
1 1996 ISP Encyclopedia

Overview

This section describes how to program Lattice ISP™
devices using an embedded processor. The first section
shows the use of a microprocessor to control ISP, includ-
ing the construction of a simple ISP port. The second
section shows an 8051 microcontroller used as an ISP
controller and covers the procedures and assembly code
required for processor-based ISP programming. The
8051 assembly code is written in a modular format. A
higher level of routines provides the user with device-
level functions such as Read ID, Bulk Erase, Program,
and Verify. In an attempt to provide routines that can be
used across all ISP device families, specific routines are
written for the ispGDS®22 devices. Only slight modifica-
tions to the basic functions used across these devices are
required to adapt the routines to program any other ISP
device.

Programming with a Microprocessor

There are several ways to define the ISP programming
hardware for microprocessor-based in-system program-
ming, depending on the type of storage device used and
how the ISP devices are to be programmed. Since an
additional step is necessary to convert a JEDEC file into
an ispSTREAM®, the fuse map information can be stored
in a JEDEC standard fuse map file, simplifying design

changes. Or, since a JEDEC standard fuse map file takes
an order of magnitude more memory space to store the
fuse map information than an ispSTREAM, the ISP
programming routines can be stored in an ispSTREAM.
This section presents a hardware configuration in which
the fuse map information is stored in a JEDEC standard
fuse map file.

The hardware configuration shown in Figure 1 uses an 8-
bit wide EPROM to store the JEDEC fuse map file and
object code, which is created from ispCODE® C++ source
code (see the Software Basics document and ispCODE
Software data sheet for a complete description of
ispCODE). The patterns are then read from the EPROM
by the microprocessor and converted into serial stream
format. The ISP signals are driven from the decoder and
I/O port which decodes the proper ISP read/write ad-
dress space (similar to the I/O port definition of the
previous setup). Similarly, fuse map memory addresses
must be defined to be properly read from the EPROM.

The I/O port can be implemented using a dedicated port
chip or a PLD. In the case of a PLD implementation, the
device must have five pins for the ISP port, five pins for
the data port, one pin each for AS and R/W, and enough
additional pins to provide address inputs to the decoder.
If a partial rather than full decode can be used, the
number of address pins can be reduced. For example, for

In-System Programming
from an Embedded Processor

Figure 1. Microprocessor-Based ISP

Micro-
processor

Decoder
 &
I/O Port
Logic

PROM
 or
EPROM

ispEN

MODE
SCLK

SDI
SDO

ispLSI Device

ispLSI Device

ispLSI Device

Control Signals (R/W,AS,etc..)

DATA

ADDRESS

Addr

AS

Address
Decode

R/W I/O Port
Register
(Bidirect-
 ional)

D0-D4

ispEN

MODE
SCLK
SDI
SDO

SDO1
SDI2

SDO2
SDI3

SDO3

ispembed_01

2 1996 ISP Encyclopedia

In-System Programming from an
Embedded Processor
a processor with a 16-bit I/O space, if a block of 256
locations can be allocated to the ISP port, only the upper
eight addresses (A8-A15) need to be decoded and the
function can fit into a 24-pin low-density GAL® device
such as the GAL 20RA10. If a full decode is needed, a
high-density PLD with ample pins such as Lattice’s
ispLSI® or pLSI® 2032 or 1016 should be used.

Most hardware timing requirements can be satisfied by
the microprocessor software instruction execution time.
Only the program, verify, and bulk erase times require the
software to have wait cycles. Many microprocessor boards
will not have a timer chip to time the wait states. However,
the instruction execution times can typically be estimated
accurately. Therefore, timing loops must be inserted into
the instructions to control critical hardware timing.

Within ispCODE source code, before the object code is
created, address spaces for the ISP read/write locations
and the EPROM read locations must be defined. The
storage space requirement for the object code must also
be determined if the code is going to reside in the storage
device. Based on the ispCODE functions, the object code
which is capable of executing basic ISP functions typi-
cally does not exceed 8K bytes of memory. This memory
requirement is directly proportional to the number of ISP
and user interface functions.

Programming with a Microcontroller

The advantage of using a microcontroller-based ISP
interface is that the ports are integrated with the proces-
sor. As shown in Figure 2, the interface to the ISP devices
is accomplished through I/O port 1. RAM and EPROM

8051 74LS
373

74LS
138

RAM EPROM

Port 0

Port 1

Port2

Control

Data

Addr

Control CE

Addr

Data

ISP Programming Signals

Figure 2. Microcontroller Block Diagram

access is also shown in the block diagram through the
use of I/O port 0 and I/O port 2. These specific connec-
tions may be changed according to the user’s application.
Direct connections are made from the port to the ISP pins
of the device. The pinout used on I/O port 1 is listed
below:

SDI P1.0
SCLK P1.1
MODE P1.2
SDO P1.3

The address and data to the RAM and EPROM are
multiplexed through a 74LS373 latch and the control
signals are routed through the 74LS138 decoder.

The timing requirements for ISP programming are with
respect to the SCLK signal. To shift between states, the
SDI and MODE control signals are set to the required
values for a state transition and SCLK is applied. In this
manner, the set up times are easily met and interrupts
can occur at any time during the application of ISP
signals.

Software Overview

The main function of the embedded processor assembly
software routines is to drive the ISP programming state
machine (Figure 3), while ensuring that all programming
timing requirements are met. The programming pulse
width is controlled by a counter delay. The resulting pulse
width of the counter depends on the clock frequency of
the microcontroller and the bit width of the counter. The
values used here are based on a clock rate of 12 MHz and
the use of the default state of the counter which is 13 bits.

3 1996 ISP Encyclopedia

In-System Programming from an
Embedded Processor

Figure 3. ISP Programming State Machine

Shift State

(Load

Commands)

Execute State

(Execute

 Command)

Idle State

(Normal

Operation)

Load

ID

HL

HH HH

Shift

ID

LX

Load

Command

LX

Execute

Command

LX

HH

HL

HL

Note:

Control signals: MODE, SDI

The JEDEC Fuse Map Shift Procedures

In the source listing section of this document, the JEDEC
fuse map for the ispGDS22 is listed as a sequential order
of bytes. Each byte is broken into a bit sequence and
written out serially to a port pin. Another port pin is then
used as a clock driver for clocking in the serial data
information. The JEDEC file is stored so that it is read out
sequentially from top to bottom. In the case of ispGDS
and ispGAL® devices, each line of the JEDEC file con-
tains both the data and address information and can be
programmed as a single stand-alone line. However, in
the case of ispLSI devices, the address shift routine must
be executed as a separate routine prior to shifting in the
data bits.

When shifting the JEDEC data from program memory, a
shift left operation is used on each byte to shift out the
data to the I/O port. This means that a reverse bit order
is stored in the bytes. If the order of the bits is to be
maintained, then a shift right instruction may be used to
shift the bits out of each of the bytes. The stored ispGDS
JEDEC file is in the same format as Figure 4. Bits in the
JEDEC file are shifted LSB first. This means that the five
‘1’s will be shifted out, starting at the right hand side of the
table. Note that this method of shifting out the bits
requires reverse ordered bytes of information.

Software resources, such as internal registers, are self-
contained within the routines. These resources are freed
after the routines have been properly executed. The only
resources that have to be dedicated to ISP in this ex-
ample are the I/O port signals that are used to drive the
ISP programming signals. The user has a choice to free
the I/O port resources if the I/O port signals are multi-
plexed. The ORG statement indicates the beginning
address of the subroutine and is used to place the
assembly routines within the main code. If the routine
codes are intended for a user application using the same
internal register resources, the registers may be pushed
onto a stack to preserve them. Upon completion of the
subroutine, they are popped off the stack so that there is
no interference with the calling assembly program.

JEDEC Map Creation and Storage

The JEDEC pattern is stored as part of the 8051 execut-
able code. It is differentiated from the assembly listing by
an assembler directive which flags the program space to
be used as data bytes. The JEDEC map is placed at the
bottom of the assembly file, as memory, and referenced
with a label to mark its position. Assignments are auto-
matically adjusted by the assembler. Placing the JEDEC
map at the bottom also simplifies using sequential JE-
DEC files for multiple device programming. This is
desirable for PC boards intended for multiple function
programming during manufacturing or in the field.

4 1996 ISP Encyclopedia

In-System Programming from an
Embedded Processor
Figure 4. ispGDS JEDEC Fuse Map

ISP Programming Routines

The programming routines were constructed in a modu-
lar format through the use of subroutines. Each subroutine
is constructed so that it controls the appropriate state
transitions as shown in Figure 3. The routines can be
easily traced keeping in mind the ISP states and state
transitions. The names of the subroutines follow the
names of the state machine closely for ease of readability
and comprehension.

Programming Sequence

The code is broken into three major blocks. Each is
executed in sequence. The first block is that of device
identification. In this section, note that the identification of
the device is hard coded. The next major block performs
a bulk erase on the device. The last block loads the
JEDEC map into the device.

Prior to these blocks is the configuration area of the 8051
microcontroller. This is standard configuration informa-
tion that is generally present at the top of any 8051
microcontroller assembler file. Typical information con-
tained in the configuration area includes port addresses
and interrupt type of addresses.

The identification of the device is marked in the assem-
bler code by the label “READID.” The completion of this
section is marked by the label “END_READID:.”

The first step in reading the ID is to establish the starting
state from which the action is to take place. Normally this
is done by moving to the first state of the state machine,
which is the idle state (Listing 1).

ispStream
bit # 7

ispStream
bit # 0Dev ice ID

M S B L S B

01

10

11

22 bits of Architecture data

0 0

00

00

00

00

00

00

00

00

00

00

1 1

11

11

11

11

11

11

11

11

11

11

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

0 0

00 11

1011

1100

1 1

11111

11111

11111

11111

11111

11111

11111

11111

11111

11111

11111

16 bits of UES data

11 bits of Matrix Data

Dummy bi ts

Address bits

JEDEC fuses: 10 0

JEDEC fuses: 21 11
JEDEC fuses: 32 22
JEDEC fuses: 43 33
JEDEC fuses: 54 44
JEDEC fuses: 65 55
JEDEC fuses: 76 66
JEDEC fuses: 87 77
JEDEC fuses: 98 88
JEDEC fuses: 109 99
JEDEC fuses: 120 110

JEDEC fuses: 136 121

JEDEC fuses: 152 137

JEDEC fuses: 174 153
JEDEC fuses: 196 175
JEDEC fuses: 218 197

ispStream
bit # 8

ispStream
bit # 392

5 1996 ISP Encyclopedia

In-System Programming from an
Embedded Processor

Listing 1. Embedded Processor Programming Algorithm

Follow the steps below to read the device identification:

- Move to the IDLESTATE.
- In the IDLESTATE execute the LOAD ID Command.
- Enable the shifting of the IDENTIFICATION of the device.
- Set up of the registers for a loop counter and for storing the device ID.
- Clock each bit of the device ID with an SCLK signal and do a shift store of the

information.
- Compare the ID that was shifted in with the ID of an ispGDS22 and continue if the

identification matches. Otherwise, enter into an endless loop with no other ac-
tions.

Follow the steps below to bulk erase the part prior to programming:

- From the IDLESTATE, the subroutine BULK_ERASE is called. It in turn performs the
following actions:

- It places the state machine into the IDLESTATE
- Changes state to the SHIFTSTATE , getting the ISP state machine ready for

shifting in a command
- Shifts in the Bulk erase command
- Changes state to the EXECUTE STATE
- Calls EXECUTE COMMAND once and waits 200 milliseconds
- Returns to the point from where the subroutine call was made (Note that at

this point Bulk erasing of the part is recommended so the device will be pro-
grammed from a known starting point)

Follow the steps below to program the device:

- Place the device in the IDLESTATE
- Change state to the SHIFTSTATE
- Shift in the SHIFTDATA command
- Move to the EXECUTE_STATE
- Execute the command

The state machine is now ready for shifting in each line of the JEDEC file:

- Prepare the registers for the looping that is required for the shifting in of the
bytes and bits within each byte of information

- Load each of the bytes in its turn in a shift register and shift out.

Once a complete line has been shifted out, call the subroutine PROGRAM which does the following:

- Calls the subroutine SHIFTSTATE
- Moves from the EXECUTE_STATE to the SHIFT STATE
- Calls the subroutine PROGRAM_CMD which shifts in the program command and returns

to the point where it was called
- Moves to the EXECUTE_STATE
- EXECUTEs the command
- Delays the movement out of the execute above to allow for the programming of the

line of the JEDEC file
- Shifts to the SHIFTSTATE state
- Calls the SHIFTSTATE subroutine which performs the functions as noted above
- Moves to the EXECUTE_STATE

6 1996 ISP Encyclopedia

In-System Programming from an
Embedded Processor

- EXECUTES the command
- Returns to the point from where the PROGRAM subroutine was called

After completion of the PROGRAM subroutine call, go back to the top of the loop that loads in another row of the
JEDEC file and repeat the procedure until all of the rows and bits have been loaded in. On completion of programming
the device, continue with execution of the user code or go into a loop which tells the user that the programming of
the device has been completed (such as the indefinite subroutine call to PROG_COMP which flashes an LED).

Listing 2 is the assembler listing that follows the algorithm in Listing 1.

Listing 2. Assembler Listing

;$MOD51
$TITLE(ISP PROGRAMMER FOR 8051)
$PAGEWIDTH(132)
$DEBUG
$OBJECT
$NOPAGING

; Variable declarations
;

P0 DATA 080H ;PORT 0
P1 DATA 090H ;PORT 1
P2 DATA 0A0H ;PORT 2
P3 DATA 0B0H ;PORT 3

SP DATA 081H ;STACK POINTER
DPL DATA 082H ;DATA POINTER - LOW BYTE
DPH DATA 083H ;DATA POINTER - HIGH BYTE
PCON DATA 087H ;POWER CONTROL
TCON DATA 088H ;TIMER CONTROL
TMOD DATA 089H ;TIMER MODE
TL0 DATA 08AH ;TIMER 0 - LOW BYTE
TL1 DATA 08BH ;TIMER 1 - LOW BYTE
TH0 DATA 08CH ;TIMER 0 - HIGH BYTE
TH1 DATA 08DH ;TIMER 1 - HIGH BYTE

IE DATA 0A8H ;INTERRUPT ENABLE
IP DATA 0B8H ;INTERRUPT PRIORITY
ACC DATA 0E0H ;ACCUMULATOR
B DATA 0F0H ;MULTIPLICATION REGISTER

IT0 BIT 088H ;TCON.0 - EXT. INTERRUPT 0 TYPE
IE0 BIT 089H ;TCON.1 - EXT. INTERRUPT 0 EDGE FLAG
IT1 BIT 08AH ;TCON.2 - EXT. INTERRUPT 1 TYPE
IE1 BIT 08BH ;TCON.3 - EXT. INTERRUPT 1 EDGE FLAG
TR0 BIT 08CH ;TCON.4 - TIMER 0 ON/OFF CONTROL
TF0 BIT 08DH ;TCON.5 - TIMER 0 OVERFLOW FLAG
TR1 BIT 08EH ;TCON.6 - TIMER 1 ON/OFF CONTROL
TF1 BIT 08FH ;TCON.7 - TIMER 1 OVERFLOW FLAG
RI BIT 098H ;SCON.0 - RECEIVE INTERRUPT FLAG
TI BIT 099H ;SCON.1 - TRANSMIT INTERRUPT FLAG
RB8 BIT 09AH ;SCON.2 - RECEIVE BIT 8

7 1996 ISP Encyclopedia

In-System Programming from an
Embedded Processor

TB8 BIT 09BH ;SCON.3 - TRANSMIT BIT 8
REN BIT 09CH ;SCON.4 - RECEIVE ENABLE
SM2 BIT 09DH ;SCON.5 - SERIAL MODE CONTROL BIT 2
SM1 BIT 09EH ;SCON.6 - SERIAL MODE CONTROL BIT 1
SM0 BIT 09FH ;SCON.7 - SERIAL MODE CONTROL BIT 0

EX0 BIT 0A8H ;IE.0 - EXTERNAL INTERRUPT 0 ENABLE
ET0 BIT 0A9H ;IE.1 - TIMER 0 INTERRUPT ENABLE
EX1 BIT 0AAH ;IE.2 - EXTERNAL INTERRUPT 1 ENABLE
ET1 BIT 0ABH ;IE.3 - TIMER 1 INTERRUPT ENABLE
ES BIT 0ACH ;IE.4 - SERIAL PORT INTERRUPT ENABLE

SCON DATA 098H ;SERIAL PORT CONTROL
SBUF DATA 099H ;SERIAL PORT BUFFER

EA BIT 0AFH ;IE.7 - GLOBAL INTERRUPT ENABLE
RXD BIT 0B0H ;P3.0 - SERIAL PORT RECEIVE INPUT
TXD BIT 0B1H ;P3.1 - SERIAL PORT TRANSMIT OUTPUT
INT0 BIT 0B2H ;P3.2 - EXTERNAL INTERRUPT 0 INPUT
INT1 BIT 0B3H ;P3.3 - EXTERNAL INTERRUPT 1 INPUT
T0 BIT 0B4H ;P3.4 - TIMER 0 COUNT INPUT
T1 BIT 0B5H ;P3.5 - TIMER 1 COUNT INPUT
WR BIT 0B6H ;P3.6 - WRITE CONTROL FOR EXT. MEMORY
RD BIT 0B7H ;P3.7 - READ CONTROL FOR EXT. MEMORY
PX0 BIT 0B8H ;IP.0 - EXTERNAL INTERRUPT 0 PRIORITY
PT0 BIT 0B9H ;IP.1 - TIMER 0 PRIORITY
PX1 BIT 0BAH ;IP.2 - EXTERNAL INTERRUPT 1 PRIORITY
PT1 BIT 0BBH ;IP.3 - TIMER 1 PRIORITY
PS BIT 0BCH ;IP.4 - SERIAL PORT PRIORITY

RS1 BIT 0D4H ;PSW.4 - REGISTER BANK SELECT 1
F0 BIT 0D5H ;PSW.5 - FLAG 0
AC BIT 0D6H ;PSW.6 - AUXILIARY CARRY FLAG
CY BIT 0D7H ;PSW.7 - CARRY FLAG
SDI EQU P1.0
SCLK EQU P1.1
MODE EQU P1.2
SDO EQU P1.3
ESC EQU 1BH ;escape character

;NOTE THAT THE JEDEC_TABLE IS LOCATED AT THE BOTTOM OF THE FILE.

;————END OF VARIABLES——————————————————————

ORG 2100H ;START OF PROGRAM
AJMP BEGIN
ORG 2103H ;EXTERNAL INTERUPT
SETB B.0 ;SET FLAG TO PROGRAM
RETI

8 1996 ISP Encyclopedia

In-System Programming from an
Embedded Processor
;============== INTERRUPT SERVICE ROUTINE FOR TIMER0 INTERRUPT ==========

ORG 210BH
SETB TFO ; TIMER HAS OVERFLOW
RETI

BEGIN: SETB EA ;ENABLE ALL INTERRUPTS, GLOBAL
SETB EX0 ;ENABLE INTERRUPT 0
MOV B,00H
AJMP BLINK ;OUT OF RESET JUMP TO

;THE TABLE START

BLINK: SETB P1.7
JB B.0,START
ACALL DELAY200
ACALL DELAY200
CLR P1.7
ACALL DELAY200
AJMP BLINK

START:

;############### READ ID OF THE DEVICE #########################

READID: ACALL IDLESTATE ;THESE 2 FUNCTION CALLS
ACALL LOAD_ID ;ACCOMPLISH THE SAME THING
ACALL SHIFT_EN ;CLEARING THE MODE BIT SO THAT

;SHIFTING CAN TAKE PLACE

MOV R0,#07H ; LOOP COUNTER SET UP FOR 7 COUNT
MOV R1,#00H ; TEMP REG FOR ID BYTE
SETB P1.5 ; LED INDICATOR FOR ID OFF

LABEL: MOV A,R1
JB P1.3,HI_BIT ; JUMP IF ITS A HI ON SDIN (P1.3)
CLR ACC.7 ; IF NOT ITS A LOW, PUT A LOW AT MSB
AJMP OVER1

HI_BIT: SETB ACC.7 ; IT IS A HIGH, PUT A HIGH AT MSB
OVER1:

RR A ; SHIFT RIGHT
MOV R1,ACC ; MOVE IT TO TEMP REG R1
ACALL SCLOCK ; CLOCK AND GET READY FOR NEXT BIT
DJNZ R0,LABEL ; GET NEXT VALUE, DO THIS 7 TIMES

CJNE A,#072H,NO_ID ; 72H IS THE DEVICE ID FOR ispGDS22
CLR P1.5 ; SET P1.5 IF THE CORRECT ID
AJMP CONT1

NO_ID: SETB P1.5 ; LED LIGHTS ON THE BOARD
AJMP NO_ID ; SO THAT SIGNAL INTEGRITY CHECKS

; CAN BE MADE.

CONT1: NOP

9 1996 ISP Encyclopedia

In-System Programming from an
Embedded Processor

; END_READ ID
; TO THIS POINT THE DEVICE ID HAS BEEN READ
; AND GENERAL BULK ERASE AND PROGRAMMING IS
; TO TAKE PLACE

ACALL BULK_ERASE

; AT THIS POINT HAVE READ ID AND BULK ERASED THE PART

; SET UP FOR JEDEC PROGRAMMING SEQUENCE OF THE DEVICE
ACALL IDLESTATE

ACALL SHIFTSTATE ;MOVED FROM EXECUTE STATE TO
 ;LOAD COMMAND STATE

ACALL SHFTDATA_CMD ; SETUP FOR PLACING DATA
; INTO THE SHIFT COMMAND

ACALL EXECUTE_STATE
ACALL EXECUTE ; EXECUTE SHIFT CMD

;NOW DEVICE IS READY FOR THE LOADING OF THE JEDEC PATTERN
;LOADING OF THE JEDEC PATTERN IS DONE IN THE EXECUTE STATE AFTER THE
;SHIFTDATA COMMAND.

;LOOP COUNTERS ARE SET UP SO THAT LOADING OF THE JEDEC FILE CAN TAKE PLACE.

;=============== PROGRAM THE DEVICE =======================

;THE NEXT 4 LINES INITIALIZE COUNTERS AND DATA POINTER

;PROGRAMMING OF THE DEVICE IS TO TAKE PLACE IN THE
;EXECUTE STATE OF THE DEVICE.

MOV R3,#16D ; ROW COUNTER FOR ispGDS
MOV R2,#03D ; COLUMN COUNTER 3 BYTES/ROW
MOV R1,#08D ; SHIFT COUNTER WITH THE BYTE

MOV DPTR,#JEDEC_TABLE ; ADDR OF JEDEC FILE

;==
ROWS:
LOADBYTE: CLR A ; CLEAR ACC

MOVC A,@A+DPTR ;LOAD FIRST BYTE OF JEDEC IN A

;MOVE CODE BYTE RELATIVE TO DPTR TO Acc
;METHOD OF BRINGING IN STORED DATA IN THE CODE SEGMENT OF MEMORY.

10 1996 ISP Encyclopedia

In-System Programming from an
Embedded Processor
LOOP8: JB ACC.7,ITS_1 ;JUMP IF MSB IS 1

ITS_0: CLR SDI ;NO! MSB WAS 0, SO LOAD A 0
CLR MODE
ACALL SCLOCK
JMP OVER ;JUMP OVER TEST FOR BIT=1, IT WAS 0

ITS_1: SETB SDI ;MSB IS 1, SO LOAD A 1
CLR MODE
ACALL SCLOCK

OVER:

RL A ; GET NEXT BIT IN ACC INTO MSB
; POSITION, ROTATE LEFT

DJNZ R1,LOOP8
INC DPTR ; MOVE DATA POINTER TO THE NEXT BYTE
MOV R1,#08D ; RESET BIT POSITION COUNTER FOR ACC

DJNZ R2,LOADBYTE
MOV R2,#03D ; RESET BYTE COUNTER 3 BYTES PER ROW

ACALL PROGRAM ;PROGRAM A SINGLE ROW, PROGRAM A ROW
;AND RETURN

DJNZ R3,ROWS ;READY TO LOAD NEXT ROW WITH NEW
;DATA

ACALL IDLESTATE ;PLACE THE DEVICE IN A KNOWN STATE
;READY FOR NORMAL OPERATION.

PROG_COMP: SETB P1.5
ACALL DELAY200 ;ON COMPLETION OF THE JEDEC PROGRAMMING
ACALL DELAY200 ;THE DEVICE IS PLACED INTO AN ENDLESS
CLR P1.5 ;LOOP OF FLASHING AN LED
ACALL DELAY200
AJMP PROG_COMP

;###
; SUBROUTINES
;###

;=============== BULK ERASE THE DEVICE =======================
BULK_ERASE: CALL IDLESTATE ; GO TO IDLESTATE

ACALL SHIFTSTATE ; GO TO SHIFT STATE
ACALL BERASE_CMD ; LOAD BULK ERASE CMD
ACALL EXECUTE_STATE ; GOTO EXECUTE STATE
ACALL EXECUTE ; EXECUTE BULK ERASE CMD
ACALL DELAY200 ; CALL DELAY ROUTINE
RET

11 1996 ISP Encyclopedia

In-System Programming from an
Embedded Processor

;——————ID SHIFT ENABLE—LX——————————————
SHIFT_EN: CLR MODE ;JUST SET THE REQUIRED BITS

RET ;WITHOUT PULSING THE CLOCK

;———————SUBROUTINE FOR THE PROGRAMMING OF THE SHIFTED ROWS

PROGRAM: ACALL SHIFTSTATE ; GOTO SHIFT STATE (MOVE FROM THE
; EXECUTE STATE TO THE SHIFT STATE)

ACALL EXECUTE
ACALL PROGRAM_CMD ; LOAD PROGRAM COMMAND
ACALL EXECUTE_STATE ; GOTO EXECUTE STATE
ACALL EXECUTE ; EXECUTE PROGRAM CMD
ACALL DELAY50
ACALL DELAY50

ACALL SHIFTSTATE ; PROGRAMMING OF ONE ROW IS DONE
ACALL EXECUTE ; GET READY FOR NEXT ROW

;THE RETURN FROM THIS COMMAND IS IN THE SHIFT STATE (LOAD COMMANDS ;STATE)

 ACALL SHFTDATA_CMD ;GET READY TO SHIFT IN NEXT ROW
 ACALL EXECUTE_STATE
 ACALL EXECUTE
 RET

;———————IDLESTATE ——HL——————————————

IDLESTATE: SETB MODE ;ALSO LOADS THE DEVICE ID
CLR SDI ;SO THAT IT CAN BE SHIFTED OUT
ACALL SCLOCK
RET

;———————SHIFTSTATE ———HH————————————————

; GENERIC SUBROUTINE FOR THE CHANGING OF STATE
SHIFTSTATE: SETB MODE

SETB SDI
ACALL SCLOCK
RET

;———————EXECUTESTATE ———HH——————————————

EXECUTE_STATE: SETB SDI
SETB MODE
ACALL SCLOCK
RET

;———————LOAD ID STATE————HL—————————————

LOAD_ID: SETB MODE
CLR SDI
ACALL SCLOCK
RET

12 1996 ISP Encyclopedia

In-System Programming from an
Embedded Processor
;——————TOGGLE SCLK——LHL————————————————
SCLOCK: CLR SCLK

SETB SCLK
CLR SCLK
RET

;—————DELAY 50MS———————————————————
;FOR 12 MHZ 13 BIT UP COUNTER OVERFLOW GENERATES AN INTERUPT
; 65535 - (50MS/12US)=61368——> EFB8 HEX

DELAY50: MOV TH0, #0FH
MOV TL0, #0BAH
SETB TR0 ;START TIMER0 SET TCON.4

COUNTING: JB TF0, TIMEOUT
SJMP COUNTING ; COUNTING IN LOOP

TIMEOUT: CLR TF0
CLR TR0 ; CLEAR TCON.4
RET

;—————DELAY 200MS———————————————————
DELAY200: MOV R0, #04H
LOOP4: ACALL DELAY50

DJNZ R0, LOOP4
RET

;———————BULK ERASE COMMAND—————————————————
; BULK ERASE COMMAND: 00011
BERASE_CMD: CLR MODE ; MODE=0

SETB SDI ; SDI=1
ACALL SCLOCK ; SCLK LHL CLOCK IN 2 ONES
ACALL SCLOCK ; SCLK LHL
CLR SDI ; SDI=0
ACALL SCLOCK ; SCLK LHL
ACALL SCLOCK ; SCLK LHL
ACALL SCLOCK ; SCLK LHL
RET

;———EXECUTE COMMAND——LL————————————————————
;THIS COMMAND CAN BE USED TO EXECUTE LOAD COMMAND AS WELL AS EXECUTE
;INSTRUCTIONS

EXECUTE: CLR SDI
 CLR MODE
ACALL SCLOCK
RET

;———————————————————————————————————

;———————PROGRAM COMMAND—————————————————

;THIS SUB ROUTINE DOES NOT HAVE THE SET UP REQUIRED PRIOR TO ENTERING
;INTO IT.

13 1996 ISP Encyclopedia

In-System Programming from an
Embedded Processor

; PROGRAM COMMAND: 00111
PROGRAM_CMD: CLR MODE ; MODE=0

SETB SDI ; SDI=1
ACALL SCLOCK ; SCLK LHL
ACALL SCLOCK ; SCLK LHL
ACALL SCLOCK ; SCLK LHL
CLR SDI ; SDI=0
ACALL SCLOCK ; SCLK LHL
ACALL SCLOCK ; SCLK LHL
RET

;———————SHIFT DATA COMMAND—————————————————

; SHIFT DATA COMMAND: 00010
; SET UP OF THE COMMAND TO ACCEPT PROGRAMMING INFORMATION

SHFTDATA_CMD: CLR MODE ; MODE=0
CLR SDI ; SDI=0
ACALL SCLOCK ; SCLK LHL
SETB SDI ; SDI=1
ACALL SCLOCK ; SCLK LHL
CLR SDI ; SDI=0
ACALL SCLOCK ; SCLK LHL
ACALL SCLOCK ; SCLK LHL
ACALL SCLOCK ; SCLK LHL
RET

;———— JEDEC DATA CONTAINS DUMMY BITS AND ADDRESSES ————————
;NOTE THAT IN THE DATA BLOCK BELOW THAT THE COMPILER REQUIRES THAT
;NUMBERS DO NOT HAVE A LEADING A LETTER AND AS SUCH A LEADING 0 MUST
;BE INCLUDED.
;BIT MAPPING AND TRANSLATION OF THE JEDEC PATTERN THAT IS TO BE
;PROGRAMMED INTO THE PART. NOTE THE BYTES AND BITS HAVE BEEN REVERSED
;IN THE ORDER THAT IS SHOWN IN THE MANUAL.

;BIT SHIFTING IS DONE LEFT TO RIGHT.

; F A A A C 0
;1111 1010 1010 1010 1100 0000
; F A A A E 0
;1111 1010 1010 1010 1110 0000
; F A A A D 0
;1111 1010 1010 1010 1101 0000
; F A A A F 0
;1111 1010 1010 1010 1111 0000
; F A A A C 8
;1111 1010 1010 1010 1100 1000
; F A A A E 8
;1111 1010 1010 1010 1110 1000
; F A A A D 8
;1111 1010 1010 1010 1101 1000
; F A A A F 8
;1111 1010 1010 1010 1111 1000

14 1996 ISP Encyclopedia

In-System Programming from an
Embedded Processor
; F A A A C 4
;1111 1010 1010 1010 1100 0100
; F A A A E 4
;1111 1010 1010 1010 1110 0100
; F A A A D 4
;1111 1010 1010 1010 1101 0100
; A A A A F 4
;1010 1010 1010 1010 1111 0100
; A A A A C C
;1010 1010 1010 1010 1100 1100
; A A A A A A
;1010 1010 1010 1010 1010 1010
; A A A A A 9
;1010 1010 1010 1010 1010 1001
; A A A A A B
;1010 1010 1010 1010 1010 1011

JEDEC_TABLE:

DB 0FAH,0AAH,0C0H

DB 0FAH,0AAH,0E0H

DB 0FAH,0AAH,0D0H

DB 0FAH,0AAH,0F0H

DB 0FAH,0AAH,0C8H

DB 0FAH,0AAH,0E8H

DB 0FAH,0AAH,0D8H

DB 0FAH,0AAH,0F8H

DB 0FAH,0AAH,0C4H

DB 0FAH,0AAH,0E4H

DB 0FAH,0AAH,0D4H

DB 0AAH,0AAH,0F4H

DB 0AAH,0AAH,0CCH

DB 0AAH,0AAH,0AAH

DB 0AAH,0AAH,0A9H

DB 0AAH,0AAH,0ABH

END
; END OF THE CODE SEGMENT FOR THE ispGDS22.
; USER CODE CAN BE APPENDED FROM THIS POINT FORWARD.

Copyright © 1996 Lattice Semiconductor Corporation.

E2CMOS, GAL, ispGAL, ispLSI, pLSI, pDS, Silicon Forest, UltraMOS, Lattice Logo, L with Lattice Semiconductor Corp. and L
(Stylized) are registered trademarks of Lattice Semiconductor Corporation (LSC). The LSC Logo, Generic Array Logic, In-
System Programmability, In-System Programmable, ISP, ispATE, ispCODE, ispDOWNLOAD, ispGDS, ispStarter,
ispSTREAM, ispTEST, ispTURBO, Latch-Lock, pDS+, RFT, Total ISP and Twin GLB are trademarks of Lattice Semiconductor
Corporation. ISP is a service mark of Lattice Semiconductor Corporation. All brand names or product names mentioned are
trademarks or registered trademarks of their respective holders.

Lattice Semiconductor Corporation (LSC) products are made under one or more of the following U.S. and international
patents: 4,761,768 US, 4,766,569 US, 4,833,646 US, 4,852,044 US, 4,855,954 US, 4,879,688 US, 4,887,239 US, 4,896,296
US, 5,130,574 US, 5,138,198 US, 5,162,679 US, 5,191,243 US, 5,204,556 US, 5,231,315 US, 5,231,316 US, 5,237,218 US,
5,245,226 US, 5,251,169 US, 5,272,666 US, 5,281,906 US, 5,295,095 US, 5,329,179 US, 5,331,590 US, 5,336,951 US,
5,353,246 US, 5,357,156 US, 5,359,573 US, 5,394,033 US, 5,394,037 US, 5,404,055 US, 5,418,390 US, 5,493,205 US,
0194091 EP, 0196771B1 EP, 0267271 EP, 0196771 UK, 0194091 GB, 0196771 WG, P3686070.0-08 WG. LSC does not
represent that products described herein are free from patent infringement or from any third-party right.

The specifications and information herein are subject to change without notice. Lattice Semiconductor Corporation (LSC)
reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors
contained herein or to advise any user of this document of any correction if such be made. LSC recommends its customers
obtain the latest version of the relevant information to establish, before ordering, that the information being relied upon is
current.

LSC warrants performance of its products to current and applicable specifications in accordance with LSC’s standard
warranty. Testing and other quality control procedures are performed to the extent LSC deems necessary. Specific testing of
all parameters of each product is not necessarily performed, unless mandated by government requirements.

LSC assumes no liability for applications assistance, customer’s product design, software performance, or infringements of
patents or services arising from the use of the products and services described herein.

LSC products are not authorized for use in life-support applications, devices or systems. Inclusion of LSC products in such
applications is prohibited.

LATTICE SEMICONDUCTOR CORPORATION
5555 Northeast Moore Court
Hillsboro, Oregon 97124 U.S.A.
Tel.: (503) 681-0118
FAX: (503) 681-3037
http://www.latticesemi.com November 1996

	Main Directory
	Overview
	Programming with a Microprocessor
	Programming with a Microcontroller
	Software Overview
	JEDEC Map Creation and Storage
	The JEDEC Fuse Map Shift Procedures
	ISP Programming Routines
	Programming Sequence

