
1 1996 ISP Encyclopediaan8003_01

The Basics of One-Wire ISPI
with an ISP-IrDA Example

TM

Introduction

Lattice Semiconductor, the inventor of In-System Pro-
grammable™ devices, has been successfully
programming PLDs and CPLDs in-system for over five
years, longer than any other company. There are cur-
rently several methods for downloading information to a
Lattice ISP device. The most common programming
controllers are a PC parallel port, automatic test equip-
ment (ATE) or embedded micro-controller. Each of
these methods involve a direct four- or five-wire connec-
tion from the source to the ISP target device. With this
standard ISP connection, it is possible to control the
Lattice device’s four or five programming pins. Figure 1
shows a block diagram for a configuration using a PC and
an ISP target.

ISP Overview

The ISP target can include a single device or a daisy
chain of multiple devices. The required ISP signals
include ispEN, SDIN, MODE, SCLK, and SDO. For
those familiar with the four-wire IEEE 1149.1 boundary
scan TAP controller, the TAP controller signals TDI,
TMS, TCK and TDO can be used interchangeably with
the ISP signals SDI, MODE, SCLK, and SDO respec-
tively. Most Lattice ispLSI® devices use the ISP Enable
(ispEN) pin to determine whether the device is in Edit
Mode (ISP programming mode) or Normal Mode (normal
device operation mode). The ispGAL® and ispGDS™
enter edit mode when SDI is a logic high and a SCLK is
received.

The Serial Data In (SDI) pin functions as both a data input
to the serial shift registers in the device and one of two
control pins for the programming state machine. The
Mode pin combines with SDI to control the programming
state machine. The Serial Clock (SCLK) pin is used to
clock the internal serial shift registers and the ISP state

machine. Serial Data Out (SDO) is connected to the
output of the internal shift registers. If you are unfamiliar
with the advantages of Lattice ISP, please refer to the
latest edition of the Lattice Semiconductor Databook for
further information.

ISP Innovation

With years of ISP experience, Lattice has developed
solutions for many challenges encountered when imple-
menting in-system programming. Customers frequently
require unique solutions. For example, programming
times of less than 20 seconds became essential for
customers programming with Automatic Test Equipment.
The solution to that challenge led to the development of
Lattice ispTURBO™ programming. ispTURBO program-
ming is a method in which a daisy chain of devices is
programmed in parallel so the programming time of the
entire daisy chain is accomplished in approximately the
time it takes to program the largest device in the chain.
What started as an ATE-driven solution has carried over
to all programming platforms.

ISP-IrDA arose from similar customer inquiries. The
Infrared Data Association (IrDA) has standardized infra-
red data communication. ISP-IrDA incorporates ISP with
standard IrDA transmission. While many companies are
still experimenting with the first steps of a four- or five-
wire ISP solution, Lattice has taken ISP to the next level
with one-wire ISP.

In field upgrade situations where I/O is needed for other
uses or there is a need for remote access, running a four-
or five-wire connection is not practical. For example,
telecommunications companies want the ability to repro-
gram boxes on top of telephone poles without climbing
poles and exposing the electronics to the elements. With
ISP-IrDA, Lattice makes this a reality.

PC ISP Target

Devices ISP Signals

Figure 1. Standard Four- or Five-Wire ISP

2 1996 ISP Encyclopedia

The Basics of One-Wire ISP
with an ISP-IrDA Example

pinout are used by the software for cable sensing and Vcc
and GND detection. These lines are not required for ISP
but were added to help the user troubleshoot configura-
tion problems. Notice that if the input and output bytes
are combined into a single byte, there is no conflict with
the ISP signals. Figure 3 shows this combined byte.

This configuration is used because the bit order format
agrees with the parallel version. Each ISP signal corre-
sponds to a specific bit location within the serial byte.
This method does not allow for rapid data transmission
since it takes a serial byte to change any one ISP signal.
The advantage of this structure is that it is easy to decode
the serial byte at the ISP target.

Since all the ISP data fits into a serial byte, there is simply
the conversion from parallel-to-serial and then serial-to-
parallel. Figure 4 illustrates the additional overhead
required for one-wire ISP compared to standard ISP as
illustrated in Figure 1.

The PC can convert parallel ISP signals to serial ISP
bytes and initialize and control the interface transceiver.
A controller is required in front of the ISP target. The
controller must be able to initialize and control the inter-
face transceiver. It must also convert the serial ISP bytes
back to parallel ISP signals.

A main area of concern in changing from bi-directional
parallel communication to half-duplex serial communica-
tion is avoiding data conflicts on the one-wire. However,
there are three extra bits within the serial byte available
(see Figure 3). The extra bits can be used for handshak-
ing or other user-specific functions. When programming,
a majority of the data is sent to the ISP target. SDO is the
only signal returning from the ISP target and is used to
read the device ID, verify programming and connect to
other devices in the daisy chain. To reduce the compli-
cation involved with managing the half-duplex serial line,
Bit 7 is used to request SDO. No additional hardware
overhead is required to wait for the line to become free.
If Bit 7 is set to a ‘1’, then one SDO bit is read and sent
back by the interface controller. For example, when the
PC wants to read the device ID, it looks for the first bit of
the device ID. The PC sends out a request for SDO.
Next, the PC waits for the SDO bit to be sent by the
interface controller before sending the next serial byte.
The next string of serial bytes shifts the next bit of the

Infrared data communication is quickly becoming a popu-
lar remote data communication standard. The IrDA
standard defines protocol for wireless data communica-
tion. Essentially, IrDA is half-duplex serial communication.
In the first section of this application note, the basic
theory involved for changing the five-wire interface to a
one-wire interface is presented. The following section
will describe the IrDA model in detail. After reading this
application note, the reader will have a basic understand-
ing of how to apply ISP devices for use with many remote
communication standards.

One-Wire ISP Theory

The basic theory behind converting the standard four- or
five-wire ISP to one-wire ISP is quite simple. A standard
parallel port has eight data lines in and eight data lines
out. Serial communication typically uses eight data bits.
ISP uses four signals out and one signal in. Everything
is synchronized by SCLK. Rather than having four or five
signals connected in parallel, it is possible to compact the
these signals into a serial byte. This conversion is the
simplest parallel-to-serial conversion, although not nec-
essarily the most efficient. Figure 2 shows the pinout for
the ispDOWNLOAD™ cable and illustrates how the
parallel port is used.

The first four output lines are used by SDIN, SCLK,
MODE, and ispEN respectively. SDO comes into the
seventh input line. The additional I/O lines shown in the

560pF

100 ohm
SCLK/TCK

74HC367
DB25 Parallel Port

Connector Pins

Pin 10 SDOUT/TDO

SDIN/TDI

isp Interface

ispEN

RESET

 Pin 2

 Pin 3

 Pin 4

 Pin 5

 Pin 6

 Pin 8

 Pin 12
Port Sense

 Pin 15 - Vcc Sense
 Pin 20 - GND

10K

10K

DI6

DO0

DO1

DO2

DO3

DO4

DO6

DI5

DI3
GND

560pF

100 ohm

Vcc

Vcc
MODE/TMS

560pF

100 ohm

560pF

100 ohm

560pF

100 ohm

SDI SCLK MODE ispEN SDO

Bit 1Bit 0 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Figure 2. ispDOWNLOAD Cable

Figure 3. ISP Serial Byte

3 1996 ISP Encyclopedia

The Basics of One-Wire ISP
with an ISP-IrDA Example

device ID to SDO. The PC again requests SDO and waits
for it to return. This process continues until the device ID
is read. Therefore, not a lot of additional hardware is
required. Figure 5 shows the final one-wire serial byte
configuration.

While quite simple in theory, converting to one-wire ISP
requires knowledge of the transmission medium, inter-
faces and ISP programming software. Software must be
modified and a hardware interface controller must be
built. In the following section, these challenges have
been removed with a detailed description of the ISP-IrDA
interface.

ISP-IrDA Interface

The previous section describes the basic theory of con-
version to one-wire ISP. In this section, the ISP-IrDA
model will be discussed in detail. Covered are two areas
of concern in converting from the standard four- or five-
wire ISP interface: the modification of the ispDOWNLOAD
software and the addition of the interface controller in
front of the first ISP device. Figure 6 shows a block
diagram for ISP-IrDA.

Software

Lattice offers several versions of ispDOWNLOAD soft-
ware for use in various applications or with different
platforms. ISP Daisy Chain Download is a pre-compiled
version for Windows that includes support for turbo and

Interface

Transceiver

Interface

Transceiver

RS-232

Data

• IrDA

• RF

• RS-232

• 1-wire

• Telephone

ISP Target

Devices

Interface

Control

and Data

Conversion

Serial

Data

ISP Signals

PC

Signals:

Figure 4. One-Wire ISP Interface

one-at-a-time device programming. It has a utility to
assist in creating programming vectors for various ATE
manufacturers. To support ISP programming through
embedded controllers or any other platform, Lattice sup-
plies C source code called ispCODE™ software. ispCODE
compiles to a DOS command line utility for ispTURBO
programming a daisy chain of devices through a PC
parallel port. It requires that the user specify an
ispSTREAM™ file to program each device at the com-
mand line. The ispSTREAM file format is a unique Lattice
format made up of the compressed JEDEC files plus
instructions that the software uses to program the daisy
chain. A user must also write a short text file called a DLD
file showing the number of devices, their order in the
chain, the operation to be performed on each device and
the JEDEC file (if the operation requires one). Running
dld2isp.exe on this DLD file creates the ispSTREAM file.
Please refer to the 1996 Lattice Semiconductor Databook
for more information on ispCODE software.

Obviously, some software changes are required in order
to program a daisy chain of devices over an IrDA link.
Fortunately, most newer laptops include a built-in IrDA
port that is accessed as a secondary serial port. This
simplifies the initialization at the PC end because the
IrDA transceiver is automatically initialized when the
serial port address used by the IrDA port is configured.
With ispCODE version 3.05 or later, many of the modifi-
cations are minor. In the main body of ispCODE, the Vcc
and cable sensing for the parallel port connector is
removed. Selections for a COM port and baud rate are
added. Once the COM port and baud rate are known, the
proper UART is initialized for the given baud rate plus
eight data bits, no parity, and one stop bit. Variables are
added to lattice.h for COM port addresses, UART flags,
UART registers and the SDO request bit.

SDI SCLK MODE

 ispEN
 SDO Request

SDO

Bit 1Bit 0 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Figure 5. One-Wire Serial Byte

4 1996 ISP Encyclopedia

The Basics of One-Wire ISP
with an ISP-IrDA Example

The larger changes come in the two functions for data
output and data input. The isp_setpin function is used to
change one ISP signal at a time and output the change
to the data port. Because of the relatively slow transmis-
sion speed of a serial port compared to a PC, care has to
be taken to not overwrite any data before it can be sent.
It is important to check that the UART’s data transmission
register is empty before writing to it. The LSR UART flag
signifies when the data register is empty. Once the data
register is ready, the serial byte can be written to the port.
It is best to wait for the byte to be sent before continuing
by waiting for LSR to signal that the data register is empty
again.

The isp_SDO function is called when one bit from SDO is
required. With five-wire ISP, SDO is always available
because it has a dedicated line. The isp_SDO function
had to be changed from a simple read of the SDO line to
a request for SDO to be sent followed by a read of that
data. The flow for the function changed to clearing the
UART receive buffer, sending out a byte with the
request_SDO bit (Bit 7) high, waiting for a byte to return,
reading that byte, extracting the SDO bit (Bit 6) from that
byte, and resetting the request_SDO bit back to ‘0’ for the
next byte. Because IrDA streams can be interrupted
easily by a drastic change in lighting or a physical
blockage of the signal, it is necessary to add a time-out
when waiting for SDO to return. A minimum of two
seconds is given to receive SDO before timing out and
exiting the program.

Hardware

Figure 6 shows the block diagram for the ISP-IrDA model.
The format of the serialized ISP signals was defined in
the previous section. The preliminary feasibility tests
done on the IrDA interface used a 8051 microcontroller
for the interface control and serial-to-parallel conversion.
However, the decision to use a Lattice ispLSI 1032 was
made for several reasons. The large volume of data

being transmitted caused the programming time to be
directly related to the baud rate. The maximum baud rate
for most systems is 115,200 baud. The logic to initialize
the Crystal CS8130 IrDA transceiver, convert the serial-
to-parallel, and handle the SDO contingency is quite
simple. Also, the ispLSI1032 in the thin quad flat pack
(TQFP) package is small and uses little PCB space.

The interface controller is made up of two state ma-
chines, as well as serial transmit and receive shift
registers. At power-up, the controller must initialize the
CS8130 at 9600 baud. Once completed, it waits for serial
data to come in from the CS8130. After a serial byte has
been received, the request_SDO bit must be checked. If
SDO is not required, then the byte contains programming
signals. Bit 0 through Bit 3 contain the ISP signals and
are sent out to the ISP target devices. If SDO is required,
the controller reads SDO from the ISP target, places the
SDO bit into Bit 6 of a serial byte and sends the byte to the
CS8130.

In the IrDA example, the ispLSI 1032 initializes the
CS8130 by turning on transmit and receive, setting Ir
receive sensitivity to 23.4nA, and changing the baud rate
to 115,200 baud. Additionally, the ispLSI 1032 uses a
7.3728MHz clock which is divided by two for the CS8130
clock. The schematic for the IrDA module is shown in
Figure 7.

Compared to standard five-wire ispTURBO program-
ming from the Windows environment, the ISP-IrDA-based
programming in this example is approximately three
times slower if running at 115,200 baud. Lattice’s ispLSI
demoboard is a small PCB with a four-device daisy chain,
five seven-segment LEDs and ISP connections. The
devices include an ispLSI 2064-100LT, an
ispGAL22V10C-15LJ, an ispLSI 1016-60LT and an
ispGDS22-7J. The ISP-IrDA module is capable of plug-
ging onto the demoboard’s eight-pin AMP connector
while the demoboard is powered up. If using a laptop with

Figure 6. ISP-IrDA-Based Programming Block Diagram

Crystal

CS81-30

with LEDs

and pin

diode

Built-in

IrDA Port

ISP Target

Devices

Lattice

ispLSI

1032

Serial

Data

ISP Signals

PC running

a modified

version of

ispCODE

3.05

IrDA Signal

5 1996 ISP Encyclopedia

The Basics of One-Wire ISP
with an ISP-IrDA Example

an IrDA port, you are now ready to download your design
files. Contact your local Lattice sales office for a demon-
stration.

Summary

Many ideas for making ISP-IrDA practical for a produc-
tion environment have already been uncovered. Imagine
a hand-held IrDA download box in front of a cart full of
boards. By typing in the code for a particular board, the
technician is able to program the devices on that board
quickly and easily.

Figure 7. Schematic ISP-IrDA Module

Building a more intelligent controller or incorporating
memory to speed data transfer in order to achieve pro-
gramming times similar to those of the parallel five-wire
ISP are also being investigated. Other remote transmis-
sion protocols such as modem-to-modem and RF are
being developed. If system manufacturers are able to
update their remote hardware with only a modem and a
phone line, imagine the savings in time and human effort.

Copyright © 1996 Lattice Semiconductor Corporation.

E2CMOS, GAL, ispGAL, ispLSI, pLSI, pDS, Silicon Forest, UltraMOS, Lattice Logo, L with Lattice Semiconductor Corp. and L
(Stylized) are registered trademarks of Lattice Semiconductor Corporation (LSC). The LSC Logo, Generic Array Logic, In-
System Programmability, In-System Programmable, ISP, ispATE, ispCODE, ispDOWNLOAD, ispGDS, ispStarter,
ispSTREAM, ispTEST, ispTURBO, Latch-Lock, pDS+, RFT, Total ISP and Twin GLB are trademarks of Lattice Semiconductor
Corporation. ISP is a service mark of Lattice Semiconductor Corporation. All brand names or product names mentioned are
trademarks or registered trademarks of their respective holders.

Lattice Semiconductor Corporation (LSC) products are made under one or more of the following U.S. and international
patents: 4,761,768 US, 4,766,569 US, 4,833,646 US, 4,852,044 US, 4,855,954 US, 4,879,688 US, 4,887,239 US, 4,896,296
US, 5,130,574 US, 5,138,198 US, 5,162,679 US, 5,191,243 US, 5,204,556 US, 5,231,315 US, 5,231,316 US, 5,237,218 US,
5,245,226 US, 5,251,169 US, 5,272,666 US, 5,281,906 US, 5,295,095 US, 5,329,179 US, 5,331,590 US, 5,336,951 US,
5,353,246 US, 5,357,156 US, 5,359,573 US, 5,394,033 US, 5,394,037 US, 5,404,055 US, 5,418,390 US, 5,493,205 US,
0194091 EP, 0196771B1 EP, 0267271 EP, 0196771 UK, 0194091 GB, 0196771 WG, P3686070.0-08 WG. LSC does not
represent that products described herein are free from patent infringement or from any third-party right.

The specifications and information herein are subject to change without notice. Lattice Semiconductor Corporation (LSC)
reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors
contained herein or to advise any user of this document of any correction if such be made. LSC recommends its customers
obtain the latest version of the relevant information to establish, before ordering, that the information being relied upon is
current.

LSC warrants performance of its products to current and applicable specifications in accordance with LSC’s standard
warranty. Testing and other quality control procedures are performed to the extent LSC deems necessary. Specific testing of
all parameters of each product is not necessarily performed, unless mandated by government requirements.

LSC assumes no liability for applications assistance, customer’s product design, software performance, or infringements of
patents or services arising from the use of the products and services described herein.

LSC products are not authorized for use in life-support applications, devices or systems. Inclusion of LSC products in such
applications is prohibited.

LATTICE SEMICONDUCTOR CORPORATION
5555 Northeast Moore Court
Hillsboro, Oregon 97124 U.S.A.
Tel.: (503) 681-0118
FAX: (503) 681-3037
http://www.latticesemi.com November 1996

	Main Directory
	Introduction
	ISP Overview
	ISP Innovation
	One-Wire ISP TheoryISP
	ISP-IrDA Interface
	Summary

