 9.2 Break key

The BREAK key 1is wused as a controlled—-abort function
key. Most MDOS commands that take a long time ¢to complete
their function periodically check to see if the BREAK key has
been depressed. I#+ it has, the <command will come ¢to a
premature, but controlled, termination point.

The BREAK key should be used, whenever possible, as an
alternative to wusing ¢the EXORciser‘s ABORT or RESTART
pushbuttons. The controlled abort that is achieved with the
BREAK key ensures that all system tables are intact. Since
termination is delayed until all critical diskette accesses
have been completed, no file space is lost nor is any system
table destroyed. Such precautions cannot be guaranteed if
the ABORT or RESTART pushbuttons are used, since the operator
has no way of knowing whether or not diskette data transfers
are in progress.

2.5 3 Cantrol—-W

Control-W is actually a combination of two keys being
depressed simultaneously: the CONTROL or CTL key and the W
key. This combination is wused to halt <the display of
information on the system console or printer. All commands
that respond to the BREAK key abort function will also be
“*haltable" with the CTL-W key. Most MDOS commands that
display more than a few lines of information on ¢the console
will occasionally check to see if the CTL-W key has been

depressed. If a CTL-W is detected, the command will suspend
processing wuntil any other key on the console keyboard is
depressed (except, of course, another CTL-W). This +feature

is particularly wuseful ¢to hold the display for viewing on
systems that have a CRT. In addition, if output is being
directed to the printer, the CTL-W can be used to suspend
printing until the paper is realigned.

2.5 4 Control-X

Control~-X is actually a combination of two keys being
depressed simultaneously: the CONTROL or CTL key and the X
key. This combination is used to cancel the input line that
was Just entered by the operator (before a carriage return is
depressed). All system input Ffrom the «console supports
CTL-X. Any characters entered on the current input line thus
far will be deleted and input can be resumed from the
beginning of the line. A carriage return and line feed will
be sent to the console, so that the operator has a positive

Page 02-08

GENERAL SYSTEM OPERATION 2.5 —— System Console

feedback that the line was cancelled.

2. 9.9 DEL or RUBOUT

The DEL or RUBOUT key serves as a backspace key during
console input. If the operator detects an error in the
current input 1line (before a carriage return is depressed),
the DEL key will cause the preceding character to be removed
from the input line. The character that is removed will be
echoed back to the console so that the operator has a
positive feedback that a character was backed out of the
line.

2. 3.6 Control-D

Control-D is actually a combination of two keys being

depressed simultaneously: the CONTROL or CTL key and the D
key. This combination allows the operator to re—-display the
current input line (before a terminating carriage return is
depressed). If the input line has had several characters
backed out (see DEL key above), the line is very unreadable.
The CTL-D key can, therefore, be used to show a "clean" copy
of the 1line #for operator inspection. The newly displayed
line will be shown on the line following the current input
line. Operator input is not terminated with the CTL-D key.

Any remaining input must still be supplied. as well as the
terminating carriage return.

2.6 Common Errvor Messages

Many error messages are common to the MDOS commands. In
order to be aware of the most common errors, their
descriptions are included here. These common error messages
will be recognizable to the operator since they are prefaced
with a pair of asterisks (#%) and a two-digit reference

number. Each command may., in addition, have a set of
specific error messages that will not be displayed by other
commands. These specific error messages will not have the
asterisks or two—-digit reference number. Such messages are
explained along with each command ‘s detailed description in
PART II. A summary of the standard error messages can be
found in Chapter 28. The messages are listed there in order

of their two-digit reference numbers.

WHAT?
The ¢irst name entered on the command line was
not the name of a €ile in the diskette’s
directory. Most often this error occurs as the

result of a mistyped command name.

Page 0209

GENERAL

4

kL

#* 3%

3

¥#3#

#3#

*3%

SYSTEM OPERATION

01

o2

03

04

05

06

07

COMMAND SYNTAX ERROR

The syntax of the command line parameters could
not be interpreted. Most often this error refers
to undefined characters appearing in the options
field.

NAME REQUIRED

The file name required by the command as a
parameter was omitted from the command line.

<name> DOES NOT EXIST
The displayed file name was not found in the
diskette’s directory. The file name must exist
prior to wusing the command. The <name> is

displayed to show which name of the multiple
names specified as parameters caused the error.

FILE NAME NOT FOUND
The file name entered on the command 1line as a
parameter does not exist in the diskette’s
directory. The file name must exist prior to
using the command. No file name is displayed.
since only one parameter is required by the
command.

<name> DUPLICATE FILE NAME

The displayed file name already exists in the
diskette’s directory. The +file name must not
exist prior to using the command. The <name> is
displayed to show which name of the multiple
names specified as parameters caused the errvror.

DUPLICATE FILE NAME

The #£ile name entered on the command line as a
parameter already exists in the diskette’s
directory. The file name must not exist prior to
using the command. No file name is displayed,
since only one parameter is required by the
command.

OPTION CONFLICT

The specified options were not valid for the type
of function that was to be performed by the
command. Several of the options are mutually
exclusive and cannot be specified at the same
time.

Page

2.6 —— Common Error Messages

02-10

GENERAL SYSTEM OPERATION 2. 6 —— Common Error Messages

11 DEVICE NOT READY

Most frequently this indicates that a command is
trying to output to the printer while the printer
is not ready.

12 INVALID TYPE OF OBJECT FILE

Most frequently this indicates that an attempt
was made to load a program into memory whose file
does not have the "loadable" memory—image format,
e.g.,» a source file.

13 INVALID LOAD ADDRESS

An attempt was made to load a program into memory
that: 1) loads outside of the range of
contiguous memory established at initialization;
2) loads over the resident operating system; 33
lpads below hexadecimal location %$20; or 4) loads
beyond hexadecimal leocation $FFFF.

25 INVALID FILE NAME

A file name was specified that contained a family
indicator (3¢}, that began with a device name
indicator (#), or that did not begin with an
alphabetic character.

41 INSUFFICIENT DISK SPACE

A command is trying to create a file or to write
into a file. Upon ¢rying to allocate more file
space, insufficient room remains on the diskette
to accommodate the space requirements.

##PROM I/0 ERROR--STATUS=nn AT h DRIVE i-PSN j

An unrecoverable error occurred while ¢rying to
access the diskette. The error status "nn" is a
value returned by the diskette controller. The
errors are of the same type that cause the
initialization process to give control to EXbug:;

however, instead of beginning with the letter
"E", the status (nn) begins with the digit *3".
The second digit of the status corresponds

directly to the diskette controller error number
discussed in section 2. 3. The "E" has been
replaced by the "3". Thus, status

Page 02-11

GENERAL. SYSTEM OPERATION 2.6 —— Common Error Messages

31 is the same as E1
32 is the same as E2

39 is the same as E9.

A memory address (only meaningful for system
diagnostics) is substituted for the letter "h";
the drive number is substituted for the letter
*i"; and the physical sector number (PSN) at
which the error occurred is substituted +for the
letter "j".

2.7 Diskette File Concepts

In MDOS, a diskette file is a set of related information
that is recorded more or less contiguously on the diskette.
The information can be actual machine instructions that
camprise a command or user program. The information can also
be textual data, object program data. or any of the forms
described in Chapter 24. The following section describes how
files are named, created, deleted, and protected.

2.7.1 File name specifications

An MDOS file name specification consists of three parts:

a "file name”, a "suffix", and a "logical unit number". File
names can be from one to eight alphanumeric characters in
length, the first of which must be alphabetic. The

alphabetic characters must be upper case letters. Valid file
names could look like the following:

DIR
ASM3870
BACKUP
S0
BLOKEDIT
4

In most cases, all that need be specified when a #ile
name specification is called #for is the file name. The
suffix and logical unit number are usually given appropriate
default values by the variocus commands.

The suffix can be either one or two characters in
length. Like file names, suffixes must begin with an upper
case alphabetic character. The rest of the suffix must be
alphanumeric. A suffix is used to explicitly refer to a
particular entry in the directory. That is, there may be
several entries with the same file name but with different
suffixes. In such cases, a file name reference alone would

Page 02-12

GENERAL SYSTEM OPERATION 2.7 —— Diskette File Concepts

be ambiguous. Thus, the suffix 1is used to differentiate
between entries with the same file name. Usually., suffixes
designate a particular format of the file. Thus, a source
file could have the suffix "5A". Its assembled object
version could have the same file name but with the suffix
"X, and its executable wversion could have the same file
name but with the suffix "LO". MDOS commands usually supply
an appropriate default suffix when dealing with specific
files.

If both file name and suffix are specified., they must be

separated by a period (.). The following are examples of
valid file name specifications wusing both file name and
suffix:

BLOKEDIT. CM
Z. SA
PROC1. CF
DOCUMENT. Y

Since each diskette is a complete file system in itself,
with complete directory and system files, it is possible to
have directory entries with the same file names and suffixes
on separate diskettes. Thus, the logical wunit number is
required to uniquely specify a directory entry on & given
drive. Logical unit numbers consist of a single decimal
digit (O, 1, 2, or 3. In most cases, MDOS commands supply a
default value for the logical unit number. I+ a particular
drive must be identified, it must be entered by the operator
as a part of the file name specification. lLogical unit
numbers follow either the file name or the suffix depending
on whether one or both are specified. The logical wunit
number must be separated Ffrom the file name or from the
suffix by a colon (:). The following are examples of wvalid
file name specifications using logical unit numbers.

BLOKEDIT. CM: O
TEST. X: 1
DIR: 1
Z456. D3: 3
ASM: 2

2. 7.1.1 Family names

Some commands allow the operator to specify a family of
file names. Family indicators can occur in either the #file
name or the suffix. An asterisk (#) is used as a family
indicator. The family indicator represents all or part of a
file name or suffix. For example,

FILE. #

would be a file name specification that includes all

Page 02-13

GENERAL SYSTEM OPERATION 2.7 -~ Diskette File Concepts

directory entries with the file name "FILE * but with any
suffix on the default drive. Similarly,

PROG*. SA

is a #file name specification that includes all directory
entries with "PROG" as the first four characters of their
file names, regardless of what the remaining characters are,
and with suffix "SA" on the default drive. The asterisk
cannot have characters following it. Thus, the following
file name specifications are invalid:

#PROG. SA

PROGRAM. #B
Not all commands allow file name specifications to
contain the family indicator. The individual command
descriptions should be consulted to see where family

indicators are acceptable.

2.7.1.2 Device specifications

ovtns rons mwe.

Some commands allow the operator to enter a device
specification in the command line instead of a file name
specification. Device specifications consist of two parts:
a "device name" and an optional "logical wunit number”.
Device names are two characters long, both of which must be
alphabetic. A pound sign (#) is used as a leading character
to indicate that the subsequent two—-character sequence is a
device name. For example,

#LP
#CN

are valid device names used for the line printer and the
console, rtespectively. A device specification may be entered
with a logical unit number. Logical unit numbers must follow
the device name and must be separated from it by a colon (:).
The individual command descriptions should be consulted ¢to
see where device specifications are allowed.

2.7.2 File creation

MDOS files are never explicitly created by the operator.
All commands that write to output files will create them
avtomatically if they do not exist. Files will be created
according to the file name specification given on the command
line. That is, if explicit suffixes and logical unit numbers
are specified, the file will be created on the indicated
drive. Otherwise, the appropriate default values supplied by
the command will be used to create the file. Existing files
are unaffected by the creation of a new +ile.

Page ©02-14

GENERAL SYSTEM OPERATION 2.7 —— Diskette File Concepts

2.7.3 File deletion

Unlike file creation, file deletion is «controlled
explicitly by the operator via the DEL command which 1is
described later. No other command program will delete
existing files on the diskette. Exceptions to this are
commands that automatically create an intermediate work file
to perform the command’s function. These intermediate files
are deleted by the command as an automatic clean—up process.

2.7.4 File protection

All MDOS files can be configured with delete protection,
with write protection, or with no protection. Delete
protection will prevent the operator from inadvertently
deleting the file (the protection can be changed by the
operator so that the file can be deleted). Write protection
will prevent any command from writing to that file as well as
preventing deletion of the file. Normally., files are
unprotected, allowing both writing to or deletion of the
file. The NAME command, described later, can be used to set
or to change a file’s protection.

2.8 Typical Command Usage Examples

coace orste caeme onane mane Seses bomes Somts et S4s Sesms Sasst Fot S Sefhe Sea Sokne Sreme Sesre Somie Shess Sesus besme Gesks Shvss beoes wesse Lo Abven Sesme Semes Meony Semmt Sross

The following sections give simple, but meaningful.
descriptions and examples of the most frequently used MDOS
commands in a typical software development environment. No
attempt is made in these sections to cover all capabilities
and options of the described commands. The detailed command
descriptions in PART 1II serve that purpose. After reading
this section, the operator should be able ¢to go "on—-line"”
with MDOS and be able to display the directory of a diskette,
create a source program file, assemble it:, and load it into
memory for testing. The commands to delete a file, to change
its name or protection, to copy it between diskettes or to
tape are also described. New MDUOS diskette generation is
discussed in the last part of this section.

It is assumed in the subsequent discussion that the
system has been properly installed and initialized. Thus, a
system diskette with the MDOS commands resides in drive zero.
Command program files have a suffix of "CM" which is supplied
as a default to the first file name that is entered on the
command line. The default logical wunit number that is
supplied is ":0". In the command examples that follow, it
will be seen that both suffix and logical unit number are not
specified for the command name.

The following notation will be used in the description
of the command 1line formats as well as throughout the

Page 02-15

GENERAL SYSTEM OPERATION 2.8 —— Typical Command Usage Examples

remainder of the manual:

Notation Meaning
$nnnn Hexadecimal number "nnnn".
< Syntactic elements are printed in

lower case and are contained in
angle brackets, e.g.., <options>,

<name>.

L1 Optional elements are contained
in square brackets. If one of a
series of elements may be

selected, the available 1list of
elements will be separated by the
word ‘“Yor", e.g.. [<tagl> or
“taga>1.

¥ A required element that must be
selected from the set of elements
will be contained in curly
brackets. The elements will be
separated by the word "“or".

All elements that appear outside of angle brackets (<{>)
must be entered as is. Such elements are printed in capital
letters (if words) or printed as the actual characters (if
special characters). For example, the syntactical element
[; <options>]l requires the semicolon (;) to be typed whenever
the <options> field is used.

2.8.1 DIR - Directory display

The DIR command is used to display the contents of a
diskette’s directory. Either the entire directory or
selective parts of it can be displayed. The format of <the
command line for the DIR command is:

DIR [<name>] [;<options>]

The file name specification <name> indicates what to
display. The <options> specification indicates how to
display it. If DIR is entered by itself on the command line,
it will display on the system console the file names of all
user—generated files on drive zero. If no user—generated
files exist on drive 1zero, a message will be displayed
indicating that no directory entries were found. This is
normally the case when DIR is used without any options on the
system diskettes that are shipped with the new system. To
display the system and ¢the wuser—generated files, the "g*"
option can be placed into the options field:

Page 02-16

GENERAL SYSTEM OPERATION 2.8 — Typical Command Usage Examples

DIR ;8

I+ drive one’s directory is to be displayed, then a ":1"
must be typed in place of the file name specification:

DIR :1:;8
To direct the output of the DIR command to the printer,
only one other option letter need be specified -—— "L". Thus,
DIR :1;LS

will produce a listing of drive one‘s complete directory on
the printer. The "8" and "L" can be in any order, as long as
they follow the semicolon.

The DIR command can also be used to see if a specific

file name exists on a given drive. This is accomplished by
entering a complete file name specification (i.e., name,
suffix, and logical unit number). Thus.,

DIR EDIT. CM: 1

will perform a directory search for the indicated file name
specification on drive one. If the directory entry exists,
its file name and suffix will be displayed. Otherwise, a
message indicating that no entries were found will be
displayed. Directory searches for specific file names do not
require the "S5" option to distinguish between system files
and user files. Chapter 9 contains a complete description of
the DIR command’s use.

2.8 2 EDIT — Program editing

ecsn e tmes st eine s Sy 00ns Srtbe 000 SarmG Sames S4ssd SSaSs Soess St Goiny Feses THas B2 Sewd 00t CARSS Bets sy b Surer SRt S

The EDIT command is wused to create and/or to change
user—written source program and data files on diskette. The
EDIT command, although an MDOS-Supported product which may be
purchased separately, is mentioned here since it is such an
integral part of the software development environment. The
EDIT command, if not included on the MDOS system diskette,
must be copied from the diskette on which it was shipped (see
section 2.8. 9). Once the EDIT command resides on the system
diskette, it is invoked with the following MDOS command line:

EDIT <name>
I+ the EDIT command is not copied to the system diskette, it
can be invoked from the diskette in drive one with the
following command line:

EDIT: 1 <name>

The only parameter supplied on the command line is the

Page 02-17

GENERAL SYSTEM OPERATION 2.8 — Typical Command Usage Examples

name of the file that is to be edited. If the file does not
exist, the EDIT command will create the file; if the file
already exists, then it will be used. The suffix "SA", which
is +typically wused for ASCII source files, is automatically
supplied as a default if no suffix is entered on the command

line. Thus, the user need only specify the name of the file
to be edited. Upon completion of an edit, the file name will
be wunchanged. That is, a user need not be concerned about

renaming his files between edits. A complete description of
the EDIT command’s format and usage is found in the manual
accompanying the EDIT command diskette, "M6800 Co—-Resident
Editor Reference Manual".

2.8.3 ASM or RASM —— Program assembling

The ASM and RASM commands for MDOS and RASMO? command
for MDOS0? (hereafter called the assemblers) are used to
assemble the source program files created with the EDIT
command. The assemblers translate these source programs into
object praograms. The assemblers, although both
MDOS-Supported software products which may be purchased
separately, are mentioned here since they are such an
integral part of the software development environment. If
not included on the MDOS system diskette, the assemblers must
be copied from the diskette on which they were shipped (see

section 2.8.9). Once the assemblers reside on the system
diskette, they are invoked with the following MDOS command
line:

{ASM or RASM or RASMO?} <name> [;<options>]

If the assemblers are not copied to the system diskette in
drive zero, they can be invoked from the diskette in drive
one by using the following command line:

{ASM: 1 or RASM: 1 or RASMO%:1} <name> [;<options>]

The only required parameter is the name of the file that
is to be assembled. Normally, ¢this would be the name of the
file specified in the previous description of the EDIT
command. The assemblers will automatically supply the
default suffix for both the source file that is read (S5A) and
for the object file that is created (LX, assuming that the
OPT REL or OPT ABS assembler directive was not used). Such
an object file will be in the standard: EXbug—loadable
format. Such files cannot, however, be loaded by MDOS (see
section 2.8.5). The object file will have the same file name
as <name>, but a different suffix will be assigned to it to
differentiate it from the source file.

Normally., a listing of the assembled program is desired.

The assemblers will not produce a source listing unless the
option to do so is specified in the <options> field. Thus,

Page 02-18

GENERAL SYSTEM OPERATION 2.8 — Typical Command Usage Examples

the command 1line to assemble a source program file named
TESTPROG with source listing output would appear as:

{ASM or RASM or RASMO?)} TESTPROG; L

As with the DIR command, the "L" option directs the
printed output to the printer. I+ a printer is not
available, or if the program is short, the source listing can
be produced on the system console by using the following
option:

{ASM or RASM or RASMO?} TESTPROG; L=#CN

If errors are detected during the assembly process, they
will be included on the source listing. If no source listing
is being produced, errors will automatically be displayed on
the console. Typically, the software development process
involves several iterations of the editing and assembly
processes before an error—free object file is produced. The
assemblers, however:, require that the object file does not
exist prior to the assembly process. Therefore, if a
duplicate file name error message is displayed., the object
file already exists. It must first be deleted before the
assembly process can continue. The next section describes
the process of file deletion.

During the iterative process of editing/assembling to
ebtain an error—free program, the object file created by the
assembler can be suppressed by specifying the option "-0" in
the options field. The command line

{ASM or RASM RASM0OP} TESTPROG: L-0O

for example, will assemble the source program as in the above
examples creating the listing on the line printer; however,
the object file will not be created. Thus, the deletion of
the object file between repetitive assemblies is not required
since it is never created.

The "M&6BOO Resident Assembler Reference Manual”" or the
"M&BOO/MEB01 /MEBOS/MEBOY Macro Assembler Reference Manual”
should be consulted for a complete description of the
assemblers’ function, usage, and command format.

2.8. 4 DEL —— File deletion

The DEL command is used to delete file names from the
directory. The rTemoval of a file’s name from the directory
makes the file unaccessible to any other process. The file
itself is effectively deleted. Thus, in the subsequent
descriptions, the phrases "delete a file name" and "delete a
file" are equivalent. The format of the command line for the
DEL command is:

Page 02--19

GENERAL SYSTEM OPERATION 2.8 —— Typical Command Usage Examples

DEL <name>

which will cause the specified file to be deleted. I# the
ob ject file from the assembly process example above is to be
deleted, for instance, the following command line would be
entered:

DEL. TESTPROG. L.X

It should be noted that the suffix is specified. Since
the DEL command is a general purpose command, like the DIR
command, no default value for the suffix is supplied. Only

those commands that can validly make an assumption about the
type of file they will be dealing with (e.g., EDIT, ASM
RASM) will supply default suffixes.

The DEL command will display a message indicating that
the file name was deleted or that the file name was not
found. Chapter 8 contains a complete description of the DEL
command ‘s other capabilities.

2.8.5 EXBIN ~— Creating program load module

The EXBIN command is used to convert the object #file
from the assembly process (assumes no OPT REL or OPT ABS in
source file) into a file whose contents can be loaded intao
memory for execution. MDOS can only load programs into
memory that are in memory—image Files. Thus, the EXBIN
command must be invoked after an assembly process to create
the loadable file. The format of the command line for the
EXBIN command is:

EXBIN <name>

The <name> specified on the command line is the name of
the EXbug—loadable object #file created by the assembler.
Only the +file name need be specified. The default suffix
"LX" is avtomatically supplied by the EXBIN command. A +file
in the memory—image format will be created by the EXBIN
process that has the same file name as <name>, but has the
suffix "LO" to differentiate its file type. The following
command line

EXBIN TESTPROG

will convert the file TESTPROG.LX:0 +to its memory—image
equivalent TESTPROG. LO:O. Thus, the processes of editing.,
assembling, and obgject file conversion can all be performed
on a file by only referring to its file name. The suffix
will be avtomatically supplied. Normally., EXBIN will not
display any messages. The next section will describe how to
load a program from a file into memory after it has been
converted into the proper format. Chapter 14 contains the

Page 02--20

GENERAL SYSTEM OPERATION 2.8 —— Typical Command Usage Examples

complete description of the EXBIN command.

2.8 & LOAD —— Program loading/execution

nams secee 2a020 Soroe Som sute Sutte Seime G Senen Sme G5 Saeen Shase Sesss Sedet fees Sette Segmt Seeme Seate thace Socts Somme Sovse v v oses

The LOAD command is wused ¢to 1load programs from a

memory—image file on the diskette into memoary. After the
program has been loaded. the debug monitor can be given
control (for testing the program)., or the program can be
given control directly (for execution). The format of the

command line for program loading is:
LOAD <name> [:;<options>]

The name of the file whose contents are to be loaded is
given as <name>. The default suffix "LO" is automatically
supplied by the LOAD command. Thus, in normal software
development. only a file’s original source program name is
required to take a user through the four processes of
editing. assembling, object file conversion, and program
loading.

The <options> field of the LOAD command line is used to
specify whether the debug monitor or the loaded program is to
be given control, and whether or not the program overlays the
resident operating system. I# the file TESTPROG from ¢the
previous examples was origined ¢o the hexadecimal memory
address $100, the following command line:

LOAD TESTPROG: V

would be used to load the program. The "V" option is used to
specify that the program to be loaded will overlay the

resident operating system. If the "V" option were left off
the command line, an errovr message would be displayed. The
absence of the “G" option letter means that the debug monitor
will be given control after the program is loaded. So, the
above example would be used to load TESTPROG into memory for
testing.

If, en the other hand. the program TESTPROG has already
been tested and works. the command line:

LOAD TESTPROG;: V&

would be used to load and execute the program. No operator
intervention is required to specify the starting execution
address. This is only true if the starting execution address

has been specified on the END statement of the source program
during the assembly process.

Typically, most user—written programs that have been

developed prior to receiving the MDOS system would be loaded
and tested in this fashion. Programs that are developed with

Page 02-21

GENERAL SYSTEM OPERATION 2.8 —— Typical Command Usage Examples

MDOS as a basis (i.e.. programs that use the resident system
functions) are loaded without the "V" option. Chapter 18
describes the details of the LOAD command and should be
consulted if more information is required.

CAUTION: AFTER THE DEBUG MONITOR HAS BEEN ENTERED VIA
THE LOAD COMMAND, MDOS MUST NOT BE INITIALIZED VIA "EBOO; 6"
OR "MDOS" UNTIL EITHER THE ABORT OR RESTART PUSHBUTTON HAS
BEEN DEPRESSED.

2.8 .7 NAME —— File name changing

The NAME command allows file names and/or suffixes to be
changed from their originally assigned values. Often, as a
program is developed, its author decides that a file name
other than the original one would be more appropriate and
descriptive. The format of the command line for changing a
file’s name is:

NAME <name 12>, <{name 2>

This command line requires the operator to enter ¢two
names. The first name, <name 1>, specifies the current or
original name of the file. The default suffix "SA" is
supplied automatically if none is given by the operator. The
second name, <name 2>, indicates the new name that is to be
assigned to the file now known by <name 1> Thus, i# the
file from the above examples, TESTPROG, were to be given a
more descriptive mname, such as BLAKJACK, the following
command would be used:

NAME TESTPROG, BLAKJACK

In this case, only the file name of the source file

would be changed. Other files with the name TESTPROG but
with suffixes other than "SA" would remain unaffected. The
contents of the file that has its name changed are also
unaffected -— only the name in the directory is changed.

2.8.8 NAME -—- File protection changing

The NAME command is also used to change the protection
attributes of a file. The command line format for changing a
file’s protection is:

NAME <name>; <options>

The <name> entry is required to identify the file whose
attributes are to be changed. The <options> field contains
the letters D, W, or X to indicate how ¢the protection
attributes are to be changed. The letters take on the
following meanings:

Page 02-22

GEMNERAL SYSTEM OPERATION 2.8 —— Typical Command Usage Examples

D -— Set delete protection
W -~ Set write protection
X —— Set no protection (remove existing protection)

Thus, if the file TESTPROG (source file) is to be
protected against deletion, the following command line would
be used:

NAME TESTPROG: D

If the memory—image file that was produced from the
source of TESTPROG were to be write protected and delete
protected, the following command line would be used:

NAME TESTPROG. L.O; DW

The protection on this file could later be Temoved with
the command line:

NAME TESTPROG. LO; X

Chapter 20 describes in more detail the other features
of the NAME command.

2.8.9 COPY —— File copying

The COPY command is used to make a duplicate copy of a
file on a single diskette, to move a file between two
different diskettes, or to move a file between the console
reader/punch (record) device and a diskette.

To make a duplicate copy of a file on the same diskette,
the following command line is used:

COPY <name 12, <name 22

where <name 1> specifies the current name of an existing
file, and <name 2> specifies the name of the duplicate copy.
The default suffix "SA" and the default logical wunit number
zero are supplied for <name 1> if those parts of the file
name specification are omitted. Normally, the destination
file, <name 2>, does not exist. The COPY command, however.
will alert the operator if <name 2> does exist, and ask him
if +that file should be overwritten. I <name 2> has a
different logical unit number than the original file, the
file will be duplicated on the specified drive. I# the
TESTPROG source file from the above examples is to be saved
in a file called TEMP, the following command line would be
used:

COPY TESTPROG, TEMP

The file TEMP will be created on the same drive as

Page 02-23

GENERAL SYSTEM OPERATION 2.8 —— Typical Command Usage Examples

TESTPROG, namely, drive zero. To copy TESTPROG to drive one.
one need only specify the logical unit number (:1) after the
second name.

The COPY command should be used to move the EDIT, ASM,
and RASM commands from their separate diskettes onto the
system diskette in drive zero. Since the names of the EDIT,
ASM, and RASM commands are to be kept the same, the second
name can be omitted completely. All that needs to be
specified is the logical unit number. Thus,

COPY EDIT.CM: 1,:0
COPY ASM.CM: 1,:0
COPY RASM.CM: 1,:0

would be the commands that are entered if the diskette in
drive one contained these files. The suffixes "CM" are
explicitly specified since neither the EDIT, ASM. or RASM
commands are source programs.

A similar procedure would be followed to copy any files
from a diskette in any drive to the system diskette in drive
zero. I a diskette has been damaged or cannot be used to
initialize MDOS, it may be placed in another drive in attempt
to save any files that may be on it. The COPY command should
be used to save files in this manner. If diskette controller
errors occur during such a save process, the files cannot be
recovered.

If a user has existing files on paper tape or cassette
that are written in one of the standard record formats (i.e..
records that end with a carriage return, line feed, null
sequence -—— see section 24.3) and which can be read via the
console reader, the following command line can be wused to
transfer those files to diskette:

COPY #CR, <name 2>;N

where <name 2> is the name of the diskette file into which
the tape file is to be written. The first parameter, #CR,
specifies the console reader device, and the "N" option
indicates that there is no MDOS header record on the tape
file.

The above process can be changed slightly so that a file
on diskette can be written to <the console punch (record)
device. For example,

COPY <name 1>, #CP; N
will transfer the file named by <name 1> to the console punch
device, #CP, without <the MDOS header information C*N"

option). Chapter 7 describes in more detail the other
features of the COPY command.

Page 02-24

GENERAL SYSTEM OPERATION 2.8 —— Typical Command Usage Examples

2. 8. 10 BACKUP —— MDOS diskette creation

eses e oo Samte Svere Suome senen S6owe GaSen Setew S60ns Soens a0t G004 420ee it Gvenn GouSe Somme Sy Sbde Goore s Gt Sae Sheme fegod SSes Geens EHISS Mare Sems Sowme Semed Suems s Srece Sewee Sevmn

New diskettes, or diskettes never before used on an MDOS
system, must first be prepared for use with MDOS. The
quickest way to generate a new MDOS diskette is to wuse the
BACKUP command. Usually, a copy is retained of the original
system diskette that was shipped with the EXORdisk II or III.
This diskette should be wused to generate subsequent MDOS
diskettes. It is recommended that the original diskette not
be used for development purposes. It should serve only as
the master copy Ffrom which all other diskettes are generated.

A blank or scratch diskette should be placed into drive
one, The master system diskette should be resident in drive
zero. The following command line will then cause a complete
copy of the master diskette to be created:

BACKUP ; U

The "U" option specifies that the entire surface of the
diskette in drive zero is to be read and copied to the
diskette in drive one. This process ensures that all sectors
on the new diskette can be written to. Once the BACKUP
command has been inveoked in this way, it will display the
following message:

BACKUP FROM DRIVE O TO 17

to which the operator should respond with a "Y". Any other
response will terminate the BACKUP process. leaving the
diskette in drive one intact. The "Y" response will cause

the diskette copy te take place.

As an added precaution, the two diskettes should be
compared against each other after the BACKUP command has
completed. This diskette wverification is invoked with the
following command line:

BACKUP ; UV
If any messages are displayed during the verification
process, the diskette in drive one should not be used as a

system diskette.

Chapter 3 describes the BACKUP command in detail.
Chapter 10 describes an alternative method of generating new
system diskettes.

2.9 Other Available Commands

tnscn 15050 om0 soe Srers sese Sece G0 oo Sesas +osmy Seams Sawey "oSoe RO o200 FeAsE SO SPRSD SoGRS GereR Coted SR SeID Senes Seems St eans

Several other powerful commands are included with each
MDOS diskette. These commands are not needed initially in

Page 0z2-25

GENERAL SYSTEM OPERATION 2.9 — (Other Available Commands

becoming familiar with the system; however, they do provide
helpful and necessary tools for the advanced software
developer. A brief description of these commands is given
here to shed some light on their utility.

2.9.1 BACKUP —— Diskette copying

The BACKUP command allows making copies of entire MDOS
diskettes. Options exist for making complete copies, for
file reorganization <to consolidate fragmented files and
available diskette space, for appending families of files
from one diskette to another, and for diskette comparisons.
Chapter 3 contains the complete description of the BACKUP
command.

2.9.2 EMCOPY —— EDOS f#ile conversion

The EMCOPY command allows #files from a user‘s EDOS 2
system diskette to be copied to and catalogued on an MDOS
diskette. Options exist for copying the entire diskette,
selected files, or single files. Chapter 13 contains the
complete description of the EMCOPY command.

2. 9.3 BLOKEDIT - File rearrangement

The BLOKEDIT command allows lines of text from one or
more ASCII files to be selectively copied into a new #file.
This command can be useful in generating new program source
files by copying routines from existing source files, or in
rearranging existing files by copying their lines into a new
sequence. Chapter 5 contains the complete description of the
BLOKEDIT command.

2.9.4 LIST - File display

The LIST command is wused to print any ASCII file on
either the system console or the printer. Options exist for
numbering lines, specifying page formats, printing headings,
and indicating starting and ending points. In addition,
files can be accessed by their logical sector numbers for
rapid access ¢to any portion of a file. Chapter 17 contains
the complete description of the LIST command.

2.9.9%9 MERGE — File concatenation

The MERGE command allows one or more files ¢to be
concatenated into a new file. This command 1is wuseful in
combining several smaller program modules or in building
relocatable libraries to be wused in conjunction with <the

Page 02-26

GENERAL SYSTEM OPERATION 2. % —— Other Available Commands

M&800 Linking Loader. Chapter 19 contains the complete
description of the MERGE command.

2.9.6 BINEX ~— EXbug—loadable file creation

tonse coois oetns woees ome s #vace SDese Gowve Sases botun GaESS VoSN S99 S4bce Mese SR Som Srese SVORS Smp G4 SHeGk SeCns Seent Sems b s UFALE 9000 S SaSee Paeee Coeee SOnca Himss Sasme Seems com Sbewt S4rwe et Seate

The BINEX command allows memory—image files to be
converted into an EXbug—-loadable format for copying to tape.
This command performs the inverse operation of the EXBIN
command. BINEX isg useful in the development of
non—diskette-resident software with MDOS, since the object
code tcan be written to tape after it has been tested.
Chapter 4 contains the complete description of the BINEX
command.

2.9.7 FREE — Available #file space display

arse cuans come sms Sano Soces Sass0 Saves Gmcas S Sotn Hraen IS GeDrG cuan Seene Soate Sotee Seete Seoks Seese Soves Goems CoS any G SPHSD SAERS $OOES PeRSE Semce Seaes Semma S s SesS) Sases e S cocte e bemmt

The FREE command displays how many unallocated sectors
and how many empty directory entries are on a diskette.
Chapter 16 contains the complete description of the FREE
command.

2.9.8 ECHDO —— Echo console 1/0 on printer

oasme seame coumm 2000w Sefs0 02me Seves Sarem GEME Seert SHESS CHD Coamy OSSN S50 FoeSe SE0SS a2 SV COT MmO Shun S SeSng 3R SR S8 LA GRS (PR SALSD SO Seace SSUGH Se4S6 GBS SMG3 TS S S0 St

The ECHO command can be used on an EXORciser II system
to cause all input/output directed to the system console to
also be printed on the line printer. Chapter 12 contains the
complete description of the ECHO command.

2. 9.9 PATCH —— Executablie program #ile patching

cacmn smene oa0es oaomo 2o0me 40000 Svece GSTRG Suesn Sedue Smew SoRmS Seck CoMS OLmS SEUSS SRS SO0 S9eS TMNY GMR R SUCND Colms CaCE S0T80 S SYERS OROR)) CasmD O848 PSSR S04%0 NS0 CATRS SSNP AN G0 SLGE) SowRD SRS Besee e S e Eoae COCBO.

The PATCH command allows changes %o be made to
memory—image files. An object file can be “fixed® due to
minor bugs or assembly errors without having to re—edit and
re—assemble its corresponding source file. The "fixes"” can
be entered wvsing M&6BOO assembly language mnemonics or the
equivalent hexadecimal operation codes. Chapter 21 contains
the complete description of the PATCH command.

2.9. 10 CHAIN —— MDOS command chaining

evous omane weos caams Gume Shase sarms Seems SHAre Seame SecRo SeerY Seume G0eEY Se06D Sers Noets Fe0eS Sites G HHDSS eees OO e S SOERS S49SS fe BO0SS 908 Seons Sewme Seuss e Soess Sees Saoey

The CHAIN command allows predefined procedures to be
avtomatically executed. A procedure consists of any sequence
of MDOS command 1lines that have been put into a diskette
file. Instead of obtaining successive command lines from the
console, CHAIN will fetch commands from a file. This feature
allows complicated and lengthy operations to be defined once,
and then invoked any number of times, requiring no operator
intervention. The additional capabilities of conditional
directives to the CHAIN command at both compilation and

Page 02-27

GENERAL SYSTEM OPERATION 2.9 —— Other Available Commands

execution time, and the capability of string substitution,
permits an almost unlimited number of applications to he
handled by a CHAIN file. Chapter 6 contains the complete
description of the CHAIN command.

2. 9. 11 REPAIR — System table checking

- toare owove vaase ovmne

The REPAIR command allows the user to check and repair a
malfunctioning or a non—-functioning MDOS diskette. Errors in
the system tables can be found, identified, and corrected
with this command. Since MDOS performance is directly
related to the correctness of these system tables, the REPAIR
command is a useful diagnostic utility. Chapter 22 contains
the complete description of the REPAIR command.

2.9.12 DUMP — Diskette sector display

oo v

The DUMP command allows the user to examine the entire
contents of any physical sector on the diskette. The sector
can be displayed on either the system console or the printer.
The display contains both the hexadecimal and the ASCII
equivalent of every byte in the sector. The DUMP command
allows opening of files so that they can be examined wusing
logical sector numbers. Sectors can also be moved into a
temporary buffer where changes can be applied before they are
written back ¢to diskette. Chapter 11 contains the complete
description of the DUMP command.

2.9.13 FORMAT —— Diskette reformatting

The FORMAT command attempts to rewrite the sector
addressing information on damaged diskettes. The command can
be used to reformat either single-sided or double-sided
diskettes; however, double—sided diskettes must be formatted
with this command before they can be wused with MDOS.
Single-sided diskettes wusually come pre—formatted in a
compatible format. The FORMAT command will only work on
systems that are operating at one of the standard clock
frequencies of 1 MHz, 1.5 MHz, or 2 MHz. Chapter 15 contains
the complete description of the FORMAT command.

2.9. 14 DOSGEN —— MDOS diskette generation

The DOSGEN command allows specialized MDOS diskettes to
be prepared. Diskettes that have bad sectors can have those
sectors 1locked out so that the diskette can be used in an
MDOS environment. DOSGEN will also create all system tables
and files on the generated diskette. The DOSGEN command can
be used to generate system diskettes on either single-sided
or on appropriately formatted double-sided diskettes.

Page 02-28

GENERAL SYSTEM OPERATION 2.9 —— Other Available Commands

Chapter 10 contains the complete description of the DOSGEN
command.

2.9.15 ROLLOUT —— Memory tollout to diskette

eten ot e ortoe chase cmtre Sests S0ums Soeas Sesen Oomms sosme Secme Seems Semse Sesas Sedes Srise Maeth SHHRE Sesbe Sosee Seeme Seate Semat bosmr S0 eeee FPUOS eme Ce0S8 R SR Sipeo Bieee Semme Soure SO0 Soie e deems Semme Sasmt Seeme

The ROLLOUT command is used for writing the contents of
memory to diskette. The ROLLOUT command supports the
dual-memory maps of EXORciser II as well as the single memory
map of EXORciser I. Options exist for writing memormy
directly into a diskette file or for writing to a scratch
diskette. Chapter 23 contains the complete description of
the ROLLOUT command.

2. 10 MDOS—-Supported Software Products

Although the preceding list of commands provides the
user with many powerful tools for software development, there
are many other Motoreola products which are capable of running
in an MDOS environment, even though they were developed
independently. These products are called MDOS—Supported
software products. No attempt will be made in this User’s
Guide to comprehensively describe any MDOS-Supported software

product. Appendix H contains a list (complete at time of
publication) of all products that can be invoked from an MDOS
diskette as a command. Each description will contain the
additional hardware rvequirements, if any, the command line
formats, and a brief discussion of the product’s
capabilities. = MDOS-Supported software products will be
received on separate diskettes. Section 2.8. 9 describes how

such products can be copied onto the system diskette.

2. 11 Paper Alignment

All MDOS commands that output to the line printer will
return the paper to its original position upon termination.
Thus, if the paper is correctly aligned at the time MDOS is
initialized, then the paper will never have to be aligned
again. The paper should be placed so that the print line is
positioned three 1lines before a perforation (assuming
fan—fold forms). MDOS commands use the standard format of &6
lines/page.

Page 0OZ-29

CHAPTER 3

3. BACKUP COMMAND

s e - R

The BACKUP command allows making copies of entire MDOS
diskettes. Options exist for making complete copies, for
file reorganization to consolidate fragmented files and
available space, for appending families of files from one
diskette to another, and for diskette comparisons. The
BACKUP command will only copy MDOS—generated diskettes. The
BACKUFP command may also be used for copying single-sided
diskettes onto double-sided diskettes.

The BACKUP command is invoked with the following command
line:

BACKUP [[:<s-unit>, 1:<d-unit>] [;<options>]

where <s—unit> is the source logical unit number, <d-unit> is
the destination logical unit number, and <options> can be one
or more of the option letters described below.

I neither <s—unit> nor <<d—unit> is specified on the
command line, then zero will be used as the source wunit and
one will be used as the destination unit. Specifying only a
single logical uvnit number on the command line will cause
zero %o be the source unit and the specified logical unit to
be the destination unit. Both <s—unit> and <d-unit> must be
valid 1logical wunit numbers (0-3). <d-unit> cannot be zero.
and the two numbers cannot be the same.

BACKUP will always copy from the source wnit to the
destination unit (unless diskette comparisons are specified).

If the command line is valid, the message:
BACKUP FROM DRIVE <s—unit> TO <d-unit>?
or
APPEND FROM DRIVE <s~unit> TO <d-unit>?

will be displayed where <s—unit> is the source unit number

and <d-unit> is the destination unit number. In either case,
a response of "Y" is required if BACKUP is to continue. ANy
other response will return control to MDOS. Further BACKUP
action depends on the specified options. The options are
divided into "Main Options" and "Other Options"”. Main

Page

03-01

BACKUP COMMAND 3.1 — Use

Options are mutually exclusive. That is, only one Main
Option can be specified on the command line at a time. The
Other Options can be included with the Main Options as
described in section 3. &.

Main Options Function
none Copy all allocated space to destination
diskette.
R Reorganize diskette so that files are
defragmented and free space is

consolidated on destination diskette.

A Append (copy) selective files to
destination diskette.

Vv Verify (compare) source and destination
diskettes.

Other Options Function

C Continue if read/write errors occur.

D Continue if deleted data mark errors
oceEur.

1 Change ID sector during copy.

L Use line printer for bulk of message
printing.

N Suppress printing of file names being
copied.

s Suppress printing of byte offsets during
compariseons.

U Include wuvnallocated space in copy/verify
process.

Y If duplicate +file name exists, delete

old, copy new.

F4 I+ duplicate +file name exists, suppress
copy.

3.2 Diskette Copying

I# no Main Options are specified, then the default
BACKUP process will produce a physical sector copy of the

Page 03-0c

BACKUP COMMAND 3.2 —— Diskette Copying

source diskette on the destination diskette. Only the
allocated space from the source diskette will be copied. The
allocated space includes all file space and all areas locked
out in the Lockout Cluster Allocation Table (see Chapter 24).
Thus.: only MDOS—generated diskettes can be copied wusing the
BACKUP command, since other diskettes will not have an
allocation table.

Since only the allocated space is copied. the minimum
amount of disk space 1is copied. and the BACKUP process is
completed in the minimum amount of time. Sometimes, however,
it is desirable to obtain a complete copy, and not just a
copy of the allocated space. In such cases, the "U" option
can be used to force the copying of unallocated space as well
as the allocated space.

A typical BACKUP process dialogue would look lIike the
following:

=BACKUP
BACKUP FROM DRIVE O 7O 17
Y

and would produce @ copy on the destination diskette of the
source diskette’s allocated space.

If an EXORdisk III system is being used. then the
destination diskette cannot be a single—sided diskette if the
spurce diskette is a double—sided diskette. The error
message:

INVALID TO COPY/VERIFY FROM DOUBLE TO SINGLE SIDED

will be displayed and control returned to MDOS to indicate
this condition. The opposite. however, is allowed. That is,
a single-sided diskette can be in the source drive with a
double—sided diskette in the destination drive.

3.3 File Reorganization

After an MDOS diskette has been used for a while, the
file structure may become fragmented and new files can become

scattered. The longer a diskette is used in a development
environment, the more the total system performance may be
degraded due to increased access time. File reorganization

is supplied by the BACKUP command and constitutes one way to
restructure MDOS diskettes, thereby improving the system’s
efficiency.

Page 03-03

BACKUP COMMAND 3.3 - File Reorganizatic

File reorganization improves system efficiency by:

Consolidating file segments.

Packing files more closely together,

Clustering related files together,

Operator selection to only copy desired files,
Reducing marginal diskette errors by rewriting
files,

Consolidating directory space.

L

File reorganization is specified with the Main Option
"R" on the BACKUP command line. Thus,

BACKUP :<s—unit>, :<d—-unit> R

would invoke the BACKUP command to reorganize the files on
the source diskette in drive <s—unit> during the copy to the
destination diskette in drive <d-unit> The source diskette
must be an MDOS diskette. It is wunaffected by the
reorganization. The message

BACKUP FROM DRIVE <s-unit> TO <d-unit>?

is displayed before any copying takes place. Unlike the
complete copy process which will proceed immediately after
the "Y" response is given by the operator, the reorganization
process will perform the following initialization procedure:
First the ID sector is copied (and optionally modified if the
“I" option was specified). Second, the Lockout Cluster
Allocation Table (LCAT) and the Cluster Allocation Table
(CAT) are initialized (user locked out sectors are not copied
during the reorganization process). Third, the directory
sectors on the destination disk are zeroed. Fourth, the
Bootblock is copied. Fifth, all of the file names from the
source diskette’s directory are read. They are then sorted
into alphabetical order. first by suffix, then by file name.
After the sorting has been completed <the following message
will be displayed:

ENTER FILE COPY SELECTION COMMANDS:
SAVE (S8), DELETE (D), PRINT (P), QUIT (@), NO MORE (CR)
S, D, P, G, (CR):

indicating that the operator must enter Ffile selection
commands to specify which files from the source diskette are
to be copied to the destination diskette. The first line of
the message indicates that BACKUP has reached the file
selection stage. The second line contains the function of
each file selection command as well as the letter that must
be wused to issue that command. The third line is used as a
prompt for the current and suvbsequent file selection
commands.

Page 03—(

BACKUP COMMAND 3.3 -~ File Reorganization

Command Letter Function
SAVE =] Include a certain file name or family
of file names from the sorted

divectory in the set of files to be
copied to the destination diskette.

DELETE D Exclude a certain file name or family
of file names from the sorted
directory from the set of files to be
copied to the destination diskette.

PRINY P Display the set of file names from
the sorted directory that are
eligible to be copied to the
destination diskette.

QUIT Q Terminate the BACKUP command and
return to MDOS. No copying will take
place; however, the destination

diskette has been affected due to the
reorganization option as explained
above.

N MORE {CR} Entered as a carriage return only.
No more commands will be entered.
The ¢files to be copied have been
selected. I¥# no file selection
commands were isswued, all files in
the sorted divectory will be copied.
Begin the copy process.

Both ¢the SAVE and DELETE commands reguire file names to
be specified as parameiters. The format of the SAYE and
DELETE «commands are the same, except. of course, ¥for the
command letter:

{D or BY <name 1>[,<name 2>,....,<name n>l

The file names specified can contain the family indicator.
The default suffix “"SA" will be supplied if none 1is
explicitly entered. For example, the SAVE command:

S #. CM, EQU, I0CB. #
will cause the family of files having the suffix “CM", the
file EQGQU.SA, and the family of files having the name IOCB to
be flagged as saved. The DELETE command:

D Ax CM, NOL, TEST. L#
will cauvse the family of files beginning with the letter “AY

and having a suffix of “CM”, the file NOL.BSA, and the family

Page 03-05

BACKUP COMMAND 3.3 - File Reorganization

of files named TEST with suffixes beginning with the letter
"L to be flagged as deleted.

After a SAVE or DELETE command has been entered. each
file name of the sorted directory which has not already been
marked as “"saved" or "deleted"” and which matches one of the
<name i2> (i=1 to n) will be marked as “"saved" or "deleted".
After all the file names from the SAVE or DELETE command line
have been processed,. a new prompt:

S, D, P, Q, (CR):

will be displayed. The operator can then enter further SAVE
or DELETE commands as well as any of the other valid commands
of the BACKUP #file selection process.

Once a command other than SAVE or DELETE is entered one
of two things happens to the sorted directory. If at least
one SAVE command has been processed without error. then all
file names in the sorted directory not marked as "saved" will
be marked as "deleted". On the other hand, if no prior SAVE
commands were used. then all +file names not marked as
"deleted” will be eligible for copying (marked as "saved").

The QUIT command can be entered at any time in response
to the file selection command prompt. QUIT will cause the
BACKUP process to be terminated and control returned to MDOS.
The file selection commands entered thus far will have had no
effect on the destination diskette; however, duve to the
reorganization option, the destination diskette will have had
its basic system tables initialized as described above.

The NO MORE command., entered as a carriage return only.
indicates that no more file selection commands will be given
by the operator. I# no file selection commands have been
entered prior to the NO MORE command. then all file names in
the sorted directory will be eligible for copying ¢to the
destination diskette. The copy process will begin.

The PRINT command will cause all names from the sorted
directory which have not yet been flagged as "deleted” to be
printed. The PRINT command also makes it impossible to enter
further SAVE. DELETE, or QUIT commands. The PRINT command
has its own sub—command structure that allows deletion of
file names from the sorted directory. Along with each file
name and suffix a two—-digit, hexadecimal number that
indicates the position of the file name within the sorted
directory is displayed. Thus, the output from the PRINT
command could look like:

Page 03-04

BACKUP COMMAND 3.3 —— File Reovganization

00 BACKUP . CM

01 BINEX . CM
02 BLOWEDIT. CM
03 CHAIN . CM
o4 COPY . CM
0% DEL . CM
0& DIR .CM
1D RLOAD . CM
1E FORLB . RO
iF EQU . 54
20 10CB . 8A

The range of numbers $07-1C, inclusive, is missing.
indicating that they have been excluded from the sorted
directory via prior SAVE and/or DELETE commands. I PRINT
were the first command to be entered, then all file names in
the sorted directory would be seen, and the range of numbers
would be without gaps.

After the PRINT command has displayed all of the file
names, & new prompt will be issved:

DELETE FILE NOS. :

to which the operator can respond with @ number, a series of
numbers or ranges of numbers separated by commas, & range of
numbers, or & single carriage return. The numbers must be
from the set of those displayed in front of the £ile names.
These numbers are uvsed to indicate which files are to be
excluded from the sorted dirvectory before files are copied to
the destination diskette. For example, the following entry:

01-03, 1E: 04
wowld cause the file names with numbers
0L, 02, 03, 06, and lE

to be removed from the sorted directory before the file copy
process begins. Another “DELETE FILE NOS. " prompt will be
displayed if s number was entered in rTesponse to a previous
prompt. Thus, as many file names as desired can be excluded
from the sorted directory. A carriage return response to the
prampt has the same effect as the NO MUORE command described
above; i.e., it will end further command processing and cause
the file copy process to begin.

After the files to be copied have been selected. the
message

COPYING MDOS . 8Y

will be displayed. This message will in turn be followed by
similar messages for each of the eight remaining system files

Page 03-07

BACKUP COMMAND

that must be copied to every diskette. The MDDS family of
system files are not shown in the sorted directory since they
must be copied. These system files are copied first so that
they will be assured of residing in specific physical
locations required by the MDOS initialization process. After
the MDOS system files have been copied, the message:

STARTING TO COPY FILES
is displayed:. followed by messages of the form:
COPYING <name i>

as each file from the selected files list is copied to the
destination diskette.

Using the above example of the sorted directory and the
file names deleted from it, the file copy messages would look

like:

COPYING MDOS . 8Y

COPYING MDOSOVO . 8Y

COPYING MDOSOV1I . SY

COPYING MDOSOVZ2 . SY

COPYING MDOSOV3 . 8Y

COPYING MDDSOV4 . SY

COPYING MDOSOVS . SY

COPYING MDOSOVSE . SY

COPYING MDOSER .S5Y

STARTING TO COPY FILES

COPYING BACKUP . CM

COPYING COPY .CM

COPYING DEL .CHM

COPYING RLOAD .CM

COPYING EQU . 54

COPYING IOCB . SA

After all eligible files from the sorted directory have

been copied, BACKUP will return control The
destination diskette will contain all of the selected files

packed together as closely as possible, leaving as much free
space as possible.

3.4 File Appending

The file append process allows selected single files or
families of files to be copied from the source diskette to
the destination diskette. The file append feature of the
BACKUP command is similar to the reorganization feature
except that the destination diskette is not initialized with
new system tables or system files. Only the file selection
and the file copying from the source diskette are performed.

Page

3.3 —— File Reorganizatii

03~

3.4 —— File Appe

The diskette in the destination drive is assumed to be a
valid MDOS diskette. The file append process is invoked by
using the Main Option "A" on the BACKUP command line:

BACKUP :<s—unit>, . <d—-unit>; A

Instead of the "BACKUP FROM DRIVE <s-unit> TO Jd-unit>?"
message normally displayed by BACKUP, the message:

APPEND FROM DRIVE <s—unit> TO <{d-unit>?

is shown. The operator must respond with a "Y" if the file

append process is to continue. Like the file reorganization
process, the file append process allows the operator ¢to
select which files are to be copied. The messages for file

selection and the commands to the file selection process are
explained in section 3.3, File Reorganization, and will not
be discussed again here. After all files have been selected,
they will be copied similar to the process described in
section 3. 3; however, the MDOS family of system files is not
copied.

Since the destination diskette already contains entries
in its directory, a possibility of file name duplication

exists. In the event that one of the selected file names
from the sorted directory duplicates a file name in the
destination directory, the following message will be
displayed:

<name> - DUPLICATION: IS IT TO BE COPIED?

The operator must respond with either an "N" or *Y". The "N"
response will prevent the file from being copied to the
destination diskette. The "Y* response will cauvse <the
prompt:

NEW NAME:

to be shown, to which the operator can respond with the new
name that is to be assigned. If a valid #file name and suffix
are entered, they will be vused as the name of the destination
file. The default suffix "SA" will be supplied if none is
explicitly entered. If only a carriage return is given as a
response to the prompt, then the file on the destination
diskette will be deleted (if it is unprotected) before the
file from the source diskette is copied (which will retain
its original name, in this case). If the destination
diskette’s duplicate file cannot be deleted, the message

CANNOT DELETE DUPLICATE NAME
will be displayed and the BACKUP command will be terminated.

The "¥" and “Z" options can be used in conjunction with

Page

nding

03-09

3.4 — File Appe

the "A" option to indicate an auvtomatic procedure in the

event of file name duplication. The "Y* option will
avtomatically cause an attempt to be made to delete the file
on the destination diskette before the copy takes place. I¢

the "Y" option is in effect, the file name duplication
message from above takes on the following form:

<name> - DUPLICATION: IS COPYING

to indicate that a "Y" was given as an avtomatic response to
the “IS IT TO BE COPIED?" portion of the message. The "Z"
option will cause the file name duplication message to take
on the form:

<name> — DUPLICATION: IS NOT COPIED

to indicate that an "N" was given as an automatic response to
the "18 IT TO BE COPIED?" portion of the message.

The file append process causes space to be allocated on
the destination diskette in contiguous blocks. If
insufficient contiguous space should remain on the
destination diskette for a given file, the file will not be
copied. The error message

OBJECT FILE CREATION COPY ERROR

will be displayed and the BACKUP command will be terminated.
The destination diskette may have sufficient space ¢to
accommodate the file:; however, if the space is not
contiguous, the above error occurs. To copy the file, the
destination diskette should be run through the tile
reorganization process described in section 3.3, or the file
must be copied via the COPY command (Chapter 7). After the
last file has been copied to the destination diskette.
control will be returned to MDOS.

3.9 Diskette Verification

oo vone -

The Main Option "V" invokes the verify process of the
BACKUP command. The verify process allows a physical sector
comparison to be made between the diskettes in the source and
destination drives. The following command line, without the
presence of other options, will cause the verify process to
compare the diskettes’ physical sectors based on the source
diskette’s allocation table:

BACKUP :<s—unit>, :{d~-unit>V
If any bytes in any sectors fail to compare, a sector message

and a 1list of all offsets within the sector that did not
compare is printed:

Page

nding

03-1¢(

BACKUP COMMAND 3.5 — Diskette Verification

SECTOR nnnn
OFFSET ii DR<s—unit>—jj DR<d—unit>—-kk

where "ii" is the hexadecimal offset into physical sector
Ynnnn", "J3" is the hexadecimal contents of the sector’s byte
on the source diskette, and "kk" is the hexadecimal contents
of the respective sector’s byte on the destination diskette.
If all sectors compare., no messages are displayed. After the
verification has completed. control is returned to MDOS.

If an EXORdisk III system is being used, the destination
diskette cannot be a8 single—-sided diskette if the source
diskette 1is a double—-sided diskette. In such cases the
message

INVALID TO COPY/VERIFY FROM DOUBLE TO SINGLE SIDED

will be displayed and control returned to MDOS. The
opposite, however., is allowed; that is, a single-sided
diskette can be verified against a double-sided diskette.

3. 6 Other Options

The Other Options described briefly in section 3.1
cannot be used indiscriminately with any of the Main Options.
This section serves to fully explain the use of each Other
Dption.

Other Valid with Function
Option Main Option

enien ovene tamtn eren o s ot e e e eemae o o Srmos v soten See P -

C any The *C" option will cause the copy or
verify process to continve even if a
retryable read/write error occurred which

could not be corrected. The rTetryable
errors include CRC, seek, data mark, and
address mark CRC errors. The "C" option
will not cause read/write errors on
Retrieval Information Blocks to be
ignored.

D any The "D" option will cause the copy or

verify process to continue even if a
deleted data mark error is detected.
This option allows the verification of
diskettes that have had bad sectors
locked out during the DOSGEN or REPAIR
process (such sectors are flagged with a
deleted data mark). The “D" option
permits a user to copy the maximum amount
of data from a bad source diskette to a
good destination diskette.

Page 03-1i

BACKUP COMMAND 3.6 —— Other Option

Other Valid with Function
Option Main Option

e toamn e et sbeme semms s00m0 Soees dom

I none, R The i option indicates that the
diskette’s ID sector is to be modified by
prompting the operator. The "I" option
will cause the following prompt messages
to be displayed. The operator can enter
new information if that field of the 1ID
sector is to be changed. If the field is
to remain the same as on the source
diskette., then only a carriage return
need be entered.

Prompt Operator Response
DISK NAME: Maximum of eight
characters for

diskette ID. Format
is similar to that of
a file name.

DATE{(MMDDYY): Six—-digit numeric
date. No check is
made for valid months
or days of the month.

USER NAME: Maximum of twenty
characters.
L any The "L" option causes the output from the

copy process or from the verification
process to be directed to the line
printer instead of the system console.

N R, A The "N" option will suppress the printing
of the file names as they are being
copied to the destination diskette. This
option will not suppress the printing of
eTTOT messages.

8 \" The "S" option will suppress the printing

of the sector offset messages if sectors
do not compare.

Page 03-1

BACKUP COMMAND 3.6 —— Other Options

Other Valid with Function
Option Main Option

U none, V The RV A option indicates that all
physical sectors, both allocated and
unallocated, are to be copied or
verified. If "U" is not specified, only

the allocated sectors, as mapped in the
source diskette’s allocation table, will
be used.

Y A The "Y" option will cause a "Y" to be
avtomatically given as a response to the
file name duplication error message.
This will automatically force the
attempted deletion of the duplicate file
on the destination diskette before the
file 1is copied. The "Y" and "ZI" options
are mutually exclusive.

Zz A The "Z" option will cause an "N" to be
avtomatically given as a response to the
file name duplication error message.
This will automatically prevent the file
on the source diskette from being copied
to the destination diskette. The "Z" and
"Y' options are mutually exclusive.

3.7 Messages

The following messages can be displayed by the BACKUP

command. Mot all messages are error messages:, although error
messages are included in this list. The standard error
messages that can be displayed by all commands are not listed
here.

BACKUP FROM DRIVE <s—unit> TO {d-unit>?

This indicates BACKUP will copy to the
destination diskette in drive <d—unit> from the
sogurce diskette in drive <s—-unit> if a "Y"
response is given. Any other response will cause
control to be returned to MDOS.

APPEND FROM DRIVE <s-unit> TO <d-unit>?
This indicates that BACKUP will perform the file
append process 1if a "Y" response is given. Any

other response will cause control to be returned
to MDOS.

Page 03-13

BACKUP COMMAND 3.7 -~ Message!

DISK NAME:
The "I" option has been specified. The operator
is expected to respond with a new disk ID or a
carriage return.

DATE (MMDDYY):
The "I" option has been specified. The operator
is expected to respond with a new date or a
carriage return.

USER NAME:

The "I" option has been specified. The operator
is expected to respond with a new user name or a
carriage return.

ENTER FILE COPY SELECTION COMMANDS:
SAVE (8), DELETE (D), PRINT (P), QUIT (Q), NO MORE (CR)
S, D, P, Q. (CR):

The "R" or "A" option has been specified. The
file selection proacess is activated. The third
line shows what the valid responses are.

S, D P, G, (CR):

This is a subsequent prompt from the Ffile
selection process. SAVE and DELETE commands can
be entered wuntil a P (print), @ (quit), or
carriage return (NO MORE} is entered.

SYNTAX ERROR

This indicates a mistake in a response to a
question or prompt from the BACKUP command. The
entire line entered by the operator is ignored
and a new response must be made.

STARTING TO COPY FILES

This indicates that files from the sorted
directory are starting ¢to be copied (R or A
option).

Page 03-1.

BACKUP COMMAND 3.7 —— Messages

NO FILES 7O COPY

This indicates that there are no file names in
the source directory (other than the MDOS system
files) or that all of the file names from the
sorted directory have been deleted. No files are
copied if the "A" option is used. Only the MDOS
family of system files will be copied if the “R"
option is used.

<name> NOT FOUND

This indicates that a file name or a2 family of
file names specified by a SAVE or DELETE command
could not be found in the sorted directory.

COPYING <name>

This indicates that the file name specified by
<name> is being copied to the destination
diskette.

<name> — DUPLICATION: IS IT TDO BE COPIED?

This indicates that the file name specified by
<name> already exists on the destination diskette
during the append process. Only a *Y" or "N" is
accepted as a valid response.

NEW NAME:
This message is displayed if & "Y" is given in
respanse to the preceding message. It allows the
operator to assign a new file name to the +file
being copied from the source diskette. A
carriage return response (no file name) will
cause an auvtomatic attempt ¢to delete the

duplicate destination file to be made. rather
than assigning 8 new name to the source file.

<name> — DUPLICATION: IS COPYING

This indicates that the file name specified by
<{name> already exists on the destination diskette
during the append process. The "Y" option caused
an automatic attempt to delete the duplicate
destination file o be made before the copy
continues.

Page 03-195

BACKUP COMMAND 3.7 - Messag¢

<name> - DUPLICATION: IS5 NOT COPIED

This indicates that the file name specified by
<name> already exists on the destination diskette
during the append process. The "Z" option caused
the file to be skipped. The destination file is
unaffected.

OBJECT FILE CREATION COPY ERROR

This usually indicates that insufficient
contiguous space exists on the destination drive
for the file being copied A option).
Occasionally, however, it may mean that an error
was detected in the reading or writing of the
file’s Retrieval Information Block on the
destination diskette.

CANNOT DELETE DUPLICATE NAME

This indicates that the duplicate file name on
the destination diskette could not be deleted due
to its protection attributes.

DELETE FILE NOS. :

The PRINT command displays this prompt to allow
deletion of file names by entering their
displayed numbers. The prompt will be
redisplayed until a null response (carriage
return) is given.

nn <name>

After the PRINT command is chosen during the file
selection process, a 1list of all +file names
eligible for copying is displayed. The "nn" is a
hexadecimal number that indicates the position of
the name with respect to the total sorted
directory. The <name2>», of course, is the file’s
name and suffix.

SYSTEM SECTOR COPY ERROR
This indicates that a system sector could not be
read from or written to. BACKUFP cannot continue
and control is returned to MDOS.

SECTOR nnnn

This indicates that the physical sectors "nnnn”
did not compare during the verify process.

Page 03-1

BACKUP COMMAND 3.7 —— Messages

OFFSET ii DR<s—-unit>—j) DR{d—unit>—kk

This indicates which bytes did not compare during
the verify process. The "ii" is the hexadecimal
offset into the sector, "j 3" is the hexadecimal
contents of the byte on the source unit <s-—-unit>,
"kk" is the hexadecimal contents of the byte on
the destination unit <d-unit>.

DIRECTORY READ/UWRITE ERROR

This indicates that an internal system error was
encountered while trying to access the directory
of the source diskette. Errors of +this type
indicate a possible hardware problem.

SOURCE FILE COPY ERROR

This indicates that an internal system error was
encountered while reading a Retrieval Information
Block from a file on the source diskette. Errors
of this type indicate a possible hardware
problem.

INVALID TO COPY/VERIFY FROM DOUBLE TO SINGLE SIDED

This indicates that on an EXORdisk III system,
the source diskette was double-sided while the
destination diskette was single—sided. This is
invalid.

3.8 Precautions with BACKUP

o Suae st Gris St geses v Sommt SaRD S48 RS Sovte S0958 43408 S4ake Sards A Samte Sence SN Soamm Seent S04 Seedt Fhsee Chrta s

The following sections describe some of the precautions
that should be taken when using the BACKUP command in the
various environments that are supported by MDOS.

3.8.1 BACKUP and the CHAIN process

Since the BACKUP command has so many different paths
that can be taken, it is generally recommended that BACKUP
not be invoked from within a CHAIN process (see Chapter 6).
The BACKUP process 1is so important to the protection of
diskette files that the entire process should be supervised
by the operator.

Diskette verification from within a CHAIN process using
the BACKUP command is also infeasible. The CHAIN command
writes intermediate information to the diskette in drive zero
during its operation. Thus, if BACKUP with the "V" option is
invoked from within a CHAIN process, and if drive zero is
involved in the BACKUP process, then the two diskettes are

Page 03-17

BACKUP COMMAND 3.8 — Precautions with BACKU

guaranteed to be different.

3.8.2 Single/double—sided diskettes

On EXORdisk III systems the BACKUP command can be used
to copy or verify ¢from a single—sided diskette (source
diskette) <to a double—-sided diskette (destination diskette);
however, the reverse is not allowed.

When a single—-sided diskette is copied to a double-sided
diskette, the system tables (CAT and LCAT) are automatically
adjusted so that they reflect the true amount of space
available on the double-sided diskette. When a verify takes
place, the CAT and LCAT will be different between the two
diskettes; however, no verification error is displayed if the
allocated parts of the tables are the same.

3.8.3 Four—drive systems

The BACKUP command has the capability of copying to or
verifying with any of the three drives (1-3) in a four—drive
system. It is not possible, however. foar BACKUP to sense the
difference between a two—-drive and a four—drive system.
Thus, due to the nature of the two—-drive disk controllers
with EXORdisk 1II, it is possible to destroy a diskette in
drive one if BACKUP is invoked with the "R" option and i#¢
non—-zero numbers are specified on the command 1line for
<s~unit> and {d—-unit>.

I# the user has a two—drive system, it does not make any
sense for him to enter logical unit numbers on the command
line when invoking the BACKUP command, since the proper
default is to copy from drive zero to drive one. If he were
to specify to copy from drive two to drive three with the "R"
option, then the diskette in drive one would be accessed and
subsequently destroyed.

3.9 Examples

Many times it is desirable teo differentiate the two
identical copies of diskettes from each other by use of the
ID sector information. The ID sector’s contents can be
changed during a diskette copy by using the "I" option.

=BACKUP ;1
BACKUP FROM DRIVE O TO 17
Y

DISK NAME: NEWNAME
DATE(MMDDYY): 010978
USER NAME:

=

Page 03-1

BACKUP COMMAND 3.9 — Examples

All information to the right of the colons is supplied by the
aperator. The destination diskette will be given the disk
name NEWNAME which will be printed on the heading lines of
subsequent FREE and DIR command invocations (see Chapters 16
and 9. respectively). The date of the disk copy that is
generated is January 9. 1978, and the same user name that was
assigned to the source diskette during a previous BACKUP or
during the initial DOSGEN process will be given to the
destination diskette (indicated by carriage return response
without any data).

The verification process wusing the two diskettes
generated above will cause an error when comparing the ID
sectors; however, the remainder of the diskettes are still
compared. The offset messages of the discrepancies can be
suppressed by also wusing the "8" option. Thus, the
verification of the above example’s generated diskettes would
show the following operator—system interactions:

=BACKUP ; VS
SECTOR 0000

The following example assumes that no scratch or garbage
files exist on the source diskette. Then., the Teorganization
process requires a minimum amount of operator interaction:

=BACKUP :1,:2;R

BACKUF FROM DRIVE 1 TO 27

Y

ENTER FILE COPY SELECTION COMMANDS:
SAVE (S), DELETE (D), PRINT (P), QUIT (@), NO MORE (CR)
S, D) P, Q (CR):

COPYING MDOS . 8Y

etc.

STARTING TO COPY FILES

CORYING BACKUP | CM

etc.

It should be noted that no file selection commands were used.
The rTesulting destination diskette will contain all files
from the source diskette, but they may be in different places

on the surface of the diskette. Thus, a reorganization
process cannot be followed with a verification process for
the same diskette pair. The "N" option could have been used

in the above example to suppress the printing of the file
names as they were being copied.

The last example shows the file append process. The
example assumes that there is an MDOS diskette in drive 1.
Also, it assumes that the diskette in drive zero has a family
of files which are to be copied to the destination diskette.
The family has file names which start with the letters "FOR".

Page 03-19

BACKUP COMMAND 3.2 -— Exampli

The following shows the operator—system interactions:

=BACKUP ;A

APPEND FROM DRIVE © 7O 17

Y

ENTER FILE SELECTION COMMANDS:
SAVE (S), DELETE (D), PRINT (P), GQUIT (Q), ND MORE (CR)
8, D, P, Qb (CR):S FOR* #

S D, P, G (CR):P

09 FORT .CM

OA FORTLIB .RO

OB FORTNEWS. S5A

OC FORTEST1. SA

OD FORTESTZ. SA

OE FORTEST3. SA

OF FORTESTA4. 5A

10 FORTESTS. SA

DELETE FILE NOS. :

B-E, 10

DELETE FILE NOS. :

STARTING TO COPY FILES

COPYING FORT . CM

COPYING FORTLIB . RO

COPYING FORTEST4. SA

FORTEST4. SA — DUPLICATION: IS IT TO BE COPIED?
Y

NEW NAME: FTEST

The file selection command SAVE was wused to flag all
file names beginning with FOR as eligible for copying. Then
the PRINT command was used to see the eligible list of file
names. The PRINT command terminates the use of the DELETE
and SAVE commands. Thus., the PRINT command‘s delete file
feature is wused to remove any remaining file names from the
eligible list. File names OB, OC, OD, OE, and 10 were
deleted in ¢this manner. A null response is required to
terminate the PRINT command’s input prompting. The last file
to be copied turned out <to have a duplicate file name
existing on the destination drive. The operator responded
with a "Y" indicating that he wanted to copy the file anyway.
Since duplicate file names cannot exist, the append process
lets the operator rename the source #file before it gets
copied. The new name assigned to the file on the destination
diskette will be FTEST. SA (default suffix assigned).

Page 03—

CHAPTER 4

rree soare o s s e e sseen e

4. BINEX COMMAND

The BINEX command allows memory—image files to be
converted into an EXbug—loadable format for copying to tape.
This command performs the inverse operation of the EXBIN
command (see Chapter 14). BINEX is wuseful in the development
of non—-diskette—-resident software with MDDS, since the object
code can be written to tape after it has been tested.

The BINEX command is invoked with the following command
line:

BINEX <name 12[,<name 2>1

where <name 12> is the file specification of a memory-—image
file that is to be converted, and <name 2> is the #file
specification of a file that is to receive the results of the
conversion. Only <name 1> is required to be entered on the
command line. The default suffix “LO" and the default
logical unit number zero will be supplied for <name 1> if
those quantities are not explicitly given. The ouvtput file
specification, <name 2>, is optional. If <name 2> is
entered, it may be a partial file specification consisting of
only a file name, a suffix, or a logical unit number (or any
combination thereof). The unspecified parts of <naeme 2> will
be supplied from the respective parts of <name 1> with the
exception of the suffix. The default suffix for <name 2> is
"LX" to indicate its EXbug—loadable format. If no file
specification is given for <name 2>, the output file will be
created with the same file name as <name 1> but with the
suffix "LX". If only a suffix is given for <name 2>, that
suffix will be used instead of the default "LX". I#+ no
logical wunit number is given for <name 2>, the output file
will be created on the same drive as given for <name 12. In
any case, <name 2> must be a file specification for which no
entry already exists in the directory.

Standard error messages will be displayed if <name 2>
already exists, if <name 1> does not exist, or if <name 1> is
of the wrong file format. If no errors are found on the
command line, BINEX will write into the output file a name
record, or S0 record, that contains the file name and suffix
of <name 2>. Then, BINEX will convert the content of <name
1> into displayable ASCII characters and output them to <name
2> in the form of the EXbug S1 records (the "M&BOO EXORciser
User’s Guide" contains a description of this record format).

Page

04-01

BINEX COMMAND 4.1 —— Usi

The terminating 59 record will contain the starting execution
address that was extracted #from <name 1>»’s load information.

The memory—image file, <name 1>, is unaffected by the
entire BINEX process. The output file, <name 2>, can then be
copied to tape (see Chapter 7. COPY Command) for wuse in a
non—~diskette environment.

4.2 Error Messages

No special error messages are displayed by the BINEX
command. Only the standard error messages available ¢to all
commands are used.

4.3 Examples

Most frequently., the default suffixes and logical unit
numbers suffice for BINEX operation. The following command
line

BINEX TESTPROG

will produce the file TESTPROG.LX on logical unit zero from
the memory—image file TESTPROG. LO, also on logical unit zero.

If the output file is to be created on a different drive
than the input #file, but the other default parameters are
still to be applied, then only a lagical unit number need be
specified for <name 2> as in the following example:

BINEX TESTPROG, : 1
which will create the file TESTPROG.LX on logical unit one.

If the file to be converted happens to reside on a drive
other than zero., then that wunit number will also be the
default value of the logical unit number for the output file.
Thus,

BINEX TESTPROG: 2
will create TESTPROG.LX on drive two.

The last example illustrates the explicit naming of an
output file and input file. In any case involving default
values of which the operator is uncertain, it is always safe
to explicitly use the full file specifications. For example,

BINEX TESTPROG.LO:0O,FILEX.LT:0O

will create FILEX.LT on drive zero.

Page 04-0i

CHAPTER O

3. BLOKEDIT COMMAND

The BLOKEDIT command allows lines of text from one or
more ASCII files to be selectively copied into a new file.
This command can be useful in generating new program source
files by copying routines from existing source files, or in
rearranging existing files by copying their lines into a new
sequence.

The BLOKEDIT command is invoked with the following
command line:

BLOKEDIT <name 12>, <name 2>

Both of the parameters are required by the BLOKEDIT command.
<name 1> is the file specification of a command +file, and
<name 2> 1is the file specification of a new file which will
be created. The new file will be written into as directed by
commands in the command file.

Both file specifications are given the default suffix
"SA" and the default logical unit number zero. <name 1> must
be the name of a file that exists in the directory. <name 2>
must not already exist. A standard error message will be
displayed 1if either of these criteria is not met, or if
<namel> is of the wrong file format.

5. 2 BLOKEDIT Command File

mcns s wovee Sens warme sme meven s pp—

The command file specified by <name 1> is the
controlling factor in the execution of the BLOKEDIT command.
The command file contains the names of the source files that
are to be vused for the extraction of data, the numbers of the
lines within a particular source file that are to be copied
into <name 22>, comments, and original text supplied by the
vser that is also to be copied into <name 2. The command
file must be created with the EDIT command, or a similar
command, prior to using the BLOKEDIT command.

There are three kinds of lines that can appear in the
command file:

Comment lines
Command lines
Quoted lines

L

Page

05-01

BLOKEDIT COMMAND 5.2 —— BLOKEDIT Command Fi

The three types of lines that comprise the command file are
discussed in the following sections.

5 2.1 Comment lines

A comment line is a line whose first character is an
asterisk (%), For example:

*

THESE THREE LINES ARE BLOKEDIT COMMENT LINES
*

The occurrence QF comment lines in the command file is
ignored by the BLOKEDIT command. Comment lines serve only to
document the command file.

5. 2.2 Command lines

A command line is recognized by the fact that its first
character is an upper—case alphabetic character, a decimal
digit, or a double quote character. For example,

FILENAME: 1
5, 75-80

are three valid command lines.

Command lines which begin with an upper-case alphabetic
character indicate that a source file is being named. Such
command lines are used to specify from which file the
subsequent lines are to be copied. A saurce file can only
be named by putting its file specification at the beginning
of a command line. Optionally, the suffix and/or logical
unit number can be specified in the standard format after the
file’s name. The default values of "SA" and zero are
supplied auvtomatically if no explicit references to suffix or
logical unit number are made.

Command lines which begin with a decimal digit indicate
that the command line will contain one or more numbers.
These numbers represent the physical 1line numbers to be
copied ¥from a source file which has been named using the
prior form of the command line. Physical line numbers can be
up to five digits in length and must be in the range 1-65535,
inclusive. More than one physical line number can appear on
a command line if it is followed by a comma. A Tange of
physical line numbers can be specified by separating ¢the
start and end of the range with a hyphen (~). For example,

Page 05—

BLOKEDIT COMMAND 5.2 —— BLOKEDIT Command File

5

12345

100-3&4

12,15, 1-5, 17-200, 5-15. 2, 2

are valid forms of physical line number command lines. A
source file’s physical line numbers can be printed using the
LIST command described in Chapter 17.

5.2. 3 Quoted lines

A command line that begins with a double quote character
(") indicates the beginning or the end of quoted lines. Any
information that appears on the same line as the double quote
is ignored. A quoted line is any line bounded by & pair of
command lines which begin with & double quote character. All
quoted lines will be copied directly from +the command file
inte the new file, as is. Thus, it is possible to include
original lines of text that will be copied into the new file
in addition to the physical 1lines copied from the named
source files. The following example illustrates the wuse of
quoted lines:

" START OF QUOTED LINE SEQUENCE
LABEL LDAA #$FD . SET MASK
LSRB .
STAB TAB+4
TAB .
*
COMMENTS IN QUOTED LINES GET WRITTEN 0OUI
#
JMP EXIT .
* END OF QUOTED LINE SEQUENCE

The first and the last lines of the example will be discarded
by the BLOKEDIT command. The eight lines in between will be
written a8s is into the new file

2.3 Messages

The following messages can be displayed by the BLOKEDITYT

command. Not all messages are error messages, although error
mecsages are included in this list. The standard error
messages that can be displayed by all commands are not listed
here.

Page 05-03

BLOKEDIT COMMAND 5. 3 —— Message

CURRENT SOURCE FILE IS <{name>

A command line containing the name of a source

f#ile has been processed. The name of source file
is shown as <name>. This message is used to
monitor the path of BLOKEDIT through the command
file. ‘

DONE. NEW FILE LINE COUNT IS nnnnn

The command file has been exhausted (end of file
encountered) when this message is displayed. It
indicates that no more command lines will be
processed. The number of physical lines ¢that
were copied into the new file is given by the
decimal number "nnnnn®". After this message is
displayed, control is returned to MDOS.

36 FILE EXHAUSTED BEFORE LINE FOUND

This message is displayed when the source file

being read was exhausted (end of file
encountered) before a specified physical line
number was found. This is not a fatal error.

The next command line from the command file will
be processed.

38 INVALID LINE NUMBER OR RANGE

This error message can be displayed for several
TRASONS. A line in the command file did not
begin with an asterisk, a double quote, a decimal
digit (0-9), or an alphabetic character (A-Z),
and the line was not a quoted line. I+ the
command 1line started with a digit, then the
physical line number had a value outside of the
range 11— 45535, or the starting number of a line
number range was greater than the ending line
number of the range. In any case, this is a
tatal error. BLOKEDIT is terminated and coantrol
returned to MDOS. The command line in erreor is
displayed prior to this message.

39 LINE NUMBER ENTERED BEFORE SOURCE FILE

This message indicates that the command +file
contained a line with a decimal digit in the
first position before a source Ffile was named.
Processing cannot continue, so the BLOKEDIT
command is terminated. The command line in error
is displayed prior to this message.

Page 05-0

BLOKEDIT COMMAND 5.4 — Examples

5.4 Examples

In <the following example it is assumed that the three
source files EDIT.SA:1, ASM. SA: 0, and LOAD. SA: 0 contain some
special wtility subroutines that are ¢to be extracted and
placed into a new file UTILITY.SA:Q. The physical 1line
numbers of the routines can be determined by listing the
source files on the console or printer (Chapter 17, LIST
Command). With that information, the command file
BLKCMD. SA: 0 is created using the EDIT command:

*
Define the first source file

*

EDIT: 1

176205

224-230

*

Define the second source file

*

ASM. SA: O

" Insert a PAGE directive to separate routines
PAGE

56-80, 90-101, 150-163

*

Define the last source file
#*

L.OAD

" Insert another PAGE directive
PAGE

27. 28, 29, 30, 31, 32, 33, 34, 35, 36
37

38

39

40

%

End of Command File

3*

Then, the MDOS command line

BLOKEDIT BLKRCMD, UTILITY

is wused to invoke the BLOKEDIT command. During the
processing, BLOKEDIT will display the following messages:
CURRENT SOURCE FILE IS EDIT .8A:1
CURRENT SOURCE FILE IS ASM .8A: 0
CURRENT SOURCE FILE IS LOAD .8A: 0

DONE. NEW FILE LINE COUNT IS 104

=

Page 05-05

BLOKEDIT COMMAND 5.4 -~ Exampl

The new file will contain the indicated lines from the
respective source files. Each set of lines copied from the
source files has been separated from the next file’s set of
lines by a PAGE directive (causing paging when <the UTILITY
file is assembled). The PAGE directive was inserted using
quoted lines.

BLOKEDIT can also be used to rearrange the lines of an
existing file by copying them in a given sequence into the
new file. The following command file:

PROG1
207-300, 10-206, 1-9

for example, could be used to shuffle the lines in the source
file PROGL. SA: 0. First, lines 207-300 would be copied into
the new file. These would be followed by lines 10-20&, which
would be followed by lines 1-9.

The last example illustrates an error message displayed
by BLOKEDIT. The command line in error is displayed prior to
the error message. The initial five-digit number in front of
the displayed command line gives the 1line’s physical 1line
number within the file (as displayed with the LIST command,
Chapter 17).

=BLOKEDIT BLKCMD, TEMPEGU

CURRENT SOURCE FILE IS EQU . 85A:0
00002 S&6-34

38 INVALID LINE NUMBER OR RANGE

The error was caused by an invalid line number range. The
starting number of a rarge must be less than or equal to the
ending number of the range.

Page 05—

CHAPTER 6

B b L ST

6. CHAIN COMMAND

The CHAIN command allows predefined procedures to be
automatically executed. A procedure consists of any sequence
of MDOS command lines that has been put into a diskette file.,
known &8s a CHAIN file. Instead of obtaining successive
command lines from the console, CHAIN will fetch commands
from the CHAIN file. This feature allows complicated and
lengthy operations to be defined once, and then invoked any
number of times, requiring no operator intervention. The
additional capabilities of conditional directives to the
CHAIN command at both compilation and execution time, and the
capability of string substitution. permit an almost unlimited
number of applications to be handled by a CHAIN file.

e e e L ey

The CHAIN command is initially invoked by the following
cammand line:

CHAIN <name 1> [i<arg 1,..... s €arg n>l
The only required parameter is <name 12, the file name
specification of the diskette file that contains the
procedure definition. The CHAIN file, <name 1>, is given the
default suffix "CF", permitting the file name to be
identified in the directory listing at a glance as being a
CHAIN file. The default logical unit number is zero. The
optional arguments, <arg i> (i = 1 %o n?, are CHAIN tag

definitions which «can be wused to modify the compilation,
content, or execution of a CHAIN file.

Two special forms of the CHAIN command line can be wused
to restart an aborted CHAIN process. These command lines are
shown here, but are described in detail in section 6. 6.

CHAIN N3¢

CHAIN
CHAIN executes a compilation phase and an execution
phase. In the compilation phase, <name 1> is read from
beginning to end. An intermediate file, CHAIN.SY:O0. is
created during the compilation. The intermediate file

consists of lines to be used in the execution phase of the
CHAIN process. This file will be automatically deleted upon
the subsequent successful completion of the CHAIN process.

During the execution phase, CHAIN basically intercepts

Page

06-01

CHAIN COMMAND b.1 —— Usy

the system console input requests so that input can be
supplied from the intermediate +file. Each time an input
request is made by a command that is invoked by the CHAIN
process, the next line from the intermediate +file will be
read and passed to the command. As far as the command is
concerned, it is receiving its input information from the
operator at the console.

The CHAIN command only intercepts console input via the
MDOS system function ". KEYIN" (see section 25 2). @ Therefore,
only programs (commands or user—written programs) that use
this system function will receive their input from the
intermediate file. Programs which contain their own input
routines, or which use the device independent 1I/0 functions
(see section 25.3) can be invoked by the CHAIN process, but
the subsequent input to those programs must be supplied
manually via the console.

The CHAIN command cannot be invoked from within a CHAIN
process unless it is invoked from the last 1line of the
intermediate +file. An error message will be displayed if
other types of CHAIMN command recursion are attempted.

The CHAIN command will continue to supply information
from the intermediate file wuntil the end of the file is
encountered. If, at that point, the next input request from
the «console is by the MDOS command interpreter, the CHAIN
process will be properly terminated, MDOS will be re-entered.
and commands will again be accepted from the operataor at the
console. I#, however, the end of the intermediate file is
encountered while a program is requesting console input, then
the CHAIN process is aborted, an error message is displayed.
and the currently active program will be stopped. Control
will then be given to the MDOS command interpreter.

The diskette in drive zero must remain in drive zero
throughout the execution of the CHAIN process. even if the
“"CF" f#ile is compiled from drives other than zero.

6.2 Tag Definition, Assignment, and Substitution

The CHAIN command 1line can be parameterized with
arguments that follow the CHAIN file specification. Each
argument has the following format:

<tag>LZ4<value>L]

where <tag> is the name by which the argument is referenced
within the CHAIN file, and <value> is the value assigned to
that argument. As many arguments as fit on the command line
ctan be specified. Multiple arguments must be separated by
commas. Tags may be from one ¢to thirty—-two characters in
length and can contain any displayable character except the

Page 060

CHAIN COMMAND 6.2 —— Tag Definition, Assignment, and Substitution

period (.), the comma (,), the space (), or the percent sign
(4). A tag’‘s wvalue can be any series of displayable
characters with the exception of the percent sign. A tag 1is
given a wvalue by following the tag’s name with the value
enclosed in percent signs. If no percent sign follows a
tag’s name, it is assigned a null value. For example, the
command line

CHAIN TFILE; LIST, DAYX17%: TIMEXLOZ: 30%

defines three tags: LIST, DAY and TIME. The tag LIST is
assigned a null value; the tag DAY is given the value 17; the
tag TIME is given the value 02:30.

CHAIN allows two uses to be made of tags. First, tests
can be performed within the CHAIN file to determine whether
or not a specific tag has been specified on the CHAIN command
line. Second. the wvalue of a tag can be substituted for a
tag’s occurrence within the CHAIN Ffile. Thus, using the
above example. the CHAIN file could contain a test for the
presence of the tag LIST to determine if +the CHAIMN process
will produce output to a printer. The values of the tags DAY
and TIME could be substituted in one of the heading lines
that may be produced by the CHAIN process.

So far in the discussion, the value of a tag has not
been used. The existence of a tag can be tested regardless
of a tag’'s wvalue. A tag’s value is substituted for each
occurrence of the tag’s name contained between two delimiting
percent signs. The following example will illustrate tag
substitution. If a CHAIN file contains these statements:

RASM TESTPROG; HAOPTIONY
PROGRAM ASSEMBLED ON “LDATEY
EXBIN TESTPROGLSTARTZ

then the tags OPTION, DATE., and START will have their
respective wvalues put in place of their tag names and the
delimiting percent signs before each line is written into the
intermediate file. If no tags were specified for the above
CHAIN at its invocation, then the following intermediate file
would be compiled:

RASM TESTPROG: H
PROGRAM ASSEMBLED ON
EXBIN TESTPROG

If +the tags were given initial values via the CHAIN command
line as:

OPTIONZXLGZ, DATEZLZJANUARY 8, 1978%, STARTZ: 1000%

then the following intermediate file would be compiled:

Page 06-03

CHAIN COMMAND 6.2 —— Tag Definition, Assignment, and Substituti

RASM TESTPROG: HXL.G
PROGRAM ASSEMBLED ON JANUARY 8, 1978
EXBIN TESTPROG; 1000

Tag substitution is used here to specify the various options
for the assembly process, a date for the heading line printed
during the assembly, and the starting execution address for
the converted object file. The use of tags and tag values,
therefore, is of great importance in the creation of
complicated and general purpose CHAIN files.

To pass tag values from one CHAIN file to another, a
forcing character is used. The backslash character (\) is
used to indicate that the next character of a line is not to
be tested as a special character (i.e., to see if an operator
follows: or a valid tag). Thus, passing a tag from one CHAIN
file to another can be done with a series of statements like
the following:

RASM TESTPROG: HAOPTIONXZ
PROGAM ASSEMBLED ON ZDATEX
CHAIN FILER; START\LASTARTZ\%

The first and last percent signs of the last line are not tag
replacement indicators. When the above lines are compiled,
the resultant intermediate file will not contain the
backslash characters. I+ the value “"XLG" is given to OPTION,
"01.8.78" to DATE, and "; 1000" to START, then the compiled
CHAIN file would appear as

RASM TESTPROG; HXLG
PROGRAM ASSEMBLED ON 01.8.78
CHAIN FILE2; STARTX: 1000%Z

The value of START wovuld be passed from the first CHAIN +file
to the second CHAIN file. The second CHAIN process can only
be invoked from the last line of the intermediate file.

6.3 Compilation Operators

Two types of CHAIN operators exist which can be used to
modify the procedure ¢that is performed through the CHAIN
process: Compilation Operators and Execution Operators.
Execution Operators are described in section 6. 4.
Compilation Operators permit the operator to parameterize a
CHAIN tile to perform many different procedures. For
example, a CHAIN file may contain the MDOS command lines ¢to
assemble an entire system of programs. Based on the CHAIN
arguments specified on the CHAIN command line, all or part of
the system of programs may be assembled. The options for the
assembly process can also be supplied via a CHAIN argument
{(see example in section &. 7).

Page 06—

CHAIN COMMAND 6.3 — Compilation Oper

All Compilation Operators are included in the CHAIN file
along with any other statements. Compilation Operators are
denoted by a slash (/) appearing in the first column of a

line. Any number of intervening spaces (including none) can
be placed between the slash and the operator. If an operator
is found which is not defined, the CHAIN process will be
aborted. The following Compilation Operators are defined:
Operator Function

* Comment

IFS Conditional "if set"” test

IFC Conditional "if clear"” test

XIF End conditional

ELSE Conditional alternative

ABORT Unconditional CHAIN abort

6.3.1 Compilation Comments

oo omtan conne toa0s e e et e s o e i S S P o

I# the character following a slash is an asterisk (%),
then a Compilation Comment is indicated. The remainder of
the 1line following the asterisk contains the comment, which
can include any displayable characters. Compilation Comments
are not written intoe the intermediate file. They are,
however, displayed on the console immediately after they are
read from the CHAIN file. Compilation Comments are useful in
communicating to the operator what intermediate file is being
compiled for execution. The comment lines are only displayed
if the part of the file containing the comments is being
compiled into the intermediate file (see next section).

6.3. 2 IF operator

oo aots s e Sarts Gnres Suuse aemme saere Sumse Sesen ookt Seuee Aseia covey Sens bemes

I# the characters following a slash are "IF", an IF
operator is denoted. There may be any number of intervening
spaces between the slash and the IF operator. This feature
allows a structured type of CHAIN file to be constructed that
will show by its physical appearance the rtange of the
conditional operators. The IF operator allows a test to be
made for the existence of one or more tags on the CHAIN
command line. I+ the test proves positive, or true, then the
lines from the CHAIN file following the IF operator will be
included in the intermediate file (written to the CHAIN.SY

file). If, however., the test proves negative, or false, then
the subsequent lines will not be included in the intermediate
file. The lines from the CHAIN file will be included or

excluded following the IF operator wuntil an ELSE or XIF
op<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>