DESIGN APPLICATIONS

BASIC TECHNIQUES LET DESIGNERS
BUILD A FINITE-IMPULSE-RESPONSE
FILTER IN DEDICATED HARWARE
USING PROGRAMMABLE LOGIC.

LEARN THE FUNDAMENTALS OF
DIGITAL FILTER DESIGN

istorically, designers often have taken an analog ap-

proach to filtering. Filters were constructed using

operational amplifiers, resistors, and capacitors.

One op amp could implement a second-order filter,

and higher-order filters could be implemented by

cascading second-order filters. However, passive
components with tolerances of 1% or better are necessary for the filter to have
reproducible characteristics. And the filter is typically fine-tuned by trial-and-
error substitution of available component values. In addition, operational amplifi-
ers with a high gain-bandwidth product may be needed to keep undesirable phase
shift to a minimum or keep a closed-loop system stable. These factors are among
the many problems in real-world implementations of filters.

With the advances made in digital-signal processing, however, digital filters are
becoming a more attractive design alternative to traditional analog techniques.
Because digital-system information is in digital form, filtering can be accom-
plished relatively easily by passing the data through a filter algorithm. In addition,
digital filters have the advantages of no filter-characteristic drift over time, tem-
perature, or voltage. And they can easily be designed to filter low-frequency sig-
nals. Moreover, the filter response can be made to closely approximate the ideal re-
sponse, and linear phase characteristics are possible.

There are many well established methods of determining the filtering algo-
rithm. Basically, the designer establishes the desired filter characteristics, there-
by yielding a filter transfer function. The continuous-time transfer function is then
transformed to the equivalent linear discrete-time-difference function. This func-
tion in the Z domain has the general form of:

G(Z)=(A,+AZ'+AZ?+ .. A Z")/(1+BZ" +B,Z?+.. B _Z™) = Y(2)/X(Z)

The equation is referred to as the pulse transfer function. It’s actually the Z
transform of the continuous-time filter’s unit impulse response. Conversely, the
inverse Z transform of the pulse transfer function yields the impulse response of
the filter.

The coefficients A, and B, determine the response of the digital filter. Changing
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the coefficients changes the re-
sponse of the filter. The terms Z™
and Z " represent sampling delays or
taps. The G(Z) equation represents
the algorithm of sampling the input,
multiplying it by A,, and adding it to
the previous sample that’s been mul-
tiplied by A, then adding that value
to the next previous sample which
has been multiplied by A,, and so on.
An output value occurs when all N
values have been multiplied and ac-
cumulated.

In parallel, each output value is
stored, multiplied by B,, then added
to the previous output value which
has been multiplied B,, and so on.
The equation can be rearranged so
that the result of the output multiply
accumulate is added to the result of
the input multiply accumulate to pro-
duce an output. This procedure is re-
ferred to as convolution. An output
sample is produced for every input
sample (Fig. 1).

The key to digital-filter design is to
determine the filter coefficients that
will produce the desired frequency
response. Recursive digital filters,
or infinite-impulse-responsive (IIR)
filters, are a type of digital filter in
which the design methodology close-
ly follows that of an analog filter.
One method for determining the co-
efficients is to define a realizable

continuous-time domain Chebyshev,
Butterworth, or equal-ripple filter
then use Z transforms to transform
the continuous-time-domain trans-
fer function to the equivalent dis-
crete-time transfer function that
yields the filter coefficients.

A second popular method is the bi-
linear transform. In this method, en-
gineers first design an analog filter
so that after it’s transformed to a
digital filter, the resulting filter
meets a set of desired digital-filter
specifications. This analog filter is
then transformed to a digital filter
via the bilinear transform from the S
variable of the Laplace transform to
the Z variable of the Z transform.

In a non-recursive digital filter or
finite-impulse-response (FIR) filter,
the outputis computed using the pre-
sent input X, and the previous inputs
X, 1 X, _s ... X,_n. This implies that
the coefficients, B, are all 0, and
there’s no feedback from the output.
Designing non-recursive digital fil-
ters (FIR) involves defining an ideal
desired frequency response from
which the ideal impulse response is
computed. The ideal impulse re-
sponse is truncated to a finite num-
ber of non-zero samples using a win-
dowing function, which is judiciously
chosen. A common windowing fune-
tion is the Kaiser window function.

~
1>

A Scale factor
N

An interesting
property of FIR fil-

Y(N) ters is that if an
FIR system has lin-
ear phase, then its
frequency re-
sponse is con-
strained to be zero
at f = 1/2T, where
T equals the sam-
pling frequency if:

h[M - n]=h[n] and
Mis odd. (M = trun-
cation length of the
window).

This implies the M
should be even
when designing
high-pass and band-

the A and B coefficients determine the response of the filter
and the Z terms represent sampling delays called taps.

I 1. IN THE FUNCTIONAL structure of a digital filter,

stop filters. Or,

h[M - n]=-h[n]and
Mis even.

A second method is the Parks-
McClellean method. In this ap-
proach, the filter order and the edges
of the passbands and stopbands are
fixed, and the impulse-response coef-
ficients are varied systematically so
that an equal-ripple behavior is
achieved in each approximation
band. With this approach, the filter
order can’t be specified in advance.
Therefore, a cut and try procedure
must be used to find the minimum
filter order. The cut and try can be
reduced by using a formula that pre-
dicts the filter order required to meet
a given set of specifications.

There are advantages and disad-
vantages to each type of digital filter
(IIR and FIR). An FIR filter is al-
ways stable because there’s no feed-
back from the output and the im-
pulse response is finite. In addition,
the amplitude and phase can be arbi-
trarily specified. On the other hand,
an FIR filter will generally require
more taps, and consequently more
math, to compute the output value.
The design methodology doesn’t re-
semble the familiar analog design
techniques.

An IIR will generally have fewer
coefficients, but the required output
feedback can make circuit implemen-
tation more complex. A stable IR fil-
ter can become unstable if the coeffi-
cients aren’t chosen properly to ac-
count for digital math errors.

There are four main type of errors
that can arise in the design of digital
filters. These are referred to as
quantization errors. They are:

1. Quantization errors of the input
analog-to-digital conversion

2. Quantization errors of the coeffi-
cients

3. Quantization errors due to arith-
metic computations, including over-
flow

4. Limit cycles

In most cases, a 12-bit analog-to-
digital converter (ADC) provides
enough dynamic range and suffi-
ciently small quantization noise. If
floating-point numbers are used for
the filter coefficients, the quantiza-
tion error is usually small enough.
However, floating-point arithmetic
is more complex and more expensive
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to implement than integer or fixed-
point arithmetic. If 12- or 16-bit coef-
ficient are used, the quantization er-
ror is generally negligible.

In the digital domain, math is per-
formed using finite precision binary
arithmetic. All digital filters need to
multiply a signal sample by a con-
stant coefficient. Of course, multi-
plying 2 N-bit binary numbers re-
sults in a 2N-bit result, but digital
systems are usually confined to a
fixed number of bits with which to
represent binary numbers. There-
fore, it’s necessary to round off the
2N-bit digital number back to N bits.
If a 32-bit multiply accumulator is
used and the final output is rounded
to 16 bits, the arithmetic quantiza-
tion errors can be minimized.

If overflow occurs during mathe-
matical operations, the digital filter
can behave in a nonlinear fashion
and oscillations can occur. Twos-
compliment arithmetic can help elim-
inate overflow. In addition, a satu-

rating adder can be used. If the coef-
ficients are less than one, then the
resulting product will also be less
than one. Scaling is used to force this
condition. The coefficient can be
scaled by a multiple of two so that
the largest coefficient uses all avail-
able bits in the binary representa-
tion. The input is then scaled by the
same amount.

The detail with which a digital fil-
ter can be described can seem end-
less. Fortunately, a wide variety of
computer programs exist that help
the engineer with the filter’s design.
One such product is the DFDP soft-
ware from Atlanta Signal Process-
ing Inc. (ASPI), Atlanta, Ga.

Before a signal can be digitally fil-
tered it must be digitized by an ADC.
If a delta-sigma converter is used,
the need for antialiasing filters
(which must be analog and can be
many orders) is virtually eliminated.
Delta-sigma converters may have
sample rates as high as 100 kHz. The

2. ANFIR FILTER IS IMPLEMENTED ina circuit that uses a single-port 16-bit multiplier-accumulator capable of a 85-ns clock

speed. Because it’s based on microcode, the multiplier-accumulator can be controlled with a PLD.

filter algorithm can then be imple-
mented in software or hardware.

A single-chip microprocessor can
be used to implement a digital filter
in software. However, “single chip”
may be misleading, because a micro-
processor system will generally re-
quire system RAM, ROM, 1/0, and
glue logic. The microprocessor can
implement low- to medium-perfor-
mance digital filters if the only fune-
tion they’re performing is the digital
filtering. As the work load of the mi-
croprocessor increases, its capability
to digitally filter a signal in real time
decreases. Once the system is de-
signed, changing the filter’s charac-
teristics is as easy as changing vari-
ables in software and downloading
the code to the system.

For higher performance and mod-
erate flexibility, the filter can be im-
plemented in dedicated hardware us-
ing programmable logic for design
flexibility. The limiting parameter
will be the time to do a multiply-accu-
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mulate function and the amount of
physical space required for the hard-
ware implementation of the taps.
Consider a circuit that uses a single-
port 16-bit multiplier-accumulator
capable of an 85-ns clock speed (Fig.
2). The device can work in twos-com-
pliment numbers and has output sat-
uration capabilities. As stated be-
fore, these two features are desir-
able when implementing digital fil-
ters. In addition, the device can be
easily controlled with a programma-
ble logic device (PLD) because it’s
microcoded based.

First, the system must initially
load the first N (N = 64) samples into
the FIFO before any convolution
takes place. Otherwise, the FIFO
would never fill up. A counter imple-
mented in a 20RA10 works well. The
6-bit counter is implemented with the
four least-significant bits imple-
mented as an asynchronous counter,
SMPL__DN (ADC sample done) acts
as the clock. The two most-signifi-
cant bits are implemented as a ripple
counter. This type of counter design
makes it possible for a long counter
to be implemented with only four
product terms per output. The
SMPL__DN signal is also generated
in the 20RA10, and is triggered off
signals from the ADC.

When the counter reaches the val-
ue 63, indicating that the FIFO is full
minus the one sample that’s held in
the shift/hold register, GO becomes
true and the system begins to exe-
cute the filtering algorithm. Because
the system is linking two asynchro-
nous subsystems (ADC and the mul-
tiplier-accumulator), there must be
an asynchronous interface between
the two. The 20RA10 is utilized by
generating one interface signal
SMPL_CONYV (sample or convolve
mode). The system powers up with
this line held in the sample mode
(SMPL_CONYV = 1), When GO goes
true, synchronous with the falling
edge of the clock from the ADC,
SMPL__CONV goes low asynchro-
nously with MCLK (synchronous
with SCLK). Because
SMPL__CONYV is an input to the
state machine, the machine could be
subject to a metastable input. The
Lattice CMOS PLDs are very high

Inguts: ORDY, TC, SMPL_CONV
Qutputs; XOE, YOE_MCDN, CONY DN, I(5:0], ST_BIT

100/11{0010XX}1

xtoAos1101e

XXX/111{0000XX]1

XX0/110{0001XX]1

XXX/110{011001]0
X =don't care

3. AN 8'STATE state machine

implements the operations of loading a
sample into the multiplier-accumulator,
then loading the coefficients in and
issuing the multiply-accumulate
command until all N samples are done.

speed, so the metastable characteris-
tics are excellent. That is, the state
flip-flop has a very low probability of
going metastable. Therefore, the
state machine will have to wait, at
most, one extra MCLK cycle before
starting the convolution.

Once the convolution is started,
the operations of loading a sample
into the multiplier-accumulator,
then loading the coefficient into the

multiplier-accumulator and issuing
the multiply-accumulate command,
can be repeated until all N samples
have be done. At this time, the filter
output is valid and the cycle is re-
started. These steps can be imple-
mented with an 8-state state machine
(multiplier-accumulator controller)
(Fig. 3).

By coding the states properly, the
state variables out of the state ma-
chine can be used to directly control
the multiplier-accumulator. Two out-
put enable signals, XOE and
YOE_ MCDN, control the data into
the multiplier-accumulator. The sig-
nal CONV__DN indicates that al N
samples have been convolved. A
dummy state variable (ST__BIT) is
used so that the state bit (XOE,
YOE_MCDN, CONV_DN) can be
employed as outputs. If the dummy
bit was unused, two states would be
forced to have the same state assign-
ments, which isn’t allowed. The de-
sign takes advantage of the power-
up reset of Lattice’s programmable
logic devices (PLD s). After power-
up, the registers will be left in the 0
state, which by careful design is also
the start state of the state machine.

Except for the last SMPL__DN
during initial load, every time
SMPL_ DN (sample done by the
ADC) takes place, SHFT__IN occurs
to load sampled data from the shift/
hold registers into the FIFO. During
convolution, XOE occurs every time
a coefficient is loaded to the multipli-
er-accumulator. The first XOE of a
convolution causes the last data sam-
ple left in the shift/hold registers
during initial load or sample mode to
be shifted into the FIFO. Following
every XOE is a YOE_MCDN (Y-
cutput enable, multiply-accumulate
done). YOE_MCDN causes data
from the FIFO’s output to be parallel
loaded into the shift/hold registers.
A single data sample is then shifted
out of the FIFO. The system is ready
for the next XOE that shifts in the
data held in the shift/hold registers
and so on. This loop continues until
SMPIL._CONYV (sample or convolve
mode) goes to sample mode, at which
time a new sample is loaded into the
shift register, restarting the cycle.

Inputs to the state machine,
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SMPL__CONYV, tell the machine
when it’s time to begin the convolu-
tion cycle. This signal comes from
the mode-control device. TC (Termi-
nal Count) indicates when the convo-
lution is to end. TC comes from a 6-bit
coefficient counter, and is valid when
the count equals 63, which indicates
when all 64 samples have been con-
volved with the respective coeffi-
cients. ORDY comes from the FIFO
and tells the state machine that the
sample from the FIFO is valid. The
state machine will continue to load in
the coefficient to the multiplier-accu-
mulator until ORDY goes true, at
which time the state machine will ad-
vance to the next state. If the cycle
time of the multiplier-accumulator
never exceeds the access time of the
FIFO, ORDY should always be true
when it’s an input the state machine
depends on.

Microcoded instructions to the
multiplier-accumulator are generat-
ed by decoding the state variables.
The first instruction is a NOOP.
When SMPL__CONYV goes low, then
state machine issues a XBUS in-
struction to the multiplier-accumula-
tor. This causes the multiplier-accu-
mulator to load data from the I/0
port into an internal register. The
state machine then issues a YBUS;

CLKMR TC. This command tells the
multiplier-accumulator to perform a
multiply operation in twos-compli-
ment without accumulation because
it’s the first multiply operation of the
convolution.

The machine then enters a loop
and issues another XBUS command
followed by a YBUS; CLMR; TC;
MR+. This command is a multiply-
accumulate function in twos-compli-
ment arithmetic. The machine re-
mains in this loop until TC goes true,
at which time the last multiplier-ac-
cumulator cycle is completed and the
output command MS (SAT) is issued.
MS causes the filter’s outputs (multi-
plier-accumulator outputs) to be-
come valid and latched into a final
output register. This command will
saturate the multiplier-accumulator
output if the final value has an over-
flow, keeping the digital filter from
oscillating. The multiplier-accumula-
tor is statically configured to round
off the final output to the most sig-
nificant 16 bits.

The instructions to the multiplier-
accumulator can be changed simply
by decoding the state variables to
different output values. If EXCMOS
devices are used, the programmable
device can simply be reprogrammed
and put back into the circuit. An E*C-

MOS 22V10 from Lattice Semicon-
ductor is one such device that can be
used for this application.

Two 64-word-by-8-bit FIFOs can
be used to implement the filter taps.
The FIFO can be loaded up with the
initial N samples. A sample is then
shifted out of the FIFO and into the
multiplier-accumulator for process-
ing. This sample is also stored in a
shift/hold register and is shifted
back into the FIFO prior to the next
sample being shifted into the multi-
plier-accumulator for processing.
After all N samples have been pro-
cessed, the oldest sample is shifted
out and a new ADC sample shifted
in. The multiplier-accumulator can
then output a filter value. Program-
mable logic can be used to interface
the digital filter to the ADC, act as
temporary storage register, and im-
plement FIFO control.

These shift/hold registers can be
implemented with two 20V8 devices.
In the sample mode (SMPL__CONV
= 1), the devices act as shift regis-
ters. Data is serially loaded into
them under control of the ADC. The
registers are then placed in a hold
mode so that the data sample isn’t
lost. When the system enters the
convolve mode, (SMPL_CON = 0),
data is immediately loaded into the
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(a). The transition region occurred in 2 kHz. The log magnitude response plot reveals a 175-dB/decade slope at the edges of the filter (b). It

l 5. A PLOT OF THE MAGNITUDE response shows that the bandpass filter’s center frequency is 20 kHz with a passband of 5 kHz

would take a 9th-order analog filter to implement the same specifications.
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shift/hold registers in parallel.

Filter coefficients are stored in
PLDs emulating ROM. A 6001 has a
programmable AND and a program-
mable OR array so that it easily emu-
lates a 64-by-8 high-speed PROM.
Again, if E2 devices are used, the fil-
ter coefficients can be changed sim-
ply by reprogramming the devices.
An address counter is used to access
the coefficients in the correct order.
Because there are 64 required coeffi-
cients for the 64 taps, only 6 bits of
address are required.

The coefficient-address counter is
a simple 6-bit counter implemented
in a 22V10. The counter is a synchro-
nous type with a count enable. The
clock is synchronous with the multi-
plier-accumulator clock. The count-
enable input pin is connected to XOE
from the multiplier-accumulator
controller. Therefore, the counter is
incremented only after the coeffi-
cient value has been loaded into the
multiplier-accumulator. When the
counter reaches 63, TC goes true to
indicate that all 64 coefficients have
been convolved. Again, the power-up
reset is used to ensure that the
counter starts in a known state.

The remaining four output-logic
macro cells can be used to generate
FIFO control signals. These signals
are generated asynchronously. De-
pending on the state of the system—
whether it be initially loading, sam-
pling, or convolving—the appropri-
ate Shift In, Shift Out, and clock sig-
nals for the shift/hold register will
be generated (Fig. 4).

When the convolution is done, the
state machine sets the CONV_DN
signal true synchronous with
MCLK. Hence, SMPL__CONV will
also be set synchronous with MCLK.
This will create glitches on the signal
CLKIN, which is the clock to the
shift/hold registers. This is a don’t-
care condition, as the registers will
soon be loaded with a new valid data
sample under the control of the
ADC.

The system requires 133 MCLK
cycles to complete the convolution.
With a 11.7-MHz clock, this takes
11.4 ps. This system used an ADC
with a serial interface that requires
3.3 us to shift the data into the shift/

hold registers. Thus, the system can
sampleaninputsignalat11.4+3.3=
14.7 us or 68 kHz. The Nyquist sam-
pling theorem states that a signal
must be sampled at twice the highest
frequency component to accurately
preserve the information in that sig-
nal. Therefore, this system can accu-
rately filter a signal with the fre-
quency componentas high as 34 kHz.

Using the DFDP software from
ASPI, a bandpass filter was de-
signed using the Parks-McClellean
method. The center frequency is at
20 kHz with a passband of 5kHz. The
transition region occurred in 2 kHz
(Fig. 5). It's interesting to note that
the edges of the filter have a slope of
approximately 35 dB/0.2 decade, or
175 dB/decade. It would take a 9th-
order analog filter to implement the
same specifications.

The system presented in this ex-
ample is a straightforward FIR fil-
ter. Because of the extensive use of
programmable logic, the system can
be easily adapted to implement an
IIR filter. The final output value can
be fed back into the FIFO prior to a
new sample shifting into the FIFO.
The coefficients can be staggered in
the coefficient ROM so that the B, s
line up with the Y(n - M), and the A s
line up with the X(n-N).

If enhancement of the system’s
performance is desired, a larger
FIFO memory can be used with a
faster multiplier-accumulator. Be-
cause 15-ns programmable-logic de-
vices are used, they’'re not a limiting
factor. If a parallel ADC, 64-by-8
FIFO, and a 45-ns multiplier-accu-
mulator are employed, the system
could be made to run at 167 kHz with
little modification.(3

The author would like to thank At-
lanta Signal Processing for their
help in developing this article.
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