Monolithic
Memories

PALASM 2
USER DOCUMENTATION

VERSION 2, REVISION C, JULY 1987

Table of Contents

®
PAL®, HAL®, PALASM®, m and SKINNYDIP® are registered trademarks of
Monolithic Memories, Inc.

Double-Density PLUS™ Interface, PLE™, PLEASM™, ZHAL™ AND PROSE™ are
trademarks of Monolithic Memories, Inc.

© Copyright 1978, 1981, 1982, 1984, 1985, 1986, 1987

Monolithic Memories, Inc. ® 2175 Mission College Blvd. ¢ Santa Clara, CA 95054-1592
(408) 970-9700 * (910) 970-9700 * (910) 338-2374

PALASM 2
USER
DOCUMENTATION

MONOLITHIC MEMORIES
2175 Mission College Bivd.
Santa Clara, CA 95054-1592
(408) 970-9700

Version 2
Revision 5C

July 1987
©1987 MONOLITHIC MEMORIES, INC.

Monolithic m Memories

Copyright Notice

Copyright 1984,1985, 1986,1987 by Monolithic Memories Inc.
The copying and distribution of this manual or the PALASM
software is encouraged for the private use of the original
purchaser provided this notice is included in all copies. No
commercial resale or outside distribution rights are allowed by
this notice. This material remains the property of Monolithic
Memories Inc. All other rights reserved by Monolithic
Memories Inc., 2175 Mission College Blvd., Santa Clara, CA
95054.

Monolithic m Memories

Trademarks

PAL, HAL, PLE, ZHAL, PALASM and PLEASM are registered
trademarks of Monolithic Memories, Inc.

PROSE is a trademark of Monolithic Memories, Inc.

VAX and VMS are registered trademarks of Digital
Equipment Corporation.

TRI-STATE is a registered trademark of National
Semiconductor Inc.

IBM, IBM-PC, XT, PCJr., 3083, PC DOS, and VM/CMS are
trademarks of IBM Corporation.

Data I/O and ABEL are registered trademarks of Data /O
Corporation.

UNIXis a trademark of American Telephone and Telegraph.
Omni-Programmer is a trademark of Varix Corporation.

PAL Burner is a trademark of Structured Design Inc.
Wordstar is a trademark of Micro-pro.

MS-DOS is a trademark of Microsoft Inc.

DAISY and DNIX are registered trademarks of DAISY.

Monolithic m Memories

DISCLAIMER

Monolithic Memories Inc. makes no representations or
warranties with respect to the contents within and specifically
disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Monolithic Memories Inc.
reserves the right to revise this publication and the product it
describes and to otherwise make changes to the product
without obligation of Monolithic Memories Inc. to notify any
person or organization of such revision or changes.

Monolithic m Memories

Preface

Audience

This manual is intended for design engineers who use
PALASM™ 2 to program PAL ™ devices. The manual assumes
that you are familiar with PAL device technology and with
PAL device programming concepts.

Using This Manual

This manual steps you through installing PALASM 2 software,
and programming a PAL device. We suggest that you work
through the examples provided while reading the manual,
before proceeding with a design case of your own. All
communication with the computer is shown in MONACO
typeface.

PALASM 1 Software

In this manual, we refer to the original PALASM software as
PALASM 1. This is to distinguish it from the newer PALASM
2 software.

Other Documents

You should have a copy of the PAL Handbook. You should
also have vendor manuals for your computer and PAL
device programmer. If you are new to PAL devices as well as
to PALASM 2 software, you should obtain the booklet
Programmable Logic: A Basic Guide for the Designer, an
excellent introduction to PAL devices that is published by Data
1/0O Corporation.

Monolithic E.Eﬂ Memories

Where to Get Help

Monolithic Memories maintains an Applications Hotline to assist
in solving engineering related problems. If you are having a
problem installing or running PALASM 2 software please call
the Hotline at 800-222-9323.

Monolithic m Memories

TABLE OF CONTENTS EI

LISTOF TABLES ...t e Xii
LISTOF FIGURES.cccoiiiiiiiiiiiiieeeeeieeee e Xiii
SOFTWARE ERRATA ..ot ERR-1
CHAPTER 1
INTRODUCTION
THE PAL DEVICE CONCEPT.......oociiieiiieecreeeeeeee 1-1
Programmable Logic Devicesccccccevvvrveinennn. 1-1
INTRODUCING PALASM 2 SOFTWAREccc..ccevene. 1-6
REFERENCES.......ccoii e 1-7
SUPPORTED PRODUCTS ...t 1-9
REQUIRED EQUIPMENT ..., 1-11
PROGRAM AND FILE SUMMARYcooiiiiiiiiiiiiiiiieien. 1-14
PALASM 2 SOFTWARE PROGRAMScccveerinen. 1-14
CHAPTER 2
INSTALLING PALASM 2 SOFTWARE
INTERACTIVE MENU AND NON-MENU MODES............. 2-2
IBM-PC/XT/AT INSTALLATION......ooiiiiiiiicieeceeceen 2-3
TWIN FLOPPY SET-UP....ceeiiiiiiiiiciercrtee e 2-4
HARD DISK INSTALLATION......cociiiiiiiiiiiee e 2-6
CUSTOMIZE THE INTERACTIVEMENUcccoeveiinnnn.e 2-10
COMPUTER<->PROGRAMMER CONNECTION............. 2-12
CHAPTER 3
PDS SYNTAX
INTHIS CHAPTER ...t 3-1
PDS FILE STRUCTURE.......cooiiiiiiiiiiiieiieeecree 3-2

Monolithic m Memories vii

CHAPTER 3A
BOOLEAN EQUATION DESIGN

DECLARATION SECTION....c.ooiiiiiiiieee e 3A-1
SHUCIUIE....ce e 3A-2
SYNTAX ettt nanaaeaees 3A-3
BOOLEAN EQUATION INPUT....cccoiieieieeee e, 3A-8
Combinatorial Equationsccccocceeeiveeienns 3A-11
Registered EqQuations...........cccccceeievieivecnnnennnn. 3A-12
Functional Equations...........cccoeveeeiiiieeeineee, 3A-14
CHECKLIST FOR BOOLEAN EQUATION
DESIGN FILEScoooiiiiiiiiiiiii e 3A-22
CHAPTER 3B
STATE MACHINE DESIGN
DESIGNING FORPROSEDEVICESccccoiiieeeeeenn. 3B-4
MEALY AND MOORE MACHINESccoviiiiiiienirennn. 3B-5
STRUCTURE AND SYNTAX....coiiiiiiiieeiiece e 3B-5
DECLARATION SECTION.....ccovviiiiiieeee e, 3B-6
STATE SECTION ...iiiiiiiieie e 3B-9
STATE MACHINE EQUATIONS.......cooiireeeerieereeiieens 3B-14
State Equations.........cccoieiiiiiiii e, 3B-16
Output EqQUations.........ccceeeeveeriierieieieee e 3B-19
POWER_UP Equation............coveeeiieiiiiien.. 3B-21
Condition Equations...........ccovvvieeeiiiviiiineeeeeee 3B-24
CHAPTER 3C
SIMULATION
SIMULATION SYNTAX OVERVIEWiiiiiiiaieieees 3C-2
DETAILS OF THE SIMULATION SYNTAX.......cccvvvvvnennen. 3C-4
KEY POINTS TO NOTE......cciiiiiieireeee e, 3C-11
RULES FOR STATE MACHINE SIMULATION
N Y G 3C-12

Monolithic m Memories

CHAPTER 4
USING PALASM 2 SOFTWARE

GENERAL PROCEDURE........cccccuviiiiieieiiee e 4-2
DESIGN EXAMPLES ...t 4-10
Boolean Equation Design......c.cccooeeiiiiiiiiiiinnn. 4-10
State Machine Design........cccoeeeveeiiiiiiieeiiee e, 4-24
APPENDIX A
INSTALLATION AND OPERATION NOTES
IBM-PC / DOS 2.10 IMPLEMENTATION........ccoviieiiennnn. A-1
VAX-VMS IMPLEMENTATION......ccieiiiniiinerciire s A-6
ASCII TAPE INSTALLATION ..o A-10
VAX-UNIX INSTALLATIONcoooiiiiiiiiiiiiiiieie e A-12
APPENDIX B
PROGRAMMER NOTES
DATA 1Ottt B-1
Using DATAI/O on VAX-VMS.........ooeiiiiiiens B-6
~ VARIXOMNI. ..o B-9
APPENDIX C

DEVICE SPECIFIC SYNTAX

PAL22RX8 AND PAL22V10

Special Instructions.........ccccevececccneeeee e, C-2
PAL32VX10
Special Instructions.........ccccceeeeiiieiiniieeeeen. C-3

APPENDIX D
PAL DESIGN FILE LIBRARY

PAL DESIGN FILE LIBRARYc.cootiiiiiiiniiiniie e D-1

Monolithic m Memories ix

APPENDIX E
ERROR MESSAGES

ERRORS REPORTED BY PALASM2........c..cooccoureanne.. E-1
ERRORS REPORTED BY XPLOTooccmruemrrernrrnnnen. E-2
ERRORS REPORTED BY MINIMIZEc.conevuenneee. E-8
ERRORS REPORTED BY PROASM-PROSIM............... E-17
ERRORS REPORTED BY ZHAL.......ccocorvvvererrmnnrrrrnannnns E-30
ERRORS REPORTED BY SIM.........ccoomumrrrrreerrrneeene E-32
ERRORS REPORTED BY JEDMAN........c.coccommmrrireeennnnn. E-34

APPENDIX F

SUBMITTING A HAL DESIGN TO MMI
MASTER DEVICE..........coocouuerreiieomesiiieennisnnseesnnnnenens F-1
PAL DEVICE DESIGN SPECIFICATIONcovsvernne.. F-1
FUNCTIONAL TEST VECTORS ...coovvvvmrernerirnrennarennnne. F-2

APPENDIX G

PALASM 2 SYNTAX DIAGRAM
DEFINITION OF TERMS....ccoomrirmmeerereneieenesneeesnnne. G-2
SYNTAX DIAGRAM........coevvvimmiommnieennerereesenesses e G-3

APPENDIX H

SUPPLEMENTARY SOFTWARE
PALASM.......oovviiiiminines s seses st H-1
PDSCNVT ..ot ent s H-1
DIFFERENCE BETWEEN PALASM 1 AND PALASM 2

SOFTWARE SYNTAX......oorvrrrrrmerinressneresnessaneenns H-2

PC2.... oottt H-3

Monolithic m Memories

APPENDIX |
JEDEC STANDARD NO. 3

PURPOSEot -1
FORMAT DEFINITIONS........cccoiiiiiiiccrecie e -2
OTHER RULES ...t 1-10

RELEASE NOTES

IN THIS CHAPTER........cvtoeieececeiic e RN- 1
SUMMARY OF ENHANCEMENTS...........cccooviriemiiernenen. RN- 2
PALASM 2.22 DISK AND TAPE LAYOUTc.cccocuunvnn. RN- 3
FIXED BUGScoouvereieneeceeseieneiescesessies e RN- 23
INDEX e, -1

DOCUMENTATION USER RESPONSE FORM
BUG/ENHANCEMENT REPORTS

Monolithic m Memories xi

LIST OF TABLES

1-1 PAL and PROSE Devices Supported by PALASM 2 Software.....1-10
1-2 PAL Device Programmers Supported by PALASM 2 Software.....1-13
2-1 Typical Transmission Parametersccccccvcvviveeiniiiniininiiiennn. 2-14
2-2 Command to Set Transmission Parameters...........ccccccevviiiinnnns 2-14
2-3 Commands to Display Programmer Output on Screen................. 2-15
3-1 PALASM 2 Software Reserved Wordsc.cooeveveieiieirniinnincnenns 3-3
3A-1 BasiC OPEratorS.........ccovvumuiiieeeeerieirii e ecirce e e 3A-10
3A-2 Results of Polarity Used in Figure 3A-4.......ccccoeiiiiiiiiiiiiinee 3A-19
B-1 Recommended Baud Rate........cccoeeveeiiiniiiiieiiiii e B-2
B-2 Device Family Pin Codes For DATA I/O Programmer................... B-3
D-1 Files Located On Design Examples DisK.........ccccuveviiiiiiiiininnnan. D-2

Monolithic m Memories

LIST OF FIGURES

Programmable LogiC DeVICesc...ueeieeiiiiiiiieeee et 1-2
Typical Computer Configuration...........cccoecceiiiiiiiiiniieeiee, 1-12
PALASM 2 Software FIOWcccovuuiiiniiiiieiiiiee e 1-16
The Main MeNU.......ooiiiii e 2-8
MENU.SY S et ae e e e e e 2-10
PDS File StrUCIUIe ... e 3-2
Declaration Structurec.ocooviiiiiiiiiiirieee e e 3A-2
Example of the Declaration Section...........cccccceeveiiiniiiiieee e 3A-3
Overview of Equation SyntaX...........coccveriiiiiieiiii e, 3A-9
Pin List and Equations Section............c...eueuiiiiiiiiiiiiiiiicee e, 3A-18
Signal Combinations and Output Polarity..........cccceerviiiiiiciiannnnes 3A-20
Summary of Output Polarities ..., 3A-21
General Synchronous State Machine Architecture...................... 3B-2
MoOre BEhavior........c.oueeiiiii e 3B-3
Mealy BENAVIOTccoouiiiiiieeiecee e 3B-4
Structure of a State Machine Design File ..o, 3B-6
State Machine Declaration Section............ccccceviieieniiennieennnnn. 3B-8
Structure of Default Information............cccooeeeiiiiiiiiiiii 3B-11
Syntax for DEFAULT_OUTPUT Statement..........ccccceoeevieeeennnne. 3B-13
Syntax for DEFAULT_BRANCH Statementc.ccoeeiiiiienee, 3B-14
State Machine Equation Operatorscccoeeevvvviieeeeieee i, 3B-15
Syntax of State EQUAtioNScooeviviiiieiieeee e 3B-16
Simple State Equation and Diagramccceeeiiveeieieiiceineeeeees 3B-17
State Equation with No Local Default............cccooiiieiiniiiiiiinenn, 3B-18
State Equation and Diagram from Traffic Controller Design........... 3B-19
Moore Machine Output Equation Syntax..............ccceeiiiiiiiieeeenns 3B-20
Output Equation SyntaX.........cccovviiiieiiiieiiiiceceee e 3B-20
Mealy Machine Output Equation................ueueeimiiiiiiiiiiiee e 3B-20
Moore Machine Output Equation................eeveieiiiiiiiiiiiiiieeeeee 3B-21
Syntax for POWER_UP State Equation...........cccccccevvveiieneeennn. 3B-22
Moore Machine POWER_UP Equation..........cccoeevvviininieneennnn... 3B-23
Syntax for Mealy Machine POWER_UP OQutput Equation............. 3B-24
POWER_UP State and Output Equations for Mealy Machine.......3B-24
Sample Condition EQUatioNS............cceceviieiiiiiiieir e 3B-25
Mutually Exclusive Conditionseueuvuriieiiemeiieiiiee e e 3B-26
Conflicting ConditionsS...........cooiieiiiiiiiiiiiieeeeee e 3B-26

Monolithic m Memories

3C-1
4-1
4-2

4-4
B-1

PRLDF Statementccoouuiiiiiiiiiiii e 3C-12
Device Programming Flowchart...........cccocoiiiiriiiiicninniiecnene 4-3
Traffic INterseCtionc.uueiii i e 4-24
Traffic Signal Controller Logic Diagram........cc.ccccoveeeeiiicreecnennenenn. 4-25
State Diagram of the Traffic Signal Controller............ccccceoveeeeee. 4-26
Data I/0 <-> VAX-VMS Cable Connection...........c..cceeveeeiriennnenens B-6
8-Bit Word Definition.........couuueeiiiiiiie e -6

Monolithic m Memories

=

T
%Jﬁ?iﬁ?} - S -
.
. vﬁs&{ gm
x ~i” . i

o

o 5

-

‘mﬁ %me ”wﬁ%
. .
. .

W3¢W o

-

. .

I«W&?&Z""xﬁ&&!&'@?}“\?{‘:vﬁ&?
e

.
o
.

- .
. -

S
.. T

. ‘f’;’*:'*‘“ w@/ﬁm
.

SOFTWARE ERRATA

Disk Space

Interactive Menu

State Machine Design
On A PAL Device

Output Equations On
Mealy and Moore
Machines

Run MINIMIZE Before
XPLOT

POWER_UP
On PMS14R21

Brief JEDEC Output

Monolithic m Memories

ERR|

Please read this list of known bugs before you
use PALASM 2 software. The following
problems occur with PALASM 2.22.

Insufficient disk space causes all PALASM 2
software programs to abort.

You require DOS 3.0 or later versions to install
and run the PALASM interactive menu. Run the
software in non-menu mode if you have earlier
versions of DOS.

State machine input is being beta tested on
PAL devices. Therefore, it may not be fully
functional. State machine design entry can,
however, be successfully implemented on the
PMS14R21 PROSE device.

On a Mealy machine, you must define an
output for each state equation. Currently, you
must do the same on a Moore machine as well.
Otherwise, the software will produce errors.

For PAL devices, you must always run the
MINIMIZE program before the assembler on a
state machine design. If the MINIMIZE program
is not run, the assembler, XPLOT, will crash
when you try to compile your design.

You are allowed only one (1) state branch from
the POWER_UP state instead of four.

Before running PROASM, the PROSE

ERR-1

SUFIWARE ERRATA

S

On PMS14R21 assembler, the PALASM2 program asks you if
you want a full or brief JEDEC output file. Select
full JEDEC output. The PROSE assembler
does not produce brief JEDEC output on the

PMS14R21.
PMS14R21 Fuse The PROSE assembler, PROASM, produces
Information an incorrect percentage value for the number of

fuses blown in the .XPT output file.

Parentheses in If you use parentheses in your Boolean

Boolean Egquations equations, always run the MINIMIZE program
before assembling your design. XPLOT, the
assembiler, will crash if it detects parenthesized
Boolean equations.

Minimizing XOR Devices If you use an XOR equation in a Boolean design
and run the MINIMIZE program, the XOR will be
converted into functionally equivalent AND/OR

statements.
Simulating Files Your input filename must have an extension,
Without Filename such as <filename.PDS>. Without an
Extensions extension, the file will be parsed by the syntax

checker, PALASM2, but will cause SIM, the
simulator, to crash.

ECL Devices PALASM 2 software treats I/0 pins on ECL
devices as outputs only.

PAL32VX10 In a Boolean equation design on the
PAL32VX10, the 3-state I/O pin is defaulted as
an output.

PAL20X8 The PAL20X8 is not a preloadable device.

PALASM 2 software allows you to emulate a
PRELOAD, but no JEDEC is produced. Also,
the device will not be programmed correctly
without a PRELOAD.

ERR-2 Monolithic m Memories

SOFTWARE ERRATA

PALASM 2 Software The logical directory name PAL2$DAT must
Installation on be assigned in the directory that contains the
VAX-VMS PALASM 2 software. Refer to page A-7 for m

instructions on assigning PAL2$DAT.

Monolithic m Memories ERR-3

SOFTWARE ERRATA

— —————— —

ERR-4 Monolithic m Memories

c
o
2
(2]
3
T
<]
f
L
£

1. INTRODUCTION

THE PAL DEVICE
CONCEPT

A PAL device is a fuse-programmable logic device that can be
used to implement custom logic varying in complexity from
random gates to complex arithmetic functions. The PAL device
implements the familiar sum-of-products logic by using a
programmable AND array whose output terms feed a fixed OR
array. Since the sum-of-products form can express any Boolean
transfer function, the uses of the PAL device are limited only by
the number of terms available in the AND and OR arrays. Thus,
the PAL device combines much of the flexibility of the PLA with
the low cost and easy programmability of the PROM. Moreover,
PAL devices come in different sizes so that you can choose the
size that is most cost-effective for your applications.

Programmable Logic
Devices

PAL devices are one of three main types of programmable logic

devices:

* PAL Programmable Array Logic

* PROM Programmable Read-Only Memory
* FPLA Field Programmable Logic Array

All three kinds of devices include an array of AND gates whose
outputs feed an OR gate. The differences occur in the location
of the programming fuses. Figure 1-1 shows the basic
architecture of each kind of programmable logic device.

Monolithic m Memories 1-1

INTRODUCTION

PROM Architecture

AABBCC

PRODUCT TERMS

INPUTS

o] «—

.
»|
3

ol
.

¢

ol
o
@
o
>l
m
a

8

.
of
o
»|
mn
N

|

ol {ol
o
ol
.
»|
m
w

|

ol
o
ol
.
b}
ry

|

y[s]e[v]e]e

ol
.
o|
.
>|

|

1

ol
.
@l
o
>l
mn
o

|

—~00)

FIXED AND

PAL Device Architecture

ARBBCT

A —2]

¢ J¥

PRODUCT TERMS

INPUTS

F B3
~—

F10

F11
F12

F13

F14

~—
Fi5_ :)—

F16

[F7

PROGRAMMABLE FIXED OR
AND

FPLA Architecture

AARBBCTC

AR

B 1

PRODUCT TERMS

c—

|

INPUTS

va

OUTPUT

PROGRAMMABLE OR

Fo ~—) ;’ :> Y

OUTPUT

@‘Y

OUTPUT

~—
PROGRAMMABLE
AND

~~—)
|/

PROGRAMMABLE
OR

Figure 1-1:
Programmable Logic Devices

Monolithic m Memories

INTRODUCTION

PAL devices have fuses on the inputs to the AND gates. By
selecting the fuses to blow, you choose product terms available
to the OR gate. Usually several product terms are produced and
ORed for each output.

PROM devices have fuses on the outputs of the AND gates. All
possible product terms are produced; you choose the terms to
be applied to each output by deciding which fuses to leave
intact.

FPLA devices have fuses on both the inputs and outputs of the
AND gates. This is the most general configuration for
programmable devices.

PAL Device
Configurations

The members of the PAL device family combine the following
basic configurations: combinatorial arrays, programmable /O,
registered outputs with feedback, exclusive OR (XOR), and
programmable polarity.

Combinatorial Arrays

PAL device combinatorial arrays are available in sizes from 64 x
32 (64 input terms maximum and 32 output terms maximum) to
16 x 2. Both active-high and active-low output configurations are
available. This wide variety of input/output formats allows you to
replace many different-sized blocks of combinatorial logic with
single PAL packages.

Programmable 1/0

The high-end members of the PAL device family have
programmable I/O pins. This allows a product term to directly
control an output of the device. The product term is used to
enable the three-state buffer that gates the summation term to

Monolithic m Memories 1-3

INTRODUCTION

P R R R R R R
e

the output pin. The output is also fed back into the PAL device
as an input. Thus the PAL device drives the I/O pin when the
three-state gate is enabled; the I/0 pin is an input to the PAL
device when the three-state gate is disabled. This feature can
be used to allocate available pins for I/O functions or to provide
bidirectional output pins for operations such as shifting and
rotating serial data.

Registered Outputs with
Feedback

Another feature of the high-end members of the PAL device
family is registered outputs with registered feedback. Each
product term is stored into a D-type output flip-flop on the rising
edge of the system clock. The Q output of the flip-flop can then
be gated to the output pin by enabling the active-low three-state
buffer. The Q output is fed back into the PAL device as an input
term. This feedback allows the PAL device to remember its
previous state, and the PAL device can alter its function based
upon that state. This allows the designer to configure the PAL
device as a state sequencer that can be programmed to execute
such elementary functions as count up, count down, skip, shift,
and branch. These functions can be executed by the registered
PAL device at rates of up to 65 MHz for D PAL devices.

XOR PAL Devices

These PAL devices feature an exclusive OR (XOR) function.

The sum of products is segmented into two sums, which are then
XORed at the input of the D-type flip-flop. All the features of
registered PAL devices are included in the XOR PAL device.
The XOR function provides an easy implementation of the HOLD
operation used in counters and other state sequencers.

1-4 Monolithic m Memories

INTRODUCTION

Programmable-Polarity
PAL Devices

Programmable-polarity PAL devices allow a single part to function

as both an active-low and an active-high part. With the polarity

fuses intact, the outputs are active-low; when the polarity fuses n
are blown, the outputs are active-high. If output 1 (OUT1) is

specified as uncomplemented in the pin list, and as

uncomplemented in the equations, the output is effectively

specified as active-high and the polarity fuse is blown.

The converse is also true. If OUT1 is complemented in the pin list
(/OUT1) and complemented in the equation, the fuse will be
blown. Whenever the polarities differ between the pin list and
the logic equation, the fuse will be left intact.

Hard Array Logic
Devices

A hard array logic (HAL™) device is the mask-programmed
version of a PAL device. A HAL device is to a PAL device what a
ROM is to a PROM. A standard wafer is fabricated up to the metal
mask. Then a custom metal mask is used to fabricate aluminum
links for a HAL device instead of the programmable titanium-
tungsten (Ti-W) fuse array used in a PAL device. The HAL
device is a cost-effective solution for large quantities and is
unique in that it is a gate array with a programmable prototype.
For information on submitting HAL designs to Monolithic
Memories, see Appendix F of this manual.

PROSE™ Devices

The PMS14R21 programmable sequencer is the first member of
the PROSE (PROgrammable SEquencer) family. The
PMS14R21 is a high-speed, 14-input, 8-output state machine. It
consists of a 128 x 21 PROM array preceded by a 14H2 PAL
array. The PAL array is efficient for a large number of input
conditions, while the PROM array is optimal for a large number of

Monolithic m Memories 1.5

INTRODUCTION

product terms and states. The combination allows a very efficient
state machine with a large number of inputs and outputs. For
more information on the PMS14R21, refer to the datasheet in
the PAL handbook.

INTRODUCING
PALASM 2
SOFTWARE

PALASM 2 software is a package that turns PAL device Design
Specification (PDS) files into data files for PAL device
programmers. PDS is a format for specifying a PAL circuit and for
creating inputs to a logic circuit. Using a text editor, you create a
PDS file that describes a PAL circuit. PALASM 2
softwareaccepts the file as input and performs a number of
functions under your control, including:

* Assembling PAL Design Specifications

Generating PAL device fuse patterns in JEDEC format
Reporting errors in syntax and assembly

Allowing concise mnemonic hames for long, frequently used
logic expressions through string substitution

*
*

*

Functional Differences
from PALASM 1
Software

We refer to the original PALASM software as PALASM 1 software
to distinguish it from the new PALASM 2 software.

PALASM 2 software is quite different from PALASM 1 software in
implementation. Itis composed of several interacting programs
coupled by disk files. (Floppy based files slow interaction. We
recommend RAM or hard disks for production use.) The

principle benefit of the reorganization is the freedom from fixed
limits within the design file.

As mentioned in the feature section, the syntax of PALASM 2

Monolithic m Memories

INTRODUCTION

software is significantly different from that of PALASM 1.
PALASM 2 software allows description of asynchronous devices
like the PAL20RA10 and devices of much higher complexity
such as MegaPAL devices.

The current version of PALASM 2 software omits several n
features provided within PALASM 1. They are:

* Fault coverage prediction for test vectors.

* Automatic generation of documentation.

* Device signal/pinout display.

* Support of the security fuse.

* Printing of logic equations for each product term in a
fuse plot.

Some of these omissions represent a change in philosophy;
others will be provided in later versions of the program.

For more detail on PALASM 1 software, refer to Appendix H.

REFERENCES

For further information about using programmable logic devices,
see the following references.

Software

1. Birkner, John M., "Macros for Programmable Logic," Wescon
Professional Conference Session Record, 1982.

2. Birkner, John M., "High Level Language for Programmable
Array Logic," Wescon Professional Conference Session
Record, 1981.

Monolithic m Memories 1-7

INTRODUCTION

s

PAL Device

PAL Device
Applications

1.

Birkner, John M., Coli, Vincent J., and Sackett, David M.,
"Design Your Own Chip With PALASM, Your Personal
Computer, and a PROM Programmer," Machine Design, July
1983, pp.81-85.

Birkner, John M., "CAD Methodology Parallels Advances in
Programmable Logic."

Birkner, John M. and Coli, Vincent J., "Hard Array Logic
Provides New TTL Standards," Southcon, 1982.

Birkner, John M., "CAD Methodology Parallels Advances in
Programmable Logic," Electronica 1982.

Miller, Warren, "The Philosophies of Fuse Programmable
Logic," Wescon Conference Professional Session Record,
1982.

Miller, Warren, "New Developments in Programmable Logic,"
Wescon Conference Professional Session Record, 1982.

"Programmable Logic: A Basic Guide for the Designer," Data
1/0O Corporation.

Edwards, E. and Greiner, J., "Programmable Logic Matches
Gate-array Density, Eases System Design." Electronic
Design, June 14, 1984.

Coli, Vincent J., "PAL Bumps Eight Chips from
Microprocessor Interface," Electronic Design, November 25,
1982,pp.180-182.

Monolithic m Memories

INTRODUCTION

2. Blasco, Richard W., "PALs Shrink Audio Spectrum
Analyzer," Electronic Design, August 20, 1980.

3. Coli, Vincent J., "Using a PAL to Emulate the Internal State
Counter of the MMI 'S516 LSI Multiplier/Divider," The Best

of the Computer Faires, Volume VIII, 1983. n

SUPPORTED
PRODUCTS

With the exception of the PAL16A4 and the PAL16X4 parts,
PALASM 2 software supports all Monolithic Memories PAL |
devices including new PAL products such as RA (Registered
Asynchronous), RS (Registered Synchronous), MegaPAL,
ZHAL™, as well as the newest and only member of the PROSE
family of devices.

Table 1-1 lists PAL and PROSE devices supported by PALASM
2 software.

Monolithic m Memories 19

INTRODUCTION

Table 1-1:
PAL and PROSE Devices Supported by PALASM 2 Software

20-Pin 24-Pin MegaPAL PROSE
Devices Devices Devices Devices
PAL10H8 PAL6L16 PAL32R16 PMS14R21
PAL10L8 PAL8L14 PAL64R32

PAL12H6 PAL12L10

PAL12L6 PAL14L8

PAL14H4 PAL16L6

PAL14L4 PAL18L4

PAL16H2 PAL20L2

PAL16L2 PAL20C1

PAL16L8 PAL20L8

PAL16P8 PAL20L10

PAL16CA PAL20X4

PAL16R4 PAL20X8

PAL16R6 PAL20X10

PAL16R8 PAL20R4

PAL16RA8 PAL20R6
PAL16RP4 PAL20R8
PAL16RP6 PAL20RA10
PAL16RP8 PAL20S10
ZHAL20 PAL20RS4
PAL20RS8
PAL20RS10
PAL22V10
PAL10H20P8
PAL10H20G8
PAL32VX10
PAL22RX8
ZHAL24

1-10 Monolithic m Memories

INTRODUCTION

REQUIRED
EQUIPMENT

This section describes computers and PAL device programmers
supported by PALASM 2 software and provides information
about necessary and optional PALASM 2 programs. n

Computers

PALASM 2 software operates with no user modification on the
following CPUs, provided certain minimum system requirements
are satisfied. It is usually provided as an executable program,
ready to run on any of these systems:

Minicomputers: VAX™ under VMS™
VAX™ under UNIX™ (Berkeley 4.2)

Microcomputers: IBM-PC™, -XT™_ -AT™
under MS-DOS™ (256K RAM)

Workstations: DAISY™ under DNIX™ 5 1

All systems must have a serial port (RS-232) for communication
with the PAL device programmer. We also recommend that
floppy disk based systems be equipped with two disk drives.
Figure 1-2 shows a typical computer configuration.

Note: Refer to the PALASM 2 software order form for the

correct part number of the version of PALASM 2 software
designed for your CPU.

Monolithic m Memories 1-11

INTRODUCTION

PALASM
#2

[

-
=)
(= NN qaAan -.'I-.“
(o aininialin) EE)
B o o B B
J

I~ r

PAL device

Programmer \ J

Figure 1-2:
Typical Computer Configuration

PAL Device
Programmers

The PAL device programmers supported by PALASM 2 software
are shown in Table 1-2.

1-12 Monolithic m Memories

INTRODUCTION

Table 1-2:
PAL Device Programmers Supported by PALASM 2 Software

Products Manufacturer

DATA /O DATA I/O

Model 19 with LogicPak 102525 Willows Rd. N.E
DATA I/O P.O. Box 97046

Model 29A or B with LogicPak Redmond, WA 98073-9746

Adapter: 303A-002
303A-008 A/B for 32R16
303A-023 A/B for 64R32

STAG ZL30/PPZ STAG Microsystems
528-5 Weddell Dr.
Sunnyvale, CA 94089

DIGELEC FAM51 or FAM52 DIGELEC
1602 Lawrence Ave. #113
Ocean, NJ 07712

KONTRON MPP80S KONTRON
KONTRON MOD21 1230 Charleston Rd.
Mountain View, CA 94039

VARIX OMNI PROGRAMMER VARIX
1210 East Campbell Road #100
Richardson, TX 75081

STOREY SYSTEMS P240 Storey Systems
3201 North Hwy 67, Suite H
Mesquite, TX 75150

VALLEY DATA SCIENCES 160 Valley Data Sciences
: 2426 Charleston Business Pk
Mountain View, CA 94043

Monolithic m Memories 1-13

INTRODUCTION

PROGRAM AND
FILE SUMMARY

Following is a summary of all currently available programs. A more
detailed description of each program follows this summary.

1. PALASM2 PALASM 2 syntax parser
2. MINIMIZE Logic expander and minimizer
3. XPLOT,SIM PAL device assembler and simulator

4. PROASM-PROSIM PROSE device assembler and

simulator
5. JEDMAN JEDEC disassembler
6. ZHAL ZHAL device fit

Note: The ZHAL utility is not part of the regular package you
get when you order PALASM 2 software. You may, however,
order the ZHAL program from your local Monolithic Memories
sales office.

PALASM 2
SOFTWARE
PROGRAMS

The main PALASM 2 software programs are described in the
following pages. Figure 1-3 shows the PALASM 2 software
processing flow.

PALASM2

PALASM2 is the first program you will use in the PALASM 2
software suite. It reads and validates your input—a PLD device

1-14 Monolithic [iliﬂ Memories

INTRODUCTION

design specification—for correct design syntax. If an error is

detected, the program attempts to indicate where in the input

description the error has occurred. Recovery is attempted after

each error in order to catch as many errors as possible on a singie

run. Only if no error is detected is an intermediate specification

file generated. This file contains the input specification in a hier- “
archically structured form to enable easy processing by follow-on

programs. Further, it is guaranteed to be syntactically correct.

This program recognizes input descriptions for all current PAL

devices.

MINIMIZE

The MINIMIZE program gives you the option of automatically
reducing your logic equations. Minimization helps to utilize the
space on your device more efficiently and is therefore a cost
effective feature. This program automatically translates a state
machine design file to Boolean equations. Although all PAL
devices are supported for logic minimization, the program does
not work effectively on Exclusive OR devices. This is because
XOR is treated as a complex logic element and is taken out
during minimization. A warning message is displayed on the
following Exclusive Or devices: PAL22RX8, PAL32VX10,
PAL20X10, PAL20X8, PAL20X4.

Monolithic m Memories 1-15

INTRODUCTION

Boolean Equation
Input File

Syntax

Parser

Logic
Minimization

JEDEC

Disassembly \
Assembly Simulation

/\
ﬂ

Test Vectors:

JEDEC Fuseplot: Output File
Output Output
File File

History

and Trace

Output

Files

Figure 1-3:

PALASM 2 Software Flow

Monolithic m Memories

XPLOT

SIM

INTRODUCTION

XPLOT validates the architectural design of an input PAL device
description and produces fusemaps and JEDEC data for a
specified PAL device. Input is a set of Boolean equations that
has been preprocessed by the PALASM2 program. XPLOT n
checks the equations for consistency and correctness for the
specified PAL device. When an error is detected, XPLOT
attempts immediate recovery. In this way, XPLOT spots as many
errors as possible on each run. Only if no errors are detected will
the output fusemaps and JEDEC data be generated. The
architectural information for each PAL device is read in from a file
containing a profile description for the specific PAL device.

Note: XPLOT will check only valid Monolithic Memories PAL
devices.

SIM checks the functionality of a PAL device design. You will run
this program after XPLOT. If the design is architecturally correct,
however, you can run SIM directly after the PALASM2 program.
SIM reads a special simulation syntax that has been
preprocessed by the PALASM2 program. It will simulate the
operation of the PAL device you specify, calculating the output
values based on input signals through the Boolean equations
and any feedback. SIM outputs two files: a history file and a trace
file. The history file shows the values of every pin through a
simulation sequence. The trace file, which is a subset of the
history file, shows only the pins you specify in the simulation
syntax. If XPLOT has been run and a JEDEC fuse address file
has been created, then SIM will add test vectors to the JEDEC
file that duplicate the simulation sequence when the device is
tested on a programmer. All JEDEC checksums are recalculated.

Note: SIM tests only valid Monolithic Memories PAL devices.

Monolithic m Memories 1-17

INTRODUCTION

PROASM-PROSIM

PROASM and PROSIM assemble and simulate PROSE device
designs. PROASM accepts both State Machine and Boolean
logic designs. Assembly and simulation are both transparent to
the user. Please note that the only PROSE device PALASM 2
software currently supports is the PMS14R21.

JEDMAN
JEDMAN offers you the option of disassembling a JEDEC file
and generating Boolean equations. You can, in effect, read a
fuseplot directly from a programmed device. JEDMAN also
recalculates checksumsand allows you to convert a PAL22V10
JEDEC file to a PAL32VX10 JEDEC file

ZHAL

The ZHAL program helps you fit your completed PAL device
design into a 20-pin or 24-pin ZHAL (Zero-standby-power CMOS
HAL) device. If you plan to opt for volume production using
Monolithic Memories ZHAL devices, ensure quick turn-around by
letting the ZHAL program match your design to make it fit into the
device. If your device fits, you may send it to Monolithic
Memories for mask processing.

Note: The ZHAL utility is not part of the regular package you
get when you order PALASM 2 software. You may, however,
order the ZHAL program from your local Monolithic Memories
sales office.

1-18 Monolithic m Memories

INTRODUCTION

Supplementary

Software

Following is a summary of all currently available supplementary
software. A more detailed description of some of the
supplementary programs follows this summary.

1.

2.

PALASM PALASM 2 interactive menu

PDSCNVT PALASM 1 to PALASM 2 syntax conversion
PC2 Programmer interface program

SCRSIM Simulation waveform generation program
VTRACE Sim output files to timing diagrams conversion
BINHEX Binafy to hexadecimal conversion

TIMING Timing diagram entry program

PINOUT Pinout Program

DECODE Address Decoder Program

Monolithic m Memories

1-19

INTRODUCTION

PALASM 2
Supplementary
Programs

Some of the supplementary programs listed on the previous
page are described below. Please note that Monolithic
Memories does not support all the programs that reside on the
supplementary disk.

PALASM

PALASM is the name of the interactive menu program that is
designed to simplify user interface to the software. The program
may be installed on an IBM-PC -XT -AT, either twin floppy or hard
disk. The user-friendly menu screens display your options on
one screen, enable the use of function keys to run all the
programs in the software suite, and allow you to view the output
as well. The PALASM menu significantly reduces your learning
curve since all you need to know is what you want to do, not how
to do it. Online help screens and message windows facilitate
easy interaction with the software.

PDSCNVT

PDSCNVT allows you to interactively convert PAL device design
specifications from the PALASM 1 format to PALASM 2
software. Input is a PALASM 1 formatted specification file, and
output is the equivalent design in PALASM 2 software syntax.

PC2

PC2 enables communication between PLD programmers and
IBM™ PC machines (-PC, -XT, -AT, etc.). It is a menu-driven
multiple-choice program that guides you through various options
for programming and checking PLDs.

1-20 Monolithic Eﬂﬂ Memories

VTRACE

Files

INTRODUCTION

VTRACE reads the trace output of the PALASM 2 software
simulator. The text-formatted data of the trace file is converted
into graphic form. VTRACE output looks very much like timing
diagrams of the simulation results.

Input, output, and intermediate files (files that the software
creates but are not visible to the user) are listed below.

1.

<filename>.PDS

PALASM2.TRE

<filename>.PDF

<filename>.XPT

<filename>.JED

<filename>.HST

<filename>.TRF

<filename>.JDC

<filename>.PL2

10.«filename>.JDM

User defined PLD design description
input.

PLD intermediate design description.
PLD architecture description data.
Contains PLD fuse map data.
Contains PLD fuse JEDEC data.
Contains full simulation history data.
Contains user simulation trace data.

Contains both PLD fuse JEDEC data
and JEDEC test vectors.

Contains PDS file reconstructed from
JEDEC output.

Recalculated checksums or PAL22V10
to PAL32VX10 conversions using
JEDMAN.

Monolithic m Memories

1-21

INTRODUCTION

1-22 Monolithic Eﬁﬂ Memories

Installing PALASM®2 Software

2. INSTALLING PALASM 2
SOFTWARE

This chapter tells you how to get started. Refer to the
appropriate page number for the computer and operating system n
on which you are running PALASM 2 software.

IN THIS CHAPTER

If you have a... Refer to...
IBM-PC/XT/AT 2-3

VAX-VMS Appendix A-6
VAX-UNIX Appendix A-12
VAX-ASCII Appendix A-10

PALASM 2 software can be run using either an interactive menu
interface or in non-menu mode. Decide which mode you would
prefer to use. The instructions for installation include the set-up
procedure for both modes.

Monolithic m Memories 2-1

INSIALLING PALASM 2 SOFTWARE

INTERACTIVE
MENU AND NON-
MENU MODES

PALASM 2 software can be run using the interactive menu or in
non-menu mode.

Interactive Menu

We recommend the use of the user-friendly menu interface for
both first-time and advanced users. If you are a first-time user,
the interface will considerably reduce your learning curve.
Advanced users may also find that the menu screens facilitate
easy interaction with the software.

The interactive menu resides on your Supplementary diskette.
To use the interactive menu, you need to go through a one time
installation procedure. Once the program is successfully
installed, it will always be the first screen that is called up. You
may use the interactive menu only if you have MS-DOS 3.0 or
later versions. The interactive menu installation procedure for
each computer and operating system is described in the
following pages.

Non-Menu Mode

This is recommended for advanced users only. Also, if you do
not have MS-DOS 3.0 or later versions of MS-DOS, you must use
the software in non-menu mode. In this mode, you merely type
commands to activate programs directly from DOS. Instructions
for preparing your system to run PALASM 2 software in non-
menu mode follow in the next few pages.

Monolithic m Memories

INSTALLING PALASM 2 SOFTWARE

IBM-PC/XT/AT
INSTALLATION

What You Require

To install PALASM 2 software, you require.

1.

2.

5.

6.

An IBM-PC/XT/AT with either twin floppy drives or a hard disk. n

Minimum memory of 384K bytes
to run the software in menu mode

or

minimum memory of 256 K bytes to run the
software in non-menu mode.

DOS 3.0 or later versions to run the software in
menu mode.

An IBM-DOS diskette.
PALASM 2 software on regular or high density diskettes.

A blank diskette if you are using a twin floppy system.

Note: If your system does not have 384K bytes memory or DOS
3.0 (or later versions), you must use the software in non-menu

mode.

If you have a... Refer to...
Twin Floppy System Page 2-4
Hard Disk Page 2-6

Monolithic m Memories 2-3

24

INSTALLING PALASM 2 SOFTWARE

TWIN FLOPPY
SET-UP

A few simple steps enable you to set-up your twin floppy system
to run PALASM 2 software.

Create A Work
Diskette

First, you need to create a WORK diskette to store your design
files.

1. Insert the IBM-DOS diskette in drive B.
2. Insert a blank diskette in drive A.

Note: If you have a 1.2 megabyte floppy in drive A, remember to
use a high density diskette.

3. Enter
B: <CR>
4. Enter

FORMAT A:/S <CR>

Now you have a WORK diskette that contains the
COMMAND.COM file.

5. When you see the system message
FORMAT ANOTHER?
Enter

N

Monolithic m Memories

INSTALLING PALASM 2 SOFTWARE

]

Load The
Supplementary
Software

Now you are ready to load the Supplementary Software.
1. Enter

B: <CR> u
2. Insert the Supplementary diskette in drive B.

3. If you wish to use PALASM 2 software's interactive menu,
enter

FLOPPY2 +MENU <CR>

Or, if you wish to use PALASM 2 software in non-menu
mode, enter

FLOPPY2 NOMENU <CR>
At this point you will see further instructions on your screen.

Follow these instructions to complete the installation. Turn to
page 2-7 to find out if the menu is properly installed.

Monolithic m Memories 2-5

2-6

INSTALLING PALASM 2 SOFTWARE

HARD DISK
INSTALLATION

Follow these steps to install the software on your hard disk.

1. Insert the Supplementary Software disk in drive A. (Use drive
Aonan AT aswell.)

2. Enter
A: <CR>
3. Enter

PAL2INST <CR>

Follow the instructions on your screen to complete the
installation procedure.

4. Reboot your system after the installation is complete.

To test that PALASM 2 software is installed in menu mode,
turn to page 2-7 for further instructions.

To use PALASM 2 software in non-menu mode, turn to page
2-9 for further instructions.

Monolithic m Memories

INSTALLING PALASM 2 SOFTWARE

Interactive Menu

Run A Test Example
After you have completed the installation procedure, run a test.
1. To call up the program, entef

C:PALASM <CR> n

2. Now you will see the first screen of the PALASM2 interactive
menu.

Next, press <CR> again.

Your screen now displays the main menu as shown in Figure
2-1.

Monolithic m Memories 2-7

INSTALLING PALASM 2 SOFTWARE
e e ————————

PALASM V2.22 (c)MONOLITHIC MEMORIES,SANTA CLARA,CA 95054 FEB 28,1987

Input PDS file dummy pds Directory ~ CA
| Device PAL20RA10 F1 Display Dir F2 DOS Command

PALASM 2

F3 Edi PDS

F4 Program Device

MENU

F5 PALASM F6 Install Menu

WINDOW

F7 View Data F8 Supplementary

KEY MOVEMENTS

<esc><escs>= exit PRESS F9 FOR HELP ¥ = nextfield
<esc><ret>=refresh - = previous position *= previous field
del> = delete = next position
:ins>> = insert * P <home> = first field

<end> = lastfield
STATUS : ALL OK

Figure 2-1: The Main Menu

Congratulations! You have successfully installed PALASM 2
software in interactive mode on your hard disk. Remember, to
call up PALASM 2 software, type

PALASM

2-8 Monolithic m Memories

INSTALLING PALASM 2 SOFTWARE

Non-menu Mode

Modify System File

Run A Test

To install PALASM 2 software in non-menu mode, you must
modify the AUTOEXEC.BAT file.

1. Openthe AUTOEXEC.BAT file. ﬂ

2. Add the following two lines to the end of the file.

PATH <D>:\PALASM2\PAL2;%PATH% <CR>
DPATH <D>:\PALASM2\PDF;<D>:\PALASM2\MSG;
<D>:\PALASM2\SUPL; <CR>

3. Reboot the system.

After you have installed PALASM 2 software in non-menu mode,
run a test. To activate each of the PALASM 2 programs, you
must type the program name. The complete list of programs is
given below.

PALASM2
MINIMIZE
XPLOT
SIM
PROASM
PROSIM
JEDMAN

For a description of each program, refer to page 1-14.

Congratulations! You have successfully installed PALASM 2
software in non-menu mode on your hard disk.

Monolithic m Memories 2-9

INSTALLING PALASM 2 SOFTWARE

CUSTOMIZE THE
INTERACTIVE
MENU

You may customize the interactive menuprogram with a one-time
set-up procedure so that from the main menu you can

*

Easily access supplementary programs

This feature enables you to go directly from the main menu to the
program of your choice without accessing DOS.

The installation procedure is stored in the file MENU.SYS. Each
time you call up the interactive menu, the software reads the file
MENU.SYS. Therefore, to customize the interactive menu, you
must modify MENU.SYS.

The format of your MENU.SYS file is shown in Figure 2-2.

C R
\PAL2\
C
\CSUPL\ Program
PDR —
C
\MSG\
C —
\PAL2\ED Editor
C > Data
EXE
C
\PAL2\PC2 > Programmer
EXE Data
DUMMY)
PDS > Input File
Name
$PINOUT.COM
User
> Customization

Figure 2-2: MENU.SYS

2-10 Monolithic m Memories

INSTALLING PALASM 2 SOFTWARE

Any change you make to the file must occur after the Input File
Name (see Figure 2-2).

Add a Program to the
Supplementary
Programs List

Supplementary programs supported by Monolithic Memories can
be called up from the main menu by choosing the supplementary
program option. You may activate more programs from the main
menu by adding the program names to the menu system file
MENU.SYS. For a complete list of the supplementary programs
that you may add to the system file, refer to page 2-12.

The procedure to add a program to the MENU.SYS file follows.

1. Enter the text editor.

2. Openthe MENU.SYS file.

3. To the end of the file, add the filename of the Supplementary
program in the following format.

$<FILENAME>
For example, to add the program PINOUT, you enter
$PINOUT.COM
4. Save the file.
That's all.- To test the modification, call up the interactive menu

program. The F8 option will now allow you to call up the
Supplementary program you have added.

Monolithic m Memories 2-11

INSTALLING PALASM 2 SOFTWARE

Software Programs On
The Supplementary
Diskette

Following are the programs for which direct access from the main
menu is not available. Turn to page 2-11 for the procedure that
allows you to call up these programs from the main menu.

SCRSIM.COM Simulation Waveform Generation Program

VTRACE.COM A Utility Program To Print Sim Output Files
As Timing Diagrams

BINHEX.COM A Binary To Hexadecimal Conversion
Program

TIMING.COM Timing Diagram Entry Program
PINOUT.COM Pinout Program

DECODE .COM Address Decoder Program That
Generates PALASM2 Boolean
Equations

COMPUTER<->
PROGRAMMER
CONNECTION

Because a large number of hardware combinations are possible,
this manual cannot give detailed instructions or cabling
information. Consult the manuals supplied with the computer
and the programmer. Read also the general configuration
information below for your type of computer.

IBM-PC

The usual practice with PCs is to connect the programmer to a
serial port. In MS-DOS, the serial ports have the device names

212 Monolithic m Memories

INSTALLING PALASM 2 SOFTWARE

COM1: and COM2:. For computers using add-on boards with
serial /0 ports you may need to set switches on the board or the
PC's mother board. To use the communication commands in the
rest of this manual, you need to know the device name of the
port the programmer is connected to.

VAX Minicomputers

Many terminals such as the VT-100 have a serial port that echoes
the information displayed on the terminal screen. Connect the
programmer to this port. (Confirm interface with your computer
operations department to avoid damage to the terminal.) When
you want the information displayed on the screento go to the
programmer as well, you just have to turn on the programmer and
put it in receive mode.

Verifying the
Communications Link

To verify the communications link, you can usually send a simple
memory dump from the PAL device programmer to the
computer. Because PAL device programmers differ in the way
that they accept data files, we can only describe a general
procedure here. Refer to the manual supplied with the PAL
device programmer for specific information.

The general procedure for establishing the communications link
is as follows:

1. Setthe transmission parameters for the programmer. Refer
to the programmer manual for specific information. Typical
parameters are shown in Table 2-1.

Monoalithic m Memories 2-13

INSTALLING PALASM 2 SOFTWARE

e ——————

Table 2-1:
Typical Transmission Parameters

Parameter Typical Setting
baud rate 1200, 2400, or 4800
number of data bits 7

number of stop bits 1

parity even

2. Set the same transmission parameters for the computer.
The appropriate command for each operating system is
shown in Table 2-2.

Table 2-2:
Command to Set Transmission Parameters

Operating System Command
MS-DOS MODE (see NOTE
following)

Example: MODE
COM1:4800,N,8,1
VMS SET TERM

Note: If you are using an IBM PC and a DATA /O PAL programmer,
the supplementary program PC2 is an effective way to connect these
systems. PC2 sets the transmission parameters for the IBM PC and
establishes the communications link. Appendix A describes how to
verify the communications link for this combination of devices.

3. Prepare the computer to receive information from the
programmer. The easiest way is to set the computer to
display on the terminal screen whatever is received on the
serial port. The typical procedures are shown in Table 2-3.

2-14 Monolithic m Memories

INSTALLING PALASM 2 SOFTWARE
e

Table 2-3:
Commands to Display Programmer Output on Screen

System Command Notes

MS-DOS COPY COM1: CON: May be COM2: on
some systems (See NOTE)

VMS CREATE«<filename> Captures programmer output in
filename. End transmission
with <CTRL> Z.

Note: If you are using the DATA /O and IBM PC, use PC2 and
do Select E1on the DATA I/O. If the DATA I/O menu appears
onthe IBM screen, the communications link is working.

4. Dump part of the RAM contents of the programmer to the
serial port. Nearly all programmers can do this. If the
communications link is working, you should see the
characters on the computer terminal screen.

Monolithic m Memories 2-15

2-16 Monolithic m Memories

x
(1]
-
S,
/7]
2]
[a]
o.

3. PDS SYNTAX

The first step in using PALASM 2 software is for you to create a
design file. To create your design file, you use a text editor such
as Wordstar™ or Edlin™. Your design file contains the specifi-
cations that PALASM 2 software uses to program a PAL or
PROSE device. We refer to the design file as the PAL device
Design Specification It is important to remember the acronym
PDS because it is used as the filename extension for your design
file. This chapter describes the syntax and structure for each of
the two kinds of PDS files that PALASM 2 software accepts:
Boolean equation design and state machine design.

IN THIS CHAPTER

For a description of... Refer to page...
Boolean Equation Design 3A-1
State Machine Design 3B-1

Monolithic m Memories 3-1

FUS SYNIAKX

PDS FILE
STRUCTURE

Your input file may be in Boolean equation design or State
Machine design. Both kinds of input files must be named
<filename.PDS> and have the following structure.

Declaration Section

Boolean Equations
or
State Section

Simulation

Figure 3-1: PDS File Structure

This chapter provides detail on how to create both kinds of input
files using the generic PDS structure shown above. For
information on simulation, turn to Chapter 3C, Simulation.

3-2 Monolithic m Memories

PDS SYNTAX

Table 3-1:

PALASM 2 Software Reserved Words

AUTHOR

BEGIN

CHECK

CHIP

CLKF

CLOCKF

CMBF

COMPANY
CONDITIONS

DATE
DECLARATION
DEFAULT_BRANCH
DEFAULT_BRANCH HOLD_STATE
DEFAULT_BRANCH NEXT_STATE
DEFAULT_OUTPUT
DO

ELSE

END

EQUATIONS

FOR

GND

IF

MASTER_RESET
MEALY_MACHINE
MOORE_MACHINE

NC

OR
OUTPUT_ENABLE
OUTPUT_HOLD
PATTERN
POWER_UP
PRLDF
REVISION

RSTF

SETF
SIMULATION
STATE

STRING

THEN

TITLE
TRACE-OFF
TRACE-ON
TRST

VCC

WHILE

All MMI programmable logic device types are reserved words; for

example, PAL16R8 and PMS14R21.

Monolithic m Memories

e

3-3

PDS SYNTAX

S ——

34 MonollthicMMemorles

Boolean Equation Design

4 2?%%
L
.

L

.
@gg;;’%

3A. BOOLEAN
EQUATION DESIGN

DECLARATION
SECTION

Function

You use the Declaration section to document information about
the designer and part, to define pin assignments, and to define
string names.

Monolithic m Memories 3A-1

BOOLEAN EQUATION DESIGN

Structure

The structure of the Declaration section is shown in Figure 3A-1.

Keyword Data

TITLE <title of design>

PATTERN <pattern identification>

REVISION <revision identification>

AUTHOR <designer's name>

COMPANY <company hame>

DATE <date of creation>

CHIP <chip name> <PAL type>
<pin list>

STRING <string name> <text>

Figure 3A-1: Declaration Structure

CAUTION: CHIP is the only required keyword without which a
fuse plot will not be generated. If you omit any of the other key
words you will see a warning message, but the compiler will
continue to generate a fuse plot.

Figure 3A-2 shows an example of the Declaration section.

3A-2 Monolithic E.ﬁﬂ Memories

BOOLEAN EQUATION DESIGN

]

TITLE This is an example to
illustrate the syntax
PATTERN ABC1234_MMI REVISION 000-

ABC1234
AUTHOR John Doe
COMPANY Monolithic Memories Inc.
DATE July 5, 1986
CHIP example only PAL20RS10
;PINS 1 2 3 4 5 6

CLK ONE /TWO THREE SET RESET

;PINS 7 8 9 10 11 12
NC NC NC WRITE READ GND

;PINS 13 14 15 16 17 18
/OE OUT1 OUT2 NC NC NC

;PINS 19 20 21 22 23 24
/JACK /MMI NC NC MEMADR VCC

STRING INITIALIZE 'RESET * ONE * /TWO'
STRING REQUEST '/RESET * WRITE * MEMADR'

Figure 3A-2: Example of the Declaration Section

SYNTAX

The following items are general rules of PDS syntax.

1. Comments may be inserted freely, and must begin with the
semi-colon character (;).

2. Line length is 128 characters; all characters beyond this limit
are ignored.

Monolithic m Memories 3A-3

BOOLEAN EQUATION DESIGN

s

3. Data item name length is 24 characters; further characters
are ignored.

4. Data identifiers can be any upper or lower case alphanumeric
text including spaces, tabs and underscores.

5. Do not use these special characters: |@#$% * & * (
y-=+{}[]"~:"<>7?,. The slashkey (/) is used to denote
active-low signals.

6. All control characters (including tabs) are treated as a single
space.

Aside from these general syntactical rules, there are no special
considerations for the use of the keywords TITLE, PATTERN,
REVISION, AUTHOR, COMPANY, DATE. The keyword CHIP is a
required part of the declaration section of a PDS file. The keyword
STRING is an optional part of the declaration section with special
syntactical considerations.

CHIP
CHIP is the keyword necessary to start the pin list information.
CHIP <chip name> <device type><pin list>
Example:
CHIP OCTAL_LATCH PAL10H20P8 Al,...VCC
Chip Name

A description of the circuit. For example, OCTAL_LATCH.

Any alphanumeric word up to 14 characters containing a letter.
The <chip name> is a required parameter and must be provided
before the <device type> field is specified.

3A-4 Monolithic m Memories

BOOLEAN EQUATION DESIGN

L]

If you intend routing your design through ZHAL, you may specify
the ZHAL device of your choice here. You may specify ZHAL20,
ZHAL24, or ZHAL24_20. (ZHAL24_20 utilizes the 24-pin
architecture for a 20-pin design.) If you do not spell out a device
name in this section of your design file, the ZHAL program will
choose an appropriate one for you by default.

Device Type

The device type is the part number of the supported PAL or m
PROSE device manufactured by Monolithic Memories.

PAL devices with different speed/power options are given the
same generic name. For example: PAL16R8, PAL16R8A,
PAL16R8A2, PAL16R8A4, and PAL16R8B all have the same
generic name PAL16RS.

Pin List

A list of signal names that you assign to the pins of the device.
When you are assigning signal names you must keep the
following points in mind.

1. Signal names cannot exceed 14 characters in length. The
first character must be a letter; the remainder may be letters,
numbers, or underscores. For example: 1, 2, 3, ... is an
illegal pin list, but p1, p2, p3, ... are legal pin lists.

2. Signals can be specified as active-low or active-high. Active-
low signals are preceded by / (/A is an active-low signal).

3. Signal names are separated by spaces or commas.

4. Special pins of the device are assigned special names. The
power pin is assigned VCC and the ground pin is assigned
GND. These names should come at the appropriate places in
the pin list. For example, in PAL20R8, pin number 24 is

Monolithic m Memories 3A-5

BOOLEAN EQUATION DESIGN

—]

VCC, and pin number 12 is GND. If any pin is not used, it
must be specified as NC (no connect).

5. Pins are listed in the order expected for DIP (dual in-line
package), regardless of whether you are planning to
eventually program DIP, LCC or Chip Carrier devices. Any
pin reordering for other packages must be done by the
programmer or other special fixture. The PAL64R32 device
pinout is specified for an 84-pin package.

Note: Do not use the reserved words shown in Table 3-1, or the
MMI programmable logic device types as chip signal names.

String
STRING is the keyword that introduces string identifiers in the
Declaration section of the PDS file. The keyword must be
repeated for each identifier.
STRING <string hame> '<text to be substituted>'
Example:
STRING LOAD ' LD * /CIN '

STRING CARRY ' /LD * /SET * /SET * CUP
STRING INPUT ' Al + /A2 + A3 !

3A-6 Monolithic m Memories

BOOLEAN EQUATION DESIGN

String Name

The string name is a user-defined name of up to 14 alphanumeric
characters. This name has to be unique, which means that it
should not be a reserved word, one of the signal names defined
in the pin list, or one of the string names used elsewhere.

Text to be Substituted

This is any legal expression specified within single quotes.

The text to be substituted can be of any length, must follow the m
syntax rules of the pin name identifiers, and must be delimited by

blanks or tabs.

To eliminate repeated typing of a frequently needed block of text
when writing the Functional Description of the circuit, you can
declare that block with an alphanumeric identifier. Then, instead
of typing the full text you can use the identifier as necessary.

You can also use previously defined string names in the string
declaration.

Example:

STRING INPUT ' Al + /A2 + A3 !
STRING OUTPUT ' LOAD * CARRY '

You can currently use a maximum of 20 unique strings within any
design file.

String substitution is textual replacement, and the compiler does
not try to find any logical meaning to it. You should be very
specific in what you want to substitute. Using the example given,
if in the equation section there is an occurrence of

Monalithic ﬁﬁﬂ Memories 3A-7

BOOLEAN EQUATION DESIGN
s

/INPUT

Then after substitution the resulting expression will be

/Al + /A2 + A3

not

/ (Al + /A2 + A3)

because DeMorgan Expansion is not performed on string
expressions. If the latter meaning is what you want, your string

definition should be

STRING INPUT ' (Al + /A2 + A3) '.

BOOLEAN
EQUATION INPUT

Function
You give all the implementation details of an application in the
Equations section of the PDS using Boolean equations. This

information will be used to generate the locations of the fuses to
be disconnected during programming of the part.

Structure

The beginning of the Equations section is denoted with the
keyword EQUATIONS. The remainder of this section consists of
Boolean equations that have the general structure:

SIGNAL NAME assignment operator TRANSFER FUNCTION

Depending on the nature of the output signal being described,
there are three basic types of equations used:

3A-8 Monolithic m Memories

BOOLEAN EQUATION DESIGN

*

Combinatorial
Registered
Functional

*

*

The syntax of the Equations section, as it is applied to these
three equation types, is shown in Figure 3A-3.

CAUTION:Any signal name used in the Equations section must
be declared first in the Declaration section.

EQUATIONS
(Keyword marking the beginning of functional description)

Combinatorial Equation:
<signal> = Function (<signal>, <operator>)

Registered Equation:
<signal> := Function (<signal>, <operator>)

Functional Equation:
<signal> . <sfunc> = Function (<signal>, <operators)

where

<signal> is the name of a pin from the pin list
<operator> is a basic operator (/, *, +, +:)

<sfunc> is a special function associated with the output

signal.

Figure 3A-3: Overview of Equation Syntax

The basic operators you use are shown in Table 3A-2. They
perform INVERT, AND, OR, and Exclusive-OR operations. These
operators can be used to describe any logic function on the right
side of the equation using sum-of-products form logic notation.

Monolithic m Memories 3A-9

BOOLEAN EQUATION DESIGN
—

Table 3A-1:
Basic Operators

/ INVERT is used whenever a signal has to be inverted.
It precedes the signal to be inverted.

/A means not A

* AND is used when ANDing two or more Boolean
variables. The operation of ANDing all the signals
results in a product term.

A*/B*C means A and (not B) and C

+ OR is used when ORing two or more product terms
and/or signals.

A +/C means Aor (not C)

:+: EXCLUSIVE-OR is used when exclusive - ORing
two or more product terms and/or signals.

A +: E means A exclusive-or E

OPERATOR PRECEDENCE: /,*, +, 4!

The specific use of combinatorial, registered, and functional
equations will now be described.

3A-10 Monolithic m Memories

BOOLEAN EQUATION DESIGN

Combinatorial

Equations

Combinatorial equations are identified by the operator =.
Because combinatorial output requires no clock, outputs are

based on

output = <product terms + <product terms> +...

where

<product term> ..is composed of <signal> * <signal> *....
<signal> is represented by a declared pin name or

the inputs.

complement.

Example:

CHIP POLARITY EXMPL PAL16P8

;PINS 1 2

A B

;PINS 6 7

/F NC

;PINS 11 12

Y /Z

;PINS 16 17

NC NC
EQUATIONS
Y = A *B +
/2 =E * F +
/W = E
Vv = /F

Monolithic m Memories

3 4

C D

8 9

NC NC
13 14
W /V
18 19
NC NC
/C * D
/E * /E

5
/E

10
GND

15
NC

20
VCC

3A-11

BOOLEAN EQUATION DESIGN

—

Registered

The signal on the left of = is the output for which the equation is
described. This output signal can be active-high (output) or
active-low (/output).

On PAL devices with programmable polarity , the polarity fuse is
programmed or left intact according to the polarities given on the
left side of the equation and those used in the pin list. When
these two

polarities are the same, the fuse is programmed, giving an active-
high output. When the two polarities differ, the fuse is left intact,
leaving the output active-low.

In the example, equations for outputs Y and Z have the same
polarity as in the pin list. On a programmable-polarity part (eg.
PAL16P8), the polarity fuse would be programmed. On an
active-low part (eg. PAL16L8), this would be an error.

The outputs W and V have polarities that are the reverse of those
specified in the pin list, so the polarity fuse is left intact. The
programmable-polarity feature allows you to describe the
function in either active-low or active-high state. You do not have
to transform the function using De Morgan's theorem. Refer to
page 3A-17 for more information on polarity.

Equations

Registered equations are identified by the operator :=.

These equations are described for outputs with a register. For
example: Each output of the PAL16RP8 device is a registered
output.

output := <product term> + <product term> + ...

where

<product term> ..is composed of <signal> * <signal> *....

<signal> is represented by a declared pin name or
complement.

3A-12

Monolithic m Memories

BOOLEAN EQUATION DESIGN

Example:
CHIP POLARITY EXMPL PAL16RP8

;PINS 1 2 3 4 5
CLK A B C D

;PINS 6 7 8 9 10
/E /F NC NC GND

;PINS 11 12 13 14 15
Y /Z W /v NC

;PINS 16 17 18 19 20
NC NC NC NC VCC

EQUATIONS

Y:= A *B + /C *D
/Z2:=E *F + /F * /E
/W:= E

V:=/F

The signal on the left side of := is the output described by the
equation.

The clock to the register in most cases is a special clock pin (e.g.,
on the PAL16RP8 device, pin number 1 is the clock pin). On
the PAL20RA10 device the clock is generated by a special
product term described in a CLKF functional equation on the
PAL20RA10.

The transition at the output of the register takes place on the
rising edge of the clock.

This output signal can be active-high (output) or active low
(/output).

Monolithic m Memories 3A-13

BOOLEAN EQUATION DESIGN

On programmable-polarity parts, the polarity fuse is programmed
or left intact according to the polarity given on the left side of the
equation and that used in the pin list. When they are the same,
the fuse is programmed, which means the signal is not inverted;
when they differ the fuse is left intact, which means the signal is
inverted.

The programmable polarity feature allows you to describe the
function in either active-low or active-high state. You do not have
to transform the function using De Morgan's theorem.

Refer to page 3A-17 for a discussion on polarity.

Functional Equations

Certain PAL devices, such as the PAL20RA10, have the
following programmable functions for registers:

* Set
* Reset
* Clock

* Three-state

These functions are represented by special equations in which
the keyword of the special function is a suffix to the signal name:
<output.sfunc> = <product term>

Example:
OUT.CLKF = A * B

The left side of the equation identifies the function for the output
defined by the right side of the equation. In the example this
means that product term A * B controls the Clock function of the
output OUT. Because these functions use only a single product
term, the OR (+) operation cannot be used. Order of appearance
in a PAL Design Specification is not significant for functional
equations.

3A-14 Monolithic m Memories

BOOLEAN EQUATION DESIGN

The programmable functions are described below.

SETF: The programmable
SET Function

RSTF: The programmable
RESET Function

On the PAL20RA10, it is always possible to bypass the register
by making the SET and RESET product terms high. There are
two ways of doing this. One way is to be explicit, as follows: m

OUT=A + /B +D* E ;Output defined as registered
OUT.SETF =VCC
OUT.RSTF = VCC
OUT.CLKF = GND

The other way is to be implicit, as follows:
OUT = A +/B + D * E; Output defined as combinatorial

In the implicit case, the program XPLOT will take care of the
default conditions for SETF, RSTF and CLKF.

In some cases, you might not want to use the SET and RESET
functions. Being explicit:

OuUT:=A+/B

OUT.SETF =GND
OUT.RSTF = GND
OUT.CLKF = CLK

Being implicit:

OUT=A+/B
OUT.CLKF = CLK

The program XPLOT will take care of the default conditions and
program the appropriate fuses.

Monolithic m Memories 3A-15

BOOLEAN EQUATION DESIGN

e —

Default for PAL20RA10

If the output is defined as combinatorial: the default value is
VCC. If the output is defined as registered: the default value is
GND.

CLKF: The Programmable
Clock Function

If the output is defined as combinatorial, then it is has no CLKF.
XPLOT will indicate an error if CLKF is defined.

Only the PAL20RA10 has a programmable clock. If the output
on the PAL20RA10 is defined as registered, then CLKF must be
defined. Otherwise, XPLOT will produce an error. (Define as
GND to disable.)

Defaults

GND (clock absent)

TRST: The Programmable
Three-State Function

The default for the three-state function is VCC. You can specify
this explicitly as:

OUT=A+B
OUT.CLKF = CLK
OUT.TRST = VCC

or implicitly by not specifying the three-state function.

The XPLOT program will program all the fuses.

3A-16 Monolithic m Memories

BOOLEAN EQUATION DESIGN

e ——

Polarity

Defaults

VCC (output enabled)

It is important to remember that on most programmable polarity

parts, the polarity fuse is located in front of the register and

affects the inversion of the data path. The data path is the output

of the OR gate through the polarity fuse and into the register. It m
does not affect the set or reset function of the output.

If no output equation is defined, the polarity fuse is left intact.

Output Polarity

An output can be defined as active-high or active-low. To
achieve the desired polarity on an output, the signals in your
PDS design file must be defined correctly. We will now look at
the factors that determine the polarity of an output.

Two factors determine the polarity of an output:
1. The signal in the pin list.

2. The occurrence of the same signal on the left side of the
operator in a Boolean equation.

We will discuss the relative polarity between the signal in the pin
list and the same signal in the Boolean equation.

The pin list, which is in the Declaration section of your PDS file, is
where you define pin names for the input and output pins on the
device. You write Boolean equations in the Equations section of
your PDS file.

Monolithic m Memories 3A-17

BOOLEAN EQUATION DESIGN

Figure 3A-4 shows an example of the pin list and Equations
section of a PDS file.

4 A
CHIP POLARITY EX PAL16PS8

;PINS 1 2 3 4 5
I1 12 I3 14 /IS5

;PINS 6 7 8 9 10
/I6 NC NC NC GND

Signal as ;PINS 14 15
User Defined —__[> /O2 03 /04 NC

Pin Name
;PINS 16 17 19 20
NC NC NC NC VvCC
Signalin EQUATIONS
Boolean __..__[>
Equation = I1 * I2
+ /I3 * I4
/02 = I5 * 16
+ /I6 * /IS5
/03 = 15
04 = /I6
\ y,
Figure 3A-4:

Pin List and Equations Section

The example in Figure 3A-4 shows that on pin 11, while the
signal in the pin list is active-low (/O1), the signal in the Boolean
equation is active-high (O1). This results in the output polarity
being active-low (/O1). The result is summarized in Table 3A-2.

3A-18 Monolithic m Memories

BOOLEAN EQUATION DESIGN

Table 3A-2:
Results of Polarity Used in Figure 3A-4

Output Polarity Pin List Boolean Equation
Active-low Active-low Active-high
/01 /01 01

We have just seen that the relationship between the signal in the

pin list and the signal in the Boolean equation has a direct

bearing on the polarity of the output pin. To achieve the desired

output polarity, you must define the signals in the pin list and m
Boolean equation appropriately.

How is this done? The chart in Figure 3A-5 contains every
possible combination of signals in the pin list and the Boolean
equation along with the resultant polarity of the output. Use the
chart as a guide when defining signals in your PDS design file.

Monolithic m Memories 3A-19

G

/S

BOOLEAN EQUATION DESIGN
Boolean
Equation

P PRI E R R RS L IR RR L LR EL LG FELE

R R R A R R A G AA
AR R R R R R R R CRAC A
P rrrsss F R R AR AR R T L R
prrrrss N AR AR R A LA
R R R R R R AR

Frrslss R R R R R R R~ TR
KRR (R R R A

AR FELELLLL LRSS E F A
AR C R R R R R A AL SLL S
AR R A AR CR A

D e i

%) 1

Pin List

3A-5 works on a

igure

F

ionin

t

Figure 3A-5
Signal Combinations and Output Polarity
ina

Monolithic m Memories

While any comb

Let us try and use this chart. If we want the output polarity to be
active-high, one possible combination would be /S in the pin list

and /S in the Boolean equation.
are /S in the pin list and S in the Boolean equation or vice versa.

programmable polarity device, PALs such as PAL16L8 and
PAL16R4 do not accept the same polarity in both the pin list and
the Boolean equation. The combinations these devices accept

Figure 3A-6 summarizes all possible combinations.

Note

3A-20

BOOLEAN EQUATION DESIGN
e

e N
;PINS 13 14 15 16 17 18
01 02 /03 /04 05 06
;PINS 19 20 21 22 23 24
07 08 09 010 011 VvCC
EQUATIONS
;For active-low output
/0l:=

<expression> ;01 is high in the pin 1list,
;low in the Boolean equation

03:

<expression> ;03 is low in the pin 1list,
;high in the Boolean equation

;For active-high output

02:= <expression> ;02 is high in the pin list,
;high in the Boolean equation

/04 :

<expression> ;04 is low in the pin 1list,
;low in the Boolean equation

Figure 3A-6:
Summary of Output Polarities

Monolithic m Memories 3A-21

BOOLEAN EQUATION DESIGN

CHECKLIST FOR
BOOLEAN EQUATION
DESIGN FILES

1. Isthe PAL device design file free of control characters
such as form feeds, and was it created as a clean ASCII file?

2. Does the keyword CHIP appear before the design name,
PAL device type, and pin-list information?

3. Does the keyword EQUATIONS preface all Boolean
equations used?

4. Have you defined all strings to be used as logical
replacements for terms in the Boolean equations?

5. On 20-pin PAL devices, is GND specified as pin 10 and
VCC as pin 20? On 24-pin PAL devices, is GND specified
as pin 12 and VCC as pin 24?

6. [f you are specifying an active-low PAL device, is the signal
name on the left-hand side of the equation the logical
opposite of the signal name specified in the pin list? Are
the signal names the same for active-high parts?

7. Are you within the maximumr number of product terms for
any output?

8. Are you specifying .TRST equations for outputs with three-
state buffers only?

9. Are you specifying .CLKF equations for PAL20RA10
designs only?

10. Are all comments preceded by a semicolon (;)?

3A-22 Monolithic m Memories

BOOLEAN EQUATION DESIGN

[R R R
1}

11. Does the last line in your input file terminate with a hard
carriage return? (Omitting this carriage return will cause the
program to crash.)

12. If you do NOT have any errors during assembly, check
your fuse plot and JEDEC output for the following:

a) Is the number of product terms per equation correct?

b) With xyz.TRST=VCC specified for a three-state buffer,
are ALL fuses programmed on the three-state line? If
that output is being used as an input, are all fuses intact? m

¢) For PAL devices with programmable polarity, are the
polarity fuses correct as expected?

d) For PAL devices with product-term sharing, are the
sharing fuses correct? Product-term sharing fuses are
present in the fuse plots for MegaPAL, PAL20S10,
PAL20RS4,8,10 devices as the two unlabeled columns
of fuses at the right. They allow a pair of outputs to
exclusively share a changeable fraction of the product
terms available for the bank.)

e) For PAL devices with register bypass (MegaPAL), are the
proper outputs bypassed?

Monolithic m Memories 3A-23

BOOLEAN EQUATION DESIGN

S —
— e ————

3A-24 Monolithic m Memories

e
e mv:,;\ imm» . i,, i?;a

T W' zmw,ze\
- M@:»;ﬂww w«w
- - -

. af&»w@wwwb
- »w»m,w;««« .

o ;wm\@?wfé
va
- .

awsn@?*‘m &w’v};_m

. /m@:m .
.

-

..
.

.

s
@i . e

a'&;@rvﬂm

.

.
iﬂ;v@"“ﬂ» .
. ,w}m .

3B. STATE MACHINE
DESIGN

Note: State machine design entry is fully functional on the

PMS14R21 PROSE device. Because it is currently being beta

released for PAL devices, this chapter does not contain

references to PAL devices. Future versions of PALASM 2

software and documentation will include state machine design

entry for all Monolithic Memories PAL, PROSE, and PLS m
devices.

Monolithic m Memories 3B-1

STATE MACHINE DESIGN

Before discussing PALASM 2 software's state machine syntax,
we will define a state machine and its basic operation.

A state machine is a digital device that cycles through a
sequence of states in an orderly fashion. A state is a set of
values measured at different parts of the circuit.

Figure 3B-1 illustrates how a synchronous state machine is
implemented in PALASM 2 software.

Register

eal Behavior

— Output := function

(state, input)

> Output = function
(state, input)

Moore Behavior

> Output := function (state)

Input . .
——eB{ Combinatorial
— Logic
State
Transition
< Register
‘ E Combinatorial
Logic

> Output = function (state)

Output is valid after the active edge of the clock

3B-2

Figure 3B-1:
General Synchronous State Machine Architecture

Monolithic m Memories

STATE MACHINE DESIGN

Notice that two models are available. These are referred to as
Mealy and Moore behavior models. When the output is purely

a function of the current state, the state machine displays Moore
behavior. Refer to Figure 3B-2 for an illustration of Moore

behavior.
o
Outpu

Output= function (state)

Figure 3B-2: Moore Behavior

If the output is a function of inputs, the state transition, and the
current state, the state machine displays Mealy behavior. In
Mealy mode, PALASM 2 software allows either combinatorial or
registered outputs to be declared. Refer to Figure 3B-3 for an
illustration of Mealy behavior.

Monolithic m Memories 3B-3

STATE MACHINE DESIGN

C1/0ut1
C2/0ut2

Output = (Outt, Out2)
Output = function (state, input)

Figure 3B-3: Mealy Behavior

The basic ingredients of a state machine design are:

*

a list of state names

*

a list of conditions that cause state transitions

*

a list of outputs

DESIGNING FOR
PROSE DEVICES

Currently, a PROSE device best implements a state machine
design. The circuitry in a PROSE device is designed to
efficiently implement a state machine definition. State machine
designs are not yet fully functional on PAL devices.

3B-4 Monolithic m Memories

STATE MACHINE DESIGN

MEALY AND
MOORE MACHINES

In your design, you need to indicate which type of state machine
you will use. Pages 3B-2 to 3B-4 and Figures 3B-1 to 3B-3
demonstrate both Moore and Mealy behavior. Study your device
logic diagram and decide which model is best suited to your
design.

STRUCTURE AND
SYNTAX

Now that we have gone over the concept of a state machine as it
is implemented in PALASM 2 software, we will discuss creating a
state machine design file. Your design file is created using any
text editor.

If you are familiar with the PAL design specification (PDS) using
Boolean equations, you will find the structure of the state
machine design to be very similar.

A complete state machine design begins on page 4-24. We will
step through the sections of a state machine design using parts
of the same traffic controller example.

Before you begin to create your design file, study the device's
logic diagram in the PAL Handbook. After you have studied and
understand the device circuitry, you are ready to begin creating
your design file.

Your state machine design must have the structure shown in
Figure 3B-4.

Monolithic m Memories 3B-5

STATE MACHINE DESIGN

Declaration Section
State Section
Default Information
State Machine Equations

Condition Equations

Simulation Section

Figure 3B-4:
Structure of a State Machine Design File

We will define each section of the state machine design file
beginning with the declaration section.

DECLARATION
SECTION

Declaration Section
State Section

Default Information

State Machine Equations

Condition Equations

Simulation Section

The declaration section consists of names and titles: initial
documentation about your design. It also includes some
information about the device for which the design is intended.

3B-6 Monolithic m Memories

STATE MACHINE UEdDIGN

The structure of the declaration section for both a state machine
design and a Boolean equation design is the same. For further
detail on the structure of this section, refer to page 3A-1.

Suppose you are designing with the PMS14R21, a PROSE
device, to design a traffic controller. Figure 3B-5 shows how the
declaration section would look.

Monolithic m Memories 3B-7

DQIAIEC NAUMINE DEDIGN

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE
CHIP

;PINS

;PINS

;PINS

;PINS

TRAFFIC CONTROLLER
STATE MACHINE

1

JANE ENGINEER
MONOLITHIC MEMORIES
JANUARY 30, 1987

S MACHINE PMS14R21

1 2 3 4 5 6
CLOCK DCLOCK SEN1 SEN2 IZ2 I3

7 8 9 10 11 12
I4 I5 I6 1I7 SDI GND
13 14 15 16 17 18

RESET SDO RED1 YEL1l GRN1l RED2

19 20 21 22 23 24
YEL2 GRN2 01 00 MODE VCC

Figure 3B-5:

State Machine Declaration Section

In Figure 3B-5, the CHIP statement consists of the following:

*

Required keyword: CHIP

* Chip name: S_Machine

hﬁmmﬂﬂﬁcﬁﬁﬂﬂﬂmnaﬂbs

STATE MACHINE DESIGN

* Device name: PMS14R21
* Pinlist

To completely define the pin list, refer to the circuit design in the
PAL Handbook. For each pin you intend using in your design,
you must assign a pin name in the Declaration section. Pin
names are user defined. For further information on pin names
and polarity conventions, refer to pages 3A-5 and 3A-17.

STATE SECTION

Declaration Section

State Section
Default Information
State Machine Equations
Condition Equations

Simulation Section

The state section follows the declaration section. The
information you put in the state section determines how the
device is to be physically configured.

The state section is divided into three parts:

1. Default Information: The state section begins with the
keyword STATE. This is followed by a block of information
that tells the software what kind of machine you are
designing and the defaults to use when either the next state
or the outputs cannot be determined from the equations.

Monolithic m Memories 3B-9

STATE MACHINE DESIGN

2. State and Output Equations: This part of the state
section contains your equations that specify what conditions
cause movement from each current state to a next state. You
also specify what local default becomes the next state if no
condition is defined.

3. Condition Equations: The last part of the state section
begins with the keyword CONDITIONS. This is followed by
condition equations.

We will discuss the three parts of the state section in the
following pages.

Default Information

Declaration Section

State Section
Default Information
State Machine Equations

Condition Equations

Simulation Section

The structure of the default information part of the state section is
shown in Figure 3B-6.

3B-10 Monolithic m Memories

STATE MACHINE DESIGN

STATE

(required keyword)

MOORE_MACHINE or MEALY_MACHINE
(default)

OUTPUT_ENABLE or MASTER_RESET
(default)

OUTPUT_HOLD <output pin name(s)>

DEFAULT_OUTPUT <output pin name>
/<output pin name>
Y%<output pin name>

DEFAULT_BRANCH <state name>
or

DEFAULT_BRANCH HOLD_STATE

or

DEFAULT_BRANCH NEXT_STATE

Figure 3B-6:
Structure of Default Information

STATE

STATE s the required keyword marking the beginning of the
state section.

Monolithic m Memories 3B-11

STATE MACHINE DESIGN

MOORE_MACHINE or
MEALY_MACHINE

MOORE_MACHINE or MEALY_MACHINE indicate the type of
behavior model for which you are designing. Mealy machine is
the default.

OUTPUT_ENABLE or
MASTER_RESET

On a PROSE device, you have two options for configuring the
outputs:

* OUTPUT_ENABLE (fuse programmable)
* MASTER_RESET (default)

If you select the fuse programmable OUTPUT_ENABLE option,
the Preset/Output Enable (P/E) pin enables the outputs when

low, and three-states the outputs when high.

When you select the MASTER_RESET option, the
Preset/Output Enable (P/E) pin causes all output registers to go
high asynchronously. This puts the device in POWER_UP state.
(For more information on POWER_UP, refer to page 3B-21.)

OUTPUT_HOLD

You use OUTPUT_HOLD to list those pin names whose output
registers retain their values on a transition from the current state
to the next state. This occurs only when no new value can be
determined from the output equations.

3B-12 Monolithic m Memories

STAIE NAURAINE vCD1an

DEFAULT_OUTPUT

The DEFAULT_OUTPUT statement lists default values for each
output pin when no value can be determined from the output
equations. The pin can default to high, low, or don't care. The
three ways to indicate what default value an output pin will have
are listed in Figure 3B-7.

<pin hame> indicates that the pin
defaults to high

/<pin hame> indicates that the pin
defaults to low

%<pin name> indicates that the pin
defaults to don't care

Figure 3B-7:
Syntax for DEFAULT_OUTPUT Statement

List a pin in either the OUTPUT_HOLD or DEFAULT_OUTPUT
statements, but not in both. If a pin is listed in both statements,
the software will use the statement appearing last.

DEFAULT_BRANCH

You use DEFAULT_BRANCH to specify the state to which the
machine will go when no next state can be determined from your
design. Your three options are listed in Figure 3B-8.

Monolithic m Memories 3B-13

wimMle WIAUMNING UEDIGN

DEFAULT_BRANCH <state name> Go to the state
specified

DEFAULT_BRANCH HOLD_STATE Hold in the current
state

DEFAULT _BRANCH NEXT_STATE Go to the next state
listed in the design file

Figure 3B-8:
Syntax for DEFAULT_BRANCH Statement

STATE MACHINE
EQUATIONS

Declaration Section
State Section
Default Information
State Machine Equations

Condition Equations

Simulation Section

Now that we have discussed the default information, we will
discuss state machine equations. This part of the state section
consists of state transition and output equations that provide
detailed instructions on how the state machine will operate.

For each state you must define the following:

*

State name

3B-14 Monolithic m Memories

STATE MACHINE vEdDiuan
* Next states that are reachable from that state

* Conditions under which a transition from that state to the
next state can occur

* Outputs

State Machine
Equation Operators

State equations are formed using the operators shown in Figure

3B-9.
-> state transition
+ next condition
+-> default state transition

Figure 3B-9:
State Machine Equation Operators

Rules for State
Machine Equations

Remember the following rules when writing your state machine
equations:

1. Use the conditions that are defined in the CONDITIONS part
of the state section to trigger state or output transitions.
Condition equations follow the state and output equations in
the state section of your design file.

2. Do not use parentheses in your equations to
group either state names or conditions.

Monolithic m Memories 3B-15

DIAIE NMACUHINE DESIGN

State machine syntax uses three types of equations:
* State Equations
* Output Equations

* Condition Equations

State Equations
State equations describe the transitions from the named state to
the next state. They may also detail the conditions that trigger
transitions.

The syntax for a state equation is shown in Figure 3B-10.

<STATE>:= <CONDITION1> -> <STATE1> +...-> <STATE>

Figure 3B-10:
Syntax of State Equations

3B-16 Monolithic m Memories

STATE MACHINE DESIGN

Figure 3B-11 illustrates a simple state equation with a state diagram.

STATEO:= XYZ -> STATE2 +-> STATEO

Figure 3B-11:
Simple State Equation and Diagram

The equation in Figure 3B-11 says: when in STATE 0, if condi-
tion XYZ is true, go to STATE 2 ; otherwise stay in STATE 0.
STATE 0 is the local default next state.

The equation and diagram in Figure 3B-12 show an example that
does not specify a local default next state.

Monolithic m Memories 3B-17

3B-18

STATE MACHINE DESIGN

XYZ ABC

STATEl:= XYZ -> STATE2 + ABC -> STATES3

Figure 3B-12:
State Equation with No Local Default

The equation in Figure 3B-12 says: when in STATE 1, if
condition XYZ is true, go to STATE 2, or if condition ABC is true,
go to STATE 3. Notice the absence of a local default next state.
This indicates the presence of a DEFAULT_BRANCH statement
in the default information section. The equation implies that
when neither condition XYZ nor ABC is true, go to the
DEFAULT_BRANCH next state.

Figure 3B-13 shows a diagram for an equation taken from the
traffic controller design starting on page 4-24.

Monolithic m Memories

STATE MACHINE DESIGN

C3
C1
co \,

S0:= C3 -> S1 + CO -> S1 +
Cl -> S2 +-> SO

Figure 3B-13:
State Equation and Diagram from Traffic Controller
Design

The equation in Figure 3B-13 says: when in state 0 (S0), if
condition C3 is true, go to state 1; or if condition C0 is true, go to
state 1; or if condition C1 is true, go to state 2; otherwise, stay in
state 0.

Output Equations

Output equations describe the outputs you expect from each
state (Moore state machine) or the outputs you expect on
transitions to next states (Mealy state machine).

Moore Machine: Qutput:=Function (State)
Mealy Machine: Output:=Function (State, Transition)

Monolithic m Memories 3B-19

STATE MACHINE DESIGN

The syntax for a Moore machine output equation is given in
Figure 3B-14.

<STATE.OUTF> := <OUTPUT1>..*... <OUTPUT2>

Figure 3B-14:
Moore Machine Output Equation Syntax

The syntax for a Mealy machine output equation is given in
Figure 3B-15.

<STATE.OUTF> := <CONDITION1> -> <QUTPUT1> +
<CONDITION> -> <OUTPUT2> +->
<OUTPUTS1,2..>

Figure 3B-15:
Output Equation Syntax

Figure 3B-16 shows a diagram and equation for outputs on
transitions, and is therefore meant for a Mealy state machine.

XYZ: 01 * /02

STATE1.QUTF := XYZ -> 01 * /02
+-> 01 * 02 * /03

Figure 3B-16:
Mealy Machine Output Equation

Monolithic m Memories

STATE MACHINE DESIGN

The equation in Figure 3B-16 says: on a transition from STATE1,
if condition XYZ is true, output O1 will be high and

output O2 will be low; and since nothing is defined for output O3,
it will be determined by the OUTPUT_HOLD and
DEFAULT_OUTPUT statements. If condition XYZ is false,
outputs O1 and O2 will be high, and output O3 will be low.

Figure 3B-17 shows an output equation and diagram for a Moore
machine taken from the traffic controller example starting on page
4-24.

SO.OUTF := GRN1l * RED2

Figure 3B-17:
Moore Machine Output Equation

The equation in Figure 3B-17 says: the output expected for state
0 is GRN1 and RED2 are true.

POWER_UP Equation

The POWER_UP equation is the first equation of your set of
state and output equations.

The PROSE machine goes to the POWER_UP state upon
initialization. The purpose of the POWER_UP equation is to
specify what state the machine will enter during POWER_UP

Monolithic m Memories 3B-21

STATE MACHINE DESIGN

initialization. This is the same state the machine enters when
the.P/E pin is asserted low. (See page 3B-11.)

Figure 3B-18 shows the syntax for the POWER_UP state
equation.

POWER_UP := VCC -> <state name>

Figure 3B-18:
Syntax for POWER_UP State Equation

You will notice that only one next state is specified. Currently,
PALASM 2 software allows only one next state from
POWER_UP.

POWER_UP For Moore
And Mealy Machines

On a Moore machine, the POWER_UP equation is a state
equation. Figure 3B-19 shows an example of a POWER_UP
state equation for a Moore machine.

3B-22 Monolithic m Memories

STATE MACHINE DESIGN

VCC

POWER UP := VCC -> STATEO

Figure 3B-19:
Moore Machine POWER_UP Equation

In the example, the pin VCC defines an unconditional transition
to the specified state.

On a Mealy machine, you need to have a state and an output
equation for POWER_UP. The state equation is exactly like the
POWER_UP equation for a Moore machine.

A Moore machine does not require an output equation for the
POWER_UP state.

A Mealy machine requires an output equation to specify what
output you need on the transition to the next state. The syntax
for a Mealy machine POWER_UP output equation is shown in
Figure 3B-20.

Monolithic m Memories 3B-23

STATE MACHINE DESIGN

POWER_UP.QUTF := <OUTPUT>...*...<OUTPUT>...

Figure 3B-20:
Syntax for Mealy Machine POWER_UP Output
Equation

Both POWER_UP state and output equations for a Mealy
machine are shown in Figure 3B-21.

POWER UP := VCC -> STATEQ
POWER UP.OUTF := 01 * 02 */03

Figure 3B-21:
POWER_UP State and Output Equations for Mealy
Machine

Condition Equations

Declaration Section
State Section
Default Information
State Machine Equations

Condition Equations

Simulation Section

3B-24 Monolithic m Memories

STATE MACHINE DESIGN

The third part of the state section is introduced by the required
keyword CONDITIONS and follows the state and output
equations. Condition equations define conditions used in the
state section. These conditions are used to determine whether
transitions occur (Moore or Mealy) and whether outputs change
(Mealy only).

Figure 3B-22 shows condition equations from the traffic
controller design starting on page 4-24.

CONDITIONS
CO = /SEN1 * /SEN2
Cl = /SEN1 * SEN2
C2 = SEN1 * /SEN2
C3 = SEN1 * SEN2
Figure 3B-22:

Sample Condition Equations
This block begins with the keyword CONDITIONS.

Next, each condition used in the state section is defined in a
condition equation. Each equation sets a condition equal to a
sum-of-products of device inputs.

Rules for Condition
Equations

1. Do not use parentheses to group terms in your condition
equations.

2. The conditions that govern either state or output transitions
from the same current state must be mutually exclusive. If
they are not mutually exclusive, the transitions will conflict.

Monolithic m Memories 3B-25

STATE MACHINE DESIGN

An example of mutually exclusive conditions is shown in
Figure 3B-23.

COND1 = I1 * I2 * I3
COND2 = /Il * I4

Figure 3B-23:
Mutually Exclusive Conditions

Conflicting conditions occur when two or more conditions may be
true at the same time. An example of conflicting conditions is
shown in Figure 3B-24. Notice that conditions COND1 and
COND2 are not mutually exclusive; both conditions may
simultaneously be true when |1 is high.

CONDL = I1 * I2 * I3
COND2 = Il * I4
Figure 3B-24:

Conflicting Conditions

Where conflicting condition equations exist and both conditions
become true, conflicting transitions result and the next state or
output will be undefined.

3B-26 Monolithic m Memories

STATE MACHINE DESIGN

SIMULATION

Declaration Section
State Section
Default Information
State Machine Equations

Condition Equations

Simulation Section

The simulation section is the last part of the design specification. m
Simulation is discussed in Chapter 3C.

Monolithic m Memories 3B-27

STATE MACHINE DESIGN

3B-28 Monolithic m Memories

3C. SIMULATION

After you have defined the logic of your function in terms of
equations, you need to be able to verify that the equations do
implement the required function. Hence, simulation is a very
important part of any design cycle. The basic feature of any
simulation is the ability to give a trial set of input values to your
design and check the resulting outputs for correctness.
PALASM 2 software provides you with this ability.

In general, logic simulation can be described using

* PRLDF, SETF, CLOCKF, TRACE_ON, TRACE_OFF, and m
CHECK commands.

* a FOR <variable> DO loop to iterate a set of commands a
fixed number of times.

* aWHILE <condition> DO loop also to iterate a set of
commands till the condition is false.

* an IF <condition> THEN ELSE for conditional branching.

PALASM 2 software has an Event-Driven Simulator supporting all
the different PAL device architectures, both asynchronous and
synchronous. The program is designed so that internal events
generated by asynchronous/synchronous feedbacks and
external events you generate are simulated in a very realistic
way. Oscillatory conditions are also detected and reported to the
user. Conflict in the expected and the actual value of any signal
is an error, which is detected by the simulator and reported to the
user. The simulation continues from that point using the actual
value of the signal.

The PALASM 2 software language has simulation commands
which are English-like words, thereby making the simulation

Monolithic m Memories 3C-1

SIMULATION

—

specification very natural to read and understand. Facilities exist
for iterative looping, conditional branching, setting of signals,
checking of signal values, and selective observation of signals.
All these commands will be explained in this section. All the
simulation results are stored in two files: a history file
(<filename>.HST) and a trace file (<filename>.TRF). The history
file contains the values of all the signals from the start of
simulation to the end. The trace file contains the values of the
signals mentioned in TRACE_ON statements and between
these and following TRACE_OFF statements.

The simulation results are organized in a horizontal format
resembling a timing diagram. Each page contains 40 vectors. A
maximum of 512 vectors are allowed with this release of the
simulator. Corresponding to each SETF and CLOCKF

statement in the simulation a g or ¢ appears on the horizontal axis
in the result files. A CLOCKF statement causes the clock to go L
to H to L. The ¢ appears over the final L. This helps you to
identify the vector corresponding to the SETF or CLOCKF
statement.

SIMULATION
SYNTAX
OVERVIEW

Our basic philosophy in writing the simulation language was to
make it easy for you to describe a function in a natural way, so
that you could in turn find it easy to comprehend the behavior of
the design from the simulation specification. PALASM 2
software simulation language is divided into two sections:

* Directives

* Structured Control

Simulation directives are commands to establish circuit inputs,
clock waveforms, check for circuit outputs and capture time
response waveforms as you find necessary.

3C-2 Monolithic m Memories

SIMULATICN

e

The simulation section is introduced by the required keyword
SIMULATION.

Simulation Directives-

Syntax:
PRLDF <signal list>
SETF <signal list>
CLOCKF <clock pin>
CHECK <signal list>
TRACE_ON <signal list>
TRACE_OFF

Structured Control
Constructs-Syntax:

* FOR <variable>:= <lower limit> TO <upper limit> DO
BEGIN <statements> END

* WHILE <condition> DO
BEGIN <statements> END

* IF <condition> THEN
BEGIN <statements> END
ELSE
BEGIN <statements> END

The structured control constructs are used to build up
sequences of operations that repeat or are modified as a result of
particular logic values or conditions. They provide the basic
looping and decision branching of structured high-level
programming languages. <Condition> is a Boolean expression or
a mathematical equality. The condition is true if the Boolean
expression is asserted or the mathematical equality is satisfied.

Monolithic m Memories 3C-3

SIMULATION

DETAILS OF THE
SIMULATION
SYNTAX

Each of the simulation statements is described below along with
some related items necessary for their proper use.

PRLDF

PRLDF < output pin list >
Example:
PRLDF 01 /02 /03

The PRLDF statement is used primarily to assign logical values
to, or initialize, register outputs on preloadable PAL devices. The
arguments to PRLDF are registered output pin names.
Uncomplemented names cause high, while names preceded by /
cause low logic values to be assigned to the registered output
pins.

This command affects the flow of simulation differently according
to the way each registered PAL device has its preload
configured. For PAL devices that have a dedicated preload pin,
PRLDF successively disables the outputs, enables preload,
loads the registers with the required logic values, disables
preload and finally enables the outputs. For PAL devices that
have their registers preloaded with supervoltages, PRLDF loads
the output registers, with a P inserted in the clock field of the
JEDEC vector. Simulation continues with the new values. For
registered PAL devices that cannot be preloaded, PRLDF
provides a convenient way of initializing registers to desired
values. Since this cannot be done in hardware, no more test
vectors are generated in the JEDEC file. Simulation results will,
however, appear in the trace and history files.

3C-4 Monolithic m Memories

SIMULATICN

]

Points to Note

SETF

1. Only registered output pin names are valid arguments to the
PRLDF command.

2. The register outputs are preloaded, not the output pins.

3. When PRLDF is used on a state machine, both the state and
its outputs must be preloaded.

4. On certain PAL devices such as the PAL20X4, the A version
of the part preloads with supervoltages, while the standard
version does not. In these cases, preloading is performed
by the software, and a warning message is issued to you.

SETF <signal list>
Example:
SETF A /OE B /RESET /DO D1 D2

The signal is set high (H) if it is not preceded by / otherwise it is
set low (L). Inthe above example A, B, D1, and D2 are all set to H
and OE, RESET, and DO are all setto L.

The signal should only be set if you want a change from the
previous value. The simulator always remembers the last value of
all the signals. At the start of simulation, all signals are assumed
to have a don't care value (X).

Every time a SETF statement is executed, a vector is generated
and all the equations that are affected are evaluated. Any
internally generated events are also detected and evaluated.
With some activities, many more vectors can be generated by a
single SETF statement than with others, because of feedbacks
and asynchronous events. The simulator continues this process
of generating vectors and evaluating equations until the system

Monolithic m Memories 3C-5

SIMULATION
e —————————————————————

stabilizes, that is, until there are no more changes in the output
signals or no events are generated. If the system fails to stabilize
after ten iterations, then an oscillatory condition is detected, and
the simulation halts.

CLOCKF
CLOCKF «<list of clock signals>
Example:
CLOCKF CLK1 CLK2

The CLOCKF statement has the list of clock signals (dedicated
clock pins) to which a clock pulse is to be applied. Only the clock
pins of the device can be used in the CLOCKF statement; any
other pin is an illegal signal for this statement.

Each CLOCKF statement corresponds to a pulse going from low
to high to low. Thus two vectors are generated, and during the
positive edge transition, the new value of the registers being
clocked is transferred to the output. No action takes place for the
registers that are not clocked.

At every CLOCKF statement, internally generated events and
asynchronous events are detected; and if they are present, more
vectors are generated. The operation of CLOCKEF is similar to the
SETF statement except that CLOCKF goes through a pulse
rather than a level.

Using the SETF statement, initialize the clock pin to low before
using CLOCKF:

SETF <clock pin or /clock pin>

If the clock pin has a high value at the first CLOCKF statement, an
error occurs.

3C-6 Monolithic Eﬂﬂ Memories

SIMULATION

CHECK
CHECK <signal list>
Example:
CHECK Q0 /Q1 /Q2

CHECK lets you keep track of simulation results. The signals in
the CHECK statement are the high or low output signals that you
want to check. In the above example, you want to check if Q0 is
high and Q1 and Q2 are low. Again, a signal without / is to be
checked for high and a signal with / is to be checked for low.

Whenever a CHECK statement is executed, the simulator m
compares the actual value and the expected value of a particular

signal. If they are equal then no action is taken. Otherwise, an

error is reported and the simulator continues assuming the actual

value. CHECK reports the error placing a ? in the vector where

the error occurred as well as a vector number. The history and

trace files will contain the ? at this particular location.

CHECK is a powerful statement that should be used at important
points in your simulation for debugging your design.

TRACE_ON

TRACE_ON «<signal list>
Example:

TRACE_ON /OE SET RESET DO D1 D2 D3 /QO
/Q1 /Q2

This statement contains the signals that you want to have listed in
the trace file. The signals will be listed in the same order and with
the same polarity as present in the TRACE_ON statement. This
list of signals will be active until the next TRACE_OFF statement
or until the end of the simulation specification. New signals can

Monolithic m Memories 3C-7

3C-8

SIMULATION

be traced on after the TRACE_OFF statement. This statement
helps you group the signals more naturally for debugging
purposes. For example, all control signals can be grouped
together, then all data signals can be grouped together, and
then all output signals can be grouped together. This makes the
observation of the results in the trace file very easy.

TRACE_OFF

FOR Loop

TRACE_OFF

This statement traces off all the signals mentioned in the latest
TRACE_ON statement. After this statement, no more results are
added to the trace file until the next TRACE_ON statement is
executed. Thus none of the results between the current
TRACE_OFF statement and the next TRACE_ON statement are
displayed in the trace file.

This breaks your results into time frames which is critical for
debugging. It should be remembered that the history file
contains all the information generated from the start of simulation
to the end of simulation. The signals are in the same order and of
the same polarity as in the pin list of the CHIP statement.

FOR <index var> := <lower limit> TO <upper limit> DO
BEGIN
<statements>

END
Example:
FOR J:= 3 to 8 DO
BEGIN

SETF A /B CLOCKF clk
END

Monolithic m Memories

SIMULATION

e
e —

IF...THEN...

Loop

The FOR loop allows a very powerful, repetitive execution of
statements. Many statements can be embedded in a FOR loop-
even another FOR statement with a different indexing variable.
You can generate many vectors just by increasing the limits of
this loop. The <lower limit> should be less than or equal to the
<upper limit>. All the limit values should be greater than or equal
to zero. You cannot use negative values for the limits. The loop
is not executed if the conditions expressed in the limits are
equal.

ELSE

IF <cond> THEN or IF <cond> THEN m

BEGIN BEGIN
<Statements> <Statements>
END END

ELSE
BEGIN
<Statements>
END

Example:

IF J= 5 THEN
BEGIN
CHECK QO
END
ELSE
BEGIN
CHECK /QO0
END

There are two variations of this statement. In the first, there is an
ELSE clause, and inthe second there is no ELSE clause. If
the <condition> is true the THEN clause is executed; otherwise
the ELSE clause is executed. If there is no ELSE clause, then
the simulation executes the next statement after the IF

Monolithic m Memories 3C-9

SIMULATION
]

statement. Condition expressions cannot contain nested
parentheses.

The <condition> can be any mathematical equality (=, >, <, >=,
<=, <>)

Example 1:
IF (I<2) THEN
The <condition> can also be any Boolean expression.
Example 2:
IF (DRDY * /CLR) THEN
In Example 1, the condition of | less than 2 is checked. In

Example 2, the expression (DRDY * /CLR) is evaluated; if it is true
then the condition is true.

WHILE...DO Loop

WHILE<condition>DO
BEGIN
<statements>
END

The WHILE loop allows a repetitive execution of statements that
may be controlled by evaluation of logic conditions present
within the PAL device. Many statements can be embedded in a
WHILE loop including even other looping constructs. The WHILE
loop is used to iterate a set of commands until the condition is
false.

The <condition> can be any Boolean expression of logic signals.

3C-10 Monolithic m Memories

SIMULATION

KEY POINTS TO

NOTE

1. Allsignals are assumed to be don't care at the start.

2. Initialize all your control signals (like three-state, Preload and
Clock) to their default values. For example: if the 3-state pin
is not initialized to the default condition, then the simulation
will give erroneous results.

3. If the 3-state pin is, say, /OE then SETF OE will enable the
outputs and SETF /OE will three-state the outputs.

4. If the 3-state pin is, say, OE then SETF /OE will enable the
outputs and SETF OE will three-state the outputs. m

, 5. Points 3 and 4 also apply to the preload pins.

6. When using PAL20RA10 remember the following points:

Q0=A*B

QO0.CLKF = CLK

QO0.RSTF = RESET

QO0.SETF = SET

SETF SET /RESET ;The register QO is set to H and so
; the output pin will go L.

SETF RESET /SET ;The register Q0 is setto L and so
; the output pin will go H.

The data path of this PAL device is treated in the normal way
because the polarity fuse is in front of the register. Any
difference in the polarity between the signal in the pin list and the
left side of the equation is taken care of by the simulator.

It is only in the case of functional events that the value of the
register and the value of the pin are inverted.

Monolithic m Memories 3C-11

SIMULATION

RULES FOR STATE
MACHINE
SIMULATION
SYNTAX

These rules show the difference between Boolean equation and
state machine simulation syntax.

1. Ina Boolean equation design, you use the PRLDF, CHECK,
TRACE_ON, WHILE and IF statements to reference the
value of an output. In a state machine design, you may use
these statements to reference states as well as outputs.

Let us look at an example of a PRLDF statement used to
reference a state as well as outputs from that state. In Figure
3C-1, note that the same statement is used to PRLDF a state
and the outputs from that state.

PRLDF STATE ONE 01 /02 /03

Figure 3C-1:
PRLDF Statement

This brings us to rule #2.

2. When you PRLDF a state, remember to PRLDF the outputs
associated with that state in the same PRLDF statement.
Use one PRLDF statement for one state and as many signals
as fit within 128 characters. The more PRLDF statements
you use, the more vectors the software creates.

3. The two history output files from simulation are
<filename>.TRF (if TRACE_ON is used) and
<filename>.HST. On the PMS14R21, these files contain
information that is not found in the output files of a Boolean
equation design: the state of the machine at each point in
the simulation.

3C-12 Monolithic m Memories

SIMULATION

For a complete state machine design example that includes
simulation, refer to the traffic controller specification starting on
page 4-24.

Monolithic EM Memories 3C-13

SIMULATION

S ——

3C-14 Monolithic m Memories

4. USING PALASM 2
SOFTWARE

This chapter describes how to complete the process of creating a
PAL circuit after you have written your PAL device Design
Specification (PDS). In addition, a few example PDS files are
provided at the end of this chapter. A good way to begin using
the program is by trying a few example files.

Note: Example PDS files are available on an IBM-PC disk. If you
don't have a copy, contact your local Monolithic Memories sales

office. n

The procedure described in this chapter refers to non-menu
mode. Menu users will find the function key options clearly
defined on the main menu.

Monolithic Eliﬂ Memories 4-1

4-2

USING PALASM 2 SOFTWARE

GENERAL
PROCEDURE

The steps in using PALASM 2 software to create a circuit are as
follows:

1. Create the PAL Design Specification (PDS) file. Consult
chapter 3A of this manual for detailed instructions.

2. Runthe parser.

3. Run the minimization program (optional).
4. Assemble the JEDEC file.

5. Run the simulation program.

6. Download the file to the programmer.

7. Program and test the part.

Figure 4-1 shows a flowchart of the process.

Monolithic m Memories

USING PALASM 2 SOFTWARE

e ——

CREATE INPUT (PDS) FILE

RUN SYNTAX PARSER

RUN MINIMIZATION PROGRAM
(Optional)

ASSEMBLE JEDEC FILE

RUN SIMULATION PROGRAM

DOWNLOAD FILE TO
PROGRAMMER

PROGRAM AND TEST
DEVICE

Figure 4-1:
Device Programming Flowchart

Monolithic m Memories 4-3

44

USING PALASM 2 SOFTWARE

Step 1: Create the
PDS File

You must describe the circuit you want as a series of Boolean
equations in sum-of-products form, or in a set of state machine
equations. Part of this process is deciding on the number of
inputs and outputs that the circuit requires. Once you have this
information, choose a PAL device with the right number of
inputs, outputs, and product terms.

Using a text editor, create a PAL device design specification
(PDS) file. The file name must adhere to the conventions of the
operating system you are running PALASM 2 software on and
should end with the suffix .PDS.

Note: If you create your PDS file using a word processor (such

as WORDSTAR), use it in non-document mode. You must create
a clean ASCII file free of embedded control characters.

Step 2: Run The
Parser

1. Insert the disk containing the executable files in drive B.
Insert the disk containing your PDS file in drive A.

Make sure that the operating system is looking at both drives
for command files. The MS-DOS command

PATH A:\;B:\;

will take care of this requirement. (If you are using a hard disk,
specify drive C instead of B.)

2. Enter PALASM2 <CR

Monolithic m Memories

USING PALASM 2 SOFTWARE

The program will prompt you to give the name of your PDS
file.

3. Enter <filename.ext><CR>

Enter the name of your PDS file. (Full path names are not
supported by the software. Copy the file to your directory.)

4. Enter Y <CR> (Create error file.).
5. Enter Y <CR> (Echo PDS to terminal.)

6. EnterN <CR> (Establish compatibility with
PDSCNVT-generated files.).

7. EnterN <CR> (Generate a brief fuse plot.).

The system then checks the syntax of the design file. PALASM n
2 software creates an intermediate file, PALASM2.TRE, on the

default drive. Syntax errors are listed to the terminal (and to

PALASM2.ERR if 4 above is answered YES), along with an

explanation of locations and likely causes. Brief fuse plots do

not contain entries for phantom fuses and unprogrammed

product terms.

Step 3: (Optional)
Logic Minimization

Performing this step will automatically minimize your logic
equations and convert state machine language to Boolean
equations. Minimization helps you better utilize the space on
your device.

(PALASM automatically minimizes state machine designs on the
PMS14R21.)

Enter MINIMIZE <CR> (run Minimize software)

Monolithic m Memories 4.5

4-6

USING PALASM 2 SOFTWARE

Note: PALASM 2 software currently supports minimization for a
limited number of devices. Please refer to Table 1-1 for a list of
supported devices.

Step 4: Assemble the
JEDEC File

Enter XPLOT <CR> (run fuse plot software)

The system now produces the fuse plot and JEDEC output files.
XPLOT reads the intermediate file PALASM2.TRE and
processes each of the equations sequentially. If any
inconsistencies between the design file and the PAL device
architecture are detected, messages will be displayed. The
resulting XPLOT and JEDEC file will be listed by name and may
be used to program PAL devices.

Optional Step:
Disassemble the
JEDEC File

(This step can be run either before or after Step 5: Simulation.
The program, however, does not currently disassemble the
simulation part of the JEDEC file.)

Enter JEDMAN <CR> (run JEDEC disassembly program)

The system prompts you to enter your JEDEC filename. The
filename should have a .JED or .JDC extension. The next
prompt asks you if you wish to enter a new JEDEC filename. This
gives you the option of manipulating a JEDEC file that has been
used for another device.

The program presents you with three options:

*

Disassembly

Monolithic m Memories

USING PALASM 2 SOFTWARE
e

This option enables you to disassemble a JEDEC file. Your
output is a Boolean equation .PDS file.

* Recalculation of checksums
You can manipulate a JEDEC file directly using this option.
* Conversion of PAL22V10 JEDEC to PAL32VX10 JEDEC

The program JEDMAN takes a PAL22V10 JEDEC file and
converts it to a PAL32VX10 JEDEC file.

Step 5: Simulation
Enter SIM <CR> (run simulation software)

The system next produces the history (.HST) and trace (.TRF) n
files indicated by simulation commands and directives of the PDS

file. SIM also reads PALASM2.TRE, but it requires the full data

structure to begin device simulation. The simulator also reads

the JEDEC file produced by XPLOT and add simulation vectors

at the end, updating the necessary checksums (OUTPUT in

filename JDC).

Step 6: Download the
File to the
Programmer

Refer to Appendix B and your programmer manual.

Step 7: Program and
Test the Part

Refer to your programmer manual.

Monolithic m Memories 4.7

USING PALASM 2 SOFTWARE

Optional Step: Route
Logic

Enter ZHAL <CR>

The program attempts to route the logic equations in a ZHAL
array. If the process is successful, an appropriate message is
given. If the process fails, you see the message FORCE

ROUTE FAILURE along with the probable cause of failure.

The message that appears on your screen when the process fails
also indicates remedies, such as rearranging the device pinout.
ZHAL devices have a limited number of product terms; hence the
reason for failure is often an overlap of product terms between
adjacent pins indicated. ZHAL processing can be done for 20-
pin and 24-pin devices. By default, the software counts the pins
indicated in your design file and chooses the appropriate device.
You can, however, specify the device of your choice in your
design file.

Note: The ZHAL utility is not part of the regular package you get
when you order PALASM 2 software. You may, however, order
the ZHAL program from your local Monolithic Memories sales
office.

Error Messages

Most problems with design file syntax are caught by the front-end
PALASM 2 software program. Messages such as Malformed
Variables are given along with a line number location. The
line number can be identified by observing the echo output
listing generated by the program, if this option has been
selected.

You might also find it useful to have a printed copy of error

messages. You can make one by diverting the program output to
a file and then printing that file.

Monolithic m Memories

USING PALASM 2 SOFTWARE

Other errors in PDS syntax are only diagnosed during
processing by one or more back-end programs. Supplying too
many or too few pin hames, extra product terms, or invalid pin
usage are only diagnosed by the XPLOT program. You will

need to run each of these programs to catch all potential error
conditions. Appendix E lists all error messages generated by the
program.

All intermediate files generated by PALASM 2 software are
directed to listed drive (A:). For the input file 4CNT, the
intermediate files generated by PALASM 2 software are as

follows:
4ACNT.PDS Original user input file
ACNT.XPT Fuse plot
4CNT.JED JEDEC file with all checksums inserted n
ACNT.HST Complete Simulation History file —
ACNT.TRF Selective Trace of Simulation
PALASM2.TRE Intermediate design description
ACNT.JDC Complete JEDEC file containing

simulation vectors

Note: For designs involving the MegaPAL64R32, an
additional file with extension .VRX is generated. It contains the
specific fuse plot to be downloaded to the VARIX programmer.
A full (not brief) fuse plot must be specified for VARIX
downloading.

Monolithic m Memories 4-9

USING PALASM 2 SOFTWARE

DESIGN
EXAMPLES

Boolean Equation
Design

For an example of a state machine design, turn to page 4-24.

The following examples were generated from the 4CNT.PDS
supplied on the demonstration examples disk. (Contact your
local Monolithic Memories sales office if you don't have a copy of
the examples disk.) The input file, which includes simulation
equations, is followed by history, trace, XPLOT, and JEDEC files.

Input File

Title 4Bit_Counter

Pattern 4cnt .pds

Revision B

Author J. Engineer

Company Monolithic Memories Inc., Santa Clara, CA
Date 1/14/85

CHIP 4BitCounter PAL16RP4

;PINS 1 2 3 4 5
CLK UP AI BI CI

;PINS 6 7 8 9 10
DI CLR LOAD NC GND

;PINS 11 12 13 14 15
/0C NC NC D C

;PINS 16 17 18 19 20
B A NC NC VCC

4-10 Monolithic m Memories

USING PALASM 2 SOFTWARE

EQUATIONS

A := /A*X/B*/C*/D*/UP*/LOAD*/CLR ;When CLR=1, A=0.

+ /A* B*x C* D* UP*/LOAD*/CLR ;Else it will count

+ A* B* /D* /UP*/LOAD*/CLR ;UP or DOWN.

+ A*x/ B* C* UP*/LOAD*/CLR

+ A* /C* UP*/LOAD*/CLR

+ A* D* /UP*/LOAD*/CLR

+ LOAD*/CLR* AI ;New value is loaded

;when LOAD=1, CLR=0.

:= /B*/C*/D*/UP*/LOAD*/CLR ;When CLR=1, B=0.
/B* C* D* UP*/LOAD*/CLR ;Else it will count.

B* C*/D* /LOAD*/CLR

B*/C* UP*/LOAD*/CLR

B* D*/UP*/LOAD*/CLR

LOAD*/CLR* BI ;New value 1is loadedn
;when LOAD=1, CLR=0

++ + + + W

C := /C*/D*/UP*/LOAD*/CLR ;When CLR=1, C=0.

+ /C* D* UP*/LOAD*/CLR ;Else it will count.

+ C*/D* UP*/LOAD*/CLR

+ C* D*/UP*/LOAD*/CLR

+ LOAD*/CLR* CI ;New value is loaded
;when LOAD=1,CLR=0.

D := /D* /LOAD*/CLR ; Count

+ LOAD*/CLR* DI ;New value is loaded
;when LOAD=1, CLR=0.

SIMULATION

TRACE ON AI BI CI DI LOAD CLR UP A B C D
SETF LOAD /CLR AI BI CI DI OC ;Load all registers
CLOCKFE CLK ;to HIGH and count up

SETEF CLR ;Clear all registers
CLOCKF CLK

Monolithic m Memories 4-11

4-12

USING PALASM 2 SOFTWARE

SETF /CLR UP /LOAD

FOR I:= 1 TO 16 DO
BEGIN

CLOCKF CLK

END

SETF LOAD /CLR /UP AI BI CI DI
CLOCKF

SETF /LOAD

FOR I:= 1 TO 16 DO

BEGIN

CLOCKF CLK

SETF LOAD CLR AI /BI CI /DI
CLOCKF CLK
SETF /0OC

TRACE_OFF

;Start counting up

;Count up 16 clock
;cycles

;Load all registers
;to HIGH and count

; down

;Count down 16 clock
;cycles

;Test setting LOAD
;and CLR on at the
;same time.

;The 4-bit counter counts up or down and has the
;clear and load capability. The clear operation
;overrides count and load. The counter counts up
;whenever CLR=low, LOAD=low,and UP=high. It counts
;down whenever CLR=low, LOAD=low, and UP=low.

Monolithic [i.[iﬂ Memories

USING PALASM 2 SOFTWARE

XPLOT File
The following fuse plot of the 4Bit_Counter is produced by
PALASM 2 software. It shows the location and condition of each
fuse in the device.
X means the fuse is intact.
- means the fuse is programmed.

PALASM XPLOT, V2.22 - MARKET RELEASE (11-19-86)

(C) — COPYRIGHT MONOLITHIC MEMORIES INC, 1986
Title 4Bit_ Counter

Pattern 4cnt .pds

Revision B

Author Mehrnaz Hada, Bill Hollo

Company Monolithic Memories Inc.

Date 1/14/85

PAL16RP4

4BITCOUNTER

11 1111 1111 2222 2222 2233
0123 4567 8901 2345 6789 0123 4567 8901

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
KXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
AXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

SN oo WN PO

Monolithic m Memories 4-13

4-14

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42

USING PALASM 2 SOFTWARE

—X-— ——m— - X —=--X ---X
K== —mm— ——o X —=X- —=X-
—X=— —mmm - X= —=X- ———-
—_———— ———— —— X_ __...X —_—
X——m ———— —- X= ———= -==X
—— o —— — —— X_ ——— — ..._X_
—_——— X _______________
XXXX XXXX XXXX XXXX XXXX

—X== —=== ———— ——=X -—-X
=== mmmm mmmm ——o X —=X-
______________ X_ __X_
Xmm= mmmm mmmm oo X- -==X
._X_.... —_———— ——— _...X_. —_——
________ X_..._ ———— —————
XXKKX XXKX XXXX XXXX XXXX

—X== ——== —m—— —mm— ——oX
Xmmm mmmm e e o X
Xmmm —mmm e ———— —-X-
____________ X___ —_————
XXXX XXXX XXXX XXXX XXXX

Monolithic m Memories

USING PALASM 2 SOFTWARE

]

43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

OUTPUT PINS:

POLARITY FUSE:

TOTAL FUSES BLOWN:

XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX

XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX

XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX

11111111
23456789
XX----XX

548

XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

thu”ﬂdcﬁﬁﬂhﬁwnonhs

4-15

s —

4-16

History

PALASM SIMULATION,

(C)

USING PALASM 2 SOFTWARE

File

vV2.22

PALASM SIMULATION HISTORY LISTING

Title
Patter
Revisi
Author
Compan
Date

4BITCO
Page

CLK
Up
AI
BT
CI

4Bit Counter

n

on B

Mehrnaz Hada,
Monolithic Memories Inc.

y

4cnt .pds

1/14/85

UNTER
1

g cg cg
XHHLLHHLLH
XXXXXXXXHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
LLLLHHHHLL
HHHHHHHHLL
LLLLLLLLLL
LLLLLLLLLL
XXHHHHLLLL
XXHHHHLLLL
XXHHHHLLLL
XXHHHHLLLL
HHHHHHHHHH

C C C

HLHHLHHLHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
LLLLLLLLLL
LLLLLLLLLL
LLLLLLLLLL
LLLLLLLLLL
HHHLLLHHHL
LLLHHHHHHL
LLLLLLLLLH
LLLLLLLLLL
HHHHHHHHHH

Bill Hollo

c ¢C ¢ ¢
LHHILHHLHHL
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
LLLLLLLLLL
LLLLLLLLLL
LLLLLLLLLL
LLLLLLLLLL
LLHHHLLLHH
LLLLLHHHHH
HHHHHHHHHH
LLLLLLLLLL
HHHHHHHHHH

AﬂuuMMMhEmmlﬁmnaﬂbs

- MARKET RELEASE (11-19-86)
— COPYRIGHT MONOLITHIC MEMORIES INC,

1986

C C C
HHLHHLHHLH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
LLLLLLLLLL
LLLLLLLLLL
LLLLLLLLLL
LLLLLLLLLL
HLLLHHHLLL
HLLLLLLHHH
HLLLLLLLLL
LHHHHHHHHH
HHHHHHHHHH

USING PALASM 2 SOFTWARE

4BITCOUNTER
Page 2
C (] C

CLK HLHHLHHLHH
UP HHHHHHHHHH
AI HHHHHHHHHH
BI HHHHHHHHHH
CI HHHHHHHHHH
DI HHHHHHHHHH
CLR LLLLLLLLLL
LOAD LLLLLLLLLL
GND LLLLLLLLLL
/0C LLLLLLLLLL
D HHHLLLHHHL
C HHHLLLLLLH
B LLLHHHHHHH
A HHHHHHHHHH
VCC HHHHHHHHHH

c ¢ cg
LHHLHHLLHH
HHHHHHHLLL
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
LLLLLLLLLL
LLLLLLLHHH
LLLLLLLLLL
LLLLLLLLLL
LLHHHLLLLH
HHHHHLLLLH
HHHHHLLLLH
HHHHHLLLLH
HHHHHHHHHH

cg ¢ ¢
LLHHLHHLHH
LLLLLLLLLL
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
LLLLLLLLLL
HLLLLLLLLL
LLLLLLLLLL
LLLLLLLLLL
HHHLLLHHHL
HHHHHHLLLL
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH

Aﬁumﬂﬂﬂcﬁﬁﬂnﬁwnaﬂbs

c C C C
LHHLHHLHHL
LLLLLLLLLL
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
LLLLLLLLLL
LLLLLLLLLL
LLLLLLLLLL
LLLLLLLLLL
LLHHHLLLHH
LLHHHHHHLL
HHLLLLLLLL
HHHHHHHHHH
HHHHHHHHHH

4-17

USING PALASM 2 SOFTWARE

L .. . ——————

4-18

4BITCOUNTER
Page 3
c ¢ ¢ ¢ ¢c ¢ ¢ c ¢ cg cg
CLK HHLHHLHHLH HLHHLHHLHH LHHLHHLHHL LHHLL
9} Lo, LLLLLLLLLL LLLLLLLLLL LLLLL
AI HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHH
BI HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH LLLLL
CI HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHH
DI HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH LLLLL
Clk LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL HHHHH
LOAD LLLLLLLLLL LLLLLLLLLL LLLLLLLLLIL HHHHH
GND LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLL
/0C L., LL.LL.LLLLLL LLLLLLLLLL LLLLH
D HILLLHHHLLL HHHLLLHHHL LLHHHLLLHH HHLLZ
c LLLLHHHHHH LLLLLLHHHH HHLLLLLLHH HHLLZ
B LLLLHHHHHH HHHHHHLLLL LLLLLLLLHH HHLLZ
A HHHHILLLLLL LLLLLLLLLL LLLLLLLLHH HHLLZ
VCC HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHH

lﬁmmﬂﬂﬂcﬁﬁﬂlﬁmnaﬂbs

USING PALASM 2 SOFTWARE

Trace File

PALASM SIMULATION,

86)
(C)

vV2.22

- MARKET RELEASE

- COPYRIGHT MONOLITHIC MEMORIES INC,

(11-19-

1986

PALASM SIMULATION SELECTIVE TRACE LISTING

Title
Patter
Revisi
Author
Compan
Date

4BITCO
Page

AI
BI
CI
DI
LOAD
CLR

oQw g
:y'U

4Bit_Counter
n : 4cnt.pds

on : B

Mehrnaz Hada,

Bill Hollo

y : Monolithic Memories Inc.
1/14/85

UNTER

1

g cg cg
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHLL
LLLLHHHHLL
XXKXXKXXXXHH
XXHHHHLLLL
XXHHHHLLLL
XXHHHHLLLL
XXHHHHLLLL

C C C

HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
LLLLLLLLLL
LLLLLLLLLL
HHHHHHHHHH
LLLLLLLLLL
LLLLLLLLLH
LLLHHHHHHL
HHHLLLHHHL

c C C C
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
LLLLLLLLLL
LLLLLLLLLL
HHHHHHHHHH
LLLLLLLLLL
HHHHHHHHHH
LLLLLHHHHH
LLHHHLLLHH

JMWMWMbEEﬂnhmnwkw

c cC C
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
HHHHHHHHHH
LLLLLLLLLL
LLLLLLLLLL
HHHHHHHHHH
LHHHHHHHHH
HLLLLLLLLL
HLLLLLLHHH
HLLLHHHLLL

4-19

USING PALASM 2 SOFTWARE

e

4-20

4BITCOUNTER
Page 2
c ¢ ¢ cC ¢ cg cg ¢ cC c ¢ ¢ c
AT HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
BI HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
CI HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
DI HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
LOAD LLLLLLLLLL LLLLLLLHHH HLLLLLLLLL LLLLLLLLLL
¢lj 1Ln.LLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
UP HHHHHHHHHH HHHHHHHLLL LLLLLLLLLL LLLLLLLLLL
A HHHHHHHHHH HHHHHLLLLH HHHHHHHHHH HHHHHHHHHH
B LLLHHHHHHH HHHHHLLLLH HHHHHHHHHH HHLLLLLLLL
cC HHHLLLLLLH HHHHHLLLLH HHHHHHLLLL LLHHHHHHLL
D HHHLLLHHHL LLHHHLLLLH HHHLLLHHHL LLHHHLLLHH

Monolithic m Memories

USING PALASM 2 SOFTWARE

4BITCOUNTER
Page 3
c ¢ c¢ c ¢ ¢ c ¢ ¢ cg cg
Al HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHH
BI HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH LLLLL
CI HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHH
DI HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH LLLLL
LOAD LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL HHHHH
CLR LLLLLLLLLL LLLLLLLLLL LLLLLLLLLIL HHHHH
UpP Lo, LLLLLLLLLL LLLLLLLLLL LLLLL
A HHHHLLLLLL LLLLLLLLLL LLLLLLLLHH HHLLZ
B LLLLHHHHHH HHHHHHLLLL LLLLLLLLHH HHLLZ
C LLLLHHHHHH LLLLLLHHHH HHLLLLLLHH HHLLZ
D HLLLHHHLLL HHHLLLHHHL LLHHHLLLHH HHLLZ
Monolithic m Memories 4.21

USING PALASM 2 SOFTWARE

—

JEDEC File

PALASM XPLOT, V2.22 - MARKET RELEASE (11-19-86)
(C) - COPYRIGHT MONOLITHIC MEMORIES INC, 1986

Title : 4Bit_Counter

Pattern : 4cnt.pds

Revision : B

Author : Mehrnaz Hada, Bill Hollo
Company : Monolithic Memories Inc.
Date : 1/14/85

PAL16RP4

4ABITCOUNTER*

GO*FO*

L0512 10111111111011101110101010111111%*
L0544 01111111111011011101100110111111%*
L0576 10111111110111011111101110111111*
L0608 11111111110111101111100110111111*
L0640 01111111110111211110101110111111%*
L0672 11111111110111111101101010111111%*
L0704 111101112111111111111101101111111+*
L0768 10111111111111101110101010111111*
L0800 01111111111111101101100110111111%*
L0832 11111111111111011101101010111111*
L0864 01111111111111011110101110111111%
L0896 10111111111111011111100110111111*
L0928 11111111011111111111101101111111*
L1024 10111111111111111110101010111111~*
L1056 01111111111111111110100110111111*
L1088 01111111111111111101101010111111+*
L1120 10111111111111111101100110111111*
L1152 11111111111101111111101101111111*
L1280 111111111111111121111101010111111+*
L1312 11111111111111110111101101111111%*
L2048 00111100%*

V0001 CX111101XNOXXHHHHXXN*

4-22 Monolithic Eﬂﬂ Memories

USING PALASM 2 SOFTWARE

]

V0002 CX111111XNOXXLLLLXXN*
V0003 C1111100XNOXXHLLLXXN*
V0004 C1111100XNOXXLHLLXXN*
V0005 C1111100XNOXXHHLLXXN*
V0006 C1111100XNOXXLLHLXXN*
V0007 C1111100XNOXXHLHLXXN*
V0008 C1111100XNOXXLHHLXXN*
V0009 C1111100XNOXXHHHLXXN*
V0010 C1111100XNOXXLLLHXXN*
V0011l C1111100XNOXXHLLHXXN*
V0012 C1111100XNOXXLHLHXXN*
V0013 C1111100XNOXXHHLHXXN*
V0014 C1111100XNOXXLLHHXXN*
V0015 C1111100XNOXXHLHHXXN*
V0016 C1111100XNOXXLHHHXXN*
V0017 C1111100XNOXXHHHHXXN*
V0018 C1111100XNOXXLLLLXXN*
V0019 CO0111101XNOXXHHHHXXN*
V0020 CO0111100XNOXXLHHHXXN*
V0021 CO111100XNOXXHLHHXXN*
V0022 CO0111100XNOXXLLHHXXN*
V0023 CO0111100XNOXXHHLHXXN*
V0024 CO0111100XNOXXLHLHXXN*
V0025 CO0111100XNOXXHLLHXXN*
V0026 CO0111100XNOXXLLLHXXN*
V0027 CO111100XNOXXHHHLXXN*
v0028 CO0111100XNOXXLHHLXXN*
V0029 CO0111100XNOXXHLHLXXN*
V0030 C0111100XNOXXLLHLXXN%*
V0031 CO0111100XNOXXHHLLXXN*
V0032 CO111100XNOXXLHLLXXN*
V0033 CO0111100XNOXXHLLLXXN*
V0034 CO111100XNOXXLLLLXXN*
V0035 C0111100XNOXXHHHHXXN*
V0036 CO0101011XNOXXLLLLXXN*
V0037 00101011XN1XXZZZZXXN*
C446C*
9E50

Monolithic m Memoriles 4-23

USING PALASM 2 SOFTWARE

State Machine Design

Traffic Controller Example

We have used sections of the state machine traffic controller as
examples in Chapter 3B: State Machine Design. You will now
see how the entire example is created. (Parts of this example also
appear in Monolithic Memories' Programmable Logic Handbook.)

The traffic intersection we are designing for is illustrated in Figure
4-2.

RED2 YEL2 GRN2 O RED1
@) YEL1
O O O
1 O GRN1
«— 2 ra] SEN2
/.*I.'.r‘:\i
A
f‘!::‘“# /]
SEN1
Figure 4-2:

Traffic Intersection

4-24 Monolithic Eﬁﬂ Memories

USING PALASM 2 SOFTWARE

Figure 4-2 shows two one-way streets: direction 1 and direction
2. Each direction has a signal consisting of red, yellow, and
green lamps. These lamps are activated with active-high signals:
RED1, YEL1, GRN1 for direction one; RED2, YEL2, GRN2 for
direction 2. Also, each direction has a sensor that provides an
active-high signal indicating the presence of a vehicle. Our
controller is to manage this intersection with the sensors as
inputs and the lamps as outputs.

SEN1 RED1
SEN2 RED2
TRAFFIC YEL1
RESET SIGNAL
CONTROLLER YEL2
GRN1
GRN2
CLK r

Figure 4-3:
Traffic Signal Controller Logic Diagram

The traffic signal controller logic diagram in Figure 4-3 includes
the system clock (CLK) and an initialize or reset signal (RESET).
RESET drives the controller to the initial state you define in your
design.

In order to set up our design file, we need to spell out the
specifics of the controller. Figure 4-4 illustrates the traffic
controller with a state diagram.

Monolithic m Memories 4-25

4-26

USING PALASM 2 SOFTWARE

POWER_UP

VCC

SEN1.SEN2

Figure 4-4:
State Diagram of the Traffic Signal Controller

Monolithic m Memories

USING PALASM 2 SOFTWARE

S

Traffic Controller Design
Specification

The complete design file for the state machine traffic controller is

given below.

TITLE TRAFFIC CONTROLLER

PATTERN STATE MACHINE

REVISION 1

AUTHOR J. ENGINEER

COMPANY MONCLITHIC MEMORIES

DATE JANUARY 30, 1987

CHIP S _MACHINE PMS14R21

;PINS 1 2 3 4 5 6
CLOCK DCLOCK SEN1 SEN2 12 I3

;PINS 7 8 9 10 11 12
14 I5 I6 17 SDI GND

;PINS 13 14 15 16 17 18
RESET SDO RED1 YEL1 GRN1 RED2

;PINS 19 20 21 22 23 24
YEL2 GRN2 01 00 MODE VCC

STATE
MOORE_MACHINE
MASTER RESET
DEFAULT_OUTPUT /RED1 /YEL1 /GRN1 /RED2 /YEL2
/GRN2

Monolithic m Memoriles 4-27

USING PALASM 2 SOFTWARE

e

POWER UP := VCC -> SO
SO := C3 -> 31

+ CO -> Ss1

+ Cl1 -> 82

+-> S0

S1 := VCC -> 82
S2 := VCC -> 83
S3 := VCC -> 5S4
S4 := C3 -> S5

+ CO -> S5
+ C2 -> 86

+ -> S4
S5 := VCC -> S6
S6 := VCC -> S7
S7 := VCC -> SO
SO0.OUTF := GRN1l * RED2
S1.0UTF := GRN1l * RED2
S2.0UTF := GRN1l * RED2
S3.0UTF := YEL1l * RED2
S4.0UTF := RED1 * GRN2
S5.0UTF := RED1 * GRN2
S6.0UTF := RED1l * GRN2
S7.0UTF := RED1l * YEL2
CONDITIONS

CO = /SEN1 * /SEN2
Cl = /SEN1l * SEN2
C2 SEN1 * /SEN2
Cc3 SEN1 * SEN2

4-28 Monolithic m Memories

USING PALASM 2 SOFIWAHE

SIMULATION

TRACE ON CLOCK SEN1 SEN2 RED1 YEL1l GRN1 REDZ2 YELZ
GRN2

SETF RESET /CLOCK

CLOCKF CLOCK ;STATE TRANSITION ONLY ON 1ST CLOCK

CHECK /RED1 /YEL1 GRN1 /YEL2 /GRN2 RED2

SETF /SEN1 /SEN2

CLOCKF CLOCK

CLOCKF CLOCK

CHECK /RED1 /YEL1 GRN1 RED2 /YEL2 /GRN2

CLOCKF CLOCK
CHECK /RED1 YEL1l /GRN1 RED2 /YEL2 /GRN2

CLOCKF CLOCK
CHECK RED1 /YEL1l /GRN1l /RED2 /YEL2 GRN2

CLOCKF CLOCK
CHECK RED1 /YEL1l /GRN1 /RED2 /YEL2 GRN2

CLOCKF CLOCK
CHECK RED1 GRN2

CLOCKF CLOCK
CHECK RED1 YEL2

CLOCKF CLOCK
CHECK /RED1 /YEL1l GRN1l RED2 /YEL2 /GRN2

SETF /SEN1 SEN2
CLOCKF CLOCK
CHECK /RED1 /YEL1l GRN1 RED2 /YEL2 /GRN2

Aﬁumﬂﬂﬂcﬁﬁﬂhﬁunaﬂbs 4-29

UdING PALASM 2 SOFTWARE

e

CLOCKF CLOCK
CLOCKF CLOCK
SETF SEN1 /SEN2
CLOCKF CLOCK
CLOCKF CLOCK
CHECK YELZ RED1
CLOCKF CLOCK
CHECK GRN1 RED2

TRACE_OFF

The file TRAFFIC.PDS is the name of the traffic controller design
file. After running PALASM 2 software, we get several output
files The following pages show the history file that the simulator
produces.

HISTORY FILE

PROSIM, V2.22 - MARKET RELEASE (11-19-86)
(C) — COPYRIGHT MONOLITHIC MEMORIES INC, 1986

Title : TRAFFIC CONTROL
Pattern :TRAFFIC.PDS
Revision :A

Author :J. Engineer
Company :MONOLITHIC MEM
Date :3/31/86 [9/30]
S _MACHINE

4-30 Monolithic m Memories

USING PALASM 2 SOFTWARE

A

Page

CLOCK
DCLK
SEN1
SEN2
I2

17
SDI
GND
RESET
SDO
RED1
YEL1
GRN1
RED2
YEL2
GRN2
o1

00
MODE
VCC

STATE

S CcC s C

LHHLLLHHLH
KXXXXXXXXX
XXXXLLLLLL
XXXXLLLLLL
XXX XXXXXXX
XXXXXKXXXXX
XXXXKXXXXXX
LLLLLLLLLL
HHHHHHHHHH
KXXXXXXKXXX
HHLLLLLLLL
HHLLLLLLLL
HHHHHHHHHH
HHHHHHHHHH
HHLLLLLLLL
HHLLLLLLLL
KXXXXXXXXX
XXX XKXXXXXX
XXX XXXXXXX
HHHHHHHHHH

PPSSSSSSSS
0000000111
WW
EE
RR
Uu
PP

C C C

HLHHLHHLHH
)10.0.0.0.0.0.0:0.0:¢
LLLLLLLLLL
LLLLLLLLLL
)10.0.0.0.0.0.0.0.0.4
)10.0.0.0.0.0.0.0.0:¢
)10:0.0.0.0.0.0.0.0'4
LLLLLLLLLL
HHHHHHHHHH
KXXKXXKXKXX
LLLLLLHHHH
LLLHHHLLLL
HHHLLLLLLL
HHHHHHLLLL
LLLLLLLLLL
LLLLLLHHHH
XXXXXXKXXXXK
XXXXXKXXXXX
XXXXXXKXXXX
HHHHHHHHHH

SSSSSSSSSS
2223334445

c C c cC
LHHLHHLHHL
XXX XXXXKXX
LLLLLLLLLL
LLLLLLLLLL
XXXXXXXKXXX
XXXXXXXXXX
KXXKXXXXXXX
LLLLLLLLLL
HHHHHHHHHH
XXXXXXXXXX
HHHHHHHHLL
LLLLLLLLLL
LLLLLLLLHH
LLLLLLLLHH
LLLLLHHHLL
HHHHHLLLLL
XXX XXXXKXXX
XXX XKXXXXXX
KX KXXXXXXXX
HHHHHHHHHH

SSSSSSSSSS
5566677700

S C C
LLHHLHHLHH
XXXXKXXKXXXX
LLLLLLLLLL
HHHHHHHHHH
XXXXXXKXXX
XX XX XKXKXXX
XXKXXXXKXXXX
LLLLLLLLLL
HHHHHHHHHH
XXX XXKXXXX
LLLLLLLLLH
LLLLLLHHHL
HHHHHHLLLL
HHHHHHHHHTL
LLLLLLLLLL
LLLLLLLLLH
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
HHHHHHHHHH

SSSSSSSSSS
0002223334

hhmmﬂﬂﬂcmmﬂnﬁunaﬂhs

4-31

UdING FPALASM 2 SOFTWARE

S —

S _MACHINE
Page : 2

cs ¢ c¢ c
CLOCK LLLHHLHHLH HL
DCLK XXXXXXXXXX XX
SEN1 LHHHHHHHHH HH
SEN2 HLLLLLLLLL LL
I2 XXXXXXXXXX XX
I3 XXXXXXXXXX XX
T4 XXXXXXXXXX XX
I5 XXKXXXKXKXXXX XX
I6 XAXXXXXXXX XX
I7 XXXXXXXXKXX XX
SDI XXKXXXXXXXX XX
GND LLLLLLLLLL LL
RESET HHHHHHHHHH HH
SDO XEXXKXXXXXXX XX
RED1 HHHHHHHHHH LL
YEL1 LLLLLLLLLL LL
GRN1 LLLLLLLLLL HH
RED2 LLLLLLLLLL HH
YEL2 LLLLLLLHHH LL
GRN2 HHHHHHHLLL LL
01 XXXXXXXXXX XX
00 XXXXXXXXXX XX
MODE AXXXXXXXXX XX
VCC HHHHHHHHHH HH
STATE SSSSSSSSSS SS

4444666777 00

4-32 Monolithic E.ﬁﬂ Memories

Installation and Operation Notes

APPENDIX A
INSTALLATION &
OPERATION NOTES

IBM-PC / DOS 2.10
IMPLEMENTATION

Using PALASM 2

Software

Before starting you must have a work disk that has been created

using the procedure in Chapter 2. n

The example below walks you through the programming of a
PAL devicefrom start to finish. It assumes that you are working
with a 20-pin PAL device, an IBM-PC and a Data I/0O Model 29.

1.

Using a text editor, create your PAL device design file,
making certain that it follows the conventions stated in
Chapter 3, or copy example 8COUNT.PDS from the
Examples disk to your work disk. (Contact your local
Monolithic Memories sales office if you do not have a copy of
the Examples disk.)

If you are using Wordstar as your text editor, a word of
caution: Wordstar files created in document mode have
control characters which PALASM 2 software may not
recognize. A quick and simple test is to TYPE (DOS
command) your file on to the screen. If you see strange
characters, PALASM 2 software will have trouble
understanding the file. Although this is not a foolproof way
of catching all control characters, it unmasks most of them.

Monolithic m Memories A-1

INDIALLAIIUN AND UFPEHATION

]

EDLIN, which is available on your DOS disk, is a simple and
effective line editor that can be used to create straight ASCII
files free from control characters.

2. To start, insert the disk containing the program
PALASM.EXE into drive B and the disk with your WORK
diskette into drive A.

Reboot the machine. Now type:

PALASM2 <CR>
In response to the first prompt, type:

A: <filename>.PDS
This indicates that the input file, which is a design file
describing an 8-bit counter, is located on the disk in drive A.
Answer the four Y/N questions as explained in Chapter 4 of

this manual.

3. Insert the disk containing the XPLOT.EXE program in drive
B. and enter

A:>XPLOT
4. Inser the disk containing PC2 into drive B and enter
A:>PC2

5. Run PC2 (PALSETUP mode)to make certain the
communications parameters specified are correct. For the
Data I/O programmer, the recommended parameters are
4800 baud rate, 7 data bits, 1 stopbit and even parity. In any
event, due to limitations of the PC, do not exceed 4800
baud.

A-2 Monolithic m Memories

INSTALLATION AND OFPERATIUN

]

6. Return to the communications part of PC2. Before pressing
F1, check to see if proper communication has been set up
with the programmer. While downloading, the most common
problem is establishing that the Data 1/0 and PC are actually
communicating. To test this quickly, on the Data I/O, press
COPY from RAM to PORT START. If communication has
indeed been established, the contents of RAM on the Data
I/0 will now be dumped on the screen. You can now be sure
that the proper handshaking is taking place.

7. Next, manually enter the family pin code listed in Appendix B
of this manual. Using the DATA I/O keyboard, press
<COPY> from <DEVICE> to <RAM> on the Data 1/0 and,
when the programmer asks for the family pin code on the
window, key in the 4 digit code for the device you are using.
You will find the proper codes in the Data /O manual.

8. Press <SELECT> <E> <START> on the Data /0
keyboard. This tells the programmer to expect a JEDEC “
input file. Push <F1> on the IBM-PC to begin transmission.
(Provide a filename if asked.)

The clock face on the window of the Data I/O should begin to
turn, indicating data transfer. After transmission has been
completed, verify that the checksum on the Data I/O is all
right (no error status indicated.)

9. If you do not wish to use PC2, a quick and dirty way to set up
the communications parameters on the PC is to type the
following with the DOS disk in drive A:

MODE COM1:4800,E,7,1,P
This has the same effect as running PC2 in setup mode.
Next, assuming the file you wish to download is
<filenames.JED, instead of running PC2 in communications
mode, type

COPY <filename>.JED COM1:

Monolithic m Memories A-3

—

A-4

Restrictions

1.

INSIALLAIIUN AND OPERATION

The XPLOT program needs access to PAL device Definition
Files (PDF) in order to work with the specific architectural
dependencies of individual part types. The program first
searches the default directory to locate them and then on
drive B. This will work if you place your editor, design files
and scratch files on A (the default drive) and the executable
and PDF files on drive B (two drive system). The PATH
command should be used to allow finding the executable
files on drive B as in

A> PATH A:\;B:\;

If you have an IBM-XT, place all files in a single directory on
the fixed disk and substitute drive C for B in the PATH
command. That directory should be your default location. If
the system cannot find the PDF files, it will prompt you to
insert a disk into drive B.

Do not terminate the program abnormally by pressing CTRL-
C, BREAK, etc. when you are sending the output to a file. If
the session is terminated using CTRL-C, it may result in lost
files on your disk, since your output file will not have been
properly closed.

Suppose your output file on drive A is called OUTPUT.PRN.
If you abort your program using CTRL-C, when you look at
the directory, it will indicate that your output file contains zero
blocks:

A>DIR <CR>
OUTPUT.PRN 0 09-15-83 1:47p

Your disk, however, will contain lost files. To recover any lost

files or clusters, run CHKDSK with the /F switch using the
IBM 2.0 boot disk.

Monolithic m Memories

INSTALLATION AND OPERATION

—]

Type:

A> CHKDSK B:/F

1 1lost clusters in 1 chain

Convert lost chains to files
(Y/N)? ¥

362496 bytes total disk space

0 bytes in 1 hidden files

216064 bytes in 2 user files

1024 bytes in 1 recovered files

145408 bytes available on disk

MS-DOS names the recovered file, FILEO00.CHK. You can
then delete OUTPUT.PRN and rename FILE000.CHK as you
please.

3. The disk in drive A: should have a COMMAND.COM on it and
be formatted as a system disk. Otherwise, DOS will prompt
you to insert a COMMAND.COM disk after each program n
executes.

4. All the software must be from the same release. Running
different software versions on the same data files will cause
the programs to generate a PDF failure message.

PALASM 2 Software
Files

PALASM 2 software is distributed on 5 1/4 inch floppy disks.
The actual allocation of files and file count on a disk may vary
with the specific release of the program due to space
considerations. In general expect files with the suffix .PDS to be
located on the Examples Disk and files with the suffix .PDF on
the Executable Disks.

Monolithic E.[i.ﬂ Memories A-5

A-6

INSTALLATION AND OPERATION

VAX-VMS
IMPLEMENTATION

Installation of
Software

1. A directory or sub-directory should be created to contain the
PALASM 2 software, if one does not already exist. For ease
of identification name it [PALASM]; all future references in
this document will use [PALASM] as the directory name.

S CREATE/DIR [PALASM]
2. Move to directory [PALASM]
$ SET DEFAULT [PALASM]

3. Create a command procedure START.COM with the
following steps:

IN DEVICE := "MTAOQ:"

ALLOCATE 'IN DEVICE' IN_VOLUME
MOUNT/DENSITY=1600/0OVERRIDE=
IDENTIFICATION'IN DEVICE'
COPY/LOG 'IN DEVICE'INSTALL.COM *
DISMOUNT/NOUNLOAD IN_ VOLUME
DEALLOCATE 'IN DEVICE'

EXIT

v U

W W i

where MTAQ: is the name of the magnetic tape drive.

4. Remove the ring from the magnetic tape, load it on the
required drive, and set it on-line.

5. Execute the START command procedure:

S @START

Aﬁumﬁﬂﬁcmﬁﬂnﬁynonhs

INSTALLATION AND OPERATION

e —

The command procedure will now read the file INSTALL.COM
from the magnetic tape in the [PALASM] directory.

6. To install all the PALASM 2 software, execute the command
procedure INSTALL.COM. Type

$ Q@INSTALL
The following message appears

INPUT (SUB)DIRECTORY NAME TO CONTAIN
PALASM 2 SOFTWARE?:

Choose a name for the directory that will contain PALASM 2
software (e.g., PALASM) and type it at the prompt.

Next, assign the logical directory name PAL2$DAT to the
directory you chose for PALASM 2 software. Type n

SASSIGN <directory containing PALASM 2 software>
PAL2S$DAT<CR>

This command procedure will read all the necessary files from
the magnetic tape and from the PALASM 2 software
executables.

7. To make the PALASM 2 software generally available to
users, either all users can separately execute the PALASM
2 software set-up command procedure in the user login file,
or the VAX system manager can execute this in the VAX
system login file.
Be prepared to answer the following two questions:
A. Directory input name (e.g., [PALASM])

B. Magnetic tape drive name

Monolithic m Memories A-7

INSTALLATION AND OPERATION

e ——]

To execute the PALASM 2 software set-up procedure input
the command

S @DRA: [PALASM]PAL2ASS DRA: [PALASM]
where DRA: is the disk drive name.
8. Now input the help request to display what has been set up:

$ PAL2HLP

Notes on Software
Support Procedures

The following procedures may be performed on the VAX-VMS
system only.

1. The command procedure file PAL2ASS.COM contains
various assignments which the software will use to find run-
time files and to give you easy access to PALASM 2
software, command files, test files and documentation. If
desired you can place the different elements of the PALASM
2 software suite in multiple directories, but the assignments
in the set-up file must be changed to reflect the different
directory structure. A single directory structure has been
used here to simplify description of operations.

2. A setof PALASM 2 software example test files has been
included in your package. A list of the examples plus a
description can be obtained with the input command

$ PAL2LIS

To run any of the examples, a command procedure is
included to execute the syntax checker and to produce fuse
maps. To execute the command procedure, input the
command

A-8 Monolithic m Memories

INSTALLATION AND OPERATION

S

$ PAL2EX <example name>

3. A simplified batch procedure that runs various components
of the PALASM 2 software can be executed by using the
input command

$ PAL2

4. A command has been included to display a list of all the
assignments and commands that are set up on execution of
the PALASM 2 software set-up procedure. To see this
information input the command

$ PAL2HLP

5. To link each of the programs in the PALASM 2 software suite
you will use a set of commands, one for each program,
which are also shown on input of the help command

(PAL2HLP). n

6. For users who have source files, these files have the
extensions <program name>.VMS. To compile and link
these source programs a set of command procedures exist,
one for each program:

BLDCVT.COM.... compile & link PDSCNVT
BLDFEP.COM.... compile & link PALASM2
BLDXPT.COM.... compile & link XPLOT
BLDSIM.COM.... compile & link SIM
BLDZHL.COM.... compile & link ZHAL
BLDJED.COM.... compile & link JEDMAN
BLDPRA.COM.... compile & link PROASM
BLDPRS.COM.... compile & link PROSIM

These procedures all execute the program VXPASCAL.COM
when compiling. Edit this program if you want to alter compile
times

A complete list of all the files on the VAX-VMS tapes can be

Monolithic m Memories A-9

INSTALLATION AND OPERATION

found in the Release Notes at the end of this manual.

ASCIl TAPE
INSTALLATION

Tape Description

Your ASCII magnetic tape, which contains all the files required
by PALASM 2 software, has been formatted in the following
manner:

* ASCll characters

* no tape label

* tape density = 1600

* record size = 132 bytes

* block size = 6600 bytes (50 records)

The first file on the tape contains a list of file names. (See
Release Notes.) In order to process this tape, you must provide a
utility to read the first file off the tape, extract the file names and
then copy each file from the tape renaming each with the correct
file name. The first file on the tape corresponds to the first file
name on the file name list file. Please note that the source code
on the ASCII tape is in a non-compilable form and needs
modification for the computer environment you are using.

Reading In an ASCII
Tape On a VAX-VMS
System

The following command file can be used to read in a PALASM 2
software ASCII tape on a VMS system:

S ON CONTROL_Y THEN GOTO DONE

A-10 Monolithic [Eﬂﬂ Memories

INSTALLATION AND OPERATION

ON SEVERE ERROR THEN GOTO DONE
IN_DEVICE := "MTAQ:"

ALLOCATE 'IN DEVICE' IN_ VOLUME
MOUNT/FOREIGN/RECORDSIZE=132/
BLOCKSIZE=6600 'IN DEVICE'

w0

$ COPY/LOG 'IN DEVICE' FILE.LST

$ OPEN/READ/ERR=DONE IPF FILE.LST
$ READ/END=DONE IPF FNAM

$ LP1:

$ READ/END=DONE IPF FNAM

$ LGO='FSLOCATE(" ", FNAM)'

$ FILNAM := 'FS$SEXTRACT (0,LGO,FNAM) '
$ COPY/LOG 'IN DEVICE' 'FILNAM'

$ GOTO LP1

$ DONE

$ CLOSE IPF

$ DISMOUNT/NOUNLOAD IN VOLUME

$ DEALLOCATE 'IN DEVICE'

$ EXIT

File Description
Following is a description of the files on this tape.

Extension/Name Description

*SRC Source code for PALASM 2 software

*INC The global-include file data for PALASM
2 software

* PDF PALASM 2 software run-time data files

INSTALL.COM VAX-VMS command procedure to install
a PALASM 2 software VAX-VMS tape on
a VAX computer

README.ASC Installation documentation

PAL2HLP.FAC Help facility information

PAL2ASS.COM System logical assignments needed to
run PALASM 2 software on VAX-VMS

PAL2.COM Procedure to execute PALASM 2

Monolithic m Memories A-11

INSTALLATION AND OPERATION

software on the VAX-VMS

BLD*.COM VAX-VMS procedures to compile each
source module

LNK*.COM VAX-VMS procedures to link each
program

VXPASCAL.COM VAX-VMS Pascal compile module
procedure

*.PDS PALASM 2 software design examples

PAL2EX.LIS List describing all the design examples

PAL2EX.COM VAX-VMS command procedure to

execute the design examples

VAX-UNIX
INSTALLATION

What You Require

* PALASM 2 software on a VAX-UNIX magnetic tape
* Berkeley 4.2 UNIX operating system

*

Berkeley Pascal compiler (or any compatible compiler)

Software Installation

To install PALASM 2 software, follow these steps

1. Create adirectory or sub-directory for PALASM 2 software.
Name it PALASM so that it is easily identifiable. To
accomplish this, enter

$ mkdir palasm

A-12 Monolithic m Memories

INSTALLATION AND OPERATION

2. To move to the PALASM directory, type
$ cd palasm

3. Remove the ring from the magnetic tape, load it on the
appropriate drive, and set it online.

4. To read the PALASM 2 software files from the magnetic tape
to the PALASM directory you have just created, type the
command

$ tar xu

5. To complete the installation procedure, you must execute
the command procedure INSTALL.COM. Type

$ install.com
6. To make the PALASM 2 software available to general users, n
each user must set a $PATH variable that searches for » '
commands in the PALASM directory.
Or

The UNIX system manager must place the commands in a
system directory.

Your PALASM 2 software is now ready for use on the UNIX
operating system. Below are some additional pointers.

Command Procedures

* To access the PALASM 2 example design files (PDS files)
along with a brief description of each, enter the command

$ cat pal2lis.doc

Monolithic m Memories A-13

INSTALLATION AND OPERATION

]

To successfully run the example PDS files, you must
execute a command procedure. This procedure enables
you to run the syntax checker and to produce fusemaps.
Enter

$ pal2ex.com <filename>

You can run various parts of PALASM 2 software in batch
mode by executing the command

$ pal2.com

For a listing of all the commands that were set up on
execution of the PALASM 2 installation procedure, type

$ cat pal2hlp.fac

To create each of the programs in the PALASM 2 software
suite, type

makeall

Note: Remember to type commands in lowercase. Filenames
are read only if they are in the following format: <filename.EXT>.
Notice that the filename is in lowercase, but the extension is in
uppercase. The JEDMAN output files, however, are exceptions.
Both filename and extension must be in uppercase. For
example: <JEDMAN.EXT>.

A-14 Monolithic m Memories

APPENDIX B
PROGRAMMER
NOTES

DATA 1/O

Helpful Hints

DATA 1/O's EPROM revision changes Monolithic Memories
manufacturer code from "95" to "22" in the JEDEC family code.
Please check that your P/T adapter 303a-002 is rev 06 or later.

Firmware updates accept a checksum of 0000 as valid and space

before the L field data. Both of these were flagged as errors by

old Data I/O firmware: Please update your Logic Pak to rev 04 or n
later. You will also notice higher programming yields from this

update.

Downloading

These notes are to be used in conjunction with the Data I/0
model 29 A/B programmer and PALASM 2 software.

1. Create a JEDEC file using PALASM 2 software. The JEDEC
file produced by the XPLOT backend module has .JED as
the extension to its filename.

2. Using a screwdriver, set the programmer to the desired baud
rate. Twist the circular notch located at the bottom left

Monolithic m Memories B-1

PROGRAMMER NOTES

of the back of the machine until the white arrow points to the
letter C. This is the recommended baud rate (4800 baud).
Codes for the other baud rates are listed in Table B-1.

Table B-1:
Recommended Baud Rate

Code Baud rate
5 300

7 1200

A 2400

C 4800

3. Poweronthe Data I/0. When it finishes its self-test, press
<COPY> from <DEVICE> to <RAM> <START>. The
programmer will then ask for the device family pin code.
The codes for Monolithic Memories devices are listed in
Table B-2.

B-2 Monolithic m Memories

PROGRAMMER NOTES

Table B-2:
Device Family Pin Codes for DATA I/O Programmer

Device Family Pin Code
PAL10H8/H8-2 2218
PAL10L8/L8-2 2213
PAL10H20G8 2242
PAL10H20P8 2242
PAL12H6/HB-2 2219
PAL12L10 2201
PAL12L6/L6-2 2214
PAL14H4/H4-2 2220
PAL14L4/L4-2 2215
PAL14L8 2202
PAL16C1/C1-2 2221
PAL16H2/H2-2 2222
PAL16L2/L2A 2216
PAL16L6 2203
PAL16L8/L8-2/L8-4/L8A 2217
PAL16L8B 3017
PAL16P8/16RA8 2230
PAL16R4/R4-2/R4-4/R4A 2224
PAL16R6/R6-2/R6-4/R6A 2224
PAL16R8/R8-2/R8-4/R8A 2224
PAL16RP4 2231
PAL16RP6 2231
PAL16RP8 2231
PAL18L4 2204
PAL20CH1 2212
PAL20L10 2206

Monolithic Eﬁ.ﬂ Memories B-3

B-4

Device Family Pin Codes for DATA I/O Programmer

PROGRAMMER NOTES

Table B-2 (Continued):

Device Family Pin Code
PAL20L2 2205
PAL20LS8 2226
PAL20S10 2243
PAL20R4 2227
PAL20R6 2227
PAL20RS8 2227
PAL20RA10 2245
PAL20RS10 2244
PAL20RS4 2246
PAL20RS8 2244
PAL20X10 2223
PAL20X4 2223
PAL20X8 2223
PAL22RX8 2278
PAL22V10 4628
PAL32R16 2247
PAL32VX10 2277
PAL 6L16 2248
PAL64R32 2284
PAL8L14 2249
PMS14R21 2258

Monolithic m Memories

PROGRAMMER NOTES

R
——— —————— ————————— ——________—— ___—— 1

4. Next, run PC2 (PALSETUP mode) on your PC. Use the
following RS-232 parameters:4800 baud, 7 data bits, 1 stop
bit and even parity.

These parameters are stored in the PC2.DAT file. If you do
not wish to run PALSETUP, a quick and dirty way to modify
the parameters is to edit the PC2.DAT file directly.

5. Run PC2 next. You can specify the filename by using
function key F9. When it prompts you for the name of your
input file, respond with the <filename>.JED generated by
the PALASM2 program.

6. After specifying the filename, PC2 blanks the screen and
indicates its command options: F1 (for downloading), F2
(PALSETUP mode), F3 (VIEW toggle), F4 (CAPT mode), F9
(filename) & F10 (return to DOS). Do NOT begin
downloading yet.

7. To verify communications press <SELECT> <E> <1> B
<START>. This will produce the Data I/O operations menu
on your screen. (You will have to enter the FAMILY/PIN code
from the IBM-PC keyboard if it has not been entered on the
programmer keyboard.)

If you are not successful in getting the Data I/O to talk to the
PC, repeat the steps above. If problems still exist, confirm
the cabling between the RS232 ports.

8. Next, press <SELECT> <E> <START> on the Data I/0.
The window of the programmer will display a clock face.
Press F1 (IBM-PC). Downloading will begin and the clock
face should start to turn.

9. When downloading is completed, press F10 to exit. The
Data I/O should indicate a 4-digit fuse checksum on its
display if the process has been successful. You can now
program the part.

Monolithic m Memories B-5

PROGRAMMER NOTES

Using DATA /O on
VAX-VMS

Figure B-1 illustrates the cable connections that must be made
between a VAX-VMS system and a Data 1/O programmer, plus an
example command procedure that will enable you to program on

VAX-VMS systems.

MODEL 29 V1220

1 et ———————————————————————— * 1

2 B —————————————————— * 3

3 e * 2

5 S PUUPTPUTOR * 4

4 et e e e * 5

6 * AR * 6

7 e ————————————————— * 7
25-pin male 9-pin female

Figure B-1:
Data I/0 <-> VAX-VMS Cable Connection
To download from the VAX, do the following:
A. Model 29
1. Copy DEV to RAM with appropriate family and pinout code.

2. Select EB and start.

B-6 Monolithic [Hﬁ.ﬂ Memories

PROGRAMMER NOTES

VT220: VAX-VMS Program
To Make DATA /0
Connection

Monolithic Memories recommends the use of the following
program, and would like to acknowledge John Carvalho of RCA
who created it.

1. Type @PALCOPY PALNAME.JED where PALCOPY is the
name of this command procedure file.

$ON CONTROL Y THEN EXIT

$ON ERROR THEN EXIT

$IPFNAM := 'P1'

$IF Pl .NES."" THEN GOTO FNAM1
$INQUIRE Pl "PLEASE ENTER THE NAME
$OF THE FILE TO BE TRANSMITTED"
$IF P1 .EQS. "" THEN GOTO PALXIT

SFNAM1 : u
SIPFNAM := 'P1°

SLN = 'FS$SLEN(IPFNAM)'

$DOT = 'FSLOCATE (".", IPFNAM) '
SIF DOT.EQ.LN THEN
SIPFNAM:=""''IPFNAM'.JED"
SXMTFIL:

2. Set up the VT220 for write through printer mode.

SWRITE SYSSOUTPUT "“TRANSMITTING
$FILEII e IPFNAMI mwn

SWRITE SYSSOUTPUT" [<ESC> 5I"
STYPE 'IPFNAM'

SWRITE SYSSOUTPUT"<ESC>[4I"

Monolithic m Memories B-7

PROGRAMMER NOTES

SWRITE SYSSOUTPUT
SCOMPLETE™"™
SOPEN/READ INDATA
SLINEL = ""
SLINE2 = "V
SLINE3 = ""
SRDLOOP :

3. Drop the VT220 out of write-through mode.

"DOWNLOAD

'IPFNAM'

$SREAD/END OF FILE=DONE INDATA LINE3

SLINE1 = LINE2
SLINE2 = LINE3
$GOTO RDLOOP
SDONE :
SCLOSE INDATA
SWRITE SYSSOUTPUT
“LINE1l' —----
SPALXIT:

"THE CHECKSUM IS:"
LINE2'"

nkmmﬁﬂweﬁmﬂnﬁunmﬂbs

PROGRAMMER NOTES

VARIX OMNI
Helpful Hints

For designs involving the PAL64R32 MegaPAL device, an
additional file with extension .VRX is generated. It contains the
specific fuse plot to be downloaded to the VARIX programmer. A
full (not brief) fuse plot must be specified for VARIX downloading
when using MegaPAL devices.

Downloading

To begin, connect the Varix programmer to your PC. You must
have the parallel port card supplied by Varix installed in the PC.
Once the card is installed, connect the Varix to the PC with the
cable supplied by Varix (observe the proper connector labels:
the cable is not symmetric). You should also have revision
3.16a or later OMNI software for programming the PAL64R32,
and revision 3.18e or later OMNI software for programming
the PAL32R16 and all 20-pin and 24-pin PAL devices.

1. Turn on power to the programmer. Plug the PAL32R16 or
PAL64R32 adapter into the largest socket on the
programmer. No adapter is required for programming 20-
pin or 24-pin PAL devices.

2. Insert the Omni software diskette supplied by Varix in drive
A. Insert the diskette with the PALASM 2 fuse plot in drive
But if you are using OMNI software revision 3.16a. Insert
the diskette with JEDEC files in drive B if you are using
OMNI software revision 3.18e.

Note: The file extensions of JEDEC files must be .JED;
otherwise OMNI software will refuse to accept them, or will treat
the files as if they are fuse plots. You will need to rename any
.JDC files you wish to use.

Monolithic m Memories B-9

FRUUNMANNENR NUOUIED

3. Type OMNI <CR> . The following message is displayed:
Omni-Programmer for the IBM PC
Version x.yy Copyright (c)1984
Varix Corporation

Please select target device (or type
? for list):

In response to this message you can either enter ? to get a
list of the part codes, or a specific code such as 64R32.

For OMNI software revision 3.16a. The help menu is
displayed after the part code is entered.

For OMNI software revision 3.18e: The command prompt *
is displayed. Type H or M to get either the brief or the
detailed help menu respectively. Type H PROGRAM to
get the help menu for programming commands.

Note: The Varix software displays * as a command prompt. Thus
when a command has finished executing, the * is displayed.

4. Plug a device into the proper adapter socket.

5. Verify that the part is blank.
For OMNI software revision 3.16a: Type V B
For OMNI software revision 3.18e: Type F X 0 130 to fill the
memory buffer with X; then type V 0 130 to verify that the

part on the socket is blank.

6. Load the buffer storage in the Varix programmer with the
fuse data stored in the file that was created in PALASM 2.

For OMNI software 3.16a: Enter L <filename>.VRX <CR>.

For OMNI software 3.18e: Enter L <filename>.JED <CR>.

B-10 Monolithic E.Eﬂ Memories

PROGRAMMER NOTES

Note: You should substitute the name of the file containing
XPLOT in drive B: for filename in the command above. You don't
have to specify drive B in the command: it is already assumed by
the software.

7. Display the contents of the Varix buffer starting at the "first

10.

11.

parameter" product term, for "second parameter" product
terms following. The example is set up to display the entire
contents of a buffer containing a 32R16 or 64R32 XPLOT.
Enter D 0 128 for 32R16, or D O 256 for 64R32. When this
command is executed the screen will display the product
terms contained within the buffer.

For OMNI software 3.16a: Enter D 0 256 <CR>.
For OMNI software 3.18e: Enter D 0 128 <CR>.
Program the PAL device. The reasoning for the

parameters is the same as in step 7; thus, to program an
entire 32R16, enter D 0 128; enter D 0 256 to program a

For OMNI software 3.16a: Enter P 0 256 <CR>.

For OMNI software 3.18e: Enter P 0 128 <CR>.
Program the flush (bypass) fuses of the PAL device.
For OMNI software 3.16a: Enter P F <CR>.

For OMNI software 3.18¢: Enter P F <CR>.

Program the polarity fuses of the PAL device.

For OMNI software 3.16a: Enter P O <CR>.

For OMNI software 3.18e: Enter P O <CR>.

Verify that the PAL device has been programmed properly.

Monolithic m Memories B-11

PROGRAMMER NOTES

The parameters follow the same reasoning as in the D and
P commands.

For OMNI software 3.16a: Enter V 0 256 <CR>.

For OMNI software 3.18¢: Enter V 0 128 <CR>.
While this command is executing you will see the product term
numbers displayed as each is verified as correct. If an
inconsistency occurs between what is in buffer storage and what
is in the device, the buffer and device product terms will be
displayed. If no inconsistencies are discovered, you can assume
that the part has been programmed properly.

12. To upload the contents of the device in the socket to the
buffer RAM of the programmer:

For OMNI software 3.16a: Enter R 0 256 <C.R>

For OMNI software 3.18e: Enter R 0 128 <CR>.
13. To observe the contents:

For OMNI software 3.16a: Enter D 0 256 <CR>.

For OMNI software 3.18e: Enter D 0 128 <CR>
14. To exit the OMNI software:

For OMNI software 3.16a: Enter X <CR>.

For OMNI software 3.18e: Enter QUIT <CR>.

B-12 Monolithic m Memories

Device Specific Syntax

APPENDIX C
DEVICE SPECIFIC
SYNTAX

The unique architectures of the PAL22RX8, the PAL22V10, and
the PAL32VX10 devices require special syntax considerations.
This appendix provides special instructions for designing with
the three devices. Note that only Boolean equation design
instructions are included. PALASM 2.22 is being tested for state
machine design entry for PAL devices.

If your regular package of PALASM 2.22 software does not
contain a design examples disk, contact your local Monolithic
Memories sales office for a disk of design examples.

The EXAMPLES.DAT directory contains two subdirectories of
design examples:

* State
* Boolean

Refer to Appendix D for a list of design examples and
descriptions of the designs.

Monolithic m Memories

Cc-2

DEVICE SPECIFIC SYNTAX

PAL22RX8 AND
PAL22V10:
SPECIAL
INSTRUCTIONS

The following special syntax considerations are the same for the
PAL22RX8 and PAL22V10.

Special Syntax for
PAL22RX8 and
PAL22V10

The pin list for a PAL22RX8 includes the pin names you would
expect for this 24-pin PAL device, followed by a name used to
specify the global .SETF and .RSTF functions of the registers.

Example:

CHIP INPUT OUTPUT PAL22RXS8

CLK I2 I3 I4 I5 I6 I7 I8 I9 I10 Il1l1l GND
I13 I14 015 016 017 018 019 020 021 022
I23 VCC

GLOBAL

On PAL22RX8, there is only one Exclusive-Or gate per output.
Each output equation can therefore contain at most one
Exclusive-Or function (of two terms). If you use the Exclusive-Or
in your equation, then you must not also use it as a polarity
inverter. Thus, if you define an output with an Exclusive-Or, the
polarity of the output must be the opposite of that given in the
pin list. (e.g. /015 = ... if O15 is the name used in the pin list.)

On both the PAL22RX8 and the PAL22V10 devices, you can

use the name given in the pin list and .SETF or .RSTF to specify
the global SET and RESET functions.

Monolithic m Memories

DEVICE SPECIFIC SYNTAX

GLOBAL.SETF = product_term Specifies the global
SET function

GLOBAL.RSTF = product_term Specifies the global
RESET function

Note: You are allowed to use only one product term for these
functions

PAL32VX10:
SPECIAL
INSTRUCTIONS

The PAL32VX10, also a 24-pin device, has associated with it a
number of architectural features unique in the PAL device family.
Each output has a programmable flip-flop, which can be
configured as a J-K, S-R, T or D type. Each register can be
buried so that its contents cannot be observed directly on the
output pin. Each output has an internal Exclusive-OR gate which
can either be used as such or as a polarity inverter, depending on
the application. The XOR gate also allows the user to create the n
various flip-flop types. In addition, you can set outputs as
Registered or Combinatorial (and set the register type)
dynamically, specifying the option you want through a product
term.

Along with these special features of the PAL32VX10
architecture, there are some special rules which need to be
observed while using PALASM 2 software on this device.

Special Syntax for
PAL32VX10

The pin list for a PAL32VX10 includes the expected pin names

followed by a name used to specify the global .SETF and .RSTF
functions of the buried registers. This is followed by ten names

used to specify the buried registered nodes located at the /Q

Monolithic m Memories C-3

DEVICE SPECIFIC SYNTAX

e ———

outputs of the buried registers at pins 14 through 23
respectively.

Example:
CHIP INPUT_OUTPUT PAL32VX10

CLK I2 I3 I4 I5 I6 I7 I8 I9 I10 I1ll GND
I13 014 015 016 017 018 019 020 021 022
023 vcCC
GLOBAL R14 R15 R16 R17 R18 R19 R20 R21
R22 R23

(The relationship between the buried registered node names
and output names in the pin list is such that R14 corresponds to
014, etc.)

Output Equations-
Buried Registered
Node

When the output you want is a registered function of product
terms, you must define it this way at the buried registered node.
If you want the output to be used only for feedback, you do not
need to also define it at the output node. However, if you want
the output to be visible at the output pin, you must also define it
at the output node by specifying either Onn := Rnn or Onn =
/Rnn, depending on your polarity preference.

Note: that the output node must be defined as a function of
the buried registered node when one has been defined.

Cc4 Monolithic m Memories

DEVICE SPECIFIC SYNTAX

Output Equation-
Output Node

When the output you want is a combinatorial function of product
terms, you must define it this way at the output node. In this
case, the buried registered node must not be defined.

Because there is only one AND/OR array for each output , you
can define either the buried registered node or the output node
as a sum of products, but not both. Follow the rules above for
defining registered or combinatorial outputs, and you should
meet this requirement.

The PAL32VX10 has only one Exclusive-Or gate per output.
Each output equation can therefore contain at most one
Exclusive-Or function (of two terms). If you use the Exclusive-
Or in your equation, then you must not also use it as a polarity
inverter. Thus, if you define a buried registered node or output
node with an Exclusive-Or, the polarity of the node must be the
opposite of that given in the pin list. (e.g. 7R14 :=.."if 'R14'is
the name used in the pin list.)

You may use the name given in the pin list and .SETF or .RSTF to n
specify the global SET and RESET functions.

GLOBAL.SETF = product_term Specifies the global SET
function.
GLOBAL.RSTF = product_term Specifies the global

RESET function.

Note: You are allowed to use only one product term for these
functions.

Monolithic m Memories C-5

C-6

DEVICE SPECIFIC SYNTAX

.CMBF Function

After defining an output node either as a function of a buried
registered node or as a function of product terms, you can use
the .CMBF function to override the definition selected using the
=, = convention for registered or combinatorial output. This
provides for dynamic selection of registered or combinatorial
output.

Oonn.CMBF = VCC

specifies a fixed combinatorial output.

Oonn.CMBF = GND

specifies a fixed registered output.

Onn.CMBF = product_term

specifies a dynamically selected registered or combinatorial
output, depending on whether the result is high or low.

Example:
014 := <product term>
014.CMBF = VCC

This is a registered output, but is defined in terms of a
combinatorial equation. You need not use the .CMBF if you do
not want dynamic selection.

Note: You are allowed to use only one product term for these
functions.

Note: The Examples disk contains a complete PAL32VX10
design specification example.

Monolithic m Memories

1NA 'uau‘ /(;4 - . & i
. afﬁf

o {m,ﬁ,;":

,qa b @” i ’pn'i
..

i S i - e .
u"“{x:l, e -
w;;;;é @mjw«;;;x, L L
d xr(«\"‘(“g'ﬁ’&,«x«st'}x’l""ii«}i'
..

i - mv

m ‘ mm

S
.

-
. .
“gww«m“@uw,‘,wuusaw ae ’

. .

-
. o

,),rwm . v e : A o
. - - :?W,w ié;m «i"\i ‘ii"%?:f mw“’ww -
o))
| e B! W

.“u?z T
- “m w ‘kunef‘n . - W“«“v“s

T

e

=
o

.
. Wx .\,a,s@. -

. . f:}; .
.

e

.
o
’*?wm
.

. .

s
{;‘;,‘ma,?eﬁ?
.
w %g
.

:'a;g . &fm@m -
o

. a"‘{&w .
e
...

Eoeonins o 5
o "ﬁéééw@)

. ,?f«m@«, ;ﬁ%{m

o .
o

S

g ‘w?‘x&\,* 4.‘,&.{1«‘ (N“w;zf, — R
W,,gﬁ(&“ . . »‘.i@ . "‘wzé«m@
L -

- dgwmeww?

o

APPENDIX D
PAL DESIGN FILE
LIBRARY

(Files Located on Design Examples Disk)

If your regular package of PALASM 2.22 software does not
contain a design examples disk, contact your local Monolithic
Memories sales office for a disk of design examples.

The EXAMPLES.DAT directory contains two subdirectories of
design examples:

* State
* Boolean
Table D-1 lists all examples in the order they appear in the n

subdirectories.

Descriptions of most of the examples follow the table.

Monolithic m Memories D-1

D-2

PAL DESIGN FILE LIBRARY

Table D-1:

Files Located On Design Examples Disk

File Name Description Device
32VX10.PDS Example of PAL32VX10 Design PAL32VX10
Specification File
State Subdirectory
STRAFFIC.PDS Traffic Signal Controller PMS14R21
PRODCDER.PDS QIC-02 Command Decoder PMS14R21
QAM3.PDS ENCODER. PAL20R8
4WAYTRAF.PDS 4-Way Traffic Light Controller PMS14R21
Boolean Subdirectory
9BITCNT.PDS 9-Bit Counter PAL20X10
8COUNT.PDS 8-Bit Counter PAL20X8
DCOUNT.PDS 5-Bit Down Counter PAL20RA10
CONTROL.PDS DEC PDP-11 Unibus Interrupt PAL20RA10
Controller
OCTCOMP.PDS Octal Comparator PAL16C1
3TO8DMUX.PDS 3-8 Demultiplexer PAL16R8
CRT.PDS CRT Controller Logic PAL20RA10
PORT.PDS 7-Bit I/O Port with Handshake PAL20RA10
Logic
BARREL.PDS Barrel Shifter PAL64R32
ACNT.PDS 4-Bit Counter PAL16RP4
4-16DEC.PDS 4 - 16 Decoder PAL6L16
10COUNT.PDS 10-Bit Counter PAL20RS10
ADREG16.PDS 16-Bit Addressable Register PAL32R16
MEMIO.PDS PC 1/0 Mapper PAL8L14
UPCOUNT.PDS 5-Bit Up Counter PAL20RA10
FLIPFLOP.PDS Basic Flip Flops PAL16RP8

Monolithic m Memories

PAL DESIGN FILE LIBRARY

Table D-1 (Continued):

Files Located On Design Examples Disk

File Name Description Device
MEMORY.PDS Memory Handshake Logic PAL16RP6
ARBITER.PDS 3-Bit Arbiter PAL20RA10
LINK.PDS Serial Data Link Controller PAL20RA10
LATCH.PDS Octal Latch PAL10H20P8
9BITREG.PDS 9-Bit Register PAL20X10
10BITREG.PDS 10-Bit Register PAL20X10
BTRAFFIC.PDS Traffic Signal Controller PAL16RP8
DCODER.PDS QIC-02 Command Decoder PAL20LS
K7ENC1.PDS 1/2 Rate Convolution Code PAL32VX10
Encoder
K7ENC2.PDS 1/2 Rate Convolution Code PAL22V10
Encoder
COUNTER .PDS Counter PAL22V10
B8ZSA.PDS Encoder PAL-A PAL16R8
B8ZSB.PDS Encoder PAL-B PAL16R6
B8ZSC.PDS Encoder PAL-C PAL16R6
CRC6.PDS Error Detection PAL PAL20R6
DEC_R8.PDS Decoder PAL PAL16R8
SUPER.PDS Super Frame PAL for PAL16R6
T1 Interface
FDP.PDS T1 Frame Detection PAL16LS8
PAL for T1 Interface
SYNC.PDS T1 Frame Sync PAL PAL20R4
for T1 Interface
V32_2.PDS Trellis Encoder PAL20RS8
TREL12.PDS Trellis Encoder PAL20RS8
UDCOUNT.PDS 10-Bit Loadable, Even PAL20X10
Boundary Up/Down Counter
9BCASC1.PDS 9-Bit Cascadable Counter, Look PAL20X10

Ahead Carry

Monolithic m Memories

D-3

]

D-4

PAL DESIGN FILE LIBRARY

Table D-1 (Continued):

Files Located On Design Examples Disk

File Name Description Device

9BCASC2.PDS 9-Bit Cascadable Counter, MSD PAL20X10

VIDEO.PDS Video Shift Register. PAL20X8
with Attributes

BBENCODE.PDS Manchester Encoder PAL22V10
for.Byte and Bit Inputs

PIPELINE.PDS Pipeline Controller for Instruction PAL16R8D
Registers.

LIFORAM2.PDS LIFO RAM Controller PAL20X8
Pattern 02 of 2 (8K DEEP)

180DEGC.PDS 180 -Degree Up/Down Counter PAL20X10

8BAPPREG.PDS 8 -Bit Successive Approximation PAL20RS10
Register

128LRAM.PDS LIFO RAM Controller PAL32VX10
for 128-Deep Stack

PORTADPT.PDS M68020 32-/16-/8-Bit PAL20RA10
Port Adaptor

VIDSREG.PDS Video Shift Register PAL 3 of 3 PAL32VX10.

VLSYNCG.PDS Video Line Sync Generator PAL32VX10

LIFORAM3.PDS RAM-Based LIFO PAL22RX8

Monolithic m Memories

PAL DESIGN FILE LIBRARY

32VX10 SYNTAX
EXAMPLE

32VX10.PDS PAL32VX10

Example on how to program Boolean equations for a
PAL32VX10 part.

STATE SYNTAX

EXAMPLES
STRAFFIC.PDS Traffic Signal PMS14R21
Controller
PRODCDER.PDS QIC-02 Command PMS14R21
Decoder

This application implements a QIC-02 command decoder using a
PROSE device, a PAL device, and a PLE device.

QAM3.PDS ENCODER. PAL20RS8
Note: Use this file with PALASM 2 software version 2.23 or

later. Otherwise, errors will be detected with the .OUTF
equations.

4WAYTRAF.PDS 4-Way Traffic Light PMS14R21
Controller

Monolithic m Memories D-5

PAL DESIGN FILE LIBRARY

BOOLEAN
EQUATIONS
EXAMPLES

9BITCNT.PDS 9-Bit Counter PAL20X10

The 9-bit synchronous counter has parallel load, increment, and

hold capabilities. The carry out pin (/CO) shows how to implement

a carry out using a register by anticipated one count before the

terminal count if counting and the terminal count if loading.
Operations Table

/0C CLK /LD D8-DO Q8-Q0 Operation

H X X X Z HI-Z

L L X X Q Hold

L C L D D Load

L C H X QPLUS 1 Increment
8COUNT.PDS 8-Bit Counter PAL20X8

This 8-bit up/down counter has the hold and load capabilities. It
sets all the outputs high if SET=high. It loads new value when
SET=low and LOAD=high. Else it counts up if UP=high and
counts down if UP=low.

DCOUNT.PDS 5-Bit Down Counter PAL20RA10

CONTROL.PDS DEC PDP-11 PAL20RA10
Unibus Interrupt
Controller

OCTCOMP.PDS Octal Comparator PAL16C1

The octal comparator establishes when two 8-bit data strings (A7-
AQ) and (B7-B0) are equivalent (EQ=H) or equivalent (NE=H).

Monolithic m Memories

PAL DESIGN FILE LIBRAHY

s —

3TO8S8DMUX.PDS 3-8 Demultiplexer PAL16R8

The 3-to-8 demultiplexer with control storage provides a
conventional 8-bit demux function combined with control storage
functions:load true, load complement, hold, toggle, polarity, clear
and preset. Five inputs(/LD,/CLR,/PR,POL, TOG) select one of
six operations. The six operations are summarized in the
following operations table:

Control Functions Polarity Inputs Outputs
/OC CLK /CLR /PR /LD POL TOG ABC Q7-Q0 Operation

H X X X X X X X 4 HI-Z

L C L X X X X X L Clear

L C H L X X X X H PRESET

L C H H L H X | MUX Load true

L C H H L L X I /MUX Load COMP

L C H H H X L X Q Hold

L C H H H X H X Q Tog polarity
CRT.PDS CRT Controller Logic PAL20RA10
PORT.PDS 7-Bit 1/0 Port with PAL20RA10

Handshake Logic n

BARREL.PDS Barrel Shifter PAL64R32

The 16-bit barrel shifter will shift 16 bits of data (D15-D0) a
number of locations into the output pins, as specified by the
binary encoded input. Inputs are shown by D. Si are shift amount
inputs and Qj are outputs. 16 product terms in each output pair
are directed to one output; thus only 16 out of 32 output pins are
used.

Monolithic m Memories D-7

PAL DESIGN FILE LIBRARY

O ———

4CNT.PDS 4-Bit Counter PAL16RP4

The 4-bit counter counts up or down and has the clear and load
capability. The clear operation overrides count and load. The
counter counts up when CLR=low, LOAD=low, and UP=high.

4-16DEC.PDS 4 - 16 Decoder PALG6L16

The 4 to 16 decoder, decodes four binary decoded inputs into
one of 16 mutually exclusive outputs, whenever the two enable
lines EN1 and EN2 are high. When one or both of the enable
lines are low the outputs are all set to high values.

10COUNT.PDS 10-Bit Counter PAL20RS10
The 10-bit counter increments on the rising edge of the clock
input (CLK), if CNT input is high. The outputs are HIGH-Z when
the enable line (/OE) is high and enabled when the enable line

(/OE) is low. The counter is cleared (all lows) if CLR=HIGH.

ADREG16.PDS 16-Bit Addressable PAL32R16
Register

The 16-bit addressable register loads one of 16 registers
selected by ADDR][0..3] with data input, DATA.

MEMIO.PDS PC 1/0 Mapper PALSL14

Personal computers which are hardware compatible with the
ubiquitous IBM PC share this /0O map.

UPCOUNT.PDS 5-Bit Up Counter PAL20RA10

FLIPFLOP.PDS Basic Flip Flops PAL16RP8

MEMORY.PDS Memory Handshake Logic
PAL16RP6

ARBITER .PDS 3-Bit Arbiter PAL20RA10

D-8 Monolithic m Memories

PAL DESIGN FILE LIBRARY
e

LINK.PDS Serial Data Link PAL20RA10
Controller
LATCH.PDS Octal Latch PAL10H20P8

The octal latch is an 8-bit latch with load, hold and clear capability.
Clear sets all outputs to low and overrides hold. Load operation
loads inputs (D0-D7) into the latch. The hold operation holds the
previous values of (Q0-Q7).

9BITREG.PDS 9-Bit Register PAL20X10
This is a design of a 9-bit register with parallel load and hold
capabilities. The operations of this register are summarized in the

following operations table:

/OC CLK /LD D8-D0 Q8-Q0 Operation

H X X X Z Hi-Z
L 1 H X Q Hold
L 1 L D D Load
10BITREG.PDS 10-Bit Register PAL20X10 “

The 10-bit register loads the data (D9-D0) on the rising edge of
the clock(CLK) into the register(Q9-Q0). The data is held in the
register until the next positive edge of the clock.

/0C CLK D9-DO Q9-Q0 Operation

H X X Z HI-Z
L C D D Load
L L X Q Hold

Monolithic ﬁ.ﬁﬂ Memories D-9

PAL DESIGN FILE LIBRARY

e —

BTRAFFIC.PDS Traffic Signal PAL16RP8
Controller

DCODER.PDS QIC-02 Command PAL20LS8
Decoder

This PAL is part of the QIC-02 command sequencer design. The
primary purpose of this PAL is to encode 8-bit commands into 4-
bit command codes. This PAL is also used to encode tape drive
status signals and to select the drive number.

K7ENC1.PDS 1/2 Rate Convolution PAL32VX10
Code Encoder

1/2 rate convolution code encoder, constraint length (k=7). This
PAL 32VX10 design implements a high speed convolutional
encoder with a constraint length k=7 and rate = 1/2. This
encoder is used commonly in conjuction with a Viterbi, trellis
decoding algorithm. Applications include geostationary
satellite communication, high speed local loop bypass networks
etc.

K7ENC2.PDS 1/2 Rate Convolution PAL22V10
Code Encoder

Convolution code encoder, constraint length (k=7). This PAL
22V10 design implements a high speed convolutional encoder
with a constraint length k=7 and rate = 1/2. This encoder is used
commonly in conjuction with a Viterbi, trellis decoding algorithm.
Applications include geostationary satellite communication, high
speed local loop bypass networks etc.

COUNTER .PDS Counter PAL22V10
Simulation of counter equations are a combination of active-high
or -low and register or combinatorial. Preload and global reset

functions are included.

B8ZSA.PDS Encoder PAL-A PAL16R8

D-10 Monolithic m Memories

PAL DESIGN FILE LIBRARY

B8ZSB.PDS Encoder PAL-B PAL16R6
B8ZSC.PDS Encoder PAL-C PAL16R6
CRC6.PDS Error Detection PAL PAL20R6

The CRC-6 PAL performs error detection on a serial data stream.
CRC-6 PAL supports the T1 Fe standard for error detection. The
CRC result can be output either in serial or in parallel.

DEC_RS8.PDS Decoder PAL PAL16R8

SUPER.PDS Super Frame PAL for PAL16R6
T1 Interface

This PAL counts the T1 Frames and controls the Signal Bits
extraction process, including Fly Wheeling. It also provides
various other signals which indicate the frames with signal bits
The counter is reset with either RSTB or when frame detection is
SUNK and frame 1 occurs from two different sources (FRM1 &
SOF).

FDP.PDS T1 Frame Detection PAL16L38 n
PAL for T1 Interface

This PAL monitors 12 193rd bits in the incoming T1 NRZ data
stream. It detects any valid Frame Patern (start of any Frame) and
the start of Frame 1.

SYNC.PDS T1 Frame Sync PAL PAL20R4
for T1 Interface

This PAL decides whether the T1 Interface is in Frame Sync,
Sync, or Out of Sync. It controls the Frame Sync process.

Monolithic m Memories D-11

D-12

PAL DESIGN FILE LIBRARY

V32_2.PDS

Trellis Encoder PAL20RSS8

This PAL performs the signal mapping onto the 32 state
constellation according to CCITT V.32, 9600 bps specification.

TREL12.PDS

Trellis Encoder PAL20RSS8

This PAL performs the signal mapping onto the 32 state
constellation according to CCITT V.32, 9600 bps specification.

UDCOUNT.PDS

9BCASC1.PDS

9BCASC2.PDS

VIDEO.PDS

BBENCODE.PDS

PIPELINE.PDS

LIFORAM2.PDS

180DEGC.PDS

10-Bit Loadable, PAL20X10.
Even Boundary
Up/Down Counter

9-Bit Cascadable PAL20X10
Counter,.Look
Ahead Carry

9-Bit Cascadable PAL20X10
Counter, .MSD

Video Shift Register. PAL20X8
with Attributes

Manchester Encoder PAL22V10
for.Byte and Bit Inputs

Pipeline Controller PAL16R8D
for Instruction
Registers.

LIFO RAM Controller PAL20X8
Pattern 02 of 2
(8K DEEP)

180-Degree Up/ PAL20X10.
Down Counter

Monolithic m Memories

PAL DESIGN FILE LIBRARY

S ——

8BAPPREG.PDS 8-Bit Successive PAL20RS10.
Approximation
Register

128LRAM.PDS LIFO RAM Controller PAL32VX10
for 128-Deep Stack

PORTADPT.PDS M68020 32-/16-/8-Bit PAL20RA10
Port Adaptor

VIDSREG.PDS Video Shift Register PAL32VX10.

PAL 3 of 3

VLSYNCG.PDS Video Line Sync PAL32VX10
Generator

LIFORAM3.PDS RAM-Based LIFO PAL22RXS8

Provides control and addressing for a PAL22RX8 32-location-
deep RAM-based LIFO.

Monolithic m Memories D-13

PAL DESIGN FILE LIBRARY

S

'D-14 Monolithic m Memories

ERRO

ERRORS
REPORTED BY
PALASM2

Error Number

................................
................................

Monolithic m Memories

APPENDIX E
R MESSAGES

Error Message

Unexpected EOF

Identifier name is too long
lilegal character

Malformed STRING declaration
Variable is already declared
Incomplete or invalid operator
Bad for loop variable usage
Malformed expression
Expected an identifier
Expected an operator
Expected =, too many strings
lllegal variable usage
Undeclared variable
Malformed variable
Unexpected part type
Unbalanced parens or brackets
Malformed statement

Missing keyword END

Missing keyword or section SIM
Missing keyword CHIP

This array already declared
Expected keyword BIN
Expected a =

Title not specified

E-1

ERROR MESSAGES

e ———

25 e, Pattern not specified

P24 T Revision not specified

27 e Author not specified
28 Company not specified

29 e Date not specified
B0 Missing keyword EQUATION

i R VCC, GND, NC not allowed here
B2 Dangling equation found
3B, Arch. defined as Mealy already

K SR Arch. defined as Moore already
85, Pin defined as Reset already
36 Pin defined as Enable already

37 e Missing keyword STATE
38 Missing keyword DEFAULT_BRANCH
39 Missing Argument

. | Redundant definition

. Improper usage of setf or rstf. For

32VX10, proper usage is:
GLOBAL .setf/rstf.

ERRORS
REPORTED BY
XPLOT

XPLOT can detect a total of 52 errors (plus one warning) that are
identified uniquely by numbers. Depending on the type of error,
an error message alone appears on the terminal, or the name of
the pin where the error occurred is also reported. Once an error
is caught for an equation, further processing of that equation is

terminated, and the next equation is processed. The format for

error reporting is as follows:

ERROR NUMBER :error number
PIN :<name of the pin where the error
occurreds

E-2 Monolithic m Memories

ERROR MESSAUED

ERROR MESSG. :error message explaining the type of

error

All the errors detected are device-related errors such as extra
pins, conflicting use of pins, extra number of product terms,

etc.

Warning Number Warning Message

T CLOCK FOR THIS PIN
ASSUMED TO BE GND

Error Number Error Message

L0 T U UPRPRRR Unexpected end of input TRE or PAL

file, File invalid

This is caused by one of three possible
conditions:

A. XPLOT has been runon a design
that has syntax errors detected by the
frontend. (PALASM2.TRE will contain
the word ERROR).

B. The PDF or TRE file contains a ﬂ
different version number from that

stored within the XPLOT program. (Re-

run the PALASM 2 software frontend or

move the PDF file from the distribution

disk to where the XPLOT program can
locate it).

C. The PDF or TRE file is corrupted by
bad disk media or a disk error. (Get a
new, freshly formatted disk and repeat
processing.)

Monolithic m Memories E-3

EHHUHK MESSAGES

s et

T This output is registered but another
output of same bank is used as
combinatorial.

2 This output is combinatorial but another
output of same bank is used as
registered.

B This output is combinatorial but has
SET function defined

Ao This output is combinatorial but has
RESET function defined

D This output is combinatorial but has
CMBEF function defined

< J This output is a combinatorial but has
CLOCK function defined

T e This output is using more than 8 product
terms

- These outputs are using more than 16
product terms

G The polarity of the output on the left

side of the equation should be
opposite to the polarity in the pinlist

L SET function has more than one
product term

T This output is used as combinatorial but
is defined as registered output.

12, This output is used as registered but
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>