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CHAPTER 1 
INTRODUCTION 

The i960® Ix microprocessor provides a new set of essential enhancements for an emerging class 
of high-performance embedded applications. Based on the i960 core-architecture, it is 
implemented in a proven 0.8 micron, three-layer metal process. Figure 1-1 identifies the 
processor's most notable features, each of which is described in subsections that follow the figure. 
These features include: 

• instruction cache 

• on-chip data RAM 

• timer units 

ClKIN 

\QI----+ 

TAP 

Pll, Clocks, 
Power Mgmt 

Boundary Scan 
Controller ~ 1...-____ ....1 

., data cache • bus controller unit 

• local register cache • interrupt controller 

• memory-mapped control registers • external bus 

Instruction Cache 
JF, JD: 4 Kbyte 

JA: 2 Kbyte 
Two·way Set Associative 

Direct Mapped 
Data Cache 

JF, JD: 2 Kbyte 
JA: 1 Kbyte 

Figure 1·1. 1960® Jx Microprocessor Functional Block Diagram 
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1. t PRODUCT FEATURES 

The i960 Jx processor brings many improvements to the existing i960 microprocessor family. 
Enhancements include: 

• Improvements to the core architecture 

• Low power mode 

• New instructions 

• Improved cache design 

• Enhanced bus control unit 

• Improved interrupt performance 

• JTAG testability 

1.1.1 Instruction Cache 

The i960 JF and JD processors employ a 4-Kbyte, two-way set associative instruction cache. 
i960 JA processors feature a 2-Kbyte instruction cache. A mechanism is provided that allows 
software to lock critical code within each "way" of the cache. The cache can be disabled and is 
managed by use of the ieetl and sysetl instructions, as described in section 4.4, "INSTRUCTION 
CACHE" (pg. 4-4): 

1.1.2 Data Cache 

The i960 JF andJD processors feature a 2-Kbyte, direct-mapped data cache that is write-through 
and write-allocate. i960 JA processors feature a l-Kbyte data cache. These processors have a line 
size of four words and ~plement a "natural" fill policy. Each line in the cache has a valid bit; to 
reduce fetch latency on cache misses, each word within a line also has a valid bit. See section 4.5, 
"DATA CACHE" (pg. 4-6) for details. 

The data cache is managed through the deetl instruction; see section 6.2.23, "dcctl (80960Jx­
Specific Instruction)" (pg. 6-41). 

1.1.3 On-chip (internal) Data RAM 

The processor's 1 Kbyte internal data RAM is accessible to software with an· access time of 
1 cycle per word. This RAM is mapped to the physical address range of 0 to 3FFH. The first 
64 bytes are reserved for the caching of dedicated-mode interrupt vectors; this reduces interrupt 
latency for these interrupts. In addition, write-protecuon for the first 64 bytes is provided to guard 
against the effects of using null pointers in 'C' and to protect the cached interrupt vectors. 

1-2 I 



INTRODUCTION 

New versions of i960 processor compilers can take advantage of the internal data RAM; profiling 
compilers can allocate the most frequently used variables into this RAM. See Section 4.1, 
INTERNAL DATA RAM (pg. 4-1) for more detail. 

1.1.4 Local Register Cache 

The processor provides fast storage of local registers for call and return operations by using an 
internal local register cache. This cache can store up to eight local register sets; additional register 
sets must be saved in external memory. 

The processor uses a 128-bit wide bus to store local register sets quickly to the register cache. To 
reduce interrupt latency for high-priority interrupts, the number of sets that can be used by code 
that is running at a lower priority or that is not interrupted can be restricted by programming the 
register configuration word in the PRCB. This ensures that there are always sets available for high­
priority interrupt code without needing to save sets in external memory first. See Section 4.2, 
LOCAL REGISTER CACHE (pg. 4-2) for more details. 

1.1.5 Interrupt Controller 

The interrupt controller unit (ICU) provides a flexible, low-latency means for requesting interrupts. 
It handles the posting of interrupts requested by hardware and software sources. Acting indepen­
dently from the core, the interrupt controller compares the priorities of posted interrupts with the 
current process priority, off-loading this task from the core. The interrupt controller is compatible 
with i960 CNCF processors. 

The interrupt controller provides the following features for handling hardware-requested 
interrupts: 

• Support of up to 240 external sources. 

• Eight external interrupt pins, one non-maskable interrupt (NMI) pin, and two internal timer 
sources for detection of hardware-requested interrupts. 

• Edge or level detection on external interrupt pins. 

• Debounce option on external interrupt pins. 

The application program interfaces to the interrupt controller with six memory-mapped control 
registers. The interrupt control register (ICON) and interrupt map control registers (IMAPO­
IMAP2) provide configuration information. The interrupt pending (lPND) register posts hardware­
requested interrupts. The interrupt mask (IMSK) register selectively masks hardware-requested 
interrupts. 

The interrupt inputs can be configured to be triggered on level-low or falling-edge signals. 
Sampling of the input pins can be either debounced sampling or fast sampling. 
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The i960 Jx processor has approximately 5 to 10 times faster interrupt servicing than the i960 Kx 
processor. This is accomplished through a number of features: 

.' a hardware priority resolver removes the need to access the external interrupt table to resolve 
interrupts 

• 

• 

caching of dedicated-mode interrupt vectors in the internal data RAM 

reserving frames in the local register cache for high-priority interrupts 

• the ability to lock the code of interrupt service routines in the instruction-cache reduces the 
fetch latency for starting up these routines 

Chapter 13, INTERRUPT CONTROLLER discusses this in more detail. 

1.1.6 Timer Support 

The i960 Jx processor provides two identical 32-bit timers. Access to the timers is through 
memory-mapped registers. The timers have a single-shot mode and auto-reload capabilities for 
continuous operation. Each timer has an independent interrupt request to the i960 Jx processor 
interrupt controller. See Chapter 14, TIMERS for a complete description. 

1.1.7 Memory-Mapped Control Registers 

Control registers in the i960 Jx processor are memory-mapped to allow for visibility to application 
software. This includes registers for memory configuration, internally cached PRCB data, 
breakpoint registers, arid interrupt control. These registers are mapped to the architecturally 
reserved address space range of FFOO OOOOH to FFFF FFFFH. The processor ensures that accesses 
generate no external bus cycles. 

Section 3.3, MEMORY-MAPPED CONTROL REGISTERS (pg. 3-5) discusses this in more 
detail. 

1.1.8 External Bus 

The 32-bit multiplexed external bus connects the i960 Jx processor to memory and I/O. This high 
bandwidth bus provides burst transfer capability allowing up to four successive 32-bit data 'word 
transfers at a maximum rate of one word every clock cycle. In addition to the bus signals, the i960 
Jx processor provides signals to allow external bus masters. Lastly, the processor provides variable 
bus-width support (8-, 16-, and 32-bit). ' 
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1.1.9 Complete Fault Handling and Debug Capabilities 

To aid in program development, the i960 Jx processor detects faults (exceptions). When a fault is 
detected, the processors make an implicit call to a fault handling routine. Information collected for 
each fault allows a program developer to quickly correct faulting code. The processors also allow 
automatic recovery from most faults. i, 

To support system debug, the i960 architecture provides a mechanism for monitoring processor 
activities through a software tracing facility. This processor can be configured to detect as many as 
seven different trace events, including breakpoints, branches, calls, supervisor calls, returns, 
prereturns and the execution of each instruction (for single-stepping through a program). The 
processors also provide four breakpoint registers that allow break decisions to be made based upon 
instruction or data addresses. 

1.2 ABOUT THIS MANUAL 

This i960® Jx Microprocessor User s Manual provides detailed programming and hardware design 
information for the i960 Jx microprocessors. It is written for programmers and hardware designers 
who understand the basic operating principles of microprocessors and their systems. 

This manual does not provide electrical specifications such as DC and AC parametrics, operating 
conditions and packaging specifications. Such information is found in the 80960JAlJF Embedded 
32-bit Microprocessor Data Sheet (order number 272504) and the 80960JD Embedded 32-bit 
Microprocessor Data Sheet (order number 272596). 

For information on other i960 processor family products or the architecture in general, refer to 
Intel's Solutions960® catalog (order number 270791). It lists all current i960 microprocessor 
family-related documents, support components, boards, software development tools, debug tools 
and more. 

This manual is organized in three parts; each part comprises multiple chapters and/or appendices. 
The following briefly describes each part: 

• Part I - Programming the i960 Jx Microprocessor (chapters 2-10) details the programming 
environment for the i960 Jx devices. Described here are the processor's registers, instruction 
set, data types, addressing modes, interrupt mechanism, external interrupt interface and fault 
mechanism. 

• Part II - System Implementation (chapters 11-17) identifies requirements for designing a 
system around the i960 Jx components, such as external bus interface and interrupt controller. 
Also described are programming requirements for the bus controller and processor initial­
ization. 
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• Part III - Appendices includes quick references for hardware design and programming . 
Appendices are also provided which describe the internal architecture, how to write 
assembly-level code to exploit the parallelism of the processor and considerations for writing 
software that is portable among all members of the i960 microprocessor family. 

1.3 NOTATION AND TERMINOLOGY 

This section defines terminology and textual conventions that are used throughout the manual. 

1.3.1 Reserved and Preserved 

Certain fields in registers and data structures are described as being either reserved or preserved: 

• A reserved field is one that may be used by other i960 architecture implementations. Correct 
treatment of reserved fields ensures software compatibility' with other i960 processors. The 
processor uses these fields for temporary storage; as a result, the fields sometimes contain 
unusual values. 

• A preserved field is one that the processor does not use. Software may use preserved fields for 
any function.' ,.., 

Reserv~d fields in certain data structures should be set to' 0 (zero) when the. data structure is 
created. Set reserved fields to' 0 when creating the Interrupt Table, Fault Table and System 
Procedure Table. Software should not modify or rely on these reserved field values after a data 
structure is created. When the processor creates the Intern.lpt or Fa~lt Record data structUre on tlie 
.stack, software should not depend on. the value of the reserved fields within these data stn,Ictures. 

Some bits or fields in data structures and registers are sho~n as requiring specific encoding. These 
fields should be treated as if they were reserved fields. They should be set to the specified value 
when the data structure is created or when the register is initialized and software should not 
modify or rely on the value after that. 

Reserved bits in the Arithmetic Controls (AC) register can be set to 0 after initialization to ensure 
compatibility with other i960 processor implementations. Reserved bits in the Process Controls 
(PC) register and Trace Controls (TC)register should not be initialized. When the AC,PC and TC 
registers are modified using modac, modpc or modtc instructions, the reserved locations in these 
registers must be masked. 

Certain areas of memory may be referred to as reservedinemory in this reference manual. 
ReserVed - when. referring to memory locations - implies that an implementation of the i960 
architecture may use this memory for some special purpose. For example, memory-mapped 
peripherals might be located in reserved memory areas on future implementations. 
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1.3.2 Specifying Bit and Signal Values 

The terms set and clear in this manual refer to bit values in register and data structures. If a bit is 
set, its value is 1; if the bit is clear, its value is O. Likewise, setting a bit means giving it a value of 
1 and clearing a bit means giving it a value of O. 

The terms assert and deassert refer to the logically active or inactive value of a signal or bit, 
respectively. A signal is specified as an active 0 signal by an overbar. For example, the input is 
active low and is asserted by driving the signal to a logic 0 value. 

1.3.3 Representing Numbers 

All numbers in this manual can be assumed to be base 10 unless designated otherwise. In text, 
binary numbers are sometimes designated with a sUbscript 2 (for example, 001 2), If it is obvious 
from the context that a number is a binary number, the "2" subscript may be omitted. 

Hexadecimal numbers are designated in text with the suffix H (for example, FFFF FFSAH). In 
pseudo-code action statements in the jnstruction reference section and occasionally in text, 
hexadecimal numbers are represented by adding the C-language convention "Ox" as a prefix. For 
example "FF7 AH" appears as "OxFF7 A" in the pseudo-code. 

1.3.4 Register Names 

Memory-mapped registers and several of the global and local registers are referred to by their 
generic register names, as well as descriptive names which describe their function. The global 
register numbers are gO through g1S; local register numbers are rO through r1S. However, when 
programming the registers in user-generated code, make sure to use the instruction operand. i960 
microprocessor compilers recognize only the instruction operands listed in Table 1-1. Throughout 
this manual, the registers' descriptive names, numbers, operands and acronyms are used inter­
changeably, as dictated by context. 

Table 1-1. Register Terminology Conventions 

Register Descriptive Name Register Number 
Instruction 

Acronym 
Operand 

Global Registers gO - g15 gO - g14 

Frame Pointer g15 fp FP 

Local Registers rO - r15 r3 - r15 

Previous Frame Pointer rO pfp PFP 

Stack Pointer r1 sp SP 

Return Instruction Painter r2 rip RIP 
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Groups of bits and single bits in registers and control words are called either bits, flags or fields. 

, ,-, These terms have a distinct meaning in this manual: 
. .' 

Controls a processor function; programmed by the ~ser. bit 

flag Indicates status. Generally set by the processor; certairiflags are user program-
mable. ' 

field A grouping of bits (bit field) or flags mag fi~ld) .. 

Specific bits, flags and fields in registers and control words are' usually referred to by a register 
abbreviation (in upper case) followed by a bit, flag or field name (in lower case). These items are 
separated with a period. A position number designates individual bits in a field. Fon!xample, the 
return type (rt) field in the previous 'frame pointer (PFP) register is designated as "PFP.rt". The 
least significant bit of the retUrn tYPe field is then designated as "PFP.rtO". 

1.4 RELATED DOCUMENTS 

The followi~g is a' list of additional doc~entation that is useful when designing with· and 
programming the i960 microprocessor. Contact your local sales representative for more 
information on obtaining Intel documents.' . . . 

• 80960JAlJF Embedded 32-bit Microprocessor Data Sheet 
Intel Order No. 272493 

• 

• 
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80960JD Embedded 32-bit Microprocessor Data Sheet 
Intel Order No. 272596 

8olutions960 Development Tools Catalog . 
Intel Order No. 270791 
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CHAPTER 2 
DATA TYPES AND MEMORY ADDRESSING MODES 

2.1 DATA TYPES 

The instruction set references or produces several data lengths and formats. The i960® Jx 
processor supports the following data types: 

• Integer (8, 16 and 32 bits) • Ordinal (unsigned integer 8, 16,32 and 64 bits) 

• Triple Word (96 bits) • Quad Word (128 bits) 

• Bit • Bit Field 

Figure 2-1 illustrates the data types (including the length and numeric range of each) supported by 
the i960 architecture. 

1 I Ui' ~i&la I I s'1ts I Byte I 
31 L 

Length j 0 7 0 

~i~sl Short I 
LSBof 15 0 

Bit Field 

~~I Word I 
31 0 

:sl I Long I 
63 0 

~~I I I Triple Word I 
95 0 

128 1 Bits I I I OuadWord I 
127 0 

Class Data Type Length Range 

Numeric 
Byte Integer 8 Bits _27 to 27 -1 

(Integer) Short Integer 16 Bits _215 to 215 _1 

Integer 32 Bits _231 to 231 -1 

Byte Ordinal 8 Bits Ot028 -1 

Numeric Short Ordinal 16 Bits o t0216 _1 
(Ordinal) Ordinal 32 Bits Ot0232 _1 

Long Ordinal 64 Bits Ot0264-1 

Bit 1 Bit N/A 
Bit Field 1-32 Bits 

Non-Numeric Long Word 64 Bits 

Triple Word 96 Bits 
OuadWord 128 Bits 

F ~AOOS; 

Figure 2·1. Data Types and Ranges 
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2.1.1 Integers 

Integers ~e ~igned whole numbers that are stored and operated on in two's complement format by 
the integer instructions. Most integer instructions operate on 32-bit integers. Byte and short 
integers are referenced by the byte and short classes of the load, store and compare instructions 
only. Table 2-1 shows the supported integer sizes. 

Table.2-1. 80960Jx Supported Integer Sizes 

Integer size Descriptive name Range 

8 bit byte integers _27 to 27 -1 

16 bit short integer _215 to 2 15 _1 

32 bit . integers _231 to 231 -1 

Integer load or store size (byte, short or word) determines how sign extension or data truncation is 
performed when data is moved between registers 'and memory. 

For instructions Idlb (load integer byte) and Idls (load integer short), a byte or short word in 
memory is considered a two's complement value. The valve is sign-extended and placed in the 32-
bit regis~er that is the destination for the load. 

For instructions stib (store integer byte) and stis (store integer short), a 32-bit two's complement 
number in a register is stored to memory as a byte or short-word. If register data is too large to be 
stored as a byte or short word, the value is truncated and the integer overflow condition is 
signalled. When an overflow occurs, either an AC register flag is set or the integer overflow fault 
is generated. CHAPI'ER 9, FAULTS describes the integer overflow fault. 

For instructions Id (load word) and st (store word), data is moved directly between memory and a 
register with no sign extension or data truncation. 

2.1,;2 Ordinals 

Ordinals or unsigned integer data types are stored and operated on as positive binary\values. Table 
2-2 shows the supported ordinal sizes. 

Table 2-2. 80960Jx Supported Ordinal Sizes 

Ordinal sll!!e Descriptive name Range 

8-bit byte ordinals Oto 28 -1 

16-bit short ordinals o to 216 _1 

32-bit ordinals Oto~2-1 

64-blt long ordinals o to 264 -1 
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The large number of instructions that perform logical, bit manipulation and unsigned arithmetic 
operations reference 32-bit ordinal operands. When ordinals are used to represent Boolean values, 
1 = TRUE and 0 = FALSE. Several extended arithmetic instructions reference the long ordinal data 
type. Only load (Idob and Idos) store (stob and stos) and compare ordinal instructions reference 
the byte and short ordinal data types. 

Sign and sign extension are not considered when ordinal loads and stores are performed; the values 
may, however, be zero-extended or truncated. A short word or byte load to a register causes the 
value loaded to be zero-extended to 32 bits. A short word or byte store to memory may cause an 
ordinal value in a register to be truncated to fit its destination in memory. No overflow condition is 
signalled in this case. 

2.1.3 Bits and Bit Fields 

The processor provides several instructions that perform operations on individual bits or bit fields 
within register operands. An individual bit is specified for a bit operation by giving its bit number 
and register. Internal registers always follow little endian byte order; the least significant bit is bit 0 
and the most significant bit is bit 31. 

A bit field is any contiguous group of bits (up to 31 bits long) in a 32-bit register. Bit fields do not 
span register boundaries. A bit field is defined by giving its length in bits (0-31) and the bit number 
of its lowest numbered bit (0-31). 

Loading and storing bit and bit field data is normally performed using the ordinal load and store 
instructions. Integer load and store instructions operate on two's complement numbers. Depending 
on the value, a byte or short integer load can result in sign extension of data in a register. A byte or 
short store can signal an integer overflow condition. 

2.1.4 Triple and Quad Words 

Triple- and quad-words refer to consecutive words in memory or in registers. Triple- and quad­
word loads, stores and move instructions use these data types. These instructions facilitate data 
block movement. No data manipulation (sign extension, zero extension or truncation) is performed 
in these instructions. 

Triple- and quad-word data types can be considered a superset of - or as encompassing - the 
other data types described. The data in each word subset of a quad word is likely to be the operand 
or result of an ordinal, integer, bit or bit field instruction. 
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2.1.5 Register Data Alignment·· 

Data in registers must adhere to specific alignment requirements: 

• Long-word operands in registers must be aligned to double-register boundaries. 

• Triple- and quad-word operands in registers must be aligned to quad-register boundaries. 

For the i960 Jx processor, data alignment in memory is not required. User software can be 
programmed to automatically handle unaligned memory accesses or to cause a fault. 

2.1.6 Literals 

The architecture defines a set of 32 literals that can be used as operands in many instructions. 
These literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is used 
as an operand, the processor expands it to 32 bits ,by adding leading zeros. If the instruction 
requires an operand larger than 32 bits, the processor zero-extends the value to the operand size. If 
a literal is used in an instruction that requires integer operands, the processor treats the literal as a 
positive integer value. 

2.2 BIT AND BYTE ORDERING IN MEMORY 

All occurrences of numeric and non-numeric data types, except bits and bit fields, must start on a 
byte boundary. Any data item occupying multiple bytes is stored as big-endian or little endian. The 
following sections further describe byte ordering. 

2.2.1 Bit Ordering 

Bits within bytes are numbered such that if the byte is viewed as a value, bit 0 is the least 
significant bit and bit 7 is the most significant bit. For numeric values spanning several bytes, bit 
numbers higher than 7 indicate successively higher bit numbers in bytes with higher addresses. 
Unless otherwise noted, bits in illustrations in this manual are ordered such that the higher­
numbered bits are to the left. 

2.2.2 Byte Ordering 

This i960 Jx processor can be programmed to use little or big endian byte ordering for memory 
accesses. Byte ordering refers to how data items larger than one byte are assembled: 

• For little endian byte order, the byte with the lowest address in a multi-byte data item has the 
least significance. 

• For big endian byte order, the byte with the lowest address in a multi-byte data item has the 
most significance. 

N I 
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For example, Table 2-3 shows four bytes of data in memory. Table 2-4 shows the differences 
between little and big endian accesses for byte, short, word and long word data. Figure 2-2 shows 
the resultant data placement in registers. 

Once data is read into registers, byte order is no longer relevant. The lowest significant bit is 
always bit O. The most significant bit is always bit 31 for words, bit 15 for short words, and bit 7 
for bytes. 

Byte ordering affects the way the i960 Jx processor handles bus accesses. See section 15.2.6, "Byte 
Ordering and Bus Accesses" (pg. 15-28) for more information. 

Table 2·3. Memory Contents For Little and Big Endian Example 

ADDRESS DATA 

1000H 12H 

1001H 34H 

1002H 56H 

1003H 78H 

Table 2·4. Byte Ordering for Little and Big Endian .Accesses 

Access Example 
Register Contents Register Contents 

(Little Endian) (Big Endian) 

Byte at 1000H Idob Oxl000, r3 12H 12H 

Short at 1 002H Idos O~1002, r3 7856H 5678H 

Word at 1000H Id Oxl000, r3 78563412H 12345678H 

78563412H (r4) 12345678H (r4) 
Long Word at 1000H Idl Oxl000, r4 

FODEBC9AH (r5) FODEBC9AH (r5) 
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31 2423 1615 87 0 

BYTE I XX I XX I XX I DDo I 
31 2423 1615 87 0 

SHORT I XX I XX I DD1 ] DDC I 
31 2423 1615 87 0 

WORD I DD3 I DD2 I DD1 I DDo I 
NOTES: 
D's are data transferred to/from memory 
X's are zeros for ordinal data 
X's are sign bit extensions for integer data 

Figure 2-2. Data Placement in Registers 

2.3 MEMORY ADDRESSING MODES 

The processor provides nine modes for addressing operands in memory. Each addressing mode is 
used to reference a byte in the. processor's address space. Table 2-5 shows the memory addressing 
modes, a brief description of each mode's address elements and assembly code syntax. See Table 
B-5 in Appendix B for more on addressing modes. 

Table 2-5. Memory Addressing Modes 

Mode Description 
""" 

Assembler Syntax 

Absolute offset offset exp 

displacement displacement exp 

Register Indirect abase (reg) 

with offset abase + offset exp (reg) 

with displacement abase + displacement exp (reg) 

with index abase + (index'scale) (reg) [reg'scale] 

with index and displacement abase + (index'scale) + displacement exp (reg) [reg'scale] 

Index with displacement (index'scale) + displacement exp [reg'scale] 

instruction pointer (IP) with 
IP + displacement + 8 exp (IP) 

displacement 

NOTE: reg is register and exp is an expression or symbolic label. 
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2.3.1 Absolute 

Absolute addressing modes allow a memory location to be referenced directly as an offset from 
address OR. At the instruction encoding level, two absolute addressing modes are provided: 
absolute offset and absolute displacement, depending on offset size. 

• For the absolute offset addressing mode, the offset is an ordinal number ranging from 0 to 
4095. The absolute offset addressing mode is encoded in the MEMA machine instruction 
format. 

• For the absolute displacement addressing mode the offset is an integer (a displacement) 
ranging from _231 to 231_1. The absolute displacement addressing mode is encoded in the 
MEMB format. 

Addressing modes and encoding instruction formats are described in CHAPTER 6, 
INSTRUCTION SET REFERENCE. 

At the assembly language level, the two absolute addressing modes use the same syntax. 1Ypically, 
development tools allow absolute addresses to be specified through arithmetic expressions (e.g., 
x + 44) or symbolic labels. After evaluating an address specified with the absolute addressing 
mode, the assembler converts the address into an offset or displacement and selects the appropriate 
instruction encoding format and addressing mode. 

2.3.2 Register Indirect 

Register indirect addressing modes use a register'S 32-bit value as a. base for address calculation. 
The register value is referred to as the address base (designated abase in Table 2-5). Depending on 
the addressing mode, an optional scaled-index and offset can be added to this address base. 

Register indirect addressing modes are useful for addressing elements of an array or record 
structure. When addressing array elements, the abase value provides the address of the first array 
element; an offset (or displacement) selects a particular array element. 

In register-indirect-with-index addressing mode, the index is specified using a value contained in a 
register. This index value is multiplied by a scale factor. Allowable factors are 1,2,4,8 and 16. 

The two versions of register-indirect-with-offset addressing mode at the instruction encoding level 
are register-indirect-with-offset and register-indirect-with-displacement. As with absolute 
addressing modes, the mode selected depends on the size of the offset from the base address. 

At the assembly language level, the assembler allows the offset to be specified with an expression 
or symbolic label, then evaluates the address to determine whether to use register-indirect-with­
offset (MEMA format) or register-indirect-with-displacement (MEMB format) addressing mode. 
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Register-indirect-with-index-and-displacement addressing mode adds both a scaled index and a 
displacement to the address base. There is only one version of this addressing mode at the 
instruction encoding level,and it is encoded in the MEMB instruction format. 

2.3.3 Index with Displacement 

A scaled index can also be used· with a displacement alone. Again, 'the index is contained in a 
register and multiplied by a scaling constant before displacement is added. 

2.3.4 IP with Displacement 

This addressing mode is used with load and store instructions to make them instruction pointer 
(IP) relative. IP-with-displacement addressing mode references the next instruction's address plus 
the displacement plus a constant of 8. The constant is added because in Ii typIcal processor imple­
mentation the address has incremented beyond the next instruction address at the time of address 
calculation. The constant simplifies IP-with-displacement addressing mode implementation. 

2.3.5 Address.ing Mode Examples 

The following examples show how i960 addressing modes are encoded in assembly language. 
Example 2-1 shows addressing mode mnemonics. Example 2-2 illustrates the usefulness of scaled 
index and scaled index plus displacement addressing modes. In this example, a' procedure named 
array_op uses these addressing modes to fill two contiguous memory blocks separated by a 
constant offset. A pointer to the top of the block is passed to the procedure in gO, the block size is 
passed in gl and the fill data in g2. Refer to APPENDIX D, MACHINE-LEVEL INSTRUCTION 
FORMATS.'" 
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st 

ldob 

stl 

ldq 

Example 2-1. Addressing Mode Mnemonics 

g4,xyz 

(r3),r4 

g6,xyz (g5) 

(rB) [r9*4] ,r4 

* Absolute; word from g4 stored at memory 
# location designated with label xyz. * Register indirect; ordinal byte from * memory location given in r3 loaded * into register r4 and zero extended. 
# Register indirect with displacement; * double word from g6,g7 stored at memory * location xyz + g5. * Register indirect with index; quad-word 
# beginning at memory location rB + (r9 
# scaled by 4) loaded into r4 through r7. 

st g3,xyz(g4) [g5*2] * Register indirect with index and * displacement; word in g3 loaded to mem 
# location g4 + xyz + (g5 scaled by 2). 

ldis xyz[r12*1],r13 # Index with displacement; load short 
# integer at memory location xyz + r12 * into r13 and sign extended. 

st r4,xyz(IP) # IP with displacement; store word in r4 
# at memory location IP + xyz + B. 

Example 2-2. Use of Index Plus Scaled Index Mode 

array_op: 
mov gO,r4 # Pointer to array is moved to r4. 
subi 1,gl,r3 # Calculate index for the last array 
b .I33 * element to be filled. 

.134: 
st g2, (r4) [r3*4] * Fill array at index. 
st g2, Ox30 (r4) [r3*4] * Fill array at index+constant offset. 
subi 1,r3,r3 * Decrement index. 

.I33 : 
cmpible O,r3, .134 * Store next array elements if 
ret * index is not O. 

1_-
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CHAPTER 3 
PROGRAMMING ENVIRONMENT 

This chapter describes the i960® Ix microprocessor's programming environment including global 
and local registers, control registers, literals, processor-state registers and address space. 

3.1 OVERVIEW 

The i960 architecture defines a programming environment for program execution, data storage and 
data manipulation. Figure 3-1 shows the programming environment elements which include a 
4 Gbyte (232 byte) flat address space, an instruction cache, global and local general-purpose 
registers, a set of literals, control registers and a set of processor state registers. A register cache 
saves the 16 procedure-specific local registers. 

The processor defines several data structures located in memory as part of the programming 
environment. These data structures handle procedure calls, interrupts and faults and provide 
configuration information at initialization. These data structures are: 

• interrupt stack • control table • system procedure table 

• local stack • fault table • process control block 

• supervisor stack • interrupt table • initialization boot record 

3.2 REGISTERS AND LITERALS AS INSTRUCTION OPERANDS 

The i960 Ix processor uses only simple load and store instructions to access memory. All 
operations take place at the register level. The processor uses 16 global registers, 16 local registers 
and 32 literals (constants 0-31) as instruction operands. 

The global register numbers are gO through glS; local register numbers are rO through rlS. Several 
of these registers are used for a dedicated function. For example, register rO is the previous frame 

1 
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pointer, often referred to as pip. i960 processor compilers and assemblers recognize only the il 
instruction operands listed in Table 3-1. Throughout this manual, the registers' descriptive names, 
numbers, operands and acronyms are used interchangeably, as dictated by context. 
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Address Space 

Fetch 

Instruction 
Stream 

Instruction 
, Execution 

Processor State 
Registers 

Instruction 
Pointer 

Arithmetic 
Controls 

Process 
Controls 

Trace 
Controls 

·'i 

. ArchitecturallY' 
DefilleP 

Data Structures 

Load 

Control Registers 

Figure 3-1. i960@ Jx Microprocessor Programming Environment 

3.2.1 Global Registers" 

in+:...;.'· 'EJI® 

Global registers are general-purpose 32-bit data regis~rs that pr~vide temporary' storage for a 
program's computationai operands. These registers retain their contents across procedure 
boundaries. As such, they provide a fast and efficient means of passing parameters between 
procedures. 
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Table 3-1. Registers and Literals Used as Instruction Operands 

Instruction Operand Register Name (number) Function Acronym 

gO - g14 global (gO-g14) general purpose 

fp global (g15) frame pOinter FP 
pfp local (rO) previous frame pointer PFP 
sp local (r1) stack pointer SP 
rip local (r2) return instruction pointer RIP 
r3 - r15 local (r3-r15) general purpose 

0-31 literals 

The i960 architecture supplies 16 global registers, designated gO through giS. Register glS is 
reserved for the current Frame Pointer (FP), which contains the address of the first byte in the 
current (topmost) stack frame. See section 7.1, "CALL AND RETURN MECHANISM" (pg. 7-2) 
for a description of the FP and procedure stack. 

After the processor is reset, register gO contains device identification and stepping information. 
The Device Identification sections in the 80960JAlJF Embedded 32-bit Microprocessor Data 
Sheet and the 80960JD Embedded 32-bit Microprocessor Data Sheet describe information 
contained in gO. gO retains this information until it is written over by the user program. The device 
identification and stepping information is also stored in a memory-mapped register located at 
FF008710H. 

3.2.2 Local Registers 

The i960 architecture provides a separate set of 32-bit local data registers (rO through rlS) for each 
active procedure. These registers provide storage for variables that are local to a procedure. Each 
time a procedure is called, the processor allocates a new set of local registers and saves the calling 
procedure'S local registers. The processor performs local register management; a program need not 
explicitly save and restore these registers. 

r3 through rlS are general purpose registers; rO contains the Previous Frame Pointer (PFP); r1 
contains the Stack Pointer (SP); r2 contains the Return Instruction Pointer (RIP). These are 
discussed in CHAPTER 7, PROCEDURE CALLS. 

The processor does not always clear or initialize the set of local registers assigned to a new 
procedure. Therefore, initial register contents are unpredictable. Also, because the processor does 
not initialize the local register save area in the newly created stack frame for the procedure, its 
contents are equally unpredictable. 
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3.2.3 Register Scoreboarding 

The processor uses register scoreboarding to allow concurrent execution of sequential instructions. 
When an instruction that targets a destination register or group of registers executes, the processor 
sets a register-scoreboard bit to indicate that this register or group of registers are being used i{l an 
operation. If the instructions that follow do not require data from registers already in use, the 
processor can execute those instructions before the prior instruction execution completes. 

Software can use this feature to execute one or more single-cycle instructions concurrently with a 
multi-cycle instruction (e.g., multiply or divide). Example 3-1 shows a case where register score­
boarding prevents a subsequent instruction from executing. It also illustrates overlapping instruc­
tions that do not have register dependencies. 

muli r4,r5,r6 
addi r6,r7,rS 

muli r4,r5,rlO 
and r6,r7,rS 

3.2.4 Literals 

Example 3-1. Register Scoreboarding 

# r6 is scoreboarded 
# addi must wait for the previous mUltiply 
# to complete 

# rIO is scoreboarded 
# and instxuction is executed concur::rently 

The architecture defines a set of 32 literals that can be used as operands in many instructions. 
These literals are ordinal (unsigned) values that range from ° to 31 (5 bits). When a literal is used 
as an operand, the processor expands it to 32 bits by adding leading zeros. If the instruction 
requires an operand larger than 32 bits, the processor zero-extends the value to the operand size. If 
a.1iteral is used in an instruction that requires integer operands, the processor treats the literal as a 
positive integer value. 

3.2.5 Register and Literal Addressing and Alignment 

Several instructions operate on multiple-word operands. For example, the load long instruction 
(Idl) loads two words from memory into two consecutive registers. The register for the less­
significant word is specified in the instruction. The more~significant word is automatically loaded 
into the next higher-numbered register. 

In cases where an instruction specifies a register number and multiple, consecutive registers are 
implied, the register number must be even if two registers are accessed (e.g., gO, g2) and an 
integral mUltiple of 4 if three or four registers are accessed (e.g., gO, g4). If a register reference for 
a source value is not properly aligned, the source value is undefined and an 
OPERATION.lNVALID_OPERAND fault is generated. If a register reference for a destination 
value is not properly aligned, the registers to which the processor writes and the values written are 
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undefined. The processor then generates an OPERATION.lNVALID_OPERAND fault. The 
assembly language code in Example 3-2 shows an example of correct and incorrect register 
alignment. 

movl g3,g8 

movl g4,g8 

Example 3-2. Register Alignment 

# INCORRECT ALIGNMENT - resulting value 
# in registers g8 and g9 is 
# unpredictable (non-aligned source) 

# CORRECT ALIGNMENT 

Global registers, local registers and literals are used directly as instruction operands. Table 3-2 lists 
instruction operands for each machine-level instruction format and positions which can be filled by 
each register or literal. 

Table 3-2. Allowable Register Operands 

Operand (1) 

Instruction 
Operand Field 

Local Global 
Literal 

Encoding Register Register 

REG src1 X X X 
src2 X X X 
src/dst (as src) X X X 
src/dst (as ds~ X X 
src/dst (as both) X X 

MEM srddst X X 
abase X X 
index X X 

COBR src1 X X 
src2 X X 
dst X (2) X(2) 

NOTES: 

1. "X" denotes the register can be used as an operand in a particular instruction field. 

2. The COBR destination operands apply only to TEST instructions. 

3.3 MEMORY-MAPPED CONTROL REGISTERS 

The i960 Jx family gives software the interface to easily read and modify internal control registers. 
Each of these registers is accessed as a memory-mapped, 32-bit register with a unique memory 
address. Access is accomplished through regular word load and store instructions; the processor 
ensures that these accesses do not generate external bus cycles. 
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3.3.1 Memory-Mapped Registers (MMR) 

Portions of the Jx address space (addresses FFOO OOOOH through FFFF FFFFH) are reserved for 
memory-mapped registers. These memory-mapped registers (MMR) are accessed through word­
operand memory instructions (atmod, sysctl, Id and st instructions) only. Accesses to this address 
space do not generate external bus cycles. The latency in accessing each of these registers is one 
cycle. 

Each register has an associated access mode (user and supervisor modes) and access type (read 
and write accesses). Table 3-3, Table 3-4 and Table 3-5 show all the memory-mapped registers and 
the application mode of access. 

The registers are partitioned into user and supervisor spaces based on their addresses. Addresses 
FFOO OOOOH through FFOO 7FFFH are allocated to user space memory-mapped registers; 
Addresses FFOO 8000H to FFFF FFFFH are allocated to supervisor space registers. 

3.3.1.1 Restrictions on Instructions that Access Memory-Mapped Registers 

The majority of memory-mapped registers can be accessed by both load (Id) and store (st) instruc­
tions. However some registers have restrictions on the types of accesses they allow. To ensure 
correct operation, the access type restrictions for each register should be followed. The various 
access types are listed in Table 3-3. The allowed access types for each register are indicated in the 
access type column of Table 3-4 and Table 3-5. 

Unless otherwise indicated by its access type, the modification of a memory-mapped register by a 
st instruction is ensured to take effect completely before the next instruction starts execution. 

Some operations require an atomic-read-modify-write sequence to a register -- most notably IPND 
and IMSK. The atmod instruction provides a special mechanism to quickly modify the IPND and 
IMSK registers in an atomic manner; on the i960 Jx microprocessor, it should not be used on any 
other memory-mapped registers. 

The sysctl instruction can also atomically modify the contents of a memory-mapped register; in 
addition, it is the only method to read the breakpoint registers on the i960 Jx microprocessor; the 
breakpoints can not be read using a Id instruction. 

At initialization, the control table is automatically loaded into the on-chip control registers. This 
action simplifies the user's startup code by providing a transparent setup of the processor's periph­
erals. See CHAPTER 11, INITIALIZATION AND SYSTEM REQUIREMENTS. 
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3.3.1.2 Access Faults 

Memory-mapped registers are meant to be accessed only as aligned, word-size registers with 
adherence to the appropriate access mode. Accessing these registers in any other way can result in 
faults or undefined operation. An access is performed using the following fault model: 

1. The access must be a word-sized, word-aligned access; otherwise, an operation.unimple­
mented fault is generated. . 

2. If the access is a store in user mode to an implemented supervisor location, a type.mismatch 
fault is generated. It is unpredictable whether stores to unimplemented supervisor locations 
cause a fault. 

3. If the access is neither of the above, the access is attempted. Note that a MMR may generate 
faults based on conditions specific to that MMR. (Example: trying to write the timer registers 
in user mode when they have been allocated to supervisor only.) 

4. When a store access to a register faults, the processor ensures that the store does not take 
effect. 

5. A load access of a reserved location returns an unprediCtable value. 

6. A store access to a reserved location should be avoided and is bad programming practice; 
such a store can result in undefined operation of the processor if the location is in supervisor 
space. 

The i960 Jx microprocessor will ensure that faults resulting from MMR accesses are precise. 

Instruction fetches from the memory-mapped register space are not allowed and result in an 
operation. unimplemented fault. 
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Table 3·3. Access Types 

Access Type Description 

R Read Read (Id instruction) accesses are allowed. 

RO Read Only Read (Id instruction) accesses are allowed. Write (st instruction) 
Only accesses are ignored. 

W Write Write (st instruction) accesses allowed. 

RJW Read/Write Id, st, and sys'ctl instructions are allowed access. 

WwG Write Writing or Modifying (through a st or sysctl instruction) the register is 
when only allowed when modification-rights to the register have been granted. 
Granted An OPERATION.UNIMPLEMENTED fault occurs if an attempt is made to 

write the register before rights are granted. See section 10.2.7.2, 
"Hardware Breakpoints" (pg. 10-5). 

Sysctl-RwG sysctl The value of the register can only be read by executing a sysctl instruction 
Read issu~d with the modify memory-mapped register message type. Modifi~ 
when cation rights to the register must be granted first or an 
Granted OPERATION. UNIMPLEMENTED fault occurs when the sysctl is 

executed. A Id instruction to the register returns unpredictable results. 

AtMod atrnod Register can be updated quickly through the atrnod instruction. The 
update atrnod ensures correct;operation by performing the update of the register 

in an atomic manner which provides synchronization with previous and 
subsequent operations. This is a faster update mechanism than sysctl 
and is optimized for a few special registers, 
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Table 3-4. Supervisor Space Family Registers and Tables (Sheet 1 of 3) 

Register Name Memory-Mapped Address Access Type 

Fleservet;J " ,f'F9P f~QJ-!t tQ;FFPO SOfftj, ~' 

(DLMCON) Default Logical Memory Configuration 
FFOO 8100H R/W 

Register 

Fleservec1 FFOOS104H 
,', 

" 
C:f, 

(LMADRO) Logical Memory Address Register 0 FFOO 8108H R/W 

(LMMRO) Logical Memory Mask Register 0 FFOO 810CH R/W 

(LMADR1) Logical Memory Address Register 1 FFOO 8110H RIW 

(LMMR1) Logical Memory Mask Register 1 FFOO 8114H RIW 

Fleserv9d f )" , FFPQ~1'StjtoFFOO 83FFH 
" - , , , 'f,'" ,f' ,f 

(IPBO) Instruction Address Breakpoint Register 0 FFOO 8400H Sysctl- RwG/WwG 

(IPB1) Instruction Address Breakpoint Register 1 FFOO 8404H Sysctl- RwG/WwG 

:1Jes~ /f," f'" PrOP 84~HtQfFOoM1f;~ 
f .. 

i;A ~ ,.f 'f )' , '. 
(DABO) Data Address Breakpoint Register 0 FFOO 8420H R/W, WwG 

(DAB1) Data Address Breakpoint Register 1 FFOO 8424H R/W, WwG 

R~$8~~f' 
,i f,i, i",; f f;'f~s#~~'F~QO~~H f 7,.".'; "'ii " 

i ."ff,'" "L", .;i, ,'if , 'if'i 

, ."" (BPCON) Breakpoint Control Register FFOO 8440H R/W, WwG 

life$e'tYlJ/;f 
, . , ,i.' f ,i'~FOpa~4HioF:fi'96J'~ti· I"": "i'f "fC '," 

", '. if '- , 

(IPND) Interrupt Pending Register FFOO 8500H R/W, AtMod 

(lMSK) Interrupt Mask Register FFOO 8504H RIW, AtMod 

, 'R98erV1Jt:J 
<,,"> " , If ,:-j;jOO8$ij~Mtdt:FQ035QFHf ·f """," ,:f " 

,i -'. ," " 
(ICON) Interrupt Control Word FFOO 8510H RIW 

. ReseMKJ f', i, 

FF~~14Ht6FFOO 851FH 
,i -

(IMAPO) Interrupt Map Register 0 FFOO 8520H R/W 

(IMAP1) Interrupt Map Register 1 FFOO 8524H RIW 

(IMAP2) Interrupt Map Register 2 FFOO 8528H RIW 

IR~ 
i ",' 

f i I. fFFQQ~~tof,F60'~SF~ ", '-,;.: f "i, '" 

i 
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Table 3-4; Supervisor Space Family Registers and Tables (Sheet 2 of 3) 

. Register Name Memory-Mapped Address Access Type 

(PMCONO_1) Physical Memory Control Register 0 FF008600H RIW 
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Table 3-4. Supervisor Space Family Registers and Tables (Sheet 3 of 3) 

Register Name Memory-Mapped Address Access Type 

(PRCB) Processor Control Block Pointer FFOO 8700H RD 

(ISP) Interrupt Stack Pointer FFOO 8704H RIW 

(SSP) Supervisor Stack Pointer FFOO 8708H RIW 

;~.'. .. .' 

FFOO87OQH ~< : " -~. "~' , ".'J: ., ., , , ~ 
(DEVICEID) i960 Jx Device ID FFOO 8710H RD 1'1 

j~:;'" .. ,i'; ..... > 
, ,.,.:,' .... " .. ¥FOO s71.4Hto Ff'Ff:f'PFFH .. z.:;.. .. ,~~,~, , ":: 

Ii 

Table 3-5. User Space Family Registers and Tables 
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3.4 ARCHITECTURE-DEFINED DATA STRUCTURES 

The architecture defines a set of data structures including stacks, interfaces to system procedures, 
interrupt handling procedures and fault handling procedures. Table 3-6 defines the data structures 
and references other sections of this manual where detailed information can be found. ' 

Table 3-6. Data Structure Descriptions 

Structure (see also) Description 

User and Supervisor Stacks The processor uses these stacks when executing application 

section 7.6, "USER AND SUPERVISOR 
code. 

STACKS" (pg. 7-19) 

System Procedure Table Contains pointers to system procedures. Application code uses 

section 3.7, "USER SUPERVISOR the system call instruction (calls) to access system procedures 

PROTECTION MODEL" (pg. 3-22) 
through this table. A system supervisor call switches execution 
mode from user mode to supervisor mode. When the processor 

section 7.5, "SYSTEM CALLS" (pg. 7-16) switches modes, it also switches to the supervisor stack. 

Interrupt Table and Stack Contains vectors (pointers) to interrupt handling procedures. 
section 8.4, "INTERRUPT TABLE" (pg. When an interrupt is serviced, a particular interrupt table entry is 
8-3) specified. A separ,ate interrupt stack is provided to ensure that 
section 8.5, "INTERRUPT STACK AND interrupt handling does not interfere with application programs. 
INTERRUPT RECORD" (pg. 8-5) 

Fault Table Contains pointers to fault handling procedures. When the 
section 9.3, "FAULT TABLE" (pg. 9-4) processor detects a fault, it selects a particular entry in the fault 

table. The architecture does not require a separate fault handling 
stack. Instead, a fault handling procedure uses the svpervisor 
stack, user stack or interrupt stack, depending on processor 
execution mode in which the fault occurred and type of call made 
to the fault handling procedure. 

Control Table Contains on-chip control register values. Control table values are 
section 11 .3.3, "Control Table" (pg. 11-19) moved to on-chip registers at initialization or with sysctl. 

The i960 Ix processor defines two initialization data structures: Initialization Boot Record (IBR) 
and Process Control Block (PRCB). These structures provide initialization data and pointers to 
other data structures in memory. When the processor is initialized, these pointers are read from the 
initialization data structures and cached for internal use. 

Pointers to the system procedure table, interrupt table, interrupt stack, fault table and control table 
are specified in the processor control block. Supervisor stack location is specified in the system 
procedure table. User stack location is specified in the user's startup code. Of these structures, the 
system procedure table, fault table, control table and initialization data structures may be in ROM; 
the interrupt table and stacks must be in RAM. For software interrupts, the interrupt table must be 
located in RAM. This is to allow the processor to modify the interrupt table. 
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3.5 MEMORY ADDRESS SPACE 

The i960 Jx processor's address space is byte-addressable with addresses running contiguously 
from 0 to 232_1. Some is reserved or assigned special functions as shown in Figure 3-2. 

Address 

0000 OOOOH 
0000 0004H 
0000 003FH 

0000 0040H 

0000 03FFH 
0000 0400H 

FEFF FF2FH 
FEFF FF30H 

FEFF FF5FH 
FEFF FF60H 
FEFF FFFFH 
FFOO OOOOH 

FFFF FFFFH 

Code/data 
Architecturally Defined Data Structures 

External Memory 

Initialization Boot Record (IBR) 

• Shading indicates internal memory. 

Figure 3-2. Memory Address Space 

Physical addresses can be mapped to read-write memory, read-only memory and memory-mapped 
110. The architecture does not define a dedicated, addressable 110 space. There are no subdivisions 
of the address space such as segments. For memory management, an external memory 
management unit (MMU) may subdivide memory into pages or restrict access to certain areas of 
memory to protect a kernel's code, data and stack. However, the processor views this address space 
as linear. 
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An address in memory is a 32-bit value in the range OH to FFFF FFFFH. Depending on the 
instruction, an address can reference in memory a single byte, short word (2 bytes), word 
(4 bytes), double-word (8 bytes), triple-word (12 bytes) or quad-word (16 bytes). Refer to load 
and store instruction descriptions in CHAPTER 6, INSTRUCTION SET REFERENCE for 
multiple-byte addressing information. 

3.5.1 Memory Requirements 

The architecture requires that external memory has the following properties: 

• Memory must be byte-addressable. 

• Memory must support burst transfers (i.e., transfer blocks of up to 16 contiguous bytes or four 
sequential transfers). 

• Physical memory must not be mapped to reserved addresses that are specifically used by the 
processor implementation. 

• Memory must guarantee indivisible access (read or write) for addresses that fall within 16-
byte boundaries. 

• Memory must guarantee atomic access for addresses that fall within 16-byte boundaries. 

The latter two capabilities - indivisible and atomic access - are required only when multiple 
processors or other external agents, such as DMA or graphics controllers, share a common 
memory. 

indivisible access 

atomic access 

Guarantees that a processor, reading or writing a set of memory locations, 
completes the operation before another processor or external agent can read 
or write the same location. The processor requires indivisible access within 
an aligned 16-byte block of memory. 

A read-modify-write operation. Here the external memory system must 
guarantee that - once a processor begins a read-modify-write operation on 
an aligned, 16-byte block of memory - it is allowed to complete the 
operation before another processor or external agent is allowed access to 
the same location. An atomic memory system can be implemented by using 
the LOCK signal to qualify hold requests from external bus agents. LOCK 
is asserted for the duration of an atomic memory operation. 

The upper 16 Mbytes of the address space - addresses FFOO OOOOH through FFFF FFFFH - are 
reserved for implementation-specific functions. 80960Jx programs cannot use this address space 
except for accesses to memory-mapped registers. The processor will not generate any external bus 
cycles to this memory. As shown in Figure 3-2, the initialization boot record is located just below 
the i960 Jx processor's reserved memory. 
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The i960 Jx processor requires some special consideration when using the lower 1 Kbyte of 
address space (addresses OOOOH-03FFH). Loads and stores directed to these addresses access 
internal memory; instruction fetches from these addresses are not allowed for this processor. See 
section 4.1, "INTERNAL DATA RAM" (pg. 4-1). No external bus cycles are generated to this 
address space. 

3.5.2 Data and Instruction Alignment in the Address Space 

Instructions, program data and architecturally defined data structures can be placed anywhere in 
non-reserved address space while adhering to these alignment requirements: 

• Align instructions on word boundaries. 

Align all architecturally defined data structures on the boundaries specified in Table 3-7. 

Align instruction operands for the atomic instructions (atadd, atmod) to word boundaries in 
memory. 

The i960 Jx processor can perform unaligned load or store accesses. The processor handles a non­
aligned load or store request by: 

• Automatically servicing a non-aligned memory access with microcode assistance as described 
in section 15.2.5, "Data Alignment" (pg. 15-22). 

• After the access is completed, the processor generates an OPERATION.UNALIGNED fault. 

The method of bandling faults is selected at initialization based on the value of the Fault Configu­
ration Word in the Process Control Block. See section 11.3.1.2, "Process Control Block (PRCB)" 
(pg. 11-14). 

Table 3-7. Alignment of Data Structures in the Address Space 

Data Structure Alignment 

System Procedure Table 4 byte 

Interrupt Table 4 byte 

Fault Table 4 byte 

Control Table 16 byte 

User Stack 16 byte 

~upervisor Stack 16 byte 

Interrupt Stack 16 byte 

Process Control Block 16 byte 

Initialization Boot Record Fixed at FEFF FF30H 

.3-15 

• 



PROGRAMMING ENVIRONMENT 

3.5.3 ' Byte, Word and Bit Addressing 

The proc~sspr provides instructions for moviJ1g data blocks of various lengths from. memory to 
registers (LOAD) and from registers to memory (STORE). Allowable sizes for block/> are bytes, 
short words (2 bytes), words (4 bytes), double words, triple words and quad words. For example, 
stl (store long) stores an 8 byte (double word) data block in memory. 

The most efficient way to move data blocks longertfian 16 bytes isH) move them in quad-word 
increments, using quad-word instructions Idq and stq. 

When a data block is stored iIi memory, normally the block's least signifiCarit byte is stored at a 
base memory address and the more significant bytes are stored at successively higher byte 
addresses. This method of ordering bytes in memory is referred to as "little endian" ordering. 

The i960 Jx proces~or 3;lso provides th,e option for ordering bytes in:an opposite manner in 
memory. The block's most significant byte is stored at the base address and the less significant 
bytes are stored at successively higher addresses. This byte ordering scheme - referred to as "big 
endian" - applies to data blocks which are short words or words. For more about byte ordering; 
see section 15.2.5, "Data Alignment" (pg. 15-22). 

When loadinga' byte, short word or word from memory to a register, the block's least significant 
bit is always loaded in register bit O. When loading double words, triple words and quad words, 
the least significant word is stored in the base register. The more significant words are then stored 
at successively higher numbered registers. Bits can only be addressed in data that resides in a 
register: bit 0 in a registet is the least significant bit, bit 31 is the most significant bit. 

3.5.4 Internal Data RAM 

The i960 Jx processor has 1 Kbyte'of on-chip data RAM. Only data'accesses are allowed in this 
region. ,Portions of the data RAM can also be reserved for functions such as caching interrupt 
vectors. The internal RAM is fully described in CHAPTER 4, CACHE AND ON-ClllP DATA 
RAM. 

3.5.5 Instruction Cache 

The instruction cache enhances performance by reducing the number of instruction fetches from 
external memory. The cache provides fast execution of cached code and, loops of code in the cache 
and also provides more bus bandwidth for data operations in external memory. The i960 JF and JD 
processors' instruction cache is a 4 Kbyte, two~way set associative cache, organized in two sets of 
four-word lines. i960 JA processors feature a 2 Kbyte instruction cache. For more information, see 
CHAPTER 4, CACHE AND ON-CHIP DATA RAM. 
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3.5.6 Data Cache 

The data cache on the i960 IF and ID processors is a write-through 2 Kbyte direct-mapped cache. 
i960 IA processors feature a 1 Kbyte data cache. For more information, see CHAPTER 4, CACHE 
AND ON-CHIP DATA RAM. 

3.6 PROCESSOR-STATE REGISTERS 

The architecture defines four 32-bit registers that contain status and control information: 

• Instruction Pointer (IP) register • Arithmetic Controls (AC) register 

• Process Controls (PC) register • Trace Controls (TC) register 

3.6.1 Instruction Pointer (IP) Register 

The IP register contains the address of the instruction currently being executed. This address is 
32 bits long; however, since instructions are required to be aligned on word boundaries in memory, 
the IP's two least-significant bits are always 0 (zero). 

All i960 processor instructions are either one or two words long. The IP gives the address of the 
lowest-order byte of the first word of the instruction. 

The IP register cannot be read directly. However, the IP-with-displacement addressing mode 
allows the IP to be used as an offset into the address space. This addressing mode can also be used 
with the Ida (load address) instruction to read the current IP value. 

When a break occurs in the instruction stream - due to an interrupt, procedure call or fault - the 
IP of the next instruction to be executed is stored in local register r2 which is usually referred to as 
the return IP or RIP register. Refer to CHAPTER 7, PROCEDURE CALLS for further discussion. 

3.6.2 Arithmetic Controls (AC) Register 

The AC register (Figure 3-3) contains condition code flags, integer overflow flag, mask bit and a 
bit that controls faulting on imprecise faults. Unused AC register bits are reserved. 
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I 

No-Imprecise-Faults Bit- AC.nif ------' 
(0) Some Faults are Imprecise 
(1) All Faults are Precise 

Integer Overflow Mask Bit - AC.om---------' 
(0) No Mask 
(1) Mask 

Integer-Overflow Flag - AC.of--------------' 
(0) No Overflow 
(1) Overflow 

Condition Code Bits - AC.cc ---------------------' 

Reserved 
(Initialize to 0) 

Figure 3-3. Arithmetic Controls (AC) Register 

3.6.2.1 Initializing and Modifying the AC Register 

intet® 

At initialization, the AC register is loaded from the Initial AC image field in the Process Control 
Block. Reserved bits are set to 0 in the AC Register Initial Image. Refer to CHAPfER 11, 
INITIALIZATION AND SYSTEM REQUIREMENTS. 

After initialization, software must not modify or depend on the AC register's initial image in the 
PRCB. The modify arithmetic controls (modac) instruction can be used to examine and/or modify 
any of the register bits. This instruction provides a mask operand that can be used to limit access to 
the register's specific bits or groups of bits, such as the reserved bits. 

The processor automatically saves and restores the AC register when it services an interrupt or 
handles a fault. The processor saves the current AC register state in an interrupt record or fault 
record, then restores the register upon returning from the interrupt or fault handler. 

3.6.2.2 Condition Code 

The processor sets the AC register's condition code flags (bits 0-2) to indicate the results of certain 
instructions, such as compare instructions. Other instructions, such as conditional branch instruc­
tions, examine these flags and perform functions as dictated by the state of the condition code 
flags. Once the processor sets the condition code flags, the flags remain unchanged until another 
instruction executes that modifies the field. 
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Condition code flags show true/false conditions, inequalities (greater than, equal or less than 
conditions) or carry and overflow conditions for the extended arithmetic instructions. To show true 
or false conditions, the processor sets the flags as shown in Table 3-8. To show equality and 
inequalities, the processor sets the condition code flags as shown in Table 3-9. 

Table 3-8. Condition Codes for True or False Conditions 

Condition Code Condition 

0102 true 

0002 false 

Table 3-9. Condition Codes for Equality and Inequality Conditions 

Condition Code Condition 

0002 unordered (false) 

001 2 greater than (true) 

0102 equal 

1002 less than 

The terms ordered and unordered are used when comparing floating point numbers, which are not 
supported by the i960 Jx processor implementation. 

To show carry out and overflow, the processor sets the condition code flags as shown in Table 
3-10. 

Table 3-10. Condition Codes for Carry Out and Overflow 

Condition Code Condition 

01X2 carry out 

OX1 2 overflow 

Certain instructions, such as the branch-if instructions, use a 3 bit mask to evaluate the condition 
code flags. For example, the branch-if-greater-or-equal instruction (bge) uses a mask of 0112 to 
determine if the condition code is set to either greater-than or equal. Conditional instructions use 
similar masks for the remaining conditions such as: greater-or-equal (0112), less-or-equal (1102) 
and not-equal (1012). The mask is part of the instruction opcode; the instruction performs a bitwise 
AND of the mask and condition code. 
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The AC register integer overflow flag (bit 8) and integer overflow mask bit (bit 12) are used in 
conjunction with·the arithmetic~integer-overflow fault. The mask bit disables fault generation. 
When the fault is masked and integer overflow is encountered,' the processor - instead of 
generating a fault - sets the integer overflow flag. If the fault is not masked, the fault is allowed 
to occur and the flag is not set. 

Once the processor sets ihis flag1 it never implicitly clears it; the flag remains set until the program 
clears it. Refer to the discussion of the arithmetic-integer-overflow fault in CHAPTER 9, FAULTS 
for more information about the integer overflow mask bit and flag. 

The no imprecise faults bit (bit 15) determines whether or not faults are allowed to be imprecise. If 
set, all faults are required to be precise; if clear, certain faults can be imprecise. See section 9.9, 
"PRECISE AND IMPRECISE FAULTS" (pg. 9-19) for more information. 

3.6.3 Process Controls (PC) Register 

The PC register (Figure 3-4) is used to control processor activity and show the processor's current 
state. PC register execution mode flag (bit 1) indicates that the processor is operating in either user 
mode (0) or supervisor mode (1). The processor automatically sets this flag on a system call when 
a switch from user mode to supervisor mode occurs and it clears the flag on a return from 
supervisor mode. (User and supervisor modes are described in section 3.7, "USER SUPERVISOR 
PROTECTION MODEL" (pg~ 3-22). 
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Trace-Enable Bit - PC.te -.,..----------------------, 
(0) Globally disable trace faults 
(1) Globally enable trace faults 

Execution-Mode Flag - PC.em ---------------------, 
(0) user mode 
(1) supervisor mode 

Trace-Faull-Pending - PC.tfp--,--_----------, 
(0) no fault pending 
(1) faull pending 

State Flag - PC.s ~----------___, 

(0) executing I 
(1) interrupted 

Priority Field - PC.p -------,1 
(0-31) process priority + 

IIIII I I II 
31 28 24 20 16 12 8 4 o 

I Reserved 
(Do not modify) 

Figure 3-4. Process Cont~ols (PC) Register 
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PC register state flag (bit 13) indicates processor state: executing (0) or interrupted (1). If the 
processor is servicing an interrupt, its state is interrupted. Otherwise, the processor's state is 
executing. 

While in the interrupted state, the processor can receive and handle additional interrupts. When 
nested interrupts occur, the processor remains in the interrupted state until all interrupts are 
handled, then switches back to executing state on the return from the initial interrupt procedure. 

PC register priority field (bits 16 through 20) indicates the processor's current executing or 
interrupted priority. The architecture defines a mechanism for prioritizing execution of code, 
servicing interrupts and servicing other implementation-dependent tasks or events. This 
mechanism defines 32 priority levels, ranging from 0 (the lowest priority level) to 31 (the highest). 
The priority field always reflects the current priority of the processor. Software can change this 
priority by use of the modpc instruction. 

The processor uses the priority field to determine whether to service an interrupt immediately or to 
post the interrupt. The processor compares the priority of a requested interrupt with the current 
process priority. When the interrupt priority is greater than the current process priority or equal to 
31, the interrupt is serviced; otherwise it is posted. When an interrupt is serviced, the process 
priority field is automatically changed to reflect interrupt priority. See CHAPTER 13, 
INTERRUPT CONTROLLER. 

PC register trace enable bit (bit 0) and trace fault pending flag (bit 10) control the tracing function. 
The trace enable bit determines whether trace faults are globally enabled (1) or globally 
disabled (0). The trace fault pending flag indicates that a trace event has been detected (1) or not 
detected (0). The tracing function are further described in Chapter 10. 

3.6.3.1 Initializing and Modifying the PC Register 

Any of the following three methods can be used to change bits in the PC register: 

• Modify process controls instruction (mod pc) 

• Alter the saved process controls prior to a return from an interrupt handler 

• Alter the saved process controls prior to a return from a fault handler 

modpc directly reads and modifies the PC register. A TYPE.MISMATCH fault is generated if 
modpc is executed in user mode with a non-zero mask. As with modac, mod pc provides a mask 
operand that can be used to limit access to specific bits or groups of bits in the register. modpc can 
be used in user mode to read the current PC register. 

In the latter two methods, the interrupt or fault handler changes process controls in the interrupt or 
fault record that is saved on the stack. Upon return from the interrupt or fault handler, th~ modified 
process controls are copied into the PC register. The processor must be in supervisor mode prior to 
return for modified process controls to be copied into the PC register. 
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When process controls are changed as described above, the processor recognizes the changes 
immediately except for one situation: if modpc is used to change the trace enable bit, the 
processor may not recognize the change before the next four non-branch instructions are executed. 

After initialization (hardware reset), the process controls reflect the following conditions: 

• priority = 31 • execution mode = supervisor 

• trace enable = disabled • state = interrupted 

When the processor is reinitialized with a sysctl reinitialize message, the PC register is not 
changed. 

Normally, modpc is not used to modify execution mode or trace fault state flags except under 
special circumstances, such as in initialization code. 

3.6.4 Trace Controls (TC) Register 

The TC register, in conjunction with the PC register, controls processor tracing facilities. It 
contains trace mode enable bits and trace event flags which are used to enable specific tracing 
modes and record trace events, respectively. Trace controls are described in CHAPTER 10, 
TRACING AND DEBUGGING. 

3.7 USER SUPERVISOR PROTECTION MODEL 

The processor can be in either of two execution modes: user or supervisor. The capability of a 
separate user and supervisor execution mode creates a code and data protection mechanism 
referred to as the user supervisor protection model. This mechanism allows code, data and stack 
for a kernel (or system executive) to reside in the same address space as code, data and stack for 
the application. The mechanism restricts access to all or parts of the kernel by the application 
code. This protection mechanism prevents application software from inadvertently altering the 
kernel. 

3.7.1 Supervisor Mode Resources 

Supervisor mode is a privileged mode which provides several additional capabilities over user 
mode. 

• 
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When the processor switches to supervisor mode, it also switches to the supervisor stack . 
Switching to the supervisor stack helps maintain a kernel's integrity. For example, it allows 
system. debugging software or a system monitor to be accessed, even if an application's 
program destroys its own stack. 

I 



PROGRAMMING ENVIRONMENT 

• In supervisor mode, the processor is allowed access to a set of supervisor-only functions and 
instructions. For example, the processor uses supervisor mode to handle interrupts and trace 
faults. Operations that can modify interrupt controller behavior or reconfigure bus controller 
characteristics can only be performed in supervisor mode. These functions include modifi­
cation of control registers or internal data RAM that is dedicated to interrupt controllers. A 
fault is generated if supervisor-only operations are attempted while the processor is in user 
mode. Table 3-11 lists supervisor-only operations and the fault which is generated if the 
operation is attempted in user mode. 

The PC register execution mode flag specifies processor execution mode. The processor automati­
cally sets and clears this flag when it switches between the two execution modes. 

Table 3-11. Supervisor-Only Operations and Faults Generated in User Mode 

Supervisor-Only Operation User-Mode Fault 

dcctl (data cache control) TYPE.MISMATCH 

halt (halt CPU) TYPE.MISMATCH 

icctl (instruction cache control) TYPE.MISMATCH 

intctl (global interrupt enable and disable) TYPE. MISMATCH 

intdis (global interrupt disable) TYPE.MISMATCH 

inten (global interrupt enable) TYPE.MISMATCH 

mod pc (modify process controls wi non-zero TYPE.MISMATCH 
mask) 

sysctl (system control) TYPE. MISMATCH 

Protected internal data RAM or Supervisor MMR TYPE.MISMATCH 
space write 

Protected timer unit registers TYPE.MISMATCH 

3.7.2 Using the User-Supervisor Protection Model 

A program switches from user mode to supervisor mode by making a system-supervisor call (also 
referred to as a supervisor call). A system-supervisor call is a call executed with the call-system 
instruction (calls). With calls, the IP for the called procedure comes from the system procedure 
table. An entry in the system procedure table can specify an execution mode switch to supervisor 
mode when the called procedure is executed. calls and the system procedure table thus provide a 
tightly controlled interface to procedures which can execute in supervisor mode. Once the 
processor switches to supervisor mode, it remains in that mode until a return is performed to the 
procedure that caused the original mode switch. 
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Interrupts and faults can cause the processor to switch from user to supervisor mode., When the 
processor handles an interrupt, it automatically switches to supervisor mode. However, it does not 
switch to the supervisor stack. Instead, it switches to the interrupt stack. Fault table entries 
determine if a particular fault will transition the processor from user to supervisor mode. 

If an application does not ,requ4"e a user-supervisor protection mechanism, the processor can 
. always execute in supervisor mode. At initialization, the processor is placed in supervisor mode 

prior to executing the fITst instruction of the application code. The processor then remains in 
supervisor mode indefinitely, as long as no action is taken to change execution mode to user mode. 
The processor does not need a user stack in this case. 
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CHAPTER 4 
CACHE AND ON-CHIP DATA RAM 

This chapter describes the structure and user configuration of all forms of on-chip storage, 
including caches (data, local register and instruction) and data RAM. 

4.1 INTERNAL DATA RAM 

Internal data RAM is mapped to the lower 1 Kbyte (0 to 03FFH) of the address space. Loads and 
stores, with target addresses in internal data RAM, operate directly on the internal data RAM; no 
external bus activity is generated. Data RAM allows time-critical data storage and retrieval without 
dependence on external bus performance. Only data accesses are allowed to the internal data 
RAM; instructions cannot be fetched from the internal data RAM. Instruction fetches directed to 
the data RAM cause an OPERATION. UNIMPLEMENTED fault to occur. 

Internal data RAM locations are never cached in the data cache. Logical Memory Template bits 
controlling caching are ignored for data RAM accesses. However, the byte-ordering of the internal 
data RAM is controlled by the byte-endian control bit in the DLMCON register. 

Some internal data RAM locations are reserved for alternate functions other than general data 
storage. The first 64 bytes of data RAM may be used to cache interrupt vectors; this reduces 
latency for these interrupts. The word at location OOOOH is always reserved for the cached NMI 
vector. With the exception of the cached NMI vector, other reserved portions of the data RAM can 
be used for data storage when the alternate function is not used. All locations of the internal data 
RAM can be read in both supervisor and user mode. 

The first 64 bytes (OOOOH to 003FH) of internal RAM are always user-mode write-protected. This 
portion of data RAM can be read while executing in user or supervisor mode; however, it can only 
be modified in supervisor mode. This area can ruso be write-protected from supervisor mode writes 
by setting the BCON.SIRP bit. See section 12.4, "Physical Memory Attributes at Initialization" 
(pg. 12-6). Protecting this portion of the data RAM from user and supervisor rights preserves the 
interrupt vectors that may be cached there. See section 13.5.2.1, "Vector Caching Option" (pg. 
13-22). 
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,.' ~ 1": 

0000 OOOOH 
NMI 

0000 0004H 

Optional Interrupt Vectors 
. ;, 

0000 0003FH 

; 

Available for Data 

" .' 0000 03FFH 

Figure 4-1. Internal Data RAM 

Tbe remainder of the internaLdata RAM can always be written from supervisor mode. User mode 
write protection is optionally selected for the rest of the data RAM (40H to 3FFH) by setting the 
Bus Configuration Register RAM protection bit (BCON.irp). Writes to intern31 data RAM 
locations while they are protected generate a TYPE.MISMATCH fault. See section 12.4.1, "Bus 
Control (BCON) Register" (pg. 12-6), for the format of the BCON register. 

New versions of i960 processor compilers can take advantage of internal data RAM; profiling. 
compilers, such as those offered by Intel, can allocate the most frequently used variables into this 
RAM. 

4.2 LOCAL REGISTER CACHE 

The i960 Jx process{jfprovides fast storage of local registers for call and return. operations by 
using an internal local· register cache (also known as a stack frame cache). Up to eight local 
register sets can be contained inthe'-Cache before sets must be saved in external memory. The 
register set is all the registers (i.e. rO through r1S). The processor uses a 128-bit wide bus to store 
local register sets quickly to the register cache. An integrated procedure call mechanism saves the 
current local register set when a call is executed. A local register set is saved into a frame in the 
local register cache, one frame per register set. When the eighth frame is saved, the oldest set of 

. local registers is flushed to the stack in external memory, which frees one frame. 
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To decrease interrupt latency, software can reserve a number of frames in the local register cache 
solely for high priority interrupts (interrupted state and process priority greater than or equal to 28). 
The remaining frames in the cache can be used by all code including high-priority interrupts. When 
a frame is reserved for high-priority interrupts, the local registers of the code interrupted by a high­
priority interrupt can be saved to the local register cache without causing a frame flush to memory. 
This providing that the local register cache is not already full. Thus, the register allocation for the 
implicit interrupt call does not incur the latency of a frame flush. 

Software can reserve frames for high-priority interrupt code by writing bits 10 through 8 of the • 
register cache configuration word in the PRCB. This value indicates the number of free frames 
within the register cache that can be used by high-priority interrupts only. Any attempt by non-
critical code to reduce the number of free frames below this value will result in a frame flush to 
external memory. The free frame check is performed only when a frame is pushed, which occurs 
only for an implicit or explicit call. The following pseudo-code illustrates the operation of the 
register cache when a frame is pushed: 

frames_for_non_critical = 7 - RCW[10:8]; 
if (interrupt_request) 

&& 

set_interrupt_handler_PC; 
push_frame; 
number_of_frames = number_of_frames + 1; 
if (number_of_frames = 8) { 

flush_register_frame(bottom_of_stack} ; 
number_of_frames = number_of_frames - 1; 

else if ( number_of_frames = (frames_for_non_critical + 1) 

(PC.priority < 28 I I PC.state != interrupted) } 
{ flush_register_frame(bottom_of_stack}; 

number_of_frames number_of_frames - 1; } 

The valid range for the number of reserved free frames is 0 to 7. Setting the value to 0 reserves no 
frames for exclusive-use by high-priority interrupts. Setting the value to 1, reserves 1 frame for 
high-priority interrupts and 6 frames to be shared by all code. Setting the value to 7 causes the 
register cache to become disabled for non-criticlll code. 

4.3 BIG ENDIAN ACCESSES TO INTERNAL RAM AND DATA CACHE 

Big-endian accesses to the internal data-RAM and data cache are supported. The default byte-order 
for data accesses is programmed in DLMCON.be to be either little or big-endian. On the i960 Jx 
processor DLMCON.be controls the default byte-order for all internal (i.e. on-chip data ram and 
data cache) and external accesses. See section 12.6, "Programming the Logical Memory 
Attributes" (pg. 12-8) for more details. 
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4.4 INSTRUCTION CACHE 

The i960 JF and JD processors feature a 4 Kbyte, 2-way set associative in,struction cache 
organized iI). lines of four 32-bit words .. The JA processor features a 2 Kbyte, 2-way set associative 
instruction cache. The cache provides fast execution of cached code and loops of code in the cache 
and provides more ·bus bandwidth for data operations in external memory. To optimize cache 
updates when branches or interrupts are executed, each word in the.line has a separate valid bit. 
When requested instructions are found in the cache, the instruction fetch time is one cycle for up to 
four words. 

A mechanism to lock critical code within a way of the cache is provided as well as a mechanism to 
disable the cache .. The cache is managed through the ieetl and sysetl instructions. 

Cache missel) cause the processor to issue a double-word or a quad-word fetch, based on the 
·location of the Instruction Pointer: . 

• If the IP is at word 0 or word 1 of a 16-byte block, a four-word fetch is initiated. 

• If the IP is at word 2 or word 3 of a 16-byte block, a two-word fetch is initiated. 

4.4.1 Enabling and Disabling the Instruction Cache 

Enabling the instruction cache is controlled on reset or initialization by the instruction cache 
configuration word in the Process Control Block (PRCB), see Figure 11-6. If bit 16 in the 
instruction cache configuration word is set, the instruction cache is disabled and all instruction 
fetches are directed to external memory. Disabling the instruction cache is useful for tracing 
execution in a software debug environment. 

The instruction cache remains disabled until one of three operations is performed: 

• The processor is reinitialized with a new value in the instrUction cache configuration word 

• leetl is issued with the enable instruction cache operation 

• sysetl is issued with the configure instruction cache message type and cache configuration 
mode other than disable cache 

4.4.2 Operation While The Instruction Cache Is Disabled 

Disabling the instruction cache does not disable the instruction buffering that may occur within the 
instruction fetch unit. A four-word instruction buffer is always enabled, even when the cache is 
disabled. 
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There is one tag and four word-valid bits associated with the buffer. Because there is only one tag 
for the buffer, any "miss" within the buffer causes the following: 

• All four words of the buffer are invalidated. 

A new tag value for the required instruction is loaded. 

• The required instruction(s) are fetched from external memory. 

Depending on the alignment of the "missed" instruction, either two or four words of instructions • 
are fetched and only the valid bits corresponding to the fetched words are set in the buffer. No 
external instruction fetches are generated until there is a "miss" within the buffer, even in the 
presence of forward and backward branches. 

4.4.3 Locking Instructions in the Instruction Cache 

The processor can be directed to load a block of instructions into the cache and then disable all 
normal updates to the cache. This cache load-and-Iock mechanism is provided to minimize latency 
on program control transfers to key operations such as interrupt service routines. The block size 
that can be loaded and locked on the i960 Ix microprocessor is one way of the cache, 

An icctl or sysctl instruction is issued with a configure-instruction-cache message type to select 
the load-and-Iock mechanism. When the lock option is selected, the processor loads the cache 
starting at an address specified as an operand to the instruction. 

4.4.4 Instruction Cache Visibility 

Instruction cache status can be determined with an Icctl issued with an instruction-cache status 
message. To facilitate debugging, the instruction cache contents, instructions, tags and valid bits 
can be written to memory. This is done by an icctl that is issued with the store cache operation. 

4.4.5 Instruction Cache Coherency 

Bus snooping is not implemented in the i960 Ix instruction cache. The cache does not detect 
modification to program memory by loads, stores or actions of other bus masters. Several 
situations may require program memory modification, such as uploading code at initialization or 
uploading code from a backplane bus or a disk drive. 

The application program is responsible for synchronizing its own code modification and cache 
invalidation. In general, a program must ensure that modified code space is not accessed until 
modification and cache-invalidate are completed. To achieve cache coherency, instruction cache 
contents should be invalidated after code modification is complete. Both the icctl and the sysctl 
instruction can be used to invalidate the instruction cache fo~ the i960 Ix component. 
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4.5 DATA CACHE 

The i960 IF and JD processors feature a 2 Kbyte, direct-mapped cache which enhances 
performance by reducing the number of data load and store accesses to external memory. i960 JA 
processors have a 1 Kbyte data cache. The cache is write-through and write-allocate (as is the i960 
CF processor data cache). It has a line size of 4 words and implement a "natural" fill policy. Each 
line in the cache has a valid bit. To reduce fetch latency on cache misses, each word within a line 
also has a valid bit. Caches are managed through the deetl instruction. 

User settings in the memory region configuration registers LMCONO-l and DLMCON determine 
which data accesses are cacheable or non-cacheable based on memory region. 

4.5.1 Enabling and Disabling the Data Cache 

To cache data, two conditions must be ensured: 

1. The data cache must be globally enabled. A deetl issued with an enable data cache message 
, will enable the cache. On reset or initialization, the data cache is always disabled and all 
valid bits are set to zero. 

2. Data caching for a location must be enabled by the corresponding logical memory 
template, or by the default logical memory template if no other template applies. See 
section 12.6, "Programming the Logical Memory Attributes" (pg. 12-8) for more details on 
logical memory templates. 

When the data cache is disabled, all data fetches are directed to external memory. Disabling the 
data cache is useful for debugging or monitoring a system. To disable the data cache, issue a deetl 
with a disable data cache message. The enable and disable status of the data cache and various 
attributes of the cache can be determined by an deetl issued with a data-cache status message. 

4.5.2 Multi-Word Data Access that Partially Hit the Data Cache 

The following applies only when data caching is enabled for an access. 

For a multi-word load access (Idl, Idt, Idq) in which none of the requested words hit the data 
cache, an external bus transaction is started to acquire all the words of the access. 

For a multi-word load access that partially hits the data-cache, the processor may either: 

• 
• 
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The multi-word alignment determines which of the above methods is used: 

• Naturally aligned multi-word causes all words to be reloaded. 

• An unaligned multi-word access causes only missing words to be loaded. 

Regardless of which method is used, only locations within the data-cache that missed are updated 
by the results of the external memory request. Locations that hit are not updated by the external 
memory request. (This ensures coherency between word stores and multi-word loads.) In each 
case, the external bus accesses used to acquire the data may consist of none, one, or several burst 
accesses based on the alignment of the data and the bus-width of the memory region that contains 
the data. (See Chapter 15, EXTERNAL BUS for more details.) 

A multi-word load access that completely hits in the data cache does not cause external bus 
accesses. 

For a multi-word store access (stl, stt, stq) an external bus transaction is started to write all words 
of the access regardless if any or all words of the access hit the data cache. External bus accesses 
used to write the data may consist of none, one, or several burst accesses based on data alignment 
and the bus-width of the memory region that receives the data. (See Chapter 15, EXTERNAL BUS 
for more details.) The cache is also updated accordingly as described earlier in this chapter. 

4.5.3 Data Cache Fill Policy 

The i960 Jx processor always uses a "natural" fill policy for cacheable loads. The processor fetches 
only the amount of data that is requested by a load (i.e. a word, long word, etc.) on a data cache 
miss. Exceptions are byte and short-word accesses, which are always promoted to words. This 
allows a complete word to be brought into the cache and marked valid. 

4.5.4 Data Cache Write Policy 

The write policy determines what happens on cacheable writes (stores). The i960 Jx processor 
always uses a write-through policy. The result of a store is always propagated to external memory 
regardless of whether the store is a hit or miss. Stores are always seen on the external bus; this 
maintains coherency between the data cache and external memory. 
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The i960 Jx processor always uses a write-allocate policy for data.' Eor acacheable location, data 
is always written to the data cache regardle~s of whether the acces.s is a hit. or miss. The following 
cases are relevant to consider: '- . . . - " 

1. In the case of a hit for a word or multi-word store, the appropriate line and word(s) are 
updated with the data. . 

2. In the case of a miss for a word or multi-word store, a tag and cache line are allocated, if 
needed, and the appropriate valid bits, line, and word(s) are updated. 

3. In the case of a byte or short-word datum that hits a valid word in the cache, both the word 
in cache and external memory are updated with the datum; the cache word remains valid. 

4. In the case of a byte or short-word datum that falls within a valid line, but, misses because 
the appropriate word is invalid, both the word and external memory are updated with the 
datum; however, the cache word remains invalid. 

5.. In the case of a byte or short-word datum that does not-fall within a valid line: a tag and 
cache line are allocated; the appropriate cache word and external memory are upda~ed with 
the datum; and the cache line and all cache words are made invalid. 

For cacheable stores that are equal to or greater than a word in length, cache tags and appropriate 
valid bits are updated whenever data is written into the cache: Consider a word store as -an 
example. The tag is always updated and its valid bit ~s set. The appropriate valid bit for that word 
is always set and the other three valid bits at'~ always cleared. - . 

Cacheable stores that are less than a word in length are handled differently. 'Byte and short-word 
stores that hit the cache (Le., are contained in valid words within valid cache lines) do not change 
the tag and valid bits. The processor writes the data into the cache and external memory as usual. 
A byte or short-word store to an invalid word within a valid cache. line leav:.es the word valid bit 
cleared because the rest of the word is still invalid. In all cases the processor simultaneously writes 
the data into the cache and the external memory. 

4.5.5 Data Cache Coherency and . Nbn-cacheable Accesses 

The i960 Jx processor ensures that the data cache is always kept coherent with accesses that it 
initiates and performs. The most visible application of this requirement concerns non-cacheable 
accesses discussed below. However, the processor does not provide data-cache coherency for 
accesses on the external bus that it did not initiate. Software is responsible for mhlntaining 
coherency in a mUlti-processor environment. 

I 
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An access is defined as non-cacheable if any of the following are true: 

I. The access falls into an address range mapped by an enabled LMCON pair or DLMCON 
and the data-caching enabled bit in the matching LMCON is clear. 

2. The entire data cache is disabled. 

3. The access is a read operation of the read-modify-write sequence performed by an atrnod or 
atadd instruction. 

4. The access is an implicit read access to the interrupt table to post or deliver a software 
interrupt. 

If the address for a non-cacheable store matches a tag ("tag hit"), the corresponding cache line will 
still remain valid, but the appropriate word valid bit will be marked invalid. This is because the 
word is not actually updated with the value of the store. This ensures that the data cache never 
contains stale data in a single-processor system. A simple case illustrates the necessity of this 
behavior: a read of a datum previously stored by a non-cacheable access must return the new value 
of the datum, not the value in the cache. Because the processor invalidates the appropriate word in 
the cache line on a store hit when the cache is disabled, coherency can be maintained when the data 
cache is enabled and disabled dynamically. 

4.5.6 External 1/0 and Bus Masters and Cache Coherency 

The i960 Jx processor implements a single processor coherency mechanism. There is no hardware 
mechanism - such as bus snooping - to support multiprocessing. If another bus master can 
change shared memory, there is no guarantee that the data cache contains the most recent data. The 
user must manage such data coherency issues in software. 

A suggested practice is to program the LMCONO-I registers such that YO regions are non­
cacheable. Partitioning the system in this fashion eliminates YO as a source of coherency 
problems. 

4.5.7 Data Cache Visibility 

Data cache status can be determined by an dcctl issued with a data-cache status message. 

Data cache contents, data, tags and valid bits can be written to memory as an aid for debugging. 
This is accomplished by a dcctl that is issued with the dump cache operand. 
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CHAPTER 5 
INSTRUCTION SET OVERVIEW 

This chapter provides an overview of the i960® microprocessor family's instruction set and i960 Ix 
processor-specific instruction set extensions. Also discussed are the assembly-language and 
instruction-encoding formats, various instruction groups and each group's instructions. 

CHAFfER 6, INSTRUCTION SET REFERENCE describes each instruction - including ~ .. 
assembly language syntax - and the action taken when the instruction executes and examples of 
how to use the instruction. 

5.1 INSTRUCTION FORMATS 

80960Jx instructions may be described in two formats: assembly language and instruction 
encoding. The following subsections briefly describe these formats. 

5.1.1 Assembly Language Format 

Throughout this manual, instructions are referred to by their assembly language mnemonics. For 
example, the add ordinal instruction is referred to as addo. Examples use Intel 80960 assembler 
assembly language syntax which consists of the instruction mnemonic followed by zero to three 
operands, separated by commas. In the following assembly language statement example for addo, 
ordinal operands in global registers g5 and g9 are added together; the result is stored in g7: 

addo gS, g9, g7 # g7 = g9 + gS 

In the assembly language listings in this chapter, registers are denoted as: 

g 

# 

global register 

pound sign precedes a comment 

r local register 

All numbers used as literals or in address expressions are assumed to be decimal. Hexadecimal 
numbers are denoted with a "Ox" prefix (e.g., OxffffO012): Several assembly language instruction 
statement examples follow. Additional assembly language examples are given in section 2.3.5, 
"Addressing Mode Examples" (pg. 2-8). Further information about syntax can be found in an 
assembly language manual for the Intel i960® Processor. 

subi r3, rS, r6 #r6 ~ rS - r3 
setbit 13, g4, gS #gS ~ g4 with bit 13 set 
lda Oxfab3, r12 #r12~ Oxfab3 
ld (r4) , g3 #g3 ~ memory location that r4 points to 
st g10, (r6) [r7*2J #g10~ memory location that r6+2*r7 points to 
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5.1 ;2 . Instruction Encoding Formats 

All instructions are encoded in' one: 32-bit machine language instruction - also known as ~ 
opword - which must be word aligned in memory. An opword's most significant eight bits 
contain the opcode field. The opcode field determines the instruction to be performed and how the 
remainder of the machine language instruction is interpreted. Instructions are encoded in opwords 
in one of four formats (see Figure 5-1). 

Instruction Type 
register 

Forynat 
REG 

Description 

compare and branch 'COBR 

Most instructions are encoded in this format. Used primarily 
for instructioris which perform register-to-register operations. 
An encoding optimization which combines compare and 
branch operations into one opword. Other compare and 
branch operations are also provided as REG and CTRL 
format instructions. 

control 

memory 

31 

I 
31 

I 
31 

I 
31 

I 
31 
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CTRL 

MEM 

OPCODE I 
OPCODE I 
OPCODE I 
OPCODE I 
OPCQDE I 

Used for branches and calls that do not depend on registers for 
address calculation. 
Used for referencing an operand which is a memory address. 
Load and store instructions - and some branch and call 
instructions - use this format. MEM format has two 
encodings: MEMA or MEMB. Usage depends upon the 
addressing mode selected. MEMB-formatted addressing 
modes use the word in memory immediately following the 
instruction opword as a 32-bit constant. 

0 

SRC/DST I SRC2 I OPCODE I SRC1 I REG 

0 

SRC1 I SRC2 I Displacement I COBR 

0 

Displacement I CTRL 

0 
: 
.. 

I I I SRC/DST Address Offset MEMA 
Base 

0 

SRC/DST I Address I Scale I Index MEMB Base 

32-Bit Displacement F_CAOO9A 

Figure 5-1. Machine-Level Instruction Formats 

\ I 



INSTRUCTION SET OVERVIEW 

5.1.3 Instruction Operands 

This section identifies and describes operands that can be used with the instruction formats. 

Format 

REG 

CTRL 

COBR 

MEM 

Operand(s) 

srcl, src2, srcldst 

displacement 

srcl, src2, displacement 

srcldst, efa 

Description 

srcl and src2 can be global registers, local registers or 
literals. srcldst is either a global or a local register. 

CTRL format is used for branch and call instructions. 
displacement value indicates the target instruction of the 
branch or call. 

srcl, src2 indicate values to be compared; displacement • 
indicates branch target. srcl can specify a global register, 
local register or a literal. src2 can specify a global or local 
register. 

Specifies source or destination register and an effective 
address (efa) formed by using the processor's addressing 
modes as described in section 2.3, "MEMORY 
ADDRESSING MODES" (pg. 2-6). Registers specified in a 
MEM format instruction must be either a global or local 
register. 

5.2 INSTRUCTION GROUPS 

The i960 processor instruction set can be categorized into the following functional groups: 

• Data Movement • Arithmetic (Ordinal and Integer) • Logical 

• Bit, Bit Field and Byte • Comparison • Branch 

• Call1Return • Fault • Debug 

• Atomic • Processor Management 

Notice that the i960 Jx processor does not support the floating point in,struction group of the 
80960KB and 80960SB microprocessors. Table 5-1 shows the instructions in each group. The 
actual number of instructions is greater than those shown in this list because - for some 
operations - several unique instructions are provided to handle various operand sizes, data types 
or branch conditions. The following sections briefly overview. the instructions in each group. 

5.2.1 Data Movement 

These instructions are used to move data from memory to global and local registers, from global 
and local registers to memory, and between local and global registers. 
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Table 5-1. 80960JAlJF Instructioh set ' 

Data Movement Arithmetic Logical Bit, ~It Field Ilnd Byte 

Load Add And Set Bit 

Store Subtract NotAnd Clear Bit 

Move Multiply And Not Not Bit 

·Conditional Select Divide' Or Alter Bit 

Load Address ',Remainder . Exclusive Or Scan For Bit 

Modulo ' . Not Or Span Over Bit 

Shift Or Not , ; Extract \ 

. Extended Shift Nor Modify 

Extended Multiply Exclusive. Nor Scan Byte for Equal 

. Extended Divide Not . ·Byte Swap 

Add with Carry Nand 

Subtract with. Carry 

~Conditional Add 

·Conditional Subtract 

Rotate 

Comparison Branch. .,. Call/Return Fault 

Compare Unconditional Branch Call Conditional Fault 

Conditional Compare Conditional Branch Call Extended Synchronize Faults 

Compare and Compare and Branch Call System 
Increment Return .; 

Compare and Branch and link 
Decrement 

Test Condition Code 
, 

Check Bit 

Debug ,. Processor Atoinic 
Management 

Modify Trace Controls , Flush Local Registers Atomic Add 

Mark Modify Arithmetic Atomic Modify 

Fo.rce Mark Controls 

Modify Process '. 

Controls 
,·Halt 

System Control ' . 

·Cache Control 

·Interrupt Control 

• Denotes new Instructions unavailable on 80960CAlCF, 80960KAlKB and 80960SAlSB Implementations. 

Rules for register alignment must be followed when using load, store ~d move instructions diat 
move 8, 12 or 16 bytes, at a time. See se~tion 3.5, "¥EMQRY ADDRESS SPACE" (pg., 3-13) for 
alignment requirements for code porta~ility across implemtmtatiol,ls .. 
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5.2.1.1 Load and Store Instructions 

Load instructions listed below copy bytes or words from memory to local or global registers or to a 
group of registers. Each load instruction requires a corresponding store instruction to copy to 
memory bytes or words from a selected local or global register or group of registers. All load and 
store instructions use the MEM format. 

Id load word st store word 

Idob load ordinal byte stob store ordinal byte 
Idos load ordinal short stos store ordinal short 
Idib load integer byte stib store integer byte 
Idis load integer short stls store integer short 
Idl load long stl store long 
Idt load triple stt store triple 
Idq load quad stq store quad 

Id copies 4 bytes from memory into successive registers; Idl copies 8 bytes; Idt copies 12 bytes; 
Idq copies 16 bytes. 

st copies 4 bytes from successive registers into memory; stl copies 8 bytes; stt copies 12 bytes; 
stq copies 16 bytes. 

For Id, Idob, Idos, Idib and Idls, the instruction specifies a memory address and register; the 
memory address value is copied into the register. The processor automatically extends byte and 
short (half-word) operands to 32 bits according to data type. Ordinals are zero-extended; integers 
are sign-extended. 

For st, stob, stos, stlb and stis, the instruction specifies a memory address and register; the 
register value is copied into memory. For byte and short instructions, the processor automatically 
reformats the source register's 32-bit value for the shorter memory location. For stlb and stis, this 
reformatting can cause integer overflow if the register value is too large for the shorter memory 
location. When integer overflow occurs, either an integer-overflow fault is generated or the 
integer-overflow flag in the AC register is set, depending on the integer-overflow mask bit setting 
in the AC register. 

For stob and stos, the processor truncates the operand and does not create a fault if truncation 
resulted in the loss of significant bits. 
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5.2.1.2 Move 

Move instructions copy data from a local or global register or group of registers to another register 
or group of registers. These instructions use the REG format. 

mov move word 
movl move long word 
movt move triple word 
movq move quad word 

5.2.1.3 Load Address 

The Load Address instruction (Ida) computes an effective address in the address space from an 
operand presented in one of the addressing modes. Ida is commonly used to load a constant into a 
register. This instruction uses the MEM format and can operate upon local or global registers. 

On the i960 Jx processors, Ida is useful for. performing simple arithmetic oper,ations. The 
processor's parallelism allows Ida to execute in the same clock as another arithmetic or logical 
operation. 

5.2.2 Select Conditional 

Given the proper condition code bits setting, these instructions move one of two pieces of data 
from its soutce to the speCified destination. 

selno Select Based on Unordered 
selg Select Based on Greater 
sele Select Based on Equal 
selge 

.. 
Select Based on Greater or Equal 

sell Select Based on Less 
seine Select Based on Not Equal. 
selle Select Based on Less or Equal 
selo Select Based on Ordered 

5.2.3 Arithmetic 

Table 5-2 lists arithmetic operations and data types for which the i960 Jx processors provide 
instructions. "X" in this table indicates that the microprocessor provides an instruction for the 
specified operation and data type. All arithmetic operations are carried out on operands in 
registers. Refer to section 5.2.12, "Atomic Instructions" (pg. 5-17) for instructions which handle 
specific requirements for in-place memory operations. 
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All arithmetic instructions use the REG format and can operate on local or global registers. The 
following subsections describe arithmetic instructions for ordinal and integer data types. 

Table 5-2. Arithmetic Operations 

Data Types 
Arithmetic Operations 

Integer Ordinal 

Add X X 

Add with Carry X X 

Conditional Add X X 

Subtract X X 

Subtract with Carry X X 

Conditional Subtract X X 

Multiply X X 

Extended Multiply X 

Divide X X 

Extended Divide X 

Remainder X X 

Modulo X 

Shift Left X X 

Shift Right X X 

Extended Shift Right X 

Shift Right Dividing Integer X 

5.2.3.1 Add, Subtract, Multiply and Divide 

These instructions perform add, subtract, multiply or divide operations on integers and ordinals: 

addi Add Integer 

addo Add Ordinal 
ADD<cc> Conditional Add 
subi Subtract Integer 
subo Subtract Ordinal 
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SUB<cc> Conditional Subtract 

muli Multiply Integer 

mulo Multiply Ordinal 

divi Divide Integer 

dlvo Divide Ordinal 

addi, ADDI<cc>, subi, SUBIc:cc>, mull and dlvl generate an integer-overflow fault if the result is 
too large to fit in the 32-bit destination. divl and dlvo generate a zero-divide fault if the divisor is 
zero. 

5.2.3.2 Extended Arithmetic 

These instructions support extended-precision arithmetic; i.e., arithmetic operations on operands 
greater than one word in length: 

addc add ordinal with carry 

subc subtract ordinal with carry 

ernul extended multiply 

ediv extended divide 

addc adds two word operands (literals or contained in registers) plus the AC Register condition 
code bit 1 (used here as a carry bit). If the result has a carry, bit 1 of the condition code is set; 
otherwise, it is cleared. This instruction's description in CHAPfER 6, INSTRUCTION SET 
REFERENCE gives an example of how this instruction can be used to add two long-word (64-bit) 
operands together. 

subc is similar to addc, except it is used to subtract extended-precision values. Although addc 
and subc treat their operands as ordinals, the instructions also set bit 0 of the condition codes if the 
operation would have resulted in an integer overflow condition. This facilitates a software imple­
mentation of extended integer arithmetic. 

ernul multiplies two ordinals (each contained in a register), producing a long ordinal result (stored 
in two registers). edlv divides a long ordinal by an ordinal, producing an ordinal quotient and an 
ordinal remainder (stored in two adjacent registers). 

5.2.3.3 Remainder and Modulo 

These instructions divide one operand by another and retain the remainder of the operation: 

reml 
remo 
modi 
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The difference between the remainder and modulo instructions lies in the sign of the result. For 
remi and remo, the result has the same sign as the dividend; for modi, the result has the same sign 
as the divisor. 

5.2.3.4 Shift and Rotate 

These shift instructions shift an operand a specified number of bits left or right: 

shlo shift left ordinal 
shro shift right ordinal 
shli shift left integer 
shri shift right integer 
shrdi shift right dividing integer 
rotate rotate left 

Except for rotate, these instructions discard bits shifted beyond the register boundary. 

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the most significant bit. 
These instructions are equivalent to mulo and divo by the power of 2, respectively. 

shll shifts zeros in from the least significant bit. If a shift of the specified places would result in an 
overflow, an integer-overflow fault is generated (if enabled). The destination register is written 
with the source shifted as much as possible without overflow and an integer-overflow fault is 
signaled. 

shri performs a conventional arithmetic shift right operation by shifting the sign bit in from the 
most significant bit. However, when this instruction is used to divide a negative integer operand by 
the power of 2, it may produce an incorrect quotient. (Discarding the bits shifted out has the effect 
of rounding the result toward negative.) 

shrdi is provided for dividing integers by the power of 2. With this instniction, 1 is added to the 
result if the bits shifted out are non-zero and the operand is negative, which produces the correct 
result for negative operands. shli and shrdi are equivalent to mull and divi by the power of 2, 
respectively. 

rotate rotates operand bits to the left (toward higher significance) by a specified ilUmber of bits. 
Bits shifted beyond register'S left boundary (bit 31) appear at the right boundary (bit 0). 
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5.2.4 Logical· 

These instructions perform bitwise Boolean operations on the specified operands: 

and src2 AND srcl 

notand (NOT src2) AND srcl 

and not src2 AND (NOT srcl) 
xor src2 XOR srcl 

or src20Rsrcl 
nor NOT (src2 OR srcl) 

xnor . src2 XNOR srcl 

not NOT srcl 

notor (NOT src2) or srcl 

arnot src2 or (NOT srcl) 

nand NOT (src2 AND srcl) 

These all use the REG format and can specify literals or local or global registers. 

The processor provides logical operations in addition to and, or and xor as a performance optimi­
zation.. This optimization reduces the number of instructions required to perform a logical 
operation· and. reduces ·the number of registers and instructions associated with bitwise mask 
storage and creation. 

5.2.5 Bit and Bit Field 

These instructions perform operations on a specified bit or bit field in an ordinal operand. All use 
the REG format and can specify literals or local or global registers. 

5.2.5.1 Bit Operations 

These inso:uctions operate on a specified bit: 

setbit set bit 
clrblt c1e.ar bit 
notbit not bit 
alterbit alter bit 
scan bit scan for bit 
spanbit span over bit 

setbit, clrbit and notbit set, clear or complement (toggle) a specified bit in an ordinal. 
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alterbit alters the state of a specified bit in an ordinal according to the condition code. If the 
condition code is 010, the bit is set; if the condition code is 000, the bit is cleared. 

chkbit, described in section 5.2.7, "Comparison" (pg. 5-11), can be used to check the value of an 
individual bit in an ordinal. 

scan bit and span bit find the most significant set bit or clear bit, respectively, in an ordinal. 

5.2.5.2 Bit Field Operations 

The two bit field instructions are extract and modify. 

extract converts a specified bit field, taken from an ordinal value, into an ordinal value. In essence, 
this instruction shifts right a bit field in a register and fills in the bits to the left of the bit field with 
zeros. (eshro also provides the equivalent of a 64-bit extract of 32 bits). 

modify copies bits from one register, under control of a mask, into another register. Only 
unmasked bits in the destination register are modified. modify is equivalent to a bit field move. 

5.2.6 Byte Operations 

scan byte performs a byte-by-byte comparison of two ordinals to determine if any two corre­
sponding bytes are equal. The condition code is set based on the results of the comparison. 
scanbyte uses the REG format and can specify literals or local or global registers. 

bswap alters the order of bytes in a word, reversing its "endianess." 

5.2.7 Comparison 

The processor provides several types of instructions for comparing two operands, as described in 
the following subsections. 

5.2.7.1 Compare and Conditional Compare 

These instructions compare two operands then set the condition code' bits in the AC register 
according to the results of the comparison: 

cmpi 
cmpib 
cmpis 
cmpo 

I 

Compare Integer 

Compare Integer Byte 

Compare Integer Short 

Compare Ordinal 
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cmpob 
cmpos 
concmpi 
concmpo 
chkbit 

Compare OrdirialByre 

Compare Ordinal Short 

Conditional Compare Integer 

Conditional Compare Ordinal 

Check Bit 

These all use the REG format and can specify literals or local or global registers. The condition 
code bits are set to indicate whether one operand is less than, equal. t<;> or grea~er than the other 
operand. See section 3.6.2, "Arithmetic Controls (AC) Registeri " (pg. 3-17) for a description of the 
condition codes for conditional operations. 

cmpi and cmpo simply compare the two operands and set the condition code bits accordingly. 
concmpi and concmpo ftrst check the status of condition code bit(2: 

• If not set, the operands are compared as with cmpi and cmpo. 

• If set, no comparison is performed and the condition code. flags are not changed. 

The conditional-compare instructions are provided speciftcally to optimiie two~sided ~ange 
comparisons to check if A is between Band C (i.e., B ::;; A::;; C). Here, a compare instruction (cmpi 
or cmpo) checks one side of the range (e.g., A ~ B) and a conditional 'compare instruction 
(concmpi or concmpo) checks the other side (e.g., A ::;; C) according to the result of the ftrst 
comparison. The condition codes following the conditional comparison directly reflect the results 
of both comparison operations. Therefore, only one conditional branch instruction is:.required to 
act upon the range check; otherwise, two branches would be needed. ' 

chkbit checks a specifted bit in a register and sets the condition code flags according. to the bit 
state. The condition code is set to 0102 if the bit is set and 0002 otherwise. 

5.2.7.2 Compare and Increment or Decrement 

These instructions compare two operands, set the condition code bits according to the results, then 
increment or decrement one of the operands: 

cmpinci 
cmpinco 
cmpdeci 
cmpdeco 

compare and increment integer 

compare and increment ordinal 

compare and decrement integer 

compare and decrement ordinal 

These all use the REG format and can specify literals or local Or global registers. They are an 
architectural performance optimization which allows two register operations (e;g:, compare and 
add) to execute in a single cycle. These are intended for use at the end of iterative loops. 
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5.2.7.3 Test Condition Codes 

These test instructions allow the state of the condition code flags to be tested: 

teste test for equal 
testne test for not equal 
testl test for less 
testle test for less or equal 
testg test for greater 
testge test for greater or equal 
testa test for ordered 
testno test for unordered 

If the condition code matches the instruction-specified condition, these cause a TRUE (OIH) to be 
stored in a destination register; otherwise, a FALSE (OOH) is stored. All use the COBR format and 
can operate on local and global registers. 

5.2.8 Branch 

Branch instructions allow program flow direction to be changed by explicitly modifying the IP. 
The processor provides three branch instruction types: 

• unconditional branch 

• conditional branch 

• compare and branch 

Most branch instructions specify the target IP by specifying a signed displacement to be added to 
the current IP. Other branch instructions specify the target IP's memory address, using one of the 
processor's addressing modes. This latter group of instructions is called extended addressing 
instructions (e.g., branch extended, branch-and-link extended). 

5.2.8.1 Unconditional Branch 

These instructions are used for unconditional branching: 

b Branch 

bx Branch Extended 

bal Branch and Link 

balx Branch and Link Extended 
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b and bal use the CTRL format. bx and balx use the MEM format andean specify local or global 
registers as operands. b and bx cause program execution to jump to the specified target IP. These 
two instructions perform the same function; however, their determination of the target IP differs. 
The target IP of a b instruction is specified at link time as a relative displacement from the current 
IP. The target IP of the bx instruction is the aQ§olute address resulting from the instruction's use of 
a memory addressing mode during execution. . 

bal and balx store the next instruction's address in a specified register, then jump to the specified 
target IP. (For bal, the RIP is automatically stored in register g14; for balx, the RIP location is 
specified with an instruction operand.) As described in section 7.9, "BRANCH-AND-LINK"(pg. 
7-22), branch and link instructions provide a method of performing procedure calls that do not use 
the processor's integrated call/retum mechanism. Here, the saved instruction address is used as a 
return IP. Branch and link is generally used to call leaf procedures (that is, procedures that do not 
call other procedures). 

bx and balx can make use of any memory addressing mode. 

5.2.8.2 Conditional Branch 

With conditional branch (BRANCH IF) instructions, the processor checks the AC register 
condltion code flags. If these flags match the value specified with the instruction, 'the processor 
jumps to the target IP. These instructions use the displacement-plus-IP method of specifying the 
target IP: 

be branch if equal/true 
bne branch if not equal 
bl branch if less 
ble branch if less or equal 
bg branch if greater 
bge branch if greater or equal 
bo branch if ordered 
bno branch if unordered/false 

All use the CTRL format. bo and bno are used with real numbers. Refer to section 3.6.2.2, 
"Condition Code" (pg. 3-18) for a discussion of the condition code for conditional operations. 
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5.2.8.3 Compare and Branch 

These instructions compare two operands then branch according to the comparison result. Three 
instruction subtypes are compare integer, compare ordinal and branch on bit: 

cmpibe compare integer and branch if equal 

cmpibne compare integer and branch if not equal 

cmpibl compare integer and branch if less 

cmpible compare integer and branch if less or equal 

cmpibg compare integer and branch if greater 

cmpibge compare integer and branch if greater or equal 

cmpibo compare integer and branch if ordered 

cmpibno compare integer and branch if unordered 

cmpobe compare ordinal and branch if equal 

cmpobne compare ordinal and branch if not equal 

cmpobl compare ordinal and branch if less 

cmpoble compare ordinal and branch if less or equal 

cmpobg compare ordinal and branch if greater 

cmpobge compare ordinal and branch if greater or equal 

bbs check bit and branch if set 

bbc check bit and branch if clear 

All use the COBR machine instruction format and can specify literals, local registers or global 
registers as operands. With compare ordinal and branch and compare integer and branch instruc­
tions, two operands are compared and the condition code bits are set as described in section 5.2.7, 
"Comparison" (pg. 5-11). A conditional branch is then executed as with the conditional branch 
(BRANCH IF) instructions. 

With check bit and branch instructions, one operand specifies a bit to be checked in the other 
operand. The condition code flags are set according to the state of the specified bit: 0102 (true) if 
the bit is set and 0002 (false) if the bit is clear. A conditional branch is then executed according to 
condition code bit settings. 

These instructions optimize execution performance time. When it is not possible to separate 
adjacent compare and branch instructions with other unrelated instructions, replacing two instruc­
tions with a single compare and branch instruction increases performance. 
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5.2.9 Call and Return 

The processor offers an on-chip call/return mechanism for making procedure calls. Refer to 
section 7.1, "CALL AND RETURN MECHANISM" (pg. 7-2). These instructions support this 
mechanism: 

call call 

calix call extended 

calls call system 

ret return 

call and ret use the CTRL machine-instruction format. calix uses the MEM format and can specify 
local or global registers. calls uses the REG format and can specify local or global registers. 

call and calix make local calls to procedures. A local call is a call that does not require a switch to 
another stack. call and calix differ only in the method of specifying the target procedure's address. 
The target procedure of a call is determined at link time and is encoded in the opword as a signed 
displacement relative to the call IP. calix specifies the target procedure as an absolute 32-bit 
address calculated at run time using anyone of the addressing modes. For both instructions, a new 
set of local registers and a new stack frame are allocated for the called procedure. 

calls is used to make calls to system procedures - procedures that provide a kernel or system­
executive services. This instruction operates similarly to call and calix, except that it gets its 
target-procedure address from the system procedure table. An index number included as an 
operand in the instruction provides an entry point into the procedure table. 

Depending on the type of entry being pointed to in the system procedure table, calls can cause 
either a system-supervisor call or a system-local call to be executed. A system-supervisor call is a 
call to a system procedure that also switches the processor to supervisor mode and the supervisor 
stack. A system-local call is a call to a system procedure that does not cause an execution mode or 
stack change. Supervisor mode is described throughout CHAPTER 7, PROCEDURE CALLS . 

. ret performs a return from a called procedure to the calling procedure (the procedure that made the 
call). ret obtains its target IP (return IP) from linkage information that was saved for the calling 
procedure. ret is used to return from all calls - including local and supervisor calls - and from 
implicit calls to interrupt and fault handlers. 
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5.2.10 Conditional Faults 

Generally, the processor generates faults automatically as the result of certain operations. Fault 
handling procedures are then invoked to handle various fault types without explicit intervention by 
the currently running program. These conditional fault instructions permit a program to explicitly 
generate a fault according to the state of the condition code flags. All use the CTRL format. 

faulte fault if equal 
faultne fault if not equal 
faultl fault if less 
faultle fault if less or equal 
faultg fault if greater 
faultge fault if greater or equal 

faulto fault if ordered 
faultno fault if unordered 

5.2.11 Debug 

The processor supports debugging and monitoring of program activity through the use of trace 
events. These instructions support these debugging and monitoring tools: 

modpc 

modtc 

mark 

fmark 

modify process controls 

modify trace controls 

mark 

force mark 

These all use the REG format. Trace functions are controlled with bits in the Trace Control (TC) 
register which enable or disable various types of tracing. Other TC register flags indicate when an 
enabled trace event is detected. Refer to CHAPTER 10, TRACING AND DEBUGGING. 

modpc can enable/disable trace fault generation; modtc permits trace controls to be modified. 
mark causes a breakpoint trace event to be generated if breakpoint trace mode is enabled. fmark 
generates a breakpoint trace independent of the state of the breakpoint trace mode bits. 

The sysctl instruction also provides control over breakpoint trace event generation. This 
instruction is used, in part, to load and control the i960 Ix microprocessors' breakpoint registers. 

5.2.12 Atomic Instructions 

Atomic instructions perform read-modify-write operations on operands in memory. They allow a 
system to ensure that, when an atomic operation is performed on a specified memory location, the 
operation completes before another agent is allowed to perform an operation on the same memory. 
These instructions are required to enable synchronization between interrupt handlers and 
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background tasks in any system. They are also particularly useful in systems where several agents 
- processors, coprocessors or external logic - have access to the same system memory for 
communication. 

The atomic instructions are atomic add (atadd) and atomic modify (atrnod). atadd causes an 
operand to be added to the value in the specified memory location. atrnod causes bits in the 
specified memory location to be modified under control of a mask. Both instructions use the REG 
format and can specify literals or local or global registers. 

5.2.13 Processor Management 

These instructions control processor-related functions: 

rnodpc 

flushreg 

rnodac 

sysctl 

icctl 

dcctl 

halt 

inten 

intdis 

intctl 

Modify the process controls register 

Flush cached local register sets to memory 

Modify the AC register 

Perform system control function 

Instruction cache control 

Data cache control 

Halt processor 

Global interrupt enable 

Global interrupt disable 

Global interrupt enable and disable 

All use the REG format and can specify literals or local or global registers. 

rnodpc provides a method of reading and modifying PC register contents. Only programs 
operating in supervisor mode may modify the PC register; however, any program may read it. 

The processor provides a flush local registers instruction (flush reg) to save the contents of the 
cached local registers to the stack. The flush local registers instruction automatically stores the 
contents of all the local register sets - except the current set - in the register save area of their 
associated stack frames. 

The modify arithmetic controls instruction (rnodac) allows the AC register contents to be copied 
to a register and/or modified under the control of a mask. The AC register cannot be explicitly 
addressed with any other instruction; however, it is implicitly accessed by instructions that use the 
condition codes or set the integer overflow flag. 

sysctl is used to configure the interrupt controller, breakpoint registers and instruction cache. It 
also permits software to signal an interrupt or cause a processor reset and reinitialization. sysctl 
may only be executed by programs operating in supervisor mode. 
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ieetl and deetl provide cache control functions including: enabling, disabling, loading and locking, 
(instruction cache only) invalidating, getting status and storing cache information out to memory. 
halt puts the processor in low-power halt mode. intetl, inten and intdis are used to enable and 
disable interrupts and to determine current interrupt enable status. 

5.3 PERFORMANCE OPTIMIZATION 

Performance optimization are categorized into two sections: instructions optimizations and miscel­
laneous optimizations. 

5.3.1 Instruction Optimizations 

The instruction optimizations are broken down by the instruction classification. 

5.3.1.1 Load I Store Execution Model 

Because the i960 Jx processor has a 32-bit external data bus, multiple word accesses require 
multiple cycles. The Jx uses microcode to sequence the multi-word accesses. Because the 
microcode can ensure that aligned multi-words are bursted together on the external bus, software 
should not substitute mUltiple single-word instructions for one multi-word instruction for data that 
is not likely to be in cache. For example a Idq provides better bus performance than four Id instruc­
tions. 

Once a load is issued, the processor attempts to execute other instructions while the load is 
outstanding. It is important to note that if the load misses the data cache, the processor does not 
stall the issuing of subsequent instructions (other than stores) that do not depend on the load. 

Software should avoid following a load with an instruction that depends on the result of the load. 
For a load that hits the data cache, there will be a one-cycle stall if the instruction immediately after 
the load requires the data. If the load fails to hit the data cache, the instruction depending on the 
load will be stalled until the outstanding load request is resolved. 

Multiple, back-to-back load instructions do not stall the processor until the bus queue becomes 
full. 

The processor delays issuing a store instruction until all previously-issued load instructions 
complete. This happens regardless of whether the store is dependent on the load. This ordering 
between loads and stores ensures that the return data from a previous cache-read miss does not 
overwrite the cache line updated by a subsequent store. 
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5.3.1.2 Compare Operations 

Byte and short word data is more efficiently compared using the new byte and short compare 
instructions (cmpob, cmpib, cmpos, cmpis), rather than shifting the data, and using a word 
compare instruction. 

5.3.1.3 Microcoded Instructions 

While the majority of instructions on the i960 Jx processor are single cycle and are executed 
directly by processor hardware, some require microcode emulation. Entry into a microcode 
routine requires two cycles. Exit from microcode typically requires two cycles. For some routines, 
one cycle of the exit process can execute in parallel with another instruction, thus saving one cycle 
of execution time. 

5.3.1.4 Multiply-Divide Unit Instructions 

The Multiply-Divide Unit (MDU) of the Jx performs' a number of multi-cycle arithmetic 
operations. These can range from 2 cycles for a 16-bitx32-bit mulo, 4 cycles for a 32-bitx32,-bit 
mulo, to 30+ cycles for an ediv. 

Once issued, these MDU instructions are executed in parallel with other non-MDt; instructions 
that do not depend on the result of the MDU operation. Attempting to issue another MDU 
instruction while a current MDU instruction is executing, stalls the processor until the first one 
completes. 

5.3.1.5 Multi-Cycl,e Register Operations 

A few register operations can also take multiple cycles. The following instructions are all 
performed in microcode: 

• bswap 

• movq 

• test I 

• extract 

• shrdi 

·testle 

• eshro 

• scan bit 

• teste 

• modify • movl • movt 

• spanbit' • testno • testo 

• testne • , testg • testge 

On tha Jx, test<cc> dst is microcoded and takes many more cycles than SEL<cc> O,l,dst, which is 
executed in one cycle directly by processor hardware. 

Multi-register move operation execution time can be decreased at·the expense of cache utilization 
and code density by using mov tpe appropriate number of times instead of movl, movt and movq 
instructions. 
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5.3.1.6 Simple Control Transfer 

There is no branch lookahead or branch prediction mechanism on the i960 Ix microprocessor. 
Simple branch instructions take one cycle to execute, and one more cycle is needed to fetch the 
target instruction if the branch is actually taken. 

b, bal, bno, bo, bl, ble, be, bne, bg, bge 

One mode of the bx (branch-extended) instruction, bx (base), is also a simple branch and takes one 
cycle to execute and one cycle to fetch the target. 

As a result, a bal(g14) or bx (g14) sequence provides a two-cycle call and return mechanism for 
efficient leaf procedure implementation. 

Compare-and-branch instructions have been optimized on the i960 Ix microprocessor. They 
require 2 cycles to execute, and one more cycle to fetch the target instruction if the branch is 
actually taken. The instructions are: 

• cmpobno • cmpobo • cmpobl • cmpoble • cmpobe • cmpobne 

• cmpobg • cmpobge • cmplbno • cmpibo • cmplbl • cmplble 

• cmplbe • cmpibg • cmpibne • cmpibge • bbc • bbs 

5.3.1.7 Memory Instructions 

The 80960Ix provides efficient support for naturally aligned byte, short, and word accesses that 
use one of 6 optimized addressing modes. These accesses require only 1 to 2 cycles to execute; 
additional cycles are needed for a load to return its data. 

The byte, short and word memory instructions are: 

Idob, Idlb, Idos, Idis, Id, Ida stob, stib, stos, stis, st 

The remainder of accesses require multiple cycles to execute. These include: 

• Unaligned short, and word accesses 

• Byte, short, and word accesses that do not use one of the 6 optimized addressing modes 

• Multi-word accesses 

The multi-word accesses are: 

Idl, Idt, Idq, stl, sU, stq 
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5.3.1.8 Unaligned Memory Accesses .' <~ 

Unaligned. memory accesses are performed by microcode. Microcode sequences the access into 
smaller aligned pieces and does any merging of data that is ne.eded. As a result, these accesses are 
not as efficient as aligned accesses. In addition, no bursting on the external bus is performed for 
these accesses. Whenever possible, unaligned accesses should be avoided. 

5.3.2 Miscellaneolis Optimizations 

5.3.2.1 Masking of Integer Overflow 
.' ,>\ 

The i960 core architecture inserts an implicit syncf before performing a call operation or 
delivering an interrupt so that a fault handler can be dispatched first, if necessary. The syncf can 
require a number of cycles to complete if a multi-cycle integer-multiply (muli) or integer-divide 
(divi) instruction ~as issued previously and integer-overflow faults are unmasked (allowed "to 
occur). Call performance and interrupt latency can be improved by masking integer-overflow 
faults (AC.om = 1), which allows the implicit syncf to complete more quickly. 

5.3.2.2 Avoid Using PFP, SP, R3 As Destinations for MDU Instructions 

When performing a call operation or delivering an interrupt, the processor typically attempts to 
push the first four local registers (pfp, sp, rip, and r3) onto the local register cache as early as 
possible. Because of register-interlock, this operation will be stalled until previous instructions 
return their results to these registers: In most cases, this is not a problem; however, in the case' of 
Iilulti~cycle instructions (divo, divi, ediv, modi, remo,' and remi), the processor could be stalled 
for many cycles waiting for the result and unable to proceed to the next step of call processing or 
interrupt delivery. 

Call performance and interrupt latency can be improved by avoiding the first four registers as the 
destination for a MDU instruction. Generally, registers pfp, sp, and rip should be avoided they are 
used for procedure linking. 

5.3.2.3 Use Global Registers (gO - g14) As Destination,s for MDU Instructions 

Using the same rationale as in the previous item, call processing and interrupt performance are 
improved even further by using global registers (gO-gI4j as the destination for multi-cycle MDU 
instructions. This is because there is no dependency between gO-gl4 and implicit or explicit call 
operations (i.e., global registers are not pushed onto the local register cache). 
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5.3.2.4 Execute in Imprecise Fault Mode 

Significant performance improvement is possible by allowing imprecise faults (AC.nif = 0). In 
precise fault mode (AC.nif = 1), the processor will not issue a new instruction until the previous 
one has completed. This ensures that a fault from the previous instruction is delivered before the 
next instruction can begin execution. Imprecise fault mode allows new instructions to be issued 
before previous ones have completed, thus increasing the instruction issue rate. Many applications 
can tolerate the imprecise fault reporting for the performance gain. A syncf can be used in 
imprecise fault mode to isolate faults at desired points of execution when necessary. 
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'CHAPTER 6 

INSTRUCTION SET REFERENCE 

This chapter provides detailed information about each instruction available to the i960® Ix 
processors. Instructions are listed alphabetically by assembly' language mnemonic. Format and 
notation used in this chapter are defined in section 6.1, "NOTATION" (pg. 6-1). 

Information in this chapter is oriented toward programmers who write assembly language code for 
the i960 Jx processors. Information provided for each instruction includes: 

• Alphabetic listing of all instructions 

• Assembly language mnemonic, name and 
format 

Description of the instruction's operation 

• Opcode and instruction encoding format 

• Faults that can occur during execution 

• Action (or algorithm) and other side effects 
of executing an instruction 

• Assembly language example 

• Related instructions 

Additional information about the instruction set can be found in the following chapters and 
appendices in this manual: 

• CHAPfER 5, INSTRUCTION SET OVERVIEW - Summarizes the instruction set by group 
and describes the assembly language instruction format. 

• APPENDIX B, OPCODES AND EXECUTION TIMES - A quick-reference listing of 
instruction encodings assists debug with a logic analyzer. 

• APPENDIX D, INSTRUCTION SET QUICK REFERENCE - A tabular quick reference of 
each instruction's operation. 

• APPENDIX D, MACHINE-LEVEL INSTRUCTION FORMATS - Describes instruction set 
opword encodings. 

• i960 Ix PROCESSOR INSTRUCTION SET QUICK REFERENCE (order number 272597) -
A pocket-sized quick reference to all Ix instructions. 

6.1 NOTATION 

In general, notation in this chapter is consistent with usage throughout the manual; however, there 
are a few exceptions. Read the following subsections to understand notations that are specific to 
this chapter . 

. ~. 
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6.1.1 • . Alphabetic Reference 

Instructions are listed'itIphaootieally by assembly languag~~emonic. If several instructions are 
related and fall together alphabetically, they are described as a group on a single page. 

The ins,truction's assembly language mnemonic is shown in bold at the top of the page (e.g., 
subc). Occasionally, it is not practical to list all mnemonics at the page top. In these cases, the 
name of the instruction group is shown in capital letters (e.g., BRANCH<cc>or FAULT<cc». 

The i960 Jx processor-specific extensions to the i960 microprocessor instruction set are indicated 
in the header text for each such instruction. This type of notation is also used to indicate new core 
architecture instructions. Sections describing new core instructions provide notes as, to which 
i960-series processors do not implement these instructions. 

Generally, instruction set extensions are not portable to other i960 processor implementations. 
Further, new core instructions are· not typically portable to earlier i960 processor family imple­
mentations such as the i960 KX-series microprocessors. 

6.1.2 Mnemonic . 

The Mnemonic section gives the mnemonic (in boldface type) and instruction, name for each 
instruction covered on the page, for example: . ,. 

subi Subtract Integer 

This name is the actual assembly language instruction name recognized by assemblers. 

6.1.3 Format 

The Format section gives the in!ltruction's assembly language format and allowable operand 
types. Format is given in two or three lines. The following is a two-line format example: 

sub* srcl 

regllit 

src2 

regllit 

dst 

reg 

The first line gives the assembly language mnemonic (boldface type) and operands (italics). When 
the format is used for two or more instructions, an abbreviated form of the mnemonic is used. An 
* (asterisk) at the end of the mnemonic indicates a variable: in the above example, sub* is either 

\ 

subl or subo. Capital letters ,indicate an, instruction class. For example,ADD<cc> refers to the 
class of conditional add instructions (e:g., addio, addig, addOQ"addog). 

Operand names are designed to describe operand function (e.g" src, len, mask). 

The second line shows allowable entries for each operand. Notation is as follows: 

reg Global (gO ... g15) or local (to ... r15) register 
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lit 

disp 

mem 

Literal of the range 0 ... 31 

Signed displacement of range (_222 ... 222 - 1) 

Address defined with the full range of addressing modes 

In some cases, a third line is added to show register or memory location contents. For example, it 
may be useful to know that a register is to contain an address. The notation used in this line is as 
follows: 

addr 

efa 

6.1.4 

Address 

Effective Address 

Description 

The Description section is a narrative description of the instruction's function and operands. It also 
gives programming hints when appropriate. 

6.1.5 Action 

The Action section gives an algorithm written in a "C-like" pseudo-code that describes direct 
effects and possible side effects of executing an instruction. Algorithms document the instruction's 
net effect on the programming environment; they do not necessarily describe how the processor 
actually implements the instruction. The following is an example of the action algorithm for the 
alterbit instruction: 

if«AC.cc & 0102)==0) 
dst = src2 & -(2**(src1 %32)); 

else 
dst = src2 I 2**(src1 %32); 

Table 6-1 defines each abbreviation used in the instruction reference pseudo-code. 

The pseudo-code has been written to comply as closely as possible with standard C programming 
language notation. Table 6-2 lists the pseudocode symbol definitions. 
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Table 6-1. Abbreviations In Pseudo-code 

AC.xxx Arithmetic Controls Register fields 
AC.cc Condition Code flags (AC.cc2:0) 
AC.cc[Ol " Condition Code Bit 0 
AC.cc[1] Condition Code Bit 1 
AC.cc[2] Condition Code Bitc2 
AC~nif . No Imprecise Fau!ts flag 
AC.of Integer Overflow flag 
AC.om Integer Overflow Mask Bit 

PC.xxx Process Controls Register fields 
PC.em Execution Mode flag 
PC.s State Flag 
PC.tfp Trace Fault Pending flag 
PC.p Priority Field (PC.p5:0) 
PC.te Trace Enable Bit 

TC.xxx Trace Controls Register fields 
TC.i Instruction Trace Mode Bit 
TC.c Call Trace Mode Bit 
TC.p Pre-return Trace Mode Bit 
TC.br Mark Trace Mode Bit 
TC.b Branch Trace Mode Bit 
TC.r Return Trace Mode Bit , 
TC.s SuPervisor Trace Mode Bit 

PFP.xxx Previous Frame Pointer (rO) 
. PFP.add Address (PFP.add31 :4) 

PFP.rrr Return Type Field (PFP.rt2:0) 
PFP.p Pre-return Trace flag 

sp Stack Pointer (r1) 

fp Frame Pointer (g15) 

rip Return Instruction Pointer (r2) 

SPT System Procedure Table 
SSP Supervisor Stack Base Address 
,SPT(targ) Address of SPT Entry· targ 
SSP.te Trace Enable 

Table 6-2. Pseudo-code Symbol Definitions (Sheet 1 of 2) 

= Assignment 

==, != Comparison: equal, not equal 

<,> less than, greater than 

<=,>= less than or equal to, greater than or equal to 

«,» Logical Shift 

** Exponentiation 

&,&& Bitwise AND, logical AND 
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Table 6-2. Pseudo-code Symbol Definitions (Sheet 2 of 2) 

= Assignment 

I, II Bitwise OR, logical OR 
1\ Bitwise XOR 

- One's Complement 

% Modulo 

+ -, Addition, Subtraction 

• Multiplication (Integer or Ordinal) 

/ Division (Integer or Ordinal) 

# Comment delimiter 

II 
Table 6-3. Faults Applicable to All Instructions 

Fault Type Subtype Description 

An attempt to execute any instruction fetched from internal data 
Operation Unimplemented RAM or a memory-mapped region causes an operation unimple-

mented fault. 

A Mark Trace Event is signaled after completion of an instruction for 
Mark which there is a hardware breakpoint condition match. A Trace fault 

Trace is generated if PC.m is set. 

Instruction 
An Instruction Trace Event is signaled after instruction completion. A 
Trace fault is generated if both PC.te and TC.i=1. 

Table 6-4. Common Faulting Conditions 

Fault Type Subtype Description 

Any instruction that causes an unaligned memory access causes an 
Unaligned operation aligned fault if unaligned faults are not masked in the fault 

configuration word in the Processor Control Block (PRCB). 

Invalid Opcode 
This fault is generated when the processor tries to execute words from 
memory that do not contain code. 

Operation This fault is caused by a non-defined operand in a supervisor mode only 
Invalid Operand instruction or by an operand reference to an unaligned long-, triple- or 

quad-register group. 

This fault can occur due to an attempt to perform a non-word or 
Unimplemented unaligned access to a memory-mapped region or if trying to execute 

from MMR space or internal data RAM. 

Any instruction that attempts to write to internal data RAM or a memory-
Type Mismatch mapped register while not in supervisor mode causes a type mismatch 

fault. 
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6.1.6 Faults 

The Faults section lists faults that can be signaled as a direct result of instruction execution. Table 
6-3 shows the possible faulting conditions that are common to the entire instruction set and could 
directly result from any instruction. These fault types are not included in the instruction reference. 
Table 6-4 shows the possible faulting conditions that are common to large subsets of the 
instruction set. If an instruction can generate a fault, it is noted in that instruction's Faults 
section. Other instructions can generate faults in addition to those shown in the following tables. If 
an instruction can generate a fault, it is noted in that instruction's Faults section. 

6.1.7 Example 

The Example section gives an assembly language example of an application of the instruction. 

6.1.8 Opcode and Instruction Format 

The Opcode and Instruction Format section gives the opcode and instruction format for each 
instruction, for example: 

subl 593H REG 

The opcode is given in hexadecimal format. The format is one of four possible formats: REG, 
COBR, CTRL and MEM. Refer to APPENDIX D, MACIDNE-LEVEL INSTRUCTION 
FORMATS for more information on the formats. 

6.1.9 See Also 

The See Also section gives the mnemonics of related instructions which are also alphabetically 
listed in this chapter. 

6.1.10 Side Effects 

This section indicates whether the instruction causes changes to the condition code bits in the 
Arithmetic Controls. 
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6.1.11 Notes 

This section provides additional information about an instruction such as whether it IS 

. implemented in other i960 processor families. 

6.2 INSTRUCTIONS 

This section contains reference information on the processor's instructions. It is arranged alphabet­
ically by instruction or instruction group. 
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6.2.1 ADD<cc> (New 80960 Core Instruction Class) 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

6-8 

addono Add Ordinal if Unordered 
addog Add Ordinal if Greater 
addoe Add Ordinal if Equal 
addoge Add Ordinal if Greater or Equal 
addol Add Ordinal if Less 
addone Add Ordinal if Not Equal 
addole Add Ordinal if Less or Equal 
addoo Add Ordinal if Ordered 
addino Add Integer if Unordered 
addig Add Integer if Greater 
addie Add Integer if Equal 
addige Add Integer if Greater or Equal 
addil Add Integer if Less 
addine Add Integer if Not Equal 
addile Add Integer if Less or Equal 
addio Add Integer if Ordered 

add* srcl, src2, dst 
reg/lit reg/lit reg 

Conditionally adds src2 and src1 values and stores the result in dst based on 
the AC register condition code. If for Unordered the condition code is 0, or if 
for all other cases the logical AND of the condition code and the mask part of 
the opcode is not 0, then the values are added and placed in the destination. 
Otherwise the destination is left unchanged. Table 6-5 shows the condition 
code mask for each instruction. The mask is in opcode bits 4-6. 

addo<cc>: 
if«mask & AC.cc) II (mask == AC.cc)) 

dst = (src1 + src2)[31:1]; 

addi<cc>: 
if«mask & AC.cc) II (mask == AC.cc)) 

dst = (src1 + src2)[31:1]; 
if«src2[31] == src1[31]) && «src2[31] != dst[31])) 
{ if(AC.om == 1) 

AC.of= 1; 
else 

generatejault(ARITHMETIC.OVERFLOW); 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 
ARITHMETIC.OVERFLOW Occurs only with addi*<cc>. 

I 
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Table 6-5. ADD Condition Codes 

Instruction Mask Condition 

addono 
0002 Unordered 

addino 

addog 
001 2 Greater 

addig 

addoe 

addie 
0102 Equal 

addoge 
011 2 Greater or equal 

addige 

addol 
1002 Less 

addil 

addone 

addine 
101 2 Not equal 

addole 

add lie 
1102 Less or equal 

addoo 
1112 Ordered 

addio 

Example: # Assume (AC.cc AND 001 2 ) * O. 
addig r4, rS, r10 # r10 = rS + r4 

# Assume (AC.cc AND 1012 ) = O. 
addone r4, rS, r10 # r10 is not changed. 
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Opcode: 

See Also: 

Notes: 

. 6-10 

addono 780H ·.REG 
addog 790H- - REG 
addoe 7AOH REG , 

addoge 7BOH REG 
addol 7COH REG 
addone 7DOH REG 
addole 7EOH REG 
addoo 7FOH REG 
addlno 781H REG 

i 
addlg 791H REG 
addle 7AlH REG 
addige ·7BIH REG 
addU 7CIH REG 
addlne 7DIH REG 
addile 7EIH REG 
addio 7FIH REG 

addc, SUB<cc>, addi, addo 

This class of core instructions is not implemented on 80960Cx, Kx and Sx 
processors . 
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6.2.2 addc 
Mnemonic: addc Add Ordinal With Carry 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

addc srcl, 
regllit 

src2, 
regllit 

dst 
reg 

Adds src2 and srcl values and condition code bit 1 (used here as a carry-in) 
and stores the result in dst. If ordinal addition results in a carry out, condition 
code bit 1 is set; otherwise, bit 1 is cleared. If integer addition results in an 
overflow, condition code bit 0 is set; otherwise, bit 0 is cleared. Regardless of 
addition results, condition code bit 2 is always set to O. 

addc can be used for ordinal or integer arithmetic. addc does not distinguish 
between ordinal and integer source operands. Instead, the processor evaluates 
the result for both data types and sets condition code bits 0 and 1 accordingly. 

An integer overflow fault is never signaled with this instruction. 

dst = (src1 + src2 + AC.cc[l])[3l:0]; 
AC.cc[2:0] = 0002; 

if«src2[3l] == srcl[3l]) && (src2[3l] != dst[3l])) 
AC.cc[O] = l; # Overflow bit. 

AC.cc[1] = (src2 + srcl + AC.cc[l])[32]; # Carry out. 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

# Example of double-precision arithmetic. 
# Assume 64-bit source operands 
# in gO,gl and g2,g3 
cmpo 1, 0 # Clears Bit 1 (carry bit) of 

# the AC.cc. 
addc gO, g2, gO # Add low-order 32 bits: 

# gO = g2 + gO + carry bit 
addc gl, g3, gl # Add high-order 32 bits: 

addc 

ADD,SUB 

5BOH 

# gl = g3 + gl + carry bit 
# 64-bit result is in gO, gl. 

REG 

Sets the condition code in the arithmetic controls. 

6·11 
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6.2.3 addi, addo 
Mnemonic: 

Format: 

Description :. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-12 

addo Add Ordinal . 
addi Add Integer 

add* srcl, 
regllit 

src2, 
regllit 

dst 
reg 

Adds src2 and src1'values and. stores the result in dst. The binary results from 
these two instructions are identical. The only difference is that addi can 
signal an integer. overflow. 

addo: 
dst = (src2.;l-srcl)[31:0]; 

addi: 
dst = (src2 + src1)[3l:0J; 
If((src2[31] == src1[31]) && (src2[31] != dst[31])) 
{ if(AC.om == 1) 

AC.of= 1; 
else 

generate_fault(ARITHMETIC_OVERFLOW); 

STANDARD 
ARITHMETIC. OVERFLOW 

Refer to section 6.1.6, "Faults" (pg. 6-6). 
Occurs only with addi. 

addi r4, g5, r9 # r9 = g5 + r4 

addo 
addi 

590H 
591H 

addc, subi, subo, subc, ADD 

REG 
REG 

I 
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6.2.4 alterbit 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

L __ _ 

alterbit 

alterbit 

Alter Bit 

bitpos, 
reg/lit 

src, 
reg/lit 

dst 
reg, 

Copies src value to dst with one bit altered. bitpos operand specifies bit to be 
changed; condition code determines value to which the bit is set. If condition 
code is X1X2, bit 1 = 1, the selected bit is set; otherwise, it is cleared. 
Typically this instruction is used to set the bitpos bit in the targ register if the 
result of a compare instruction is the equal condition code (0102), 

if«AC.cc & 0102)==0) 
dst = src2 & -(2**(SRC1%32»; 

else 
dst = src2 I 2**(src1 %32); 

STANDARD Refer to section 6.1:6, "Faults" (pg. 6-6). 

# Assume AC. cc = 0102. 
alterbit 24, g4,g9 # g9 = g4, with bit 24 set. 

alterbit 58FH REG 

chkbit, clrbit, notblt, setbit 
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6.2.5 and, andnot 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-14 

and 
andnot 

And 
And Not 

and. srcl, src2, dst 
regllit regllit reg 

. andnot srcl, src2, dst 
regllit regllit reg 

Performs a bitwise AND (and) or AND NOT (andnot) operation Ion src2 and 
. srcl values and stores result in dst. Note in the action expressions below, src2 
operand comes ftrst, so that with andnot the expression is evaluated as: 

{src2 and not (srcl)} 
rather than 

{srcl and not (src2) }. 

and: 
dst = src2 & srcl; 

andnot: 
dst = src2 & -srct; 

STANDARD 

and Ox7, g8, g2 
andnot Ox7, r12, r9 

and 
andnot 

581H 
582H 
" 

Refer to section 6.1.6, "Faults" (pg. 6-6). 

# Put lower 3 bits of g8 in g2. 
# Copy r12 to r9 with lower 
# three bits cleared. 

nand, nor, not, notand, notor, or, ornot, xnor, xor 
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6.2.6 atadd 
Mnemonic: atadd Atomic Add 

addr, Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

atadd 
regllit 

src, 
regllit 

dst 
reg 

Adds src value (full word) to value in the memory location specified with 
addr operand. The operation is performed on the actual data in memory and 
never on a cached value on chip. Initial value from memory is stored in dst. 

Memory read and write are done atomically (i.e., other bus masters must be 
prevented from accessing the word of memory containing the word specified 
by srcldst operand until operation completes). 

Memory location in addr is the word's first byte (LSB) address. Address is 
automatically aligned to a word boundary. (Note that addr operand maps to 
srcJ operand of the REG format.) 

impliciCsyncfO; 
tempa = addr & OxFFFFFFFC; 
temp = atomic_read(tempa); 
atomic_write(tempa, temp+src); 
dst = temp; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

atadd r8, r3, rll # r8 contains the address of 

atadd 

atmod 

612H 

# memory location. 
# rll = (r8) 
# (r8) = rll + r3. 

REG 

6-15 
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6.2.7 atmod 
Mnemonic: 

Format: 

Description: . 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-16 

almod 

almod 

Atomic Modify 

addr 
reg 

mask, . 

regllit 
stc/dst 
reg 

.Copies the selected bits of src/dst value into memory location specified in 
addr. The operatiOll'is performed on the actual data in memory and never on 
a cached value on chip. Bits set in mask operand select bits to be modified in 
memory. Initial value from memory is stored in src/dst. 

Memory read and write are done. atomically (Le., other bus masters must be 
prevented from accessing the word of memory containing the word specified 
with the src/dst operand until operation completes) . 

. Memory location in addr is the modified word's first byte (LSB) address. 
Address is automatically aligned to a word boundary. 

implicit_syncfO; 
tempa = addr & OxFFFFFFFC; . 
temp = atomic_read(tempa); . 
temp = (temp &- mask) I (sre_dst & mask); 
atomic_write(tempa, temp); 
src_dst := temp; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

atmod g5, g7, glO # tempa = (g5) 

almod 

atadd 

610H 

# temp = (tempa andnot g7) or 
# (glO and g7) 
# (g5) = temp 
# glO = tempa 

REG 

I 



6.2.8 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

I 
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b,bx 
b 
bx 

b 

bx 

Branch 
Branch Extended 

targ 
disp 

targ 
mem 

Branches to the specified target. 

With the b instruction, IP specified with targ operand can be no farther than .-' 
_223 to (223_ 4) bytes from current IP. When using the Intel i960® processor 
assembler, targ operand must be a label which specifies target instruction's IP. 

bx performs the same operation as b except the target instruction can be 
farther than _223 to (223_ 4) bytes from current IP. Here, the target operand is 
an effective address, which allows the full range of addressing modes to be 
used to specify target instruction's IP. The "IP + displacement" addressing 
mode allows the instruction to be IP-relative. Indirect branching can be 
performed by placing target address in a register then using a register-indirect 
addressing mode. 

Refer to section 2.3, "MEMORY ADDRESSING MODES" (pg. 2-6) for 
information on this subject. 

b: 
temp[31 :2] = sign_extension(targ[23:2]); 
IP[31:2] = IP[31:2]'+ temp[31:2]; 
IP[1:0] = 0; 

bx: 
IP[31 :2] = effective_address(targ[31 :2]); 
IP[1:0] = 0; 

STANDARD , Refer to section 6.1.6, "Faults" (pg. 6-6). 

b xyz # IP = xyz; 
bx 1332 (ip) # IP = IP + 8 + 1332; 
# this example uses IP-relative addressing 

b 
bx 

08H 
84H 

CTRL 
MEM 

bal, balx, BRANCH, COMPARE AND BRANCH, bbc, bbs 
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INSTRUCTION SET REFERENCE 

6.2.9 

Mnemonic: 

Format: 

Description: 

Action: 

6-18 

bal, balx 
bal Branch and Link 
balx Branch and Link Extended 

bal targ 
disp 

balx targ, dst 
mem reg 

Stores address of instruction following bal or balx in a register then branches 
to the instruction specified with the targ operand. " 

The bal and balx instructions are used to call leaf procedures (procedures 
that do not call other procedures). The IP saved in the register provides a 
return IP that the leaf procedure can branch to (using a b or bx instruction) to 
perform a return from the procedure. Note that these instructions do not use 
the processor's call-,and-retum mechanism, so the calling procedure shares its 
local-register ,set with the called (leaf) procedure. 

With bal, address of next instruction is stored in register g14. targ operand 
value can be no farther than _223 to (223_ 4) bytes from current IP. When 
using the Intel i960 processor assembler, targ must be a label which specifies 
the target instruction's IP. 

balx performs same operation as bal except next instruction address is stored 
in dst (allowing the return IP to be stored in any available register). With 
balx, the full address space can be accessed. Here, the target operand is an 
effective address, which allows full range of addressing modes to be used to 
specify target IP. "IP + displacement" addressing mode allows instruction to 
be IP-relative. Indirect branching can be performed by placing target address 
in a register and then using a register-indirect addressing mode. 

See section 2.3, "MEMORY ADDRESSING MODES" (pg. 2-6) for a 
complete discussion of addressing modes available with memory-type 
operands. 

bal: 
g14 = IP + 4; 
IP[31 :2] = effective_address(targ[31 :2]); 
IP[1:0] = 0; 

balx: 
dst = IP + instruction_length; 
, # Instruction_length = 4 Or 8 depending on the size of target address., 
IP[31:2] = effective_address(targ[31:2]);# Resume execution at the new IP. 
IP[1:0] = 0; 

I 



intet 
Faults: 

Example: 

Opcode: 

See Also: 

I 

STANDARD 

bal xyz 

balx (g2), g4 

bal 
balx 

OBH 
85H 

INSTRUCTION SET REFERENCE 

Refer to section 6.1.6, "Faults" (pg. 6-6). 

# g14 = IP + 4 
# IP = xyz 
# g4 = IP + 4 
# IP = (g2) 

CTRL 
MEM 

b, bx, BRANCH, COMPARE AND BRANCH, bbc, bbs 
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INSTRUCTION SET REFERENCE intet 

6.2.10 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

6-20 

bbc,bbs 
bbc Check Bit and Branch If Clear 
bbs CheckBit and Branch If Set 

bb* bitpos, 
regllit 

src, 
reg 

targ 
disp 

Checks bit in src (designated by bitpos) and sets AC register condition code 
according to src value. The processor then perfprms conditional branch to 
instruction specified with targ, based on condition code state. 

For bbc, if selected bit in src is clear, the processor sets condition code to 
0002 and branches to instruction specified by targ; otherwise, it sets 
condition code to 0102 and goes to next instruction. 

For bbs, if selected bit is set, the processor sets condition code to 0102 and 
branches to targ; otherwise, it sets condition code to 0002 and goes to next 
instruction. 

targ can be no farther than _212 to (212 - 4) bytes from current IP. When using 
the Intel i960 processor assembler, targ must be a label which specifies target 
instruction's IP. 

bbs: 
if«src2 & 2**(srcl %32» == 1) 
{ AC.cc = 0102; 

temp[31 :2] = sign3xtension(targ[12:2]); 
IP[31:2] = IP[31:2] + temp[31:2]; 
IP[1:0] = 0; 

else 
AC.cc = 0002; 

bbc: 
if«src2 & 2**(srcl %32» == 0) 
{ AC.cc = 0002; 

temp[31:2] = sign_extension(targ[12:2]); 
IP[31:2] = IP[31:2] + temp[31:2]; 
IP[1:0] = 0; 

else 
AC.cc = 0102; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

I 



Example: 

Opcode: 

See Also: 

Side Effects: 

INSTRUCTION SET REFERENCE 

# Assume bit 10 of r6 is clear. 
bbc 10, r6, xyz # Bit 10 of r6 is checked 

# and found clear: 

bbc 
bbs 

30H 
37H 

# AC.cc = 000 
# IP = XYZi 

COBR 
COBR 

chkbit, COMPARE AND BRANCH<cc>, BRANCH<cc> 

Sets the condition code in the arithmetic controls. 
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INSTRUCTION SET REFERENCE 

6.2.11 

Mnemonic: 

Format: 

Description: 

6-22 

BRANCH<cc> 
be 
bne 
bl 
ble 
bg 
bge 
bo 

Branch If Equal 
Branch If Not Equal 
Branch If Less 
Branch If Less Or Equal 
Branch If Greater 
Branch If Greater Or Equal 
Branch If Ordered 

bno Branch If Unordered 

b* targ 
disp 

Branches to instruction specified with targ operand according to AC register 
condition code state. 

For all branch<cc> instructions except bno, the processor branches to 
instruction specified with targ, if the logical AND of condition code and 
mask-part of opcode is not zero. Otherwise, it goes to next instruction. 

For bno, the processor branches to instruction specified with targ if the 
condition code is zero. Otherwise, it goes to next instruction. 

For instance, bno (unordered) can be used as a branch if false instruction 
when coupled with chkbit. For bno, branch is taken if condition code equals 
0002, be can be used as branch-if true instruction. 

The targ operand value can be no farther than _223 to (223_ 4) bytes from 
current IP. 

The following table shows condition code mask for each instruction. The 
mask is in opcode bits 0-2. 

Instruction Mask Condition 

bno 0002 Unordered 

bg 001 2 Greater 

be 0102 Equal 

bge 011 2 Greater or 
equal 

bl 1002 Less 

bne 101 2 Not equal 

ble 1102 Less or equal 

bo 1112 Ordered 

1-



Action: 

Faults: 

Example: 

Opcode: 

See Also: 

I 

INSTRUCTION SET REFERENCE 

if«mask & AC.cc) II (mask == AC.cc» 
{ temp[3I:2] = sign_extension(targ[23:2]); 

IP[3I:2] = IP[3I:2] + temp[3I:2]; 
IP[1:0] = 0; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

# Assume (AC.cc AND 100 2 ) ~ 0 
bl xyz # IP = XyZi 

be I2H CTRL 
bne I5H CTRL 
bl I4H CTRL 
ble I6H CTRL 
bg llH CTRL 
bge 13H CTRL 
bo I7H CTRL 
bno lOH CTRL 

b, bx, bbc, bbs, COMPARE AND BRANCH, bal, balx, BRANCH 
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INSTRUCTION SET REFERENCE 

6.2.12 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

6-24 

bswap (New 80960 Core Instruction) 

bswap 

bswap 

Byte Swap 

srcl:src 
regllit 

src2:dst 
reg 

Alter the order of bytes in a word, reversing its "endianess." 

Copies bytes 3:0 of srcl to src2 reversing order of the bytes. Byte 0 of srcl 
becomes byte 3 of src2, byte 1 of src1 becomes byte 2 of src2, etc. 

dst = (rotate_left(src 8) & OxOOFFOOFF) 
+(rotate_left(src 24) & OxFFOOFFOO); 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

bswap g8, glO 

bswap 5ADH 

scanbyte, rotate 

# g8 = 'Ox89ABCDEF 
# Reverse byte order. 
# glO now OxEFCDAB89 

REG 

This core instruction is not implemented on Cx, Kx and Sx 80960 processors. 

J 



6.2.13 call 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

_I 

INSTRUCTION SET REFERENCE 

call 

call 

Call 

targ 
disp 

Calls a new procedure. targ operand specifies the IP of called procedure's 
first instruction. When using the Intel i960 processor assembler, targ must be 
a label. 

In executing this instruction, the processor performs a local call operation as 
described in section 7.1.3.1, "Call Operation" (pg. 7-7). As part of this 
operation, the processor saves the set of local registers associated with the 
calling procedure and allocates a new set of local registers and a new stack 
frame for the called procedure. Processor then goes to the instruction 
specified with targ and begins execution. 

targ can be no farther than _223 to (223 - 4) bytes from current IP. 

# Wait for any uncompleted instructions to finish. 
impliciCsyncfO; 
temp = (SP + (SALIGN*16 - 1)) & -(SALIGN*16 - 1) 

# Round stack pointer to next boundary. 
# SALIGN=1 on i960 Jx processors. 

RlP = IP; 
if (registecsecavailable) 

allocate_new _frame( ); 
else 

{ save_registecset( ); # Save register set in memory at its FP. 
allocate_new jrame( ); 

} 
# Local register references now refer to new frame. 

IP= targ 
PFP=FP; 
FP = temp; 
SP = temp + 64; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

call xyz # IP = xyz 

call 09H CTRL 

bal, calls, calix 
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INSTRUCTION. SETREFERENC.E 

6.2.14 calls , ' , 

Mnemonic: calls 

Format: calls 

Call System 

tllrg 

Description: 

Action: 

6-26 

regllit 

CaUs . a system procedure. The targoperand gives the number of the 
procedure being called. For calls, the processor performs system call 
operation described in section 7.5, "SYSTEM CALLS" (pg. 7-16). targ 
provides an index to a system procedure table entry from which the processor 
gets the called prqeedure's IR. 

The called procedure can be a local or supervisor procedure, depending on 
system procedure table entry type. If it is a supervisor procedure, the 
processor switches to supervisor mode (if not already in this mode). 

As part of this operation, processor also allocates it new set of local registers 
and a new stack' frame for called procedure. If the processor switches to 
supervisor mode, the new stack frame is created on the supervisor stack. 

# Wait for any uncompleted instructions to finish. 
implicicsyncfO; 
If (targ > 259) 

generatejault(PROTECTION.LENGTH); 
temp = geCsys_proc_entry(sptbase + 48 + 4*targ); 

# sptbase is address of supervisor procedure table. 

if (frame_available) 
allocate_new jrame( ); 
else 
{ save_frame( ); # Save a frame in memory at its FP. 

allocate_new _frame( ); 
# Local register references now refer to new frame. 

} 
RIP=IP; 
IP=temp; 
if «temp.type == local) II (PC.em == supervis9r» 

. { . # Local call or supervisor call from supervisor mode. 
temp = (SP + (SALIGN*16 7 1» & -(SALIGN*16 - 1) 
# Round stack pointer to next boundary. 
# SALIGN=l on i960 Jx processors. 
temp.RRR = 0002; 

else # Supervisor call from user mode. 
tempa = SSP; # Get Supervisor Stack pointer. 



Faults: 

Example: 

Opcode: 

See Also: 

I 

INSTRUCTION SET REFERENCE 

temp.RRR = 0102 I PC.te; 
PC.em = supervisor; 
PC.te = temp.te; 

} 
PFP = FP; 
PFP.rrr = tempRRR; 
FP= tempa; 

STANDARD 
PROTECTION.LENGTH 

calls r12 

calls 3 

calls 660H 

bal, call, calix 

Refer to section 6.1.6, "Faults" (pg. 6-6). 
Specifies a procedure number greater than 
259. 

# IP = value obtained from 
# procedure table for procedure 
# number given in r12. 
# Call procedure 3. 

REG 
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:INSTRUCT:10N SET REFERENCE 

6.2.15 

Mnemonic: 

Format: 

Description: 

Action: 

. Faults: 

6-28 

calix 
calix 

calix 

Call Extended 

targ 
mem 

Calls new procedure. targ specifies IP of called procedure's first instruction. 

. In executing calix, the processor performs a local ~all as described in section 
7.1.3.1, "Call Operation" (pg. 7-7). As part of this operation, the processor 
allocates a new set of local registers and a new stack frame for the called 
procedure. Processor then goes to the instruction specified with targ and 
begins execution of new procedure. 

calix performs the same operation as call except the target instruction can be 
farther than _223 to (223 - 4) bytes from current IP. 

The targ operand is a memory type, which allows the full range of addressing 
modes to be used to specify the IP of the target· instruction. The "IP + 
displacement" addressing mode allows the instruction to be IP-relative. 
Indirect calls can be performed by pl~cing the target address in a register and 
then using one of the register-indirect addressing modes. 

Refer to Chapter 2, DATA TYPES AND MEMORY ADDRESSING 
MODES for more information. 

# Wait for any uncompleted instructions to finish; 
implicicsyncfO; 

temp = (SP + (SALIGN*16 - 1» & -(SALIGN*16 - 1) 
# Round stack pointer to next boundary. 
# SALIGN=1 on i960 Ix processors. 

RIP = IP; 
if (registecseCavailable) 

allocate_new_frame( ); 
else 

( save_register_set( ); # Save register set in memory at its FP; 
allocate_new _frame( ); 

} 
# Local register references now refer to new frame. 

IP = targ 
PFP = FP; 
FP = temp; 
SP = temp + 64; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 



in1et 
Example: callx (g5) 

Opcode: calix 86H 

See Also: call, calls, bal 

INSTRUCTION SET REFERENCE 

# IP = (g5), where the address in g5 
# is the address of the new procedure. 

MEM 

6-29 

II 
! 



INSTRUCTION SET REFERENCE 

6.2.16 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

6-30 

chkbit 
chkblt 

chkblt 

Check Bit 

bitpos, 
regllit 

src2 
regllit 

Checks bit in src2 designated by bitpos and sets condition code according to 
value found. If bit is set, condition code is set to 0102; if bit is clear, condition 
code is set to 0002. 

if «(src2 & 2**(bitpos % 32» == 0) 
AC.cc = 0002; 

else 
AC.cc = 0102; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

chkbit 13, g8 # Checks bit 13 in g8 and sets 
# AC.cc according to the result. 

chkblt 5AEH REG 

alterbit, clrblt, notblt, setbit, cmpl, cmpo 

Sets the condition code in the arithmetic controls. 

L 



INSTRUCTION SET REFERENCE 

6.2.17 clrbit 
Mnemonic: clrbit Clear Bit 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

~--------- -

clrbit bitpos, 
reg/lit 

src, 
reg/lit 

dst 
reg 

Copies src value to dst with one bit cleared. bitpos operand specifies bit to be 
cleared. 

dst = src2 & -(2**(src1 %32»; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

clrbit 23, g3, g6 # g6 = g3 with bit 23 cleared. 

clrbit 58CH REG 

alterbit, chkbit, notbit, setbit 
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INSTRUCTION SET REFERENCE 

6.2.18 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

6-32 

cmpdeci, cmpdeco 
cmpdeci 
cmpdeco 

cmpdec* 

Compare and Decrement Integer 
Compare and Decrement Ordinal 

src1, 
regllit 

src2, 
regllit 

dst 
reg. 

Compares src2 and srcl values and sets the condition code according to 
comparison results. src2 is then decremented by one and result is stored in 
dst. The following table shows condition code setting for the three possible 
results of the comparison. 

Condition Code Comparison 

1002 src1 < src2 

0102 src1 ~ src2 

001 2 srci > src2 

These instructions are intended for use in ending iterative loops. For 
cmpdeci, integer overflow is ignored to allow looping down through the 
minimum integer values. 

if(src1 < src2) 
AC.cc = 1002; 

else if(src1 == src2) 
AC.cc = 0102; 

else 
AC.cc = 0012; 

dst = src2 -1; # Overflow suppressed for cmpdeci. 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

cmpdeci 12, g7, gl # Compares g7 with 12 and sets 
# AC.cc to indicate the result 
# gl = g7 - 1. 

cmpdeci 
cmpdeco 

5A7H 
5A6H 

REG 
REG 

cmpinco, cmpo, cmpi, cmpinci, COMPARE AND BRANCH 

Sets the condition code in the arithmetic controls. 



6.2.19 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

INSTRUCTION SET REFERENCE 

cmpinci,cmpinco 
cmpinci 
cmpinco 

cmpinc* 

Compare and Increment Integer 
Compare and Increment Ordinal 

srcl, 
reg/lit 

src2, 
regllit 

dst 
reg 

Compares src2 and srcJ values and sets the condition code according to 
comparison results. src2 is then incremented by one and result is stored in dst. 
The following table shows condition code settings for the three possible 
comparison results. 

Condition Code Comparison 

1002 src1 < src2 

0102 src1 = src2 

001 2 src1 > src2 

These instructions are intended for use in ending iterative loops. For cmpinci, 
integer overflow is ignored to allow looping up through the maximum integer 
values. 

if (srcl < src2) 
AC.cc = 1002; 

else if (src1 == src2) 
AC.cc = 0102; 

else 
AC.cc = 0012; 

cmpinco: 
dst = src2 + 1; 
cmpinci: 
dst = src2 + 1; # Overflow suppressed. 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

cmpinco r8, g2, g9 # Compares the values in g2 
# and r8 and sets AC.cc to 
# indicate the result: 

cmpinci 
cmpinco 

SASH 
5A4H 

# g9 = g2 + 1 

REG 
REG 

cmpdeco, cmpo, cmpi, cmpdeci, COMPARE AND BRANCH 

Sets the condition code in the arithmetic controls. 
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INSTRUCTION SET REFERENCE 

6.2.20 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

6-34 

COM PAR E (Includ'" New 80960 Core lIisfructions) 

cmpl 
cmplb 
cmpls 
cmpo 
cmpob 
cmpos 

cmp* 

Compare Integer 
Compare Integer Byte 
Compare Integer Short 
Compare Ordinal 
Compare Ordinal Byte , 
Compare ordinal Short 

srcl, 
regllit 

src2· 
regllit 

Compares src2 and srcl values and sets condition code according to 
comparison results. The following table shows condition code settings for the 
three possible comparison results. 

Condition Code Comparison 

1002 src1 < src2 

0102 src1 = src2 

0012 src1 > src2 

cmpl* followed by a branch-if instruction is equivalent to a compare-integer­
and-branch instruction. The latter method of comparing and branching 
produces more compact code; however, the former method can execute byte 
and short compares without masking. The same is true for cmpo* and the 
compare-ordinal-and-branch instructions. 

# For cmpo, cmpi N = 31. 
# For cmpos, cmpis N = 15. 
# For cmpob, cmpib N = 7. 

if (srcl[N:O] < src2[N:0]) 
AC.cc = 1002; 

else if (src1[N:0] ~- src2[N:0]) 
AC.cc = 0102; 

else if (src1 [N :0] > src2[N :0]) 
AC.cc = 0012; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

l 



Example: 

Opcode: 

See Also: 

Side Effects: 

Notes: 

1 

cmpo r9, 

bg xyz 

cmpl 
cmplb 
cmpls 
cmpo 
cmpob 
cmpos 

OxlO # 
# 
# 
# 
# 

5AIH 
595H 
597H 
5AOH 
594H 
596H 

INSTRUCTION SET REFERENCE 

Compares the value in r9 with OxlO 
and sets AC.cc to indicate the 
result. 
Branches to xyz if the value of r9 
was greater than OxlO. 

REG 
REG 
REG 
REG 
REG 
REG 

COMPARE AND BRANCH, cmpdecl, cmpdeco, cmpincl, cmplnco, 
concmpl, concmpo 

Sets the condition code in the arithmetic controls. 

The core instructions cmplb, cmpls, compob and compos are not imple­
mented on ex, Kx and Sx 80960 processors. 
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<INSTRUCTION SE:r flEFE.RENCE intet 

6.2.21 

Mnemonic: 

Format: 

Description: 

6-36 

COMPARE AND BRANCH 
cmplbe 
cmplbne' 
cmpibl 
cmplble 
cmpibg 
cmplbge 
cmplbo 
cmplbno 

clJlppb!! .. 
cmpobne 
cmpobl 
cmpoble 
.cmpQ~g. 
cmpobge 

cmplb* 

cmpob* 

Compare Integer and Branch If Equal 
. Compare Integer and Branch If Not Equal 
Compare Integer and Branch If Less 
Compare Integer and Branch If Less Or Equal 
Compare Integer "and Branch If Greater 
Compare Integer and Branch If Grt;later Or Equal 
ColDpare Integer and Branch If Ordered 
. Compare Integer and Branch IfNQtOrdered 

, " Compare Ordinal and Branch If Equal 
'Compare Ordinal and Branch If Not Equal 
Compare Ordinal and Branch If Less 
Compare Ordinal and Branch If Less Or Equal 
Comp~ Ordinal and Branch If Greater 
Compare Ordinal and Branch If Greater Or Equal 

srcl, src2, targ 
regllit reg disp 

srcl, src2, targ 
regllit reg disp 

Compares src2 and srcl values and sets AC register condition code according 
to comparison results. If logical AND of condition code and mask part of 
opcode is not zero, the processor branches to instruction specified with targ; 
otherwise, the processor goes to next instruction. 

targ can be no farther than _212 to (212 - 4) bytes from current IP. When using 
the Intel i960 processor assembler. targ must be a label which specifies target 
instruction's IP. 

. Functions these instructions perform can be duplicated with a cmpi or cmpo 
followed by a branch-if instruction, as ~escribed in section 6.2.20, 
"COMPARE (Includes New 80960 Core Instructions)" (pg. 6-34). 



intet 

Action: 

Faults: 

Example: 

_3 

INSTRUCTION SET REFERENCE 

The following table shows the condition-code mask for each instruction. The 
mask is in bits 0-2 of the opcode. 

Instruction Mask Branch Condition 

cmpibno 0002 No Condition 

cmpibg 001 2 src1 > src2 

cmpibe 0102 src1 '" src2 

cmpibge 011 2 src1'~ src2 

cmpibl 1002 src1 < 'src2 

cmpibne 101 2 src1 =#; src2 

cmpible 1102 src1:::; src2 

cmpibo 1112 Any Condition 

cmpobg 001 2 src1> src2 

cmpobe 0102 src1 = src2 

cmpobge 011 2 src1 ~ src2 

cmpobl 1002 src1 < src2 

cmpobne 101 2 src1 =#; src2 

cmpoble 1102 src1:::; src2 

NOTE: cmpibo always branches; cmpibno never 
branches. 

if(src1 < src2) 
AC.cc = 1002; 

else if(src1 == src2) 
AC.cc == 0102; 

else 
AC.cc = 0012; 

if«mask && AC.cc) != 0002) 

IP[31 :2] = efa{31 :2]; # Resume execution at the new IP. 
IP[1:0] = 0; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

# Assume g3 < g9 
cmpibl g3, g9, xyz # g9 is compared with g3; 

# IP = xyz. 
# assume 19 ~ r7 
cmpobge 19, r7, xyz # 19 is compared with r7; 

# IP = xyz. 
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INSTRUCTION SET REFERENCE int"et 
Opcode: cmplbe 3AH COBR 

cmplbne 3DH COBR 
cmplbl 3CH COBR 
cmpible 3EH COBR 

. cmpibg 39H COBR 
cmpibge 3BH COBR 
cmpibo 3FH COBR 
cmpibno 38H COBR 
cmpobe 32H COBR 
cmpobne 35H COBR 
cmpobl 34H COBR 
cmpoble 36H COBR 

I· cmpobg 3lH COBR 

! cmpobge 33H COBR 

See Also: BRANCH<cc>, cmpi, cmpo, bal, balx 

Side Effects: Sets the condition code in the arithmetic controls. 
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6.2.22 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

1 

INSTRUCTION SET REFERENCE 

concmpi,concmpo 
concmpi Conditional Compare Integer 
concmpo Conditional Compare Ordinal 

concmp* src1, 
reg/lit 

src2 
reg/lit 

Compares src2 and srcl values if condition code bit 2 is not set. If 
comparison is performed, condition code is set according to comparison 
results. Otherwise, condition codes are not altered. 

These instructions are provided to facilitate bounds checking by means of 
two-sided range comparisons (e.g., is A between B and C?). They are 
generally used after a compare instructioI). to test. whether a value is 
inclusively between two other values. 

The example below illustrates this application by testing whether g3 value is 
between g5 and g6 values, where g5 is assumed to be less than g6. First a 
comparison (cmpo) of·g3 and·g6 is performed. If g3 is less than or equal to 
g6 (i.e., condition code is either 010z or 001z), a ,.;onditional comparison 
(concmpo) of g3 and g5 is then performed. If g3 is greater than or equal to g5 
(indicating that g3 is within the bounds of g5 and g6), condition code is set to 
010z; otherwise, it is set to 001z. 

if (AC.cc != 1XXz) 
( if(src1 <= src2) 

AC.cc = 01Oz; 
else 

AC.cc = 00lz; 

STANDARD 

cmpo g6, g3 

concmpo g5, g3 

Refer to section 6.1.6, "Faults" (pg. 6-6). 

# Compares g6 and g3 
# and sets AC.cc. 
# If AC.cc < 1002 (g6 ~ g3) 
# g5 is compared with g3. 

At this point, depending on the register ordering, the condition code is one of 
those listed on Table 6.6. 

6-39 

i 

.-



INSTRUCTION SET REFERENCE 

Opcode: 

See Also: 

Side Effects: 

6-40 

Table 6.6. concmpo example: register ordering and CC 

Order 

95 <g6 < g3 

g5<g6=g3 

g5<g3<g6 

g5=g3<g6 

-g3<g5<g6 

concmpi 5A3H 
concmpo 5A2H 

CC 

1002 

0102 

0102 

0102 

001 2 

REG 
REG 

cmpo, cmpi, cmpdeci, cmpdeco, cmpinci, cmpinco, COMPARE AND 
BRANCH 

Sets the condition code in the arith~etic controls. 

_L 
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6.2.23 

Mnemonic: 

Format: 

Description: 

INSTRUCTION SET REFERENCE 

deetl (80960Jx-Specific Instruction) 

deetl 

srcl, 
regllit 

Data-cache Control 

src2, 
regllit 

srcldst 
reg 

Performs management and control of the data cache including disabling, 
enabling, invalidating, ensuring coherency, getting status, and storing cache 
contents to memory. Operations are indicated by the value of srcl. src2 and 
srcldst are also used by some operations. When needed by the operation, the 
processor orders the effects of the operation with previous and subsequent 
operations to ensure correct behavior. 

Table 6-7. DCCTL Operand Fields 

Function sre1 sre2 src/dst 

Disable Dcache 0 NA NA 
Enable Dcache 1 NA NA 
Global invalidate 2 NA NA 
Dcache 

Ensure cache 
3 NA NA coherency1 

src: N/A 

Get Dcache status 4 NA dst: Receives 
Dcache status 
(see Figure 6-1). 

Store Dcache to 
Destination src: Dcache set 

6 address for cache #'s to be stored 
memory 

sets (see Figure 6-1). 

1. Invalidates data cache on 80960Jx. 
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."", . 

Src1 Format 

o 

Function Type 

";. 

, ~! • 

Src/Dst Fo,rmatfor Data' Cache Status 

31 2827 1615 1211 8 7 4 3 

" # of Ways-1 

1092 (# of Sets) J j . J 
. " 1092 (Atoms/Line) 

1092 (Bytes/Atom) . 

Src/Dst Format for Store Data Cache Sets to Memory 

r Endl ... Set. 

I Reserved, 
(Initialize to 0) 

Startin9 Set # 

Figure 6-1. DCCTI,.'src1 and src/dst Formats 

o 

Enabled = 1 
Disabled = 0 

o 

I 
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Table 6.8. OCCTL Status Values and O-Cache Parameters 

Value 
Value on Value on i960JD/JF 

i960JACPU CPU 

bytes per atom 4 4 

atoms per line 4 4 

number of sets 64 128 (full) 

number of ways 1 (Direct) 1 (Direct) 

cache size 1-Kbytes 2-Kbytes(full) 

Status[O] (enable I disable) o or 1 o or 1 

Status[1 :3] (reserved) 0 0 

Status[7:4] (log2(bytes per atom)) 2 2 

Status[11 :8] (log2(atoms per line)) 2 2 

Status[15:12] (log2(number of sets)) 6 7 (full) 

Status[27:16] (number of ways - 1) 0 0 

0 
Destination 
Address (DA) 

Tag (Starting set) DA+4H 

Valid Bits (Starting set) DA+8H 

Word 0 

Word 1 

DA+CH 

DA+ 10H I 

Word 2 DA + 14H 

Word 3 DA+ 18H 

Tag (Starting set) DA + 1CH 

Valid Bits (Starting set) DA+20H 

Word 0 DA+24H 

Word 1 DA+28H 

Word 2 DA+2CH 

Word 3 DA+30H 

0 DA+34H 

Tag (Starting set + 1) DA+38H 

Valid Bits (Starting set + 1) DA+3CH 

... 

Figure 6·2. Store Data Cache to Memory Output Format 
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in+~1 'eI® 

,; 

Action: 

6-44 
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Table 6·9. Valid_Bits Values 

Bit ' < Meaning 

0 Tag Valid bit for current Set and Way 

1 Valid Bit for Word 0 of current Set and Way 

2 Valid Bit for Word 1 of current Set and Way 

,3 Valid'Bitfer Word 2 of current Set and Way 

4 Valid Bit" forWard 3 of current Set and Way 

5-31 Reserved, Read as Zero, 

if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH); 

ordec wrt(previous_operations); 
switch (src1 [7 :0]) { 

case 0: # Disable data cache. 
disable_Dcache( ); 
break; 

case 1: # Enable data cache. 
enable_Dcache( ); 
break; 

case 2: # Global invalidate data cache. 

case 3: 

.case 4: 

invalidate_Dcache( ); 
break; 
# Ensure coherency of data cache with memory. 
# Causes data cache to be invalidated on this processor. 
ensure_Dcache30herency( ); 
break; 
# Get data cache status into src/dst. 
if (Dcache_enabled) src/dst[O] = 1; 
else src/dst[O] = 0; , 
# Atom is 4 bytes. 
src/dst[7:4] = log2(bytes per atom); 
# 4 atoms per line. 
src/dst[11:8] = log2(atoms per line); 

'src/dstt15:i21:: fog2(number of sets); 
"srcldst[27:161=number of ways-I; # in lines per set 

# cache size = ([27:16]+1)« ([7:4] + [11:8] + [15:12]). 
break; 



Action: 

Faults: 

case 6: 

default: 

INSTRUCTION·SET REFERENCE 

# Store data cache sets to memory pointed to by src2. 
start = src/dst[15:0) # Starting set number. 
end = src/dst[31:16) # Ending set number. 

# (zero-origin). 
if (end >= Dcache_max_sets) end = Dcache_max_sets - 1; 
if (start> end) generate_fault 

(OPERATION.INVALID_OPERAND); 
memadr = src2; # Must be word-aligned. 
if (Ox3 & memadr! = 0) 
generatejault(OPERATION.lNVALID_OPERAND) 
for (set = start; set <= end; set++){ 

# SeCData is described at end of this code flow. 
memory[memadr) = SecData[set); 
memadr+=4; 
for (way = 0; way < numb_ways; way++) 

{memory[memadr) = tags[set)[way); 
memadr+=4; 

break; 

memory[memadr) = valid_bits[set][way); 
memadr+=4; 
for (word = 0; word < words_in_line; word++) 

{memory[memadr) = 
Dcache_line[set) [way) [word); 

memadr+=4; 
} 

} 

# Reserved. 
generate_fau1t(OPERATION .INVALID _OPERAND); 
break; 

order_ wrt( subsequenC operations) 

STANDARD 

TYPE.MISMATCH 

OPERATION.lNVALID_OPERAND 

Refer to section 6.1.6, 
"Faults" (pg. 6-6). 
Attempt to execute 
instruction while not in 
supervisor mode. 
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Example: 

Opcode: 

See Also: 

Notes: 

6-46 

dcctl gO,gl,g2 

dcctl 

sysctl 

65CH 

# gO = 6, gl= OxlOOOOOOO, 
.# g2 = Ox001FOOOl 
# Store the status of Dcache 
# sets l-OxlF to memory starting 
# at OxlOOOOOOO. 

REG 

DCCTL function 6 stores data-cache sets to a target range in external mem­
ory. For any memory location that is cached and also within the target range 
for function 6, the corresponding word-valid bit will be cleared after function 
6 completes to ensure data-cache coherency. Thus, dcctl function 6 can alter 
the state of the cache after it completes, but only the word-valid bits. In all 
cases, even when the cache sets to store to external memory overlap the 
cache sets which map the target range in external memory, DCCTL function 
6 always returns the state of the cache as it existed when the DCCTL was 
issued. 

This instruction is implemented on the 80960Jx processor family only, and 
mayor may not be implemented on future i960 processors. 

l 
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6.2.24 divi, divo 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

divi 
divo 

div· 

Divide Integer 
Divide Ordinal 

srcl, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

Divides src2 value by srcl value and stores the result in dst. Remainder is 
discarded. 

For divi, an integer-overflow fault can be signaled. 

divo: 
if (src1 == 0) 

generatejault (ARITHMETIC.ZERO_DIVIDE); 
else 

dst = src2/src1; 

divi: 
if (srcl == 0) 
{ dst = undefined_value; 

generatejault (ARITHMETIC. ZERO_DIVIDE); } 
else if «src2 == -2**31) && (src1 == -1) 

{ dst = -2**31 
if (AC.om == I) 

AC.of = I; 
else 

generate_fault (ARITHMETIC.OVERFLOW); 

else " 
dst = src2 I src1; 

Refer to Section 6.1.6 on page 6-6. 
The srcl operand is O. 

STANDARD 
'ARITHMETIC.ZERO_DIVIDE 
ARITHMETIC.OVERFLOW Result too large for destination register 

(dlvi only). If overflow occurs and 
AC.om=I, fault is suppressed and 
AC.of is set to 1. Result's least 
significant 32 bits are stored in dst. 

diva r3, r8, r13 # r13 = r8/r3 

divi 
divo 

74BH 
70BH 

ediv, mulo, mull, emu I 

REG 
REG 
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6.2.25 ediv 
Mnemonic: ediv Extended Divide 

Format: 

Description: 

Action: 

Faults: , 

6-48 

ediv srcl, 
reg/lit 

src2, 
reg/lit 

dst 
reg .. · 

Divides src2 by srcl and stores result in dst. The src2 value is a long ordinal 
(64 bits) contained in two adjacent registers.src2 specifies the. lower 
numbered register which contains operand's least sigmficant bits. src2 must 
be an even numbered register (i.e., gO, g2, ... or r4, r6, r8 ... ). srcl value is a 
normal ordinal (i.e., 32 bits). 

The result consists of a one-word remainder and a one-word quotient. 
RemaiJ:lder is stored in th~. register designated by dst; quotient is stored in the 
next highest numbered register. dst must bean even numbered register (I.e., 
or gO, g2, ... r4, r6, r8, ... ). 

This instruction performs ordinal arithmetic. 

If this operation overflows (quotient or remainder do not fit in 32 bits), no 
fault is raised and the result is undefined. 

if«re~number(src2)%2!= 0) II (reg_number(dst['O])%2 != 0)) 
{ dst[O] = undefined3alue; ./ 

dst[l] = undefined3alue; 
generate_fault (OPERATION.INVALID_OPERAND); 

else if(srcl == 0) 
{ dst[O] '= undefined_value; 

dst[l] = undefined_value; 
generate_fault(ARlTHMETIC.DIVIDE_ZERO); 

else # Quotient 
{ dst[1] = «src2 + re~value(src2[1]) * 2**32) 1 srcl)[31:0]; 

#Remainder . . 
dst[O] = (~r~2 + reg_value(src2[1]) * 2**32 

- «src2+ reg3alue(src2[1]) * 2**321 srcl) * src1); 
} 

STANDARD· 

ARlTHMETIC.ZERO_DIVIDE 
OPERATION.INVALID_OPERAND 

Refer to section 6.1.6, "Faults" (pg. 
6-6). 
The src1 operand is O. 



Example: ediv g3, g4, glO 

Opcode: ediv 671H 

See Also: ernul, divi, divo 

I 

INSTRUCTION SET REFERENCE 

# glO = remainder of g4,g5/g3 
# gll = quotient of g4,g5/g3 

REG 
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6.2.26· 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

ernul 
emul 

emul 

Extended Multiply 

srcl, 
regllit 

src2, 
regllit 

. dst 
reg 

!', 

Multiplies src2 by srcl and stores the result in dst. Result is a long ordinal 
(64 bits) stored in two adjacent registers. dst specifies lower numbered 
register, which receives the result's least significant bits. dst must be an even 
numbered register (i.e., or gO, g2, ... r4, r6, r8, ... ). 

This instruction performs ordinal arithmetic. 

if(reg_number(dst)%2 != 0) 
{ dst[O] = undefined_value; 

dst[l] = undefined_value; 
generate_fault(OPERATION.INVALID_OPERAND); 

else 
{ dst[O] = (srcl * src2)[31:0]; 

dst[l] = (src1 * src2)[63:32]; 

STANDARD 

ernul r4, rS, g2 

emul 670H 

ediv, muli, mulo 

Refer to section 6.1.6, "Faults" (pg. 6-6). 

# g2,g3 = r4 * rS. 

REG 
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6.2.27 eshro 
Mnemonic: eshro Extended Shift Right Ordinal 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcpde: 

See Also: 

Notes: . 

I 

eshro srcl 
reg/lit 

src2 
reg/lit 

dst 
reg 

Shifts src2 right by (srcl mod 32) places and stores the result in dst. Bits 
shifted beyond the least-significant bit are discarded. 

src2 value is a long ordinal (i.e., 64 bits) contained in two adjacent registers. 
src2 operand specifies the lower numbered register, which contains operand's 
least significant bits. src2 operand must be an even numbered register (i.e., r4, 
r6, r8, ". or gO, g2). 

srcl operand is a single 32-bit register or literal where the lower 5 bits specify 
the number of places that the src2 operand is to be shifted. 

The least significant 32 bits of the shift operation result are stored in dst. 

if(re~number(src2)%2 != 0) 
( dst[O] = undefined3alue; 

else 

dst[l] = undefined3alue; 
generate_fault(OPERATION.INVALID_OPERAND); 

dst = shifCright«src2 + reg_value(src2[1]) * 2**32),(src1 %32))[31:0]; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

eshro g3, g4, gll # gll = g4,5 shifted right by 
# (g3 MOD 32) . 

eshro 5D8 REG 

SHIFT, extract 

This core instruction is not implemented on the Kx and Sx 80960 processors. 
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6.2.28 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-52 

extract 
extract 

extract 

Extract 

bitpos 
regllit 

len 
regllit 

srcldst 
reg 

Shifts a specified bit field in srcldst right and zero fills bits to left of shifted 
bit field. bitpos value specifies the least significant bit of the bit field to be 
shifted; len value specifies bit field length. 

src_dst = (src_dst 12**(src1 %31» & «2**src2) - 1); 

STANDARD 

extract 5, 12, g4 

extract 

modify 

651H 

Refer to section 6.1.6, "Faults" (pg. 6-6). 

# g4 = g4 with bits 5 through 
# 16 shifted right. 

REG 

I 
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6.2.29 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

-~---

INSTRUCTION SET REFERENCE 

FAULT<cc> 
faulte 
faultne 
faultl 
faultle 
faultg 
faultge 
faulto 
faultno 

fault* 

Fault If Equal 
Fault If Not Equal 
Fault If Less 
Fault If Less Or Equal 
Fault If Greater 
Fault If Greater Or Equal 
Fault If Ordered 
Fault If Not Ordered 

Raises a constraint-range fault if the logical AND of the condition code and 
opcode's mask-part is not zero. For faultno (unordered), fault is raised if 
condition code is equal to" 0002. 

faulto and faultno are provided for use by implementations with a floating 
point coprocessor. They are used for compare and branch (or fault) operations 
involving real numbers. 

The following table shows the condition-code mask for each instruction. The 
mask is opcode bits 0-2. 

Instruction Mask Condition 

faultno 0002 Unordered 

faultg 001 2 Greater 

faulte 0102 Equal 

faultge 011 2 Greater or equal 

faultl 1002 Less 

faultne 101 2 Not equal 

faultle 1102 Less or equal 

faulto 1112 Ordered 

For all except faultno: 
if(mask && AC.cc != 0002) 

generatejault(CONSTRAINT.RANGE); 

faultno: 
if(AC.cc = 0002) 

generatejault(CONSTRAINT.RANGE); 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 
CONSTRAINT.RANGE If condition being tested is true. 
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Example: # Assume (AC.cc AND 1102 );t:. 0002 

faultle # Constraint Range Fault is generated. 

Opcode: faulte lAR CTRL 
faultne lDH CTRL 
faultl lCH CTRL 
faultle lEH CTRL 
faultg 19H CTRL 
faultge lBH CTRL 
faulto lFH CTRL 
faultno l8H CTRL 

See Also: BRANCH<cc>, TEST <cc> 
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6.2.30 flush reg 
Mnemonic: flushreg Flush Local Registers 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

l 

flushreg 

Copies the contents of every cached register set---except the current set-to 
its associated stack frame in memory. The entire register cache is then marked 
as purged (or invalid). On a return to a stack frame for which the local 
registers are not cached, the processor reloads the locals from memory. 

flushreg is provided to allow a debugger or application program to 
circumvent the processor's normal call/return mechanism. For example, a 
debugger may need to go back several frames in the stack on the next return, 
rather than using the normal return mechanism that returns one frame at a 
time. Since the local registers of an unknown number of previous stack 
frames may be cached, a flushreg must be executed prior to modifying the 
PFP to return to a frame other than the one directly below the current frame. 

Each local cached register set except the current one is flushed to its 
associated stack frame in memory and marked as purged, meaning that they 
will be reloaded from memory if and when they become the current local 
register set. 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

flushreg 

flushreg 66D REG 
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6.2.31 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-56 

fmark 
fmark 

fmark 

Force Mark 

Generates a mark trace event. Causes a mark trace event to be generated, 
regardless .of mark trace mode flag setting, providing the trace enable bit, bit 
o in the Process Controls, is set. 

For more information on trace fault generation, refer to CHAPfER 10, 
TRACING AND DEBUGGING. 

A mark trace event is generated, independent of the setting of the mark-trace­
mode flag. 

STANDARD 
TRACE. MARK 

Refer to section 6.1.6, "Faults" (pg. 6-6). 
A TRACE.MARK fault is generated if pc.te=1. 

# Assume PC.te 1 
fmark 
# Mark trace event is generated at this point in the 
# instruction stream. 

fmark 

mark 

66CH REG 

J 



6.2.32 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

INSTRUCTION SET REFERENCE 

halt (80960Jx-Specific Instruction) 

halt 

halt 

Halt CPU 

src1 
reg/lit 

Causes the processor to enter HALT mode which is described in Chapter 16, 
HALT MODE. Entry into Halt mode allows the interrupt enable state to be 
conditionally changed based on the value of src1. 

src1 Operation 

0 Disable interrupts and halt 

1 Enable interrupts and halt 

2 
Use current interrupt enable 
state and halt. 

The processor exits Halt mode on a hardware reset or upon receipt of an 
interrupt that should be delivered based on the current process priority. After 
executing the interrupt that forced the processor out of Halt mode, execution 
resumes at the instruction immediately after the halt instruction. The 
processor must be in supervisor mode to use this instruction. 

impliciCsyncf; 
if (PC.em != supervisor) 

generatejault( TYPE.MISMATCH); 
switch(src1) { 

case 0: # Disable interrupts. Clear ICON.gie. 
global_interrupt3nable = false; 

case 1: # Enable interrupts. Set ICON.gie. 
global_interrupCenable = true; 

case 2: # Use the current interrupt enable state. 
break; 

default: 

break; 

break; 

generatejault( OPERATION.lNVALID_OPERAND); 
break; 

ensure_bus_is_quiescient; 
entecHALT_mode; 

STANDARD Refer to section 6.1.6, "Faults" 
(pg.6-6). 

TYPE.MISMATCH 

OPERATION.lNVALID_OPERAND 

Attempt to execute instruction 
while not in supervisor mode. 

6-57 



INSTRUCTION SET REFERENCE intel~ 

Example: 

Opcode: 

Notes: 

'6-58 

halt gO 

halt 65DH 

# ICON.gie = 0, gO = 1, Interrupts disabled. 
# Enable interrupts and halt.' 

REG ' 

This instruction is implemented on the 80960Jx processor family only, 'and 
mayor may not be implemented on future i960 processors. 



6.2.33 

Mnemonic: 

Format: 

Description: 

INSTRUCTION SET REFERENCE 

icctl (80960Jx-Speclfic Instruction) 

icctl Instruction-cache Control 

icctl srcl, 
regllit 

src2, 
regllit 

src/dst 
reg 

Performs management and control of the instruction cache including 
disabling, enabling, invalidating, loading and locking, getting status, and 
storing cache sets to memory. Operations are indicated by the value of srcl. 
Some operations also use src2 and srcldst. When needed by the operation, the 
processor orders the effects of the operation with previous and subsequent 
operations to ensure correct behavior. For specific function setup, see the 
following tables and diagrams: 

Table 6-10. ICCTL Operand Fields 

Function sre1 sre2 sreldst 

Disable Icache 0 NA NA 

Enable Icache 1 NA NA 

Invalidate Icache 2 NA NA 

Load and lock 
src: Starting 

Number of blocks 
Icache 3 address of code 

to lock. 
to lock. 

dst: Receives 
Get Icache status 4 NA status (see 

Figure 6-3). 

Get Icache 
dst: Receives 

locking status 5 NA status (see 
Figure 6-3) 

Store lcache sets Destination src: Icache set 
6 address for #'s to be stored 

to memory 
cache sets (see Figure 6-3). 
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Src1 Format 

o 

Function Type 

Sl'c/Ost Format for Icache Status 

~ ________________ ~16~15~ __ 1~2~11~. __ ~8~7 ____ ~4 3 

# of Ways-1 

IOg2 (# of sets)J . J J 
log2 (Atoms/Line) . 

log2 (BytestAtom) 

Src/Ost Format for Icache Locking Status 
31 24 23 8 7 

o 

i 
Enabled = 1 
Disabled = 0 

o 

# of Blocks that are Locked Block Size in Words # of Blocks that Lock 

Src/Ost Format for Store Icache Sets to Memory 

1
'.1 
. Ending Set# 

I Reserved, 
(Initialize to 0) 

Starting Set # 

I 

Figure 6-3. ICCll Src1 and Src/Dst Formats 

o 
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Table 6-11. ICCTL Status Values and Instruction Cache Parameters 

Value Value on Value on 1960JD/JF 
i960JACPU CPU 

bytes per atom 4 4 

atoms per line 4 4 

number of sets 64 128 

number of ways 2 1 (Direct) 

cache size 2-Kbytes 4-Kbytes , 

i 
Status[O] (enable I disable) o or 1 o or 1 

Status[1 :3] (reserved) 0 0 

Status[7:4] (log2(bytes per 
2 2 

atom» .-
Status[11 :8] (log2(atoms 

2 2 
per line» 

Status[ 15: 12] 
6 7 

(log2(number of sets» 

Status[27:16] (number of 
1 1 

ways - 1) 

Lock Status[7:0] (number 
1 1 

of blocks that lock) 

Lock Status[23:8] (block 
256 512 

size in words) 

Lock Status[31 :24] 
(number of blocks that are o or 1 o or 1 
locked) 
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SeCData [Starting Set] 

Tag (Starting set) 

Valid Bits (Starting set) 

Word 0 

Word 1 

'Word 2 

Word 3 

Tag (Starting set) 

Valid Bits (Starting set) 

Word 0 

Word 1 

Word 2 

Word 3 

SeCData [Starting Set + 1] 

Tag (Starting set + 1) 

Valid Bits (Starting set + 1) 

... 

Destination 
Address (DA) 

DA+4H 

DA+8H 

DA+CH 

DA+ 10H 

DA + 14H 

DA+ 18H 

DA+ 1CH 

DA + 20H 

DA+24H 

DA+28H 

DA+2CH 

DA+30H 

DA+34H 

DA+38H 

DA+3CH 

Figure 6-4. Store Instruction Cache to Memory Output Format 

Table 6-12. Valid_Bits Value For 1960Jx Processor 

Bit Meaning 

0 Tag Valid bit for current Set and Way 

1 Valid Bit for Word 0 of current Set and Way 

2 Valid Bit for Word 1 of current Set and Way 

3 Valid Bit for Word 2 of current Set and Way 

4 Valid Bit for' Word 3 of current Set and Way 

5-31 Reserved, Read as Zero. 

J_ 



Action: 

INSTRUCTION SET REFERENCE 

Table 6-13. SeCData I-Cache Values 

Set_Data[setJ Meaning I-Cache Value 

0 I-Cache Way 0 is LRU for the set. 

1 I-Cache Way 1 is LRU for the set. 

x Other values are reserved 

if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH); 

switch (src1[7:0D { 
case 0: # Disable instruction cache. 

disable_inst:rQction_cache( ); 

case 1: 

case 2: 

case 3: 

break; 
# Enable instruction cache. 
enable_instruction_cache( ); 
break; 
# Globally invalidate instruction cache. 
# Includes locked lines also. 
invalidate_jnstruction3ache( ); 
unlock_icache( ); 
break; 
# Load & Lock code into Instruction-Cache 
# src/dest has number of contiguous blocks to lock 
# src2 has starting address of code to lock. 
# On the i96OJx, src2 is aligned to a quadword boundary 

aligned_addr = src2 & OxfffffffO; 
invalidate(I -cache); unlock(I -cache); 
for G = 0; j < src/dest; j++) 

{ way = way _associated_ with_blockG); 
start = src2 + j*block_size; 
end = start + block_size; 
for (i = start; i < end; i=i+4) 

{ set = secassociated_with(i); 
word = word_associated_ with(i); 
Icache_line[set][way][word] = 

memory[i]; 
update_tag..n_ valid_bits( set, way, word) 
lock_icache( set, way, word); 

} } break; 
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Action: case 4: 

case 5: 

case 6: 

6-64 

# Get instruction cache status into srcldst. 
if (Icache_enabled) src/dst[O] = 1; 

else src/dst[O] = 0; , 
#. Atom is 4 bytes. 

src/dst[7:4] = log2(bytes per atom); 
# 4 atoms per line. 

·src/dst[11:8] = log2(atoms per line); 
src/dst[15:12] = log2(number of sets); 
src/dst[27:16] = number of ways-I; #in lines per set 
# cache size = ([27:16]+1)« ([7:4] + [11:8] + [15:12]) 
break; 
# Get instruction cache locking status into dst. 
src/dst[7:0] = numbecoCblocks_thaUock; 
src/dst[23:8] = block_size_in_words; 
src/dst[31 :24] = numbecoCblocks_thacare_locked; 
break; 
# Store instr cache sets to memory pointed to by src2. 
start = src/dst[15:0] # Starting set number 
end = src/dst[31: 16] # Ending set number 

# (zero-origin). 
if (end >= Icache_max_sets) 

end == Icache_max_sets - 1; 
if (start> end) 

generate_fault(OPERATION.INVALID_OPERAND); 
memadr = src2; # Must be word-aligned. 
if(Ox3 & memadr != 0) 

generate_fault(OPERATION.!NVALID_OPERAND); 
for (set = start; set <= end; set++){ 

# SeCData is described at end of this code flow. 
memory[memadr] = SeCData[set]; 
memadr+=4; 
for (way = 0; way < numb_ways; way++) 

{memory[memadr] = tags[set][way]; 
memadr+=4; 
memory[memadr] = valid_bits[set][way]; 
memadr+=4; 
for (word = 0; word < words_in_line; 

word++) 
{memory[memadr] = 

Icache_line[set][way] [word]; 
memadr+=4; 
} 

} } break; 

l 



Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

I 

default: 

STANDARD 

INSTRUCTION SET REFERENCE 

# Reserved. 
generatejault(OPERATION.lNVALID~OPERAND); 
break;} 

Refer to section 6.1.6, "Faults" 
(pg.6-6). 

TYPE.MISMATCH Attempt to execute instruction 
while not in supervisor mode. 

OPERATION.lNVALID_OPERAND 

icctl gO,gl,g2 

icctl 

sysctl 

65BH 

# gO = 3, gl=OxlOOOOOOO, g2=1 
# Load and lock 1 block of cache 
# (one way) with 
# location of code at starting 
# OxlOOOOOOO. 

REG 

This instruction is implemented on the 80960Jx processor family only, and 
mayor may not be implemented on future i960 processors. 
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6.2.34 

Mnemonic: 

Format: 

Description: 

Action: 

6-66 

i ntetl (809~OJx·Sp,eci'ic Instruction) 
~ . '.": . 

intetl 

ifitetl 

Global Enable and Disable of Interrupts 

src1 
regllit 

dst 
reg 

Globally' enables, disables or returns the current status of interrupts 
depending on the value of S(C 1 .. Returns the previous interrupt enable state (1 
for enabled or 0 for disabled) in dst. When the state of the global interrupt 
enable is changed, the processor ensures that the new state is in full effect 
before the instruction completes. (This instruction is implemented by manip­
ulating ICON.gie.) 

src1Value Operation 

0 Disables interrupts 

1 Enables interrupts 

2 Returns current interrupt enable status" 
,,' 

if (Pc.em != supervisor) , 
generate3auit(TYPE.MISMATCH); 

old_interrupCenable = global_interrupCenable; 
switch(src1) { 

case 0: # Disable. Set ICON.gie to one. 
globally_disable_interrupts; 
global_interrupt3nable = false; 
ordec wrt( subsequenCinstructions); 
break; 

case 1: # Enable. Clear ICON.gie to zero. 
globally_enable_interrupts; 
global_interrupcenable = true; 
ordec wrt( subsequenCinstructions); 
break; 

case 2: # Return status. Return ICON.gie 
break; 

default: 
generate_fault(OPERATION.INVALID_OPERAND); 
break; 

if( old_interrupcenable) 
dst = 1; 

else 
dst = 0; 



in1et 
Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

STANDARD 

INSTRUCTION SET REFERENCE 

Refer to' section 6.1.6, "Faults" 
(pg.6-6). 

OPERATION.INVALID_OPERAND 
TYPE.MISMATCH 

intctl 0, g4 

intetl 658H 

intdls, Inten 

# ICON.gie = 0, interrupts enabled 
# Disable interrupts (ICON.gie = 1) 
# g4 = 1 

REG 

This instruction is implemented on the 80960Jx processor family only, and 
mayor may not be implemented on future i960 processors. 
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6.2~35 " intdis (80960Jx-Specific Instruction) 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also; 

Notes: 

6-68 

inldls 

Inldls 

GlobitI Int~rrupt Disable 

Globally disables interrupts and ensures that the change takes effect before 
the instruction completes. This operation is implemented by setting 
ICON.gie to one. 

if (PC.em != supervisor) 
generatejault(TYPE.MISMATCH); 

. # Implemented by settiJ;lg ICON.gie to one . 

. globally_disable_interrUpts; 
interrupt_enable = false; 
ordec wrt( subsequencinstructions); 

STANDARD 
TYPE.MISMATCH 

intdis 

Inldls 

intetl, Inten 

5B4H 

Refer to section 6.1.6, "Faults" (pg. 6-6). 

# ICON.gie = 0, interrupts enabled 
# Disable interrupts. 
# ICON.gie = 1 

REG 

This instruction is implemented on the 80960Jx processor family only, and 
mayor may not be implemented on future i960 processors. 



6.2.36 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

INSTRUCTION SET REFERENCE 

i nten (80960Jx-Specific Instruction) 

inten 

inten 

global interrupt enable 

Globally enables interrupts and ensures that the change takes effect before the 
instruction completes. This operation is implemented by clearing ICON.gie to 
zero. 

if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH); 

# Implemented by clearing ICON.gie to zero. 
globally_enable_interrupts; 
interrupCenable = true; 
ordec wrt( subsequenCinstructions); 

TYPE.MISMATCH 

inten 
# ICON. gie = 1, .interrupts disabled. 
# Enable interrupts. 
# ICON.gie = 0 

Inten 5B5H REG 

intetl, intdis 

This instruction is implemented on the 80960Jx processor family only, and 
mayor may not be implemented on future i960 processors. 
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6.2.37 

Mnemonic: 

Format: 

Description: 

Action: 

6·70 

LOAD 
Id Load 
Idob Load Ordinal Byte 
Idos Load Ordinal Short 
Idlb Load Integer Byte 
Idls Load Integer Short 
Idl Load Long 
Icit Load Triple 
Idq Load Quad 

Id* src 
mem 

dst 
reg 

Copies byte or byte string from memory into a register or group of successive 
registers. 

The src operand specifies the address of first byte to be loaded. The full range 
of addressing modes may be used in specifying src. 

Refer to Chapter 2, DATA TYPES AND MEMORY ADDRESSING 
MODES for more information. 

dst specifies a register or the first (lowest numbered) register of successive 
registers. 

Idob and Idib load a byte and Idos and Idis load a half word and convert.it to 
a full 32-bit word. Data being loaded is sign-extended during integer loads 
and zero-extended during ordinal loads. 

Id, Idl, Idt and Idq instructions copy 4,8, 12 and 16 bytes, respectively, from 
memory into successive registers. 

For Idl, dst must specify an even numbered register (i.e., gO, g2 ... ). For Idt 
and Idq, dst must specify a register number that is a multiple of four (i.e., gO, 
g4, g8, g12, r4, r8, rI2). Results are unpredictable if data extends beyond 
register g15 or r15 for Idl, Idt or Idq. 

Id: 
dst = read_memory(effective_address)[31:0]; 
if«effective_address[1 :0] != 002 ) && unaligned jault_enabled) 

generatejault(OPERATION.UNALIGNED); 

Idob: 
dst[7:0] = read_memory(effective_address)[7:0]; 
dst[31:8] = OxOOOOOO; 

_I 



_1 
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Idib: 
dst[7:0] = read_memory(effective_address)[7:0]; 
if(dst[7] == 0) 

dst[31:8] = OxOOOOOO; 
else 

dst[31:8] = OxFFFFFF; 

Idos: 
dst = read_memory(effective_address)[15:0]; 

# Order depends on endianism. See 
# section 2.2.2, "Byte Ordering" (pg. 2-4) 

dst[31: 16] = OxOOOO; 
if«effective_address[O] != O2) && unaligned_fauICenabled) 

generatejault(OPERATION.UNALIGNED); 

Idis: 
dst[15:0]= read_memory(effective_address)[15:0]; 

# Order depends on endianism. See 
# section 2.2.2, "Byte Ordering" (pg. 2-4) 

if(dst[15] == O2) 

dst[31:16] = OxOOOO; 
else 

dst[31:16] = OxFFFF; 
if«effective_address[O] != O2) && unaligned_faulCenabled) 

generatejault(OPERATION.UNALIGNED); 

Idl: 
if«re!Lnumber(dst) % 2) != 0) 

generate_fault(OPERATION .INVALID_OPERAND); 
# dst not modified. 

else 

Idt: 

dst = read_memory(effective_address)[31:0]; 
dsC +_1 = read_memory(effective_address_ +_4)[3'1:0]; 
if«effective_address[2:0] != 0002) && unaligned...Jaulcenabled) 

generate_fault(OPERATION.UNALIGNED); 

if«reg_number(dst) % 4) != 0) 
generate_fault(OPERATION .INVALID_OPERAND); 
# dst not modified. 

else 
dst = read_memory(effective_adddress)[31:0]; 
dsC +_1 = read_memory(effective_adddress_ +_4)[31:0]; 
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Faults: 

Example: 

Opcode: 

See Also: 

6-72 

Idq: 

dsC + _2 = read_memory(effective_adddress_ + _8)[31 :0]; 
if«effective_address[3:0] != 00002) && unaligned_faulCenabled) 

generatejault(OPERATION.UNALIGNED); 

if«reg_number(dst) % 4) != 0) 
generate_fault(OPERATION.lNVALID_OPERAND); 
# dst not modified. 

else 
dst = read_memory(effective_adddress)[31:0]; 

# Order depends on endianism. 
# See section 2.2.2, "Byte Ordering" (pg. 2-4) 

dsC + _1 = read_memory( effective_adddress_ + _ 4)[31 :0]; 
dsC +_2 = read_memory( effective_adddress_ +_8)[31 :0]; 
dsC +_3 = read_memory( effective_adddress_ + _12)[31 :0]; 
if«effective_addressI3:0] != 00002) && unalignedjaulCenabled) 

generate_fault(OPERATION.UNALIGNED); 

OPERATION. UNALIGNED 
STANDARD 

Idl 2450 (r3) , 

Id 90H 
Idob 80H 
Idos 88H 
Idib COH 
Idis C8H 
Idl 98H 
Idt AOH 
Idq BOH 

MOVE, STORE 

rIO 

Refer to section 6.1.6, "Faults" (pg. 6-6). 

# rIO, rII = r3 + 2450 in 
# memory 

MEM 
MEM 
MEM 
MEM 
MEM 
MEM 
MEM 
MEM 

I 



6.2.38 Ida 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

I 

Ida 

Ida 

Load Address 

src, 
mem 
efa 

dst 
reg 

INSTRUCTION SET REFERENCE 

Computes the effective address specified with src and stores it in dst. The src 
address is not checked for validity. Any addressing mode may be used to 
calculate efa. 

An important application of this instruction is to load a constant longer than 5 
bits into a register. (To load a register with a constant of 5 bits or less, moy 
can be used with a literal as the src operand.) 

dst = effective_address; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

lda 58 (g9) , gl # gl = g9+58 
lda Ox749, r8 # r8 = Ox749 

Ida 8CH MEM 
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6.2.39 mark 
Mnemonic: mark ~ Mark 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

mark 

Generates mark trace fault if mark trace mode is enabled. Mark trace mode is 
enabled if the PC register trace enable bit (bit 0) and the TC register mark 
trace mode bit (bit 7) are set. 

If mark trace mode is not enabled, mark behaves like a no-op. 

For more information on trace fault generation, refer to CHAPTER 10, 
TRACING AND DEBUGGING. 

if(PC.te && TC.mk) 
generate_fault(TRACE.MARK) 

STANDARD Refer to section 6:1.6, "Faults" (pg. 6-6). 
TRACE.MARK Trace fault is generated ifPC.te=1 and 

TC.mk=1. 

# Assume that the mark trace mode is enabled. 
ld xyz, r4 
addi r4, r5, r6 
mark 
# Mark trace event is generated at this point in the 
# instruction stream. 

mark 66BH REG 

fmark, modpc, modtc 

l 
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6.2.40 modac 
Mnemonic: modae Modify AC 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

modae mask, 
reg/lit 

src, 
reg/lit 

dst 
reg 

Reads and modifies the AC register. src contains the value to be placed in the 
AC register; mask specifies bits that may be changed. Only bits set in mask 
are modified. Once the AC register is changed, its initial state is copied into 
dst. 

temp = AC; 
AC = (src & mask) I (AC & -mask); 
dst = temp; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

modac gi, g9, g12 # AC = g9, masked by gi. 
# g12 = initial value of AC. 

modae 645H REG 

modpe, modte 

Sets the condition code in the arithmetic controls. 
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6.2.41 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 
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modi 
modi 

modi 

Modulo Integer 

srcl, 
regllit 

src2, 
regllit 

dst 
reg 

Divides src2' by srcl"where both are integers and stores the modulo 
remainder of the result in dst. If the result is nonzero, dst has the same sign as 
srcl. 

if(srcl == 0) 
generate_fault(ARITHMETIC.ZERO_DIVIDE); 
dst = undefined. value 

dst = src2 - (src2/src1) * src1; 
if«src2 *src1 < 0 ) && (dst != 0» 

dst = dst + src1; 

ARITHMETIC.ZERO_DIVIDE 
STANDARD 

The srcl operand is zero. 
Refer to section 6.1.6, 
"Faults" (pg. 6-6). 

modi r9, r2, r5 # r5 = modulo (r2/r9) 

modi 749H REG 

divi, divo, remi, remo 

modi generates the correct result (0) when computing _231 mod -1, although 
the corresponding 32 bit division would overflow. 

I 
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6.2.42 modify 
Mnemonic: modify Modify 

Format: modify mask, 
regllit 

src, src/dst 
reg 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

J 

regllit 

Modifies selected bits in srcldst with bits from src. The mask operand selects 
the bits to be modified: only bits set in the mask operand are modified in 
srcldst. 

src/dst = (src & mask) I (src/dst & -mask); 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

modify g8, glO, r4 # r4 = glO masked by g8. 

modify 650H REG 

alterbit, extract 
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6.2.43 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

modpc 
modpc 

modpc 

Modify Process Controls 

src, 
regllit 

mask, 
regllit 

src/dst 
reg 

Reads and modifies the PC register as specified with mask and src/dst. srcldst 
operand contains the value to be placed in the PC register; mask operand 
specifies bits that may be changed. Only bits set in the mask are modified. 
Once the PC register is changed, its initial value is copied into src/dst. The 
src operand is a dummy operand that should specify a literal or the same 
register as the mask operand. 

The processor must be in supervisor mode to use this instruction with.a non­
zero mask value. If mask=<>, this instruction can be used to read the process 
controls, without the processQr being in supervisor mode. 

Changing the PC register reserved fields can lead to unpredictable behavior 
as described in section 3.6.3, "Process Controls (PC) Register" (pg. 3-20). 

if(mask != 0) 
( if(PC.em != 1) 

else 

generate_fault(TYPE.MISMATCH); 
temp = PC; 
PC = (mask & src_dst) I (PC & -mask); 
src_dst = temp; 
if(temp.priority > PC.priority) 

checIcpendin~interrupts; 

src_dst = PC; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 
TYPE.MISMATCH 

modpc g9, g9, g8 # process controls = g8 
# masked by g9. 

modpc 6SSH REG 

modae, modte 

Since modpc does not switch stacks, it should not be used to switch the 
mode of execution from supervisor to user (the supervisor stack can get cor­
rupted in this case). The call and return mechanism should be used instead. 



infel~ 

6.2.44 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

I 

INSTRUCTION SET REFERENCE 

modtc 
modtc 

modtc 

Modify Trace Controls 

mask, 
reg/lit 

src2, 
regnit 

dst 
reg 

Reads and modifies TC register as specified with mask and src2. The src2 
operand contains the value to be placed in the TC register; mask operand 
specifies bits that may be changed. Only bits set in mask are modified. mask 
must not enable modification ()f reserved bits. Once the TC register is 
changed, its initial state is copied into dst. 

The changed trace controls may take effect immediately or may be delayed. If • 
delayed, the changed trace controls may not take effect until after the first 
non-branching' instruction is fetched from memory or after four non­
branching instructions are executed. 

For more information on the trace controls, refer to CHAPTER 9, FAULTS 
and CHAPTER 10, TRACING AND,DEBUGGING. 

temp=TC; 
tempa = OxOOFFOOFF & mask; 
TC = (tempa & src2) I (TC & -tempa); 
dst = temp; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

modtc g12, glO, g2 # trace controls = glO masked 

modtc 654H 

modac, modpc 

# by g12i previous trace 
# controls stored in g2. 

REG 
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6.2.45 

Mnemonic: 

Format: 

Description: 

Action: 

6-80 

MOVE 
moy 
moyl 
movt 
moyq 

moy· 

Move 
Move Long 
Move triple 
Move Quad 

srcl, 
reg/lit· 

dst 
reg 

Copies the contents of one or more source .registers (specified with src) to 
one or more destinatiori registers (specified with dst). 

For moyl, movt and moyq, srcl and dst specify the first (lowest numbered) 
register of several successive registers. srcl and dst registers must be even 
numbered (e.g., gO, g2, ... or r4, r6, ... ) for moyl and an integral multiple of 
four (e.g., gO, g4, ... or r4, r8, ... ) for movt and moyq. 

·The moved register values are unpredictable when: 1) the src and dst 
operands overlap; 2) registers are not properly aligned. 

moy: 
if(is_reg(srcl» 

dst = src1; 
else 
{ dst[5:0] = src1; #src1 is a 5-bit literal. 

dst[31:5] = 0; 

moyl: 
if«reg_num(src1)%2 != 0) II (reg_num(dst)%2 != 0» 
{ dst = undefined3alue; 

} 

dsC + _1 = undefined_value; 
generate_fau1t(OPERATION.INVALID_OPERAND); 

else if(is_reg(src1» 
{ dst = src1; 

dsC+_1 = src1_+_1; 

else 
{ dst[4:0] = src1; #src1 is a 5-bit literal. 

d~t[31 :5] = 0; 
dsc + _1[31:0] = 0; 



Faults: 

l 

INSTRUCTION SET REFERENCE 

movt: 
if«re~num(src1)%4 != 0) II (reg_num(dst)%4 != 0» 
{ dst = undefined_value; 

} 

dsC +_1 = undefined_value; 
dsC +_2 = undefined_value; 
generate_fault(OPERATION.INVALID_OPERAND); 

else if(is_reg(srcl)) 
{ dst = srcl; 

else 

dsC+_l =src1_+_1; 
dsC+_2 = srcC+_2; 

dst[ 4:0] = src1; #src1 is a 5-bit literal. 
dst[31 :5] = 0; 
dsC+_l[31:0] = 0; 
dsC +_2[31 :0] = 0; 

movq: 
if«reg_oum(src1)%4 != 0) II (reg_num(dst)%4 != 0)) 
{ dst = undefined_value; 

} 

dsC +_1 = undefined_value; 
dsC +_2 ,;" undefined3alue; 
dsC + _3 = undefined_value; 
generate_fault(OPERATION.lNVALID _OPERAND); 

else if(is_reg(src1») 
{ dst = src1; 

else 

dsC+_l = src1_+_1; 
dsC + _2 = src1_ +_2; 
dsC +_3 = srcl_ +_3; 

{ dst[4:0] = srcl; #src1 is a 5 bit literal. 
dst[31 :5] = 0; 
dsC+ _1[31:0] = 0; 
dst_ + _2[31 :0] = 0; 
dst_ +_3[31:0] = 0; 

STANDARD Refer to section 6.1.6, "Faults" 
(pg.6-6). 

OPERATION.lNVALID_OPERAND 
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Example: 

Opcode: 

See Also: 

6-82 

movt g8, r4 

moy 
moyl 
movt 
moyq 

5CCH 
5DCH 
5ECH 
5FCH 

LOAD, STORE, Ida 

# r4, r5, r6 = g8, ,g9, glO 

REG 
. REG' 

REG 
REG 



6.2.46 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

I 

muli, mule 
muli Multiply Integer 
mulo Multiply Ordinal 

mul* srcl, 
reg/lit 

INSTRUCTION SET REFERENCE 

src2, 
reg/lit 

dst 
reg 

Multiplies the src2 value by the srcl value and stores the result in dst. The 
binary results from these two instructions are identical. The only difference is 
that muli can signal an integer overflow. 

mulo: 
dst = (src2 * src1)[31:0]; 

muli: 
dst = (src2 * srcl)[31:0]; 
if«src2[31] == srcl[31]) && (src2[31] != dst[31])) 
{ if(AC.om == 1) 

AC.of= 1; 
else 

generatejault(ARITHMETIC.OVERFLOW); 

STANDARD 
ARITHMETIC. OVERFLOW. 

Refer to section 6.1.6, "Faults" (pg. 6-6). 
Result is too large for destination register 
(muli only). If a condition of overflow 

muli r3, r4, r9 

muli 
mulo 

741H 
701H 

emul, ediv, divl, divo 

occurs, the least significant 32 bits of the 
result are stored in the destination register. 

# r9 = r4 * r3 

REG 
REG 
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6.2.47 nand 
Mnemonic: nand 

Format: nand 

Nand 

srr:l, 
reg/lit 

srr:2, 
reg/lit 

dst 
reg 

Description: Performs a bitwise NAND operation on src2 and srr:l values and stores the 
result in dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-84 

dst = -src2 I -src1; 

STANDARD 

nand g5, r3, r7 

nand 58EH 

Refer to section 6.1.6, "Faults" (pg. 6-6). 

# r7 = r3 NAND g5 

REG 

and, andnot, nor, not, notand, notor, or, ornot, xnor, xor 

1_-



intet INSTRUCTION SET REFERENCE 

6.2.48 nor 
Mnemonic: nor Nor 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

L 

nor srcl, 
regllit 

src2, 
regllit 

dst 
reg 

Performs a bitwise NOR operation on the src2 and srcl values and stores the 
result in tist. 

dst = -src2 & -src1; 

STANDARD 

nor g8, 28, r5 

nor 588H 

Refer to section 6.1.6, "Faults" (pg. 6-6). 

# r5 = 28 NOR g8 

REG 

and, andnot, nand, not, notand, notor, or, ornot, xnor, xor 
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INSTRUCTION SET REFERENCE intel® / 
6.2.49 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-86 

not, notand 
not 
notand 

not 

notand 

Not 
Not And 

I 

src, 
regllit 
srcl, 
regllit 

dst 
reg 
src2, 
regllit 

dst 
reg 

Performs a bitwise NOT (not instruction) or NOT AND (notand instruction) 
, operation on the src2 and srcl values and stores the result in dst. 

not: 
dst = -src1; 

noland: 
dst = -src2 & src1; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

not g2, g4 # g4 = NOT g2 
notand rS, r6, r7 # r7 = NOT r6 AND rS 

not 
notand 

58AH 
584H 

REG 
REG 

and, andnot, nand, nor, notor, or, ornot, xnor, xor 



6.2.50 notbit 
Mnemonic: notbit 

Format: notbit 

Not Bit 

bitpos, 
reg/lit 

INSTRUCTION SET REFERENCE 

src2, 
reg/lit 

dst 
reg 

Description: Copies the src2 value to dst with one bit toggled. The bitpos operand specifies 
the bit to be toggled. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

L 

dst = src2 A 2**(srcl %32); 

STANDARD 

notbit r3, r12, r7 

notbit 580H 

alterbit, chkbit, clrbit, setbit 

Refer to section 6.1.6, "Faults" (pg. 6-6). 

# r7 = r12 with the bit 
# specified in r3 toggled. 

REG 
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6.2.51 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-88 

notor 
notor 

notor 

Not Or 

srcl, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

Performs a bitwise NOTOR operation on src2 and srcl values and stores 
result in dst. 

dst = -(src2) I src1; 

STANDARD 

notor g12, g3, g6 

notor 58DH 

Refer to section 6.1.6, "Faults" (pg. 6-6). 

# g6 = NOT g3 OR g12 

REG 

and, and not, nand, nor, not, notand, or, ornot, xnor, xor 
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6.2.52 or, ornot 
Mnemonic: or Or 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

J 

ornot 

or 

Or Not 

srcl, 
regnit 

ornot src1, 
reg/lit 

src2, dst 
reg/lit reg 

src2, dst 
reg/lit reg 

Perfonns a bitwise OR (or instruction) or ORNOT (ornot instruction) 
operation on the src2 and src1 values and stores the result in dst. 

or: 
dst = src21 srcl; 

ornot: 
dst = src2 I -(srcl); 

STANDARD 

or 14, g9, g3 
arnot r3, r8, r11 

or 
ornot 

587H 
58BH 

Refer to section 6.1.6, "Faults" (pg. 6-6). 

# g3 = g9 OR 14 
# r11 = r8 OR NOT r3 

REG 
REG 

and, and not, nand, nor, not, notand, notor, xnor, xor 
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6.2.53 

Mnemonic: 

Format: 

Description: 

Action: . 

Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

6-90 

remi, remo 
remi 
remo 

rem~ 

Remainder Integer 
Remainder Ordinal 

srcl; . 
regllit 

src2, 
regllit 

dst 
reg 

Divides src2 by srcl and stores the remainder in dst. The sign of the result (if 
nonzero) is the same as the sign of src2. 

reml, remo: 
if(src1 == 0) 

generate_fault(ARlTHMETIC.ZpRO_DIVIDE); 
dst = src2 - (srcllsrc2)*src1; 

ARITHMETIC.ZERO_DIVIDE 
ARITHMETIC.INTEGER_OVERFLOW 

The srcl operand is O. 
The liesult is too large for 
destination register (remi 
only). If overflow occurs and 
AC.om=l, the fault is 
suppressed and AC.of is set to 
1. The least significant 32 bits 
of the result are stored in dst. 

remo r4, r5, r6 # r6 = r5 rem r4 

rem I 
remo 

modi 

748H 
708H 

REG' 
REG 

remi produces the correct result (0) even when computing _231 remi -1, 
which would cause the corresponding division to overflow. 

:L 



intet 

6.2.54 ret 
Mnemonic: 

Format: 

Description: 

Action: 

--'--

INSTRUCTION SET REFERENCE 

ret 

ret 

Return 

Returns program control to the calling procedure. The current stack frame 
(i.e., that of the called procedure) is deallocated and the FP is changed to 
point to the calling procedure's stack frame. Instruction execution is 
continued at the instruction pointed to by the RIP in the calling procedure's 
stack frame, which is the instruction immediately following the call 
instruction. 

As shown in the action statement below, the return-status field and prereturn­
trace flag determine the action that the processor takes on the return. These 
fields are contained in bits 0 through 3 of register rO of the called procedure's 
local registers. 

See section CHAPTER 7, "PROCEDURE CALLS" (pg. 7-1) for more on ret. 

impliciCsyncfO; 
if(pfp.p && PC.te && TC.p) 
{ pfp.p =0; 

generate_fault(TRACE.PRERETURN); 

switch(return_status_field) 
{ 

case 0002: #local return 
gecFP _and_IPO; 
break; 

case 0012: #fault return 
tempa = memory(FP-16); 
tempb = memory(FP-12); 
gecFP _and_IPO; 
AC=tempb; 
if(execution_mode == supervisor) 

PC=tempa; 
break; 

case 0102: #supervisor return, trace on return disabled 
if(execution_mode != supervisor) 

geCFP _and_IPO; 
else 
{ PC.te =0; 

execution_mode = user; 
gecFP _and_IPO; 
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··INSTRUCTION SET REFERENCE intet 

Faults: 

Example: 

Opcode: 

See Also: 

6·92 

break; 
case 0112: # supervisor return, trace on return enabled 

if (execution_mode != supervisor) 
gecFP _and_IPO; 

else 
{ PC.te = 1; 

execution_mode = user; 
get_FP _aDd_IPO; 

} 
break; 

case 1002: 
break; 

case 1012: 

break; 
case 1102: 

break; 

" . . 
#reserved - unpredictable behavior 

#reserved - unpredictable behavior 

#reserved - unpredictable behavior 

case 1112: #interrupt return 
tempa = memory(FP-16); 
tempb = memory(FP-12); 
geCFP _and_IPO; 
AC=tempb; 
if (execution_mode = supervisor) 

PC=tempa; 
check_pendin8-interruptsO; 
break; 

geCFP _and_IPO 
{ FP=PFP; 

} 

free( currencregistecset); 
if(noCallocated(FP) ) 

retrieve_from_memory(FP); 
IP=RIP; 

STANDARD 

OPERATION.UNIMPLEMENTED 
TRACE.PRERETURN 

Refer to section 6.1.6, "Faults" (pg. 
6-6). 

ret # Program control returns to context of 
# calling procedure. 

ret OAH CTRL 

call,calls, calix 



INSTRUCTION SET REFERENCE 

6.2.55 rotate 
Mnemonic: rotate Rotate 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

rotate len, 
regllit 

src2, 
regllit 

dst 
reg 

Copies src2 to dst and rotates the bits in the resulting dst operand to the left 
(toward higher significance). Bits shifted off left end of word are inserted at 
right end of word. The len operand specifies number of bits that the dst 
operand is rotated. 

This instruction can also be used to rotate bits to the right. The number of bits 
the word is to be rotated right should be subtracted from 32 and the result 
used as the len operand. 

src2 is rotated by len mod 32. This value is stored in dst. 

STANDARD 

rotate 13, r8, r12 

rotate 59DH 

SHIFT, eshro 

Refer to section 6.1.6, "Faults" (pg. 6-6). 

# r12 = r8 with bits rotated 
# 13 bits to left. 

REG 
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6.2.56 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

6-94 

scanbit 
scan bit 

scanbit 

Scan For Bit 

srcJ, 
regllit 

dst 
reg 

Searches srcJ for a set bit (1 bit). If a set bit is found, the bit number of the 
most significant set bit is stored in the dst and the condition code is set to 
0002, If src value is zero, alII's are stored in dst and condition code is set to 
0002, 

dst = OxFFFFFFFF; 
AC.cc = 0002; 

for(i = 31; i >= 0; i--) 
{ if«src1 & 2**i) != 0) 
{ dst = i; 

AC.cc= 0102; 

break; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

# assume g8 is 
scanbit g8, g10 

scanblt 641H 

spanblt, setblt 

nonzero 
# g10 = bit number of 
# significant set bit 
# AC.cc = 0102, 

REG 

Sets the condition code in the arthimetic controls. 

most­
in g8; 



6.2.57 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

INSTRUCTION SET REFERENCE 

scanbyte 
scan byte Scan Byte Equal 

scanbyte srcl, 
reg/lit 

src2 
regllit 

Performs byte-by-byte comparison of srcl and src2 and sets condition code to 
0102 if any two corresponding bytes are equal. If no corresponding bytes are 
equal, condition code is set to 0002, 

if«src1 & OxOOOOOOFF) == (src2 & OxOOOOOOFF) 

else 

II (src1 & OxOOOOFFOO) == (src2 & OxOOOOFFOO) 
II (src1 & OxOOFFOOOO) == (src2 & OxOOFFOOOO) 
II (src1 & OxFFOOOOOO) == (src2 & OxFFOOOOOO» 

AC.cc = 0102; 

AC.cc = 0002; 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

# Assume r9 Ox11AB1100 
scanbyte OxOOAB0011, r9 

scan byte 5ACH REG 

bswap 

# AC.cc = 0102 

Sets the condition code in the arthimetic controls. 
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INSTRUCTION SET REFERENCE intel® 
6.2.58 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

6-96 

SEL<cc> (New 80960 Core Instruction Class) 

selno Select Based on Unordered 
selg Select Based on Greater 
sele Select Based on Equal 
selge Select Based on Greater or Equal 
sell Select Based on Less 
seIne Select Based on Not Equal 
selle Select Based on Less or Equal 
selo Select Based on Ordered 

sel* srcl, src2, ' dst 
regllit regllit reg 

, \ 

Selects either srcl or src2 to be stored in dst based on the condition code bits 
in the arithmetic controls. If for Unordered the condition code is 0, or if for 
the other cases the logical AND of the condition code and the mask-part of 
the opcode is not zero, then the value of src2 is stored in the destination. Else, 
the value of srcl is stored in the destination. 

Instruction MASK 

selno 0002 

selg 001 2 

sele 0102 

selge 011 2 

sell 1002 

seIne 1012 

selle 1102 

selo 1112 

if «mask & AC.cc) II (mask == AC.cc)) 
dst = src2; 

else 
dst = src1; 

Condition 

Unordered 

Greater 

Equal 

Greater or equal 

Less 

Not equal 

Less or equal 

Ordered 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

I 



INSTRUCTION SET REFERENCE 

Example: # AC.cc = 010 2 

sele gO,gl,g2 # g2 = gl 

# AC.cc = 001 2 

sell gO,gl,g2 # g2 = gO 

Opcode: selno 784H REG 
selg 794H REG 
sele 7A4H REG 
selge 7B4H REG 
sell 7C4H REG 
seine 7D4H REG 
selle 7E4H REG 
selo 7F4H REG 

See Also: MOVE, test, cmpi, cmpo, SUB<cc> 

Notes: This core instruction is not implemented on Cx, Kx and Sx 80960 processors. 
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6.2.59 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-98 

setbit 
setblt 

setbit 

Set Bit 

bitpos, 
regllit. 

src, 
reg/lit .. 

dst 
reg 

'... 

Copies src value to dst with one bit set. bitpos specifies bit to be set. 

dst = src2 I (2**(srcl %32»; 

NA 

setbit 15, ~9,r1 # rl = ~9 with bit 15 set. 

setblt 583H ; REG 

alterbit, chkbit, clrbit, notbit 



INSTRUCTION SET REFERENCE 

6.2.60 SHIFT 
Mnemonic: shlo Shift Left Ordinal 

Shift Right Ordinal 
Shift Left Integer 
Shift Right Integer 

Format: 

Description: 

Action: 

shro 
shli 
shri 
shrdl 

sh* 

Shift Right Dividing Integer 

len, 
regllit 

src, 
regllit 

dst 
reg 

Shifts src left or right by the number of bits indicated with the len operand 
and stores the result in dst. Bits shifted beyond register boundary are 
discarded. For values of len greater than 32, the processor interprets the value 
as 32. 

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the 
most significant bit. These instructions are equivalent to mulo and divo by 
the power of 2, respectively. 

shU shifts zeros in from the least significant bit. An overflow fault is 
generated if the bits shifted out are not the same as the most significant bit (bit 
31). If overflow occurs, dst will equal src shifted left as much as possible 
without overflowing. 

shri performs a conventional arithmetic shift-right operation by shifting in the 
most significant bit (bit 31). When this instruction is used to divide a negative 
integer operand by the power of 2, it produces an incorrect quotient 
(discarding the bits shifted out has the effect of rounding the result toward 
negative). 

shrdl is provided for dividing integers by the power of 2. With this 
instruction, 1 is added to the result if the bits shifted out are non-zero and the 
src operand was negative, which produces the correct result for negative 
operands. 

shU and shrdi are equivalent to mull and dlvl by the power of 2. 

shlo: 
if(src1 < 32) 

dst = src2 * (2**src1); 
else 

dst= 0; 
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Action: 

Faults: 

Example: 

6-100 

shro: 
if(src1 < 32) 

dst = src2! (2**src1); 
else 

dst= 0; 

shli: 
if(srcl > 32) 

, count = 32; 
else 
. count = srcl; 
temp = src2; 
while«temp[~I] = temp[30)) && (count> 0» 
{ temp = (temp * 2)[31:0]; . 

count = count - 1; 
} 
dst=temp; 
if( count> 0) 
{ . if(AC.cc = 1) 

AC.of= 1; 
else' , 

. generate_fault(ARITHMETIC:OVERFLOW); 

.shri: 
, if(src1 > 32) 

count = 32; 
else 

count = src 1 ; 
temp = src2; . 
while(count> 0) 
{ temp"; (temp» 1)[31:0]; 

temp[31] = src2[31]; 
count = count.;. 1;' 

dst=temp; 

shrdl: 
dst = src2! (2**srcl); 

ARITHMETIC.OVERFLOW For shli 

shli 13, g4, r6 # g6 = g4 shifted left 13 bits. 



Opcode: 

See Also: 

Notes: 

L 

shlo 
shro 
shli 
shrl 
shrdl 

59CH 
598H 
59EH 
59BH 
59AH 

dlvl, mull, rotate, eshro 

REG 
REG 
REG 
REG 
REG 

INSTRUCTION SET REFERENCE 

shU and shrdi are identical to multiplications and divisions for all positive 
and negative values of src2. shri is the conventional arithmetic right shift that 
does not produce a correct quotient when src2 is negative. 
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6.2.61 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

6-102 

spanbit 
span bit Span Over Bit 

spanblt src, d~t 
regllit reg 

Searches src value for the most significant clear bit (0 bit). If a most 
significant 0 bit is found, its bit number is stored in dst and condition code is 
set to 0102, If src value is alII's, alII's are stored in dst and condition code is 
set to 0002, . 

dst = OxFFFFFFFF; 
ACcc=OOO2; 
for(i = 32; i> = 0; i--) 
( if«srci & 2**i) == 0» 
{ dst = i; 

NA 

AC.cc = 0102; 

break; 

# Assume r2 is 
spanbit r2, r9 

not Oxffffffff 

spanblt 

scanblt 

640H 

# r9 = bit number of most-
# significant clear bit in r2i 
# AC.cc = 0102 

REG 

Sets the condition code in the arithmetic controls. 



6.2.62 

Mnemonic: 

Format: 

Description: 

Action: 

1 

INSTRUCTION SET REFERENCE 

STORE 
st 
stob 
stos 
stib 
stis 
stl 
stt 
stq 

st· 

Store 
Store Ordinal Byte 
Store Ordinal Short 
Store Integer Byte 
Store Integer Short 
Store Long 
Store Triple 
Store Quad 

srcl, 
reg 

dst 
mem 

Copies a byte or group of bytes from a register or group of registers to 
memory. src specifies a register' or the first (lowest numbered) register of 
successive registers. 

dst specifies the address of the memory location where the byte or first byte 
or a group of bytes is to be stored. The full range of addressing modes may be 
used in specifying dst. Refer to section 2.3, "MEMORY ADDRESSING 
MODES" (pg. 2-6) for a complete discussion. 

stob and stib store a byte and stos and stls store a half word from the src 
register's low order bytes. Data for ordinal stores is truncated to fit the 
destination width. If the data for integer stores cannot be represented correctly 
in the destination wiqth, an Arithmetic Integer Overflow fault is signaled. 

st, stl, stt and stq copy 4, 8, 12 and 16 bytes, respectively, from successive 
registers to memory. 

For stl, src must specify an even numbered register (e.g., gO, g2, ... or rO, r2, 
... ). For stt and stq, src must specify a register number that is a multiple of 
four (e.g., gO, g4, g8, ... or rO, r4, r8, ... ). 

st: 
if (illegal_ write_to:.. . .on3hip_RAM) 

generate_fault(TYPE.MISMATCH); 
else if « effective_address [ 1 :O].!= 002) && unaligned_fauICenabled) 

(store_to_memory(effective_address)[3l:0] = srcl; 
generate_fault(OPERATION.UNALIGNED);} 

else 
store_to_memory( effective_address )[31 :0] = src1; 
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Action: stob: 

if (illegaC write_to_on3hip_RAM_ocMMR) 
generatejault(TYPE.MISMATCH); 

else 
store_to_memory( effective_address)[7 :0] = srcl [7:0]; 

stib: 
if (illegaC write_to_on_chip_RAM_oCMMR) 

generatejault(TYPE.MISMATCH); 
else if «srcl[31:8] != 0) && (srcl[31:8] != OxFFFFFF» 

else 

{ store_to_memory(effective_address)[7:0] = srcl[7:0]; 
if (AC.om = 1) 

AC.of== 1; 
else 

generate_fault(ARITHMETIC.OVERFLOW); 

store_to_memory( effective.:..address )[7:0] = src 1 [7 :0]; 
end if; 

stos: 
if (illegaC write_to_on....chip_RAM_ocMMR) 

generatejault(TYPE.MISMATCH); 
else if «effective_address[O] != O2) && unaligned_fault_enabled) 

. { store_to_mel!l0ry(effective_address)[15:0] = srcl[15:0]; 
generate_fault(OPERATION. UNALIGNED); 

else 
store_to_memory(effective_address)[15:0] = srcl[15:0]; 

stis: 
if (illegal_ write_to_on3hip_RAM_oCMMR) 

generate_fault(TYPE.MISMATCH); 
else if «effective_address[O] != O2) && unalignedjaulCenabled) 

{ store_to_memory(effective_address)[15:0] = srcl[15:0]; 
generatejault(OPERATION.UNALIGNED); 

} 
else if«srcl[31:8]!= 0) && (srcl[31:8] != OxFFFFFF» 

{ store_to_memory(effective_address)[15:0] = srcl[15:0]; 
if (AC.om == 1) 
AC.of= 1; 

else 
generatejault(ARITHMETIC.OVERFLOW); 



L 

INSTRUCTION SET REFERENCE 

else 
store_to_memory(effective_address)[15:0] = srcl[I5:0]; 

stl: 
if (illegaC write_to_on_chip_RAM_or_MMR) 

generate_fault(TYPE.MISMATCH); 
else if (reg_number(src1) % 2 != 0) 

generate_fault(OPERATION.INVALID_OPERAND); 
else if «effective_address[2:0] != 0002) && unaligned_fauICenabled) 

else 

stt: 

{ store_to_memory(effective_address)[31:0] = srcl; 
store_to_memory( effective_address + 4)[31 :0] = src L +_1; 
generate_fault (OPERATION. UNALIGNED); 

store_to,-memory( effective_address )[31 :0] = src1; 
store_to_memory(effective_address + 4)[31:0] = src1_ +_1; 

if (illegal_ write_to_on3hip_RAM_oCMMR) 
generatejault(TYPE.MISMATCH); 

else if (reg_number(src1) % 4 != 0) 
generatejault(OPERATION.lNVALID_OPERAND); 

else if «effective_address[3:0] != 00002) && unalignedjault3nabled) 

else 

stq: 

{ store_to_memory( effective_address )[31 :0] = src1; 
store_to_memory(effective_address + 4)[31:0] = srcl_ +_1; 
store_to_memory( effective_address + 8)[31 :0] = src L +_2; 
generate_fault (OPERATION. UNALIGNED); 

{ store_to_memory( effective_address )[31 :0] = src1; 
store_to_memory(effective_address + 4)[31:0] = src1_ + _1; 
store_to_memory(effective_address + 8)[31:0] = src1_ + _2; 

if (illegal_write_to_on3hip_RAM_oCMMR) 
generate_fault(TYPE.MISMATCH); 

else if (reg_number(srcl) % 4 != 0) 
generate_fault(OPERATION .INVALID_OPERAND); 

else if «effective_address [3:0] != 00002) && unalignedjault_enabled) 
{ store_to_memory(effective_address)[31:0] = srcl; 

store_to_memory(effective_address + 4)[31:0] = srcL +_1; 
store_to_memory( effective_address + 8)[31 :0] = src L + _2; 
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Faults: 

Example: 

Opcode: 

See Also: 

Notes: 

else 

store_to_memory(effective_address + 12)[31:0] = srcL + _3; 
generate ... Jault (OPERATION. UNALIGNED); 

{ store_to_memory(effective_address)[31:0] :: srcl; 
store_to_memory(effective_address + 4)[31:0] = src1_ +_1; 
store_to_memory(effective_address + 8)[31:0] = srcL+_2; 
store_to_memory(effective_address + 12)[31:0] = srcL +_3; 

} 

TYPE.MISMATCH 
OPERA1JON.uNALIGNED . 
ARITHMETIC.OVERFLOW 
OPERATION.INVALID_OPERAND 

For stib, stis. 

st g2, 1254 (g6) # Word beginning at offset 
# 1254+ (g6) = g2. 

st 92H MEM 
stob 82H MEM 
stos 8AH MEM 
stib C2l:l MEM 
stis CAR MEM 
stl 9AH MEM 
stt A2H MEM 
stq B2H MEM 

LOAD,MOVE 

illegaC write_to_on_chip_RAM is an implementation-dependent mecha­
nism. The mapping of register bits to memory(efa) depends on the endian­
ism of the memory region and is implementation-dependent. 
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6.2.63 subc 
Mnemonic: subc Subtract Ordinal With Carry 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Side Effects: 

I 

subc srcl, 
regllit 

src2, 
regllit 

dst 
reg 

Subtracts srcl from src2, then subtracts the opposite of condition code bit 1 
(used here as the carry bit) and stores the result in dst. If the ordinal 
subtraction results in a carry, condition code bit 1 is set to 1, otherwise it is set 
toO. 

This instruction can also be used for integer subtraction. Here, if integer 
subtraction results in an overflow, condition code bit 0 is set. 

subc does not distinguish between ordinals and integers: it sets condition 
code bits 0 and 1 regardless of data type. 

dst = (src2 - srcl -1 + AC.cc[1])[31:0]; 
AC.cc[2:0] = 0002; 

if«src2[31] == srcl[31]) && (src2[31] != dst[31])) 
AC.cc[O] = 1; # Overflow bit. 

AC.cc[l] = (src2 - src1 -1 + AC.cc[1])[32]; # Carry out. 

STANDARD Refer to section 6.1.6, "Faults" (pg. 6-6). 

subc g5, g6, g7 
# g7 = g6 - g5 not (condition code bit 1) 

subc 5B2H REG 

addc, addi, addo, subl, subo 

Sets the condition code in the arithmetic controls. 
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6.2.64 

Mnemonic: 

Format: 

Description: 

6-108 

SU B<cc> (New 80960 Core Instruction Class) < 

subono Subtract Ordinal if Unordered 
subog Subtract Ordinal if Greater 
suboe Subtract Ordinal if Equal 
suboge Subtract Ordinal if Greater or Equal 
subol Subtract Ordinal if Less 
subone Subtract Ordinal if Not Equal 
subole ,Subtract Ordinal if Less ot Equal 
suboo Subtract Ordinal if Ordered 
subino ,Subtract Integer if Unordered 
subig Subtract Integer if Greater 
subie Subtract Integer if Equal 

',subige Subtract Integer if Greater or Equal 
subil Subtract Integer if Less 
sublne Subtract Integer if Not Equal 
subile Subtract Integer if Less or Equal 
subia , Subtract Integer if Ordered ' 

sub* srcl, src2, dst 
reg/lit ' regllit reg 

Subtracts srcl from sre2 conditionally based on the condition code bits in the 
arithmetic controls. 

If for Unordered the condition code is 0, or if for the other cases the logical 
AND of the condition, code and the mask-part of the OPCode is not zero; then 
srcl is subtracted from src2 and the result stored in the destination. 

Instruction MASK Condition 

subono 0002 Unordered 
subino 

subog 001 2 Greater 
subig 

suboe 0102 Equal 
subie 



Action: 

Faults: 

Example: 

1-

INSTRUCTION SET REFERENCE 

Instruction MASK 

suboge 
011 2 subige 

subol 
1002 subil 

subone 
101 2 subine 

subole 
1102 subile 

suboo 
1112 subio 

SUBO<cc>: 
if «mask & AC.cc) II (mask = AC.cc» 

dst = (src2 - src1)[31:0]; 

SUBI<cc>: 
if «mask & AC.cc) II (mask = AC.cc» 

dst = (src2 - srcl)[31:0]; 

Condltio.n 

Greater or equal 

Less 

Not equal 

Less or equal 

Ordered 

if«src2[31] != srcl[31]) && (src2[31] != dst[31])) 
{ if (AC.om = 1) 

AC.of = 1; 
else 

generate_fault (ARITHMETIC. OVERFLOW); 

STANDARD 
ARITHMETIC.OVERFLOW 

Refer to section 6.1.6, "Faults" (pg. 6-6). 
For the SUBI<cc> class. 

suboge gO,gl,g2 

subile gO,gl,g2 

# AC.cc = 010 2 

# g2 = gl - gO 

# AC.cc = 001 2 

# g2 not modified 
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Opcode: subono 782H REG 
subog 792H REG· 
suboe 7A2H REG 
suboge 7B2H REG 
subol 7C2H REG 
subone 7D2H REG 
subole 7E2H REG 
suboo 7F2H REG 
sublno 783H REG 
sublg 793H REG 
suble 7A3H REG 
sublge 7B3H REG 
subil 7C3H REG 
sublne 7D3H REG 
subile 7E3H REG 
sublo 7F3H REG 

See Also: subc, subi, subo, SEL<cc>, test 

Notes: This core instruction is not implemented on Cx, Kx and Sx 80960 processors. 
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6;2.65 subi, subo 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

subi Subtract Integer 
subo Subtract Ordinal 

sub* srcl, 
regllit 

src2, 
regllit 

dst 
reg 

Subtracts srcl from src2 and stores the result in dst. The binary results from 
these two instructions are identical. The only difference is that subi can signal 
an integer overflow. 

subo: 
dst = (src2 - srcl)[31:0]; 

subi: 
dst = (src2 - srci) [3 1:0]; 
if«src2[31] != src1[31]) && (src2[31] != dst[31])) 
( if(AC.om == I) 

AC.of= I; 
else 

generatejault(ARITHMETIC.OVERFLOW); 

ARITHMETIC.OVERFLOW for subi 

subi g6, g9, g12 

subi 593H 
subo 592H 

addi, addo, subc, addc 

# g12 = g9 - g6 

REG 
REG 
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6.2.66 

Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

6-112 

syncf 
syncf 

syncf 

Synchronize Faults 

Waits for all faults to be generated that are associated with any prior 
uncompleted instructions. 

if(AC.nif == 1) 
break; 

else 
waicuntiCall_previous_instructions_in_flow _have30mpleted(); 
# This also means that all of the faults on these instructions have 
# been reported. 

STANDARD 

ld xyz,g6 
addi r6, r8, r8 
syncf 
and g6, OxFFFF, g8 

Refer to section 6.1.6, "Faults" (pg. 6-6). 

# The syhcf instruction ensures that any faults 
# that may occur during the execution of the 
# ld and addi instructions occur before the 
# and instruction is executed. 

syncf 66FH REG 

mark, fmark 
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6.2.67 sysctl 
Mnemonic: sysctl System Control 

Format: 

Description: 

Message 

Request Interrupt 

Invalidate Cache 

Configure 
Instruction Cache 

Reintialize 

Modify Memory-
Mapped Control 
Register (MMR) 

Breakpoint 
Resource Request 

sysctl srcl, 
regllit 

src2, 
reg/lit 

src/dst 
reg 

Performs system management and control operations including requesting 
software interrupts, invalidating the instruction cache, configuring the 
instruction cache, processor reinitialization, modifying memory-mapped 
registers, and acquiring breakpoint resource information. 

Processor control function specified by the message field of srcl is executed. 
The type field of srcl is interpreted depending upon the command. 
Remaining srcl bits are reserved. The src2 and src3 operands are also 
interpreted depending upon the command. 

Field 2 M""",. "iW>' 8 1' Field 1 

Figure 6-5. Src1 Operand Interpretation 

Table 6-14. Sysctl Message Types and Operand Fields 

Src1 Src2 Src/Dst 

Type Field 1 Field 2 Field 3 Field 4 

OxO Vector Number N/U N/U N/U 

Ox1 N/U N/U N/U N/U 

Cache Mode Cache load Ox2 Configuration N/U address N/U 
(See Table 6-15) 

Ox3 N/U N/U Starting IP PRCB Pointer 

Lower 2 bytes 
Ox5 N/U ofMMR Value to write Mask 

address 

Ox6 N/U N/U N/U 
Break-~oint 
info ( ee 

Figure 6-6) 

Note: Sources and fields that are not used (designated N/U) are ignored. 
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Mode Field 

0002 

XX1 2 

1002or ,1102 

Table 6-15. Cache Configuration Modes 

Mode Description JA JF,JD 

Normal cache enabled 2 Kbyte 4 Kbyte 

Full cache disabled 2 Kbyte 4 Kbyte 

Load and lock cache 2 Kbyte 4 Kbyte 

7 4 3 o 
# available 

data 
breakpoints 

# available 
instruction 
breakpoints 

Figure 6-6. Src/dst Interpretation for Breakpoint Resource Request 

Action: ' 

6-114 

if (PC.em != supervisor) 
generate..:Jault(TYPE.MISMATCH); 

'ordec wrt(previous_operations); 
OPtype = (src1 & OxffOO) » 8; 
switch (OPtype) { 

case 0: # Signal Software Interrupt 
vectocto~post = Oxff& src1; 
priority_to_post = vector_to_post» 3; 
pend_ints_addr = interrupCtable_base + 4 + priority _to_post; 
pend_priority = memory _read(interrupctable_base,atomic_lock); 
# Priority zero just recans InterruptTable 
if (priority _to_post != 0) 

{pend_ints = memory_read(pend_ints_addr, non-cacheable) 
pend_ints[7 & vector] = 1; 
pend_priority[priority_to_post] = 1; 
memory _ write(pend_ints_addr, pend_ints); } 

memory_write(interrupuable_base,pend_priority,atomic_unlock); 
, # Update internal software priority with highest priority interrupt 
# from newly adjusted Pending Priorities word. The current internal 
# software priority is always replaced by the new, computed one. (If 
# there is no bit set in pending_priorities word for the current 
# internal one, then it is discarded by this action.) 
if (pend_priority == 0) 

SW _InCPriority = 0; 
else { msb_set = scan_hit(pend_priority); 

SW _IncPriority = msb_set; } 

l 
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# Make sure change to internal software priority takes full effect 
# before next instruction. 
ordec wrt(subsequencoperations); 

break; 
case 1: # Global Invalidate Instruction Cache 

invalidate_instruction_cache( ); 
unlock_instruction3ache( ); 

case 2: 

case 3: 

case 5: 

break; 
# Configure Instruction-Cache 
mode = src 1 & Oxff; 
if (mode & 1) disable_instruction3ache; 
else switch (mode) { 

case 0: enable_instruction3ache; break; 
case 4,6: # Load & Lock code into Instr-Cache 

# All contiguous blocks are locked. 
# Note: block = way on i960 Jx microprocessor. 
# src2 has starting address of code to lock. 
# src2 is aligned to a quadword 
# boundary. 
aligned_addr = src2 & OxfffffffO; 
invalidate(I -cache); unlock(I -cache); 
for G = 0; j < numbecoCblocks_thaUock; j++) 
{way = block_associated_ with_blockG); 
start = src2 + j*block_size; 
end = start + block_size; 
for (i = start; i < end; i=i+4) 

{ set = secassociated_with(i); 
word = word_associated_ with(i); 
Icache_line[set][way][word] = 

memory[i]; 
update_tag_n_ valid_bits(set, way, word) 
lock_icache( set, way, word); 

} } break; 
default: 

generate_operation_invalid_operand_fault; 
} break; 

# Software Re-init 
disable(Ccache); invalidate(Ccache); 
disable(D _cache); invalidate(D _cache); 
Process_PRCB(dst); # dst has ptr to new PRCB 
IP = src2; 
break; 
# Modify One Memory-Mapped Control Register (MMR) 
# srcl[31:16] has lower 2 bytes ofMMR address 
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Faults: 

Example: 

Opcode: 

See Also: 

Notes: 
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case 6: 

default: 

# src2 has value to write; dst has mask. 
# After operation, dst has old value of MMR 
addr = (OxffOO « 16) I (src1 » 16); 
temp = memory[addr]; 
memory[addr] = (src2 & dst) I (temp & -dst); 
dst = temp; 
break; 
# Breakpoint Resource Request 
acquire_available_instcbreakpoints( ); 
dst[3:0] = numbecoCavailable_instcbreakpoints; 
acquire_available_data_breakpoints( ); 
dst[7:4] = numbecoCavailable_data_breakpoints; 
dst[31:8] = 0; 
break; 
# Reserved, fault occurs 
generate_fault(OPERATION.INVALID_OPERAND); 
break; 

order_ wrt(subsequencoperations); 

STANDARD Refer to section 6.1.6, "Faults" 
(pg.6-6). 

OPERATION.INVALID_OPERAND 
TYPE.MISMATCH 

ldconst OxlOO,r6 
sysctl r6,r7,rB 

ldconst Ox204, gO 

ldconst Ox20000000,g2 

sysctl gO, g2 , g2 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

sysetl 

deetl, iectl 

659H REG 

Set up message. 
Invalidate instruction 
cache. 
r7, rB are not used. 
Set up message type and 
cache configuration 
mode. 
Lock half cache. 
Starting address of 
code. 
Execute Load and Lock. 

This instruction is implemented on 80960Jx and 80960Cx processors, and 
mayor may not be implemented on future i960 processors. 
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Mnemonic: 

Format: 

Description: 

Action: 

INSTRUCTION SET REFERENCE 

TEST<cc> 
teste 
testne 
testl 
testle 
testg 
testge 
testa 
testno 

test* 

Test For Equal 
Test For Not Equal 
Test For Less 
Test For Less Or Equal 
Test For Greater 
Test For Greater Or Equal 
Test For Ordered 
Test For Not Ordered 

dst 
reg 

Stores a true (OIR) in dst if the logical AND of the condition code and opcode 
mask-part is not zero. Otherwise, the instruction stores a false (OOR) in dst. 
For testno (Unordered), a true is stored if the condition code is 0002, 

otherwise a false is stored. 

The following table shows the condition-code mask for each instruction. The 
mask is in bits 0-2 of the opcode. 

Instruction Mask Condition 

testno 0002 Unordered 

testg 001 2 Greater 

teste 0102 Equal 

testge 011 2 Greater or equal 

testl 1002 Less 

testne 101 2 Not equal 

testle 1102 Less or equal 

testo 1112 Ordered 

The optional .t or .f suffix may be appended to the mnemonic. Use .t to speed­
up execution when these instructions usually store a true (1) condition in dst. 
Use .f to speed-up execution when these instructions usually store a false (0) 
condition in dst. If a suffix is not p~ovided, the assembler is free to provide 
one. 

For all TEST <cc> except testno: 
if«mask & AC.cc) != 0002) 

src1 = I; #true value 
else 

src1 = 0; #false value 
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Action: testna: 
if(AC.cc == 0002) 

src1 = 1; #true value 
else 

src1 = 0; #false value 

Faults: NA 

Example: # Assume AC.cc = 1002 
testl g9 # g9 = Ox00000001 

Opcode: teste 22H COBR 
testne 25H COBR 
testl 24H COBR 
testle 26H COBR 
testg 2lH COBR 
testge 23H COBR 
testa 27H COBR 
testna 20H COBR 

See Also: cmpi, cmpdeci, cmpinci 
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Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

xnor, xor 
xnor Exclusive Nor 
xor Exclusive Or 

xnor srcl, src2, dst 
reg/lit reg/lit reg 

xor srcl, src2, dst 
reg/lit reg/lit reg 

Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction) 
operation on the src2 and src1 values and stores the result in dst. 

xnor: 
dst = -(src21 src1) I (src2 & src1); 

xor: 
dst = (src2 I srct) & -(src2 & srct); 

NA 

xnor r3, r9, r12 
xor gl, g7, g4 

xnor 
xor 

589H 
586H 

# r12 = r9 XNOR r3 
# g4 = g7 XOR gl 

REG 
REG 

and, andnot, nand, nor, not, notand, notor, or, ornot 
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CHAPTER 7 
PROCEDURE CALLS 

This chapter describes mechanisms for making procedure calls, which include branch-and-link 
instructions, built-in call and return mechanism, call instructions (call, calix, calls), return 
instruction (ret) and call actions caused by interrupts and faults. 

The i960® architecture supports two methods for making procedure calls: 

• A RISe-style branch-and-link: a fast call best suited for calling procedures that do not call 
other procedures. 

• An integrated call and return mechanism: a more versatile method for making procedure calls, 
providing a highly efficient means for managing a large number of registers and the program 
stack. 

On a branch-and-link (bal, balx), the processor branches and saves a return IP in a register. The 
called procedure uses the same set of registers and the same stack as the calling procedure. On a 
call (call, calix, calls) or when an interrupt or fault occurs, the processor also branches to a target 
instruction and saves a return IP. Additionally, the processor saves the local registers and allocates 
a new set of local registers and a new stack for the called procedure. The saved context is restored 
when the return instruction (ret) executes. 

In many RISC architectures, a branch-and-link instruction is used as the base instruction for coding 
a procedure call. The user program then handles register and stack management for the call. Since 
the i960 architecture provides a fully integrated call and return mechanism, coding calls with 
branch-and-link is not necessary. Additionally, the integrated call is much faster than typical RISC­
coded calls. 

The branch-and-link instruction in the i960 processor family, therefore, is used primarily for 
calling leaf procedures. Leaf procedures call no other procedures; they reside at the "leaves" of the 
call tree. 

In the i960 architecture the integrated call and return mechanism is used in two ways: 

• explicit calls to procedures in a user's program 

• implicit calls to interrupt and fault handlers 

The remainder of this chapter explains the generalized call mechanism used for explicit and 
implicit calls and call and return instructions. 
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The processorperlorms two call actions: 

local, 

supervisor 

When a local call is made, execution mode remains unchanged and the stack 
frame for the callect procedure is placed on the local stack. The local stack refers 
to the stack of the calling procedure. 

When a supervisor call is made from user mode, execution mode is switched to 
supervisor and the stack frame for the called procedure is placed on the 
supervisor stack. 

When a supervisor call is issued from supervisor mode, the call degenerates into 
a local call (i.e., no mode nor stack switch). 

Explicit procedure calls can be made using several instructions. Local call instructions call and 
calix perform a local call action. With call and calix, the called procedure's IP is included as an 
operand in the instruction. ' 

A system call is made with calls. This instruction is similar to call and calix, except that the 
processor obtains the called procedure's IP from the system proce4ure table. A system call, when 
executed, is directed to perform either the local or supervisor call action. These calls are referred 
to as system-local and system-supervisor calls; respectively. A system~supervisor call is also 
referred to as Ii supervisor call. . . 

7.1 CALL AND RETURN MECHANISM 

At any point in a program" the i960 processor has access to" the global registers, a local register set 
and the procedure stack. A subset of the stack allocated to the procedure is called the stack frame. 

• When a call executes, a new stack frame is allocated for the called procedure. The processor 
also saves the current local register set, freeing these registers for use by the newly called 
procedure. In this way, every procedure has a unique stack and a unique set of local registers. 

• When a return executes, the current local register set and current stack frame are deallocated. 
The previous local register set and previous stack frame are restored. 

7.1.1 Local Registers and the Procedure Stack 

The processor automatically allocates a set of 16 local registers for each procedure. Since local 
registers are on-chip, they provide fast access storage for local variables. Of the 16 local registers, 
. 13 are available for general use; rO, r1 and r2 are reserved for linkage information to tie procedures 
together. 
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The processor does not always clear or initialize the set of local registers assigned to a new 
procedure. Therefore, initial register contents are unpredictable. Also, because the processor does 
not initialize the local register save area in the newly created stack frame for the procedure, its 
contents are equally unpredictable. 

The procedure stack can be located anywhere in the address space and grows from low addresses 
to high addresses. It consists of contiguous frames, one frame for each active procedure. Local 
registers for a procedure are assigned a save area in each stack frame (Figure 7-1). The procedure 
stack, available to the user, begins after this save area. 

To increase procedure call speed, the architecture allows an implementation to cache the saved 
local register sets on-chip. Thus, when a procedure call is made, the contents of the current set of 
local registers often do not have to be written out to the save area in the stack frame in memory. 
Refer to section 7.1.4, "Caching of Local Register Sets" (pg. 7-9) and section 7.1.4.1, "Reserving 
Local Register Sets for High Priority Interrupts" (pg. 7-10) for more about local registers and 
procedure stack interrelations 

_L 

Current Register Set 

gO 

Frame Pointer (FP) g15 

Procedure Stack 

Previous Frame Pointer (PFP) rO 

Stack Pointer (SP) r1 

Return Instruction Pointer (RIP) r2 

user allocated stack 

padding area 

user allocated stack 

unused stack 

stack growth 
(toward higher addresses) 

I 

r15 

Previous 
Stack 

Frame 

Current 
Stack 
Frame 

Figure 7-1. Procedure Stack Structure and Local Registers 
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7.1.2 Local Register and Stack Management 

Global register g15 (FP) and local registers rO (pFP), rI (SP) and r2 (RIP) contain information to 
link procedures together and link local registers to the procedure stack (Figure 7-1). The following 
subsections describe this linkage information. 

7.1.2.1 Frame Pointer 

The frame pointer is the current stack frame's ftrst byte address. It is stored in global register g15, 
the frame pointer (FP) register. The FP register is always reserved for the frame pointer; do not use 
g15 for general stprage. 

Stack frame alignment is deftned for each implementation of the i960 processor family, according 
to an SALIGN parameter (see section A.2.5, "Data and Data Structure Alignment" (pg. A~3)). In 
the i960 Jx processors, stacks are aligned on 16-byte boundaries (see Figure 7-1). When the 
processor needs to create a new frame on a procedure call, it adds a padding area to the stack so 
that the new frame starts on a 16-byte boundary. 

7.1.2.2 Stack Pointer 

The stack pointer is the byte-aligned address of the stack frame's next unused byte. The stack 
pointer value is stored in local register rI, the stack pointer (SP) register. The procedure stack 
grows upward (i.e., toward higher addresses). When a stack frame is created, the processor 
automatically adds 64 to the frame pointer value and stores the result in the SP register. This action 
creates the register save area in the stack frame for the local registers. 

The user must modify the SP register value when data is stored or removed from the stack. The 
i960 architecture does not provide an explicit push or pop instruction to perform this action. This 
is typically done by adding the size of all pushes to the stack in one operation. 

7.1.2.3 Considerations When Pushing Data onto the Stack 

Care should be taken in writing to stack in the presence of unforeseen faults and interrupts. In the 
general case, to ensure that the data written to the stack is not corrupted by a fault or interrupt 
record, the SP should be incremented first to allocate the space, and then the data should be written 
to the space so allocated: . 

mov 
addo 
st 

st 

7-4 

sp,r4 
24,sp,sp 
data, (r4) 

data,20(r4) 
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7.1.2.4 Considerations When Popping Data off the Stack 

For reasons similar to those discussed in the previous section, care should be taken in reading the 
stack in the presence of unforeseen faults and interrupts. In the general case, to ensure that data 
about to be popped off the stack is not corrupted by a fault or interrupt record, the data should be 
read first and then the sp should be decremented: 

subo 24,sp,r4 
Id 20(r4) ,rn 

Id (r4) , rn 
mov r4, sp 

7.1.2.5 Previous Frame Pointer 

The previous frame pointer is the previous stack frame's first byte address. This address' upper 28 
bits are stored in local register rO, the previous frame pointer (PFP) register. The four least­
significant bits of the PFP are used to store the return-type field. 

7.1.2.6 Return Type Field 

PFP register bits 0 through 3 contain return type information for the calling procedure. When a 
procedure call is made - either explicit or implicit - the processor records the call type in the 
return type field. The processor then uses this information to select the proper return mechanism 
when returning to the calling procedure. The use of this information is described section 7.8, 
"RETURNS" (pg. 7-20). 

7.1.2.7 Return Instruction Pointer 

The actual RIP register (r2) is reserved by the processor to support the call and return mechanism 
and must not be used by software; the actual value of RIP is unpredictable at all times. For 
example,an implicit procedure call (fault or interrupt) can occur at any time and modify the RIP. 
An OPERATION.UNIMPLEMENTED fault is generated when attempting to write the RIP. 

The image of the RIP register in the stack frame is used by the processor to determine that frame's 
return instruction address. When a call is made, the processor saves the address of the instruction 
after the call in the image of the RIP register in the calling frame. 

7.1.3 Call and Return Action 

To clarify how procedures are linked and how the local registers and stack are managed, the 
following sections describe a general call and return operation and the operations performed with 
the FP, SP, PFP and RIP registers described in the preceding sections. 
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The events for call and return operations are given ina logical order of operation. The i960 Jx 
processors can execute independent operations in parallel; therefore, many of these events execute 
simultaneously. For example, to improve performance, the processors often begin prefetch of the 
target instruction for the call or return before the operation is complete. 

7.1.3.1 Call Operation . 

When a call, calls or calix instruction is executed or an implicit call is triggered: 

1. The processor stores the instruction pointer for the instruction following the call in the 
current stack's RIP register (r2). 

2. The CJllTent local registers - including the PFP, SP and RIP registers - are saved, freeing 
these for use by the called procedure. Because saved local registers are cached on the 
i960 Jx processors, the registers are always saved in the on-chip local register cache at this 
time. 

3. The frame pointer (g15) for the calling procedure is stored in the current stack's PFP 
register (rO). The return type field in the PFP register is set according to the call type which 
is performed. See section 7.8, "RETURNS" (pg. 7-20). 

4. For a local or system-local call, new stack frame is allocated by using the stack pointer 
value saved in step 2. This value is first rounded to the next 16-byte boundary to create a 
new frame,pointer, then stored in the FP register. Next, 64 bytes are added to create the new 
frame's register save area. This value is stored in the SP register. 

For an interrupt call from user mode, the interrupt stack pointer is used instead of the value 
saved in step 2. 

For a system-supervisor call from user mode, the Supervisor Stack Pointer (SSP) is used as 
, a base instead of the value saved in step 2. 

5. The instruction pointer is loaded with the address of the first instruction in the called 
procedure. The processor gets the new instruction pointer from the call, the system 
procedure table, the interrupt table or the fault table, depending on the type of call executed. 

Upon completion of these steps, the processor begins executing the called procedure. Sometime 
before a return or nested call, the local register set is bound to the allocated stack frame. 

7.1.3.2 Binding of the local register set to the allocated stack frame 

The time at which the local register set is actually bound to its save area in the allocated stack 
frame may vary across implementations. Some implementations may perform the binding at 
activation time during the call; others may perform the binding only when necessary, such as 
before processing an explicit/implicit call from the activated procedure itself. This is only a 
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problem when an activated procedure attempts to change its own FP; in this case it is unpredictable 
where the register set is actually saved. However, there are only two possibilities for the result: the 
register set must be saved at the new or at the old address. 

The following code illustrates the case: 

routinel: 

routine2: 

# Suppose fp = frameA by definition of the 

# current frame. 

lda frameB, fp 

call routine2 

flushreg 

# Where did the previous local register set get 

# saved? It may have been saved starting at 

# address frameA or frameB depending on the 

# implementation. 

The stack itself (the stack frame without the register save area) does not encounter this problem, 
since its binding is immediate. The previous example is modified below to illustrate the point: 

routinel: # suppose fp = frameA by definition of the 

# current frame 

routine2: 

# sp 
lda 
st 

frameA+64 
frameB, fp 
datal, sp# place datal on stack 

flushreg 
ld frameA+64 , data2 

# datal = data2 in all cases 

Modification of FP should be done inside a called procedure, through the use of PFP, as described 
in section 7.2, "MODIFYING THE PFP REGISTER" (pg. 7-13). 
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7.1.3.3 ,. Return Operation r . 

A return from any call type - explicit Or implicit;- is always initiated with a .return (ret) 
instruction. On a return, the processor performs these operations: 

1. The current stack frame and local registers are deallocated by loading the FP register with 
the value of the PFP regi~ter. 

2. The local registers for the return target procedure are retrieved. The registers are usually 
read from the local register cache; however, in some cases, these registers have been 
flushed from register cache to memory and must be read directly from the save area in the 
stack frame. 

3. The processor sets the instruction pointer to the value of the RIP register. 

Upon completion of these steps, the processor executes t)1e procedure to which it returns. The 
frames created before the ret instruction was executed will be overwrHten by later implicit or 
explicit call operations. 

7.1.4 Caching of, LQcal Register Sets 

" Actual implementations of the i960 architecture may cache some number of local register sets 
within the processor to improve performance. Local registers are typically saved and restored from 
the local register cache when calls and returns are executed. Other overhead associated with a call 
or return is performed in parallel with this data movement. 

When the number of nested procedures exceeds local register cache size, local register sets must at 
times be saved to (and restored from) their associated save areas in the procedure stack. Because 
these operations require access to external memory, this local cache miss impacts call and return 
performance. 

When a call is made and no frames ~e available in the register cache, a register set in the cache 
.. must be saved to external memory to make .room Jor the current, set of local'registers in, the, cache 
(see section 4.2, "LOCAL REGISTER CACHE" (pg. 4-2). This actio(1 is referred to as a frame 
spill. The oldest set of local registers stored in the cache is spilled to the associated local register 
save area in the procedure stack. Figure 7-2 illustrates a call operation with and without a frame 
spill. 

Similarly, when a return is made and the local register set for the target procedure is not available 
in the cache, these local registers must be retrieved from the procedure stack in memory. This 
operation is referred to as a frame fill. Figure 7-3 illustrates return operations with and without 
frame fills. 
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The instruction flushreg, described in section 6.2.30, "flushreg" (pg. 6-55), is provided to write all 
local register sets (except the current one) to their associated stack frames in memory. The register 
cache is then invalidated, meaning that all flushed register sets are restored from their save areas in 
memory. 

For most programs, the existence of the multiple local register sets and their saving/restoring in the 
stack frames should be transparent. However, some cases where it may not be apparent follow. 

• Without executing flushreg ftrst, a store to memory does not necessarily update a local 
register set. 

• Without executing flushreg ftrst, reading from memory does not necessarily return the current 
value of a local register set. 

• There is no mechanism, including flushreg, to access the current local register set with a read 
or write to memory. 

• flush reg must be executed sometime before returning from the current frame if the current 
procedure modiftes the PFP in register rO, or else the behavior of the ret instruction is not 
predictable. 

• The values of the local registers r2 to r15 in a new frame are undeftned. 

flushreg is commonly used in debuggers or fault handlers to gain access to all saved local 
registers. In this way, call history may be traced back through nested procedures. 

7.1.4.1 Reserving Local Register Sets for High Priority Interrupts 

To decrease interrupt latency for high priority interrupts (interrupted state and process priority I' 
greater than or equal to 28), software can limit the number of frames available to all remaining 
code. This includes code that is either in the executing state (non-interrupted) or code that is in the 
interrupted state, but, has a process priority less than 28. For the purposes of discussion here, this 
remaining code will be referred to as non-critical code. Specifying a limit for non-critical code, 
ensures that some number of free frames are available to high-priority interrupt service routines. 
Software can specify the limit for non-critical code by writing bits 10 through 8 of the register 
cache conftguration word in the PReB (see Figure 11-6 on page 11-16). The value indicates how 
many frames within the register cache may be used by non-critical code before a frame needs to be 
flushed to external memory. The programmed limit is used only when a frame is pushed, which 
occurs only for an implicit or explicit call. 

Allowed values of the programmed limit range from 0 to 7. Setting the value to 7 reserves no 
frames for high-priority interrupts. Setting the value to 0 causes the register cache to become 
disabled for non-critical code. 

-~. 
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7.2 MODIFYING THE PFP REGISTER 

Modification of the PFPis typically for context switches; as part of the switch, the active 
procedure changes the pointer to the frame that it will return to (previous frame pointer -- PFP). 
Great care should be taken in modifying the PFP. In the general case, a flushreg must be issued 
before and after modifying the PFP when the local register cache is enabled. See Example 7-1. 

Example 7-1. Modifying the PFP 

# Do a context switch. 

# Assume PFP = Ox5002. 

flushreg 

Ida Ox8002,pfp 

flushreg 

ret 

# Flush Frames to correct address. 

# Ensure that "ret" gets updated PFP. 

These requirements ensure the correct operation of a context switch on all i960 processors in all 
situations. 

The f!ushreg before the modification is necessary to ensure that the frame of the previous context 
(mapped to Ox5000 in the example) is "spilled" to the proper external memory address and 
removed from the local register cache. If the flushreg before the modification was omitted, a 
flushreg (or implicit frame spill due to an interrupt) after the modification of PFP would cause the 
frame of the previous context to be written to the wrong location in external memory. 

The flush reg after the modification ensures that outstanding results are completely written to the 
PFP before a subsequent ret instruction can be executed. Recall that the ret instruction uses the 
low-order 4-bits of the PFP to select which ret function to perform. Requiring the flushreg after 
the PFP modification allows an i960 implementation to implement a simple mechanism that 
quickly selects the ret function at the time the ret instruction is issued and provides a faster return 
operation. 

Note the flushreg after the modification will execute very quickly because the local register cache 
has already been flushed by the flushreg before; only synchronization of the PFP will be 
performed. i960 implementations may provide other mechanisms to ensure PFP synchronization 
in addition to flushreg, but, a flushreg after a PFP modification is ensured to work on all i960 
processors. 
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7.3 PARAMETER PASSING 

Parameters are passed between procedures in two ways: 

value 

reference 

Parameters are passed directly to the calling procedure as part of the call and 
return mechanism. This is the fastest method of passing parameters. 

Parameters are stored in an argument list in memory and a pointer to the 
argument list is passed in a global register. 

When passing parameters by value, the calling procedure stores the parameters to be passed in I! 

global registers. Since the calling procedure and the called procedure share the global registers, the i~ 
called procedure has direct access to the parameters after the call. 

When a procedure needs to pass more parameters than will fit in the global registers, they can be 
passed by reference. Here, parameters are placed in an argument list and a pointer to the argument 
list is placed in a global register. 

The argument list can be stored anywhere in memory; however, a convenient place to store an 
argument list is in the stack for a calling procedure. Space for the argument list is created by incre­
menting the SP register value. If the argument list is stored in the current stack, the argument list is 
automatically deallocated when no longer needed. 

A procedure receives parameters from - and returns values to - other calling procedures. To do 
this successfully and consistently, all procedures must agree on the use of the global registers. 

Parameter registers pass values into a function. Up to 12 parameters can be passed by value using 
the global registers. If the number of parameters exceeds 12, additional parameters are passed 
using the calling procedure's stack; a pointer to the argument list is passed in a pre-designated 
register. Similarly, several registers are set aside for return arguments and a return argument block 
pointer is defined to point to additional parameters. If the number of return arguments exceeds the 
available number of return argument registers, the calling procedure passes a pointer to an 
argument list on its stack where the remaining return values will be placed. Example 7-2 illustrates 
parameter passing by value and reference. 
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Local registers are automatically saved when a call is made. Because of the local register cache, 
they are saved quickly and with no external bus traffic. The efficiency of the local register 
mechanism plays an important role in two cases when calls are made: 

1. When a procedure is called which contains other calls, global parameter registers should be 
moved to working local registers at the beginning of the procedure. In this way, parameter 
registers are freed and nested calls are easily managed. The register move instruction 
necessary to perform this action is very fast; the working parameters - now in local 
registers - are saved efficiently when nested calls are made. 

2. When other procedures are nested within an, interrupt or fault procedure, the procedure 
must preserve all normally non-preserved parameter registers, such as the global registers. 
This is necessary because the interrupt or fault occurs at any point in the user's program and 
a return from an interrupt or fault must restore the exact processor state. The interrupt or 
fault procedure can move non-preserved global registers to local registers before the nested 
call. 

Example 7-2. Parameter Passing Code Example 

# Example of 
if C-source: 

parameter passing . . . 
int a,b[10]i 

# 
# 

mov 
ldconst 
ldconst 
lda 
call 
mov 

-proc1 : 
movq 

mov 
ret 

a = proc1(a,1, 'x' ,&b[O])i 
assembles to 
r3,gO 
1,gl 
120, g2 
Ox40 (fp) , g3 
-proc1 
gO,r3 

gO,r4 

r3,gO 

# value of a 
# value of 1 
# value of "x" 
# reference to b[lO] 

#save return value in 

# save parameters 

Ila" 

# other instructions in procedure 
# and nested calls 
# load return parameter 

7.4 LOCAL CALLS 

A local call does not cause a stack switch. A local call can be made two ways: 

• with the call and calix instructions; or 

• with a system-local call as described in section 7.5, "SYSTEM CALLS" (pg. 7-16) . 
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call specifies the address of the called procedures as the IP plus a signed, 24-bit displacement (i.e., 
_223 to 223 - 4). calix allows any of the addressing modes to be used to specify the procedure 
address. The IP-with-displacement addressing mode allows full 32-bit IP-relative addressing. 

When a local call is made with a call or calix, the processor performs the same operation as 
described in section 7.1.3.1, "Call Operation" (pg. 7-7). The target IP for the call is derived from 

. the instruction's operands and the new stack frame is allocated on the current stack. 

7.5 SYSTEM CALLS 

A system call is a call made via the system procedure table. It can be used to make a system-local 
call - similar to a local call made with call and calix in the sense that there is no stack nor mode 
switch - or a system supervisor call. A system call is initiated with calls, which requires a 
procedure number operand. The procedure number provides an index into the system procedure 
table, where the processor finds IPs for specific procedures. 

Using an i960 processor language assembler, a system procedure is directly declared using the 
.sysproc directive. At link time, the optimized call directive, callj, is replaced with a calls when a 
system procedure target is specified. (Refer to current i960 processor assembler documentation for 
a description of the .sysproc and callj directives.) 

The system call mechanism offers two benefits. First, it supports application software portability. 
System calls are commonly used to call kernel services. By calling these services with a procedure 
number rather than a specific IP, applications software does not need to be changed each time the 
implementation of the kernel services is modified. Only the entries in the system procedure table 
must be changed. Second, the ability to switch to a different execution mode and stack with a 
system supervisor call allows kernel procedures and data to be insulated from applications code. 
This benefit is further described in section 3.7, "USER SUPERVISOR PROTECTION MODEL" 
(pg.3-22). 

7.5.1 System Procedure Table 

The system procedure table is a data structure for storing IPs to system procedures. These can be 
procedures which software can access through (1) a system call or (2) the fault handling 
mechanism. Using the system procedure table to store IPs for fault handling is described in section 
9.1, "FAULT HANDLING FACILITIES OVERVIEW" (pg. 9-1). 

Figure 7-4 shows the system procedure table structure. It is 1088 bytes in length and can have up to 
260 procedure entries. At initialization, the processor caches a pointer to the system procedure 
table. This pointer is located in the PRCB. The following subsections describe this table's fields. 
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Figure 7-4. System Procedur~ Table 

7.5.1.1 Procedure Entries 

2 1 0 

II I 
I L Entry Type: 

00 - Local 
10-Supervlsor 

A pro~edure entry in the syste~ procedure taQle specifies a procedure's location and type. Each 
entry is one word in length and consists. ,of an address (IP) field and a type field. The address field 
gives the address of the first instruction of the target procedure. Since all instructions are word 
aligned, only the entry's 30 most significant bits are used for the address. The entry's two least~ 
significant bits specify entry type. The procedure entry type field indicates call type: system-local 
call or system-superVisor call (Table 7-1). On a system call, !the processor performs . different 
actions depending on the type of call selected. 
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Table 7-1. Encodings of Entry Type Field in System Procedure Table 

Encoding Call Type 

00 System-Local Call 

01 Reserved1 

10 System-Supervisor Call 

11 Reserved 1 

1. Calls with reserved entry types have unpredictable behavior. 

7.5.1.2 Supervisor Stack Pointer 

When a system-supervisor call is made, the processor switches to a new stack called the supervisor 
stack, if not already in supervisor mode. The processor gets a pointer to this stack from the 
supervisor stack pointer field in the system procedure table (Figure 7-4) during the reset initial­
ization sequence and caches the pointer internally. Only the 30 most significant bits of the 
supervisor stack pointer are given. The processor aligns this value to the next 16 byte boundary to 
determine the first byte of the new stack frame. 

7.5.1.3 Trace Control Bit 

The trace control bit (byte 12, bit 0) specifies the new value of the trace enable bit in the PC 
register (PC.te) when a system-supervisor call causes a switch from user mode to supervisor mode. 
Setting this bit to 1 enables tracing in the supervisor mode; setting it to 0 disables tracing. The use 
of this bit is described in section 10.1.2, "PC Trace Enable Bit and Trace-Fault-Pending Flag" (pg. 
10-3). 

7.5.2 System Call to a Local Procedure 

When a calls instruction references an entry in the system procedure table with an entry type of 00, 
the processor executes a system-local call to the selected procedure. The action that the processor 
performs is the same as described in section 7.1.3.1, "Call Operation" (pg. 7-7). The call's target IP 
is taken from the system procedure table and the new stack frame is allocated on the current stack, 
and the processor does not switch to supervisor mode. The calls algorithm is described in section 
6.2.14, "calls" (pg. 6-26). 

7.5.3 System Call to a Supervisor Procedure 

When a calls instruction references an entry in the system procedure table with an entry type of 
102, the processor executes a system-supervisor call to the selected procedure. The call's target IP 
is taken from the system procedure table. 
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The processor performs the same action as described in section 7.1.3.1, "Call Operation" (pg. 7-7), 
with the following exceptions: 

• If the processor is in user mode, it switches to supervisor mode. 

• If a mode switch occurs, SP is read from the Supervisor Stack Pointer (SSP) base. A new 
frame for the called procedure is placed at the location pointed to after alignment of SP. 

• If no mode switch occurs, the new frame is allocated on the current stack. 

• If a mode switch occurs, the state of the trace enable bit in the PC register is saved in the 
return type field in the PFP register. The trace enable bit is then loaded from the trace control 
bit in the system procedure table. ' 

• If no mode switch occurs, the value 0002 (calls instruction) or 0012 (fault call) is saved in the 
return type field of the pfp register. 

When the processor switches to supervisor mode, it remains in that mode and creates new frames 
on the supervisor stack until a return is performed from the procedure that caused the original 
switch to supervisor mode. While in supervisor mode, either the local call instructions (call and 
calix) or calls can be used to call procedures. 

The user-supervisor protection model and its relationship to the supervisor call are described in 
section 3.7, "USER SUPERVISOR PROTECTION MODEL" (pg. 3-22). 

7.6 USER AND SUPERVISOR STACKS 

When using the user-supervisor protection mechanism, the processor maintains separate stacks in 
the address space. One of these stacks - the user stack - is for procedures executed in user 
mode; the other stack - the supervisor stack - is for procedures executed in supervisor mode. 

The user and supervisor stacks are identical in structure (Figure 7-1). The base stack pointer for 
the supervisor stack is automatically read from the system procedure table and cached internally 
during initialization. Each time a user-to-supervisor mode switch occurs, the cached supervisor 
stack pointer base is used for the starting point of the new supervisor stack. The base stack pointer 
for the user stack is usually created in the initialization code. See section 11.2, "INITIAL­
IZATION" (pg. 11-2). The base stack pointers must be aligned to a 16-byte boundary; otherwise, 
the first frame pointer on the interrupt stack is rounded up to the previous 16-byte boundary. 
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7.7 INTERRUPT AND FAULT CALLS 

The architecture defines two types of implicit calls that make use of the call and return mechanism: 
interrupt handling procedure calls and fault handling procedure calls. A call to an interrupt 
procedure is similar to a system-supervisor call. Here, the processor obtains pointers to the 
interrupt procedures through the interrupt table. The processor always switches to supervisor mode 
on an interrupt procedure call. 

A call to a fault procedure is similar to a system call. Fault procedure calls can be local calls or 
supervisor calls. The processor obtains pointers to fault procedures through the fault table and 
(optionally) through the system procedure table. 

When a fault call or interrupt call is made, a fault record or interrupt record is placed in the newly 
generated stack frame for the call. These records hold the machine state and information to identify 
the fault or interrupt. When a return from an interrupt or fault is executed, machine state is restored 
from these records. See CHAPTER 9, FAULTS for more information on the structure of the fault 
and interrupt records. 

7.8 RETURNS 

The return (ret) instruction provides a generalized return mechanism that can be used to return 
from any procedure that was entered by call, calls, calix, an interrupt call or a fault call. When ret 
executes, the processor uses the information from the return-type field in the PFP register (Figure 
7-5) to determine the type of return action to take. 

Return Status 
Return-Type Field - PFP.rt 

Address-PFP.a t 

Pre-Return-Trace Flag - PFP.p I I 
Previous Frame Pointer 

I I I I 

I ~IIIIIIIIIIIIIIIIIIIIIIIIIII :IPI il ~Ill 
31 28 24 20 16 12 8 4 o 

Figure 7·5. Previous Frame Pointer Register (PFP) (rO) 

return-type field indicates the type of call which was made. Table 7-2 shows the return-type field 
encoding for the various calls: local, supervisor, interrupt and fault. 
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trace-on-return flag (PFP.rtO or bit 0 of the return-type field) stores the trace enable bit value when 
a system-supervisor call is 'made from user mode. When the call is made, the PC register trace 
enable bit is saved as the trace-on-return flag and then replaced by the trace controls bit in the 
system procedure table. On a return, the trace enable bit's original value is restored. This 
mechanism allows instruction tracing to be turned on or off when a supervisor mode switch 
occurs. See section 10.5.2.3, "Tracing on Return from Explicit Call" (pg. 10-14). 

prereturn-trace flag (PFP.p) is used in conjunction with call-trace and prereturn-trace modes. If 
call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag; 
otherwise it clears the flag. Then, if this flag is set and prereturn-trace mode is enabled, a prereturn 
trace event is generated on a return, before any actions associated with the return operation are 
performed. See section 10.2, "TRACE MODES" (pg. 10-3) for a discussion of interaction 
between call-trace and prereturn-trace modes with the prereturn-trace flag. 

Table 7-2. Encoding of Return Status Field 

Return Status 
CalilYpe Return Action Field 

Local call 
Local return 000 (system-local call or system-supervisor (return to local stack; no mode switch) 

call made from supervisor mode) 

001 , Fault call Fault return 

Supervisor return 

01t System-supervisor from user mode 
(return to user stack, mode switch to user 
mode, trace enable bit is replaced with the t bit 
stored in the PFP register on the call) 

100 reserved 1 

101 reserved1 

11~ reserved1 

111 Interrupt call Interrupt return 

NOTE: "t" denotes the trace-on-return flag; used only for system supervisor calls which cause a user-to­
supervisor mode switch. 

1. This return type results in unpredictable behavior. 
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7.9 BRANCH-AND-LiNK 

A branch-and-link is executed using either the branch-and-link instruction (bal) or branch-and­
link-extended instruction (balx). When either instruction executes, the processor branches to the 
first instruction of the called procedure (the target instruction), while saving a return IP for the 
calling procedure in a register. The called procedure uses the same set of local registers and stack 
frame as the calling procedure: 

• For bal, the return IP is automatically saved in global register g14 

• For balx, the return IP instruction is saved in a register specified by one of the instruction's 
operands 

A return from a branch-and-link is generally carried out with a bx (branch extended) instruction, 
where the branch target is the address saved with the branch-and-link instruction. The branch-and­
link method of making procedure calls is recommended for calls to leaf procedures. Leaf 
procedures typically call no other procedures. Branch-and-link is the fastest way to make a call, 
providing the calling procedure does not require its own registers or stack frame. 
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CHAPTER 8 
INTERRUPTS 

This chapter describes how a programmer uses the processor's interrupt mechanism, defines data 
structures used for interrupt handling and describes actions that the processor takes when handling 
an interrupt. 

CHAPTER 13, INTERRUPT CONTROLLER describes the hardware mechanism for signaling 
and posting interrupts. 

8.1 OVERVIEW 

An interrupt is an event that causes a temporary break in program execution so the processor can 
handle another chore. Interrupts commonly request 110 services or synchronize the processor with __ 
some external hardware activity. For interrupt handler portability across the i960® processor : , 
family implementations, the architecture defines a consistent interrupt state and interrupt-priority­
handling mechanism. To manage and prioritize interrupt requests in parallel with processor 
execution, the i960 Jx processor provides an on-chip programmable interrupt controller. 

Requests for interrupt service come from many sources. These requests are prioritized so that 
instruction execution is redirected only if an interrupt request is of higher priority than that of the 
executing task. 

When the processor is redirected to service an interrupt, it uses a vector number that accompanies 
the interrupt request to locate the vector entry in the interrupt table. From that entry, it gets an 
address to the first instruction of the selected interrupt procedw:e. The processor then makes an 
implicit call to that procedure. 

When the interrupt call is made, the processor uses a dedicated interrupt stack. A new frame is 
created for the interrupt on this stack and a new set of local registers is allocated to the interrupt 
procedure. The interrupted program's current state is also saved. 

Upon return from the interrupt procedure, the processor restores the interrupted program's state, 
switches back to the stack that the processor was using prior to the interrupt and resumes program 
execution. 

Since interrupts are handled based on priority, requested interrupts are often saved for later service 
rather than being handled immediately. The mechanism for saving the interrupt is referred to as 
interrupt posting. The mechanism the i960 Jx processor uses for posting interrupts is described in 
section 13.2, "MANAGING INTERRUPT REQUESTS" (pg. 13-2). 
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On. the i960 Ix processor, interrupt requests may originate from external hardware sources, 
internal timer unit sources or from software. External interrupts are detected with the chip's 8-bit 
interrupt port and with a dedicated NMI input. Interrupt requests originate from software by the 
sysctl instruction which signals interrupts. To manage and prioritize all possible interrupts, the 
processor integrates an on-chip programmable interrupt controller. Integrated interrupt controller 
configuration and operation is described in CHAPfER 13, INTERRUPT CONTROLLER. 

The i960 architectUre defines two· data structures to support interrupt processing: the interrupt 
table and interrupt stack (see Figure 8-1). The interrupt table contains 248 vectors for interrupt 
handling procedures (eight of which are reserved) and an area for posting software requested 
interrupts. the interrupt stack prevents interrupt handling procedures from overwriting the stack in 
use by the application program. It also allows the interrupt stack to be located in a different area of 
memory than the user and supervisor stack (fast SRAM, for example). 

Interrupt 
Request 

r-----' 
I 
I 

I 

I i96()® Jx 
• I Processor 
I 
I 
I I L _____ _ 

I 
I 
~ 
I 
I 

---------------------~ IMemo~ I 
I 
I Interrupt 
I Table 
I 
I • Interrupt Pointer 
I 

Interrupt 
Handling 

Procedure 

I 
.I 
I 
I 
I 
I 

I I L ____________________ ~ 

Figure B-1. Interrupt Handling Data Structures 

8.2 SOFlWARE REQUIREMENTS FOR INTERRUPT HANDLING 

To use the processor's interrupt handling facilities, user software must provide the following items 
in memory: 

• Interrupt Table 

• Interrupt Handler Routines 

! Interrupt Stack 

These items are established in memory as part of the initialization procedure. Once these items are 
present in memory and pointers to them have been entered in the appropriate system data 
structures, the processor handles interrupts automatically and independently from software. 
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8.3 INTERRUPT PRIORITY 

Each interrupt procedure pointer is eight bits in length, which allows up to 241 unique procedure 
pointers to be defined. Each procedure pointer's priority is defined by dividing the procedure 
pointer number by eight. Thus, at each priority level, there are eight possible procedure pointers 
(e.g., procedure pointers 8 through 15 have a priority of 1 and procedure pointers 246 through 255 
have a priority of 31). Procedure pointers 0 through 7 cannot be used. Since 0 priority is the lowest 
priority, a priority-O interrupt will never successfully stop execution of a program of any priority. 

The processor compares its current priority with the interrupt request priority to determine whether 
to service the interrupt immediately or to delay service. The interrupt is serviced immediately if the 
interrupt request priority is higher than the processor's current priority (the priority of the program 
or interrupt the processor is executing). If the interrupt priority is less than or equal to the 
processor's current priority, the processor does not service the request but rather posts it as a 
pending interrupt. When multiple interrupt requests are pending at the same priority level, the 
request with the highest vector number is serviced first. 

Priority-31 interrupts are handled as a special case. Even when the processor is executing at 
priority level 31, a priority-31 interrupt will interrupt the processor. 

The processor may post requests for later servicing. Interrupts waiting to be serviced - called 
pending interrupts - are discussed in section 8.4.2, "Pending Interrupts" (pg. 8-5). 

8.4 INTERRUPT TABLE 

The interrupt table (Figure 8-2),1028 bytes in length, can be located anywhere in the non-reserved 
address space. It must be aligned on a word boundary. The processor reads a pointer to interrupt 
table byte 0 during initialization. The interrupt table must be located in RAM since the processor 
must be able to read and write the table's pending interrupt section. 

The interrdpt table is divided into two sections: vector entries and pending interrupts. Each are 
described in the subsections that follow. 
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31 

Pending l'1terrupts , 

87, o 
OOOH 
004H 

020H 
~------~------~------------------~ 024H(Vector 8) 
r-------------------~----~--------------~ 028H (Vector 9) 
1--------~~~----------1 02CH (Vector 10) 

3DOH (Vector 243) 
3D4H (Vector 244) 

3EOH(Vector 247) 
3E4H (Vector 248) 
aE8H (Vector 249) 
, . 
3FOH (Vector 251) 
3F4H (Vector 252) 

L...-_______ -=:::..&.:::=. ________ ---' 400H (Vector 255) 

Vector Entry 

Instruction Pointer 

_ Reserved (Initialize to 0) \, 

_Preserved 

8.4.1 Vector Entries 

Figure 8-2. Interrupt Table 

21 0 , 

Ixlxl 
T Entry Type: 

00 Normal 
01 Reserved1 
10 Target in Cache 
11 Reserved1 , 

1 Vector entries with a reserved 
type have unprecticiable behavior. 

A vector entry contains a specific interrupt handler's address. When an interrupt is serviced, the 
processor branches to the address specified by the vector entry. 
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Each interrupt is associated with an 8-bit vector number which points to a vector entry in the 
interrupt table. The vector entry section contains 248 one-word entries. Vector numbers 8 through 
243 and 252 through 255 and their associated vector entries are used for conventional interrupts. 
Vector number 248 is the NMI vector. Vector numbers 244 - 247 and 249 - 251 are reserved. Vector 
numbers 0 through 7 cannot be used. 

Vector entry structure is given at the bottom of Figure 8-2. Each interrupt procedure must begin on 
a word boundary, so the processor assumes that the vector's two least significant bits are O. 

8.4.2 Pending Interrupts 

The pending interrupts section comprises the interrupt table's first 36 bytes, divided into two 
fields: pending priorities (byte offset 0 through 3) and pending interrupts (4 through 35). 

Each of the 32 bits in the pending priorities field indicate an interrupt priority. When the processor 
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt's priority is 
set. For example, if an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is set. 

Each of the pending interrupts field's 256 bits represent an interrupt procedure pointer. Byte offset 
5 is for vectors 8 through 15, byte offset 6 is for vectors 16 through 23, and so on. Byte offset 4, the 
first byte of the pending interrupts field, is reserved. When an interrupt is posted, its corresponding 
bit in the pending interrupt field is set. 

This encoding of the pending priority and pending interrupt fields permits the processor to first 
check if there are any pending interrupts with a priority greater than the current program and then 
determine the vector number of the interrupt with the highest priority. 

8.5 INTERRUPT STACK AND INTERRUPT RECORD 

The interrupt stack can be located anywhere in the non-reserved address space. The processor 
obtains a pointer to the base of the stack during initialization. The interrupt stack has the same 
structure as the local procedure stack described in section 7.1.1, "Local Registers and the 
Procedure Stack" (pg. 7-2). As with the local stack, the interrupt stack grows from lower addresses 
to higher addresses. 

The processor saves the state of an interrupted program - or an interrupted interrupt procedure -
in a record on the interrupt stack. Figure 8-3 shows the structure of this interrupt record. 

The interrupt record is always stored on the interrupt stack adjacent to the new frame that is created 
for the interrupt handling procedure. It includes the state of the AC and PC registers at the time the 
interrupt was received and the interrupt procedure pointer number used. Referenced to the new 
frame pointer address (designated NFP), the saved AC register is located at address NFP-12; the 
saved PC register is located at address NFP-16. 
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Current Stack 
31 (local, supervisor, or interrupt stack) 0 

f current frame r 
Interrupt Stack 

padding area 

optional data 
stack 

(not used by 80960Jx Implementation) growth 
" 

saved Process Controls Register NFP-16 

I'~'ru. NFP-12 Record 

NFP-8 

NFP 

new frame I Reserved 

F_CA017A 

Figure 8·3. Storage of an Interrupt Record on the Interrupt Stack 

8.6 INTERRUPT SERVICE ROUTINES 

An interrupt handling procedure performs a specific action that is associated with a particular 
interrupt procedure pointer. For example, one interrupt handler task might be to initiate a timer 
unit request. The interrupt handler procedures can be located anywhere in the non-reserved 
address space. Since instructions in the i960 processor family architecture must be word aligned, 
each procedure must begin on a word boundary. 

When an interrupt handling procedure is called, the processor allocates a new frame on the 
interrupt stack and a set of local registers for the procedure. If not already in supervisor mode, the 
processor always switches to supervisor mode while an interrupt is being handled. It also saves the 
states of the AC and PC registers for the interrupted program .. 
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The interrupt procedure shares the remainder of the execution environment resources (namely the 
global registers and the address space) with the interrupted program. Thus, interrupt procedures 
must preserve and restore the state of any resources shared with a non-cooperating program. 
Interrupt procedures must preserve and restore the state of any resources shared with a non­
cooperating program. 

For example, an interrupt procedure which uses a global register which is not permanently 
allocated to it should save the register's contents before it uses the register and restore the contents 
before returning from the interrupt handler. 

To reduce interrupt latency to critical interrupt routines, interrupt handlers may be locked into the 
instruction cache. See section 13.5.2.2, "Caching Interrupt Routines and Reserving Register 
Frames" (pg. 13-23) for a complete description. 

8.7 INTERRUPT CONTEXT SWITCH 

When the processor services an interrupt, it automatically saves the interrupted program state or 
interrupt procedure and calls the interrupt handling procedure associated with the new interrupt 
request. When the interrupt handler completes, the processor automatically restores the interrupted 
program state. 

The method that the processor uses to service an interrupt depends on the processor state when the 
interrupt is received. If the processor is executing a background task when an interrupt request is to 
be serviced, the interrupt context switch must change stacks to the interrupt stack. This is called an 
executing-state interrupt. If the processor is already executing an interrupt handler, no stack switch 
is required since the interrupt stack will already be in use. This is called an interrupted-state 
interrupt. 

The following subsections describe interrupt handling actions for executing-state and interrupted­
state interrupts. In both cases, it is assumed that the interrupt priority is higher than that of the 
processor and thus is serviced immediately when the processor receives it. 
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8.7.1 Executing-State Interrupt 

When the processor receives an interrupt while in the executing state (i.e., executing a program), it 
perfonns the following actions to service the interrupt. This procedure is the. same regardless of 
whether the processor is in user or supervisor mode when the interrupt occurs. The processor: 

L switches to the interrupt stack (as shown in Figure 8-3). The interrupt stack pointer becomes 
the new stack pointer for the processor. 

2. saves the current state of process controls and arithmetic controls in an interrupt record on 
the interrupt stack. The processor also saves the interrupt procedure pointer number. 

3. allocates a new frame on the interrupt stack and loads the new frame pointer (NFP) in global 
register g15. 

4. switches to the interrupted state. 

5. sets the state flag in its internal process controls to interrupted, its execution mode to 
supervisor and its priority to the priority of the interrupt. Setting the processor's priority to 
that of the interrupt ensures that lower priority interrupts cannot interrupt the servicing of 
the current interrupt. 

6. clears the trace-enable flag in its internal process controls. Clearing these flags allows the 
interrupt to be handled without trace faults being raised. 

7. sets the frame return status field (associated with the PFP in register rO) to 1112. 

8. perfonns a call operation as described in CHAPTER 7, PROCEDURE CALLS. The address 
for the called procedure is specified in the interrupt table for the specified interrupt 
procedure pointer. 

Once the- processor completes the interrupt procedure, it perfonns the following return actions: _ 

1. 

2. 

3. 

4. 

8-8 

copies the arithmetic controls field and the process controls field from the interrupt record 
into the arithmetic controls register and process controls, respectively. It also returns the 
trace-enable bit to its value before the interrupt occurred. 

deallocates the current stack frame and interrupt record from the interrupt stack and 
switches to the local or supervisor stack (the one it was using when it was interrupted). 

perfonns a return operation as described in CHAPTER 7, PROCEDURE CALLS. This 
causes the processor to switch back to the local or supervisor stack (whichever it was using 
before the interrupt). 

switches to the executing state and resumes work on the program, if there are no pending 
interrupts to be serviced or trace faults to be handled. 
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8.7.2 Interrupted-State Interrupt 

If the processor receives an interrupt while it is servicing another interrupt, and the new interrupt 
has a higher priority than the interrupt currently being serviced, the current interrupt-handler 
routine is interrupted. Here, the processor performs the same interrupt-servicing action as is 
described in section 8.7.1, "Executing-State Interrupt" (pg. 8-8) to save the state of the interrupted 
interrupt-handler routine. The interrupt record is saved on the top of the interrupt stack prior to the 
new frame that is created for use in servicing the new interrupt. 

On the return from the current interrupt handler to the previous interrupt handler, the processor de­
allocates the current stack frame and interrupt record, and stays on the interrupt stack. 
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CHAPTER 9 
FAULTS 

This chapter describes the i960® Jx processor's fault handling facilities. Subjects covered include 
the fault handling data structures and fault handling mechanism. See section 9.11, "FAULT 
REFERENCE" (pg. 9-21) for detailed information on each fault type. 

9.1 FAULT HANDLING FACILITIES OVERVIEW 

The i960 processor architecture defines various conditions in code and/or the processor's internal 
state that could cause the processor to deliver incorrect or inappropriate results or that could cause 
it to choose an undesirable control path. These are calledfault conditions. For example the archi­
tecture defines faults for divide-by-zero and overflow conditions on integer calculations with an 
inappropriate operand value. 

As shown in Figure 9-1, the architecture defines a fault table, a system procedure table, a set of 
fault handling procedures and stacks (user stack, supervisor stack, interrupt stack) to handle 
processor-generated faults. 

Fault 

Processor Fault Fault 
- Table r- -+ Handling 
- Procedures 

-System -- Procedure -- Supervisor 
Table Stack 

User Stack 

Figure 9-1. Fault-Handling Data Structures 
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The fault tablecQritains pointers to fault handling procedures. The system procedure table 
optionally provides an interface to any fault handling procedure and allows faults to be handled in 
supervisor mode. Stack frames for fault handling procedures are created on either the user or 
supervisor stack, depending on the mode in which the fault is handled. While servicing an 
interrupt, the processor uses the interrupt stack. 

Once these data structures and the code for the fault procedures are established in memory, the 
processor handles 'faults automatically and independently from application software. 

The processor can detect a fault at any time while executing instructions, whether from a program, 
interrupt handling procedure or fault handling procedure. When a fault occurs, the processor 
determines the fault type and selects a corresponding fault handling procedure from the fault table. 
It then invokes the fault handling procedure by means of an implicit call. As described later in this 
chapter, the fault handler call can be: 

• A local call (call-extended operation) 

• A system-local call (local call through the system procedure table) 

• A system-supervisor call (supervisor call through the system procedure table) 

As part of the implicit call to the fault handling procedure, the processor creates a fault record on 
the stack that the fault handling procedure is using. This record includes information on the fault 
and the processor's state when the fault was generated. 

After the fault record is created, the processor executes the selected fault handling procedure. If a 
fault is recoverable (i.e., the program can be resumed after handling the fault) the Return 
Instruction Pointer (RIP) is defined for the fault being serviced (see section 9.11, "FAULT 
REFERENCE" (pg. 9-21), the processor will resume execution at the RIP upon return from the 
fault handler. If the RIP is undefined, the fault handling procedure can create one by using the 
flushreg instruction followed by a modification of the RIP in the previous frame. The fault 
handler can also call a debug monitor or reset the processor instead of resurriing prior execution. 

This procedure call mechanism also handles faults that occur: 

• While the processor is servicing an interrupt 

• While the processor is working on another fault handling procedure 

9,.2 FAULT TYPES 

The i960 architecture defines a basic set of faults that are categorized by type and subtype. Each 
fault has a unique type and subtype number. When the processor detects a fault, it records the fault 
type and subtype numbers in a fault record. It then uses the type number to select a fault handling 
procedure. 
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The fault handling procedure can optionally use the subtype number to select a specific fault 
handling action. The i960 Jx processor recognizes i960 architecture-defined faults and a new fault 
subtype for detecting unaligned memory accesses. Table 9-1 lists all faults that the i960 Jx 
processor detects, arranged by type and SUbtype. Text that follows the table gives column defini­
tions. 

Table 9·1. i960® Jx Processor Fault Types and Subtypes 

Fault Type Fault Subtype Fault Record 

Number Name 
Number or 

Name 
Bit Position 

OH OVERRIDE NA NA 
See section 9.10.1, 
"Overrides" (pg. 9-21) 

OH PARALLEL NA NA 
see section 9.6.4, "Parallel 
Faults" (pg. 9-11) 

Bit 1 INSTRUCTION XX01 XX02H 

Bit 2 BRANCH XX01 XX04H 

Bit 3 CALL XX01 XX08H 

1H TRACE Bit 4 RETURN XX01 XX10H 

Bit 5 PRE RETURN XX01 XX20H 

Bit 6 SUPERVISOR XX01 XX40H 

Bit 7 MARK XX01 XX80H 

1H INVALlD_OpCODE XX02 XX01H 

2H UNIMPLEMENTED XX02XX02H 
2H OPERATION 

3H UNALIGNED XX02XX03H 

4H INVALID_OPERAND XX02 XX04H 

1H INTEGER_OVERFLOW XX03 XX01H 
3H ARITHMETIC 

2H ZERO-DIVIDE XX03XX02H 

4H Reserved 

5H CONSTRAINT 1H RANGE XX05XX01H 

6H Reserved 

7H PROTECTION Bit 1 LENGTH XX07 XX01H 

8H - 9H Reserved 

AH TYPE 1H MISMATCH XXOAXX01H 

BH- FH Reserved 

In Table 9-1: 

• The first (left-most) column contains the fault type numbers in hexadecimal. 

• The second column shows the fault type name. 
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• The third column gives the fault subtype number as either: (1) a hexadecimal number or (2) as 
a bit position in the fault. record's 8-bit fault subtype field. The bit position method of 
indicating a fault subtype is used for certain faults (such as trace faults) in which two or more 
fault subtypes may occur simultaneously. 

• The fourth column gives the fault subtype name. For convenience, individual faults are 
referred to in this manual by their fault-subtype name. Thus an 
OPERATION.INVALID_OPERAND fault is referred to as'simply an INVALID_OPERAND 
fault; an ARITHMETIC.INTEGER_DVERFLOW fault is referred to as an 
INTEGER_OVERFLOW fault. 

• The fifth column shows the encoding of the word in the fault record that contains' the fault 
type and fault subtype numbers. 

Other i960 processor family members may provide extensions that recognize additional fault 
conditions. Fault type ,and subtype encoding allows all faults to be included in the fault table: those 
that are common to all i960 processors and those that are specific to one or more family members. 
The fault types are used consistently for all family members. For example, Fault Type 4 is 
reserved for floating point faults. Any i960 processor with floating point operations uses Entry 4 to 
store the pointer to the floating point fault handling procedure. 

9.3 FAULT TABLE 

The fault table (Figure 9-2) is the processor's pathway to the fault handling procedures. It can be 
located anywhere in the address space. The processor obtains a pointer to the fault table during 
initialization. 

The fault table contains one entry 'for each fault type. When a fault occurs, the processor uses the 
fault type to select an entry in the fault table. From this entry, the processor obtains a pointer to the 
fault handling procedure for the type of fault that occurred. Once called, a fault handling 
procedure has the option of reading the fault subtype or subtypes from the fault record when 
determining the appropriate fault recovery action. 
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31 Fault Table o 

Override/Par/iliel Fault Entry OOH 
~------------------------------------------------------~ 

Trace Fault Entry 08H 

~--------------------~--------------------------------~ Operation Fault Entry 10H 

~------------------------------------------------------~ Arithmetic Fault Entry 18H 

Local-Call 

Fault-Handler Procedure Address n 

II III 

31 System-Call Entry 2 1 0 

Fault-Handler Procedure Number 

0000027FH 

I Reserved (Initialize to 0) 

Figure 9·2. Fault Table and Fault Table Entries 
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As indicated in Figure 9-2, two fault table entry types are allowed: local-call entry and system-call 
entry. Each is two words in length. The entry type field (bits 0 and 1 of the entry's first word) and 
the value in the entry's second word determine the entry type. 

local-call entry 
(type 002) 

system-call entry· 
(type 102) 

Provides an instruction pointer .for the fault handling procedure. The 
processor uses this entry to invoke tlIe specified procedure by means of an 
implicit local-call operation. The second word of a local procedure entry is 
reserved. It must be set to zero when the fault table is created and not 
accessed after that 

Provides a procedure number in the system procedure table. This entry must 
have an entry type of 102 and a value in the second word of 0000 027FH. 
Using this entry, the processor invokes the specified fault handling procedure 
by means of an implicit call-system operation similar to that performed for 
the calls instruction. A fault handling procedure in the system procedure 
table can be called with a system-local call or a system-supervisor call, 
depending on the entry type in the system~procedure table. 

Other entry types (012 and 112) are reserved and have unpredictable behavior. To summarize,. a 
fault handling procedure can be invoked through the fault table in any of three ways: a local call, a 
system-local call or a system-supervisor call. 

9.4 STACK USED IN FAULT HANDLING 

The architecture does not define a dedicated fault handling stack. Instead, to handle a fault, the 
processor uses either the user, interrupt or supervisor stack, whichever is active when the fault is 
generated. There is however, one exception: if the user stack is active when a fault is generated 
and the fault handling procedure is called with an implicit system supervisor call, the processor 
switches to the supervisor stack to handle the fault. 

9~5 FAULT RECORD 

When a fault occurs, the processor records information about the fault in a fault record in memory. 
The fault handling procedure uses the inforination in the fault record to correct or recover from the 
fault condition and, if possible, resume program execution. The fault record is stored on the stack 
that the fault handling procedure will use to handle the fault. 
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9.5.1 Fault Record Description 

Figure 9-3 shows the fault record's structure. In this record, the fault's type number is stored in the 
fault type field and the fault's subtype number (or bit positions for multiple subtypes) is stored in 
the fault subtype field. The address-of-faulting-instruction field contains the IP of the instruction 
that caused the processor to fault. 

When a fault is generated, the existing PC and AC register contents are stored in their respective 
fault record fields. The processor uses this information to resume program execution after the fault 
is handled. 
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NFP - (n+ 1 )*32 

'NFP - 24- n*32 
\ 

NFP - 20- n*32 

NFP - 12- n*32 

...&.....I-.&.....I...&....,L.;"..I....j NFP - 8- n*32 
~ ________________________________ ~~ ____________ ~ NFP-4-n*32 

RESUMPTION INFORMATION 

OVERRIDE FAULT DATA 

FAULT DATA 

31 

• RESERVED 

Figure 9-3. Fault Record 

o 

NFP - 64 

NFP - 52 

NFP - 48 

NFP - 44 

NFP - 32 

NFP-20 

NFP-16 

NFP-12 

NFP-8 

NFP-4 

The Override fault data field is used to store optional data for the override fault condition. Refer to 
section 9.10.1, "Overrides" (pg. 9-21) for more information. The O'IYpe and OSubtype fields are 
used to describe PARALLEL and OVERRIDE faults. For single faults, the 80960Jx places the 
number of faults (one) in the OSubtype field, as it does for parallel faults (greater than one). The 
Optional Data field is defined for certain faults. This field contains additional information about 
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the faulting conditions, usually to assist resumption. Refer to section 9.11, "FAULT 
REFERENCE" (pg. 9-21) for more details on the faults that use this field. All unused bytes in the 
fault record are reserved. 

9.5.2 Fault Record Location 

The fault record is stored on the stack that the processor uses to execute the fault handling 
procedure. As shown in Figure 9-4, this stack can be the user stack, supervisor stack or interrupt 
stack. The fault record begins at byte address NFP-l. NFP refers to the new frame pointer that is 
computed by adding the memory size allocated for padding and the fault record to the new stack 
pointer (NSP). The processor rounds the FP to the next 16-byte boundary and then allocates 80 
bytes for the fault record. The size and alignment of the fault record is implementation-dependent. 

Current Stack 
31 (User, Supervisor, or Interrupt Stack) 0 

~'-------_----I~SFPp }---- C,rr'm'_ -!. 
31 Local Stack or Supervisor Stack2 o 
~ ~~ "'l Padding Area ~ 

~--------------------------------~ 
Stack ~ I 

Gro1wth -c Fault Record -c NFP-4 

r---------------------------------------~ NFP 

-c> New Frame 1 
t 

NOTES: 

Fault 
Record 

1. If the call to the fault handler procedure does not require a stack switch, the new stack pointer (NSP) is the same as SP. 
2. If the processor is in user mode and the fault handler procedure is called with a system supervisor call, the processor 

switches to the supervisor stack. 

Figure 9-4. Storage of the Fault Record on the Stack 
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9.6 .. MULTIPLE AND PARALLEL FAULTS 

Multiple fault conditions can occur during a single instruction execution and during multiple 
instruction execution when the instructions are executed by different units within the processor. 
The following sections describe how faults are handled under these conditions. 

9.6.1. Multiple Non-Trace Faults on the Same Instruction 

Multiple fault conditions can occur during a single instruction execution. For example, an 
instruction can,have an invalid operand and unaligned address. When this situation occurs, the 
processor is required to re~ognize and generate at least one of the fault conditions. The processor 
may not detect all fault conditions and may not report all detected faults on a single ~nstruction. 

In a multiple fault situation, the reported fault condition is left to the implementation. On the Jx 
processor, all non-trace fault conditions present in one instruction are prioritized. Only the non­
trace fault of highest priority is reported in the fault record. The faults by order of decreasing 
priority are: 

• OPERATION. UNIMPLEMENTED (Attempt to execute from on-chip RAM or a memory­
mapped region only.) 

OPERATION.INVALID"':PPCODE 

• OPERATION.INVALID_OPERAND 

• TYPE.MISMATCH 

• OPERATION.UNIMPLEMENTED (All other faults related to unimplemented operations) 

• ARITHMETIC.ZERO_DIVIDE 

• ARITHMETIC.INTEGER_QVERFLOW 

• CONSTRAINT.RANGE 

• PROTECTION.LENGTH 

9.6.2 Multiple Trace and Fault Conditions on the Same Instruction 

Trace' faults on different instructions cannot happen concurrently, because trace faults are preCise . 
. Multiple trace fault conditions on the same instruction are reported in a single trace fault record 
. (with the exception of prereturn trace, which always happens alone). To support this multiple fault 
reporting, the trace fa\.Jlt uses bit positions in th~. fault-subtype field to in~cate occurrences of 
mUltiple faults of the same type (Table 9-1). . 
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9.6.3 Multiple Trace and Non-Trace Fault Conditions on the Same Instruction 

The execution of a single instruction can create one or more trace fault conditi9ns in addition to 
multiple non-trace fault conditions. When this occurs, the processor generates at least two faults: a 
non-trace fault and a trace fault. 

The non-trace fault is handled first and the trace fault is triggered immediately after executing ,the 
return instruction (ret) at the end of the non-trace fault handler. 

9.6.4 Parallel Faults 

The i960 Jx processor exploits the architecture's tolerance of out-of-order instruction. execution by 
issuing instructions to independent execution units on the chip. The following subsections describe 
how the processor handles faults in this environment. 

9.6.5 Faults on Multiple Instructions Executed in Parallel 

If AC.nif = 0, imprecise faults relative to different instructions executing in parallel may be 
reported in a single parallel fault record and the processor calls a unique fault handler, the 
PARALLEL fault handler (see section 9.9.4, "No Imprecise Faults (AC.nif) Bit" (pg. 9-20)). This 
mechanism allows instructions that can fault to be executed in parallel with other instructions' or 
out of order. 

In parallel fault situations, the processor saves the fault type and subtype of the second and 
subsequent faults detected in the optional section of the fault record. The fault handling procedure 
for parallel faults can then analyze the fault record and handle the faults. The fault record for 
parallel faults is described in the next section. 

If the RIP is undefined for at least one of the faults found in the parallel fault record, then the RIP 
of the parallel fault handler is undefined. In this case, the parallel fault handling procedure can 
either create a RIP and return to it or call a debug monitor to analyze the faults. 

If the RIP is defined for all faults found in the fault record, then it will point to the next instruction 
not yet executed. The parallel fault handler can simply return to the next instruction not yet 
executed with a ret instruction. 

Consider the following code example, where the mull and the addi instructions both have overflow 
conditions. AC.om :;.: 0, AC.nif = 0, and both instructions are in the instruction cache at the time of 
their execution. The addi and muli are allowed to execute in parallel because AC.nif = 0 and 
because the faults that these instructions can potentially take (ARITHMETIC) are imprecise. ' 

muli g2, g4, g6i 

addi g8, g9, glOi # results in integer overflow 
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The fault on the addi is detected before the fault on the muli, because the muli takes longer to 
execute. The fault call synchronizes faults on the way to the overflow fault handler for the add! 
instruction (see section 9.9.5, "Controlling Fault Precision" (pg.9-20)) which is when the muli 
fault is detected. The processor builds a parallel fault record with information relative to both 
faults and calls the parallel fault handler. In the fault handler, ARITHMETIC faults may be 
recovered by storing the desired result of the instruction in the proper destination register and 
setting the AC.of flag( optional) to indicate an overflow occurred. Then a ret at the end of the 
parallel fault handler routine will return to the next instruction not yet executed in the program 
flow. 

On the i960 Ix processor, the mull overflow fault is the only fault that can happen with a delay. 
TherefQre, parallel fault records can report a maximum of 2 faults, one of which must be a muli 
ARITHMETIC.INTEGER_OVERFLOW fault. 

A parallel fault handler must be accessed through a system-supervisor call. Local and system-local 
parallel fault handlers are not supported by the architecture and have an unpredictable behavior. 
Tracing is disabled upon entry into the parallel fault handler (PC;te is cleared). It is restored upon 
return from the handler. The parallel fault handler should not set PC.te to prevent infinite internal 
loops. 

9.6.6 Fault Record for Parallel Faults 

Figure 9-3 shows the structure of the fault record for parallel faults. 

To calculate byte offsets, "n" indicates the fault number. Thus, for the second fault recorded (n=2), 
the relationship (NFP - 8- (n * 32)) reduces to NFP-72. For the i960 Ix processor, a maximum of 
two faults are reported in the parallel fault record, and one of them must be the ARITH­
METIC.INTEGER_OVERFLOW fault on a mull instruction. 

When multiple parallel faults occur, the processor selects one of the faults and records it in the first 
16 bytes of the fault record as described in section 9.5.1, "Fault Record Description" (pg. 9-7). The 
remaining parallel faults are written to the fault record's optional section and the fault handling 
procedure for parallel faults is invoked. 

The OType/OSubtype word at NFP - 20 contains information about the parallel faults. The byte at 
offset NFP-18 contains OOH (encoding for the PARALLEL fault type); the byte at NFP-20 
contains the number of parallel faults. The optional section also .contains a 32-byte parallel fault 
record for each additional fault. These parallel fault records are stored incrementally in the fault 
record starting at byte offset NFP-65. The fault record for each additional fault contains only the 
fault type, fault subtype, address-of-faulting-instruction, and the optional fault. section. (For 
example, if two parallel faults occur, the fault record for the second fault is located from NFP - 96 
to NFP - 65.) 
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9.7 FAULT HANDLING PROCEDURES 

The fault handling procedures can be located anywhere in the address space. Each procedure must 
begin on a word boundary. The processor can execute the procedure in user mode or supervisor 
mode, depending on the type of fault table entry. 

9.7.1 Possible Fault Handling Procedure Actions 

The processor allows easy recovery from many faults that occur. When fault recovery is possible, 
the processor's fault handling mechanism allows the processor to automatically resume work on 
the program or interrupt pending when the fault occurred. Resumption is initiated with a ret 
instruction in the fault handling procedure. 

If recovery from the fault is not possible or not desirable, the fault handling procedure can take one 
of the following actions, depending on the nature and severity of the fault condition (or conditions, 
in the case of multiple faults): 

• Return to a point in the program or interrupt code other than the point of the fault. 

• Call a debug monitor. 

• Explicitly write the processor state and fault record into memory and perform processor or 
system shutdown. 

• Perform processor or system shutdown without explicitly saving the processor state or fault 
information. 

When working with the processor at the development level, a common fault handling procedure 
action is to save the fault and processor state information and make a call to a. debugging device 
such as a debugging monitor. This device can then be used to analyze the fault information. 

9.7.2 Program Resumption Following a Fault 

Because of the wide variety of faults, they can occur at different times with respect to the faulting 
instruction: 

• Before execution of the faulting instruction (e.g. fetch from on-chip RAM) 

• During instruction execution (e.g. integer overflow) 

• Immediately following execution (e.g. trace) 

When the fault occurs before the faulting instruction is executed, the faulting instruction may be 
re-executed upon return from the fault handling procedure. 
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When a fault occurs during or after execution of the faulting instruction,the fault may be 
accompanied by a program state change such that program execution cannot be resumed after the 
fault is handled. For example, when an integer overflow fault occurs, the overflow value is stored 
in the destination. If the destination register is the same as one of the source registers, the source 
value is lost, making it impossible to re-execute the faulting instruction. 

In general, resumption of program execution with no changes in the program's control flow is 
possible with the following fault types or sUbtypes: . 

• All OPERATION Subtypes • ARITHMETIC.ZERO_DIVIDE 

• All CONSTRAINT Subtypes • All TRACE Subtypes 

• PROTECTION.LENGTH 

Resumption of the program mayor may not be possible with the following fault subtype: 

• ARITHMETIC.INTEGER_OVERFLOW 

The effect of specific fault types on a program is defined in section 9.11, "FAULT REFERENCE" 
(pg. 9-21) under the heading Program State Changes. 

9.7.3 Return Instruction Pointer (RIP) 

When a fault handling procedure is called, a Return Instruction Pointer (RIP) is saved in the image 
of the RIP in the faulting frame. The RIP can be accessed at address pfp+8 while executing the 
fault handler after a flushreg. The RIP in the previous frame points to an instruction where 
program execution can be resumed with no break in the program's control flow. It generally points 
to the faulting instruction or to the next instruction to be executed. In some instances, however, the 
RIP is undefined. RIP content for each fault is described in section 9.11, "FAULT REFERENCE" 
(pg.9-21). 

9.7.4 Returning to the Point in the Program Where the Fault Occurred 

As described in section 9.7.2, "Program Resumption Following a Fault" (pg. 9-13), most faults 
can be handled such that program control flow is not affected. In this case, the processor allows a 
program to be resumed at the point where the fault occurred, following a return from a fault 
handling procedure (initiated with a ret instruction). The resumption mechanism used here is 
similar to that provided for returning from an interrupt handler. 

The fault handling procedure should be executed in supervisor mode (either by using a supervisor 
call or by running the program in supervisor mode) for the PC register to be restored from the fault 
record upon return from the fault handler. (See the pseudocode in section 6.2.54, "ret" (pg. 6-91». 
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9.7.5 Returning to a Point in the Program Other Than Where the Fault 
Occurred 

A fault handling procedure can also return to a point in the program other than where the fault 
occurred. To do this, the fault procedure must alter the RIP. 

To perform a return from a fault handling procedure to an alternate point in the program 
predictably, the fault handling procedure should perform the following steps: 

1. Flush the local register sets to the stack with a flushreg instruction. 

2. Modify the RIP in the previous frame. 

3. Clear the trace-fault-pending flag in the fault record's process controls field before the return 
(optional). 

4. Execute a return with the ret instruction. 

Use this technique carefully and only in situations where the fault handling procedure is closely 
coupled with the application program. 

9.7.6 Fault Controls 

For certain fault types and SUbtypes the processor employs register mask bits or flags that 
determine whether or not a fault is generated when a fault condition occurs. Table 9-2 summarizes 
these flags and masks, the data structures in which they are located, and the fault subtypes they 
affect. 

The integer overflow mask bit inhibits the generation of integer overflow faults. The use of this 
mask is discussed in section 9.11, "FAULT REFERENCE" (pg. 9-21). 

The no imprecise faults (NIF) bit controls the synchronizing of faults for a category of faults called 
imprecise faults. The function of this bit is described in section 9.9, "PRECISE AND IMPRECISE 
FAULTS" (pg. 9-19). 
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TC register trace'mode, bits and the PC register trace enable bit support trace faults. Trace mode 
bits enable trace modes; the trace enable bit enables trace fault generation. The use of these bits is 
described in the trace faults descripti~n in section 9.11, "FAULT REFERENCE" (pg. 9-21). 
Further discussion of these flags is provided in CHAPTER 10, TRACING AND DEBUGGING. 

Table 9-2. Fa~lt Flags or Masks 

Flag or Mask Name Locatibn Faults Affected 

Integer Overflow Mask Bit Arithmetic Controls (AC) Register INTEGER_OVERFLOW 

No Imprecise Faults Bit Arithmetic Controls (AC) Registf;lr All Imprecise Faults 

Trace Enable Bit Process Controls (PC) Register All TRACE Faults 

All TRACE Faults except 
Trace Mode Trace Controls (TC) Register hardware breakpoint traces 

andfmark 

Unalignap Fault Mask 
," 

, Process Control Block (PRCB) . UNALIGNED Fault 

The unaligned fault mask bit is located in the process control block (PRCB), which is read during 
initialization. It controls whether unaligned memory accesses generate a fault. See section 15.2.5, 
"Data Alignment" (pg. 15-22). 

9.8 FAULT HANDLING ACTION 

Once a fault occurs, the processor saves the program state, calls the fault handling procedure and 
- when the fault recovery action completes - restores the program state (if possible). No 
software other than the fault handling procedures is required to support this activity. 

Three tyPes of implicit procedure calls can be used to invoke the fault handling procedure 
according to the information in the selected fault table entry: a local call, a system::'local call and a 
system-supervisor call. 

The following subsections describe actions the processor takes while handling faults. It is not 
necessary to read these sections to use the fault handling mechanism or to write a fault handling 
procedure. This discussion is provided for those readers who wish to know the details of the fault 
handling mechanism. 
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9.8.1 Local Fault Call 

When the selected fault handler entry in the fault table is an entry type 002 (local procedure), the 
processor operates as described in section 7.1.3.1, "Call Operation" (pg. 7-7), with the following 
exceptions: 

• A new frame is created on the stack that the processor is currently using. The stack can be the 
user stack, supervisor stack or interrupt stack. 

• The fault record is copied into the area allocated for it in the stack, beginning at NFP-l. (See 
Figure 9-4.) 

• The processor gets the IP for the first instruction in the called fault handling procedure from 
the fault table. 

• The processor stores the fault return code (0012) in the PFP return type field. 

If the fault handling procedure is not able to perform a recovery action, it performs one of the 
actions described in section 9.7.2, "Program Resumption Following a Fault" (pg. 9-13). 

If the handler action results in recovery from the fault, a ret instruction in the fault handling 
procedure allows processor control to return to the program that was pending when the fault 
occurred. Upon return, the processor performs the action described in section 7.1.3.3, "Return 
Operation" (pg. 7-8), except that the arithmetic controls field from the fault record is copied into 
the AC register. If the processor is in user mode before execution of the return, the process controls 
field from the fault record is not copied back to the PC register. 

9.8.2 System-Local Fault Call 

When the fault handler selects an entry for a local procedure in the system procedure table (entry 
type 102), the processor performs the same action as is described in the previous section for a local 
fault call or return. The only difference is that the processor gets the fault handling procedure's 
address from the system procedure table rather than from the fault table. 

9.8.3 System-Supervisor Fault Call 

When the fault handler selects an entry for a supervisor procedure in the system procedure table, 
the processor performs the same action described in section 7.1.3.1, "Call Operation" (pg. 7-7), 
with the following exceptions: 

• If the fault occurs while in user mode, the processor switches to supervisor mode, reads the 
supervisor stack pointer from the system procedure table and switches to the supervisor stack. 
A new frame is then created on the supervisor stack. 
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• If the fault occurs while in supervisor mode, the processor creates a new frame on the current 
stack. If the processor is executing a supervisor procedure when the fault occurred, the current 
stack is the supervisor stack; if it is' executing an interrupt handler procedure, the current stack 
is the interrupt stack. (The processor switches to supervisor mode when handling interrupts.) 

• The fault record is copied into the area allocated for it in the new stack frame, beginning at 
NFP-l. (See Figure 9-4.) . 

• The processor gets the IP for the first instruction of the fault handling procedure from the 
system procedure table (using the index provided in the fault table entry). ' 

• The processor stores the fault return code (0012) in the PFP register return type field. If the 
fault is not a trace, parallel or override fault, it copies the state of the system procedure table 
trace control flag (byte 12, bit 0) into the PC register trace enable bit. If the fault is a trace, 
parallel or override fault, the trace enable bit is cleared. 

On a return from the fault handling procedure, the processor performs the action described in 
section 7.1.3.3, "Return Operation" (pg. 7-8) with, the addition of the following: 

• The fault record arithmetic controls field is copied into the AC register. 

• If the processor is in supervisor mode prior to the return from the fault handling procedure 
(which it should be), the fault record process controls field is copied into the PC register. The 
mode is' then switched back to user, if it was in user m()de before the call. 

• The processor switches back to the stack it, Was using when the fault occurred. (If the 
processor was in user mode when the fault occurred, this operation causes a switch from the 
supervisor stack to the user stack.) 

• If the trace-fault-pending flag and trace enable bit are set in the PC field of the fault record, 
the trace fault on the instruction at the origin of the supervisor fault call is handled at this time. 

PC register restoration causes any changes to the process controls caused by the fault handling 
procedure to be lost. 

9.8.4 Faults and Interrupts 

If an interrupt occurs during: 

• An instruction that will fault; or 

• An instruction that has already faulted; or 

• Fault handling procedure selection 

The processor handles the interrupt in the following way: It completes the selection of the fault 
handling procedure, creates the fault record and then services the interrupt just prior to executing 
the first instruction of the fault handling procedure. The fault is handled upon return from the 
interrupt. Handling the interrupt before the fault reduces interrupt latency. 
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9.9 PRECISE AND IMPRECISE FAULTS 

As described in section 9.11.5, "PARALLEL Faults" (pg. 9-29), the i960 architecture - to support 
parallel and out-of-order instruction execution - allows some faults to be generated together. 

The processor provides two mechanisms for controlling the circumstances under which faults are 
generated: the AC register no-imprecise-faults bit (AC.nif bit) and the instructions that 
synchronize faults. See section 9.9.5, "Controlling Fault Precision" (pg. 9-20) for more infor­
mation. Faults are categorized as precise, imprecise and asynchronous. The following subsections 
describe each. 

9.9.1 Precise Faults 

A fault is precise if it meets all of the following conditions: 

• The faulting instruction is the earliest instruction in instruction issue order to generate a fault. 

• All instructions before the faulting instruction, in instruction issue order, have completed 
successfully with no unreported faults. 

• All instructions after the faulting instruction, in instruction issue order, are ensured not to have 
executed. 

The faults that are always precise are: 

• TRACE 

• PROTECTION 

9.9.2 Imprecise Faults 

Faults that do not meet all of the requirements for precise faults are considered imprecise. For 
imprecise faults, the state of execution of instructions surrounding the faulting instruction may be 
unpredictable. When instructions are executed out-of-order and an imprecise fault occurs, it may 
not be possible to access the source operands of the instruction. This is because they may have 
been modified by subsequent instructions executed out-of-order. However, the RIP of some 
imprecise faults (e.g. ARITHMETIC) points to the next instruction that has not yet executed and 
guarantees the return from the fault handler to the original flow of execution. Faults that the archi­
tecture allows to be imprecise are: 

• OPERATION 

• CONSTRAINT 

• ARITHMETIC 

• TYPE 
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9.9.3 Asynchronous Faults 

Asynchronous faults are those whose occurrence has no direct relationship to the instruction 
pointer. This group includes MACHINE faults, which are not implemented on the 80960Jx. 

9.9.4 No Imprecise Faults (AC.nif) Bit 

The AC.nif bit controls imprecise fault generation. If AC.nif is set, all faults generated are precise. 
If AC.nifis clear, several imprecise faults may be reported together in a parallel fault record. 
Precise faults can never be found in parallel fault records, thus only more than one imprecise fault 
occurring concurrently with AC.nif = 0 can produce a parallel fault. 

Compiled code should execute with the AC.nif bit clear, using syncf where necessary to ensure 
that faults occur in order. In this mode, imprecise faults are considered to be catastrophic errors 
from which recovery is not needed. This also allows the processor to take advantage of internal 
pipelining which can speed up processing time. When only precise faults are allowed, the 
prOCessor must restrict the use of pipelining to prevent imprecise faults. 

Th\! NIF bit should be set if recovery from one or more imprecise faults is required. For example, 
the N1F bit should be set if a program needs to handle - and recover from - unmasked integer­
overflow faults arid the fault handling procedure cannot be closely coupled with the application to 
perform imprecise fault recovery. 

9.9.5 Controlling Fault Precision 

The syncf instruction forces the processor to complete execution of all instructions that occur 
prior to syncf and to generate all faults before it begins work on instructions that occur after 
syncf. This instruction has two uses: 

•. It forces faults to be precise when the NIF bit is clear. 

• It ensures that all instructions are complete and all faults are generated in one block of code 
before executing another block of code. 

In addition to the syncf instruction, an implicit fault synchronization is performed at the beginning 
of the following instructions or operations: 

• 

• 
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Call and Return Operations including call, calix, calls, and ret instructions, plus the implicit 
interrupt and fault call operations. 

Atomic Operations including atadd and atmod . 
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9.10 FAULTS WITHIN A FAULT HANDLER 

The architecture provides for graceful degradation in situations where faults occur while 
attempting to perform the action defined for a previous fault (i.e., from the time the fust fault was 
detected until the time that the call to its fault handler completes). The first such successive fault is 
called an override, and results in a different fault handler being selected. The second such 
successive fault is called a system error. 

9.10.1 Overrides 

If a second fault occurs while storing a fault record for a previous fault or in invoking the fault 
handler, and the previous fault is not for an override or parallel fault condition, an override is said 
to occur. 

This is similar to normal fault-handler invocation, with the following exceptions. The fault record 
describes the fust fault as described previously. Field O'JYpe contains the fault type of the second 
fault, field OSubtype contains the fault subtype of the second fault and field override-fault-data 
contains what would normally be the fault data field for the second fault type. Rather than selecting 
the fault handler corresponding to the first or second fault types, the override fault handler is 
selected. 

When an override condition does not occur, these fields in the fault record have no defined value, 
except for the OType/OSubtype fields (see section 9.5.1, "Fault Record Description" (pg. 9-7). 

An override fault handler must be accessed through a system-supervisor call. Local and system­
local override fault handlers are not supported by the architecture and have an unpredictable 
behavior. Tracing is disabled upon entry into the override fault handler (PC.te is cleared). It is 
restored upon return from the handler. To prevent infinite internal loops, the override fault handler 
should set PC.te. 

9.10.2 System Error 

A system error occurs when a fault condition is detected while servicing an override or a parallel 
fault. This type of error causes the processor. to enter a system error state. In this state, the 
processor indefinitely sends an error message on the address bus, while asserting the FAIL pin. 
Refer to section 11.2.2.3, "The Fail Pin (FAIL)" (pg. 11-7) for more information on system error 
conditions. 

9.11 FAULT REFERENCE 

This section describes each fault type and subtype and gives detailed information about what is 
stored in the various fields of the fault record. The section is organized alphabetically by fault type. 
The following paragraphs describe the information that is provided for each fault type . 
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Fault Type: 

Fault Subtype: 

Function: 

RIP: 

Fault IP: 

Fault Data: 

Class: 

Program State Changes: 

Trace Reporting: 

Notes: 

9-22 

Gives the number that appears in the fault record fault-type field 
when the fault is generated. 

Lists the fault subtypes and the number associated with each fault 
subtype. 

Describes the purpose and handling of the fault type and each 
subtype. The error message take the form of the dummy address 
OxFEFFFF68. 

Describes the value saved in the image of the RIP register in the 
stack frame that the processor was using when the fault occurred. In 
the RIP definitions, "next instruction" refers to the instruction 
directly after the faulting instruction or to an instruction to which 
the processor can logically return when resuming program 
execution. 

Note that the discussions of many fault types specify that the RIP 
contains the address of the instruction that would have executed . . 

next had the fault not occurred. Since some implementations may 
choose to execute' instructions out of order when this can be done 
transparently, the RIP need 'not necessarily point to the instruction 
immediately following (in an execution-order sense); it may point 
elsewhere in the instruction stream. However, it must point to a spot 
at which execution can be resumed correctly if one wants to resume 
execution after the fault, and thus the implementation cannot 
execute out-of-order any instructions subsequent to the faulting 
instruction that are dependant on any result of the faulting 
instruction. 

Describes the contents of the fault record's fault instruction pointer 
field, typically the faulting instruction's IP. 

Describes any values stored in the fault record's fault data field. 

Indicates if a fault is precise or imprecise. 

Describes the process state changes that would prevent re­
executing the faulting instruction if applicable. 

Relates whether a trace fault (other than PRERET) can be detected 
on the faulting instruction, also if and when the fault is serviced. 

Additional information specific to partiCUlar implementations of the 
i960 architecture. 
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9.11.1 ARITHMETIC Faults 

Fault Type: 3H 

Fault Subtype: 

Function: 

RIP: 

Fault IP: 

Class: 

Program State Changes: 

Trace Reporting: 

Number 
OH 
IH 
2H 
3H-FH 

Name 
Reserved 
INTEGER_OVERFLOW 
ZERO_DIVIDE 
Reserved 

Indicates a problem with an operand or the result of an arithmetic 
instruction. An INTEGER.OVERFLOW fault is generated when the 
result of an integer instruction overflows its destination and the AC 
register integer overflow mask is cleared. Here, the result's n least 
significant bits are stored in the destination, where n is destination 
size. Instructions that generate this fault are: 

addi 
stlb 
mull 

subl 
shll 
dlvi 

stis 
ADDI<cc> 
SUBI<cc> 

An ARITHMETIC.ZERO_DIVIDE fault is generated when the 
divisor operand of an ordinal- or integer-divide instruction is zero. 
Instructions that generate this fault are: 

dlvo divi 

edlv reml 

remo modi 

IP of the instruction that would have executed next if the fault had 
not occurred. 

IP of the faulting instruction. 

Imprecise. 

Faults may be imprecise when executing with the NIP bit cleared. 
An INTEGER.OVERFLOW and ZERO_DIVIDE faults may not be 
recoverable because the result is stored in the destination before the 
fault is generated; (e.g., the faulting instruction cannot be re­
executed if the destination register was also a source register for the 
instruction). 

The trace is reported upon return from the Arithmetic fault handler. 
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9.11.2 CONSTRAINT Faults 

Fault Type: 

Fault Subtype: 

Function: 

RIP: 

Fault IP: 

Class: 

Program State Changes: 

Trace Reporting: 
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5H 

Number Name 
OH Reserved 
1M RANGE 
2H"FH Reserved 

Indicates the program or procedure violated an architectural 
constraint. 

A CONSTRAINT.RANGE fault is generated when a FAULTccc> 
instruction is executed. and the AC register condition code field 
matChes ~e condition required by the instruction. 

No defined value. 

Faulting Instruction. 

Imprecise. 

These. faults may be imprecise when executing with the NIP bit 
cleared. No changes in the program's control flow accompany these 
faults. A CONSTRAINT.RANGE fault is generated after the fault­
if instruction executes. The program state is not affected. 

Serviced upon return from the Constraint fault handler. . ,\ 
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9.11.3 OPERATION Faults 

Fault Type: 

Fault Subtype: 

Function: 

RIP: 

Fault IP: 

Fault Data: 

Class: 

2H 

Number Name 
OH Reserved 
IH INVALID_OPCODE 
2H UNIMPLEMENTED 
3H UNALIGNED 
4H INVALID_OPERAND 
5H-FH Reserved 

Indicates the processor cannot execute the current instruction 
because of invalid instruction syntax or operand semantics. 

An INVALID_OPCODE fault is generated when the processor 
attempts to execute an instruction containing an undefined opcode 
or addressing mode. 

An UNIMPLEMENTED fault is generated when the processor 
attempts to execute an instruction fetched from on-chip data RAM, 
or when a non-word or unaligned access to a memory-mapped 
region is performed, or when attempting to write memory-mapped • 
region OxFF0084XX when not granted. 

An UNALIGNED fault is generated when the following conditions 
are present: (1) the processor attempts to access an unaligned word 
or group of words in non-MMR memory; and (2) the fault is 
enabled by the unaligned-fault mask bit in the PRCB fault configu­
ration word. 

An INVALID_OPERAND fault is generated when the processor 
attempts to execute an instruction that has one or more operands 
having special requirements that are not satisfied. This fault is 
generated when specifying a non-defined sysetl, ieetl, deetl or 
intetl command, or referencing an unaligned long-, triple- or quad­
register group, or by referencing an undefined register, or by writing 
to the RIP register(r2). 

No defined value. 

Address of the faulting instruction. 

When an UNALIGNED fault is signaled, the effective address of 
the unaligned access is placed in the fault record's optional data 
section, beginning at address NFP-24. This address is useful to 
debug a program that is making unintentional unaligned accesses. 

Imprecise. 
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Program State Changes: 

Trace Reporting: 

Notes: 

9-26 

For the INVALID_OPCODE and UNIMPLEMENTED (case: store 
to MMR), the destination of the faulting instruction is not modified. 
(For the UNALIGNED fault, the memory operation completes 
correctly before the fault is· reported.) In all other cases, the 
destination is undefined. 

The trace event is lost. 

OPERATION. UNALIGNED fault is not implemented on i960 Kx 
andSxCPUs. 

I 
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9.11.4 OVERRIDE Faults 

Fault Type: 

Fault Subtype: 

Fault OType: 

Fault OSubtype: 

Function: 

Trace Reporting: 

I 

Fault table entry = OH 
Fault type in fault record = fault type of the program instruction that 
faulted. 

Fault subtype of the program instruction that faulted. 

Fault type of the additional fault detected while attempting to 
deliver the program fault. 

Fault Subtype of the additiollal fault detected while attempting to 
deliver the program fault. 

The override fault handler must be accessed through a system­
supervisor call. Local and system-local override fault handlers are 
not supported by the architecture and have an unpredictable 
behavior. Tracing is disabled upon entry into the override fault 
handler (PC.te is cleared). It is restored upon return from the 
handler. To prevent infinite internal loops, the override fault handler 
should not set PC.te. 

Same behavior as if the override condition had not existed. Refer to • 
the description of the original program fault. 
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9.11.5 PARALLEL Faults 

Fault Type: 

Fault Subtype: 

Fault OType: 

Fault OSubtype: 

Function: 

RIP: 

Fault IP: 

Class: 

Program State Changes: 

Trace Reporting: 

9-28 

Fault table entry = OH 
Fault type in fault record = fault type of one of the parallel faults. 

Fault subtype of one of the parallel faults. 

OH 

Number of parallel faults. 

See section 9.6.4, "Parallel Faults" (pg. 9-11) for a complete 
description of parallel faults. When the AC.nif bit in the arithmetic 
controls is zero, the architecture permits the implementation to 
execute instructions in parallel and out-of-order by different 
execution units. When an imprecise fault occurs in any of these 
units, it is not possible to stop the execution of those instructions 
after the faulting instruction. It is also possible that more than one 
fault is detected from different instructions almost at the same time. 

When there is more than one outstanding fault at the point when all 
execution units terminate, a parallel fault situation arises. The fault 
record of parallel faults contains the fault information of all the 
faults that occurred in parallel. The size of the fault record is 
variable and depends on the number of parallel faults. The 
maximum size of the fault record is implementation dependent and 
depends on the number of parallel and pipeline execution units in 
the specific implementation. 

The parallel fault handler must be accessed through a system­
supervisor call. Local and system-local parallel fault handlers are 
not supported by the architecture and have an unpredictable 
behavior. Tracing is disabled upon entry into the parallel fault 
handler (PC.te is cleared). It is restored upon return from the 
handler. The parallel fault handler should not set PC.te to prevent 
infinite internal loops. 

If all of the parallel fault types allow a RIP to be defined, the RIP is 
the next instruction in the flow of execution, otherwise it is 
undefined. 

IP of one of the faulting instructions. 

Imprecise. 

State changes associated with all the parallel faults. 

Same behavior as if the override condition had not existed. Refer to 
the description of the original program fault. 

I 
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9.11.6 

Fault Type: 

PROTECTION Faults 

7H 

Function: 

RIP: 

Fault IP: 

Class: 

Program State Changes: 

Trace Reporting:, 

Number 
Bit 0 
Bit 1 
Bits 2-7 

Name 
Reserved 
LENGTH 
Reserved 

Indicates that a program or procedure is attempting to perform an 
illegal operation that the architecture protects against. 

A PROTECTION.LENGTH fault is generated when the index 
operand used in a calls instruction points to an entry beyond the 
extent of the system procedure table. 

IP of the faulting instruction. 

IP of the faulting instruction. 

Precise. 

None. The instruction does not execute. 

The trace event is lost. 
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9.11.7 TRACE Faults 

Fault Type: 

Fault Subtype: 

Function: 

9-30 

IH 

Number 
Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit 4 
BitS 
Bit 6 
Bit 7 

Name 
Reserved 
INSTRUCTION 
BRANCH 
CALL 
RETURN 
PRERETURN 
SUPERVISOR 
MARK 

Indicates the processor detected one or more trace events. The event 
tracing mechanism is described in CHAPTER 10, TRACING AND 
DEBUGGING. 

A trace event is the occurrence of a particular instruction or 
instruction type in the instruction st;ream. The processor recognizes 
seven different trace events: instruction, branch, call, return, 
prereturn, supervisor, mark. It detects these events only if the TC 
register mode bit is set for the event. If the PC register trace enable 
bit is also set, the processor generates a fault when a trace event is 
detected. 

A TRACE fault is generated following the instruction that causes a 
trace event (or prior to the instruction for the prereturn trace event). 
The following trace modes are available: 

INSTRUCTION 

BRANCH 

CALL 

RETURN 

PRERETURN 

Generates a trace event following every 
instruction. 

Generates a trace event following any branch 
instruction when the branch is taken (a branch 
trace event does not occur on branch-and-link 
or call instructions). 

Generates a trace event following any call or 
branch-and-link instruction or an implicit fault 
call. 

Generates a trace event following a ret. 

Generates a trace event prior to any ret 
instruction, providing the PFP register prereturn 
trace flag is set (the processor sets the flag 
automatically when a call trace is serviced.) A 
prereturn trace fault is always generated alone. 



RIP: 

Fault IP: 

1-

SUPERVISOR 

MARK 

FAULTS 

Generates a trace event following any calls 
instruction that references a supervisor 
procedure entry in the system procedure table 
and on a return from a supervisor procedure 
where the return status type in the PFP register 
is 0102 or 011 2, 

Generates a trace event following the mark 
instruction. The MARK fault subtype bit, 
however, is used to indicate a match of the 
instruction-address breakpoint register or the 
data-address breakpoint register as well as the 
fmark and mark instructions. 

TRACE fault sUbtype bit is associated with each mode. Multiple 
fault subtypes can occur simultaneously; all trace fault conditions 
detected on one instruction (except prereturn) are reported in one 
single trace fault, with the fault subtype bit set for each subtype that 
occurs. The prereturn trace is always reported alone. 

When a fault type other than a TRACE fault is generated during 
execution of an instruction that causes a trace event, the non-trace 
fault is handled before the trace fault. An exception is the preretum­
trace fault, which occurs before the processor detects a non-trace 
fault and is handled first. 

Similarly, if an interrupt occurs during an instruction that causes a 
trace event, the interrupt is serviced before the TRACE fault is 
handled. Again, the TRACE.PRERETURN fault is an exception. 
Since it is generated before the instruction, it is handled before any 
interrupt that occurs during instruction execution. 

A trace fault handler must be accessed through a system-supervisor 
call (it must be a supervisor procedure in the system procedure 
table). Local and system-local trace fault handlers are not supported 
by the architecture and may have unpredictable behavior. Tracing is 
automatically disabled when entering the trace fault handler and is 
restored upon return from the trace fault handler. The trace fault 
handler should not modify pc.te. 

Instruction immediately following the instruction traced, in 
instruction issue order, except for PRERETURN. For 
PRERETURN, the RIP is the return instruction traced. 

IP of the faulting instruction for all except prereturn trace and call 
trace (on implicit fault calls), for which the fault IP field is 
undefined. 
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Class: 

Program St~te Changes: 

9-32 

Precise. 

All trace faults except PRERETURN are serviced after the 
execution of the faulting instruction. The processor returns to the 
instruction immediately following the instruction traced, in 
instruction issue order. For PRERETURN, the return is traced 
before it executes. The processor re-executes the return instruction 
after completion of the PRERETURN trace fault handler. 

I 
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9.11.8 TYPE Faults 

Fault Type: 

Fault Subtype: 

Function: 

RIP: 

Fault IP: 

Class: 

Program State Changes: 

Trace Reporting: 

__ 1-

AH 

Number 
OH 
IH 
2H-FH 

Name 
Reserved 
MISMATCH 
Reserved 

FAULTS 

Indicates a program or procedure attempted to perform an illegal 
operation on an architecture-defined data type or a typed data 
structure. 

A TYPE.MISMATCH fault is generated when attempts are made to: 

• Execute a privileged (supervisor-mode only) instruction while 
the processor is in user mode. Privileged instructions on the 
i960 Jx processor are: 

modpe 

halt 

sysetl 

ieetl 

deetl 

intetl 

inten 

intdis 

• Write to on-chip data RAM while the processor is in 
supervisor-only write mode and BCON.irp is set. See Figure 
12-3. 

• Write to the first 64 bytes of on-chip data RAM while the 
processor is in either user or supervisor mode and BCON.sirp is 
set. See Figure 12-3. 

• Write to memory-mapped registers in supervisor space from 
user mode. 

• Write to timer registers while in user mode, when timer 
registers are protected against user-mode writes. 

No defined value. 

IP of the faulting instruction. 

Imprecise. 

The fault happens before execution of the instruction. The machine 
state is not changed. 

The trace event is lost. 
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CHAPTER 10 
TRACING AND DEBUGGING 

I 

This chapter describes the i960® Ix processor's facilities for runtime activity monitoring. The i960 
architecture provides facilities for monitoring processor activity through trace event generation. A 
trace event indicates a condition where the processor has just completed executing a particular 
instruction or a type of instruction or where the processor is about to execute a particular 
instruction. When the processor detects a trace event, it generates a trace fault and makes an 
implicit call to the fault handling procedure for trace faults. This procedure can, in tum, call 
debugging software to display or analyze the processor state when the trace event occurred. This 
analysis can be used to locate software or hardware bugs or for general system monitoring during 
program development. 

Tracing is enabled by the process controls (PC) register trace enable bit and a set of trace mode bits 
in the trace controls (TC) register. Alternatively, the mark and fmark instructions can be used to 
generate trace events explicitly in the instruction stream. 

The i960 Ix processor also provides four hardware breakpoint registers that generate trace events 
and trace faults. Two registers are dedicated to trapping on instruction execution addresses, while 
the remaining two registers can trap on the addresses of various types of data accesses. 

10.1 TRACE CONTROLS 

To use the architecture's tracing facilities, software must provide trace fault handling procedures, I· 
perhaps interfaced with a debugging monitor. Software must also manipulate the following I 

registers and control bits to enable the various tracing modes and enable or disable tracing in 
general. 

• TC register mode bits • 

• DABO-DABI registers' address field and • 
enable bit (in the control table) 

• System procedure table supervisor-stack- • 
pointer field trace control bit 

• IPBO-IPBI registers' address field 
(in the control table) 

PC register trace enable bit 

PFP register return status field prereturn trace 
flag (bit 3) 

BPCON register breakpoint mode bits and 
enable bits (in the control table) 

These controls are described in the following subsections. 
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10.1.1 TraC4t .Controls (TC) Register 

The TC register ,(Fiiure 1 O~ 1) ,allows software to define conditions that generate trace events. 

Trace Mode Bits 
Instruction Trace Mode -TC.i---------------------, 
Branch Trace Mode -TC.b.-----,....-----------------, 
Call Trace Mode -TC.c---------------------, 
Return Trace Mode - TC.r _. --------'-------------'---, 

Pre-Return Trace Mode -TC.P----,---_j j. j .1. Supervisor Trace Mode - TC.s ----------------,-
Mark Trace Mode - TC.rnk 

31 28 24 20 16 

I Reserved 

IBII IIIIIII 
4 

1 __ B~~_ 1..._______ Instruction-Address Breakpoint 0 - TC.iOf 
Instruction-Address Breakpoint 1 - TC.i1f 
Data-Address Breakpoint 0 - TC.dOf 
.Data-Address Breakpoint 1 - TC.d1f 

Figure 10-1. Trace Controls (TC) Register 

o 

The TC register contains mode bits and event flags. Mode bits define a set of tracing conditions 
that the processor can detect. For example, when the call-trace mode bit is set, the processor 
generates a trace event when a call or branch-and-link operation executes. See section 10.2 (pg. 
10-3). The processor uses event flags to monitor which breakpoint trace events are generated. 

A special instruction, modify-trace-controls (modtc), allows software to modify the TC register. 
On initialization, the TC register is read from the Control Table. modtc can then be used to set or 
clear trace mode bits as required. Updating TC mode bits may' take up to four non-branching 
instructions to take effect. Software can access the breakpoint event flags using modtc. The 
processor automatically sets and clears these flags as part of its trace handling mechanism: the 
breakpoint event corresponding to the trace being serviced is set in the TC while servicing a 
breakpoint trace fault; the TC event flags are cleared upon return from the trace fault handler. 
When not in a trace fault handler, or when the trace is not for breakpoints, the TC event bits are 
clear. TC register bits 0, 8 through 23 and 28 through 31 are reserved. Software must initialize 
these bits to zero and cannot modify them afterwards. 
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10.1.2 PC Trace Enable Bit and Trace-Fault-Pendlng Flag 

The PC register trace enable bit and the trace-fault-pending flag in the PC field of the fault record 
control tracing. The trace enable bit enables the processor's tracing facilities; when set, the 
processor generates trace faults on all trace events. 

Typically, software selects the trace modes to be used through the TC register. It then sets the trace 
enable bit to begin tracing. This bit is also altered as part of some call and return operations that the 
processor performs as described in section 10.5.2, "Tracing on Calls and Returns" (pg. 10-12). 

The update of PC.te through modpc may take up to four non-branching instructions to take effect. 
The update of PC.te through call and return operations is immediate. 

The trace-fault-pending flag, in the PC field of the fault record, allows the processor to remember 
to service a trace fault when a trace event is detected at the same time as another event (e.g., non­
trace fault, interrupt). The non-trace fault event is serviced before the trace fault, and depending on 
the event type and execution mode, the trace fault pending flag in the PC field of the fault record 
may be used to generate a fault upon return from the non-trace fault event (see section 10.5.2.4, 
"Tracing on Return from Implicit Call: Fault Case" (pg. 10-14». 

10.2 TRACE MODES 

This section defmes trace modes enabled through the TC register. These modes can be enabled 
individually or several modes can be enabled at once. Some modes overlap, such as call-trace 
mode and supervisor-trace mode. 

• Instruction trace • Branch trace • Mark trace • Prereturn trace 

• Call trace • Return trace • Supervisor trace 

See section 10.4, "HANDLING MULTIPLE TRACE EVENTS" (pg. 10-11) for a description of 
processor function when multiple trace events occur. 

10.2.1 Instruction Trace 

When the instruction-trace mode is enabled in TC (TC.i = 1) and tracing is enabled in PC 
(PC.te = 1), the processor generates an instruction-trace fault immediately after an instruction is 
executed. A debug monitor can use this mode (TC.i = 1, pc.te = 1) to single-step the processor. 

10-3 



TRACING AND DEBUGGING 

10.2.2 Branch Trace' 

When the branch-trace mode is enabled in TC (TC.b = 1) andPC.te is set, the processor generates 
a branch-trace fault immediately after a branch instruction executes,. if the branch is taken. A 
branch-trace event is not generated for conditional-branch instructions that do not branch, branch­
and-link instructions, and call-and-return instructions. 

10.2.3 CIlIi Trace 

When the call-trace mode is epabled in TC (TC.c = 1) and PC.te is set after the call, the processor 
generates a call-trace fault 'when a call instruction (call, calix or calls) or a branch-and-link 
instruction (bal or balx) executes. See section 10.5.2.1, "Tracing on Explicit Call" (pg. 10-12) for 
a detailed description of call tracing on explicit instructions. Interrupt calls are never traced. 

An implicit call to a fauit haIidler also generates a call trace if TC.c and PC.te are set after the call. 
Refer to section 10.5.2.2, ''Tracing on Implicit Call" (pg. 10-13) for a complete description of this 
case. 

When the processor services a trace fault, it sets the prereturn-trace flag (PFP register bit 3) in the 
new frame created by the call operation or in the current frame if a branch-and-link operation was 
performed. The processor uses this flag to determine whether or not to ~ignal a prereturn-trace 
event on a ret instruction.' . 

10.2.4 Return Trace 

When the return-trace mode is enabled in TC and PC.te is set after the return instruction, the 
processor generates a return-trace fault for a return from explicit call· (PFP.rrr = 000 or 
PFP.rrr = 0Ix). See section 10.5.2.3, ''Tracing on Return from Explicit Call" (pg. 10-14). 

A return from fault may be traced and a return from interrupt is not. See section 10.5.2.4, "Tracing 
on Return from Implicit Call: Fault Case" (pg. 10-14) and section 10.5.2.5, "Tracing on Return 
from Implicit Call: Interrupt Case" (pg. 10-15) for details. 

10.2.5 Prereturn Trace 
I 

When the TC prereturn-trace mode, the Pc.te, and the PFP prereturn-trace flag (PFP.p) are set, the 
processor generates aprereturn-trace fault prior to executing a ret execution. The dependence on 
PFP.p implies that prereturn tracing cannot be used without enabling call tracing. The processor 
sets PFP.p whenever it services a call-trace fault (as described above) for call-trace mode. 
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If another trace event occurs at the same time as the prereturn-trace event, the processor generates 
a fault on the non-prereturn-trace event first. Then, on a return from that fault handler, it generates 
a fault on the preretum-trace event. The preretum trace is the only trace event that can cause two 
successive trace faults to be generated between instruction boundaries. 

10.2.6 Supervisor Trace 

When supervisor-trace mode is enabled in TC and PC.te is set, the processor generates a 
supervisor-trace fault after both of the following: 

• A call-system instruction (calls) executes from user mode and the procedure table entry is for 
a system-supervisor call. 

• A ret instruction executes from supervisor mode and the return-type field is set to 0102 or 0112 
(i.e., return from calls). 

This trace mode allows a debugging program to determine kernel-procedure call boundaries within 
the instruction stream. 

10.2.7 Mark Trace 

Mark trace mode allows trace faults to be generated at places other than those specified with the 
other trace modes, using the mark instruction. It should be noted that the MARK fault subtype bit 
in the fault record is used to indicate a match of the instruction-address breakpoint registers or the 
data-address breakpoint registers as well as the fmark and mark instructions. 

10.2.7.1 Software Breakpoints 

mark and fmark allow breakpoint trace faults to be generated at specific points in the instruction 
stream. When mark trace mode is enabled and PC.te is set, the processor generates a mark trace 
fault any time it encounters a mark instruction. fmark causes the processor to generate a mark trace 
fault regardless of whether or not mark trace mode is enabled, provided PC.te is set. If pc.te is 
clear, mark and fmark behave like no-ops. 

10.2.7.2 Hardware Breakpoints 

The hardware breakpoint registers are provided to enable generation of trace faults on instruction 
execution and data access. 

The i960 Jx microprocessor implements two instruction and two data address breakpoint registers, 
denoted IBPO, IBPl, DABO, and DABl. The instruction and data address breakpoint registers are 
32-bit registers. The instruction breakpoint registers cause a break after execution of the target 
instruction. The DABx registers cause a break after the memory access has been issued to the bus 
controller. 
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Hardware breakpoint registers may be :armed or disarmed. When"3l'ffied,hardware breakpoints can 
generate an architectural trace fault. When the registers are disarmed, no'action occurs, and 
execution continues normally. Since instructions" are always word aligned, the two low-order bits 
of the IBPx registers act as control bits. Control bits for the DABx registers reside in the 
Breakpoint Control (BPCON) register. BPCON enables the data address breakpoint registers, and 
sets the specific modes of these registers. Hardware breakpoints ar~ globally enabled by the 
process controls trace enable bit (PC.te). 

The IBPx, DABx, and BPCON registers may be accessed using normal load and store instructions 
(except for loads from IBPx register). The application must be in supernsor mode for a legal 
access to occur. SeeSectiori 3.3, MEMORY-MAPPED CONTROL REGISTERS (pg. 3-5) for 
more information on the address for each register. 

Well behaved applications must request modification rights to the hardware breakpoint resources, 
before attempting to modify these resources. Rights are requested by executing the sysctl 
instruction, as' described in the following section,. 

10.2.7.3 Requesting Modification Rights to Hardware Breakpoint Resources 

Application code must always first request and acquire modification rights to the hardware 
breakpoiqt resources before any attempt is made to modify them. This mechanism is employed to 
eliminate, simultaneo\ls usage of breakpoint resources by emulation tools and application code. An 
emulation t901 exercises supervisor control over breakpoint reso~rce, allocation. If the emulator 
retains control of breakpoint resources, 'none are, available for application code, If an emulation 
tool is not being used in conjunction with the device, modification rights to breakpoint resources 
will be granted to the application. The emulation tool may relinquish control of breakpoint 
resources to the application. ' 

If the application attempts to modify the breakpoint or breakpoint control (BPCON) registers 
without first obtaining rights, an OPERATION:unimplemented fault will be generated. In this 
case, the breakpoint resourCe will not be modified, whether accessed through a sysctl instruction 
or as a memory-mapped register. 
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Application code requests modification rights by executing the sysctl instruction and issuing the 
Breakpoint Resource Request message (srcl.Message_Type = 06H). In response, the current 
available breakpoint resources will be returned as the src/dest parameter (src/dest must be a 
register). The src2 parameter is not used. Results returned in the src/dest parameter must be 
interpreted as shown in Table 10-1. 

Table 10-1. SRC/DEST Encoding 

SRC/DEST 7:4 SRC/DEST 3:0 

Number of Available Data Address Number of Available 
Breakpoints Instruction Breakpoints 

Note: SRC3 31:8 are reserved and will always return zeroes. 

The following code sample illustrates the execution of the breakpoint resource request. 

ldconst Ox600, r4 # Load the Breakpoint Resource 
# .Request message type into r4. 

sysctl r4, r4, r4 # Issue the request. 

Assume in this example that after execution of the sysctl instruction, the value of r4 is 
OOOO.0022H. This indicates that the application has gained modification rights to both instruction 
and both data address breakpoint registers. If the value returned is zero, the application has not 
gained the rights to the breakpoint resources. 

Because the i960 Ix processor does not initialize the breakpoint registers from the control table 
during initialization (as i960 Cx processors do), the application must explicitly initialize the 
breakpoint registers in order to use them once modification rights have been granted by the sysctl 
instruction. 

10.2.7.4 Breakpoint Control Register 

The format of the BPCON register is shown in Figure 10-2. Each breakpoint has four control bits 
associated with it: two mode and two enable bits. The enable bits (DABx.eO, DABx.el) in BPCON 
act to enable or disable the data address breakpoints, while the mode bits (DABx.mO, DABx.ml) 
dictate which type of access will generate a break event. 
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DABO----------------------, 

DAB1 -----,11 
II 

II1IIIII 
31 28 24 20 16 12 8 4 o 

I Reserved 
(Initialize to 0) 

Hardware Reset Value: 0000 OOOOH 

Software Re-Init Value: Re~ins State 

Figure 10-2. Breakpoint Control Register (BPCON) 

Programming the BPCON register is summarized in Table 10-2. 

Table 10-2. Configuring the Data Address Breakpoint Registers 

PC.te DABx.e1 DABx.eO Description 

0 X X No action. With. PC.te clear, breakpoints are globally disabled. 

X 0 0 No action. DABx is disabled. 

1 0 1 Reserved. 

'. 
1 1 ,0 Reserved. 

1 1 1 Generate a Trace Fault. 

Note: "X" = don't care. Reserved combinations must not be used. 

The mode bits of BPCON control what type of access generates a fault, trace message, or break 
event, as summarized in Table 10-3. 

Table 10-3. Programming the Data Address Breakpoint Modes 

DABx.m1 DABx.mO Mode 

0 0 Break on Data Write Access Only, 

0 1 Break on Data Read or Data Write Access. 

1 0 Break on Data Read Access. 

1 1 Any access. 
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10.2.7.5 Data Address Breakpoint Registers 

The format for the Data Address Breakpoint (DAB) registers is shown in Figure 10-3. Data 
Address Breakpoint Register Format. Each of the two breakpoint registers contains a 32-bit 
address of a byte to match on. 

A breakpoint is triggered when both a data access's type and address matches that specified by 
BPCON and the appropriate DAB register. The mode bits for each DAB register, which are 
contained in BPCON (see section 10.2.7.4), qualify the access types that DAB will match. An 
access-type match selects that DAB register to perform address checking. An address match occurs 
when the byte address of any of the bytes referenced by the data access matches the byte address 
contained within a selected DAB. 

Consider the following example. DABO is enabled to break on any data read access and has a value 
of IOOFH. Any of the following instructions will cause the DABO breakpoint to be triggered: 

ldob OxlOOf, r8 
ldos 
ld 
ld 
ldl 
ldq 

OxlOOe,r8 
OxlOOc,r8 
OxlOOd,r8 
Oxl008,r8 
OxlOOO,r8 

/* even unaligned accesses */ 

Note that Itldt Ox1000,r81t will not cause the breakpoint to be triggered because byte lOOFH is not 
referenced by the triple word access. 

Data address breakpoints can be set to break on any data read, any data write, or any data read or 
data write access. All accesses qualify for checking. These include explicit load and store instruc­
tions, and implicit data accesses performed by other instructions and normal processor operations. . 

For data accesses to the memory-mapped control register space, it is unpredictable whether 
breakpoint traces are generated when the access matches the breakpoints and also results in an 
OPERATION fault or TYPE.MISMATCH fault. The OPERATION or TYPE.MISMATCH fault 
will always be reported in this case. 
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Data Address ---------..." 

1'1111 '111111111'1111111111111111111 
31 

10.2.7.6 

24 . 20 16 12 8 4 o 

Hardware Reset Value: 0000 OOOOH 

Software Re-ini! Value: 0000 OOOOH 

Figure 1 0~3. Data Address Breakpoint Register Format 

Instruction Breakpoint Registers 

The format for the instruction breakpoint registers is given in Figure 10-4. Instruction Breakpoint 
Register Format. The upper thirty bits of the IBPx register contains the word-aligned, instruction 
address to break on. The two low-order bits indicate the action to take upon an address match. 

IBpxMooe--------------------------------------------~l 
Instruction Address ----------------,1 

J . . In 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII~I~I 
'. 31 28 24 20 16 12 8 4 o 

Hardware Reset Value: 0000 OOOOH 

Software Re-init Value: 0000 OOOOH 

Figure 10-4. Instruction Breakpoint Register Format 

Programming the instruction breakpoint register modes is shown in Table 10-4. 

On the i960 Jx microprocessor, the instruction breakpoint memory-mapped registers can be read 
by using the sysctl instruction only. They can be modified by sysctl or by a word-length store 
instruction. 
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Table 10-4. Instruction Breakpoint Modes 

PC.te IBPx.m1 IBPx.mO Action 

0 X X No action. Globally disabled. 

X 0 0 No action. IBPx disabled. 

1 0 1 Reserved. 

1 1 0 Reserved. 

1 1 1 Generate a Trace Fault. 

Note: "X" = don't care. Reserved combinations must not be used. 

10.3 GENERATING A TRACE FAULT 

To summarize the information presented in the previous sections, the processor services a trace 
fault when pc.te is set and the processor detects any of the foliowing conditions: 

• An instruction included in a trace mode group executes or is about to execute (in the case of a 
preretum trace event) and the trace mode for that instruction is enabled. 

• A fault call operation executes and the call-trace mode is enabled. 

• A mark,instruction executes and the breakpoint-trace mode is enabled. 

• An fmark instruction executes. 

• The processor executes an instruction at an IP matching an enabled instruction address 
breakpoint register. 

• The processor issues a memory access matching the conditions of an enabled data address 
breakpoint register. 

10.4 HANDLING MULTIPLE TRACE EVENTS 

With the exception of a prereturn trace event, which is always reported alone, it is possible for a 
combination of trace events to be reported in the same fault record. The processor may not report 
all events; however, it will always report a supervisor event and it will always signal at least one 
event. 

If the processor reports prereturn trace and other trace types at the same time, it reports the other 
trace types in a single trace fault record first, and then services the preretum trace fault upon return 
from the other trace fault. 
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10.5 TRACE FAULT HANDLING PROCEDURE 

The processor calls the trace fault handling procedure when it detects a trace event. See section 
9.7, "FAULT HANDLING PROCEDURES" (pg. 9-13) for general requirements for fault 
handling procedures. 

The trace fault handling procedure is involved in a specific way and is handled differently than 
other faults. A trace fault handler must be invoked with an implicit system-supervisor call. When 
the call is made, the PC register trace enable bit is cleared. This disables trace faults in the trace 
fault handler. Recall that, for all other implicit or explicit system-supervisor calls, the trace enable 
bit is replaced with the system procedure table trace control bit. The exceptional handling of trace 
enable for trace faults ensures. that tracing is turned off when a trace fault handling procedure is 
being executed. This is necessary to prevent an endless loop of trace fault handling calls. 

10.5.1 Tracing and Interrupt Procedures 

When the processor invokes an interrupt handling procedure to service an interrupt, it disables 
tracing. It does this by saving the PC register's current state in the interrupt record, then clearing 
the PC register trace enable bit. 

On returning from the interrupt handling procedure, the processor restores the PC register to the 
state it was in prior to handling the interrupt, which restores the trace enable bit. See section 
10.5.2.2, "Tracing on Implicit Call" (pg. 10-13) and section 10.5.2.5, "Tracing on Return from 
Implicit Call: Interrupt Case" (pg. 10-15) for a detailed description of tracing on calls and returns 
from interrupts. 

10.5.2 Tracing on Calls and Returns 

During call and return operations, the trace enable flag (PC.te) may be altered. This section 
discusses how tracing is handled on explicit and implicit calls and returns. 

Since all trace faults (except prereturn) are serviced after execution of the traced instruction, 
tracing on calls and returns is controlled by the PC.te in effect after the call or the return. 

10.5.2.1 Tracing on Explicit Call 

Tracing an explicit call happens before execution of the first instruction of the procedure called. 

Tracing is not modified by using a call or calix instruction. Further, tracing is not modified by 
using a calls instruction from supervisor mode. When calls is issued from user mode, PC.te is 
read from the supervisor stack pointer trace enable bit (SSP.te) of the system procedure table, 
which is cached on chip during initialization. The trace enable bit in effect before the calls is 
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stored in the new PFP[O] bit and is restored upon return from the routine (see section 10.5.2.3, 
"Tracing on Return from Explicit Call" (pg. 10-14». The calls instruction and all instructions of 
the procedure called are traced according to the new PC.te. 

Table 10-5 summarizes all cases; a and x are bit variables. 

Table 10-5. Tracing on Explicit Call 

Call Source Source Target 
Trace Enable 

PFP.rrr Used for Traces 
Type PC.te PC.em PC.te 

on Call 

call, calix a x 000 a a 

calls a super 000 a a 

calls a user 01a SSP.te SSP.te 

10.5.2.2 Tracing on Implicit Call 

Tracing on an implicit call happens before execution of the fIrst instruction of the non-trace fault 
handler called. Table 10-6 summarizes all cases of tracing on implicit call. In the table, a is a bit 
variable that symbolizes the trace enable bit in PC. 

Table 10-6. Tracing on Implicit Call 

Call Source Target 
TE Used for 

Type 
SPTentry rrr 

PC.1e PC.te 
Traces on 

Implicit Call 

OO-Flt" N.A. 001 a a a 

10-FI( 00 001 a a a 

10-FI( 10 001 a SSP.te SSP.te 

OO-Parallel/Override Fit 
Type of trace fault not supported x 

OO-Trace Fit 

1 O-Parallel/Override Fit 
Type of trace fault not supported 00 

10-Trace Fit 

10-Parallel/Override Fit 

10-Trace Fit 
10 001 a 0 0 

Interrupt N.A. 111 a 0 0 

• All faults except parallel/override and trace faults 
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Tracing is not altered on the way to a local ora system-local fault handler, so the call is traced if 
PC.te and TC.call are set before the call.For an implicit system-supervisor call~PC.te is read from 
SSP.te. The trace on the call is serviced before execution of the first instruction of the non-trace 
fault handler (tracing is disabled on the way to a trace fault handler). 

The only type of paralleVoverride fault handler supported is the system-supervisor type. Tracing is 
disabled on the way to the paralleV6vemde fault handler. . 

The only type 'Of trace fault pandler supported is the system~supervisor type .. Tracing is disabled on 
the way to the trace fault handler. " " 

. -, .. 
Tracing is disabled by the processor on the way to an interrupt handler, so an interrupt call is never 
traced. " 

Note that the Fault IP field of the fault record is not defined when tracing a fault call, because there 
is no instruction pointer associated to an. implicit call. , 

10.5.2.3 Tracing on Return from Explicit Call 

Table 10-7 shows all cases. 

Table 10-7. TraCing on Return From Explicit Call 

PFP.rrr PC.em PC.te 
Trace Enable Used for Trace 

on Return 

000 x .,: w w 

01a user w w 

01a super w a 

For a return from local call (return type 000), tracing is not modified. For a return from system call 
(return type Ola, with PC.te equal to "a'~ before the .call), tracing of the return and subsequent 
instructions is cQI)trolled by "a", which is restored in the PC.te during execution of the return. 

10.5.2.4 Tracing on Ret",rl1 from Implicit Call: Fault Case 

When the processor detects several fault conditions on 'the same instruction (referred as the 
"target")" the non~trace fault is serviced first. Uporl return from the non-trace fauit handler, the 
processor services a trace fault on the target if in supervisor mode before the return and if the trace 
enable and trace fault pending flags are set in the PC field of the non-trace fault record (at FP-16). 
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If the processor is in user mode before the return, tracing is not altered. The pending trace on the 
target instruction is lost, and the return is traced according to the current PC.te. Table 10-8 
summarizes the two cases: 

Table 10-8. Tracing on Return from Fault 

PC.em PC.te 
Target PC.te Pending Trace on Trace on 

PFP.rrr Before Before 
Return Return 

After Return Target When Return When 

001 user w w Pending Trace is Lost w & TC.event 

001 (FP-16).te 
(FP-16).te & 

Not Traced super w 
(FP-16).tfp 

10.5.2.5 Tracing on Return from Implicit Call: Interrupt Case 

When an interrupt and a trace fault are reported on the same instruction, the instruction completes 
and then the interrupt is serviced. Upon return from the interrupt, the trace fault is serviced, if the 
interrupt handler did not switch to user mode. On the i960 Jx processor, the interrupt handler 
returns directly to the trace fault handler. 

If the interrupt return is executed from user mode, the PC register is not restored and tracing of the 
return occurs according to the pc.te and TC.modes bit fields. 

Table 10-9 summarizes the user and supervisor cases: 

Table 10-9. Tracing on Return from Interrupt 

PC.em PC.te Tgt PC.te Pending Trace on Target When 
Trace on Return 

rrr 
When 

111 user w w Pending Trace is Lost w& TC.ev 

111 super w (FP-16).TE RIP points to trace handler Not Traced" 

" Assume the interrupt handler does not turn tracing on. If it does, it is unpredictable whether the return is 
traced or not. 
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CHAPTER 11 

INITIALIZATION AND SYSTEM REQUIREMENTS 

This chapter describes the steps that the i960® Jx processor performs during initialization. 
Discussed are the RESET pin, the reset state and built-in self test (BIST) features. This chapter 
also describes the processor's basic system requirements - including power, ground and clock­
and concludes with some general guidelines for high-speed circuit board design. 

11.1 OVERVIEW 

During the time that the RESET pin is held asserted, the processor is in a quiescent reset state. All 
external pins are inactive and the internal processor state is forced to a known condition. The 
processor begins initialization when the RESET pin is deasserted. 

When initialization begins, the processor uses an Initial Memory Image (IMI) to establish its state. 
The IMI includes: 

• Initialization Boot Record (IBR) - contains the addresses of the first instruction of the 
user's code and the PRCB. 

• Process Control Block (PRCB) - contains pointers to system data structures; also contains 
information used to configure the processor at initialization. 

• System data structures - the processor caches several data structure pointers internally at 
initialization. 

Software can reinitialize the processor. When a reinitialization takes place, a new PRCB and reini­
tialization instruction pointer are specified. Reinitialization is useful for relocating data structures 
from ROM to RAM after initialization. 

The i960 Jx processor supports several facilities to assist in system testing and startup diagnostics. 
ONCE mode electrically removes the processor from a system. This feature is useful for system­
level testing where a remote tester exercises the processor system. The i960 Jx processor also 
supports JTAG boundary scan (see Chapter 17, TEST FEATURES). During initialization, the 
processor performs an internal functional self test and external bus self test. These features are 
useful for system diagnostics to ensure basic CPU and system bus functionality. 

The processor is designed to minimize the requirements of its external system. It requires an input 
clock (CLKIN) and clean power and ground connections (V ss and V cd. Since the processor can 
operate at a high frequency, the external system must be designed with considerations to reduce 
induced noise on signals, power and ground. 
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11.2 INITIALIZATION 
"·f 

InitialiZatioridescribes'themechartisIn that the processo'r uses to establish itsihitial state and begin 
instruction execution. Initialization begins when the RESET pin is deasserted. At this time, the 
processor automatically configures itself with information specified in the IMI and performs its 
built-in self test based on the sampling -of the STEST pin. The processor then branches to the first 
instruction of user code. S~ Figu:re 11-1 for a flow chart of i%O Jx processor initializatiori. 

11-2 

Hardware R..t 

Drive Fall Code 
on AddressiOata Pins 

DeBSsert m Pin 

SoftwlIre Relnltlallzatlon 

Process PRCS 
Contants 

Figure 11-1. Processor Initialization Flow 
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The objective of the initialization sequence is to provide a complete, working initial state when the 
first user instruction executes. The user's startup code needs only to perform several basic 
functions to place the processor in a configuration for executing application code. 

11.2.1 Reset State Operation 

The RESET pin, when asserted (active low), causes the processor to enter the reset state. All 
external signals go to a defined state (Table 11-1), internal logic is initialized, and certain registers 
are set to defined values (Table 11-2). When the RESET pin is deasserted, the processor initializes 
as described in section 11.5, "Startup Code Example" (p{.;. 11-23). RESET is a level-sensitive, i:\ 
asynchronous input. If HOLD is asserted while the processor is in reset, the processor will I': 
acknowledge the request. All external pins will assume their usual Th states while the bus is in the II 
hold state. 

The RESET pin must be asserted when power is applied to the processor. The processor then 
stabilizes in the reset state. This power-up reset is referred to as cold reset. To ensure that all 
internal logic has stabilized in the reset state, a valid input clock (CLKIN) and Vee must be present 
and stable for a specified time before RESET can be deasserted. 

The processor may also be cycled through the reset state after execution has started. This is 
referred to as warm reset. For a warm reset, the RESET pin must be asserted for a minimum 
number of clock cycles. If a warm reset is asserted during a bus hold, the processor continues to 
drive HOLDA until HOLD is deasserted. However, the processor will begin the internal initial­
ization process. Specifications for a cold and warm reset can be found in the 80960JAlJF 
Embedded 32-bit Microprocessor Data Sheet or the 80960JD Embedded 32-bit Microprocessor 
Data Sheet. 

While the processor's RESET pin is asserted, output pins are driven to the states as indicated in 
Table 11-1. The reset state cannot be entered under direct control from user code. No reset 
instruction - or other condition that forces a reset - exists on the i960 Jx processors. The RESET 
pin must be asserted to enter the reset state. The processor does, however, provide a means to re­
enter the initialization process. See section 11.4.1, "Reinitializing and Relocating Data Structures" 
(pg. 11-22). 
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Table 11-1. Pin Reset State 

Pins Reset State Pins Reset State 

AD31:0 Floating W/R Low (read) 

ALE Low (inactive) DT/R Low (receive) 

ALE High (inactive) DEN High (inactive) 

ADS High (inactive) BLAST High (inactive) 

A3:2 Floating LOCK/ONCE High (inactive) 

BE3:0 High (inactive) HOLDA Valid Output 

WIDTH/HLT01 :0 Floating FAIL Low (Active) 

D/C Floating TOO Valid Output 

Table 11-2. Register Values After Reset (Sheet 1 of 2) 

Register Value After Cold Reset Value After Software Re-Init 

AC AC initial image in PRCB AC initial image in PRCB 

PC 001F2002H 001F2002H 

TC initial image in Control Table, offset 68H initial image in Control Table, offset 68H 

FP (g15) interrupt stack base interrupt stack base 

PFP (rO) undefined value before software re-init 

SP(r1) interrupt stack base+64 interrupt stack base+64 

RIP (r2) undefined undefined 

IPND undefined value before software re-init 

IMSK OOH OOH 

LMARO-1 undefined value before software re-init 

LMMRO-1 bit 0 = 0; bits 1 -31 = undefined value before software re-init 

DLMCON 
bit 0 = bit 7 of byte at FEFF FF3CH 

value before software re-init 
bit 1 = 0; bits 2 -31 = undefined 

TRRO-1 undefined value before software re-init 

TCRO-1 undefined value before software re-init 

TMRO-1 bits .1-6 = 0; bits 0, 7-31 = undefined bits 1-6 = 0; bits 0, 7-31 = undefined 

IPBO OOOO.OOOOH OOOO.OOOOH 

IPB1 OOOO.OOOOH OOOO.OOOOH 

DABO OOOO.OOOOH OOOO.OOOOH 

DAB1 OOOO.OOOOH OOOO.OOOOH 

IMAPO initial image in Control Table, offset 10H initial image in Control Table, offset 10H 

IMAP1 initial image in Control Table, offset 14H initial image in Control Table, offset 14H 
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Table 11·2. Register Values After Reset (Sheet 2 of 2) 

Register Value After Cold Reset Value After Software Re-Init 

IMAP2 initial imafle in Control Table, offset 18H initial image in Control Table, offset 18H 

ICON initial image in Control Table, offset 1 CH . initial image in Control Table, offset 1 CH 

PMCONO_1 initial image in Control Table, offset 20H initial image in Control Table, offset 20H 

PMCON2_3 initial image in Control Table, offset 28H initial image in Control Table, offset 28H 

PMCON4_5 initial image in Control Table, offset 30H initial image in Control Table, offset 30H 

PMCON6J initial image in Control Table, offset 38H initial image in Control Table, offset 38H 

PMCON8_9 initial image in Control Table, offset 40H initial image in Control Table, offset 40H 

PMCON10_11 initial image in Control Table, offset 48H initial image in Control Table, offset 48H 

PMCON12_13 initial image in Control Table, offset 50H initial image in Control Table, offset 50H 

PMCON14_15 initial image in Control Table, offset 58H initial image in Control Table, offset 58H 

BPCON OOOO.OOOOH Value before software re-init. 

BCON initial image in Control Table, offset 6CH initial image in Control Table, offset 6CH 

DEVICEID initialized by reset process initialized by reset process 

11.2.2 Self Test Function (STEST, FAIL) 

A!> part of initialization, the i960 Jx processor executes a bus confidence self test, an alignment 
check for data structures within the initial memory image (IMI), and optionally, an built-in self test 
program. The self test (STEST) pin enables or disables built-in self test. The FAIL pin indicates 
that the self tests passed or failed by asserting FAIL. During normal operations the FAIL pin can 
be asserted if a System Error is detected. The following subsections further describe these pin 
functions. 

Internal self test checks basic functionality of internal data paths, registers and memory arrays on­
chip. Internal self test is not intended to be a full validation of processor functionality; it is 
intended to detect catastrophic internal failures and complement a user's system diagnostics by 
ensuring a confidence level in the processor before any system diagnostics are executed. 

11.2.2.1 The STEST Pin 

The STEST pin enables and disables Built-In Self Test (BIST). BIST can be disabled if the initial­
ization time needs to be minimized or if diagnostics are simply not necessary. The STEST pin is 
sampled on the rising edge of the RESET inpu~: 

• 
• 
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11.2.2.2 External Bus Confidence Test 

The external bus confidence test is always performed regardless of STEST pin value. 

The external bus confidence test checks external bus fun~tionality; it reads eight words from the 
Initialization Boot Record (mR) and performs a checksum on the words and the constant FFFF 
FFFFH. The test passes only when the processor calculates a sum of zero (0). The external bus 
confidence test can detect catastrophic bus failures such as external address, data or control lines 
that are stuck, shorted or open. 

11.2.2.3 The Fail Pin (FAIL) 

The FAIL pin signals errors in either the built-in self test or bus confidence self test. FAIL is 
asserted (low) for each self test (Figure 11-3): 

• When any test fails, the FAIL pin remains asserted, a fail code message is driven onto the 
address bus, and the processor stops execution at the point of failure. 

• When a system error occurs, FAIL is also asserted. See section 11.2.2.4, "IMI Alignment 
Check and System Error" (pg. 11-8) for details. 

• When the test passes, FAIL is deasserted. 

If FAIL stays asserted, the only way to resume normal operation is to perform a reset operation. 
When the STEST pin is used to disable the built-in self test, the test does not execute; however, 
FAIL still asserts at the point where the built-in self test would occur. FAIL is deasserted after the 
bus confidence test passes. In Figure 11-3, all transitions on the FAIL pin are relative to CLKIN as 
described in the 80960JNJF Embedded 32-bit Microprocessor Data Sheet and the 80960JD 
Embedded 32-bit Microprocessor Data Sheet. 

Bus Confidence 
Internal Self· Test Status Test Status 

PASS PASS 

Internal S If 1i t Bus Confidence Test I FAil ________ e_·_e_s_-'- E.A~ -'-_____________ .... ~Ib _ 

1--414.000 Cycles---+ .. I.-....... I ..... ----- 132 Cycles ------+1.1 

26 Cycles 
, Cycles .. Number of ClKIN Periods 

Figure 11-3. FAIL Timing (8096OJAlJF Case) 
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11.2.2.4 IMI Alignment Check and System Error . 

The alignment check during initializatipn for data structures within the IMI ensures that the 
PRCB, control table, interrupt table, system-procedure table, and fault table are aligned to word 
boundaries. Normal processor operation is not possible without the alignment of these key data 
structures. The alignment check is one case where a System Error could occur. 

The other case of System Error can occur during regular operation when generation of an override 
fault incurs a fault. The sequence of events leading up to this case is quite uncommon. 

When a System Error is detected, the FAIL pin is asserted, a fail code message is. driven onto the 
address bus, and the processor stops execution at the point of failure. The only· way to resume 
normal operation of the processor is to perform a reset operation. Because System Error 
generation can occur sometime after the BUS confidence test and even after initialization during 
normal processor operation, the FAIL pin will be at a logic one before the detection of a System 
Error. 

11.2.2.5 FAIL Code 

The processor uses only one read bus transaction to signal the fail code message; the address of the 
bus transaction is the fail code itself. The fail code is of the form: Oxfeffffnn; bits 6 to 0 contain a 
mask recording the possible failures. Bit 7, when one, indicates the mask contains failures from 
Built-In Self-Test (BIST); when zero, the mask indicates other failures. The fail codes are shown 
in Table 11-3 and Table 11A. 

Table 11-3. Fail Codes For BIST (bit 7 = 1) 

Bit When set: 

6 On-chip Data-RAM failure detected by 818T 

5 Internal Microcode ROM failure detected by 818T 

4 I-cache failure detected by 818T 

3 D-cache failure detected by 818T 

2 
. Local-register cache or processor core (RF, EU. MDU. 

P8Q) failure detected by 818T· 

1 Always Zero. 

0 Always Zero. 
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Table 11-4. Remaining Fail Codes (bit 7 = 0) 

Bit When set: 

6 Always One; this bit does not indicate a failure. 

5 Always One; this bit does not indicate a failure. 

4 
A data structure within the IMI is not aligned to a word 
boundary. 

3 A Systeni Error during normal operation has occurred. 

2 The Bus Confidence test has failed. 

1 Always Zero. 

0 Always Zero. 

11.3 ARCHITECTURALLY RESERVED MEMORY SPACE 

The i960 Jx microprocessor contains 232 bytes of address space. Portions of this address space are 
architecturally reserved and must not be used by customers. Figure 3-2. Memory Address Space 
(pg. 3-13) shows the reserved address space. The i960 Jx suppresses all external bus cycles from 0 
to 3FFH and from FFoo OOOOH to FFFF FFFFH. 

Addresses FEFF FF60H through FFFF FFFFH are reserved for implementation-specific functions. 
This address range is termed "reserved" since i960 architecture implementations may use these 
addresses for functions such as memory-mapped registers or data structures. Therefore, to ensure 
complete object level compatibility, portable code must not access or depend on values in this 
region. 

The i960 Ix microprocessor uses the reserved address range 0000 OooOH through 0000 03FFH for 
internal data RAM. This internal data RAM is used for storage of interrupt vectors plus general 
purpose storage available for application software variable allocation or data structures. Loads and 
stores directed to these addresses access internal memory; instruction fetches from these addresses 
are not allowed for the i960 Jx microprocessor. See Chapter 4, CACHE AND ON-CHIP DATA 
RAM, for more details. 

11.3.1 Initial Memory Image (IMI) 

The IMI comprises the minimum set of data structures that the processor needs to initialize its 
system. As shown in Figure 11-4, these structures are: the initialization boot record (IBR), process 
control block (PRCB) and system data structures. The IBR is located at a fixed address in memory. 
The other components are referenced directly or indirectly by pointers in the mR and the PRCB. 
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The IMI performs three functions for the processor: 

• Provides initial configuration information for the core and integrated peripherals. 

• Provides pointers to the system data structures and the first instruction to be executed 
after processor initialization. 

• Provides checksum words that the processor uses in its self test routine at startup. 

Several data structures are typically included as part of the IMI because values in these data 
structures are accessed· by the processor during initialization. These data structures are usually 
programmed in the systems's boot ROM, located in memory region 14_15 of the address space. 
The required data structures are: 

• PRCB 

• IBR 

• System procedure table 

• Control table 

• Interrupt table 

• Fault table 

To ensure proper processor operation, the PRCB, system procedure table, control table, interrupt 
table, and fault table must not be located in architecturally reserved memory -- addresses reserved 
for on-chip Data RAM and addresses at and above FEFF FF60H. In addition, each of these 
structures must start at a word-aligned address; a System Error occurs if any of these structures are 
not word-aligned (see section 11.2.2.3). 

At initialization, the processor loads the Supervisor Stack Pointer (SSP) from the system 
procedure table, aligns it to a 16-byte boundary, and caches the pointer in the SSP memory­
mapped control register (see section 3.3, "MEMORY-MAPPED CONTROL REGISTERS" (pg. 
3-5». Recall that the supervisor stack pointer is located in the preamble of the system procedure 
table at byte offset 12 from the base address. The system procedure table base address is 
programmed in the PRCB. Consult section 7.5.1, "System Procedure Table" (pg. 7-16) for the 
format of the system procedure table. 

At initialization, the NMI vector is loaded from the interrupt table and saved at location 
0000 OOOOH of the internal data RAM. The interrupt table is typically programmed in the boot 
ROM and then relocated to internal RAM by reinitializing the processor.· . 

The fault table is typically located in boot ROM. lOt is necessary to locate the fault table in RAM, 
the processor must be reinitialized. 

The remaining data structures that an application may need are the user stack, supervisor stack and 
interrupt stack. These stacks must be located in a system's RAM. 
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Fixed Data Structures 

Inlt. Boot Record (IBR): Address 

~ ........ .--.,*",,~~~ 

FEFF FF30H 

FEFF FF34H 

FEFF FF38H 

FEFF FF3CH 
P-~~~~~~~ 

FEFF FF40H 
\-----'-'!<!!.!!''''-----j 

6 Check Words 
(For Bus Confidence 

Self-Test) 

FEFF FF44H 

FEFF FF48H 

'--______ --' FEFF FF5CH 

INITIALIZATION AND SYSTEM REQUIREMENTS 

-
-
-

-

-

~ 

~ 

.> 

Relocatable Data Structures 

User Code: 

Process Control Block (PRCB): 

Fault Table Base Address ~ 

Control Table Base Address 

AC Register Initial Image 

Fault Configuration Word 

Interrupt Table Base Address 

s~stem Procedure 
Ta Ie Base Address 

Reserved 

Interrupt Stack Pointer 

Instruction Cache 
Confiiiuration Word 

ReHcister Cache 
Con Iguration Word 

Control Table r-
Interrupt Table ~ 

.? 
System Procedure Table 1-

< 

Other Architecturally 
Defined Data r----Structures (Not 

Required As Part Of IMI) 

Figure 11·4. Initial Memory Image (IMI) and Process Control Block (PRCB) 
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\ INITIALIZATION AND SYSTEM REQUIREMEN"fS 

11.3.1.1 Initialization Boot Record (IBR) 
. . 

The initialization boot record (:IB.R) is the primary data structure required to initialize the i960 Jx 
processor. The IBR is a 12-word structure which must be located at address FEFF FF30H (see 
Table 11-5). The IBR is made up of four components: the initial bus configuration data, the first 
instruction pointer, the PRCB pointer and the bus confidence test checksum data. 

Table 11-5. Initialization Boot Record' 
... , 

Byte Physical Address Description 

FEFF FF30H PMCON14_15, byte 0 

FEFF FF31 to FEFF FF33 Reserved .. ' 

FEFF FF34H PMCON14_15, byte 1 
!. 

FEFF FF35 to FEFF FF37 Reserved 

FEFF FF38H PMCON14_15, qyte.2 

FEFF FF39 to FEFF FF3B Reserved 

FEFF FF3CH PMCON14_15, byte 3 

FEFF FF3D toFEFF FF3F Reserved . . ' 
.. 

FEFF FF40 to FEFF FF43 First Instruction Pointer 

FEFF FF44to FEFF FF47 PRCB Pointer . 

FEFF FF48 tel FEFF FF4B Bus Confidence Self-Test Check Word 0 

FEFF FF4C to FEFF FF4F Bus Confidence Self-Test Check Word 1 

FEFF FF50 to FEFF FF53 Bus Confidence Self-Test Check Word 2 

FEFF FF54 to FEFF FF57 Bus. Confidence Self-Test Check Word 3 

FEFF FF58 to FEFF FF5B Bus Confidence Self-Test Check Word 4 

FEFF FF5C to FEFF FF5F Bus Confidence Self-Test Check Word 5 

When the processor reads the 1M! during initialization, it must know the bus characteristics of 
external memory where the IMI is located. Specifically, it must know the bus width and endianism 
for the remainder of the IMI. At initialization, the processor sets the PMCON register to an 8-bit 
bus width. The processor then needs to form the initial DLMCON and PMCONI4_15 registers so 
that the memory containing the IBR can be accessed correctly. The lowest-order byte of each of 
the IBR's first 4 words are used to form the register values. On the i960 Jx processor, the bytes at 
FEFF FF30 and FEFF FF34 are not needed, so the processor starts fetching at address FEFF FF38. 
The loading of these registers is shown in the pseudo-code flow in Example 11-1. 

, .' . .~ . 
~ .' 
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Example 11·1. Processor Initialization Flow 

Processor_Initialization_flow{) 
{ FAIL-pin = true; 

restore_full_cache_mode; disable{I_cache); invalidate{I_cache); 
disable{D_cache); invalidate (D_cache) ; 
BCON.ctv = 0; /* Selects PMCON14_15 to control all accesses */ 
PMCON14_15 = 0; /* Selects 8-bit bus width */ 

/** Exit Reset State & Start_Init **/ 
if (STEST_ON_RISING_EDGE_OF_RESET) 

status = BIST{); /* BIST does not return if it fails */ 
FAIL-pin = false; 
PC = OxOOlf2002; /* PC.Priority = 31, PC.em = Supervisor,*/ 

/* PC.te = 0; PC.State = Interrupted */ 
ibr-ptr = Oxfeffff30; /* ibr-ptr used to fetch IBR words */ 

/** Read PMCON14_15 image in IBR **/ 
FAIL-pin = true; IMSK 0; 
DLMCON.dcen = 0; LMMRO.lmte = 0; LMMR1.lmte 0; 
DLMCON.be = (memory[ibr-ptr + Oxcl » 7); 
PMCON14_15 [byte2l = OxcO & memory[ibr-ptr + 8l; 

/** Compute CheckSum on Boot Record **/ 
carry = 0; CheckSum = Oxffffffff; 
for (i=O; i<6; i++) /* carry is carry out 

CheckSum = memory[ibr-ptr + 16 + i*4l 
if (CheckSum != 0) 

from previous add*/ 
+ CheckSum + carry; 

/* Fail BUS Confidence Test */ { fail_msg = Oxfeffff64; 
dummy = memory[fail_msgl; /* Do load with address = fail_msg */ 
for (;;) ; 
} /* loop forever with FAIL pin true */ 

else FAIL-pin = false; 

/** Process PRCB and Control Table ~*/ 
prcb-ptr = memory[ibr-ptr+Ox14l; 
ctrl_table = memory[prcb-ptr+4l; 
Process_PRCB{prcb-ptr); /* See Process PRCB Section for Details */ 
IP = memory [ibr-ptr+Ox10l ; 

gO = DEVICE_ID; 
return;/* Execute First Instruction */ 

Bit 31 of the assembled PMCON word loaded from the IBR is written to DLMCON.be to establish 
the initial endianism of memory; the processor initializes the DLMCON.dcen bit to 0 to disable 
data caching. The remainder of the assembled word is used to initialize PMCON14_15. In 
conjunction with this step, the processor clears the bus control table valid bit (BCON.ctv), to 
ensure for the remainder of initialization that every bus request issued takes configuration 
information from the PMCON14_15 register, regardless of the memory region associated with the 
request. At a later point in initialization, the processor loads the remainder of the memory region 
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INITIALIZATION AND SYSTEM REQUIREMENTS 

configuration table from the external cOIitrol table. The Bus Configuration (BCON) register is also 
loaded at this time. The control table valid (BCON.ctv) bit is then set ill the control table to 
validate the PMCON registers after they are loaded. In this way, the bus controller is completely, 
configured during initialization. (See Chapter 15, EXTERNAL BUS for a complete discussion of 
memory regions and configuring the bus controller.) 

After the bus configuration data is loaded and the new bus configuration IS in place, the processor 
loads the remainder of the IBR which consists of the first instruction pointer, the PRCB pointer 
and six checksum words. The PRCB pointer and the first instruction pointer are internally cached. 
The six checksum words - along with the PRCB pointer and the first instruction pointer - are 
used in a checksum calculation which implements a confidence test of the external bus. The 
checksum calculation is shown in the pseudo-code flow in Example 11-1. If the checksum 
calculation equals zero, then the confidence test of the external bus passes. 

Figure 11-4 further describe the ffiR organization. 

r-------------- Boot Bit Endian (BBGE) 
(0) Little Endian 
(1) Big Endian 

.------- Bus Width (BW) 
(00) 8-bit 
(01) 16-bit 
(10) 32-bit 
(11) Reserved 

byte 1 byte 0 

28 24 
PMCON14_15 Register 

I Reserved 
(Initialize to 0) 

20 16 12 8 4 

Figure 11·5. PMCON14_15 Register Bit Description In IBR 

11.3.1.2 Process Control ,Block (PRCB) 

o 

The PRCB contains base addresses for system data structures and initial configuration information 
for the cote and integrated peripherals. The base addresses' are accessed from these internal 
registers. The registers are accessible to the users through the memory mapped interface. Upon 
reset or reinitialization, the registers are initialized. The PRCB format,is shown in'Table 11-6. 
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Table 11-6. PRCS Configuration 

Physical Address Description 

PRCB POINTER + OOH Fault Table Base Address 

PRCB POINTER + 04H Control Table Base Address 

PRCB POINTER + 08H AC Register Initial Image 

PRCB POINTER + OCH Fault Configuration Word 

PRCB POINTER + 10H Interrupt Table Base Address 

PRCB POINTER + 14H System Procedure Table Base Address 

PRCB POINTER + 18H Reserved , 
PRCB· POINTER + 1 CH Interrupt Stack Pointer 

PRCB POINTER + 20H Instruction Cache Configuration Word 

PRCB POINTER + 24H Register Cache Configuration Word 

The initial configuration infonnation is programmed in the arithmetic controls (AC) initial image, 
the fault configuration word, the instruction cache configuration word, and the register cache 
configuration word. Figure 11-6 shows these configuration words. 
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AC Register Initial Image Offset08H 
Condition Code Bits- AC.cc--...,-----------------------, 

Integer-Overflow Flag - AC.of----------:------:----, 
(0) no overflow ' 
(1) overflow 

Integer Overflow Mask Bit - AC.om .... ------.,.----,--, 
(0) enable overflow faults 
(1) mask overflow faults 

No-Imprecise-Faults Bit - AC.nif -------..., 
(0) allow imprecise fault conditions 
(1) prevent imprecise fault concjitions. 

31 28 24 20 16 

I I I III 
12 8 .4 

Fault Configuration Word 

31 28 24 20 16 12 8 4 

tL--_________________ Mask Non-Aligned Bus Request Fault 

Instruction Cache Configuration Word 

Disable Instruction Cache---------, 
(0) enable cache 
(1) disable cache 

31 28 24 20 16 

Register Cache Configuration Word 

(0) enable the fault 
(1) mask the fault 

12 8 

Programmed Limit--------------------,. 

31 

I 
. III 

28 

Reserved 
(Initialize to 0) 

24 20 16 12 8 

4 

4 

Figure 11-6. Process Control Block Configuration Words 
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11.3.2 Process PRCe Flow 

The following pseudo-code flow illustrates the processing of the PRCB. Note that this flow is used 
for both initialization and reinitialization (through sysctl). 

Example 11-2. Process PRCe Flow 

Process_PRCB(prcb~tr) 

{ PRCB_mmr = prcb-ptr; 
reset_state(data_ram); /* It is unpredictable whether the */ 

/* Data RAM keeps its prior contents */ 
fault_table memory[PRCB_mmr]; 
ctrl_table memory[PRCB_mmr+Ox4]; 
AC memory[PRCB_mmr+Ox8]; 
fault_config memory[PRCB_mmr+Oxc]; 

if (1 & (fault_config » 30)) generate_fault_on_unaligned_access 
else 

/** Load Interrupt Table and Cache NMI Vector Entry in Data RAM**/ 
Reset_block_NMI; 
interrupt_table = memory[PRCB_mmr+Ox10]; 
memory [0] = memory[interrupt_table + (248*4) + 4]; 

/** Process System Procedure Table **/ 
sysproc memory [PRCB_mmr+Ox14] ; 
temp 
SSP_mmr 
SSP.te 

memory[sysproc+Oxc]; 
(-Ox3) & temp; 
1 & temp; 

/** Initialize ISP, FP, SP, and PFP **/ 
ISP_mmr memory[PRCB_mmr+Ox1c]; 
FP ISP_mmr; 
SP FP + 64; 
PFP FP; 

/** Initialize Instruction Cache **/ 
ICCW = memory[PRCB_mmr+Ox20]; 
if (1 & (ICCW» 16) ) enable(I_cache); 

/** Configure Local Register Cache **/ 
programmed_limit = (7 & (memory [PRCB_mmr+Ox24] » 8) ); 
config_reg_cache( programmed_limit); 

/** Load_control_table. Note breakpoints and BPCON are excluded here **/ 
load_control_table(ctrl_table+Ox10 , ctrl_table+Ox58); 
load_control_table(ctrl_table+Ox68 , ctrl_table+Ox6c); 
IBPO = OxO; IBP1 = OxO; DABO = OxO; DAB1 = OxO; 

/** Initialize Timers **/ 
TMRO.tc 0; TMR1.tc 0; TMRO.enable 0; TMR1.enab1e 0; 
TMRO.sup 0; TMR1.sup 0; TMRO.reload 0; TMR1.reload 0; 
TMRO.cse1 
return; 

0;. TMRl. csel 0; 

false; 
true; 
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11.3.2.1 AC Initial Image 

The AC initial image is loaded into the on-chip AC register during initialization: The AC initial 
image allows the initial value of the overflow mask, no imprecise faults bit and condition code bits 
to be selected at initialization. 

The AC initial image condition code bits can be used to specify the source of an initializ. ation or . . . 
reinitialization when a single instruction entry point to the user startup code.is desirable. This is 
accomplished by programming the condition code in the AC initial image to a different value for 
each different entry point. The user startup code can detect the condition code values - and thus 
the source of the reinitialization - by using the compare or compare-and-branch instructions. 

11.3.2.2 Fault Configuration Word 

The fault configuration word allows the operation-unaligned fault to be masked when an 
unaligned memory request is issued. (See section 15.2.5, "Data Alignment" (pg. 15-22) for a 

. description of unaligned memory requests.) Whenever an unaligned access is encountered, the 
pro<?essor always performs the access. After performing the access,. the processor determines 
whether it should generate a fault. If bit 30 in the fault· configuration word is set, a fault is not 
generated after an unaligned memory request is performed. If bit 30 is clear, a fault is generated 
after an unaligned memory request is performed. 

11.3.2.3 Instruction Cache Configuration Word 

The instruction cache configuration word allows the instruction cache to be enabled or disabled at 
initialization. If bit 16 in the instruction cache configuration word is set, the instruction cache is 
disabled and all instruction fetches are directed to external memory. Disabling the instruction 
cache is useful for tracing execution in a software debug environment. The instruction cache 
remains disabled until one of two operations is performed: 

• The processor is reinitialized with a new value in the instruction cache configuration 
word 

• icctl is issued with the enable instruction cache operation 

• sysctl is issued with the configure instruction cache message type and a cache configu­
ration mode other than disable cache 

11.3.2.4 Register Cache Configuration Word 

The register cache configuration word specifies the number of free frames in the local register 
cache that can be used by non-critical code - code that is either in the executing state (non-inter­
rupted) or code which is in the interrupted state, but, has a process priority less than 28 - must 
reserve for critical code (interrupted state and process priority greater than or equal to 28), 
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The register cache and the configuration word are explained further in section 4.2, "LOCAL 
REGISTER CACHE" (pg. 4-2). 

11.3.3 Control Table 

The control table is the data structure that contains the on-chip control registers values. It is 
automatically loaded during initialization and must be completely constructed in the IMI. Figure 
11-7 shows the Control Table format. 

For register bit definitions of the on-chip control table registers, see the following: 

IMAP - Figure 13-7. Interrupt Mapping (IMAPO-IMAP2) Registers (pg. 13-15) 

ICON - Figure 13-6. Interrupt Control (ICON) Register (pg. 13-13) 

PMCON - Figure 12-2. PMCON Register Bit Description (pg. 12-6) 

• TC - Figure 10-1. Trace Controls (TC) Register (pg. 10-2) 

• BCON - Figure 12-3. Bus Control Register (BCON) (pg. 12-7) 
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31 0 

OOH 

04H 

08H 

OCH 

Interrupt Map 0 (IMAPO) 10H 

Interrupt Map 1 (IMAP1) 14H 

Interr\lpt Map 2 (IMAP2) 18H 

Interrupt uUIIIIUUI""UII (ICON) 1CH 

20H 

24H 

28H 

2CH 

30H 

34H 

38H 

3CH 

40H 

I
I, .; 

.' 44H 

48H 

4CH 

50H 

54H 

58H 

5CH 

60H 

64H 

68H 

Bus Configuration Control (BCON) 6CH 

Figure 11-7. Control Table 
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11.4 DEVICE IDENTIFICATION ON RESET 

A number characterizing the microprocessor type and stepping is programmed during manufacture 
into the DEVICEID memory-mapped register. During initialization, the value is also placed in gO. 

Part Number 

I 
Product 

Version Type Gen Model Manufacturer ID 

nl1lnnl I 

II1I11111111111111111 0 I 0 I 0 I 0 1 0 I 0 I 0 11 1 0 I 0 11 11 I 
28 24 20 16 12 8 4 0 

Figure 11·8. IEEE 1149.1 Device Identification Register 

The value for device identification is compliant with the IEEE 1149.1 specification and Intel 
standards. Table 11-7 describes the fields of the device ID. The Version field corresponds to silicon 
stepping: for example, 0000 refers to the A-a stepping. 
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Table 11-7. i960 Jx Processor Device Identification Register settings by Model 

Part Number 

Version XType Gel'! Model Manufacturer 1 

80L960JA, xxxx 0000 100 a 001 a 0001 0000 0001 001 1 
3.3V 
2K Instruction Cache OxOO821013 
1 K Data Cache 

80960JF xxxx 1000 100 a 001 a 0000 0000 0001 001 1 
5V 
4K Instruction Cache Ox0882 0013* 
2K Data Cache 

80 L960JF xxxx 0000 100 a 001 a 0000 0000 0001 001 1 
3.3V 
4K Instruction Cache Ox0082 0013 
2K Data Cache 

80960JD xxxx 1000 100 a 001 a 0000 0000 0001 001 1 
5V 
4K Instruction Cache Ox0882 0013* 
2K Data Cache 

"The B0960JF and B0960JD part number~ are the same. 

11.4.1 Reinitiallzing and Relocating Data Structures 

Reinitialization can reconfigure the processor and change pointers to data structures. The 
processor is reinitialized by issuing the sysctl instruction with the reinitialize processor message 
type. (See section 6.2.67, "sysctI" (pg. 6-114) for a description of sysctl.) The reinitialization 
instruction pointer and a new PRCB pointer are specified as operands to the sysctl instruction. 
When the processor is reinitialized, the fields in the newly specified PRCB are loaded as described 
in section 11.3.1.2, "Process Control Block (PRCB)" (pg. 11-14). 

Reinitialization is useful for relocating data structures to RAM after initialization. The interrupt 
table must be located in RAM: to post software-generated interrupts, the processor writes to the 
pending priorities and pending interrupts fields in this table. It may also be necessary to relocate 
the control table to RAM: it must be in RAM if the control register values are to be changed by 
user code. In some systems, it is necessary to relocate other data structures (fault table and system 
procedure table) to RAM because of unsatisfactory load performance from ROM. 

After initialization, the software is responsible for copying data structures from ROM into RAM. 
The processor is then reinitialized with a new PRCB which contains the base addresses of the new 
data structures in RAM. 

Reinitialization is required to relocate any of the data structures listed below, since the processor 
caches the pointers to the structures. 
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The processor caches the following pointers during its initialization. To modify these data 
structures, a software re-initialization is needed. 

• Interrupt Table Address 

• Fault Table Address 

• System Procedure Table Address 

Control Table Address 

11.5 STARTUP CODE EXAMPLE 

After initialization is complete, user startup code typically copies initialized data structures from 
ROM to RAM, reinitializes the processor, sets up the first stack frame, changes the execution state 
to non-interrupted and calls the _main routine. This section presents an example startup routine 
and associated header file. This simplified startup file can be used as a basis for more complete 
initialization routines. 

The examples in this section are useful for creating and evaluating startup code. The following lists 
the example's number, name and page. 

• Example 11-3. Initialization Header File (init.h) (pg. 11-23) 

• Example 11-4., Startup Routine (init.s) (pg. 11-24) 

• Example 11-5., High-Level Startup Code (initmain.c) (pg. 11-28) 

• Example 11-6., Control Table (ctltbl.c) (pg. 11-29) 

• Example 11-7., Initialization Boot Record File (rom_ibr.c) (pg. 11-30) 

• 
• 

1 

Example 11-8., Linker Directive File (init.ld) (pg. 11-31) 

Example 11-9., Makefile (pg. 11-33) 
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Example 11-3, Initialization Header File'(lnit.h} 

/*--------------------------------------------~-------------*/ 
/* init.h */ 
/*-------------------------------------------------------~--*/! 

#define BYTE_N(n,data) (( (unsigned) (data) » (n*8)) & OxFF) 

typedef struct 

unsigned char bus _byte_O; 

unsigned char reserved_0[3]; 

unsigned char bus_byte_1; 

unsigned char reserved_1[3]; 

unsigned char bus _byte_2; 

unsigned char reserved_2[3]; 

unsigned char bus _byte_3; 

unsigned char reserved_3[3]; 

void (*first_inst) (); 

unsigned *prcb-ptr; 

int check_sum[6]; 

}IBR; 

, 
/* PMCON Bus Width can be 8,16 or 32, default to 8 

* PMCON14_15 BOOT_BIG_ENDIAN O=little endian, l=big endian 
*/ 

intet 

#define BUS_WIDTH(bw) ((bw==16)? (1«22): (0)) I ((bw==32)? (2«22): (0)) 

((on)?(1«31:0)) 

/* Bus configuration */ 

#define DEFAULT (BUS_WIDTH (8) 

#define 1_0 
#define DRAM 
#define ROM 
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Example 11·4. Startup Routine (init.s) (Sheet 1 of 4) 

/*----------------------------------------------------------*/ 
/* init.s */ 
/*----------------------------------------------------------*/ 

/* initial PRCB */ 

.globl _rom-prcb 

.align 4 /* or .align 2 */ 
_rom-prcb : 

.word boot fIt_table 

.word _boot_control_table 

.word OxOOOOl000 

.word Ox40000000 

.word boot intr table -

.word rom_sys-proc_ table 

.word 0 

.word intr stack -

.word OxOOOOOOOO 

# 0 - Fault Table 
# 4 - Control Table 
# 8 - AC reg mask overflow fault 
# 12 - Flt CFG 
# 16 - Interrupt Table 
# 20 - System Procedure Table 
# 24 - Reserved 
# 28 - Interrupt Stack Pointer 
# 32 - Inst. Cache - enable cache 

.word OxOOOO0200 # 36 - Register Cache Configuration 

/* ROM system procedure table */ 

.equ supervisor-proc, 2 

.text 

.align 6 /* or .align 2 or .align 4 */ 
rom_sys-proc_table: 

. space 12 

.word _supervisor_stack 

. space 32 

.word _default_sysproc 

.word _default_sysproc 

.word _default_sysproc 

.word _default_sysproc 

.word _default_sysproc 

.word _default_sysproc 

.word _default_sysproc 

# Reserved 
# Supervisor stack pointer 

# Preserved 
# sysproc 0 
# sysproc 1 
# sysproc 2 
# sysproc 3 
# sysproc 4 
# sysproc 5 

.word fault_handler + supervisor-proc 
# sysprpc 6 
# sysproc 7 
# sysproc 8 .word _default_sysproc 

.space 251*4 
/* Fault Table */ 

.equ 

.equ 

.text 

syscall, 2 
fault-proc, 7 

.align 4 
boot fIt_table: 

.word (fault-pr oc«2) 

.word Ox27f 

.word (fault-pr oc«2) 

.word Ox27f 

.word (fault-proc«2) 

.word Ox27f 

# sysproc 9-259 

+ syscall # O-Parallel Fault 

+ syscall # I-Trace Fault 

+ syscall # 2-0peration Fault 
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Example 11-4. Startup Routine (init.s) (Sheet 2 of 4) 

.word (fault-proc«2) + syscall # 3-Arithmetic Fault 

.word Ox27f 

.word 0 # 4-Reserved 

.word 0 

.word (fault-proc«2) + syscall # 5-Constraint Fault 

.word Ox27f 

.word 0 # 6-Reserved 

.word 0 

.word (fault-proc«2) + syscall # 7-Protection Fault 

.word Ox27f 

.word 0 # 8-Reserved 

.word 0 

.word 0 # 9-Reserved 

.word 0 

.word (fault-pr oc«2) + syscall # Oxa-Type Fault 

.word Ox27f 

.space 21*8 # reserved 
/* Boot Interrupt Table */ 

.text 
boot_intr_ table: 

.word 0 # Pending Priorities 

.word 0, 0, 0, 0, 0, 0, 0, 0 # Pending Interrupts Vectors 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 8 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, - intx # 10 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, intx # 18 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 20 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, - intx # 28 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, intx # 30 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, intx # 38 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 40 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, - intx # 48 

.word _intx, _intx, _intx, _intx, _intx, ,-intx, _intx, - intx # 50 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 58 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, - intx # 60 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, intx # 68 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, intx # 70 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, intx # 78 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, intx # 80 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, - intx # 88 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, - intx # 90 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, intx # 98 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # aO 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # a8 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # bO 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, - intx # b8 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # cO 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, - intx # c8 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # dO 

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # d8 

.word intx, intx, intx, intx, intx, intx, intx, intx # eO 
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Example 11-4. Startup Routine (inits) (Sheet 3 of 4) 

.word 

.word 

.word 

/* START */ 

_intx, 
_intx, 
_nmi, 

_intx, 
_intx, 

0, 

_intx, _intx, _intx, _intx, 
_intx, _intx, 0, 0, 

0, 0, _intx, _intx, 

/* Processor starts execution here after reset. */ 
.text 
.globl _start_ip 
.globl _reinit 

_start_ip: 

_intx, 
0, 

_intx, 

intx # e8 
0 # fO 

intx - # f8 

mov 0, g14 /* g14 must be 0 for ic960 C compiler */ 
/* MON960 requires copying the .data area into RAM. If a user application 
* does not require this it is not necessary. 
* Copy the .data into RAM. The .data has been packed in the ROM after the 
* code area. If the copy is not needed (RAM-based monitor), the symbol 
* rom_data can be defined as 0 in the linker directives file. 
*/ 

Ida rom_data, gl # load source of copy 
cmpobe 0, gl, 1£ 
Ida _Bdata, g2 # load destination 
Ida _Edata, g3 

init_data: 
ldq (gl) , r4 
addo 16, gl, gl 
stq r4, (g2) 
addo 16, g2, g2 
cmpobl g2, g3, init_data 

1 : 
/* Initialize the BSS area of RAM. */ 

Ida _Bbss, g2 
Ida _Ebss, g3 
movq 0,r4 

bss fill : -
stq r4, (g2) 
addo 16, g2, g2 
cmpobl g2, g3, bss fill 

_reinit: 

1 : 

_I 

ldconst Ox300, r4 
Ida 1£, rS 
Ida _ram-prcb, r6 
sysctl r4, rS, r6 

Ida _user_stack, pfp 
Ida 64(pfp}, sp 
mov pfpf, fp 
flushreg 

ldconst OxOOlf2403, r3 
ldconst OxOOOf0003, r4 
modpc r3, r3, r4 

# start of bss 
# end of bss 

# reinitialize sys control 

/* new pfp */ 

/* PC mask */ 
/* PC value */ 
/* Lower interrupt priority */ 
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Example 11-4. Startup Routine (init.s) (Sheet 4 of 4) 

/* Clear the 1PND register */ 
Ida Oxff008500, gO 
mov 0, gl 
st gl, (gO) 
calIx _main #to 

intr_stack .globl 
.globl 
.globl 
.bss 
.bss 
.bss 

_user_stack 
_supervisor_stack 
_user_stack, Ox0200, 6 
_intr_stack, Ox0200, 6 
_supervisor_stack, Ox0600, 6 

.text 
fault_handler: 

ldconst 'F', gO 
call _co 
ret 

_default_sysproc: 
ret 

intx: 
ldconst 'I', gO 
call _co 
ret 

main routine 

# default application stack 
# interrupt stack 
# fault (supervisor) stack 

Example 11-5. High-Level Startup Code (initmain.c) 

unsigned componentid = 0; 

main() 
{ 

} 

co () 
{ 

} 
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/* system- or board-specific code goes here */ 
/* this code is called by init.s */ 

/* system or board-specific output routine goes here */ 
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Example 11-6. Control Table (ctltbl.c) 

/*----------------------------------------------------------*/ 
/* ctltbl.c */ 
/*----------------------------------------------------------*/ 
#include "init.h" 

typedef struct 
{ 

unsigned control_reg[28l; 
} CONTROL_TABLE; 

const CONTROL_TABLE boot_control_table 
/* Reserved */ 
0, 0, 0, 0, 
/* Interrupt Map Registers */ 
0, 0, 0,/* Interrupt Map Regs (set by code as needed) */ 

Ox43bc, /* ICON 

} ; 

L 

* 
* 
* system_init 
* system_init 
* system_init 
* system_init 
* system_init 
* system_init 
* system_init 
* system_init 

* 
* 
* 
*/ 

° 1 
2 
3 
4 
5 
6 
7 

- dedicated mode, 
- enabled 
- falling edge actived, 
- falling edge actived, 
- falling edge actived, 
- falling edge actived, 
- level-low activated, 

falling edge actived, 
- falling edge actived, 
- falling edge actived, 
- mask unchanged, 
- not cached, 
- fast, 

/* Physical Memory Configuration Registers */ 

DEFAULT, 0, /* Region ° 1 */ 
DEFAULT, 0, /* Region 2 _3 */ 
DEFAULT, 0, /* Region 4 _5 */ 
I _0, 0, /* Region 6 - 7 */ 
DEFAULT, 0, /* Region 8 - 9 */ 
DEFAULT, 0, /* Region 10_11 */ 
DRAM, 0, /* Region 12 - 13 */ 
ROM, 0, /* Region 14 - 15 */ 

/* Bus Control Register */ 
0, /* Reserved */ 
0, /* Reserved */ 
1 /* BCON Register (Region config. valid) */ 
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Example 11·7. Initialization Boot Record File (rom_ibr.c) (Sheet 1 of 2) 

#include "init.h" 

/* 

* NOTE: The ibr must be located at OxFEFFFF30. Use the linker to 

* locate this structure. 

* The boot configuration is always region 14_15, since the IBR 

* must be located there 

*/ 

extern void start_ip(}; 

extern unsigned rom-prcb; 

extern unsigned checksum; 

#define CS - 6 (int) &checksum 

#define BOOT_CONFIG ROM 

const IBR init_boot_record 

BYTE_N(0 ,BOOT_CONFIG}, 

0,0,0, 

BYTE_N(l,BOOT_CONFIG} , 

0,0,0, 

BYTE_N(2,BOOT_CONFIG}, 

0,0,0, 

11-30 

/* value calculated in linker */ 

/* PMCON14_15 byte 1 */ 

/* reserved set to ° */ 

/* PMCON14_15 byte 2 */ 

/* reserved set to ° */ 

/* PMCON14 _15 byte 3 */ 

/* reserved set to ° */ 
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Example 11·7. Initialization Boot Record File (rom_lbr.c) (Sheet 2 of 2) 

0,0,0, 

start_ip, 
&rom-prcb, 

-2, 

0, 

0, 

0, 

0, 

} ; 

/* PMCON14_15 byte 4 */ 
/* reserved set to 0 */ 

~ __________ E_xa_m_p_le __ 11_.8_._L_ln_k_e_r_D_lrec __ tl_v_e_FI_le_(_In_lt_.ld_) __ (S_h_e_~_1 __ m_2_) __________ ~ .i 
/*----------------------------------------------------------*/ 
/* init.ld */ 

/*----------------------------------------------------------*/ 
MEMORY 
{ 

/* 

*/ 

Enough space must be reserved in ROM after the text 
section to hold the initial values of the data section. 

rom: o=OxfefeOOOO,l=OxlfcOO 
ro~dat: o=OxfefffcOO,l=Ox0300 /* placeholder for .data image */ 

ibr: 
data: 
bss: 

o=Oxfeffff30,l=Ox0030 
o=OxaOOOOOOO,l=Ox0300 
o=Oxa0000300,l=Ox7dOO 
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Example 11-8. Linker Directive File (Inlt.ld) (Sheet 2 of 2) 

SECTIONS 
{ 

*/ 

.ibr : 
{ 

rom_ibr.o 
> ibr 

.text : 

} > rom 

.data :' 
{ 

} > data 

.bss : 

} > data 

_Etext; 

_checksum 

HLL() 

/* used in init.s as source of .data 
section initial values. ROM960 
"move" command places the .data 
section right after the .text section 

/*Rommer script embedded here: the following creates a ROM image 
#*move $0 .text 0 
#*move $0 
#*move $0 .ibr Oxlff30 
#*mkimage $0 $O.ima 
#*ihex $O.ima $O.hex mode16 
#*map $0 
#*quit 
*/ 
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Example 11·9. Makeflle 

/*----------------------------------------------------------*/ 
/* makefile */ 
/*----------------------------------------------------------*/ 

LDFILE = init 
FINALOBJ = init 
OBJS = init.o ctltbl.o initmain.o 
IBR = rom_ibr.o 
LDFLAGS -AJF -Fcoff -T$(LDFILE) -m 
ASFLAGS -AJF-V 
CCFLAGS -AJF -Fcoff -v -c 

init.ima: $ (FINALOBJ) 
rom960 $ (LDFILE) $ (FINALOBJ) 

init: $ (OBJS) $(IBR) 
gld960 $ (LDFLAGS) -0 $< $ (OBJS) 

.s.o: 
gas960c $ (ASFLAGS) $< 

.c.O: 

gcc960 $ (CCFLAGS) $< 

11.6 SYSTEM REQUIREMENTS 

The following sections discuss generic hardware requirements for a system built around the i960 
Jx processor. This section describes electrical characteristics of the processor's interface to the 
external circuit. The eLKIN, RESET, STEST, FAIL, ONCE, V ss and Vee pins are described in 
detail. Specific signal functions for the external bus signals and interrupt inputs are discussed in 
their respective sections in this manual. 

11.6.1 Input Clock (ClKIN) 

The clock input (eLKIN) determines processor execution rate and timing. It is designed to be 
driven by most common TTL crystal clock oscillators. The clock input must be free of noise and 
conform with the specifications listed in the data sheet. eLKIN input capacitance is minimal; for 
this reason, it may be necessary to terminate the eLKIN circuit board trace at the processor to 
reduce overshoot and undershoot. 
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11.6.2 Power and Ground Requlr~ments (Vee, Vss) 

The large number of V 88 and V cc pins effectively reduces the impedance of power and ground 
connections to the chip and reduces transient noise induced by current surges. The i960 Jx 
processor is implemented in CHMOS IV technology. Unlike NMOS processes, power dissipation 
in the CHMOS process is due to capacitive charging and discharging on-chip and in the 
processor's output buffers; there is almost no DC power component. The nature of this power 
consumption results in current surges when capacitors charge and discharge. The processor's 
power consumption depends mostly on frequency. It also depends on voltage and capacitive bus 
load (see the 80960JF Embedded 32-bit Process(Jr Data Sheet). 

To reduce clock skew on the i960 Jx processor, the V CCPLL pin for the Phase Lock Loop (PLL) 
circuit is isolated on the pinout. The lowpass filter, as shown in Figure 11-9, reduces noise induced 
clock jitter and its effects on timing relationships in system designs. The 4.7uf capacitor must be 
(low ESR solid tantalum), the 4.7 uf capacitor must be of the type X7R and the node connecting 
V CCPLL must be as short as possible. 

1000 

~·-----~~~++----I~------~· 
Vee .J..: VeePLL 

_ ~ ... ) ~ 4. 7", ~ 0.01", (On 1960 J, processo .. ) 

Figure 11-9. VCCPLL Lowpass Filter 

11.6.3 Power and ,Ground Planes, ' " 
, , 1 ' ,. 

Power and' grOund planes"must be used'in i960 Jx processor systems to minilnize noise. Justifi­
cation for these power and ground planes is the same as for multiple if 88 and V cc pins. Power and 
ground lines have inherent inductance and capacitance; therefore, an impedance Z=(UC)1/2. 

Total characteristic impedance for the power supply can be reduced by adding more lines. This 
effectis illustrated in Figure 11-10; which shows that two lines in parallel have half the impedance 
of one. Ideally, a plane - an infmite number of parallel lines - results in the lowest impedance. 
Fabricate power and ground planes with.a 1 oz. copper for outer layers and 0.5 oz. copper for inner 
layers. 

All power and ground pins must be connected to the planes. Ideally, the i960 Jx processor should 
be located at the center of the board to take full advantage of these planes, simplify layout and 
reduce noise. 
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/4'0 
Zo = 2 

2CO 
"'1 La \ Co 

Figure 11-10. Reducing Characteristic Impedance 

11.6.4 Decoupling Capacitors 

Decoupling capacitors placed across the processor between V cc and V ss reduce voltage spikes by 
supplying the extra current needed during switching. Place these capacitors close to the device 
because connection line inductance negates their effect. Also, for this reason, the capacitors should 
be low inductance. Chip capacitors (surface mount) exhibit lower inductance. 

11.6.5 110 Pin Characteristics 

The i960 Jx processor interfaces to its system through its pins. This section describes the general 
characteristics of the input and output pins. 

11.6.5.1 Output Pins 

All output pins on the i960 Jx processor are three-state outputs. Each output can drive a logic 1 
(low impedance to V cd; a logic 0 (low impedance to V ss); or float (present a high impedance to 
V cc and V ss). Each pin can drive an appreciable extemalload. The 80960JAlJF Embedded 32-bit 
Microprocessor Data Sheet and the 80960JD Embedded 32-bit Microprocessor Data Sheet 
describe each pin's drive capability and provide timing and derating information to calculate 
output delays based on pin loading. 
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11.6.5.2 Input Pins 

All i960 Jx processor inputs are designed to detect TTL thresholds, providing compatibility with 
the vast amount of available random logic and peripheral devices that use TTL outputs. 

Most i960 Jx processor inputs are synchronous inputs (Table 11-8). A synchronous input pin must 
have a valid level (TTL logic 0 or 1) when the value is used by internal logic. If the value is not 
valid, it is possible for a metastable condition to be produced internally resulting in undeterminate 
behavior. The 80960JNJF Embedded 32~bit Microprocessor Data Sheet and the 80960JD 
Embedded 32-b(t Microprocessor Data Sheet specify input valid setup and hold times relative to 
CLKIN for the synchronized inputs. 

Table 11-8. Input Pins 

Synchronous Inputs Asynchronous Inputs Asynchronous Inputs 
(sampled by ClKIN) (sampled by ClKIN) (sampled by RESET) 

A031:0 RESET STEST 

ROYRCV 'XINT7:0 LOCK\ONCE 

HOLD NMI 

TOI 

TMS 

i960 Jl: processor inputs which are considered asynchronous are internally synchronized to the 
rising edge of CLKIN. Since they are internally synchronized, the pins only need to be held long 
enough for proper internal detection. In some cases, it is useful to know if an asynchronous input 
will be recognized on a particular CLKIN cycle or held off until a following cycle. The i960 Jx 
microprocessor data sheet provides setup and hold requirements'relative to CLKIN which ensure 
recognition of an asynchronous input. The data, sheets also fjupply hold times required for 
detection of asynchronous inputs. ' , 

The ONCE and STEST inputs are asynchronous inputs. These signals are sampled and latched on 
the rising edge of the RESET input instead of CLKIN. / 

11.6.6 High Frequency Design Considerations 

At high signal frequencies and/or with fast edge rates, the transmission line properties of signal 
paths in a circuit must be considered. Transmission lin~ effects and crosstalk become significant in 
comparison to the signals. These errors can be transient and therefore difficult to debug. In this 
section, some high-frequency design issues are discussed; for more information, consult a 
reference on high-frequency design. 
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11.6.7 Line Termination 

Input voltage level violations are usually due to voltage spikes that raise input voltage levels above 
the maximum limit (overshoot) and below the minimum limit (undershoot). These voltage levels 
can cause excess current on input gates, resulting in permanent damage to the device. Even if no 
damage occurs, many devices are not guaranteed to function as specified if input voltage levels are 
exceeded. 

Signal lines are terminated to minimize signal reflections and prevent 'overshoot and undershoot. 
Terminate the line if the round-trip signal path delay is greater than signal rise or fall time. If the 
line is not terminated, the signal reaches its high or low level before reflections have time to 
dissipate and overshoot or undershoot occurs. 

For the i960 Jx processor, two termination methods are attractive: AC and series. An AC 
termination matches the impedance of the trace, there by eliminating reflections due to the 
impedance mismatch. 

Series termination decreases current flow in the signal path by adding a series resistor as shown in 
Figure 11-11. The resistor increases signal rise and fall times so that the change in current occurs 
over a longer period of time. Because the amount of voltage overshoot and undershoot depends on 
the change in current over time (V = L dildt), the increased time reduces overshoot and undershoot. 
Place the series resistor as close as possible to the signal source. AC termination is effective in 
reducing signal reflection (ringing). This termination is accomplished by adding an RC 
combination at the signal's farthest destination (Figure 11-12). While the termination provides no 
DC load, the RC combination damps signal transients. 

Selection of termination methods and values is dependent upon many variables, such as output 
buffer impedance, board trace impedance and input impedance. 

Source 

Figure 11-11. Series Termination 
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c 

Source 

R 

Figure 11-12. AC Termination 

11.6.8 Latchup 

Latchup is a condition in a CMOS circuit in which Vee becomes shorted to V ss. Intel's CMOS IV 
processes are immune to latchup under normal operation conditions. Latchup can be triggered 
when the voltage limits on 110 pins are exceeded, causing internal PN junctions to become 
forward biased. The following guidelines help prevent latchup: 

• Observe the maximum rating for input voltage on 110 pins. 

• Never apply power to an i960 Jx processor pin or a device connected to an i960 Jx 
processor pin before applying power to the i960 Jx processor itself. 

• Prevent overshoot and undershoot on 110 pins by adding line termination and by 
designing to reduce noise and reflection on signal lines. 

11.6.9 Interference 

Interference is the result of electrical activity in one conductor that causes transient voltages to 
appear in another conductor. Interference increases with the following factors: 

• Frequency Interference is the result of changing currents and voltages. The more frequent 
the changes, the greater the interference. 

• Closeness-of-conductors Interference is due to electromagnetic and electrostatic fields 
whose effects are weaker further from the source. 
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'!\vo types of interference must be considered in high frequency circuits: electromagnetic inter­
ference (EMI) and electrostatic interference (ESI). 

EMI is caused by the magnetic field that exists around any current-carrying conductor. The 
magnetic flux from one conductor can induce current in another conductor, resulting in transient 
voltage. Several precautions can minimize EMI: 

• Run ground lines between two adjacent lines wherever they traverse a long section of the 
circuit board. The ground line should be grounded at both ends. 

• Run ground lines between the lines of an address bus or a data bus if either of the 
following conditions exist: 

The bus is on an external layer of the board. 

The bus is on an internal layer but not sandwiched between power and ground planes that 
are at most 10 mils away. 

Figure 11-13. Avoid Closed-Loop Signal Paths 

ESI is caused by the capacitive coupling of two adjacent conductors. The conductors act as the 
plates of a capacitor; a charge built up on one induces the opposite charge on the other. 

The following steps reduce ESI: 

• Separate signal lines so that capacitive coupling becomes negligible. 

• Run a ground line between two lines to cancel the electrostatic fields. 
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CHAPTER 12 
MEMORY CONFIGURATION 

The Bus Control Unit (BCU) includes logic to control many common types of memory subsystems 
directly. Every bus access is "formatted" according to the BCU programming. The i960 Jx 
processor's BCU programming model differs.from schemes used in other i960 processors. 

12.1 Memory Attributes 

Every location in memory has associated physical and logical attributes. For example, a specific 
location may have the following attributes: 

• Physical: Memory is an 8-bit wide ROM 

• Logical: Memory is ordered big-endian and data is non-cacheable 

In the example above, physical attributes correspond to those parameters that indicate how to 
physically access the data. The BCU uses physical attributes to determine the bus protocol and 
signal pins to use when controlling the memory subsystem. The logical attributes tell the BCU how 
to interpret, format and control interaction of on-chip data caches. The physical and logical 
attributes for an individual location are independently programmable. 

12.1.1 PhYSical Memory Attributes 

The only programmable physical memory attribute for the i960 Jx microprocessor is the bus width, 
which can be 8-, 16- or 32-bits wide. 

For the purposes of assigning memory attributes, the physical address space is partitioned into 8, 
fixed 512 Mbyte regions determined by the upper three address bits. The regions are numbered as 
8 paired sections for consistency with other i960 processor implementations. Region 0_1 maps to 
addresses 0000 OOOOH to IFFF FFFFH and region 14_15 maps to addresses EOOO ooooH to 
FFFF FFFFH. The physical memory attributes for each region are programmable through the 
PMCON registers. The PMCON registers are loaded from the Control Table. The i960 Jx micro­
processor provides one PMCON register for each region. The descriptions of the PMCON registers 
and instructions on programming them are found in Section 12.3. 
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1'2.1.2 . Logical. Memory Attributes 

The i960 Jx provides a niechamsm for defining two logical memory templates (LMTs). An LMT 
may be used to specify the logical memory attributes for a section (or subset) of a physical 
memory subsystem connected to the BCU (e.g., DRAM, SRAM). The logical memory attributes 
defmed by the i960 Jx are byte ordering and whether the information is cacheable or non-
cacheable in the on-chip data cache~ ! 

There are typically ~everal different LMTs defint'ld within a single memory subsystem. For 
example, data within one area of DRAM may be non-cacheable while data in another area is 
cacheable. Figure 12-1 shows the use of the Control Table (PMCON registers) with logical 
memory templates for a single DRAM region in a typical application. 

Each logical memory te~plate is defined by programming Logical Memory Configuration 
(LMCON) registers. An LMCON Register pair defines a data template for areas of memory that 
have common logical attributes. The Jx microprocessor has two pairs of LMCON registers -
defining two separate templates. The extent of each data template is described by an address (on 4 
Kbyte boundaries) and an address mask. The address is, pt;ogrammed in the Logical, Memory 
Address register (LMADR). The mask is programmed in the Logical Memory Mask register 
(LMMSK).These two registers constitute the l;MCON register pair. 

The Default Logical Memory Configuration register is used to provide configuration data for areas 
of memory that do not fall within one of the two logical data templates. The DLMCON also 
specifies byte-ordering (little endian/big endian) for all data accesses in memory, including on­
chip data RAM. 

The LMCON registers and their programming are described in section 12.6. 
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FFFF FFFFH 

PMCON Registers 

Region 14_15 Non-Cacheable 

Region 12_13 

Region 10_11 

Region 8_9 Physical 
Region 8_9 

Region 6_7 32-bitwide 

Region 4_5 DRAM 

Region 2_3 

Region 0_1 Non,Cacheable 

80000000H 

OOOOOOOOH 

Note: DLMCON maps the remaining memory to cacheable. 

MEMORY CONFIGURATION 

Logical Memory 
Templates 
(LMCON) 

LMADRO 

LMMARO 

LMADR1 

LMMAR1 

Figure 12-1. PMCON and LMCON Example 
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12.2 Differences With Previous i960 Processors 

The mechanism described in this chapter in not implemented on the i960 Kx or Sx processors .. 
Although the i960 Cx processor has a memory configuration mechanism, it is different from the 
80960Jx's in the following ways: 

• For the purposes of assigning physical and logical memory attributes, the i960 Cx processor 
evenly divides physical memory into 16 contiguous regions. When assigning physical 
memory attributes, the Jx divides memory into 8 contiguous, 512 Mbyte regions starting on 
512 Mbyte boundaries. The logical memory templates of the i960 Jx processor provide a 
programmable association of logical memory addresses, whereas the i960 Cx processor 
assigns these attributes to the physical memory regions. 

• The i960 Cx processor provides per-region programming of wait states, address pipelining 
and bursting. No such mechanisms exist on the 8096OJx. Bus wait states must be generated 
using extemallogic. 

12.3 Programming the Physical Memory Attributes (PMCON Registers) 

The layout of the Physical Memory Configuration registers, PMCONO_1 to PMCON14_15, is 
shown in Figure 12-2, which gives the descriptions of the individual bits. ThePMCON registers 
reside within memory-mapped control register space. Each PMCON register controls one 512-
Mbyte region of memory according to the mapping shown in Table 12-1 

Table 12-1. PMCON Address Mapping (Sheet 1 of 2) 

Register (Control Table Entry) Region Controlled 

OOOO.OOOOH to OFFF.FFFFH 
PMCONO_1 and 

1000.0000H to 1FFF.FFFFH 

2000.0000H to 2FFF.FFFFH 
PMCON2_3 and 

3000.0000H to 3FF,F.FFFFH 

4000.0000H to 4FFF.FFFFH 
PMCON4_5 and 

5000.0000H to 5FFF.FFFFH 
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Table 12-1. PMCON Address Mapping (Sheet 2 of 2) 

6000.0000H to 6FFF.FFFFH 
PMCON6_7 and 

7000.0000H to 7FFF.FFFFH 

8000.0000H to 8FFF.FFFFH 
PMCON8_9 and 

9000.0000H to 9FFF.FFFFH 

AOOO.OOOOH to AFFF.FFFFH 
PMCON10_11 and 

BOOO.OOOOH to BFFF.FFFFH 

COOO.OOOOH to CFFF.FFFFH 
PMCON12_13 and 

DOOO.OOOOH to DFFF.FFFFH 

EOOO.OOOOH to EFFF.FFFFH 
PMCON14_15 and 

FOOO.OOOOH to FFFF.FFFFH 

12.3.1 Bus Width . 

The bus width for a region is controlled by the BWl:0 bits in the PMCON register. The operation 
of the i960 Jx processor with different bus width programming options is described in section 
15.2.3.1, "Bus Width" (pg. 15-7). 

The bit combination" 11" is reserved for the BWI :0 field and can result in unpredictable operation. 
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tL..~-'--________ Bus Width 

00 = 8-bit 
01 = 16-bit 
10 = 32-bit bus 

intet 

I Reserved, 
write to zero 11 = reserved (do not use) 

Mnemonic 

BW1-0 

RESERVED 

Name 

Bus Width 

Bit # Function 

Selects the bus width for a region: 
00 = 8-bit, 

23-22 01 = 16-bit, 
10 = 32-bit bus 
11 = reserved (do not use) 

Program to 0 

Figure 12-2. PMC~N Register Bit Description 

12.4 Physical Memory Attributes at Initialization 

All eight PMCON registers are loaded automatically during system initialization. The initial 
values are stored in the Control Table in the Initialization Boot Record (see section 11.3.1, "Initial 
Memory Image (IMI)" (pg. 11-9». 

12.4.1 Bus Control (BCON) Register 

Immediately after a hardware reset, the PMCON register contents are marked invalid in the Bus 
Control (BCON) register. Figure 12-3 shows the BCON register and Control Table Valid (CTV) 
bit. Whenever the PMCON entries are marked invalid in BCON, the BCU uses the parameters in 
PMCONI4_15 for all regions. On a hardware reset, PMCON14_15 is automatically cleared. This 
operation configures all regions to an 8-bit bus width. Subsequently, the processor loads all 
PMCON registers from the Control Table. The processor then loads BCON from the Control 
Table. If BCON.ctv is clear, then PMCON14_15 will remain in use for all bus accesses. If 
BCON.ctv is set, the region table is valid and the BCU uses the programmed PMCON values for 
each region. 
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Configuration Entries in Control Table Valid (BCON.ctv) ---------------, 
o = PMCON entries not valid. default to PMCON14_15 setting. 
1 = PMCON entries valid 

Internal RAM Protection (BCON.irp) 
o = Internal data RAM not protected from user mode writes 
1 = Internal data RAM protected from user mode writes 

Supervisor Internal RAM Protection (BCON.sirp) ----------------, 
o '" First 64·bytes not protected from supervisor mode writes 
1 = First 64·bytes protected from supervisor mode writes 

31 

I Reserved. 
write to zero 

12 8 

Figure 12-3. Bus Control Register (BCON) 

12.5 Boundary Conditions for Physical Memory Regions 

4 o 

The following sections describe the operation of the PMCON registers during conditions other 
than "normal" accesses. 

12.5.1 Internal Memory Locations 

The PMCON registers are ignored during accesses to internal memory or memory-mapped 
registers. The processor performs those accesses over 32-bit buses, except for local register cache 
accesses. The register bus is 128 bits wide. 

12.5.2 Bus Transactions Across Region Boundaries 

An unaligned bus request that spans region boundaries uses the PMCON settings of both regions. 
Accesses that lie in the fIrst region use that region's PMCON parameters, and the remaining 
accesses use the second region's PMCON parameters. 

For example, an unaligned quad word load/store beginning at address IFFF FFFEH would cross 
boundaries from region 0_1 to 2_3. The physical parameters for region 0_1 would be used for the 
first 2-byte access and the physical parameters for region 2_3 would be used for the remaining 
access. 
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12.5.3 Modifying ,th, PMCON Registers 

An application can modifY the vaIue of a PMCON register by using the st or sysctl instruction. If 
a st or sysctl instruction is issued when an access is in progress, the current access is completed 
before the modification takes effect. 

12.6 Programming the Logical Memory Attributes 

The l:!itlbit field detiniti9ns for ~e LMADR1:0 and LMMR1:0 registers are shown in Figure 12-4 
'and Figure 12-5,. l.;MCONregisters reside within the memory-mapped control register space. 
, '. . 

Byte Order (read-only) 
o = Little end ian 
1 = Big endian 

Data Cache'Enable---'-"--------'-----'--------------, 
o = Data caching disabled 
1 = Data caching enabled 

I Reserved, 
write to zero 

'-------------- Template Starting Address 

Mnemonic ,BitlBIt Field Name ';, pos::n(s) Function 

A31:12 

DCEN 
";i,,' 

BE i 

Template Starting 
Address 

Da,ta Cache En,~ble 
'e, . 

,~ig Endisn Byte Orde~ 

31-12 

o 

Defines upper 20 bits for the starting address for a logical 
data template. The lower 12 bits are fixed at zero. The 

, starting address,ls modulo 4,Kbytes. 

Controls data caching for the template. 
o = Data caching disabled 
,1 • Data caching enabled 

,Instruction caching is never aff~cted by this bit. 

This is a read-only bit reflecting the value of 
DlMCON.be .. 

Figure 12-4. Logical Memory Template Startlng,Address Registers (LMADRO-1) 

12-8 



MEMORY CONFIGURATION 

The Default Logical Memory Configuration (DLMCON) register is shown in Figure 12-6. The 
BCU uses the parameters in the DLMCON register when the current access does not fall within 
one of the two logical memory templates (LMTs). Notice the byte ordering is controlled for the 
entire address space by programming the DLMCON register. 

Logical Memory Template Enabled --------------------, 

I o = LMT disabled 
1 = LMT enabled 

I Reserved, 
write to zero 

'------------ Template Address Mask 

Mnemonic BitlBit Field Name Bit Positlon(s) Function 

MA31:12 

LMTE 

".t 

Template Address 
Mask 

Logical Memory 
Template Enabled 

Defines upper 20 bits for the address mask for a 
logical memory template. The lower 12 bits are 

31-12 fixed at zero. 

0= Mask 

o 

1 = Do not mask 

Enables/disables logical memory template. 

o = LMT disabled 

1 = LMT enabled 

Figure 12·5. Logical Memory Template Mask Registers (LMMRO·1) 

12-9 

I; 

I ~ 

i 
,~ 
j 

II 
'l 
I r~ 

II 

~ 
~ 

I' 
! 
!', 



MEMOA'(. CONFIGURATION intet~ 

Byte Order -------------,-----~-------___, 
o = Little endisn 
1 = Big endian 

Datl;l Cache Enabled----------------------.., 
o = Data caching disabled ! 
1 = Write-through caching enabled 

31 28 

I Reserved; 
write to zero 

24 20 16 12 .. 8 4 o 

Mnemonic BltlBlt Field Name Bit Position(s) Function 

DCEN 

BE 

12.6.1 

Data Cache Enable 

Big Endian Byte 
Order o 

Controls data caching for areas not within other 
logical memory templates. 

··0 = Data caching disabled 

1 = Write-through caching enabled 

Instruction caching is never affected by this bit. 

Controls byte order for all accesses, both 
instruction and data, to memory. 
o = Little endian 
1 = Big endian 

Figure 12·6. Default Logical Memory Configuration Register (DlMCON) ..• 

Defining the Effective Range of a Logical Data Template 
, ';', 

For each logical data template, an LMADR register sets the base address using the A3l:l2 field. 
The LMMR register sets the address mask using the MA3l:l2 field. The effective address range 
for a logical data template is defined using the A3l:l2 field in an LMADRx register and the 
MA3l:l2 field in an LMMRx register. For each access, the upper 20 address bits (A3l:l2) are 
compared against A31: 12 in the LMADRx register. Address bits for are compared with corre­
sponding MA bits set are compared. Address bits with corresponding MA bits cleared (0) are 
automatically considered a "match". The processor will only use the logical data template when all 
compared address bits match. Two examples help clarify the operation of the address comparators. 
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• Create a template 64 Kbytes in length beginning at address 0010 OOOOH and ending at address 
0010 FFFFH. Determine the form of the candidate address to match and then program the 
LMADR and LMMR registers: 

• 

Candidate Address is of form: a a 1 a XXXX 
LMADR <31:12> should be: 0010 0 ... 
LMMR <31:12> should be: FFFF 0 ... 

Multiple data templates can be created from a single LMADRlLMMR register pair by aliasing 
effective addresses. For example, to create sixteen 64 Kbyte templates, each beginning on 
modulo 1 Mbyte boundaries starting at 0000 OoooH and ending with OOFO OOOOR, the 
registers are programmed as follows: 

Candidate Address is of form: a OXO XXXX 
LMADR<31:12> should be: 0000 0 .. . 

. LMMR <31:12> should be: FFOF 0 .. . 

12.6.2 Selecting the Byte Order 

The BCU can automatically convert aligned big endian data in memory into little endian data for 
the processor core. The conversion is done transparently in hardware, with no performance 
penalty. The BE bit in the DLMCON register controls the default byte ordering for adqress regions 
of the system including internal data RAM but excluding memory-mapped registers. Instruction 
fetches and data accesses are automatically converted to little endian format when they are fetched 
from external memory and the programmed default byte-order (DLMCON.be) is big-endian . 

The recommended, portable way to determine the byte-ordering associated with a logical memory 
template is to read the appropriate LMADR. The i960 Jx microprocessor supports this method by 
always ensuring that the DLMCON.be bit is reflected in bit zero of LMADRO and LMADR1 (also 
labelled as LMADRbe) when they are read. Any attempts to write bi{zero of an LMADR are 
ignored. 

Great care should be exercised when dynamically changing the processor's homogenous byte 
order. See section 12.6.8, "Dynamic Byte Order Changing" (pg. 12-13) for an instruction code 
example. 

Byte-ordering is not applicable to memory-mapped registers since they are always accessed as 
words. 
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12.6.3 Data Caching Enable 

Enabling and disabling data caching for an LMT is controlled via the DCEN bit in the LMADR 
register. Likewise, the DCENbit in DLMCON enables and disables data-caching for regions of 
memory that are not covered by the LMCON registers. The DCEN bit has no effect on the 
instruction cache. 

12.6.4 Enabling the Logical Memory Template 

The LMTE bit activates the logical data template in the LMMR register for the programmed 
range. 

12.6.5 Initialization 

Immediately following a hardware reset, all LMTs are disabled. The LMTE bit in each of the 
LMMR registers is cleared (0) and all other bits are undefmed. Immediately after a hardware reset 
the Default Logical Memory Control register (DLMCON) has the values shown in Table 12-2. 

Table 12-2. DLMCON Values at Reset 

DLMCON Bit Value Upon Reset Microcode 

DCEN (Data Caching Enable) o (Data Caching Disabled) 

BE (Sig-Endian) 
Initialized from PMCON14_15 image 
in ISR bit 31 

Application software may initialize and enable the logical memory template after hardware reset. 
The registers are not modified by software initialization. 

12.6.6 Boundary Conditions for Logical Memory Templates 

The following sections describe the operation of the LMT registers during conditions other than 
"normal" accesses. See Chapter 4, CACHE AND ON-ClDP DATA RAM for a treatment of data 
cache coherency when modifying an LMT. 

12.6.6.1 Internal Memory Locations 

The LMT registers are not used during accesses to memory-mapped registers. Internal data RAM / 
locations are never cached; LMT bits controlling caching are ignored for data RAM accesses. 
However, the byte-ordering of the internal data RAM is controlled by DLMCON.be. 
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12.6.6.2 Overlapping Logical Data Template Ranges 

Logical data templates that specify overlapping ranges are not allowed. When an access is 
attempted that matches more than one enabled LMT range, the operation of the access becomes 
undefined. 

To establish different logical memory attributes for the same addres.s range, program non­
overlapping logical ranges, then use partial physical address decoding. 

12.6.6.3 Accesses Across LMT Boundaries 

Accesses that cross LMT boundaries should be avoided. These accesses are unaligned and broken 
into a number of smaller aligned accesses, which reside in one or the other LMT, but not both. 
Each smaller access is completed using the parameters of the MPT in which it resides. 

12.6.7 Modifying the LMT Registers 

An LMT register can be modified using st or sysctl instructions. Both instructions ensure data 
cache coherency and order the modification with previous and subsequent data accesses. 

12.6.8 Dynamic Byte Order Changing 

Programmed byte order changes take effect immediately. The next instruction fetch will use the 
new byte order setting. This byte-swapping usually results in errors because the current instruction 
stream uses the previous byte order setting. 

Dynamically changing the byte order to perform limited operations is possible if the code sequence 
is locked in the instruction cache. The application must ensure that code executes from within the 
locked region (including faults and interrupts) while the opposite byte order is in effect. The 
following example illustrates this method: 

safe_addr: Ida safe_addr,r4 
mov l,r5 
icctl Ox3,r4,r5 # Lock code in cache. 
Id DLMCON_MlXl,r6 
notbit O,r6,r7 
st r7,DLMCON_MlXl # Toggle byte order. 

<Short code sequence> 
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st 
icctl 

r6,DLMCON_MM 
2,O,r6 

intet 

# Restore byte order. 
# Invalidate cache 
# to unlock code. 

In most cases, it is safer to retain the onginal byte order and use the bswap instruction to convert 
data between little-endian and big-endian byte order. 
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CHAPTER 13 
INTERRUPT CONTROLLER 

This chapter contains interrupt controller information that is of particular importance to the system 
implementor. The method for handling interrupt requests from user code is described in 
CHAPTER 8, INTERRUPTS. Specifically, this chapter describes the i960® Jx processor's 
facilities for requesting and posting interrupts, the programmer's interface to the on-chip interrupt 
controller, implementation, latency and how to optimize interrupt performance. 

13.1 OVERVIEW 

The interrupt controller's primary functions are to provide a flexible, low-latency means for 
requesting and posting interrupts and to minimize the core's interrupt handling burden. The 
interrupt controller handles the posting of interrupts requested by hardware and software sources. 
The interrupt controller, acting independently from the core, compares the priorities of posted 
interrupts with the current process priority, off-loading this task from the core. 

The interrupt controller provides the following features for managing hardware-requested 
interrupts: 

• Low latency, high throughput handling. 

• Support of up to 240 external sources. 

Eight external interrupt pins, one non-maskable interrupt pin, two internal timer units (TU) 
sources for detection of hardware-requested interrupts. 

• Edge or level detection on external interrupt pins. 

Debounce option on external interrupt pins. 

The user program interfaces to the interrupt controller with six memory-mapped control registers. 
The interrupt control register (ICON) and interrupt map control registers (IMAPO-IMAP2) provide 
configuration information. The interrupt pending (IPND) register posts hardware-requested 
interrupts. The interrupt mask (IMSK) register selectively masks hardware-requested interrupts. 
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13.2: MANAGING INTERRUPT REQUESTS 

The i960 processor architecture provides a consistent interrupt model, as required for interrupt 
handler compatibility between various implementations of the i960 processor family. The archi­
tecture, however, leaves the interrupt request management strategy to the specific i960 processor 
family implementations. In the i960 Jx processors, the programmable on-chip interrupt controller 
transparently manages all interrupt requests (Figure 13-1). These requests originate from: ' 

• Eight-bit external interrupt pins XINT7:0 

• Two internal timer unit interrupts (TINT! :0) 

• Non-maskable interrupt pin NMI 

• sysctl instruction execution (software-initiated interrupts) 

13.2.1 External Interrupt 

External intemipt pins can be programmed to operate in three' modes: 

1. Dedicated mode: the pins may be individually mapped to interrupt vectors. 

2. Expanded mode: the pins may be interpreted as a bit field which can request any of the 240 
possible external interrupts that the i960 processor family supports. 

3. Mixed mode: five pins operate in expanded mode and can request/thirty-two different 
interrupts, and three pins operate in dedicated mode. 

Dedicated-mode requests are posted in the Interrupt Pending Register (lPND). The processor's 
leu does not post expanded-mode requests. 

13.2.2 Timer Interrupt 

Each of the two timer units has an associated interrupt to allow the application to accept or post the 
interrupt request. Timer unit interrupt requests are always handled as dedicated-mode interrupt 
requests. 

13.2.3' Non-Maskable Interrupt (NMI) 

The NMI pin generates an interrupt for implementation of critical interrupt routines. NMI provides 
an interrupt that cannot be masked and that has a priority of 31. The interrupt vector for NMI 
resides in the interrupt table as vector number 248. During initialization, the core caches the vector 
for NMI on-chip, to reduce NMI latency. The NMI vector is cached in location OH of internal data 
RAM. 
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The core immediately services NMI requests. While servicing an NMI, the core does not respond S 
to any other interrupt requests - even another NMI request. The processor remains in this non- ~ 
interruptible state until any return-from-interrupt (in supervisor mode) occurs. An interrupt request 
on the NMI pin is always falling-edge detected. (Note that a return-from-interrupt in user mode 
does not unblock NMI events and should be avoided by software.) 

13.2.4 Software Interrupt 

The application program may use the sysctl instruction.to request interrupt service. The vector that 
sysctl requests is serviced immediately or posted in the interrupt table's pending interrupts section, 
depending upon the current processor priority and the request's priority. The interrupt controller 
caches the priority of the highest priority interrupt posted in the interrupt table. 

The processor cannot request vector 248 (NMI) as a software interrupt. 

13.2.5 Interrupt Prioritization Model 

The interrupt controller continuously compares the processor's priority to the priorities of the 
highest-posted software interrupt and the highest-pending hardware interrupt. The core is 
interrupted when a pending interrupt request is higher than the processor Pri()rity or has a priority 
of 31. (Note that a priority~jrlnterrupi handl~r can be Interrupted by another prioritY-31 interrupt.) 
Note that there are no priority-O interrupts, since such an interrupt would never have a priority 
higher than the current process, and would therefore never be serviced. 

In the event that both hardware- and software-requested interrupts are posted at the same level, the 
hardware interrupt is delivered first while the software interrupt is left pending. As a result, if both 
priority-31 hardware- and software-requested interrupts are pending, control will first be 
transferred to the interrupt handler for the hardware-requested interrupt, however, before the first 
instruction of that handler can be executed, the pending software-requested interrupt will be 
delivered and cause control to be transferred to the corresponding interrupt handler. 

Example 13·1. Interrupt Resolution 

/* Model used to resolve interrupts between execution of all macro instructions */ 
if (NMI-pending && !block_NMI) 

~ 
{ block_NMI = true; /* Reset on return from NMI INTR handler */ 

vecnum = 248; vector_addr = 0; 
PC.priority = 31; 
push_local_register_set(); 
goto common_interrupt-process; 

if (ICON.gie == enabled) { 
expand_HW_int(); 
temp = max(HW_Int_Priority, SW_Int_Priority); 
if (temp == 31 I I temp> PC.priority) 

{ PC.priority = temp; 

} 

if (SW_Int_Priority > HW_Int_Priority) goto Deliver_SW_Int; 
else{ vecnum = HW_vecnum; goto Deliver_HW_Int;} 

I 

13-3 



INTERRUPT CONTROLLER 

13-4 

Interrupt Control 
Register 

Global 
Interrupt 
Disable 

Interrupt Pin to 
Vector Map 

Registers 0 to 2 

I nterru t Core 

Vector 

Interru t 
Pin Mode 

Core accepts interrupt if: 
• Processor not stopped 

Interrupt 

Selection 

Interrupt 
Action 
Block 

Interrupt Detection 
Block 

Ack 

Expanded-Mode 
Vector 

Software Interrupt 
Priority Register 

(Internal) 

Core: 
• Calls interrupt handlers 

• Not executing a fault-call or • Posts software interrupts 
• Interrupt-call action and • Checks for software interrupts 
• Between instruction or • Handles all interrupt table access 
• At a resumption point 

Figure 13-1. Interrupt Controller 
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13.2.6 Interrupt Controller Modes 

The eight external interrupt pins can be configured for one of three modes: expanded, dedicated or 
mixed. Each mode is described in the subsections that follow. 

13.2.6.1 Dedicated Mode 

In dedicated mode, each external interrupt pin is assigned a vector number. Vector numbers that 
may be assigned to a pin are those with the encoding PPPP 00102 (Figure 13-2), where bits marked 
P are programmed with bits in the interrupt map (IMAP) registers. This encoding of programmable 
bits and preset bits can designate 15 unique vector numbers, each with a unique, even-numbered 
priority. (Vector 0000 00102 is undefined; it has a priority of 0.) 

Dedicated-mode interrupts are posted in the interrupt pending (IPND) register. Single bits in the 
IPND register correspond to each of the eight dedicated external interrupt inputs, plus the two 
timer unit inputs to the interrupt controller. The interrupt mask (IMSK) register selectively masks 
each of the dedicated-mode interrupts. The IMSK register can optionally be saved and cleared 
when a dedicated interrupt is serviced. This allows other hardware-generated interrupts to be 
locked out until the mask is restored. See section 13.3.3, "Programmer's Interface" (pg. 13-11) for 
a further description of the IMSK, IPND and IMAP registers. 

Interrupt vectors are assigned to timer unit inputs in the same way external pins are assigned 
dedicated-mode vectors. The timer unit interrupts are always dedicated-mode interrupts. ' 

I 

• • .' 
TINTO 

TINT1 

-
-
-

IMAP Control Registers Hard-wired Vector Offset 

PPPP 00102 

PPPP 00102 

PPPP 00102 

• • 
• • • • 

PPPP 00102 

PPPP 00102 

PPPP 00102 

/ 
V 

/ 
/ 

4MSB 4LSB 
/ 

/8 

Figure 13·2. Dedicated Mode 
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13.2.6.2 Expanded Mode 

In expanded mode, up to 240 interrupts can be requested from external sources. Multiple external 
sources are externally encoded into the 8-bit interrupt vector number. This vector number is then 
applied to the external interrupt pins (Figure 13-3), with the XINTO pin representing the least­
significant bit and XINTI the most significant bit of the number. Note that external interrupt pins 
are active low; therefore, the inverse of the vector number is actually applied to the pins. 

In expanded mode, external logic is responsible for posting and prioritizing external sources. 
Typically, this scheme is implemented with a simple configuration of external priority encoders. 
The interrupt source must remain asserted until the processor services the interrupt and explicitly 
clears the source. As shown in Figure 13-4, simple, combinational logic can handle prioritization 
of the external sources when more than one expanded mode interrupt is pending. 

An expanded mode interrupt source must remain asserted until the processor services the interrupt 
and explicitly clears the source. External-interrupt pins in expanded mode are always active low 
and level-detect. The interrupt controller ignores vector numbers 0 though 7. The output of the 
externaI priority encoders in Figure 13-4 can use the 0 vector to indicate that no external interrupts 
are pending. 

The low-order four bits of IMAPO are used to internally buffer the expanded-mode interrupt. 
XINT7:4 are placed in IMAPO[3:0]; XINT3:0 are latched in a special register for use in further 
arbitrating the interrupt and in selecting the interrupt handler. 

IMSK register bit 0 provides a global mask for all expanded interrupts. The remaining bits (1-7) 
must be set to 0 in expanded mode. The mask bit can optionally be saved and cleared when an 
expanded mode interrupt is serviced. This allows other hardware-requested interrupts to be locked 
out until the mask is restored. IPND register bits 0-7 have no function in expanded mode, since 
external logic is responsible for posting interrupts. 

TINTO -
TINT1 -
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13.2.6.3 Mixed Mode 

In mixed mode, pins XINTO through XINT4 are configured for expanded mode. These pins are 
encoded for the five most-significant bits of an expanded-mode vector number; the three least­
significant bits of the vector number are set internally to 0102, Pins XINT5 through XINT7 are 
configured for dedicated mode. .. 

The low-order four bits of IMAPO are used to buffer the expanded-mode interrupt internally. 
XINT4:1 are placed in IMAPO[3':O]; XiNTO is latched in a special register for use in further 
arbitrating the interrupt and in selecting the interrupt handler. 

IMSK register bit 0 is a global mask for the expanded-mode interrupts; bits 5 through 7 mask the 
dedicated interrupts from pins XINT5 through XINT7, respectively. IMSK register bits 1-4 must 
be set to 0 in mixed mode. The IPND register posts interrupts from the dedicated-mode pins 
XINT7:5. IPND register bits that correspond to expanded-mode inputs are not used. 

13.2.7 Saving the Interrupt Mask 

Whenever an interrupt requested by XINT7:0 or by the internal timers is serviced, the IMSK 
register is automatically saved in register r3 of the new local register set allocated for the interrupt 
handler. After the mask is saved, the IMSK register is optionally cleared. This allows all interrupts 
except NMIs to be masked while an interrupt is being serviced. Since the IMSK register value is 
saved, the interrupt procedure can restore the value before returning. The option of clearitig the 
mask is selected by programming the ICON register as described in section 13.3.4, "lnterrupt 
Control Register (ICON)" (pg. 13-12). Several options are provided for interrupt mask handling: 

1. Mask is unchanged. 

2. Clear for dedicated-mode sources only. 

3. Clear for expanded-mode sources only. 

I 

4. Clear for all hardware-requested interrupts (dedicated and expanded mode). 

Options 2 and 3 are used in mixed mode, where both dedicated-mode and expanded-mode inputs 
are allowed. Timer unit interrupts are always dedicated-mode interrupts. 

Note that if the same interrupt is requested si~ultaneously by a dedicated- and an expanded-mode 
source, the interrupt is considered an expimded-mode illterru'pt and the IMSK register is handled 
accordingly. 
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The IMSK register must be saved and cleared when expanded mode inputs request a priority-31 
interrupt. Priority-31 interrupts are interrupted by other priority-31 interrupts. In expanded mode, 
the interrupt pins are level-activated. For level-activated interrupt inputs, instructions within the 
interrupt handler are typically responsible for causing the source to deactivate. If these priority-31 
interrupts are not masked, another priority-31 interrupt will be signaled and serviced before the 
handler is able to deactivate the source. The first instruction of the interrupt handling procedure is 
never reached, unless the option is selected to clear the IMSK register on entry to the interrupt. 

Another use of the mask is to lock out other interrupts when executing time-critical portions of an \ 
interrupt handling procedure. All hardware-generated interrupts are masked until software 
explicitly replaces the mask. 

The processor does not restore r3 to the IMSK register when the interrupt return is executed. If the 
IMSK register is cleared, the interrupt handler must restore the IMSK register to enable interrupts 
after return from the handler. 

13.3 EXTERNAL INTERFACE DESCRIPTION 

This section describes the physical characteristics of the interrupt inputs. The i960 Jx processors 
provide eight external interrupt pins and one non-maskable interrupt pin for detecting external 
interrupt requests. The eight external pins can be configured as dedicated inputs, where each pin is 
capable of requesting a single interrupt. The external pins can also be configured in an expanded 
mode, where the value asserted on the external pins represents an interrupt vector number. In this 
mode, up to 240 values can be directly requested with the interrupt pins. The external interrupt pins 
can be configured in mixed mode. In this mode, some pins are dedicated inputs and the remaining 
pins are used in expanded mode. 

13.3.1 Pin Descriptions 

The interrupt controller provides nine interrupt pins: 

XINT7:0 External Interrupt (input) - These eight pins cause interrupts to be requested. 
Pins are software configurable for three modes: dedicated, expanded, mixed. 
Each pin can be programmed as an edge- or level-detect input. Also, a debounce 
sampling mode for these pins can be selected under program control. 

Non-Maskable Interrupt (input) - This edge-activated pin causes a non-maskable 
interrupt event to occur. NMI is the highest priority interrupt recognized. A 
debounce sampling mode for NMI can be selected under program control. This 
pin is internally synchronized. 

External interrupt pin functions XINT7:0 depend on the operation mode (expanded, dedicated or 
mixed) and on several other options selected by setting ICON register bits. 
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13.3.2 Interrupt Detection Options 

The XINT7:0 pins can be programmed for level-low or falling-edge detection when used as 
deQicated inputs. "All d~dicated inputs plus the l'rMI pin are,prograpuned (globally) for fast 
sampling or debounce sampling. Expande4-mode inputs are always sampled in debounce mode. 
Pin detection and sampling options are sel~<?ted by programming the. )CON register. 

When falling-edge detection is enabled and a high-to-Io~ transition is detected, the processor sets 
the corresponding pending bit in the IPND register. The processor clears the IPND bit upon entry 
into the interrupt handler. 

When a pin is programmed for low-level detection, the pin's bit in the IPND register remains set as 
long as the pin is asseqed (low). The processor attempts to clear the IPND bit on entry into the 
interrupt handler; however, if the active level o~ the pin is not removed at this time, the bit in the 
IPND register remains set until the source of the interrupt is deactivated and the IPND bit is 
explicitly cleared by software. Software may attempt to clear an interrupt pending bit before the 
active level on the corresponding pin is removed. In this case, the active level on the interrupt pin 
causes the pending bit to remain asserted' j , 

After the interrupt signal is deasserted, the handler then clears the interrupt pending bit for that 
source before return from handler is executed. If the pendillg bit is not cleared, the interrupt is re-
entered after the return is executed. ' 

Example 13-2 demonstrates how a level detect interrupt is typicaJ.ly handled. The example 
assumes that the Id from address "timecO," deactivates the interrupt input. 

Example 13-2. Return from a Level-detect Interrupt 
# \lear level-detect interrupts before return from handler 

wait: 

lda I PND_MM , gl 
ld timer_O, gO # Get timer value and. clear TMRO 
lda OxlOOO, g2 

0, g3 
gl, g2, g3 

mov 
atmod 

. bbs 
ret 

oxe, g3, wait . 
#. Return from handler, 

The debounce sarripling mode provides a built-in filter for noisy or Slow-falling inputs. The 
debounce sampling mode requires that a low level is stable for seven consecutive samples before 
the expanded mode vector is resolved' internally. Expanded mode interrupts are always sampled 
using the debounce sampling mode. This mode. provides time for interrupts to trickle through 
external priority encoders. 
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Figure 13-5 shows how a signal is sampled in each mode. The debounce-sampling option adds 
several clocks to an interrupt's latency due to the multiple clocks of sampling. Inputs are sampled 
once every two CLKIN cycles (external bus clock). 

Interrupt pins are asynchronous inputs. Setup or hold times relative to CLKIN are not needed to 
ensure proper pin detection. Note in Figure 13-5. that interrupt inputs are sampled once every two 
CLKIN cycles. For practical purposes, this means that asynchronous interrupting devices must 
generate an interrupt signal that is asserted for at least three CLKIN cycles for the fast sampling 
mode or seven CLKIN cycles for the debounce sampling mode. See the 80960JAlJF Embedded 
32-bit Microprocessor Data Sheet or the.80960JD Embedded 32-bit Microprocessor Data Sheet 
for setup and hold specifications that guarantee detection of the interrupt on particular edges of 
CLKIN. These specification are useful in designs that use synchronous logic to generate interrupt 
signals to the processor. These specification must also be used to calculate the minimum signal 
width, as shown in Figure 13-5. 

ClKIN [ 

XINT7:0 [ 
(fast sampled) 

XINT7:0 [ 
(debounce) 

* * * 

~ 3 cycle min. -

:-------.:. Detect 
: Interrupt' 

... : "------'----: 7 cycle min. 

* 

• Detect 
Interrupt 

* Denotes sampling clock edge. Interrupt pins are sampled one time for every 2 ClKIN (external bus clock) cycles. 

Figure 13-5. Interrupt Sampling 

13.3.3 Programmer's Interface 

* 

The programmer's interface to the interrupt controller is through six memory-mapped control 
registers: ICON control register, IMAPO-IMAP2 control registers, IMSK register and IPND 
control registers. Table 13-1 describes the ICU registers. 
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Table 13-1. Interrupt Control Registers Memory-Mapped Addresses 

Register Name Description Address 

IMAPO Interrupt Map Register 0 FFOO 8520H 

IMAP1 Interrupt Map Register 1 FFOO 8524H 

IMAP2 Interrupt Map Register 2 FFOO 8528H 

ICON Interrupt Control Register FFOO8510H 

IPND Interrupt Pending Register FFOO 8500H 

IMSK Interrupt Mask Register FFOO 8504H 

13.3.4 Interrupt Control Register (ICON) 

The ICON register (see Figure 13-6) is a 32-bit memory-mapped control register, that sets up the 
interrupt controller. Software can manipulate this register using the load/store type instructions: 
The ICON register is also automatically loaded at initialization from the control table in external 
memory. Figure 13-6 shows the layout of the ICON register. 
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Interrupt Mode -ICON.im------------------------, 
(00) Dedicated 

31 

(01) Expanded 
(10) Mixed 
(11) Reserved 

Signal Detection Mode -ICON.sdm ---------------, 
(0) Level-low activated 
(1) Falling-edge activated 

Global Interrupts Enable - ICON.gie -----------, 
(0) Enabled 
(1) Disabled 

Mask Operation - ICON.mo ------------, 
(00) Move to r3, mask unchanged 
(01) Move to r3 and clear for dedicated mode interrupts 
(10) Move to r3 and clear for expanded mode interrupts 
(11) Move to r3 and clear for dedicated and expanded 

mode interrupts 
Vector Cache Enable - ICON.vce --------, 

(0) Fetch from external memory 
(1) Fetch from internal RAM 

Sampling Mode 
(0) debounce 
(1) fast 

28 24 20 16 

Interrupt Control Register (ICON) 

12 8 

I Reserved 
(Initialize to 0) 

Figure 13-6. Interrupt Control (ICON) Register 

4 o 

The interrupt mode field (bits 0 and 1) determines the operation mode for the external interrupt 
pins (XINT7:0) - dedicated, expanded or mixed. 

The signal detection mode bits (bits 2 - 9) determine whether the signals on the individual external 
interrupt pins (XINT7:0) are level-low activated or falling-edge activated. Expanded-mode inputs 
are always level-detected; the NMI input is always edge-detected - regardless of the bit's value. 

The global interrupts enable bit (bit 10) globally enables or disables the external interrupt pins and 
timer unit inputs. It does not affect the NMI pin. This bit performs the same function as clearing the 
mask register. The global interrupts enable bit is also changed indirectly by the use of the following 
instructions: inten, intdis, intetl. 
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The mask-operation field (bits '11, 12) determines the operation the core perfonns on the mask 
register when a hardware-generated interrupt is serviced. On an interrupt, the IMSK register is 
either unchanged; cleared for dedicated-mode interrupts; cleared for expanded-mode interrupts; or 
cleared for both dedicated- and expanded-mode interrupts. IMSK is never cleared for NMI or 
software interrupts. 

The vector cache enable bit (bit 13) determines whether interrupt table vector entries are fetched 
from the interrupt table or from internal data RAM. Only vectors with the four least-significant 
bits equal to 00102 may becached in internal data RAM. 

The sampling-mode bit (bit 14) determines whether dedicated inputs and NMI pin are sampled 
using debounce sampling or fast sanipling. Expanded-mode inputs are. always detected using 
debounce mode. 

Bits 15 through 31 are reserved and must be set to 0 at initialization. 

13.3.5 Interrupt Mapping Registers (IMAPO-IMAP2) 

The IMAP registers (Figure 13-7) are three 32-bit registers (IMAPO through IMAP2). These 
register's bits are used to program the vector nu~ber associated with the interrupt source when the 
source is connected to a dedicated-mode input. IMAPO and!MAPl contain mapping infonnation 
for the external interrupt pins (four bits per pin). IMAP2 ·contains mapping infonnatiQn for the 
timer-interrupt inputs (four bits per interrupt). 

Each set of four bits contains a vector number's four most-significant bits; the four least­
significant bits are always 00102. In other words, each source can be programmed for a vector 
number of PPPP 00102, where "P" indicates a programmable bit. For example, IMAPO bits 4 
through 7 contain mapping infonnation for the XINTI pin. If these bits are set to 01102, the pin is 
mapped to vector number 0110 00102 (or vector number 98). 

Software can access the mapping registers using load/store type instructions. The mapping 
registers are also automatically loaded at initialization from the control table in external memory. 
Note that bits 16 through 31 of IMAPO and IMAPI are reserved and should be set to 0 at initial­
ization. Bits 0-15 and 24-31 of IMAP2 are also reserved and should be set to O. 
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External Interrupt 2 Field - IMAPO.x2 ------------. 

External Interrupt 0 Field - IMAPO.xO ---------------...,-----,j 
External Interrupt 1 Field - IMAPO.x1 --------------'j 
External Interrupt 3 Field - IMAPO.x3 ------..., 1 

Interrupt Map Register 0 (IMAPO) 

External Interrupt 4 Field -IMAPO.x4 ------------------..., 
External Interrupt 5 Field - IMAPO.x5 -----------------.j 
External Interrupt 6 Field - IMAPO.x6 -------------, 
External Interrupt 7 Field - IMAPO.x7 ---------, 

28 24 20 

Interrupt Map Register 1 (IMAP1) 

Timer Interrupt 0 Field -IMAP2.tO n 
"-, I",,""~ 1 - - ''''>'211 1 . 

I 

16 

III1IIII 
28 24 

Interrupt Map Register 2 (IMAP2) 

I Reserved 
(Initialize to 0) 

20 16 

12 8 

12 8 

Figure 13-7. Interrupt Mapping (IMAPO-IMAP2) Registers 

4 

4 

o 

o 
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13.3.5.1 Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers 

The IMSK and IPND registers (see Figure 13-9) are both memory-mapped registers. Bits 0 
through 70f these registers are associated with the external interrupt pins (XINTO through 
XINT7) and bits 12 and 13 are associated with the timer-interrupt iJ;lputs (TMRQ and TMRl). All 
other bits are reserved and should be set to 0 at initialization. . . 

External Interrupt Pending Bits - IPND.xip ------~------..,l (0) No Interrupt . . 
(1) Pending Interrupt 

Timer Interrupt Pending 'Bits - IPND.tip --------, 
(0) No Interrupt 1 
(1) Pending Interrupt II 

II IIIIIIII 
I 

28 

RESERVED 
(INITIALIZE TOO) 

24 20 16 12 8 

Figure 13·8. Interrupt Pending (IPND) Register 

4 o 

The IPND register posts dedicated-mode interrupts originating from the eight external dedicated 
sources (when configured in dedicated mode) and the two timer sources. Asserting one of these 
inputs causes a 1 to be latched into its associated bit in the IPND register. In expanded mode, bits 
o through 7 of this register are not used and should not be modified; in mixed mode, bits 0 through 
4 are not used and should not be modified. 

i...'. The mask register provides a mechanism for masking individual bits in the IPND register. An 
I" interrupt source is disabled if its associated mask bit is set to O. 

Mask register bit. 0 has two functions: it masks interrupt pin XINTO in dedicated mode and it 
masks all expanded-mode interrupts globally in expanded and mixed modes. In expanded mode, 
bits 1 through 7 are not used and should contain zeros only; in mixed mode, bits 1 through 4 are 
not used and should contain zeros only. 

When delivering a hardware interrupt, the interrupt controller conditionally clears IMSK based on 
the value of the ICON.mo bit. Note that IMSK is never cleared for NMI or software interrupt. 
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Dedicated External Interrupt Mask Bits - IMSK.xim ---------------., 
(0) Masked 
(1) Not Masked 

Timer Interrupt Mask Bits - IMSK.tim ----------.,! 
(0) Masked 
(1) Not Masked II 

II II1IIIII 
28 24 20 16 12 8 4 o 

Interrupt Mask Register (lMSK) Dedicated Mode 

Expanded External Interrupts Mask Bits - IMSK.eim -------------------, 
(0) Masked 
(1) Not Masked 

Timer Interrupt Mask Bits - IMSK.tim 
(0) Masked 
(1) Not Masked 

28 24 20 

Interrupt Mask Register (lMSK) Expanded Mode 

1 
II 

16 12 8 4 o 

Expanded External Interrupt Mask Bits - IMSK.eim -----------------, 
(0) Masked 
(1) Not Masked 

Dedicated External Interrupt Mask Bits - IMSK.xim ------------., 
(0) Masked 
(1) Not Masked 

Timer Interrupt Mask Bits - IMSK.tim 
(0) Masked 
(1) Not Masked 

28 24 20 

Interrupt Mask Register (lMSK) Mixed Mode 

I RESERVED 
(INITIALIZE TO 0) 

1 
II 

16 12 8 

Figure 13·9. Interrupt Mask (IMSK) Registers 

4 o 
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Although software can read and write IPND and IMSK using any memory-format instruction, a 
read-modify-write operation on these registers must be performed using the atomic-modify 
instruction (ATMOD). Executing an ATMOD on one, of these registers causes the interrupt 
controller to perform regular interrupt processing (including using or automatically updating 
IPND and IMSK) either before or after, but, not during ,the read-modify-write operation on that 
register. This requirement ensures that modifications to IPND and IMSK take effect cleanly, 
completely, and at a well-defined point. Note that the processor does not assert the LOCK pin 
externally when executing an atomic instruction to IPNDand IMSK. 

When the processor core handles a pending interrupt, it attempts to clear ,the bit that is latched for 
that interrupt in the IPND register before it begins servicing the interrupt. If that bit is associated 
with an interrupt source that is programmed for level detection and the true level is still present, 
the bit remains set. Because of this, the interrupt routine for a level-detected interrupt should clear 
the external interrupt source and explicitly clear the IPND bit before return from the handler is 
executed. 

An alternative method of posting interrupts in the IPND register, other than through the external 
interrupt pins, is to set bits in the register directly using an ATMOD instruction. This operation has 
the same effect as requesting an interrupt through the external interrupt pins. The bit set in the 
IPND register must be associated with an interrupt source that is programmed for dedicated-mode 
operation.' 

13.3.5.2 Default and Reset Register Values 

The ICON and IMAP2:0 control registers are loaded from the control table in external memory 
when the processor is initialized or reinitialized. The control table is described in section 11.3.3, 
"Control Table" (pg. 11-19). The IMSK register is set to 0 when the processor is initialized 
(RESET is deasserted). The IPND register value is undefined after a power-up initialization (cold 
reset). The application is responsible for clearing this register before any mask register bits are set; 
otherwise, unwanted interrupts may be triggered. For a reset while power is on (warm reset), the 
pending register value is retained. 

13.3.6 Interrupt Controller Register Access Requirements 

Like all other .load accesses from internal memory-mapped registers,' once issued, a load 
instruction that accesses an interrupt register has a latency of one internal processor cycle. 

A store access to an interrupt register is synchronous with respect to the next instruction; that is, 
the operation completes fully and all state changes take effect before the next instruction begins 
execution. 

Interrupts can be enabled and disabled quickly by the new intdis and inten instructions, which 
take four cycles each. intetl takes a few cycles longer because it returns the previous interrupt 
enable value. 
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13.4 INTERRUPT OPERATION SEQUENCE 

The interrupt controller, microcode and core resources handle all stages of interrupt service. 
Interrupt service is handled in the following stages: 

Request Interrupt - In the i960® Jx microprocessor, the programmable on-chip interrupt 
controller transparently manages all interrupt requests. Interrupts are generated by hardware 
(external events) or software (the application program). Hardware requests are signaled on the 8-
bit external interrupt port (XINT7:0), the non-maskable interrupt pin (NMI) or the two timer 
channels. Software interrupts are signaled with the sysctl instruction with post-interrupt message 
type. 

Posting Interrupts - When an interrupt is requested, the interrupt is either serviced immediately or 
saved for later service, depending on the interrupt's priority. Saving the interrupt for later service is 
referred to as posting. Once posted, an interrupt becomes a pending interrupt. Hardware and 
software interrupts are posted differently: 

• Hardware interrupts are posted by setting the interrupt's assigned bit in the interrupt pending 
(IPND) memory mapped register 

• Software interrupts are posted by setting the interrupt's assigned bit in the interrupt table's 
pending priorities and pending interrupts fields 

Check Pending Interrupts - The Interrupt Control Unit (ICU) compares each pending interrupt's 
priority with the current process priority. If process priority changes, posted interrupts of higher 
priority are then serviced. Comparing the process priority to posted interrupt priority is handled 
differently for hardware and software interrupts. Each hardware interrupt is assigned a specific 
priority when the processor is configured. The priority of all posted hardware interrupts is 
continually compared to the current process priority. Software interrupts are posted in the interrupt 
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table in external memory. The highest priority posted in this table is also saved in an on-chip i, 
software priority register; this register is continually compared to the current process priority. 

Servicing Interrupts - If the process priority falls below that of any posted interrupt, the interrupt 
is serviced. The comparator signals the core to begin a microcode sequence to perform the 
interrupt context switch and branch to the first instruction of the interrupt routine. 

Figure 13-1 illustrates interrupt controller function. For best performance, the interrupt flow for 
hardware interrupt sources is implemented entirely in hardware. 

The comparator only signals the core when a posted interrupt is a higher priority than the process ,. 
priority. Because the comparator function is implemented in hardware, microcode cycles are never 'I 

consumed unless an interrupt is serviced. II 

II 
i ,~ 

1 
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13.4.1 Setting Up the Interrupt Controller 

This section provides an example of setting up the interrupt· controller. The following example 
describes how the interrupt controller can be dynamically configured after initialization; 

Example 13-3 sets up the interrupt controller for expanded-mode operation. Initially the IMSK 
register is masked to allow for setup; A value which selects expanded-mode operation is loaded 
into the ICON register and the IMSK is unmasked. 

Example 13-3. Programming the Interrupt Controller for Expanded Mode 
# Example expanded mode setup . . . 
mav 0, gO 
mav 1, gl 
st gO, IMSK # mask, IMSK MMR at OXFF008504· 
st gl, ICON· 
st gl,IMSK # unmask expanded interrupts 

13.5 OPTIMIZING INTERRUPT PERFORMANCE 

Figure 13-10 depicts the path from interrupt sourc6 to interrhpt service routine. This section 
discusses interrupt performance in general and suggests techniques the application can use to get 
the best interrupt performance. 

13.5.1 Interrupt Service Latency 

The established measure of interrupt performance is the time requited to perform an interrupt task 
switch, which is known as interrupt service latency. Latency is the time measured between 
activation of an interrupt source and execution of the first instruction for the accompanying 
interrupt-handling procedure. 

Interrupt latency depends on interrupt controller configuration and the instruction being executed 
at the time of the interrupt. The processor also has a number of cache options which reduce 
interrupt latency. In the discussion that follows, interrupt latency is expressed as a number of bus 
clock cycles, and reflects differences between the 80960JNJF and the 80960JD due to the 
80960JD processor's clock-doubled core. 
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set corresponding 
pending bits in 
interrupt table 

clear trace lauR pending bit (TC.tlp) 
clear trace eneble bH (TC.te) 
state = interrupted (PC.s = 1) 
mode = supervisor (PC.em = 1) 

get interrupt procedure pointer 
SP= FP+64 
IP = interrupt procedure pointer 

Figure 13-10. Interrupt Service Flowchart 
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13.5.2 Features to Improve Interrupt Performance 

The i960 Jxprocessor implementation employs four methods to specifically reduce interrupt 
latency: . 

• Caching interrupt vectors on-chip 

• Caching of interrupt handling procedure code 

• Reserving register frames in the local register cache 

• Caching the interrupt stack in the data cache 

13.5.2.1 Vector Caching Option 

To reduce interrupt latency, the i960 Jx processors allow some interrupt table vector entries to be 
cached in internal data RAM. When the vector cache option is enabled and an interrupt request 
that has a cached vector to be serviced, the controller fetches the associated vector from internal 
RAM rather than from the interrupt table in memory. 

Interrupts with a vector number with the four least-significant bits equal to 00102 can be cached. 
The vectors that can be cached coincide with the vector numbers that are selected with the 
mapping registers and assigned to dedicated-mode inputs. The vector caching option is selected 
when programming the ICON register; software must explicitly store the vector entries in internal 
RAM. 

Since the internal RAM is mapped directly to the address space, this operation can be performed 
using the core's store instructions. Table 13-2 shows the required vector mapping to specific 
locations in internal RAM. For example, the vector entry for vector number 18 must be stored at 
RAM location 04H, and so on .. 

The NMI vector is also shown in Table 13-2. This vector is always cached in internal data RAM at 
location OOOOH. The processor automatically loads this location at iiritialization with the value of 
vector number 248 in the interrupt table. 
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Table 13·2. Location of Cached Vectors in Internal RAM 

Vector Number (Binary) Vector Number (Decimal) Internal RAM Address 

(NMI) 248 OOOOH 

0001 00102 18 0004H 

001000102 34 0008H 

0011 00102 50 OOOCH 

010000102 66 0010H 

0101 00102 82 0014H 

011000102 98 0018H 

0111 00102 114 001CH 

100000102 130 0020H 

1001 00102 146 0024H 

101000102 162 0028H 

1011 00102 178 002CH 

110000102 194 0030H 

110100102 210 0034H 

111000102 226 0038H 

111100102 242 003CH 

13.5.2.2 Caching Interrupt Routines and Reserving Register Frames 

The time required to fetch the first instructions of an interrupt-handling procedure affects interrupt 
response time and throughput. The controller allows this fetch time to be reduced by caching 
interrupt procedures or portions of procedures in the i960 Jx microprocessor's instruction cache. 
See section 4.4, "INSTRUCTION CACHE" (pg. 4-4) for information on the instruction cache. 

To decrease interrupt latency for high priority interrupts (priority 28 and above), software can limit 
the number of frames in the local register cache available to code running at a lower priority 
(priority 27 and below). This ensures that some number of free frames are available to high­
priority interrupt service routines. See section 4.2, "LOCAL REGISTER CACHE" (pg. 4-2), for 
more details. 
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13.5.2.3 Caching the Interrupt Stack 

By locating the interrupt stack in memory that can be cached by the data cache, the performance of 
interrupt returns caitbe'improved. This is because potentially accesses to the interrupt record by . . . 

the interrupt retuin can be satisfied by the data cache. See section 12.6, "Programming the Logical 
Memory Attributes" (pg. 12-8) for details on how to enable data caching for portions of memory. 

1.3.5.3 Base Interrupt Latency 

In many applications, the processor's instruction mix and cache configuration are known suffi­
ciently well to use typical interrupt latency in calculations of overall system performance. For 
example, a timer interrupt may frequently trigger a task switch in a multi-tasking kernel. Base 
interrupt latency assumes the following: 

• Single-cycle RISC instruction is interrupted. 

• 

• 
• 

• 

Frame flush. does not occur. 

Bus queue is empty. 

Cached interrupt handler. 

No interaction of faults and interrupts (i.e., a stable system). 

Table 13-3 shows the base latencies for all interrupt types, with varying pin sampling and vector 
caching options. Note that the 809601D interrupt latency is approximately 50% less than the 
80960JAlJF interrUpt latency due to its core clock operating at twice the speed of CLKIN. 
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Table 13-3. Base Interrupt Latency 

Detection 
Vector 

Typical 80960JAlJF Typical 80960JD 
Interrupt Type Caching 

Option 
Enabled 

Latency (Bus Clocks) Latency (Bus Clocks) 

Fast Yes 29 149 
NMI 

Debounced Yes 32 15.5 

Yes 34 17.5 
Fast 

Dedicated Mode No 40+a 21+b 

XINT7:0, TINT1 :0 Yes 37 21.5 
Debounced 

No 45+a 26+b 

Expanded Mode Yes 37 22 

XINT7:0, TINT1 :0 
Debounced 

No 45+a 26+b 

Yes 68 35 
Software NA 

No 69+a 36.5+b 

Notes: 
a = MAX (O,N - 7) 
b = MAX (O,N - 3.5) 

where "N" is the number of bus cycles needed to perform a word load. 

13.5.4 Maximum Interrupt Latency 

In real-time applications, worst-case interrupt latency must be considered for critical handling of 
external events. For example, an interrupt from a mechanical subsystem may need service to 
calculate servo loop parameters to maintain directional control. Determining worst-case latency 
depends on knowledge of the processor's instruction mix and operating environment as well as the 
interrupt controller configuration. Excluding certain very long, uninterruptable instructions from 
critical sections of code will effectively reduce worst-case interrupt latency to levels approaching 
the base latency. 
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Tables 13-3 through 13-3 present worst case interrupt latencies based on possible execution of 
divo (r15 destination), divo (r3 destination), calls or flushreg instructions or software interrupt 
detection. The assumptions for these tables are the same as for Table 13-3, except for instruction 
execution. 

Table 13-4. Worst-Case Interrupt Latency Controlled by divo to Destination r15 

Detection Vector VVorst80960JAJJF VVorst 80960JD 
Interrupt Type Option Caching Latency (Bus Clocks) Latency (Bus Clocks) 

Enabled 

Fast Yes 42 23.5 
NMI 

Debounced Yes 46 26 

Yes 45 23.5 
Fast 

Dedicated Mode No 45+a 23.5+b 

XINT7:0, TINT1:0 Yes 49 27.5 
Debounced 

No 51+a 27.5+b 

Expanded Mode Yes 50 27.5 
Debounced 

XINT7:0, TINT1 :0 No 51+a 27.5+b 

Notes: 
a = MAX (O,N - 11) 
b = MAX (O,N - 5) 

where "N" is the number of bus cycles needed to perform a word load. 
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Table 13-5. Worst-Case Interrupt Latency Controlled by divo to Destination r3 

Detection 
Vector 

Worst 80960JA/JF Worst 80960JD 
Interrupt Type 

Option 
Caching 

Latency (Bus Clocks) Latency (Bus Clocks) 
Enabled 

Fast Yes 59 30.5 
NMI 

Debounced Yes 64 34.5 

Yes 65 33.5 
Fast 

Dedicated Mode No 72+a 37.5+b 

XINT7:0, TINT1 :0 Yes 69 37 
Debounced 

No 76+a 42+b 

Expanded Mode Yes 70 37.5 
Debounced 

XINT7:0, TINT1 :0 No 76+a 42+b 

Notes: 
a = MAX (O,N - 7) 
b = MAX (O,N - 3.5) 

where "N" is the number of bus cycles needed to perform a word load. 

Table 13-6. Worst-Case Interrupt Latency Controlled by calls (Sheet 1 of 2) 

Detection 
Vector 

Worst 80960JA/JF Worst 80960JD 
Interrupt Type 

Option 
Caching 

Latency (Bus Clocks) Latency (Bus Clocks) 
Enabled 

Fast Yes 53+a 27+c 
NMI 

Debounced Yes 56+a 32+c 

Yes 58+a 29.5+c • Fast 

Dedicated Mode No 66+a+b 33.5+c+d 

XINT7:D, TINT1 :D Yes 62+a 33+c 
Debounced 

No 69+a+b 38+b+c 

Notes: 
a = MAX (D,N - 4) 
b = MAX (D,N - 7) 
c= MAX (D,N - 2.5) 
d= MAX (D,N - 3.5) 

where "N" is the number of bus cycles needed to perform a word load. 
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Table 13-6. Worst-Case Interrupt,Latenc), Controlled by calls (Sheet 2 of 2) 

Detection 
Vector 

Worst 80960JAlJF Worst 80g60JD 
Interrupt Type Caching 

Option 
Enabled 

Latency (Bus Clocks) Latency (Bus Clocks) 

Expanded Mode Yes 63+a 32.5+c 

XINT7:0, TINT1:0 
Debounced 

No 70+a+b 38+c+d 

Notes: 
a = MAX (O,N - 4) 
b = MAX (O,N - 7) 
c= MAX (O,N - 2.5) 
d= MAX (O,N - 3.5) 

where "N" is the number of bus cycles needed to perform a word load. 

Table 13-7. Worst-Case Interrupt Latency When OeJiveringa Software Interrupt 

Detection 
Vector Worst 80960JAlJF 

Worst 80960JD 
Interrupt Type 

Option 
Caching Latency (Bus 

Latency (Bus Clocks) 
Enabled Clocks) 

Fast Yes 96 47 
NMI 

Debounced Yes 97 47 

Yes 99 48 
Fast 

Dedicated Mode No 107+a 53+b 

XINT7:0, TINT1 :0 Yes 100 48 
Debouriced 

No 107+a 53+b 

Expanded Mode Yes 96 48 

XINT7:0, TINT1:0 
Debounced 

No 105+a 53+b 

Notes: 
a = MAX (O,N - 7) 
b = MAX (O,N - 3.5) 

where "N" is the number of bus cycles needed to perform a word load. 
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Table 13-8. Worst-Case Interrupt Latency Controlled by flushreg of One Stack Frame 

Vector Worst 80960JA/JF Worst 80960JD 
Interrupt TYpe Detection Option Caching Latency (Bus Latency (Bus 

Enabled Clocks) Clocks) 

Fast Yes 77+a+b 41+d+e 
NMI 

Debounced Yes 81+a+b 43+d+e 

Yes 82+a+b 43+d+e 
Flat 

Dedicated Mode No 89+a+b+c 47.5+d+e+f 

XINT7:0, TINT1:0 Yes 86+a+b 47+d+e 
Debounced 

No 93+a+b+c 51+d+e+f 

Expanded Mode Yes 88+a+b 47.5+d+e 
Debounced 

XINT7:0, TINT1 :0 No 93+a+b+c 52+d+e+f 

Notes: 
a = MAX (0, M - 15) d = MAX (0, M -7.5) 
b = MAX (0, M - 28) e = MAX (0, M - 15) 
c = MAX (0, N - 7) f = MAX (0, n - 3.5) 

where "M" is the number of bus cycles needed to perform a quad word store and "N" is the number of bus 
cycles needed to perform a word load. Interrupt latency increases rapidly as the number of flushed stack 
frames increases. 

13.5.4.1 Avoiding Certain Destinations for MDU Operations 

1Ypically, when delivering an interrupt, the processor attempts to push the fIrst four local registers 
(pfp, sp, rip, and R3) onto the local register cache as early as possible. Because of register­
interlock, this operation is stalled until previous instructions return their results to these registers. 
In most cases, this is not a problem; however, in the case of instructions performed by the 
Multiply/Divide Unit (divo, divi, ediv, modi, remo, and remi), the processor could be stalled for 
many cycles waiting for the result and unable to proceed to the next step of interrupt delivery. 

Interrupt latency can be improved by avoiding the fIrst four local registers as the destination for a 
Multiply/Divide Unit operation. (Registers pfp, sp, and rip should be avoided anyway for general 
operations as these are used for procedure linking.) 
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13.5.4.2 Masking Integer Overflow Faults for syncf 

The i960 core architecture requires animplicit syncf before delivering an interrupt so that a fault 
handler can be dispatched fIrst, if necessary. The syncfcan require a number of cycles to 
complete if a multi-cycle multiply or divide instruction was issued previously and integer­
overflow faults are UIimasked (allowed to occur). Interrupt latency can be improved by masking 
integer-overflow faults, which allows the implicit syncf to complete in much shorter time. 
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CHAPTER 14 
TIMERS 

A key enhancement of the i960® Jx processor - not available on previous i960 processor family 
members - are the two identical, fully independent 32-bit timers. Each is programmed by use of 
the timer registers. These registers are memory-mapped within the processor, addressable on 32-bit 
boundaries. The timers have a single shot mode and auto-reload capabilities for continuous 
operation. Each timer has an independent interrupt request to the processor's interrupt controller. A 
timer can generate a fault when unauthorized writes from user mode are detected. Figure 14-1 
shows a diagram of the timer functions. Figure 14-5 shows the Timer Unit state diagram 
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14.1 TIMER REGISTERS 

Each timer can contain a user-defined count value. When enabled, this count value decrements 
with each Timer Clock (TCLOCK) cycle. The timers can be configured to either stop when the 
user-defined count value reaches zero ("single-shot") or run continuously ("auto-reload"). Each 
timer is clocked internally to decrement at a rate equal to the Bus Clock frequency, Bus Clock /2, 
Bus Clock /4, or Bus Clock /8. 

As shown in Table 14-1, each memory-mapped timer has three registers: 

• Timer Reload register - contains the timer's reload count; described in section 14.1.3, ''Timer 
Reload Register (TRRO, TRR1)" (pg. 14-7). 

• Timer Count register - contains the timer's current count; described in section 14.1.2, "Timer 
Count Register (TCRO, TCR1)" (pg. 14-6). 

• Timer Mode register - programs the specific mode of operation or indicates the current 
programmed status of the timer. This register is described in section 14.1.1, "Timer Mode 
Register (TMRO, TMR1)" (pg. 14-2). 

Table 14·1. Timer Registers 

Timer Register Acronym Register Name 

TRRO Timer Reload register 0 

Timer 0 TCRO Timer Count register 0 

TMRO Timer Mode register 0 

TRR1 Timer Reload register 1 

Timer 1 TCR1 Timer Count register 1 

TMR1 Timer Mode register 1 

14.1.1 Timer Mode Register (TMRO, TMR1) 

The Timer Mode register (TMRx; see Figure 14-2) programs the specific mode of operation or 
indicates the current programmed status for the specified timer. TMRx bits are described in the 
subsections following Figure 14-2 and summarized in Table 14-2. 
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Terminal Count Status - TMRx.tc _____________________ ---, 

(0) No Terminal Count 
(1) Terminal Count 

TImer Enable - TMRx.enable -----------------------, 
(0) Disabled 
(1) Enabled 

Timer Auto Reload Enable - TMRx.reload -------------------, 
(0) Auto Reload Disabled 
(1) Auto Reload Enabled 

TImer Register Supervisor Write Control - TMRx.sup ---------------, 
(0) Supervisor and User Mode Write Enabled 
(1) Supervisor Mode Only Write Enabled 

TImer Input Clock Selects - TMRx.cseI1:0 ----------------, 
(00) 1:1 TImer Clock = Bus Clock I 
(Q1) 2:1 Timer Clock = Bus Clock / 2 II 
(10) 4:1 TImer Clock = Bus Clock / 4 
(11) 8:1 TImer Clock = Bus Clock / 8 

31 28 24 20 16 12 B 

IIIIII 

14.1.1.1 

TImer Mode Register (TMRO, TMR1) 

I Reserved 
(Initialize to 0) 

Figure 14-2. Timer Mode Register (TMRO, TMR1) 

Bit 0 - Terminal Count Status Bit (TMRx.tc) 

4 o 

When the auto-reload (bit 2) is not selected for a timer, the Terminal Count (TC) bit is set when the 
Timer Count Register (TCR) reaches the zero count value. The TC bit gives the application the 
ability to monitor timer status through software instead of through interrupts. The TC bit will 
remain set until software accesses (reads or writes) the TMR. The access clears the TC bit. A value 
specified for TMRx.tc is ignored in the case of a write. 

When auto-reload is selected for a timer and the timer is enabled, the TC bit is unpredictable. 
Software should avoid relying on the value of the TC bit when auto-reload is enabled. 
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14.1.1.2 Bit 1 - Timer Enable (TMRx.enable) 

The Timer Enable bit allows user software to control the timer's RUN/STOP status. When: 

TMRx.enable = I 

TMRx.enable = 0 

The Timer Count register decrements every Timer Clock (TCLOCK) cycle. 
TCLOCK is determined by the Timer Input Clock Select (TMRx.csell:0 
bits, refer to section 14.1.1.5). TMRx.enable is automatically cleared when 
the count reaches zero if reload=O. If Reload=l, the bit remains set. . 

The timer is disabled and all input transitions are ignored. 

User software sets this bit. Once set, the timer continues to run, regardless of other processor 
activity (for~xample, the timer runs while the processor is in Halt mode) until: 

• User software explicitly clears this bit (TMRx.enable = 0). 

• TCRx,value reaches terminal count (= 0) and the Timer Auto Reload EQable (TMRx.reload) 
bit = O. 

• Reset (hardware/software reset or powerup). Refer to section 11.2, "INITIALIZATION" (pg. 
11-2) 

14.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRx.reload) 

Bit 2 (TMRx.reload) determines whether the timer runs continuously or in single-shot mode. 
When TCRx = 0 and TMRx.enable = 1 and: 

TMRx.reload = 1 

TMRx.reload = 0 

Allows the timer to run continuously. The processor: 

• Automatically loads TCRx with the value in the Timer Reload register 
(TRRx), when TCR.x value is zero. 

• TCRx decrements until TCRx = 0 again. 

This process repeats until software clears bits 1 or 2. 

Timer runs until the Timer Count Register = O. TRRx has no effect on the 
timer. 

This bit is set and cleared by user software. It is also cleared upon powerup (hardware reset) or 
software reset. Refer to section 11.2, "INITIALIZATION" (pg. 11-2). 

14.1.1.4 Bit 3 - Timer Register Supervisor Read/Write Control (TMRx~sup) 

This bit determines whether user mode writes are permitted to the Timer registers (TMRx, TCRx, 
TRRx). Supervisor mode writes are allowed regardless of this bit's condition. These registers can 
be read from either mode. 
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Table 14-2. Timer Mode Register Control Bit Summary 

il 
'6 Gi' 
III 2i 

>C >C 
0 III 

C\I'ij .. C a: a: -.. _CD Action a: 0 iii>< iii~ t- t- a: 

~ ~ 
l:::-

X X X X 0 Timer disabled. 

X X N 0 1 Timer enabled, TMRx.enable will be cleared when TCRx decrements to zero. 

X N N 1 1 
Timer and auto reload enabled,TMRx.enable remains set when TCRx=O. 
When TCRx=O, TCRx equals the TRRx value. 

0 X X X X No faults for user mode writes will be generated. 

1 X X X X TYPE.MISMATCH fault generated on user mode write. 

Notes: X = don't care 

N = a number between 1 Hand FFFF FFFFH 

When: 

TMRx.sup= 1 

TMRx.sup=O 

A TYPE.MISMATCH fault is generated when a user mode task attempts a 
write to any of the timer registers; however, supervisor mode writes are 
allowed. 

The timer registers can be written from either supervjsor mode; or user 
mode. 

This bit has no effect on reading the timer registers from user or supervisor mode. This bit can 
always be written in supervisor mode. 

When the processor is in supervisor mode, user software can set or clear this bit. It is also cleared 
upon power-up (hardware reset) or software reset. Refer to s,ection 11.2, "INITIALIZATION" (pg. 
11-2). 

14.1.1.5 Bits 4, 5 - Timer Input Clock Selects (TMRx.cseI1 :0) 

Software programs these bits to select the Timer Clock (TCLOCK.; see Table 14.3). As shown in 
Figure 14-1, the bus clock is an input to the Timer Clock Unit. These bits allow the application to 
specify whether TCLOCK runs at or slower than the Bus Clock frequency. 

These bits are only set by software. Upon powerup (hardware r9set) or software reset, these bits are 
cleared (TCLOCK = Bus Clock). . 
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Table 14.3. Timer Input Clock (TCLOCK) Frequency Selection 

BitS Blt4 Timer Clock (TCLOCK) TMRx.cse11 TMRx.cseiO 

0 0 Timer Clock = Bus Clock 

0 1 Timer Clock = Bus Clock I 2 

1 0 Timer Clock = Bus Clock I 4 

1 1 Timer Clock = Bus Clock I 8 

14.1.2 TImer Count Register (TCRO, TCR1) 

The timer count register ('TCR) is a 32-bit register which contains the timer's current count. This 
register can be read or written when the timer is running or stopped. The register value will be 
decremented for each timer clock tick. When this register value is decremented to a zero value 
(terminal count), a timer interrupt will be generated; if auto-reload is not selected for the timer, the 
TC status bit iIi the timer mode register (TMR, Bit 0) will be set and remain set until the TMRx 
register is accessed. Figure 14-3 shows the timer count register. 

Timer C,ount Value - TCRx.d31 :0 1 
031:0 + 

111111111111111111111111111111111 
28 24 20 16 12 8 4 0 

Timer Count Register (TCRO, TCR1) 

Figure 14-3. Timer Count Register (TCRO, TCR1) 

The maximum programmable value is FFFF FFFFH; the minimum value is IH. Programming a 
value of 0 should be avoided and will have different results. See section 14.5, "Uncommon TCRx 
and TRRx Conditions" (pg. 14-11) for more information. 

User software can access <r~ad or write) the TCRx whether the timer is running or stopped. Bit 3 
of the TMRx register determines read/write control (see section 14.1.1.4 for read/write control). 
TCRx register value is undefined after powerup or reset. 
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14.1.3 Timer Reload Register (TRRO, TRR1) 

The Timer Reload register (TRRx; Figure 14-4) is a 32-bit register that the user programs to 
contain the timer's reload count. The reload count value is only loaded into TCRx when 
TMRx.reload is set (1), TMRx.enable is set (1) and TCRx equals zero. 

The maximum programmable value of the Timer Reload register is FFFF FFFFH, and the 
minimum value is IH. Programming a value of 0 should be avoided, as it may cause TINTx to not 
be asserted continuously. See section 14.5, "Uncommon TCRX and TRRx Conditions" (pg. 14-11) 
for more information on results of setting TRRx to zero. 

User software can accesses the TRRx whether the timer is running or stopped. Bit 3 of the TMRx 
register determines read/write control (see section 14.1.1.4 for read/write control). TRRx register 
value is undefined after powerup or reset . 

. Timer Auto-Reload Value - TRRx.d31:0 1 
031:0 t 

111111111111111111111111111111111 
28 24 20 16 12 8 4 0 

Timer Reioad Register (TRRO: TRR1) 

Figure 14-4. Timer Reload Register (TRRO, TRR1) 

14.1.4 Timer Responses to Bit Settings 

Table 14-4 summarizes the timer access timing and maximum times for the timer to respond when 
registers are accessed_ Refer also to the individual register descriptions for details. 

14.2 TIMER FUNCTIONS 

The following sections describe enabling and disabling the Timer Counters and the associated 
latency .. 
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Table 14-4. Timer Re$pensesto Register Bit settings 

Name Status Action' 
'"' 

Bit is cll!lared when user ~qftware acceS$es TMRx; It can be set 1 bus clock 
(TMRx.tc) READ later. The timer sets this bit within 1 bus clock of TCRx reaching zero if 

, Terminal Count ", !MR.reload=:O,., ., 
" 

BitO , 
eitis cleared within ,~'bus clock after the software accesses TMRx. WRITE 

" 

(TMRx.enable) READ Bit is available 1 bus clOCk after executing a read instruction from TMRx. 

limer Enable ( , 

Wri~irig a '1.' ~'riables ,th~ bus C1oc1<.todecrement TCRx within 1 b!JS clock after Bit 1 WRITE executing a store instruction to TMRx. 

(TMRx.reload) ,R,EAD Bit is available 1 bus clock after executing a read instruction from TMRx. 

limer Auto 
Writing a '1' enables the reload capability within l' bus clock after the store Reload Enable 

Bit 2 WRITE, instruction to TMRx haS executed. This allows TRRx data to be loaded into 
TCRx and decremented on thE.', next bus. clock cycle. 

READ Bit is available 1 bus clock after exequting a read instruction from TMRx. 
(TMRx.sup) '. 

limer Register 
Writing a '1' locks out user mode writes within 1 bus clock after the store Supervisor 

Write Control WRITE instruction executes to TMRx. The timer prevents user mode writes. Upon 

Bit 3 detecting a user mode write the timer generates a fault condition. 

(TMRx.cseI1 :0) READ Bits are ~vailable, 1 bus clock after executing a read instruction from 

Timer Input 
TMRx.csel1 :0 blt(s). ' " , ", 

Clock Select The timer re-synchronize~ the clock,cycle,u~edto decrement TCRx within one 
Bits 4-5 WRITE bus clock cycle after executing Ii. store instruction to TMRx.cseI1:0 bit(s). ' ' 

, The current TCRx courtt value is available within 1 bus clock cycle after 

TCRx.d31:0 READ executing a ,read instruCtion from TCRx. If the count is to be decremented, the 

limerCount 
pre-decremented value is returned as the current count value. 

Register The value written to TCRx becomes the active TCRx value to be decremented 
WRITE within 1 bus clock cycle. If TCRx is decremented; the value Written becomes 

the active TCRx value to be decremented in the current clock cycle. 
I' 

The current TRRx count value is available within 1 bus clock after executing a 

READ read instruction from TRRx. If the TRRx count is being transferred into TCRx in 
TRRx.d31:0 the current count cycle, the new TCRx count value will be returned to the 

limer Reload executing read instruction. 
Register 

The value written to TRRx becomes the active value stored in TRRx within 1 
WRITE bus clock cycle. H the TRRx value is being transferred into the TCRx, data 

written to TRRx is also transferred into TCRx). 
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14.2.1 Enabling/Disabling Counters 

Each timer has an Enable bit in its Control register (TMRx.enable) to allow or prevent the timer 
from counting. The supervisor (SUP) bit controls write accesses to the Enable bit. User software 
can set or clear the Enable bit. If the timer is not programmed for continuous operation (Auto 
Reload), the Enable bit automatically clears at the end of a counting sequence. 

As with all other load accesses from internal memory-mapped registers, a load instruction that 
accesses a timer register has a latency of one internal processor cycle. With one exception, a store 
access to a timer register is synchronous with respect to the next instruction; that is, the operation 
completes fully and all state changes take effect before the next instruction begins execution. The 
exception to this is when disabling a timer. Latency associated with the disabling action is such that 
a timer interrupt may be posted immediately after the store to TMRx to disable it completes. This 
is because the timer is potentially near zero as the storing of the TMRx MMR occurs. In this case, 
the timer interrupt is guaranteed to be posted immediately after the store to the TMRx MMR 
completes and before the next instruction can execute. 

Note that the processor may delay the actual issuing of the load or store operation due to previous 
instruction activity and resource availability of processor functional units. 

Lastly, the processor ensures that the TC bit will be cleared within 1 bus clock after a load or store 
instruction accesses the TMR register. 

14.2.2 Programming Considerations 

Since timer registers can be read or written whether the timer is operating or not, and processor 
accesses to timer registers are synchronized with counter .element accesses, the processor cannot 
read a partially modified register. 

14.3 TIMER INTERRUPTS 

Each timer is the source for one interrupt. When a timer detects a zero count in its TCR, the timer 
will force the generation of an internal edge-detected Timer Interrupt signal (TINTx) to the 
interrupt controller, and the interrupt-pending (IPND.tipx) will be set in the interrupt controller. 
Each timer interrupt can be selectively masked in the Interrupt Mask (lMSK) register or handled as 
a dedicated hardware-requested interrupt. Refer to CHAFfER 13, INTERRUPf CONTROLLER 
for a description of hardware-requested interrupts. 

If the interrupt is disabled after a request has been generated, but before a pending interrupt is 
serviced, the interrupt request is still active (the Interrupt Controller latches the request). If a timer 
generates a second interrupt request before the CPU services the first interrupt request, the second 
request may be lost. 
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When auto-reload is enabled for a timer, the timer will continue. ,to decrement the contents in the 
TCR even after entry into the timer interrupt handler. 

An interrupt is generated when: 

• the Timer Count Register teaches 0 and 

• the auto reload is not selected (TMRx.reload=O). See section 14.1.1.1, "Bit 0 - Terminal 
Count Status Bit, (TMRx;tc)" (pg; 14-3) 

14.4 POWERUP/RESET INITIALIZATION 

Upon power up, external hardware reset or software reset (sysctl), the Timer Mode register is 
initialized to the value shown in Table 14-5. 

Table 14-5. Timer Powerup Mode Settings 

Mode/Control Bit Notes 

TMRx.tc= 0 Read only 

TMRx.enable = 0 Prevents counting and assertion of TINTx 

TMRx.reload = 0 Single terminal count mode 

TMRx.sup = 0 Supervisor or User Mode access 

TMRx.csel1,:O = 0., Timer Clock = Bus Clock 

TCRx.d31:0 = 0 undefined 

TRRx.d31:0 = 0 undefined 

TINTx output deasserted 
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14.5 UNCOMMON TCRX AND TRRX CONDITIONS 

Under certain conditions it may be useful to set the Timer Count register or the Timer Reload 
counter to zero before enabling the timer counter unit. Table 14-6 details the conditions and results 
when these conditions are set. 

Table 14-6. Uncommon TMRx Control Bit Settings 

:; 'iD 
as :is 

>C >C 
0 as 

N'ij '"" C a: a: _ ... 
_III Action a: ~ ai~ ai~ ~ 

~ ::E 
t:. 

X 0 0 1 TMRx.tc and TINTx will be set, TMR.enable will be cleared 

0 0 1 1 
Timer and auto reload enabled, TINTx will not be generated and timer enable 
remains set. 

0 N 1 1 Timer and auto reload enabled. TINT. x will be set when TCRx=O. The timer will 
stay enabled but further TINTx's will not be generated. 

Timer and auto reload enabled, TINTx will not be set initially, TCRx = TRRx, 
N 0 1 1 TINTx will be set when TCRx has completely decremented the value it loaded 

from TRRx. TMRx.enable remains set. 

NOTE: X = don't care 

N = a number between 1 Hand FFFF FFFFH 

14.6 TIMER STATE DIAGRAM 

The Figure 14-5 shows the common states of the Timer Unit. For uncommon conditions see 
section section 14.5, "Uncommon TCRx and TRRx Conditions" (pg. 14-11) 
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14-12 

Hardware/Software Reset 

SWWrite 
(TMR.enable = 0) 

TMR.enable = 0 
TMR.reload = 0 
TMR.sup =0 
TMR.cse.11:0 = 0 
IPND.ti = 0 

TMR.enable = 1 
TMR.reload =user value 
TMR.sup = user value 
TMR.cseI1:0 = user value 

TeR 1=0 

SWRead 

Bus Clock or 
SWRead 

SW Read & Reload = 0 
Note: 
Ovals denote a state 
Boxes denote actions 

Clock Unit Tick 
andTCR !=o 

Figure 14·5. Timer Unit State Diagram 

TC=O 
TMR.enable = 1 
TCR=TRR 

Reload = 1 
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CHAPTER 15 
EXTERNAL BUS 

This chapter describes the bus interface of the i96(j11> Ix processor. It explains the following: 

• Bus states and their relationship to each other 

• Bus signals, which consist of address/data, controVstatus 

• Read, write, burst and atomic bus transactions 

• Related bus functions such as arbitration 

This chapter also serves as a starting point for the hardware designer when interfacing typical 
memory and peripheral devices to the i960 Ix processor's address/data bus. 

For information on programmable bus configuration, refer to CHAPfER 12, MEMORY CONFIG­
URATION. 

15.1 OVERVIEW 

The bus is the data communication path between the various components of an i960 Ix micropro­
cessor hardware system, allowing the processor to fetch instructions, manipulate data and interact 
with its UO environment. To perform these tasks at high bandwidth, the processor features a burst 
transfer capability, allowing up to four successive 32-bit data transfers at a maximum rate of one 
word every clock cycle. 

The address/data path is multiplexed for economy and bus width is programmable to 8-, 16- and 
32-bit widths. The processor has dedicated control signals for external address latches, buffers and 
data transceivers. In addition, the processor uses other signals to communicate with alternate bus 
masters. All bus transactions are synchronized with the processor's clock input (CLKIN); 
therefore, the memory system control logic can be implemented as state machines. 

15.2 BUS OPERATION 

Knowing definitions of the terms request, access and transfer is essential to understand descrip­
tions of bus operations. 
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The piocessOr''/iPU8 l,:.oQtrol unit is designed to decouple bus activity from instruction execution in 
th~ c<;>re' as much is Rossible. When a load or store instruction or instruction prefetch is issued, a 
bus request;i~ 'generat~d in' the bus control unit. The bus control unit independently processes the 
request and retrieves data from memory for load instructions and instruction prefetches. The bus 
control unit delivers data to memory for store instructions. 

The i960 architecture defines byte, short word, word, double word,triple word and quad WOld data 
lengths for load and store instructions. When a load or store instruction is encountereq, the 
processor issues a bus request of the appropriate data length: for example, Idq requests that four 
words of data be retrieved from memory; stob requests that a single byte be delivered to memory. 
The processor always fetches instructions using double or quad word bus requests. 

A bus access is defined as a bus transaction bounded by the assertion of ADS (address/data status) 
and de-assertion of BLAST (burst last) signals, which are outputs from the processor. A bus access 
consists of one to io~ data transfers. 'During each transfer, the processor either reads data or 
drives data on the bus. The nuinber of transfers per access' and the number of a~cesses per request 
is gqvemed by the r:equested dataJength, the programmed width of the bus and the alignment of 
the address.' " ' , 

15.2.1 Basic Bus States 

The bus has five basic bus states: idle (Ti), address (Ta), wait/data (Twffd), recovery (Tr), and 
hold (Th) , During, system operation, the processor continuously enters and exits' different bus 
states.' 

The, bus occupies the idle (Ti) state when no address/data transactions are in progress and when 
RESET is asserted. When the processor needs to initiate a bus access, it enters the Ta state to 
transmit the address. 

Following {l Ta state, the b,us enters the Twffd state to transmit or receive data on the address/data 
lines .. Assertion, of the RDYRCV input signal indicates completion of e~cb transfer. When data is 
not ready, the processor can wait as long as necessary for the memory or 1/0 device to respond. 

After the data transfer, 1hebus exit~ the Twffd state and enters the recovery (Tr) state. In the case 
, , of a burst transaction, the bus exits the Td state and re-enters the TdITw state to transfer the next 

data word. The processor asserts the BLAST signal during the last Twrrd states of an access. Onc.e 
all data words transfer in a burst access (up to four), the bus enters theTr state to allow devices on 
the bus to recover. 

The processor remains in the Tr state until RDYRCV is deasserted. When the recovery state 
completes, the bus enters the Ti state if no new accesses are required. If an access is pending, the 
bus enters the Ta state to transmit the new address. 
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Tj - IDLE STATE 
Ta - ADDRESS STATE 
T'llJ T.d - WAIT/DATA 
SlATE 
Tr - RECOVERY STATE 
T h - HOLD STATE 
To - ONCE STATE 

EXTERNAL BUS 

RECOVERED 
AND REQUEST 
PENDING AND 
(NO HOLD OR 

LOCKED) 

RECOVERED AND 
NO REQUEST AND 

(NO HOLD OR 
LOCKED) 

READY- RDYRCV ASSERTED 
NOT READY- RDYRCV NOT ASSERTED 

BURST- BLAST NOT ASSERTED 
NO BURST - BLAST ASSERTED 

RECOVERED- RDYRCV NOT ASSERTED 
NOT RECOVERED- RDYRCV ASSERTED 

REQUEST PENDING- NEW TRANSACTION 
NO REQUEST-NO NEW TRANSACTION 

HOLD- HOLD REQUEST ASSERTED 
NO HOLD- HOLD REQUEST NOT ASSERTED 
LOCKED - ATOMIC EXECUTION (ATADD, ATMOD) IN 

PROGRESS 
NOT LOCKED- NO ATOMIC EXECUTION IN PROGRESS 

RESET-- RESET ASSERTED 
ONCE-- ONCE ASSERTED 

Figure 15.1. Bus States with Arbitration 
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15.2.2 Bus Signal TYj)es 

Bus signals consist of three groups: address/data, controVstatus and bus arbitration. They are listed 
in Table 15.1. A detailed description of all signals can be found in the 80960JAlJF Embedded 32-
bit Microprocessor Data Sheet and the 80960JD Embedded 32-bit Microprocessor Data Sheet. 

15.2.2.1 Clock Signal 

The CLKIN input signal is the reference for all i960 Jx microprocessor signal timing relationships. 
Note that this is true even for the i960 JD processor, even though the CPU core runs at twice the 
CLKIN rate. Transitions on the AD31:2, ADl:0, A3:2, ADS, BE3:0, WIDTHlHLTDI:0, D/e, 
wiR, DEN, BLAST, RDYRCV, LOCK/ONCE, HOLDIHOLDA and BSTAT bus signal pins are 
always measured directly from the rising edge of CLKIN. The processor asserts ALE and ALE 

. directly from the rising CLKIN edge at the beginning of a Ta state but deasserts them approxi-
mately half way through the state instead of the next rising CLKIN edge. All transitions on DTiR 
are also referenced to a point halfway through the Ta state instead of rising CLKIN edges. 

15.2.2.2 Address/Data Signal Definitions 

The address/data signal group consists of 34 lines. 32 of these signals multiplex within the· 
processor to serve a dual purpose. During Ta, the processor drives AD31:2 with the address of the 
bus access. At all other times, these Jines are defined to contain data. A3:2 are demultiplexed 
address pins providing incrementing word addresses during burst cycles. ADl:0 denote burst size 
during Ta and data during other states. 

The processor routinely performs data transfers less than 32 bits wide. If the programmed bus 
width is 32 bits and transfers are 16- or 8-bit, then during write cycles the processor will replicate 
the data that is being driven on the unused address/data pins. If the programmed bus width is 16 or 
8 bits, then during write cycles the processor will continue driving address on any unused 
address/data pins. 

Whenever the programmed bus width is less than 32 bits, additional demultiplexed address bits are 
available on unused byte enable pins (See section 15.4.3.1, "Bus Width" (pg. 15-7)). These signals 
increment during burst accesses in similar fashion to the A3:2 pins. 

15.2.2.3 Control/Status Signal Definitions 

The controVstatus signal group consists of 15 signals. These signals control data buffers and 
address latches or furnish information useful to external chip-select generation logic. All output 
controVstatus signals are three-state. 
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Signal 
Symbol 

AD31 :2 

AD1:0 

A3:2 

ALE 

ALE 

ADS 

BE3:0 

WIDTH/HLTD 
1 :0 

Die 

wifS. 

DTifS. 

DEN 

BLAST 

RDYRCV 

LOCK/ONCE 

HOLD 

HOLDA 

BSTAT 

I 

EXTERNAL BUS 

Table 15-1. Summary of i960 Jx, Processor Bus Signals 

Name (Direction) Signal Function 

Address/Data 31:2 (I/O) 
Word address, driven during Ta. Read or write data, 
driven or sampled during Tw/Td. 

Address/Data 1:0 and Size 1 :0 (I/O) 
Number of transfers, driven during Ta. Read or write 
data, driven or sampled during Tw/Td. 

Address 3:2 (0) 
Incrementing burst address bits, driven during Ta 
and Tw/Td. 

Address Latch Enable (0) Driven during Ta for demultiplexing AD bus. 

Address Latch Enable (Inverted) (0) Driven during Ta for demultiplexing AD bus. 

Address/Data Status (0) Valid address indicator, driven during Ta. 

Enable selected data bytes on bus. (16-bit bus) BE3 
Byte Enables 3:0 and Byte High and BEO enable high and low bytes. (a-bit bus) 

Enable/Byte Low Enable and A 1 :0 (0) BE1 :0 are incrementing burst address bits. Driven 
during Ta and Tw/Td. 

Width and Processor Halted (0) 
Physical bus size, driven during Ta and Tw/Td. Can 
denote Halt Mode. 

Data/Code (0) 
Data access or instruction access, driven during Ta 
and Tw/Td. 

. Write/Read (0) 
Indication of data direction, driven during Ta and 
Tw/Td. 

Data Transmit/Receive (0) 
Delayed indication of data direction, driven during Ta 
and Tw/Td. 

Data Enable (0) Enables data on bus, driven during Tw/Td. 

Burst Last (0) Last transfer of a bus access, driven during Tw/Td. 

Data transfer edge when sampled low during Tw/Td. 
Ready/Recover (I) 

Bus recovered when sampled high during Tr. 

LockiOn-Circuit Emulation (I/O) Atomic operation, driven during Ta and Tw/Td. 
ONCE floats all pins when sampled at reset. 

Hold (I) 
Acquisition request from external bus master, 
sampled any clock. 

Hold Acknowledge (0) 
Bus control granted to external bus master, driven 
during Th. 

Bus Status (0) 
Processor may stall unless it can acquire bus, driven 
any clock. 
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EXTERNAL BUS intet 
Bus accesses begin with the assertion of ADS (address/data status) during a Ta state. External 
decoding logic typically uses ADS to qualify a valid adqress. at the rising clock edge at the end of 
Ta. The processor pulses ALE (address latch enable) active high for one half clock during Ta to 
latch the multiplexed address on AD3l:2 in external address latehes. An inverted signal, ALE; is 
also present for compatibility with i960 Kx processor-based companion devices. 

The byte enable (BE3:0) signals denote which bytes on the 32~bit data bus will transfer data 
during aD. access. The processor asserts byte enables during Ta and deasserts them during Tr. 
When the data bus is configured for 16 bits, two byte enables become byte high enable aDd byte 
low enable and an additional address bit Al is provided. When the bus is configured for 8 bits, 
there are no byte enables, but additional address bits Al:0 are provided. Note that the processor 
always drives byte enable pins to logical 1 's during the Tr state, even when they are used as 
addresses. 

The WIDTHl:O, D/Cand WIR signals yield useful bus access information for external memory 
and 110 controllers. The WIDTHl:O signals denote programmed physical memory attributes. The 
data/code pin indicate's whether an access is a data transaction (1) or an instruction transaction (0). 
The write/read pin indicates the direction of data flow relative to the i960 Jx processor. 
WIDTHl:O, D/C an<i WIR change state as needed during the Ta state. 

DTIR and DEN pins are used to control data transceivers. Data transceivers may be used in a 
system to isolate a' memory subsystem or control loading on data lines. DTIR (data 
transmit/receive) is used to control transceiver direction. In the second half of the Ta state, it 
transitions high for write cycles or low for read cycles. DEN (data enable) is used to enable the 
transceivers. DEN is asserted during the first TwITd state of a bus access and deasserted during Tr. 
DTIR and DEN timings ensure that DTIR does not change state when DEN is asserted. 

A bus access may be either non-burst or burst. A non-burst access ends after one data transfer to a 
single location. A burst access involves two to four data cycles to consecutive memory locations. 
The processor asserts BLAST (burst last) to indicate the last data cycle of an access in both burst 
and non-burst situations. 

All i960 Jxprpcessor wait states are controlled by the RDYRCV (ready/recover) input signal. 

15.2.3 Bus Accesses 

The i960 Ix microprocessor uses the bus signals to transfer data between the processor and another 
component. The maximum transfer rate is achieved when performing burst accesses at the rate of 
four 32-bit data words per six clocks. 
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15.2.3.1 Bus Width 

Each region's data bus width is programmed in a Physical Memory Region Configuration 
(PMCON) register. The processor allows an 8-, 16- or 32-bit data bus width for each region. The 
processor places 8- and 16-bit data on low-order data pins, simplifying the interface to narrow bus 
external devices. As shown in Figure 15-2, 8-bit data is placed on lines AD7:0; 16-bit data is 
placed on lines AD15:0; 32-bit data is placed on lines AD31:0. The processor encodes bus width 
on the WIDTH1:0 pins so that external logic may enable the bus correctly. 

AD31:24 ---------------------, ___ -------

AD23:16 ---------------------i 

AD15:8 -------------...-----------i 

AD7:0 -------,.-------1 1-----..------1 

BEO 

8· Bit 

..-----+iAO 

Al 

BEl BEl 

16· Bit 

A1 

BHE BLE 

BE3 BEO BE3 

32- Bit 

BE3:0 '--___________________ ~---------' 

Figure 15·2. Data Width and Byte Encodings 

Depending on the programmed bus width, the byte enable signals provide either data enables or 
low-order address lines: 

• 8-bit region: BEO: 1 provide the byte address (AO, AI) (see Table 15-2). 

• 16-bit region: BEl provides the short-word address (AI); BE3 is the byte high enable signal 
(BHE); BEO is the byte low enable signal (BLE) (see Table 15-3). 

• 32-bit region: byte enables are not encoded as address pins. Byte enables BE3:0 select bytes 0 
through 3 of the 32-bit words addressed by AD31:2 (see Table 15-4). 

When the byte enables function as address lines, they increment with each transfer during burst 
accesses. Otherwise, byte enables never toggle between transfers of a burst, due to microcode 
breakup of unaligned requests. 
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Table 15-2. 8-Bit Bus Width Byte Enable Encodings 

Byte 
BE3 BE2 BE1 BEO 

(Not Used) (Not Used) (Used as A1) (Used asAO) 

0 1 1 0 0 

1 1 1 0 1 

2 1 1 1 0 

3 1 1 1 1 

Table 15-3. 16-Bit Bus Width Byte Enable Encodings 

Byte 
BE3 BE2 BE1 BEO 

(Used as BHE) (Not Used) (Used as A1) (Used as BlE) 

0,1 0 1 0 0 

2,3 0 1 1 0 

0 1 1 0 0 

1 0 1 0 1 

2 1 1 1 0 

3 0 1 1 1 

Table 15-4. 32-Bit Bus Width Byte Enable Encodings 

Byte BE3 BE2 BE1 BEO 

0,1,2,3 0 0 0 0 

0,1 1 1 0 0 

2,3 0 0 1 1 

0 1 1 1 0 

1 1 1 0 1 

2 1 0 1 1 

3 0 1 1 1 

During initialization, the bus configuration data is read from the Initialization Boot Record (IBR) 
assuming an 8-bit bus width; however, the IBR can be in 8-bit, 16-bit, or 32-bit physical memory. 
BE3 and BE2 are defined as "I" so that reading the bus configuration data works for all bus 
widths. Since these byte enables are ignored for actual 8-bit memory, they can be permanently 
defined this way for ease of implementation. 
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Intel designed the i960 Jx processor to drive determinate values on all address/data pins during 
Twffd write operation states. For an 8-bit bus, the processor continues to drive address on unused 
data pins AD31:8. For a 16-bit bus, the processor continues to drive address on unused data pins 
AD31:16. However, when the processor does not use the entire bus width because of data width or 
misalignment (i.e., 8-bit write on a 16- or 32-bit bus or a 16-bit write on a 32-bit bus), data is 
replicated on those unused portions of the bus. 

15.2.3.2 Basic Bus Accesses 

The basic transaction is a read or write of one data word. The first half of Figure 15-3 shows a 
typical timing diagram for a non-burst, 32-bit read transaction. For simplicity, no wait states are 
shown. 

During the Ta state, the i960 Jx microprocessor transmits the address on the address/data lines. In 
the figure, the SIZE bits (ADl:0) specify a single word transaction and WIDTHl:0 indicate a 32-
bit wide access. The processor asserts ALE to latch the address and drives ADS low to denote the 
start of the cycle. BE3:0 specify which bytes the processor uses to read the data word. The 
processor brings wiR low to denote a read operation and drives D/e to the proper state. For data 
transceivers, DTiR goes low to define the input direction. 

During the Twffd state, the i960 Jx microprocessor deasserts ADS and asserts DEN to enable any 
data transceivers. Since this is a non-burst transaction, the processor asserts BLAST to signify the 
last transfer of a transaction. The figure shows RDYRCV assertion by external logic, so this state 
is a data state and the processor latches data on a rising CLKIN edge. 

The Tr state follows the Twffd state. This allows the system components adequate time to remove 
their outputs from the bus before the processor drives the next address on the address/data lines. 
During the Tr state, BLAST, BE3:0 and DEN are inactive. wiR and DTiR hold their previous 
values. The figure indicates a logical high for the RDYRCV pin, so there is only one recovery 
state. 

After a read, notice that the address/data bus goes to an invalid state during Ti. The processor 
drives valid logic levels on the address/data bus instead of allowing it to float. See section 15.2.4, 
"Bus and Control Signals During Recovery and Idle States" (pg. 15-22) for the values that are 
driven during Ti. 
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Figure 15-3. Non-Burst Read and Write Transactions Without Wait States, 32-Blt Bus 
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Figure 15-3 also shows a typical timing diagram for a non-burst, 32-bit write transaction. For the 
write operation, wlR and DTIR are high to denote the direction of the data flow. The D/C pin is 
high since instruction code cannot be written. During the TwlTd state, the processor drives data on 
the bus, waiting to sample RDYRCV low to terminate the transfer. The figure shows RDYRCV 
assertion by extemallogic, so this state is a data state and the proce'ssor enters the recovery state. 

At the end of a write, notice that the write data is driven during Tr and any subsequent Ti states. 
After a write, the processor will drive write data until the next Ta state. See section 15.2.4, "Bus 
and Control Signals During Recovery and Idle States" (pg. 15-22) for details. 

15.2.3.3 Burst Transactions 

A burst access is an address cycle followed by two to four data transfers. The i960 Jx micropro­
cessor uses burst transactions for instruction fetching and accessing system data structures. 
Therefore, a system design incorporating an i960 Jx microprocessor must support burst transac­
tions. Burst accesses can also result from instruction references to data types which exceed the 
width of the bus. 

Maximum burst size is four data transfers, independent of bus width. A byte-wide bus has a 
maximum burst size of four bytes; a word-wide bus has a maximum of four words. For an 8- or 16-
bit bus, this means that some bus requests may result in multiple burst accesses. For example, if a 
quad word load request (e.g., ldq instruction) is made to an 8-bit data region, it results in four, 4-
byte, burst accesses. (See Table 15-6.) 

Burst accesses on a 32-bit bus are always aligned to even-word boundaries. Quad-word and triple­
word accesses always begin on quad-word boundaries (A3:2=OO); double-word transfers always 
begin on double-word boundaries (A2=O); single-word transfers occur on single word boundaries. 
Figure 15-4 shows burst, stop and start addresses for a 32-bit bus. 
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A3:2 

32-Bit Burst Bus 

Quad-Word Burst 

Triple-Word Burst 

Double-Word Burst 

Double-Word Burst 

Figure 15-4. 32-Bit Wide Data Bus Bursts 

A2:1 = (A2, BE1) 

16-Bit Burst Bus 4 Short-Word Burst 

2 Short-Word Burst 

". ': 
2 Short-Word Burst 

Figure 15-5. 16-Bit Wide Data Bus Bursts 
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At:O = (BEt, BEO) 

8-Bit Burst Bus 4-Byte Burst 

2-Byte Burst 

2-Byte Burst 

Figure 15-6. a-Bit Wide Data Bus Bursts 

Burst accesses for a 16-bit bus are always aligned to even short-word boundaries. A four short­
word burst access always begins on a four short-word boundary (A2=O, Al=O). Two short-word 
burst accesses always begin on an even short-word boundary (Al=O). Single short-word transfers 
occur on single short-word boundaries (see Figure 15-5). 

Burst accesses for an 8-bit bus are always aligned to even byte boundaries. Four-byte burst 
accesses always begin on a 4-byte boundary (Al=O, AO=O). Two-byte burst accesses always begin 
on an even byte boundary (AO=O) (see Figure 15-6). 

Figure 15-7 illustrates a series of bus accesses resulting from a triple-word store request to 16-bit 
wide memory. The top half of the figure shows the initial location of 12 data bytes contained in 
registers g4 through g6. The instruction's task is to move this data to memory at address OAH. The 
top half of the figure also shows the final destination of the data. 

Notice that a new 16-byte boundary begins at address lOH. Since the processor stores 6 of the 12 
bytes after this 16-byte boundary, the processor will split the transaction into a number of accesses. 
The i960 Jx processor cannot burst across 16-byte boundaries. 
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The processor splits the transaction into the following accesses. It performs the following bus 
cycles: . . 

15-14 

G3 

G4 

G5 

G6 

G7 

1 

1. Non-burst access to transfer the first short word (contents 5678H) to 
address OAH. The short word at address 08H remains unchanged. 

2. Burst access to transfer the second and third short words (contents 1234H 
and OFACEH) to address OCH. 

3. Burst access to transfer the fourth and fifth short words (contents 
OFEEDH and OBA98H) to address WH. 

4. Non-burst access to transfer the last short word (contents OFEDCH) to 
address 14H. The short word at address 16H remains unchanged. 

Memory 
Registers 

Address A 

2 3 4 5 6 78 5 6 7 8 8 

F E E D FACE FA C E 1 2 3 4 C 

F E DCBA98 

16-Byte 
Boundary 

B A 98 

31 

F E E D 10 

FED C 14 

o 

1st Access 
(Short Word) 

2nd Access 
(Burst 2 Short Words) 

3rd Access 
(Burst 2 Short Words) 

4th Access 
(Short' Word) 

C8 
AddressOAH 

~2 F~ r4 c-=J 
Address OCH 

rE B~ 
~D 9~ 
Address 10H 

Figure 15-7. Unaligned Write Transaction 
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Address 14H 
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Figure 15-8. Burst Read and Write Transactions w/o Wait States, 32·bit Bus 
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Figure 15-9. Burst Read and Write Transactions w/o Wait States, a-bit Bus 
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15.2.3.4 Wait States 

Wait states lengthen the microprocessor's bus cycles, allowing data transfers with slow memory 
and 110 devices. The 80960Jx supports three types of wait states: address-to-data, data-to-data 
and turnaround or recovery. All three types are controlled through the processor's RDYRCV 
(ReadylRecover) pin, a synchronous input. 

The processor's bus states follow the state diagram in Figure 15.1. After the Ta state, the processor 
enters the Twffd state to perform a data transfer. If the memory (or 110) system is fast enough to 
allow the transfer to complete during this clock (i.e., "ready"), external logic asserts RDYRCV. 
The processor samples RDYRCV low on the next rising clock edge, completing the transfer; the 
state is a data state. If the memory system is too slow to complete the transfer during this clock, 
external logic drives RDYRCV high and the state is an address-to-data wait state. Additional wait 
states may be inserted in similar fashion. 

If the bus transaction is a burst, the processor re-enters the Twffd state after the first data transfer. 
The processor continues to sample RDYRCV on each rising clock edge, adding a data-to-data wait 
state when RDYRCV is high and completing a transfer when RDYRCV is low. The process 
continues until all transfers are finished, with RDYRCV assertion denoting every data acquisition. 

Figure 15-10 illustrates a quad word burst write transaction with wait states. There are two 
address-to-data wait states single data-to-data wait states between transfers. 
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Figure 15·10. Burst Writ~ Transactions With 2,1,1,1 Wait States, 32·bit Bus 
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15.2.3.5 Recovery States 

The state following the last data transfer of an access is a recovery (Tr) state. By default, i960 Jx 
microprocessor bus transactions have one recovery state. External logic can cause additional 
recovery states to be inserted by driving the RDYRCV pin low at the end of Tr. 

Recovery wait states are an important feature for the Jx because it employs a multiplexed bus. 
Slow memory and 110 devices often need a long time to tum off their output drivers on read 
accesses before the microprocessor drives the address for the next bus access. Recovery wait states 
are also useful to force a delay between back-to-back accesses to 110 devices with their own 
specific access recovery requirements. 

System ready logic is often described as normally-ready or normally-not-ready. Normally-ready 
logic asserts a microprocessor's input pin during all bus states, except when wait states are desired. 
Normally-not-ready logic deasserts a processor's input pin during all bus states, except when the 
processor is ready. The subtle nomenclature distinction is important for i960 Jx microprocessor 
systems because the active sense of the RDYRCV pin reverses for recovery states. During the Tr 
state, logic 0 means "continue to recover" or "not ready"; for Tw/Td states, logic 0 means "ready". 
Logic must assure "ready" and "not recover" are generated to terminate an access properly. Be 
certain to not hang the processor with endless recovery states. Conventional ready logic 
implemented as normally-not-ready will operate correctly (but without adding turnaround wait 
states). 

Figure 15-12 is a timing waveform of a read cycle followed by a write cycle, with an extra 
recovery state inserted into the read cycle. 
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15.2.4 Bus and Control Signals During Recovery and Idle States 

Valid bus transactions are bounded by ADS going active at the beginning of Ta states and BLAST 
going inactive at the beginning of Tr states. During Tr and Ti states, bus and control pin logic 
levels are defined in such a way as to avoid unnecessary pin transitions that waste power. In all 
cases, the bus and control pins are completely quiet for iristruction fetches and data loads that are 
cache hits. 

If the last bus cycle is a read, the address/data bus floats during all Tr states. If the last bus cycle is 
a write, the address/data bus freezes during Tr states. The processor drives control pins such as 
ALE, ADS, BLAST and DEN to their inactive states during Tr. Byte enables BE3:0 are always 
driven to logic high during Tr, even when the processor uses them under alternate definitions. 
Outputs without clearly defined active/inactive states such as A3:2, WIDTHlHLTDl:0, D/e, wlR 
and DTIR freeze during Tr. 

When the bus enters the Ti state, the bus and control pins will likewise freeze to inactive states. 
The exact states of the address/data pins depend on how the processor enters the Ti state. If the 
processor enters Ti from a Tr ending a write cycle, the processor continues driving data on 
AD31 :0. If the processor enters Ti from a read cycle or from a Th state, AD31:4 will be driven 
with the upper 28 bits of the read address. AD3:2 will be driven identically as A3:2 (the word 
address ofthe last read transfer). The processor will usually drive ADl:0 with the last SIZE infor­
mation. In cases where the core cancels a previously issued bus request, ADl:0 are indeterminate. 

15.2.5 Data Alignment 

The i960 Jx microprocessor's Bus Control Unit (BCU) directly supports both big-endian and 
little-endian aligned accesses. The processor also transparently supports both big-endian and little­
endian unaligned accesses but with reduced performance. Unaligned accesses are broken down 
into a series of aligned accesses with the assistance of microcode executing on the processor. 

Alignment rules for loads and stores are based on address offsets from natural data boundaries. 
Table 15-5 lists the natural boundaries for the various data widths and Table 15-6 through 15-8 list 
all possible combinations of bus accesses resulting from aligned and unaligned requests. Figure 
15-13 and Figure 15-14 also depict all the combinations for 32-bit buses. Figure 15-15 is a 
functional waveform for a series of four accesses resulting from a misaligned double word read 
request. 

The fault configuration word in the Process Control Block (PRCB), can configure the processor to 
handle unaligned accesses non-transparently by generating an OPERATION.UNALIGNED fault 
after executing any unaligned access. See section 11.3.1.2, "Process Control Block (PRCB)" (pg. 
11-14). 
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Table 15-5. Natural Boundaries for Load and Store Accesses 

Data Width Natural Boundary (Bytes) 

Byte 1 

Short Word 2 

Word 4 

Double Word 8 

Triple Word 16 

Quad Word 16 

Table 15-6. Summary of Byte Load and Store Accesses 

Address Offset from 
Accesses on 8-Bit Bus Accesses on 16 Bit Bus Accesses on 32 Bit Bus 

Natural Boundary 
(WIDTH1 :0=00) (WIDTH1 :0=01) (WIDTH1 :0=10) 

(In Bytes) 

+0 (aligned) byte access byte access byte access 

Table 15-7. Summary of Short Word Load and Store Accesses 

Address Offset from 
Accesses on 8-Bit Bus Accesses on 16 Bit Bus Accesses on 32 B.it Bus 

Natural Boundary 
(WIDTH1 :0=00) (WIDTH1 :0=01) (WIDTH1 :0=10) 

(in Bytes) 

+0 (aligned) burst of 2 bytes short-word access short-word access 

+1 2 byte accesses 2 byte accesses 2 byte accesses 
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Table 15-8. Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4) 

Address Offset Accesses on 8-Blt Bus Accesses on 16 Bit Bus Accesses on 32 Bit 
from Natural 

(WIDTH1 :0=00) (WIDTH1 :0=01) Bus (WIDTH1 :0=10) Boundary in Bytes 

+0 (aligned) · n i;>lJrst(s) of 4 bytes · case 11=1: · burst of n word(s) 
(n=1, 2, 3, 4) burst of 2 short words 

· case 11=2: 
burst of 4 short words 

· case 11=3: 
burst of 4 short words 
burst of 2 short words 

· case 11=4: 
2 bursts of 4 short words 

+1 (n=1, 2, 3, 4) · byte access · byte access · byte access 
+5 (n = 2, 3, 4) · burst of 2 bytes · short-word access · short-word access 
+9 (n= 3, 4) · n-1 burst(s) of 4 bytes · n-1 burst(s) of 2 short words • n-1 word 
+13(n=3,4) · byte access · byte access access(es) 

· byte access 

+2 (n =1, 2, 3, 4) · burst of 2 bytes · short-word access · short-word access 
+6 (n = 2, 3, 4) · n-1 burst(s) of 4 bytes · n-1 burst(s) of 2 short words • n-1 word 
+10(n=3,4) · burst of 2 bytes · short-word access access(es) 
+14(n=3,4) · short-word access 

+3 (n =1, 2, 3, 4) · byte access · byte access · byte access 
+7 (n = 2, 3, 4) · n-1 burst(s) of 4 bytes · n-1 burst(s) of 2 short words • n-1 word 
+11 (n=3,4) · burst of 2 bytes · short-word access access(es) 
+15(n=3,4) · byte access · byte access · short-word access 

· byte access 

+4 (n = 2, 3, 4) · n burst(s) of 4 bytes · n burst(s) of 2 short words · n word access(es) 
+8 (n= 3,4) 
+12(n = 3,4) 
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Figure 15-13. Summary of Aligned and Unaligned Accesses. (32-Bit Bus) 

15-25 

:1 
I,' 

I, , 

• I: I 



EXTERNAL BUS 

Byte Offset 

Word Offset 

Triple-Word 
Load/Store 

Quad-Word 
Load/Store 

0 

0 

"" 

4 8 12 .... 
I" 

I 
2 3 

I" 

intel~ 

16 20 24 

4 5 6 

Short, Word, Word, 
Short Accesses 

IMe, Word, Word, 
Short, Byte Accesses 

I 
Word, Word, 
Word Accesses 

I 

Word, 
Word, 
Word 
Accesses 

Byte, Short, Word, Word, 
Word, Byte Accesses 

I I 
Short, Word, Word, Word, 
Short Accesses 

Word, 
Word, 
Word, 
Word, 
Accesses 

F_XL029A 

Figure 15-14. Summary of Aligned and Unaligned Accesses (32-Blt Bus) (Continued) 
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15.2.6 Byte Ordering and Bus Accesses 

The default byte-order for both instruction and data accesses'is programmed in the DLMCON 
register to be either little- or big-endian. On the i960 Jx processor, DLMCON.be controls the 
default byte order for internal (on-chip data ram and data cache) accesses' as well as external 
accesses. The programming of DLMCON is distussed in section 12.6.2, "Selecting the Byte 
Order" (pg. 12-11). 

The processor handles the byte data type the same r~gardless of byte ordering. Table 15-9 shows 
byte data ODDH being transferred on 8, 16 and 32 bit buses. 

For the short word data type, assume that a llexadecimal value of OCCDDH is stored in one of the 
processor's internal registers. Table 15-10 shows how this short word is transferred on the bus to 
either a little endian or big endian memory region. Note that the short word goes out on different 
data lines on a 32-bit bus depending upon whether address line Al is odd or even. In this example, 
the transfer is assumed to be aligned. 

For the word data type, assume that a hexadeCimal value of OAABBCCDDH is stored in an 
internal processor register, where OAAH is the word's most significant byte and ODDH is the least 
significant byte. Table 15-11 shows how this word is transferre<i on the bus to an aligned address 
in either little endian or big endian memory. 

The i960 Jx processor supports multi-word big endian data types with individual word accesses. 
Bytes in each word are stored in big-endian order; however, words are stored in little-endian order. 
Consider Figure 15-16, which illustrates a double word store to big endian memory. 

" 

Table 15·9. Byte Ordering on Bus Transfers, Word Oata Type 

Word Data Type Bus Pins (AD31 :0) 

Bus Addr Bits Little Endian Big Endlan 

Width A1,AO 
Xfer 

31 :24 I 23:16 I I 31:24 I 23:16 I I 15:8 7:0, 15:8 7:0 

32 bit 00 1st AA BB CC DD DD CC BB AA 

16 bit 
00 1st -- -- CC DD -- -- BB AA 

10 2nd -- -- AA BB -- -- DD CC 
00 1st -- -- -- DD -- -- -- AA 

, 01 2nd -- -- -- CC -- -- -- BB 
8 bit 

10 3rd -- -- -- BB -- -- -- CC 
" 

11 4th -- -- -- AA -- -- -- DD 
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Table 15-10. Byte Ordering on Bus Transfers, Short-Word Data Type 

Short-Word Data Type Bus Pins (AD31 :0) 

Bus Addr Bits Little Endian Big Endian 
Xfer 

Width A1,AO 31 :24 I 23:16 I 15:8 I 7:0 31:24 I 23:16 I 15:8 I 7:0 

00 1st -- -- CC DD -- -- DD CC 
32 bit 

10 1st CC DD -- -- DD CC -- --
16 bit XO 1st -- -- CC DD -- -- DD CC 

XO 1st -- -- -- DD -- -- -- CC 
8 bit 

X1 2nd -- CC -- -- -- DD 

Table 15-11. Byte Ordering on Bus Transfers, Byte Data Type 

Byte Data Type Bus Pins (AD31 :0) 

Bus Addr Bits Little and Big Endian 
Xfer 

Width A1,AO 31:24 I 23:16 J 15:8 I 7:0 

00 1st -- -- -- DD 
01 1st -- -- DD --

32 bit 
10 1st -- DD -- --

11 1st DD -- -- --
XO 1st -- -- -- DD 

16 bit 
X1 1st -- -- DD --

8 bit XX 1st -- -- -- DD 

Registers Memory 
R3 

R4 BB AA 99 88 BB A 

• stl r4,A 
AA A+1 
99 A+2 

R5 FF EE DO CC 88 A+3 
FF A+4 

R6 EE A+5 
DO A+6 
CC A+7 

Figure 15-16. Multi-Word Access to Big-Endian Memory Space 
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15.2.7 Atomic ·Bus Transactions 

The atomic instructions, atadd and atmod; consist of a load and store request to the Same memory 
location. Atomic .instructions require indivisible, read-modify-write access to memory. That is, 
another bus agent must not access the target of the atomic instruction between read and write 
cycles. Atomic instructions are necessary to implement software semaphores. 

For atomic bus accesses, the 80960Jx processor asserts the LOCK pin during the first Ta of the 
read. operation and deasserts LOCK in the last data transfer of the Write operation. LOCK is 
deasserted at the same clock edge that BLAST is asserted. The i960Jx processor does not assert 
LOCK except while a read-modify-write operation is in progress. While LOCK is asserted, the 
processor can perform other, non-atomic, accesses such as fetches. However, the 80960Jx 
processor will not acknowledge HOLD requests. This behavior is an enhancement over earlier 
i960 microprocessors. Figure 15-17 illustrates locked read/write accesses associated with an 
atomic instruction. 
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Figure 15-17. The LOCK Signal 

15.2.8 Bus Arbitration 

The i960 Jx processor can share the bus with other bus masters, using its built-in arbitration 
protocol. The protocol assumes two bus masters: a default bus master (typically the 80960Jx) that 
controls the bus and another that requests bus control when it performs an operation (e.g., a DMA 
controller). More than two bus masters may exist on the bus, but this configuration requires 
external arbitration logic 

Three processor signal pins comprise the bus arbitration pin group. 
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15.2.8.1 HOLD/HOLDA Protocol 

In most cases, the i960 Jx processor controls the bus; an 110 peripheral (e.g., a communications 
controller) requests bus control. The processor and 110 peripheral device exchange bus control 
with two signals, HOLD and HOLDA.. 

HOLD is an i960 Jx processor synchronous input signal which indicates that the alternate master 
needs the bus. HOLD may be asserted at any time so long as the transition meets the processors 
setup and hold requirements. HOLDA (hold acknowledge) is the processor's output which 
indicates surrender of the bus. When the i960 Jxprocessor asserts HOLDA, it enters the Th (hold) 
state (see Figure 15.1). If the last bus state was Ti or the last Tr of a bus transaction, the processor 
is guaranteed to assert HOLDA and float the bus on the same clock edge in which it recognizes 
HOLD. Similarly, the processor deasserts HOLDA on the same'edge in which it recognizes the 
deassertion of HOLD. Thus, bus latency is no longer than it takes the processor to finish any bus 
access in progress. 

If the bus is in hold and the 80960Jx needs to regain the bus to perform a transaction, the processor 
does not deassert HOLDA. In many cases, however, it will assert the BSTAT pin (see section 
15.2.8.2, BSTAT Signal). 

Unaligned load and store bus requests are broken into multiple accesses and the processor can 
relinquish the bus between those transactions. When the alternate bus master gives control of the 
bus back to the.80960Jx, the processor will immediately enter a Ta state to continue those accesses 
and respond to any other bus requests. If no requests are pending, the processor will enter the idle 
state. 

Figure 15-18 illustrates a HOLDIHOLDA arbitration sequence. 
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Figure 15-18. Arbitration Timing Diagram for a Bus Master 

The HOLDIHOLDA arbitration functions during processor reset. The bus controller acknowledges 
HOLD while RESET is asserted because the bus is idle. If RESET is asserted while HOLDA is 
asserted (the processor has acknowledged the HOLD), the processor remains in the HOLDA state. 
The processor does not continue reset activities until HOLD is removed and the processor removes 
HOLDA. 

15.2.8.2 BSTAT Signal 

The i960 Jx microprocessor extends the HOLDIHOLDA protocol with a bus status (BSTAT) 
signal. In simplest terms, assertion of the BSTAT output pin indicates that the CPU may soon stall 
unless it obtains (or retains) control of the bus. This indication is a useful input to arbitration logic, 
whether or not the 80960 Jx is the primary bus master. 

The processor asserts BSTAT when one or more of the following conditions are true: 

• The bus queue in the bus control unit (BCU) becomes full for any reason. 

• An instruction fetch request is pending or being serviced on the bus. This behavior promotes 
performance by supporting instruction cache fills. 
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• A load request has been issued to the BCU. This behavior promotes performance by 

supporting early data loading. . . 

• A special operation is underway that. requires emptying the bus queue. Examples of such 
operations are execution of the HALT instruction, and regi~ter store~ that control logical or 
physical memory configuration. 

The processor can assert BSTAT on any rising CLKIN edge. Although BSTAT activation suggests 
bus starvation, it does not necessarily imply that the processor definitely stall or that it is currently 
stalled. 

When the 80960Jx is the primary bus master and asserts BSTAT, arbitration logic can work more 
intelligently to anticipate and prevent processor bus stalls. Depending on the importance of the 
alternate bus master's task, ownership of the bus can be modulated. If the bus is in hold, control 
can be relinquished back to the microprocessor immediately or after an optimal delay. Of course, 
BSTAT can be ignored completely if the loss in processor bandwidth can be tolerated. 

When the 80960Jx is not the primary bus master, the BSTAT signal becomes the means to request 
the bus from the primary master. As described above, BSTAT will be activated for all loads and 
fetches, but store requests do not activate BSTAT unless they fill the bus queue. If the processor 
needs priority access to the bus to perform store operations, replaCIil store instructions with the 
atomic modify (atmod) instruction, using a mask operand of all one's. atmod is a read-modify­
write instruction, so the processor will assert BSTAT when the load transaction is posted to the bus 
queue. When the load begins, LOCK# is asserted, which blocks recognition of hold requests until 
the store portion of atmod completes. 

15'.3 BUS APPLICATIONS 

The i960Jxmicroprocessor is a cost-effective building block for a wide spectrum of embedded 
systems. This section describes common interfaces for the 80960Jx to external memory and: 110 
devices. 

15.3.1 System Block Diagrams 

Block diagrams in Figure 15-19 through .Figure' 15-21 are generalized diagrams with, bus 
topologies representative of a number of potential 80960Jx systems. These diagrams do not 
represent any particular i960Jx processor- based applications; 

In most i960Jx processor systems, the 80960Jx is the primary master of the local bus. A number of 
memory and I/O devices typically interface to the processor, either directly or through buffers and 
transceivers. A~ example of such a system might be a laser beam printer. 
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Systems with multiple I/O channels frequently use dual-ported memory to link several identical 
I/O devices to the local bus, as in Figure 15-19. These systems are more complex, but performance 
and flexibility improve because bus traffic is partitioned away from the i960 Jx processor's local 
bus. An example of such a system might be a network hub. 

i960 Jx Local Base Dual Port I-- High-Perf 
Processor Memory 1/0 Memory 1/0 

80960 Local Bus 

Figure 15-19. Generalized 80960Jx System with 80960 Local Bus 

A more elaborate system would connect the 80960Jx's bus to a backplane through bus interface 
logic as shown in Figure 15-20. The backplane bus (or system bus) connects to multiple high 
performance I/O devices (often with DMA) and large buffer memory for caching packets of data 
from disk drives or LANs. Backplane buses can connect to other microprocessor local buses, too, 
creating a loosely coupled mUltiprocessor system for resource sharing. 

i960 Jx Local Base 
Processor Memory 1/0 

80960 Local Bus 

Bus Cache High-Perf 
Interface Memory 1/0 

Backplane Bus 

Figure 15-20. Generalized 80960Jx System with 80960 Local Bus and Backplane Bus 

I 15-35 



EXTERNAL BUS intet 
Buses such as the PCI (Peripheral Component Interconnect) local bus connect to the 80960\bus 
through a bridge chip, which employs DMA, FIFOs and mailboxes for bus-to-bus communication. 
The PCI . local bus can connect shared buffer memory and high performance 110 devices. The 
bandwidth of the PCI local bus is particularly appropriate for bridge intet;facing to high-end 
processors such as the Pentium (R) microprocessor, as illustrated in Figure 15-21. In this way, the 
i960Jx can improve the performance of complex systems such as servers by sparing the main 
system CPU and its local memory the task of buffering low-level 110. 

i960 Jx Local Base 
Processor Memory 1/0 

80960 Local Bus 

Bridge 
Cache High-Perf 

Memory 1/0 

PCI Local Bus 

Bridge Hi~h-End Local Base 
PU Memory 1/0 

I 
Microprocessor Local Bus 

Figure 15-21. 80960Jx System with 80960 Local Bus, PCI Local Bus and Local Bus for High 
End Microprocessor 
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15.3.1.1 Memory Subsystems 

Memory systems for the i960 Jx processor include a mix of non-volatile and volatile devices 
including ROM, DRAM, SRAM or flash memory. The circuit designer may take advantage of 
programmable bus width to optimize the number of devices in each memory array. For example, 
the processor can boot from a single, slow, 8-bit ROM device, then execute from code loaded to a 
faster, wider and larger RAM array. 

All systems must contain burstable memory, since the processor employs burst transactions for 
instruction fetches and stack operations. Bursting cannot be turned off on the i960Jx processor. 

15.3.1.2 1/0 Subsystems 

liD subsystems vary widely according to the needs of specific applications. Individual peripheral 
devices may be as generic as discrete logic liD ports or as specialized as an ISDN controller. 

Typical peripherals for desktop/server intelligent I/O applications are Small Computer System 
Interface controllers supporting SCSI-l (8-bit) or SCSI-2 (8/16/32-bit) standards. 

For network applications such as ATM adapters, smart hubs and routers, typical peripherals 
include controllers for older protocols such as Ethernet and FDDI and controllers for newer 
protocols such as ATM (Asynchronous Transfer Mode) and Fibre Channel. 

Typical peripherals for non-impact printer controllers include printer video ports, engine 
command/status ports, asynchronous serial controllers, IEEE 1284 parallel ports, LocalTalk(TM) 
ports and PCMCIA memory card controllers. 
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CHAPTER 16 
HALT MODE 

This chapter discusses HALT mode and its effect on power consumption. The i960® Jx micropro­
cessor initially enters HALT mode when a halt instruction executes. The processor quickly exits 
the HALT mode upon receipt of RESET or any interrupt allowed by the current process priority. 
Exit through an interrupt causes execution to continue within the appropriate interrupt handler 
routine. HALT mode can be used as an efficient, low-power method to wait for interrupts. 

16.1 Entering HALT Mode 

Entry into HALT mode by the halt instruction causes the following actions to occur: 

• Interrupts are enabled or disabled based on the value of the srcl argument supplied in the halt 
instruction. 

• The processor ensures that all previous load and store operations have completed before 
continuing. If the bus queues are not empty, the processor asserts the BSTAT pin and waits for 
the bus queues to empty. 

• The processor attempts to reduce power consumption to more efficiently wait for exit from 
HALT mode. 

The processor performs an implicit SYNCF before attempting to enter HALT mode. If a fault is 
detected for a previous instruction, the processor will switch control to the appropriate fault 
handler instead of executing the halt. If the fault is recoverable, the processor executes the halt 
instruction upon return from the fault handler. A trace fault on the halt instruction will be serviced 
after the processor exits HALT mode. 

halt can only be executed while in supervisor mode; a TYPE.MISMATCH fault occurs when 
attempting to execute the instruction in user mode. i·' 

16.2 Processor Operation During HALT Mode 

The i960 Jx processor's power needs drop by approximately an order of magnitude while in HALT 
mode. See the 80960JAlJF Embedded 32-bit Microprocessor Data Sheet and the 80960JD 
Embedded 32-bit Microprocessor Data Sheet. Code execution stops but the processor maintains its 
internal state and can still respond to certain internal and external events. 
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The internal timers, when enabled, continue to decrement each cycle during HALT mode and can 
even force the processor out of HALT mode if either timer generates an interrupt of sufficient 
priority. 

The processor responds normally to external events such as interrupt requests, hardware RESET, 
and HOLD requests. 

Output pins are driven to known states during HALT mode and provide a unique external 
indication of the mode. Most importantly, WIDTHlHLTDis set to 112, Refer to the 80960JAlJF 
Embedded 32-bit Microprocessor Data Sheet or the 80960JD Embedded 32-hit Microprocessor 
Data Sheet for: more information. 

All other control signals are inactive. The processor attempts to drive each inactive pin to the same 
value the pin held before entering HALT mode; this reduces power consumption while in HALT 
mode. 

The processor acknowledges HOLD requests on the external bus properly; however, receiving a 
HOLD request does not cause the processo:r to exit HALT mode. During the HOLD acknowledge, 
the processor drives all bus output pins to high impedance. When HOLD is deasserted, the 
prol;:essor drives the output bus pins back to the normal HALT mode state described above. 

The following JTAG features are unaffected by HALT mode: 

• 
• 
• 
• 

access to Boundary-Scan through the Test-Access Port (TAP) 

access to IDeODE through TAP 

access to ~yNBIST through TAP 

access to BYPASS through TAP 

16.3 Exiting HALT Mode 

A number of external events c~ force the processor to exit HALT mode: 

• The presentation of an interrupt to the processor that should be delivered based .on the 
processor's current process priority and the interrupt controller's normal prioritization 
mechanism (as described in the interrupt chapter). 
Return from an interrupt that forcedtbe processor to exit HALT mode. caqses execution tQ 
resume at the instruction immediately after the halt instruction. 

• The assertion ·of RESET.· When RESET is subsequently deasserted the processor enters the 
~ontlal initialization process. . 

Note that the WIDTHlHLTD pins stay in the "11" even after coming'out of HALT mode until the 
next external bus access. 
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16.3.1 Exiting HALT Mode for any Interrupt 

Normally, only interrupts prioritized higher than the processor's current process priority cause the 
processor to exit HALT mode. 

In an application that requires interrupts of a lower priority to force exit from HALT mode, the 
process priority must be lowered. Lowering of the process priority and issuing of the halt 
instruction must be non-interruptible so that if the desired interrupt occurs too early, it does not 
interrupt before the halt instruction is issued. 

The recommended way to provide a non-interruptible window is as follows. The halt instruction 
must be preceded by a sequence of an intetl instruction that disables interrupts, followed by a 
modpe instruction that lowers the current process priority. Subsequently issuing a halt instruction 
with a srcl value of 1 causes interrupts to be enabled at the new process priority. Note that by 
lowering the process priority, interrupts that are pending at a lower priority before the halt 
instruction executes, are now free to bring the processor out of HALT mode almost immediately. 
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CHAPTER 17 
TEST FEATURES 

This chapter describes the i960® Jx processor's test features, including ONCE (On-Circuit 
Emulation) and Boundary Scan (JTAG). Together these two features create a powerful 
environment for design debug and fault diagnosis. 

17.1 ON-CIRCUIT EMULATION (ONCE) 

On-circuit emulation aids board-level testing. This feature allows a mounted i960 Jx processor to 
electrically "remove" itself from a circuit board. This allows for system-level testing where a 
remote tester exercises the processor system. In ONCE mode, the processor presents a high 
impedance on every pin, except for the JTAG Test Data Output (TDO). All pullup transistors 
present on input pins are also disabled and internal clocks stop. In this state the processor's power 
demands on the circuit board are nearly eliminated. Once the processor is electrically removed, a 
functional tester such as an In-Circuit Emulator (ICE) system can emulate the mounted processor 
and execute a test of the i960 Jx processor system. 

17.1.1 Entering/Exiting ONCE Mode 

The i960 Jx processor uses the dual function LOCK/ONCE pin for ONCE. The LOCK/ONCE pin 
is an input while RESET is asserted. The i960 Jx processor uses this pin as an output when the 
ONCE mode conditions are not present. 

ONCE mode is entered by asserting (low) the LOCK/ONCE pin while the processor is in the reset 
state, or by executing the HIGHZ JTAG private instruction. The LOCK/ONCE pin state is latched 
on the RESET signal's rising edge. 

• To enter ONCE mode, an external tester drives the ONCE pin low (overcoming the internal 
pull-up resistor) and initiates a reset cycle. 

• To exit ONCE mode, perform a hard reset with the ONCE pin deasserted (high) prior to the 
rising edge of RESET. It is not necessary to cycle power when exiting ONCE mode. 

See the 80960JNJF Embedded 32-bit Microprocessor Data Sheet and the 80960JD Embedded 32-
bit Microprocessor Data Sheetfor specific timing of the LOCK/ONCE pin and the characteristics 
of the on-circuit emulation mode. 
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17.2 BOUNDARY SCAN (JTAG) 

The i960 Jx processor provides test features compatible with IEEE Standard Test Access Port and 
Boundary Scan Architecture (IEEE Std. 1149.1). JTAG ensures that components function 
correctly, connections between components are correct, and components interact correctly on the 
printed circuit board. 

To date, the i960 Kx, Sx and Cx processors do not implement IEEE 1491.1 Standard Test Access 
Port and Boundary-Scan Architecture. 

17.2.1 Boundary Scan Architecture 

Boundary scan test logic consists of a Boundary-Scan register and support logic. These are 
accessed through a Test Access Port (TAP). The TAP provides a simple serial interface that allows 
all processor signal pins to be driven and/or sampled, thereby providing the direct control and 
monitoring of processor pins at the system level. 

This mode of operation is valuable for design debugging and fault diagnosis since it permits 
examination of connections J¥>t normally accessible to the test system. The following subsections 
describe the boundary scan test logic elements: TAP controller, Instruction register, Test Data 
registers and TAP elements. 

17.2.1.1 TAP Controller 

The TAP controller is a 16 state machine, which provides the internal control signals to the 
instruction register and the test data registers. The state of the TAP controller is determined by the 
logic present on the Test Mode Select (TMS) pin on the rising edge of TCK. See Figure 17-2 for 
the state diagram of the TAP controller. 

17.2.1.2 Instruction Register 

The instruction register (IR) holds instruction codes shifted through the Test Data Input (TOI) pin. 
The instruction codes are used to select the specific test operation to be performed and the test data 
register to be accessed. 
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17.2.1.3 Test Data Registers 

The four test data registers are: 

• Device ID register (see section 17.3.2.1, "Device Identification Register" (pg. 17-6». 

• Bypass register (see section 17.3.2.2, "Bypass Register" (pg. 17-6». 

• RUNBIST register (see section 17.3.2.3, "RUNBIST Register" (pg. 17-7». 

• Boundary-Scan register (see section 17.3.2.4, "Boundary-Scan Register" (pg. 17-7». 

17.2.1.4 TAP Elements 

The Test Access Port (TAP) contains a TAP controller, an instruction register, a group of test data 
registers, and the TAP pins as shown in the block diagram in Figure 17-1. The TAP is the general­
purpose port that provides access to the test data registers and instruction registers through the TAP 
controller. 

TOI 

TMS 

TCK 

TRST []-__ .....I 

Bypass Reg TOO 

Figure 17·1. Test Access Port Block Diagram 
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NOTE: ALL STATE TRANSITIONS ARE BASED ON THE VALUE OF TMS. 

Figure 17·2. TAP Controller State Diagram 
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The i960 Jx processor's TAP is composed of four input connections (TMS, TCK, TRST and TDI) 
and one output connection (IDO). These pins are described in Table 17-1. 

Table 17-1. TAP Controller Pin Definitions 

Pin Name Mnemonic Type Definition 

Clock in put fot the TAP controller, the instruction register, 
Test Clock TCK Input and the test data registers. The JTAG unit will retain its state 

when TCK is stopped at "0" or "1 ". 

Controls the operation of the TAP controller. The TMS input 
Test Mode Select TMS Input is pulled high when not being driven. TMS is sampled on the 

rising edge of TCK. 

Serial date input to the instruction and test data registers. 

Test Oata In TDI Input 
Oata at TOI is sampled on the rising edge of TCK. Like TMS, 
TOI is pulled high when not being driven. Oata shifted from 
TOI through a register to TOO appears non-inverted at TOO. 

Used for serial data output. Oata at TOO is driven at the 
falling edge of TCK and provides an inactive (high-Z) state 

Test Oata Out TOO Output when scanning is not in progress. The non-shift inactive 
state is provided to support parallel connection of TOO 
outputs at the board or module level. 

Provides asynchronous initialization of the test logic. TRST 
is pulled high when not being driven. Assertion of this pin 
puts the TAP controller in the TesCLogic_Reset (initial) 

Asynchronous Reset TRST Input state. For minimum pulse width specifications, see the 
80960JAlJF Embedded 32-bit Microprocessor Data Sheet 
or the 80960JD Embedded 32-bit Microprocessor Data 
Sheet. 

17.3 TAP REGISTERS 

The instruction and test data registers are separate shift-register paths connected in parallel. The 
TAP controller determines which one of these registers is connected between the TDI and TDO 
pins. 

17.3.1 Instruction Register (IR) 

The Instruction Rei;ister (IR) is a parallel-Ioadable, master/slave-configured 4-bit wide, serial-shift 
register with latched outputs. Data is loaded into the IR serially through the TDI pin clocked by the 
rising edge of TCK when the TAP controller is in the Shift_IR state. The shifted-in instruction 
becomes active upon latching from the master-stage to the slave-stage in the Update_IR state. At 
that time the IR outputs aJ,ong with the TAP finite state machine outputs are decoded to select and 
control the test data register selected by that instruction. Upon latching, all actions caused by any 
previous instructions must terminate. 
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The instruction determines the test to be performed, the test data register to be accessed, or both 
(see Table 17-2). The IR is four bits wide. When the IR is selected in the ShifCIR state, the'most 
significant bit is connected to TDI, and the least significant bit is connected to TDO. TDI is shifted 
into IR on each rising edge of TCK, as long as TMS remains asserted. When the processor enters 
the Capture_IR TAP controller state, fixed parallel data (00012) is captured. During ShifCIR, 
when a new instruction is shifted in through IDI, the value'00012 is always shifted out through 
TDO least significant bit fIrSt. This helps identify instructions in a long chain of serial data from 
several devices. 

Upon activation of the TRSl' reset pin, the latched instruction will asynchronously change to the 
idcode instruction. If the TAP controller moved into the TescLogic_Reset state other than by 
reset activation, the opcode will change as TDI is shifted, and will become active on the falling 
edge of TCK. See Figure 17-4 for an example of loading the instruction register. 

17.3.2 TAP Test Data Registers 

The i960 Jx processor contains a device identification register and three test data registers 
(Bypass, Boundary-Scan and RUNBIST). Each test data register selected by the TAP controller is 
connected serially between TDI and IDO. IDI is connected to the test data register's most 
significant bit. TDO is connected to the least significant bit. Data is shifted one bit position within 
the register towards IDO on each rising edge of TCK. The following sections describe each of the 
test data registers. See Figure 17-5 for an example of loading the data register. 

17.3.2.1 Device Identification Register 

The Device Identification register is a 32-bit register containing the manufacturer's identification 
code, part number code and version code in the format shown in Figure U-S.The format of the 
register is discussed in Section 11.4, DEVICE IDENTIFICATION ON RESET (pg. 11-21). Table 
11-7 lists the codes corresponding to the i960 Jx processor. The identification register is selected 
only by the idcode instruction. When the TAP controller's TesCLogic_Reset state is entered, 
idcode is automatically loaded into the instruction register. The Device Identification register has 
a fixed parallel input value that is loaded in the Capture_DRstate. 

17.3.2.2 Bypass Register 

The required Bypass Register, a one-bit shift register, provides the shortest path between TDI and 
TDO when a bypass instruction is in effect. This allows rapid movement of test data to and from 
other corhponentson the board. This path can be selected when no test operation is being 
performed. While the bypass register is selected, data is transferred from IDI toTDO without 
inversion. 

Any instruction that does not make use of another test data register may select the Bypass register 
as its active IDI to IDO path. 
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17.3.2.3 RUNBIST Register 

The RUNBIST register is a one-bit register that contains the result of the execution of the runbist 
instruction execution. The runbist instruction runs the built-in self-test (BIST) program resident 
inside the processor. After the built-in self-test completes, the processor must be recycled through 
the reset state to begin normal operation. See section 11.2.2, "Self Test Function (STEST, FAIL)" 
(pg. 11-6) for details of the Built-In-Self-Test algorithm. 

17.3.2.4 Boundary-Scan Register 

The Boundary-Scan register is a required set of serial-shiftable register cells, configured in 
master/slave stages and connected between each of the i960 Jx processor's pins and on-chip 
system logic. Pins NOT in the Boundary-Scan chain are power, ground and JTAG pins. 

The Boundary-Scan register cells are dedicated logic and do not have any system function. Data 
may be loaded into the Boundary-Scan register master-cells from the device input pins and output 
pin-drivers in parallel by the mandatory sample/preload and extest instructions. Parallel loading 
takes place on the rising edge of TCK in the Capture_DR state. 

Data may be scanned into the Boundary-Scan register serially via the TDI serial-input pin, clocked 
by the rising edge of TCK in the ShifCDR state. When the required data has been loaded into the 
master-cell stages, it is be driven into the system logic at input pins or onto the output pins on the 
falling edge of TCK in the Update_DR state. Data may also be shifted dut of the Boundary-Scan 
register by means of the TDO serial-output pin at the falling edge of TCK. 

17.3.3 Boundary Scan Instruction Set 

The i960 Jx processor supports three mandatory boundary scan instructions (bypass, 
sample/preload and extest). The i960 Jx processor also contains two additional public instruc­
tions (idcode and runbist). Table 17-2 lists the i960 Jx processor's boundary scan instruction 
codes. 
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Table 17-2. Boundary Scan Instruction Set 

Instruction Code Instruction Name Instruction Code Instruction Name 

00002 extest 10002 private 

0001 2 sampre 1001 2 not used 

00102 idcode 10102 not used 

0011 2 not used 1011 2 private 

01002 private 11002 private 

0101 2 not used 1101 2 not used 

01102 not used 11102 not used 

0111 2 runbist 11112 bypass 

17.3.4 IEEE Required Instructions 

Table 17-3. IEEE Instructions (Sheet 1 of 2) 

Instruction / 
Opcode Description Requisite 

extest initiates testing of external circuitry, typically board-level interconnects and 
,off chip circuitry. exlest connects the Boundary-Scan register between TDI and 

extest 
TOO in the Shift_IR state only. When exlesl is selected, all output signal pin 
values are driven by values shifted into the Boundary-Scan register and may 

IEEE 1149.1 00002 change only on the falling-edge of TCK in the Update_DR state. Also, when 

Required extesl is selected, all system input pin states must be loaded into the Boundary-
Scan register on the rising-edge of TCK in the Capture_DR state. Values shifted 
into input latches in the Boundary-Scan register are never used by the processor's 
internal logic. 

sample/preload performs two functions: . When the TAP controller is in the Capture-DR state,the sample instruction 
occurs on the rising edge of TCK and provides a snapshot of the component's 

sampre 
normal operation without interfering with that normal operation. The 
instruction causes Boundary-Scan register cells associated with outputs to 

IEEE 1149.1 0001 2 sample the value being driven by or to the processor. 

Required . When the TAP controller is in the Update-DR state, the preload instruction 
occurs on the falling edge of TCK. This instruction causes the transfer of data 
held in the Boundary-Scan cells to the slave register cells. Typically the slave 
latched data is then applied to the system outputs by means of the extesl 
instruction. 

Idcode is used in conjunction with the device identification register. It connects the 

idcode identification register between TDI and TOO in the Shift_DR state. When selected, 

IEEE 1149.1 00102 
idcode parallel-loads the hard-wired identification code (32 bits) on TOO into the 
identification register on the rising edge of TCK in the Capture_DR state. 

Optional NOTE: The device identification register is not altered by data being shifted in on 
TOL 
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Table 17·3. IEEE Instructions (Sheet 2 of 2) 

Instruction I 
Opcode Description Requisite 

bypass instruction selects the Bypass register between TOI and TOO pins while in 
bypass SHIFT _DR state, effectively bypassing the processor's test logic. 02 is captured in 

IEEE 1149.1 11112 
the CAPTURE_DR state. This is the only instruction that accesses the Bypass 
register. While this instruction is in effect, all other test data registers have no 

Required effect on the operation of the system. Test data registers with both test and system 
functionality perform their system functions when this instruction is selected. 

runbist selects the one-bit RUNBIST register, loads a value of 1 into it and 
connects it to TOO. It also initiates the processor's built-in self test (BIST) feature 
which is able to detect approximately 82% of the stuck-at faults on the device. The 
processor AC/OC specifications for Vee and ClKIN must be met and RESET 
must be de-asserted prior to executing runblst. 

runbist 
After loading runbist instruction code into the instruction register, the TAP 
controller must be placed in the Run-Test/Idle state. bist begins on the first rising 

i960 Jx 0111 2 edge of TCK after the Run-Test/Idle state is entered. The TAP controller must 
Processor remain in the Run-Test/Idle state until bist is completed. runbist requires approx-
Optional imately 414,000 core cycles to complete bist and report the result to the 

RUNBIST register's. The results are stored in bit 0 of the RUNBIST register. After 
the report completes, the value in the RUNBIST register is shifted out on TOO 
during the Shift-DR state. A value of 0 being shifted out on TOO indicates bist 
completed successfully. A value of 1 indicates a failure occurred. After bist 
completes, the processor must be recycled through the reset stata to begin normal 
operation. 

17.3.5 TAP Controller 

The TAP controller is a 16-state synchronous finite state machine that controls the sequence of test 
logic operations. The TAP can be controlled via a bus master. The bus master can be either 
automatic test equipment or a component (i.e. PLD) that interfaces to the Test Access Port (TAP). 
The TAP controller changes state only in response to a rising edge of TCK or power-up, The value 
of the test mode state (TMS) input signal at a rising edge of TCK controls the sequence of state 
changes. The TAP controller is automatically initialized on powerup. In addition, the TAP 
controller can be initialized by applying a high signal level on the TMS input for five TCK periods. 

Behavior of the TAP controller and other test logic in each controller state is described in the 
following subsections. For greater detail on the state machine and the public instructions, refer to 
IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture Document. 
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17.3.5.1 Test Logic Reset State 

In this state, test logic is disabled to allow normal operation of the i960 Jx processor. Test logic is . 
disabled by loading the IDCOOE register. No matter what the state of the controller, it enters Test­
Logic-Reset state when the TMS input is held high (1) for at least five rising edges of TCK. The 
controller remains in this state while TMS is high. The TAP controller is also forced to enter this 
state by enabling TRST. 

If the controller exIts the Test-Logic-Reset controller states as a result of an erroneous low signal 
on the TMS line at the time of a rising edge on TCK (for example, a glitch due to external inter­
ference), it returns to the test logic reset state following three rising edges of TCK with the TMS 
line at the intended high logic level. Test logic operation is such that no disturbance is caused to 
on-chip system logic operation as the result of such an error. 

17.3.5.2 Run-Testlldle State 

The TAP controller enters the Run-Test/Idle state between scan operations. The controller remains 
in this state as long as TMS is held low. In the Run-Test/Idle state the runbistinstruction is 
performed; the result is reported in the·RUNBIST register. Instructions that do not call functions 
generate no activity in the test logic while the controller is in this state. The instruction register and 
all test data registers retain their current state. When TMS is high on the rising edge of TCK, the 
controller moves to the Select-OR-Scan state. 

17.3.5.3 Select-OR-Scan State 

The Select-OR-Scan state is a temporary controller state. The test data registers selected by the 
current instruction retain their previous state. If TMS is held low on the rising edge of TCK when 
the controller is in this state, the controller moves into the Capture-DR state and a scan sequence 
for the selected test data register is initiated. If TMS is held high on the rising edge of TCK, the 
controller moves into the Select-IR-Scan state. 

The instruction does not change while the TAP controller is in this state. 

17.3.5.4 Capture-DR State 

When the controller is in this state and the current instruction is sample/preload, the Boundary­
Scan register captures input pin data on the rising edge of TCK. Test data registers that do not have 
parallel input are not changed. Also if the sample/preload instruction is not selected while in this 
state, the Boundary-Scan registers retain their previous state. 

The instruction does not change while the TAP controller is in this state. 
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If TMS is high on the rising edge of TCK, the controller enters the Exitl-DR. If TMS is low on the 
rising edge of TCK, the controller enters the Shift-DR state. 

17.3.5.5 Shift-DR State 

In this controller state, the test data register, which is connected between IDI and TDO as a result 
of the current instruction, shifts data one bit position nearer to its serial output on each rising edge 
of TCK. Test data registers that the current instruction selects but does not place in the serial path, 
retain their previous value during this state. 

The instruction does not change while the TAP controller is in this state. 

If TMS is high on the rising edge of TCK, the controller enters the Exitl-DR state. If TMS is low 
on the rising edge of TCK, the controller remains in the Shift-DR state. 

17.3.5.6 Exit1-DR State 

This is a temporary controller state. When the TAP controller is in the Exitl-DR state and TMS is 
held high on the rising edge of TCK, the controller enters the Update-DR state, which terminates 
the scanning process. If TMS is held low on the rising edge of TCK, the controller enters the 
Pause-DR state. 

The instruction does not change while the TAP controller is in this state. All test data registers 
selected by the current instruction retain their previous value during this state. 

17.3.5.7 Pause-DR State 

The Pause-DR state allows the test controller to temporarily halt the shifting of data through the 
test data register in the serial path between TDI and IDO. The test data register selected by the 
current instruction retains its previous value during this state. The instruction does not change in 
this state. 

The controller remains in this state as long as TMS is low. When TMS goes high on the rising edge 
of TCK, the controller moves to the Exit2-DR state. 

17.3.5.8 Exit2-DR State 

This is a temporary state. If TMS is held high on the rising edge of TCK, the controller enters the 
Update-DR state, which terminates the scanning process. If TMS is held low on the rising edge of 
TCK, the controll~r enters the Shift-DR state. 

The instruction does not change while the TAP controller is in this state. All test data registers 
selected by the current instruction retain their previous value during this state. 
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17.3.5.9 Update-DR State 

The Boundary-Scan register is provided with a latched parallel output. This output prevents 
changes at the parallel output while data is shifted in response to the extest, sample/preload 
instructions. When the Boundary-Scan register is selected while the TAP controller is in the 
Update-DR state, data is l~tched onto the Boundary-Scan register's parallel output from the shift­
register path on the falling edge of TCK.' The data held at the latched parallel output does not 
change unless the controller is in this state. ' 

While the TAP controller is in this state, all of the test data register's shift-register bit positions 
selected by the current instruction retain their previous values. 

The instruction does not change while the TAP controller is in this state. 

When the TAP controller is in this state and TMS is held high on the rising edge of TCK, the 
controller enters the Select-DR-Scan state. If TMS is held low on the rising edge of TCK, the 
controller enters the Run-Testlldle state. 

17.3.5.10 Select-IR Scan State 

This is a teniporarY controller state. The test data registers selected by the current instruction retain 
their previous state. In this state, if TMS is held low on the rising edge of TCK, the controller 
moves into the Capture-IR state and a scan, sequence for the instruction register is initiated. If TMS 
is held high on the rising edge of TCK, the controller moves to the Test-Logic-Reset state. 

, , 

The instruction does not change in this state. 

17.3.5.11 Capture-IR State 

When the controller'is in the Capture-IR'state, the shift register contained in the instruction 
register loads the fixed value 000 12 on the rising edge of TCK. 

The test data register "selected by the current instruction retains its previous value during this state. 
The instruction does not change in this state~ While in this s4tte, holding TMS high on the rising , 
edge of TCK causes the controller to enter the Exit! ~IR state. If TMS is held low on the rising 
edge of TCK, the controller enters the Shift -IR state. 

17.3.5.12 Shlft-IR State 

When the controller is in' this state, the shift register contained in the instruction register, is 
connected between TO! and TOO and shifts data one bit position nearer to its serial output on each 
rising edge of TCK. The test data register selected by the current instruction retains its previous 
value during this state. ,The instruction does not change. 

. '. .' 
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If TMS is held high on the rising edge of TCK, the controller enters the Exit 1-IR state. If TMS is 
held low on the rising edge of TCK, the controller remains in the Shift-IR state. 

17.3.5.13 Exit1-IR State 

This is a temporary state. If TMS is held high on the rising edge of TCK, the controller enters the 
Update-IR state, which terminates the scanning process. If TMS is held low on the rising edge of 
TCK, the controller enters the Pause-IR state. 

The test data register selected by the current instruction retains its previous value during this state. 

The instruction does not change and the instruction register retains its state. 

17.3.5.14 Pause-IR State 

The Pause-IR state allows the test controller to temporarily halt the shifting of data through the 
instruction register. The test data registers selected by the current instruction retain their previous 
values during this state. 

The instruction does not change and the instruction register retains its state. 

The controller remains in this state as long as TMS is held low. When TMS goes high on the rising 
edges of TCK, the controller moves to the Exit2-IR state. 

17.3.5.15 Exit2-IR State 

This is a temporary state. If TMS is held high on the rising edge of TCK, the controller enters the 
Update-IR state, which terminates the scanning process. If TMS is held low on the rising edge of 
TCK, the controller enters the Shift-IR state. 

This test data register selected by" the current instruction retains its previous value during this state. 
The instruction does not change and the instruction register retains its state. ! .' 

17.3.5.16 Update-IR State 

The instruction shifted into the instruction register is latched onto the parallel output from the shift­
register path on the falling edge of TCK. Once latched, the new instruction becomes the current 
instruction. Test data registers selected by the current instruction retain their previous values. 

If TMS is held high on the rising edge of TCK, the controller enters the Select-DR-Scan state. If 
TMS is held low on the rising edge of TCK, the controller enters the Run-TestlIdle state. 
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17.3~6 Boundary-Scan Register 

The Boundary-Scan register contains a cell for each pin as well as cells for control of 110 and 
HIGHZpins. 

Table 17-4 shows the bit order of the i960 Jx processor Boundary-Scan register. All table cells that 
contain "CTL"select the 'direction of bidirectional pins or HIGHZ output pins. If a "I" is loaded 
into the control cell, the associaied pin( s) are HiGHZ or selected as input. 
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Table 17-4. Boundary-Scan Register Bit Order 

Bit Signal 
Input! 

Bit Signal 
Input! 

Bit Signal 
Inputl 

Output Output Output 

0 RDYRCV (TOI) I 24 DEN 0 48 AD17 I/O 

1 HOLD I 25 HOLDA 0 49 AD16 110 

2 XINTO I 26 ALE 0 50 AD15 110 

3 XINT1 I 27 
LOCK/ONCE 

Enable cell1 51 AD14 110 
cell 

4 XINT2 I 28 LOCK/ONCE 110 52 AD13 110 

5 XINT3 I 29 BSTAT 0 53 AD12 110 

6 XINT4 I 30 BEO 0 54 AD cells 
Enable 
cell 1 

7 XINT5 I 31 BE1 0 55 AD11 I/O 

8 XINT6 I 32 BE2 0 56 AD10 110 

9 XINT7 I 33 BE3 0 57 AD9 110 

10 NMI I 34 AD31 . 110 58 AD8 110 

11 FAIL I 35 AD30 110 59 AD7 110 

12 ALE 0 36 AD29 110 60 AD6 110 

13 WIDTH/HLTD1 1 37 AD28 1/0 61 AD5 110 

14 WIDTH/HLTOO 1 38 AD27 I/O 62 AD4 110 

15 A2 0 39 AD26 I/O 63 AD3 110 

16 A3 0 40 AD25 110 64 AD2 I/O 

17 CONTROL1 Enable cell 1 41 AD24 110 65 AD1 I/O 

18 CONTROL2 Enable cell 1 42 AD23 I/O 66 ADO I/O 

19 BLAST 0 43 AD22 I/O 67 ClKIN I 

20 D/C 0 44 AD21 110 68 RESET I 

21 ADS 0 45 AD20 110 69 
STEST 

I 
(TOO) 

22 W/R 0 46 AD19 110 

23 DT/R 0 47 AD18 I/O 

1. Enable cells are active low. 

17.3.6.1 Example 

~In the example that follows, two command actions are described. The example starts in the reset 
state, a new instruction is loaded and executed. See Figure 17-3 for a JTAG example. The steps are: 

1. Load the sample/preload instruction into the Instruction Register: 

1.1. Select the Instruction register scan. 
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1.2. Use the Shift-IR state four times to read the least through most significant instruction 

bits into the instruction register (we do not care that the old instruction is being shifted 
out of the TDO pin). 

1.3. Enter the Update-IR state to make the instruction take effect. 

1.4. Exit the Instruction register. 

2. Capture and shift the data onto the TDO pin: 

2.1. Select the Data register scan state. 

2.2. Capture the pin information into then-stage Boundary-Scan register. 

2.3. Enter and stay in the shift-DR state for n times while recording the TDO values as the 
inputs sampled. as the data sampled were shifting in the TDI was being read into the 
Boundary-Scan register. This could later be written the output pins. 

2.4. Pass through the Exitl-DR and Update-DR to continue. 

This example does not make use of the pause states. Those states would be more useful where we 
do not control the clock directly. The pause states let the clock tick without affecting the shift 
registers. 

The old instruction was abed in the example. It is known that the original value will be the ID code 
since the example starts from the reset state. Other times it will represent the previous opcode. The 
new instruction opcode is 00012 (sample/preload). All pins are captured intothe serial Boundary­
Scan register and the values are output to the TDO pin. 

The clock signal drawn at the top of the diagram is drawn as a stable symmetrical clock. This is 
not in practice the most common case. Instead the clocking is usually done by a program writing 
to a port bit. The TMS and TDI signals are written by software and then the software makes the 
clock go high. The software typically will often lower the clock input quickly. The program can 
then read the TDO pin. 
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Figure 17·3. JTAG Example 
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TCK 

TMS LJl n n ~ __ ~r-l~ __________ __ 

~ JJ ! ~ c: !l&> ';9 =? rn !l' !l' 
Controller State f. [ ,~ "" :: c: iii c .. !!l 

JJ 53 ~ 
JJ - ~ 

, :u :u :u :u 
I i en :u 

~ () 

~ 

TOI ------~CX)--~--~C(X)J~~---------

Parallel output of IR ......;,;:IDC:..;:.,.:0c.::Oc.::E ______________ --1X'-_.:..:N.::.EW'-'-"INc:.:S:..;Tc.:..R;,::U.:;C..:.;TI:..::O.:..:N_ 

Parallel output of TOR 

Registerselected i2?'1I',~t~'-____ IN_S_T_RU_C_T:-IO_N_RE_G_IS_T_E_R_~X;~',;;;.;.~; "<', "<,1 
TOO enable __ IN_A,-, C_T_IV_E_~)(@ INACTIVE X ACTIVE X'-_IN~A~C_T--'IV_E _____ _ 

TOO --'-----CX)>-------'---""""'C(X)J--------------

~E~ = Don't care or undefined 

Figure 17-4. Timing diagram Illustrating the, loading of Instruction Register 
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TCK 

TMS n n n IL.---J 
'fi!r'lr----'lr'I 

,..,. 
I\n~'iff~ 

:II a} 
c: 

~i 
~ m-!2. (/) 

~ Ul 

~ " ~ Ul ~~ 7 ~a ... .. b a} ~ c ::r 
Controller State ~ .. :: a f c - '" f!l. ~ iii $ • CD :II :II n' - .. c c c c c c - ~~ ~ i if ~ :II :II :II :II :II C 

~ :II :II !i 
2.~'----'\..J \..J ~ 

,,~ 

TOI ---------CKX)~------C(X)J~-------------
, _ 0 ". q 

Data input to IR 

IR shift-register 

Parallel output of IR -'CIN.;.;S:;...;T.;..;R:.;:.U,;:;,CT.;..;I,;:;,O.:..,:N _________________ ---'X ID CODE 

Data input to TDR 

TDR shift-register 

--"-"~.--~ .. ~~.------~------------------~------
~i,_' ·_<~t·_· __ ·~'KXX) ______ ~~~~·_' ~"~ .. ~,~. ____ ~···.~I 

Parallel output of TDR ---:O:,:L=D-=D:.:.,A:.:..:JA..:....... _____________ -'X'-....:N.:.:E:..:;W.:....=;DA:...:;J.:.:..;'A:-___ _ 

Register Selected ~~~ __ -JX'-_T_ES_T_D_A_JA_R_EG_I_ST_E_R ____ ~X'-·~~ ___ ·~.~'~~'~J 

TDOenable INACTIVE ~ INACTIVE X ACTIVEX'-__ IN_A_CT_I_VE ____ _ 

TOO ---------CKX)~------CKX)J--------------

L..._-'-""" = Don't care or undefined 

Figure 17-5. Timing diagram illustrating the loading of Data Register 

17.3.7 Boundary Scan Description Language Example 

Boundary-Scan Description Language (BSDL) example 14-2 meets the de facto standard means of 
describing essential features of ANSI/IEEE 1149.1-1993 compliant devices. 
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Example 17·1. Boundary Scan Description Language Example (Sheet 1 of 4) 

i960® Jx Processpr BSDL Model 

The foll~wing list describes all of the pins that are contained in the i960 Jx 
microprocessor. 

entity JX_Processor is 
generic (PHYSICAL_PIN.:..MAP .. string .- "PGA_14x14"); 

port (TDI in bit; 

17-20 

RDYRCVBAR in bit; 
Reserved in bit; 
Reserved in bit; 
Reserved in bit; 
TRSTBAR in bit; 
TCK in bit; 
TMS in bit; 
HOLD in bit; 
XINTBARX in bit_vector(O to 7); 
NMIBAR in bit; 
Rese'rved in bi t; 
Reserved in bit; 

. Reserved in bit; 
. LODRVHIDRVBAR out bit; 

FAILBAR out bit; 
ALEBAR out bit; 
TDO out bit; 
WIDTH out bit_vect·or (1 downto 0); 
A32 out bit_vector(O to 1); 
Reserved out bit; 
Reserved out bit; 
Reserved out bit; 
Reserved out bit; 
BLASTBAR out bit; 
DeBAR out bit; 
ADS BAR out bit; 
WRBAR : out bit; 
DTRBAR out bit; 
DENBAR out bit; 
HOLDA out bit; 
ALE 
LOCKONCEBAR 
BSTAT· 
BEBAR 
Reserved 
Reserved 
Reserved 
Reserved 
AD 
CLKIN 
Reserved 
Reserved 
Reserved 
RESET BAR 
Reserved 
STEST 
VCC 
VSS 

out bit; 
inout bit; 
out bit; 

.. out bit_vector (0 to 3); 
in bit; 
in bit; 
in bit; 
inout bit_vector(7 downto 0); 
inout bit_vector(31 downto 0); 
in bit; 
in bit; 
in bit; 
in bit; 
in bit; 
in bit; 
in bit; 
linkage bit_vector(O to 28); 
linkage bit vector(O to 28); 
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Example 17-1. Boundary Scan Description Language Example (Sheet 2 of 4) 

AVCC : linkage bit; 
NC : linkage bit_veetor(l to 3)); 

use STD_1149_l_l990.all; 
use i960JX_a.all; 

--This list describes the physical pin layout of all signals 
attribute PIN_MAP of JX_Proeessor : entity is PHYSICAL_PIN_MAP; 
constant PGA_14x14 PIN~P_STRING.- -- Define PinOut of PGA 

"TDI 
"RDYRCVBAR 
"TRSTBAR 
"TCK 
"TMS 
"HOLD 
"XINTBARX 
"NMIBAR 
"FAILBAR 
"ALEBAR 
"TDO 
"WIDTH 
"A32 
"BLASTBAR 
"DCBAR 
"ADSBAR 
"WRBAR 
"DTRBAR 
"DENBAR 
"HOLDA 
"ALE 
"LOCKONCEBAR 
"BSTAT 
"BEBAR 
"AD 

"CLKIN 
"RESETBAR 
"STEST 
"vcc 

"VSS 

F16,"& 
E15,"& 
C17, "& 
C16,"& 
B17, "& 
C15,"& 
(B16, C14, B15, C13, B14, A15, A14, C12),"& 
B12, "& 
B09, "& 
C08,"& 
C07, "& 
(C06, B06), "& 
(A04, C05), "& 
B03,"& 
C02, "& 
C03, "& 
B01,"& 
B02, "& 
E03, "& 
D02, "& 
C01,"& 
DOl, "& 
F03, "& 
(E01, E02, G03, H03), "& 
(P03, R02, Q03, R03, S03, R04, S04, Q05, Q06, Q07,"& 
QOB, R09, S09, Q09, Q10, Qll, Q12, S14, R14, Q13,"& 
S15, R15, Q14, R16, Q15, R17, Q16, P15, Q17, P16,"& 
M15, N15),"& 

J17,"& 
G15,"& 
F17, "& 
(S13, S12, Sll, SlO, S08, S07, S06, SOS, N17, M17," & 

MOl, L17, L01, K17, K01, J01, H17, H01, G17, G01," & 
F01, E17, A13, All, A10, AOB, A07, A06, AOS), " & 
(R13, R12, Rll, R10, ROB, R07, R06, ROS, N16, N02," & 

M02, L16, L02, K16, K02, J16, J02, H16, H02, G16," & 
G02, F02, E16, B13, Bll, B10, BOB, B07, B05)," & 

"AVCC L15 "; 
attribute Tap_Sean_In of 
attribute Tap_Sean_Mode of 
attribute Tap_Sean_Out of 
attribute Tap_Sean_Reset of 
attribute Tap_Sean_Clock of 
attribute Instruction_Length 
attribute Instruetion_Opeode 

TDI signal is true; 
TMS signal is true; 
TDO signal is true; 
TRSTBAR : signal is true; 
TCK signal is (33.0e6, BOTH); 
of JX_Proeessor: entity is 4; 
of JX_Proeessor: entity is 

L __ 

"BYPASS (1111)," & 
"EXTEST (0000)," & 
"SAMPLE (0001)," & 
"IDCODE (0010)," & 
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Example 17-1. Boundary Scan Description Lahgua~e Example (Sheet 3 of 4) 

"RUNBIST (0111)," & 
"Reserved (1100, 1011)"; 

attribute Instruction_Capture of JX_Processor: entity is "0001"; 
-- there is no Instruction_Disable attribute for JX_Processor 
attribute Instruction_Private of JX_Processor: entity is "Reserved" 
--attribute' Instruction_Usage of JX_Processor: entity is 

"RUNBIST (registers Runbist; " & 
"result 0;" & 
"clock CLK in Run_Test_Idle;"& 
"length 524288) "; 

attribute Idcode_Register 
"0000" 
"0000001010100001" 
"00000001001" 
"1" i 

of JX_Processor: entity is 
& --version, A-step 
& --part number 
& --manufacturers identity 

--required by the standard 
attribute Idcode_Register of JX_Processor: entity is 

"0010" & --version, B-step 
& --part number BOprimeprime 
& --manufacturers identity 

--required by the standard 
attribute Idcode_Register of JX_Processor: entity is 

"0000001010110001" 
"00000001001" 
11111 ; 

"0000" & --version, 
"1000100000100000" & --part number ?? 
"00000001001" & --manufacturers identity 
"1"; --required by the standard 

attribute Register_Access of JX Processor: entity is 
"Runbist[l] (RUNBIST)," & 
"Bypass": 

--{*******************************************************************} 
--{ The first cell, cellO, is closest to TDO 
--{ BC_4:Input BC_1: Output3, Bidirectional 
-~{*************************************************** ****************} 

attribute Boundary_Cells of JX_Processor: entity is "CBSC_1, BC_1"; 
attribute Boundary_Length of JX_Processor: entity is 70; 
attribute Boundary_Register of JX_Processor: entity is 

"0 (BC_1, STEST, input, X), II & 
"1 (BC_1, RESETBAR, input, X), " & 
"2 (BC_1, CLKIN, input, X),11 & 
"3 (CBSC_1, AD(O) , bidir, x, 15, 1, Z) I II & 
"4 (CBSC_1, AD(l) , bidir, X, 15, 1, Z), II & 
"5 (CBSC_1, AD(2) , bidir, X, 15, 1, Z) I II & 
"6 (CBSC_1, AD(3) , bidir, X, 15, 1, Z) I II & 
"7 (CBSC_1, AD(4) , bidir, X, 15, 1, Z), " & 
"8 (CBSC_1, AD(5) , bidir, X, 15, 1, Z), II & 
"9 (CBSC_1, AD(6) , bidir, X, 15, 1, Z) I II & 
"10 (CBSC_1, AD(7) , bidir, X, 15, 1, Z} I II & 
"11 (CBSC1, AD(8) , bidir, X, 15, 1, Z) I II & 
"12 (CBSC_1, AD(9) , bidir, X, 15, 1, Z),'" & 
"13 (CBSC_1, AD(10) , bidir, X, 15, 1, Z) I II & 
"14 (CBSC_1, AD(l1) , bidir, X, 15, 1, Z) I II & 
"15 (BC_1, * , control, 1) ," & 
"16 (CBSC_1, AD(12) , bidir, X, 15, 1, Z) ,11 & 
"17 (CBSC_1, AD(13) , bidir, X, 15, 1, Z), II & 
"18 (CBSC_1, AD(14) , bidir, X, 15, 1, Z), " & 
"19 (CBSC_1, AD(15) , bidir, X, 15, 1, Z), II & 
"20 (CBSC 1, AD(16) , bidir, X, 15, 1, Z) I II & 
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Example 17-1. Boundary Scan Description Language Example (Sheet 4 of 4) 

"21 (CBSC_1, AD(17), bidir, x, 15, 1, Z)," & 
"22 (CBSC_1, AD(18), bidir, x, 15, 1, Z)," & 
"23 (CBSC_1, AD(19), bidir, x, 15, 1. Z)," & 

"24 (CBSC1, AD(20), bidir, x, 15, 1, Z)," & 
"25 (CBSC_1, AD(21), bidir, x, 15, 1, Z)," & 

"26 (CBSC_1, AD(22), bidir, x, 15, 1, Z)," & 
"27 (CBSC_1, AD(23), bidir, x, 15, 1, Z)," & 
"28 (CBSC_1, AD(24), bidir, x, 15, 1, Z) ," & 
"29 (CBSC_1, AD(25), bidir, x, 15, 1. Z)," & 

"30 (CBSC_L AD(26), bidir, x, 15, 1, Z)," & 

"31 (CBSC_1, AD(27), bidir, x, 15, 1, Z)," & 
"32 (CBSC_1, AD(28), bidir, x, 15, 1, Z)," & 
"33 (CBSC_1, AD(29), bidir, x, 15, 1, Z) ," & 
"34 (CBSC_1, AD(30), bidir, x, 15, 1, Z)," & 

"35 (CBSC_1, AD(31), bidir, x, 15, 1, Z)," & 
"36 (BC_1, BEBAR(3) , output 3 , x, 51, 1, Z)," & 
"37 (BC_1, BEBAR(2) , output3, x, 51, 1, Z)," & 
"38 (BC_1, BEBAR(l) , output3, x, 51, 1. Z)," & 

"39 (BC_1, BEBAR(O) , output3, x, 51, 1, Z)," & 

"40 (BC_1, BSTAT, output3, x, 52, 1, Z)," & 
"41 (CBSC_1, LOCKONCEBAR, bidir, x, 42, 1, Z)," & 
"42 (BC_1, *, control, 1)," & 

"43 (BC_1, ALE, output3, X, 51. 1, Z)," & 

"44 (BC_1, HOLDA, output3, X, 52, 1. Z)," & 

"45 (BC_1, DENBAR, output3, X, 51. 1, Z)," & 

"46 (BC_1, DTRBAR, output3, X, 51, 1, Z)," & 
"47 (BC_1, WRBAR, output3, X, 51, 1, Z)," & 
"48 (BC_1, ADSBAR, output3, X, 51, 1, Z)," & 
"49 (BC_1, DCBAR, output3, X, 51, 1, Z)," & 
"50 (BC_1, BLASTBAR, output3, X, 51, 1, Z) ," & 
"51 (BC_1, *, control, 1)," & 
"52 (BC_1, *, control, 1)," & 
"53 (BC_1, A32(1), output3, X, 51, 1, Z)," & 
"54 (BC_1, A32(0), output3, X, 51, 1, Z)," & 
"55 (BC_1, WIDTH(O) , output3, X, 51, 1, Z)," & 

56 (BC_1, WIDTH (1) , output3, X, 51, 1. Z)," & 

57 (BC_1, ALEBAR, output3, X, 51, 1, Z)," & 
58 (BC_L FAILBAR, output3, X, 52, 1, Z)," & 

59 (BC_1, NMIBAR, input, X)," & 
60 (BC_1, XINTBARX(7) , input, X), & 
61 (BC_1, XINTBARX(6) , input, X), & 
62 (BC_1, XINTBARX(5) , input, X), & 
63 (BC_1, XINTBARX(4) , input, X), & 
64 (BC_1, XINTBARX(3) , input, X), & 
65 (BC_1, XINTBARX(2) , input, X), & 
66 (BC_1, XINTBARX(l) , input, X), & 
67 (BC_1, XINTBARX(O) , input, X), & 
68 (BC_L HOLD, input, X)," & 

69 (BC_1, RDYRCVBAR, input, X)"; 
end JX Processor; 
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APPENDIX A 
CONSIDERATIONS FOR 

WRITING PORTABLE CODE 

This appendix describes the aspects of the microprocessor that are implementation dependent. The 
following information is intended as a guide for writing application code that is directly portable to 
other i960® architecture implementations. 

A.1 COR.E ARCHITECTURE 

All i960 microprocessor family products are based on the core architecture definition. An i960 
processor can be thought of as consisting of two parts: the core architecture implementation and 
implementation-specific features. The core architecture defines the following mechanisms and 
structure: 

• Programming environment: global and local registers, literals, processor state registers, data 
types, memory addressing modes, etc. 

• Implementation-independent instruction set. 

• Procedure call mechanism. 

• Mechanism for servicing interrupts and the interrupt and process priority structure. 

• Mechanism for handling faults and the implementation-independent fault types and subtypes. 

Implementation-specific features are one or all of: 

• Additions to the instruction set beyond the instructions defined by the core architecture. 

• Extensions to the register set beyond the global, local and processor-state registers that are 
defined by the core architecture. 

• On-chip program or data memory. 

• Integrated peripherals that implement features not defined explicitly by the core architecture. 

Code is directly portable (object code compatible) when it does not depend on implementation­
specific instructions, mechanisms or registers. The aspects of this microprocessor that are imple­
mentation dependent are described below. Those aspects not described below are part of the core 
architecture. 

A.2 ADDRESS SPACE RESTRICTIONS 

Address space properties that are implementation-specific to this microprocessor are described in 
the subsections that follow. 
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, A.2.t.. ~esen;edMemory , ' 

.'''', , ' l. ' ).)' '" ~, 

. Addresses in the range EFOO OOQOH to. FFFF FFFFH are reserved by the i960 architecture. Any 
.u~es!o.f reserved:,m~t,p~ry ,are implementatio.nspecific. The i960 Jx processo.r uses a sectio.n just 

, beIow'the reserved address space fo.r the initializatio.n bo.o.t reco.rd; see sectio.n 11.3.1.1, "Initial­
izatio.n Bo.o.t Reco.rd (ffiR)" (pg. 11-12).The initializatio.n boot reco.rd may no.t exist o.r may be 
structured differently f?r o.ther im~lementatio.ns o.f the i960 architecture~ Co.de that relies o.n 
structur~s'in reserved meino.ry is no.t Po.rtable to. all i960 processo.r implementatio.ns. , 

A.2.2 Internal Data RAM 

Internal data RAM - an i960 Jx processo.r implementatio.n-specific feature - is mapped to. the 
first 1 Kbyte o.f the processo.rs' address space (OOOOH - 03FFH). High perfo.rmance, supervisor­
protected' data space and the Io.catio.ns assigned fo.r interrupt functio.ns are speCial features that are 
'impll~mented in internal data RAM.Co.de that relies o.n these special features is no.t directly 

, Po.rtable'to. all i960processo.r implementatio.ns. ' , 

A.2.3 Instruction Cache 

The i960 architecture allo.WS instructio.ns to. be cached o.n-chip in a no.n-transparent fashio.n. This 
means that the cache may no.t detect modificatio.n o.f the pro.gram memo.ry by Io.ads, s~o.res o.r 
alteratio.n by external agents. Each implementatio.n o.f the i960 architecture that uses an integrated 
instructio.n cache provides a mechanism to. purge the cache o.r so.me o.ther method that forces 
co.nsistency betvyeen,extemal memo.ry and internal cache. 

This feature is implementatio.n-dependent. Application code that supports modificatio.n ,o.f the code 
space must use this implementatio.n-specific feature and, therefo.re, is no.t o.bjeCt ~ode portable to. 
all i960 pro.cesso.r implementatio.ns. 

J, , ' , , 
The i960 JA pro.cesso.r has a 2-Kbyte instructio.n cache; the JF and JD have a 4-Kbyte instructio.n 
cache. The instructio.n cache is purged using the system co.ntrol (sysctl) o.r instructio.n cache 
co.ntro.I (icctl) instructio.n, which may no.t be available o.n o.ther i960 pro.cesso.rs. 

. " . . '.' . 

The instructio.n cache SUPPo.rts Io.cking co.de into. no.ne, half, o.r all o.f the cache. The unlocked 
Po.rtio.n functio.ns asa direct-mapped cache. Refer to. section 4.4, "INSTRUCTION CACHE'? (pg. 
4-4) fo.r a d~scriptio.n o.f cache co.nfiguratio.n. 
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A.2.4 Data Cache 

The i960 J A processor has a 1-Kbyte data cache and the i960 JF and JD processors have a 2-Kbyte 
data cache. With respect to data accesses on a region-by-region basis, external memory is 
configured as either cacheable or non-cacheable. A bit in the memory region table entry defines 
whether or not data accesses are cacheable. This makes it very easy to partition a system into non­
cacheable regions (for I/O or shared data in a multiprocessor system) and cacheable regions (local 
system memory) with no external hardware logic. To maintain data cache coherency, the i960 Jx 
processor implements a simple single processor coherency mechanism. Also, by software control, 
the data cache can be globally enabled, globally disabled or globally invalidated. A data access is 
either: 

• Explicitly defined as cacheable or non-cacheable-through the memory region table 

• Implicitly defined as non-cacheable-by the nature of the access; all atomic accesses (atmod, 
atadd) are implicitly defined as non-cacheable data accesses 

The data cache indirectly supports unaligned accesses. Microcode execution breaks unaligned 
accesses into aligned accesses that are cacheable or non-cacheable according to the same rules as 
aligned accesses. An unaligned access could be only partially in the data cache and be a 
combination of hits and misses. The data cache supports both big-endian and little-endian data 
types. 

A.2.5 Data and Data Structure Alignment· 

The i960 architecture does not defme how to handle loads and stores to non-aligned addresses. 
Therefore, code that generates non-aligned addresses may not be compatible with all i960 
processor implementations. The i960 Jx processor automatically handles non-aligned load and 
store requests in microcode. See section 15.2.5, "Data Alignment" (pg. 15-22). 

The address boundaries on which an operand begins can affect processor performance. Operands 
that span more word boundaries than necessary suffer a cost in speed due to extra bus cycles. In 
particular, an operand that spans a 16-byte (quad-word) boundary suffers a large cost in speed. 

Alignment of architecturally defined data structures in memory is implementation dependent. See 
section 3.4, "ARCHITECTURE-DEFINED DATA STRUCTURES" (pg. 3-12). Code that relies on 
specific alignment of data structures in memory is not portable to every i960 processor type. 

Stack frames in the i960 architecture are aligned on (SALIGN*16)-byte boundaries, where 
SALIGN is an implementation-specific parameter. For the i960 Jx processors, SALIGN = 1 so 
stack frames are aligned on 16~byte boundaries. The low-order N bits of the Frame Pointer are 
ignored and are always interpreted to be zero. The N parameter is defined by the following 
expression: SALIGN*16 = 2N. Thus for the i960 Jx processors, N is 4. 
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A.3 RESERVED LOCATIONS IN REGISTERS AND DATA STRUC'FURES 

Some register and data structure fields are'defined as reserved IQcatiQns. A reserved field may be 
used by, future, implementatiQns Qf the i960 architecture. FQr PQrtabilityand cQmpatibility; cQde 
shQuld initialize reserVed locatiQns to. zero.. When an implementatiQn uses a reserved locatiQn, the 
implementatio.n-specific feature is activated by a value Qf 1 in the reserved field; Setting the 
'reserved IQcations to. 0 guarantees that the features are disabled., 

A.4 INSTRUCtiON SET 

The i960 architecture defines a cQmprehensive instructiQn set. Code that uses Qnly the architec­
turally-defined instructiQn set is Qbject-Ievel PQrtable to. Qther implementatiQns Qf the i960 archi­
tectijre. SQme implementatiQns may favQr a particular code Qrdering to. Qptimize perfQrmance. 
This special Qrdering, hQwever, is never required by an impl~mentatiQn. The fbllQwing 
subsectiQns describe implementatiQn-dependent instructiQ~ set prQperties. 

A.4.1' Instruction TIming 

An Qbjecti.veQfthe i960 architecture is to. allow micrQarchitectural advances to. translate directly 
into. increased perfQrmance. The architecture dQes nQt restrict parallel Qr Qut-Qf-Qrder instructiQn 
executiQn, nQr dQes it define the time required to. execute any instructiQn Qr functiQn. CQde that 
depends Qn instructiQn executiQn times, therefQre, iS,I1Qt PQrtable to. all i960 processQr architecture 
implementatiQns. 

, A.4.2 Implementation-Specific Instructions 

MQst Qf the processQr's instrQctiQn set is defined by the CQre architecture. SeveralinstructiQns are 
specific to. the i960 Jx processQrs. These instructiQns are either functiQnal extensio.ns to. the 
instructio.n 'set Qt instructio.ns that cQntrQI implementatiQn-specific functio.ns. CHAPfER 6, 
INSTRUCTION SET REFERENCE denQtes each implementatiQn-specific instructiQn. These 
instructio.ns are: 

~cctl Data cac\1e cQntrol inten Global interrupt enable 

,- icc.1 InstructiQn eache, co.ntrQI halt Halt CPU 

. intetl, Interrupt contrQl' sysctl System contrQI 

intdis, GlQQ,al interrupt disable 
", 

'. 
ApplicatiQn cQde using implementatiQn-specific instructiQns, is nQt directly portable to. the entire 
i960 proces$Qr family. Attempted execution Qf an unimplemented instructiQn results in an 
OPERATION.INVALID_OPCODE fault. 

~I 
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The i960 Jx processor introduces several new core ip.structions. These instructions mayor may not 
be supported on other i960 processors. The new core instructions include: 

ADD<cc> Conditional add 

bswap Byte swap 

COMPARE Byte and short compares 

A.S EXTENDED REGISTER SET 

eshro Extended shift right ordinal 

SEL<cc> Conditional select 

SUB<cc> Conditional subtract 

The i960 architecture defines a way to address an extended set of 32 registers in addition to the 
16 global and 16 local registers. Some or all of these registers may be implemented on a specific 
i960 processor. There are no extended registers implemented on the i960 Jx processors. 

A.6 INITIALIZATION 

The i960 architecture does not define an initialization mechanism. The way that an i960-based 
product is initialized is implementation dependent. Code that accesses locations in initialization 
data structures is not portable to other i960 processor implementations. 

The i960 Jx processors use an initialization boot record (IBR). 

A.7 MEMORY CONFIGURATION 

The i960 Jx processors employ Physical Memory Control (PMCON) and Logical Memory Control 
(LMCON) registers to control bus width, byte order and the data cache. This capability is 
analogous to the MCON register scheme employed by the 80960Cx. Memory configurations, like 
the bus control unit, are implementation-specific. 

A.S INTERRUPTS 

The i960 architecture defines the interrupt servicing mechanism. This includes priority definition, 
interrupt table structure and interrupt context switching that occurs when an interrupt is serviced .. 
The core architecture does not define the means for requesting interrupts (external pins, software, 
etc.) or for posting interrupts (Le., saving pending interrupts). 

The method for requesting interrupts depends on the implementation. The i960 Jx processors have 
an interrupt controller that manages nine external interrupt pins. The organization of these pins and 
the registers of the interrupt controller are implementation specific. Code that configures the 
interrupt controller is not directly portable to other i960 implementations. 

On the i960Jx processors, interrupts may also be requested in software with the sysctl instruction. 
This instruction and the software request mechanism are implementation-specific. 
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Posting interrupts is also implementation-specific. Different implementations may optllmze 
interrupt posting according to interrupt type and interrupt controller configuration. A pending 
priorities and pending interrupts field is provided in the interrupt table for interrupt posting. 
However, the i960 Ix processors post hardware requested interrupts internally in the IPND register 
instead. Code that requests interrupts by setting bits in the pending priorities and pending 
interrupts field of the interrupt table is not portable. Also, application code that expects interrupts 
to be posted in the interrupt table is not object-code portable to all i960-based products. 

The i960 Jx processors do not store a resumption record for suspended instructions in the interrupt 
or fault record. Portable programs must tolerate interrupt stack frames with and without these 
resumption records. 

A.9 OTHER i960 Jx PROCESSOR IMPLEMENTATION-SPECIFIC FEATURES 

Subsections that follow describe additional implementation-specific features of the i960 Ix 
processors. These features do not relate directly to application code portability. 

A.9.1 Data Control Peripheral Units 

The bus controller and interrupt controller are implementation~specific extensions to the core 
architecture. Operation, setup and control of these units is not a part of the core architecture. Other 
implementations of the i960 architecture are free to augment or modify such system integration 
features. 

A.9.2 Timers 

The i960 Jx processor contains two 32-bit timers that are implementation-specific extensions to 
the i960 architecture. Code involving operation, setup and control of the timers mayor may not 
directly portable to other i960 processors. 

A.9.3 Fault Implementation 

The architecture defines a subset of fault types and subtypes that apply to all implementations of 
the architecture. Other fault types and subtypes may be defined by implementations to detect 
errant conditions that relate to implementation-specific features. For example, the i960 Jx micro­
processors provide an OPERATION.UNALIGNED fault for detecting non-aligned memory 
accesses. Future i960 processor implementations that generate this. fault are expected to assign the 
same fault type and SUbtype number to the fault. 
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A.10 BREAKPOINTS 

Breakpoint registers are not defined in the i960 architecture. The i960 Jx processor implements 
two instruction and two data breakpoint registers. 

A.11 LOCK PIN 

The LOCK pin is not defined in the i960 architecture. Bus control logic and protocol associated 
with this pin may vary among i960 processor implementations. For example, the 80960Jx will not 
assert HOLDA in response to HOLD during LOCK' ed accesses. Earlier i960 processors will 
relinquish the bus. 

A.11.1 External System Requirements 

External system requirements are not defined by the architecture. The external bus, RESET pin, 
clock input, power and ground requirements, testability features and I/O characteristics are all 
specific to the i960 microprocessor implementation. 
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APPENDIX B 

OPCODES AND EXECUTION TIMES 

B.1 INSTRUCTION REFERENCE BY OPCODE 

This section lists the instruction encoding for each i960 Jx microprocessor instruction. Instructions 
are grouped by instruction format and listed by opcode within each format. 

Table B-1. Miscellaneous Instruction Encoding Bits 

M3 M2 M1 52 51 T Description 

REG Format 

x x 0 x 0 - src1 is a global or local register 

x x 1 x 0 - src1 is a literal 
x x 0 x 1 - reserved 
x x 1 x 1 - reserved 
x 0 x 0 x - src2 is a global or local register 

x 1 x 0 x - src2 is a literal 

x 0 x 1 x - reserved 
x 1 x 1 x - reserved 

0 x x x x - src/dst is a global or local register 
1 x x x x - src/dst is a literal when used as a source. M3 may not be 1 when 

src/dst is used as a destination only or is used both as a source 
and destination in an instruction (atmod, modify, extract, 
modpc). 

COBR Format 

- - 0 0 - x src1 src2 and dst are global or local registers 

- - 1 0 - x src1 is a literal, src2 and dst are global or local registers 

- - 0 1 - x reserved 
- - 1 1 - x reserved 
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Table 8-2. REG Format Instruction Encodings (Sheet 1 of 4) 

t 
o 

58:0 

58:1 

58:2 

58:3 

58:4 

58:6 

58:7 

58:8 

58:9 

58:A 

58:8 

58:C 

58:0 

58:E 

58:F 

59:0 

59:1 

59:2 

59:3 

59:4 

59:5 

59:6 

59:7 

59:8 

59:A 

59:8 

59:C 

59:0 

59:E 

() ·c 
o 
E 
:!! 
::ii 

notbit 
and 
andnot 
setblt 
notand 
xor 
or 
nor 
xnor 
not 
ornot 
clrbit 
notor 
nand 
alterbit 
addo 
addi 
subo 
subi 
cmpob 
cmpib 
cmpos 
cmpis 
shro 
shrdi 
shri 
shlo 
rotate 
shli 

~ 

= 
w 
.e 
:I 
~ 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

6 

1 

1 

1 

1 

CD.-. .... 
"0 .... ~ E 8 . a.:: ~ III 
0- ,III 

31 .......... 24 23 ... 19 18 .. 14 13 

0101 1000 dst src M3 

0101 1000 dst sr'c2 M3 

0101 1000 dst src2 M3 

0101 1000 dst src M3 

0101 1000 dst src2 M3 

0101 1000 dst src2 M3 

0101 1000 dst {3rc2 M3 

0101 1000 dst src2 M3 

0101 1000 dst src2 M3 

01011000 dst M3 

01011000 dst src2 M3 

01011000 dst src M3 

0101 1000 dst sm2 M3 

01011000 dst src2 M3 

01011000 dst src ·M3 

0101 1001 dst src2 . M3 

01011001 dst src2 M3 

0101 1001 dst src2 M3 

0101 1001 dst src2. M3 

0101 1001 src2 M3 

0101 1001 src2 M3 

0101 1001 src2 M3 

0101 1001 src2 M3 

0101 1001 dst src M3 

01011001 dst src M3 

01011001 dst src M3 

01011001 dst src M3 

0101 1001 . dst src M3 

0101 1001 dst src M3 

1. Execution time based on function performed by Instruction. 

8-2 

CD mill CD "0 .-. .... 
'8 8 9 l~ e 
::ii a.e. III 

0 fIJI&. 

12 11 10 ... 7 6 5 4 ....... 0 

M2 M1 0000 S2 S1 bitpos 

M2 M1 0001 S2 S1 src1 

M2 M1 0010 S2 S1 src1 

M2 M1 0011 S2 S1 bitpos 

M2 M1 0100 S2 S1 src1 

M2 M1 0110 S2 S1 src1 

M2 M1 0111 S2 S1 src1 

M2 M1 1000 S2 S1 src1 

M2 M1 1001 S2 S1 src1 

M2 M1 1010 S2 S1 src 

M2 M1 1011 S2 S1 src1 

M2 M1 1100 S2 S1 bitpos 

M2 M1 ' 1101 S2 S1 src1 

M2 M1 1110 S2 S1 src1 

M2 M1 1111 S2 S1 bitpos 

M2 M1 0000 S2 S1 src1 

M2 , M1 0001 S2 S1 src1 

M2 M1 0010 S2 S1 src1 

M2 M1 0011 S2 S1 src1 

M2 M1 0100 S2 S1 src1 

M2 M1 0101 S2 S1 src1 

M2 M1 0110 S2 S1 src1 

M2 M1 0111 S2 S1 srd1 

M2 M1 1000 S2 S1 len 

M2 M1 1010 S2 S1 len 

M2 M1 1011 S2 S1 len 

M2 M1 1100 S2 S1 len 

M2 M1 1101 S2 S1 len 

M2 M1 1110 S2 S1 len 
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Table 8-2. REG Format Instruction Encodings (Sheet 2 of 4) 

CII 

I 
o 

5A:0 

5A:1 

5A:2 

5A:3 

5A:4 

5A:5 

5A:6 

5A:7 

5A:C 

5A:D 

5A:E 

5B:0 

5B:2 

5B:4 

5B:5 

5C:C 

5D:8 

5D:C 

5E:C 

5F:C 

61:0 

61 :2 

64:0 

64:1 

64:5 

65:0 

65:1 

65:4 

65:5 

65:8 

65:9 

u 
'2 
o 
E 
CII 
I: 
:iii 

cmpo 

cmpi 
concmpo 

concmpi 

cmpinco 

cmpinci 

cmpdeco 

cmpdeci 

scan byte 
bswap 
chkbit 

addc 

subc 
intdis 
inten 
mov 
eshro 
movl 

movt 

movq 
atmod 
atadd 
spanbit 

scan bit 

modac 

modify 

extract 

modtc 

modpc 
intctl 

sysctl 

.S! 
:;, 
u 
CII 
>< 
W 

.s 
III 
CII 
U 
>-
0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

10 

1 

1 

1 

4 

4 

1 

11 

4 

5 

6 

24 

24 

6 

5 

10 

6 

7 

10 

17 

12-16 

10-
1001 

CII~ 

~ "C"'" C\j o • 
~ u ..... ~ o. ..... II) 

o~ II) 

31 .......... 24 23 .. 19 18 .. 14 

0101 1010 sre2 

0101 1010 sre2 

01011010 sre2 

0101 1010 sre2 

01011010 dst sre2 

01011010 dst sre2 

0101 1010 dst sre2 

0101 1010 dst sre2 

0101 1010 sre2 

0101 1010 dst 

0101 1010 sre 

0101 1011 dst sre2 

0101 1011 dst sre2 

0101 1011 

0101 1011 

0101 1100 dst 

01011101 dst sre2 

01011101 dst 

0101 1110 dst 

01011111 dst 

01100010 dst sre2 

01100010 dst sre2 

01100100 dst 

01100100 dst 

01100100 mask sre 

01100101 sre/dst sre 

01100101 sre/dst len 

01100101 mask sre 

01100101 sre/dst mask 

01100101 dst 

01100101 sre/dst sre2 

1. Execution time based on performed by instruction. 

l 

CII mill CII "C ~ 
"C 0 0 .- Cl 

,... 
u as ~ 0 ~si ClI_ 

:iii o.u.. II) 

0 C/) 

13 12 11 10 ... 7 6 5 4 ....... 0 

M3 M2 M1 0000 S2 S1 sret 

M3 M2 M1 0001 S2 S1 sret 

M3 M2 M1 0010 S2 S1 sret 

M3 M2 M1 0011 S2 S1 sret 

M3 M2 M1 0100 S2 S1 sret 

M3 M2 M1 0101 S2 S1 sret 

M3 M2 M1 0110 S2 S1 sret 

M3 M2 M1 0111 S2 S1 sret 

M3 M2 M1 1100 S2 S1 sret 

M3 M2 M1 1101 S2 S1 sret 

M3 M2 M1 1110 S2 S1 bitpos 

M3 M2 M1 0000 S2 S1 sret 

M3 M2 M1 0010 S2 S1 sret 

M3 M2 M1 0100 S2 S1 

M3 M2 M1 0101 S2 S1 

M3 M2 M1 1100 S2 S1 sre 

M3 M2 M1 1000 S2 S1 sret 

M3 M2 M1 1100 S2 S1 sre 

M3 M2 M1 1100 S2 S1 sre 

M3 M2 M1 1100 S2 S1 sre 

M3 M2 M1 0000 S2 S1 sret 

M3 M2 M1 0010 S2 S1 sret 

M3 M2 M1 0000 S2 S1 sre 

M3 M2 M1 0001 S2 S1 sre 

M3 M2 M1 0101 S2 S1 dst 

M3 M2 M1 0000 S2 S1 mask 

M3 M2 M1 0001 S2 S1 bitpos 

M3 M2 M1 0100 S2 S1 dst 

M3 M2 M1 0101 S2 S1 sre 

M3 M2 M1 1000 S2 S1 sret 

M3 M2 M1 1001 S2 S1 sret 
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TableB·2. REG Format Instruction Encodings (Sheet 3 of 4) 

~ 
u 

CD 

.'8 
li 
o 

CD CD~ ... CD iii I/) >< 
W ,,"CI' ~ ~ 

CD " ~ ,.. o • " 0 0 'u i e 0 u .. ~ ~ 0 8.a iii: - c. .. ~ :E I/) 
I/) 0"- 0 CD 
U 
>-
0 

31 .......... 24 23 ... 19 18 .. 14 13 12 11 10 ... 7 6 5 4 ....... 0 

65:8 icctl 10- 01100101 src/dst src2 M3 M2 M1 1011 82 81 src1 
1001 

65:C dcctl 10- 01100101 src/dst src2 M3 M2 M1 1100 82 81 src1 
1001 

65:0 halt 00 01100101 M3 M2 M1 1101 82 81 src1 

66:0 calls 30 01100110 M3 M2 M1 0000 82 81 src 

66:8 mark 8 01100110 M3 M2 M1 1011 82 81 

66:C fmark 8 01100110 M3 M2 M1 1100 82 81 

66:0 flushreg 15 01100110 M3 M2 M1 1101 82 81 

66:F syncf 4 01100110 M3 M2 M1 1111 82 81 

67:0 emul 1 01100111 dst src2 M3 M2 M1 0000 82 81 src1 

67:1 ediv 6 01100111 dst src2 M3 M2 M1 0001 82 81 src1 

70:1 mulo 2-4 0111 0000 dst src2 M3 M2 M1 0001 82 81 src1 

70:8 remo 40 0111 0000 dst src2 M3 M2 M1 1000 82 81 src1 

70:8 divo 40 0111 0000 dst src2 M3 M2 M1 1011 82 81 src1 

74:1 muli 2-4 01110100 dst src2 M3 M2 M1 0001 82 81 src1 

74:8 remi 40 01110100 dst src2 M3 M2 M1 1000 82 81 src1 

74:9 modi 40 01110100 dst src2 M3 M2 M1 1001 82 81 src1 

74:8 divi 8 01110100 dst src2 M3 M2 M1 1011 82 81 src1 

78:0 addono 1 0111 1000 dst src2 M3 M2 M1 0000 82 81 src1 

78:1 addino 1 0111 1000 dst src2 M3 M2 M1 0001 82 81 src1 

78:2 subono 1 0111 1000 dst src2 M3 M2 M1 0010 82 81 src1 

78:3 subino 1 0111 1000 dst src2 M3 M2 M1 0011 82 81 src1 

78:4 selno 1 0111 1000 dst src2 M3 M2 M1 0100 82 81 src1 

79:0 addog 1 01111001 dst src2 M3 M2 M1 0000 82 81 src1 

79:1 addig 1 01111001 dst src2 M3 M2 M1 0001 82 81 src1 
79:2 subog 1 01111001 dst srC2 M3 M2 M1 0010 82 81 src1 
79:3 subig 1 01111001 dst src2 M3 M2 M1 0011 82 81 src1 

79:4 selg 1 01111001 dst src2 M3 M2 M1 0100 82 81 src1 

7A:0 addoe 1 01111010 dst src2 M3 M2 M1 0000 82 81 src1 
7A:1 addie 1 01111010 dst src2 M3 M2 M1 0001 82 81 src1 

7A:2 suboe 1 01111010 dst src2 M3 M2 M1 0010 82 81 src1 

7A:3 subie 1 0111 1010 dst src2 M3 M2 M1 0011 82 81 src1 

1. Execution time based on performed by instruction. 
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Table 8-2. REG Format Instruction Encodings (Sheet 4 of 4) 

i 
o 

7A:4 

78:0 

78:1 

78:2 

78:3 

78:4 

7C:0 

7C:1 

7C:2 

7C:3 

7C:4 

70:0 

70:1 

70:2 

70:3 

70:4 

7E:0 

7E:1 

7E:2 

7E:3 

7E:4 

. 7F:0 

7F:1 

7F:2 

7F:3 

7F:4 

u ·c 
o 
E 
CD c 

:::!5 

sele 
addoge 
addige 
suboge 
subige 
selge 
addol 
addil 
subol 
subil 
sell 
addone 
addlne 
subone 
subine 
seine 
addole 
addile 
subole 
subile 
selle 
addoo 
addio 
suboo 
subfo 
sello 

.! 
:I 
U 
CD 
>C w 
0 -UI 
CD 

~ 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

CD~ ... 
'a"'" ~ ~ o • 
u ... !l ~ a. ... ~ 0 ..... 

31 .......... 24 23 .. 19 18 .. 14 

0111 1010 dst src2 

01111011 dst src2 

0111 1011 dst src2 

0111 1011 dst src2 

0111 1011 dst src2 

01111011 dst src2 

0111 1100 dst src2 

01111100 dst src2 

01111100 dst src2 

01111100 dst src2 

0111 1100 dst src2 

0111 1101 dst src2 

0111 1101 dst src2 

0111 1101 dst src2 

0111 1101 dst src2 

0111 1101 dst src2 

0111,1110 dst src2 

0111 1110 dst src2 

0111 1110 dst src2 

0111.1110 dst src2 

0111 1110 dst src2 

0111 1111 dst src2 

0111 1111 dst src2 

0111 1111 dst src2 

0111 1111 dst src2 

0111 1111 dst src2 

1. Execution time based on performed by instruction. 

CD 'iiUl CD 'a ~ ,.. 
'a oC? -C) u as ~ 0 UC') CD_ 
:::!5 a. ..... a.u.. 

0 en 

13 12 11 10 ... 7 6 5 4 ....... 0 

M3 M2 M1 0100 52 51 src1 

M3 M2 M1 0000 52 51 src1 

M3 M2 M1 0001 52 51 src1 

M3 M2 M1 0010 52 51 src1 

M3 M2 M1 0011 52 51 src1 

M3 M2 M1 0100 52 51 src1 

M3 M2 M1 0000 52 51 src1 

M3 M2 M1 0001 52 51 src1 

M3 . M2 M1 0010 52 51 src1 

M3 M2 M1 0011 52 51 src1 

M3 M2 M1 0100 52 51 src1 

M3 M2 M1 0000 52 51 src1 

M3 M2 M1 0001 52 51 src1 

M3 M2 M1 0010 52 51 src1 

M3 M2 M1 0011 52 51 ' src1 

M3 M2 M1 0100 52 51 src1 

M3 M2 M1 0000 ~2 51 src1 

M3 M2 M1 0001 52 51 src1 

M3 M2 M1 0010 52 51 src1 

M3 M2 M1 0011 52 51 src1 

M3 M2 M1 0100 52 51 src1 

M3 M2 M1 0000 52 51 src1 

M3 M2 M1 0001 ' 52 51 src1 

M3 M2 M1 0010 52 51 src1 

M3 M2 M1 0011 ':52 51 src1 

M3 M2 M1 0100 52 51 src1 
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CD 

1 
20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

3A 

36 

3C 

3D 

3E 

3F 

u 
'2 
o 
E 
! 
:E 

testno 
testg 
teste 
testge 
testl 
testne 
testle 
testo 
bbc 
cmpobg 
cmpobe 
cmpobge 
cmpobl 
cmpobne 
cmpoble 
bbs 
cmpibno 
cmpibg 
cmpibe 
cmpibge 
cmpibl 
cmpibne 
cmpible 
cmpibo 

Table B·3. COBR Format Instruction Encodings 

CD 
'S -u c 

= CD 
CD 
E w "0 ... Cij CD 0 e :E oS U 5j U ... 

a. VI 111 
1/1 0 Q. 
.!! 1/1 
U Q >-
0 

31 ........... 24 23. 19 18 ... 14 13 12 ........ 2 1 

4 00100000 dst M1 T 

4 00100001 dst M1 T 

4 00100010 dst M1 T 

4 00100011 dst M1 T 

4 00100100 dst M1 T 

4 00100101 dst M1 T 

4 00100110 dst M1 T 

4 00100111 dst M1 T 
2 + 11 0011 0000 bitpos src M1 targ T 

2 + 1 0011 0001 src1 src2 M1 targ T 

2+1 0011 0010 src1 src2 M1 targ T 

2+1 0011 0011 src1 src2 M1 targ T 

2 + 1 0011 0100 src1 src2 M1 targ T 

2+1 0011 0101 src1 src2 M1 targ T 

2+1 0011 0110 src1 src2 M1 targ T 

2+1 0011 0111 bitpos src M1 targ T 

2+1 0011 1000 src1 src2 M1 targ T 

2+1 0011 1001 src1 src2 M1 targ T 

2+1 0011 1010 src1 src2 M1 targ T 

2+1 0011 1011 src1 src2 M1 targ T 

2+1 0011 1100 src1 src2 M1 targ T 

2+1 0011 1101 src1 src2 M1 targ T 

2 + 1 0011 1110 src1 src2 M1 targ T 

2+1 0011 1111 src1 src2 M1 targ T 
.. 

1. Indicates that it takes 2 cycles to execute the instructIOn plus an additional cycle to fetch the target instructIOn If 
the branch is taken. 
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OPCODES AND EXECUTION TIMES 

Table 8-4. CTRL Format Instruction Encodings 

-u 
CD 'c "g 0 0 E 8- CD 
0 c 

:::IE 

c 
Ss CD 

CD 
"g E 

I/) ::J 0 § CD u t- o -CD u 
u " a. 
~w 0 "ii 

I/) 

is 
31 ............ 24 23 ........... 2 1 0 

08 b 1 + l' 00001000 targ T 0 

09 call 7 00001001 targ T 0 

OA ret 6 00001010 T 0 

OB bal 1 + 1 00001011 targ T 0 

10 bno 1 + 1 0001 0000 targ T 0 

11 bg 1 + 1 00010001 targ T 0 

12 be 1 + 1 00010010 targ T 0 

13 bge 1 + 1 0001 0011 targ T 0 

14 bl 1 + 1 0001 0100 targ T 0 

15 bne 1 + 1 00010101 targ T 0 

16 ble 1 + 1 0001 0110 targ T 0 

17 bo 1 + 1 0001 0111 targ T 0 

18 faultno 13 00011000 T 0 

19 faultg 13 0001 1001 T 0 

1A faulte 13 0001 1010 T 0 

1B fault.ge 13 00011011 T 0 

1C faultl 13 0001 1100 T 0 

10 faultne 13 0001 1101 T 0 

1E faultle 13 0001 1110 T 0 

1F faulto 13 0001 1111 T 0 
.. 

1. Indicates that it takes I cycle to execute the mstruction plus an additional cycle to fetch 
the target instruction if the branch is taken. 
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OPCODES AND EXECUTION TIMES intel® 

Table B·5. MEM Format Instruction Encodings 

11 ................................................... 0 

Offset 

31 ........ 24 123 ... 19 118 ....... 14 113 ....... 12 .. 11 ........ 10 19 ....... 7 16 ... 5 14 ........ 0 

Opcode I src/dst I ABASE I Mode I Scale I 00 I Index 

Displacement 

Effective Address 

efa = offset I Opcode dst 0 0 offset 

offset(reg) I Opeode dst reg I 1 0 offset 

(reg) I Opcode dst reg I 0 0 0 00 

disp + 8 (IP) I Opcode dst 0 I 0 00 
displacement 

(reg1)[reg2' scale] I Opcode dst reg1 I 0 I 1 I 1 scale 00 reg2 

diSpl Opcode dst I 1 I 1 I o 1 0 00 
displacement 

disp(reg) I Opcode dst reg I 1 I 1 I 0 I 00 
displacement 

disp[reg' scale] 

disp( reg 1)[reg2* scale] 

8-8 I 



intet OPCODES AND EXECUTION TIMES 

Opcode Mnemonic Cycles to 
Opcode Mnemonic Cycles to 

Execute Execute 

80 Idob See Note 1. 98 Idl See Note 1. 
82 stob See Note 1. 9A stl See Note 1. 
84 bx 4-7 AO Idt See Note 1. 

85 balx 5-8 A2 stt See Note 1. 
86 calix 9-12 BO Idq See Note 1. 

88 Idos See Note 1. B2 stq See Note 1. 

8A stos See Note 1. CO Idib See Note 1. 

8C Ida See Note 1. C2 stib See Note 1. 

90 Id See Note 1. C8 Idis See Note 1. 
92 st See Note 1. CA stis See Note 1. 

1. The number of cycles required to execute these instructions IS based on the addreSSing mode used (see 
Table B-6). 

Table B-6. Addressing Mode Performance 

Memory Number of 
Cycles to Mode Assembler Syntax Instruction Format words Execute 

Absolute Offset exp MEMA 1 1 

Absolute Displacement exp MEMB 2 2 

Register Indirect (reg) MEMB 1 1 

Register Indirect with Offset exp(reg) MEMA 1 1 

Register Indirect with 
exp(reg) MEMB 2 2 

Displacement 

Index with Displacement exp[reg*scale) MEMB 2 2 

Register Indirect with Index (reg)[reg*scale) MEMB 1 6 

Register Indirect with Index + 
exp(reg)[reg*scale) MEMB 2 

6 
Displacement 

Instruction Pointer with 
exp(IP) MEMB 2 

6 
Displacement 

1- B-9 
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APPENDIX C 
REGISTER AND DATA STRUCTURES 

This appendix is a compilation of all register and data structure figures described throughout the ~.'" 
manual. Fonowmg each figure i, a reference that indicate, the ,ection that discu,"" the figure. ~ 

Fig. Register I Data Structure Where defined In the manual Page 

C·l Arithmetic Controls (AC) Register Section 3.6.2, "Arithmetic Controls (AC) Register" (pg. C-2 3-17) 
C-2 Process Controls (PC) Register section 3.6.3, "Process Controls (PC) Register" (pg. 3-20) C-3 
C-3 Trace Controls (TC) Register Section 10.1.1, "Trace Controls (TC) Register" (pg. 10-2) C-4 
C-4 System Procedure Table Section 7.5.1, "System Procedure Table" (pg. 7-16) c-s 
c-s Procedure Stack Structure and Local Section 7.1 .1, "Local Registers and the Procedure Stack" c-s Registers (pg.7-2) 

c-s Previous Frame Pointer (PFP) Register (rO) Section 7.2, "MODIFYING THE PFP REGISTER" (pg. C-? 7-13) 
C-? Interrupt Table Section 8.4, "INTERRUPT TABLE" (pg. 8-3) c-s 
c-s Storage of an Interrupt Record on the section 8.5, "INTERRUPTSTACK AND INTERRUPT C-9 Interrupt Stack RECORD" (pg. 8-5) 

C-9 Interrupt Control (ICON) Register Section 13.3.4, "Interrupt Control Register (ICON)" (pg. C-l0 13-12) 

C-10 Interrupt Mapping (IMAPO-IMAP2) Section 13.3.5, "Interrupt Mapping Registers (IMAPO- C-ll Registers IMAP2)" (pg. 13-14) 

C-11 Interrupt Pending (IPND) Register Section 13.3.5.1, "Interrupt Mask (lMSK) and Interrupt C-12 
Pending (IPND) Registers" (pg. 13-16) 

C-12 Interrupt Mask (lMSK) Registers Section 13.3.5.1, "Interrupt Mask (lMSK) and Interrupt C-13 Pending (IPND) Registers" (pg. 13-16) 
C-13 Fault Table and Fault Table Entries Section 9.3, "FAULT TABLE" (pg. 9-4) C-14 
C-14 Fault Record Section 9.5, "FAULT RECORD" (pg. 9-6) C-1S 
C-15 Breakpoint Control (BPCON) Register Section 10.2.7.4, "Breakpoint Control Register" (pg. 10-7) C-1S 

C-1S Data Address Breakpoint Register Format section 10.2.7.5, "Data Address BreakpOtnt Registers" (pg. C-1S 10-9) 

C-1? Instruction Breakpoint Register Format Section 10.2.7.6, "Instruction Breakpoint Registers" (pg. C-l? 
10-10) 

C-18 Initial Memory Image (1M I) and Process Section 11.3.1, "Initial Memory Image (IMI)" (pg. 11-9) C-1S Control Block (PRCB) 
C-19 Control Table Section 11.3.3, "Control Table" (pg. 11-19) C-19 

C-20 Process Control Block Configuration Words 
Section 11.3.1.2, "Process Control Block (PRCB)" (pg. C-20 11-14) 

C-21 IEEE 1149.1 Device Identification Register Section 11.4, "DEVICE IDENTIFICATION ON RESET" (pg. C-21 11-21 ) 
C-22 Bus Control Register (BCON) I Section 12.4.1, "Bus·Control (BCON) Register" (pg. 12-6) C-21 
C-23 PMCON Register Bit Description I Section 12.3.1, "Bus Width" (pg. 12-5) C-22 

C-24 Logical Memory Template Starting Address I Section 12.6, "Programming the Logical Memory C-22 Registers (LMADRO-l) Attributes" (pg. 12-8) 

C-2S Logical Memory Template Mask Registers ISection 12.6, "Programming the Logical Memory C-23 (LMMRO-l) Attributes" (pg. 12-8) 

C-2S Default Logical Memory Configuration I Section 12.6, "Programming the Logical Memory C-23 Register (DLMCON) Attributes" (pg. 12-8) 

1 __ . C-1 



REGISTER AND DATA STRUCTURES 

Fig.· Register I Data Structure Where defined In the manual 

C-27 limer Mode Register (TMRO, TMR1) 
Section 14.1.1, "Timer Mode Register (TMRO, TMR1)" (pg. 
14-2) 

C-28 limer Count Register (TCRO, TCR1) 
Section 14.1.2, :'Tlmer count Register (TCRO, TCR1)" (pg. 
14-6) 

C-29 limer Reload Register (TRRO, TRR1) 
section 14.1.3, ''TImer Reload Register ( I RRO, I RR1)" 
(pg. 14-7) 

C.1 Register and Data Structures 

31 28 .24 20 16 12 8 4 o 

I I I III 
No-Imprecise-Faults Bit- AC.nif ____ ---It 

(0) Some Faults are Imprecise 
(1) All Fauits are Precise 

Integer Overflow Mask Bit - AC.om-------l 
(0) No Mask 
(1) Mask 

Integer-Overflow Flag - AC.of-------------:-' 
(0) No Overflow 
(1) Overflow 

Condition Code Bits - AC.cc --------------------' 

I Reserved 
(Initialize to 0) 

Figure C-1. Arithmetic Controls (AC) Register 

Section 3.6.2, "Arithmetic Controls (AC) Register" (pg. 3-17) 

C-2 

Page 

C-24 

C-24 

C-25 



REGISTER AND DATA STRUCTURES 

Trace-Enable Bit - PC.te ----------------------~ 
(0) Globally disable trace faults 
(1) Globally enable trace faults 

Execution-Mode Flag - PC.em ----------------------, 
(0) user mode 
(1) supervisor mode 

Trace-Fault-Pendin!il- PC.tfp-------------, 
(0) no fault pending 
(1) fault pending 

State Flag - PC.s -------------, 

(0) executing j 
(1) interrupted 

Priority Field - pC.p --------,1 
(0-31) process priority • 

IIIII I I II 
31 28 24 20 16 12 8 4 o 

I Reserved 
(Do not modify) 

Section 3.6.3, "Process Controls (PC) Register" (pg. 3-20) 

l __ ~ C-3 
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REGISTER AND DATA STRUCTURES 

Trace Mode Bits 
Instruction Trace Mode -TC.i-------------------:--c'-----. 
Branch Trace Mode -TC.b--------------....:....,---__ --, 
Call Trace Mode -TC.c----------------------, 
Return Trace Mode - TC.r -'-" -------'---------'-----, 

pre-RetumTraceMOde-TC.p-----,,'! j j ,I',:,' Supervisor Trace Mode - TC.s ----------------,-
Mai'k Trace Mode - TC.mk 

31 28 24 20 16 

IIII IIIIIII 

I Reserved 

4 

[ _ B:"~ EW: FI~ 
.... ------- Instruction-Address Breakpoint 0 - TC.iOf 

Instruction-Address Breakpoint 1 'TC.i1 f 
Data-Address Breakpoint 0 - TC.dOl 
Data-Address Breakpoint 1 - TC.d1f 

Figure C·3. Trace Controls'(TC) Register 

Section 10.1.1 • "Trace Controls (TC) Register" (pg. 10-2) 
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REGISTER AND DATA STRUCTURES 

31 o 

H 

Trace 
,........-- Control 

Bit 

D34H 

~------------------------------------~ D38H 
~------------------------------------------~D3CH 

~ ____________________________________________ ~438H 

43CH 

31 

I Reserved 
(Initialize to 0) 

• Preserved 

Procedure Entry 

address 

Figure C-4. System Procedure Table 

2 1 0 

III 
~ Entry Type: 

00 - Local 
10-Supervisor 

Section 7.5.1, "System Procedure Table" (pg. 7-16) 

I. 
C-5 



REGISTER AND DATA STRUCTURES 

Current Register Set 

( gO 

Frame Pointer g15 

Procedure Stack 

Previous Frame Pointer (PFP) rO 

Stack Pointer (SP) r1 

Return Instruction Pointer (RIP) r2 

user.allocated stack 

user allocated stack 

unused stack 

stack growth 
(toward higher addresses) 

J 

r1S 

Previous 
Stack 

Frame 

Current 
Stack 
Frame 

Figure C-5. Procedure Stack Structure and Local Registers 

Section 7.1.1, "Local Registers and the Procedure Stack" (pg. 7-2) 
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REGISTER AND DATA STRUCTURES 

Return Status 
Return-Type Field - PFP.rt 

Address-PFP.a l 

Pre-Return-Trace Flag - PFP.p j j 
Previous Frame Pointer 

I I I I 

I ~IIIIIIIIIIIIIIIIIIIIIIIIIII:I PI il ~I il 
31 28 24 20 16 12 8 4 o 

Figure C-S. Previous Frame Pointer (PFP) Register (rO) 

Section 7.2, "MODIFYING THE PFP REGISTER" (pg. 7-13) 
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REGISTER AND DATA STRUCTURES intet 

31 8 7 0 

OOOH 

004H 

Pending Interrupts 

020H 

024H (Vector 8) 

028H (Vector 9) 

02CH (Vector 10) 

3DOH (Vector 243) 
3D4H (Vector 244) 

3EOH (Vector 247) 

3E4H (Vector 248) 

3E8H (Vector 249) 

3FOH (Vector 251) 
3F4H (Vector 252) 

400H (Vector 255) 

Vector Entr~ 21 0 

Instruction Pointer Ixlxl 
L-J 
L Entry Type: 

_ Reserved (Initialize to 0) 
00 Normal 
01 Reserved1 

_Preserved 
10 Target in Cache 
11 Reserved1 

F_CA016A 1 Vector entries with a reserved 
type have unpredictable behavior. 

Figure C-7. Interrupt Table 

Section 8.4, "INTER.RUPT TABLE" (pg. 8-3) 

C-8 I 



stack 
growth 

REGISTER AND DATA STRUCTURES 

Current Stack 
31 (local, supervisor, or interrupt stack) 0 

~,-------__ ~FP t--- ,"~"f"m' i 
Interrupt Stack 

padding area 

saved Process Controls Register 

saved Arithmetic Controls Register 

NFP-16 I low, •• 
NFP-12 Record 

NFP-B 

NFP 

I Reserved 

F_CA017A 

Figure CoS. Storage of an Interrupt Record on the Interrupt Stack 

Section 8.5, "INTERRUPT STACK AND INTERRUPT RECORD" (pg. 8-5) 

I C-9 
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REGISTER AND DATA STRUCTURES intet 

Interrupt Mode -ICON.im-----------------------, 
(00) Dedicated 

31 

(01) Expanded 
(10) Mixed 
(11) Reserved 

Signal Detection Mode -ICON.sdm ---------------, 
(0) Level-low activated 
(1) Falling-edge activated 

Global Interrupts Enable - ICON.gie ----------, 
(0) Enabled 
(1) Disabled 

Mask Operation - ICON.mo -----------, 
(00) Move to 1'3, mask unchanged 
(01) Move to r3 and clear for dedicated mode interrupts 
(10) Move to r3 and clear for expanded mode interrupts 
(11) Move to r3 and clear 10r dedicated and expanded 

mode interrupts 
Vector Cache Enable - ICON.vce --------, 

(0) Fetch from external memory 
(1) Fetch from internal RAM 

Sampling Mode -lv'uN.srrl--------....., 
(0) debounce 
(1) fast 

28 24 20 16 

Interrupt Control Register (ICON) 

12 8 

I Reserved 
(Initialize to 0) 

Figure C-9. Interrupt Control (ICON) Register 

4 

Section 13.3.4, "Interrupt Control Register (ICON)" (pg. 13-12) 
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REGISTER AND DATA STRUCTURES 

External Interrupt 0 Field - IMAPO.xO 

I External Interrupt 1 Field - IMAPO.x1 

I External Interrupt 2 Field - IMAPO.x2 

1 
External Interrupt 3 Field - IMAPO.x3 

1 

28 24 20 16 12 8 4 

Interrupt Map Register 0 (IMAPO) 

External Interrupt 4 Field -IMAPO.x4 -------------------'j 
External Interrupt 5 Field - IMAPO.x5 ----------------,1 
External Interrupt 6 Field -IMAPO.x6 ------------, 
External Interrupt 7 Field - IMAPO.x7 ---------,1 . 

28 24 20 

Interrupt Map Register 1 (IMAP1) 

Timer Interrupt 0 Field - IMAP2.tO n 
11<"" ''''''~~ 1 "",. IMAP2.11 l 

16 

.-----.1-----. 

12 8 4 

III1IIII .' :~ 
28 24 

Interrupt Map Register 2 (IMAP2) 

I Reserved 
(Initialize to 0) 

20 16 12 8 

Figure C-10. Interrupt Mapping (IMAPO-IMAP2) Registers 

4 

Section 13.3.5, "Interrupt Mapping Registers (IMAPO-IMAP2)" (pg. 13-14) 

1_ 

o 

o 

o 
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· REGISTER AND DATA STRUCTURES 

External Interrupt Pending Bits - IPND.xip 
(0) No Interrupt 
(1) Pending Interrupt 

Timer Interrupt Pending Bits -IPND.tip -------, 
(0) No Interrupt I 
(1) Pending Interrupt rI 

intet~ 

I 
II IIRIIIII 

I 
28 

RESERVED 
(INITIALIZE TO 0) 

24 20 16 12 8 

Figure C-11. Interrupt Pending (IPND) Register 

4· 

Section 13.3.5.1, "Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers" (pg. 13-16) 
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REGISTER AND DATA STRUCTURES 

Dedicated External Interrupt Mask Bits - IMSK.xim --------------, 
(0) Masked 
(1) Not Masked 

Timer Interrupt Mask Bits - IMSK.tim ---------,! 
(0) Masked 
(1) Not Masked II 

. II II1IIIII 
28 24 20 16 12 8 4 o 

Interrupt Mask Register (lMSK) Dedicated Mode 

Expanded External Interrupts Mask Bits - IMSK.eim -----------------, 
(0) Masked 
(1) Not Masked 

Timer Interrupt Mask Bits - IMSK.tim 
(0) Masked 
(1) Not Masked 

28 24 20 

Interrupt Mask Register (lMSK) Expanded Mode 

1 
II 

16 12 8 4 o 

Expanded External Interrupt Mask Bits - IMSK.eim ----------------..., 
(0) Masked 
(1) Not Masked 

Dedicated External Interrupt Mask Bits - IMSK.xim -----------, 
(0) Masked 
(1) Not Masked 

Timer Interrupt Mask Bits - IMSK.tim 
(0) Masked 
(1) Not Masked 1 

II 

. II III I 
28 24 20 16 

Interrupt Mask Register (lMSK) Mixed Mode 

12 8 4 o 

RESERVED I 
(INITIALIZE TO 0) 

Figure C-12. Interrupt Mask (lMSK) Registers 

Section 13.3.5.1, "Interrupt Mask (lMSK) and Interrupt Pending (IPND) Registers" (pg. 13-16) 

L C-13 
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REGISTER AND DATA STRUCTURES 

31 Fault Table 

Override/Parallel Fault Entry 

Trace Fault Entry 

. Fault Entry 

31 System-Call Entry 

Fault-Handler Procedure Number 

0000027FH 

I Reserved (Initialize to 0) 
, 

Figure C-13. Fault Table,and Fault Table Entries 

. Section 9.3, "FAuLT TABLE" (pg. 9-4) 

C-14 
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REGISTER AND DATA STRUCTURES 

31 o 

FAULT DATA 

--'--'--'-"--' ........... -'-; 

~-------------------------------------------------; 

OVERRIDE FAULT DATA 

FAULT DATA 

31 28 24 

• RESERVED 

Figure C-14. Fault Record 

Section 9.5, "FAULT RECORD" (pg. 9-6) 

L 

4 o 

NFP - (n+1)*32 

NFP - 24- n*32 

NFP - 20- n*S2 

NFP - 12- n*32 

NFP - 8- n*32 

NFP - 4- n*32 

NFP - 64 

NFP - 52 

NFP - 48 

NFP - 44 

NFP - 32' 

NFP-20 

NFP-16 

NFP-12 

NFP-8 

NFP-4 

C-15 



REGISTER AND DATA STRUCTURES 

DABO----------------------~! 
DAB1--------------~ 

II 

III1IIII 
31 

I 
28 

Reserved 
(Initialize to 0) 

24 20 16 12 8 4 o 

Hardware Reset Value: 0000 OOOOH 

Software Re-Init Value: Retains State 

Figure C-1S. Breakpoint Control (BPCON) Register 

Section 10.2.7.4, "Breakpoint Control Register" (pg. 10-7) 

Data Address --------------'------, 

IIII!III!IIIIIII!III!III!III!II!I 
31 28 24 20 16 12 8 4 o 

Hardware Reset Value: 0000 OOOOH 

Software Re-init Value: 0000 OOOOH 

Figure C-16. Data Address Breakpoint Register Format 

Section 10.2.7.5, "Data Address Breakpoint Registers" (pg. 10-9) 

0-16 I~ 



intel~ REGISTER AND DATA STRUCTURES 

IBPx Mode -------------------------,1 
Instruction Address ---------.1 

In 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII~I~I 
31 28 24 20 16 12 8 4 o 

Hardware Reset Value: 0000 OOOOH 
Software Re-init Value: 0000 OOOOH 

Figure C-17. Instruction Breakpoint Register Format 

Section 10.2.7.6, "Instruction Breakpoint Registers" (pg. 10-10) 

C-17 
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REGISTER AND DATA STRUCTURES 

Fixed Data Structures 

Inlt. Boot Record (IBR): Address 

FEFF FF30H 

FEFF FF34H 

FEFF FF38H 

FEFF FF3CH 

FEFF FF40H 
1---'--'<""""----1 FEFF FF44H 

6 Check Words 
(For Bus Confidence 

Self-Test) 

FEFF FF48H 

'--______ -' FEFF FF5CH 

-
-
-

-

-

> 
<-
» 

Relocatable Data Structures 

User Code: 

Process Control Block (PRCB): 

Fault Table Base Address 

Control Table Base Address 

AC Register Initial Image 

Fault Configuration Word 

Interrupt Table Base Address 

s~stem Procedure 
Ta Ie Base Address 

Reserved 

Interrupt Stack Pointer 

Instruction Cache 
Confiauration Word 

Reecister Cache 
Con Iguration Word 

Control Table 

Interrupt Table 

System Procedure Table 

Other Architecturally 
Defined Data 

Structures (Not 
Required As Part Of IMI) 

~ 

r-
<-r-
<-
1-

-

Figure C-18. Initial Memory Image (IMI) and Process Control Block (PRCB) 

Section 11.3.1, "Initial Memory Image (IMI)" (pg. 11-9) 
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REGISTER AND DATA STRUCTURES 

31 

Reserved (Initialize to 0) 

Reserved (Initialize to 0) 

Reserved (Initialize to 0) 

Reserved (Initialize to 0) 

Interrupt Map 0 (IMAPO) 

Interrupt Map 1 (IMAP1) 

Interrupt Map 2 (IMAP2) 

Interrupt Configuration (ICON) 

Physical Memory Region 0:1 Configuration (PMCONO_1) 

Reserved (Initialize to 0) 

Physical Memory Region 2:3 Configuration (PMCON2_3) 

Reserved (Initialize to 0) 

Physical Memory Region 4:5 Configuration (PMCON4_5) 

Reserved (Initialize to 0) 

Physical Memory Region 6:7 Configuration (PMCON63) 

Reserved (Initialize to 0) 

Physical Memory Region 8:9 Configuration (PMCON8_9) 

Reserved (Initialize to 0) 

Physical Memory Region 10:11 Configuration (PMCON10_11 

Reserved (Initialize to 0) 

Physical Memory Region 12:13 Configuration (PMCON12_13) 

Reserved (Initialize to 0) 

Physical Memory Region 14:15 Configuration (PMCON14_15) 

Reserved (Initialize to 0) 

Reserved (Initialize to 0) 

Reserved (Initialize to 0) 

Trace Controls (TC) 

Bus Configuration Control (BCON) 

Figure C-19. Control Table 

Section 11.3.3, "Control Table" (pg. 11-19) 

I. 

o 
OOH 

04H 

OSH 

OCH 

10H 

14H 

18H 

lCH 

20H 

24H 

28H 

2CH 

30H 

34H 

38H 

3CH 

40H 

44H 

48H 

4CH 

SOH 

54H 

58H 

5CH 

60H 

64H 

6SH 

6CH 

C-19 



REGI,STER AND DATA ,STRUCTURES 

AC Register Initial Image Offset08H 
Condition Code Bits -AC.cc--------------~-----~--__, 
Integer-Overflow Flag -AC.of---------------__, 

(0) n,o overflow 
(1) overflow 

Integer Overflow Mask Bit - AC.om -----~-_,_-__, 
(0) enable overflow faults 
(1) mask overflow faults 

No-Imprecise-Faults Bit - AC.nif -------.., 
(0) allow imprecise fault conditions 
(1) prevent imprecise fault conditions 

31 28 24 20 , 16 

I I I III 
12 8 4 

Fault Configuration Word 

31 28 24 20 16 12 8 4 

tL __ ~o--__________ ' '-' ___ Mask Non-Aligned Bus Request Pault 

Instruction Cache Configuration Word 

Disable Instruction Cache---------, 
(oj enable cache 
(1) disable cache 

31 28 24 20 16 

Register Cache Configuration Word 

(0) enable the fault 
(1) mask the fault 

12 8 

Programmed Limit----,-----------.,.--,-------,. 

31 

I 
28 

Reserved 
(Initialize to 0) 

24 20 16 12 8 

4 

4 

Figure C-20. Process Control Block Configuration Words, 

Section 11.3.1.2, "Process Control Block (PRCB)" (pg. 11-14) 
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in1et REGISTER AND DATA STRUCTURES 

Part Number 

Product 

Version Type Gen Model Manufacturer ID 

~111~nl I 

111111111111111111111010101010101011101011111 
28 24 20 16 12 8 

Figure C-21. IEEE 1149.1 Device Identification Register 

Section 11.4, "DEVICE IDENTIFICATION ON RESET" (pg. 11-21) 

Configuration Entries in Control Table Valid (BCON.ctv) 
o = PMCON entries not valid, default to PMCON14_15 setting. 
1 = PMCON entries valid 

Internal RAM Protection (BCONJrp) 
o = Internal data RAM not protected from user mode writes 
1 = Internal data RAM protected from user mode writes 

Supervisor Internal RAM Protection (BCON.sirp) 
o = First 64-bytes not protected from supervisor mode writes 
1 = First 64-by1es protected from supervisor mode writes 

31 

I 
28 

Reserved, 
write to zero 

24 20 16 12 8 

Figure C-22. Bus Control Register (BCON) 

Section 12.4.1, "Bus Control (BCON) Register" (pg. 12-6) 
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REGISTER AND DATA STRUCTURES 

I Reserved, 
write to zero 

t'--___________ Bus Width 

00 = a-bit 
01 = 16-bit 
10 = 32-bit bus 
11 = reserved (do not use) 

Figure C-23. PMCON Register Bit Description 

Section 12.3.1, "Bus Width" (pg. 12-5) 

Byte Order (read-only) 
o = Little endian 
1 = Big endian 

Data Cache Enable ------------------------, 
o = Data caching disabled 
1 = Data caching enabled 

I Reserved, 
write to zero 

'------~------- Template Starting Address 

Figure C-24. Logical Memory Template Starting Address Registers (LI'o'ADRO-1) 

Section 12.6, "Programming the Logical Memory Attributes" (pg. 12-8) 
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intet REGISTER AND DATA STRUCTURES 

Byte Order (read-only) 
o = Little endian 
1 = Big end ian 

Data Cache Enable -----------------------:--------, 
o = Data caching disabled j 
1 = Data caching enabled 

28 24 20 . 16 12 

I Reserved, 
write to zero 

L-_____________ Template Starting Address 

Figure C-2S. Logical Memory Template Mask Registers (LMMRO-1) 

Section 12.6, "Programming the Logical Memory Attributes" (pg. 12-8) 

Big Endian By1e Order --------------------------, 

o = Little endian j 
1 = Big endian 

Data Cache Enabled-------------------------, 
o = Data caching disabled 1· 
1 = Write-through caching enabled 

31 

I 
28 

Reserved, 
write to zero 

24 20 16 12 8 4 

Figure C-26. O,fault Logical Memory Configuration Register (OLMCON) 

Section 12.6, "Programming the Logical Memory Attributes" (pg. 12-8) 
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REGISTER AND DATA STRUCTURES 

Tenninal Count Status - TMRx.tc _____________________ ---, 

(0) No Tenninal Count 
(1) Tenninal Count 

llmer Enable - TMRx.enable ---------------------~__, 
(0) Disable 
(1) Enable 

llmer Auto Reload Enable - TMRx.reload ------------------., 
(0) Auto Reload Disabled 
(1) Auto Reload Enabled 

llmer Register Supervisor Write Control- TMRx.sup -----.,..---------__, 
(0) Supervisor and User Mode Write Enabled 
(1) Supervisor Mode Only Write Enable 

llmer Input Clock Selects - TMRx.cseI1:0 ---------------1' (00) 1 :111mer Clock = Bus Clock 
(01) 2:111mer Clock = Bus Clock 12 
(10) 4:111mer Clock = Bus Clock 14 
(11) 8:111mer Clock = Bus Clock/8 

31 28 24 20 16 12 8 

IIIIII 
4 0 

llmer Mode Register (TMRO. TMR1) 

I Reserved 
(Initialize to 0) 

Figure C-27. Timer Mode Register (TURD, TUR1) 

Section 14.1.1. "TImer Mode Register (TMRO. n.1R1)" (pg. 14-2) 

llmer Count Value - TCRx.d31:0 -----------,1 
031:0 + 

111111111111111111111111111111111 
28 24 20 16 12 8 4 o 

llmer Count Register (TCRO. TCR1) 

Figure C-28. Timer Count Register (TCRD, TCR1) 

Section 14.1.2, "Timer Count Register (TCRO, TCR1)" (pg. 14-6) 
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REGISTER AND DATA STRUCTURES 

Timer Auto-Reload Value - TRRx.d31:0 ------.! 
031:0 

111111111111111111111111111111111 
28 24 20 16 12 8 4 0 

Timer Reload Register (TRRO, TRR1) 

Figure C-29. nmer Reload Register (TRRO, TRR1) 

Section 14.1.3, "TImer Reload Register (TRRO, TRR1)" (pg. 14-7) 
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APPENDIX D 
MACHINE-LEVEL INSTRUCTION FORMATS 

This appendix describes the encoding format for instructions used by the i960 processors. Included 
is a description of the four instruction formats and how the addressing modes relate to the these 
formats. Refer also to APPENDIX B, OPCODES AND EXECUTION TIMES. 

0.1 GENERAL INSTRUCTION FORMAT 

The i960 architecture defines four basic instruction encoding formats (as shown in Figure 0-1 on 
page 0-1): REG, COBR, CTRL and MEM. Most instruction uses one of these formats, which is 
defined by the instruction's opcode field. All instructions are one word long and all begin on word 
boundaries. MEM format instructions are encoded in one of two sub-formats: MEMA or MEMB. 
MEMB permits an optional second word to hold a displacement value. The following sections 
describe each format's instruction word fields. 

28 24 20 

OPCODE SRC/DST REG 
(8 bits) (5 bits) 

28 12 8 4 

OPCODE DISPLACEMENT COBR (8 bits) (11 bits) 

31 28 24 20 16 12 8 4 0 

I : : ~ra~~~ : : I : : : : : : : : ~IS:'~~~E~T: : : : : : : : 10 10 1 CTRL 

28 8 4 0 

OPCODE OFFSET MEMA (8 bits) (12 bits) 

, MODE 

31 28 24 20 16 12 8 4 0 . • . 
OPCODE SRCIDST ABASE 1 SCALE 

0 
INDEX 

(8 bits) (5 bits) (5 bits) (3 bits) 0 (5 bits) MEMB 

OPTIONAL DISPLACEMENT . 
Figure 0.1. Instruction Formats 
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MACHINE-LEVEL INSTRUCTION FORMATS 

OPCODE, 

SRC 1 

SRC2' 
','. .~" I SRCIDST 

ABASE 

INDEX 

The opcode of the instruction. Opcode encodings are defined in section 6.1.8, 
, "Op~ode ~d Instruction FQrmat" (pg. 6-6). . . . , . 

An input to the instruction. Specifies a value or address. In one case in the 
COBR format, this field is used to specify a register in which a result is 
stQred. 

An input, to the instru<;tion. Specifies a 'value or address. 

Depending on the specific instruction, this can be (1) an input value or 
address, (2) the register where the result is stored, or (3) both of the above. 

/"', ; 

A register. The register's value is used in computing a memory address. 

A register. The register's value is used in computing a memory address. 

DISPLACEMENT' A signed two's complement number. 

OFFSET 

0PI10NAL 

MODE 

SCALE 

Ml,M2,M3 

" 

An unsigned positive number. , 

a signed two's complement number in case of 2-word MEMB format. 
displacement 

A specification of how a memory address for an operand is computed, and for 
MEMB specifies whether the instruction contains a second word to be used 
as a displacement. 

A specification of how a register's' contents are multiplied for certain 
addressing mpdes (Le., for indexing). 

These fields further define the meaning of the SRC 1, SRC 2, and src/dest 
fields respectively as shown in Table 0-1. 

When a particular instruction is defined as not using a particular field, the field is ignored. 

0.2 REG FORMAT 

REG format is used for operations performed on data contained in registers. Most of the i960 
processor family's instructions use this format. 

Theopcode for the REG instructions is 12 bits long (three hexadecimal digits) and is split between 
bits 7 through 10 and bits 24 through 31. For example, the addi opcode is 591H. Here, 59H is 
contained iii bits 24 through 31; IH is contained in bits 7 through 10. , , 

srcl and src2 fields specify the.jnstrUction's source operands. Operands can be global or local 
registers or literals. Mode bits (Ml for srcl and M2 for src2) and the instruction type determine 
what an operand specifies. Table 0-1 shows tlns relationship: ' 

0-2 I 



MACHINE-LEVEL INSTRUCTION FORMATS 

Table 0-1. Encoding of sre1 and sre2 in REG Format 

M1 or M2 
Src1 or Src2 

Register Number Literal Value 
Operand Value 

00000 ... 01111 rO ... r15 NA 
0 

10000 ... 11111 gO ... g15 NA 
1 00000 ... 11111 NA 0 ... 31 

The srcldst field can specify a source operand, a destination operand or both, depending on the 
instruction. Here again, mode bit M3 determines how this field is used. If M3 is clear, the srcldst 
operand is a global or local register that is encoded as shown in Table D-2. If M3 is set, the srcldst 
operand can be used as a source-only operand that is a literal. 

When a literal is specified, it is always an unsigned 5-bit value that is zero-extended to a 32-bit 
value and used as the operand. When the instruction defines an operand to be larger than 32 bits, 
values specified by literals are zero-extended to the operand size. 

Table 0-2. Encoding of src/dst in REG Format 

M3 SRCIDST SRCOnly DSTOnly 

0 
gO ... g15 gO ... g15 gO ... g15 
rO ... r15 rO ... r15 rO ... r15 

1 Reserved Literal Reserved 

0.3 COBR FORMAT 

The COBR format is used primarily for compare-and-branch instructions. The test-if instructions 
also use the COBR format. The COBR opcode field is eight bits (two hexadecimal digits). 

The srci and src2 fields specify source operands for the instruction. The srci field can specify 
either a global or local register or a literal as determined by mode bit mi. The src2 field can only 
specify a global or local register. Table D-3 shows the MI, srci relationship: 

Table 0-3. Encoding of src1 in COBR Format 

M1 sra1 

0 gO ... 915 
rO ... r15 

1 Literal 

I 0-3 
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MACHINE-LEVEL INSTRUCTION FORMATS 

The displacement field contains a signed two's complement number that specifies a word 
displacement. The prosessor uses this value to somp~te the address of a target instruction to which 
the processor goes as a result of a comparison. The displacement field's value can range from _210 

to 210 -1. To determine the target instruction's IP, the processor converts the displacement value to 
a byte displacement (i.e., multiplies the value by 4). It then adds the resulting byte displacement to 
the IP of the current instruction. 

For the test<cc> instructions, only the srcl field is used. Here, this field specifies a destination 
global or local register; Ml is ignored. 

0.4 CTRL FORMAT 

The CTRL format is used for instructions that branch to a new IP, including the branch, 
branch<cc>, bal and call instructions; ret also uses this format. The CTRL opcode field is eight 
bits (two hexadecimal digits). 

A branch target address is speCified with the displacement field in the same manner as COBR 
format instructions. The displacement field specifies a word displacement as a signed, two's 
complement number in the range _221 to 221_1. The processor ignores the ret instruction's 
displacement field. 

0.5 MEM FORMAT 

The MEM format is used for instructions that require a memory address to be computed. These 
instructions include the load, store and Ida instructions. Also, the extended versions of the branch, 
branch-and-link and call instructions (bx, balx and calix) use this format. 

The two MEM-format encodings are MEMA and MEMB. MEMB can optionally add a 32-bit 
displacement (contained in a second word) to the instruction. Bit 12 of the instruction's first word 
determines whether MEMA (clear) or MEMB (set) is used. 

The opcode field is eight bits long for either encoding. The src/dst field specifies a global or local 
register. For load instructions, srcldst specifies the destination register for a word loaded into the 
processor from memory or, for operands larger than one word, the first of successive destination 
registers. For store instructions, this field specifies the register or group of registers that contain 
the source operand to be s~oredin meJnory. 

0-4 I 



intet MACHINE-LEVEL INSTRUCTION FORMATS 

The mode field determines the address mode used for the instruction. Table D-4 summarizes the 
addressing modes for the two MEM-format encodings. Fields used in these addressing modes are 
described in the following sections. 

Table 0-4. Addressing Modes for MEM Format Instructions 

#of 
Format Mode Addressing Mode Address Computation Instr 

Words 

00 Absolute Offset offset 1 
MEMA 

10 Register Indirect with Offset (abase) + offset 1 

0100 Register Indirect (abase) 1 

0101 IP with Displacement (IP) + displacement + 8 2 

0110 Reserved reserved NA 

0111 Register Indirect with Index (abase) + (index)' 2scale 

MEMB 1100 Absolute Displacement displacement 

1101 
Register Indirect wI 

(abase) + displacement Displacement 

1110 Index with Displacement (index) • 2sca1e + displacement 

1111 
Register Indirect with Index 

(abase) + (index) • 2sca1e + displacement 
and Displacement 

NOTE: 

In these address computations, a field in parentheses, e.g., (abase), indicates that the value in the 
specified register is used in the computation. 
Usage of a reserved encoding causes generation of an OPERATION.INVALID_OPCODE fault. 

0.5.1 MEMA Format Addressing 

The MEMA format provides two addressing modes: 

• absolute offset 

• register indirect with offset 

1 

2 

2 

2 

2 

The offset field specifies an unsigned byte offset from 0 to 40%. The abase field specifies a global 
or local register that contains an address in memory. 

For the absolute-offset addressing mode (mode = 00), the processor interprets the offset field as an 
offset from byte 0 of the current process address space; the abase field is ignored. Using this 
addressing mode along with the Ida instruction allows a constant in the range 0 to 4096 to be 
loaded into a register. 

_I 0-5 
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For the register~indirect"with-offset addressing mode (mode = 10), offset field value is added to the 
a~dress in the abase register. Setting the offset value to zero creates a register indirect addressing 
mode; however, this operation can generally be carried out faster by using the MEMB version· of 
this addressing mode. 

0.5.2 MEMB Format Addressing 

The MEMB format provides the following seven addressing modes: 

• absolute displacement • 

• register indirect with displacement • 

• register indirect with index and displacement 

• IP with displacement 

register indirect 

register indirect with displacement 

index with displacement 

The abase and index fields specify local or global registers, the contents of which are used in 
address computation. When the index field is used in an addressing mode, the processor automati­
cally scales the index register value by the amount specified in the scale field. Table D-5 gives the 
encoding of the scale field. The optional displacement field is contained in the word following the 
instruction word. Thedisplacement is a 32-bit signed two's complement value. 

Table 0-5. Encoding of Scale Field 

Scale Scale Factor (Multiplier) 

000 , 1 

001 2 

010 4 

011 8 

100 16 

101 to 111 Reserved 

Note: 
Usage of a reserved encoding causes an unpredictable result. 

For the IP with displacement mode, the value of the displacement field plus eight is added to the 
address of the current instruction. 
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Address Space 

Address 

Arithmetic Controls 
(AC) Register 

Asynchronous 
Faults 

Big Endian 

Condition Code 
Flags 

Execution Mode 
Flag 

GLOSSARY 

An array of bytes used to store program code, data, stacks and system 
data structures required to execute a program. Address space is linear -
also called flat - and byte addressable, with addresses running contigu­
ously from 0 to 232 - 1. It can be mapped to read-write memory, read­
only memory and memory-mapped I/O. i960 architecture does not define 
a dedicated, addressable 110 space. 

A 32-bit value in the range 0 to FFFF FFFFH used to reference in 
memory a single byte, half-word (2 bytes), word (4 bytes), double-word 
(8 bytes), triple-word (12 bytes) or quad-word (16 bytes). Choice 
depends on the instruction used. 

A 32-bit register that contains flags and masks used in controlling the 
various arithmetic and comparison operations that the processor 
performs. Flags and masks contained in this register include the 
condition code flags, integer-overflow flag and mask bit and the no­
imprecise-faults (NIF) bit. All unused bits in this register are reserved 
and must be set to o. 
Faults that occur with no direct relationship to a particular instruction in 
the instruction stream. When an asynchronous fault occurs, the address 
of the faulting instruction in the fault record and the saved IP are 
undefined. i960 core architecture does not define any fault types that are 
asynchronous. 

The controller reads or writes a data word's least-significant byte to the 
bus' eight most-significant data lines (D3l:24). Big endian systems store 
the least-significant byte at the highest byte address in memory. So, if a 
big endian ordered word is stored at address 600, the least-significant 
byte is stored at address 603 and the most-significant byte at address 600. 
Compare with little endian. 

AC register bits 0, 1 and 2. The condition code flags indicate the results 
of certain instructions - usually compare instructions. Other instructions, 
such as conditional branch instructions, examine these flags and perform 
functions according to their state. Once the processor sets the condition 
code flags, they remain unchanged until the processor executes another 
instruction that uses these flags to store results. 

PC register bit 1. This flag determines whether the processor is operating 
in user mode (0) or supervisor mode (1). 
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Fault Call 

Fault Table 

Fault 

FP 

Frame Pointer (FP) 

Frame 

Global Registers 

H~dReset 

mR 
IMI 

Imprecise Faults 

Initialization Boot 
Record (IBR) 

Glossary-2 

intet 
An implicit call· to a fault handling procedure. The processor performs 
fault calls automatically without any intervention from software. It gets . 
pointers to fault handling procedures from the fault table. 

An architecture-defmed data structure that contains pointers to fault 
handling pr:ocedures. Each fault table entry is associated with a particular 
fault type. When the processor generates Ii fault, i.t uses the fault table to 
select the proper fault handling procedure for the type of fault condition 
detected. 

An everit that the processor generates to indicate that, while executing 
the program, a condition arose which could cause the processor to go 

. down a wrong and possibly disastrous path. One example of a fault 
condition is a divisor operand of zero in a. div:ide operation; another 
example is an instruction with an invalid opcode. 

See Frame Pointer. 

The address of the first byte in the current (topmost) stack frame of the 
procedure stack. The FP is contained in global register glS~ . 

See Stack Frame. 

A s~t of 16 general-purpose registers (gO throllgh glS) whose contents 
are preserved across procedure boundaries .. Global registers are used for 
general storage of data and addresses and for passing parameters 
between procedures. - . 

The assertion of the RESET# pin; equivalent to powerup. 

See Initialization Boot Record. 

See Initial Memory Image. 

Faults that are allowed to be generated out-of-order from where they 
occur in the instruction stream. When an imprecise fault is generated, the 
prOCessor indicates the address of the faulting instruction, but it does not 
guarantee that software will be able to recover from the fault and resume 
execution of the· program with no break in the program's control flow. 
The NIP bit in the arithmetic controls register determines whether all 
faults must be precise (l}or some faults are allowed to be imprecise (0). 

One of three IMI components, IBR is the primary data structure required 
to initialize the i960 CA microprocessor. IBN. is 12-word structure which 
must be located at address FFFF FFOOH. 
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Initial Memory 
Image (IMI) 

Instruction Cache 

Instruction Pointer 
(IP) 

Integer Overflow 
Flag 

Integer Overflow 
Mask Bit 

Interrupt Call 

Interrupt Stack 

Interrupt Table 

Interrupt Vector 

Interrupt 

Leaf Procedure 

l~ 

GLOSSARY 

Comprises the minimum set of data structures the processor needs to 
initialize its system. Performs three functions for the processor: 1) 
provides initial configuration information for the core and integrated 
peripherals; 2) provides pointers to system data structures and the first 
instruction to be executed after processor initialization; 3) provides 
checksum words that the processor uses in self-test at startup. See also 
IBR, PRCB and System Data Structures. 

A memory array used for temporary storage of instructions fetched from 
main memory. Its purpose is to streamline instruction execution by 
reducing the number of instruction fetches required to execute a 
program. 

A 32-bit register that contains the address (in the address space) of the 
instruction currently being executed. Since instructions are required to be 
aligned on word boundaries in memory, the IP's two least-significant bits 
are always zero. 

AC register bit 8. When integer overflow faults are masked, the 
processor sets the integer overflow flag whenever integer overflow 
occurs to indicate that the fault condition has occurred even though the 
fault has been masked. If the fault is not masked, the fault is allowed to 
occur and the flag is not set. 

AC register bit 12. This bit masks the integer overflow fault. 

An implicit call to a interrupt handling procedure. The processor 
performs interrupt calls automatically without any intervention from 
software. It gets vectors (pointers) to interrupt handling procedures from 
the interrupt table. . 

Stack the processor uses when it executes interrupt handling procedures. 

An architecturally-defined data structure that contains vectors to 
interrupt handling procedures and fields for storing pending interrupts. 
When the processor receives an interrupt, it uses the vector number that 
accompanies the interrupt to locate an interrupt vector in the interrupt 
table. The interrupt table's pending interrupt fields contain bits that 
indicate priorities and vector numbers of interrupts waiting to be 
serviced. 

A point«r to an interrupt handling procedure. In the i960 architecture, 
interrupts vectors are stored in the interrupt table. 

An event that causes program execution to be suspended temporarily to 
allow the processor to handle a more urgent chore. 

Leaf procedures call no other procedures. They are called "leaf 
procedures" because they reside at the "leaves" of the call tree. 
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Literals 

Little Endian 

Local Call 

Local Registers 

Memory 

"Natural" Fill 
Policy 

NIF 

NMI 

No Imprecise Faults 
(NIF) Bit 

Non Maskable 
Interrupt (NMI) 

Parallel Faults 

Glossary-4 

A set of 32 ordinal values ranging from 0 to 31 (5 bits) that can be used 
as operands in certain instructions. 

The controller reads or writes a data word's least-significant byte to the 
bus' eight least-significant data lines (D7:0). Little endian systems store 
a word's least-significant byte at the lowest byte address in memory. For 
example, if a little endian ordered word is stored at address 600, the 
least-significant byte is stored at address 600 and the most-significant 
byte at address 603. Compare with big endian . 

. A procedure call that does not require a switch in the current execution 
mode or a switch to another stack. Local calls can be made explicitly 
through the call, calix and calls instructions and implicitly through the 
fault call mechanism. 

A set of 16 general-purpose data registers (rO through r15) whose 
contents are associated with the procedure currently being executed. 
Local registers hold the local variables for a procedure. Each time a 
procedure is called, the processor automatically· allocates a new set of 
local registers for that procedure and saves the local registers for the 
calling procedure. 

Array to which address space is mapped: Memory can be read-write, 
read-only or a combination of the two. A memory address is generally 
synonymous with an address in the address space. 

The processor fetches only the amount of data that is requested by a load 
(i.e;, a word, long word, etc.) on a data cache miss. Exceptions are byte 
and short word accesses, which are always promoted to words. 

See No Imprecise Faults Bit. 

See Non Maskable Interrupt. 

AC register bit 15. This flag determines whether or not imprecise faults 
are allowed to occUr. If set, all faults are required to be precise; if clear, 
certain faults can be imprecise. 

Provides an interrupt !hat cannot be masked and has a higher priority 
than priority-31 interrupts and priority-31 process priority. The core 
servic;es NMI requests immediately. 

A condition which occurs when multiple execution units, executing 
instructions in parallel, report multiple faults simultaneously. Setting the 
NIP bit prohibits .execution conditions which could cause parallel faults. 

I 
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Pending Interrupt An interrupt that the processor saves to be serviced at a later time. When 
the processor receives an interrupt, it compares the interrupt's priority 
with the priority of the current processing task. If the priority of the 
interrupt is equal to or less than that of the current task, the processor 
saves the interrupt's priority and vector number in the pending interrupt 
fields of the interrupt table, then continues work on the current 
processing task. 

PFP See Previous Frame Pointer. 

Pointer An address in the address space (or memory). The term pointer generally 
refers to the first byte of a procedure or data structure or a specific byte 
location in a stack. 

PRCB See Process Control Block. 

Precise Faults Faults gen.erated in the order in which they occur in the instruction 
stream and with sufficient fault information to allow software to recover 
from the faults without altering program's control flow. The AC register 
NIP bit and the syncf instruction allow software to force all faults to be 
precise. 

Previous Frame 
Pointer (pFP) 

Priority Field 

Priority 

Process Control 
Block (PRCB) 

Process Controls 
(PC) Register 

I 

The address of the previous stack frame's first byte. It is contained in bits 
4 through 31 of local register rOo 

PC register bits 16 through 20. This field determines processor priority 
(from 0 to 31). When the processor is in the executing state, it sets its 
priority according to this value. It also uses this field to determine 
whether to service an interrupt immediately or to save the interrupt for 
later service. 

A value from 0 to 31 that indicates the priority of a program or interrupt; 
highest priority is 31. The processor stores the priority of the task 
(program or interrupt) that it is currently working on in the priority field 
of the PC register. See also NMI. 

One of three (IMI) components, PRCB contains base addresses for 
system data structures and initial configuration information for the core 
and integrated peripherals. 

A 32-bit register that contains miscellaneous pieces of information used 
to control processor activity and show current processor state. Flags and 
fields in this register include the trace enable bit, execution mode flag, 
trace fault pending flag, state flag, priority field and internal state field. 
All unused bits in this register are reserved and must be set to O. 
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Register Score­
boarding 

Return Instruction 
Pointer (RIP) 

Return Type Field 

RIP 

Soft Reset 

SP 

Stack Frame 

Stack Pointer. (SP) 

Stack 

State Flag 

State 

Glossary-6 

Internal flags that indicate a particular register or group of registers is' 
being used in an operation. This feature enables the processor to execute 
some instructions in parallel and out-of-order. When the processor 
begins executing an instruction, it sets the scoreboard flag for the 
destination register in use by that instruction. If the instructions that 
follow do not use scoreboarded registers, the processor is able to execute 
one or more of those instructions concurrently with the frrst instruction. 

The address of the instruction following a call or branch-and-link 
instruction that the processor is to execute after returning from the called 
procedure. The RIP is contained in local register r2. When the processor 
executes a procedure call, it sets the RIP to the address of the instruction 
immediately following the procedure call instruction. 

Bits 0, 1 and 2 of local register rOo When a procedure call is made using 
the integrated call and return. mechanism, this field indicates the call 
type: local, supervisor, interrupt or fault. The processor uses this 

. information to select the proper return mechanism when returning from 
the called procedure. 

See Return Instruction Pointer. 

Re-running of the Reset microcode without physically asserting the 
RESET# pin or removing power from the CPU. 

See Stack Pointer. 

A block of bytes on a stack used to store local variables for a specific 
procedure. Another term for a stack frame is an activation record. Each 
procedure that the processor calls has its own stack frame associated 
with it. A stack frame is always aligned on a 64-byte boundary. The first 
64 bytes in a stack frame are reserved for storage of the local registers 
associated with the procedure. The frame pointer (FP) and stack pointer 
(SP) for a particular frame indicate location and boundaries of a stack 
frame within a stack. 

The address of the last byte in the current (topmost) frame of .the 
procedure stack. The SP is contained in local register ri. 

A contiguous array of bytes in the address space that grows from low 
addresses to high addresses. It consists of contiguous frames, one frame 
for each active procedure. i960 architecture defines three stacks: local, 
supervisor and interrupt. 

PC register bit 10. This flag indicates to software that the processor is 
currently executing a program (0) or servicing an interrupt (1). 

The type of task that the processor is currently working on: a program or 
an interrupt handling procedure. The processor sets the PC register state 
flag to indicate its current state. 
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Pointer 

Supervisor Stack 

System Call 

System Data 
Structures 

System Procedure 
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Trace Table 
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Trace Controls 
(TC) Register 
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GLOSSARY 

A set of four architecturally-defined registers - each 32-bits in length -
that contain status and control information used in controlling program 
flow. These registers include the instruction pointer (IP), AC register, PC 
register and TC register. 

A system call (made with the calls instruction) where the entry type of 
the called procedure is 102. If the processor is in user mode when a 
supervisor call is made, it switches to the supervisor stack and to 
supervisor mode. 

One of two execution modes - user and supervisor - that the processor 
can be in. The processor uses the supervisor stack when in supervisor 
mode. Also, while in supervisor mode, software is allowed to execute the 
modpc instruction and any other implementation-defined instructions 
that are designed to be supervisor mode instructions. 

The address of the first byte of the supervisor stack. The supervisor stack 
pointer is contained in bytes 12 through 15 of the system procedure table 
and the trace table. 

The procedure stack that the processor uses when in supervisor mode. 

An explicit procedure call made with the calls instruction. The two types 
of system calls are a system-local call and system-supervisor call. On a 
system call, the processor gets a pointer to the system procedure through 
the system procedure table. 

One of three IMI components. The following system data structures 
contain values the processor requires for initialization: PRCB, IBR, 
system procedure table, control table, interrupt table. 

An architecturally-defined data structure that contains pointers to system 
procedures and (optionally) to fault handling procedures. It also contains 
the supervisor stack pointer and the trace control flag. 

An architecturally-defined data structure that contains pointers to trace­
fault-handling procedures. The trace table has the same structure as the 
system procedure table. 

Bit 0 of byte 12 of the system procedure table. This bit specifies the new 
value of the trace enable bit when a supervisor call causes a switch from 
user mode to supervisor mode. Setting this bit to 1 enables tracing; 
setting it to 0 disables tracing. 

A 32-bit register that controls processor tracing facilities. This register 
contains one event bit and one mode bit for each trace fault subtype (i.e., 
instruction, branch, call, return, preretum, supervisor and breakpoint). 
The mode bits enable the various tracing modes; the event flags indicate 
that a particular type of trace event has been detected. All the unused bits 
in this register are reserved and must be set to O. 

Glossary-7 
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Trace Enable Bit 

Trace Fault 
Pending Flag 

Tracing 

User Mode 

Vector Number 

Vector 

Glossary-8 

PC register bit O. This bit determines whether trace faults are to be 
generated (1) or not generated (0). 

PC register bit 10. This flag indicates that a trace event has been detected 
(1) but not yet generated. Whenever the processor detects a trace fault at 

, the same, time that it detects' a, non~trace fault, it sets the trace fault 
pending flag then calls the fault handling procedure for the non-trace 
fault. On return from the fault procedure for the non-trace fault, the 
processor checks the trace fault pending flag. IT set, it generates the trace 
fault and handles it. 

The ability of the processor to detect execution of certain instruction 
types, such as branch, call and return. When tracing is enabled, the 
processor generates a fault whenever it detects a trace event. A trace fault 
handler can then be designed to' call ,a debug monitor to provide 
information on the trace event and its location in the instruction stream. 

One of two execution modes - user and supervisor - that the processor 
can be in. When the processor is in user mode, it uses the local stack and 
is not allowed to use the modpc instruction or any other implementation­
defined instruction that is designed to be used only in supervisor mode. 

The number of an entry in the interrupt table where an interrupt vector is 
, stored .. The vector nwnber also indicates the priority of the interrupt. 

See Interrupt Vector. 
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A 
absolute 

displacement 2-7 
offset 2-7 

AC register, see Arithmetic Controls (AC) register 
access fault model 3-7 
access faults 3-7 
access types 3-6 

restrictions 3-6 
ADD 6-8 

add 
conditional instructions 6-8 
integer instruction 6-12 
ordinal instruction 6-12 
ordinal with carry instruction 6-11 

addc 6-11 
addi 6-12 
addie 6-8 
addig 6-8 
addige 6-8 
addil6-8 
addile 6-8 
addine 6-8 
addino 6-8 
addio 6-8 
addo 6-12 
addoe 6-8 
addog·6-8 
addoge 6-8 
addol6-8 

add ole 6-8 
addone 6-8 
addono 6-8 
addoo 6-8 
address space restrictions 

data structure alignment A-3 
instruction cache A-2 
internal data RAM A-2 
reserved memory A -2 
stack frame alignment A-3 

addressing registers and literals 3-4 
aligment 

literals 3-4 

1 

alignment 
registers 3-4 

alignment of registers and literals 3-4 
alterbit 6-13 
and 6-14 
andnot 6-14 
architecture reserved memory space 11-9 
argument list 7-14 
Arithmetic Controls (AC) register 3-17 

condition code flags 3-18 
initial image 11-18 
initialization 3 -18 
integer overflow flag 3-20 
no imprecise faults bit 3-20 

arithmetic instructions 5-6 
add, subtract, multiply or divide 5-7 
extended-precision instructions 5-8 
remainder and modulo instructions 5-8 
shift and rotate instructions 5-9 

arithmetic operations and data types 5-7 
atadd 3-15, 6-15 
atmod 3-8, 3-15, 6-16 
atomic access 3-14 
atomic add instruction 6-15 
atomic instructions 5-17 
Atomic instructions (LOCK signal) 15-30 
atomic modify instruction 6-16 
atomic operations 15-30 

B 
b 6-17 
ba16-18 

balx 6-18 
basic bus states 15-2 
bbc 6-20 
bbs 6-20 

INDEX 

BCON register, see Bus Control (BCON) register 
BCU, see Bus Controller Unit 
be 6-22 
bg 6-22 
bge 6-22 
big endian 3-16 
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big-endian byte order 

selecting 
little endian byte order 

selecting 12-11 
bit definition 1-8 
bit ordering 2-4 
bit, bit field and byte instructions 5-10 

bit field instructions 5-11 
bit instructions 5-10 
byte instructions 5-11 

bits and bit fields 2-3 
b16-22 
ble 6-22 
bne 6-22 
bno 6-22 
bo 6-22 
boundary conditions 

internal memory locations 12-12 . 
internal memory-mapped locations 12-7 
LMT boundaries 12.13 
logical data template ranges 12-13 

Boundary Scan 

test logic 17-2 
Boundary Scan (JTAG) 17-1 
Boundary Scan Architecture 17-2 
Boundary-Scan register 17-7 
branch 

and link extended instruction 6-18 
and link instruction 6-18 
check bit and branch if clear set instruction 6-20 
check bit and branch if set instruction 6-20 
conditional instructions 6-22 
extended instruction 6-17 
instruction 6-17 

branch instructions 5-13 
compare and branch instructions 5-15 
conditional branch instructions 5-14 
unconditional branch instructions 5-13 

branch-and-link 7-1 
returning from 7-22 

branch-and-link instruction 7-1 
coding calls 7-1 

breakpoint 
resource request message 10-7 

Index-2 

Breakpoint Control (BPCON) register 10-7, 10-8, 
C-16 

programming 10-8 
breakpoints A -7 

bswap 6-24 
built-in self test 11-2 
bus confidence self test 11-6 
Bus Control (BCON) register 12-6, 12-7 
Bus Control Unit (BCU) 15-22 

changing byte order dynamically 12-13 
selecting byte order 12-11 

Bus Controller 
boundary conditions 12-7 
compared to previous i960 processors 12-4 
logical memory attributes 12-2 
memory attributes 12-1 
physical memory attributes 12-1, 12-4 

Bus Controller Unit (BCU) 12-1 
bus width 12-5 
PMCON initialization 12-6 

bus controller unit (BCU) 15-2 
bus master 

arbitration timing diagram 15-33 
bus signal groups 15-4 
bus snooping 4-5 
bus states with arbitration 15-3 
bus transactions 

basic read 15-9 
basic write 15-11 
burst transactions 15-11 
bus width 15-7 
data width 15-7 

bus width 
programming with PMCON register 12-5 

bx 6-17 
byte order 

changing dynamically 12-13 
selecting 12-11 

byte swap instruction 6-24 

c 
cache load-and-Iock mechanism 4-5 
caching of interrupt-handling procedure 13-23 
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caching oflocal register sets 7-9 
frame fills 7-9 
frame spills 7-9 

call 
extended instruction 6-28 
instruction 6-25 
system instruction 6-26 

call 6-25, 7-2, 7-7 
call and return instructions 5-16 
call and return mechanism 7 -1, 7 -2 

explicit calls 7-1 
implicit calls 7-1 
local register cache 7-3 
local registers 7-2 
procedure stack 7-3 
register and stack management 7-4 

frame pointer 7-4 
previous frame pointer 7-6 
return type field 7-6 
stack pointer 7-5 

stack frame 7-2 
call and return operations 7-6 

call operation 7-7 
return operation 7-8 

calls 6-26, 7-2, 7-7 
call-trace mode 10-3 
calix 6-28, 7-2, 7-7 
check bit instruction 6-30 
chkbit 6-30 
clear bit instruction 6-31 
clock input (CLKIN) 11-33 
clrbit 6-31 
cmpdeci 6-32 
cmpdeco 6-32 
cmpi 5-11, 6-34 
cmpib 5-11 
cmpibe 6-36 
cmpibg 6-36 
cmpibge 6-36 
cmpibl6-36 

cmpible 6-36 
cmpibne 6-36 
cmpibno 6-36 
cmpibo 6-36 

cmpinci 6-33 
cmpinco 6-33 
cmpis 5-11 
cmpo 5-11, 6-34 
cmpobe 6-36 
cmpobg 6-36 
cmpobge 6-36 
cmpobl6-36 

cmpoble 6-36 
cmpobne 6-36 
cold reset 11-3, 13-18 
compare 

and branch conditional instructions 6-36 
and decrement integer instruction 6-32 
and decrement ordinal instruction 6-32 
and increment integer instruction 6-33 
and increment ordinal instruction 6-33 
integer conditional instruction 6-39 
integer instruction 6-34 
ordinal conditional instruction 6-39 
ordinal instruction 6-34 

comparison instructions 5-11 

INDEX 

compare and conditional compare instructions 
5-11 

compare and increment or decrement instructions 
5-12 

test condition instructions 5-13 
concmpi 6-39 
concmpo 6-39 
conditional fault instructions 5-17 
control registers 3-1, 3-6 

memory-mapped 3-5 
overview 1-4 

control table 3-1, 3-6, 3-12 
Control Table Valid (CTV) bit 12-6 
core architecture mechanisms A-I 

D 
Data Address Breakpoint (DAB) registers 10-9 

programming 10-8 
data alignment 2-4 
data alignment in external memory 3-15 

Index-3 

--I, 



IND.EX 

data cache 
coherency 

110 and bus masters 4-9 
fill policy 1-2, 4-6, 4-7 
overview 1-2 
visibility 4-9 
write policy 4-7 

data cache control instruction 6-41 
Data Cache Enable (DCEN) bit 12-12 
data control peripheral units A-6 
data movement instructions 5-3 

load address instruction 5-6 
load instructions· 5-5 
move instructions 5-6 

Data Register 
timing diagram 17-19 

data structures 
control table 3-1,3-6, 3-12 
fault table 3-1, 3-12 
initialization boot record 3-1, 3-12 
interrupt stack 3-1, 3-12 
interrupt table 3-1, 3-12 
literals 3-4 
local stack 3-1 
Process Control Block (PRCB) 3-1, 3-12 
supervisor stack 3-1,3-12 
system procedure table 3-1, 3-12 
user stack 3-12 

data types 
bits and bit fields 2-3 
data alignment 2-4 
integers 2-2 
literals 2-4 
ordinals 2-2 
supported 2-1 
triple and quad words 2-3 

dcctl 4-6,,4-9, 6-41 
DCEN bit, see Data Cache Enable (DCEN) bit 

debug 
overview 10-1 

debug instructions 5-17 
decoupling capacitors 11-35 
Default Logical Memory Configuration (DLMCON) 

register 12-2 
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design considerations 
high frequency 11-36 
interference 11-38 
latchup 11-38 
line termination 11-37 

Device ill register 17-6 
device ill Register 11-21 
device ill register C-21 
dlv16-47 

divide integer instruction 6-47 
divide ordinal instruction 6-47 
divo 6-47 
DLMCON registers 

E 
ediv 6-48 

intet 

8-bit bus width byte enable encodings 15-8 
8-bit wide data bus bursts 15-13 
electromagnetic interference (EMl) 11-39 
electrostatic interference (ESI) 11-39 
emu I 6-50 
endianism 

changing dynamically 12-13 
selecting 12-11 

eshro 6-51 
explicit calls 7-1 
extended addressing instructions 5-13 
extended divide instruction 6-48 
extended multiply instruction 6-50 
extended shift right ordinal instruction 6-51 
external bus 

overview 1-4 
external buses 

data alignment 15-22 
external interrupt pins (XINT7 

0) 13-9 
external memory requirements 3-14 . 
external system requirements A-7 
extract 6-52 

F 
FAIL# pin 11-6 
fault conditional instructions 6-53 
fault conditions 9-1 



fault handling 
data structures 9-1 
fault record 9-2, 9-6 
fault table 9-2, 9-4 
fault type and subtype numbers 9-2 
fault types 9-4 
local calls 9-2 
multiple fault conditions 9-10 
procedure invocation 9-6 
return instruction pointer (RIP) 9-14 
returning to an alternate point in the program 9-15 
stack usage 9-6 
supervisor stack 9-2 
system procedure table 9-2 
system-local calls 9-2 
system-supervisor calls 9-2 
user stack 9-2 

fault record 9-6 
address-of-faulting-instruction field 9-7 
fault subtype field 9-7 
fault type field 9-7 
location 9-6, 9-9 
structure 9-7 

fault table 3-1, 3-12, 9-4 
local-call entry 9-6 
location 9-4 
system-call entry 9-6 

fault type and subtype numbers 9-2 
fault types 9-4 
faulte 6-53 
faultg 6-53 
faultge 6-53 
faultl6-53 

faultle 6-53 
faultne 6-53 
faultno 6-53 
faulto 6-53 

I 

INDEX 

faults A-6 
access 3-7 
ARITHMETIC.INTEGER_OVERFLOW 6-90 
ARITHMETIC. OVERFLOW 6-8,6-12,6-47, 

6-83,6-101,6-107,6-112 
ARITHMETIC.ZERO_DIVIDE 6-47, 6-48, 

6-76,6-90 
CONSTRAINT.RANGE 6-53 
imprecise 5-23 
NIFbit 9-20 
OPERATION.INV ALID_OPERAND 6-45, 

6-48,6-57,6-65,6-67,6-81,6-107,6-117 
OPERATION.UNALIGNED 6-72, 6-107 
OPERATION.UNIMPLEMENTED 6-92 
overview 1-5 
precision (syncf) 9-20 
PROTECTION.LENGTH 6-27 
TRACE.MARK 6-56, 6-74 
TRACE.PRERETURN 6-92 
TYPE.MISMATCH 6-45,6-57,6-65,6-67, 

6-68,6-69,6-78,6-107,6-117 
field definition 1-8 
flag definition 1-8 
flush local registers instruction 6-55 
flushreg 6-55 
fmark 6-56 
force mark instruction 6-56 
FP, see Frame Pointer 
frame fills 7-9 
Frame Pointer (FP) 7-4 

location 3-3 
frame spills 7-9 

G 
global registers 3-1, 3-2 

overview 1-7 

H 
halt 6-57, 16-1 
halt CPU instruction 6-57 
HALT mode 

entering and exiting 16-1 
operation 16-1 
processor operation 16-1 
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hardware breakpoint resources 10-5 
requesting access privilege 10-6 

HOLDIHOLDA protocol 15-32 

i IBR, see initialization boot record 

\

" icctl 1-2,4-4,4-5 
,'i". IEEE Standard Test Access Port 17-2 
. ,~>i IEEE Std. 1149.1 17-2 
I IMI 11-1, 11-9 

implementation-specific features A-I 
implicit calls 7 -1, 9..:2 
imprecise faults 5-23 
index with displacement 2-8 
indivisible access 3-14 
Initial Memory Image (lMI) 11--1 
initial memory image (IMI) 11-9 . 
initialization 11-1, 11-2 

CLKIN 11-33 
code example 11-23 
hardware requirements 11-33 
MON960 11-23 
power and ground 11-34 

initialization boot record 3-1,3-12 
Initialization Boot Record (IBR) 11-1, 1 1-12,' 

11-14 
initialization mechanism A-5 
initialization requirements 

architecture reserved memory space 11-9 
controltable 11-20, C-19 
data structures 11-10 
Process Control Block 11-14 

Instruction Breakpoint (IBP) registers 10-10 
instruction breakpoint mo~es 

programming 10-11 
instruction cache 3-1, 3-16 

coherency 4-5 
configuration 3-16 
enabling and disabling 11-18 
locking instructions 4-5 
overview 1-2,4-4 
visibility 4-5 
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instruction formats 5-3 
assembly language format 5-1 
instruction encoding format 5-2 

instruction optimizations 5-19 
Instruction Pointer (IP) register 3-17 
Instruction Register (IR) 17-2, 17-5 

timing diagram 17-18 
Instruction set 

atmod 3-8 
sysctl3-8 

instruction set 

6-8 
ADD 6-8 
addc 6-11 
addi 6-12 
addle 6-8 
addig 6-8 
addlge 6-8 
addll 6-8 
addlle 6-8 
addlne 6-8 
addlno 6-8 
addo 6-12 
addoe 6-8 
addog 6-8 
addoge 6-8 
addol6-8 
addole 6-8 
addone 6-8 
addono 6-8 
addoo 6-8 
alterblt 6-13 
and 6-14 
andnot 6-14 
atadd 3-15, 6-15 
atmod 3-15, 6-16 
b 6-17 
ba16-18 
balx 6-18 
bbc 6-20 
bbs 6-20 
be 6-22 
bg 6-22 
bge 6-22 

intet 
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b16-22 

ble 6-22 
bne 6-22 
bno 6-22 
bo 6-22 
bswap 6-24 
bx 6-17 
call 6-25, 7-2, 7-7 
calls 6-26, 7-2, 7-7 
calix 6-28, 7-2, 7-7 
chkbit 6-30 
clrbit 6-31 
cmpdeci 6-32 
cmpdeco 6-32 
cmpi 5-11, 6-34 
cmpib 5-11 
cmpibe 6-36 
cmpibg 6-36 
cmpibge 6-36 
cmpibl6-36 

cmpible 6-36 
cmpibne 6-36 
cmpibno 6-36 
cmplbo 6-36 
cmplnci 6-33 
cmplnco 6-33 
cmpis 5-11 
cmpo 5-11, 6-34 
cmpobe 6-36 
cmpobg 6-36 
cmpobge 6-36 
cmpobl6-36 

cmpoble 6-36 
cmpobne 6-36 
concmpi 6-39 
concmpo 6-39 
dcetl 4-6, 4-9, 6-41 
divi 6-47 
divo 6-47 
ediv 6-48 
emu16-50 

eshro 6-51 
extract 6-52 
faulte 6-53 
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faultg 6-53 
faultge 6-53 
faulll 6-53 
fauille 6-53 
faultne 6-53 
faultno 6-53 
faulto 6-53 
flushreg 6-55 
fmark 6-56 
halt 6-57, 16-1 
icetl 1-2, 4-4, 4-5 
implementation-specific instructions A-4 
instruction timing A-4 
intetl6-66 

intdis 6-68 
inten 6-69 
Id 2-2, 6-70 
Ida 6-73 
Idib 2-2, 6-70 
Idis 2-2, 6-70 
Idl 3-4, 6-70 
Idob 2-3, 6-70 
Idos 2-3, 6-70 
Idq 6-70 
Idt 6-70 
mark 6-74 
modac 6-75 
modi 6-76 
modify 6-77 
modpc 6-78, 10-3 
modtc 6-79, 10-2 
mov 6-80 
mov16-80 

movq 6-80 
movt 6-80 
mull 6-83 
mulo 6-83 
nand 6-84 
nor 6-85 
not 6-86 
notand 6-86 
notbit 6-87 
notor 6-88 
or 6-89 
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ornot 6-89 subol 6-109 
remi 6-90 subole 6-109 
remo 6-90 subone 6-109 
ret 6-91 subono 6-109 
rotate 6-94 suboo 6-109 
scanbit 6-95 syncf 6-113, 9-20 
scan byte 6-96 sysctl 1-2,4-4,4-5, 6-114, 10-6 
sele 5-6, 6-97 teste 6-118 
selg 5-6, 6-97 testg 6-118 
selge 5-6, 6-97 testge 6-118 
sell 5-6, 6-97 testI6-118 

selle 5-6, 6-97 testle 6-118 
seine 5-6, 6-97 testne 6-118 
selno 5-6, 6-97 testno 6-118 
selo 5-6, 6-97 testo 6-118 
setbit 6-99 xnor 6-120 
shli 6-100 xor 6-120 
shlo 6-100 instruction set functional groups 5-3 
shrdi 6-100 Instruction Trace Event 6-5 
shrl6-100 instruction-trace mode 10-3 
shro 6-100 intctl6-66 

spanbit 6-103 Intdis 6-68 
st 2-2, 6-104 integer flow masking 5-22 
stib 2-2,6-104 integers 2-2 
stis 2-2, 6-104 data truncation 2-2 
st16-104 ," sign extension 2-2 
stob 2-3, 6-104 inten 6-69 
stos 2-3 internal data RAM 4-1 
stq 6-104 modification 4-1 
stt 6-104 overview 1-2 
subc 6-108 size 4-1 
subi 6-112 internal self test program 11-6 
subie 6-109 interrupt 
subig 6-109 timer 13-2 
subige 6-109 Interrupt Control (ICON) register 1-3 
subil 6-109 memory-mapped addresses 13-12 
subile 6-109 interrupt controller 13-1 
subine 6-109 configuration 13-20 
subino 6-109 interrupt pins 13-9 
subio 6-109 overview 13-1 
subo 6-112 program interface 13-1 
suboe 6-109 programmer interface 13-11 
subog 6-109 setup 13-20 
suboge 6-109 Interrupt Controller Unit (ICU) 1-3 
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interrupt handling procedures 8-6 
AC and PC registers 8-6 
address space 8-7 
global registers 8-7 
instruction cache 8-7 
interrupt stack 8-6 
local registers 8-6 
location 8-6 
supervisor mode 8-'6 

Interrupt Map Control (IMAPO-lMAP2) registers 
1-3 

Interrupt Mapping (lMAPO-lMAP2) registers 13-14 
interrupt mask 

saving 13-8 
Interrupt Mask (lMSK) and Pending (IPND) 

registers 13-16 
Interrupt Mask (IMSK) register 1-3,13-16,13-17, 

C-13 
Interrupt Pending (IPND) register 1-3, 13-16 
interrupt performance 

caching of interrupt-handling 13-23 
interrupt stack 13-24 
local register cache 13-23 

interrupt pins 

dedicated mode 13-2 
expanded mode 13-2 
mixed mode 1~-2 

interrupt posting 8-1 , 
interrUpt procedUre pointer 8-5 . 
interrupt record 8-5 

location 8-5 
" 

interrupt request management 13-2 
interrupt sequencing of operations 13-19 
interrupt servicing mechanism A-5 
interrupt stack 3-1, 3-12, 8-5, 13-24 

structure 8-5 
interrupt table 3-1, 3-12, 8-3 

alignment 8-3 

I. 

location 8-3 
pending interrupts 8-5 
vector entries 8-4, 

interrupts 

dedicated mode 13-5 
dedicated mode posting 13-5 
expanded mode 13-6 
function 8-1 
global disable instruction 6-68 

INDEX 

global enable and disable instruction 6-66 
global enable instruction 6-69 
internal RAM 13-22 
interrupt context switch 8-7 
interrupt handling procedures 8-6 
interrupt record 8-5 
interrupt stack 8-5 
interrupt table 8-3 
masking hardware interrupts 13-9 
mixed mode 13-8 
Non-Maskable Interrupt (NMI) 13-2 
overview 8-1 
physical characteristics 13-9 
posting 8-1 
priority handling 13-3 
priority-31 interrupts 8-3, 13-9 
programmable options 13-10 
restoring r3 13-9 
servicing 8-3 
sysctl 13-3 
vector caching 13-22 

IP register, see Instruction Pointer (IP) register 

IP with displacement 2-8 

L 
Id 2-2, 6-70 
Ida 6-73 
Idlb 2-2, 6-70 
ldis 2-2 
Idis 2-2, 6-70 
Idl 3-4, 6-70 
Idob 2-3, 6-70 
Idos 2-3, 6-70 
Idq 6-70 
Icit 6-70 
leaf procedures 7-1, Glossary-3 
literal addressing and alignment 3-5 
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literals 2-4, 3-1, 3-4 
addressing 3-4 

little endian byte order 3-16 
LMADR register 
LMCON registers 
load address instruction 6-73 
load instructions 5-5, 6~ 70 . 
load-and-lock 4-5 ' . 
local calls 7-2, 7-15, 9-2 

call 7-2 
calix 7-2 

local register cache 7-3 
overview 1-3, 4-2 

local registers 3-1, 7-2 
allocation 3-3, 7~2, 

management 3-3 
overview 1-7 
usage 7-2 

local stack 3-1 
. LOCK pin A-7 
logical data templates 

effective range 12-10 
logical instructions 5-10 
Logical Memory Address (LMADR) register 12-2 
Logical Memory Address (LMADR) registers 

programming 12-8 
Logical Memory Configuration (LMCON) registers 

12-2 
Logical Memory Mask (LMMR) registers 

programming 12-8 
Logical Memory Templates (LMTs) 

accesses across boundaries 12-13 
boundary conditions 12-12 
enabling 12-12 
enabling and disabling data caching 12-12 
modifying 12-13 
overlapping ranges 12-13 
values after reset 12-12 

M 
mark 6-74 
Mark Trace Event 6-5 

memory address space 3-1 
external memory requirements 3-14 . 

atomic access 3-14 
big endian byte order 3-16 
data alignment 3-15 
data block sizes 3-16 
data block storage 3-16 
indivisible access 3-14 
instruction alignment in external memory 
3-15 

. little endian byte order 3-16 
reserved memory 3-14 

location 3-13 
management 3-13 

memory addressing modes 
absolute 2-7 
examples 2-8 
index with displacement 2-8 . 
IP with displacement 2-8 
register indirect 2-7 

memory-mapped control registers 3-5 
Memory-Mapped Registers (MMR) 3-6 
MMR, see Memory-Mapped Registers (MMR) 
modac 6-75 ' 
modi 6-76 
modify 6-77 
modify arithmetic controls instruction 6-75 
modify process controls instru<;tion 6-78 
modify trace controls instruction 6-79, 10-2 
modpc 6-78, 10-3 . . 
modtc 6-79, 10-2 
modulo integer instruction 6-76 
moy 6-80 
move instructions 6-80 
moY16-80 
moyq 6-80 
movt 6-80 
muli 6-83 
mulo 6-83 
multiple fault conditions 9-10 
multiply integer instruction 6-83 
multiply ordinal instruction 6-83 
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N 
nand 6-84 
No Imprecise Faults (AC.nif) bit 9-15,9-20 
Non-Maskable Interrupt (NMI) 13-2 
Non-Maskable Interrupt (NMI) pin 13-9 
nor 6-85 
not 6-86 
notand 6-86 
notbit 6-87 
notor 6-88 

o 
On-Circuit Emulation (ONCE) mode 11-1, 17-1 
or 6-89 
ordinals 2-2 

sign and sign extension 2-3 
sizes 2-2 

ornot 6-89 
output pins 11-35 

p 
parameter passing 7-13 

argument list 7-14 
by reference 7-14 
by value 7-14 

PC register, see Process Controls (PC) register 
pending interrupts 8-5 

encoding 8-5 
interrupt procedure pointer 8-5 
pending priorities field 8-5 

performance optimization 5-19 
PFP, see Previous Frame Pointer (PFP) 
Physical Memory Configuration (PMCON) registers 

12-1 
application modification 12-8 
initial values 12-6 

PMCON registers 
power and ground planes 11-34 
powerup/reset initialization 

timer powerup 14-10 
PRCB, see Processor Control Block (PRCB) 
prereturn-trace mode 10-4 

I 

Previous Frame Pointer (PFP) 7-4, 7-6 
location 3-3 
rO 7-20 

priority-31 interrupts 8-3, 13-9 
procedure calls 

branch-and-link 7-1 
call and return mechanism 7-1 
leaf procedures 7-1, Glossary-3 

procedure stack 7-3 
growth 7-3 

INDEX 

Process Control Block (PRCB) 3-1, 3-12, 11-1, 
11-14 

configuration 11-15 
register cache configuration word 11-18 

Process Controls (PC) register 3-20 
execution mode flag 3-20 
initialization 3-22 
modification 3-21 
modpc 3-21 . 
priority field 3-21 
processor state flag 3-21 
trace enable bit 3-21 
trace fault pending flag 3-21 

processor initialization 11-1 
processor management instructions 5-18 
processor state registers 3-1, 3-17 

Arithmetic Controls (AC) register 3-17 
Instruction Pointer (IP) register 3-17 
Process Controls (PC) register 3-20 
Trace Controls (TC) register 3-22 

programming 
logical memory attributes 12-12 

R 
rO Previous Frame Pointer (PFP) 7-20 
region boundaries 

bus transactions across 12-7 
register access 13-18 
register addressing and alignment 3-5 
register cache 3-1 
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register indirect 2"7. .' 
register-i~direct-with-displacement 2-7 
register-indirect-with-index 2-7 

register-indirect-with-index-and-displacement 2-8 
register-indirect-with-offset 2-7 

register scoreboarding 3-4 
example 3-4 

' .. ' registers 
addressing 3-4 
Boundary-Scan 17-7 
Breakpoint Control (BPCON) 10-7 
Bus Control (BCON) 12-7 
control 3-6 

memory-II.lapped 3-5. 
device ID 11-21, C-21 
Instruction 17-5 
Interrupt Control (ICON) 1-3, 13-12 
Interrupt Map Control (IMAPO-IMAP2) 1-3 
Interrupt Mapping (IMAPO-IMAP2) 13-14 . 
Interrupt Mask (IMSK) 1-3, 13-16 
Interrupt Pending (IPND) 1-3, 13-16, C-12 
Logical Memory Templates (LMTs) 12-12 
naming convention.s 1-7 
TCR 14-6 

remainder integer i~struction 6-90 
remainder ordinal instruction 6-90 
remi 6-90 
remo 6-90 
reserved locations A-4. 
reserved memory 1-6 . 
reserving frames in the local register cache 13-23 
reset operation 

register values 11-5 
reset state 11-3 
ret 6-91 
Return Instruction Pointer (RIP) 7-4 

location 3-3 
return operation 7-8 
return type field 7-6 
RIP, see Return Instruction Pointer (RIP) 
rotate 6-94 
Run Built-In Self-Test (RUNBIST) register 17-7 
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5 
SALIGN A-3 
saving the interrupt mask 13-8 
scanbit 6-95 
scan byte 6-96 

intet 

scoreboarding, see register scoreboarding 
sele 5-6, 6-97 
Select Based on Equal 5-6 
Select Based on Less or Equal 5-6 
Select Based on Not Equal 5-6 
Select Based on Ordered 5-6 
Select Based on Unordered 5-6 
select instructions 6-97 
self test (STEST) pin 11-6 
selg 5-6, 6-97 
selge 5-6, 6-97 
sell 5-6, 6-97 
selle 5-6, 6-97 
seine 5-6, 6-97 
selno 5-6, 6-97 
selo 5-6, 6-97 
setbit 6-99 
shift instructions 6-100 
shU 6-100 
shlo 6-100 
shrdi 6-100 
shri 6-100 
shro 6-100 
single processor as bus mas~r 15-32 , 
16-bit bus width byte enable encodings 15-8 
16-bit wide data bus bursts 15-12 
SP, see Stack Pointer 
spanbit 6-103 
SRCIDEST parameter encodings 10-7 
st 2-2,6-104 
stack frame 

allocation 7-2 
Stack Pointer (SP) 7-4, 7-5 

location 3-3 

STEST 11-6 
stib 2-2,6-104 
stis 2-2, 6-104 
st16-104 



stob 2-3, 6-104 
store instructions 5-5, 6-104 
stos 2-3 
stq 6-104 
stt 6-104 
subc 6-108 
subi 6-112 
subie 6-109 
subig 6-109 
subige 6-109 
subiJ6-109 
subile 6-109 
subine 6-109 
subino 6-109 
subio 6-109 
subo 6-112 
suboe 6-109 
subog 6-109 
suboge 6-109 
subo16-109 
subole 6-109 
subone 6-109 
subono 6-109 
suboo 6-109 
subtract 

conditional instructions 6-109 
integer instruction 6-112 
ordinal instruction 6-112 
ordinal with carry instruction 6-108 

supervisor calls 7-2 
supervisor mode resources 3-22 
supervisor space family registers and tables 3-9 
supervisor stack 3-1, 3-12 
supervisor-trace mode 10-3 
syncf 6-113, 9-20 
synchronize faults instruction 6-113 
sysctl 1-2, 3-8, 4-4, 4-5, 6-114, 10-6 
system calls 7-2, 7-16 

calls 7-2 
system-local 7-2, 9-2 
system-supervisor 7-2, 9-2 

system control instruction 6-114 
system procedure table 3-1, 3-12 
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T 
Test Access Port (TAP) controller 17-2 

architecture 17-3 

INDEX 

Asynchronous Reset Input (TRST) pin 17-5 
block diagram 17-3 
Serial Test Data Output (TDO) pin 17-5 
state diagram 17-4 
Test Clock (TCK) pin 17-5 
Test Mode Select (TMS) pin 17-5 

test features 17-2 
test instructions 6-118 
Test Mode Select (TMS) line 17-2 
teste 6-118 
testg 6-118 
testge 6-118 
testI6-118 
testle 6-118 
testne 6-118 
testno 6-118 
testo 6-118 
32-bit bus width byte enable encodings 15-8 
32-bit wide data bus bursts 15-12 
three-state output pins 11-35 
Timer Count Register (TCR) 14-6 
timer interrupt 13-2 
timer memory-mapped addresses 14-2 
Timer Mode Register 

timer mode control bit summary 14-5 
Timer Mode Register (TMR) 

terminal count 14-3 
timer clock encodings 14-6 

timer units 
HALT mode operation 16-2 

timers 
overview 1-4 

Trace Controls (TC) register 3-22, 10-2 
trace events 10-1 

hardware breakpoint registers 10-1 
mark and fmark 10-1 
PC and TC registers 10-1 

trace-fault-pending flag 10-3 
TTL input pins 11-36 
two-word burst write transaction 15-14 
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U 
user space family registers and tables 3-11 
user stack 3-12 
user supervisor protection model 3-22 

supervisor mode resources 3-22 
usage 3-23 

v 
vector entries 8-4 

structure 8-5 

W 
warm reset 11-3, 13-18 
words 

triple and quad 2-3 

X 
xnor 6-120 
xor 6-120 
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Tel: (406) 452-2219 5650 Canoga Blvd., #400 CONNECTICUT SI. Petersburg 33716 
Woodland Hills 91367 Tel: (813) 530-3400 Hamihon Hallmark FAX: (406) 441-4504 Tel: (818) 883-4640 Anthem E~ctronics FAX: (813) 579-1518 4275 W. 96th 

Arrow Commercial Systems Group 
Pioneer Standard 

61 Mattatuck Heights Road Indianapolis 46268 
1502 Crocker Avenue Walerburg 06705 Tel: (317) 872-6875 
Hayward 94544 217 Technology Dr., #110 Tel: (203) 575-1575 GEORGIA FAX: (317) 876-7165 
Tel: (510) 489-5371 Irvine 92718 FAX: (203) 596-3232 
FAX: (510) 489-9393 Tel: (714) 753-5090 Arrow Commercial Systems Group Pioneer Standard 

Arrow Commercial Systems Group Pioneer Technologies Group Arrow/Schweber Electronics 3400 C. Corporate Way 9350 Priority Way West Dr. 
12 Beaumont Road Duluth 30136 Indian_lis 48250 

14242 Chambers Road 134 Rio Robles Wallinglord 06492 Tel: (404) 623-8825 Tel: (317) 573-0660 
Tu51ln 92660 San Jose 95134 Tel: (203) 265-7741 FAX: (404) 623-8602 FAX: (317) 573-0979 
Tel: (714) 544-0200 Tel: (408) 954-9100 FAX: (203) 265-7968 
FAX: (714) 731-8438 FAX: (406) 954-9113 
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NORTH AMERICAN DISTRIBUTORS (Contd.) 
KANSAS Hamilton Hallmark MISSOURI NEW YORK Pioneer Technologies Group 

Arrow/Schwaber Electronics 
100 Centennial Drive 

Arrow/Schwaber Electronics Anthem Electronics 2200 Gateway Glr. Blvd, #215 
Peabody 01960 Morrisville 27560 

9801 Legler Road Tel: (508) 531-7430 2380 Schuetz Road 47 Mall Drive Tel: (919) 460-1530 
Lenexa 66219 FAX: (508) 532-9802 St. louis 63141 Commack 11725 FAX: (919) 460-1540 
Tel: (913) 541-9542 Tel: (314) 567-6888 Tel: (516) 864-6600 
FAX: (913) 541-0328 Pioneer Standard FAX: (314) 567-1164 FAX: (516) 493-2244 

Avnet Computer 
44 Hartwell Avenue 

Avnet Computer Arrow/Schwaber Electronics OHIO 
Lexington 02173 

15313 W. 95th Street Tel: (617) 861-9200 741 Goddard Avenue 3375 Brighton Henrietta Arrow Commercial Systems Group 
Lenexa 61219 Chesteriield 63005 Towntine Rd. 
Tel: (913) 541-7989 

FAX: (617) 863-1547 
Tel: (314) 537-2725 Rochester 14623 284 Cramer Creek Court 

Dublin 43017 
FAX: (913) 541-7904 Wyle Laboratories FAX: (314) 537-4248 Tel: (716) 427-0300 

Tel: (614) 889-9347 15 Third Avenue FAX: (716) 427·0735 
Hamilton Hallmark Burlington 01803 Hamilton Hallmark FAX: (614) 889-9680 
10809 Lakeview Avenue Tel: (617) 272-7300 3783 Rider Trail South Arrow/Schweber Electronics 
lenexa 66215 FAX: (617) 272-6809 i:17~39~ ~?~~50 

20 Oser Avenue Arrow/Schwaber Electronics 
Tel: (913) 888-4747 Hauppauge 11788 6573 Cochran Road, #E 
FAX: (913) 888-0523 MICHIGAN FAX: (314) 291-0362 Tel: (516) 231-1000 Solon 44139 

FAX: (516) 231-1072 Tel: (216) 248·3990 

KENTUCKY Arrow/Schweber Electronics NEW HAMPSHIRE ~~e~~t~~~~~~ay 
FAX: (216) 248-1106 

19880 Haggerty Road 
Arrow/Schweber Electronics Hamilton Hallmark livonia 48152 Avnet Computer 

1847 Mercer Road, #G Tel: (800) 231-7902 2 Executive Park Drive 
Hauppauge 11788 8200 Washington Village Dr. 

lexington 40511 FAX: (313) 462-2686 Bedford 03102 
Tel: (516) 434-7443 Centerville 45458 

Tel: (800) 235·6039 Tel: (800) 442-8638 
FAX: (516) 434-7426 Tel: (513) 435-5563 

FAX: (606) 288-4936 ~~~~t2~~~gt~~:t, S.W., #5 
FAX: (603) 624-2402 ~~~~ T~~~r~!eRd. 

FAX: (513) 435·2049 

MARYLAND Grandville 49418 
NEW JERSEY Rochester 14623 Avnet Computer 

Tel: (616) 531-9607 Tel: (716) 272-9110 7164 Washington Village Dr. 
Anthem Electronics FAX: (616) 531-0059 Anthem Electronics FAX: (716) 272-9685 Dayton 45459 
7168A Columbia Gateway Drive Avnet Computer 26 Chapin Road, Unit K Hamilton Hallmark 

Tel: (513) 439-6756 
Columbia 21046 Pine Brook 07058 FAX: (513) 439-6719 
Tel: (410) 995-6640 

41650 Garden Brook Rd. #120 
Tel: (201) 227·7960 933 Motor Parkway 

Novi 48375 Hauppauge 11788 Avnet Computer FAX: (410) 290·9862 Tel: (313) 347-1820 FAX: (201) 227-9246 
Tel: (516) 434-7470 30325 Bainbridge Rd., Bldg. A 

Arrow Commercial Systems Group FAX: (313) 347-4067 Arrow/Schweber Electronics FAX: (516) 434·7491 Solon 44139 
200 Perry Parkway Hamilton Hallmark 4 East Stow Rd., Unit 11 Hamilton Hallmark Tel: (216) 349-2505 
Gaithersburg 20877 44191 Plymouth Oaks Blvd., #1300 Marlton 08053 1057 E. Henrietta Road FAX: (216) 349-1894 
Tel: (301) 670-1600 Plymouth 48170 Tel: (609) 596·8000 Rochester 14623 FAX: (301) 670·0188 Tel: (313) 416-5800 FAX: (609) 596-9632 Tel: (716) 475-9130 Hamilton Hallmark 

Arrow/Schweber Electronics FAX: (313) 416-5811 Arrow/Schweber Electronics FAX: (716) 475-9119 7760 Washington Village Dr. 
Dayton 45459 9800J Patuxent Woods Dr. Hamilton Hallmark 43 Route 46 East Hamilton Hallmark Tel: (513) 439-6735 Columbia 21046 Pine Brook 07058 

Tel: (301) 596·7800 
41650 Garden Brook Rd., # 1 00 

Tel: (201) 227·7880 
3075 Veterans Memorial Hwy. FAX: (513) 439-6711 

Novi 49418 Ronkonkoma 11719 
FAX: (301) 995-6201 Tel: (313) 347·4271 FAX: (201) 538-4962 Tel: (516) 737-0600 Hamilton Hallmark 
Avnet Computer FAX: (313) 347-4021 Avnet Computer FAX: (516) 737-0838 5821 Harper Road 
7172 Columbia Gateway Dr., #G Pioneer Standard l·B Keystone Ave., Bldg. 36 MTI Systems Solon 44139 

Tel: (216) 498-1100 Columbia 21045 4505 Broadmoor S.E. Cherry Hill 08003 1 Penn Plaza FAX: (216) 248-4803 Tel: (301) 995-3571 Grand Rapids 49512 Tel: (609) 424·8961 250 W. 34th Street 
FAX: (301) 995-3515 Tel: (616) 698-1800 FAX: (609) 751-2502 New York 10119 Hamilton Hallmark 
Hamilton Hallmark FAX: (616) 698-1831 Hamilton Hallmark Tel: (212) 643-1280 777 Dearborn Park lane, #l 

I 

10240 Old Columbia Road Pioneer Standard 1 Keystone Ave., Bldg. 36 FAX: (212) 643·1288 Worthington 43085 
Columbia 21046 13485 Stamford Cherry Hill 08003 Pioneer Standard Tel: (614) 888-3313 
Tel: (410) 988·9800 livonia 48150 Tel: (609) 424·0110 68 Corporate Drive FAX: (614) 888-0767 I 
FAX: (410) 381-2036 Tel: (313) 525-1800 FAX: (609) 751·2552 Binghamton 13904 

North Atlantic Industries FAX: (313) 427-3720 Hamilton Hallmark Tel: (607) 722-9300 MTI Systems 
FAX: (607) 722·9562 23404 Commerce Park Rd. 

Systems Division 10 Lanidex Plaza West Beachwood 44122 
7125 River Wood Dr. MINNESOTA Parsippani 07054 Pioneer Standard Tel: (216) 464·6688 
Columbia 21046 Anthem ElectroniCS Tel: (201) 515-5300 ~O~~b~s;,a(:n~~s~~~ 11797 

FAX: (216) 464·3564 
Tel: (301) 312·5800 7646 Golden Triangle Drive FAX: (201) 515-1601 
FAX: (301) 312·5850 Eden Prairie 55344 MTI Systems 

Tel: (516) 921-8700 Pioneer Standard 
Pioneer Technologies Group Tel: (612) 944-5454 43 Route 46 East 

FAX: (516) 921-2143 4433 Interpoint Boulevard 
15810 Gaither Road FAX: (612) 944-3045 Pine brook 07058 Pioneer Standard Dayton 45424 
Gaithersburg 20877 Tel: (201) 882·8780 840 Fairport Park Tel: (513) 236·9900 

Arrow/Schweber Electronics FAX: (513) 236·8133 Tel: (301) 921-0660 10100 Viking Drive, #100 FAX: (201) 539-6430 Fairport 14450 
FAX: (301) 670·6746 Tel: (716) 381·7070 Eden Prairie 55344 Pioneer Standard FAX: (716) 381-5955 Pioneer Standard 
WyJe laboratories Tel: (612) 941-5280 14·A Madison Rd. 4800 E. 131st Street 
7180 Columbia Gateway Dr. FAX: (612) 942-7803 Failiield 07006 Zeus Arrow Electronics Cleveland 44105 
Columbia 21046 Avnet Computer Tel: (201) 575·3510 100 Midland Avenue Tel: (216) 587-3600 
Tel: (410) 312-4844 10000 West 76th Street FAX: (201) 575-3454 Port Chester 10573 FAX: (216) 663-1004 
FAX: (410) 312-4953 Eden Prairie 55344 

Tel: (914) 937·7400 
Wyle Laboratories FAX: (914) 937-2553 

MASSACHUSETTS 
Tel: (612) 829-0025 20 Chapin Road, Bldg. 10·13 OKLAHOMA 
FAX: (612) 944-2781 Pinebrook 07058 NORTH CAROLINA 

Anthem Electronics Hamilton Hallmark Tel: (201) 882·8358 
Arrow/Schweber Electronics 

Arrow/Schweber Electronics 
36 Jonspin Road 9401 James Ave South, #140 FAX: (201) 882-9109 12101 E. 51st Street, #106 

5240 Greensdairy Road Tulsa 74146 Wilmington 01887 Bloomington 55431 Raleigh 27604 Tel: (918) 252·7537 Tel: (508) 657-5170 Tel: (612) 881·2600 NEW MEXICO Tel: (919) 876-3132 FAX: (918) 254-0917 FAX: (508) 657-6008 FAX: (612) 881-9461 
Alliance Electronics, Inc. FAX: (919) 878·9517 

Arrow/Schweber ElectrOniCS Pioneer Standard 10510 Research Ave. Avnet Computer Hamilton Hallmark 
25 Upton Dr. 7625 Golden Triange Dr., #G Albuquerque 87123 2725 Millbrook Rd., #123 5411 S. 125th E. Ave., #305 
Wilmmgton 01887 Eden Prairie 55344 Tel: (505) 292·3360 Raleigh 27604 Tulsa 74146 
Tel: (508) 658-0900 Tel: (612) 944-3355 FAX: (505) 275·6392 Tel: (919) 790-1735 Tel: (918) 254-6110 
FAX: (508) 694-1754 FAX: (612) 944-3794 FAX: (919) 872-4972 FAX: (918) 254-6207 

Avnet Computer 
Avnet Computer Wyle Laboratories 7801 Academy Rd. Hamilton Hallmark Pioneer Standard 
10 D Centennial Drive 1325 E. 79th Street, #1 Bldg. 1, Suite 204 5234 Greens Dairy Road 9717 E. 42nd St., #105 
Peabody 01960 Bloomington 55425 Albuquerque 87109 Raleigh 27604 Tulsa 74146 
Tel: (508) 532·9886 Tel: (612) 853·2280 Tel: (505) 828-9725 Tel: (919) 878·0819 Tel: (918) 665·7840 
FAX: (508) 532-9660 FAX: (612) 853-2298 FAX: (505) 828-0360 FAX: (919) 878·8729 FAX: (918) 665·1891 
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OREGON 

Almae Arrow Electronics 
1885 N.w. 169th Place 
Beaverton 97006 
Tel: (503) 629-8090 
FAX: (503) 645-0611 

Anthem ElectroniCS 
9090 S.W. Gemini Drive 
Beaverton 97005 
Tel: (503) 643-1114 
FAX: (503) 626-7928 

Avnet Computer 
9750 Southwest Nimbus Ave. 
Beaverton 97005 
Tel: (503) 627-0900 
FAX: (502) 526-6242 

Hamilton Hallmark 
9750 S.W. Nimbus Ave. 
Beaverton 97005 
Tel: (503) 526-6200 
FAX: (503) 641-5939 

Wyle Laboratories 
9640 Sunshine Court 
Bldg. G, Suile 200 
Beaverton 97005 
Tel: (503) 643-7900 
FAX: (503) 646-5466 

PENNSYLVANIA 

Anthem Electronics 
355 Business Center Dr. 
Horsham 19044 
Tel: (215) 443-5150 
FAX: (215) 675-9875 

Avnet Computer 
213 ExecutIVe Drive, #320 
Mars 16046 
Tel: (412) 772-1888 
FAX: (412) 772-1890 

Pioneer Technologies Group 
259 Kappa Drive 
Pittsburgh 15238 
Tel: (412) 782-2300 
FAX: (412) 963-8255 

Pioneer Technologies Group 
500 Enterprise Road 
Keith Valley Business Center 
Horsham 19044 
Tel: (713) 530-4700 

~~~e;ag~~:~o~~~ 1 
Marlton 08053·3185 
Tel: (609) 985-7953 
FAX: (609) 985-8757 

TEXAS 

Anthem Electronics 
651 N. Plano Road, #401 
Richardson 75081 
Tel: (214) 238-7100 
FAX: (214) 238-0237 

Arrow/Schweber Electronics 
11500 Metric Blvd., #160 
Austin 78758 
Tel: (512) 835-4180 
FAX: (512) 832-5921 

NORTH AMERICAN DISTRIBUTORS (Contd.) 
Arrow/Schweber Electronics UTAH Hamilton Hallmark Avnet Computer 
3220 Commander Dr. 

Anthem Electronics 
2440 S. 179th Street Canada System Engineering Group 

Carrollton 75006 New Berlin 53146 151 Superior Blvd. 
Tel: (214) 380-6464 1279 West 2200 South Tel: (414) 797-7844 Mississuaga L5T 2L 1 
FAX: (214) 248-7208 Salt Lake City 84119 FAX: (414) 797-9259 Tel: (416) 795-3835 

Tel: (801) 973-8555 FAX: (416) 677-5091 
Arrow/Schweber Electronics FAX: (801) 973-8909 Pioneer Standard 
10899 Kinghurst Dr., #100 

Arrow/Schweber Electronics 
120 Bishop Way #163 

Avnet Computer Houston 77099 Brookfield 53005 
Tel: (713) 530-4700 1946 W. Parkway Blvd. Tel: (414) 784-3480 190 Colonade Road 

Sail Lake City 84119 FAX: (414) 780-3613 Nepean K2E 7 J5 
Avnet Computer Tel: (801) 973-6913 Tel: (613) 727-2000 
4004 Beltline, Suite 200 FAX: (801) 972-0200 Wyle Laboratories FAX: (613) 226-1184 
Dallas 75244 Avnet Computer 

W226 N555 Eastmound Drive 
Tel: (214) 308-8181 Waukesha 53186 Hamilton Hallmark 
FAX: (214) 308-8129 1100 E. 6800 Soulh, #150 Tel: (414) 521-9333 151 Superior Blvd., Unit 1-6 

Salt Lake City 84121 FAX: (414) 521-9498 Mississauga L5T 2L 1 
Avnet Computer Tel: (801) 266-1115 Tel: (416) 564-6060 
1235 North Loop West, #525 FAX: (801) 266-0362 ALASKA FAX: (416) 564-6033 
Houston 77008 Hamilton Hallmark Avnet Computer Tel: (713) 867-8572 1100 East 6600 South, #120 Hamilton Hallmark 
FAX: (713) 861-6851 Sail Lake City 84121 1400 West Benson Blvd., #400 

190 Colonade Road 
Tel: (801) 266-2022 Anchorage 99503 

Nepean K2E 7 J5 Hamilton Hallmark Tel: (907) 274-9899 
12211 Technology Blvd. FAX: (801) 263-0104 FAX: (907) 277-2639 Tel: (613) 226-1700 

Austin 78727 Wyle Laboratories 
FAX: (613) 226-1184 

Tel: (512) 258-8848 1325 West 2200 South, #E 
CANADA Zentronics FAX: (512) 258-3777 West Valley 84119 

5600 Keaton Crescent. #1 
Hamilton Hallmark Tel: (801) 974-9953 

Mississauga L5R 3S5 
11420 Page Mill Road FAX: (801) 972-2524 ALBERTA Tel: (416) 507-2600 
Dallas 75243 

WASHINGTON Avnet Computer FAX: (416) 507-2831 
Tel: (214) 553-4300 2816 21st Street Northea$t 
FAX: (214) 553-4395 Almac Arrow Electronics Calgary T2E 6Z2 Zentronics 

Hamilton Hallmark 14360 S.E. Eastgate Way Tel: (403) 291-3284 155 Colonnade Rd., South 
Bellevue 98007 FAX: (403) 250-1591 #17 8000 Westglen Tel: (206) 643-9992 Nepean K2E 7K1 Houston 77063 FAX: (206) 643-9709 Zentronics Tel: (613) 226-8840 Tel: (713) 781-6100 6815 8th Street N.E., #100 FAX: (613) 226-6352 FAX: (713) 953-8420 Anthem Electronics Calgary T2E 7H 

Pioneer Standard 
19017 - 120th Ave., N.E. #102 Tel: (403) 295-8838 

1826-0 Kramer Lane 
Bolhell 98011 FAX: (403) 295-8714 QUEBEC 

Austin 78758 
Tel: (206) 483-1700 

Tel: (512) 835-4000 
FAX: (206) 486-0571 BRITISH COLUMBIA Arrow/Schweber Electronics 

FAX: (512) 835-9829 Avnet Computer Almac Arrow Electronics 1100 S1. Regis Blvd. 

Pioneer Standard 
17761 N.E. 78th Place 8544 Baxter Place Dorval H9P 2T5 
Redmond 98052 Burnaby V5A 4T8 Tel: (514) 421-7411 

13765 Beta Road Tel: (206) 867-0160 Tel: (604) 421-2333 FAX: (514) 421-7430 
Dallas 75244 FAX: (206) 867-0161 FAX: (604) 421-5030 Tel: (214) 263-3168 

Hamilton Hallmark Arrow/Schweber Electronics FAX: (214) 490-6419 Hamilton Hallmark 500 Boul. St.-Jean-Baptiste Ave. 8630 154th Avenue 8610 Commerce Court 
Pioneer Standard Redmond 98052 Burnaby V5A 4N6 

Quebec H2E 5R9 
10530 Rockley Road, # 1 00 Tel: (206) 881-6697 Tel: (604) 420-4101 

Tel: (418) 871-7500 
Houston 77099 FAX: (206) 867-0159 FAX: (604) 420-5376 

FAX: (418) 871-6816 
Tel: (713) 495-4700 
FAX: (713) 495-5642 Wyle Laboratories Zentronics Avnet Computer 

15385 N.E. 90th Street 11400 Bridgeport Rd., #108 2795 Reu Halpern 
Wyle Laboratories Redmond 98052 Richmond V6X 1 T2 St. Laurent H4S 1 P8 
1810 Greenville Avenue Tel: (206) 881-1150 Tel: (604) 273-5575 Tel: (514) 335-2483 
Richardson 75081 FAX: (206) 881-1567 FAX: (604) 273-2413 FAX: (514) 335-2481 
Tel: (214) 235-9953 
FAX: (214) 644-5064 WISCONSIN ONTARIO Hamilton Hallmark 

Wyle Laboratories Arrow/Schweber Electronics Arrow/Schweber Electronics 
7575 Transcanada Highway 
#600 4030 West Braker Lane, #330 200 N. Patrick, #100 1093 Meyerside, Unit 2 S1. Laurent H4T 2V6 Austin 78758 Brookfield 53045 Mississauga L5T 1 M4 Tel: (514) 335-1000 Tel: (512) 345-8853 Tel: (414) 792-0150 Tel: (416) 670-7769 FAX: (514) 335-2481 FAX: (512) 345-9330 FAX: (414) 792-0156 FAX: (416) 670-7781 

Wyle Laboratories Avnet Computer Arrow/Schweber Electronics Zentronics 
11001 South Wilcresl, #100 20875 Crossroads Circle, #400 36 Antares Dr., Unit 100 520 McCaffrey 
Houston 77099 Waukesha 53186 Nepean K2E 7W5 St. Laurent H4T 1 N3 
Tel: (713) 879-9953 Tel: (414) 784-8205 Tel: (613) 226-6903 Tel: (514) 737-9700 
FAX: (713) 879-6540 FAX: (414) 784-6006 FAX: (613) 723-2018 FAX: (514) 737-5212 
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FINLAND 

Intel Finland OY 
Ruosilantie 2 
00390 Helsinki 
Tol: (358) 0 544 644 
FAX: (358) 0 544 030 

FRANCE 

\~u<;,~r:~~~pS~.L. 
78054 St. auentin«l~Yv&lines 
Cedex 
Tel: (33) (1) 30 57 70 00 
FAX: (33) (1) 30 64 80 32 

EUROPEAN SALES OFFICES 
GERMANY 

Intol GmbH 
Domacher Strasse 1 
85622 Feldkirchen/Muenchen 
Tel: (49) 089/90992-Q 
FAX: (49) 085/9043948 

ISRAEL 

Intel Semiconductor Ltd. 
Atldim Industrial Park·Neve Sharet 
P.O. Box 43202 
Tel-Aviv 61430 
Tel: (972) 03 496080 
FAX: (972) 03 491870 

ITALY 

Intol Corporation ltalia S.p.A. 
Mlianofiorl Palazzo E 
20094 Assago 
Milano 
T.I: (39) (2) 575441 
FAX: (39) (2) 3496464 

NETHERLANDS 

Intel Semiconductor B.V. 
Postbus 64130 
3009 CC Rotterdam 
T.I: (31) 104071111 
FAX: (31) 10 455 4688 

RUSSIA 

=~~:~~=:i~ 
121357 Moscow 
Tel: 007-095-4439785 
FAX: 007-095-4459420 
TLX: 612092 small su. 

SPAIN 

Inlol Iberia SA 
Zubaran, 28 
28010 Madrid 
Tol: (34) (1) 308 2552 
FAX: (34) (1) 4107570 

SWEDEN 

Intel Sweden A.B. 

~e~o~:a 
T.I: (46) 8 705 5800 
FAX: (46) 8 278085 

UNITED KINGDOM 

~~:!~J;P,.0ralion (U.K.) Ud. 

Swindon, ~hShire SN3 1 RJ 
T.I: (44) (0793) 696000 
FAX: (44) (0793) 641440 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTRIA GERMANY 

t·ElbaIex GmbH *Avnet Electronic 2000 

~~t:3Fw:n6 ~~~~=~.~2 
Tol: (43) 1818020 
FAX: (43) 181652141 

Tel: (49) 89 45t 10-01 
FAX: (49) 89 45110129 

tSpoerle ElectroniC *Jermyn GmbH 
~~i~~~~r. 62 1m Dachsstueck 9 

65549 Umburg 

~~:(m)?:::;~:t~ T.I: (49) 6431 5080 
FAX: (49) 6431 508289 

BELGIUM tMe1rologie GmbH 

t*lnelco Distribution 
Steinerstrasse 15 
81369 Muenchen Avenue des Croix de Guerre 94 
~~:(~)S:S ~~~111 1120 Sruxelles 

~~:~~~Nif6~::~ *ProeJectron Vertriebs GmbH 

·Dlode BeI~Um 
Mex-Planck-Stresso 1-3 
83303 Dreieich K.lbel1l."' In.rvaalraal, 14182 T.I: (49) 6103 304343 1930 ventom 

~~:(~~~N~~ ~5~1 
FAX: (49) 6103 304425 

tR.ln Elektronik GmbH 

DENMARK ~~':u,:\,:?88 
*Avne1 Nortec AlS T.I: (49) 2153 7330 
TransformerveJ 17 FAX: (49) 2153 733513 
DK-2730 H.riev 
T.I: (45) 4264 2000 GREECE 
FAX: (45) 4492 1552 

tE:radaia 
t*1TT Multikomponent AS Ai~ roupoleos 2A 
Naverland 29 1 676 Kalithea 

~~:~~ ~:rue&s T.I: (30) 1 95 10 922 

FAX: (45) 4245 7824 
FAX: (30) 1 95 93 160 

;::'~:~~~$~~Tv. 150 FINLAND 

t·OY Rntronlc AB 
Athens 17671 

~~:(~b)11~l~6:a ~0i1i:.';'0 
T.I: (358) 0887331 IRELAND FAX: (358) 0 887 33 343 

FRANCE 
t*Mlcro Marketing 
Taney Hall 

*Arrow Electronique Eglinton Terrace 
73-79 Rue des sotets Dundrum 
SIIiC 565 Dublin 14 

~33~u(7fi:9~~78 
T.I: (353) (1) 288 9400 
FAX: (353) (1) 288 9826 

FAX: (33) (1) 4978 0596 
ISRAEL *Avnet 

79, rue Pierre Ssmard t*Eastronlcs limited 
92322 Chatilion Rozanis 11 
T.I: (33) (1) 4965 2500 P.O.B. 39300 
FAX: (33) (1) 49B5 2789 T.I Baruch 
tMairologla Tei-Avlv 81392 
Tour d'Asnleres ~~:(9~Nl::8~le 4, Avenue Laurent Cety 
92606 Asniares Cedex 
T.I: (33) (1) 4080 9000 ITALY 
FAX: (33) (1) 4791 0581 

'Intesl Div. Della Deutsch. 
*Teketec Dlvisiorie ITT Indualries GmbH 
C~o des Bruyeres P.I.06550110158 
5, Ruo Carle Vomal-BP 2 Miianofiori Palazzo OS 
92310 Sevr.s 20094 ~o ~MllanO) 
Tol: (~(1) 4823 2425 Tol: (3:1. 2 4 01 
FAX: (1) 4507 2191 FAX: ) 2 8242631 

*Components 
tSyslems 

*Lasi Elettronlca 
P.I. 00839000155 
Viale Fulvia Tesli, N.280 
20128 Milano 
T.I: (39) 2 881431 
FAX: (39) 2 88101385 

tOmnilogic Telearn 
Via Lor.nteggio 270lA 
20152 Milano 
T.I: (39) 248302840 
FAX: (39) 2 43802010 

NETHERLANDS 

tDaI.lcom B.V. 
Meldoomkade 22 
3993 AE Houten 
Tel: (31) 3403 57222 
FAX: (31) 3403 57220 

·Diode Components 
Coltbaan 17 
3439 NG Nieuwegein 
Tol: (31) 3402 9 12 34 
FAX: (31) 340235924 

t*Konlng en Hartman 
En.rgleweg 1 
2827 APD.1fI 
T.I: (31) 15809 908 
FAX: (31) 15819194 

NORWAY 

*Avne1 Nortec A/S 
Postboks 123 
N-l364 Hvelstad 
Tol: (47) 264 8210 
FAX: (47) 284 6545 

tComputor System Integration AJS 
Poslbox 198 

~~~O(~~S~~ 411 
FAX: (47) 638 45 310 

PDRTUGAL 

*ATD Electronics LOA 

~~:~op:-~sala 505 
Urbanizacao de Matlnha 
1900 Lisboe 
T.I: (351) (1) 858 0191 /2 
FAX: (351) (1) 658 7641 

~~:S:I.O~:'~b~~C:":'~~os 3A 
1900 Lisboe 
T.I: (351) (1) 647 2202 
FAX: (351) (1) 647 2197 

SOUTH AFRICA 

t·EBE 
PD Box 912-1222 
SllverlOn 0127 
178 Eraamus 5treet 
Meyerspark 
Pralorla 0184 
T.I: (27) 12 803 7650-93 
FAX: (27) 12 803 8264 

SPAIN 

*ATO Electronica 
Avenue de Ie Industria, 32, 2B 
28100 Alcobendas 
Madrid 
Tel: (34) (1) 881 6551 
FAX: (34) (1) 661 6300 

l~"!'1~~~~r~_2 
28100 Alcobendas 
Madrid 
Tel: (34) (1) 8811142 
FAX: (34) (1) 881 5755 

SweDEN 

tAvnal Compuler AB 
Box 164 
5-12323 Farsta 
Tel: (46) 87051800 
FAX: (46) 8 735 2373 

*Avnet Nortec AS 
Box 1630 
$-171 27 Solna 
Tol: (46) 8705 1800 
FAX: (46) 883 6918 

*ITT Multikomponent AB 
Ankdammsgalan 32 
Box 1330 
5-171 26 Solna 
T.I: (46) 8 830020 
FAX: (46) 8 27 13 03 

SWITZERLAND 

tElbalexAG 
Hards.,.7 

f~:mr ~.~nHc\''bo 
FAX: (41) 27 1924 

tFabrim.x AG 

~~~""1u~ 
Tol: (41) 1 3888888 
FAX: (41) 1 363 23 79 

tlMIC Microcomputer 
Zurichstr .... 
CH-8165 Wlnk.I-Rutl 
T.I: (41) (1) 8820055 
FAX: (41) (1) 8820288 

t'lndustrad. AG 
H._ssa31 
CH-8304 Wallls.ll.n 
T.I: (41) (1) 8328111 
FAX: (41) (1) 6307550 

TURKEY 

*Empa ElectroniC 
Florya Is Mork.zi 
BTa' Landra AslaNI 
34 0 FloOa Istanbul 

~~:~~ill)~~l 

UNITED KINGDOM 

*Arrow Electronics 
St. Martins Business Centre 
Cambridg. Road 
Bedford - MK42 OLF 
T.I: (44) 234 270272 
FAX: (44) 234 211434 

'Avnol EMG Lid. 
Jubilee Housa 
Jublle. Road 
Letchworth 
H.rtsfordshir. - SG6 lQH 
T.I: (44) 462 488 500 
FAX: (44) 482 489 567 

~~==nents 
Chineham Business Park 
4 Crockford Leno 

~=SW8~~lRW 
T.I: (44) 256 707107 
FAX: (44) 258 707 182 

t~.Ch 5~I.ms 
~:r~~:a Centre 
Brackn.11 
Berks - RG12 2PW 
T.I: (44) 344 55 333 
FAX: (44) 344 867 270 

*Datrontech 
42-44 Birchett Road 
Ald.rshol 
Hanla-GUlllLU 
T.I: (44) 252 313155 
FAX: (44) 252 341939 

-Jermyn Electronics 
V.slry Eslat. 
OtIord Road 
Sevanoaks 
Kant TN14 5EU 
T.I: (44) 732 743 743 
FAX: (44) 732 451 251 

tMalrologl. VA 

~1:,.~= 
High Wycombe 
Bucks - HPll 2E 
T.I: (44) 494 526 271 
FAX: (44) 494 421 880 

·MMDlAapid Lid. 

~=:~I~rt 
Bonnol Road 

~:~~~G20QX 
T.I: (44) 734 750 897 
FAX: (44) 734 313 255 
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AUSTRALIA 

Intel Australia Ply. Ltd. . 
Unit 13 '. 
Allambie Grove Business Park 
25 Frenchs Forsst Road East 
Frenchs Forest, NSW. 2086 
Sydney '" 
Tel: 61-2-975-3300 
FAX: 61-2-975-3375 

Intel Australia Ply. Ltd. 
711 High Street 
1st Floor 
East Kw. Vic., 3102 
Melbourne 
Tel: 61-3-810-2141 
FAX: 61-3-819 7200 

BRAZIL 

~: ~~~C;:~U:!:~~ ~~~ 
CEP 04585-001 Sao Paulo 
SP Brazil 
Tel: 55-11-530-2296 
FAX: 55-11-531-5765 

CHINAlHONG KONG 

=:~r795~rcoration 
China World Tower 
1 Jian Guo Men Wai Avenue 
Beijing 100004 
Republic of China 
Tel: 861-505-0366 
FAX: 861-505-0383 

INTERNATIONAL SALES OFFICES 
Intel Semiconductor Ltd." Intel Ja~n KK· Intel Japan KK· SINGAPORE 
32/F Two Pacific Plaoe ~-'f-~~~I~~~I TK Gotenda Bldg. 9F 
88 Queensway B-3-6 Nishi Gotenda \nJ~I~=re~h;g~ Ltd. Cenlral Hachiojl-shr, Tokyo 192 ¥~1~~141 
Hon~ Ko:'i.w Tel: 0426-48-8770 Untted Square 
Tel: 8~ -4555 FAX: 0426-48-8775 FAX: 03-3493-5951 ¥~~j~~~gll FAX: (8 ) 868-1989 

Intel Japan K.K.· 
KOREA· 

FAX: (65) 250-9256 
Kawa-asa Bldg. 

INDIA 2-11-5 Shin-Yokohama 
Kohoku-ku, Yokohama-shi \":~ ~:'-~·Bldg. TAIWAN 

Intel Asia Eleclronlcs, Inc. Kanagawa, 222 
4/2, Samrah Plaza Tel: 045-474-7660 t:u~~=8' Youngdeungpo-Ku Intel Technology Far East Ltd. 
St. Mar1<'s Road FAX: 045-471-4394 Taiwan Branch 

~t~~I~_ir~ Tel:' (2) 784-8166 8th Floor, No. 205 

=.~~m~·~~g. 
FAX: (2) 784-8096 Bank Tower Bldg. 

FAX: 91-80-215087 Tung Hua N. Road 
TLX: 953-845-2846 INTL IN 2-4:1 Terauchi MEXICO 

Taipei 

+~r~t~_~ioo~ka 560 
Tel: 8B8-2-5144200 

JAPAN Intel Tecnologia de Mexico 
FAX: 666-2-717-2455 

FAX: 06-863-1084 
SA de C.V. 

886-2-719-6184 

Intel Japan KK Inlel Japan K.K. Av. Mexico No. 2786-9B, S.H. 
5-6 Takodai, Tsukuba-shi Shinmaru Bldg. 446BO Guadalajara, JaJ. 
Ibarakl, 300-26 1-5-1 Marunouchi Tel: 011-523-840-1259 
Tel: 0298-47-8511 Chiyoda-ku, Tokyo 100 FAX: 011-523-642-7661 
FAX: 0298-47-8450 Tel: 03-3201-3821 

FAX: 03-3201-6850 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
ARGENTINA GUATEMALA SES Compute .. & Technologies ~!ra~~ SOUlH AFRICA 

Dalsys Consuftlng S.A. Pvt. Ltd. 
Ablnltlo 11/18, SNS Chambers ~:'1i~:2~f5shi 460 Electronic Building ElemerTIs Chacabuco, 90-6 Piso 11 Calle2-Zona9 239 Palaoe Upper Orchards 1069·Buenos Aires Gual.mala Ctty sen~ Road, Sadeshlvanagar FAX: 052-204-8380 178 Erasmus St 

Tel. & FAX: 54.1334.1871 Tol: 5022-32-4104 Ban ore 560 080 r. Wat~~ .. 0184 
AUSTRALIA 

FAX: 5022-32-4123 Tel: 1-812-348481 Ryoyo EleclrO Corp. Tel~12-803-7660 
FAX: 91-812-343885 KonwaBldg. FAX: 011-2712-803-8294 

NJS Eledronlcs Australia INDIA 
SES Computers & Technol.ogles 

1-12-22 Tsukljl 
1 A/37 Ricketts Road ¥~~~~1o'1~04 Mount Waverley, VIC 3149 ~ International Umfted Pvt. Ltd. 
Tel: 61-3-558-9868 D- ,II Floor Arvlnd Chambers FAX: 03-3546-5044 TAIWAN 
FAX: 61-3-556-9929 Devatha Plaza 194, Andheri·Kurla Road 

NSD·Australia 
131/132 Residency Rd. Andher1 (East) . 

KOREA Micro Electronics Corporation 

~1~~~~g-mo'W, 91-60-214395 
Bombay 400 069 

205 Middleborough Rd. Tel: 91-22-8341584; 91-22-8341667 12th Floor, Section 3 
Box Hill, Victoria 3128 FAX: 91-80-214105 FAX: 91-22-4937524 Sarnsung Electronics ~~pe't~~~~~ Road Tel: 03 8900970 Samsung Main BId~ 
FAX: 03 8990819 Priya International Limited SES Computers & Technologies 150 Taepyun~-RO- , Chung-Ku Tel: (866) 2-7198419 

~~~~I~0Mt';".eith Floor Pvt. Ltd. Seoul 100-10 FAX: (886) 2-7197918 
BRAZIL 80S-A, Ansal Chamber. II C.P.O. Box 8760 

H~ech 
Bombay 400 023 . No.8, Bhikajl Camaplaoe Tel: (822) 751-3680 Ai;er Bartek Inc. 

Luis Car10s Berrini, 801 CJ121 Tel: 91-22-2660948, 91-22-2665822 New Delhi 110066 TWX: KORSST K 27970 15th Floor, Section 2 
Tel: 91-11-8881683 FAX: (822) 753-9065 Chien Kuo North Rd. 

04571, Sac Raulo, SP Brazil Priya International Llmttad FAX: 91-11-6840471 Taipei 18479 R.O.C. Tel: 5511-536-0355 Flat No.8, 10th Floor Tong Bask ElectroniC Co., Ltd. Tel: 866-2-501-0055 FAX: 5511-240-2650 :=.:g:~~~lng ~~8 H~.n~~te:l-ga TWX: 23758 SEATEK 
Microlinear JAMAICA 

Tel: 'l:.2-~15-6B23 FAX: (888) 2-5012521 
Avenida Wilhelm Winter, 345 New DeIhl 110 001 
Distrito Industrial· Jundlai, SP Tel: 91-11-3314512, 91-11-3310413 MC Systems FAX: 82-2-715-9374 
13213-000 FAX: 91-11-3719107 10-12 Grenada Cresoenl 

Kingston 5 URUGUAY Tel: 5511-732-6111 
~a~=ryatlp".:! Umiled ~~:(=)~s2Ja'18 SAUDI ARABIA FAX: 5511-732-2892 

AN;. Systems, Inc. Interfase 
CHILE 560-582 Mounl Road, Taynampet Btvr. Espana 2094 

Madras 600 018 842 N. Pastoria Ave. 11200 Montevideo 
Sisteco Tel: 91-44-451031,91-44-451597 JAPAN Sunnyvale, CA 84066 Tel: 5982-49-4600 
Veelnal 40 - Las Condes FAX: 91-44-813549 

Asahi Electroni<;s Co. Ltd. 
U.S.A. FAX: 5982-49-3040 

Santiago Tel: (408) 732-1710 
Tel: 582-234-1844 Priya International Limttad KMM Bldg. 2-14-1 Asano 

~;~=SYS FAX: 562-233-9885 No. 10, II Floor. Minerva House Kokurakita.-ku 
94 Sarojini Devi Rd. ~U-Shi802 VENEZUELA 

CHINA/HONG KONG Secunderabad 500 003 Tet: 11-8471 
Tel: 91-842-813120, 91-842-813549 FAX: 093-551-7661 SINGAPORE 

Novel Precision Machinery Co., Ltd. Unixel CA. 
Room 728 Trade Square Priya International Lim~ed Dis Semicon Systems, Inc. ' Electronic Resources Pte, Ltd. 4 Transversal de Monte Cristo 

~~~~~~;~~n Road 
Lords, III Floor Flower Hili Shlnmachl Higashi-kan ~~~ Road 1336 

Edt. fOO(A, Piso 1, of. 1 &2 
7/1 Lord Sinha Road 1-23 Shinmechl, Setageya-ku Cenlro Emprasarlal Boietta 

Tel: (652) 360-8999 Calcutta 700 071 Tokyo 154 Tel:(65~2~ Caracas 
TWX: 32032 NVTNL HX Tel: 91-33-222378, 91-33-222379 Tol: 03-3439-1600 TWX: R 56541 ERS Tel: 582-239-7749 
FAX: (652) 725-3695 FAX: 91-33-224884 FAX: 03-3439-1601 FAX: (65) 289-5327 FAX: 582-238-1816 
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ALABAMA 

BirminQham 
Huntsville 

ALASKA 

Anchorage 

ARIZONA 

Phoenix-
Tucson 

ARKANSAS 

Ut1Ie Rock 

CALIFORNIA 

Bakersfield 
Bras 
Carson-
Fresno 
Livermore 
Mar Del Rey 
Ontario· 
Orange 
Sacramento· 
San Diego· 
San Francisco· 
Santa CIara* 
Ventura 
Sunnyvale 
Walnut Creek* 
Woodland Hills* 

COLORADO 

Colorado Springs 
Denver 
Englewood* 

CONNECTICUT 

Glastonbury* 

DELAWARE 

New Castle 

FLORIDA 

A. Lauderdale 
Heathrow 
Jacksonville 
Melbourne 
Pensacola 
Tampe 
West Palm Basch 

ARIZONA 

Computervlsion Customer 
Education 
2401 W. Behrend Dr .• SuKe 17 
Phoenix 85027 
Tel: 1·800.234·6806 

MINNESOTA 

3500 W. BOth Street 
SuKe 380 

¥:.f:~\nt'a3~~~ 

*Carry-In tocations 

NORTH AMERICAN SERVICE OFFICES 
COMPUTERVISION 

Intel Corporation's North American Preferred Service Provider 
Central Dispatch: 1-800-876-SERV (1-800-876-7378) 

GEORGIA MICHIGAN NORTH DAKOTA 

Atlanta· Ann Harbor Bismark 
Savannah Benton Harbor 
West Robbins Flint OHIO 

Grand Rapids· 
HAWAII Leslie Cincinnati-

Livonia- Columbus 
Honolulu 8t. Joseph ~raon ndence. Troy· 

Mid:f: Heights· 
ILLINOIS 

MINNESOTA Toledo· 
Buffalo· Bloomington- OREGON calumerCity Deluth Chicago Beaverton-
lanSing 

MISSOURI oak Brook PENNSYLVANIA 
Spnngfield 

g:;~71~* INDIANA St. Louis· 

Carmel* NEVADA East Erie 
Ft. Wayne Pittsburgh· 

Minden Wayne* 
KANSAS Las Vegas 

Reno SOUTH CAROLINA 
Overland Park* 
Wichita NEW HAMSHIRE Charteston 

Cherry Point 
Manchester* Columbia 

KENTUCKY Fountain Inn 

Lexington NEW JERSEY 
SOUTWIlAKOTA louisville Edison* 

StoU'x Falls Madisonville Hamton Town* 
Parsippany* 

LOUISIANA' TENNESSEE 
NEW MEXICO 

Bertlett Baton Rouge 
Metarie Albuquerque Chattanooga 

Knoxville 

MAINE NEW YORK Nashville 

Brunswick Albany* 
Amherst* 

TEXAS 

Dewitt" .. Austin 
MARYLAND Falrport* Bey City 

Frederick 
Farmingdale· Beaumont 

Unthicum* 
New York City* canyon 

Rockville* 
College Station 

NORTH CAROLINA Houston* 
Irving* 

MASSACHUSETTS Brevard San Antonio 
Charlotte Tyler 

Boston* Greensboro 
Natick* Haveluch UTAH 
Norton* Ralei~h 
Springfield Wilmington SOlt Lake City' 

CUSTOMER TRAINING CENTERS 
ILLINOIS 

Computervision Customer 
Education 
1 Oakbrook Terrace 
Suite 800 
oakbrook 60161 
Tel: 1·800·234-8806 

MASSACHUSETTS 

Computervision Customer 
Education 
11 Oak Park Drive 
Bedford 01730 
Tel: 1-1100·234-8806 

SYSTEMS ENGINEERING OFFICES 
NEW YORK 

2950 Expressway Dr., South 
Islandia 11722 
Tel: (506) 231-3300 

VIRGINIA 

Charlottesville 
Glen Allen 
Maclean* 
Norlolk 
Virginia Beach 

WASHINGTON 

Bellevue-
Olympia 
Renton 
Richland 
Spokane 
Verdale 

WASHINGTON D.C.' 

WEST VIRGINIA 

St. Albans 

WISCONSIN 

Brookfield* 
Green Bay 
Madison 
Wausau 

CANAOA 

Calgary· 
Edmonton 
Halifax 
London* 
Montreal* 
Ottawa 
Toronto* 
Vancouver, SC· 
Winnipeg 
Regina 
St. John 
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1-55512-228-0 

m Ul 

m ~ 
1960 JX MICROPROCESSOR USER ' S' MANUAL ~ w 
INTEL INTEL/GEN ~ 
1555122280 5"1 

Price: $25.95 1555 122287 
CC#wi . M (C) l;'5'S , C~vur Li urK'" eo.ell.l'lo~ • • Jrw: . ( SV) 


