
1

Features

• C-LANGUAGE SOURCE CODE FOR IN-SYSTEM
PROGRAMMING OF THE ispLSI ®, ispGAL ® and
ispGDS™ FAMILIES
— Simplifies In-System Programming
— Pre-Defined Routines for Common Programming

Functions
— Extensively Commented Code Provides Complete

Reference
— Easy Modification Saves Valuable Time
— Supports Programming of Multiple ispLSI Devices on

Individual Boards

 • ACCEPTS PROGRAMMING FILES FROM pLSI ® AND
ispLSI ® DEVELOPMENT SYSTEM
— Supports pDS ® and pDS+™ Software
— Supports ispLSI 1000/E, 2000, 3000 and 6000 Families

 • PORTABLE TO ANY HARDWARE PLATFORM
— Adaptable to Any Hardware Interface
— UNIX Systems, PCs, Testers, Embedded Systems
— ANSI-Standard C for Portability

 • GENERATES ispSTREAM™ FORMAT FOR GREATER
EFFICIENCY
— Bit-packed File Format for Storing JEDEC Fuse Map
— Requires Less Than 1/8 the Storage Space of a

Standard JEDEC File
— Ideal for Use in Embedded Systems
— Includes Checksum To Assure Data Integrity

 • USER ELECTRONIC SIGNATURE (UES) SUPPORTED
— Provides Data Storage Area In Device
— Facilitates User Identification of Program for Secured

Devices
— Automatic Counter Records Number of Programming

Cycles

Introduction

The ispCODE software from Lattice Semiconductor Cor-
poration (LSC) is designed to facilitate in-system
programming of ISP devices on customer-specific hard-
ware platforms. The ispCODE works with Lattice
Semiconductor’s pDS and pDS+ software to give users
a powerful, fully integrated tool kit for developing logic
designs and programming ISP devices “on-the-fly.”

After completion of the logic design and creation of a
JEDEC file by the pDS or pDS+ software (see figure 1),

in-system programming can be accomplished on cus-
tomer-specific hardware: UNIX systems, PCs, testers,
embedded systems (see figure 2). The ispCODE soft-
ware package supplies specific routines, with extensively
commented code, for incorporation into user application
programs. These routines provide users with flexible,
easy-to-use program modules which support the pro-
gramming of a single device or multiple devices on a
board.

ispCODE Software

The ispCODE software consists of source files contain-
ing routines for performing all the functions needed to
control the programming of Lattice Semiconductor in-
system programmable devices. These routines are
provided as fully-commented source code for easy inclu-
sion with any software written in the industry-standard C
language. These source code routines were designed
from the ground up to be easily portable to any system
that has an ANSI-standard C compiler. The majority of
the code is completely independent of the hardware
platform and rarely requires modification. All hardware
dependent portions of the code are related to how the
output ports are driven. The code supports the program-
ming of multiple ISP devices in a daisy chain configuration.

A compiled version of the ispCODE is provided to dem-
onstrate how to use the ispCODE ‘C’ source routines.
The compiled code, TURBO.EXE, programs the device(s)
through the PC parallel port. By making small changes to
the hardware-specific source file and recompiling the ‘C’
routine, a command utility like TURBO.EXE can be
created. Furthermore, the ‘C’ routines on the .EXE file
can be integrated into user interface routines which can
be customized for the end application.

The example program and the hardware-specific code
are written to run on IBM PC or compatible microcomput-
ers. The example program uses the standard PC parallel
printer port to provide the interface to the device's in-
system programming pins (see figure 3). The pinout is
compatible with the isp Engineering Kit Model 100.

ispCODE Software
Source Code for In-System Programming

of the ispLSI ®, ispGAL ® and ispGDS™ Families

Copyright © 1996 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject
to change without notice.

LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. 1996 Data Book
Tel. (503) 681-0118; 1-800-LATTICE; FAX (503) 681-3037; http://www.latticesemi.com

 TM

ispcode_01

ispCODE Software

2 1996 Data Book

Customizing ispCODE

ispCODE is intended to help customize the ISP program-
ming process if the standard Lattice Semiconductor
IBM-PC compatible software is unable to meet specific
application needs. Some examples of non-standard needs
are:

• Using a platform other than the parallel port of an
IBM-PC

• Using a customized user interface

• Using the UES feature of ISP devices for board
serialization (adding serial numbers to the UES,
uniquely identifying the board).

If programming using the standard PC parallel port,
Lattice Semiconductor recommends the use of either the
Windows or DOS based download software. ISP Daisy
Chain Download is provided with all new pDS and pDS+
shipments and software updates.

The files that follow are available as part of the ispCODE
set:

DOS File Name Descriptions

dld2isp.exe Converts JEDEC files to
ispSTREAM format

express.exe Command line programming utility

ispcode.c C source code

lattice.h Header file for use in ispcode.c

readme.txt A text file with information updated
since this manual

turbo.exe Compiled ispcode.c

Design Flow Using ispCODE

ispCODE reads the Lattice Semiconductor Bitstream file
(ispSTREAM™) format instead of directly using JEDEC
files. dld2isp.exe accepts a DLD file and converts the
JEDEC files listed in the DLD file to a single Bitstream file.
The DLD file is the file that defines the device ordering,
device type, and JEDEC files for a daisy chain configura-
tion of ISP devices. The Bitstream file should be created
on a PC and transferred to the ISP device programming
platform.

Figure 1. Using the ispCODE Software

JEDEC

File

Design Entry

Logic Fitting

Simulation

Design Entry

Logic Fitting

pDS

pDS+

Third Party

CAE Tools

Design Entry

Low Density

Logic Compiler

DCDtoISP ispSTREAM

ispCODE User Code

(Menus, etc.)

End-User

Application

Compile for

Specific Hardware

System

Programming

Signals

4 or 5

.DLD

ispCODE Software

3 1996 Data Book

System

Microprocessor

(executes ispCODE)

I/O

Port

5

5-Pin Programming

Interface

ispLSI

Device

ispCODE

ispSTREAM

Patterns

System

Code

Other System

Circuitry

Figure 3. Configuring an ispLSI Device from a Remote System

Parallel Port

Connection

5
ispLSI

Device

Other

System

Circuitry

ispLSI

Control

Software

End-Product P.C. Board

Figure 2. Configuring an ispLSI Device from an On-board Microprocessor

ispCODE Software

4 1996 Data Book

If performing ISP programming debugging, Lattice Semi-
conductor recommends the use of the evaluation/design
download option of the Windows or DOS based down-
load software. If a command line version is needed, then
express.exe supports all the same operations as the
evaluation/design download of the Windows or DOS
based download.

The DLD file format is the Lattice Semiconductor stan-
dard approach to defining the configuration of a daisy
chain. The format of the file is straightforward: each line
contains the device type, followed by an operation code,
followed by a JEDEC file name. An example is shown
below:

GDS22 PV GDS22.jed
1016 PV 1016.jed
22V10 PV 22v10.jed
1032 PV 1032.jed

The previous DLD file is illustrated in Figure 4.

This file can be created manually with an ASCII text
editor, or automatically with Lattice Semiconductor down-
load software. The following rules apply when creating
the DLD file:

1. The lines in the DLD file correspond to the position
of the device in the chain with the first device (the
device whose SDI is connected to the hardware
programming port) corresponding to the first line in
the file.

2. The maximum number of devices supported in a
daisy chain is currently set to 60 in all Lattice
Semiconductor download tools.

3. Only the following set of operations can be used in
the DLD file when using dld2isp.exe to generate the
ispSTREAM file (.isp file) for ispCODE V3.02.

Operation Description

PV Program and verify

PU Program and verify with UES data from
sources other than the JEDEC files

V Verify only

NOP No operation, by-pass device

4. The valid device names are currently:

GDS14 1024 2032

GDS18 1032 2064

GDS22 1032E 2096

22V10 1048 2128

1016 1048C 3256

1016E 1048E

To generate the ispSTREAM file, at the DOS prompt
type: dld2isp design_name.dld.

The ispSTREAM file generated will be design_name.isp.

If the daisy chain is too large, dld2isp.exe displays the
message “Not Enough PC Memory”. Lattice Semicon-
ductor can supply, upon request, a dld2isp.exe that uses
extended memory or it is possible to use a multiple DLD
strategy. The multiple DLD approach requires breaking
the programming operation into two or more Bitstream
files, and programming different sets of devices with
each Bitstream file. Using the NOP code to skip devices
is the easiest way. If two Bitstream files are needed, then
create two DLD files. In the first DLD file, insert NOP’s for
the first set of devices in the original DLD file and in the
second DLD file, insert NOP’s for the second set of
devices. The first Bitstream file will only program the

Figure 4. ISP Daisy Chain

ispLSI

1032

ispLSI

1016

ispGDS

22

SDOSDI ispGAL

22V10

ispCODE Software

5 1996 Data Book

second set of devices (since the first set is NOP), and the
second Bitstream file will only program the first set of
devices.

The “PU” operation is available only from ispCODE
version 3.01 or later. This operation allows customization
of the powerful UES feature of ispLSI devices for specific
applications and manufacturing flows. This field causes
ispCODE to save the UES information in char *ues , a
string that contains all the device UES information. The
following shows the procedure to customize the UES:

1. Use the PU code in the DLD file for each device that
will have its UES changed

2. Modify the program_ues routine to modify the UES
with the desired value.

The char *ues contains the UES string that was read
from the devices prior to their erasure. The UES will be
written back out to the devices during the program_ues
routine. If changes to the UES are desired, then change
it at a point in the code prior to the printf statement in the
first few lines of that routine.

Using the UES

The UES is a user-defined section of bits in the Lattice
Semiconductor device that can store any sort of informa-
tion, such as a board serial number or device version
number. The UES is normally part of the device JEDEC
file. Although the JEDEC file is an ASCII text file that can
be edited with a text editor, Lattice Semiconductor rec-
ommends the use of the UES editor in the Lattice
Semiconductor Windows or DOS based download soft-
ware. Using the download software to edit the JEDEC file
insures that any necessary corrections to the pattern and
transmission checksums will be made (the UES of the
ispGDS devices and ispGAL devices is included in the
pattern checksum calculation, but not for ispLSI devices).

There are considerations when manually adding the
checksum. The JEDEC standard allows UES data to be
entered in ASCII, HEX, and binary formats and inserted
directly after the pattern checksum. A text editor can be
used to edit the JEDEC files directly. Please note that
while the pattern checksum is not affected, the transmis-
sion checksum will be incorrect. The transmission
checksum should be changed to 0000 to comply with
JEDEC standard. For example:

• UES in ASCII Format:
CXXXX*
UA UES IN ASCII*
<etx>0000

•UES in HEX Format:
CXXXX*
UH01234567890ABCDEF*
<etx>0000

•UES in Binary Format:
CXXXX*
U010100010*
<etx>0000

• This is a JEDEC compatible fuse file:
<stx>
DESIGN NAME:GAL61-3.lif
PART NAME :ispLSI1048-70LQ
CREATED BY :PDS+ FUSEGEN Version 2.2
CREATED DATE:Wed Dec 22 14:23:20 1995
*QP120
*QF57600
*G0
*F0
*L00000
11......
........
11......
*CD079
uaA_MSG <- Insert the U field here.
<etx>0000

Command Line Programming Utility

express.exe is a DOS command line utility that allows
sequential daisy chain programming of devices. It does
not support parallel programming. A standard DLD file
must be created before running express.exe. Proper
usage with all the available switches for express.exe can
be seen by running it from the DOS prompt. The basic
usage is:

express [drive:][path] dld_filename

The operations supported by express.exe are:

Operation Description
PV Program and verify
V Verify only
NOP No operation, by-pass device
C Calculate the pattern checksum of

the device
E Erase the device only
RS Read the pattern and UES from the

device and save it in a JEDEC file.

ispCODE Software

6 1996 Data Book

ispCODE Source Code

Version 3 of ispCODE is set of C routines to read a
Bitstream file and program a chain of ISP devices simul-
taneously. Since all the complex work is done by
dld2isp.exe when the Bitstream file is created, the result-
ing ispCODE is relatively simple. Most of the code is a
state machine which parses the Bitstream file. This state
machine portion should not be modified. The only por-
tions of ispCODE that can be modified safely are the
routine to read and write from the parallel port and the
routine to implement timing.

ispCODE uses the standard routines inp and outp to
read from and write to the port. To redirect the I/O to a
different address, create routines similar to the inp and
outp routines, then link them to ispCODE. One way to do
this is to make a global search and replace of “inp” and
“outp” with the new I/O routine names. By renaming “inp”
and “outp” to these new names, all I/O will be redirected
through the new functions.

If modifying the timing routine, it is critical to meet the
minimum pulse requirements specified for the different
ISP devices. ispCODE calls a single routine, pulse_width ,
whenever a delay needs to be made. This routine is
passed an argument that indicates the number of milli-
seconds to wait. Modification may be needed for this to
work in a non-PC environment. It is important that the
modified version of pulse_width guarantees that the
wait period is at least as long as the argument specified.
It is not critical if the pulse width is exceeded by a few
hundred milliseconds. A lot of the calibration procedures
the routine runs through is used to compensate for the
problems that occur when running as a DOS window from
Windows. If not running as a DOS window is, it may be
possible to simplify the timing procedures. Of course, it is
critical to insure that the minimum pulse width times are
met, regardless of the method used. If minimum pulse
widths are not met, device programming may not be
reliable. Note that none of these routines guarantee that
a pulse width will not be exceeded. If running as a DOS
window or Windows application, the routine can be
interrupted by another task, and the pulse time may be
larger than specified.

The Borland compiler supplies a DOS routine called
delay that is accurate to within 1 ms. The pulse_width
code can instead be replaced with a call to delay PRO-
VIDING that the application is never run as a DOS
window. Lattice Semiconductor has measured the delay
function and proven it does not work reliably when used
in an application that is running as a DOS window. It is

possible to put a check in one’s code to help insure it is
not run as a DOS window. When running as a DOS
window under Windows 3.1, the environmental variable
“windir” is set (as lowercase) by Windows. Therefore, by
using getenv(“windir”) to see if the code is running as a
DOS window, it is possible to insure that delay is not used
in that case.

If running only under the Windows environment, Win-
dows 3.1 provides the multimedia services to give high
resolution timing under Windows. If compiling as a Win-
dows application, then include the “mmsystem.h” header
file, and implement a delay function like this:

start_time=time(NULL);
// get starting time in seconds

timeBeginPeriod(1);
// set to one millisecond

current_time=timeGetTime();
// get the current value
 while((timeGetTime()-

current_time)<delay_time){NULL;
// hog cpu time until finished}

timeEndPeriod(1);
// free up this timer

A somewhat more complicated way of controlling timing
when running as a DOS window is to use the Virtual Timer
Devices(VTD) services available from Windows. Note
that this procedure will not work when running strictly as
a DOS application. Again, one can use the getenv(“windir”)
approach explained above to see if the program is
running as a DOS or DOS window application. A 32-bit
time count, incremented every millisecond, is available
from the VTD services by using an assembly routine like
the following:

.MODEL large
 .DATA
vtd_addr DD 0
 .CODE
 .386
 PUBLIC _read_timer_doswin

_read_timer_doswin PROC

;
; this routine avoids the problems with
Windows virtualizing
; the timer ports. Instead, this routine
uses the VTD to get a 32
; timer value.
;

ispCODE Software

7 1996 Data Book

 mov ax, 1684h ;
get VTD address
 mov bx, 5h
 int 2fh
 mov word ptr [vtd_addr],di ;
save the address
 mov word ptr [vtd_addr+2],es
 mov ax, 0101h ;
get current system
 ;
time in ms
 call DWORD PTR [vtd_addr]

 ;
 ; return the values in eax in dx,
ax
 ;

 mov edx, eax
 shr edx, 16 ;
return 32 bit time count
 ret

_read_timer_doswin ENDP
 END

An example C program that uses this routine is shown
below:

#include <stdio.h>
#include <dos.h>
void delay(unsigned int);
extern “C” unsigned long int
read_timer_doswin(void);

// use extern to prevent name mangling,
if C++ compiler used

main (){
int i;

// generate an 80ms square wave on the
parallel port

 for(i=0;i<=1000;i++){
 outportb(0x378,0xff);
 delay(80);
 outportb(0x378,0x00);
 delay(80);
 }
}

void delay(unsigned int wait_ms){
unsigned long int start,stop;
 start=read_timer_doswin();
 printf(“%lu\n”,start);
 while (read_timer_doswin()-start <
wait_ms){
 NULL;
 }
}

Devices Supported

The ispCODE library of routines will support all LSC in-
system programmable devices. As new devices are
developed and released, the ispCODE library will be
updated to include them.

Hardware Requirements

The ispCODE routines are designed to be portable to any
hardware platform with an ANSI C compiler available.
The code is written such that accessing the pins of the
Lattice device is done by writing to a memory or I/O port
address.

In addition to driving the pins, a method of controlling
timing in the millisecond range is required. The best
approach for this is a hardware-based method, such as
a timer chip that can be read. Most micro controllers have
a timer built in, and most other systems have some way
of keeping time that may be used. The ispCODE source
files include an example of reading the timer chip on a PC
to accurately time the programming pulses.

ispCODE Ordering Information

A copy of the ispCODE is included with all LSC Fitter
purchases.

Technical Support Assistance

Hotline: 1-800-LATTICE (Domestic)
1-408-428-6414 (International)

BBS: 1-408-428-6417
FAX: 1-408-944-8450

email: apps@latticesemi.com

Copyright © 1996 Lattice Semiconductor Corporation.

E2CMOS, GAL, ispGAL, ispLSI, pLSI, pDS, Silicon Forest, UltraMOS, Lattice Logo, L with Lattice Semiconductor Corp. and L
(Stylized) are registered trademarks of Lattice Semiconductor Corporation (LSC). The LSC Logo, Generic Array Logic, In-
System Programmability, In-System Programmable, ISP, ispATE, ispCODE, ispDOWNLOAD, ispGDS, ispStarter,
ispSTREAM, ispTEST, ispTURBO, Latch-Lock, pDS+, RFT, Total ISP and Twin GLB are trademarks of Lattice Semiconductor
Corporation. ISP is a service mark of Lattice Semiconductor Corporation. All brand names or product names mentioned are
trademarks or registered trademarks of their respective holders.

Lattice Semiconductor Corporation (LSC) products are made under one or more of the following U.S. and international
patents: 4,761,768 US, 4,766,569 US, 4,833,646 US, 4,852,044 US, 4,855,954 US, 4,879,688 US, 4,887,239 US, 4,896,296
US, 5,130,574 US, 5,138,198 US, 5,162,679 US, 5,191,243 US, 5,204,556 US, 5,231,315 US, 5,231,316 US, 5,237,218 US,
5,245,226 US, 5,251,169 US, 5,272,666 US, 5,281,906 US, 5,295,095 US, 5,329,179 US, 5,331,590 US, 5,336,951 US,
5,353,246 US, 5,357,156 US, 5,359,573 US, 5,394,033 US, 5,394,037 US, 5,404,055 US, 5,418,390 US, 5,493,205 US,
0194091 EP, 0196771B1 EP, 0267271 EP, 0196771 UK, 0194091 GB, 0196771 WG, P3686070.0-08 WG. LSC does not
represent that products described herein are free from patent infringement or from any third-party right.

The specifications and information herein are subject to change without notice. Lattice Semiconductor Corporation (LSC)
reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors
contained herein or to advise any user of this document of any correction if such be made. LSC recommends its customers
obtain the latest version of the relevant information to establish, before ordering, that the information being relied upon is
current.

LSC warrants performance of its products to current and applicable specifications in accordance with LSC’s standard
warranty. Testing and other quality control procedures are performed to the extent LSC deems necessary. Specific testing of
all parameters of each product is not necessarily performed, unless mandated by government requirements.

LSC assumes no liability for applications assistance, customer’s product design, software performance, or infringements of
patents or services arising from the use of the products and services described herein.

LSC products are not authorized for use in life-support applications, devices or systems. Inclusion of LSC products in such
applications is prohibited.

LATTICE SEMICONDUCTOR CORPORATION
5555 Northeast Moore Court
Hillsboro, Oregon 97124 U.S.A.
Tel.: (503) 681-0118
FAX: (503) 681-3037
http://www.latticesemi.com November 1996

	Main Directory

