

I

i96cP Jx Microprocessor
User's Manual

September 1994

Order Number: 272483-001

.'

.' ,"

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark or
products.

"Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel COrporation""
Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056·7641

or call 1 ·800·879·4683

© INTEL CORPORATION 1994

CONTENTS

CHAPTER 1
INTRODUCTION

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1.7
1.1.8
1.1.9

1.2
1.3

1.3.1
1.3.2
1.3.3
1.3.4

1.4

PRODUCT FEATURES .. 1-2
Instruction Cache 1-2
Data Cache .. , .. 1-2
On-chip (internal) Data RAM 1-2
Local Register Cache 1-3
Interrupt Controller .. 1-3
Timer Support 1-4
Memory-Mapped Control Registers. 1-4
External Bus .. 1-4
Complete Fault Handling and Debug Capabilities ... 1-5

ABOUT THIS MANUAL. .. 1-5
NOTATION AND TERMINOLOGy .. 1-6

Reserved and Preserved ... 1-6
Specifying Bit and Signal Values ... 1-7
Representing Numbers ... 1-7
Register Names '" ... '" 1-7

RELATED DOCUMENTS .. 1-8

CHAP1ER2
DATA TYPES AND MEMORY ADDRESSING MODES

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6

2.2
2.2.1
2.2.2

2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5

DATA TyPES .. 2-1
Integers 2-2
Ordinals 2-2
Bits and Bit Fields ..•................. 2-3
Triple and Quad Words 2-3
Register Data Alignment ... 2-4
Literals ... 2-4

BIT AND BYTE ORDERING IN MEMORy .. 2-4
Bit Ordering 2-4
Byte Ordering 2-4

MEMORY ADDRESSING MODES ... 2-6
Absolute .. 2-7
Register Indirect 2-7
Index with Displacement ... : 2-8
I P with Displacement 2-8
Addressing Mode Examples 2-8

CHAPTER 3
PROGRAMMING ENVIRONMENT

3.1
3.2

3.2.1

OVERViEW ... 3-1
REGISTERS AND LITERALS AS INSTRUCTION OPERANDS 3-1

Global Registers 3-2

iii

CONTENTS

3.2.2 Local Registers .. 3-3
3.2.3 Register Scoreboarding .. ~ 3-4
3.2.4 Literals ... 3-4
3.2.5 Register and Literal Addressing and Alignment ... 3-4

3.3 MEMORY-MAPPED CONTROL REGiSTERS .. 3-5
3.3.1 Memory-Mapped Registers (MMR) : ~ 3-6

3.3.1.1 Restrictions on Instructions that Access Memory-Mapped Registers 3-6
3.3.1.2 Access Faults ... 3-7

3.4 ARCHITECTURE-DEFINED DATA STRUCTURES ... :. 3-12
3.5 MEMORY ADDRESS SPACE ... 3-13

3.5.1
3.5.2
3.5.3
3.5.4
3.5 .. 5
3.5.6

3.6

Memory Requirements .. 3-14
Data and Instruction Alignment in the Address Space .. 3-15
Byte, Word and Bit Addressing .. : 3-16
Internal Data RAM .. : .. ; 3-16
Instruction Cache ... 3-16
Data Cache .. 3-17

PROCESSOR-STATE REGiSTERS ... 3-17
3.6.1
3.6.2

3.6.2.1
3.6.2.2

Instruction Pointer (IP) Register .. :. 3-17
Arithmetic Controls (AC) Register .. 3-17

Initializing and Modifying the AC Register .. 3-18
Condition Code .. , 3-18

3.6.3
3.6.3.1

3.6.4

3.7

Process Controls (PC) Register' ... 3-20
Initializing and Modifying the PC Register .. 3-21

Trace Controls (TC) Register ... 3-22
USER SUPERVISOR PROTECTION MODEL .. 3-22

3.7.1 Supervisor Mode Resources ... 3-22
3.7.2 Using the User-Supervisor Protection Model ... 3-23

CHAPTER 4
CACHE AND ON-CHIP DATA RAM

4.1
4.2
4.3
4.4

4.4.1
4.4.2
4.4.3
4.4.4
4.4.5

4.5
4.5.1

. 4.5.2
4.5.3
4.5.4

iv

INTERNAL DATA RAM ... 4-1
LOCAL REGISTER CACHE .. 4-2
BIG ENDIAN ACCESSES TO INTERNAL RAM AND DATA CACHE , 4-3
INSTRUCTION CACHE .. 4-4

Enabling and Disabling the Instruction Cache ... 4-4
Operation While The Instruction Cache Is Disabled .. 4-4
Locking Instructions in the Instruction Cache ; .. 4-5
Instruction Cache Visibility ... 4-5
Instruction Cache Coherency .. 4-5

DATA CACHE .. : ... :; ... :: 4~6
Enabling and Disabling the Data Cache : : ... : 4-6

. Multi-Word Data Access that Partially Hit the Data Cache ; 4-6
Data Cache Fill Policy ... 4-7
Data Cache Write Policy .. 4-7

I

4.5.5
4.5.6
4.5.7

CONTENTS

Data Cache Coherency and Non-cacheable Accesses. 4-8
External I/O and Bus Masters and Cache Coherency... 4-9
Data Cache Visibility 4-9

CHAPTER 5
INSTRUCTION SET OVERVIEW

5.1 INSTRUCTION FORMATS ... 5-1
5.1.1
5.1.2
5.1.3

Assembly Language Format 5-1
Instruction Encoding Formats ~ ... 5-2
Instruction Operands 5-3

5.2 INSTRUCTION GROUPS ... 5-3
5.2.1

5.2.1.1
5.2.1.2
5.2.1.3

5.2.2
5.2.3

5.2.3.1
5.2.3.2
5.2.3.3
5.2.3.4

5.2.4
5.2.5

5.2.5.1
5.2.5.2

5.2.6
5.2.7

5.2.7.1
5.2.7.2
5.2.7.3

5.2.8
5.2.8.1
5.2.8.2
5.2.8.3

5.2.9
5.2.10
5.2.11
5.2.12
5.2.13

Data Movement .. , 5-3
Load and Store Instructions 5-5
Move .. 5-6
Load Address 5-6

Select Conditional 5-6
Arithmetic 5-6

Add, Subtract, Multiply and Divide ... 5-7
Extended Arithmetic .. '" 5-8
Remainder and Modulo ... , ... '" '" 5-8
Shift and Rotate ... ~ 5-9

Logical ... 5-10
Bit and Bit Field .. : 5-10

Bit Operations .. 5-1 0
Bit Field Operations .. : 5-11

Byte Operations 5-11
Comparison ... 5-11

Compare and Conditional Compare 5-11
Compare and Increment or Decrement 5-12
Test Condition Codes ... 5-13

Branch ... 5-13
Unconditional Branch ... 5-13
Conditional Branch ... 5-14
Compare and Branch 5-15

Call and Return 5-16
Conditional Faults 5-17
Debug .. 5-17
Atomic Instructions .. 5-17
Processor Management 5-18

5.3 PERFORMANCE OPTIMiZATION .. 5-19
5.3.1

5.3.1.1
5.3.1.2
5.3.1.3
5.3.1.4

Instruction Optimizations 5-19
Load / Store Execution Model .. 5-19
Compare Operations 5-20
Microcoded Instructions 5-20
Multiply-Divide Unit Instructions 5-20

v

d
ii
II
I:

I:
I.;

CONTENTS intet
5.3.1.5
5.3.1.6
5.3.1.7
5.3.1.8

5.3.2
5.3.2.1
5.3.2.2
5.3.2.3
5.3.2.4

Multi-Cycle Register Operations•..................................... 5-20
Simple Control Transfer .. 5-21
Memory Instructions ...•............. 5-21
Unaligned Memory Accesses ... 5-22

Miscellaneous Optimizations ... 5-22
Masking of Integer Overflow : , 5-22
Avoid Using PFP, SP, R3 As Destinations for MDU Instructions 5-22
Use Global Registers (gO - g14) As Destinations for MDU Instructions 5-22
Execute in Imprecise Fault Mode .. : 5-23

CHAPTER 6
INSTRUCTION SET REFERENCE

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7
6.1.8
6.1.9.
6.1.10
6.1.11

6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11

vi

6.2.12
6.2.13
6.2.14
6.2.15
6.2.16
6.2.17
6.2.18
6.2.19

NOTATION .. 6~1
Alphabetic Reference ... 6-2
Mnemonic .. 6-2
Format ... ~ 6-2
Description ... 6-3
Action ... 6-3
Faults .. 6-6
Example , ... 6-6
Opcode and Instruction Format .. 6-6
See Also .. 6-6
Side Effects .. '.................................. 6-6
Notes ... 6-7

INSTRUCTIONS .. : 6-7
ADD<cc> (New 80960 Core Instruction Class) ... 6-8
addc : .. 6-11
addi, addo .. 6-12
alterbit 6-13
and, andnot .. 6-14
atadd ... ~ .. 6-15
atmod ... 6-16
b, bx '' , : , 6~17
bal, balx ... 6-18
bbc, bbs ...•............................. 6-20
BRANCH<cc> .. 6-22
bswap (New 80960 Core Instruction) .. , ... 6-24
call .. 6-25
calls ... 6-26
calix ... 6-28
chkbit ... , ... 6-30
clrbit : .. ; 6-31
cmpdeci, cmpd~co ... 6-32
cmpinci, cmpinco ... 6-33

6.2.20
6.2.21
6.2.22
6.2.23
6.2.24
6.2.25
6.2.26
6.2.27
6.2.28
6.2.29
6.2.30
6.2.31
6.2.32
6.2.33
6.2.34
6.2.35
6.2.36
6.2.37
6.4.38
6.2.39
6.2.40
6.2.41
6.2.42
6.2.43
6.2.44
6.2.45
6.2.46
6.2.47
6.2.48
6.2.49
6.2.50
6.2.51
6.2.52
6.2.53
6.2.54
6.2.55
6.2.56
6.2.57
6.2.58
6.2.59
6.2.60
6.2.61
6.2.62
6.2.63

I

CONTENTS

COMPARE (Includes New 80960 Core Instructions) .. 6-34
COMPARE AND BRANCH .. 6-36
concmpi, concmpo .. 6-39
dcctl (80960Jx-Specific Instruction) ... 6-41
divi, divo .. 6-47
ediv .. 6-48
emul ... 6-50
eshro ... 6-51
extract .. 6-52
FAULT <cc> ... 6-53
flushreg ... ; 6-55
fmark ... 6-56
halt (80960Jx-Specific Instruction) .. 6-57
icctl (80960Jx-Specific Instruction) .. 6-59
intctl (80960Jx-Specific Instruction) ... 6-66
intdis (80960Jx-Specific Instruction) .. 6-68
inten (80960Jx-Specific Instruction) .. 6-69
LOAD ... 6-70
Ida .. 6-73
mark .. 6-74
modac .. 6-75
modi ... 6-76
modify .. 6-77
modpc .. 6-78
modtc ... 6-79
MOVE ... ; 6-80
muli, mulo .. 6-83
nand .. 6-84
nor ... 6-85
not, notand 6-86
notbit .. 6-87
notor .. 6-88
or, ornot ... 6-89
remi, remo 6-90
ret .. 6-91
rotate ... 6-94
scan bit 6-95
scan byte 6-96
SEL<cc> (New 80960 Core Instruction Class) .. 6-97
setbit .. 6-99
SHIFT .. 6-100
span bit ... 6-1 03
STORE .. : 6-104
subc : .. 6-108

vii

CONTENTS

6.2.64 SUB<cc> (New 80960 Core Instruction Class) ... 6-109
6.2.65 subi, subo .. , 6-112
6.2.66 syncf .. , ; 6-113
6.2.67 sysctl .. ; 6-114
6.2.68 TEST<cc> .. 6-118
6.2.69 xnor, xor ~ ,~ ' .. ; 6-120

CHAPTER 7
PROCEDURE CALLS

7.1 CALL AND RETURN MECHANISM .. 7-2
7.1.1 Local Registers and the Procedure Stack ... 7-2
7.1.2 Local Register and Stack Management ... 7-4

7.1.2.1 Frame Pointer ... 7-4
7.1.2.2 Stack Pointer .. 7-5
7.1.2.3 Considerations When Pushing Data onto the Stack .. 7-5
7.1.2.4 Considerations When Popping Data off the Stack ... 7-5
7.1.2.5 Previous Frame Pointer .. :.~ 7-6
7.1.2.6 Return Type Field .. ; 7-6
7.1.2.7 Return Instruction Pointer ... 7-6

7.1.3 Call and Return Action ... 7-6
7.1.3.1 Call Operation ... 7-7
7.1.3.2 Binding of the local register set to the allocated stack frame 7-7
7.1.3.3 Return Operation .. 7-8

7.1.4 Caching of Local Register Sets ... : 7-9
7.1.4.1 Reserving Local RegisterSets for High Priority Interrupts 7-10

7.2 MODIFYING THE PFP REGISTER. ... 7-13
7.3 PARAMETER PASSiNG ... 7-13
7.4 LOCAL CALLS .. 7-15
7.5' SYSTEM CALLS ... 7.:16

7.5.1
7.5.1.1
7.5.1.2
7.5.1.3

System Procedure Table ... 7-16
Procedure Entries ... 7-17
Supervisor Stack Pointer , ... 7-18
Trace Control Bit .. 7-18

. 7.5.2 System Call to a Local Procedure .. 7-18
7.5.3 System Call to a Supervisor Procedure ... 7-18

7.6 USER AND SUPERVISOR STACKS .. 7-19
7.7 INTERRUPT AND FAULT CALLS ... 7-20
7.8 RETURNS ... 7-20
7.9 BRANCH-AND-LiNK ... :: 7-22

CHAPTERS
INTERRUPTS

8.1
8.2

OVERVIEW ... 8-1
SOFTWARE REQUIREMENTS FOR INTERRUPT HANDLING 8-2

viii I

in1et CONTENTS

8.3

8.4
8.4.1
8.4.2

8.5

8.6

8.7
8.7.1
8.7.2

INTERRUPT PRIORITy .. 8-3

INTERRUPT TABLE ... 8-3
Vector Entries .. 8-4
Pending Interrupts ... 8-5

INTERRUPT STACK AND INTERRUPT RECORD .. 8-5

INTERRUPT SERVICE ROUTINES ... 8-6

INTERRUPT CONTEXT SWITCH .. 8-7
Executing-State Interrupt ... 8-8
Interrupted-State Interrupt ... 8-9

CHAPTER 9
FAULTS

9.1

9.2

9.3

9.4

9.5
9.5.1
9.5.2

9.6
9.6.1
9.6.2
9.6.3
9.6.4
9.6.5
9.6.6

9.7
9.7.1
9.7.2
9.7.3
9.7.4
9.7.5
9.7.6

9.8
9.8.1
9.8.2
9.8.3
9.8.4

9.9
9.9.1
9.9.2
9.9.3
9.9.4

J

FAULT HANDLING FACILITIES OVERViEW ... 9-1

FAULT TYPES .. 9-2

FAULT TABLE .. 9-4

STACK USED IN FAULT HANDLING ... 9-6

FAULT RECORD .. 9-6
Fault Record Description ... 9-7
Fault Record Location ... 9-9

MULTIPLE AND PARALLEL FAULTS .. 9-10
Multiple Non-Trace Faults on the Same Instruction .. 9-10
Multiple Trace and Fault Conditions on the Same Instruction 9-10
Multiple Trace and Non-Trace Fault Conditions on the Same Instruction 9-11
Parallel Faults .. 9-11
Faults on Multiple Instructions Executed in Parallel .. 9-11
Fault Record for Parallel Faults ... 9-12

FAULT HANDLING PROCEDURES ... 9-13
Possible Fault Handling Procedure Actions .. 9-13
Program Resumption Following a Fault .. 9-13
Return Instruction Pointer (RIP) .. 9-14
Returning to the Point in the Program Where the Fault Occurred 9-14
Returning to a Point in the Program Other Than Where the Fault Occurred 9-15
Fault Controls .. 9-15

FAULT HANDLING ACTION ... 9-16
Local Fault Call .. 9-17
System-Local Fault Call .. 9-17
System-Supervisor Fault Call .. 9-17
Faults and Interrupts ... 9-18

PRECISE AND IMPRECISE FAULTS .. 9-19
Precise Faults .. 9-19
Imprecise Faults .. 9-19
Asynchronous Faults ... 9-20
No Imprecise Faults (AC.nif) Bit .. 9-20

ix

I.
I'

CONTENTS

9.9.5
9.10

9.10.1
9.10.2

Controlling Fault Precision ... 9-20
FAULTS WITHIN A FAULT HANDLER ... 9-21

Overrides ... , : 9-21
System Error .. ~; 9-21

9.11
9.11.1
9.11.2
9.11.3
9.11.4
9.11.5
9.11.6
9.11.7
9.11.8

FAULT R!=FERENCE : .. ; ; 9-21
ARITHMETIC Faults , ... '., ... ::•......... 9-24
CONSTRAINT Faults : : ,': 9-25
OPERATION Faults .. 9-26
OVERRIDE Faults ... 9-28
PARALLEL Faults .. 9-29
PROTECTION Faults -.. 9-30
TRACE Faults .. 9-31
TYPE Faults .. 9-34

CHAPTER 10
TRACING AND DEBUGGING

10.1 TRACE CONTROLS ... "' , 10-1
1 0.1.1 Trace Controls (TC) Register ~ : ~ 10-2
10.1.2 PC Trace Enable Bit and Trace-Fault-Pending Flag ... 10-3

10.2 TRACE MODES.... 10-3
10.2.1 Instruction Trace .. .' .. 10-3
10.2.2 Branch Trace .. ~ 10-4
10.2.3 Call Trace :: ~ .. : 10-4 . "

10.2.4 Return Trace .. 10-4
10.2.5 Prereturn Trace ... 10-4
10.2.6 Supervisor Trace ... 10-5
10.2.7 Mark Trace ... ~ 10-5

10.2.7.1 Software Breakpoints ~ ; ... 10-5
10.2.7.2 Hardware Breakpoints : ... 10-5
10.2.7.3 Requesting Modification Rights·to Hardware Breakpoint Resources : 10-6

. 10.2.7.4 Breakpoint Control Register ' ; 10-7
10.2.7.5 Data Address Breakpoint Registers : ... 10-9
10.2.7.6 Instruction Breakpoint Registers .. 1.0-10

10.3 GENERATING A TRACE FAUL T.. .. 10-11
10.4 HANDLING MULTIPLE TRACE EVENTS ... , : 10-11
10.5

10.5.1
TRACE FAULT HANDLING PROCEDURE ... 10-12

Tracing and Interrupt Procedures 10-12
10.5.2 Tracing on Calls and Returns ; ; ;; 10-12

10.5.2.1. Tracing on Explicit Call ... 10-12
10.5.2.2 Tracing on Implicit Call .. , 10-1.:3
1.0.5.2.3 Tracing on Return from Explicit Call 10-14
10.5.2.4 'Tracing on Return from Implicit Call: Fault Case , 10-14
10.5:2.5' Tracing on Return from Implicit Call: Interrupt Case 10-15

x

CONTENTS

CHAPTER 11
INITIALIZATION AND SYSTEM REQUIREMENTS

11.1 OVERViEW ... 11-1
11.2 INITIALIZATION .. 11-2

11.2.1 Reset State Operation 11-3
11.2.2 Self Test Function (STEST. FAil) ... 11-6

11.2.2.1 The STEST Pin 11-6
11.2.2.2 External Bus Confidence Test .. 11-7
11.2.2.3 The Fail Pin (FAil) ... 11-7
11.2.2.4 IMI Alignment Check and System Error ... 11-8
11.2.2.5 FAil Code ... 11-8

11.3 ARCHITECTURAllY RESERVED MEMORY SPACE ... 11-9
11.3.1

11.3.1.1
11.3.1.2

11.3.2
11.3.2.1
11.3.2.2
11.3.2.3
11.3.2.4

Initial Memory Image (1M I) ... 11-9
Initialization Boot Record (IBR) .. 11-12
Process Control Block (PRCB) 11-14

Process PRCB Flow .. 11-17
AC Initial Image 11-18
Fault Configuration Word 11-18
Instruction Cache Configuration Word ... 11-18
Register Cache Configuration Word 11-18

Control Table ... 11-19 11.3.3
11.4

11.4.1

11.5

DEVICE IDENTIFICATION ON RESET .. 11-21
Reinitializing and Relocating Data Structures 11-22

STARTUP CODE EXAMPLE .. 11-23
11.6 SYSTEM REQUiREMENTS .. 11-33

11.6.1 Input Clock (ClKIN) .. ~ 11-33
11.6.2 Power and Ground Requirements (Vee. V ss) 11-34
11.6.3 Power and Ground Planes 11-34
11.6.4
11.6.5

11.6.5.1
11.6.5.2

11.6.6
11.6.7
11.6.8
11.6.9

Decoupling Capacitors .. 11-35
1/0 Pin Characteristics 11-35

Output Pins ... : , 11-35
Input Pins 11-36

High Frequency Design Considerations 11-36
Line Termination .. 11-37
latchup , ... 11-38
Interference 11-38

CHAPTER 12
MEMORY CONFIGURATION

12.1
12.1.1
12.1.2

12.2

12.3

_I

MEMORY ATTRIBUTES ... 12-1
Physical Memory Attributes ... 12-1
logical Memory Attributes 12-2

DIFFERENCES WITH PREVIOUS 1960 PROCESSORS ... 12-4

PROGRAMMING THE PHYSICAL MEMORY ATIRIBUTES (PMCON REGISTERS) 12-4

xi

CONTENTS

Bus Width : .. 1.2-5 12.3.1

12.4
12.4.1

PHYSICAL MEMORY ATTRIBUTESATINITIAUtATION•....... : 12-6
Bus Control (BCON) Register '" .. :..... 12-6

12.5
12.5.1
12.5.2
12.5.3

BOUNDARY CONDITIONS FOR PHYSICAL MEMORY REGIONS : 12-7
Internal Memory Locations ... : 12-7
Bus Transactions Across Region Boundaries 12-7
Modifying the PM CON Registers .. : 12-8

12.6
12.6.1
12.6.2
12.6.3
12.6.4

PROGRAMMING THE LOGICAL MEMORY ATTRIBUTES 12-8

. 12.6.5

12.6.6
12.6.6.1
12.6.6.2
12.6.6.3

12.6.7
12.6.8

Defining the Effective Range of a Logical Data Template : 12-10
Selecting the Byte Order : : ~.: 12-11
Data Caching Enable .. ~.: 12-12
Enabling the Logical Memory Template : ... 12-12
Initialization .. 12-12
Boundary Conditions for Logical Memory Templates : 12-12

Internal Memory Locations ... 12-12
Overlapping Logical Data Template Ranges .. 12-13
Accesses Across LMT Boundaries 12-13

Modifying the LMT Registers ... 12-13
Dynamic Byte Order Changing .. 12-13

CHAPTER 13
INTERRUPT CONTROLLER

13.1 OVERVIEW : .. 13-1

13.2
13.2.1
13.2.2
13.2.3

MANAGING INTERRUPT REQUESTS ... : 13-2

'13.2.4
. 13.2.5

13.2.6
13.2.6.1
13.2.6.2
13.2.6.3

13.2.7

External Interrupt ... :.. 13-2
Timer Interrupt 13-2
Non-Maskable Interrupt (NMI) : .. 13-2
Software Interrupt .. : ... 13-3
Interrupt Prioritization Model .. ; ~-: 13-3
Interrupt Controller Modes 13-5

Dedicated Mode 13-5
Expanded Mode .. : 13-6
Mixed Mode ; : : 13-8

Saving the Interrupt Mask. 13-8

13.3
13.3.1
13.3.2
13.3.3
13.3.4
13.3.5

EXTERNAL INTERFACE DESCRiPTION: .. 13-9

13.3.5.1
13.3.5.2

1S.3.6

Pin Descriptions ... '13-9
Interrupt Detection Options ... , 13-10
Programmer's Interface 13-11
Interrupt Control Register (ICON) 13-12
Interrupt Mapping Registers (IMAPO-IMAP2) , 13-14

Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers : 13-16
Default and Reset Register Values : 13-18

Interrupt Controller Register Access Requirements' ~ 13-18
13.4' INTERRUPT OPERATION SE6uENCE.: : ~ ... 13-19

xii I

in1et CONTENTS

13.4.1 Setting Up the Interrupt Controller 13-20

13.5 OPTIMIZING INTERRUPT PERFORMANCE ... 13-20
13.5.1
13.5.2

13.5.2.1
13.5.2.2
13.5.2.3

13.5.3
13.5.4

13.5.4.1
13.5.4.2

Interrupt Service Latency.. 13-20
Features to Improve Interrupt Performance 13-22

Vector Caching Option 13-22
Caching Interrupt Routines and Reserving Register Frames , 13-23
Caching the Interrupt Stack 13-24

Base Interrupt Latency...... 13-24
Maximum Interrupt Latency ... 13-25

Avoiding Certain Destinations for MDU Operations 13-29
Masking Integer Overflow Faults for syncf ... 13-30

CHAPTER 14
TIMERS

14.1 TIMER REGISTERS ... 14-2
14.1.1

14.1.1.1
14.1.1.2
14.1.1.3
14.1.1.4
14.1.1.5

14.1.2
14.1.3
14.1.4

Timer Mode Register (TMRO, TMR1) .. 14-2
Bit 0 - Terminal Count Status Bit (TMRx.tc) ... 14-3
Bit 1 - Timer. Enable (TMRx.enable) ... 14-4
Bit 2 - Timer Auto Reload Enable (TMRx.reload) , 14-4
Bit 3 - Timer Register Supervisor ReadlWrite Control (TMRx.sup) ~ 14-4
Bits 4,5 - Timer Input Clock Selects (TMRx.cseI1 :0) 14-5

Timer Count Register (TCRO, TCR1) .. 14-6
Timer Reload Register (TRRO, TRR1) .. 14-7
Timer Responses to Bit Settings ... ~ 14-7

14.2 TIMER FUNCTIONS 14-7
14.2.1 Enabling/Disabling Counters 14-9
14.2.2 Programming Considerations 14-9

14.3 TIMER INTERRUPTS ... 14-9

14.4 POWERUP/RESET INITIALIZATION ... 14-10

14.5 UNCOMMON TCRX AND TRRX CONDITIONS ... 14-11

14.6 TIMER STATE DIAGRAM ... 14-11

CHAPTER 15
EXTERNAL BUS

15.1

15.2
15.2.1

OVERViEW ... 15-1

BUS OPERATION ... 15-1

15.2.2
15.2.2.1
15.2.2.2
15.2.2.3

15.2.3
15.2.3.1
15.2.3.2
15.2.3.3

1-

Basic Bus States ... 15-2
Bus Signal Types 15-4

Clock Signal....... 15-4
Address/Data Signal Definitions 15-4
Control/Status Signal Definitions 15-4

Bus Accesses .. 15-6
Bus Width ... 15-7
Basic Bus Accesses 15-9
Burst Transactions 15-11

xiii

CONTENTS

15.2.3.4 Wait States .. 15-17
15.2.3.5 Recovery States ... , , 15-19

15.2.4 Bus and Control Signals During Recovery and Idle States 15-22
15.2.5, Data Alignment , , , " , 15-22
15.2.6 Byte Ordering and Bus Accesses 15-28
15.2.7 Atomic Bus Transactions ; .. ~ ... 15-30
15.2.8 Bus, Arbitration ... 15-31

15.2.8.1 HOLD/HOLDA Protocol .. 15-32
15.2.8.2 BSTAT Signal ... 15-33

15.3 BUS APPLICATIONS ;' ... ; 15-34
15.3.1

15.3.1.1
15.3.1.2

System Block Diagrams ... ; .. 15-34
Memory Subsystems 15-37
I/O Subsystems 15-37

CHAPTER 16
HALT MODE

16.1 ENTERING HALT MODE .. 16-1
16.2 PROCESSOR OPERATION DURING HALT MODE : 16-1
16.3 EXITING HALT MODE 16-2

16.3.1 EXitin~ HALT Mode for any Interrupt ~ , 16-3

CHAPTER 17
TEST FEATURES

17.1 ON-CIRCUIT EMULATION (ONCE) .. 17-1
17.1.1 Entering/ExitingONCEMode ; .. : 17-1

17.2 BOUNDARY SCAN (JTAG) ... : , 17-2
17.2.1 Boundary Scan Architecture .. 17-2

17.2.1.1 TAP Controller .. 17-2
17.2.1.2 Instruction Register ; ... 17-2
,17.2.1.3 Test Data Registers .. , , 17'-3
17.2.1.4 TAP Elements .. 17-3

17.3 TAP REGiSTERS .. 17-5
17.3.1
17.3.2

17.3.2.1
17.3.2.2
17.3.2.3
17.3.2.4

17.3.3
17.3.4
17.3.5

xiv

17.3.5.1
17.3.5.2
17.3.5.3
17.3.5.4

Instruction Register (IR) ... 17-5
TAP Test Data Registers ., ... 17-6

Device Identification Register ... 17-6
Bypass Register .. ; 17-6
RUNBIST Register ... 17-7
Boundary-Scan Register .. , 17-7

Boundary Scan Instruction Set .. , 17-7
IEEE Required Instructions ... 17-8
TAP Controller ... 17-9

Test Logic Reset State ... 17-10
Run-Test/Idle State .. 17-10
Select-DR-Scan State ... , 17-10
Capture-DR State .. , , 17-10

1-

intet
17.3.S.S
17.3.S.6
17.3.S.7
17.3.S.8
17.3.S.9
17.3.S.10
17.3.S.11
17.3.S.12
17.3.S.13
17.3.S.14
17.3.S.1S
17.3.S.16

17.3.6
17.3.6.1

17.3.7

CONTENTS

Shift-DR State .. 17-11
Exit1-DR State .. .' 17-11
Pause-DR State ... 17-11
Exit2-DR State ... 17-11
Update-DR State .. 17-12
Select-IR Scan State ... 17-12
Capture-IR State ... , 17-12
Shift-IRState .. 17-12
Exit1-IR State ... 17-13
Pause-I R State 17-13
Exit2-IR State ... 17-13
Update-IR State ... 17-13

Boundary-Scan Register 17-14
Example ... 17-1S

Boundary Scan Description Language Example ... 17-19

APPENDIX A
CONSIDERATIONS FOR
WRITING PORTABLE CODE

A.1

A.2
A.2.1
A.2.2
A.2.3
A.2.4

CORE ARCHITECTURE .. A-1

ADDRESS SPACE RESTRICTIONS ... A-1
Reserved Memory ... A-2
Internal Data RAM ... A-2
Instruction Cache .. A-2
Data Cache ... A-3

A.2.S Data and Data Structure Alignment ... A-3

A.3 RESERVED LOCATIONS IN REGISTERS AND DATA STRUCTURES A-4

A.4 INSTRUCTION SET ... A-4
A.4.1 Instruction Timing .. A-4
A.4.2 Implementation-Specific Instructions ... A-4

A.S EXTENDED REGISTER SET. .. A-S

A.6 INITIALIZATION ... A-S

A.7 MEMORY CONFIGURATION .. A-S

A.8 INTERRUPTS .. A-S

A.9 OTHER i960 Jx PROCESSOR IMPLEMENTATION-SPECIFIC FEATURES A-6
A.9.1 Data Control Peripheral Units .. A-6
A.9.2 Timers ... A-6
A.9.3 Fault Implementation ... A-6

A.10 BREAKPOINTS .. A-7

A.11
A.11.1

LOCK PiN ... A-7
External System Requirements ... A-7

xv

CONTENTS

APPENDIXB
OPCODES AND EXECUTION TIMES

B.1 INSTRUCTION REFERENCE BY OPCOOE. : B-1

APPENDIXC
REGISTER AND DATA STRUCTURES

C.1 Register and Data Structures C-2

APPENDIXD
MACHINE·LEVEL INSTRUCTION FORMATS

0.1 GENERAL INSTRUCTION FORMAT .. 0-1
0.2 REG FORMAT ... i ,' 0-2
0.3 COBR FORMAT .. 0-3
0.4 CTRL FORMAT .. : ' ... 0-4
0.5 MEM FORMAT .. 0-4

0.5.1 MEMA Format Addressing ... :........ 0-5
0.5.2 MEMB Format Addressing ... ~ .. , ... , , 0-6

GLOSSARY

xvi I

intel~

FIGURES

Figure 1-1

Figure 2-1

Figure 2-2

Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Figure 4-1

Figure 5-1

Figure 6-1

Figure 6-2

Figure 6-3

Figure 6-4

Figure 6-5

Figure 6-6

Figure 7-1

Figure 7-2

Figure 7-3

Figure 7-4

Figure 7-5

Figure 8-1

Figure 8-2

Figure 8-3

Figure 9-1

Figure 9-2

Figure 9-3

Figure 9-4

Figure 10-1

Figure 10-2

Figure 10-3

Figure 10-4

Figure 11-1

Figure 11-2

Figure 11-3

Figure 11-4

Figure 11-5

Figure 11-6

Figure 11-7

CONTENTS

i960® Jx Microprocessor Functional Block Diagram .. 1-1

Data Types and Ranges............ 2-1

Data Placement in Registers......................... 2-6

i960® Jx Microprocessor Programming Environment..... 3-2

Memory Address Space..... 3-13

Arithmetic Controls (AC) Register............... 3-18

Process Controls (PC) Register............ 3-20

Internal Data RAM. 4-2

Machine-Level Instruction Formats 5-2

DCCTl src1 and srcldst Formats .. 6-42

Store Data Cache to Memory Output Format.............................. 6-43

ICCTl Src1 and SrclDst Formats .. 6-60

Store Instruction Cache to Memory Output Format.. : 6-62

Src 1 Operand Interpretation 6-114

Srcldst Interpretation for Breakpoint Resource Request 6-115

Procedure Stack Structure and Local Registers .. 7-4

Frame Spill .. 7-11

Frame Fill ... 7-12

System Procedure Table ... 7-17

Previous Frame Pointer Register (PFP) (rO) .. 7-20

Interrupt Handling Data Structures .. 8-2

Interrupt Table ... : 8-4

Storage of an Interrupt Record on the Interrupt Stack ... 8-6

Fault-Handling Data Structures ... ; 9-1

Fault Table and Fault Table Entries .. 9-5

Fault Record' .. 9-8

Storage of the Fault Record on the Stack ... 9-9

Trace Controls (TC) Register .. 10-2

Breakpoint Control Register (BPCON) 10-8

Data Address Breakpoint Register Format.. 10-10

Instruction Breakpoint Register Format. 10-10

Processor Initialization Flow....... 11-2

Cold Reset Waveform....... 11-4

FAIL Timing (80960JAlJF Case) ... 11-7

Initial Memory Image (IMI) and Process Control Block (PRCB) 11-11

PMCON14_15 Register Bit Description in IBR .. 11-14

Process Control Block Configuration Words... 11-16

Control Table ... 11-20

xvii

'CONTENTS

Figure 11-8

Figure 11-9

Figure 11-10,

Figure ,11-11

Figure 11-12

Figure 11-13

Fi,gure 12-1

Figure 12-2

Figure 12-3

Figure 12-4

Figure 12-5

Figure 12-6

Figure 13-1

Figure 13-2

Figure 13-3

Figure 13-4

Figure 13-5

Figure 13-,6

Figure 13-7

Figure 13-8

Figure 13-9

Figure 13-10

Figure 14-1

Figure 14-2

Figure 14-3

Figure 14-4

Figure 14-5

Figure 15.1

Figure 15-2

Figure 15-3

Figure 15-4

Figure 15-5

Figl,lre 15~6
Figure 15-7

Figure 15-8

Figure 15,-9

Figure 15-10

F(gure 15-11

Figure 15-12

xviii

IEEE 1149.1 Device Identification Register ... 1,1::21

V CCPLL Lowpass Filter 11-34

Reducing Characteristic Impedance , ~ , ;., 11-35

Series Termination , , ,•.......................... 11-37

AC Jerminatiof) , , .. , .. 1l-38

Avoid Closed-Loop Signal Paths•......•.........•......... ;, ; : 11,:39

PMCON and LMCON Example. 12-3

PMCON Register Bit Description.. 12-6

Bus Control Register (BCON) ... ,.. 12,7

Logical Memory Template Starting Address Registers (LMADRO-1) : 12-8

Logical Memory TemplateMask Registers (LMMRO-1) , 12-9

Default Logical Memory Configuration Register (DLMCON) 12-10

Interrupt Controller , , : : j 3-4

Dedicated Mode , ,., .•... ' 1,3-5

Expanded Mode ,.' , .. , , ... 13~Q

Implementation of Expanded Mode Sources , , , 13-7

Interrupt Sampling ., ' ... , ".; , .. 13-1.1

Interrupt Control (ICON) Register: , , : 13-13

Interrupt Mapping (IMAPO-IMAP2) Registers .. , 13-1.5

Interrupt Pending (IPND) Register .. ; 1~-16

Interrupt Mask (lMSK) Registers , .. 13-17

Interrupt Service Flowchart .. ' , " .. ,13-21

-Integrated Timer Functional Diagram :. .. 14-1

Timer Mode Register (TMRO, TMR1) : ,., 14-3

Timer Count Register (TeRO, TCR1) .. ~ 14-6

Timer Reload Register (TRRO, TRR1) ; , : , , 14,7

Timer Unit State Diagram , ; 14-12

Bus States with Arbitration : : 15-3

Data Width and Byte Encodings 15-7

Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus .. , ,15-,10

. 32-Bit Wide Data Bus Bursts '.: ,';, ; , 15-12

. 16-Bit Wide Data Bus Bursts " " , : .. " 15-12

8-Bit Wide Data Bus, Bursts' .. '., , ,., ' , ,15-13

Unaligned Write Transaction , ; , ; ;. 15-14

Burst Read and Write Transactions w/o Wait States, 32-biJ Bus ,15-15

Burst Read and Write Transactionsw/o Wait States, 8-bit Bus ; , 15-16

Burst Write Transactions With 2;1,1,1 Wait States, 32-bit·Bus 15-18

Burst ReadlWrite Transactions with ,1 ,,0 Wait States - Extra Tr
State on Read, 16-Bit Bus 15-20

Burst ReadlWrite Transactions with 1 ,0 Wait States, Extra n ,
State on Read, 16~Bit Bus ~ ... 15-21

intet
Figure 15-13
Figure 15-15

Figure 15-16
Figure 15-17
Figure 15-1S
Figure 15-19
Figure 15-20
Figure 15-21

Figure 17-1
Figure 17-2
Figure 17-3
Figure 17-4
Figure 17-5
Figure C-1
Figure C-2
Figure C-3
Figure C-4
Figure C-5
Figure C-6
Figure C-7
Figure C-S
Figure C-9
Figure C-10
Figure C-11
Figure C-12
Figure C-13
Figure C-14
Figure C-15
Figure C-16
Figure C-17
Figure C-1S
Figure C-19
Figure C-20
Figure C-21
Figure C-22
Figure C-23
Figure C-24
Figure C-25
Figure C-26

I

CONTENTS

Summary of Aligned and Unaligned Accesses (32-Bit Bus) 15-25
Accesses Generated by Double Word Read Bus Request, Misaligned
One Byte From Quad Word Boundary, 32-Bit Bus, Little Endian 15-27
Multi-Word Access to Big-Endian Memory Space ... 15-29
The LOCK Signal ... 15-31
Arbitration Timing Diagram for a Bus Master... 15-33
Generalized S0960Jx System with S0960 Local Bus 15-35
Generalized S0960Jx System with S0960 Local Bus and Backplane Bus. 15-35
S0960Jx System with S0960 Local Bus, PCI Local Bus and Local Bus
for High End Microprocessor 15-36
Test Access Port Block Diagram ... 17-3
TAP Controller State Diagram : .. 17-4
JTAG Example .. 17-17
Timing diagram illustrating the loading of Instruction Register 17-1S
Timing diagram illustrating the loading of Data Register... 17-19
Arithmetic Controls (AC) Register ..•......................... C-2
Process Controls (PC) Register .. C-3
Trace Controls (TC) Register .. C-4
System Procedure Table ... C-5
Procedure Stack Structure and Local Registers .. C-6
Previous Frame Pointer (PFP) Register (rO) .. C-7
Interrupt Table ... C-S
Storage of an Interrupt Record on the Interrupt Stack ... C-9
Interrupt Control (ICON) Register .. C-10
Interrupt Mapping (IMAPO-IMAP2) Registers .. C-11
Interrupt Pending (IPND) Register ... C-12
Interrupt Mask (lMSK) Registers ... C-13
Fault Table and Fault Table Entries .. C-14
Fault Record .. C-15
Breakpoint Control (BPCON) Register .. C-16
Data Address Breakpoint Register Format. ... C-16
Instruction Breakpoint Register Format ... C-17
Initial Memory Image (lMI) and Process Control Block (PRCB) C-1S
Control Table ... C-19
Process Control Block Configuration Words .. C-20
IEEE 1149.1 Device Identification Register ... C-21
Bus Control Register (BCON) .. C-21
PM CON Register Bit Description ... C-22
Logical Memory Template Starting Address Registers (LMADRO-1) C-22
Logical Memory Template Mask Registers (LMMRO-1) C-23
Default Logical Memory Configuration Register (DLMCON) C-23

xix

CONTENTS

Figure C-27 .
Figure C-28
Figure C-29
Figure D-1

xx

intet
Tjmer Mode Register (TMBO, TMR1) ; .. C-24

, Tim~r Count Register (TCRO, TCR1) : ; C.24
Timer Reload'!=Iegister (TRRO, TRR1) :; ; C-25
Instruction Formats ... : : : .•... : D-1

_I

TABLES

Table 1-1

Table 2-1

Table 2-2

Table 2-3

Table 2-4

Table 2-5

Table 3-1

Table 3-2

Table 3-3

Table 3-4

Table 3-5

Table 3-6

Table 3-7

Table 3-8

Table 3-9

Table 3-10

Table 3-11

Table 5-1

Table 5-2

Table 6-1

Table 6-2

Table 6-3

Table 6-4

Table 6-5

Table 6-7

Table 6-9

Table 6-10

Table 6-11

Table 6-12

Table 6-13

Table 6-14

Table 6-15

Table 7-1

Table 7-2

Table 9-1

Table 9-2

Table 10-1

Table 10-2

CONTENTS

Register Terminology Conventions ... 1-7

80960Jx Supported Integer Sizes... 2-2

80960Jx Supported Ordinal Sizes...... 2-2

Memory Contents For Little and Big Endian Example... 2-5

Byte Ordering for Little and Big Endian Accesses.. 2-5

Memory Addressing Modes.. 2-6

Registers and Literals Used as Instruction Operands 3-3

Allowable Register Operands... 3-5

Access Types .. 3-8

Supervisor Space Family Registers and Tables .. 3-9

User Space Family Registers and Tables ... 3-11

Data Structure Descriptions ... 3-12

Alignment of Data Structures in the Address Space ... 3-15

Condition Codes for True or False Conditions 3-19

Condition Codes for Equality and Inequality Conditions 3-19

Condition Codes for Carry Out and Overflow .. 3-19

Supervisor-Only Operations and Faults Generated in User Mode 3-23

80960JAlJF Instruction Set 5-4

Arithmetic Operations.. 5-7

Abbreviations in Pseudo-code.... 6-4

Pseudo-code Symbol Definitions ... 6-4

Faults Applicable to All Instructions 6-5

Common Faulting Conditions. 6-5

ADD Condition Codes 6-9

DCCTL Operand Fields 6-41

Valid_Bits Values ... 6-44

ICCTL Operand Fields...... 6-59

ICCTL Status Values and Instruction Cache Parameters 6-61

Valid_Bits Value For i960 Jx Processor 6-62

Set_Data I-Cache Values .. 6-63

sysctl Message Types and Operand Fields 6-114

Cache Configuration Modes 6-115

Encodings of Entry Type Field in System Procedure Table 7-18

Encoding of Return Status Field .. 7-21

i960® Jx Processor Fault Types and Subtypes ... 9-3

Fault Flags or Masks ... 9-16

SRCIOESTEncoding .. 10-7

Configuring the Data Address Breakpoint Registers 10-8

xxi

CONTENTS

Table 10-3
Table 10-4
Table 10-5
Table 10-6
Table 10-7
Table 10-8
Table 10-9
Table 11-1
Table 11-2
Table 11-3
Table 11-4
Table 11-5
Table 11-6
Table 11-7
Table 11-8
Table 12-1
Table 12-2
Table 13-1
Table 13-2
Table 13-3
Table 13-4
Table 13-5
Table 13-6
Table 13-7
Table 13-8
Table 14-1
Table 14-2
Table 14.3
Table 14-4
Table 14-5
Table 14-6
Table 15-1
Table 15-2
Table 15-3
Table 15-4
Table 15-5
Table 15-6
Table 15-7
Table 15-8
Table 15-9

xxii

Programming the Data Address Breakpoint Modes ... 10-8
Instruction Breakpoint Modes 10-11
Tracing on Explicit Call .. 10-13
Tracing on Implicit Call ",'" 10-13
Tracing on Return From Explicit Call 10-14
Tracing on Return from Fault ... 10-15
Tracing on Return from Interrupt ... 10-16
Pin Reset State.. 11-5
Register Values After Reset .. 11-5
Fail Codes For BIST (bit 7 = 1) : .. 11-8
Remaining Fail Codes (bit 7 = 0) ... 11-9
Initialization Boot Record ... , 11-12
PRCB Configuration 11-15
i960 Jx Processor Device Identification Register Settings by Model.......... 11-22
Input Pins , , , " ... 11-36
PMCON Address Mapping 12-4
DLMCON Values at Reset ... 12-12
Interrupt Control Registers Memory-Mapped Addresses...... 13-12
Location of Cached Vectors in Internal RAM ... 13-23
Base Interrupt Latency : .. 13-25
Worst-Case Interrupt Latency Controlled by divo to Destination r15 13-26
Worst-Case Interrupt Latency Controlled by dlvo to Destination r3 ; 13-27
Worst-Case Interrupt Latency Controlled by calls , 13-27
Worst-Case Interrupt Latency Controlled by Software Interrupt Detection 13-28
Worst-Case Interrupt Latency Controlled by flushreg of One Stack 13-29
Timer Registers .. " 14-2
Timer Mode Register Control Bit Summary " 14-5
Timer Input Clock (TCLOCK) Frequency Selection ... 14~6
Timer Responses to Register Bit Settings , 14-8
Timer Powerup Mode Settings .. 14-10
Uncommon TMRx Control Bit Settings .. 14-11
Summary of i960 Jx Processor Bus Signals ,.... 15-5
8-Bit Bus Width Byte Enable Encodings : .. 15-8
16-Bit Bus Width Byte Enable Encodings 15-8
32-Bit Bus Width Byte Enable Encodings... 15-8
Natural Boundaries for Load and Store Accesses ... 15-23
Summary of Byte Load and Store Accesses , 15-23
Summary of Short Word Load and Store Accesses 15"23
Summary of n-Word Load and Store Accesses (n = 1, 2, 3,4) ' ... 15-24
Byte Ordering on Bus Transfers, Word Data Type.. 15-28

_I

Table 15-10

Table 15-11

Table 17-1

Table 17-2

Table 17-3

Table 17-4

Table B-1

Table B-2

Table B-3

Table B-4

Table B-5

Table B-6

Table 0-1

Table 0-2

Table 0-3

Table 0-4

Table 0-5

_1-

CONTENTS

Byte Ordering on Bus Transfers, Short-Word Data Type.. 15-29

Byte Ordering on Bus Transfers, Byte Data Type 15-29

TAP Controller Pin Definitions. 17-5

Boundary Scan Instruction Set.. 17-8

IEEE Instructions ... 17-8

Boundary-Scan Register Bit Order .. 17-15

Miscellaneous Instruction Encoding Bits ... B-1

REG Format Instruction Encodings ... B-2

COBR Format Instruction Encodings .. B-7

CTRL Format Instruction Encodings ... B-8

MEM Format Instruction Encodings .. B-9

Addressing Mode Performance ... B-10

Encoding of src1 and src2 in REG Format .. 0-3

Encoding of srcldst in REG Format ... 0-3 .

Encoding of src1 in COBR Format .. 0-3

Addressing Modes for MEM Format Instructions ... 0-5

Encoding of Scale Field ... 0-6

xxiii

CONTENTS

xxiv I

1
INTRODUCTION

, ,

CHAPTER 1
INTRODUCTION

The i960® Ix microprocessor provides a new set of essential enhancements for an emerging class
of high-performance embedded applications. Based on the i960 core-architecture, it is
implemented in a proven 0.8 micron, three-layer metal process. Figure 1-1 identifies the
processor's most notable features, each of which is described in subsections that follow the figure.
These features include:

• instruction cache

• on-chip data RAM

• timer units

ClKIN

\QI----+

TAP

Pll, Clocks,
Power Mgmt

Boundary Scan
Controller ~ 1...-____1

., data cache • bus controller unit

• local register cache • interrupt controller

• memory-mapped control registers • external bus

Instruction Cache
JF, JD: 4 Kbyte

JA: 2 Kbyte
Two·way Set Associative

Direct Mapped
Data Cache

JF, JD: 2 Kbyte
JA: 1 Kbyte

Figure 1·1. 1960® Jx Microprocessor Functional Block Diagram

1-1

•

INTRODUCTION

1. t PRODUCT FEATURES

The i960 Jx processor brings many improvements to the existing i960 microprocessor family.
Enhancements include:

• Improvements to the core architecture

• Low power mode

• New instructions

• Improved cache design

• Enhanced bus control unit

• Improved interrupt performance

• JTAG testability

1.1.1 Instruction Cache

The i960 JF and JD processors employ a 4-Kbyte, two-way set associative instruction cache.
i960 JA processors feature a 2-Kbyte instruction cache. A mechanism is provided that allows
software to lock critical code within each "way" of the cache. The cache can be disabled and is
managed by use of the ieetl and sysetl instructions, as described in section 4.4, "INSTRUCTION
CACHE" (pg. 4-4):

1.1.2 Data Cache

The i960 JF andJD processors feature a 2-Kbyte, direct-mapped data cache that is write-through
and write-allocate. i960 JA processors feature a l-Kbyte data cache. These processors have a line
size of four words and ~plement a "natural" fill policy. Each line in the cache has a valid bit; to
reduce fetch latency on cache misses, each word within a line also has a valid bit. See section 4.5,
"DATA CACHE" (pg. 4-6) for details.

The data cache is managed through the deetl instruction; see section 6.2.23, "dcctl (80960Jx­
Specific Instruction)" (pg. 6-41).

1.1.3 On-chip (internal) Data RAM

The processor's 1 Kbyte internal data RAM is accessible to software with an· access time of
1 cycle per word. This RAM is mapped to the physical address range of 0 to 3FFH. The first
64 bytes are reserved for the caching of dedicated-mode interrupt vectors; this reduces interrupt
latency for these interrupts. In addition, write-protecuon for the first 64 bytes is provided to guard
against the effects of using null pointers in 'C' and to protect the cached interrupt vectors.

1-2 I

INTRODUCTION

New versions of i960 processor compilers can take advantage of the internal data RAM; profiling
compilers can allocate the most frequently used variables into this RAM. See Section 4.1,
INTERNAL DATA RAM (pg. 4-1) for more detail.

1.1.4 Local Register Cache

The processor provides fast storage of local registers for call and return operations by using an
internal local register cache. This cache can store up to eight local register sets; additional register
sets must be saved in external memory.

The processor uses a 128-bit wide bus to store local register sets quickly to the register cache. To
reduce interrupt latency for high-priority interrupts, the number of sets that can be used by code
that is running at a lower priority or that is not interrupted can be restricted by programming the
register configuration word in the PRCB. This ensures that there are always sets available for high­
priority interrupt code without needing to save sets in external memory first. See Section 4.2,
LOCAL REGISTER CACHE (pg. 4-2) for more details.

1.1.5 Interrupt Controller

The interrupt controller unit (ICU) provides a flexible, low-latency means for requesting interrupts.
It handles the posting of interrupts requested by hardware and software sources. Acting indepen­
dently from the core, the interrupt controller compares the priorities of posted interrupts with the
current process priority, off-loading this task from the core. The interrupt controller is compatible
with i960 CNCF processors.

The interrupt controller provides the following features for handling hardware-requested
interrupts:

• Support of up to 240 external sources.

• Eight external interrupt pins, one non-maskable interrupt (NMI) pin, and two internal timer
sources for detection of hardware-requested interrupts.

• Edge or level detection on external interrupt pins.

• Debounce option on external interrupt pins.

The application program interfaces to the interrupt controller with six memory-mapped control
registers. The interrupt control register (ICON) and interrupt map control registers (IMAPO­
IMAP2) provide configuration information. The interrupt pending (lPND) register posts hardware­
requested interrupts. The interrupt mask (IMSK) register selectively masks hardware-requested
interrupts.

The interrupt inputs can be configured to be triggered on level-low or falling-edge signals.
Sampling of the input pins can be either debounced sampling or fast sampling.

1- 1-3

INTRODUCTION

The i960 Jx processor has approximately 5 to 10 times faster interrupt servicing than the i960 Kx
processor. This is accomplished through a number of features:

.' a hardware priority resolver removes the need to access the external interrupt table to resolve
interrupts

•

•

caching of dedicated-mode interrupt vectors in the internal data RAM

reserving frames in the local register cache for high-priority interrupts

• the ability to lock the code of interrupt service routines in the instruction-cache reduces the
fetch latency for starting up these routines

Chapter 13, INTERRUPT CONTROLLER discusses this in more detail.

1.1.6 Timer Support

The i960 Jx processor provides two identical 32-bit timers. Access to the timers is through
memory-mapped registers. The timers have a single-shot mode and auto-reload capabilities for
continuous operation. Each timer has an independent interrupt request to the i960 Jx processor
interrupt controller. See Chapter 14, TIMERS for a complete description.

1.1.7 Memory-Mapped Control Registers

Control registers in the i960 Jx processor are memory-mapped to allow for visibility to application
software. This includes registers for memory configuration, internally cached PRCB data,
breakpoint registers, arid interrupt control. These registers are mapped to the architecturally
reserved address space range of FFOO OOOOH to FFFF FFFFH. The processor ensures that accesses
generate no external bus cycles.

Section 3.3, MEMORY-MAPPED CONTROL REGISTERS (pg. 3-5) discusses this in more
detail.

1.1.8 External Bus

The 32-bit multiplexed external bus connects the i960 Jx processor to memory and I/O. This high
bandwidth bus provides burst transfer capability allowing up to four successive 32-bit data 'word
transfers at a maximum rate of one word every clock cycle. In addition to the bus signals, the i960
Jx processor provides signals to allow external bus masters. Lastly, the processor provides variable
bus-width support (8-, 16-, and 32-bit). '

1-4 I

INTRODUCTION

1.1.9 Complete Fault Handling and Debug Capabilities

To aid in program development, the i960 Jx processor detects faults (exceptions). When a fault is
detected, the processors make an implicit call to a fault handling routine. Information collected for
each fault allows a program developer to quickly correct faulting code. The processors also allow
automatic recovery from most faults. i,

To support system debug, the i960 architecture provides a mechanism for monitoring processor
activities through a software tracing facility. This processor can be configured to detect as many as
seven different trace events, including breakpoints, branches, calls, supervisor calls, returns,
prereturns and the execution of each instruction (for single-stepping through a program). The
processors also provide four breakpoint registers that allow break decisions to be made based upon
instruction or data addresses.

1.2 ABOUT THIS MANUAL

This i960® Jx Microprocessor User s Manual provides detailed programming and hardware design
information for the i960 Jx microprocessors. It is written for programmers and hardware designers
who understand the basic operating principles of microprocessors and their systems.

This manual does not provide electrical specifications such as DC and AC parametrics, operating
conditions and packaging specifications. Such information is found in the 80960JAlJF Embedded
32-bit Microprocessor Data Sheet (order number 272504) and the 80960JD Embedded 32-bit
Microprocessor Data Sheet (order number 272596).

For information on other i960 processor family products or the architecture in general, refer to
Intel's Solutions960® catalog (order number 270791). It lists all current i960 microprocessor
family-related documents, support components, boards, software development tools, debug tools
and more.

This manual is organized in three parts; each part comprises multiple chapters and/or appendices.
The following briefly describes each part:

• Part I - Programming the i960 Jx Microprocessor (chapters 2-10) details the programming
environment for the i960 Jx devices. Described here are the processor's registers, instruction
set, data types, addressing modes, interrupt mechanism, external interrupt interface and fault
mechanism.

• Part II - System Implementation (chapters 11-17) identifies requirements for designing a
system around the i960 Jx components, such as external bus interface and interrupt controller.
Also described are programming requirements for the bus controller and processor initial­
ization.

1-5

iii

,~
d

,I
"

INTRODUCTION infel~

• Part III - Appendices includes quick references for hardware design and programming .
Appendices are also provided which describe the internal architecture, how to write
assembly-level code to exploit the parallelism of the processor and considerations for writing
software that is portable among all members of the i960 microprocessor family.

1.3 NOTATION AND TERMINOLOGY

This section defines terminology and textual conventions that are used throughout the manual.

1.3.1 Reserved and Preserved

Certain fields in registers and data structures are described as being either reserved or preserved:

• A reserved field is one that may be used by other i960 architecture implementations. Correct
treatment of reserved fields ensures software compatibility' with other i960 processors. The
processor uses these fields for temporary storage; as a result, the fields sometimes contain
unusual values.

• A preserved field is one that the processor does not use. Software may use preserved fields for
any function.' ,..,

Reserv~d fields in certain data structures should be set to' 0 (zero) when the. data structure is
created. Set reserved fields to' 0 when creating the Interrupt Table, Fault Table and System
Procedure Table. Software should not modify or rely on these reserved field values after a data
structure is created. When the processor creates the Intern.lpt or Fa~lt Record data structUre on tlie
.stack, software should not depend on. the value of the reserved fields within these data stn,Ictures.

Some bits or fields in data structures and registers are sho~n as requiring specific encoding. These
fields should be treated as if they were reserved fields. They should be set to the specified value
when the data structure is created or when the register is initialized and software should not
modify or rely on the value after that.

Reserved bits in the Arithmetic Controls (AC) register can be set to 0 after initialization to ensure
compatibility with other i960 processor implementations. Reserved bits in the Process Controls
(PC) register and Trace Controls (TC)register should not be initialized. When the AC,PC and TC
registers are modified using modac, modpc or modtc instructions, the reserved locations in these
registers must be masked.

Certain areas of memory may be referred to as reservedinemory in this reference manual.
ReserVed - when. referring to memory locations - implies that an implementation of the i960
architecture may use this memory for some special purpose. For example, memory-mapped
peripherals might be located in reserved memory areas on future implementations.

1-6

INTRODUCTION

1.3.2 Specifying Bit and Signal Values

The terms set and clear in this manual refer to bit values in register and data structures. If a bit is
set, its value is 1; if the bit is clear, its value is O. Likewise, setting a bit means giving it a value of
1 and clearing a bit means giving it a value of O.

The terms assert and deassert refer to the logically active or inactive value of a signal or bit,
respectively. A signal is specified as an active 0 signal by an overbar. For example, the input is
active low and is asserted by driving the signal to a logic 0 value.

1.3.3 Representing Numbers

All numbers in this manual can be assumed to be base 10 unless designated otherwise. In text,
binary numbers are sometimes designated with a sUbscript 2 (for example, 001 2), If it is obvious
from the context that a number is a binary number, the "2" subscript may be omitted.

Hexadecimal numbers are designated in text with the suffix H (for example, FFFF FFSAH). In
pseudo-code action statements in the jnstruction reference section and occasionally in text,
hexadecimal numbers are represented by adding the C-language convention "Ox" as a prefix. For
example "FF7 AH" appears as "OxFF7 A" in the pseudo-code.

1.3.4 Register Names

Memory-mapped registers and several of the global and local registers are referred to by their
generic register names, as well as descriptive names which describe their function. The global
register numbers are gO through g1S; local register numbers are rO through r1S. However, when
programming the registers in user-generated code, make sure to use the instruction operand. i960
microprocessor compilers recognize only the instruction operands listed in Table 1-1. Throughout
this manual, the registers' descriptive names, numbers, operands and acronyms are used inter­
changeably, as dictated by context.

Table 1-1. Register Terminology Conventions

Register Descriptive Name Register Number
Instruction

Acronym
Operand

Global Registers gO - g15 gO - g14

Frame Pointer g15 fp FP

Local Registers rO - r15 r3 - r15

Previous Frame Pointer rO pfp PFP

Stack Pointer r1 sp SP

Return Instruction Painter r2 rip RIP

1-7

I

"

INTRODUCTION illtet
Groups of bits and single bits in registers and control words are called either bits, flags or fields.

, ,-, These terms have a distinct meaning in this manual:
. .'

Controls a processor function; programmed by the ~ser. bit

flag Indicates status. Generally set by the processor; certairiflags are user program-
mable. '

field A grouping of bits (bit field) or flags mag fi~ld) ..

Specific bits, flags and fields in registers and control words are' usually referred to by a register
abbreviation (in upper case) followed by a bit, flag or field name (in lower case). These items are
separated with a period. A position number designates individual bits in a field. Fon!xample, the
return type (rt) field in the previous 'frame pointer (PFP) register is designated as "PFP.rt". The
least significant bit of the retUrn tYPe field is then designated as "PFP.rtO".

1.4 RELATED DOCUMENTS

The followi~g is a' list of additional doc~entation that is useful when designing with· and
programming the i960 microprocessor. Contact your local sales representative for more
information on obtaining Intel documents.' . . .

• 80960JAlJF Embedded 32-bit Microprocessor Data Sheet
Intel Order No. 272493

•

•

1-8

80960JD Embedded 32-bit Microprocessor Data Sheet
Intel Order No. 272596

8olutions960 Development Tools Catalog .
Intel Order No. 270791

1-

DATA TYPES AND MEMORY
ADDRESSING MODES

2

'"

CHAPTER 2
DATA TYPES AND MEMORY ADDRESSING MODES

2.1 DATA TYPES

The instruction set references or produces several data lengths and formats. The i960® Jx
processor supports the following data types:

• Integer (8, 16 and 32 bits) • Ordinal (unsigned integer 8, 16,32 and 64 bits)

• Triple Word (96 bits) • Quad Word (128 bits)

• Bit • Bit Field

Figure 2-1 illustrates the data types (including the length and numeric range of each) supported by
the i960 architecture.

1 I Ui' ~i&la I I s'1ts I Byte I
31 L

Length j 0 7 0

~i~sl Short I
LSBof 15 0

Bit Field

~~I Word I
31 0

:sl I Long I
63 0

~~I I I Triple Word I
95 0

128 1 Bits I I I OuadWord I
127 0

Class Data Type Length Range

Numeric
Byte Integer 8 Bits _27 to 27 -1

(Integer) Short Integer 16 Bits _215 to 215 _1

Integer 32 Bits _231 to 231 -1

Byte Ordinal 8 Bits Ot028 -1

Numeric Short Ordinal 16 Bits o t0216 _1
(Ordinal) Ordinal 32 Bits Ot0232 _1

Long Ordinal 64 Bits Ot0264-1

Bit 1 Bit N/A
Bit Field 1-32 Bits

Non-Numeric Long Word 64 Bits

Triple Word 96 Bits
OuadWord 128 Bits

F ~AOOS;

Figure 2·1. Data Types and Ranges

~---- 2-1

DATA TYPES AND MEMORY ADDRESSING MODES

2.1.1 Integers

Integers ~e ~igned whole numbers that are stored and operated on in two's complement format by
the integer instructions. Most integer instructions operate on 32-bit integers. Byte and short
integers are referenced by the byte and short classes of the load, store and compare instructions
only. Table 2-1 shows the supported integer sizes.

Table.2-1. 80960Jx Supported Integer Sizes

Integer size Descriptive name Range

8 bit byte integers _27 to 27 -1

16 bit short integer _215 to 2 15 _1

32 bit . integers _231 to 231 -1

Integer load or store size (byte, short or word) determines how sign extension or data truncation is
performed when data is moved between registers 'and memory.

For instructions Idlb (load integer byte) and Idls (load integer short), a byte or short word in
memory is considered a two's complement value. The valve is sign-extended and placed in the 32-
bit regis~er that is the destination for the load.

For instructions stib (store integer byte) and stis (store integer short), a 32-bit two's complement
number in a register is stored to memory as a byte or short-word. If register data is too large to be
stored as a byte or short word, the value is truncated and the integer overflow condition is
signalled. When an overflow occurs, either an AC register flag is set or the integer overflow fault
is generated. CHAPI'ER 9, FAULTS describes the integer overflow fault.

For instructions Id (load word) and st (store word), data is moved directly between memory and a
register with no sign extension or data truncation.

2.1,;2 Ordinals

Ordinals or unsigned integer data types are stored and operated on as positive binary\values. Table
2-2 shows the supported ordinal sizes.

Table 2-2. 80960Jx Supported Ordinal Sizes

Ordinal sll!!e Descriptive name Range

8-bit byte ordinals Oto 28 -1

16-bit short ordinals o to 216 _1

32-bit ordinals Oto~2-1

64-blt long ordinals o to 264 -1

2·2 1-

DATA TYPES AND 'MEMORY ADDRESSING MODES

The large number of instructions that perform logical, bit manipulation and unsigned arithmetic
operations reference 32-bit ordinal operands. When ordinals are used to represent Boolean values,
1 = TRUE and 0 = FALSE. Several extended arithmetic instructions reference the long ordinal data
type. Only load (Idob and Idos) store (stob and stos) and compare ordinal instructions reference
the byte and short ordinal data types.

Sign and sign extension are not considered when ordinal loads and stores are performed; the values
may, however, be zero-extended or truncated. A short word or byte load to a register causes the
value loaded to be zero-extended to 32 bits. A short word or byte store to memory may cause an
ordinal value in a register to be truncated to fit its destination in memory. No overflow condition is
signalled in this case.

2.1.3 Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or bit fields
within register operands. An individual bit is specified for a bit operation by giving its bit number
and register. Internal registers always follow little endian byte order; the least significant bit is bit 0
and the most significant bit is bit 31.

A bit field is any contiguous group of bits (up to 31 bits long) in a 32-bit register. Bit fields do not
span register boundaries. A bit field is defined by giving its length in bits (0-31) and the bit number
of its lowest numbered bit (0-31).

Loading and storing bit and bit field data is normally performed using the ordinal load and store
instructions. Integer load and store instructions operate on two's complement numbers. Depending
on the value, a byte or short integer load can result in sign extension of data in a register. A byte or
short store can signal an integer overflow condition.

2.1.4 Triple and Quad Words

Triple- and quad-words refer to consecutive words in memory or in registers. Triple- and quad­
word loads, stores and move instructions use these data types. These instructions facilitate data
block movement. No data manipulation (sign extension, zero extension or truncation) is performed
in these instructions.

Triple- and quad-word data types can be considered a superset of - or as encompassing - the
other data types described. The data in each word subset of a quad word is likely to be the operand
or result of an ordinal, integer, bit or bit field instruction.

___ I 2-3

DATA TYPES AND MEMORY ADDRESSING MODES

2.1.5 Register Data Alignment··

Data in registers must adhere to specific alignment requirements:

• Long-word operands in registers must be aligned to double-register boundaries.

• Triple- and quad-word operands in registers must be aligned to quad-register boundaries.

For the i960 Jx processor, data alignment in memory is not required. User software can be
programmed to automatically handle unaligned memory accesses or to cause a fault.

2.1.6 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions.
These literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is used
as an operand, the processor expands it to 32 bits ,by adding leading zeros. If the instruction
requires an operand larger than 32 bits, the processor zero-extends the value to the operand size. If
a literal is used in an instruction that requires integer operands, the processor treats the literal as a
positive integer value.

2.2 BIT AND BYTE ORDERING IN MEMORY

All occurrences of numeric and non-numeric data types, except bits and bit fields, must start on a
byte boundary. Any data item occupying multiple bytes is stored as big-endian or little endian. The
following sections further describe byte ordering.

2.2.1 Bit Ordering

Bits within bytes are numbered such that if the byte is viewed as a value, bit 0 is the least
significant bit and bit 7 is the most significant bit. For numeric values spanning several bytes, bit
numbers higher than 7 indicate successively higher bit numbers in bytes with higher addresses.
Unless otherwise noted, bits in illustrations in this manual are ordered such that the higher­
numbered bits are to the left.

2.2.2 Byte Ordering

This i960 Jx processor can be programmed to use little or big endian byte ordering for memory
accesses. Byte ordering refers to how data items larger than one byte are assembled:

• For little endian byte order, the byte with the lowest address in a multi-byte data item has the
least significance.

• For big endian byte order, the byte with the lowest address in a multi-byte data item has the
most significance.

N I

DATA TYPES AND MEMORY ADDRESSING MODES

For example, Table 2-3 shows four bytes of data in memory. Table 2-4 shows the differences
between little and big endian accesses for byte, short, word and long word data. Figure 2-2 shows
the resultant data placement in registers.

Once data is read into registers, byte order is no longer relevant. The lowest significant bit is
always bit O. The most significant bit is always bit 31 for words, bit 15 for short words, and bit 7
for bytes.

Byte ordering affects the way the i960 Jx processor handles bus accesses. See section 15.2.6, "Byte
Ordering and Bus Accesses" (pg. 15-28) for more information.

Table 2·3. Memory Contents For Little and Big Endian Example

ADDRESS DATA

1000H 12H

1001H 34H

1002H 56H

1003H 78H

Table 2·4. Byte Ordering for Little and Big Endian .Accesses

Access Example
Register Contents Register Contents

(Little Endian) (Big Endian)

Byte at 1000H Idob Oxl000, r3 12H 12H

Short at 1 002H Idos O~1002, r3 7856H 5678H

Word at 1000H Id Oxl000, r3 78563412H 12345678H

78563412H (r4) 12345678H (r4)
Long Word at 1000H Idl Oxl000, r4

FODEBC9AH (r5) FODEBC9AH (r5)

2-5

~. 1

DATA TYPES AND MEMORY ADDRESSING MODES

31 2423 1615 87 0

BYTE I XX I XX I XX I DDo I
31 2423 1615 87 0

SHORT I XX I XX I DD1] DDC I
31 2423 1615 87 0

WORD I DD3 I DD2 I DD1 I DDo I
NOTES:
D's are data transferred to/from memory
X's are zeros for ordinal data
X's are sign bit extensions for integer data

Figure 2-2. Data Placement in Registers

2.3 MEMORY ADDRESSING MODES

The processor provides nine modes for addressing operands in memory. Each addressing mode is
used to reference a byte in the. processor's address space. Table 2-5 shows the memory addressing
modes, a brief description of each mode's address elements and assembly code syntax. See Table
B-5 in Appendix B for more on addressing modes.

Table 2-5. Memory Addressing Modes

Mode Description
"""

Assembler Syntax

Absolute offset offset exp

displacement displacement exp

Register Indirect abase (reg)

with offset abase + offset exp (reg)

with displacement abase + displacement exp (reg)

with index abase + (index'scale) (reg) [reg'scale]

with index and displacement abase + (index'scale) + displacement exp (reg) [reg'scale]

Index with displacement (index'scale) + displacement exp [reg'scale]

instruction pointer (IP) with
IP + displacement + 8 exp (IP)

displacement

NOTE: reg is register and exp is an expression or symbolic label.

2-6

·1

DATA TYPES AND MEMORY ADDRESSING MODES

2.3.1 Absolute

Absolute addressing modes allow a memory location to be referenced directly as an offset from
address OR. At the instruction encoding level, two absolute addressing modes are provided:
absolute offset and absolute displacement, depending on offset size.

• For the absolute offset addressing mode, the offset is an ordinal number ranging from 0 to
4095. The absolute offset addressing mode is encoded in the MEMA machine instruction
format.

• For the absolute displacement addressing mode the offset is an integer (a displacement)
ranging from _231 to 231_1. The absolute displacement addressing mode is encoded in the
MEMB format.

Addressing modes and encoding instruction formats are described in CHAPTER 6,
INSTRUCTION SET REFERENCE.

At the assembly language level, the two absolute addressing modes use the same syntax. 1Ypically,
development tools allow absolute addresses to be specified through arithmetic expressions (e.g.,
x + 44) or symbolic labels. After evaluating an address specified with the absolute addressing
mode, the assembler converts the address into an offset or displacement and selects the appropriate
instruction encoding format and addressing mode.

2.3.2 Register Indirect

Register indirect addressing modes use a register'S 32-bit value as a. base for address calculation.
The register value is referred to as the address base (designated abase in Table 2-5). Depending on
the addressing mode, an optional scaled-index and offset can be added to this address base.

Register indirect addressing modes are useful for addressing elements of an array or record
structure. When addressing array elements, the abase value provides the address of the first array
element; an offset (or displacement) selects a particular array element.

In register-indirect-with-index addressing mode, the index is specified using a value contained in a
register. This index value is multiplied by a scale factor. Allowable factors are 1,2,4,8 and 16.

The two versions of register-indirect-with-offset addressing mode at the instruction encoding level
are register-indirect-with-offset and register-indirect-with-displacement. As with absolute
addressing modes, the mode selected depends on the size of the offset from the base address.

At the assembly language level, the assembler allows the offset to be specified with an expression
or symbolic label, then evaluates the address to determine whether to use register-indirect-with­
offset (MEMA format) or register-indirect-with-displacement (MEMB format) addressing mode.

2-7

DATA 'TYPES AND MEMORY ADDRESSING MODES intet
Register-indirect-with-index-and-displacement addressing mode adds both a scaled index and a
displacement to the address base. There is only one version of this addressing mode at the
instruction encoding level,and it is encoded in the MEMB instruction format.

2.3.3 Index with Displacement

A scaled index can also be used· with a displacement alone. Again, 'the index is contained in a
register and multiplied by a scaling constant before displacement is added.

2.3.4 IP with Displacement

This addressing mode is used with load and store instructions to make them instruction pointer
(IP) relative. IP-with-displacement addressing mode references the next instruction's address plus
the displacement plus a constant of 8. The constant is added because in Ii typIcal processor imple­
mentation the address has incremented beyond the next instruction address at the time of address
calculation. The constant simplifies IP-with-displacement addressing mode implementation.

2.3.5 Address.ing Mode Examples

The following examples show how i960 addressing modes are encoded in assembly language.
Example 2-1 shows addressing mode mnemonics. Example 2-2 illustrates the usefulness of scaled
index and scaled index plus displacement addressing modes. In this example, a' procedure named
array_op uses these addressing modes to fill two contiguous memory blocks separated by a
constant offset. A pointer to the top of the block is passed to the procedure in gO, the block size is
passed in gl and the fill data in g2. Refer to APPENDIX D, MACHINE-LEVEL INSTRUCTION
FORMATS.'"

2-8

1-

DATA TYPES AND MEMORY ADDRESSING MODES

st

ldob

stl

ldq

Example 2-1. Addressing Mode Mnemonics

g4,xyz

(r3),r4

g6,xyz (g5)

(rB) [r9*4] ,r4

* Absolute; word from g4 stored at memory
location designated with label xyz. * Register indirect; ordinal byte from * memory location given in r3 loaded * into register r4 and zero extended.
Register indirect with displacement; * double word from g6,g7 stored at memory * location xyz + g5. * Register indirect with index; quad-word
beginning at memory location rB + (r9
scaled by 4) loaded into r4 through r7.

st g3,xyz(g4) [g5*2] * Register indirect with index and * displacement; word in g3 loaded to mem
location g4 + xyz + (g5 scaled by 2).

ldis xyz[r12*1],r13 # Index with displacement; load short
integer at memory location xyz + r12 * into r13 and sign extended.

st r4,xyz(IP) # IP with displacement; store word in r4
at memory location IP + xyz + B.

Example 2-2. Use of Index Plus Scaled Index Mode

array_op:
mov gO,r4 # Pointer to array is moved to r4.
subi 1,gl,r3 # Calculate index for the last array
b .I33 * element to be filled.

.134:
st g2, (r4) [r3*4] * Fill array at index.
st g2, Ox30 (r4) [r3*4] * Fill array at index+constant offset.
subi 1,r3,r3 * Decrement index.

.I33 :
cmpible O,r3, .134 * Store next array elements if
ret * index is not O.

1_-
2-9

•

int'et

PROGRAMMING
ENVIRONMENT

3

CHAPTER 3
PROGRAMMING ENVIRONMENT

This chapter describes the i960® Ix microprocessor's programming environment including global
and local registers, control registers, literals, processor-state registers and address space.

3.1 OVERVIEW

The i960 architecture defines a programming environment for program execution, data storage and
data manipulation. Figure 3-1 shows the programming environment elements which include a
4 Gbyte (232 byte) flat address space, an instruction cache, global and local general-purpose
registers, a set of literals, control registers and a set of processor state registers. A register cache
saves the 16 procedure-specific local registers.

The processor defines several data structures located in memory as part of the programming
environment. These data structures handle procedure calls, interrupts and faults and provide
configuration information at initialization. These data structures are:

• interrupt stack • control table • system procedure table

• local stack • fault table • process control block

• supervisor stack • interrupt table • initialization boot record

3.2 REGISTERS AND LITERALS AS INSTRUCTION OPERANDS

The i960 Ix processor uses only simple load and store instructions to access memory. All
operations take place at the register level. The processor uses 16 global registers, 16 local registers
and 32 literals (constants 0-31) as instruction operands.

The global register numbers are gO through glS; local register numbers are rO through rlS. Several
of these registers are used for a dedicated function. For example, register rO is the previous frame

1

1:
I
),

i1
:-1
,l
I ~

il
'I

~
1
Ii

pointer, often referred to as pip. i960 processor compilers and assemblers recognize only the il
instruction operands listed in Table 3-1. Throughout this manual, the registers' descriptive names,
numbers, operands and acronyms are used interchangeably, as dictated by context.

_I 3-1

,:(,
.,

PROGRAMMING ENVIRONMENT

OOOOOOOOH

Address Space

Fetch

Instruction
Stream

Instruction
, Execution

Processor State
Registers

Instruction
Pointer

Arithmetic
Controls

Process
Controls

Trace
Controls

·'i

. ArchitecturallY'
DefilleP

Data Structures

Load

Control Registers

Figure 3-1. i960@ Jx Microprocessor Programming Environment

3.2.1 Global Registers"

in+:...;.'· 'EJI®

Global registers are general-purpose 32-bit data regis~rs that pr~vide temporary' storage for a
program's computationai operands. These registers retain their contents across procedure
boundaries. As such, they provide a fast and efficient means of passing parameters between
procedures.

3-2

.1

PROGRAMMING ENVIRONMENT

Table 3-1. Registers and Literals Used as Instruction Operands

Instruction Operand Register Name (number) Function Acronym

gO - g14 global (gO-g14) general purpose

fp global (g15) frame pOinter FP
pfp local (rO) previous frame pointer PFP
sp local (r1) stack pointer SP
rip local (r2) return instruction pointer RIP
r3 - r15 local (r3-r15) general purpose

0-31 literals

The i960 architecture supplies 16 global registers, designated gO through giS. Register glS is
reserved for the current Frame Pointer (FP), which contains the address of the first byte in the
current (topmost) stack frame. See section 7.1, "CALL AND RETURN MECHANISM" (pg. 7-2)
for a description of the FP and procedure stack.

After the processor is reset, register gO contains device identification and stepping information.
The Device Identification sections in the 80960JAlJF Embedded 32-bit Microprocessor Data
Sheet and the 80960JD Embedded 32-bit Microprocessor Data Sheet describe information
contained in gO. gO retains this information until it is written over by the user program. The device
identification and stepping information is also stored in a memory-mapped register located at
FF008710H.

3.2.2 Local Registers

The i960 architecture provides a separate set of 32-bit local data registers (rO through rlS) for each
active procedure. These registers provide storage for variables that are local to a procedure. Each
time a procedure is called, the processor allocates a new set of local registers and saves the calling
procedure'S local registers. The processor performs local register management; a program need not
explicitly save and restore these registers.

r3 through rlS are general purpose registers; rO contains the Previous Frame Pointer (PFP); r1
contains the Stack Pointer (SP); r2 contains the Return Instruction Pointer (RIP). These are
discussed in CHAPTER 7, PROCEDURE CALLS.

The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Therefore, initial register contents are unpredictable. Also, because the processor does
not initialize the local register save area in the newly created stack frame for the procedure, its
contents are equally unpredictable.

3-3

1

I:
I

PROGRAMMING ENVIRONMENT

3.2.3 Register Scoreboarding

The processor uses register scoreboarding to allow concurrent execution of sequential instructions.
When an instruction that targets a destination register or group of registers executes, the processor
sets a register-scoreboard bit to indicate that this register or group of registers are being used i{l an
operation. If the instructions that follow do not require data from registers already in use, the
processor can execute those instructions before the prior instruction execution completes.

Software can use this feature to execute one or more single-cycle instructions concurrently with a
multi-cycle instruction (e.g., multiply or divide). Example 3-1 shows a case where register score­
boarding prevents a subsequent instruction from executing. It also illustrates overlapping instruc­
tions that do not have register dependencies.

muli r4,r5,r6
addi r6,r7,rS

muli r4,r5,rlO
and r6,r7,rS

3.2.4 Literals

Example 3-1. Register Scoreboarding

r6 is scoreboarded
addi must wait for the previous mUltiply
to complete

rIO is scoreboarded
and instxuction is executed concur::rently

The architecture defines a set of 32 literals that can be used as operands in many instructions.
These literals are ordinal (unsigned) values that range from ° to 31 (5 bits). When a literal is used
as an operand, the processor expands it to 32 bits by adding leading zeros. If the instruction
requires an operand larger than 32 bits, the processor zero-extends the value to the operand size. If
a.1iteral is used in an instruction that requires integer operands, the processor treats the literal as a
positive integer value.

3.2.5 Register and Literal Addressing and Alignment

Several instructions operate on multiple-word operands. For example, the load long instruction
(Idl) loads two words from memory into two consecutive registers. The register for the less­
significant word is specified in the instruction. The more~significant word is automatically loaded
into the next higher-numbered register.

In cases where an instruction specifies a register number and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., gO, g2) and an
integral mUltiple of 4 if three or four registers are accessed (e.g., gO, g4). If a register reference for
a source value is not properly aligned, the source value is undefined and an
OPERATION.lNVALID_OPERAND fault is generated. If a register reference for a destination
value is not properly aligned, the registers to which the processor writes and the values written are

3-4 I

PROGRAMMING ENVIRONMENT

undefined. The processor then generates an OPERATION.lNVALID_OPERAND fault. The
assembly language code in Example 3-2 shows an example of correct and incorrect register
alignment.

movl g3,g8

movl g4,g8

Example 3-2. Register Alignment

INCORRECT ALIGNMENT - resulting value
in registers g8 and g9 is
unpredictable (non-aligned source)

CORRECT ALIGNMENT

Global registers, local registers and literals are used directly as instruction operands. Table 3-2 lists
instruction operands for each machine-level instruction format and positions which can be filled by
each register or literal.

Table 3-2. Allowable Register Operands

Operand (1)

Instruction
Operand Field

Local Global
Literal

Encoding Register Register

REG src1 X X X
src2 X X X
src/dst (as src) X X X
src/dst (as ds~ X X
src/dst (as both) X X

MEM srddst X X
abase X X
index X X

COBR src1 X X
src2 X X
dst X (2) X(2)

NOTES:

1. "X" denotes the register can be used as an operand in a particular instruction field.

2. The COBR destination operands apply only to TEST instructions.

3.3 MEMORY-MAPPED CONTROL REGISTERS

The i960 Jx family gives software the interface to easily read and modify internal control registers.
Each of these registers is accessed as a memory-mapped, 32-bit register with a unique memory
address. Access is accomplished through regular word load and store instructions; the processor
ensures that these accesses do not generate external bus cycles.

_I 3-5

II ,
',J
!
!:
11

PROGRAMMING ENVIRONMENT

3.3.1 Memory-Mapped Registers (MMR)

Portions of the Jx address space (addresses FFOO OOOOH through FFFF FFFFH) are reserved for
memory-mapped registers. These memory-mapped registers (MMR) are accessed through word­
operand memory instructions (atmod, sysctl, Id and st instructions) only. Accesses to this address
space do not generate external bus cycles. The latency in accessing each of these registers is one
cycle.

Each register has an associated access mode (user and supervisor modes) and access type (read
and write accesses). Table 3-3, Table 3-4 and Table 3-5 show all the memory-mapped registers and
the application mode of access.

The registers are partitioned into user and supervisor spaces based on their addresses. Addresses
FFOO OOOOH through FFOO 7FFFH are allocated to user space memory-mapped registers;
Addresses FFOO 8000H to FFFF FFFFH are allocated to supervisor space registers.

3.3.1.1 Restrictions on Instructions that Access Memory-Mapped Registers

The majority of memory-mapped registers can be accessed by both load (Id) and store (st) instruc­
tions. However some registers have restrictions on the types of accesses they allow. To ensure
correct operation, the access type restrictions for each register should be followed. The various
access types are listed in Table 3-3. The allowed access types for each register are indicated in the
access type column of Table 3-4 and Table 3-5.

Unless otherwise indicated by its access type, the modification of a memory-mapped register by a
st instruction is ensured to take effect completely before the next instruction starts execution.

Some operations require an atomic-read-modify-write sequence to a register -- most notably IPND
and IMSK. The atmod instruction provides a special mechanism to quickly modify the IPND and
IMSK registers in an atomic manner; on the i960 Jx microprocessor, it should not be used on any
other memory-mapped registers.

The sysctl instruction can also atomically modify the contents of a memory-mapped register; in
addition, it is the only method to read the breakpoint registers on the i960 Jx microprocessor; the
breakpoints can not be read using a Id instruction.

At initialization, the control table is automatically loaded into the on-chip control registers. This
action simplifies the user's startup code by providing a transparent setup of the processor's periph­
erals. See CHAPTER 11, INITIALIZATION AND SYSTEM REQUIREMENTS.

3-6 I

PROGRAMMING ENVIRONMENT

3.3.1.2 Access Faults

Memory-mapped registers are meant to be accessed only as aligned, word-size registers with
adherence to the appropriate access mode. Accessing these registers in any other way can result in
faults or undefined operation. An access is performed using the following fault model:

1. The access must be a word-sized, word-aligned access; otherwise, an operation.unimple­
mented fault is generated. .

2. If the access is a store in user mode to an implemented supervisor location, a type.mismatch
fault is generated. It is unpredictable whether stores to unimplemented supervisor locations
cause a fault.

3. If the access is neither of the above, the access is attempted. Note that a MMR may generate
faults based on conditions specific to that MMR. (Example: trying to write the timer registers
in user mode when they have been allocated to supervisor only.)

4. When a store access to a register faults, the processor ensures that the store does not take
effect.

5. A load access of a reserved location returns an unprediCtable value.

6. A store access to a reserved location should be avoided and is bad programming practice;
such a store can result in undefined operation of the processor if the location is in supervisor
space.

The i960 Jx microprocessor will ensure that faults resulting from MMR accesses are precise.

Instruction fetches from the memory-mapped register space are not allowed and result in an
operation. unimplemented fault.

J 3-7

PROGRAMMING ENVIRONMENT

Table 3·3. Access Types

Access Type Description

R Read Read (Id instruction) accesses are allowed.

RO Read Only Read (Id instruction) accesses are allowed. Write (st instruction)
Only accesses are ignored.

W Write Write (st instruction) accesses allowed.

RJW Read/Write Id, st, and sys'ctl instructions are allowed access.

WwG Write Writing or Modifying (through a st or sysctl instruction) the register is
when only allowed when modification-rights to the register have been granted.
Granted An OPERATION.UNIMPLEMENTED fault occurs if an attempt is made to

write the register before rights are granted. See section 10.2.7.2,
"Hardware Breakpoints" (pg. 10-5).

Sysctl-RwG sysctl The value of the register can only be read by executing a sysctl instruction
Read issu~d with the modify memory-mapped register message type. Modifi~
when cation rights to the register must be granted first or an
Granted OPERATION. UNIMPLEMENTED fault occurs when the sysctl is

executed. A Id instruction to the register returns unpredictable results.

AtMod atrnod Register can be updated quickly through the atrnod instruction. The
update atrnod ensures correct;operation by performing the update of the register

in an atomic manner which provides synchronization with previous and
subsequent operations. This is a faster update mechanism than sysctl
and is optimized for a few special registers,

3-8 I

PROGRAMMING ENVIRONMENT

Table 3-4. Supervisor Space Family Registers and Tables (Sheet 1 of 3)

Register Name Memory-Mapped Address Access Type

Fleservet;J " ,f'F9P f~QJ-!t tQ;FFPO SOfftj, ~'

(DLMCON) Default Logical Memory Configuration
FFOO 8100H R/W

Register

Fleservec1 FFOOS104H
,',

"
C:f,

(LMADRO) Logical Memory Address Register 0 FFOO 8108H R/W

(LMMRO) Logical Memory Mask Register 0 FFOO 810CH R/W

(LMADR1) Logical Memory Address Register 1 FFOO 8110H RIW

(LMMR1) Logical Memory Mask Register 1 FFOO 8114H RIW

Fleserv9d f)" , FFPQ~1'StjtoFFOO 83FFH
" - , , , 'f,'" ,f' ,f

(IPBO) Instruction Address Breakpoint Register 0 FFOO 8400H Sysctl- RwG/WwG

(IPB1) Instruction Address Breakpoint Register 1 FFOO 8404H Sysctl- RwG/WwG

:1Jes~ /f," f'" PrOP 84~HtQfFOoM1f;~
f ..

i;A ~ ,.f 'f)' , '.
(DABO) Data Address Breakpoint Register 0 FFOO 8420H R/W, WwG

(DAB1) Data Address Breakpoint Register 1 FFOO 8424H R/W, WwG

R~$8~~f'
,i f,i, i",; f f;'f~s#~~'F~QO~~H f 7,.".'; "'ii "

i ."ff,'" "L", .;i, ,'if , 'if'i

, ."" (BPCON) Breakpoint Control Register FFOO 8440H R/W, WwG

life$e'tYlJ/;f
, . , ,i.' f ,i'~FOpa~4HioF:fi'96J'~ti· I"": "i'f "fC ',"

", '. if '- ,

(IPND) Interrupt Pending Register FFOO 8500H R/W, AtMod

(lMSK) Interrupt Mask Register FFOO 8504H RIW, AtMod

, 'R98erV1Jt:J
<,,"> " , If ,:-j;jOO8$ij~Mtdt:FQ035QFHf ·f """," ,:f "

,i -'. ," "
(ICON) Interrupt Control Word FFOO 8510H RIW

. ReseMKJ f', i,

FF~~14Ht6FFOO 851FH
,i -

(IMAPO) Interrupt Map Register 0 FFOO 8520H R/W

(IMAP1) Interrupt Map Register 1 FFOO 8524H RIW

(IMAP2) Interrupt Map Register 2 FFOO 8528H RIW

IR~
i ",'

f i I. fFFQQ~~tof,F60'~SF~ ", '-,;.: f "i, '"

i

I 3-9 I

PROGRAMMINGENVIRONMI:NT

Table 3-4; Supervisor Space Family Registers and Tables (Sheet 2 of 3)

. Register Name Memory-Mapped Address Access Type

(PMCONO_1) Physical Memory Control Register 0 FF008600H RIW

3-10 I

intet PROGRAMMING ENVIRONMENT

Table 3-4. Supervisor Space Family Registers and Tables (Sheet 3 of 3)

Register Name Memory-Mapped Address Access Type

(PRCB) Processor Control Block Pointer FFOO 8700H RD

(ISP) Interrupt Stack Pointer FFOO 8704H RIW

(SSP) Supervisor Stack Pointer FFOO 8708H RIW

;~.'. .. .'

FFOO87OQH ~< : " -~. "~' , ".'J: ., ., , , ~
(DEVICEID) i960 Jx Device ID FFOO 8710H RD 1'1

j~:;'" .. ,i'; >
, ,.,.:,' " .. ¥FOO s71.4Hto Ff'Ff:f'PFFH .. z.:;.. .. ,~~,~, , "::

Ii

Table 3-5. User Space Family Registers and Tables

3-11

PROGRAMMING ENVIRONMENT intet
3.4 ARCHITECTURE-DEFINED DATA STRUCTURES

The architecture defines a set of data structures including stacks, interfaces to system procedures,
interrupt handling procedures and fault handling procedures. Table 3-6 defines the data structures
and references other sections of this manual where detailed information can be found. '

Table 3-6. Data Structure Descriptions

Structure (see also) Description

User and Supervisor Stacks The processor uses these stacks when executing application

section 7.6, "USER AND SUPERVISOR
code.

STACKS" (pg. 7-19)

System Procedure Table Contains pointers to system procedures. Application code uses

section 3.7, "USER SUPERVISOR the system call instruction (calls) to access system procedures

PROTECTION MODEL" (pg. 3-22)
through this table. A system supervisor call switches execution
mode from user mode to supervisor mode. When the processor

section 7.5, "SYSTEM CALLS" (pg. 7-16) switches modes, it also switches to the supervisor stack.

Interrupt Table and Stack Contains vectors (pointers) to interrupt handling procedures.
section 8.4, "INTERRUPT TABLE" (pg. When an interrupt is serviced, a particular interrupt table entry is
8-3) specified. A separ,ate interrupt stack is provided to ensure that
section 8.5, "INTERRUPT STACK AND interrupt handling does not interfere with application programs.
INTERRUPT RECORD" (pg. 8-5)

Fault Table Contains pointers to fault handling procedures. When the
section 9.3, "FAULT TABLE" (pg. 9-4) processor detects a fault, it selects a particular entry in the fault

table. The architecture does not require a separate fault handling
stack. Instead, a fault handling procedure uses the svpervisor
stack, user stack or interrupt stack, depending on processor
execution mode in which the fault occurred and type of call made
to the fault handling procedure.

Control Table Contains on-chip control register values. Control table values are
section 11 .3.3, "Control Table" (pg. 11-19) moved to on-chip registers at initialization or with sysctl.

The i960 Ix processor defines two initialization data structures: Initialization Boot Record (IBR)
and Process Control Block (PRCB). These structures provide initialization data and pointers to
other data structures in memory. When the processor is initialized, these pointers are read from the
initialization data structures and cached for internal use.

Pointers to the system procedure table, interrupt table, interrupt stack, fault table and control table
are specified in the processor control block. Supervisor stack location is specified in the system
procedure table. User stack location is specified in the user's startup code. Of these structures, the
system procedure table, fault table, control table and initialization data structures may be in ROM;
the interrupt table and stacks must be in RAM. For software interrupts, the interrupt table must be
located in RAM. This is to allow the processor to modify the interrupt table.

3-12

PROGRAMMING ENVIRONMENT

3.5 MEMORY ADDRESS SPACE

The i960 Jx processor's address space is byte-addressable with addresses running contiguously
from 0 to 232_1. Some is reserved or assigned special functions as shown in Figure 3-2.

Address

0000 OOOOH
0000 0004H
0000 003FH

0000 0040H

0000 03FFH
0000 0400H

FEFF FF2FH
FEFF FF30H

FEFF FF5FH
FEFF FF60H
FEFF FFFFH
FFOO OOOOH

FFFF FFFFH

Code/data
Architecturally Defined Data Structures

External Memory

Initialization Boot Record (IBR)

• Shading indicates internal memory.

Figure 3-2. Memory Address Space

Physical addresses can be mapped to read-write memory, read-only memory and memory-mapped
110. The architecture does not define a dedicated, addressable 110 space. There are no subdivisions
of the address space such as segments. For memory management, an external memory
management unit (MMU) may subdivide memory into pages or restrict access to certain areas of
memory to protect a kernel's code, data and stack. However, the processor views this address space
as linear.

3-13

;

I

I,
:.1
" ii
II
"

PROGRAMMING ENVIRONMENT intel®
An address in memory is a 32-bit value in the range OH to FFFF FFFFH. Depending on the
instruction, an address can reference in memory a single byte, short word (2 bytes), word
(4 bytes), double-word (8 bytes), triple-word (12 bytes) or quad-word (16 bytes). Refer to load
and store instruction descriptions in CHAPTER 6, INSTRUCTION SET REFERENCE for
multiple-byte addressing information.

3.5.1 Memory Requirements

The architecture requires that external memory has the following properties:

• Memory must be byte-addressable.

• Memory must support burst transfers (i.e., transfer blocks of up to 16 contiguous bytes or four
sequential transfers).

• Physical memory must not be mapped to reserved addresses that are specifically used by the
processor implementation.

• Memory must guarantee indivisible access (read or write) for addresses that fall within 16-
byte boundaries.

• Memory must guarantee atomic access for addresses that fall within 16-byte boundaries.

The latter two capabilities - indivisible and atomic access - are required only when multiple
processors or other external agents, such as DMA or graphics controllers, share a common
memory.

indivisible access

atomic access

Guarantees that a processor, reading or writing a set of memory locations,
completes the operation before another processor or external agent can read
or write the same location. The processor requires indivisible access within
an aligned 16-byte block of memory.

A read-modify-write operation. Here the external memory system must
guarantee that - once a processor begins a read-modify-write operation on
an aligned, 16-byte block of memory - it is allowed to complete the
operation before another processor or external agent is allowed access to
the same location. An atomic memory system can be implemented by using
the LOCK signal to qualify hold requests from external bus agents. LOCK
is asserted for the duration of an atomic memory operation.

The upper 16 Mbytes of the address space - addresses FFOO OOOOH through FFFF FFFFH - are
reserved for implementation-specific functions. 80960Jx programs cannot use this address space
except for accesses to memory-mapped registers. The processor will not generate any external bus
cycles to this memory. As shown in Figure 3-2, the initialization boot record is located just below
the i960 Jx processor's reserved memory.

3-14 L

PROGRAMMING ENVIRONMENT

The i960 Jx processor requires some special consideration when using the lower 1 Kbyte of
address space (addresses OOOOH-03FFH). Loads and stores directed to these addresses access
internal memory; instruction fetches from these addresses are not allowed for this processor. See
section 4.1, "INTERNAL DATA RAM" (pg. 4-1). No external bus cycles are generated to this
address space.

3.5.2 Data and Instruction Alignment in the Address Space

Instructions, program data and architecturally defined data structures can be placed anywhere in
non-reserved address space while adhering to these alignment requirements:

• Align instructions on word boundaries.

Align all architecturally defined data structures on the boundaries specified in Table 3-7.

Align instruction operands for the atomic instructions (atadd, atmod) to word boundaries in
memory.

The i960 Jx processor can perform unaligned load or store accesses. The processor handles a non­
aligned load or store request by:

• Automatically servicing a non-aligned memory access with microcode assistance as described
in section 15.2.5, "Data Alignment" (pg. 15-22).

• After the access is completed, the processor generates an OPERATION.UNALIGNED fault.

The method of bandling faults is selected at initialization based on the value of the Fault Configu­
ration Word in the Process Control Block. See section 11.3.1.2, "Process Control Block (PRCB)"
(pg. 11-14).

Table 3-7. Alignment of Data Structures in the Address Space

Data Structure Alignment

System Procedure Table 4 byte

Interrupt Table 4 byte

Fault Table 4 byte

Control Table 16 byte

User Stack 16 byte

~upervisor Stack 16 byte

Interrupt Stack 16 byte

Process Control Block 16 byte

Initialization Boot Record Fixed at FEFF FF30H

.3-15

•

PROGRAMMING ENVIRONMENT

3.5.3 ' Byte, Word and Bit Addressing

The proc~sspr provides instructions for moviJ1g data blocks of various lengths from. memory to
registers (LOAD) and from registers to memory (STORE). Allowable sizes for block/> are bytes,
short words (2 bytes), words (4 bytes), double words, triple words and quad words. For example,
stl (store long) stores an 8 byte (double word) data block in memory.

The most efficient way to move data blocks longertfian 16 bytes isH) move them in quad-word
increments, using quad-word instructions Idq and stq.

When a data block is stored iIi memory, normally the block's least signifiCarit byte is stored at a
base memory address and the more significant bytes are stored at successively higher byte
addresses. This method of ordering bytes in memory is referred to as "little endian" ordering.

The i960 Jx proces~or 3;lso provides th,e option for ordering bytes in:an opposite manner in
memory. The block's most significant byte is stored at the base address and the less significant
bytes are stored at successively higher addresses. This byte ordering scheme - referred to as "big
endian" - applies to data blocks which are short words or words. For more about byte ordering;
see section 15.2.5, "Data Alignment" (pg. 15-22).

When loadinga' byte, short word or word from memory to a register, the block's least significant
bit is always loaded in register bit O. When loading double words, triple words and quad words,
the least significant word is stored in the base register. The more significant words are then stored
at successively higher numbered registers. Bits can only be addressed in data that resides in a
register: bit 0 in a registet is the least significant bit, bit 31 is the most significant bit.

3.5.4 Internal Data RAM

The i960 Jx processor has 1 Kbyte'of on-chip data RAM. Only data'accesses are allowed in this
region. ,Portions of the data RAM can also be reserved for functions such as caching interrupt
vectors. The internal RAM is fully described in CHAPTER 4, CACHE AND ON-ClllP DATA
RAM.

3.5.5 Instruction Cache

The instruction cache enhances performance by reducing the number of instruction fetches from
external memory. The cache provides fast execution of cached code and, loops of code in the cache
and also provides more bus bandwidth for data operations in external memory. The i960 JF and JD
processors' instruction cache is a 4 Kbyte, two~way set associative cache, organized in two sets of
four-word lines. i960 JA processors feature a 2 Kbyte instruction cache. For more information, see
CHAPTER 4, CACHE AND ON-CHIP DATA RAM.

3-16 I

PROGRAMMING ENVIRONMENT

3.5.6 Data Cache

The data cache on the i960 IF and ID processors is a write-through 2 Kbyte direct-mapped cache.
i960 IA processors feature a 1 Kbyte data cache. For more information, see CHAPTER 4, CACHE
AND ON-CHIP DATA RAM.

3.6 PROCESSOR-STATE REGISTERS

The architecture defines four 32-bit registers that contain status and control information:

• Instruction Pointer (IP) register • Arithmetic Controls (AC) register

• Process Controls (PC) register • Trace Controls (TC) register

3.6.1 Instruction Pointer (IP) Register

The IP register contains the address of the instruction currently being executed. This address is
32 bits long; however, since instructions are required to be aligned on word boundaries in memory,
the IP's two least-significant bits are always 0 (zero).

All i960 processor instructions are either one or two words long. The IP gives the address of the
lowest-order byte of the first word of the instruction.

The IP register cannot be read directly. However, the IP-with-displacement addressing mode
allows the IP to be used as an offset into the address space. This addressing mode can also be used
with the Ida (load address) instruction to read the current IP value.

When a break occurs in the instruction stream - due to an interrupt, procedure call or fault - the
IP of the next instruction to be executed is stored in local register r2 which is usually referred to as
the return IP or RIP register. Refer to CHAPTER 7, PROCEDURE CALLS for further discussion.

3.6.2 Arithmetic Controls (AC) Register

The AC register (Figure 3-3) contains condition code flags, integer overflow flag, mask bit and a
bit that controls faulting on imprecise faults. Unused AC register bits are reserved.

I 3-17

•

PROGRAMMING ENVIRONMENT

I

No-Imprecise-Faults Bit- AC.nif ------'
(0) Some Faults are Imprecise
(1) All Faults are Precise

Integer Overflow Mask Bit - AC.om---------'
(0) No Mask
(1) Mask

Integer-Overflow Flag - AC.of--------------'
(0) No Overflow
(1) Overflow

Condition Code Bits - AC.cc ---------------------'

Reserved
(Initialize to 0)

Figure 3-3. Arithmetic Controls (AC) Register

3.6.2.1 Initializing and Modifying the AC Register

intet®

At initialization, the AC register is loaded from the Initial AC image field in the Process Control
Block. Reserved bits are set to 0 in the AC Register Initial Image. Refer to CHAPfER 11,
INITIALIZATION AND SYSTEM REQUIREMENTS.

After initialization, software must not modify or depend on the AC register's initial image in the
PRCB. The modify arithmetic controls (modac) instruction can be used to examine and/or modify
any of the register bits. This instruction provides a mask operand that can be used to limit access to
the register's specific bits or groups of bits, such as the reserved bits.

The processor automatically saves and restores the AC register when it services an interrupt or
handles a fault. The processor saves the current AC register state in an interrupt record or fault
record, then restores the register upon returning from the interrupt or fault handler.

3.6.2.2 Condition Code

The processor sets the AC register's condition code flags (bits 0-2) to indicate the results of certain
instructions, such as compare instructions. Other instructions, such as conditional branch instruc­
tions, examine these flags and perform functions as dictated by the state of the condition code
flags. Once the processor sets the condition code flags, the flags remain unchanged until another
instruction executes that modifies the field.

3-18 I

PROGRAMMING ENVIRONMENT

Condition code flags show true/false conditions, inequalities (greater than, equal or less than
conditions) or carry and overflow conditions for the extended arithmetic instructions. To show true
or false conditions, the processor sets the flags as shown in Table 3-8. To show equality and
inequalities, the processor sets the condition code flags as shown in Table 3-9.

Table 3-8. Condition Codes for True or False Conditions

Condition Code Condition

0102 true

0002 false

Table 3-9. Condition Codes for Equality and Inequality Conditions

Condition Code Condition

0002 unordered (false)

001 2 greater than (true)

0102 equal

1002 less than

The terms ordered and unordered are used when comparing floating point numbers, which are not
supported by the i960 Jx processor implementation.

To show carry out and overflow, the processor sets the condition code flags as shown in Table
3-10.

Table 3-10. Condition Codes for Carry Out and Overflow

Condition Code Condition

01X2 carry out

OX1 2 overflow

Certain instructions, such as the branch-if instructions, use a 3 bit mask to evaluate the condition
code flags. For example, the branch-if-greater-or-equal instruction (bge) uses a mask of 0112 to
determine if the condition code is set to either greater-than or equal. Conditional instructions use
similar masks for the remaining conditions such as: greater-or-equal (0112), less-or-equal (1102)
and not-equal (1012). The mask is part of the instruction opcode; the instruction performs a bitwise
AND of the mask and condition code.

I 3-19

PROGRAMMING ENVIRONMENT

The AC register integer overflow flag (bit 8) and integer overflow mask bit (bit 12) are used in
conjunction with·the arithmetic~integer-overflow fault. The mask bit disables fault generation.
When the fault is masked and integer overflow is encountered,' the processor - instead of
generating a fault - sets the integer overflow flag. If the fault is not masked, the fault is allowed
to occur and the flag is not set.

Once the processor sets ihis flag1 it never implicitly clears it; the flag remains set until the program
clears it. Refer to the discussion of the arithmetic-integer-overflow fault in CHAPTER 9, FAULTS
for more information about the integer overflow mask bit and flag.

The no imprecise faults bit (bit 15) determines whether or not faults are allowed to be imprecise. If
set, all faults are required to be precise; if clear, certain faults can be imprecise. See section 9.9,
"PRECISE AND IMPRECISE FAULTS" (pg. 9-19) for more information.

3.6.3 Process Controls (PC) Register

The PC register (Figure 3-4) is used to control processor activity and show the processor's current
state. PC register execution mode flag (bit 1) indicates that the processor is operating in either user
mode (0) or supervisor mode (1). The processor automatically sets this flag on a system call when
a switch from user mode to supervisor mode occurs and it clears the flag on a return from
supervisor mode. (User and supervisor modes are described in section 3.7, "USER SUPERVISOR
PROTECTION MODEL" (pg~ 3-22).

3-20

Trace-Enable Bit - PC.te -.,..----------------------,
(0) Globally disable trace faults
(1) Globally enable trace faults

Execution-Mode Flag - PC.em ---------------------,
(0) user mode
(1) supervisor mode

Trace-Faull-Pending - PC.tfp--,--_----------,
(0) no fault pending
(1) faull pending

State Flag - PC.s ~----------___,

(0) executing I
(1) interrupted

Priority Field - PC.p -------,1
(0-31) process priority +

IIIII I I II
31 28 24 20 16 12 8 4 o

I Reserved
(Do not modify)

Figure 3-4. Process Cont~ols (PC) Register

I

PROGRAMMING ENVIRONMENT

PC register state flag (bit 13) indicates processor state: executing (0) or interrupted (1). If the
processor is servicing an interrupt, its state is interrupted. Otherwise, the processor's state is
executing.

While in the interrupted state, the processor can receive and handle additional interrupts. When
nested interrupts occur, the processor remains in the interrupted state until all interrupts are
handled, then switches back to executing state on the return from the initial interrupt procedure.

PC register priority field (bits 16 through 20) indicates the processor's current executing or
interrupted priority. The architecture defines a mechanism for prioritizing execution of code,
servicing interrupts and servicing other implementation-dependent tasks or events. This
mechanism defines 32 priority levels, ranging from 0 (the lowest priority level) to 31 (the highest).
The priority field always reflects the current priority of the processor. Software can change this
priority by use of the modpc instruction.

The processor uses the priority field to determine whether to service an interrupt immediately or to
post the interrupt. The processor compares the priority of a requested interrupt with the current
process priority. When the interrupt priority is greater than the current process priority or equal to
31, the interrupt is serviced; otherwise it is posted. When an interrupt is serviced, the process
priority field is automatically changed to reflect interrupt priority. See CHAPTER 13,
INTERRUPT CONTROLLER.

PC register trace enable bit (bit 0) and trace fault pending flag (bit 10) control the tracing function.
The trace enable bit determines whether trace faults are globally enabled (1) or globally
disabled (0). The trace fault pending flag indicates that a trace event has been detected (1) or not
detected (0). The tracing function are further described in Chapter 10.

3.6.3.1 Initializing and Modifying the PC Register

Any of the following three methods can be used to change bits in the PC register:

• Modify process controls instruction (mod pc)

• Alter the saved process controls prior to a return from an interrupt handler

• Alter the saved process controls prior to a return from a fault handler

modpc directly reads and modifies the PC register. A TYPE.MISMATCH fault is generated if
modpc is executed in user mode with a non-zero mask. As with modac, mod pc provides a mask
operand that can be used to limit access to specific bits or groups of bits in the register. modpc can
be used in user mode to read the current PC register.

In the latter two methods, the interrupt or fault handler changes process controls in the interrupt or
fault record that is saved on the stack. Upon return from the interrupt or fault handler, th~ modified
process controls are copied into the PC register. The processor must be in supervisor mode prior to
return for modified process controls to be copied into the PC register.

3-21

i

~
I

PROGRAMMING ENVIRONMENT

When process controls are changed as described above, the processor recognizes the changes
immediately except for one situation: if modpc is used to change the trace enable bit, the
processor may not recognize the change before the next four non-branch instructions are executed.

After initialization (hardware reset), the process controls reflect the following conditions:

• priority = 31 • execution mode = supervisor

• trace enable = disabled • state = interrupted

When the processor is reinitialized with a sysctl reinitialize message, the PC register is not
changed.

Normally, modpc is not used to modify execution mode or trace fault state flags except under
special circumstances, such as in initialization code.

3.6.4 Trace Controls (TC) Register

The TC register, in conjunction with the PC register, controls processor tracing facilities. It
contains trace mode enable bits and trace event flags which are used to enable specific tracing
modes and record trace events, respectively. Trace controls are described in CHAPTER 10,
TRACING AND DEBUGGING.

3.7 USER SUPERVISOR PROTECTION MODEL

The processor can be in either of two execution modes: user or supervisor. The capability of a
separate user and supervisor execution mode creates a code and data protection mechanism
referred to as the user supervisor protection model. This mechanism allows code, data and stack
for a kernel (or system executive) to reside in the same address space as code, data and stack for
the application. The mechanism restricts access to all or parts of the kernel by the application
code. This protection mechanism prevents application software from inadvertently altering the
kernel.

3.7.1 Supervisor Mode Resources

Supervisor mode is a privileged mode which provides several additional capabilities over user
mode.

•

3-22

When the processor switches to supervisor mode, it also switches to the supervisor stack .
Switching to the supervisor stack helps maintain a kernel's integrity. For example, it allows
system. debugging software or a system monitor to be accessed, even if an application's
program destroys its own stack.

I

PROGRAMMING ENVIRONMENT

• In supervisor mode, the processor is allowed access to a set of supervisor-only functions and
instructions. For example, the processor uses supervisor mode to handle interrupts and trace
faults. Operations that can modify interrupt controller behavior or reconfigure bus controller
characteristics can only be performed in supervisor mode. These functions include modifi­
cation of control registers or internal data RAM that is dedicated to interrupt controllers. A
fault is generated if supervisor-only operations are attempted while the processor is in user
mode. Table 3-11 lists supervisor-only operations and the fault which is generated if the
operation is attempted in user mode.

The PC register execution mode flag specifies processor execution mode. The processor automati­
cally sets and clears this flag when it switches between the two execution modes.

Table 3-11. Supervisor-Only Operations and Faults Generated in User Mode

Supervisor-Only Operation User-Mode Fault

dcctl (data cache control) TYPE.MISMATCH

halt (halt CPU) TYPE.MISMATCH

icctl (instruction cache control) TYPE.MISMATCH

intctl (global interrupt enable and disable) TYPE. MISMATCH

intdis (global interrupt disable) TYPE.MISMATCH

inten (global interrupt enable) TYPE.MISMATCH

mod pc (modify process controls wi non-zero TYPE.MISMATCH
mask)

sysctl (system control) TYPE. MISMATCH

Protected internal data RAM or Supervisor MMR TYPE.MISMATCH
space write

Protected timer unit registers TYPE.MISMATCH

3.7.2 Using the User-Supervisor Protection Model

A program switches from user mode to supervisor mode by making a system-supervisor call (also
referred to as a supervisor call). A system-supervisor call is a call executed with the call-system
instruction (calls). With calls, the IP for the called procedure comes from the system procedure
table. An entry in the system procedure table can specify an execution mode switch to supervisor
mode when the called procedure is executed. calls and the system procedure table thus provide a
tightly controlled interface to procedures which can execute in supervisor mode. Once the
processor switches to supervisor mode, it remains in that mode until a return is performed to the
procedure that caused the original mode switch.

I 3-23

~
I
I

PROGRAMMING ENVIRONMENT intel®
Interrupts and faults can cause the processor to switch from user to supervisor mode., When the
processor handles an interrupt, it automatically switches to supervisor mode. However, it does not
switch to the supervisor stack. Instead, it switches to the interrupt stack. Fault table entries
determine if a particular fault will transition the processor from user to supervisor mode.

If an application does not ,requ4"e a user-supervisor protection mechanism, the processor can
. always execute in supervisor mode. At initialization, the processor is placed in supervisor mode

prior to executing the fITst instruction of the application code. The processor then remains in
supervisor mode indefinitely, as long as no action is taken to change execution mode to user mode.
The processor does not need a user stack in this case.

3-24 I

CACHE AND ON-CHIP DATA
RAM

I

4

.. ~>

CHAPTER 4
CACHE AND ON-CHIP DATA RAM

This chapter describes the structure and user configuration of all forms of on-chip storage,
including caches (data, local register and instruction) and data RAM.

4.1 INTERNAL DATA RAM

Internal data RAM is mapped to the lower 1 Kbyte (0 to 03FFH) of the address space. Loads and
stores, with target addresses in internal data RAM, operate directly on the internal data RAM; no
external bus activity is generated. Data RAM allows time-critical data storage and retrieval without
dependence on external bus performance. Only data accesses are allowed to the internal data
RAM; instructions cannot be fetched from the internal data RAM. Instruction fetches directed to
the data RAM cause an OPERATION. UNIMPLEMENTED fault to occur.

Internal data RAM locations are never cached in the data cache. Logical Memory Template bits
controlling caching are ignored for data RAM accesses. However, the byte-ordering of the internal
data RAM is controlled by the byte-endian control bit in the DLMCON register.

Some internal data RAM locations are reserved for alternate functions other than general data
storage. The first 64 bytes of data RAM may be used to cache interrupt vectors; this reduces
latency for these interrupts. The word at location OOOOH is always reserved for the cached NMI
vector. With the exception of the cached NMI vector, other reserved portions of the data RAM can
be used for data storage when the alternate function is not used. All locations of the internal data
RAM can be read in both supervisor and user mode.

The first 64 bytes (OOOOH to 003FH) of internal RAM are always user-mode write-protected. This
portion of data RAM can be read while executing in user or supervisor mode; however, it can only
be modified in supervisor mode. This area can ruso be write-protected from supervisor mode writes
by setting the BCON.SIRP bit. See section 12.4, "Physical Memory Attributes at Initialization"
(pg. 12-6). Protecting this portion of the data RAM from user and supervisor rights preserves the
interrupt vectors that may be cached there. See section 13.5.2.1, "Vector Caching Option" (pg.
13-22).

4-1

I
I.
I'
I
I,

I:
Ii
'I

11
:1
"

CACHE AND ON-CHIP DATA RAM

,.' ~ 1":

0000 OOOOH
NMI

0000 0004H

Optional Interrupt Vectors
. ;,

0000 0003FH

;

Available for Data

" .' 0000 03FFH

Figure 4-1. Internal Data RAM

Tbe remainder of the internaLdata RAM can always be written from supervisor mode. User mode
write protection is optionally selected for the rest of the data RAM (40H to 3FFH) by setting the
Bus Configuration Register RAM protection bit (BCON.irp). Writes to intern31 data RAM
locations while they are protected generate a TYPE.MISMATCH fault. See section 12.4.1, "Bus
Control (BCON) Register" (pg. 12-6), for the format of the BCON register.

New versions of i960 processor compilers can take advantage of internal data RAM; profiling.
compilers, such as those offered by Intel, can allocate the most frequently used variables into this
RAM.

4.2 LOCAL REGISTER CACHE

The i960 Jx process{jfprovides fast storage of local registers for call and return. operations by
using an internal local· register cache (also known as a stack frame cache). Up to eight local
register sets can be contained inthe'-Cache before sets must be saved in external memory. The
register set is all the registers (i.e. rO through r1S). The processor uses a 128-bit wide bus to store
local register sets quickly to the register cache. An integrated procedure call mechanism saves the
current local register set when a call is executed. A local register set is saved into a frame in the
local register cache, one frame per register set. When the eighth frame is saved, the oldest set of

. local registers is flushed to the stack in external memory, which frees one frame.

4-2 I

CACHE AND ON-CHIP DATA RAM

To decrease interrupt latency, software can reserve a number of frames in the local register cache
solely for high priority interrupts (interrupted state and process priority greater than or equal to 28).
The remaining frames in the cache can be used by all code including high-priority interrupts. When
a frame is reserved for high-priority interrupts, the local registers of the code interrupted by a high­
priority interrupt can be saved to the local register cache without causing a frame flush to memory.
This providing that the local register cache is not already full. Thus, the register allocation for the
implicit interrupt call does not incur the latency of a frame flush.

Software can reserve frames for high-priority interrupt code by writing bits 10 through 8 of the •
register cache configuration word in the PRCB. This value indicates the number of free frames
within the register cache that can be used by high-priority interrupts only. Any attempt by non-
critical code to reduce the number of free frames below this value will result in a frame flush to
external memory. The free frame check is performed only when a frame is pushed, which occurs
only for an implicit or explicit call. The following pseudo-code illustrates the operation of the
register cache when a frame is pushed:

frames_for_non_critical = 7 - RCW[10:8];
if (interrupt_request)

&&

set_interrupt_handler_PC;
push_frame;
number_of_frames = number_of_frames + 1;
if (number_of_frames = 8) {

flush_register_frame(bottom_of_stack} ;
number_of_frames = number_of_frames - 1;

else if (number_of_frames = (frames_for_non_critical + 1)

(PC.priority < 28 I I PC.state != interrupted) }
{ flush_register_frame(bottom_of_stack};

number_of_frames number_of_frames - 1; }

The valid range for the number of reserved free frames is 0 to 7. Setting the value to 0 reserves no
frames for exclusive-use by high-priority interrupts. Setting the value to 1, reserves 1 frame for
high-priority interrupts and 6 frames to be shared by all code. Setting the value to 7 causes the
register cache to become disabled for non-criticlll code.

4.3 BIG ENDIAN ACCESSES TO INTERNAL RAM AND DATA CACHE

Big-endian accesses to the internal data-RAM and data cache are supported. The default byte-order
for data accesses is programmed in DLMCON.be to be either little or big-endian. On the i960 Jx
processor DLMCON.be controls the default byte-order for all internal (i.e. on-chip data ram and
data cache) and external accesses. See section 12.6, "Programming the Logical Memory
Attributes" (pg. 12-8) for more details.

4-3

CACHE AND ON-CHIP DATA RAM

4.4 INSTRUCTION CACHE

The i960 JF and JD processors feature a 4 Kbyte, 2-way set associative in,struction cache
organized iI). lines of four 32-bit words .. The JA processor features a 2 Kbyte, 2-way set associative
instruction cache. The cache provides fast execution of cached code and loops of code in the cache
and provides more ·bus bandwidth for data operations in external memory. To optimize cache
updates when branches or interrupts are executed, each word in the.line has a separate valid bit.
When requested instructions are found in the cache, the instruction fetch time is one cycle for up to
four words.

A mechanism to lock critical code within a way of the cache is provided as well as a mechanism to
disable the cache .. The cache is managed through the ieetl and sysetl instructions.

Cache missel) cause the processor to issue a double-word or a quad-word fetch, based on the
·location of the Instruction Pointer: .

• If the IP is at word 0 or word 1 of a 16-byte block, a four-word fetch is initiated.

• If the IP is at word 2 or word 3 of a 16-byte block, a two-word fetch is initiated.

4.4.1 Enabling and Disabling the Instruction Cache

Enabling the instruction cache is controlled on reset or initialization by the instruction cache
configuration word in the Process Control Block (PRCB), see Figure 11-6. If bit 16 in the
instruction cache configuration word is set, the instruction cache is disabled and all instruction
fetches are directed to external memory. Disabling the instruction cache is useful for tracing
execution in a software debug environment.

The instruction cache remains disabled until one of three operations is performed:

• The processor is reinitialized with a new value in the instrUction cache configuration word

• leetl is issued with the enable instruction cache operation

• sysetl is issued with the configure instruction cache message type and cache configuration
mode other than disable cache

4.4.2 Operation While The Instruction Cache Is Disabled

Disabling the instruction cache does not disable the instruction buffering that may occur within the
instruction fetch unit. A four-word instruction buffer is always enabled, even when the cache is
disabled.

4-4

CACHE AND ON-CHIP DATA RAM

There is one tag and four word-valid bits associated with the buffer. Because there is only one tag
for the buffer, any "miss" within the buffer causes the following:

• All four words of the buffer are invalidated.

A new tag value for the required instruction is loaded.

• The required instruction(s) are fetched from external memory.

Depending on the alignment of the "missed" instruction, either two or four words of instructions •
are fetched and only the valid bits corresponding to the fetched words are set in the buffer. No
external instruction fetches are generated until there is a "miss" within the buffer, even in the
presence of forward and backward branches.

4.4.3 Locking Instructions in the Instruction Cache

The processor can be directed to load a block of instructions into the cache and then disable all
normal updates to the cache. This cache load-and-Iock mechanism is provided to minimize latency
on program control transfers to key operations such as interrupt service routines. The block size
that can be loaded and locked on the i960 Ix microprocessor is one way of the cache,

An icctl or sysctl instruction is issued with a configure-instruction-cache message type to select
the load-and-Iock mechanism. When the lock option is selected, the processor loads the cache
starting at an address specified as an operand to the instruction.

4.4.4 Instruction Cache Visibility

Instruction cache status can be determined with an Icctl issued with an instruction-cache status
message. To facilitate debugging, the instruction cache contents, instructions, tags and valid bits
can be written to memory. This is done by an icctl that is issued with the store cache operation.

4.4.5 Instruction Cache Coherency

Bus snooping is not implemented in the i960 Ix instruction cache. The cache does not detect
modification to program memory by loads, stores or actions of other bus masters. Several
situations may require program memory modification, such as uploading code at initialization or
uploading code from a backplane bus or a disk drive.

The application program is responsible for synchronizing its own code modification and cache
invalidation. In general, a program must ensure that modified code space is not accessed until
modification and cache-invalidate are completed. To achieve cache coherency, instruction cache
contents should be invalidated after code modification is complete. Both the icctl and the sysctl
instruction can be used to invalidate the instruction cache fo~ the i960 Ix component.

4-5

CACHE AND ON-CHIP DATA RAM

4.5 DATA CACHE

The i960 IF and JD processors feature a 2 Kbyte, direct-mapped cache which enhances
performance by reducing the number of data load and store accesses to external memory. i960 JA
processors have a 1 Kbyte data cache. The cache is write-through and write-allocate (as is the i960
CF processor data cache). It has a line size of 4 words and implement a "natural" fill policy. Each
line in the cache has a valid bit. To reduce fetch latency on cache misses, each word within a line
also has a valid bit. Caches are managed through the deetl instruction.

User settings in the memory region configuration registers LMCONO-l and DLMCON determine
which data accesses are cacheable or non-cacheable based on memory region.

4.5.1 Enabling and Disabling the Data Cache

To cache data, two conditions must be ensured:

1. The data cache must be globally enabled. A deetl issued with an enable data cache message
, will enable the cache. On reset or initialization, the data cache is always disabled and all
valid bits are set to zero.

2. Data caching for a location must be enabled by the corresponding logical memory
template, or by the default logical memory template if no other template applies. See
section 12.6, "Programming the Logical Memory Attributes" (pg. 12-8) for more details on
logical memory templates.

When the data cache is disabled, all data fetches are directed to external memory. Disabling the
data cache is useful for debugging or monitoring a system. To disable the data cache, issue a deetl
with a disable data cache message. The enable and disable status of the data cache and various
attributes of the cache can be determined by an deetl issued with a data-cache status message.

4.5.2 Multi-Word Data Access that Partially Hit the Data Cache

The following applies only when data caching is enabled for an access.

For a multi-word load access (Idl, Idt, Idq) in which none of the requested words hit the data
cache, an external bus transaction is started to acquire all the words of the access.

For a multi-word load access that partially hits the data-cache, the processor may either:

•
•

4-6

Load or reload all words of the access (even those that hit) from the external bus .

Load only rmssing words from the external bus and interleave them with words found in the
data cache.

CACHE AND ON·CHIP DATA RAM

The multi-word alignment determines which of the above methods is used:

• Naturally aligned multi-word causes all words to be reloaded.

• An unaligned multi-word access causes only missing words to be loaded.

Regardless of which method is used, only locations within the data-cache that missed are updated
by the results of the external memory request. Locations that hit are not updated by the external
memory request. (This ensures coherency between word stores and multi-word loads.) In each
case, the external bus accesses used to acquire the data may consist of none, one, or several burst
accesses based on the alignment of the data and the bus-width of the memory region that contains
the data. (See Chapter 15, EXTERNAL BUS for more details.)

A multi-word load access that completely hits in the data cache does not cause external bus
accesses.

For a multi-word store access (stl, stt, stq) an external bus transaction is started to write all words
of the access regardless if any or all words of the access hit the data cache. External bus accesses
used to write the data may consist of none, one, or several burst accesses based on data alignment
and the bus-width of the memory region that receives the data. (See Chapter 15, EXTERNAL BUS
for more details.) The cache is also updated accordingly as described earlier in this chapter.

4.5.3 Data Cache Fill Policy

The i960 Jx processor always uses a "natural" fill policy for cacheable loads. The processor fetches
only the amount of data that is requested by a load (i.e. a word, long word, etc.) on a data cache
miss. Exceptions are byte and short-word accesses, which are always promoted to words. This
allows a complete word to be brought into the cache and marked valid.

4.5.4 Data Cache Write Policy

The write policy determines what happens on cacheable writes (stores). The i960 Jx processor
always uses a write-through policy. The result of a store is always propagated to external memory
regardless of whether the store is a hit or miss. Stores are always seen on the external bus; this
maintains coherency between the data cache and external memory.

___ ~I 4-7

I
I

CACHE AND ON-CHrp DATA RAM intel®
The i960 Jx processor always uses a write-allocate policy for data.' Eor acacheable location, data
is always written to the data cache regardle~s of whether the acces.s is a hit. or miss. The following
cases are relevant to consider: '- . . . - "

1. In the case of a hit for a word or multi-word store, the appropriate line and word(s) are
updated with the data. .

2. In the case of a miss for a word or multi-word store, a tag and cache line are allocated, if
needed, and the appropriate valid bits, line, and word(s) are updated.

3. In the case of a byte or short-word datum that hits a valid word in the cache, both the word
in cache and external memory are updated with the datum; the cache word remains valid.

4. In the case of a byte or short-word datum that falls within a valid line, but, misses because
the appropriate word is invalid, both the word and external memory are updated with the
datum; however, the cache word remains invalid.

5.. In the case of a byte or short-word datum that does not-fall within a valid line: a tag and
cache line are allocated; the appropriate cache word and external memory are upda~ed with
the datum; and the cache line and all cache words are made invalid.

For cacheable stores that are equal to or greater than a word in length, cache tags and appropriate
valid bits are updated whenever data is written into the cache: Consider a word store as -an
example. The tag is always updated and its valid bit ~s set. The appropriate valid bit for that word
is always set and the other three valid bits at'~ always cleared. - .

Cacheable stores that are less than a word in length are handled differently. 'Byte and short-word
stores that hit the cache (Le., are contained in valid words within valid cache lines) do not change
the tag and valid bits. The processor writes the data into the cache and external memory as usual.
A byte or short-word store to an invalid word within a valid cache. line leav:.es the word valid bit
cleared because the rest of the word is still invalid. In all cases the processor simultaneously writes
the data into the cache and the external memory.

4.5.5 Data Cache Coherency and . Nbn-cacheable Accesses

The i960 Jx processor ensures that the data cache is always kept coherent with accesses that it
initiates and performs. The most visible application of this requirement concerns non-cacheable
accesses discussed below. However, the processor does not provide data-cache coherency for
accesses on the external bus that it did not initiate. Software is responsible for mhlntaining
coherency in a mUlti-processor environment.

I

int"et CACHE AND ON-CHIP DATA RAM

An access is defined as non-cacheable if any of the following are true:

I. The access falls into an address range mapped by an enabled LMCON pair or DLMCON
and the data-caching enabled bit in the matching LMCON is clear.

2. The entire data cache is disabled.

3. The access is a read operation of the read-modify-write sequence performed by an atrnod or
atadd instruction.

4. The access is an implicit read access to the interrupt table to post or deliver a software
interrupt.

If the address for a non-cacheable store matches a tag ("tag hit"), the corresponding cache line will
still remain valid, but the appropriate word valid bit will be marked invalid. This is because the
word is not actually updated with the value of the store. This ensures that the data cache never
contains stale data in a single-processor system. A simple case illustrates the necessity of this
behavior: a read of a datum previously stored by a non-cacheable access must return the new value
of the datum, not the value in the cache. Because the processor invalidates the appropriate word in
the cache line on a store hit when the cache is disabled, coherency can be maintained when the data
cache is enabled and disabled dynamically.

4.5.6 External 1/0 and Bus Masters and Cache Coherency

The i960 Jx processor implements a single processor coherency mechanism. There is no hardware
mechanism - such as bus snooping - to support multiprocessing. If another bus master can
change shared memory, there is no guarantee that the data cache contains the most recent data. The
user must manage such data coherency issues in software.

A suggested practice is to program the LMCONO-I registers such that YO regions are non­
cacheable. Partitioning the system in this fashion eliminates YO as a source of coherency
problems.

4.5.7 Data Cache Visibility

Data cache status can be determined by an dcctl issued with a data-cache status message.

Data cache contents, data, tags and valid bits can be written to memory as an aid for debugging.
This is accomplished by a dcctl that is issued with the dump cache operand.

4-9

~ II
I ..

CACHE ANDON·CHIP DATA RAM intel®

I .

I

4-10 I

5
INSTRUCTION SET OVERVIEW

1- .._ _ __

CHAPTER 5
INSTRUCTION SET OVERVIEW

This chapter provides an overview of the i960® microprocessor family's instruction set and i960 Ix
processor-specific instruction set extensions. Also discussed are the assembly-language and
instruction-encoding formats, various instruction groups and each group's instructions.

CHAFfER 6, INSTRUCTION SET REFERENCE describes each instruction - including ~ ..
assembly language syntax - and the action taken when the instruction executes and examples of
how to use the instruction.

5.1 INSTRUCTION FORMATS

80960Jx instructions may be described in two formats: assembly language and instruction
encoding. The following subsections briefly describe these formats.

5.1.1 Assembly Language Format

Throughout this manual, instructions are referred to by their assembly language mnemonics. For
example, the add ordinal instruction is referred to as addo. Examples use Intel 80960 assembler
assembly language syntax which consists of the instruction mnemonic followed by zero to three
operands, separated by commas. In the following assembly language statement example for addo,
ordinal operands in global registers g5 and g9 are added together; the result is stored in g7:

addo gS, g9, g7 # g7 = g9 + gS

In the assembly language listings in this chapter, registers are denoted as:

g

global register

pound sign precedes a comment

r local register

All numbers used as literals or in address expressions are assumed to be decimal. Hexadecimal
numbers are denoted with a "Ox" prefix (e.g., OxffffO012): Several assembly language instruction
statement examples follow. Additional assembly language examples are given in section 2.3.5,
"Addressing Mode Examples" (pg. 2-8). Further information about syntax can be found in an
assembly language manual for the Intel i960® Processor.

subi r3, rS, r6 #r6 ~ rS - r3
setbit 13, g4, gS #gS ~ g4 with bit 13 set
lda Oxfab3, r12 #r12~ Oxfab3
ld (r4) , g3 #g3 ~ memory location that r4 points to
st g10, (r6) [r7*2J #g10~ memory location that r6+2*r7 points to

5-1

I

INSTRUCTION SET OVERVIEW intet
5.1 ;2 . Instruction Encoding Formats

All instructions are encoded in' one: 32-bit machine language instruction - also known as ~
opword - which must be word aligned in memory. An opword's most significant eight bits
contain the opcode field. The opcode field determines the instruction to be performed and how the
remainder of the machine language instruction is interpreted. Instructions are encoded in opwords
in one of four formats (see Figure 5-1).

Instruction Type
register

Forynat
REG

Description

compare and branch 'COBR

Most instructions are encoded in this format. Used primarily
for instructioris which perform register-to-register operations.
An encoding optimization which combines compare and
branch operations into one opword. Other compare and
branch operations are also provided as REG and CTRL
format instructions.

control

memory

31

I
31

I
31

I
31

I
31

5-2

CTRL

MEM

OPCODE I
OPCODE I
OPCODE I
OPCODE I
OPCQDE I

Used for branches and calls that do not depend on registers for
address calculation.
Used for referencing an operand which is a memory address.
Load and store instructions - and some branch and call
instructions - use this format. MEM format has two
encodings: MEMA or MEMB. Usage depends upon the
addressing mode selected. MEMB-formatted addressing
modes use the word in memory immediately following the
instruction opword as a 32-bit constant.

0

SRC/DST I SRC2 I OPCODE I SRC1 I REG

0

SRC1 I SRC2 I Displacement I COBR

0

Displacement I CTRL

0
:
..

I I I SRC/DST Address Offset MEMA
Base

0

SRC/DST I Address I Scale I Index MEMB Base

32-Bit Displacement F_CAOO9A

Figure 5-1. Machine-Level Instruction Formats

\ I

INSTRUCTION SET OVERVIEW

5.1.3 Instruction Operands

This section identifies and describes operands that can be used with the instruction formats.

Format

REG

CTRL

COBR

MEM

Operand(s)

srcl, src2, srcldst

displacement

srcl, src2, displacement

srcldst, efa

Description

srcl and src2 can be global registers, local registers or
literals. srcldst is either a global or a local register.

CTRL format is used for branch and call instructions.
displacement value indicates the target instruction of the
branch or call.

srcl, src2 indicate values to be compared; displacement •
indicates branch target. srcl can specify a global register,
local register or a literal. src2 can specify a global or local
register.

Specifies source or destination register and an effective
address (efa) formed by using the processor's addressing
modes as described in section 2.3, "MEMORY
ADDRESSING MODES" (pg. 2-6). Registers specified in a
MEM format instruction must be either a global or local
register.

5.2 INSTRUCTION GROUPS

The i960 processor instruction set can be categorized into the following functional groups:

• Data Movement • Arithmetic (Ordinal and Integer) • Logical

• Bit, Bit Field and Byte • Comparison • Branch

• Call1Return • Fault • Debug

• Atomic • Processor Management

Notice that the i960 Jx processor does not support the floating point in,struction group of the
80960KB and 80960SB microprocessors. Table 5-1 shows the instructions in each group. The
actual number of instructions is greater than those shown in this list because - for some
operations - several unique instructions are provided to handle various operand sizes, data types
or branch conditions. The following sections briefly overview. the instructions in each group.

5.2.1 Data Movement

These instructions are used to move data from memory to global and local registers, from global
and local registers to memory, and between local and global registers.

_~ ___ I 5-3

INSTRUCTION SET OVERVIEW

Table 5-1. 80960JAlJF Instructioh set '

Data Movement Arithmetic Logical Bit, ~It Field Ilnd Byte

Load Add And Set Bit

Store Subtract NotAnd Clear Bit

Move Multiply And Not Not Bit

·Conditional Select Divide' Or Alter Bit

Load Address ',Remainder . Exclusive Or Scan For Bit

Modulo ' . Not Or Span Over Bit

Shift Or Not , ; Extract \

. Extended Shift Nor Modify

Extended Multiply Exclusive. Nor Scan Byte for Equal

. Extended Divide Not . ·Byte Swap

Add with Carry Nand

Subtract with. Carry

~Conditional Add

·Conditional Subtract

Rotate

Comparison Branch. .,. Call/Return Fault

Compare Unconditional Branch Call Conditional Fault

Conditional Compare Conditional Branch Call Extended Synchronize Faults

Compare and Compare and Branch Call System
Increment Return .;

Compare and Branch and link
Decrement

Test Condition Code
,

Check Bit

Debug ,. Processor Atoinic
Management

Modify Trace Controls , Flush Local Registers Atomic Add

Mark Modify Arithmetic Atomic Modify

Fo.rce Mark Controls

Modify Process '.

Controls
,·Halt

System Control ' .

·Cache Control

·Interrupt Control

• Denotes new Instructions unavailable on 80960CAlCF, 80960KAlKB and 80960SAlSB Implementations.

Rules for register alignment must be followed when using load, store ~d move instructions diat
move 8, 12 or 16 bytes, at a time. See se~tion 3.5, "¥EMQRY ADDRESS SPACE" (pg., 3-13) for
alignment requirements for code porta~ility across implemtmtatiol,ls ..

5-4 I

INSTRUCTION SET OVERVIEW

5.2.1.1 Load and Store Instructions

Load instructions listed below copy bytes or words from memory to local or global registers or to a
group of registers. Each load instruction requires a corresponding store instruction to copy to
memory bytes or words from a selected local or global register or group of registers. All load and
store instructions use the MEM format.

Id load word st store word

Idob load ordinal byte stob store ordinal byte
Idos load ordinal short stos store ordinal short
Idib load integer byte stib store integer byte
Idis load integer short stls store integer short
Idl load long stl store long
Idt load triple stt store triple
Idq load quad stq store quad

Id copies 4 bytes from memory into successive registers; Idl copies 8 bytes; Idt copies 12 bytes;
Idq copies 16 bytes.

st copies 4 bytes from successive registers into memory; stl copies 8 bytes; stt copies 12 bytes;
stq copies 16 bytes.

For Id, Idob, Idos, Idib and Idls, the instruction specifies a memory address and register; the
memory address value is copied into the register. The processor automatically extends byte and
short (half-word) operands to 32 bits according to data type. Ordinals are zero-extended; integers
are sign-extended.

For st, stob, stos, stlb and stis, the instruction specifies a memory address and register; the
register value is copied into memory. For byte and short instructions, the processor automatically
reformats the source register's 32-bit value for the shorter memory location. For stlb and stis, this
reformatting can cause integer overflow if the register value is too large for the shorter memory
location. When integer overflow occurs, either an integer-overflow fault is generated or the
integer-overflow flag in the AC register is set, depending on the integer-overflow mask bit setting
in the AC register.

For stob and stos, the processor truncates the operand and does not create a fault if truncation
resulted in the loss of significant bits.

__ I 5-5

I

I

I

~

INSTRUCTION SET OVERVIEW intet®
5.2.1.2 Move

Move instructions copy data from a local or global register or group of registers to another register
or group of registers. These instructions use the REG format.

mov move word
movl move long word
movt move triple word
movq move quad word

5.2.1.3 Load Address

The Load Address instruction (Ida) computes an effective address in the address space from an
operand presented in one of the addressing modes. Ida is commonly used to load a constant into a
register. This instruction uses the MEM format and can operate upon local or global registers.

On the i960 Jx processors, Ida is useful for. performing simple arithmetic oper,ations. The
processor's parallelism allows Ida to execute in the same clock as another arithmetic or logical
operation.

5.2.2 Select Conditional

Given the proper condition code bits setting, these instructions move one of two pieces of data
from its soutce to the speCified destination.

selno Select Based on Unordered
selg Select Based on Greater
sele Select Based on Equal
selge

..
Select Based on Greater or Equal

sell Select Based on Less
seine Select Based on Not Equal.
selle Select Based on Less or Equal
selo Select Based on Ordered

5.2.3 Arithmetic

Table 5-2 lists arithmetic operations and data types for which the i960 Jx processors provide
instructions. "X" in this table indicates that the microprocessor provides an instruction for the
specified operation and data type. All arithmetic operations are carried out on operands in
registers. Refer to section 5.2.12, "Atomic Instructions" (pg. 5-17) for instructions which handle
specific requirements for in-place memory operations.

5-6 I

INSTRUCTION SET OVERVIEW

All arithmetic instructions use the REG format and can operate on local or global registers. The
following subsections describe arithmetic instructions for ordinal and integer data types.

Table 5-2. Arithmetic Operations

Data Types
Arithmetic Operations

Integer Ordinal

Add X X

Add with Carry X X

Conditional Add X X

Subtract X X

Subtract with Carry X X

Conditional Subtract X X

Multiply X X

Extended Multiply X

Divide X X

Extended Divide X

Remainder X X

Modulo X

Shift Left X X

Shift Right X X

Extended Shift Right X

Shift Right Dividing Integer X

5.2.3.1 Add, Subtract, Multiply and Divide

These instructions perform add, subtract, multiply or divide operations on integers and ordinals:

addi Add Integer

addo Add Ordinal
ADD<cc> Conditional Add
subi Subtract Integer
subo Subtract Ordinal

5-7

I

I
I

i
i.

INSTRUCTION SET OVERVIEW

SUB<cc> Conditional Subtract

muli Multiply Integer

mulo Multiply Ordinal

divi Divide Integer

dlvo Divide Ordinal

addi, ADDI<cc>, subi, SUBIc:cc>, mull and dlvl generate an integer-overflow fault if the result is
too large to fit in the 32-bit destination. divl and dlvo generate a zero-divide fault if the divisor is
zero.

5.2.3.2 Extended Arithmetic

These instructions support extended-precision arithmetic; i.e., arithmetic operations on operands
greater than one word in length:

addc add ordinal with carry

subc subtract ordinal with carry

ernul extended multiply

ediv extended divide

addc adds two word operands (literals or contained in registers) plus the AC Register condition
code bit 1 (used here as a carry bit). If the result has a carry, bit 1 of the condition code is set;
otherwise, it is cleared. This instruction's description in CHAPfER 6, INSTRUCTION SET
REFERENCE gives an example of how this instruction can be used to add two long-word (64-bit)
operands together.

subc is similar to addc, except it is used to subtract extended-precision values. Although addc
and subc treat their operands as ordinals, the instructions also set bit 0 of the condition codes if the
operation would have resulted in an integer overflow condition. This facilitates a software imple­
mentation of extended integer arithmetic.

ernul multiplies two ordinals (each contained in a register), producing a long ordinal result (stored
in two registers). edlv divides a long ordinal by an ordinal, producing an ordinal quotient and an
ordinal remainder (stored in two adjacent registers).

5.2.3.3 Remainder and Modulo

These instructions divide one operand by another and retain the remainder of the operation:

reml
remo
modi

5-8

remainder integer

remainder ordinal

modulo integer

_I

INSTRUCTION SET OVERVIEW

The difference between the remainder and modulo instructions lies in the sign of the result. For
remi and remo, the result has the same sign as the dividend; for modi, the result has the same sign
as the divisor.

5.2.3.4 Shift and Rotate

These shift instructions shift an operand a specified number of bits left or right:

shlo shift left ordinal
shro shift right ordinal
shli shift left integer
shri shift right integer
shrdi shift right dividing integer
rotate rotate left

Except for rotate, these instructions discard bits shifted beyond the register boundary.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the most significant bit.
These instructions are equivalent to mulo and divo by the power of 2, respectively.

shll shifts zeros in from the least significant bit. If a shift of the specified places would result in an
overflow, an integer-overflow fault is generated (if enabled). The destination register is written
with the source shifted as much as possible without overflow and an integer-overflow fault is
signaled.

shri performs a conventional arithmetic shift right operation by shifting the sign bit in from the
most significant bit. However, when this instruction is used to divide a negative integer operand by
the power of 2, it may produce an incorrect quotient. (Discarding the bits shifted out has the effect
of rounding the result toward negative.)

shrdi is provided for dividing integers by the power of 2. With this instniction, 1 is added to the
result if the bits shifted out are non-zero and the operand is negative, which produces the correct
result for negative operands. shli and shrdi are equivalent to mull and divi by the power of 2,
respectively.

rotate rotates operand bits to the left (toward higher significance) by a specified ilUmber of bits.
Bits shifted beyond register'S left boundary (bit 31) appear at the right boundary (bit 0).

5-9

.-
!

INSlRUCTIONSET OVERVIEW intel~

5.2.4 Logical·

These instructions perform bitwise Boolean operations on the specified operands:

and src2 AND srcl

notand (NOT src2) AND srcl

and not src2 AND (NOT srcl)
xor src2 XOR srcl

or src20Rsrcl
nor NOT (src2 OR srcl)

xnor . src2 XNOR srcl

not NOT srcl

notor (NOT src2) or srcl

arnot src2 or (NOT srcl)

nand NOT (src2 AND srcl)

These all use the REG format and can specify literals or local or global registers.

The processor provides logical operations in addition to and, or and xor as a performance optimi­
zation.. This optimization reduces the number of instructions required to perform a logical
operation· and. reduces ·the number of registers and instructions associated with bitwise mask
storage and creation.

5.2.5 Bit and Bit Field

These instructions perform operations on a specified bit or bit field in an ordinal operand. All use
the REG format and can specify literals or local or global registers.

5.2.5.1 Bit Operations

These inso:uctions operate on a specified bit:

setbit set bit
clrblt c1e.ar bit
notbit not bit
alterbit alter bit
scan bit scan for bit
spanbit span over bit

setbit, clrbit and notbit set, clear or complement (toggle) a specified bit in an ordinal.

5-10 I

INSTRUCTION SET OVERVIEW

alterbit alters the state of a specified bit in an ordinal according to the condition code. If the
condition code is 010, the bit is set; if the condition code is 000, the bit is cleared.

chkbit, described in section 5.2.7, "Comparison" (pg. 5-11), can be used to check the value of an
individual bit in an ordinal.

scan bit and span bit find the most significant set bit or clear bit, respectively, in an ordinal.

5.2.5.2 Bit Field Operations

The two bit field instructions are extract and modify.

extract converts a specified bit field, taken from an ordinal value, into an ordinal value. In essence,
this instruction shifts right a bit field in a register and fills in the bits to the left of the bit field with
zeros. (eshro also provides the equivalent of a 64-bit extract of 32 bits).

modify copies bits from one register, under control of a mask, into another register. Only
unmasked bits in the destination register are modified. modify is equivalent to a bit field move.

5.2.6 Byte Operations

scan byte performs a byte-by-byte comparison of two ordinals to determine if any two corre­
sponding bytes are equal. The condition code is set based on the results of the comparison.
scanbyte uses the REG format and can specify literals or local or global registers.

bswap alters the order of bytes in a word, reversing its "endianess."

5.2.7 Comparison

The processor provides several types of instructions for comparing two operands, as described in
the following subsections.

5.2.7.1 Compare and Conditional Compare

These instructions compare two operands then set the condition code' bits in the AC register
according to the results of the comparison:

cmpi
cmpib
cmpis
cmpo

I

Compare Integer

Compare Integer Byte

Compare Integer Short

Compare Ordinal

5-11

il

.-,I

I

"

,.

INSTRUCTION SET OVERVIEW

cmpob
cmpos
concmpi
concmpo
chkbit

Compare OrdirialByre

Compare Ordinal Short

Conditional Compare Integer

Conditional Compare Ordinal

Check Bit

These all use the REG format and can specify literals or local or global registers. The condition
code bits are set to indicate whether one operand is less than, equal. t<;> or grea~er than the other
operand. See section 3.6.2, "Arithmetic Controls (AC) Registeri " (pg. 3-17) for a description of the
condition codes for conditional operations.

cmpi and cmpo simply compare the two operands and set the condition code bits accordingly.
concmpi and concmpo ftrst check the status of condition code bit(2:

• If not set, the operands are compared as with cmpi and cmpo.

• If set, no comparison is performed and the condition code. flags are not changed.

The conditional-compare instructions are provided speciftcally to optimiie two~sided ~ange
comparisons to check if A is between Band C (i.e., B ::;; A::;; C). Here, a compare instruction (cmpi
or cmpo) checks one side of the range (e.g., A ~ B) and a conditional 'compare instruction
(concmpi or concmpo) checks the other side (e.g., A ::;; C) according to the result of the ftrst
comparison. The condition codes following the conditional comparison directly reflect the results
of both comparison operations. Therefore, only one conditional branch instruction is:.required to
act upon the range check; otherwise, two branches would be needed. '

chkbit checks a specifted bit in a register and sets the condition code flags according. to the bit
state. The condition code is set to 0102 if the bit is set and 0002 otherwise.

5.2.7.2 Compare and Increment or Decrement

These instructions compare two operands, set the condition code bits according to the results, then
increment or decrement one of the operands:

cmpinci
cmpinco
cmpdeci
cmpdeco

compare and increment integer

compare and increment ordinal

compare and decrement integer

compare and decrement ordinal

These all use the REG format and can specify literals or local Or global registers. They are an
architectural performance optimization which allows two register operations (e;g:, compare and
add) to execute in a single cycle. These are intended for use at the end of iterative loops.

5-12 I

INSTRUCTION SET OVERVIEW

5.2.7.3 Test Condition Codes

These test instructions allow the state of the condition code flags to be tested:

teste test for equal
testne test for not equal
testl test for less
testle test for less or equal
testg test for greater
testge test for greater or equal
testa test for ordered
testno test for unordered

If the condition code matches the instruction-specified condition, these cause a TRUE (OIH) to be
stored in a destination register; otherwise, a FALSE (OOH) is stored. All use the COBR format and
can operate on local and global registers.

5.2.8 Branch

Branch instructions allow program flow direction to be changed by explicitly modifying the IP.
The processor provides three branch instruction types:

• unconditional branch

• conditional branch

• compare and branch

Most branch instructions specify the target IP by specifying a signed displacement to be added to
the current IP. Other branch instructions specify the target IP's memory address, using one of the
processor's addressing modes. This latter group of instructions is called extended addressing
instructions (e.g., branch extended, branch-and-link extended).

5.2.8.1 Unconditional Branch

These instructions are used for unconditional branching:

b Branch

bx Branch Extended

bal Branch and Link

balx Branch and Link Extended

I 5-13

- I

I
;

I
Ii

i ~
"

INSTRUCTION SET OVERVIEW

b and bal use the CTRL format. bx and balx use the MEM format andean specify local or global
registers as operands. b and bx cause program execution to jump to the specified target IP. These
two instructions perform the same function; however, their determination of the target IP differs.
The target IP of a b instruction is specified at link time as a relative displacement from the current
IP. The target IP of the bx instruction is the aQ§olute address resulting from the instruction's use of
a memory addressing mode during execution. .

bal and balx store the next instruction's address in a specified register, then jump to the specified
target IP. (For bal, the RIP is automatically stored in register g14; for balx, the RIP location is
specified with an instruction operand.) As described in section 7.9, "BRANCH-AND-LINK"(pg.
7-22), branch and link instructions provide a method of performing procedure calls that do not use
the processor's integrated call/retum mechanism. Here, the saved instruction address is used as a
return IP. Branch and link is generally used to call leaf procedures (that is, procedures that do not
call other procedures).

bx and balx can make use of any memory addressing mode.

5.2.8.2 Conditional Branch

With conditional branch (BRANCH IF) instructions, the processor checks the AC register
condltion code flags. If these flags match the value specified with the instruction, 'the processor
jumps to the target IP. These instructions use the displacement-plus-IP method of specifying the
target IP:

be branch if equal/true
bne branch if not equal
bl branch if less
ble branch if less or equal
bg branch if greater
bge branch if greater or equal
bo branch if ordered
bno branch if unordered/false

All use the CTRL format. bo and bno are used with real numbers. Refer to section 3.6.2.2,
"Condition Code" (pg. 3-18) for a discussion of the condition code for conditional operations.

5-14

in1et INSTRUCTION SET OVERVIEW

5.2.8.3 Compare and Branch

These instructions compare two operands then branch according to the comparison result. Three
instruction subtypes are compare integer, compare ordinal and branch on bit:

cmpibe compare integer and branch if equal

cmpibne compare integer and branch if not equal

cmpibl compare integer and branch if less

cmpible compare integer and branch if less or equal

cmpibg compare integer and branch if greater

cmpibge compare integer and branch if greater or equal

cmpibo compare integer and branch if ordered

cmpibno compare integer and branch if unordered

cmpobe compare ordinal and branch if equal

cmpobne compare ordinal and branch if not equal

cmpobl compare ordinal and branch if less

cmpoble compare ordinal and branch if less or equal

cmpobg compare ordinal and branch if greater

cmpobge compare ordinal and branch if greater or equal

bbs check bit and branch if set

bbc check bit and branch if clear

All use the COBR machine instruction format and can specify literals, local registers or global
registers as operands. With compare ordinal and branch and compare integer and branch instruc­
tions, two operands are compared and the condition code bits are set as described in section 5.2.7,
"Comparison" (pg. 5-11). A conditional branch is then executed as with the conditional branch
(BRANCH IF) instructions.

With check bit and branch instructions, one operand specifies a bit to be checked in the other
operand. The condition code flags are set according to the state of the specified bit: 0102 (true) if
the bit is set and 0002 (false) if the bit is clear. A conditional branch is then executed according to
condition code bit settings.

These instructions optimize execution performance time. When it is not possible to separate
adjacent compare and branch instructions with other unrelated instructions, replacing two instruc­
tions with a single compare and branch instruction increases performance.

I 5-15

•

I

INSTRUCTION SET OVERVIEW

5.2.9 Call and Return

The processor offers an on-chip call/return mechanism for making procedure calls. Refer to
section 7.1, "CALL AND RETURN MECHANISM" (pg. 7-2). These instructions support this
mechanism:

call call

calix call extended

calls call system

ret return

call and ret use the CTRL machine-instruction format. calix uses the MEM format and can specify
local or global registers. calls uses the REG format and can specify local or global registers.

call and calix make local calls to procedures. A local call is a call that does not require a switch to
another stack. call and calix differ only in the method of specifying the target procedure's address.
The target procedure of a call is determined at link time and is encoded in the opword as a signed
displacement relative to the call IP. calix specifies the target procedure as an absolute 32-bit
address calculated at run time using anyone of the addressing modes. For both instructions, a new
set of local registers and a new stack frame are allocated for the called procedure.

calls is used to make calls to system procedures - procedures that provide a kernel or system­
executive services. This instruction operates similarly to call and calix, except that it gets its
target-procedure address from the system procedure table. An index number included as an
operand in the instruction provides an entry point into the procedure table.

Depending on the type of entry being pointed to in the system procedure table, calls can cause
either a system-supervisor call or a system-local call to be executed. A system-supervisor call is a
call to a system procedure that also switches the processor to supervisor mode and the supervisor
stack. A system-local call is a call to a system procedure that does not cause an execution mode or
stack change. Supervisor mode is described throughout CHAPTER 7, PROCEDURE CALLS .

. ret performs a return from a called procedure to the calling procedure (the procedure that made the
call). ret obtains its target IP (return IP) from linkage information that was saved for the calling
procedure. ret is used to return from all calls - including local and supervisor calls - and from
implicit calls to interrupt and fault handlers.

5-16 L

intet INSTRUCTION SET OVERVIEW

5.2.10 Conditional Faults

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling procedures are then invoked to handle various fault types without explicit intervention by
the currently running program. These conditional fault instructions permit a program to explicitly
generate a fault according to the state of the condition code flags. All use the CTRL format.

faulte fault if equal
faultne fault if not equal
faultl fault if less
faultle fault if less or equal
faultg fault if greater
faultge fault if greater or equal

faulto fault if ordered
faultno fault if unordered

5.2.11 Debug

The processor supports debugging and monitoring of program activity through the use of trace
events. These instructions support these debugging and monitoring tools:

modpc

modtc

mark

fmark

modify process controls

modify trace controls

mark

force mark

These all use the REG format. Trace functions are controlled with bits in the Trace Control (TC)
register which enable or disable various types of tracing. Other TC register flags indicate when an
enabled trace event is detected. Refer to CHAPTER 10, TRACING AND DEBUGGING.

modpc can enable/disable trace fault generation; modtc permits trace controls to be modified.
mark causes a breakpoint trace event to be generated if breakpoint trace mode is enabled. fmark
generates a breakpoint trace independent of the state of the breakpoint trace mode bits.

The sysctl instruction also provides control over breakpoint trace event generation. This
instruction is used, in part, to load and control the i960 Ix microprocessors' breakpoint registers.

5.2.12 Atomic Instructions

Atomic instructions perform read-modify-write operations on operands in memory. They allow a
system to ensure that, when an atomic operation is performed on a specified memory location, the
operation completes before another agent is allowed to perform an operation on the same memory.
These instructions are required to enable synchronization between interrupt handlers and

I 5-17

II

i

INSTRUCTION SET OVERVIEW in1et
background tasks in any system. They are also particularly useful in systems where several agents
- processors, coprocessors or external logic - have access to the same system memory for
communication.

The atomic instructions are atomic add (atadd) and atomic modify (atrnod). atadd causes an
operand to be added to the value in the specified memory location. atrnod causes bits in the
specified memory location to be modified under control of a mask. Both instructions use the REG
format and can specify literals or local or global registers.

5.2.13 Processor Management

These instructions control processor-related functions:

rnodpc

flushreg

rnodac

sysctl

icctl

dcctl

halt

inten

intdis

intctl

Modify the process controls register

Flush cached local register sets to memory

Modify the AC register

Perform system control function

Instruction cache control

Data cache control

Halt processor

Global interrupt enable

Global interrupt disable

Global interrupt enable and disable

All use the REG format and can specify literals or local or global registers.

rnodpc provides a method of reading and modifying PC register contents. Only programs
operating in supervisor mode may modify the PC register; however, any program may read it.

The processor provides a flush local registers instruction (flush reg) to save the contents of the
cached local registers to the stack. The flush local registers instruction automatically stores the
contents of all the local register sets - except the current set - in the register save area of their
associated stack frames.

The modify arithmetic controls instruction (rnodac) allows the AC register contents to be copied
to a register and/or modified under the control of a mask. The AC register cannot be explicitly
addressed with any other instruction; however, it is implicitly accessed by instructions that use the
condition codes or set the integer overflow flag.

sysctl is used to configure the interrupt controller, breakpoint registers and instruction cache. It
also permits software to signal an interrupt or cause a processor reset and reinitialization. sysctl
may only be executed by programs operating in supervisor mode.

5-18 I

INSTRUCTION SET OVERVIEW

ieetl and deetl provide cache control functions including: enabling, disabling, loading and locking,
(instruction cache only) invalidating, getting status and storing cache information out to memory.
halt puts the processor in low-power halt mode. intetl, inten and intdis are used to enable and
disable interrupts and to determine current interrupt enable status.

5.3 PERFORMANCE OPTIMIZATION

Performance optimization are categorized into two sections: instructions optimizations and miscel­
laneous optimizations.

5.3.1 Instruction Optimizations

The instruction optimizations are broken down by the instruction classification.

5.3.1.1 Load I Store Execution Model

Because the i960 Jx processor has a 32-bit external data bus, multiple word accesses require
multiple cycles. The Jx uses microcode to sequence the multi-word accesses. Because the
microcode can ensure that aligned multi-words are bursted together on the external bus, software
should not substitute mUltiple single-word instructions for one multi-word instruction for data that
is not likely to be in cache. For example a Idq provides better bus performance than four Id instruc­
tions.

Once a load is issued, the processor attempts to execute other instructions while the load is
outstanding. It is important to note that if the load misses the data cache, the processor does not
stall the issuing of subsequent instructions (other than stores) that do not depend on the load.

Software should avoid following a load with an instruction that depends on the result of the load.
For a load that hits the data cache, there will be a one-cycle stall if the instruction immediately after
the load requires the data. If the load fails to hit the data cache, the instruction depending on the
load will be stalled until the outstanding load request is resolved.

Multiple, back-to-back load instructions do not stall the processor until the bus queue becomes
full.

The processor delays issuing a store instruction until all previously-issued load instructions
complete. This happens regardless of whether the store is dependent on the load. This ordering
between loads and stores ensures that the return data from a previous cache-read miss does not
overwrite the cache line updated by a subsequent store.

5-19

'INSTRUCTION SET OVERVIEW

5.3.1.2 Compare Operations

Byte and short word data is more efficiently compared using the new byte and short compare
instructions (cmpob, cmpib, cmpos, cmpis), rather than shifting the data, and using a word
compare instruction.

5.3.1.3 Microcoded Instructions

While the majority of instructions on the i960 Jx processor are single cycle and are executed
directly by processor hardware, some require microcode emulation. Entry into a microcode
routine requires two cycles. Exit from microcode typically requires two cycles. For some routines,
one cycle of the exit process can execute in parallel with another instruction, thus saving one cycle
of execution time.

5.3.1.4 Multiply-Divide Unit Instructions

The Multiply-Divide Unit (MDU) of the Jx performs' a number of multi-cycle arithmetic
operations. These can range from 2 cycles for a 16-bitx32-bit mulo, 4 cycles for a 32-bitx32,-bit
mulo, to 30+ cycles for an ediv.

Once issued, these MDU instructions are executed in parallel with other non-MDt; instructions
that do not depend on the result of the MDU operation. Attempting to issue another MDU
instruction while a current MDU instruction is executing, stalls the processor until the first one
completes.

5.3.1.5 Multi-Cycl,e Register Operations

A few register operations can also take multiple cycles. The following instructions are all
performed in microcode:

• bswap

• movq

• test I

• extract

• shrdi

·testle

• eshro

• scan bit

• teste

• modify • movl • movt

• spanbit' • testno • testo

• testne • , testg • testge

On tha Jx, test<cc> dst is microcoded and takes many more cycles than SEL<cc> O,l,dst, which is
executed in one cycle directly by processor hardware.

Multi-register move operation execution time can be decreased at·the expense of cache utilization
and code density by using mov tpe appropriate number of times instead of movl, movt and movq
instructions.

5-20

INSTRUCTION SET OVERVIEW

5.3.1.6 Simple Control Transfer

There is no branch lookahead or branch prediction mechanism on the i960 Ix microprocessor.
Simple branch instructions take one cycle to execute, and one more cycle is needed to fetch the
target instruction if the branch is actually taken.

b, bal, bno, bo, bl, ble, be, bne, bg, bge

One mode of the bx (branch-extended) instruction, bx (base), is also a simple branch and takes one
cycle to execute and one cycle to fetch the target.

As a result, a bal(g14) or bx (g14) sequence provides a two-cycle call and return mechanism for
efficient leaf procedure implementation.

Compare-and-branch instructions have been optimized on the i960 Ix microprocessor. They
require 2 cycles to execute, and one more cycle to fetch the target instruction if the branch is
actually taken. The instructions are:

• cmpobno • cmpobo • cmpobl • cmpoble • cmpobe • cmpobne

• cmpobg • cmpobge • cmplbno • cmpibo • cmplbl • cmplble

• cmplbe • cmpibg • cmpibne • cmpibge • bbc • bbs

5.3.1.7 Memory Instructions

The 80960Ix provides efficient support for naturally aligned byte, short, and word accesses that
use one of 6 optimized addressing modes. These accesses require only 1 to 2 cycles to execute;
additional cycles are needed for a load to return its data.

The byte, short and word memory instructions are:

Idob, Idlb, Idos, Idis, Id, Ida stob, stib, stos, stis, st

The remainder of accesses require multiple cycles to execute. These include:

• Unaligned short, and word accesses

• Byte, short, and word accesses that do not use one of the 6 optimized addressing modes

• Multi-word accesses

The multi-word accesses are:

Idl, Idt, Idq, stl, sU, stq

5-21

"INSTRUCTION SET OVERVIEW

5.3.1.8 Unaligned Memory Accesses .' <~

Unaligned. memory accesses are performed by microcode. Microcode sequences the access into
smaller aligned pieces and does any merging of data that is ne.eded. As a result, these accesses are
not as efficient as aligned accesses. In addition, no bursting on the external bus is performed for
these accesses. Whenever possible, unaligned accesses should be avoided.

5.3.2 Miscellaneolis Optimizations

5.3.2.1 Masking of Integer Overflow
.' ,>\

The i960 core architecture inserts an implicit syncf before performing a call operation or
delivering an interrupt so that a fault handler can be dispatched first, if necessary. The syncf can
require a number of cycles to complete if a multi-cycle integer-multiply (muli) or integer-divide
(divi) instruction ~as issued previously and integer-overflow faults are unmasked (allowed "to
occur). Call performance and interrupt latency can be improved by masking integer-overflow
faults (AC.om = 1), which allows the implicit syncf to complete more quickly.

5.3.2.2 Avoid Using PFP, SP, R3 As Destinations for MDU Instructions

When performing a call operation or delivering an interrupt, the processor typically attempts to
push the first four local registers (pfp, sp, rip, and r3) onto the local register cache as early as
possible. Because of register-interlock, this operation will be stalled until previous instructions
return their results to these registers: In most cases, this is not a problem; however, in the case' of
Iilulti~cycle instructions (divo, divi, ediv, modi, remo,' and remi), the processor could be stalled
for many cycles waiting for the result and unable to proceed to the next step of call processing or
interrupt delivery.

Call performance and interrupt latency can be improved by avoiding the first four registers as the
destination for a MDU instruction. Generally, registers pfp, sp, and rip should be avoided they are
used for procedure linking.

5.3.2.3 Use Global Registers (gO - g14) As Destination,s for MDU Instructions

Using the same rationale as in the previous item, call processing and interrupt performance are
improved even further by using global registers (gO-gI4j as the destination for multi-cycle MDU
instructions. This is because there is no dependency between gO-gl4 and implicit or explicit call
operations (i.e., global registers are not pushed onto the local register cache).

5-22 I

in1et INSTRUCTION SET OVERVIEW

5.3.2.4 Execute in Imprecise Fault Mode

Significant performance improvement is possible by allowing imprecise faults (AC.nif = 0). In
precise fault mode (AC.nif = 1), the processor will not issue a new instruction until the previous
one has completed. This ensures that a fault from the previous instruction is delivered before the
next instruction can begin execution. Imprecise fault mode allows new instructions to be issued
before previous ones have completed, thus increasing the instruction issue rate. Many applications
can tolerate the imprecise fault reporting for the performance gain. A syncf can be used in
imprecise fault mode to isolate faults at desired points of execution when necessary.

5-23

in1:et

6
INSTRUCTION SET REFERENCE

I

intet
'CHAPTER 6

INSTRUCTION SET REFERENCE

This chapter provides detailed information about each instruction available to the i960® Ix
processors. Instructions are listed alphabetically by assembly' language mnemonic. Format and
notation used in this chapter are defined in section 6.1, "NOTATION" (pg. 6-1).

Information in this chapter is oriented toward programmers who write assembly language code for
the i960 Jx processors. Information provided for each instruction includes:

• Alphabetic listing of all instructions

• Assembly language mnemonic, name and
format

Description of the instruction's operation

• Opcode and instruction encoding format

• Faults that can occur during execution

• Action (or algorithm) and other side effects
of executing an instruction

• Assembly language example

• Related instructions

Additional information about the instruction set can be found in the following chapters and
appendices in this manual:

• CHAPfER 5, INSTRUCTION SET OVERVIEW - Summarizes the instruction set by group
and describes the assembly language instruction format.

• APPENDIX B, OPCODES AND EXECUTION TIMES - A quick-reference listing of
instruction encodings assists debug with a logic analyzer.

• APPENDIX D, INSTRUCTION SET QUICK REFERENCE - A tabular quick reference of
each instruction's operation.

• APPENDIX D, MACHINE-LEVEL INSTRUCTION FORMATS - Describes instruction set
opword encodings.

• i960 Ix PROCESSOR INSTRUCTION SET QUICK REFERENCE (order number 272597) -
A pocket-sized quick reference to all Ix instructions.

6.1 NOTATION

In general, notation in this chapter is consistent with usage throughout the manual; however, there
are a few exceptions. Read the following subsections to understand notations that are specific to
this chapter .

. ~.
6-1

INSTRUCTION SET REFERENCE

6.1.1 • . Alphabetic Reference

Instructions are listed'itIphaootieally by assembly languag~~emonic. If several instructions are
related and fall together alphabetically, they are described as a group on a single page.

The ins,truction's assembly language mnemonic is shown in bold at the top of the page (e.g.,
subc). Occasionally, it is not practical to list all mnemonics at the page top. In these cases, the
name of the instruction group is shown in capital letters (e.g., BRANCH<cc>or FAULT<cc».

The i960 Jx processor-specific extensions to the i960 microprocessor instruction set are indicated
in the header text for each such instruction. This type of notation is also used to indicate new core
architecture instructions. Sections describing new core instructions provide notes as, to which
i960-series processors do not implement these instructions.

Generally, instruction set extensions are not portable to other i960 processor implementations.
Further, new core instructions are· not typically portable to earlier i960 processor family imple­
mentations such as the i960 KX-series microprocessors.

6.1.2 Mnemonic .

The Mnemonic section gives the mnemonic (in boldface type) and instruction, name for each
instruction covered on the page, for example: . ,.

subi Subtract Integer

This name is the actual assembly language instruction name recognized by assemblers.

6.1.3 Format

The Format section gives the in!ltruction's assembly language format and allowable operand
types. Format is given in two or three lines. The following is a two-line format example:

sub* srcl

regllit

src2

regllit

dst

reg

The first line gives the assembly language mnemonic (boldface type) and operands (italics). When
the format is used for two or more instructions, an abbreviated form of the mnemonic is used. An
* (asterisk) at the end of the mnemonic indicates a variable: in the above example, sub* is either

\

subl or subo. Capital letters ,indicate an, instruction class. For example,ADD<cc> refers to the
class of conditional add instructions (e:g., addio, addig, addOQ"addog).

Operand names are designed to describe operand function (e.g" src, len, mask).

The second line shows allowable entries for each operand. Notation is as follows:

reg Global (gO ... g15) or local (to ... r15) register

6-2

INSTRUCTION SET REFERENCE

lit

disp

mem

Literal of the range 0 ... 31

Signed displacement of range (_222 ... 222 - 1)

Address defined with the full range of addressing modes

In some cases, a third line is added to show register or memory location contents. For example, it
may be useful to know that a register is to contain an address. The notation used in this line is as
follows:

addr

efa

6.1.4

Address

Effective Address

Description

The Description section is a narrative description of the instruction's function and operands. It also
gives programming hints when appropriate.

6.1.5 Action

The Action section gives an algorithm written in a "C-like" pseudo-code that describes direct
effects and possible side effects of executing an instruction. Algorithms document the instruction's
net effect on the programming environment; they do not necessarily describe how the processor
actually implements the instruction. The following is an example of the action algorithm for the
alterbit instruction:

if«AC.cc & 0102)==0)
dst = src2 & -(2**(src1 %32));

else
dst = src2 I 2**(src1 %32);

Table 6-1 defines each abbreviation used in the instruction reference pseudo-code.

The pseudo-code has been written to comply as closely as possible with standard C programming
language notation. Table 6-2 lists the pseudocode symbol definitions.

.1 6-3

IN.STRUCTIONSET REFE.RENCE

Table 6-1. Abbreviations In Pseudo-code

AC.xxx Arithmetic Controls Register fields
AC.cc Condition Code flags (AC.cc2:0)
AC.cc[Ol " Condition Code Bit 0
AC.cc[1] Condition Code Bit 1
AC.cc[2] Condition Code Bitc2
AC~nif . No Imprecise Fau!ts flag
AC.of Integer Overflow flag
AC.om Integer Overflow Mask Bit

PC.xxx Process Controls Register fields
PC.em Execution Mode flag
PC.s State Flag
PC.tfp Trace Fault Pending flag
PC.p Priority Field (PC.p5:0)
PC.te Trace Enable Bit

TC.xxx Trace Controls Register fields
TC.i Instruction Trace Mode Bit
TC.c Call Trace Mode Bit
TC.p Pre-return Trace Mode Bit
TC.br Mark Trace Mode Bit
TC.b Branch Trace Mode Bit
TC.r Return Trace Mode Bit ,
TC.s SuPervisor Trace Mode Bit

PFP.xxx Previous Frame Pointer (rO)
. PFP.add Address (PFP.add31 :4)

PFP.rrr Return Type Field (PFP.rt2:0)
PFP.p Pre-return Trace flag

sp Stack Pointer (r1)

fp Frame Pointer (g15)

rip Return Instruction Pointer (r2)

SPT System Procedure Table
SSP Supervisor Stack Base Address
,SPT(targ) Address of SPT Entry· targ
SSP.te Trace Enable

Table 6-2. Pseudo-code Symbol Definitions (Sheet 1 of 2)

= Assignment

==, != Comparison: equal, not equal

<,> less than, greater than

<=,>= less than or equal to, greater than or equal to

«,» Logical Shift

** Exponentiation

&,&& Bitwise AND, logical AND

6-4 1-

INSTRUCTION SET REFERENCE

Table 6-2. Pseudo-code Symbol Definitions (Sheet 2 of 2)

= Assignment

I, II Bitwise OR, logical OR
1\ Bitwise XOR

- One's Complement

% Modulo

+ -, Addition, Subtraction

• Multiplication (Integer or Ordinal)

/ Division (Integer or Ordinal)

Comment delimiter

II
Table 6-3. Faults Applicable to All Instructions

Fault Type Subtype Description

An attempt to execute any instruction fetched from internal data
Operation Unimplemented RAM or a memory-mapped region causes an operation unimple-

mented fault.

A Mark Trace Event is signaled after completion of an instruction for
Mark which there is a hardware breakpoint condition match. A Trace fault

Trace is generated if PC.m is set.

Instruction
An Instruction Trace Event is signaled after instruction completion. A
Trace fault is generated if both PC.te and TC.i=1.

Table 6-4. Common Faulting Conditions

Fault Type Subtype Description

Any instruction that causes an unaligned memory access causes an
Unaligned operation aligned fault if unaligned faults are not masked in the fault

configuration word in the Processor Control Block (PRCB).

Invalid Opcode
This fault is generated when the processor tries to execute words from
memory that do not contain code.

Operation This fault is caused by a non-defined operand in a supervisor mode only
Invalid Operand instruction or by an operand reference to an unaligned long-, triple- or

quad-register group.

This fault can occur due to an attempt to perform a non-word or
Unimplemented unaligned access to a memory-mapped region or if trying to execute

from MMR space or internal data RAM.

Any instruction that attempts to write to internal data RAM or a memory-
Type Mismatch mapped register while not in supervisor mode causes a type mismatch

fault.

6-5

INSTRUCTION SET REFERENCE

6.1.6 Faults

The Faults section lists faults that can be signaled as a direct result of instruction execution. Table
6-3 shows the possible faulting conditions that are common to the entire instruction set and could
directly result from any instruction. These fault types are not included in the instruction reference.
Table 6-4 shows the possible faulting conditions that are common to large subsets of the
instruction set. If an instruction can generate a fault, it is noted in that instruction's Faults
section. Other instructions can generate faults in addition to those shown in the following tables. If
an instruction can generate a fault, it is noted in that instruction's Faults section.

6.1.7 Example

The Example section gives an assembly language example of an application of the instruction.

6.1.8 Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and instruction format for each
instruction, for example:

subl 593H REG

The opcode is given in hexadecimal format. The format is one of four possible formats: REG,
COBR, CTRL and MEM. Refer to APPENDIX D, MACIDNE-LEVEL INSTRUCTION
FORMATS for more information on the formats.

6.1.9 See Also

The See Also section gives the mnemonics of related instructions which are also alphabetically
listed in this chapter.

6.1.10 Side Effects

This section indicates whether the instruction causes changes to the condition code bits in the
Arithmetic Controls.

6-6

INSTRUCTION SET REFERENCE

6.1.11 Notes

This section provides additional information about an instruction such as whether it IS

. implemented in other i960 processor families.

6.2 INSTRUCTIONS

This section contains reference information on the processor's instructions. It is arranged alphabet­
ically by instruction or instruction group.

_1- 6-7

INSTRUCTION SET REFERENCE intel®
6.2.1 ADD<cc> (New 80960 Core Instruction Class)

Mnemonic:

Format:

Description:

Action:

Faults:

6-8

addono Add Ordinal if Unordered
addog Add Ordinal if Greater
addoe Add Ordinal if Equal
addoge Add Ordinal if Greater or Equal
addol Add Ordinal if Less
addone Add Ordinal if Not Equal
addole Add Ordinal if Less or Equal
addoo Add Ordinal if Ordered
addino Add Integer if Unordered
addig Add Integer if Greater
addie Add Integer if Equal
addige Add Integer if Greater or Equal
addil Add Integer if Less
addine Add Integer if Not Equal
addile Add Integer if Less or Equal
addio Add Integer if Ordered

add* srcl, src2, dst
reg/lit reg/lit reg

Conditionally adds src2 and src1 values and stores the result in dst based on
the AC register condition code. If for Unordered the condition code is 0, or if
for all other cases the logical AND of the condition code and the mask part of
the opcode is not 0, then the values are added and placed in the destination.
Otherwise the destination is left unchanged. Table 6-5 shows the condition
code mask for each instruction. The mask is in opcode bits 4-6.

addo<cc>:
if«mask & AC.cc) II (mask == AC.cc))

dst = (src1 + src2)[31:1];

addi<cc>:
if«mask & AC.cc) II (mask == AC.cc))

dst = (src1 + src2)[31:1];
if«src2[31] == src1[31]) && «src2[31] != dst[31]))
{ if(AC.om == 1)

AC.of= 1;
else

generatejault(ARITHMETIC.OVERFLOW);

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).
ARITHMETIC.OVERFLOW Occurs only with addi*<cc>.

I

INSTRUCTION SET REFERENCE

Table 6-5. ADD Condition Codes

Instruction Mask Condition

addono
0002 Unordered

addino

addog
001 2 Greater

addig

addoe

addie
0102 Equal

addoge
011 2 Greater or equal

addige

addol
1002 Less

addil

addone

addine
101 2 Not equal

addole

add lie
1102 Less or equal

addoo
1112 Ordered

addio

Example: # Assume (AC.cc AND 001 2) * O.
addig r4, rS, r10 # r10 = rS + r4

Assume (AC.cc AND 1012) = O.
addone r4, rS, r10 # r10 is not changed.

I 6-9

I'

I,

I,

I
!'I

1
1
I

I

INSTRUCTION SET:REFERENCE

Opcode:

See Also:

Notes:

. 6-10

addono 780H ·.REG
addog 790H- - REG
addoe 7AOH REG ,

addoge 7BOH REG
addol 7COH REG
addone 7DOH REG
addole 7EOH REG
addoo 7FOH REG
addlno 781H REG

i
addlg 791H REG
addle 7AlH REG
addige ·7BIH REG
addU 7CIH REG
addlne 7DIH REG
addile 7EIH REG
addio 7FIH REG

addc, SUB<cc>, addi, addo

This class of core instructions is not implemented on 80960Cx, Kx and Sx
processors .

intet INSTRUCTION SET REFERENCE

6.2.2 addc
Mnemonic: addc Add Ordinal With Carry

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Side Effects:

addc srcl,
regllit

src2,
regllit

dst
reg

Adds src2 and srcl values and condition code bit 1 (used here as a carry-in)
and stores the result in dst. If ordinal addition results in a carry out, condition
code bit 1 is set; otherwise, bit 1 is cleared. If integer addition results in an
overflow, condition code bit 0 is set; otherwise, bit 0 is cleared. Regardless of
addition results, condition code bit 2 is always set to O.

addc can be used for ordinal or integer arithmetic. addc does not distinguish
between ordinal and integer source operands. Instead, the processor evaluates
the result for both data types and sets condition code bits 0 and 1 accordingly.

An integer overflow fault is never signaled with this instruction.

dst = (src1 + src2 + AC.cc[l])[3l:0];
AC.cc[2:0] = 0002;

if«src2[3l] == srcl[3l]) && (src2[3l] != dst[3l]))
AC.cc[O] = l; # Overflow bit.

AC.cc[1] = (src2 + srcl + AC.cc[l])[32]; # Carry out.

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

Example of double-precision arithmetic.
Assume 64-bit source operands
in gO,gl and g2,g3
cmpo 1, 0 # Clears Bit 1 (carry bit) of

the AC.cc.
addc gO, g2, gO # Add low-order 32 bits:

gO = g2 + gO + carry bit
addc gl, g3, gl # Add high-order 32 bits:

addc

ADD,SUB

5BOH

gl = g3 + gl + carry bit
64-bit result is in gO, gl.

REG

Sets the condition code in the arithmetic controls.

6·11

:j.;
I,

I'
"

i,i ,I

INSTRUCTION SET REFEREN.C£ intel®
6.2.3 addi, addo
Mnemonic:

Format:

Description :.

Action:

Faults:

Example:

Opcode:

See Also:

6-12

addo Add Ordinal .
addi Add Integer

add* srcl,
regllit

src2,
regllit

dst
reg

Adds src2 and src1'values and. stores the result in dst. The binary results from
these two instructions are identical. The only difference is that addi can
signal an integer. overflow.

addo:
dst = (src2.;l-srcl)[31:0];

addi:
dst = (src2 + src1)[3l:0J;
If((src2[31] == src1[31]) && (src2[31] != dst[31]))
{ if(AC.om == 1)

AC.of= 1;
else

generate_fault(ARITHMETIC_OVERFLOW);

STANDARD
ARITHMETIC. OVERFLOW

Refer to section 6.1.6, "Faults" (pg. 6-6).
Occurs only with addi.

addi r4, g5, r9 # r9 = g5 + r4

addo
addi

590H
591H

addc, subi, subo, subc, ADD

REG
REG

I

INSTRUCTION SET REFERENCE

6.2.4 alterbit
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

L __ _

alterbit

alterbit

Alter Bit

bitpos,
reg/lit

src,
reg/lit

dst
reg,

Copies src value to dst with one bit altered. bitpos operand specifies bit to be
changed; condition code determines value to which the bit is set. If condition
code is X1X2, bit 1 = 1, the selected bit is set; otherwise, it is cleared.
Typically this instruction is used to set the bitpos bit in the targ register if the
result of a compare instruction is the equal condition code (0102),

if«AC.cc & 0102)==0)
dst = src2 & -(2**(SRC1%32»;

else
dst = src2 I 2**(src1 %32);

STANDARD Refer to section 6.1:6, "Faults" (pg. 6-6).

Assume AC. cc = 0102.
alterbit 24, g4,g9 # g9 = g4, with bit 24 set.

alterbit 58FH REG

chkbit, clrbit, notblt, setbit

6-13

I,;
! "

INSTRUCTION SET REFERENCE

6.2.5 and, andnot
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-14

and
andnot

And
And Not

and. srcl, src2, dst
regllit regllit reg

. andnot srcl, src2, dst
regllit regllit reg

Performs a bitwise AND (and) or AND NOT (andnot) operation Ion src2 and
. srcl values and stores result in dst. Note in the action expressions below, src2
operand comes ftrst, so that with andnot the expression is evaluated as:

{src2 and not (srcl)}
rather than

{srcl and not (src2) }.

and:
dst = src2 & srcl;

andnot:
dst = src2 & -srct;

STANDARD

and Ox7, g8, g2
andnot Ox7, r12, r9

and
andnot

581H
582H
"

Refer to section 6.1.6, "Faults" (pg. 6-6).

Put lower 3 bits of g8 in g2.
Copy r12 to r9 with lower
three bits cleared.

nand, nor, not, notand, notor, or, ornot, xnor, xor

INSTRUCTION SET REFERENCE

6.2.6 atadd
Mnemonic: atadd Atomic Add

addr, Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

atadd
regllit

src,
regllit

dst
reg

Adds src value (full word) to value in the memory location specified with
addr operand. The operation is performed on the actual data in memory and
never on a cached value on chip. Initial value from memory is stored in dst.

Memory read and write are done atomically (i.e., other bus masters must be
prevented from accessing the word of memory containing the word specified
by srcldst operand until operation completes).

Memory location in addr is the word's first byte (LSB) address. Address is
automatically aligned to a word boundary. (Note that addr operand maps to
srcJ operand of the REG format.)

impliciCsyncfO;
tempa = addr & OxFFFFFFFC;
temp = atomic_read(tempa);
atomic_write(tempa, temp+src);
dst = temp;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

atadd r8, r3, rll # r8 contains the address of

atadd

atmod

612H

memory location.
rll = (r8)
(r8) = rll + r3.

REG

6-15

I',;
"

il I,

INSTRUCTION SET REFERENCE

6.2.7 atmod
Mnemonic:

Format:

Description: .

Action:

Faults:

Example:

Opcode:

See Also:

6-16

almod

almod

Atomic Modify

addr
reg

mask, .

regllit
stc/dst
reg

.Copies the selected bits of src/dst value into memory location specified in
addr. The operatiOll'is performed on the actual data in memory and never on
a cached value on chip. Bits set in mask operand select bits to be modified in
memory. Initial value from memory is stored in src/dst.

Memory read and write are done. atomically (Le., other bus masters must be
prevented from accessing the word of memory containing the word specified
with the src/dst operand until operation completes) .

. Memory location in addr is the modified word's first byte (LSB) address.
Address is automatically aligned to a word boundary.

implicit_syncfO;
tempa = addr & OxFFFFFFFC; .
temp = atomic_read(tempa); .
temp = (temp &- mask) I (sre_dst & mask);
atomic_write(tempa, temp);
src_dst := temp;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

atmod g5, g7, glO # tempa = (g5)

almod

atadd

610H

temp = (tempa andnot g7) or
(glO and g7)
(g5) = temp
glO = tempa

REG

I

6.2.8

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

I

INSTRUCTION SET REFERENCE

b,bx
b
bx

b

bx

Branch
Branch Extended

targ
disp

targ
mem

Branches to the specified target.

With the b instruction, IP specified with targ operand can be no farther than .-'
223 to (223 4) bytes from current IP. When using the Intel i960® processor
assembler, targ operand must be a label which specifies target instruction's IP.

bx performs the same operation as b except the target instruction can be
farther than _223 to (223_ 4) bytes from current IP. Here, the target operand is
an effective address, which allows the full range of addressing modes to be
used to specify target instruction's IP. The "IP + displacement" addressing
mode allows the instruction to be IP-relative. Indirect branching can be
performed by placing target address in a register then using a register-indirect
addressing mode.

Refer to section 2.3, "MEMORY ADDRESSING MODES" (pg. 2-6) for
information on this subject.

b:
temp[31 :2] = sign_extension(targ[23:2]);
IP[31:2] = IP[31:2]'+ temp[31:2];
IP[1:0] = 0;

bx:
IP[31 :2] = effective_address(targ[31 :2]);
IP[1:0] = 0;

STANDARD , Refer to section 6.1.6, "Faults" (pg. 6-6).

b xyz # IP = xyz;
bx 1332 (ip) # IP = IP + 8 + 1332;
this example uses IP-relative addressing

b
bx

08H
84H

CTRL
MEM

bal, balx, BRANCH, COMPARE AND BRANCH, bbc, bbs

6-17

INSTRUCTION SET REFERENCE

6.2.9

Mnemonic:

Format:

Description:

Action:

6-18

bal, balx
bal Branch and Link
balx Branch and Link Extended

bal targ
disp

balx targ, dst
mem reg

Stores address of instruction following bal or balx in a register then branches
to the instruction specified with the targ operand. "

The bal and balx instructions are used to call leaf procedures (procedures
that do not call other procedures). The IP saved in the register provides a
return IP that the leaf procedure can branch to (using a b or bx instruction) to
perform a return from the procedure. Note that these instructions do not use
the processor's call-,and-retum mechanism, so the calling procedure shares its
local-register ,set with the called (leaf) procedure.

With bal, address of next instruction is stored in register g14. targ operand
value can be no farther than _223 to (223_ 4) bytes from current IP. When
using the Intel i960 processor assembler, targ must be a label which specifies
the target instruction's IP.

balx performs same operation as bal except next instruction address is stored
in dst (allowing the return IP to be stored in any available register). With
balx, the full address space can be accessed. Here, the target operand is an
effective address, which allows full range of addressing modes to be used to
specify target IP. "IP + displacement" addressing mode allows instruction to
be IP-relative. Indirect branching can be performed by placing target address
in a register and then using a register-indirect addressing mode.

See section 2.3, "MEMORY ADDRESSING MODES" (pg. 2-6) for a
complete discussion of addressing modes available with memory-type
operands.

bal:
g14 = IP + 4;
IP[31 :2] = effective_address(targ[31 :2]);
IP[1:0] = 0;

balx:
dst = IP + instruction_length;
, # Instruction_length = 4 Or 8 depending on the size of target address.,
IP[31:2] = effective_address(targ[31:2]);# Resume execution at the new IP.
IP[1:0] = 0;

I

intet
Faults:

Example:

Opcode:

See Also:

I

STANDARD

bal xyz

balx (g2), g4

bal
balx

OBH
85H

INSTRUCTION SET REFERENCE

Refer to section 6.1.6, "Faults" (pg. 6-6).

g14 = IP + 4
IP = xyz
g4 = IP + 4
IP = (g2)

CTRL
MEM

b, bx, BRANCH, COMPARE AND BRANCH, bbc, bbs

6-19

INSTRUCTION SET REFERENCE intet

6.2.10

Mnemonic:

Format:

Description:

Action:

Faults:

6-20

bbc,bbs
bbc Check Bit and Branch If Clear
bbs CheckBit and Branch If Set

bb* bitpos,
regllit

src,
reg

targ
disp

Checks bit in src (designated by bitpos) and sets AC register condition code
according to src value. The processor then perfprms conditional branch to
instruction specified with targ, based on condition code state.

For bbc, if selected bit in src is clear, the processor sets condition code to
0002 and branches to instruction specified by targ; otherwise, it sets
condition code to 0102 and goes to next instruction.

For bbs, if selected bit is set, the processor sets condition code to 0102 and
branches to targ; otherwise, it sets condition code to 0002 and goes to next
instruction.

targ can be no farther than _212 to (212 - 4) bytes from current IP. When using
the Intel i960 processor assembler, targ must be a label which specifies target
instruction's IP.

bbs:
if«src2 & 2**(srcl %32» == 1)
{ AC.cc = 0102;

temp[31 :2] = sign3xtension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

else
AC.cc = 0002;

bbc:
if«src2 & 2**(srcl %32» == 0)
{ AC.cc = 0002;

temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

else
AC.cc = 0102;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

I

Example:

Opcode:

See Also:

Side Effects:

INSTRUCTION SET REFERENCE

Assume bit 10 of r6 is clear.
bbc 10, r6, xyz # Bit 10 of r6 is checked

and found clear:

bbc
bbs

30H
37H

AC.cc = 000
IP = XYZi

COBR
COBR

chkbit, COMPARE AND BRANCH<cc>, BRANCH<cc>

Sets the condition code in the arithmetic controls.

6-21

I

.-

INSTRUCTION SET REFERENCE

6.2.11

Mnemonic:

Format:

Description:

6-22

BRANCH<cc>
be
bne
bl
ble
bg
bge
bo

Branch If Equal
Branch If Not Equal
Branch If Less
Branch If Less Or Equal
Branch If Greater
Branch If Greater Or Equal
Branch If Ordered

bno Branch If Unordered

b* targ
disp

Branches to instruction specified with targ operand according to AC register
condition code state.

For all branch<cc> instructions except bno, the processor branches to
instruction specified with targ, if the logical AND of condition code and
mask-part of opcode is not zero. Otherwise, it goes to next instruction.

For bno, the processor branches to instruction specified with targ if the
condition code is zero. Otherwise, it goes to next instruction.

For instance, bno (unordered) can be used as a branch if false instruction
when coupled with chkbit. For bno, branch is taken if condition code equals
0002, be can be used as branch-if true instruction.

The targ operand value can be no farther than _223 to (223_ 4) bytes from
current IP.

The following table shows condition code mask for each instruction. The
mask is in opcode bits 0-2.

Instruction Mask Condition

bno 0002 Unordered

bg 001 2 Greater

be 0102 Equal

bge 011 2 Greater or
equal

bl 1002 Less

bne 101 2 Not equal

ble 1102 Less or equal

bo 1112 Ordered

1-

Action:

Faults:

Example:

Opcode:

See Also:

I

INSTRUCTION SET REFERENCE

if«mask & AC.cc) II (mask == AC.cc»
{ temp[3I:2] = sign_extension(targ[23:2]);

IP[3I:2] = IP[3I:2] + temp[3I:2];
IP[1:0] = 0;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

Assume (AC.cc AND 100 2) ~ 0
bl xyz # IP = XyZi

be I2H CTRL
bne I5H CTRL
bl I4H CTRL
ble I6H CTRL
bg llH CTRL
bge 13H CTRL
bo I7H CTRL
bno lOH CTRL

b, bx, bbc, bbs, COMPARE AND BRANCH, bal, balx, BRANCH

6-23

'," " 1,1
II

i!,'

" I,}
I',

:i
\
"

..

INSTRUCTION SET REFERENCE

6.2.12

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Notes:

6-24

bswap (New 80960 Core Instruction)

bswap

bswap

Byte Swap

srcl:src
regllit

src2:dst
reg

Alter the order of bytes in a word, reversing its "endianess."

Copies bytes 3:0 of srcl to src2 reversing order of the bytes. Byte 0 of srcl
becomes byte 3 of src2, byte 1 of src1 becomes byte 2 of src2, etc.

dst = (rotate_left(src 8) & OxOOFFOOFF)
+(rotate_left(src 24) & OxFFOOFFOO);

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

bswap g8, glO

bswap 5ADH

scanbyte, rotate

g8 = 'Ox89ABCDEF
Reverse byte order.
glO now OxEFCDAB89

REG

This core instruction is not implemented on Cx, Kx and Sx 80960 processors.

J

6.2.13 call
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

_I

INSTRUCTION SET REFERENCE

call

call

Call

targ
disp

Calls a new procedure. targ operand specifies the IP of called procedure's
first instruction. When using the Intel i960 processor assembler, targ must be
a label.

In executing this instruction, the processor performs a local call operation as
described in section 7.1.3.1, "Call Operation" (pg. 7-7). As part of this
operation, the processor saves the set of local registers associated with the
calling procedure and allocates a new set of local registers and a new stack
frame for the called procedure. Processor then goes to the instruction
specified with targ and begins execution.

targ can be no farther than _223 to (223 - 4) bytes from current IP.

Wait for any uncompleted instructions to finish.
impliciCsyncfO;
temp = (SP + (SALIGN*16 - 1)) & -(SALIGN*16 - 1)

Round stack pointer to next boundary.
SALIGN=1 on i960 Jx processors.

RlP = IP;
if (registecsecavailable)

allocate_new _frame();
else

{ save_registecset(); # Save register set in memory at its FP.
allocate_new jrame();

}
Local register references now refer to new frame.

IP= targ
PFP=FP;
FP = temp;
SP = temp + 64;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

call xyz # IP = xyz

call 09H CTRL

bal, calls, calix

6-25

I;

INSTRUCTION. SETREFERENC.E

6.2.14 calls , ' ,

Mnemonic: calls

Format: calls

Call System

tllrg

Description:

Action:

6-26

regllit

CaUs . a system procedure. The targoperand gives the number of the
procedure being called. For calls, the processor performs system call
operation described in section 7.5, "SYSTEM CALLS" (pg. 7-16). targ
provides an index to a system procedure table entry from which the processor
gets the called prqeedure's IR.

The called procedure can be a local or supervisor procedure, depending on
system procedure table entry type. If it is a supervisor procedure, the
processor switches to supervisor mode (if not already in this mode).

As part of this operation, processor also allocates it new set of local registers
and a new stack' frame for called procedure. If the processor switches to
supervisor mode, the new stack frame is created on the supervisor stack.

Wait for any uncompleted instructions to finish.
implicicsyncfO;
If (targ > 259)

generatejault(PROTECTION.LENGTH);
temp = geCsys_proc_entry(sptbase + 48 + 4*targ);

sptbase is address of supervisor procedure table.

if (frame_available)
allocate_new jrame();
else
{ save_frame(); # Save a frame in memory at its FP.

allocate_new _frame();
Local register references now refer to new frame.

}
RIP=IP;
IP=temp;
if «temp.type == local) II (PC.em == supervis9r»

. { . # Local call or supervisor call from supervisor mode.
temp = (SP + (SALIGN*16 7 1» & -(SALIGN*16 - 1)
Round stack pointer to next boundary.
SALIGN=l on i960 Jx processors.
temp.RRR = 0002;

else # Supervisor call from user mode.
tempa = SSP; # Get Supervisor Stack pointer.

Faults:

Example:

Opcode:

See Also:

I

INSTRUCTION SET REFERENCE

temp.RRR = 0102 I PC.te;
PC.em = supervisor;
PC.te = temp.te;

}
PFP = FP;
PFP.rrr = tempRRR;
FP= tempa;

STANDARD
PROTECTION.LENGTH

calls r12

calls 3

calls 660H

bal, call, calix

Refer to section 6.1.6, "Faults" (pg. 6-6).
Specifies a procedure number greater than
259.

IP = value obtained from
procedure table for procedure
number given in r12.
Call procedure 3.

REG

6-27

1'\,

i

i

I

:INSTRUCT:10N SET REFERENCE

6.2.15

Mnemonic:

Format:

Description:

Action:

. Faults:

6-28

calix
calix

calix

Call Extended

targ
mem

Calls new procedure. targ specifies IP of called procedure's first instruction.

. In executing calix, the processor performs a local ~all as described in section
7.1.3.1, "Call Operation" (pg. 7-7). As part of this operation, the processor
allocates a new set of local registers and a new stack frame for the called
procedure. Processor then goes to the instruction specified with targ and
begins execution of new procedure.

calix performs the same operation as call except the target instruction can be
farther than _223 to (223 - 4) bytes from current IP.

The targ operand is a memory type, which allows the full range of addressing
modes to be used to specify the IP of the target· instruction. The "IP +
displacement" addressing mode allows the instruction to be IP-relative.
Indirect calls can be performed by pl~cing the target address in a register and
then using one of the register-indirect addressing modes.

Refer to Chapter 2, DATA TYPES AND MEMORY ADDRESSING
MODES for more information.

Wait for any uncompleted instructions to finish;
implicicsyncfO;

temp = (SP + (SALIGN*16 - 1» & -(SALIGN*16 - 1)
Round stack pointer to next boundary.
SALIGN=1 on i960 Ix processors.

RIP = IP;
if (registecseCavailable)

allocate_new_frame();
else

(save_register_set(); # Save register set in memory at its FP;
allocate_new _frame();

}
Local register references now refer to new frame.

IP = targ
PFP = FP;
FP = temp;
SP = temp + 64;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

in1et
Example: callx (g5)

Opcode: calix 86H

See Also: call, calls, bal

INSTRUCTION SET REFERENCE

IP = (g5), where the address in g5
is the address of the new procedure.

MEM

6-29

II
!

INSTRUCTION SET REFERENCE

6.2.16

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Side Effects:

6-30

chkbit
chkblt

chkblt

Check Bit

bitpos,
regllit

src2
regllit

Checks bit in src2 designated by bitpos and sets condition code according to
value found. If bit is set, condition code is set to 0102; if bit is clear, condition
code is set to 0002.

if «(src2 & 2**(bitpos % 32» == 0)
AC.cc = 0002;

else
AC.cc = 0102;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

chkbit 13, g8 # Checks bit 13 in g8 and sets
AC.cc according to the result.

chkblt 5AEH REG

alterbit, clrblt, notblt, setbit, cmpl, cmpo

Sets the condition code in the arithmetic controls.

L

INSTRUCTION SET REFERENCE

6.2.17 clrbit
Mnemonic: clrbit Clear Bit

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

~--------- -

clrbit bitpos,
reg/lit

src,
reg/lit

dst
reg

Copies src value to dst with one bit cleared. bitpos operand specifies bit to be
cleared.

dst = src2 & -(2**(src1 %32»;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

clrbit 23, g3, g6 # g6 = g3 with bit 23 cleared.

clrbit 58CH REG

alterbit, chkbit, notbit, setbit

6-31

I

I

INSTRUCTION SET REFERENCE

6.2.18

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Side Effects:

6-32

cmpdeci, cmpdeco
cmpdeci
cmpdeco

cmpdec*

Compare and Decrement Integer
Compare and Decrement Ordinal

src1,
regllit

src2,
regllit

dst
reg.

Compares src2 and srcl values and sets the condition code according to
comparison results. src2 is then decremented by one and result is stored in
dst. The following table shows condition code setting for the three possible
results of the comparison.

Condition Code Comparison

1002 src1 < src2

0102 src1 ~ src2

001 2 srci > src2

These instructions are intended for use in ending iterative loops. For
cmpdeci, integer overflow is ignored to allow looping down through the
minimum integer values.

if(src1 < src2)
AC.cc = 1002;

else if(src1 == src2)
AC.cc = 0102;

else
AC.cc = 0012;

dst = src2 -1; # Overflow suppressed for cmpdeci.

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

cmpdeci 12, g7, gl # Compares g7 with 12 and sets
AC.cc to indicate the result
gl = g7 - 1.

cmpdeci
cmpdeco

5A7H
5A6H

REG
REG

cmpinco, cmpo, cmpi, cmpinci, COMPARE AND BRANCH

Sets the condition code in the arithmetic controls.

6.2.19

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Side Effects:

INSTRUCTION SET REFERENCE

cmpinci,cmpinco
cmpinci
cmpinco

cmpinc*

Compare and Increment Integer
Compare and Increment Ordinal

srcl,
reg/lit

src2,
regllit

dst
reg

Compares src2 and srcJ values and sets the condition code according to
comparison results. src2 is then incremented by one and result is stored in dst.
The following table shows condition code settings for the three possible
comparison results.

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

001 2 src1 > src2

These instructions are intended for use in ending iterative loops. For cmpinci,
integer overflow is ignored to allow looping up through the maximum integer
values.

if (srcl < src2)
AC.cc = 1002;

else if (src1 == src2)
AC.cc = 0102;

else
AC.cc = 0012;

cmpinco:
dst = src2 + 1;
cmpinci:
dst = src2 + 1; # Overflow suppressed.

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

cmpinco r8, g2, g9 # Compares the values in g2
and r8 and sets AC.cc to
indicate the result:

cmpinci
cmpinco

SASH
5A4H

g9 = g2 + 1

REG
REG

cmpdeco, cmpo, cmpi, cmpdeci, COMPARE AND BRANCH

Sets the condition code in the arithmetic controls.

6-33

"

';

.. I, ' ..

INSTRUCTION SET REFERENCE

6.2.20

Mnemonic:

Format:

Description:

Action:

Faults:

6-34

COM PAR E (Includ'" New 80960 Core lIisfructions)

cmpl
cmplb
cmpls
cmpo
cmpob
cmpos

cmp*

Compare Integer
Compare Integer Byte
Compare Integer Short
Compare Ordinal
Compare Ordinal Byte ,
Compare ordinal Short

srcl,
regllit

src2·
regllit

Compares src2 and srcl values and sets condition code according to
comparison results. The following table shows condition code settings for the
three possible comparison results.

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

0012 src1 > src2

cmpl* followed by a branch-if instruction is equivalent to a compare-integer­
and-branch instruction. The latter method of comparing and branching
produces more compact code; however, the former method can execute byte
and short compares without masking. The same is true for cmpo* and the
compare-ordinal-and-branch instructions.

For cmpo, cmpi N = 31.
For cmpos, cmpis N = 15.
For cmpob, cmpib N = 7.

if (srcl[N:O] < src2[N:0])
AC.cc = 1002;

else if (src1[N:0] ~- src2[N:0])
AC.cc = 0102;

else if (src1 [N :0] > src2[N :0])
AC.cc = 0012;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

l

Example:

Opcode:

See Also:

Side Effects:

Notes:

1

cmpo r9,

bg xyz

cmpl
cmplb
cmpls
cmpo
cmpob
cmpos

OxlO #

5AIH
595H
597H
5AOH
594H
596H

INSTRUCTION SET REFERENCE

Compares the value in r9 with OxlO
and sets AC.cc to indicate the
result.
Branches to xyz if the value of r9
was greater than OxlO.

REG
REG
REG
REG
REG
REG

COMPARE AND BRANCH, cmpdecl, cmpdeco, cmpincl, cmplnco,
concmpl, concmpo

Sets the condition code in the arithmetic controls.

The core instructions cmplb, cmpls, compob and compos are not imple­
mented on ex, Kx and Sx 80960 processors.

6-35

I
iN
it

Ii

II
It

.. /

<INSTRUCTION SE:r flEFE.RENCE intet

6.2.21

Mnemonic:

Format:

Description:

6-36

COMPARE AND BRANCH
cmplbe
cmplbne'
cmpibl
cmplble
cmpibg
cmplbge
cmplbo
cmplbno

clJlppb!! ..
cmpobne
cmpobl
cmpoble
.cmpQ~g.
cmpobge

cmplb*

cmpob*

Compare Integer and Branch If Equal
. Compare Integer and Branch If Not Equal
Compare Integer and Branch If Less
Compare Integer and Branch If Less Or Equal
Compare Integer "and Branch If Greater
Compare Integer and Branch If Grt;later Or Equal
ColDpare Integer and Branch If Ordered
. Compare Integer and Branch IfNQtOrdered

, " Compare Ordinal and Branch If Equal
'Compare Ordinal and Branch If Not Equal
Compare Ordinal and Branch If Less
Compare Ordinal and Branch If Less Or Equal
Comp~ Ordinal and Branch If Greater
Compare Ordinal and Branch If Greater Or Equal

srcl, src2, targ
regllit reg disp

srcl, src2, targ
regllit reg disp

Compares src2 and srcl values and sets AC register condition code according
to comparison results. If logical AND of condition code and mask part of
opcode is not zero, the processor branches to instruction specified with targ;
otherwise, the processor goes to next instruction.

targ can be no farther than _212 to (212 - 4) bytes from current IP. When using
the Intel i960 processor assembler. targ must be a label which specifies target
instruction's IP.

. Functions these instructions perform can be duplicated with a cmpi or cmpo
followed by a branch-if instruction, as ~escribed in section 6.2.20,
"COMPARE (Includes New 80960 Core Instructions)" (pg. 6-34).

intet

Action:

Faults:

Example:

_3

INSTRUCTION SET REFERENCE

The following table shows the condition-code mask for each instruction. The
mask is in bits 0-2 of the opcode.

Instruction Mask Branch Condition

cmpibno 0002 No Condition

cmpibg 001 2 src1 > src2

cmpibe 0102 src1 '" src2

cmpibge 011 2 src1'~ src2

cmpibl 1002 src1 < 'src2

cmpibne 101 2 src1 =#; src2

cmpible 1102 src1:::; src2

cmpibo 1112 Any Condition

cmpobg 001 2 src1> src2

cmpobe 0102 src1 = src2

cmpobge 011 2 src1 ~ src2

cmpobl 1002 src1 < src2

cmpobne 101 2 src1 =#; src2

cmpoble 1102 src1:::; src2

NOTE: cmpibo always branches; cmpibno never
branches.

if(src1 < src2)
AC.cc = 1002;

else if(src1 == src2)
AC.cc == 0102;

else
AC.cc = 0012;

if«mask && AC.cc) != 0002)

IP[31 :2] = efa{31 :2]; # Resume execution at the new IP.
IP[1:0] = 0;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

Assume g3 < g9
cmpibl g3, g9, xyz # g9 is compared with g3;

IP = xyz.
assume 19 ~ r7
cmpobge 19, r7, xyz # 19 is compared with r7;

IP = xyz.

6-37

i"!' I,
I'
!~
:~

"~I

,>

INSTRUCTION SET REFERENCE int"et
Opcode: cmplbe 3AH COBR

cmplbne 3DH COBR
cmplbl 3CH COBR
cmpible 3EH COBR

. cmpibg 39H COBR
cmpibge 3BH COBR
cmpibo 3FH COBR
cmpibno 38H COBR
cmpobe 32H COBR
cmpobne 35H COBR
cmpobl 34H COBR
cmpoble 36H COBR

I· cmpobg 3lH COBR

! cmpobge 33H COBR

See Also: BRANCH<cc>, cmpi, cmpo, bal, balx

Side Effects: Sets the condition code in the arithmetic controls.

6-38 I

6.2.22

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

1

INSTRUCTION SET REFERENCE

concmpi,concmpo
concmpi Conditional Compare Integer
concmpo Conditional Compare Ordinal

concmp* src1,
reg/lit

src2
reg/lit

Compares src2 and srcl values if condition code bit 2 is not set. If
comparison is performed, condition code is set according to comparison
results. Otherwise, condition codes are not altered.

These instructions are provided to facilitate bounds checking by means of
two-sided range comparisons (e.g., is A between B and C?). They are
generally used after a compare instructioI). to test. whether a value is
inclusively between two other values.

The example below illustrates this application by testing whether g3 value is
between g5 and g6 values, where g5 is assumed to be less than g6. First a
comparison (cmpo) of·g3 and·g6 is performed. If g3 is less than or equal to
g6 (i.e., condition code is either 010z or 001z), a ,.;onditional comparison
(concmpo) of g3 and g5 is then performed. If g3 is greater than or equal to g5
(indicating that g3 is within the bounds of g5 and g6), condition code is set to
010z; otherwise, it is set to 001z.

if (AC.cc != 1XXz)
(if(src1 <= src2)

AC.cc = 01Oz;
else

AC.cc = 00lz;

STANDARD

cmpo g6, g3

concmpo g5, g3

Refer to section 6.1.6, "Faults" (pg. 6-6).

Compares g6 and g3
and sets AC.cc.
If AC.cc < 1002 (g6 ~ g3)
g5 is compared with g3.

At this point, depending on the register ordering, the condition code is one of
those listed on Table 6.6.

6-39

i

.-

INSTRUCTION SET REFERENCE

Opcode:

See Also:

Side Effects:

6-40

Table 6.6. concmpo example: register ordering and CC

Order

95 <g6 < g3

g5<g6=g3

g5<g3<g6

g5=g3<g6

-g3<g5<g6

concmpi 5A3H
concmpo 5A2H

CC

1002

0102

0102

0102

001 2

REG
REG

cmpo, cmpi, cmpdeci, cmpdeco, cmpinci, cmpinco, COMPARE AND
BRANCH

Sets the condition code in the arith~etic controls.

_L

intet

6.2.23

Mnemonic:

Format:

Description:

INSTRUCTION SET REFERENCE

deetl (80960Jx-Specific Instruction)

deetl

srcl,
regllit

Data-cache Control

src2,
regllit

srcldst
reg

Performs management and control of the data cache including disabling,
enabling, invalidating, ensuring coherency, getting status, and storing cache
contents to memory. Operations are indicated by the value of srcl. src2 and
srcldst are also used by some operations. When needed by the operation, the
processor orders the effects of the operation with previous and subsequent
operations to ensure correct behavior.

Table 6-7. DCCTL Operand Fields

Function sre1 sre2 src/dst

Disable Dcache 0 NA NA
Enable Dcache 1 NA NA
Global invalidate 2 NA NA
Dcache

Ensure cache
3 NA NA coherency1

src: N/A

Get Dcache status 4 NA dst: Receives
Dcache status
(see Figure 6-1).

Store Dcache to
Destination src: Dcache set

6 address for cache #'s to be stored
memory

sets (see Figure 6-1).

1. Invalidates data cache on 80960Jx.

6-41

INSTRUCTION SET REFERENCE

."", .

Src1 Format

o

Function Type

";.

, ~! •

Src/Dst Fo,rmatfor Data' Cache Status

31 2827 1615 1211 8 7 4 3

" # of Ways-1

1092 (# of Sets) J j . J
. " 1092 (Atoms/Line)

1092 (Bytes/Atom) .

Src/Dst Format for Store Data Cache Sets to Memory

r Endl ... Set.

I Reserved,
(Initialize to 0)

Startin9 Set #

Figure 6-1. DCCTI,.'src1 and src/dst Formats

o

Enabled = 1
Disabled = 0

o

I

int"et INSTRUCTION SET REFERENCE

Table 6.8. OCCTL Status Values and O-Cache Parameters

Value
Value on Value on i960JD/JF

i960JACPU CPU

bytes per atom 4 4

atoms per line 4 4

number of sets 64 128 (full)

number of ways 1 (Direct) 1 (Direct)

cache size 1-Kbytes 2-Kbytes(full)

Status[O] (enable I disable) o or 1 o or 1

Status[1 :3] (reserved) 0 0

Status[7:4] (log2(bytes per atom)) 2 2

Status[11 :8] (log2(atoms per line)) 2 2

Status[15:12] (log2(number of sets)) 6 7 (full)

Status[27:16] (number of ways - 1) 0 0

0
Destination
Address (DA)

Tag (Starting set) DA+4H

Valid Bits (Starting set) DA+8H

Word 0

Word 1

DA+CH

DA+ 10H I

Word 2 DA + 14H

Word 3 DA+ 18H

Tag (Starting set) DA + 1CH

Valid Bits (Starting set) DA+20H

Word 0 DA+24H

Word 1 DA+28H

Word 2 DA+2CH

Word 3 DA+30H

0 DA+34H

Tag (Starting set + 1) DA+38H

Valid Bits (Starting set + 1) DA+3CH

...

Figure 6·2. Store Data Cache to Memory Output Format

I 6-43

INSTRUC]".ION SET REEf,RENCE
in+~1 'eI®

,;

Action:

6-44

'::';'> . .'" " .'

Table 6·9. Valid_Bits Values

Bit ' < Meaning

0 Tag Valid bit for current Set and Way

1 Valid Bit for Word 0 of current Set and Way

2 Valid Bit for Word 1 of current Set and Way

,3 Valid'Bitfer Word 2 of current Set and Way

4 Valid Bit" forWard 3 of current Set and Way

5-31 Reserved, Read as Zero,

if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);

ordec wrt(previous_operations);
switch (src1 [7 :0]) {

case 0: # Disable data cache.
disable_Dcache();
break;

case 1: # Enable data cache.
enable_Dcache();
break;

case 2: # Global invalidate data cache.

case 3:

.case 4:

invalidate_Dcache();
break;
Ensure coherency of data cache with memory.
Causes data cache to be invalidated on this processor.
ensure_Dcache30herency();
break;
Get data cache status into src/dst.
if (Dcache_enabled) src/dst[O] = 1;
else src/dst[O] = 0; ,
Atom is 4 bytes.
src/dst[7:4] = log2(bytes per atom);
4 atoms per line.
src/dst[11:8] = log2(atoms per line);

'src/dstt15:i21:: fog2(number of sets);
"srcldst[27:161=number of ways-I; # in lines per set

cache size = ([27:16]+1)« ([7:4] + [11:8] + [15:12]).
break;

Action:

Faults:

case 6:

default:

INSTRUCTION·SET REFERENCE

Store data cache sets to memory pointed to by src2.
start = src/dst[15:0) # Starting set number.
end = src/dst[31:16) # Ending set number.

(zero-origin).
if (end >= Dcache_max_sets) end = Dcache_max_sets - 1;
if (start> end) generate_fault

(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.
if (Ox3 & memadr! = 0)
generatejault(OPERATION.lNVALID_OPERAND)
for (set = start; set <= end; set++){

SeCData is described at end of this code flow.
memory[memadr) = SecData[set);
memadr+=4;
for (way = 0; way < numb_ways; way++)

{memory[memadr) = tags[set)[way);
memadr+=4;

break;

memory[memadr) = valid_bits[set][way);
memadr+=4;
for (word = 0; word < words_in_line; word++)

{memory[memadr) =
Dcache_line[set) [way) [word);

memadr+=4;
}

}

Reserved.
generate_fau1t(OPERATION .INVALID _OPERAND);
break;

order_ wrt(subsequenC operations)

STANDARD

TYPE.MISMATCH

OPERATION.lNVALID_OPERAND

Refer to section 6.1.6,
"Faults" (pg. 6-6).
Attempt to execute
instruction while not in
supervisor mode.

6-45

INSTRUCTION SET REFERENCE

Example:

Opcode:

See Also:

Notes:

6-46

dcctl gO,gl,g2

dcctl

sysctl

65CH

gO = 6, gl= OxlOOOOOOO,
.# g2 = Ox001FOOOl
Store the status of Dcache
sets l-OxlF to memory starting
at OxlOOOOOOO.

REG

DCCTL function 6 stores data-cache sets to a target range in external mem­
ory. For any memory location that is cached and also within the target range
for function 6, the corresponding word-valid bit will be cleared after function
6 completes to ensure data-cache coherency. Thus, dcctl function 6 can alter
the state of the cache after it completes, but only the word-valid bits. In all
cases, even when the cache sets to store to external memory overlap the
cache sets which map the target range in external memory, DCCTL function
6 always returns the state of the cache as it existed when the DCCTL was
issued.

This instruction is implemented on the 80960Jx processor family only, and
mayor may not be implemented on future i960 processors.

l

INSTRUCTION SET REFERENCE

6.2.24 divi, divo
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

divi
divo

div·

Divide Integer
Divide Ordinal

srcl,
reg/lit

src2,
reg/lit

dst
reg

Divides src2 value by srcl value and stores the result in dst. Remainder is
discarded.

For divi, an integer-overflow fault can be signaled.

divo:
if (src1 == 0)

generatejault (ARITHMETIC.ZERO_DIVIDE);
else

dst = src2/src1;

divi:
if (srcl == 0)
{ dst = undefined_value;

generatejault (ARITHMETIC. ZERO_DIVIDE); }
else if «src2 == -2**31) && (src1 == -1)

{ dst = -2**31
if (AC.om == I)

AC.of = I;
else

generate_fault (ARITHMETIC.OVERFLOW);

else "
dst = src2 I src1;

Refer to Section 6.1.6 on page 6-6.
The srcl operand is O.

STANDARD
'ARITHMETIC.ZERO_DIVIDE
ARITHMETIC.OVERFLOW Result too large for destination register

(dlvi only). If overflow occurs and
AC.om=I, fault is suppressed and
AC.of is set to 1. Result's least
significant 32 bits are stored in dst.

diva r3, r8, r13 # r13 = r8/r3

divi
divo

74BH
70BH

ediv, mulo, mull, emu I

REG
REG

6-47

I

I

INSTRUCTION SET REFERENCE intel~

6.2.25 ediv
Mnemonic: ediv Extended Divide

Format:

Description:

Action:

Faults: ,

6-48

ediv srcl,
reg/lit

src2,
reg/lit

dst
reg .. ·

Divides src2 by srcl and stores result in dst. The src2 value is a long ordinal
(64 bits) contained in two adjacent registers.src2 specifies the. lower
numbered register which contains operand's least sigmficant bits. src2 must
be an even numbered register (i.e., gO, g2, ... or r4, r6, r8 ...). srcl value is a
normal ordinal (i.e., 32 bits).

The result consists of a one-word remainder and a one-word quotient.
RemaiJ:lder is stored in th~. register designated by dst; quotient is stored in the
next highest numbered register. dst must bean even numbered register (I.e.,
or gO, g2, ... r4, r6, r8, ...).

This instruction performs ordinal arithmetic.

If this operation overflows (quotient or remainder do not fit in 32 bits), no
fault is raised and the result is undefined.

if«re~number(src2)%2!= 0) II (reg_number(dst['O])%2 != 0))
{ dst[O] = undefined3alue; ./

dst[l] = undefined3alue;
generate_fault (OPERATION.INVALID_OPERAND);

else if(srcl == 0)
{ dst[O] '= undefined_value;

dst[l] = undefined_value;
generate_fault(ARlTHMETIC.DIVIDE_ZERO);

else # Quotient
{ dst[1] = «src2 + re~value(src2[1]) * 2**32) 1 srcl)[31:0];

#Remainder . .
dst[O] = (~r~2 + reg_value(src2[1]) * 2**32

- «src2+ reg3alue(src2[1]) * 2**321 srcl) * src1);
}

STANDARD·

ARlTHMETIC.ZERO_DIVIDE
OPERATION.INVALID_OPERAND

Refer to section 6.1.6, "Faults" (pg.
6-6).
The src1 operand is O.

Example: ediv g3, g4, glO

Opcode: ediv 671H

See Also: ernul, divi, divo

I

INSTRUCTION SET REFERENCE

glO = remainder of g4,g5/g3
gll = quotient of g4,g5/g3

REG

6-49

i ~

I:

INSTRUCTION SET REFERENCE

6.2.26·

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

ernul
emul

emul

Extended Multiply

srcl,
regllit

src2,
regllit

. dst
reg

!',

Multiplies src2 by srcl and stores the result in dst. Result is a long ordinal
(64 bits) stored in two adjacent registers. dst specifies lower numbered
register, which receives the result's least significant bits. dst must be an even
numbered register (i.e., or gO, g2, ... r4, r6, r8, ...).

This instruction performs ordinal arithmetic.

if(reg_number(dst)%2 != 0)
{ dst[O] = undefined_value;

dst[l] = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

else
{ dst[O] = (srcl * src2)[31:0];

dst[l] = (src1 * src2)[63:32];

STANDARD

ernul r4, rS, g2

emul 670H

ediv, muli, mulo

Refer to section 6.1.6, "Faults" (pg. 6-6).

g2,g3 = r4 * rS.

REG

intet INSTRUCTION SET REFERENCE

6.2.27 eshro
Mnemonic: eshro Extended Shift Right Ordinal

Format:

Description:

Action:

Faults:

Example:

Opcpde:

See Also:

Notes: .

I

eshro srcl
reg/lit

src2
reg/lit

dst
reg

Shifts src2 right by (srcl mod 32) places and stores the result in dst. Bits
shifted beyond the least-significant bit are discarded.

src2 value is a long ordinal (i.e., 64 bits) contained in two adjacent registers.
src2 operand specifies the lower numbered register, which contains operand's
least significant bits. src2 operand must be an even numbered register (i.e., r4,
r6, r8, ". or gO, g2).

srcl operand is a single 32-bit register or literal where the lower 5 bits specify
the number of places that the src2 operand is to be shifted.

The least significant 32 bits of the shift operation result are stored in dst.

if(re~number(src2)%2 != 0)
(dst[O] = undefined3alue;

else

dst[l] = undefined3alue;
generate_fault(OPERATION.INVALID_OPERAND);

dst = shifCright«src2 + reg_value(src2[1]) * 2**32),(src1 %32))[31:0];

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

eshro g3, g4, gll # gll = g4,5 shifted right by
(g3 MOD 32) .

eshro 5D8 REG

SHIFT, extract

This core instruction is not implemented on the Kx and Sx 80960 processors.

6-51

I
I
i
I

!

I.

[-

INSTRUCTION SET REFERENCE intet®
6.2.28

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-52

extract
extract

extract

Extract

bitpos
regllit

len
regllit

srcldst
reg

Shifts a specified bit field in srcldst right and zero fills bits to left of shifted
bit field. bitpos value specifies the least significant bit of the bit field to be
shifted; len value specifies bit field length.

src_dst = (src_dst 12**(src1 %31» & «2**src2) - 1);

STANDARD

extract 5, 12, g4

extract

modify

651H

Refer to section 6.1.6, "Faults" (pg. 6-6).

g4 = g4 with bits 5 through
16 shifted right.

REG

I

intet

6.2.29

Mnemonic:

Format:

Description:

Action:

Faults:

-~---

INSTRUCTION SET REFERENCE

FAULT<cc>
faulte
faultne
faultl
faultle
faultg
faultge
faulto
faultno

fault*

Fault If Equal
Fault If Not Equal
Fault If Less
Fault If Less Or Equal
Fault If Greater
Fault If Greater Or Equal
Fault If Ordered
Fault If Not Ordered

Raises a constraint-range fault if the logical AND of the condition code and
opcode's mask-part is not zero. For faultno (unordered), fault is raised if
condition code is equal to" 0002.

faulto and faultno are provided for use by implementations with a floating
point coprocessor. They are used for compare and branch (or fault) operations
involving real numbers.

The following table shows the condition-code mask for each instruction. The
mask is opcode bits 0-2.

Instruction Mask Condition

faultno 0002 Unordered

faultg 001 2 Greater

faulte 0102 Equal

faultge 011 2 Greater or equal

faultl 1002 Less

faultne 101 2 Not equal

faultle 1102 Less or equal

faulto 1112 Ordered

For all except faultno:
if(mask && AC.cc != 0002)

generatejault(CONSTRAINT.RANGE);

faultno:
if(AC.cc = 0002)

generatejault(CONSTRAINT.RANGE);

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).
CONSTRAINT.RANGE If condition being tested is true.

6-53

"

:1
1
I

INSTRUCTION SET REFERENCE intel®
Example: # Assume (AC.cc AND 1102);t:. 0002

faultle # Constraint Range Fault is generated.

Opcode: faulte lAR CTRL
faultne lDH CTRL
faultl lCH CTRL
faultle lEH CTRL
faultg 19H CTRL
faultge lBH CTRL
faulto lFH CTRL
faultno l8H CTRL

See Also: BRANCH<cc>, TEST <cc>

6-54 L

INSTRUCTION SET REFERENCE

6.2.30 flush reg
Mnemonic: flushreg Flush Local Registers

Format:

Description:

Action:

Faults:

Example:

Opcode:

l

flushreg

Copies the contents of every cached register set---except the current set-to
its associated stack frame in memory. The entire register cache is then marked
as purged (or invalid). On a return to a stack frame for which the local
registers are not cached, the processor reloads the locals from memory.

flushreg is provided to allow a debugger or application program to
circumvent the processor's normal call/return mechanism. For example, a
debugger may need to go back several frames in the stack on the next return,
rather than using the normal return mechanism that returns one frame at a
time. Since the local registers of an unknown number of previous stack
frames may be cached, a flushreg must be executed prior to modifying the
PFP to return to a frame other than the one directly below the current frame.

Each local cached register set except the current one is flushed to its
associated stack frame in memory and marked as purged, meaning that they
will be reloaded from memory if and when they become the current local
register set.

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

flushreg

flushreg 66D REG

6-55

INSTRUCTION SET REFERENCE intet

6.2.31

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-56

fmark
fmark

fmark

Force Mark

Generates a mark trace event. Causes a mark trace event to be generated,
regardless .of mark trace mode flag setting, providing the trace enable bit, bit
o in the Process Controls, is set.

For more information on trace fault generation, refer to CHAPfER 10,
TRACING AND DEBUGGING.

A mark trace event is generated, independent of the setting of the mark-trace­
mode flag.

STANDARD
TRACE. MARK

Refer to section 6.1.6, "Faults" (pg. 6-6).
A TRACE.MARK fault is generated if pc.te=1.

Assume PC.te 1
fmark
Mark trace event is generated at this point in the
instruction stream.

fmark

mark

66CH REG

J

6.2.32

Mnemonic:

Format:

Description:

Action:

Faults:

INSTRUCTION SET REFERENCE

halt (80960Jx-Specific Instruction)

halt

halt

Halt CPU

src1
reg/lit

Causes the processor to enter HALT mode which is described in Chapter 16,
HALT MODE. Entry into Halt mode allows the interrupt enable state to be
conditionally changed based on the value of src1.

src1 Operation

0 Disable interrupts and halt

1 Enable interrupts and halt

2
Use current interrupt enable
state and halt.

The processor exits Halt mode on a hardware reset or upon receipt of an
interrupt that should be delivered based on the current process priority. After
executing the interrupt that forced the processor out of Halt mode, execution
resumes at the instruction immediately after the halt instruction. The
processor must be in supervisor mode to use this instruction.

impliciCsyncf;
if (PC.em != supervisor)

generatejault(TYPE.MISMATCH);
switch(src1) {

case 0: # Disable interrupts. Clear ICON.gie.
global_interrupt3nable = false;

case 1: # Enable interrupts. Set ICON.gie.
global_interrupCenable = true;

case 2: # Use the current interrupt enable state.
break;

default:

break;

break;

generatejault(OPERATION.lNVALID_OPERAND);
break;

ensure_bus_is_quiescient;
entecHALT_mode;

STANDARD Refer to section 6.1.6, "Faults"
(pg.6-6).

TYPE.MISMATCH

OPERATION.lNVALID_OPERAND

Attempt to execute instruction
while not in supervisor mode.

6-57

INSTRUCTION SET REFERENCE intel~

Example:

Opcode:

Notes:

'6-58

halt gO

halt 65DH

ICON.gie = 0, gO = 1, Interrupts disabled.
Enable interrupts and halt.'

REG '

This instruction is implemented on the 80960Jx processor family only, 'and
mayor may not be implemented on future i960 processors.

6.2.33

Mnemonic:

Format:

Description:

INSTRUCTION SET REFERENCE

icctl (80960Jx-Speclfic Instruction)

icctl Instruction-cache Control

icctl srcl,
regllit

src2,
regllit

src/dst
reg

Performs management and control of the instruction cache including
disabling, enabling, invalidating, loading and locking, getting status, and
storing cache sets to memory. Operations are indicated by the value of srcl.
Some operations also use src2 and srcldst. When needed by the operation, the
processor orders the effects of the operation with previous and subsequent
operations to ensure correct behavior. For specific function setup, see the
following tables and diagrams:

Table 6-10. ICCTL Operand Fields

Function sre1 sre2 sreldst

Disable Icache 0 NA NA

Enable Icache 1 NA NA

Invalidate Icache 2 NA NA

Load and lock
src: Starting

Number of blocks
Icache 3 address of code

to lock.
to lock.

dst: Receives
Get Icache status 4 NA status (see

Figure 6-3).

Get Icache
dst: Receives

locking status 5 NA status (see
Figure 6-3)

Store lcache sets Destination src: Icache set
6 address for #'s to be stored

to memory
cache sets (see Figure 6-3).

6-59

Ii

'I ,

"

i .,

"
1
I

.'
1

< ,,:

"'.,
,!\.,

INSTRUCTION,.SET REFERENCE in+-I 'eI®

6-60

Src1 Format

o

Function Type

Sl'c/Ost Format for Icache Status

~ ________________ ~16~15~ __ 1~2~11~. __ ~8~7 ____ ~4 3

of Ways-1

IOg2 (# of sets)J . J J
log2 (Atoms/Line) .

log2 (BytestAtom)

Src/Ost Format for Icache Locking Status
31 24 23 8 7

o

i
Enabled = 1
Disabled = 0

o

of Blocks that are Locked Block Size in Words # of Blocks that Lock

Src/Ost Format for Store Icache Sets to Memory

1
'.1
. Ending Set#

I Reserved,
(Initialize to 0)

Starting Set #

I

Figure 6-3. ICCll Src1 and Src/Dst Formats

o

INSTRUCTION ·SET REFERENCE

Table 6-11. ICCTL Status Values and Instruction Cache Parameters

Value Value on Value on 1960JD/JF
i960JACPU CPU

bytes per atom 4 4

atoms per line 4 4

number of sets 64 128

number of ways 2 1 (Direct)

cache size 2-Kbytes 4-Kbytes ,

i
Status[O] (enable I disable) o or 1 o or 1

Status[1 :3] (reserved) 0 0

Status[7:4] (log2(bytes per
2 2

atom» .-
Status[11 :8] (log2(atoms

2 2
per line»

Status[15: 12]
6 7

(log2(number of sets»

Status[27:16] (number of
1 1

ways - 1)

Lock Status[7:0] (number
1 1

of blocks that lock)

Lock Status[23:8] (block
256 512

size in words)

Lock Status[31 :24]
(number of blocks that are o or 1 o or 1
locked)

6-61

INSTRUCTION SET REFERENCE

6-62

SeCData [Starting Set]

Tag (Starting set)

Valid Bits (Starting set)

Word 0

Word 1

'Word 2

Word 3

Tag (Starting set)

Valid Bits (Starting set)

Word 0

Word 1

Word 2

Word 3

SeCData [Starting Set + 1]

Tag (Starting set + 1)

Valid Bits (Starting set + 1)

...

Destination
Address (DA)

DA+4H

DA+8H

DA+CH

DA+ 10H

DA + 14H

DA+ 18H

DA+ 1CH

DA + 20H

DA+24H

DA+28H

DA+2CH

DA+30H

DA+34H

DA+38H

DA+3CH

Figure 6-4. Store Instruction Cache to Memory Output Format

Table 6-12. Valid_Bits Value For 1960Jx Processor

Bit Meaning

0 Tag Valid bit for current Set and Way

1 Valid Bit for Word 0 of current Set and Way

2 Valid Bit for Word 1 of current Set and Way

3 Valid Bit for Word 2 of current Set and Way

4 Valid Bit for' Word 3 of current Set and Way

5-31 Reserved, Read as Zero.

J_

Action:

INSTRUCTION SET REFERENCE

Table 6-13. SeCData I-Cache Values

Set_Data[setJ Meaning I-Cache Value

0 I-Cache Way 0 is LRU for the set.

1 I-Cache Way 1 is LRU for the set.

x Other values are reserved

if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);

switch (src1[7:0D {
case 0: # Disable instruction cache.

disable_inst:rQction_cache();

case 1:

case 2:

case 3:

break;
Enable instruction cache.
enable_instruction_cache();
break;
Globally invalidate instruction cache.
Includes locked lines also.
invalidate_jnstruction3ache();
unlock_icache();
break;
Load & Lock code into Instruction-Cache
src/dest has number of contiguous blocks to lock
src2 has starting address of code to lock.
On the i96OJx, src2 is aligned to a quadword boundary

aligned_addr = src2 & OxfffffffO;
invalidate(I -cache); unlock(I -cache);
for G = 0; j < src/dest; j++)

{ way = way _associated_ with_blockG);
start = src2 + j*block_size;
end = start + block_size;
for (i = start; i < end; i=i+4)

{ set = secassociated_with(i);
word = word_associated_ with(i);
Icache_line[set][way][word] =

memory[i];
update_tag..n_ valid_bits(set, way, word)
lock_icache(set, way, word);

} } break;

6-63

" !

INSTRUCTION SET REFERENCE intel~

Action: case 4:

case 5:

case 6:

6-64

Get instruction cache status into srcldst.
if (Icache_enabled) src/dst[O] = 1;

else src/dst[O] = 0; ,
#. Atom is 4 bytes.

src/dst[7:4] = log2(bytes per atom);
4 atoms per line.

·src/dst[11:8] = log2(atoms per line);
src/dst[15:12] = log2(number of sets);
src/dst[27:16] = number of ways-I; #in lines per set
cache size = ([27:16]+1)« ([7:4] + [11:8] + [15:12])
break;
Get instruction cache locking status into dst.
src/dst[7:0] = numbecoCblocks_thaUock;
src/dst[23:8] = block_size_in_words;
src/dst[31 :24] = numbecoCblocks_thacare_locked;
break;
Store instr cache sets to memory pointed to by src2.
start = src/dst[15:0] # Starting set number
end = src/dst[31: 16] # Ending set number

(zero-origin).
if (end >= Icache_max_sets)

end == Icache_max_sets - 1;
if (start> end)

generate_fault(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.
if(Ox3 & memadr != 0)

generate_fault(OPERATION.!NVALID_OPERAND);
for (set = start; set <= end; set++){

SeCData is described at end of this code flow.
memory[memadr] = SeCData[set];
memadr+=4;
for (way = 0; way < numb_ways; way++)

{memory[memadr] = tags[set][way];
memadr+=4;
memory[memadr] = valid_bits[set][way];
memadr+=4;
for (word = 0; word < words_in_line;

word++)
{memory[memadr] =

Icache_line[set][way] [word];
memadr+=4;
}

} } break;

l

Faults:

Example:

Opcode:

See Also:

Notes:

I

default:

STANDARD

INSTRUCTION SET REFERENCE

Reserved.
generatejault(OPERATION.lNVALID~OPERAND);
break;}

Refer to section 6.1.6, "Faults"
(pg.6-6).

TYPE.MISMATCH Attempt to execute instruction
while not in supervisor mode.

OPERATION.lNVALID_OPERAND

icctl gO,gl,g2

icctl

sysctl

65BH

gO = 3, gl=OxlOOOOOOO, g2=1
Load and lock 1 block of cache
(one way) with
location of code at starting
OxlOOOOOOO.

REG

This instruction is implemented on the 80960Jx processor family only, and
mayor may not be implemented on future i960 processors.

6-65

ii
I'

:~ Ii

I,'

I'''' ' ..
'\ ~ ~.

INSTRUC'FION S"ETREFERENCE

6.2.34

Mnemonic:

Format:

Description:

Action:

6-66

i ntetl (809~OJx·Sp,eci'ic Instruction)
~ . '.": .

intetl

ifitetl

Global Enable and Disable of Interrupts

src1
regllit

dst
reg

Globally' enables, disables or returns the current status of interrupts
depending on the value of S(C 1 .. Returns the previous interrupt enable state (1
for enabled or 0 for disabled) in dst. When the state of the global interrupt
enable is changed, the processor ensures that the new state is in full effect
before the instruction completes. (This instruction is implemented by manip­
ulating ICON.gie.)

src1Value Operation

0 Disables interrupts

1 Enables interrupts

2 Returns current interrupt enable status"
,,'

if (Pc.em != supervisor) ,
generate3auit(TYPE.MISMATCH);

old_interrupCenable = global_interrupCenable;
switch(src1) {

case 0: # Disable. Set ICON.gie to one.
globally_disable_interrupts;
global_interrupt3nable = false;
ordec wrt(subsequenCinstructions);
break;

case 1: # Enable. Clear ICON.gie to zero.
globally_enable_interrupts;
global_interrupcenable = true;
ordec wrt(subsequenCinstructions);
break;

case 2: # Return status. Return ICON.gie
break;

default:
generate_fault(OPERATION.INVALID_OPERAND);
break;

if(old_interrupcenable)
dst = 1;

else
dst = 0;

in1et
Faults:

Example:

Opcode:

See Also:

Notes:

STANDARD

INSTRUCTION SET REFERENCE

Refer to' section 6.1.6, "Faults"
(pg.6-6).

OPERATION.INVALID_OPERAND
TYPE.MISMATCH

intctl 0, g4

intetl 658H

intdls, Inten

ICON.gie = 0, interrupts enabled
Disable interrupts (ICON.gie = 1)
g4 = 1

REG

This instruction is implemented on the 80960Jx processor family only, and
mayor may not be implemented on future i960 processors.

6-67

INSTRUC::TlOlil.' S,E'I'REF~RENCE

6.2~35 " intdis (80960Jx-Specific Instruction)

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also;

Notes:

6-68

inldls

Inldls

GlobitI Int~rrupt Disable

Globally disables interrupts and ensures that the change takes effect before
the instruction completes. This operation is implemented by setting
ICON.gie to one.

if (PC.em != supervisor)
generatejault(TYPE.MISMATCH);

. # Implemented by settiJ;lg ICON.gie to one .

. globally_disable_interrUpts;
interrupt_enable = false;
ordec wrt(subsequencinstructions);

STANDARD
TYPE.MISMATCH

intdis

Inldls

intetl, Inten

5B4H

Refer to section 6.1.6, "Faults" (pg. 6-6).

ICON.gie = 0, interrupts enabled
Disable interrupts.
ICON.gie = 1

REG

This instruction is implemented on the 80960Jx processor family only, and
mayor may not be implemented on future i960 processors.

6.2.36

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Notes:

INSTRUCTION SET REFERENCE

i nten (80960Jx-Specific Instruction)

inten

inten

global interrupt enable

Globally enables interrupts and ensures that the change takes effect before the
instruction completes. This operation is implemented by clearing ICON.gie to
zero.

if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);

Implemented by clearing ICON.gie to zero.
globally_enable_interrupts;
interrupCenable = true;
ordec wrt(subsequenCinstructions);

TYPE.MISMATCH

inten
ICON. gie = 1, .interrupts disabled.
Enable interrupts.
ICON.gie = 0

Inten 5B5H REG

intetl, intdis

This instruction is implemented on the 80960Jx processor family only, and
mayor may not be implemented on future i960 processors.

6-69

"~I ,

INSTRUCTION SET REFERENCE intel®
6.2.37

Mnemonic:

Format:

Description:

Action:

6·70

LOAD
Id Load
Idob Load Ordinal Byte
Idos Load Ordinal Short
Idlb Load Integer Byte
Idls Load Integer Short
Idl Load Long
Icit Load Triple
Idq Load Quad

Id* src
mem

dst
reg

Copies byte or byte string from memory into a register or group of successive
registers.

The src operand specifies the address of first byte to be loaded. The full range
of addressing modes may be used in specifying src.

Refer to Chapter 2, DATA TYPES AND MEMORY ADDRESSING
MODES for more information.

dst specifies a register or the first (lowest numbered) register of successive
registers.

Idob and Idib load a byte and Idos and Idis load a half word and convert.it to
a full 32-bit word. Data being loaded is sign-extended during integer loads
and zero-extended during ordinal loads.

Id, Idl, Idt and Idq instructions copy 4,8, 12 and 16 bytes, respectively, from
memory into successive registers.

For Idl, dst must specify an even numbered register (i.e., gO, g2 ...). For Idt
and Idq, dst must specify a register number that is a multiple of four (i.e., gO,
g4, g8, g12, r4, r8, rI2). Results are unpredictable if data extends beyond
register g15 or r15 for Idl, Idt or Idq.

Id:
dst = read_memory(effective_address)[31:0];
if«effective_address[1 :0] != 002) && unaligned jault_enabled)

generatejault(OPERATION.UNALIGNED);

Idob:
dst[7:0] = read_memory(effective_address)[7:0];
dst[31:8] = OxOOOOOO;

_I

_1

INSTRUCTION SET REFERENCE

Idib:
dst[7:0] = read_memory(effective_address)[7:0];
if(dst[7] == 0)

dst[31:8] = OxOOOOOO;
else

dst[31:8] = OxFFFFFF;

Idos:
dst = read_memory(effective_address)[15:0];

Order depends on endianism. See
section 2.2.2, "Byte Ordering" (pg. 2-4)

dst[31: 16] = OxOOOO;
if«effective_address[O] != O2) && unaligned_fauICenabled)

generatejault(OPERATION.UNALIGNED);

Idis:
dst[15:0]= read_memory(effective_address)[15:0];

Order depends on endianism. See
section 2.2.2, "Byte Ordering" (pg. 2-4)

if(dst[15] == O2)

dst[31:16] = OxOOOO;
else

dst[31:16] = OxFFFF;
if«effective_address[O] != O2) && unaligned_faulCenabled)

generatejault(OPERATION.UNALIGNED);

Idl:
if«re!Lnumber(dst) % 2) != 0)

generate_fault(OPERATION .INVALID_OPERAND);
dst not modified.

else

Idt:

dst = read_memory(effective_address)[31:0];
dsC +_1 = read_memory(effective_address_ +_4)[3'1:0];
if«effective_address[2:0] != 0002) && unaligned...Jaulcenabled)

generate_fault(OPERATION.UNALIGNED);

if«reg_number(dst) % 4) != 0)
generate_fault(OPERATION .INVALID_OPERAND);
dst not modified.

else
dst = read_memory(effective_adddress)[31:0];
dsC +_1 = read_memory(effective_adddress_ +_4)[31:0];

6-71

I

i

INSTRUCTION SET REFERENCE

Faults:

Example:

Opcode:

See Also:

6-72

Idq:

dsC + _2 = read_memory(effective_adddress_ + _8)[31 :0];
if«effective_address[3:0] != 00002) && unaligned_faulCenabled)

generatejault(OPERATION.UNALIGNED);

if«reg_number(dst) % 4) != 0)
generate_fault(OPERATION.lNVALID_OPERAND);
dst not modified.

else
dst = read_memory(effective_adddress)[31:0];

Order depends on endianism.
See section 2.2.2, "Byte Ordering" (pg. 2-4)

dsC + _1 = read_memory(effective_adddress_ + _ 4)[31 :0];
dsC +_2 = read_memory(effective_adddress_ +_8)[31 :0];
dsC +_3 = read_memory(effective_adddress_ + _12)[31 :0];
if«effective_addressI3:0] != 00002) && unalignedjaulCenabled)

generate_fault(OPERATION.UNALIGNED);

OPERATION. UNALIGNED
STANDARD

Idl 2450 (r3) ,

Id 90H
Idob 80H
Idos 88H
Idib COH
Idis C8H
Idl 98H
Idt AOH
Idq BOH

MOVE, STORE

rIO

Refer to section 6.1.6, "Faults" (pg. 6-6).

rIO, rII = r3 + 2450 in
memory

MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM

I

6.2.38 Ida
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

I

Ida

Ida

Load Address

src,
mem
efa

dst
reg

INSTRUCTION SET REFERENCE

Computes the effective address specified with src and stores it in dst. The src
address is not checked for validity. Any addressing mode may be used to
calculate efa.

An important application of this instruction is to load a constant longer than 5
bits into a register. (To load a register with a constant of 5 bits or less, moy
can be used with a literal as the src operand.)

dst = effective_address;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

lda 58 (g9) , gl # gl = g9+58
lda Ox749, r8 # r8 = Ox749

Ida 8CH MEM

6-73

INSTRUCTlON~SET REFERENCE

6.2.39 mark
Mnemonic: mark ~ Mark

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

mark

Generates mark trace fault if mark trace mode is enabled. Mark trace mode is
enabled if the PC register trace enable bit (bit 0) and the TC register mark
trace mode bit (bit 7) are set.

If mark trace mode is not enabled, mark behaves like a no-op.

For more information on trace fault generation, refer to CHAPTER 10,
TRACING AND DEBUGGING.

if(PC.te && TC.mk)
generate_fault(TRACE.MARK)

STANDARD Refer to section 6:1.6, "Faults" (pg. 6-6).
TRACE.MARK Trace fault is generated ifPC.te=1 and

TC.mk=1.

Assume that the mark trace mode is enabled.
ld xyz, r4
addi r4, r5, r6
mark
Mark trace event is generated at this point in the
instruction stream.

mark 66BH REG

fmark, modpc, modtc

l

intet INSTRUCTION SET REFERENCE

6.2.40 modac
Mnemonic: modae Modify AC

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Side Effects:

modae mask,
reg/lit

src,
reg/lit

dst
reg

Reads and modifies the AC register. src contains the value to be placed in the
AC register; mask specifies bits that may be changed. Only bits set in mask
are modified. Once the AC register is changed, its initial state is copied into
dst.

temp = AC;
AC = (src & mask) I (AC & -mask);
dst = temp;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

modac gi, g9, g12 # AC = g9, masked by gi.
g12 = initial value of AC.

modae 645H REG

modpe, modte

Sets the condition code in the arithmetic controls.

6·75

,

i:
j
1,1:

il
I~
!

INSTRUCTION SET REFERENCE

6.2.41

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Notes:

6-76

modi
modi

modi

Modulo Integer

srcl,
regllit

src2,
regllit

dst
reg

Divides src2' by srcl"where both are integers and stores the modulo
remainder of the result in dst. If the result is nonzero, dst has the same sign as
srcl.

if(srcl == 0)
generate_fault(ARITHMETIC.ZERO_DIVIDE);
dst = undefined. value

dst = src2 - (src2/src1) * src1;
if«src2 *src1 < 0) && (dst != 0»

dst = dst + src1;

ARITHMETIC.ZERO_DIVIDE
STANDARD

The srcl operand is zero.
Refer to section 6.1.6,
"Faults" (pg. 6-6).

modi r9, r2, r5 # r5 = modulo (r2/r9)

modi 749H REG

divi, divo, remi, remo

modi generates the correct result (0) when computing _231 mod -1, although
the corresponding 32 bit division would overflow.

I

INSTRUCTION SET REFERENCE

6.2.42 modify
Mnemonic: modify Modify

Format: modify mask,
regllit

src, src/dst
reg

Description:

Action:

Faults:

Example:

Opcode:

See Also:

J

regllit

Modifies selected bits in srcldst with bits from src. The mask operand selects
the bits to be modified: only bits set in the mask operand are modified in
srcldst.

src/dst = (src & mask) I (src/dst & -mask);

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

modify g8, glO, r4 # r4 = glO masked by g8.

modify 650H REG

alterbit, extract

6-77

I"

INSTRUCTION SET REFERENCE

6.2.43

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Notes:

modpc
modpc

modpc

Modify Process Controls

src,
regllit

mask,
regllit

src/dst
reg

Reads and modifies the PC register as specified with mask and src/dst. srcldst
operand contains the value to be placed in the PC register; mask operand
specifies bits that may be changed. Only bits set in the mask are modified.
Once the PC register is changed, its initial value is copied into src/dst. The
src operand is a dummy operand that should specify a literal or the same
register as the mask operand.

The processor must be in supervisor mode to use this instruction with.a non­
zero mask value. If mask=<>, this instruction can be used to read the process
controls, without the processQr being in supervisor mode.

Changing the PC register reserved fields can lead to unpredictable behavior
as described in section 3.6.3, "Process Controls (PC) Register" (pg. 3-20).

if(mask != 0)
(if(PC.em != 1)

else

generate_fault(TYPE.MISMATCH);
temp = PC;
PC = (mask & src_dst) I (PC & -mask);
src_dst = temp;
if(temp.priority > PC.priority)

checIcpendin~interrupts;

src_dst = PC;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).
TYPE.MISMATCH

modpc g9, g9, g8 # process controls = g8
masked by g9.

modpc 6SSH REG

modae, modte

Since modpc does not switch stacks, it should not be used to switch the
mode of execution from supervisor to user (the supervisor stack can get cor­
rupted in this case). The call and return mechanism should be used instead.

infel~

6.2.44

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

I

INSTRUCTION SET REFERENCE

modtc
modtc

modtc

Modify Trace Controls

mask,
reg/lit

src2,
regnit

dst
reg

Reads and modifies TC register as specified with mask and src2. The src2
operand contains the value to be placed in the TC register; mask operand
specifies bits that may be changed. Only bits set in mask are modified. mask
must not enable modification ()f reserved bits. Once the TC register is
changed, its initial state is copied into dst.

The changed trace controls may take effect immediately or may be delayed. If •
delayed, the changed trace controls may not take effect until after the first
non-branching' instruction is fetched from memory or after four non­
branching instructions are executed.

For more information on the trace controls, refer to CHAPTER 9, FAULTS
and CHAPTER 10, TRACING AND,DEBUGGING.

temp=TC;
tempa = OxOOFFOOFF & mask;
TC = (tempa & src2) I (TC & -tempa);
dst = temp;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

modtc g12, glO, g2 # trace controls = glO masked

modtc 654H

modac, modpc

by g12i previous trace
controls stored in g2.

REG

6-79

INSTRUCTION seT REFERENCE intet®
6.2.45

Mnemonic:

Format:

Description:

Action:

6-80

MOVE
moy
moyl
movt
moyq

moy·

Move
Move Long
Move triple
Move Quad

srcl,
reg/lit·

dst
reg

Copies the contents of one or more source .registers (specified with src) to
one or more destinatiori registers (specified with dst).

For moyl, movt and moyq, srcl and dst specify the first (lowest numbered)
register of several successive registers. srcl and dst registers must be even
numbered (e.g., gO, g2, ... or r4, r6, ...) for moyl and an integral multiple of
four (e.g., gO, g4, ... or r4, r8, ...) for movt and moyq.

·The moved register values are unpredictable when: 1) the src and dst
operands overlap; 2) registers are not properly aligned.

moy:
if(is_reg(srcl»

dst = src1;
else
{ dst[5:0] = src1; #src1 is a 5-bit literal.

dst[31:5] = 0;

moyl:
if«reg_num(src1)%2 != 0) II (reg_num(dst)%2 != 0»
{ dst = undefined3alue;

}

dsC + _1 = undefined_value;
generate_fau1t(OPERATION.INVALID_OPERAND);

else if(is_reg(src1»
{ dst = src1;

dsC+_1 = src1_+_1;

else
{ dst[4:0] = src1; #src1 is a 5-bit literal.

d~t[31 :5] = 0;
dsc + _1[31:0] = 0;

Faults:

l

INSTRUCTION SET REFERENCE

movt:
if«re~num(src1)%4 != 0) II (reg_num(dst)%4 != 0»
{ dst = undefined_value;

}

dsC +_1 = undefined_value;
dsC +_2 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

else if(is_reg(srcl))
{ dst = srcl;

else

dsC+_l =src1_+_1;
dsC+_2 = srcC+_2;

dst[4:0] = src1; #src1 is a 5-bit literal.
dst[31 :5] = 0;
dsC+_l[31:0] = 0;
dsC +_2[31 :0] = 0;

movq:
if«reg_oum(src1)%4 != 0) II (reg_num(dst)%4 != 0))
{ dst = undefined_value;

}

dsC +_1 = undefined_value;
dsC +_2 ,;" undefined3alue;
dsC + _3 = undefined_value;
generate_fault(OPERATION.lNVALID _OPERAND);

else if(is_reg(src1»)
{ dst = src1;

else

dsC+_l = src1_+_1;
dsC + _2 = src1_ +_2;
dsC +_3 = srcl_ +_3;

{ dst[4:0] = srcl; #src1 is a 5 bit literal.
dst[31 :5] = 0;
dsC+ _1[31:0] = 0;
dst_ + _2[31 :0] = 0;
dst_ +_3[31:0] = 0;

STANDARD Refer to section 6.1.6, "Faults"
(pg.6-6).

OPERATION.lNVALID_OPERAND

6-81

INSTRUCTION SET REFERENC'E

Example:

Opcode:

See Also:

6-82

movt g8, r4

moy
moyl
movt
moyq

5CCH
5DCH
5ECH
5FCH

LOAD, STORE, Ida

r4, r5, r6 = g8, ,g9, glO

REG
. REG'

REG
REG

6.2.46

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

I

muli, mule
muli Multiply Integer
mulo Multiply Ordinal

mul* srcl,
reg/lit

INSTRUCTION SET REFERENCE

src2,
reg/lit

dst
reg

Multiplies the src2 value by the srcl value and stores the result in dst. The
binary results from these two instructions are identical. The only difference is
that muli can signal an integer overflow.

mulo:
dst = (src2 * src1)[31:0];

muli:
dst = (src2 * srcl)[31:0];
if«src2[31] == srcl[31]) && (src2[31] != dst[31]))
{ if(AC.om == 1)

AC.of= 1;
else

generatejault(ARITHMETIC.OVERFLOW);

STANDARD
ARITHMETIC. OVERFLOW.

Refer to section 6.1.6, "Faults" (pg. 6-6).
Result is too large for destination register
(muli only). If a condition of overflow

muli r3, r4, r9

muli
mulo

741H
701H

emul, ediv, divl, divo

occurs, the least significant 32 bits of the
result are stored in the destination register.

r9 = r4 * r3

REG
REG

6-83

INSTRUCTION SET REFERENCE

6.2.47 nand
Mnemonic: nand

Format: nand

Nand

srr:l,
reg/lit

srr:2,
reg/lit

dst
reg

Description: Performs a bitwise NAND operation on src2 and srr:l values and stores the
result in dst.

Action:

Faults:

Example:

Opcode:

See Also:

6-84

dst = -src2 I -src1;

STANDARD

nand g5, r3, r7

nand 58EH

Refer to section 6.1.6, "Faults" (pg. 6-6).

r7 = r3 NAND g5

REG

and, andnot, nor, not, notand, notor, or, ornot, xnor, xor

1_-

intet INSTRUCTION SET REFERENCE

6.2.48 nor
Mnemonic: nor Nor

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

L

nor srcl,
regllit

src2,
regllit

dst
reg

Performs a bitwise NOR operation on the src2 and srcl values and stores the
result in tist.

dst = -src2 & -src1;

STANDARD

nor g8, 28, r5

nor 588H

Refer to section 6.1.6, "Faults" (pg. 6-6).

r5 = 28 NOR g8

REG

and, andnot, nand, not, notand, notor, or, ornot, xnor, xor

6-85

I.!
".

k

Ii

.

1·11 .. I
i
I

"

INSTRUCTION SET REFERENCE intel® /
6.2.49

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-86

not, notand
not
notand

not

notand

Not
Not And

I

src,
regllit
srcl,
regllit

dst
reg
src2,
regllit

dst
reg

Performs a bitwise NOT (not instruction) or NOT AND (notand instruction)
, operation on the src2 and srcl values and stores the result in dst.

not:
dst = -src1;

noland:
dst = -src2 & src1;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

not g2, g4 # g4 = NOT g2
notand rS, r6, r7 # r7 = NOT r6 AND rS

not
notand

58AH
584H

REG
REG

and, andnot, nand, nor, notor, or, ornot, xnor, xor

6.2.50 notbit
Mnemonic: notbit

Format: notbit

Not Bit

bitpos,
reg/lit

INSTRUCTION SET REFERENCE

src2,
reg/lit

dst
reg

Description: Copies the src2 value to dst with one bit toggled. The bitpos operand specifies
the bit to be toggled.

Action:

Faults:

Example:

Opcode:

See Also:

L

dst = src2 A 2**(srcl %32);

STANDARD

notbit r3, r12, r7

notbit 580H

alterbit, chkbit, clrbit, setbit

Refer to section 6.1.6, "Faults" (pg. 6-6).

r7 = r12 with the bit
specified in r3 toggled.

REG

6-87

II
I,

INSTRUCTION SET REFERENCE

6.2.51

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-88

notor
notor

notor

Not Or

srcl,
reg/lit

src2,
reg/lit

dst
reg

Performs a bitwise NOTOR operation on src2 and srcl values and stores
result in dst.

dst = -(src2) I src1;

STANDARD

notor g12, g3, g6

notor 58DH

Refer to section 6.1.6, "Faults" (pg. 6-6).

g6 = NOT g3 OR g12

REG

and, and not, nand, nor, not, notand, or, ornot, xnor, xor

INSTRUCTION SET REFERENCE

6.2.52 or, ornot
Mnemonic: or Or

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

J

ornot

or

Or Not

srcl,
regnit

ornot src1,
reg/lit

src2, dst
reg/lit reg

src2, dst
reg/lit reg

Perfonns a bitwise OR (or instruction) or ORNOT (ornot instruction)
operation on the src2 and src1 values and stores the result in dst.

or:
dst = src21 srcl;

ornot:
dst = src2 I -(srcl);

STANDARD

or 14, g9, g3
arnot r3, r8, r11

or
ornot

587H
58BH

Refer to section 6.1.6, "Faults" (pg. 6-6).

g3 = g9 OR 14
r11 = r8 OR NOT r3

REG
REG

and, and not, nand, nor, not, notand, notor, xnor, xor

6-89

I',

r:

'INSTRUOTION SET REFERENCE

6.2.53

Mnemonic:

Format:

Description:

Action: .

Faults:

Example:

Opcode:

See Also:

Notes:

6-90

remi, remo
remi
remo

rem~

Remainder Integer
Remainder Ordinal

srcl; .
regllit

src2,
regllit

dst
reg

Divides src2 by srcl and stores the remainder in dst. The sign of the result (if
nonzero) is the same as the sign of src2.

reml, remo:
if(src1 == 0)

generate_fault(ARlTHMETIC.ZpRO_DIVIDE);
dst = src2 - (srcllsrc2)*src1;

ARITHMETIC.ZERO_DIVIDE
ARITHMETIC.INTEGER_OVERFLOW

The srcl operand is O.
The liesult is too large for
destination register (remi
only). If overflow occurs and
AC.om=l, the fault is
suppressed and AC.of is set to
1. The least significant 32 bits
of the result are stored in dst.

remo r4, r5, r6 # r6 = r5 rem r4

rem I
remo

modi

748H
708H

REG'
REG

remi produces the correct result (0) even when computing _231 remi -1,
which would cause the corresponding division to overflow.

:L

intet

6.2.54 ret
Mnemonic:

Format:

Description:

Action:

--'--

INSTRUCTION SET REFERENCE

ret

ret

Return

Returns program control to the calling procedure. The current stack frame
(i.e., that of the called procedure) is deallocated and the FP is changed to
point to the calling procedure's stack frame. Instruction execution is
continued at the instruction pointed to by the RIP in the calling procedure's
stack frame, which is the instruction immediately following the call
instruction.

As shown in the action statement below, the return-status field and prereturn­
trace flag determine the action that the processor takes on the return. These
fields are contained in bits 0 through 3 of register rO of the called procedure's
local registers.

See section CHAPTER 7, "PROCEDURE CALLS" (pg. 7-1) for more on ret.

impliciCsyncfO;
if(pfp.p && PC.te && TC.p)
{ pfp.p =0;

generate_fault(TRACE.PRERETURN);

switch(return_status_field)
{

case 0002: #local return
gecFP _and_IPO;
break;

case 0012: #fault return
tempa = memory(FP-16);
tempb = memory(FP-12);
gecFP _and_IPO;
AC=tempb;
if(execution_mode == supervisor)

PC=tempa;
break;

case 0102: #supervisor return, trace on return disabled
if(execution_mode != supervisor)

geCFP _and_IPO;
else
{ PC.te =0;

execution_mode = user;
gecFP _and_IPO;

6-91

I

:.'.1.

1

.
I'
I

II
'I,

I ,

··INSTRUCTION SET REFERENCE intet

Faults:

Example:

Opcode:

See Also:

6·92

break;
case 0112: # supervisor return, trace on return enabled

if (execution_mode != supervisor)
gecFP _and_IPO;

else
{ PC.te = 1;

execution_mode = user;
get_FP _aDd_IPO;

}
break;

case 1002:
break;

case 1012:

break;
case 1102:

break;

" . .
#reserved - unpredictable behavior

#reserved - unpredictable behavior

#reserved - unpredictable behavior

case 1112: #interrupt return
tempa = memory(FP-16);
tempb = memory(FP-12);
geCFP _and_IPO;
AC=tempb;
if (execution_mode = supervisor)

PC=tempa;
check_pendin8-interruptsO;
break;

geCFP _and_IPO
{ FP=PFP;

}

free(currencregistecset);
if(noCallocated(FP))

retrieve_from_memory(FP);
IP=RIP;

STANDARD

OPERATION.UNIMPLEMENTED
TRACE.PRERETURN

Refer to section 6.1.6, "Faults" (pg.
6-6).

ret # Program control returns to context of
calling procedure.

ret OAH CTRL

call,calls, calix

INSTRUCTION SET REFERENCE

6.2.55 rotate
Mnemonic: rotate Rotate

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

rotate len,
regllit

src2,
regllit

dst
reg

Copies src2 to dst and rotates the bits in the resulting dst operand to the left
(toward higher significance). Bits shifted off left end of word are inserted at
right end of word. The len operand specifies number of bits that the dst
operand is rotated.

This instruction can also be used to rotate bits to the right. The number of bits
the word is to be rotated right should be subtracted from 32 and the result
used as the len operand.

src2 is rotated by len mod 32. This value is stored in dst.

STANDARD

rotate 13, r8, r12

rotate 59DH

SHIFT, eshro

Refer to section 6.1.6, "Faults" (pg. 6-6).

r12 = r8 with bits rotated
13 bits to left.

REG

6-93

I,'
I,
I

INSTRUCTION 'SET REFERENCE

6.2.56

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Side Effects:

6-94

scanbit
scan bit

scanbit

Scan For Bit

srcJ,
regllit

dst
reg

Searches srcJ for a set bit (1 bit). If a set bit is found, the bit number of the
most significant set bit is stored in the dst and the condition code is set to
0002, If src value is zero, alII's are stored in dst and condition code is set to
0002,

dst = OxFFFFFFFF;
AC.cc = 0002;

for(i = 31; i >= 0; i--)
{ if«src1 & 2**i) != 0)
{ dst = i;

AC.cc= 0102;

break;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

assume g8 is
scanbit g8, g10

scanblt 641H

spanblt, setblt

nonzero
g10 = bit number of
significant set bit
AC.cc = 0102,

REG

Sets the condition code in the arthimetic controls.

most­
in g8;

6.2.57

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Side Effects:

INSTRUCTION SET REFERENCE

scanbyte
scan byte Scan Byte Equal

scanbyte srcl,
reg/lit

src2
regllit

Performs byte-by-byte comparison of srcl and src2 and sets condition code to
0102 if any two corresponding bytes are equal. If no corresponding bytes are
equal, condition code is set to 0002,

if«src1 & OxOOOOOOFF) == (src2 & OxOOOOOOFF)

else

II (src1 & OxOOOOFFOO) == (src2 & OxOOOOFFOO)
II (src1 & OxOOFFOOOO) == (src2 & OxOOFFOOOO)
II (src1 & OxFFOOOOOO) == (src2 & OxFFOOOOOO»

AC.cc = 0102;

AC.cc = 0002;

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

Assume r9 Ox11AB1100
scanbyte OxOOAB0011, r9

scan byte 5ACH REG

bswap

AC.cc = 0102

Sets the condition code in the arthimetic controls.

6-95

INSTRUCTION SET REFERENCE intel®
6.2.58

Mnemonic:

Format:

Description:

Action:

Faults:

6-96

SEL<cc> (New 80960 Core Instruction Class)

selno Select Based on Unordered
selg Select Based on Greater
sele Select Based on Equal
selge Select Based on Greater or Equal
sell Select Based on Less
seIne Select Based on Not Equal
selle Select Based on Less or Equal
selo Select Based on Ordered

sel* srcl, src2, ' dst
regllit regllit reg

, \

Selects either srcl or src2 to be stored in dst based on the condition code bits
in the arithmetic controls. If for Unordered the condition code is 0, or if for
the other cases the logical AND of the condition code and the mask-part of
the opcode is not zero, then the value of src2 is stored in the destination. Else,
the value of srcl is stored in the destination.

Instruction MASK

selno 0002

selg 001 2

sele 0102

selge 011 2

sell 1002

seIne 1012

selle 1102

selo 1112

if «mask & AC.cc) II (mask == AC.cc))
dst = src2;

else
dst = src1;

Condition

Unordered

Greater

Equal

Greater or equal

Less

Not equal

Less or equal

Ordered

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

I

INSTRUCTION SET REFERENCE

Example: # AC.cc = 010 2

sele gO,gl,g2 # g2 = gl

AC.cc = 001 2

sell gO,gl,g2 # g2 = gO

Opcode: selno 784H REG
selg 794H REG
sele 7A4H REG
selge 7B4H REG
sell 7C4H REG
seine 7D4H REG
selle 7E4H REG
selo 7F4H REG

See Also: MOVE, test, cmpi, cmpo, SUB<cc>

Notes: This core instruction is not implemented on Cx, Kx and Sx 80960 processors.

6-97

INSTRUCTION SET REFERENCE

6.2.59

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-98

setbit
setblt

setbit

Set Bit

bitpos,
regllit.

src,
reg/lit ..

dst
reg

'...

Copies src value to dst with one bit set. bitpos specifies bit to be set.

dst = src2 I (2**(srcl %32»;

NA

setbit 15, ~9,r1 # rl = ~9 with bit 15 set.

setblt 583H ; REG

alterbit, chkbit, clrbit, notbit

INSTRUCTION SET REFERENCE

6.2.60 SHIFT
Mnemonic: shlo Shift Left Ordinal

Shift Right Ordinal
Shift Left Integer
Shift Right Integer

Format:

Description:

Action:

shro
shli
shri
shrdl

sh*

Shift Right Dividing Integer

len,
regllit

src,
regllit

dst
reg

Shifts src left or right by the number of bits indicated with the len operand
and stores the result in dst. Bits shifted beyond register boundary are
discarded. For values of len greater than 32, the processor interprets the value
as 32.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the
most significant bit. These instructions are equivalent to mulo and divo by
the power of 2, respectively.

shU shifts zeros in from the least significant bit. An overflow fault is
generated if the bits shifted out are not the same as the most significant bit (bit
31). If overflow occurs, dst will equal src shifted left as much as possible
without overflowing.

shri performs a conventional arithmetic shift-right operation by shifting in the
most significant bit (bit 31). When this instruction is used to divide a negative
integer operand by the power of 2, it produces an incorrect quotient
(discarding the bits shifted out has the effect of rounding the result toward
negative).

shrdl is provided for dividing integers by the power of 2. With this
instruction, 1 is added to the result if the bits shifted out are non-zero and the
src operand was negative, which produces the correct result for negative
operands.

shU and shrdi are equivalent to mull and dlvl by the power of 2.

shlo:
if(src1 < 32)

dst = src2 * (2**src1);
else

dst= 0;

6-99

Ii

INST-RUCnO~ SET'REFI;RI;"CE

Action:

Faults:

Example:

6-100

shro:
if(src1 < 32)

dst = src2! (2**src1);
else

dst= 0;

shli:
if(srcl > 32)

, count = 32;
else
. count = srcl;
temp = src2;
while«temp[~I] = temp[30)) && (count> 0»
{ temp = (temp * 2)[31:0]; .

count = count - 1;
}
dst=temp;
if(count> 0)
{ . if(AC.cc = 1)

AC.of= 1;
else' ,

. generate_fault(ARITHMETIC:OVERFLOW);

.shri:
, if(src1 > 32)

count = 32;
else

count = src 1 ;
temp = src2; .
while(count> 0)
{ temp"; (temp» 1)[31:0];

temp[31] = src2[31];
count = count.;. 1;'

dst=temp;

shrdl:
dst = src2! (2**srcl);

ARITHMETIC.OVERFLOW For shli

shli 13, g4, r6 # g6 = g4 shifted left 13 bits.

Opcode:

See Also:

Notes:

L

shlo
shro
shli
shrl
shrdl

59CH
598H
59EH
59BH
59AH

dlvl, mull, rotate, eshro

REG
REG
REG
REG
REG

INSTRUCTION SET REFERENCE

shU and shrdi are identical to multiplications and divisions for all positive
and negative values of src2. shri is the conventional arithmetic right shift that
does not produce a correct quotient when src2 is negative.

6-101

i

I;

i:

!I
'I

I

INSTRUCTION SET REFERENCE intet~

6.2.61

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Side Effects:

6-102

spanbit
span bit Span Over Bit

spanblt src, d~t
regllit reg

Searches src value for the most significant clear bit (0 bit). If a most
significant 0 bit is found, its bit number is stored in dst and condition code is
set to 0102, If src value is alII's, alII's are stored in dst and condition code is
set to 0002, .

dst = OxFFFFFFFF;
ACcc=OOO2;
for(i = 32; i> = 0; i--)
(if«srci & 2**i) == 0»
{ dst = i;

NA

AC.cc = 0102;

break;

Assume r2 is
spanbit r2, r9

not Oxffffffff

spanblt

scanblt

640H

r9 = bit number of most-
significant clear bit in r2i
AC.cc = 0102

REG

Sets the condition code in the arithmetic controls.

6.2.62

Mnemonic:

Format:

Description:

Action:

1

INSTRUCTION SET REFERENCE

STORE
st
stob
stos
stib
stis
stl
stt
stq

st·

Store
Store Ordinal Byte
Store Ordinal Short
Store Integer Byte
Store Integer Short
Store Long
Store Triple
Store Quad

srcl,
reg

dst
mem

Copies a byte or group of bytes from a register or group of registers to
memory. src specifies a register' or the first (lowest numbered) register of
successive registers.

dst specifies the address of the memory location where the byte or first byte
or a group of bytes is to be stored. The full range of addressing modes may be
used in specifying dst. Refer to section 2.3, "MEMORY ADDRESSING
MODES" (pg. 2-6) for a complete discussion.

stob and stib store a byte and stos and stls store a half word from the src
register's low order bytes. Data for ordinal stores is truncated to fit the
destination width. If the data for integer stores cannot be represented correctly
in the destination wiqth, an Arithmetic Integer Overflow fault is signaled.

st, stl, stt and stq copy 4, 8, 12 and 16 bytes, respectively, from successive
registers to memory.

For stl, src must specify an even numbered register (e.g., gO, g2, ... or rO, r2,
...). For stt and stq, src must specify a register number that is a multiple of
four (e.g., gO, g4, g8, ... or rO, r4, r8, ...).

st:
if (illegal_ write_to:.. . .on3hip_RAM)

generate_fault(TYPE.MISMATCH);
else if « effective_address [1 :O].!= 002) && unaligned_fauICenabled)

(store_to_memory(effective_address)[3l:0] = srcl;
generate_fault(OPERATION.UNALIGNED);}

else
store_to_memory(effective_address)[31 :0] = src1;

6-103

· INSTRUCTION SET REFERENCE inteh
Action: stob:

if (illegaC write_to_on3hip_RAM_ocMMR)
generatejault(TYPE.MISMATCH);

else
store_to_memory(effective_address)[7 :0] = srcl [7:0];

stib:
if (illegaC write_to_on_chip_RAM_oCMMR)

generatejault(TYPE.MISMATCH);
else if «srcl[31:8] != 0) && (srcl[31:8] != OxFFFFFF»

else

{ store_to_memory(effective_address)[7:0] = srcl[7:0];
if (AC.om = 1)

AC.of== 1;
else

generate_fault(ARITHMETIC.OVERFLOW);

store_to_memory(effective.:..address)[7:0] = src 1 [7 :0];
end if;

stos:
if (illegaC write_to_on....chip_RAM_ocMMR)

generatejault(TYPE.MISMATCH);
else if «effective_address[O] != O2) && unaligned_fault_enabled)

. { store_to_mel!l0ry(effective_address)[15:0] = srcl[15:0];
generate_fault(OPERATION. UNALIGNED);

else
store_to_memory(effective_address)[15:0] = srcl[15:0];

stis:
if (illegal_ write_to_on3hip_RAM_oCMMR)

generate_fault(TYPE.MISMATCH);
else if «effective_address[O] != O2) && unalignedjaulCenabled)

{ store_to_memory(effective_address)[15:0] = srcl[15:0];
generatejault(OPERATION.UNALIGNED);

}
else if«srcl[31:8]!= 0) && (srcl[31:8] != OxFFFFFF»

{ store_to_memory(effective_address)[15:0] = srcl[15:0];
if (AC.om == 1)
AC.of= 1;

else
generatejault(ARITHMETIC.OVERFLOW);

L

INSTRUCTION SET REFERENCE

else
store_to_memory(effective_address)[15:0] = srcl[I5:0];

stl:
if (illegaC write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if (reg_number(src1) % 2 != 0)

generate_fault(OPERATION.INVALID_OPERAND);
else if «effective_address[2:0] != 0002) && unaligned_fauICenabled)

else

stt:

{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31 :0] = src L +_1;
generate_fault (OPERATION. UNALIGNED);

store_to,-memory(effective_address)[31 :0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_ +_1;

if (illegal_ write_to_on3hip_RAM_oCMMR)
generatejault(TYPE.MISMATCH);

else if (reg_number(src1) % 4 != 0)
generatejault(OPERATION.lNVALID_OPERAND);

else if «effective_address[3:0] != 00002) && unalignedjault3nabled)

else

stq:

{ store_to_memory(effective_address)[31 :0] = src1;
store_to_memory(effective_address + 4)[31:0] = srcl_ +_1;
store_to_memory(effective_address + 8)[31 :0] = src L +_2;
generate_fault (OPERATION. UNALIGNED);

{ store_to_memory(effective_address)[31 :0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_ + _1;
store_to_memory(effective_address + 8)[31:0] = src1_ + _2;

if (illegal_write_to_on3hip_RAM_oCMMR)
generate_fault(TYPE.MISMATCH);

else if (reg_number(srcl) % 4 != 0)
generate_fault(OPERATION .INVALID_OPERAND);

else if «effective_address [3:0] != 00002) && unalignedjault_enabled)
{ store_to_memory(effective_address)[31:0] = srcl;

store_to_memory(effective_address + 4)[31:0] = srcL +_1;
store_to_memory(effective_address + 8)[31 :0] = src L + _2;

6-105

ii
i:
U

I!
IJ
1'/

INSTRUCTION SET. REFERENCE intet

Faults:

Example:

Opcode:

See Also:

Notes:

else

store_to_memory(effective_address + 12)[31:0] = srcL + _3;
generate ... Jault (OPERATION. UNALIGNED);

{ store_to_memory(effective_address)[31:0] :: srcl;
store_to_memory(effective_address + 4)[31:0] = src1_ +_1;
store_to_memory(effective_address + 8)[31:0] = srcL+_2;
store_to_memory(effective_address + 12)[31:0] = srcL +_3;

}

TYPE.MISMATCH
OPERA1JON.uNALIGNED .
ARITHMETIC.OVERFLOW
OPERATION.INVALID_OPERAND

For stib, stis.

st g2, 1254 (g6) # Word beginning at offset
1254+ (g6) = g2.

st 92H MEM
stob 82H MEM
stos 8AH MEM
stib C2l:l MEM
stis CAR MEM
stl 9AH MEM
stt A2H MEM
stq B2H MEM

LOAD,MOVE

illegaC write_to_on_chip_RAM is an implementation-dependent mecha­
nism. The mapping of register bits to memory(efa) depends on the endian­
ism of the memory region and is implementation-dependent.

I

INSTRUCTION SET REFERENCE

6.2.63 subc
Mnemonic: subc Subtract Ordinal With Carry

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Side Effects:

I

subc srcl,
regllit

src2,
regllit

dst
reg

Subtracts srcl from src2, then subtracts the opposite of condition code bit 1
(used here as the carry bit) and stores the result in dst. If the ordinal
subtraction results in a carry, condition code bit 1 is set to 1, otherwise it is set
toO.

This instruction can also be used for integer subtraction. Here, if integer
subtraction results in an overflow, condition code bit 0 is set.

subc does not distinguish between ordinals and integers: it sets condition
code bits 0 and 1 regardless of data type.

dst = (src2 - srcl -1 + AC.cc[1])[31:0];
AC.cc[2:0] = 0002;

if«src2[31] == srcl[31]) && (src2[31] != dst[31]))
AC.cc[O] = 1; # Overflow bit.

AC.cc[l] = (src2 - src1 -1 + AC.cc[1])[32]; # Carry out.

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6).

subc g5, g6, g7
g7 = g6 - g5 not (condition code bit 1)

subc 5B2H REG

addc, addi, addo, subl, subo

Sets the condition code in the arithmetic controls.

6-107

INSTRUCTION SET REFERENCE

6.2.64

Mnemonic:

Format:

Description:

6-108

SU B<cc> (New 80960 Core Instruction Class) <

subono Subtract Ordinal if Unordered
subog Subtract Ordinal if Greater
suboe Subtract Ordinal if Equal
suboge Subtract Ordinal if Greater or Equal
subol Subtract Ordinal if Less
subone Subtract Ordinal if Not Equal
subole ,Subtract Ordinal if Less ot Equal
suboo Subtract Ordinal if Ordered
subino ,Subtract Integer if Unordered
subig Subtract Integer if Greater
subie Subtract Integer if Equal

',subige Subtract Integer if Greater or Equal
subil Subtract Integer if Less
sublne Subtract Integer if Not Equal
subile Subtract Integer if Less or Equal
subia , Subtract Integer if Ordered '

sub* srcl, src2, dst
reg/lit ' regllit reg

Subtracts srcl from sre2 conditionally based on the condition code bits in the
arithmetic controls.

If for Unordered the condition code is 0, or if for the other cases the logical
AND of the condition, code and the mask-part of the OPCode is not zero; then
srcl is subtracted from src2 and the result stored in the destination.

Instruction MASK Condition

subono 0002 Unordered
subino

subog 001 2 Greater
subig

suboe 0102 Equal
subie

Action:

Faults:

Example:

1-

INSTRUCTION SET REFERENCE

Instruction MASK

suboge
011 2 subige

subol
1002 subil

subone
101 2 subine

subole
1102 subile

suboo
1112 subio

SUBO<cc>:
if «mask & AC.cc) II (mask = AC.cc»

dst = (src2 - src1)[31:0];

SUBI<cc>:
if «mask & AC.cc) II (mask = AC.cc»

dst = (src2 - srcl)[31:0];

Condltio.n

Greater or equal

Less

Not equal

Less or equal

Ordered

if«src2[31] != srcl[31]) && (src2[31] != dst[31]))
{ if (AC.om = 1)

AC.of = 1;
else

generate_fault (ARITHMETIC. OVERFLOW);

STANDARD
ARITHMETIC.OVERFLOW

Refer to section 6.1.6, "Faults" (pg. 6-6).
For the SUBI<cc> class.

suboge gO,gl,g2

subile gO,gl,g2

AC.cc = 010 2

g2 = gl - gO

AC.cc = 001 2

g2 not modified

6-109

I.

INSTRUCTION SET. R-=i=ERENCE

Opcode: subono 782H REG
subog 792H REG·
suboe 7A2H REG
suboge 7B2H REG
subol 7C2H REG
subone 7D2H REG
subole 7E2H REG
suboo 7F2H REG
sublno 783H REG
sublg 793H REG
suble 7A3H REG
sublge 7B3H REG
subil 7C3H REG
sublne 7D3H REG
subile 7E3H REG
sublo 7F3H REG

See Also: subc, subi, subo, SEL<cc>, test

Notes: This core instruction is not implemented on Cx, Kx and Sx 80960 processors.

6·110 __ I

intet INSTRUCTION-SET REFERENCE

6;2.65 subi, subo
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

subi Subtract Integer
subo Subtract Ordinal

sub* srcl,
regllit

src2,
regllit

dst
reg

Subtracts srcl from src2 and stores the result in dst. The binary results from
these two instructions are identical. The only difference is that subi can signal
an integer overflow.

subo:
dst = (src2 - srcl)[31:0];

subi:
dst = (src2 - srci) [3 1:0];
if«src2[31] != src1[31]) && (src2[31] != dst[31]))
(if(AC.om == I)

AC.of= I;
else

generatejault(ARITHMETIC.OVERFLOW);

ARITHMETIC.OVERFLOW for subi

subi g6, g9, g12

subi 593H
subo 592H

addi, addo, subc, addc

g12 = g9 - g6

REG
REG

6~111

I ..

I

:1
1

t:'

If

I

I

INSTRUCTION SET~REFERENCE intel®
6.2.66

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-112

syncf
syncf

syncf

Synchronize Faults

Waits for all faults to be generated that are associated with any prior
uncompleted instructions.

if(AC.nif == 1)
break;

else
waicuntiCall_previous_instructions_in_flow _have30mpleted();
This also means that all of the faults on these instructions have
been reported.

STANDARD

ld xyz,g6
addi r6, r8, r8
syncf
and g6, OxFFFF, g8

Refer to section 6.1.6, "Faults" (pg. 6-6).

The syhcf instruction ensures that any faults
that may occur during the execution of the
ld and addi instructions occur before the
and instruction is executed.

syncf 66FH REG

mark, fmark

I

INSTRUCTION SET REFERENCE

6.2.67 sysctl
Mnemonic: sysctl System Control

Format:

Description:

Message

Request Interrupt

Invalidate Cache

Configure
Instruction Cache

Reintialize

Modify Memory-
Mapped Control
Register (MMR)

Breakpoint
Resource Request

sysctl srcl,
regllit

src2,
reg/lit

src/dst
reg

Performs system management and control operations including requesting
software interrupts, invalidating the instruction cache, configuring the
instruction cache, processor reinitialization, modifying memory-mapped
registers, and acquiring breakpoint resource information.

Processor control function specified by the message field of srcl is executed.
The type field of srcl is interpreted depending upon the command.
Remaining srcl bits are reserved. The src2 and src3 operands are also
interpreted depending upon the command.

Field 2 M""",. "iW>' 8 1' Field 1

Figure 6-5. Src1 Operand Interpretation

Table 6-14. Sysctl Message Types and Operand Fields

Src1 Src2 Src/Dst

Type Field 1 Field 2 Field 3 Field 4

OxO Vector Number N/U N/U N/U

Ox1 N/U N/U N/U N/U

Cache Mode Cache load Ox2 Configuration N/U address N/U
(See Table 6-15)

Ox3 N/U N/U Starting IP PRCB Pointer

Lower 2 bytes
Ox5 N/U ofMMR Value to write Mask

address

Ox6 N/U N/U N/U
Break-~oint
info (ee

Figure 6-6)

Note: Sources and fields that are not used (designated N/U) are ignored.

L 6-113

.:;:

.",'

INSTRUCTION SET REFERENCE intet

Mode Field

0002

XX1 2

1002or ,1102

Table 6-15. Cache Configuration Modes

Mode Description JA JF,JD

Normal cache enabled 2 Kbyte 4 Kbyte

Full cache disabled 2 Kbyte 4 Kbyte

Load and lock cache 2 Kbyte 4 Kbyte

7 4 3 o
available

data
breakpoints

available
instruction
breakpoints

Figure 6-6. Src/dst Interpretation for Breakpoint Resource Request

Action: '

6-114

if (PC.em != supervisor)
generate..:Jault(TYPE.MISMATCH);

'ordec wrt(previous_operations);
OPtype = (src1 & OxffOO) » 8;
switch (OPtype) {

case 0: # Signal Software Interrupt
vectocto~post = Oxff& src1;
priority_to_post = vector_to_post» 3;
pend_ints_addr = interrupCtable_base + 4 + priority _to_post;
pend_priority = memory _read(interrupctable_base,atomic_lock);
Priority zero just recans InterruptTable
if (priority _to_post != 0)

{pend_ints = memory_read(pend_ints_addr, non-cacheable)
pend_ints[7 & vector] = 1;
pend_priority[priority_to_post] = 1;
memory _ write(pend_ints_addr, pend_ints); }

memory_write(interrupuable_base,pend_priority,atomic_unlock);
, # Update internal software priority with highest priority interrupt
from newly adjusted Pending Priorities word. The current internal
software priority is always replaced by the new, computed one. (If
there is no bit set in pending_priorities word for the current
internal one, then it is discarded by this action.)
if (pend_priority == 0)

SW _InCPriority = 0;
else { msb_set = scan_hit(pend_priority);

SW _IncPriority = msb_set; }

l

INSTRUCTION SET REFERENCE

Make sure change to internal software priority takes full effect
before next instruction.
ordec wrt(subsequencoperations);

break;
case 1: # Global Invalidate Instruction Cache

invalidate_instruction_cache();
unlock_instruction3ache();

case 2:

case 3:

case 5:

break;
Configure Instruction-Cache
mode = src 1 & Oxff;
if (mode & 1) disable_instruction3ache;
else switch (mode) {

case 0: enable_instruction3ache; break;
case 4,6: # Load & Lock code into Instr-Cache

All contiguous blocks are locked.
Note: block = way on i960 Jx microprocessor.
src2 has starting address of code to lock.
src2 is aligned to a quadword
boundary.
aligned_addr = src2 & OxfffffffO;
invalidate(I -cache); unlock(I -cache);
for G = 0; j < numbecoCblocks_thaUock; j++)
{way = block_associated_ with_blockG);
start = src2 + j*block_size;
end = start + block_size;
for (i = start; i < end; i=i+4)

{ set = secassociated_with(i);
word = word_associated_ with(i);
Icache_line[set][way][word] =

memory[i];
update_tag_n_ valid_bits(set, way, word)
lock_icache(set, way, word);

} } break;
default:

generate_operation_invalid_operand_fault;
} break;

Software Re-init
disable(Ccache); invalidate(Ccache);
disable(D _cache); invalidate(D _cache);
Process_PRCB(dst); # dst has ptr to new PRCB
IP = src2;
break;
Modify One Memory-Mapped Control Register (MMR)
srcl[31:16] has lower 2 bytes ofMMR address

6-115

i.

!.

, .

INSTRUCTION SET REFERENCE intel®

Faults:

Example:

Opcode:

See Also:

Notes:

6-116

case 6:

default:

src2 has value to write; dst has mask.
After operation, dst has old value of MMR
addr = (OxffOO « 16) I (src1 » 16);
temp = memory[addr];
memory[addr] = (src2 & dst) I (temp & -dst);
dst = temp;
break;
Breakpoint Resource Request
acquire_available_instcbreakpoints();
dst[3:0] = numbecoCavailable_instcbreakpoints;
acquire_available_data_breakpoints();
dst[7:4] = numbecoCavailable_data_breakpoints;
dst[31:8] = 0;
break;
Reserved, fault occurs
generate_fault(OPERATION.INVALID_OPERAND);
break;

order_ wrt(subsequencoperations);

STANDARD Refer to section 6.1.6, "Faults"
(pg.6-6).

OPERATION.INVALID_OPERAND
TYPE.MISMATCH

ldconst OxlOO,r6
sysctl r6,r7,rB

ldconst Ox204, gO

ldconst Ox20000000,g2

sysctl gO, g2 , g2

sysetl

deetl, iectl

659H REG

Set up message.
Invalidate instruction
cache.
r7, rB are not used.
Set up message type and
cache configuration
mode.
Lock half cache.
Starting address of
code.
Execute Load and Lock.

This instruction is implemented on 80960Jx and 80960Cx processors, and
mayor may not be implemented on future i960 processors.

I

6.2.68

Mnemonic:

Format:

Description:

Action:

INSTRUCTION SET REFERENCE

TEST<cc>
teste
testne
testl
testle
testg
testge
testa
testno

test*

Test For Equal
Test For Not Equal
Test For Less
Test For Less Or Equal
Test For Greater
Test For Greater Or Equal
Test For Ordered
Test For Not Ordered

dst
reg

Stores a true (OIR) in dst if the logical AND of the condition code and opcode
mask-part is not zero. Otherwise, the instruction stores a false (OOR) in dst.
For testno (Unordered), a true is stored if the condition code is 0002,

otherwise a false is stored.

The following table shows the condition-code mask for each instruction. The
mask is in bits 0-2 of the opcode.

Instruction Mask Condition

testno 0002 Unordered

testg 001 2 Greater

teste 0102 Equal

testge 011 2 Greater or equal

testl 1002 Less

testne 101 2 Not equal

testle 1102 Less or equal

testo 1112 Ordered

The optional .t or .f suffix may be appended to the mnemonic. Use .t to speed­
up execution when these instructions usually store a true (1) condition in dst.
Use .f to speed-up execution when these instructions usually store a false (0)
condition in dst. If a suffix is not p~ovided, the assembler is free to provide
one.

For all TEST <cc> except testno:
if«mask & AC.cc) != 0002)

src1 = I; #true value
else

src1 = 0; #false value

6-117

INSTRUCTION SET REFERENCE

Action: testna:
if(AC.cc == 0002)

src1 = 1; #true value
else

src1 = 0; #false value

Faults: NA

Example: # Assume AC.cc = 1002
testl g9 # g9 = Ox00000001

Opcode: teste 22H COBR
testne 25H COBR
testl 24H COBR
testle 26H COBR
testg 2lH COBR
testge 23H COBR
testa 27H COBR
testna 20H COBR

See Also: cmpi, cmpdeci, cmpinci

6-118

6.2.69

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

xnor, xor
xnor Exclusive Nor
xor Exclusive Or

xnor srcl, src2, dst
reg/lit reg/lit reg

xor srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction)
operation on the src2 and src1 values and stores the result in dst.

xnor:
dst = -(src21 src1) I (src2 & src1);

xor:
dst = (src2 I srct) & -(src2 & srct);

NA

xnor r3, r9, r12
xor gl, g7, g4

xnor
xor

589H
586H

r12 = r9 XNOR r3
g4 = g7 XOR gl

REG
REG

and, andnot, nand, nor, not, notand, notor, or, ornot

6-119

ii
I',

i!
I
ii ,
~ 1

i

1'1
"

i:
I

I
!,

7
PROCEDURE CALLS

1
Ii ,
II
I~

I'

i
I,

Ii
Ii

,I

!

CHAPTER 7
PROCEDURE CALLS

This chapter describes mechanisms for making procedure calls, which include branch-and-link
instructions, built-in call and return mechanism, call instructions (call, calix, calls), return
instruction (ret) and call actions caused by interrupts and faults.

The i960® architecture supports two methods for making procedure calls:

• A RISe-style branch-and-link: a fast call best suited for calling procedures that do not call
other procedures.

• An integrated call and return mechanism: a more versatile method for making procedure calls,
providing a highly efficient means for managing a large number of registers and the program
stack.

On a branch-and-link (bal, balx), the processor branches and saves a return IP in a register. The
called procedure uses the same set of registers and the same stack as the calling procedure. On a
call (call, calix, calls) or when an interrupt or fault occurs, the processor also branches to a target
instruction and saves a return IP. Additionally, the processor saves the local registers and allocates
a new set of local registers and a new stack for the called procedure. The saved context is restored
when the return instruction (ret) executes.

In many RISC architectures, a branch-and-link instruction is used as the base instruction for coding
a procedure call. The user program then handles register and stack management for the call. Since
the i960 architecture provides a fully integrated call and return mechanism, coding calls with
branch-and-link is not necessary. Additionally, the integrated call is much faster than typical RISC­
coded calls.

The branch-and-link instruction in the i960 processor family, therefore, is used primarily for
calling leaf procedures. Leaf procedures call no other procedures; they reside at the "leaves" of the
call tree.

In the i960 architecture the integrated call and return mechanism is used in two ways:

• explicit calls to procedures in a user's program

• implicit calls to interrupt and fault handlers

The remainder of this chapter explains the generalized call mechanism used for explicit and
implicit calls and call and return instructions.

7-1

PROCEDURE CALLS in+-I ''eI®

The processorperlorms two call actions:

local,

supervisor

When a local call is made, execution mode remains unchanged and the stack
frame for the callect procedure is placed on the local stack. The local stack refers
to the stack of the calling procedure.

When a supervisor call is made from user mode, execution mode is switched to
supervisor and the stack frame for the called procedure is placed on the
supervisor stack.

When a supervisor call is issued from supervisor mode, the call degenerates into
a local call (i.e., no mode nor stack switch).

Explicit procedure calls can be made using several instructions. Local call instructions call and
calix perform a local call action. With call and calix, the called procedure's IP is included as an
operand in the instruction. '

A system call is made with calls. This instruction is similar to call and calix, except that the
processor obtains the called procedure's IP from the system proce4ure table. A system call, when
executed, is directed to perform either the local or supervisor call action. These calls are referred
to as system-local and system-supervisor calls; respectively. A system~supervisor call is also
referred to as Ii supervisor call. . .

7.1 CALL AND RETURN MECHANISM

At any point in a program" the i960 processor has access to" the global registers, a local register set
and the procedure stack. A subset of the stack allocated to the procedure is called the stack frame.

• When a call executes, a new stack frame is allocated for the called procedure. The processor
also saves the current local register set, freeing these registers for use by the newly called
procedure. In this way, every procedure has a unique stack and a unique set of local registers.

• When a return executes, the current local register set and current stack frame are deallocated.
The previous local register set and previous stack frame are restored.

7.1.1 Local Registers and the Procedure Stack

The processor automatically allocates a set of 16 local registers for each procedure. Since local
registers are on-chip, they provide fast access storage for local variables. Of the 16 local registers,
. 13 are available for general use; rO, r1 and r2 are reserved for linkage information to tie procedures
together.

7-2

PROCEDURE CALLS

The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Therefore, initial register contents are unpredictable. Also, because the processor does
not initialize the local register save area in the newly created stack frame for the procedure, its
contents are equally unpredictable.

The procedure stack can be located anywhere in the address space and grows from low addresses
to high addresses. It consists of contiguous frames, one frame for each active procedure. Local
registers for a procedure are assigned a save area in each stack frame (Figure 7-1). The procedure
stack, available to the user, begins after this save area.

To increase procedure call speed, the architecture allows an implementation to cache the saved
local register sets on-chip. Thus, when a procedure call is made, the contents of the current set of
local registers often do not have to be written out to the save area in the stack frame in memory.
Refer to section 7.1.4, "Caching of Local Register Sets" (pg. 7-9) and section 7.1.4.1, "Reserving
Local Register Sets for High Priority Interrupts" (pg. 7-10) for more about local registers and
procedure stack interrelations

_L

Current Register Set

gO

Frame Pointer (FP) g15

Procedure Stack

Previous Frame Pointer (PFP) rO

Stack Pointer (SP) r1

Return Instruction Pointer (RIP) r2

user allocated stack

padding area

user allocated stack

unused stack

stack growth
(toward higher addresses)

I

r15

Previous
Stack

Frame

Current
Stack
Frame

Figure 7-1. Procedure Stack Structure and Local Registers

7-3

PROCEDURE CALLS

7.1.2 Local Register and Stack Management

Global register g15 (FP) and local registers rO (pFP), rI (SP) and r2 (RIP) contain information to
link procedures together and link local registers to the procedure stack (Figure 7-1). The following
subsections describe this linkage information.

7.1.2.1 Frame Pointer

The frame pointer is the current stack frame's ftrst byte address. It is stored in global register g15,
the frame pointer (FP) register. The FP register is always reserved for the frame pointer; do not use
g15 for general stprage.

Stack frame alignment is deftned for each implementation of the i960 processor family, according
to an SALIGN parameter (see section A.2.5, "Data and Data Structure Alignment" (pg. A~3)). In
the i960 Jx processors, stacks are aligned on 16-byte boundaries (see Figure 7-1). When the
processor needs to create a new frame on a procedure call, it adds a padding area to the stack so
that the new frame starts on a 16-byte boundary.

7.1.2.2 Stack Pointer

The stack pointer is the byte-aligned address of the stack frame's next unused byte. The stack
pointer value is stored in local register rI, the stack pointer (SP) register. The procedure stack
grows upward (i.e., toward higher addresses). When a stack frame is created, the processor
automatically adds 64 to the frame pointer value and stores the result in the SP register. This action
creates the register save area in the stack frame for the local registers.

The user must modify the SP register value when data is stored or removed from the stack. The
i960 architecture does not provide an explicit push or pop instruction to perform this action. This
is typically done by adding the size of all pushes to the stack in one operation.

7.1.2.3 Considerations When Pushing Data onto the Stack

Care should be taken in writing to stack in the presence of unforeseen faults and interrupts. In the
general case, to ensure that the data written to the stack is not corrupted by a fault or interrupt
record, the SP should be incremented first to allocate the space, and then the data should be written
to the space so allocated: .

mov
addo
st

st

7-4

sp,r4
24,sp,sp
data, (r4)

data,20(r4)

L

int"et PROCEDURE CALLS

7.1.2.4 Considerations When Popping Data off the Stack

For reasons similar to those discussed in the previous section, care should be taken in reading the
stack in the presence of unforeseen faults and interrupts. In the general case, to ensure that data
about to be popped off the stack is not corrupted by a fault or interrupt record, the data should be
read first and then the sp should be decremented:

subo 24,sp,r4
Id 20(r4) ,rn

Id (r4) , rn
mov r4, sp

7.1.2.5 Previous Frame Pointer

The previous frame pointer is the previous stack frame's first byte address. This address' upper 28
bits are stored in local register rO, the previous frame pointer (PFP) register. The four least­
significant bits of the PFP are used to store the return-type field.

7.1.2.6 Return Type Field

PFP register bits 0 through 3 contain return type information for the calling procedure. When a
procedure call is made - either explicit or implicit - the processor records the call type in the
return type field. The processor then uses this information to select the proper return mechanism
when returning to the calling procedure. The use of this information is described section 7.8,
"RETURNS" (pg. 7-20).

7.1.2.7 Return Instruction Pointer

The actual RIP register (r2) is reserved by the processor to support the call and return mechanism
and must not be used by software; the actual value of RIP is unpredictable at all times. For
example,an implicit procedure call (fault or interrupt) can occur at any time and modify the RIP.
An OPERATION.UNIMPLEMENTED fault is generated when attempting to write the RIP.

The image of the RIP register in the stack frame is used by the processor to determine that frame's
return instruction address. When a call is made, the processor saves the address of the instruction
after the call in the image of the RIP register in the calling frame.

7.1.3 Call and Return Action

To clarify how procedures are linked and how the local registers and stack are managed, the
following sections describe a general call and return operation and the operations performed with
the FP, SP, PFP and RIP registers described in the preceding sections.

__ L 7-5

PROCEDURE CALLS int"et
The events for call and return operations are given ina logical order of operation. The i960 Jx
processors can execute independent operations in parallel; therefore, many of these events execute
simultaneously. For example, to improve performance, the processors often begin prefetch of the
target instruction for the call or return before the operation is complete.

7.1.3.1 Call Operation .

When a call, calls or calix instruction is executed or an implicit call is triggered:

1. The processor stores the instruction pointer for the instruction following the call in the
current stack's RIP register (r2).

2. The CJllTent local registers - including the PFP, SP and RIP registers - are saved, freeing
these for use by the called procedure. Because saved local registers are cached on the
i960 Jx processors, the registers are always saved in the on-chip local register cache at this
time.

3. The frame pointer (g15) for the calling procedure is stored in the current stack's PFP
register (rO). The return type field in the PFP register is set according to the call type which
is performed. See section 7.8, "RETURNS" (pg. 7-20).

4. For a local or system-local call, new stack frame is allocated by using the stack pointer
value saved in step 2. This value is first rounded to the next 16-byte boundary to create a
new frame,pointer, then stored in the FP register. Next, 64 bytes are added to create the new
frame's register save area. This value is stored in the SP register.

For an interrupt call from user mode, the interrupt stack pointer is used instead of the value
saved in step 2.

For a system-supervisor call from user mode, the Supervisor Stack Pointer (SSP) is used as
, a base instead of the value saved in step 2.

5. The instruction pointer is loaded with the address of the first instruction in the called
procedure. The processor gets the new instruction pointer from the call, the system
procedure table, the interrupt table or the fault table, depending on the type of call executed.

Upon completion of these steps, the processor begins executing the called procedure. Sometime
before a return or nested call, the local register set is bound to the allocated stack frame.

7.1.3.2 Binding of the local register set to the allocated stack frame

The time at which the local register set is actually bound to its save area in the allocated stack
frame may vary across implementations. Some implementations may perform the binding at
activation time during the call; others may perform the binding only when necessary, such as
before processing an explicit/implicit call from the activated procedure itself. This is only a

7-6

PROCEDURE CALLS

problem when an activated procedure attempts to change its own FP; in this case it is unpredictable
where the register set is actually saved. However, there are only two possibilities for the result: the
register set must be saved at the new or at the old address.

The following code illustrates the case:

routinel:

routine2:

Suppose fp = frameA by definition of the

current frame.

lda frameB, fp

call routine2

flushreg

Where did the previous local register set get

saved? It may have been saved starting at

address frameA or frameB depending on the

implementation.

The stack itself (the stack frame without the register save area) does not encounter this problem,
since its binding is immediate. The previous example is modified below to illustrate the point:

routinel: # suppose fp = frameA by definition of the

current frame

routine2:

sp
lda
st

frameA+64
frameB, fp
datal, sp# place datal on stack

flushreg
ld frameA+64 , data2

datal = data2 in all cases

Modification of FP should be done inside a called procedure, through the use of PFP, as described
in section 7.2, "MODIFYING THE PFP REGISTER" (pg. 7-13).

7-7

I~
i

'PROCEDURE~CAt.LS

7.1.3.3 ,. Return Operation r .

A return from any call type - explicit Or implicit;- is always initiated with a .return (ret)
instruction. On a return, the processor performs these operations:

1. The current stack frame and local registers are deallocated by loading the FP register with
the value of the PFP regi~ter.

2. The local registers for the return target procedure are retrieved. The registers are usually
read from the local register cache; however, in some cases, these registers have been
flushed from register cache to memory and must be read directly from the save area in the
stack frame.

3. The processor sets the instruction pointer to the value of the RIP register.

Upon completion of these steps, the processor executes t)1e procedure to which it returns. The
frames created before the ret instruction was executed will be overwrHten by later implicit or
explicit call operations.

7.1.4 Caching of, LQcal Register Sets

" Actual implementations of the i960 architecture may cache some number of local register sets
within the processor to improve performance. Local registers are typically saved and restored from
the local register cache when calls and returns are executed. Other overhead associated with a call
or return is performed in parallel with this data movement.

When the number of nested procedures exceeds local register cache size, local register sets must at
times be saved to (and restored from) their associated save areas in the procedure stack. Because
these operations require access to external memory, this local cache miss impacts call and return
performance.

When a call is made and no frames ~e available in the register cache, a register set in the cache
.. must be saved to external memory to make .room Jor the current, set of local'registers in, the, cache
(see section 4.2, "LOCAL REGISTER CACHE" (pg. 4-2). This actio(1 is referred to as a frame
spill. The oldest set of local registers stored in the cache is spilled to the associated local register
save area in the procedure stack. Figure 7-2 illustrates a call operation with and without a frame
spill.

Similarly, when a return is made and the local register set for the target procedure is not available
in the cache, these local registers must be retrieved from the procedure stack in memory. This
operation is referred to as a frame fill. Figure 7-3 illustrates return operations with and without
frame fills.

_1-

PROCEDURE CALLS

The instruction flushreg, described in section 6.2.30, "flushreg" (pg. 6-55), is provided to write all
local register sets (except the current one) to their associated stack frames in memory. The register
cache is then invalidated, meaning that all flushed register sets are restored from their save areas in
memory.

For most programs, the existence of the multiple local register sets and their saving/restoring in the
stack frames should be transparent. However, some cases where it may not be apparent follow.

• Without executing flushreg ftrst, a store to memory does not necessarily update a local
register set.

• Without executing flushreg ftrst, reading from memory does not necessarily return the current
value of a local register set.

• There is no mechanism, including flushreg, to access the current local register set with a read
or write to memory.

• flush reg must be executed sometime before returning from the current frame if the current
procedure modiftes the PFP in register rO, or else the behavior of the ret instruction is not
predictable.

• The values of the local registers r2 to r15 in a new frame are undeftned.

flushreg is commonly used in debuggers or fault handlers to gain access to all saved local
registers. In this way, call history may be traced back through nested procedures.

7.1.4.1 Reserving Local Register Sets for High Priority Interrupts

To decrease interrupt latency for high priority interrupts (interrupted state and process priority I'
greater than or equal to 28), software can limit the number of frames available to all remaining
code. This includes code that is either in the executing state (non-interrupted) or code that is in the
interrupted state, but, has a process priority less than 28. For the purposes of discussion here, this
remaining code will be referred to as non-critical code. Specifying a limit for non-critical code,
ensures that some number of free frames are available to high-priority interrupt service routines.
Software can specify the limit for non-critical code by writing bits 10 through 8 of the register
cache conftguration word in the PReB (see Figure 11-6 on page 11-16). The value indicates how
many frames within the register cache may be used by non-critical code before a frame needs to be
flushed to external memory. The programmed limit is used only when a frame is pushed, which
occurs only for an implicit or explicit call.

Allowed values of the programmed limit range from 0 to 7. Setting the value to 7 reserves no
frames for high-priority interrupts. Setting the value to 0 causes the register cache to become
disabled for non-critical code.

-~.
7-9

PROCEDURE CALLS

Procedure stack

(0 = Main,successive

numbers indicate nested
procedure level)

call with no frame spill

'L-I ___ •••

7-10

r.:1 local register
~ set n stored

on procedure stack

•
user
stack
space

r.::"I reserved
~ for local

register set n

local register cache
(with no sets reserved for

high priority interrupts)

current local

register set

L

empty 2

2 3

3 4

4 5

5 6

6 7

7 8

8 9

10

Figure 7-2. Frame Spill

in1et

call with frame spill

3

4

5

6

7

8

9

10

I

Procedure stack

(0 = Main, successive

numbers indicate nested
procedure level)

local register cache

(With nose ts reserved

for high prio rity interrupts)

I

tlocal curren

regist erset

I

-

-I
r:1 local register • user
~ set n stored stack

on procedure stack space

3

4

return with no frame fill

1

1:"':"1 reserved
~ for local

register set n

3

Figure 7-3. Frame Fill

PROCEDURE CALLS

return with frame fill

2

7-11

PROCEDURE CALLS

7.2 MODIFYING THE PFP REGISTER

Modification of the PFPis typically for context switches; as part of the switch, the active
procedure changes the pointer to the frame that it will return to (previous frame pointer -- PFP).
Great care should be taken in modifying the PFP. In the general case, a flushreg must be issued
before and after modifying the PFP when the local register cache is enabled. See Example 7-1.

Example 7-1. Modifying the PFP

Do a context switch.

Assume PFP = Ox5002.

flushreg

Ida Ox8002,pfp

flushreg

ret

Flush Frames to correct address.

Ensure that "ret" gets updated PFP.

These requirements ensure the correct operation of a context switch on all i960 processors in all
situations.

The f!ushreg before the modification is necessary to ensure that the frame of the previous context
(mapped to Ox5000 in the example) is "spilled" to the proper external memory address and
removed from the local register cache. If the flushreg before the modification was omitted, a
flushreg (or implicit frame spill due to an interrupt) after the modification of PFP would cause the
frame of the previous context to be written to the wrong location in external memory.

The flush reg after the modification ensures that outstanding results are completely written to the
PFP before a subsequent ret instruction can be executed. Recall that the ret instruction uses the
low-order 4-bits of the PFP to select which ret function to perform. Requiring the flushreg after
the PFP modification allows an i960 implementation to implement a simple mechanism that
quickly selects the ret function at the time the ret instruction is issued and provides a faster return
operation.

Note the flushreg after the modification will execute very quickly because the local register cache
has already been flushed by the flushreg before; only synchronization of the PFP will be
performed. i960 implementations may provide other mechanisms to ensure PFP synchronization
in addition to flushreg, but, a flushreg after a PFP modification is ensured to work on all i960
processors.

7-12

PROCEDURE CALLS

7.3 PARAMETER PASSING

Parameters are passed between procedures in two ways:

value

reference

Parameters are passed directly to the calling procedure as part of the call and
return mechanism. This is the fastest method of passing parameters.

Parameters are stored in an argument list in memory and a pointer to the
argument list is passed in a global register.

When passing parameters by value, the calling procedure stores the parameters to be passed in I!

global registers. Since the calling procedure and the called procedure share the global registers, the i~
called procedure has direct access to the parameters after the call.

When a procedure needs to pass more parameters than will fit in the global registers, they can be
passed by reference. Here, parameters are placed in an argument list and a pointer to the argument
list is placed in a global register.

The argument list can be stored anywhere in memory; however, a convenient place to store an
argument list is in the stack for a calling procedure. Space for the argument list is created by incre­
menting the SP register value. If the argument list is stored in the current stack, the argument list is
automatically deallocated when no longer needed.

A procedure receives parameters from - and returns values to - other calling procedures. To do
this successfully and consistently, all procedures must agree on the use of the global registers.

Parameter registers pass values into a function. Up to 12 parameters can be passed by value using
the global registers. If the number of parameters exceeds 12, additional parameters are passed
using the calling procedure's stack; a pointer to the argument list is passed in a pre-designated
register. Similarly, several registers are set aside for return arguments and a return argument block
pointer is defined to point to additional parameters. If the number of return arguments exceeds the
available number of return argument registers, the calling procedure passes a pointer to an
argument list on its stack where the remaining return values will be placed. Example 7-2 illustrates
parameter passing by value and reference.

7-13

PROCEDURE CALLS intet
Local registers are automatically saved when a call is made. Because of the local register cache,
they are saved quickly and with no external bus traffic. The efficiency of the local register
mechanism plays an important role in two cases when calls are made:

1. When a procedure is called which contains other calls, global parameter registers should be
moved to working local registers at the beginning of the procedure. In this way, parameter
registers are freed and nested calls are easily managed. The register move instruction
necessary to perform this action is very fast; the working parameters - now in local
registers - are saved efficiently when nested calls are made.

2. When other procedures are nested within an, interrupt or fault procedure, the procedure
must preserve all normally non-preserved parameter registers, such as the global registers.
This is necessary because the interrupt or fault occurs at any point in the user's program and
a return from an interrupt or fault must restore the exact processor state. The interrupt or
fault procedure can move non-preserved global registers to local registers before the nested
call.

Example 7-2. Parameter Passing Code Example

Example of
if C-source:

parameter passing . . .
int a,b[10]i

mov
ldconst
ldconst
lda
call
mov

-proc1 :
movq

mov
ret

a = proc1(a,1, 'x' ,&b[O])i
assembles to
r3,gO
1,gl
120, g2
Ox40 (fp) , g3
-proc1
gO,r3

gO,r4

r3,gO

value of a
value of 1
value of "x"
reference to b[lO]

#save return value in

save parameters

Ila"

other instructions in procedure
and nested calls
load return parameter

7.4 LOCAL CALLS

A local call does not cause a stack switch. A local call can be made two ways:

• with the call and calix instructions; or

• with a system-local call as described in section 7.5, "SYSTEM CALLS" (pg. 7-16) .

7-14

intet PROCEDURE CALLS

call specifies the address of the called procedures as the IP plus a signed, 24-bit displacement (i.e.,
_223 to 223 - 4). calix allows any of the addressing modes to be used to specify the procedure
address. The IP-with-displacement addressing mode allows full 32-bit IP-relative addressing.

When a local call is made with a call or calix, the processor performs the same operation as
described in section 7.1.3.1, "Call Operation" (pg. 7-7). The target IP for the call is derived from

. the instruction's operands and the new stack frame is allocated on the current stack.

7.5 SYSTEM CALLS

A system call is a call made via the system procedure table. It can be used to make a system-local
call - similar to a local call made with call and calix in the sense that there is no stack nor mode
switch - or a system supervisor call. A system call is initiated with calls, which requires a
procedure number operand. The procedure number provides an index into the system procedure
table, where the processor finds IPs for specific procedures.

Using an i960 processor language assembler, a system procedure is directly declared using the
.sysproc directive. At link time, the optimized call directive, callj, is replaced with a calls when a
system procedure target is specified. (Refer to current i960 processor assembler documentation for
a description of the .sysproc and callj directives.)

The system call mechanism offers two benefits. First, it supports application software portability.
System calls are commonly used to call kernel services. By calling these services with a procedure
number rather than a specific IP, applications software does not need to be changed each time the
implementation of the kernel services is modified. Only the entries in the system procedure table
must be changed. Second, the ability to switch to a different execution mode and stack with a
system supervisor call allows kernel procedures and data to be insulated from applications code.
This benefit is further described in section 3.7, "USER SUPERVISOR PROTECTION MODEL"
(pg.3-22).

7.5.1 System Procedure Table

The system procedure table is a data structure for storing IPs to system procedures. These can be
procedures which software can access through (1) a system call or (2) the fault handling
mechanism. Using the system procedure table to store IPs for fault handling is described in section
9.1, "FAULT HANDLING FACILITIES OVERVIEW" (pg. 9-1).

Figure 7-4 shows the system procedure table structure. It is 1088 bytes in length and can have up to
260 procedure entries. At initialization, the processor caches a pointer to the system procedure
table. This pointer is located in the PRCB. The following subsections describe this table's fields.

7-15

PROCEDURE CALLS

31 o

010H Trace
Control
Bit

02CH

030H

034H

038H
03CH

~ __ ~438H

L-~ ______ ~~~~~~~~ ______ ~~43CH
31 Proc;edure Entry

I address

I Reserved
. " (Initialize to 0)

I Preserved

Figure 7-4. System Procedur~ Table

7.5.1.1 Procedure Entries

2 1 0

II I
I L Entry Type:

00 - Local
10-Supervlsor

A pro~edure entry in the syste~ procedure taQle specifies a procedure's location and type. Each
entry is one word in length and consists. ,of an address (IP) field and a type field. The address field
gives the address of the first instruction of the target procedure. Since all instructions are word
aligned, only the entry's 30 most significant bits are used for the address. The entry's two least~
significant bits specify entry type. The procedure entry type field indicates call type: system-local
call or system-superVisor call (Table 7-1). On a system call, !the processor performs . different
actions depending on the type of call selected.

7-16 I

PROCEDURE CALLS

Table 7-1. Encodings of Entry Type Field in System Procedure Table

Encoding Call Type

00 System-Local Call

01 Reserved1

10 System-Supervisor Call

11 Reserved 1

1. Calls with reserved entry types have unpredictable behavior.

7.5.1.2 Supervisor Stack Pointer

When a system-supervisor call is made, the processor switches to a new stack called the supervisor
stack, if not already in supervisor mode. The processor gets a pointer to this stack from the
supervisor stack pointer field in the system procedure table (Figure 7-4) during the reset initial­
ization sequence and caches the pointer internally. Only the 30 most significant bits of the
supervisor stack pointer are given. The processor aligns this value to the next 16 byte boundary to
determine the first byte of the new stack frame.

7.5.1.3 Trace Control Bit

The trace control bit (byte 12, bit 0) specifies the new value of the trace enable bit in the PC
register (PC.te) when a system-supervisor call causes a switch from user mode to supervisor mode.
Setting this bit to 1 enables tracing in the supervisor mode; setting it to 0 disables tracing. The use
of this bit is described in section 10.1.2, "PC Trace Enable Bit and Trace-Fault-Pending Flag" (pg.
10-3).

7.5.2 System Call to a Local Procedure

When a calls instruction references an entry in the system procedure table with an entry type of 00,
the processor executes a system-local call to the selected procedure. The action that the processor
performs is the same as described in section 7.1.3.1, "Call Operation" (pg. 7-7). The call's target IP
is taken from the system procedure table and the new stack frame is allocated on the current stack,
and the processor does not switch to supervisor mode. The calls algorithm is described in section
6.2.14, "calls" (pg. 6-26).

7.5.3 System Call to a Supervisor Procedure

When a calls instruction references an entry in the system procedure table with an entry type of
102, the processor executes a system-supervisor call to the selected procedure. The call's target IP
is taken from the system procedure table.

7-17

I,
Ii

il
IJ

,
I~
II
i~

PROC.EDURE CALLS

The processor performs the same action as described in section 7.1.3.1, "Call Operation" (pg. 7-7),
with the following exceptions:

• If the processor is in user mode, it switches to supervisor mode.

• If a mode switch occurs, SP is read from the Supervisor Stack Pointer (SSP) base. A new
frame for the called procedure is placed at the location pointed to after alignment of SP.

• If no mode switch occurs, the new frame is allocated on the current stack.

• If a mode switch occurs, the state of the trace enable bit in the PC register is saved in the
return type field in the PFP register. The trace enable bit is then loaded from the trace control
bit in the system procedure table. '

• If no mode switch occurs, the value 0002 (calls instruction) or 0012 (fault call) is saved in the
return type field of the pfp register.

When the processor switches to supervisor mode, it remains in that mode and creates new frames
on the supervisor stack until a return is performed from the procedure that caused the original
switch to supervisor mode. While in supervisor mode, either the local call instructions (call and
calix) or calls can be used to call procedures.

The user-supervisor protection model and its relationship to the supervisor call are described in
section 3.7, "USER SUPERVISOR PROTECTION MODEL" (pg. 3-22).

7.6 USER AND SUPERVISOR STACKS

When using the user-supervisor protection mechanism, the processor maintains separate stacks in
the address space. One of these stacks - the user stack - is for procedures executed in user
mode; the other stack - the supervisor stack - is for procedures executed in supervisor mode.

The user and supervisor stacks are identical in structure (Figure 7-1). The base stack pointer for
the supervisor stack is automatically read from the system procedure table and cached internally
during initialization. Each time a user-to-supervisor mode switch occurs, the cached supervisor
stack pointer base is used for the starting point of the new supervisor stack. The base stack pointer
for the user stack is usually created in the initialization code. See section 11.2, "INITIAL­
IZATION" (pg. 11-2). The base stack pointers must be aligned to a 16-byte boundary; otherwise,
the first frame pointer on the interrupt stack is rounded up to the previous 16-byte boundary.

7-18

PROCEDURE CALLS

7.7 INTERRUPT AND FAULT CALLS

The architecture defines two types of implicit calls that make use of the call and return mechanism:
interrupt handling procedure calls and fault handling procedure calls. A call to an interrupt
procedure is similar to a system-supervisor call. Here, the processor obtains pointers to the
interrupt procedures through the interrupt table. The processor always switches to supervisor mode
on an interrupt procedure call.

A call to a fault procedure is similar to a system call. Fault procedure calls can be local calls or
supervisor calls. The processor obtains pointers to fault procedures through the fault table and
(optionally) through the system procedure table.

When a fault call or interrupt call is made, a fault record or interrupt record is placed in the newly
generated stack frame for the call. These records hold the machine state and information to identify
the fault or interrupt. When a return from an interrupt or fault is executed, machine state is restored
from these records. See CHAPTER 9, FAULTS for more information on the structure of the fault
and interrupt records.

7.8 RETURNS

The return (ret) instruction provides a generalized return mechanism that can be used to return
from any procedure that was entered by call, calls, calix, an interrupt call or a fault call. When ret
executes, the processor uses the information from the return-type field in the PFP register (Figure
7-5) to determine the type of return action to take.

Return Status
Return-Type Field - PFP.rt

Address-PFP.a t

Pre-Return-Trace Flag - PFP.p I I
Previous Frame Pointer

I I I I

I ~IIIIIIIIIIIIIIIIIIIIIIIIIII :IPI il ~Ill
31 28 24 20 16 12 8 4 o

Figure 7·5. Previous Frame Pointer Register (PFP) (rO)

return-type field indicates the type of call which was made. Table 7-2 shows the return-type field
encoding for the various calls: local, supervisor, interrupt and fault.

.L 7-19

1\

II

PROCEDURE CALLS

trace-on-return flag (PFP.rtO or bit 0 of the return-type field) stores the trace enable bit value when
a system-supervisor call is 'made from user mode. When the call is made, the PC register trace
enable bit is saved as the trace-on-return flag and then replaced by the trace controls bit in the
system procedure table. On a return, the trace enable bit's original value is restored. This
mechanism allows instruction tracing to be turned on or off when a supervisor mode switch
occurs. See section 10.5.2.3, "Tracing on Return from Explicit Call" (pg. 10-14).

prereturn-trace flag (PFP.p) is used in conjunction with call-trace and prereturn-trace modes. If
call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag;
otherwise it clears the flag. Then, if this flag is set and prereturn-trace mode is enabled, a prereturn
trace event is generated on a return, before any actions associated with the return operation are
performed. See section 10.2, "TRACE MODES" (pg. 10-3) for a discussion of interaction
between call-trace and prereturn-trace modes with the prereturn-trace flag.

Table 7-2. Encoding of Return Status Field

Return Status
CalilYpe Return Action Field

Local call
Local return 000 (system-local call or system-supervisor (return to local stack; no mode switch)

call made from supervisor mode)

001 , Fault call Fault return

Supervisor return

01t System-supervisor from user mode
(return to user stack, mode switch to user
mode, trace enable bit is replaced with the t bit
stored in the PFP register on the call)

100 reserved 1

101 reserved1

11~ reserved1

111 Interrupt call Interrupt return

NOTE: "t" denotes the trace-on-return flag; used only for system supervisor calls which cause a user-to­
supervisor mode switch.

1. This return type results in unpredictable behavior.

7-20

PROCEDURE CALLS

7.9 BRANCH-AND-LiNK

A branch-and-link is executed using either the branch-and-link instruction (bal) or branch-and­
link-extended instruction (balx). When either instruction executes, the processor branches to the
first instruction of the called procedure (the target instruction), while saving a return IP for the
calling procedure in a register. The called procedure uses the same set of local registers and stack
frame as the calling procedure:

• For bal, the return IP is automatically saved in global register g14

• For balx, the return IP instruction is saved in a register specified by one of the instruction's
operands

A return from a branch-and-link is generally carried out with a bx (branch extended) instruction,
where the branch target is the address saved with the branch-and-link instruction. The branch-and­
link method of making procedure calls is recommended for calls to leaf procedures. Leaf
procedures typically call no other procedures. Branch-and-link is the fastest way to make a call,
providing the calling procedure does not require its own registers or stack frame.

I 7-21

intet

8
INTERRUPfS

'1,

!

I
I

I:

CHAPTER 8
INTERRUPTS

This chapter describes how a programmer uses the processor's interrupt mechanism, defines data
structures used for interrupt handling and describes actions that the processor takes when handling
an interrupt.

CHAPTER 13, INTERRUPT CONTROLLER describes the hardware mechanism for signaling
and posting interrupts.

8.1 OVERVIEW

An interrupt is an event that causes a temporary break in program execution so the processor can
handle another chore. Interrupts commonly request 110 services or synchronize the processor with __
some external hardware activity. For interrupt handler portability across the i960® processor : ,
family implementations, the architecture defines a consistent interrupt state and interrupt-priority­
handling mechanism. To manage and prioritize interrupt requests in parallel with processor
execution, the i960 Jx processor provides an on-chip programmable interrupt controller.

Requests for interrupt service come from many sources. These requests are prioritized so that
instruction execution is redirected only if an interrupt request is of higher priority than that of the
executing task.

When the processor is redirected to service an interrupt, it uses a vector number that accompanies
the interrupt request to locate the vector entry in the interrupt table. From that entry, it gets an
address to the first instruction of the selected interrupt procedw:e. The processor then makes an
implicit call to that procedure.

When the interrupt call is made, the processor uses a dedicated interrupt stack. A new frame is
created for the interrupt on this stack and a new set of local registers is allocated to the interrupt
procedure. The interrupted program's current state is also saved.

Upon return from the interrupt procedure, the processor restores the interrupted program's state,
switches back to the stack that the processor was using prior to the interrupt and resumes program
execution.

Since interrupts are handled based on priority, requested interrupts are often saved for later service
rather than being handled immediately. The mechanism for saving the interrupt is referred to as
interrupt posting. The mechanism the i960 Jx processor uses for posting interrupts is described in
section 13.2, "MANAGING INTERRUPT REQUESTS" (pg. 13-2).

_L 8-1

INTERRUPTS

On. the i960 Ix processor, interrupt requests may originate from external hardware sources,
internal timer unit sources or from software. External interrupts are detected with the chip's 8-bit
interrupt port and with a dedicated NMI input. Interrupt requests originate from software by the
sysctl instruction which signals interrupts. To manage and prioritize all possible interrupts, the
processor integrates an on-chip programmable interrupt controller. Integrated interrupt controller
configuration and operation is described in CHAPfER 13, INTERRUPT CONTROLLER.

The i960 architectUre defines two· data structures to support interrupt processing: the interrupt
table and interrupt stack (see Figure 8-1). The interrupt table contains 248 vectors for interrupt
handling procedures (eight of which are reserved) and an area for posting software requested
interrupts. the interrupt stack prevents interrupt handling procedures from overwriting the stack in
use by the application program. It also allows the interrupt stack to be located in a different area of
memory than the user and supervisor stack (fast SRAM, for example).

Interrupt
Request

r-----'
I
I

I

I i96()® Jx
• I Processor
I
I
I I L _____ _

I
I
~
I
I

---------------------~ IMemo~ I
I
I Interrupt
I Table
I
I • Interrupt Pointer
I

Interrupt
Handling

Procedure

I
.I
I
I
I
I

I I L ____________________ ~

Figure B-1. Interrupt Handling Data Structures

8.2 SOFlWARE REQUIREMENTS FOR INTERRUPT HANDLING

To use the processor's interrupt handling facilities, user software must provide the following items
in memory:

• Interrupt Table

• Interrupt Handler Routines

! Interrupt Stack

These items are established in memory as part of the initialization procedure. Once these items are
present in memory and pointers to them have been entered in the appropriate system data
structures, the processor handles interrupts automatically and independently from software.

8-2 _1-

INTERRUPTS

8.3 INTERRUPT PRIORITY

Each interrupt procedure pointer is eight bits in length, which allows up to 241 unique procedure
pointers to be defined. Each procedure pointer's priority is defined by dividing the procedure
pointer number by eight. Thus, at each priority level, there are eight possible procedure pointers
(e.g., procedure pointers 8 through 15 have a priority of 1 and procedure pointers 246 through 255
have a priority of 31). Procedure pointers 0 through 7 cannot be used. Since 0 priority is the lowest
priority, a priority-O interrupt will never successfully stop execution of a program of any priority.

The processor compares its current priority with the interrupt request priority to determine whether
to service the interrupt immediately or to delay service. The interrupt is serviced immediately if the
interrupt request priority is higher than the processor's current priority (the priority of the program
or interrupt the processor is executing). If the interrupt priority is less than or equal to the
processor's current priority, the processor does not service the request but rather posts it as a
pending interrupt. When multiple interrupt requests are pending at the same priority level, the
request with the highest vector number is serviced first.

Priority-31 interrupts are handled as a special case. Even when the processor is executing at
priority level 31, a priority-31 interrupt will interrupt the processor.

The processor may post requests for later servicing. Interrupts waiting to be serviced - called
pending interrupts - are discussed in section 8.4.2, "Pending Interrupts" (pg. 8-5).

8.4 INTERRUPT TABLE

The interrupt table (Figure 8-2),1028 bytes in length, can be located anywhere in the non-reserved
address space. It must be aligned on a word boundary. The processor reads a pointer to interrupt
table byte 0 during initialization. The interrupt table must be located in RAM since the processor
must be able to read and write the table's pending interrupt section.

The interrdpt table is divided into two sections: vector entries and pending interrupts. Each are
described in the subsections that follow.

8-3

INTE'RRUPTS

31

Pending l'1terrupts ,

87, o
OOOH
004H

020H
~------~------~------------------~ 024H(Vector 8)
r-------------------~----~--------------~ 028H (Vector 9)
1--------~~~----------1 02CH (Vector 10)

3DOH (Vector 243)
3D4H (Vector 244)

3EOH(Vector 247)
3E4H (Vector 248)
aE8H (Vector 249)
, .
3FOH (Vector 251)
3F4H (Vector 252)

L...-_______ -=:::..&.:::=. ________ ---' 400H (Vector 255)

Vector Entry

Instruction Pointer

_ Reserved (Initialize to 0) \,

_Preserved

8.4.1 Vector Entries

Figure 8-2. Interrupt Table

21 0 ,

Ixlxl
T Entry Type:

00 Normal
01 Reserved1
10 Target in Cache
11 Reserved1 ,

1 Vector entries with a reserved
type have unprecticiable behavior.

A vector entry contains a specific interrupt handler's address. When an interrupt is serviced, the
processor branches to the address specified by the vector entry.

8-4 I

INTERRUPTS

Each interrupt is associated with an 8-bit vector number which points to a vector entry in the
interrupt table. The vector entry section contains 248 one-word entries. Vector numbers 8 through
243 and 252 through 255 and their associated vector entries are used for conventional interrupts.
Vector number 248 is the NMI vector. Vector numbers 244 - 247 and 249 - 251 are reserved. Vector
numbers 0 through 7 cannot be used.

Vector entry structure is given at the bottom of Figure 8-2. Each interrupt procedure must begin on
a word boundary, so the processor assumes that the vector's two least significant bits are O.

8.4.2 Pending Interrupts

The pending interrupts section comprises the interrupt table's first 36 bytes, divided into two
fields: pending priorities (byte offset 0 through 3) and pending interrupts (4 through 35).

Each of the 32 bits in the pending priorities field indicate an interrupt priority. When the processor
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt's priority is
set. For example, if an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is set.

Each of the pending interrupts field's 256 bits represent an interrupt procedure pointer. Byte offset
5 is for vectors 8 through 15, byte offset 6 is for vectors 16 through 23, and so on. Byte offset 4, the
first byte of the pending interrupts field, is reserved. When an interrupt is posted, its corresponding
bit in the pending interrupt field is set.

This encoding of the pending priority and pending interrupt fields permits the processor to first
check if there are any pending interrupts with a priority greater than the current program and then
determine the vector number of the interrupt with the highest priority.

8.5 INTERRUPT STACK AND INTERRUPT RECORD

The interrupt stack can be located anywhere in the non-reserved address space. The processor
obtains a pointer to the base of the stack during initialization. The interrupt stack has the same
structure as the local procedure stack described in section 7.1.1, "Local Registers and the
Procedure Stack" (pg. 7-2). As with the local stack, the interrupt stack grows from lower addresses
to higher addresses.

The processor saves the state of an interrupted program - or an interrupted interrupt procedure -
in a record on the interrupt stack. Figure 8-3 shows the structure of this interrupt record.

The interrupt record is always stored on the interrupt stack adjacent to the new frame that is created
for the interrupt handling procedure. It includes the state of the AC and PC registers at the time the
interrupt was received and the interrupt procedure pointer number used. Referenced to the new
frame pointer address (designated NFP), the saved AC register is located at address NFP-12; the
saved PC register is located at address NFP-16.

I 8-5

INTERRUPTS intel®

Current Stack
31 (local, supervisor, or interrupt stack) 0

f current frame r
Interrupt Stack

padding area

optional data
stack

(not used by 80960Jx Implementation) growth
"

saved Process Controls Register NFP-16

I'~'ru. NFP-12 Record

NFP-8

NFP

new frame I Reserved

F_CA017A

Figure 8·3. Storage of an Interrupt Record on the Interrupt Stack

8.6 INTERRUPT SERVICE ROUTINES

An interrupt handling procedure performs a specific action that is associated with a particular
interrupt procedure pointer. For example, one interrupt handler task might be to initiate a timer
unit request. The interrupt handler procedures can be located anywhere in the non-reserved
address space. Since instructions in the i960 processor family architecture must be word aligned,
each procedure must begin on a word boundary.

When an interrupt handling procedure is called, the processor allocates a new frame on the
interrupt stack and a set of local registers for the procedure. If not already in supervisor mode, the
processor always switches to supervisor mode while an interrupt is being handled. It also saves the
states of the AC and PC registers for the interrupted program ..

8-6 J

INTERRUPTS

The interrupt procedure shares the remainder of the execution environment resources (namely the
global registers and the address space) with the interrupted program. Thus, interrupt procedures
must preserve and restore the state of any resources shared with a non-cooperating program.
Interrupt procedures must preserve and restore the state of any resources shared with a non­
cooperating program.

For example, an interrupt procedure which uses a global register which is not permanently
allocated to it should save the register's contents before it uses the register and restore the contents
before returning from the interrupt handler.

To reduce interrupt latency to critical interrupt routines, interrupt handlers may be locked into the
instruction cache. See section 13.5.2.2, "Caching Interrupt Routines and Reserving Register
Frames" (pg. 13-23) for a complete description.

8.7 INTERRUPT CONTEXT SWITCH

When the processor services an interrupt, it automatically saves the interrupted program state or
interrupt procedure and calls the interrupt handling procedure associated with the new interrupt
request. When the interrupt handler completes, the processor automatically restores the interrupted
program state.

The method that the processor uses to service an interrupt depends on the processor state when the
interrupt is received. If the processor is executing a background task when an interrupt request is to
be serviced, the interrupt context switch must change stacks to the interrupt stack. This is called an
executing-state interrupt. If the processor is already executing an interrupt handler, no stack switch
is required since the interrupt stack will already be in use. This is called an interrupted-state
interrupt.

The following subsections describe interrupt handling actions for executing-state and interrupted­
state interrupts. In both cases, it is assumed that the interrupt priority is higher than that of the
processor and thus is serviced immediately when the processor receives it.

8-7

:i\
I'
I

I' ,

it
Ii
I
II
II
i ~
I··~·

INTERRUPTS

8.7.1 Executing-State Interrupt

When the processor receives an interrupt while in the executing state (i.e., executing a program), it
perfonns the following actions to service the interrupt. This procedure is the. same regardless of
whether the processor is in user or supervisor mode when the interrupt occurs. The processor:

L switches to the interrupt stack (as shown in Figure 8-3). The interrupt stack pointer becomes
the new stack pointer for the processor.

2. saves the current state of process controls and arithmetic controls in an interrupt record on
the interrupt stack. The processor also saves the interrupt procedure pointer number.

3. allocates a new frame on the interrupt stack and loads the new frame pointer (NFP) in global
register g15.

4. switches to the interrupted state.

5. sets the state flag in its internal process controls to interrupted, its execution mode to
supervisor and its priority to the priority of the interrupt. Setting the processor's priority to
that of the interrupt ensures that lower priority interrupts cannot interrupt the servicing of
the current interrupt.

6. clears the trace-enable flag in its internal process controls. Clearing these flags allows the
interrupt to be handled without trace faults being raised.

7. sets the frame return status field (associated with the PFP in register rO) to 1112.

8. perfonns a call operation as described in CHAPTER 7, PROCEDURE CALLS. The address
for the called procedure is specified in the interrupt table for the specified interrupt
procedure pointer.

Once the- processor completes the interrupt procedure, it perfonns the following return actions: _

1.

2.

3.

4.

8-8

copies the arithmetic controls field and the process controls field from the interrupt record
into the arithmetic controls register and process controls, respectively. It also returns the
trace-enable bit to its value before the interrupt occurred.

deallocates the current stack frame and interrupt record from the interrupt stack and
switches to the local or supervisor stack (the one it was using when it was interrupted).

perfonns a return operation as described in CHAPTER 7, PROCEDURE CALLS. This
causes the processor to switch back to the local or supervisor stack (whichever it was using
before the interrupt).

switches to the executing state and resumes work on the program, if there are no pending
interrupts to be serviced or trace faults to be handled.

INTERRUPTS

8.7.2 Interrupted-State Interrupt

If the processor receives an interrupt while it is servicing another interrupt, and the new interrupt
has a higher priority than the interrupt currently being serviced, the current interrupt-handler
routine is interrupted. Here, the processor performs the same interrupt-servicing action as is
described in section 8.7.1, "Executing-State Interrupt" (pg. 8-8) to save the state of the interrupted
interrupt-handler routine. The interrupt record is saved on the top of the interrupt stack prior to the
new frame that is created for use in servicing the new interrupt.

On the return from the current interrupt handler to the previous interrupt handler, the processor de­
allocates the current stack frame and interrupt record, and stays on the interrupt stack.

I 8-9

Ij
!i
1

,'

i~
,'-

,
Ii
I,

I
I

I

9
FAULTS

.1

I ,~

'Iil
!
It
1:1

CHAPTER 9
FAULTS

This chapter describes the i960® Jx processor's fault handling facilities. Subjects covered include
the fault handling data structures and fault handling mechanism. See section 9.11, "FAULT
REFERENCE" (pg. 9-21) for detailed information on each fault type.

9.1 FAULT HANDLING FACILITIES OVERVIEW

The i960 processor architecture defines various conditions in code and/or the processor's internal
state that could cause the processor to deliver incorrect or inappropriate results or that could cause
it to choose an undesirable control path. These are calledfault conditions. For example the archi­
tecture defines faults for divide-by-zero and overflow conditions on integer calculations with an
inappropriate operand value.

As shown in Figure 9-1, the architecture defines a fault table, a system procedure table, a set of
fault handling procedures and stacks (user stack, supervisor stack, interrupt stack) to handle
processor-generated faults.

Fault

Processor Fault Fault
- Table r- -+ Handling
- Procedures

-System -- Procedure -- Supervisor
Table Stack

User Stack

Figure 9-1. Fault-Handling Data Structures

9-1

FAULTS in+-I 'eI®

The fault tablecQritains pointers to fault handling procedures. The system procedure table
optionally provides an interface to any fault handling procedure and allows faults to be handled in
supervisor mode. Stack frames for fault handling procedures are created on either the user or
supervisor stack, depending on the mode in which the fault is handled. While servicing an
interrupt, the processor uses the interrupt stack.

Once these data structures and the code for the fault procedures are established in memory, the
processor handles 'faults automatically and independently from application software.

The processor can detect a fault at any time while executing instructions, whether from a program,
interrupt handling procedure or fault handling procedure. When a fault occurs, the processor
determines the fault type and selects a corresponding fault handling procedure from the fault table.
It then invokes the fault handling procedure by means of an implicit call. As described later in this
chapter, the fault handler call can be:

• A local call (call-extended operation)

• A system-local call (local call through the system procedure table)

• A system-supervisor call (supervisor call through the system procedure table)

As part of the implicit call to the fault handling procedure, the processor creates a fault record on
the stack that the fault handling procedure is using. This record includes information on the fault
and the processor's state when the fault was generated.

After the fault record is created, the processor executes the selected fault handling procedure. If a
fault is recoverable (i.e., the program can be resumed after handling the fault) the Return
Instruction Pointer (RIP) is defined for the fault being serviced (see section 9.11, "FAULT
REFERENCE" (pg. 9-21), the processor will resume execution at the RIP upon return from the
fault handler. If the RIP is undefined, the fault handling procedure can create one by using the
flushreg instruction followed by a modification of the RIP in the previous frame. The fault
handler can also call a debug monitor or reset the processor instead of resurriing prior execution.

This procedure call mechanism also handles faults that occur:

• While the processor is servicing an interrupt

• While the processor is working on another fault handling procedure

9,.2 FAULT TYPES

The i960 architecture defines a basic set of faults that are categorized by type and subtype. Each
fault has a unique type and subtype number. When the processor detects a fault, it records the fault
type and subtype numbers in a fault record. It then uses the type number to select a fault handling
procedure.

9-2 L_

FAULTS

The fault handling procedure can optionally use the subtype number to select a specific fault
handling action. The i960 Jx processor recognizes i960 architecture-defined faults and a new fault
subtype for detecting unaligned memory accesses. Table 9-1 lists all faults that the i960 Jx
processor detects, arranged by type and SUbtype. Text that follows the table gives column defini­
tions.

Table 9·1. i960® Jx Processor Fault Types and Subtypes

Fault Type Fault Subtype Fault Record

Number Name
Number or

Name
Bit Position

OH OVERRIDE NA NA
See section 9.10.1,
"Overrides" (pg. 9-21)

OH PARALLEL NA NA
see section 9.6.4, "Parallel
Faults" (pg. 9-11)

Bit 1 INSTRUCTION XX01 XX02H

Bit 2 BRANCH XX01 XX04H

Bit 3 CALL XX01 XX08H

1H TRACE Bit 4 RETURN XX01 XX10H

Bit 5 PRE RETURN XX01 XX20H

Bit 6 SUPERVISOR XX01 XX40H

Bit 7 MARK XX01 XX80H

1H INVALlD_OpCODE XX02 XX01H

2H UNIMPLEMENTED XX02XX02H
2H OPERATION

3H UNALIGNED XX02XX03H

4H INVALID_OPERAND XX02 XX04H

1H INTEGER_OVERFLOW XX03 XX01H
3H ARITHMETIC

2H ZERO-DIVIDE XX03XX02H

4H Reserved

5H CONSTRAINT 1H RANGE XX05XX01H

6H Reserved

7H PROTECTION Bit 1 LENGTH XX07 XX01H

8H - 9H Reserved

AH TYPE 1H MISMATCH XXOAXX01H

BH- FH Reserved

In Table 9-1:

• The first (left-most) column contains the fault type numbers in hexadecimal.

• The second column shows the fault type name.

L 9-3

I,

:i
I'

FAULTS

• The third column gives the fault subtype number as either: (1) a hexadecimal number or (2) as
a bit position in the fault. record's 8-bit fault subtype field. The bit position method of
indicating a fault subtype is used for certain faults (such as trace faults) in which two or more
fault subtypes may occur simultaneously.

• The fourth column gives the fault subtype name. For convenience, individual faults are
referred to in this manual by their fault-subtype name. Thus an
OPERATION.INVALID_OPERAND fault is referred to as'simply an INVALID_OPERAND
fault; an ARITHMETIC.INTEGER_DVERFLOW fault is referred to as an
INTEGER_OVERFLOW fault.

• The fifth column shows the encoding of the word in the fault record that contains' the fault
type and fault subtype numbers.

Other i960 processor family members may provide extensions that recognize additional fault
conditions. Fault type ,and subtype encoding allows all faults to be included in the fault table: those
that are common to all i960 processors and those that are specific to one or more family members.
The fault types are used consistently for all family members. For example, Fault Type 4 is
reserved for floating point faults. Any i960 processor with floating point operations uses Entry 4 to
store the pointer to the floating point fault handling procedure.

9.3 FAULT TABLE

The fault table (Figure 9-2) is the processor's pathway to the fault handling procedures. It can be
located anywhere in the address space. The processor obtains a pointer to the fault table during
initialization.

The fault table contains one entry 'for each fault type. When a fault occurs, the processor uses the
fault type to select an entry in the fault table. From this entry, the processor obtains a pointer to the
fault handling procedure for the type of fault that occurred. Once called, a fault handling
procedure has the option of reading the fault subtype or subtypes from the fault record when
determining the appropriate fault recovery action.

9-4

FAULTS

31 Fault Table o

Override/Par/iliel Fault Entry OOH
~--~

Trace Fault Entry 08H

~--------------------~--------------------------------~ Operation Fault Entry 10H

~--~ Arithmetic Fault Entry 18H

Local-Call

Fault-Handler Procedure Address n

II III

31 System-Call Entry 2 1 0

Fault-Handler Procedure Number

0000027FH

I Reserved (Initialize to 0)

Figure 9·2. Fault Table and Fault Table Entries

9-5

.fAULTS

As indicated in Figure 9-2, two fault table entry types are allowed: local-call entry and system-call
entry. Each is two words in length. The entry type field (bits 0 and 1 of the entry's first word) and
the value in the entry's second word determine the entry type.

local-call entry
(type 002)

system-call entry·
(type 102)

Provides an instruction pointer .for the fault handling procedure. The
processor uses this entry to invoke tlIe specified procedure by means of an
implicit local-call operation. The second word of a local procedure entry is
reserved. It must be set to zero when the fault table is created and not
accessed after that

Provides a procedure number in the system procedure table. This entry must
have an entry type of 102 and a value in the second word of 0000 027FH.
Using this entry, the processor invokes the specified fault handling procedure
by means of an implicit call-system operation similar to that performed for
the calls instruction. A fault handling procedure in the system procedure
table can be called with a system-local call or a system-supervisor call,
depending on the entry type in the system~procedure table.

Other entry types (012 and 112) are reserved and have unpredictable behavior. To summarize,. a
fault handling procedure can be invoked through the fault table in any of three ways: a local call, a
system-local call or a system-supervisor call.

9.4 STACK USED IN FAULT HANDLING

The architecture does not define a dedicated fault handling stack. Instead, to handle a fault, the
processor uses either the user, interrupt or supervisor stack, whichever is active when the fault is
generated. There is however, one exception: if the user stack is active when a fault is generated
and the fault handling procedure is called with an implicit system supervisor call, the processor
switches to the supervisor stack to handle the fault.

9~5 FAULT RECORD

When a fault occurs, the processor records information about the fault in a fault record in memory.
The fault handling procedure uses the inforination in the fault record to correct or recover from the
fault condition and, if possible, resume program execution. The fault record is stored on the stack
that the fault handling procedure will use to handle the fault.

9-6

FAULTS

9.5.1 Fault Record Description

Figure 9-3 shows the fault record's structure. In this record, the fault's type number is stored in the
fault type field and the fault's subtype number (or bit positions for multiple subtypes) is stored in
the fault subtype field. The address-of-faulting-instruction field contains the IP of the instruction
that caused the processor to fault.

When a fault is generated, the existing PC and AC register contents are stored in their respective
fault record fields. The processor uses this information to resume program execution after the fault
is handled.

.L 9-7

•

FAULTS intet

NFP - (n+ 1)*32

'NFP - 24- n*32
\

NFP - 20- n*32

NFP - 12- n*32

...&.....I-.&.....I...&....,L.;"..I....j NFP - 8- n*32
~ ________________________________ ~~ ____________ ~ NFP-4-n*32

RESUMPTION INFORMATION

OVERRIDE FAULT DATA

FAULT DATA

31

• RESERVED

Figure 9-3. Fault Record

o

NFP - 64

NFP - 52

NFP - 48

NFP - 44

NFP - 32

NFP-20

NFP-16

NFP-12

NFP-8

NFP-4

The Override fault data field is used to store optional data for the override fault condition. Refer to
section 9.10.1, "Overrides" (pg. 9-21) for more information. The O'IYpe and OSubtype fields are
used to describe PARALLEL and OVERRIDE faults. For single faults, the 80960Jx places the
number of faults (one) in the OSubtype field, as it does for parallel faults (greater than one). The
Optional Data field is defined for certain faults. This field contains additional information about

9-8 I

FAULTS

the faulting conditions, usually to assist resumption. Refer to section 9.11, "FAULT
REFERENCE" (pg. 9-21) for more details on the faults that use this field. All unused bytes in the
fault record are reserved.

9.5.2 Fault Record Location

The fault record is stored on the stack that the processor uses to execute the fault handling
procedure. As shown in Figure 9-4, this stack can be the user stack, supervisor stack or interrupt
stack. The fault record begins at byte address NFP-l. NFP refers to the new frame pointer that is
computed by adding the memory size allocated for padding and the fault record to the new stack
pointer (NSP). The processor rounds the FP to the next 16-byte boundary and then allocates 80
bytes for the fault record. The size and alignment of the fault record is implementation-dependent.

Current Stack
31 (User, Supervisor, or Interrupt Stack) 0

~'-------_----I~SFPp }---- C,rr'm'_ -!.
31 Local Stack or Supervisor Stack2 o
~ ~~ "'l Padding Area ~

~--------------------------------~
Stack ~ I

Gro1wth -c Fault Record -c NFP-4

r---------------------------------------~ NFP

-c> New Frame 1
t

NOTES:

Fault
Record

1. If the call to the fault handler procedure does not require a stack switch, the new stack pointer (NSP) is the same as SP.
2. If the processor is in user mode and the fault handler procedure is called with a system supervisor call, the processor

switches to the supervisor stack.

Figure 9-4. Storage of the Fault Record on the Stack

9-9

Ii
Ii
,)

Ii I
Ii
Ii
I;

FAULTS
ih+'~1 . 'eI®

9.6 .. MULTIPLE AND PARALLEL FAULTS

Multiple fault conditions can occur during a single instruction execution and during multiple
instruction execution when the instructions are executed by different units within the processor.
The following sections describe how faults are handled under these conditions.

9.6.1. Multiple Non-Trace Faults on the Same Instruction

Multiple fault conditions can occur during a single instruction execution. For example, an
instruction can,have an invalid operand and unaligned address. When this situation occurs, the
processor is required to re~ognize and generate at least one of the fault conditions. The processor
may not detect all fault conditions and may not report all detected faults on a single ~nstruction.

In a multiple fault situation, the reported fault condition is left to the implementation. On the Jx
processor, all non-trace fault conditions present in one instruction are prioritized. Only the non­
trace fault of highest priority is reported in the fault record. The faults by order of decreasing
priority are:

• OPERATION. UNIMPLEMENTED (Attempt to execute from on-chip RAM or a memory­
mapped region only.)

OPERATION.INVALID"':PPCODE

• OPERATION.INVALID_OPERAND

• TYPE.MISMATCH

• OPERATION.UNIMPLEMENTED (All other faults related to unimplemented operations)

• ARITHMETIC.ZERO_DIVIDE

• ARITHMETIC.INTEGER_QVERFLOW

• CONSTRAINT.RANGE

• PROTECTION.LENGTH

9.6.2 Multiple Trace and Fault Conditions on the Same Instruction

Trace' faults on different instructions cannot happen concurrently, because trace faults are preCise .
. Multiple trace fault conditions on the same instruction are reported in a single trace fault record
. (with the exception of prereturn trace, which always happens alone). To support this multiple fault
reporting, the trace fa\.Jlt uses bit positions in th~. fault-subtype field to in~cate occurrences of
mUltiple faults of the same type (Table 9-1). .

9-10 I

intet FAULTS

9.6.3 Multiple Trace and Non-Trace Fault Conditions on the Same Instruction

The execution of a single instruction can create one or more trace fault conditi9ns in addition to
multiple non-trace fault conditions. When this occurs, the processor generates at least two faults: a
non-trace fault and a trace fault.

The non-trace fault is handled first and the trace fault is triggered immediately after executing ,the
return instruction (ret) at the end of the non-trace fault handler.

9.6.4 Parallel Faults

The i960 Jx processor exploits the architecture's tolerance of out-of-order instruction. execution by
issuing instructions to independent execution units on the chip. The following subsections describe
how the processor handles faults in this environment.

9.6.5 Faults on Multiple Instructions Executed in Parallel

If AC.nif = 0, imprecise faults relative to different instructions executing in parallel may be
reported in a single parallel fault record and the processor calls a unique fault handler, the
PARALLEL fault handler (see section 9.9.4, "No Imprecise Faults (AC.nif) Bit" (pg. 9-20)). This
mechanism allows instructions that can fault to be executed in parallel with other instructions' or
out of order.

In parallel fault situations, the processor saves the fault type and subtype of the second and
subsequent faults detected in the optional section of the fault record. The fault handling procedure
for parallel faults can then analyze the fault record and handle the faults. The fault record for
parallel faults is described in the next section.

If the RIP is undefined for at least one of the faults found in the parallel fault record, then the RIP
of the parallel fault handler is undefined. In this case, the parallel fault handling procedure can
either create a RIP and return to it or call a debug monitor to analyze the faults.

If the RIP is defined for all faults found in the fault record, then it will point to the next instruction
not yet executed. The parallel fault handler can simply return to the next instruction not yet
executed with a ret instruction.

Consider the following code example, where the mull and the addi instructions both have overflow
conditions. AC.om :;.: 0, AC.nif = 0, and both instructions are in the instruction cache at the time of
their execution. The addi and muli are allowed to execute in parallel because AC.nif = 0 and
because the faults that these instructions can potentially take (ARITHMETIC) are imprecise. '

muli g2, g4, g6i

addi g8, g9, glOi # results in integer overflow

L 9-11

•

FAULTS

The fault on the addi is detected before the fault on the muli, because the muli takes longer to
execute. The fault call synchronizes faults on the way to the overflow fault handler for the add!
instruction (see section 9.9.5, "Controlling Fault Precision" (pg.9-20)) which is when the muli
fault is detected. The processor builds a parallel fault record with information relative to both
faults and calls the parallel fault handler. In the fault handler, ARITHMETIC faults may be
recovered by storing the desired result of the instruction in the proper destination register and
setting the AC.of flag(optional) to indicate an overflow occurred. Then a ret at the end of the
parallel fault handler routine will return to the next instruction not yet executed in the program
flow.

On the i960 Ix processor, the mull overflow fault is the only fault that can happen with a delay.
TherefQre, parallel fault records can report a maximum of 2 faults, one of which must be a muli
ARITHMETIC.INTEGER_OVERFLOW fault.

A parallel fault handler must be accessed through a system-supervisor call. Local and system-local
parallel fault handlers are not supported by the architecture and have an unpredictable behavior.
Tracing is disabled upon entry into the parallel fault handler (PC;te is cleared). It is restored upon
return from the handler. The parallel fault handler should not set PC.te to prevent infinite internal
loops.

9.6.6 Fault Record for Parallel Faults

Figure 9-3 shows the structure of the fault record for parallel faults.

To calculate byte offsets, "n" indicates the fault number. Thus, for the second fault recorded (n=2),
the relationship (NFP - 8- (n * 32)) reduces to NFP-72. For the i960 Ix processor, a maximum of
two faults are reported in the parallel fault record, and one of them must be the ARITH­
METIC.INTEGER_OVERFLOW fault on a mull instruction.

When multiple parallel faults occur, the processor selects one of the faults and records it in the first
16 bytes of the fault record as described in section 9.5.1, "Fault Record Description" (pg. 9-7). The
remaining parallel faults are written to the fault record's optional section and the fault handling
procedure for parallel faults is invoked.

The OType/OSubtype word at NFP - 20 contains information about the parallel faults. The byte at
offset NFP-18 contains OOH (encoding for the PARALLEL fault type); the byte at NFP-20
contains the number of parallel faults. The optional section also .contains a 32-byte parallel fault
record for each additional fault. These parallel fault records are stored incrementally in the fault
record starting at byte offset NFP-65. The fault record for each additional fault contains only the
fault type, fault subtype, address-of-faulting-instruction, and the optional fault. section. (For
example, if two parallel faults occur, the fault record for the second fault is located from NFP - 96
to NFP - 65.)

9-12

FAULTS

9.7 FAULT HANDLING PROCEDURES

The fault handling procedures can be located anywhere in the address space. Each procedure must
begin on a word boundary. The processor can execute the procedure in user mode or supervisor
mode, depending on the type of fault table entry.

9.7.1 Possible Fault Handling Procedure Actions

The processor allows easy recovery from many faults that occur. When fault recovery is possible,
the processor's fault handling mechanism allows the processor to automatically resume work on
the program or interrupt pending when the fault occurred. Resumption is initiated with a ret
instruction in the fault handling procedure.

If recovery from the fault is not possible or not desirable, the fault handling procedure can take one
of the following actions, depending on the nature and severity of the fault condition (or conditions,
in the case of multiple faults):

• Return to a point in the program or interrupt code other than the point of the fault.

• Call a debug monitor.

• Explicitly write the processor state and fault record into memory and perform processor or
system shutdown.

• Perform processor or system shutdown without explicitly saving the processor state or fault
information.

When working with the processor at the development level, a common fault handling procedure
action is to save the fault and processor state information and make a call to a. debugging device
such as a debugging monitor. This device can then be used to analyze the fault information.

9.7.2 Program Resumption Following a Fault

Because of the wide variety of faults, they can occur at different times with respect to the faulting
instruction:

• Before execution of the faulting instruction (e.g. fetch from on-chip RAM)

• During instruction execution (e.g. integer overflow)

• Immediately following execution (e.g. trace)

When the fault occurs before the faulting instruction is executed, the faulting instruction may be
re-executed upon return from the fault handling procedure.

I 9-13

•

FAULTS

When a fault occurs during or after execution of the faulting instruction,the fault may be
accompanied by a program state change such that program execution cannot be resumed after the
fault is handled. For example, when an integer overflow fault occurs, the overflow value is stored
in the destination. If the destination register is the same as one of the source registers, the source
value is lost, making it impossible to re-execute the faulting instruction.

In general, resumption of program execution with no changes in the program's control flow is
possible with the following fault types or sUbtypes: .

• All OPERATION Subtypes • ARITHMETIC.ZERO_DIVIDE

• All CONSTRAINT Subtypes • All TRACE Subtypes

• PROTECTION.LENGTH

Resumption of the program mayor may not be possible with the following fault subtype:

• ARITHMETIC.INTEGER_OVERFLOW

The effect of specific fault types on a program is defined in section 9.11, "FAULT REFERENCE"
(pg. 9-21) under the heading Program State Changes.

9.7.3 Return Instruction Pointer (RIP)

When a fault handling procedure is called, a Return Instruction Pointer (RIP) is saved in the image
of the RIP in the faulting frame. The RIP can be accessed at address pfp+8 while executing the
fault handler after a flushreg. The RIP in the previous frame points to an instruction where
program execution can be resumed with no break in the program's control flow. It generally points
to the faulting instruction or to the next instruction to be executed. In some instances, however, the
RIP is undefined. RIP content for each fault is described in section 9.11, "FAULT REFERENCE"
(pg.9-21).

9.7.4 Returning to the Point in the Program Where the Fault Occurred

As described in section 9.7.2, "Program Resumption Following a Fault" (pg. 9-13), most faults
can be handled such that program control flow is not affected. In this case, the processor allows a
program to be resumed at the point where the fault occurred, following a return from a fault
handling procedure (initiated with a ret instruction). The resumption mechanism used here is
similar to that provided for returning from an interrupt handler.

The fault handling procedure should be executed in supervisor mode (either by using a supervisor
call or by running the program in supervisor mode) for the PC register to be restored from the fault
record upon return from the fault handler. (See the pseudocode in section 6.2.54, "ret" (pg. 6-91».

9-14

FAULTS

9.7.5 Returning to a Point in the Program Other Than Where the Fault
Occurred

A fault handling procedure can also return to a point in the program other than where the fault
occurred. To do this, the fault procedure must alter the RIP.

To perform a return from a fault handling procedure to an alternate point in the program
predictably, the fault handling procedure should perform the following steps:

1. Flush the local register sets to the stack with a flushreg instruction.

2. Modify the RIP in the previous frame.

3. Clear the trace-fault-pending flag in the fault record's process controls field before the return
(optional).

4. Execute a return with the ret instruction.

Use this technique carefully and only in situations where the fault handling procedure is closely
coupled with the application program.

9.7.6 Fault Controls

For certain fault types and SUbtypes the processor employs register mask bits or flags that
determine whether or not a fault is generated when a fault condition occurs. Table 9-2 summarizes
these flags and masks, the data structures in which they are located, and the fault subtypes they
affect.

The integer overflow mask bit inhibits the generation of integer overflow faults. The use of this
mask is discussed in section 9.11, "FAULT REFERENCE" (pg. 9-21).

The no imprecise faults (NIF) bit controls the synchronizing of faults for a category of faults called
imprecise faults. The function of this bit is described in section 9.9, "PRECISE AND IMPRECISE
FAULTS" (pg. 9-19).

J._ 9-15

I'
" i"
,

I,
II
I:

i1
II
!j

FAULTS

TC register trace'mode, bits and the PC register trace enable bit support trace faults. Trace mode
bits enable trace modes; the trace enable bit enables trace fault generation. The use of these bits is
described in the trace faults descripti~n in section 9.11, "FAULT REFERENCE" (pg. 9-21).
Further discussion of these flags is provided in CHAPTER 10, TRACING AND DEBUGGING.

Table 9-2. Fa~lt Flags or Masks

Flag or Mask Name Locatibn Faults Affected

Integer Overflow Mask Bit Arithmetic Controls (AC) Register INTEGER_OVERFLOW

No Imprecise Faults Bit Arithmetic Controls (AC) Registf;lr All Imprecise Faults

Trace Enable Bit Process Controls (PC) Register All TRACE Faults

All TRACE Faults except
Trace Mode Trace Controls (TC) Register hardware breakpoint traces

andfmark

Unalignap Fault Mask
,"

, Process Control Block (PRCB) . UNALIGNED Fault

The unaligned fault mask bit is located in the process control block (PRCB), which is read during
initialization. It controls whether unaligned memory accesses generate a fault. See section 15.2.5,
"Data Alignment" (pg. 15-22).

9.8 FAULT HANDLING ACTION

Once a fault occurs, the processor saves the program state, calls the fault handling procedure and
- when the fault recovery action completes - restores the program state (if possible). No
software other than the fault handling procedures is required to support this activity.

Three tyPes of implicit procedure calls can be used to invoke the fault handling procedure
according to the information in the selected fault table entry: a local call, a system::'local call and a
system-supervisor call.

The following subsections describe actions the processor takes while handling faults. It is not
necessary to read these sections to use the fault handling mechanism or to write a fault handling
procedure. This discussion is provided for those readers who wish to know the details of the fault
handling mechanism.

9-16

intet FAULTS

9.8.1 Local Fault Call

When the selected fault handler entry in the fault table is an entry type 002 (local procedure), the
processor operates as described in section 7.1.3.1, "Call Operation" (pg. 7-7), with the following
exceptions:

• A new frame is created on the stack that the processor is currently using. The stack can be the
user stack, supervisor stack or interrupt stack.

• The fault record is copied into the area allocated for it in the stack, beginning at NFP-l. (See
Figure 9-4.)

• The processor gets the IP for the first instruction in the called fault handling procedure from
the fault table.

• The processor stores the fault return code (0012) in the PFP return type field.

If the fault handling procedure is not able to perform a recovery action, it performs one of the
actions described in section 9.7.2, "Program Resumption Following a Fault" (pg. 9-13).

If the handler action results in recovery from the fault, a ret instruction in the fault handling
procedure allows processor control to return to the program that was pending when the fault
occurred. Upon return, the processor performs the action described in section 7.1.3.3, "Return
Operation" (pg. 7-8), except that the arithmetic controls field from the fault record is copied into
the AC register. If the processor is in user mode before execution of the return, the process controls
field from the fault record is not copied back to the PC register.

9.8.2 System-Local Fault Call

When the fault handler selects an entry for a local procedure in the system procedure table (entry
type 102), the processor performs the same action as is described in the previous section for a local
fault call or return. The only difference is that the processor gets the fault handling procedure's
address from the system procedure table rather than from the fault table.

9.8.3 System-Supervisor Fault Call

When the fault handler selects an entry for a supervisor procedure in the system procedure table,
the processor performs the same action described in section 7.1.3.1, "Call Operation" (pg. 7-7),
with the following exceptions:

• If the fault occurs while in user mode, the processor switches to supervisor mode, reads the
supervisor stack pointer from the system procedure table and switches to the supervisor stack.
A new frame is then created on the supervisor stack.

9-17

I
[;

FAULTS

• If the fault occurs while in supervisor mode, the processor creates a new frame on the current
stack. If the processor is executing a supervisor procedure when the fault occurred, the current
stack is the supervisor stack; if it is' executing an interrupt handler procedure, the current stack
is the interrupt stack. (The processor switches to supervisor mode when handling interrupts.)

• The fault record is copied into the area allocated for it in the new stack frame, beginning at
NFP-l. (See Figure 9-4.) .

• The processor gets the IP for the first instruction of the fault handling procedure from the
system procedure table (using the index provided in the fault table entry). '

• The processor stores the fault return code (0012) in the PFP register return type field. If the
fault is not a trace, parallel or override fault, it copies the state of the system procedure table
trace control flag (byte 12, bit 0) into the PC register trace enable bit. If the fault is a trace,
parallel or override fault, the trace enable bit is cleared.

On a return from the fault handling procedure, the processor performs the action described in
section 7.1.3.3, "Return Operation" (pg. 7-8) with, the addition of the following:

• The fault record arithmetic controls field is copied into the AC register.

• If the processor is in supervisor mode prior to the return from the fault handling procedure
(which it should be), the fault record process controls field is copied into the PC register. The
mode is' then switched back to user, if it was in user m()de before the call.

• The processor switches back to the stack it, Was using when the fault occurred. (If the
processor was in user mode when the fault occurred, this operation causes a switch from the
supervisor stack to the user stack.)

• If the trace-fault-pending flag and trace enable bit are set in the PC field of the fault record,
the trace fault on the instruction at the origin of the supervisor fault call is handled at this time.

PC register restoration causes any changes to the process controls caused by the fault handling
procedure to be lost.

9.8.4 Faults and Interrupts

If an interrupt occurs during:

• An instruction that will fault; or

• An instruction that has already faulted; or

• Fault handling procedure selection

The processor handles the interrupt in the following way: It completes the selection of the fault
handling procedure, creates the fault record and then services the interrupt just prior to executing
the first instruction of the fault handling procedure. The fault is handled upon return from the
interrupt. Handling the interrupt before the fault reduces interrupt latency.

9-18

FAULTS

9.9 PRECISE AND IMPRECISE FAULTS

As described in section 9.11.5, "PARALLEL Faults" (pg. 9-29), the i960 architecture - to support
parallel and out-of-order instruction execution - allows some faults to be generated together.

The processor provides two mechanisms for controlling the circumstances under which faults are
generated: the AC register no-imprecise-faults bit (AC.nif bit) and the instructions that
synchronize faults. See section 9.9.5, "Controlling Fault Precision" (pg. 9-20) for more infor­
mation. Faults are categorized as precise, imprecise and asynchronous. The following subsections
describe each.

9.9.1 Precise Faults

A fault is precise if it meets all of the following conditions:

• The faulting instruction is the earliest instruction in instruction issue order to generate a fault.

• All instructions before the faulting instruction, in instruction issue order, have completed
successfully with no unreported faults.

• All instructions after the faulting instruction, in instruction issue order, are ensured not to have
executed.

The faults that are always precise are:

• TRACE

• PROTECTION

9.9.2 Imprecise Faults

Faults that do not meet all of the requirements for precise faults are considered imprecise. For
imprecise faults, the state of execution of instructions surrounding the faulting instruction may be
unpredictable. When instructions are executed out-of-order and an imprecise fault occurs, it may
not be possible to access the source operands of the instruction. This is because they may have
been modified by subsequent instructions executed out-of-order. However, the RIP of some
imprecise faults (e.g. ARITHMETIC) points to the next instruction that has not yet executed and
guarantees the return from the fault handler to the original flow of execution. Faults that the archi­
tecture allows to be imprecise are:

• OPERATION

• CONSTRAINT

• ARITHMETIC

• TYPE

9-19

FAULTS

9.9.3 Asynchronous Faults

Asynchronous faults are those whose occurrence has no direct relationship to the instruction
pointer. This group includes MACHINE faults, which are not implemented on the 80960Jx.

9.9.4 No Imprecise Faults (AC.nif) Bit

The AC.nif bit controls imprecise fault generation. If AC.nif is set, all faults generated are precise.
If AC.nifis clear, several imprecise faults may be reported together in a parallel fault record.
Precise faults can never be found in parallel fault records, thus only more than one imprecise fault
occurring concurrently with AC.nif = 0 can produce a parallel fault.

Compiled code should execute with the AC.nif bit clear, using syncf where necessary to ensure
that faults occur in order. In this mode, imprecise faults are considered to be catastrophic errors
from which recovery is not needed. This also allows the processor to take advantage of internal
pipelining which can speed up processing time. When only precise faults are allowed, the
prOCessor must restrict the use of pipelining to prevent imprecise faults.

Th\! NIF bit should be set if recovery from one or more imprecise faults is required. For example,
the N1F bit should be set if a program needs to handle - and recover from - unmasked integer­
overflow faults arid the fault handling procedure cannot be closely coupled with the application to
perform imprecise fault recovery.

9.9.5 Controlling Fault Precision

The syncf instruction forces the processor to complete execution of all instructions that occur
prior to syncf and to generate all faults before it begins work on instructions that occur after
syncf. This instruction has two uses:

•. It forces faults to be precise when the NIF bit is clear.

• It ensures that all instructions are complete and all faults are generated in one block of code
before executing another block of code.

In addition to the syncf instruction, an implicit fault synchronization is performed at the beginning
of the following instructions or operations:

•

•

9-20

Call and Return Operations including call, calix, calls, and ret instructions, plus the implicit
interrupt and fault call operations.

Atomic Operations including atadd and atmod .

_I

intet FAULTS

9.10 FAULTS WITHIN A FAULT HANDLER

The architecture provides for graceful degradation in situations where faults occur while
attempting to perform the action defined for a previous fault (i.e., from the time the fust fault was
detected until the time that the call to its fault handler completes). The first such successive fault is
called an override, and results in a different fault handler being selected. The second such
successive fault is called a system error.

9.10.1 Overrides

If a second fault occurs while storing a fault record for a previous fault or in invoking the fault
handler, and the previous fault is not for an override or parallel fault condition, an override is said
to occur.

This is similar to normal fault-handler invocation, with the following exceptions. The fault record
describes the fust fault as described previously. Field O'JYpe contains the fault type of the second
fault, field OSubtype contains the fault subtype of the second fault and field override-fault-data
contains what would normally be the fault data field for the second fault type. Rather than selecting
the fault handler corresponding to the first or second fault types, the override fault handler is
selected.

When an override condition does not occur, these fields in the fault record have no defined value,
except for the OType/OSubtype fields (see section 9.5.1, "Fault Record Description" (pg. 9-7).

An override fault handler must be accessed through a system-supervisor call. Local and system­
local override fault handlers are not supported by the architecture and have an unpredictable
behavior. Tracing is disabled upon entry into the override fault handler (PC.te is cleared). It is
restored upon return from the handler. To prevent infinite internal loops, the override fault handler
should set PC.te.

9.10.2 System Error

A system error occurs when a fault condition is detected while servicing an override or a parallel
fault. This type of error causes the processor. to enter a system error state. In this state, the
processor indefinitely sends an error message on the address bus, while asserting the FAIL pin.
Refer to section 11.2.2.3, "The Fail Pin (FAIL)" (pg. 11-7) for more information on system error
conditions.

9.11 FAULT REFERENCE

This section describes each fault type and subtype and gives detailed information about what is
stored in the various fields of the fault record. The section is organized alphabetically by fault type.
The following paragraphs describe the information that is provided for each fault type .

.... 1 9-21

','

I'li ,.
I

II

FAULTS

Fault Type:

Fault Subtype:

Function:

RIP:

Fault IP:

Fault Data:

Class:

Program State Changes:

Trace Reporting:

Notes:

9-22

Gives the number that appears in the fault record fault-type field
when the fault is generated.

Lists the fault subtypes and the number associated with each fault
subtype.

Describes the purpose and handling of the fault type and each
subtype. The error message take the form of the dummy address
OxFEFFFF68.

Describes the value saved in the image of the RIP register in the
stack frame that the processor was using when the fault occurred. In
the RIP definitions, "next instruction" refers to the instruction
directly after the faulting instruction or to an instruction to which
the processor can logically return when resuming program
execution.

Note that the discussions of many fault types specify that the RIP
contains the address of the instruction that would have executed . .

next had the fault not occurred. Since some implementations may
choose to execute' instructions out of order when this can be done
transparently, the RIP need 'not necessarily point to the instruction
immediately following (in an execution-order sense); it may point
elsewhere in the instruction stream. However, it must point to a spot
at which execution can be resumed correctly if one wants to resume
execution after the fault, and thus the implementation cannot
execute out-of-order any instructions subsequent to the faulting
instruction that are dependant on any result of the faulting
instruction.

Describes the contents of the fault record's fault instruction pointer
field, typically the faulting instruction's IP.

Describes any values stored in the fault record's fault data field.

Indicates if a fault is precise or imprecise.

Describes the process state changes that would prevent re­
executing the faulting instruction if applicable.

Relates whether a trace fault (other than PRERET) can be detected
on the faulting instruction, also if and when the fault is serviced.

Additional information specific to partiCUlar implementations of the
i960 architecture.

FAULTS

9.11.1 ARITHMETIC Faults

Fault Type: 3H

Fault Subtype:

Function:

RIP:

Fault IP:

Class:

Program State Changes:

Trace Reporting:

Number
OH
IH
2H
3H-FH

Name
Reserved
INTEGER_OVERFLOW
ZERO_DIVIDE
Reserved

Indicates a problem with an operand or the result of an arithmetic
instruction. An INTEGER.OVERFLOW fault is generated when the
result of an integer instruction overflows its destination and the AC
register integer overflow mask is cleared. Here, the result's n least
significant bits are stored in the destination, where n is destination
size. Instructions that generate this fault are:

addi
stlb
mull

subl
shll
dlvi

stis
ADDI<cc>
SUBI<cc>

An ARITHMETIC.ZERO_DIVIDE fault is generated when the
divisor operand of an ordinal- or integer-divide instruction is zero.
Instructions that generate this fault are:

dlvo divi

edlv reml

remo modi

IP of the instruction that would have executed next if the fault had
not occurred.

IP of the faulting instruction.

Imprecise.

Faults may be imprecise when executing with the NIP bit cleared.
An INTEGER.OVERFLOW and ZERO_DIVIDE faults may not be
recoverable because the result is stored in the destination before the
fault is generated; (e.g., the faulting instruction cannot be re­
executed if the destination register was also a source register for the
instruction).

The trace is reported upon return from the Arithmetic fault handler.

9-23

,"'.I."

FAULTS

9.11.2 CONSTRAINT Faults

Fault Type:

Fault Subtype:

Function:

RIP:

Fault IP:

Class:

Program State Changes:

Trace Reporting:

9-24

5H

Number Name
OH Reserved
1M RANGE
2H"FH Reserved

Indicates the program or procedure violated an architectural
constraint.

A CONSTRAINT.RANGE fault is generated when a FAULTccc>
instruction is executed. and the AC register condition code field
matChes ~e condition required by the instruction.

No defined value.

Faulting Instruction.

Imprecise.

These. faults may be imprecise when executing with the NIP bit
cleared. No changes in the program's control flow accompany these
faults. A CONSTRAINT.RANGE fault is generated after the fault­
if instruction executes. The program state is not affected.

Serviced upon return from the Constraint fault handler. . ,\

FAULTS

9.11.3 OPERATION Faults

Fault Type:

Fault Subtype:

Function:

RIP:

Fault IP:

Fault Data:

Class:

2H

Number Name
OH Reserved
IH INVALID_OPCODE
2H UNIMPLEMENTED
3H UNALIGNED
4H INVALID_OPERAND
5H-FH Reserved

Indicates the processor cannot execute the current instruction
because of invalid instruction syntax or operand semantics.

An INVALID_OPCODE fault is generated when the processor
attempts to execute an instruction containing an undefined opcode
or addressing mode.

An UNIMPLEMENTED fault is generated when the processor
attempts to execute an instruction fetched from on-chip data RAM,
or when a non-word or unaligned access to a memory-mapped
region is performed, or when attempting to write memory-mapped •
region OxFF0084XX when not granted.

An UNALIGNED fault is generated when the following conditions
are present: (1) the processor attempts to access an unaligned word
or group of words in non-MMR memory; and (2) the fault is
enabled by the unaligned-fault mask bit in the PRCB fault configu­
ration word.

An INVALID_OPERAND fault is generated when the processor
attempts to execute an instruction that has one or more operands
having special requirements that are not satisfied. This fault is
generated when specifying a non-defined sysetl, ieetl, deetl or
intetl command, or referencing an unaligned long-, triple- or quad­
register group, or by referencing an undefined register, or by writing
to the RIP register(r2).

No defined value.

Address of the faulting instruction.

When an UNALIGNED fault is signaled, the effective address of
the unaligned access is placed in the fault record's optional data
section, beginning at address NFP-24. This address is useful to
debug a program that is making unintentional unaligned accesses.

Imprecise.

9-25

FAULTS

Program State Changes:

Trace Reporting:

Notes:

9-26

For the INVALID_OPCODE and UNIMPLEMENTED (case: store
to MMR), the destination of the faulting instruction is not modified.
(For the UNALIGNED fault, the memory operation completes
correctly before the fault is· reported.) In all other cases, the
destination is undefined.

The trace event is lost.

OPERATION. UNALIGNED fault is not implemented on i960 Kx
andSxCPUs.

I

FAULTS

9.11.4 OVERRIDE Faults

Fault Type:

Fault Subtype:

Fault OType:

Fault OSubtype:

Function:

Trace Reporting:

I

Fault table entry = OH
Fault type in fault record = fault type of the program instruction that
faulted.

Fault subtype of the program instruction that faulted.

Fault type of the additional fault detected while attempting to
deliver the program fault.

Fault Subtype of the additiollal fault detected while attempting to
deliver the program fault.

The override fault handler must be accessed through a system­
supervisor call. Local and system-local override fault handlers are
not supported by the architecture and have an unpredictable
behavior. Tracing is disabled upon entry into the override fault
handler (PC.te is cleared). It is restored upon return from the
handler. To prevent infinite internal loops, the override fault handler
should not set PC.te.

Same behavior as if the override condition had not existed. Refer to •
the description of the original program fault.

9-27

FAULTS

9.11.5 PARALLEL Faults

Fault Type:

Fault Subtype:

Fault OType:

Fault OSubtype:

Function:

RIP:

Fault IP:

Class:

Program State Changes:

Trace Reporting:

9-28

Fault table entry = OH
Fault type in fault record = fault type of one of the parallel faults.

Fault subtype of one of the parallel faults.

OH

Number of parallel faults.

See section 9.6.4, "Parallel Faults" (pg. 9-11) for a complete
description of parallel faults. When the AC.nif bit in the arithmetic
controls is zero, the architecture permits the implementation to
execute instructions in parallel and out-of-order by different
execution units. When an imprecise fault occurs in any of these
units, it is not possible to stop the execution of those instructions
after the faulting instruction. It is also possible that more than one
fault is detected from different instructions almost at the same time.

When there is more than one outstanding fault at the point when all
execution units terminate, a parallel fault situation arises. The fault
record of parallel faults contains the fault information of all the
faults that occurred in parallel. The size of the fault record is
variable and depends on the number of parallel faults. The
maximum size of the fault record is implementation dependent and
depends on the number of parallel and pipeline execution units in
the specific implementation.

The parallel fault handler must be accessed through a system­
supervisor call. Local and system-local parallel fault handlers are
not supported by the architecture and have an unpredictable
behavior. Tracing is disabled upon entry into the parallel fault
handler (PC.te is cleared). It is restored upon return from the
handler. The parallel fault handler should not set PC.te to prevent
infinite internal loops.

If all of the parallel fault types allow a RIP to be defined, the RIP is
the next instruction in the flow of execution, otherwise it is
undefined.

IP of one of the faulting instructions.

Imprecise.

State changes associated with all the parallel faults.

Same behavior as if the override condition had not existed. Refer to
the description of the original program fault.

I

FAULTS

9.11.6

Fault Type:

PROTECTION Faults

7H

Function:

RIP:

Fault IP:

Class:

Program State Changes:

Trace Reporting:,

Number
Bit 0
Bit 1
Bits 2-7

Name
Reserved
LENGTH
Reserved

Indicates that a program or procedure is attempting to perform an
illegal operation that the architecture protects against.

A PROTECTION.LENGTH fault is generated when the index
operand used in a calls instruction points to an entry beyond the
extent of the system procedure table.

IP of the faulting instruction.

IP of the faulting instruction.

Precise.

None. The instruction does not execute.

The trace event is lost.

9-29

•

FAULTS

9.11.7 TRACE Faults

Fault Type:

Fault Subtype:

Function:

9-30

IH

Number
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
BitS
Bit 6
Bit 7

Name
Reserved
INSTRUCTION
BRANCH
CALL
RETURN
PRERETURN
SUPERVISOR
MARK

Indicates the processor detected one or more trace events. The event
tracing mechanism is described in CHAPTER 10, TRACING AND
DEBUGGING.

A trace event is the occurrence of a particular instruction or
instruction type in the instruction st;ream. The processor recognizes
seven different trace events: instruction, branch, call, return,
prereturn, supervisor, mark. It detects these events only if the TC
register mode bit is set for the event. If the PC register trace enable
bit is also set, the processor generates a fault when a trace event is
detected.

A TRACE fault is generated following the instruction that causes a
trace event (or prior to the instruction for the prereturn trace event).
The following trace modes are available:

INSTRUCTION

BRANCH

CALL

RETURN

PRERETURN

Generates a trace event following every
instruction.

Generates a trace event following any branch
instruction when the branch is taken (a branch
trace event does not occur on branch-and-link
or call instructions).

Generates a trace event following any call or
branch-and-link instruction or an implicit fault
call.

Generates a trace event following a ret.

Generates a trace event prior to any ret
instruction, providing the PFP register prereturn
trace flag is set (the processor sets the flag
automatically when a call trace is serviced.) A
prereturn trace fault is always generated alone.

RIP:

Fault IP:

1-

SUPERVISOR

MARK

FAULTS

Generates a trace event following any calls
instruction that references a supervisor
procedure entry in the system procedure table
and on a return from a supervisor procedure
where the return status type in the PFP register
is 0102 or 011 2,

Generates a trace event following the mark
instruction. The MARK fault subtype bit,
however, is used to indicate a match of the
instruction-address breakpoint register or the
data-address breakpoint register as well as the
fmark and mark instructions.

TRACE fault sUbtype bit is associated with each mode. Multiple
fault subtypes can occur simultaneously; all trace fault conditions
detected on one instruction (except prereturn) are reported in one
single trace fault, with the fault subtype bit set for each subtype that
occurs. The prereturn trace is always reported alone.

When a fault type other than a TRACE fault is generated during
execution of an instruction that causes a trace event, the non-trace
fault is handled before the trace fault. An exception is the preretum­
trace fault, which occurs before the processor detects a non-trace
fault and is handled first.

Similarly, if an interrupt occurs during an instruction that causes a
trace event, the interrupt is serviced before the TRACE fault is
handled. Again, the TRACE.PRERETURN fault is an exception.
Since it is generated before the instruction, it is handled before any
interrupt that occurs during instruction execution.

A trace fault handler must be accessed through a system-supervisor
call (it must be a supervisor procedure in the system procedure
table). Local and system-local trace fault handlers are not supported
by the architecture and may have unpredictable behavior. Tracing is
automatically disabled when entering the trace fault handler and is
restored upon return from the trace fault handler. The trace fault
handler should not modify pc.te.

Instruction immediately following the instruction traced, in
instruction issue order, except for PRERETURN. For
PRERETURN, the RIP is the return instruction traced.

IP of the faulting instruction for all except prereturn trace and call
trace (on implicit fault calls), for which the fault IP field is
undefined.

9-31

FAULTS

Class:

Program St~te Changes:

9-32

Precise.

All trace faults except PRERETURN are serviced after the
execution of the faulting instruction. The processor returns to the
instruction immediately following the instruction traced, in
instruction issue order. For PRERETURN, the return is traced
before it executes. The processor re-executes the return instruction
after completion of the PRERETURN trace fault handler.

I

in1et
9.11.8 TYPE Faults

Fault Type:

Fault Subtype:

Function:

RIP:

Fault IP:

Class:

Program State Changes:

Trace Reporting:

__ 1-

AH

Number
OH
IH
2H-FH

Name
Reserved
MISMATCH
Reserved

FAULTS

Indicates a program or procedure attempted to perform an illegal
operation on an architecture-defined data type or a typed data
structure.

A TYPE.MISMATCH fault is generated when attempts are made to:

• Execute a privileged (supervisor-mode only) instruction while
the processor is in user mode. Privileged instructions on the
i960 Jx processor are:

modpe

halt

sysetl

ieetl

deetl

intetl

inten

intdis

• Write to on-chip data RAM while the processor is in
supervisor-only write mode and BCON.irp is set. See Figure
12-3.

• Write to the first 64 bytes of on-chip data RAM while the
processor is in either user or supervisor mode and BCON.sirp is
set. See Figure 12-3.

• Write to memory-mapped registers in supervisor space from
user mode.

• Write to timer registers while in user mode, when timer
registers are protected against user-mode writes.

No defined value.

IP of the faulting instruction.

Imprecise.

The fault happens before execution of the instruction. The machine
state is not changed.

The trace event is lost.

9-33

10
TRACING AND DEBUGGING

CHAPTER 10
TRACING AND DEBUGGING

I

This chapter describes the i960® Ix processor's facilities for runtime activity monitoring. The i960
architecture provides facilities for monitoring processor activity through trace event generation. A
trace event indicates a condition where the processor has just completed executing a particular
instruction or a type of instruction or where the processor is about to execute a particular
instruction. When the processor detects a trace event, it generates a trace fault and makes an
implicit call to the fault handling procedure for trace faults. This procedure can, in tum, call
debugging software to display or analyze the processor state when the trace event occurred. This
analysis can be used to locate software or hardware bugs or for general system monitoring during
program development.

Tracing is enabled by the process controls (PC) register trace enable bit and a set of trace mode bits
in the trace controls (TC) register. Alternatively, the mark and fmark instructions can be used to
generate trace events explicitly in the instruction stream.

The i960 Ix processor also provides four hardware breakpoint registers that generate trace events
and trace faults. Two registers are dedicated to trapping on instruction execution addresses, while
the remaining two registers can trap on the addresses of various types of data accesses.

10.1 TRACE CONTROLS

To use the architecture's tracing facilities, software must provide trace fault handling procedures, I·
perhaps interfaced with a debugging monitor. Software must also manipulate the following I

registers and control bits to enable the various tracing modes and enable or disable tracing in
general.

• TC register mode bits •

• DABO-DABI registers' address field and •
enable bit (in the control table)

• System procedure table supervisor-stack- •
pointer field trace control bit

• IPBO-IPBI registers' address field
(in the control table)

PC register trace enable bit

PFP register return status field prereturn trace
flag (bit 3)

BPCON register breakpoint mode bits and
enable bits (in the control table)

These controls are described in the following subsections.

10-1

TRACING AND DeBUGGING

10.1.1 TraC4t .Controls (TC) Register

The TC register ,(Fiiure 1 O~ 1) ,allows software to define conditions that generate trace events.

Trace Mode Bits
Instruction Trace Mode -TC.i---------------------,
Branch Trace Mode -TC.b.-----,....-----------------,
Call Trace Mode -TC.c---------------------,
Return Trace Mode - TC.r _. --------'-------------'---,

Pre-Return Trace Mode -TC.P----,---_j j. j .1. Supervisor Trace Mode - TC.s ----------------,-
Mark Trace Mode - TC.rnk

31 28 24 20 16

I Reserved

IBII IIIIIII
4

1 __ B~~_ 1..._______ Instruction-Address Breakpoint 0 - TC.iOf
Instruction-Address Breakpoint 1 - TC.i1f
Data-Address Breakpoint 0 - TC.dOf
.Data-Address Breakpoint 1 - TC.d1f

Figure 10-1. Trace Controls (TC) Register

o

The TC register contains mode bits and event flags. Mode bits define a set of tracing conditions
that the processor can detect. For example, when the call-trace mode bit is set, the processor
generates a trace event when a call or branch-and-link operation executes. See section 10.2 (pg.
10-3). The processor uses event flags to monitor which breakpoint trace events are generated.

A special instruction, modify-trace-controls (modtc), allows software to modify the TC register.
On initialization, the TC register is read from the Control Table. modtc can then be used to set or
clear trace mode bits as required. Updating TC mode bits may' take up to four non-branching
instructions to take effect. Software can access the breakpoint event flags using modtc. The
processor automatically sets and clears these flags as part of its trace handling mechanism: the
breakpoint event corresponding to the trace being serviced is set in the TC while servicing a
breakpoint trace fault; the TC event flags are cleared upon return from the trace fault handler.
When not in a trace fault handler, or when the trace is not for breakpoints, the TC event bits are
clear. TC register bits 0, 8 through 23 and 28 through 31 are reserved. Software must initialize
these bits to zero and cannot modify them afterwards.

10-2 I

intet TRACING AND DEBUGGING

10.1.2 PC Trace Enable Bit and Trace-Fault-Pendlng Flag

The PC register trace enable bit and the trace-fault-pending flag in the PC field of the fault record
control tracing. The trace enable bit enables the processor's tracing facilities; when set, the
processor generates trace faults on all trace events.

Typically, software selects the trace modes to be used through the TC register. It then sets the trace
enable bit to begin tracing. This bit is also altered as part of some call and return operations that the
processor performs as described in section 10.5.2, "Tracing on Calls and Returns" (pg. 10-12).

The update of PC.te through modpc may take up to four non-branching instructions to take effect.
The update of PC.te through call and return operations is immediate.

The trace-fault-pending flag, in the PC field of the fault record, allows the processor to remember
to service a trace fault when a trace event is detected at the same time as another event (e.g., non­
trace fault, interrupt). The non-trace fault event is serviced before the trace fault, and depending on
the event type and execution mode, the trace fault pending flag in the PC field of the fault record
may be used to generate a fault upon return from the non-trace fault event (see section 10.5.2.4,
"Tracing on Return from Implicit Call: Fault Case" (pg. 10-14».

10.2 TRACE MODES

This section defmes trace modes enabled through the TC register. These modes can be enabled
individually or several modes can be enabled at once. Some modes overlap, such as call-trace
mode and supervisor-trace mode.

• Instruction trace • Branch trace • Mark trace • Prereturn trace

• Call trace • Return trace • Supervisor trace

See section 10.4, "HANDLING MULTIPLE TRACE EVENTS" (pg. 10-11) for a description of
processor function when multiple trace events occur.

10.2.1 Instruction Trace

When the instruction-trace mode is enabled in TC (TC.i = 1) and tracing is enabled in PC
(PC.te = 1), the processor generates an instruction-trace fault immediately after an instruction is
executed. A debug monitor can use this mode (TC.i = 1, pc.te = 1) to single-step the processor.

10-3

TRACING AND DEBUGGING

10.2.2 Branch Trace'

When the branch-trace mode is enabled in TC (TC.b = 1) andPC.te is set, the processor generates
a branch-trace fault immediately after a branch instruction executes,. if the branch is taken. A
branch-trace event is not generated for conditional-branch instructions that do not branch, branch­
and-link instructions, and call-and-return instructions.

10.2.3 CIlIi Trace

When the call-trace mode is epabled in TC (TC.c = 1) and PC.te is set after the call, the processor
generates a call-trace fault 'when a call instruction (call, calix or calls) or a branch-and-link
instruction (bal or balx) executes. See section 10.5.2.1, "Tracing on Explicit Call" (pg. 10-12) for
a detailed description of call tracing on explicit instructions. Interrupt calls are never traced.

An implicit call to a fauit haIidler also generates a call trace if TC.c and PC.te are set after the call.
Refer to section 10.5.2.2, ''Tracing on Implicit Call" (pg. 10-13) for a complete description of this
case.

When the processor services a trace fault, it sets the prereturn-trace flag (PFP register bit 3) in the
new frame created by the call operation or in the current frame if a branch-and-link operation was
performed. The processor uses this flag to determine whether or not to ~ignal a prereturn-trace
event on a ret instruction.' .

10.2.4 Return Trace

When the return-trace mode is enabled in TC and PC.te is set after the return instruction, the
processor generates a return-trace fault for a return from explicit call· (PFP.rrr = 000 or
PFP.rrr = 0Ix). See section 10.5.2.3, ''Tracing on Return from Explicit Call" (pg. 10-14).

A return from fault may be traced and a return from interrupt is not. See section 10.5.2.4, "Tracing
on Return from Implicit Call: Fault Case" (pg. 10-14) and section 10.5.2.5, "Tracing on Return
from Implicit Call: Interrupt Case" (pg. 10-15) for details.

10.2.5 Prereturn Trace
I

When the TC prereturn-trace mode, the Pc.te, and the PFP prereturn-trace flag (PFP.p) are set, the
processor generates aprereturn-trace fault prior to executing a ret execution. The dependence on
PFP.p implies that prereturn tracing cannot be used without enabling call tracing. The processor
sets PFP.p whenever it services a call-trace fault (as described above) for call-trace mode.

10-4 l

TRACING AND DEBUGGING

If another trace event occurs at the same time as the prereturn-trace event, the processor generates
a fault on the non-prereturn-trace event first. Then, on a return from that fault handler, it generates
a fault on the preretum-trace event. The preretum trace is the only trace event that can cause two
successive trace faults to be generated between instruction boundaries.

10.2.6 Supervisor Trace

When supervisor-trace mode is enabled in TC and PC.te is set, the processor generates a
supervisor-trace fault after both of the following:

• A call-system instruction (calls) executes from user mode and the procedure table entry is for
a system-supervisor call.

• A ret instruction executes from supervisor mode and the return-type field is set to 0102 or 0112
(i.e., return from calls).

This trace mode allows a debugging program to determine kernel-procedure call boundaries within
the instruction stream.

10.2.7 Mark Trace

Mark trace mode allows trace faults to be generated at places other than those specified with the
other trace modes, using the mark instruction. It should be noted that the MARK fault subtype bit
in the fault record is used to indicate a match of the instruction-address breakpoint registers or the
data-address breakpoint registers as well as the fmark and mark instructions.

10.2.7.1 Software Breakpoints

mark and fmark allow breakpoint trace faults to be generated at specific points in the instruction
stream. When mark trace mode is enabled and PC.te is set, the processor generates a mark trace
fault any time it encounters a mark instruction. fmark causes the processor to generate a mark trace
fault regardless of whether or not mark trace mode is enabled, provided PC.te is set. If pc.te is
clear, mark and fmark behave like no-ops.

10.2.7.2 Hardware Breakpoints

The hardware breakpoint registers are provided to enable generation of trace faults on instruction
execution and data access.

The i960 Jx microprocessor implements two instruction and two data address breakpoint registers,
denoted IBPO, IBPl, DABO, and DABl. The instruction and data address breakpoint registers are
32-bit registers. The instruction breakpoint registers cause a break after execution of the target
instruction. The DABx registers cause a break after the memory access has been issued to the bus
controller.

1 10·5

r
""" '

TRACING ,AND DEBUGGING
in+...:: I , , ,'eI®

Hardware breakpoint registers may be :armed or disarmed. When"3l'ffied,hardware breakpoints can
generate an architectural trace fault. When the registers are disarmed, no'action occurs, and
execution continues normally. Since instructions" are always word aligned, the two low-order bits
of the IBPx registers act as control bits. Control bits for the DABx registers reside in the
Breakpoint Control (BPCON) register. BPCON enables the data address breakpoint registers, and
sets the specific modes of these registers. Hardware breakpoints ar~ globally enabled by the
process controls trace enable bit (PC.te).

The IBPx, DABx, and BPCON registers may be accessed using normal load and store instructions
(except for loads from IBPx register). The application must be in supernsor mode for a legal
access to occur. SeeSectiori 3.3, MEMORY-MAPPED CONTROL REGISTERS (pg. 3-5) for
more information on the address for each register.

Well behaved applications must request modification rights to the hardware breakpoint resources,
before attempting to modify these resources. Rights are requested by executing the sysctl
instruction, as' described in the following section,.

10.2.7.3 Requesting Modification Rights to Hardware Breakpoint Resources

Application code must always first request and acquire modification rights to the hardware
breakpoiqt resources before any attempt is made to modify them. This mechanism is employed to
eliminate, simultaneo\ls usage of breakpoint resources by emulation tools and application code. An
emulation t901 exercises supervisor control over breakpoint reso~rce, allocation. If the emulator
retains control of breakpoint resources, 'none are, available for application code, If an emulation
tool is not being used in conjunction with the device, modification rights to breakpoint resources
will be granted to the application. The emulation tool may relinquish control of breakpoint
resources to the application. '

If the application attempts to modify the breakpoint or breakpoint control (BPCON) registers
without first obtaining rights, an OPERATION:unimplemented fault will be generated. In this
case, the breakpoint resourCe will not be modified, whether accessed through a sysctl instruction
or as a memory-mapped register.

10-6 _I

TRACING AND DEBUGGING

Application code requests modification rights by executing the sysctl instruction and issuing the
Breakpoint Resource Request message (srcl.Message_Type = 06H). In response, the current
available breakpoint resources will be returned as the src/dest parameter (src/dest must be a
register). The src2 parameter is not used. Results returned in the src/dest parameter must be
interpreted as shown in Table 10-1.

Table 10-1. SRC/DEST Encoding

SRC/DEST 7:4 SRC/DEST 3:0

Number of Available Data Address Number of Available
Breakpoints Instruction Breakpoints

Note: SRC3 31:8 are reserved and will always return zeroes.

The following code sample illustrates the execution of the breakpoint resource request.

ldconst Ox600, r4 # Load the Breakpoint Resource
.Request message type into r4.

sysctl r4, r4, r4 # Issue the request.

Assume in this example that after execution of the sysctl instruction, the value of r4 is
OOOO.0022H. This indicates that the application has gained modification rights to both instruction
and both data address breakpoint registers. If the value returned is zero, the application has not
gained the rights to the breakpoint resources.

Because the i960 Ix processor does not initialize the breakpoint registers from the control table
during initialization (as i960 Cx processors do), the application must explicitly initialize the
breakpoint registers in order to use them once modification rights have been granted by the sysctl
instruction.

10.2.7.4 Breakpoint Control Register

The format of the BPCON register is shown in Figure 10-2. Each breakpoint has four control bits
associated with it: two mode and two enable bits. The enable bits (DABx.eO, DABx.el) in BPCON
act to enable or disable the data address breakpoints, while the mode bits (DABx.mO, DABx.ml)
dictate which type of access will generate a break event.

10-7

I

!

TRACING AND DEBUGGING

DABO----------------------,

DAB1 -----,11
II

II1IIIII
31 28 24 20 16 12 8 4 o

I Reserved
(Initialize to 0)

Hardware Reset Value: 0000 OOOOH

Software Re-Init Value: Re~ins State

Figure 10-2. Breakpoint Control Register (BPCON)

Programming the BPCON register is summarized in Table 10-2.

Table 10-2. Configuring the Data Address Breakpoint Registers

PC.te DABx.e1 DABx.eO Description

0 X X No action. With. PC.te clear, breakpoints are globally disabled.

X 0 0 No action. DABx is disabled.

1 0 1 Reserved.

'.
1 1 ,0 Reserved.

1 1 1 Generate a Trace Fault.

Note: "X" = don't care. Reserved combinations must not be used.

The mode bits of BPCON control what type of access generates a fault, trace message, or break
event, as summarized in Table 10-3.

Table 10-3. Programming the Data Address Breakpoint Modes

DABx.m1 DABx.mO Mode

0 0 Break on Data Write Access Only,

0 1 Break on Data Read or Data Write Access.

1 0 Break on Data Read Access.

1 1 Any access.

1()-8

TRACING AND DEBUGGING

10.2.7.5 Data Address Breakpoint Registers

The format for the Data Address Breakpoint (DAB) registers is shown in Figure 10-3. Data
Address Breakpoint Register Format. Each of the two breakpoint registers contains a 32-bit
address of a byte to match on.

A breakpoint is triggered when both a data access's type and address matches that specified by
BPCON and the appropriate DAB register. The mode bits for each DAB register, which are
contained in BPCON (see section 10.2.7.4), qualify the access types that DAB will match. An
access-type match selects that DAB register to perform address checking. An address match occurs
when the byte address of any of the bytes referenced by the data access matches the byte address
contained within a selected DAB.

Consider the following example. DABO is enabled to break on any data read access and has a value
of IOOFH. Any of the following instructions will cause the DABO breakpoint to be triggered:

ldob OxlOOf, r8
ldos
ld
ld
ldl
ldq

OxlOOe,r8
OxlOOc,r8
OxlOOd,r8
Oxl008,r8
OxlOOO,r8

/* even unaligned accesses */

Note that Itldt Ox1000,r81t will not cause the breakpoint to be triggered because byte lOOFH is not
referenced by the triple word access.

Data address breakpoints can be set to break on any data read, any data write, or any data read or
data write access. All accesses qualify for checking. These include explicit load and store instruc­
tions, and implicit data accesses performed by other instructions and normal processor operations. .

For data accesses to the memory-mapped control register space, it is unpredictable whether
breakpoint traces are generated when the access matches the breakpoints and also results in an
OPERATION fault or TYPE.MISMATCH fault. The OPERATION or TYPE.MISMATCH fault
will always be reported in this case.

10-9

I"~

TRACING AND DEBUGGING

Data Address ---------..."

1'1111 '111111111'1111111111111111111
31

10.2.7.6

24 . 20 16 12 8 4 o

Hardware Reset Value: 0000 OOOOH

Software Re-ini! Value: 0000 OOOOH

Figure 1 0~3. Data Address Breakpoint Register Format

Instruction Breakpoint Registers

The format for the instruction breakpoint registers is given in Figure 10-4. Instruction Breakpoint
Register Format. The upper thirty bits of the IBPx register contains the word-aligned, instruction
address to break on. The two low-order bits indicate the action to take upon an address match.

IBpxMooe--~l
Instruction Address ----------------,1

J . . In

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII~I~I
'. 31 28 24 20 16 12 8 4 o

Hardware Reset Value: 0000 OOOOH

Software Re-init Value: 0000 OOOOH

Figure 10-4. Instruction Breakpoint Register Format

Programming the instruction breakpoint register modes is shown in Table 10-4.

On the i960 Jx microprocessor, the instruction breakpoint memory-mapped registers can be read
by using the sysctl instruction only. They can be modified by sysctl or by a word-length store
instruction.

10-10 I

TRACING AND DEBUGGING

Table 10-4. Instruction Breakpoint Modes

PC.te IBPx.m1 IBPx.mO Action

0 X X No action. Globally disabled.

X 0 0 No action. IBPx disabled.

1 0 1 Reserved.

1 1 0 Reserved.

1 1 1 Generate a Trace Fault.

Note: "X" = don't care. Reserved combinations must not be used.

10.3 GENERATING A TRACE FAULT

To summarize the information presented in the previous sections, the processor services a trace
fault when pc.te is set and the processor detects any of the foliowing conditions:

• An instruction included in a trace mode group executes or is about to execute (in the case of a
preretum trace event) and the trace mode for that instruction is enabled.

• A fault call operation executes and the call-trace mode is enabled.

• A mark,instruction executes and the breakpoint-trace mode is enabled.

• An fmark instruction executes.

• The processor executes an instruction at an IP matching an enabled instruction address
breakpoint register.

• The processor issues a memory access matching the conditions of an enabled data address
breakpoint register.

10.4 HANDLING MULTIPLE TRACE EVENTS

With the exception of a prereturn trace event, which is always reported alone, it is possible for a
combination of trace events to be reported in the same fault record. The processor may not report
all events; however, it will always report a supervisor event and it will always signal at least one
event.

If the processor reports prereturn trace and other trace types at the same time, it reports the other
trace types in a single trace fault record first, and then services the preretum trace fault upon return
from the other trace fault.

10-11

TRACING AND DEBU(;GING

10.5 TRACE FAULT HANDLING PROCEDURE

The processor calls the trace fault handling procedure when it detects a trace event. See section
9.7, "FAULT HANDLING PROCEDURES" (pg. 9-13) for general requirements for fault
handling procedures.

The trace fault handling procedure is involved in a specific way and is handled differently than
other faults. A trace fault handler must be invoked with an implicit system-supervisor call. When
the call is made, the PC register trace enable bit is cleared. This disables trace faults in the trace
fault handler. Recall that, for all other implicit or explicit system-supervisor calls, the trace enable
bit is replaced with the system procedure table trace control bit. The exceptional handling of trace
enable for trace faults ensures. that tracing is turned off when a trace fault handling procedure is
being executed. This is necessary to prevent an endless loop of trace fault handling calls.

10.5.1 Tracing and Interrupt Procedures

When the processor invokes an interrupt handling procedure to service an interrupt, it disables
tracing. It does this by saving the PC register's current state in the interrupt record, then clearing
the PC register trace enable bit.

On returning from the interrupt handling procedure, the processor restores the PC register to the
state it was in prior to handling the interrupt, which restores the trace enable bit. See section
10.5.2.2, "Tracing on Implicit Call" (pg. 10-13) and section 10.5.2.5, "Tracing on Return from
Implicit Call: Interrupt Case" (pg. 10-15) for a detailed description of tracing on calls and returns
from interrupts.

10.5.2 Tracing on Calls and Returns

During call and return operations, the trace enable flag (PC.te) may be altered. This section
discusses how tracing is handled on explicit and implicit calls and returns.

Since all trace faults (except prereturn) are serviced after execution of the traced instruction,
tracing on calls and returns is controlled by the PC.te in effect after the call or the return.

10.5.2.1 Tracing on Explicit Call

Tracing an explicit call happens before execution of the first instruction of the procedure called.

Tracing is not modified by using a call or calix instruction. Further, tracing is not modified by
using a calls instruction from supervisor mode. When calls is issued from user mode, PC.te is
read from the supervisor stack pointer trace enable bit (SSP.te) of the system procedure table,
which is cached on chip during initialization. The trace enable bit in effect before the calls is

10-12 I

TRACING AND DEBUGGING

stored in the new PFP[O] bit and is restored upon return from the routine (see section 10.5.2.3,
"Tracing on Return from Explicit Call" (pg. 10-14». The calls instruction and all instructions of
the procedure called are traced according to the new PC.te.

Table 10-5 summarizes all cases; a and x are bit variables.

Table 10-5. Tracing on Explicit Call

Call Source Source Target
Trace Enable

PFP.rrr Used for Traces
Type PC.te PC.em PC.te

on Call

call, calix a x 000 a a

calls a super 000 a a

calls a user 01a SSP.te SSP.te

10.5.2.2 Tracing on Implicit Call

Tracing on an implicit call happens before execution of the fIrst instruction of the non-trace fault
handler called. Table 10-6 summarizes all cases of tracing on implicit call. In the table, a is a bit
variable that symbolizes the trace enable bit in PC.

Table 10-6. Tracing on Implicit Call

Call Source Target
TE Used for

Type
SPTentry rrr

PC.1e PC.te
Traces on

Implicit Call

OO-Flt" N.A. 001 a a a

10-FI(00 001 a a a

10-FI(10 001 a SSP.te SSP.te

OO-Parallel/Override Fit
Type of trace fault not supported x

OO-Trace Fit

1 O-Parallel/Override Fit
Type of trace fault not supported 00

10-Trace Fit

10-Parallel/Override Fit

10-Trace Fit
10 001 a 0 0

Interrupt N.A. 111 a 0 0

• All faults except parallel/override and trace faults

10-13

TRACING AN'D DEBUGGING intet
Tracing is not altered on the way to a local ora system-local fault handler, so the call is traced if
PC.te and TC.call are set before the call.For an implicit system-supervisor call~PC.te is read from
SSP.te. The trace on the call is serviced before execution of the first instruction of the non-trace
fault handler (tracing is disabled on the way to a trace fault handler).

The only type of paralleVoverride fault handler supported is the system-supervisor type. Tracing is
disabled on the way to the paralleV6vemde fault handler. .

The only type 'Of trace fault pandler supported is the system~supervisor type .. Tracing is disabled on
the way to the trace fault handler. " "

. -, ..
Tracing is disabled by the processor on the way to an interrupt handler, so an interrupt call is never
traced. "

Note that the Fault IP field of the fault record is not defined when tracing a fault call, because there
is no instruction pointer associated to an. implicit call. ,

10.5.2.3 Tracing on Return from Explicit Call

Table 10-7 shows all cases.

Table 10-7. TraCing on Return From Explicit Call

PFP.rrr PC.em PC.te
Trace Enable Used for Trace

on Return

000 x .,: w w

01a user w w

01a super w a

For a return from local call (return type 000), tracing is not modified. For a return from system call
(return type Ola, with PC.te equal to "a'~ before the .call), tracing of the return and subsequent
instructions is cQI)trolled by "a", which is restored in the PC.te during execution of the return.

10.5.2.4 Tracing on Ret",rl1 from Implicit Call: Fault Case

When the processor detects several fault conditions on 'the same instruction (referred as the
"target")" the non~trace fault is serviced first. Uporl return from the non-trace fauit handler, the
processor services a trace fault on the target if in supervisor mode before the return and if the trace
enable and trace fault pending flags are set in the PC field of the non-trace fault record (at FP-16).

10-14 l

TRACING AND DEBUGGING

If the processor is in user mode before the return, tracing is not altered. The pending trace on the
target instruction is lost, and the return is traced according to the current PC.te. Table 10-8
summarizes the two cases:

Table 10-8. Tracing on Return from Fault

PC.em PC.te
Target PC.te Pending Trace on Trace on

PFP.rrr Before Before
Return Return

After Return Target When Return When

001 user w w Pending Trace is Lost w & TC.event

001 (FP-16).te
(FP-16).te &

Not Traced super w
(FP-16).tfp

10.5.2.5 Tracing on Return from Implicit Call: Interrupt Case

When an interrupt and a trace fault are reported on the same instruction, the instruction completes
and then the interrupt is serviced. Upon return from the interrupt, the trace fault is serviced, if the
interrupt handler did not switch to user mode. On the i960 Jx processor, the interrupt handler
returns directly to the trace fault handler.

If the interrupt return is executed from user mode, the PC register is not restored and tracing of the
return occurs according to the pc.te and TC.modes bit fields.

Table 10-9 summarizes the user and supervisor cases:

Table 10-9. Tracing on Return from Interrupt

PC.em PC.te Tgt PC.te Pending Trace on Target When
Trace on Return

rrr
When

111 user w w Pending Trace is Lost w& TC.ev

111 super w (FP-16).TE RIP points to trace handler Not Traced"

" Assume the interrupt handler does not turn tracing on. If it does, it is unpredictable whether the return is
traced or not.

I 10-15

"
,

I

"

in1:et

11
INITIALIZATION AND SYSTEM
REQUIREMENTS

_I

int"et
CHAPTER 11

INITIALIZATION AND SYSTEM REQUIREMENTS

This chapter describes the steps that the i960® Jx processor performs during initialization.
Discussed are the RESET pin, the reset state and built-in self test (BIST) features. This chapter
also describes the processor's basic system requirements - including power, ground and clock­
and concludes with some general guidelines for high-speed circuit board design.

11.1 OVERVIEW

During the time that the RESET pin is held asserted, the processor is in a quiescent reset state. All
external pins are inactive and the internal processor state is forced to a known condition. The
processor begins initialization when the RESET pin is deasserted.

When initialization begins, the processor uses an Initial Memory Image (IMI) to establish its state.
The IMI includes:

• Initialization Boot Record (IBR) - contains the addresses of the first instruction of the
user's code and the PRCB.

• Process Control Block (PRCB) - contains pointers to system data structures; also contains
information used to configure the processor at initialization.

• System data structures - the processor caches several data structure pointers internally at
initialization.

Software can reinitialize the processor. When a reinitialization takes place, a new PRCB and reini­
tialization instruction pointer are specified. Reinitialization is useful for relocating data structures
from ROM to RAM after initialization.

The i960 Jx processor supports several facilities to assist in system testing and startup diagnostics.
ONCE mode electrically removes the processor from a system. This feature is useful for system­
level testing where a remote tester exercises the processor system. The i960 Jx processor also
supports JTAG boundary scan (see Chapter 17, TEST FEATURES). During initialization, the
processor performs an internal functional self test and external bus self test. These features are
useful for system diagnostics to ensure basic CPU and system bus functionality.

The processor is designed to minimize the requirements of its external system. It requires an input
clock (CLKIN) and clean power and ground connections (V ss and V cd. Since the processor can
operate at a high frequency, the external system must be designed with considerations to reduce
induced noise on signals, power and ground.

11-1

I~

II
I:

INITIALIZATION AND SYSTEM REQUIREMENTS

11.2 INITIALIZATION
"·f

InitialiZatioridescribes'themechartisIn that the processo'r uses to establish itsihitial state and begin
instruction execution. Initialization begins when the RESET pin is deasserted. At this time, the
processor automatically configures itself with information specified in the IMI and performs its
built-in self test based on the sampling -of the STEST pin. The processor then branches to the first
instruction of user code. S~ Figu:re 11-1 for a flow chart of i%O Jx processor initializatiori.

11-2

Hardware R..t

Drive Fall Code
on AddressiOata Pins

DeBSsert m Pin

SoftwlIre Relnltlallzatlon

Process PRCS
Contants

Figure 11-1. Processor Initialization Flow

INITIALIZATION AND SYSTEM REQUIREMENTS

The objective of the initialization sequence is to provide a complete, working initial state when the
first user instruction executes. The user's startup code needs only to perform several basic
functions to place the processor in a configuration for executing application code.

11.2.1 Reset State Operation

The RESET pin, when asserted (active low), causes the processor to enter the reset state. All
external signals go to a defined state (Table 11-1), internal logic is initialized, and certain registers
are set to defined values (Table 11-2). When the RESET pin is deasserted, the processor initializes
as described in section 11.5, "Startup Code Example" (p{.;. 11-23). RESET is a level-sensitive, i:\
asynchronous input. If HOLD is asserted while the processor is in reset, the processor will I':
acknowledge the request. All external pins will assume their usual Th states while the bus is in the II
hold state.

The RESET pin must be asserted when power is applied to the processor. The processor then
stabilizes in the reset state. This power-up reset is referred to as cold reset. To ensure that all
internal logic has stabilized in the reset state, a valid input clock (CLKIN) and Vee must be present
and stable for a specified time before RESET can be deasserted.

The processor may also be cycled through the reset state after execution has started. This is
referred to as warm reset. For a warm reset, the RESET pin must be asserted for a minimum
number of clock cycles. If a warm reset is asserted during a bus hold, the processor continues to
drive HOLDA until HOLD is deasserted. However, the processor will begin the internal initial­
ization process. Specifications for a cold and warm reset can be found in the 80960JAlJF
Embedded 32-bit Microprocessor Data Sheet or the 80960JD Embedded 32-bit Microprocessor
Data Sheet.

While the processor's RESET pin is asserted, output pins are driven to the states as indicated in
Table 11-1. The reset state cannot be entered under direct control from user code. No reset
instruction - or other condition that forces a reset - exists on the i960 Jx processors. The RESET
pin must be asserted to enter the reset state. The processor does, however, provide a means to re­
enter the initialization process. See section 11.4.1, "Reinitializing and Relocating Data Structures"
(pg. 11-22).

11-3
J

.J,..

...

."
<C'
c ...
CD
I

~

(')
o
a::
l:J
CD
I/)

!!.

~
i o
3

CLKIN [.r-Jl\J\.JVVVVVVVV\I\J\JV\J\JV1W\J"\..:
!! !! 1 I It! !!! (

V [11"' 11 '11 ' II '11 '11---'----' cc --'" ! I! ! I

ALE,ADS,[
BE3:0, DEN,

BLAST

ALE,W/i1 [
DT/R

--il·

--il

~ ':1 / :11 II II : liT:
-==------,,---,''''/ ! : L;
~: \ :11 'I! 'll:ll ;0

FAIL [---(1
.....----41: '\ I I , :(Not~1) I r

------=~---":"'""--< 'II ill I II "1' I : , ':1' '>CI 'll " AD31 :0, A3:2, [
WIDTHI

HLTD1 :0, Die
~ Idle (Note 2) I \r-'

---ll I . I ,I! III In

RESET [

HOLD [---ll----
HOLDA [----II ~ ll-,----..

LOCK! [
ONCE

STEST [----11 ___ _

Notes:

I-~--!--""

V cc and ClKIN stable to RESET High, minimu\fl
10,000 ClKIN periods, for Pll stabilization. ,

, !' l!·

l..ll ' ll--: --:

1. The processor asserts FAIL during built-in self-test. If self- test pa~ the FAIL pin is deasserted.The processor also asserts FAIL .
during the bus confidence test. If the bus confidence test passes, FAIL is deasserted and the processor begins user program execution.

2. If the processor fails built-in self-test, it will initiate one dummy load bus access.
The load address will indicate the point of self-test failure. F_Xl028A

3. Since the bus is idle, hold requests will be honored during reset and built-in self-test.

z
::::j
l> r-
N
~
5 z
» z
c
(J)
-<
(J)
-4
m
:s:
:IJ
m
D
5
:IJ
m
s:
m z
-4
(J)

--:J

C£
@

INITIALIZATION AND SYSTEM REQUIREMENTS

Table 11-1. Pin Reset State

Pins Reset State Pins Reset State

AD31:0 Floating W/R Low (read)

ALE Low (inactive) DT/R Low (receive)

ALE High (inactive) DEN High (inactive)

ADS High (inactive) BLAST High (inactive)

A3:2 Floating LOCK/ONCE High (inactive)

BE3:0 High (inactive) HOLDA Valid Output

WIDTH/HLT01 :0 Floating FAIL Low (Active)

D/C Floating TOO Valid Output

Table 11-2. Register Values After Reset (Sheet 1 of 2)

Register Value After Cold Reset Value After Software Re-Init

AC AC initial image in PRCB AC initial image in PRCB

PC 001F2002H 001F2002H

TC initial image in Control Table, offset 68H initial image in Control Table, offset 68H

FP (g15) interrupt stack base interrupt stack base

PFP (rO) undefined value before software re-init

SP(r1) interrupt stack base+64 interrupt stack base+64

RIP (r2) undefined undefined

IPND undefined value before software re-init

IMSK OOH OOH

LMARO-1 undefined value before software re-init

LMMRO-1 bit 0 = 0; bits 1 -31 = undefined value before software re-init

DLMCON
bit 0 = bit 7 of byte at FEFF FF3CH

value before software re-init
bit 1 = 0; bits 2 -31 = undefined

TRRO-1 undefined value before software re-init

TCRO-1 undefined value before software re-init

TMRO-1 bits .1-6 = 0; bits 0, 7-31 = undefined bits 1-6 = 0; bits 0, 7-31 = undefined

IPBO OOOO.OOOOH OOOO.OOOOH

IPB1 OOOO.OOOOH OOOO.OOOOH

DABO OOOO.OOOOH OOOO.OOOOH

DAB1 OOOO.OOOOH OOOO.OOOOH

IMAPO initial image in Control Table, offset 10H initial image in Control Table, offset 10H

IMAP1 initial image in Control Table, offset 14H initial image in Control Table, offset 14H

11-5

INITIALIZATION AND SYSTEM REQUIREMENTS

Table 11·2. Register Values After Reset (Sheet 2 of 2)

Register Value After Cold Reset Value After Software Re-Init

IMAP2 initial imafle in Control Table, offset 18H initial image in Control Table, offset 18H

ICON initial image in Control Table, offset 1 CH . initial image in Control Table, offset 1 CH

PMCONO_1 initial image in Control Table, offset 20H initial image in Control Table, offset 20H

PMCON2_3 initial image in Control Table, offset 28H initial image in Control Table, offset 28H

PMCON4_5 initial image in Control Table, offset 30H initial image in Control Table, offset 30H

PMCON6J initial image in Control Table, offset 38H initial image in Control Table, offset 38H

PMCON8_9 initial image in Control Table, offset 40H initial image in Control Table, offset 40H

PMCON10_11 initial image in Control Table, offset 48H initial image in Control Table, offset 48H

PMCON12_13 initial image in Control Table, offset 50H initial image in Control Table, offset 50H

PMCON14_15 initial image in Control Table, offset 58H initial image in Control Table, offset 58H

BPCON OOOO.OOOOH Value before software re-init.

BCON initial image in Control Table, offset 6CH initial image in Control Table, offset 6CH

DEVICEID initialized by reset process initialized by reset process

11.2.2 Self Test Function (STEST, FAIL)

A!> part of initialization, the i960 Jx processor executes a bus confidence self test, an alignment
check for data structures within the initial memory image (IMI), and optionally, an built-in self test
program. The self test (STEST) pin enables or disables built-in self test. The FAIL pin indicates
that the self tests passed or failed by asserting FAIL. During normal operations the FAIL pin can
be asserted if a System Error is detected. The following subsections further describe these pin
functions.

Internal self test checks basic functionality of internal data paths, registers and memory arrays on­
chip. Internal self test is not intended to be a full validation of processor functionality; it is
intended to detect catastrophic internal failures and complement a user's system diagnostics by
ensuring a confidence level in the processor before any system diagnostics are executed.

11.2.2.1 The STEST Pin

The STEST pin enables and disables Built-In Self Test (BIST). BIST can be disabled if the initial­
ization time needs to be minimized or if diagnostics are simply not necessary. The STEST pin is
sampled on the rising edge of the RESET inpu~:

•
•

11-6

If STEST is asserted (high), the processor executes the built-in self test.

If STEST is deasserted, the processor bypasses built-in self test.

intet~ INITIALIZATION AND SYSTEM REQUIREMENTS

11.2.2.2 External Bus Confidence Test

The external bus confidence test is always performed regardless of STEST pin value.

The external bus confidence test checks external bus fun~tionality; it reads eight words from the
Initialization Boot Record (mR) and performs a checksum on the words and the constant FFFF
FFFFH. The test passes only when the processor calculates a sum of zero (0). The external bus
confidence test can detect catastrophic bus failures such as external address, data or control lines
that are stuck, shorted or open.

11.2.2.3 The Fail Pin (FAIL)

The FAIL pin signals errors in either the built-in self test or bus confidence self test. FAIL is
asserted (low) for each self test (Figure 11-3):

• When any test fails, the FAIL pin remains asserted, a fail code message is driven onto the
address bus, and the processor stops execution at the point of failure.

• When a system error occurs, FAIL is also asserted. See section 11.2.2.4, "IMI Alignment
Check and System Error" (pg. 11-8) for details.

• When the test passes, FAIL is deasserted.

If FAIL stays asserted, the only way to resume normal operation is to perform a reset operation.
When the STEST pin is used to disable the built-in self test, the test does not execute; however,
FAIL still asserts at the point where the built-in self test would occur. FAIL is deasserted after the
bus confidence test passes. In Figure 11-3, all transitions on the FAIL pin are relative to CLKIN as
described in the 80960JNJF Embedded 32-bit Microprocessor Data Sheet and the 80960JD
Embedded 32-bit Microprocessor Data Sheet.

Bus Confidence
Internal Self· Test Status Test Status

PASS PASS

Internal S If 1i t Bus Confidence Test I FAil ________ e_·_e_s_-'- E.A~ -'-_____________ ~Ib _

1--414.000 Cycles---+ .. I.-....... I ----- 132 Cycles ------+1.1

26 Cycles
, Cycles .. Number of ClKIN Periods

Figure 11-3. FAIL Timing (8096OJAlJF Case)

11-7

" I,:

ii'
I
II
I ~

I " l

"

II

INITIALIZATION AND SYSTEM'REQUIREMENTS

11.2.2.4 IMI Alignment Check and System Error .

The alignment check during initializatipn for data structures within the IMI ensures that the
PRCB, control table, interrupt table, system-procedure table, and fault table are aligned to word
boundaries. Normal processor operation is not possible without the alignment of these key data
structures. The alignment check is one case where a System Error could occur.

The other case of System Error can occur during regular operation when generation of an override
fault incurs a fault. The sequence of events leading up to this case is quite uncommon.

When a System Error is detected, the FAIL pin is asserted, a fail code message is. driven onto the
address bus, and the processor stops execution at the point of failure. The only· way to resume
normal operation of the processor is to perform a reset operation. Because System Error
generation can occur sometime after the BUS confidence test and even after initialization during
normal processor operation, the FAIL pin will be at a logic one before the detection of a System
Error.

11.2.2.5 FAIL Code

The processor uses only one read bus transaction to signal the fail code message; the address of the
bus transaction is the fail code itself. The fail code is of the form: Oxfeffffnn; bits 6 to 0 contain a
mask recording the possible failures. Bit 7, when one, indicates the mask contains failures from
Built-In Self-Test (BIST); when zero, the mask indicates other failures. The fail codes are shown
in Table 11-3 and Table 11A.

Table 11-3. Fail Codes For BIST (bit 7 = 1)

Bit When set:

6 On-chip Data-RAM failure detected by 818T

5 Internal Microcode ROM failure detected by 818T

4 I-cache failure detected by 818T

3 D-cache failure detected by 818T

2
. Local-register cache or processor core (RF, EU. MDU.

P8Q) failure detected by 818T·

1 Always Zero.

0 Always Zero.

11-8 _I

INITIALIZATION AND SYSTEM REQUIREMENTS

Table 11-4. Remaining Fail Codes (bit 7 = 0)

Bit When set:

6 Always One; this bit does not indicate a failure.

5 Always One; this bit does not indicate a failure.

4
A data structure within the IMI is not aligned to a word
boundary.

3 A Systeni Error during normal operation has occurred.

2 The Bus Confidence test has failed.

1 Always Zero.

0 Always Zero.

11.3 ARCHITECTURALLY RESERVED MEMORY SPACE

The i960 Jx microprocessor contains 232 bytes of address space. Portions of this address space are
architecturally reserved and must not be used by customers. Figure 3-2. Memory Address Space
(pg. 3-13) shows the reserved address space. The i960 Jx suppresses all external bus cycles from 0
to 3FFH and from FFoo OOOOH to FFFF FFFFH.

Addresses FEFF FF60H through FFFF FFFFH are reserved for implementation-specific functions.
This address range is termed "reserved" since i960 architecture implementations may use these
addresses for functions such as memory-mapped registers or data structures. Therefore, to ensure
complete object level compatibility, portable code must not access or depend on values in this
region.

The i960 Ix microprocessor uses the reserved address range 0000 OooOH through 0000 03FFH for
internal data RAM. This internal data RAM is used for storage of interrupt vectors plus general
purpose storage available for application software variable allocation or data structures. Loads and
stores directed to these addresses access internal memory; instruction fetches from these addresses
are not allowed for the i960 Jx microprocessor. See Chapter 4, CACHE AND ON-CHIP DATA
RAM, for more details.

11.3.1 Initial Memory Image (IMI)

The IMI comprises the minimum set of data structures that the processor needs to initialize its
system. As shown in Figure 11-4, these structures are: the initialization boot record (IBR), process
control block (PRCB) and system data structures. The IBR is located at a fixed address in memory.
The other components are referenced directly or indirectly by pointers in the mR and the PRCB.

11-9

. INITIALIZATION AND SYSTEM REQUIREMENTS

The IMI performs three functions for the processor:

• Provides initial configuration information for the core and integrated peripherals.

• Provides pointers to the system data structures and the first instruction to be executed
after processor initialization.

• Provides checksum words that the processor uses in its self test routine at startup.

Several data structures are typically included as part of the IMI because values in these data
structures are accessed· by the processor during initialization. These data structures are usually
programmed in the systems's boot ROM, located in memory region 14_15 of the address space.
The required data structures are:

• PRCB

• IBR

• System procedure table

• Control table

• Interrupt table

• Fault table

To ensure proper processor operation, the PRCB, system procedure table, control table, interrupt
table, and fault table must not be located in architecturally reserved memory -- addresses reserved
for on-chip Data RAM and addresses at and above FEFF FF60H. In addition, each of these
structures must start at a word-aligned address; a System Error occurs if any of these structures are
not word-aligned (see section 11.2.2.3).

At initialization, the processor loads the Supervisor Stack Pointer (SSP) from the system
procedure table, aligns it to a 16-byte boundary, and caches the pointer in the SSP memory­
mapped control register (see section 3.3, "MEMORY-MAPPED CONTROL REGISTERS" (pg.
3-5». Recall that the supervisor stack pointer is located in the preamble of the system procedure
table at byte offset 12 from the base address. The system procedure table base address is
programmed in the PRCB. Consult section 7.5.1, "System Procedure Table" (pg. 7-16) for the
format of the system procedure table.

At initialization, the NMI vector is loaded from the interrupt table and saved at location
0000 OOOOH of the internal data RAM. The interrupt table is typically programmed in the boot
ROM and then relocated to internal RAM by reinitializing the processor.· .

The fault table is typically located in boot ROM. lOt is necessary to locate the fault table in RAM,
the processor must be reinitialized.

The remaining data structures that an application may need are the user stack, supervisor stack and
interrupt stack. These stacks must be located in a system's RAM.

11-10 I

Fixed Data Structures

Inlt. Boot Record (IBR): Address

~--.,*",,~~~

FEFF FF30H

FEFF FF34H

FEFF FF38H

FEFF FF3CH
P-~~~~~~~

FEFF FF40H
\-----'-'!<!!.!!''''-----j

6 Check Words
(For Bus Confidence

Self-Test)

FEFF FF44H

FEFF FF48H

'--______ --' FEFF FF5CH

INITIALIZATION AND SYSTEM REQUIREMENTS

-
-
-

-

-

~

~

.>

Relocatable Data Structures

User Code:

Process Control Block (PRCB):

Fault Table Base Address ~

Control Table Base Address

AC Register Initial Image

Fault Configuration Word

Interrupt Table Base Address

s~stem Procedure
Ta Ie Base Address

Reserved

Interrupt Stack Pointer

Instruction Cache
Confiiiuration Word

ReHcister Cache
Con Iguration Word

Control Table r-
Interrupt Table ~

.?
System Procedure Table 1-

<

Other Architecturally
Defined Data r----Structures (Not

Required As Part Of IMI)

Figure 11·4. Initial Memory Image (IMI) and Process Control Block (PRCB)

11-11

li.
1
It
It
I~

\ INITIALIZATION AND SYSTEM REQUIREMEN"fS

11.3.1.1 Initialization Boot Record (IBR)
. .

The initialization boot record (:IB.R) is the primary data structure required to initialize the i960 Jx
processor. The IBR is a 12-word structure which must be located at address FEFF FF30H (see
Table 11-5). The IBR is made up of four components: the initial bus configuration data, the first
instruction pointer, the PRCB pointer and the bus confidence test checksum data.

Table 11-5. Initialization Boot Record'
... ,

Byte Physical Address Description

FEFF FF30H PMCON14_15, byte 0

FEFF FF31 to FEFF FF33 Reserved .. '

FEFF FF34H PMCON14_15, byte 1
!.

FEFF FF35 to FEFF FF37 Reserved

FEFF FF38H PMCON14_15, qyte.2

FEFF FF39 to FEFF FF3B Reserved

FEFF FF3CH PMCON14_15, byte 3

FEFF FF3D toFEFF FF3F Reserved . . '
..

FEFF FF40 to FEFF FF43 First Instruction Pointer

FEFF FF44to FEFF FF47 PRCB Pointer .

FEFF FF48 tel FEFF FF4B Bus Confidence Self-Test Check Word 0

FEFF FF4C to FEFF FF4F Bus Confidence Self-Test Check Word 1

FEFF FF50 to FEFF FF53 Bus Confidence Self-Test Check Word 2

FEFF FF54 to FEFF FF57 Bus. Confidence Self-Test Check Word 3

FEFF FF58 to FEFF FF5B Bus Confidence Self-Test Check Word 4

FEFF FF5C to FEFF FF5F Bus Confidence Self-Test Check Word 5

When the processor reads the 1M! during initialization, it must know the bus characteristics of
external memory where the IMI is located. Specifically, it must know the bus width and endianism
for the remainder of the IMI. At initialization, the processor sets the PMCON register to an 8-bit
bus width. The processor then needs to form the initial DLMCON and PMCONI4_15 registers so
that the memory containing the IBR can be accessed correctly. The lowest-order byte of each of
the IBR's first 4 words are used to form the register values. On the i960 Jx processor, the bytes at
FEFF FF30 and FEFF FF34 are not needed, so the processor starts fetching at address FEFF FF38.
The loading of these registers is shown in the pseudo-code flow in Example 11-1.

, .' . .~ .
~ .'

11-12 1

INITIALIZATION AND SYSTEM REQUIREMENTS

Example 11·1. Processor Initialization Flow

Processor_Initialization_flow{)
{ FAIL-pin = true;

restore_full_cache_mode; disable{I_cache); invalidate{I_cache);
disable{D_cache); invalidate (D_cache) ;
BCON.ctv = 0; /* Selects PMCON14_15 to control all accesses */
PMCON14_15 = 0; /* Selects 8-bit bus width */

/** Exit Reset State & Start_Init **/
if (STEST_ON_RISING_EDGE_OF_RESET)

status = BIST{); /* BIST does not return if it fails */
FAIL-pin = false;
PC = OxOOlf2002; /* PC.Priority = 31, PC.em = Supervisor,*/

/* PC.te = 0; PC.State = Interrupted */
ibr-ptr = Oxfeffff30; /* ibr-ptr used to fetch IBR words */

/** Read PMCON14_15 image in IBR **/
FAIL-pin = true; IMSK 0;
DLMCON.dcen = 0; LMMRO.lmte = 0; LMMR1.lmte 0;
DLMCON.be = (memory[ibr-ptr + Oxcl » 7);
PMCON14_15 [byte2l = OxcO & memory[ibr-ptr + 8l;

/** Compute CheckSum on Boot Record **/
carry = 0; CheckSum = Oxffffffff;
for (i=O; i<6; i++) /* carry is carry out

CheckSum = memory[ibr-ptr + 16 + i*4l
if (CheckSum != 0)

from previous add*/
+ CheckSum + carry;

/* Fail BUS Confidence Test */ { fail_msg = Oxfeffff64;
dummy = memory[fail_msgl; /* Do load with address = fail_msg */
for (;;) ;
} /* loop forever with FAIL pin true */

else FAIL-pin = false;

/** Process PRCB and Control Table ~*/
prcb-ptr = memory[ibr-ptr+Ox14l;
ctrl_table = memory[prcb-ptr+4l;
Process_PRCB{prcb-ptr); /* See Process PRCB Section for Details */
IP = memory [ibr-ptr+Ox10l ;

gO = DEVICE_ID;
return;/* Execute First Instruction */

Bit 31 of the assembled PMCON word loaded from the IBR is written to DLMCON.be to establish
the initial endianism of memory; the processor initializes the DLMCON.dcen bit to 0 to disable
data caching. The remainder of the assembled word is used to initialize PMCON14_15. In
conjunction with this step, the processor clears the bus control table valid bit (BCON.ctv), to
ensure for the remainder of initialization that every bus request issued takes configuration
information from the PMCON14_15 register, regardless of the memory region associated with the
request. At a later point in initialization, the processor loads the remainder of the memory region

_-I 11-13

i

I'
i.

I
Ii
'i

!
'I
I
)

,!

I

INITIALIZATION AND SYSTEM REQUIREMENTS

configuration table from the external cOIitrol table. The Bus Configuration (BCON) register is also
loaded at this time. The control table valid (BCON.ctv) bit is then set ill the control table to
validate the PMCON registers after they are loaded. In this way, the bus controller is completely,
configured during initialization. (See Chapter 15, EXTERNAL BUS for a complete discussion of
memory regions and configuring the bus controller.)

After the bus configuration data is loaded and the new bus configuration IS in place, the processor
loads the remainder of the IBR which consists of the first instruction pointer, the PRCB pointer
and six checksum words. The PRCB pointer and the first instruction pointer are internally cached.
The six checksum words - along with the PRCB pointer and the first instruction pointer - are
used in a checksum calculation which implements a confidence test of the external bus. The
checksum calculation is shown in the pseudo-code flow in Example 11-1. If the checksum
calculation equals zero, then the confidence test of the external bus passes.

Figure 11-4 further describe the ffiR organization.

r-------------- Boot Bit Endian (BBGE)
(0) Little Endian
(1) Big Endian

.------- Bus Width (BW)
(00) 8-bit
(01) 16-bit
(10) 32-bit
(11) Reserved

byte 1 byte 0

28 24
PMCON14_15 Register

I Reserved
(Initialize to 0)

20 16 12 8 4

Figure 11·5. PMCON14_15 Register Bit Description In IBR

11.3.1.2 Process Control ,Block (PRCB)

o

The PRCB contains base addresses for system data structures and initial configuration information
for the cote and integrated peripherals. The base addresses' are accessed from these internal
registers. The registers are accessible to the users through the memory mapped interface. Upon
reset or reinitialization, the registers are initialized. The PRCB format,is shown in'Table 11-6.

11-14

INITIALIZATION AND SYSTEM REQUIREMENTS

Table 11-6. PRCS Configuration

Physical Address Description

PRCB POINTER + OOH Fault Table Base Address

PRCB POINTER + 04H Control Table Base Address

PRCB POINTER + 08H AC Register Initial Image

PRCB POINTER + OCH Fault Configuration Word

PRCB POINTER + 10H Interrupt Table Base Address

PRCB POINTER + 14H System Procedure Table Base Address

PRCB POINTER + 18H Reserved ,
PRCB· POINTER + 1 CH Interrupt Stack Pointer

PRCB POINTER + 20H Instruction Cache Configuration Word

PRCB POINTER + 24H Register Cache Configuration Word

The initial configuration infonnation is programmed in the arithmetic controls (AC) initial image,
the fault configuration word, the instruction cache configuration word, and the register cache
configuration word. Figure 11-6 shows these configuration words.

11-15

INITIALIZATION AND'SYSTEM REQUIREMENT.S intet

AC Register Initial Image Offset08H
Condition Code Bits- AC.cc--...,-----------------------,

Integer-Overflow Flag - AC.of----------:------:----,
(0) no overflow '
(1) overflow

Integer Overflow Mask Bit - AC.om ------.,.----,--,
(0) enable overflow faults
(1) mask overflow faults

No-Imprecise-Faults Bit - AC.nif -------...,
(0) allow imprecise fault conditions
(1) prevent imprecise fault concjitions.

31 28 24 20 16

I I I III
12 8 .4

Fault Configuration Word

31 28 24 20 16 12 8 4

tL--_________________ Mask Non-Aligned Bus Request Fault

Instruction Cache Configuration Word

Disable Instruction Cache---------,
(0) enable cache
(1) disable cache

31 28 24 20 16

Register Cache Configuration Word

(0) enable the fault
(1) mask the fault

12 8

Programmed Limit--------------------,.

31

I
. III

28

Reserved
(Initialize to 0)

24 20 16 12 8

4

4

Figure 11-6. Process Control Block Configuration Words

·11-16

o
OffsetOCH

o

Offset 20H

o

Offset24H

o

_1

INITIALIZATION AND SYSTEM REQUIREMENTS

11.3.2 Process PRCe Flow

The following pseudo-code flow illustrates the processing of the PRCB. Note that this flow is used
for both initialization and reinitialization (through sysctl).

Example 11-2. Process PRCe Flow

Process_PRCB(prcb~tr)

{ PRCB_mmr = prcb-ptr;
reset_state(data_ram); /* It is unpredictable whether the */

/* Data RAM keeps its prior contents */
fault_table memory[PRCB_mmr];
ctrl_table memory[PRCB_mmr+Ox4];
AC memory[PRCB_mmr+Ox8];
fault_config memory[PRCB_mmr+Oxc];

if (1 & (fault_config » 30)) generate_fault_on_unaligned_access
else

/** Load Interrupt Table and Cache NMI Vector Entry in Data RAM**/
Reset_block_NMI;
interrupt_table = memory[PRCB_mmr+Ox10];
memory [0] = memory[interrupt_table + (248*4) + 4];

/** Process System Procedure Table **/
sysproc memory [PRCB_mmr+Ox14] ;
temp
SSP_mmr
SSP.te

memory[sysproc+Oxc];
(-Ox3) & temp;
1 & temp;

/** Initialize ISP, FP, SP, and PFP **/
ISP_mmr memory[PRCB_mmr+Ox1c];
FP ISP_mmr;
SP FP + 64;
PFP FP;

/** Initialize Instruction Cache **/
ICCW = memory[PRCB_mmr+Ox20];
if (1 & (ICCW» 16)) enable(I_cache);

/** Configure Local Register Cache **/
programmed_limit = (7 & (memory [PRCB_mmr+Ox24] » 8));
config_reg_cache(programmed_limit);

/** Load_control_table. Note breakpoints and BPCON are excluded here **/
load_control_table(ctrl_table+Ox10 , ctrl_table+Ox58);
load_control_table(ctrl_table+Ox68 , ctrl_table+Ox6c);
IBPO = OxO; IBP1 = OxO; DABO = OxO; DAB1 = OxO;

/** Initialize Timers **/
TMRO.tc 0; TMR1.tc 0; TMRO.enable 0; TMR1.enab1e 0;
TMRO.sup 0; TMR1.sup 0; TMRO.reload 0; TMR1.reload 0;
TMRO.cse1
return;

0;. TMRl. csel 0;

false;
true;

11-17

I.

I!
Ii
I '· ,.

Ii
I;
I"

1\"

JNITIALIZATIONAND SYSTEM ,REQUIREMENTS

11.3.2.1 AC Initial Image

The AC initial image is loaded into the on-chip AC register during initialization: The AC initial
image allows the initial value of the overflow mask, no imprecise faults bit and condition code bits
to be selected at initialization.

The AC initial image condition code bits can be used to specify the source of an initializ. ation or . . .
reinitialization when a single instruction entry point to the user startup code.is desirable. This is
accomplished by programming the condition code in the AC initial image to a different value for
each different entry point. The user startup code can detect the condition code values - and thus
the source of the reinitialization - by using the compare or compare-and-branch instructions.

11.3.2.2 Fault Configuration Word

The fault configuration word allows the operation-unaligned fault to be masked when an
unaligned memory request is issued. (See section 15.2.5, "Data Alignment" (pg. 15-22) for a

. description of unaligned memory requests.) Whenever an unaligned access is encountered, the
pro<?essor always performs the access. After performing the access,. the processor determines
whether it should generate a fault. If bit 30 in the fault· configuration word is set, a fault is not
generated after an unaligned memory request is performed. If bit 30 is clear, a fault is generated
after an unaligned memory request is performed.

11.3.2.3 Instruction Cache Configuration Word

The instruction cache configuration word allows the instruction cache to be enabled or disabled at
initialization. If bit 16 in the instruction cache configuration word is set, the instruction cache is
disabled and all instruction fetches are directed to external memory. Disabling the instruction
cache is useful for tracing execution in a software debug environment. The instruction cache
remains disabled until one of two operations is performed:

• The processor is reinitialized with a new value in the instruction cache configuration
word

• icctl is issued with the enable instruction cache operation

• sysctl is issued with the configure instruction cache message type and a cache configu­
ration mode other than disable cache

11.3.2.4 Register Cache Configuration Word

The register cache configuration word specifies the number of free frames in the local register
cache that can be used by non-critical code - code that is either in the executing state (non-inter­
rupted) or code which is in the interrupted state, but, has a process priority less than 28 - must
reserve for critical code (interrupted state and process priority greater than or equal to 28),

11-18

INITIALIZATION AND SYSTEM REQUIREMENTS

The register cache and the configuration word are explained further in section 4.2, "LOCAL
REGISTER CACHE" (pg. 4-2).

11.3.3 Control Table

The control table is the data structure that contains the on-chip control registers values. It is
automatically loaded during initialization and must be completely constructed in the IMI. Figure
11-7 shows the Control Table format.

For register bit definitions of the on-chip control table registers, see the following:

IMAP - Figure 13-7. Interrupt Mapping (IMAPO-IMAP2) Registers (pg. 13-15)

ICON - Figure 13-6. Interrupt Control (ICON) Register (pg. 13-13)

PMCON - Figure 12-2. PMCON Register Bit Description (pg. 12-6)

• TC - Figure 10-1. Trace Controls (TC) Register (pg. 10-2)

• BCON - Figure 12-3. Bus Control Register (BCON) (pg. 12-7)

I 11-19

.-
I
I

INITIALIZATION AND SYSTEM REQUIREMENTS

31 0

OOH

04H

08H

OCH

Interrupt Map 0 (IMAPO) 10H

Interrupt Map 1 (IMAP1) 14H

Interr\lpt Map 2 (IMAP2) 18H

Interrupt uUIIIIUUI""UII (ICON) 1CH

20H

24H

28H

2CH

30H

34H

38H

3CH

40H

I
I, .;

.' 44H

48H

4CH

50H

54H

58H

5CH

60H

64H

68H

Bus Configuration Control (BCON) 6CH

Figure 11-7. Control Table

11-20 _I

INITIALIZATION AND SYSTEM REQUIREMENTS

11.4 DEVICE IDENTIFICATION ON RESET

A number characterizing the microprocessor type and stepping is programmed during manufacture
into the DEVICEID memory-mapped register. During initialization, the value is also placed in gO.

Part Number

I
Product

Version Type Gen Model Manufacturer ID

nl1lnnl I

II1I11111111111111111 0 I 0 I 0 I 0 1 0 I 0 I 0 11 1 0 I 0 11 11 I
28 24 20 16 12 8 4 0

Figure 11·8. IEEE 1149.1 Device Identification Register

The value for device identification is compliant with the IEEE 1149.1 specification and Intel
standards. Table 11-7 describes the fields of the device ID. The Version field corresponds to silicon
stepping: for example, 0000 refers to the A-a stepping.

L 11-21

I
Ij

'I
I
!
I

INITIALIZATION AND SYSTEM REQUIREMENTS

Table 11-7. i960 Jx Processor Device Identification Register settings by Model

Part Number

Version XType Gel'! Model Manufacturer 1

80L960JA, xxxx 0000 100 a 001 a 0001 0000 0001 001 1
3.3V
2K Instruction Cache OxOO821013
1 K Data Cache

80960JF xxxx 1000 100 a 001 a 0000 0000 0001 001 1
5V
4K Instruction Cache Ox0882 0013*
2K Data Cache

80 L960JF xxxx 0000 100 a 001 a 0000 0000 0001 001 1
3.3V
4K Instruction Cache Ox0082 0013
2K Data Cache

80960JD xxxx 1000 100 a 001 a 0000 0000 0001 001 1
5V
4K Instruction Cache Ox0882 0013*
2K Data Cache

"The B0960JF and B0960JD part number~ are the same.

11.4.1 Reinitiallzing and Relocating Data Structures

Reinitialization can reconfigure the processor and change pointers to data structures. The
processor is reinitialized by issuing the sysctl instruction with the reinitialize processor message
type. (See section 6.2.67, "sysctI" (pg. 6-114) for a description of sysctl.) The reinitialization
instruction pointer and a new PRCB pointer are specified as operands to the sysctl instruction.
When the processor is reinitialized, the fields in the newly specified PRCB are loaded as described
in section 11.3.1.2, "Process Control Block (PRCB)" (pg. 11-14).

Reinitialization is useful for relocating data structures to RAM after initialization. The interrupt
table must be located in RAM: to post software-generated interrupts, the processor writes to the
pending priorities and pending interrupts fields in this table. It may also be necessary to relocate
the control table to RAM: it must be in RAM if the control register values are to be changed by
user code. In some systems, it is necessary to relocate other data structures (fault table and system
procedure table) to RAM because of unsatisfactory load performance from ROM.

After initialization, the software is responsible for copying data structures from ROM into RAM.
The processor is then reinitialized with a new PRCB which contains the base addresses of the new
data structures in RAM.

Reinitialization is required to relocate any of the data structures listed below, since the processor
caches the pointers to the structures.

11-22 I

intet INITIALIZATION AND SYSTEM REQUIREMENTS

The processor caches the following pointers during its initialization. To modify these data
structures, a software re-initialization is needed.

• Interrupt Table Address

• Fault Table Address

• System Procedure Table Address

Control Table Address

11.5 STARTUP CODE EXAMPLE

After initialization is complete, user startup code typically copies initialized data structures from
ROM to RAM, reinitializes the processor, sets up the first stack frame, changes the execution state
to non-interrupted and calls the _main routine. This section presents an example startup routine
and associated header file. This simplified startup file can be used as a basis for more complete
initialization routines.

The examples in this section are useful for creating and evaluating startup code. The following lists
the example's number, name and page.

• Example 11-3. Initialization Header File (init.h) (pg. 11-23)

• Example 11-4., Startup Routine (init.s) (pg. 11-24)

• Example 11-5., High-Level Startup Code (initmain.c) (pg. 11-28)

• Example 11-6., Control Table (ctltbl.c) (pg. 11-29)

• Example 11-7., Initialization Boot Record File (rom_ibr.c) (pg. 11-30)

•
•

1

Example 11-8., Linker Directive File (init.ld) (pg. 11-31)

Example 11-9., Makefile (pg. 11-33)

11-23

INITIALIZATION AND SYSTEM REQUIREMENTS

Example 11-3, Initialization Header File'(lnit.h}

/*--~-------------*/
/* init.h */
/*---~--*/!

#define BYTE_N(n,data) (((unsigned) (data) » (n*8)) & OxFF)

typedef struct

unsigned char bus _byte_O;

unsigned char reserved_0[3];

unsigned char bus_byte_1;

unsigned char reserved_1[3];

unsigned char bus _byte_2;

unsigned char reserved_2[3];

unsigned char bus _byte_3;

unsigned char reserved_3[3];

void (*first_inst) ();

unsigned *prcb-ptr;

int check_sum[6];

}IBR;

,
/* PMCON Bus Width can be 8,16 or 32, default to 8

* PMCON14_15 BOOT_BIG_ENDIAN O=little endian, l=big endian
*/

intet

#define BUS_WIDTH(bw) ((bw==16)? (1«22): (0)) I ((bw==32)? (2«22): (0))

((on)?(1«31:0))

/* Bus configuration */

#define DEFAULT (BUS_WIDTH (8)

#define 1_0
#define DRAM
#define ROM

11-24

(BUS_WIDTH (8) BOOT_BIG_ENDIAN(O))
(BUS_WIDTH (32) I BOOT_BIG_ENDIAN(O))
(BUS_WIDTH (8) I BOOT_BIG_ENDIAN(O))

INITIALIZATION AND SYSTEM REQUIREMENTS

Example 11·4. Startup Routine (init.s) (Sheet 1 of 4)

/*--*/
/* init.s */
/*--*/

/* initial PRCB */

.globl _rom-prcb

.align 4 /* or .align 2 */
_rom-prcb :

.word boot fIt_table

.word _boot_control_table

.word OxOOOOl000

.word Ox40000000

.word boot intr table -

.word rom_sys-proc_ table

.word 0

.word intr stack -

.word OxOOOOOOOO

0 - Fault Table
4 - Control Table
8 - AC reg mask overflow fault
12 - Flt CFG
16 - Interrupt Table
20 - System Procedure Table
24 - Reserved
28 - Interrupt Stack Pointer
32 - Inst. Cache - enable cache

.word OxOOOO0200 # 36 - Register Cache Configuration

/* ROM system procedure table */

.equ supervisor-proc, 2

.text

.align 6 /* or .align 2 or .align 4 */
rom_sys-proc_table:

. space 12

.word _supervisor_stack

. space 32

.word _default_sysproc

.word _default_sysproc

.word _default_sysproc

.word _default_sysproc

.word _default_sysproc

.word _default_sysproc

.word _default_sysproc

Reserved
Supervisor stack pointer

Preserved
sysproc 0
sysproc 1
sysproc 2
sysproc 3
sysproc 4
sysproc 5

.word fault_handler + supervisor-proc
sysprpc 6
sysproc 7
sysproc 8 .word _default_sysproc

.space 251*4
/* Fault Table */

.equ

.equ

.text

syscall, 2
fault-proc, 7

.align 4
boot fIt_table:

.word (fault-pr oc«2)

.word Ox27f

.word (fault-pr oc«2)

.word Ox27f

.word (fault-proc«2)

.word Ox27f

sysproc 9-259

+ syscall # O-Parallel Fault

+ syscall # I-Trace Fault

+ syscall # 2-0peration Fault

11-25

I

II
f
.\

INITIALIZATION AND SYSTEM REQUIREMENTS

Example 11-4. Startup Routine (init.s) (Sheet 2 of 4)

.word (fault-proc«2) + syscall # 3-Arithmetic Fault

.word Ox27f

.word 0 # 4-Reserved

.word 0

.word (fault-proc«2) + syscall # 5-Constraint Fault

.word Ox27f

.word 0 # 6-Reserved

.word 0

.word (fault-proc«2) + syscall # 7-Protection Fault

.word Ox27f

.word 0 # 8-Reserved

.word 0

.word 0 # 9-Reserved

.word 0

.word (fault-pr oc«2) + syscall # Oxa-Type Fault

.word Ox27f

.space 21*8 # reserved
/* Boot Interrupt Table */

.text
boot_intr_ table:

.word 0 # Pending Priorities

.word 0, 0, 0, 0, 0, 0, 0, 0 # Pending Interrupts Vectors

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 8

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, - intx # 10

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, intx # 18

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 20

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, - intx # 28

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, intx # 30

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, intx # 38

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 40

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, - intx # 48

.word _intx, _intx, _intx, _intx, _intx, ,-intx, _intx, - intx # 50

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 58

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, - intx # 60

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, intx # 68

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, intx # 70

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, intx # 78

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, intx # 80

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, - intx # 88

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, - intx # 90

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, intx # 98

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # aO

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # a8

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # bO

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, - intx # b8

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # cO

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, - intx # c8

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # dO

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # d8

.word intx, intx, intx, intx, intx, intx, intx, intx # eO

11-26 I

in1et INITIALIZATION AND SYSTEM REQUIREMENTS

Example 11-4. Startup Routine (inits) (Sheet 3 of 4)

.word

.word

.word

/* START */

_intx,
_intx,
_nmi,

_intx,
_intx,

0,

_intx, _intx, _intx, _intx,
_intx, _intx, 0, 0,

0, 0, _intx, _intx,

/* Processor starts execution here after reset. */
.text
.globl _start_ip
.globl _reinit

_start_ip:

_intx,
0,

_intx,

intx # e8
0 # fO

intx - # f8

mov 0, g14 /* g14 must be 0 for ic960 C compiler */
/* MON960 requires copying the .data area into RAM. If a user application
* does not require this it is not necessary.
* Copy the .data into RAM. The .data has been packed in the ROM after the
* code area. If the copy is not needed (RAM-based monitor), the symbol
* rom_data can be defined as 0 in the linker directives file.
*/

Ida rom_data, gl # load source of copy
cmpobe 0, gl, 1£
Ida _Bdata, g2 # load destination
Ida _Edata, g3

init_data:
ldq (gl) , r4
addo 16, gl, gl
stq r4, (g2)
addo 16, g2, g2
cmpobl g2, g3, init_data

1 :
/* Initialize the BSS area of RAM. */

Ida _Bbss, g2
Ida _Ebss, g3
movq 0,r4

bss fill : -
stq r4, (g2)
addo 16, g2, g2
cmpobl g2, g3, bss fill

_reinit:

1 :

_I

ldconst Ox300, r4
Ida 1£, rS
Ida _ram-prcb, r6
sysctl r4, rS, r6

Ida _user_stack, pfp
Ida 64(pfp}, sp
mov pfpf, fp
flushreg

ldconst OxOOlf2403, r3
ldconst OxOOOf0003, r4
modpc r3, r3, r4

start of bss
end of bss

reinitialize sys control

/* new pfp */

/* PC mask */
/* PC value */
/* Lower interrupt priority */

11·27

INITIALIZATION AND SYSTEM REQUIREMENTS intet
Example 11-4. Startup Routine (init.s) (Sheet 4 of 4)

/* Clear the 1PND register */
Ida Oxff008500, gO
mov 0, gl
st gl, (gO)
calIx _main #to

intr_stack .globl
.globl
.globl
.bss
.bss
.bss

_user_stack
_supervisor_stack
_user_stack, Ox0200, 6
_intr_stack, Ox0200, 6
_supervisor_stack, Ox0600, 6

.text
fault_handler:

ldconst 'F', gO
call _co
ret

_default_sysproc:
ret

intx:
ldconst 'I', gO
call _co
ret

main routine

default application stack
interrupt stack
fault (supervisor) stack

Example 11-5. High-Level Startup Code (initmain.c)

unsigned componentid = 0;

main()
{

}

co ()
{

}

11-28

/* system- or board-specific code goes here */
/* this code is called by init.s */

/* system or board-specific output routine goes here */

I

INITIALIZATION AND SYSTEM REQUIREMENTS

Example 11-6. Control Table (ctltbl.c)

/*--*/
/* ctltbl.c */
/*--*/
#include "init.h"

typedef struct
{

unsigned control_reg[28l;
} CONTROL_TABLE;

const CONTROL_TABLE boot_control_table
/* Reserved */
0, 0, 0, 0,
/* Interrupt Map Registers */
0, 0, 0,/* Interrupt Map Regs (set by code as needed) */

Ox43bc, /* ICON

} ;

L

*
*
* system_init
* system_init
* system_init
* system_init
* system_init
* system_init
* system_init
* system_init

*
*
*
*/

° 1
2
3
4
5
6
7

- dedicated mode,
- enabled
- falling edge actived,
- falling edge actived,
- falling edge actived,
- falling edge actived,
- level-low activated,

falling edge actived,
- falling edge actived,
- falling edge actived,
- mask unchanged,
- not cached,
- fast,

/* Physical Memory Configuration Registers */

DEFAULT, 0, /* Region ° 1 */
DEFAULT, 0, /* Region 2 _3 */
DEFAULT, 0, /* Region 4 _5 */
I _0, 0, /* Region 6 - 7 */
DEFAULT, 0, /* Region 8 - 9 */
DEFAULT, 0, /* Region 10_11 */
DRAM, 0, /* Region 12 - 13 */
ROM, 0, /* Region 14 - 15 */

/* Bus Control Register */
0, /* Reserved */
0, /* Reserved */
1 /* BCON Register (Region config. valid) */

11-29

;1
I'

i~

INITIALIZATION AND SYSTEM REQUIREMENTS

Example 11·7. Initialization Boot Record File (rom_ibr.c) (Sheet 1 of 2)

#include "init.h"

/*

* NOTE: The ibr must be located at OxFEFFFF30. Use the linker to

* locate this structure.

* The boot configuration is always region 14_15, since the IBR

* must be located there

*/

extern void start_ip(};

extern unsigned rom-prcb;

extern unsigned checksum;

#define CS - 6 (int) &checksum

#define BOOT_CONFIG ROM

const IBR init_boot_record

BYTE_N(0 ,BOOT_CONFIG},

0,0,0,

BYTE_N(l,BOOT_CONFIG} ,

0,0,0,

BYTE_N(2,BOOT_CONFIG},

0,0,0,

11-30

/* value calculated in linker */

/* PMCON14_15 byte 1 */

/* reserved set to ° */

/* PMCON14_15 byte 2 */

/* reserved set to ° */

/* PMCON14 _15 byte 3 */

/* reserved set to ° */

intet INITIALIZATION AND SYSTEM REQUIREMENTS

Example 11·7. Initialization Boot Record File (rom_lbr.c) (Sheet 2 of 2)

0,0,0,

start_ip,
&rom-prcb,

-2,

0,

0,

0,

0,

} ;

/* PMCON14_15 byte 4 */
/* reserved set to 0 */

~ __________ E_xa_m_p_le __ 11_.8_._L_ln_k_e_r_D_lrec __ tl_v_e_FI_le_(_In_lt_.ld_) __ (S_h_e_~_1 __ m_2_) __________ ~ .i
/*--*/
/* init.ld */

/*--*/
MEMORY
{

/*

*/

Enough space must be reserved in ROM after the text
section to hold the initial values of the data section.

rom: o=OxfefeOOOO,l=OxlfcOO
ro~dat: o=OxfefffcOO,l=Ox0300 /* placeholder for .data image */

ibr:
data:
bss:

o=Oxfeffff30,l=Ox0030
o=OxaOOOOOOO,l=Ox0300
o=Oxa0000300,l=Ox7dOO

11-31

INITIALIZATION AND SYSTEM'REQUIREMENTS

Example 11-8. Linker Directive File (Inlt.ld) (Sheet 2 of 2)

SECTIONS
{

*/

.ibr :
{

rom_ibr.o
> ibr

.text :

} > rom

.data :'
{

} > data

.bss :

} > data

_Etext;

_checksum

HLL()

/* used in init.s as source of .data
section initial values. ROM960
"move" command places the .data
section right after the .text section

/*Rommer script embedded here: the following creates a ROM image
#*move $0 .text 0
#*move $0
#*move $0 .ibr Oxlff30
#*mkimage $0 $O.ima
#*ihex $O.ima $O.hex mode16
#*map $0
#*quit
*/

11-32

INITIALIZATION AND SYSTEM REQUIREMENTS

Example 11·9. Makeflle

/*--*/
/* makefile */
/*--*/

LDFILE = init
FINALOBJ = init
OBJS = init.o ctltbl.o initmain.o
IBR = rom_ibr.o
LDFLAGS -AJF -Fcoff -T$(LDFILE) -m
ASFLAGS -AJF-V
CCFLAGS -AJF -Fcoff -v -c

init.ima: $ (FINALOBJ)
rom960 $ (LDFILE) $ (FINALOBJ)

init: $ (OBJS) $(IBR)
gld960 $ (LDFLAGS) -0 $< $ (OBJS)

.s.o:
gas960c $ (ASFLAGS) $<

.c.O:

gcc960 $ (CCFLAGS) $<

11.6 SYSTEM REQUIREMENTS

The following sections discuss generic hardware requirements for a system built around the i960
Jx processor. This section describes electrical characteristics of the processor's interface to the
external circuit. The eLKIN, RESET, STEST, FAIL, ONCE, V ss and Vee pins are described in
detail. Specific signal functions for the external bus signals and interrupt inputs are discussed in
their respective sections in this manual.

11.6.1 Input Clock (ClKIN)

The clock input (eLKIN) determines processor execution rate and timing. It is designed to be
driven by most common TTL crystal clock oscillators. The clock input must be free of noise and
conform with the specifications listed in the data sheet. eLKIN input capacitance is minimal; for
this reason, it may be necessary to terminate the eLKIN circuit board trace at the processor to
reduce overshoot and undershoot.

11-33

I

i.
ii
!,

/1
I I.

.INITrALIZATIONAND SYSTEM',REQUIREMENTS intet~

11.6.2 Power and Ground Requlr~ments (Vee, Vss)

The large number of V 88 and V cc pins effectively reduces the impedance of power and ground
connections to the chip and reduces transient noise induced by current surges. The i960 Jx
processor is implemented in CHMOS IV technology. Unlike NMOS processes, power dissipation
in the CHMOS process is due to capacitive charging and discharging on-chip and in the
processor's output buffers; there is almost no DC power component. The nature of this power
consumption results in current surges when capacitors charge and discharge. The processor's
power consumption depends mostly on frequency. It also depends on voltage and capacitive bus
load (see the 80960JF Embedded 32-bit Process(Jr Data Sheet).

To reduce clock skew on the i960 Jx processor, the V CCPLL pin for the Phase Lock Loop (PLL)
circuit is isolated on the pinout. The lowpass filter, as shown in Figure 11-9, reduces noise induced
clock jitter and its effects on timing relationships in system designs. The 4.7uf capacitor must be
(low ESR solid tantalum), the 4.7 uf capacitor must be of the type X7R and the node connecting
V CCPLL must be as short as possible.

1000

~·-----~~~++----I~------~·
Vee .J..: VeePLL

_ ~ ...) ~ 4. 7", ~ 0.01", (On 1960 J, processo ..)

Figure 11-9. VCCPLL Lowpass Filter

11.6.3 Power and ,Ground Planes, ' "
, , 1 ' ,.

Power and' grOund planes"must be used'in i960 Jx processor systems to minilnize noise. Justifi­
cation for these power and ground planes is the same as for multiple if 88 and V cc pins. Power and
ground lines have inherent inductance and capacitance; therefore, an impedance Z=(UC)1/2.

Total characteristic impedance for the power supply can be reduced by adding more lines. This
effectis illustrated in Figure 11-10; which shows that two lines in parallel have half the impedance
of one. Ideally, a plane - an infmite number of parallel lines - results in the lowest impedance.
Fabricate power and ground planes with.a 1 oz. copper for outer layers and 0.5 oz. copper for inner
layers.

All power and ground pins must be connected to the planes. Ideally, the i960 Jx processor should
be located at the center of the board to take full advantage of these planes, simplify layout and
reduce noise.

11-34 I

INITIALIZATION AND SYSTEM REQUIREMENTS

/4'0
Zo = 2

2CO
"'1 La \ Co

Figure 11-10. Reducing Characteristic Impedance

11.6.4 Decoupling Capacitors

Decoupling capacitors placed across the processor between V cc and V ss reduce voltage spikes by
supplying the extra current needed during switching. Place these capacitors close to the device
because connection line inductance negates their effect. Also, for this reason, the capacitors should
be low inductance. Chip capacitors (surface mount) exhibit lower inductance.

11.6.5 110 Pin Characteristics

The i960 Jx processor interfaces to its system through its pins. This section describes the general
characteristics of the input and output pins.

11.6.5.1 Output Pins

All output pins on the i960 Jx processor are three-state outputs. Each output can drive a logic 1
(low impedance to V cd; a logic 0 (low impedance to V ss); or float (present a high impedance to
V cc and V ss). Each pin can drive an appreciable extemalload. The 80960JAlJF Embedded 32-bit
Microprocessor Data Sheet and the 80960JD Embedded 32-bit Microprocessor Data Sheet
describe each pin's drive capability and provide timing and derating information to calculate
output delays based on pin loading.

11-35

i
!,

I
I

tNITIALIZATION AND SYSTEM ,REQUIREMENTS intel~

11.6.5.2 Input Pins

All i960 Jx processor inputs are designed to detect TTL thresholds, providing compatibility with
the vast amount of available random logic and peripheral devices that use TTL outputs.

Most i960 Jx processor inputs are synchronous inputs (Table 11-8). A synchronous input pin must
have a valid level (TTL logic 0 or 1) when the value is used by internal logic. If the value is not
valid, it is possible for a metastable condition to be produced internally resulting in undeterminate
behavior. The 80960JNJF Embedded 32~bit Microprocessor Data Sheet and the 80960JD
Embedded 32-b(t Microprocessor Data Sheet specify input valid setup and hold times relative to
CLKIN for the synchronized inputs.

Table 11-8. Input Pins

Synchronous Inputs Asynchronous Inputs Asynchronous Inputs
(sampled by ClKIN) (sampled by ClKIN) (sampled by RESET)

A031:0 RESET STEST

ROYRCV 'XINT7:0 LOCK\ONCE

HOLD NMI

TOI

TMS

i960 Jl: processor inputs which are considered asynchronous are internally synchronized to the
rising edge of CLKIN. Since they are internally synchronized, the pins only need to be held long
enough for proper internal detection. In some cases, it is useful to know if an asynchronous input
will be recognized on a particular CLKIN cycle or held off until a following cycle. The i960 Jx
microprocessor data sheet provides setup and hold requirements'relative to CLKIN which ensure
recognition of an asynchronous input. The data, sheets also fjupply hold times required for
detection of asynchronous inputs. ' ,

The ONCE and STEST inputs are asynchronous inputs. These signals are sampled and latched on
the rising edge of the RESET input instead of CLKIN. /

11.6.6 High Frequency Design Considerations

At high signal frequencies and/or with fast edge rates, the transmission line properties of signal
paths in a circuit must be considered. Transmission lin~ effects and crosstalk become significant in
comparison to the signals. These errors can be transient and therefore difficult to debug. In this
section, some high-frequency design issues are discussed; for more information, consult a
reference on high-frequency design.

11-36 _I

INITIALIZATION AND SYSTEM REQUIREMENTS

11.6.7 Line Termination

Input voltage level violations are usually due to voltage spikes that raise input voltage levels above
the maximum limit (overshoot) and below the minimum limit (undershoot). These voltage levels
can cause excess current on input gates, resulting in permanent damage to the device. Even if no
damage occurs, many devices are not guaranteed to function as specified if input voltage levels are
exceeded.

Signal lines are terminated to minimize signal reflections and prevent 'overshoot and undershoot.
Terminate the line if the round-trip signal path delay is greater than signal rise or fall time. If the
line is not terminated, the signal reaches its high or low level before reflections have time to
dissipate and overshoot or undershoot occurs.

For the i960 Jx processor, two termination methods are attractive: AC and series. An AC
termination matches the impedance of the trace, there by eliminating reflections due to the
impedance mismatch.

Series termination decreases current flow in the signal path by adding a series resistor as shown in
Figure 11-11. The resistor increases signal rise and fall times so that the change in current occurs
over a longer period of time. Because the amount of voltage overshoot and undershoot depends on
the change in current over time (V = L dildt), the increased time reduces overshoot and undershoot.
Place the series resistor as close as possible to the signal source. AC termination is effective in
reducing signal reflection (ringing). This termination is accomplished by adding an RC
combination at the signal's farthest destination (Figure 11-12). While the termination provides no
DC load, the RC combination damps signal transients.

Selection of termination methods and values is dependent upon many variables, such as output
buffer impedance, board trace impedance and input impedance.

Source

Figure 11-11. Series Termination

11-37

II

INITIALIZATION AND SYSTEM REQUIREMENTS in1et

c

Source

R

Figure 11-12. AC Termination

11.6.8 Latchup

Latchup is a condition in a CMOS circuit in which Vee becomes shorted to V ss. Intel's CMOS IV
processes are immune to latchup under normal operation conditions. Latchup can be triggered
when the voltage limits on 110 pins are exceeded, causing internal PN junctions to become
forward biased. The following guidelines help prevent latchup:

• Observe the maximum rating for input voltage on 110 pins.

• Never apply power to an i960 Jx processor pin or a device connected to an i960 Jx
processor pin before applying power to the i960 Jx processor itself.

• Prevent overshoot and undershoot on 110 pins by adding line termination and by
designing to reduce noise and reflection on signal lines.

11.6.9 Interference

Interference is the result of electrical activity in one conductor that causes transient voltages to
appear in another conductor. Interference increases with the following factors:

• Frequency Interference is the result of changing currents and voltages. The more frequent
the changes, the greater the interference.

• Closeness-of-conductors Interference is due to electromagnetic and electrostatic fields
whose effects are weaker further from the source.

11·38 L

INITIALIZATION AND SYSTEM REQUIREMENTS

'!\vo types of interference must be considered in high frequency circuits: electromagnetic inter­
ference (EMI) and electrostatic interference (ESI).

EMI is caused by the magnetic field that exists around any current-carrying conductor. The
magnetic flux from one conductor can induce current in another conductor, resulting in transient
voltage. Several precautions can minimize EMI:

• Run ground lines between two adjacent lines wherever they traverse a long section of the
circuit board. The ground line should be grounded at both ends.

• Run ground lines between the lines of an address bus or a data bus if either of the
following conditions exist:

The bus is on an external layer of the board.

The bus is on an internal layer but not sandwiched between power and ground planes that
are at most 10 mils away.

Figure 11-13. Avoid Closed-Loop Signal Paths

ESI is caused by the capacitive coupling of two adjacent conductors. The conductors act as the
plates of a capacitor; a charge built up on one induces the opposite charge on the other.

The following steps reduce ESI:

• Separate signal lines so that capacitive coupling becomes negligible.

• Run a ground line between two lines to cancel the electrostatic fields.

_I 11-39

!

I

I,

•

12
MEMORY CONFIGURATION

CHAPTER 12
MEMORY CONFIGURATION

The Bus Control Unit (BCU) includes logic to control many common types of memory subsystems
directly. Every bus access is "formatted" according to the BCU programming. The i960 Jx
processor's BCU programming model differs.from schemes used in other i960 processors.

12.1 Memory Attributes

Every location in memory has associated physical and logical attributes. For example, a specific
location may have the following attributes:

• Physical: Memory is an 8-bit wide ROM

• Logical: Memory is ordered big-endian and data is non-cacheable

In the example above, physical attributes correspond to those parameters that indicate how to
physically access the data. The BCU uses physical attributes to determine the bus protocol and
signal pins to use when controlling the memory subsystem. The logical attributes tell the BCU how
to interpret, format and control interaction of on-chip data caches. The physical and logical
attributes for an individual location are independently programmable.

12.1.1 PhYSical Memory Attributes

The only programmable physical memory attribute for the i960 Jx microprocessor is the bus width,
which can be 8-, 16- or 32-bits wide.

For the purposes of assigning memory attributes, the physical address space is partitioned into 8,
fixed 512 Mbyte regions determined by the upper three address bits. The regions are numbered as
8 paired sections for consistency with other i960 processor implementations. Region 0_1 maps to
addresses 0000 OOOOH to IFFF FFFFH and region 14_15 maps to addresses EOOO ooooH to
FFFF FFFFH. The physical memory attributes for each region are programmable through the
PMCON registers. The PMCON registers are loaded from the Control Table. The i960 Jx micro­
processor provides one PMCON register for each region. The descriptions of the PMCON registers
and instructions on programming them are found in Section 12.3.

L 12-1

"

l

,I

I':'

MEMORY CONFIGURATION

1'2.1.2 . Logical. Memory Attributes

The i960 Jx provides a niechamsm for defining two logical memory templates (LMTs). An LMT
may be used to specify the logical memory attributes for a section (or subset) of a physical
memory subsystem connected to the BCU (e.g., DRAM, SRAM). The logical memory attributes
defmed by the i960 Jx are byte ordering and whether the information is cacheable or non-
cacheable in the on-chip data cache~ !

There are typically ~everal different LMTs defint'ld within a single memory subsystem. For
example, data within one area of DRAM may be non-cacheable while data in another area is
cacheable. Figure 12-1 shows the use of the Control Table (PMCON registers) with logical
memory templates for a single DRAM region in a typical application.

Each logical memory te~plate is defined by programming Logical Memory Configuration
(LMCON) registers. An LMCON Register pair defines a data template for areas of memory that
have common logical attributes. The Jx microprocessor has two pairs of LMCON registers -
defining two separate templates. The extent of each data template is described by an address (on 4
Kbyte boundaries) and an address mask. The address is, pt;ogrammed in the Logical, Memory
Address register (LMADR). The mask is programmed in the Logical Memory Mask register
(LMMSK).These two registers constitute the l;MCON register pair.

The Default Logical Memory Configuration register is used to provide configuration data for areas
of memory that do not fall within one of the two logical data templates. The DLMCON also
specifies byte-ordering (little endian/big endian) for all data accesses in memory, including on­
chip data RAM.

The LMCON registers and their programming are described in section 12.6.

12-2 L

FFFF FFFFH

PMCON Registers

Region 14_15 Non-Cacheable

Region 12_13

Region 10_11

Region 8_9 Physical
Region 8_9

Region 6_7 32-bitwide

Region 4_5 DRAM

Region 2_3

Region 0_1 Non,Cacheable

80000000H

OOOOOOOOH

Note: DLMCON maps the remaining memory to cacheable.

MEMORY CONFIGURATION

Logical Memory
Templates
(LMCON)

LMADRO

LMMARO

LMADR1

LMMAR1

Figure 12-1. PMCON and LMCON Example

_L __ _ 12-3

II
Ii

,I
I~. 11
"I !./
II

'!

I
I·
I ,

I ' ' '

MEMORY CONFIGURATION

12.2 Differences With Previous i960 Processors

The mechanism described in this chapter in not implemented on the i960 Kx or Sx processors ..
Although the i960 Cx processor has a memory configuration mechanism, it is different from the
80960Jx's in the following ways:

• For the purposes of assigning physical and logical memory attributes, the i960 Cx processor
evenly divides physical memory into 16 contiguous regions. When assigning physical
memory attributes, the Jx divides memory into 8 contiguous, 512 Mbyte regions starting on
512 Mbyte boundaries. The logical memory templates of the i960 Jx processor provide a
programmable association of logical memory addresses, whereas the i960 Cx processor
assigns these attributes to the physical memory regions.

• The i960 Cx processor provides per-region programming of wait states, address pipelining
and bursting. No such mechanisms exist on the 8096OJx. Bus wait states must be generated
using extemallogic.

12.3 Programming the Physical Memory Attributes (PMCON Registers)

The layout of the Physical Memory Configuration registers, PMCONO_1 to PMCON14_15, is
shown in Figure 12-2, which gives the descriptions of the individual bits. ThePMCON registers
reside within memory-mapped control register space. Each PMCON register controls one 512-
Mbyte region of memory according to the mapping shown in Table 12-1

Table 12-1. PMCON Address Mapping (Sheet 1 of 2)

Register (Control Table Entry) Region Controlled

OOOO.OOOOH to OFFF.FFFFH
PMCONO_1 and

1000.0000H to 1FFF.FFFFH

2000.0000H to 2FFF.FFFFH
PMCON2_3 and

3000.0000H to 3FF,F.FFFFH

4000.0000H to 4FFF.FFFFH
PMCON4_5 and

5000.0000H to 5FFF.FFFFH

12-4

MEMORY CONFIGURATION

Table 12-1. PMCON Address Mapping (Sheet 2 of 2)

6000.0000H to 6FFF.FFFFH
PMCON6_7 and

7000.0000H to 7FFF.FFFFH

8000.0000H to 8FFF.FFFFH
PMCON8_9 and

9000.0000H to 9FFF.FFFFH

AOOO.OOOOH to AFFF.FFFFH
PMCON10_11 and

BOOO.OOOOH to BFFF.FFFFH

COOO.OOOOH to CFFF.FFFFH
PMCON12_13 and

DOOO.OOOOH to DFFF.FFFFH

EOOO.OOOOH to EFFF.FFFFH
PMCON14_15 and

FOOO.OOOOH to FFFF.FFFFH

12.3.1 Bus Width .

The bus width for a region is controlled by the BWl:0 bits in the PMCON register. The operation
of the i960 Jx processor with different bus width programming options is described in section
15.2.3.1, "Bus Width" (pg. 15-7).

The bit combination" 11" is reserved for the BWI :0 field and can result in unpredictable operation.

I 12·5

MEMOR\\CONFIGURATION

tL..~-'--________ Bus Width

00 = 8-bit
01 = 16-bit
10 = 32-bit bus

intet

I Reserved,
write to zero 11 = reserved (do not use)

Mnemonic

BW1-0

RESERVED

Name

Bus Width

Bit # Function

Selects the bus width for a region:
00 = 8-bit,

23-22 01 = 16-bit,
10 = 32-bit bus
11 = reserved (do not use)

Program to 0

Figure 12-2. PMC~N Register Bit Description

12.4 Physical Memory Attributes at Initialization

All eight PMCON registers are loaded automatically during system initialization. The initial
values are stored in the Control Table in the Initialization Boot Record (see section 11.3.1, "Initial
Memory Image (IMI)" (pg. 11-9».

12.4.1 Bus Control (BCON) Register

Immediately after a hardware reset, the PMCON register contents are marked invalid in the Bus
Control (BCON) register. Figure 12-3 shows the BCON register and Control Table Valid (CTV)
bit. Whenever the PMCON entries are marked invalid in BCON, the BCU uses the parameters in
PMCONI4_15 for all regions. On a hardware reset, PMCON14_15 is automatically cleared. This
operation configures all regions to an 8-bit bus width. Subsequently, the processor loads all
PMCON registers from the Control Table. The processor then loads BCON from the Control
Table. If BCON.ctv is clear, then PMCON14_15 will remain in use for all bus accesses. If
BCON.ctv is set, the region table is valid and the BCU uses the programmed PMCON values for
each region.

12-6 __ 1-

intet MEMORY CONFIGURATION

Configuration Entries in Control Table Valid (BCON.ctv) ---------------,
o = PMCON entries not valid. default to PMCON14_15 setting.
1 = PMCON entries valid

Internal RAM Protection (BCON.irp)
o = Internal data RAM not protected from user mode writes
1 = Internal data RAM protected from user mode writes

Supervisor Internal RAM Protection (BCON.sirp) ----------------,
o '" First 64·bytes not protected from supervisor mode writes
1 = First 64·bytes protected from supervisor mode writes

31

I Reserved.
write to zero

12 8

Figure 12-3. Bus Control Register (BCON)

12.5 Boundary Conditions for Physical Memory Regions

4 o

The following sections describe the operation of the PMCON registers during conditions other
than "normal" accesses.

12.5.1 Internal Memory Locations

The PMCON registers are ignored during accesses to internal memory or memory-mapped
registers. The processor performs those accesses over 32-bit buses, except for local register cache
accesses. The register bus is 128 bits wide.

12.5.2 Bus Transactions Across Region Boundaries

An unaligned bus request that spans region boundaries uses the PMCON settings of both regions.
Accesses that lie in the fIrst region use that region's PMCON parameters, and the remaining
accesses use the second region's PMCON parameters.

For example, an unaligned quad word load/store beginning at address IFFF FFFEH would cross
boundaries from region 0_1 to 2_3. The physical parameters for region 0_1 would be used for the
first 2-byte access and the physical parameters for region 2_3 would be used for the remaining
access.

12·7

I

I ~
I:

I!
Ii
I ~

I
I

i

~

· ':'

:MEMORY"OONFlGURATJON intel~

12.5.3 Modifying ,th, PMCON Registers

An application can modifY the vaIue of a PMCON register by using the st or sysctl instruction. If
a st or sysctl instruction is issued when an access is in progress, the current access is completed
before the modification takes effect.

12.6 Programming the Logical Memory Attributes

The l:!itlbit field detiniti9ns for ~e LMADR1:0 and LMMR1:0 registers are shown in Figure 12-4
'and Figure 12-5,. l.;MCONregisters reside within the memory-mapped control register space.
, '. .

Byte Order (read-only)
o = Little end ian
1 = Big endian

Data Cache'Enable---'-"--------'-----'--------------,
o = Data caching disabled
1 = Data caching enabled

I Reserved,
write to zero

'-------------- Template Starting Address

Mnemonic ,BitlBIt Field Name ';, pos::n(s) Function

A31:12

DCEN
";i,,'

BE i

Template Starting
Address

Da,ta Cache En,~ble
'e, .

,~ig Endisn Byte Orde~

31-12

o

Defines upper 20 bits for the starting address for a logical
data template. The lower 12 bits are fixed at zero. The

, starting address,ls modulo 4,Kbytes.

Controls data caching for the template.
o = Data caching disabled
,1 • Data caching enabled

,Instruction caching is never aff~cted by this bit.

This is a read-only bit reflecting the value of
DlMCON.be ..

Figure 12-4. Logical Memory Template Startlng,Address Registers (LMADRO-1)

12-8

MEMORY CONFIGURATION

The Default Logical Memory Configuration (DLMCON) register is shown in Figure 12-6. The
BCU uses the parameters in the DLMCON register when the current access does not fall within
one of the two logical memory templates (LMTs). Notice the byte ordering is controlled for the
entire address space by programming the DLMCON register.

Logical Memory Template Enabled --------------------,

I o = LMT disabled
1 = LMT enabled

I Reserved,
write to zero

'------------ Template Address Mask

Mnemonic BitlBit Field Name Bit Positlon(s) Function

MA31:12

LMTE

".t

Template Address
Mask

Logical Memory
Template Enabled

Defines upper 20 bits for the address mask for a
logical memory template. The lower 12 bits are

31-12 fixed at zero.

0= Mask

o

1 = Do not mask

Enables/disables logical memory template.

o = LMT disabled

1 = LMT enabled

Figure 12·5. Logical Memory Template Mask Registers (LMMRO·1)

12-9

I;

I ~

i
,~
j

II
'l
I r~

II

~
~

I'
!
!',

MEMOA'(. CONFIGURATION intet~

Byte Order -------------,-----~-------___,
o = Little endisn
1 = Big endian

Datl;l Cache Enabled----------------------..,
o = Data caching disabled !
1 = Write-through caching enabled

31 28

I Reserved;
write to zero

24 20 16 12 .. 8 4 o

Mnemonic BltlBlt Field Name Bit Position(s) Function

DCEN

BE

12.6.1

Data Cache Enable

Big Endian Byte
Order o

Controls data caching for areas not within other
logical memory templates.

··0 = Data caching disabled

1 = Write-through caching enabled

Instruction caching is never affected by this bit.

Controls byte order for all accesses, both
instruction and data, to memory.
o = Little endian
1 = Big endian

Figure 12·6. Default Logical Memory Configuration Register (DlMCON) ..•

Defining the Effective Range of a Logical Data Template
, ';',

For each logical data template, an LMADR register sets the base address using the A3l:l2 field.
The LMMR register sets the address mask using the MA3l:l2 field. The effective address range
for a logical data template is defined using the A3l:l2 field in an LMADRx register and the
MA3l:l2 field in an LMMRx register. For each access, the upper 20 address bits (A3l:l2) are
compared against A31: 12 in the LMADRx register. Address bits for are compared with corre­
sponding MA bits set are compared. Address bits with corresponding MA bits cleared (0) are
automatically considered a "match". The processor will only use the logical data template when all
compared address bits match. Two examples help clarify the operation of the address comparators.

12-10 I

MEMORY CONFIGURATION

• Create a template 64 Kbytes in length beginning at address 0010 OOOOH and ending at address
0010 FFFFH. Determine the form of the candidate address to match and then program the
LMADR and LMMR registers:

•

Candidate Address is of form: a a 1 a XXXX
LMADR <31:12> should be: 0010 0 ...
LMMR <31:12> should be: FFFF 0 ...

Multiple data templates can be created from a single LMADRlLMMR register pair by aliasing
effective addresses. For example, to create sixteen 64 Kbyte templates, each beginning on
modulo 1 Mbyte boundaries starting at 0000 OoooH and ending with OOFO OOOOR, the
registers are programmed as follows:

Candidate Address is of form: a OXO XXXX
LMADR<31:12> should be: 0000 0 .. .

. LMMR <31:12> should be: FFOF 0 .. .

12.6.2 Selecting the Byte Order

The BCU can automatically convert aligned big endian data in memory into little endian data for
the processor core. The conversion is done transparently in hardware, with no performance
penalty. The BE bit in the DLMCON register controls the default byte ordering for adqress regions
of the system including internal data RAM but excluding memory-mapped registers. Instruction
fetches and data accesses are automatically converted to little endian format when they are fetched
from external memory and the programmed default byte-order (DLMCON.be) is big-endian .

The recommended, portable way to determine the byte-ordering associated with a logical memory
template is to read the appropriate LMADR. The i960 Jx microprocessor supports this method by
always ensuring that the DLMCON.be bit is reflected in bit zero of LMADRO and LMADR1 (also
labelled as LMADRbe) when they are read. Any attempts to write bi{zero of an LMADR are
ignored.

Great care should be exercised when dynamically changing the processor's homogenous byte
order. See section 12.6.8, "Dynamic Byte Order Changing" (pg. 12-13) for an instruction code
example.

Byte-ordering is not applicable to memory-mapped registers since they are always accessed as
words.

12-11

i"
" ,-

•

MEMORY CONFIGURATION

12.6.3 Data Caching Enable

Enabling and disabling data caching for an LMT is controlled via the DCEN bit in the LMADR
register. Likewise, the DCENbit in DLMCON enables and disables data-caching for regions of
memory that are not covered by the LMCON registers. The DCEN bit has no effect on the
instruction cache.

12.6.4 Enabling the Logical Memory Template

The LMTE bit activates the logical data template in the LMMR register for the programmed
range.

12.6.5 Initialization

Immediately following a hardware reset, all LMTs are disabled. The LMTE bit in each of the
LMMR registers is cleared (0) and all other bits are undefmed. Immediately after a hardware reset
the Default Logical Memory Control register (DLMCON) has the values shown in Table 12-2.

Table 12-2. DLMCON Values at Reset

DLMCON Bit Value Upon Reset Microcode

DCEN (Data Caching Enable) o (Data Caching Disabled)

BE (Sig-Endian)
Initialized from PMCON14_15 image
in ISR bit 31

Application software may initialize and enable the logical memory template after hardware reset.
The registers are not modified by software initialization.

12.6.6 Boundary Conditions for Logical Memory Templates

The following sections describe the operation of the LMT registers during conditions other than
"normal" accesses. See Chapter 4, CACHE AND ON-ClDP DATA RAM for a treatment of data
cache coherency when modifying an LMT.

12.6.6.1 Internal Memory Locations

The LMT registers are not used during accesses to memory-mapped registers. Internal data RAM /
locations are never cached; LMT bits controlling caching are ignored for data RAM accesses.
However, the byte-ordering of the internal data RAM is controlled by DLMCON.be.

12-12

MEMORY CONFIGURATION

12.6.6.2 Overlapping Logical Data Template Ranges

Logical data templates that specify overlapping ranges are not allowed. When an access is
attempted that matches more than one enabled LMT range, the operation of the access becomes
undefined.

To establish different logical memory attributes for the same addres.s range, program non­
overlapping logical ranges, then use partial physical address decoding.

12.6.6.3 Accesses Across LMT Boundaries

Accesses that cross LMT boundaries should be avoided. These accesses are unaligned and broken
into a number of smaller aligned accesses, which reside in one or the other LMT, but not both.
Each smaller access is completed using the parameters of the MPT in which it resides.

12.6.7 Modifying the LMT Registers

An LMT register can be modified using st or sysctl instructions. Both instructions ensure data
cache coherency and order the modification with previous and subsequent data accesses.

12.6.8 Dynamic Byte Order Changing

Programmed byte order changes take effect immediately. The next instruction fetch will use the
new byte order setting. This byte-swapping usually results in errors because the current instruction
stream uses the previous byte order setting.

Dynamically changing the byte order to perform limited operations is possible if the code sequence
is locked in the instruction cache. The application must ensure that code executes from within the
locked region (including faults and interrupts) while the opposite byte order is in effect. The
following example illustrates this method:

safe_addr: Ida safe_addr,r4
mov l,r5
icctl Ox3,r4,r5 # Lock code in cache.
Id DLMCON_MlXl,r6
notbit O,r6,r7
st r7,DLMCON_MlXl # Toggle byte order.

<Short code sequence>

12-13

I
I.
I

I' I,
Ii
i

MEMORY CONFIGURATION

st
icctl

r6,DLMCON_MM
2,O,r6

intet

Restore byte order.
Invalidate cache
to unlock code.

In most cases, it is safer to retain the onginal byte order and use the bswap instruction to convert
data between little-endian and big-endian byte order.

12·14

13
INTERRUPT CONTROLLER

I

CHAPTER 13
INTERRUPT CONTROLLER

This chapter contains interrupt controller information that is of particular importance to the system
implementor. The method for handling interrupt requests from user code is described in
CHAPTER 8, INTERRUPTS. Specifically, this chapter describes the i960® Jx processor's
facilities for requesting and posting interrupts, the programmer's interface to the on-chip interrupt
controller, implementation, latency and how to optimize interrupt performance.

13.1 OVERVIEW

The interrupt controller's primary functions are to provide a flexible, low-latency means for
requesting and posting interrupts and to minimize the core's interrupt handling burden. The
interrupt controller handles the posting of interrupts requested by hardware and software sources.
The interrupt controller, acting independently from the core, compares the priorities of posted
interrupts with the current process priority, off-loading this task from the core.

The interrupt controller provides the following features for managing hardware-requested
interrupts:

• Low latency, high throughput handling.

• Support of up to 240 external sources.

Eight external interrupt pins, one non-maskable interrupt pin, two internal timer units (TU)
sources for detection of hardware-requested interrupts.

• Edge or level detection on external interrupt pins.

Debounce option on external interrupt pins.

The user program interfaces to the interrupt controller with six memory-mapped control registers.
The interrupt control register (ICON) and interrupt map control registers (IMAPO-IMAP2) provide
configuration information. The interrupt pending (IPND) register posts hardware-requested
interrupts. The interrupt mask (IMSK) register selectively masks hardware-requested interrupts.

I 13-1

INTERRUPT CONTROLLER . intet
13.2: MANAGING INTERRUPT REQUESTS

The i960 processor architecture provides a consistent interrupt model, as required for interrupt
handler compatibility between various implementations of the i960 processor family. The archi­
tecture, however, leaves the interrupt request management strategy to the specific i960 processor
family implementations. In the i960 Jx processors, the programmable on-chip interrupt controller
transparently manages all interrupt requests (Figure 13-1). These requests originate from: '

• Eight-bit external interrupt pins XINT7:0

• Two internal timer unit interrupts (TINT! :0)

• Non-maskable interrupt pin NMI

• sysctl instruction execution (software-initiated interrupts)

13.2.1 External Interrupt

External intemipt pins can be programmed to operate in three' modes:

1. Dedicated mode: the pins may be individually mapped to interrupt vectors.

2. Expanded mode: the pins may be interpreted as a bit field which can request any of the 240
possible external interrupts that the i960 processor family supports.

3. Mixed mode: five pins operate in expanded mode and can request/thirty-two different
interrupts, and three pins operate in dedicated mode.

Dedicated-mode requests are posted in the Interrupt Pending Register (lPND). The processor's
leu does not post expanded-mode requests.

13.2.2 Timer Interrupt

Each of the two timer units has an associated interrupt to allow the application to accept or post the
interrupt request. Timer unit interrupt requests are always handled as dedicated-mode interrupt
requests.

13.2.3' Non-Maskable Interrupt (NMI)

The NMI pin generates an interrupt for implementation of critical interrupt routines. NMI provides
an interrupt that cannot be masked and that has a priority of 31. The interrupt vector for NMI
resides in the interrupt table as vector number 248. During initialization, the core caches the vector
for NMI on-chip, to reduce NMI latency. The NMI vector is cached in location OH of internal data
RAM.

13-2 I

INTERRUPT CONTROLLER

The core immediately services NMI requests. While servicing an NMI, the core does not respond S
to any other interrupt requests - even another NMI request. The processor remains in this non- ~
interruptible state until any return-from-interrupt (in supervisor mode) occurs. An interrupt request
on the NMI pin is always falling-edge detected. (Note that a return-from-interrupt in user mode
does not unblock NMI events and should be avoided by software.)

13.2.4 Software Interrupt

The application program may use the sysctl instruction.to request interrupt service. The vector that
sysctl requests is serviced immediately or posted in the interrupt table's pending interrupts section,
depending upon the current processor priority and the request's priority. The interrupt controller
caches the priority of the highest priority interrupt posted in the interrupt table.

The processor cannot request vector 248 (NMI) as a software interrupt.

13.2.5 Interrupt Prioritization Model

The interrupt controller continuously compares the processor's priority to the priorities of the
highest-posted software interrupt and the highest-pending hardware interrupt. The core is
interrupted when a pending interrupt request is higher than the processor Pri()rity or has a priority
of 31. (Note that a priority~jrlnterrupi handl~r can be Interrupted by another prioritY-31 interrupt.)
Note that there are no priority-O interrupts, since such an interrupt would never have a priority
higher than the current process, and would therefore never be serviced.

In the event that both hardware- and software-requested interrupts are posted at the same level, the
hardware interrupt is delivered first while the software interrupt is left pending. As a result, if both
priority-31 hardware- and software-requested interrupts are pending, control will first be
transferred to the interrupt handler for the hardware-requested interrupt, however, before the first
instruction of that handler can be executed, the pending software-requested interrupt will be
delivered and cause control to be transferred to the corresponding interrupt handler.

Example 13·1. Interrupt Resolution

/* Model used to resolve interrupts between execution of all macro instructions */
if (NMI-pending && !block_NMI)

~
{ block_NMI = true; /* Reset on return from NMI INTR handler */

vecnum = 248; vector_addr = 0;
PC.priority = 31;
push_local_register_set();
goto common_interrupt-process;

if (ICON.gie == enabled) {
expand_HW_int();
temp = max(HW_Int_Priority, SW_Int_Priority);
if (temp == 31 I I temp> PC.priority)

{ PC.priority = temp;

}

if (SW_Int_Priority > HW_Int_Priority) goto Deliver_SW_Int;
else{ vecnum = HW_vecnum; goto Deliver_HW_Int;}

I

13-3

INTERRUPT CONTROLLER

13-4

Interrupt Control
Register

Global
Interrupt
Disable

Interrupt Pin to
Vector Map

Registers 0 to 2

I nterru t Core

Vector

Interru t
Pin Mode

Core accepts interrupt if:
• Processor not stopped

Interrupt

Selection

Interrupt
Action
Block

Interrupt Detection
Block

Ack

Expanded-Mode
Vector

Software Interrupt
Priority Register

(Internal)

Core:
• Calls interrupt handlers

• Not executing a fault-call or • Posts software interrupts
• Interrupt-call action and • Checks for software interrupts
• Between instruction or • Handles all interrupt table access
• At a resumption point

Figure 13-1. Interrupt Controller

intel®

INTERRUPT CONTROLLER

13.2.6 Interrupt Controller Modes

The eight external interrupt pins can be configured for one of three modes: expanded, dedicated or
mixed. Each mode is described in the subsections that follow.

13.2.6.1 Dedicated Mode

In dedicated mode, each external interrupt pin is assigned a vector number. Vector numbers that
may be assigned to a pin are those with the encoding PPPP 00102 (Figure 13-2), where bits marked
P are programmed with bits in the interrupt map (IMAP) registers. This encoding of programmable
bits and preset bits can designate 15 unique vector numbers, each with a unique, even-numbered
priority. (Vector 0000 00102 is undefined; it has a priority of 0.)

Dedicated-mode interrupts are posted in the interrupt pending (IPND) register. Single bits in the
IPND register correspond to each of the eight dedicated external interrupt inputs, plus the two
timer unit inputs to the interrupt controller. The interrupt mask (IMSK) register selectively masks
each of the dedicated-mode interrupts. The IMSK register can optionally be saved and cleared
when a dedicated interrupt is serviced. This allows other hardware-generated interrupts to be
locked out until the mask is restored. See section 13.3.3, "Programmer's Interface" (pg. 13-11) for
a further description of the IMSK, IPND and IMAP registers.

Interrupt vectors are assigned to timer unit inputs in the same way external pins are assigned
dedicated-mode vectors. The timer unit interrupts are always dedicated-mode interrupts. '

I

• • .'
TINTO

TINT1

-
-
-

IMAP Control Registers Hard-wired Vector Offset

PPPP 00102

PPPP 00102

PPPP 00102

• •
• • • •

PPPP 00102

PPPP 00102

PPPP 00102

/
V

/
/

4MSB 4LSB
/

/8

Figure 13·2. Dedicated Mode

Highest Selected
Vector Number

13-5

,

I

I
I

II
II
!!
:;

• i I
I

I

I

INTERRUPT CONTROLLER

13.2.6.2 Expanded Mode

In expanded mode, up to 240 interrupts can be requested from external sources. Multiple external
sources are externally encoded into the 8-bit interrupt vector number. This vector number is then
applied to the external interrupt pins (Figure 13-3), with the XINTO pin representing the least­
significant bit and XINTI the most significant bit of the number. Note that external interrupt pins
are active low; therefore, the inverse of the vector number is actually applied to the pins.

In expanded mode, external logic is responsible for posting and prioritizing external sources.
Typically, this scheme is implemented with a simple configuration of external priority encoders.
The interrupt source must remain asserted until the processor services the interrupt and explicitly
clears the source. As shown in Figure 13-4, simple, combinational logic can handle prioritization
of the external sources when more than one expanded mode interrupt is pending.

An expanded mode interrupt source must remain asserted until the processor services the interrupt
and explicitly clears the source. External-interrupt pins in expanded mode are always active low
and level-detect. The interrupt controller ignores vector numbers 0 though 7. The output of the
externaI priority encoders in Figure 13-4 can use the 0 vector to indicate that no external interrupts
are pending.

The low-order four bits of IMAPO are used to internally buffer the expanded-mode interrupt.
XINT7:4 are placed in IMAPO[3:0]; XINT3:0 are latched in a special register for use in further
arbitrating the interrupt and in selecting the interrupt handler.

IMSK register bit 0 provides a global mask for all expanded interrupts. The remaining bits (1-7)
must be set to 0 in expanded mode. The mask bit can optionally be saved and cleared when an
expanded mode interrupt is serviced. This allows other hardware-requested interrupts to be locked
out until the mask is restored. IPND register bits 0-7 have no function in expanded mode, since
external logic is responsible for posting interrupts.

TINTO -
TINT1 -

13-6

IMAP Control Registers Hard-wired Vector Offset

PPPP 00102

PPPP 00102

V V
/ 4MSB / 4LSB

~

,8

Figure 13-3. Expanded Mode

Highest Selected
Vector Number

L

.1.

MSB

Interrupt Sources
up to 63 lines

LSB

INTERRUPT CONTROLLER

Enable Input

II

Priority
Encoder

GS~--------a

A2 U-------,

A10------,

AOU-----,
'---"""7T---'

GS u---+-t-t---'

A2

Priority ~)-!=i=t=~==~=t-...,., Encoder 10----1
A1

AOD---+'
'-----,-.;--------'

E1 GS

A2
Priority

Encoder
A1 [j---H-----'

AO h-_~===L ICJI----1
'-'--7'T---'

NC

Figure 13-4. Implementation of Expanded Mode Sources

To i960 Jx

processor's

INTpins

13-7

• I:

, ..
I
I
I,'

INTERRUPT CONTROLLER

13.2.6.3 Mixed Mode

In mixed mode, pins XINTO through XINT4 are configured for expanded mode. These pins are
encoded for the five most-significant bits of an expanded-mode vector number; the three least­
significant bits of the vector number are set internally to 0102, Pins XINT5 through XINT7 are
configured for dedicated mode. ..

The low-order four bits of IMAPO are used to buffer the expanded-mode interrupt internally.
XINT4:1 are placed in IMAPO[3':O]; XiNTO is latched in a special register for use in further
arbitrating the interrupt and in selecting the interrupt handler.

IMSK register bit 0 is a global mask for the expanded-mode interrupts; bits 5 through 7 mask the
dedicated interrupts from pins XINT5 through XINT7, respectively. IMSK register bits 1-4 must
be set to 0 in mixed mode. The IPND register posts interrupts from the dedicated-mode pins
XINT7:5. IPND register bits that correspond to expanded-mode inputs are not used.

13.2.7 Saving the Interrupt Mask

Whenever an interrupt requested by XINT7:0 or by the internal timers is serviced, the IMSK
register is automatically saved in register r3 of the new local register set allocated for the interrupt
handler. After the mask is saved, the IMSK register is optionally cleared. This allows all interrupts
except NMIs to be masked while an interrupt is being serviced. Since the IMSK register value is
saved, the interrupt procedure can restore the value before returning. The option of clearitig the
mask is selected by programming the ICON register as described in section 13.3.4, "lnterrupt
Control Register (ICON)" (pg. 13-12). Several options are provided for interrupt mask handling:

1. Mask is unchanged.

2. Clear for dedicated-mode sources only.

3. Clear for expanded-mode sources only.

I

4. Clear for all hardware-requested interrupts (dedicated and expanded mode).

Options 2 and 3 are used in mixed mode, where both dedicated-mode and expanded-mode inputs
are allowed. Timer unit interrupts are always dedicated-mode interrupts.

Note that if the same interrupt is requested si~ultaneously by a dedicated- and an expanded-mode
source, the interrupt is considered an expimded-mode illterru'pt and the IMSK register is handled
accordingly.

13-8 _I

intet INTERRUPT CONTROLLER

The IMSK register must be saved and cleared when expanded mode inputs request a priority-31
interrupt. Priority-31 interrupts are interrupted by other priority-31 interrupts. In expanded mode,
the interrupt pins are level-activated. For level-activated interrupt inputs, instructions within the
interrupt handler are typically responsible for causing the source to deactivate. If these priority-31
interrupts are not masked, another priority-31 interrupt will be signaled and serviced before the
handler is able to deactivate the source. The first instruction of the interrupt handling procedure is
never reached, unless the option is selected to clear the IMSK register on entry to the interrupt.

Another use of the mask is to lock out other interrupts when executing time-critical portions of an \
interrupt handling procedure. All hardware-generated interrupts are masked until software
explicitly replaces the mask.

The processor does not restore r3 to the IMSK register when the interrupt return is executed. If the
IMSK register is cleared, the interrupt handler must restore the IMSK register to enable interrupts
after return from the handler.

13.3 EXTERNAL INTERFACE DESCRIPTION

This section describes the physical characteristics of the interrupt inputs. The i960 Jx processors
provide eight external interrupt pins and one non-maskable interrupt pin for detecting external
interrupt requests. The eight external pins can be configured as dedicated inputs, where each pin is
capable of requesting a single interrupt. The external pins can also be configured in an expanded
mode, where the value asserted on the external pins represents an interrupt vector number. In this
mode, up to 240 values can be directly requested with the interrupt pins. The external interrupt pins
can be configured in mixed mode. In this mode, some pins are dedicated inputs and the remaining
pins are used in expanded mode.

13.3.1 Pin Descriptions

The interrupt controller provides nine interrupt pins:

XINT7:0 External Interrupt (input) - These eight pins cause interrupts to be requested.
Pins are software configurable for three modes: dedicated, expanded, mixed.
Each pin can be programmed as an edge- or level-detect input. Also, a debounce
sampling mode for these pins can be selected under program control.

Non-Maskable Interrupt (input) - This edge-activated pin causes a non-maskable
interrupt event to occur. NMI is the highest priority interrupt recognized. A
debounce sampling mode for NMI can be selected under program control. This
pin is internally synchronized.

External interrupt pin functions XINT7:0 depend on the operation mode (expanded, dedicated or
mixed) and on several other options selected by setting ICON register bits.

13-9

INTERRUPTCONTROLL~R

13.3.2 Interrupt Detection Options

The XINT7:0 pins can be programmed for level-low or falling-edge detection when used as
deQicated inputs. "All d~dicated inputs plus the l'rMI pin are,prograpuned (globally) for fast
sampling or debounce sampling. Expande4-mode inputs are always sampled in debounce mode.
Pin detection and sampling options are sel~<?ted by programming the.)CON register.

When falling-edge detection is enabled and a high-to-Io~ transition is detected, the processor sets
the corresponding pending bit in the IPND register. The processor clears the IPND bit upon entry
into the interrupt handler.

When a pin is programmed for low-level detection, the pin's bit in the IPND register remains set as
long as the pin is asseqed (low). The processor attempts to clear the IPND bit on entry into the
interrupt handler; however, if the active level o~ the pin is not removed at this time, the bit in the
IPND register remains set until the source of the interrupt is deactivated and the IPND bit is
explicitly cleared by software. Software may attempt to clear an interrupt pending bit before the
active level on the corresponding pin is removed. In this case, the active level on the interrupt pin
causes the pending bit to remain asserted' j ,

After the interrupt signal is deasserted, the handler then clears the interrupt pending bit for that
source before return from handler is executed. If the pendillg bit is not cleared, the interrupt is re-
entered after the return is executed. '

Example 13-2 demonstrates how a level detect interrupt is typicaJ.ly handled. The example
assumes that the Id from address "timecO," deactivates the interrupt input.

Example 13-2. Return from a Level-detect Interrupt
\lear level-detect interrupts before return from handler

wait:

lda I PND_MM , gl
ld timer_O, gO # Get timer value and. clear TMRO
lda OxlOOO, g2

0, g3
gl, g2, g3

mov
atmod

. bbs
ret

oxe, g3, wait .
#. Return from handler,

The debounce sarripling mode provides a built-in filter for noisy or Slow-falling inputs. The
debounce sampling mode requires that a low level is stable for seven consecutive samples before
the expanded mode vector is resolved' internally. Expanded mode interrupts are always sampled
using the debounce sampling mode. This mode. provides time for interrupts to trickle through
external priority encoders.

13-10 I

intet INTERRUPT CONTROLLER

Figure 13-5 shows how a signal is sampled in each mode. The debounce-sampling option adds
several clocks to an interrupt's latency due to the multiple clocks of sampling. Inputs are sampled
once every two CLKIN cycles (external bus clock).

Interrupt pins are asynchronous inputs. Setup or hold times relative to CLKIN are not needed to
ensure proper pin detection. Note in Figure 13-5. that interrupt inputs are sampled once every two
CLKIN cycles. For practical purposes, this means that asynchronous interrupting devices must
generate an interrupt signal that is asserted for at least three CLKIN cycles for the fast sampling
mode or seven CLKIN cycles for the debounce sampling mode. See the 80960JAlJF Embedded
32-bit Microprocessor Data Sheet or the.80960JD Embedded 32-bit Microprocessor Data Sheet
for setup and hold specifications that guarantee detection of the interrupt on particular edges of
CLKIN. These specification are useful in designs that use synchronous logic to generate interrupt
signals to the processor. These specification must also be used to calculate the minimum signal
width, as shown in Figure 13-5.

ClKIN [

XINT7:0 [
(fast sampled)

XINT7:0 [
(debounce)

* * *

~ 3 cycle min. -

:-------.:. Detect
: Interrupt'

... : "------'----: 7 cycle min.

*

• Detect
Interrupt

* Denotes sampling clock edge. Interrupt pins are sampled one time for every 2 ClKIN (external bus clock) cycles.

Figure 13-5. Interrupt Sampling

13.3.3 Programmer's Interface

*

The programmer's interface to the interrupt controller is through six memory-mapped control
registers: ICON control register, IMAPO-IMAP2 control registers, IMSK register and IPND
control registers. Table 13-1 describes the ICU registers.

13-11

I
I

I

I

..

INTERRl:JPT CONTROLLER

Table 13-1. Interrupt Control Registers Memory-Mapped Addresses

Register Name Description Address

IMAPO Interrupt Map Register 0 FFOO 8520H

IMAP1 Interrupt Map Register 1 FFOO 8524H

IMAP2 Interrupt Map Register 2 FFOO 8528H

ICON Interrupt Control Register FFOO8510H

IPND Interrupt Pending Register FFOO 8500H

IMSK Interrupt Mask Register FFOO 8504H

13.3.4 Interrupt Control Register (ICON)

The ICON register (see Figure 13-6) is a 32-bit memory-mapped control register, that sets up the
interrupt controller. Software can manipulate this register using the load/store type instructions:
The ICON register is also automatically loaded at initialization from the control table in external
memory. Figure 13-6 shows the layout of the ICON register.

13-12

INTERRUPT CONTROLLER

Interrupt Mode -ICON.im------------------------,
(00) Dedicated

31

(01) Expanded
(10) Mixed
(11) Reserved

Signal Detection Mode -ICON.sdm ---------------,
(0) Level-low activated
(1) Falling-edge activated

Global Interrupts Enable - ICON.gie -----------,
(0) Enabled
(1) Disabled

Mask Operation - ICON.mo ------------,
(00) Move to r3, mask unchanged
(01) Move to r3 and clear for dedicated mode interrupts
(10) Move to r3 and clear for expanded mode interrupts
(11) Move to r3 and clear for dedicated and expanded

mode interrupts
Vector Cache Enable - ICON.vce --------,

(0) Fetch from external memory
(1) Fetch from internal RAM

Sampling Mode
(0) debounce
(1) fast

28 24 20 16

Interrupt Control Register (ICON)

12 8

I Reserved
(Initialize to 0)

Figure 13-6. Interrupt Control (ICON) Register

4 o

The interrupt mode field (bits 0 and 1) determines the operation mode for the external interrupt
pins (XINT7:0) - dedicated, expanded or mixed.

The signal detection mode bits (bits 2 - 9) determine whether the signals on the individual external
interrupt pins (XINT7:0) are level-low activated or falling-edge activated. Expanded-mode inputs
are always level-detected; the NMI input is always edge-detected - regardless of the bit's value.

The global interrupts enable bit (bit 10) globally enables or disables the external interrupt pins and
timer unit inputs. It does not affect the NMI pin. This bit performs the same function as clearing the
mask register. The global interrupts enable bit is also changed indirectly by the use of the following
instructions: inten, intdis, intetl.

1- 13-13

I-'
I·

INTERRUPT CONTROLLER

The mask-operation field (bits '11, 12) determines the operation the core perfonns on the mask
register when a hardware-generated interrupt is serviced. On an interrupt, the IMSK register is
either unchanged; cleared for dedicated-mode interrupts; cleared for expanded-mode interrupts; or
cleared for both dedicated- and expanded-mode interrupts. IMSK is never cleared for NMI or
software interrupts.

The vector cache enable bit (bit 13) determines whether interrupt table vector entries are fetched
from the interrupt table or from internal data RAM. Only vectors with the four least-significant
bits equal to 00102 may becached in internal data RAM.

The sampling-mode bit (bit 14) determines whether dedicated inputs and NMI pin are sampled
using debounce sampling or fast sanipling. Expanded-mode inputs are. always detected using
debounce mode.

Bits 15 through 31 are reserved and must be set to 0 at initialization.

13.3.5 Interrupt Mapping Registers (IMAPO-IMAP2)

The IMAP registers (Figure 13-7) are three 32-bit registers (IMAPO through IMAP2). These
register's bits are used to program the vector nu~ber associated with the interrupt source when the
source is connected to a dedicated-mode input. IMAPO and!MAPl contain mapping infonnation
for the external interrupt pins (four bits per pin). IMAP2 ·contains mapping infonnatiQn for the
timer-interrupt inputs (four bits per interrupt).

Each set of four bits contains a vector number's four most-significant bits; the four least­
significant bits are always 00102. In other words, each source can be programmed for a vector
number of PPPP 00102, where "P" indicates a programmable bit. For example, IMAPO bits 4
through 7 contain mapping infonnation for the XINTI pin. If these bits are set to 01102, the pin is
mapped to vector number 0110 00102 (or vector number 98).

Software can access the mapping registers using load/store type instructions. The mapping
registers are also automatically loaded at initialization from the control table in external memory.
Note that bits 16 through 31 of IMAPO and IMAPI are reserved and should be set to 0 at initial­
ization. Bits 0-15 and 24-31 of IMAP2 are also reserved and should be set to O.

13-14 l

INTERRUPT CONTROLLER

External Interrupt 2 Field - IMAPO.x2 ------------.

External Interrupt 0 Field - IMAPO.xO ---------------...,-----,j
External Interrupt 1 Field - IMAPO.x1 --------------'j
External Interrupt 3 Field - IMAPO.x3 ------..., 1

Interrupt Map Register 0 (IMAPO)

External Interrupt 4 Field -IMAPO.x4 ------------------...,
External Interrupt 5 Field - IMAPO.x5 -----------------.j
External Interrupt 6 Field - IMAPO.x6 -------------,
External Interrupt 7 Field - IMAPO.x7 ---------,

28 24 20

Interrupt Map Register 1 (IMAP1)

Timer Interrupt 0 Field -IMAP2.tO n
"-, I",,""~ 1 - - ''''>'211 1 .

I

16

III1IIII
28 24

Interrupt Map Register 2 (IMAP2)

I Reserved
(Initialize to 0)

20 16

12 8

12 8

Figure 13-7. Interrupt Mapping (IMAPO-IMAP2) Registers

4

4

o

o

13-15

i ~

fNTERRUP,T CONTROLLER

13.3.5.1 Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers

The IMSK and IPND registers (see Figure 13-9) are both memory-mapped registers. Bits 0
through 70f these registers are associated with the external interrupt pins (XINTO through
XINT7) and bits 12 and 13 are associated with the timer-interrupt iJ;lputs (TMRQ and TMRl). All
other bits are reserved and should be set to 0 at initialization. . .

External Interrupt Pending Bits - IPND.xip ------~------..,l (0) No Interrupt . .
(1) Pending Interrupt

Timer Interrupt Pending 'Bits - IPND.tip --------,
(0) No Interrupt 1
(1) Pending Interrupt II

II IIIIIIII
I

28

RESERVED
(INITIALIZE TOO)

24 20 16 12 8

Figure 13·8. Interrupt Pending (IPND) Register

4 o

The IPND register posts dedicated-mode interrupts originating from the eight external dedicated
sources (when configured in dedicated mode) and the two timer sources. Asserting one of these
inputs causes a 1 to be latched into its associated bit in the IPND register. In expanded mode, bits
o through 7 of this register are not used and should not be modified; in mixed mode, bits 0 through
4 are not used and should not be modified.

i...'. The mask register provides a mechanism for masking individual bits in the IPND register. An
I" interrupt source is disabled if its associated mask bit is set to O.

Mask register bit. 0 has two functions: it masks interrupt pin XINTO in dedicated mode and it
masks all expanded-mode interrupts globally in expanded and mixed modes. In expanded mode,
bits 1 through 7 are not used and should contain zeros only; in mixed mode, bits 1 through 4 are
not used and should contain zeros only.

When delivering a hardware interrupt, the interrupt controller conditionally clears IMSK based on
the value of the ICON.mo bit. Note that IMSK is never cleared for NMI or software interrupt.

13-16

INTERRUPT CONTROLLER

Dedicated External Interrupt Mask Bits - IMSK.xim ---------------.,
(0) Masked
(1) Not Masked

Timer Interrupt Mask Bits - IMSK.tim ----------.,!
(0) Masked
(1) Not Masked II

II II1IIIII
28 24 20 16 12 8 4 o

Interrupt Mask Register (lMSK) Dedicated Mode

Expanded External Interrupts Mask Bits - IMSK.eim -------------------,
(0) Masked
(1) Not Masked

Timer Interrupt Mask Bits - IMSK.tim
(0) Masked
(1) Not Masked

28 24 20

Interrupt Mask Register (lMSK) Expanded Mode

1
II

16 12 8 4 o

Expanded External Interrupt Mask Bits - IMSK.eim -----------------,
(0) Masked
(1) Not Masked

Dedicated External Interrupt Mask Bits - IMSK.xim ------------.,
(0) Masked
(1) Not Masked

Timer Interrupt Mask Bits - IMSK.tim
(0) Masked
(1) Not Masked

28 24 20

Interrupt Mask Register (lMSK) Mixed Mode

I RESERVED
(INITIALIZE TO 0)

1
II

16 12 8

Figure 13·9. Interrupt Mask (IMSK) Registers

4 o

13-17

I

INTERRUPT CONTROLLER intel~

Although software can read and write IPND and IMSK using any memory-format instruction, a
read-modify-write operation on these registers must be performed using the atomic-modify
instruction (ATMOD). Executing an ATMOD on one, of these registers causes the interrupt
controller to perform regular interrupt processing (including using or automatically updating
IPND and IMSK) either before or after, but, not during ,the read-modify-write operation on that
register. This requirement ensures that modifications to IPND and IMSK take effect cleanly,
completely, and at a well-defined point. Note that the processor does not assert the LOCK pin
externally when executing an atomic instruction to IPNDand IMSK.

When the processor core handles a pending interrupt, it attempts to clear ,the bit that is latched for
that interrupt in the IPND register before it begins servicing the interrupt. If that bit is associated
with an interrupt source that is programmed for level detection and the true level is still present,
the bit remains set. Because of this, the interrupt routine for a level-detected interrupt should clear
the external interrupt source and explicitly clear the IPND bit before return from the handler is
executed.

An alternative method of posting interrupts in the IPND register, other than through the external
interrupt pins, is to set bits in the register directly using an ATMOD instruction. This operation has
the same effect as requesting an interrupt through the external interrupt pins. The bit set in the
IPND register must be associated with an interrupt source that is programmed for dedicated-mode
operation.'

13.3.5.2 Default and Reset Register Values

The ICON and IMAP2:0 control registers are loaded from the control table in external memory
when the processor is initialized or reinitialized. The control table is described in section 11.3.3,
"Control Table" (pg. 11-19). The IMSK register is set to 0 when the processor is initialized
(RESET is deasserted). The IPND register value is undefined after a power-up initialization (cold
reset). The application is responsible for clearing this register before any mask register bits are set;
otherwise, unwanted interrupts may be triggered. For a reset while power is on (warm reset), the
pending register value is retained.

13.3.6 Interrupt Controller Register Access Requirements

Like all other .load accesses from internal memory-mapped registers,' once issued, a load
instruction that accesses an interrupt register has a latency of one internal processor cycle.

A store access to an interrupt register is synchronous with respect to the next instruction; that is,
the operation completes fully and all state changes take effect before the next instruction begins
execution.

Interrupts can be enabled and disabled quickly by the new intdis and inten instructions, which
take four cycles each. intetl takes a few cycles longer because it returns the previous interrupt
enable value.

13-18 I

INTERRUPT CONTROLLER

13.4 INTERRUPT OPERATION SEQUENCE

The interrupt controller, microcode and core resources handle all stages of interrupt service.
Interrupt service is handled in the following stages:

Request Interrupt - In the i960® Jx microprocessor, the programmable on-chip interrupt
controller transparently manages all interrupt requests. Interrupts are generated by hardware
(external events) or software (the application program). Hardware requests are signaled on the 8-
bit external interrupt port (XINT7:0), the non-maskable interrupt pin (NMI) or the two timer
channels. Software interrupts are signaled with the sysctl instruction with post-interrupt message
type.

Posting Interrupts - When an interrupt is requested, the interrupt is either serviced immediately or
saved for later service, depending on the interrupt's priority. Saving the interrupt for later service is
referred to as posting. Once posted, an interrupt becomes a pending interrupt. Hardware and
software interrupts are posted differently:

• Hardware interrupts are posted by setting the interrupt's assigned bit in the interrupt pending
(IPND) memory mapped register

• Software interrupts are posted by setting the interrupt's assigned bit in the interrupt table's
pending priorities and pending interrupts fields

Check Pending Interrupts - The Interrupt Control Unit (ICU) compares each pending interrupt's
priority with the current process priority. If process priority changes, posted interrupts of higher
priority are then serviced. Comparing the process priority to posted interrupt priority is handled
differently for hardware and software interrupts. Each hardware interrupt is assigned a specific
priority when the processor is configured. The priority of all posted hardware interrupts is
continually compared to the current process priority. Software interrupts are posted in the interrupt

I
'I

,I
,I
~ l
IJ
1\
I
:i

table in external memory. The highest priority posted in this table is also saved in an on-chip i,
software priority register; this register is continually compared to the current process priority.

Servicing Interrupts - If the process priority falls below that of any posted interrupt, the interrupt
is serviced. The comparator signals the core to begin a microcode sequence to perform the
interrupt context switch and branch to the first instruction of the interrupt routine.

Figure 13-1 illustrates interrupt controller function. For best performance, the interrupt flow for
hardware interrupt sources is implemented entirely in hardware.

The comparator only signals the core when a posted interrupt is a higher priority than the process ,.
priority. Because the comparator function is implemented in hardware, microcode cycles are never 'I

consumed unless an interrupt is serviced. II

II
i ,~

1

13-19

INTERRUPT CONTROLLER

13.4.1 Setting Up the Interrupt Controller

This section provides an example of setting up the interrupt· controller. The following example
describes how the interrupt controller can be dynamically configured after initialization;

Example 13-3 sets up the interrupt controller for expanded-mode operation. Initially the IMSK
register is masked to allow for setup; A value which selects expanded-mode operation is loaded
into the ICON register and the IMSK is unmasked.

Example 13-3. Programming the Interrupt Controller for Expanded Mode
Example expanded mode setup . . .
mav 0, gO
mav 1, gl
st gO, IMSK # mask, IMSK MMR at OXFF008504·
st gl, ICON·
st gl,IMSK # unmask expanded interrupts

13.5 OPTIMIZING INTERRUPT PERFORMANCE

Figure 13-10 depicts the path from interrupt sourc6 to interrhpt service routine. This section
discusses interrupt performance in general and suggests techniques the application can use to get
the best interrupt performance.

13.5.1 Interrupt Service Latency

The established measure of interrupt performance is the time requited to perform an interrupt task
switch, which is known as interrupt service latency. Latency is the time measured between
activation of an interrupt source and execution of the first instruction for the accompanying
interrupt-handling procedure.

Interrupt latency depends on interrupt controller configuration and the instruction being executed
at the time of the interrupt. The processor also has a number of cache options which reduce
interrupt latency. In the discussion that follows, interrupt latency is expressed as a number of bus
clock cycles, and reflects differences between the 80960JNJF and the 80960JD due to the
80960JD processor's clock-doubled core.

13-20 I

intet

(Seeil
Interrupt
Priority is
greater than
process
priority OR
at interrupt
priority=31)

continue normal
operation

..

INTERRUPT CONTROLLER

set corresponding
pending bits in
interrupt table

clear trace lauR pending bit (TC.tlp)
clear trace eneble bH (TC.te)
state = interrupted (PC.s = 1)
mode = supervisor (PC.em = 1)

get interrupt procedure pointer
SP= FP+64
IP = interrupt procedure pointer

Figure 13-10. Interrupt Service Flowchart

13-21

• Ii 11

!

I
I. ,

INTERRUPT CONTROLLER

13.5.2 Features to Improve Interrupt Performance

The i960 Jxprocessor implementation employs four methods to specifically reduce interrupt
latency: .

• Caching interrupt vectors on-chip

• Caching of interrupt handling procedure code

• Reserving register frames in the local register cache

• Caching the interrupt stack in the data cache

13.5.2.1 Vector Caching Option

To reduce interrupt latency, the i960 Jx processors allow some interrupt table vector entries to be
cached in internal data RAM. When the vector cache option is enabled and an interrupt request
that has a cached vector to be serviced, the controller fetches the associated vector from internal
RAM rather than from the interrupt table in memory.

Interrupts with a vector number with the four least-significant bits equal to 00102 can be cached.
The vectors that can be cached coincide with the vector numbers that are selected with the
mapping registers and assigned to dedicated-mode inputs. The vector caching option is selected
when programming the ICON register; software must explicitly store the vector entries in internal
RAM.

Since the internal RAM is mapped directly to the address space, this operation can be performed
using the core's store instructions. Table 13-2 shows the required vector mapping to specific
locations in internal RAM. For example, the vector entry for vector number 18 must be stored at
RAM location 04H, and so on ..

The NMI vector is also shown in Table 13-2. This vector is always cached in internal data RAM at
location OOOOH. The processor automatically loads this location at iiritialization with the value of
vector number 248 in the interrupt table.

13-22

INTERRUPT CONTROLLER

Table 13·2. Location of Cached Vectors in Internal RAM

Vector Number (Binary) Vector Number (Decimal) Internal RAM Address

(NMI) 248 OOOOH

0001 00102 18 0004H

001000102 34 0008H

0011 00102 50 OOOCH

010000102 66 0010H

0101 00102 82 0014H

011000102 98 0018H

0111 00102 114 001CH

100000102 130 0020H

1001 00102 146 0024H

101000102 162 0028H

1011 00102 178 002CH

110000102 194 0030H

110100102 210 0034H

111000102 226 0038H

111100102 242 003CH

13.5.2.2 Caching Interrupt Routines and Reserving Register Frames

The time required to fetch the first instructions of an interrupt-handling procedure affects interrupt
response time and throughput. The controller allows this fetch time to be reduced by caching
interrupt procedures or portions of procedures in the i960 Jx microprocessor's instruction cache.
See section 4.4, "INSTRUCTION CACHE" (pg. 4-4) for information on the instruction cache.

To decrease interrupt latency for high priority interrupts (priority 28 and above), software can limit
the number of frames in the local register cache available to code running at a lower priority
(priority 27 and below). This ensures that some number of free frames are available to high­
priority interrupt service routines. See section 4.2, "LOCAL REGISTER CACHE" (pg. 4-2), for
more details.

13-23

INTERRUPT:,CONTROlLER ihtet
13.5.2.3 Caching the Interrupt Stack

By locating the interrupt stack in memory that can be cached by the data cache, the performance of
interrupt returns caitbe'improved. This is because potentially accesses to the interrupt record by . . .

the interrupt retuin can be satisfied by the data cache. See section 12.6, "Programming the Logical
Memory Attributes" (pg. 12-8) for details on how to enable data caching for portions of memory.

1.3.5.3 Base Interrupt Latency

In many applications, the processor's instruction mix and cache configuration are known suffi­
ciently well to use typical interrupt latency in calculations of overall system performance. For
example, a timer interrupt may frequently trigger a task switch in a multi-tasking kernel. Base
interrupt latency assumes the following:

• Single-cycle RISC instruction is interrupted.

•

•
•

•

Frame flush. does not occur.

Bus queue is empty.

Cached interrupt handler.

No interaction of faults and interrupts (i.e., a stable system).

Table 13-3 shows the base latencies for all interrupt types, with varying pin sampling and vector
caching options. Note that the 809601D interrupt latency is approximately 50% less than the
80960JAlJF interrUpt latency due to its core clock operating at twice the speed of CLKIN.

13-24 I

INTERRUPT CONTROLLER

Table 13-3. Base Interrupt Latency

Detection
Vector

Typical 80960JAlJF Typical 80960JD
Interrupt Type Caching

Option
Enabled

Latency (Bus Clocks) Latency (Bus Clocks)

Fast Yes 29 149
NMI

Debounced Yes 32 15.5

Yes 34 17.5
Fast

Dedicated Mode No 40+a 21+b

XINT7:0, TINT1 :0 Yes 37 21.5
Debounced

No 45+a 26+b

Expanded Mode Yes 37 22

XINT7:0, TINT1 :0
Debounced

No 45+a 26+b

Yes 68 35
Software NA

No 69+a 36.5+b

Notes:
a = MAX (O,N - 7)
b = MAX (O,N - 3.5)

where "N" is the number of bus cycles needed to perform a word load.

13.5.4 Maximum Interrupt Latency

In real-time applications, worst-case interrupt latency must be considered for critical handling of
external events. For example, an interrupt from a mechanical subsystem may need service to
calculate servo loop parameters to maintain directional control. Determining worst-case latency
depends on knowledge of the processor's instruction mix and operating environment as well as the
interrupt controller configuration. Excluding certain very long, uninterruptable instructions from
critical sections of code will effectively reduce worst-case interrupt latency to levels approaching
the base latency.

J 13-25

i

I

• l-
i:

I

INTERRUPT CONTROLLER intet~

Tables 13-3 through 13-3 present worst case interrupt latencies based on possible execution of
divo (r15 destination), divo (r3 destination), calls or flushreg instructions or software interrupt
detection. The assumptions for these tables are the same as for Table 13-3, except for instruction
execution.

Table 13-4. Worst-Case Interrupt Latency Controlled by divo to Destination r15

Detection Vector VVorst80960JAJJF VVorst 80960JD
Interrupt Type Option Caching Latency (Bus Clocks) Latency (Bus Clocks)

Enabled

Fast Yes 42 23.5
NMI

Debounced Yes 46 26

Yes 45 23.5
Fast

Dedicated Mode No 45+a 23.5+b

XINT7:0, TINT1:0 Yes 49 27.5
Debounced

No 51+a 27.5+b

Expanded Mode Yes 50 27.5
Debounced

XINT7:0, TINT1 :0 No 51+a 27.5+b

Notes:
a = MAX (O,N - 11)
b = MAX (O,N - 5)

where "N" is the number of bus cycles needed to perform a word load.

13-26

intet INTERRUPT CONTROLLER

Table 13-5. Worst-Case Interrupt Latency Controlled by divo to Destination r3

Detection
Vector

Worst 80960JA/JF Worst 80960JD
Interrupt Type

Option
Caching

Latency (Bus Clocks) Latency (Bus Clocks)
Enabled

Fast Yes 59 30.5
NMI

Debounced Yes 64 34.5

Yes 65 33.5
Fast

Dedicated Mode No 72+a 37.5+b

XINT7:0, TINT1 :0 Yes 69 37
Debounced

No 76+a 42+b

Expanded Mode Yes 70 37.5
Debounced

XINT7:0, TINT1 :0 No 76+a 42+b

Notes:
a = MAX (O,N - 7)
b = MAX (O,N - 3.5)

where "N" is the number of bus cycles needed to perform a word load.

Table 13-6. Worst-Case Interrupt Latency Controlled by calls (Sheet 1 of 2)

Detection
Vector

Worst 80960JA/JF Worst 80960JD
Interrupt Type

Option
Caching

Latency (Bus Clocks) Latency (Bus Clocks)
Enabled

Fast Yes 53+a 27+c
NMI

Debounced Yes 56+a 32+c

Yes 58+a 29.5+c • Fast

Dedicated Mode No 66+a+b 33.5+c+d

XINT7:D, TINT1 :D Yes 62+a 33+c
Debounced

No 69+a+b 38+b+c

Notes:
a = MAX (D,N - 4)
b = MAX (D,N - 7)
c= MAX (D,N - 2.5)
d= MAX (D,N - 3.5)

where "N" is the number of bus cycles needed to perform a word load.

l 13-27

INTERRUPT CONTROLLER

Table 13-6. Worst-Case Interrupt,Latenc), Controlled by calls (Sheet 2 of 2)

Detection
Vector

Worst 80960JAlJF Worst 80g60JD
Interrupt Type Caching

Option
Enabled

Latency (Bus Clocks) Latency (Bus Clocks)

Expanded Mode Yes 63+a 32.5+c

XINT7:0, TINT1:0
Debounced

No 70+a+b 38+c+d

Notes:
a = MAX (O,N - 4)
b = MAX (O,N - 7)
c= MAX (O,N - 2.5)
d= MAX (O,N - 3.5)

where "N" is the number of bus cycles needed to perform a word load.

Table 13-7. Worst-Case Interrupt Latency When OeJiveringa Software Interrupt

Detection
Vector Worst 80960JAlJF

Worst 80960JD
Interrupt Type

Option
Caching Latency (Bus

Latency (Bus Clocks)
Enabled Clocks)

Fast Yes 96 47
NMI

Debounced Yes 97 47

Yes 99 48
Fast

Dedicated Mode No 107+a 53+b

XINT7:0, TINT1 :0 Yes 100 48
Debouriced

No 107+a 53+b

Expanded Mode Yes 96 48

XINT7:0, TINT1:0
Debounced

No 105+a 53+b

Notes:
a = MAX (O,N - 7)
b = MAX (O,N - 3.5)

where "N" is the number of bus cycles needed to perform a word load.

13-28 I

intet INTERRUPT CONTROLLER

Table 13-8. Worst-Case Interrupt Latency Controlled by flushreg of One Stack Frame

Vector Worst 80960JA/JF Worst 80960JD
Interrupt TYpe Detection Option Caching Latency (Bus Latency (Bus

Enabled Clocks) Clocks)

Fast Yes 77+a+b 41+d+e
NMI

Debounced Yes 81+a+b 43+d+e

Yes 82+a+b 43+d+e
Flat

Dedicated Mode No 89+a+b+c 47.5+d+e+f

XINT7:0, TINT1:0 Yes 86+a+b 47+d+e
Debounced

No 93+a+b+c 51+d+e+f

Expanded Mode Yes 88+a+b 47.5+d+e
Debounced

XINT7:0, TINT1 :0 No 93+a+b+c 52+d+e+f

Notes:
a = MAX (0, M - 15) d = MAX (0, M -7.5)
b = MAX (0, M - 28) e = MAX (0, M - 15)
c = MAX (0, N - 7) f = MAX (0, n - 3.5)

where "M" is the number of bus cycles needed to perform a quad word store and "N" is the number of bus
cycles needed to perform a word load. Interrupt latency increases rapidly as the number of flushed stack
frames increases.

13.5.4.1 Avoiding Certain Destinations for MDU Operations

1Ypically, when delivering an interrupt, the processor attempts to push the fIrst four local registers
(pfp, sp, rip, and R3) onto the local register cache as early as possible. Because of register­
interlock, this operation is stalled until previous instructions return their results to these registers.
In most cases, this is not a problem; however, in the case of instructions performed by the
Multiply/Divide Unit (divo, divi, ediv, modi, remo, and remi), the processor could be stalled for
many cycles waiting for the result and unable to proceed to the next step of interrupt delivery.

Interrupt latency can be improved by avoiding the fIrst four local registers as the destination for a
Multiply/Divide Unit operation. (Registers pfp, sp, and rip should be avoided anyway for general
operations as these are used for procedure linking.)

13-29

.-
I

INTERRUPT CONTROLLER infel~

13.5.4.2 Masking Integer Overflow Faults for syncf

The i960 core architecture requires animplicit syncf before delivering an interrupt so that a fault
handler can be dispatched fIrst, if necessary. The syncfcan require a number of cycles to
complete if a multi-cycle multiply or divide instruction was issued previously and integer­
overflow faults are UIimasked (allowed to occur). Interrupt latency can be improved by masking
integer-overflow faults, which allows the implicit syncf to complete in much shorter time.

13·30

14
TIMERS

CHAPTER 14
TIMERS

A key enhancement of the i960® Jx processor - not available on previous i960 processor family
members - are the two identical, fully independent 32-bit timers. Each is programmed by use of
the timer registers. These registers are memory-mapped within the processor, addressable on 32-bit
boundaries. The timers have a single shot mode and auto-reload capabilities for continuous
operation. Each timer has an independent interrupt request to the processor's interrupt controller. A
timer can generate a fault when unauthorized writes from user mode are detected. Figure 14-1
shows a diagram of the timer functions. Figure 14-5 shows the Timer Unit state diagram

ternal In
C PU
Bus

,

,
;

.,

,..

---1
1-1

~I
I

Address I Detect

~

Fault User/
Output Supervisor

Status

Control Bits

Timer Mode Register I~

Timer Reload Register r
I~ Timer Count Register/

32-bit Counter
I

I 32-bit Compare I
Against Zero

I
Terminal Count

I Interrupt Unit

!
Interrupt
Output

I
I

rl Clock Unit

So'-ie,,,.

Figure 14-1. Integrated Timer Functional Diagram

~

1- -

~

Bus
Clock

14-1

,. ,

i,

TIMERS intet®
14.1 TIMER REGISTERS

Each timer can contain a user-defined count value. When enabled, this count value decrements
with each Timer Clock (TCLOCK) cycle. The timers can be configured to either stop when the
user-defined count value reaches zero ("single-shot") or run continuously ("auto-reload"). Each
timer is clocked internally to decrement at a rate equal to the Bus Clock frequency, Bus Clock /2,
Bus Clock /4, or Bus Clock /8.

As shown in Table 14-1, each memory-mapped timer has three registers:

• Timer Reload register - contains the timer's reload count; described in section 14.1.3, ''Timer
Reload Register (TRRO, TRR1)" (pg. 14-7).

• Timer Count register - contains the timer's current count; described in section 14.1.2, "Timer
Count Register (TCRO, TCR1)" (pg. 14-6).

• Timer Mode register - programs the specific mode of operation or indicates the current
programmed status of the timer. This register is described in section 14.1.1, "Timer Mode
Register (TMRO, TMR1)" (pg. 14-2).

Table 14·1. Timer Registers

Timer Register Acronym Register Name

TRRO Timer Reload register 0

Timer 0 TCRO Timer Count register 0

TMRO Timer Mode register 0

TRR1 Timer Reload register 1

Timer 1 TCR1 Timer Count register 1

TMR1 Timer Mode register 1

14.1.1 Timer Mode Register (TMRO, TMR1)

The Timer Mode register (TMRx; see Figure 14-2) programs the specific mode of operation or
indicates the current programmed status for the specified timer. TMRx bits are described in the
subsections following Figure 14-2 and summarized in Table 14-2.

14-2 I

TIMERS

Terminal Count Status - TMRx.tc _____________________ ---,

(0) No Terminal Count
(1) Terminal Count

TImer Enable - TMRx.enable -----------------------,
(0) Disabled
(1) Enabled

Timer Auto Reload Enable - TMRx.reload -------------------,
(0) Auto Reload Disabled
(1) Auto Reload Enabled

TImer Register Supervisor Write Control - TMRx.sup ---------------,
(0) Supervisor and User Mode Write Enabled
(1) Supervisor Mode Only Write Enabled

TImer Input Clock Selects - TMRx.cseI1:0 ----------------,
(00) 1:1 TImer Clock = Bus Clock I
(Q1) 2:1 Timer Clock = Bus Clock / 2 II
(10) 4:1 TImer Clock = Bus Clock / 4
(11) 8:1 TImer Clock = Bus Clock / 8

31 28 24 20 16 12 B

IIIIII

14.1.1.1

TImer Mode Register (TMRO, TMR1)

I Reserved
(Initialize to 0)

Figure 14-2. Timer Mode Register (TMRO, TMR1)

Bit 0 - Terminal Count Status Bit (TMRx.tc)

4 o

When the auto-reload (bit 2) is not selected for a timer, the Terminal Count (TC) bit is set when the
Timer Count Register (TCR) reaches the zero count value. The TC bit gives the application the
ability to monitor timer status through software instead of through interrupts. The TC bit will
remain set until software accesses (reads or writes) the TMR. The access clears the TC bit. A value
specified for TMRx.tc is ignored in the case of a write.

When auto-reload is selected for a timer and the timer is enabled, the TC bit is unpredictable.
Software should avoid relying on the value of the TC bit when auto-reload is enabled.

14-3

i ~

I ,I,
I"

I
r~
1':,
ii'

i
I'

I"
I',

TIMERS

14.1.1.2 Bit 1 - Timer Enable (TMRx.enable)

The Timer Enable bit allows user software to control the timer's RUN/STOP status. When:

TMRx.enable = I

TMRx.enable = 0

The Timer Count register decrements every Timer Clock (TCLOCK) cycle.
TCLOCK is determined by the Timer Input Clock Select (TMRx.csell:0
bits, refer to section 14.1.1.5). TMRx.enable is automatically cleared when
the count reaches zero if reload=O. If Reload=l, the bit remains set. .

The timer is disabled and all input transitions are ignored.

User software sets this bit. Once set, the timer continues to run, regardless of other processor
activity (for~xample, the timer runs while the processor is in Halt mode) until:

• User software explicitly clears this bit (TMRx.enable = 0).

• TCRx,value reaches terminal count (= 0) and the Timer Auto Reload EQable (TMRx.reload)
bit = O.

• Reset (hardware/software reset or powerup). Refer to section 11.2, "INITIALIZATION" (pg.
11-2)

14.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRx.reload)

Bit 2 (TMRx.reload) determines whether the timer runs continuously or in single-shot mode.
When TCRx = 0 and TMRx.enable = 1 and:

TMRx.reload = 1

TMRx.reload = 0

Allows the timer to run continuously. The processor:

• Automatically loads TCRx with the value in the Timer Reload register
(TRRx), when TCR.x value is zero.

• TCRx decrements until TCRx = 0 again.

This process repeats until software clears bits 1 or 2.

Timer runs until the Timer Count Register = O. TRRx has no effect on the
timer.

This bit is set and cleared by user software. It is also cleared upon powerup (hardware reset) or
software reset. Refer to section 11.2, "INITIALIZATION" (pg. 11-2).

14.1.1.4 Bit 3 - Timer Register Supervisor Read/Write Control (TMRx~sup)

This bit determines whether user mode writes are permitted to the Timer registers (TMRx, TCRx,
TRRx). Supervisor mode writes are allowed regardless of this bit's condition. These registers can
be read from either mode.

14·4

intet TIMERS

Table 14-2. Timer Mode Register Control Bit Summary

il
'6 Gi'
III 2i

>C >C
0 III

C\I'ij .. C a: a: -.. _CD Action a: 0 iii>< iii~ t- t- a:

~ ~
l:::-

X X X X 0 Timer disabled.

X X N 0 1 Timer enabled, TMRx.enable will be cleared when TCRx decrements to zero.

X N N 1 1
Timer and auto reload enabled,TMRx.enable remains set when TCRx=O.
When TCRx=O, TCRx equals the TRRx value.

0 X X X X No faults for user mode writes will be generated.

1 X X X X TYPE.MISMATCH fault generated on user mode write.

Notes: X = don't care

N = a number between 1 Hand FFFF FFFFH

When:

TMRx.sup= 1

TMRx.sup=O

A TYPE.MISMATCH fault is generated when a user mode task attempts a
write to any of the timer registers; however, supervisor mode writes are
allowed.

The timer registers can be written from either supervjsor mode; or user
mode.

This bit has no effect on reading the timer registers from user or supervisor mode. This bit can
always be written in supervisor mode.

When the processor is in supervisor mode, user software can set or clear this bit. It is also cleared
upon power-up (hardware reset) or software reset. Refer to s,ection 11.2, "INITIALIZATION" (pg.
11-2).

14.1.1.5 Bits 4, 5 - Timer Input Clock Selects (TMRx.cseI1 :0)

Software programs these bits to select the Timer Clock (TCLOCK.; see Table 14.3). As shown in
Figure 14-1, the bus clock is an input to the Timer Clock Unit. These bits allow the application to
specify whether TCLOCK runs at or slower than the Bus Clock frequency.

These bits are only set by software. Upon powerup (hardware r9set) or software reset, these bits are
cleared (TCLOCK = Bus Clock). .

14-5

TIMERS

Table 14.3. Timer Input Clock (TCLOCK) Frequency Selection

BitS Blt4 Timer Clock (TCLOCK) TMRx.cse11 TMRx.cseiO

0 0 Timer Clock = Bus Clock

0 1 Timer Clock = Bus Clock I 2

1 0 Timer Clock = Bus Clock I 4

1 1 Timer Clock = Bus Clock I 8

14.1.2 TImer Count Register (TCRO, TCR1)

The timer count register ('TCR) is a 32-bit register which contains the timer's current count. This
register can be read or written when the timer is running or stopped. The register value will be
decremented for each timer clock tick. When this register value is decremented to a zero value
(terminal count), a timer interrupt will be generated; if auto-reload is not selected for the timer, the
TC status bit iIi the timer mode register (TMR, Bit 0) will be set and remain set until the TMRx
register is accessed. Figure 14-3 shows the timer count register.

Timer C,ount Value - TCRx.d31 :0 1
031:0 +

111111111111111111111111111111111
28 24 20 16 12 8 4 0

Timer Count Register (TCRO, TCR1)

Figure 14-3. Timer Count Register (TCRO, TCR1)

The maximum programmable value is FFFF FFFFH; the minimum value is IH. Programming a
value of 0 should be avoided and will have different results. See section 14.5, "Uncommon TCRx
and TRRx Conditions" (pg. 14-11) for more information.

User software can access <r~ad or write) the TCRx whether the timer is running or stopped. Bit 3
of the TMRx register determines read/write control (see section 14.1.1.4 for read/write control).
TCRx register value is undefined after powerup or reset.

14-6 L

TIMERS

14.1.3 Timer Reload Register (TRRO, TRR1)

The Timer Reload register (TRRx; Figure 14-4) is a 32-bit register that the user programs to
contain the timer's reload count. The reload count value is only loaded into TCRx when
TMRx.reload is set (1), TMRx.enable is set (1) and TCRx equals zero.

The maximum programmable value of the Timer Reload register is FFFF FFFFH, and the
minimum value is IH. Programming a value of 0 should be avoided, as it may cause TINTx to not
be asserted continuously. See section 14.5, "Uncommon TCRX and TRRx Conditions" (pg. 14-11)
for more information on results of setting TRRx to zero.

User software can accesses the TRRx whether the timer is running or stopped. Bit 3 of the TMRx
register determines read/write control (see section 14.1.1.4 for read/write control). TRRx register
value is undefined after powerup or reset .

. Timer Auto-Reload Value - TRRx.d31:0 1
031:0 t

111111111111111111111111111111111
28 24 20 16 12 8 4 0

Timer Reioad Register (TRRO: TRR1)

Figure 14-4. Timer Reload Register (TRRO, TRR1)

14.1.4 Timer Responses to Bit Settings

Table 14-4 summarizes the timer access timing and maximum times for the timer to respond when
registers are accessed_ Refer also to the individual register descriptions for details.

14.2 TIMER FUNCTIONS

The following sections describe enabling and disabling the Timer Counters and the associated
latency ..

14-7

i;
I'

1',\'

Il
11
II
Ij
Ii
I
j1

11
I'

TIMERS

Table 14-4. Timer Re$pensesto Register Bit settings

Name Status Action'
'"'

Bit is cll!lared when user ~qftware acceS$es TMRx; It can be set 1 bus clock
(TMRx.tc) READ later. The timer sets this bit within 1 bus clock of TCRx reaching zero if

, Terminal Count ", !MR.reload=:O,., .,
"

BitO ,
eitis cleared within ,~'bus clock after the software accesses TMRx. WRITE

"

(TMRx.enable) READ Bit is available 1 bus clOCk after executing a read instruction from TMRx.

limer Enable (,

Wri~irig a '1.' ~'riables ,th~ bus C1oc1<.todecrement TCRx within 1 b!JS clock after Bit 1 WRITE executing a store instruction to TMRx.

(TMRx.reload) ,R,EAD Bit is available 1 bus clock after executing a read instruction from TMRx.

limer Auto
Writing a '1' enables the reload capability within l' bus clock after the store Reload Enable

Bit 2 WRITE, instruction to TMRx haS executed. This allows TRRx data to be loaded into
TCRx and decremented on thE.', next bus. clock cycle.

READ Bit is available 1 bus clock after exequting a read instruction from TMRx.
(TMRx.sup) '.

limer Register
Writing a '1' locks out user mode writes within 1 bus clock after the store Supervisor

Write Control WRITE instruction executes to TMRx. The timer prevents user mode writes. Upon

Bit 3 detecting a user mode write the timer generates a fault condition.

(TMRx.cseI1 :0) READ Bits are ~vailable, 1 bus clock after executing a read instruction from

Timer Input
TMRx.csel1 :0 blt(s). ' " , ",

Clock Select The timer re-synchronize~ the clock,cycle,u~edto decrement TCRx within one
Bits 4-5 WRITE bus clock cycle after executing Ii. store instruction to TMRx.cseI1:0 bit(s). ' '

, The current TCRx courtt value is available within 1 bus clock cycle after

TCRx.d31:0 READ executing a ,read instruCtion from TCRx. If the count is to be decremented, the

limerCount
pre-decremented value is returned as the current count value.

Register The value written to TCRx becomes the active TCRx value to be decremented
WRITE within 1 bus clock cycle. If TCRx is decremented; the value Written becomes

the active TCRx value to be decremented in the current clock cycle.
I'

The current TRRx count value is available within 1 bus clock after executing a

READ read instruction from TRRx. If the TRRx count is being transferred into TCRx in
TRRx.d31:0 the current count cycle, the new TCRx count value will be returned to the

limer Reload executing read instruction.
Register

The value written to TRRx becomes the active value stored in TRRx within 1
WRITE bus clock cycle. H the TRRx value is being transferred into the TCRx, data

written to TRRx is also transferred into TCRx).

14-8

TIMERS

14.2.1 Enabling/Disabling Counters

Each timer has an Enable bit in its Control register (TMRx.enable) to allow or prevent the timer
from counting. The supervisor (SUP) bit controls write accesses to the Enable bit. User software
can set or clear the Enable bit. If the timer is not programmed for continuous operation (Auto
Reload), the Enable bit automatically clears at the end of a counting sequence.

As with all other load accesses from internal memory-mapped registers, a load instruction that
accesses a timer register has a latency of one internal processor cycle. With one exception, a store
access to a timer register is synchronous with respect to the next instruction; that is, the operation
completes fully and all state changes take effect before the next instruction begins execution. The
exception to this is when disabling a timer. Latency associated with the disabling action is such that
a timer interrupt may be posted immediately after the store to TMRx to disable it completes. This
is because the timer is potentially near zero as the storing of the TMRx MMR occurs. In this case,
the timer interrupt is guaranteed to be posted immediately after the store to the TMRx MMR
completes and before the next instruction can execute.

Note that the processor may delay the actual issuing of the load or store operation due to previous
instruction activity and resource availability of processor functional units.

Lastly, the processor ensures that the TC bit will be cleared within 1 bus clock after a load or store
instruction accesses the TMR register.

14.2.2 Programming Considerations

Since timer registers can be read or written whether the timer is operating or not, and processor
accesses to timer registers are synchronized with counter .element accesses, the processor cannot
read a partially modified register.

14.3 TIMER INTERRUPTS

Each timer is the source for one interrupt. When a timer detects a zero count in its TCR, the timer
will force the generation of an internal edge-detected Timer Interrupt signal (TINTx) to the
interrupt controller, and the interrupt-pending (IPND.tipx) will be set in the interrupt controller.
Each timer interrupt can be selectively masked in the Interrupt Mask (lMSK) register or handled as
a dedicated hardware-requested interrupt. Refer to CHAFfER 13, INTERRUPf CONTROLLER
for a description of hardware-requested interrupts.

If the interrupt is disabled after a request has been generated, but before a pending interrupt is
serviced, the interrupt request is still active (the Interrupt Controller latches the request). If a timer
generates a second interrupt request before the CPU services the first interrupt request, the second
request may be lost.

14-9

TIMERS

When auto-reload is enabled for a timer, the timer will continue. ,to decrement the contents in the
TCR even after entry into the timer interrupt handler.

An interrupt is generated when:

• the Timer Count Register teaches 0 and

• the auto reload is not selected (TMRx.reload=O). See section 14.1.1.1, "Bit 0 - Terminal
Count Status Bit, (TMRx;tc)" (pg; 14-3)

14.4 POWERUP/RESET INITIALIZATION

Upon power up, external hardware reset or software reset (sysctl), the Timer Mode register is
initialized to the value shown in Table 14-5.

Table 14-5. Timer Powerup Mode Settings

Mode/Control Bit Notes

TMRx.tc= 0 Read only

TMRx.enable = 0 Prevents counting and assertion of TINTx

TMRx.reload = 0 Single terminal count mode

TMRx.sup = 0 Supervisor or User Mode access

TMRx.csel1,:O = 0., Timer Clock = Bus Clock

TCRx.d31:0 = 0 undefined

TRRx.d31:0 = 0 undefined

TINTx output deasserted

14-10 I

TIMERS

14.5 UNCOMMON TCRX AND TRRX CONDITIONS

Under certain conditions it may be useful to set the Timer Count register or the Timer Reload
counter to zero before enabling the timer counter unit. Table 14-6 details the conditions and results
when these conditions are set.

Table 14-6. Uncommon TMRx Control Bit Settings

:; 'iD
as :is

>C >C
0 as

N'ij '"" C a: a: _ ...
_III Action a: ~ ai~ ai~ ~

~ ::E
t:.

X 0 0 1 TMRx.tc and TINTx will be set, TMR.enable will be cleared

0 0 1 1
Timer and auto reload enabled, TINTx will not be generated and timer enable
remains set.

0 N 1 1 Timer and auto reload enabled. TINT. x will be set when TCRx=O. The timer will
stay enabled but further TINTx's will not be generated.

Timer and auto reload enabled, TINTx will not be set initially, TCRx = TRRx,
N 0 1 1 TINTx will be set when TCRx has completely decremented the value it loaded

from TRRx. TMRx.enable remains set.

NOTE: X = don't care

N = a number between 1 Hand FFFF FFFFH

14.6 TIMER STATE DIAGRAM

The Figure 14-5 shows the common states of the Timer Unit. For uncommon conditions see
section section 14.5, "Uncommon TCRx and TRRx Conditions" (pg. 14-11)

14-11

TIMERS

14-12

Hardware/Software Reset

SWWrite
(TMR.enable = 0)

TMR.enable = 0
TMR.reload = 0
TMR.sup =0
TMR.cse.11:0 = 0
IPND.ti = 0

TMR.enable = 1
TMR.reload =user value
TMR.sup = user value
TMR.cseI1:0 = user value

TeR 1=0

SWRead

Bus Clock or
SWRead

SW Read & Reload = 0
Note:
Ovals denote a state
Boxes denote actions

Clock Unit Tick
andTCR !=o

Figure 14·5. Timer Unit State Diagram

TC=O
TMR.enable = 1
TCR=TRR

Reload = 1

1

15
EXTERNAL BUS

1'\
1,1
I,
I'

I

i
I:
I"

II
Ii
Il

CHAPTER 15
EXTERNAL BUS

This chapter describes the bus interface of the i96(j11> Ix processor. It explains the following:

• Bus states and their relationship to each other

• Bus signals, which consist of address/data, controVstatus

• Read, write, burst and atomic bus transactions

• Related bus functions such as arbitration

This chapter also serves as a starting point for the hardware designer when interfacing typical
memory and peripheral devices to the i960 Ix processor's address/data bus.

For information on programmable bus configuration, refer to CHAPfER 12, MEMORY CONFIG­
URATION.

15.1 OVERVIEW

The bus is the data communication path between the various components of an i960 Ix micropro­
cessor hardware system, allowing the processor to fetch instructions, manipulate data and interact
with its UO environment. To perform these tasks at high bandwidth, the processor features a burst
transfer capability, allowing up to four successive 32-bit data transfers at a maximum rate of one
word every clock cycle.

The address/data path is multiplexed for economy and bus width is programmable to 8-, 16- and
32-bit widths. The processor has dedicated control signals for external address latches, buffers and
data transceivers. In addition, the processor uses other signals to communicate with alternate bus
masters. All bus transactions are synchronized with the processor's clock input (CLKIN);
therefore, the memory system control logic can be implemented as state machines.

15.2 BUS OPERATION

Knowing definitions of the terms request, access and transfer is essential to understand descrip­
tions of bus operations.

15-1

EXTERNAL BUS

The piocessOr''/iPU8 l,:.oQtrol unit is designed to decouple bus activity from instruction execution in
th~ c<;>re' as much is Rossible. When a load or store instruction or instruction prefetch is issued, a
bus request;i~ 'generat~d in' the bus control unit. The bus control unit independently processes the
request and retrieves data from memory for load instructions and instruction prefetches. The bus
control unit delivers data to memory for store instructions.

The i960 architecture defines byte, short word, word, double word,triple word and quad WOld data
lengths for load and store instructions. When a load or store instruction is encountereq, the
processor issues a bus request of the appropriate data length: for example, Idq requests that four
words of data be retrieved from memory; stob requests that a single byte be delivered to memory.
The processor always fetches instructions using double or quad word bus requests.

A bus access is defined as a bus transaction bounded by the assertion of ADS (address/data status)
and de-assertion of BLAST (burst last) signals, which are outputs from the processor. A bus access
consists of one to io~ data transfers. 'During each transfer, the processor either reads data or
drives data on the bus. The nuinber of transfers per access' and the number of a~cesses per request
is gqvemed by the r:equested dataJength, the programmed width of the bus and the alignment of
the address.' " ' ,

15.2.1 Basic Bus States

The bus has five basic bus states: idle (Ti), address (Ta), wait/data (Twffd), recovery (Tr), and
hold (Th) , During, system operation, the processor continuously enters and exits' different bus
states.'

The, bus occupies the idle (Ti) state when no address/data transactions are in progress and when
RESET is asserted. When the processor needs to initiate a bus access, it enters the Ta state to
transmit the address.

Following {l Ta state, the b,us enters the Twffd state to transmit or receive data on the address/data
lines .. Assertion, of the RDYRCV input signal indicates completion of e~cb transfer. When data is
not ready, the processor can wait as long as necessary for the memory or 1/0 device to respond.

After the data transfer, 1hebus exit~ the Twffd state and enters the recovery (Tr) state. In the case
, , of a burst transaction, the bus exits the Td state and re-enters the TdITw state to transfer the next

data word. The processor asserts the BLAST signal during the last Twrrd states of an access. Onc.e
all data words transfer in a burst access (up to four), the bus enters theTr state to allow devices on
the bus to recover.

The processor remains in the Tr state until RDYRCV is deasserted. When the recovery state
completes, the bus enters the Ti state if no new accesses are required. If an access is pending, the
bus enters the Ta state to transmit the new address.

I

Tj - IDLE STATE
Ta - ADDRESS STATE
T'llJ T.d - WAIT/DATA
SlATE
Tr - RECOVERY STATE
T h - HOLD STATE
To - ONCE STATE

EXTERNAL BUS

RECOVERED
AND REQUEST
PENDING AND
(NO HOLD OR

LOCKED)

RECOVERED AND
NO REQUEST AND

(NO HOLD OR
LOCKED)

READY- RDYRCV ASSERTED
NOT READY- RDYRCV NOT ASSERTED

BURST- BLAST NOT ASSERTED
NO BURST - BLAST ASSERTED

RECOVERED- RDYRCV NOT ASSERTED
NOT RECOVERED- RDYRCV ASSERTED

REQUEST PENDING- NEW TRANSACTION
NO REQUEST-NO NEW TRANSACTION

HOLD- HOLD REQUEST ASSERTED
NO HOLD- HOLD REQUEST NOT ASSERTED
LOCKED - ATOMIC EXECUTION (ATADD, ATMOD) IN

PROGRESS
NOT LOCKED- NO ATOMIC EXECUTION IN PROGRESS

RESET-- RESET ASSERTED
ONCE-- ONCE ASSERTED

Figure 15.1. Bus States with Arbitration

15-3

EXTERNAL BUS intel~

15.2.2 Bus Signal TYj)es

Bus signals consist of three groups: address/data, controVstatus and bus arbitration. They are listed
in Table 15.1. A detailed description of all signals can be found in the 80960JAlJF Embedded 32-
bit Microprocessor Data Sheet and the 80960JD Embedded 32-bit Microprocessor Data Sheet.

15.2.2.1 Clock Signal

The CLKIN input signal is the reference for all i960 Jx microprocessor signal timing relationships.
Note that this is true even for the i960 JD processor, even though the CPU core runs at twice the
CLKIN rate. Transitions on the AD31:2, ADl:0, A3:2, ADS, BE3:0, WIDTHlHLTDI:0, D/e,
wiR, DEN, BLAST, RDYRCV, LOCK/ONCE, HOLDIHOLDA and BSTAT bus signal pins are
always measured directly from the rising edge of CLKIN. The processor asserts ALE and ALE

. directly from the rising CLKIN edge at the beginning of a Ta state but deasserts them approxi-
mately half way through the state instead of the next rising CLKIN edge. All transitions on DTiR
are also referenced to a point halfway through the Ta state instead of rising CLKIN edges.

15.2.2.2 Address/Data Signal Definitions

The address/data signal group consists of 34 lines. 32 of these signals multiplex within the·
processor to serve a dual purpose. During Ta, the processor drives AD31:2 with the address of the
bus access. At all other times, these Jines are defined to contain data. A3:2 are demultiplexed
address pins providing incrementing word addresses during burst cycles. ADl:0 denote burst size
during Ta and data during other states.

The processor routinely performs data transfers less than 32 bits wide. If the programmed bus
width is 32 bits and transfers are 16- or 8-bit, then during write cycles the processor will replicate
the data that is being driven on the unused address/data pins. If the programmed bus width is 16 or
8 bits, then during write cycles the processor will continue driving address on any unused
address/data pins.

Whenever the programmed bus width is less than 32 bits, additional demultiplexed address bits are
available on unused byte enable pins (See section 15.4.3.1, "Bus Width" (pg. 15-7)). These signals
increment during burst accesses in similar fashion to the A3:2 pins.

15.2.2.3 Control/Status Signal Definitions

The controVstatus signal group consists of 15 signals. These signals control data buffers and
address latches or furnish information useful to external chip-select generation logic. All output
controVstatus signals are three-state.

15-4 I

Signal
Symbol

AD31 :2

AD1:0

A3:2

ALE

ALE

ADS

BE3:0

WIDTH/HLTD
1 :0

Die

wifS.

DTifS.

DEN

BLAST

RDYRCV

LOCK/ONCE

HOLD

HOLDA

BSTAT

I

EXTERNAL BUS

Table 15-1. Summary of i960 Jx, Processor Bus Signals

Name (Direction) Signal Function

Address/Data 31:2 (I/O)
Word address, driven during Ta. Read or write data,
driven or sampled during Tw/Td.

Address/Data 1:0 and Size 1 :0 (I/O)
Number of transfers, driven during Ta. Read or write
data, driven or sampled during Tw/Td.

Address 3:2 (0)
Incrementing burst address bits, driven during Ta
and Tw/Td.

Address Latch Enable (0) Driven during Ta for demultiplexing AD bus.

Address Latch Enable (Inverted) (0) Driven during Ta for demultiplexing AD bus.

Address/Data Status (0) Valid address indicator, driven during Ta.

Enable selected data bytes on bus. (16-bit bus) BE3
Byte Enables 3:0 and Byte High and BEO enable high and low bytes. (a-bit bus)

Enable/Byte Low Enable and A 1 :0 (0) BE1 :0 are incrementing burst address bits. Driven
during Ta and Tw/Td.

Width and Processor Halted (0)
Physical bus size, driven during Ta and Tw/Td. Can
denote Halt Mode.

Data/Code (0)
Data access or instruction access, driven during Ta
and Tw/Td.

. Write/Read (0)
Indication of data direction, driven during Ta and
Tw/Td.

Data Transmit/Receive (0)
Delayed indication of data direction, driven during Ta
and Tw/Td.

Data Enable (0) Enables data on bus, driven during Tw/Td.

Burst Last (0) Last transfer of a bus access, driven during Tw/Td.

Data transfer edge when sampled low during Tw/Td.
Ready/Recover (I)

Bus recovered when sampled high during Tr.

LockiOn-Circuit Emulation (I/O) Atomic operation, driven during Ta and Tw/Td.
ONCE floats all pins when sampled at reset.

Hold (I)
Acquisition request from external bus master,
sampled any clock.

Hold Acknowledge (0)
Bus control granted to external bus master, driven
during Th.

Bus Status (0)
Processor may stall unless it can acquire bus, driven
any clock.

15-5

Ii

II
Ii

I,
11

Ij
l
J

I

,I
I:

EXTERNAL BUS intet
Bus accesses begin with the assertion of ADS (address/data status) during a Ta state. External
decoding logic typically uses ADS to qualify a valid adqress. at the rising clock edge at the end of
Ta. The processor pulses ALE (address latch enable) active high for one half clock during Ta to
latch the multiplexed address on AD3l:2 in external address latehes. An inverted signal, ALE; is
also present for compatibility with i960 Kx processor-based companion devices.

The byte enable (BE3:0) signals denote which bytes on the 32~bit data bus will transfer data
during aD. access. The processor asserts byte enables during Ta and deasserts them during Tr.
When the data bus is configured for 16 bits, two byte enables become byte high enable aDd byte
low enable and an additional address bit Al is provided. When the bus is configured for 8 bits,
there are no byte enables, but additional address bits Al:0 are provided. Note that the processor
always drives byte enable pins to logical 1 's during the Tr state, even when they are used as
addresses.

The WIDTHl:O, D/Cand WIR signals yield useful bus access information for external memory
and 110 controllers. The WIDTHl:O signals denote programmed physical memory attributes. The
data/code pin indicate's whether an access is a data transaction (1) or an instruction transaction (0).
The write/read pin indicates the direction of data flow relative to the i960 Jx processor.
WIDTHl:O, D/C an<i WIR change state as needed during the Ta state.

DTIR and DEN pins are used to control data transceivers. Data transceivers may be used in a
system to isolate a' memory subsystem or control loading on data lines. DTIR (data
transmit/receive) is used to control transceiver direction. In the second half of the Ta state, it
transitions high for write cycles or low for read cycles. DEN (data enable) is used to enable the
transceivers. DEN is asserted during the first TwITd state of a bus access and deasserted during Tr.
DTIR and DEN timings ensure that DTIR does not change state when DEN is asserted.

A bus access may be either non-burst or burst. A non-burst access ends after one data transfer to a
single location. A burst access involves two to four data cycles to consecutive memory locations.
The processor asserts BLAST (burst last) to indicate the last data cycle of an access in both burst
and non-burst situations.

All i960 Jxprpcessor wait states are controlled by the RDYRCV (ready/recover) input signal.

15.2.3 Bus Accesses

The i960 Ix microprocessor uses the bus signals to transfer data between the processor and another
component. The maximum transfer rate is achieved when performing burst accesses at the rate of
four 32-bit data words per six clocks.

15-6 1-

intet EXTERNAL BUS

15.2.3.1 Bus Width

Each region's data bus width is programmed in a Physical Memory Region Configuration
(PMCON) register. The processor allows an 8-, 16- or 32-bit data bus width for each region. The
processor places 8- and 16-bit data on low-order data pins, simplifying the interface to narrow bus
external devices. As shown in Figure 15-2, 8-bit data is placed on lines AD7:0; 16-bit data is
placed on lines AD15:0; 32-bit data is placed on lines AD31:0. The processor encodes bus width
on the WIDTH1:0 pins so that external logic may enable the bus correctly.

AD31:24 ---------------------, ___ -------

AD23:16 ---------------------i

AD15:8 -------------...-----------i

AD7:0 -------,.-------1 1-----..------1

BEO

8· Bit

..-----+iAO

Al

BEl BEl

16· Bit

A1

BHE BLE

BE3 BEO BE3

32- Bit

BE3:0 '--___________________ ~---------'

Figure 15·2. Data Width and Byte Encodings

Depending on the programmed bus width, the byte enable signals provide either data enables or
low-order address lines:

• 8-bit region: BEO: 1 provide the byte address (AO, AI) (see Table 15-2).

• 16-bit region: BEl provides the short-word address (AI); BE3 is the byte high enable signal
(BHE); BEO is the byte low enable signal (BLE) (see Table 15-3).

• 32-bit region: byte enables are not encoded as address pins. Byte enables BE3:0 select bytes 0
through 3 of the 32-bit words addressed by AD31:2 (see Table 15-4).

When the byte enables function as address lines, they increment with each transfer during burst
accesses. Otherwise, byte enables never toggle between transfers of a burst, due to microcode
breakup of unaligned requests.

15-7

•
I
I
I

•
I
!

EXTERNAL BUS intet

Table 15-2. 8-Bit Bus Width Byte Enable Encodings

Byte
BE3 BE2 BE1 BEO

(Not Used) (Not Used) (Used as A1) (Used asAO)

0 1 1 0 0

1 1 1 0 1

2 1 1 1 0

3 1 1 1 1

Table 15-3. 16-Bit Bus Width Byte Enable Encodings

Byte
BE3 BE2 BE1 BEO

(Used as BHE) (Not Used) (Used as A1) (Used as BlE)

0,1 0 1 0 0

2,3 0 1 1 0

0 1 1 0 0

1 0 1 0 1

2 1 1 1 0

3 0 1 1 1

Table 15-4. 32-Bit Bus Width Byte Enable Encodings

Byte BE3 BE2 BE1 BEO

0,1,2,3 0 0 0 0

0,1 1 1 0 0

2,3 0 0 1 1

0 1 1 1 0

1 1 1 0 1

2 1 0 1 1

3 0 1 1 1

During initialization, the bus configuration data is read from the Initialization Boot Record (IBR)
assuming an 8-bit bus width; however, the IBR can be in 8-bit, 16-bit, or 32-bit physical memory.
BE3 and BE2 are defined as "I" so that reading the bus configuration data works for all bus
widths. Since these byte enables are ignored for actual 8-bit memory, they can be permanently
defined this way for ease of implementation.

15-8

EXTERNAL BUS

Intel designed the i960 Jx processor to drive determinate values on all address/data pins during
Twffd write operation states. For an 8-bit bus, the processor continues to drive address on unused
data pins AD31:8. For a 16-bit bus, the processor continues to drive address on unused data pins
AD31:16. However, when the processor does not use the entire bus width because of data width or
misalignment (i.e., 8-bit write on a 16- or 32-bit bus or a 16-bit write on a 32-bit bus), data is
replicated on those unused portions of the bus.

15.2.3.2 Basic Bus Accesses

The basic transaction is a read or write of one data word. The first half of Figure 15-3 shows a
typical timing diagram for a non-burst, 32-bit read transaction. For simplicity, no wait states are
shown.

During the Ta state, the i960 Jx microprocessor transmits the address on the address/data lines. In
the figure, the SIZE bits (ADl:0) specify a single word transaction and WIDTHl:0 indicate a 32-
bit wide access. The processor asserts ALE to latch the address and drives ADS low to denote the
start of the cycle. BE3:0 specify which bytes the processor uses to read the data word. The
processor brings wiR low to denote a read operation and drives D/e to the proper state. For data
transceivers, DTiR goes low to define the input direction.

During the Twffd state, the i960 Jx microprocessor deasserts ADS and asserts DEN to enable any
data transceivers. Since this is a non-burst transaction, the processor asserts BLAST to signify the
last transfer of a transaction. The figure shows RDYRCV assertion by external logic, so this state
is a data state and the processor latches data on a rising CLKIN edge.

The Tr state follows the Twffd state. This allows the system components adequate time to remove
their outputs from the bus before the processor drives the next address on the address/data lines.
During the Tr state, BLAST, BE3:0 and DEN are inactive. wiR and DTiR hold their previous
values. The figure indicates a logical high for the RDYRCV pin, so there is only one recovery
state.

After a read, notice that the address/data bus goes to an invalid state during Ti. The processor
drives valid logic levels on the address/data bus instead of allowing it to float. See section 15.2.4,
"Bus and Control Signals During Recovery and Idle States" (pg. 15-22) for the values that are
driven during Ti.

15-9

,

•

I .•.
I .~'

r .:
,.

EXTERNAl'~BUS

.;~ .
"":-Read •• Idle •• Write a. Idle~

Ta Td Tr Ti Ti Ta Td Tr Ti Ti
I ,

. 'r' e ClKIN

I I I

AD31:0 [~ :nvalid:S :
DA~AOu,t

[If\: I
I n: I

ALE . I

I I I I

; I
I \ : I
~.

. I

,A3:2

BE3:0 [: . : I : \: : I' .1

WIDTH1:0
[) : 10: : : : : 10: : -:' :

DIe []I...-' ~-----,I
, WIR[~~~ __ ~ __ ~I ____ ~ __ ~:JI

~_...II..., I-...1-__1-__1.. __ --1.1... I

BLAST [I : 'LJ : lj
, DT/R' [;\ 1-: ---t'----t----+----+-'J1 :

Iljl I I

I

ILJ I I

I
DEN [

RDYRCV [

I I

I

I

I'

I

Figure 15-3. Non-Burst Read and Write Transactions Without Wait States, 32-Blt Bus

15-10 I

EXTERNAL BUS

Figure 15-3 also shows a typical timing diagram for a non-burst, 32-bit write transaction. For the
write operation, wlR and DTIR are high to denote the direction of the data flow. The D/C pin is
high since instruction code cannot be written. During the TwlTd state, the processor drives data on
the bus, waiting to sample RDYRCV low to terminate the transfer. The figure shows RDYRCV
assertion by extemallogic, so this state is a data state and the proce'ssor enters the recovery state.

At the end of a write, notice that the write data is driven during Tr and any subsequent Ti states.
After a write, the processor will drive write data until the next Ta state. See section 15.2.4, "Bus
and Control Signals During Recovery and Idle States" (pg. 15-22) for details.

15.2.3.3 Burst Transactions

A burst access is an address cycle followed by two to four data transfers. The i960 Jx micropro­
cessor uses burst transactions for instruction fetching and accessing system data structures.
Therefore, a system design incorporating an i960 Jx microprocessor must support burst transac­
tions. Burst accesses can also result from instruction references to data types which exceed the
width of the bus.

Maximum burst size is four data transfers, independent of bus width. A byte-wide bus has a
maximum burst size of four bytes; a word-wide bus has a maximum of four words. For an 8- or 16-
bit bus, this means that some bus requests may result in multiple burst accesses. For example, if a
quad word load request (e.g., ldq instruction) is made to an 8-bit data region, it results in four, 4-
byte, burst accesses. (See Table 15-6.)

Burst accesses on a 32-bit bus are always aligned to even-word boundaries. Quad-word and triple­
word accesses always begin on quad-word boundaries (A3:2=OO); double-word transfers always
begin on double-word boundaries (A2=O); single-word transfers occur on single word boundaries.
Figure 15-4 shows burst, stop and start addresses for a 32-bit bus.

15-11

i ,

~
I

EXTERNAL BUS intel~

A3:2

32-Bit Burst Bus

Quad-Word Burst

Triple-Word Burst

Double-Word Burst

Double-Word Burst

Figure 15-4. 32-Bit Wide Data Bus Bursts

A2:1 = (A2, BE1)

16-Bit Burst Bus 4 Short-Word Burst

2 Short-Word Burst

". ':
2 Short-Word Burst

Figure 15-5. 16-Bit Wide Data Bus Bursts

15-12 I

EXTERNAL BUS

At:O = (BEt, BEO)

8-Bit Burst Bus 4-Byte Burst

2-Byte Burst

2-Byte Burst

Figure 15-6. a-Bit Wide Data Bus Bursts

Burst accesses for a 16-bit bus are always aligned to even short-word boundaries. A four short­
word burst access always begins on a four short-word boundary (A2=O, Al=O). Two short-word
burst accesses always begin on an even short-word boundary (Al=O). Single short-word transfers
occur on single short-word boundaries (see Figure 15-5).

Burst accesses for an 8-bit bus are always aligned to even byte boundaries. Four-byte burst
accesses always begin on a 4-byte boundary (Al=O, AO=O). Two-byte burst accesses always begin
on an even byte boundary (AO=O) (see Figure 15-6).

Figure 15-7 illustrates a series of bus accesses resulting from a triple-word store request to 16-bit
wide memory. The top half of the figure shows the initial location of 12 data bytes contained in
registers g4 through g6. The instruction's task is to move this data to memory at address OAH. The
top half of the figure also shows the final destination of the data.

Notice that a new 16-byte boundary begins at address lOH. Since the processor stores 6 of the 12
bytes after this 16-byte boundary, the processor will split the transaction into a number of accesses.
The i960 Jx processor cannot burst across 16-byte boundaries.

15-13

EXTERNAL BUS

The processor splits the transaction into the following accesses. It performs the following bus
cycles: . .

15-14

G3

G4

G5

G6

G7

1

1. Non-burst access to transfer the first short word (contents 5678H) to
address OAH. The short word at address 08H remains unchanged.

2. Burst access to transfer the second and third short words (contents 1234H
and OFACEH) to address OCH.

3. Burst access to transfer the fourth and fifth short words (contents
OFEEDH and OBA98H) to address WH.

4. Non-burst access to transfer the last short word (contents OFEDCH) to
address 14H. The short word at address 16H remains unchanged.

Memory
Registers

Address A

2 3 4 5 6 78 5 6 7 8 8

F E E D FACE FA C E 1 2 3 4 C

F E DCBA98

16-Byte
Boundary

B A 98

31

F E E D 10

FED C 14

o

1st Access
(Short Word)

2nd Access
(Burst 2 Short Words)

3rd Access
(Burst 2 Short Words)

4th Access
(Short' Word)

C8
AddressOAH

~2 F~ r4 c-=J
Address OCH

rE B~
~D 9~
Address 10H

Figure 15-7. Unaligned Write Transaction

[:J
Address 14H

EXTERNAL BUS

I Ta I Td I Td I T, I Ta I Td I Td I Td I Td I T, I

CLKIN[

AD31:0[
DATA
Out

I I

ALE[1\: :n:
I I I

ADS[U I I ILJ I I

I I I I I I I I I

A3:2[] 000r01 ~ 01 or11 ~ 00 'a3 11

I I I I I I I I

BE3:0[~ :0\ :f:
I I I I I

WIDTH1:0[] 10 10

I

D/C[] 1
I

WiRe ~ :/
I I

BLAST [ILJ I I IL]:
I I I

I I I I I

DTiR[:--\: /:
I I I I I

DEN[:-:\ :/ :\ :r:
•

I I

RDYRCV[

I

Figure 15-8. Burst Read and Write Transactions w/o Wait States, 32·bit Bus

I 15·15

EXTERNAL BUS

Figure 15-9. Burst Read and Write Transactions w/o Wait States, a-bit Bus

15-16 J

EXTERNAL BUS

15.2.3.4 Wait States

Wait states lengthen the microprocessor's bus cycles, allowing data transfers with slow memory
and 110 devices. The 80960Jx supports three types of wait states: address-to-data, data-to-data
and turnaround or recovery. All three types are controlled through the processor's RDYRCV
(ReadylRecover) pin, a synchronous input.

The processor's bus states follow the state diagram in Figure 15.1. After the Ta state, the processor
enters the Twffd state to perform a data transfer. If the memory (or 110) system is fast enough to
allow the transfer to complete during this clock (i.e., "ready"), external logic asserts RDYRCV.
The processor samples RDYRCV low on the next rising clock edge, completing the transfer; the
state is a data state. If the memory system is too slow to complete the transfer during this clock,
external logic drives RDYRCV high and the state is an address-to-data wait state. Additional wait
states may be inserted in similar fashion.

If the bus transaction is a burst, the processor re-enters the Twffd state after the first data transfer.
The processor continues to sample RDYRCV on each rising clock edge, adding a data-to-data wait
state when RDYRCV is high and completing a transfer when RDYRCV is low. The process
continues until all transfers are finished, with RDYRCV assertion denoting every data acquisition.

Figure 15-10 illustrates a quad word burst write transaction with wait states. There are two
address-to-data wait states single data-to-data wait states between transfers.

l 15-17

:t
I,

EXTERNAL BUS intel@

Ta Tw Tw Td Tw Td Tw Td Tw Td Tr
I I,

CLKIN[

I I I I I' ,

AD31:0[B DATA

X
DATA ~ DATA X DATA

Out Out Out Out

I I

ALE [1\: ' I'

I I

ADS[U I I

I I I

A3:2[\ 100 :L ~, / I
01 10 11

I I
I 1

BE3:0[0 I 10 ,I 1

I I I'

WIDTH1:0[] 10

I

D/C[J
W/R[J

BLAST [:\
I

0
I

DT/R[~:
I I

DEN[\ 0
RDYRCV[

F_XL032A

Figure 15·10. Burst Writ~ Transactions With 2,1,1,1 Wait States, 32·bit Bus

15-18 I

EXTERNAL BUS

15.2.3.5 Recovery States

The state following the last data transfer of an access is a recovery (Tr) state. By default, i960 Jx
microprocessor bus transactions have one recovery state. External logic can cause additional
recovery states to be inserted by driving the RDYRCV pin low at the end of Tr.

Recovery wait states are an important feature for the Jx because it employs a multiplexed bus.
Slow memory and 110 devices often need a long time to tum off their output drivers on read
accesses before the microprocessor drives the address for the next bus access. Recovery wait states
are also useful to force a delay between back-to-back accesses to 110 devices with their own
specific access recovery requirements.

System ready logic is often described as normally-ready or normally-not-ready. Normally-ready
logic asserts a microprocessor's input pin during all bus states, except when wait states are desired.
Normally-not-ready logic deasserts a processor's input pin during all bus states, except when the
processor is ready. The subtle nomenclature distinction is important for i960 Jx microprocessor
systems because the active sense of the RDYRCV pin reverses for recovery states. During the Tr
state, logic 0 means "continue to recover" or "not ready"; for Tw/Td states, logic 0 means "ready".
Logic must assure "ready" and "not recover" are generated to terminate an access properly. Be
certain to not hang the processor with endless recovery states. Conventional ready logic
implemented as normally-not-ready will operate correctly (but without adding turnaround wait
states).

Figure 15-12 is a timing waveform of a read cycle followed by a write cycle, with an extra
recovery state inserted into the read cycle.

15-19

i

i,

,'j

EXTERNAL BUS

ClKIN

AD3l:0

ALE

A3:2

BEliAl

BE3/BHE
BEO/BlE

WIDTH1:0

ole

WiR

DTiR

[
[

Ta Tw Td Td Tr Tr Ta Tw Td i Td Tr
i

[~~:--~----~--+---~--~:;--\~:--~~--+---~--~
[:8 IL) I 1

I

[]1..--'7 __ --:0_0_,0_1,_10':"',_or_l_l "':"'" __ -:-__ ~~ 00,01,10,orll

I

[l ° :/ i L..--,-'-_-,-_...,..-I
: \L..---:_O ______ ..J: I

[:\~~~:I \~ ____ ~ ____ ~ __ ~:r:
I

[]1..---_01 ___ 01_

[)'----_---J1 I
[~..,....-L-I ~~__r_': /
[:LJ

I I

i~ I I I

I I I

[~: /:
I I I [: \'--'--~/~~: \'---'-----'-----'-': r:

I I

RDYRCV [

Figure 15-11. Burst Read/Write Transactions with 1,0 Wait States - Extra Tr State on Read,
16-Bit Bus

15-20 I

in1et

ClKIN

AD3l:0

ALE

A3:2

BElIAl

WIDTH1:0

DIG

WiR

DTiFi

EXTERNAL BUS

I Ta Tw Td I Td Tr Tr I Ta I Tw I Td I Td Tr

[
[Mf--..l---~: 8

~--~--~---+I--~f----~:;r'\~:--~----+---~----; [
[;\j \3 I 1

I

[~~ ____ ~0_0'_01_'1_0_,o_r_11 __________ ~~~ ____ 00_'0_1_'1_0'_O_r1_1 ______ __

I

[~I...-..,----,-O ----,-1/1 \
I

[:\~~~:I : \\........; ____ l... __ ..:-__ ...;J: r:
I

[~1.-...----_01 ___ 01_

[] __ ----'1/
[~..,..-L--: ~________t__T""~: I
[iU I I

1 I

I'L}:
I I I

[~:

[: \,----,-----,---,-,1
RDYRCV [

Figure 15-12. Burst ReadlWrite Transactions with 1,0 Wait States, Extra Tr State on Read, 16-
Bit Bus

15-21

i
'I

EXTERNAL BUS

15.2.4 Bus and Control Signals During Recovery and Idle States

Valid bus transactions are bounded by ADS going active at the beginning of Ta states and BLAST
going inactive at the beginning of Tr states. During Tr and Ti states, bus and control pin logic
levels are defined in such a way as to avoid unnecessary pin transitions that waste power. In all
cases, the bus and control pins are completely quiet for iristruction fetches and data loads that are
cache hits.

If the last bus cycle is a read, the address/data bus floats during all Tr states. If the last bus cycle is
a write, the address/data bus freezes during Tr states. The processor drives control pins such as
ALE, ADS, BLAST and DEN to their inactive states during Tr. Byte enables BE3:0 are always
driven to logic high during Tr, even when the processor uses them under alternate definitions.
Outputs without clearly defined active/inactive states such as A3:2, WIDTHlHLTDl:0, D/e, wlR
and DTIR freeze during Tr.

When the bus enters the Ti state, the bus and control pins will likewise freeze to inactive states.
The exact states of the address/data pins depend on how the processor enters the Ti state. If the
processor enters Ti from a Tr ending a write cycle, the processor continues driving data on
AD31 :0. If the processor enters Ti from a read cycle or from a Th state, AD31:4 will be driven
with the upper 28 bits of the read address. AD3:2 will be driven identically as A3:2 (the word
address ofthe last read transfer). The processor will usually drive ADl:0 with the last SIZE infor­
mation. In cases where the core cancels a previously issued bus request, ADl:0 are indeterminate.

15.2.5 Data Alignment

The i960 Jx microprocessor's Bus Control Unit (BCU) directly supports both big-endian and
little-endian aligned accesses. The processor also transparently supports both big-endian and little­
endian unaligned accesses but with reduced performance. Unaligned accesses are broken down
into a series of aligned accesses with the assistance of microcode executing on the processor.

Alignment rules for loads and stores are based on address offsets from natural data boundaries.
Table 15-5 lists the natural boundaries for the various data widths and Table 15-6 through 15-8 list
all possible combinations of bus accesses resulting from aligned and unaligned requests. Figure
15-13 and Figure 15-14 also depict all the combinations for 32-bit buses. Figure 15-15 is a
functional waveform for a series of four accesses resulting from a misaligned double word read
request.

The fault configuration word in the Process Control Block (PRCB), can configure the processor to
handle unaligned accesses non-transparently by generating an OPERATION.UNALIGNED fault
after executing any unaligned access. See section 11.3.1.2, "Process Control Block (PRCB)" (pg.
11-14).

15-22 1

EXTERNAL BUS

Table 15-5. Natural Boundaries for Load and Store Accesses

Data Width Natural Boundary (Bytes)

Byte 1

Short Word 2

Word 4

Double Word 8

Triple Word 16

Quad Word 16

Table 15-6. Summary of Byte Load and Store Accesses

Address Offset from
Accesses on 8-Bit Bus Accesses on 16 Bit Bus Accesses on 32 Bit Bus

Natural Boundary
(WIDTH1 :0=00) (WIDTH1 :0=01) (WIDTH1 :0=10)

(In Bytes)

+0 (aligned) byte access byte access byte access

Table 15-7. Summary of Short Word Load and Store Accesses

Address Offset from
Accesses on 8-Bit Bus Accesses on 16 Bit Bus Accesses on 32 B.it Bus

Natural Boundary
(WIDTH1 :0=00) (WIDTH1 :0=01) (WIDTH1 :0=10)

(in Bytes)

+0 (aligned) burst of 2 bytes short-word access short-word access

+1 2 byte accesses 2 byte accesses 2 byte accesses

15-23

EXTERNAL BUS

Table 15-8. Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4)

Address Offset Accesses on 8-Blt Bus Accesses on 16 Bit Bus Accesses on 32 Bit
from Natural

(WIDTH1 :0=00) (WIDTH1 :0=01) Bus (WIDTH1 :0=10) Boundary in Bytes

+0 (aligned) · n i;>lJrst(s) of 4 bytes · case 11=1: · burst of n word(s)
(n=1, 2, 3, 4) burst of 2 short words

· case 11=2:
burst of 4 short words

· case 11=3:
burst of 4 short words
burst of 2 short words

· case 11=4:
2 bursts of 4 short words

+1 (n=1, 2, 3, 4) · byte access · byte access · byte access
+5 (n = 2, 3, 4) · burst of 2 bytes · short-word access · short-word access
+9 (n= 3, 4) · n-1 burst(s) of 4 bytes · n-1 burst(s) of 2 short words • n-1 word
+13(n=3,4) · byte access · byte access access(es)

· byte access

+2 (n =1, 2, 3, 4) · burst of 2 bytes · short-word access · short-word access
+6 (n = 2, 3, 4) · n-1 burst(s) of 4 bytes · n-1 burst(s) of 2 short words • n-1 word
+10(n=3,4) · burst of 2 bytes · short-word access access(es)
+14(n=3,4) · short-word access

+3 (n =1, 2, 3, 4) · byte access · byte access · byte access
+7 (n = 2, 3, 4) · n-1 burst(s) of 4 bytes · n-1 burst(s) of 2 short words • n-1 word
+11 (n=3,4) · burst of 2 bytes · short-word access access(es)
+15(n=3,4) · byte access · byte access · short-word access

· byte access

+4 (n = 2, 3, 4) · n burst(s) of 4 bytes · n burst(s) of 2 short words · n word access(es)
+8 (n= 3,4)
+12(n = 3,4)

15-24

~I

Short-Word
Load/Store

Word
Load/Store

Double-Word
Load/Store

Short Access (Aligned)

I

Byte, Byte Accesses

J

Word Access (Aligned)

Byte, Short, Byte, Accesses

I I
Short, Short Accesses

Byte, Short, Byte Accesses
, .

One Double-Word Burst (Aligned)

I I
Byte, Short, Word, Byte Accesses . ,

I I
Short, Word, Short Accesses

BYte, Word, Short, Byte Accesses

I I
Word, Word Accesses

One Double-Word
Burst (Aligned) F _XL028A

I

Figure 15-13. Summary of Aligned and Unaligned Accesses. (32-Bit Bus)

15-25

:1
I,'

I, ,

• I: I

EXTERNAL BUS

Byte Offset

Word Offset

Triple-Word
Load/Store

Quad-Word
Load/Store

0

0

""

4 8 12
I"

I
2 3

I"

intel~

16 20 24

4 5 6

Short, Word, Word,
Short Accesses

IMe, Word, Word,
Short, Byte Accesses

I
Word, Word,
Word Accesses

I

Word,
Word,
Word
Accesses

Byte, Short, Word, Word,
Word, Byte Accesses

I I
Short, Word, Word, Word,
Short Accesses

Word,
Word,
Word,
Word,
Accesses

F_XL029A

Figure 15-14. Summary of Aligned and Unaligned Accesses (32-Blt Bus) (Continued)

15-26 I

ClKIN [

AD31:0 [
ALE [
ADS [
A3:2 [

BE3:0 [
WIDTH1:0 [

DIG [
WiRe

BLAST [

DT/R [

DEN [

RDYRCV [

EXTERNAL BUS

Ta Td Tr Ta Td Tr Ta Td Tr Ta Td Tr

, I

i!\: ~ __ ~ ____ ~~~: ____ ~ ____ ~~~~ ___________ 'J~~: ____ ~ ______ _
,

~ I 00
,

:L X OQ 01 10

I , , I ,

J 1101 7 :\ 0011 7 :\ 0000 :j :\ 1 1 10 7
I , I I I I I

] 10

] I
I Valid,

,

Figure 15-15. Accesses Generated by Double Word Read Bus Request, Misaligned One Byte
From Quad Word Boundary, 32-Blt Bus, Little Endian

15-27

EXTERNAL BUS

15.2.6 Byte Ordering and Bus Accesses

The default byte-order for both instruction and data accesses'is programmed in the DLMCON
register to be either little- or big-endian. On the i960 Jx processor, DLMCON.be controls the
default byte order for internal (on-chip data ram and data cache) accesses' as well as external
accesses. The programming of DLMCON is distussed in section 12.6.2, "Selecting the Byte
Order" (pg. 12-11).

The processor handles the byte data type the same r~gardless of byte ordering. Table 15-9 shows
byte data ODDH being transferred on 8, 16 and 32 bit buses.

For the short word data type, assume that a llexadecimal value of OCCDDH is stored in one of the
processor's internal registers. Table 15-10 shows how this short word is transferred on the bus to
either a little endian or big endian memory region. Note that the short word goes out on different
data lines on a 32-bit bus depending upon whether address line Al is odd or even. In this example,
the transfer is assumed to be aligned.

For the word data type, assume that a hexadeCimal value of OAABBCCDDH is stored in an
internal processor register, where OAAH is the word's most significant byte and ODDH is the least
significant byte. Table 15-11 shows how this word is transferre<i on the bus to an aligned address
in either little endian or big endian memory.

The i960 Jx processor supports multi-word big endian data types with individual word accesses.
Bytes in each word are stored in big-endian order; however, words are stored in little-endian order.
Consider Figure 15-16, which illustrates a double word store to big endian memory.

"

Table 15·9. Byte Ordering on Bus Transfers, Word Oata Type

Word Data Type Bus Pins (AD31 :0)

Bus Addr Bits Little Endian Big Endlan

Width A1,AO
Xfer

31 :24 I 23:16 I I 31:24 I 23:16 I I 15:8 7:0, 15:8 7:0

32 bit 00 1st AA BB CC DD DD CC BB AA

16 bit
00 1st -- -- CC DD -- -- BB AA

10 2nd -- -- AA BB -- -- DD CC
00 1st -- -- -- DD -- -- -- AA

, 01 2nd -- -- -- CC -- -- -- BB
8 bit

10 3rd -- -- -- BB -- -- -- CC
"

11 4th -- -- -- AA -- -- -- DD

15-28

EXTERNAL BUS

Table 15-10. Byte Ordering on Bus Transfers, Short-Word Data Type

Short-Word Data Type Bus Pins (AD31 :0)

Bus Addr Bits Little Endian Big Endian
Xfer

Width A1,AO 31 :24 I 23:16 I 15:8 I 7:0 31:24 I 23:16 I 15:8 I 7:0

00 1st -- -- CC DD -- -- DD CC
32 bit

10 1st CC DD -- -- DD CC -- --
16 bit XO 1st -- -- CC DD -- -- DD CC

XO 1st -- -- -- DD -- -- -- CC
8 bit

X1 2nd -- CC -- -- -- DD

Table 15-11. Byte Ordering on Bus Transfers, Byte Data Type

Byte Data Type Bus Pins (AD31 :0)

Bus Addr Bits Little and Big Endian
Xfer

Width A1,AO 31:24 I 23:16 J 15:8 I 7:0

00 1st -- -- -- DD
01 1st -- -- DD --

32 bit
10 1st -- DD -- --

11 1st DD -- -- --
XO 1st -- -- -- DD

16 bit
X1 1st -- -- DD --

8 bit XX 1st -- -- -- DD

Registers Memory
R3

R4 BB AA 99 88 BB A

• stl r4,A
AA A+1
99 A+2

R5 FF EE DO CC 88 A+3
FF A+4

R6 EE A+5
DO A+6
CC A+7

Figure 15-16. Multi-Word Access to Big-Endian Memory Space

I 15-29

EXTERNAL BUS intel®
15.2.7 Atomic ·Bus Transactions

The atomic instructions, atadd and atmod; consist of a load and store request to the Same memory
location. Atomic .instructions require indivisible, read-modify-write access to memory. That is,
another bus agent must not access the target of the atomic instruction between read and write
cycles. Atomic instructions are necessary to implement software semaphores.

For atomic bus accesses, the 80960Jx processor asserts the LOCK pin during the first Ta of the
read. operation and deasserts LOCK in the last data transfer of the Write operation. LOCK is
deasserted at the same clock edge that BLAST is asserted. The i960Jx processor does not assert
LOCK except while a read-modify-write operation is in progress. While LOCK is asserted, the
processor can perform other, non-atomic, accesses such as fetches. However, the 80960Jx
processor will not acknowledge HOLD requests. This behavior is an enhancement over earlier
i960 microprocessors. Figure 15-17 illustrates locked read/write accesses associated with an
atomic instruction.

15-30

EXTERNAL BUS

Ta Td Tr Ti Ti I Ti I Ta I Td I Tr

CLKIN[lV\NV
I I I I I

AD31:0[
,-__ In~'~ '12K ~

I

ALE [: n~,-_..J....._.L....._.1....-~ :n:
-' \ l~l'-_~L ~.'----.l.---....I.

ADS [

I I _~ __ -:-_--:"_~IlLI __ ':"'1 '"\ I ,..... __ .;.-. __ ...;...

~tl :V
I

WiRe T\ :/
I '-T""'--...,.----T""'--...,.--~l "1,--,-11

BLAST [
lUi I I

I I

l~:r
; , ; \.....J '

I I I I I I ,

LOCK [:\'-.....JI __ .I.I __ L..-_..J....~ I I I
RDYRCV [

Figure 15-17. The LOCK Signal

15.2.8 Bus Arbitration

The i960 Jx processor can share the bus with other bus masters, using its built-in arbitration
protocol. The protocol assumes two bus masters: a default bus master (typically the 80960Jx) that
controls the bus and another that requests bus control when it performs an operation (e.g., a DMA
controller). More than two bus masters may exist on the bus, but this configuration requires
external arbitration logic

Three processor signal pins comprise the bus arbitration pin group.

L 15-31

"

ii\

il
I
'

II
"

" I',"~,

i- ::'

I'
i

EXTERN'AL BUS intel®
15.2.8.1 HOLD/HOLDA Protocol

In most cases, the i960 Jx processor controls the bus; an 110 peripheral (e.g., a communications
controller) requests bus control. The processor and 110 peripheral device exchange bus control
with two signals, HOLD and HOLDA..

HOLD is an i960 Jx processor synchronous input signal which indicates that the alternate master
needs the bus. HOLD may be asserted at any time so long as the transition meets the processors
setup and hold requirements. HOLDA (hold acknowledge) is the processor's output which
indicates surrender of the bus. When the i960 Jxprocessor asserts HOLDA, it enters the Th (hold)
state (see Figure 15.1). If the last bus state was Ti or the last Tr of a bus transaction, the processor
is guaranteed to assert HOLDA and float the bus on the same clock edge in which it recognizes
HOLD. Similarly, the processor deasserts HOLDA on the same'edge in which it recognizes the
deassertion of HOLD. Thus, bus latency is no longer than it takes the processor to finish any bus
access in progress.

If the bus is in hold and the 80960Jx needs to regain the bus to perform a transaction, the processor
does not deassert HOLDA. In many cases, however, it will assert the BSTAT pin (see section
15.2.8.2, BSTAT Signal).

Unaligned load and store bus requests are broken into multiple accesses and the processor can
relinquish the bus between those transactions. When the alternate bus master gives control of the
bus back to the.80960Jx, the processor will immediately enter a Ta state to continue those accesses
and respond to any other bus requests. If no requests are pending, the processor will enter the idle
state.

Figure 15-18 illustrates a HOLDIHOLDA arbitration sequence.

15-32 1-

EXTERNAL BUS

TI orTr Th Th TIorTa

ClKIN [F\.f
I I I I

Outputs:
AD31:0,

ALE, ALE,
ADS,A3:2, [

BE3:0,
WIDTH/HlTD1 :0,

DIG, W/R,
DTlR, DEN,

BLAST, lOCK

HOLD [

HOLDA [

I I I I
I I I I I
I !

Valid !~ '!I-I 1 --+--l(v;alid

-,----.,....1 -ll~ i \.... ----r.---

I I I I
I I I I I I m l I zrt-. I I
I I I !t-I I I I I ~~I----~I----
I I I I I I
I I I_I"I 1 I
i i Ii i I, I
.,...----r-..,!~l-__r_'I I I '--""1"1---

I I I I

Figure 15-18. Arbitration Timing Diagram for a Bus Master

The HOLDIHOLDA arbitration functions during processor reset. The bus controller acknowledges
HOLD while RESET is asserted because the bus is idle. If RESET is asserted while HOLDA is
asserted (the processor has acknowledged the HOLD), the processor remains in the HOLDA state.
The processor does not continue reset activities until HOLD is removed and the processor removes
HOLDA.

15.2.8.2 BSTAT Signal

The i960 Jx microprocessor extends the HOLDIHOLDA protocol with a bus status (BSTAT)
signal. In simplest terms, assertion of the BSTAT output pin indicates that the CPU may soon stall
unless it obtains (or retains) control of the bus. This indication is a useful input to arbitration logic,
whether or not the 80960 Jx is the primary bus master.

The processor asserts BSTAT when one or more of the following conditions are true:

• The bus queue in the bus control unit (BCU) becomes full for any reason.

• An instruction fetch request is pending or being serviced on the bus. This behavior promotes
performance by supporting instruction cache fills.

15-33

I!
Ij
\

EXTERNAL BUS intel®
• A load request has been issued to the BCU. This behavior promotes performance by

supporting early data loading. . .

• A special operation is underway that. requires emptying the bus queue. Examples of such
operations are execution of the HALT instruction, and regi~ter store~ that control logical or
physical memory configuration.

The processor can assert BSTAT on any rising CLKIN edge. Although BSTAT activation suggests
bus starvation, it does not necessarily imply that the processor definitely stall or that it is currently
stalled.

When the 80960Jx is the primary bus master and asserts BSTAT, arbitration logic can work more
intelligently to anticipate and prevent processor bus stalls. Depending on the importance of the
alternate bus master's task, ownership of the bus can be modulated. If the bus is in hold, control
can be relinquished back to the microprocessor immediately or after an optimal delay. Of course,
BSTAT can be ignored completely if the loss in processor bandwidth can be tolerated.

When the 80960Jx is not the primary bus master, the BSTAT signal becomes the means to request
the bus from the primary master. As described above, BSTAT will be activated for all loads and
fetches, but store requests do not activate BSTAT unless they fill the bus queue. If the processor
needs priority access to the bus to perform store operations, replaCIil store instructions with the
atomic modify (atmod) instruction, using a mask operand of all one's. atmod is a read-modify­
write instruction, so the processor will assert BSTAT when the load transaction is posted to the bus
queue. When the load begins, LOCK# is asserted, which blocks recognition of hold requests until
the store portion of atmod completes.

15'.3 BUS APPLICATIONS

The i960Jxmicroprocessor is a cost-effective building block for a wide spectrum of embedded
systems. This section describes common interfaces for the 80960Jx to external memory and: 110
devices.

15.3.1 System Block Diagrams

Block diagrams in Figure 15-19 through .Figure' 15-21 are generalized diagrams with, bus
topologies representative of a number of potential 80960Jx systems. These diagrams do not
represent any particular i960Jx processor- based applications;

In most i960Jx processor systems, the 80960Jx is the primary master of the local bus. A number of
memory and I/O devices typically interface to the processor, either directly or through buffers and
transceivers. A~ example of such a system might be a laser beam printer.

15-34 I

EXTERNAL BUS

Systems with multiple I/O channels frequently use dual-ported memory to link several identical
I/O devices to the local bus, as in Figure 15-19. These systems are more complex, but performance
and flexibility improve because bus traffic is partitioned away from the i960 Jx processor's local
bus. An example of such a system might be a network hub.

i960 Jx Local Base Dual Port I-- High-Perf
Processor Memory 1/0 Memory 1/0

80960 Local Bus

Figure 15-19. Generalized 80960Jx System with 80960 Local Bus

A more elaborate system would connect the 80960Jx's bus to a backplane through bus interface
logic as shown in Figure 15-20. The backplane bus (or system bus) connects to multiple high
performance I/O devices (often with DMA) and large buffer memory for caching packets of data
from disk drives or LANs. Backplane buses can connect to other microprocessor local buses, too,
creating a loosely coupled mUltiprocessor system for resource sharing.

i960 Jx Local Base
Processor Memory 1/0

80960 Local Bus

Bus Cache High-Perf
Interface Memory 1/0

Backplane Bus

Figure 15-20. Generalized 80960Jx System with 80960 Local Bus and Backplane Bus

I 15-35

EXTERNAL BUS intet
Buses such as the PCI (Peripheral Component Interconnect) local bus connect to the 80960\bus
through a bridge chip, which employs DMA, FIFOs and mailboxes for bus-to-bus communication.
The PCI . local bus can connect shared buffer memory and high performance 110 devices. The
bandwidth of the PCI local bus is particularly appropriate for bridge intet;facing to high-end
processors such as the Pentium (R) microprocessor, as illustrated in Figure 15-21. In this way, the
i960Jx can improve the performance of complex systems such as servers by sparing the main
system CPU and its local memory the task of buffering low-level 110.

i960 Jx Local Base
Processor Memory 1/0

80960 Local Bus

Bridge
Cache High-Perf

Memory 1/0

PCI Local Bus

Bridge Hi~h-End Local Base
PU Memory 1/0

I
Microprocessor Local Bus

Figure 15-21. 80960Jx System with 80960 Local Bus, PCI Local Bus and Local Bus for High
End Microprocessor

15-36

EXTERNAL BUS

15.3.1.1 Memory Subsystems

Memory systems for the i960 Jx processor include a mix of non-volatile and volatile devices
including ROM, DRAM, SRAM or flash memory. The circuit designer may take advantage of
programmable bus width to optimize the number of devices in each memory array. For example,
the processor can boot from a single, slow, 8-bit ROM device, then execute from code loaded to a
faster, wider and larger RAM array.

All systems must contain burstable memory, since the processor employs burst transactions for
instruction fetches and stack operations. Bursting cannot be turned off on the i960Jx processor.

15.3.1.2 1/0 Subsystems

liD subsystems vary widely according to the needs of specific applications. Individual peripheral
devices may be as generic as discrete logic liD ports or as specialized as an ISDN controller.

Typical peripherals for desktop/server intelligent I/O applications are Small Computer System
Interface controllers supporting SCSI-l (8-bit) or SCSI-2 (8/16/32-bit) standards.

For network applications such as ATM adapters, smart hubs and routers, typical peripherals
include controllers for older protocols such as Ethernet and FDDI and controllers for newer
protocols such as ATM (Asynchronous Transfer Mode) and Fibre Channel.

Typical peripherals for non-impact printer controllers include printer video ports, engine
command/status ports, asynchronous serial controllers, IEEE 1284 parallel ports, LocalTalk(TM)
ports and PCMCIA memory card controllers.

I 15-37

16
HALT MODE

I~
Ii
11

CHAPTER 16
HALT MODE

This chapter discusses HALT mode and its effect on power consumption. The i960® Jx micropro­
cessor initially enters HALT mode when a halt instruction executes. The processor quickly exits
the HALT mode upon receipt of RESET or any interrupt allowed by the current process priority.
Exit through an interrupt causes execution to continue within the appropriate interrupt handler
routine. HALT mode can be used as an efficient, low-power method to wait for interrupts.

16.1 Entering HALT Mode

Entry into HALT mode by the halt instruction causes the following actions to occur:

• Interrupts are enabled or disabled based on the value of the srcl argument supplied in the halt
instruction.

• The processor ensures that all previous load and store operations have completed before
continuing. If the bus queues are not empty, the processor asserts the BSTAT pin and waits for
the bus queues to empty.

• The processor attempts to reduce power consumption to more efficiently wait for exit from
HALT mode.

The processor performs an implicit SYNCF before attempting to enter HALT mode. If a fault is
detected for a previous instruction, the processor will switch control to the appropriate fault
handler instead of executing the halt. If the fault is recoverable, the processor executes the halt
instruction upon return from the fault handler. A trace fault on the halt instruction will be serviced
after the processor exits HALT mode.

halt can only be executed while in supervisor mode; a TYPE.MISMATCH fault occurs when
attempting to execute the instruction in user mode. i·'

16.2 Processor Operation During HALT Mode

The i960 Jx processor's power needs drop by approximately an order of magnitude while in HALT
mode. See the 80960JAlJF Embedded 32-bit Microprocessor Data Sheet and the 80960JD
Embedded 32-bit Microprocessor Data Sheet. Code execution stops but the processor maintains its
internal state and can still respond to certain internal and external events.

16-1

I

HALT MODE

The internal timers, when enabled, continue to decrement each cycle during HALT mode and can
even force the processor out of HALT mode if either timer generates an interrupt of sufficient
priority.

The processor responds normally to external events such as interrupt requests, hardware RESET,
and HOLD requests.

Output pins are driven to known states during HALT mode and provide a unique external
indication of the mode. Most importantly, WIDTHlHLTDis set to 112, Refer to the 80960JAlJF
Embedded 32-bit Microprocessor Data Sheet or the 80960JD Embedded 32-hit Microprocessor
Data Sheet for: more information.

All other control signals are inactive. The processor attempts to drive each inactive pin to the same
value the pin held before entering HALT mode; this reduces power consumption while in HALT
mode.

The processor acknowledges HOLD requests on the external bus properly; however, receiving a
HOLD request does not cause the processo:r to exit HALT mode. During the HOLD acknowledge,
the processor drives all bus output pins to high impedance. When HOLD is deasserted, the
prol;:essor drives the output bus pins back to the normal HALT mode state described above.

The following JTAG features are unaffected by HALT mode:

•
•
•
•

access to Boundary-Scan through the Test-Access Port (TAP)

access to IDeODE through TAP

access to ~yNBIST through TAP

access to BYPASS through TAP

16.3 Exiting HALT Mode

A number of external events c~ force the processor to exit HALT mode:

• The presentation of an interrupt to the processor that should be delivered based .on the
processor's current process priority and the interrupt controller's normal prioritization
mechanism (as described in the interrupt chapter).
Return from an interrupt that forcedtbe processor to exit HALT mode. caqses execution tQ
resume at the instruction immediately after the halt instruction.

• The assertion ·of RESET.· When RESET is subsequently deasserted the processor enters the
~ontlal initialization process. .

Note that the WIDTHlHLTD pins stay in the "11" even after coming'out of HALT mode until the
next external bus access.

16-2 I

HALT MODE

16.3.1 Exiting HALT Mode for any Interrupt

Normally, only interrupts prioritized higher than the processor's current process priority cause the
processor to exit HALT mode.

In an application that requires interrupts of a lower priority to force exit from HALT mode, the
process priority must be lowered. Lowering of the process priority and issuing of the halt
instruction must be non-interruptible so that if the desired interrupt occurs too early, it does not
interrupt before the halt instruction is issued.

The recommended way to provide a non-interruptible window is as follows. The halt instruction
must be preceded by a sequence of an intetl instruction that disables interrupts, followed by a
modpe instruction that lowers the current process priority. Subsequently issuing a halt instruction
with a srcl value of 1 causes interrupts to be enabled at the new process priority. Note that by
lowering the process priority, interrupts that are pending at a lower priority before the halt
instruction executes, are now free to bring the processor out of HALT mode almost immediately.

L 16-3

intet

17
TEST FEATURES

1-

CHAPTER 17
TEST FEATURES

This chapter describes the i960® Jx processor's test features, including ONCE (On-Circuit
Emulation) and Boundary Scan (JTAG). Together these two features create a powerful
environment for design debug and fault diagnosis.

17.1 ON-CIRCUIT EMULATION (ONCE)

On-circuit emulation aids board-level testing. This feature allows a mounted i960 Jx processor to
electrically "remove" itself from a circuit board. This allows for system-level testing where a
remote tester exercises the processor system. In ONCE mode, the processor presents a high
impedance on every pin, except for the JTAG Test Data Output (TDO). All pullup transistors
present on input pins are also disabled and internal clocks stop. In this state the processor's power
demands on the circuit board are nearly eliminated. Once the processor is electrically removed, a
functional tester such as an In-Circuit Emulator (ICE) system can emulate the mounted processor
and execute a test of the i960 Jx processor system.

17.1.1 Entering/Exiting ONCE Mode

The i960 Jx processor uses the dual function LOCK/ONCE pin for ONCE. The LOCK/ONCE pin
is an input while RESET is asserted. The i960 Jx processor uses this pin as an output when the
ONCE mode conditions are not present.

ONCE mode is entered by asserting (low) the LOCK/ONCE pin while the processor is in the reset
state, or by executing the HIGHZ JTAG private instruction. The LOCK/ONCE pin state is latched
on the RESET signal's rising edge.

• To enter ONCE mode, an external tester drives the ONCE pin low (overcoming the internal
pull-up resistor) and initiates a reset cycle.

• To exit ONCE mode, perform a hard reset with the ONCE pin deasserted (high) prior to the
rising edge of RESET. It is not necessary to cycle power when exiting ONCE mode.

See the 80960JNJF Embedded 32-bit Microprocessor Data Sheet and the 80960JD Embedded 32-
bit Microprocessor Data Sheetfor specific timing of the LOCK/ONCE pin and the characteristics
of the on-circuit emulation mode.

17-1

I
I
l :,

TEST FEATURES

17.2 BOUNDARY SCAN (JTAG)

The i960 Jx processor provides test features compatible with IEEE Standard Test Access Port and
Boundary Scan Architecture (IEEE Std. 1149.1). JTAG ensures that components function
correctly, connections between components are correct, and components interact correctly on the
printed circuit board.

To date, the i960 Kx, Sx and Cx processors do not implement IEEE 1491.1 Standard Test Access
Port and Boundary-Scan Architecture.

17.2.1 Boundary Scan Architecture

Boundary scan test logic consists of a Boundary-Scan register and support logic. These are
accessed through a Test Access Port (TAP). The TAP provides a simple serial interface that allows
all processor signal pins to be driven and/or sampled, thereby providing the direct control and
monitoring of processor pins at the system level.

This mode of operation is valuable for design debugging and fault diagnosis since it permits
examination of connections J¥>t normally accessible to the test system. The following subsections
describe the boundary scan test logic elements: TAP controller, Instruction register, Test Data
registers and TAP elements.

17.2.1.1 TAP Controller

The TAP controller is a 16 state machine, which provides the internal control signals to the
instruction register and the test data registers. The state of the TAP controller is determined by the
logic present on the Test Mode Select (TMS) pin on the rising edge of TCK. See Figure 17-2 for
the state diagram of the TAP controller.

17.2.1.2 Instruction Register

The instruction register (IR) holds instruction codes shifted through the Test Data Input (TOI) pin.
The instruction codes are used to select the specific test operation to be performed and the test data
register to be accessed.

17-2 _I

in1et TEST FEATURES

17.2.1.3 Test Data Registers

The four test data registers are:

• Device ID register (see section 17.3.2.1, "Device Identification Register" (pg. 17-6».

• Bypass register (see section 17.3.2.2, "Bypass Register" (pg. 17-6».

• RUNBIST register (see section 17.3.2.3, "RUNBIST Register" (pg. 17-7».

• Boundary-Scan register (see section 17.3.2.4, "Boundary-Scan Register" (pg. 17-7».

17.2.1.4 TAP Elements

The Test Access Port (TAP) contains a TAP controller, an instruction register, a group of test data
registers, and the TAP pins as shown in the block diagram in Figure 17-1. The TAP is the general­
purpose port that provides access to the test data registers and instruction registers through the TAP
controller.

TOI

TMS

TCK

TRST []-__I

Bypass Reg TOO

Figure 17·1. Test Access Port Block Diagram

17-3

.1
,I
II
:!
I,
I: .,

TEST FEATURES

NOTE: ALL STATE TRANSITIONS ARE BASED ON THE VALUE OF TMS.

Figure 17·2. TAP Controller State Diagram

17-4 .

TEST FEATURES

The i960 Jx processor's TAP is composed of four input connections (TMS, TCK, TRST and TDI)
and one output connection (IDO). These pins are described in Table 17-1.

Table 17-1. TAP Controller Pin Definitions

Pin Name Mnemonic Type Definition

Clock in put fot the TAP controller, the instruction register,
Test Clock TCK Input and the test data registers. The JTAG unit will retain its state

when TCK is stopped at "0" or "1 ".

Controls the operation of the TAP controller. The TMS input
Test Mode Select TMS Input is pulled high when not being driven. TMS is sampled on the

rising edge of TCK.

Serial date input to the instruction and test data registers.

Test Oata In TDI Input
Oata at TOI is sampled on the rising edge of TCK. Like TMS,
TOI is pulled high when not being driven. Oata shifted from
TOI through a register to TOO appears non-inverted at TOO.

Used for serial data output. Oata at TOO is driven at the
falling edge of TCK and provides an inactive (high-Z) state

Test Oata Out TOO Output when scanning is not in progress. The non-shift inactive
state is provided to support parallel connection of TOO
outputs at the board or module level.

Provides asynchronous initialization of the test logic. TRST
is pulled high when not being driven. Assertion of this pin
puts the TAP controller in the TesCLogic_Reset (initial)

Asynchronous Reset TRST Input state. For minimum pulse width specifications, see the
80960JAlJF Embedded 32-bit Microprocessor Data Sheet
or the 80960JD Embedded 32-bit Microprocessor Data
Sheet.

17.3 TAP REGISTERS

The instruction and test data registers are separate shift-register paths connected in parallel. The
TAP controller determines which one of these registers is connected between the TDI and TDO
pins.

17.3.1 Instruction Register (IR)

The Instruction Rei;ister (IR) is a parallel-Ioadable, master/slave-configured 4-bit wide, serial-shift
register with latched outputs. Data is loaded into the IR serially through the TDI pin clocked by the
rising edge of TCK when the TAP controller is in the Shift_IR state. The shifted-in instruction
becomes active upon latching from the master-stage to the slave-stage in the Update_IR state. At
that time the IR outputs aJ,ong with the TAP finite state machine outputs are decoded to select and
control the test data register selected by that instruction. Upon latching, all actions caused by any
previous instructions must terminate.

17-5

TEST FEATURES

The instruction determines the test to be performed, the test data register to be accessed, or both
(see Table 17-2). The IR is four bits wide. When the IR is selected in the ShifCIR state, the'most
significant bit is connected to TDI, and the least significant bit is connected to TDO. TDI is shifted
into IR on each rising edge of TCK, as long as TMS remains asserted. When the processor enters
the Capture_IR TAP controller state, fixed parallel data (00012) is captured. During ShifCIR,
when a new instruction is shifted in through IDI, the value'00012 is always shifted out through
TDO least significant bit fIrSt. This helps identify instructions in a long chain of serial data from
several devices.

Upon activation of the TRSl' reset pin, the latched instruction will asynchronously change to the
idcode instruction. If the TAP controller moved into the TescLogic_Reset state other than by
reset activation, the opcode will change as TDI is shifted, and will become active on the falling
edge of TCK. See Figure 17-4 for an example of loading the instruction register.

17.3.2 TAP Test Data Registers

The i960 Jx processor contains a device identification register and three test data registers
(Bypass, Boundary-Scan and RUNBIST). Each test data register selected by the TAP controller is
connected serially between TDI and IDO. IDI is connected to the test data register's most
significant bit. TDO is connected to the least significant bit. Data is shifted one bit position within
the register towards IDO on each rising edge of TCK. The following sections describe each of the
test data registers. See Figure 17-5 for an example of loading the data register.

17.3.2.1 Device Identification Register

The Device Identification register is a 32-bit register containing the manufacturer's identification
code, part number code and version code in the format shown in Figure U-S.The format of the
register is discussed in Section 11.4, DEVICE IDENTIFICATION ON RESET (pg. 11-21). Table
11-7 lists the codes corresponding to the i960 Jx processor. The identification register is selected
only by the idcode instruction. When the TAP controller's TesCLogic_Reset state is entered,
idcode is automatically loaded into the instruction register. The Device Identification register has
a fixed parallel input value that is loaded in the Capture_DRstate.

17.3.2.2 Bypass Register

The required Bypass Register, a one-bit shift register, provides the shortest path between TDI and
TDO when a bypass instruction is in effect. This allows rapid movement of test data to and from
other corhponentson the board. This path can be selected when no test operation is being
performed. While the bypass register is selected, data is transferred from IDI toTDO without
inversion.

Any instruction that does not make use of another test data register may select the Bypass register
as its active IDI to IDO path.

17-6 I

intet TEST FEATURES

17.3.2.3 RUNBIST Register

The RUNBIST register is a one-bit register that contains the result of the execution of the runbist
instruction execution. The runbist instruction runs the built-in self-test (BIST) program resident
inside the processor. After the built-in self-test completes, the processor must be recycled through
the reset state to begin normal operation. See section 11.2.2, "Self Test Function (STEST, FAIL)"
(pg. 11-6) for details of the Built-In-Self-Test algorithm.

17.3.2.4 Boundary-Scan Register

The Boundary-Scan register is a required set of serial-shiftable register cells, configured in
master/slave stages and connected between each of the i960 Jx processor's pins and on-chip
system logic. Pins NOT in the Boundary-Scan chain are power, ground and JTAG pins.

The Boundary-Scan register cells are dedicated logic and do not have any system function. Data
may be loaded into the Boundary-Scan register master-cells from the device input pins and output
pin-drivers in parallel by the mandatory sample/preload and extest instructions. Parallel loading
takes place on the rising edge of TCK in the Capture_DR state.

Data may be scanned into the Boundary-Scan register serially via the TDI serial-input pin, clocked
by the rising edge of TCK in the ShifCDR state. When the required data has been loaded into the
master-cell stages, it is be driven into the system logic at input pins or onto the output pins on the
falling edge of TCK in the Update_DR state. Data may also be shifted dut of the Boundary-Scan
register by means of the TDO serial-output pin at the falling edge of TCK.

17.3.3 Boundary Scan Instruction Set

The i960 Jx processor supports three mandatory boundary scan instructions (bypass,
sample/preload and extest). The i960 Jx processor also contains two additional public instruc­
tions (idcode and runbist). Table 17-2 lists the i960 Jx processor's boundary scan instruction
codes.

l 17-7

TEST FEATURES

Table 17-2. Boundary Scan Instruction Set

Instruction Code Instruction Name Instruction Code Instruction Name

00002 extest 10002 private

0001 2 sampre 1001 2 not used

00102 idcode 10102 not used

0011 2 not used 1011 2 private

01002 private 11002 private

0101 2 not used 1101 2 not used

01102 not used 11102 not used

0111 2 runbist 11112 bypass

17.3.4 IEEE Required Instructions

Table 17-3. IEEE Instructions (Sheet 1 of 2)

Instruction /
Opcode Description Requisite

extest initiates testing of external circuitry, typically board-level interconnects and
,off chip circuitry. exlest connects the Boundary-Scan register between TDI and

extest
TOO in the Shift_IR state only. When exlesl is selected, all output signal pin
values are driven by values shifted into the Boundary-Scan register and may

IEEE 1149.1 00002 change only on the falling-edge of TCK in the Update_DR state. Also, when

Required extesl is selected, all system input pin states must be loaded into the Boundary-
Scan register on the rising-edge of TCK in the Capture_DR state. Values shifted
into input latches in the Boundary-Scan register are never used by the processor's
internal logic.

sample/preload performs two functions: . When the TAP controller is in the Capture-DR state,the sample instruction
occurs on the rising edge of TCK and provides a snapshot of the component's

sampre
normal operation without interfering with that normal operation. The
instruction causes Boundary-Scan register cells associated with outputs to

IEEE 1149.1 0001 2 sample the value being driven by or to the processor.

Required . When the TAP controller is in the Update-DR state, the preload instruction
occurs on the falling edge of TCK. This instruction causes the transfer of data
held in the Boundary-Scan cells to the slave register cells. Typically the slave
latched data is then applied to the system outputs by means of the extesl
instruction.

Idcode is used in conjunction with the device identification register. It connects the

idcode identification register between TDI and TOO in the Shift_DR state. When selected,

IEEE 1149.1 00102
idcode parallel-loads the hard-wired identification code (32 bits) on TOO into the
identification register on the rising edge of TCK in the Capture_DR state.

Optional NOTE: The device identification register is not altered by data being shifted in on
TOL

17-8

int"et TEST FEATURES

Table 17·3. IEEE Instructions (Sheet 2 of 2)

Instruction I
Opcode Description Requisite

bypass instruction selects the Bypass register between TOI and TOO pins while in
bypass SHIFT _DR state, effectively bypassing the processor's test logic. 02 is captured in

IEEE 1149.1 11112
the CAPTURE_DR state. This is the only instruction that accesses the Bypass
register. While this instruction is in effect, all other test data registers have no

Required effect on the operation of the system. Test data registers with both test and system
functionality perform their system functions when this instruction is selected.

runbist selects the one-bit RUNBIST register, loads a value of 1 into it and
connects it to TOO. It also initiates the processor's built-in self test (BIST) feature
which is able to detect approximately 82% of the stuck-at faults on the device. The
processor AC/OC specifications for Vee and ClKIN must be met and RESET
must be de-asserted prior to executing runblst.

runbist
After loading runbist instruction code into the instruction register, the TAP
controller must be placed in the Run-Test/Idle state. bist begins on the first rising

i960 Jx 0111 2 edge of TCK after the Run-Test/Idle state is entered. The TAP controller must
Processor remain in the Run-Test/Idle state until bist is completed. runbist requires approx-
Optional imately 414,000 core cycles to complete bist and report the result to the

RUNBIST register's. The results are stored in bit 0 of the RUNBIST register. After
the report completes, the value in the RUNBIST register is shifted out on TOO
during the Shift-DR state. A value of 0 being shifted out on TOO indicates bist
completed successfully. A value of 1 indicates a failure occurred. After bist
completes, the processor must be recycled through the reset stata to begin normal
operation.

17.3.5 TAP Controller

The TAP controller is a 16-state synchronous finite state machine that controls the sequence of test
logic operations. The TAP can be controlled via a bus master. The bus master can be either
automatic test equipment or a component (i.e. PLD) that interfaces to the Test Access Port (TAP).
The TAP controller changes state only in response to a rising edge of TCK or power-up, The value
of the test mode state (TMS) input signal at a rising edge of TCK controls the sequence of state
changes. The TAP controller is automatically initialized on powerup. In addition, the TAP
controller can be initialized by applying a high signal level on the TMS input for five TCK periods.

Behavior of the TAP controller and other test logic in each controller state is described in the
following subsections. For greater detail on the state machine and the public instructions, refer to
IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture Document.

L 17-9

I
I ,
: ~

i,
!

:,j
II
II
I)

I
I,

i,

i,

TEST FEATURES

17.3.5.1 Test Logic Reset State

In this state, test logic is disabled to allow normal operation of the i960 Jx processor. Test logic is .
disabled by loading the IDCOOE register. No matter what the state of the controller, it enters Test­
Logic-Reset state when the TMS input is held high (1) for at least five rising edges of TCK. The
controller remains in this state while TMS is high. The TAP controller is also forced to enter this
state by enabling TRST.

If the controller exIts the Test-Logic-Reset controller states as a result of an erroneous low signal
on the TMS line at the time of a rising edge on TCK (for example, a glitch due to external inter­
ference), it returns to the test logic reset state following three rising edges of TCK with the TMS
line at the intended high logic level. Test logic operation is such that no disturbance is caused to
on-chip system logic operation as the result of such an error.

17.3.5.2 Run-Testlldle State

The TAP controller enters the Run-Test/Idle state between scan operations. The controller remains
in this state as long as TMS is held low. In the Run-Test/Idle state the runbistinstruction is
performed; the result is reported in the·RUNBIST register. Instructions that do not call functions
generate no activity in the test logic while the controller is in this state. The instruction register and
all test data registers retain their current state. When TMS is high on the rising edge of TCK, the
controller moves to the Select-OR-Scan state.

17.3.5.3 Select-OR-Scan State

The Select-OR-Scan state is a temporary controller state. The test data registers selected by the
current instruction retain their previous state. If TMS is held low on the rising edge of TCK when
the controller is in this state, the controller moves into the Capture-DR state and a scan sequence
for the selected test data register is initiated. If TMS is held high on the rising edge of TCK, the
controller moves into the Select-IR-Scan state.

The instruction does not change while the TAP controller is in this state.

17.3.5.4 Capture-DR State

When the controller is in this state and the current instruction is sample/preload, the Boundary­
Scan register captures input pin data on the rising edge of TCK. Test data registers that do not have
parallel input are not changed. Also if the sample/preload instruction is not selected while in this
state, the Boundary-Scan registers retain their previous state.

The instruction does not change while the TAP controller is in this state.

17-10 I

TEST FEATURES

If TMS is high on the rising edge of TCK, the controller enters the Exitl-DR. If TMS is low on the
rising edge of TCK, the controller enters the Shift-DR state.

17.3.5.5 Shift-DR State

In this controller state, the test data register, which is connected between IDI and TDO as a result
of the current instruction, shifts data one bit position nearer to its serial output on each rising edge
of TCK. Test data registers that the current instruction selects but does not place in the serial path,
retain their previous value during this state.

The instruction does not change while the TAP controller is in this state.

If TMS is high on the rising edge of TCK, the controller enters the Exitl-DR state. If TMS is low
on the rising edge of TCK, the controller remains in the Shift-DR state.

17.3.5.6 Exit1-DR State

This is a temporary controller state. When the TAP controller is in the Exitl-DR state and TMS is
held high on the rising edge of TCK, the controller enters the Update-DR state, which terminates
the scanning process. If TMS is held low on the rising edge of TCK, the controller enters the
Pause-DR state.

The instruction does not change while the TAP controller is in this state. All test data registers
selected by the current instruction retain their previous value during this state.

17.3.5.7 Pause-DR State

The Pause-DR state allows the test controller to temporarily halt the shifting of data through the
test data register in the serial path between TDI and IDO. The test data register selected by the
current instruction retains its previous value during this state. The instruction does not change in
this state.

The controller remains in this state as long as TMS is low. When TMS goes high on the rising edge
of TCK, the controller moves to the Exit2-DR state.

17.3.5.8 Exit2-DR State

This is a temporary state. If TMS is held high on the rising edge of TCK, the controller enters the
Update-DR state, which terminates the scanning process. If TMS is held low on the rising edge of
TCK, the controll~r enters the Shift-DR state.

The instruction does not change while the TAP controller is in this state. All test data registers
selected by the current instruction retain their previous value during this state.

1 17-11

Ii
I'
!

I Ii
Ij

11
I

11 ,

I

'. I "
I ",

TEST FEATURES int"et~

17.3.5.9 Update-DR State

The Boundary-Scan register is provided with a latched parallel output. This output prevents
changes at the parallel output while data is shifted in response to the extest, sample/preload
instructions. When the Boundary-Scan register is selected while the TAP controller is in the
Update-DR state, data is l~tched onto the Boundary-Scan register's parallel output from the shift­
register path on the falling edge of TCK.' The data held at the latched parallel output does not
change unless the controller is in this state. '

While the TAP controller is in this state, all of the test data register's shift-register bit positions
selected by the current instruction retain their previous values.

The instruction does not change while the TAP controller is in this state.

When the TAP controller is in this state and TMS is held high on the rising edge of TCK, the
controller enters the Select-DR-Scan state. If TMS is held low on the rising edge of TCK, the
controller enters the Run-Testlldle state.

17.3.5.10 Select-IR Scan State

This is a teniporarY controller state. The test data registers selected by the current instruction retain
their previous state. In this state, if TMS is held low on the rising edge of TCK, the controller
moves into the Capture-IR state and a scan, sequence for the instruction register is initiated. If TMS
is held high on the rising edge of TCK, the controller moves to the Test-Logic-Reset state.

, ,

The instruction does not change in this state.

17.3.5.11 Capture-IR State

When the controller'is in the Capture-IR'state, the shift register contained in the instruction
register loads the fixed value 000 12 on the rising edge of TCK.

The test data register "selected by the current instruction retains its previous value during this state.
The instruction does not change in this state~ While in this s4tte, holding TMS high on the rising ,
edge of TCK causes the controller to enter the Exit! ~IR state. If TMS is held low on the rising
edge of TCK, the controller enters the Shift -IR state.

17.3.5.12 Shlft-IR State

When the controller is in' this state, the shift register contained in the instruction register, is
connected between TO! and TOO and shifts data one bit position nearer to its serial output on each
rising edge of TCK. The test data register selected by the current instruction retains its previous
value during this state. ,The instruction does not change.

. '. .'

17-12

1-

TEST FEATURES

If TMS is held high on the rising edge of TCK, the controller enters the Exit 1-IR state. If TMS is
held low on the rising edge of TCK, the controller remains in the Shift-IR state.

17.3.5.13 Exit1-IR State

This is a temporary state. If TMS is held high on the rising edge of TCK, the controller enters the
Update-IR state, which terminates the scanning process. If TMS is held low on the rising edge of
TCK, the controller enters the Pause-IR state.

The test data register selected by the current instruction retains its previous value during this state.

The instruction does not change and the instruction register retains its state.

17.3.5.14 Pause-IR State

The Pause-IR state allows the test controller to temporarily halt the shifting of data through the
instruction register. The test data registers selected by the current instruction retain their previous
values during this state.

The instruction does not change and the instruction register retains its state.

The controller remains in this state as long as TMS is held low. When TMS goes high on the rising
edges of TCK, the controller moves to the Exit2-IR state.

17.3.5.15 Exit2-IR State

This is a temporary state. If TMS is held high on the rising edge of TCK, the controller enters the
Update-IR state, which terminates the scanning process. If TMS is held low on the rising edge of
TCK, the controller enters the Shift-IR state.

This test data register selected by" the current instruction retains its previous value during this state.
The instruction does not change and the instruction register retains its state. ! .'

17.3.5.16 Update-IR State

The instruction shifted into the instruction register is latched onto the parallel output from the shift­
register path on the falling edge of TCK. Once latched, the new instruction becomes the current
instruction. Test data registers selected by the current instruction retain their previous values.

If TMS is held high on the rising edge of TCK, the controller enters the Select-DR-Scan state. If
TMS is held low on the rising edge of TCK, the controller enters the Run-TestlIdle state.

17-13

TEST FEATURES

17.3~6 Boundary-Scan Register

The Boundary-Scan register contains a cell for each pin as well as cells for control of 110 and
HIGHZpins.

Table 17-4 shows the bit order of the i960 Jx processor Boundary-Scan register. All table cells that
contain "CTL"select the 'direction of bidirectional pins or HIGHZ output pins. If a "I" is loaded
into the control cell, the associaied pin(s) are HiGHZ or selected as input.

17-14

intet TEST FEATURES

Table 17-4. Boundary-Scan Register Bit Order

Bit Signal
Input!

Bit Signal
Input!

Bit Signal
Inputl

Output Output Output

0 RDYRCV (TOI) I 24 DEN 0 48 AD17 I/O

1 HOLD I 25 HOLDA 0 49 AD16 110

2 XINTO I 26 ALE 0 50 AD15 110

3 XINT1 I 27
LOCK/ONCE

Enable cell1 51 AD14 110
cell

4 XINT2 I 28 LOCK/ONCE 110 52 AD13 110

5 XINT3 I 29 BSTAT 0 53 AD12 110

6 XINT4 I 30 BEO 0 54 AD cells
Enable
cell 1

7 XINT5 I 31 BE1 0 55 AD11 I/O

8 XINT6 I 32 BE2 0 56 AD10 110

9 XINT7 I 33 BE3 0 57 AD9 110

10 NMI I 34 AD31 . 110 58 AD8 110

11 FAIL I 35 AD30 110 59 AD7 110

12 ALE 0 36 AD29 110 60 AD6 110

13 WIDTH/HLTD1 1 37 AD28 1/0 61 AD5 110

14 WIDTH/HLTOO 1 38 AD27 I/O 62 AD4 110

15 A2 0 39 AD26 I/O 63 AD3 110

16 A3 0 40 AD25 110 64 AD2 I/O

17 CONTROL1 Enable cell 1 41 AD24 110 65 AD1 I/O

18 CONTROL2 Enable cell 1 42 AD23 I/O 66 ADO I/O

19 BLAST 0 43 AD22 I/O 67 ClKIN I

20 D/C 0 44 AD21 110 68 RESET I

21 ADS 0 45 AD20 110 69
STEST

I
(TOO)

22 W/R 0 46 AD19 110

23 DT/R 0 47 AD18 I/O

1. Enable cells are active low.

17.3.6.1 Example

~In the example that follows, two command actions are described. The example starts in the reset
state, a new instruction is loaded and executed. See Figure 17-3 for a JTAG example. The steps are:

1. Load the sample/preload instruction into the Instruction Register:

1.1. Select the Instruction register scan.

J 17-15

TEST FEATURES intet
1.2. Use the Shift-IR state four times to read the least through most significant instruction

bits into the instruction register (we do not care that the old instruction is being shifted
out of the TDO pin).

1.3. Enter the Update-IR state to make the instruction take effect.

1.4. Exit the Instruction register.

2. Capture and shift the data onto the TDO pin:

2.1. Select the Data register scan state.

2.2. Capture the pin information into then-stage Boundary-Scan register.

2.3. Enter and stay in the shift-DR state for n times while recording the TDO values as the
inputs sampled. as the data sampled were shifting in the TDI was being read into the
Boundary-Scan register. This could later be written the output pins.

2.4. Pass through the Exitl-DR and Update-DR to continue.

This example does not make use of the pause states. Those states would be more useful where we
do not control the clock directly. The pause states let the clock tick without affecting the shift
registers.

The old instruction was abed in the example. It is known that the original value will be the ID code
since the example starts from the reset state. Other times it will represent the previous opcode. The
new instruction opcode is 00012 (sample/preload). All pins are captured intothe serial Boundary­
Scan register and the values are output to the TDO pin.

The clock signal drawn at the top of the diagram is drawn as a stable symmetrical clock. This is
not in practice the most common case. Instead the clocking is usually done by a program writing
to a port bit. The TMS and TDI signals are written by software and then the software makes the
clock go high. The software typically will often lower the clock input quickly. The program can
then read the TDO pin.

17-16

TCK [

TMS [

TOI [

IRShiftReg
4 bits long

Parallel Out [

DR Shift Reg
(n bits long)

Register
Selected

TOO

TEST FEATURES

I

1'1 I'
I
I

I I I I I I

r-'T~~~~"":'-:-rol-T.:..r-, I I I I I
II I I I
I I I I I

I I I I
II I I I
11111

J .LIJ. L
II I I I

d c b a - - --
I I I I I I I

I 1 I I I I II I I I I
I 1-11-1 wi I zlII: II: II: II: II: II: III: Iz

~I~I~I~I~I~I~I~I~I~IEI~I~
II:III:I~III:I~I~I~I~I~I~I~I~I~

........ .,.J.,..&..,-L~.....,."...a...,....&-, lI:llI:lwlwlwlwl

wel-D.

I 1~lblfrllC31 I I I I 1::Ilbw ::IW...J
I 11I:1~lml I I I I I I I~ I
I

Figure 17·3. JTAG Example

1~1~lglglglgl
~"""=-...-..-..-...

I~I~I~I~I~I~I
~I-I-I-I-

I 1::Ilzlzlzlzl
::>::1::1::>

I ,II:III:III:I II:I
I I I I I I I I I I I

17-17

TEST FEATURES intel®

TCK

TMS LJl n n ~ __ ~r-l~ __________ __

~ JJ ! ~ c: !l&> ';9 =? rn !l' !l'
Controller State f. [,~ "" :: c: iii c .. !!l

JJ 53 ~
JJ - ~

, :u :u :u :u
I i en :u

~ ()

~

TOI ------~CX)--~--~C(X)J~~---------

Parallel output of IR;,;:IDC:..;:.,.:0c.::Oc.::E ______________ --1X'-_.:..:N.::.EW'-'-"INc:.:S:..;Tc.:..R;,::U.:;C..:.;TI:..::O.:..:N_

Parallel output of TOR

Registerselected i2?'1I',~t~'-____ IN_S_T_RU_C_T:-IO_N_RE_G_IS_T_E_R_~X;~',;;;.;.~; "<', "<,1
TOO enable __ IN_A,-, C_T_IV_E_~)(@ INACTIVE X ACTIVE X'-_IN~A~C_T--'IV_E _____ _

TOO --'-----CX)>-------'---""""'C(X)J--------------

~E~ = Don't care or undefined

Figure 17-4. Timing diagram Illustrating the, loading of Instruction Register

17-18 J

TEST FEATURES

TCK

TMS n n n IL.---J
'fi!r'lr----'lr'I

,..,.
I\n~'iff~

:II a}
c:

~i
~ m-!2. (/)

~ Ul

~ " ~ Ul ~~ 7 ~a b a} ~ c ::r
Controller State ~ .. :: a f c - '" f!l. ~ iii $ • CD :II :II n' - .. c c c c c c - ~~ ~ i if ~ :II :II :II :II :II C

~ :II :II !i
2.~'----'\..J \..J ~

,,~

TOI ---------CKX)~------C(X)J~-------------
, _ 0 ". q

Data input to IR

IR shift-register

Parallel output of IR -'CIN.;.;S:;...;T.;..;R:.;:.U,;:;,CT.;..;I,;:;,O.:..,:N _________________ ---'X ID CODE

Data input to TDR

TDR shift-register

--"-"~.--~ .. ~~.------~------------------~------
~i,_' ·_<~t·_· __ ·~'KXX) ______ ~~~~·_' ~"~ .. ~,~. ____ ~···.~I

Parallel output of TDR ---:O:,:L=D-=D:.:.,A:.:..:JA..:....... _____________ -'X'-....:N.:.:E:..:;W.:....=;DA:...:;J.:.:..;'A:-___ _

Register Selected ~~~ __ -JX'-_T_ES_T_D_A_JA_R_EG_I_ST_E_R ____ ~X'-·~~ ___ ·~.~'~~'~J

TDOenable INACTIVE ~ INACTIVE X ACTIVEX'-__ IN_A_CT_I_VE ____ _

TOO ---------CKX)~------CKX)J--------------

L..._-'-""" = Don't care or undefined

Figure 17-5. Timing diagram illustrating the loading of Data Register

17.3.7 Boundary Scan Description Language Example

Boundary-Scan Description Language (BSDL) example 14-2 meets the de facto standard means of
describing essential features of ANSI/IEEE 1149.1-1993 compliant devices.

17-19

.. TEST FEATURES intet®
Example 17·1. Boundary Scan Description Language Example (Sheet 1 of 4)

i960® Jx Processpr BSDL Model

The foll~wing list describes all of the pins that are contained in the i960 Jx
microprocessor.

entity JX_Processor is
generic (PHYSICAL_PIN.:..MAP .. string .- "PGA_14x14");

port (TDI in bit;

17-20

RDYRCVBAR in bit;
Reserved in bit;
Reserved in bit;
Reserved in bit;
TRSTBAR in bit;
TCK in bit;
TMS in bit;
HOLD in bit;
XINTBARX in bit_vector(O to 7);
NMIBAR in bit;
Rese'rved in bi t;
Reserved in bit;

. Reserved in bit;
. LODRVHIDRVBAR out bit;

FAILBAR out bit;
ALEBAR out bit;
TDO out bit;
WIDTH out bit_vect·or (1 downto 0);
A32 out bit_vector(O to 1);
Reserved out bit;
Reserved out bit;
Reserved out bit;
Reserved out bit;
BLASTBAR out bit;
DeBAR out bit;
ADS BAR out bit;
WRBAR : out bit;
DTRBAR out bit;
DENBAR out bit;
HOLDA out bit;
ALE
LOCKONCEBAR
BSTAT·
BEBAR
Reserved
Reserved
Reserved
Reserved
AD
CLKIN
Reserved
Reserved
Reserved
RESET BAR
Reserved
STEST
VCC
VSS

out bit;
inout bit;
out bit;

.. out bit_vector (0 to 3);
in bit;
in bit;
in bit;
inout bit_vector(7 downto 0);
inout bit_vector(31 downto 0);
in bit;
in bit;
in bit;
in bit;
in bit;
in bit;
in bit;
linkage bit_vector(O to 28);
linkage bit vector(O to 28);

J

TEST FEATURES

Example 17-1. Boundary Scan Description Language Example (Sheet 2 of 4)

AVCC : linkage bit;
NC : linkage bit_veetor(l to 3));

use STD_1149_l_l990.all;
use i960JX_a.all;

--This list describes the physical pin layout of all signals
attribute PIN_MAP of JX_Proeessor : entity is PHYSICAL_PIN_MAP;
constant PGA_14x14 PIN~P_STRING.- -- Define PinOut of PGA

"TDI
"RDYRCVBAR
"TRSTBAR
"TCK
"TMS
"HOLD
"XINTBARX
"NMIBAR
"FAILBAR
"ALEBAR
"TDO
"WIDTH
"A32
"BLASTBAR
"DCBAR
"ADSBAR
"WRBAR
"DTRBAR
"DENBAR
"HOLDA
"ALE
"LOCKONCEBAR
"BSTAT
"BEBAR
"AD

"CLKIN
"RESETBAR
"STEST
"vcc

"VSS

F16,"&
E15,"&
C17, "&
C16,"&
B17, "&
C15,"&
(B16, C14, B15, C13, B14, A15, A14, C12),"&
B12, "&
B09, "&
C08,"&
C07, "&
(C06, B06), "&
(A04, C05), "&
B03,"&
C02, "&
C03, "&
B01,"&
B02, "&
E03, "&
D02, "&
C01,"&
DOl, "&
F03, "&
(E01, E02, G03, H03), "&
(P03, R02, Q03, R03, S03, R04, S04, Q05, Q06, Q07,"&
QOB, R09, S09, Q09, Q10, Qll, Q12, S14, R14, Q13,"&
S15, R15, Q14, R16, Q15, R17, Q16, P15, Q17, P16,"&
M15, N15),"&

J17,"&
G15,"&
F17, "&
(S13, S12, Sll, SlO, S08, S07, S06, SOS, N17, M17," &

MOl, L17, L01, K17, K01, J01, H17, H01, G17, G01," &
F01, E17, A13, All, A10, AOB, A07, A06, AOS), " &
(R13, R12, Rll, R10, ROB, R07, R06, ROS, N16, N02," &

M02, L16, L02, K16, K02, J16, J02, H16, H02, G16," &
G02, F02, E16, B13, Bll, B10, BOB, B07, B05)," &

"AVCC L15 ";
attribute Tap_Sean_In of
attribute Tap_Sean_Mode of
attribute Tap_Sean_Out of
attribute Tap_Sean_Reset of
attribute Tap_Sean_Clock of
attribute Instruction_Length
attribute Instruetion_Opeode

TDI signal is true;
TMS signal is true;
TDO signal is true;
TRSTBAR : signal is true;
TCK signal is (33.0e6, BOTH);
of JX_Proeessor: entity is 4;
of JX_Proeessor: entity is

L __

"BYPASS (1111)," &
"EXTEST (0000)," &
"SAMPLE (0001)," &
"IDCODE (0010)," &

17-21

TEST FEATURES

Example 17-1. Boundary Scan Description Lahgua~e Example (Sheet 3 of 4)

"RUNBIST (0111)," &
"Reserved (1100, 1011)";

attribute Instruction_Capture of JX_Processor: entity is "0001";
-- there is no Instruction_Disable attribute for JX_Processor
attribute Instruction_Private of JX_Processor: entity is "Reserved"
--attribute' Instruction_Usage of JX_Processor: entity is

"RUNBIST (registers Runbist; " &
"result 0;" &
"clock CLK in Run_Test_Idle;"&
"length 524288) ";

attribute Idcode_Register
"0000"
"0000001010100001"
"00000001001"
"1" i

of JX_Processor: entity is
& --version, A-step
& --part number
& --manufacturers identity

--required by the standard
attribute Idcode_Register of JX_Processor: entity is

"0010" & --version, B-step
& --part number BOprimeprime
& --manufacturers identity

--required by the standard
attribute Idcode_Register of JX_Processor: entity is

"0000001010110001"
"00000001001"
11111 ;

"0000" & --version,
"1000100000100000" & --part number ??
"00000001001" & --manufacturers identity
"1"; --required by the standard

attribute Register_Access of JX Processor: entity is
"Runbist[l] (RUNBIST)," &
"Bypass":

--{***}
--{ The first cell, cellO, is closest to TDO
--{ BC_4:Input BC_1: Output3, Bidirectional
-~{*** ****************}

attribute Boundary_Cells of JX_Processor: entity is "CBSC_1, BC_1";
attribute Boundary_Length of JX_Processor: entity is 70;
attribute Boundary_Register of JX_Processor: entity is

"0 (BC_1, STEST, input, X), II &
"1 (BC_1, RESETBAR, input, X), " &
"2 (BC_1, CLKIN, input, X),11 &
"3 (CBSC_1, AD(O) , bidir, x, 15, 1, Z) I II &
"4 (CBSC_1, AD(l) , bidir, X, 15, 1, Z), II &
"5 (CBSC_1, AD(2) , bidir, X, 15, 1, Z) I II &
"6 (CBSC_1, AD(3) , bidir, X, 15, 1, Z) I II &
"7 (CBSC_1, AD(4) , bidir, X, 15, 1, Z), " &
"8 (CBSC_1, AD(5) , bidir, X, 15, 1, Z), II &
"9 (CBSC_1, AD(6) , bidir, X, 15, 1, Z) I II &
"10 (CBSC_1, AD(7) , bidir, X, 15, 1, Z} I II &
"11 (CBSC1, AD(8) , bidir, X, 15, 1, Z) I II &
"12 (CBSC_1, AD(9) , bidir, X, 15, 1, Z),'" &
"13 (CBSC_1, AD(10) , bidir, X, 15, 1, Z) I II &
"14 (CBSC_1, AD(l1) , bidir, X, 15, 1, Z) I II &
"15 (BC_1, * , control, 1) ," &
"16 (CBSC_1, AD(12) , bidir, X, 15, 1, Z) ,11 &
"17 (CBSC_1, AD(13) , bidir, X, 15, 1, Z), II &
"18 (CBSC_1, AD(14) , bidir, X, 15, 1, Z), " &
"19 (CBSC_1, AD(15) , bidir, X, 15, 1, Z), II &
"20 (CBSC 1, AD(16) , bidir, X, 15, 1, Z) I II &

17-22 I

L

TEST FEATURES

Example 17-1. Boundary Scan Description Language Example (Sheet 4 of 4)

"21 (CBSC_1, AD(17), bidir, x, 15, 1, Z)," &
"22 (CBSC_1, AD(18), bidir, x, 15, 1, Z)," &
"23 (CBSC_1, AD(19), bidir, x, 15, 1. Z)," &

"24 (CBSC1, AD(20), bidir, x, 15, 1, Z)," &
"25 (CBSC_1, AD(21), bidir, x, 15, 1, Z)," &

"26 (CBSC_1, AD(22), bidir, x, 15, 1, Z)," &
"27 (CBSC_1, AD(23), bidir, x, 15, 1, Z)," &
"28 (CBSC_1, AD(24), bidir, x, 15, 1, Z) ," &
"29 (CBSC_1, AD(25), bidir, x, 15, 1. Z)," &

"30 (CBSC_L AD(26), bidir, x, 15, 1, Z)," &

"31 (CBSC_1, AD(27), bidir, x, 15, 1, Z)," &
"32 (CBSC_1, AD(28), bidir, x, 15, 1, Z)," &
"33 (CBSC_1, AD(29), bidir, x, 15, 1, Z) ," &
"34 (CBSC_1, AD(30), bidir, x, 15, 1, Z)," &

"35 (CBSC_1, AD(31), bidir, x, 15, 1, Z)," &
"36 (BC_1, BEBAR(3) , output 3 , x, 51, 1, Z)," &
"37 (BC_1, BEBAR(2) , output3, x, 51, 1, Z)," &
"38 (BC_1, BEBAR(l) , output3, x, 51, 1. Z)," &

"39 (BC_1, BEBAR(O) , output3, x, 51, 1, Z)," &

"40 (BC_1, BSTAT, output3, x, 52, 1, Z)," &
"41 (CBSC_1, LOCKONCEBAR, bidir, x, 42, 1, Z)," &
"42 (BC_1, *, control, 1)," &

"43 (BC_1, ALE, output3, X, 51. 1, Z)," &

"44 (BC_1, HOLDA, output3, X, 52, 1. Z)," &

"45 (BC_1, DENBAR, output3, X, 51. 1, Z)," &

"46 (BC_1, DTRBAR, output3, X, 51, 1, Z)," &
"47 (BC_1, WRBAR, output3, X, 51, 1, Z)," &
"48 (BC_1, ADSBAR, output3, X, 51, 1, Z)," &
"49 (BC_1, DCBAR, output3, X, 51, 1, Z)," &
"50 (BC_1, BLASTBAR, output3, X, 51, 1, Z) ," &
"51 (BC_1, *, control, 1)," &
"52 (BC_1, *, control, 1)," &
"53 (BC_1, A32(1), output3, X, 51, 1, Z)," &
"54 (BC_1, A32(0), output3, X, 51, 1, Z)," &
"55 (BC_1, WIDTH(O) , output3, X, 51, 1, Z)," &

56 (BC_1, WIDTH (1) , output3, X, 51, 1. Z)," &

57 (BC_1, ALEBAR, output3, X, 51, 1, Z)," &
58 (BC_L FAILBAR, output3, X, 52, 1, Z)," &

59 (BC_1, NMIBAR, input, X)," &
60 (BC_1, XINTBARX(7) , input, X), &
61 (BC_1, XINTBARX(6) , input, X), &
62 (BC_1, XINTBARX(5) , input, X), &
63 (BC_1, XINTBARX(4) , input, X), &
64 (BC_1, XINTBARX(3) , input, X), &
65 (BC_1, XINTBARX(2) , input, X), &
66 (BC_1, XINTBARX(l) , input, X), &
67 (BC_1, XINTBARX(O) , input, X), &
68 (BC_L HOLD, input, X)," &

69 (BC_1, RDYRCVBAR, input, X)";
end JX Processor;

17-23

I

1

I

I,
I,

il
II
11

:1
II
!i
'I

CONSIDERATIONS FOR
WRITING PORTABLE CODE

I

A

i ~
ii

Ii
r

APPENDIX A
CONSIDERATIONS FOR

WRITING PORTABLE CODE

This appendix describes the aspects of the microprocessor that are implementation dependent. The
following information is intended as a guide for writing application code that is directly portable to
other i960® architecture implementations.

A.1 COR.E ARCHITECTURE

All i960 microprocessor family products are based on the core architecture definition. An i960
processor can be thought of as consisting of two parts: the core architecture implementation and
implementation-specific features. The core architecture defines the following mechanisms and
structure:

• Programming environment: global and local registers, literals, processor state registers, data
types, memory addressing modes, etc.

• Implementation-independent instruction set.

• Procedure call mechanism.

• Mechanism for servicing interrupts and the interrupt and process priority structure.

• Mechanism for handling faults and the implementation-independent fault types and subtypes.

Implementation-specific features are one or all of:

• Additions to the instruction set beyond the instructions defined by the core architecture.

• Extensions to the register set beyond the global, local and processor-state registers that are
defined by the core architecture.

• On-chip program or data memory.

• Integrated peripherals that implement features not defined explicitly by the core architecture.

Code is directly portable (object code compatible) when it does not depend on implementation­
specific instructions, mechanisms or registers. The aspects of this microprocessor that are imple­
mentation dependent are described below. Those aspects not described below are part of the core
architecture.

A.2 ADDRESS SPACE RESTRICTIONS

Address space properties that are implementation-specific to this microprocessor are described in
the subsections that follow.

A-1

CONSIDERATIONS FOR WRITING PORTABLE CODE intel®
, A.2.t.. ~esen;edMemory , '

.'''', , ' l. ').)' '" ~,

. Addresses in the range EFOO OOQOH to. FFFF FFFFH are reserved by the i960 architecture. Any
.u~es!o.f reserved:,m~t,p~ry ,are implementatio.nspecific. The i960 Jx processo.r uses a sectio.n just

, beIow'the reserved address space fo.r the initializatio.n bo.o.t reco.rd; see sectio.n 11.3.1.1, "Initial­
izatio.n Bo.o.t Reco.rd (ffiR)" (pg. 11-12).The initializatio.n boot reco.rd may no.t exist o.r may be
structured differently f?r o.ther im~lementatio.ns o.f the i960 architecture~ Co.de that relies o.n
structur~s'in reserved meino.ry is no.t Po.rtable to. all i960 processo.r implementatio.ns. ,

A.2.2 Internal Data RAM

Internal data RAM - an i960 Jx processo.r implementatio.n-specific feature - is mapped to. the
first 1 Kbyte o.f the processo.rs' address space (OOOOH - 03FFH). High perfo.rmance, supervisor­
protected' data space and the Io.catio.ns assigned fo.r interrupt functio.ns are speCial features that are
'impll~mented in internal data RAM.Co.de that relies o.n these special features is no.t directly

, Po.rtable'to. all i960processo.r implementatio.ns. ' ,

A.2.3 Instruction Cache

The i960 architecture allo.WS instructio.ns to. be cached o.n-chip in a no.n-transparent fashio.n. This
means that the cache may no.t detect modificatio.n o.f the pro.gram memo.ry by Io.ads, s~o.res o.r
alteratio.n by external agents. Each implementatio.n o.f the i960 architecture that uses an integrated
instructio.n cache provides a mechanism to. purge the cache o.r so.me o.ther method that forces
co.nsistency betvyeen,extemal memo.ry and internal cache.

This feature is implementatio.n-dependent. Application code that supports modificatio.n ,o.f the code
space must use this implementatio.n-specific feature and, therefo.re, is no.t o.bjeCt ~ode portable to.
all i960 pro.cesso.r implementatio.ns.

J, , ' , ,
The i960 JA pro.cesso.r has a 2-Kbyte instructio.n cache; the JF and JD have a 4-Kbyte instructio.n
cache. The instructio.n cache is purged using the system co.ntrol (sysctl) o.r instructio.n cache
co.ntro.I (icctl) instructio.n, which may no.t be available o.n o.ther i960 pro.cesso.rs.

. " . . '.' .

The instructio.n cache SUPPo.rts Io.cking co.de into. no.ne, half, o.r all o.f the cache. The unlocked
Po.rtio.n functio.ns asa direct-mapped cache. Refer to. section 4.4, "INSTRUCTION CACHE'? (pg.
4-4) fo.r a d~scriptio.n o.f cache co.nfiguratio.n.

, A-2

CONSIDERATIONS FOR WRITING PORTABLE CODE

A.2.4 Data Cache

The i960 J A processor has a 1-Kbyte data cache and the i960 JF and JD processors have a 2-Kbyte
data cache. With respect to data accesses on a region-by-region basis, external memory is
configured as either cacheable or non-cacheable. A bit in the memory region table entry defines
whether or not data accesses are cacheable. This makes it very easy to partition a system into non­
cacheable regions (for I/O or shared data in a multiprocessor system) and cacheable regions (local
system memory) with no external hardware logic. To maintain data cache coherency, the i960 Jx
processor implements a simple single processor coherency mechanism. Also, by software control,
the data cache can be globally enabled, globally disabled or globally invalidated. A data access is
either:

• Explicitly defined as cacheable or non-cacheable-through the memory region table

• Implicitly defined as non-cacheable-by the nature of the access; all atomic accesses (atmod,
atadd) are implicitly defined as non-cacheable data accesses

The data cache indirectly supports unaligned accesses. Microcode execution breaks unaligned
accesses into aligned accesses that are cacheable or non-cacheable according to the same rules as
aligned accesses. An unaligned access could be only partially in the data cache and be a
combination of hits and misses. The data cache supports both big-endian and little-endian data
types.

A.2.5 Data and Data Structure Alignment·

The i960 architecture does not defme how to handle loads and stores to non-aligned addresses.
Therefore, code that generates non-aligned addresses may not be compatible with all i960
processor implementations. The i960 Jx processor automatically handles non-aligned load and
store requests in microcode. See section 15.2.5, "Data Alignment" (pg. 15-22).

The address boundaries on which an operand begins can affect processor performance. Operands
that span more word boundaries than necessary suffer a cost in speed due to extra bus cycles. In
particular, an operand that spans a 16-byte (quad-word) boundary suffers a large cost in speed.

Alignment of architecturally defined data structures in memory is implementation dependent. See
section 3.4, "ARCHITECTURE-DEFINED DATA STRUCTURES" (pg. 3-12). Code that relies on
specific alignment of data structures in memory is not portable to every i960 processor type.

Stack frames in the i960 architecture are aligned on (SALIGN*16)-byte boundaries, where
SALIGN is an implementation-specific parameter. For the i960 Jx processors, SALIGN = 1 so
stack frames are aligned on 16~byte boundaries. The low-order N bits of the Frame Pointer are
ignored and are always interpreted to be zero. The N parameter is defined by the following
expression: SALIGN*16 = 2N. Thus for the i960 Jx processors, N is 4.

A-3

I,
f'

CONSIDERATIONS FORWRITINGPORTA'BLE CODe

A.3 RESERVED LOCATIONS IN REGISTERS AND DATA STRUC'FURES

Some register and data structure fields are'defined as reserved IQcatiQns. A reserved field may be
used by, future, implementatiQns Qf the i960 architecture. FQr PQrtabilityand cQmpatibility; cQde
shQuld initialize reserVed locatiQns to. zero.. When an implementatiQn uses a reserved locatiQn, the
implementatio.n-specific feature is activated by a value Qf 1 in the reserved field; Setting the
'reserved IQcations to. 0 guarantees that the features are disabled.,

A.4 INSTRUCtiON SET

The i960 architecture defines a cQmprehensive instructiQn set. Code that uses Qnly the architec­
turally-defined instructiQn set is Qbject-Ievel PQrtable to. Qther implementatiQns Qf the i960 archi­
tectijre. SQme implementatiQns may favQr a particular code Qrdering to. Qptimize perfQrmance.
This special Qrdering, hQwever, is never required by an impl~mentatiQn. The fbllQwing
subsectiQns describe implementatiQn-dependent instructiQ~ set prQperties.

A.4.1' Instruction TIming

An Qbjecti.veQfthe i960 architecture is to. allow micrQarchitectural advances to. translate directly
into. increased perfQrmance. The architecture dQes nQt restrict parallel Qr Qut-Qf-Qrder instructiQn
executiQn, nQr dQes it define the time required to. execute any instructiQn Qr functiQn. CQde that
depends Qn instructiQn executiQn times, therefQre, iS,I1Qt PQrtable to. all i960 processQr architecture
implementatiQns.

, A.4.2 Implementation-Specific Instructions

MQst Qf the processQr's instrQctiQn set is defined by the CQre architecture. SeveralinstructiQns are
specific to. the i960 Jx processQrs. These instructiQns are either functiQnal extensio.ns to. the
instructio.n 'set Qt instructio.ns that cQntrQI implementatiQn-specific functio.ns. CHAPfER 6,
INSTRUCTION SET REFERENCE denQtes each implementatiQn-specific instructiQn. These
instructio.ns are:

~cctl Data cac\1e cQntrol inten Global interrupt enable

,- icc.1 InstructiQn eache, co.ntrQI halt Halt CPU

. intetl, Interrupt contrQl' sysctl System contrQI

intdis, GlQQ,al interrupt disable
",

'.
ApplicatiQn cQde using implementatiQn-specific instructiQns, is nQt directly portable to. the entire
i960 proces$Qr family. Attempted execution Qf an unimplemented instructiQn results in an
OPERATION.INVALID_OPCODE fault.

~I

CONSIDERATIONS FOR WRITING PORTABLE CODE

The i960 Jx processor introduces several new core ip.structions. These instructions mayor may not
be supported on other i960 processors. The new core instructions include:

ADD<cc> Conditional add

bswap Byte swap

COMPARE Byte and short compares

A.S EXTENDED REGISTER SET

eshro Extended shift right ordinal

SEL<cc> Conditional select

SUB<cc> Conditional subtract

The i960 architecture defines a way to address an extended set of 32 registers in addition to the
16 global and 16 local registers. Some or all of these registers may be implemented on a specific
i960 processor. There are no extended registers implemented on the i960 Jx processors.

A.6 INITIALIZATION

The i960 architecture does not define an initialization mechanism. The way that an i960-based
product is initialized is implementation dependent. Code that accesses locations in initialization
data structures is not portable to other i960 processor implementations.

The i960 Jx processors use an initialization boot record (IBR).

A.7 MEMORY CONFIGURATION

The i960 Jx processors employ Physical Memory Control (PMCON) and Logical Memory Control
(LMCON) registers to control bus width, byte order and the data cache. This capability is
analogous to the MCON register scheme employed by the 80960Cx. Memory configurations, like
the bus control unit, are implementation-specific.

A.S INTERRUPTS

The i960 architecture defines the interrupt servicing mechanism. This includes priority definition,
interrupt table structure and interrupt context switching that occurs when an interrupt is serviced ..
The core architecture does not define the means for requesting interrupts (external pins, software,
etc.) or for posting interrupts (Le., saving pending interrupts).

The method for requesting interrupts depends on the implementation. The i960 Jx processors have
an interrupt controller that manages nine external interrupt pins. The organization of these pins and
the registers of the interrupt controller are implementation specific. Code that configures the
interrupt controller is not directly portable to other i960 implementations.

On the i960Jx processors, interrupts may also be requested in software with the sysctl instruction.
This instruction and the software request mechanism are implementation-specific.

_1 __ _ A-9

I I.

CONSIDERATIONS FOR WRITING PORTABLE CODE

Posting interrupts is also implementation-specific. Different implementations may optllmze
interrupt posting according to interrupt type and interrupt controller configuration. A pending
priorities and pending interrupts field is provided in the interrupt table for interrupt posting.
However, the i960 Ix processors post hardware requested interrupts internally in the IPND register
instead. Code that requests interrupts by setting bits in the pending priorities and pending
interrupts field of the interrupt table is not portable. Also, application code that expects interrupts
to be posted in the interrupt table is not object-code portable to all i960-based products.

The i960 Jx processors do not store a resumption record for suspended instructions in the interrupt
or fault record. Portable programs must tolerate interrupt stack frames with and without these
resumption records.

A.9 OTHER i960 Jx PROCESSOR IMPLEMENTATION-SPECIFIC FEATURES

Subsections that follow describe additional implementation-specific features of the i960 Ix
processors. These features do not relate directly to application code portability.

A.9.1 Data Control Peripheral Units

The bus controller and interrupt controller are implementation~specific extensions to the core
architecture. Operation, setup and control of these units is not a part of the core architecture. Other
implementations of the i960 architecture are free to augment or modify such system integration
features.

A.9.2 Timers

The i960 Jx processor contains two 32-bit timers that are implementation-specific extensions to
the i960 architecture. Code involving operation, setup and control of the timers mayor may not
directly portable to other i960 processors.

A.9.3 Fault Implementation

The architecture defines a subset of fault types and subtypes that apply to all implementations of
the architecture. Other fault types and subtypes may be defined by implementations to detect
errant conditions that relate to implementation-specific features. For example, the i960 Jx micro­
processors provide an OPERATION.UNALIGNED fault for detecting non-aligned memory
accesses. Future i960 processor implementations that generate this. fault are expected to assign the
same fault type and SUbtype number to the fault.

A-6 I

CONSIDERATIONS FOR WRITING PORTABLE CODE

A.10 BREAKPOINTS

Breakpoint registers are not defined in the i960 architecture. The i960 Jx processor implements
two instruction and two data breakpoint registers.

A.11 LOCK PIN

The LOCK pin is not defined in the i960 architecture. Bus control logic and protocol associated
with this pin may vary among i960 processor implementations. For example, the 80960Jx will not
assert HOLDA in response to HOLD during LOCK' ed accesses. Earlier i960 processors will
relinquish the bus.

A.11.1 External System Requirements

External system requirements are not defined by the architecture. The external bus, RESET pin,
clock input, power and ground requirements, testability features and I/O characteristics are all
specific to the i960 microprocessor implementation.

I A-7

OPCODES AND EXECUTION
TIMES

_ l

B

intet
APPENDIX B

OPCODES AND EXECUTION TIMES

B.1 INSTRUCTION REFERENCE BY OPCODE

This section lists the instruction encoding for each i960 Jx microprocessor instruction. Instructions
are grouped by instruction format and listed by opcode within each format.

Table B-1. Miscellaneous Instruction Encoding Bits

M3 M2 M1 52 51 T Description

REG Format

x x 0 x 0 - src1 is a global or local register

x x 1 x 0 - src1 is a literal
x x 0 x 1 - reserved
x x 1 x 1 - reserved
x 0 x 0 x - src2 is a global or local register

x 1 x 0 x - src2 is a literal

x 0 x 1 x - reserved
x 1 x 1 x - reserved

0 x x x x - src/dst is a global or local register
1 x x x x - src/dst is a literal when used as a source. M3 may not be 1 when

src/dst is used as a destination only or is used both as a source
and destination in an instruction (atmod, modify, extract,
modpc).

COBR Format

- - 0 0 - x src1 src2 and dst are global or local registers

- - 1 0 - x src1 is a literal, src2 and dst are global or local registers

- - 0 1 - x reserved
- - 1 1 - x reserved

L B-1

OPCODES AND EXECUTION TIMES i·ntel®

."
Table 8-2. REG Format Instruction Encodings (Sheet 1 of 4)

t
o

58:0

58:1

58:2

58:3

58:4

58:6

58:7

58:8

58:9

58:A

58:8

58:C

58:0

58:E

58:F

59:0

59:1

59:2

59:3

59:4

59:5

59:6

59:7

59:8

59:A

59:8

59:C

59:0

59:E

() ·c
o
E
:!!
::ii

notbit
and
andnot
setblt
notand
xor
or
nor
xnor
not
ornot
clrbit
notor
nand
alterbit
addo
addi
subo
subi
cmpob
cmpib
cmpos
cmpis
shro
shrdi
shri
shlo
rotate
shli

~

=
w
.e
:I
~
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

6

1

1

1

1

CD.-.
"0 ~ E 8 . a.:: ~ III
0- ,III

31 24 23 ... 19 18 .. 14 13

0101 1000 dst src M3

0101 1000 dst sr'c2 M3

0101 1000 dst src2 M3

0101 1000 dst src M3

0101 1000 dst src2 M3

0101 1000 dst src2 M3

0101 1000 dst {3rc2 M3

0101 1000 dst src2 M3

0101 1000 dst src2 M3

01011000 dst M3

01011000 dst src2 M3

01011000 dst src M3

0101 1000 dst sm2 M3

01011000 dst src2 M3

01011000 dst src ·M3

0101 1001 dst src2 . M3

01011001 dst src2 M3

0101 1001 dst src2 M3

0101 1001 dst src2. M3

0101 1001 src2 M3

0101 1001 src2 M3

0101 1001 src2 M3

0101 1001 src2 M3

0101 1001 dst src M3

01011001 dst src M3

01011001 dst src M3

01011001 dst src M3

0101 1001 . dst src M3

0101 1001 dst src M3

1. Execution time based on function performed by Instruction.

8-2

CD mill CD "0 .-.
'8 8 9 l~ e
::ii a.e. III

0 fIJI&.

12 11 10 ... 7 6 5 4 0

M2 M1 0000 S2 S1 bitpos

M2 M1 0001 S2 S1 src1

M2 M1 0010 S2 S1 src1

M2 M1 0011 S2 S1 bitpos

M2 M1 0100 S2 S1 src1

M2 M1 0110 S2 S1 src1

M2 M1 0111 S2 S1 src1

M2 M1 1000 S2 S1 src1

M2 M1 1001 S2 S1 src1

M2 M1 1010 S2 S1 src

M2 M1 1011 S2 S1 src1

M2 M1 1100 S2 S1 bitpos

M2 M1 ' 1101 S2 S1 src1

M2 M1 1110 S2 S1 src1

M2 M1 1111 S2 S1 bitpos

M2 M1 0000 S2 S1 src1

M2 , M1 0001 S2 S1 src1

M2 M1 0010 S2 S1 src1

M2 M1 0011 S2 S1 src1

M2 M1 0100 S2 S1 src1

M2 M1 0101 S2 S1 src1

M2 M1 0110 S2 S1 src1

M2 M1 0111 S2 S1 srd1

M2 M1 1000 S2 S1 len

M2 M1 1010 S2 S1 len

M2 M1 1011 S2 S1 len

M2 M1 1100 S2 S1 len

M2 M1 1101 S2 S1 len

M2 M1 1110 S2 S1 len

I

OPCODES AND EXECUTION TIMES

Table 8-2. REG Format Instruction Encodings (Sheet 2 of 4)

CII

I
o

5A:0

5A:1

5A:2

5A:3

5A:4

5A:5

5A:6

5A:7

5A:C

5A:D

5A:E

5B:0

5B:2

5B:4

5B:5

5C:C

5D:8

5D:C

5E:C

5F:C

61:0

61 :2

64:0

64:1

64:5

65:0

65:1

65:4

65:5

65:8

65:9

u
'2
o
E
CII
I:
:iii

cmpo

cmpi
concmpo

concmpi

cmpinco

cmpinci

cmpdeco

cmpdeci

scan byte
bswap
chkbit

addc

subc
intdis
inten
mov
eshro
movl

movt

movq
atmod
atadd
spanbit

scan bit

modac

modify

extract

modtc

modpc
intctl

sysctl

.S!
:;,
u
CII
><
W

.s
III
CII
U
>-
0

1

1

1

1

1

1

1

1

1

10

1

1

1

4

4

1

11

4

5

6

24

24

6

5

10

6

7

10

17

12-16

10-
1001

CII~

~ "C"'" C\j o •
~ u ~ o. II)

o~ II)

31 24 23 .. 19 18 .. 14

0101 1010 sre2

0101 1010 sre2

01011010 sre2

0101 1010 sre2

01011010 dst sre2

01011010 dst sre2

0101 1010 dst sre2

0101 1010 dst sre2

0101 1010 sre2

0101 1010 dst

0101 1010 sre

0101 1011 dst sre2

0101 1011 dst sre2

0101 1011

0101 1011

0101 1100 dst

01011101 dst sre2

01011101 dst

0101 1110 dst

01011111 dst

01100010 dst sre2

01100010 dst sre2

01100100 dst

01100100 dst

01100100 mask sre

01100101 sre/dst sre

01100101 sre/dst len

01100101 mask sre

01100101 sre/dst mask

01100101 dst

01100101 sre/dst sre2

1. Execution time based on performed by instruction.

l

CII mill CII "C ~
"C 0 0 .- Cl

,...
u as ~ 0 ~si ClI_

:iii o.u.. II)

0 C/)

13 12 11 10 ... 7 6 5 4 0

M3 M2 M1 0000 S2 S1 sret

M3 M2 M1 0001 S2 S1 sret

M3 M2 M1 0010 S2 S1 sret

M3 M2 M1 0011 S2 S1 sret

M3 M2 M1 0100 S2 S1 sret

M3 M2 M1 0101 S2 S1 sret

M3 M2 M1 0110 S2 S1 sret

M3 M2 M1 0111 S2 S1 sret

M3 M2 M1 1100 S2 S1 sret

M3 M2 M1 1101 S2 S1 sret

M3 M2 M1 1110 S2 S1 bitpos

M3 M2 M1 0000 S2 S1 sret

M3 M2 M1 0010 S2 S1 sret

M3 M2 M1 0100 S2 S1

M3 M2 M1 0101 S2 S1

M3 M2 M1 1100 S2 S1 sre

M3 M2 M1 1000 S2 S1 sret

M3 M2 M1 1100 S2 S1 sre

M3 M2 M1 1100 S2 S1 sre

M3 M2 M1 1100 S2 S1 sre

M3 M2 M1 0000 S2 S1 sret

M3 M2 M1 0010 S2 S1 sret

M3 M2 M1 0000 S2 S1 sre

M3 M2 M1 0001 S2 S1 sre

M3 M2 M1 0101 S2 S1 dst

M3 M2 M1 0000 S2 S1 mask

M3 M2 M1 0001 S2 S1 bitpos

M3 M2 M1 0100 S2 S1 dst

M3 M2 M1 0101 S2 S1 sre

M3 M2 M1 1000 S2 S1 sret

M3 M2 M1 1001 S2 S1 sret

B-3

::'

1

: .. 1

~

I

, ,

"

OPCODES AND EXECUTION TIMES

TableB·2. REG Format Instruction Encodings (Sheet 3 of 4)

~
u

CD

.'8
li
o

CD CD~ ... CD iii I/) ><
W ,,"CI' ~ ~

CD " ~ ,.. o • " 0 0 'u i e 0 u .. ~ ~ 0 8.a iii: - c. .. ~ :E I/)
I/) 0"- 0 CD
U
>-
0

31 24 23 ... 19 18 .. 14 13 12 11 10 ... 7 6 5 4 0

65:8 icctl 10- 01100101 src/dst src2 M3 M2 M1 1011 82 81 src1
1001

65:C dcctl 10- 01100101 src/dst src2 M3 M2 M1 1100 82 81 src1
1001

65:0 halt 00 01100101 M3 M2 M1 1101 82 81 src1

66:0 calls 30 01100110 M3 M2 M1 0000 82 81 src

66:8 mark 8 01100110 M3 M2 M1 1011 82 81

66:C fmark 8 01100110 M3 M2 M1 1100 82 81

66:0 flushreg 15 01100110 M3 M2 M1 1101 82 81

66:F syncf 4 01100110 M3 M2 M1 1111 82 81

67:0 emul 1 01100111 dst src2 M3 M2 M1 0000 82 81 src1

67:1 ediv 6 01100111 dst src2 M3 M2 M1 0001 82 81 src1

70:1 mulo 2-4 0111 0000 dst src2 M3 M2 M1 0001 82 81 src1

70:8 remo 40 0111 0000 dst src2 M3 M2 M1 1000 82 81 src1

70:8 divo 40 0111 0000 dst src2 M3 M2 M1 1011 82 81 src1

74:1 muli 2-4 01110100 dst src2 M3 M2 M1 0001 82 81 src1

74:8 remi 40 01110100 dst src2 M3 M2 M1 1000 82 81 src1

74:9 modi 40 01110100 dst src2 M3 M2 M1 1001 82 81 src1

74:8 divi 8 01110100 dst src2 M3 M2 M1 1011 82 81 src1

78:0 addono 1 0111 1000 dst src2 M3 M2 M1 0000 82 81 src1

78:1 addino 1 0111 1000 dst src2 M3 M2 M1 0001 82 81 src1

78:2 subono 1 0111 1000 dst src2 M3 M2 M1 0010 82 81 src1

78:3 subino 1 0111 1000 dst src2 M3 M2 M1 0011 82 81 src1

78:4 selno 1 0111 1000 dst src2 M3 M2 M1 0100 82 81 src1

79:0 addog 1 01111001 dst src2 M3 M2 M1 0000 82 81 src1

79:1 addig 1 01111001 dst src2 M3 M2 M1 0001 82 81 src1
79:2 subog 1 01111001 dst srC2 M3 M2 M1 0010 82 81 src1
79:3 subig 1 01111001 dst src2 M3 M2 M1 0011 82 81 src1

79:4 selg 1 01111001 dst src2 M3 M2 M1 0100 82 81 src1

7A:0 addoe 1 01111010 dst src2 M3 M2 M1 0000 82 81 src1
7A:1 addie 1 01111010 dst src2 M3 M2 M1 0001 82 81 src1

7A:2 suboe 1 01111010 dst src2 M3 M2 M1 0010 82 81 src1

7A:3 subie 1 0111 1010 dst src2 M3 M2 M1 0011 82 81 src1

1. Execution time based on performed by instruction.

8-4

OPCOOES AN.O EXECUTION TIMES

Table 8-2. REG Format Instruction Encodings (Sheet 4 of 4)

i
o

7A:4

78:0

78:1

78:2

78:3

78:4

7C:0

7C:1

7C:2

7C:3

7C:4

70:0

70:1

70:2

70:3

70:4

7E:0

7E:1

7E:2

7E:3

7E:4

. 7F:0

7F:1

7F:2

7F:3

7F:4

u ·c
o
E
CD c

:::!5

sele
addoge
addige
suboge
subige
selge
addol
addil
subol
subil
sell
addone
addlne
subone
subine
seine
addole
addile
subole
subile
selle
addoo
addio
suboo
subfo
sello

.!
:I
U
CD
>C w
0 -UI
CD

~
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

CD~ ...
'a"'" ~ ~ o •
u ... !l ~ a. ... ~ 0

31 24 23 .. 19 18 .. 14

0111 1010 dst src2

01111011 dst src2

0111 1011 dst src2

0111 1011 dst src2

0111 1011 dst src2

01111011 dst src2

0111 1100 dst src2

01111100 dst src2

01111100 dst src2

01111100 dst src2

0111 1100 dst src2

0111 1101 dst src2

0111 1101 dst src2

0111 1101 dst src2

0111 1101 dst src2

0111 1101 dst src2

0111,1110 dst src2

0111 1110 dst src2

0111 1110 dst src2

0111.1110 dst src2

0111 1110 dst src2

0111 1111 dst src2

0111 1111 dst src2

0111 1111 dst src2

0111 1111 dst src2

0111 1111 dst src2

1. Execution time based on performed by instruction.

CD 'iiUl CD 'a ~ ,..
'a oC? -C) u as ~ 0 UC') CD_
:::!5 a. a.u..

0 en

13 12 11 10 ... 7 6 5 4 0

M3 M2 M1 0100 52 51 src1

M3 M2 M1 0000 52 51 src1

M3 M2 M1 0001 52 51 src1

M3 M2 M1 0010 52 51 src1

M3 M2 M1 0011 52 51 src1

M3 M2 M1 0100 52 51 src1

M3 M2 M1 0000 52 51 src1

M3 M2 M1 0001 52 51 src1

M3 . M2 M1 0010 52 51 src1

M3 M2 M1 0011 52 51 src1

M3 M2 M1 0100 52 51 src1

M3 M2 M1 0000 52 51 src1

M3 M2 M1 0001 52 51 src1

M3 M2 M1 0010 52 51 src1

M3 M2 M1 0011 52 51 ' src1

M3 M2 M1 0100 52 51 src1

M3 M2 M1 0000 ~2 51 src1

M3 M2 M1 0001 52 51 src1

M3 M2 M1 0010 52 51 src1

M3 M2 M1 0011 52 51 src1

M3 M2 M1 0100 52 51 src1

M3 M2 M1 0000 52 51 src1

M3 M2 M1 0001 ' 52 51 src1

M3 M2 M1 0010 52 51 src1

M3 M2 M1 0011 ':52 51 src1

M3 M2 M1 0100 52 51 src1

8-5

i

I

i,\'

"

I'

if
I,~
I",

i"
i;
I·!
I'
il

I~
i\

OPCODES AND EXECUTION TIMES in1et

CD

1
20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

38

39

3A

36

3C

3D

3E

3F

u
'2
o
E
!
:E

testno
testg
teste
testge
testl
testne
testle
testo
bbc
cmpobg
cmpobe
cmpobge
cmpobl
cmpobne
cmpoble
bbs
cmpibno
cmpibg
cmpibe
cmpibge
cmpibl
cmpibne
cmpible
cmpibo

Table B·3. COBR Format Instruction Encodings

CD
'S -u c

= CD
CD
E w "0 ... Cij CD 0 e :E oS U 5j U ...

a. VI 111
1/1 0 Q.
.!! 1/1
U Q >-
0

31 24 23. 19 18 ... 14 13 12 2 1

4 00100000 dst M1 T

4 00100001 dst M1 T

4 00100010 dst M1 T

4 00100011 dst M1 T

4 00100100 dst M1 T

4 00100101 dst M1 T

4 00100110 dst M1 T

4 00100111 dst M1 T
2 + 11 0011 0000 bitpos src M1 targ T

2 + 1 0011 0001 src1 src2 M1 targ T

2+1 0011 0010 src1 src2 M1 targ T

2+1 0011 0011 src1 src2 M1 targ T

2 + 1 0011 0100 src1 src2 M1 targ T

2+1 0011 0101 src1 src2 M1 targ T

2+1 0011 0110 src1 src2 M1 targ T

2+1 0011 0111 bitpos src M1 targ T

2+1 0011 1000 src1 src2 M1 targ T

2+1 0011 1001 src1 src2 M1 targ T

2+1 0011 1010 src1 src2 M1 targ T

2+1 0011 1011 src1 src2 M1 targ T

2+1 0011 1100 src1 src2 M1 targ T

2+1 0011 1101 src1 src2 M1 targ T

2 + 1 0011 1110 src1 src2 M1 targ T

2+1 0011 1111 src1 src2 M1 targ T
..

1. Indicates that it takes 2 cycles to execute the instructIOn plus an additional cycle to fetch the target instructIOn If
the branch is taken.

6-6

N
rn

0

82

82

82

82

82

82

82

82

82

82

82

82

82

82

82

82

82

82

82

82

82

82

82

82

J

intet

J

OPCODES AND EXECUTION TIMES

Table 8-4. CTRL Format Instruction Encodings

-u
CD 'c "g 0 0 E 8- CD
0 c

:::IE

c
Ss CD

CD
"g E

I/) ::J 0 § CD u t- o -CD u
u " a.
~w 0 "ii

I/)

is
31 24 23 2 1 0

08 b 1 + l' 00001000 targ T 0

09 call 7 00001001 targ T 0

OA ret 6 00001010 T 0

OB bal 1 + 1 00001011 targ T 0

10 bno 1 + 1 0001 0000 targ T 0

11 bg 1 + 1 00010001 targ T 0

12 be 1 + 1 00010010 targ T 0

13 bge 1 + 1 0001 0011 targ T 0

14 bl 1 + 1 0001 0100 targ T 0

15 bne 1 + 1 00010101 targ T 0

16 ble 1 + 1 0001 0110 targ T 0

17 bo 1 + 1 0001 0111 targ T 0

18 faultno 13 00011000 T 0

19 faultg 13 0001 1001 T 0

1A faulte 13 0001 1010 T 0

1B fault.ge 13 00011011 T 0

1C faultl 13 0001 1100 T 0

10 faultne 13 0001 1101 T 0

1E faultle 13 0001 1110 T 0

1F faulto 13 0001 1111 T 0
..

1. Indicates that it takes I cycle to execute the mstruction plus an additional cycle to fetch
the target instruction if the branch is taken.

B-7

I:
!
,I

OPCODES AND EXECUTION TIMES intel®

Table B·5. MEM Format Instruction Encodings

11 ... 0

Offset

31 24 123 ... 19 118 14 113 12 .. 11 10 19 7 16 ... 5 14 0

Opcode I src/dst I ABASE I Mode I Scale I 00 I Index

Displacement

Effective Address

efa = offset I Opcode dst 0 0 offset

offset(reg) I Opeode dst reg I 1 0 offset

(reg) I Opcode dst reg I 0 0 0 00

disp + 8 (IP) I Opcode dst 0 I 0 00
displacement

(reg1)[reg2' scale] I Opcode dst reg1 I 0 I 1 I 1 scale 00 reg2

diSpl Opcode dst I 1 I 1 I o 1 0 00
displacement

disp(reg) I Opcode dst reg I 1 I 1 I 0 I 00
displacement

disp[reg' scale]

disp(reg 1)[reg2* scale]

8-8 I

intet OPCODES AND EXECUTION TIMES

Opcode Mnemonic Cycles to
Opcode Mnemonic Cycles to

Execute Execute

80 Idob See Note 1. 98 Idl See Note 1.
82 stob See Note 1. 9A stl See Note 1.
84 bx 4-7 AO Idt See Note 1.

85 balx 5-8 A2 stt See Note 1.
86 calix 9-12 BO Idq See Note 1.

88 Idos See Note 1. B2 stq See Note 1.

8A stos See Note 1. CO Idib See Note 1.

8C Ida See Note 1. C2 stib See Note 1.

90 Id See Note 1. C8 Idis See Note 1.
92 st See Note 1. CA stis See Note 1.

1. The number of cycles required to execute these instructions IS based on the addreSSing mode used (see
Table B-6).

Table B-6. Addressing Mode Performance

Memory Number of
Cycles to Mode Assembler Syntax Instruction Format words Execute

Absolute Offset exp MEMA 1 1

Absolute Displacement exp MEMB 2 2

Register Indirect (reg) MEMB 1 1

Register Indirect with Offset exp(reg) MEMA 1 1

Register Indirect with
exp(reg) MEMB 2 2

Displacement

Index with Displacement exp[reg*scale) MEMB 2 2

Register Indirect with Index (reg)[reg*scale) MEMB 1 6

Register Indirect with Index +
exp(reg)[reg*scale) MEMB 2

6
Displacement

Instruction Pointer with
exp(IP) MEMB 2

6
Displacement

1- B-9

REGISTER AND DATA
STRUCTURES

l _____ _

c

APPENDIX C
REGISTER AND DATA STRUCTURES

This appendix is a compilation of all register and data structure figures described throughout the ~.'"
manual. Fonowmg each figure i, a reference that indicate, the ,ection that discu,"" the figure. ~

Fig. Register I Data Structure Where defined In the manual Page

C·l Arithmetic Controls (AC) Register Section 3.6.2, "Arithmetic Controls (AC) Register" (pg. C-2 3-17)
C-2 Process Controls (PC) Register section 3.6.3, "Process Controls (PC) Register" (pg. 3-20) C-3
C-3 Trace Controls (TC) Register Section 10.1.1, "Trace Controls (TC) Register" (pg. 10-2) C-4
C-4 System Procedure Table Section 7.5.1, "System Procedure Table" (pg. 7-16) c-s
c-s Procedure Stack Structure and Local Section 7.1 .1, "Local Registers and the Procedure Stack" c-s Registers (pg.7-2)

c-s Previous Frame Pointer (PFP) Register (rO) Section 7.2, "MODIFYING THE PFP REGISTER" (pg. C-? 7-13)
C-? Interrupt Table Section 8.4, "INTERRUPT TABLE" (pg. 8-3) c-s
c-s Storage of an Interrupt Record on the section 8.5, "INTERRUPTSTACK AND INTERRUPT C-9 Interrupt Stack RECORD" (pg. 8-5)

C-9 Interrupt Control (ICON) Register Section 13.3.4, "Interrupt Control Register (ICON)" (pg. C-l0 13-12)

C-10 Interrupt Mapping (IMAPO-IMAP2) Section 13.3.5, "Interrupt Mapping Registers (IMAPO- C-ll Registers IMAP2)" (pg. 13-14)

C-11 Interrupt Pending (IPND) Register Section 13.3.5.1, "Interrupt Mask (lMSK) and Interrupt C-12
Pending (IPND) Registers" (pg. 13-16)

C-12 Interrupt Mask (lMSK) Registers Section 13.3.5.1, "Interrupt Mask (lMSK) and Interrupt C-13 Pending (IPND) Registers" (pg. 13-16)
C-13 Fault Table and Fault Table Entries Section 9.3, "FAULT TABLE" (pg. 9-4) C-14
C-14 Fault Record Section 9.5, "FAULT RECORD" (pg. 9-6) C-1S
C-15 Breakpoint Control (BPCON) Register Section 10.2.7.4, "Breakpoint Control Register" (pg. 10-7) C-1S

C-1S Data Address Breakpoint Register Format section 10.2.7.5, "Data Address BreakpOtnt Registers" (pg. C-1S 10-9)

C-1? Instruction Breakpoint Register Format Section 10.2.7.6, "Instruction Breakpoint Registers" (pg. C-l?
10-10)

C-18 Initial Memory Image (1M I) and Process Section 11.3.1, "Initial Memory Image (IMI)" (pg. 11-9) C-1S Control Block (PRCB)
C-19 Control Table Section 11.3.3, "Control Table" (pg. 11-19) C-19

C-20 Process Control Block Configuration Words
Section 11.3.1.2, "Process Control Block (PRCB)" (pg. C-20 11-14)

C-21 IEEE 1149.1 Device Identification Register Section 11.4, "DEVICE IDENTIFICATION ON RESET" (pg. C-21 11-21)
C-22 Bus Control Register (BCON) I Section 12.4.1, "Bus·Control (BCON) Register" (pg. 12-6) C-21
C-23 PMCON Register Bit Description I Section 12.3.1, "Bus Width" (pg. 12-5) C-22

C-24 Logical Memory Template Starting Address I Section 12.6, "Programming the Logical Memory C-22 Registers (LMADRO-l) Attributes" (pg. 12-8)

C-2S Logical Memory Template Mask Registers ISection 12.6, "Programming the Logical Memory C-23 (LMMRO-l) Attributes" (pg. 12-8)

C-2S Default Logical Memory Configuration I Section 12.6, "Programming the Logical Memory C-23 Register (DLMCON) Attributes" (pg. 12-8)

1 __ . C-1

REGISTER AND DATA STRUCTURES

Fig.· Register I Data Structure Where defined In the manual

C-27 limer Mode Register (TMRO, TMR1)
Section 14.1.1, "Timer Mode Register (TMRO, TMR1)" (pg.
14-2)

C-28 limer Count Register (TCRO, TCR1)
Section 14.1.2, :'Tlmer count Register (TCRO, TCR1)" (pg.
14-6)

C-29 limer Reload Register (TRRO, TRR1)
section 14.1.3, ''TImer Reload Register (I RRO, I RR1)"
(pg. 14-7)

C.1 Register and Data Structures

31 28 .24 20 16 12 8 4 o

I I I III
No-Imprecise-Faults Bit- AC.nif ____ ---It

(0) Some Faults are Imprecise
(1) All Fauits are Precise

Integer Overflow Mask Bit - AC.om-------l
(0) No Mask
(1) Mask

Integer-Overflow Flag - AC.of-------------:-'
(0) No Overflow
(1) Overflow

Condition Code Bits - AC.cc --------------------'

I Reserved
(Initialize to 0)

Figure C-1. Arithmetic Controls (AC) Register

Section 3.6.2, "Arithmetic Controls (AC) Register" (pg. 3-17)

C-2

Page

C-24

C-24

C-25

REGISTER AND DATA STRUCTURES

Trace-Enable Bit - PC.te ----------------------~
(0) Globally disable trace faults
(1) Globally enable trace faults

Execution-Mode Flag - PC.em ----------------------,
(0) user mode
(1) supervisor mode

Trace-Fault-Pendin!il- PC.tfp-------------,
(0) no fault pending
(1) fault pending

State Flag - PC.s -------------,

(0) executing j
(1) interrupted

Priority Field - pC.p --------,1
(0-31) process priority •

IIIII I I II
31 28 24 20 16 12 8 4 o

I Reserved
(Do not modify)

Section 3.6.3, "Process Controls (PC) Register" (pg. 3-20)

l __ ~ C-3

I

I
!

.. j

REGISTER AND DATA STRUCTURES

Trace Mode Bits
Instruction Trace Mode -TC.i-------------------:--c'-----.
Branch Trace Mode -TC.b--------------....:....,---__ --,
Call Trace Mode -TC.c----------------------,
Return Trace Mode - TC.r -'-" -------'---------'-----,

pre-RetumTraceMOde-TC.p-----,,'! j j ,I',:,' Supervisor Trace Mode - TC.s ----------------,-
Mai'k Trace Mode - TC.mk

31 28 24 20 16

IIII IIIIIII

I Reserved

4

[_ B:"~ EW: FI~
.... ------- Instruction-Address Breakpoint 0 - TC.iOf

Instruction-Address Breakpoint 1 'TC.i1 f
Data-Address Breakpoint 0 - TC.dOl
Data-Address Breakpoint 1 - TC.d1f

Figure C·3. Trace Controls'(TC) Register

Section 10.1.1 • "Trace Controls (TC) Register" (pg. 10-2)

C·4

o

REGISTER AND DATA STRUCTURES

31 o

H

Trace
,........-- Control

Bit

D34H

~------------------------------------~ D38H
~--~D3CH

~ __ ~438H

43CH

31

I Reserved
(Initialize to 0)

• Preserved

Procedure Entry

address

Figure C-4. System Procedure Table

2 1 0

III
~ Entry Type:

00 - Local
10-Supervisor

Section 7.5.1, "System Procedure Table" (pg. 7-16)

I.
C-5

REGISTER AND DATA STRUCTURES

Current Register Set

(gO

Frame Pointer g15

Procedure Stack

Previous Frame Pointer (PFP) rO

Stack Pointer (SP) r1

Return Instruction Pointer (RIP) r2

user.allocated stack

user allocated stack

unused stack

stack growth
(toward higher addresses)

J

r1S

Previous
Stack

Frame

Current
Stack
Frame

Figure C-5. Procedure Stack Structure and Local Registers

Section 7.1.1, "Local Registers and the Procedure Stack" (pg. 7-2)

C-6

inlet

I

REGISTER AND DATA STRUCTURES

Return Status
Return-Type Field - PFP.rt

Address-PFP.a l

Pre-Return-Trace Flag - PFP.p j j
Previous Frame Pointer

I I I I

I ~IIIIIIIIIIIIIIIIIIIIIIIIIII:I PI il ~I il
31 28 24 20 16 12 8 4 o

Figure C-S. Previous Frame Pointer (PFP) Register (rO)

Section 7.2, "MODIFYING THE PFP REGISTER" (pg. 7-13)

C-7

"

i

1

I
I

I ~
I

REGISTER AND DATA STRUCTURES intet

31 8 7 0

OOOH

004H

Pending Interrupts

020H

024H (Vector 8)

028H (Vector 9)

02CH (Vector 10)

3DOH (Vector 243)
3D4H (Vector 244)

3EOH (Vector 247)

3E4H (Vector 248)

3E8H (Vector 249)

3FOH (Vector 251)
3F4H (Vector 252)

400H (Vector 255)

Vector Entr~ 21 0

Instruction Pointer Ixlxl
L-J
L Entry Type:

_ Reserved (Initialize to 0)
00 Normal
01 Reserved1

_Preserved
10 Target in Cache
11 Reserved1

F_CA016A 1 Vector entries with a reserved
type have unpredictable behavior.

Figure C-7. Interrupt Table

Section 8.4, "INTER.RUPT TABLE" (pg. 8-3)

C-8 I

stack
growth

REGISTER AND DATA STRUCTURES

Current Stack
31 (local, supervisor, or interrupt stack) 0

~,-------__ ~FP t--- ,"~"f"m' i
Interrupt Stack

padding area

saved Process Controls Register

saved Arithmetic Controls Register

NFP-16 I low, ••
NFP-12 Record

NFP-B

NFP

I Reserved

F_CA017A

Figure CoS. Storage of an Interrupt Record on the Interrupt Stack

Section 8.5, "INTERRUPT STACK AND INTERRUPT RECORD" (pg. 8-5)

I C-9

, 1
~

REGISTER AND DATA STRUCTURES intet

Interrupt Mode -ICON.im-----------------------,
(00) Dedicated

31

(01) Expanded
(10) Mixed
(11) Reserved

Signal Detection Mode -ICON.sdm ---------------,
(0) Level-low activated
(1) Falling-edge activated

Global Interrupts Enable - ICON.gie ----------,
(0) Enabled
(1) Disabled

Mask Operation - ICON.mo -----------,
(00) Move to 1'3, mask unchanged
(01) Move to r3 and clear for dedicated mode interrupts
(10) Move to r3 and clear for expanded mode interrupts
(11) Move to r3 and clear 10r dedicated and expanded

mode interrupts
Vector Cache Enable - ICON.vce --------,

(0) Fetch from external memory
(1) Fetch from internal RAM

Sampling Mode -lv'uN.srrl--------.....,
(0) debounce
(1) fast

28 24 20 16

Interrupt Control Register (ICON)

12 8

I Reserved
(Initialize to 0)

Figure C-9. Interrupt Control (ICON) Register

4

Section 13.3.4, "Interrupt Control Register (ICON)" (pg. 13-12)

C-10

o

J

REGISTER AND DATA STRUCTURES

External Interrupt 0 Field - IMAPO.xO

I External Interrupt 1 Field - IMAPO.x1

I External Interrupt 2 Field - IMAPO.x2

1
External Interrupt 3 Field - IMAPO.x3

1

28 24 20 16 12 8 4

Interrupt Map Register 0 (IMAPO)

External Interrupt 4 Field -IMAPO.x4 -------------------'j
External Interrupt 5 Field - IMAPO.x5 ----------------,1
External Interrupt 6 Field -IMAPO.x6 ------------,
External Interrupt 7 Field - IMAPO.x7 ---------,1 .

28 24 20

Interrupt Map Register 1 (IMAP1)

Timer Interrupt 0 Field - IMAP2.tO n
11<"" ''''''~~ 1 "",. IMAP2.11 l

16

.-----.1-----.

12 8 4

III1IIII .' :~
28 24

Interrupt Map Register 2 (IMAP2)

I Reserved
(Initialize to 0)

20 16 12 8

Figure C-10. Interrupt Mapping (IMAPO-IMAP2) Registers

4

Section 13.3.5, "Interrupt Mapping Registers (IMAPO-IMAP2)" (pg. 13-14)

1_

o

o

o

C-11

· REGISTER AND DATA STRUCTURES

External Interrupt Pending Bits - IPND.xip
(0) No Interrupt
(1) Pending Interrupt

Timer Interrupt Pending Bits -IPND.tip -------,
(0) No Interrupt I
(1) Pending Interrupt rI

intet~

I
II IIRIIIII

I
28

RESERVED
(INITIALIZE TO 0)

24 20 16 12 8

Figure C-11. Interrupt Pending (IPND) Register

4·

Section 13.3.5.1, "Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers" (pg. 13-16)

C-12

o

I

REGISTER AND DATA STRUCTURES

Dedicated External Interrupt Mask Bits - IMSK.xim --------------,
(0) Masked
(1) Not Masked

Timer Interrupt Mask Bits - IMSK.tim ---------,!
(0) Masked
(1) Not Masked II

. II II1IIIII
28 24 20 16 12 8 4 o

Interrupt Mask Register (lMSK) Dedicated Mode

Expanded External Interrupts Mask Bits - IMSK.eim -----------------,
(0) Masked
(1) Not Masked

Timer Interrupt Mask Bits - IMSK.tim
(0) Masked
(1) Not Masked

28 24 20

Interrupt Mask Register (lMSK) Expanded Mode

1
II

16 12 8 4 o

Expanded External Interrupt Mask Bits - IMSK.eim ----------------...,
(0) Masked
(1) Not Masked

Dedicated External Interrupt Mask Bits - IMSK.xim -----------,
(0) Masked
(1) Not Masked

Timer Interrupt Mask Bits - IMSK.tim
(0) Masked
(1) Not Masked 1

II

. II III I
28 24 20 16

Interrupt Mask Register (lMSK) Mixed Mode

12 8 4 o

RESERVED I
(INITIALIZE TO 0)

Figure C-12. Interrupt Mask (lMSK) Registers

Section 13.3.5.1, "Interrupt Mask (lMSK) and Interrupt Pending (IPND) Registers" (pg. 13-16)

L C-13

i

~
I

i- .

REGISTER AND DATA STRUCTURES

31 Fault Table

Override/Parallel Fault Entry

Trace Fault Entry

. Fault Entry

31 System-Call Entry

Fault-Handler Procedure Number

0000027FH

I Reserved (Initialize to 0)
,

Figure C-13. Fault Table,and Fault Table Entries

. Section 9.3, "FAuLT TABLE" (pg. 9-4)

C-14

intet

0

OOH

OSH

10H

2 1 0

REGISTER AND DATA STRUCTURES

31 o

FAULT DATA

--'--'--'-"--' -'-;

~---;

OVERRIDE FAULT DATA

FAULT DATA

31 28 24

• RESERVED

Figure C-14. Fault Record

Section 9.5, "FAULT RECORD" (pg. 9-6)

L

4 o

NFP - (n+1)*32

NFP - 24- n*32

NFP - 20- n*S2

NFP - 12- n*32

NFP - 8- n*32

NFP - 4- n*32

NFP - 64

NFP - 52

NFP - 48

NFP - 44

NFP - 32'

NFP-20

NFP-16

NFP-12

NFP-8

NFP-4

C-15

REGISTER AND DATA STRUCTURES

DABO----------------------~!
DAB1--------------~

II

III1IIII
31

I
28

Reserved
(Initialize to 0)

24 20 16 12 8 4 o

Hardware Reset Value: 0000 OOOOH

Software Re-Init Value: Retains State

Figure C-1S. Breakpoint Control (BPCON) Register

Section 10.2.7.4, "Breakpoint Control Register" (pg. 10-7)

Data Address --------------'------,

IIII!III!IIIIIII!III!III!III!II!I
31 28 24 20 16 12 8 4 o

Hardware Reset Value: 0000 OOOOH

Software Re-init Value: 0000 OOOOH

Figure C-16. Data Address Breakpoint Register Format

Section 10.2.7.5, "Data Address Breakpoint Registers" (pg. 10-9)

0-16 I~

intel~ REGISTER AND DATA STRUCTURES

IBPx Mode -------------------------,1
Instruction Address ---------.1

In

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII~I~I
31 28 24 20 16 12 8 4 o

Hardware Reset Value: 0000 OOOOH
Software Re-init Value: 0000 OOOOH

Figure C-17. Instruction Breakpoint Register Format

Section 10.2.7.6, "Instruction Breakpoint Registers" (pg. 10-10)

C-17

I
!
I

"

I

REGISTER AND DATA STRUCTURES

Fixed Data Structures

Inlt. Boot Record (IBR): Address

FEFF FF30H

FEFF FF34H

FEFF FF38H

FEFF FF3CH

FEFF FF40H
1---'--'<""""----1 FEFF FF44H

6 Check Words
(For Bus Confidence

Self-Test)

FEFF FF48H

'--______ -' FEFF FF5CH

-
-
-

-

-

>
<-
»

Relocatable Data Structures

User Code:

Process Control Block (PRCB):

Fault Table Base Address

Control Table Base Address

AC Register Initial Image

Fault Configuration Word

Interrupt Table Base Address

s~stem Procedure
Ta Ie Base Address

Reserved

Interrupt Stack Pointer

Instruction Cache
Confiauration Word

Reecister Cache
Con Iguration Word

Control Table

Interrupt Table

System Procedure Table

Other Architecturally
Defined Data

Structures (Not
Required As Part Of IMI)

~

r-
<-r-
<-
1-

-

Figure C-18. Initial Memory Image (IMI) and Process Control Block (PRCB)

Section 11.3.1, "Initial Memory Image (IMI)" (pg. 11-9)

C-18 I

REGISTER AND DATA STRUCTURES

31

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Interrupt Map 0 (IMAPO)

Interrupt Map 1 (IMAP1)

Interrupt Map 2 (IMAP2)

Interrupt Configuration (ICON)

Physical Memory Region 0:1 Configuration (PMCONO_1)

Reserved (Initialize to 0)

Physical Memory Region 2:3 Configuration (PMCON2_3)

Reserved (Initialize to 0)

Physical Memory Region 4:5 Configuration (PMCON4_5)

Reserved (Initialize to 0)

Physical Memory Region 6:7 Configuration (PMCON63)

Reserved (Initialize to 0)

Physical Memory Region 8:9 Configuration (PMCON8_9)

Reserved (Initialize to 0)

Physical Memory Region 10:11 Configuration (PMCON10_11

Reserved (Initialize to 0)

Physical Memory Region 12:13 Configuration (PMCON12_13)

Reserved (Initialize to 0)

Physical Memory Region 14:15 Configuration (PMCON14_15)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Trace Controls (TC)

Bus Configuration Control (BCON)

Figure C-19. Control Table

Section 11.3.3, "Control Table" (pg. 11-19)

I.

o
OOH

04H

OSH

OCH

10H

14H

18H

lCH

20H

24H

28H

2CH

30H

34H

38H

3CH

40H

44H

48H

4CH

SOH

54H

58H

5CH

60H

64H

6SH

6CH

C-19

REGI,STER AND DATA ,STRUCTURES

AC Register Initial Image Offset08H
Condition Code Bits -AC.cc--------------~-----~--__,
Integer-Overflow Flag -AC.of---------------__,

(0) n,o overflow
(1) overflow

Integer Overflow Mask Bit - AC.om -----~-_,_-__,
(0) enable overflow faults
(1) mask overflow faults

No-Imprecise-Faults Bit - AC.nif -------..,
(0) allow imprecise fault conditions
(1) prevent imprecise fault conditions

31 28 24 20 , 16

I I I III
12 8 4

Fault Configuration Word

31 28 24 20 16 12 8 4

tL __ ~o--__________ ' '-' ___ Mask Non-Aligned Bus Request Pault

Instruction Cache Configuration Word

Disable Instruction Cache---------,
(oj enable cache
(1) disable cache

31 28 24 20 16

Register Cache Configuration Word

(0) enable the fault
(1) mask the fault

12 8

Programmed Limit----,-----------.,.--,-------,.

31

I
28

Reserved
(Initialize to 0)

24 20 16 12 8

4

4

Figure C-20. Process Control Block Configuration Words,

Section 11.3.1.2, "Process Control Block (PRCB)" (pg. 11-14)

C-20

o
OffsetOCH

o

Offset 20H

o

Offset 24H

o

I

in1et REGISTER AND DATA STRUCTURES

Part Number

Product

Version Type Gen Model Manufacturer ID

~111~nl I

111111111111111111111010101010101011101011111
28 24 20 16 12 8

Figure C-21. IEEE 1149.1 Device Identification Register

Section 11.4, "DEVICE IDENTIFICATION ON RESET" (pg. 11-21)

Configuration Entries in Control Table Valid (BCON.ctv)
o = PMCON entries not valid, default to PMCON14_15 setting.
1 = PMCON entries valid

Internal RAM Protection (BCONJrp)
o = Internal data RAM not protected from user mode writes
1 = Internal data RAM protected from user mode writes

Supervisor Internal RAM Protection (BCON.sirp)
o = First 64-bytes not protected from supervisor mode writes
1 = First 64-by1es protected from supervisor mode writes

31

I
28

Reserved,
write to zero

24 20 16 12 8

Figure C-22. Bus Control Register (BCON)

Section 12.4.1, "Bus Control (BCON) Register" (pg. 12-6)

4 o

I
4 o

C-21

I

• I
I

REGISTER AND DATA STRUCTURES

I Reserved,
write to zero

t'--___________ Bus Width

00 = a-bit
01 = 16-bit
10 = 32-bit bus
11 = reserved (do not use)

Figure C-23. PMCON Register Bit Description

Section 12.3.1, "Bus Width" (pg. 12-5)

Byte Order (read-only)
o = Little endian
1 = Big endian

Data Cache Enable ------------------------,
o = Data caching disabled
1 = Data caching enabled

I Reserved,
write to zero

'------~------- Template Starting Address

Figure C-24. Logical Memory Template Starting Address Registers (LI'o'ADRO-1)

Section 12.6, "Programming the Logical Memory Attributes" (pg. 12-8)

C-22 I

intet REGISTER AND DATA STRUCTURES

Byte Order (read-only)
o = Little endian
1 = Big end ian

Data Cache Enable -----------------------:--------,
o = Data caching disabled j
1 = Data caching enabled

28 24 20 . 16 12

I Reserved,
write to zero

L-_____________ Template Starting Address

Figure C-2S. Logical Memory Template Mask Registers (LMMRO-1)

Section 12.6, "Programming the Logical Memory Attributes" (pg. 12-8)

Big Endian By1e Order --------------------------,

o = Little endian j
1 = Big endian

Data Cache Enabled-------------------------,
o = Data caching disabled 1·
1 = Write-through caching enabled

31

I
28

Reserved,
write to zero

24 20 16 12 8 4

Figure C-26. O,fault Logical Memory Configuration Register (OLMCON)

Section 12.6, "Programming the Logical Memory Attributes" (pg. 12-8)

1

o

C-23

•

REGISTER AND DATA STRUCTURES

Tenninal Count Status - TMRx.tc _____________________ ---,

(0) No Tenninal Count
(1) Tenninal Count

llmer Enable - TMRx.enable ---------------------~__,
(0) Disable
(1) Enable

llmer Auto Reload Enable - TMRx.reload ------------------.,
(0) Auto Reload Disabled
(1) Auto Reload Enabled

llmer Register Supervisor Write Control- TMRx.sup -----.,..---------__,
(0) Supervisor and User Mode Write Enabled
(1) Supervisor Mode Only Write Enable

llmer Input Clock Selects - TMRx.cseI1:0 ---------------1' (00) 1 :111mer Clock = Bus Clock
(01) 2:111mer Clock = Bus Clock 12
(10) 4:111mer Clock = Bus Clock 14
(11) 8:111mer Clock = Bus Clock/8

31 28 24 20 16 12 8

IIIIII
4 0

llmer Mode Register (TMRO. TMR1)

I Reserved
(Initialize to 0)

Figure C-27. Timer Mode Register (TURD, TUR1)

Section 14.1.1. "TImer Mode Register (TMRO. n.1R1)" (pg. 14-2)

llmer Count Value - TCRx.d31:0 -----------,1
031:0 +

111111111111111111111111111111111
28 24 20 16 12 8 4 o

llmer Count Register (TCRO. TCR1)

Figure C-28. Timer Count Register (TCRD, TCR1)

Section 14.1.2, "Timer Count Register (TCRO, TCR1)" (pg. 14-6)

C-24

REGISTER AND DATA STRUCTURES

Timer Auto-Reload Value - TRRx.d31:0 ------.!
031:0

111111111111111111111111111111111
28 24 20 16 12 8 4 0

Timer Reload Register (TRRO, TRR1)

Figure C-29. nmer Reload Register (TRRO, TRR1)

Section 14.1.3, "TImer Reload Register (TRRO, TRR1)" (pg. 14-7)

I C-25

I':

I

I'

r;
I:

Ij
1<
,<,

I ~
:;
I'

MACHINE-LEVEL
INSTRUCTION FORMATS

_I .

D

APPENDIX D
MACHINE-LEVEL INSTRUCTION FORMATS

This appendix describes the encoding format for instructions used by the i960 processors. Included
is a description of the four instruction formats and how the addressing modes relate to the these
formats. Refer also to APPENDIX B, OPCODES AND EXECUTION TIMES.

0.1 GENERAL INSTRUCTION FORMAT

The i960 architecture defines four basic instruction encoding formats (as shown in Figure 0-1 on
page 0-1): REG, COBR, CTRL and MEM. Most instruction uses one of these formats, which is
defined by the instruction's opcode field. All instructions are one word long and all begin on word
boundaries. MEM format instructions are encoded in one of two sub-formats: MEMA or MEMB.
MEMB permits an optional second word to hold a displacement value. The following sections
describe each format's instruction word fields.

28 24 20

OPCODE SRC/DST REG
(8 bits) (5 bits)

28 12 8 4

OPCODE DISPLACEMENT COBR (8 bits) (11 bits)

31 28 24 20 16 12 8 4 0

I : : ~ra~~~ : : I : : : : : : : : ~IS:'~~~E~T: : : : : : : : 10 10 1 CTRL

28 8 4 0

OPCODE OFFSET MEMA (8 bits) (12 bits)

, MODE

31 28 24 20 16 12 8 4 0 . • .
OPCODE SRCIDST ABASE 1 SCALE

0
INDEX

(8 bits) (5 bits) (5 bits) (3 bits) 0 (5 bits) MEMB

OPTIONAL DISPLACEMENT .
Figure 0.1. Instruction Formats

0-1

i.

Ii
11
11 I,
I'::
ii'
~ ,
, ',~

i;
I

Ii t
11

I
I
"

I;
Ii

MACHINE-LEVEL INSTRUCTION FORMATS

OPCODE,

SRC 1

SRC2'
','. .~" I SRCIDST

ABASE

INDEX

The opcode of the instruction. Opcode encodings are defined in section 6.1.8,
, "Op~ode ~d Instruction FQrmat" (pg. 6-6). . . . , .

An input to the instruction. Specifies a value or address. In one case in the
COBR format, this field is used to specify a register in which a result is
stQred.

An input, to the instru<;tion. Specifies a 'value or address.

Depending on the specific instruction, this can be (1) an input value or
address, (2) the register where the result is stored, or (3) both of the above.

/"', ;

A register. The register's value is used in computing a memory address.

A register. The register's value is used in computing a memory address.

DISPLACEMENT' A signed two's complement number.

OFFSET

0PI10NAL

MODE

SCALE

Ml,M2,M3

"

An unsigned positive number. ,

a signed two's complement number in case of 2-word MEMB format.
displacement

A specification of how a memory address for an operand is computed, and for
MEMB specifies whether the instruction contains a second word to be used
as a displacement.

A specification of how a register's' contents are multiplied for certain
addressing mpdes (Le., for indexing).

These fields further define the meaning of the SRC 1, SRC 2, and src/dest
fields respectively as shown in Table 0-1.

When a particular instruction is defined as not using a particular field, the field is ignored.

0.2 REG FORMAT

REG format is used for operations performed on data contained in registers. Most of the i960
processor family's instructions use this format.

Theopcode for the REG instructions is 12 bits long (three hexadecimal digits) and is split between
bits 7 through 10 and bits 24 through 31. For example, the addi opcode is 591H. Here, 59H is
contained iii bits 24 through 31; IH is contained in bits 7 through 10. , ,

srcl and src2 fields specify the.jnstrUction's source operands. Operands can be global or local
registers or literals. Mode bits (Ml for srcl and M2 for src2) and the instruction type determine
what an operand specifies. Table 0-1 shows tlns relationship: '

0-2 I

MACHINE-LEVEL INSTRUCTION FORMATS

Table 0-1. Encoding of sre1 and sre2 in REG Format

M1 or M2
Src1 or Src2

Register Number Literal Value
Operand Value

00000 ... 01111 rO ... r15 NA
0

10000 ... 11111 gO ... g15 NA
1 00000 ... 11111 NA 0 ... 31

The srcldst field can specify a source operand, a destination operand or both, depending on the
instruction. Here again, mode bit M3 determines how this field is used. If M3 is clear, the srcldst
operand is a global or local register that is encoded as shown in Table D-2. If M3 is set, the srcldst
operand can be used as a source-only operand that is a literal.

When a literal is specified, it is always an unsigned 5-bit value that is zero-extended to a 32-bit
value and used as the operand. When the instruction defines an operand to be larger than 32 bits,
values specified by literals are zero-extended to the operand size.

Table 0-2. Encoding of src/dst in REG Format

M3 SRCIDST SRCOnly DSTOnly

0
gO ... g15 gO ... g15 gO ... g15
rO ... r15 rO ... r15 rO ... r15

1 Reserved Literal Reserved

0.3 COBR FORMAT

The COBR format is used primarily for compare-and-branch instructions. The test-if instructions
also use the COBR format. The COBR opcode field is eight bits (two hexadecimal digits).

The srci and src2 fields specify source operands for the instruction. The srci field can specify
either a global or local register or a literal as determined by mode bit mi. The src2 field can only
specify a global or local register. Table D-3 shows the MI, srci relationship:

Table 0-3. Encoding of src1 in COBR Format

M1 sra1

0 gO ... 915
rO ... r15

1 Literal

I 0-3

I
I.'
I

MACHINE-LEVEL INSTRUCTION FORMATS

The displacement field contains a signed two's complement number that specifies a word
displacement. The prosessor uses this value to somp~te the address of a target instruction to which
the processor goes as a result of a comparison. The displacement field's value can range from _210

to 210 -1. To determine the target instruction's IP, the processor converts the displacement value to
a byte displacement (i.e., multiplies the value by 4). It then adds the resulting byte displacement to
the IP of the current instruction.

For the test<cc> instructions, only the srcl field is used. Here, this field specifies a destination
global or local register; Ml is ignored.

0.4 CTRL FORMAT

The CTRL format is used for instructions that branch to a new IP, including the branch,
branch<cc>, bal and call instructions; ret also uses this format. The CTRL opcode field is eight
bits (two hexadecimal digits).

A branch target address is speCified with the displacement field in the same manner as COBR
format instructions. The displacement field specifies a word displacement as a signed, two's
complement number in the range _221 to 221_1. The processor ignores the ret instruction's
displacement field.

0.5 MEM FORMAT

The MEM format is used for instructions that require a memory address to be computed. These
instructions include the load, store and Ida instructions. Also, the extended versions of the branch,
branch-and-link and call instructions (bx, balx and calix) use this format.

The two MEM-format encodings are MEMA and MEMB. MEMB can optionally add a 32-bit
displacement (contained in a second word) to the instruction. Bit 12 of the instruction's first word
determines whether MEMA (clear) or MEMB (set) is used.

The opcode field is eight bits long for either encoding. The src/dst field specifies a global or local
register. For load instructions, srcldst specifies the destination register for a word loaded into the
processor from memory or, for operands larger than one word, the first of successive destination
registers. For store instructions, this field specifies the register or group of registers that contain
the source operand to be s~oredin meJnory.

0-4 I

intet MACHINE-LEVEL INSTRUCTION FORMATS

The mode field determines the address mode used for the instruction. Table D-4 summarizes the
addressing modes for the two MEM-format encodings. Fields used in these addressing modes are
described in the following sections.

Table 0-4. Addressing Modes for MEM Format Instructions

#of
Format Mode Addressing Mode Address Computation Instr

Words

00 Absolute Offset offset 1
MEMA

10 Register Indirect with Offset (abase) + offset 1

0100 Register Indirect (abase) 1

0101 IP with Displacement (IP) + displacement + 8 2

0110 Reserved reserved NA

0111 Register Indirect with Index (abase) + (index)' 2scale

MEMB 1100 Absolute Displacement displacement

1101
Register Indirect wI

(abase) + displacement Displacement

1110 Index with Displacement (index) • 2sca1e + displacement

1111
Register Indirect with Index

(abase) + (index) • 2sca1e + displacement
and Displacement

NOTE:

In these address computations, a field in parentheses, e.g., (abase), indicates that the value in the
specified register is used in the computation.
Usage of a reserved encoding causes generation of an OPERATION.INVALID_OPCODE fault.

0.5.1 MEMA Format Addressing

The MEMA format provides two addressing modes:

• absolute offset

• register indirect with offset

1

2

2

2

2

The offset field specifies an unsigned byte offset from 0 to 40%. The abase field specifies a global
or local register that contains an address in memory.

For the absolute-offset addressing mode (mode = 00), the processor interprets the offset field as an
offset from byte 0 of the current process address space; the abase field is ignored. Using this
addressing mode along with the Ida instruction allows a constant in the range 0 to 4096 to be
loaded into a register.

_I 0-5

MACttlNE-LEVEI,., INSTRUCTION FORMATS

For the register~indirect"with-offset addressing mode (mode = 10), offset field value is added to the
a~dress in the abase register. Setting the offset value to zero creates a register indirect addressing
mode; however, this operation can generally be carried out faster by using the MEMB version· of
this addressing mode.

0.5.2 MEMB Format Addressing

The MEMB format provides the following seven addressing modes:

• absolute displacement •

• register indirect with displacement •

• register indirect with index and displacement

• IP with displacement

register indirect

register indirect with displacement

index with displacement

The abase and index fields specify local or global registers, the contents of which are used in
address computation. When the index field is used in an addressing mode, the processor automati­
cally scales the index register value by the amount specified in the scale field. Table D-5 gives the
encoding of the scale field. The optional displacement field is contained in the word following the
instruction word. Thedisplacement is a 32-bit signed two's complement value.

Table 0-5. Encoding of Scale Field

Scale Scale Factor (Multiplier)

000 , 1

001 2

010 4

011 8

100 16

101 to 111 Reserved

Note:
Usage of a reserved encoding causes an unpredictable result.

For the IP with displacement mode, the value of the displacement field plus eight is added to the
address of the current instruction.

0·6 I

GLOSSARY

I

Address Space

Address

Arithmetic Controls
(AC) Register

Asynchronous
Faults

Big Endian

Condition Code
Flags

Execution Mode
Flag

GLOSSARY

An array of bytes used to store program code, data, stacks and system
data structures required to execute a program. Address space is linear -
also called flat - and byte addressable, with addresses running contigu­
ously from 0 to 232 - 1. It can be mapped to read-write memory, read­
only memory and memory-mapped I/O. i960 architecture does not define
a dedicated, addressable 110 space.

A 32-bit value in the range 0 to FFFF FFFFH used to reference in
memory a single byte, half-word (2 bytes), word (4 bytes), double-word
(8 bytes), triple-word (12 bytes) or quad-word (16 bytes). Choice
depends on the instruction used.

A 32-bit register that contains flags and masks used in controlling the
various arithmetic and comparison operations that the processor
performs. Flags and masks contained in this register include the
condition code flags, integer-overflow flag and mask bit and the no­
imprecise-faults (NIF) bit. All unused bits in this register are reserved
and must be set to o.
Faults that occur with no direct relationship to a particular instruction in
the instruction stream. When an asynchronous fault occurs, the address
of the faulting instruction in the fault record and the saved IP are
undefined. i960 core architecture does not define any fault types that are
asynchronous.

The controller reads or writes a data word's least-significant byte to the
bus' eight most-significant data lines (D3l:24). Big endian systems store
the least-significant byte at the highest byte address in memory. So, if a
big endian ordered word is stored at address 600, the least-significant
byte is stored at address 603 and the most-significant byte at address 600.
Compare with little endian.

AC register bits 0, 1 and 2. The condition code flags indicate the results
of certain instructions - usually compare instructions. Other instructions,
such as conditional branch instructions, examine these flags and perform
functions according to their state. Once the processor sets the condition
code flags, they remain unchanged until the processor executes another
instruction that uses these flags to store results.

PC register bit 1. This flag determines whether the processor is operating
in user mode (0) or supervisor mode (1).

Glossary-1

,:"

GLOSSARY

Fault Call

Fault Table

Fault

FP

Frame Pointer (FP)

Frame

Global Registers

H~dReset

mR
IMI

Imprecise Faults

Initialization Boot
Record (IBR)

Glossary-2

intet
An implicit call· to a fault handling procedure. The processor performs
fault calls automatically without any intervention from software. It gets .
pointers to fault handling procedures from the fault table.

An architecture-defmed data structure that contains pointers to fault
handling pr:ocedures. Each fault table entry is associated with a particular
fault type. When the processor generates Ii fault, i.t uses the fault table to
select the proper fault handling procedure for the type of fault condition
detected.

An everit that the processor generates to indicate that, while executing
the program, a condition arose which could cause the processor to go

. down a wrong and possibly disastrous path. One example of a fault
condition is a divisor operand of zero in a. div:ide operation; another
example is an instruction with an invalid opcode.

See Frame Pointer.

The address of the first byte in the current (topmost) stack frame of the
procedure stack. The FP is contained in global register glS~ .

See Stack Frame.

A s~t of 16 general-purpose registers (gO throllgh glS) whose contents
are preserved across procedure boundaries .. Global registers are used for
general storage of data and addresses and for passing parameters
between procedures. - .

The assertion of the RESET# pin; equivalent to powerup.

See Initialization Boot Record.

See Initial Memory Image.

Faults that are allowed to be generated out-of-order from where they
occur in the instruction stream. When an imprecise fault is generated, the
prOCessor indicates the address of the faulting instruction, but it does not
guarantee that software will be able to recover from the fault and resume
execution of the· program with no break in the program's control flow.
The NIP bit in the arithmetic controls register determines whether all
faults must be precise (l}or some faults are allowed to be imprecise (0).

One of three IMI components, IBR is the primary data structure required
to initialize the i960 CA microprocessor. IBN. is 12-word structure which
must be located at address FFFF FFOOH.

I

Initial Memory
Image (IMI)

Instruction Cache

Instruction Pointer
(IP)

Integer Overflow
Flag

Integer Overflow
Mask Bit

Interrupt Call

Interrupt Stack

Interrupt Table

Interrupt Vector

Interrupt

Leaf Procedure

l~

GLOSSARY

Comprises the minimum set of data structures the processor needs to
initialize its system. Performs three functions for the processor: 1)
provides initial configuration information for the core and integrated
peripherals; 2) provides pointers to system data structures and the first
instruction to be executed after processor initialization; 3) provides
checksum words that the processor uses in self-test at startup. See also
IBR, PRCB and System Data Structures.

A memory array used for temporary storage of instructions fetched from
main memory. Its purpose is to streamline instruction execution by
reducing the number of instruction fetches required to execute a
program.

A 32-bit register that contains the address (in the address space) of the
instruction currently being executed. Since instructions are required to be
aligned on word boundaries in memory, the IP's two least-significant bits
are always zero.

AC register bit 8. When integer overflow faults are masked, the
processor sets the integer overflow flag whenever integer overflow
occurs to indicate that the fault condition has occurred even though the
fault has been masked. If the fault is not masked, the fault is allowed to
occur and the flag is not set.

AC register bit 12. This bit masks the integer overflow fault.

An implicit call to a interrupt handling procedure. The processor
performs interrupt calls automatically without any intervention from
software. It gets vectors (pointers) to interrupt handling procedures from
the interrupt table. .

Stack the processor uses when it executes interrupt handling procedures.

An architecturally-defined data structure that contains vectors to
interrupt handling procedures and fields for storing pending interrupts.
When the processor receives an interrupt, it uses the vector number that
accompanies the interrupt to locate an interrupt vector in the interrupt
table. The interrupt table's pending interrupt fields contain bits that
indicate priorities and vector numbers of interrupts waiting to be
serviced.

A point«r to an interrupt handling procedure. In the i960 architecture,
interrupts vectors are stored in the interrupt table.

An event that causes program execution to be suspended temporarily to
allow the processor to handle a more urgent chore.

Leaf procedures call no other procedures. They are called "leaf
procedures" because they reside at the "leaves" of the call tree.

Glossary-3

GLOSSARY

Literals

Little Endian

Local Call

Local Registers

Memory

"Natural" Fill
Policy

NIF

NMI

No Imprecise Faults
(NIF) Bit

Non Maskable
Interrupt (NMI)

Parallel Faults

Glossary-4

A set of 32 ordinal values ranging from 0 to 31 (5 bits) that can be used
as operands in certain instructions.

The controller reads or writes a data word's least-significant byte to the
bus' eight least-significant data lines (D7:0). Little endian systems store
a word's least-significant byte at the lowest byte address in memory. For
example, if a little endian ordered word is stored at address 600, the
least-significant byte is stored at address 600 and the most-significant
byte at address 603. Compare with big endian .

. A procedure call that does not require a switch in the current execution
mode or a switch to another stack. Local calls can be made explicitly
through the call, calix and calls instructions and implicitly through the
fault call mechanism.

A set of 16 general-purpose data registers (rO through r15) whose
contents are associated with the procedure currently being executed.
Local registers hold the local variables for a procedure. Each time a
procedure is called, the processor automatically· allocates a new set of
local registers for that procedure and saves the local registers for the
calling procedure.

Array to which address space is mapped: Memory can be read-write,
read-only or a combination of the two. A memory address is generally
synonymous with an address in the address space.

The processor fetches only the amount of data that is requested by a load
(i.e;, a word, long word, etc.) on a data cache miss. Exceptions are byte
and short word accesses, which are always promoted to words.

See No Imprecise Faults Bit.

See Non Maskable Interrupt.

AC register bit 15. This flag determines whether or not imprecise faults
are allowed to occUr. If set, all faults are required to be precise; if clear,
certain faults can be imprecise.

Provides an interrupt !hat cannot be masked and has a higher priority
than priority-31 interrupts and priority-31 process priority. The core
servic;es NMI requests immediately.

A condition which occurs when multiple execution units, executing
instructions in parallel, report multiple faults simultaneously. Setting the
NIP bit prohibits .execution conditions which could cause parallel faults.

I

GLOSSARY

Pending Interrupt An interrupt that the processor saves to be serviced at a later time. When
the processor receives an interrupt, it compares the interrupt's priority
with the priority of the current processing task. If the priority of the
interrupt is equal to or less than that of the current task, the processor
saves the interrupt's priority and vector number in the pending interrupt
fields of the interrupt table, then continues work on the current
processing task.

PFP See Previous Frame Pointer.

Pointer An address in the address space (or memory). The term pointer generally
refers to the first byte of a procedure or data structure or a specific byte
location in a stack.

PRCB See Process Control Block.

Precise Faults Faults gen.erated in the order in which they occur in the instruction
stream and with sufficient fault information to allow software to recover
from the faults without altering program's control flow. The AC register
NIP bit and the syncf instruction allow software to force all faults to be
precise.

Previous Frame
Pointer (pFP)

Priority Field

Priority

Process Control
Block (PRCB)

Process Controls
(PC) Register

I

The address of the previous stack frame's first byte. It is contained in bits
4 through 31 of local register rOo

PC register bits 16 through 20. This field determines processor priority
(from 0 to 31). When the processor is in the executing state, it sets its
priority according to this value. It also uses this field to determine
whether to service an interrupt immediately or to save the interrupt for
later service.

A value from 0 to 31 that indicates the priority of a program or interrupt;
highest priority is 31. The processor stores the priority of the task
(program or interrupt) that it is currently working on in the priority field
of the PC register. See also NMI.

One of three (IMI) components, PRCB contains base addresses for
system data structures and initial configuration information for the core
and integrated peripherals.

A 32-bit register that contains miscellaneous pieces of information used
to control processor activity and show current processor state. Flags and
fields in this register include the trace enable bit, execution mode flag,
trace fault pending flag, state flag, priority field and internal state field.
All unused bits in this register are reserved and must be set to O.

Glossary-5

GLOSSARY

Register Score­
boarding

Return Instruction
Pointer (RIP)

Return Type Field

RIP

Soft Reset

SP

Stack Frame

Stack Pointer. (SP)

Stack

State Flag

State

Glossary-6

Internal flags that indicate a particular register or group of registers is'
being used in an operation. This feature enables the processor to execute
some instructions in parallel and out-of-order. When the processor
begins executing an instruction, it sets the scoreboard flag for the
destination register in use by that instruction. If the instructions that
follow do not use scoreboarded registers, the processor is able to execute
one or more of those instructions concurrently with the frrst instruction.

The address of the instruction following a call or branch-and-link
instruction that the processor is to execute after returning from the called
procedure. The RIP is contained in local register r2. When the processor
executes a procedure call, it sets the RIP to the address of the instruction
immediately following the procedure call instruction.

Bits 0, 1 and 2 of local register rOo When a procedure call is made using
the integrated call and return. mechanism, this field indicates the call
type: local, supervisor, interrupt or fault. The processor uses this

. information to select the proper return mechanism when returning from
the called procedure.

See Return Instruction Pointer.

Re-running of the Reset microcode without physically asserting the
RESET# pin or removing power from the CPU.

See Stack Pointer.

A block of bytes on a stack used to store local variables for a specific
procedure. Another term for a stack frame is an activation record. Each
procedure that the processor calls has its own stack frame associated
with it. A stack frame is always aligned on a 64-byte boundary. The first
64 bytes in a stack frame are reserved for storage of the local registers
associated with the procedure. The frame pointer (FP) and stack pointer
(SP) for a particular frame indicate location and boundaries of a stack
frame within a stack.

The address of the last byte in the current (topmost) frame of .the
procedure stack. The SP is contained in local register ri.

A contiguous array of bytes in the address space that grows from low
addresses to high addresses. It consists of contiguous frames, one frame
for each active procedure. i960 architecture defines three stacks: local,
supervisor and interrupt.

PC register bit 10. This flag indicates to software that the processor is
currently executing a program (0) or servicing an interrupt (1).

The type of task that the processor is currently working on: a program or
an interrupt handling procedure. The processor sets the PC register state
flag to indicate its current state.

L

intet
Status and Control
Registers

Supervisor Call

Supervisor Mode

Supervisor Stack
Pointer

Supervisor Stack

System Call

System Data
Structures

System Procedure
Table

Trace Table

Trace Control Bit

Trace Controls
(TC) Register

~I

GLOSSARY

A set of four architecturally-defined registers - each 32-bits in length -
that contain status and control information used in controlling program
flow. These registers include the instruction pointer (IP), AC register, PC
register and TC register.

A system call (made with the calls instruction) where the entry type of
the called procedure is 102. If the processor is in user mode when a
supervisor call is made, it switches to the supervisor stack and to
supervisor mode.

One of two execution modes - user and supervisor - that the processor
can be in. The processor uses the supervisor stack when in supervisor
mode. Also, while in supervisor mode, software is allowed to execute the
modpc instruction and any other implementation-defined instructions
that are designed to be supervisor mode instructions.

The address of the first byte of the supervisor stack. The supervisor stack
pointer is contained in bytes 12 through 15 of the system procedure table
and the trace table.

The procedure stack that the processor uses when in supervisor mode.

An explicit procedure call made with the calls instruction. The two types
of system calls are a system-local call and system-supervisor call. On a
system call, the processor gets a pointer to the system procedure through
the system procedure table.

One of three IMI components. The following system data structures
contain values the processor requires for initialization: PRCB, IBR,
system procedure table, control table, interrupt table.

An architecturally-defined data structure that contains pointers to system
procedures and (optionally) to fault handling procedures. It also contains
the supervisor stack pointer and the trace control flag.

An architecturally-defined data structure that contains pointers to trace­
fault-handling procedures. The trace table has the same structure as the
system procedure table.

Bit 0 of byte 12 of the system procedure table. This bit specifies the new
value of the trace enable bit when a supervisor call causes a switch from
user mode to supervisor mode. Setting this bit to 1 enables tracing;
setting it to 0 disables tracing.

A 32-bit register that controls processor tracing facilities. This register
contains one event bit and one mode bit for each trace fault subtype (i.e.,
instruction, branch, call, return, preretum, supervisor and breakpoint).
The mode bits enable the various tracing modes; the event flags indicate
that a particular type of trace event has been detected. All the unused bits
in this register are reserved and must be set to O.

Glossary-7

Ii

... '

GLOSSARY

Trace Enable Bit

Trace Fault
Pending Flag

Tracing

User Mode

Vector Number

Vector

Glossary-8

PC register bit O. This bit determines whether trace faults are to be
generated (1) or not generated (0).

PC register bit 10. This flag indicates that a trace event has been detected
(1) but not yet generated. Whenever the processor detects a trace fault at

, the same, time that it detects' a, non~trace fault, it sets the trace fault
pending flag then calls the fault handling procedure for the non-trace
fault. On return from the fault procedure for the non-trace fault, the
processor checks the trace fault pending flag. IT set, it generates the trace
fault and handles it.

The ability of the processor to detect execution of certain instruction
types, such as branch, call and return. When tracing is enabled, the
processor generates a fault whenever it detects a trace event. A trace fault
handler can then be designed to' call ,a debug monitor to provide
information on the trace event and its location in the instruction stream.

One of two execution modes - user and supervisor - that the processor
can be in. When the processor is in user mode, it uses the local stack and
is not allowed to use the modpc instruction or any other implementation­
defined instruction that is designed to be used only in supervisor mode.

The number of an entry in the interrupt table where an interrupt vector is
, stored .. The vector nwnber also indicates the priority of the interrupt.

See Interrupt Vector.

I

INDEX

I

A
absolute

displacement 2-7
offset 2-7

AC register, see Arithmetic Controls (AC) register
access fault model 3-7
access faults 3-7
access types 3-6

restrictions 3-6
ADD 6-8

add
conditional instructions 6-8
integer instruction 6-12
ordinal instruction 6-12
ordinal with carry instruction 6-11

addc 6-11
addi 6-12
addie 6-8
addig 6-8
addige 6-8
addil6-8
addile 6-8
addine 6-8
addino 6-8
addio 6-8
addo 6-12
addoe 6-8
addog·6-8
addoge 6-8
addol6-8

add ole 6-8
addone 6-8
addono 6-8
addoo 6-8
address space restrictions

data structure alignment A-3
instruction cache A-2
internal data RAM A-2
reserved memory A -2
stack frame alignment A-3

addressing registers and literals 3-4
aligment

literals 3-4

1

alignment
registers 3-4

alignment of registers and literals 3-4
alterbit 6-13
and 6-14
andnot 6-14
architecture reserved memory space 11-9
argument list 7-14
Arithmetic Controls (AC) register 3-17

condition code flags 3-18
initial image 11-18
initialization 3 -18
integer overflow flag 3-20
no imprecise faults bit 3-20

arithmetic instructions 5-6
add, subtract, multiply or divide 5-7
extended-precision instructions 5-8
remainder and modulo instructions 5-8
shift and rotate instructions 5-9

arithmetic operations and data types 5-7
atadd 3-15, 6-15
atmod 3-8, 3-15, 6-16
atomic access 3-14
atomic add instruction 6-15
atomic instructions 5-17
Atomic instructions (LOCK signal) 15-30
atomic modify instruction 6-16
atomic operations 15-30

B
b 6-17
ba16-18

balx 6-18
basic bus states 15-2
bbc 6-20
bbs 6-20

INDEX

BCON register, see Bus Control (BCON) register
BCU, see Bus Controller Unit
be 6-22
bg 6-22
bge 6-22
big endian 3-16

Index-1

INDEX

big-endian byte order

selecting
little endian byte order

selecting 12-11
bit definition 1-8
bit ordering 2-4
bit, bit field and byte instructions 5-10

bit field instructions 5-11
bit instructions 5-10
byte instructions 5-11

bits and bit fields 2-3
b16-22
ble 6-22
bne 6-22
bno 6-22
bo 6-22
boundary conditions

internal memory locations 12-12 .
internal memory-mapped locations 12-7
LMT boundaries 12.13
logical data template ranges 12-13

Boundary Scan

test logic 17-2
Boundary Scan (JTAG) 17-1
Boundary Scan Architecture 17-2
Boundary-Scan register 17-7
branch

and link extended instruction 6-18
and link instruction 6-18
check bit and branch if clear set instruction 6-20
check bit and branch if set instruction 6-20
conditional instructions 6-22
extended instruction 6-17
instruction 6-17

branch instructions 5-13
compare and branch instructions 5-15
conditional branch instructions 5-14
unconditional branch instructions 5-13

branch-and-link 7-1
returning from 7-22

branch-and-link instruction 7-1
coding calls 7-1

breakpoint
resource request message 10-7

Index-2

Breakpoint Control (BPCON) register 10-7, 10-8,
C-16

programming 10-8
breakpoints A -7

bswap 6-24
built-in self test 11-2
bus confidence self test 11-6
Bus Control (BCON) register 12-6, 12-7
Bus Control Unit (BCU) 15-22

changing byte order dynamically 12-13
selecting byte order 12-11

Bus Controller
boundary conditions 12-7
compared to previous i960 processors 12-4
logical memory attributes 12-2
memory attributes 12-1
physical memory attributes 12-1, 12-4

Bus Controller Unit (BCU) 12-1
bus width 12-5
PMCON initialization 12-6

bus controller unit (BCU) 15-2
bus master

arbitration timing diagram 15-33
bus signal groups 15-4
bus snooping 4-5
bus states with arbitration 15-3
bus transactions

basic read 15-9
basic write 15-11
burst transactions 15-11
bus width 15-7
data width 15-7

bus width
programming with PMCON register 12-5

bx 6-17
byte order

changing dynamically 12-13
selecting 12-11

byte swap instruction 6-24

c
cache load-and-Iock mechanism 4-5
caching of interrupt-handling procedure 13-23

I

caching oflocal register sets 7-9
frame fills 7-9
frame spills 7-9

call
extended instruction 6-28
instruction 6-25
system instruction 6-26

call 6-25, 7-2, 7-7
call and return instructions 5-16
call and return mechanism 7 -1, 7 -2

explicit calls 7-1
implicit calls 7-1
local register cache 7-3
local registers 7-2
procedure stack 7-3
register and stack management 7-4

frame pointer 7-4
previous frame pointer 7-6
return type field 7-6
stack pointer 7-5

stack frame 7-2
call and return operations 7-6

call operation 7-7
return operation 7-8

calls 6-26, 7-2, 7-7
call-trace mode 10-3
calix 6-28, 7-2, 7-7
check bit instruction 6-30
chkbit 6-30
clear bit instruction 6-31
clock input (CLKIN) 11-33
clrbit 6-31
cmpdeci 6-32
cmpdeco 6-32
cmpi 5-11, 6-34
cmpib 5-11
cmpibe 6-36
cmpibg 6-36
cmpibge 6-36
cmpibl6-36

cmpible 6-36
cmpibne 6-36
cmpibno 6-36
cmpibo 6-36

cmpinci 6-33
cmpinco 6-33
cmpis 5-11
cmpo 5-11, 6-34
cmpobe 6-36
cmpobg 6-36
cmpobge 6-36
cmpobl6-36

cmpoble 6-36
cmpobne 6-36
cold reset 11-3, 13-18
compare

and branch conditional instructions 6-36
and decrement integer instruction 6-32
and decrement ordinal instruction 6-32
and increment integer instruction 6-33
and increment ordinal instruction 6-33
integer conditional instruction 6-39
integer instruction 6-34
ordinal conditional instruction 6-39
ordinal instruction 6-34

comparison instructions 5-11

INDEX

compare and conditional compare instructions
5-11

compare and increment or decrement instructions
5-12

test condition instructions 5-13
concmpi 6-39
concmpo 6-39
conditional fault instructions 5-17
control registers 3-1, 3-6

memory-mapped 3-5
overview 1-4

control table 3-1, 3-6, 3-12
Control Table Valid (CTV) bit 12-6
core architecture mechanisms A-I

D
Data Address Breakpoint (DAB) registers 10-9

programming 10-8
data alignment 2-4
data alignment in external memory 3-15

Index-3

--I,

IND.EX

data cache
coherency

110 and bus masters 4-9
fill policy 1-2, 4-6, 4-7
overview 1-2
visibility 4-9
write policy 4-7

data cache control instruction 6-41
Data Cache Enable (DCEN) bit 12-12
data control peripheral units A-6
data movement instructions 5-3

load address instruction 5-6
load instructions· 5-5
move instructions 5-6

Data Register
timing diagram 17-19

data structures
control table 3-1,3-6, 3-12
fault table 3-1, 3-12
initialization boot record 3-1, 3-12
interrupt stack 3-1, 3-12
interrupt table 3-1, 3-12
literals 3-4
local stack 3-1
Process Control Block (PRCB) 3-1, 3-12
supervisor stack 3-1,3-12
system procedure table 3-1, 3-12
user stack 3-12

data types
bits and bit fields 2-3
data alignment 2-4
integers 2-2
literals 2-4
ordinals 2-2
supported 2-1
triple and quad words 2-3

dcctl 4-6,,4-9, 6-41
DCEN bit, see Data Cache Enable (DCEN) bit

debug
overview 10-1

debug instructions 5-17
decoupling capacitors 11-35
Default Logical Memory Configuration (DLMCON)

register 12-2

Index-4

design considerations
high frequency 11-36
interference 11-38
latchup 11-38
line termination 11-37

Device ill register 17-6
device ill Register 11-21
device ill register C-21
dlv16-47

divide integer instruction 6-47
divide ordinal instruction 6-47
divo 6-47
DLMCON registers

E
ediv 6-48

intet

8-bit bus width byte enable encodings 15-8
8-bit wide data bus bursts 15-13
electromagnetic interference (EMl) 11-39
electrostatic interference (ESI) 11-39
emu I 6-50
endianism

changing dynamically 12-13
selecting 12-11

eshro 6-51
explicit calls 7-1
extended addressing instructions 5-13
extended divide instruction 6-48
extended multiply instruction 6-50
extended shift right ordinal instruction 6-51
external bus

overview 1-4
external buses

data alignment 15-22
external interrupt pins (XINT7

0) 13-9
external memory requirements 3-14 .
external system requirements A-7
extract 6-52

F
FAIL# pin 11-6
fault conditional instructions 6-53
fault conditions 9-1

fault handling
data structures 9-1
fault record 9-2, 9-6
fault table 9-2, 9-4
fault type and subtype numbers 9-2
fault types 9-4
local calls 9-2
multiple fault conditions 9-10
procedure invocation 9-6
return instruction pointer (RIP) 9-14
returning to an alternate point in the program 9-15
stack usage 9-6
supervisor stack 9-2
system procedure table 9-2
system-local calls 9-2
system-supervisor calls 9-2
user stack 9-2

fault record 9-6
address-of-faulting-instruction field 9-7
fault subtype field 9-7
fault type field 9-7
location 9-6, 9-9
structure 9-7

fault table 3-1, 3-12, 9-4
local-call entry 9-6
location 9-4
system-call entry 9-6

fault type and subtype numbers 9-2
fault types 9-4
faulte 6-53
faultg 6-53
faultge 6-53
faultl6-53

faultle 6-53
faultne 6-53
faultno 6-53
faulto 6-53

I

INDEX

faults A-6
access 3-7
ARITHMETIC.INTEGER_OVERFLOW 6-90
ARITHMETIC. OVERFLOW 6-8,6-12,6-47,

6-83,6-101,6-107,6-112
ARITHMETIC.ZERO_DIVIDE 6-47, 6-48,

6-76,6-90
CONSTRAINT.RANGE 6-53
imprecise 5-23
NIFbit 9-20
OPERATION.INV ALID_OPERAND 6-45,

6-48,6-57,6-65,6-67,6-81,6-107,6-117
OPERATION.UNALIGNED 6-72, 6-107
OPERATION.UNIMPLEMENTED 6-92
overview 1-5
precision (syncf) 9-20
PROTECTION.LENGTH 6-27
TRACE.MARK 6-56, 6-74
TRACE.PRERETURN 6-92
TYPE.MISMATCH 6-45,6-57,6-65,6-67,

6-68,6-69,6-78,6-107,6-117
field definition 1-8
flag definition 1-8
flush local registers instruction 6-55
flushreg 6-55
fmark 6-56
force mark instruction 6-56
FP, see Frame Pointer
frame fills 7-9
Frame Pointer (FP) 7-4

location 3-3
frame spills 7-9

G
global registers 3-1, 3-2

overview 1-7

H
halt 6-57, 16-1
halt CPU instruction 6-57
HALT mode

entering and exiting 16-1
operation 16-1
processor operation 16-1

Index-5

INDEX

hardware breakpoint resources 10-5
requesting access privilege 10-6

HOLDIHOLDA protocol 15-32

i IBR, see initialization boot record

\

" icctl 1-2,4-4,4-5
,'i". IEEE Standard Test Access Port 17-2
. ,~>i IEEE Std. 1149.1 17-2
I IMI 11-1, 11-9

implementation-specific features A-I
implicit calls 7 -1, 9..:2
imprecise faults 5-23
index with displacement 2-8
indivisible access 3-14
Initial Memory Image (lMI) 11--1
initial memory image (IMI) 11-9 .
initialization 11-1, 11-2

CLKIN 11-33
code example 11-23
hardware requirements 11-33
MON960 11-23
power and ground 11-34

initialization boot record 3-1,3-12
Initialization Boot Record (IBR) 11-1, 1 1-12,'

11-14
initialization mechanism A-5
initialization requirements

architecture reserved memory space 11-9
controltable 11-20, C-19
data structures 11-10
Process Control Block 11-14

Instruction Breakpoint (IBP) registers 10-10
instruction breakpoint mo~es

programming 10-11
instruction cache 3-1, 3-16

coherency 4-5
configuration 3-16
enabling and disabling 11-18
locking instructions 4-5
overview 1-2,4-4
visibility 4-5

Index-6

instruction formats 5-3
assembly language format 5-1
instruction encoding format 5-2

instruction optimizations 5-19
Instruction Pointer (IP) register 3-17
Instruction Register (IR) 17-2, 17-5

timing diagram 17-18
Instruction set

atmod 3-8
sysctl3-8

instruction set

6-8
ADD 6-8
addc 6-11
addi 6-12
addle 6-8
addig 6-8
addlge 6-8
addll 6-8
addlle 6-8
addlne 6-8
addlno 6-8
addo 6-12
addoe 6-8
addog 6-8
addoge 6-8
addol6-8
addole 6-8
addone 6-8
addono 6-8
addoo 6-8
alterblt 6-13
and 6-14
andnot 6-14
atadd 3-15, 6-15
atmod 3-15, 6-16
b 6-17
ba16-18
balx 6-18
bbc 6-20
bbs 6-20
be 6-22
bg 6-22
bge 6-22

intet

I

in1et
b16-22

ble 6-22
bne 6-22
bno 6-22
bo 6-22
bswap 6-24
bx 6-17
call 6-25, 7-2, 7-7
calls 6-26, 7-2, 7-7
calix 6-28, 7-2, 7-7
chkbit 6-30
clrbit 6-31
cmpdeci 6-32
cmpdeco 6-32
cmpi 5-11, 6-34
cmpib 5-11
cmpibe 6-36
cmpibg 6-36
cmpibge 6-36
cmpibl6-36

cmpible 6-36
cmpibne 6-36
cmpibno 6-36
cmplbo 6-36
cmplnci 6-33
cmplnco 6-33
cmpis 5-11
cmpo 5-11, 6-34
cmpobe 6-36
cmpobg 6-36
cmpobge 6-36
cmpobl6-36

cmpoble 6-36
cmpobne 6-36
concmpi 6-39
concmpo 6-39
dcetl 4-6, 4-9, 6-41
divi 6-47
divo 6-47
ediv 6-48
emu16-50

eshro 6-51
extract 6-52
faulte 6-53

INDEX

faultg 6-53
faultge 6-53
faulll 6-53
fauille 6-53
faultne 6-53
faultno 6-53
faulto 6-53
flushreg 6-55
fmark 6-56
halt 6-57, 16-1
icetl 1-2, 4-4, 4-5
implementation-specific instructions A-4
instruction timing A-4
intetl6-66

intdis 6-68
inten 6-69
Id 2-2, 6-70
Ida 6-73
Idib 2-2, 6-70
Idis 2-2, 6-70
Idl 3-4, 6-70
Idob 2-3, 6-70
Idos 2-3, 6-70
Idq 6-70
Idt 6-70
mark 6-74
modac 6-75
modi 6-76
modify 6-77
modpc 6-78, 10-3
modtc 6-79, 10-2
mov 6-80
mov16-80

movq 6-80
movt 6-80
mull 6-83
mulo 6-83
nand 6-84
nor 6-85
not 6-86
notand 6-86
notbit 6-87
notor 6-88
or 6-89

Index-7

INDEX · tel' In" ®

ornot 6-89 subol 6-109
remi 6-90 subole 6-109
remo 6-90 subone 6-109
ret 6-91 subono 6-109
rotate 6-94 suboo 6-109
scanbit 6-95 syncf 6-113, 9-20
scan byte 6-96 sysctl 1-2,4-4,4-5, 6-114, 10-6
sele 5-6, 6-97 teste 6-118
selg 5-6, 6-97 testg 6-118
selge 5-6, 6-97 testge 6-118
sell 5-6, 6-97 testI6-118

selle 5-6, 6-97 testle 6-118
seine 5-6, 6-97 testne 6-118
selno 5-6, 6-97 testno 6-118
selo 5-6, 6-97 testo 6-118
setbit 6-99 xnor 6-120
shli 6-100 xor 6-120
shlo 6-100 instruction set functional groups 5-3
shrdi 6-100 Instruction Trace Event 6-5
shrl6-100 instruction-trace mode 10-3
shro 6-100 intctl6-66

spanbit 6-103 Intdis 6-68
st 2-2, 6-104 integer flow masking 5-22
stib 2-2,6-104 integers 2-2
stis 2-2, 6-104 data truncation 2-2
st16-104 ," sign extension 2-2
stob 2-3, 6-104 inten 6-69
stos 2-3 internal data RAM 4-1
stq 6-104 modification 4-1
stt 6-104 overview 1-2
subc 6-108 size 4-1
subi 6-112 internal self test program 11-6
subie 6-109 interrupt
subig 6-109 timer 13-2
subige 6-109 Interrupt Control (ICON) register 1-3
subil 6-109 memory-mapped addresses 13-12
subile 6-109 interrupt controller 13-1
subine 6-109 configuration 13-20
subino 6-109 interrupt pins 13-9
subio 6-109 overview 13-1
subo 6-112 program interface 13-1
suboe 6-109 programmer interface 13-11
subog 6-109 setup 13-20
suboge 6-109 Interrupt Controller Unit (ICU) 1-3

Index-8 ,I

interrupt handling procedures 8-6
AC and PC registers 8-6
address space 8-7
global registers 8-7
instruction cache 8-7
interrupt stack 8-6
local registers 8-6
location 8-6
supervisor mode 8-'6

Interrupt Map Control (IMAPO-lMAP2) registers
1-3

Interrupt Mapping (lMAPO-lMAP2) registers 13-14
interrupt mask

saving 13-8
Interrupt Mask (lMSK) and Pending (IPND)

registers 13-16
Interrupt Mask (IMSK) register 1-3,13-16,13-17,

C-13
Interrupt Pending (IPND) register 1-3, 13-16
interrupt performance

caching of interrupt-handling 13-23
interrupt stack 13-24
local register cache 13-23

interrupt pins

dedicated mode 13-2
expanded mode 13-2
mixed mode 1~-2

interrupt posting 8-1 ,
interrUpt procedUre pointer 8-5 .
interrupt record 8-5

location 8-5
"

interrupt request management 13-2
interrupt sequencing of operations 13-19
interrupt servicing mechanism A-5
interrupt stack 3-1, 3-12, 8-5, 13-24

structure 8-5
interrupt table 3-1, 3-12, 8-3

alignment 8-3

I.

location 8-3
pending interrupts 8-5
vector entries 8-4,

interrupts

dedicated mode 13-5
dedicated mode posting 13-5
expanded mode 13-6
function 8-1
global disable instruction 6-68

INDEX

global enable and disable instruction 6-66
global enable instruction 6-69
internal RAM 13-22
interrupt context switch 8-7
interrupt handling procedures 8-6
interrupt record 8-5
interrupt stack 8-5
interrupt table 8-3
masking hardware interrupts 13-9
mixed mode 13-8
Non-Maskable Interrupt (NMI) 13-2
overview 8-1
physical characteristics 13-9
posting 8-1
priority handling 13-3
priority-31 interrupts 8-3, 13-9
programmable options 13-10
restoring r3 13-9
servicing 8-3
sysctl 13-3
vector caching 13-22

IP register, see Instruction Pointer (IP) register

IP with displacement 2-8

L
Id 2-2, 6-70
Ida 6-73
Idlb 2-2, 6-70
ldis 2-2
Idis 2-2, 6-70
Idl 3-4, 6-70
Idob 2-3, 6-70
Idos 2-3, 6-70
Idq 6-70
Icit 6-70
leaf procedures 7-1, Glossary-3
literal addressing and alignment 3-5

Index-9

INDEX

literals 2-4, 3-1, 3-4
addressing 3-4

little endian byte order 3-16
LMADR register
LMCON registers
load address instruction 6-73
load instructions 5-5, 6~ 70 .
load-and-lock 4-5 ' .
local calls 7-2, 7-15, 9-2

call 7-2
calix 7-2

local register cache 7-3
overview 1-3, 4-2

local registers 3-1, 7-2
allocation 3-3, 7~2,

management 3-3
overview 1-7
usage 7-2

local stack 3-1
. LOCK pin A-7
logical data templates

effective range 12-10
logical instructions 5-10
Logical Memory Address (LMADR) register 12-2
Logical Memory Address (LMADR) registers

programming 12-8
Logical Memory Configuration (LMCON) registers

12-2
Logical Memory Mask (LMMR) registers

programming 12-8
Logical Memory Templates (LMTs)

accesses across boundaries 12-13
boundary conditions 12-12
enabling 12-12
enabling and disabling data caching 12-12
modifying 12-13
overlapping ranges 12-13
values after reset 12-12

M
mark 6-74
Mark Trace Event 6-5

memory address space 3-1
external memory requirements 3-14 .

atomic access 3-14
big endian byte order 3-16
data alignment 3-15
data block sizes 3-16
data block storage 3-16
indivisible access 3-14
instruction alignment in external memory
3-15

. little endian byte order 3-16
reserved memory 3-14

location 3-13
management 3-13

memory addressing modes
absolute 2-7
examples 2-8
index with displacement 2-8 .
IP with displacement 2-8
register indirect 2-7

memory-mapped control registers 3-5
Memory-Mapped Registers (MMR) 3-6
MMR, see Memory-Mapped Registers (MMR)
modac 6-75 '
modi 6-76
modify 6-77
modify arithmetic controls instruction 6-75
modify process controls instru<;tion 6-78
modify trace controls instruction 6-79, 10-2
modpc 6-78, 10-3 . .
modtc 6-79, 10-2
modulo integer instruction 6-76
moy 6-80
move instructions 6-80
moY16-80
moyq 6-80
movt 6-80
muli 6-83
mulo 6-83
multiple fault conditions 9-10
multiply integer instruction 6-83
multiply ordinal instruction 6-83

I

N
nand 6-84
No Imprecise Faults (AC.nif) bit 9-15,9-20
Non-Maskable Interrupt (NMI) 13-2
Non-Maskable Interrupt (NMI) pin 13-9
nor 6-85
not 6-86
notand 6-86
notbit 6-87
notor 6-88

o
On-Circuit Emulation (ONCE) mode 11-1, 17-1
or 6-89
ordinals 2-2

sign and sign extension 2-3
sizes 2-2

ornot 6-89
output pins 11-35

p
parameter passing 7-13

argument list 7-14
by reference 7-14
by value 7-14

PC register, see Process Controls (PC) register
pending interrupts 8-5

encoding 8-5
interrupt procedure pointer 8-5
pending priorities field 8-5

performance optimization 5-19
PFP, see Previous Frame Pointer (PFP)
Physical Memory Configuration (PMCON) registers

12-1
application modification 12-8
initial values 12-6

PMCON registers
power and ground planes 11-34
powerup/reset initialization

timer powerup 14-10
PRCB, see Processor Control Block (PRCB)
prereturn-trace mode 10-4

I

Previous Frame Pointer (PFP) 7-4, 7-6
location 3-3
rO 7-20

priority-31 interrupts 8-3, 13-9
procedure calls

branch-and-link 7-1
call and return mechanism 7-1
leaf procedures 7-1, Glossary-3

procedure stack 7-3
growth 7-3

INDEX

Process Control Block (PRCB) 3-1, 3-12, 11-1,
11-14

configuration 11-15
register cache configuration word 11-18

Process Controls (PC) register 3-20
execution mode flag 3-20
initialization 3-22
modification 3-21
modpc 3-21 .
priority field 3-21
processor state flag 3-21
trace enable bit 3-21
trace fault pending flag 3-21

processor initialization 11-1
processor management instructions 5-18
processor state registers 3-1, 3-17

Arithmetic Controls (AC) register 3-17
Instruction Pointer (IP) register 3-17
Process Controls (PC) register 3-20
Trace Controls (TC) register 3-22

programming
logical memory attributes 12-12

R
rO Previous Frame Pointer (PFP) 7-20
region boundaries

bus transactions across 12-7
register access 13-18
register addressing and alignment 3-5
register cache 3-1

Index-11

INDeX

register indirect 2"7. .'
register-i~direct-with-displacement 2-7
register-indirect-with-index 2-7

register-indirect-with-index-and-displacement 2-8
register-indirect-with-offset 2-7

register scoreboarding 3-4
example 3-4

' .. ' registers
addressing 3-4
Boundary-Scan 17-7
Breakpoint Control (BPCON) 10-7
Bus Control (BCON) 12-7
control 3-6

memory-II.lapped 3-5.
device ID 11-21, C-21
Instruction 17-5
Interrupt Control (ICON) 1-3, 13-12
Interrupt Map Control (IMAPO-IMAP2) 1-3
Interrupt Mapping (IMAPO-IMAP2) 13-14 .
Interrupt Mask (IMSK) 1-3, 13-16
Interrupt Pending (IPND) 1-3, 13-16, C-12
Logical Memory Templates (LMTs) 12-12
naming convention.s 1-7
TCR 14-6

remainder integer i~struction 6-90
remainder ordinal instruction 6-90
remi 6-90
remo 6-90
reserved locations A-4.
reserved memory 1-6 .
reserving frames in the local register cache 13-23
reset operation

register values 11-5
reset state 11-3
ret 6-91
Return Instruction Pointer (RIP) 7-4

location 3-3
return operation 7-8
return type field 7-6
RIP, see Return Instruction Pointer (RIP)
rotate 6-94
Run Built-In Self-Test (RUNBIST) register 17-7

Index-12

5
SALIGN A-3
saving the interrupt mask 13-8
scanbit 6-95
scan byte 6-96

intet

scoreboarding, see register scoreboarding
sele 5-6, 6-97
Select Based on Equal 5-6
Select Based on Less or Equal 5-6
Select Based on Not Equal 5-6
Select Based on Ordered 5-6
Select Based on Unordered 5-6
select instructions 6-97
self test (STEST) pin 11-6
selg 5-6, 6-97
selge 5-6, 6-97
sell 5-6, 6-97
selle 5-6, 6-97
seine 5-6, 6-97
selno 5-6, 6-97
selo 5-6, 6-97
setbit 6-99
shift instructions 6-100
shU 6-100
shlo 6-100
shrdi 6-100
shri 6-100
shro 6-100
single processor as bus mas~r 15-32 ,
16-bit bus width byte enable encodings 15-8
16-bit wide data bus bursts 15-12
SP, see Stack Pointer
spanbit 6-103
SRCIDEST parameter encodings 10-7
st 2-2,6-104
stack frame

allocation 7-2
Stack Pointer (SP) 7-4, 7-5

location 3-3

STEST 11-6
stib 2-2,6-104
stis 2-2, 6-104
st16-104

stob 2-3, 6-104
store instructions 5-5, 6-104
stos 2-3
stq 6-104
stt 6-104
subc 6-108
subi 6-112
subie 6-109
subig 6-109
subige 6-109
subiJ6-109
subile 6-109
subine 6-109
subino 6-109
subio 6-109
subo 6-112
suboe 6-109
subog 6-109
suboge 6-109
subo16-109
subole 6-109
subone 6-109
subono 6-109
suboo 6-109
subtract

conditional instructions 6-109
integer instruction 6-112
ordinal instruction 6-112
ordinal with carry instruction 6-108

supervisor calls 7-2
supervisor mode resources 3-22
supervisor space family registers and tables 3-9
supervisor stack 3-1, 3-12
supervisor-trace mode 10-3
syncf 6-113, 9-20
synchronize faults instruction 6-113
sysctl 1-2, 3-8, 4-4, 4-5, 6-114, 10-6
system calls 7-2, 7-16

calls 7-2
system-local 7-2, 9-2
system-supervisor 7-2, 9-2

system control instruction 6-114
system procedure table 3-1, 3-12

I

T
Test Access Port (TAP) controller 17-2

architecture 17-3

INDEX

Asynchronous Reset Input (TRST) pin 17-5
block diagram 17-3
Serial Test Data Output (TDO) pin 17-5
state diagram 17-4
Test Clock (TCK) pin 17-5
Test Mode Select (TMS) pin 17-5

test features 17-2
test instructions 6-118
Test Mode Select (TMS) line 17-2
teste 6-118
testg 6-118
testge 6-118
testI6-118
testle 6-118
testne 6-118
testno 6-118
testo 6-118
32-bit bus width byte enable encodings 15-8
32-bit wide data bus bursts 15-12
three-state output pins 11-35
Timer Count Register (TCR) 14-6
timer interrupt 13-2
timer memory-mapped addresses 14-2
Timer Mode Register

timer mode control bit summary 14-5
Timer Mode Register (TMR)

terminal count 14-3
timer clock encodings 14-6

timer units
HALT mode operation 16-2

timers
overview 1-4

Trace Controls (TC) register 3-22, 10-2
trace events 10-1

hardware breakpoint registers 10-1
mark and fmark 10-1
PC and TC registers 10-1

trace-fault-pending flag 10-3
TTL input pins 11-36
two-word burst write transaction 15-14

Index-13

INDEX

U
user space family registers and tables 3-11
user stack 3-12
user supervisor protection model 3-22

supervisor mode resources 3-22
usage 3-23

v
vector entries 8-4

structure 8-5

W
warm reset 11-3, 13-18
words

triple and quad 2-3

X
xnor 6-120
xor 6-120

Index-14

intel~

ALABAMA

Intel Corp.
600 Boulevard South
Suite 104-1
Huntsville 35802
Tel: (800) 628-8686
FAX: (205) 883-3511

ARIZONA

tlntel Corp.
410 North 441h Street
Suite 500
Phoenix 85008
Tel: (800) 628-8686
FAX: (602) 244-0446

CALIFORNIA

Intel Corp.
3550 Watt Avenue
Suite 140
Sacramento 95821
Tel: (800) 628-8686
FAX: (916) 488-1473

tlntel Corp.
9655 Granite Ridge Dr.
3rd Floor I Suite 4A
San Diego 92123
Tel: (800) 628-8686
FAX: (619) 467-2460

Intel Corp.
1781 Fox Drive
San Jose 95131
Tel: (800) 628-8686
FAX: (408) 441-9540

*tlntel Corp.
1551 N. Tustin Avenue
Suite sao
San1a Ana 92701
Tel: (800) 628-8888
TWX: 910-595-1114
FAX: (714) 541-9157

tlntal Corp.
15260 Ventura Boulevard
Suite 360
Sherman Oaks 91403
Tel: (800) 628-8686
FAX: (818) 995-6624

COLORADO

*tlntel Corp.
600 S. Cherry St
Suite 700
Denver 80222
Tel: (BOO) 628-8686
TWX: 910-931-2289
FAX: (303) 322-8670

CONNECTICUT

tlntel Corp.
103 Mill Plain Road
Danbury 06811
Tel: (800) 628-8886
FAX: (203) 794-0339

FLORIDA

tlnlel Corp.
800 Fairway Drive
Suite 160
Deerfield Beach 33441
Tel: (800) 628-8686
FAX: (305) 421-2444

Intel Corp.
2250 Lucien Way
Suite 100, Room 8
Maitland 32751
Tel: (800) 628-8888
FAX: (407) 660-1283

tSales and Service Office
*Field Application LocatioI'!

NORTH AMERICAN SALES OFFICES
GEORGIA NEW YORK *tlntel Corp.

tlntel Corp. *Inte! Corp. 5000 Quorum Drive
Suite 750 20 Technology Parkway 850 Crosskeys Office Park Dallas 75240

Suite 150 Fairport 14450 Tel: (800) 628-8686 Norcross 30092 Tel: (BOO) 628-8686
Tel: (800) 628-8686 TWX: 5tO-253-7391 *tlntel Corp.
FAX: (404) 605-9762 FAX: (716) 223-2561 20515 SH 249

IDAHO tlntel Corp. Suite 401
300 Westage Business Center Houston 77070

Intel Corp. Suite 230 Tel: (800) 628-8686
9456 Fairview Ave., Suite C Fishkill t 2524 TWX: 910-881-2490
Boise 83704 Tel: (800) 628-8686 FAX: (713) 988-3660
Tel: (800) 628-BBB6 FAX: (914) 897-3125
FAX: (208) 377-1052 *tlntel Corp. UTAH

ILLINOIS
2950 Express Dr , South

tlntel Corp. Suite 130
*tlntel Corp. Islandia 11722 428 East 6400 South

Tel: (800) 628-8686 Suite 135 Woodfield Corp. Center 1/1 Murray 84107
300 N. Marbngale Road TWX: 510-227-6236
Suite 400 FAX: (516) 348-7939 Tel: (800) 628-8686

Schaumburg 60173 FAX: (801) 268-1457

Tel: (800) 628-6886 OHIO
FAX: (708) 706-9762 *Intel Corp. WASHINGTON

INDIANA
56 Milford Dr., Suite 205

tlntel Corp. Hudson 44236
tlntel Corp. Tel: (800) 628-8686 2800 156th Avenue S E.

FAX: (2t6) 528-1026 Suite 105
8910 Purdue Road Bellevue 98007
Suite 350 *tlntel Corp. Tel: (800) 628-8888
Indianapolis 46268 3401 Park Center Drive FAX: (206) 746-4495
Tel: (800) 628-8688 Suite 220
FAX: (317) 875-8938 Dayton 45414

Tel: (800) 628-8686 WISCONSIN
MARYlAND TWX: 810-450-2528

*tlntel Corp.
FAX: (513) 890-8658 Intel Corp.

400 N. Executive Dr.
10010 Junction Dr. OKLAHOMA Suite 401
Suite 200 Brookfield 53005
Annapolis Junction 20701 ~nJg~ ~~r~'roadway Tel: (800) 628-8686
Tel: (800) 628-6886 FAX: (414) 789-2746
FAX: (410) 206-3678 Suite 115

Oklahoma CHy 73162
MASSACHUSETTS Tel: (800) 628-8686

CANADA
*tlntel Corp.

FAX: (405) 840-9819

Westford Corp. Center OREGON
5 Carlisle Road BRITISH COLUMBIA
2nd Floor r~~ C~~~ Greenbrier Pkwy. Westlord 01886 Intel Semiconductor of
Tel: (600) 628-8686 Building B canada, Ltd.
TWX: 710-343-6333 Beaverton 97006 999 Canada Place
FAX: (508) 692-7867 Tel: (800) 628-8686 Suite 404, #11

TWX: 910-467-8741 Vancouver V6C 3E2
MICHIGAN FAX: (503) 645-8181 Tel: (800) 628-8686

tlntel Corp. PENNSYLVANIA
FAX: (804) 844-2813

7071 Orchard Lake Road
*tlntel Corp. Suite 100 ONTARIO

West Bloomfield 48322 925 Harvest Drive
Tel: (BOO) 628-8686 Suite 200 tlntel Semiconductor of
FAX: (313) 851-8770 Blue Bell 19422 Canada, Ltd.

Tel: (800) 628-8686 2650 Queensview Drive
MINNESOTA FAX: (215) 641-0785 Suite 250

Ottawa K2B 8H6
tlntel Corp. SOUTH CAROUNA Tel: (800) 628-8888
3500 W. 80th St. Intel Corp. FAX: (613) 820-5936
Suite 360
Bloominren 55431

7403 Park/ane Rd., Suite 3 tlntel Semiconductor of Columbia 29223 Tel: (800 628-8686 Tel: (BOO) 628-8886 Canada, Ltd.
TWX: 910-576-2887 FAX: (803) 788-7999 190 Attwell Drive
FAX: (612) 831-6497 Suite SOO

Intel Corp. Aexdale M9W 6H8
NEW JERSEY 100 Executive Center Drive Tel: (800) 628-8686

1n1a1 Corp.
Suite 109, 8183 FAX: (416) 675-2438
Greenville 29615

2001 Route 46, Suite 310 Tel: (800) 628-8686
QUEBEC Parsippany 07054-1315 FAX: (803) 297-3401

Tel: (800) 628-8688
tlntel Semiconductor of FAX: (201) 402-4693 TEXAS
Canada, Ltd.

*tlntel Corp. tlntel Corp. 1 Rue Holiday
Uncrofl Office Center 6911 N. Capi1a1 of Texas Hwy. Suite 320
125 Half Mile Road Suite 4230 Tour East
Red Bank 07701 Austin 78759 Pt. Claire H9R 5N3
Tel: (800) 628-8686 Tel: (800) 628-8686 Tel: (BOO) 628-8686
FAX: (908) 747-0983 FAX: (512) 338-9335 FAX: 514-694-0064

CGlSALE/111293

i
I
I'
i

::

," ,,/

NORTH AMERICAN DISTRIBUTORS
ALABAMA Arrow/Schwaber Electronics Wyle Labor~tories Avnet Computer ~~~~~::;~;~e~~~~~E
Arrow/Schwaber Electronics

26707 W. Agoura Road t 5370 Barrdnca Pkwy. 55 Federal Road, #103
calabaaas 91302 Irvine 92713·· Danbury 06810 Dulutll30136

1015 Henderson Road Tel: (818) 680-9686 Tel:·(714) 753-9953 Tel: (203) 797-2680 Tel: (404) 497-1300
Huntsville 35806 FAX: (818) 772-8930 FAX: (714)· 753-9877 FAX: (203J.791-9050 FAX: (404) 476-1493
Tel: (205) 837-6955
FAX: (205) 721-1561 Arrow/Schwaber Electronics Wyle LabOratortes Hamlhon Hallmark Avnet Computer
Hamilton Hallmark 46834 Kato Road, SUne 103 15360 Barranca Pkwy., #200 125 Commerce Court, Unit 6 3425 Corporate Way, #G

~~:S~i~:'::atty6square, #1
Fremont 94538 Irvine 92713 Cheshire 06410 Duluth 30136
Tel: (510) 490-9477 Tel: (714) 753-9953 ~~:(~m2~rr~ Tel: (404) 623-5452

Tel: (205) 837-8700 Arrow/Schwaber Electronics FAX: (714) 753-9877 FAX: (404) 476-0125
FAX: (205) 830-2565 6 Cromwell #100 Wyle Laboratories Pioneer Standard Hamilton Hallmark

~;~OS~:~~ Dr., #120
Irvina 92718 2951 Sunrise Blvd., #175 2 Trap Falls Road 3425 Corporate Way, #G & #A
Tel: (714) 838-5422 Rancho Cordova 95742 Shelton 06464 Duluth 30136

Huntsville 35805 FAX: (714) 454-4206 Tel: (916) 838-5292 Tol: (203) 929-5600 Tel: (404) 623-5475
Tel: (205) 830-9526 Arrow/Schwaber Electronics FAX: (916).838-1491 FAX: (404) 623-5490
FAX: (205) 830-9557

9511 Ridgehaven Court Wyle Laboratories FLORIDA Pioneer Technologies Group Pioneer Technologies Group ~:r gif~o~oo ~~~~i~~~~square, #5
9525 Chesapeake Drive

Anthem Electronics
4250 C. Rivergreen Parkway

~:r g~5~~~71 Duluth 30136 FAX: (619) 279-6062 598 South Northlake Blvd., #1024 Tel: (404) 623-1003 Tel: (205) 837-9300 Altamonte ~rin~ 32701 FAX: (205) 837-9358 Arrow/Schwaber Electronics FAX: (619) 365-0512 FAX: (404) 623-0665

Wyle Laboratories
1180 Murphy Avenue

Wyle Laboratories ~~:(~m) 7~gO Wyle Laboratories . San Jose 95131
7800 Governers Drive Tel: (406) 441-9700 3000 Bowers Avenue

Arrow/Schweber Electronics
6025 The Corners Pkwy., #111

Tower Building, 2n~ Floor FAX: (408) 453-4810 Santa Clara 95051 Norcross 30092
Huntsville 35606 ~~:(=~ml~6

400 Failway Drive, #102 Tel: (404) 441-9045
Tel: (205) 830-1119 Avnet Computer Daerfield Beach 33441 FAX: (404) 441-9086
FAX: (205) 830-1520 3170 Pullman Street Tel: (305) 429-8200

Costa Mesa 92626 Wyle laboratories FAX: (305) 428-3991
ARIZONA Tel: (714) 641-4150 17872 Cowan Avenue ILLINOIS

Anthem Electronics FAX: (714) 641-4170 Irvine 92714 Arrow/Sqhweber Electronics
Tel: (714) 883-9953 ~k!~~~ ~~:a #3101

Anthem Electronics
1555 W. 10th Placa, #101 Avnet Computer FAX: (714) 263-0473 1300 Remington Road, Suite A
Tempe 65281 1361B West l00th Stroel Tel: (407) 333-9300 Schaumberg 60173
Tel: (602) 968-6600 Gardena 90248 ~~oLaJ'~::~~rt~, #150

FAX: (407) 333-9320 Tel: (706) 884-0200
FAX: (602) 968-4826 Tel: (800) 426-7999 FAX: (708) 685-0460

Arrow/Schwaber Electronics FAX: (310) 327-5389 Calabaaas 91302 Avnet Computer
2415 w. Erie Drive "Avnet Computer

Tel: (818) 860-9000 3343 W. Commercial Boulevard Arrow/Schweber Electronics
Tempe 65282 FAX: (818) 680-5510 ~r~~~id~~;~ 1140W. Thorndale,Rd.
Tel: (602) 431-0030 755 Sunrise Boulevard, #150 Itasca 60143 .

FAX: (602) 252-9109 Roseville 95661 Zeus Arrow Electronics Tol: (305) 730-9110 Tel: (706) 250-0500 .
Tel: (916) 781-2521 ~~6J= !g1~o Ave, #E

FAX: (305) 730-0368
Avnet Computer FAX: (916) 781-3619

~~r T~~~g~: North

Avnet Computer ,
1626 S. Edwards Drive

Avnet Computer Tel: (408) 629-4789 1124 Thorndale Avenue
Tempe 65281 FAX: (408) 629-4792 Bensenville 60106
Tel: (602) 902-4600 1175 Bordeaux Drive, #A SI. Petersburg 33716 Tel: (706) 860-8572
FAX: (602) 902-4640 Sunnyvale 94089 Zeus Arrow ElectroniCS Tel: (813) 573-5524 FAX: (708) 773-7976

Hamilton Hallmark ~~:(=~m3~ 22700 Savi Ranch Pkwy. FAX: (813) 572-4324

4637 S. 36th Place Yorba Unda 92687-4613 Hamilton Hallmark_
Tel: (714) 921-9000 Hamilton Hallmark 1130 Thorndale Avenue

Phoenix 85040 ~r~~ ~~~u::eet FAX: (714) 921-2715 3350 N.W. 53rd SI., #105-107 Bensenville 60106
Tol: (602) 437-1200 FI. Lauderdale 33309 Tel: (708) 860-7780
FAX: (602) 437-2348 Woodland Hills 91376 Tel: (305) 484-5462 FAX: (708) 660-8530
Wyle Laboratories Tel: (818) 594-8301 COLORADO FAX: (305) 484-2995
4141 E. Raymond

FAX: (818) 594-8333 MTI Systems
Phoenix 85040 Hamilton Hallmark Anthem Electronics Hamilton Hallmark 1140 W. Thorndale Avenue
Tel: (602) 437-2068 3170 Pullman Street 373 Inverness Drive South 10491 72nd SI. North nasca 60143
FAX: (602) 437-2124 Costa Mosa 92626 Englewood 60112 Largo 34647 Tel: (708) 250-8222

Tel: (714) 641-4100 Tel: (303) 790-4500 ~~:(~m)~i~ FAX: (708) 250-8275
CALIFORNIA FAX: (714) 641-4122 FAX: (303) 790-4532

Pioneer Standard
Anthem Electronics Hamilton Hallmark ArrowlSchweber Electronics Hamilton Hallmark 2171 Executive Dr., #200
9131 Oakdale Ave. 1175 Bordeaux Drive, #A 61 Inverness Dr. East; #105 7079 University -Boulevard Addison 60101
Chatsworth 91311 Sunnyvale 94089 Englewood 60112 Winter Park 32792 Tel: (708) 495-9680
Tel: (818) 775-1333 Tel: (406) 435-3500 Tel: (303) 799-0258 Tel: (407) 657-3300 FAX: (708) 495-9831
FAX: (818) 775-1302 FAX: (408) 745-6679 FAX: (303) 373-5760 FAX: (407) 678-4414

Anthem Electronics Hamilton Hallmark
Wyle Laboratories

1 Oldfield Drive Hamilton Hallmark Pioneer Technologies Group 2055 Army Trail Road, #140

Irvine 92718-2609 ~ oYi~r~a,e2~venue 12503 E. Euclid Drive, #20 337 Northlake Blvd., #1000 Addison 60101
Englewood 60111 ~ ~g~e8~i~~ 32701

Tel: (600) 653-9953 Tel: (714) 768-4444
Tel: (6~ 571-7540 ~~:,m~)7~O~~1 FAX: (706) 620-1610 FAX: (714) 766-6456
FAX: (619) 277-6136 FAX: (407) 834-0685

Anthem Electronics
INDIANA 580 Menlo Drive, #8 Hamilton Hallmark Hamilton Hallmark Pioneer Techno!DQles Group

Rocklin 95677 21150 Califa St. 710 WOO1en Road, #102 674 S. Mllnary Trail
Arrow/Schweber Electronics Tel: (916) 624-9744 Woodland Hills 91367 ~~I:O~~~ ~~~~915 Deerfiold Beach 33442·

FAX: (916) 624-9750 Tel: (818) 594-0404 Tel: (305) 428-8877 7108 lakeview ParkWli~ We51 Dr.

Anthem Electronics
FAX: (818) 594-8234 FAX: (719) 637-0088 FAX: (305) 481-2950 Indianapolis 46268'

Tol: (317) 299-2071
9369 Carroll Park Drive Hamilton Hallmark Wyle laboratories Pioneer Technologies Group FAX: (317) 299-2379

~ gi~o~~~Jos 580 Menlo Drive, #2 451 E. 124th Avenue 8031-2 Phillips Highway
Rocklin 95762 Thomton 80241 Jacksonville 32256 Avnet Computer

FAX: (619) 546-7893 Tel: (916) 624-9781 Tel: (303) 457-9953 Tel: (904) 730-0065 485 Gradle Drive
Anthem Electronics FAX: (916) 961-0922 FAX: (303) 457-4831 Carmel 46032
1160 Ridder Park Drive Pioneer Standard

Wyle Laboralorie. Tel: (317) 575-8029

San Jose 95131 1000 112 Circle North FAX: (317) 844-4964

Tel: (406) 452-2219 5650 Canoga Blvd., #400 CONNECTICUT SI. Petersburg 33716
Woodland Hills 91367 Tel: (813) 530-3400 Hamihon Hallmark FAX: (406) 441-4504 Tel: (818) 883-4640 Anthem E~ctronics FAX: (813) 579-1518 4275 W. 96th

Arrow Commercial Systems Group
Pioneer Standard

61 Mattatuck Heights Road Indianapolis 46268
1502 Crocker Avenue Walerburg 06705 Tel: (317) 872-6875
Hayward 94544 217 Technology Dr., #110 Tel: (203) 575-1575 GEORGIA FAX: (317) 876-7165
Tel: (510) 489-5371 Irvine 92718 FAX: (203) 596-3232
FAX: (510) 489-9393 Tel: (714) 753-5090 Arrow Commercial Systems Group Pioneer Standard

Arrow Commercial Systems Group Pioneer Technologies Group Arrow/Schweber Electronics 3400 C. Corporate Way 9350 Priority Way West Dr.
12 Beaumont Road Duluth 30136 Indian_lis 48250

14242 Chambers Road 134 Rio Robles Wallinglord 06492 Tel: (404) 623-8825 Tel: (317) 573-0660
Tu51ln 92660 San Jose 95134 Tel: (203) 265-7741 FAX: (404) 623-8602 FAX: (317) 573-0979
Tel: (714) 544-0200 Tel: (408) 954-9100 FAX: (203) 265-7968
FAX: (714) 731-8438 FAX: (406) 954-9113

CGlSALE/111293

NORTH AMERICAN DISTRIBUTORS (Contd.)
KANSAS Hamilton Hallmark MISSOURI NEW YORK Pioneer Technologies Group

Arrow/Schwaber Electronics
100 Centennial Drive

Arrow/Schwaber Electronics Anthem Electronics 2200 Gateway Glr. Blvd, #215
Peabody 01960 Morrisville 27560

9801 Legler Road Tel: (508) 531-7430 2380 Schuetz Road 47 Mall Drive Tel: (919) 460-1530
Lenexa 66219 FAX: (508) 532-9802 St. louis 63141 Commack 11725 FAX: (919) 460-1540
Tel: (913) 541-9542 Tel: (314) 567-6888 Tel: (516) 864-6600
FAX: (913) 541-0328 Pioneer Standard FAX: (314) 567-1164 FAX: (516) 493-2244

Avnet Computer
44 Hartwell Avenue

Avnet Computer Arrow/Schwaber Electronics OHIO
Lexington 02173

15313 W. 95th Street Tel: (617) 861-9200 741 Goddard Avenue 3375 Brighton Henrietta Arrow Commercial Systems Group
Lenexa 61219 Chesteriield 63005 Towntine Rd.
Tel: (913) 541-7989

FAX: (617) 863-1547
Tel: (314) 537-2725 Rochester 14623 284 Cramer Creek Court

Dublin 43017
FAX: (913) 541-7904 Wyle Laboratories FAX: (314) 537-4248 Tel: (716) 427-0300

Tel: (614) 889-9347 15 Third Avenue FAX: (716) 427·0735
Hamilton Hallmark Burlington 01803 Hamilton Hallmark FAX: (614) 889-9680
10809 Lakeview Avenue Tel: (617) 272-7300 3783 Rider Trail South Arrow/Schweber Electronics
lenexa 66215 FAX: (617) 272-6809 i:17~39~ ~?~~50

20 Oser Avenue Arrow/Schwaber Electronics
Tel: (913) 888-4747 Hauppauge 11788 6573 Cochran Road, #E
FAX: (913) 888-0523 MICHIGAN FAX: (314) 291-0362 Tel: (516) 231-1000 Solon 44139

FAX: (516) 231-1072 Tel: (216) 248·3990

KENTUCKY Arrow/Schweber Electronics NEW HAMPSHIRE ~~e~~t~~~~~~ay
FAX: (216) 248-1106

19880 Haggerty Road
Arrow/Schweber Electronics Hamilton Hallmark livonia 48152 Avnet Computer

1847 Mercer Road, #G Tel: (800) 231-7902 2 Executive Park Drive
Hauppauge 11788 8200 Washington Village Dr.

lexington 40511 FAX: (313) 462-2686 Bedford 03102
Tel: (516) 434-7443 Centerville 45458

Tel: (800) 235·6039 Tel: (800) 442-8638
FAX: (516) 434-7426 Tel: (513) 435-5563

FAX: (606) 288-4936 ~~~~t2~~~gt~~:t, S.W., #5
FAX: (603) 624-2402 ~~~~ T~~~r~!eRd.

FAX: (513) 435·2049

MARYLAND Grandville 49418
NEW JERSEY Rochester 14623 Avnet Computer

Tel: (616) 531-9607 Tel: (716) 272-9110 7164 Washington Village Dr.
Anthem Electronics FAX: (616) 531-0059 Anthem Electronics FAX: (716) 272-9685 Dayton 45459
7168A Columbia Gateway Drive Avnet Computer 26 Chapin Road, Unit K Hamilton Hallmark

Tel: (513) 439-6756
Columbia 21046 Pine Brook 07058 FAX: (513) 439-6719
Tel: (410) 995-6640

41650 Garden Brook Rd. #120
Tel: (201) 227·7960 933 Motor Parkway

Novi 48375 Hauppauge 11788 Avnet Computer FAX: (410) 290·9862 Tel: (313) 347-1820 FAX: (201) 227-9246
Tel: (516) 434-7470 30325 Bainbridge Rd., Bldg. A

Arrow Commercial Systems Group FAX: (313) 347-4067 Arrow/Schweber Electronics FAX: (516) 434·7491 Solon 44139
200 Perry Parkway Hamilton Hallmark 4 East Stow Rd., Unit 11 Hamilton Hallmark Tel: (216) 349-2505
Gaithersburg 20877 44191 Plymouth Oaks Blvd., #1300 Marlton 08053 1057 E. Henrietta Road FAX: (216) 349-1894
Tel: (301) 670-1600 Plymouth 48170 Tel: (609) 596·8000 Rochester 14623 FAX: (301) 670·0188 Tel: (313) 416-5800 FAX: (609) 596-9632 Tel: (716) 475-9130 Hamilton Hallmark

Arrow/Schweber Electronics FAX: (313) 416-5811 Arrow/Schweber Electronics FAX: (716) 475-9119 7760 Washington Village Dr.
Dayton 45459 9800J Patuxent Woods Dr. Hamilton Hallmark 43 Route 46 East Hamilton Hallmark Tel: (513) 439-6735 Columbia 21046 Pine Brook 07058

Tel: (301) 596·7800
41650 Garden Brook Rd., # 1 00

Tel: (201) 227·7880
3075 Veterans Memorial Hwy. FAX: (513) 439-6711

Novi 49418 Ronkonkoma 11719
FAX: (301) 995-6201 Tel: (313) 347·4271 FAX: (201) 538-4962 Tel: (516) 737-0600 Hamilton Hallmark
Avnet Computer FAX: (313) 347-4021 Avnet Computer FAX: (516) 737-0838 5821 Harper Road
7172 Columbia Gateway Dr., #G Pioneer Standard l·B Keystone Ave., Bldg. 36 MTI Systems Solon 44139

Tel: (216) 498-1100 Columbia 21045 4505 Broadmoor S.E. Cherry Hill 08003 1 Penn Plaza FAX: (216) 248-4803 Tel: (301) 995-3571 Grand Rapids 49512 Tel: (609) 424·8961 250 W. 34th Street
FAX: (301) 995-3515 Tel: (616) 698-1800 FAX: (609) 751-2502 New York 10119 Hamilton Hallmark
Hamilton Hallmark FAX: (616) 698-1831 Hamilton Hallmark Tel: (212) 643-1280 777 Dearborn Park lane, #l

I

10240 Old Columbia Road Pioneer Standard 1 Keystone Ave., Bldg. 36 FAX: (212) 643·1288 Worthington 43085
Columbia 21046 13485 Stamford Cherry Hill 08003 Pioneer Standard Tel: (614) 888-3313
Tel: (410) 988·9800 livonia 48150 Tel: (609) 424·0110 68 Corporate Drive FAX: (614) 888-0767 I
FAX: (410) 381-2036 Tel: (313) 525-1800 FAX: (609) 751·2552 Binghamton 13904

North Atlantic Industries FAX: (313) 427-3720 Hamilton Hallmark Tel: (607) 722-9300 MTI Systems
FAX: (607) 722·9562 23404 Commerce Park Rd.

Systems Division 10 Lanidex Plaza West Beachwood 44122
7125 River Wood Dr. MINNESOTA Parsippani 07054 Pioneer Standard Tel: (216) 464·6688
Columbia 21046 Anthem ElectroniCS Tel: (201) 515-5300 ~O~~b~s;,a(:n~~s~~~ 11797

FAX: (216) 464·3564
Tel: (301) 312·5800 7646 Golden Triangle Drive FAX: (201) 515-1601
FAX: (301) 312·5850 Eden Prairie 55344 MTI Systems

Tel: (516) 921-8700 Pioneer Standard
Pioneer Technologies Group Tel: (612) 944-5454 43 Route 46 East

FAX: (516) 921-2143 4433 Interpoint Boulevard
15810 Gaither Road FAX: (612) 944-3045 Pine brook 07058 Pioneer Standard Dayton 45424
Gaithersburg 20877 Tel: (201) 882·8780 840 Fairport Park Tel: (513) 236·9900

Arrow/Schweber Electronics FAX: (513) 236·8133 Tel: (301) 921-0660 10100 Viking Drive, #100 FAX: (201) 539-6430 Fairport 14450
FAX: (301) 670·6746 Tel: (716) 381·7070 Eden Prairie 55344 Pioneer Standard FAX: (716) 381-5955 Pioneer Standard
WyJe laboratories Tel: (612) 941-5280 14·A Madison Rd. 4800 E. 131st Street
7180 Columbia Gateway Dr. FAX: (612) 942-7803 Failiield 07006 Zeus Arrow Electronics Cleveland 44105
Columbia 21046 Avnet Computer Tel: (201) 575·3510 100 Midland Avenue Tel: (216) 587-3600
Tel: (410) 312-4844 10000 West 76th Street FAX: (201) 575-3454 Port Chester 10573 FAX: (216) 663-1004
FAX: (410) 312-4953 Eden Prairie 55344

Tel: (914) 937·7400
Wyle Laboratories FAX: (914) 937-2553

MASSACHUSETTS
Tel: (612) 829-0025 20 Chapin Road, Bldg. 10·13 OKLAHOMA
FAX: (612) 944-2781 Pinebrook 07058 NORTH CAROLINA

Anthem Electronics Hamilton Hallmark Tel: (201) 882·8358
Arrow/Schweber Electronics

Arrow/Schweber Electronics
36 Jonspin Road 9401 James Ave South, #140 FAX: (201) 882-9109 12101 E. 51st Street, #106

5240 Greensdairy Road Tulsa 74146 Wilmington 01887 Bloomington 55431 Raleigh 27604 Tel: (918) 252·7537 Tel: (508) 657-5170 Tel: (612) 881·2600 NEW MEXICO Tel: (919) 876-3132 FAX: (918) 254-0917 FAX: (508) 657-6008 FAX: (612) 881-9461
Alliance Electronics, Inc. FAX: (919) 878·9517

Arrow/Schweber ElectrOniCS Pioneer Standard 10510 Research Ave. Avnet Computer Hamilton Hallmark
25 Upton Dr. 7625 Golden Triange Dr., #G Albuquerque 87123 2725 Millbrook Rd., #123 5411 S. 125th E. Ave., #305
Wilmmgton 01887 Eden Prairie 55344 Tel: (505) 292·3360 Raleigh 27604 Tulsa 74146
Tel: (508) 658-0900 Tel: (612) 944-3355 FAX: (505) 275·6392 Tel: (919) 790-1735 Tel: (918) 254-6110
FAX: (508) 694-1754 FAX: (612) 944-3794 FAX: (919) 872-4972 FAX: (918) 254-6207

Avnet Computer
Avnet Computer Wyle Laboratories 7801 Academy Rd. Hamilton Hallmark Pioneer Standard
10 D Centennial Drive 1325 E. 79th Street, #1 Bldg. 1, Suite 204 5234 Greens Dairy Road 9717 E. 42nd St., #105
Peabody 01960 Bloomington 55425 Albuquerque 87109 Raleigh 27604 Tulsa 74146
Tel: (508) 532·9886 Tel: (612) 853·2280 Tel: (505) 828-9725 Tel: (919) 878·0819 Tel: (918) 665·7840
FAX: (508) 532-9660 FAX: (612) 853-2298 FAX: (505) 828-0360 FAX: (919) 878·8729 FAX: (918) 665·1891

CG/SALE/III293

OREGON

Almae Arrow Electronics
1885 N.w. 169th Place
Beaverton 97006
Tel: (503) 629-8090
FAX: (503) 645-0611

Anthem ElectroniCS
9090 S.W. Gemini Drive
Beaverton 97005
Tel: (503) 643-1114
FAX: (503) 626-7928

Avnet Computer
9750 Southwest Nimbus Ave.
Beaverton 97005
Tel: (503) 627-0900
FAX: (502) 526-6242

Hamilton Hallmark
9750 S.W. Nimbus Ave.
Beaverton 97005
Tel: (503) 526-6200
FAX: (503) 641-5939

Wyle Laboratories
9640 Sunshine Court
Bldg. G, Suile 200
Beaverton 97005
Tel: (503) 643-7900
FAX: (503) 646-5466

PENNSYLVANIA

Anthem Electronics
355 Business Center Dr.
Horsham 19044
Tel: (215) 443-5150
FAX: (215) 675-9875

Avnet Computer
213 ExecutIVe Drive, #320
Mars 16046
Tel: (412) 772-1888
FAX: (412) 772-1890

Pioneer Technologies Group
259 Kappa Drive
Pittsburgh 15238
Tel: (412) 782-2300
FAX: (412) 963-8255

Pioneer Technologies Group
500 Enterprise Road
Keith Valley Business Center
Horsham 19044
Tel: (713) 530-4700

~~~e;ag~~:~o~~~ 1 
Marlton 08053·3185 
Tel: (609) 985-7953 
FAX: (609) 985-8757 

TEXAS 

Anthem Electronics 
651 N. Plano Road, #401 
Richardson 75081 
Tel: (214) 238-7100 
FAX: (214) 238-0237 

Arrow/Schweber Electronics 
11500 Metric Blvd., #160 
Austin 78758 
Tel: (512) 835-4180 
FAX: (512) 832-5921 

NORTH AMERICAN DISTRIBUTORS (Contd.) 
Arrow/Schweber Electronics UTAH Hamilton Hallmark Avnet Computer 
3220 Commander Dr. 

Anthem Electronics 
2440 S. 179th Street Canada System Engineering Group 

Carrollton 75006 New Berlin 53146 151 Superior Blvd. 
Tel: (214) 380-6464 1279 West 2200 South Tel: (414) 797-7844 Mississuaga L5T 2L 1 
FAX: (214) 248-7208 Salt Lake City 84119 FAX: (414) 797-9259 Tel: (416) 795-3835 

Tel: (801) 973-8555 FAX: (416) 677-5091 
Arrow/Schweber Electronics FAX: (801) 973-8909 Pioneer Standard 
10899 Kinghurst Dr., #100 

Arrow/Schweber Electronics 
120 Bishop Way #163 

Avnet Computer Houston 77099 Brookfield 53005 
Tel: (713) 530-4700 1946 W. Parkway Blvd. Tel: (414) 784-3480 190 Colonade Road 

Sail Lake City 84119 FAX: (414) 780-3613 Nepean K2E 7 J5 
Avnet Computer Tel: (801) 973-6913 Tel: (613) 727-2000 
4004 Beltline, Suite 200 FAX: (801) 972-0200 Wyle Laboratories FAX: (613) 226-1184 
Dallas 75244 Avnet Computer 

W226 N555 Eastmound Drive 
Tel: (214) 308-8181 Waukesha 53186 Hamilton Hallmark 
FAX: (214) 308-8129 1100 E. 6800 Soulh, #150 Tel: (414) 521-9333 151 Superior Blvd., Unit 1-6 

Salt Lake City 84121 FAX: (414) 521-9498 Mississauga L5T 2L 1 
Avnet Computer Tel: (801) 266-1115 Tel: (416) 564-6060 
1235 North Loop West, #525 FAX: (801) 266-0362 ALASKA FAX: (416) 564-6033 
Houston 77008 Hamilton Hallmark Avnet Computer Tel: (713) 867-8572 1100 East 6600 South, #120 Hamilton Hallmark 
FAX: (713) 861-6851 Sail Lake City 84121 1400 West Benson Blvd., #400 

190 Colonade Road 
Tel: (801) 266-2022 Anchorage 99503 

Nepean K2E 7 J5 Hamilton Hallmark Tel: (907) 274-9899 
12211 Technology Blvd. FAX: (801) 263-0104 FAX: (907) 277-2639 Tel: (613) 226-1700 

Austin 78727 Wyle Laboratories 
FAX: (613) 226-1184 

Tel: (512) 258-8848 1325 West 2200 South, #E 
CANADA Zentronics FAX: (512) 258-3777 West Valley 84119 

5600 Keaton Crescent. #1 
Hamilton Hallmark Tel: (801) 974-9953 

Mississauga L5R 3S5 
11420 Page Mill Road FAX: (801) 972-2524 ALBERTA Tel: (416) 507-2600 
Dallas 75243 

WASHINGTON Avnet Computer FAX: (416) 507-2831 
Tel: (214) 553-4300 2816 21st Street Northea$t 
FAX: (214) 553-4395 Almac Arrow Electronics Calgary T2E 6Z2 Zentronics 

Hamilton Hallmark 14360 S.E. Eastgate Way Tel: (403) 291-3284 155 Colonnade Rd., South 
Bellevue 98007 FAX: (403) 250-1591 #17 8000 Westglen Tel: (206) 643-9992 Nepean K2E 7K1 Houston 77063 FAX: (206) 643-9709 Zentronics Tel: (613) 226-8840 Tel: (713) 781-6100 6815 8th Street N.E., #100 FAX: (613) 226-6352 FAX: (713) 953-8420 Anthem Electronics Calgary T2E 7H 

Pioneer Standard 
19017 - 120th Ave., N.E. #102 Tel: (403) 295-8838 

1826-0 Kramer Lane 
Bolhell 98011 FAX: (403) 295-8714 QUEBEC 

Austin 78758 
Tel: (206) 483-1700 

Tel: (512) 835-4000 
FAX: (206) 486-0571 BRITISH COLUMBIA Arrow/Schweber Electronics 

FAX: (512) 835-9829 Avnet Computer Almac Arrow Electronics 1100 S1. Regis Blvd. 

Pioneer Standard 
17761 N.E. 78th Place 8544 Baxter Place Dorval H9P 2T5 
Redmond 98052 Burnaby V5A 4T8 Tel: (514) 421-7411 

13765 Beta Road Tel: (206) 867-0160 Tel: (604) 421-2333 FAX: (514) 421-7430 
Dallas 75244 FAX: (206) 867-0161 FAX: (604) 421-5030 Tel: (214) 263-3168 

Hamilton Hallmark Arrow/Schweber Electronics FAX: (214) 490-6419 Hamilton Hallmark 500 Boul. St.-Jean-Baptiste Ave. 8630 154th Avenue 8610 Commerce Court 
Pioneer Standard Redmond 98052 Burnaby V5A 4N6 

Quebec H2E 5R9 
10530 Rockley Road, # 1 00 Tel: (206) 881-6697 Tel: (604) 420-4101 

Tel: (418) 871-7500 
Houston 77099 FAX: (206) 867-0159 FAX: (604) 420-5376 

FAX: (418) 871-6816 
Tel: (713) 495-4700 
FAX: (713) 495-5642 Wyle Laboratories Zentronics Avnet Computer 

15385 N.E. 90th Street 11400 Bridgeport Rd., #108 2795 Reu Halpern 
Wyle Laboratories Redmond 98052 Richmond V6X 1 T2 St. Laurent H4S 1 P8 
1810 Greenville Avenue Tel: (206) 881-1150 Tel: (604) 273-5575 Tel: (514) 335-2483 
Richardson 75081 FAX: (206) 881-1567 FAX: (604) 273-2413 FAX: (514) 335-2481 
Tel: (214) 235-9953 
FAX: (214) 644-5064 WISCONSIN ONTARIO Hamilton Hallmark 

Wyle Laboratories Arrow/Schweber Electronics Arrow/Schweber Electronics 
7575 Transcanada Highway 
#600 4030 West Braker Lane, #330 200 N. Patrick, #100 1093 Meyerside, Unit 2 S1. Laurent H4T 2V6 Austin 78758 Brookfield 53045 Mississauga L5T 1 M4 Tel: (514) 335-1000 Tel: (512) 345-8853 Tel: (414) 792-0150 Tel: (416) 670-7769 FAX: (514) 335-2481 FAX: (512) 345-9330 FAX: (414) 792-0156 FAX: (416) 670-7781 

Wyle Laboratories Avnet Computer Arrow/Schweber Electronics Zentronics 
11001 South Wilcresl, #100 20875 Crossroads Circle, #400 36 Antares Dr., Unit 100 520 McCaffrey 
Houston 77099 Waukesha 53186 Nepean K2E 7W5 St. Laurent H4T 1 N3 
Tel: (713) 879-9953 Tel: (414) 784-8205 Tel: (613) 226-6903 Tel: (514) 737-9700 
FAX: (713) 879-6540 FAX: (414) 784-6006 FAX: (613) 723-2018 FAX: (514) 737-5212 

CG/SALE/111293 



FINLAND 

Intel Finland OY 
Ruosilantie 2 
00390 Helsinki 
Tol: (358) 0 544 644 
FAX: (358) 0 544 030 

FRANCE 

\~u<;,~r:~~~pS~.L. 
78054 St. auentin«l~Yv&lines 
Cedex 
Tel: (33) (1) 30 57 70 00 
FAX: (33) (1) 30 64 80 32 

EUROPEAN SALES OFFICES 
GERMANY 

Intol GmbH 
Domacher Strasse 1 
85622 Feldkirchen/Muenchen 
Tel: (49) 089/90992-Q 
FAX: (49) 085/9043948 

ISRAEL 

Intel Semiconductor Ltd. 
Atldim Industrial Park·Neve Sharet 
P.O. Box 43202 
Tel-Aviv 61430 
Tel: (972) 03 496080 
FAX: (972) 03 491870 

ITALY 

Intol Corporation ltalia S.p.A. 
Mlianofiorl Palazzo E 
20094 Assago 
Milano 
T.I: (39) (2) 575441 
FAX: (39) (2) 3496464 

NETHERLANDS 

Intel Semiconductor B.V. 
Postbus 64130 
3009 CC Rotterdam 
T.I: (31) 104071111 
FAX: (31) 10 455 4688 

RUSSIA 

=~~:~~=:i~ 
121357 Moscow 
Tel: 007-095-4439785 
FAX: 007-095-4459420 
TLX: 612092 small su. 

SPAIN 

Inlol Iberia SA 
Zubaran, 28 
28010 Madrid 
Tol: (34) (1) 308 2552 
FAX: (34) (1) 4107570 

SWEDEN 

Intel Sweden A.B. 

~e~o~:a 
T.I: (46) 8 705 5800 
FAX: (46) 8 278085 

UNITED KINGDOM 

~~:!~J;P,.0ralion (U.K.) Ud. 

Swindon, ~hShire SN3 1 RJ 
T.I: (44) (0793) 696000 
FAX: (44) (0793) 641440 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTRIA GERMANY 

t·ElbaIex GmbH *Avnet Electronic 2000 

~~t:3Fw:n6 ~~~~=~.~2 
Tol: (43) 1818020 
FAX: (43) 181652141 

Tel: (49) 89 45t 10-01 
FAX: (49) 89 45110129 

tSpoerle ElectroniC *Jermyn GmbH 
~~i~~~~r. 62 1m Dachsstueck 9 

65549 Umburg 

~~:(m)?:::;~:t~ T.I: (49) 6431 5080 
FAX: (49) 6431 508289 

BELGIUM tMe1rologie GmbH 

t*lnelco Distribution 
Steinerstrasse 15 
81369 Muenchen Avenue des Croix de Guerre 94 
~~:(~)S:S ~~~111 1120 Sruxelles 

~~:~~~Nif6~::~ *ProeJectron Vertriebs GmbH 

·Dlode BeI~Um 
Mex-Planck-Stresso 1-3 
83303 Dreieich K.lbel1l."' In.rvaalraal, 14182 T.I: (49) 6103 304343 1930 ventom 

~~:(~~~N~~ ~5~1 
FAX: (49) 6103 304425 

tR.ln Elektronik GmbH 

DENMARK ~~':u,:\,:?88 
*Avne1 Nortec AlS T.I: (49) 2153 7330 
TransformerveJ 17 FAX: (49) 2153 733513 
DK-2730 H.riev 
T.I: (45) 4264 2000 GREECE 
FAX: (45) 4492 1552 

tE:radaia 
t*1TT Multikomponent AS Ai~ roupoleos 2A 
Naverland 29 1 676 Kalithea 

~~:~~ ~:rue&s T.I: (30) 1 95 10 922 

FAX: (45) 4245 7824 
FAX: (30) 1 95 93 160 

;::'~:~~~$~~Tv. 150 FINLAND 

t·OY Rntronlc AB 
Athens 17671 

~~:(~b)11~l~6:a ~0i1i:.';'0 
T.I: (358) 0887331 IRELAND FAX: (358) 0 887 33 343 

FRANCE 
t*Mlcro Marketing 
Taney Hall 

*Arrow Electronique Eglinton Terrace 
73-79 Rue des sotets Dundrum 
SIIiC 565 Dublin 14 

~33~u(7fi:9~~78 
T.I: (353) (1) 288 9400 
FAX: (353) (1) 288 9826 

FAX: (33) (1) 4978 0596 
ISRAEL *Avnet 

79, rue Pierre Ssmard t*Eastronlcs limited 
92322 Chatilion Rozanis 11 
T.I: (33) (1) 4965 2500 P.O.B. 39300 
FAX: (33) (1) 49B5 2789 T.I Baruch 
tMairologla Tei-Avlv 81392 
Tour d'Asnleres ~~:(9~Nl::8~le 4, Avenue Laurent Cety 
92606 Asniares Cedex 
T.I: (33) (1) 4080 9000 ITALY 
FAX: (33) (1) 4791 0581 

'Intesl Div. Della Deutsch. 
*Teketec Dlvisiorie ITT Indualries GmbH 
C~o des Bruyeres P.I.06550110158 
5, Ruo Carle Vomal-BP 2 Miianofiori Palazzo OS 
92310 Sevr.s 20094 ~o ~MllanO) 
Tol: (~(1) 4823 2425 Tol: (3:1. 2 4 01 
FAX: (1) 4507 2191 FAX: ) 2 8242631 

*Components 
tSyslems 

*Lasi Elettronlca 
P.I. 00839000155 
Viale Fulvia Tesli, N.280 
20128 Milano 
T.I: (39) 2 881431 
FAX: (39) 2 88101385 

tOmnilogic Telearn 
Via Lor.nteggio 270lA 
20152 Milano 
T.I: (39) 248302840 
FAX: (39) 2 43802010 

NETHERLANDS 

tDaI.lcom B.V. 
Meldoomkade 22 
3993 AE Houten 
Tel: (31) 3403 57222 
FAX: (31) 3403 57220 

·Diode Components 
Coltbaan 17 
3439 NG Nieuwegein 
Tol: (31) 3402 9 12 34 
FAX: (31) 340235924 

t*Konlng en Hartman 
En.rgleweg 1 
2827 APD.1fI 
T.I: (31) 15809 908 
FAX: (31) 15819194 

NORWAY 

*Avne1 Nortec A/S 
Postboks 123 
N-l364 Hvelstad 
Tol: (47) 264 8210 
FAX: (47) 284 6545 

tComputor System Integration AJS 
Poslbox 198 

~~~O(~~S~~ 411 
FAX: (47) 638 45 310

PDRTUGAL

*ATD Electronics LOA

~~:~op:-~sala 505
Urbanizacao de Matlnha
1900 Lisboe
T.I: (351) (1) 858 0191 /2
FAX: (351) (1) 658 7641

~~:S:I.O~:'~b~~C:":'~~os 3A
1900 Lisboe
T.I: (351) (1) 647 2202
FAX: (351) (1) 647 2197

SOUTH AFRICA

t·EBE
PD Box 912-1222
SllverlOn 0127
178 Eraamus 5treet
Meyerspark
Pralorla 0184
T.I: (27) 12 803 7650-93
FAX: (27) 12 803 8264

SPAIN

*ATO Electronica
Avenue de Ie Industria, 32, 2B
28100 Alcobendas
Madrid
Tel: (34) (1) 881 6551
FAX: (34) (1) 661 6300

l~"!'1~~~~r~_2
28100 Alcobendas
Madrid
Tel: (34) (1) 8811142
FAX: (34) (1) 881 5755

SweDEN

tAvnal Compuler AB
Box 164
5-12323 Farsta
Tel: (46) 87051800
FAX: (46) 8 735 2373

*Avnet Nortec AS
Box 1630
$-171 27 Solna
Tol: (46) 8705 1800
FAX: (46) 883 6918

*ITT Multikomponent AB
Ankdammsgalan 32
Box 1330
5-171 26 Solna
T.I: (46) 8 830020
FAX: (46) 8 27 13 03

SWITZERLAND

tElbalexAG
Hards.,.7

f~:mr ~.~nHc\''bo
FAX: (41) 27 1924

tFabrim.x AG

~~~""1u~ 
Tol: (41) 1 3888888 
FAX: (41) 1 363 23 79 

tlMIC Microcomputer 
Zurichstr .... 
CH-8165 Wlnk.I-Rutl 
T.I: (41) (1) 8820055 
FAX: (41) (1) 8820288 

t'lndustrad. AG 
H._ssa31 
CH-8304 Wallls.ll.n 
T.I: (41) (1) 8328111 
FAX: (41) (1) 6307550 

TURKEY 

*Empa ElectroniC 
Florya Is Mork.zi 
BTa' Landra AslaNI 
34 0 FloOa Istanbul 

~~:~~ill)~~l 

UNITED KINGDOM 

*Arrow Electronics 
St. Martins Business Centre 
Cambridg. Road 
Bedford - MK42 OLF 
T.I: (44) 234 270272 
FAX: (44) 234 211434 

'Avnol EMG Lid. 
Jubilee Housa 
Jublle. Road 
Letchworth 
H.rtsfordshir. - SG6 lQH 
T.I: (44) 462 488 500 
FAX: (44) 482 489 567 

~~==nents 
Chineham Business Park 
4 Crockford Leno 

~=SW8~~lRW 
T.I: (44) 256 707107 
FAX: (44) 258 707 182 

t~.Ch 5~I.ms 
~:r~~:a Centre 
Brackn.11 
Berks - RG12 2PW 
T.I: (44) 344 55 333 
FAX: (44) 344 867 270 

*Datrontech 
42-44 Birchett Road 
Ald.rshol 
Hanla-GUlllLU 
T.I: (44) 252 313155 
FAX: (44) 252 341939 

-Jermyn Electronics 
V.slry Eslat. 
OtIord Road 
Sevanoaks 
Kant TN14 5EU 
T.I: (44) 732 743 743 
FAX: (44) 732 451 251 

tMalrologl. VA 

~1:,.~= 
High Wycombe 
Bucks - HPll 2E 
T.I: (44) 494 526 271 
FAX: (44) 494 421 880 

·MMDlAapid Lid. 

~=:~I~rt 
Bonnol Road 

~:~~~G20QX 
T.I: (44) 734 750 897 
FAX: (44) 734 313 255 

CG/SALE/111293 



AUSTRALIA 

Intel Australia Ply. Ltd. . 
Unit 13 '. 
Allambie Grove Business Park 
25 Frenchs Forsst Road East 
Frenchs Forest, NSW. 2086 
Sydney '" 
Tel: 61-2-975-3300 
FAX: 61-2-975-3375 

Intel Australia Ply. Ltd. 
711 High Street 
1st Floor 
East Kw. Vic., 3102 
Melbourne 
Tel: 61-3-810-2141 
FAX: 61-3-819 7200 

BRAZIL 

~: ~~~C;:~U:!:~~ ~~~ 
CEP 04585-001 Sao Paulo 
SP Brazil 
Tel: 55-11-530-2296 
FAX: 55-11-531-5765 

CHINAlHONG KONG 

=:~r795~rcoration 
China World Tower 
1 Jian Guo Men Wai Avenue 
Beijing 100004 
Republic of China 
Tel: 861-505-0366 
FAX: 861-505-0383 

INTERNATIONAL SALES OFFICES 
Intel Semiconductor Ltd." Intel Ja~n KK· Intel Japan KK· SINGAPORE 
32/F Two Pacific Plaoe ~-'f-~~~I~~~I TK Gotenda Bldg. 9F 
88 Queensway B-3-6 Nishi Gotenda \nJ~I~=re~h;g~ Ltd. Cenlral Hachiojl-shr, Tokyo 192 ¥~1~~141 
Hon~ Ko:'i.w Tel: 0426-48-8770 Untted Square 
Tel: 8~ -4555 FAX: 0426-48-8775 FAX: 03-3493-5951 ¥~~j~~~gll FAX: (8 ) 868-1989 

Intel Japan K.K.· 
KOREA· 

FAX: (65) 250-9256 
Kawa-asa Bldg. 

INDIA 2-11-5 Shin-Yokohama 
Kohoku-ku, Yokohama-shi \":~ ~:'-~·Bldg. TAIWAN 

Intel Asia Eleclronlcs, Inc. Kanagawa, 222 
4/2, Samrah Plaza Tel: 045-474-7660 t:u~~=8' Youngdeungpo-Ku Intel Technology Far East Ltd. 
St. Mar1<'s Road FAX: 045-471-4394 Taiwan Branch 

~t~~I~_ir~ Tel:' (2) 784-8166 8th Floor, No. 205 

=.~~m~·~~g. 
FAX: (2) 784-8096 Bank Tower Bldg. 

FAX: 91-80-215087 Tung Hua N. Road 
TLX: 953-845-2846 INTL IN 2-4:1 Terauchi MEXICO 

Taipei 

+~r~t~_~ioo~ka 560 
Tel: 8B8-2-5144200 

JAPAN Intel Tecnologia de Mexico 
FAX: 666-2-717-2455 

FAX: 06-863-1084 
SA de C.V. 

886-2-719-6184 

Intel Japan KK Inlel Japan K.K. Av. Mexico No. 2786-9B, S.H. 
5-6 Takodai, Tsukuba-shi Shinmaru Bldg. 446BO Guadalajara, JaJ. 
Ibarakl, 300-26 1-5-1 Marunouchi Tel: 011-523-840-1259 
Tel: 0298-47-8511 Chiyoda-ku, Tokyo 100 FAX: 011-523-642-7661 
FAX: 0298-47-8450 Tel: 03-3201-3821 

FAX: 03-3201-6850 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
ARGENTINA GUATEMALA SES Compute .. & Technologies ~!ra~~ SOUlH AFRICA 

Dalsys Consuftlng S.A. Pvt. Ltd. 
Ablnltlo 11/18, SNS Chambers ~:'1i~:2~f5shi 460 Electronic Building ElemerTIs Chacabuco, 90-6 Piso 11 Calle2-Zona9 239 Palaoe Upper Orchards 1069·Buenos Aires Gual.mala Ctty sen~ Road, Sadeshlvanagar FAX: 052-204-8380 178 Erasmus St 

Tel. & FAX: 54.1334.1871 Tol: 5022-32-4104 Ban ore 560 080 r. Wat~~ .. 0184 
AUSTRALIA 

FAX: 5022-32-4123 Tel: 1-812-348481 Ryoyo EleclrO Corp. Tel~12-803-7660 
FAX: 91-812-343885 KonwaBldg. FAX: 011-2712-803-8294 

NJS Eledronlcs Australia INDIA 
SES Computers & Technol.ogles 

1-12-22 Tsukljl 
1 A/37 Ricketts Road ¥~~~~1o'1~04 Mount Waverley, VIC 3149 ~ International Umfted Pvt. Ltd. 
Tel: 61-3-558-9868 D- ,II Floor Arvlnd Chambers FAX: 03-3546-5044 TAIWAN 
FAX: 61-3-556-9929 Devatha Plaza 194, Andheri·Kurla Road 

NSD·Australia 
131/132 Residency Rd. Andher1 (East) . 

KOREA Micro Electronics Corporation 

~1~~~~g-mo'W, 91-60-214395 
Bombay 400 069 

205 Middleborough Rd. Tel: 91-22-8341584; 91-22-8341667 12th Floor, Section 3 
Box Hill, Victoria 3128 FAX: 91-80-214105 FAX: 91-22-4937524 Sarnsung Electronics ~~pe't~~~~~ Road Tel: 03 8900970 Samsung Main BId~ 
FAX: 03 8990819 Priya International Limited SES Computers & Technologies 150 Taepyun~-RO- , Chung-Ku Tel: (866) 2-7198419 

~~~~I~0Mt';".eith Floor Pvt. Ltd. Seoul 100-10 FAX: (886) 2-7197918 
BRAZIL 80S-A, Ansal Chamber. II C.P.O. Box 8760

H~ech
Bombay 400 023 . No.8, Bhikajl Camaplaoe Tel: (822) 751-3680 Ai;er Bartek Inc.

Luis Car10s Berrini, 801 CJ121 Tel: 91-22-2660948, 91-22-2665822 New Delhi 110066 TWX: KORSST K 27970 15th Floor, Section 2
Tel: 91-11-8881683 FAX: (822) 753-9065 Chien Kuo North Rd.

04571, Sac Raulo, SP Brazil Priya International Llmttad FAX: 91-11-6840471 Taipei 18479 R.O.C. Tel: 5511-536-0355 Flat No.8, 10th Floor Tong Bask ElectroniC Co., Ltd. Tel: 866-2-501-0055 FAX: 5511-240-2650 :=.:g:~~~lng ~~8 H~.n~~te:l-ga TWX: 23758 SEATEK
Microlinear JAMAICA

Tel: 'l:.2-~15-6B23 FAX: (888) 2-5012521
Avenida Wilhelm Winter, 345 New DeIhl 110 001
Distrito Industrial· Jundlai, SP Tel: 91-11-3314512, 91-11-3310413 MC Systems FAX: 82-2-715-9374
13213-000 FAX: 91-11-3719107 10-12 Grenada Cresoenl

Kingston 5 URUGUAY Tel: 5511-732-6111
~a~=ryatlp".:! Umiled ~~:(=)~s2Ja'18 SAUDI ARABIA FAX: 5511-732-2892

AN;. Systems, Inc. Interfase
CHILE 560-582 Mounl Road, Taynampet Btvr. Espana 2094

Madras 600 018 842 N. Pastoria Ave. 11200 Montevideo
Sisteco Tel: 91-44-451031,91-44-451597 JAPAN Sunnyvale, CA 84066 Tel: 5982-49-4600
Veelnal 40 - Las Condes FAX: 91-44-813549

Asahi Electroni<;s Co. Ltd.
U.S.A. FAX: 5982-49-3040

Santiago Tel: (408) 732-1710
Tel: 582-234-1844 Priya International Limttad KMM Bldg. 2-14-1 Asano

~;~=SYS FAX: 562-233-9885 No. 10, II Floor. Minerva House Kokurakita.-ku
94 Sarojini Devi Rd. ~U-Shi802 VENEZUELA

CHINA/HONG KONG Secunderabad 500 003 Tet: 11-8471
Tel: 91-842-813120, 91-842-813549 FAX: 093-551-7661 SINGAPORE

Novel Precision Machinery Co., Ltd. Unixel CA.
Room 728 Trade Square Priya International Lim~ed Dis Semicon Systems, Inc. ' Electronic Resources Pte, Ltd. 4 Transversal de Monte Cristo

~~~~~~;~~n Road 
Lords, III Floor Flower Hili Shlnmachl Higashi-kan ~~~ Road 1336 

Edt. fOO(A, Piso 1, of. 1 &2 
7/1 Lord Sinha Road 1-23 Shinmechl, Setageya-ku Cenlro Emprasarlal Boietta 

Tel: (652) 360-8999 Calcutta 700 071 Tokyo 154 Tel:(65~2~ Caracas 
TWX: 32032 NVTNL HX Tel: 91-33-222378, 91-33-222379 Tol: 03-3439-1600 TWX: R 56541 ERS Tel: 582-239-7749 
FAX: (652) 725-3695 FAX: 91-33-224884 FAX: 03-3439-1601 FAX: (65) 289-5327 FAX: 582-238-1816 

-Field Application location CGlSALE/111293 



ALABAMA 

BirminQham 
Huntsville 

ALASKA 

Anchorage 

ARIZONA 

Phoenix-
Tucson 

ARKANSAS 

Ut1Ie Rock 

CALIFORNIA 

Bakersfield 
Bras 
Carson-
Fresno 
Livermore 
Mar Del Rey 
Ontario· 
Orange 
Sacramento· 
San Diego· 
San Francisco· 
Santa CIara* 
Ventura 
Sunnyvale 
Walnut Creek* 
Woodland Hills* 

COLORADO 

Colorado Springs 
Denver 
Englewood* 

CONNECTICUT 

Glastonbury* 

DELAWARE 

New Castle 

FLORIDA 

A. Lauderdale 
Heathrow 
Jacksonville 
Melbourne 
Pensacola 
Tampe 
West Palm Basch 

ARIZONA 

Computervlsion Customer 
Education 
2401 W. Behrend Dr .• SuKe 17 
Phoenix 85027 
Tel: 1·800.234·6806 

MINNESOTA 

3500 W. BOth Street 
SuKe 380 

¥:.f:~\nt'a3~~~ 

*Carry-In tocations 

NORTH AMERICAN SERVICE OFFICES 
COMPUTERVISION 

Intel Corporation's North American Preferred Service Provider 
Central Dispatch: 1-800-876-SERV (1-800-876-7378) 

GEORGIA MICHIGAN NORTH DAKOTA 

Atlanta· Ann Harbor Bismark 
Savannah Benton Harbor 
West Robbins Flint OHIO 

Grand Rapids· 
HAWAII Leslie Cincinnati-

Livonia- Columbus 
Honolulu 8t. Joseph ~raon ndence. Troy· 

Mid:f: Heights· 
ILLINOIS 

MINNESOTA Toledo· 
Buffalo· Bloomington- OREGON calumerCity Deluth Chicago Beaverton-
lanSing 

MISSOURI oak Brook PENNSYLVANIA 
Spnngfield 

g:;~71~* INDIANA St. Louis· 

Carmel* NEVADA East Erie 
Ft. Wayne Pittsburgh· 

Minden Wayne* 
KANSAS Las Vegas 

Reno SOUTH CAROLINA 
Overland Park* 
Wichita NEW HAMSHIRE Charteston 

Cherry Point 
Manchester* Columbia 

KENTUCKY Fountain Inn 

Lexington NEW JERSEY 
SOUTWIlAKOTA louisville Edison* 

StoU'x Falls Madisonville Hamton Town* 
Parsippany* 

LOUISIANA' TENNESSEE 
NEW MEXICO 

Bertlett Baton Rouge 
Metarie Albuquerque Chattanooga 

Knoxville 

MAINE NEW YORK Nashville 

Brunswick Albany* 
Amherst* 

TEXAS 

Dewitt" .. Austin 
MARYLAND Falrport* Bey City 

Frederick 
Farmingdale· Beaumont 

Unthicum* 
New York City* canyon 

Rockville* 
College Station 

NORTH CAROLINA Houston* 
Irving* 

MASSACHUSETTS Brevard San Antonio 
Charlotte Tyler 

Boston* Greensboro 
Natick* Haveluch UTAH 
Norton* Ralei~h 
Springfield Wilmington SOlt Lake City' 

CUSTOMER TRAINING CENTERS 
ILLINOIS 

Computervision Customer 
Education 
1 Oakbrook Terrace 
Suite 800 
oakbrook 60161 
Tel: 1·800·234-8806 

MASSACHUSETTS 

Computervision Customer 
Education 
11 Oak Park Drive 
Bedford 01730 
Tel: 1-1100·234-8806 

SYSTEMS ENGINEERING OFFICES 
NEW YORK 

2950 Expressway Dr., South 
Islandia 11722 
Tel: (506) 231-3300 

VIRGINIA 

Charlottesville 
Glen Allen 
Maclean* 
Norlolk 
Virginia Beach 

WASHINGTON 

Bellevue-
Olympia 
Renton 
Richland 
Spokane 
Verdale 

WASHINGTON D.C.' 

WEST VIRGINIA 

St. Albans 

WISCONSIN 

Brookfield* 
Green Bay 
Madison 
Wausau 

CANAOA 

Calgary· 
Edmonton 
Halifax 
London* 
Montreal* 
Ottawa 
Toronto* 
Vancouver, SC· 
Winnipeg 
Regina 
St. John 

CGlSALE/III293 

" 

\" 

.. ~ 
" 

'j 

': 





1-55512-228-0 

m Ul 

m ~ 
1960 JX MICROPROCESSOR USER ' S' MANUAL ~ w 
INTEL INTEL/GEN ~ 
1555122280 5"1 

Price: $25.95 1555 122287 
CC#wi . M (C) l;'5'S , C~vur Li urK'" eo.ell.l'lo~ • • Jrw: . ( SV) 


