
1 1996 ISP Encyclopediaan8006_01

Multiple FIFO Configuration
in ispLSI 6192

Introduction

In various data communications applications, it is often
necessary to transmit and receive large blocks of data at
high data rates between two systems. The size of the
block can vary from several Kbytes to Mbytes depending
on the application. In telecommunication systems, very
often data consists of multiple low-speed channels mul-
tiplexed into a single high-speed data channel. Each
channel may represent voice, data and/or video informa-
tion from a single subscriber and 24 or more channels
may be multiplexed into a single trunk line for long
distance transmission. At the receiving end, the system
must separate the single multiplexed data channel into
multiple subscriber channels. In order to optimize system
performance, often times it is desirable to buffer the data
into a high-speed memory device, such as a RAM
(Random Access Memory) or a FIFO (First In First Out).
Individual channel data may be temporarily stored into a
FIFO and retrieved by the host processor at appropriate
times. This allows the processor to read a block of data
at a time from each channel, thus lowering the overhead
associated with memory read/write cycles. For a 24
channel system, it is desirable to have 24 FIFOs to buffer
data for each data communication channel.

FIFOs are generally available as discrete memory de-
vices. The control logic necessary to implement multiple
FIFOs can be realized with PLDs, FPGAs or ASICs.
Typically a system with multiple FIFOs requires logic to
control full and empty flags from different FIFOs and logic
to manipulate read and write signals to different FIFOs.
If a system requires 24 FIFOs, the logic necessary to
implement the control logic can be quite large. In addi-
tion, the designer must consider propagation delay of the
control signals from the host processor through the PLD
and to the individual FIFOs. Delay through the PLD,
including on and off chip delays, must be well understood
in order to meet setup and hold time requirements of the
FIFOs. Added to the complexity is the requirement for
today’s high-speed data rates, which makes understand-
ing and minimizing on and off chip delays through the
PLD paramount.

Implementing memory functions, such as FIFOs, in gen-
eral purpose PLDs is not the most efficient use of
programmable logic real estate. A better solution is to
use a PLD with dedicated memory functions, such as the
Lattice ispLSI 6192. Figure 1 shows a high-level func-
tional block diagram of the ispLSI 6192.

The ispLSI 6192 contains general purpose program-
mable logic, a flexible 4000-bit memory block, and register/
counter block. The memory block can be configured as
a single-port RAM, a dual-port RAM, or a FIFO. As a
single FIFO, total memory size can be configured as 512
X 9 bits or as 256 X 18 bits. The necessary control logic
for a single FIFO is already built into the block.

Flexible FIFO Configuration

In addition to the single FIFO, the ispLSI 6192 can also
be configured as a bi-directional FIFO or as multiple
FIFOs. As a bi-directional FIFO, the memory block is
divided into two separate FIFOs, each FIFO being 256 X
9 bits. One FIFO is used for transmit and the other is used
for receive functions. Since the FIFOs operate indepen-
dently, simultaneous read and write operations can occur
on the receive and transmit FIFOs. The control logic
necessary to support the bi-directional function, such as
address counters and FIFO flag logic and registers, can
be implemented in the programmable logic block of the
ispLSI 6192.

In some applications, it may be necessary to have mul-
tiple bi-directional FIFOs. The 4000-bit memory block
can be configured as several independent bi-directional
FIFOs. For example there can be two FIFOs for the
transmit function and two FIFOs for the receive function,
each FIFO being 128 X 9 bits. The control logic function-
ality will increase as you double the size of address
counters, FIFO flag logic and registers.

This application note describes how the ispLSI 6192 can
be configured into four uni-directional FIFOs. The dia-

Programmable

Logic Module

(192 macrocells)

Memory Module

(512 x 9 or 256 x 18)

Register/Counter Module

(8 x 16 bits)

Options:

FIFO

Single Port RAM

Dual Port RAM

Figure 1. ispLSI 6192 Functional Block Diagram

®

2 1996 ISP Encyclopedia

Multiple FIFO Configuration in ispLSI 6192

gram shown in Figure 2 is for four independent FIFOs,
each FIFO being 128 bytes deep X 9 bits wide. Read and
write operations can occur simultaneously in this configu-
ration, by simply sending the appropriate two-bit address
to select one of the four target FIFOs along with the
proper write and read signals. The FIFO control logic
internal to the ispLSI 6192 generates the proper memory
address for read and write operations, and sets the full
and empty flags to be read by the external host system.

FIFO Operation

To write to the FIFO, the user (Write Channel) must
provide the appropriate two-bit select, data, and a write
pulse to the device. The two-bit address selects one of
the four FIFOs to be written to. The select line and data
bus must be valid while the write pulse is active. Data is
written into the FIFO at the end of the write pulse,
provided that the FIFO is not full.

To read from the FIFO, the user (Read Channel) must
provide the appropriate two-bit select, and a read pulse
to the device. The two-bit address selects one of the four
FIFOs to be read from. The select line must be valid while
the read pulse is active. Data is read from the FIFO at the
end of the read pulse, provided that the FIFO is not
empty. The data bus is always actively driven by the
ispLSI 6192 and valid data is present on the bus at the
end of the read cycle.

Internal to the programmable logic block, there are
address registers that hold the address pointers for the
next read and next write operations. For a given FIFO, the
read and write address registers (each seven bits wide)
are initialized to ‘0’s upon power up. When data is written
to the FIFO, the write register content is incremented to
‘1’, setting the write address pointer for the next write
operation to ‘1’. Subsequent write operations increment
the address pointer such that the write register always
holds the address of the next write operation.

Similarly, when data is read from the FIFO, the read
register content is incremented to ‘1’, setting the read
address pointer for the next read operation to ‘1’. Subse-
quent read operations increment the address pointer
such that the read register always holds the address of
the next read operation.

When the write and read addresses become equal, the
FIFO FULL flag is set when the last operation was a write;
the FIFO EMPTY flag is set when the last operation was
a read. When the FIFO is FULL, write operations are not
allowed; write pulses are ignored internally to the logic
block and are not passed on to the memory block. The
write address pointer is not incremented. A read opera-
tion must occur to clear the FULL flag (set to ‘1’), allowing
the write operation to take place.

Register

Array

Programmable

Logic Block

Data Out9

Read Select
2

Read

Read Channel

FIFO Empty
4

Write Channel

9Data In

Write Select

Write

FIFO Full

2

4

FIFO 1

FIFO 2

FIFO 3

FIFO 4

Figure 2. Functional Diagram

Multiple FIFO Configuration in ispLSI 6192

3 1996 ISP Encyclopedia

Similarly when the FIFO is EMPTY, read operations are
not allowed; read pulses are ignored internal to the logic
block and are not passed on to the memory block. A write
operation will clear the EMPTY flag and at that point,
subsequent read operations are allowed.

The address bus to the memory module is nine bits wide.
The two-bit select line forms the upper two bits of the
address bus and the seven-bit address generated from
the logic block forms the lower seven bits of the address
bus.

FIFO Memory Configuration

In order to configure the ispLSI 6192 into multiple FIFOs,
the Dual Port RAM version of the ispLSI 6192 is used.
The memory block is partitioned into four equal blocks,
each block being a FIFO that is 128 X 9 bits.

With this configuration, Port A is designated the read
channel and Port B is the write channel. Since Port A and
Port B are bi-directional, the read and write data buses
can be interchanged, if so desired. The data bus for Port
A connects directly to the memory block through the I/O
cells and the data bus for Port B connects to the memory
block through the I/O cells and generic routing pool
(GRP). In this application note, Port A is the read channel
and Port B is the write channel.

The address bus to the memory block is nine bits wide
(512 bytes). The read select lines form the upper two bits
of the read address bus, while the address pointer
generated inside the programmable logic block form the
lower seven bits of the read address bus. The read
address bus is routed out of ispLSI 6192 and routed back
into the memory block through the external I/O cells.

The write select lines form the upper two bits of the write
address bus, while the address pointer generated inside
the programmable logic block form the lower seven bits
of the write address bus. The write address bus is routed
directly to the memory block through the GRP.

The memory read and write signals are generated inter-
nally in the programmable logic block and are routed to
the memory block. These signals are generated from the
external nWRITE and nREAD signals. The read signal is
routed out of the ispLSI 6192 and routed back into the
memory block through the nCSA (channel select A)
input. The write signal is routed directly to the memory
block through the nCSB (channel select B) input.

FIFO Control Logic

The block diagram of the control logic is implemented in
the programmable logic block as shown in Figure 3. A

Data Out9

FIFO Empty
4

9Data In

Write Select

Write

2

FIFO

Block

FIFO

Flag

Register

FIFO Full
4

FIFO1

FIFO4

Read Select
2

9

9

Address

Address

Read

Write

Read

Write

Read

Read

Address

Write

Address

Read Write

FIFO

Read/Write

Logic

FIFO4

FIFO1

FIFO Flag

Control

Address

Increment

Address

Increment

Full

Empty

7

7

7

7

Figure 3. FIFO Control Logic

4 1996 ISP Encyclopedia

Multiple FIFO Configuration in ispLSI 6192

I_
85

M
U

X
4_

1

a
in

[3
:0

]

se
l[3

:0
]

a_
ou

t

I_
86

M
U

X
4_

1

a
in

[3
:0

]

se
l[3

:0
]

a_
ou

t

I_
74

M
U

X
4_

1

a
in

[3
:0

]

se
l[3

:0
]

a_
ou

t

I_
73

M
U

X
4_

1

a
in

[3
:0

]

se
l[3

:0
]

a_
ou

t

I_
75

M
U

X
4_

1

a
in

[3
:0

]

se
l[3

:0
]

a_
ou

t

I_
76

M
U

X
4_

1

a
in

[3
:0

]

se
l[3

:0
]

a_
ou

t

I_
77

M
U

X
4_

1

a
in

[3
:0

]

se
l[3

:0
]

a_
ou

t

I_
78

M
U

X
4_

1

a
in

[3
:0

]

se
l[3

:0
]

a_
ou

t

I_
79

M
U

X
4_

1

a
in

[3
:0

]

se
l[3

:0
]

a_
ou

t

I_
80

M
U

X
4_

1

a
in

[3
:0

]

se
l[3

:0
]

a_
ou

t

I_
81

M
U

X
4_

1

a
in

[3
:0

]

se
l[3

:0
]

a_
ou

t

I_
82

M
U

X
4_

1

a
in

[3
:0

]

se
l[3

:0
]

a_
ou

t

I_
83

M
U

X
4_

1

a
in

[3
:0

]

se
l[3

:0
]

a_
ou

t

I_
84

M
U

X
4_

1

a
in

[3
:0

]

se
l[3

:0
]

a_
ou

t

I_
69

D
Q

I_
70

D
Q

I_
71

D
Q

I_
72

D
Q

I_
37

D
Q

I_
38

D
Q

I_
39

D
Q

I_
40

D
Q

I_
5

D
Q

I_
6

D
Q

I_
7

D
Q

I_
8

D
Q

I_
13

D
Q

I_
14

D
Q

I_
15

D
Q

I_
16

D
Q

I_
21

D
Q

I_
22

D
Q

I_
23

D
Q

I_
24

D
Q

I_
29

D
Q

I_
30

D
Q

I_
31

D
Q

I_
32

D
Q

I_
45

D
Q

I_
46

D
Q

I_
47

D
Q

I_
48

D
Q

I_
53

I_
54

I_
55

I_
56

rd
ad

d[
6:

0]

rdadd[6]

rdadd[5]

rdadd[4]

rdadd[3]

rdadd[2]

rdadd[1]

rdadd[0]

bit1[3:0]

rd
ch

[3
:0

]

bit6[3:0]

bit5[3:0]

bit4[3:0]

bit3[3:0]

bit2[3:0]

bit0[3:0]

b
it6

[3
]

b
it5

[3
]

b
it4

[3
]

b
it3

[3
]

b
it2

[3
]

b
it1

[3
]

b
it0

[3
]

rd
ch

[3
]

vl
d_

re
ad

b
it6

[2
]

b
it5

[2
]

b
it4

[2
]

b
it3

[2
]

b
it2

[2
]

b
it1

[2
]

b
it0

[2
]

rd
ch

[2
]

b
it6

[1
]

b
it5

[1
]

b
it4

[1
]

b
it3

[1
]

b
it2

[1
]

b
it1

[1
]

b
it0

[1
]

rd
ch

[1
]

b
it6

[0
]

b
it5

[0
]

b
it4

[0
]

b
it3

[0
]

b
it2

[0
]

b
it1

[0
]

b
it0

[0
]

rd
ch

[0
]

rd
ad

dr
d[

6:
0]

rdaddrd[6]

rdaddrd[5]

rdaddrd[4]

rdaddrd[3]

rdaddrd[2]

rdaddrd[1]

rdaddrd[0]

rd
ad

dw
t[6

:0
]

rdaddwt[6]

rdaddwt[5]

rdaddwt[4]

rdaddwt[3]

rdaddwt[2]

rdaddwt[1]

rdaddwt[0]

w
tc

h[
3:

0]

Figure 4. Read Address Register

Multiple FIFO Configuration in ispLSI 6192

5 1996 ISP Encyclopedia

detailed description of the logic operation is provided
below.

Read / Write Address Registers

The read and write address registers store the addresses
for the next FIFO read and FIFO write operations respec-
tively. Each FIFO is 128 bytes deep, and consequently
each Read Address Register contains seven storage
elements and each Write Address Register contains
seven storage elements. A total of 56 Flip-Flops are
required for the four FIFOs being implemented . Figure 4
shows the schematic for the read address register, where
28 D Flip-Flops are used.

The next read address is loaded into the selected register
(selected by RDCH[3:0]) on the rising edge of VLD-
READ (valid read), which is derived from the nREAD
signal. The read address for the current operation is
retrieved by the RDCH[3:0] signal, which selects one of
the four FIFOs being read. The WTCH[3:0] signal selects
the read address for one of the four FIFOs during a write

operation, so that the read address can be compared to
the write address.

Read / Write Address Counters

The Read Address Counter is a basic up counter, minus
the storage element. It takes the current read address
from the read address register, increments the count and
outputs the next read address. During a valid read
operation, this next read address is loaded into the read
address register. See Figure 5 for the implementation of
the Read Address Counter.

The Write Address Counter is implemented similarly to
the Read Address Counter.

FIFO Flag Registers

Figure 6 shows the block diagram of the FIFO Flag
Registers. The three main blocks are EMPTYREG,
FULLREG, and MUX4_1.

Figure 5. Read Address Counter

I_70

I_71

I_72

I_73

I_74

I_75

I_76

I_53

I_77

I_54

I_64

I_78

I_79

I_80

I_68

I_65

I_66

I_67

oldadd[6:0]
newadd[6:0]

oldadd[0] newadd[0]

oldadd[1]
newadd[1]

oldadd[2]

newadd[2]

oldadd[3]

newadd[3]

oldadd[4]
newadd[4]

oldadd[5]
newadd[5]

oldadd[6]
newadd[6]

6 1996 ISP Encyclopedia

Multiple FIFO Configuration in ispLSI 6192

I_32

MUX4_1

ain[3:0]

sel[3:0]
a_out

I_33

MUX4_1

ain[3:0]

sel[3:0]
a_out

I_34

FULLREG
nreset
n_full

rdch[3:0]

vld_read
vld_write

wtch[3:0]
nfull[3:0]

I_35

EMPTYREG
nreset

n_empty

rdch[3:0]

vld_read
vld_write

wtch[3:0]
nempty[3:0]

nreset

nempty[3:0]
next_nempty

vld_read
vld_write
next_nfull

now_nempty

rdch[3:0]

nfull[3:0]

now_nfull

wtch[3:0]

Figure 6. FIFO Flag Registers Block Diagram

The function of EMPTYREG is as follows: The
EMPTYREG stores the current EMPTY flag of the four
FIFOs. The RDCH[3:0] selects one of the four EMPTY
registers to be written to. The NEXT_NEMPTY signal is
the value to be loaded into the selected register, at the
rising edge of VLD_READ. WTCH[3:0] clears one of the
four selected EMPTY registers during a valid write opera-
tion.

The function of FULL REG is as follows: The FULLREG
stores the current FULL flag of the four FIFOs. The
WTCH[3:0] selects one of the four FULL registers to be
written to. The NEXT_FULL signal is the value to be
loaded into the selected register, at the rising edge of
VLD_WRITE. RDCH[3:0] clears one of the four FULL
registers during a read operation.

Figure 7. EMPTY Flag Registers

I_36

I_37

I_38

I_39

I_44

I_45

I_46

I_47

I_12

I_2

I_14

I_16

I_21

REG_AP

clkin

d

nap q

I_22

REG_AP

clkin
d
nap

q

I_23

REG_AP

clkin
d
nap

q

I_24

REG_AP

clkin
d
nap

q

nreset
n_empty

nempty[3:0]

rdch[3:0] nempty[3]

wtch[3:0] wtch[3]

rdch[2] nempty[2]

wtch[2]

rdch[1] nempty[1]

wtch[1]

rdch[0] nempty[0]

wtch[0]

vld_write

vld_read

rdch[3]

Multiple FIFO Configuration in ispLSI 6192

7 1996 ISP Encyclopedia

The MUX4_1 selects one of the four FIFOs Flags to be
used in the FIFO Read / Write Logic.

Figure 7 shows the detailed implementation of the EMPTY
Register. The new value of EMPTY (n_EMPTY) is clocked
into the selected register (selected by RDCH[3:0])on the
rising edge of VLD_READ. The selected register is cleared

(to a ‘1’ value) on the rising edge of the VLD_WRITE. A
valid write operation will clear the EMPTY flag set,
allowing further read operations to take place. The
REG_AP is a D-Flip Flop with asynchronous preset to
allow for the asynchronous operation of VLD_WRITE to
clear the EMPTY flag. A similar implementation is
required for the FULL Register.

I_1

I_2

I_3I_4 I_5
I_6

I_7 I_8
I_9

I_10

I_11 I_12

nap

d q

clkin

Figure 8. REG_AP Implementation

Figure 9. FIFO Flag Control Logic

I_27

EQUAL

a[0]
a[1]
a[2]
a[3]
a[3]
a[4]
a[5]
a[6]

b[0]
b[1]
b[2]

b[4]

b[3]

b[5]
b[6]

eq

I_28

EQUAL

a[0]
a[1]

a[3]

a[2]

a[4]

a[6]

a[5]

b[2]
b[1]

b[0]

b[3]
b[4]
b[5]
b[6]

eq

I_29

FIFOFLAG

add_match_rd
add_match_wt

nempty
nfull

nread
nwrite

nxt_nempty
nxt_nfull
vld_read
vld_write

wtadd[6:0]

rdaddwt[6:0]

wtadd[6]
wtadd[5]
wtadd[4]

wtadd[3]
wtadd[2]
wtadd[1]
wtadd[0]
rdaddwt[6]

rdaddwt[5]
rdaddwt[4]
rdaddwt[3]

rdaddwt[2]
rdaddwt[1]
rdaddwt[0]

rdadd[6:0]

wtaddrd[6:0]
rdadd[6]
rdadd[5]
rdadd[4]

rdadd[3]
rdadd[2]
rdadd[1]

rdadd[0]
wtaddrd[6]
wtaddrd[5]
wtaddrd[4]
wtaddrd[3]

wtaddrd[2]
wtaddrd[1]
wtaddrd[0]

nxt_nemptynfull
nempty

nxt_nfullnread

nwrite
vld_read

vld_write

Read cycle

Write Cycle

8 1996 ISP Encyclopedia

Multiple FIFO Configuration in ispLSI 6192

MODULE fifoflag
nfull pin;
nempty pin;
add_match_wt pin;
add_match_rd pin;
nxt_nempty pin;
nxt_nfull pin;
nread pin;
nwrite pin;
vld_read pin;
vld_write pin;

equations
nxt_nempty = !add_match_rd;
nxt_nfull = !add_match_wt;
vld_write = nfull & !nwrite;
vld_read = nempty & !nread;

END

Table 1 - FIFOFLAG ABEL File

Figure 8 shows the detailed implementation of the D-Flip
Flop with asynchronous preset.

FIFO Flag Control

Figure 9 shows the block diagram of the FIFO Flag
Control Logic. During the read operation, the current
write address (wtaddrd[6:0]) is compared to the next
read address (rdadd[6:0]). The next read address is the
current read address incremented by a count of 1. When
the two addresses are equal, it indicates that the FIFO is
empty. This results as the NXT_NEMPTY signal being
asserted low. The value of NXT_NEMPTY will be stored
into the FIFO Register at the end of the read operation.

Similarly during the write operation, the current read
address (rdaddwt[6:0]) is compared to the next write
address (wtadd[6:0]). The next write address is the
current write address incremented by a count of 1. When
the two addresses are equal, it indicates that the FIFO is
full. This results as the NXT_NFULL signal being as-
serted low. The value of NXT_NFULL will be stored into
the FIFO Register at the end of the write operation.

The EQUAL block in Figure 9 is a seven-bit equality
comparator. EQ is asserted only when every bit of bus
a[6:0] is equal to every bit of bus b[6:0].

A read operation is valid only when the FIFO is not empty.
This is done by comparing the nEMPTY signal (from the

selected FIFO EMPTY Register) during a read opera-
tion. A VLD_READ signal is asserted indicating that the
current read operation is valid. Similarly, a write opera-
tion is valid only when the FIFO is not full and this is
indicated by the VLD_WRITE signal being asserted.

Table 1 shows the ABEL file necessary to implement the
FIFOFLAG block.

FIFO Read / Write Logic

The FIFO Read and FIFO Write Logic generate the
VLD_READ and VLD_WRITE signals to indicate that the
current read and write operations are valid. If the nEMPTY
flag for the selected FIFO is high when nREAD is as-
serted, indicating that the FIFO is not empty, the read
operation is valid. A VLD_READ signal is asserted which
does several things; (a) loads the new read address into
the read address register, (b) loads the new EMPTY
value into the FIFO flag register, and (c) sends a
MEMORY_READ signal to the Memory block so that
data can be read from the FIFO.

Similarly, if the nFULL flag for the selected FIFO is high
when nWRITE is asserted, indicating that the FIFO is not
full, the write operation is valid. A VLD_WRITE signal is
asserted which does several things; (a) loads the new
write address into the write address register, (b) loads the
new FULL value into the FIFO flag register, and (c) sends
a MEMORY_WRITE signal to the Memory block so that
data can be written to the FIFO.

Figure 10 shows the top level schematic of the FIFO
Control Logic.

Implementation

A total of 35 GLBs on the ispLSI 6192 were used to
customize the FIFO control design in Synario. This is an
ideal way to make use of the programmable capability to
customize functional modules.

Summary

This application note describes how the ispLSI 6192
CPLD can be configured to implement four independent
uni-directional FIFOs. Having the PLD block integrated
with the FIFO/Memory block allows the designer to
customize the operation and configuration of the FIFO.
This revolutionary PLD architecture with fixed functional
blocks combine the best of the CPLD and FPGA features.

Multiple FIFO Configuration in ispLSI 6192

9 1996 ISP Encyclopedia

Figure 10. Top Level Schematic

I_
2

1

I_
2

2

I_
2

0

F
LA

G
_R

E
G

ne
xt

_n
em

pt
y

ne
xt

_n
fu

ll

nr
es

et

rd
ch

[3
:0

]

vl
d_

re
ad

vl
d_

w
rit

e

w
tc

h[
3:

0]

ne
m

pt
y[

3:
0]

nf
ul

l[3
:0

]

no
w

_n
em

pt
y

no
w

_n
fu

ll

I_
1

9

F
IF

O
C

T

ne
m

pt
y

nf
ul

l

nr
ea

d
nw

rit
e

rd
ad

dw
t[6

:0
]

rd
ad

d[
6:

0]

w
ta

dd
rd

[6
:0

]

w
ta

dd
[6

:0
]

nx
t_

ne
m

pt
y

nx
t_

nf
ul

l
vl

d_
re

ad
vl

d_
w

rit
e

I_
1

8

R
D

_A
D

D

rd
ad

d[
6:

0]

rd
ch

[3
:0

]

vl
d_

re
ad

w
tc

h[
3:

0]

rd
ad

dr
d[

6:
0]

rd
ad

dw
t[6

:0
]

I_
1

7

W
T

_
A

D
D

rd
ch

[3
:0

]

vl
d_

w
rit

e

w
ta

dd
[6

:0
]

w
tc

h[
3:

0]

w
ta

dd
rd

[6
:0

]

w
ta

dd
w

t[6
:0

]

I_
1

5

D
C

D
2

_
4

se
l0

se
l1

ch
0

ch
1

ch
2

ch
3

I_
1

6

D
C

D
2

_
4

se
l0

se
l1

ch
0

ch
1

ch
2

ch
3

I_
9

C
O

U
N

T
E

R

ol
da

dd
[6

:0
]

ne
w

ad
d[

6:
0]

I_
1

0

C
O

U
N

T
E

R

ol
da

dd
[6

:0
]

ne
w

ad
d[

6:
0]

w
ta

dd
[6

:0
]

w
ts

el
[1

:0
]

w
ta

dd
w

t[6
:0

]
w

tc
h[

0]
w

tc
h[

3:
0]

w
ts

el
[0

]
w

tc
h[

1]
vl

d_
w

rit
e

w
ta

dd
rd

[6
:0

]
w

ts
el

[1
]

w
tc

h[
2]

w
tc

h[
3]

rd
ch

[3
:0

]
w

ta
dd

w
t[6

:0
]

wtch[3:0]

rd
ad

d[
6:

0]

rd
se

l[1
:0

]
rd

ch
[0

]
rd

ad
dr

d[
6:

0]
rd

ch
[3

:0
]

rd
se

l[0
]

rd
ch

[1
]

rd
se

l[1
]

rd
ch

[2
]

vl
d_

re
ad

rd
ad

dw
t[6

:0
]

rd
ch

[3
]

w
tc

h[
3:

0]
rd

ad
dr

d[
6:

0]

rdch[3:0]

vl
d_

re
ad

m
em

_n
rd

vl
d_

w
rit

e
m

em
_n

w
t

vl
d_

re
ad

ne
m

pt
y[

3:
0]

vl
d_

w
rit

e
no

w
_n

em
pt

y

nf
ul

l[3
:0

]
w

ta
dd

[6
:0

]
rd

ch
[3

:0
]

no
w

_n
fu

ll
rd

ad
dw

t[6
:0

]
w

tc
h[

3:
0]

rd
ad

d[
6:

0]

vl
d_

re
ad

w
ta

dd
rd

[6
:0

]
vl

d_
w

rit
e

no
w

_n
fu

ll
no

w
_n

em
pt

y
nr

ea
d

nw
rit

e

nr
es

et

M
em

or
y

W
rit

e
A

dd
re

ss
[8

:0
]=

w
ts

el
[1

:0
],w

ta
dd

w
t[6

:0
]

*
R

ou
te

d
in

te
rn

al
ly

 th
ro

ug
h

G
R

P
 to

 m
em

or
y

m
od

ul
e

M
em

or
y

R
ea

d
A

dd
re

ss
[8

:0
]=

rd
se

l[1
:0

],r
da

dd
rd

[6
:0

]
* R

ou
te

d
ex

te
rn

al
ly

 th
ro

ug
h

IO
C

 a
nd

 b
ac

k
in

to
 m

em
or

y
m

od
ul

e
th

ro
ug

h
M

IO
C

*

*

R
ea

d
A

dd
re

ss

W
ri

te
 A

dd
re

ss

R
ou

te
d

in
te

rn
al

ly
 th

ro
ug

h
G

R
P

R
ou

te
d

ex
te

rn
al

ly
 th

ro
ug

h
IO

C
 a

nd
 M

IO
C

R
ea

d
C

ha
nn

el

W
rit

e
C

ha
nn

el

Copyright © 1996 Lattice Semiconductor Corporation.

E2CMOS, GAL, ispGAL, ispLSI, pLSI, pDS, Silicon Forest, UltraMOS, Lattice Logo, L with Lattice Semiconductor Corp. and L
(Stylized) are registered trademarks of Lattice Semiconductor Corporation (LSC). The LSC Logo, Generic Array Logic, In-
System Programmability, In-System Programmable, ISP, ispATE, ispCODE, ispDOWNLOAD, ispGDS, ispStarter,
ispSTREAM, ispTEST, ispTURBO, Latch-Lock, pDS+, RFT, Total ISP and Twin GLB are trademarks of Lattice Semiconductor
Corporation. ISP is a service mark of Lattice Semiconductor Corporation. All brand names or product names mentioned are
trademarks or registered trademarks of their respective holders.

Lattice Semiconductor Corporation (LSC) products are made under one or more of the following U.S. and international
patents: 4,761,768 US, 4,766,569 US, 4,833,646 US, 4,852,044 US, 4,855,954 US, 4,879,688 US, 4,887,239 US, 4,896,296
US, 5,130,574 US, 5,138,198 US, 5,162,679 US, 5,191,243 US, 5,204,556 US, 5,231,315 US, 5,231,316 US, 5,237,218 US,
5,245,226 US, 5,251,169 US, 5,272,666 US, 5,281,906 US, 5,295,095 US, 5,329,179 US, 5,331,590 US, 5,336,951 US,
5,353,246 US, 5,357,156 US, 5,359,573 US, 5,394,033 US, 5,394,037 US, 5,404,055 US, 5,418,390 US, 5,493,205 US,
0194091 EP, 0196771B1 EP, 0267271 EP, 0196771 UK, 0194091 GB, 0196771 WG, P3686070.0-08 WG. LSC does not
represent that products described herein are free from patent infringement or from any third-party right.

The specifications and information herein are subject to change without notice. Lattice Semiconductor Corporation (LSC)
reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors
contained herein or to advise any user of this document of any correction if such be made. LSC recommends its customers
obtain the latest version of the relevant information to establish, before ordering, that the information being relied upon is
current.

LSC warrants performance of its products to current and applicable specifications in accordance with LSC’s standard
warranty. Testing and other quality control procedures are performed to the extent LSC deems necessary. Specific testing of
all parameters of each product is not necessarily performed, unless mandated by government requirements.

LSC assumes no liability for applications assistance, customer’s product design, software performance, or infringements of
patents or services arising from the use of the products and services described herein.

LSC products are not authorized for use in life-support applications, devices or systems. Inclusion of LSC products in such
applications is prohibited.

LATTICE SEMICONDUCTOR CORPORATION
5555 Northeast Moore Court
Hillsboro, Oregon 97124 U.S.A.
Tel.: (503) 681-0118
FAX: (503) 681-3037
http://www.latticesemi.com November 1996

	Main Directory
	Introduction
	Flexible FIFO Configuration
	FIFO Operation
	FIFO Memory Configuration
	FIFO Control Logic
	Implementation
	Summary

