ISP Architecture
and Programming

Introduction

This section describes how to program Lattice Semicon-
ductor Corporation’s (LSC) ISP™ devices once the
JEDEC standard fuse map file has been generated. It is
divided into two subsections. The first subsection “Get-
ting Started Fast” is intended to give the reader enough
ISP hardware information to easily implement LSC's ISP
solutions using the LSC ISP tools, which are briefly
described at the end of this section. The second subsec-
tion “ISP Expert” gives more details on low-level,
device-specific programming algorithms. Since these
algorithms are transparently handled by LSC'’s program-
ming tools, the second subsection is intended for those
readers who want a thorough understanding of the pro-
gramming procedures, which would be required for any
custom implementation of ISP.

Subsection | — Getting Started Fast

In-System Programming (ISP) Interface
LSC ISP State Machine

TAP Controller State Machine

ISP Device Programming Configurations
Hardware Considerations

Hardware Programming Tools

ISP Programming Software

ISP Programming Times
User-Programmable ID Registers

Figure 1. Multiple ISP Device Programming Interface

SDO
SDI 5-wire ISP
MODE Programming
SCLK Interface

iISpEN

Subsection Il — ISP Expert

ispLSI® Programming Details

Boundary Scan (ispLSI 3000 & 6000 Families)
ispGDS™ Programming Details

iSpGAL® Programming Details

ISP Daisy Chain Details

In-System Programming (ISP) Interface

Lattice’s ISP devices utilize nonvolatile E2ZCMOS® tech-
nology and require only 3.3V or 5V, TTL-level
programming signals. An integrated state machine con-
trols the sequence of programming operations such as
identifying the ISP device, shifting in the appropriate data
and commands, and controlling internal signals to pro-
gram and erase the E2 Cells in the device. Programming
consists of serially shifting the logic implementation stored
in a JEDEC file into the device along with appropriate
address and commands, programming the data into the
E2CMOS logic elements, and shifting the data from the
logic array out for device programming verification.

The ISP programming interface to Lattice Semiconductor
ISP devices is controlled by either the LSC proprietary
ISP programming interface or the IEEE Std 1149.1-1990
boundary-scan Test Access Port (TAP). The LSC ISP
programming interface controls an integrated three-state
programming state machine while the boundary-scan
TAP controls programming through an IEEE1149.1 speci-
fied state machine called the TAP controller. Lattice

archprgm_02

1996 ISP Encyclopedia

ISP Architecture and Programming

Semiconductor’s ispGDS, ispGAL22V10B,
ispGAL22V10C, ispLSI 1000/E families, ispLSI 2000
family, ispLSI 3000 family, and ispLSI 6000 family are all
programmed through the LSC ISP programming inter-
face. ispLSI 2000LV family devices are programmed
exclusively through the boundary-scan TAP controller.

The basic elements of the LSC ISP programming inter-
face are the mode control (MODE), serial data in (SDI),
serial data out (SDO), and serial clock (SCLK) signals
(Figure 1). The internal three-state state machine, which
determines whether the device is in the normal operation
state or the programming states, is controlled by the four
ISP programming pins. MODE and SDI furnish control
inputs to the state machine, SDI and SDO make up the
programming data inputs and outputs to and from the
internal shift register, and SCLK provides the clock.
ispLSI devices use a fifth programming pin, ispEN, to
multiplex the functions of the SDI, SDO, SCLK, and
MODE pins between ISP functions during programming
and user defined logic functions during normal PLD
operations.

The TAP controller interface as specified in the IEEE Std
1149.1-1990 document must include the Test Mode
Select (TMS), Test Data In (TDI), Test Data Out (TDO),
and Test Clock (TCK) signals. These signals perform
similar duty for state machine control as the LSC ISP
connections MODE, SDI, SDO, and SCLK respectively.
However, the TAP controller state machine is exclusively
controlled by the TMS signal, and TDI is only used for
shifting in data and instructions. ispLSI devices use a fifth
pin, ispEN to multiplex the functions of the TDI, TDO,
TCKand TMS pins between TAPcontroller functions and
either user-defined logic functions or other programming
functions. An optional Test Reset (TRST) pin is used to
asynchronously reset the TAP controller.

LSC ISP State Machine

LSC ISP State Machine Programming Pins

The programming pins used to program Lattice Semicon-
ductor devices that use the LSC ISP state machine are
each described in detail in this section. Figure 2 shows
the ispLSI 1032 84-Pin PLCC device pinout.

The Serial Data In (SDI) pin performs two different
functions. First, it acts as the data input to the serial shift
register builtinside each ISP device. Second, it functions
as one of the two control pins for the programming state
machine. Because of this dual role, the function of SDI is
controlled by the MODE pin. When MODE is low, SDI
becomes the serial input to the shift register, and when

Figure 2. ispLSI 1032 84-Pin PLCC Pinout Diagram

OOO00O0O000000000000000
11109 8 7 6 5 4 3 2 184838281807978777675
o 57 12 741 /0 38
o 58 []13 731 110 37
1o s9 14 72[] 1036
11060 []15 71[1 V0 35
o 61 16 701 10 34
o 62 17 691 1/0 33
o e3 []is 681 1/0 32
IN7 19 67[1 IN4
vo 20 661 Y1
vee Oa1 ispLSI 1032 651 vee
GND []22 641 GND
*ispENINC [23 631 v2
RESET []24 62[1 Y3
SDIIN O []25 611 IN3/SCLK
1100 []26 601 1/0 31
o1 a7 59 [1 1/0 30
o2 [es 58 [1 110 29
1103 []29 571 1028
1104 []30 56 [1 1/0 27
1105 31 551 110 26
o6 32 541 1/0 25
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
L
gggi:ﬁQEQH%NEZBQSE&‘Rﬁ

MODE is high, SDI becomes a control signal for the
programming state machine. Internally, the SDI signal is
multiplexed to various shift registers in the device. The
different shift instructions of the state machine determine
which of these shift registers receives input from SDI.

The MODE signal, combined with the SDI signal, controls
the programming state machine, as described in theww
which follows.

The Serial Clock (SCLK) pin provides the serial shift
register with a clock. SCLK is used to clock the internal
serial shift registers and clock the ISP state machine
between states. State changes and shifting data in are
performed on low-to-high transitions. When MODE is
high, SCLK controls the programming state machine,
and when MODE is low, SCLK acts as a shift register
clock to shift data in or out or to start an operation. When
shifting data out, the data is available and valid on SDO
only after a subsequent high-to-low transition of SCLK.

The Serial Data Out (SDO) pin is connected to the output
of the internal serial shift registers. As previously stated,
the selection of which shift register to output is deter-
mined by the ISP state machine’s shift instruction. When
MODE is driven high, SDO connects directly to SDI,
bypassing the device’s shift registers.

The ispEN pin, only utilized on the ispLSI devices, deter-
mines which mode the device is in, namely ISP
programming mode or normal mode (normal device
operation mode). When ispEN is driven low on an LSC

1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 3. LSC ISP Programming State Machine

Load
ID ID

Note:
Control signals: MODE, SDI

ISP state machine-programmable device, the device I/0
pins are put into a high impedance state (by internal
active pull-up resistors equivalent to 100KQ) and the
device enters the programming mode.

LSC ISP State Machine Operation

The programming state machine controls which mode
the deviceisin, and provides the meansto read and write
data to the device (Figure 3). The three states defined in
the LSC ISP state machine diagram are the IDLE State,
SHIFT State, and EXECUTE State. Instruction codes,
which are shifted into the device in the SHIFT state,
control which instruction is to be executed in the EX-
ECUTE state. Inthe SHIFT and EXECUTE states, all the
I/O pins are 3-stated. Totransition between states, MODE
is held high, SDI is set to the appropriate level, and SCLK
is clocked. The ispGAL22V10B/C and ispGDS devices,
unlike ispLSI devices which employ an ispEN input pin,
rely on the state machine to put the device I/O pins in a
high impedance state. The IDLE state puts the ispGAL
and ispGDS devices into normal mode, and the remain-
ing two states put the devices into ISP programming
mode, which places the device I/O pins in the high
impedance state.

Idle/ID State

The Idle/ID state is the first state activated when the
device is powered-up or the ispEN pin is driven low. The
state machine is in the Idle/ID state when the user needs
to read the device identification (each ISP device type is
assigned a unique identification code—see the ISP Ex-
pert section). The eight-bit device identification is loaded
into the shift register by driving MODE high, SDI low, and
clocking the ISP state machine with SCLK. Once the ID
is loaded, it is read out serially by driving MODE low.
Notice that when the device ID is read serially, SDI can
either be high or low (a logical “don’t care”) and the state

e i =
Operation) Commands) Command)

Load
Command

Execute
Command

machine needs only seven clocks to read out eight bits of
device ID. The default state for the control signals is
MODE high and SDI low. State transition to the Com-
mand Shift State occurs when both MODE and SDI are
high while the ISP state machine gets a clock transition.
As with most shift registers, the Least Significant Bit
(LSB) of the ID gets shifted out from SDO first.

Command Shift State

This state is strictly used for shifting instructions into the
state machine. The entire LSC ISP state machine in-
struction sets forthe ispLSl, ispGDS, and ispGAL devices
are listed in the ISP Expert section. When MODE is low
and SDlis“don’t care” inthe Command Shift State, SCLK
shifts the instruction into the state machine. Once the
instruction is shifted into the state machine, the state
machine must transition to the Execute State to perform
the instruction. Driving both MODE and SDI high and
applying the clock transfers the state machine from the
Command Shift State to the Execute State. If needed, the
state machine can move from the Command Shift State
to the Idle/ID State by driving MODE high and SDI low.

Execute State

Inthe Execute State, the state machine executes instruc-
tionsthatare loaded into the device in the Command Shift
State. For some instructions, the state machine requires
more than one clock to execute the command. An ex-
ample of this multiple clock requirement is the address or
data shift instruction. The number of clock pulses re-
quired for these instructions depends on the device shift
register sizes. When executing instructions such as Pro-
gram, Verify, or Bulk Erase, the necessary timing
requirements must be followed to make sure that the
commands are executed properly. For specific timing
information refer to the appropriate data sheets.

1996 ISP Encyclopedia

ISP Architecture and Programming

To execute a command, MODE is driven low and SDI is
“don’t care.” For multiple clock instructions, the control
signals must remain in the same state throughout the
duration of the execution. MODE high and SDI high will
take the state machine back to the Command Shift State
and MODE high and SDI low will take the state machine
to the Idle/ID State.

TAP Controller State Machine

TAP Controller State Machine Programming
Pins

The programming pins used to interface to the TAP
controller are described in detail in this section. Figure 4
shows the ispLSI 2032LV device pinout.

The TDI pin is the input pin to load instructions and data
into the device. Internally, the TDI pin is multiplexed to
different shift registers in the device. The instructions
loaded determine which internal shift register will receive
input from the TDI pin.

The TMS pin is used to control the state of the TAP
controller. The signal present on TMS is sampled on the
rising edge of TCK.

The TDO pinis the output of the serial shift register. Data
from internal registers will be available at TDO on the
falling edge of TCK. The instruction loaded into the TAP
controller selects which shift register will be active.

The TCK pin is used to clock the internal serial shift
registers and the TAP controller state machine. State

changes and shifting data in are performed on the rising
edge of TCK, while data is clocked out on the falling edge
of TCK.

The ispEN pin multiplexes functionality of programming
pins for ispLSI devices. For the ispLSI 2000LV family,
when ispEN is driven low, the TAP controller pins are
enabled and the TAP controller may be accessed. For
the ispLSI 3000 and ispLSI 6000 families, when the
ispEN pin is low, the LSC ISP state machine is active.
While the ispEN pin is high, the TAP controller is active.
With the exception of the ispLSI 3256, all of the ispLSI
3000 and ispLSI 6000 families of devices have the ability
to be programmed through either the LSC ISP state
machine or the TAP controller state machine. The ispLSI
3256 is programmed through the LSC ISP state machine
only.

TAP Controller State Machine Operation

The boundary scan TAP controller is the IEEE 1149.1
specified state machine. Four control pins are used to
load and unload data, TMS, TDI, TDO, and TCK. For a
detailed description and specifications for each state
consultthe IEEE Standard Test Access Port and Bound-
ary-Scan Architecture document. A diagram of the Tap
Controller is shown in Figure 5.

While the test access port and boundary-scan architec-
ture was developed to standardize system testing, the
TAP controller can be used for in-system programming.
The TAP controller is used for programming by loading
instructions in the Shift-IR state, loading address infor-
mation and programming data in the Shift-DR state, and

Figure 4. ispLSI 2032LV 44-Pin PLCC and TQFP Pinout Diagrams

44 43 42 41 40
1o 28 7 39[J 1018
11029 [8 38[] /017
11030 9 37[11/0 16
1/0 31 [J10 36[] TMS*INC

vo [J11 ispLSI 2032LV 35[] RESET/Y1
vee 12 347 vee

SpEN/NC []13 p LSI12032LV 33[] TCK/Y2

*TDIIN 0 []14 Top View 32[Jo1s
oo s 31[11/0 14
o1 []ie 30[]1/013
o2 a7 29[11/0 12

18 19 20 21 22 23 24 25 26 27 28
L O
Mm T ON~NA-H OO o
ocoooo0o0zZzzooo- X
=S=E===20X==00

le) ==

[a]

L— 0123B3/2000

* Pins have dual function capability for ispLSI 2032LV only (except pin 13,
which is ispEN only).

~©ow s © MmN H oo
N NN N WAONNNNA
0Q0Q0Qo8&FeoQo
iminininisininisininis]
44 43 42 41 40 39 38 37 36 35 34
o
Vo281 33[Jvo18
11029 []2 32[] 10 17
1o 30 3 31[11/0 16
110 31 []4 30[1 T™S
vo 5 ispLSI 2032LV 29[RESET*/Y1
vce e) 28[7vee
SpEN []7 Top View 27 [0 Tekv2
*TDIN O []8 26[11/0 15
oo o 25[11/0 14
o1 1o 24[71/0 13
o2 i1 23[11/0 12
12 13 14 15 16 17 18 19 20 21 22
[O
M WO~ 00O o
ocoooo0ozzoo X
=SE=E===0X==00
fe) ==
o
&

0851-2032

* Pins have dual function capability.

1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 5. The TAP Controller

A 4
1
(o Run-;l;est/ldle |—‘

\J 1
0 -

vl

\ \ 4
Pause-DR :) Pause-IR :)
1

Update-DR_|«+—
1 0

\4

1
Y

Updw
1 0

h J

A\

carrying out programming instructions in the Run-Test/
Idle state. To enter the programming mode in ispLSI
boundary-scan TAP ISP devices, the Program Enable
(ProgEN) instruction is loaded three times in succession.
Afterthefirsttimeitis loaded, the functional I/Os enter the
high-impedance state. Afterthe thirdtime itis loaded, the
part enters the programming mode. Once in the pro-
gramming mode, the part is ready for programming
instructions. After loading an instruction and associated
data, the programming pulse is applied. The TAP con-
troller is clocked to the Run-Test/ldle state and the
programming pulse starts on the first rising edge of the
clock with TMS low. The programming pulse is termi-
nated by exiting the Run-Test/Idle state.

ISP Device Programming Configurations

Serial Daisy Chain

Advantages

One of the main advantages of daisy-chained ISP pro-
gramming is the simplified hardware interface. The number
of ISP devices that can be connected to the same serial
interface is limited only by the signal drive capability of the
ISP programming control logic. One serial daisy chain is
capable of providing the necessary programming inter-
face, minimizing the hardware overhead for in-system

programming. Software controls generated from PCs,
microcontrollers, and test equipment can program and
reconfigure ISP devices during various board-level de-
sign, test, and manufacturing stages.

Programming Configuration

As shown previously in Figure 1, all the MODE, SCLK,
and ispEN (if using ispLSI devices) pins of the LSC ISP
devices are connected to the ISP interface, and the first
device’s SDO is connected to the second device’s SDI
and each following SDO to the SDI of the next ISP device.
For boundary-scan TAP ISP programmable devices the
TMS, TCK and ispEN pins are shared and TDO is
connected to TDI of the next device. Figure 6 shows the
serial boundary-scan test access port programming in-
terface. This configuration allows a large string of ISP
devices to be programmed in-system, in a serial daisy
chain.

Parallel

For low-density ISP devices daisy chain programming is
the most common configuration, but for high-density
devices, with multiplexed programming and logic pins
controlled by ispEN, other programming configurations
are also common. ISP devices can be programmed in
one of two parallel configurations. The first parallel con-

1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 6. Serial Boundary-Scan TAP Programming Interface

TDO)
5-wire ISP
TDI
Boundary Scan TAP
TMS ;
Programming
TCK Interface
ispEN
L_1ispEN L{ispEN L{ispEN iSpEN
TCK L TCK L TCK TCK
T™S T™MS T™S, T™S
ispLSI ispLSI ispLSI ispLSI
2032LV 2032LV 2032LV 2032LV
| TDI TDO | TDI TDO - TDI TDO - TDI TDO

A

figuration, called Dedicated ISP Pins, dedicates all ISP
programming pins to programming. The second parallel
configuration, called Parallel Multiplex, allows the func-
tions of the ISP programming pins to be multiplexed
between acting as programming pins and acting as
inputs for normal logic functions. Both the dedicated ISP
pins and Parallel Multiplex configurations can be used
with parallel combinations of ispLSI 1000 family, ispLSI
2000 family, and ispLSI 2000LV family devices. The
ispLSI 3000 and ispLSI 6000 family devices use ISP pins
for both the LSC ISP state machine interface and the TAP
controller interface and therefore cannot be put in the
dedicated ISP pins or Parallel Multiplex configurations
due to interference with TAP controller operations.

Dedicated ISP Pins

Figure 7 illustrates one configuration for programming
multiple ISP devices, where the ISP programming pins
(MODE, SDI, SDO, and SCLK) are dedicated to pro-
gramming functions. Forthe boundary-scan TAP interface
the corresponding pins (TMS, TDI, TDO, and TCK) can
be connected in the same configuration. Although this
scheme precludes the use of the ISP programming
control signal pins as separate dedicated inputs for
system logic functions on ispLSI devices, it is the easiest
to implement. Each of the four programming control
signal pins in each ISP device is connected (i.e. SDI of
the ispLSI 1032 is connected to SDI of the ispLSI 1048
and SDI of the ispLSI 1016; MODE of the ispLSI 1032 is
connected to MODE of the ispLSI 1048 and MODE of the
ispLSI 1016; etc.). With this scheme, the ispEN signal for
each ispLSI device is enabled (ispEN low) indepen-

0294B

dently, and one device is placed in the programming
mode at a time. With one device in the programming
mode, the other devices will be in normal mode and can
continue to perform normal system logic functions.

Parallel Multiplex
Figure 8 illustrates a multiplexing scheme which allows
the user to control the ISP programming through multiple

Figure 7. Dedicated ISP Pins Configuration

- o

O<—— serjal Data In
Serial Data Out

4 ISP-Mode
ISP-Clock

ISP-Enable »>

[
5-Pin ISP Interface

1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 8. Parallel Multiplex Configuration

System J System
Input | | Input
S@nﬁs] IS@nms

SDO MODE
ispLSI

SDI SCLK SDO

ispLSI

iSpEN

iISpENO

iISpEN1
MODE

independent ispEN signals for the ispLSI devices. The
multiple ispEN signals not only control the ispEN inputs
of the ispLSI devices, but also act as the control signals
for multiplexing the functional and ISP programming
signals. This scheme differs from the previous one in that
the ISP programming signals are not dedicated to pro-
gramming. Instead, the ISP programming signals function
as ISP state machine inputs and outputs for program-
ming mode functions and dedicated inputs (if available)
for normal functional mode. Figure 8 also shows the
difference in controlling these different programming
signals. When multiplexing the programming interface
signals, the input driving the SDO/TDO pin must be put
into high-impedance state during programming to avoid
signal contention. As previously stated, the ISP pro-
gramming pins on the ispGAL and ispGDS devices are
dedicated to ISP programming, so this configuration is
not utilized often forthe ispGAL and ispGDS devices. The
concept can be modified to multiplex the MODE pin
instead of the ispEN pin and becomes useful in some
iISpGAL and ispGDS applications.

Hardware Considerations

Lattice Semiconductor’s ISP technology makes the use
of programmable logic incredibly simple. Using ISP,
multiple devices can be programmed using a single serial
daisy chain programming loop. However, as with any
high performance semiconductor component, systems
must be designed to insure good signal integrity without
signal conflicts between components. By doing so, reli-
able operation can be obtained over a wide range of

operating conditions. This section discusses some basic
programming hardware issues which should be consid-
ered when implementing a system using ISP.

AllISP programming specifications such as the program-
ming cycle and data retention are guaranteed when
programming ISP devices over the commercial tempera-
ture range (0 to 70° C). Itis critical that the programming
and bulk erase pulse width specifications are met by the
programming platform to insure proper in-system pro-
gramming. LSC’s ISP Daisy Chain Download and
iSpCODE™ software ensures that these specifications
are met when using a PC programming platform.

When using the ispDOWNLOAD™ cable in a daisy-
chained configuration, Lattice recommends using a
maximum of eight ISP devices in a single chain. This is
to ensure proper programming signal integrity (pulse
width, shape, etc.) atthe ISP devices. The recommended
number of devices is based on a typical system board
environment with proper signal terminations and typical
trace lengths. The actual number of devices that can be
programmed in a serial chain may vary according to the
system board environment. When using more than eight
devices, additional buffering of the ISP programming
signalsisrecommended. Alternatively, multiple program-
ming loops can be employed which are electrically isolated
from one another.

I/O pins on ISP devices may be defined as inputs once
the devices are programmed. As a result, they typically
will be driven by the outputs of other components once

1996 ISP Encyclopedia

ISP Architecture and Programming

mounted on the board. Care must be taken to ensure that
I/O pins are not enabled prematurely during program-
ming. To do so when the device is partially programmed
can cause contention with other signal drivers since I/O
pins destined to be configured as inputs may not be 3-
stated yet. This conflict can cause improper device
programming and potential damage (Figure 9).

All ISP devices are shipped from Lattice Semiconductor
with a fuse pattern that will put all I/O pins in the high
impedance state prior to programming. For ispLSI 1000
family and ispLSI 2000 family devices the I/O pins are put
into the high-impedance state by asserting the ispEN pin
low. For the ispLSI 2000LV family of devices the ispEN
pin must be asserted low and one Program Enable
instruction executed to set the 1/0O pins into the high-
impedance state. To putthe I/O pinsinthe high-impedance
state for the ispLSI 3000 and ispLSI 6000 family devices
either the ispEN pin can be asserted low or one Program
Enable instruction loaded in the TAP controller state
machine (the ProgEN instruction is not supported for the
ispLSI 3256). For the ispGAL and ispGDS devices, the
output 3-state is controlled by the programming state
machine (Shift and Execute states put I/O pins in the
high-impedance state). When implementing custom ISP
programming code, it is important for the ispGAL and
ispGDS that the ISP state machine be kept within the
Shift and Execute states until the completion of program-
ming. This procedure keeps the partially programmed

Figure 9. ISP Serial Daisy Chain

device or devices from conflicting with other components
on the board.

ISP programming signal default states must be main-
tained during normal device operation. The ispEN pin on
the ispLSI devices has an internal pull-up to place the
devices in normal functional mode when the pin is not
driven externally. The ispGAL22V10B and ispGDS de-
vices’ MODE or SDI signals must be tied low through a
1.2KQ pull-down resistor during normal functional mode.
It is not acceptable to let these pins float during normal
operation. However, the ispGAL22V10C devices pro-
vide an internal pull-down on SDI to maintain socket
compatibility with the standard 22V10 in the PLCC pack-
age. In addition, it is recommended that the
ispDOWNLOAD cable have its ispEN signal tied to a
decoupling capacitor (.01uF) to ground on the system
board.

Hardware Programming Tools

isp Engineering Kit

Lattice Semiconductor provides a PC-based (Model 100)
isp Engineering Kit. The isp Engineering Kit functions as
a stand-alone device programmer for prototyping.

isp Engineering Kit Model 100
The isp Engineering Kit Model 100 provides designers
with a quick and inexpensive means of evaluating and

Serial Data Path

SDO

/

ispGAL ispGAL iSpGAL
Device Device Device
Signals from 3Dl qp SDo SsDI SDO SD SDO
Programming _MODE o MODE MODE MODE
S Controller SCLK Input |— Input [— Input —
(System Processor) _SCLK | o 1scIK Input |— — SCLK Input |— — SCLK Input —
— Input 110 — — Input 110 |— — Input /10 |—
— Input /10 — — Input 110 — — Input /10 —
— Input 110 [— — Input 1o |~ — Input 110 |~ Other
— Input /10 — — Input /10 — — Input /10 — Component
— Input /10 — — Input 1o — — Input /0 — (Memory,
— Input 110 — — Input 110 — — Input 110 — MPU, etc.)
— Input 110 — — Input 110 — — Input 110 |—
— Input 110 — — Input 110 — — Input /10 —
— Input 110 — —{ Input 110 — — Input 110 —_I_ Output
— Input 110 — — Input 110 — — Input 110
4
¢ o P d
P rogramme

as an Input

Parallel Control Path

8 1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 10. ispEngineering Kit Model 100

RJ-45 connector
eight positions

—

isp Engineering Kit }7

AMP connector .100" center-spacing,
eight positions

Programming Module

[]

» Power Supply Converter (9VDC)
« 25-pin Parallel Port Adapter
- « 6' Universal Programming Module Cable

» 6' System Download Cable with
4’"3 Modular AMP Connector

25-pin parallel
port adapter

(-

Place adapter !
on parallel port |
behind security !
key ;

RJ-45 connector eight positions

—

Power Supply Converter
110VAC/9VDC @200 mA

< iﬁﬂj\ """""""""""" -

A2 .
vee (m Front View
Socket Adapter SDO/TDO |m A_MP Connector
(purchased seperately) pinout
» Sample Device SDI/TDI |
ispEN |Hf---
plug |m 1 O1pf
MODE/TMS |m T capacitor
GND @}
SCLK/TCK | Note: capacitor recommended
— on system board
RJ-45 connector
eight positions
,,,,,,,,,,,,,, »
] Universal Programming
Module
DC Power Plug Base Unit

Positive or Negative +/-

prototyping new designs using LSC ispLSI devices. This
kit is designed for engineering purposes only and is not
intended for production use. The kit programs devices
from the parallel printer port of a host PC using the LSC
pDS® or pDS+™ PC-based designs tools. By connecting
a system cable (included) from the host PC to the isp
Engineering Kit, or connecting from the host PC to the
target device on the system board, a JEDEC file can be
easily downloaded into the ispLSI device(s) (Figure 10).

ispDOWNLOAD Cable

The ispDOWNLOAD cable is designed to facilitate in-
system programming of all LSC ISP devices on a printed
circuit board directly from the parallel port of a PC. After
completion of the logic design and creation of a JEDEC
file by a logic compiler such as the pDS, pDS+ Fitter or
ispGDS Compiler software, Lattice’s ISP Daisy Chain
Download software programs devices on the end-prod-
uct PC board by generating programming signals directly
from the parallel port of a PC which then pass through the
ispDOWNLOAD cable to the device. With this cable and

55mm

0813A

a connector on the PC board, no additional components
are required to program a device (Figure 11).

ISP Synario System

The ISP Synario System is designed to make Lattice’s
innovative in-system programmable device technology
available inasingle, complete package. The ISP Synario
System contains all the software, hardware, device
samples and information required for ISP design.

The ISP Synario System is based on the popular Synario
Entry tool from Data I/O and a version of LSC’'s pDS+
Synario Fitter supporting ispLSI and pLSI devices up to
1024/2096 device densities. Designs may be entered via
Synario Schematic Capture or using ABEL-HDL. Func-
tional Simulation, Project Navigator and the LSC Fitter
areincluded, along with the ispGDS Compiler, ispCODE,
ISP Daisy Chain Download software and ispDOWNLOAD
cables. Device samples include the ispLSI 2032,
iISpGAL22V10B and an ispGDS 14 device. In addition,
the ISP Synario System includes GAL compiler support
for all LSC GAL devices.

1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 11. ispDOWNLOAD Cable

DB25 Parallel Port

Connector Pins T 7aHc3e7 i)
i 74HC367 i isp Interface
DI6 Pin 10 : /I E SDOUT/TDO
i
1 1
: !
1
i |
DOO Pin 2 ! ; SDIN/TDI
! i T 560pF
q L =
1 : 100 ohm
DO1 Pin3 1 SCLK/TCK
1
! PT 560pF
| ! H 100 ohm
DO2 Pin 4 T MODE/TMS
Vvee H i s60pF
1 =
0K : : 100 ohm
DO3 Pin5 i« i W iSpEN
! i T 560pF
&
1
1
1
1
! =

DO6 Pin 8

D5 pin1a | Portsense
DI3 Pin 15 - Vcc Sense

GND Pin 20 - GND

ISP Programming Software

Introduction

Once the JEDEC file has been generated for a given
design, the design information must be downloaded into
the proper device. The download method depends on the
hardware available and the design stage. For example,
you might program the system with ISP devices during
prototyping using a PC. Then, when the system goes to
full production, you can use ATE for programming. Fi-
nally, if field upgrades are necessary, you can use the
system’s embedded microprocessor to reprogram the
ISP devices. Table 1 summarizes the download methods
supported by Lattice.

ispCODE

iSpCODE is C-source code that facilitates in-system
programming of LSC ISP devices on UNIX systems,
PCs, testers and embedded systems. The ispCODE
software supplies specific routines, with extensively com-
mented code, for incorporation into user application
programs. This software is available from Lattice Semi-
conductor. For a more thorough description of ispCODE,
refer to the ispCODE data sheet in the 1996 Lattice
Semiconductor Data Book.

87654321

1-SCLK/TCK
2-GND
3 - MODE/TMS

4 — NO CONNECT
5 —ispEN
6 — SDI/TDI
7 - SDO/TDO

ISP Daisy Chain Download

ISP Daisy Chain Download software supports program-
ming of all LSC ISP devices in a serial daisy chain
programming configuration in a PC environment. Two
varieties of this software exist: one for a Windows envi-
ronment, the other for a DOS environment. This software
is available from Lattice Semiconductor. For a more
thorough description of the ISP Daisy Chain Download
software, refer to the ISP Daisy Chain Download Soft-
ware data sheet in the 1996 Lattice Semiconductor Data
Book.

ISPATE™

LSC’s ispATE is a test-vector creation utility that facili-
tates programming of LSC ISP devices on HP, Teradyne
and GenRad testers. ispATE converts a standard JEDEC
file into a programming vector template that can be easily
incorporated into a product’s printed circuit board func-
tional test program.

10

1996 ISP Encyclopedia

ISP Architecture and Programming

Table 1. ISP Programming Platform and Download Methods

Programming Platform

Download Methods

PC ISP Daisy Chain Download
ispCODE C Source Routines

Workstation

ispCODE C Source Routines

Embedded Processor

ispCODE Executed by Microprocessor

ATE

iISPATE

Third-Party Programmer

Standard JEDEC File Download

ISP Programming Times

The ISP programming times can be approximated by the
number of rows that are required to program on a given
device and the programming pulse width. Assuming that
the overhead of shifting data and other miscellaneous
functions are an order of magnitude smaller in time
duration and therefore negligible, the total programming
time ranges can be calculated.

Calculating Programming Times

ISP programming times can be approximated by the
number of rows that are required to program on a given
device and the programming pulse width. Assuming that
the overhead of shifting data and other miscellaneous
functions are several orders of magnitude smallerin time
duration and therefore negligible, the total programming
time ranges can be calculated using this equation:

tpt = asrl * dr * tpwp (minimum)

where:
tpt: total programming time, ISP devices
asrl: address SR length from Table 10 or
ispGDS =11
iSpGAL22V10 = 44
dr: number of data registers,

ispGDS and ispGAL22V10 =1
all other ISP devices =2
programming pulse width time,
see Tables 7, 9 or 15.

tpwp:

Example ispLSI 1016-90 total programming time:

tpt=96*2*40 ms = 7.68 sec

To minimize the total programming time of a daisy chain
of ISP devices, a programming method called ispTURBO
Download can be used with Windows/DOS Daisy Chain
Download or ATE to program all the ISP devices in the
chain concurrently. isp TURBO Download allows pro-
gramming of any number of ISP devices in the time it
takes to program only the largest device. For example, a
chain of three devices with programming times of ten,
seven and seven seconds can be programmed with
ispP TURBO Download in a total of ten seconds (the time
it takes to program the largest device). Serially, the
programming time would be 24 seconds for all three
devices. This valuable feature of Lattice’'s proprietary
UltraMOS E2CMOS technology is not available with
many other ISP CPLD device technologies.

User-Programmable ID Registers

A user-programmable identification can ease problems
associated with document control and device traceabil-
ity. ISP devices that use the LSC ISP state machine for
programming contain a register called the User Elec-
tronic Signature (UES). Lattice ISP devices that program
exclusively through the boundary-scan TAP contain a
32-bit register accessible through the USERCODE in-
struction. The user-programmable ID register is basically
a user’s “notepad” provided in electrically erasable (E2)
cells on each device.

Inthe course of system development and production, the
proliferation of PLD architectures and patterns can be
significant. To further complicate the record-keeping
process, design changes often occur, especially in the
early stages of product development. The task of main-
taining which pattern goes into what device for which
socket becomes exceedingly difficult. Once a manufac-
turing flow has been set, it becomes important to “label”
each PLD with pertinent manufacturing information, which
is beneficial in the event of a customer problem or return.
A user-programmable ID register was incorporated into

1996 ISP Encyclopedia

ISP Architecture and Programming

Table 2. UES Sizes

Device UES Size (Bits)
iSpGAL 22V10 64
ispGDS 32
ispLSI 1016/E 80
ispLSI 1024/E 120
ispLSI 1032/E 160
ispLSI 1048/C/E 240
ispLSI 2032 40
ispLSI 2064 80
ispLSI 2096 120
ispLSI 2128 160
ispLSI 3160 160
ispLSI 3192 240
ispLSI 3256/A/E 160
ispLSI 6192 160

UES Number Table 2

ISP devicesto store such design and manufacturing data
as the manufacturer’s ID, programming date, program-
mer make, pattern code, checksum, PCB location, revision
number, and/or product flow. This assists users with the
complex chore of record maintenance and product flow
control. In practice, the user-programmable ID register
can be used for any of a number of ID functions.

Within the various bits available for data storage, users
may find it helpful to define specific fields to make better
use of the available storage. A field may use only one bit
(or all bits), and can store a wide variety of information.
The possibilities for these fields are endless, and their
definition is completely up to the user.

Even with the device’s security feature enabled, the user-
programmable ID can still be read. With a pattern code
stored in the user-programmable identification register,
the user can always identify which pattern has been used
in a given device. As a second safety feature, when a
device is erased and re-patterned, the user-program-
mable identification is automatically erased. This prevents
any situation in which an old programmable ID might be
associated with a new pattern.

Itis the user’s responsibility to update the user-program-
mable ID when reprogramming. It should be noted that
user-programmable identification information will be in-
cluded in the checksum reading for ispGAL and ispGDS
devices. Therefore, when the user-programmable ID is

modified on these two device types, the checksum will
also change. For ispLSI devices, the user-program-
mable ID will not affect the checksum.

User Electronic Signature

The UES is incorporated on all ISP devices that are
programmable through the LSC ISP state machine. The
UES is part of the JEDEC file for ispGAL and ispGDS
devices and is contained in the U-field for ispLSI devices.
Physically the UES is an extrarow thatis appended to the
programmable array. The size of the UES varies by
device type. Table 2 indicates the various sizes of the
UES.

The UES may be accessed (read or write) through one of
three methods. First, most third-party programmers sup-
port the UES option for the ispGAL and ispGDS devices
through the programmer’s user interface, so program-
ming or verifying the UES is as simple as programming or
verifying any other array. Second, the UES may be
embedded within the JEDEC file or the ISP Daisy Chain
Download software by selecting the UES menu option
from the software for the ispGAL, ispGDS and ispLSI
devices. And third, the UES can be written or read using
Lattice’s ispCODE software. Further information on us-
ing ispCODE software to program the UES can be found
in the ispCODE Software section of the 1996 Lattice
Semiconductor Data Book.

USERCODE

ISP devices programmable exclusively through the TAP
controller (2000V family) contain a 32-bit, boundary-
scan-compliant USERCODE. Loading ofthe USERCODE
instruction makes the USERCODE available to be shifted
out in the Shift-DR state of the TAP controller. The
USERCODE instruction can be used while the device is
in normal functional operation allowing the device to be
scanned while operating.

ispLSI Programming Details

The following sections describe the programmable state
machine instruction set, timing parameters, device lay-
out, and programming algorithms for ispLSI devices.
Programming steps and specifications for both the LSC
ISP state machine and programming through the bound-
ary-scan TAP controller will be given. The first step in
programming any ISP device is to determine the device
type to be programmed. The ispLSI 1000 family, ispLSI
2000 family, ispLSI 3000 family, and ispLSI 6000 family
devices have an eight-bit device ID read during the Idle/
ID State. The ispLSI 2000LV family devices have a 32-
bit device ID code which can read by clocking in the

12

1996 ISP Encyclopedia

ISP Architecture and Programming

Table 3a. ispLSI Device ID Codes (8-Bit)

Device MSB LSB
ispLSI 1016 00000001
ispLSI 1016E 00001011
ispLSI 1024 00000010
ispLSI 1024E 00001100
ispLSI 1032 00000011
ispLSI 1032E 00001101
ispLSI 1048 00000100
ispLSI 1048C 00000101
ispLSI 1048E 00001110
ispLSI 2032 00010101
ispLSI 2064 00010010
ispLSI 2096 00010011
ispLSI 2128 00010100
ispLSI 3160 00100100
ispLSI 3192 00100001
ispLSI 3256/A 00100010
ispLSI 3256E 00100011
ispLSI 6192 00110010

Device ID Codes Table

read-1D code instruction and clocking out the device ID
code through the TAP controller.

Tables 3a and 3b list the device IDs for the ispLSI
devices. The 32-bit device ID codes are read within the
boundary-scan TAP controller while the 8-bit device IDs
are read within the LSC ISP state machine. Notice that
the 3000 family (except the 3256) and 6192 family may
be programmed through either the LSC ISP state ma-
chine or the boundary-scan TAP controller but only
support the LSC ISP 8-bit device ID.

The LSC ISP state machine instruction set is listed in
Table 4. Instructions are loaded in the LSC ISP state
machine Command Shift State and then executed in the
Execute State. Notice that the device identification is
read during the Idle/ID State, and this operation does not
require an instruction.

The TAP controller programming instructions for Lattice’s
boundary-scan devices are listed in Table 5. Instructions
are loaded in the Shift-IR state and executed in the Run-
Test/Idle state by setting TMS low before a low-to-high
transition on TCK and waiting the associated pulse width
time before exiting the Run-Test/Idle state as shown in
Figures 15 and 16.

While it is possible to erase the individual arrays of the
device, it is recommended that the entire device be
erased (UBE) and programmed in one operation. This
Bulk Erase operation should precede every program-
ming cycle as an initialization.

When a device is secured by programming the security
cell (PRGMSC), the on-chip verify and load circuitry is
disabled. The device should be secured as the last
procedure, after all the device verifications have been
completed. The only way to erase the security cell is to
perform a bulk erase (UBE) on the device.

Table 3b. IEEE 1149.1 (JTAG) Device IDCODE (32-Bit)

Device MSB LSB
ispLSI 2032V 00301043 (hex)
ispLSI 2064V 00306043 (hex)
ispLSI 2096V 00303043 (hex)
ispLSI 2128V 00308043 (hex)

Device ID Codes Table 2

13

1996 ISP Encyclopedia

ISP Architecture and Programming

Table 4. LSC ISP Programming State Machine Instruction Set

Instruction Operation Description

00000 NOP No operation performed.

00001 ADDSHFT Address Register Shift: Shifts address into the Address Shift Register from SDIN.

00010 DATASHFT Data Register Shift: Shifts data into or out of the Data Serial Shift Register.

00011 UBE User Bulk Erase: Erase the entire device.

10000 ERALL Erase the entire device, including the UES (User Electronic Signature).

00100 GRPBE Global Routing Pool Bulk Erase: Bulk erases the GRP array only.

00101 GLBBE Generic Logic Block Bulk Erase: Bulk erases the GLB array only.

00110 ARCHBE Architecture Bulk Erase: Bulk erases the architecture array and I/O configuration.

00111 PRGMH Program High Qrd_er Bits: Thg data in the Data Shift Register is programmed into the
addressed row's high order bits.

01000 PRGML Program Low (?rder Bits: The_: data in the Data Shift Register is programmed into the
addressed row"s low order bits.

01001 PRGMSC Program Security Cell: Programs the security cell of the device.

01010 VER/LDH _Verlfy/Load ngh_ Order_ Bits: Load _the c_iata from the selected row's high order bits
into the Data Shift Register for verification.

01011 VER/LDL Verify/Load !_ow Order Bits: ngd t_he data from the selected row's low order bits into
the Data Shift Register for verification.

01110 EFLOWTHRU Flow Through: Bypasses all the internal shift registers and SDOUT becomes the
same as SDIN.
Verify Erase/Load High Order Bits: Load the data from the selected row's high order

10010 VE/LDH bits into the Data Shift Register for erased verification.
Verify Erase/Load Low Order Bits: Load the data from the selected row's low order

10011 VE/LDL bits into the Data Shift Register for erased verification.

01111 PROGUES Program UES.

10001 VERUES Verify UES.

14 1996 ISP Encyclopedia

ISP Architecture and Programming

Table 5. TAP Controller Instruction Set

Inst. Operation Description

00001 ADDSHIFT Address Register Shift: Shift Data into the Address Shift Register of the device.

00010 DATASHIFT Data Register Shift: Clocks data into or out of the Data Shift Register.

00011 UBE User Bulk Erase: Erases the entire device, excluding the USERCODE.

00111 PRGMHIGH Program High Order Data: Data in the Shift Register is programmed into the addressed row, high order
data only.

01000 PRGLOW Program Low Order Data: Data in the Shift Register is programmed into the addressed row, low order
data only.

01001 PRGMSC Program Security Cell: Programs the Security Cell of the device.
Verify/Load High Order Data: Load data from the the selected row (high order data only) into the Serial

01010 | VER/LDHIGHP Shift Register for Programmed Cell verification. Also used for the Load algorithm.

01011 | VER/LDLOWP Verlfy/Load Low Order Data: an_ld d_ata from the selected row (low order data only) into the Serial Shift
Register for Programmed Cell verification.

10000 ERALL Erase All: Erase the entire device, including USERCODE.

10010 | VER/LDHIGHE Verlfy/Load High Order Dgtg: !_oad data from the selected row (high order data only) into the Serial Shift
Register for Erased Cell verification.

10011 | VER/LDLOWE Verlfy/Load Low Order Da?g: IToad data from the selected row (low order data only) into the Serial Shift
Register for Erased Cell verification.

Prgm EN Program Enable and Program Disable: The Program Enable and Program Disable instructions are used

10101 & to enter and exit the programming mode. To enter the programming mode, three consecutive PrgmEN

instructions must be loaded. To exit the programming mode, load the PrgmDIS instruction, followed by
PrgmDIS loading the BYPASS (11001) instruction and the device will exit the program mode.

Read ID Code: This instruction loads the IDCODE into the 32-bit Data Shift Register. The entire 32-bit
IDCODE should be verified before the device is programmed, verified or loaded. The IDCODE is loaded

10110 IDCODE into the Data Shift Register during the Capture-DR state if the IDCODE instruction is in the Instruction
Register. In addition, the IDCODE instruction is automatically in effect following power-up or a visit to the
Test-Logic-Reset state. It stays in effect until the Capture-IR state is entered.
Read USERCODE or Verify USERCODE: This instruction accesses the 32-bit USERCODE which is
different from the 32-bit IDCODE used to recognize the device. The USERCODE provides 32 bits of data
storage for the user and is available in both ispLSI and pLSI versions. In the normal mode, the 32-bit

10111 USERCODE USERCODE is loaded into the 32-bit Shift Register on the rising edge of TCK in the Update-IR state as
required in the IEEE 1149.1 specification. In the programming mode, the USERCODE s verified using this
instruction. With the instruction loaded into the IR in the Run-Test/ldle state, the 32-bit USERCODE is
loaded in the 32-bit Shift Register for cell verification.
Register BYPASS (default instruction): The device is placed into bypass mode, where TDI is connected
to TDO with one register. Following power-up or a visit to the Test-Logic-Reset state, this instruction is

11001 BYPASS loaded into the Instruction Register during the Capture-IR state. IEEE 1149.1 requires that an instruction
ending in 01 has to be in the Instruction Register following Test-Logic-Reset in order to detect Instruction
Register length.

11010 Prgm Program USERCODE: Used to program the user 32-bit USERCODE

USERCODE 9 ' prog '
11111 BYPASS Register BYPASS: The device is placed into bypass mode where TDI is connected to TDO with one

register.

15 1996 ISP Encyclopedia

ISP Architecture and Programming

Programming Voltage/Timing Specifications 12 and 13 show the voltage/timing specifictions for these
and Waveforms for the LSC ISP State Machine parameters and others for the ispLSI 1000/E, 2000, 3000

and 6000 families of Lattice ISP devices.

For programming through the LSC ISP state machine,
several timing specifications must be met. Table 6 de-
scribes a few of the critical timing parameters as they
apply to programming sequences. Table 7 and Figures

Table 6. Timing Parameters for Programming Through the LSC ISP State Machine

Timing Parameter Description
tispEN. tispDIS Specifies the time it takes to get into the ISP mode after ispEN is activated. Or, the time it takes to
ISPEN, LIsp come out from the ISP mode after ispEN becomes active.

t Set-up time of the control signals before SCLK. Or, the set up time of input signals against other
su control signals (if applicable).
th Hold time of the control signal after SCLK. It also applies to the same input signals from the set-up

time.

telkl Minimum clock pulse width, low.

tclkh Minimum clock pulse width, high.

t Verify or read pulse width. The minimum time requirement from the rising clock edge of a

pwv verify/load instruction execution to the next rising clock edge (Figure 13).

t Programming pulse width. The minimum time requirement from the rising clock edge of a

pwp programming instruction execution to the next rising clock edge (Figure 13).

tb Bulk erase pulse width. The minimum time requrement from the rising clock edge of a bulk erase
ew instruction execution to the next rising clock edge (Figure 13).

trst Power on reset timing requirement. trst must elapse after power-up and before any operations are
rs performed on the device.

16 1996 ISP Encyclopedia

ISP Architecture and Programming

Table 7. ISP Programming Voltage/Timing Specifications (ispLSI 1000/E, 2000, 3000 and 6000 Families)

SYMBOL PARAMETER CONDITION MIN. | TYP. | MAX. [UNITS
Vccp Programming Voltage 4.75 5.0 5.25 \%
lccp Programming Supply Current - 50 100 mA
VIHP Input Voltage High |spﬂ = Low 2.0 - Veep \Y
VILP Input Voltage Low 0.0 - 0.8 \%
lip Input Current - 100 200 A
VOHP Output Voltage High lon=-3.2 mA 2.4 - Veep V
VOLP Output Voltage Low loc=5mA 0.0 - 0.5 V
tr, tf Input Rise and Fall - - 0.1 VS
tispen m to Output 3-State Enabled - - 10 ps
tispdis mﬁ to Output 3-State Disabled - - 10 us
tsul Setup Time, isp State Machine 0.1 - - ps
tsu2 Setup Time, Program and Erase Cycle* 200 - - us
tco Clock to Output - - 0.1 ps
th Hold Time 0.1 - - VS
tclkh, tclkl | Clock Pulse Width, High and Low 0.5 - - ps
tpwv Verify Pulse Width 20 - - VS
tpwp Programming Pulse Width 1000 40 - 100 ms

others 80 - 160 ms
tbew Bulk Erase Pulse Width 200 - - ms
trst Reset Time from Valid Vccr Rise Time <50 ps | 1000/E, 2000 45 - - Hs
3000, 6000 100 - - ps

VT Specs/Table 2

Figure 12. Timing Waveforms for In-System Programming (ispLSI 1000/E, 2000, 3000 and 6000 Families)

VCC
—| trst |a—

1/0s used
e L RS
1/0s used HI-Z
a8 Outputs LD <
—> «— tispen
iSspEN
th Es_ui<—> th tispdis —» «—
MODE
SDI Valid
—» tclkh T tsul|e— th
SCLK
VIHtsul »+—>tispen VOH —»| tco |[«—
SDO vaid X/
ViL vouo s

Z Z Z ZDon't Care
mundeﬁned State

17 1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 13. Program, Verify and Bulk Erase Waveforms (ispLSI 1000/E, 2000, 3000 and 6000 Families)

Execute State (Program, Verify or Bulk Erase Instruction)

MODE
Ttpwp, tbew, or tpwv—»|
SDI th
tsu1 e tolkh —»] —tsul—»| -+ tsu2 [«
SCLK
Programming Voltage/Timing Specifications parameters as well as others are shown in Table 9.
and Waveforms for the Boundary Scan TAP Figures 14 and 17 show the timing waveforms for enter-
Controller ing and exiting the programming mode in the TAP

controller. Figures 15 and 16 show the timing waveforms
A few of the critical timing parameters for programming for applying the programming pulse.

through the boundary-scan TAP controller are described
in Table 8 and the voltage/timing specifications for these

Table 8. Timing Parameters for Programming Through the Boundary-Scan TAP Controller

Timing Parameter Description

Specifies the time it takes for programming pins to become active after the ispEN pin is asserted.

tispE, tispD Or, the time it takes for programming pins to deactivate after ispEN becomes inactive.

Specifies the time it takes for the 1/0 pins to be put into the high-impedance state after the ProgeN
tispEN, tispDIS instruction is loaded. Or, the time it takes for /O pins to return to normal operation from the high-
impedance state after exiting the programming mode.

tsu Set-up time of the control signals before TCK.
th Hold time of control signals after TCK.

tclkh Minimum clock pulse width, high.

telkl Minimum clock pulse width, low.

t Verify or read pulse width. The minimum time requirement from the rising edge of TCK in the Run-
pwv Test/Idle state, while executing a verify or read instruction to clocking to the next state.

trst Power on reset timing requirement. trst must elapse after power-up and before any operations are
rs performed on the device.

t Programming pulse width. The minimum time requirement from the rising edge of TCK in the Run-
pwp Test/Idle state, while executing a programming instruction to clocking to the next state.

thew Bulk erase pulse width. The minimum time requirement from the rising edge of TCK in the Run-

Test/Idle state, while executing a bulk erase instruction to clocking to the next state.

18 1996 ISP Encyclopedia

ISP Architecture and Programming

Table 9. ISP Programming Voltage/Timing Specifications (ispLSI 2032LV)

SYMBOL PARAMETER CONDITION MIN. | TYP. | MAX. | UNITS
Vccp Programming Voltage 3.0 3.3 3.6 \%
lccp Programming Supply Current - 50 100 mA
VIHP Input Voltage High ispEN = Low 2.0 - Veep \Y
VILP Input Voltage Low 0.0 - 0.8 \%
lip Input Current - 100 200 HA
VOHP Output Voltage High loy=-3.2 mA 2.4 - Veep \Y
VOLP Output Voltage Low lo. =5 mMA 0.0 - 0.5 \%
tr, tf Input Rise and Fall - - 0.1 ps
tdft TDI to TDO Delay with Flowthru Command - - 100 ns
tispE ispEN to Programming Pins Enabled - - 1.0 us
tispD ispEN to Programming Pins Disabled - - 1.0 us
tispEN Program Enable Command to I/0 3-State Enabled - — 10 us
tispDIS Program Enable Command to 1/O 3-State Disabled - - 10 us
tsu; Clock Setup Time 100 - - ns
tsu, Program Setup Time 200 - - us
tco Clock to Output - - 80 ns
th Hold Time 10 - - ns
tclkh, telkl | Clock Pulse Width, High and Low 100 - — ns
tpwv Verify Pulse Width 30 - - us
tpwp Programming Pulse Width 80 - - ms
tbew Bulk Erase Pulse Width ccp 200 - - ms
trst Reset Time from Valid V 1 - - ps

Table 2 - 0029isp-2032

19 1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 14

VCC

T™S

TDI

TCK

TDO

1/0 Pins

ispEN

State

Figure 15. Program and Bulk Erase Waveform (2000V Family)

. Timing Waveforms for Entering the Programming Mode (2000V Family)
vee
ov
<« st —» fery =)
=) g
VIH o O =
p=l =
o o5
eee see =
VIL E X E g ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
[ES
=) S8
VIH a® o>
5% g2
eee 5. eee 2 °
viL SE J Se
0 7 £
2 2 <«tsui» |« th» 25
\ 2= 28
c < 5
e °8 <« tokh » |« tak » eee =3
viL = s g
°5 <«tco» <« tispEN —» °5
2% VOH L&
VIH T o S L L L SR R
@ E 59
f— 000 O 000 O m———
vIL ;‘8 VoL ;"_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
= =N
[wg
VIH g = :‘E’ ; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
LN) ’g LN ‘9 g
x x
viL § § g ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(8} o=
VIH
<« tispg —>
viL
Exitl-IR Shift-IR X Exitl-IR X Update-IR X Select-DR-Scan Exitl-IR X Update-IR
. isp Programming . 1/0 pins Programming
Input: }—’ h Output: }“’ .
E Don't Care pins are enabled XXX Defined State Tristate Mode Entered

TDI

T™MS

TCK

State

VIH

VIL

VIH

VIL

VIH

VIL

ENT_TIM.AI

<« tsui |« th +‘

<«tok | e teknh »

<« tsui» | tsu2 —»| « th »

B E— tpwp, tbew, tpwv L

Update-IR >< Run-Test/Idle (Execute a program, verify or bulk erase instruction) >< Select-DR-Scan

20

1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 16. Verify Waveform (2000V Family)

T™MS

TCK

State

VIH
VIL ‘ ‘ ‘ ‘
L*tsul"‘*th‘J Ltsul th
1 tokn tew tekn
VIH
vIL
Update-IR Run-Test/Idle (Execute Verify Instruction) >< Select-DR Scan

Figure 17. Timing Waveforms for Exiting the Programming Mode (2000V Family)

VCC

T™MS

TDI

TCK

TDO

1/0 Pins

iSpEN

State

,,,,,,,,, g -
g g
= eo0ee O
£ k)
£ %)
£ a
I £
,,,,,,,,, 5 3
= o
e eee \
- 5
g E
E e
2 o
s X
@ £
,,,,,,,,, g <
& <«tco» o <«ltco» - < thvdis tispdis —» -«
o VOH S VOH
,,,,,,,,, 4 g
— O I}
o000
3 voL Z voL
"""""] x
2 g
=]
£ 7]
[
— g cee =
,,,,,,,,, g £
7]
«tispp »
Select-IR Capture-IR | Shift-IR Shift-IR Shift-IR Exit1R | Update-R | Run-Testidle]| SelectDR- | Select-IR- Test-Logic-Reset
Scan Scan Scan

Z

Input:
Don't Care

XA

Output:
Defined State

Enable the
1/0 pins.

"

}_, The programming
pins are disabled

21 1996 ISP Encyclopedia

ISP Architecture and Programming

Device Layout

To translate the JEDEC format programming file into the
serial data stream format for programming ispLSI de-
vices, it is necessary to know the physical device layout
and programming architecture. Two main factors deter-
mine how the translation must be implemented: the
length of the address shift register and the length of the
data shift register. The length of the address shift register
indicates how many rows of data are to be programmed
into the device. The length of the data shift register
indicates how many bits are to be programmed in each
row. Both registers operate on a First In First Out (FIFO)
basis, where the Least Significant Bit (LSB) of the data or
address is shifted in first and the Most Significant Bit
(MSB) of the data or address is shifted in last. For the
data shift register, the low order bits and the high order
bits are separately shifted in.

Each ispLSI device has a predefined number of address
rows and data bits needed to access its EZCMOS cells
during programming. The data bits span the columns of
the E2 array. From this information, the number of pro-
gramming cells (or fuses) are determined. Table 10
highlights the address and data shift register (SR) sizes
for currently available ispLSI devices. The JEDEC file for
these ispLSI devices will reflect the number of cells
(fuses) seen in Table 10. The total number of cells
becomes critical if the programming patterns are to be
stored in an on-board memory storage of limited capacity
such as EPROM or PROM.

The L-fields in the JEDEC programming file indicate the
link or fuse numbers of the device. The first cell of the
device is indicated by cell number LO0000. L-fields of
subsequent lines are optional. From this reference cell
location, all other cell locations are determined by rela-
tive position. A zero (0) in the cell location indicates that
the E2 cell in that particular location is programmed (or
has a logic connection intact). A one (1) in the cell
location indicates that the cellis erased (equivalent to an
open connection). The logic compiler software automati-
cally generates this JEDEC standard programming file
after the design has been fit into the device.

Timing

When programming ispLSI devices, there are several
critical timing parameters that must be met to ensure
proper programming. The two most critical parameters
are the programming pulse width (tpwp) and the bulk
erase pulse width (tpey). These pulse widths determine
the programming and erasing times of the EZ cells. The

preceding section detailed these critical program and
erase timing specifications.

Fuse Map to Device Conversion

While the ISP Daisy Chain Download or ispCODE soft-
ware takes care of this detalil, itisimportant to understand
how the JEDEC fuse map is mapped onto the physical
ispLSI device during programming. The physical layout
of the fuse pattern begins with Address Row 0 and ends

Table 10. ispLSI Address, Data Shift Register and Total Cell Summary

Device Address SR Length Data SR Length/Address Total Number of Cells
ispLSI 1016/E 96/110 160/160 15,360/17,600
ispLSI 1024/E 102/122 240/240 24,480/29,280
ispLSI 1032/E 108/134 320/320 34,560/42,880
ispLSI 1048/C/E 120/155/158 480/480/480 57,600/74,400/75,840
ispLSI 2032/V 102 80 8,160
ispLSI 2064/V (84/100-Pin) 118 160 18,880
ispLSI 2064V (44-Pin) 110 80 17,600
ispLSI 2096/V 134 240 32,160
ispLSI 2128/V (160/176-Pin) 150 320 48,000
ispLSI 2128V (84/100-Pin) 134 160 42,880
ispLSI 3160 200 400 80,000
ispLSI 3192 216 480 103,680
ispLSI 3256/A 180 676 121,680
ispLSI 3256E 248 640 158,720
ispLSI 6192 180 600 108,000

ispLS| Address Table

22

1996 ISP Encyclopedia

ISP Architecture and Programming

Table 11. Summary of ispLSI Data Shift Register Bits

High Order Data High Order Data Low Order Data | Low Order Data Data SR Size

Device SR LSB SR MSB SR LSB SR MSB (Bits)
ispLSI 1016/E 0 79 80 159 160
ispLSI 1024/E 0 119 120 239 240
ispLSI 1032/E 0 159 160 319 320
ispLSI 1048/C/E 0 239 240 479 480
ispLSI 2032/V 0 39 40 79 80
ispLSI 2064/V 0 79 80 159 160
ispLSI 2096/V 0 119 120 239 240
ispLSI 2128/V 0 159 160 319 320
ispLSI 3160 0 399 - - 400
ispLSI 3192 0 239 240 479 480
ispLSI 3256/A 0 337 338 675 676
ispLSI 3256E 0 639 - - 640
ispLSI 6192 0 299 300 599 600

with the maximum Address Row N and is determined by
the length of the Address SR as described in Table 10.
Spanning the Address Rows are the outputs of the High-
Order Data SR and Low-Order Data SR, as described in
Table 11. Programming fuses on a given row are
enabled by a “1” within the Address Shift Register for the
appropriate row and the use of state machine instructions
that selectively operate on the High-Order Data SR or the
Low-Order Data SR. For example, the PRGMH instruc-
tioninthe LSC ISP state machine instruction set programs
the High-Order data bits within the device for the selected
Address Row and the PRGML instruction programs the
Low-Order data bits (Table 4 lists the LSC ISP state
machine instructions). The starting cell (LO0000) of the
JEDEC fuse map shifts into the device at the physical
location corresponding to Address Row 0, High-Order
Data SR bit 0 (Figure 30). The “n” and “m” in the figure
refer to the Address SR length and the Data SR length
respectively, of the device. Table 10 lists the size of the
Address and Data shift registers for all ispLS| devices. A
series of sequential shifts eventually results in the last
cell location (Total # of Cells - 1) of the JEDEC fuse map
shifting into Address Row (n-1), Low-Order Data SR bit
(m-1) on the actual device.

The ispCODE Software routines make use of a bit packed
data format, called iSpPSTREAM™, to transfer data be-
tween the JEDEC fuse map and the physical device
locations. The binary ispSTREAM format uses one bit to
represent the state of each of the programmable cells,
instead of the byte value used in an ASCIl JEDEC file.
Considering the additional characters present in a JE-
DEC file, this adds up to a space savings of more than a
factor of eight. In addition, the ispSTREAM does not

ispLS| DSR Bits Table

require any parsing; the bits are simply read from the file
and shifted into the device. As only 1922 bytes are
required to store the pattern for an ispLSI 1016 device,
multiple patterns can be stored in a small amount of
memory. The JEDEC fuse map can be translated into
iISpSTREAM format using the dld2isp.exe program.

Algorithms

Command Stream

The first step in programming is to determine the device
type to be programmed. At this point itis important to be
aware of the hardware configuration that is being used.
Serial daisy chain and parallel programming configura-
tions are listed earlier in this section.

For simple serial daisy chains with all devices program-
mable with the LSC ISP state machine the device IDs can
be read once the ISP programming mode is enabled
(ispEN low) by keeping SDI to a known level (either high
or low), the ID shift can be terminated when a sequence
of eight ones or eight zeros is read. From the device IDs
received the serial bit stream for programming can be
arranged.

For software that must recognize both LSC ISP state
machine programmable and TAP controller program-
mable ispLSI devices, the algorithm must start by
determining which type of devices are present. After
enabling the programming mode (ispEN low) the soft-
ware checks for the presence of LSC ISP devices by
setting MODE/TMS and SDI/TDI low. If LSC ISP devices
are present the SDO/TDO signal will eventually show
eight 0’s in a row and the intervening bits are read as the

23

1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 18. ispLSI Device to Fuse Map Translation

DATA

'

DATA

v

\

m/2)-1] ... High Order Shift Register ...0
[(m/2)-1] .. Hig ft Reg| I_j—>SDo

L

—>|(m-1) ... Low Order Shift Register ... (m/2)

Row Addr. In (SDI)

(n-1)

| —

g

R

o

2 x

E<CMOS Cell Array -

=

)]

0

0

g

©

©

<

Low-Order SR High-Order SR
Fuse# (m-1) «—— Fuse# (m/2)| Fuse# [(m/2)-1] «——— Fuse# 0 0 !

SDO

device IDs. To check for the presence of boundary-scan
TAP ISP devices the ispEN signal is driven high and the
devices are clocked to the Shift-IR state and the IDCODE
instruction loaded. After moving to the Shift-DR state
subsequent clocking will shift out the 32-bit device IDs for
the boundary-scan devices. Figure 19 shows the 32-bit
ID register present in all TAP controller programmable
ispLSI devices.

The devices present are identified by the device IDs read
by the programming software. The correct programming
sequence can then be followed for the device. Below are
typical sequences for programming LSC ISP state ma-
chine ispLSI devices and ispLSI devices programmable
through the TAP programming interface.

24

1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 19. BSCAN 32-Bit ID Registers and 32-Bit USERCODE

32 kit 1D Register

EL:: LSE
¥ 287 12 1 10
oI —pi ‘JersiDnI Part Number | nitigr 1D |c |—|~ TCO
4 bits) 6 bitg) {1 bie) i bit)

| Prarm | Imernalh,rassignadl 00000400004 |1|

The . The Part number The Manufscturer Gonstant
Version See the Devie it nitity code a5 Logi: *4* that
nurber. Specific szction. =pacified by Fule specifies that

112 1ofthe IEEE the IDSODE
Sid 14494, is supported.

22 bit USERCGODE

MSE

Eul
Ol _|.|

22 bit WSERCODE

Typical LSC ISP Programming Sequence

1)
2)
3)
4)
5)
6)
7)
8)
9)

Power up

Read ID code

ADDSHFT command shift
Execute ADDSHFT command
Shift address

DATASHFT command shift
Execute DATASHFT command
Shift high order data

PRGMH command shift

10) Execute PRGMH

11) DATASHFT command shift

12) Execute DATASHFT command

13) Shift low order data

14) PRGML command shift

15) Execute PRGML

16) Repeat from 1) until all rows are programmed

17) Program UES

18) Optional: Program security bit

19) Power down

Typical
1)
2)

3)

4)

5)

TAP programming sequence
Power Up the device

Verify the 32 bit IDCODE: Clock-in the instruc-
tion Read IDCODE (10110), Clock-out and verify
the 32 bit IDCODE, then Clock back to the Shift-
IR state.

Enter the Programming Mode: Load and ex-
ecute the Program Enable (PrgmEN) (10101)
instructionthree times. Uponloading the PrgmEN
instruction and clocking to the Update-IR state,
the third time the device enters the programming
mode. Then Clock to the Shift-IR state.

Initialize the Address (Load all Zeros): Clock-
in the instruction Address Reg. Shift (00001);
usethe correctsetup and holdtimes. Then Clock
back to the Shift-IR state.

Bulk Erase the device: Clock-inthe Bulk Erase
All (10000) instruction. Execute the Erase
Command, using Tggw and Tgyy. Then Clock
back to the Shift-IR state.

25

1996 ISP Encyclopedia

ISP Architecture and Programming

6) Initialize the Address (select the last row):
Clock-in the instruction Address Shift (00001)
and then Clock back to the Shift-IR state.

7) PROGRAM LOOP: Program High Order and
Low Order data, Increment Address and Check
Address.

8) VERIFY LOOP: Initialize the Address, Verify
Highand Low Order data, using Lvt & Hvtinstruc-
tions.

9) PROGRAM USERCODE data: Using instruc-
tion Program USERCODE (11010). If JEDEC
file contains USERCODE data (U-field binary
data only) clock-in USERCODE data. If there is
no U-Field data clock in all Os.

10) Verify USERCODE data: Using the instruction
Verify USERCODE (10111).

11) OPTIONAL: Programthe security cell: Using
the instruction PRGMSC (01001). Use Tpwp,
and Tgy2, then finish clocking back to the Shift-
IR state.

12) Power Down.

Note: The number of clock pulses required to read data
is one less than the length of the shift register. This is
because the first bit is always available on TDO. Correct
setup and hold times must be implemented.

Boundary Scan (ispLSI 3000 & 6000 Families)

The Lattice Semiconductor ispLSI 3000 and 6000 fami-
lies of devices support the IEEE 1149.1 boundary-scan
specifications. The following sections explain in detalil
how to interface to the devices through the Test Access
Port (TAP), how the boundary scan registers are imple-
mented within the devices, and the boundary-scan
instructions that are supported by the ispLSI and pLSI
3000 and 6000 families.

Test Access Port (TAP)

The boundary-scan test access portis accessed through
six interface signals: TDI, TDO, TCK, BSCAN, TMS,
TRST. These interface signals have two functions in the
case of the ispLSI 3000 and 6000 families; they serve as
both the boundary-scan interface and in-system pro-
gramming interface signals. For the pLSI 3000 and 6000
families, the six interface signals are only used for the
boundary scan TAP interface. Table 12 describes the
interface signals.

The abovementioned six signals are dedicated for bound-
ary-scan use for the pLSI devices. As ISP programming
is accomplished through the same pins, five of the six
signals have both boundary-scan interface and ISP func-
tions on the ispLSl devices. TRST is the only signal that
does not have a dual function. Itis used only to reset the
TAP controller state machine. The sequencing of test
routines are governed by the TAP controller state ma-
chine. The state machine uses the TMS and TCK signals
as its inputs to sequence the states. Figure 5 is the

Table 12. ispLSI and pLSI 3000 and 6000 Family Boundary-Scan Interface Signals

pLSI ispLSI Pin Function Description
Active high signal on this pin selects the Boundary-Scan function while active low signal
BSCAN BSCAN/ispEN | selects the ISP function on the ispLSI devices. Internal pullup on this pin drives the
signal high when the external pin is not driven.
TCK TCK/SCLK Test Clock function for Boundary-Scan and Serial Clock for the the ISP function.
TMS TMS/MODE Test Mode Select for Boundary-Scan and MODE control for the ISP function.
Test Data Input for Boundary-Scan and Serial Data Input for the ISP function. Functions
TDI TDI/SDI
as a serial data input pin for both interfaces.
S —_— Test Reset Input is an asynchronous signal to initialize the TAP controller to the Test-
TRST TRST Logic-Reset state.
DO TDO/SDO Test I_Data Output fpr Boundary-Sca_m and Serl_al Data Output for the ISP function.
Functions as a serial data output pin for both interfaces.

1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 20. TAP Controller Timing Diagram

TCK

-/

TMS or

r—tsu

-

TDI

TDO

«tcow

IEEE1149.1 specified state machine. The condition for
the state transition is the state of the TMS input condition
before TCK within a given state. The timing diagram is
shown in Figure 20.

The TAP controller state machine includes the Test-
Logic-Reset stateto resetthe controller and the Run-Test
states. Two main components of the TAP controller are
Data Register (DR) control states and Instruction Regis-
ter (IR) control states. Both of these register control
states are organized in a similar manner. The user can
capture the registers, shift the register string, or update
theregisters. Capturing the DRs simply loads the DR with
the data from the corresponding functional input, output,
or I/O pins. The IR capture, on the other hand, loads the
IRs with the previously executed instruction bits. Shift
register states serially shift the DR and IR. In the case of
DR shift, the data is shifted according to the order of the

Figure 21. Boundary Scan I/O Cell

SCANIN

inputs, outputs, and 1/Os defined in the boundary-scan
section of each device data sheet. The IRs are shifted out
from the least significant bit first. During update register
states, the DRs update the latches to drive the external
pins and the IRs update the instruction bits with the
instruction that is to be executed.

Boundary-Scan Registers

In order to support boundary-scan test, three types of
dataregisters are defined for the ispLSI and pLSI devices
— 1/0O cell registers, input cell registers and output cell
registers (6000 family only). The main purpose of these
registers is to capture test data from the appropriate
signals and shift data to either drive the test pins or
examine captured test data.

GLB
OE

M
(from u D Q D Q
previous X
cell) EXTEST
—b —> —
GLB — rﬂ N
M OUTPUT [y D EI/O PinH
u D Q D Q ﬁ
X
b *~—>
Update DR
M
U D Q SCANOUT (to next cell)
X
*~—>
Shift DR Clock DR

2

7 1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 22. Boundary Scan Input Cell

D Q= scANouT

(to next cell)
|—>

Clock DR

SCANIN
(from previous
cell)

Shift DR

Figure 21 describes the register for the 1/0 cell. The I/O
cell, by definition, must have three components: one
register component drives the output enable (OE) signal,
the second component drives the output data, and the
third captures the input data. These components make
up the three registers that are part of the shift register
string for each of the 1/O pins. Only parts of the I/O cell
registers will have valid datawhen 1/O pins are configured
as input-only or output-only, thus the test routines must
be able to monitor the appropriate register bits. The
update registers are used mainly to store data that is to
be driven onto the I/O pins. The multiplexer controls are
driven by the signal from the TAP controller at appropri-
ate states.

The function of an input cell register is simpler than that
ofan I/O cell. Figure 22 illustrates the single input register
cell. The purpose of the input cell is to capture the input
test data and shift the data out TDO for verification.

Boundary-Scan Instructions

Lattice ispLSI and pLSI devices support the three man-
datory instructions defined by the boundary-scan
definition. The following paragraphs describe each of the
instructions and its instruction code. A shift register of five
bits for the ispLSI and pLSI 3192 and ispLSI and pLSI
6192 and two bits for the ispLSI and pLSI 3256 is defined
within the devices to implement the instruction shift
register.

The SAMPLE/PRELOAD (Instruction Code - 10*/11100)
instruction is used to sample the pins that are to be
tested. During the Capture-DR state, while executing
this instruction, the DRs are loaded with the state of the
pins which can then be examined after shifting the data
through TDO. The PRELOAD part of this instruction is
simply loading the DRs during Shift-DR state with the
desired condition for each of the pins.

The EXTEST (Instruction Code - 00*/00000) instruction
drives the external pins with the previously updated
values from the DR during the Update-DR state.

Figure 23. Bypass Register

From TDI — 2 D ok To TDO
Shift DR —
Clock DR ——J>

The BYPASS (Instruction Code - 11*/11111) instruction
is used to bypass any device that is not accessed during
any part of the test. The definition of the BYPASS
instruction allows TDI not to be driven during the Shift-IR
state. In order to shift in the correct instruction code, the
TDI pin has an internal pull-up to drive logic high. A
bypassed boundary-scan device has a single bypass
register as shown in Figure 23.

*3256 only.

ispGDS Programming Details

The following sections describe the state machine in-
struction set, timing parameters, device layout, and
programming algorithms as they apply to ispGDS de-
vices in general. Figure 24 shows the ispGDS22 28-pin
device pinout.

Shift Registers

The ispGDS devices have three shift registers, the de-
vice ID shift register, the Instruction shift register and the
Data shift register. All shift registers operate on a First In
First Out (FIFO) basis, and are chosen by which state the
programming state machine is in.

Figure 24. ispGDS22 28-Pin PLCC Pinout Diagram

0O 8 4 0 © < o
®» < < 2 @ @ o
| s N s S s I e N s Y e N s |
4 2 28 26
A3 [Is 25[] spo
A4] 1 B3
vee []7 23[] B4
A5] ispGDS22] B5
A6 [|9 21[] GND
a7]] B6
MODE [|11 19]] B7
12 14 16 18
| SN [y SN R S S SN S— S—
® @2 9 g 9 ®© x
<< g gaa]
%]

1996 ISP Encyclopedia

ISP Architecture and Programming

Table 13. ispGDS Device Codes

Device Pins Device ID

ispGDS22 28 0111 0010 (72 hex)
ispGDS18 24 0111 0001 (71 hex)
ispGDS14 20 0111 0000 (70 hex)

ispGDS ID Codes

The device ID shift register is only accessible in the IDLE
state. Itis eight bits long, and is only used to shift out the
device ID. The ispGDS device IDs are 70-72 (hex) (Table
13). The Instruction shift register is only accessible in the
SHIFT state. Itis five bits long, and is only used to shift the
Instruction Codes into the device. The Device ID and
Instruction shift registers expect the LSB to be shifted in
first. The Data shift register is 24 bits long, and is used to
shift all addresses and data into or out of the device. The
Data shift register is only accessible in the EXECUTE
state when executing a SHIFT_DATA instruction (Table
14).

To program an ispGDS device, data is read from a serial
bit stream and shifted into the shift registers. Twenty-four
bits are read at a time, shifted into the device, and then
a programming operation is performed. The exact se-
guence, and the methods for converting a JEDEC map
into a serial bit stream are explained in the ispGDS
Internal Architecture section.

Timing

Programming the ispGDS devices properly requires that
a number of timing specifications be met. The specifica-

tions relating to programming and erasing the E2CMOS
cells are the most critical. In addition to a minimum pulse
width, there is also a maximum timing specification.
Refer to the ispGDS programming mode timing specifi-
cations in Table 15 for the timing requirements. Timing
diagrams for the programming mode specifications are
shown in Figures 25, 26 and 27.

ispGDS Internal Architecture

This section covers the details of constructing the
iISpSTREAM format. Only 49 bytes are required to store
the pattern for an ispGDS device. If you are using the
supplied software tools, a conversion utility (complete
with source code) is included to convert an industry-
standard JEDEC file to ispSTREAM format. All of the
Lattice software routines read and write this iSpSTREAM.

The ispGDS devices are composed of two basic archi-
tectural components (Figure 28). The first component
consists of three rows of architectural information, which
contain the three bits that control the function of each
I/O cell. The rows are 24 bits long, providing one bit for
each I/O cell (the ispGDS18 and ispGDS14 do not use all
of the bits). The second component contains the cell data
for the switch matrix area of the device and the User
Electronic Signature (UES) data area. There are two
UES rows of 24 bits each, and 11 switch matrix rows of
24 bits each.

Although the shift register lengths are 24 bits long, itis not
composed entirely of data area. In the architectural
section, two bits are used for addressing. In the matrix/
UES area, six bits are used for addressing. In the switch
matrix area, there are only 11 bits of actual data, and
seven dummy bits which exist only to make the shift

Table 14. ispGDS Programming State Machine Instruction Set

Instruction Operation Description
00000 NOP No operation performed.
00010 SHIFT_DATA Clocks data into, or out of, the Data Shift Register.
00011 BULK_ERASE Erases the entire device.
00101 ERASE_ARRAY | Erases everything except the Architecture rows.
00110 ERASE_ARCH Erases the Architecture rows only.
00111 PROGRAM Programs the Shift Register data into the addressed row.
01010 VERIFY Load data from the selected row into the Serial Shift Register.
01110 FLOWTHRU Disables the Shift Register (SDI=SDO).

29

1996 ISP Encyclopedia

ISP Architecture and Programming

Table 15. Programming Mode Timing Specifications (ispGAL22V10 and ispGDS Families)

Param. | Description Min. Max. | Unit
trst Time from power-up of device to any progamming operation. 1 — us
tisp Time from leaving IDLE state to I/O pins tri-state, or entering IDLE state to I/O pins active. — 10 Hs
tsu Setup time, from either MODE or SDI to rising edge of SCLK. 100 — ns
th Hold time, from rising edge of SCLK to MODE or SDI changing level. 100 — ns
fco Time from falling edge of SCLK to data out on SDO. iSpGAL22V10 — 210 ns
ispGDS — 150 | ns
tclkh Clock pulse width of SCLK while high. 0.5 — us
telkl Clock pulse width of SCLK while low. 0.5 — ps
tpwp Time for a programming operation. 40 100 | ms
tpwe Time for an erase operation. 200 — ms
tpwv Time for a verify operation. 5 — Hs

registers the same length. These seven bits are read as Figure 25. Programming Mode Timing
aone, or alogic High on SDO. For the UES, there are 16 (ispGDS and ispGAL22V10 Families)
bits of actual data in each row and two dummy bits.

Vee
ispGDS ispSTREAM Format JL st
MODE

To convert the information in a standard JEDEC file into
the ispSTREAM format, add all of the addressing infor-
mation and the placeholding bits (dummy bits). The SD!
objective isto include every bit needed for programming.

For the three architecture rows, simply add the two SCLK M
address bits. tispw tispw

I/0 pins ‘ Az K __VALID

For the UES and Switch Matrix rows, there are eight bits
to add. The first two bits are always 00, which distin-
guishes this area from the Architectural row. In addition,
there are four bits needed to address the specific row, Figure 26. Shift Register Timing

and two bits needed as placeholders. Inthe Switch Matrix (ispGDS and ispGAL22V10 Families)
rows, there are also five bits needed for placeholding at
the end of the rows. The various placeholding bits are
builtinto the device so that all rows appear to be the same

AT . . MODE
length, thus simplifying programming operations.

The ispSTREAM uses one bit for each programmable SDI
cell. This means that each row includes 24 bits, or three

bytes of storage. With three bytes of storage per row, and SCLK
16 rows per device, the ispSTREAM uses only 48 bytes

of storage area. However, there is one extra byte used at SDO
the front of the file to store the device ID code, and a 32-

bit checksum. The ID code is identical to the one that is
hardwired into the device. This ID code ensures that the
iISpPSTREAM type is the same as the device to be pro-
grammed. For example, if an iSpSTREAM is stored in
EPROM, itis stacked endto end. The ID code determines

not only which device type the ispSTREAM belongs with,

but its length, and thus, where the next pattern starts. All

30 1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 27. Program, Verify, and Erase Timing (ispGDS and ispGAL22V10 Families)

———» Enter EXECUTE state (PROGRAM, VERIFY, or ERASE instruction)

«— tpwp, tpwe, —J

or tpwv

MODE
SDI
€ th
tsu 4—
SCLK Nl

iISpPSTREAM formats, regardless of which Lattice In-
System Programmable device they are intended for,
contain this ID code in the first byte. See Figure 29 for
details of the ispSTREAM format, and Figure 30 for the
JEDEC map.

Algorithms

ispGDS device programming is described as a hierarchi-
cal set of algorithms and functions. This section contains
high-level algorithms for erasing, programming, verify-
ing, and loading ispGDS devices. A universal set of
functions is used to make up the algorithms and enable
them to be written in a modular format. The individual
functions are explained in the next section. Note that
most procedures leave the device in the SHIFT state.
These algorithms and functions closely follow the
ispCODE source code library provided by Lattice.

Figure 28. ispGDS Architecture

Address bits

Dummy bits
¢ |« 11 bits of Matrix Data———] ¢
00 0000 [11 Switch Matrix Data 11111
00 [0001 |11 11111
00 [0010 [11 1111
00]0011]11 11111
00 0100 |11 11111
00 [0101 |11 1111
00 0110 |11 11111
00fo11111 11111
00 [1000 |11 11111
00 [1001 |11 11111
00 1010 |11 11111

le——— 16bhitsof UESdata —]

00 |1011 {11 UES Data
00 [1100 11 UES Data
}47 22 bits of Architecture data 4*
01 Architecture Control Bit:C0O
10 Architecture Control Bit:C1
11 Architecture Control Bit:C2

SDI —»»| Shift Register (24 bits) —» SDO

D N

To simplify the algorithms, all operations use an
iISpSTREAM format as the data structure from which to
read and write. The ispSTREAM contains the address
information and simplifies the operations considerably.
Working from the ispSTREAM, the device appears as an
array of 16 rows, each 24 bits long.

Program Algorithm

Before programming a device, it must be erased. Cells
can be programmed (set to a JEDEC zero) using the
programming command, but only an Erase procedure
erases a cell (setacell backto a JEDEC “1” (one)). Inthe
algorithm in Listing 1, the entire device is erased (Bulk
Erased), and then the entire device is programmed.

Load Algorithm

The load algorithm in Listing 2 is the same for all ispGDS
devices. First, the 13 rows of array data (11 rows for the
array matrix, and two for the UES) are read, and then the
three rows of architectural information are read. After
each row is read, it is stored in an iISpSTREAM format.

In order to load each row’s data into the shift register, it
is necessary to load the address of the row into the
appropriate area of the shift register. Because of the
unique way the different areas of the device are ad-
dressed, the simplest way to get the addresses into the
device inthe properorderisto use an existing ispSTREAM
to supply those addresses. In other words, the full data for
each row is loaded from the ispSTREAM into the device.
WhenaVERIFY command is executed, the device’s data
for the same row is then loaded into the shift register to
be shifted out. This method will be used in this algorithm.

When using an existing iSspSTREAM to supply the ad-
dresses, the data should not be the same as the expected
data, or a failure to verify may not be detected. To avoid
this possibility, a pattern that contains all “1s” (ones) for
data can be used (and is supplied with the software tools
provided by Lattice Semiconductor). This iSpSTREAM
still has the addresses intact, but all programmable cell
data is set to a “1” (one) (erased state).

1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 29. ispGDS ispSTREAM Format

isp)STREAM MSB LSB ispSTREAM
bit#7 —» <«— hit#0
Address bits
Dummy bits j
¢ ‘47 11 bits of Matrix Datagb‘ ispSTREAM
00{ 0000|11|JEDEC fuses: 10.................. 0 11111| q— hit# 8
00 (0001 |11 |JEDEC fuses: 21.................. 11 11111
00| 0010 |11 |JEDEC fuses: 32............c.ouu.. 22 11111
00| 0011 |11 |JEDEC fuses: 43 33 11111
00| 0100 |11 |JEDEC fuses: 54 44 | 11111
00| 0101 |11 |JEDEC fuses: 65.................. 55 11111
00| 0110 |11 |JEDEC fuses: 76............ovvn. 66 11111
00| 0111 |11 |JEDEC fuses: 87c.vu.. 77 11111
00| 1000 |11 |JEDEC fuses: 98.................. 88 11111
00| 1001 |11 |JEDEC fuses: 109................. 99 | 11111
00| 1010 |11 |JEDEC fuses: 120................ 110 | 11111
le——— 16bitsof UESdata ——p|
00[1011 |11|JEDEC fuses: 136................. 121
00| 1100 |11 |JEDEC fuses: 152 137
ki 22 bits of Architecture data 4>‘
01 JEDEC fuses: 174 153
ispSTREAM |10 JEDEC fuses: 196................. 175
bit#392 —» |11 JEDEC fuses: 218 197

Figure 30. ispGDS JEDEC Fuse Map

ispGDS22
ispGDS18:
ispGDS14

ispGDS22:
ispGDS18:
ispGDS14:

163
185
207
162
184
206

S oS e
CoO||lcoo
o o
= =

B10 B9 B8
B8 B7 B6
B6 BS B4

160
182
204
159
181
203
158
180
202
157
179
201

C3:
CO0:
1/0 c1
C3:
C3:
o
/0 c1
C3:

110 &
110 &1

B7 B6 B5 B4 B3
B5 B4 B3
B3

User Electronic Signature

155
177
199

C3=

1o &

[121,122... .. .151,152]
‘Byte 3 ‘Byte 2 ‘Byte 1 ‘Byte 0 ‘
M L
S S
B B

32

1996 ISP Encyclopedia

ISP Architecture and Programming

Listing 1. ispGDS Programming Algorithm

To program a device:

Call procedure: Get_ID (to check device type)

(Erase entire device)

Call procedure: Wait (Erase_Time)

Set row_count =0

Loop until row_count = 15

(Program one row on each loop)
Call procedure:
Call procedure:
Call procedure:
X 24)
Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:

End Loop

Wait (Program_Time)

Call procedure: Change_State (to SHIFT state)

Change_State (to SHIFT state)

Shift_ Command, with command: PROGRAM
Change_State (to EXECUTE State)
Execute_Command (starts operation)

Change_State (to SHIFT state)

Call procedure: Change_State (from IDLE to SHIFT state)

Call procedure: Shift_ Command, with command: ERASE
Call procedure: Change_State (to EXECUTE State)
Call procedure: Execute_Command (starts operation)

Shift_ Command, with command: SHIFT_DATA
Change_State (to EXECUTE State)
Shift_Data_In, with data location in iSpSTREAM at (row_count

Verify Algorithm

A row by row verification procedure is used to verify the
ispGDS device. This procedure is basically the same as
the Load algorithm, except that each row is compared
with (instead of stored in) an iSpSTREAM as the data is
shifted out of the device. Note that the special pattern
used for verifying is used to load the addresses, asinthe
Load algorithm.

ispGDS Procedures

This section describes the procedures that make up the
program, verify, and load algorithms for the ispGDS
family of devices. The procedures are written so that
each algorithm may be written in a high-level modular
format, calling one of the following procedures to actually
change pin levels and handle timing.

Important: Notice that most of the procedures are writ-
ten so that the state machine is left in the Shift State,
ready to perform the next operation. This point is impor-
tant in keeping all the routines compatible.

Goto IDLE Procedure

The Goto_IDLE procedure resets the programming state
machine to the IDLE state, regardless of which state it is
in. Procedure steps:

set MODE pin High, and SDI pin Low
wait Tsu

bring SCLK pin High

wait Tclkh

bring SCLK pin Low

(END Procedure)

Get_ID Procedure

The 8-bit device ID codes identify the three different
ispGDS devices (Table 13). The ID is read in the IDLE
state by first loading the ID into the shift register and then
clocking the data out. The ID is loaded by holding MODE
high and SDI low and clocking the device. The ID is
clocked out of the device by holding MODE low and
clocking SCLK. Only seven clock cycles are required,
since the first bitis available at SDO after the ID is loaded.

1996 ISP Encyclopedia

ISP Architecture and Programming

Listing 2. Load Algorithm

To load a device:

Call procedure: Get_ID (to check device)
Call procedure: Change_State (from IDLE to SHIFT state)
Set row_count =0
Loop until row_count = 15
Call procedure: Shift_Command, with command: SHIFT_DATA
Call procedure: Change_State (to EXECUTE State)
Call procedure: Shift_Data_In, with data location in Source iISpSTREAM at
(row_count x 24)

Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:

Change_State (to SHIFT state)

Shift_ Command, with command: PROGRAM
Change_State (to EXECUTE State)

Execute_Command (starts operation)

Change_State (to SHIFT state)

Shift_ Command, with command: SHIFT_DATA
Change_State (to EXECUTE State)

Shift_Data_Out, with data location in Target iSpSTREAM at

(row_count x 24)

Call procedure:

Change_State (to SHIFT state)

End Loop

Listing 3. Verify Algorithm

To verify a device:

Call procedure: Get_ID (to check device type)
Call procedure: Change_State (from IDLE to SHIFT state)
Set row_count =0
Loop until row_count = 15
Call procedure: Shift Command, with command: SHIFT_DATA
Call procedure: Change_State (to EXECUTE State)
Call procedure: Shift_Data_In, with data location in Source iSpSTREAM at
(row_count x 24)

Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:
Call procedure:

Change_State (to SHIFT state)

Shift. Command, with command: VERIFY

Change_State (to EXECUTE State)

Execute_Command (starts operation)

Wait (Verify_Time)

Change_State (to SHIFT state)

Shift_Command, with command: SHIFT_DATA
Change_State (to EXECUTE State)

Shift_Data_Out, with data location a 24 bit temporary buffer

Compare temp row buffer with data location in iSspSTREAM to be verified
against, at (row_count x 24) Verify Error if the 24 bits don’t match
Call procedure: Change_State (to SHIFT state)

End Loop

34

1996 ISP Encyclopedia

ISP Architecture and Programming

Procedure steps:
set MODE pin High, and SDI pin Low
wait Tsu
Set SCLK pin High
wait Tclkh
Set SCLK pin Low
set count =0
get value from SDO and store in temp_buffer[0]
setcount =1
loop until count ==
bring SCLK pin High
wait Twh
bring SCLK pin Low
wait Twl

get value from SDO and store in
temp_buffer[count]

End loop
(Device ID code is now stored in the temp_buffer array)

(END procedure)

Change_State Procedure

The Change_State procedure changes the program-
ming state machine to the next state, according to the
state diagram. Procedure steps:

set MODE pin High, and SDI pin High
wait Tsu

bring SCLK pin High

wait Th

set MODE pin Low, and SDI pin Low
wait Tclkh

bring SCLK pin Low

(END Procedure)

Shift Command Procedure

The Shift_ Command procedure shifts a five-bit com-
mand into the device's shift register. The various
commands should be coded so the procedure can use a
mnemonic (such as PROGRAM), and the controlling
software can use the appropriate five-bit sequence for
that command. Procedure steps:

set MODE pin Low
set count =0
loop until count ==
get next bit of command code (count = bit number)
set SDI pin to bit value
wait Tsu
bring SCLK pin High
wait Tclkh
bring SCLK pin Low
count = count +1

End loop
(END Procedure)

Shift_ Data_In Procedure

The Shift_Data_In procedure explains the steps to clock
a row of data into the device, reading the data from an
iISpSTREAM. This procedure shifts in 22 bits of data, and
is used for all 16 rows. Procedure steps:

set MODE pin Low
set count =0
loop until count == 23

get next bit from ispSTREAM (bit number = count x
row_number)

set SDI pin to bit value
wait Tsu
bring SCLK pin High
wait Tclkh
bring SCLK pin Low
End loop
(END Procedure)

1996 ISP Encyclopedia

ISP Architecture and Programming

Shift_ Data_Out Procedure

The Shift_Data_In procedure explains the steps to clock
a row of data out of the device and store it in an
iISpPSTREAM. This procedure shifts out 22 bits of data,
and is used for all 16 rows. Procedure steps:

set MODE pin Low

wait Tsu

set count =0

loop until count == 23
bring SCLK pin High
wait Tclkh
bring SCLK pin Low

get value of SDO pin and store as next bit in
iISpSTREAM (bit number = countx row_number)

End loop

(END Procedure)

Execute_Command Procedure

The Execute_Command procedure causes many of the
commands to begin executing after the state machine is
in the EXECUTE state. Procedure steps:

set MODE pin Low, and SDI pin Low
wait Tsu

bring SCLK pin High

wait Twh

bring SCLK pin Low

(END Procedure)

Figure 31.ispGAL22V10 28-Pin PLCC Pinout Diagram

S5:93

2 2 28 %
s 250 1/0/Q
I 0 10/Q
g7 , 23 1/0/Q
MODE 1 i SDO
g9 210 10/Q
I 0 110/Q
1011 190 1/0/IQ

12 14 16 18

- - a3~ oo

o) ogie

6 @ e 9

Wait Procedure

The Wait procedure waits the indicated time to ensure that
various timing parameters are met. This procedure is likely
to be used when executing the PROGRAM and ERASE
procedures, which need a long delay (tens of milliseconds).
The other timing parameters may be guaranteed by the
system timing. Various timing parameters should be coded
so that a mnemonic may be passed to the procedure.
Procedure steps:

wait the indicated time

(END Procedure)

iISpGAL Programming Details

The following sections describe the state machine in-
struction set, timing parameters, and device layout as
they applytoispGAL devicesin general. Figure 31 shows
the ispGAL22V10 28-pin device pinout.

Shift Registers

The ispGAL device has four shift registers: Device ID,
Instruction, Data, and Architecture. All shift registers
operate on a First In-First Out (FIFO) basis, and are
enabled by the programming state machine.

The Device ID shiftregister is only accessible inthe IDLE
state. Itis eight bits long, and is only used to shift out the
device ID. For the ispGAL22V10, the ID is defined to be
08 (hex). The Instruction shift register is only accessible
in the SHIFT state. It is five bits long, and is only used to
shift the Instruction Codes into the device. The Data and
Instruction shift registers expect the LSB to be shifted in
first. The Data shift register is 138 bits long, and is used
to shift all addresses and data into or out of the device.
The Data shift register is only accessible in the EX-
ECUTE state when executinga SHIFT_DATA instruction.
The Architecture shift register is 20 bits long and the
Output Logic Macro Cell (OLMC) 1's S1 architecture bit
is shifted in first and OLMC 10’s SO architecture bit is
shifted in last. The Architecture shift register is accessed
during the EXECUTE state, when the ARCH_SHIFT
instruction is executed.

To program an ispGAL device, data is read from a serial
bit stream and shifted into the shift registers. The data is
read 138 bits at a time, shifted into the device, and then
programmed into the device through a programming
operation. Table 16 describes the instructions for the
iSpGAL state machine. The exact sequence and meth-
ods for converting a JEDEC map into a serial bit stream
are explained in the Internal Architecture section below.

1996 ISP Encyclopedia

ISP Architecture and Programming

Table 16. ispGAL Programming State Machine Instruction Set

Instruction Operation Description

00000 NOP No operation performed.

00010 SHIFT_DATA Clocks data into, or out of, the Data Shift Register.

00011 BULK_ERASE Erases the entire device.

00101 ERASE_ARRAY Erases everything except the Architecture rows.

00110 ERASE_ARCH Erases the Architecture rows only.

00111 PROGRAM Programs the Shift Register data into the addressed row.

01010 VERIFY Load data from the selected row into the Serial Shift Register.

01101 IOPRLD Preload the I/O register with given data.

01110 FLOWTHRU Disables the Shift Register (SDI=SDO).

10100 ARCH SHIET ig?g:: the Architecture Shift Register for shifting data into, or out of, the
Timing Three components comprise the ispGAL device pro-

Programming the ispGAL devices properly requires that
anumber of timing specifications be met. Most critical are
the specifications relating to programming and erasing
the E2CMOS cells. In addition to a minimum pulse width,
there is also a maximum specification for these param-
eters. Refer to the ispGAL programming mode timing
specifications for the timing requirements (Table 15),
which are identical to the ispGDS specifications. Dia-
grams for the programming mode specifications are shown
in Figures 25, 26, and 27 of the ispGDS timing section.

Securing an ispGAL Device

The ispGAL devices are not secured by an instruction. To
secure ispGAL devices, row 61 must be programmed in
the same manner that other data rows are programmed.
When programming this security row, the data bits are
“don't care.”

Internal Architecture

This section describes the internal architecture of the
device as it relates to programming and covers construct-
ing the ispSTREAM format. If you are using the supplied
software tools, a conversion utility (complete with source
code) is included to convert an industry-standard JEDEC
file to ispSTREAM format. All of the Lattice Semiconduc-
tor software routines read and write the iSpSTREAM
format.

gramming architecture (Figure 32): 44, 132-bit rows of
AND array, one 64-bit row of User Electronic Signature
(UES), and one 20-bit row of architecture information.

The AND array section of the physical layout is organized
so that each column of JEDEC fuse numbers shown in

Figure 32. ispGAL Device Shift Register Layout

8-bit ID Shift Register

SDI —>| B7 B6... ...B1BO |—> SDO
SDI —>| 138-bit Address/Data Shift Register |—> SDO
Row Addr: 0| 000000 |JEDEC Fuse #: _5764,5720,5676 ... A 0088,0044,0000
1| ooooo1 |JEDEC Fuse # 576557215677 ... : ..0089,0045,0001
2
8
<
<
@ - G bits - - Poleg---eneennnn- 132 Dits = v nennnnnnn s »
AND Array (5808 bits) :
42 101010 JEDEC Fuse #: 5806,5762,5718 0130,0086,0042
43 101011 |JEDEC Fuse # 5807,5763,5719 ... Y__...0131,0087,0043
44 101100 JEDEC Fuse #: 5891,5890 ... UES (64 bits) ... 58295828
Architecture Shift Register
SDI —»[JEDEC Fuse #: 5826,5827,58245811,5808,5809 |[—¥ SDO

OLMC10: SO
OLMC10: S1
OLMC 9: SO
OLMC2: s1
OLMC1: S0
OLMC1: S1

37

1996 ISP Encyclopedia

ISP Architecture and Programming

the logic diagram of the ispGAL22V10 corresponds to
one row of shift register for the device layout. Each
physical row is 132 bits long. With each row of AND array
data, there is a 6-bitrow address associated with it, which
including the row address bits, makes the shift registers
138 bits long. The row address bits must be shifted into
the shift register along with the AND array data. Execut-
ing a PROGRAM command following the combination of
data and row address shift programs the row that is
specified by the shift instruction.

The I/O preload (IOPRLD) is performed in the same order
as the Architecture shift register shown in Figure 32.
Once in I/O Preload, the length of the shift register is
determined by the number of I/Os that are configured as
registered output. The length of the shift register and the
order must be determined before IOPRLD can be ex-
ecuted.

The UES row is unique in that it is only 64 bits long. When
the row address bits are added to the row itself, the total

Table 17. Features of the ISP Device Families

shift register length required to fully specify the UES row
is 70 bits long. In other words, only 70 bits out of the 132-
bit shift register are used for the UES. The 20-bit
Architecture shift register is selected when the
ARCH_SHIFT instruction is executed. The OLMC 0, S1:
OLMC 0, SO; OLMC 1, S1: OLMC 1, S0: etc. are shifted
in order with the last bit of the shift register being OLMC
10, SO.

Algorithms and Procedures

The ispGAL'’s programming algorithm and programming
procedure are very similar to the ispGDS. For the sake of
brevity, please refer to the algorithm and procedures
section in the ispGDS section if you are interested in this
information. If you have further questions, please call the
Lattice Semiconductor Hotline at 1-888-ISP-PLDS.

ispLSI 3K
ispGDS, ispLSI 1K/E (except 3256)
ispGAL and ispLSI 2K and ispLSI 6K ispLSI 2KLV
22V10B/C Families ispLSI 3256 Families Family
LSC ISP State Machine for Yes Yes Yes Yes No
Programming
TAP Controller State Machine No No No Yes Yes
for Programming
Boundary-Scan Test Operations | No No Yes Yes No
Supported Through the TAP
Controller
Programming Signals LSC ISP LSC ISP LSC ISP/TAP LSC ISP/TAP TAP
Command Shift Register Length |5 bits 5 bits 5 bits/2 bits 5 bits 5 bits
FLOWTHRU Instruction Yes Yes Yes Yes Yes
ispEN Signal No Yes Yes Yes Yes
Address and Data Shift Both address Different shift Different shift Different shift Different shift
Registers and data shifted | instructions for | instructions for |instructions for |instructions for
in one address and address and address and address and
command. data. data. data. data.
Device ID 8-bit LSC ISP 8-bit LSC ISP 8-bit LSC ISP 8-bit LSC ISP 32-bit BSCAN
TAP ID
38 1996 ISP Encyclopedia

ISP Architecture and Programming

ISP Daisy Chain Details

This section provides a detailed look at the issues asso-
ciated with daisy chain programming. Before examining
the details, the reader should understand the differences
between ISP devices. This section describes those dif-
ferences and the unique programming features of each
ISP device.

ISP Overview for Daisy Chain

Similarities and Differences Between Devices

For the purpose of cascading, ISP devices can be cat-
egorized into five device groups: the ispGDS and
iISpGAL22V10B/C; the ispLSI 1000/E and ispLSI 2000
families; the ispLSI 3256; the ispLSI 3000 (except ispLSI
3256) and ispLSI 6000 families; and the ispLSI 2000LV
family of devices. Table 17 highlights the similarities
between these device groups.

The ispGDS and ispGAL22V10B/C devices use only the
LSC ISP state machine for programming. The 1/O’s of
ispGDS and ispGAL22V10B/C devices are putinto a high
impedance state when the programming state machine
goes into the Command Shift State. The ispGDS and
ispGAL devices do not use a dedicated ispEN pin for this
function.

The ispLSI 1000/E and ispLSI 2000 families of devices
are programmed exclusively through the LSC ISP state
machine butalso use a dedicated ispEN pinto enable the
programming mode: by driving ispEN low, all of the
device 1/Os are put into a high-impedance state and the
programming functions for SDI, SDO, MODE, and SCLK
are enabled.

The ispLSI 3256 is programmed through the LSC ISP
state machine but also is boundary-scan compliant for

testing. A dedicated ispEN pin selects between the ISP
state machine and the TAP controller. By driving ispEN
low, all of the device I/Os are putinto the high-impedance
state and the programming functions for SDI, SDO,
MODE, and SCLK are enabled. When ispEN is high the
TAP controller is active and the functions for TDI, TDO,
TMS and TCK are enabled.

The ispLSI 3000 (except the ispLSI 3256) and ispLSl
6000 families are programmable through either the LSC
ISP state machine or the boundary-scan TAP controller.
By driving ispEN low, all of the device I/Os are putinto the
high-impedance state, the programming functions for
SDI, SDO, MODE, and SCLK are enabled and the device
enters the programming mode. When ispEN is high, the
TAP controller is active and the functions for TDI, TDO,
TMS, and TCK are enabled. With the TAP controller
active, the device I/Os can also be put into the high-
impedance state by loading and executing the Program
Enable (ProgEN) instruction. To put the devices into the
programming mode, the ProgEN instruction is loaded
and executed three times in succession. When the TAP
controller is active, boundary-scan test operations are
available for the ispLSI 3000 and ispLSI 6000 families of
devices.

The ispLSI 2000LV family of devices is programmed
exclusively through the boundary-scan TAP controller. A
dedicated ispEN pin multiplexes the functionality of the
programming pins. When ispEN is held low, the TAP
controller is active and the functions for TDI, TDO, TMS,
and TCK are enabled. The device enters the program-
ming mode after the Program Enable instructionis loaded
and executed three times in succession. Device I/0s go
to the high-impedance state after the first ProgEN in-
struction is loaded.

Figure 33. Configuration for Programming and Boundary-Scan Operations for ispLSI 3000 Family (Except
3256) and ispLSI 6000 Family Devices on the Same Board with ispLSI 2000LV Family Devices.

TDO

DI ————»

.

Y

ispLSI
6192

ispLSI
3192

ispLSI
2032LV

TCK

T™MS

iSpEN/BSCAN

ispEN

39

1996 ISP Encyclopedia

ISP Architecture and Programming

Figure 34. Daisy Chain Configuration Supporting Programming Through the LSC ISP State Machine and
Boundary-Scan Operations for ispLSI 3256 Devices with Other Boundary-Scan Devices.

SDO/TDO

SDI/TDI ———»

N

ispLSI ispLSI BSCAN BSCAN
3256 3256 Device Device
SCLK/TCK l l l |
MODE/TMS
iSpEN/BSCAN
TRST

If devices that use the same state machine for program-
ming are put in a serial daisy chain, it is possible to
program multiple ISP devices by operating all the state
machines in parallel. This synchronizes all the devices
within the daisy chain to a known state. However, having
all ISP devices in the same state does not mean that all
devices are executing the same instruction. The ability of
each device in the daisy chain to execute a different
instruction makes it possible to selectively program one
or multiple ISP devices at a time.

The internal device layout is the same for all ispLSI
devices regardless of state machine interface used for
programming. The ispLSI devices have separate ad-
dress and data shift commands. The row(s) are selected
by the address that is shifted-in prior to each program-
ming command. The data can then be shifted with the
data shift instruction. With ispGDS and ispGAL devices,
both address and data are shifted-in with a single shift
command (the address is part of the Data shift register).
When executing commands that only require a row
address, a dummy data stream or no data can be shifted
in place of the data stream.

ISP Programming for Mixed LSC ISP and
Boundary-Scan Systems

This section highlights the hardware interface when LSC
ISP devices are mixed with boundary-scan testable de-
vices and boundary-scan TAP ISP programmable devices
on the same board. Following a few simple procedures
below will result in first time success for programming all
ISP devices. Described here are the most typical con-
figurations for system design based on common ISP and
testability goals.

In general, most of the signals from the LSC ISP interface
can be common with corresponding boundary-scan TAP
ISP interface signals. This usually includes some or all
of SDI and TDI, MODE and TMS, SDO and TDO, and
SCLK and TCK. If a parallel programming configuration
is used, where the boundary-scan and non-boundary-
scan devices are in two separate chains both fed by SDI/
TDI and combining SDO/TDO at the end of the chains,
the ispEN and TRST pins can be used to select which
chain is active. On ispLSI devices the ispEN pin can be
used to select the devices for programming, and when
the devices are de-selected the programming pins are in
the high impedance state and will not affect the program-
ming of active devices. Many boundary-scan devices
include the optional TRST pin which holds the TAP
controller in the Test-Logic-Reset state. For boundary-
scandevices held inthe Test-Logic-Reset state, the TDO
pin will be in the high-impedance state and programming
of the non-boundary-scan daisy chain will not be af-
fected. This type of configuration implies that the ISP
programming pins cannot be used for normal mode
functions.

Hardware design considerations for new boards include
whether the hardware designer will be using boundary-
scan test operations or low voltage (3.3V) devices. In a
system using 3.3V ISP devices, the ispDOWNLOAD
cable v2.0should be used. The cable operates with either
a 3.3V or 5V VCC source. Lattice’s Daisy Chain Down-
load software makes the ISP software interface to 3.3V
and mixed-voltage systems transparent to the user.

Boundary-scan devices, such as the ispLSI 3000 and
6000 families, can be put into a boundary-scan serial
daisy chain for test and programming purposes. The
configuration choice for the devices depends on the

40

1996 ISP Encyclopedia

ISP Architecture and Programming

boundary-scan test operations needed, programming
requirements, and device combinations. For both bound-
ary-scan test operations and programming through the
boundary-scan TAP the ispLSI 3000 family (except the
ispLSI 3256) and the ispLSI 6000 family may be putinany
order in a chain of boundary-scan devices. Boundary-
scan test operations are available for the ispLSI 3256
through the boundary-scan TAP but programming is
done through the LSC ISP state machine. Programming
operations are conducted through the boundary-scan
TAP for the ispLSI 2000LV family as well and they may
also be put in any order in a boundary-scan chain of
devices. A sample boundary-scan chain of devices is
shown in Figure 33. In this configuration the ispEN/
BSCAN pin on the ispLSI 3192 and ispLSI 6192 devices
is pulled up to VCC either with the internal active pull-up
or externally hardwired to VCC. The ispEN pin on the
ispLSI 2032LV is driven high for normal operations and
driven low for boundary-scan programming operations.
The ispDOWNLOAD cable connection to the ispEN/
BSCAN pin of the ispLSI 2032LV takes care of this
operation.

The ispLSI 3256 may also be put into a serial daisy chain
with other boundary-scan devices for test operations.
However, since programming of the ispLSI 3256 is done
through the LSC ISP state machine, if in-system pro-
gramming is required, the daisy chain must be altered to
allow LSC ISP state machine operation independent of
the boundary-scan operations.

Figure 34 shows a possible programming configuration
that allows in-system programming of ispLSI 3256 de-

vices in the same daisy chain as other boundary-scan
devices that only use the TAP controller state machine.
This configuration makes use of the optional boundary-
scan pin TRST thatholds the TAP controller state machine
in the Test-Logic-Reset state to split up the chain and
allow LSC ISP state machine operation in the first part of
the chain. When TRST is held low the TDO pin for the
boundary-scan only devices will be in the high-imped-
ance state and the SDO output of the last ispLSI 3256
device in the chain will drive back to the programmer
throughresistor R1. This will allow programming through
the LSC ISP state machine with ispEN/BSCAN held low
for the ispLSI 3256 devices in the chain without affecting
the boundary-scan only devices. When TRST and ispEN/
BSCAN are both high boundary-scan test operations will
be available for the entire chain of devices. In this
configuration other ispLSI1 3000 and ispLSI 6000 devices
can be putin either part of the chain but must have ispEN/
BSCAN tied to VCC if they are in the BSCAN part of the
chain.

If LSC ISP programmable devices such as the ispLSl
1000/E and ispLSI 2000 families will be put on the same
board as boundary-scan devices, parallel daisy chain
loops are required for successful in-system program-
ming and boundary-scan operations. Figure 35 shows a
sample configuration using parallel programming loops.
This programming configuration again makes use of the
TRST pin to hold the boundary-scan devices in the Test-
Logic-Reset state while programming the LSC ISP loop.
For boundary-scan operations the ispEN pin is pulled
high to de-select the LSC ISP programming loop. The

Figure 35. Parallel Programming Loops for Programming Boundary-Scan and LSC ISP Devices on the Same

Board.
TDO/SDO
BSCAN BSCAN Nog—BSCAN Nog—B§CAN
TDI/SDI —&——p— Device > Device Device Device
ispLSI ispLSI
TCK/SCLK J J J

TMS/MODE
ispEN
(optional) TRST

41

1996 ISP Encyclopedia

ISP Architecture and Programming

Table 18. ISP Programming Information

Description ispLSI 1032 ispGAL22V10 ispGDS22 ispLSI 2032
Device ID (8-bits) 0000 0011 0000 1000 0111 0010 0001 0101
Command Register 5 bits 5 bits 5 bits 5 bits
Address Shift Register 108 bits n/a n/a 102 bits
Data/Addr. & Data Shift 160 bits (6+132) bits (6+18) bits 40 bits
Register

advantage of this configuration is being able to use one
connector for both boundary-scan testing procedures
and LSC ISP programming operations.

The boundary-scan test daisy chain can include any
combination of ispLSI 2000LV family, ispLSI 3000 family,
and ispLSI 6000 family devices for boundary-scan test
operations (Figure 35). If boundary-scan test and pro-
gramming operations are required with ispLSI 3256
devices, a combination of this configuration with Figure
34 should be used. For both the configuration in Figure
34 and Figure 35 an alternative to controlling the TRST
pinis to multiplex the MODE/TMS signal to isolate the two
daisy chains.

ISP Daisy Chain Programming

A specific illustration of multiple device programming in a
daisy chained environment is shown in Figure 1. This
following example shows ISP programming aspects such
as identifying the devices in the daisy chain, shifting
commands, bypassing devices, and executing commands
for a simple serial daisy chain.

All of the programming state machines run in parallel
which keeps the devices synchronized. The program-
ming information for the serial daisy chain in Figure 1 is
summarized in Table 18. Similar details for any ISP
device can be found previously in this section and in the
appropriate device data sheet.

The first procedure of the programming sequence iden-
tifiesthe devicesinthe ISP chain. The following procedure
describes one way of reading the device IDs.

Load_ID Procedure
setispEN =L

set MODE, SDI =H, L
clock SCLK (Load ID)

Continue to Shift_ID Procedure ...

At this point, the 8-bit ID registers are loaded with the
hardwired device IDs. Figure 36 shows the configuration
of the ID shift registers.

After the device ID has been loaded, the following shift ID
procedure sequentially shifts the IDs through to the last
device’'s SDO. While the ID is being shifted out, keep SDI
ata known logic level so that the end of the ID stream can
be identified. This is especially important when there are
an unknown number of devices in the ISP daisy chain. By
detecting a sequence of eight zeros or eight ones, the ISP
controller can detect the end of the ID string.

Shift_ID Procedure

... Continued from Load_ID Procedure
set MODE, SDI =L, H

clock SCLK (Shift ID)

if last 8 SDO = H then go to End

else go to Shift_ID

End

Now, all of the devices within the ISP daisy chain and
their order can be properly identified. The next step is to
match the proper JEDEC fuse map file to the appropriate
device. There are several programming options at this
point. To simplify the programming routines however,
this example programs the devices one at a time. In
programming time critical applications, the daisy chained
devices can be programmed in parallel. The parallel
programming routines must keep track of the differences
in the fuse map lengths between different ISP devices.

The following procedures illustrate how to shift com-
mands, shift data, and execute commands to program
theispGAL22V10. Since the ispGAL22V10 is the second
device in the ISP daisy chain, these procedures also
illustrate how to put the other devices into flow-through
mode. The following procedure shifts the SHIFT_DATA

42

1996 ISP Encyclopedia

ISP Architecture and Programming

command into the ispGAL22V10 and the FLOWTHRU
command into the rest of the ISP devices.

Load_Command Procedure

... Continued from end of Shift_ID Procedure
set MODE, SDI =H, H

clock SCLK (Shift State)

set MODE =L

Loop

set SDI = command stream (Figure 36b)
clock SCLK (Shift Command)

End Loop

End Procedure

Execute_Command Procedure

set MODE, SDI =H, H

Figure 36a. ID Shift Register Configuration

clock SCLK (Execute State)

set MODE =L

Loop 138 times

set SDI = data stream (Figure 36c¢)

clock SCLK (Execute SHIFT_DATA Command)
End Loop

set MODE, SDI =H, H

clock SCLK (Shift State)

End Procedure

At the end of the Execute_Command procedure, the
state machine is returned to the Shift State. This readies
the devices for another command shift procedure. For
the ispGAL22V10, the DATA_SHIFT instruction of 138
bits includes the row address and the data associated
with the row. Similar procedures can be usedto complete
the programming of the ispGAL22V10.

ispLSI 1032 iSpGAL22V10 ispGDS22 ispLSI 2032
SDI —»{ 0000 | 0011 » 0000 | 1000 » 0111 | 0010 » 0001 | 0101 ——» SDO
Figure 36b. ISP Command Stream
ispLSI 1032 ispGAL22V10 ispGDS22 ispLSI 2032
FLOWTHRU | SHIFT_DATA | FLOWTHRU | FLOWTHRU
SDI—> " “(01110) >~ (00010) > (01110) > (01110) > SDO
Figure 36¢. ISP Data Stream
ispLSI 1032 ispGAL22V10 ispGDS22 ispLSI 2032
SDI —» 0 Bit SR » 138 Bit SR » 0 Bit SR » 0 Bit SR — SDO

43

1996 ISP Encyclopedia

Lattice

Semiconductor
Corporation

Copyright © 1996 Lattice Semiconductor Corporation.

E2CMOS, GAL, ispGAL, ispLSl, pLSI, pDS, Silicon Forest, UltraMOS, Lattice Logo, L with Lattice Semiconductor Corp. and L
(Stylized) are registered trademarks of Lattice Semiconductor Corporation (LSC). The LSC Logo, Generic Array Logic, In-
System Programmability, In-System Programmable, ISP, ispATE, ispCODE, ispDOWNLOAD, ispGDS, ispStarter,
iISpSTREAM, ispTEST, ispTURBO, Latch-Lock, pDS+, RFT, Total ISP and Twin GLB are trademarks of Lattice Semiconductor
Corporation. ISP is a service mark of Lattice Semiconductor Corporation. All brand names or product names mentioned are
trademarks or registered trademarks of their respective holders.

Lattice Semiconductor Corporation (LSC) products are made under one or more of the following U.S. and international
patents: 4,761,768 US, 4,766,569 US, 4,833,646 US, 4,852,044 US, 4,855,954 US, 4,879,688 US, 4,887,239 US, 4,896,296
Us, 5,130,574 US, 5,138,198 US, 5,162,679 US, 5,191,243 US, 5,204,556 US, 5,231,315 US, 5,231,316 US, 5,237,218 US,
5,245,226 US, 5,251,169 US, 5,272,666 US, 5,281,906 US, 5,295,095 US, 5,329,179 US, 5,331,590 US, 5,336,951 US,
5,353,246 US, 5,357,156 US, 5,359,573 US, 5,394,033 US, 5,394,037 US, 5,404,055 US, 5,418,390 US, 5,493,205 US,
0194091 EP, 0196771B1 EP, 0267271 EP, 0196771 UK, 0194091 GB, 0196771 WG, P3686070.0-08 WG. LSC does not
represent that products described herein are free from patent infringement or from any third-party right.

The specifications and information herein are subject to change without notice. Lattice Semiconductor Corporation (LSC)
reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors
contained herein or to advise any user of this document of any correction if such be made. LSC recommends its customers
obtain the latest version of the relevant information to establish, before ordering, that the information being relied upon is
current.

LSC warrants performance of its products to current and applicable specifications in accordance with LSC’s standard
warranty. Testing and other quality control procedures are performed to the extent LSC deems necessary. Specific testing of
all parameters of each product is not necessarily performed, unless mandated by government requirements.

LSC assumes no liability for applications assistance, customer’s product design, software performance, or infringements of
patents or services arising from the use of the products and services described herein.

LSC products are not authorized for use in life-support applications, devices or systems. Inclusion of LSC products in such
applications is prohibited.

LATTICE SEMICONDUCTOR CORPORATION

5555 Northeast Moore Court

Hillsboro, Oregon 97124 U.S.A.

Tel.: (503) 681-0118

FAX: (503) 681-3037

http://www.latticesemi.com November 1996

	Main Directory
	Introduction
	In-System Programming (ISP) Interface
	LSC ISP State Machine
	TAP Controller State Machine
	ISP Device Programming Configurations
	Hardware Considerations
	Hardware Programming Tools
	ISP Programming Software
	ISP Programming Times
	User-Programmable ID Registers
	ispLSI Programming Detials
	Boundary Scan (ispLSI 3000 & 6000 Families)
	ispGDS Programming Detials
	ispGAL Programming Detials
	ISP Daisy Chain Details

