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CHAPTER 1
INTRODUCTION

The 1960® Jx microprocessor provides a new set of essential enhancements for an emerging class
of high-performance embedded applications. Based on the i960 core-architecture, it is
implemented in a proven 0.8 micron, three-layer metal process. Figure 1-1 identifies the
processor’s most notable features, each of which is described in subsections that follow the figure.
These features include:

e instruction cache
e on-chip data RAM

e timer units

e . data cache

¢ local register cache

* memory-mapped control registers

¢ bus controller unit

* interrupt controller

external bus
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1.1 PRODUCT FEATURES

The 1960 Jx processor brings many improvements to the existing i960 microprocessor family.
Enhancements include:

* Improvements to the core architecture

»  Low power mode ‘

+  New instructions

e Improved cache design

*  Enhanced bus control unit

¢ Improved interrupt performance

+  JTAG testability

1.1.1 Instruction Cache

The 1960 JF and JD processors employ a 4-Kbyte, two-way set associative instruction cache.
1960 JA processors feature a 2-Kbyte instruction cache. A mechanism is provided that allows
software to lock critical code within each “way” of the cache. The cache can be disabled and is
managed by use of the icetl and sysctl instructions, as described in section 4.4, “INSTRUCTION
CACHE” (pg. 4-4).

1.1.2 Data Cache

The 1960 JF and JD processors feature a 2-Kbyte, direct-mapped data cache that is write-through
and write-allocate. i960 JA processors feature a 1-Kbyte data cache. These processors have a line
size of four words and implement a “natural” fill policy. Each line in the cache has a valid bit; to
reduce fetch latency on cache misses, each word within a line also has a valid bit. See section 4.5,
“DATA CACHE” (pg. 4-6) for details. ~

The data cache is managed through the dectl instruction; see section 6.2.23, “dcctl (80960Jx-
Specific Instruction)” (pg. 6-41).

1.1.3 On-chip (internal) Data RAM

The processor’s 1 Kbyte internal data RAM is accessible to software with an access time of
1 cycle per word. This RAM is mapped to the physical address range of O to 3FFH. The first
64 bytes are reserved for the caching of dedicated-mode interrupt vectors; this reduces interrupt
latency for these interrupts. In addition, write-proteciion for the first 64 bytes is provided to guard
against the effects of using null pointers in ‘C’ and to protect the cached interrupt vectors.
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New versions of 1960 processor compilers can take advantage of the internal data RAM; profiling
compilers can allocate the most frequently used variables into this RAM. See Section 4.1,
INTERNAL DATA RAM (pg. 4-1) for more detail.

114 Local Register Cache

The processor provides fast storage of local registers for call and return operations by using an
internal local register cache. This cache can store up to eight local register sets; additional register
sets must be saved in external memory.

The processor uses a 128-bit wide bus to store local register sets quickly to the register cache. To
reduce interrupt latency for high-priority interrupts, the number of sets that can be used by code
that is running at a lower priority or that is not interrupted can be restricted by programming the
register configuration word in the PRCB. This ensures that there are always sets available for high-
priority interrupt code without needing to save sets in external memory first. See Section 4.2,
LOCAL REGISTER CACHE (pg. 4-2) for more details.

1.1.5 Interrupt Controller

The interrupt controller unit (ICU) provides a flexible, low-latency means for requesting interrupts.
It handles the posting of interrupts requested by hardware and software sources. Acting indepen-
dently from the core, the interrupt controller compares the priorities of posted interrupts with the
current process priority, off-loading this task from the core. The interrupt controller is compatible
with 1960 CA/CF processors.

The interrupt controller provides the following features for handling hardware-requested
interrupts: '
e Support of up to 240 external sources.

»  Eight external interrupt pins, one non-maskable interrupt (NMI) pin, and two internal timer
sources for detection of hardware-requested interrupts.

*  Edge or level detection on external interrupt pins.

¢ Debounce option on external interrupt pins.

The application program interfaces to the interrtipt controller with six memory-mapped control
registers. The interrupt control register (ICON) and interrupt map control registers (IMAPO-
IMAP?2) provide configuration information. The interrupt pending (IPND) register posts hardware-

requested interrupts. The interrupt mask (IMSK) register selectively masks hardware-requested
interrupts.

The interrupt inputs can be configured to be triggered on level-low or falling-edge signals.
Sampling of the input pins can be either debounced sampling or fast sampling.
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The 1960 Jx processor has approximately 5 to 10 times faster interrupt servicing than the 1960 Kx
processor. This is accomplished through a number of features:

*  ahardware priority resolver removes the need to access the external interrupt table to resolve
interrupts

¢ caching of dedicated-mode interrupt vectors in the internal data RAM

» reserving frames in the local register cache for high-priority interrupts

« the ability to lock the code of interrupt service routines in the instruction-cache reduces the
fetch latency for starting up these routines

Chapter 13, INTERRUPT CONTROLLER discusses this in more detail.

1.1.6 Timer Support

The 1960 Jx processor provides two identical 32-bit timers. Access to the timers is through
memory-mapped registers. The timers have a single-shot mode and auto-reload capabilities for
continuous operation. Each timer has an independent interrupt request to the i960 Jx processor
interrupt controller. See Chapter 14, TIMERS for a complete description.

1.1.7 ' Memory-Mapped Control Registers

Control registers in the 960 Jx processor are memory-mapped to allow for visibility to application
software. This includes registers for memory configuration, internally cached PRCB data,
breakpoint registers, and interrupt control. These registers are mapped to the architecturally
reserved address space range of FFO0 0000H to FFFF FFFFH. The processor ensures that accesses
generate no external bus cycles.

Section 3.3, MEMORY-MAPPED CONTROL REGISTERS (pg. 3-5) discusses this in more
detail. ' ‘

1.1.8 External Bus

The 32-bit multiplexed external bus connects the i960 Jx processor to memory and I/O. This high
bandwidth bus provides burst transfer capability allowing up to four successive 32-bit data word
transfers at a maximum rate of one word every clock cycle. In addition to the bus signals, the 960
Jx processor provides signals to allow external bus masters. Lastly, the processor provides variable
bus-width support (8-, 16-, and 32-bit).
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1.1.9 Complete Fault Handling and Debug Capabilities

To aid in program development, the 1960 Jx processor detects faults (exceptions). When a fault is
detected, the processors make an implicit call to a fault handling routine. Information collected for
each fault allows a program developer to quickly correct faulting code. The processors also allow
automatic recovery from most faults.

To support system debug, the 1960 architecture provides a mechanism for monitoring processor
activities through a software tracing facility. This processor can be configured to detect as many as
seven different trace events, including breakpoints, branches, calls, supervisor calls, returns,
prereturns and the execution of each instruction (for single-stepping through a program). The
processors also provide four breakpoint registers that allow break decisions to be made based upon
instruction or data addresses.

1.2 ABOUT THIS MANUAL

This i960% Jx Microprocessor User’s Manual provides detailed programming and hardware design
information for the i960 Jx microprocessors. It is written for programmers and hardware designers
who understand the basic operating principles of microprocessors and their systems.

This manual does not provide electrical specifications such as DC and AC parametrics, operating
conditions and packaging specifications. Such information is found in the 80960JA/JF Embedded
32-bit Microprocessor Data Sheet (order number 272504) and the 80960JD Embedded 32-bit
Microprocessor Data Sheet (order number 272596).

For information on other i960 processor family products or the architecture in general, refer to
Intel's Solutions960® catalog (order number 270791). It lists all current i960 microprocessor
family-related documents, support components, boards, software development tools, debug tools
and more. ’

This manual is organized in three parts; each part comprises multiple chapters and/or appendices.
The following briefly describes each part:

e Part I - Programming the i960 Jx Microprocessor (chapters 2-10) details the programming

- environment for the 1960 Jx devices. Described here are the processor's registers, instruction

set, data types, addressing modes, interrupt mechanism, external interrupt interface and fault
mechanism.

e Part Il - System Implementation (chapters 11-17) identifies requirements for designing a
system around the 1960 Jx components, such as external bus interface and interrupt controller.
Also described are programming requirements for the bus controller and processor initial-
ization.
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»  Part IIl - Appendices includes quick references for hardware design and programming.
Appendices are also provided which describe the internal architecture, how to write
assembly-level code to exploit the parallelism of the processor and considerations for writing
software that is portable among all members of the 1960 microprocessor family.

1.3 NOTATION AND TERMINOLOGY

This section defines terminology and textual conventions that are used throughout the manual.

1.3.1 'Reserved and Preserved

Certain fields in registers and data structures are described as being either reserved or preserved:

e Areserved field is one that may be used by other i960 architecture implementations. Correct
treatment of reserved fields ensures software compatibility with other 1960 processors. The
processor uses these fields for temporary storage; as a result the fields sometimes contain
unusual values. -

¢ A preserved field is one that the procé,ssor does not use. Software may use preserved fields for
any function.

Reserved fields in certain data structures should be set to 0 (zero) when the data structure is
created. Set reserved fields to 0 when creating the Interrupt Table, Fault Table and System
Procedure Table. Software should not modify or rely on these reserved field values after a data
structure is created. When the processor creates the Interrupt or Fault Record data structure on the
stack, software should not depend on the value of the reserved fields within these data structures.

Some bits or fields in data structures and registers are shown as requiring specific encoding. These
fields should be treated as if they were reserved fields. They should be set to the specified value
when the data structure is created or when the register is initialized and software should not
modify or rely on the value after that.

Reserved bits in the Arithmetic Controls (AC) register can be set to O after initialization to ensure
compatibility with other 1960 processor implementations. Reserved bits in the Process Controls
(PC) register and Trace Controls (TC) register should not be initialized. When the AC, PC and TC
registers are modified using modac, modpc or modtc instructions, the reserved locations in these
registers must be masked.

Certain areas of memory may be referred to as reserved memory in this reference manual.
Reserved — when referring to memory locations — implies that an implementation of the i960
architecture may use this memory for some special purpose. For example, memory-mapped
peripherals might be located in reserved memory areas on future implementations.
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1.3.2 Specifying Bit and Signal Values

The terms set and clear in this manual refer to bit values in register and data structures. If a bit is
set, its value is 1; if the bit is clear, its value is 0. Likewise, setting a bit means giving it a value of
1 and clearing a bit means giving it a value of 0.

The terms assert and deassert refer to the logically active or inactive value of a signal or bit,
respectively. A signal is specified as an active 0 signal by an overbar. For example, the input is
active low and is asserted by driving the signal to a logic 0 value.

1.3.3 Representing Numbers

All numbers in this manual can be assumed to be base 10 unless designated otherwise. In text,
binary numbers are sometimes designated with a subscript 2 (for example, 001,). If it is obvious
from the context that a number is a binary number, the “2” subscript may be omitted.

Hexadecimal numbers are designated in text with the suffix H (for example, FFFF FF5AH). In
pseudo-code action statements in the instruction reference section and occasionally in text,
hexadecimal numbers are represented by adding the C-language convention “Ox” as a prefix. For
example “FF7AH” appears as “OxFF7A” in the pseudo-code.

134 Register Names

Memory-mapped registers and several of the global and local registers are referred to by their
generic register names, as well as descriptive names which describe their function. The global
register numbers are g0 through gl5; local register numbers are rQ through r15. However, when
programming the registers in user-generated code, make sure to use the instruction operand. 1960
microprocessor compilers recognize only the instruction operands listed in Table 1-1. Throughout
this manual, the registers’ descriptive names, numbers, operands and acronyms are used inter-
changeably, as dictated by context.

Table 1-1. Register Terminology Conventions

Register Descriptive Name Register Number Ilgél:t;t'i‘zn Acronym
Global Registers g0-gi15 g0-gl4
Frame Pointer gi5 fp FP
Local Registers r0 - r15 r3-r15
Previous Frame Pointer r0 pfp PFP
Stack Pointer r sp SP
Return Instruction Pointer r2 rip RIP
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Groups of bits and single bits in registers and control words are called either bits, flags or fields.
These terms have a distinct meaning in this manual

bit Controls a processor functlon programmed by the user.

flag Indicates status. Generally set by the processor; certain flags are user program-
o mable

field ' A grouping of bits (bit field) or ﬂags (flag field).

Specific bits, flags and fields in registers and control words are usually referred to by a register
abbreviation (in upper case) followed by a bit, flag or field name (in lower case). These items are
separated with a period. A position number designates individual bits in a field. For'example, the
return type (rt) field in the previous frame pointer (PFP) register is designated as “PFPrt”. The
least significant bit of the return type field is then designated as “PFP.rt0”.

1.4 RELATED DOCUMENTS

The followmg is a list of additional documentation that is useful when designing with and
programming the 1960 microprocessor. Contact your local sales representatwe for more
information on obtaining Intel documents.

e 80960JA/JF Embedded 32-bit Microprocessor Data Sheet
Intel Order No. 272493

e+ 80960JD Embedded 32-bit Microprocessor Data Sheet
« Intel Order No. 272596 ,

»  Solutions960 Development Tools Catalog
Intel Order No 270791
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CHAPTER 2
DATA TYPES AND MEMORY ADDRESSING MODES

2.1 DATA TYPES

The instruction set references or produces several data lengths and formats. The 1960% Jx
processor supports the following data types:

e Integer (8, 16 and 32 bits) ¢ Ordinal (unsigned integer 8, 16, 32 and 64 bits)
e Triple Word (96 bits) e Quad Word (128 bits)
* Bit * BitField

Figure 2-1 illustrates the data types (including the length and numeric range of each) supported by
the 1960 architecture.

8
B = S
31 L Length 0 , 16 7 0
1 ~ i
LSB of 15 0
Bit Field 32
Bits Word |
, 31 . 0
64
Bits | Long
63 0
Bgi?s I I Triple Word I
95 0
128
Bits | I I Quad Word |
127 0
Class Data Type Length : Range !
Numeri Byte Integer 8 Bits 271027 -1 \
(:3@333 Short Integer 16 Bits 21519215 1 ‘
Integer 32 Bits 28110281 4 |
l.
Byte Ordinal 8 Bits 0to28-1 I
Numeric Short Ordinal 16 Bits 010216 -1 i
(Ordinal) Ordinal 32 Bits 0t02% -1 i
Long Ordinal 64 Bits 010264 -1 i
Bit . 1 Bit j
N/A b
Bit Field 1-32 Bits !
Non-Numeric Long Word 64 Bits
Triple Word 96 Bits
Quad Word 128 Bits i
F_CA008A K

Figure 2-1. Data Types and Ranges
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2.1.1 Integers

Integers are signed whole numbers that are stored and operated on in two’s complement format by
the integer instructions. Most integer instructions operate on 32-bit integers. Byte and short
integers are referenced by the byte and short classes of the load, store and compare instructions
only. Table 2-1 shows the supported integer sizes.

Table 2-1. 80960Jx Supported Integer Sizes

Integer size Descriptive name Range
8 bit byte integers 271027 -1
16 bit short integer 21510 215 1
32 bit integers 23110 281 1

Integer load or store size (byte, short or word) determines how sign extension or data truncation is
performed when data is moved between registers and memory.

For instructions Idib (load integer byte) and Idis (load integer short), a byte or short word in
memory is considered a two’s complement value. The value is sign-extended and placed in the 32-
bit register that is the destmatlon for the load.

For instructions stib (store integer byte) and stis (store integer short), a 32-bit two’s complement
number in a register is stored to memory as a byte or short-word. If register data is too large to be
stored as a byte or short word, the value is truncated and the integer overflow condition is
signalled. When an overflow occurs, either an AC register flag is set or the integer overflow fault
is generated. CHAPTER 9, FAULTS describes the integer overflow fault.

For 1nstruct10ns Id (load word) and st (store word), data is moved directly between memory and a
register with no sign extension or data truncation.

2.1.2 Ordinals

Ordinals or unsigned integer data typés are stored and operated on as positive binary:“ values. Table
2-2 shows the supported ordinal sizes.

Table 2-2. 80960Jx Supported Ordinal Sizes

Ordinal size Descriptive name Range
8-bit byte ordinals . 0to28-1
16-bit ' " short ordinals ' 00261
32-bit ordinals 0t02%2 -1
64-bit long ordinals 0to 254 -1




Intel® DATA TYPES AND MEMORY ADDRESSING MODES

The large number of instructions that perform logical, bit manipulation and unsigned arithmetic
operations reference 32-bit ordinal operands. When ordinals are used to represent Boolean values,
1 =TRUE and 0 = FALSE. Several extended arithmetic instructions reference the long ordinal data
type. Only load (Idob and Idos) store (stob and stos) and compare ordinal instructions reference
the byte and short ordinal data types.

Sign and sign extension are not considered when ordinal loads and stores are performed; the values
may, however, be zero-extended or truncated. A short word or byte load to a register causes the
value loaded to be zero-extended to 32 bits. A short word or byte store to memory may cause an
ordinal value in a register to be truncated to fit its destination in memory. No overflow condition is
signalled in this case.

2.1.3 Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or bit fields
within register operands. An individual bit is specified for a bit operation by giving its bit number
and register. Internal registers always follow little endian byte order; the least significant bit is bit 0
and the most significant bit is bit 31.

A bit field is any contiguous group of bits (up to 31 bits long) in a 32-bit register. Bit fields do not
span register boundaries. A bit field is defined by giving its length in bits (0-31) and the bit number
of its lowest numbered bit (0-31).

Loading and storing bit and bit field data is normally performed using the ordinal load and store
instructions. Integer load and store instructions operate on two’s complement numbers. Depending
on the value, a byte or short integer load can result in sign extension of data in a register. A byte or
short store can signal an integer overflow condition.

2.1.4 Triple and Quad Words

Triple- and quad-words refer to consecutive words in memory or in registers. Triple- and quad-
word loads, stores and move instructions use these data types. These instructions facilitate data
block movement. No data manipulation (sign extension, zero extension or truncation) is performed
in these instructions.

Triple- and quad-word data types can be considered a superset of — or as encompassing — the
other data types described. The data in each word subset of a quad word is likely to be the operand
or result of an ordinal, integer, bit or bit field instruction.

I 2-3
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2.1.5 - Register Data Alignment

Data in registers must adhere to speciﬁc alignment requirements:
¢ Long-word operands in registers must be aligned to double-register boundaries.

e Triple- and quad-word operands in registers must be aligned to quad-register boundaries.

For the 1960 Jx processor, data alignment in memory is not requiréd. User software can be
programmed to automatically handle unaligned memory accesses or to cause a fault.

2.1.6 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions.
These literals are ordinal (unsigned) values that range from O to 31 (5 bits). When a literal is used
as an operand, the processor expands it to 32 bits by adding leading zeros. If the instruction
requires an operand larger than 32 bits, the processor zero-extends the value to the operand size. If
a literal is used in an instruction that requires integer operands, the processor treats the literal as a
positive integer value.

2.2 BIT AND BYTE ORDERING IN MEMORY -

All occurrences of numeric and non-numeric data types, except bits and bit fields, must start on a
byte boundary. Any data item occupying multiple bytes is stored as big-endian or little endian. The
following sections further describe byte ordering.

221 Bit Ordering

Bits within bytes are numbered such that if the byte is viewed as a value, bit O is the least
significant bit and bit 7 is the most significant bit. For numeric values spanning several bytes, bit
numbers higher than 7 indicate successively higher bit numbers in bytes with higher addresses.
Unless otherwise noted, bits in illustrations in this manual are ordered such that the higher-
numbered bits are to the left.

222 Byte Ordering
This 1960 Jx processor can be programmed to use little or big endian byte ordering for memory
accesses. Byte ordering refers to how data items larger than one byte are assembled:

»  For little endian byte order, the byte with the lowest address in a multi-byte data item has the
least significance.

* For big endian byte order, the byte with the lowest address in a multi-byte data item has the
most significance.
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For example, Table 2-3 shows four bytes of data in memory. Table 2-4 shows the differences :
between little and big endian accesses for byte, short, word and long word data. Figure 2-2 shows |
the resultant data placement in registers.

Once data is read into registers, byte order is no longer relevant. The lowest significant bit is
always bit 0. The most significant bit is always bit 31 for words, bit 15 for short words, and bit 7
for bytes.

Byte ordering affects the way the 1960 Jx processor handles bus accesses. See section 15.2.6, “Byte
Ordering and Bus Accesses” (pg. 15-28) for more information.

Table 2-3. Memory Contents For Little and Big Endian Example

ADDRESS DATA
1000H 12H
1001H 34H
1002H 56H
1003H 78H

Table 2-4. Byte Ordering for Little and Big Endian Accesses

Register Contents Register Contents |

Access Example (Little Endian) (Big Endian) |

Byte at 1000H ldob 0x1000, r3 12H 12H |

Short at 1002H ldos 0x1002, r3 7856H 5678H ‘
Word at 1000H 1a 0x1000, r3 78563412H 12345678H
: 78563412H (r4) 12345678H (r4)

Long Word at 1000H 1dl 0x1000, r4

FODEBCY9AH (r5) FODEBCO9AH (r5)
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31 " 2423 1615 87 0
BYTE XX XX XX DD,

31 2423 1615 87 0
SHORT ' XX XX DDy DD,

31 24 23 16 15 87 0
WORD DD, DD, DD; DD,

NOTES:

D’s are data transferred to/from memory .
X’s are zeros for ordinal data )
X’s are sign bit extensions for integer data

Figure 2-2. Data Placement in Registers

23 MEMORY ADDRESSING MODES

The processor provides nine modes for addressing operands in memory. Each addressing mode is
- used to reference a byte in the processor’s address space. Table 2-5 shows the memory addressing
modes, a brief description of each mode’s address elements and assembly code syntax. See Table
B-5 in Appendix B for more on addressing modes.

Table 2-5. Memory Addressing Modes

Mode ' Description .| Assembler Syntax
Absolute offset | offset exp ‘
displacement | displacement t exp
Register Indirect abase (reg)
with offset | abase + offset exp (reg)
with displacement | abase + displacement exp (reg)
with index | abase + (index*scale) (reg) [reg*scale]
with index and displacement | abase + (index*scale) + displacement exp (reg) [reg*scale]
Index with displacement (index*scale) + displacement exp [reg”scale]
:;:zglua itieﬂe;:‘c:inter (IP) with IP + displacement + 8 exp (IP)

NOTE: reg is register and exp is an expression or symbolic label.
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2.3.1 Absolute

Absolute addressing modes allow a memory location to be referenced directly as an offset from
address OH. At the instruction encoding level, two absolute addressing modes are provided:
absolute offset and absolute displacement, depending on offset size.

¢ For the absolute offset addressing mode, the offset is an ordinal number ranging from 0 to ;
4095. The absolute offset addressing mode is encoded in the MEMA machine instruction i
format.

¢ For the absolute displacement addressing mode the offset is an integer (a displacement)
ranging from -23! to 231-1. The absolute displacement addressing mode is encoded in the
MEMB format.

Addressing modes and encoding instruction formats are described in CHAPTER 6,
INSTRUCTION SET REFERENCE.

At the assembly language level, the two absolute addressing modes use the same syntax. Typically,
development tools allow absolute addresses to be specified through arithmetic expressions (e.g.,
X + 44) or symbolic labels. After evaluating an address specified with the absolute addressing
mode, the assembler converts the address into an offset or displacement and selects the appropriate
instruction encoding format and addressing mode.

2.3.2 Register Indirect

Register indirect addressing modes use a register’s 32-bit value as a base for address calculation.
The register value is referred to as the address base (designated abase in Table 2-5). Depending on
the addressing mode, an optional scaled-index and offset can be added to this address base.

Register indirect addressing modes are useful for addressing elements of an array or record ‘
structure. When addressing array elements, the abase value provides the address of the first array |
element; an offset (or displacement) selects a particular array element. ‘

In register-indirect-with-index addressing mode, the index is specified using a value contained in a |
register. This index value is multiplied by a scale factor. Allowable factors are 1, 2, 4, 8 and 16.

The two versions of register-indirect-with-offset addressing mode at the instruction encoding level
are register-indirect-with-offset and register-indirect-with-displacement. As with absolute
addressing modes, the mode selected depends on the size of the offset from the base address.

At the assembly language level, the assembler allows the offset to be specified with an expression |
or symbolic label, then evaluates the address to determine whether to use register-indirect-with- |
offset (MEMA format) or register-indirect-with-displacement (MEMB format) addressing mode.
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Register-indirect-with-index-and-displacement addressing mode adds both a scaled index and a
displacement to the address base. There is only one version of this addressing mode at the
instruction encoding level, and it is encoded in the MEMB instruction format.

2.33 Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a
register and multiplied by a scaling constant before displacement is added.

234  |IP with Displacement

This addressing mode is used with load and store instructions to make them instruction pointer
(IP) relative. IP-with-displacement addressing mode references the next instruction’s address plus
the displacement plus a constant of 8. The constant is added because in a typical processor imple-
mentation the address has incremented beyond the next instruction address at the time of address
calculation. The constant simplifies IP-with-displacement addressing mode implementation.

235 " - Addreésing Mode EXampIés

The following examples show how i960 addressing modes are encoded in assembly language.
Example 2-1 shows addressing mode mnemonics. Example 2-2 illustrates the usefulness of scaled
index and scaled index plus displacement addressing modes. In this example, a procedure named
array_op uses these addressing modes to fill two contiguous memory blocks separated by a
constant offset. A pointer to the top of the block is passed to the procedure in g0, the block size is
passed in gl and the fill data in g2. Refer to APPENDIX D, MACHINE-LEVEL INSTRUCTION
FORMATS. ) ' - ' ‘

2-8 I



Inte|® DATA TYPES AND MEMORY ADDRESSING MODES

Example 2-1. Addressing Mode Mnemonics

st gd,xyz Absolute; word from g4 stored at memory
location designated with label xyz.
Register indirect; ordinal byte from
memory location given in r3 loaded

into register r4 and zero extended.
Register indirect with displacement;
double word from g6,g7 stored at memory
location xyz + g5.

Register indirect with index; quad-word
beginning at memory location r8 + (r9
scaled by 4) loaded into r4 through r7.
Register indirect with index and
displacement; word in g3 loaded to mem
location g4 + xyz + (g5 scaled by 2).
Index with displacement; load short
integer at memory location xyz + rl2
into rl3 and sign extended.

IP with displacement; store word in r4
at memory location IP + xyz + 8.

1dob (r3),r4

stl g6,xyz(g5)

lda (r8) [r9*4],r4

st g3,xyz(g4) [gh*2]

ldis xyz[rl2*1],rl3

st rd,xyz (IP)

FH o3 o o o o H H H H W K H W H HHE

Example 2-2. Use of Index Plus Scaled Index Mode

array_op:
mov g0,r4 # Pointer to array is moved to r4.
subi 1,91,r3 # Calculate index for the last array
b .I33 # element to be filled.

.I34:
st g2, (rd) [r3*4] # Fill array at index.
st g2,0x30(r4) [r3*4] # Fill array at index+constant offset.
subi 1,r3,r3 # Decrement index.

.I33:
cmpible 0,r3,.I34 # Store next array elements if
ret # index is not 0.

I 29
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CHAPTER3 |
PROGRAMMING ENVIRONMENT -

This chapter describes the 1960% Jx microprocessor’s programming environment including global
and local registers, control registers, literals, processor-state registers and address space.

3.1 OVERVIEW i

The 1960 architecture defines a programming environment for program execution, data storage and
data manipulation. Figure 3-1 shows the programming environment elements which include a
4 Gbyte (232 byte) flat address space, an instruction cache, global and local general-purpose
registers, a set of literals, control registers and a set of processor state registers. A register cache
saves the 16 procedure-specific local registers.

The processor defines several data structures located in memory as part of the programming
environment. These data structures handle procedure calls, interrupts and faults and provide
configuration information at initialization. These data structures are:

* interrupt stack e control table - e system procedure table

* local stack , e fault table *  process control block

*  supervisor stack e interrupt table * initialization boot record
3.2 REGISTERS AND LITERALS AS INSTRUCTION OPERANDS

The 1960 Jx processor uses only simple load and store instructions to access memory. All
operations take place at the register level. The processor uses 16 global registers, 16 local registers
and 32 literals (constants 0-31) as instruction operands.

The global register numbers are g0 through g15; local register numbers are r0 through r15. Several L
of these registers are used for a dedicated function. For example, register r0 is the previous frame |
pointer, often referred to as pfp. 1960 processor compilers and assemblers recognize only the i
instruction operands listed in Table 3-1. Throughout this manual, the registers’ descriptive names, |
numbers, operands and acronyms are used interchangeably, as dictated by context.

I 3-1 i
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(0000 0000H ' . T FFEF FFFFH
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Figure 3-1. 1960 Jx Microproceséor Programming Environment

3.21 ~ Global Registers.\

Global registers are general-purpose 32-bit data registers that provide temporary;storage for a
program’s computational operands. These registers retain their contents across procedure
boundaries. As such, they provide a fast and efficient means of passing parameters between
procedures.

3-2 \ I
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Table 3-1. Registers and Literals Used as Instruction Operands

PROGRAMMING ENVIRONMENT

Instruction Operand Register Name (number) Function Acronym ‘
g0-gi4 global (g0-g14) general purpose \“{
fp global (g15) frame pointer FP
pfp local (r0) previous frame pointer PFP
sp local (r1) stack pointer SP !
rip local (r2) return instruction pointer RIP ‘1*;
r3-r15 local (r3-r15) general purpose ’ :
0-31 literals

The 1960 architecture supplies 16 global registers, designated g0 through g15. Register gl5 is
reserved for the current Frame Pointer (FP), which contains the address of the first byte in the
current (topmost) stack frame. See section 7.1, “CALL AND RETURN MECHANISM” (pg. 7-2)
for a description of the FP and procedure stack.

After the processor is reset, register g0 contains device identification and stepping information.
The Device Identification sections in the 80960JA/JF Embedded 32-bit Microprocessor Data
Sheet and the 80960JD Embedded 32-bit Microprocessor Data Sheet describe information
contained in g0. g0 retains this information until it is written over by the user program. The device 1
identification and stepping information is also stored in a memory-mapped register located at I
FF008710H. |

3.2.2 Local Registers

The 1960 architecture provides a separate set of 32-bit local data registers (t0 through r15) for each
active procedure. These registers provide storage for variables that are local to a procedure. Each
time a procedure is called, the processor allocates a new set of local registers and saves the calling
procedure’s local registers. The processor performs local register management; a program need not
explicitly save and restore these registers.

r3 through rl15 are general purpose registers; rO contains the Previous Frame Pointer (PFP); rl
contains the Stack Pointer (SP); r2 contains the Return Instruction Pointer (RIP). These are ~,
discussed in CHAPTER 7, PROCEDURE CALLS. ]

The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Therefore, initial register contents are unpredictable. Also, because the processor does
not initialize the local register save area in the newly created stack frame for the procedure, its
contents are equally unpredictable.

I 3-3 ;



PROGRAMMING ENVIRONMENT I ntel @

3.23 Register Scoreboarding

The processor uses register scoreboarding to allow concurrent execution of sequential instructions.
When an instruction that targets a destination register or group of registers executes, the processor
sets a register-scoreboard bit to indicate that this register or group of registers are being used in an
operation. If the instructions that follow do not require data from registers already in use, the
processor can execute those instructions before the prior instruction execution completes.

Software can use this feature to execute one or more single-cycle instructions concurrently with a
multi-cycle instruction (e.g., multiply or divide). Example 3-1.shows a case where register score-
boarding prevents a subsequent instruction from executing. It also illustrates overlapping instruc-
tions that do not have register dependencies.

Example 3-1. Register Scoreboarding

muli r4,r5,r6 B # r6 is scoreboarded
addi r6,r7,r8 # addi must wait for the previous multiply
# to complete

muli  r4,r5,rl0 . # rl0 is scoreboarded

and r6,r7,r8 # and instruction is executed concurrently
3.24 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions.
These literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is used
as an operand, the processor expands it to 32 bits by adding leading zeros. If the instruction
requires an operand larger than 32 bits, the processor zero-extends the value to the operand size. If
a literal is used in an instruction that requires integer operands, the processor treats the literal as a
positive integer value.

3.25 Register and Literal Addressing and Alignment

Several instructions operate on multiple-word operands. For example, the load long instruction
(Idl) loads two words from memory into two consecutive registers. The register for the less-
significant word is specified in the instruction. The more-significant word is automatically loaded
into the next higher-numbered register.

In cases where an instruction specifies a register number and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., g0, g2) and an
integral multiple of 4 if three or four registers are accessed (e.g., g0, g4). If a register reference for
a source value is not properly aligned, the source value is ‘undefined and an
OPERATION.INVALID_OPERAND fault is generated. If a register reference for a destination
value is not properly aligned, the registers to which the processor writes and the values written are

34 I
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undefined. The processor then generates an OPERATION.INVALID_OPERAND fault. The !
assembly language code in Example 3-2 shows an example of correct and incorrect register ‘
alignment.

Example 3-2. Register Alignment

movl g3,g8 # INCORRECT ALIGNMENT - resulting value
# in registers g8 and g9 is
# unpredictable (non-aligned source)

movl g4,g8 # CORRECT ALIGNMENT

Global registers, local registers and literals are used directly as instruction operands. Table 3-2 lists
instruction operands for each machine-level instruction format and positions which can be filled by
each register or literal.

Table 3-2. Allowable Register Operands

Operand (1) ‘
Instruction . Local Global .
Encoding Operand Field Register Register Literal
REG srct X X X
src2 X X X
src/dst (as src) X X X
src/dst (as dst) X X
src/dst (as both) X X
MEM src/dst X X ‘
abase X X i
index X X ‘
COBR srct X X }
src2 X X
dst X (2) X (2)
NOTES:

1. “X”denotes fhe register can be used as an operand in a particular instruction field.
2. The COBR destination operands apply only to TEST instructions.

3.3 MEMORY-MAPPED CONTROL REGISTERS

The 1960 Jx family gives software the interface to easily read and modify internal control registers.
Each of these registers is accessed as a memory-mapped, 32-bit register with a unique memory
address. Access is accomplished through regular word load and store instructions; the processor
ensures that these accesses do not generate external bus cycles.

I 3-5
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3.3.1 Memory-Mapped Registers (MMR)

Portions of the Jx address space (addresses FFOO 0000H through FFFF FFFFH) are reserved for
memory-mapped registers. These memory-mapped registers (MMR) are accessed through word-
operand memory instructions (atmod, sysctl, Id and st instructions) only. Accesses to this address
space do not generate external bus cycles. The latency in accessing each of these registers is one
cycle.

Each register has an associated access mode (user and supervisor modes) and access type (read
and write accesses). Table 3-3, Table 3-4 and Table 3-5 show all the memory-mapped registers and
the application mode of access.

The registers are partitioned into user and supervisor spaces based on their addresses. Addresses
FF00 0000H through FFOO 7FFFH are allocated to user space memory-mapped registers;
Addresses FF00 8000H to FFFF FFFFH are allocated to supervisor space registers.

3.3.1.1 Restrictions on Instructions that Access Memory-Mapped Registers

The majority of memory-mapped registers can be accessed by both load (Id) and store (st) instruc-
tions. However some registers have restrictions on the types of accesses they allow. To ensure
correct operation, the access type restrictions for each register should be followed. The various
access types are listed in Table 3-3. The allowed access types for each register are indicated in the
access type column of Table 3-4 and Table 3-5.

Unless otherwise indicated by its access type, the modification of a memory-mapped register by a
st instruction is ensured to take effect completely before the next instruction starts execution.

Some operations require an atomic-read-modify-write sequence to a register -- most notably IPND
and IMSK. The atmod instruction provides a special mechanism to quickly modify the IPND and
IMSK registers in an atomic manner; on the i960 Jx microprocessor, it should not be used on any
other memory-mapped registers.

The sysectl instruction can also atomically modify the contents of a memory-mapped register; in
addition, it is the only method to read the breakpoint registers on the 19960 Jx microprocessor; the
breakpoints can not be read using a Id instruction.

At initialization, the control table is automatically loaded into the on-chip control registers. This
action simplifies the user’s startup code by providing a transparent setup of the processor’s periph-
erals. See CHAPTER 11, INITIALIZATION AND SYSTEM REQUIREMENTS.
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3.3.1.2 Access Faults

Memory-mapped registers are meant to be accessed only as aligned, word-size registers with
adherence to the appropriate access mode. Accessing these registers in any other way can result in
faults or undefined operation. An access is performed using the following fault model:

1.

The access must be a word-sized, word-aligned access; otherwise, an operation.unimple-
mented fault is generated.

If the access is a store in user mode to an implemented supervisor location, a type.mismatch
fault is generated. It is unpredictable whether stores to unimplemented supervisor locations
cause a fault.

If the access is neither of the above, the access is attempted. Note that a MMR may generate
faults based on conditions specific to that MMR. (Example: trying to write the timer registers
in user mode when they have been allocated to supervisor only.)

When a store access to a register faults, the processor ensures that the store does not take
effect. '

A load access of a reserved location returns an unpredictable value.
A store access to a reserved location should be avoided and is bad programming practice;

such a store can result in undefined operation of the processor if the location is in supervisor
space. ’

The 1960 Jx microprocessor will ensure that faults resulting from MMR accesses are precise.

Instruction fetches from the memory-mapped register space are not allowed and result in an
operation.unimplemented fault.

3-7
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Table 3-3. Access Types

Access Type - : Description

R ‘Read Read (Id instruction) accesses are allowed. ’

RO Read Only Read (ld instruction) accesses are allowed. Write (st |nstruct|on)
Only accesses are ignored.

W Write Write (St instruction) accesses allowed.

RW Read/Write | Id, st, and sysctl instructions are allowed access.

WwG Write Writing or Modifying (through a st or sysctl instruction) the register is
when only allowed when modification-rights to the register have been granted.

Granted An OPERATION.UNIMPLEMENTED fault occurs if an attempt is made to
write the register before rights are granted. See sectlon 10.2.7.2,
“Hardware Breakpoints” (pg. 10- 5)

Sysctl-RwG sysctl The value of the register can only be read by executing a sysctl instruction
Read issued with the modify memory-mapped register message type. Modifi-
when cation rights to the register must be granted first or an

Granted OPERATION.UNIMPLEMENTED fault occurs when the sysctl is
executed. A Id instruction to the register returns unpredictable results.

AtMod atmod Register can be updated quickly through the atmod instruction. The

. update atmod ensures correct operation by performing the update of the register
in an atomic manner which provides synchronization with previous and
subsequent operations. This is a faster update mechanism than sysctl
and is optimized for a few special registers,
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Table 3-4. Supervisor Space Family Registers and Tables (Sheet 1 of 3)

Register Name

Memory-Mapped Address

Access Type

(LMMR1) Logical Memory Mask Register 1

Reserved. | | FFO08000H 1o FFOOBOFFH. | . — i v
(DLMCON) Defadlt Ldgical Memory Configuration FF0O0 8100H RW
Register
-Reserved - ffFfFob 8104H o ' o
(LMADRO) Loglcal Memory Address Reglster 0 * FF0O0 81’08H RW
(LMMRO) Logical Memory Mask Register 0 FF00 810CH R/W
(LMADR1) Logical Memory Address Register 1 FF00 8110H R/W
FF0O0 8114H RW

- Reserved

| FF008118H to FFOO 83FFH

(IPBO) Instruction Address Breakpomt Reglster 0

FF00 8400H

Sysctl- RwG/WwG

FF0O0 8404H

(IPB1) Instruction Address Breakpomt Reglster 1

Sysctl- RwG/WwG

Esizal _ FROOBAOBHIOFFOOBATFH | —
(DABOQ) Data Address Breakpomt Reg|ster 0 FFO0O0 8420H R/W, WwG
(DAB1) Data Address Breakpomt Reglster 1 FF0O0 8424H R/W, WwG

Reserved FFOOGMFH | o
(BPCON) Breakpomt Control Reg|ster FF0O0 8440H R/W, WwG
(IPND) lnterrupt Pendmg Heglster M FFO00 8500H R/W, AtMod
(IMSK) Interrupt Mask Reglster FFO00 8504H R/W, AtMod
(ICON) Interrupt Control Word T FF00 8510H R/W k
, Reservad ' = | Froo@staHwFrOOSSIFH | —
(IMAPO) Interrupt Map Reglster 0 | ‘ F#OO 8520H 1 RW
(IMAP1) Interrupt Map Register 1 FFOO0 8524H RW
FFO0O0 8528H

R/W

(IMAP2) Interrupt Map Reglster 2

. Ressrved

3-9

2
I
{
i




PROGRAMMING ENVIRONMENT

intal.

Table 3-4. Supervisor Space Family Registers and Tables (Sheet 2 of 3)

" Register Name

Memory-Mapped Address Access Type

(PMCONO_1) Physical Memory Control Register 0

:;L o B

s
(PMCON2_3) Physical Memory Control Register 1
%

(PMCON10_11) Physical Memory Control
Register 5

(PMCON12_13) Physical Memory Control
‘Register 6

(PMCON14_15) Physical Memory Control
Register 7

(BCON) Bus Configuration Control Register

FF00 8600H RW

FFO0 8630H R/W

FF00 86FCH
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Table 3-4. Supervisor Space Family Registers and Tables (Sheet 3 of 3)

Register Name Memory-Mapped Address Access Type

(PRCB) Processor Control Block Pointer FFO0O0 8700H RO

(ISP) Interrupt Stack Pointer FFO00 8704H RW

(SSP) Supervisor Stack Pointer FFO00 8708H R/W
‘Reserved . - FFOO870CH |  —

(DEVICEID) i960 Jx Device ID FF00 8710H ~ RO
CReseved | FFOOBT14HIOFFFFFFFFH | = '

Table 3-5. User Space Family Registers and Tables
Register Name Memory-Mapped Address Access Type

,,,,,, AR

T L B

(TRRO) Timer Reload Register 0

FFO0 0300H R/W
(TCRO) Timer Count Register 0 FF0O0 0304H R/W
(TMRO) Timer Mode Register 0 FF00 0308H
(TRR1) Timer Reload Register 1 FF00 0310H
(TCR1) Timer Count Register 1 FF00 0314H RW
(TMR1) Timer Mode Register 1 FF00 0318H RW

3-11
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3.4 ARCHITECTURE-DEFINED DATA STRUCTURES

The architecture defines a set of data structures including stacks, interfaces to system procedures,
interrupt handling procedures and fault handling procedures. Table 3-6 defines the data structures
and references other sections of this manual where detailed information can be found.

Table 3-6. Data Structure Descriptions

Structure (see also) Description

User and Supervisor Stacks The processor uses these stacks when executing application

section 7.6, “USER AND SUPERVISOR | %°9®:
STACKS’” (pg. 7-19)

System Procedure Table Contains pointers to system procedures. Application code uses
section 3.7, “USER SUPERVISOR the system call instruction (calls) to. access sy§tem procedu.res
» through this table. A system supervisor call switches execution
PROTECTION MODEL" (pg. 3-22) .
_ mode from user mode to supervisor mode. When the processor
section 7.5, “SYSTEM CALLS” (pg. 7-16) | switches modes, it also switches to the supervisor stack.

Interrupt Table and Stack Contains vectors (pointers) to interrupt handling procedures.
section 8.4, “INTERRUPT TABLE” (pg. When an interrupt is serviced, a particular interrupt table entry is
8-3) specified. A separate interrupt stack is provided to ensure that

section 8.5, “INTERRUPT STACK AND interrupt handling does not interfere with application programs. -
INTERRUPT RECORD” (pg. 8-5) '

Fault Table Contains pointers to fault handling procedures. When the

section 9.3, “FAULT TABLE” (pg. 9-4) processor detects a fault, it selects a particular entry in the fault
table. The architecture does not require a separate fault handling
stack. Instead, a fault handling procedure uses the supervisor
stack, user stack or interrupt stack, depending on processor
execution mode in which the fault occurred and type of call made
to the fault handling procedure.

Control Table Contains on-chip control register values. Control table values are
section 11.3.3, “Control Table” (pg. 11-19) | Mmoved to on-chip registers at initialization or with sysctl.

The 1960 Jx processor defines two initialization data structures: Initialization Boot Record (IBR)
and Process Control Block (PRCB). These structures provide initialization data and pointers to
other data structures in memory. When the processor is initialized, these pointers are read from the
initialization data structures and cached for internal use.

Pointers to the system procedure table, interrupt table, interrupt stack, fault table and control table
are specified in the processor control block. Supervisor stack location is specified in the system
procedure table. User stack location is specified in the user’s startup code. Of these structures, the
systém procedure table, fault table, control table and initialization data structures may be in ROM;
the interrupt table and stacks must be in RAM. For software interrupts, the interrupt table must be
located in RAM. This is to allow the processor to modify the interrupt table.

3-12 I
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MEMORY ADDRESS SPACE

The 1960 Jx processor’s address space is byte-addressable with addresses running contiguously
from 0 to 232-1. Some is reserved or assigned special functions as shown in Figure 3-2.

0000

0000
0000

0000

0000
0000

FEFF
FEFF

FEFF
FEFF
FEFF

FFOO0

FFFF

Address

0000H

0004H
003FH

0040H

03FFH
0400H

FF2FH
FF30H

FF5FH
FF60H
FFFFH

0000H

FFFFH

- Shading indicates internal memory.

} Architecturally Defined Data Structures $

Internal
Data RAM
1 Kbyte

Code/data

External Memory

Initialization Boot Record (IBR) {

Reserved Memory

Figure 3-2. Memory Address Space

Physical addresses can be mapped to read-write memory, read-only memory and memory-mapped
I/0. The architecture does not define a dedicated, addressable I/O space. There are no subdivisions
of the address space such as segments. For memory management, an external memory

management unit (MMU) may subdivide memory into pages or restrict access to certain areas of

memory to protect a kernel’s code, data and stack. However, the processor views this address space
as linear.
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An address in memory is a 32-bit value in the range OH to FFFF FFFFH. Depending on the
instruction, an address can reference in memory a single byte, short word (2 bytes), word
(4 bytes), double-word (8 bytes), triple-word (12 bytes) or quad-word (16 bytes). Refer to load
and store instruction descriptions in CHAPTER 6, INSTRUCTION SET REFERENCE for
multiple-byte addressing information.

3.5.1 Memory Requirements

The architecture requires that external memory has the following properties:
e Memory must be byte-addressable.

e Memory must support burst transfers (i.e., transfer blocks of up to 16 contiguous bytes or four
sequential transfers).

*  Physical memory must not be mapped to reserved addresses that are specifically used by the
processor implementation.

* Memory must guarantee indivisible access (read or write) for addresses that fall within 16-
byte boundaries.

¢ Memory must guarantee atomic access for addresses that fall within 16-byte boundaries.

The latter two capabilities — indivisible and atomic access — are required only when multiple
processors or other external agents, such as DMA or graphics controllers, share a common
memory.

indivisible access Guarantees that a processor, reading or writing a set of memory locations,
‘ completes the operation before another processor or external agent can read
or write the same location. The processor requires indivisible access within

an aligned 16-byte block of memory.

atomic access A read-modify-write operation. Here the external memory system must
guarantee that — once a processor begins a read-modify-write operation on
an aligned, 16-byte block of memory — it is allowed to complete the
operation before another processor or external agent is allowed access to
the same location. An atomic memory system can be implemented by using
the LOCK signal to qualify hold requests from external bus agents. LOCK
is asserted for the duration of an atomic memory operation.

The upper 16 Mbytes of the address space — addresses FFOO 0000H through FFFF FFFFH — are
reserved for implementation-specific functions. 80960Jx programs cannot use this address space
except for accesses to memory-mapped registers. The processor will not generate any external bus
cycles to this memory. As shown in Figure 3-2, the initialization boot record is located just below
the 1960 Jx processor’s reserved memory.
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The 1960 Jx processor requires some special consideration when using the lower 1 Kbyte of
address space (addresses 0000H-O3FFH). Loads and stores directed to these addresses access
internal memory; instruction fetches from these addresses are not allowed for this processor. See
section 4.1, “INTERNAL DATA RAM” (pg 4-1). No external bus cycles are generated to this
address space.

3.5.2 Data and Instruction Alignment in the Address Space

Instructions, program data and architecturally defined data structures can be placed anywhere in

non-reserved address space while adhering to these alignment requirements:

* Align instructions on word boundaries.

*  Align all architecturally defined data structures on the boundaries specified in Table 3-7.

*  Align instruction operands for the atomic instructions (atadd, atmod) to word boundaries in
memory.

The 1960 Jx processor can perform unaligned load or store accesses. The processor handles a non-

aligned load or store request by:

*  Automatically servicing a non-aligned memory access with microcode assistance as described
in section 15.2.5, “Data Alignment” (pg. 15-22).

*  After the access is completed, the processor generates an OPERATION.UNALIGNED fault.

The method of handling faults is selected at initialization based on the value of the Fault Configu-
ration Word in the Process Control Block. See section 11.3.1.2, “Process Control Block (PRCB)”

(pg. 11-14).

Table 3-7. Alignment of Data Structures in the Address Space

~ Data Structure ) Alignment
System Procedure Table 4 byte
Interrupt Table 4 byte
Fault Table 4 byte
Control Table 16 byte
User Stack 16 byte
Supervisor Stack 16 byte
Interrupt Stack 16 byte
Process Control Block 16 byte
Initialization Boot Record Fixed at FEFF FF30H
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3.5. 3 Byte, Word and Blt Addressmg

The processor prov1des 1nstruct10ns for movmg data blocks of various lengths from memory to
registers (LOAD) and from registers to- memory (STORE). Allowable sizes for blocks are bytes,
short words (2 bytes), words (4 bytes), double words, triple words and quad words. For example,
stl (store long) stores an 8 byte (double word) data block in memory.

The most efficient way to move data blocks longer than 16 bytes is to move them in quad-word
1ncrements using quad-word instructions ldq and stq.

When a data block is stored in memory, normally the block’s least significant byte is stored at a
base memory address and the more significant bytes are stored at successively higher byte
addresses. This method of ordering bytes in memory is referred to as “little endian” ordering.

The 1960 Jx processor also provides the option for ordering bytes in.an opposite manner in
memory. The block’s most significant byte is stored at the base address and the less significant
bytes are stored at successively higher addresses. This byte ordering scheme — referred to as “big
endian” — applies to data blocks which are short words or words. For more about byte ordering,
see section 15.2.5, “Data Alignment” (pg. 15-22).

When loading a byte, short word or word from memory to a register, the block’s least significant
bit is always loaded in register bit 0. When loading double words, triple words and quad words,
the least significant word is stored in the base register. The more significant words are then stored
at successively higher numbered registers. Bits can only be addressed in data that resides in a
register: bit 0 in a register is the least significant bit, bit 31 is the most significant bit.

3.5.4 Internal Data RAM

The 1960 Jx processor has 1 Kbyte of on-chip data RAM. Only data accesses are allowed in this
region. Portions of the data RAM can also be reserved for functions such as caching interrupt
vectors. The internal RAM is fully described in CHAPTER 4, CACHE AND ON-CHIP DATA
RAM.

3.5.5 Instruction Cache

The instruction cache enhances performance by reducing the number of instruction fetches from
external memory. The cache provides fast execution of cached code and loops of code in the cache
and also provides more bus bandwidth for data operations in external memory. The 1960 JF and JD
processors’ instruction cache is a 4 Kbyte, two-way set associative cache, organized in two sets of
. four-word lines. 1960 JA processors feature a 2 Kbyte instruction cache For more information, see
CHAPTER 4, CACHE AND ON-CHIP DATA RAM
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3.5.6 Data Cache
The data cache on the 1960 JF and JD processors is a write-through 2 Kbyte direct-mapped cache.

1960 JA processors feature a 1 Kbyte data cache. For more information, see CHAPTER 4, CACHE
AND ON-CHIP DATA RAM.

3.6 PROCESSOR-STATE REGISTERS

The architecture defines four 32-bit registers that contain status and control information:

¢ Instruction Pointer (IP) register ¢ Arithmetic Controls (AC) register
¢ Process Controls (PC) register ¢ Trace Controls (TC) register
3.6.1 Instruction Pointer (IP) Register

The IP register contains the address of the instruction currently being executed. This address is
32 bits long; however, since instructions are required to be aligned on word boundaries in memory,
the IP’s two least-significant bits are always 0 (zero).

All 1960 processor instructions are either one or two words long. The IP gives the address of the
lowest-order byte of the first word of the instruction.

The IP register cannot be read directly. However, the IP-with-displacement addressing mode
allows the IP to be used as an offset into the address space. This addressing mode can also be used
with the Ida (load address) instruction to read the current IP value.

When a break occurs in the instruction stream — due to an interrupt, procedure call or fault — the
IP of the next instruction to be executed is stored in local register r2 which is usually referred to as
the return IP or RIP register. Refer to CHAPTER 7, PROCEDURE CALLS for further discussion.

3.6.2 Arithmetic Controls (AC) Register

The AC register (Figure 3-3) contains condition code flags, integer overflow flag, mask bit and a
bit that controls faulting on imprecise faults. Unused AC register bits are reserved.
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No-Imprecise-Faults Bit- AC.nif —T

(0) Some Faults are Imprecise
(1) All Faults are Precise

Integer Overflow Mask Bit - AC.om
(0) No Mask
(1) Mask

Integer-Overflow Flag - AC.of
(0) No Overflow
(1) Overflow

Condition Code Bits - AC.cc

Reserved
| (Initialize to 0)

F_CA004A

Figure 3-3. Arithmetic Controls (AC) Register

3.6.2.1 Initializing and Modifying the AC Register

At initialization, the AC register is loaded from the Initial AC image field in the Process Control
Block. Reserved bits are set to 0 in the AC Register Initial Image Refer to CHAPTER 11,
INITTIALIZATION AND SYSTEM REQUIREMENTS.

After initialization, software must not modify or depend on the AC register’s initial image in the
PRCB. The modify arithmetic controls (modac) instruction can be used to examine and/or modify
any of the register bits. This instruction provides a mask operand that can be used to limit access to
the register’s specific bits or groups of bits, such as the reserved bits.

The processor automatically saves and restores the AC register when it services an interrupt or
handles a fault. The processor saves the current AC register state in an interrupt record or fault
record, then restores the register upon returning from the interrupt or fault handler.

3.6.2.2 Condition Code

The processor sets the AC register’s condition code flags (bits 0-2) to indicate the results of certain
instructions, such as compare instructions. Other instructions, such as conditional branch instruc-
tions, examine these flags and perform functions as dictated by the state of the condition code
flags. Once the processor sets the condition code flags, the flags remain unchanged until another
instruction executes that modifies the field.
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Condition code flags show true/false conditions, inequalities (greater than, equal or less than
conditions) or carry and overflow conditions for the extended arithmetic instructions. To show true
or false conditions, the processor sets the flags as shown in Table 3-8. To show equality and
inequalities, the processor sets the condition code flags as shown in Table 3-9.

Table 3-8. Condition Codes for True or False Conditions

Condition Code Condition
010, true
000, false

Table 3-9. Condition Codes for Equality and Inequality Conditions

Condition Code Condition
000, unordered (false)
001, greater than (true)
010, equal
100, less than

The terms ordered and unordered are used when comparing floating point numbers, which are not
supported by the i960 Jx processor implementation.

To show carry out and overflow, the processor sets the condition code flags as shown in Table
3-10.

Table 3-10. Condition Codes for Carry Out and Overflow

Condition Code Condition
01Xy carry out
0X1, overflow

Certain instructions, such as the branch-if instructions, use a 3 bit mask to evaluate the condition
code flags. For example, the branch-if-greater-or-equal instruction (bge) uses a mask of 011, to
determine if the condition code is set to either greater-than or equal. Conditional instructions use
similar masks for the remaining conditions such as: greater-or-equal (011,), less-or-equal (110,)
and not-equal (101,). The mask is part of the instruction opcode; the instruction performs a bitwise
AND of the mask and condition code.
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The AC register integer overflow flag (bit 8) and integer overflow mask bit (bit 12) are used in
conjunction with -the arithmetic-integer-overflow fault. The mask bit disables fault generation.
When the fault is masked and integer overflow is encountered, the processor — instead of
generating a fault — sets the integer overflow flag. If the fault is not masked, the fault is allowed
to occur and the flag is not set.

Once the processor sets this flag, it never implicitly clears it; the flag remains set until the program
clears it. Refer to the discussion of the arithmetic-integer-overflow fault in CHAPTER 9, FAULTS
for more information about the integer overflow mask bit and flag.

The no imprecise faults bit (bit 15) determines whether or not faults are allowed to be imprecise. If
set, all faults are required to be precige; if clear, certain faults can be imprecise. See section 9.9,
“PRECISE AND IMPRECISE FAULTS” (pg. 9-19) for more information.

3.6.3 Process Contrdls (PC) Register

The PC register (Figure 3-4) is used to control processor activity and show the processor’s current
state. PC register execution mode flag (bit 1) indicates that the processor is operating in either user
mode (0) or supervisor mode (1). The processor automatically sets this flag on a system call when
a switch from user mode to supervisor mode occurs and it clears the flag on a return from
supervisor mode. (User and supervisor modes are described in section 3.7, “USER SUPERVISOR
PROTECTION MODEL” (pg. 3-22).

Trace-Enable Bit - PC.te
(0) Globally disable trace faults
(1) Globally enable trace faults

Execution-Mode Flag - PC.em
(0) user mode
(1) supervisor mode

Trace-Fault-Pending - PC.tfp
(0) no fault pending

(1) fault pending
State Flag - PC.s

(0) executing

(1) interrupted

Priority Field - PC.p
(0-31) process priority l

31 28 24 20 16 12 8 4 0

Reserved
(Do not modify) F_CRO05A

Figure 3-4. Process Contljols (PC) Register
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PC register state flag (bit 13) indicates processor state: executing (0) or interrupted (1). If the
processor is servicing an interrupt, its state is interrupted. Otherwise, the processor’s state is
executing.

While in the interrupted state, the processor can receive and handle additional interrupts. When
nested interrupts occur, the processor remains in the interrupted state until all interrupts are
handled, then switches back to executing state on the return from the initial interrupt procedure.

PC register priority field (bits 16 through 20) indicates the processor’s current executing or
interrupted priority. The architecture defines a mechanism for prioritizing execution of code, ‘
servicing interrupts and servicing other implementation-dependent tasks or events. This
mechanism defines 32 priority levels, ranging from O (the lowest priority level) to 31 (the highest). ‘
The priority field always reflects the current priority of the processor. Software can change this

priority by use of the modpc instruction.

The processor uses the priority field to determine whether to service an interrupt immediately or to
post the interrupt. The processor compares the priority of a requested interrupt with the current
process priority. When the interrupt priority is greater than the current process priority or equal to
31, the interrupt is serviced; otherwise it is posted. When an interrupt is serviced, the process
priority field is automatically changed to reflect interrupt priority. See CHAPTER 13,
INTERRUPT CONTROLLER. ‘

PC register trace enable bit (bit 0) and trace fault pending flag (bit 10) control the tracing function.
The trace enable bit determines whether trace faults are globally enabled (1) or globally
disabled (0). The trace fault pending flag indicates that a trace event has been detected (1) or not
detected (0). The tracing function are further described in Chapter 10.

3.6.3.1 Initializing and Modifying the PC Register o |

Any of the following three methods can be used to change bits in the PC register: ‘
*  Modify process controls instruction (modpc)

e Alter the saved process controls prior to a return from an interrupt handler

*  Alter the saved process controls prior to a return from a fault handler

modpc directly reads and modifies the PC register. A TYPE.MISMATCH fault is generated if

modpc is executed in user mode with a non-zero mask. As with modac, modpc provides a mask

operand that can be used to limit access to specific bits or groups of bits in the register. modpc can
be used in user mode to read the current PC register.

fault record that is saved on the stack. Upon return from the interrupt or fault handler, the modified
process controls are copied into the PC register. The processor must be in supervisor mode prior to

|
|
|
|
\
In the latter two methods, the interrupt or fault handler changes process controls in the interrupt or
return for modified process controls to be copied into the PC register. ‘
\
\
|
\
|
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When process controls are changed as described above, the processor recognizes the changes
immediately except for one situation: if modpc is used to change the trace enable bit, the
processor may not recognize the change before the next four non-branch instructions are executed.

After initialization (hardware reset), the process controls reflect the following conditions:

»  priority = 31 * execution mode = supervisor

e trace enable = disabled e state = interrupted

When the processor is reinitialized with a sysctl reinitialize message, the PC register is not
changed.

Normally, modpe is not used to modify execution mode or trace fault state flags except under
special circumstances, such as in initialization code.

3.64 Trace Controls (TC) Register

The TC register, in conjunction with the PC register, controls processor tracing facilities. It
contains trace mode enable bits and trace event flags which are used to enable specific tracing
modes and record trace events, respectively. Trace controls are described in CHAPTER 10,
TRACING AND DEBUGGING.

3.7 USER SUPERVISOR PROTECTION MODEL

The processor can be in either of two execution modes: user or supervisor. The capability of a
separate user and supervisor execution mode creates a code and data protection mechanism
referred to as the user supervisor protection model. This mechanism allows code, data and stack
for a kernel (or system executive) to reside in the same address space as code, data and stack for
the application. The mechanism restricts access to all or parts of the kernel by the application
code. This protection mechanism prevents application software from inadvertently altering the
kernel.

3.71 Supervisor Mode Resources

Supervisor mode is a privileged mode which provides several additional capabilities over user
mode.

e When the processor switches to supervisor mode, it also switches to the supervisor stack.
Switching to the supervisor stack helps maintain a kernel’s integrity. For example, it allows
system debugging software or a system monitor to be accessed, even if an application’s
program destroys its own stack.
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* In supervisor mode, the processor is allowed access to a set of supervisor-only functions and
instructions. For example, the processor uses supervisor mode to handle interrupts and trace
faults. Operations that can modify interrupt controller behavior or reconfigure bus controller
characteristics can only be performed in supervisor mode. These functions include modifi-
cation of control registers or internal data RAM that is dedicated to interrupt controllers. A
fault is generated if supervisor-only operations are attempted while the processor is in user
mode. Table 3-11 lists supervisor-only operations and the fault which is generated if the
operation is attempted in user mode.

The PC register execution mode flag specifies processor execution mode. The processor automati-
cally sets and clears this flag when it switches between the two execution modes.

Table 3-11. Supervisor-Only Operations and Faults Generated in User Mode

Supervisor-Only Operation User-Mode Fault
dcctl (data cache control) TYPE.MISMATCH
halt (halt CPU) TYPE.MISMATCH
icctl (instruction cache control) TYPE.MISMATCH
intctl (global interrupt enable and disable) TYPE.MISMATCH
intdis (global interrupt disable) TYPE.MISMATCH
inten (global interrupt enable) TYPE.MISMATCH
modpc (modify process controls w/ non-zero TYPE.MISMATCH
mask)
sysctl (system control) TYPE.MISMATCH
Protected internal data RAM or Supervisor MMR | TYPE.MISMATCH
space write
Protected timer unit registers TYPE.MISMATCH

3.7.2 Using the User-Supervisor Protection Model

A program switches from user mode to supervisor mode by making a system-supervisor call (also
referred to as a supervisor call). A system-supervisor call is a call executed with the call-system
instruction (calls). With calls, the IP for the called procedure comes from the system procedure
table. An entry in the system procedure table can specify an execution mode switch to supervisor
mode when the called procedure is executed. calls and the system procedure table thus provide a
tightly controlled interface to procedures which can execute in supervisor mode. Once the
processor switches to supervisor mode, it remains in that mode until a return is performed to the
procedure that caused the original mode switch.
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Interrupts and faults can cause the processor to switch from user to supervisor mode. When the
processor handles an interrupt, it automatically switches to supervisor mode. However, it does not
switch to the supervisor stack. Instead, it switches to the interrupt stack. Fault table entries
determine if a particular fault will transition the processor from user to supervisor mode.

If an application does not require a user-supervisor protection mechanism, the processor can
always execute in supervisor mode. At initialization, the processor is placed in supervisor mode
prior to executing the first instruction of the application code. The processor then remains in
supervisor mode indefinitely, as long as no action is taken to change execution mode to user mode
The processor does not need a user stack in this case. :
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CHAPTER 4
CACHE AND ON-CHIP DATA RAM

This chapter describes the structure and user configuration of all forms of on-chip storage,
including caches (data, local register and instruction) and data RAM.

4.1 INTERNAL DATA RAM

Internal data RAM is mapped to the lower 1 Kbyte (0 to 03FFH) of the address space. Loads and
stores, with target addresses in internal data RAM, operate directly on the internal data RAM; no
external bus activity is generated. Data RAM allows time-critical data storage and retrieval without
dependence on external bus performance. Only data accesses are allowed to the internal data
RAM; instructions cannot be fetched from the internal data RAM. Instruction fetches directed to
the data RAM cause an OPERATION.UNIMPLEMENTED fault to occur.

Internal data RAM locations are never cached in the data cache. Logical Memory Template bits
controlling caching are ignored for data RAM accesses. However, the byte-ordering of the internal
data RAM is controlled by the byte-endian control bit in the DLMCON register.

Some internal data RAM locations are reserved for alternate functions other than general data
storage. The first 64 bytes of data RAM may be used to cache interrupt vectors; this reduces
latency for these interrupts. The word at location 0000H is always reserved for the cached NMI
vector. With the exception of the cached NMI vector, other reserved portions of the data RAM can
be used for data storage when the alternate function is not used. All locations of the internal data
RAM can be read in both supervisor and user mode.

The first 64 bytes (0000H to 003FH) of internal RAM are always user-mode write-protected. This
portion of data RAM can be read while executing in user or supervisor mode; however, it can only
be modified in supervisor mode. This area can also be write-protected from supervisor mode writes
by setting the BCON.SIRP bit. See section 12.4, “Physical Memory Attributes at Initialization”
(pg. 12-6). Protecting this portion of the data RAM from user and supervisor rights preserves the
interrupt vectors that may be cached there. See section 13.5.2.1, “Vector Caching Option” (pg.
13-22). »
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0000 0000H
NMI
0000 0004H
Optional Interrupt Vectors
0000 0003FH
Available for Data
0000 O3FFH

Figure 4-i . Interhal Data RAM

. The remainder of the internal data RAM can always be written from supervisor mode. User mode

write protection is optionally selected for the rest of the data RAM (40H to 3FFH) by setting the
Bus Configuration Register RAM protection bit (BCON.irp). Writes to internal data RAM
locations while they are protected generate a TYPE.MISMATCH fault. See section 12.4.1, “Bus
Control (BCON) Register” (pg. 12-6), for the format of the BCON register. ‘

New versions of i960 processor compilers can take advantage of internal data RAM; profiling .
compilers, such as those offered by Intel, can allocate the most frequently used variables into this
RAM.

4.2 LOCAL REGISTER CACHE

The 1960 Jx processor provides fast storage of local registers for call and return operations by
using an internal local register cache (also known as a stack frame cache). Up to eight local
register sets can be contained in the cache before sets must be saved in external memory. The
register set is all the registers (i.e. rO through r15). The processor uses a 128-bit wide bus to store
local register sets quickly to the register cache. An integrated procedure call mechanism saves the
current local register set when a call is executed. A local register set is saved into a frame in the
local register cache, one frame per register set. When the eighth frame is saved, the oldest set of
'local registers is flushed to the stack in external memory, which frees one frame.
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To decrease interrupt latency, software can reserve a number of frames in the local register cache
solely for high priority interrupts (interrupted state and process priority greater than or equal to 28).
The remaining frames in the cache can be used by all code including high-priority interrupts. When
a frame is reserved for high-priority interrupts, the local registers of the code interrupted by a high-
priority interrupt can be saved to the local register cache without causing a frame flush to memory.
This providing that the local register cache is not already full. Thus, the register allocation for the
implicit interrupt call does not incur the latency of a frame flush.

Software can reserve frames for high-priority interrupt code by writing bits 10 through 8 of the
register cache configuration word in the PRCB. This value indicates the number of free frames
within the register cache that can be used by high-priority interrupts only. Any attempt by non-
critical code to reduce the number of free frames below this value will result in a frame flush to
external memory. The free frame check is performed only when a frame is pushed, which occurs
only for an implicit or explicit call. The following pseudo-code illustrates the operation of the
register cache when a frame is pushed:

frames_for_non_critical = 7 - RCW[10:8];
if (interrupt_request)
set_interrupt_handler_PC;
push_frame;
number_of_frames = number_of_ frames + 1;
if (number_of_frames = 8) {
flush_register_frame (bottom_of_stack);
number_of_frames = number_of_frames - 1; }
else if ( number_of_frames = (frames_for_non_critical + 1)
&&
(PC.priority < 28 || PC.state != interrupted) )
{ flush_register_frame(bottom_of_stack);
number_of_frames = number_of_frames - 1; }

The valid range for the number of reserved free frames is 0 to 7. Setting the value to 0 reserves no
frames for exclusive-use by high-priority interrupts. Setting the value to 1, reserves 1 frame for
high-priority interrupts and 6 frames to be shared by all code. Setting the value to 7 causes the
register cache to become disabled for non-critical code.

4.3 BIG ENDIAN ACCESSES TO INTERNAL RAM AND DATA CACHE

Big-endian accesses to the internal data-RAM and data cache are supported. The default byte-order
for data accesses is programmed in DLMCON.be to be either little or big-endian. On the i960 Jx
processor DLMCON.be controls the default byte-order for all internal (i.e. on-chip data ram and
data cache) and external accesses. See section 12.6, “Programming the Logical Memory
Attributes” (pg. 12-8) for more details.
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44 INSTRUCTION CACHE

The 1960 JF and JD processors feature a 4 Kbyte, 2-way set associative instruction cache
organized in lines of four 32-bit words. The JA processor features a 2 Kbyte, 2-way set associative
instruction cache. The cache provides fast execution of cached code and loops of code in the cache
and provides more bus bandwidth for data operations in external memory. To optimize cache
updates when branches or interrupts are executed, each word in the line has a separate valid bit.
When requested instructions are found in the cache, the instruction fetch time is one cycle for up to
four words.

A mechanism to lock critical code within a way of the cache is provided as well as a mechanism to
disable the cache. The cache is managed through the icctl and sysctl instructions.

,Cache misses cause the processor to issue a double-word or a quad-Word fetch, based on the
location of the Instruction Pointer:

e If the IP is at word O or word 1 of a 16-byte block, a four-word fetch is initiated.

» Ifthe IP is at word 2 or word 3 of a 16-byte block, a two-word fetch is initiated.

441 Enabling and Disabling the Instruction Cache

Enabling the instruction cache is controlled on reset or initialization by the instruction cache
configuration word in the Process Control Block (PRCB), see Figure 11-6. If bit 16 in the
instruction cache configuration word is set, the instruction cache is disabled and all instruction
fetches are directed to external memory. Disabling the instruction cache is useful for tracing
execution in a software debug environment.

The instruction cache remains disabled until one of three operations is performed:
»  The processor is reinitialized with a new value in the instruction cache configuration word

¢ jcetl is issued with the enable instruction cache operation

» - sysctl is issued with the configure instruction cache message type and cache configuration
‘mode other than disable cache

4.4.2 Operation While The Instruction Cache Is Disabled

Disabling the instruction cache does not disable the instruction buffering that may occur within the
instruction fetch unit. A four-word instruction buffer is always enabled, even when the cache is
disabled.
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There is one tag and four word-valid bits associated with the buffer. Because there is only one tag
for the buffer, any “miss” within the buffer causes the following:

e All four words of the buffer are invalidated.

* A new tag value for the required instruction is loaded.

¢ The required instruction(s) are fetched from external memory.

Depending on the alignment of the “missed” instruction, either two or four words of instructions
are fetched and only the valid bits corresponding to the fetched words are set in the buffer. No

external instruction fetches are generated until there is a “miss” within the buffer, even m the
presence of forward and backward branches.

4.4.3 Locking Instructions in the Instruction Cache

The processor can be directed to load a block of instructions into the cache and then disable all
normal updates to the cache. This cache load-and-lock mechanism is provided to minimize latency
on program control transfers to key operations such as interrupt service routines. The block size
that can be loaded and locked on the 1960 Jx microprocessor is one way of the cache.

An icctl or sysctl instruction is issued with a configure-instruction-cache message type to select
the load-and-lock mechanism. When the lock option is selected, the processor loads the cache
starting at an address specified as an operand to the instruction.

44.4 Instruction Cache Visibility

Instruction cache status can be determined with an icctl issued with an instruction-cache status
message. To facilitate debugging, the instruction cache contents, instructions, tags and valid bits
can be written to memory. This is done by an icctl that is issued with the store cache operation.

44.5 Instruction Cache Coherency

Bus snooping is not implemented in the 1960 Jx instruction cache. The cache does not detect
modification to program memory by loads, stores or actions of other bus masters. Several
situations may require program memory modification, such as uploading code at initialization or
uploading code from a backplane bus or a disk drive.

The application program is responsible for synchronizing its own code modification and cache
invalidation. In general, a program must ensure that modified code space is not accessed until
modification and cache-invalidate are completed. To achieve cache coherency, instruction cache
contents should be invalidated after code modification is complete. Both the icctl and the sysctl
instruction can be used to invalidate the instruction cache for the 1960 Jx component.
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4.5 DATA CACHE

The 1960 JF and JD processors feature a 2 Kbyte, direct-mapped cache which enhances
performance by reducing the number of data load and store accesses to external memory. 1960 JA
processors have a 1 Kbyte data cache. The cache is write-through and write-allocate (as is the 1960
CF processor data cache). It has a line size of 4 words and implement a “natural” fill policy. Each
line in the cache has a valid bit. To reduce fetch latency on cache misses, each word within a line
also has a valid bit. Caches are managed through the dectl instruction.

User settings in the memory region configuration registers LMCONO-1 and DLMCON determine
which data accesses are cacheable or non-cacheable based on memory region.

4.5.1 Enabling and Disabling the Data Cache
To cache data, two conditions must be ensured:

1. The data cache must be globally enabled. A dcctl issued with an enable data cache message
will enable the cache. On reset or initialization, the data cache is always disabled and all
valid bits are set to zero.

2. Data caching for a location must be enabled by the corresponding logical memory
template, or by the default logical memory template if no other template applies. See
section 12.6, “Programming the Logical Memory Attributes” (pg. 12-8) for more details on
logical memory templates.

When the data cache is disabled, all data fetches are directed to external memory. Disabling the
data cache is useful for debugging or monitoring a system. To disable the data cache, issue a dcctl
with a disable data cache message. The enable and disable status of the data cache and various
attributes of the cache can be determined by an dcctl issued with a data-cache status message.

4.5.2 Multi-Word Data Access that Partially Hit the Data Cache
The following applies only when data caching is enabled for an access.

For a multi-word load access (ldl, Idt, Idq) in which none of the requested words hit the data
cache, an external bus transaction is started to acquire all the words of the access.

For a multi-word load access that partially hits the data-cache, the processor may either:

* Load or reload all words of the access (even those that hit) from the external bus.

+  Load only missing words from the external bus and interleave them with words found in the
data cache.

| B |
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The multi-word alignment determines which of the above methods is used:
* Naturally aligned multi-word causes all words to be reloaded.

*  An unaligned multi-word access causes only missing words to be loaded.

Regardless of which method is used, only locations within the data-cache that missed are updated
by the results of the external memory request. Locations that hit are not updated by the external
memory request. (This ensures coherency between word stores and multi-word loads.) In each
case, the external bus accesses used to acquire the data may consist of none, one, or several burst
accesses based on the alignment of the data and the bus-width of the memory region that contains
the data. (See Chapter 15, EXTERNAL BUS for more details.)

A multi-word load access that completely hits in the data cache does not cause external bus
accesses.

For a multi-word store access (stl, stt, stq) an external bus transaction is started to write all words
of the access regardless if any or all words of the access hit the data cache. External bus accesses
used to write the data may consist of none, one, or several burst accesses based on data alignment
and the bus-width of the memory region that receives the data. (See Chapter 15, EXTERNAL BUS
for more details.) The cache is also updated accordingly as described earlier in this chapter.

453 Data Cache Fill Policy

The 1960 Jx processor always uses a “natural” fill policy for cacheable loads. The processor fetches
only the amount of data that is requested by a load (i.e. a word, long word, etc.) on a data cache
miss. Exceptions are byte and short-word accesses, which are always promoted to words. This
allows a complete word to be brought into the cache and marked valid.

4.5.4 Data Cache Write Policy

The write policy determines what happens on cacheable writes (stores). The 1960 Jx processor
always uses a write-through policy. The result of a store is always propagated to external memory
regardless of whether the store is a hit or miss. Stores are always seen on the external bus; this
maintains coherency between the data cache and external memory.
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The 1960 Jx processor always uses a write-allocate policy for data. For a cacheable location, data
is always written to the data cache regardless of whether the access is a hit or miss. The following
cases are relevant to consider: ‘ o

1. In the case of a hit for a word or mult1 word store the appropnate l1ne and word(s) are
. updated with the data ‘ v ,
2. In the case of a miss for a word or multi-word store, a tag and cache line are allocated if

needed, and the appropnate vahd bits, line, and word(s) are updated.

3. In the case of a byte or short—word datum that h1ts a va11d word in the caohe, both thé word
in cache and external memory are updated with the datum; the cache word remains valid.

4. In the case of a byte or short-word datum that falls within a valid line, But misses béoause
the appropriate word is invalid, both the word and extemal memory are updated with the
datum; however the cache word remains invalid.

5. In the case of a byte or short-word datum that’does not fall within a valid line: a tag and
cache line are allocated; the appropriate cache word and external memory are updated with
the datum; and the cache line and all cache words are made invalid.

For cacheable stores that are equal to or greater than a word in length, cache tags and appropriate
valid bits are updated whenever data is written into the cache. Consider a word store as an
example. The tag is always updated and its valid bit is set. The appropnate valid bit for that word
is always set and the other three valid bits are always cleared.

Cacheable stores that are less than a word in length are handled differently. Byte and short-word
stores that hit the cache (i.e., are contained in valid words within valid cache lines) do not change
the tag and valid bits. The processor writes the data into the cache and external memory as usual.
A byte or short-word store to an invalid word within a valid cache line leaves the word valid bit
cleared because the rest of the word is still invalid. In all cases the processor simultaneously writes
the data into the cache and the external memory.

4.5.5 Data Cache Coherency and Non-cacheable Accesses

The 1960 Jx processor ensures that the data cache is always kept coherent w1th accesses that it
initiates and performs. The most visible application of this requirement concerns non-cacheable
accesses discussed below. However, the processor does not provide data-cache coherency for
accesses on the external bus that it did not initiate. Software is responsible for maintaining
coherency in a multi-processor environment.

4-8 4 I
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An access is defined as non-cacheable if any of the following are true:

1. The access falls into an address range mapped by an enabled LMCON pair or DLMCON
and the data-caching enabled bit in the matching LMCON is clear.

2. The entire data cache is disabled.

3. The access is a read operation of the read-modify-write sequence performed by an atmod or
atadd instruction.

4. The access is an implicit read access to the interrupt table to post or deliver a software
interrupt.

If the address for a non-cacheable store matches a tag (“tag hit”), the corresponding cache line will
still remain valid, but the appropriate word valid bit will be marked invalid. This is because the
word is not actually updated with the value of the store. This ensures that the data cache never
contains stale data in a single-processor system. A simple case illustrates the necessity of this
behavior: a read of a datum previously stored by a non-cacheable access must return the new value
of the datum, not the value in the cache. Because the processor invalidates the appropriate word in
the cache line on a store hit when the cache is disabled, coherency can be maintained when the data
cache is enabled and disabled dynamically.

4.5.6 External I/O and Bus Masters and Cache Coherency

The 1960 Jx processor implements a single processor coherency mechanism. There is no hardware
mechanism — such as bus snooping — to support multiprocessing. If another bus master can
change shared memory, there is no guarantee that the data cache contains the most recent data. The
user must manage such data coherency issues in software.

A suggested practice is to program the LMCONO-1 registers such that I/O regions are non-
cacheable. Partitioning the system in this fashion eliminates I/O as a source of coherency
problems.

4.5.7 Data Cache Visibility
Data cache status can be determined by an deetl issued with a data-cache status message.

Data cache contents, data, tags and valid bits can be written to memory as an aid for debugging.
This is accomplished by a dectl that is issued with the dump cache operand.
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CHAPTER5
INSTRUCTION SET OVERVIEW

This chapter provides an overview of the 960° microprocessor family’s instruction set and 1960 Jx
processor-specific instruction set extensions. Also discussed are the assembly-language and
instruction-encoding formats, various instruction groups and each group’s instructions.

CHAPTER 6, INSTRUCTION SET REFERENCE describes each instruction — including
assembly language syntax — and the action taken when the instruction executes and examples of
how to use the instruction.

5.1 INSTRUCTION FORMATS

80960Jx instructions may be described in two formats: assembly language and instruction
encoding. The following subsections briefly describe these formats.

5.1.1 . Assembly Language Format

Throughout this manual, instructions are referred to by their assembly language mnemonics. For
example, the add ordinal instruction is referred to as addo. Examples use Intel 80960 assembler
assembly language syntax which consists of the instruction mnemonic followed by zero to three
operands, separated by commas. In the following assembly language statement example for addo,
ordinal operands in global registers g5 and g9 are added together; the result is stored in g7: |

addo g5, g9, g7 # g7 = g9 + g5

In the assembly 1anguage listings in this chapter, registers are denoted as: |

g  global register r  local register
#  pound sign precedes a comment

All numbers used as literals or in address expressions are assumed to be decimal. Hexadecimal |
numbers are denoted with a “Ox” prefix (e.g., 0xffff0012). Several assembly language instruction |
statement examples follow. Additional assembly language examples are given in section 2.3.5, |
“Addressing Mode Examples” (pg. 2-8). Further information about syntax can be found in an
assembly language manual for the Intel iI960® Processor.

subi r3, r5, r6 . #r6 « r5 - 3

setbit 13, g4, g5 #95 « g4 with bit 13 set

lda 0xfab3, rl2 #r12¢« Oxfab3

1d (r4), g3 #g3 ¢ memory location that r4 points to

st gl0, (r6)[r7*2] #gl0« memory location that r6+2*r7 points to

B -
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5.1.2  Instruction Encoding Formats

All instructions are encoded in one'32-bit machine language instruction — also known as an
opword — which must be word aligned in memory. An opword’s most significant eight bits
contain the opcode field. The opcode field determines the instruction to be performed and how the
remainder of the machine language instruction is mterpreted Instructions are encoded in opwords
in one of four formats (see Figure 5-1).

Instruction Type Format  Description

register REG Most instructions are encoded in this format Used primarily
‘ for instructions which perform register-to-register operations.

compare and branch ' COBR An encoding optimization which combines compare and
branch operations into one opword. Other compare and
branch operations are also provided as REG and CTRL
format instructions.

control CTRL Used for branches and calls that do not depend on registers for
address calculation.

memory - MEM Used for referencing an operand which is a memory address.
Load and store instructions — and some branch and call
instructions — use this format. MEM format has two
encodings: MEMA or MEMB. Usage depends upon the
addressing mode selected. MEMB-formatted addressing
modes use the word in memory immediately following the
instruction opword as a 32-bit constant.

31 - 0
OPCODE SRC/DST SRC2 OPCODE SRC1 REG

31 0
OPCODE SRC1 SRC2 ‘ Displacement COBR

31 0
OPCODE Displacement CTRL

T ‘ 0
OPCODE | smomsT | Address Offset " MEMA

Base :

31 ‘ ‘ 0

OPCODE | SRC/DST Address Scale Index MEMB
32-Bit Displacement F_CAO009A

Figure 5-1. Machine-Level Instruction Formats
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5.1.3 Instruction Operands -

This section identifies and describes operands that can be used with the instruction formats.

Format Operand(s) , Description

REG srcl, src2, srcldst srcl and src2 can be global registers, local registers or
literals. src/dst is either a global or a local register.

CTRL displacement CTRL format is used for branch and call instructions.

displacement value indicates the target instruction of the
branch or call.

COBR srcl, src2, displacement  srcl, src2 indicate values to be compared; displacement
indicates branch target. srcl can specify a global register,
local register or a literal. src2 can specify a global or local
register.

MEM srcldst, efa Specifies source or destination register and an effective
address (efa) formed by using the processor’s addressing
modes as described in section 2.3, “MEMORY
ADDRESSING MODES” (pg. 2-6). Registers specified in a
MEM format instruction must be either a global or local
register.

5.2 INSTRUCTION GROUPS

The 1960 processor instruction set can be categorized into the following functional groups:

e Data Movement e Arithmetic (Ordinal and Integer) e Logical
*  Bit, Bit Field and Byte e Comparison e Branch
*  Call/Return e Fault *  Debug
e Atomic *  Processor Management ‘

Notice that the i960 Jx processor does not support the floating point instruction group of the
80960KB and 80960SB microprocessors. Table 5-1 shows the instructions in each group. The
actual number of instructions is greater than those shown in this list because — for some
operations — several unique instructions are provided to handle various operand sizes, data types
or branch conditions. The following sections briefly overview. the instructions in each group.

5.21 _ Data Movementk

These instructions are used to move data from memory to global and local registers, from global
and local registers to memory, and between local and global registers.

I 53
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Table 5-1. 80960JA/JF Instruction Set k

System Control
*Cache Control
*Interrupt Control

Data Movement Arithmetic Logical ~ Bit, Bit Field and Byte
Load Add And Set Bit
Store Subtract Not And Clear Bit
Move Multiply And Not Not Bit
*Conditional Select ‘Divide - Or Alter Bit
Load Address Remainder Exclusive Or Scan For Bit
Modulo - Not Or Span Over Bit
Shift Or Not . . Extract
. Extended Shift Nor Modify
Extended Multiply Exclusive Nor Scan Byte for Equal
‘Extended Divide | Not *Byte Swap
Add with Carry Nand
Subtract with Carry
*Conditional Add
*Conditional Subtract
o Rotate o
Comparison Branch ) Call/Return Fault
Compare Unconditional Branch Call Conditional Fault
Conditional Compare Conditional Branch Call Extended Synchronize Faults
Compare and Compare and Branch Call System
Increment Return
Compare and Branch and Link
Decrement
Test Condition Code
Check Bit .
Debug MF;:’:;:;::“ Atomic
Modify Trace Controls | Flush Local Registers Atomic Add
Mark Modify Arithmetic Atomic Modify
Force Mark Controls
Modify Process
Controls -
*Halt

* Denotes new instructions unavailable on 80960CA/CF, 80960KA/KB and 80960SA/SB implementations.

Rules for register alignment must be followed when using load, store and mo.ve instructions that
move 8, 12 or 16 bytes at a time. See section 3.5, “MEMORY ADDRESS SPACE” (pg. 3-13) for

alignment requirements for code portablllty across implementations.
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5.2.1.1 Load and Store Instructions

Load instructions listed below copy bytes or words from memory to local or global registers or to a
group of registers. Each load instruction requires a corresponding store instruction to copy to
memory bytes or words from a selected local or global register or group of registers. All load and
store instructions use the MEM format.

id load word st store word

Idob load ordinal byte stob store ordinal byte
Idos load ordinal short stos store ordinal short
Idib load integer byte stib store integer byte
Idis load integer short stis store integer short
idi load long stl store long

Idt load triple stt store triple

Idq load quad stq store quad

Id copies 4 bytes from memory into successive registers; Idl copies 8 bytes; ldt copies 12 bytes;
Idq copies 16 bytes.

st copies 4 bytes from successive registers into memory; stl copies 8 bytes; stt copies 12 bytes;
stq copies 16 bytes.

For 1d, Idob, Idos, Idib and Idis, the instruction specifies a memory address and register; the
memory address value is copied into the register. The processor automatically extends byte and
short (half-word) operands to 32 bits according to data type. Ordinals are zero-extended; integers
are sign-extended. .

For st, stob, stos, stib and stis, the instruction specifies a memory address and register; the
register value is copied into memory. For byte and short instructions, the processor automatically
reformats the source register’s 32-bit value for the shorter memory location. For stib and stis, this
reformatting can cause integer overflow if the register value is too large for the shorter memory
location. When integer overflow occurs, either an integer-overflow fault is generated or the
integer-overflow flag in the AC register is set, depending on the integer-overflow mask bit setting
in the AC register.

For stob and stos, the processor truncates the operand and does not create a fault if truncation
resulted in the loss of significant bits.
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5.2.1.2 Move

Move instructions copy data from a local or global register or group of registers to another régister
or group of registers. These instructions use the REG format.

mov move word

movl move long word

movt move triple word
movq move quad word

52.1.3 Load Address

The Load Address instruction (lda) computes an effective address in the address space from an
operand presented in one of the addressing modes. Ida is commonly used to load a constant into a
register. This instruction uses the MEM format and can operate upon local or global registers.

On the 1960 Jx processors, Ida is useful for performing simple arithmetic operations. The

processor’s parallelism allows lda to execute in the same clock as another arithmetic or logical
operation.

5.2.2 Select Conditional

Given the proper condition code bits setting, these instructions move one of two pieces of data
from its source to the specified destination.

selno Select Based on Unordered

selg Select Based on Greater

sele Select Based on Equal

selge Select Based on Greater or Equal
sell ~ Select Based on Less ‘
selne Select Based on Not Equal

selle Select Based on Less or Equal
selo Select Based on Ordered

5.2.3 Arithmetic

Table 5-2 lists arithmetic operations and data types for which the 1960 Jx processors provide
instructions. “X” in this table indicates that the microprocessor provides an instruction for the
specified operation and data type. All arithmetic operations are carried out on operands in
registers. Refer to section 5.2.12, “Atomic Instructions” (pg. 5-17) for instructions which handle
specific requirements for in-place memory operations.

5-6 I
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All arithmetic instructions use the REG format and can operate on local or global registers. The
following subsections describe arithmetic instructions for ordinal and integer data types.

Table 5-2. Arithmetic Operations

Data Types
Arithmetic Operations

Integer Ordinal
Add X
Add with Carry
Conditional Add
Subtract

Subtract with Carry
Conditional Subtract
Multiply

Extended Multiply
Divide

Extended Divide
Remainder

Modulo

Shift Left

Shift Right
Extended Shift Right X
Shift Right Dividing Integer X

x

X| X X| X]|X|X

x

XXX XX X|X|X|X]|X

x

X | X| X| X

5.2.3.1 Add, Subtract, Multiply and Divide

‘These instructions perform add, subtract, multiply or divide operations on integers and ordinals:

addi Add Integer

addo Add Ordinal

ADD<cc> Conditional Add

subi Subtract Integer ‘\
subo Subtract Ordinal {
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SUB<cc> Conditional Subtract

muli Multiply Integer
mulo Multiply Ordinal
divi Divide Integer
divo Divide Ordinal

addi, ADDI<cc>, subi, SUBl<cc>, muli and divi generate an integ'er—oVerﬂbw fault if the result is
too large to fit in the 32-bit destination. divi and divo generate a zero-divide fault if the divisor is
ZETo0.

5.2.3.2 Extended Arithmetic

These instructions support extended-precision arithmetic; i.e., arithmetic operations on operands
greater than one word in length:

addc add ordinal with carry

subc subtract ordinal with carry
emul extended multiply
ediv extended divide

addc adds two word operands (literals or contained in registers) plus the AC Register condition
code bit 1 (used here as a carry bit). If the result has a carry, bit 1 of the condition code is set;
otherwise, it is cleared. This instruction’s description in CHAPTER 6, INSTRUCTION SET
REFERENCE gives an example of how this instruction can be used to add two long-word (64-bit)
operands together.

subc is similar to adde, except it is used to subtract extended-precision values. Although addc
and subc treat their operands as ordinals, the instructions also set bit O of the condition codes if the
operation would have resulted in an integer overflow condition. This facxhtates a software imple-
mentation of extended integer arithmetic.

emul multiplies two ordinals (each contained in a register), producing a long ordinal result (stored
in two registers). ediv divides a long ordinal by an ordinal, producing an ordinal quotient and an
ordinal remainder (stored in two adjacent registers).

5.2.3.3 Remainder and Modulo

These instructions divide one operand by another and retain the remainder of the operation:

remi remainder integer
remo remainder ordinal
modi modulo integer
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The difference between the remainder and modulo instructions lies in the sign of the result. For
remi and remo, the result has the same sign as the dividend; for modi, the result has the same sign
as the divisor.

5.2.3.4 Shift and Rotate

These shift instructions shift an operand a specified number of bits left or right:

shlo shift left ordinal

shro shift right ordinal

shli shift left integer

shri shift right integer

shrdi shift right dividing integer

rotate rotate left

Except for rotate, these instructions discard bits shifted beyond the register boundary.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the most significant bit.
These instructions are equivalent to mulo and divo by the power of 2, respectively.

shli shifts zeros in from the least significant bit. If a shift of the specified places would result in an
overflow, an integer-overflow fault is generated (if enabled). The destination register is written
with the source shifted as much as possible without overflow and an integer-overflow fault is
signaled.

shri performs a conventional arithmetic shift right operation by shifting the sign bit in from the
most significant bit. However, when this instruction is used to divide a negative integer operand by
the power of 2, it may produce an incorrect quotient. (Discarding the bits shifted out has the effect
of rounding the result toward negative.)

shrdi is provided for dividing integers by the power of 2. With this instruction, 1 is added to the
result if the bits shifted out are non-zero and the operand is negative, which produces the correct
result for negative operands. shli and shrdi are equivalent to muli and divi by the power of 2,
respectively.

rotate rotates operand bits to the left (toward higher significance) by a specified number of bits.
Bits shifted beyond register’s left boundary (bit 31) appear at the right boundary (bit 0).
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5.2.4 Logical

These instructions perform bitwise Boolean operations on the specified operands:

and src2 AND srcl
notand  (NOT src2) AND srcl
andnot  src2 AND (NOT srcl)

xor src2 XOR srcl

or src2 OR srcl

nor NOT (src2 OR srcl)
xnor src2 XNOR srcl
not NOT srcl

notor (NOT src2) or srcl
ornot src2 or (NOT srcl)
nand NOT (src2 AND srcl)

These all use the REG format and can specify literals or local or global registers.

The processor provides logical operations in addition to and, or and xor as a performance optimi-
zation. This optimization reduces the number of instructions required to perform a logical
operation and reduces the number of registers and instructions associated with bitwise mask
storage and creation.

5.2.5 Bit and Bit Field

These instructions perform operations on a specified bit or bit field in an ordinal operand. All use
the REG format and can specify literals or local or global registers.

5.2.5.1 Bit Operations

Tthe instructions operate on a specifiéd bit:
setbit set bit

clrbit clear bit

notbit  not bit

alterbit  alter bit

scanbit  scan for bit

spanbit  span over bit

setbit, clrbit and notbit set, clear or complement (toggle) a specified bit in an ordinal.

5-10 ’ I
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alterbit alters the state of a specified bit in an ordinal according to the condition code. If the
condition code is 010, the bit is set; if the condition code is 000, the bit is cleared.

chkbit, described in section 5.2.7, “Comparison” (pg. 5-11), can be used to check the value of an
individual bit in an ordinal.

scanbit and spanbit find the most significant set bit or clear bit, respectively, in an ordinal.

5.2.5.2 Bit Field Operations
The two bit field instructions are extract and modify.

extract converts a specified bit field, taken from an ordinal value, into an ordinal value. In essence,
this instruction shifts right a bit field in a register and fills in the bits to the left of the bit field with
zeros. (eshro also provides the equivalent of a 64-bit extract of 32 bits).

modify copies bits from one register, under control of a mask, into another register. Only
unmasked bits in the destination register are modified. modify is equivalent to a bit field move.

5.2.6 Byte Operations s

scanbyte performs a byte-by-byte comparison of two ordinals to determine if any two corre-
sponding bytes are equal. The condition code is set based on the results of the comparison.
scanbyte uses the REG format and can specify literals or local or global registers.

bswap alters the order of bytes in a word, reversing its “endianess.”

5.2.7 Comparison

The processor provides several types of instructions for comparing two operands, as described in
the following subsections.

5.2.71 Compare and Conditional Compare |

These instructions compare two operands then set the condition code bits in the AC register
according to the results of the comparison:

cmpi Compare Integer "
cmpib Compare Integer Byte ]
cmpis Compare Integer Short ‘

cmpo Compare Ordinal |

G e
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cmpob Compare Ordinal Byte

cmpos Compare Ordinal Short
concmpi Conditional Compare Integer
concmpo  Conditional Compare Ordinal ’
chkbit Check Blt

These all use the REG format and can specify hterals or local or global reglsters The condltlon
code bits are set to indicate whether one operand is less than, equal to or greater than the other
operand. See section 3.6.2, “Arithmetic Controls (AC) Reglster” (pg. 3-17) for a description of the
condition codes for conditional operations.

cmpi and cmpo simply compare the two operands and set the condition code bits accordingly.
concmpi and concmpo first check the status of condition code bit 2:

e If not set, the operands are compared as with cmpi and cmpo.

*  If set, no comparison is performed and the condition code flags are not changed.

The conditional-compare instructions are provided specifically to optimize two-sided range
comparisons to check if A is between B and C (i.e., B < A < C). Here, a compare instruction (cmpi
or cmpo) checks one side of the range (e.g., A = B) and a conditional compare instruction
(concmpi or concmpo) checks the other side (e.g., A < C) according to the result of the first
comparison. The condition codes following the conditional comparison directly reflect the results
of both comparison operations. Therefore, only one conditional branch 1nstruct10n is requlred to
act upon the range check; otherwise, two branches would be needed.

chkbit checks a specified bit in a register and sets the condition code flags according to the bit
state. The condition code is set to 010, if the bit is set and 000, otherwise.

5.2.7.2 Compare and Increment or Decrement

These instructions compare two operands, set the condition code bits according to the results, then
increment or decrement one of the operands:

cmpinci compare and increment integer
cmpinco compare and increment ordinal
cmpdeci compare and decrement integer
cmpdeco  compare and decrement ordinal

These all use the REG format and can specify literals or local or global registers. They are an

architectural performance optimization which allows two register operations (e.g., compare and
add) to execute in a single cycle. These are intended for use at the end of iterative loops.
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5.2.7.3 Test Condition Codes

These test instructions allow the state of the condition code flags to be tested:

teste test for equal

testne test for not equal

testl test for less

testle test for less or equal
testg test for greater

testge test for greater or equal
testo test for ordered

testno test for unordered

If the condition code matches the instruction-specified condition, these cause a TRUE (01H) to be
stored in a destination register; otherwise, a FALSE (0O0H) is stored. All use the COBR format and
can operate on local and global registers.

5.2.8 Branch

Branch instructions allow program flow direction to be changed by explicitly modifying the IP.
The processor provides three branch instruction types:

e unconditional branch

* conditional branch

e compare and branch

Most branch instructions specify the target IP by specifying a signed displacement to be added to
the current IP. Other branch instructions specify the target IP’s memory address, using one of the

processor’s addressing modes. This latter group of instructions is called extended addressing
instructions (e.g., branch extended, branch-and-link extended).

5.2.8.1 Unconditional Branch

These instructions are used for unconditional branching:

b Branch

bx Branch Extended

bal Branch and Link

balx Branch and Link Extended

I 5-13

e mim




INSTRUCTION SET OVERVIEW Intel ®

b and bal use the CTRL format. bx and balx use the MEM format and can specify local or global
registers as operands. b and bx cause program execution to jump to the specified target IP. These
two instructions perform the same function; however, their determination of the target IP differs.
The target IP of a b instruction is specified at link time as a relative displacement from the current
IP. The target IP of the bx instruction is the absolute address resulting from the instruction’s use of
a memory addressing mode during execution. -

bal and balx store the next instruction’s address in a specified register, then jump to the specified
target IP. (For bal, the RIP is automatically stored in register g14; for balx, the RIP location is
specified with an instruction operand.) As described in section 7.9, “BRANCH-AND-LINK” (pg.
7-22), branch and link instructions provide a method of performing procedure calls that do not use
the processor’s integrated call/return mechanism. Here, the saved instruction address is used as a
return IP. Branch and link is generally used to call leaf procedures (that is, procedures that do not
call other procedures).

bx and balx can make use of any memory addressing mode.

5.2.8.2 Conditional Branch

With conditional branch (BRANCH IF) instructions, the processor checks the AC register
condition code flags. If these flags match the value specified with the instruction, ‘the processor
jumps to the target IP. These instructions use the displacement-plus-IP method of specifying the

target IP:

be branch if equal/true

bne branch if not equal

bl branch if less

ble branch if less or equal
bg branch if greater

bge branch if greater or equal
bo branch if ordered

bno branch if unordered/false

All use the CTRL format. bo and bno are used with real numbers. Refer to section 3.6.2.2,
“Condition Code” (pg. 3-18) for a discussion of the condition code for conditional operations.
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5.2.8.3 Compare and Branch

These instructions compare two operands then branch according to the comparison result. Three
instruction subtypes are compare integer, compare ordinal and branch on bit:

cmpibe compare integer and branch if equal

cmpibne compare integer and branch if not equal
cmpibl compare integer and branch if less

cmpible compare integer and branch if less or equal
cmpibg compare integer and branch if greater
cmpibge compare integer and branch if greater or equal
cmpibo compare integer and branch if ordered
cmpibno compare integer and branch if unordered
cmpobe compare ordinal and branch if equal
cmpobne compare ordinal and branch if not equal
cmpobl compare ordinal and branch if less

cmpoble compare ordinal and branch if less or equal
cmpobg compare ordinal and branch if greater
cmpobge compare ordinal and branch if greater or equal
bbs check bit and branch if set

bbc check bit and branch if clear

All use the COBR machine instruction format and can specify literals, local registers or global
registers as operands. With compare ordinal and branch and compare integer and branch instruc-
tions, two operands are compared and the condition code bits are set as described in section 5.2.7,
“Comparison” (pg. 5-11). A conditional branch is then executed as with the conditional branch
(BRANCH IF) instructions.

With check bit and branch instructions, one operand specifies a bit to be checked in the other
operand. The condition code flags are set according to the state of the specified bit: 010, (true) if
the bit is set and 000, (false) if the bit is clear. A conditional branch is then executed according to
condition code bit settings.

These instructions optimize execution performance time. When it is not possible to separate
adjacent compare and branch instructions with other unrelated instructions, replacing two instruc-
tions with a single compare and branch instruction increases performance.
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5.2.9 Call and Return

The processor offers an on-chip call/return mechanism for making procedure calls. Refer to
section 7.1, “CALL AND RETURN MECHANISM” (pg. 7-2). These instructions support this
mechanism:

call call

callx call extended
calls call system
ret return

call and ret use the CTRL machine-instruction format. callx uses the MEM format and can specify
local or global registers. calls uses the REG format and can specify local or global registers.

call and callx make local calls to procedures. A local call is a call that does not require a switch to
another stack. call and callx differ only in the method of specifying the target procedure’s address.
The target procedure of a call is determined at link time and is encoded in the opword as a signed
displacement relative to the call IP. callx specifies the target procedure as an absolute 32-bit
address calculated at run time using any one of the addressing modes. For both instructions, a new
set of local registers and a new stack frame are allocated for the called procedure.

calls is used to make calls to system procedures — procedures that provide a kernel or system-
executive services. This instruction operates similarly to call and callx, except that it gets its
target-procedure address from the system procedure table. An index number included as an
operand in the instruction provides an entry point into the procedure table.

Depending on the type of entry being pointed to in the system procedure table, calls can cause
either a system-supervisor call or a system-local call to be executed. A system-supervisor call is a
call to a system procedure that also switches the processor to supervisor mode and the supervisor
stack. A system-local call is a call to a system procedure that does not cause an execution mode or
stack change. Supervisor mode is described throughout CHAPTER 7, PROCEDURE CALLS.

ret performs a return from a called procedure to the calling procedure (the procedure that made the
call). ret obtains its target IP (return IP) from linkage information that was saved for the calling
procedure. ret is used to return from all calls — including local and supervisor calls — and from
implicit calls to interrupt and fault handlers. :
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5.2.10 Conditional Faults

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling procedures are then invoked to handle various fault types without explicit intervention by
the currently running program. These conditional fault instructions permit a program to explicitly
generate a fault according to the state of the condition code flags. All use the CTRL format.

faulte fault if equal

faultne fault if not equal

faultl fault if less

faultle fault if less or equal
faultg fault if greater

faultge fault if greater or equal
faulto fault if ordered
faultno fault if unordered

5.2.11 Debug

The processor supports debugging and monitoring of program activity through the use of trace
events. These instructions support these debugging and monitoring tools:

modpc modify process controls
modtc modify trace controls
mark mark

fmark force mark

These all use the REG format. Trace functions are controlled with bits in the Trace Control (TC)
register which enable or disable various types of tracing. Other TC register flags indicate when an
enabled trace event is detected. Refer to CHAPTER 10, TRACING AND DEBUGGING.

modpc can enable/disable trace fault generation; modtc permits trace controls to be modified.
mark causes a breakpoint trace event to be generated if breakpoint trace mode is enabled. fmark
generates a breakpoint trace independent of the state of the breakpoint trace mode bits.

The sysctl instruction also provides control over breakpoint trace event generation. This
instruction is used, in part, to load and control the 1960 Jx microprocessors’ breakpoint registers.

5.2.12 Atomic Instructions

Atomic instructions perform read-modify-write operations on operands in memory. They allow a
system to ensure that, when an atomic operation is performed on a specified memory location, the
operation completes before another agent is allowed to perform an operation on the same memory.
These instructions are required to enable synchronization between interrupt handlers and
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background tasks in any system. They are also particularly useful in systems where several agents
— processors, coprocessors or external logic — have access to the same system memory for
communication. :

The atomic instructions are atomic add (atadd) and atomic modify (atmod). atadd causes an
operand to be added to the value in the specified memory location. atmod causes bits in the
specified memory location to be modified under control of a mask. Both instructions use the REG
format and can specify literals or local or global registers.

5.2.13 Processor Management

These instructions control processor-related functions:

modpc Modify the process controls register
flushreg Flush cached local register sets to memory
modac Modify the AC register

sysctl Perform system control function

icctl Instruction cache control

dcctl Data cache control

halt Halt processor

inten Global interrupt enable

intdis Global interrupt disable

intctl Global interrupt enable and disable

All use the REG format and can specify literals or local or global registers.

modpc provides a method of reading and modifying PC register contents. Only programs
operating in supervisor mode may modify the PC register; however, any program may read it.

The processor provides a flush local registers instruction (flushreg) to save the contents of the
cached local registers to the. stack. The flush local registers instruction automatically stores the
contents of all the local register sets — except the current set — in the register save area of their
associated stack frames.

The modify arithmetic controls instruction (modac) allows the AC register contents to be copied
to a register and/or modified under the control of a mask. The AC register cannot be explicitly
addressed with any other instruction; however, it is implicitly accessed by instructions that use the
condition codes or set the integer overflow flag.

sysctl is used to configure the interrupt controller, breakpoint registers and instruction cache. It
also permits software to signal an interrupt or cause a processor reset and reinitialization. sysctl
may only be executed by programs operating in supervisor mode.
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icctl and dectl provide cache control functions including: enabling, disabling, loading and locking,
(instruction cache only) invalidating, getting status and storing cache information out to memory.
halt puts the processor in low-power halt mode. intctl, inten and intdis are used to enable and
disable interrupts and to determine current interrupt enable status.

5.3 PERFORMANCE OPTIMIZATION

Performance optimization are categorized into two sections: instructions optimizations and miscel-
laneous optimizations.

5.3.1 Instruction Optimizations

The instruction optimizations are broken down by the instruction classification.

5.3.1.1 Load / Store Execution Model

Because the 1960 Jx processor has a 32-bit external data bus, multiple word accesses require
multiple cycles. The Jx uses microcode to sequence the multi-word accesses. Because the
microcode can ensure that aligned multi-words are bursted together on the external bus, software
should not substitute multiple single-word instructions for one multi-word instruction for data that
is not likely to be in cache. For example a ldq provides better bus performance than four Id instruc-
tions.

Once a load is issued, the processor attempts to execute other instructions while the load is
outstanding. It is important to note that if the load misses the data cache, the processor does not
stall the issuing of subsequent instructions (other than stores) that do not depend on the load.

Software should avoid following a load with an instruction that depends on the result of the load.
For a load that hits the data cache, there will be a one-cycle stall if the instruction immediately after |
the load requires the data. If the load fails to hit the data cache, the instruction depending on the |
load will be stalled until the outstanding load request is resolved.

Multiple, back-to-back load instructions do not stall the processor until the bus queue becomes
full.

The processor delays issuing a store instruction until all previously-issued load instructions
complete. This happens regardless of whether the store is dependent on the load. This ordering
between loads and stores ensures that the return data from a previous cache-read miss does not
overwrite the cache line updated by a subsequent store.
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5.3.1.2 Compare Operations

Byte and short word data is more efficiently compared using the new byte and short compare
instructions (cmpob, cmpib, cmpos, cmpis), rather than shifting the data and using a word
compare instruction.

5.3.1.3 Microcoded Instructions

While the majority of instructions on the 1960 Jx processor are single cycle and are executed
directly by processor hardware, some require microcode emulation. Entry into a microcode
routine requires two cycles. Exit from microcode typically requires two cycles. For some routines,
one cycle of the exit process can execute in parallel with another instruction, thus saving one cycle
of execution time.

5.3.1.4 Multiply-Divide Unit Instructions

The Multiply-Divide Unit (MDU) of the Jx performs a number of multi-cycle arithmetic
operations. These can range from 2 cycles for a 16-bitx32-bit mulo, 4 cycles for a 32-bitx32-bit
mulo, to 30+ cycles for an ediv.

Once issued, these MDU instructions are executed in parallel with other non-MDU instructions
that do not depend on the result of the MDU operation. Attempting to issue another MDU
instruction while a current MDU instruction is executing, stalls the processor until the first one
completes.

5.3.1.5 Multi-Cycle Register Operations

A few register operatlons can also take multiple cycles. The followmg mstructlons are all
performed in microcode:

* bswap e extract * eshro * modify * movl ¢ movt

* movq * shrdi * scanbit * spanbit * testno * testo
* testl * testle , ¢ teste - * testne * testg * testge

On the Jx, test<cc> dst is microcoded and takes many more cycles than SEL<ce> 0,1 dst, which is
executed in one cycle directly by processor hardware.

Multi-register move operation execution time can be decreased at the éxpense of cache utilization
and code density by using mov the appropriate number of times instead of movl, movt and movq
instructions.
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5.3.1.6 Simple Control Transfer

There is no branch lookahead or branch prediction mechanism on the i960 Jx microprocessor.
Simple branch instructions take one cycle to execute, and one more cycle is needed to fetch the
target instruction if the branch is actually taken.

b, bal, bno, bo, bl, ble, be, bne, bg, bge

One mode of the bx (branch-extended) instruction, bx (base), is also a simple branch and takes one
cycle to execute and one cycle to fetch the target.

As a result, a bal(g14) or bx (g14) sequence provides a two-cycle call and return mechanism for
efficient leaf procedure implementation.

Compare-and-branch instructions have been optimized on the i960 Jx microprocessor. They
require 2 cycles to execute, and one more cycle to fetch the target instruction if the branch is
actually taken. The instructions are:

- cmpobno « cmpobo « cmpobl « cmpoble » cmpobe « cmpobne
+ cmpobg + cmpobge - cmpibno - cmpibo « cmpibl - cmpible
« cmpibe + cmpibg » cmpibne « cmpibge  bbe » bbs
5.3.1.7 Memory Instructions

The 80960Jx provides efficient support for naturally aligned byte, short, and word accesses that
use one of 6 optimized addressing modes. These accesses require only 1 to 2 cycles to execute;
additional cycles are needed for a load to return its data.

The byte, short and word memory instructions are:

Idob, Idib, Idos, Idis, Id, Ida stob, stib, stos, stis, st

The remainder of accesses require multiple cycles to execute. These include:
*  Unaligned short, and word accesses
*  Byte, short, and word accesses that do not use one of the 6 optimized addressing modes

e Multi-word accesses
The multi-word accesses are:

Idl, Idt, Idg, stl, stt, stq
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5.3.1.8 Unaligned Memory Accesses

Unaligned memory accesses are performed by microcode. Microcode sequences the access into
smaller aligned pieces and does any merging of data that is needed. As a result, these accesses are
not as efficient as aligned accesses. In addition, no bursting on the external bus is performed for
these accesses. Whenever possible, unaligned accesses should be avoided.

5.3.2 Miscellaneous Optimizations

5.3.2.1 Masking of Integer Overflow

The i960 core architecture inserts an implicit syncf before performing a call operation or
delivering an interrupt so that a fault handler can be dispatched first, if necessary. The syncf can
require a number of cycles to complete if a multi-cycle integer-multiply (muli) or integer-divide
(divi) instruction was issued previously and integer-overflow faults are unmasked (allowed to
occur). Call performance and interrupt latency can be improved by masking integer-overflow
faults (AC.om = 1), which allows the implicit syncf to complete more quickly.

5.3.2.2 . Avoid Using PFP, SP, R3 As Destinations for MDU Instructions

When performing a call operation or delivering an interrupt, the processor typically attempts to
push the first four local registers (pfp, sp, rip, and r3) onto the local register cache as early as
possible. Because of register-interlock, this operation will be stalled until previous instructions
return their results to these registers. In most cases, this is not a problem; however, in the case of
multi-cycle instructions (di\lo, divi, ediv, modi, remo, and remi), the processor could be stalled
for many cycles waiting for the result and unable to proceed to the next step of call processing or
interrupt delivery.

Call performance and interrupt latency can be improved by avoiding the first four registers as the
destination for a MDU instruction. Generally, registers pfp, sp, and rip should be avoided they are
used for procedure linking.

5.3.2.3 Use Global Registers (g0 - g14) As Destinations for MDU Instructions

Using the same rationale as in the previous item, call processing and interrupt performance are
improved even further by using global registers (g0-g14) as the destination for multi-cycle MDU
instructions. This is because there is no dependency between g0-gl4 and implicit or explicit call
operations (i.e., global registers are not pushed onto the local register cache). -
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5.3.2.4 Execute in Imprecise Fault Mode

Significant performance improvement is possible by allowing imprecise faults (AC.nif = 0). In
precise fault mode (AC.nif = 1), the processor will not issue a new instruction until the previous
one has completed. This ensures that a fault from the previous instruction is delivered before the
next instruction can begin execution. Imprecise fault mode allows new instructions to be issued
before previous ones have completed, thus increasing the instruction issue rate. Many applications
can tolerate the imprecise fault reporting for the performance gain. A syncf can be used in
imprecise fault mode to isolate faults at desired points of execution when necessary.
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'CHAPTER 6
INSTRUCTION SET REFERENCE |

This chapter provides detailed information about each instruction available to the i960® Jx
processors. Instructions are listed alphabetically by assembly language mnemonic. Format and |
notation used in this chapter are defined in section 6.1, “NOTATION” (pg. 6-1). }

Information in this chapter is oriented toward programmers who write assembly language code for |
the 1960 Jx processors. Information provided for each instruction includes:

* Alphabetic listing of all instructions | * Faults that can occur dilring execution

¢ Assembly language mnemonic, name and e Action (or algorithm) and other side effects
format of executing an instruction

» Description of the instruction’s operation * Assembly language example

* Opcode and instruction encoding format * Related instructions

Additional information about the instruction set can be found in the following chapters and
appendices in this manual:

* CHAPTER 5, INSTRUCTION SET OVERVIEW - Summarizes the instruction set by group
and describes the assembly language instruction format.

¢ APPENDIX B, OPCODES AND EXECUTION TIMES - A quick-reference listing of
instruction encodings assists debug with a logic analyzer.

* APPENDIX D, INSTRUCTION SET QUICK REFERENCE - A tabular quick reference of
each instruction’s operation.

e APPENDIX D, MACHINE-LEVEL INSTRUCTION FORMATS - Describes instruction set
opword encodings. "

e 1960 Jx PROCESSOR INSTRUCTION SET QUICK REFERENCE (order number 272597) -
A pocket-sized quick reference to all Jx instructions.

6.1 NOTATION

In general, notation in this chapter is consistent with usage throughout the manual; however, there
are a few exceptions. Read the following subsections to understand notations that are specific to
this chapter.
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6.1.1 ' Alphabetic Reference

Instructions are listed alphabetically by:assembly language mnemonic. If several instructions are
related and fall together alphabetically, they are described as a group on a single page.

The instruction’s assembly language mnemonic is shown in bold at the top of the page (e.g.,
sube). Occasionally, it is not practical to list all mnemonics at the page top. In these cases, the
name of the instruction group is shown in capital letters (e.g., BRANCH<cc> or FAULT<cc>).

The 1960 Jx processor-specific extensions to the 1960 microprocessor instruction set are indicated
in the header text for each such instruction. This type of notation is also used to indicate new core
architecture instructions. Sections describing new core instructions. provide notes as:-to which
1960-series processors do not implement these instructions.

Generally, instruction set extensions are not portable to other i960 processor implementations.
Further, new core instructions are not typically portable to earlier 1960 processor family imple-
mentations such as the 1960 KX-series microprocessors.

6.1.2 Mnemonic
The Mnemonic section gives the mnemonic (in boldface type) and ins'truction! name for each
instruction covered on the page, for example:

subi Subtract Integer

This name is the actual assembly language instruction name recognized by assemblers.

6.1.3 ‘Format
The Format section gives the instruction’s assembly language format and allowable operand
types. Format is given in two or three lines. The following is a two-line format example:

sub* srcl . sre2 dst:

reg/lit reg/lit reg

The first line gives the assembly language mnemonic (boldface type) and operands (italics). When
the format is used for two or more instructions, an abbreviated form of the mnemonic is used. An
* (asterisk) at the end of the mnemonic indicates a variable: in the above example, sub* is either
subi or subo. Capital letters indicate an instruction class. For example, ADD<cc> refers to the
class of conditional add instructic'ms»(e’.g., addio, addig, addoo, addog).

Operand names are designed to describe operand function (e.g., src, len, mask).

The second line shows allowable entries for each operand. Notation is as follows:
reg Global (g0 ... g15) or local (10 ... r15) register

6-2 l
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lit Literal of the range 0 ... 31
disp Signed displacement of range (22 ... 222 1
mem Address defined with the full range of addressing modes

In some cases, a third line is added to show register or memory location contents. For example, it
may be useful to know that a register is to contain an address. The notation used in this line is as
follows:

addr Address
efa Effective Address
6.1.4 Description

The Description section is a narrative description of the instruction’s function and operands. It also
gives programming hints when appropriate.

\
|

6.1.5 Action

The Action section gives an algorithm written in a "C-like" pseudo-code that describes direct
effects and possible side effects of executing an instruction. Algorithms document the instruction’s
net effect on the programming environment; they do not necessarily describe how the processor
actually implements the instruction. The following is an example of the action algorithm for the
alterbit instruction: .

if((AC.cc & 010,)==0) ‘
dst = src2 & ~(2**(src1%32)); ?
else , 1
dst = src2 | 2%*(src1%32); |

Table 6-1 defines each abbreviation used in the instruction reference pseudo-code.

The pseudo-code has been written to comply as closely as possible with standard C programming }
language notation. Table 6-2 lists the pseudocode symbol definitions. i
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Table 6-1. Abbreviations in Pseudo-code

AC.xxx Arithmetic Controls Register fields T :
AC.cc Condition Code flags (AC.cc2:0)
AC.cclo] Condition Code Bit 0
AC.cc[1] Condition Code Bit 1
ACccl2] = Condition Code Bit:2
AC.nif : . No Imprecise Faults flag
AC.of Integer Overflow flag
AC.om Integer Overflow Mask Bit
PC.xxx Process Controls Register fields
PC.em Execution Mode flag
PC.s State Flag
PC.tfp Trace Fault Pending flag
PC.p Priority Field (PC.p5:0)
PC.te Trace Enable Bit
TC.xxx .- Trace Controls Register fields . : ‘
TC.i Instruction Trace Mode Bi
TC.c Call Trace Mode Bit
TC.p Pre-return Trace Mode Bit
TC.br Mark Trace Mode Bit
TC.b Branch Trace Mode Bit
TCr Return Trace Mode Bit
TC.s Supervisor Trace Mode Bit
PFP.xxx Previous Frame Pointer (r0) . ‘
| PFP.add ' ~ Address (PFP.add31:4)
‘| PFP.rrr Return Type Field (PFP.rt2:0)
PFPp Pre-return Trace flag
sp Stack Pointer (r1)
fp Frame Pointer (g15)
rip Return Instruction Pointer (r2)
SPT System Procedure Table i
SSP Supervisor Stack Base Address
| SPT(targ) . Address of SPT Entry targ
SSPte Trace Enable
Table 6-2. Pseudo-code Symbol Definitions (Sheet 1 of 2)
= Assignment
==, |= Comparison: equal, not equal
<, > less than, greater than
<=, >= less than or equal to, greater than or equal to
<<, >> Logical Shift
* Exponentiation
&, && Bitwise AND, logical AND
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Table 6-2. Pseudo—code Symbol Definitions (Sheet 2 of 2)

= Assignment
[, 1l Bitwise OR, logical OR
A Bitwise XOR
~ One’s Complement
% Modulo
+, - Addition, Subtraction
* Multiplication (Integer or Ordinal)
/ Division (Integer or Ordinal)
# Comment delimiter
Table 6-3. Faults Applicable to All Instructions
Fault Type Subtype Description
An attempt to execute any instruction fetched from internal data
Operation Unimplemented RAM or a memory-mapped region causes an operation unimple-
mented fault.
A Mark Trace Event is signaled after completion of an instruction for
Mark which there is a hardware breakpoint condition match. A Trace fault
Trace is generated if PC.m is set.
Instruction An Instruction Trace Event is signaled after instruction completion. A
Trace fault is generated if both PC.te and TC.i=1.
Table 6-4. Common Faulting Conditions
Fault Type Subtype Description
Any instruction that causes an unaligned memory access causes an
Unaligned operation aligned fault if unaligned faults are not masked in the fault
configuration word in the Processor Control Block (PRCB).
. This fault is generated when the processor tries to execute words from
Invalid Opcode ) :
memory that do not contain code.
Operation This fault is caused by a non-defined operand in a supervisor mode only
Invalid Operand instruction or by an operand reference to an unaligned long-, triple- or
quad-register group.
This fault can occur due to an attempt to perform a non-word or
Unimplemented unaligned access to a memory-mapped region or if trying to execute
from MMR space or internal data RAM.
Any instruction that attempts to write to internal data RAM or a memory-
Type Mismatch mapped register while not in supervisor mode causes a type mismatch
fault.
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6.1.6 Faults

The Faults section lists faults that can be signaled as a direct result of instruction execution. Table
6-3 shows the possible faulting conditions that are common to the entire instruction set and could
directly result from any instruction. These fault types are not included in the instruction reference.
Table 6-4 shows the possible faulting conditions that are common to large subsets of the
instruction set. If an instruction can generate a fault, it is noted in that instruction’s Faults
section.Other instructions can generate faults in addition to those shown in the following tables. If
an instruction can generate a fault, it is noted in that instruction’s Faults section.

6.1.7 Example

The Example section gives an assembly language example of an application of the instruction.

6.1.8 Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and instruction format for each
instruction, for example:

subi 593H REG
The opcode is given in hexadecimal format. The format is one of four possible formats: REG,

COBR, CTRL and MEM. Refer to APPENDIX D, MACHINE-LEVEL INSTRUCTION
FORMATS for more information on the formats.

6.1.9 See Also

The See Also section gives the mnemonics of related instructions which are also alphabetically
listed in this chapter. ‘

6.1.10 Side Effects

This section indicates whether the instruction causes changes to the condition code bits in the
Arithmetic Controls.
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6.1.11 Notes

This section provides additional information about an instruction such as whether it is
- implemented in other i960 processor families.

6.2 INSTRUCTIONS

This section contains reference information on the processor’s instructions. It is arranged alphabet-
ically by instruction or instruction group.
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6.2.1 ADD<CC> (New 80960 Core Instruction Class)
Mnemonic: addono Add Ordinal if Unordered

addog Add Ordinal if Greater

addoe Add Ordinal if Equal

addoge Add Ordinal if Greater or Equal

addol Add Ordinal if Less

addone Add Ordinal if Not Equal
addole Add Ordinal if Less or Equal

addoo Add Ordinal if Ordered

addino Add Integer if Unordered

addig Add Integer if Greater

addie Add Integer if Equal

addige Add Integer if Greater or Equal

addil Add Integer if Less

addine Add Integer if Not Equal

addile Add Integer if Less or Equal

addio Add Integer if Ordered
Format: add* srcl, src2, dst

reg/lit reg/lit reg

Description: Conditionally adds src2 and srcl values and stores the result in dst based on

the AC register condition code. If for Unordered the condition code is 0, or if
for all other cases the logical AND of the condition code and the mask part of
the opcode is not 0, then the values are added and placed in the destination.
Otherwise the destination is left unchanged. Table 6-5 shows the condition
code mask for each instruction. The mask is in opcode bits 4-6.

Action: addo<cc>:
if((mask & AC.cc) Il (mask == AC.cc))
dst = (srcl + src2)[31:1];

addi<ces>:
if((mask & AC.cc) Il (mask == AC.cc))
dst = (srcl + src2)[31:1];
if((src2[31] == src1[31]) && ((src2[31] !=dst[31]))
{ if(AC.om==1)

AC.of =1;
else
generate_fault(ARITHMETIC.OVERFLOW);
}
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

ARITHMETIC.OVERFLOW  Occurs only with addi*<cc>.
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Table 6-5. ADD Condition Codes

Instruction Mask Condition
addono
- 000, Unordered
addino
addog
- 001, Greater
addig
addoe
- 010, Equal
addie
addoge
- 011, Greater or equal
addige
addol
- 100, Less
addil
addone
- 101, Not equal |
addine ' ‘ L
addole _ |
110, Less or equal i
addile , l
addoo |
- 111, Ordered |
addio |
Example: # Assume (AC.cc AND 001,) # O. |
addig r4, r8, rlo0 # r1l0 = r8 + r4

# Assume (AC.cc AND 101,) = 0.
addone r4, r8, rl0 # r10 is not changed.

I 6-9
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Opcode:

See Also:

Notes:

. 6-10

addono
addog
addoe
addoge
addol
addone
addole
addoo
addino
addig
addie
addige
addil
addine
addile
addio

addc, SUB<cc>, addi, addo

780H

790H

7AOH
7BOH
7COH
7DOH
7EOH

- TFOH

781H
791H
TA1H

“7B1H

7C1H
7D1H
7E1IH
TF1H

- REG

REG
REG
REG

" REG

REG

" REG

REG
REG
REG
REG
REG
REG
REG
REG
REG

This class of core instructions is not implemented on 80960Cx, Kx and Sx

processors.
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S T R TTLLT

622 addc

Mnemonic: addc Add Ordinal With Carry |

Format: addc srcl, src2, dst :
reg/lit reg/flit reg p

Description: Adds src2 and srcl values and condition code bit 1 (used here as a carry-in) A

and stores the result in dsz. If ordinal addition results in a carry out, condition
code bit 1 is set; otherwise, bit 1 is cleared. If integer addition results in an
overflow, condition code bit 0 is set; otherwise, bit 0 is cleared. Regardless of
addition results, condition code bit 2 is always set to 0.

i3
I
)
j

addc can be used for ordinal or integer arithmetic. addc does not distinguish
between ordinal and integer source operands. Instead, the processor evaluates
the result for both data types and sets condition code bits 0 and 1 accordingly.

An integer overflow fault is never signaled with this instruction.
Action: dst = (src1 + src2 + AC.cc[1])[31:0];

AC.cc[2:0] = 000,;

if((src2[31] == src1[31]) && (src2[31] !=dst[31]))

AC.cc[0]=1; # Overflow bit.
AC.cc[1] = (src2 + srcl + AC.cc[1])[32]; # Carry out.
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
Example: # Example of double-precision arithmetic.

# Assume 64-bit source operands
# in g0,gl and g2,g3

cmpo 1, 0 # Clears Bit 1 (carry bit) of
# the AC.cc.
addc g0, g2, g0 # Add low-order 32 bits: {
# g0 = g2 + g0 + carry bit
addc gl, g3, gl # Add high-order 32 bits:
# gl = g3 + gl + carry bit J
# 64-bit result is in g0, gl. i
Opcode: addc 5BOH REG
See Also: ADD, SUB
Side Effects: Sets the condition code in the arithmetic controls.
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6.2.3

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-12

addi, addo

addo Add Ordinal

addi Add Integer

add* srcl, src2, dst
reg/lit reg/lit o reg

Adds src2 and srcl values and stores the result in dsz. The binary results from
these two instructions are identical. The only difference is that addi can
signal an integer overflow.

addo:
dst = (src2 +src1)[31:0];

addi: Lo

dst = (src2 + src1)[31:0];

if((src2[31] == src1[31]) && (src2[31] !=dst[31]))

{ if(AC.om==1)

AC.of = 1;

else ‘ ,
generate_fault(ARITHMETIC_OVERFLOW);

} .

STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
ARITHMETIC.OVERFLOW  Occurs only with addi.

addi r4, g5, r9 # r9 = g5 + rd

addo 590H REG

addi 591H REG

addc, subi, subo, subc, ADD
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6.2.4

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

alterbit - :

INSTRUCTION SET REFERENCE

alterbit Alter Bit

alterbit bitpos, src, Cdst
reg/lit reg/lit reg .

Copies src value to dst with one bit altered. bitpos operand specifies bit to be
changed; condition code determines value to which the bit is set. If condition
code is X1X,, bit 1 = 1, the selected bit is set; otherwise, it is cleared.
Typically this instruction is used to set the bitpos bit in the farg register if the
result of a compare instruction is the equal condition code (010,).

if((AC.cc & 010,)==0)
dst = src2 & ~(2**(SRC1%32));

else

dst = src2 | 2**(src1%32);
STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
# Assume AC.cc = 010,
alterbit 24, g4,99 # g9 = g4, with bit 24 set.
alterbit 58FH REG
chkbit, cirbit, notbit, setbit

6-13
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6.2.5

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-14

and, andnot

and And
andnot And Not
and srcl, src2, dst
o reg/lit reg/lit reg
andnot srel, - sre2, dst
reg/lit reg/lit reg

Performs a bitwise AND (and) or AND NOT (andnot) operation on src2 and

"srcl values and stores result in dsz. Note in the action expressions below, src2

operand comes first, so that with andnot the expression is evaluated as:

{src2 and not (srcl)}
rather than
{srcl and not (src2)}.

- and:

dst = src2 & srcl;

andnot:

dst = src2 & ~srcl;

STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
and 0x7, g8, g2 # Put lower 3 bits of g8 in g2.

andnot 0x7, rl2, r9 # Copy rl2 to r9 with lower
# three bits cleared.

and 581H REG
andnot 582H REG

nand, nor, not, notand, notor, or, ornot, xnor, xor
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6.2.6 atadd

Mnemonic: atadd Atomic Add
Format: atadd addr, src, dst
reg/lit reg/lit reg
Description: Adds src value (full word) to value in the memory location specified with %

addr operand. The operation is performed on the actual data in memory and
never on a cached value on chip. Initial value from memory is stored in dst.

Memory read and write are done atomically (i.e., other bus masters must be
prevented from accessing the word of memory containing the word specified
by src/dst operand until operation completes).

Memory location in addr is the word’s first byte (LSB) address. Address is
automatically aligned to a word boundary. (Note that addr operand maps to
srcl operand of the REG format.)

Action: implicit_syncf();
tempa = addr & OxFFFFFFFC;
temp = atomic_read(tempa);
atomic_write(tempa, temp+src);

dst = temp;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
Example: atadd r8, r3, rll # r8 contains the address of

‘ # memory location. ‘
# rll = (r8) |
# (r8) = rll + r3. i
Opcode: atadd 612H REG ]
See Also: atmod T
|
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6.2.7 atmod

Mnemonic:

Format:

Description: .

Action:

Faults:

Example:

Opcode:

See Also:

6-16

atmod Atomic Modify

atmod addr mask, - srcldst
reg - reg/lit reg

. Copies the selected bits of src/dst value into memory location specified in
addr. The operation'is performed on the actual data in memory and never on
-a cached value on-chip. Bits set in mask operand select bits to be modified in

memory. Initial value from memory is stored in src/dst.

‘Memory read and write are done atomically (i.e., other bus masters must be
prevented from accessing the word of memory Fontaining the word specified

with the src/dst operand until operation completes).

-Memory. location in addr is the modified word’s first byte (LSB) address.

Address is automatically aligned to a word boundary.

implicit_syncf();

tempa = addr & OxFFFFFFFC; -

temp = atomic_read(tempa);

temp = (temp &~ mask) | (sre_dst & mask);
atomic_write(tempa, temp);

src_dst = temp;

STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

tempa = (gb5)
temp = (tempa andnot g7) or

atmod g5, g7, gl0 #
#
# (gl0 and g7)
#
#

(g5) = temp
gl0 = tempa

atmod 610H REG
atadd
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6.2.8 b, bx

Mnemonic: b Branch
bx Branch Extended
Format: b targ 3
disp |
bx targ ‘
mem ‘
Description: Branches to the specified target.

With the b instruction, IP specified with targ operand can be no farther than
2810 28-9) bytes from current IP. When using the Intel i9960® processor
assembler, farg operand must be a label which specifies target instruction’s IP.

bx performs the same operation as b except the target instruction can be
farther than -2%3 to (223 4) bytes from current IP. Here, the target operand is
an effective address, which allows the full range of addressing modes to be
used to specify target instruction’s IP. The “IP + displacement” addressing
mode allows the instruction to be IP-relative. Indirect branching can be
performed by placing target address in a register then using a register-indirect
addressing mode.

Refer to section 2.3, “MEMORY ADDRESSING MODES” (pg. 2-6) for
information on this subject.

Action: b:

temp[31:2] = sign_gxtension(targ[23:2]);
1P[31:2] =1P[31:2] + temp[31:2];

IP[1:0] = 0;

bx:

IP[31:2] = effective_address(targ[31:2]);

IP[1:0] = 0;
Faults: STANDARD " Refer to section 6.1.6, “Faults” (pg. 6-6).
Example: b xyz # IP = xyz;

bx 1332 (ip) # IP = IP + 8 + 1332;

# this example uses IP-relative addressing
Opcode: b 08H CTRL

bx 84H MEM
See Also: bal, balx, BRANCH, COMPARE AND BRANCH, bbc, bbs
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6.2.9

Mnemonic:

Format:

Description:

Action:

6-18

bal, balx

bal Branch and Link
balx Branch and Link Extended
bal targ
disp
balx targ, dst
mem reg

Stores address of instruction following bal or baix in a register then branches
to the instruction specified with the targ operand.

The bal and balx instructions are used to call leaf procedures (procedures
that do not call other procedures). The IP saved in the register provi(des a
return IP that the leaf procedure can branch to (using a b or bx instruction) to
perform a return from the procedure. Note that these instructions do not use
the processor’s call-and-return mechanism, so the calling procedure shares its

~ local- reglster set with the called (leaf) procedure

With bal, address of next instruction is stored in register gl4. rarg operand
value can be no farther than -223 to (223 4) bytes from current IP. When
using the Intel i960 processor assembler, farg must be a label which specifies
the target instruction’s IP.

balx performs same operation as bal except next instruction address is stored
in dst (allowing the return IP to be stored in any available register). With
balx, the full address space can be accessed. Here, the target operand is an
effective address, which allows full range of addressing modes to be used to
specify target IP. “IP + displacement” addressing mode allows instruction to
be IP-relative. Indirect branching can be performed by placing target address
in a register and then using a register-indirect addressing mode.

See section 2.3, “MEMORY ADDRESSING MODES” (pg. 2-6) for a
complete discussion of addressing modes avallable with memory-type
operands.

bal:

gla=1P + 4;

IP[31:2] = effective_address(targ[31:2]);
1P[1:0] = 0;

balx:
dst = IP + instruction_length;

# Instruction_length = 4 or 8 depending on the size of target address.
IP[31:2] = effective_address(targ[31:2]);# Resume execution at the new IP.

IP[1:0] =0;
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Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
Example: bal xyz # gld = IP + 4
# IP = xyz
balx (g2), g4 # g4 = IP + 4
# IP = (g2)
Opcode: bal O0BH CTRL :
balx 85H MEM :
See Also: b, bx, BRANCH, COMPARE AND BRANCH, bbc, bbs ‘
}
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6.2.10

Mnemonic:

Format:

Description:

Action:

Faults:

6-20

‘bbc, bbs

bbc Check Bit and Branch If Clear

bbs Check Bit and Branch If Set
bb* bitpos, src, targ
reg/lit reg disp

Checks bit in src (designated by bitpos) and sets AC register condition code
according to src. value. The processor then performs conditional branch to
instruction specified with targ, based on condition code state.

For bbe, if selected bit in s7c is clear, the processor sets condition code to
000, and branches to instruction specified by farg; otherwise, it sets
condition code to 010, and goes to next instruction.

For bbs, if selected bit is set, the processor sets condition code to 010, and
branches to targ; otherwise, it sets condition code to 000, and goes to next
instruction.

targ can be no farther than 21210 (212- 4) bytes from current IP. When using
the Intel 960 processor assembler, arg must be a label which specifies target
instruction’s IP.

bbs:

if((src2 & 2**(src1%32)) == 1)

{ AC.cc=010y;
temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] =IP[31:2] + temp[31:2];

IP[1:0] = 0;
}
else

AC.cc =000,;
bbe:

if((src2 & 2**(src1%32)) == 0)

{ AC.cc =000y '
temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] =1P[31:2] + temp[31:2];

IP[1:0] =0;
}
else
AC.cc =010,;
STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
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Example:

Opcode:

See Also:

Side Effects:

INSTRUCTION SET REFERENCE

# Assume bit 10 of r6 is clear.

bbc 10, r6, xyz # Bit 10 of r6 is checked
# and found clear:
# AC.cc = 000

# IP = xyz;
bbc 30H COBR
bbs 37H COBR

chkbit, COMPARE AND BRANCH<cc>, BRANCH<cc>

Sets the condition code in the arithmetic controls.
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6.2.11

Mnemonic:

Format:

Description:

6-22

BRANCH<cc>

be Branch If Equal
bne Branch If Not Equal
bl Branch If Less
ble Branch If Less Or Equal
bg Branch If Greater
bge Branch If Greater Or Equal
bo Branch If Ordered
bno Branch If Unordered
b* targ
disp

Branches to instruction specified with farg operand according to AC register
condition code state.

For all branch<cc> instructions except bno, the processor branches to
instruction specified with targ, if the logical AND of condition code and
mask-part of opcode is not zero. Otherwise, it goes to next instruction.

For bno, the processor branches to instruction specified with farg if the
condition code is zero. Otherwise, it goes to next instruction. '

For instance, bno (unordered) can be used as a branch if false instruction
when coupled with chkbit. For bno, branch is taken if condition code equals
000,. be can be used as branch-if true instruction.

The targ operand value can be no farther than 28 t0 223- 9) bytes from
current IP.

The following table shows condition code mask for each instruction. The
mask is in opcode bits 0-2.

Instruction Mask Condition

bno 000, Unordered

bg 001, Greater

be 010, Equal

bge 011, Greater or
equal

bl 100, Less

bne 101, Not equal

ble 110, Less or equal

bo 111, Ordered
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Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

if((mask & AC.cc) Il (mask == AC.cc))

{ temp[31:2] = sign_extension(targ[23:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

}

STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

# Assume (AC.cc AND 1005) # 0

bl xyz # IP = xXy2z;
be 12H CTRL
bne 15H CTRL
bl 14H CTRL
ble 16H CTRL
bg 11H CTRL
bge 13H CTRL
bo 17H CTRL
bno 10H CTRL

b, bx, bbc, bbs, COMPARE AND BRANCH, bal, balx, BRANCH
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6.2.12

Mnemonic:

~ Format:

Description:

Action:
Faults:

Example:

Opcode:
See Also:

Notes:

6-24

bswap (new 80960 Core Instruction)

bswap Byte‘ Swap
bswap srcl:src src2:dst
reg/lit reg

Alter the order of bytes in a word, reversing its “endianess.”
Copies bytes 3:0 of srcl to src2 reversing order of the bytes. Byte 0 of srcl
becomes byte 3 of src2, byte 1 of srcl becomes byte 2 of src2, etc.

dst = (rotate_left(src 8) & 0xO0FFOOFF)
+(rotate_left(src 24) & 0xFFOOFF00);

STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
# g8 = '0x89ABCDEF

bswap g8, gl0 # Reverse byte order.
‘ # gl0 now OxEFCDAB89
bswap S5ADH REG

scanbyte, rotate

This core instruction is not implemented on Cx, Kx and Sx 80960 processors.
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6213 call

Mnemonic: call Call
Format: call targ
disp
Description: Calls a new procedure. targ operand specifies the IP of called procedure’s
first instruction. When using the Intel 19960 processor assembler, targ must be
a label.

In executing this instruction, the processor performs a local call operation as
described in section 7.1.3.1, “Call Operation” (pg. 7-7). As part of this
operation, the processor saves the set of local registers associated with the
calling procedure and allocates a new set of local registers and a new stack
frame for the called procedure. Processor then goes to the instruction
specified with targ and begins execution.

targ can be no farther than 2810 (223 - 4) bytes from current IP.

Action: # Wait for any uncompleted instructions to finish.

implicit_syncf();

temp = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1) l
# Round stack pointer to next boundary.
# SALIGN=1 on 1960 Jx processors.

RIP =1P;

if (register_set_available) !
allocate_new_frame( );

else
{ save_register_set(); # Save register set in memory at its FP.

allocate_new_frame( );

}

# Local register references now refer to new frame.

IP = targ
PFP = FP;
FP = temp;
SP = temp + 64;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
Example: call xyz # IP = xyz
Opcode: call 09H CTRL
See Also: bal, calls, callx
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6.2.14

Mnemonic:

Format:

Description:

Action:

6-26

calls | R

calls Call System
calls targ
reg/lit

~Calls ‘a system procedure. The targ operand gives the number of the

procedure being called. For calls, the processor performs system call
operation described in section 7.5, “SYSTEM CALLS” (pg. 7-16). rarg
provides an index to a system procedure table entry from which the processor
gets the called procedure’s IP. '

The called procedure can be a local or supervisor procedure, depending on
system procedure table entry type. If it is a ‘supervisor procedure, the
processor switches to supervisor mode (if not already in this mode).

As part of this operation, processor also allocates a new set of local registers
and a new stack frame for called procedure. If the processor switches to
supervisor mode, the new stack frame is created on the supervisor stack.

# Wait for any uncompleted instructions to finish.
implicit_syncf();
If (targ > 259)
generate_fault(PROTECTION.LENGTH);
temp = get_sys_proc_entry(sptbase + 48 + 4*targ);
# sptbase is address of supervisor procedure table.

if (frame_available)
allocate_new_frame( );
else :
{ save_frame(); # Save a frame in memory at its FP.
allocate_new_frame( );
# Local register references now refer to new frame.
} .
RIP =1P;
IP = temp; ‘
if ((temp.type == local) I (PC.em == supervisor))
{ ~ #Local call or supervisor call from supervisor mode.
temp = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)
# Round stack pointer to next boundary.
# SALIGN=1 on 1960 Jx processors.
temp.RRR = 000,;
}
else # Supervisor call from user mode.
{ tempa=SSP; # Get Supervisor Stack pointer.
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temp.RRR = 010, | PC.te;
PC.em = supervisor;
PC.te = temp.te;

|
|
|
|

}
PFP =FP;
PFP.rrr = tempRRR;
FP = tempa;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
PROTECTION.LENGTH Specifies a procedure number greater than
259.
Example: calls rl2 # IP = value obtained from
# procedure table for procedure
# number given in rl2.
calls 3 # Call procedure 3.
Opcode: calls 660H REG |

See Also: bal, call, calix ‘
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6215 callx

Mnemonic: callx Call Extended
Format: callx  targ
mem
Description: Calls new procedure. targ specifies IP of called procedure’s first instruction.

- In executing callx, the processor performs a local call as described in section
7.1.3.1, “Call Operation” (pg. 7-7). As part of this operation, the processor
allocates a new set of local registers and a new stack frame for the called
procedure. Processor then goes to the instruction specified with targ and
begins execution of new procedure.

callx performs the same operation as call except the target instruction can be -
farther than -2%3 to (223 - 4) bytes from current IP.

The targ operand is a memory type, which allows the full range of addressing
modes to be used to specify the IP of the target instruction. The “IP +
displacement” addressing mode allows the instruction to be IP-relative.
Indirect calls can be performed by placing the target address in a register and
then using one of the register-indirect addressing modes.

Refer to Chapter 2, DATA TYPES AND MEMORY ADDRESSING
MODES for more information.

Action: #  Wait for any uncompleted instructions to finish;
implicit_syncf();
temp = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)
# Round stack pointer to next boundary.
# SALIGN=1 on 1960 Jx processors.
RIP =1P;
if (register_set_available)
allocate_new_frame( );
else
{ save_register_set(); # Save register set in memory at its FP;
allocate_new_frame( );
}
# Local register references now refer to new frame.
IP = targ
PFP = FP;
FP = temp;
SP = temp + 64;

. Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
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Example: callx (g5) # IP = (g5), where the address in g5 “
# is the address of the new procedure. 1

Opcode: callx 86H MEM

See Also: call, calls, bal
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6.2.16

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Side Effects:

6-30

chkbit

chkbit Check Bit
chkbit bitpos, src2
reg/lit : reg/lit

Checks bit in src2 designated by bitpos and sets condition code according to
value found. If bit is set, condition code is set to 010,; if bit is clear, condition
code is set to 0005.

if (((src2 & 2**(bitpos % 32)) == 0)

AC.cc =000,;
else
AC.cc =010,;
STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
chkbit 13, g8 # Checks bit 13 in g8 and sets
# AC.cc according to the result.
chkbit SAEH REG

alterbit, cirbit, notbit, setbit, cmpi, cmpo

Sets the condition code in the arithmetic controls.
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6.2.17

Mnemonic:

Format:
Description:

Action:
Faults:
Example:
Opcode:

See Also:

. B

clrbit

INSTRUCTION SET REFERENCE

|

clrbit Clear Bit
clrbit bitpos, src, dst
reg/lit reg/lit reg

Copiés src value to dst with one bit cleared. bitpos operand specifies bit to be
cleared.

dst = src2 & ~(2**(src1%32));

STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
clrbit 23, g3, g6 # g6 = g3 with bit 23 cleared.
cirbit 58CH REG

alterbit, chkbit, notbit, setbit
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6.2.18

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:
Side Effects:

6-32

cmpdeci, cmpdeco

cmpdeci Compare and Decrement Integer

cmpdeco  Compare and Decrement Ordinal

cmpdec* srcl, src2, dst
reg/lit reg/lit reg .

Compares src2 and srcl values and sets the condition code according to
comparison results. src2 is then decremented by one and result is stored in
dst. The following table shows condition code setting for the three possible
results of the comparison.

Condition Code Comparison
100, srcl < src2
010, srcl = src2
001, srcl > src2

These instructions are intended for use in ending iterative loops. For
cmpdeci, integer overflow is ignored to allow looping down through the
minimum integer values.

if(srcl < src2)

AC.cc =100,;
else if(srcl == src2)
AC.cc =010,;
else
AC.cc =001,;
dst = src2 -1; # Overflow suppressed for cmpdeci.
STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

cmpdeci 12, g7, gl # Compares g7 with 12 and sets
# AC.cc to indicate the result
# gl = g7 - 1.

cmpdeci S5ATH REG
cmpdeco  S5A6H REG

cmpinco, cmpo, cmpi, cmpinci, COMPARE AND BRANCH

Sets the condition code in the arithmetic controls.
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e i st

T e S

6219 cmpinci, cmpinco

Mnemonic: cmpinci Compare and Increment Integer
cmpinco Compare and Increment Ordinal

Format: cmpinc*  srcl, src2, dst
reg/lit reg/lit reg
Description: Compares src2 and srcl values and sets the condition code according to

comparison results. src2 is then incremented by one and result is stored in dst.
The following table shows condition code settings for the three possible

comparison results.
Condition Code Comparison
100, srcl < sre2
010, srct = src2
0015, srcl > src2

These instructions are intended for use in ending iterative loops. For cmpinci,
integer overflow is ignored to allow looping up through the maximum integer

values.
Action: if (srcl < src2) ‘
AC.cc =100,; ‘
else if (srcl == src2) 3
AC.cc=010; , B X
else , |
AC.cc =0015,; ! 1
cmpinco: ;
dst =src2 + 1;
cmpinci:
dst=src2 + 1; # Overflow suppressed.
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6). :
Example: cmpinco r8, g2, g9 # Compares the values in g2 1
# and r8 and sets AC.cc to i
# indicate the result: '
# 99 =g2 + 1
Opcode: cmpinci SASH REG
cmpinco 5A4H REG
See Also: cmpdeco, cmpo, cmpi, cmpdeci, COMPARE AND BRANCH
Side Effects: Sets the condition code in the arithmetic controls.

l 6-33



INSTRUCTION SET REFERENCE Intel ®

6220 COMPARE (includes New 80960 Core Instructions)

Mnemonic:

Format:

Description:

Action:

Faults:

6-34

cmpi . Compare Integer
cmpib Compare Integer Byte -
cmpis Compare Integer Short
cmpo Compare Ordinal ‘
cmpob Compare Ordinal Byte

cmpos Compare Ordinal Short

cmp* srel, Cosre2
reg/lit reg/lit
Compares src2 and srcl values and sets .condition code according to

comparison results. The following table shows condition code settings for the
three possible comparison results.

Condition Code Corhparison
100, ; e srcl < src2
010, : S srel=src2
001, src1 > src2

cmpi* followed by a branch-if instruction is equivalent to a compare-integer-
and-branch instruction. The latter method of comparing and branching
produces more compact code; however, the former method can execute byte
and short compares without masking. The same is true for empo* and the
compare-ordinal-and-branch instructions.

# For cmpo, cmpi N = 31.
# For cmpos, cmpis N = 15.
# For cmpob, cmpib N = 7.

if (src1[N:0] < src2[N:0])
AC.cc = 100,;

else if (src1[N:0] == src2[N:0])
AC.cc =010,;

else if (src1[N:0] > src2[N:0])
AC.cc =001,;

STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
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Example:

Opcode:

See Also:

Side Effects:

Notes:

INSTRUCTION SET REFERENCE

cmpo r9, 0x10 Compares the value in r9 with 0x10
and sets AC.cc to indicate the

#
#
# result.
#
#

bg xyz Branches to xyz if the value of r9
was greater than 0x10.
cmpi 5A1H REG
cmpib 595H REG
cmpis 597H REG
cmpo SAOH REG
cmpob 594H REG
cmpos 596H REG

COMPARE AND BRANCH, cmpdeci, cmpdeco, cmpinci, cmpinco,
concmpi, concmpo

Sets the condition code in the arithmetic controls.

The core instructions empib, cmpis, compob and compos are not imple-
mented on Cx, Kx and Sx 80960 processors.
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s2z1 COMPARE AND BRANCH

Mnemonic: cmpibe Compare Integer and Branch If Equal
- cmpibne- - Compare Integer and Branch If Not Equal
cmpibl Compare Integer and Branch If Less
cmpible Compare Integer and Branch If Less Or Equal
cmpibg Compare Integer and Branch If Greater
cmpibge Compare Integer and Branch If Greater Or Equal
cmpibo Compare Integer and Branch If Ordered
cmpibno Compare Integer and Branch If Not Ordered
~cmpobe . Compare Ordinal and Branch If Equal
cmpobne Compare Ordinal and Branch If Not Equal
cmpobl Compare Ordinal and Branch If Less
cmpoble Compare Ordinal and Branch If Less Or Equal
.cmpobg.. Compare Ordinal and Branch If Greater
cmpobge Compare Ordinal and Branch If Greater Or Equal
Format: cmpib* srcl, src2, targ
reg/lit reg disp
cmpob* srcl, src2, targ
reg/lit reg disp
Description: Compares src2 and srcl values and sets AC register condition code according

to comparison results. If logical AND of condition code and mask part of
opcode is not zero, the processor branches to instruction specified with targ;
otherwise, the processor goes to next instruction.

targ can be no farther than 21210 212-4) bytes from current IP. When using
the Intel 960 processor assembler, targ must be a label which specifies target
instruction’s IP.

Functions these instructions perform can be duplicated with a cmpi or cmpo
followed by a branch-if instruction, as described in section 6.2.20,
“COMPARE (Includes New 80960 Core Instructions)” (pg. 6-34).
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i
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o
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The following table shows the condition-code mask for each instruction. The
mask is in bits 0-2 of the opcode. ‘

# IP = xvy2z.

Instruction Mask Branch Condition
cmpibno 000, No Condition ‘
cmpibg 001, srct1 > src2
cmpibe 010, srcl = src2 ]
cmpibge 011, src1 2 src2
cmpibl 100, srct < 'src2
cmpibne 101, src1 # src2
cmpible 110, src1 < src2
cmpibo 111, Any Condition
cmpobg 001, srct1> src2
cmpobe 010, srcl = src2
cmpobge 011, src1 2 src2
cmpobl 100, srct < sre2 i
cmpobne 101, srcl # src2 l\ ‘
cmpoble 110, src1 < src2 !
NOTE: cmpibo always branches; cmpibno never ‘
branches. |
Action: if(srcl < src2) \
AC.cc = 100,; {
else if(srcl == src2) :
AC.cc ==010,; |
else ‘
AC.cc = 001y; |
if((mask && AC.cc) != 000,) |
IP[31:2] = efa[31:2]; # Resume execution at the new IP. J\
IP[1:0] = 0;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6). i
Example: # Assume g3 < g9
cmpibl g3, g9, xyz # g9 is compared with g3; :

# assume 19 = r7
cmpobge 19, r7, xyz # 19 is compared with r7;
# IP = xyz.
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Opcode:

See Also:

Side Effects:
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cmpibe 3AH
cmpibne 3DH
cmpibl 3CH
cmpible 3EH

“cmpibg  39H

cmpibge 3BH
cmpibo 3FH
cmpibno 38H
cmpobe 32H
cmpobne  35H
cmpobl 34H
cmpoble 36H
cmpobg 31H
cmpobge  33H

COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR

BRANCH<cc>, cmpi, cmpo, bal, balx

Sets the condition code in the arithmetic controls.
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6222 Concmpi, concmpo

Mnemonic: concmpi Conditional Compafe Integer
concmpo  Conditional Compare Ordinal

Format: concmp* srcl, src2
reg/lit reg/lit
Description: Compares src2 and srcl values if condition code bit 2 is not set. If

comparison is performed, condition code is set according to comparison
results. Otherwise, condition codes are not altered.

These instructions are provided to facilitate bounds checking by means of
two-sided range comparisons (e.g., is A between B and C?). They are
generally used after a compare instruction to test. whether a value is
inclusively between two other values.

The example below illustrates this application by testing whether g3 value is

between g5 and g6 values, where g5 is assumed to be less than g6. First a ‘
comparison (cmpo) of g3 and g6 is performed. If g3 is less than or equal to ;
g6 (i.e., condition code is either 010, or 001,), a onditional comparison \
(concmpo) of g3 and g5 is then performed. If g3 is greater than or equal to g5
(indicating that g3 is within the bounds of g5 and g6), condition code is set to

010,; otherwise, it is set to 001,.

|

, |

Action: if (AC.cc 1= 1XX,) |
|

{ if(srcl <= src2)
AC.cc =010,; ‘
else ‘
AC.cc =001,; |
) ‘
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
Example: cmpo g6, g3 # Compares g6 and g3
# and sets AC.cc.
concmpo g5, g3 # If AC.cc < 100, (g6 2 g3)

# g5 is compared with g3.

At this point, depending on the register ordering, the condition code is one of
those listed on Table 6.6.
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Table 6.6. concmpo example: register ordering and CC

Order CcC
‘g5<gb<g3 100,
g5<9g6=g3 010, -
g5<g3<gb 010,
g5=9g3<¢gb6 010,
'g3<g5<gb 001,
Opcode: concmpi 5SA3H REG
' concmpo  S5A2H REG
See Also: cmpo, cmpi, cmpdeci, cmbdeco, cmpinci, cmpinco, COMPARE AND
BRANCH '
Side Effects: Sets the condjtion code in the arithm'etivc controls.
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6.2.23

Mnemonic:

Format:

Description:

INSTRUCTION SET REFERENCE

dcctli (80960Jx-Specific Instruction)

dectl Data-cache Control
srcl, src2, src/dst
reg/lit reg/lit reg

Performs management and control of the data cache including disabling,
enabling, invalidating, ensuring coherency, getting status, and storing cache
contents to memory. Operations are indicated by the value of srcl. src2 and
src/dst are also used by some operations. When needed by the operation, the
processor orders the effects of the operation with previous and subsequent
operations to ensure correct behavior.

Table 6-7. DCCTL Operand Fields

Function src1 src2 src/dst
Disable Dcache 0 NA NA
Enable Dcache 1 NA NA
Gilobal invalidate 2 NA NA
Dcache
Ensure ca<1:he 3 NA NA
coherency
‘ src: N/A
dst: Receives
Get Dcache status 4 ) NA Dcache status
(see Figure 6-1).
Store Dcache to Destination src: Dcache set
memo 6 address for cache | #'s to be stored
v sets (see Figure 6-1).
1. Invalidates data cache on 80960Jx.
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; Src1 Format

Function Type

Src/Dst qu’mat’“for Data Cache Status
31 28 27 1615 12 11 8 7 43 0

logy, (# of Séfs) —I J ‘ T
) . logo (Atoms/Line) ‘ Enabled = 1
-

log, (Bytes/Atom Disabled = 0

Src/Dst Format for Store Data Cache Sets to Memory
31 16 15 L 0

Ending Set # Starting Set #

Reserved,
(Initialize to 0)

6-42
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Table 6.8. DCCTL Status Values and D-Cache Parameters

)
i

3
|
o
A

i

Value igz:{:: o Value on ;QUGOJD/JF |
bytes per atom 4 4 _
atoms per line 4
number of sets 64 128 (full) ﬁ
number of ways 1 (Direct) 1 (Direct) It
cache size 1-Kbytes 2-Kbytes(full) W
Status[0] (enable / disable) Oor1 Oor1 \
Status[1:3] (reserved) 0 0
Status[7:4] (log,(bytes per atom)) 2 2
Status[11:8] (log,(atoms per line)) 2 2
Status[15:12] (loga(number of sets)) 6 7 (full) |
Status[27:16] (number of ways - 1) 0 0 ‘

I
Destination J
Address (DA) i
Tag (Starting set) DA+ 4H ’
Valid Bits (Starting set) DA + 8H [
o Word 0 DA + CH )
z Word 1 DA + 10H ‘
= Word 2 DA + 14H 1
Word 3 DA + 18H
Tag (Starting set) DA + 1CH
Valid Bits (Starting set) DA + 20H
- Word 0 DA + 24H
g Word 1 DA + 28H
Word 2 DA + 2CH
Word 3 DA + 30H
DA + 34H
(=) Tag (Starting set + 1) DA + 38H |
§ Valid Bits (Starting set + 1) DA + 3CH 1

Figure 6-2. Store Data Cache to Memory Output Format
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Table 6-9. Valid_Bits Values

Bit o - Meaning
0 Tag Valid bit for current Set and Way
1 Valid Bit for Word 0 of current Set and Way
2 Valid Bit for Word 1 of current Set and Way
.3 | Valid Bit for Word 2 of current Set and Way
.4 | Valid Bit for Word 3 of current Set and Way
5-31 | Reserved, Read as Zero.

Action: if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);
order_wrt(previous_operations);
“switch (src1[7:0]) {

case 0 # Disable data cache.
disable_Dcache( );
break;

case 1: # Enable data cache.
enable_Dcache( );
break; l

case 2: # Global invalidate data cache.
invalidate_Dcache( );
break;

case 3: # Ensure coherency of data cache with memory.
# Causes data cache to be invalidated on this processor.
ensure_Dcache_coherency( );
break; . .

_case 4: * # Get data cache status into src/dst.
if (Dcache_enabled) src/dst[0] = 1;
else src/dst[0] = 0;‘ ‘
# Atom is 4 bytes.
src/dst[7:4] = log2(bytes per atom);
# 4 atoms per line. '
src/dst[11:8] = log2(atoms per line);

sre/dst[15:12] = Iog2(number of sets);
" src/dst[27:16] = number of ways-1; # in lines per set

# cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12]).
break; -
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Action:

Faults:

case 6:

default:

}

INSTRUCTION SET REFERENCE

# Store data cache sets to memory pointed to by src2.
start = src/dst[15:0] #  Starting set number.
end = src/dst[31:16] # Ending set number.
#  (zero-origin).
if (end >= Dcache_max_sets) end = Dcache_max_sets - 1;
if (start > end) generate_fault ‘
(OPERATION.INVALID_OPERAND);
memadr = src2; #  Must be word-aligned.
if (0x3 & memadr! = 0)
generate_fault(OPERATION.INVALID_OPERAND)
for (set = start; set <= end; set++){
# Set_Data is described at end of this code flow.
memory [memadr] = Set_Data[set];
memadr += 4;
for (way = 0; way < numb_ways; way++)
{memory[memadr] = tags[set][way];
memadr += 4;
memory[memadr] = valid_bits[set][way];
memadr += 4;
for (word = 0; word < words_in_line; word++)
{memory[memadr] =
Dcache_line[set][way][word];
memadr += 4;
}
}
}
break;
# Reserved.
generate_fault(OPERATION.INVALID_OPERAND);
break;

order_wrt(subsequent_operations)

STANDARD Refer to section 6.1.6,
“Faults” (pg. 6-6).
TYPE.MISMATCH Attempt to execute

instruction while not in
supervisor mode.

OPERATION.INVALID_OPERAND

6-45

i



INSTRUCTION SET REFERENCE 'ntel ®

Example:

Opcode:

See Also:

Notes:

6-46

gl = 6, gl = 0x10000000,

g2 = 0x001F0001

Store the status of Dcache
sets 1-0x1F to memory starting
at 0x10000000.

decti . 65CH REG

sysctl 4

dcctl g0,gl,92

H* FH FH FH

DCCTL function 6 stores data-cache sets to a target range in external mem-
ory. For any memory location that is cached and also within the target range
for function 6, the corresponding word-valid bit will be cleared after function
6 completes to ensure data-cache coherency. Thus, dectl function 6 can alter
the state of the cache after it completes, but only the word-valid bits. In all
cases, even when the cache sets to store to external memory overlap the
cache sets which map the target range in external memory, DCCTL function

" 6 always returns the state of the cache as it existed when the DCCTL was

issued.

This instruction is implemented on the 80960Jx processor family only, and
may or may not be implemented on future 1960 processors.
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6.2.24
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

divi, divo

divi Divide Integer

divo Divide Ordinal

div* srcl, src2, dst
reg/lit reg/lit reg

Divides src2 value by srcl value and stores the result in dst. Remainder is
discarded.

For divi, an integer-overflow fault can be signaled.

divo:
if (srcl ==0)

generate_fault (ARITHMETIC.ZERQ_DIVIDE);
else

dst = src2/srcl;

divi:
if (srcl == 0)
{ dst=undefined_value;

generate_fault (ARITHMETIC.ZERO_DIVIDE); }
else if ((src2 == -2**31) && (srcl ==-1))

{ dst = -2*#%3]

if (AC.om == 1)

AC.of =1;
else
generate_fault (ARITHMETIC.OVERFLOW);

}
else -

dst =src2/srcl;

STANDARD Refer to Section 6.1.6 on page 6-6.

'ARITHMETIC.ZERO_DIVIDE The srcl operand is 0.

ARITHMETIC.OVERFLOW Result too large for destination register
(divi only). If overflow occurs and
AC.om=1, fault is suppressed and
AC.of is set to 1. Result’s least
significant 32 bits are stored in dst.

divo r3, r8, rl3 # rl3 = r8/r3

divi 74BH REG
divo 70BH REG

ediv, mulo, muli, emul
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6225 ediv

Mnemonic: ediv Extended Divide -
Format: ediv srel, Csre2, dst
reg/lit reg/lit reg. -
Description: Divides src2 by srcl and stores result in dst. The src2 value is a long ordinal

(64 bits) contained in two adjacent registers. src2 specifies the lower
numbered register which contains operand’s least significant bits. src2 must
be an even numbered register (i.e., g0, g2, ... or r4, 16, 8... ). srcl value is a '
normal ordinal (i.e., 32 bits).

The result consists of a one-word remainder and a one-word quotient.
Remainder is stored in the register des1gnated by dst; quotient is stored in the
next highest numbered register. dst must be an even numbered register (i.e.,
or g0, g2, ... 14,16, 18, ...).

This instruction performs ordinal arithmetic.

If this operation overflows (quotient or remainder do not fit in 32 bits), no
fault is raised and the result is undefined.

Action: if((reg_number(src2)%?2 = 0) Il (reg_ number(dst[O])%Z 1=0))
{  dst[0] = undefined_value; , -
dst[1] = undefined_value;
generate_fault (OPERATION.INVALID_OPERAND);
}
else if(srcl == 0)
{  dst[0] = undefined_value;
dst[1] = undefined_value; .
generate_fault(ARITHMETIC.DIVIDE_ZERO);
} , .
else  # Quotient
{ dst[l] = ((src2 + reg_value(src2[1]) * 2**32) / srcl)[31 0l;
- #Remainder . ;
dst[0] = (sr¢2 + reg_value(src2[1]) * 2%*32
- ((sr’02'1+ reg_value(src2[1]) * 2**32 / srcl) * srcl);

| } ‘
Faults: . - STANDARD . - : Refer to section 6.1.6, “Faults” (pg.
6-6).
ARITHMETIC.ZERO_DIVIDE The srcl operand is 0.

OPERATION.INVALID_OPERAND
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Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

ediv g3, g4, gl0 # glo0
# gll

ediv 671H REG

emul, divi, divo

remainder of g4,g5/g3
quotient of g4,g5/g3

|
|
|
|
l

i;t
|
3
|
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6226 emul

Mnemonic:

Format:

Description:

Action:

Faults:
Example:

Opcode:

See Also:

6-50

emul Extended Multiply
emul srcl, src2, . dst
reg/lit reg/lit reg

Multiplies src2 by srcl and stores the result in dst. Result is a long ordinal
(64 bits) stored in two adjacent registers. dst specifies lower numbered
register, which receives the result’s least significant bits. dst must be an even
numbered register (i.e., or g0, g2, ... 14,16, 18, ...).

This instruction performs ordinal arithmetic.

if(reg_number(dst)%?2 != 0)

{  dst[0] = undefined_value;
dst[1] = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}

else
{ dst[0] = (srcl * src2)[31:0];
dst[1] = (srcl * src2)[63:32];
}
STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
emul r4, r5, g2 # g2,93 = rd * r5,
emul 670H REG

ediv, muli, mulo
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6.2.27 eshro

R TR e < = L s

Mnemonic: eshro Extended Shift Right Ordinal
Format: eshro srcl src2 dst
reg/lit reg/lit reg
Description: Shifts src2 right by (srcI mod 32) places and stores the result in dsz. Bits

shifted beyond the least-significant bit are discarded.

src2 value is a long ordinal (i.e., 64 bits) contained in two adjacent registers.
src2 operand specifies the lower numbered register, which contains operand’s
least significant bits. src2 operand must be an even numbered register (i.e., r4,
16, 18, ... or g0, g2).

srcl operand is a single 32-bit register or literal where the lower 5 bits specify
the number of places that the src2 operand is to be shifted.

The least significant 32 bits of the shift operation result are stored in dst.

;”

Action: if(reg_number(src2)%?2 = 0) ¥

{ dst[0] = undefined_value; \

dst[1] = undefined_value; \
generate_fault(OPERATION.INVALID_OPERAND);

} I

el dst = shift_right((src2 + reg_value(src2[1]) * 2**32),(src1%32))[31:0]; r ‘

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6). ;
Example: eshro g3, g4, gll # gll = g4,5 shifted right by ‘
# (g3 MOD 32). |

Opcode: eshro 5D8 REG
See Also: SHIFT, extract ‘
Notes: This core instruction is not implemented on the Kx and Sx 80960 processors. j
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6.2.28

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:
See Also:

6-52

extract

extract Extract

extract bitpos len srcldst
reg/lit reg/lit reg

Shifts a specified bit field in src/dst right and zero fills bits to left of shifted
bit field. bitpos value specifies the least significant bit of the bit field to be
shifted; len value specifies bit field length.

src_dst = (src_dst /2%*(src1%32)) & ((2**src2) - 1);
STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

extract 5, 12, g4 # g4 = g4 with bits 5 through
# 16 shifted right.

extract 651H REG
modify
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6.2.29

Mnemonic:

Format:

Description:

Action:

Faults:

INSTRUCTION SET REFERENCE

FAULT<cc>

faulte Fault If Equal

faultne Fault If Not Equal

faulti Fault If Less

faultle Fault If Less Or Equal
faultg Fault If Greater

faultge Fault If Greater Or Equal
faulto Fault If Ordered

faultno Fault If Not Ordered
fault*

Raises a constraint-range fault if the logical AND of the condition code and
opcode’s mask-part is not zero. For faultno (unordered), fault is raised if
condition code is equal to' 000,.

faulto and faultno are provided for use by implementations with a floating
point coprocessor. They are used for compare and branch (or fault) operations
involving real numbers.

The following table shows the condition-code mask for each instruction. The
mask is opcode bits 0-2.

Instruction Mask Condition
faultno 000, Unordered
faultg 001, Greater
fauite 010, Equal
faultge 011, Greater or equal
faultl 100, Less
faultne 101, Not equal
faultle 110, Less or equal
faulto 111, Ordered

For all except faultno:
if(mask && AC.cc !=000,)
generate_fault(CONSTRAINT.RANGE);

faultno:
if(AC.cc = 000,)
generate_fault(CONSTRAINT.RANGE);

STANDARD
CONSTRAINT.RANGE

Refer to section 6.1.6, “Faults” (pg. 6-6).
If condition being tested is true.
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Example: # Assume (AC.cc AND 110,)# 000, - «
faultle # Constraint Range Fault is generated.
Opcode: faulte 1AH CTRL
faultne 1DH o CTRL
faultl 1CH CTRL
faultle 1EH CTRL
faultg 19H CTRL
faultge 1BH CTRL
faulto 1FH CTRL
faultno 18H CTRL
See Also: BRANCH<cc>, TEST<cc>
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6.2.30

Mnemonic:
Format:

Description:

Action:

Faults:
Example:

Opcode:

INSTRUCTION SET REFERENCE

flushreg

flushreg Flush Local Registers
flushreg

Copies the contents of every cached register set—except the current set—to
its associated stack frame in memory. The entire register cache is then marked
as purged (or invalid). On a return to a stack frame for which the local
registers are not cached, the processor reloads the locals from memory.

flushreg is provided to allow a debugger or application program to
circumvent the processor’s normal call/return mechanism. For example, a
debugger may need to go back several frames in the stack on the next return,
rather than using the normal return mechanism that returns one frame at a
time. Since the local registers of an unknown number of previous stack
frames may be cached, a flushreg must be executed prior to modifying the
PFP to return to a frame other than the one directly below the current frame.

Each local cached register set except the current one is flushed to its
associated stack frame in memory and marked as purged, meaning that they
will be reloaded from memory if and when they become the current local
register set.

STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
flushreg
flushreg 66D REG
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6.2.31

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-56

fmark

fmark Force Mark
fmark

Generates a mark trace event. Causes a mark trace event to be generated,
regardless of mark trace mode flag setting, providing the trace enable bit, bit
0 in the Process Controls, is set.

For more information on trace fault generatlon refer to CHAPTER 10,
TRACING AND DEBUGGING

A mark trace event is generated, independent of the setting of the mark-trace-
mode flag.

STANDARD ' Refer to section 6.1.6, “Faults” (pg. 6-6).
TRACE.MARK A TRACE.MARK fault is generated if PC.te=1.

# Assume PC.te =1

- fmark

# Mark trace event is generated at this point in the
# instruction stream.

fmark 66CH REG

mark
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6.2.32

Mnemonic:

Format:

Description:

Action:

Faults:

INSTRUCTION SET REFERENCE

halt (soss0ux-specific Instruction)

halt Halt CPU
halt srcl
reg/lit

Causes the processor to enter HALT mode which is described in Chapter 16,
HALT MODE. Entry into Halt mode allows the interrupt enable state to be
conditionally changed based on the value of srcl.

srci Operation
0 Disable interrupts and halt
1 Enable interrupts and halt

Use current interrupt enable

2 state and halt.

The processor exits Halt mode on a hardware reset or upon receipt of an
interrupt that should be delivered based on the current process priority. After
executing the interrupt that forced the processor out of Halt mode, execution
resumes at the instruction immediately after the halt instruction. The
processar must be in supervisor mode to use this instruction.

implicit_syncf;
if (PC.em != supervisor)
generate_fault( TYPE.MISMATCH);
switch(srcl) {
case 0: # Disable interrupts. Clear ICON.gie.

global_interrupt_enable = false; break;
case 1: # Enable interrupts. Set ICON.gie.

global_interrupt_enable = true; break;
case 2: # Use the current interrupt enable state.

break;

default:
generate_fault( OPERATION.INVALID_OPERAND );
break;
}

ensure_bus_is_quiescient;
enter_HALT mode;

STANDARD Refer to section 6.1.6, “Faults”
(pg. 6-6).
TYPE.MISMATCH Attempt to execute instruction

while not in supervisor mode.
OPERATION.INVALID_OPERAND
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Example: #ICON.gie = 0, g0 = 1, Interrupts disabled. . -
halt g0 # Enable interrupts and halt. s

Opcode: halt 65DH REG

Notes: This instruction is implemented on the 80960Jx processor family only, and

may or may not be implemented on future 1960 processors.
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6233  ICCtl (309604x-Specific Instruction)

Mnemonic: icctl Instruction-cache Control
Format: icctl srcl, src2, src/dst
reg/lit reg/lit reg
Description: Performs management and control of the instruction cache including

disabling, enabling, invalidating, loading and locking, getting status, and
storing cache sets to memory. Operations are indicated by the value of srcl.
Some operations also use src2 and src/dst. When needed by the operation, the
processor orders the effects of the operation with previous and subsequent
operations to ensure correct behavior. For specific function setup, see the
following tables and diagrams:

Table 6-10. ICCTL Operand Fields ‘
Function src1 src2 src/dst :
Disable Icache 0 NA NA :
Enable Icache 1 NA NA
Invalidate Icache 2 NA NA ‘
src: Starting )
:.-;;i?, ea\nd lock 3 address of code :\cl’u'?g(er of blocks
to lock. ’
dst: Receives
Get Icache status 4 NA status (see
Figure 6-3). |
dst: Receives !
lcgglt(il:\:a(;?:tus 5 NA status (see ;
9 Figure 6-3)
Destination src: Icache set
tSOt c:rr‘: rl:c?: he sets 6 address for #s to be stored I
y cache sets (see Figure 6-3).




INSTRUCTION SET REFERENCE

Src1 Format

0
Function Type
Src/Dst Format for Icache Status
16 15 12 11 8 7 4 3 0
logp (# of Sets)'—T ‘ J T
logy (Atoms/Line) : Enabled = 1

log, (Bytes/Atom) Disabled = 0

Src/Dst Format for Icache Locking Status
24 23 8 7 0

31

# of Blocks that are Locked Block Size in Words # of Blocks that Lock

Src/Dst Format for Store Icache Sets to Memory

31 16 15 0

Ending Set # Starting Set #

Reserved,
(Initialize to 0)
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Table 6-11. ICCTL Status Values and Instruction Cache Parameters

Value Value on Value on i960JD/JF
i960JA CPU CPU
bytes per atom 4 4
atoms per line 4
number of sets 64 128
number of ways 2 1 (Direct)
cache size 2-Kbytes 4-Kbytes
Status[0] (enable / disable) | 0 or 1 Oort
Status[1:3] (reserved) 0 0
Statusl[7:4] (log2(bytes per
2 2

atom))
Status[11:8] (log2(atoms

. 2 2
per line))
Status[15:12] 6 7
(log2(number of sets))
Status[27:16] (number of 1 1
ways - 1)
Lock Status[7:0] (number 1 1
of blocks that lock)
L'ock. Status[23:8] (block 256 512
size in words)
Lock Status{31:24]
(number of blocks thatare | 0 or 1 Oori
locked)

6-61




INSTRUCTION SET REFERENCE
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Set_Data [Startng Se] 2332‘2“(’8 A
Tag (Starting set) DA +4H
Valid Bits (Starting set) DA + 8H
o Word 0 DA + CH
-y Word 1 DA + 10H
; " Word 2 DA + 14H
Word 3 DA + 18H
Tag (Starting set) DA + 1CH
Valid Bits (Starting set) DA + 20H
- Word 0 DA + 24H
‘;“ Word 1 DA +28H
Word 2 DA + 2CH
Word 3 DA + 30H
Set_Data [Starting Set + 1] DA + 34H
o Tag (Starting set + 1) DA + 38H
& | Valid Bits (Starting set + 1) DA + 3CH
=

Figure 6-4. Store Instruction Cache to Memory Output Format

Table 6-12. Valid_Bits Value For i960Jx Processor

Bit

Meaning

Tag Valid bit for current Set and Way

Valid Bit for Word 0 of current Set and Way

Valid Bit for Word 1 of current Set and Way

Valid Bit for Word 2 of current Set and Way

Valid Bit for Word 3 of current Set and Way

o
O|ldp|lw|Npw]2]O
—

Reserved, Read as Zero.
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Table 6-13. Set_Data I-Cache Values

Set_Data[set] Meaning
I-Cache Value
0 |-Cache Way 0 is LRU for the set.
1 |I-Cache Way 1 is LRU for the set.
X Other values are reserved
Action: if (PC.em != supervisor)

generate_fault(TYPE.MISMATCH);
switch (src1[7:0]) {

case 0:

case 1:

case 2:

case 3:

# Disable instruction cache.

disable_instruction_cache( );

break; ,

# Enable instruction cache.

enable_instruction_cache( );

break;

# Globally invalidate instruction cache.

# Includes locked lines also.

invalidate_instruction_cache( );

unlock_icache( );

break;

# Load & Lock code into Instruction-Cache

# src/dest has number of contiguous blocks to lock

# src2 has starting address of code to lock.

# On the 1960Jx, src2 is aligned to a quadword boundary
aligned_addr = src2 & Oxfffffff0;
invalidate(I-cache); unlock(I-cache);
for (j = 0; j < src/dest; j++)

{ way = way_associated_with_block(j);
start = src2 + j*block_size;
end = start + block_size;
for (i = start; i < end; i=i+4)
{ set=set_associated_with(i);
word = word_associated_with(i);
Icache_line[set][way][word] =
memory[i];
update_tag_n_valid_bits(set,way,word)
lock_icache(set,way,word);
} } break;
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Action: case 4: # Get instruction cache status into src/dst.
if (Icache_enabled) src/dst[0] = 1;
else src/dst[0] = O;

# Atom is 4 bytes.

src/dst[7:4] = log2(bytes per atom);
# 4 atoms per line.

src/dst[11:8] = log2(atoms per line);
src/dst[15:12] = log2(number of sets);
src/dst[27:16] = number of ways-1; #in lines per set
# cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12])
break; ‘

case 5: # Get instruction cache locking status into dst.
: src/dst[7:0] = number_of blocks_that_lock;

src/dst[23:8] = block_size_in_words;
src/dst[31:24] = number_of_blocks_that_are_locked;

break;
case 6: # Store instr cache sets to memory pointed to by src2.
start = src/dst[15:0] # Starting set number

end =src/dst[31:16] # Ending set number
# (zero-origin).
if (end >= Icache_max_sets)
end = Icache_max_sets - 1;

if (start > end)
generate_fault(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.

if(OXS & memadr !=0)
generate_fault(OPERATION.INVALID_OPERAND);
for (set = start; set <= end; set++){
# Set_Data is described at end of this code flow.
memory[memadr] = Set_Data[set];
memadr += 4;
for (way = 0; way < numb_ways; way++)
{memory[memadr] = tags[set][way];
memadr +=4;
memory[memadr] = valid_bits[set][way];
memadr += 4,
for (word = 0; word < words_in_line;
word-++)
{memory[memadr] =
Icache_line[set][way][word];
memadr += 4;
}
"} ) break;

6-64 ~ I



Faults:

Example:

Opcode:
See Also:

Notes:

INSTRUCTION SET REFERENCE

default: #Reserved.
generate_fault(OPERATION.INVALID;OPERAND);
break;}
STANDARD Refer to section 6.1.6, “Faults”
(pg. 6-6).
TYPE.MISMATCH Attempt to execute instruction

while not in supervisor mode.
OPERATION.INVALID_OPERAND

# g0 = 3, gl=0x10000000, g2=1
Load and lock 1 block of cache

icctl g0,gl,g2 #
# (one way) with
#
#

location of code at starting
0x10000000.

icctl 65BH REG

sysctl

This instruction is implemented on the 80960Jx processor family only, and
may or may not be implemented on future 1960 processors.
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6234  INTCH (80960ux-specific Instruction)

Mnemonic: intcti Global Enable and Disable of Interrupts
Format: ~intetl © srel dst -
o reg/lit reg .
Description»: Globally - enables, disables or returns the current status of interrupts

depending on the value of srcl. Returns the previous interrupt enable state (1
for enabled or O for disabled) in dstz. When the state of the global interrupt
enable is ¢hanged, the processor ensures that the new state is in full effect
before the instruction completes. (This instruction is implemented by manip-

ulating ICON.gie.)
src1 Value Operation
0 Disables interrupts
1 Enables interrupts _
2 Returns current interrupt enable status
Action: if (PC.em != supervisor) '

generate_fault(TYPE.MISMATCH);
old_interrupt_enable = global_interrupt_enable;
switch(srcl) {
case 0: # Disable. Set ICON.gie to one.
globally_disable_interrupts;
global_interrupt_enable = false;
order_wrt(subsequent_instructions);
break;
case 1: # Enable. Clear ICON.gie to zero.
globally_enable_interrupts;
global_interrupt_enable = true;
order_wrt(subsequent_instructions);

break;
case 2: # Return status. Return ICON.gie
break;
default:
generate_fault(OPERATION.INVALID_OPERAND);
break;
}
if(old_interrupt_enable)
dst=1;
else
dst=0;
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Faults:

Example:

Opcode:
See Also:

Notes:

INSTRUCTION SET REFERENCE

STANDARD Refer to 'section 6.1.6, “Faults”
(pg. 6-6).
OPERATION.INVALID_OPERAND
TYPE.MISMATCH
# ICON.gie = 0, interrupts enabled
intctl 0, g4 # Disable interrupts (ICON.gie = 1)
# g4 =1
intctl 658H REG
intdis, inten

This instruction is implemented on the 80960Jx processor family only, and
may or may not be implemented on future 1960 processors.
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6235 INtAiS (80960Jx-Specific Instruction)

Mnemonic: intdis Global Interrupt Disable
Format: intdis o
Description: Globally disables interrupts and ensures that the change takes effect before
’ the instruction completes. This operation is implemented by setting
ICON.gie to one.
Action: if (PC.em != supervisor)

generate_fault(TYPE.MISMATCH);
_# Implemented by setting ICON.gie to one.
globally_disable__interrupts;
interrupt_enable = false;
order_wrt(subsequent_instructions);

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
TYPE.MISMATCH )
Example: # ICON.gie = 0, interrupts enabled
intdis # Disable interrupts.
# ICON.gie =1
Opcode: intdis 5B4H REG l
See Also: intetl, inten
Notes: This instruction is implemented on the 80960Jx processor family only, and

may or may not be implemented on future 1960 processors.
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[
i
:
6.2.36 |nten (80960Jx-Specific Instruction) - ;f
It
Mnemonic: inten global interrupt enable
Format: inten _
Description: Globally enables interrupts and ensures that the change takes effect before the
instruction completes. This operation is implemented by clearing ICON.gie to
zero.
Action: if (PC.em != supervisor)

generate_fault(TYPE.MISMATCH);
# Implemented by clearing ICON.gie to zero.
globally_enable_interrupts;
interrupt_enable = true;
order_wrt(subsequent_instructions);

Faults: TYPE.MISMATCH
Example: # ICON.gie = 1, .interrupts disabled.

inten # Enable interrupts.

# ICON.gie = 0

Opcode: inten SBSH REG 5
See Also: intctl, intdis ;
Notes: This instruction is implemented on the 80960Jx processor family only, and ’\

may or may not be implemented on future 1960 processors.
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6.2.37

Mnemonic:

Format:

Description:

Action:

6-70

LOAD

id Load

Idob Load Ordinal Byte

Idos Load Ordinal Short

idib Load Integer Byte

Idis Load Integer Short

idi Load Long

Idt Load Triple

ldq Load Quad

Id* src dst
mem reg

Copies byte or byte string from memory into a register or group of successive
registers.

The src operand specifies the address of first byte to be loaded. The full range

* of addressing modes may be used in specifying src.

Refer to Chapter 2, DATA TYPES AND MEMORY ADDRESSING
MODES for more information.

* dst specifies a register or the first (lowest numbered) register of successive

registers.

Idob and Idib load a byte and Idos and Idis load a half word and convert.it to
a full 32-bit word. Data being loaded is sign-extended during integer loads
and zero-extended during ordinal loads.

Id, Idl, Idt and Idq instructions copy 4, 8, 12 and 16 bytes, respectively, from
memory into successive registers.

For Idl, dst must specify an even numbered register (i.e., g0, g2...). For Idt
and ldq, dst must specify a register number that is a multiple of four (i.e., g0,
g4, g8, g12, r4, 18, r12). Results are unpredictable if data extends beyond
register g15 or r15 for Idl, Idt or ldq.

id:

dst = read_memory(effective_address)[31:0];

if((effective_address[1:0] != 00, ) && unaligned _fault_enabled)
generate_fault(OPERATION.UNALIGNED);

Idob:
dst[7:0] = read_memory(effective_address)[7:0];
dst[31:8] = 0x000000;
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dst[7:0] = read_memory(effective_ address)[7 01,
if(dst[7] == 0)

dst[31.8] 0x000000;
else

dst[31:8] = OxFFFFFF; i

Idib: s
|

Idos: ‘
dst = read memory(effectlve address)[15:0];
# Order depends on endianism. See
# section 2.2.2, “Byte Ordering” (pg. 2-4)
dst[31:16] = 0x0000;
if((effective_address[0] != 0,) && unaligned_fault_enabled)
generate_fault(OPERATION.UNALIGNED);

Idis:
dst[15:0] = read memory(effecuve address)[15:0];
# Order depends on endianism. See
# section 2.2.2, “Byte Ordering” (pg. 2-4)
if(dst[15] == 0,)
dst[31:16] = 0x0000;
else
dst[31:16] = OxFFFF,;
if((effective_address[0] != 0,) && unaligned_fault_enabled)
generate_fault(OPERATION.UNALIGNED);

Idl: ) 1
if((reg_number(dst) % 2) !=0) |
generate_fault(OPERATION.INVALID_OPERAND);
# dst not modified.
else ‘
{ dst=read_memory(effective_address)[31:0];
dst_+_1 =read_memory(effective_address_+_4)[31:0];
if((effective_address[2:0] != 000,) && unaligned_fault_enabled) : i
generate_fault(OPERATION.UNALIGNED);
}

Idt: L
if((reg_number(dst) % 4) !=0)
generate_fault(OPERATION.INVALID_OPERAND); !
# dst not modified. '
else
{ dst=read_memory(effective_adddress)[31:0];
dst_+_1 =read_memory(effective_adddress_+_4)[31:0];
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Faults:

Example:

Opcode:

See Also:

6-72

dst_+_2 = read_memory(effective_adddress_+_8)[31:0];
if((effective_address[3:0] != 0000,) && unaligned_fault_enabled)
generate_fault(OPERATION.UNALIGNED);
}

ldq:
if((reg_number(dst) % 4) != 0)
generate_fault(OPERATION.INVALID_OPERAND);
# dst not modified.
else :
{ dst =read_memory(effective_adddress)[31:0];
# Order depends on endianism.
# See section 2.2.2, “Byte Ordering” (pg. 2-4)
dst_+_1 = read_memory(effective_adddress_+_4)[31:0];
dst_+_2 =read_memory(effective_adddress_+_8)[31:0];
dst_+_3 =read_memory(effective_adddress_+_12)[31:0];
if((effective_address[3:0] != 0000,) && unaligned_fault_enabled)
generate_fault(OPERATION.UNALIGNED);
}

OPERATION.UNALIGNED

STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

1d1 2450 (r3), rlo # rl0, rll = r3 + 2450 in
© # memory

Id 90H MEM

Idob 80H MEM

Idos 88H MEM

Idib COH , MEM

Idis C8H MEM

Idi 98H MEM

Idt AOH MEM

Idq BOH MEM

MOVE, STORE
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|

;
6.2.38 Ida : %

1,

Mnemonic: Ida Load Address

Format: Ida src, dst
mem reg
efa
Description: Computes the effective address specified with src and stores it in dst. The src

address is not checked for validity. Any addressing mode may be used to
calculate efa.

An important application of this instruction is to load a constant longer than 5
bits into a register. (To load a register with a constant of 5 bits or less, mov
can be used with a literal as the src operand.)

Action: dst = effective_address;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
Example: lda 58 (g9), gl # gl = g9+58
lda 0x749, r8 # r8 = 0x749
Opcode: Ida SCH MEM
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6239 Mmark

Mnemonic: mark . Mark
Format: mark
Description: Generates mark trace fault if mark trace mode is enabled. Mark trace mode is

enabled if the PC register trace enable bit (bit 0) and the TC register mark
trace mode bit (bit 7) are set. : .

If mark trace mode is not enabled, mark behaves like a no-op.

For more information on trace fault generatlon refer to CHAPTER 10,

TRACING AND DEBUGGING.

Action: if(PC.te && TC.mk)
generate_fault(TRACE. MARK)

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

TRACE.MARK Trace fault is generated if PC.te=1 and

TC.mk=1. ,

Example: # Assume that the mark trace mode is enabled.

1d xyz, r4 :

addi r4, r5, r6

mark

# Mark trace event is generated at this point in the
# instruction stream.

Opcode: mark 66BH REG

See Also: fmark, modpc, modtc
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6.2.40 modac

Mnemonic: modac Modify AC

Format: modac mask, src, dst f
reg/lit reg/lit reg ;

Description: Reads and modifies the AC register. src contains the value to be placed in the

AC register; mask specifies bits that may be changed. Only bits set in mask
are modified. Once the AC register is changed, its initial state is copied into

dst.
Action: temp = AC;

AC = (src & mask) | (AC & ~mask);

dst = temp;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
Example: modac gl, g9, gl2 # AC = g9, masked by gl.

# gl2 = initial value of AC.

Opcode: modac 645H REG
See Also: modpc, modtc
Side Effects: Sets the condition code in the arithmetic controls.
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6241  Modi

Mnemonic: modi Modulo Integer
Format: modi srcl, src2, - dst
reg/lit reg/lit reg
Description: - Divides  src2' by srcl, where both are integers and stores the modulo
: remainder of the result in dst. If the result is nonzero, dst has the same sign as
srcl.
Action: if(srcl == 0)

generate_fault(ARITHMETIC.ZERO_DIVIDE);
dst = undefined.value

dst = src2 - (src2/srcl) * srcl;

if((src2 *srcl < 0) && (dst !=0))
dst = dst + srcl;

Faults: ARITHMETIC.ZERO_DIVIDE The srcl operand is zero.
STANDARD Refer to section 6.1.6,
‘ “Faults” (pg. 6-6).
Example: modi r9, r2, r5 # r5 = modulo (r2/r9)
Opcode: modi T49H - REG
See Also: divi, divo, remi, remo
Notes: modi generates the correct result (0) when computing 23 mod -1, although

the corresponding 32 bit division would overflow.
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6242 Mmodify

|
|

Ji=yr e

Mnemonic: modify Modify
Format: modify mask, src, srcldst
reg/lit reg/lit reg
Description: Modifies selected bits in src/dst with bits from src. The mask operand selects
- the bits to be modified: only bits set in the mask operand are modified in
srcldst.
Action: src/dst = (src & mask) | (src/dst & ~mask);
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
Example: modify g8, gl0, r4 # r4 = gl0 masked by g8.
Opcode: modify 650H , REG
See Also: alterbit, extract
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6243 Modpc

Mnemonic: modpc Modify Process Controls
Format: ‘modpc src, mask, srcldst
reg/lit - reg/lit - oreg

Description: Reads and modifies the PC register as specified with mask and src/dst. src/dst
- operand contains the value to be placed in the PC register; mask operand
specifies bits that may be changed. Only bits set in the mask are modified.
Once the PC register is changed, its initial value is copied into src/dst. The
src operand is a dummy operand that should specify a literal or the same
register as the mask operand.

The processor must be in supervisor mode to use this instruction with a non-
zero mask value. If mask=0, this instruction can be used to read the process
controls, without the processor being in supervisor mode.

Changing the PC register reserved fields can lead to unpredictable behavior
as described in section 3.6.3, ‘“Process Controls (PC) Register” (pg. 3-20).

Action: if(mask !=0)
{ if(PCem!=1)

generate_fault(TYPE.MISMATCH);

temp = PC;

PC = (mask & src_dst) | (PC & ~mask);

src_dst = temp;

if(temp.priority > PC.priority)
check_pending_interrupts;

}
else
src_dst = PC;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

TYPE.MISMATCH
Example: modpc g9, g9, g8 # process controls = g8

# masked by g9.

Opcode: modpc 655H REG
See Also: modac, modtc
Notes: Since modpc does not switch stacks, it should not be used to switch the

mode of execution from supervisor to user (the supervisor stack can get cor-
rupted in this case). The call and return mechanism should be used instead.
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6244 Mmodtc

Mnemonic: modtc Modify Trace Controls
Format: modtc mask, src2, dst
reg/lit reg/lit reg
Description: Reads and modifies TC register as specified with mask and src2. The src2

operand contains the value to be placed in the TC register; mask operand
specifies bits that may be changed. Only bits set in mask are modified. mask
must not enable modification of reserved bits. Once the TC register is
changed, its initial state is copied into dst.

The changed trace controls may take effect immediately or may be delayed. If
delayed, the changed trace controls may not take effect until after the first n
non-branching ‘instruction is fetched from memory or after four non-
branching instructions are executed.

For more information on the trace controls, refer to CHAPTER 9, FAULTS
and CHAPTER 10, TRACING AND DEBUGGING.

Action: temp = TC;
tempa = 0xO0FFOOFF & mask;
TC = (tempa & src2) | (TC & ~tempa);

dst = temp;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
Example: modtc gl2, gl0, g2 # trace controls = gl0 masked
# by gl2; previous trace
# controls stored in g2.
Opcode: modtc 654H REG
See Also: modac, modpc
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6.2.45

Mnemonic:

Format:

Description:

Action:

6-80

MOVE

mov Move

movl Move Long

movt Move Triple

movq Move Quad

mov* srcl, © dst
' reg/lit’ reg

Copies the contents of one or more source registers (specified with src) to
one or more destination registers (specified with ds?).

For movl, movt and movq, srcl and dst specify the first (lowest numbered)
register of several successive registers. src/ and dst registers must be even
numbered (e.g., g0, g2, ... or r4, 16, ...) for movl and an integral multiple of
four (e.g., g0, g4, ... or r4, 18, ...) for movt and movgq.

‘'The moved register values are unpredictable when: 1) the src and dst

operands overlap; 2) registers are not properly aligned.

mov:
if(is_reg(srcl))

dst = srcl;
else

{ dst[5:0] =srcl; #srcl is a 5-bit literal.
dst[31:5]1=0;
}

‘movl:

if((reg_num(src1)%?2 != 0) Il (reg_num(dst)%?2 != 0))
{ dst=undefined_value;
dst_+_1 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);
}
else if(is_reg(srcl))
{ dst=srcl;
dst_+_1=srcl_+_1;
}
else
{ dst[4:0] =srcl; #srcl is a 5-bit literal.
dst[31:5] = 0;
dst_+_1[31:0]1=0;
} ;



Faults:
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movt:
if((reg_num(src1)%4 != 0) Il (reg_num(dst)%4 != 0))
{ dst=undefined_value;
dst_+_1 = undefined_value;
dst_+_2 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);
}
else if(is_reg(srcl))
{ dst=srel;
dst_+_1=srcl_+_1;
dst_+_2=srcl_+_2;
}
else
{ dst[4:0] =srcl; #srcl is a 5-bit literal.
dst[31:5] =0;
dst_+_1[31:0]1=0;
dst_+_2[31:0] =0;
}
movq:
if((reg_num(src1)%4 != 0) Il (reg_num(dst)%4 !=0))
{ dst=undefined_value;
dst_+_1 = undefined_value;
dst_+_2 = undefined_value;
dst_+_3 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else if(is_reg(srcl))
{ dst=srcl;
dst_+_1=srcl_+_1;
dst_+_2 =srcl_+_2;
dst_+_3 =srcl_+_3;
}
else
{ dst[4:0] =srcl; #srcl is a 5 bit literal.
dst[31:5] = 0;
dst_+_1[{31:0]1=0;
dst_+_2[31:0] =0;
dst_+_3[31:0]1 =0;
}
STANDARD Refer to section 6.1.6, “Faults”

(pg. 6-6).
OPERATION.INVALID_OPERAND
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Example:

Opcode:

See Also:

6-82

movt g8, r4

mov 5CCH
movl 5DCH
movt SECH
movq 5SFCH

LOAD, STORE, Ida

# rd, r5, r6 = g8, g9, glo

REG
- REG

REG
- REG
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6.2.46

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

muli, mulo

INSTRUCTION SET REFERENCE

muli Multiply Integer

mulo Multiply Ordinal ‘

mul* srcl, src2, dst I
reg/lit reg/lit reg .

Multiplies the src2 value by the srcl value and stores the result in dst. The ;
binary results from these two instructions are identical. The only difference is }
that muli can signal an integer overflow. 1
|
|

mulo:
dst = (src2 * src1)[31:0];

muli:

dst = (src2 * src1)[31:0]; ‘
if((src2{31] == src1[31]) && (src2[31] !=dst[31])) i
{ if(AC.om==1)

AC.of=1;
else
generate_fault(ARITHMETIC.OVERFLOW);
}
STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

ARITHMETIC.OVERFLOW. Result is too large for destination register
(muli only). If a condition of overflow
occurs, the least significant 32 bits of the |
result are stored in the destination register.

muli r3, r4, r9 # r9 =rd * r3

muli 741H REG
mulo 701H REG

emul, ediv, divi, divo
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6.2.47 nand

Mnemonic: nand Nand
Format: nand srcl, src2, _ dst
reg/lit reg/lit reg
Description: Performs a bitwise NAND operation on src2 and srcl values and stores the
result in dst. :
Action: dst = ~src2 | ~srcl; ,
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
Example: nand g5, r3, r7 # r7 = r3 NAND gb
Opcode: nand 58EH REG
See Also: and, andnot, nor, not, notand, notor, or, ornot, xnor, xor
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6248  NOr

Mnemonic: nor Nor

Format: nor srcl, src2, dst ‘
reg/lit reg/lit reg p

Description: Performs a bitwise NOR operation on the src2 and srcl values and stores the ‘;,

result in dst.

Action: dst = ~src2 & ~srcl;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: nor g8, 28, r5 # r5 = 28 NOR g8

Opcode: nor 588H REG

See Also: and, andnot, nand, not, notand, notor, or, ornot, xnor, xor

|
§
|
I,
1
|
!
|
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6.2.49

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-86

not, notand

not Not

notand Not And

not src, dst
reg/lit reg

notand srcl, src2, dst
reg/lit regflit reg

Performs a bitwise NOT (not instruction) or NOT AND (notand instructidn)

~ operation on the src2 and srcl values and stores the result in dst.

not:

dst = ~srcl;

notand:

dst = ~src2 & srel;

STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
not g2, g4 # g4 = NOT g2

notand r5, r6, r7 # r7 = NOT r6 AND r5

not 58AH REG

notand 584H REG

and, andnot, nand, nor, notor, or, ornot, xnor, xor
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6.2.50
Mnemonic:
Format:

Description:

Action:
Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

notbit

notbit Not Bit
notbit bitpos, src2, dst
reg/lit reg/lit reg

Copies the src2 value to dst with one bit toggled. The bitpos operand specifies
the bit to be toggled.

dst = src2 A 2¥*(src1%32);
STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

notbit r3, rl2, r7 # r7 = rl2 with the bit
# specified in r3 toggled.

notbit 580H REG
alterbit, chkbit, cirbit, setbit
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6.2.51

Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Opcode:

See Also:

6-88

nhotor

notor Not Or

notor srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise NOTOR operation on src2 and srcl values and stores
result in dst.

dst = ~(src2) | srcl;

STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
notor gl2, g3, g6 # g6 = NOT g3 OR gl2
notor S8DH REG

and, andnot, nand, nor, not, notand, or, ornot, xnor, xor
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|
|
|
6252  OI, ornot :
Mnemonic: or Or ‘§
ornot Or Not
Format: or srcl, src2, dst \ :
reg/lit reg/lit reg
ornot srcl, src2, dst ‘
reg/lit reg/lit reg
Description: Performs a bitwise OR (or instruction) or ORNOT (ornot instruction)

operation on the src2 and srcl values and stores the result in dst.

Action: or:
dst = src2 | srcl;

ornot:
dst = src2 | ~(srcl);
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
Example: or 14, g9, g3 # g3 = g9 OR 14
ornot r3, r8, rll # rll = r8 OR NOT r3
Opcode: or 587H REG
ornot 58BH REG
See Also: and, andnot, nand, nor, not, notand, notor, xnor, xor
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6253 remi, remo

Mnemonic:
Format:
Description:

Action: -

Faults:

Example:

Opcode:

See Also:

Notes:

6-90

remi Remainder Integer

remo Remainder Ordinal

rem* srcl, - src2, - dst
reg/lit reg/lit . reg

Divides src2 by srcl and stores the remainder in dst. The sign of the result (if
nonzero) is the same as the sign of src2.

remi, remo: ‘

if(srcl ==0) - ‘ -
generate_fault(ARITHMETIC.ZERO_DIVIDE);

dst = src2 - (srcl/src2)*srcl;

ARITHMETIC.ZERO_DIVIDE The srcl operand is 0.
ARITHMETIC.INTEGER_OVERFLOW The result is too large for
: destination register (remi
only). If overflow occurs and
AC.om=1, the fault is
suppressed and AC.of is set to
1. The least significant 32 bits
of the result are stored in dst.

remo r4, r5, r6 # r6 = r5 rem r4

remi . 748H - REG~”
remo 708H REG
modi

remi produces the correct result (0) even when computing 231 remi -1,
which would cause the corresponding division to overflow.
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6.2.54

Mnemonic:
Format:

Description:

Action:

1

ret

INSTRUCTION SET REFERENCE

St e o e e

L e G

ret Return

ret

(i.e., that of the called procedure) is deallocated and the FP is changed to
point to the calling procedure’s stack frame. Instruction execution is
continued at the instruction pointed to by the RIP in the calling procedure’s
stack frame, which is the instruction immediately following the call
instruction.

Returns program control to the calling procedure. The current stack frame é
)

As shown in the action statement below, the return-status field and prereturn-
trace flag determine the action that the processor takes on the return. These
fields are contained in bits O through 3 of register r0 of the called procedure’s
local registers.

See section CHAPTER 7, “PROCEDURE CALLS” (pg. 7-1) for more on ret.

implicit_syncf();

if(pfp.p && PC.te && TC.p)
{ pfpp=0; I
generate_fault(TRACE.PRERETURN); \ f

} |
switch(return_status_field) K
{ |
case 000,: #local return - !
get_FP_and_IP(); ‘

break; ‘

case 001,: #fault return ‘

tempa = memory(FP-16);
tempb = memory(FP-12);

get_FP_and_IP();
AC = tempb;
if(execution_mode == supervisor)
PC = tempa;
break;
case 010,: #supervisor return, trace on return disabled

if(execution_mode != supervisor)
get_FP_and_IP();

else

{ PCite=0;
execution_mode = user;
get_FP_and_IP();
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break;
case 011,: # supervisor return, trace on return enabled

if(execution_mode != supervisor)

get_FP_and_IP();
else
{ PCte=1;

. execution_mode = user;
get_FP_and_IP();

'}
break; N 4
case 100,: #reserved - unpredictable behavior
break;
case 101,: #reserved - unpredictable behavior
break; ‘ . 7
case 110,:  d#reserved - unpredictable behavior
break; :
case 1115 - #interrupt return

tempa = memory(FP-16);
tempb = memory(FP-12);
get_FP_and_IP();

AC = tempb;

if(execution_mode == supervisor)
PC = tempa;
check_pending_interrupts();
break;

}

get_FP_and_IP()

{ FP=PFP;
free(current_register_sét);
if(not_allocated(FP))

retrieve_from_memory(FP);

~ IP=RIP;
}
Faults: STANDARD : Refer to section 6.1.6, “Faults” (pg.
; R 6-6).
OPERATION.UNIMPLEMENTED :
TRACE.PRERETURN
Example: ret # Program control returns to context of
# calling procedure.
Opcode: ret 0AH CTRL
See Also: call, calls, calix
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6.2.55

Mnemonic:

Format:

Description:

Action:
Faults:

Example:

Opcode:
See Also:

INSTRUCTION SET REFERENCE

rotate
rotate Rotate
rotate len, src2, dst

reg/lit reg/lit reg

Copies src2 to dst and rotates the bits in the resulting dst operand to the left
(toward higher significance). Bits shifted off left end of word are inserted at
right end of word. The len operand specifies number of bits that the dst
operand is rotated.

This instruction can also be used to rotate bits to the right. The number of bits
the word is to be rotated right should be subtracted from 32 and the result
used as the len operand.

src2 is rotated by len mod 32. This value is stored in dst.
STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

rotate 13, r8, ril2 # rl2 = r8 with bits rotated
# 13 bits to left.

rotate 59DH REG
SHIFT, eshro
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6.2.56

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:
See Also:

Side Effects:

6-94

scanbit

scanbit Scan For Bit

scanbit srcl, dst
reg/lit. reg

Searches srcl for a set bit (1 bit). If a set bit is found, the bit number of the
most significant set bit is stored in the dst and the condition code is set to
000,. If src value is zero, all 1’s are stored in dst and condition code is set to
000,.

dst = OxFFFFFFFF;
AC.cc = 000,;
for(i=31;i>=0;i--)

{ if((srcl & 2**i) 1=0)

{ dst =1i;
AC.cc=010,;
break;
}
}
STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

# assume g8 is nonzero

scanbit g8, gl0 # gl0 = bit number of most-
# significant set bit in g8;
# AC.cc = 010,.

scanbit 641H REG
spanbit, setbit

Sets the condition code in the arthimetic controls.
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6257 scanbyte

Mnemonic: scanbyte  Scan Byte Equal
Format: scanbyte srcl, src2
reg/lit reg/lit
Description: Performs byte-by-byte comparison of srcl and src2 and sets condition code to

010, if any two corresponding bytes are equal. If no corresponding bytes are
equal, condition code is set to 000,.

Action: if((src1 & 0x000000FF) == (src2 & 0x000000FF)
Il (src1 & 0x0000FF00) == (src2 & 0x0000FF00)
Il (src1 & 0xO0FF0000) == (src2 & 0xO0FF0000)
Il (src1 & 0xFF000000) == (src2 & 0xFF000000))

AC.cc =010y;
else
, AC.cc = 000,;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
Example: # Assume r9 = 0x11AB1100

scanbyte 0x00AB0011, r9 # AC.cc = 010,
Opcode: scanbyte @ 5ACH REG
See Also: ‘bswap
Side Effects: Sets the condition code in the arthimetic controls. (

I 6-95 |
, 1‘



INSTRUCTION SET REFERENCE Intel®

6.2.58

Mnemonic:

Format:

Description:

Action:

Faults:

6-96

selno
selg
sele
selge
sell
selne
selle
selo

sel*

SEL<cc> (New 80960 Core Instruction Class)

Select Based on Unordered
Select Based on Greater

Select Based on Equal

Select Based on Greater or Equal
Select Based on Less

Select Based on Not Equal
Select Based on Less or Equal

Select Based on Ordered
srcl, src2, dst
reg/lit reg/lit reg

Selects either srcl or src2 to be stored in d.\vt based on the condition code bits
in the arithmetic controls. If for Unordered the condition code is 0, or if for
the other cases the logical AND of the condition code and the mask-part of
the opcode is not zero, then the value of src2 is stored in the destination. Else,
the value of srcl is stored in the destination.

Instruction MASK Condition
selno 000, * Unordered
selg 001, Greater
sele 010, | Equal
selge 011, Greater or equal
sell 100, Less
selne 101, Not equal
selle 110, Less or equal
selo 111, Ordered

if ((mask & AC.cc) Ii (mask == AC.cc))
dst = src2;

else

dst = srcl;

STANDARD

Refer to section 6.1.6, “Faults” (pg. 6-6).
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Example: # AC.cc = 010, |‘
sele g0,gl,g2 # g2 =gl ' ‘ ;
|

# AC.cc = 001,

sell g0,gl,g92 # g2 = g0
Opcode: selno 784H REG
selg 794H REG
sele TA4H REG
selge 7B4H REG
sell 7C4H REG
selne 7D4H REG
selle TE4H REG
selo " TF4H REG
See Also: MOVE, test, cmpi, cmpo, SUB<cc>
Notes: This core instruction is not implemented on Cx, Kx and Sx 80960 processors.

|
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6250 Setbit

Mnemonic: setbit Set Bit
Format: setbit bitpos, src, dst
reg/lit»_ reg/lit reg
Description: Copies src value to dst with one bit set. bitpos speéifiéé bit to be set.
Action: dst = src2 | (2*%*(src1%32));
Faults: NA '
Example: setbit 15, r9, rl # rl = r9 with bit 15 set.
Opcode: setbit 583H REG |
See Also: alterbit, chkbit, cirbit, notbit
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6260 SHIFT

e

|
I
|
|
|
|
|
|

Mnemonic: shlo Shift Left Ordinal
shro Shift Right Ordinal
shli Shift Left Integer
shri Shift Right Integer
shrdi Shift Right Dividing Integer
Format: sh* len, src, dst
reg/lit reg/lit reg
Description: Shifts src left or right by the number of bits indicated with the len operand

and stores the result in dst. Bits shifted beyond register boundary are
discarded. For values of len greater than 32, the processor interprets the value
as 32.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the
most significant bit. These instructions are equivalent to mulo and divo by
the power of 2, respectively. f

shli shifts zeros in from the least significant bit. An overflow fault is i
generated if the bits shifted out are not the same as the most significant bit (bit |
31). If overflow occurs, dst will equal src shifted left as much as possible
without overflowing.

shri performs a conventional arithmetic shift-right operation by shifting in the ¥
most significant bit (bit 31). When this instruction is used to divide a negative _
integer operand by the power of 2, it produces an incorrect quotient
(discarding the bits shifted out has the effect of rounding the result toward
negative).

shrdi is provided for dividing integers by the power of 2. With this
instruction, 1 is added to the result if the bits shifted out are non-zero and the
src operand was negative, which produces the correct result for negative ‘
operands. |

shli and shrdi are equivalent to muli and divi by the power of 2.

Action: shlo:
if(srcl < 32)
dst = src2 * (2**srcl); ‘
else
dst=0;

I 6-99
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Action:

Faults:

Example:

6-100

}

shro:
if(srcl < 32)

dst = src2 / (2%*srcl);
else

dst =0;

shii:
if(srcl > 32)
. count = 32;

else

~ count = srcl;

temp = src2; ,

while((temp[31] == temp[30]) && (count > ())

{ temp = (temp * 2)[31:0]; '

count = count - 1;

b

dst = temp;

if(count > 0)

{ if(ACcc==1)
AC.of=1;

else o

generate_fault(ARITHMETIC.OVERFLOW);

) .

. shri:

if(srcl > 32)

. count = 32;
else

count = srcl;

temp = src2;
while(count > 0) .
{ temp = (temp >> 1)[31:0];
temp[31] = src2[31];
count = count - 1;

dst = temp;

shrdi:
dst = src2 / (2**srcl);

ARITHMETIC.OVERFLOW  For shili

shli 13, g4, r6 # g6 = g4 shifted left 13

bits.



See Also:

Notes: .
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shlo 5S9CH REG

i
|
|
i
|
|
|
|
|

|
%

shro S98H REG
shii S9EH REG
shri S9BH REG
shrdi S9AH REG

divi, muli, rotate, eshro

shli and shrdi are identical to multiplications and divisions for all positive
and negative values of src2. shri is the conventional arithmetic right shift that
does not produce a correct quotient when src2 is negative.
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6.2.61

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:
See Also:

Side Effects:

6-102

spanbit

spanbit Span Over Bit

spanbit src, dst
reg/lit reg

Searches src value for the most significant clear bit (0 bit). If a most
significant 0O bit is found, its bit number is stored in dst and condition code is

- set to 010,. If src value is all 1’s, all 1’s are stored in dst and condition code is

set to 000,.

dst = OxFFFFFFFF;

AC.cc = 000,;
fori=32;i>=0;i--)

{ if((srcl & 2%*i) == 0))

{ dst=1i;
AC.cc =010,;
break;
}
}
NA
# Assume r2 is not Oxffffffff
spanbit r2, r9 # r9 = bit number of most-
# significant clear bit in r2;
# AC.cc = 010,
spanbit 640H REG
scanbit

Sets the condition code in the arithmetic controls.
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6.2.62

Mnemonic:

Format:

Description:

Action:
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STORE

st Store

stob Store Ordinal Byte

stos Store Ordinal Short

stib Store Integer Byte

stis Store Integer Short

sti Store Long

stt Store Triple

stq Store Quad

st* srcl, dst
reg mem

Copies a byte or group of bytes from a register or group of registers to
memory. src specifies a register or the first (lowest numbered) register of
successive registers.

dst specifies the address of the memory location where the byte or first byte
or a group of bytes is to be stored. The full range of addressing modes may be
used in specifying dst. Refer to section 2.3, “MEMORY ADDRESSING
MODES” (pg. 2-6) for a complete discussion.

stob and stib store a byte and stos and stis store a half word from the src
register’s low order bytes. Data for ordinal stores is truncated to fit the
destination width. If the data for integer stores cannot be represented correctly
in the destination width, an Arithmetic Integer Overflow fault is signaled.

st, stl, stt and stq copy 4, 8, 12 and 16 bytes, respectively, from successive
registers to memory.

For stl, src must specify an even numbered register (e.g., g0, g2, ... or 10, 12,
...). For stt and stq, src must specify a register number that is a multiple of
four (e.g., g0, g4, g8, ... or 10, 14, 18, ...).

st: .

if (illegal_write_to_on_chip_RAM)
generate_fault(TYPE.MISMATCH); |

else if ((effective_address[1:0] != 00,) && unaligned_fault_enabled)
{store_to_memory(effective_address)[31:0] =srcl;
generate_fault(OPERATION.UNALIGNED);}

else
store_to_memory(effective_address)[31:0] = srcl;

6-103




"INSTRUCTION SET REFERENCE

Action:
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stob:

if (illegal_write_to_on_chip_RAM_or_MMR)
generate_fault(TYPE.MISMATCH);

else ) .
store_to_memory(effective_address)[7:0] = src1[7:0];

stib: «
if (illegal_write_to_on_chip_RAM_or_MMR)
generate_fault(TYPE.MISMATCH); ‘
else if ((src1[31:8] !=0) && (src1[31:8] != OxFFFFFF))
{ store_to_memory(effective_address)[7:0] = src1[7:0];
if (AC.om=1) ’
AC.of ==1;
else .
generate_fault(ARITHMETIC.OVERFLOW);
}
else
store_to_memory(effective: address)[7:0] = src1[7:0];
end if;

stos:

if (illegal_write_to_on_chip_RAM_or_MMR)
generate_fault(TYPE.MISMATCH);

else if ((effective_address[0] != 0,) && unaligned_fault_enabled)

- { store_to_memory(effective_address)[15:0] = src1{15:0];

generate_fault(OPERATION.UNALIGNED);

} B

else
store_to_memory(effective_address)[15:0] = src1[15:0];

stis: .
if (illegal_write_to_on_chip_RAM_or_MMR)
generate_fault(TYPE.MISMATCH);
else if ((effective_address[0] != 0,) && unaligned_fault_enabled)
{ store_to_memory(effective_address)[15:0] = src1[15:0];
generate_fault(OPERATION.UNALIGNED);
} .
else if ((src1[31:8] = 0) && (src1[31:8] != OXFFFFFF))
{ store_to_memory(effective_address)[15:0] = src1[15:0];
if (AC.om == 1) ,
AC.of =1;
else
generate_fault(ARITHMETIC.OVERFLOW);

}

fel.
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else
store_to_memory(effective_address)[15:0] = src1[15:0];

stl:
if (illegal_write_to_on_chip_RAM_or_MMR)
generate_fault(TYPE.MISMATCH);
else if (reg_number(srcl) % 2 != 0)
generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[2:0] != 000,) && unaligned_fault_enabled)
{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
generate_fault (OPERATION.UNALIGNED);

}
else
{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] =srcl_+_1;
}
stt:

if (illegal_write_to_on_chip_RAM_or_MMR)
generate_fault(TYPE.MISMATCH);
else if (reg_number(srcl) % 4 != 0)
generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[3:0] != 0000,) && unaligned_fault_enabled)
{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] = srcl_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
generate_fault (OPERATION.UNALIGNED);

}
else
{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] = srcl1_+_1;
store_to_memory(effective_address + 8)[31:0] = srcl_+_2;
}
stq:

if (illegal_write_to_on_chip_RAM_or_MMR)
generate_fault(TYPE.MISMATCH);
else if (reg_number(srcl) % 4 !=0)
generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[3:0] != 0000,) && unaligned_fault_enabled)
{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] = srcl_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
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Faults:

Example:

Opcode:

See Also:

Notes:
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store_to_memory(effective_address + 12)[31:0] = src1_+_3;
generate_fault (OPERATION.UNALIGNED);

else , »

{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = srcl_+_2;
store_to_memory(effective_address + 12)[31:0] = src1_+_3;

T‘YPE:.MISMATCH

OPERATION.UNALIGNED

ARITHMETIC.OVERFLOW For stib, stis.

OPERATION.INVALID_OPERAND

st g2, 1254 (g6) # Word beginning at offset
' # 1254 + (g6) = g2.

st 92H MEM
stob 82H MEM
stos 8AH .. MEM
stib C2H ~ MEM
stis CAH - MEM
stl 9AH - MEM
stt A2H MEM
st = B2H MEM
LOAD, MOVE

illegal_write_to_on_chip_RAM is an implementation-dependent mecha-
nism. The mapping of register bits to memory(efa) depends on the endian-
ism of the memory region and is implementation-dependent.
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6263 subc E

i

Mnemonic: subc Subtract Ordinal With Carry 4
Format: subc srcl, src2, dst
reg/lit reg/lit reg

Description: Subtracts src! from src2, then subtracts the opposite of condition code bit 1
(used here as the carry bit) and stores the result in dst. If the ordinal
subtraction results in a carry, condition code bit 1 is set to 1, otherwise it is set
to 0.

This instruction can also be used for integer subtraction. Here, if integer
subtraction results in an overflow, condition code bit 0 is set.

subc does not distinguish between ordinals and integers: it sets condition
code bits 0 and 1 regardless of data type.

Action: dst = (src2 - srcl -1 + AC.cc[1])[31:0];

AC.cc[2:0] = 000,;
if((src2[31] == src1{31]) && (src2[31] !=dst[31]))
AC.cc[0] =1; # Overflow bit.

AC.cc[1] = (src2 - srcl -1 + AC.cc[1D[32]; # Carry out.
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
Example: subc g5, g6, g7 j

# g7 = g6 - g5 - not(condition code bit 1) |
Opcode: subc 5B2H REG ‘
See Also: addc, addi, addo, subi, subo ‘

\

Side Effects: Sets the condition code in the arithmetic controls.
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6.2.64 SU B<CC> (New 80960 Core Instruction Class) -

Mnemonic: subono Subtract Ordinal if Unordered
subog Subtract Ordinal if Greater
suboe Subtract Ordinal if Equal -
suboge Subtract Ordinal if Greater or Equal
subol - Subtract Ordinal if Less

subone  Subtract Ordinal if Not Equal
subole . Subtract Ordinal if Less or Equal

suboo Subtract Ordinal if Ordered

subino  Subtract Integer if Unordered

subig Subtract Integer if Greater

subie Subtract Integer if Equal

'subige = Subtract Integer if Greater or Equal

subil Subtract Integer if Less

subine Subtract Integer if Not Equal

subile Subtract Integer if Less or Equal

subio = Subtract Integer if Ordered
Format: sub* srcl, ’ src2, dst

reg/lit reg/lit reg

Description: = Subtracts srcl from src2 conditionally based on the condition code bits in the

arithmetic controls.

If for Unordered the condition code is 0, or if for the other cases the logical
AND of the condition code and the mask-part of the opcode is not zero; then
srcl is subtracted from src2 and the result stored in the destination.

nstruction | MASK Condition
233%? 000, Unordered
:ﬂgf;g 001, Greater
::gi? 010, Equal
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Instruction MASK Condition
suboge
subige 0112 Greater or equal
subol
subil 100, Less
subone 101 Not equal
subine 2 a
subole .
subile 110, Less or equal
suboo 11 Ordered
subio 2

Action: SUBO<cc>:
if ((mask & AC.cc) Il (mask == AC.cc))
dst = (src2 - src1)[31:0];

SUBI<cc>:

if ((mask & AC.cc) Il (mask == AC.cc))
dst = (src2 - src1)[31:0];

if((src2[31] !=src1[31]) && (src2[31] !=dst[31]))
{ if(AC.om==1)

AC.of =1;
else
generate_fault (ARITHMETIC.OVERFLOW);
}
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
ARITHMETIC.OVERFLOW  For the SUBI<cc> class.
Example: # AC.cc = 010,
suboge g0,gl,g2 # g2 = gl - g0

# AC.cc = 001,
subile g0,gl,g2 # g2 not modified
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Opcode:

See Also:

Notes:
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subono
subog
suboe
suboge
subol
subone

- subole

suboo
subino
subig
subie
subige
subil
subine
subile
subio

782H
792H
7A2H
7B2H
7C2H
7D2H
7E2H
7F2H
783H
793H
7A3H
7B3H
7C3H
7D3H
7E3H
7F3H

REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG

subc, subi, subo, SEL<cc>, test

This core instruction is not implemented on Cx, Kx and Sx 80960 processors.
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6.2.65 Sl.lbi, subo

Mnemonic: subi Subtract Integer
subo Subtract Ordinal
Format: sub* , srcl, src2, dst
reg/lit reg/lit reg
Description: Subtracts srcl from src2 and stores the result in dst. The binary results from

these two instructions are identical. The only difference is that subi can signal
an integer overflow.

Action: subo: ‘
dst = (src2 - src1)[31:0];

subi:

dst = (src2 - src1)[31:0];

if((stc2[31] != srcl[31]) && (src2[31] != dst[31]))
{ if(AC.om==1)

ACof=1;

else »
generate_fault(ARITHMETIC.OVERFLOW); .
} : ;
Faults: ARITHMETIC.OVERFLOW for subi } ‘
Example: subi g6, g9, gl2 # gl2 = g9 - g6 |
Opcode: subi 593H REG |
subo 592H REG |

See Also: addi, addo, subc, addc
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6.2.66

Mnemonic:
Format:

Description:

Action:

Faults:

Example:

Opcode:
See Also:
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syncf

syncf Synchronize Faults
syncf '

Waits for all faults to be generated that are associated with any prior
uncompleted instructions.

if(AC.nif == 1)
break;

else
wait_until_all_previous_instructions_in_flow_have_completed();
# This also means that all of the faults on these instructions have
# been reported.

STANDARD : Refer to section 6.1.6, “Faults” (pg. 6-6).

1d xyz, g6

addi r6, r8, r8

syncf

and g6, OxXFFFF, g8

# The syncf instruction ensures that any faults
# that may occur during the execution of the

# 1d and addi instructions occur before the

# and instruction is executed.

synef  66FH REG
mark, fmark
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6267 SYysctl
Mnemonic: sysctl System Control
Format: syscti srcl, src2, src/dst ‘
reg/lit reg/lit reg p
Description: Performs system management and control operations including requesting
software interrupts, invalidating the instruction cache, configuring the
instruction cache, processor reinitialization, modifying memory-mapped
registers, and acquiring breakpoint resource information.
Processor control function specified by the message field of src! is executed.
The type field of srcl is interpreted depending upon the command.
Remaining srcl bits are reserved. The src2 and src3 operands are also
interpreted depending upon the command.
31 16 15 8 7 0
Field 2 Message Type Field 1
Figure 6-5. Src1 Operand Interpretation
Table 6-14. Sysctl Message Types and Operand Fields
Src1 Src2 Src/Dst
Message
Type Field 1 Field 2 Field 3 Field 4
Request Interrupt 0x0 Vector Number N/U N/U N/U
Invalidate Cache 0x1 N/U N/U N/U N/U
Configure Cache Mode Cache load
Instruction Cache 0x2 (S%%n-{-'gkﬂ;agﬂn& N address ,N/ U
Reintialize 0x3 N/U N/U Starting IP PRCB Pointer
Modify Memory- Lower 2 bytes
Mapped Control 0x5 N/U of MMR Value to write Mask ‘
Register (MMR) address
i Break-point
Breakpoint 0x6 N/U N/U N/U info (See
Resource Request Figure 6-6)
Note: Sources and fields that are not used (designated N/U) are ignored.
l 6-113
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Table 6-15. Cache Configuration Modes

Mode Field Mode Description JA JF, JD
000, Normal cache enabled 2 Kbyte i . 4 Kbyte
XX15 Full cache disabled 2 Kbyte 4 Kbyte

1005 o, 1105 Load and lock cache 2 Kbyte | 4 Kbyte

31

8 7 4 3 0

# available | # available
ata instruction
breakpoints | breakpoints

Figure 6-6. Src/dst Interpfetation for Breakpoint‘Resource Request

Action:
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if (PC.em != supervisor)

generate - fault(TYPE.MISMATCH);

‘order_wrt(previous_operations);
OPtype = (srcl & 0xff00) >> 8;
switch (OPtype) {
case 0: # Signal Software Interrupt

vector_to_post = Oxff & srcl;
priority_to_post = vector_to_post >> 3;
pend_ints_addr = interrupt_table_base + 4 + priority_to_post;
pend_priority = memory_read(interrupt_table_base,atomic_lock);
# Priority zero just recans Interrupt Table
if (priority_to_post !=0) _
{pend_ints = memory_read(pend_ints_addr, non-cacheable)
pend_ints[7 & vector] = 1;
pend_priority[priority_to_post] = 1;
memory_write(pend_ints_addr, pend_ints); } “
memory_write(interrupt_table_base,pend_priority,atomic_unlock);

# Update internal software priority with highest priority interrupt

# from newly adjusted Pending Priorities word. The current internal
# software priority is always replaced by the new, computed one. (If
# there is no bit set in pending_priorities word for the current
# internal one, then it is discarded by this action.)
if (pend_priority == 0)

SW_Int_Priority = 0;
else { msb_set = scan_bit(pend_priority);

SW_Int_Priority = msb_set; }
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# Make sure change to internal software priority takes full effect
# before next instruction.
order_wrt(subsequent_operations);

case 1:

case 2:

case 3:

case 5:

break;
# Global Invalidate Instruction Cache
invalidate_instruction_cache( );
unlock_instruction_cache( );
break;
# Configure Instruction-Cache
mode = srcl & Oxff;
if (mode & 1) disable_instruction_cache;
else switch (mode) {
case 0: enable_instruction_cache; break;
case 4,6: # Load & Lock code into Instr-Cache
# All contiguous blocks are locked.
# Note: block = way on 1960 Jx microprocessor.
# src2 has starting address of code to lock.
# src2 is aligned to a quadword
# boundary.
aligned_addr = src2 & Oxfffftff0;
invalidate(I-cache); unlock(I-cache);
for (j = 0; j < number_of_blocks_that_lock; j++)
{way = block_associated_with_block(j);
start = src2 + j*block_size;
end = start + block_size;
for (i = start; i < end; i=i+4)
{ set=set_associated_with(i);
word = word_associated_with(i);
Icache_line[set][way][word] =
memoryli];
update_tag_n_valid_bits(set,way,word)
lock_icache(set,way,word);
} } break;
default:
generate_operation_invalid_operand_fault;
} break;
# Software Re-init
disable(I_cache); invalidate(I_cache);
disable(D_cache); invalidate(D_cache);
Process_PRCB(dst); # dst has ptr to new PRCB
IP = src2;
break;
# Modify One Memory-Mapped Control Register (MMR)
# src1[31:16] has lower 2 bytes of MMR address
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Faults:

Example:

Opcode:

See Also:

Notes:

6-116

# src2 has value to write; dst has mask.
# After operation, dst has old value of MMR
addr = (0xff00 << 16) | (srcl >> 16);
temp = memory[addr];
memory[addr] = (src2 & dst) | (temp & ~dst);
dst = temp;
break; j
case 6: # Breakpoint Resource Request
acquire_available_instr_breakpoints( );
dst[3:0] = number_of_available_instr_breakpoints;
acquire_available_data_breakpoints( );
dst[7:4] = number_of_available_data_breakpoints;
dst[31:8] =0;

break;
default: # Reserved, fault occurs
generate_fault(OPERATION.INVALID_OPERAND);
break;
} ‘
order_wrt(subsequent_operations); .
STANDARD Refer to section 6.1.6, “Faults”

, (pg. 6-6).
OPERATION.INVALID_OPERAND
TYPE.MISMATCH

ldconst 0x100,r6 # Set up message.
sysctl r6,r7,r8 # Invalidate instruction
: # cache.
# r7, r8 are not used.
ldconst 0x204, g0 # Set up message type and
: # cache configuration
# mode.
# Lock half cache.
ldconst 0x20000000,g2 # Starting address of
! # code.
sysctl g0,g2,g2 # Execute Load and Lock.
syscti 659H REG
dectl, icctl

This instruction is implemented on 80960Jx and 80960Cx processors, and
may or may not be implemented on future 1960 processors.
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6.2.68

Mnemonic:

Format:

Description:

Action:

INSTRUCTION SET REFERENCE

TEST<cc>

teste Test For Equal
testne Test For Not Equal
testl Test For Less
testle Test For Less Or Equal
testg Test For Greater
testge Test For Greater Or Equal
testo Test For Ordered
testno Test For Not Ordered
test* dst

reg

Stores a true (01H) in dst if the logical AND of the condition code and opcode
mask-part is not zero. Otherwise, the instruction stores a false (00H) in dst.
For testno (Unordered), a true is stored if the condition code is 000,,
otherwise a false is stored.

The following table shows the condition-code mask for each instruction. The
mask is in bits 0-2 of the opcode.

Instruction Mask Condition
testno 000, Unordered
testg 001, Greater
teste 010, Equal
testge 011, Greater or equal
testl 100, Less
testne 101, Not equal
testle 110, Less or equal
testo 111, Ordered

The optional .t or .f suffix may be appended to the mnemonic. Use .t to speed-
up execution when these instructions usually store a true (1) condition in dst.
Use .f to speed-up execution when these instructions usually store a false (0)
condition in dst. If a suffix is not prpvided, the assembler is free to provide
one.

For all TEST<cc> except testno:
if((mask & AC.cc) !=000,)

srcl =1; f#true value
else

srcl =0; #false value
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Action: testno:
if(AC.cc == 000,)
srcl =1; f#true value
else
srcl =0; #false value

Faults: NA

Example: # Assume AC.cc = 100,
testl g9 # g9 = 0x00000001

Opcode: teste 22H COBR
testne 25H COBR
testl 24H COBR
testle 26H COBR
testg 21H COBR
testge 23H COBR
testo 27H ‘ COBR
testno 20H COBR

See Also: cmpi, cmpdeci, cmpinci
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6.2.69

Mnemonic:

Format:

Description:

Action:

Faults:

Example:
Opcode:

See Also:

INSTRUCTION SET REFERENCE

Xnor, xor
xnor Exclusive Nor
xor Exclusive Or
xnor srcl, src2, dst
reg/lit reg/lit reg
xor srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction)

operation on the src2 and srcl values and stores the result in dst.

xnor:
dst = ~(src2 | srcl) | (src2 & srcl);

xor:

dst = (src2 | srcl) & ~(src2 & srcl);

NA

xnor r3, r9, rl2 # rl2 = r9 XNOR r3
xor gl, g7, g4 # g4 = g7 XOR gl
xnor 589H REG

xor 586H REG

and, andnot, nand, nor, not, notand, notor, or, ornot
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CHAPTER 7
PROCEDURE CALLS

This chapter describes mechanisms for making procedure calls, which include branch-and-link
instructions, built-in call and return mechanism, call instructions (call, callx, calls), return
instruction (ret) and call actions caused by interrupts and faults.

The i960® architecture supports two methods for making procedure calls:

e A RISC-style branch-and-link: a fast call best suited for calling procedures that do not call
other procedures.

* Anintegrated call and return mechanism: a more versatile method for making procedure calls,
providing a highly efficient means for managing a large number of registers and the program
stack.

On a branch-and-link (bal, balx), the processor branches and saves a return IP in a register. The
called procedure uses the same set of registers and the same stack as the calling procedure. On a
call (call, calix, calls) or when an interrupt or fault occurs, the processor also branches to a target
instruction and saves a return IP. Additionally, the processor saves the local registers and allocates
a new set of local registers and a new stack for the called procedure. The saved context is restored
when the return instruction (ret) executes.

In many RISC architectures, a branch-and-link instruction is used as the base instruction for coding
a procedure call. The user program then handles register and stack management for the call. Since
the 1960 architecture provides a fully integrated call and return mechanism, coding calls with
branch-and-link is not necessary. Additionally, the integrated call is much faster than typical RISC-
coded calls.

The branch-and-link instruction in the 1960 processor family, therefore, is used primarily for
calling leaf procedures. Leaf procedures call no other procedures; they reside at the “leaves” of the
call tree.

In the 1960 architecture the integrated call and return mechanism is used in two ways:

»  explicit calls to procedures in a user’s program

*  implicit calls to interrupt and fault handlers

The remainder of this chapter explains the generalized call mechanism used for explicit and
implicit calls and call and return instructions.
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The processor performs two call actions:

local . S When a local Call 1is made, execution mode remains unchanged and the sfack
frame for the called procedure is placed on the local stack. The local stack refers
to the stack of the calling procedure.

supervisor When a supervisor call is made from user mode, execution mode is switched to
supervisor and the stack frame for the called procedure is placed on the
supervisor stack.

When a supervisor call is issued from supervisor mode, the call degenerates into
a local call (i.e., no mode nor stack switch).

Explicit procedure calls can be made using several instructions. Local call instructions call and
callx perform a local call action. With call and callx, the called procedure s IP is included as an
operand in the instruction.

A system call is made with calls. This instruction is similar to call and callx, except that the
processor obtains the called procedure’s IP from the system procedure table. A system call, when
executed, is directed to perform either the local or supervisor call action. These calls are referred
to as system-local and system-supervisor calls, respectively. A system-supervisor call is also
referred to as a supervisor call. ' ‘ ‘

7.1 CALL AND RETURN MECHANISM

At any point in a program, the i960 processor has access to the global registers, a local register set
and the procedure stack. A subset of the stack allocated to the procedure is called the stack frame.

*  When a call executes, a new stack frame is allocated for the called procedure. The processor
also saves the current local register set, freeing these registers for use by the newly called
procedure. In this way, every procedure has a unique stack and a unique set of local registers.

*  When a return executes, the current local register set and current stack frame are deallocated.
The previous local register set and previous stack frame are restored.

711 Local Registers and the Procedure Stack

The processor automatically allocates a set of 16 local registers for each procedure. Since local
registers are on-chip, they provide fast access storage for local variables. Of the 16 local registers,
13 are available for general use; 10, r1 and r2 are reserved for linkage information to tie procedures
together.
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The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Therefore, initial register contents are unpredictable. Also, because the processor does
not initialize the local register save area in the newly created stack frame for the procedure, its
contents are equally unpredictable.

The procedure stack can be located anywhere in the address space and grows from low addresses
to high addresses. It consists of contiguous frames, one frame for each active procedure. Local
registers for a procedure are assigned a save area in each stack frame (Figure 7-1). The procedure
stack, available to the user, begins after this save area.

To increase procedure call speed, the architecture allows an implementation to cache the saved
local register sets on-chip. Thus, when a procedure call is made, the contents of the current set of
local registers often do not have to be written out to the save area in the stack frame in memory.
Refer to section 7.1.4, “Caching of Local Register Sets” (pg. 7-9) and section 7.1.4.1, “Reserving
Local Register Sets for High Priority Interrupts” (pg. 7-10) for more about local registers and
procedure stack interrelations

Procedure Stack

Current Register Set Previous Frame Pointer (PFP) r0
— Stack Pointer (SP) r .
Previous
Return Instruction Pointer (RIP) r2 Stack
Frame
r15
Frame Pointer (FP) gi15

user allocated stack

padding area

| register | Current
| save area Stack

Previous Frame Pointer (PFP) 10

Stack Pointer (SP) r

reserved for RIP

Frame
user allocated stack
I unused stack
stack growth
(toward higher addresses)
F_CA010A

Figure 7-1. Procedure Stack Structure and Local Registers
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7.1.2 . Local Register and Stack Management

Global register g15 (FP) and local registers r0 (PFP), r1 (SP) and r2 (RIP) contain information to
link procedures together and link local registers to the procedure stack (Figure 7-1). The following
subsections describe this linkage information.

7.1.21 Frame Pointer

The frame pointer is the current stack frame’s first byte address. It is stored in global register g15,
the frame pointer (FP) register. The FP register is always reserved for the frame pointer; do not use
g15 for general storage.

Stack frame alignment is defined for each implementation of the 1960 processor family, according
to an SALIGN parameter (see section A.2.5, “Data and Data Structure Alignment” (pg. A-3)). In
the 1960 Jx processors, stacks are aligned on 16-byte boundaries (see Figure 7-1). When the
processor needs to create a new frame on a procedure call, it adds a padding area to the stack so
that the new frame starts on a 16-byte boundary.

7.1.2.2 Stack Pointer

The stack pointer is the byte-aligned address of the stack frame’s next unused byte. The stack
pointer value is stored in local register r1, the stack pointer (SP) register. The procedure stack
grows upward (i.e., toward higher addresses). When a stack frame is created, the processor
automatically adds 64 to the frame pointer value and stores the result in the SP register. This action
creates the register save area in the stack frame for the local registers.

The user must modify the SP register value when data is stored or removed from the stack. The
1960 architecture does not provide an explicit push or pop instruction to perform this action. This
is typically done by adding the size of all pushes to the stack in one operation.

7.1.23 Considerations When Pushing Data onto the Stack

Care should be taken in writing to stack in the presence of unforeseen faults and interrupts. In the
general case, to ensure that the data written to the stack is not corrupted by a fault or interrupt
record, the SP should be incremented first to allocate the space, and then the data should be written
to the space so allocated:

mov sp,rd

addo 24,sp,sp

st data, (r4)

st data,20(r4)
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7.1.24 Considerations When Popping Data off the Stack

For reasons similar to those discussed in the previous section, care should be taken in reading the
stack in the presence of unforeseen faults and interrupts. In the general case, to ensure that data
about to be popped off the stack is not corrupted by a fault or interrupt record, the data should be
read first and then the sp should be decremented:

subo 24,sp,r4

1d 20(r4d) ,rn

1d (rd) ,rn
mov rd, sp

7.1.2.5 Previous Frame Pointer

The previous frame pointer is the previous stack frame’s first byte address. This address’ upper 28
bits are stored in local register r0, the previous frame pointer (PFP) register. The four least-
significant bits of the PFP are used to store the return-type field.

7.1.2.6 Return Type Field

PFP register bits 0 through 3 contain return type information for the calling procedure. When a
procedure call is made — either explicit or implicit — the processor records the call type in the
return type field. The processor then uses this information to select the proper return mechanism
when returning to the calling procedure. The use of this information is described section 7.8,
“RETURNS?” (pg. 7-20).

71.2.7 Return Instruction Pointer

The actual RIP register (r2) is reserved by the processor to support the call and return mechanism
and must not be used by software; the actual value of RIP is unpredictable at all times. For
example, -an implicit procedure call (fault or interrupt) can occur at any time and modify the RIP.
An OPERATION.UNIMPLEMENTED fault is generated when attempting to write the RIP.

The image of the RIP register in the stack frame is used by the processor to determine that frame’s
return instruction address. When a call is made, the processor saves the address of the instruction
after the call in the image of the RIP register in the calling frame.

71.3 Call and Return Action

To clarify how procedures are linked and how the local registers and stack are managed, the
following sections describe a general call and return operation and the operations performed with
the FP, SP, PFP and RIP registers described in the preceding sections.
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The events for call and return operations are given in a logical order of operation. The 1960 Jx
processors can execute independent operations in parallel; therefore, many of these events execute
simultaneously. For example, to improve performance, the processors often begin prefetch of the
target instruction for the call or return before the operation is complete.

7.1.3.1 Call Operation

When a call, calls or callx instruction is executed or an implicit call is triggered:

1. The processor stores the instruction pointer for the instruction following the call in the
current stack’s RIP register (12).

2. The current local registers — including the PFP, SP and RIP registers — are saved, freeing
these for use by the called procedure. Because saved local registers are cached on the
1960 Jx processors, the registers are always saved in the on-chip local register cache at this
time.

3. The frame pointer (gl15) for the calling procedure is stored in the current stack’s PFP
register (r0). The return type field in the PFP register is set according to the call type which
is performed. See section 7.8, “RETURNS” (pg. 7-20).

4. For a local or system-local call, new stack frame is allocated by using the stack pointer
value saved in step 2. This value is first rounded to the next 16-byte boundary to create a
new frame pointer, then stored in the FP register. Next, 64 bytes are added to create the new
frame’s register save area. This value is stored in the SP register.

For an interrupt call from user mode, the interrupt stack pointer is used instead of the value
saved in step 2.

For a system-supervisor call from user mode, the Supervisor Stack Pointer (SSP) is used as
“a base instead of the value saved in step 2.

S. The instruction pointer is loaded with the address of the first instruction in the called
procedure. The processor gets the new instruction pointer from the call, the system
procedure table, the interrupt table or the fault table, depending on the type of call executed.

Upon completion of these steps, the processor begins executing the called procedure. Sometime
before a return or nested call, the local register set is bound to the allocated stack frame.

7.1.3.2 Binding of the local register set to the allocated stack frame

)

The time at which the local register set is actually bound to its save area in the allocated stack
frame may vary across implementations. Some implementations may perform the binding at
activation time during the call; others may perform the binding only when necessary, such as
before processing an explicit/implicit call from the activated procedure itself. This is only a
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problem when an activated procedure attempts to change its own FP; in this case it is unpredictable
where the register set is actually saved. However, there are only two possibilities for the result: the
register set must be saved at the new or at the old address.

The following code illustrates the case:

routinel: # Suppose fp = frameA by definition of the
# current frame.
lda frameB, fp
call routine2

routine2: flushreg
# Where did the previous local register set get
# saved? It may have been saved starting at
# address frameA or frameB depending on the
# implementation.

The stack itself (the stack frame without the register save area) does not encounter this problem,
since its binding is immediate. The previous example is modified below to illustrate the point:

routinel: # suppose fp = frameA by definition of the
# current frame
# sp = frameA+64

1lda frameB, fp

st datal, sp# place datal on stack
routine2: flushreg

1d frameA+64, data2

# datal = data2 in all cases

Modification of FP should be done inside a called procedure, through the use of PFP, as described
in section 7.2, “MODIFYING THE PFP REGISTER” (pg. 7-13).
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7133 Return Operatlon :

A return from any call type — exp11c1t or 1mp11c1t — is always 1n1t1ated with a return (ret)
instruction. On a return, the processor performs these operations:

1. The current stack frame and local registers are deallocated by loading the FP‘r-egist'er with
the value of the PFP register.

2. The local registers for the return target procedure are retrieved. The registers are usually
read from the local register cache; however, in some cases, these registers have been
flushed from register cache to memory and must be read directly from the save area in the
stack frame.

3. The processor sets the instruction pointer to the value of the RIP register.

Upon completion of the's‘e steps, the processor executes the procedure to which it returns. The
frames created before the ret instruction was executed will be overwritten by later implicit or
explicit call operations.

7.1.4 Caching of Local Register Sets

Actual implementations of the i960 architecture may cache some number of local register sets
within the processor to improve performance. Local registers are typically saved and restored from
the local register cache when calls and returns are executed. Other overhead associated with a call
or return is performed in parallel with this data movement. -

‘When the number of nested procedures exceeds local register cache size, local register sets must at
times be saved to (and restored from) their associated save areas in the procedure stack. Because
these operations require access to external memory, this local cache miss impacts call and return
performance.

When a call is made and no frames are available in the register cache, a register set in the cache
.must be saved to external memory to make room for the current set of local registers in the.cache
(see section 4.2, “LOCAL REGISTER CACHE” (pg. 4-2). This action is referred to as a frame
spill. The oldest set of local registers stored in the cache is spilled to the associated local register
save area in the procedure stack. Figure 7-2 illustrates a call operation with and without a frame
spill.

Similarly, when a return is made and the local register set for the target procedure is not available
in the cache, these local registers must be retrieved from the procedure stack in memory. This
operation is referred to as a frame fill. Figure 7-3 illustrates return operations with and without
frame fills.
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The instruction flushreg, described in section 6.2.30, “flushreg” (pg. 6-55), is provided to write all

local register sets (except the current one) to their associated stack frames in memory. The register I
cache is then invalidated, meaning that all flushed register sets are restored from their save areas in

memory.

For most programs, the existence of the multiple local register sets and their saving/restoring in the
stack frames should be transparent. However, some cases where it may not be apparent follow.

e Without executing flushreg first, a store to memory does not necessarily update a local
register set.

*  Without executing flushreg first, reading from memory does not necessarily return the current
value of a local register set.

¢ There is no mechanism, including flushreg, to access the current local register set with a read
or write to memory.

* flushreg must be executed sometime before returning from the current frame if the current
procedure modifies the PFP in register 10, or else the behavior of the ret instruction is not
predictable.

e The values of the local registers r2 to r15 in a new frame are undefined.

flushreg is commonly used in debuggers or fault handlers to gain access to all saved local
registers. In this way, call history may be traced back through nested procedures.

7.1.41 Reserving Local Register Sets for High Priority interrupts

To decrease interrupt latency for high priority interrupts (interrupted state and process priority |
greater than or equal to 28), software can limit the number of frames available to all remaining i
code. This includes code that is either in the executing state (non-interrupted) or code that is in the ;
interrupted state, but, has a process priority less than 28. For the purposes of discussion here, this {
remaining code will be referred to as non-critical code. Specifying a limit for non-critical code, ’
ensures that some number of free frames are available to high-priority interrupt service routines.

Software can specify the limit for non-critical code by writing bits 10 through 8 of the register
cache configuration word in the PRCB (see Figure 11-6 on page 11-16). The value indicates how [
many frames within the register cache may be used by non-critical code before a frame needs to be }
flushed to external memory. The programmed limit is used only when a frame is pushed, which |
occurs only for an implicit or explicit call. |

Allowed values of the programmed limit range from O to 7. Setting the value to 7 reserves no I
frames for high-priority interrupts. Setting the value to O causes the register cache to become i
disabled for non-critical code.
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7.2 MODIFYING THE PFP REGISTER

Modification of the PFP ‘is typically for context switches; as part of the switch, the active
procedure changes the pointer to the frame that it will return to (previous frame pointer -- PFP).
Great care should be taken in modifying the PFP. In the general case, a flushreg must be issued
before and after modifying the PFP when the local register cache is enabled. See Example 7-1.

Example 7-1. Modifying the PFP

# Do a context switch.
# Assume PFP = 0x5002.

flushreg # Flush Frames to correct address.
lda 0x8002,pfp

flushreg # Ensure that "ret" gets updated PFP.
ret N

These requirements ensure the correct operation of a context switch on all 19960 processors in all
situations.

The flushreg before the modification is necessary to ensure that the frame of the previous context
(mapped to 0x5000 in the example) is “spilled” to the proper external memory address and
removed from the local register cache. If the flushreg before the modification was omitted, a
flushreg (or implicit frame spill due to an interrupt) after the modification of PFP would cause the
frame of the previous context to be written to the wrong location in external memory.

The flushreg after the modification ensures that outstanding results are completely written to the
PFP before a subsequent ret instruction can be executed. Recall that the ret instruction uses the
low-order 4-bits of the PFP to select which ret function to perform. Requiring the flushreg after
the PFP modification allows an i960 implementation to implement a simple mechanism that
quickly selects the ret function at the time the ret instruction is issued and provides a faster return
operation.

Note the flushreg after the modification will execute very quickly because the local register cache
has already been flushed by the flushreg before; only synchronization of the PFP will be
performed. 1960 implementations may provide other mechanisms to ensure PFP synchronization
in addition to flushreg, but, a flushreg after a PFP modification is ensured to work on all 19960
Pprocessors.

7-12 I
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7.3 PARAMETER PASSING

Parameters are passed between procedures in two ways:

value Parameters are passed directly to the calling procedure as part of the call and
return mechanism. This is the fastest method of passing parameters.

reference Parameters are stored in an argument list in memory and a pointer to the
argument list is passed in a global register.

When passing parameters by value, the calling procedure stores the parameters to be passed in
global registers. Since the calling procedure and the called procedure share the global registers, the
called procedure has direct access to the parameters after the call.

When a procedure needs to pass more parameters than will fit in the global registers, they can be
passed by reference. Here, parameters are placed in an argument list and a pointer to the argument
list is placed in a global register.

The argument list can be stored anywhere in memory; however, a convenient place to store an
argument list is in the stack for a calling procedure. Space for the argument list is created by incre-
menting the SP register value. If the argument list is stored in the current stack, the argument list is
automatically deallocated when no longer needed.

A procedure receives parameters from — and returns values to — other calling procedures. To do
this successfully and consistently, all procedures must agree on the use of the global registers.

Parameter registers pass values into a function. Up to 12 parameters can be passed by value using
the global registers. If the number of parameters exceeds 12, additional parameters are passed
using the calling procedure’s stack; a pointer to the argument list is passed in a pre-designated
register. Similarly, several registers are set aside for return arguments and a return argument block
pointer is defined to point to additional parameters. If the number of return arguments exceeds the
available number of return argument registers, the calling procedure passes a pointer to an
argument list on its stack where the remaining return values will be placed. Example 7-2 illustrates
parameter passing by value and reference.

l 7-13




PROCEDURE CALLS |nte|®

Local registers are automatiéally saved when a call is made. Because of the local register cache,
they are saved quickly and with no external bus traffic. The efficiency of the local reglster
mechanism plays an important role in two cases when calls are made:

1. When a procedure is called which contains other calls, global parameter registers should be
moved to working local registers at the beginning of the procedure. In this way, parameter
registers are freed and nested calls are easily managed. The register move instruction
necessary to perform this action is very fast; the working parameters — now in local
registers — are saved efficiently when nested calls are made.

2. When other procedures are nested within an interrupt or fault procedure, the procedure
must preserve all normally non-preserved parameter registers, such as the global registers.
This is necessary because the interrupt or fault occurs at any point in the user’s program and
a return from an interrupt or fault must restore the exact processor state. The interrupt or
fault procedure can move non-preserved global registers to local registers before the nested
call.

Example 7-2. Parameter Passing Code Example

# Example of parameter passing
# C-source: int a,b[10];
# a = procl(a,l,'x’',&bI[0]);
# assembles to .
mov r3,g0 # value of a
ldconst 1,91 # value of 1
ldconst 120,92 # value of #x”
1lda 0x40 (fp) ,g3 # reference to b[10]
call _procl
mov g0,r3 #save return value in “a”
_procl:
movqg g0, rd # save parameters
# other instructions in procedure
. # and nested calls
mov r3,g0 # load return parameter
ret
7.4 LOCAL CALLS

A local call does not cause a stack switch. A local call can be made two ways:
e with the call and callx instructions; or

e with a system-local call as described in section 7.5, “SYSTEM CALLS” (pg. 7-16).
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call specifies the address of the called procedures as the IP plus a signed, 24-bit displacement (i.e.,
2283 t0 223 - 4). callx allows any of the addressing modes to be used to specify the procedure
address. The IP-with-displacement addressing mode allows full 32-bit IP-relative addressing.

When a local call is made with a call or callx, the processor performs the same operation as
described in section 7.1.3.1, “Call Operation” (pg. 7-7). The target IP for the call is derived from
* the instruction’s operands and the new stack frame is allocated on the current stack.

75 SYSTEM CALLS

A system call is a call made via the system procedure table. It can be used to make a system-local
call — similar to a local call made with call and callx in the sense that there is no stack nor mode
switch — or a system supervisor call. A system call is initiated with calls, which requires a
procedure number operand. The procedure number provides an index into the system procedure
table, where the processor finds IPs for specific procedures.

Using an 1960 processor language assembler, a system procedure is directly declared using the
.sysproc directive. At link time, the optimized call directive, callj, is replaced with a calls when a
system procedure target is specified. (Refer to current 1960 processor assembler documentation for
a description of the .sysproc and callj directives.)

The system call mechanism offers two benefits. First, it supports application software portability.
System calls are commonly used to call kernel services. By calling these services with a procedure
number rather than a specific IP, applications software does not need to be changed each time the
implementation of the kernel services is modified. Only the entries in the sysiem procedure table
must be changed. Second, the ability to switch to a different execution mode and stack with a
system supervisor call allows kernel procedures and data to be insulated from applications code.
This benefit is further described in section 3.7, “USER SUPERVISOR PROTECTION MODEL” 1

(pg. 3-22).

7.5.1 System Procedure Table

The system procedure table is a data structure for storing IPs to system procedures. These can be
procedures which software can access through (1) a system call or (2) the fault handling
mechanism. Using the system procedure table to store IPs for fault handling is described in section
9.1, “FAULT HANDLING FACILITIES OVERVIEW” (pg. 9-1).

Figure 7-4 shows the system procedure table structure. It is 1088 bytes in length and can have up to
260 procedure entries. At initialization, the processor caches a pointer to the system procedure
table. This pointer is located in the PRCB. The following subsections describe this table’s fields.
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supervisor stack pointer base 1| 00CH

Trace
Control
Bit
02CH
procedure entry 0 030H
procedure entry 1 .034H
procedure entry 2 038H-
) 03CH
438H
procedure entry 259 43CH
31 Procedure Entry 210
‘ L
Reserved Entry Type:
(Initialize to 0) | SN 00 - Local
10-Supervisor
. Preserved
F_CA013A
Figure 7-4. System Procedure Table
7.51.1 Procedure Entries

A procedure entry in the system procedure table specifies a procedure’s location and type. Each
entry is one word in length and consists of an address (IP) field and a type field. The address field
gives the address of the first instruction of the target procedure. Since all instructions are word
aligned, only the entry’s 30 most significant bits are used for the address. The entry’s two least-
significant bits specify entry type. The procedure entry type field indicates call type: system-local
call or system-supervisor call (Table 7-1). On a system call, ithe processor performs.different

actions depending on the type of call selected.
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Table 7-1. Encodings of Entry Type Field in System Procedure Table

Encoding Call Type
00 System-Local Call
01 Reserved'
10 System-Supervisor Call
11 Reserved'
1. Calls with reserved entry types have unpredictable behavior.

7.5.1.2 Supervisor Stack Pointer

When a system-supervisor call is made, the processor switches to a new stack called the supervisor
stack, if not already in supervisor mode. The processor gets a pointer to this stack from the
supervisor stack pointer field in the system procedure table (Figure 7-4) during the reset initial-
ization sequence and caches the pointer internally. Only the 30 most significant bits of the
supervisor stack pointer are given. The processor aligns this value to the next 16 byte boundary to
determine the first byte of the new stack frame.

7513 Trace Control Bit

The trace control bit (byte 12, bit 0) specifies the new value of the trace enable bit in the PC
register (PC.te) when a system-supervisor call causes a switch from user mode to supervisor mode.
Setting this bit to 1 enables tracing in the supervisor mode; setting it to 0 disables tracing. The use
of this bit is described in section 10.1.2, “PC Trace Enable Bit and Trace-Fault-Pending Flag” (pg.
10-3).

7.5.2 System Call to a Local Procedure

When a calls instruction references an entry in the system procedure table with an entry type of 00,
the processor executes a system-local call to the selected procedure. The action that the processor
performs is the same as described in section 7.1.3.1, “Call Operation” (pg. 7-7). The call’s target IP
is taken from the system procedure table and the new stack frame is allocated on the current stack,
and the processor does not switch to supervisor mode. The calls algorithm is described in section
6.2.14, “calls” (pg. 6-26).

7.5.3 System Call to a Supervisor Procedure

When a calls instruction references an entry in the system procedure table with an entry type of
10,, the processor executes a system-supervisor call to the selected procedure. The call’s target IP
is taken from the system procedure table.
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The processor performs the same action as described in section 7.1.3.1, “Call Operation” (pg. 7-7),
with the following exceptions:

* If the processor is in user mode, it switches to supervisor mode.

o If a mode switch occurs, SP is read from the Supervisor Stack Pointer (SSP) base. A new
frame for the called procedure is placed at the location pointed to after alignment of SP.

¢ If no mode switch occurs, the new frame is allocated on the current stack.

e If a mode switch occurs, the state of the trace enable bit in the PC register is saved in the
return type field in the PFP register. The trace enable bit is then loaded from the trace control
bit in the system procedure table. ‘

e If no mode switch occurs, the value 000, (calls instruction) or 001, (fault call) is saved in the
return type field of the pfp register.

When the processor switches to supervisor mode, it remains in that mode and creates new frames
on the supervisor stack until a return is performed from the procedure that caused the original
switch to supervisor mode. While in supervisor mode, either the local call instructions (call and
callx) or calls can be used to call procedures.

The user-supervisor protection model and its relationship to the supervisor call are described in
section 3.7, “USER SUPERVISOR PROTECTION MODEL” (pg. 3-22).

7.6 USER AND SUPERVISOR STACKS

When using the user-supervisor protection mechanism, the processor maintains separate stacks in
the address space. One of these stacks — the user stack — is for procedures executed in user
mode; the other stack — the supervisor stack — is for procedures executed in supervisor mode.

The user and supervisor stacks are identical in structure (Figure 7-1). The base stack pointer for
the supervisor stack is automatically read from the system procedure table and cached internally
during initialization. Each time a user-to-supervisor mode switch occurs, the cached supervisor
stack pointer base is used for the starting point of the new supervisor stack. The base stack pointer
for the user stack is usually created in the initialization code. See section 11.2, “INITIAL-
IZATION” (pg. 11-2). The base stack pointers must be aligned to a 16-byte boundary; otherwise,
the first frame pointer on the interrupt stack is rounded up to the previous 16-byte boundary.
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7.7 INTERRUPT AND FAULT CALLS

The architecture defines two types of implicit calls that make use of the call and return mechanism:
interrupt handling procedure calls and fault handling procedure calls. A call to an interrupt
procedure is similar to a system-supervisor call. Here, the processor obtains pointers to the
interrupt procedures through the interrupt table. The processor always switches to supervisor mode
on an interrupt procedure call.

A call to a fault procedure is similar to a system call. Fault procedure calls can be local calls or
supervisor calls. The processor obtains pointers to fault procedures through the fault table and
(optionally) through the system procedure table.

e e e R e s e -

When a fault call or interrupt call is made, a fault record or interrupt record is placed in the newly
generated stack frame for the call. These records hold the machine state and information to identify
the fault or interrupt. When a return from an interrupt or fault is executed, machine state is restored
from these records. See CHAPTER 9, FAULTS for more information on the structure of the fault
and interrupt records.

|
|
|
|

7.8 RETURNS

The return (ret) instruction provides a generalized return mechanism that can be used to return
from any procedure that was entered by call, calls, callx, an interrupt call or a fault call. When ret
executes, the processor uses the information from the return-type field in the PFP register (Figure
7-5) to determine the type of return action to take.

Return Status .
Return-Type Field - PFP.rt /
Pre-Return-Trace Flag - PFP.p ‘

Previous Frame Pointer
Address-PFP.a l

{
a ryr|r .

a
3 . tjtpt
1 4P 21110
31 28 24 20 16 12 8 4 0
F_CAO014A

Figure 7-5. Previous Frame Pointer Register (PFP) (r0)

return-type field indicates the type of call which was made. Table 7-2 shows the return-type field
encoding for the various calls: local, supervisor, interrupt and fault.
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trace-on-return flag (PFP.rt0 or bit O of the return-type field) stores the trace enable bit value when
a system-supervisor call is made from user mode. When the call is made, the PC register trace
enable bit is saved as the trace-on-return flag and then replaced by the trace controls bit in the
system procedure table. On a return, the trace enable bit's original value is restored. This
mechanism ‘allows instruction tracing to be turned on or off when a supervisor mode switch
occurs. See section 10.5.2.3, “Tracing on Return from Explicit Call” (pg. 10-14).

prereturn-trace flag (PFP.p) is used in conjunction with call-trace and prereturn-trace modes. If
call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag;
otherwise it clears the flag. Then, if this flag is set and prereturn-trace mode is enabled, a prereturn
trace event is generated on a return, before any actions associated with the return operation are
performed. See section 10.2, “TRACE MODES” (pg. 10-3) for a discussion of 1nteract10n
between call-trace and prereturn-trace modes with the prereturn-trace flag.

Table 7-2. Encoding of Return Status Field

Return Status
Field Call Type Return Action

Local call
000 (system-local call or system-supervisor
call made from supervisor mode)

Local return
(return to local stack; no mode switch)

001 + | Fault call Fault return

Supervisor return
(return to user stack, mode switch to user

o1t System-supervisor from user mode mode, trace enable bit is replaced with the t bit
stored in the PFP register on the call)

100 reserved '

101 reserved!

110 reserved!

11 Interrupt call Interrupt return

NOTE: ‘i’ denotes the trace-on-return flag; used only for system supervisor calls which cause a user-to-
supervisor mode switch.

1. This return type results in unpredictable behavior.
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7.9 BRANCH-AND-LINK

A branch-and-link is executed using either the branch-and-link instruction (bal) or branch-and-
link-extended instruction (balx). When either instruction executes, the processor branches to the
first instruction of the called procedure (the target instruction), while saving a return IP for the
calling procedure in a register. The called procedure uses the same set of local registers and stack
frame as the calling procedure:

e For bal, the return IP is automatically saved in global register g14

*  For balx, the return IP instruction is saved in a register specified by one of the instruction’s
operands

A return from a branch-and-link is generally carried out with a bx (branch extended) instruction,
where the branch target is the address saved with the branch-and-link instruction. The branch-and-
link method of making procedure calls is recommended for calls to leaf procedures. Leaf
procedures typically call no other procedures. Branch-and-link is the fastest way to make a call,
providing the calling procedure does not require its own registers or stack frame.

I 7-21

|
|
I
l







INTERRUPTS







intgl.

CHAPTER 8
INTERRUPTS

This chapter describes how a programmer uses the processor’s interrupt mechanism, defines data
structures used for interrupt handling and describes actions that the processor takes when handling
an interrupt.

CHAPTER 13, INTERRUPT CONTROLLER describes the hardware mechanism for signaling
and posting interrupts.

8.1 OVERVIEW

An interrupt is an event that causes a temporary break in program execution so the processor can
handle another chore. Interrupts commonly request I/O services or synchronize the processor with
some external hardware activity. For interrupt handler portability across the 960 processor
family implementations, the architecture defines a consistent interrupt state and interrupt-priority-
handling mechanism. To manage and prioritize interrupt requests in parallel with processor
execution, the 1960 Jx processor provides an on-chip programmable interrupt controller.

Requests for interrupt service come from many sources. These requests are prioritized so that
instruction execution is redirected only if an interrupt request is of higher priority than that of the
executing task.

When the processor is redirected to service an interrupt, it uses a vector number that accompanies
the interrupt request to locate the vector entry in the interrupt table. From that entry, it gets an
address to the first instruction of the selected interrupt procedure. The processor then makes an
implicit call to that procedure.

When the interrupt call is made, the processor uses a dedicated interrupt stack. A new frame is
created for the interrupt on this stack and a new set of local registers is allocated to the interrupt
procedure. The interrupted program’s current state is also saved.

Upon return from the interrupt procedure, the processor restores the interrupted program’s state,
switches back to the stack that the processor was using prior to the interrupt and resumes program
execution.

Since interrupts are handled based on priority, requested interrupts are often saved for later service
rather than being handled immediately. The mechanism for saving the interrupt is referred to as
interrupt posting. The mechanism the 1960 Jx processor uses for posting interrupts is described in
section 13.2, “MANAGING INTERRUPT REQUESTS” (pg. 13-2).
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On the i960 Jx processor, interrupt requests may originate from external hardware sources,
internal timer unit sources or from software. External interrupts are detected with the chip’s 8-bit
interrupt port and with a dedicated NMI input. Interrupt requests originate from software by the
sysctl instruction which signals interrupts. To manage and prioritize all possible interrupts, the
processor integrates an on-chip programmable interrupt controller. Integrated interrupt controller
configuration and operation is described in CHAPTER 13, INTERRUPT CONTROLLER.

The 1960 architecture defines two data structures to support interrupt processing: the interrupt
table and interrupt stack (see Figure 8-1). The interrupt table contains 248 vectors for interrupt
handling procedures (eight of which are reserved) and an area for<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>