
-· :J c
8

I. .

8X930Ax Universal Serial Bus
Microcontroller User's Manual

8X930Ax
Universal Serial Bus

Microcontroller
User's Manual

July 1996

I

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or oth­
erwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or. use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving; or life sustaining applications.

Intel retains the right to make. changes to specifications and product descriptions at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

*Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

Ci> INTEL CORPORATION. July 1996

CONTENTS

CHAPTER 1
GUIDE TO THIS MANUAL

1.1 MANUALCONTENTS ... 1-1

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY .. 1-3

1.3 RELATED DOCUMENTS .. 1-5
1.3.1 Data Sheet .. 1-6
1.3.2 Application Notes .. 1-6

1.4 APPLICATION SUPPORT SERVICES .. 1-7
1.4.1 World Wide Web ... : 1-7
1.4.2 CompuServe Forums : .. 1-7
1.4.3 FaxBack Service ... 1-8
1.4.4 Bulletin Board System (BBS) .. 1-9

CHAPTER 2
INTRODUCTION

2.1
2.1.1

2.2
2.2.1
2.2.2

PRODUCT OVERVIEW ... 2-3
8X930Ax Features .. 2-4

MCS 251 MICROCONTROLLER CORE ... 2-6
CPU .. 2-6
Clock and Reset Unit .. 2-7

2.2.3 Interrupt Handler ... 2-8

2.3 ON-CHIP MEMORY ... 2-8

2.4 UNIVERSAL SERIAL BUS MODULE .. 2-10

2.5 ON-CHIP PERIPHERALS .. 2-10
2.5.1 Timer/Counters and Watchdog Timer ... 2-10
2.5.2 Programmable Counter Array (PCA) .. 2-10
2.5.3 Serial 1/0 Port ... 2-11

2.6 OPERATING CONDITIONS .. 2-11

CHAPTER 3
MEMORY PARTITIONS

3.1 ADDRESS SPACES FOR 8X930Ax .. 3-1
3.1.1 Compatibility with the MCS® 51 Architecture ... 3-2

3.2 8X930Ax MEMORY SPACE .. 3-5
3.2.1 On-chip General-purpose Data RAM .. 3-8
3.2.2 On-chip Code Memory .. 3-8

3.2.2.1 Accessing On-chip Code Memory in Region 00: .. 3-9
3.2.3 External Memory ... 3-9

3.3 8X930Ax REGISTER FILE .. 3-9

3.4 BYTE, WORD, AND DWORD REGISTERS .. 3-12
3.4.1 Dedicated Registers .. 3-12

3.4.1.1 Accumulator and B Register ... , 3-12
3.4.1.2 Extended Data Pointer, DPX .. 3-13

I iii

8X930AxUNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL .intel®
3.4.1.3 Extended Stack Pointer, SPX .. , 3-14

3.5 SPECIAL FUNCTION REGISTERS (SFRS) ... 3-15

CHAPTER 4
DEVICE CONFIGURATION

4.1 CONFIGURATION OVERVIEW .. 4-1

4.2 DEVICE CONFIGURATION .. 4-1

4.3 THE CONFIGURATION BITS .. 4-4

4.4 CONFIGURING THE EXTERNAL MEMORY INTERFACE ... 4-7
4.4.1 Page Mode and Nonpage Mode (PAGE#) .. 4-7
4.4.2 Configuration Bits RD1 :04-8

4.4.2.1 RD1 :0 = 00 (18 External Address Bits) .. 4-10
4.4.2.2 RD1 :O = 01 (17 External Address Bits)4-10
4.4.2.3 RD1 :O = 10 (16 External Address Bits)4-10
4.4.2.4 RD1:0=11 (Compatible with MCS 51 Microcontrollers) 4-11

4.4.3 Wait State Configuration Bits .. 4-11
4.4.3.1 Configuration Bits WSA1:0#, WSB1:0# ... 4-11
4.4.3.2 Configuration Bit XALE#4-11

4.5 OPCODE CONFIGURATIONS (SRC) ... 4-12
4.5.1 Selecting Binary Mode or Source Mode .. 4-12

4.6 MAPPING ON-CHIP CODE MEMORY TO DATA MEMORY (EMAP#) 4-14

4.7 INTERRUPT MODE (INTR} ... 4-14

CHAPTER 5
INSTRUCTIONS AND ADDRESSING

5.1 SOURCE MODE OR BINARY MODE OPCODES .. 5-1

5.2 PROGRAMMING FEATURES OF THE 8X930Ax ARCHITECTURE 5-1
5.2.1 Data Types ,. ... 5-2

5.2.1.1 Order of Byte Storage for Words and Double Words ... 5-2
5.2.2 Register Notation .. 5-2
5.2.3 Address Notation .. 5-2
5.2.4 Addressing Modes .. 5-4

5.3 DATA INSTRUCTIONS : ... 5-4
5.3.1 Data Addressing Modes .. 5-4

5.3.1.1 Register Addressing ... 5-5
5.3.1.2 Immediate .. 5-5
5.3.1.3 Direct .. 5-5
5.3.1.4 Indirect ... 5-6
5.3.1.5 Displacement ... 5-7

5.3.2 Arithmetic Instructions ... 5-8
5.3.3 Logical Instructions ... 5-9
5.3.4 Data Transfer Instructions ... 5-9

5.4 BIT INSTRUCTIONS ... 5-10
5.4.1 Bit Addressing ... 5-10

iv

_I -

CONTENTS

5.5 CONTROL INSTRUCTIONS ... 5-11
5.5.1 Addressing Modes for Control Instructions ... 5-12
5.5.2 Conditional Jumps .. 5-13
5.5.3 Unconditional Jumps ... 5-14
5.5.4 Calls and Returns ... 5-14

5.6 PROGRAM STATUS WORDS .. 5-15

CHAPTER 6
INTERRUPT SYSTEM

6.1 OVERVIEW ... 6-1

6.2 8X930Ax INTERRUPT SOURCES .. 6-3
6.2.1 External Interrupts .. , 6-3
6.2.2 Timer Interrupts ... 6-5

6.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT. 6-5

6.4 SERIAL PORT INTERRUPT .. 6-6

6.5 USB INTERRUPTS .. 6-6
6.5.1 USB Function Interrupt ... 6-6
6.5.2 USB Start of Frame Interrupt .. 6-9
6.5.3 USB Global Suspend/Resume Interrupt ... : 6-10

6.5.3.1 Global Suspend .. 6-10
6.5.3.2 Global Resume .. 6-10
6.5.3.3 USB Remote Wake-up ... 6-10

6.6 INTERRUPT ENABLE ... 6-11

6.7 INTERRUPT PRIORITIES ... 6-13

6.8 INTERRUPT PROCESSING ... 6-16
6.8.1 Minimum Fixed Interrupt Time .. 6-17
6.8.2 Variable Interrupt Parameters ... 6-17

6.8.2.1 Response Time Variables .. 6-17
6.8.2.2 Computation of Worst-case Latency With Variables .. 6-19
6.8.2.3 Latency Calculations .. 6-20
6.8.2.4 Blocking Conditions .. 6-21
6.8.2.5 Interrupt Vector Cycle .. 6-21

6.8.3 IS Rs in Process .. 6-22

CHAPTER 7
UNIVERSAL SERIAL BUS

7.1 USB FUNCTION INTERFACE ... 7-1
7.1.1 Serial Bus Interface Engine (SIE) ... 7-1
7.1.2 Function Interface Unit (FIU) ... 7-1
7.1.3 Special Function Registers (SFRs) ... 7-2
7.1.4 USB Function FIFO's .. 7-4
7.1.5 The FIU SFR Set .. 7-4

7.2 TRANSMIT FIFOS ... 7-14
7.2.1 Transmit FIFO Overview ... 7-14

I v

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

7.2.2 Transmit FIFO Registers ... 7-15
7.2.3 Transmit Data Register (TXDAT) .. 7-15
7.2.4 Transmit Byte Count Registers (TXCNTUTXCNTH) .. 7-15
7.2.5 Transmit Data Set Management ... 7-17

7.3 RECEIVE FIFOs .. 7-24
7.3.1 Receive FIFO Overview .. 7-24
7.3.2 Receive FIFO Registers .. 7-25

7.3.2.1 Receive Data Register (RXDAT) .. 7-25
7.3.2.2 Receive Byte Count Registers (RXCNTURXCNTH) .. 7-25

7.3.3 Receive FIFO Data Set Management ... 7-26

7.4 SIE DETAILS ... 7-33

7.5

7.6
7.6.1
7.6.2

SETUP TOKEN RECEIVE FIFO HANDLING .. 7-33

ISO DATA MANAGEMENT ... 7-34
Transmit FIFO ISO Data Management ... 7-34
Receive FIFO ISO Data Management .. 7-35

CHAPTER 8
USB PROGRAMMING MODELS

8.1
8.1.1
8.1.2

OVERVIEW OF PROGRAMMING MODELS .. 8-1
Unenumerated State ... 8-2
Idle State ... 8-2

8.1.3 Transmit and Receive Routines .. 8-2
8.1.4 USB Interrupts .. 8-2

8.2 TRANSMIT OPERATIONS .. 8-3
8.2.1 Overview ... 8-3
8.2.2 Pre-transmit Operations .. 8-5
8.2.3 Post-transmit Operations .. 8-6

8.3 RECEIVE OPERATIONS ... 8-8
8.3.1 Overview ... 8-8
8.3.2 Post-receive Operations ... 8-9

8.4 SETUP TOKEN ... 8-12

8.5 START OF FRAME (SOF) TOKEN ... 8-14

CHAPTER 9
INPUT/OUTPUT PORTS

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

vi

INPUT/OUTPUT PORT OVERVIEW ... 9-1

1/0 CONFIGURATIONS ... 9-2

PORT 1 AND PORT 3 ... 9-2

PORT 0 AND PORT 2 ... 9-2

READ-MODIFY-WRITE INSTRUCTIONS ... 9-4

QUASI-BIDIRECTIONAL PORT OPERATION .. 9-5

PORT LOADING .. 9-6

EXTERNAL MEMORY ACCESS ... 9-6

_(

CONTENTS

CHAPTER 10
TIMER/COUNTERS AND WATCHDOG TIMER

10.1 TIMER/COUNTER OVERVIEW ... 10-1

10.2 TIMER/COUNTER OPERATION ... 10-1

10.3 TIMER 0 ... 10-4
10.3.1 Mode 0 (13-bit Timer) ... 10-5
10.3.2 Mode 1 (16-bit Timer) .. , 10-5
10.3.3 Mode 2 (8-bit Timer With Auto-reload) .. 10-5
10.3.4 Mode 3 (Two 8-bit Timers) .. 1 0-6

10.4 TIMER 1 ... 10-6
10.4.1 Mode 0 (13-bit Timer) ... 10-7
10.4.2 Mode 1 (16-bit Timer) ... 10-7
10.4.3 Mode 2 (8-bit Timer with Auto-reload) ... 10-10
10.4.4 Mode 3 (Halt) .. 10-10

10.5 TIMER 0/1 APPLICATIONS ... 10-10
10.5.1 Auto-load Setup Example ... 10-10
10.5.2 Pulse Width Measurements .. 10-11

10.6 TIMER 2 ... 10-11
10.6.1 Capture Mode ... 10-12
10.6.2 Auto-reload Mode ... 10-13

10.6.2.1 Up Counter Operation .. 10-13
10.6.3 Up/Down Counter Operation ... 10-14
10.6.4 Baud Rate Generator Mode .. 10-15
10.6.5 Clock-out Mode ... 10-15

10.7 WATCHDOG TIMER ... 10-17
10. 7 .1 Description .. 10-17
10.7.2 Using the WDT .. 10-19
10.7.3 WDT During Idle Mode ... 10-19
10.7.4 WDT During PowerDown .. 10-19

CHAPTER 11
PROGRAMMABLE COUNTER ARRAY

11.1 PCADESCRIPTION .. 11-1
11. 1 .1 Alternate Port Usage ... 11-2

11.2 PCA TIMER/COUNTER ... 11-2

11.3 PCA COMPARE/CAPTURE MODULES ... 11-5

I

11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6

16-bit Capture Mode ... 11-5
Compare Modes ... 11-6
16-bit Software Timer Mode .. 11-7
High-speed Output Mode .. 11-8
PCA Watchdog Timer Mode ... 11-9
Pulse Width Modulation Mode .. 11-10

vii

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

CHAPTER12
SERIAL 1/0 PORT

12.1 OVERVIEW ... 12-1

12.2 MODES OF OPERATION .. 12-2
12.2.1 Synchronous Mode (Mode 0) .. 12-2

12.2.1.1 Transmission (Mode 0) .. 12-2
12.2.1 .2 Reception (Mode 0) .. 12-3

12.2.2 Asynchronous Modes (Modes 1, 2, and 3) ... 12-7
12.2.2.1 Transmission (Modes 1, 2, 3) ... 12-7
12.2.2.2 Reception (Modes 1, 2, 3) .. 12-7

12.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3) 12-7

12.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3) 12-8

12.5 AUTOMATIC ADDRESS RECOGNITION ... 12-8
12.5.1 Given Address .. 12-8
12.5.2 Broadcast Address .. 12-9
12.5.3 Reset Addresses ... 12-10

12.6 BAUD RATES ; .. 12-10
12.6.1 Baud Rate for Mode 0 t ... 12-1 O
12.6.2 Baud Rates for Mode 2 ... 12-11
12.6.3 Baud Rates for Modes 1 and 3 t ... 12-11

12.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3) t .. 12-11
12.6.3.2 Selecting Timer 1 as the Baud Rate Generator t ... 12-11
12.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3) .. 12-12
12.6.3.4 Selecting Timer 2 as the Baud Rate Generator t ... 12-12

CHAPTER 13
MINIMUM HARDWARE SETUP

13.1 MINIMUM HARDWARE SETUP .. 13-1

13.2 ELECTRICAL ENVIRONMENT ... 13-1
13.2.1 Power and Ground Pins .. 13-2
13.2.2 Unused Pins .. 13-2
13.2.3 Noise Considerations .. 13-2

13.3 CLOCK SOURCES .. 13-2
13.3.1 On-chip Oscillator (Crystal) .. , .. 13-2
13.3.2 On-chip Oscillator (Ceramic Resonator) ... 13-3
13.3.3 External Clock ... 13-3

13.4 RESET ... 13-4
13.4.1 Externally Initiated Resets : .. 13-5
13.4.2 WOT Initiated Resets .. 13-5
13.4.3
13.4.4
13.4.5

viii

USB Initiated Resets ... 13-5
Reset Operation .. 13-6
Power-on Reset .. 13-6

__ I

CONTENTS

CHAPTER 14
SPECIAL OPERATING MODES

14.1 GENERAL .. 14-1

14.2 POWER CONTROL REGISTERS ... 14-1
14.2.1 Serial 1/0 Control Bits ... 14-1
14.2.2 Power Off Flag .. 14-1

14.3 IDLE MODE .. ~ 14-5
14.3.1 Entering Idle Mode .. 14-5
14.3.2 Exiting Idle Mode .. 14-5

14.4 USB POWER CONTROL .. 14-6
14.4.1 Global Suspend Mode .. 14-6

14.4.1.1 Powerdown Mode .. 14-6
14.4.1.2 Entering Powe rd own Mode .. 14-7
14.4.1.3 Exiting Powerdown Mode ... 14-7

14.4.2 Global Resume Mode ... 14-8
14.4.3 USB Remote Wake-up .. 14-8

14.5 LOW CLOCK MODE .. 14-8
14.5.1 Entering Low Clock Mode ... 14-8
14.5.2 Exiting Low Clock Mode .. 14-9

14.6 ON-CIRCUIT EMULATION (ONCE) MODE .. 14-9
14.6.1 Entering ONCE Mode ... 14-9
14.6.2 Exiting ONCE Mode ... , 14-9

CHAPTER 15
EXTERNAL MEMORY INTERFACE

15.1 OVERVIEW ... 15-1

15.2 EXTERNAL BUS CYCLES .. 15-3
15.2.1 Bus Cycle Definitions .. 15-3
15.2.2 Nonpage Mode Bus Cycles .. 15-3
15.2.3 Page Mode Bus Cycles ... 15-6

15.3 WAIT STATES ... 15-8

15.4 EXTERNAL BUS CYCLES WITH CONFIGURABLE WAIT STATES 15-8
15.4.1 Extending RD#/WR#/PSEN# .. 15-8
15.4.2 Extending ALE .. 15-10

15.5 EXTERNAL BUS CYCLES WITH REAL-TIME WAIT STATES 15-11
15.5.1 Real-time WAIT# Enable (RTWE) ... 15-12
15.5.2 Real-time WAIT CLOCK Enable (RTWCE) ... 15-12
15.5.3 Real-time Wait State Bus Cycle Diagrams .. 15-12

15.6 CONFIGURATION BYTE BUS CYCLES ... 15-15

15.7 PORT 0 AND PORT 2 STATUS .. 15-15
15.7.1 Port O and Port 2 Pin Status in Nonpage Mode .. 15-16
15. 7.2 Port 0 and Port 2 Pin Status in Page Mode .. 15-16

15.8 EXTERNAL MEMORY DESIGN EXAMPLES .. 15-17

I ix

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

15.8.1 Example 1: RD1 :0 = 00, 18-bit Bus, Extemal Flash and RAM 15-18
15.8.2 Example 2: RD1:0=01, 17-bit Bus, External Flash and RAM 15-20
15.8.3 Example 3: RD 1 :0 = 01, 17-bit Bus, External RAM .. 15-22
15.8.4 Example 4: RD1 :0 = 10, 16-bit Bus, External RAM .. 15-24
15.8.5 Example 5: RD 1 :0 = 11, 16-bit Bus, External EPROM and RAM 15-26

15.8.5.1 An Application Requiring Fast Access to the Stack ... 15-26
15.8.5.2 An Application Requiring Fast Access to Data ... 15-26

15.8.6 Example 6: RD1:0=11, 16-bit Bus, External EPROM and RAM .; 15-29
15.8.7 Example 7: RD1:0=01, 17-bitHus, External Flash .. 15-30

CHAPTER16
VERIFYING NONVOLATILE MEMORY

16.1 GENERAL. ... 16-1
16.1.1 Considerations for On-chip Program Code Memory ... 16-1

16.2 VERIFY MODES .. 16-3

16.3

16.4

16.5
16.5.1

16.6

GENERAL SETUP ; ... 16-3

VERIFY ALGORITHM ... , .. 16-4

LOCK BIT SYSTEM ... 16-5
Encryption Array ... 16-5

SIGNATURE BYTES ... 16-6

APPENDIX A
INSTRUCTION SET REFERENCE

A.1 NOTATION FOR INSTRUCTION OPERANDS .. A-2

A.2 OPCODE MAP AND SUPPORTING TABLES ... A-4

A.3 INSTRUCTION SET SUMMARY .. A-11
A.3.1 Execution Times for Instructions Accessing the Port SF Rs A-11
A.3.2 Instruction Summaries .. A-14

A.4 INSTRUCTION DESCRIPTIONS ... A-26

APPENDIX B
SIGNAL DESCRIPTIONS

APPENDIX C
REGISTERS

C.1 SFRS BY FUNCTIONAL CATEGORY ... C-2

C.2 SFR DESCRIPTIONS ... C-6

x J

CONTENTS

APPENDIX D
DATA FLOW MODEL

GLOSSARY

INDEX

I xi

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Figure
2-1
2-2
2-3
2-4
2-5
2-6
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
5-1
5-2
5-3
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
7-1
7-2
7-3
7-4
7-5
7-6
7-7

xii

FIGURES

Page

8X930Ax in a Universal Serial Bus System .. 2-1
Functional Block Diagram of the 8X930Ax ... 2-2
8X930Ax USB Module Block Diagram ... 2-3
The CPU ... 2-6
Clocking Definitions (PLL off) ... : 2-9
Clocking Definitions (PLL on) ... 2-9
Address Spaces for the 8X930Ax .. 3-1
Address Spaces for the MCS® 51 Architecture ... 3-3
Address Space Mappings MCS® 51 Architecture to MCS® 251 Architecture 3-4
8X930Ax Address Space ... 3-6
Hardware Implementation of the 8X930Ax Address Space ... 3-7
The Register File .. 3-1 O
Register File Locations 0-7 ... , .. 3-11
Dedicated Registers in the Register File and their Corresponding SFRs 3-13
Configuration Array (On-chip) .. .4-2
Configuration Array (External)4-3
User Configuration Byte 0 (UCONFIGO)4-5
User Configuration Byte 1 (UCONFIG1) .. 4-6
Internal/External Address Mapping (RD1:0=00 and 01) ... 4-8
Internal/External Address Mapping (RD1:0=10 and 11) ... 4-9
Binary Mode Opcode Map .. 4-13
Source Mode Opcode Map .. 4-13
Word and Double-word Storage in Big Endien Form ... 5-3
Program Status Word Register .. : , 5-17
Program Status Word 1 Register .. 5-18
Interrupt Control System , ... 6-2
USB Function Interrupt Enable Register .. 6-7
USB Function Interrupt Flag Register ... 6-9
Interrupt Enable Register O .. 6-11
USS.Interrupt Enable Register ... 6-12
I PHO: Interrupt Priority High Register 0 .. 6-14
IPLO: Interrupt Priority Low Register 0 .. 6-14
IPH1: Interrupt Priority High Register 1 .. 6-15
IPL1: Interrupt Priority Low Register 1 .. 6-15
The Interrupt Process ... 6-16
Response Time Example #1 .. 6-18
Response Time Example #2 , ... 6-19
EPINDEX: Endpoint Index Register ... 7-5
EPCON: Control Endpoint Register .. 7-7
TXSTAT: Transmit FIFO Status Register ... 7-9
RXSTAT: Receive FIFO Status Register .. 7-11
SOFH: Start of Frame High Register .. 7-12
SOFL: Start of Frame Low Register , .. 7-13
FADDR: Function Address Register ... 7-13

__ l

Figure

7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
9-1
9-2
9-3
9-4
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
11-1
11-2
11-3
11-4
11-5
11-6
11-7

I

CONTENTS

FIGURES

Page

Transmit FIFO Outline .. 7-14
Transmit Byte Count Registers ... 7-16
TXDAT: Transmit Fl FO Data Register .. 7-18
TXCNTH/TXCNTL Transmit FIFO Byte Count Registers ... 7-19
TXCON: Transmit FIFO Control Register ... 7-21
TXFLG: Transmit FIFO Flag Register .. 7-23
Receive FIFO ... 7-25
RXDAT: Receive FIFO Data Register .. 7-27
RXCNTH/RXCNTL: Receive Fl FO Byte Count Registers .. 7-28
RXCON: Receive FIFO Control Register ... 7-30
RXFLG: Receive FIFO Flag Register ... 7-32
Program Flow ... 8-1
High-level View of Transmit Operations ... 8-4
Pre-transmit JSR (Non-Isochronous) .. 8-5
Post-transmit ISR (Non-isochronous) ... 8-6
Post-transmit ISR (Isochronous) .. 8-7
High-level View of Receive Operations .. 8-9
Post-receive I SR (Non-isochronous) .. 8-10
Receive SOF ISR (Isochronous) .. 8-11
Post-receive JSR (Control) .. 8-13
Hardware Operations for SOF Token ... 8-14
Port 1 and Port 3 Structure ... 9-3
Port 0 Structure .. 9-3
Port 2 Structure .. 9-4
Internal Pullup Configurations .. 9-6
Basic Logic of the Timer/Counters ... 1 0-3
Timer 0/1 in Mode 0 and Mode 1 ... 10-5
Timer 0/1 in Mode 2, Auto-Reload .. 10-6
Timer O in Mode 3, Two 8-bit Timers .. 10-7
TMOD: Timer/Counter Mode Control Register ... 10-8
TCON: Timer/Counter Control Register ... 10-9
Timer 2: Capture Mode .. 10-12
Timer 2: Auto Reload Mode (DCEN = 0) .. 10-13
Timer 2: Auto Reload Mode (DCEN = 1) .. 10-14
Timer 2: Clock Out Mode .. 10-16
T2MOD: Timer 2 Mode Control Register .. 10-17
T2CON: Timer 2 Control Register .. 10-18
Programmable Counter Array ... 11-3
PCA 16-bit Capture Mode .. 11-6
PCA Software Timer and High-speed Output Modes ... 11-8
PCA Watchdog Timer Mode ... 11-10
PCA 8-bit PWM Mode .. 11-11
PWM Variable Duty Cycle .. 11-12
CMOD: PCA Timer/Counter Mode Register ... 11-13

xiii

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Figure

11-8
11-9
12-1
12-2
12-3
12-4
12-5
13-1
13-2
13-3
13-4
13-5
14-1
14-2
14-3
14-4
15-1
15-2
15-3
15-4
15-5
15-6
15-7

. 15-8
15-9
15-10
15-11
15-12
15-13
15-14
15-15
15-16
15-17
15-18
15-19
15-20
15-21
15-22
15-23
15-24
15-25
15-26
15-27
15-28

xiv

FIGURES

Page

CCON: PCA Timer/Counter Control Register ... 11-14
CCAPMx: PCA Compare/Capture Module Mode Registers 11-15
Serial Port Block Diagram .. 12-3
SCON: Serial Port Control Register , .. 12-5
Mode O Timing , ... 12-6
Data Frame (Modes 1, 2, and 3) .. 12-6
Timer 2 in Baud Rate Generator Mode .. 12-14
Minimum Setup .. 13-1
CHM OS On-chip Oscillator : ... 13-3
External Clock Connection for the 8X930Ax .. 13-4
External Clock Drive Waveforms .. 13-4
Reset Timing Sequence .. , 13-7
Power Control (PCON) Register ... 14-2
USB Power Control (PCON 1) Register .. 14-3
Idle and Powerdown Clock Control .. 14-4
Suspend/Resume Program with/without Remote Wake-up 14-10
Bus Structure in Non page Mode and Page Mode .. 15-1
External Code Fetch (Nonpage Mode) ... 15-4
External Data Read (Nonpage Mode) .. 15-5
External Data Write (Nonpage Mode) .. 15-5
External Code Fetch (Page Mode) ... 15-7
External Data Read (Page Mode) .. 15-7
External Data Write (Page Mode) ... 15-8
External Code Fetch (Non page Mode, One RD#/PSEN# Wait State) 15-9
External Data Write (Nonpage Mode, One WR# Wait State) 15-9
External Code Fetch (Nonpage Mode, One ALE Wait State) 15-10
Real-time Wait State Control Register (WCON) ... 15-11
External Code Fetch/Data Read (Nonpage Mode, Real-time Wait State) 15-13
External Data Write (Nonpage Mode, Real-time Wait State) 15-13
External Data Read (Page Mode, Real-time Wait State) ... 15-14
External Data Write (Page Mode, Real-time Wait State) .. 15-14
Configuration Byte Bus Cycles ... 15-15
Bus Diagram for Example 1: 80930AD in Page Mode ... 15-18
Address Space for Example 1 .. 15-19
Bus Diagram for Example 2: 80930AD in Page Mode ... 15-20
Address Space for Example 2 .. 15-21
Bus Diagram for Example 3: 83930AE in Non page Mode 15-22
Memory Space for Example 3 .. 15-23
Bus Diagram for Example 4: 83930AE in Non page Mode 15-24
Address Space for Example 4 .. 15-25
Bus Diagram for Example 5: 80930AD in Non page Mode 15-27
Address Space for Examples 5 and 6•................... : ... 15-28
Bus Diagram for Example 6: 80930AD in Page Mode ... 15-29
Bus Diagram for Example 7: 80930AD in Page Mode ... 15-30

_I

Figure
16-1
16-2
8-1

I

CONTENTS

FIGURES

Page
Setup for Verifying Nonvolatile Memory ... 16-4
Verify Bus Cycles ... 16-4
8X930Ax 68-pin PLCC Package .. 8-1

xv

8X930Ax UNIVERSAL SE.RIAL BUS MICROCONTROLLER USER'S MANUAL

TABLES

Table Page

1-1 Intel Application Support Services .. 1-7
2-1 8X930Ax Features Summary ... 2-5
2-2 8X930Ax Operating Frequency .. 2-8
3-1 Address Mappings .. 3-4
3-2 Minimum Times to Fetch Two Bytes of Code ... 3-9
3-3 Register Bank Selection ... 3-11
3-4 Dedicated Registers in the Register File and their Corresponding SFRs 3-14
3-5 8X930Ax SFR Map ... 3-16
3-6 Core SFRs .. 3-17
3-7 USB Function SFRs ... 3-18
3-8 1/0 Port SFRs , .. 3-19
3-9 Serial 1/0 SFRs ... ; .. 3-19
3-10 Timer/Counter and Watchdog Timer SFRs .. 3-19
3-11 Programmable Counter Array (PCA) SFRs .. 3-20
4-1 External Addresses for Configuration Array ... 4-2
4-2 Memory Signal Selections (RD1:0) : .. 4-7
4-3 RD#, WR#, PSEN# External Wait States ... 4-11
4-4 Examples of Opcodes in Binary and Source Modes .. 4-14
5-1 Data Types .. 5-2
5-2 Notation for Byte Registers, Word Registers, and Dword Registers 5-3
5-3 Addressing Modes for Data Instructions in the MCS® 51 Architecture 5-5
5-4 Addressing Modes for Data Instructions in the MCS 251 Architecture 5-7
5-5 Bit-addressable Locations .. 5-11
5-6 Addressing Two Sample Bits .. 5-11
5-7 Addressing Modes for Bit lnstructions .. 5-11
5-8 Addressing Modes for Control lnstructions ... 5-13
5-9 Compare-conditional Jump Instructions ... 5-14
5-10 The Effects of Instructions on the PSW and PSW1 Flags .. 5-16
6-1 Interrupt System Input Signals ... 6-1
6-2 Interrupt System Special Function Registers ... 6-3
6-3 Interrupt Control Matrix ... 6-4
6-4 USB Interrupt Control Matrix .. 6-5
6-5 Level of Priority ... 6-13
6-6 Interrupt Priority Within Level ... 6-13
6-7 Interrupt Latency Variables .. 6-20
6-8 Actual vs. Predicted Latency Calculations .. 6-20
7-1 Signal Descriptions ... 7-2
7-2 USB Function SFRs .. 7-3
7-3 8X930Ax FIFO Configurations ... 7-4
7-4 Writing to the Byte Count Register ... 7-17
7-5 Truth Table for Transmit FIFO Management.. .. 7-18
7-6 Status of the Receive FIFO Data Sets .. 7-26
7-7 Truth Table for Receive FIFO Management.. ... 7-27
9-1 Input/Output Port Pin Descriptions ... 9-1

xvi

~--·~- --- _ _J_

Table

9-2
10-1
10-2
10-3
11-1
11-2
11-3
12-1
12-2
12-3
12-4
12-5
12-6
14-1
15-1
15-2
15-3
16-1
16-2
16-3
16-4
16-5
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22

I

CONTENTS

TABLES

Page

Instructions for External Data Moves .. 9-7
External Signals ... 10-2
Timer/Counter and Watchdog Timer SFRs .. 10-4
Timer 2 Modes of Operation ... 10-16
PCA Special Function Registers (SFRs) .. 11-4
External Signals ... 11-4
PCA Module Modes ... 11-14
Serial Port Signals .. 12-2
Serial Port Special Function Registers ... 12-2
Summary of Baud Rates .. 12-11
Timer 1 Gene.rated Baud Rates for Serial 1/0 Modes 1 and 3 12-12
Selecting the Baud Rate Generator(s) ... 12-13
Timer 2 Generated Baud Rates ... 12-14
Pin Conditions in Various Modes .. 14-4
External Memory Interface Signals ... 15-2
Bus Cycle Definitions (No Wait States) .. 15-4
Port 0 and Port 2 Pin Status In Normal Operating Mode .. 15-16
Signal Descriptions ... 16-2
Verify Modes ... 16-3

Lock Bit Function .. 16-5
Contents of the Signature Bytes ... 16-6
Timing Definitions ... 16-6
Notation for Register Operands ... A-2
Notation for Direct Addresses .. A-3
Notation for Immediate Addressing ... A-3
Notation for Bit Addressing .. A-3
Notation for Destinations in Control Instructions ... A-3
Instructions for MCS® 51 Microcontrollers .. A-4
Instructions for the 8X930Ax Architecture .. A-5

Data Instructions ... A-6
High Nibble, Byte 0 of Data Instructions .. A-6
Bit Instructions ... A-7
Byte 1 (High Nibble) for Bit Instructions ... A-7
PUSH/POP Instructions .. A-8
Control Instructions .. A-8
Displacement/Extended MOVs .. A-9
INC/DEC .. A-10
Encoding for INC/DEC ; .. A-10
Shifts ... A-10
State Times to Access the Port SFRs ... A-12
Summary of Add and Subtract Instructions ... A-14
Summary of Compare Instructions .. A-15
Summary of Increment and Decrement Instructions ... A-15
Summary of Multiply, Divide, and Decimal-adjust Instructions A-16

xvii

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

TABLES

Table Page
A-23 Summary of Logical Instructions ... A-17
A-24 Summary of Move Instructions .. A-19
A-25 Summary of Exchange, Push, and Pop Instructions ... A-22
A-26 Summary of Bit Instructions ... A-23
A-27 Summary of Control Instructions ... A-24
A-28 Flag Symbols ... A-26
B-1 8X930Ax Pin Assignments Arranged by Functional Categories B-2
B-2 Signal Descriptions .. B-3
8-3 Memory Signal Selections (RD1 :0) ... 8-6
B-4 8X930Ax Operating Frequency ... B-6
C-1 8X930Ax SFR Map .. C-1
C-2 Core SFRs ... ; C-2
C-3 1/0 Port SFRs .. C-2
C-4 Serial 1/0 SF Rs ... C-3
C-5 USB Function SFRs ,· .. C-3
C-6 Timer/Counter and Watchdog Timer SF Rs ... C-4
C-7 Programmable Counter Array (PCA) SFRs ... C-5
D-1 Non-isochronous Transmit Data Flow ... D-1
D-2 Isochronous Transmit Data Flow in Dual-packet Mode ... D-5
D-3 Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) D-8
D-4 Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) D-11
D-5 Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = O) D-18

xviii·

_____ __L_

1
Guide to this Manual

I

CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the 8X930Ax microcontroller; a new family of products for universal se­
rial bus (USB) applications. This manual is intended for use by both software and hardware de­
signers familiar with the principles of microcontroller architecture.

1.1 MANUAL CONTENTS

This chapter provides an overview of the manual with brief summaries of the chapters and appen­
dices. It also explains the terminology and notational conventions used throughout the manual,
provides references to related documentation, and tells how to contact Intel for additional infor­
mation.

Chapter 2, "Introduction" - provides an overview of device hardware. It covers core functions
(pipelined CPU, clock and reset unit, and interrupts), 110 ports, on-chip memory, and on-chip pe­
ripherals (USB, timer/counters, watchdog timer, programmable counter array, and serial 1/0
port).

Chapter 3, "Memory Partitions" - describes the three address spaces of the 8X930Ax: mem­
ory address space, special function register (SFR) space, and the register file. It also provides a
map of the SFR space showing the location of the SFRs and their reset values and explains the
mapping of the address spaces relative to the MCS® 51 and MCS® 251 architectures into the ad­
dress spaces of the 8X930Ax.

Chapter 4, "Device Configuration" - describes microcontroller features that are configured at
device reset, including the external memory interface (the number of external address bits, the
number of wait states, page mode, memory regions for asserting RD#, WR#, and PSEN#), bina­
ry/source opcodes, interrupt mode, and the mapping of a portion of on-chip code memory to data
memory. It describes the configuration bytes and how to program them for the desired configu­
ration. It also describes how internal memory maps into external memory.

Chapter S, "Instructions and Addressing" - provides an overview of the instruction set. It de­
scribes each instruction type (control, arithmetic, logical, etc.) and lists the instructions in tabular
form. This chapter also discusses the addressing modes, bit instructions, and the program status
words. Appendix A, "Instruction Set Reference" provides a detailed description of each instruc­
tion.

Chapter 6, "Interrupt System" - describes the 8X930Ax interrupt circuitry which provides a
TRAP instruction interrupt and ten maskable interrupts: two external interrupts, three timer inter­
rupts, a PCA interrupt, a serial port interrupt, and three USB interrupts. This chapter also discuss­
es the interrupt priority scheme, interrupt enable, interrupt processing, and interrupt response
time.

Chapter 7, "Universal Serial Bus" - describes the operation of the 8X930Ax serving as a USB
function. The USB function interface manages communications between the USB host and the
embedded function. The USB module consists of a serial bus interface engine (SIE), a function
interface unit (FIU), a differential transceiver and FIFO data buffers.

I 1-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Chapter 8, "USB Programming Models" - describes the programming models of the
8X930A.x USB function interface. This chapter provides flow charts of suggested firmware rou­
tines for using the transmit and receive FIFOs to perform data transfers between the host PC and
the embedded function and describes how the firmware interacts with the USB module hardware.

Chapter 9, "Input/Output Ports"- describes the four 8-bit 1/0 ports (ports 0-3) and discusses
their configuration for general-purpose 1/0. This chapter also discusses external memory access­
es (ports 0, 2) and alternative special functions.

Chapter 10, "Timer/Counters and WatchDog Timer" - describes the three on-chip tim­
er/counters and discusses their application. This chapter also provides instructions for using the
hardware watchdog timer (WDT) and describes the operation of the WDT during the idle and
powerdown modes.

Chapter 11, "Programmable Counter Array" - describes the PCA on-chip peripheral and ex­
plains how to configure it for general-purpose applications (timers and counters) and special ap­
plications (programmable WDT and pulse-width modulator).

Chapter 12, "Serial 1/0 Port" - describes the full-duplex serial 1/0 port and explains how to
program it to communicate with external peripherals. This chapter also discusses baud rate gen­
eration, framing error detection, multiprocessor communications, and automatic address recog­
nition.

Chapter 13, "Minimum Hardware Setup" - describes the basic requirements for operating
the 8X930Ax in a system. It also discusses on-chip and external clock sources and describes de­
vice resets, including power-on reset.

Chapter 14, "Special Operating Modes" - provides an overview of the idle, powerdown, and
on-circuit emulation (ONCE) modes and describes how to enter and exit each mode. This chapter
also describes the power control (PCON) special function register and lists the status of the device
pins during the special modes and reset.

Chapter 15, "ExternalMemory Interface" - describes the external memory signals and bus
cycles and provides examples of external memory design. It provides waveform diagrams for the
bus cycles, bus cycles with wait states, and the configuration byte bus cycles. It also provides bus
cycle diagrams with AC timing symbols and definitions of the symbols.

Chapter 16, "Verifying Nonvolatile Memory" - provides instructions for verifying on-chip
program memory, configuration bytes, signature bytes, and lock bits.

Appendix A, "Instruction Set Reference" - provides reference information for the instruction
set. It describes each instruction; defines the bits in the program status word registers (PSW,
PSWl); shows the relationships between instructions and PSW flags; and lists hexadecimal op­
codes, instruction lengths, and execution times.

Appendix B, "Signal Descriptions" - describes the function(s) of each device pin. Descrip­
tions are listed alphabetically by signal name. This appendix also provides a list of the signals
grouped by functional category.

Appendix C, "Registers" - accumulates, for convenient reference, copies of the register defi­
nition figures that appear throughout the manual.

1-2 _J_

GUIDE TO THIS MANUAL

Appendix D, "Data Flow Model"- describes the data flow model for the 8X930Ax USB trans­
actions.

Glossary - a glossary of terms has been provided for reference of technical terms.

Index - an index has been included for your convenience.

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are used in this manual. The Glossary defines other
terms with special meanings.

italics

xx xx

Assert and Deassert

Instructions

I

The pound symbol(#) has either of two meanings, depending on the
context. When used with a signal name, the symbol means that the
signal is active low. When used with an instruction pneumonic, the
symbol prefixes an immediate value in immediate addressing mode.

Italics identify variables and introduce new terminology. The context
in which italics are used distinguishes between the two possible
meanings.

Variables in registers and signal names are commonly represented by
x and y, where x represents the first variable and y represents the
second variable. For example, in register Px.y, x represents the
variable [1-4] that identifies the specific port, and y represents the
register bit variable [7:0]. Variables must be replaced with the correct
values when configuring or programming registers or identifying
signals.

Uppercase X (no italics) represents an unknown value or a "don't
care" state or condition. The value may be either binary or
hexadecimal, depending on the context. For example, 2XAFH (hex)
indicates that bits 11 :8 are unknown; lOXX in binary context
indicates that the two LSBs are unknown.

The terms assert and deassert refer to the act of making a signal
active (enabled) and inactive (disabled), respectively. The active
polarity (high/low) is defined by the signal name. Active-low signals
are designated by a pound symbol(#) suffix; active-high signals have
no suffix. To assert RD# is to drive it low; to assert ALE is to drive it
high; to deassert RD# is to drive it high; to deassert ALE is to drive it
low.

Instruction mnemonics are shown in upper case to avoid confusion.
When writing code, either upper case or lower case may be used.

1-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Logic 0 (Low)

Logic 1 (High)

Numbers

Register Bits

Register Names

Reserved Bits

Set and Clear

Signal Names

1-4

An input voltage level equal to or less than the maximum value of
VIL or an output voltage level equal to or less than the maximum
value ofV0 L. See data sheet for values.

An input voltage level equal to or greater than the minimum value of
V rn or an output voltage level equal to or greater than the minimum
value of V0 w See data sheet for values.

Hexadecimal numbers are represented by a string of hexadecimal
digits followed by the character H. Decimal and binary numbers are
represented by their customary notations. That is, 255 is a decimal
number and 1111 1111 is a binary number. In some cases, the letter B
is added for clarity.

Bit locations are indexed by 7:0 for byte registers, 15:0 for word
registers, and 31 :0 for double-word (dword) registers, where bit 0 is
the least-significant bit and 7, 15, or 31 is the most-significant bit. An
individual bit is represented by the register name, followed by a
period and the bit number. For example, PCON.4 is bit 4 of the
power control register. In some discussions, bit names are used. For
example, the name of PCON.4 is POF, the power-off flag.

Register names are shown in upper case. For example, PCON is the
power control register. If a register name contains a lowercase
character, it represents more than one register. For example,
CCAPMx represents the five registers: CCAPMO through CCAPM4.

Some registers contain reserved bits. These bits are not used in this
device, but they may be used in future implementations. Do not write
a "l" to a reserved bit. The value read from a reserved bit is indeter­
minate.

The terms set and clear refer to the value of a bit or the act of giving
it a value. If a bit is set, its value is "1"; setting a bit gives it a "1"
value. If a bit is clear, its value is "O"; clearing a bit gives it a "O"
value.

Signal names are shown in upper case. When several signals share a
common name, an individual signal is represented by the signal name
followed by a number. Port pins are represented by the port abbrevi­
ation, a period, and the pin number (e.g., PO.O, P0.1). A pound
symbol(#) appended to a signal name identifies an active-low signal.

I_

GUIDE TO THIS MANUAL

Units of Measure The following abbreviations are used to represent units of measure:

A amps, amperes

DCV direct current volts

Kbyte kilobytes

KQ kilo-ohms

mA milliamps, milliamperes

Mbyte megabytes

MHz megahertz

ms milliseconds

mW milliwatts

ns nanoseconds

pF picofarads

w watts

v volts

µA microamps, microamperes

µF micro farads

µs microseconds

µW microwatts

1.3 RELATED DOCUMENTS

The following documents contain additional information that is useful in designing systems that
incorporate the 8X930A.x. To order documents, please call Intel Literature Fulfillment (1-800-
548-4725 in the U.S. and Canada; +44(0) 793-431155 in Europe).

Embedded Microcontrollers Order Number 270646

Embedded Processors Order Number 272396

Embedded Applications Order Number 270648

Packaging Order Number 240800

Universal Serial Bus Specification Order Number 272904

I
1-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

1.3.1 Data Sheet

The data sheet is included in Embedded Microcontrollers and is also available individually.

8X930Ax Universal Serial Bus Microcontroller Order Number 272917

1.3.2 Application Notes

The following MCS 251 application notes apply to the 8X930Ax.

AP-125, Designing Microcontroller Systems Order Number 210313
for Electrically Noisy Environments

AP-155, Oscillators for Microcontrollers Order Number 230659

AP-708, introducing the MCS® 251 Microcontroller Order Number 272670
-the 8XC251SB

AP-709, Maximizing Performance Using MCS® 251 Microcontroller Order Number 272671
-Programming the 8XC251SB

AP-710, Migrating from the MCS® 51 Microcontroller to the Order Number 272672
MCS 251 Microcontroller (8XC251SB)-Software and Hardware
Considerations

The following MCS 51 microcontroller application notes also apply to the 8X930Ax.

AP70, Using the Intel MCS® 51 Boolean Processing Capabilities

AP-223, 8051 Based CRT Terminal Controller

AP-252, Designing With the 80C51BH

AP-425, Small DC Motor Control

AP-410, Enhanced Serial Port on the 83C51FA

AP-415, 83C51FNFB PCA Cookbook

AP-476, How to Implement J2C Serial Communication
Using Intel MCS® 51 Microcontrollers

1-6

Order Number 203830

Order Number 270032

Order Number 270068

Order Number 270622

Order Number 270490

Order Number 270609

Order Number 272319

, __ -

GUIDE TO THIS MANUAL

1.4 APPLICATION SUPPORT SERVICES

You can get up-to-date technical information from a variety of electronic support systems: the
World Wide Web, CompuServe, the FaxBack* service, and Intel's Brand Products and Applica­
tions Support bulletin board service (BBS). These systems are available 24 hours a day, 7 days a
week, providing technical information whenever you need it.

In the U.S. and Canada, technical support representatives are available to answer your questions
between 5 a.m. and 5 p.m. Pacific Standard Time (PST). Outside the U.S. and Canada, please con­
tact your local distributor. You can order product literature from Intel literature centers and sales
offices.

Table 1-1 lists the information you need to access these services.

Table 1-1. Intel Application Support Services

Service U.S. and Canada Asia-Pacific and Japan Europe

World Wide Web URL: http://www.intel.com/ URL: http://www.intel.com/ URL: http://www.intel.com/

CompuServe go intel go intel go intel

FaxBack* 800-525-3019 503-264-6835 +44(0)1793-496646

916-356-3105

BBS 503-264-7999 503-264-7999 +44(0)1793-432955

916-356-3600 916-356-3600

Help Desk 800-628-8686 Please contact your local Please contact your local
916-356-7999 distributor. distributor.

Literature 800-548-4725 708-296-9333 +44(0)1793-431155 England

+81 (0)120 47 88 32 +44(0)1793-421777 France

+44(0)1793-421333 Germany

1.4.1 World Wide Web

We offer a variety of technical and product information through the World Wide Web (URL: ht­
tp://www.intel.com/design/mcs96). Also visit Intel's Web site for financials, history, and news.

1.4.2 CompuServe Forums

Intel maintains several CompuServe forums that provide a means for you to gather information,
share discoveries, and debate issues. Type "go intel'' for access. The INTELC forum is set up to
support designers using various Intel components. For information about CompuServe access and
service fees, call CompuServe at 1-800-848-8199 (U.S.) or 614-529-1340 (outside the U.S.).

I 1-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

1.4.3 FaxBack Service

The FaxBack service is an on-demand publishing system that sends documents to your fax ma­
chine. You can get product announcements, change notifications, product literature, device char­
acteristics, design recommendations, and quality and reliability information from FaxBack 24
hours a day, 7 days a week.

Think of the FaxBack service as a library of technical documents that you can access with your
phone. Just dial the telephone number and respond to the system prompts. After you select a doc­
ument, the system sends a copy to your fax machine.

Each document is assigned an order number and is listed in a subject catalog. The first time you
use FaxBack, you should order the appropriate subject catalogs to get a complete listing of doc­
ument order numbers. Catalogs are updated twice monthly. In addition, daily update catalogs list
the title, status, and order number of each document that has been added, revised, or deleted dur­
ing the past eight weeks. The daily update catalogs are numbered with the subject catalog number
followed by a zero. For example, for the complete microcontroller and flash catalog, request doc­
ument number 2; for the daily update to the microcontroller and flash catalog, request document
number 20.

The following catalogs and information are available at the time of publication:

1.

2.

3.

4.

5.

6.

7.

8.

9.

1-8

Solutions OEM subscription form

Microcontroller and flash catalog

Development tools catalog

Systems catalog

Multimedia catalog

Multibus and iRMX® software catalog and BBS file listings

Microprocessor, PCI, and peripheral catalog

Quality and reliability and change notification catalog

iAL (Intel Architecture Labs) technology catalog

I

GUIDE TO THIS MANUAL

1.4.4 Bulletin Board System (BBS)

Intel's Brand Products and Applications Support bulletin board system (BBS) lets you download
files to your PC. The BBS has the latest ApBUILDER software, hypertext manuals and
datasheets, software drivers, firmware upgrades, application notes and utilities, and quality and
reliability data.

Any customer with a PC and modem can access the BBS. The system provides automatic config­
uration support for 1200- through 19200-baud modems. Use these modem settings: no parity, 8
data bits, and 1 stop bit (N, 8, l).

To access the BBS, just dial the telephone number (see Table l-1 on page 1-7) and respond to the
system prompts. During your first session, the system asks you to register with the system oper­
ator by entering your name and location. The system operator will set up your access account
within 24 hours. At that time, you can access the files on the BBS.

I

NOTE

In the U.S. and Canada, you can get a BBS user's guide, a master list of BBS
files, and lists of FaxBack documents by calling l-800-525-3019. Use these
modem settings: no parity; 8 data bits, and 1 stop bit (N, 8, 1).

1-9

2
Introduction

I

CHAPTER 2
INTRODUCTION

The 8X930Ax is a peripheral interface chip for Universal Serial Bus (USB) applications. It sup­
ports the connection of a PC peripheral, such as a keyboard or a modem, to a host PC via the USB.
The USB is specified by the Universal Serial Bus Specification. Much of the material in this doc­
ument rests on this USB specification.

In the language of the USB specification, the 8X930Ax is a USB device. A USB device can serve
as a function by providing an interface for a peripheral, and it can serve as a hub by providing
additional connections to the USB. The 8X930Ax described in this manual serves as a USB func­
tion. Figure 2-1 depicts the 8X930Ax in a USB system.

Host PC

USB Hub

Mouse Modem Printer

Function Function Function

A4395-01

Figure 2-1. 8X930Ax in a Universal Serial Bus System

I
2-1

8X930AX UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

2-2

System Bus and 1/0 Ports

P0.7:0 P2.7:0

t For details, see the USB module block diagram.

1/0 Ports and
Peripheral Signals

P1.7:0 P3.7:0

PCA

L-~-1

USB Ports

A4340-01

Figure 2-2. F!Jnctional Block Diagram of the 8X930Ax

------ --------- J_ __ _

INTRODUCTION

2.1 PRODUCT OVERVIEW

The 8X930Ax can be briefly described as an MCS® 251 microcontroller with an on-chip USB
module, and additional pinouts provided for USB operations. As shown in the functional block
diagram (Figure 2-2), the 8X930Ax consists of a microcontroller core, on-chip ROM (optional)
and RAM, VO ports, the on-chip USB module, and on-chip peripherals.

The microcontroller core together with the USB module provide the capabilities of a USB device.
The block diagram in Figure 2-3 shows the main components of the USB module and how they
interface with the CPU. The other microcontroller peripherals are not essential to operation as a
USB device.

The 8X930Ax uses the standard instruction set of the MCS 251 architecture.

I

To
CPU

~ ~
USB < >
Wires 0 0

0.. ::;;
0 0 .. '
Transceiver

II'

+
Serial Bus

Interface Engine
(SIE)

~

* Control
~ Function

.L
r-"I Interface Unit

(FIU)

(/)
::::> ~
al < <11

Control

iii ~ 0

L.......J FIFOs .L

Control ,,,-

Figure 2-3. 8X930Ax USB Module Block Diagram

r---i

(/)
::::>
al
Q)

> ·a;
(.)
Q)

a:
"<::> .E
(/)
c:
~
I-

..._

A4231-02

2-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

2.1.1 8X930Ax Features

The major features of the 8X930A.x are listed below and summarized in Table 2-1. The 8X930A.x
is derived from the 8XC251Sx microcontroller which provides the following features:

• 256 Kbytes of external memory addressability

• On-chip RAM (512 or 1024 bytes)

• On-chip ROM (0, 8 or 16 Kbytes)

• Four 8-bit 1/0 ports: one open drain port, three quasi-bidirectional ports

• Code compatibility with MCS® 51 microcontrollers

• On-chip peripherals:

Serial 1/0 port: standard MCS 51 microcontroller Universal Asynchronous Receiver
Transmitter (UART)

Programmable counter array (PCA): 5 capture/compare modules configurable for
timing, counting, or PWM

Three general-purpose timer/counters

Dedicated 14-bit hardware watchdog timer

In addition, the 8X930A.x has an on-chip USB module which provides the USB capability. The
major features of the USB module include:

• Standard universal serial bus interface

• Four USB function endpoints.

• Three pairs of 16-byte transmit/receive FIFO data buffers for endpoints 0, 2, 3.

• One pair of configurable transmit/receive FIFO data buffers for endpoint l. (Sizes: 256/256,
512/512, 011024, or 1024/0 bytes)

• Phase-locked loop (1.5 Mbps and 12 Mbps USB data rates)

You can configure the 8X930A.x to specify binary mode or source mode as the opcode arrange­
ment. Either mode executes. all of the MCS 51 architecture instructions and all of the MCS 251
architecture instructions. However, source mode is more efficient for MCS 251 architecture in­
structions, and binary mode is more efficient for MCS 51 architecture instructions. In binary
mode, object code for an MCS 51 microcontroller runs on the 8X930A.x without recompiling. For
details see "Opcode Configurations (SRC)" on page 4-12.

Certain instructions operate on 8-, 16-, or 32-bit operands, providing easier and more efficient
programming in high-level languages such as C. Additional features include the TRAP instruc­
tion, a displacement addressing mode, and several conditional jump instructions. Chapter 5, "In­
structions and Addressing," describes the instruction set and compares it with the instruction set
for MCS 51 microcontrollers.

2-4

I

INTRODUCTION

Table 2-1. 8X930Ax Features Summary

On-chip Memory

Device ROM RAM
Number (Kbytes) (Bytes)

80930AA 0 512

83930AA 8 512

83930AB 16 512

80930AD 0 1024

83930AD 8 1024

83930AE 16 1024

General features:
Address space 256 Kbytes
External bus (multiplexed)

Address 16, 17, or 18 bits
Data 8 bits

Register file 40 bytes
Interrupt sources 11
1/0 ports Four 8-bit 1/0 ports
On-chip Peripherals:

Serial 1/0 port
Programmable counter array (5 modules)
Three general-purpose timer/counters
Hardware WDT.

USB features:
Standard Universal Serial Bus Interface
4 function endpoints - one pair of configurable

transmit/receive FIFOs (up to 1023 bytes total)
and three 16 byte transmit/receive FIFO pairs

On-chip clock/PLL
USB rates 1.5 and 12 Mbps

MCS 251 microcontrollers store both code and data in a single, linear 16-Mbyte memory space.
The usable memory space of the 8X930A.x consists of four 64-Kbyte regions (256 Kbytes). The
external bus provides up to 256 Kbytes of external memory addressability. The special function
registers (SFRs) and the register file have separate address spaces. Refer to Chapter 3, "Memory
Partitions" for a description of the address modes.

Each pin of the four 8-bit I/O ports can be individually programmed as a general I/O signal or as
a special-function signal that supports the external bus or one of the on-chip peripherals. Ports PO
and P2 comprise a 16-line external bus, which transmits a 16-bit address multiplexed with 8 data
bits. (You can also configure the 8X930A.x to have a 17-bit or an 18-bit external address bus. Re­
fer to "Configuring the External Memory Interface" on page 4-7.) Ports Pl and P3 carry bus-con­
trol and peripheral signals.

I
2-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL infel®

The 8X930Ax has two power-saving modes. In idle mode, the CPU clock is stopped, while clocks
to the peripherals continue to run. In global suspend mode (powerdown), the on-chip oscillator is
stopped, and the chip enters a static state. An enabled interrupt or a hardware reset can bring the
chip back to its normal operating mode from idle or powerdown. Refer to Chapter 14, "Special
Operating Modes," for details on the power-saving modes.

2.2 MCS 251 MICROCONTROLLER CORE

The MCS 251 microcontroller core contains the CPU, the clock and reset unit, the interrupt han­
dler, the bus interface, and the peripheral interface. The CPU contains the instruction sequencer,
ALU, register file, and data memory interface.

2.2.1 CPU

Figure 2-4 is a functional block diagram of the CPU (central processor unit). The 8X930Ax fetch­
es instructions from on-chip code memory two bytes at a time, or from external memory in single
bytes. Theinstructions are sent over the 16-bit code bus to the execution unit. You can configure
the 8X930Ax to operate in page mode for accelerated instruction fetches from external memory.
In page mode, if an instruction fetch is to the same 256-byte "page" as the previous fetch, the
fetch requires one state (two clocks) rather than two states (four clocks).

2-6

Code Bus (16) Code Address (24)

Instruction Sequencer

........ _ __,, Data Bus (8)

__ __,, Data Address (24)

Figure 2-4. The CPU

A4272-01

---------- -- ______ J_ __

INTRODUCTION

The 8X930Ax register file has forty registers, which can be accessed as bytes, words, and double
words. As in the MCS 5 I architecture, registers 0-7 consist of four banks of eight registers each,
where the active bank is selected by the program status word (PSW) for fast context switches.

The 8X930Ax is a single-pipeline machine. When the pipeline is full and code is executing from
on-chip code memory, an instruction is completed every state time. When the pipeline is full and
code is executing from external memory (with no wait states and no extension of the ALE signal),
an instruction is completed every two state times.

2.2.2 Clock and Reset Unit

The timing signal for the 8X930Ax can be provided by:

• an external frequency source connected to XTAL1

• an on-chip oscillator employing an external crystal/resonator connected across XTAL 1 and
XTAL2.

• an on-chip oscillator phase-locked to one of the above sources.

Device pins PLLSEL2:0 select the operating rate of the USB module and turn the PLL on and
off. Table 2-2 lists the USB operating rates and crystal frequencies as a function of the phase­
locked loop select code. "Clock Sources" on page I 3-2 discusses the requirements for external­
clock signals and on-chip oscillators.

The basic unit of time for 8X930Ax microcontrollers is the state time (or state). States are divided
into two phases identified as phase I and phase 2. See Figures 2-5 and 2-6. The 8X930Ax periph­
erals operate on a peripheral cycle, which is six state times. A specific time within a peripheral
cycle is denoted by its state and phase. For example, the PCA timer is incremented once each pe­
ripheral cycle in phase 2 of state 5 (denoted as S5P2).

When the PLL is on, the frequency of the internal clock distributed to the CPU and peripherals is
twice as great as for the case of PLL off (at Fosc = 12 MHz).

As shown in Table 2-2 and Figure 2-5, when the PLL is off (PLLSEL2:0 = 001 or 100), there are
2 T05Jstate. As shown in Table 2-2 and Figure 2-6, when the PLL is on (PLLSEL2:0 = 110), there
is 1 T05c/state.

The reset unit places the 8X930Ax into a known state. A chip reset is initiated by asserting the
RST pin, by a USB initiated reset, or by allowing the watchdog timer to time out (refer to Chapter
I 3, "Minimum Hardware Setup").

I
2-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table 2-2. 8X930Ax Operating Frequency

Internal XTAL1 XTAL1

PLLSEL2 PLLSEL1 PLLSELO USB Rate
Frequency

Frequency
Clocks

Pin 43 Pin 42 Pin 44 (2) for CPU
Fosc

per Comments
and State

(1) (1) (1)
Peripherals T05c/State
(1fTCLK) (3) (5)

0 0 1 1.5 Mbps 3 Mhz 6Mhz 2 PLL Off
(Low Speed)

1 0 0 1.5 Mbps 6 Mhz (4) 12 Mhz 2 PLL Off
(Low Speed)

1 1 0 12 Mbps 12 Mhz (4) 12 Mhz 1 PLLOn
(Full Speed)

NOTES:
1. Other PLLSELx combinations are not valid.
2. The sampling rate is 4X the USB rate.
3. The 8X930Axdatasheet AC timing specification defines the following symbols: CPU frequency= FcLK

= 1fTCLK'
4. The 8X930Ax CPU and peripherals frequency is 3 Mhz (low clock mode) until the LC bit in PCON is

cleared.
5. The number of XTAL 1 clocks per state (T05cfstate) depends on the PLLSEL2:0 selection. When the

CPU is operating in low clock mode (3 MHz), there are four T050/state for PLLSEL2:0 = 100 or 110.

2.2.3 Interrupt Handler

The interrupt handler can receive interrupt requests from eleven maskable sources and the TRAP
instruction. When the interrupt handler grants an interrupt request, the CPU discontinues the nor­
mal flow of instructions and branches to a routine that services the source that requested the in­
terrupt. You can enable or disable the interrupts individually (except for TRAP) and you can
assign one of four priority levels to each interrupt. Refer to Chapter 6, "Interrupt System," for a
detailed description.

2.3 ON-CHIP MEMORY

For ROM devices, the 8X930Ax provides on-chip program memory beginning at location
FF:OOOOH. See Table 2-1 for memory options. Following a reset, the first instruction is fetched
from location FF:OOOOH. For devices without ROM, instruction fetches are always from external
memory.

The 8X930Ax provides on-chip data RAM beginning at location 00:0020H (i.e., just above the
four banks of registers RO-R7 which occupy the first 32 bytes of the memory space). See Table
2-1 for memory options. Data RAM locations can be accessed with direct, indirect, and displace­
ment addressing. Ninety-six of these locations (20H~7FH) are bit addressable.

2-8

XTAL1

INTRODUCTION

Phase 1

P1

Phase 2

P2

XTAL1

State 1

P1 I P2

State 2

P1 I P2

. I
2 T osc = State Time

State 3 I State 4 I State 5 , . State 6

P1 I P2 P1 I P2 P1 I P2 P1 I P2

,._ _________ Peripheral Cycle -----------

Figure 2-5. Clocking Definitions (PLL off) t

I P1 I P2 I
XTAL1

Tosc
1 T osc = State Time

State 1 2 3 4 5 6

/P1 P2/P1 P2/P1 P2/P1 P2/P1 P2/P1 P2/

XTAL1

,,....,. ___ Peripheral Cycle ---•!
(6 States)

Figure 2-6. Clocking Definitions (PLL on) tt

A2604-02

A5086-01

t Figure 2-5 shows timing for PLL off (PLLSEL2:0 = 00 I or I 00) and 8X930Ax not in low-clock mode. 2 Tosc.!State.
tt Figure 2-6 shows timing for PLL on (PLLSEL2:0 = 110) and 8X930Ax not in low-clock mode. 1 T05c./State.

I
2-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

2.4 UNIVERSAL SERIAL BUS MODULE

The universal serial bus module provides a USB interface between the host PC and the product
in which the 8X930Ax is embedded. Data port 0 (Dp0, DM0) provides the upstream connection.
Figure 2-3 shows the main components of the USB module.

The serial interface engine (SIE) handles the communication protocol of univ_ersal serial bus. The
function interface unit (FIU) manages data received and transmitted by the USB module. The
8X930Ax supports four function endpoints. Each endpoint contains a transmit FIFO and a receive
FIFO. See Table 2-1. Transmit FIFOs are written by the CPU, then read by the FIU for transmis­
sion. Receive FIFOs are written by the FIU following reception, then read by the CPU. All trans­
mit FIFOs have the same architecture, and all receive FIFOs have the same architecture.

Operation of the USB module is described in detail in Chapter 7, "Universal Serial Bus," and
Chapter 8, "USB Programming Models."

2.5 ON-CHIP PERIPHERALS

The on-chip peripherals, which reside outside the microcontroller core, perform·specialized func­
tions. Software accesses the peripherals via their special function registers (SFRs). The 8X930Ax
has four peripherals: the watchdog timer, the timer/counters, the programmable counter array
(PCA), and the serial 1/0 port.

2.5.1 Timer/Counters and Watchdog Timer

The timer/counter unit has three timer/counters, which can be clocked by the oscillator (for timer
operation) or by an external input (for counter operation). You can set up an 8-bit, 13-bit, or 16-
bit timer/counter, and you can program them for special applications, such as capturing the time
of an event on an external pin, outputting a programmable clock signal on an external pin, or gen­
erating a baud rate for the serial 1/0 port. Timer/counter events can generate interrupt requests.

The watchdog timer is a circuit that automatically resets the 8X930Ax in the event of a hardware
or software upset. When enabled by software, the watchdog timer begins running, and unless
software intervenes, the timer reaches a maximum count and initiates a chip reset. In normal op­
eration, software periodically clears the timer register to prevent the reset. If an upset occurs and
software fails to clear the timer, the resulting chip reset disables the timer and returns the system
to a known state. The watchdog and the timer/counters are described in Chapter 10, "Tim­
er/Counters and WatchDog Timer."

2.5.2 Programmable Counter Array (PCA)

The programmable counter array (PCA) has its own timer and five capture/compare modules that
perform several functions: capturing (storing) the timer value in response to a transition on an in­
put pin; generating an interrupt request when the timer matches a stored value; toggling an output
pin when the timer matches a stored value; generating a programmable PWM (pulse width mod­
ulator) signal on an output pin; and serving as a software watchdog timer. Chapter 11, "Program­
mable Counter Array," describes this peripheral in detail.

2-10

I

INTRODUCTION

2.5.3 Serial 110 Port

The serial 1/0 port provides one synchronous and three asynchronous communication modes.
The synchronous mode (mode 0) is half-duplex: the serial port outputs a clock signal on one pin
and transmits or receives data on another pin.

The asynchronous modes (modes 1-3) are full-duplex (i.e., the port can send and receive simul­
taneously). Mode 1 uses a serial frame of 10 bits: a start bit, 8 data bits, and a stop bit. The baud
rate is generated by overflow of timer I or timer 2. Modes 2 and 3 use a serial frame of 11 bits: a
start bit, eight data bits, a programmable ninth data bit, and a stop bit. The ninth bit can be used
for parity checking or to specify that the frame contains an address and data. In mode 2, you can
use a baud rate of 1/32 or 1/64 of the oscillator frequency. In mode 3, you can use the overflow
from timer I or timer 2 to determine the baud rate.

In its synchronous modes (modes 1-3) the serial port can operate as a slave in an environment
where multiple slaves share a single serial line. It can accept a message intended for itself or a
message that is being broadcast to all of the slaves, and it can ignore a message sent to another
slave.

2.6 OPERATING CONDITIONS

The 8X930Ax is designed for a commercial operating environment and to accommodate the op­
erating rates of the USB interface. For detailed specifications, refer to the current 8X930Ax Uni­
versal Serial Bus Microcontroller datasheet. For USB module operating rates see "Clock and
Reset Unit" on page 2-7.

I
2-11

3
Memory Partitions

I

CHAPTER 3
MEMORY PARTITIONS

The 8X930Ax has three address spaces: a memory space, a special function register (SFR) space,
and a register file. This chapter describes these address spaces as they apply to the 8X930Ax. It
also discusses the compatibility of the MCS® 251 architecture and the MCS® 51 architecture in
terms of their address spaces.

3.1 ADDRESS SPACES FOR 8X930Ax

Figure 3-1 shows the memory space, the SFR space, and the register file for 8X930Ax. (The ad­
dress spaces are depicted as being eight bytes wide with addresses increasing from left to right
and from bottom to top.)

I

Memory Address Space
16 Mbytes

SFR Space
512 Bytes

Register File
64 Bytes

Figure 3-1. Address Spaces for the 8X930Ax

A4100-01

3-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

It is convenient to view the unsegmented, 16-Mbyte memory space as consisting of 256 64-Kbyte
regions, numbered 00: to FF:.

NOTE
The memory space in the 8X930Ax is unsegmented. The 64-Kbyte "regions"
00:, 01:, .. ., FF: are introduced only as a convenience for discussions.
Addressing in the 8X930Ax is linear; there are no segment registers.

On-chip RAM is located at the bottom of the memory space, beginning at location OO:OOOOH. The
first 32 bytes (OO:OOOOH-OO:OOlFH) provide storage for a part of the register file. The on-chip,
general-purpose data RAM resides just above this, beginning at location 00:0020H.

On-chip ROM (code memory) is located in the top region of the memory space, beginning at lo­
cation FF:OOOOH. Following device reset, execution begins at this address. The top eight bytes of
region FF: are reserved for the configuration array.

The register file has its own address space (Figure 3-1). The 64 locations in the register file are
numbered decimally from 0 to 63. Locations 0-7 represent one of four switchable register banks,
each having eight registers. The 32 bytes required for these banks occupy locations OO:OOOOH­
OO:OOlFH in the memory space. Register file locations 8-63 do not appear in the memory space.
See "8X930Ax Register File" on page 3-9 for a further description of the register file.

The SFR space accommodates up to 512 8-bit special function registers with addresses S:OOOH­
S: lFFH. SFRs implemented in the 8X930Ax are shown in Table 3-6 on page 3-10. In the MCS
251 architecture, use the prefix "S:" with SFR addresses to distinguish them from the memory
space addresses OO:OOOOH-OO:OlFFH. See "Special Function Registers (SFRs)"on page 3-15 for
details on the SFR space.

3.1.1 Compatibility with the MCS® 51 Architecture

The address spaces in the MCS 51 architecturet are mapped into the address spaces in the MCS
251 architecture. This mapping allows code written for MCS 51 microcontrollers to run on MCS
251 microcontrollers. (Chapter 5, "Instructions and Addressing" discusses the compatibility of
the two instruction sets.)

Figure 3-2 shows the address spaces for the MCS 51 architecture. Internal data memory locations
OOH-7FH can be addressed directly and indirectly. Internal data locations 80H-FFH can only be
addressed indirectly. Directly addressing these locations accesses the SFRs. The 64-Kbyte code
memory has a separate memory space. Data in the code memory can be accessed only with the
MOVC instruction. Similarly, the 64-Kbyte external data memory can be accessed only with the
MOVX instruction.

The register file (registers RO-R7) comprises four switchable register banks, each having eight
registers. The 32 bytes required for the four banks occupy locations OOH-lFH in the on-chip data
memory.

Figure 3-3 shows how the address spaces in the MCS 51 architecture map into the address spaces
in the MCS 251 architecture; details are listed in Table 3-1.

t MCS® 51 Microcontroller Family User's Manual (Order Number: 272383)

3-2

l_

MEMORY PARTITIONS

The 64-Kbyte code memory for MCS 51 microcontrollers maps into region FF: of the memory
space for MCS 251 microcontrollers. Assemblers for MCS 25 I microcontrollers assemble code
for MCS 51 microcontrollers into region FF:, and data accesses to code memory are directed to
this region. The assembler also maps the interrupt vectors to region FF:. This mapping is trans­
parent to the user; code executes just as before, without modification.

I

OOOOH

OOOOH

80H

OOH

Code
(MOVC)

External Data
(MOVX)

Internal Data
(indirect)

Internal Data
(direct, indirect)

FFFFH

FFFFH Register File

FFH FFH
SF Rs

(direct)
80H

?FH

Figure 3-2. Address Spaces for the MCS® 51 Architecture

A4139-01

3-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Memory Address Space
16 Mbytes

FFFFH

MCS® 51 Architecture
Code Memory

FF:OOOOH OOOOH

FFFFH

MCS 51 Architecture
External Data Memory

01:0000H OOOOH

S:100H

S:OOOH

SFR Space
512 Bytes

Register File
64 Bytes

63

MCS 51 Architecture
FFH

8

OO:OOOOH OOH Internal Data Memory 0

A4133-01

Figure 3-3. Address Space Mappings MCS® 51 Architecture to MCS® 251 Architecture

Table 3-1. Address Mappings

MCS® 51 Architecture MCS® 251 Architecture

Memory Type
Data

Size Location Addressing
Location

Code 64 Kbytes OOOOH-FFFFH
Indirect using

FF:OOOOH-FF:FFFFH
MOVC instr.

External Data 64 Kbytes OOOOH-FFFFH
Indirect using

01 :OOOOH-01 :FFFFH
MOVX instr.

128 bytes OOH-7FH Direct, Indirect OO:OOOOH-00:007FH
Internal Data

128.bytes 80H-FFH Indirect 00:0080H-OO:OOFFH

SF Rs 128 bytes S:80H-S:FFH Direct S:080H-S:OFFH

Register File 8 bytes RO-R7 Register RO-R7

3-4 _t_

MEMORY PARTITIONS

The 64-Kbyte external data memory for MCS 51 microcontrollers is mapped into the memory
region specified by bits 16-23 of the data pointer DPX, i.e., DPXL. DPXL is accessible as register
file location 57 and also as the SFR at S:084H (see "Dedicated Registers" on page 3-12). The re­
set value of DPXL is 01 H, which maps the external memory to region 01: as shown in Figure 3-3.
You can change this mapping by writing a different value to DPXL. A mapping of the MCS 51
microcontroller external data memory into any 64-Kbyte memory region in the MCS 251 archi­
tecture provides complete run-time compatibility because the lower 16 address bits are identical
in the two address spaces.

The 256 bytes of on-chip data memory for MCS 51 microcontrollers (OOH-FFH) are mapped to
addresses OO:OOOOH-OO:OOFFH to ensure complete run-time compatibility. In the MCS 51 archi­
tecture, the lower 128 bytes (OOH-7FH) are directly and indirectly addressable; however the up­
per 128 bytes are accessible by indirect addressing only. In the MCS 251 architecture, all
locations in region 00: are accessible by direct, indirect, and displacement addressing (see
"8X930Ax Memory Space" on page 3-5).

The 128-byte SFR space for MCS 51 microcontrollers is mapped into the 512-byte SFR space of
the MCS 251 architecture starting at address S:080H, as shown in Figure 3-3. This provides com­
plete compatibility with direct addressing of MCS 51 microcontroller SFRs (including bit ad­
dressing). The SFR addresses are unchanged in the new architecture. In the MCS 251
architecture, SFRs A, B, DPL, DPH, and SP (as well as the new SFRs DPXL and SPH) reside in
the register file for high performance. However, to maintain compatibility, they are also mapped
into the SFR space at the same addresses as in the MCS 51 architecture.

3.2 8X930Ax MEMORY SPACE

Figure 3-4 shows the logical memory space for the 8X930Ax microcontroller. The usable mem­
ory space of the 8X930Ax consists of four 64-Kbyte regions: 00:, 01 :, FE:, and FF:. Code can
execute from all four regions; code execution begins at FF:OOOOH. Regions 02:-FD are reserved.
Reading a location in the reserved area returns an unspecified value. Software can execute a write
to the reserved area, but nothing is actually written.

All four regions of the memory space are available at the same time. The maximum number of
external address lines is 18, which limits external memory to a maximum of four regions (256
Kbytes). See "Configuring the External Memory Interface" on page 4-7, and "External Memory
Design Examples" on page 15-17.

Locations FF:FFF8H-FF:FFFFH are reserved for the configuration array (see Chapter 4, "Device
Configuration"). The two configuration bytes for the 8X930Ax are accessed at locations
FF:FFF8H and FF:FFF9H; locations FF:FFFAH-FF:FFFFH are reserved for configuration bytes
in future products. Do not attempt to execute code from locations FF:FFF8H-FF:FFFFH. Also,
see the caution on page 4-3 regarding execution of code from locations immediately below the
configuration array.

Figure 3-4 also indicates the addressing modes that can be used to access different areas of mem­
ory. The first 64 Kbytes can be directly addressed. The first 96 bytes of general-purpose RAM
(00:0020H-00:007FH) are bit addressable. Chapter 5, "Instructions and Addressing," discusses
addressing modes.

I 3-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

3-6

Memory Address Space
16 Mbytes

FF:FFFFH

FF:OOOOH

FE:FFFFH

FE:OOOOH

01:0000H

OO:FFFFH

OO:OOBOH
00:007FH

00:0020H
Register Addressing I ------------00;001 FH

(32 Bytes) .,o_o_:o_o_o_oH _________ ..

Figure 3-4. 8X930Ax Address Space

Indirect and
Displacement
Addressing
(16 Mbytes)

Direct Addressing
(64 Kbytes)

I Bit Addressing
(96 Bytes)

A4385-01

--- _L __

MEMORY PARTITIONS

FF:FFF?H

External Memory

FE:FFFFH

External Memory

FE:OOOOH

01:FFFFH

External Memory

01:0000H
OO:FFFFH

External Memory

tt

t Eight-byte configuration array (FF:FFF8H - FF:FFFFH)
tt Four banks of registers RO-R7 (32 bytes, OO:OOOOH - 00:001 FH)

A4382-02

Figure 3-5. Hardware Implementation of the 8X930Ax Address Space

I
3-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL . intel®
Figure 3-5 shows how areas of the memory space are implemented by on-chip RAM and external
memory. The first 32 bytes of on-chip RAM store banks 0-3 of the register file (see "8X930Ax
Register File" on page 3-9).

3.2.1 On-chip General-purpose Data RAM

On-chip RAM (512or1024 bytes) provides general data storage (Figure 3-5). Instructions cannot
execute from on-chip data RAM. The data is accessible by direct, indirect, and displacement ad­
dressing. Locations 00:0020H-00:007FH are also bit addressable.

3.2.2 On-chip Code Memory

The 8X930Ax is available with 0, 8 or 16 Kbytes of on-chip ROM located in memory region FF:.
(Figure 3-5). Table 2-1 on page 2-5 lists the amount of on-chip code memory for each device. On­
chip ROM is intended primarily for code storage, although its contents can also be read as data
with the indirect and displacement addressing modes. Following a chip reset, program execution
begins at FF:OOOOH. Chapter 16, "Verifying Nonvolatile Memory," describes the procedure for
verifying the contents of on-chip ROM.

A code fetch within the address range of the on-chip ROM accesses the on-chip ROM only if
EA# = 1. For EA#= 0, a code fetch in this address range accesses external memory. The value of
EA# is latched when the chip leaves the reset state. Code is fetched faster from on-chip code
memory than from external memory. Table 3-2 lists the minimum times to fetch two bytes of code
from on-chip memory and external memory.

3-8

NOTE

If your program executes exclusively from on-chip ROM (not from external
memory), beware of executing code from the upper eight bytes of the on-chip
ROM (FF:lFF8H-FF:lFFFH for 8 Kbytes, FF:3FF8H-FF:3FFFH for 16
Kbytes). Because of its pipeline capability, the 8XC251Sx may attempt to
prefetch code from external memory (at an address above FF:lFFFH/
FF:3FFFH) and thereby disrupt I/O ports 0 and 2. Fetching code constants
from these eight bytes does not affect ports 0 and 2.

If your program executes from both on-chip ROM and external memory, code
can be placed in the upper eight bytes of on-chip ROM. As the 8XC251Sx
fetches bytes above the top address in the on-chip ROM, code fetches automat­
ically become external bus cycles. In other words, the rollover from on-chip
ROM to external code memory is transparent to the user.

___ J_

MEMORY PARTITIONS

Table 3-2. Minimum Times to Fetch Two Bytes of Code

Type of Code Memory State Times

On-chip Code Memory 1

External Memory (page mode) 2

External Memory (nonpage mode) 4

3.2.2.1 Accessing On-chip Code Memory in Region 00:

Devices with 16 Kbytes of on-chip code memory can be configured so that the upper half of the
on-chip code memory can also be read as data at locations at the top of region 00: (see "Mapping
On-chip Code Memory to Data Memory (EMAP#)" on page 4-14). That is, locations FF:2000H­
FF:3FFFH cari also be accessed at locations OO:EOOOH-OO:FFFFH. This is useful for accessing
code constants stored in ROM. Note, however, that all of the following three conditions must hold
for this mapping to be effective:

• The device is configured with EMAP# = 0 in the UCONFIG 1 register (See Figure 4-3 on
page 4-5).

• EA#= 1.

• The access to this area of region 00: is a data read, not a code fetch.

If one or more of these conditions do not hold, accesses to the locations in region 00: are referred
to external memory.

3.2.3 External Memory

Regions 01:, FE:, and portions of regions 00: and FF: of the memory space are implemented as
external memory (Figure 3-5). For discussions of external memory, see "Configuring the.External
Memory Interface" on page 4-7, and Chapter 15, "External Memory Interface."

3.3 8X930Ax REGISTER FILE

The 8X930A.x register file consists of 40 locations: 0-31 and 56-63, as shown in Figure 3-6.
These locations are accessible as bytes, words, and dwords, as described in "Byte, Word, and
Dword Registers" on page 3-12." Several locations are dedicated to special registers (see "Dedi­
cated Registers" on page 3-12); the remainder are general-purpose registers.

Register file locations 0-7 actually consist of four switchable banks of eight registers each, as il­
lustrated in Figure 3-7 on page 3-11. The four banks are implemented as the first 32 bytes of on­
chip RAM and are always accessible as locations OO:OOOOH-OO:OOlFH in the memory address
space.t Only one of the four banks is accessible via the register file at a given time. The accessi-

I

Because these locations are dedicated to the register file, they are not considered a part of the general-purpose,
1-Kbyte, on-chip RAM (locations 00:0020H-00:041FH).

3-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

ble, or "active," bank is selected by bits RSl and RSO in the PSW register, as shown in Table 3-3.
(The PSW is described in "Program Status Words" on page 5-15.") This bank selection can be
used for fast context switches.

Register file locations 8-31 and 56-63 are always accessible. These locations are implemented
as registers in the CPU. Register file locations 32-55 are reserved and cannot be accessed.

3-10

Register File

56 57 58 59 60 61 62 63

Locations 32-55 are Reserved

24 25 26 27 28 29

16 18 19 20 21 22

Banks 0-3

Byte Registers

Note: R10 = B
R11 =ACC

R8 R9 R10 R11 R12 R13 R14 R15

RO R1 R2 R3 R4 R5 R6 R7

Word Registers

WR24 WR26 WR28 WR30

WR16 WR18 WR20 WR22

WR8 WR10 WR12 WR14

WRO WR2 WR4 WR6

Dword Registers

DR56= DPX DR60 =SPX

DR24 DR28

DR16 DR20

DRS DR12

ORO DR4

A4099·01

Figure 3-6. The Register File

__ , __

MEMORY PARTITIONS

Register File Memory Address Space

{
I iif f6Gi~';j~1; ~t;i(#J ::::::---__

PSWbitsRS1:0 lo11°1 1f2 r3ji 5 6F¢.t:~ .. 1~8;;.;H~---~:.:.i BanksD-3
select one bank Banks D-3 ~1-1;..:0;;..;H~---...;1;;..;7H:.;.i accessible
to be accessed via OSH OFH in memory
the register file. · OOH 07H address space

A4215-01

Figure 3-7. Register File Locations G-7

Table 3-3. Register Bank Selection

PSW Selection Bits
Bank Address Range

RS1 RSO

Banko OOH-07H 0 0

Bank 1 OBH-OFH 0 1

Bank2 10H-17H 1 0

Bank3 18H-1FH 1 1

I 3-11

8X930AxUNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

3.4 BYTE, WORD, AND DWORD REGISTERS

Depending on its location in the register file, a register is addressable as a byte, a word, and/or a
dword, as shown on the right side of Figure 3-6. A register is named for its lowest numbered byte
location. For example:

R4 is the byte register consisting of location 4.

WR4 is the word register consisting of registers 4 and 5.

DR4 is the dword register consisting of registers 4-7.

Locations RO-R15 are addressable as bytes, words, or dwords. Locations 16-31 are addressable
only as words or dwords. Locations 56-63 are addressable only as dwords. Registers are ad­
dressed only by the names shown in Figure 3-6 - except for the 32 registers that comprise the
four banks of registers RO-R7, which can also be accessed as locations OO:OOOOH--OO:OOlFH in
the memory space.

3.4.1 Dedicated Registers

The register file has four dedicated registers:

• RlO is the B-register

• Rll is the accumulator (ACC)

• DR56 is the extended data pointer, DPX

• DR60 is the extended stack pointer, SPX

These registers are located in the register file; however, RlO; Rll; the DPXL, DPH, and DPL
bytes in DR56; and the SPH and SP bytes in DR60 are also accessible as SFRs. The bytes ofDPX
and SPX can be accessed in the register file only by addressing the dword registers. The dedicated
registers in the register file and their corresponding SFRs are illustrated in Figure 3-8 and listed
in Table 3-4.

3.4.1.1 Accumulator and B Register

The 8-bit accumulator (ACC) is byte register R11, which is also accessible in the SFR space as
ACC at S:EOH (Figure 3-8). The B register, used in multiplies and divides, is register RlO, which
is also accessible in the SFR space· as B at S :FOH. Accessing ACC or B as a register is one state
faster than accessing them as SFRs.

Instructions in the MCS 51 architecture use the accumulator as the primary register for data
moves and calculations. However, in the MCS 251 architecture, any of registers Rl-Rl5 can
serve for these taskst. As a result, the accumulator does not play the central role that it has in MCS
51 rnicrocontrollers.

t Bits in the PSW and PSWl registers reflect the status of the accumulator. There are no equivalent status indicators for
the other registers. ·

3-12 _____ _L

MEMORY PARTITIONS

Register File SF Rs

A4152-02

Figure 3-8. Dedicated Registers in the Register File and their Corresponding SFRs

3.4.1.2 Extended Data Pointer, DPX

Dword register DR56 is the extended data pointer, DPX (Figure 3-8). The lower three bytes of
DPX (DPL, DPH, DPXL) are accessible as SFRs. DPL and DPH comprise the 16-bit data pointer.
DPfR. While instructions in the MCS 51 architecture always use DPfR as the data pointer, in­
structions in the MCS 251 architecture can use any word or dword register as a data pointer.

DPXL, the byte in location 57, specifies the region of memory (00:-FF:) that maps into the 64-
Kbyte external data memory space in the MCS 51 architecture. In other words, the MOVX in­
struction addresses the region specified by DPXL when it moves data to and from external mem­
ory. The reset value ofDPXL is OlH.

I 3-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Extended Stack Pointer, SPX

Dword register DR60 is the stack pointer, SPX (Figure 3-8). The byte at location 63 is the 8-bit
stack pointer, SP, in the MCS 51 architecture. The byte at location 62 is the stack pointer high,
SPH. The two bytes allow the stack to extend to the top of memory region 00:. SP and SPH can
be accessed as SFRs.

Two instructions, PUSH and POP directly address the stack pointer. Subroutine calls (ACALL,
ECALL, LCALL) and returns (ERET, RET, RETI) also use the stack pointer. To preserve the
stack, do not use DR60 as a general-purpose register.

Table 3-4. Dedicated Registers in the Register File and their Corresponding SFRs

Register File SFRs

Name Mnemonic Reg. Location Mnemonic Address

- - 60 - -
Stack - - 61 - -
Pointer DR60
(SPX) Stack Pointer, High SPH 62 SPH S:BEH

Stack Pointer, Low SP 63 SP S:81H

- - 56 - -
Data Data Pointer Extended, Low DPXL 57
Pointer DR56
(DPX) . l Data Pointer, High DPH 58

DPTR J Data Pointer, Low DPL 59

DPXL S:84H

DPH S:83H

DPL S:82H

Aix:umulator (A Register) A R11 11 ACC S:EOH

B Register B R10 10 B S:FOH

3-14

MEMORY PARTITIONS

3.5 SPECIAL FUNCTION REGISTERS (SFRS)

The special function registers (SFRs) reside in their associated on-chip peripherals or in the core.
The SFR memory map in Table 3-5 gives the addresses and reset values of the 8X930A.x SFRs.
SFR addresses are preceded by "S:" to differentiate them from addresses in the memory space.
Shaded locations in Table 3-5 and locations below S:80H and above S:FFH are unimplemented,
i.e., no register exists. If an instruction attempts to write to an unimplemented SFR location, the
instruction executes, but nothing is actually written. If an unimplemented SFR location is read, it
returns an unspecified value. Descriptive tables for the SFRs are presented in alphabetical order
in Appendix C.

NOTE
SFRs may be accessed only as bytes; they may not be accessed as words or
dwords.

The following tables list the mnemonics, names, and addresses of the SFRs:

I

Table 3-6 - Core SFRs

Table 3-7 - USB Function SFRs

Table 3-8 -1/0 Port SFRs

Table 3-9 - Serial 1/0 SFRs

Table 3-10 - Timer/Counter and Watchdog Timer SFRs

Table 3-ll - Programmable Counter Array (PCA) SFRs

3-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table 3-5. 8X930Ax SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

FB FF

FO F7

EB EF

EO E7

DB DF

DO D7

CB CF

co C7

BB BF

BO IPH1 87
00000000

AB AF

AO A7

9.B 9F

90 97

BB BF

BO B7

018 1/9 2/A 3/B 4/C 5/D 6/E 7/F

MCS 251 microcontroller SFRs
11

ii Endpoint-indexed SFRs

3-16 I

I

MEMORY PARTITIONS

Table 3-6. Core SFRs

Mnemonic Name Address

ACCt Accumulator S:EOH

Bt B Register S:FOH

PSW Program Status Word S:DOH

PSW1 Program Status Word 1 S:D1H

SPt Stack Pointer - LSB of SPX S:81H

SP Ht Stack Pointer High - MSB of SPX S:BEH

DPTRt Data Pointer (2 bytes) -
DPLt Low Byte of DPTR S:82H

DP Ht High Byte of DPTR S:83H

DPXLt Data Pointer Extended, Low S:84H

PCON Power Control S:87H

PCON1 USB Power Control. S:DFH

IENO Interrupt Enable Control O S:ASH

IEN1 Interrupt Enable Register 1. S:B1H

IPHO Interrupt Priority Control High 0 S:B7H

IPLO Interrupt Priority Control Low 0 S:BSH

IPH1 Interrupt Priority High Control Register 1. S:B3H

IPL1 Interrupt Priority Low Control Register 1. S:B2H

t These SFRs can also be accessed by their corresponding registers in the register
file (see Table 3-4).

3-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table 3-7. USB Function SFRs

Mnemonic Name Address

EPCON Endpoint Control Register. S:E1H

EPINDEX Endpoint Index Register. S:F1H

FADDR Function Address Register. S:BFH

FIE Function Interrupt Enable Register. S:A2H

FIFLG Function Interrupt Flag Register. S:COH

RXCNTH Receive FIFO Byte-Count High Register. S:E7H

RXCNTL Receive FIFO Byte-Count Low Register. S:E6H

RX CON Receive FIFO Control Register. S:E4H

RXDAT Receive FIFO Data Register. S:E3H

RXFLG Receive FIFO Flag Register. S:E5H

RXSTAT Endpoint Receive Status Register. S:E2H

SOFH Start of Frame High Register. S:D3H

SOFL Start of Frame Low Register. S:D2H

TXCNTH Transmit Count High Register. S:F7H

TXCNTL Transmit Count Low Register. S:F6H

TX CON Transmit FIFO Control Register. S:F4H

TXDAT Transmit FIFO Data Register. S:F3H

TXFLG Transmit Flag Register. S:F5H

TXSTAT Endpoint Transmit Status Register. S:FAH

3-18

MEMORY PARTITIONS

Table 3-8. 1/0 Port SFRs

Mnemonic Name Address

PO Port 0 S:BOH

P1 Port 1 S:90H

P2 Port 2 S:AOH

P3 Port 3 S:BOH

Table 3-9. Serial 1/0 SFRs

Mnemonic Name Address

SCON Serial Control S:98H

SBUF Serial Data Buffer S:99H

SADEN Slave Address Mask S:B9H

SAD DR Slave Address S:A9H

Table 3-1 O. Timer/Counter and Watchdog Timer SFRs

Mnemonic Name Address

TLO Timer/Counter 0 Low Byte S:BAH

THO Timer/Counter O High Byte S:BCH

TL1 Timer/Counter 1 Low Byte S:BBH

TH1 Timer/Counter 1 High Byte S:BDH

TL2 Timer/Counter 2 Low Byte S:CCH

TH2 Timer/Counter 2 High Byte S:CDH

TCON Timer/Counter 0 and 1 Control S:BBH

TMOD Timer/Counter O and 1 Mode Control S:89H

T2CON Timer/Counter 2 Control S:CBH

T2MOD Timer/Counter 2 Mode Control S:C9H

RCAP2L Timer 2 Reload/Capture Low Byte S:CAH

RCAP2H Timer 2 Reload/Capture High Byte S:CBH

WDTRST WatchDog Timer Reset S:A6H

I 3-19

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table 3·11. Programmable Counter Array (PCA) SFRs

Mnemonic Name Address

CCON PCA Timer/Counter Control S:DBH

CMOD PCA Timer/Counter Mode S:D9H

CCAPMO PCA Timer/Counter Mode 0 S:DAH

CCAPM1 PCA Timer/Counter Mode 1 S:DBH

CCAPM2 PCA Timer/Counter Mode 2 S:DCH

CCAPM3 PCA Timer/Counter Mode 3 S:DDH

CCAPM4 PCA Timer/Counter Mode 4 S:DEH

CL PCA Timer/Counter Low Byte S:E9H

CH PCA Timer/Counter High Byte S:F9H

CCAPOL PCA Compare/Capture Module 0 Low Byte S:EAH

CCAP1L PCA Compare/Capture Module 1 Low Byte S:EBH

CCAP2L PCA Compare/Capture Module 2 Low Byte S:ECH

CCAP3L PCA Compare/Capture Module 3 Low Byte S:EDH

CCAP4L PCA Compare/Capture Module 4 Low Byte S:EEH

CCAPOH PCA Compare/Capture Module 0 High Byte S:FAH

CCAP1H PCA Compare/Capture Module 1 High Byte S:FBH

CCAP2H PCA Compare/Capture Module 2 High Byte S:FCH

CCAP3H PCA Compare/Capture Module 3 High Byte S:FDH

CCAP4H PCA Compare/Capture Module 4 High Byte S:FEH

3-20

______ _(_

4
Device Configuration

I

CHAPTER 4
DEVICE CONFIGURATION

The 8X930Ax provides design flexibility by configuring certain operating features during device
reset. These features fall into the following categories:

• external memory interface (page mode, address bits, wait states, range for RD#, WR#, and
PSEN#)

• source mode/binary mode opcodes

• selection of bytes stored on the stack by an interrupt

• mapping of the upper portion of on-chip code memory to region 00:

You can specify a 16-bit, 17-bit, or 18-bit external addresses bus (256 Kbyte external address
space). Wait state selection provides 0, 1, 2, or 3 wait states.

This chapter provides a detailed discussion of device configuration. It describes the configuration
bytes and provides information to aid you in selecting a suitable configuration for your applica­
tion. It discusses the choices involved in configuring the external memory interface and shows
how the internal memory space maps into external memory. See "Configuring the External Mem­
ory Interface" on page 4-7. "Opcode Configurations (SRC)" on page 4-12 discusses the choice
of source mode or binary mode opcode arrangements.

4.1 CONFIGURATION OVERVIEW

The configuration of the 8X930Ax is established by the reset routine based on information stored
in configuration bytes. The 8X930Ax stores configuration information in two user configuration
bytes (UCONFIGO' and UCONFIGl) located in code memory. Devices with no on-chip code
memory fetch configuration data from external memory. Factory programmed ROM devices use
customer-provided configuration data supplied on floppy disk.

4.2 DEVICE CONFIGURATION

The 8X930Ax reserves the top eight bytes of the memory address space (FF:FFF8H-FF:FFFFH)
for an eight-byte configuration array (Figure 4-1). The two lowest bytes of the configuration array
are assigned to the two configuration bytes UCONFIGO (FF:FFF8H) and UCONFIG 1
(FF:FFF9H). Bit definitions of UCONFIGO and UCONFIG l are provided in Figures 4-3 and 4-4.
The upper six bytes of the configuration array are reserved for future use.

When EA#= 1, the 8XC251Sx obtains configuration information at reset from on-chip nonvola­
tile memory at addresses FF:FFF8H and FF:FFF9H. For ROM devices, configuration informa­
tion is entered at these addresses during fabrication. The user can verify configuration
information stored on-chip using the procedures presented in Chapter 16, "Verifying Nonvolatile
Memory."

I 4-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

For devices without on-chip program memory, configuration information is accessed from exter­
nal memory using these same addresses. The designer must store configuration information in an
eight-byte configuration array located at the highest addresses implemented in external code
memory. See Table 4-1 and Figure 4-2. When EA# = 0, the microcontroller obtains configuration
information at reset from external memory using internal addresses FF:FFF8H and FF:FFF9H.

4-2

8-Kbyte 16-Kbyte

Fl1
FF:OOOOHW

- Fl1
FF:OOOOH-

For EA# = 1, configuration information is obtained from the
on-chip configuration array located in non-volatile memory
at addresses FF:FFF8H - FF:FFFFH.

FF:FFFFH

FF:FFFEH

FF:FFFDH

FF:FFFCH

FF:FFFBH

FF:FFFAH

FF:FFF9H

FF:FFF8H

-"l
Reserved

__J_
UCONFIG1

UCONFIGO

Detail. On-chip configuration array.

Figure 4-1. Configuration Array (On-chip)

Table 4-1. External Addresses for Configuration Array

Size of External Address of Address of
Address Bl.is Configuration Array on Configuration Bytes

(Bits) External Bus (2) on External Bus (1)

16 FFFSH-FFFFH UCONFIG1: FFF9H
UCONFIGO: FFF8H

17 1 FFFSH-1 FFFFH UCONFIG1: 1 FFF9H
UCONFIGO: 1 FFFSH

18 3FFF8H-3FFFFH UCONFIG1: 3FFF9H
UCONFlGO: · 3FFF8H

NOTES:
1. When EA#= 0, the reset routine retrieves UCONFIGO and UCONFIG1 from

external memory using the internal addresses FF:FFFSH and FF:FFF9H
which appear on the external address bus (A17, A16, A15:0) as.shown in this
table. See Figure 4-2.

2. The upper six bytes of the configuration array are reserved for future use.

A4393-01

I

DEVICE CONFIGURATION

8 Kbytes 16 Kbytes 32 Kbytes

1FF9HDJ
1FFBH · · 1

3FF9H~j
3FFBH Hii' 1, ,1 I" 1

,~~ ;

x:xFFFH

x:xFFEH

x:xFFDH

x:xFFCH

x:xFFBH

x:xFFAH

x:xFF9H

x:xFFSH

---,
Reserved

_ _J_
UCONFIG1

UCON Fl GO

Detail.
Configuration array in external memory.

This figure shows the addresses of configuration bytes UCONFIG1 and UCONFIGO in external memory for
several memory implementations. For EA#= 0, configuration information is obtained from configuration bytes
in external memory using internal addresses FF:FFFBH and FF:FFF9H. In external memory, the eight-byte
configuration array is located at the highest addresses implemented.

Figure 4-2. Configuration Array (External)

CAUTION
The eight highest addresses in the memory address space (FF:FFF8H­
FF:FFFFH) are reserved for the configuration array. Do not read or write
application code at these locations. These address are also used to access the
configuration array in external memory, so the same restrictions apply to the
eight highest addresses implemented in external memory. Instructions that
might inadvertently cause these addresses to be accessed due to call returns or
prefetches should not be located at addresses immediately below the
configuration array. Use an EJMP instruction, five or more addresses below
the configuration array, to continue execution in other areas of memory.

A4394-01

4-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

4.3 THE CONFIGURATION BITS

This following list briefly describes the configuration bits contained in configuration bytes
UCONFIGO and UCONFIGl (Figures 4-3 and 4-4):

• SRC. Selects source mode or binary mode opcode configuration.

• INTR. Selects the bytes pushed onto the stack by interrupts.

• EMAP#. Maps on-chip code memory (16 Kbyte devices only) to memory region 00:.

The following bits configure the external memory interface:

• PAGE#. Selects page/nonpage mode and specifies the data port.

• RDl:O. Selects the number of external address bus pins and the address range for RD#, WR,
andPSEN#. .

• XALE#. Extends the ALE pulse.

• WSAl:O#. Selects 0, 1, 2, or 3 wait states for all memory regions except 01:.

• WSBl:O#. Selects 0, 1, 2, or 3 wait states for memory region 01:.

• EMAP#. Affects the external memory interface in that, when asserted, addresses in the
range OO:EOOOH-OO:FFFFH access on-chip memory.

4-4

_______ _) ___ _

UCONFIGO
(1), (3)

7

Bit
Number

7

6:5

4

3:2

1

0

NOTES:

WSA1#

Bit
Mnemonic

-

WSA1 :0#

XALE#

RD1:0

PAGE#

SRC

DEVICE CONFIGURATION

Address: FF:FFF8H (2)

0

WSAO# XALE# I l~~R_D_1~"---R_D_o~__,_P_A_G_E_#___._~s_R_c___,

Function

Reserved:
Reserved for internal or future use. Set this bit when programming
UCONFIGO.

Wait State A (all regions except 01 :):

For external memory accesses, selects the number of wait states for RD#,
WR#, and PSEN#.

WSA1# WSAO#
0 0 Inserts 3 wait states for all regions except 01:
0 1 Inserts 2 wait states for all regions except 01:
1 0 Inserts 1 wait state for all regions except 01 :
1 1 Zero wait states for all regions except 01:

Extend ALE:

Set this bit for ALE= T0 SC'

Clear this l:)it for ALE= 3T08c (adds one external wait state).

Memory Signal Selection:

RD1 :O bit codes specify an 18-bit, 17-bit, or 16-bit external address bus and
address ranges for RD#, WR#, and PSEN#. See Table 4-2 on page 4-7.

Page Mode Select:

Clear this bit for page mode enabled with A 15:8/D7:0 on P2 and A7:0 on PO.
Set this bit for page mode disabled with A 15:8 on P2 and A7:0/D7:0 on PO.

Source Mode/Binary Mode Select:

Set this bit for source mode.
Clear this bit for binary mode (opcodes compatible with MCS 51 microcon-
!rollers).

1. User configuration bytes UCONFIGO and UCONFIG1 define the configuration of the 8X930Ax.
2. Address. UCONFIGO is the lowest byte of the 8-byte configuration array. When EA# = 1, the 8X930Ax

fetches configuration information from an on-chip configuration array located in nonvolatile memory at
the top of region FF:. When EA#= 0, the 8X930Axfetches configuration information from a configura­
tion array located at the highest addresses implemented in external memory using addresses
FF:FFF8H and FF:FFF9H. The physical location of the configuration array in external memory
depends on the size and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 16.

Figure 4-3. User Configuration Byte O (UCONFIGO)

I 4-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

UCONFIG1
(1),(3)

7

Bit
Number

7:5

4

3

2:1

0

NOTES:

Bit
Mnemonic

-

INTR

-

WSB1:0#

EMAP#

Address: FF:FFF9H (2)

0

INTR 11
~~~~~~~~~~~~~~~~~~ 

WSB1# WSBO# EMAP# 

Function 

Reserved: 

Reserved for internal or future use. Set these bits when programming 
UCONFIG1. 

Interrupt Mode: 

If this bit is set, interrupts push 4 bytes onto the stack (the 3 bytes of the PC 
and PSW1). If this bit is clear, interrupts push the 2 lower bytes of the PC 
onto the stack. See "Interrupt Mode (INTR)" on page 4-14. 

Reserved. Write a '1' to this bit. 

External Wait State B (Region 01 :): 

WSB1# WSBO# 
0 0 Inserts 3 wait states for region 01 : 
0 1 Inserts 2 wait states for region 01 : 
1 0 Inserts 1 wait state for region 01: 
1 1 Zero wait states for region 01 : 

EPROM Map: 

For devices with 16 Kbytes of on-chip code memory, clear this bit to map the 
upper half of on-chip code memory to region 00: (data memory). This maps 
FF:2000H-FF.:3FFFH to OO:EOOOH-OO:FFFFH. If this bit is set, mapping 
does not occur and addresses in the range OO:EOOOH-OO:FFFFH access 
external RAM. See "Mapping On-chip Code Memory to Data Memory 
(EMAP#)" on page 14. 

1. User configuration bytes UCONFIGO and UCONFIG1 define the configuration of the 8X930Ax. 
2. Address. UCONFIG1 is the second lowest byte of the 8-byte configuration array. When EA# = 1, the 

8X930Ax fetches configuration information from an on-chip configuration array located in nonvolatile 
memory at the top of region FF:. When E_A# = 0, the 8X930Axfetches configuration information from a 
configuration array located at the highest addresses implemented in external memory using addresses 
FF:FFF8H and FF:FFF9H. The physical location of the configuration array in external memory 
depends on the size and decode arrangement of the external memory (Table 4-1 and Figure 4-2). 

3. Instructions for verifying on-chip configuration bytes are given in Chapter 16. 

Figure 4-4. User Configuration Byte 1 (UCONFIG1) 

4-6 ______ J ___ _ 



DEVICE CONFIGURATION 

Table 4-2. Memory Signal Selections (RD1 :0) 

RD1:0 
A17/P1.7/ 

A16/P3.7/RD# PSEN# P3.6/WR# Features 
CEX4/WCLK 

0 0 A17 A16 Asserted for Asserted for writes to 256 Kbyte external 
all addresses all memory locations memory 

0 1 P1 .7/CEX4/ A16 Asserted for Asserted for writes to 128 Kbyte external 
WCLK all addresses all memory locations memory 

1 0 P1 .7/CEX4/ P3.7 only Asserted for Asserted for writes to 64 Kbyte external 
WCLK all addresses all memory locations memory. One 

additional port pin. 

1 1 P1.7/CEX4/ RD# asserted Asserted for Asserted only for 64 Kbyte external 
WCLK for addresses ;:: BO:OOOOH writes to MCS® 51 memory. Compatible 

57F:FFFFH microcontroller data with MCS 51 
memory locations. microcontrollers. 

NOTE: RD1 :Oare bits 3:2 of configuration byte UCONFIGO (Figure 4-3). 

4.4 CONFIGURING THE EXTERNAL MEMORY INTERFACE 

This section describes the configuration options that affect the external memory interface. The 
configuration bits described here determine the following interface features: 

• page mode or nonpage mode (PAGE#) 

• the number of external address pins- 16, 17, or 18 (RDl:O) 

• the memory regions assigned to the read signals RD# and PSEN# (RDl:O) 

• the external wait states (WSAl:O#, WSBl:O#, XALE#) 

• mapping a portion of on-chip code memory to data memory (EMAP#) 

4.4.1 Page Mode and Nonpage Mode (PAGE#) 

The PAGE# bit (UCONFIGO.l) selects page-mode or nonpage-mode code fetches and deter­
mines whether data is transmitted on P2 or PO. See Figure 15-1 on page 15-1 and "Page Mode 
Bus Cycles" on page 15-6 for a description of the bus structure and page mode operation. 

I 

• Nonpage mode: PAGE#= 1. The bus structure is the same as for the MCS 51 architecture 
with data D7:0 multiplexed with A 7:0 on PO. External code fetches require two state times 
(4Tod· 

• Page mode: PAGE#= 0. The bus structure differs from the bus structure in MCS 51 
controllers. Data D7:0 is multiplexed with Al5:8 on P2. Under certain conditions, external 
code fetches require only one state time (2T08c). 

4-7 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

4.4.2 Configuration Bits RD1 :0 

The RDI:O configuration bits (UCONFIG0.3:2) determine the number of external address lines 
and the address ranges for asserting the read signals PSEN#/RD# and the write signal WR#. 
These selections offer different ways of addressing external memory. Figures 4-5 and 4-6 show 
how internal memory space maps into external memory space for the four values of RD 1 :0. Chap­
ter 15, "External Memory Interface," provides examples of external memory designs for each 
choice of RD 1 :0. 

4-8 

RD1:0= 00 

18 external address bits: 
PO, P2, A16, A17 

Notes: 
1. Maximum external 

memory 
2. Single read signal 

RD1:0 = 01 

17 external address bits: 
PO,P2,A16 

Note: 
Single read signal 

Internal Memory with 
Read/Write Signals 

PSEN#,WR#~ 
~ 

Internal Memory with 
Read/Write Signals 

0 
PSEN#,WR#-

~ PSEN#,WR#-

A17:16 

1 1 

1 0 

0 1 

00 

A16 

0 

External 
Memory 

256 Kbytes 

External 
Memory 

128 Kbytes 

D 01:,FF: 

- 00:,FE: 

A4218-02 

Figure 4-5. Internal/External Address Mapping (RD1 :0 = 00 and 01) 

J_ 



I 

RD1:0=10 

16 external address bits: 
PO,P2 

Notes: 
1. Single read signal 
2. P3.7/RD#/A16 functions 

only as P3.7 

RD1:0=11 

16 external address bits: 
PO,P2 

Note:· 
1. Compatible with MCS® 51 

microcontrollers 

Internal Memory with 
Read/Write Signals 

PSEN#,WR#~ 
~ 

Internal Memory with 
Read/Write Signals 

2. Cannot write to regions FC:-FF: 

RD#,WR#. 

DEVICE CONFIGURATION 

External 
Memory 

64 Kbytes 

D 00:, 01 :, FE:, FF: 

External 
Memory 

128 Kbytes 

D FE:,FF: 

- 00:,01: 

A4217-02 

Figure 4-6. Internal/External Address Mapping (RD1:0=10 and 11) 

4-9 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

A key to the memory interface is the relationship between internal memory addresses and exter­
nal memory addresses. While the 8X930Ax has 24 internal address bits, the number of external 
address lines is less than 24 (i.e., 16, 17, or 18, depending on the values of RDl:O). This means 
that reads/writes to different internal memory addresses can access the same location in external 
memory. 

For example, if the 8X930Ax is configured for 18 external address lines, a write to location 
01:6000H and a write to location FF:6000H accesses the same 18-bit external address (1:6000H) 
because Al6 = 1 and Al 7 = 1 for both internal addresses. In other words, regions 00: and FE: 
map into the same 64 Kbyte region in external memory. 

In some situations, however, a multiple mapping from internal memory to external memory does 
not preclude using more than one region. For example, for a device with on-chip ROM configured 
for 17 address bits and with EA#= 1, an access to FF:OOOOH-FF:3FFFH (16 Kbytes) accesses 
the on-chip ROM, while an access to Ol:OOOOH-01:3FFFH is to external memory. In this case, 
you could execute code from these locations in region FF: and store data in the corresponding 
locations in region 01: without conflict. See Figure 4-5 and "Example 1: RDl:O =.00, 18-bit Bus, 
External Flash and RAM" on page 15-18." 

4.4.2.1 RD1 :0 = 00 (18 External Address Bits) 

The selection RDl:O = 00 provides 18 external address bits: Al5:0 (ports PO and P2), Al6 (from 
P3.7/RD#/A16), and Al7 (from Pl.7/CEX4/Al7/WCLK). Bits Al6 and Al7 can select four 64 
Kbyte regions of external memory for a total of 256 Kbytes (top half of Figure 4-5). This is the 
largest possible external memory space. See "Example 1: RDl :0 = 00, 18-bit Bus, External Flash 
and RAM" on page 15-18. 

4.4.2.2 RD1 :0 = 01 (17 External Address Bits) 

The selection RDl:O = 01provides17 external address bits: Al5:0 (ports PO and P2) and Al6 
(from P3.7/RD#/Al6). Bit Al6 can select two 64 Kbyte regions of external memory for a total of 
128 Kbytes (bottom half of Figure 4-5). Regions 00: and FE: (each having Al6 = 0) map into the 
same 64 Kbyte region in external memory. This duplication also occurs for regions 01: and FF:. 

This selection provides a 128 Kbyte external address space. The advantage of this selection, in 
comparison with the 256 Kbyte external memory space with RDl :0 = 00, is the availability of pin 
Pl. 7 /CEX4/ Al 7 /WCLK for general 1/0, PCA 1/0 or real-time wait clock output. 1/0 P3. 7 is un­
available. All four 64 Kbyte regions are strobed by PSEN# and WR#. Chapter 15, "External 
Memory Interface," shows examples of memory designs with this option. 

4.4.2.3 RD1 :0 = 1 O (16 External Address Bits) 

ForRDl:O = 10, the 16 external address bits (Al5:0 on ports PO and P2) provide a single 64 Kbyte 
region in external memory (top of Figure 4-6). This selection provides the smallest external mem­
ory space; however, pin P3.7/RD#/A16 is available for general 1/0 and pin Pl.7/CEX4/Al7 is 
available for general 1/0 or PCA 1/0. This selection is useful when the availability of these pins 
is required and/or a small amount of external memory is sufficient. 

4·10 I 



infel® DEVICE CONFIGURATION 

4.4.2.4 RD1:0=11 (Compatible with MCS 51 Microcontrollers) 

The selection RDl:O = ll provides only 16 external address bits (Al5:0 on ports PO and P2). 
However, PSEN# is the read signal for regions FE:-FF:, while RD# is the read signal for regions 
00:-01: (bottom of Figure 4-6). The two read signals effectively expand the external memory 
space to two 64 Kbyte regions. WR# is asserted only for writes to regions 00:-01:. This selection 
provides compatibility with MCS 51 microcontrollers, which have separate external memory 
spaces for code and data. 

4.4.3 Wait State Configuration Bits 

You can add wait states to external bus cycles by extending the RD#/WR#/PSEN# pulse and/or 
extending the ALE pulse. Each additional wait state extends the pulse by 2T08c- A separate wait 
state specification for external accesses via region 01: permits a slow external device to be ad­
dressed in region 01: without slowing accesses to other external devices. Table 4-3 summarizes 
the wait state selections for RD#,WR#,PSEN#. For waveform diagrams showing wait states, see 
"External Bus Cycles With Configurable Wait States" on page 15-8. 

4.4.3.1 Configuration Bits WSA1 :0#, WSB1 :0# 

The WSAl :0# wait state bits (UCONFIG0.6:5) permit RD#, WR#, and PSEN# to be extende.d by 
1, 2, or 3 wait states for accesses to external memory via all regions except region 01:. The 
WSBl:O# wait state bits (UCONFIGl.2:1) permit RD#, WR#, and PSEN# to be extended by 1, 
2, or 3 wait states for accesses to external memory via region 0 l:. 

4.4.3.2 Configuration Bit XALE# 

Clearing XALE# (UCONFIG0.4) extends the time ALE is asserted from Tosc to 3Tosc· This ac­
commodates an address latch that is too slow for the normal ALE signal. Figure 15-10 on page 
15-10 shows an external bus cycle with ALE extended. 

Table 4-3. RD#, WR#, PSEN# External Wait States 

8X930Ax 

Regions WSA1# WSAO# 
00: FE: FF: 0 0 3 Wait States 

0 1 2 Wait States 
1 0 1 Wait State 
1 1 O Wait States 

Region 01: WSB1#WSBO# 
0 0 3 Wait States 
0 1 2 Wait States 
1 0 1 Wait State 
1 1 O Wait States 

I 4-11 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

4.5 OPCODE CONFIGURATIONS (SRC) 

The SRC configuration bit (UCONFIGO.O) selects the source mode or binary mode opcode ar­
rangement. Opcodes for the 8X930A.x architecture are listed in Table A-6 on page A-4 and Table 
A-7 on page A-S. Note that in Table A-6 every opcode (OOH-FFH), is used for an instruction ex­
cept ASH (ESC), which provides an alternative set of opcodes for columns 6H through FH. The 
SRC bit selects which set of opcodes is assigned to columns 6H through FH and which set is the 
alternative. 

Binary mode and source mode refer to two ways of assigning opcodes to the instruction set for 
the 8X930A.x architecture. One of these modes must be selected when the chip is configured. De­
pending on the application, binary mode or source mode may produce more efficient code. This 
section describes the binary and source modes and provides some guidelines for selecting the 
mode for your application. 

The 8X930A.x architecture has two types of instructions: 

• instructions that originate in the MCS® Sl architecture 

• instructions that are common with the MCS® 2Sl architecture 

Figure 4-7 shows the opcode map for binary mode. Area I (columns 1 through S in Table A-7) 
and area II (columns 6 through F) make up the opcode map for the instructions that originate in 
the MCS Sl architecture. Area Ill in Figure 4-7 represents the opcode map for the instructions 
that are common with the MCS 2S 1 architecture (Table A-7). Some of these opcodes are reserved 
for future instructions. Note that the opcode values for areas II and III are identical (06H-FFH). 
To distinguish between the two areas in binary mode, the opcodes in area III are given the prefix 
ASH. The area III opcodes are thus AS06H-ASFFH. 

Figure 4-8 shows the opcode map for source mode. Areas II and III have switched places (com­
pare with Figure 4-7). In source mode, opcodes for instructions in area II require the ASF escape 
prefix while opcodes for instructions in area Ill do not. 

To illustrate the difference between the binary-mode and source-mode opcodes, Table 4-4 shows 
the opcode assignments for three sample instructions. 

4.5.1 Selecting Binary Mode or Source Mode 

If a system was originally developed using an MCS S 1 microcontroller, and if the new 8X930A.x­
based system will run code written for the MCS Sl microcontroller, performance will be better 
with the 8X930A.x running in binary mode. Object code written for the MCS Sl microcontroller 
runs faster on the 8X930Ax. 

However, if most of the code is rewritten using the MCS 2S 1 instruction set, performance will be 
better with the 8X930A.x running in source mode. In this case, the 8X930A.x can run significantly 
faster than the MCS Sl microcontroller. 

If you have code that was written for an MCS Sl microcontroller and you want to run it unmod­
ified on an 8X930A.x, choose binary mode. You can use the object code without reassembling the 
source code. You can also assemble the source code with an assembler for the MCS 2S l architec­
ture and have it produce object code that is binary-compatible with MCS S 1 rnicrocontrollers. 

4-12 L 



OH 
OH 

FH 

OH 
OH 

FH 

I 

MCS®S1 
Architecture 

SH 6H 

II 

MCS S1 
Architecture 

FH 6H 

OH 

FH 

Figure 4-7. Binary Mode Opcode Map 

MCS®S1 
Architecture 

SH 6H 

III 

MCS 2S1 
Architecture 

FH 6H 

OH 

FH 

Figure 4-8. Source Mode Opcode Map 

DEVICE CONFIGURATION 

ASH Prefix 

III 

MCS 2S1 
Architecture 

ASH Prefix 

II 

MCS S1 
Architecture 

FH 

A4131-01 

FH 

A4130-01 

4-13 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

Table 4-4. Examples of Opcodes in Binary and Source Modes 

Opcode 
Instruction 

Binary Mode Source Mode 

DECA 14H 14H 

SUBBA,R4 9CH A59CH 

SUB R4,R4 A59CH 9CH 

If a program uses only instructions from the MCS 51 architecture, the binary-mode code is more 
efficient because it uses no prefixes. On the other hand, if a program uses many more new instruc­
tions than instructions from the MCS 51 architecture, source mode is likely to produce more ef­
ficient code. For a program where the choice is not clear, the better mode can be found by 
experimenting with a simulator. 

For both architectures, an instruction with a prefixed opcode requires one more byte for code stor­
age, and if an additional fetch is required for the extra byte, the execution time is increased by 
one state. This means that using fewer prefixed opcodes produces more efficient code. 

4.6 MAPPING ON-CHIP CODE MEMORY TO DATA MEMORY (EMAP#) 

For devices with 16 Kbytes of on-chip code memory (83930AB), the EMAP# bit (UCONFIG 1.0) 
provides the option of accessing the upper half of on-chip code memory as data memory. This 
allows code constants to be accessed as data in region 00: using direct addressing. See "Accessing 
On-chip Code Memory in Region 00:" on page 3-9 for the exact conditions required for this map­
ping to be effective. 

EMAP# = 0. For the 83930AB, the upper eight Kbytes of on-chip code memory (FF:2000-
FF:3FFFH are mapped to locations OO:EOOOH-OO:FFFFH. 

EMAP# = 1. Mapping of on-chip code memory to region 00: does not occur. Addresses in the 
range OO:EOOOH-OO:FFFFH access external RAM. 

4.7 INTERRUPT MODE (INTR) 

The INTR bit (UCONFIGl.4) determines what bytes are stored on the stack when an interrupt 
occurs and how the RETI (Return from Interrupt) instruction restores operation. 

For INTR = 0, an interrupt pushes the two lower bytes of the PC onto the stack in the following 
order: PC.7:0, PC.15:8. The RETI instruction pops these two bytes in the reverse order and uses 
them as the 16-bit return address in region FF:. 

For INTR = 1, an interrupt pushes the three PC bytes and the PSWl register onto the stack in the 
following order: PSWl, PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four bytes 
and then returns to the specified 24-bit address, which can be anywhere in the 16 Mbyte address 
space. 

4-14 J_ 



infel. 

Instructions and 
Addressing 

I 

5 





CHAPTER 5 
INSTRUCTIONS AND ADDRESSING 

The instruction set for the architecture supports the instruction set for the MCS® 51 architecture 
and MCS® 251 architecture. This chapter describes the addressing modes and summarizes the in­
struction set, which is divided into data instructions, bit instructions, and control instructions. The 
program status word registers PSW and PSWl are also described. Appendix A, "Instruction Set 
Reference," contains an opcode map and a detailed description of each instruction. 

NOTE 
The instruction execution times given in Appendix A are for code executing 
from external memory and for data that is read from and written to on-chip 
RAM. Execution times are increased by accessing peripheral SFRs, accessing 
data in external memory, using a wait state, or extending the ALE pulse. 

For some instructions, accessing the port SFRs (Px, x = 3:0) increases the 
execution time. These cases are noted in the tables in Appendix A. 

5.1 SOURCE MODE OR BINARY MODE OPCODES 

Source mode and Binary mode refer to the two ways of assigning opcodes to the instruction set 
of the 8X930Ax. Depending on the application, one mode or the other may produce more efficient 
code. The mode is established during device reset based on the value of the SRC bit in configu­
ration byte UCONFIGO. For information regarding the selection of the opcode mode, see "Op­
code Configurations (SRC)" on page 4-12. 

5.2 PROGRAMMING FEATURES OF THE 8X930Ax ARCHITECTURE 

The instruction set for 8X930Ax microcontrollers provides the user with instructions that exploit 
the features of the MCS 251 architecture while maintaining compatibility with the instruction set 
for MCS 51 microcontrollers. Many of the MCS 251 architecture instructions operate on 8-bit, 
16-bit, or 32-bit operands. (In comparison with 8-bit and 16-bit operands, 32-bit operands are ac­
cessed with fewer addressing modes.) This capability increases the ease and efficiency of pro­
gramming the 8X930Ax microcontroller in a high-level language such as C. 

The instruction set is divided into data instructions, bit instructions, and control instructions. 
These are described in this chapter. Data instructions process 8-bit, 16-bit, and 32-bit data; bit in­
structions manipulate bits; and control instructions manage program flow. 

I 
5-1 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

5.2.1 Data Types 

Table 5-1 lists the data types that are addressed by the instruction set. Words or dwords (double 
words) can be in stored memory starting at any byte address; alignment on two-byte or four-byte 
boundaries is not required. Words and dwords are stored in memory and the register file in big 
endien form. 

Table 5-1. Data Types 

Data Type Number of Bits 

Bit 1 

Byte 8 

Word 16 

Dword (Double Word) 32 

5.2.1.1 Order of Byte Storage for Words and Double Words 

The 8X930Ax microcontroller stores words (2 bytes) and double words (4 bytes) in memory and 
in the register file in big endien form. In memory storage, the most significant byte (MSB) of the 
word or double word is stored in the memory byte specified in the instruction; the remaining bytes 
are stored at higher addresses, with the least significant byte (LSB) at the highest address. Words 
and double words can be stored in memory starting at any byte address. In the register file, the 
MSB is stored in the lowest byte of the register specified in the instruction. For a description of 
the register file, see "8X930Ax Register File" on page 3-9. The code fragment in Figure 5-1 il­
lustrates the storage of words and double words in big endien form. 

5.2.2 Register Notation 

In register-addressing instructions, specific indices denote the registers that can be used in that 
instruction. For example, the instruction ADD A,Rn uses "Rn" to denote any one of RO, Rl, .. ., 
R7; i.e., the range ofn is 0-7. The instruction ADD Rm,#data uses "Rm" to denote RO, Rl, ... , 
R15; i.e., the range of mis 0-15. Table 5-2 summarizes the notation used for the register indices. 
When an instruction contains two registers of the same type (e.g., MOV Rmd,Rms) the first index 
"d" denotes "destination" and the second index "s" denotes "source." 

5.2.3 Address Notation 

In the 8X930Ax architecture, memory addresses include a region number (00:, 01:, ... ,FF:) (Fig­
ure 3-5 on page 3-7). SFR addresses have a prefix "S:" (S:OOOH-S: lFFH). The distinction be­
tween memory addresses and SFR addresses is necessary because memory locations OO:OOOOH­
OO:OlFFH and SFR locations S:OOOH-S: lFFH can both be directly addressed in an instruction. 

5-2 l 



INSTRUCTIONS AND ADDRESSING 

Memory 

200H 201H 202H 203H 

I I A3H I B6H I I 

Register File 

0 1 2 3 4 

I A3H I B6H I ...._____, 
WRO 

OOH 

L 

MOV WRO,#A3B6H 
MOV 00:0201 H,WRO 
MOV OR4,#0000C407H 

5 6 7 

OOH I C4H I 07H I ... -OR4 

Contents of register file and memory after execution 

Figure 5-1. Word and Double-word Storage in Big Endien Form 

A4242-01 

Table 5-2. Notation for Byte Registers, Word Registers, and Dword Registers 

Register Register Destination Source 
Register Range Type Symbol Register Register 

Ri - - RO, R1 

Byte Rn - - RO-R7 

Rm Rmd Rms RO-R15 

Word WRj WRjd WRjs WRO, WR2, WR4, ... , WR30 

Oword ORk ORkd OR ks ORO, OR4, ORB, ... , OR28, OR56, OR60 

Instructions in the MCS 51 architecture use 80H-FFH as addresses for both memory locations 
and SFRs, because memory locations are addressed only indirectly and SFR locations are ad­
dressed only directly. For compatibility, software tools for 8X930Ax microcontrollers recognize 
this notation for instructions in the 8X930Ax architecture. No change is necessary in any code 
written for MCS 51 controllers. 

For the MCS 251 architecture instructions, the memory region prefixes (00:, 01, .. ., FF:) and the 
SFR prefix (S:) are required. Also, software tools for the 8X930Ax architecture permit 00: to be 
used for memory addresses OOH-FFH and permit the prefix S: to be used for SFR addresses in 
instructions in the .8X930Ax architecture. 

I 5-3 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL intel® 
5.2.4 Addressing Modes 

The 8X930Ax architecture supports the following addressing modes: 

• register addressing: The instruction specifies the register that contains the operand. 

• immediate addressing: The instruction contains the operand. 

• direct addressing: The instruction contains the operand address. 

• indirect addressing: The instruction specifies the register that contains the operand 
address. 

• displacement addressing: The instruction specifies a register and an offset. The operand 
address is the sum of the register contents (the base address) and the offset. 

• relative addressing: The instruction contains the signed offset from the next instruction to 
the target address (the address for transfer of control, e.g., the jump address). 

• bit addressing: The instruction contains the bit address. 

More detailed descriptions of the addressing modes are given in "Data Addressing Modes" on 
page 5-4, "Bit Addressing" on page 5-10, and "Addressing Modes for Control Instructions" on 
page 5-12. 

5.3 DAT A INSTRUCTIONS 

Data instructions consist of arithmetic, logical, and data-transfer instructions for 8-bit, 16-bit, and 
32-bit data. This section describes the data addressing modes and the set of data instructions. 

5.3.1 Data Addressing Modes 

This section describes the data-addressing modes, which are summarized in two tables: Table 5-4 
for the instructions that are native to the MCS 51 architecture, and Table 5-4 for the data instruc­
tions in the MCS 251architecture. 

5-4 

NOTE 
References to registers RO-R7, WRO-WR6, DRO, and DR2 always refer to the 
register bank that is currently selected by the PSW and PSWI registers (see 
"Program Status Words" on page 5-15). Registers in all banks (active and 
inactive) can be accessed as memory locations in the range OOH-IFH. 

Instructions from the MCS 51 architecture access external memory through the 
region of memory specified by byte DPXL in the extended data pointer 
register, DPX (DR56). Following reset, DPXL contains OIH, which maps the 
external memory to region 01:. You can specify a different region by writing to 
DR56 or the DPXL SFR (see "Dedicated Registers" on page 3-12). 

--- __ J __ 



intel® INSTRUCTIONS AND ADDRESSING 

5.3.1.1 Register Addressing 

Both architectures address registers directly: 

• MCS 25 I architecture. In the register addressing mode, the operand(s) in a data instruction 
are in byte registers (RO-Rl5), word registers (WRO, WR2, ... , WR30), or dword registers 
(DRO, DR4, ... , DR28, DR56, DR60). 

• MCS 5 I architecture. Instructions address registers RO-R7 only. 

5.3.1.2 Immediate 

Both architectures use immediate addressing. 

• MCS 251 architecture. In the .immediate addressing mode, the instruction contains the data 
operand itself. Byte operations use 8-bit immediate data (#data); word operations use 16-bit 
immediate data (#data16). Dword operations use 16-bit immediate data in the lower word, 
and either zeros in the upper word (denoted by #Odata16), or ones in the upper word 
(denoted by #ldata16). MOY instructions that place 16-bit immediate data into a dword 
register (DRk), place the data either into the upper word while leaving the lower word 
unchanged, or into the lower word with a sign extension or a zero extension. 

The increment and decrement instructions contain immediate data (#short= I, 2, or 4) that 
specifies the amount of the increment/decrement. 

• MCS 51 architecture. Instructions use only 8-bit immediate data (#data). 

5.3.1.3 Direct 

• MCS 251 architecture. In the direct addressing mode, the instruction contains the address of 
the data operand. The 8-bit direct mode addresses on-chip RAM (dir8 = OO:OOOOH-
00:007FH) as both bytes and words, and addresses the SFRs ( dir8 = S:080H-S: lFFH) as 
bytes only. (See the second note in "Data Addressing Modes" on page 5-4 regarding SFRs 
in the MCS 251 architecture.) The 16-bit direct mode addresses both bytes and words in 
memory (dir16 = OO:OOOOH-OO:FFFFH). 

• MCS 51 architecture. The 8-bit direct mode addresses 256 bytes of on-chip RAM (dir8 = 
OOH-7FH) as bytes only and the SFRs (dir8 = 80H-FFH) as bytes only. 

Table 5-3. Addressing Modes for Data Instructions in the MCS® 51 Architecture 

Mode Address Range of Assembly Language Comments 
Operand Reference 

Register OOH-1FH 
RO-R7 
(Bank selected by PSW) 

Immediate Operand in Instruction #data= #OOH-#FFH 

OOH-7FH dir8 = OOH-7FH On-chip RAM 

Direct dir8 = 80H-FFH 
SFRs 

or SFR mnemonic. 
SFR address 

I 
5-5 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

Table 5-3. Addressing Modes for Data Instructions in the MCS® 51 

Mode 
Address Range of Assembly Language 

Comments 
Operand Reference 

Accesses on-chip RAM or the 
OOH-FFH @RO, @R1 lowest 256 bytes of external 

data memory (MOVX). 

Indirect 
OOOOH-FFFFH @ DPTR, @A+DPTR Accesses external data 

memory (MOVX). 

OOOOH-FFFFH @A+DPTR, @A+PC 
Accesses region FF: of code 
memory (MOVC). 

5.3.1.4 Indirect 

In arithmetic and logical instructions that use indirect addressing, the source operand is always a 
byte, and the destination is either the accumulator or a byte register (RO-R 15). The source address 
is a byte, word, or dword. The two architectures do indirect addressing via different registers: 

• MCS 251 architecture. Memory is indirectly addressed via word and dword registers: 

Word register (@WRj, j = 0, 2, 4, ... , 30). The 16-bit address in WRj can access 
locations OO:OOOOH-OO:FFFFH. 

Dword register (@DRk, k = 0, 4, 8, ... , 28, 56, and 60). The 24 least significant bits can 
access the entire 16-Mbyte address space. The upper eight bits of DRk must be 0. (If 
you use DR60 as a general data pointer, be aware that DR60 is the extended stack 
pointer register SPX.) 

• MCS 51 architecture. Instructions use indirect addressing to access on-chip RAM, code 
memory, and external data RAM. (See the second note in "Data Addressing Modes" on 
page 5-4 regarding the region of external data RAM that is addressed by instructions in the 
MCS 51 architecture.) 

5-6 

Byte register (@Ri, i = 1, 2). Registers RO and RI indirectly address on-chip memory 
locations OOH-FFH and the lowest 256 bytes of external data RAM. 

16-bit data pointer (@DPTR or @A+DPTR). The MOVC and MOVX instructions use 
these indirect modes to access code memory and external data RAM. 

16-bit program counter (@ A+PC). The MOVC instruction uses this indirect mode to 
access code memory. 

I 



INSTRUCTIONS AND ADDRESSING 

Table 5-4. Addressing Modes for Data Instructions in the MCS 251 Architecture 

Mode Address Range of Assembly Language 
Comments Operand Notation 

OO:OOOOH-00:001 FH RO-R7, WRO-WR6, DAO, and 

Register (RO-R7, WRO-WR3, 
RO-R15, WRO-WR30, DR2 are in the register bank 
DRO-DR28, DR56, DR60 currently selected by the 

ORO, DR2) (1) PSW and PSW1. 

Immediate, N.A. (Operand is in the 
#short = 1, 2, or 4 

Used only in increment and 
2 bits instruction) decrement instructions. 

Immediate, N.A. (Operand is in the 
#dataa = #OOH-#FFH 8 bits instruction) 

Immediate, N.A. (Operand is in the 
#data16 = #OOOOH-#FFFFH 16 bits instruction) 

OO:OOOOH-00:007FH dir8 = OO:OOOOH--00:007FH On-chip RAM 
Direct, 

dir8 = S:080H-S:1FFH (2) 8 address bits SF Rs SFR address or SFR mnemonic 

Direct, OO:OOOOH-OO:FFFFH dir16 = OO:OOOOH-OO:FFFFH 
16 address bits 

Indirect, OO:OOOOH-OO:FFFFH @WRO-@WR30 
16 address bits 

Indirect, 
OO:OOOOH-FF:FFFFH 

@DRO-@DR30, @ DR56, Upper 8 bits of DRk must be 
24 address bits @DR60 OOH. 

Displacement, 
@WRj + dis16 = 

Offset is signed; address 
16 address bits 

OO:OOOOH-OO:FFFFH @WRO +OH through wraps around in region 00:. 
@WR30 + FFFFH 

@DRk + dis24 = 
Displacement, OO:OOOOH-FF: FFFFH 

@ORO + OH through Offset is signed, upper 8 bits 
24 address bits @DR28 + FFFFH, of DRk must be OOH. 

@DR56 + (OH-FFFFH), 
@DR60 + (OH-FFFFH) 

NOTES: 
1. These registers are accessible in the memory space as well as in the register file (see "8X930Ax 

Register File" on page 3-9). 
2. The MCS 251 architecture supports SFRs in locations S:OOOH-S: 1 FFH; however, in the 8X930Ax all 

SFRs are in the range S:OSOH-S:OFFH. 

5.3.1.5 Displacement 

Several move instructions use displacement addressing to move bytes or words from a source to 
a destination. Sixteen-bit displacement addressing (@WRj+dis16) accesses indirectly the lowest 
64 Kbytes in memory. The base address can be in any word register WRj. The instruction contains 
a 16-bit signed offset which is added to the base address. Only the lowest 16 bits of the sum are 
used to compute the operand address. If the sum of the base address and a positive offset exceeds 
FFFFH, the computed address wraps around within region 00: (e.g. FOOOH + 2005H becomes 

I 
5-7 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

1005H). Similarly, if the sum of the base address and a negative offset is less than zero, the com­
puted address wraps around the top of region 00: (e.g., 2005H + FOOOH becomes 1005H). 

Twenty-four-bit displacement addressing (@DRk+dis24) accesses indirectly the entire 16-Mbyte 
address space. The base address must be in DRO, DR4, ... , DR24, DR28, DR56, .or DR60. The 
upper byte in the dword register must be zero. The instruction contains a 16-bit signed offset 
which is added to the base address. 

5.3.2 Arithmetic Instructions 

The set of arithmetic instructions is greatly expanded in the MCS 251 architecture. The ADD and 
SUB instructions (Table A-19 on page A-14) operate on byte and word data that is accessed in 
several ways: 

• as the contents of the accumulator, a byte register (Rn), or a word register (WRj) 

• in the instruction itself (immediate data) 

• in memory via direct or indirect addressing 

The ADDC and SUBB instructions (Table A-19) are the same as those for MCS 51 microcontrol­
lers. 

The CMP (compare) instruction (Table A-20 on page A-15) calculates the difference of two bytes 
or words and then writes to flags CY, OV, AC, N, and Zin the PSW and PSWl registers. The 
difference is not stored. The operands can be addressed in a variety of modes. The most frequent 
use of CMP is to compare data or addresses preceding a conditional jump instruction. 

Table A-21 on page A-15 lists the INC (increment) and DEC (decrement) instructions. The in­
structions for MCS 51 microcontrollers are supplemented by instructions that can address byte, 
word, and dword registers and increment or decrement them by 1, 2, or 4 (denoted by #short). 
These instructions are supplied primarily for register-based address pointers and loop counters. 

The 8X930Ax architecture provides the MUL (multiply) and DIV (divide) instructions for un­
signed 8-bit and 16-bit data (Table A-22 on page A-16). Signed multiply and divide are left for 
the user to manage through a conversion process. The following operations are implemented: 

• eight-bit multiplication: 8 bits x 8 bits ~ 16 bits 

• sixteen-bit multiplication: 16 bits x 16 bits~ 32 bits 

• eight-bit division: 8 bits 3 8 bits ~ 16 bits (8-bit quotient, 8-bit remainder) 

• sixteen-bit division: 16 bits 3 16 bits~ 32 bits (16-bit quotient, 16-bit remainder) 

These instructions operate on pairs of byte registers (Rmd,Rms), word registers (WRjd,WRjs), or 
the accumulator and B register (A,B). For 8-bit register multiplies, the result is stored in the word 
register that contains the first operand register. For example, the product from an instruction 
MUL R3,R8 is stored in WR2. Similarly, for 16-bit multiplies, the result is stored in the dword 
register that contains the first operand register. For example, the product from the instruction 
MUL WR6,WR18 is stored in DR4. 

5-8 

I 



INSTRUCTIONS AND ADDRESSING 

For 8-bit divides, the operands are byte registers. The result is stored in the word register that con­
tains the first operand register. The quotient is stored in the lower byte, and the remainder is stored 
in the higher byte. A 16-bit divide is similar. The first operand is a word register, and the result is 
stored in the double word register that contains that word register. If the second operand (the di­
visor) is zero, the overflow flag (OV) is set and the other bits in PSW and PSWl are meaningless. 

5.3.3 Logical Instructions 

The 8X930Ax architecture provides a set of instructions that perform logical operations. The 
ANL, ORL, and XRL (logical AND, logical OR, and logical exclusive OR) instructions operate 
on bytes and words that are accessed via several addressing modes (Table A-23 on page A-17). 
A byte register, word register, or the accumulator can be logically combined with a register, im­
mediate data, or data that is addressed directly or indirectly. These instructions affect the Zand N 
flags. 

In addition to the CLR (clear), CPL (complement), SWAP (swap), and four rotate instructions that 
operate on the accumulator, 8X930Ax microcontroller has three shift commands for byte and 
word registers: 

• SLL (Shift Left Logical) shifts the register one bit left and replaces the LSB with 0 

• SRL (Shift Right Logical) shifts the register one bit right and replaces the MSB with 0 

• SRA (Shift Right Arithmetic) shifts the register one bit right; the MSB is unchanged 

5.3.4 Data Transfer Instructions 

Data transfer instructions copy data from one register or memory location to another. These in­
structions include the move instructions (Table A-24 on page A-19) and the exchange, push, and 
pop instructions (Table A-25 on page A-22). Instructions that move only a single bit are listed 
with the other bit instructions in Table A-26 on page A-23. 

MOV (Move) is the most versatile instruction, and its addressing modes are expanded in the 
8X930Ax architecture. MOV can transfer a byte, word, or dword between any two registers or 
between a register and any location in the address space. 

The MOVX (Move External) instruction moves a byte from external memory to the accumulator 
or from the accumulator to memory. The external memory is in the region specified by DPXL, 
whose reset value is OlH (see "Dedicated Registers" on page 3-12). 

The MOVC (Move Code) instruction moves a byte from code memory (region FF:) to the accu­
mulator. 

MOVS (Move with Sign Extension) and MOVZ (Move with Zero Extension) move the contents 
of an 8-bit register to the lower byte of a 16-bit register. The upper byte is filled with the sign bit 
(MOVS) or zeros (MOVZ). The MOVH (Move to High Word) instruction places 16-bit immedi­
ate data into the high word of a dword register. 

The XCH (Exchange) instruction interchanges the contents of the accumulator with a register or 
memory location. The XCHD (Exchange Digit) instruction interchanges the lower nibble of the 

I 
5-9 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

accumulator with the lower nibble of a byte in on-chip RAM. XCHD is useful for BCD (binary 
coded decimal) operations. 

The PUSH and POP instructions facilitate storing information (PUSH) and then retrieving it 
(POP) in reverse order. Push can push a byte, a word, or a dword onto the stack, using the imme­
diate, direct, or register addressing modes. POP can pop a byte or a word from the stack to a reg­
ister or to memory. 

5.4 BIT INSTRUCTIONS 

A bit instruction addresses a specific bit in a memory location or SFR. There are four categories 
of bit instructions: 

• SETB (Set Bit), CLR (Clear Bit), CPL (Complement Bit). These instructions can set, 
clear or complement any addressable bit. 

• ANL (And Logical), ANL/ (And Logical Complement), ORL (OR Logical), ORL/ (Or 
Logical Complement). These instructions allow ANDing and ORing of any addressable bit 
or its complement with the CY flag. 

• MOV (Move) instructions transfer any addressable bit to the carry (CY) bit or vice versa. 

• Bit-conditional jump instructions execute a jump if the bit has a specified state. The bit­
conditional jump instructions are classified with the control instructions and are described 
in "Conditional Jumps" on page 5-13. 

5.4.1 Bit Addressing 

The bits that can be individually addressed are in the on-chip RAM and the SFRs (Table 5-5). The 
bit instructions that are unique to the MCS 251 architecture can address a wider range of bits than 
the instructions from the MCS 51 architecture. 

There are some differences in the way the instructions from the two architectures address bits. In 
the MCS 51 architecture, a bit (denoted by bit51) can be specified in terms of its location within 
a certain register, or it can be specified by a bit address in the range OOH-7FH. The 8X930Ax 
architecture does not have bit addresses as such. A bit can be addressed by name or by its location 
within a certain register, but not by a bit address. 

Table 5-6 illustrates bit addressing in the two architectures by using two sample bits: 

• RAMBIT is bit 5 in RAMREG, which is location 23H. "RAMBIT" and "RAMREG" are 
assumed to be defined in user code. 

• ITl is bit 2 in TCON, which is an SFR at location 88H. 

5-10 

- _I_ 



INSTRUCTIONS AND ADDRESSING 

Table 5-5. Bit-addressable Locations 

Bit-addressable Locations 
Architecture 

On-chip RAM SFRs 

MCS® 251 Architecture 20H-7FH All defined SFRs 

MCS 51 Architecture 20H-2FH 
SF Rs with addresses ending in OH or SH: 
80H, 88H, 90H, 98H, ... , F8H 

Table 5-7 lists the addressing modes for bit instructions and Table A-26 on page A-23 summarizes 
the bit instructions. "Bit" denotes a bit that is addressed by an instruction in the MCS 251 archi­
tecture and "bit51" denotes a bit that is addressed by an instruction in the MCS 51 architecture. 

Table 5-6. Addressing Two Sample Bits 

Location Addressing MCS® 51 MCS 251 
Mode Architecture Architecture 

Register Name RAMREG.5 RAMREG.5 

Register Address 23H.5 23H.5 
On-chip RAM 

Bit Name RAM BIT RAM BIT 

Bit Address 1DH NA 

Register Name TCON.2 TCON.2 

Register Address 88.2H S:88.2H 
SFR 

Bit Name IT1 IT1 

Bit Address BA NA 

Table 5-7. Addressing Modes for Bit Instructions 

Archi-
Variants Bit Address Memory/SFR Address Comments 

tecture 

MCSID 251 Memory NA 20H.0-7FH.7 
Architecture 
(bit) SFR NA All defined SFRs 

Memory OOH-7FH 20H.0-7FH.7 
MCS 51 
Architecture XXH.0-XXH.7, where XX= 80, 

SFRs are not defined 
(bit51) SFR 80H-F8H 88, 90, 98, ... , FO, F8. at all bit-addressable 

locations. 

5.5 CONTROL INSTRUCTIONS 

Control instructions-instructions that change program flow-include calls, returns, and condi­
tional and unconditional jumps (see Table A-27 on page A-24). Instead of executing the next in­
struction in the queue, the processor executes a target instruction. The control instruction provides 

I 
5-11 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

the address of a target instruction either implicitly, as in a return from a subroutine, or explicitly, 
in the form of a relative, direct, or indirect address. 

The 8X930Ax has a 24-bit program counter (PC), which allows a target instruction to be any­
where in the 16-Mbyte address space. However, as discussed in this section, some control instruc­
tions restrict the target address to the current 2-Kbyte or 64-Kbyte address range by allowing only 
the lowest 11 or lowest 16 bits of the program counter to change. 

5.5.1 Addressing Modes for Control Instructions 

Table 5-8 lists the addressing modes for the control instructions. 

• Relative addressing: The control instruction provides the target address as an 8-bit signed 
offset (rel) from the address of the next instruction. 

• Direct addressing: The control instruction provides a target address, which can have 11 bits 
(addrl 1), 16 bits (addrl6), or 24 bits (addr24). The target address is written to the PC. 

addrll: Only the lower 11 bits of the PC are changed; i.e., the target address must be in 
the current 2-Kbyte block (the 2-Kbyte block that includes the first byte of the next 
instruction). 

addrl6: Only the lower 16 bits of the PC are changed; i.e., the target address must be in 
the current 64-Kbyte region (the 64-Kbyte region that includes the first byte of the next 
instruction). 

addr24: The target address can be anywhere in the 16-Mbyte address space. 

• Indirect addressing: There are two types of indirect addressing for control instructions: 

5-12 

For the instructions LCALL @WRj and UMP @WRj, the target address is in the 
current 64-Kbyte region. The 16-bit address in WRj is placed in the lower 16 bits of the 
PC. The upper eight bits of the PC remain unchanged from the address of the next 
instruction. 

For the instruction JMP @ A+DPTR, the sum of the accumulator and DPTR is placed in 
the lower 16 bits of the PC, and the upper eight bits of the PC are FF:, which restricts 
the target address to the code memory space of the MCS 51 architecture. 

j __ 



INSTRUCTIONS AND ADDRESSING 

Table 5-8. Addressing Modes for Control Instructions 

Description 
Address Bits 

Address Range 
Provided 

Relative, 8-bit relative address (rel) 8 -128 to + 127 from first byte of next instruction 

Direct, 11-bit target address (addr11) 11 Current 2 Kbytes 

Direct, 16-bit target address (addr16) 16 Current 64 Kbytes 

Direct, 24-bit target address (addr24 )t 24 OO:OOOOH-FF:FFFFH 

Indirect (@WRj)t 16 Current 64 Kbytes 

Indirect (@A+DPTR) 16 
64-Kbyte region specified by DPXL (reset 
value= 01H) 

tThese modes are not used by instructions in the MCSID 51 architecture. 

5.5.2 Conditional Jumps 

The 8X930Ax architecture supports bit-conditional jumps, compare-conditional jumps, and 
jumps based on the value of the accumulator. A bit-conditional jump is based on the state of a bit. 
In a compare-conditional jump, the jump is based on a comparison of two operands. All condi­
tional jumps are relative, and the target address (rel) must be in the current 256-byte block of 
code. The instruction set includes three kinds of bit-conditional jumps: 

• JB (Jump on Bit): Jump ifthe bit is set. 

• JNB (Jump on Not Bit): Jump if the bit is clear. 

• JBC (Jump on Bit then Clear it): Jump if the bit is set; then clear it. 

"Bit Addressing" on page 5-10 describes the bit addressing used in these instructions. 

Compare-conditional jumps test a condition resulting from a compare (CMP) instruction that is 
assumed to precede the jump instruction. The jump instruction examines the PSW and PSWl reg­
isters and interprets their flags as though they were set or cleared by a compare (CMP) instruction. 
Actually, the state of each flag is determined by the last instruction that could have affected that 
flag. 

The condition flags are used to test one of the following six relations between the operands: 

• equal(=), not equal (:;t) 

• greater than (> ), less than ( <) 

• greater than or equal (;:=::), less than or equal (:5:) 

For each relation there are two instructions, one for signed operands and one for unsigned oper­
ands (Table 5-9). 

I 
5-13 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

Table 5-9. Compare-conditional Jump Instructions 

Operand Relation 

Type 
= * > < s £ 

Unsigned JG JL JGE JLE 
JE JNE 

Signed JSG JSL JSGE JSLE 

5.5.3 Unconditional Jumps 

There are five unconditional jumps. NOP and SJMP jump to addresses relative to the program 
counter. AJMP, LJMP, and EJMP jump to direct or indirect addresses. 

• NOP (No Operation) is an unconditional jump to the next instruction. 

• SJMP (Short Jump) jumps to any instruction within -128 to 127 of the next instruction. 

• AJMP (Absolute Jump) changes the lowest 11 bits of the PC to jump anywhere within the 
current 2-Kbyte block of memory. The address can be direct or indirect. 

• LJMP (Long Jump) changes the lowest 16 bits of the PC to jump anywhere within the 
current 64-Kbyte region. 

• EJMP (Extended Jump) changes all 24 bits of the PC to jump anywhere in the 16-Mbyte 
address space. The address can be direct or indirect. 

5.5.4 Calls and Returns 

The 8X930A.x architecture provides relative, direct, and indirect calls and returns. 

ACALL (Absolute Call) pushes the lower 16 bits of the next instruction address onto the stack 
and then changes the lower 11 bits of the PC to the 11-bit address specified by the instruction. 
The call is to an address that is in the same 2-Kbyte block of memory as the address of the next 
instruction. 

LCALL (Long Call) pushes the lower 16 bits of the next-instruction address onto the stack and 
then changes the lower 16 bits of the PC to the 16-bit address specified by the instruction. The 
call is to an address in the same 64-Kbyte block of memory as the address of the next instruction. 

ECALL (Extended Call) pushes the 24 bits of the next instruction address onto the stack and then 
changes the 24 bits of the PC to the 24-bit address specified by the instruction. The call is to an 
address anywhere in the 16-Mbyte memory space. 

RET (Return) pops the top two bytes from the stack to return to the instruction following a sub­
routine call. The return address must be in the same 64-Kbyte region. 

ERET (Extended Return) pops the top three bytes from the stack to return to the address follow­
ing a subroutine call. The return address can be anywhere in the 16-Mbyte address space. 

5-14 



INSTRUCTIONS AND ADDRESSING 

RETI (Return from Interrupt) provides a return from an interrupt service routine. The operation 
of RETI depends on the INTR bit in the UCONFIG 1 or CONFIG 1 configuration byte: 

• For INTR = 0, an interrupt pushes the two lower bytes of the PC onto the stack in the 
following order: PC.7:0, PC.15:8. The RETI instruction pops these two bytes and uses them 
as the 16-bit return address in region FF:. RETI also restores the interrupt logic to accept 
additional interrupts at the same priority level as the one just processed. 

• For INTR = 1, an interrupt pushes the three PC bytes and PSWl onto the stack in the 
following order: PSWl, PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four 
bytes and then returns to the specified 24-bit address, which can be anywhere in the 16-
Mbyte address space. RETI also clears the interrupt request line. (See the note in Table 5-8 
regarding compatibility with code written for MCS 51 microcontrollers.) 

The TRAP instruction is useful for the development of emulations of an 8X930Ax microcontrol­
ler. 

5.6 PROGRAM STATUS WORDS 

The Program Status Word (PSW) register (Figure 5-2) and the Program Status Word 1 (PSWl) 
register (Figure 5-3) contain four types of bits: 

• CY, AC, OV, N, and Z are flags set by hardware to indicate the result of an operation. 

• The P bit indicates the parity of the accumulator. 

• Bits RSO and RSI are programmed by software to select the active register bank for 
registers RO-R7. 

• FO and UD are available to the user as general-purpose flags. 

The PSW and PSWl registers are read/write registers; however, the parity bit in the PSW is not 
affected by a write. Individual bits can be addressed with the bit instructions (see "Bit Address­
ing" on page 5-10). The PSW and PSWl bits are used implicitly in the conditional jump instruc­
tions (see "Conditional Jumps" on page 5-13). 

The PSW register is identical to the PSW register in MCS 51 microcontrollers. The PSWI regis­
ter exists only in MCS 251 microcontrollers; Bits CY, AC, RSO, RSI, and OV in PSWl are iden­
tical to the corresponding bits in PSW; i.e., the same bit can be accessed in either register. Table 
5-10 lists the instructions that affect the CY, AC, OV, N, and Z bits. 

I 
5-15 



BX930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

5-16 

Table 5·10. The Effects of Instructions on the PSW and PSW1 Flags 

Flags Affected (1 ), (5) 
Instruction Type Instruction 

CY ov AC (2) N z 
ADD, ADDC, SUB, x x x x x 
SUBS, CMP 

Arithmetic INC, DEC x x 
MUL, DIV (3) 0 x x x 
DA x x x 
ANL, ORL, XRL, CLR A, x x 

Logical 
CPL A, RL, RR, SWAP 

RLC, ARC, SAL, SLL, x x x 
SRA(4) 

CJNE x x x 
Program Control 

DJNE x x 
NOTES: 
1. X = the flag can be affected by the instruction. 

0 = the flag is cleared by the instruction. 
2. The AC flag is affected only by operations on 8-bit operands. 
3. If the divisor is zero, the OV flag is set, and the other bits are meaningless. 
4. For SAL, SLL, and SRA instructions, the last bit shifted out is stored in the CY bit. 
5. The parity bit (PSW.O) is set or cleared by instructions that change the contents of the 

accumulator (ACC, Register R11). 



INSTRUCTIONS AND ADDRESSING 

PSW Address: S:DOH 
Reset State: 0000 OOOOB 

7 0 

~-c_v_~_A_c_~_Fo_~_R_s_1 ~I I Rso ov UD p 

Bit Bit 
Function Number Mnemonic 

7 CY Carry Flag: 

The carry flag is set by an addition instruction (ADD, ADDC) if there is a 
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare 
(CMP) if a borrow is needed for the MSB. The carry flag is also affected 
by logical bit, bit move, multiply, decimal adjust, and some rotate and 
shift instructions (see Table 5-1 O). 

6 AC Auxiliary Carry Flag: 

The auxiliary carry flag is affected only by instructions that address 8-bit 
operands. The.AC flag is set if an arithmetic instruction with an 8-bit 
operand produces a carry out of bit 3 (from addition) or a borrow into bit 
3 (from subtraction). Otherwise, it is cleared. This flag is useful for BCD 
arithmetic (see Table 5-10). 

5 FO FlagO: 

This general-purpose flag is available to the user. 

4:3 RS1:0 Register Bank Select Bits 1 and 0: 

These bits select the memory locations that comprise the active bank of 
the register file (registers RO-R?). 

RS1 RSO Bank Address 

0 0 0 OOH-O?H 
0 1 1 08H-OFH 
1 0 2 10H-17H 
1 1 3 18H-1FH 

2 ov Overflow Flag: 

This bit is set if an addition or subtraction of signed variables results in 
an overflow error (i.e., if the magnitude of the sum or difference is too 
great for the seven LSBs in 2's-complement representation). The 
overflow flag is also set if a multiplication product overflows one byte or if 
a division by zero is attempted. 

1 UD User-definable Flag: 

This general-purpose flag is available to the user. 

0 p Parity Bit: 

This bit indicates the parity of the accumulator. It is set if an odd number 
of bits in the accumulator are set. Otherwise, it is cleared. Not all 
instructions update the parity bit. The parity bit is set or cleared by 
instructions that change the contents of the accumulator (ACC, Register 
R11 ). 

Figure 5-2. Program Status Word Register 

I 5-17 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

PSW1 Address: 5:01 H 
Reset State: 0000 OOOOB 

7 0 

~-c_Y_~_A_c_~_N_~_R_s_1 __.I I Rso ov z 

Bit Bit 
Function Number Mnemonic 

7 CY Carry Flag: 

Identical to the CY bit in the PSW register. 

6 AC Auxiliary Carry Flag: 

Identical to the AC bit in the PSW register. 

5 N Negative Flag: 

This bit is set if the result of the last logical or arithmetic operation was 
negative (i.e., bit 15 = 1 ). Otherwise it is cleared. 

4-3 RS1:0 Register Bank Select Bits O and 1: 

Identical to the RS 1 :O bits in the PSW register. 

2 ov Overflow Flag: 

Identical to the OV bit in the PSW register. 

1 z Zero Flag: 

This flag is set if the result of the last logical or arithmetic operation is 
zero. Otherwise it is cleared. 

0 - Reserved: 

The value read from this bit is indeterminate. Write a zero to this bit. 

Figure 5-3. Program Status Word 1 Register 

5-18 



infel. 

6 
Interrupt System 

I 





6.1 OVERVIEW 

CHAPTER 6 
INTERRUPT SYSTEM 

The 8X930Ax, like other control-oriented microcontroller architecturest, employs a program in­
terrupt method. This operation branches to a subroutine and performs some service in response 
to the interrupt. When the subroutine completes, execution resumes at the point where the inter­
rupt occurred. Interrupts may occur as a result of internal 8X930Ax activity (e.g., timer overflow) 
or at the initiation of electrical signals external to the microcontroller (e.g., serial port communi­
cation). In all cases, interrupt operation is programmed by the system designer, who determines 
priority of interrupt service relative to normal code execution and other interrupt service routines. 
Ten of the eleven interrupts are enabled or disabled by the system designer and may be manipu­
lated dynamically. 

A typical interrupt event chain occurs as follows. An internal or external device initiates an inter­
rupt-request signal. This signal, connected to an input pin (see Table 6-1) and periodically sam­
pled by the 8X930Ax, latches the event into a flag buffer. The priority of the flag (see Table 6-2) 
is compared to the priority of other interrupts by the interrupt handler. A high priority causes the 
handler to set an interrupt flag. This signals the instruction execution unit to execute a context 
switch. This context switch breaks the current flow of instruction sequences. The execution unit 
completes the current instruction prior to a save of the program counter (PC) and reloads the PC 
with the start address of a software service routine. The software service routine executes as­
signed tasks and as a final activity performs a RETI (return from interrupt) instruction. This in­
struction signals completion of the interrupt, resets the interrupt-in-progress priority, and reloads 
the program counter. Program operation then continues from the original point of interruption. 

Table 6-1. Interrupt System Input Signals 

Signal Type Description Multiplexed 
Name With 

INT1:0# I External Interrupts O and 1. These inputs set bits IE1 :0 in the P3.3:2 
TCON register. If bits IT1 :O in the TCON register are set, bits IE1 :0 
are controlled by a negative-edge trigger on INT1 #/INTO#. If bits 
INT1 :0# are clear, bits IE1:0 are controlled by a low level trigger on 
INT1:0#. 

NOTE: Other signals are defined in their respective chapters and in Appendix B, "Signal Descriptions." 

t A non-maskable interrupt (NMI#) is not included on the 8X930Ax. 

I 6-1 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

6-2 

INTO# 

INT1# 

Timer 1 

PCA r-i OJ 
Counter~- ECF 

Overflow 1 
'-----\ 

PCA r-i OJ 
Match or~_ ECCFx 
Capture · 1 5 

USB Endpoint Done o 1 
~ ~ .~FRXIEx 

Receive~1 , 4 
--r---\ 

USB 
Suspend 

PCON1.0 

Interrupt Enable Priority Enable 
IENO I PHO/I PLO 

IEN1 1 IPH1/IPL 1 

Figure 6-1. Interrupt Control System 

A5042-01 



INTERRUPT SYSTEM 

Table 6-2. Interrupt System Special Function Registers 

Mnemonic Description Address 

FIE use Function Interrupt Enable Register. Enables and disables the receive S:A2H 
and tran§mit done interrupts for the four function endpoints. 

FIFLG USe Function Interrupt Flag Register. Contains the USB Function's S:COH 
Transmit and Receive Done interrupt flags for non-isochronous endpoints. 

IENO Interrupt Enable Register o. Enables individual programmable interrupts. S:ASH 
Also provides a global enable for the programmable interrupts. The reset value 
for this register is zero (interrupts disabled). 

IEN1 Interrupt Enable Register1. Enables individual programmable interrupts for S:B1H 
the USB interrupts. The reset value of this register is zero (interrupts disabled). 

IPLO Interrupt Priority Low Register 0. Establishes relative priority for program- S:BSH 
mable interrupts. Used in conjunction with !PHO. 

IPHO Interrupt Priority High Register 0. Establishes relative priority for program- S:B7H 
mable interrupts. Used in conjunction with IPLO. 

IPL1 Interrupt Priority Low Register 1. Establishes relative priority for program- S:B2H 
mable interrupts. Used in conjunction with IPH1. 

IPH1 Interrupt Priority High Register 1. Establishes relative priority for program- S:B3H 
mable interrupts. Used in conjunction with IPL 1. 

NOTE: Other SFRs are described in their respective chapters and in Appendix C, "Registers." 

6.2 8X930Ax INTERRUPT SOURCES 

Figure 6-1 illustrates the interrupt control system. The 8X930Ax has eleven interrupt sources; ten 
maskable sources and the TRAP instruction (always enabled). The maskable sources include two 
external interrupts (INTO# and INTI#), three timer interrupts (timers 0, 1, and 2), one program­
mable counter array (PCA) interrupt, one serial port interrupt, and three USB interrupts. Each in­
terrupt (except TRAP) has an interrupt request flag, which can be set by software as well as by 
hardware (see Table 6-3). For some interrupts, hardware clears the request flag when it grants an 
interrupt. Software can clear any request flag to cancel an impending interrupt. 

6.2.1 External Interrupts 

External interrupts INTO# and INTI# (INTx#) pins may each be programmed to be level-trig­
gered or edge-triggered, dependent upon bits ITO and ITl in the TCON register (see Figure 10-6 
on page 10-9). If ITx = 0, INTx# is triggered by a detected low at the pin. If ITx = 1, INTx# is 
negative-edge triggered. External interrupts are enabled with bits EXO and EXl (EXx) in the 
IENO register (see Figure 6-4). Events on the external interrupt pins set the interrupt request flags 
IEx in TCON. These request bits are cleared by hardware vectors to service routines only if the 
interrupt is negative~edge triggered. If the interrupt is level-triggered, the interrupt service routine 
must clear the request bit. External hardware must deassert INTx# before the service routine com­
pletes, or an additional interrupt is requested. External interrupt pins must be deasserted for at 
least four state times prior to a request. 

I 6-3 



BX930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

External interrupt pins are sampled once every four state times (a frame length of 666.4ns at 12 
MHz). A level-triggered interrupt pin held low or high for any five-state time period guarantees 
detection. Edge-triggered external interrupts must hold the request pin low for at least five state 
times. This ensures edge recognition and sets interrupt request bit EXx. The CPU clears EXx au­
tomatically during service routine fetch cycles for edge-triggered interrupts;. 

Table 6-3. Interrupt Control Matrix 

Interrupt Namet Global PCA Timer Serial TI mer INT1# Timer INTO# 
Enable 2 Port 1 0 

Bit Name in IENO 
EA EC ET2 ES ET1 EX1 ETO EXO Register 

Interrupt Priority-
Within-Level 

NA 7 6 5 4 3 2 1 
(10 = Low Priority, 
1 = High Priority) 

Bit Names in: 
IPHO Reserved IPH0.6 IPH0.5 IPH0.4 IPH0.3 IPH0.2 IPH0.1 IPHO.O 
IPLO Reserved IPL0.6 IPL0.5 IPL0.4 IPL0.3 IPL0.2 IPL0.1 IPLO.O 

Programmable for 
Negative-edge 

NA Edge No No No Yes No Yes 
Triggered or Level-
triggered Detect? 

Interrupt Request 
Flag in CCON, 

NA 
CF, TF2, 

RI, Tl TF1 IE1 TFO IEO 
T2CON, SCON, or CCFx EXF2 
TCON Register 

Interrupt Request Edge Edge 
Flag Cleared by No No No No Yes Yes, Yes Yes, 
Hardware? Level No Level No 

ISR Vector Address 
NA 

FF: FF: FF: FF: FF: FF: FF: 
0033H 002BH 0023H 001BH 0013H OOOBH 0003H 

t The 8X930Ax also contains a TRAP interrupt,· not cleared by hardware, with a vector address of 
FF007BH. For a discussion of TRAP and other interrupt sources, see "8X930Ax Interrupt Sources" on 
page 6-3. 

Additional interrupts specific to USB ·operation appear in Table 6-4. 

6-4 I 



INTERRUPT SYSTEM 

Table 6-4. USB Interrupt Control Matrix 

USB Global 
USB Function Any SOF 

Interrupt Name 
Suspend/Resume 

[Non-Isochronous [Isochronous 
Endpoint] Endpoint] 

Bit Name in IEN1 
ESR EF ESOF 

Register 

Interrupt Priority-
Within-Level 

10 9 8 
(10 =Low Priority, 
1 = High Priority) 

Bit Names in: 
IPH1 IPH1.2 IPH1 .1 IPH1.0 
IPL1 IPL1 .2 IPL1 .1 IPL1.0 

Programmable for 
Negative-edge 

N/A N/A N/A 
Triggered or Level-
triggered Detect? 

Interrupt Request 
Flag in PCON1, \GSUS FTXDx, FRXDx 

ASOF 
FIFLG, or SOFH GRSM X=0,1,2,3 
Register 

Interrupt Request 
Flag Cleared by No No No 
Hardware? 

ISR Vector Address FF:0053H FF:004BH FF:0043H 

6.2.2 Timer Interrupts 

1\vo timer-interrupt request bits TFO and TFl (see TCON register, Figure 10-6 on page 10-9) are 
set by timer overflow (the exception is Timer 0 in Mode 3, see Figure 10-4 on page 10-7). When 
a timer interrupt is generated, the bit is cleared by an on-chip hardware vector to an interrupt ser­
vice routine. Timer interrupts are enabled by bits ETO, ETl, and ET2 in the JENO register (see 
Figure 6-4). 

Timer 2 interrupts are generated by a logical OR of bits TF2 and EXF2 in register T2CON (see 
Figure 10-12 on page 10-18). Neither flag is cleared by a hardware vector to a service routine. In 
fact, the interrupt service routine must determine if TF2 or EXF2 generated the interrupt, and then 
clear the bit. Timer 2 interrupt is enabled by ET2 in register JENO. 

6.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT 

The programmable counter array (PCA) interrupt is generated by the logical OR of five event 
flags (CCFx) and the PCA timer overflow flag (CF) in the CCON register (see Figure 11-8 on 
page 11-14). All PCA interrupts share a common interrupt vector. Bits are not cleared by hard­
ware vectors to service routines. Normally, interrupt service routines resolve interrupt requests 
and clear flag bits. This allows the user to define the relative priorities of the five PCA interrupts. 

I 6-5 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

The PCA interrupt is enabled by bit EC in the IENO register{see Figure 6-1). In addition, the CF 
flag and each of the CCFx flags must also be individually enabled by bits ECF and ECCFx in reg­
isters CMOD and CCAPMx, respectively, for the flag to generate an interrupt (see Figure 11-7 on 
page 11-13 and Figure 11-9 on page 11-15). 

NOTE 
CCFx refers to five separate bits, one for each PCA module (CCFO, CCFl, 
CCF2, CCF3, CCF4). CCAPMx refers to 5 separate registers, one for each 
PCA module (CCAPMO, CCAPMl, CCAPM2, CCAPM3, CCAPM4). 

6.4 SERIAL PORT INTERRUPT 

Serial port interrupts are generated by the logical OR of bits RI and TI in the SCON register (see 
Figure 12-2 on page 12-5). Neither flag is cleared by a hardware vector to the service routine. The 
service routine resolves RI or TI interrupt generation and clears the serial port request flag. The 
serial port interrupt is enabled by bit ES in the IENO register (see Figure 6-4). 

6.5 USB INTERRUPTS 

There are three types of USB interrupts: The USB function interrupt, to control the flow of non­
isochronous data; the start of frame interrupt (SOF), to monitor the transfer of isochronous data; 
and the global suspend/resume interrupt, to allow USB power control. These interrupts.are en­
abled using the IENl register. See Table 6-4 and Figure 6-5. 

6.5.1 USB Function Interrupt 

The USB function generates two types of interrupts to control the transfer of non-isochronous da­
ta: the receive done interrupt and the transmit done interrupt. Individual USB Function interrupts 
are enabled by setting the corresponding bits in the FIE register (Figure 6-2). 

6-6 

NOTE 
In order to use any of the USB function interrupts, the EF bit in the IENl 
register must be enabled. 

I 



INTERRUPT SYSTEM 

FIE Address: S:A2H 
Reset State: 0000 00008 

7 0 

.__F_R_X_I E_3__,__FT_X_l_E3_,__F_R_x_1E_2__.__FT_x_1E_2__.I .._I _F_R_X_IE_1__.__FT_x_1E_1_.___F_R_x_1 E_o__,__FT_X_IE_o___.I 

Bit Bit Function Number Mnemonic 

7 FRXIE3 Function Receive Interrupt Enable 3: 

Enables receive done interrupt for endpoint 3 (FRXD3). 

6 FTXIE3 Function Transmit Interrupt Enable 3: 

Enables transmit done interrupt for endpoint 3 (FTXD3). 

5 FRXIE2 Function Receive Interrupt Enable 2: 

Enables the receive done interrupt for endpoint 2 (FRXD2). 

4 FTXIE2 Function Transmit Interrupt Enable 2: 

Enables the transmit done interrupt for endpoint 2 (FTXD2). 

3 FRXIE1 Function Receive Interrupt Enable 1 : 

Enables the receive done interrupt for endpoint 1 (FRXD1 ). 

2 FTXIE1 Function Transmit Interrupt Enable 1: 

Enables the transmit done interrupt for endpoint 1 (FTXD1 ). 

1 FRXIEO Function Receive Interrupt Enable 0: 

Enables the receive done interrupt for endpoint 0 (FRXDO). 

0 FTXIEO Function Transmit Interrupt Enable 0: 

Enables the transmit done interrupt for endpointO (FTXDO). 

NOTE: For all bits, a '1' means the interrupt is enabled and will cause an interrupt to be signaled to 
the microcontroller. A 'O' means the associated interrupt source is disabled and cannot 
cause an interrupt, even though the interrupt bit's value will still be reflected in the FIFLG 
register. 

Figure 6-2. USB Function Interrupt Enable Register 

The USB Function Interrupt Flag Register (FIFLG, as shown in Figure 6-3) is used to indicate 
pending function interrupts. For all bits in FIFLG, a '1' indicates that an interrupt is actively 
pending; a 'O' indicates that the interrupt is not active. The interrupt status is shown in the FIFLG 
register regardless of the state of the corresponding interrupt enable bit in the FIE Register (Figure 
6-2). 

The USB function generates a receive done interrupt for an endpoint x (x = 0-3) by setting the 
FRXDx bit in the FIFLG register (Figure 6-3). Only non-isochronous transfer can cause a receive 
done interrupt. Receive done interrupts are generated only when all of the following are true: 

I 

1. 

2. 

A valid SETUP or OUT token is received to function endpoint x, and 

Endpoint xis enabled for reception (RXEPEN in EPCON = '1 '), and 

6-7 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

3. Receive is enabled (RXIE = 'l') and STALL is disabled (RXSTL = 'O') for OUT tokens 
(or the token received is a SETUP token), and 

4. A data packet is received with no time-out - regardless of transmission errors (CRC, bit­
stuffing) or FIFO errors (overrun, underrun), and 

5. There is no data sequence PID error. 

Because the FRXDx bit is set and a receive done interrupt is generated regardless of transmission 
errors, this condition means either: 

1. Valid data is waiting to be serviced in the receive FIFO for function endpoint x and that the 
data was received without error and has been acknowledged; or 

2. Data was received with a receive data error and requires firmware intervention to be 
cleared. This could be either a transmission error or a FIFO-related error. You must check 
for these conditions and respond accordingly in the interrupt service routine (ISR). 

The USB function generates a transmit done interrupt for an endpoint x (x = 0-3) by setting the 
FfXDx bit in the FIFLG register (Figure 6-3). Only non-isochronous transfer can cause a transmit 
done interrupt. Transmit done interrupts are generated only when all of the following are true: 

1. A valid IN token is received to function endpoint x, and 

2. Endpoint xis enabled for transmission (TXEPEN = '1 '), and 

3. Transmit is enabled (TXIE = '1') and STALL is disabled (TXSTL = '0'), and 

4. A data packet/byte count has been loaded in the transmit FIFO and was transmitted in 
. response to the IN token - regardless of whether or not a FIFO error occurs, and 

5. An ACK is received from the host or there was a time-out in the SIE. 

Because the FfXDx bit is set and a transmit done interrupt is generated regardless of transmission 
errors, this condition means either: 

1. The transmit data has been transmitted and the host has sent an acknowledgment to 
indicate that is was successfully received; or 

2. A transmit data error occurred during transmission of the data packet, which requires 
servicing by firmware to be cleared. You must check for these conditions and respond 
accordingly in the ISR. 

6-8 

NOTE 
Setting an endpoint interrupt's b.it in the Function Interrupt Enable register 
(FIE register, as shown in Figure 6-2) means that the interrupt is enabled and 
will cause an interrupt to be signaled to the microcontroller. Clearing a bit in 
the FIE register disables the associated interrupt source, which can no longer 
cause an interrupt even though its value will still be reflected in the FIFLG 
register. 

I 



INTERRUPT SYSTEM 

FIFLG Address: S:COH 
Reset State: 0000 00008 

7 0 

.__F_R_x_D_s__.~FT~x_D_s___._~F_R_x_D2~....__FT_x_D_2~j ~j_.F_R_x_D_1____..__FT~X_D_1___._~F-R_x_D_o_._~FT-x_D_o~ 

Bit Bit Function Number Mnemonic 

7 FRXD3 Function Receive Done Flag, Endpoint 3 

6 FTXD3 Function Transmit Done Flag, Endpoint 3 

5 FRXD2 Function Receive Done Flag, Endpoint 2 

4 FTXD2 Function Transmit Done Flag, Endpoint 2 

3 FRXD1 Function Receive Done Flag, Endpoint 1 

2 FTXD1 Function Transmit Done Flag, Endpoint 1 

1 FRXDO Function Receive Done Flag, Endpoint O 

0 FTXDO Function Transmit Done Flag, Endpoint 0 

NOTE: For all bits in the Interrupt Flag Register, a '1' indicates that an interrupt is actively pending; a 
'O' indicates that the interrupt is not active. The interrupt status is shown regardless of the 
state of the corresponding interrupt enable bit in the FIE. Bits are set-only by hardware and 
clearable in software. Software can also set the bits for text purposes, allowing the interrupt 
to be generated in software. 

Figure 6-3. USB Function Interrupt Flag Register 

6.5.2 USS Start of Frame Interrupt 

The USB start of frame interrupt (SOF) is used to control the transfer of isochronous data. The 
8X930Ax frame timer attempts to synchronize to the frame time automatically. When the frame 
timer is locked to the USB frame time, hardware sets the FfLOCK bit in SOFH (Figure 7-5 on 
page 7-12). To enable the start of frame interrupt, set the SOFIE bit in SOFH. The 8X930Ax gen­
erates a SOF interrupt whenever a start of frame packet is received from the USB lines (or when­
ever an SOF packet should have been received- i.e., an artificial SOF) by setting the ASOF bit 
in SOFH. 

The 8X930Ax uses the SOF interrupt to signal either of two complementary events: 

1. When transmitting: The next isochronous data packet needs to be retrieved from memory 
and loaded into the transmit FIFO in preparation for transmission in the next frame; or 

2. When receiving: An isochronous packet has been received in the previous frame and 
needs to be retrieved from the receive FIFO. 

Since the SOF packet could be corrupted, there is a chance that a new frame could be started with­
out successful reception of the SOF packet. For this reason, an artificial SOF is provided. The 
frame timer signals a time-out when an SOF packet has not been received within the allotted 
amount of time. In this fashion, the 8X930Ax generates an SOF interrupt reliably once each frame 

I 6-9 



BX930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

within 1 µs of accuracy, except when this interrupt is suspended or when the frame timer gets out­
of-sync with the USB bus frame time. 

In summary, in order to utilize the USB start of frame functionality for isochronous data transfer, 
the following must all be true: 

1. The global enable bit must be set (i.e., the EA bit must be set in the IENO register) 

2. The isochronous endpoint any SOF interrupt must be enabled (the ESOF bit must be set in 
the IENl register) · 

3. The SOF interrupt must be enabled (the SOFIE bit must be set in the SOFH Register) 

NOTE 
The SOF interrupt is brought out to an external pin (SOF#) in order to provide 
a 1 ms pulse, subject to the accuracy of the USB SOF. This pin is enabled by 
clearing the SOFODIS bit in the SOFH register. 

6.5.3 USB Global Suspend/Resume Interrupt 

The 8X930A.x supports USB power control through firmware. The USB power control register 
(PCONl, as shown in Figure 14-2 on page 14-3) facilitates USB power control of the 8X930A.x, 
including global suspend/resume and USB function resume. 

6.5.3.1 Global Suspend 

When a global suspend is detected by the 8X930A.x, the global suspend bit (GSUS of PCONl) is 
set and the GS/Resume interrupt is generated. Global suspend is defined as bus inactivity for 
more than 3 ms on the USB lines. For additional information, see "Global Suspend Mode" on 
page 14-6. · · 

6.5.3.2 Global Resume 

When a global resume is detected by the 8X930A.x, the global resume bit (GRSM of PCONl) is 
set and the Global Suspend/Resume interrupt is generated. As soon as resume signaling is detect­
ed on the USB lines, the oscillator is restarted. After executing the resume interrupt service rou­
tine, the 8X930A.x resumes operation from where it was when it was interrupted by the suspend 
interrupt. For additional information, see "Global Resume Mode" on page 14-8. 

6.5.3.3 USB Remote Wake-up 

The 8X930A.x can also initiate resume signaling to the USB lines· through remote wakeup of the 
USB function while it is in powerdown/idle mode. While in powerdown mode, remote wakeup 
has to be initiated through assertion of an enabled external interrupt. The external interrupt has to 
be enabled and it must be configured with level trigger and with higher priority than a suspend/re­
sume interrupt. An external interrupt restarts the clocks to the 8X930A.x and program execution 
branches to the external interrupt service routine. 

Within this external interrupt service routine, you must set the remote wakeup bit (RWU in 
PCONl) to drive resume signaling on the USB lines to the host or upstream hub. After executing 
the external ISR, the program continues execution from where it was put into powerdown mode 

6-10 I 



INTERRUPT SYSTEM 

and the 8X930Ax resumes normal operation. For additional information, see "USB Remote 
Wake-up" on page 14-8. 

6.6 INTERRUPT ENABLE 

Each interrupt source (with the exception of TRAP) may be individually enabled or disabled by 
the appropriate interrupt enable bit in the JENO register at S:A8H (see Figure 6-4) or the IENl 
register at S :B 1H (see Figure 6-5). Note IENO also contains a global disable bit (EA). If EA is 
set, interrupts are individually enabled or disabled by bits in IENO and IENI. If EA is clear, all 
interrupts are disabled. 

IENO Address: S:ASH 
Reset State: 0000 00008 

7 0 

'---~EA~--'~-E_C~~~-E_T2~~~-E_S~~ll ~ ~E_T_1~~~E_X_1~~~E_T_o~~~EX_o~~ 

Bit Bit 
Function 

Number Mnemonic 

7 EA Global Interrupt Enable: 

Setting this bit enables all interrupts that are individually enabled by bits 
0-6. Clearing this bit disables all interrupts, except the TRAP interrupt, 
which is always enabled. 

6 EC PCA Interrupt Enable: 

Setting this bit enables the PCA interrupt. 

5 ET2 Timer 2 Overflow Interrupt Enable: 

Setting this bit enables the timer 2 overflow interrupt. 

4 ES Serial 1/0 Port Interrupt Enable: 

Setting this bit enables the serial 1/0 port interrupt. 

3 ET1 Timer 1 Overflow Interrupt Enable: 

Setting this bit enables the timer 1 overflow interrupt. 

2 EX1 External Interrupt 1 Enable: 

Setting this bit enables external interrupt 1. 

1 ETO Timer O Overflow Interrupt Enable: 

Setting this bit enables the timer O overflow interrupt. 

0 EXO External Interrupt 0 Enable: 

Setting this bit enables external interrupt 0. 

Figure 6-4. Interrupt Enable Register 0 

I 6-11 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

IEN1 Address: S:B1 H 
Reset State: XXXX XOOOH 

7 0 

Bit Bit Function Number Mnemonic 

7:3 - Reserved: 

Values read from these bits are indeterminate. Write zeros to these bits. 

2 ESR Enable Suspend/Resume: 

USB Global Suspend/Resume Interrupt Enable bit. 

1 EF Enable Function: 

TransmiVReceive Done interrupt enable bit for non-isochronous USB 
function endpoints. 

0 ESOF Enable Start of Frame: 

Any start of frame interrupt enable bit for isochronous endpoints. 

Figure 6-5. USB Interrupt Enable Register 

6-12 __ L __ 



INTERRUPT SYSTEM 

6.7 INTERRUPT PRIORITIES 

Ten of the eleven 8X930A.x interrupt sources (TRAP excluded) may be individually programmed 
to one of four priority levels. This is accomplished with the IPHX.x/IPLX.x bit pairs in the inter­
rupt priority high (IPHl/IPHO in Figure 6-6 and 6-8) and interrupt priority low (IPLl/IPLO) reg­
isters (Figures 6-7 and 6-9). Specify the priority level as shown in Table 6-5 using IPHO.x (or 
IPHI.x) as the MSB and IPLO.x (or IPLl .x) as the LSB. 

Table 6-5. Level of Priority 

Priority Level IPH1 .x, IPL 1.x IPHO.x, IPLO.x 

0 Lowest Priority 00 00 

1 01 01 

2 10 10 

3 Highest Priority 11 11 

A low-priority interrupt is always interrupted by a higher priority interrupt but not by another in­
terrupt of equal or lower priority. The highest priority interrupt is not interrupted by any other in­
terrupt source. Higher priority interrupts are serviced before lower priority interrupts. The 
response to simultaneous occurrence of equal priority interrupts (i.e., sampled within the same 
four-state interrupt cycle) is determined by a hardware priority-within-level resolver (see Table 
6-6). 

Table 6-6. Interrupt Priority Within Level 

Priority Number Interrupt Name 

1 (Highest Priority) INTO# 

2 Timer O 

3 INT1# 

4 Timer 1 

5 Serial Port 

6 Timer 2 

7 PCA 

8 USB Any SOF 

9 USB Function 

10 USB Global Suspend/Resume 

I 6-13 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

IPHO Address: S:B?H 
Reset State: XOOO OOOOB 

7 0 

'--~~~'---IP_H_o_.6~_,___IP_H_o_.5~..___IP_H_0_.4__,I ~I ~IP_H_o_.3~_,___1P_H_o_.2~_,___1P_H_o_.1~_,__1P_H_o_.o__,I· 

Bit Bit Function Number Mnemonic 

7 - Reserved. The value read from this bit is indeterminate. Write a zero to 
this bit. 

6 IPH0.6 PCA Interrupt Priority Bit High 

5 IPH0.5 Timer 2 Overflow Interrupt Priority Bit High 

4 IPH0.4 Serial 1/0 Port Interrupt Priority Bit High 

3 IPH0.3 Timer 1 Overflow Interrupt Priority Bit High 

2 IPH0.2 External Interrupt 1 Priority Bit High 

1 IPH0.1 Timer O Overflow Interrupt Priority Bit High 

0 IPH0.0 External Interrupt O Priority Bit High 

Figure 6-6. IPHO: Interrupt Priority High Register 0 

IPLO Address: S:BBH 
Reset State: XOOO OOOOB 

7 0 

'--~~~'---IP_L_o_.6~_,___IP_L_o_.5~-L--IP_L_0_.4__,I \c___IP_L_o_.3~'---IP_L_o_.2~'---IP_L_o_.1~_,___1P_L_o_.o__, 

Bit Bit 
Function 

Number Mnemonic 

7 - Reserved. The value read from this bit is indeterminate. Write a zero to 
this bit. 

6 IPL0.6 PCA Interrupt Priority Bit Low 

5 IPL0.5 Timer 2 Overflow Interrupt Priority Bit Low 

4 IPL0.4 Serial 1/0 Port Interrupt Priority Bit Low 

3 IPL0.3 Timer 1 Overflow Interrupt Priority Bit Low 

2 IPL0.2 External Interrupt 1 Priority Bit Low 

1 IPL0.1 Timer 0 Overflow Interrupt Priority Bit Low 

0 IPLO.O External Interrupt O Priority Bit Low 

Figure 6-7. IPLO: Interrupt Priority Low Register O 

6-14 J __ 



INTERRUPT SYSTEM 

IPH1 Address: S:B3H 
Reset State: XOOO OOOOB 

7 0 

'--~~~'--~~~...__~~~-'-~~--'I ~I ~~~-'-~1P_H_1_.2~...___1P_H_1_.1~..__1P_H_1_.o___, 

Bit Bit Function 
Number Mnemonic 

7:3 - Reserved: 

Values read from these bits are indeterminate. Write zeros to these bits. 

2 IPH1.2 Global Suspend/Resume Interrupt Priority Bit High 

1 IPH1.1 USB Function Interrupt Priority Bit High 

0 IPH1.0 USB Any SOF Interrupt Priority Bit High 

Figure 6-8. IPH1: Interrupt Priority High Register 1 

IPL1 Address: S:B2H 
Reset. State: XOOO OOOOB 

7 0 

~~~~~~~~~~~~~~! ~I ~~~~1_PL_1_.2~~'_PL_1_.1~~'P_L_1_.o~ 

Bit Bit Function
Number Mnemonic

7:3 - Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2 IPL1.2 Global Suspend/Resume Interrupt Priority Bit Low

1 IPL1 .1 USB Function Interrupt Priority Bit Low

0 IPL1.0 USB Any SOF Interrupt Priority Bit Low

Figure 6-9. IPL 1: Interrupt Priority Low Register 1

I 6-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL infel®
6.8 INTERRUPT PROCESSING

Interrupt processing is a dynamic operation that begins when a source requests an interrupt and
lasts until the execution of the first instruction in the interrupt service routine (see Figure 6-10).
Response time is the amount of time between the interrupt request and the resulting break in the
current instruction stream. Latency is the amount of time between the interrupt request and the
execution of the first instruction in the interrupt service routine. These periods are dynamic due
to the presence of both fixed-time sequences and several variable conditions. These conditions
contribute to total elapsed time.

osc
State
Time

External
Interrupt
Request

_Response Time

Ending Instructions lllllllllDllSR
Latency

A4153-01

Figure 6-10. The Interrupt Process

Both response time and latency begin with the request. The subsequent minimum fixed sequence
comprises the interrupt sample, poll, and request operations. The variables consist of (but are not
limited to): specific instructions in use at request time, internal versus external interrupt source
requests, internal versus external program operation, stack location, presence of wait states, page-
mode operation, and branch pointer length. ·

6-16

NOTE

In the following discussion, external interrupt request pins are assumed to be
inactive for at least four state times prior to assertion. In this chapter all
external hardware signals maintain some setup period (i.e., less than one state
time). Signals must meet Vrn and VIL specifications prior to any state time
under discussion. This setup state time is not included in examples or calcula­
tions for either response or latency.

INTERRUPT SYSTEM

6.8.1 Minimum Fixed Interrupt Time

All interrupts are sampled or polled every four state-times (see Figure 6-10). Two of eight inter­
rupts are latched and polled per state time within any given window of four state-times. One ad­
ditional state time is required for a context switch request. For code branches to jump locations
in the current 64-Kbyte memory region (compatible with MCS 51 microcontrollers), the context
switch time is 11 states. Therefore, the minimum fixed poll and request time is 16 states (4 poll
states + 1 request state+ 1 I states for the context switch= I 6 state times).

Therefore, this minimum fixed period rests upon four assumptions:

• The source request is an internal interrupt with high enough priority to take precedence over
other potential interrupts,

• The request is coincident with internal execution and needs no instruction completion time,

• The program uses an internal stack location, and

• The ISR is in on-chip ROM.

6.8.2 Variable Interrupt Parameters

Both response time and latency calculations contain fixed and variable components. By defini­
tion, it is often difficult to predict exact timing calculations for real-time requests. One large vari­
able is the completion time of an instruction cycle coincident with the occurrence of an interrupt
request. Worst-case predictions typically use the longest-executing instruction in an architecture's
code set. In the case of the 8X930Ax, the longest-executing instruction is a 16-bit divide (DIV).
However, even this 21- state instruction may have only 1 or 2 remaining states to complete before
the interrupt system injects a context switch. This uncertainty affects both response time and la­
tency.

6.8.2.1 Response Time Variables

Response time is defined as the start of a dynamic time period when a source requests an interrupt
and lasts until a break in the current instruction execution stream occurs (see Figure 6-10). Re­
sponse time (and therefore latency) is affected by two primary factors: the incidence of the re­
quest relative to the four-state-time sample window and the completion time of instructions in the
response period (i.e., shorter instructions complete earlier than longer instructions).

I

NOTE

External interrupt signals require one additional state time in comparison to
internal interrupts. This is necessary to sample and latch the pin value prior to
a poll of interrupts. The sample occurs in the first half of the state time and the
poll/request occurs in the second half of the next state time. Therefore, this
sample and poll/request portion of the minimum fixed response and latency

6-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

time is five states for internal interrupts and six states for external interrupts.
External interrupts must remain active for at least five state times to guarantee
interrupt recognition when the request occurs immediately after a sample has
been taken (i.e., requested in the second half of a sample state time).

If the external interrupt goes active one state after the sample state, the pin is not resampled for
another three states. After the second sample is taken and the interrupt request is recognized, the
interrupt controller requests the context switch. The programmer must also consider the time to
complete the instruction at the moment the context switch request is sent to the execution unit. If
9 states of a lO~state instruction have completed when the context switch is requested, the total
response time is 6 states, with a context switch immediately after the final state of the 10-state
instruction (see Figure 6-11).

osc

State Time

INTO#

Sample INTO#

Request

Ten State
Instruction

Response Time = 6

Figure 6-11. Response Time Example #1

A4155-02

Conversely, if the external interrupt requests service in the state just prior to the next sample, re­
sponse is much quicker. One state asserts the request, one state samples, and one state requests
the context switch. If at that point the same instruction conditions exist, one additional state time
is needed to complete the 10-state instruction prior to the context switch (see Figure 6-12). The
total response time in this case is four state times. The programmer must evaluate all pertinent
conditions for accurate predictability.

6-18 L

6.8.2.2

osc

State Time

INTO#

Sample INTO#

Request

Ten State
Instruction

Response Time = 4

Figure 6-12. Response Time Example #2

Computation of Worst-case Latency With Variables

INTERRUPT SYSTEM

A4154-02

Worst-case latency calculations assume that the longest 8X930Ax instruction used in the program
must fully execute prior to a context switch. The instruction execution time is reduced by one
state with the assumption the instruction state overlaps the request state (therefore, 16-bit DIV is
21 state times - 1 = 20 states for latency calculations). The calculations add fixed and variable
interrupt times (see Table 6-7) to this instruction time to predict latency. The worst-case latency
(both fixed and variable times included) is expressed by a pseudo-formula:

FIXED_ TIME+ VARIABLES+ LONGEST_INSTRUCTION = MAXIMUM LATENCY PREDICTION

I 6-19

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table 6-7. Interrupt Latency Variables

INTO#, >64K External External External External
Variable INT1#,

External Page
Jump to

Memory
Stack Stack Stack

Execution Mode Walt
T2EX ISR (1)

State
<64K (1) >64K (1) Wait State

Number
of 1 2 1 8 1 per 4 8 1 per

States bus cycle bus cycle
Added

NOTES:
1. <64Kl>64K means inside/outside the 64-Kbyte memory region where code is executing.
2. Base-case fixed time is 16 states and assumes:

- A 2-byte instruction is the first ISR byte. - Internal execution

- <64K jump to ISR - Internal stack

- Internal peripheral interrupt

6.8.2.3 Latency Calculations

Assume the use of a zero-wait-state external memory where current instructions, the ISR, and the
stack are located within the same 64-Kbyte memory region (compatible with memory maps for
MCS 51 microcontrollers.) Further, assume there are 3 states yet to complete in the current 21-
state DIV instruction when INTO# requests service. Also assume INTO# has made the request one
state prior to the sample state (as in Figure 6-12). Unlike Figure 6-12, the response time for this
assumption is three state times as the current instruction completes in time for the branch to occur.
Latency calculations begin with the minimum fixed latency of 16 states. From Table 6-7, one state
is added for an INTO# request from external hardware; two states are added for external execu­
tion; and four states for an external stack in the current 64-Kbyte region. Finally, three states are
added {or the current instruction to complete. The actual latency is 26 states. Worst-case latency
calculations predict 43 states for this example due to inclusion of total DIV instruction time (less
one state). ·

Table 6-8. Actual vs. Predicted Latency Calculations

Latency Factors Actual Predicted

Base Case Minimum Fixed Time 16 16

INTO# External Request 1 1

External Execution 2 2

<64K Byte Stack Location 4 4

Execution Time for Current DIV Instruction 3 20

TOTAL 26 43

6-20 __ J ____ ~

intel® INTERRUPT SYSTEM

6.8.2.4 Blocking Conditions

If all enable and priority requirements have been met, a single prioritized interrupt request at a
time generates a vector cycle to an interrupt service routine (see CALL instructions in Appendix
A, "Instruction Set Reference"). There are three causes of blocking conditions with hardware­
generated vectors:

1. An interrupt of equal or higher priority level is already in progress (defined as any point
after the flag has been set and the RETI of the ISR has not executed).

2. The current polling cycle is not the final cycle of the instruction in progress.

3. The instruction in progress is RETI or any write to the IENO, IENl, IPHO, IPHl, IPLO or
IPLl registers.

Any of these conditions blocks calls to interrupt service routines. Condition two ensures the in­
struction in progress completes before the system vectors to the ISR. Condition three ensures at
least one more instruction executes before the system vectors to additional interrupts if the in­
struction in progress is a RETI or any write to IENO, IENl, IPHO, IPHl, IPLO or IPLl. The com­
plete polling cycle is repeated every four state-times.

6.8.2.5 Interrupt Vector Cycle

When an interrupt vector cycle is initiated, the CPU breaks the instruction stream sequence, re­
solves all instruction pipeline decisions, and pushes multiple program counter (PC) bytes onto the
stack. The CPU then reloads the PC with a start address for the appropriate ISR. The number of
bytes pushed to the stack depends upon the INTR bit in the UCONFIG 1 (Figure 4-4 on page 4-6)
configuration byte. The complete sample, poll, request and context switch vector sequence is il­
lustrated in the interrupt latency timing diagram (Figure 6-10).

I

NOTE

If the interrupt flag for a level-triggered external interrupt is set but denied for
one of the above conditions and is clear when the blocking condition is
removed, then the denied interrupt is ignored. In other words, blocked interrupt
requests are not buffered for retention.

6-21

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

6.8.3 ISRs in Process

ISR execution proceeds until the RETI instruction is encountered. The RETI instruction informs
the processor that the interrupt routine is completed. The RETI instruction in the ISR pops PC
address bytes off the stack (as well as PSWl for INTR = 1) and execution resumes at the suspend­
ed instruction stream.

NOTE

Some programs written for MCS 51 microcontrollers use RETI instead of RET
to return from a subroutine that is called by ACALL or LCALL (i.e., not an
interrupt service routine (ISR)). In the 8X930Ax, this causes a compatibility
problem if INTR = 1 in configuration byte CONFIG 1. In this case, the CPU
pushes four bytes (the three-byte PC and PSWl) onto the stack when the
routine is called and pops the same four bytes when the RETI is executed. In
contrast, RET pushes and pops only the lower two bytes of the PC. To
maintain compatibility, configure the 8X930Ax with INTR = 0.

With the exception of TRAP, the start addresses of consecutive interrupt service routines are eight
bytes apart. If consecutive interrupts are used (IEO and TFO, for example, or TFO and IEl), the
first interrupt routine (if more than seven bytes long) must execute a jump to some other memory
location. This prevents overlap of the start address of the following interrupt routine.

6-22

intel.

7
Universal Serial Bus

I

CHAPTER 7
UNIVERSAL SERIAL BUS

This chapter and Chapter 8, "USB Programming Models," describe the operation of the 8X930A.x
serving as a USB function. For an overview of the USB module, see Chapter 2, "Introduction."
Table 7-1 lists device signals associated with the USB. Pin assignments are shown in Appendix B.

A data flow model for the USB transactions, intended to bridge the hardware and firmware layers
of the 8X930A.x, is presented in truth table form in Appendix D. The data flow model describes
8X930A.x behavior in response to a particular USB event, given a known state/configuration.

7.1 USB FUNCTION INTERFACE

The USB function interface manages communications between the USB host and the embedded
function. It consists of a serial bus interface engine (SIE), which handles the communication pro­
tocol of the universal serial bus, and a function interface unit (FIU), which handles data transfer
and provides the interface between the SIE and the 8X930A.x CPU. These units, along with the
differential transceiver and the FIFO data buffers, comprise the USB module. The block diagram
in Figure 2-3 on page 2-3 shows the relationships between these components and how they inter­
face with the CPU.

The USB module interfaces with the USB by means of the differential USB root port, Dpo and
DMO·

7.1.1 Serial Bus Interface Engine (SIE)

The SIE is the universal serial bus protocol interpreter. It serves as the communicator between the
8X930A.x and the host PC through the USB lines. For additional information on the SIE, see "SIE
Details" on page 7-33.

A complete description of the USB can be found in Universal Serial Bus Specification. For a de­
scription of the transceiver see the "Driver Characteristics" and "Receiver Characteristics" sec­
tions of the "Electrical" chapter of the Universal Serial Bus Specification. For electrical
characteristics and data signal timing, see the "Bus Timing/Electrical Characteristics" and "Tim­
ing Diagram" sections of the same chapter.

7.1.2 Function Interface Unit (FIU)

The FIU manages USB data transactions for the 8X930A.x. It controls the operation of the FIFOs,
monitors the status of the data transaction, and at the appropriate moment transfers event control
to the CPU through an interrupt request. The exact nature of a data transaction depends on the
type of data transfer and the initial conditions of the transmit and receive FIFOs.

The 8X930A.x supports four types of data transfer: control transfer (endpoint 0), interrupt transfer,
isochronous transfer, and bulk transfer. The 8X930A.x provides a pair of FIFO data buffers - a
transmit FIFO and a receive FIFO - dedicated to each endpoint.

I 7-1

8X930AxUNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL - intel®

Table 7-1. Signal Descriptions

Signal Type Description Alternate
Name Function

PLLSEL2:0 I Phase Lock Loop Select. Three-bit code selects the USB data -
rate (see Table 2-2 on page 2-8).

SOF# 0 Start of Frame. The SOF# pin is asserted for eight states when -
an SOF token is received.

Opo, OMo 1/0 USB Port 0. Op0 and OMo are the data plus and data minus -
lines of differential USB port 0. These lines do not have internal
pull up resistors. For low-speed devices, provide an external 1.5
KQ pull up resistor at OMO· For full-speed devices, provide an
external 1.5 KQ pullup resistor at Opo·

NOTE: Either Op0 or OMo must be pulled high. Otherwise a
continuous SEO (USB reset) will be applied to these inputs
causing the 8X930Ax to stay in reset.

ECAP I External Capacitor. Must be connected to a 0.1 µF capacitor -
(or larger) to ensure proper operation of the differential line
driver. The other lead of the capacitor must be connected to
Vss·

7.1.3 SPECIAL FUNCTION REGISTERS (SFRs)

The FIU controls operations through the use of four sets of special functions registers (SFRs): the
FIU SFRs, the transmit FIFO SFRs, the receive FIFO SFRs, and the USB interrupt SFRs. Table
7-2 lists the special function registers (SFRs) described in this chapter. USB interrupt SFRs are
described in Chapter 6, "Interrupt System." Table 3-5 on page 3-16 is an address map of all the
8X930Ax SFRs.

The registers in the FIU SFR set are: EPINDEX, EPCON, TXSTAT, RXSTAT, SOFL, SOFH, and
FADDR. These registers are defined in Figures 7-1 through Figure 7-7.

The registers in the transmit FIFO SFR set are TXDAT, TXCON, TXFLG, TXCNTL, and
TXCNTH. These registers are defined in Figures 7-10 through 7-13 beginning on page 7-18.

The registers in the receive FIFO SFR set are RXDAT, RXCON, RXFLG, RXCNTL, and
RXCNTH. These registers are defined in Figures 7-15 through 7-18 beginning on page 7-27.

The transmit SFR set, the receive SFR set, EPCON, TXSTAT, and RXSTAT are endpoint-in­
dexed, i.e., they are assigned to operate in conjunction with the FIFO pair associated with these­
lected endpoint.

The endpoint index SFR (EPINDEX) specifies the current endpoint (index value x = 0, 1, 2, 3).

7-2

CAUTION
Unless otherwise noted in the bit definition, SFR bits can be read and written
by software. All SFRs should be written using read-modify-write instructions
only, due to the possibility of simultaneous writes by hardware and firmware.

__ l __

UNIVERSAL SERIAL BUS

Table 7-2. USB Function SFRs

Mnemonic Description Address

EPCON Endpoint Control Register. Configures the operation of the endpoint S:E1H
specified by EPINDEX.

EPINDEX Endpoint Index Register. Selects the appropriate endpoint. S:F1H

FAD DR Function Address Register. Stores the USB function address for the S:8FH
device. The host PC assigns the address and informs the device via
endpoint o.

RXCNTH Receive FIFO Byte-Count High Register. High register in a two-register S:E7H
ring buffer used to store the byte count for the data packets received in the
receive FIFO specified by EPINDEX.

RXCNTL Receive FIFO Byte-Count Low Register. Low register in a two-register S:E6H
ring buffer used to store the byte count for the data packets received in the
receive FIFO specified by EPINDEX.

RX CON Receive FIFO Control Register. Controls the receive FIFO specified by S:E4H
EPINDEX.

RX DAT Receive FIFO Data Register. Receive FIFO data is read from this register S:E3H
(specified by EPINDEX).

RXFLG Receive FIFO Flag Register. These flags indicate the status of data S:E5H
packets in the receive FIFO specified by EPINDEX.

RX STAT Endpoint Receive Status Register. Contains the endpoint status of the S:E2H
receive FIFO specified by EPINDEX.

SOFH Start of Frame High Register. Contains isochronous data transfer enable S:D3H
and interrupt bits and the upper three bits of the 11-bit time stamp received
from the host.

SOFL Start of Frame Low Register. Contains the lower eight bits of the 11-bit S:D2H
time stamp received from the host.

TXCNTH Transmit Count High Register. High register in a two-register ring buffer S:F7H
used to store the byte count for the data packets in the transmit FIFO
specified by EPINDEX.

TXCNTL Transmit Count Low Register. Low register in a two-register ring buffer S:F6H
used to store the byte count for the data packets in the transmit FIFO
specified by EPINDEX.

TX CON Transmit FIFO Control Register. Controls the transmit FIFO specified by S:F4H
EPINDEX.

TXDAT Transmit FIFO Data Register. Transmit FIFO data is written to this register S:F3H
(specified by EPINDEX).

TXFLG Transmit Flag Register. These flags indicate the status of data packets in S:F5H
the transmit FIFO specified by EPINDEX.

TXSTAT Endpoint Transmit Status Register. Contains the endpoint status of the S:FAH
transmit FIFO specified by EPINDEX.

I
7-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

7.1.4 USB Function FIFO's

The 8X930Ax provides eight FIFOs in support of the four USB function endpoints - a transmit/
receive FIFO pair for each endpoint. Table 7-3 lists the 8X930Ax FIFOs and gives the byte ca­
pacity of each. The FIFOs associated with function endpoints 0, 2, and 3 have capacities of 16
bytes. As shown in the table, bits FFSZ.1 :0 of the TX CON SFR permit the endpoint 1 transmit/re­
ceive FIFO pair to be partitioned as follows: 256/256, 512/512, 1024/0, or 0/1024 bytes.

Transmit FIFOs are written by the 8X930Ax CPU and then read by the function interface for
transmission. Receive FIFOs are written by the function interface following reception and then
read by the CPU. All transmit FIFOs have the same architecture, and all receive FIFOs have the
same architecture.

Table 7-3. 8X930Ax FIFO Configurations

Endpoint Select Transmit FIFOs Receive FIFOs FIFO Size
(EPINDEX.1 :0) (FFSZ.1 :O)t

00 Endpoint 0 . 16 bytes 16 bytes xx
(Control)

0 1 Endpoint 1 256 bytes 256 bytes 00

512 bytes 512 bytes 01

1024 bytes 0 bytes 1 0

O bytes 1024 bytes 1 1

1 0 Endpoint 2 16 bytes 16 bytes xx
1 1 Endpoint 3 16 bytes 16 bytes xx

t Bits FFSZ.1 :0 are bits 7:6 of register TXCON, and are accessible for endpoint 1
only (EPINDEX = 01).

7.1.5 The FIU SFR Set

The two low-order bits of the endpoint index register (EPINDEX, bits EPINXl :0) contain the
current endpoint index value (x = 0, 1, 2, 3). The index value indicates the endpoint. Use the bi­
nary form OxxxxxyyB to write the index value to the EPINDEX register, where yy is the encoded
endpoint address (i.e., 00 for endpoint 0, 01 for endpoint 1, etc.). See Table 7-3.

It is recommended that programmers set the contents of EPINDEX once, at the start of each rou­
tine, instead of writing the EPINDEX register prior to each access of an endpoint-indexed SFR.
This means that interrupt service routines must save the contents of the EPINDEX register at the
start of the routine and restore the contents at the end of the routine to prevent the EPINDEX reg­
ister from being corrupted.

7-4

I

UNIVERSAL SERIAL BUS

EPINDEX Address S:F1 H
Reset State 1XXX XXOOB

7 0

Bit Bit
Function Number Mnemonic

7:2 - Reserved:

Write zeros to these bits.

Note: Although the reset state for bit 7 is '1 ', always write zeros to bits 7:2 of
th is register.

1:0 EPINX1 :0 Endpoint Index Select:

Used to select the function endpoint number to be indexed. The 8X930Ax is
set up accordingly: the USB SFR definitions for TXDAT, TXCON, TXFLG,
TXCNTH/L, RXDAT, RXCON, RXFLG, RXCNTH/L, EPCON, TXSTAT, and
RXSTAT are adjusted for the selected endpoint. The SFRs are connected to
the appropriate transmit/receive FIFO pair. This register is hardware read-
only.

EPINX1 EPINXO
0 0 Endpoint 0. Control Transfer
0 1 Endpoint 1.
1 0 Endpoint 2.
1 1 Endpoint 3.

Figure 7-1. EPINDEX: Endpoint Index Register

I
7-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

EPCON

7

RXSTL TXSTL CTLEP

Address
Reset State X= Qt

X= 1, 2, 3t

RXEPEN TXOE

S:E1H
0011 0101 B
0001 00008

0

TXEPEN RXSPM 11 RXIE
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

Bit Bit Function 
Number Mnemonic 

7 RXSTL Stall Receive Endpoint: 

Set this bit to stall the receive endpoint. Clear this bit only when the host has 
intervened through commands sent down endpoint 0. When this bit is set 
and RXSETUP is clear, the receive endpoint will respond with a STALL 
handshake to a valid OUT token. This bit does not affect the reception of 
SETUP tokens by a control endpoint. The state of this bit is sampled on a 
valid OUT token. 

6 TXSTL Stall Transmit Endpoint: 

Set this bit to stall the transmit endpoint. This bit should only be cleared 
when the host has intervened through commands sent down endpoint O. 
When this bit is set and RXSETUP is clear, the receive endpoint will respond 
with a STALL handshake to a valid IN token.The state of this bit is sampled 
on a valid IN token. 

5 CTLEP Control Endpoint: 

Set this bit to configure the endpoint as a control endpoint. Only control 
endpoints are capable of receiving SETUP tokens. The state of this bit is 
sampled on a valid SETUP token. 

4 RXSPM Receive Single Packet Mode: 

Set this bit to configure the receive endpoint for single data packet 
operation. When enabled, only a single data packet is allowed to reside in 
the receive FIFO. The state of this bit is sampled on a valid OUTtoken. 
Note: For control endpoints (CTLEP=1 ), this bit should be set for single 
packet mode operation as the recommended firmware model. However, it is 
acceptable to have a control endpoint with dual packet mode configuration 
as long as the firmware handles the endpoint correctly. 

3 RXIE Receive lnputEnable: 

Set this bit to enable data from the USB to be written into the receive FIFO. 
If cleared, the endpoint will not write the received data into the receive FIFO 
and at the end of reception, it returns a NAK handshake on a valid OUT 
token if the RXSTL bit is not set.This bit does not affect a valid SETUP 
token. 

2 RXEPEN Receive Endpoint Enable: 

Set this bit to enable the receive endpoint. When disabled, the endpoint 
does not respond to a valid OUT or SETUP token. The state of this bit is 
sampled on a valid OUT or SETUP token. This bit is hardware read-only and 
has the highest priority among RXIE and RXSTL. Note that endpoint 0 is 
enabled for reception upon reset. 

t x = endpoint index. See EPINDEX. 

7-6 . ____ l_ 



EPCON (Continued) Address 
Reset State 

UNIVERSAL SERIAL BUS 

X= Qt 
x = 1, 2, 3t 

S:E1H 
0011 0101 B 
0001 00008 

7 0 

l~R_X_S_T_L~~T_x_s_T_L~~C_T_L_E_P~~R_X_S_P_M~'I ~ ~R_X_IE~~-RX~EP_E_N~~T_x_o_E~~T_X_E_P_E_N~ 

Bit Bit 
Function Number Mnemonic 

1 TXOE Transmit Output Enable. 

This bit is used to enable the data in the transmit FIFO to be transmitted. If 
cleared, the endpoint returns a NAK handshake to a valid IN token if the 
TXSTL bit is not set. The state of this bit is sampled on a valid IN token. 

0 TXEPEN Transmit Endpoint Enable: 

This bit is used to enable the transmit endpoint. When disabled, the 
endpoint does not respond to a valid IN token. The state of this bit is 
sampled on a valid IN token. This bit is hardware read only. Note that 
endpoint 0 is enabled for transmission upon reset. 

t x = endpoint index. See EPINDEX. 

Figure 7-2. EPCON: Control Endpoint Register 

I 
7-7 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

TXSTAT Address: S:F2H 
Reset State: 0000 OOOOB 

7 0 

~T_xs_E_a~---~--~l _Tx_F_L_us_H~I / Txsovw / Txvo10 TXERR TXACK 

Bit Bit 
Function Number Mnemonic 

7 TXSEQ Transmitter's Current Sequence Bit (read, conditional write): t 

This bit will be transmitted in the next PID and toggled on a valid ACK 
handshake. This bit is toggled by hardware on a valid SETUP token. This bit 
can be written by firmware if the TXSOVW bit is set when written together 
with the new TXSEQ value. 

6:5 - Reserved: 

Values read from these bits are indeterminate. Write zeros to these bits. 

4 TXFLUSH Transmit FIFO Packet Flushed: 

When set, this bit indicates that hardware flushed a stale ISO data packet 
from the transmit FIFO due to a TXFIF = '11' at SOF. This bit is set by 
hardware, but can also be set by software with the same effect.t 

3 TXSOVW Transmit Data Sequence Overwrite Bit: t 

Write a '1' to this bit to allow the value of the TXSEQ bit to be overwritten. 
Writing a 'O' to this bit has no effect on TXSEQ. This bit always returns 'O' 
when read. tt 

2 TXVOID Transmit Void (read-only): 

A void condition has occurred in response to a valid IN token. Transmit void 
is closely associated with the NAK/STALL handshake returned by function 
after a valid IN token, due to the conditions that cause the transmit FIFO to 
be unenabled or not ready to transmit. 

Use this bit to check any NAK/STALL handshake ever returned by function. 

This bit does not affect the FTXDx, TXERR or TXACK bits. This bit is 
updated by hardware at the end of a non-isochronous transaction in 
response to a valid IN token. For isochronous transactions, this bit is not 
updated until the next SOF. 

Under normal operation, this bit should not be modified by the user. 

tt The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new 
configuration or interface. 

7-8 



UNIVERSAL SERIAL BUS 

TXSTAT (Continued) Address: S:F2H 
Reset State: 0000 OOOOB 

7 0 

'--T_xs_E_o__._ ___ _._ __ __._l _Tx_F_L_us_H__.l l Txsovw I Txvo1D TXERR TXACK 

Bit Bit Function Number Mnemonic 

1 TXERR Transmit Error (read-only): 

An error condition has occurred with the transmission. Complete or partial 
data has been transmitted. The error can be one of the following: 

1. Data transmitted successfully but no handshake received. 
2. Transmit FIFO goes into underrun condition while transmitting. 

The corresponding transmit done bit (FTXDx in FIFLG) is set when active. 
For non-isochronous transactions, this bit is updated by hardware together 
with the TXACK bit at the end of the data transmission (this bit is mutually 
exclusive with TXACK). For isochronous transactions, this bit is not updated 
until the next SOF. 

0 TXACK Transmit Acknowledge (read-only): 

Data transmission completed and acknowledged successfully. The 
corresponding transmit done bit (FTXDx in FIFLG) is set when active. For 
non-isochronous transactions, this bit is updated by hardware together with 
the TXERR bit at the end of data transmission (this bit is mutually exclusive 
with TXERR). For isochronous transactions, this bit is not updated until the 
next SOF. 

Under normal operation, this bit should not be modified by the user. 

tt The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new 
configuration or interface. 

Figure 7-3. TXSTAT: Transmit FIFO Status Register 

I 
7-9 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

RXSTAT Address: S:E2H 
Reset State: 0000 OOOOB 

7 0 

RXERR RXACK RXSEQ RXSETUP STOVW · 1 EDOVW 11 RXSOVW I RXVOID 
~~~~~~~~~~~~~~~~~~ 

Bit Bit
Function Number Mnemonic

7 RXSEQ Receiver Endpoint Sequence Bit (read, conditional write): t
This bit will be toggled on completion of an ACK handshake in response to
an OUT token. This bit will be set (or cleared) by hardware after reception of
a SETUP token.

This bit can be written by firmware if the RXSOVW bit is set when written
together with the new RXSEQ value.

Note: Always verify this bit after writing to ensure that there is no conflict with
hardware, which could occur if a new SETUP token is received.

6 RXSETUP Received Setup Token:

This bit is set by hardware when a valid SETUP token has been received.
When set, this bit causes received IN or OUT tokens to be NAKed until the
bit is cleared to allow proper data management for the transmit and receive
FIFOs from the previous transaction.

IN or OUT tokens are NAKed even if the endpoint is stalled (RXSTL or
TXSTL) to allow a control transaction to clear a stalled endpoint.

Clear this bit upon detection of a SETUP token after the firmware is ready to
complete the status stage of a control transaction.

5 STOVW Start Overwrite Flag (read-only):

Set by hardware upon receipt of a SETUP token for any control endpoint to
indicate that the receive FIFO is being overwritten with new SETUP data.
When set, the FIFO state (FIF and read pointer) resets and is locked for this
endpoint until EDOVW is set. This prevents a prior, ongoing firmware read
from corrupting the read pointer as the receive FIFO is being cleared and
new data is being written into it. This bit is cleared by hardware during the
handshake phase of the setup stage.

This bit is only used for control endpoints.

4 EDOVW End Overwrite Flag:

This flag is set by hardware during the handshake phase of a SETUP stage.
It is set after every SETUP packet is received and must be cleared prior to
reading the contents of the FIFO. When set, the FIFO state (FIF and read
pointer) remains locked for this endpoint until this bit is cleared. This
prevents a prior, ongoing firmware read from corrupting the read pointer
after the new data has been written into the receive FIFO.

This bit is only used for control endpoints.

Under normal operation, this bit should not be modified by the user.

tt The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new
configuration or interface.

7-10

_L __

UNIVERSAL SERIAL BUS

RXSTAT (Continued) Address: S:E2H
Reset State: 0000 OOOOB

7 0

~R_x_s_E_a~_R_x_s_E_Tu_P~_s_T_o_v_w~~E_D_o_vw~l I Rxsovw I Rxvo1D RX ERR RXACK

Bit Bit Function
Number Mnemonic

3 RXSOVW Receive Data Sequence Overwrite Bit: t
Write a '1' to this bit to allow the value of the RXSEQ bit to be overwritten.
This is needed to clear a STALL on a control endpoint. Writing a 'O' to this bit
has no effect on RXSEQ. This bit always returns 'O' when read. tt

2 RXVOID Receive Void Condition (read-only):

This bit is set when no valid data is received in response to a SETUP or
OUT token due to one of the following conditions:

1. The receive FIFO is still locked.

2. The EPCON register's RXSTL bit is set for a non-control endpoint.

This bit is set and cleared by hardware. For non-isochronous transactions,
this bit is updated by hardware at the end of the transaction in respond to a
valid OUT token. For isochronous transactions, it is not updated until the
next SOF.

1 RXERR Receive Error (read-only):

Set when an error condition has occurred with the reception. Complete or
partial data has been written into the receive FIFO. No handshake is
returned. The error can be one of the following conditions:

1. Data failed CRC check.

2. Bit stuffing error.

3. A receive FIFO goes into overrun or underrun condition while receiving.

This bit is updated by hardware at the end of a valid SETUP or OUT token
transaction (non-isochronous) or at the next SOF on each valid OUT token
transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is
updated with the RXACK bit at the end of data reception and is mutually
exclusive with RXACK.

0 RXACK Receive Acknowledged (read-only):

This bit is set when data is received completely into a receive FIFO and an
ACK handshake is sent. This read-only bit is updated by hardware at the
end of a valid SETUP or OUT token transaction (non-isochronous) or at the
next SOF on each valid OUT token transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is
updated with the RXERR bit at the end of data reception and is mutually
exclusive with RXERR.

Under normal operation, this bit should not be modified by the user.

tt The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new
configuration or interface.

Figure 7-4. RXSTAT: Receive FIFO Status Register

I
7-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

SOFH Address: S:D3H
Reset State: 0000 00008

7 0

.___s_o_FA_c_K__,__A_s_o_F _ _,___s_o_F_1E__._FT_L_o_c_K__.l I sorno1s I TS10 TS9 TSB

Bit ·Bit Function Number Mnemonic

7 SO FACK SOF Token Received without Error (read-only):

When set, this bit indicates that the 11-bit time stamp stored in SOFL and
SOFH is valid. This bit is updated every time a SOF token is received from
the USB bus, and it is cleared when an artificial SOF is generated by the
frame timer. This bit is set and cleared by hardware.

6 ASOF Any Start-of-Frame:

This bit is set by hardware to indicate that a new frame has started. The
interrupt can result either from reception of an actual SOF packet or from an
artificially-generated SOF from the frame timer. This interrupt is asserted in
hardware even if the frame timer is not locked to the USB bus frame timing.
When set, this bit is an indication that either an actual SOF packet was
received or an artificial SOF was generated by the frame timer. This bit must
be cleared by software or inverted and driven to the SOF# pin. The effect of
setting this bit by software is the same as hardware: the external pin will be
driven with an inverted ASOF value for eight TcLKs.

This bit also serves as the SOF interrupt flag. This interrupt is only asserted
in hardware if the SOF interrupt is enabled (SOFIE set) and the interrupt
channel is enabled.

5 SOFIE SOF Interrupt Enable:

When this bit is set, setting the ASOF bit causes an interrupt request to be
generated if the interrupt channel is enabled. Hardware reads but does not
write this bit.

4 FTLOCK Frame Timer Locked (read-only):

When set, this bit indicates that the frame timer is presently locked to the
USB bus' frame time. When cleared, this bit indicates that the frame timer is
attempting to synchronize to the frame time.

3 SOFODIS SOF# Pin Output Disable:

When set, no low pulse will be driven to the SOF# pin in response to setting
the ASOF bit. The SOF# pin will be driven to '1' when SOFODIS is set.
When this bit is clear, setting the ASOF bit causes the SOF# pin to be
toggled with a low pulse for eight TcLKs.

2:0 TS10:8 Time stamp received from host:

TS10:8 are the upper three bits of the 11-bit frame number issued with an
SOF token. This time stamp is valid only if the SOFACK bit is set.

Figure 7-5. SOFH: Start of Frame High Register

7·12

I __

UNIVERSAL SERIAL BUS

SOFL Address: S:D2H
Reset State: 0000 OOOOB

7 0

TS7:0

Bit Bit Function Number Mnemonic

7:0 TS7:0 Time stamp received from host:

This time stamp is valid only if the SOFACK bit in the SOFH register is set.
TS7:0 are the lower eight bits of the 11-bit frame number issued with a SOF
token. If an artificial SOF is generated, the time stamp remains at its
previous value and it is up to firmware to update it. These bits are set and
cleared by hardware.

Figure 7-6. SOFL: Start of Frame Low Register

FAD DR Address: S:BFH
Reset State: 0000 OOOOB

7 0

A6:0

Bit Bit Function Number Mnemonic

7 - Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

6:0 A6:0 7-bit Programmable Function Address:

This register is programmed through the commands received via endpoint 0
on configuration, which should be the only time the firmware should change
the value of this register. This register is read-only by hardware.

Figure 7-7. FADDR: Function Address Register

I
7-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

7.2 TRANSMIT FIFOS

The 8X930A.x has four USB function transmitFIFOs, one for each endpoint. In this manual, the
term transmit FIFO refers to the transmit FIFO associated with the current endpoint as specified
by the EPINDEX register.

7.2.1 Transmit FIFO Overview

The transmit FIFOs are circulating data buffers with the following features:

• support for up to two separate data sets of variable sizes't

• a byte count register to store the number of bytes in the data sets

• protection against overwriting data in a full FIFO

• capability to retransmit the current data set

All transmit FIFOs have the same architecture (Figure 7-8). The transmit FIFO and its associated
logic can manage up to two data sets, data set 0 (dsO) and data set 1 (dsl). The ability to have two
data sets in the FIFO supports back-to-back transmissions.

I FromCPU>

8X930CPU
Writes to FIFO

Byte Count
Registers

TXCNTH

TXCNTL

Data Set 1

FIU Reads FIFO

1---....----r..--,--, Read Pointer

Data Seto REVRP ADV RM

Figure 7-8. Transmit FIFO Outline

To USB Interface

A4258-02

The CPU writes to the FIFO location specified by the write pointer, which increments by one au­
tomatically following a write. The read marker points to the first byte of data written to a data
set, and the read pointer points to the next FIFO location to be read by the function interface. The
read pointer increments by one automatically following a read.

t When operating in dual packet mode, the maximum packet size should be at most half the
FIFO size to ensure that both packets will simultaneously fit in the FIFO (see the Endpoint
description in the Universal Serial Bus Specification).

7-14

------~------------ -: _____ L_

UNIVERSAL SERIAL BUS

When a good transmission is completed, the read marker can be advanced to the position of the
read pointer to set up for reading the next data set. When a bad transmission is completed, the
read pointer can be reversed to the position of the read marker to enable the function interface to
re-read the last data set for retransmission. The read marker advance and read pointer reversal can
be accomplished two ways: explicitly by software or automatically by hardware, as specified by
bits in the transmit FIFO control register (TXCON).

7.2.2 Transmit FIFO Registers

There are five registers directly involved in the operation of the transmit FIFOs:

• TXDAT, the transmit FIFO data register

• TXCNTH and TXCNTL, the transmit FIFO byte count registers referred to jointly as
TXCNT

• TXCON, the transmit FIFO control register

• TXFLG, the transmit FIFO flag register

These registers are endpoint indexed, i.e., they are used as a set to control the operation of the
transmit FIFO associated with the current endpoint specified by the EPINDEX register. Figures
7-10 through 7-13 beginning on page 7-18 describe the transmit FIFO registers and provide bit
definitions.

7.2.3 Transmit Data Register (TXDAT)

Bytes are written to the transmit FIFO via the transmit FIFO data register (TXDAT).

7.2.4 Transmit Byte Count Registers (TXCNTL/TXCNTH)

The format of the transmit byte count register depends on the endpoint. For endpoint 1, registers
TXCNTH and TXCNTL form a two-register, ten-bit ring buffer which accommodates packet siz­
es of 0 to 1023 bytes. For endpoints 0, 2, and 3, TXCNTL is used alone as a five-bit ring buffer
to accommodate packet sizes of 0 to 16 bytes. These formats are shown in Figure 7-11 on page
7-19. The term TXCNT refers to either of these arrangements.

The transmit FIFO byte count register (TXCNT) stores the number of bytes in either of the two
data sets, data set 0 (dsO) and data set 1 (dsl). The FIFO logic for maintaining the data sets as­
sumes that data is written to the FIFO in the following sequence:

I

1.

2.

The CPU first writes data bytes to TXDAT.

The CPU writes the number of bytes that were written to TXDAT to the byte count
register TXCNT. TXCNT must be written after the write to TXDAT to guarantee data
integrity. For function endpoint 1, TXCNTL should be written after TXCNTH. Writing to
TXCNTH does not affect the TXFIF bits, however writing to TXCNTHL does set the
associated TXFIF bits.

7-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

NOTE
TXCNTH does not need to be written if it is always OOH, as the reset value is
OOH. However, if TXCNTH is not OOH, it should always be written even
though the value does not change from the previous cycle; this is because the
byte count registers are 2-byte circular buffers and not "static" registers.

For all endpoints except function endpoint 1, TXCNTH is not available and
TXCNTL only contains BC4:0. Bits 7:5 are reserved in this case and should
always be written with 'O'.

The function interface reads the byte count register to determine the number of bytes in the set.

The transmit byte count register has a read/write index to allow it to access the byte count for ei­
ther of the two data sets (see Figure 7-9). After reset, the read/write index points to data set 0.
Thereafter, the following logic determines the position of the read/write index:

• After a write to TXCNT, the read/write index (TXFIF) is toggled

• After a read of TXCNT, the read/write index (TXFIF) is unchanged

The position of the read/write index can also be determined from the data set index bits, FIFI:O
(see "Transmit Data Set Management" on page 7-17).

Byte Count, dsO Byte Count, ds1

Byte Count

Byte Count Register
Endpoint 1: TXCNTUTXCNTH
Endpoint 0,2,3: TXCNTL

A4261-02

Figure 7-9. Transmit Byte Count Registers

7-16 ____ I __

UNIVERSAL SERIAL BUS

7.2.5 Transmit Data Set Management

Two read-only data set index bits, FIFl:O in the TXFLG register, indicate which data sets (dsO
and/or dsl) have been written into the FIFO (see the left side of Table 7-4). FIFx = 1 indicates that
data set x has been written. Following reset, FIFI :0 = 00, signifying an empty FIFO. FIFI :0 also
determine which data set is written next. Note that FIFO specifies the next data set to be written,
except for the case of FIFI :0 = I I. In this case further writes to TXDAT or TXCNT are ignored.

NOTE
To simplify firmware development, it is recommended that you utilize control
endpoints in single-packet mode only.

Two events cause the data set index bits to be updated:

• A new data set is written to the FIFO: the 8X930Ax writes bytes to the FIFO via TXDAT
and writes the number of bytes to TXCNT. The data set index bits are updated after the
write to TXCNT. This process is illustrated in Table 7-4.

• A data set in the FIFO is successfully transmitted: the function interface reads a data set
from the FIFO, and when a good transmission is acknowledged, the read marker is
advanced to the read pointer. The data set index bits are updated after the read marker is
advanced. Note that in ISO mode, this happens at the next SOF.

Table 7-4. Writing to the Byte Count Register

Data Sets Written Set for Next Write FIF1:0 Write bytes FIF1:0 toTXCNT ds1 dsO toTXDAT.

0 0 No No (Empty) dsO -> Write byte -> 0 1

0 1 No Yes (1 set) ds1
count to

1 1 TXCNT
1 0 Yes No (1 set) dsO 1 1

1 1 Yes Yes (2 sets) Write ignored 1 1

I 7-17

.8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table 7-5 summarizes how the actions following a transmission depend on the TXISO bit, the
ATM bit, the TXACK bit, and the TXERR bit.

Table 7-5. Truth Table for Transmit FIFO Management

TXISO ATM TXERR TXACK
Action at End of Transfer Cycle (TXCON.3) (TXCON.2) (TXSTAT.1) (TXSTAT.O)

x x 0 0 No operation.

x 0 0 1 Read marker, read pointer, and TXFIF bits
remain unchanged. Managed by software.

x 0 1 0 Read marker, read pointer, and TXFIF bits
remain unchanged. Managed by software.

0 1 0 1 Read marker advanced automatically.The
TXFIF bit for the corresponding data set is
cleared.

0 1 1 0 Read pointer reversed automatically. The
TXFIF bit for the corresponding data set
remains unchanged.

1 1 x x Read marker advanced automatically.The
TXFIF bit for the corresponding data set is
cleared at the SOF.

NOTE

For normal operation, set the ATM bit in TXCON. Hardware will
automatically control the read pointer and read marker, and track the TXFIF
bits.

TXDAT Address: S:F3H
Reset State: xxxx xxxxB

7

Transmit Data Byte

Bit Bit
Function Number Mnemonic

7:0 TXDAT[7:0] Transmit Data Byte. (write-only):

To write data to the transmit FIFO, write to this register. The write pointer
and read pointer are incremented automatically after a write and read
respectively.

Figure 7-10. TXDAT: Transmit FIFO Data Register

7-18

0

UNIVERSAL SERIAL BUS

TXCNTH, Address: S:F7H
TXCNTL S:F6H

Reset States: Endpoint 1 TXCNTH XXXX XXOOB
TXCNTL 0000 00008

Endpoints 0, 2, 3 TXCNTL xxxo 00008

15 (TXCNTH) Endpoint 1 8

I I 11
BC9 BC8

7(TXCNTL) 0

I BC? I BC6 BC5 BC4
11

BC3 BC2 BC1 BCO

7 (TXCNTL) Endpoints 0, 2, 3 0

I I BC4
11

BC3 BC2 BC1 BCO

Bit Bit
Function

Number Mnemonic

Endpoint 1 (x = 1)t

15:10 - Reserved.

Write zeros to these bits.

9:0 BC9:0 Transmit Byte Count.
Ten-bit, ring buffer byte count register stores transmit byte count (TXCNT)
of 0 to 1023 bytes for endpoint 1 only.

Endpoints 0, 2, 3. (x = 0, 2, 3)t

7:0 - Reserved.

Write zeros to these bits.

4:0 BC4:0 Transmit Byte Count.
Five-bit, ring buffer byte count register stores transmit byte count (TXCNT)
of Oto 16 bytes for endpoints 0, 2, and 3.

t x= endpoint index. See the EPINDEX register.

I

Figure 7-11. TXCNTH/TXCNTL Transmit FIFO Byte Count Registers

NOTE
To send a status stage after a control write or no data control command or a
null packet, write 0 to TXCNT.

7-19

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

TX CON Address:
Reset State:

7

S:F4H
X= 1t OOOX0100B

x = 0, 2, 3t OXXX 01 OOB

0

~T_x_c_L_R~~F_F_s_z_.1~~F_F_s_z_.o~~~~~' ~!_T_x_1_s_o~~-A-~_M~~-A_DV_R_M~_,___RE_V_R_P__,

Bit Bit
Function Number Mnemonic

7 TXCLR Transmit Clear:

Setting this bit flushes the transmit FIFO, sets the EMPTY bit in TXFLG, and
clears all other bits in TXFLG. After the flush, hardware clears this bit.
Setting this bit does not affect the ATM, TXISO, and FFSZ bits, or the
TXSEQ bit in the TXSTAT register.

6:5 FFSZ[1:0] FIFO Size:

These two bits are used for FIFO size configuration by function endpoint 1
only (EPINDEX = 01). The endpoint 1 FIFO size configurations (in bytes)
are:

FFSZ[1:0] Transmit Size Receive Size

00 256 256
01 512 512
10 1024 0
11 0 1024

These bits are not reset when the TXCLR bit is set in the TXCON register.

NOTE: The receive FIFO size is also set by the TXCON FFSZ bits.
Therefore, there are no corresponding FFSZ bits in RXCON.

4 - Reserved:

Values read from this bit are indeterminate. Write zero to this bit.

3 TXISO Transmit Isochronous Data:

Software sets this bit to indicate that the transmit FIFO contains isochronous
data. The FIU uses this bit to set up the handshake protocol at the end of a
transmission. This bit is not reset when TXCLR is set and must be cleared
by software.

x = endpoint index. See EPINDEX.

tt The read marker and read pointer should only be controlled manually for testing (when the ATM bit is
clear). At all other times the ATM bit should be set and the ADVRM and REV RP bits should be left alone.

7-20 ____ L

TXCON (Continued) Address:
Reset State:

7

UNIVERSAL SERIAL BUS

S:F4H
x = 1 t ooox 01008

x = 0, 2, 3t OXXX 01008

0

~T_X_C_LR_~F_F_sz_._1 ~-F_F_s_z._o~--~11 TXISO ATM ADV RM REV RP

Bit Bit
Function Number Mnemonic

2 ATM Automatic Transmit Management:

Setting this bit (the default value) causes the read pointer and read marker
to be adjusted automatically as indicated:

ISO TX Status Read Pointer Read Marker

x ACK Unchanged Advanced*
0 NAK Reversed** Unchanged
1 NAK Unchanged Advanced*

* to origin of next data set ** to origin of the data set last read

When this bit is set, setting REVRP or ADVRM has no effect. This is a sticky
bit that is not reset when TXCLR is set, but can be set and cleared by
software. Hardware neither clears nor sets this bit.

Note: This bit should always be set, except as a testability feature.

1 ADVRM Advance Read Marker Control (non-ATM mode only) tt:
Setting this bit advances the read marker to point to the origin of the next
data packet (the position of the read pointer) to prepare for the next packet
transmission. Hardware clears this bit after the read marker is advanced.
Setting this bit is effective only when the REVRP, ATM, and TXCLR bits are
all clear.

0 REVRP Reverse Read Pointer Control (non-ATM mode only) tt:
In the case of bad transmission, the same data stack may need to be
available for retransmit. Setting this bit reverses the read pointer to point to
the origin of the last data set (the position of the read marker) so that the FIU
can reread the last set for retransmission. Hardware clears this bit after the
read pointer is reversed. Setting this bit is effective only when the ADVRM,
ATM, and TXCLR bits are all clear.

X= endpoint index. See EPINDEX.

tt The read marker and read pointer should only be controlled manually for testing (when the ATM bit is
clear). At all other times the ATM bit should be set and the ADVRM and REVRP bits should be left alone.

Figure 7-12. TXCON: Transmit FIFO Control Register

I 7-21

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

TXFLG Address: S:F5H
Reset State: OOXX 10008

7 0

~T_X_Fl_F_1~_T_X_F_IF_O~~~~~~~~' I TXEMP TXFULL TXU RF TXOVF

Bit
Number

7:6

5:4

3

Bit
Mnemonic

TXFIF[1:0]

TXEMP

Function

FIFO Index Flags (read-only):

These flags indicate which data sets are present in the transmit FIFO. The
FIF bits are set in sequence after each write to TXCNT to reflect the addition
of a data set. Likewise, TXFIF1 and TXFIFO are cleared in sequence after
each advance of the read marker to indicate that the set is effectively
discarded. The bit is cleared whether the read marker is advanced by
software (setting ADVRM) or automatically by hardware (ATM = 1). The
next-state table for the TXFIF bits is shown below:

TXFIF[1 :O] Operation Flag Next TXFIF[1 :O] Next Flag

00 Wr TXCNT X 01
01 Wr TXCNT X 11
10 WrTXCNT X 11
11 Wr TXCNT X 11

00
01
11
10

Adv RM
Adv RM
Adv RM
Adv RM

x
x
x
x

00
00
10/01
00

Unchanged
Unchanged
Unchanged
TXOVF = 1

Unchanged
Unchanged
Unchanged
Unchanged

XX Rev RP X Unchanged Unchanged

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. TXFIF is "incremented" by firmware and
"decremented" by the USB.Therefore, writes to TXCNT "increment" TXFIF
immediately. However, a successful USB transaction any time within a
frame "decrements" TXFIF only at SOF.

You must check the TXFIF flags before and after writes to the transmit FIFO
and TXCNT for traceability.

NOTE: To simplify firmware development, configure control endpoints in
single-packet mode.

Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

Transmit FIFO Empty Flag (read-only):

Hardware sets this bit when the write pointer has not rolled over and is at the
same location as the read pointer. Hardware clears this bit when the
pointers are at different locations.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status.

t When set, all transmissions are NAKed.

7-22 _L __

UNIVERSAL SERIAL BUS

TXFLG (Continued) Address: S:F5H
Reset State: OOXX 1000B

7 0

.__T_X_F_1_F1~~-T_x_F_1F_o~~~~~~~~~' j TXEMP TX FULL TXU RF TXOVF I

Bit Bit
Function

Number Mnemonic

2 TXFULL Transmit FIFO Full Flag (read-only):

Hardware sets this bit when the write pointer has rolled over and equals the
read marker. Hardware clears this bit when the full condition no longer
exists.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status. Check this bit to avoid causing a TXOVF condition.

1 TXU RF Transmit FIFO Underrun Flag:

Hardware sets this flag when an additional byte is read from.an empty
transmit FIFO or TXCNT [This is caused when the value written to TXCNT is
greater than the number of bytes written to TXDAT.]. This is a sticky bit that
must be cleared through software. When this flag is set, the FIFO is in an
unknown state, thus it is recommended that you reset the Fl FO in your error
management routine using the TXCLR bit in TXCON.

When the transmit FIFO underruns, the read pointer will not advance - it
remains locked in the empty position.t

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
USB, TXURF is updated at the next SOF regardless of where the underrun
occurs in the frame.

0 TXOVF Transmit FIFO Overrun Flag:

This bit is set when an additional byte is written to a full FIFO or full TXCNT
with TXFIF1 :O = 11. This is a sticky bit that must be cleared through
software. When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in your error management routine
using the TXCLR bit in TXCON.

When the receive FIFO overruns, the write pointer will not advance - it
remains locked in the full position. Check this bit after loading the FIFO prior
to writing the byte count register. t

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by
firmware, TXOVF is updated immediately. Check the TXOVF flag after
writing to the transmit FIFO before writing to TXCNT.

t When set, all transmissions are NAKed.

Figure 7-13. TXFLG: Transmit FIFO Flag Register

I 7-23

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

7.3 RECEIVE FIFOs

The 8X930Ax has four USB function receive FIFOs - one for each endpoint. In this manual, the
term receive FIFO refers to the receive FIFO associated with the current endpoint as specified by
the EPINDEX register.

7.3.1 Receive FIFO Overview

The receive FIFOs are circulating data buffers with the following features:

• support for up to two separate data sets of variable sizest

• a byte count register that accesses the number of bytes in the data sets

• flags to signal a full FIFO and an empty FIFO

• capability to re-receive the last data set

Figure 7-14 illustrates a receive FIFO. A receive FIFO and its associated logic can manage up to
two data sets, data set 0 (dsO) and data set 1 (dsl). The ability to have two data sets in the FIFO
supports back-to-back receptions.

In many ways the receive FIFO is symmetrical to the transmit FIFO. The FIU writes to the FIFO
location specified by the write pointer, which increments by one automatically following a write.
The write marker points to the first byte of data written to a data set, and the read pointer points
to the next FIFO location to be read by the 8X930Ax. The read pointer increments by one auto­
matically following a read.

When a good reception is completed, the write marker can be advanced to the position of the write
pointer to set up for writing the next data set. When a bad reception is completed, the write pointer
can be reversed to the position of the write marker to enable the FIU to rewrite the last data set
after receiving the data again. The write marker advance and write pointer reversal can be accom­
plished two ways: explicitly by software or automatically by hardware, as specified by bits in the
receive FIFO control register.

It is not practical for the 8X930Ax to begin scooping the receive FIFO before all bytes are re­
ceived and successfully acknowledged because the reception may be bad. Once it begins scoop­
ing the FIFO, the 8X930Ax can use the FIFO empty flag to signal an end to reading data.

The FIU can monitor the FIFO full flag (RXFULL bit in RXFLG) to avoid overwriting data in
the receive FIFO. The 8X930Ax can monitor the FIFO empty flag (RXEMP bit in RXFLG) to
avoid reading a byte when the FIFO is empty.

t When operating in dual packet mode, the maximum packet size should be at most half the
FIFO size to ensure that both packets will simultaneously fit in the FIFO (see the endpoint
descriptor in the Universal Serial Bus Spec(fication).

7·24 J __ _

UNIVERSAL SERIAL BUS

<To CPU Read Pointer

8X930 CPU
Reads FIFO

Data Set 1

Data Set O

FIU Writes to FIFO

Write Pointer

Write Marker

Byte Count
Registers

RXCNTH

RXCNTL

From USB Interface

A4259-02

Figure 7-14. Receive FIFO

7.3.2 Receive FIFO Registers

There are five registers directly involved in the operation of the receive FIFOs:

• RXDAT, the receive FIFO data register

• RXCNTH and RXCNTL, the receive FIFO byte count registers referred to jointly as
RXCNT

• RXCON, the receive FIFO control register

• RXFLG, the receive FIFO flag register

These registers are endpoint indexed, i.e., they are used as set to control the operation of the re­
ceive FIFO associated with the current endpoint specified by the EPINDEX register. Figures 7-15
through 7-13 beginning on page 7-27 describe the receive FIFO registers and provide bit defini­
tions.

7.3.2.1 Receive Data Register (RXDAT)

Bytes read from the receive FIFO via the receive FIFO data register (RXDAT).

7.3.2.2 Receive Byte Count Registers (RXCNTURXCNTH)

The format of the receive byte count register depends on the endpoint. For endpoint 1, registers
RXCNTH and RXCNTL form a ten-bit ring buffer which accommodates packet sizes of 0 to
1023 bytes. For endpoints 0, 2, and 3, RXCNTL is used alone as five-bit ring buffer to accommo­
date packet sizes of 0 to 16 bytes. These formats are shown in Table 7-16 on page 7-28. The term
RXCNT refers to either of these arrangements.

I 7-25

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

The receive FIFO byte count register (RXCNT) stores the number of bytes in either of the two
data sets, data set 0 (dsO) and data set 1 (dsl). The FIFO logic for maintaining the data sets as­
sumes that data is written to the FIFO in the following sequence:

1. The USB interface first writes the received data packet into the receive FIFO.

2. The USB interface then writes the number of bytes that were written into the receive FIFO
to the byte count register RXCNT. RXCNTL must be written after the data packet has
been received into the receive FIFO to guarantee data integrity.

NOTE
For all endpoints except function endpoint 1, RXCNTH is not available and
RXCNTL only contains BC4:0. Bits 7:5 are reserved in this case and will
always be read as 'O'.

The CPU reads the byte count register to determine the number of bytes in the set.

The receive byte count register has a read/write index to allow it to access the byte count for either
of the two data sets. This is similar to the methodology used for the transmit byte count register
- see Figure 7-9 on page 7-16. After reset, the read/write index points to data set 0. Thereafter,
the following logic determines the position of the read/write index:

• After a read of RXCNT, the read/write index (RXFIF) is unchanged

• After a write of RXCNT, the read/write index (RXFIF) is toggled

The position of the read/write index can also be determined from the data set index bits, FIFI:O
(see "Receive FIFO Data Set Management" on page 7-26).

NOTE
RXCNT should only be read if FIFI :0 -:ft 00.

7.3.3 Receive FIFO Data Set Management

As in the transmit FIFO, the receive FIFO uses a pair of bits (FIFl:O in the RXFLG register) to
indicate which data sets are present in the receive FIFO (see Table 7-6).

Table 7-6. Status of the Receive FIFO Data Sets

Data Sets Written
FIF1:0

ds1 dsO

0 0 No No (Empty)

0 1 No Yes (1 set)

1 0 Yes No (1 set)

1 1 Yes Yes (2 sets)

Table 7-7 summarizes how the actions following a reception depend on the RXISO bit, the ARM
bit, and the handshake issued by the 8X930Ax.

7-26 . __ l_ -

I

UNIVERSAL SERIAL BUS

Table 7-7. Truth Table for Receive FIFO Management

RXISO ARM RX ERR RXACK
Action at End of Transfer Cycle

(RXCON.3) (RXCON.2) (RXSTAT.1) (RXSTAT.O)

x x 0 0 No operation.

x 0 0 1 Write marker, write pointer, and RXFIF bits
remain unchanged. Managed by software.

x 0 1 0 Write marker, write pointer, and RXFIF bits
remain unchanged. Managed by software.

0 1 0 1 Write marker advanced automatically. The
RXFIF bit for the corresponding data set is
set.

0 1 1 0 Write pointer reversed automatically.The
RXFIF bit for the corresponding data set is
cleared.

1 1 x x Write marker advanced automatically. If data
was written to the receive FIFO, the RXFIF bit
for the corresponding data set is set.

NOTE
For normal operation, set the ARM bit in RXCON: hardware will
automatically control the write pointer and write marker and track the RXFIF
bits.

RX DAT Address: S:E3H
Reset: XXXX XXXXB

7 0

RXDAT.7:0

Bit Bit
Function

Number Mnemonic

7:0 RXDAT.7:0 To write data to the receive FIFO, the FIU writes to this register. To read
data from the receive FIFO, the 8X930Ax reads from this register. The
write pointer and read pointer are incremented automatically after a write
and read, respectively.

Figure 7-15. RXDAT: Receive FIFO Data Register

7-27

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

RXCNTH, Address: S:E7H
RXCNTL S:E6H

Reset States:
Endpoint 1 RXCNTH XXXX XXOOB

RXCNTL OOOOOOOOB

Endpoints 0, 2, 3 RXCNTL XXXO OOOOB

15 (RXCNT) Endpoint 1 8

I I 11
BC9 BC8

7 (RXCNTL) 0

I BC7 I BC6 BCS BC4
11

BC3 BC2 BC1 BCO

7 (RXCNTL) Endpoints 0, 2, 3 0

I I BC4
11

BC3 BC2 BC1 BCO

Bit Bit
Function Number Mnemonic

Endpoint 1 (x = 1)t

15:10 - Reserved. Write zeros to these bits.

9:0 BC9:0 Receive Byte Count.
Ten-bit, ring buffer byte count register stores receive byte count (RXCNT)
of 0 to 1023 bytes for endpoint 1 only.

Endpoints o, 2, 3. (x = o, 2, 3)t

7:0 - Reserved. Write zeros to these bits.

4:0 BC4:0 Receive Byte Count.
Five-bit, ring buffer byte count register stores receive byte count (RXCNT)
of 0 to 16 bytes for endpoints 0, 2, and 3.

t x= endpoint index. See the EPINDEX register.

7-28

Figure 7-16. RXCNTH/RXCNTL: Receive FIFO Byte Count Registers

CAUTION
Do not read RXCNT to determine if data is present in the receive FIFO.
Always read the FIF bits in the RXFLG register. RXCNT contains random
data during a receive operation. A read attempt to RXCNT during the time the
receive FIFO is empty causes the RXURF flag in RXFLG to be set. Always
read the FIF bits to determine if data is present in the receive FIFO. The
RXFLG FIF bits are updated after RXCNT is written (at the end of the receive
operation).

- -_L

UNIVERSAL SERIAL BUS

RX CON Address: S:E4H
Reset State: OXOO 01008

7 0

RXCLR RXWS . I RXFFRC I IL--R_x_1s_o____,_A_R_M _ _,__A_D_v_w_M__.__R_E_VW_P__,

Bit Bit Function Number Mnemonic

7 RXCLR Clear the Receive FIFO:

Set this bit to flush the entire receive FIFO. All flags in RXFLG revert to their
reset states (RXEMP is set; all other flags clear). The ARM, RXISO and
RXWS bits in this register and the RXSEQ bit in the RXSTAT register are not
affected by this operation. Hardware clears this bit when the flush operation
is completed.

6 Reserved:

Values read from this bit are indeterminate. Write zero to this bit.

5 RXWS Receive FIFO Wait-state Read:

At the 8X930Ax core frequency of 12 MHz, not all instructions that access
the receive FIFO are guaranteed to work due to critical paths inherent in the
BX930Ax architecture. While all MOV instructions from the receive Fl FO are
guaranteed to work at 12 MHz, arithmetic instructions (e.g., ADD, SUB, etc.)
where the receive FIFO is the source and the register file the destination
may not work at this speed. For applications using arithmetic instructions,
set the RXWS bit to read the receive FIFO with one wait state - this will
eliminate the critical path. This bit is not reset when the RXCLR bit is set.

4 RXFFRC FIFO Read Complete:

Set this bit to release the receive FIFO when a data set read is complete.
Setting this bit "clears" the RXFIF "bit" (in the RXFLG register)
corresponding to the data set that was just read. Hardware clears this bit
after the RXFIF bit is cleared. All data from this data set must have been
read. Note that FIFO Read Complete only works if STOVW and EDOVW are
cleared.

3 RXISO Isochronous Data Type:

Set this bit to indicate that the receive FIFO is programmed to receive
isochronous data and to set up the USB Interface to handle an isochronous
data transfer. This bit is not reset when the RXCLR bit is set; it must be
cleared by software.

t The write marker and write pointer should only be controlled manually for testing (when the ARM bit is
clear). At all other times the ARM bit should be set and the ADVWM afld REVWP bits should be left alone.

I 7-29

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

RX CON Address: S:E4H
Reset State: OXOO 01 008

7 0

.__R_x_cL_R___._ ___ __.___R_xw_s__,__R_x_FF_R_c__.l I Rx1so I ARM ADVWM REVWP

Bit
Number

2

0

Bit
Mnemonic

ARM

ADVWM

REVWP

Function

Auto Receive Management:

When set, the write pointer and write marker are adjusted automatically
based on the following conditions:

RXISO RX Status Write Pointer

X ACK Unchanged

0

1

NAK

NAK

Reversed

Unchanged

Write Marker

Advanced

Unchanged

Advanced.

When this bit is set, setting REVWP or ADVWM has no effect. Hardware
neither clears nor sets this bit. This is a sticky bit that is not reset when
RXCLR is set.

Note: This bit should always be set, except for testing.

Advance Write Marker: t
(For non-ARM mode only) Set this bit to advance the write marker to the
origin of the next data set. Advancing the write marker is used for back-to­
back receptions. Hardware clears this bit after the write marker is advanced.
Setting this bit is effective only when the REVWP, ARM and RXCLR bits are
clear.

Reverse Write Pointer: t
(For non-ARM mode only) Set this bit to return the write pointer to the origin
of the last data set received, as identified by the write marker. The FIU can
then re-receive the last data packet and write to the receive FIFO starting
from the same origin when the host re-sends the same data packet.
Hardware clears this bit after the write pointer is reversed. Setting this bit is
effective only when the ADVWM, ARM, and RXCLR bits are all clear.

REVWP is used when a data packet is bad. When the function interface
receives the data packet again, the write starts at the orig.in of the previous
·(bad) data set.

t The write marker and write pointer should only be controlled manually for testing (when the ARM bit is
clear). At all other times the ARM bit should be set and the ADVWM and REVWP bits should be left alone.

Figure 7-17. RXCON: Receive FIFO Control Register .

7-30 _____ L

UNIVERSAL SERIAL BUS

RXFLG Address: S:ESH
Reset State: OOXX 10008

7 0

~R_X_F_1_F_1~~R_x_F_1F_o~~~~~~~~~' I RXEMP RX FULL RXURF RXOVF

Bit
Number

7:6

5:4

3

Bit
Mnemonic

RXFIF[1:0]

RXEMP

Function

Receive FIFO Index Flags: (read-only)

These read-only flags indicate which data packets are present in the receive
FIFO (see Table 7-6 on page 7-26). The RXFIF bits are updated after each
write to RXCNT to reflect the addition of a data packet. Likewise, the RXFIF
bits are cleared in sequence after each setting of the RXFFRC bit. The next­
state table for RXFIF bits is shown below for operation in dual packet mode.

RXFIF[1 :OJ Operation Flag Next RXFIF[1 :OJ Next Flag

00 Adv WM X 01 Unchanged
01 Adv WM X 01 Unchanged
10 Adv WM X 11 Unchanged

00 Set RXFFRC x 00 Unchanged
01 Set RXFFRC x 00 Unchanged
11 Set RXFFRC x 10/01 Unchanged
10 Set RXFFRC x 00 Unchanged

xx Rev WP x Unchanged Unchanged

When the receive FIFO is programmed to operate in single packet mode
(RXSPM set in EPCON), valid RXFIF states are 00 and 01 only.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. RXFIF is "incremented" by the USB and
"decremented" by firmware.Therefore, setting RXFFRC "decrements"
RXFIF immediately. However, a successful USB transaction within a frame
"increments" RXFI F only at SOF. For traceability, you must check the RXFIF
flags before and after reads from the receive FIFO and the setting of
RXFFRC in RXCON.

NOTE: To simplify firmware development, it is recommended that you utilize
control endpoints in single-packet mode only.

Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

Receive FIFO Empty Flag (read-only):

Hardware sets this flag when the write pointer is at the same location as the
read pointer AND the write pointer equals the \'.\'rite marker and neither
pointer has rolled over. Hardware clears the bit when the empty condition no
longer exists. This is not a sticky bit and always tracks the current status of
the receive FIFO, regardless of ISO or non-ISO mode.

t When set, all transmissions are NAKed.

I 7-31

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

RXFLG (Continued) Address: S:E5H
Reset State: OOXX 10008

7 0

,__R_x_F1_F_1_.__R_x_F_1F_o_._~~~-'--~~-'I I RXEMP RXFULL RXURF RXOVF

Bit Bit Function Number Mnemonic

2 RXFULL Receive FIFO Full Flag (read-only):

Hardware sets this flag when the write pointer has rolled over and equals
the read pointer. Hardware clears the bit when the full condition no longer
exists. This Is not a sticky bit and always tracks the current status of the
receive FIFO, regardless of ISO or non-ISO mode.

1 RXURF Receive FIFO Underrun Flag:

Hardware sets this bit when an additional byte is read from an empty receive
FIFO or RXCNT. Hardware does not clear this bit, so you must clear it in
firmware. When the receive FIFO underruns, the read pointer will not
advance - it remains locked in the empty position.t

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
firmware, RXURF is updated immediately. You must check the RXURF flag
after reads from the receive FIFO before setting the RXFFRC bit in RXCON.

NOTE: When this bit is set, the FIFO is in an unknown state. It is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register.

0 RXOVF Receive FIFO Overrun Flag.

This bit is setwhen the FIU writes an additional byte to a full receive FIFO or
writes a byte count to RXCNT with FIF1 :0 = 11. This is a sticky bit that must
be cleared through software, although it can be cleared by hardware if a
SETUP packet is received after an RXOVF error had already occurred.t

When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in th.e RXCON register. When the receive FIFO
overruns, the write pointer will not advance - it remains locked in the full
position.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by the
USB, RXOVF is updated only at the next SOF regardless of where the
overrun occurred during the current frame.t

t When set, all transmissions are NAKed.

Figure 7-18. RXFLG: Receive FIFO Flag Register

7-32

UNIVERSAL SERIAL BUS

7.4 SIE DETAILS

The USB employs differential data signaling; refer to the signaling levels table in the "Electrical"
chapter of Universal Serial Bus Specification. The specification defines: differential' l ', differen­
tial 'O', idle ('J' state), non-idle ('K' state), start of packet, end of packet, disconnect, connect,
reset, and resume. The USB employs NRZI data encoding when transmitting packets. Refer to
"Data Encoding/Decoding" in the Universal Serial Bus Specification for a description of NRZI
data encoding and decoding. To ensure adequate signal transitions, bit stuffing is employed by
the SIE when transmitting data. The SIE also does bit unstuffing when receiving data. Consult
the "Flow Diagram for Bit Stuffing" figure in the "Bit Stuffing" section of the "Electrical" chap­
ter for more.information on bit stuffing.

Bits are sent out onto the bus, least significant bit (LSb) first, followed by the next LSb, and so
on. Bytes are sent out onto the bus least significant byte (LSB) first, followed by the next LSB
and so on. The SIE ensures that the LSb is first, but the 8X930Ax programmer must order the
bytes.

The SIE decodes and takes care of all packet types and packet fields mentioned in "Protocol Lay­
er" chapter of Universal Serial Bus Specification. The FIU communicates data information and
handshaking instructions to the SIE. Programmers should consult the "Interconnect Description,"
"USB Devices," and "USB Host" chapters of Universal Serial Bus Specification for detailed in­
formation on how the host and function communicate.

7.5 SETUP TOKEN RECEIVE FIFO HANDLING

SETUP tokens received by a control endpoint must be ACKed even though the receive FIFO is
not empty. When a SETUP token is detected by the FIU, the FIU sets the STOVW bit of RXSTAT
and then flushes the receive FIFO by hardware, setting the RXCLR bit of RX CON. The STOVW
indicates a SETUP initiated over-write (flush) is in progress. After the SETUP transaction is com­
pleted (i.e., ACK handshake), the FIU clears STOVW and sets EDOVW, indicating the receive
FIFO over-write is complete and FIFO contents are stable. Reception of any SETUP packet, re­
gardless of whether the receive FIFO is full or empty always sequences through the STOVW,
EDOVW sequence described above.

Note that if the receive FIFO flush occurs in the middle of an 8X930Ax CPU data read cycle
(from a previous USB transaction), the receive FIFO may underrun, thus setting the RXURF bit
ofRXFLG and positioning the read pointer in an unknown state. To prevent this, STOVW resets
and locks the read pointer. Firmware can monitor the STOVW and EDOVW flags to determine
whether the underrun was due to a SETUP token received. If so, firmware needs to clear the
EDOVW bit. Clearing the EDOVW bit will also clear the RXURF bit and revert the read pointer
to the reset position. At this point, firmware is ready to read the SETUP data packet.

CAUTION
For SETUP packets, firmware must clear EDOVW prior to reading data from
the FIFO. If this is not done, data read from the FIFO will be invalid.

After processing a data packet, firmware should always check the STOVW and EDOVW flags
before setting the RXFFRC bit. When a SETUP packet either has been or is being received, set­
ting of RXFFRC does not occur if either STOVW or EDOVW is set. It is up to the user to clear

I
7-33

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

EDOVW which disables the RXFFRC blocking mechanism. Also note that the RXSETUP= 1
condition will cause IN tokens to automatically be NAKed until RXSETUP is cleared. This is true
even if the transmit and/orreceive endpoint is stalled (TXSTL=l, RXSTL=l), and is done to al­
low the clearing of a stall condition on a control endpoint.

NOTE
To simplify firmware development, it is recommended that you utilize control
endpoints in single-packet mode only.

7.6 ISO DATA MANAGEMENT

ISO data management must always be performed in dual-packet mode. Interrupts are not gener­
ated when an ISO transmit or receive cycle is completed; ISO protocols should always be syn­
chronized to the SOF interrupt. When transmitting, data written into the transmit FIFO at frame
n is pre-buffered to be transmitted in frame n+ 1. This guarantees that data is always available to
the host when requested anytime in a frame. When receiving, data written into the receive FIFO
at frame n is pre-buffered to be read-out in frame n+ 1. This guarantees. that data from the host is
always available to the function every frame.

Isochronous data transfer is always guaranteed if the OUT or IN tokens from the host are not cor­
rupted. When IN or OUT tokens to a function are corrupted, the host does not re-send the token.
The function will need to recognize this error condition and reconfigure the endpoints according­
ly.

7.6.1 Transmit FIFO ISO Data Management

When an IN token is corrupted, the data to be transmitted from the transmit FIFO for an isochro­
nous endpoint in the current frame will be flushed. Due to latency concerns, this is handled by
hardware. This error condition can be detected by checking TXFIF = "11" at SOE When this oc­
curs, the first data packet will be flushed and the transmit FIFO read-pointers and read-markers
will be advanced to the start "address" of the second data packet. The TXFIF will also be updated.
Therefore, the second packet will be ready to be transmitted for the next frame. The first data
packet is lost.

For firmware traceability of FIFO status flags, some flags are updated immediately while others
are updated only at SOE TXOVF, TXURF and TXFIF are handled using the following rule: firm­
ware events cause status change immediately while USB events only cause status change at SOE
For example:

• TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.

• TXURF: Since underrun can only be caused by SIE, TXURF is updated at SOF.

• TXFIF: TXFIF is "incremented" by firmware and "decremented" by hardware. Therefore,
writes to TXCNT will "increment" TXFIF immediately. However, a successful USB
transaction anytime in a frame will only "decrement" TXFIF at SOE

7-34 J

UNIVERSAL SERIAL BUS

The following bits do not follow the above rule:

• TXEMPrfXFULL: These always reflect the current status of the FIFO.

• TXFLUSH: Firmware can detect a flush by monitoring this bit.

7.6.2 Receive FIFO ISO Data Management

When an OUT token is corrupted, the data to be received by the receive FIFO for an isochronous
endpoint in the current frame will be lost. There is no hardware implementation to track this error
condition and should be managed by firmware. This condition can be detected by checking
RXFIF = "00" at SOE "Reconstruction" of the lost data is application specific and should be
managed by firmware.

For firmware traceability of FIFO status flags, some flags are updated immediately while others
are updated only at SOE RXOVF, RXURF and RXFIF are handled using the following rule: firm­
ware events cause status change immediately while USB events only cause status change at SOE

I

• RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.

• RXOVF: Since overrun can only be caused by SIE, RXOVF is updated at SOE

• RXFIF: RXFIF is "incremented" by hardware and "decremented" by firmware. Therefore,
setting RXFFRC will "decrement" RXFIF immediately. However, a successful USB
transaction anytime in a frame will only "increment" RXFIF at SOF.

• RXEMP/RXFULL: The rule does not apply to the RXEMP and RXFULL flags, which
always reflect the current status of the FIFO.

7-35

8
• USB Programming

Models

I

CHAPTER 8
USB PROGRAMMING MODELS

This chapter describes the programming models of the USB function interface. It provides flow
charts of suggested firmware routines for using the transmit and receive FIFOs to perform data
transfers between the host PC and the embedded function. It also describes briefly how the firm­
ware interacts with the USB module hardware during these operations. For a description of the
USB function interface as well as its FIFOs and special functions registers (SFRs), refer to Chap­
ter 7, "Universal Serial Bus." Data operations refer to data transfers over the USB, whereas event
operations are hardware operations such as attach and detach. For details on data flow in USB
transactions refer to Appendix D.

8.1 OVERVIEW OF PROGRAMMING MODELS

The USB function interface employs four types of routines: receive, transmit, setup, and receive
SOP. Program flow is depicted in Figure 8-1 along with the type of token associated with each
routine. Following device reset, the USB function enters the unenumerated state and after enu­
meration by the host, the idle state. From the idle state, it can enter any of the four routines.

Unenumerated

.---------...i Idle/Application Code

Receive Setup

A4260-02

Figure 8-1. Program Flow

I 8-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

8.1.1 Unenumerated State

Following device reset, the USB function enters the unenumerated state. Initially the function ad­
dress register FADDR contains the default value OOH. The host PC performs bus enumeration in
which it identifies and addresses devices attached to the bus. During enumeration, a unique ad­
dress assigned by the host is written to FADDR. The bus enumeration process ha:; four steps:

1. Get descriptor. The host requests and reads the device descriptor to determine such
information as device class, USB specification compliance level, maximum packet size
for endpoint 0, vendor id, product id, etc. For detailed information on device descriptors,
see the "Device Framework" chapter in Universal Serial Bus Specification.

2. Set address. The host sends the 8X930A.x's function address in a data packet using
endpoint 0. Device firmware interprets the data and instructs the CPU to write the function
address to FADDR.

3. Get configuration. The host requests and reads the device configuration descriptor to
determine such information as the number of interfaces and endpoints; endpoint transfer
type, packet size, and direction; power source; maximum power; etc. For detailed
information on configuration descriptors, see the "Device Framework" chapter in
Universal Serial Bus Specification. When the host requests the configuration descriptor,
all related interface and endpoint descriptors are returned.

4. Set configuration. The host assigns a configuration value to the device to establish the
current configuration. Devices can have multiple configurations.

8.1.2 Id le State

Following bus enumeration, the USB function enters the idle state. In this state, the 8X930Ax ex­
ecutes application code associated with the embedded function. Upon receipt of a token with the
assigned address, the module enters the designated routine.

8.1.3 Transmit and Receive Routines

When the 8X930Ax is sending and receiving packets in the transmit and receive modes, its oper­
ation depends on the type of data that is transferred-isochronous or non-isochronous-and the
adjustment of the FIFO markers and pointers-automatic or manual. These differences affect
both the 8X930Ax firmware and the operation of the 8X930Ax hardware. For isochronous data,
a failed transfer is not retried (lossy data). For non-isochronous data, a failed transfer can be re­
peated. Data that can be repeated is considered lossless data. Automatic adjustment of the FIFO
markers and pointers is accomplished by the function interface hardware. Manual adjustment is
accomplished by the 8X930Ax firmware.

8.1.4 USB Interrupts

For an explanation of the USB global suspend/resume, function, and SOF interrupts, see Chapter
6, "Interrupt System."

8-2

I

use PROGRAMMING MODELS

8.2 TRANSMIT OPERATIONS

8.2.1 Overview

A transmit operation occurs in three major steps:

1. Pre-transmit data preparation by firmware

2. Data packet transmission by function interface hardware

3. Post-transmit management by firmware

These steps are depicted in a high-level view of transmit operations (Figure 8-2). The pre-transmit
and post-transmit operations are executed by the two firmware routines shown on the left side of
the figure. Function interface hardware (right side of the figure) transmits the data packet over the
USB line. Details of these operations are described in "Pre-transmit Operations" on page 8-5 and
"Post-transmit Operations" on page 8-6.

Transmit operations for non-isochronous data begin with an interrupt request from the embedded
function (e.g., a keyboard entry). The pre-transmit routine (ISR) for the function writes the data
from the function to the transmit FIFO where it is held until the next IN token. Upon receipt of
the next valid IN token, the function interface shifts the data out of the FIFO and transmits it over
the USB. If the data packet is not ready for transmission, 8X930A.x hardware responds to the IN
token with a NAK. The post-transmit routine checks the transmission status and performs data
management tasks.

Completion of data transmission is indicated by a handshake returned by the host. This is then
used to generate a transmit done interrupt to signal the end of data transmission to the CPU. The
interrupt can also be used for activity tracking and fail-safe management. Fail-safe management
permits recovery from lockups that can only be cleared by software.

For ISO data transmission, the cycle is similar. The significant differences are: the cycle is initi­
ated by a start of frame (SOF) interrupt, there is no handshake associated with ISO transfer, and
a transmit done interrupt is not generated. For ISO data transfers, the transaction status is updated
at the end of the USB frame. The 8X930A.x supports one ISO packet per frame per endpoint.

Two bits in the transmit FIFO control register (TXCON, Figure 7-12 on page 7-21) have a major
influence on transmit operation:

I

• The TXISO bit (TXCON.3) determines whether the transmission is for isochronous data
(TXISO = 1) or non-isochronous data (TXISO = 0). For non-isochronous data only, the
function interface receives a handshake from the host, toggles or does not toggle the
sequence bit, and generates a transmission done interrupt (Figure 8-2). Also, for non­
isochronous data, the post-transmit routine is an ISR; for isochronous data the post-transmit
routine is an ISR initiated by an SOF token.

• The ATM bit (TXCON.2) determines whether the FIFO read marker and read pointer are
managed automatically by the FIFO hardware (ATM = 1) or manually by the second
firmware routine (ATM = 0). Use of the ATM mode is recommended. The ADVRM and
REVRP bits, which control the read marker and read pointer when ATM = 0, are used
primarily for test purposes. See bit definitions in TXCON (Figure 7-12).

8-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

8-4

Pre-transmit
Routine

Post­
Transmit
Routine

Firmware

Interrupt
(keyboard, joystick, modem)

ISR

•Write data to transmit FIFO
• Write TXCNT

RETI

TXISO = 0: Transmit done interrupt
TXISO = 1: SOF interrupt

ISR

• Check status
•If ATM= 0:

- Adjust FIFO read
marker and read pointer

RETI

Hardware
(SIE, FIU, FIFOs)

IN Token

• Send data over USB

•lfATM=1:
- Adjust FIFO read marker and

read pointer

• If TXISO = 0:

- Receive host handshake
- Manage TXSEQ bit

• Generate transmit done interrupt
or SOF interrupt ·

A4262-02

Figure 8-2. High-level View of Transmit Operations

I

USB PROGRAMMING MODELS

8.2.2 Pre-transmit Operations

Transmitted data originates in the embedded function, which might be a keyboard, mouse, joy­
stick, scanner, etc. In event-control applications, the end function signals the availability of data
with an interrupt request for the pre-transmit interrupt service routine (ISR). The ISR should pre­
pare the data for transmission and initiate the transmission process. The flow chart in Figure 8-3
illustrates a typical pre-transmit ISR.

For the case of isochronous data, the interrupt is triggered by the USB function in response to a
start of frame (SOF) packet.

I

Start: Non-ISO

No

TXFIF1 :O t- 11 in Dual-packet Mode
TXFIF1 :0 = 00 in Single-packet Mode

Transfer Packet to
Transmit FIFO through

TXDAT

Write Packet Size to
TXCNT

RETI

Yes

TXOVF = 1 (overflow)

Error
Recovery

Figure 8-3. Pre-transmit ISR (Non-Isochronous)

A5071-01

8-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

8.2.3 Post-transmit Operations

Transmission status is updated at the end of data transmission based on the handshake received
from the host (non-isochronous data) or based on the transmission process itself (isochronous
data). For a non-isochronous transfer, the function interface generates a transmit done interrupt.
The purpose of the post-transmit service routines is to manage the transmitter's state and to ensure
data integrity for the next transmission. For isochronous data, the post-transmit routine should be
embedded within the transfer request routine because both are triggered by an SOF. The flow of
operations of typical post-transmit ISRs is illustrated in Figure 8-4 (non-isochronous data) and
Figure 8-5 (isochronous data).

8-6

(TXACK= 1)

Advance Transmit FIFO to
Next Packet Transmit

Start: Transmit Done ISR

Identify Interrupt and Endpoint
(check FTXDx bits in FIFLG register)

Clear Interrupt Flag
(FTXDxBit)

Read Transaction Status
(TXSTAT Register)

No Yes

Failed CRC,
Bit-stuffing, or

(TXERR= 1)

Timeout from Host No

RETI

Data Error recovery

Reverse Transmit FIFO to
Current Packet Retry

t Buffer Segmentation Management. Executed automatically by hardware, based on transaction
status, if ATM bit in TXCON is set.

A5072-01

Figure 8-4. Post-transmit ISR (Non-isochronous)

I

I

USB PROGRAMMING MODELS

Start: SOF ISR

(TXACK= 1) No Yes (TXERR = 1)

t (Failed CRC, Bit

Advance Transmit Stuffing, or Timeout

Fl FO to next packet from Host) No

Write Next Packet
to Transmit FIFO

Transmit FIFO
Error Recovery

t
Yes (TXOVF= 1) Advance Transmit

Fl FO to Next Packet

Write Next Packet
to Transmit FIFO

Write Packet Size
toTXCNT

Yes

(TXOVF = 1)

Error Recovery

Write Packet Size
toTXCNT

RETI

t Buffer Segmentation Management. Executed automatically by hardware at the end of a data transaction if ATM bit
in TXCON is set. For isochronous transactions, there is no retry of current packet regardless of transaction status.

A5073-01

Figure 8-5. Post-transmit ISR (Isochronous)

8-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

8.3 RECEIVE OPERATIONS

8.3.1 Overview

A receive operation is always initiated by the host, which sends an OUT token to the 8X930Ax.
The operation occurs in two major steps:

1. Data packet reception by the function interface (hardware)

2. Post-receive management by firmware

These steps are depicted in a high-level view of the receive operations in Figure 8-6. The post­
receive operations are executed by the firmware routine shown on the left side of the figure. For
details see "Post-receive Operations" on page 8-9. Function interface hardware (right side of fig­
ure) receives the data packet over the USB line.

Receive operations for non-isochronous data begin when the 8X930Ax receives a valid OUT to­
ken from the host. The received data is written to a data buffer FIFO. The 8X930Ax indicates
completion of data received by returning a handshake to the host.

At the end of the receive cycle, the 8X930Ax generates a receive done interrupt to notify the CPU
that a receive operation has occurred. Program execution branches to the interrupt service routine
and transfers the data packet from the receive FIFO to its destination. The interrupt can also be
used for fail-safe management and activity tracking.

For isochronous data, receive cycles are somewhat different. Data transactions are initiated by an
OUT token. At the end of the OUT transaction, the 8x930Ax does not return handshake to the
host and the receive done interrupt is not generated. Instead, the SOF interrupt is used for post
receive management. The data reception status is updated at the next SOE The 8X930Ax supports
one ISO packet per frame per endpoint.

Two bits in the receive FIFO control register (RXCON, Figure 7-17 on page 7-30) have a major
influence on receive operation:

• The ISO bit (RXCON.3) determines whether the reception is for isochronous data (ISO= 1)
or non-isochronous data (ISO = 0). For non-isochronous data only, the function interface
sends a handshake to the host, checks the sequence bit, and generates a receive-done
(FRXDx) interrupt. Also, for non-isochronous data, the post-receive routine is an ISR; for
isochronous data the post-receive routine can be a normal subroutine or ISR initiated by an
SOFtoken.

• The ARM bit (RXCON.2) determines whether the, FIFO write marker and write pointer are
managed automatically by the FIFO hardware (ARM= 1) or manually by the firmware
routine (ARM= 0). Use of the ARM mode is recommended. The ADVWM and REVWP
bits, which control the write marker and write pointer when ARM = 0, are used primarily
for test purposes. See bit definitions in RXCON (Figure 7-17).

8-8 I

Post­
Receive
Routine

Firmware

RXISO = O: Receive done interrupt
RXISO = 1: SOF interrupt

ISR

• Check status and read data

•If ARM= 0:
- Adjust FIFO write marker

and write pointer

RETI

use PROGRAMMING MODELS

Hardware
(SIE, FIU, FIFOs)

OUT Token

• Send data over USB

•If ARM= 1:
- Adjust FIFO write marker and

write pointer

•If ISO= 0:

- Send host handshake
- Adjust RXSEQ bit

•Generate receive done interrupt
or SOF interrupt

A4265·02

Figure 8-6. High-level View of Receive Operations

8.3.2 Post-receive Operations

Reception status is updated at the end of data reception based on the handshake received from the
host (non-isochronous data) or based on the transmission process itself (isochronous data). For a
non-isochronous transfer, the function interface generates a receive done interrupt (FRXDx). The
purpose of the post-receive service routine is to manage the receiver's state to ensure data integ­
rity and latency for the next reception. The post-receive routine also transfers the data in the re­
ceive FIFO to the end function. For isochronous data, the post-receive routine should be called
by the SOP ISR.

Flow diagrams for typical post-receive routines are presented in Figure 8-7 (non-isochronous da­
ta) and Figure 8-8 (isochronous data).

I 8-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

(RXACK=1)

Advance Receive FIFO
to next packet

Start: Receive Done ISR

Identify Function Interrupt and Endpoint
(Check FRXDx Bits in FIFLG Register)

No

Clear Interrupt Flag

Yes

(Failed CRC or Bit Stuffing)

Reverse Receive FIFO
to current packet retry

.(RXERR=1)

No

Yes (RXOVF=1)

Yes

Read Data Packet(s)

Yes (RXURF = 1)

Unlock Current Packet from
Receive FIFO (set RXFFRC

Bit in RXCON)

Receive FIFO
Error Recovery

RETI

Receive FIFO
Error Recovery

t Buffer Segmentation Management. Executed automatically by hardware at the end of a data transaction
if ARM bit in RXCON is set.

Figure 8-7. Post-receive ISR (Non-isochronous)

8-10

A5070-01

I

I

USB PROGRAMMING MODELS

(RXACK = 1) No

Advance Receive
FIFO to Next Packet

Read Data Packet

No

Yes
(RXURF= 1)

Receive FIFO
Error Recovery

Data Reconstruction
by Application for

Lost Data

Unlock FIFO
(set RXFFRC)

Start: SOF ISR

Yes

(Failed CRC
or Bit Stuffing)

Advance Receive FIFO
to Next Packet Receive

Unlock Current Packet
from Receive FIFO

(set RXFFRC bit in RXCON)

RETI

(RXERR = 1)

No

Receive FIFO
Error Recovery

Data Reconstruction
by Application for

Lost Data

t Buffer Segmentation Management. Executed automatically by hardware at the end of a data
transaction if ARM bit in TXCON is set. For isochronous transactions, there is no retry of current
packet regardless of transaction status.

A5074-01

Figure 8-8. Receive SOF ISR(lsochronous)

8-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

8.4 SETUP TOKEN

An endpoint must be configured as a control endpoint in order to respond to SETUP tokens. (This
will only be endpoint 0, since it must serve as a control endpoint.) Refer to the "Protocol Layer"
section of the Universal Serial Bus Specification for details.of SETUP token transactions and pro­
tocol.

A control data transfer is initiated by a valid SETUP token (i.e., the token PID received is good).
Receive data transfer operations for a control endpoint are very similar to data transfers on non­
control endpoints for non-setup tokens. However, the response of a control endpoint is different
when it receives a setup token.

USB protocol specifies that setup tokens must be received and ACKed. Following receipt of a
setup token, a control endpoint flushes the contents of the receive FIFO before writing it with re­
ceived setup data. This may create an error condition in the FIFO due to the asynchronous nature
of FIFO reads by the CPU and simultaneous writes by the function interface. Figure 8-9 illustrates
the operations of a typical post-receive routine for a control endpoint.

8-12 _L __ _

I

USB PROGRAMMING MODELS

Start: Receive Done ISR

...--.--~ Clear Interrupt Flag Identify Interrupt Endpoint
(check FRXDx bits in the FIFLG register)

(RXACK= 1) No Yes (RXERR = 1)

Setup Token Received
ClearEDOVW

Read Data Packet

Yes

No

(STOVW = 0 and
EDOVW= 1)

Clear Overwrite Bit
(EDOVW)

OUT Token
Received

(STOVW = 0 and
EDOVW=O)

Unlock Current Packet
from Receive FIFO

Yes RXURF= 1

(set RXFFRC bit in RXCON)

Error
Recovery

Clear Overwrite Bit
(EDOVW)

(STOVW = 0 and
No EDOVW=O)

Clear Firmware
Setup Flag

t Inhibited in hardware if STOVW or EDOVW are asserted.
RETI

Figure 8-9. Post-receive ISR (Control)

Normal
Error

Handling

A5075-01

8-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

8.5 START OF FRAME (SOF) TOKEN

Figure 8-10 illustrates the hardware operations perlormed by the function interlace for a start of
frame (SOF) token. The host issues an SOF token at a nominal rate of once every 1.0 ms. An SOF
token is valid if the PID is good. The SOF token is not endpoint-specific; it should be received
by every node on the bus.

8-14

Valid SOF Token

(SOFH.6) SetASOF Bit
'------..-----'

No

(SOFH.7) Set SOFACK.
(SOF token received

without error)

(SOFH, SOFL) Write SOF Registers

Generate SOF Pulse
by Asserting SOF# Pin

Done

Clear (SOFH.7)
SOFACK

Bit

Figure 8-10. Hardware Operations for SOF Token

A4267-02

_____ L __ _

9
Input/Output Ports

I

CHAPTER 9
INPUT/OUTPUT PORTS

The 8X930A.x has four 8-bit input/output (1/0) ports for general-purpose 1/0, external memory
operations, and specific alternate functions (see Table 9-1). This chapter describes the ports and
provides information on port loading, read-modify-write instructions, and external memory ac­
cesses.

9.1 INPUT/OUTPUT PORT OVERVIEW

All four 8X930A.x 1/0 ports are bidirectional. Each port contains a latch, an output driver, and an
input buffer. Port 0 and port 2 output drivers and input buffers facilitate external memory opera­
tions. Port 0 drives the lower address byte onto the parallel address bus, and port 2 drives the up­
per address byte onto the bus. fo nonpage moue, lhe data is mulriplexed with the lower address
byte on port 0. In page mode, the data is multiplexed with the upper address byte on port 2. Port
1 and port 3 provide both general-purpose 1/0 and special alternate functions.

Table 9-1. Input/Output Port Pin Descriptions

Pin
Type

Alternate
Alternate Description

Alternate
Name Pin Name Type

P0.7:0 1/0 AD7:0 Address/Data (Nonpage Mode), Address (Page Mode) 1/0

P1.0 1/0 T2 Timer 2 Clock Input/Output 1/0

P1.1 1/0 T2EX Timer 2 External Input I

P1.2 1/0 ECI PCA External Clock Input I

P1.3 1/0 CEXO PCA Module 0 1/0 1/0

P1.4 1/0 CEX1 PCA Module 1 1/0 1/0

P1.5 1/0 CEX2 PCA Module 2 1/0 1/0

P1.6 1/0 CEX3/WAIT# PCA Module 3 1/0 1/0

P1.7 1/0 CEX4/A17/WCLK PCA Module 4 1/0 or 18th Address Bit 1/0(0)

P2.7:0 1/0 A15:8 Address (Nonpage Mode), Address/Data (Page Mode) 1/0

P3.0 1/0 RXD Serial Port Receive Data Input I (1/0)

P3.1 1/0 TXD Serial Port Transmit Data Output 0 (0)

P3.2 1/0 INTO# External Interrupt O I

P3.3 1/0 INT1# External Interrupt 1 I

P3.4 1/0 TO Timer O Input I

P3.5 1/0 T1 Timer 1 Input I

P3.6 1/0 WR# Write Signal to External Memory 0

P3.7 1/0 RD#/A16 Read Signal to External Memory or 17th Address Bit 0

I 9-1

8X930AxUNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

9.2 1/0 CONFIGURATIONS

Each port SFR operates via type-D latches, as illustrated in Figure 9-1 for ports 1 and 3. A CPU
"write to latch" signal initiates transfer of internal bus data into the type-D latch. A CPU "read
latch" signal transfers the latched Q output onto the internal bus. Similarly, a "read pin" signal
transfers the logical level of the port pin. Some port data instructions activate the "read latch" sig­
nal while others activate the "read pin" signal. Latch instructions are referred to as read-modify­
write instructions (see "Read-Modify-Write Instructions" on page 9-4). Each 1/0 line may be in­
dependently programmed as input or output.

9.3 PORT 1 AND PORT 3

Figure 9-1 shows the structure of ports 1 and 3, which have internal pull ups. An external source
can pull the pin low. Each port pin can be configured either for general-purpose 1/0 or for its al­
ternate input or output function (Table 9-1).

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x =
1, 3). To use a pin for general-purpose input, set the bit in the Px register. This turns off the output
driver FET.

To configure a pin for its alternate function, set the bit in the Px register. When the latch is set, the
"alternate output function" signal controls the output level (Figure 9-1). The operation of ports 1
and 3 is discussed further in "Quasi-bidirectional Port Operation" on page 9-5.

9.4 PORT 0 AND PORT 2

Ports 0 and 2 are used for general-purpose 1/0 or as the external address/data bus. Port 0, shown
in Figure 9-2, differs from the other ports in not having internal pullups. Figure 9-3 on page 9-4
shows the structure of port 2. An external source can pull a port 2 pin low.

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x =
0, 2). To use a pin for general-purpose input set the bit in the Px register to turn off the output
driver FET.

9-2 L

I

Read
Latch

Internal
Bus

Write to
Latch

Read
Pin

Read
Latch

Internal
Bus

Write to
Latch

Read

---....----1 D Q i---------1
P3.x
Latch

---+---iCL Q#

Aiternate
Input

Function

Figure 9-1. Port 1 and Port 3 Structure

Address/
Data Control

D
PO.x

Q

Latch

CL Q#

Pin ----------'

Figure 9-2. Port O Structure

INPUT/OUTPUT PORTS

Vee

A2239-01

Vee

PO.x

A2238-01

9-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Read
Latch

Internal
Bus

Write to
Latch

Read
Pin

D

CL

Address

Control

a
P2.x
Latch

-a#

Figure 9-3. Port 2 Structure

Internal
Pullup

P2.x

A2240-01_

When port 0 and port 2 are used for an external memory cycle, an internal control signal switches
the output-driver input from the latch output to the internal address/data line. "External Memory
Access" on page 9-6 discusses the operation of port 0 and port 2 as the external address/data bus.

NOTE
Port 0 and port 2 are precluded from use as general purpose 1/0 ports when
used as address/data bus drivers.

Port 0 internal pullups assist the logic-one output for memory bus cycles only.
Except for these bus cycles, the pullup FET is off_ All other port 0 outputs are
open drain.

9.5 READ-MODIFY-WRITE INSTRUCTIONS

Some instructions read the latch data rather than the pin data. The latch based instructions read
the data, modify the data, and then rewrite the latch. These are called ''read-modify-write" in­
structions. Below is a complete list of these special instructions. When the destination operand is
a port, or a port bit, these instructions read the latch rather than the pin:
ANL (logical AND, e.g., ANL Pl, A)
ORL (logical OR, e.g., ORL P2, A)
XRL (logical EX-OR, e.g., XRL P3, A)
JBC (jump if bit= 1 and clear bit, e.g., JBC Pl.1, LABEL)
CPL (complement bit, e.g., CPL P3.0)
INC (increment, e.g_., INC P2)

9-4

-- __ _J_

INPUT/OUTPUT PORTS

DEC
DJNZ
MOV PX.Y, C
CLR PX.Y
SETB PX.Y

(decrement, e.g., DEC P2)
(decrement and jump if not zero, e.g., DJNZ P3, LABEL)
(move carry bit to bit Y of port X)
(clear bit Y of port X)
(set bit Y of port x)

It is not obvious that the last three instructions in this list are read-modify-write instructions.
These instructions read the port (all 8 bits), modify the specifically addressed bit, and write the
new byte back to the latch. These read-modify-write instructions are directed to the latch rather
than the pin in order to avoid possible misinterpretation of voltage (and therefore, logic) levels at
the pin. For example, a port bit used to drive the base of an external bipolar transistor cannot rise
above the transistor's base-emitter junction voltage (a value lower than V1L). With a logic one
written to the bit, attempts by the CPU to read the port at the pin are misinterpreted as logic zero.
A read of the latch rather than the pin returns the correct logic-one value.

9.6 QUASI-BIDIRECTIONAL PORT OPERATION

Port l, port 2, and port 3 have fixed mternal pullups and are referred to as "quasi-bidirectional"
ports. When configured as an input, the pin impedance appears as logic one and sources current
(see the 8X930A.x datasheet) in response to an external logic-zero condition. Port 0 is a "true bi­
directional" pin. The pin floats when configured as input. Resets write logical one to all port
latches. If logical zero is subsequently written to a port latch, it can be returned to input conditions
by a logical one written to the latch. For additional electrical information, refer to the current
8X930A.x datasheet.

NOTE
Port latch values change near the end of read-modify-write instruction cycles.
Output buffers (and therefore the pin state) update early in the instruction after
the read-modify-write instruction cycle.

Logical zero-to-one transitions in port 1, port 2, and port 3 utilize an additional pullup to aid this
logic transition (see Figure 9-4). This increases switch speed. The extra pullup briefly sources 100
times the normal internal circuit current. The internal pullups are field-effect transistors rather
than linear resistors. Pull ups consist of three p-channel FET (pFET) devices. A pFET is on when
the gate senses logical zero and off when the gate senses logical one. pFET #1 is turned on for
two oscillator periods immediately after a zero-to-one transition in the port latch. A logic one at
the port pin turns on pFET #3 (a weak pullup) through the inverter. This inverter and pFET pair
form a latch to drive logic one. pFET #2 is a very weak pullup switched on whenever the associ­
ated nFET is switched off. This is a traditional CMOS switch convention. Current strengths are
Ill 0 that of pFET #3.

I 9-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Q#
From
Port

Latch

9.7 PORT LOADING

2 Osc. Periods Vee Vee

P1 P2

Input Data

Read Port Pin

Figure 9-4. Internal Pullup Configurations

Vee

P3

Port

A2242-01

Output buffers of port 1, port 2, and port 3 can each sink 1.6 mA at logic zero (see V0 L specifica­
tions in the 8X930A.x data sheet). These port pins can be driven by open-collector and open-drain
devices. Logic zero-to-one transitions occur slowly as limited current pulls the pin to a logic-one
condition (Figure 9-4 on page 9-6). A logic-zero input turns offpFET #3. This leaves only pFET
#2 weakly in support of the transition. In external bus mode, port 0 output buffers each sink 3.2
mA at logic zero (see V0 u in the 8X930A.x data sheet). However, the port 0 pins require external
pullups to drive external gate inputs. See the latest revision of the 8X930A.x datasheet for com­
plete electrical design information. External circuits must be designed to limit current require­
ments to these conditions.

9.8 EXTERNAL MEMORY ACCESS

The external bus structure is different for page mode and nonpage mode. In nonpage mode (used
by MCS 51 microcontrollers), port 2 outputs the upper address byte; the lower address byte and
the data are multiplexed on port 0. In page mode, the upper address byte and the data are multi­
plexed on port 2, while port 0 outputs the lower address byte.

The 8X930A.x CPU writes FFH to the PO register for all external memory bus cycles. This over­
writes previous information in PO. In contrast, the P2 register is unmodified for external bus cy­
cles. When address bits or data bits are not on the port 2 pins, the bit values in P2 appear on the
port 2 pins.

9-6

I

INPUT/OUTPUT PORTS

In nonpage mode, port 0 uses a strong internal pullup FET to output ones or a strong internal pull­
down FET to output zeros for the lower address byte and the data. Port 0 is in a high-impedance
state for data input.

In page mode, port 0 uses a strong internal pullup FET to output ones or a strong internal pull­
down FET to output zeros for the lower address byte or a strong internal pulldown FET to output
zeros for the upper address byte.

In nonpage mode, port 2 uses a strong internal pullup FET to output ones or a strong internal pull­
down FET to output zeros for the upper address byte. In page mode, port 2 uses a strong internal
pull up FET to output ones or a strong internal pulldown FET to output zeros for the upper address
byte and data. Port 2 is in a high-impedance state for data input.

NOTE
In external bus mode port 0 outputs do not require external pullups.

There are two types of external memory accesses: external program memory !IJld extern~! data
memory (see Chapter 15, "External Memory Interface"). External program memories utilize sig­
nal PSEN# as a read strobe. MCS 51 microcontrollers use RD# (read) or WR# (write) to strobe
memory for data accesses. Depending on its RDl :0 configuration bits, the 8X930Ax uses PSEN#
or RD# for data reads (See "Configuration Bits RDl :O" on page 4-8).

During instruction fetches, external program memory can transfer instructions with 16-bit ad­
dresses for binary-compatible code or with the external bus configured for extended memory ad­
dressing (17-bit or 18-bit).

External data memory transfers use an 8-, 16-, 17-, or 18-bit address bus, depending on the in­
struction and the configuration of the external bus. Table 9-2 Iists the instructions that can be used
for these bus widths.

Table 9-2. Instructions for External Data Moves

Bus Width Instructions

8 MOVX @Ai; MOV @Rm; MOV dir8

16 MOVX @DPTR; MOV @WRj; MOV @WRj+dis; MOV dir16

17 MOV @ DRk; MOV @ DRk+dis .
18 MOV @DRk; MOV @ DRk+dis

NOTE
Avoid MOV PO instructions for external memory accesses. These instructions
can corrupt input code bytes at port 0.

External signal ALE (address latch enable) facilitates external address latch capture. The address
byte is valid after the ALE pin drives VoL· For write cycles, valid data is written to port 0 just prior
to the write (WR#) pin asserting VoL· Data remains valid until WR# is undriven. For read cycles,
data returned from external memory must appear at port 0 before the read (RD#) pin is undriven
(refer to the 8X930Ax datasheet for specifications). Wait states, by definition, affect bus-timing.

I
9-7

infel®

Timer/Counters and
WatchDog Timer

I

10

CHAPTER10
TIMER/COUNTERS AND WATCHDOG TIMER

This chapter describes the timer/counters and the watchdog timer (WDT) included as peripherals
on the 8X930Ax. When operating as a timer, a timer/counter runs for a programmed length of
time, then issues an interrupt request. When operating as a counter, a timer/counter counts nega­
tive transitions on an external pin. After a preset number of counts, the counter issues an interrupt
request.

The watchdog timer provides a way to monitor system operation. It causes a system reset if a soft­
ware malfunction allows it to expire. The watchdog timer is covered in "Watchdog Timer" on
page 10-17.

10.1 TIMER/COUNTER OVERVIEW

The 8X930Ax contains three general-purpose, 16-bit timer/counters. Although they are identified
as timer 0, timer 1, and timer 2, you can independently configure each to operate in a variety of
modes as a timer or as an event counter. Each timer employs two 8-bit timer registers, used sep­
arately or in cascade, to maintain the count. The timer registers and associated control and capture
registers are implemented as addressable special function registers (SFRs). Four of the SFRs pro­
vide programmable control of the timers as follows:

• Timer/counter mode control register (TMOD) and timer/counter control register (TCON)
control timer 0 and timer 1

• Timer/counter 2 mode control register (T2MOD) and timer/counter 2 control register
(T2CON) control timer 2

Table 10-1 describes the external signals referred to in this chapter. Table 10-2 briefly describes
the SFRs referred to in this chapter. For a map of the SFR address space, see Table 3-5 on page
3-16. Timer/Counter Operation

10.2 TIMER/COUNTER OPERATION

The block diagram in Figure 10-1 depicts the basic logic of the timers. Here timer registers TH.x
and TL.x (x = 0, 1, and 2) connect in cascade to form a 16-bit timer. Setting the run control bit
(TRx) turns the timer on by allowing the selected input to increment TLx. When TLx overflows
it increments TH.x; when TH.x overflows it sets the timer overflow flag (TFx) in the TCON or
T2CON register. Setting the run control bit does not clear the TH.x and TL.x timer registers. The
timer registers can be accessed to obtain the current count or to enter preset values. Timer 0 and
timer 1 can also be controlled by external pin INT.x# to facilitate pulse width measurements.

The C\Tx# control bit selects timer operation or counter operation by selecting the divided-down
system clock or external pin Tx as the source for the counted signal.

For timer operation (C/Tx# = 0), the timer register counts the divided-down system clock. The
timer register is incremented once every peripheral cycle, i.e., once every six states (see "Clock
and Reset Unit" on page 2-7). Since six states equals 12 clock cycles, the timer clock rate is

I
10-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

F08dl2. Exceptions are the timer 2 baud rate and clock-out modes, where the timer register is
incremented by the system clock divided by two.

NOTE

For the case of PLL on (PLLSEL2:0 = 110), a peripheral cycle equals six Tosc
so the timer clock rate is Pose 16. For the timer 2 baud rate and clock-out
modes, the timer register is incremented at the PLL rate (12 MHz). See "Clock
and Reset Unit'~ on page 2-7.

For counter operation (C/Tx# = 1), the· timer register counts the negative transitions on the Tx ex­
ternal input pin. The external input is sampled during every S5P2 state. "Clock and Reset Unit"
on page 2-7 describes the notation for the states in a peripheral cycle. When the sample is high in
one cycle and low in the next, the counter is incremented. The new count value appears in the
register during the next S3Pl state after the transition was detected. Since it takes 12 states (24
oscillator periods) to recognize a negative transition, the maximum count rate is 1/24 of the os­
cillator frequency. There are no restrictions on the duty cycle of the external input signal, but to
ensure that a given level is sampled at least once before it changes, it should be held for at least
one full peripheral cycle.

Table 10-1. External Signals

Signal Type Description Alternate
Name Function

T2 1/0 Timer 2 Clock Input/Output. This signal is the external clock input P1.0
for the timer 2 capture mode; and it is the timer 2 clock-output for the
clock-out mode.

T2EX I Timer 2 External Input. In timer 2 capture mode, a falling edge P1.1
initiates a capture of the timer 2 registers. In auto-reload mode, a
falling edge causes the timer 2 registers to be reloaded. In the up-
down counter mode, this signal determines the count direction:
high = up, low = down.

INT1:0# I External Interrupts 1 :0. These inputs set the IE1 :O interrupt flags in P3.3:2
the TCON register. TCON bits IT1 :O select the triggering method:

· IT1 :O = 1 selects edge-triggered (high-to-low);IT1 :O = 0 selects level-
triggered (active low). INT1 :0# also serves as external run control for
timer 1 :0 when selected by TCON bits GATE1 :0#.

T1:0 I Timer 1 :0 External Clock Inputs. When timer 1 :O operates as a P3.5:4
counter, a falling edge on the T1 :0 pin increments the count.

10-2

___ _L

TIMER/COUNTERS AND WATCHDOG TIMER

XTAL1
..----. Interrupt

THx : TLx Overflow Request
(8 Bits) I (8 Bits) TFx

Tx

x=O, 1,or2 TRx

A4121-02

Figure 10-1. Basic Logic of the Timer/Counters t

t This figure depicts the case of PLL off (PLLSEL2:0 = 001or100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input 0 of the Cff.x# selector is twice that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

I 10-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table 10-2. Timer/Counter and Watchdog Timer SFRs

Mnemonic Description Address

TLO Timer O Timer Registers. Used separately as 8-bit counters or in cascade S:SAH
THO as a 16-bit counter. Counts an internal clock signal with frequency F osc/12 S:SCH

(timer operation) or an external input (event counter operation).

TL1 Timer 1 Timer Registers. Used separately as 8-bit counters or in cascade S:8BH
TH1 as a 16-bit counter. Counts an internal clock signal with frequency F08c/12 S:8DH

(timer operation) or an external input (event counter operation).

TL2 Timer 2 Timer Registers. TL2 and TH2 connect in cascade to provide a S:CCH
TH2 16-bit counter. Counts an internal clock signal with frequency F08c/12 S:CDH

(timer operation) or an external input (event counter operation).

TCON Timer 0/1 Control Register. Contains the run control bits, overflow flags, S:88H
interrupt flags, and interrupt-type control bits for timer O and timer 1 .

TMOD Timer 0/1 Mode Control Register. Contains the mode select bits, S:89H
counter/timer select bits, and external control gate bits for timer 0 and
timer 1.

T2CON Timer 2 Control Register. Contains the receive clock, transmit clock, and S:C8H
capture/reload bits used to configure timer 2. Also contains the run control
bit, counter/timer select bit, overflow flag, external flag, and external enable
for timer 2.

T2MOD Timer 2 Mode Control Register. Contains the timer 2 output enable and S:C9H
down count enable bits.

RCAP2L Timer 2 Reload/Capture Registers (RCAP2L, RCAP2H). Provide values S:CAH
RCAP2H to and receive values from the timer registers (TL2,TH2). S:CBH

WDTRST Watchdog Timer Reset Register (WDTRST). Used to reset and enable S:A6H
the WOT.

10.3 TIMER 0

Timer 0 functions as either a timer or event counter in four modes of operation. Figures 10-2,
10-3, and 10-4 show the logical configuration of each mode.

Timer 0 is controlled by the four low-order bits of the TMOD register (Figure 10-5) and bits 5, 4,
1, and 0 of the TCON register (Figure 10-6). The TMOD register selects the method of timer gat­
ing (GATEO), timer or counter operation (T/CO#), and mode ofoperation (MIO and MOO). The
TCON register provides timer 0 control functions: overflow flag (TFO), run control (TRO), inter­
rupt flag (IEO), and interrupt type control (ITO).

For normal timer operation (GATEO = 0), setting TRO allows TLO to be incremented by these­
lected input. Setting GATEO and TRO allows external pin INTO# to control timer operation. This
setup can be used to make pulse width measurements. See "Pulse Width Measurements" on page
10-11.

Timer 0 overflow (count rolls over from all ls to all Os) sets the TFO flag generating an interrupt
request.

10-4

TIMER/COUNTERS AND WATCHDOG TIMER

10.3.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as a 13-bit timer which is set up as an 8-bit timer (THO register) with
a modulo 32 prescalar implemented with the lower five bits of the TLO register (Figure 10-2). The
upper three bits of the TLO register are indeterminate and should be ignored. Pre scalar overflow
increments the THO register.

10.3.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 0 as a 16-bit timer with THO and TLO connected in cascade (Figure
10-2). The selected input increments TLO.

10.3.3 Mode 2 (8-bit Timer With Auto-reload)

Mode 2 configures timer 0 as an 8-bit timer (TLO register) that automatically reloads from the
THO register (Figure 10-3). TLO overflow sets the timer overflow flag (TFO) in the TCON register
and reloads TLO with the contents of THO, which is preset by software. When the interrupt re­
quest is serviced, hardware clears TFO. The reload leaves THO unchanged. See "Auto-load Setup
Example" on page 10-10.

XTAL1

Tx

.------. Interrupt
THx : TLx Overflow Request

(8 Bits) I (8 Bits) TFx

Mode O: 13-bit Timer/Counter
Mode 1: 16-bit Timer/Counter
x = O or 1

Figure 10-2. Timer 0/1 in Mode 0 and Mode 1 t

A4110-02

t This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input 0 of the C!fx# selector is twice that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

10-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

10.3.4 Mode 3 (Two 8-bit Timers)

Mode 3 configures timer 0 such that registers TLO and THO operate as separate 8-bit timers (Fig­
ure 10-4). This mode is provided for applications requiring an additional 8-bit timer or counter.
TLO uses the timer 0 control bits CITO# and GATED in TMOD, and TRO and TFO in TCON in the
normal manner. THO is locked into a timer function (counting Fosc /12) and takes over use of the
timer 1 interrupt (TFl) and run control (TRI) bits. Thus, operation of timer 1 is restricted when
timer 0 is in mode 3. See "When timer 0 is in mode 3, it uses timer l's overflow flag (TFl) and
run control bit (TRI). For this situation, use timer 1 only for applications that do not require an
interrupt (such as a baud rate generator for the serial interface port) and switch timer 1 in and out
of mode 3 to turn it off and on." on page 10-7 and "Mode 3 (Halt)" on page 10-10.

10.4 TIMER 1

Timer 1 functions as either a timer or event counter in three modes of operation. Figures 10-2 and
10-3 show the logical configuration for modes 0, 1, and 2. Timer 1 's mode 3 is a hold-count mode.

Timer 1 is controlled by the four high-order bits of the TMOD register (Figure 10-5) and bits 7,
6, 3, and 2 of the TCON register (Figure 10-6). The TMOD register selects the method of timer
gating (GATEl), timer or counter operation (T/Cl#), and mode ofoperation (Mll and MOl). The
TCON register provides timer 1 control functions: overflow flag (TFl), run control (TRI), inter­
rupt flag (IEl), and interrupt type control (ITl).

Timer 1 operation in modes 0, 1, and 2 is identical to timer 0. Timer 1 can serve as the baud rate
generator for the serial port. Mode 2 is best suited for this purpose.

Overflow

Figure 10-3. Timer 0/1 in Mode 2, Auto-Reload t

.-----. Interrupt
Request

TFx

A4111-02

t This figure depicts the case of PLL off (PLLSEL2:0 = 001or100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input 0 of the Cffx# selector is twice that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

10-6

TIMER/COUNTERS AND WATCHDOG TIMER

For normal timer operation (GATEl = 0), setting TRI allows timer register TLl to be increment­
ed by the selected input. Setting GATEI and TRI allows external pin INTI# to control timer op­
eration. This setup can be used to make pulse width measurements. See "Pulse Width
Measurements" on page 10-Il.

Timer l overflow (count rolls over from all Is to all Os) sets the TFI flag, generating an interrupt
request.·

When timer 0 is in mode 3, it uses timer l's overflow flag (TFI) and run control bit (TRI). For
this situation, use timer 1 only for applications that do not require an interrupt (such as a baud rate
generator for the serial interface port) and switch timer 1 in and out of mode 3 to turn it off and on.

10.4.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as a 13-bit timer, which is set up as an 8-bittimer (THI register) with
a modulo-32 prescalar implemented with the lower 5 bits of the TLl register (Figure I 0-2). The
upper 3 bits of the TLl register are ignored. Prescalar overflow increments the THI register.

10.4.2 Mode 1 (16-bit Timer)

Mode I configures timer I as a I6-bit timer with THI and TLl connected in cascade (Figure
10-2). The selected input increments TLl.

XTAL1 + 12 1112 Fosc

Interrupt

TLO Overflow Request

(8 Bits) TFO
TO

crro#

TRO

GATEO
Interrupt

1112 Fosc THO Overflow Request

INTO# (8 Bits)
TF1

TR1

A4112-02

Figure 10-4. Timer O in Mode 3, Two 8-bit Timers t

t This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input 0 of the Cffx# selector is twice that for PLLSEL2:0 = I 00 (PLL off). See Table 2-2 on page
2-8.

I
10-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

TMOD Address: S:89H
Reset State: 0000 OOOOB

7 0

~G_A_J_E1~,__c_JT_1_#____,,___M_11 _ _.__M_o1___.l I GATEO CfTO# M10 Moo·

Bit Bit
Function Number Mnemonic

7 GATE1 Timer 1 Gate:

When GATE1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATE1 = 1 and TR1 = 1, external signal INT1 gates the
timer input.

6 CfT1# Timer 1 Countermmer Select:

CfT1 # = 0 selects timer operation: timer 1 counts the divided-down
system clock. CfT1 # = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.

5, 4 M11, M01 Timer 1 Mode Select:

M11 M01
0 0 Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL 1)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL 1). Reloaded

from TH1 at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.

3 GATEO Timer o. Gate:

When GATEO = 0, run control bit TRO gates the input signal to the timer
register. When GATEO = 1 and TRO = 1, external signal INTO gates the
timer input.

2 CfTO# Timer 0 CounterfTimer Select:

CITO#= 0 selects timer operation: timer 0 counts the divided-down
system clock. CfTO# = 1 selects counter operation: timer 0 counts
negative transitions on external pin TO.

1, 0 M10, MOO Timer O Mode Select:

M10 MOO
0 0 Mode O: 8-bit timer/counter (TO) with 5-bit prescalar (TLO)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TLO). Reloaded

from THO at overflow.
1 1 Mode 3: TLO is an 8-bit timer/counter. THO is an 8-bit

timer using timer 1 's TR1 and TF1 bits.

Figure 10-5. TMOD: Timer/Counter Mode Control Register

10-8

---~- ___ L __

TIMER/COUNTERS AND WATCHDOG TIMER

TCON Address: S:88H
Reset State: OOOOOOOOB

7 0

TF1 TR1 TFO TAO II IE1 IT1 IEO ITO

Bit Bit Function Number Mnemonic

7 TF1 Timer 1 Overflow Flag:

Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TA1 Timer 1 Run Control Bit:

Set/cleared by software to turn timer 1 on/off.

5 TFO Timer 0 Overflow Flag:

Set by hardware when the timer 0 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TAO Timer 0 Run Control Bit:

Set/cleared by software to turn timer 1 on/off.

3 IE1 Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT1 #pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear.this bit to select level-triggered (active low).

1 IEO Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INTO# pin.
Edge- or level- triggered (see ITO). Cleared when interrupt is processed
if edge-triggered.

0 Interrupt 0 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt o.
Clear this bit to select level-triggered (active low).

Figure 10-6. TCON: Timer/Counter Control Register

I 10-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

10.4.3 Mode 2 (8-bit Timer with Auto-reload)

Mode 2 configures timer 1 as an 8-bit timer (TLl register) with automatic reload from the THl
register on overflow (Figure 10-3). Overflow from TLl sets overflow flag TFl in the TCON reg­
ister and reloads TLl with the contents of THl, which is preset by software. The reload leaves
THl unchanged. See "Auto-load Setup Example" on page 10-10.

10.4;4 Mode 3 (Halt)

Placing timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt timer 1
when the TRl run control bit is not available (i.e., when timer 0 is in mode 3). See the final para­
graph of "Timer 1" on page 10-6.

10.5 TIMER 0/1 APPLICATIONS

Timer 0 and timer 1 are general purpose timers that can be used in a variety of ways. The timer
applications presented in this section are intended to demonstrate timer setup, and do not repre­
sent the only arrangement nor necessarily the best arrangement for a given task. These examples
employ timer 0, but timer 1 can be set up in the same manner using the appropriate registers.

10.5.1 Auto-load Setup Example

Timer 0 can be configured as an eight-bit timer (TLO) with automatic reload as follows:

1. Program the four low-order bits of the TMOD register (Figure 10-5) to specify: mode 2
for timer 0, CITO#= 0 to select F08c/12 (with PLL on, PLLSEL2:0 = 110, this becomes
F oscl6) as the timer input, and GATEO = 0 to select TRO as the timer run control.

2. Enter an eight-bit initial value (n0) in timer register TLO, so that the timer overflows after
the desired number of peripheral cycles.

3. Enter an eight-bit reload value (nR) in register THO. This can be the same as no or
different, depending on the application. ·

4. Set the TRO bit in the TCON register (Figure 10-6) to startthe timer. Timer overflow
occurs after FFH + 1 - n0 peripheral cycles, setting the TFO flag and loading nR into TLO
from THO. When the interrupt is serviced, hardware clears TFO.

5. The timer continues to overflow and generate interrupt requests every FFH + 1 - nR
peripheral cycles.

6. To halt the timer, clear the TRO bit.

10-10

.. ------------ ___ __L __

TIMER/COUNTERS AND WATCHDOG TIMER

10.5.2 Pulse Width Measurements

For timer 0 and timer 1, setting GATEx and TR.x allows an external waveform at pin INT.x# to
tum the timer on and off. This setup can be used to measure the width of a positive-going pulse
present at pin INTx#. Pulse width measurements using timer 0 in mode 1 can be made as follows:

1. Program the four low-order bits of the TMOD register (Figure 10-5) to specify: mode 1
for timer 0, CITO#= 0 to select F05cl12 as the timer input (with PLL on, PLLSEL2:0 =
110, this becomes F05c/6), and GATEO = 1 to select INTO as timer run control.

2. Enter an initial value of all zeros in the 16-bit timer register THO/TLO, or read and store
the current contents of the register.

3. Set the TRO bit in the TCON register (Figure 10-6) to enable INTO.

4. Apply the pulse to be measured to pin INTO. The timer runs when the waveform is high.

5. Clear the TRO bit to disable INTO.

6. Read timer register THO/TLO to obtain the new value.

7. Calculate pulse width as follows:

a. For PLL off, pulse width= 12 Tosc x (new value - initial value)

b. For PLL on (PLLSEL2:0 = 110), pulse width= 24 Tosc x (new value - initial value)

8. Example (with PLL off, PLLSEL2:0 = 100): Fosc = 12 MHz and 12Tosc = 1 µs. If the new
value= 10,00010 and the initial value = 0, the pulse width= I µs x 10,000 = 10 ms.

10.6 TIMER 2

Timer 2 is a 16-bit timer/counter. The count is maintained by two 8-bit timer registers, TH2 and
TL2, connected in cascade. The timer/counter 2 mode control register (T2MOD) as shown in Fig­
ure 10-11 on page 10-17) and the timer/counter 2 control register (T2CON) as shown in Figure
10-12 on page 10-18) control the operation of timer 2.

Timer 2 provides the following operating modes: capture mode, auto-reload mode, baud rate gen­
erator mode, and programmable clock-out mode. Select the operating mode with T2MOD and
TCON register bits as shown in Table 10-3 on page 10-16. Auto-reload is the default mode. Set­
ting RCLK and/or TCLK selects the baud rate generator mode.

Timer 2 operation is similar to timer 0 and timer 1. C/T2# selects the divided-down system clock
(timer operation) or external pin T2 (counter operation) as the timer register input. Setting TF2
allows TL2 to be incremented by the selected input.

The operating modes are described in the following paragraphs. Block diagrams in Figures 10-7
through 10-10 show the timer 2 configuration for each mode.

I 10-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

10.6.1 Capture Mode

In the capture mode, timer 2 functions as a 16-bit timer or counter (Figure 10-7). An overflow
condition sets bit TF2, which you can use to request an interrupt. Setting the external enable bit
EXEN2 allows the RCAP2H and RCAP2L registers to capture the current value in timer registers
TH2 and TL2 in response to a 1-to-O transition at external input T2EX. The transition at T2EX
also sets bit EXF2 in T2CON. The EXF2 bit, like TF2, can generate an interrupt.

XTAL1

T2

Crf2#

T2EX

TR2

Capture

EXEN2

TH2 1 TL2
(8 Bits) : (8 Bits)

Overilow

EXF2

Figure 10-7. Timer 2: Capture Mode t

TF2

Interrupt
Request

A4113-02

t This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input 0 of the C/Tx# selector is twice.that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

10-12 -___ L __

TIMER/COUNTERS AND WATCHDOG TIMER

10.6.2 Auto-reload Mode

The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic reload.
The timer operates an as an up counter or as an up/down counter, as determined by the down
counter enable bit (DCEN). At device reset, DCEN is cleared, so in the auto-reload mode, timer
2 defaults to operation as an up counter.

10.6.2.1 Up Counter Operation

When DCEN = 0, timer 2 operates as an up counter (Figure 10-8). The external enable bit EXEN2
in the T2CON register provides two options (Figure 10-12). If EXEN2 = 0, timer 2 counts up to
FFFFH and sets the TF2 overflow flag. The overflow condition loads the 16-bit value in the re­
load/capture registers (RCAP2H, RCAP2L) into the timer registers (TH2, TL2). The values in
RCAP2H and RCAP2L are preset by software.

IfEXEN2 = 1, the timer registers are reloaded by either a timer overflow or a high-to-low tran­
sition at external input T2EX. This transition also sets the EXF2 bit in the T2CON register. Either
TF2 or EXF2 bit can generate a timer 2 interrupt request.

XTAL1

T2

T2EX

+ 12

TR2
C!T2#----'

EXEN2

TH2 I TL2 Overflow
(8 Bits) i (8 Bits)

I
RCAP2H: RCAP2L

TF2

EXF2

Figure 10-8. Timer 2: Auto Reload Mode (DCEN = 0) t

Interrupt
Request

A4115-02

t This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input 0 of the Cff2# selector is twice that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

I 10-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

10.6.3 Up/Down Counter Operation

When DCEN = 1, timer 2 operates as an up/down counter (Figure 10-9). External pin T2EX con­
trols the direction of the count (Table 10-1 on page 10-2). When T2EX is high, timer 2 counts up.
The timer overflow occurs at FFFFH which sets the timer 2 overflow flag (TF2) and generates an
interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L to be load­
ed into the timer registers TH2 and TL2.

When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer
registers (TH2, TL2) equals the value stored in RCAP2H and RCAP2L. The underflow sets the
TF2 bit and reloads FFFFH into the timer registers.

The EXF2 bit toggles when timer 2 overflows or underflows, changing the direction of the count.
When timer 2 operates as an up/down counter, EXF2 does not generate an interrupt. This bit can
be used to provide 17-bit resolution.

XTAL1

T2

(Down Counting Reload Value)

FFH FFH

I
RCAP2H: RCAP2L

(Up Counting Reload Value)
T2EX

Count
Direction
1 =Up
0= Down

Figure 10-9. Timer 2: Auto Reload Mode (DCEN = 1) t

Interrupt
Request

A4114-01

t This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input 0 of the C/T2# selector is twice that for PLLSEL2:0 = 100 (PLL oft). See Table 2-2 on page
2-8.

10-14 _l_·

TIMER/COUNTERS AND WATCHDOG TIMER

10.6.4 Baud Rate Generator Mode

This mode configures timer 2 as a baud rate generator for use with the serial port. Select this mode
by setting the RCLK and/or TCLK bits in T2CON. See Table 10-3. For details regarding this
mode of operation, refer to "Baud Rates" on page 12-10.

10.6.5 Clock-out Mode

In the clock-out mode, timer 2 functions as a 50%-duty-cycle, variable-frequency clock (Figure
10-10). The input clock increments TLO at F08c/2 for PLL off or Fosc for PLL on. The timer re­
peatedly counts to overflow from a preloaded value. At overflow, the contents of the RCAP2H
and RCAP2L registers are loaded into TH2/TL2. In this mode, timer 2 overflows do not generate
interrupts. The formula gives the clock-out frequency as a function of the system oscillator fre­
quency and the value in the RCAP2H and RCAP2L registers:

Fosc
For PLL off, Clock-out Frequency = 4 x (65535 _ RCAP2H, RCAP2L)

Fosc
For PLL on, Clock-out Frequency = 2 x (65535 _ RCAP2H, RCAP2L)

For a 12 MHz system clock with PLL off, timer 2 has a programmable frequency range of 47.8
Hz to 3 MHz. The generated clock signal is brought out to the T2 pin.

Timer 2 is programmed for the clock-out mode as follows:

1. Set the T20E bit in T2MOD. This gates the timer register overflow to the +2 counter.

2. Clear the C/T2# bit in T2CON to select F08J2 (PLL oft) or Fosc (PLL on) as the timer
input signal. This also gates the output of the +2 counter to pin T2.

3. Determine the 16-bit reload value from the formula and enter in the RCAP2H/RCAP2L
registers.

4. Enter a 16-bit initial value in timer register TH2/TL2. This can be the same as the reload
value, or different, depending on the application.

5. To start the timer, set the TR2 run control bit in T2CON.

Operation is similar to timer 2 operation as a baud rate generator. It is possible to use timer 2 as
a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates
and clock frequencies are not independent since both functions use the values in the RCAP2H
and RCAP2L registers.

I 10-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

XTAL1 +2

T2

C/T2#----

T2EX Q----11'-i------il . ~
EXEN2

TR2

+ 2

I
RCAP2H i RCAP2L

T20E

EXF2

Interrupt
Request •

A4116-02

Figure 10-10. Timer 2: Clock Out Mode t

Table 10-3. Timer 2 Modes of Operation

Mode RCLKORTCLK CP/RL2.# T20E
(inT2CON) (in T2CON) (in T2MOD)

Auto-reload Mode 0 0 0

Capture Mode 0 1 0

Baud Rate Generator Mode 1 x x
Programmable Clock-Out x 0 1

t This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input 0 of the Cfr2# selector is twice that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

10-16

TIMER/COUNTERS AND WATCHDOG TIMER

T2MOD Address: S:C9H
Reset State: XXXX XXOOB

7 0

11
T20E DCEN

Bit Bit
Function Number Mnemonic

7:2 - Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

1 T20E Timer 2 Output Enable Bit:

In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.

0 DCEN Down Count Enable Bit:

Configures timer 2 as an up/down counter.

Figure 10-11. T2MOD: Timer 2 Mode Control Register

10.7 WATCHDOG TIMER

The peripheral section of the 8X930Ax contains a dedicated, hardware watchdog timer (WDT)
that automatically resets the chip if it is allowed to time out. The WDT provides a means of re­
covering from routines that do not complete successfully due to software malfunctions. The WDT
described in this section is not associated with the PCA watchdog timer, which is implemented
in software.

10.7.1 Description

The WDT is a 14-bit counter that counts peripheral cycles, i.e., (F08c/12 with PLL off; F08d6
with PLL on). The WDTRST special function register at address S:A6H provides control access
to the WDT. Two operations control the WDT:

• Device reset clears and disables the WDT (see "Reset" on page 13-4).

• Writing a specific two-byte sequence to the WDTRST register clears and enables the WDT.

If it is not cleared, the WDT overflows on count 3FFFH + 1. With PLL off and Fosc = 12 MHz,
a peripheral cycle is 1 µsand the WDT overflows in 1 µs x 16384 = 16.384 ms. With PLL on and
Fosc = 12 MHz, a peripheral cycle is 0.5 µsand the WDT overflows in 0.5 µs x 16384 = 8.192 ms.

The WDTRST is a write-only register. Attempts to read it return FFH. The WDT itself is not read
or write accessible. The WDT does not drive the external RESET pin.

I 10-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

T2CON Address: S:C8H
Reset State: 0000 OOOOB

7 0

TF2 EXF2 RCLK TCLK II EXEN2 TR2 C!f2# CP/RL2#

Bit Bit
Function Number Mnemonic

7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by software. TF2 is not set if
RCLK= 1orTCLK=1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN = 1).

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = O) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:

Setting this bit starts the timer.

1 C!f2# Timer 2 Counter!Timer Select:

C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C!f2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK = 1 or TCLK = 1.

Figure 10-12. T2CON: Timer 2 Control Register

10-18 _L_

TIMER/COUNTERS AND WATCHDOG TIMER

10. 7.2 Using the WOT

To use the WDT to recover from software malfunctions, the user program should control the
WDT as follows:

I. Following device reset, write the two-byte sequence IEH-ElH to the WDTRST register to
enable the WDT. The WDT begins counting from 0.

2. Repeatedly for the duration of program execution, write the two-byte sequence lEH-ElH
to the WDTRST register to clear and enable the WDT before it overflows. The WDT
starts over at 0.

If the WDT overflows, it initiates a device reset (see "Reset" on page 13-4). Device reset clears
the WDT and disables it.

10. 7.3 WOT During Idle Mode

Operation of the WDT during the power reduction modes deserves special attention. The WDT
continues to count while the microcontroller is in idle mode. This means the user must service the
WDT during idle. One approach is to use a peripheral timer to generate an interrupt request when
the timer overflows. The interrupt service routine then clears the WDT, reloads the peripheral
timer for the next service period, and puts the microcontroller back into idle.

10.7.4 WOT During PowerDown

The powerdown mode stops all phase clocks. This causes the WDT to stop counting and to hold
its count. The WDT resumes counting from where it left off if the powerdown mode is terminated
by INTO/INTI. To ensure that the WDT does not overflow shortly after exiting the powerdown
mode, clear the WDT just before entering powerdown. The WDT is cleared and disabled if the
powerdown mode is terminated by a reset.

I 10-19

intel.

Programmable
Counter Array

I

11

CHAPTER 11
PROGRAMMABLE COUNTER ARRAY

This chapter describes the programmable counter array (PCA), an on-chip peripheral of the
8X930Ax that performs a variety of timing and counting operations, including pulse width mod­
ulation (PWM). The PCA provides the capability for a software watchdog timer (WDT).

11.1 PCA DESCRIPTION

The programmable counter array (PCA) consists of a 16-bit timer/counter and five 16-bit com­
pare/capture modules. The timer/counter serves as a common time base and event counter for the
compare/capture modules, distributing the current count to the modules by means of a 16-bit bus.
A special function register (SFR) pair, CH/CL, maintains the count in the timer/counter, while
five SFR pairs, CCAPxH/CCAPxL, store values for the modules (see Figure 11-1). Additional
SFRs provide control and mode select functions as follows:

• The PCA timer/counter mode register (CMOD) and the PCA timer/counter control register
(CCON) control the operation of the timer/counter. See Figure 11-7 on page 11-13 and
Figure 11-8 on page 11-14.

• Five PCA module mode registers (CCAPMx) specify the operating modes of the
compare/capture modules. See Figure 11-9 on page 11-15.

For a list of SFRs associated with the PCA, see Table 11-1. For an SFR address map, see Table
3-5 on page 3-16. Port 1 provides external 1/0 for the PCA on a shared basis with other functions.
Table 11-2 identifies the port pins associated with the timer/counter and compare/capture mod­
ules. When not used for PCA 1/0, these pins can be used for standard 1/0 functions.

The operating modes of the five compare/capture modules determine the functions performed by
the PCA. Each module can be independently programmed to provide input capture, output com­
pare, or pulse width modulation. Module 4 only also has a watchdog-timer mode.

The PCA timer/counter and the five compare/capture modules share a single interrupt vector. The
EC bit in the IENO special function register is a global interrupt enable for the PCA. Capture
events, compare events in some modes, and PCA timer/counter overflows set flags in the CCON
register. Setting the overflow flag (CF) generates a PCA interrupt request if the PCA tim­
er/counter interrupt enable bit (ECF) in the CMOD register is set (Figure 11-1). Setting a com­
pare/capture flag (CCFx) generates a PCA interrupt request if the ECCFx interrupt enable bit in
the corresponding CCAPMx register is set (Figures 11-2 and 11-3). For a description of the
8X930Ax interrupt system see Chapter 6, "Interrupt System."

I 11-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

11.1.1 Alternate Port Usage

PCA modules 3 and 4 share port pins with the real-time wait state and address functions as fol­
lows:

• PCA module 3 - Pl.6/CEX3/WAIT#

• PCA module 4-Pl.7/CEX4/Al7/WCLK

When the real-time wait state functions are enabled (using the WCON register), the correspond­
ing PCA modules are automatically disabled. Configuring the 8X930Ax to use address line Al 7
(specified by UCONFIGO, bits RD 1 :0) overrides the PCA module 3 and WCLK functions. When
a real-time wait state function is enabled, do not use the corresponding PCA module.

NOTE
It is not advisable to alternate between PCA operations and real-time wait state
operations at port 1.6 (CEX3/WAIT#) or port 1.7 (CEX4/WCLK). See
"External Bus Cycles with Real-time Wait States" on page 15-11.

11.2 PCA TIMER/COUNTER

Figure 11-1 depicts the basic logic of the timer/counter portion of the PCA. The CH/CL special
function register pair operates as a 16-bit timer/counter. The selected input increments the CL
(low byte) register. When CL overflows, the CH (high byte) register increments after two oscil­
lator periods; when CH overflows it sets the PCA overflow flag (CF in the CCON register) gen­
erating a PCA interrupt request if the ECF bit in the CMOD register is set.

The CPSl and CPSO bits in the CMOD register select one of four signals as the input to the
timer/counter (Figure 11-7 on page 11-13):

• F08c/12. Provides a clock pulse at S5P2 of every peripheral cycle. With PLLSEL2:0 = 100
and Fosc = 12 MHz, the timer/counter increments every 1000 nanoseconds. With
PLLSEL2:0 = 110 and Fosc = 12 MHz, the timer/counter increments every 500
nanoseconds.

• F08c/4. Provides clock pulses at S1P2, S3P2, and S5P2 of every peripheral cycle. With
PLLSEL2:0 = 100 and Fosc = 12 MHz, the timer/counter increments every 333 1/3
nanoseconds. With PLLSEL2:0 = 110 and Fosc = 12 MHz, the timer/counter increments
every 166 2/3 nanoseconds.

• Timer 0 overflow. The CL register is incremented at S5P2 of the peripheral cycle when
timer 0 overflows. This selection provides the PCA with a programmable frequency input.

• External signal on Pl.2/ECI. The CPU samples the ECI pin at S1P2, S3P2, and S5P2 of
every peripheral cycle. The first clock pulse (S1P2, S3P2, or S5P2) that occurs following a
high-to-low transition at the ECI pin increments the CL register. The maximum input
frequency for this input selection is F08c/8.

For a description of peripheral cycle timing, see "Clock and Reset Unit" on page 2-7.

11-2 . I_ -

PROGRAMMABLE COUNTER ARRAY

Setting the run control bit (CR in the CCON register) turns the PCA timer/counter on, if the out­
put of the NAND gate (Figure 11-1) equals logic 1. The PCA timer/counter continues to operate
during idle mode unless the CIDL bit of the CMOD register is set. The CPU can read the contents
of the CH and CL registers at any time. However, writing to them is inhibited while they are
counting (i.e., when. the CR bit is set).

Fosc 112 -----1

Fosc 14 __ 01---1
Timer 0 Overflow ----1

P1.2/ECI

CPS1 CPSO CIDL

CMOD.2 CMOD.1

PCON.O
Idle Mode

Compare/Capture
Modules

Module 0

Module 1

Module 2

Module 3

Module4

(16 Bits)

CF

PCA CCON.7
Timer/Counter Overflow

Figure 11-1. Programmable Counter Arrayt

P1.3/CEXO

P1.4/CEX1

P1.5/CEX2

P1 .6/CEX3/WAIT#

P1.7/CEX4/
A17/WCLK

Interrupt
Request

CMOD.O
Enable

A4162-04

t This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequencies at inputs 00 and 01 of the CPSx selector are twice that for PLLSEL2:0 = 100 (PLL ofO. See Table
2-2 on page 2-8.

I 11-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table 11-1. PCA Special Function Registers (SFRs)

Mnemonic Description Address

CL PCA Timer/Counter. These registers serve as a common 16-bit timer or S:E9H
CH event counter for the five compare/capture modules. Counts F 08d12, S:F9H

F08d4, timer 0 overllow, or the external signal on P1 .2/ECI, as selected by
CMOD. lnPWM mode CL operates as an 8-bit timer.

CCON PCA Timer/Counter Control Register. Contains the run control bit and S:D8H
the overflow flag for the PCA timer/counter, and interrupt flags for the five
compare/capture modules.

CMOD PCA Timer/Counter Mode Register. Contains bits for disabling the PCA S:D9H
timer/counter during idle mode, enabling the PCA watchdog timer (module
4), selecting the timer/counter input, and enabling the PCA timer/counter
overflow interrupt.

CCAPOH PCA Module 0 Compare/Capture Registers. This register pair stores the S:FAH
CC A POL comparison value or the captured value. In the PWM mode, the low-byte S:EAH

register controls the duty cycle of the output waveform.

CCAP1H PCA Module 1 Compare/Capture Registers. This register pair stores the S:FBH
CCAP1L comparison value or the captured value. In the PWM mode, the low-byte S:EBH

register controls thE:i duty cycle of the output waveform.

CCAP2H PCA Module 2 Compare/Capture Registers. This register pair stores the S:FCH
CCAP2L comparison value or the captured value. In the PWM mode, the low-byte S:ECH

register controls the duty cycle of the output waveform.

CCAP3H PCA Module 3 Compare/Capture Registers. This register pair stores the S:FDH
CCAP3L comparison value or the captured value. In the PWM mode, the low-byte S:EDH

register controls the duty cycle of the output waveform.

CCAP4H PCA Module 4 Compare/Capture Registers. This register pair stores the S:FEH
CCAP4L comparison value or the captured value. In the PWM mode, the low-byte S:EEH

register controls the duty cycle of the output waveform.

CCAPMO PCA Compare/Capture Module Mode Registers. Contain bits for S:DAH
CCAPM1 selecting the operating mode of the compare/capture modules and S:DBH
CCAPM2 enabling the compare/capture flag. See Table 11-3 on page 11-14 for mode S:DCH
CCAPM3 select bit combinations. S:DDH
CCAPM4 S:DEH

Table 11-2. External Signals

Signal Type Description Alternate
Name Function

ECI I PCA Timer/counter External Input. This signal is the external P1.2
clock input for the PCA timer/counter.

CEXO 1/0 Compare/Capture Module External 1/0. Each compare/capture P1.3
CEX1 module connects to a Port 1 pin for external 1/0. When not used by P1.4
CEX2 the PCA, these pins can handle standard 1/0. P1.5
CEX3 P1.6/WAIT#
CEX4 P1.7/A17/WCLK

11-4

---- _ _(__ ___ _

PROGRAMMABLE COUNTER ARRAV

11.3 PCA COMPARE/CAPTURE MODULES

Each compare/capture module is made up of a compare/capture register pair
(CCAPxH/CCAPxL), a 16-bit comparator, and various logic gates and signal transition selectors.
The registers store the time or count at which an external event occurred (capture) or at which an
action should occur (comparison). In the PWM mode, the low-byte register controls the duty cy­
cle of the output waveform.

The logical configuration of a compare/capture module depends on its mode of operation (Fig­
ures 11-2 through 11-5). Each module can be independently programmed for operation in any of
the following modes:

• 16-bit capture mode with triggering on the positive edge, negative edge, or either edge.

• Compare modes: 16-bit software timer, 16-bit high-speed output, 16-bit WDT (module 4
only), or 8-bit pulse width modulation.

• No operation.

Bit combinations programmed into a compare/capture module's mode register (CCAPMx) deter­
mine the operating mode. Figure 11-9 on page 11-15 provides bit definitions and Table 11-3 lists
the bit combinations of the available modes. Other bit combinations are invalid and produce un­
defined results.

The compare/capture modules perform their programmed functions when their common time
base, the PCA timer/counter, runs. The timer/counter is turned on and off with the CR bit in the
CCON register. To disable any given module, program it for the no operation mode. The occur­
rence of a capture, software timer, or high-speed output event in a compare/capture module sets
the module's compare/capture flag (CCFx) in the CCON register and generates a PCA interrupt
request if the corresponding enable bit in the CCAPMx register is set.

The CPU can read or write the CCAPxH and CCAPxL registers at any time.

11.3.1 16-bit Capture Mode

The capture mode (Figure 11-2) provides the PCA with the ability to measure periods, pulse
widths, duty cycles, and phase differences at up to five separate inputs. External 1/0 pins CEXO
through CEX4 are sampled for signal transitions (positive and/or negative as specified). When a
compare/capture module programmed for the capture mode detects the specified transition, it
captures the PCA timer/counter value. This records the time at which an external event is detect­
ed, with a resolution equal to the timer/counter clock period.

To program a compare/capture module for the 16-bit capture mode, program the CAPPx and
CAPNx bits in the module's CCAPMx register as follows:

• To trigger the capture on a positive transition, set CAPPx and clear CAPNx.

• To trigger the capture on a negative transition, set CAPNx and clear CAPPx.

• To trigger the capture on a positive or negative transition, set both CAPPx and CAPNx.

I 11-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table 11-3 on page 11-14 lists the bit combinations for selecting module modes. For modules in
the capture mode, detection of a valid signal transition at the 1/0 pin (CEXx) causes hardware to
load the current PCA timer/counter value into the compare/capture registers (CCAPxH/CCAPxL)
and to set the module's compare/capture flag (CCFx) in the CCON register. If the corresponding
interrupt enable bit (ECCFx) in the CCAPMx register is set (Figure 11-9 on page 11-15), the PCA
sends an interrupt request to the interrupt handler.

Since hardware does not clear the event flag when the interrupt is processed, the user must clear
the flag in software. A subsequent capture by the same module overwrites the existing captured
value. To preserve a captured value, save it in RAM with the interrupt service routine before the
next capture event occurs.

CEXx
External 1/0

x = 0, 1,2,3 or 4
X = Don't Care

x
7

_/

0

Capture

CCON Register

CAPPx CAPNx 0 0 0

CCAPMx Mode Register

Figure 11-2. PCA 16-bit Capture Mode

11.3.2 Compare Modes

PCA Timer/Counter

I
CCAPxH: CCAPxL

ECCFx

0

Interrupt
Request

A4163-02

The compare function provides the capability for operating the five modules as timers, event
counters, or pulse width modulators. Four modes employ the compare function: 16-bit software
timer mode, high-speed output mode, WDT mode, and PWM mode. In the first three of these, the
compare/capture module continuously compares the 16-bit PCA timer/counter value with the 16-
bit value pre-loaded into the module's CCAPxH/CCAPxL register pair. In the PWM mode, the
module continuously compares the value in the low-byte PCA timer/counter register (CL) with
an 8-bit value in the CCAPxL module register. Comparisons are made three times per peripheral

11-6

PROGRAMMABLE COUNTER ARRAY

cycle to match the fastest PCA timer/counter clocking rate (F05c/4). For a description of periph­
eral cycle timing, see "Clock and Reset Unit" on page 2-7.

Setting the ECOMx bit in a module's mode register (CCAPMx) selects the compare function for
that module (Figure 11-9 on page 11-15). To use the modules in the compare modes, observe the
following general procedure:

1. Select the module's mode of operation.

2. Select the input signal for the PCA timer/counter.

3. Load the comparison value into the module's compare/capture register pair.

4. Set the PCA timer/counter run control bit.

5. After a match causes an interrupt, clear the module's compare/capture flag.

11.3.3 16-bit Software Timer Mode

To program a compare/capture module for the 16-bit software timer mode (Figure 11-3), set the
ECOMx and MATx bits in the module's CCAPMx register. Table 11-3 lists the bit combinations
for selecting module modes.

A match between the PCA timer/counter and the compare/capture registers (CCAPxH/CCAPxL)
sets the module's compare/capture flag (CCFx in the CCON register). This generates an interrupt
request if the corresponding interrupt enable bit (ECCFx in the CCAPMx register) is set. Since
hardware does not clear the compare/capture flag when the interrupt is processed, the user must
clear the flag in software. During the interrupt routine, a new 16-bit compare value can be written
to the compare/capture registers (CCAPxH/CCAPxL).

I

NOTE
To prevent an invalid match while updating these registers, user software
should write to CCAPxL first, then CCAPxH. A write to CCAPxL clears the
ECOMx bit disabling the compare function, while a write to CCAPxH sets the
ECOMx bit re-enabling the compare function.

11-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Count
Input

PCA Timer/Counter

CH 1 CL
(8 Bits) : (8 Bits)

Compare/Capture
Module

CCAPxH: CCAPxL
(8 Bits) I (8 Bits)

Enable

Toggle

Match ,__x CEXx

Interrupt
Request

x ECOMx 0 0 MATx TOGx 0 ECCFx

Reset

Write to
CCAPxL

7

11111

Write to CCAPxH

CCAPMx Mode Register

X = Don't Care
x = 0, 1, 2, 3, 4

0

For software timer mode, set ECOMx and MATx.
For high speed output mode, set ECOMx, MATx, and TOGx.

A4164-01

Figure 11-3. PCA Software Timer and High-speed Output Modes

11.3.4 High-speed Output Mode

The high-speed output mode (Figure 11-3) generates an output signal by toggling the module's
1/0 pin (CEXx) when a match occurs. This provides greater accuracy than toggling pins in soft­
ware because the toggle occurs before the interrupt request is serviced. Thus, interrupt response
time does. not affect the accuracy of the output.

To program a compare/capture module for the high-speed output mode, set the ECOMx, MATx,
TOGx bits in the module's CCAPMx register. Table 11-3 on page 11-14 lists the bit combinations
for selecting module modes, A match between the PCA timer/counter and the compare/capture
registers (CCAPxH/CCAPxL) toggles the CEXx pin and sets the module's compare/capture flag
(CCFx in the CCON register). By setting or clearing the CEXx pin in software, the user selects
whether the match toggles the pin from low to high or vice versa.

The user also has the option of generating an interrupt request when the match occurs by setting
the corresponding interrupt enable bit (ECCFx in the CCAPMxregister). Since hardware does not
clear the compare/capture flag when the interrupt is processed, the user must clear the flag in soft­
ware.

11-8 l_

PROGRAMMABLE COUNTER ARRAY

If the user does not change the compare/capture registers in the interrupt routine, the next toggle
occurs after the PCA timer/counter rolls over and the count again matches the comparison value.
During the interrupt routine, a new 16-bit compare value can be written to the compare/capture
registers (CCAPxH/CCAPxL).

NOTE
To prevent an invalid match while updating these registers, user software
should write to CCAPxL first, then CCAPxH. A write to CCAPxL clears the
ECOMx bit disabling the compare function, while a write to CCAPxH sets the
ECOMx bit re-enabling the compare function.

11.3.5 PCA Watchdog Timer Mode

A watchdog timer (WDT) provides the means to recover from routines that do not complete suc­
cessfully. A WDT automatically invokes a device reset if it does not regularly receive hold-off
signals. WDTs are used in applications that are subject to electrical noise, power glitches, elec­
trostatic discharges, etc., or where high reliability is required.

In addition to the 8X930Ax's 14-bit hardware WDT, the PCA provides a programmable-frequen­
cy 16-bit WDT as a mode option on compare/capture module 4. This mode generates a device
reset when the count in the PCA timer/counter matches the value stored in the module 4 com­
pare/capture registers. A PCA WDT reset has the same effect as an external reset. Module 4 is
the only PCA module that has the WDT mode. When not programmed as a WDT, it can be used
in the other modes.

To program module 4 for the PCA WDT mode (Figure 11-4), set the ECOM4 and MAT4 bits in
the CCAPM4 register and the WDTE bit in the CMOD register. Table 11-3 lists the bit combina­
tions for selecting module modes. Also select the desired input for the PCA timer/counter by pro­
gramming the CPSO and CPS 1 bits in the CMOD register (see Figure 11-7 on page 11-13). Enter
a 16-bit comparison value in the compare/capture registers (CCAP4H/CCAP4L). Enter a 16-bit
initial value in the PCA timer/counter (CH/CL) or use the reset value (OOOOH). The difference
between these values multiplied by the PCA input pulse rate determines the running time to "ex­
piration." Set the timer/counter run control bit (CR in the CCON register) to start the PCA WDT.

The PCA WDT generates a reset signal each time a match occurs. To hold off a PCA WDT reset,
the user has three options:

• periodically change the comparison value in CCAP4H/CCAP4L so a match never occurs

• periodically change the PCA timer/counter value so a match never occurs

• disable the module 4 reset output signal by clearing the WDTE bit before a match occurs,
then later re-enable it

The first two options are more reliable because the WDT is not disabled as in the third option.
The second option is not recommended if other PCA modules are in use, since the five modules
share a common time base. Thus, in most applications the first option is the best one.

11-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Count
Input

Reset
Write to

CCAP4L

PCA Timer/Counter

CH 1 CL
(8 Bits) : (8 Bits)

x
7

11111

Compare/Capture
Module

CCAP4H: CCAP4L
(8 Bits) I (8 Bits)

Enable

ECOM4 0 0

WDTE

CMOD.6

x
CCAPM4 Mode Register

X = Don't Care

Figure 11-4. PCA Watchdog Timer Mode

11.3.6 Pulse Width Modulation Mode

0 x
0

A4165·01

The five PCA comparator/capture modules can be independently programmed to function as
pulse width modulators (Figure 11-5). The modulated output, which has a pulse width resolution
of eight bits, is available at the CEX.x pin. The PWM output can be used to convert digital data to
an analog signal with simple external circuitry.

In this mode the value in the low byte of the PCA timer/counter (CL) is continuously compared
with the value in the low byte of the compare/capture register (CCAPxL). When CL< CCAPxL,
the output waveform (Figure 11-6) is low. When a match occurs (CL = CCAPxL), the output
waveform goes high and remains high until CL rolls over from FFH to OOH, ending the period.
At rollover the output returns to a low, the value in CCAPxH is loaded into CCAPxL, and a new
period begins.

11-10 I

PROGRAMMABLE COUNTER ARRAY

CCAPxH

CL rollover from FFH to OOH loads -----'~
CCAPxH contents into CCAPxL

X = Don't Care
x = 0, 1, 2, 3, 4.

CL
(8 Bits)

11011

CL<CCAPxL

CL~CCAPxL
11111

x ECOMx 0 0 0 0 PWMx

7 CCAPMx Mode Register

Figure 11-5. PCA 8-bit PWM Mode

CEXx

0

0

A4166-01

The value in CCAPxL determines the duty cycle of the current period. The value in CCAPxH de­
termines the duty cycle of the following period. Changing the value in CCAPxL over time mod­
ulates the pulse width. As depicted in Figure 11-6, the 8-bit value in CCAPxL can vary from 0
(100% duty cycle) to 255 (0.4% duty cycle).

NOTE
To change the value in CCAPxL without glitches, write the new value to the
high byte register (CCAPxH). This value is shifted by hardware into CCAPxL
when CL rolls over from FFH to OOH.

The frequency of the PWM output equals the frequency of the PCA timer/counter input signal
divided by 256. The highest frequency occurs when the F0 sd4 input is selected for the PCA tim­
er/counter. For PLLSEL2:0 = 100 and Pose= 12 MHz, this is 11.7 KHz. For PLLSEL2:0 = 110
and Pose = 12 MHz, this is 23.4 KHz.

11-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

To program a compare/capture module for the PWM mode, set the ECOMx and PWMx bits in
the module's CCAPMx register. Table 11-3 on page 11-14 lists the bit combinations for selecting
module modes. Also select the desired input for the PCA timer/counter by programming the
CPSO and CPS 1 bits in the CMOD register (see Figure 11-7). Enter an 8-bit value in CCAPxL to
specify the duty cycle of the first period of the PWM output waveform. Enter an 8-bit value in
CCAPxH to specify the duty cycle of the second period. Set the timer/counter run control bit (CR
in the CCON register) to start the PCA timer/counter.

Duty
CCAPxl Cycle Output Waveform

255 0.4% ~ I I
230 10% ~l n n n_

128 50%
1

0

25 90% ~ lJ LI LI L
0 100%

0

A4161-01

Figure 11-6. PWM Variable Duty Cycle

11-12

--------------- - ------ ·····- .. -_ _L_

PROGRAMMABLE COUNTER ARRAY

CMOD Address: S:D9H
Reset State: OOXX XOOOB

7 0

~-C_ID_L~~W_D_T_E~~~~~~~~I ~I ~~~~C_P_S_1~~C_P_s_o~~-EC_F~

Bit Bit Function Number Mnemonic

7 CIDL PCA Timer/Counter Idle Control:

CIDL = 1 disables the PCA timer/counter during idle mode. CIDL = O
allows the PCA timer/counter to run during idle mode.

6 WDTE Watchdog Timer Enable:

WDTE = 1 enables the watchdog timer output on PCA module 4.
WDTE = O disables the PCA watchdog timer output.

5:3 - Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2:1 CPS1:0 PCA Timer/Counter Input Select:

CPS1 CPSO

0 0 Fosc /12
0 1 Fosc 14
1 0 Timer 0 overflow
1 1 External clock at ECI pin (maximum rate = F osc /8)

0 ECF PCA Timer/Counter Interrupt Enable:

ECF = 1 enables the CF bit in the CCON register to generate an interrupt
request.

Figure 11-7. CMOD: PCA Timer/Counter Mode Register

I
11-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

CCON Address: S:DBH
Reset State: OOXO OOOOB

7 0

.__~c_F~_._~c_R~-'-~~~-'-~c_c_F_4___.ll ~~c_c_F_3~~c_c~F2~~-c_c_F_1~~-c_c_F_o~

Bit Bit Function Number Mnemonic

7 CF PCA Timer/Counter Overflow Flag:

Set by hardware when.the PCA timer/counter rolls over. This generates
an interrupt request if the ECF interrupt enable bit in CMOD is set. CF
can be set by hardware or software but can be cleared only by software.

6 CR PCA Timer/Counter Run Control Bit:

Set and cleared by software to turn the PCA timer/counter on and off.

5 - Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

4:0 CCF4:0 PCA Module Compare/Capture Flags:

Set by hardware when a match or capture occurs. This generates a PCA
interrupt request if the ECCFx interrupt enable bit in the corresponding
CCAPMx register is set. Must be cleared by software.

Figure 11-8. CCON: PCA Timer/Counter Control Register

Table 11-3. PCA Module Modes

ECOMx CAPPx CAPNx MATx TOGx PWMx ECCFx Module Mode

0 0 0 0 0 0 0 No operation

x 1 0 0 0 0 x 16-bit capture on positive-edge
trigger at CEXx

x 0 1 0 0 0 x 16-bit capture on negative-edge
trigger at CEXx

x 1 1 0 0 0 x 16-bit capture on positive- or
negative-edge trigger at CEXx

1 0 0 1 0 0 x Compare: software timer

1 0 0 1 1 0 x Compare: high-speed output

1 0 0 0 0 1 0 Compare: 8-bit PWM

1 0 0 1 x 0 x Compare: PCA WOT
(CCAPM4 only) (Note 3)

NOTES:
1. This table shows the CCAPMx register bit combinations for selecting the operating modes of the PCA

compare/capture modules. Other bit combinations are invalid. See Figure 11-9 for bit definitions.
2. x = 0-4, X = Don't care.
3. For PCA WOT mode, also set the WDTE bit in the CMOD register to enable the reset output signal.

11-14

------'----

____ l

CCAPMx (x = 0-4)

7

PROGRAMMABLE COUNTER ARRAY

Address: CCAPMO S:DAH
CCAPM1 S:DBH
CCAPM2 S:DCH
CCAPM3 S:DDH
CCAPM4 S:DEH

Reset State: XOOO 00008

0

~~~~~E_C_O_M~x~~C_A_P_Px~~-C_A_P_N_x~I ~' ~M_A_J_x~~-T_O_G_x~~-P_W_M_x~~-E_C_C_F_x~ 

Bit Bit Function 
Number Mnemonic 

7 - Reserved: 

The value read from this bit is indeterminate. Write a zero to this bit. 

6 ECOMx Compare Modes: 

ECOMx = 1 enables the module comparator function. The comparator is 
used to implement the software timer, high-speed output, pulse width 
modulation, and watchdog timer modes. 

5 CAPPx Capture Mode (Positive): 

CAPPx = 1 enables the capture function with capture triggered by a 
positive edge on pin CEXx. 

4 CAPNx Capture Mode (Negative): 

CAPNx = 1 enables the capture function with capture triggered by a 
negative edge on pin CEXx. 

3 MATx Match: 

Set ECOMxand MATxto implement the software timer mode. When 
MATx= 1, a match of the PCA timer/counter with the compare/capture 
register sets the CCFx bit in the CCON register, flagging an interrupt. 

2 TOGx Toggle: 

Set ECOMx, MATx, and TOGxto implement the high-speed output 
mode. When TOGx = 1, a match of the PCA timer/counter with the 
compare/capture register toggles the CEXx pin. 

1 PWMx Pulse Width Modulation Mode: 

PWMx = 1 configures the module for operation as an 8-bit pulse width 
modulator with output waveform on the CEXx pin. 

0 ECCFx Enable CCFx Interrupt: 

Enables compare/capture flag CCFxin the CCON register to generate 
an interrupt request. 

Figure 11-9. CCAPMx: PCA Compare/Capture Module Mode Registers 

11-15 





12 
Serial 1/0 Port 

I 





CHAPTER12 
SERIAL 1/0 PORT 

The serial input/output port supports communication with modems and other external peripheral 
devices. This chapter provides instructions for programming the serial port and generating the se­
rial 1/0 baud rates with timer l and timer 2. 

12.1 OVERVIEW 

The serial 1/0 port provides both synchronous and asynchronous communication modes. It oper­
ates as a universal asynchronous receiver and transmitter (UART) in three full-duplex modes 
(modes l, 2, and 3). Asynchronous transmission and reception can occur simultaneously and at 
different baud rates. The UART supports framing-bit error detection, multiprocessor communi­
cation, and automatic address recognition. The serial port also operates in a single synchronous 
mode (mode 0). 

The synchronous mode (mode 0) operates at a single baud rate. Mode 2 operates at two baud 
rates. Modes 1 and 3 operate over a wide range of baud rates, which are generated by timer 1 and 
timer 2. Baud rates are detailed in "Baud Rates" on page 12-10. 

NOTE 
The baud rate calculations in this chapter are for PLL off. For the case of PLL 
on (PLLSEL2:0 = 110), the internal clock distributed to the CPU and the 
peripherals is twice as fast, so all baud rates are two times greater than shown 
(PLLSEL2:0 = 100). See Table 2-2 on page 2-8. 

The serial port signals are defined in Table 12-1, and the serial port special function registers are 
described in Table 12-2. Figure 12-1 is a block diagram of the serial port. 

For the three asynchronous modes, the UART transmits on the TXD pin and receives on the RXD 
pin. For the synchronous mode (mode 0), the UART outputs a clock signal on the TXD pin and 
sends and receives messages on the RXD pin (Figure 12-1). The SBUF register, which holds re­
ceived bytes and bytes to be transmitted, actually consists of two physically different registers. 
To send, software writes a byte to SBUF; to receive, software reads SBUF. The receive shift reg­
ister allows reception of a second byte before the first byte has been read from SBUF. However, 
if software has not read the first byte by the time the second byte is received, the second byte will 
overwrite the first. The UART sets interrupt bits TI and RI on transmission and reception, respec­
tively. These two bits share a single interrupt request and interrupt vector. 

The serial port control (SCON) register (Figure 12-2) configures and controls the serial port. 

___ J 12-1 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

Table 12-1. Serial Port Signals 

Function 
l\'pe Description Multiplexed 

Name With 

TXD 0 Transmit Data. In mode _o, TXD transmits the clock signal. In P3.1 
modes 1, 2, and 3, TXD transmits serial data. 

RXD 1/0 Receive Data. In mode 0, RXD transmits and receives serial P3.0 
data. In modes 1, 2, and 3, RXD receives serial data. 

Table 12-2. Serial Port Special Function Registers 

Mnemonic Description Address 

SBUF Serial Buffer. Two separate registers, accessed with same address S:99H 
comprise the SBUF register. Writing to SBUF loads the transmit buffer; 
reading SBUF accesses the receive buffer. 

SCON Serial Port Control. Selects the serial port operating mode. SCON enables S:98H 
and disables the receiver, framing bit error detection, multiprocessor 
communication, automatic address recognition, and the serial port interrupt 
bits. 

SAD DR Serial Address. Defines the individual address for a slave device. S:ABH 

SADEN Serial Address Enable. Specifies the mask byte that is used to define the S:BBH 
given address for a slave device. 

12.2 MODES OF OPERATION 

The serial I/O port can operate in one synchronous and three asynchronous modes. 

12.2.1 Synchronous Mode (Mode 0) 

Mode 0 is a half-duplex, synchronous mode, which is commonly used to expand the 110 capabil­
ities of a device with shift registers. The transmit data (TXD) pin outputs a set of eight clock puls­
es while the receive data (RXD) pin transmits or receives a byte of data. The eight data bits are 
transmitted and received least-significant bit (LSB) first. Shifts occur in the last phase (S6P2) of 
every peripheral cycle, which corresponds to a baud rate of F08cll2. Figure 12-3 on page 12-6 
shows the timing for transmission and reception in mode 0. 

12.2.1.1 Transmission (Mode 0) 

Follow these steps to begin a transmission: 

1. Write to the SCON register, clearing bits SMO, SMl, and REN. 

2. Write the byte to be transmitted to the SBUF register. This write starts the transmission. 

Hardware executes the write to SBUF in the last phase (S6P2) of a peripheral cycle. At S6P2 of 
the following cycle, hardware shifts the LSB (DO) onto the RXD pin. At S3Pl of the next cycle, 
the TXD pin goes low for the first clock-signal pulse. Shifts continue every peripheral cycle. In 
the ninth cycle after the write to SBUF, the MSB (D7) is on the RXD pin. At the beginning of the 

12-2 

___ :_J ___ _ 



SERIAL 1/0 PORT 

tenth cycle, hardware drives the RXD pin high and asserts TI (S lPl) to indicate the end of the 
transmission. 

12.2.1.2 Reception (Mode O) 

To start a reception in mode 0, write to the SCON register. Clear bits SMO, SMl, and RI and set 
the REN bit. 

Hardware executes the write to SCON in the last phase (S6P2) of a peripheral cycle (Figure 12-3). 
In the second peripheral cycle following the write to SCON, TXD goes low at S3Pl for the first 
clock-signal pulse, and the LSB (DO) is sampled on the RXD pin at S5P2. The DO bit is then shift­
ed into the shift register. After eight shifts at S6P2 of every peripheral cycle, the LSB (D7) is shift­
ed into the shift register, and hardware asserts RI (S lPl) to indicate a completed reception. 
Software can then read the received byte from SBUF. 

TxD 

RxD 

Serial 1/0 
Control 

RI 

18 Bus 

Write SBUF 

Tl 

SCON 

SBUF 
(Transmit) 

ModeO 
Transmit 

Read SBUF 

SBUF 
(Receive) 

Load SBUF 

Receive 
Shift Register 

Interrupt 
Request 

Figure 12-1. Serial Port Block Diagram 

A4123-01 

12-3 



8X930AX UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

SCON Address: S:98H 
Reset State: OOOOOOOOB 

7 0 

FE/SMO SM1 SM2 REN 11 TB8 RB8 Tl RI 

Bit Bit Function Number Mnemonic 

7 FE Framing Error Bit: 

To select this function, set the SMODO bit in the PCON register. Set by 
hardware to indicate an invalid stop bit. Cleared by software, not by valid 
frames. 

SMO Serial Port Mode Bit 0: 

To select this function, clear the SMODO bit in the PCON register. 
Software writes to bits SMO and SM1 to se.lect the serial port operating 
mode. Refer to the SM1 bit for the mode selections. 

6 SM1 Serial Port Mode Bit 1: · 

Software writes to bits SM1 and SMO (above) to select the serial port 
operating mode. 

SMO SM1 Mode Description Baud Ratet 
0 0 0 Shift register Fosc/12 
0 1 1 S-bit UART Variable 
1 0 2 9-bit UART F08cf32tt or F08c/64tt 
1 1 3 9-bit UART Variable 

tFor the case of PLL on, see note on page page 12-1. 

ttSelect by programming the SMOD bit in the PCON register (see 
section "Baud Rates" on page 12-10). 

5 SM2 Serial Port Mode Bit 2: 

Software writes to bit SM2 to enable and disable the multiprocessor 
communication and automatic address recognition features. This allows 
the serial port to differentiate between data and command frames and to 
recognize slave and broadcast addresses. 

4 REN Receiver Enable Bit: 

To enable reception, set this bit. To enable transmission, clear this bit. 

3 TBS Transmit Bit S: 

In modes 2 and 3, software writes the ninth data bit to be transmitted to 
TBS. Not used in modes O and 1. 

2 RBS Receiver Bit S: 

Mode 0: Not used. 

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit 
received. 

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth 
data bit received. 

12-4 



SERIAL 1/0 PORT 

SCON (Continued) Address: S:98H 
Reset State: 0000 OOOOB 

7 0 

..._F_8_S_M_o_._~s_M_1~_,__s_M_2~...__R_E_N___.I ~l~T_B_a~_,___R_B_a~-'-~T_l~..._~R-1____. 

Bit Bit 
Function Number Mnemonic 

1 Tl Transmit Interrupt Flag Bit: 

Set by the transmitter after the last data bit is transmitted. Cleared by 
software. 

0 RI Receive Interrupt Flag Bit: 

Set by the receiver after the last data bit of a frame has been received. 
Cleared by software. 

Figure 12-2. SCON: Serial Port Control Register 

__ J_ _____ _ 
12-5 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

Transmit 

TXD 

Write to _fl, SBUF 

S61P2 \ 
Shift n 

~ 
S6P2 

RXD I \ K DO x D1 

S6P2 S6P2 

!=-'---s""~~ 
---...... ~~ D7 7 

Tl 

TXD 

Write to _fl Set REN, Clear RI 
SCON -

I 

Shift S6P2 n ~~ 
---------S .. 6P1_2 __ __.SSP2 S6P2 . S6P2 

DO D1 D6 D7 

---.-1---,...1 --D ..... ---Di------s{]-----D1---
seP2 S6P2 I 

RXD 

S5P2 

RI ---,'-----------~------'r--. SI j 
S1P1 

A4124-02 

Figure 12-3. Mode O Timing 

Ninth Data Bit (Modes 2 and 3 only) 

Stop Bit ----

A2261-01 

Figure 12-4. Data Frame (Modes 1, 2, and 3) 

12-6 



SERIAL 1/0 PORT 

12.2.2 Asynchronous Modes (Modes 1, 2, and 3) 

The serial port has three asynchronous modes of operation: 

• Mode 1. Mode 1 is a full-duplex, asynchronous mode. The data frame (Figure 12-4) 
consists of 10 bits: one start bit, eight data bits, and one stop bit. Serial data is transmitted 
on the TXD pin and received on the RXD pin. When a message is received, the stop bit is 
read in the RBS bit in the SCON register. The baud rate is generated by overflow of timer 1 
or timer 2 (see "Baud Rates" on page 12-10). 

• Modes 2 and 3. Modes 2 and 3 are full-duplex, asynchronous modes. The data frame 
(Figure 12-4) consists of 11 bits: one start bit, eight data bits (transmitted and received LSB 
first), one programmable ninth data bit, and one stop bit. Serial data is transmitted on the 
TXD pin and received on the RXD pin. On receive, the ninth bit is read from the RBS bit in 
the SCON register. On transmit, the ninth data bit is written to the TBS bit in the SCON 
register. Alternatively, you can use the ninth bit as a command/data flag. 

In mode 2, the baud rate is programmable to 1/32 or 1/64 of the oscillator frequency. 

In mode 3, the baud rate is generated by overflow of timer 1 or timer 2. 

12.2.2.1 Transmission (Modes 1, 2, 3) 

Follow these steps to initiate a transmission: 

1. Write to the SCON register. Select the mode with the SMO and SMl bits, and clear the 
REN bit. For modes 2 and 3, also write the ninth bitto the TBS bit. 

2. Write the byte to be transmitted to the SBUF register. This write starts the transmission. 

12.2.2.2 Reception (Modes 1, 2, 3) 

To prepare for a reception, set the REN bit in the SCON register. The actual reception is then ini­
tiated by a detected high-to-low transition on the RXD pin. 

12.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3) 

Framing bit error detection is provided for the three asynchronous modes. To enable the framing 
bit error detection feature, set the SMODO bit in the PCON register (see Figure 14-1 on page 
14-2). When this feature is enabled, the receiver checks each incoming data frame for a valid stop 
bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission 
by two CPUs. If a valid stop bit is not found, the software sets the FE bit in the SCON register 
(see Figure 12-2). 

Software may examine the FE bit after each reception to check for data errors. Once set, only soft­
ware or a reset can clear the FE bit. Subsequently received frames with valid stop bits cannot clear 
the FE bit. 

__ J_ _____ _ 
12-7 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

12.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3) 

Modes 2 and 3 provide a ninth-bit mode to facilitate multiprocessor communication. To enable 
this feature, set the SM2 bit in the SCON register (see Figure 12-2). When the multiprocessor 
communication feature is enabled, the serial port can differentiate between data frames (ninth bit 
clear) and address frames (ninth bit set). This allows the microcontroller to function as a slave 
processor in an environment where multiple slave processors share a single serial line. 

When the multiprocessor communication feature is enabled, the receiver ignores frames with the 
ninth bit clear. The receiver examines frames with the ninth bit set for an address match. If the 
received address matches the slave's address, the receiver hardware sets the RBS bit and the RI 
bit in the SCON register, generating an interrupt. 

NOTE 
The ES bit must be set in the IENO register to allow the RI bit to generate an 
interrupt. The IENO register is described in Chapter 8, Interrupts. 

The addressed slave's software then clears the SM2 bit in the SCON register and prepares to re­
ceive the data bytes. The other slaves are unaffected by these data bytes because they are waiting 
to respond to their own addresse.s. 

12.5 AUTOMATIC ADDRESS RECOGNITION 

The automatic address recognition feature is enabled when the multiprocessor communication 
feature is enabled (i.e., the SM2 bit is set in the SCON register). 

Implemented in hardware, automatic address recognition enhances the multiprocessor communi­
cation feature by allowing the serial port to examine the address of each incoming command 
frame. Only when the serial port recognizes its own address does the receiver set the RI bit in the 
SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command 
frames addressed to other devices. 

If desired, you may enable the automatic address recognition feature in mode 1. In this configu­
ration, the stop bit takes the place of the ninth data bit. The RI bit is set only when the received 
command frame address matches the device's address and is terminated by a valid stop bit. 

NOTE 
The multiprocessor communication and automatic address recognition features 
cannot be enabled in mode 0 (i.e., setting the SM2 bit in the SCON register in 
mode 0 has no effect). 

To support automatic address recognition, a device is identified by a given address and a broad­
cast address. 

12.s.1 Given Address 

Each device has an individual address that is specified in the SADDR register; the SADEN reg­
ister is a mask byte that contains don't-care bits (defined by zeros) to form the device's given ad-

12-8 

I 



SERIAL 1/0 PORT 

dress. These don't-care bits provide the flexibility to address one or more slaves at a time. To 
address a device by its individual address, the SADEN mask byte must be 1111 1111 The follow­
ing example illustrates how a given address is formed: 

SADDR 

SADEN 

Given 

0101 0110 

11111100 

0101 01XX 

The following is an example of how to use given addresses to address different slaves: 

Slave A: SAD DR 1111 0001 Slave C: SAD DR 1111 0010 

SADEN 11111010 SADEN 1111 1101 

Given 1111 oxox Given 1111 OOX1 

Slave B: SAD DR 1111 0011 

SADEN 11111001 

Given 1111 OXX1 

The SADEN byte is selected so that each slave may be addressed separately. For Slave A, bit 0 
(the LSB) is a don't-care bit; for Slaves B and C, bit 0 is a 1. To communicate with Slave A only, 
the master must send an address where bit 0 is clear (e.g., 1111 0000). 

For Slave A, bit I is a O; for Slaves Band C, bit I is a don't-care bit. To communicate with Slaves 
B and C, but not Slave A, the master must send an address with bits 0 and 1 both set (e.g., 
1111 0011). 

For Slaves A and B, bit 2 is a don't-care bit; for Slave C, bit 2 is a 0. To communicate with Slaves 
A and B, but not Slave C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 set 
(e.g., 1111 0101). 

To communicate with Slaves A, B, and C, the master must send an address with bit 0 set, bit 1 
clear, and bit 2 clear (e.g., 1111 0001). 

12.5.2 Broadcast Address 

A broadcast address is formed from the logical OR of the SADDR and SADEN registers with 
zeros defined as don'tccare bits, e.g.: 

SAD DR 

SADEN 

(SADDR) OR (SADEN) 

0101 0110 

11111100 

1111111X 

The use of don't-care bits provides flexibility in defining the broadcast address, however, in most 
applications, a broadcast address is OFFH. 

12-9 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

The following is an example of using broadcast addresses: 

Slave A: SADDR 1111 0001 Slave C: SAD DR 1111 0010 

SADEN 1111 1010 SADEN 1111 1101 

Broadcast 1111 1X11 Broadcast 1111 1111 

Slave B: SAD DR 1111 0011 

SADEN 1111 1001 

Broadcast 1111 1X11 

For Slaves A and B, bit 2 is a don't-care bit; for Slave C, bit 2 is set. To communicate with all of 
the slaves, the master must send an address FFH. 

To communicate with Slaves A and B, but not Slave C, the master can send an address FBH. 

12.5.3 Reset Addresses 

On reset, the SADDR and SADEN registers are initialized to OOH, i.e., the given and broadcast 
addresses are XXXX XXXX (all don't-care bits). This ensures that the serial port is backwards­
compatible with MCS® 51 microcontrollers that do not support automatic address recognition. 

12.6 BAUD RATES t 

You must select the baud rate for the serial port transmitter and receiver when operating in modes 
1, 2, and 3. (The baud rate is preset for mode 0.) In its asynchronous modes, the serial port can 
transmit and receive simultaneously. Depending on the mode, the transmission and reception 
rates can be the same or different. Table 12-3 summarizes the baud rates that can be used for the 
four serial I/O modes. 

12.6.1 Baud Rate for Mode O t 

With the PLL on, the baud rate for mode 0 is fixed at F08cl12. For the case of PLL on (PLLSEL2:0 
= 110), the baud rate for mode 0 is fixed at F08d6. 

t See note on page 12-1 

12-10 I 



SERIAL 1/0 PORT 

Table 12-3. Summary of Baud Rates 

Mode No.of Send and Receive Send and Receive 
Baud Rates at the Same Rate at Different Rates 

0 1 N/A N/A 

1 Manytt Yes Yes 

2 2 Yes No 

3 Manytt Yes Yes 

tt Baud rates are determined by overflow of timer 1 and/or timer 2. 

12.6.2 Baud Rates for Mode 2 t 

Mode 2 has two baud rates, which are selected by the SMODl bit in the PCON register (Figure 
14-1 on page 14-2). The following expression defines the baud rate: 

. SMOD1 Fosc 
Serial 1/0 Mode 2 Baud Rate = 2 x "'1i4 

12.6.3 Baud Rates for Modes 1 and 3 t 

In modes 1and3, the baud rate is generated by overflow of timer 1 (default) and/or timer 2. You 
may select either or both timer(s) to generate the baud rate(s) for the transmitter and/or the receiv­
er. 

12.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3) t 

Timer 1 is the default baud rate generator for the transmitter and the receiver in modes 1 and 3. 
The baud rate is determined by the timer 1 overflow rate and the value of SMOD, as shown in the 
following formula: 

Serial 1/0 Modes 1 and 3 Baud Rate= 2SMOD1xTimer1 O~~rflow Rate 

12.6.3.2 Selecting Timer 1 as the Baud Rate Generator t 

To select timer 1 as the baud rate generator: 

• Disable the timer interrupt by clearing the ETl bit in the IENO register (Figure 6-4 on page 
6-11). 

• Configure timer 1 as a timer or an event counter (set or clear the Cff# bit in the TMOD 
register, Figure 10-5 on page 10-8). 

• Select timer mode 0-3 by programming the Ml and MO bits in the TMOD register. 

t See note on page 12- l. 

12-11 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

In most applications, timer 1 is configured as a timer in auto-reload mode (high nibble of TMOD 
= OOlOB). The resulting baud rate is defined by the following expression: 

. SMOD1 Fosc 
Senal 1/0 Modes 1 and 3 Baud Rate= 2 x 32 x 12 x [256 _ (TH 1 )] 

Timer 1 can generate very low baud rates with the following setup: 

• Enable the timer 1 interrupt by setting the ETl bit in the JENO register. 

• Configure timer 1 to run as a 16-bit timer (high nibble of TMOD = OOOlB). 

• Use the timer 1 interrupt to initiate a 16-bit software reload. 

Table 12-4 lists commonly used baud rates and shows how they are generated by timer 1. 

Table 12-4. Timer 1 Generated Baud Rates for Serial 110 Modes 1 and 3 

Oscillator 
Timer1 

Baud 
Rate Frequency SMOD1 Reload 

{Fosc) CIT# Mode Value 

62.5 Kbaud (Max) t 12.0 MHz 1 0 2 FFH 

110.0 Baud 6.0 MHz 0 0 2 72H 

110.0 Baud t 12.0 MHz 0 0 1 FEEBH 

12.6.3.3 Timer 2 Generated Baud Rates (Modes 1and3) t 

Timer 2 may be selected as the baud rate generator for the transmitter and/or receiver (Figure 
12-5). The timer 2 baud rate generator mode is similar to the auto-reload mode. A rollover in the 
TH2 register reloads registers TH2 and TL2 with the 16-bit value in registers RCAP2H and 
RCAP2L, which are preset by software. 

The timer 2 baud rate is expressed by the following formula: 

Serial 1/0 Modes 1 and 3 Baud Rate = Timer 2 Oi~rflow Rate 

12.6.3.4 Selecting Timer 2 as the Baud Rate Generator t 

To select timer 2 as the baud rate generator for the transmitter and/or receiver, program the 
RCLCK and TCLCK bits in the T2CON register as shown in Table 12-5. (You may select differ­
ent baud rates for the transmitter and receiver.) Setting RCLK and/or TCLK puts timer 2 into its 
baud rate generator mode (Figure 12-5). In this mode, a rollover in the TH2 register does not set 
the TF2 bit in the T2CON register. Also, a high~to-low transition at the T2EX pin sets the EXF2 

t See note on page 12-1. 

12-12 

·--·~_L 



SERIAL 1/0 PORT 

bit in the T2CON register but does not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). 
You can use the T2EX pin as an additional external interrupt by setting the EXEN2 bit in T2CON. 

NOTE 
Turn the timer off (clear the TR2 bit in the T2CON register) before accessing 
registers TH2, TL2, RCAP2H, and RCAP2L. 

You may configure timer 2 as a timer or a counter. In most applications, it is configured for timer 
operation (i.e., the C/T2# bit is clear in the T2CON register). · 

Table 12-5. Selecting the Baud Rate Generator(s) 

RCLCK TCLCK Receiver Transmitter 
Bit Bit Baud Rate Generator Baud Rate Generator 

0 0 llmer 1 llmer 1 

0 1 Timer 1 llmer2 

1 0 Timer2 llmer 1 

1 1 llmer 2 llmer2 

Note that timer 2 increments every state time (2T08c) when it is in the baud rate generator mode. 
In the baud rate formula that follows, "RCAP2H, RCAP2L" denotes the contents of RCAP2H 
and RCAP2L taken as a 16-bit unsigned integer: 

. Fosc 
Senal 1/0 Modes 1 and 3 Baud Rate = 32 x (65536 _ (RCAP2H, RCAP2L)]. 

NOTE 
When timer 2 is configured as a timer and is in baud rate generator mode, do 
not read or write the TH2 or TL2 registers. The timer is being incremented 
every state time, and the results of a read or write may not be accurate. In 
addition, you may read, but not write to, the RCAP2 registers; a write may 
overlap a reload and cause write and/or reload errors. 

Table 12-6 lists commonly used baud rates and shows how they are generated by timer 2. 

__ _J_ 12-13 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

Note: 
Oscillator frequency 
is divided by 2, not 12. 

XTAL1 

T2 

Cff2# 
TR2 

Timer 1 
Overflow 

I 
RCAP2H: RCAP2L 

T2EX ~'-I-r:r- EXF2 · 11----.11)1a~ Interrupt 
. Request 

EXEN2 

Note availability of additional external interrupt. ,. 

Figure 12-5. Timer 2 in Baud Rate Generator Mode t 

Table 12-6. Timer 2 Generated Baud Rates 

Oscillator 
Baud Rate Frequency RCAP2H RCAP2L 

(Fosc> 

375.0 Kbaud tt 12 MHz FFH FFH 

9.6 Kbaud tt 12 MHz FFH D9H 

4.8 Kbaudtt 12 MHz FFH B2H 

2.4 Kbaud tt 12 MHz FFH 64H 

1.2 Kbaud tt 12 MHz FEH C8H 

300.0baud tt 12 MHz FBH 1EH 

110.0 baud tt 12 MHz F2H AFH 

300.0 baud 6MHz FDH 8FH 

110.0 baud 6MHz F9H 57H 

tt See note on page page 12-1. 

A4120-01 

t For the case of PLL on, the clock frequency at the 0 input of the C/T2# selector is F osc· See note on p~ge 12-1. 

12-14 



Minimum Hardware 
Setup 

I 

13 





I 

CHAPTER13 
MINIMUM HARDWARE SETUP 

This chapter discusses the basic operating requirements of the 8X930Ax and describes a mini­
mum hardware setup. Topics covered include power, ground, clock source, and device reset. For 
parameter values, refer to the device data sheet. 

13.1 MINIMUM HARDWARE SETUP 

Figure 13-1 shows a minimum hardware setup that employs the on-chip oscillator for the system 
clock and provides power-on reset. Control signals; Ports 0, 1, 2, and 3; and the USB port are not 
shown. See section "Clock Sources" on page 13-2 and section "Power-on Reset" on page 13-6. 
PLLSEL.2:0 select the USB operating rate. Refer to Table 2-2 on page 2-8. 

8X930 
Microcontroller 

Vee 

AVee 

RST 

PLLSELO 

PLLSEL1 

PLLSEL2 

EA# 

Figure 13-1. Minimum Setup 

13.2 ELECTRICAL ENVIRONMENT 

+ 
1µF 

} USB Rate Select 

A4291-03 

The 8X930Ax is a high-speed CHM OS device. To achieve satisfactory performance, its operating 
environment should accommodate the device signal waveforms without introducing distortion or 
noise. Design considerations relating to device performance are discussed in this section. See the 
device data sheet for voltage and current requirements, operating frequency, and waveform tim­
ing. 

I 13-1 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

13.2.1 Power and Ground Pins 

Power the 8X930Ax from a well-regulated power supply designed for high-speed digital loads. 
Use short, low impedance connections to the power (V cc) and ground (V ss) pins. 

13.2.2 Unused Pins 

To provide stable, predictable performance, connect unused input pins to V ss or V cc- Untermi­
nated input pins can float to a mid-voltage level and draw excessive current. Unterminated inter­
rupt inputs may generate spurious interrupts. 

13.2.3 Noise Considerations 

The fast rise and fall times of high-speed CHM OS logic may produce noise spikes on the power 
supply lines and signal outputs. To minimize noise and waveform distortion follow good board 
layout techniques. Use sufficient decoupling capacitors and transient absorbers to keep noise 
within acceptable limits. Connect 0.01 µF bypass capacitors between V cc and each V ss pin. Place 
the capacitors close to the device to minimize path lengths. 

Multi-layer printed circuit boards with separate V cc and ground planes help minimize noise. For 
additional information on noise reduction, see Application Note AP-125, "Designing Microcon­
troller Systems for Electrically Noisy Environments." 

13.3 CLOCK SOURCES 

The 8X930Ax can use an external clock (Figure 13-3), an on-chip oscillator with crystal or ce­
ramic resonator (Figure 13-2), or an on-chip phase-locked oscillator (locked to the external clock 
or the on-chip oscillator) as its clock source. For USB operating rates, see Table 2-2 on page 2-8. 

13.3.1 On-chip Oscillator (Crystal) 

This clock source uses an external quartz crystal connected from XTALl to XTAL2 as the fre­
quency-determining element (Figure 13-2). The crystal operates in its fundamental mode as an 
inductive reactance in parallel resonance with capacitance external to the crystal. Oscillator de­
sign considerations include crystal specifications, operating temperature range, and parasitic 
board capacitance. Consult the crystal manufacturer's data sheet for parameter values. With high 
quality components, C 1 = C2 = 30 pF is adequate for this application. 

Pins XTALl and XTAL2 are protected by on-chip electrostatic discharge (ESD) devices, Dl and 
D2, which are diodes parasitic to the RF FETs. They serve as clamps to V cc and V ss· Feedback 
resistor RF in the inverter circuit, formed from paralleled n- and p- channel FETs, permits the PD 
bit in the PCON register (Figure 14-1 on page 14-2) to disable the clock during powerdown. 

Noise spikes at XTALl and XTAL2 can disrupt microcontroller timing. To minimize coupling 
between other digital circuits and the oscillator, locate the crystal and the capacitors near the chip 
and connect to XTALl, XTAL2, and Vss with short, direct traces. To further reduce the effects of 
noise, place guard rings around the oscillator circuitry and ground the metal crystal case. 

13-2 __ l_ .. 



MINIMUM HARDWARE SETUP 

For a more in-depth discussion of crystal specifications, ceramic resonators, and the selection of 
Cl and C2 see Applications Note AP-155, "Oscillators for Microcontrollers," in the Embedded 
Applications handbook. 

13.3.2 On-chip Oscillator (Ceramic Resonator) 

In cost-sensitive applications, you may choose a ceramic resonator instead of a crystal. Ceramic 
resonator applications may require slightly different capacitor values and circuit configuration. 
Consult the manufacturer's data sheet for specific information. 

Tolntemal 
I Timing Circuit 1il I~ e. 

Vee ~ I J!! •.5 
I 

Quartz Crystal 
or Ceramic Resonator 01 PD# 

\ 02 
RF -

A4143-03 

Figure 13-2. CHMOS On-chip Oscillator 

13.3.3 External Clock 

To operate the 8X930Ax from an external clock, connect the clock source to the XTALl pin as 
shown in Figure 13-3. Leave the XTAL2 pin floating. The external clock driver can be a CMOS 
gate. If the clock driver is a TIL device, its output must be connected to V cc through a 4.7 ill 
pullup resistor. 

For external clock drive requirements, see the device data sheet. Figure 13-4 shows the clock drive 
waveform. The external clock source must meet the minimum high and low times (TCHcx and 
TCLcx) and the maximum rise and fall times (TCLCll and TraCL) to minimize the effect of external 
noise on the clock generator circuit. Long rise and fall times increase the chance that external 
noise will affect the clock circuitry and cause unreliable operation. 

The external clock driver may encounter increased capacitance loading at XTALI when power is 
applied, due to the interaction between the internal amplifier and its feedback capacitance (i.e., 
the Miller effect). Once the input waveform requirements are met, the input capacitance remains 
under20pF. 

I 13-3 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

External XTAL1 
Clock 

CMOS 
Clock Driver 

N/C XTAL2 

Vss 

-

Note: If TIL clock driver is used, connect a 4.7k0 pullup resistor from driver output to Vee. 

A4142-03 

Figure 13-3. External Clock Connection for the 8X930Ax 

TeHex 

Vcc-0.5----------... 
0.7Vcc 

0.45V 

A4119-01 

Figure 13-4. External Clock Drive Waveforms 

13.4 RESET 

A device reset initializes the 8X930Ax and vectors the CPU to address FF:OOOOH. A reset is re­
quired after applying power. A reset is a means of exiting the idle and powerdown modes or re­
covering from software malfunctions. 

To achieve a valid reset, V cc must be within its normal operating range (see device data sheet) 
and the reset signal must be maintained for 64 clock cycles (64T08c) after the oscillator has sta­
bilized. 

13-4 



MINIMUM HARDWARE SETUP 

Device reset is initiated in three ways: 

• externally, by asserting the RST pin 

• internally, if the hardware WDT or the PCA WDT expires 

• over the bus, by a USB-initiated reset 

These three reset mechanisms are ORed to create a single reset signal for the 8X930Ax. 

The power off flag (POF) in the PCON register indicates whether a reset is a warm start or a cold 
start. A cold start reset (POF = 1) is a reset that occurs after power has been off or V cc has fallen 
below 3 V, so the contents of volatile memory are indeterminate. POF is set by hardware when 
V cc rises from less than 3 V to its normal operating level. See "Power Off Flag" on page 14-1. A 
warm start reset (POF = 0) is a reset that occurs while the chip is at operating voltage, for exam­
ple, a reset initiated by a WDT overflow or an external reset used to terminate the idle or power­
down modes. 

13.4.1 Externally Initiated Resets 

To reset the 8X930Ax, hold the RST pin at a logic high for at least 64 clock cycles (64T08c) while 
the oscillator is running. Reset can be accomplished automatically at the time power is applied 
by capacitively coupling RST to V cc (see Figure 13-1 and "Power-on Reset" on page 13-6). The 
RST pin has a Schmitt trigger input and a pulldown resistor. 

13.4.2 WOT Initiated Resets 

Expiration of the hardware WDT (overflow) or the PCA WDT (comparison match) generates a 
reset signal. WDT initiated resets have the same effect as an external reset. See "Watchdog Tim­
er" on page 10-17 and section "PCA Watchdog Timer Mode" on page 11-9. 

13.4.3 USB Initiated Resets 

The 8X930Ax can be reset by the host or upstream hub if a reset signal is detected by the SIE. 
This reset signal is defined as an SEO held longer than 2.5 µs. A USB-initiated reset will reset all 
of the 8X930Ax hardware, even if the device is suspended (in which case it would first wake-up, 
then reset. See "USB Power Control" on page 14-6 for additional information about USB-related 
suspend and resume. 

In the USB system, an 8X930Ax chip reset must be communicated to the host to ensure that the 
host is aware of the state of the 8X930Ax to avoid being disabled. This requires board-level em­
ulation of a detach and attach signalling upstream whenever there is a chip reset. 

I 

NOTE 
You must ensure that the time from connection of this USB device to the bus 
until the entire reset process is complete (including firmware initialization of 
the 8X930Ax) is less than 10 ms. After 10 ms, the host may attempt to 
communicate with the 8X930Ax to set its device address. If the 8X930Ax 
firmware cannot respond to the host at this time, the host may disable the 
device after three attempts to communicate. 

13-5 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

13.4.4 Reset Operation 

When a reset is initiated, whether externally, over the bus, or by a WDT, the port pins are imme­
diately forced to their reset condition as a fail-safe precaution, whether the dock is running or not. 

The external reset signal and the WDT- and USB-initiated reset signals are combined internally. 
For an external reset the voltage on the RST pin must be held high for 32 internal clock cycles 
(TcLK) after the oscillator and on-chip PLL stabilize(approximately 5 ms). For WDT- and USB­
initiated resets, a 5-bit counter in the reset logic maintains the signal for the required 32 clock cy­
cles (TCLK). Refer to Table 2-2 on page 2-8. 

The CPU checks for the presence of the combined reset signal every 2T osc· When a reset is de­
tected, the CPU responds by triggering the internal reset routine. The reset routine loads the SFRs, 
including the ACC, B, stack pointer, and data pointer registers, with their reset values (see Table 
3-5 on page 3-16). Reset does not affect on-chip data RAM or the register file. (However, follow­
ing a cold start reset, these are indeterminate because V cc has fallen too low or has been off.) Fol­
lowing a synchronizing operation and the configuration fetch, the CPU vectors to address 
FF:OOOO. Figure 13-5 shows the reset timing sequence. 

While the RST pin is high ALE, PSEN#, and the port pins are weakly pulled high. The first ALE 
occurs 16 internal clock cycles (TcLK) after the reset signal goes low. For this reason, other devices 
can not be synchronized to the internal timings. of the 8X930A.x. 

NOTE 
Externally driving the ALE and/or PSEN# pins to 0 during the reset routine 
may cause the device to go into an indeterminate state. 

Powering up the 8X930A.x without a reset may improperly initialize the 
program counter and SFRs and cause the CPU to execute instructions from an 
undetermined memory location. 

13.4.5 Power-on Reset 

To automatically generate a reset when power is applied, connect the RST pin to the V cc pin 
through a 1-µF capacitor as shown in Figure 13-1 on page 13-1. 

When V cc is applied, the RST pin rises to V co then decays exponentially as the capacitor charg­
es. The time constant must be such that RST remains high (above the tum-off threshold of the 
Schmitt trigger) long enough for the oscillator to start and stabilize, plus 64Tosc· At power up, 
V cc should rise within approximately 10 ms. Oscillator start-up time is a function of the crystal 
frequency. 

During power up, the port pins are in a random state until forced to their reset state by the asyn­
chronous logic. 

Reducing V cc quickly to 0 causes the RST pin voltage to momentarily fall below 0 V. This volt­
age is internally limited and does not harm the device. 

13-6 



I 

1111( 

AST _// 

XTAL 

Internal Reset 
Routine 

PSEN# LJ 
ALE I ... ___ _, 

MINIMUM HARDWARE SETUP 

L--

L_r 
FirstALEJ 

A4103-01 

Figure 13-5. Reset Timing Sequence 

13-7 





Special Operating 
Modes 

I 

14 





CHAPTER14 
SPECIAL OPERATING MODES 

This chapter describes the idle, powerdown, low clock, and on-circuit emulation (ONCE) device 
operating modes and the USB function suspend and resume operations. The SFRs associated with 
these operations (PCON and PCONl) are also described. 

14.1 GENERAL 

The idle and powerdown modes are power reduction modes for use in applications where power 
consumption is a concern. User instructions activate these modes by setting bits in the PCON reg­
ister. Program execution halts, but resumes when the mode is exited by an interrupt. While in idle 
or powerdown modes, the V cc pin is the input for backup power. 

ONCE is a test mode that electrically isolates the 8X930A.x from the system in which it operates. 

14.2 POWER CONTROL REGISTERS 

The PCON special function register (Figure 14-1) provides two control bits for the serial I/O 
function, bits for selecting the idle, low clock, and powerdown modes, the power off flag, and two 
general purpose flags. 

The PCONl SFR (Figure 14-2) provides USB power control, including the USB global sus­
pend/resume and USB function suspend. The PCONI SFR is discussed further in "USB Power 
Control" on page 14-6. 

14.2.1 Serial VO Control Bits 

The SMOD 1 bit in the PCON register is a factor in determining the serial I/O baud rate. See Fig­
ure 14-1 and "Baud Rates" on page 12-10. 

The SMODO bit in the PCON register determines whether bit 7 of the SCON register provides 
read/write access to the framing error (FE) bit (SMODO = 1) or to SMO, a serial 1/0 mode select 
bit (SMODO = 0). See Figure 14-1 and Figure 12-2 on page 12-5 (SCON). 

14.2.2 Power Off Flag 

Hardware sets the Power Off Flag (POP) in PCON when V cc rises from< 3 V to> 3 V to indicate 
that on-chip volatile memory is indeterminate (e.g., at power-on). The POP can be set or cleared 
by software. After a reset, check the status of this bit to determine. whether a cold start reset or a 
warm start reset occurred (see "Reset" on page 13-4 ). After a cold start, user software should clear 
the POF. If POF = 1 is detected at other times, do a reset to re-initialize the chip, since for V cc < 
3 V data may have been lost or some logic may have malfunctioned. 

I 14-1 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

PCON Address: S:87H 
Reset State: OOXX 00008 

7 0 

~S_M_O_D_1__._~s_M_O_D_o~~-L_C~~~P_O_F~~I l~_G_F_1~~~G_F_o~~~P_D~~~-ID_L~~ 

Bit Bit 
Function 

Number Mnemonic 

7 SMOD1 Double Baud Rate Bit: 

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or 
3 is selected in the SCON register. See "Baud Rates" on page 12-10. 

6 SMODO SCON.7 Select: 

When set, read/write accesses to SCON.7 are to the FE bit. 
When clear, read/write accesses to SCON.7 are to the SMO bit. 
See the SCON register (Figure 12-2 on page 12-5). 

5 LC Low Clock Enable: 

When this bit is set, the CPU and peripherals (except the USB module) 
operate at 3 MHz. This bit is automatically set after a reset. Clearing this 
bit through firmware causes the operating clock to return to the hardware 
selection speed. 

4 POF Power Off Flag: 

Set by hardware as Vee rises above 3 V to indicate that power has been 
off or Vee had fallen below 3-V and that on-chip volatile memory is 
indeterminate. Set or cleared by software. 

3 GF1 General Purpose Flag: 

Set or cleared by software. One use is to indicate whether an interrupt 
occurred during normal operation or during idle mode. 

2 GFO General Purpose Flag: 

Set or cleared by software. One use is to indicate whether an interrupt 
occurred during normal operation or during idle mode. 

1 PD Powerdown Mode Bit: 

When set, activates powerdown mode. 
Cleared by hardware when an interrupt or reset occurs. 

0 IDL Idle Mode Bit: 

When set, activates idle mode. 
Cleared by hardware when an interrupt or reset occurs. 
If IDL and PD are both set, PD takes precedence. 

Figure 14-1. Power Control (PCON) Register 

14-2 

----- _ _I 



infel® SPECIAL OPERATING MODES 

PCON1 Address: S:DFH 
Reset State: XXXX XOOOB 

7 0 

Bit Bit 
Function Number Mnemonic 

7:3 - Reserved: 

The value read from these bits are indeterminate. Write zeroes to these 
bits. 

2 RWU Remote Wake-up Bit: (Cleared by hardware) 

1 =wake-up. This bit is used by the USB function to initiate a remote 
wake-up. Set by firmware to drive resume signaling on the USB lines to 
the host or upstream hub. Cleared by hardware. Note: do not set this bit 
unless the USB function is suspended (GSUS = 1 ). See Figure 14-4 on 
page 14-10. 

1 GRSM Global Resume Bit: (Set by hardware) 

1 =resume. Set by hardware when a global resume is detected on the 
USB lines. This bit is ORed with GSUS to generate the interrupt.t 
Cleared by software when servicing the GRSM interrupt. (This bit can 
also be set/cleared by software for testability.) This bit is not set if remote 
wakeup is used (see RWU). See Figure 14-4 on page 14-10. 

0 GSUS Global Suspend Bit: (Set and cleared by hardware) 

1 =suspend. This bit is set by hardware when global suspend is 
detected on the USB lines. This bit is ORed with the GRSM bit to 
generate the interrupt.t During this ISR, software should set the PD bit 
to enter the suspend mode. Cleared by firmware when a resume occurs. 
See Figure 14-4 on page 14-1 0. 

t Software should prioritize GRSM over GSUS if both bits are set simultaneously. 

Figure 14-2. USB Power Control (PCON1) Register 

I 14-3 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

Mode Program 
Memory 

Reset Don't 
Care 

Idle Internal 

Idle External, 
page 
mode 

Idle External, 
non page 
mode 

Power Internal 
down 

Power External, 
down page 

mode 

Power External 
down non page 

mode 

ONCE Don't 
Care 

14-4 

Table 14-1. Pin Conditions in Various Modes 

ALE PSEN# Porto Port 1 Port 2 
Pin Pin. Pins Pins Pins 

Weak Weak Float Weak Weak 
High High High High 

1 1 Data Data Data 

1 1 Float Data Float 

1 1 Float Data Weak 
High 

0 0 Data Data Data 

0 0 Float Data Float 

0 0 Float Data Weak 
High 

Float Float Float Weak Weak 
High High 

' 
'XTAL1 

PD# 

Porta SOF# 
Dpo OMO Pins Pin 

Weak Weak Float Float 
High High 

Data Data Data Data 

Data Data Data Data 

Data Data Data Data 

Data Data Float Float 

Data Data Float Float 

Data Data Float Float 

Weak Weak Weak Float 
High High High 

Interrupt, 
Serial Port, 

..----- Timer Block, 
USB Module 

CPU 

IDL# 

A5088-01 

Figure 14-3. Idle and Powerdown Clock Control 

_J_. 



SPECIAL OPERATING MODES 

14.3 IDLE MODE 

Idle mode is a power reduction mode that reduces power consumption to about 40% of normal. 
In this mode, program execution halts. Idle mode freezes the clocks to the CPU at known states 
while the peripherals continue to be clocked (Figure 14-3). The CPU status before entering idle 
mode is preserved; i.e., the program counter, program status word register, and register file retain 
their data for the duration of idle mode. The contents of the SFRs and RAM are also retained. The 
status of the port pins depends upon the location of the program memory: 

• Internal program memory: the ALE and PSEN# pins are pulled high and the ports 0, 1, 2, 
and 3 pins are driving the port SFR value (Table 14-1). 

• External program memory: the ALE and PSEN# pins are pulled high; the port 0 pins are 
floating; and the pins of ports 1, 2, and 3 are driving the port SFR value (Table 14-1 ). 

NOTE 
If desired, the PCA may be instructed to pause during idle mode by setting the 
CIDL bit in the CMOD register (Figure 11-7 on page 11-13). 

14.3.1 Entering Idle Mode 

To enter idle mode, set the PCON register IDL bit. The 8X930Ax enters idle mode upon execution 
of the instruction that sets the IDL bit. The instruction that sets the IDL bit is the last instruction 
executed. 

CAUTION 
If the IDL bit and the PD bit are set simultaneously, the 8X930Ax enters 
powerdown mode. 

14.3.2 Exiting Idle Mode 

There are two ways to exit idle mode: 

I 

• Generate an enabled interrupt. Hardware clears the PCON register IDL bit which restores 
the clocks to the CPU. Execution resumes with the interrupt service routine. Upon 
completion of the interrupt service routine, program execution resumes with the instruction 
immediately following the instruction that activated idle mode. The general purpose flags 
(GFl and GFO in the PCON register) may be used to indicate whether an interrupt occurred 
during normal operation or during idle mode. When idle mode is exited by an interrupt, the 
interrupt service routine may examine GFl and GFO. 

• Reset the chip. See "Reset" on page 13-4. A logic high on the RST pin clears the IDL bit in 
the PCON register directly and asynchronously. This restores the clocks to the CPU. 
Program execution momentarily resumes with the instruction immediately following the 
instruction that activated the idle mode and may continue for a number of clock cycles 
before the internal reset algorithm takes control. Reset initializes the 8X930Ax and vectors 
the CPU to address FF:OOOOH. 

14-5 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

NOTE 

During the time that execution resumes, the internal RAM cannot be accessed; 
however, it is possible for the port pins to be accessed. To avoid unexpected 
outputs at the port pins, the instruction immediately following the instruction 
that activated idle mode should not write to a port pin or to the external RAM. 

14.4 USB POWER CONTROL 

The 8X930A.x supports USB power control through firmware, including global suspend/resume 
and remote wake-up. For flow charts of these operations, see Figure 14-4 on page 14-10. 

14.4.1 Global Suspend Mode 

When a global suspend is detected by the 8X930A.x, the global suspend bit (GSUS in PCONl) is 
set and the GS/Resume interrupt is generated. Global suspend is defined as bus inactivity for 
more than 3 ms on the USB lines. A device that is already in suspend mode will not change state. 
Hardware does not invoke any particular power-saving mode on detection of a global suspend. 
You must implement power control through firmware within the global suspend/resume ISR. 

NOTE 
Firmware must set the PD bit (PCON.1 in Figure 14-1 on page 14-2). 

For global suspend on a bus powered device, firmware must put the 8X930A.x into powerdown 
mode to meet the USB limit of 500 µA. For consistency, it is recommended that you put self-pow­
ered devices into powerdown mode as well. 

14.4.1.1 Powerdown Mode 

The powerdown mode places the 8X930A.x in a very low power state. Powerdown mode stops 
the oscillator and freezes all clocks at known states (Figure 14-3). The CPU status prior to enter­
ing powerdown mode is preserved, i.e., the program counter, program status word register, and 
register file retain their data for the duration of powerdown mode. In addition, the SFRs and RAM 
contents are preserved. The status of the port pins depends on the location of the program mem­
ory: 

• Internal program memory: the ALE and PSEN# pins are pulled low and the ports 0, 1, 2, 
and 3 pins are reading data (Table 14-1 on page 14-4). 

• External program memory: the ALE and PSEN# pins are pulled low; the port 0 pins are 
floating; and the pins of ports 1, 2, and 3 are reading data (Table 14-1). 

14-6 

NOTE 

V cc may be reduced to as low as 2 Vduring powerdown to further reduce 
power dissipation. Take care, however, that V cc is not reduced until power­
down is invoked. 



infel® SPECIAL OPERATING MODES 

14.4.1.2 Entering Powerdown Mode 

To enter powerdown mode, set the PCON register PD bit. The 8X930Ax enters powerdown mode 
upon execution of the instruction that sets the PD bit. The instruction that sets the PD bit is the 
last instruction executed. 

CAUTION 
Do not put the 8X930Ax into powerdown mode unless the USB suspend signal 
is detected on the USB lines (GSUS = 1). Otherwise, the device will not be 
able to wake up from powerdown mode by a resume signal sent through the 
USB lines. See "USB Power Control" on page 14-6. 

14.4.1.3 Exiting Powerdown Mode 

CAUTION 
If V cc was reduced during the powerdown mode, do not exit powerdown until 
V cc is restored to the normal operating level. 

There are two ways to exit the powerdown mode: 

I 

1. Generate an enabled external interrupt. The interrupt signal must be held active long 
enough of the oscillator to restart and stabilize (normally less than 10 ms). Hardware 
clears the PD bit in the PCON register which starts the oscillator and restores the clocks to 
the CPU and peripherals. Execution resumes with the interrupt service routine. Upon 
completion of the interrupt service routine, program execution resumes with the 
instruction immediately following the instruction that activated powerdown mode. 

NOTE 
To enable an external interrupt, set the IENO register EXO and/or EXl bit[s]. 
The external interrupt used to exit powerdown mode must be configured as 
level sensitive and must be assigned the highest priority. Holding the interrupt 
pin (INTO# or INTI#) low restarts the oscillator and bringing the pin high 
completes the exit. The duration of the interrupt signal must be long to allow 
the oscillator to stabilize (normally less than 10 ms). 

2. Generate a reset. See "Reset" on page 13-4. A logic high on the RST pin clears the PD bit 
in the PCON register directly and asynchronously. This starts the oscillator and restores 
the clocks to the CPU and peripherals. Program execution momentarily resumes with the 
instruction immediately following the instruction that activated powerdown and may 
continue for a number of clock cycles before the internal reset algorithm takes control. 
Reset initializes the 8X930Ax and vectors the CPU to address FF:OOOOH. 

NOTE 
During the time that execution resumes, the internal RAM cannot be accessed; 
however, it is possible for the port pins to be accessed. To avoid unexpected 
outputs at the port pins, the instruction immediately following the instruction 

14-7 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

that activated the powerdown mode should not write to a port pin or to the 
external RAM. 

14.4.2 Global Resume Mode 

When a global resume is detected by the 8X930Ax, the global resume bit (GRSM of PCONl) is 
set and the GS/Resume interrupt is generated. As soon as resume signaling is detected on the USB 
lines, the oscillator is restarted. A resume condition is defined as a "J to anything" transition (K 
transition or reset signaling on the USB lines). 

Upon detection of a resume condition, the 8X930Ax applies power to the USB transceivers, the 
crystal oscillator, and the PLL. After the clocks are restarted, the CPU program continues execu­
tion from where it was when the device was put into powerdown mode. The device then services 
the Resume interrupt service routine. After executing the Resume ISR, the 8X930Ax resumes op­
eration from where it was when it was interrupted by the suspend interrupt. 

14.4.3 USB Remote Wake-up 

The 8X930Ax can initiate resume signaling to the USB lines through remote wake-up of the USB 
function while it is in powerdown/idle mode. While in powerdown mode, remote wake-up has to 
be initiated through assertion of an enabled external interrupt. The external interrupt has to be en­
abled and it must be configured with level trigger and with higher priority than a Suspend/Resume 
interrupt. A function resume restarts the clocks to the 8X930Ax and program execution branches 
to an external interrupt service routine. 

Within this external ISR, you must set the remote wake-up bit (RWU in PCONl) to drive resume 
signaling on the USB lines to the host or upstream hub. After executing the external ISR, the pro­
gram continues execution from where it was put into powerdown mode and the 8X930Ax re­
sumes normal operation. 

14.5 LOW CLOCK MODE 

Low clock mode is the default operation mode for the 8X930Ax upon reset. After reset, the CPU 
and peripherals (excluding the USB module) default to a 3 MHz clock rate while the USB module 
always operates at the hardware-selected clock rate. Low clock mode ensures that the Ice drawn 
by the 8X930Ax upon reset and in the unconfigured state is less than one unit load (100 mA) for 
the whole USB device. 

After configuration (and given that the request for more than one unit load oflcc is granted), you 
may switch the clock of the CPU and the peripherals back to the hardware-selected clock rate for 
performance reasons. 

14.5.1 Entering Low Clock Mode 

Low clock mode can be invoked through firmware anytime the device is unconfigured by the 
host. To invoke low clock Mode, set the LC bit in the PCON Register (Figure 14-1). 

14-8 l_ 



SPECIAL OPERATING MODES 

NOTE 
After reset, the 8X930Ax automatically switches to low clock mode, 
regardless of whether the LC bit has been set. 

14.5.2 Exiting Low Clock Mode 

To switch the clock of the CPU and the peripherals to the hardware-selected clock rate, clear the 
LC bit in the PCON SFR (Figure 14-1). The hardware clock rate selection determines the highest 
operating clock rate for the 8X930Ax. 

14.6 ON-CIRCUIT EMULATION (ONCE) MODE 

The on-circuit emulation (ONCE) mode permits external testers to test and debug 8X930Ax­
based systems without removing the chip from the circuit board. A clamp-on emulator or test 
CPU is used in place of the 8X930Ax which is electrically isolated from the system. 

14.6.1 Entering ONCE Mode 

To enter the ONCE mode: 

1. Assert RST to initiate a device reset. See "Externally Initiated Resets" on page 13-5 and 
the reset waveforms in Figure 13-5 on page 13-7. 

2. While holding RST asserted, apply and hold logic levels to 1/0 pins as follows: PSEN# = 
low, P0.7:5 =low, P0.4 =high, P0.3:0 =low (i.e., port 0 = lOH). 

3. Deassert RST, then remove the logic levels from PSEN# and port 0. 

These actions cause the 8X930Ax to enter the ONCE mode. Port 1, 2, and 3 pins are weakly 
pulled high and port 0, ALE, and PSEN# pins are floating (Table 14-1 on page 14-4). Thus the 
device is electrically isolated from the remainder of the system which can then be tested by an 
emulator or test CPU. Note that in the ONCE mode the device oscillator remains active. 

14.6.2 Exiting ONCE Mode 

To exit ONCE mode, reset the device. 

I 14-9 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

Host sends Suspend 
down USB 

Suspend is detected by 
8X930 setting GSUS 
and causes interrupt 

Suspend ISR should 
shut down all 

external peripherals 

Suspend ISR sets PD bit 
t (GSUS must not 

be cleared) 

Setting PD bits causes 
8X930 to enter 

powerdown mode. 
Entire function must draw 

less than 500 µA from USB. 

Hold external interrupt pin 
(INTO# or INT1#) low until 

oscillator stabilizes. 
Normally 1 Oms or less 

External JSR entered 

External JSR serviced 

RET1 (from external ISR) 

Program returns to 
command immediately 
following the 'setb PD' 
command in the original 

Suspend ISR 

Host sends Resume 
down bus 

8X930 detects resume, 
hardware sets GRSM, 

clears GSUS and 
starts oscillator 

When oscillator stabilizes, 
program begins execution 

at location immediately 
following the 

'setb PD' command. 

t If GSUS is cleared, the 8X930 will not be able to detect resume signaling from the host. 

A5089-01 

Figure 14-4. Suspend/Resume Program with/without Remote Wake-up 

14-10 _____ I 



I 

(continued) 

Software sets RWU bit 

Software clears GSUS bit 

RWU will clear 
automatically when 

RESUME signaling is done 

Resume already applied by 
host. GSUS cleared by 

hardware. No need to send 
Remote Wake-up to host. 

SPECIAL OPERA TING MODES 

(continued) 

Software clears GRSM 

Software enables 
external peripherals 

RETI 
(from suspend ISR) 

t Check to see if host has driven a resume onto the bus before function drives resume onto bus. 

A5090·01 

Figure 14-4. Suspend/Resume Program with/without Remote Wake-up (Continued) 

14-11 





infel. 

External Memory 
Interface 

I 

15 





CHAPTER15 
EXTERNAL MEMORY INTERFACE 

This chapter covers various aspects of the external memory interface. It describes the signals as­
sociated with external memory operations, page mode/nonpage mode operation, and external bus 
cycle timing (for normal accesses, accesses with configurable wait states, accesses with real-time 
wait states, and configuration byte accesses). This chapter also describes the real-time wait state 
register (WCON), gives the status of the pins for ports PO and P2 during bus cycles and bus idle, 
and includes several external memory design examples. 

15.1 OVERVIEW 

The 8X930Ax interfaces with a variety of external memory devices. It can be configured to have 
a 16-bit, 17-bit, or 18-bit external address bus. Data transfer operations (8 bits) are multiplexed 
on the address bus. 

The external memory interface comprises the external bus (ports 0 and 2, and when so configured, 
address bits A17 andA16) and the bus control signals described in Table 15-1. Chip configuration 
bytes (see Chapter 4, "Device Configuration") provide several interface options: page mode or 
nonpage mode for external code fetches; the number of external address bits ( 16, 17, or 18); the 
address ranges for RD#, WR#, and PSEN#; and the number of preprogrammed external wait 
states to extend RD#, WR#, PSEN#, or ALE. Real-time wait states can be enabled with special 
function register WCON.1 :0. You can use these options to tailor the interface to your application. 
For additional information refer to "Configuring the External Memory Interface" on page 4-7. 

The external memory interface operates in either page mode or nonpage mode. Figure 15-1 shows 
the structure of the external address bus for page mode and nonpage mode operation. Page mode 
provides increased performance by reducing the time for external code fetches. Page mode does 
not apply to code fetches from on-chip memory. 

I 

8X930 
Micro­

controller 

RAM/ 
EPROM/ 

Flash 

8X930 
Micro­

controller 

RAM/ 
EPROM/ 

Flash 

lllllllll•Ho7:o 

A15:8 

Nonpage Mode Page Mode 

A4273-02 

Figure 15-1. Bus Structure in Nonpage Mode and Page Mode 

15-1 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

Table 15-1. External Memory Interface Signals 

Signal 
Type Description 

Alternate 
Name Function 

A17 0 Address Line 17. P1. 7/CEX4/WCLK 

A16 0 Address Line 16. See RD#. P3.7/RD# 

A15:8t 0 Address Lines. Upper address for external bus (non-page mode). P2.7:0 

AD7:0t 1/0 Address/Data Lines. Multiplexed lower address and data for the P0.7:0 
external bus (non-page mode). 

ALE 0 Address Latch Enable. ALE signals the start of an external bus PROG# 
cycle and indicates that valid address information is available on 
lines A15:8 and AD7:0. 

EA# I External Access. Directs program memory accesses to on-chip Vpp 
or off-chip code memory. For EA# strapped to ground, all program 
memory accesses are off-chip. For EA# = strapped to V cc• an 
access is to on-chip ROM if the address is within the range of the 
on-chip ROM; otherwise the access is off-chip. The value of EA# is 
latched at reset. For devices without on-chip ROM, EA# must be 
strapped to ground. 

PSEN# 0 Program Store Enable. Read signal output. This output is -
asserted for a memory address range that depends on bits RDO 
and RD1 in the configuration byte (see also RD#): 

RD1 RDO Address Range for Assertion 
0 0 All addresses 
0 1 All addresses 
1 0 All addresses 
1 1 All addresses S BO:OOOOH 

RD# 0 Read or 17th Address Bit (A16). Read signal output to external P3.7/A16 
data memory or 17th external address bit (A16), depending on the. 
values of bits RDO and RD1 in configuration byte. (See PSEN#): 

RD1 RDO Function 
0 0 The pin functions as A16 only. 
0 1 The pin functions as A16 only. 
1 0 The pin functions as P3.7 only. 
1 1 RD# asserted for reads at all addresses ~7F:FFFFH. 

WAIT# I Real-time Wait State Input. The real-time WAIT# input is enabled P1.6/CEX3 
by writing a logical '1' to the WCON.O (RTWE) bit at S:A7H. During 
bus cycles, the external memory system can signal 'system ready' 
to the microcontroller in real time by controlling the WAIT# input 
signal on the port 1.6 input. 

WCLK 0 Wait Clock Output. The real-time WCLK output is driven at port A17/P1 .7/CEX4 
1.7 (WCLK) by writing a logical '1' to the WCON.1 (RTWCE) bit at 
S:A7H. When enabled, the WCLK output produces a square wave 
signal with a period of one-half the oscillator frequency. 

WR# 0 Write. Write signal output to external memory. WR# is asserted for P3.6 
wri.tes to all valid memory locations. 

t If the chip is configured for page-mode operation, port 0 carries the lower address bits (A 7:0), and port 2 carries the 
upper address bits (Al5:8)and the data (07:0). 

15-2 



EXTERNAL MEMORY INTERFACE 

The reset routine configures the 8X930Ax for operation in page mode or nonpage mode accord­
ing to bit 1 of configuration byte UCONFIGO. PO carries address A 7:0 while P2 carries address 
A15:8. DataD7:0 is multiplexed withA7:0 on PO in nonpage mode and with A15:8 on P2 in page 
mode. 

Table 15-1 describes the external memory interface signals. The address and data signals (AD7:0 
on port 0 and A15:8 on port 2) are defined for nonpage mode. 

15.2 EXTERNAL BUS CYCLES 

This section describes the bus cycles the 8X930Ax executes to fetch code, read data, and write 
data in external memory. Both page mode and nonpage mode are described and illustrated. For 
simplicity, the accompanying figures depict the bus cycle waveforms in idealized form and do not 
provide precise timing information. This section does not cover wait states (see "External Bus 
Cycles With Configurable Wait States" on page 15-8) or configuration byte bus cycles (see "Con­
figuration Byte Bus Cycles" on page 15-15). For bus cycle timing parameters refer to the 
8X930Ax datasheet. 

An "inactive external bus" exists when the 8X930Ax is not executing external bus cycles. This 
occurs under any of the three following conditions: 

• Bus Idle (The chip is in normal operating mode but no external bus cycles are executing.) 

• The chip is in idle mode 

• The chip is in powerdown mode 

15.2.1 Bus Cycle Definitions 

Table 15-2 lists the types of external bus cycles. It also shows the activity on the bus for nonpage 
mode and page mode bus cycles with no wait states. There are three types of nonpage mode bus 
cycles: code fetch, data read, and data write. There are four types of page mode bus cycles: code 
fetch (page miss), code fetch (page hit), data read, and data write. The data read and data write 
cycles are the same for page mode and nonpage mode (except the multiplexing ofD7:0 on ports 
0 and 2). 

15.2.2 Nonpage Mode Bus Cycles 

In nonpage mode, the external bus structure is the same as for MCS 51 microcontrollers. The up­
per address bits (A15:8) are on port 2, and the lower address bits (A7:0) are multiplexed with the 
data (D7:0) on port 0. External code read bus cycles execute in approximately two state times. 
See Table 15-2 and Figure 15-2. External data read bus cycles (Figure 15-3) and external write 
bus cycles (Figure 15-4) execute in approximately three state times. For the write cycle (Figure 
15-4), a third state is appended to provide recovery time for the bus. Note that the write signal 
WR# is asserted for all memory regions, except for the case ofRDl:O = 11, where WR# is assert­
ed for regions 00:-01: but not for regions FE:-FF:. 

I 15-3 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

Table 15-2. Bus Cycle Definitions (No Wait States) 

Mode Bus Cycle 

Non page 
Mode 

Page 
Mode 

NOTES: 

Code Read 

Data Read (2) 

Data Write (2) 

Code Read, Page Miss 

Code Read, Page Hit (3) 

Data Read (2) 

Data Write (2) 

Bus Activity 

State 1 State 2 

ALE RD#/PSEN#, code in 

ALE RD#/PSEN# 

ALE WR# 

ALE 

PSEN#, code in 

ALE 

ALE 

1. Signal timing implied by this table is approximate (idealized). 
2. Data read (page mode) =data read (nonpage mode) and write (page mode) =write (nonpage mode) 

except that in page mode data appears on P2 (multiplexed with A15:0), whereas in nonpage mode 
data appears on PO (multiplexed with A7:0). · 

3. The initial code read page hit bus cycle can execute only following a code read page miss cycle. 

State 1 State 2 

ALE 

RD#/PSEN# 

PO A7:0 07:0 

A17/A16/P2 A17/A16/A15:8 

M282-02 

Figure 15-2. External Code Fetch (Nonpage Mode) 

15-4 I 



EXTERNAL MEMORY INTERFACE 

State 1 --+to.-- State 2---State 3 

ALE 

RO#/PSEN# 

PO A7:0 07:0 

A17/A16/P2 A17/A16/A15:8 

A4283-02 

Figure 15-3. External Data Read (Nonpage Mode) 

State 1 --+to.-- State 2---State 3 
' 

ALE 

WR# 

PO A7:0 07:0 

A17/A16/P2 A17/A16/A15:8 

A4284-02 

Figure 15-4. External Data Write (Nonpage Mode) 

I 15-5 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

15.2.3 Page Mode Bus Cycles 

Page mode increases performance by reducing the time for external code fetches. Under certain 
conditions the controller fetches an instruction from external memory in one state time instead of 
two (Table 15-2). Page mode does not affect internal code fetches. 

The first code fetch to a 256-byte "page" ofmemory always uses a two-state bus cycle. Subse­
quent successive code fetches to the same page (page hits) require only a one-state bus cycle. 
When a subsequent fetch is to a different page (a page miss), it again requires a two-state bus cy­
cle. The following external code fetches are always page-miss cycles: 

• the first external code fetch after a page rollovert 

• the first external code fetch after an external data bus cycle 

• the first external code fetch after powerdown or idle mode 

• the first external code fetch after a branch, return, interrupt, etc. 

In page mode, the 8X930Ax bus structure differs from the bus structure in MCS 51 controllers 
(Figure 15-1). The upper address bits A15:8 are multiplexed with the data D7:0 on port 2, and the 
lower address bits (A7:0) are on port 0. 

Figure 15-5 shows the two types of external bus cycles for code fetches in page mode. The page­
miss cycle is the same as a code fetch cycle in nonpage mode (except D7:0 is multiplexed with 
A15:8 on P2.). For the page-hit cycle, the upper eight address bits are the same as for the preced­
ing cycle. Therefore, ALE is not asserted, and the values of A15:8 are retained in the address 
latches. In a single state, the new values of A 7 :0 are placed on port 0, and memory places the in­
struction byte on port 2. Notice that a page hit reduces the available address access time by one 
state. Therefore, faster memories may be required to support page mode. 

Figure 15-6 and Figure 15-7 show the bus cycles for data reads and data writes in page mode. 
These cycles are identical to those for nonpage mode, except for the different signals on ports 0 
and2. 

t A page rollover occurs when the address increments from the top of one 256-byte page to the bottom of the next (e.g., 
from FF:FAFFH to FF:FBOOH). 

15-6 



EXTERNAL MEMORY INTERFACE 

Cycle 1, Page-Miss Cycle 2, Page-Hit 

State 1 State2 State 1 

ALE 

PSEN# t 

A17/A16/PO A17/A16/A7:0 A17/A16/A7:0 

P2 A15:8 D7:0 D7:0 

t During a sequence of page hits, PSEN# remains low until the end of the last page-hit cycle. 

A4274-02 

Figure 15-5. External Code Fetch (Page Mode) 

State 1 --+r>E--- State 2 --+r-- State 3 

ALE 

PSEN# 

A17/A16/PO A17/A16/A7:0 

P2 A15:8 D7:0 

A4275-02 

Figure 15-6. External Data Read (Page Mode) 

I 15-7 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

State 1---state2---State 3 

ALE 

WR# 

A17/A16/PO A17/A16/A7:0 

P2 A15:8 07:0 

A4276-02 

Figure 15-7. External Data Write (Page Mode) 

15.3 WAITSTATES 

· The 8X930Ax provides three types of wait state solutions to external memory problems: real­
time, RD#/WR#/PSEN#, and ALE wait states. The 8X930Ax supports traditional real-time wait 
state operations for dynamic bus control. Real-time wait state operations are controlled by means 
of the WCON special function register. See "External Bus Cycles with Real-time Wait States" on 
page 15-11. 

In addition, the 8X930Ax device can be configured at reset to add wait states to external bus cy­
cles by extending the ALE or RD#/WR#/PSEN# pulses. See "Wait State Configuration Bits" on 
page 4-11. 

You can configure the chip to use multiple types of wait states. Accesses to on-chip code and data 
memory always use zero wait states. The following sections demonstrate wait state usage. 

15.4 EXTERNAL BUS CYCLES WITH CONFIGURABLE WAIT STATES 

This section describes the code fetch, read data, and write data external bus cycles with config­
urable wait states. Both page mode and nonpage mode operation are described and illustrated. For 
simplicity, the accompanying figures depict the bus cycle waveforms in idealized form and do not 
provide precise timing information. · 

15.4.1 Extending RD#/WR#/PSEN# 

You can use bits WSAl:O# in configuration byte UCONFIGO (Figure 4-3 on page 4-5) and 
WSB 1 :0# in UCONFIG 1 (Figure 4-4 on page 4-6) to add 0, 1, 2, or 3 wait states to the 
RD#/WR#/PSEN pulses. Figure 15-8 shows the nonpage mode code fetch bus cycle with one 
RD#/PSEN# wait state. The wait state extends the bus cycle to three states. Figure 15-9 shows 
the nonpage mode data write bus cycle with one WR# wait state. The wait state extends the bus 
cycle to four states. The waveforms in Figure 15-9 also apply to the nonpage mode data read ex­
ternal bus cycle ifRD#/PSEN# is substituted for WR#. 

15-8 

---~_L_ 



EXTERNAL MEMORY INTERFACE 

State 1 -~-State 2-----State 3 

ALE 

RO#/PSEN# 

PO A7:0 07:0 

A17/A16/P2 A17/A16/A15:8 

A4277-02 

Figure 15-8. External Code Fetch (Nonpage Mode, One RD#/PSEN# Wait State) 

State 1-~-State2---State 3-----State 4 

ALE 

WR# 

PO A7:0 07:0 

A17/A16/P2 A17/A16/A15:8 

A4278-02 

Figure 15-9. External Data Write (Nonpage Mode, One WR# Wait State) 

I 15-9 



8X930AxUNIVERSAL SERIAL BUS MICROCONTROLLER USER;S MANUAL: 

15.4.2 Extending ALE 

Use the XALE# bit of configuration byte UCONFIGO to extend the ALE pulse 1 wait state. Fig­
ure 15-10 shows the nonpage mode code fetch external bus cycle with ALE extended. The wait 
state extends the bus cycle from two states to three. For read and write external bus cycles, the 
extended ALE extends the bus cycle from three states to four. 

State 1---state2~--State 3 

ALE 

RD#/PSEN# 

PO A7:0 07:0 

A17/A16/P2 A17/A18/A15:8 

A4279·02 

Figure 15-10. External Code Fetch (Nonpage Mode, One ALE Wait State) 

15·10 _L 



EXTERNAL MEMORY INTERFACE 

15.5 EXTERNAL BUS CYCLES WITH REAL-TIME WAIT STATES 

There are two ways of using real-time wait states: the WAIT# pin used as an input bus control and 
the WAIT# signal used in conjunction with the WCLK output signal. These two signals are en­
abled with the WCON special function register in the SFR space at S:OA7H. Refer to Figure 
15-11. 

I 

NOTE 
The WAIT# and WCLK signals are alternate functions for the port 1.6:7 input 
and output buffers. Use of the alternate functions may conflict with wait state 
operation. 

When WAIT# is enabled, PCA module 3 is disabled on port l.6 (CEX3) and 
resumes operation only when the WAIT# function is disabled. The same 
relationship exists between WCLK on port l.7 (CEX4) and PCA module 4. It 
is not advisable to alternate between PCA operations and real-time wait-state 
operations at port 1.6 (CEX3/WAIT#) or port l.7 (CEX4/WCLK). 

Port l.7 can also be enabled to drive address signal A17 in some memory 
designs. The A17 address signal always takes priority over the alternate 
functions (CEX4 and WCLK). Even if RTWCE is enabled in WCON. l, the 
WCLK output does not appear during bus cycles enabled to drive address A 17. 
The use of WAIT# as an input on port 1.6 is unaffected by address signals. 

WCON Address: S:A7H 
Reset: XXXXXXOOB 

7 0 

II RTWCE RTWE 

Bit Bit Function Number Mnemonic 

7:2 - Reserved: 

The values read from these bits are indeterminate. Write "O" to these 
bits. 

1 RTWCE Real-time WAIT CLOCK enable. Write a '1' to this bit to enable the WAIT 
CLOCK on port 1. 7 (WCLK). The square wave output signal is one-half 
the oscillator frequency. 

0 RTWE Real-time WAIT# enable. Write a '1' to this bit to enable real-time wait 
state input on port 1.6 (WAIT#). 

Figure 15-11. Real-time Wait State Control Register (WCON) 

15-11 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

15.5.1 Real-time WAIT# Enable (RTWE} 

The real-time WAIT# input is enabled by writing a logical '1' to the WCON.O (RTWE) bit at 
S:A 7H. During bus cycles, the external memory system can signal "system ready" to the micro­
controller in real time by controlling the WAIT# input signal on the port 1.6 input. Sampling of 
WAIT# is coincident with the activation ofRD#/PSEN# or WR# signals driven low during a bus 
cycle. A "not-ready" condition is recognized by the WAIT# ~nal held at V1L by the external 
memory system. Use of PCA module 3 may conflict with your design. Do not use the PCA mod­
ule 3 1/0 (CEX3) interchangeably with the WAIT# signal on the port 1.3 input. Setup and hold 
times are illustrated in the current datasheet. 

15.5.2 Real-time WAIT CLOCK Enable (RTWCE) 

The real-time WAIT CLOCK output is driven at port 1.7 (WCLK) by writing a logical '1' to the 
WCON.1 (RTWCE) bit at S:A 7H. When enabled, the WCLK output produces a square wave sig­
nal with a period of one-half the oscillator frequency. Use of PCA module 4 may conflict with 
your design. Do not use the PCA module 41/0 (CEX4) interchangeably with the WCLK output. 
Use of address signal A17 inhibits both WCLK and PCA module 4 usage of port 1.7. 

15.5.3 Real-time Wait State Bus Cycle Diagrams 

Figure 15-12 shows the code fetch/data read bus cycle in nonpage mode. Figure 15-14 depicts the 
data read cycle in page mode. 

CAUTION .. 

The real-time wait function has critical external timing for code fetch. For this 
reason, it is not advisable tp use the real-time wait feature for code fetch in 
page mode. 

The data write bus cycle in nonpage mode is shown in Figure 15-13. Figure 15-15 shows the data 
write bus cycle in page mode. 

15-12 

. __ _l_ 



EXTERNAL MEMORY INTERFACE 

State 1 State 2 State 3 State 1 (next cycle) 

WCLK \ I \ I \ I \ I 
' 
' 

ALE ;J\ I\ 
' 

RO#/PSEN# ' ' I RO#/PSEN# 7: stretched 
I 

WAIT# ' 

PO AO-A? 00-07 stretched AO-A? 

P2 ~ A8-A15 } H stretched A8-A15 
I 

A5007-01 

Figure 15-12. External Code Fetch/Data Read (Nonpage Mode, Real-time Wait State) 

State 1 State 2 State 3 State 4 

WCLK \ I \ I \ I \ I 
' 
' 

ALE ;J\ 
' 

WR# \ ' WR# stretched l 
WAIT# ' - "'T"'"l@@ln\llr ;.r11,f},,. 

+-{AO-A?}-------{ 
' 

PO 00-07 ~ stretched }-
' ' 

' ' 
P2 ~ A8-A15 ~ stretched }-

A5009-01 

Figure 15-13. External Data Write (Nonpage Mode, Real-time Wait State) 

I 15-13 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

15-14 

State 1 

WCLK \ I 
' 
' 

ALE ~---~~~~~~~~~~~__, 

RD#/PSEN# , 

WAIT# , 

P2 A8-A15 

Figure 15-14. External Data Read (Page Mode, Real-time Wait State) 

State 1 State 2 State 3 State 4 

WCLK \ I \ I \ I \ I 
' 
' 

ALE J\ 
' 

WR# \ l WR# stretched l 
WAIT# ' w ... , 

' 
P2 +-(AS-A 15 }---( D0-07 stretched 

' 

PO ~ AO-A7 ~ stretched 

Figure 15-15. External Data Write (Page Mode, Real-time Wait State) 

ASOOB-01 

}-

}-

A5010-01 

I 



EXTERNAL MEMORY INTERFACE 

15.6 CONFIGURATION BYTE BUS CYCLES 

IfEA# = 0, devices obtain configuration information from a configuration array in external mem­
ory. This section describes the bus cycles executed by the reset routine to fetch user configuration 
bytes from external memory. Configuration bytes are discussed in Chapter 4, "Device Configu­
ration." 

To determine whether the external memory is set up for page mode or nonpage mode operation, 
the 8X930A.x accesses external memory using internal address FF:FFF8H (UCONFIGO). See 
states 1-4 in Figure 15-16. If the external memory is set up for page mode, it places UCONFIGO 
on P2 as D7:0, overwriting Al 5:8 (FFH). If external memory is set up for non page mode, A 15:8 
is not overwritten. The 8X930A.x examines P2 bit 1. Subsequent configuration byte fetches are 
in page mode if P2.1 = 0 and in nonpage mode if P2.1 = I. The 8X930A.x fetches UCONFIGO 
again (states 5-8 in Figure 15-16) and then UCONFIGI via internal address FF:FFF9H. 

The configuration byte bus cycles always execute with ALE extended and one PSEN# wait state. 

State 1 State2 State 3 State 4 State 5 State6 State 7 State 8 

XTAL 

' 

ALE ~ \ I \ 
' ' ' 

PSEN# ~ \ I: \ T 
' ' 
' ' 

>.--PO K A7:0 = F8H >-:< A7:0 = F8H x A7:0= F8H 

' ' ' ' 
P2 K A15:8=FFH >-< D7:0 >-< A15:8 = FFH >:< D7:0 >.--

' ' 
Page Mode ' 

' ' 

PO k A7:0 = F8H K D7:0 

' ' ' ' 

P2 < A15:8 = FFH 

' 
Nonpage Mode 

A4228-01 

Figure 15-16. Configuration Byte Bus Cycles 

15.7 PORT 0 AND PORT 2 STATUS 

This section summarizes the status of the port 0 and port 2 pins when these ports are used as the 
external bus. A more comprehensive description of the ports and their use is given in Chapter 9, 
"Input/Output Ports." 

I 15-15 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

When port 0 and port 2 are used as the external memory bus, the signals on the port pins can orig­
inate from three sources: 

• the 8X930Ax CPU (address bits, data bits) 

• the port SFRs: PO and P2 (logic levels) 

• an external device (data bits) 

The port 0 pins (but not the port 2 pins) can also be held in a high-impedance state. Table 15-3 
lists the status of the port 0 and port 2 pins when the chip in is the normal operating mode and the 
external bus is idle or executing a bus cycle. 

Table 15-3. Port O and Port 2 Pin Status In Normal Operating Mode 

8-bit/16-bit 
Nonpage Mode Page Mode 

Port 
Addressing 

Bus Cycle Bus Idle Bus Cycle Bus Idle 

Port 0 8 or 16 AD7:0 (1) High Impedance A7:0 (1) High Impedance 

8 P2 (2) P2 P2/D7:0 (2) High Impedance 
Port 2 

16 A15:8 P2 A15:8/D7:0 High Impedance 

NOTES: 
1. During external memory accesses, the CPU writes FFH to the PO register and the register 

contents are lost. 
2. The P2 register can be used to select 256-byte pages in external memory. 

15.7.1 Port O and Port 2 Pin Status in Nonpage Mode 

In nonpage mode, the port pins have the same signals as those on the 8XC51FX. For an external 
memory instruction using a 16-bit address, the port pins carry address and data bits during the bus 
cycle. However, ifthe instruction uses an 8-bit address (e.g., MOVX @Ri), the contents of P2 are 
driven onto the pins. These pin signals can be used to select 256-bit pages in external memory. 

During a bus cycle, the CPU always writes FFH to PO, and the former contents of PO are lost. A 
bus cycle does not change the contents of P2. When the bus is idle, the port 0 pins are held at high 
impedance, and the contents of P2 are driven onto the port 2 pins. 

15.7.2 Port O and Port 2 Pin Status in Page Mode 

In a page-mode bus cycle, the data is multiplexed with the upper address byte on port 2. However, 
ifthe instruction uses an 8-bit address (e.g., MOVX @Ri), the contents of P2 are driven onto the 
pins when data is not on the pins. These logic levels can be used to select 256-bit pages in external 
memory. During bus idle, the port 0 and port 2 pins are held at high impedance. For port pin status 
when the chip in is idle mode, powerdown mode, or reset, see Chapter 14, "Special Operating 
Modes." 

15-16 

I 



EXTERNAL MEMORY INTERFACE 

15.8 EXTERNAL MEMORY DESIGN EXAMPLES 

This section presents several external memory designs for 8X930Ax systems. These examples il­
lustrate the design flexibility provided by the configuration options, especially for the PSEN# and 
RD# signals. Many designs are possible. The examples employ the 80930AD and 83930AE but 
also apply to the other 8X930Ax devices if the differences in on-chip memory are allowed for. 
For a general discussion on external memory see "Configuring the External Memory Interface" 
on page 4-7. Figure 4-5 on page 4-8 and Figure 4-6 on page 4-9 depict the mapping of internal 
memory space into external memory. 

15-17 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

15.8.1 Example 1: RD1:0 = 00, 18-bit Bus, External Flash and RAM 

In this example, an 80930AD operates in page mode with an 18-bit external address bus inter­
faced to 128 Kbytes of external flash memory and 128 Kbytes of external RAM (Figure 15-17). 
Figure 15-18 shows how the external flash and RAM are addressed in the internal memory space. 
On-chip data RAM (1056 bytes) occupies the lowest addresses in region 00:. 

I l l 
_L 

Microcontroller CE# CE# 
(without on-chip RAM Flash 
code memory) 

__i.. 
( 128 Kbytes) .. ( 128 Kbytes) 

A17 I- 07:0 07:0 

_I 
.. 

...._ 
..i..J Latch 

__i.. _A 
A15:8 P2 A15:8 

" ,."L -y .. 
__i.. _A 

PO A7:0 A7:0 .. 7 

A16 A16 ..--- A16 

EA# 

ri WR# PSEN# OE# WE# OE# WE# 

A4285-02 

F~gure 15-17. Bus Diagram for Example 1: 80930AD in Page Mode 

15-18 _l __ 



I 

EXTERNAL MEMORY INTERFACE 

FF: 

FE: 

01: 

00: 

Address Space 
(256 Kbytes) 

FFFFH 

... o_o_oo_H ______ 128 Kbytes External Flash 

0420H 

128 Kbytes -1056 Bytes 
FFFFH External RAM 

OO:OOOOH •••••••• 1056 Bytes On-chip RAM 

Figure 15-18. Address Space for Example 1 

A4220-02 

15-19 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

15.8.2 Example 2: RD1:0=01, 17-bit Bus, External Flash and RAM 

In this example, an 80930AD operates in page mode with a 17-bit external address bus interfaced 
to 64 Kbytes of flash memory for code storage and 32 Kbytes of external RAM (Figure 15-19). 
The 80930AD is configured so that PSEN# is asserted for all reads, and RD# functions as A16 
(RDl:O = 01). Figure 15-20 shows how the external flash and RAM are addressed in the internal 
memory space. Addresses 0420H-7FFFH in external RAM are addressed in region 00:. On-chip 
data RAM (1056 bytes) occupies the lowest addresses in region 00:. 

A4286-02 

Figure 15-19. Bus Diagram for Example 2: 80930AD in Page Mode 

15-20 - _L 



I 

FF: 

FE: 

01: 

00: 

OO:OOOOH 

Address Space 
(256 Kbytes) 

FFFFH 

OOOOH 

0420H 7FFFH 

EXTERNAL MEMORY INTERFACE 

64 Kbytes External Flash 

32 Kbytes -1056 Bytes External RAM 

1056 Bytes On-chip RAM 

A4168-03 

Figure 15-20. Address Space for Example 2 

15-21 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

15.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External RAM 

In this example, an 83930AE operates in nonpage mode with a 17-bit external address bus inter­
faced to 128 Kbytes of external RAM (Figure 15-21). The 83930AE is configured so that RD# 
functions as A 16, and PSEN# is asserted for all reads. Figure 15-22 shows how the external RAM 
is addressed in the internal memory space. 

Microcontroller RAM 
(with on-chip 

code memory) Vee 
( 128 Kbytes) 

EA# CE# 

-
A16 

A16 A16 

Data 
A15:8 

P2 A15:8 

A7:0 

PO Latch A7:0 

WR# PSEN# OE# WE# 

A5004-01 

Figure 15-21. Bus Diagram for Example 3: 83930AE in Nonpage Mode 

15-22 _l __ 



I 

FF: 

FE: 

01: 

00: 

Address Space 
(256 Kbytes) 

FFFFH 

EXTERNAL MEMORY INTERFACE 

rBll!EtBB!ljll. 16 Kbytes On-chip Code Memory 

128 Kbytes -1056 Bytes External RAM 

FFFFH 

0420H 

OO:OOOOH EliiliiliiliiliiliiE' 1056 Bytes On-chip RAM 

A4169-03 

Figure 15-22. Memory Space for Example 3 

15-23 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

15.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External RAM 

In this example, an 83930AE operates in nonpage mode with a 16-bit external address bus inter­
faced to 64 Kbytes of RAM (Figure 15-23). This configuration leaves P3.7/RD#/Al6 available 
for general 1/0 (RDl:O = 10). A maximum of 64 Kbytes of external memory can be used and all 
regions of internal memory map into the single 64-Kbyte region in external memory (see Figure 
4-6 on page 4-9). Figure 15-24 shows how the external RAM is addressed in the internal memory 
space. User code is stored in on-chip ROM. 

15-24 

Microcontroller 
(with on-chip 

code memory) Vee 

EA# 

WR# PSEN# 

RAM 
(64 Kbytes) 

CE# 

OE# WE# 

Figure 15-23. Bus Diagram for Example 4: 83930AE in Nonpage Mode 

A5005-01 

I 



I 

FF: 

FE: 

01: 

00: 

Address Space 
(256 Kbytes) 

FFFFH 

EXTERNAL MEMORY INTERFACE 

.lllllllllllllllllll 16 Kbytes On-chip Code Memory 

FFFFH 
External RAM 64 Kbytes - 1056 Bytes 

0420H 

OO:OOOOH lillllllllllllllR 1056 Bytes On-chip RAM 

A4224-02 

Figure 15-24. Address Space for Example 4 

15-25 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

15.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External EPROM and RAM 

In this example, an 80930AD operates in nonpage mode with a 16-bit external address bus inter­
faced to 64 Kbytes of EPROM and 64 Kbytes of RAM (Figure 15-25). The 80930AD is config­
ured so that RD# is asserted for addresses ~ 7F:FFFFH and PSEN# is asserted for addresses ;;::: 
80:0000H. Figure 15-26 shows two ways to address the external memory in the internal memory 
space. 

Addressing external RAM locations in either region 00: or region 01: produces the same address 
at the external bus pins. However, if the external EPROM and the external RAM require different 
numbers of wait states, the external RAM must be addressed entirely in region 01:. Recall that 
the number of wait states for region 01: is independent of the remaining regions and always have 
the same number of wait states (see Table 4-3 on page 4-11) unless the real-time wait states are 
selected (see Figure 15-11 on page 15-11). 

The examples that follow illustrate two possibilities for addressing the external RAM. 

15.8.5.1 An Application Requiring Fast Access to the Stack 

If an application requires fast access to the stack, the stack can reside in the fast on-chip data 
RAM (00:0020H-00:041FH) and, when necessary, roll out into the slower external RAM. See 
the left side of Figure 15-26. In this case, the external RAM can have wait states only if the 
EPROM has wait states. Otherwise, if the stack rolls out above location 00:041FH, the external 
RAM would be accessed with no wait state. 

15.8.5.2 An Application Requiring Fast Access to Data 

If fast access to a block of data is more important than fast access to the stack, the data can be 
stored in the on-chip data RAM, and the stack can be located entirely in external memory. If the 
external RAM requires a different number of wait states than the EPROM, address the external 
RAM entirely in region 01:. See the right side of Figure 15-26. Addresses above 00:041FH roll 
out to external memory beginning at 0420H. 

15-26 I 



I 

Microcontroller 
(without on-chip 
code memory) 

EA# 

P2 

PO 

WR# RD# PSEN# 

A15:8 

A/07:0 

Latch 

EXTERNAL MEMORY INTERFACE 

EPROM 
(64 Kbytes) 

CE# 

RAM 
(64 Kbytes) 

CE# 

A15:8 

Data 

A7:0 

07:0 

OE# WE# 

A4287-02 

Figure 15-25. Bus Diagram for Example 5: 80930AD in Nonpage Mode 

15-27 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

FF: 

FE: 

01: 

00: 

15-28 

Address Space 
(256 Kbytes) 

FFFFH 64 Kbytes 
External EPROM 

OOOOH 

External RAM 
FFFFH 64 Kbytes-

0420H 
1056 Bytes 

1056 Bytes 
On-chip RAM 

FF: 

FE: 

01: 

00: 

OO:OOOOH 

Address Space 
(256 Kbytes) 

OOOOH 

OOOOH 

0420H 

FFFFH 64 Kbytes 
External 
EPROM 

FFFFH 64 Kbytes 
External 
RAM 

•••••••• 1056Bytes 
On-chip RAM 

4175-03 

Figure 15-26. Address Space for Examples 5 and 6 

I 



EXTERNAL MEMORY INTERFACE 

15.8.6 Example 6: RD1 :0 = 11, 16-bit Bus, External EPROM and RAM 

In this example, an 80930AD operates in page mode with a 16-bit external address bus interfaced 
to 64 Kbytes ofEPROM and 64 Kbytes of RAM (Figure 15-27). The 80930AD is configured so 
that RD# is asserted for addresses ~ 7F:FFFFH, and PSEN# is asserted for addresses ~ 80:0000. 

This system is the same as Example 5 (Figure 15-25) except that it operates in page mode. Ac­
cordingly, the two systems have the same memory map (Figure 15-26), and the comments on ad­
dressing external RAM apply here also. 

I 

Microcontroller 
(without on-chip 
code memory) 

P2 

EA# 

WR# RD# PSEN# 

Latch 

A?:O 

CE# 

OE# 

RAM 
(64 Kbytes) 

07:0 

Data 

A7;0 

CE# 

OE# WE# 

A4288-02 

Figure 15-27. Bus Diagram for Example 6: 80930AD in Page Mode 

15-29 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

15.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External Flash 

In this example, an 80930AD operates in page mode with a 17-bit external address bus interfaced 
to 128 Kbytes of flash memory (Figure 15-28). Port 2 carries both the upper address bits (A15:0) 
and the data (D7:0), while port 0 carries only the lower address bits (A 7:0). The 80930AD is con­
figured for a single read signal (PSEN#). The 128 Kbytes of external flash are accessed via inter­
nal memory regions FE: and FF: in the internal memory space. 

Microcontroller FLASH 
(without on-chip ( 128 Kbytes) 
code memory) 

EA# CE# 

- -
A16 

A16 A16 

Code 

D7:0 

P2 Latch A15:8 

A15:8 

PO A7:0 

A7:0 

WR# PSEN# OE# WE# 

A4289-02 

Figure 15-28. Bus Diagram for Example 7: 80930AD in Page Mode 

15-30 I 



Verifying Nonvolatile 
Memory 

I 

16 





CHAPTER16 
VERIFYING NONVOLATILE MEMORY 

This chapter provides instructions for verifying on-chip nonvolatile memory on the 8X930Ax. 
The verify instructions permit reading memory locations to verify their contents. Features cov­
ered in this chapter are: 

• verifying the on-chip program code memory 

• verifying the on-chip configuration bytes 

• verifying the lock bits 

• using the encryption array 

• verifying the signature bytes 

(8 Kbytes, 16 Kbytes) 

(8 bytes) 

(3 bits) 

(128 bytes) 

(3 bytes) 

16.1 GENERAL 

The 8X930Ax is verified in the same manner as the 87C51FX and 87C251Sx microcontrollers. 
Verify operations differ from normal operation. Memory accesses are made one byte at a time, 
input/output port assignments are different, and ALE, EA#, and PSEN# are held high or low ex­
ternally. See Tables 16-1and16-2 for lead usage during verify operations. For a complete list of 
device signal descriptions, see Appendix B. 

In some applications, it is desirable that program code be secure from unauthorized access. The 
8X930Ax offers two types of protection for program code stored in the on-chip array: 

• Program code in the on-chip code memory area is encrypted when read out for verification 
if the encryption array is programmed. 

• A three-level lock bit system restricts external access to the on-chip program code memory. 

16.1.1 Considerations for On-chip Program Code Memory 

On-chip, nonvolatile code memory is located at the lower end of the FF: region. (Example: for 
devices with 16 Kbytes of ROM, code memory is located at FF:OOOOH-FF: 3FFFH.) The first in­
struction following device reset is fetched from FF:OOOOH. It is recommended that user program 
code start at address FF:OlOOH. Use a jump instruction to FF:OlOOH to begin execution of the 
program. For information on address spaces, see Chapter 3, "Memory Partitions." 

Addresses outside the range of on-chip code memory access external memory. With EA#= 1 and 
both on-chip and external code memory implemented, you can place program code at the highest 
on-chip memory addresses. When the highest on-chip address is exceeded during execution, pro­
gram code fetches automatically rollover from on-chip memory to external memory. See the dual 
note on page 3-8. 

The top eight bytes of the memory address space (FF:FFF8H-FF:FFFFH) are reserved for device 
configuration. Do not read or write program code at these locations. For EA# = 1, the reset rou­
tine obtains configuration information from a configuration array located these addresses. (For 

I 16-1 



8XS30Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

EA#= 0, the reset routine obtains configuration information from a configuration arrayin exter­
nal memory using these internal addresses.) For a detailed discussion of device configuration, see 
Chapter 4. 

With EA#= 1 and only on-chip program code memory, multi-byte instructions and instructions 
that result in call returns or prefetches should be located a few bytes below the maximum address 
to avoid inadvertently exceeding the top address. Use an EJMP instruction, five or more address­
es below the top of memory, to continue execution in other areas of memory. See the dual note 
on page 3-8 

Signal 
Name 

P0.7:0 

P1.0 
P1.1 
P1.2 
P1.5:3 
P1.6 
P1.7 

P2.7:0 

P3.0 
P3.1 
P3.3:2 
P3.5:4 
P3.6 
P3.7 

ALE 

EA# 

PSEN# 

16-2 

CAUTION 

Execution of program code located in the top few bytes of the on-chip memory 
may cause prefetches from the next higher addresses (i.e. external memory). 
External memory fetches make use of port 0 and port 3 and may disrupt 
program execution if the program uses port 0 or port 3 for a different purpose. 

Table 16-1. Signal Descriptions 

Type Description 
Alternate 
Function 

1/0 Port 0. Eight-bit, open-drain, bidirectional 1/0 port. For verify AD7:0 
operations, use to specify the verify mode. See Table 16-2 and 
Figures 16-1 and 16-2. 

1/0 Port 1. Eight-bit, bidirectional 1/0 port with internal pullups. For T2 
verify operations, use for high byte of address. See Table 16-2 and T2EX 
Figures 16-1 and 16-2. ECI 

CEX2:0 
CEX3/WAIT# 
CEX4/A17\WCLK 

1/0 Port 2. Eight-bit, bidirectional 1/0 port with internal pullups. For A15:8 
verify operations, use as the data port. See Table 16-2 and Figures 
16-1 and 16-2. 

1/0 Port 3. Eight-bit, bidirectional 1/0 port with internal pullups. For RXD 
verify operations, use for low byte of address. See Table .16-2 and TXD 
Figures 16-1 and 16-2. INT1 :0# 

T1:0 
WR# 
RD#/A16 

- Address Latch Enable. For verify operations, connect this pin to -
Vee 

- External Enable. For verify operations, connect this pin to V cc -
- Program Store Enable. For verify operations, connect this pin to -

Vss 

I 



VERIFYING NONVOLATILE MEMORY 

16.2 VERIFY MODES 

Table 16-2 lists the verify modes and provides details about the setup. The value applied to port 
0 determines the mode. The upper digit specifies verify and the lower digit selects the memory 
function to verify (e.g., on-chip program code memory, configuration bytes, etc.). The addresses 
applied to port 1 and port 3 address locations in the selected memory function. The encryption 
array, lock bits, and signature bytes reside in nonvolatile memory outside the memory address 
space. Configuration bytes, UCONFIGO and UCONFIG 1, reside in nonvolatile memory at top of 
the memory address space (Figure 4-1 on page 4-2) for devices with on-chip ROM, and in exter­
nal memory as shown in (Figure 4-2 on page 4-3) for devices without on-chip ROM. 

16.3 GENERAL SETUP 

Figure 16-1 shows the general setup for verifying nonvolatile memory on the 8X930Ax. The con­
troller must be running with an oscillator frequency of 4 MHz to 6 MHz. Set up the controller as 
shown in Table 16-2 with the mode of operation specified on port 0 and the address with respect 
to the starting address of the memory area applied to ports 1 and 3. Data appears on port 2. Con­
nect RST, ALE, and EA# to V cc and PSEN# to ground. 

Figure 16-2 shows the bus cycle waveforms for the verify operations. Timing symbols are defined 
in Table 16-5 on page 16-6. 

Table 16-2. Verify Modes 

Mode RST PSEN# EA# ALE Port Port Address Notes 
0 2 Port 1 (high) 

Port3 (low) 

Verify Mode. On-chip High Low 5V High 28H data OOOOH-3FFFH 1 
program code Memory 

Verify Mode. Configuration High Low 5V High 29H data FFF8H-FFFFH 1 
Bytes (UCONFIGO, 
UCONFIG1) 

Verify Mode. Lock bits High Low 5V High 2BH data OOOOH 2 

Verify Mode. Signature High Low 5V High 29H data 
Bytes 0030H,0031H, 

0060H, 0061 H 

NOTES: 
1. For these modes, the internal address is FF:xxxxH. 
2. The three lock bits are verified in a single operation. The states of the lock bits appear simultaneously 

at port 2 as follows: LB3 - P2.3, LB2 - P2.2. LB1 - P2.1. High = programmed. 

I 16-3 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

Address 
(16 Bits) 

4MHz 
to CJ 

6MHz 

AO-A7 

AB - A15 

RST 

EA# 

ALE 

P2 

P1 

PSEN# 

Data 
(8 Bits) 

Verify Modes 
(8 Bits) 

Figure 16-1. Setup for Verifying Nonvolatile Memory 

Verification Cycle 

P1, P3 ( Address }--­

H TAVOV 

P2 ( Data Out )1----

TELOV ~ ~ ~ ~TEHOV 
PO X Mode X._ ___ _ 

Figure 16-2. Verify Bus Cycles 

16.4 VERIFY ALGORITHM 

A4376-01 

A4377-01 

Use this procedure to verify program code, signature bytes, configuration bytes, and lock bits 
stored in nonvolatile memory on the 8X930A.x. To preserve the secrecy of the encryption key byte 
sequence, the encryption array cannot be verified. Verification can be performed on a block of 
bytes. The procedure for verifying the 8X930A.x is as follows: 

1. 

2. 

16-4 

Set up the microcontroller for operation in the appropriate mode according to Table 16-2. 

Input the 16-bit address on ports Pl and P3. 

I 



VERIFYING NONVOLATILE MEMORY 

3. Wait for the data on port P2 to become valid (T AVQV = 48 clock cycles, Figure 16-5), then 
compare the data with the expected value. 

4. Repeat steps 1 through 3 until all memory locations are verified. 

16.5 LOCK BIT SYSTEM 

The 8X930Ax provides a three-level lock system for protecting program code stored in the on­
chip program code memory from unauthorized access. To verify that the lock bits are correctly 
programmed, perform the procedure described in "Verify Algorithm" on page 16-4 using the ver­
ify lock bits mode (Table 16-2). 

Table 16-3. Lock Bit Function 

Lock Bits Programmed Protection Type 

LB3 LB2 LB1 

Level 1 u u u No program lock features are enabled. On-chip program code 
is encrypted when verified, if encryption array is programmed. 

Level2 u u p External program code is prevented from fetching program 
code bytes from on-chip code memory. 

Level 3 u p p Same as level 2, plus on-chip program code memory verify is 
disabled. 

Level4 p p p Same as level 3, plus external memory execution is disabled. 

NOTE: Other combinations of the lock bits are not defined. 

16.5.1 Encryption Array 

The 8X930Ax includes a 128-byte encryption array located in nonvolatile memory outside the 
memory address space. During verification of the on-chip program code memory, the seven low­
order address bits also address the encryption array. As the byte of the program code memory is 
read, it is exclusive-NORed (XNOR) with the key byte from the encryption array. If the encryp­
tion array is not programmed (still all ls), the program code is placed on the data bus in its orig­
inal, unencrypted form. If the encryption array is programmed with key bytes, the program code 
is encrypted and can not be used without knowledge of the key byte sequence. 

CAUTION 
If the encryption feature is implemented, the portion of the on-chip program 
code memory that does not contain program code should be filled with 
"random" byte values other than FFH to prevent the encryption key sequence 
from being revealed. 

To preserve the secrecy of the encryption key byte sequence, the encryption array can not be ver­
ified. 

I 16-5 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

16.6 SIGNATURE BYTES 

The 8X930A.x contains factory-programmed signature bytes. These bytes are located in nonvol­
atile memory outside thememory address space at 30H, 3 lH, 60H, and 61H. To read the signature 

· bytes, perform the procedure described in "Verify Algorithm" on page 16-4 using the verify sig­
nature mode (Table 16-2). Signature byte values are listed in Table 16-4. 

ADDRESS 

30H 

31H 

60H 

16-6 

Table 16-4. Contents of the Signature Bytes 

CONTENTS DEVICE TYPE 

89H Indicates Intel Devices 

41H Indicates USB core product 

7BH Indicates 8X930Ax device 

Table 16-5. Timing Definitions 

Symbol Definition 

1/TCLCL Oscillator Frequency 

TAVQV Address to Data Valid 

TEHQZ Data Float after ENABLE 

TELQV ENABLE Low to Data Valid 

NOTE: A= Address, E = Enable, H =High, L = Low, 
Q =Data out, V =Valid, Z =Floating 

I 



infel. 

Instruction Set 
Reference 

I ~ .. ·. 

A 





APPENDIX A 
INSTRUCTION SET REFERENCE 

This appendix contains reference material for the 8X930Ax instruction set, which is identical to 
instruction set for the MCS® 251 architecture. The appendix includes an opcode map, a detailed 
description of each instruction, and the following tables that summarize notation, addressing, in­
structions types, instruction lengths and execution times: 

• Tables A-1 through A-4 describe the notation used for the instruction operands. Table A-5 
describes the notation used for control instruction destinations. 

• Table A-6 and Table A-7 on page A-5 comprise the opcode map for the instruction set. 

• Table A-8 on page A-6 through Table A-17 on page A-10 contain supporting material for 
the opcode map. 

• Table A-18 on page A-12 lists execution times for a group of instructions that access the 
port SFRs. 

• The following tables list the instructions giving length (in bytes) and execution time: 

Add and Subtract Instructions, Table A-19 on page A-14 

Compare Instructions, Table A-20 on page A-15 

Increment and Decrement Instructions, Table A-21 on pageA-15 

Multiply, Divide, and Decimal-adjust Instructions, Table A-22 on page A-16 

Logical Instructions, Table A-23 on page A-17 

Move Instructions, Table A-24 on page A-19 

Exchange, Push, and Pop Instructions, Table A-25 on page A-22 

Bit Instructions, Table A-26 on page A-23 

Control Instructions, Table A-27 on page A-24 

"Instruction Descriptions" on page A-26 contains a detailed description of each instruction. 

I 

NOTE 
The instruction execution times given in this appendix are for an internal 
BASE_ TIME using data that is read from and written to on-chip RAM. These 
times do not include your application's system bus performance time 
necessary to fetch and execute code from external memory, accessing 
peripheral SFRs, using wait states, or extending the ALE pulse. 

For some instructions, accessing the port SFRs, Px, x = 0-3, increases the 
execution time beyond that of the BASE_ TIME. These cases are listed in 
Table A-18 and are noted in the instruction summary tables and the instruction 
descriptions. 

A-1 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

A.1 NOTATION FOR INSTRUCTION OPERANDS 

Table A-1. Notation for Register Operands 

Register Notation 
8X930Ax MCS51 

Arch. 

@Ri A memory location (OOH-FFH) addressed indirectly via byte register t/ 
RO or R1 

Rn Byte register RO-R? of the currently selected register bank 

n Byte register index: n = 0-7 t/ 

r r r Binary representation of n 

Rm Byte register RO-R15 of the currently selected register file 

Rmd Destination register 

Rms Source register 
t/ 

m, md, ms Byte register index: m, md, ms= 0-15 

ssss Binary representation of m or md 

ssss Binary representation of ms 

WRj Word register WRO, WR2, ... , WR30 of the currently selected register 
file 

WRjd Destination register 

WRjs Source register 

@WRj A memory location (OO:OOOOH-OO:FFFFH) addressed indirectly 
through word register WRO-WR30 

t/ 
@WRj Data RAM location (OO:OOOOH-()O:FFFFH) addressed indirectly 
+dis16 through a word register (WRO-WR30) + displacement value, where 

the displacement value is from O to 64 Kbytes. 

j,jd, js Word register index: j, jd, js = 0-30 

tt t t Binary representation of j or jd 

TTTT Binary representation of js 

DRk Dword register ORO, DR4, ... , DR28, DR56, DR60 of the currently 
selected register file 

DRkd Destination Register 

DR ks Source Register 

@DRk A memory location (OO:OOOOH-FF:FFFFH) addressed Indirectly 
through dword register DRO-DR28, DR56, DR60 

t/ 
@DRk Data RAM location (OO:OOOOH-FF:FFFFH) addressed indirectly 
+dis24 through a dword register (DRO-DR28, DR56, DR60) + displacement 

value, where the displacement value is from O to 64 Kbytes 

k, kd, ks Dword register index: k, kd, ks= 0, 4, 8, ... , 28, 56, 60 

uuuu Binary representation of k or kd 

uuuu Binary representation of ks 

A-2 I 



INSTRUCTION SET REFERENCE 

Table A-2. Notation for Direct Addresses 

Direct 
Description 

8X930Ax MCS51 
Address. Arch. Arch. 

dir8 An 8-bit direct address. This can be a memory address ii ii (OO:OOOOH--00:007FH) or an SFR address (S:OOH - S:FFH). 

dir16 A 16-bit memory address (OO:OOOOH-OO:FFFFH) used in direct 
ii addressing. 

Table A-3. Notation for Immediate Addressing 

Immediate 
Description 

8X930Ax MCS51 
Data Arch. Arch. 

#data An 8-bit constant that is immediately addressed in an instruction. ii ii 

#data16 A 16-bit constant that is immediately addressed in an instruction. ii 

#Odata16 A 32-bit constant that is immediately addressed in an instruction. The 
ii #1data16 upper word is filled with zeros (#Odata16) or ones (#1data16). 

#short A constant, equal to 1, 2, or 4, that is immediately addressed in an 
instruction. ii 

vv Binary representation of #short. 

Table A-4. Notation for Bit Addressing 

Bit 
Description 8X930Ax MCS51 

Address Arch. Arch. 

bit A directly addressed bit in memory locations 00:0020H-00:007FH or in 
any defined SFR. ii 

yyy A binary representation of the bit number (0-7) within a byte. 

bit51 A directly addressed bit (bit number= OOH-FFH) in memory or an SFR. 
Bits OOH-7FH are the 128 bits in byte locations 20H-2FH in the on-chip 

ii RAM. Bits SOH-FFH are the 128 bits in the 16 SFR's with addresses 
that end in OH or SH: S:SOH, S:88H, S:90H, ... , S:FOH, S:FSH. 

Table A-5. Notation for Destinations in Control Instructions 

Destination 
Description 

8X930Ax MCS51 
Address Arch. Arch. 

rel A signed (two's complement) 8-bit relative address. The destination is 
ii ii -128 to + 127 bytes relative to first byte of the next instruction. 

addr11 An 11-bit destination address. The destination is in the same 2-Kbyte 
ii ii block of memory as the first byte of the next instruction. 

addr16 A 16-bit destination address. A destination can be anywhere within 
ii ii the same 64-Kbyte region as the first byte of the next instruction. 

addr24 A 24-bit destination address. A destination can be anywhere within ii the 16-Mbyte address space. 

I A-3 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

A.2 OPCODE MAP AND SUPPORTING TABLES 

Table A-6. Instructions for MCS® 51 Microcontrollers 

Bin. 0 1 2 3 4 5 6-7 8-F 

Src. 0 1 2 3 4 5 A5x6-A5x7 A5x8-A5xF 

0 NOP AJMP LJMP RR INC INC INC INC 
addr11 addr16 A A dir8 @Ri Rn 

1 JBC ACALL LC ALL RRC DEC DEC DEC DEC 
bit, rel addr11 addr16 A A dir8 @Ri Rn 

2 JB AJMP RET ALA ADD ADD ADD ADD 
bit, rel addr11 A,#data A,dir8 A,@Ri A,Rn 

3 JNB ACALL RETI RLCA ADDC ADDC ADDC ADDC 
bit, rel addr11 A,#data A,dir8 A,@Ri A,Rn 

4 JC AJMP ORL ORL ORL ORL ORL ORL 
rel addr11 dir8,A dir8,#data A,#data A,dir8 A,@Ri A,Rn 

5 JNC ACALL ANL ANL ANL ANL ANL ANL 
rel addr11 dir8,A dir8,#data A,#data A,dir8 A,@Ri A,Rn 

6 JZ AJMP XRL XRL XRL XRL XRL XRL 
rel . addr11 dir8,A dir8,#data A,#data A,dir8 A,@Ri A,Rn 

7 JNZ A CALL ORL JMP MOV MOV MOV MOV 
rel addr11 CY, bit @A+DPTR A,#data dir8,#data @Ri,#data Rn,#data 

8 SJMP AJMP ANL MOVC DIV MOV MOV MOV 
rel addr11 CY, bit A,@A+PC AB dir8,dir8 dir8,@Ri dir8,Rn 

9 MOV ACALL MOV MOVC SUBB SUBB SUBB sues 
DPTR,#datal6 addr11 bit, CY A,@A+DPTR A,#data A,dir8 A,@Ri A,Rn 

A ORL AJMP MOV INC MUL ESC MOV MOV 
CY, bit addr11 CY, bit DPTR AB @Ri,dir8 Rn,dir8 

B ANL A CALL CPL CPL CJNE CJNE CJNE CJNE 
CY, bit addr11 bit CY A,#data,rel A,dir8,rel @Ri,#data,rel Rn,#data,rel 

c PUSH AJMP CLR CLR SWAP XCH XCH XCH 
dir8 addr11 bit CY A A,dir8 A,@Ri A,Rn 

D POP ACALL SETB SETB DA DJNZ XCHD DJNZ 
dir8 addr11 bit CY A dir8,rel A,@Ri Rn,rel 

E MOVX AJMP MOVX CLR MOV MOV MOV 
A,@DPTR addr11 A,@Ri A A,dir8 A,@Ri A,Rn 

F MOV ACALL MOVX CPL MOV MOV MOV 
@DPTR,A addr11 @Ri,A A dir8,A @Ri,A Rn,A 

A-4 I 



INSTRUCTION SET REFERENCE 

Table A-7. Instructions for the 8X930Ax Architecture 

Bin. A5x8 A5x9 A5xA A5xB A5xC A5x0 A5xE A5xF 

Src. x8 .x9 xA xB xC xD xE xF 

0 JSLE MOV MOVZ INC R,#short (1) SRA 
rel Rm,@WRj+dis WRj,Rm MOV reg.ind reg 

1 JSG MOV MOVS DEC R,#short (1) SRL 
rel @WRj+dis,Rm WRj,Rm MOV ind,reg reg 

2 JLE MOV ADD ADD ADD ADD 
rel Rm,@DRk+dis Rm, Rm WRj,WRj reg,op2 (2) DRk,DRk 

3 JG MOV SLL 
rel @DRk+dis,Rm reg 

4 JSL MOV ORL ORL ORL 
rel WRj,@WRj+dis Rm, Rm WRj,WRj reg,op2 (2) 

5 JSGE MOV ANL ANL ANL 
rel @WRj+dis,WRj Rm, Rm WRj,WRj reg,op2 (2) 

6 JE MOV XRL XRL XRL 
rel WRj, @DRk+dis Rm, Rm WRj,WRj reg,op2 (2) 

7 JNE MOV MOV MOV MOV MOV MOV 
rel @DRk+dis,WRj op1,reg (2) Rm, Rm WRj,WRj reg,op2 (2) DRk,DRk 

8 LJMP@WRj EJMP DIV DIV 
EJMP @DRk addr24 Rm,Rm WRj,WRj 

9 LCALL@WRj ECALL SUB SUB SUB SUB 
ECALL @DRk addr24 Rm,Rm WRj,WRj reg,op2 (2) DRk,DRk 

A Bit ERET MUL MUL 
Instructions (3) Rm, Rm WRj,WRj 

B TRAP CMP CMP CMP CMP 
Rm,Rm WRj,WRj reg,op2 (2) DRk,DRk 

c PUSH op1 (4) 
MOV DRk,PC 

D POP 
op1 (4) 

E 

F 

NOTES: 
1. R = Rm/WRj/DRk. 
2. op1, op2 are defined in Table A-8. 
3. SeeTablesA-10andA-11. 
4. See Table A-12. 

I A-5 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

Table A-8. Data Instructions 

Instruction Byte 0 Byte 1 I Byte 2 I 
Oper Rmd,Rms x c md ms 

Oper WRjd,WRjs x D jd/2 js/2 

Oper DRkd,DRks x F kd/4 ks/4 

Oper Rm,#data x E m 0000 #data 

Oper WRj,#data16 x E j/2 0100 #data (high) 

Oper DRk,#data16 x E k/4 1000 #data (high) 

MOV DRk(h),#data16 7 A k/4 1100 #data (high) 

MOV DRk,#1data16 7 E 

CMP DRk,#1 data16 B E 

Oper Rm,dir8 x E m 0001 dir8 addr 

Oper WRj,dir8 x E j/2 0101 dir8 addr 

Oper DRk,dir8 x E k/4 1101 dir8 addr 

Oper Rm,dir16 x E m 0011 dir16 addr (high) 

Oper WRj,dir16 x E j/2 0111 dir16 ad.cir (high) 

Oper DRk,dir16 (1) x E k/4 1111 dir16 addr (high) 

Oper Rm,@WRj x E j/2 1001 m I 00 

Oper Rm,@DRk x E k/4 1011 m l 00 

NOTE: 
1. For this instruction, the only valid operation is MOV. 

A-6 

Table A-9. High Nibble, Byte O of Data Instructions 

x Operation Notes 

2 ADD reg,op2 

9 SUB reg,op2 

B CMP reg,op2 (1) 

4 ORL reg,op2 (2) All addressing modes are 
supported. 

5 ANL reg,op2 (2) 

6 XRL reg,op2 (2) 

7 MOV reg,op2 

8 DIV reg,op2 Two modes only: 

A MUL reg,op2 
reg,op2 = Rmd,Rms 
reg,op2 = Wjd,Wjs 

NOTES: 
1. The CMP operation does not support DRk, direct16. 
2. For the ORL, ANL, and XRL operations, neither reg nor op2 

can be DRk. 

I Byte 3 

#data (low) 

#data (low) 

#data (low) 

dir16 addr (low) 

dir16 addr (low) 

dir16 addr (low) 

I 

I 



INSTRUCTION SET REFERENCE 

All of the bit instructions in the 8X930Ax architecture (Table A-7) have opcode A9, which serves 
as an escape byte (similar to A5). The high nibble of byte 1 specifies the bit instruction, as given 
in Table A-10. 

I 

Instruction 

1 Bit Instr (dir8) 

Table A-10. Bit Instructions 

Byte O(x) 

A j 9 

Byte 1 

xxxx l 0 l bit 

Byte 2 

dir8 addr 

Table A-11. Byte 1 (High Nibble) for Bit Instructions 

xx xx Bit Instruction 

0001 JBC bit 

0010 JB bit 

0011 JNB bit 

0111 ORLCY,bit 

1000 ANL CY.bit 

1001 MOV bit,CY 

1010 MOV CY,bit 

1011 CPL bit 

1100 CLR bit 

1101 SETS bit 

1110 ORL CY, /bit 

1111 ANL CY, /bit 

Byte 3 

rel addr 

A·7 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

Instruction 

PUSH #data 

PUSH #data16 

PUSH Rm 

PUSH WRj 

PUSH DRk 

MOV DRk,PC 

POP Rm 

POP WRj 

POP DRk 

Instruction 

EJMP addr24 

ECALL addr24 

LJMP @WRj 

LCALL @WRj 

EJMP @DRk 

ECALL @DRk 

ERET 

JE rel 

JNE rel 

JLE rel 

JG rel 

JSL rel 

JSGE rel 

JSLE rel 

JSG rel 

TRAP 

A·B 

Table A-12. PUSH/POP Instructions 

Byte O(x) Byte 1 Byte 2 

c 
c 
c 
c 
c 
c 
D 

D 

D 

A 0000 0010 #data 

A 0000 0110 #data16 (high) 

A m 1000 

A j/2 1001 

A k/4 1011 

A k/4 0001 

A m 1000 

A j/2 1001 

A k/4 1011 

Table A-13. Control Instructions 

Byte O(x) 

8 A 

9 A 

8 9 

9 9 

8 9 

9 9 

A A 

8 8 

7 8 

2 8 

3 8 

4 8 

5 8 

0 8 

1 8 

B 9 

Byte 1 

addr[23:16] 

add r[23: 16] 

j/2 0100 

j/2 0100 

k/4 1000 

k/4 1000 

rel 

rel 

rel 

rel 

rel 

rel 

rel 

rel 

,..----------, 

Byte 2 

addr[15:8] 

addr[15:8] 

Byte 3 

#data 16 (low) 

Byte 3 

addr[7:0] 

addr[7:0] 

I 



Instruction 

MOV Rm,@WRj+dis 

MOV WRk,@WRj+dis 

MOV Rm,@DRk+dis 

MOV WRj, @DRk+dis 

MOV @WRj+dis,Rm 

MOV @WRj+dis,WRk 

MOV @DRk+dis,Rm 

MOV @DRk+dis,WRj 

MOVSWRj,Rm 

MOVZWRj,Rm 

MOV WRj,@WRj 

MOV WRj, @DRk 

MOV @WRj,WRj 

MOV @DRk,WRj 

MOVdir8,Rm 

MOV dir8,WRj 

MOV dir8,DRk 

MOV dir16,Rm 

MOV dir16, WRj 

MOV dir16,DRk 

MOV@WRj,Rm 

MOV @DRk,Rm 

I 

INSTRUCTION SET REFERENCE 

Table A-14. Displacement/Extended MOVs 

ByteO Byte 1 

0 9 m j/2 

4 9 j/2 k2 

2 9 m k/4 

6 9 j/2 k/4 

1 9 m j/2 

5 9 j/2 k2 

3 9 m k/4 

7 9 j/2 k/4 

1 A j/2 m 

0 A j/2 m 

0 B j/2 1000 

0 B k/4 1010 

1 B j/2 1000 

1 B k/4 1010 

7 A m 0001 

7 A j/2 0101 

7 A k/4 1101 

7 A m 0011 

7 A j/2 0111 

7 A k/4 1111 

7 A j/2 1001 

7 A k/4 1011 

Byte 2 

dis[15:8] 

dis[15:8] 

dis[15:8] 

dis[15:8] 

dis[15:8] 

dis[15:8] 

dis[15:8] 

dis[15:8] 

j/2 0000 

j/2 0000 

j/2 0000 

j/2 0000 

dir8 addr 

dir8 addr 

dir8 addr 

dir16 addr (high) 

dir16 addr (high) 

dir16 addr (high) 

m 0000 

m 0000 

Byte 3 

dis[7:0] 

dis[7:0] 

dis[7:0] 

dis[7:0] 

dis[7:0] 

dis[7:0] 

dis[7:0] 

dis[7:0] 

dir16 addr (low) 

dir16 addr (low) 

dir16 addr (low) 

A-9 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

Table A-15. INC/DEC 

Instruction ByteO Byte 1 

1 INC Rm,#short 0 B m 00 SS 

2 INC WRj,#short 0 B j/2 01 SS 

3 INC DRk,#short 0 B k/4 11 SS 

4 DEC Rm,#short 1 B m 00 SS 

5 DEC WRj,#short 1 B j/2 01 SS 

6 DEC DRk,#short 1 B k/4 11 SS 

Table A-16. Encoding for INC/DEC 

SS #short 

00 1 

01 2 

10 4 

Table A-17. Shifts 

Instruction ByteO Byte 1 

1 SRA Rm 0 E m 0000 

2 SRAWRj 0 E v2 0100 

3 SRL Rm 1 E m 0000 

4 SRLWRj 1 E V2 0100 

5 SLL Rm 3 E m 0000 

6 SLL WRj 3 E j/2 0100 

A-10 I 



INSTRUCTION SET REFERENCE 

A.3 INSTRUCTION SET SUMMARY 

This section contains tables that summarize the instruction set. For each instruction there is a 
short description, its length in bytes, and its execution time in states. 

NOTE 
Execution times are increased by executing code from external memory, 
accessing peripheral SFRs, accessing data in external memory, using a wait 
state, or extending the ALE pulse. 

For some instructions, accessing the port SFRs, Px, x = 0-3, increases the 
execution time. These cases are noted individually in the tables. 

A.3.1 Execution Times for Instructions Accessing the Port SFRs 

Table A-18 lists these instructions and the execution times. 

• Case 1. Code executes from external memory with no wait state and a short ALE (not 
extended) and accesses a port SFR. 

• Case 2. Code executes from external memory with one wait state and a short ALE (not 
extended) and accesses a port SFR. 

• Case 3. Code executes from external memory with one wait state and an extended ALE, and 
accesses a port SFR. 

Times for each case are expressed as the number of state times to be added to the BASE_ TIME. 

I A-11 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

Table A-18. State Times to Access the Port SFRs 

BASE_ TIME 
Additional State Times 

Instruction 
(Add to the BASE_ TIME column) 

Binary Source Case 1 Case2 Case3 

ADDA,dir8 1 1 2 3 4 

ADD Rm,dir8 3 2 2 3 4 

ADDC A,dir8 1 1 2 3 4 

ANLA,dir8 1 1 2 3 4 

ANL CY,bit 3 2 2 3 4 

ANL CY,bit51 1 1 2 3 4 

ANL CY,/bit 3 2 2 3 4 

ANL CY,/bit51 1 1 2 3 4 

ANL dirB,#data 3 3 4 6 8 

ANL dir8,A 2 2 4 6 8 

ANL Rm,dirB 3 2 2 3 4 

CLR bit 4 3 4 6 8 

CLR bit51 2 2 4 6 8 

CMP Rm,dir8 3 2 2 3 4 

CPL bit 4 3 4 6 8 

CPL bit51 2 2 4 6 8 

DEC dir8 2 2 4 6 8 

INC dir8 2 2 4 6 8 

MOV A,dir8 1 1 2 3 4 

MOVbit,CY 4 3 4 6 8 

MOV bit51,CY 2 2 4 6 8 

MOV CY,bit 3 2 2 3 4 

MOV CY,bit51 1 1 2 3 4 

MOV dir8,#data 3 3 2 3 4 

MOV dir8,A 2 2 2 3 4 

MOV dir8,Rm 4 3 2 3 4 

MOV dir8,Rn 2 3 2 3 4 

MOV Rm,dirB 3 2 2 3 4 

MOV Rn,dirB 1 2 2 3 4 

ORL A,dir8 1 1 2 3 4 

ORL CY,bit 3 2 2 3 4 

ORL CY,bit51 1 1 2 3 4 

ORL CY,/bit 3 2 2 3 4 

A·12 I 



INSTRUCTION SET REFERENCE 

Table A-18. State Times to Access the Port SFRs (Continued) 

BASE_ TIME Additional State Times 

Instruction 
(Add to the BASE_ TIME column) 

Binary Source Case 1 Case2 Case 3 

ORL CY,/bit51 1 1 2 3 4 

ORL dirB,#data 3 3 2 3 4 

ORL dirB,A 2 2 4 6 8 

ORL Rm,dirB 3 2 2 3 4 

SETB bit 4 3 4 6 8 

SETB bit51 2 2 4 6 8 

SUB Rm,dirB 3 2 2 3 4 

SUBB A,dirB 1 1 2 3 4 

XCH A,dirB 3 3 4 6 8 

XRL A,dirB 1 1 2 3 4 

XRL dirB,#data 3 3 4 6 8 

XRL dirB,A 2 2 4 6 8 

XRL Rm,dirB 3 2 2 3 4 

I A-13 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL inte'® 

A.3.2 Instruction Summaries 

Table A-19. Summary of Add and Subtract Instructions 

Add ADD <dest>,<src> dest opnd r dest opnd + src opnd 
Subtract SUB <dest>,<src> dest opnd r dest opnd - src opnd 
Add with Carry ADDC <dest>,<src> (A) r (A) + src opnd + carry bit 
Subtract with Borrow SUBB <dest>,<src> (A) r (A) - src opnd - carry bit 

Binary Mode Source Mode 
Mnemonic <dest>,<src> Notes 

Bytes States Bytes States 

Reg to ace 2 2 

Dir byte to ace 2 1 (2) 2 1 (2) 
ADD 

lndir addr to ace 2 2 3 

Immediate data to ace 2 2 

Rmd,Rms Byte reg to/from byte reg 3 2 2 

WRjd,WRjs Word reg to/from word reg 3 3 2 2 

DRkd,DRks Dword reg to/from dword reg 3 5 2 4 

Rm,#data Immediate 8-bit data to/from byte reg 4 3 3 2 

WRj,#data16 Immediate 16-bit data to/from word reg 5 4 4 3 

,ADD; 
DRk,#Odata16 16-bit unsigned immediate data to/from 5 6 4 5 

dword reg 
SUB 

Rm,dir8 Dir addr to/from byte reg 4 3 (2) 3 2 (2) 

WRj,dir8 Dir addr to/from word reg 4 4 3 3 

Rm,dir16 Dir addr (64K) to/from byte reg 5 3 4 2 

WRj,dir16 Dir addr (64K) to/from word reg 5 4 4 3 

Rm,@WRj lndir addr (64K) to/from byte reg 4 3 3 2 

Rm,@DRk lndir addr (16M) to/from byte reg 4 4 3 3 

Reg to/from ace with carry 2 2 

ADDC; Dir byte to/from ace with carry 2 1 (2) 2 1 (2) 

SUBS lndir RAM to/from ace with carry 2 2 3 

Immediate data to/from ace with carry 2 2 

NOTES: 
1. A shaded cell denotes an instruction in the MCS® 51 architecture. 
2. If this instruction addresses an 1/0 port (Px, x = 3:0), add 1 to the number of states. 

A-14 I 



INSTRUCTION SET REFERENCE 

Table A-20. Summary of Compare Instructions 

Compare CMP <dest>,<SrC> dest opnd - src opnd 

Binary Mode 
Mnemonic <dest>,<src> Notes 

Bytes States 

Rmd,Rms Reg with reg 3 2 

WRjd,WRjs Word reg with word reg 3 3 

DRkd,DRks Dword reg with dword reg 3 5 

Rm,#data Reg with immediate data 4 3 

WRj,#data 16 Word reg with immediate 16-bit data 5 4 

DRk,#Odata 16 Dword reg with zero-extended 16-bit 5 6 
immediate data 

CMP DRk,#1data16 Dword reg with one-extended 16-bit 5 6 
immediate data 

Rm,dirB Dir addr from byte reg 4 3t 

WRj,dirB Dir addr from word reg 4 4 

Rm,dir16 Dir addr (64K) from byte reg 5 3 

WRj,dir16 Dir addr (64K) from word reg 5 4 

Rm,@WRj lndir addr (64K) from byte reg 4 3 

Rm,@DRk lndir addr (16M) from byte reg 4 4 

If this instruction addresses an 1/0 port (Px, x = 3:0), add I to the number of states. 

Increment 
Increment 
Increment 
Decrement 
Decrement 

Table A-21. Summary of Increment and Decrement Instructions 

INC DPTR 
INC byte 
INC <dest>,<src> 
DEC byte 
DEC <dest>,<SrC> 

(DPTR) r (DPTR) + 1 
byte r byte + 1 
dest opnd r dest opnd + src opnd 
byte r byte - 1 
dest opnd r dest opnd - src opnd 

Source Mode 

Bytes States 

2 1 

2 2 

2 4 

3 2 

4 3 

4 5 

4 5 

3 2t 

3 3 

4 2 

4 3 

3 2 

3 3 

Binary Mode Source Mode 
Mnemonic <dest>,<src> Notes 

Bytes States Bytes States 

ace 

Reg 2 2 

Dir byte 2 2 (2) 2 
INC; 

lndir RAM 3 2 
DEC 

2 (2) 

4 

Rm,#short Byte reg by 1, 2, or 4 3 2 2 

WRj,#short Word reg by 1, 2, or 4 3 2 2 

DRk,#short Double word reg by 1, 2, or 4 3 4 2 3 

NOTES: 
1. A shaded cell denotes an instruction in the MCSID 51 architecture. 
2. If this instruction addresses an 1/0 port (P x, x = 0-3), add 2 to the number of states. 

I A-15 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

Increment 
Increment 
Increment 
Decrement 
Decrement 

Table A-21. Summary of Increment and Decrement Instructions 

INC DPTR 
INC byte 
INC <dest>,<src> 
DEC byte 
DEC <dest>,<src> 

(DPTR) t- (DPTR) + 1 
byte t- byte + 1 
dest opnd t- dest opnd + src opnd 
byte t- byte - 1 
dest opnd t- dest opnd - src opnd 

Binary Mode Source Mode 
Mnemonic <dest>,<src> Notes 

Bytes States Bytes States 

INC Data pointer 

NOTES: 
1. A shaded cell denotes an instruction in the MCSID 51 architecture. 
2. If this instruction addresses an 1/0 port {Px, X= 0-3), add 2 to the number of states. 

Table A-22. Summary of Multiply, Divide, and Decimal-adjust Instructions 

Multiply 

Divide 

Decimal-adjust ACC 
for Addition (BCD) 

MUL <reg1,reg2> 
MULAB 
DIV <reg1>,<reg2> 
DIVAB 
DAA 

(2) 
(B:A)=A x B 
(2) 
(A) = Quotient; (B) =Remainder 
(2) 

Binary Mode Source Mode 
Mnemonic <dest>,<src> Notes 

Bytes States Bytes States 

Multiply A and B 5 1 5 

MUL Multiply byte reg and byte reg 3 6 2 5 

Multiply word reg and word reg 3 12 2 11 

Divide AbyB 10 10 

DIV Divide byte reg by byte reg 3 11 2 10 

Divide word reg by word reg 3 21 2 20 

DA Decimal adjust ace 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

NOTES:
1. A shaded cell denotes an instruction in the MCSID 51 architecture.
2. See "Instruction Descriptions" on page A-26.

A-16

I

intel® INSTRUCTION SET REFERENCE

Table A-23. Summary of Logical Instructions

Logical AND ANL <dest>,<SrC> dest opnd ~dest opnd A src opnd
Logical OR ORL <dest>,<src> dest opnd ~ dest opnd V src opnd
Logical Exclusive OR XRL <dest>,<src> dest opnd ~ dest opnd 'r/ src opnd
Clear CLRA (A)~O
Complement CPLA' (Al)~ 0(AI)
Rotate RXXA (1)
Shift SXXRmorWJ (1)
SWAP A A3:0ttA7:4

Binary Mode Source Mode
Mnemonic <dest>,<src> Notes

Bytes States Bytes States

Reg to ace 2 2

Dir byte to ace 2 1 (3) 2 1 (3)

lndir addr to ace 1 2 2 3

Immediate data to ace 2 2

Ace to dir byte 2 2 (4) 2 2 (4)

Immediate data to dir byte 3 3 (4) 3 3 (4)

Rmd,Rms Byte reg to byte reg 3 2 2
ANL;

WRjd,WRjs Word reg to word reg 3 3 2 2
ORL;

Rm,#data B·bit data to byte reg
XRL;

4 3 3 2

WRj,#data16 16-bit data to word reg 5 4 4 3

Rm,dir8 Dir addr to byte reg 4 3 (3) 3 2 (3)

WRj,dir8 Dir addr to word reg 4 4 3 3

Rm,dir16 Dir addr (64K) to byte reg 5 3 4 2

WRj,dir16 Dir addr (64K) to word reg 5 4 4 3

Rm,@WRj lndir addr (64K) to byte reg 4 3 3 2

Rm,@DRk lndir addr (16M) to byte reg 4 4 3 3

CLR Clear ace

CPL Complement ace

AL Rotate ace left

RLC Rotate ace left through the carry

RR Rotate ace right

ARC Rotate ace right through the carry

Shift byte reg left 3 2 2
SLL

Shift word reg left 3 2 2

NOTES:
1. See "Instruction Descriptions" on page A-26.
2. A shaded cell denotes an instruction in the MC~ 51 architecture.
3. If this instruction addresses an 1/0 port (Px, x = 0-3), add 1 to the number of states.
4. If this instruction addresses an 1/0 port (Px, x = 0-3), add 2 to the number of states.

I
A-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table A-23. Summary of Logical Instructions (Continued)

LoglcalAND ANL <dest>,<src> dest opnd ~dest opnd A src opnd
Logical OR ORL <dest>,<src> dest opnd ~ dest opnd V src opnd
Logical Exclusive OR XRL <dest>,<src> dest opnd ~ dest opnd 'if src opnd
Clear CLRA (A)~O
Complement CPLA {Al)~ 0(Ai)
Rotate RXXA (1)
Shift SXXRmorWj (1)
SWAP A A3:0ttA7:4

Binary Mode Source Mode
Mnemonic <dest>,<src> Notes

Bytes States Bytes States

Rm Shift byte reg right through the MSB 3 2 2
SRA

WRj Shift word reg right through the MSB 3 2 2

Rm Shift byte reg right 3 2 2
SRL

WRj Shift word reg right 3 2 2

SWAP Swap nibbles within the ace 2 2

NOTES:
1. See "Instruction Descriptions" on page A-26.
2. A shaded cell denotes an instruction in the MC~ 51 architecture.
3. If this instruction addresses an 1/0 port (Px, x = Q-3), add 1 to the number of states.
4. If this instruction addresses an 1/0 port (Px, x = Q-3), add 2 to the number of states.

A·18

I

INSTRUCTION SET REFERENCE

Table A-24. Summary of Move Instructions

Move (2)
Move with Sign Extension
Move with Zero Extension
Move Code Byte
Move to External Mem
Move from External Mem

Mnemonic <dest>,<src>

MOV

Rmd,Rms

WRjd,WRjs

DRkd,DRks

Rm,#data

WRj,#data16

DRk,#Odata16

DRk,#1data16

NOTES:

destination .-- src opnd MOV <dest>,<src>
MOVS <dest>,<src>
MOVZ <dest>,<src>
MOVC <dest>,<src>
MOVX <dest>,<src>
MOVX <dest>,<SrC>

destination .-- src opnd with sign extend
destination .-- src opnd with zero extend
A .-- code byte
external mem .-- (A)
A.-- source opnd in external mem

Binary Mode Source Mode
Notes

Bytes States Bytes States

Reg to ace 2 2

Dir byte to ace 2 1 (3) 2 1 (3)

lndir RAM to ace 2 2 3

Immediate data to ace 2 2

Ace to reg 2 2

Dir byte to reg 2 1 (3) 3 2 (3)

Immediate data to reg 2 3 2

Ace to dir byte 2 2 (3) 2 2 (3)

Reg to dir byte 2 2 (3) 3 3 (3)

Dir byte to dir byte 3 3 3 3

lndir RAM to dir byte 2 3 3 .4

Immediate data to dir byte 3 3 (3) 3 3 (3)

Ace to indir RAM 3 2 4

Dir byte to indir RAM 2 3 3 4

Immediate data to indir RAM 2 3 3 4

Load Data Pointer with a 16-bit const 3 2 3 2

Byte reg to byte reg 3 2 2

Word reg to word reg 3 2 2

Dword reg to dword reg 3 3 2 2

8-bit immediate data to byte reg 4 3 3 2

, 16-bit immediate data to word reg 5 3 4 2

zero-extended 16-bit immediate data 5 5 4 4
to dword reg

one-extended 16-bit immediate data 5 5 4 4
to dword reg

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. Instructions that move bits are in Table A-26.
3. If this instruction addresses an 1/0 port (Px, x = 0-3), add 1 to the number of states.
4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by

DPXL (reset value= 01 H). See "Compatibility with the MCS® 51 Architecture" on page 3-2.

I A-19

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table A-24. Summary of Move Instructions (Continued)

Move (2) MOV <dest>,<src> destination <---- src opnd
Move with Sign Extension MOVS <dest>,<src> destination <---- src opnd with sign extend
Move with Zero Extension MOVZ <dest>,<src> destination<---- src opnd with zero extend
Move Code Byte MOVC <dest>,<src> A <---- code byte
Move to External Mem MOVX <dest>,<SrC> external mem <---- (A)
Move from External Mem MOVX <dest>,<src> A <----source opnd in external mem

Binary Mode Source Mode
Mnemonic <dest>,<src> Notes

Bytes States Bytes States

DRk,dir8 Dir addr to dword reg 4 6 3 5

DRk,dir16 Dir addr (64K) to dword reg 5 6 4 5

Rm,dir8 Dir addr to byte reg 4 3 (3) 3 2 (3)

WRj,dir8 Dir addrto word reg 4 4 3 3

Rm,dir16 Dir addr (64K) to byte reg 5 3 4 2

WRj,dir16 Dir addr (64K) to word reg 5 4 4 3

Rm,@WRj lndir addr (64K) to byte reg 4 2 3 2

Rm,@DRk lndir addr (16M) to byte reg 4 4 3 3

WRjd,@WRjs lndir addr(64K) to word reg 4 4 3 3

WRj,@DRk lndir addr(16M) to word reg 4 5 3 4

dir8,Rm Byte reg to dir addr 4 4 (3) 3 3 (3)

dir8,WRj Word reg to dir addr 4 5 3 4

MOV dir16,Rm Byte reg to dir addr (64K) 5 4 4 3

dir16,WRj Word reg to dir addr (64K) 5 5 4 4

@WRj,Rm Byte reg to indir addr (64K) 4 4 3 3

@DRk,Rm Byte reg to indir addr (16M) 4 5 3 4

@WRjd,WRjs Word reg to indir addr (64K) 4 5 3 4

@DRk,WRj Word reg to indir addr (16M) 4 6 3 5

dir8,DRk Dword reg to dir addr 4 7 3 6

dir16,DRk Dword reg to dir addr (64K) 5 7 4 6

Rm,@WRj+dis16 lndir addr with disp (64K) to byte reg 5 6 4 5

WRj,@WRj+dis16 lndir addr with disp (64K) to word reg 5 7 4 6

Rm,@DRk+dis16 lndir addr with disp (16M) to byte reg 5 7 4 6

WRj,@DRk+dis16 lndir addr with disp (16M) to word reg 5 8 4 7

@WRj+dis16,Rm Byte reg to lndir addr with disp (64K) 5 6 4 5

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. Instructions that move bits are in Table A-26.
3. If this instruction addresses an 1/0 port (P x, x = 0-3), add 1 to the number of states.
4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by

DPXL (reset value = 01 H). See "Compatibility with the MCS® 51 Architecture" on page 3-2.

A-20

I

INSTRUCTION SET REFERENCE

Table A-24. Summary of Move Instructions (Continued)

Move (2) destination ~ src opnd
Move with Sign Extension
Move with Zero Extension
Move Code Byte

MOV <dest>,<src>
MOVS <dest>,<src>
MOVZ <dest>,<src>
MOVC <dest>,<src>
MOVX <dest>,<src>
MOVX <dest>,<src>

destination~ src opnd with sign extend
destination~ src opnd with zero extend
A ~codebyte

Move to External Mem
Move from External Mem

external mem ~ (A)
A ~ source opnd in external mem

Binary Mode Source Mode
Mnemonic . <dest>,<Src> Notes

Bytes States Bytes States

@WRj+dis16,WRj Word reg to lndir addr with disp (64K) 5 7 4 6

MOV
@DRk+dis16,Rm Byte reg to lndir addr with disp (16M} 5 7 4 6

@DRk+dis16,WRj Word reg to lndir addr with disp 5 8 4 7
(16M)

MOVH
DRk(hi), #data16 16-bit immediate data into upper 5 3 4 2

word of dword reg

MOVS WRj,Rm Byte reg to word reg with sign 3 2 2
extension

MOVZ
WRj,Rm Byte reg to word reg with zeros 3 2 2

extension

Code byte relative to DPTR to ace 6 6
MOVC

Code byte relative to PC to ace 6 6

External mem (8-bit addr) to ace (4) 4 2 5

External mem (16-bit addr) to ace (4) 5 5
MOVX

Ace to external mem (8-bit addr) (4) 4 4

Ace to external mem (16-bit addr) (4) 5 5

NOTES:
1. A shaded cell denotes an instruction in the MCSID 51 architecture.
2. Instructions that move bits are in Table A-26.
3. If this.instruction addresses an 1/0 port (Px, x= 0--3), add 1 to the number of states.
4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by

DPXL (reset value = 01 H). See "Compatibility with the MCS® 51 Architecture" on page 3-2.

J A-21

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL infel®
Table A-25. Summary of Exchange, Push, and Pop Instructions

Exchange Contents XCH <dest>,<SrC> A H src opnd
Exchange Digit XCHD <desb,<SrC> A3:0 H on-chip RAM bits 3:0
Push PUSH <src> SP f- SP+ 1; (SP) f- src
Pop POP <dest> dest f- (SP); SP. f- SP - 1

Binary Mode Source Mode
Mnemonic <desb,<src> Notes

Bytes States Bytes States

Ace and reg 3 2 4

XCH Ace and dir addr 2 3 (2) 2 3 (2)

Ace and on-chip RAM (8-bit addr) 4 2 5

XCHD Ace and low nibble in on-chip RAM 4 2 5
(8-bit addr)

Push dir byte onto stack 2 2 2 2

#data Push immediate data onto stack 4 4 3 3

#data16 Push 16-bit immediate data onto 5 5 4 5
PUSH stack

Rm Push byte reg onto stack 3 4 2 3

WRj Push word reg onto stack 3 6 2 5

DRk Push double word reg onto stack 3 10 2 9

Pop dir byte from stack 2 3/3 2 3/3

Rm Pop byte reg from stack 3 3 2 2
POP

WRj Pop word reg from stack 3 5 2 4

DRk Pop double word reg from stack 3 9 2 8

NOTES:
1. A shaded cell denotes an instruction in the MCS© 51 architecture.
2. If this instruction addresses an 1/0 port (Px, x = 0--B), add 2 to the number of states.

A-22 I

INSTRUCTION SET REFERENCE

Table A-26. Summary of Bit Instructions

Clear Bit CLR bit bit f-- 0
Set Bit SETB bit bit f-- 1
Complement Bit CPL bit bitt-- 0bit
AND Carry with Bit ANL CY,bit CY t--CY A bit
AND Carry with Complement of Bit ANL CY,/bit CY t-- CY A 0bit
OR Carry with Bit ORL CY,bit CY t--CY V bit
ORL Carry with Complement of Bit ORL CY,/bit CY t-- CY V 0bit
Move Bit to Carry MOV CY,bit CY t-- bit
Move Bit from Carry MOV bit,CY bit t-- CY

Binary Mode Source Mode
Mnemonic <src>,<dest> Notes

Bytes States Bytes States

Clear carry

CLR Clear dir bit 2 2 (2) 2 2 (2)

Clear dir bit 4 4 3 3

Set carry

SETB Set dir bit 2 2 (2) 2 2 (2)

Set dir bit 4 4 (2) 3 3 (2)

Complement carry

CPL Complement dir bit 2 2 (2) 2 2 (2)

Complement dir bit 4 4 (2) 3 3 (2)

AND dir bit to carry 2 1 (3) 2 1 (3)
ANL

AND dir bit to carry 4 3 (3) 3 2 (3)

AND complemented dir bit to carry 2 1 (3) 2 1 (3)
ANU

AND complemented dir bit to carry 4 3 (3) 3 2 (3)

OR dir bit to carry 2 1 (3) 2 1 (3)
ORL

OR dir bit to carry 4 3 (3) 3 2 (3)

OR complemented dir bit to carry 2 1 (3) 2 1 (3)
ORU

OR complemented dir bit to carry 4 3 (3) 3 2 (3)

Move dir bit to carry 2 1 (3) 2 1 (3)

Move dir bit to carry 4 3 (3) 3 2 (3)
MOV

Move carry to dir bit 2 2 (2) 2 2 (2)

bit, CY Move carry to dir bit 4 4 (2) 3 3 (2)

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an 1/0 port (Px, x= 0-3), add 2 to the number of states.
3. If this instruction addresses an 1/0 port (Px, x= 0-3), add 1 to the number of states.

I A-23

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL inte'®

Table A-27. Summary of Control Instructions

Binary Mode Source Mode
Mnemonic <dest>,<src> Notes

Bytes States (2) Bytes States (2)

ACALL Absolute subroutine call 2 9 2 9

Extended subroutine call, indirect 3 12 2 11
ECALL

Extended subroutine call 5 14 4 13

Long subroutine call, indirect 3 9 2 8
LCALL

Long subroutine call 3 9 3 9

RET Return from subroutine 6 6

ERET Extended subroutine return 3 10 2 9

RETI Return from interrupt 6 6

AJMP Absolute jump 2 3 2 3

Extended jump 5 6 4 5
EJMP

Extended jump, indirect 3 7 2 6

Long jump, indirect 3 6 2 5
LJMP

Long jump 3 4 3 4

SJMP Short jump (relative addr) 2 3 2 3

JMP Jump indir relative to the DPTR 5 5

JC Jump if carry is set 2 1/4 2 1/4

JNC Jump if carry not set 2 1/4 2 1/4

Jump if dir bit is set 3 2/5 3 215
JB Jump if dir bit of 8-bit addr location 5 4/7 4 3/6

is set

Jump if dir bit is not set 3 2/5 3 2/5

JNB Jump if dir bit of 8-bit addr location 5 4/7 4 3/6
is not set

Jump if di r bit is set & clear bit 3 4/7 3 4/7

JBC Jump if dir bit of 8-bit addr location 5 7/10 4 6/9
is set and clear bit

JZ Jump if ace is zero 2 2/5 2 215

JNZ Jump if ace is not zero 2 2/5 2 215

JE rel Jump if equal 3 215 2 1/4

JNE rel Jump if not equal 3 2/5 2 1/4

JG rel Jump if greater than 3 2/5 2 1/4

JLE rel Jump if less than or equal 3 215 2 1/4

JSL rel Jump if less than (signed) 3 215 2 1/4

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. For conditional jumps, times are given as not-taken/taken.

A-24 __ l_

infe'® INSTRUCTION SET REFERENCE

Table A-27. Summary of Control Instructions (Continued)

Binary Mode Source Mode
Mnemonic <dest>,<src> Notes

Bytes States (2) Bytes States (2)

JSLE rel Jump if less than or equal (signed) 3 215 2 1/4

JSG rel Jump if greater than (signed) 3 215 2 1/4

JSGE rel Jump if greater than or equal 3 215 2 1/4
(signed)

Compare dir byte to ace and jump 3 215 3 215
if not equal

Compare immediate to ace and 3 215 3 215

CJNE
jump if not equal

Compare immediate to reg and 3 215 4 3/6
jump if not equal

Compare immediate to indir and 3 316 4 4!7
jump if not equal

Decrement reg and jump if not 2 215 3 3/6
zero

DJNZ
Decrement dir byte and jump if not 3 3/6 3 3/6
zero

TRAP Jump to the trap interrupt vector 2 10 9

NOP No operation

NOTES:
1. A shaded cell denotes an instruction in the MC$Bl 51 architecture.
2. For conditional jumps, times are given as not-taken/taken.

I A-25

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

A.4 INSTRUCTION DESCRIPTIONS

This section describes each instruction in the 8X930Ax architecture. See the note on page A-11
regarding execution times.

Table A-28 defines the symbols(-, .I, 1, O,?) used to indicate the effect of the instruction on the
flags in the PSW and PSWl registers. For a conditional jump instruction, "!"indicates that a flag
influences the decision to jump.

Table A-28. Flag Symbols

Symbol Description

- The instruction does not modify the flag.

.I The instruction sets or clears the flag, as appropriate .

1 The instruction sets the flag.

0 The instruction clears the flag.

? The instruction leaves the flag in an indeterminate state.

! For a conditional jump instruction: The state of the flag before the
instruction executes influences the decision to jump or not jump.

ACALL <addr11>

Function: Absolute call

Description: Unconditionally calls a subroutine at the specified address. The instruction increments the 3-
byte PC twice to obtain the address of the following instruction, then pushes bytes O and 1 of
the result onto the stack (byte O first) and increments the stack pointer twice. The destination
address is obtained by successively concatenating bits 15-11 of the incremented PC,
opcode bits 7-5, and the second byte of the instruction. The subroutine called must
therefore start within the same 2-Kbyte "page" of the program memory as the first byte of the
instruction following ACALL.

Flags:

Example:

Bytes:

States:

A-26

CY AC ov N z

The stack pointer (SP) contains 07H and the label "SUBRTN" is at program memory location
0345H. Alter executing the instruction

ACALL SUBRTN

at location 0123H, SP contains 09H; on-chip RAM locations OBH and 09H contain 01 H
and 25H, respectively; and the PC contains 0345H.

Binary Mode Source Mode

2 2
9 9

L_

INSTRUCTION SET REFERENCE

[Encoding] ,_a_1o_a_9_a_8_1~_,___0_0_0_1 _ __,J J a7 a6 as a4 a3 a2 a1 ao

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: A CALL
(PC) f- (PC) + 2
(SP) f- (SP) + 1
((SP)) f- (PC. 7:0)
(SP) f- (SP) + 1
((SP)) f- (PC.15:8)
(PC.10:0) f- page address

ADD <dest>,<src>

Function: Add

Description: Adds the source operand to the destination operand, which can be a register or the accumu­
lator, leaving the result in the register or accumulator. If there is a carry out of bit 7 (CY), the
CY flag is set. If byte variables are added, and if there is a carry out of bit 3 (AC), the AC flag
is set. For addition of unsigned integers, the CY flag indicates that an overflow occurred.

Flags:

Example:

Variations

ADD A,#data

Bytes:

States:

[Encoding]

I

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit).

Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.

CY AC ov N z

Register 1 contains OC3H (110000118) and register 0 contains OAAH (101010108). After
executing the instruction

ADD R1,RO

register 1 contains 6DH (01101101 B), the AC flag is clear, and the CY and OV flags are set.

Binary Mode Source Mode

2 2

0010 0 100 J immed. data

A-27

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADD
(A) f- (A) + #data

ADD A,dir8

Binary Mode Source Mode

Bytes: 2 2
States: 1t 1t

tlf this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] ~_0_0_1_0_~~-0_1 _0_1_~1 I direct addr

Hex Code in: Binary Mode= [Encoding]
Source Mode= [Encoding]

Operation: ADD
(A) f- (A) + (dir8)

ADDA,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

[Encoding] 0 0 1 0 0 1 1 i

Hex Code in: Binary Mode = [Encoding]
Source Mode= [A5][Encoding]

Operation: ADD
(A) f- (A) + ((Ri))

ADDA,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 2

[Encoding] 0010 1 r r r

Hex Code in: Binary Mode = [Encoding]
Source Mode= [A5][Encoding]

Operation: ADD
(A) f- (A) + (Rn)

ADD Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 2

A-28 _J __

INSTRUCTION SET REFERENCE

[Encoding] ~-0_0_1~0~~~1_1_0_0~~1 I ssss

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

Operation: ADD
(Rmd) f- (Rmd) + (Ams)

ADD WRjd, WRjs

Bytes:

States:

Binary Mode

3

3

Source Mode

2

2

ssss

[Encoding] .___0_0~1_0~_._~_1_1_0_1~___,I ~l~-'-'-'-'~__._~_T_T_T~T~~
Hex Code in: Binary Mode= [A5][Encoding]

Source Mode = [Encoding]

Operation: ADD
(WRjd) f- (WRjd) + (WRjs)

ADD DRkd,DRks

Bytes:

States:

Binary Mode

3

5

Source Mode

2

4

[Encoding] ~-0_0_1_0~~~-1_1_1~1~~1 I uuuu

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode= [Encoding] ·

Operation: ADD
(DRkd) f- (DRkd) + (DRks)

ADD Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

uuuu

[Encoding] ,___0_0_1_0~___._~1~1_1_0~_,I ~I ~-s_s_s_s~_._~_o_o_o_o~___.I l~_#_d_a_ta~~
Hex Code in:

Operation:

I

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ADD
(Rm) f- (Rm)+ #data

A-29

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

ADD WRj,#data16

Bytes:

States:

[Encoding)

Binary Mode Source Mode

5 4
4 3

~-0_0_1_0_~_1 _1 _1 _o ~II~ __ t t_t _t -~-o _1 o_o_~I 1 #data hi 1 1 #data 1ow

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: ADD
(WRj) f- (WRj) + #data16

ADD DRk,#Odata16

Bytes:

States:

[Encoding]

Binary Mode

5

6

Source Mode

4

5

~-0_0_1_0_~_1 _1 _1 _o ~' ~' _u_u_u_u_~_1 _o _o _o ~' I #data hi I I #data low

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: ADD
(DRk) f- (DRk) + #data16

ADD Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3t 2t
ti! this instruction addresses a port (P x, x = 0-3), add 1 state .

[Encoding] 0 0 1 0 1 1 1 0 I I ssss .__ ____ .___0_0_0_1 -~I I direct addr

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode= [Encoding]

Operation: ADD
(Rm) f- (Rm) + (dir8)

ADD WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding] 0010 1 1 1 0 I I t tt t ~----~-0_1_0_1_~1 I direct addr

A-30 -_L

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode= [Encoding

Operation: ADD
(WRj) <---- (WRj) + (dir8)

ADD Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

0 0 1 0 1 1 1 0 I I ssss 0 0 1 1 I I direct addr I I direct add

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: ADD
(Rm) <---- (Rm) + (dir16)

ADD WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

0010 1 1 1 0 I I t t t t 0 1 1 1 I I direct addr I I direct addr

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode= [Encoding]

Operation: ADD
(WRj) <---- (WRj) + (dir16)

ADDRm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

0010 1 1 1 0 I I t t t t 1 0 0 1 I I ssss 0000

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: ADD
(Rm) <---- (Rm) + ((WRj))

I A-31

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

ADD Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

0 0 1 0 1 1 1 0 I I uuuu 1 0 1 1 I I ssss 0000

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: ADD
(Rm) ~ (Rm) + ((DRk))

ADDC A,<src>

Function: Add with carry

Description: Simultaneously adds the specified byte variable, the CY flag, and the accumulator contents,
leaving the result in the accumulator. If there is a carry out of bit 7 (CY), the CY flag is set; if
there is a carry out of bit 3 (AC), the AC flag is set. When adding unsigned integers, the CY
flag indicates that an overflow occurred.

Flags:

Example:

Variations

ADDC A,#data

Bytes:

States:

A-32

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but riot bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte ofthe operand (8, 16, or 32
bit)

Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.

The accumulator contains OC3H (11000011 B), register O contains OAAH (1010101 OB), and
the CY flag is set. After executing the instruction

ADDC A,RO

the accumulator contains 6EH (0110111 OB), the AC flag is clear, and the CY and OV flags
are set.

Binary Mode Source Mode

2 2

---.'-

(Encoding] 0 0 1 1 0 100

Hex Code in: Binary Mode·= [Encoding]
Source Mode = [Encoding]

Operation: ADDC
(A) f--- (A) + (CY) + #data

ADDCA,dir8

\ immed. data

Binary Mode Source Mode

Bytes: 2 2

States: 1t 1t

INSTRUCTION SET REFERENCE

tlfthis instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] ~-0_0_1_1_~ __ 0_1 _0_1_~\ \ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADDC
(A) f--- (A) + (CY) + (dir8)

ADDCA,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

[Encoding] 0011 011i

Hex Code in: Binary Mode = [Encoding]
Source Mode= [AS][Encoding]

Operation: ADDC

ADDC A,Rn

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

I

(A) f--- (A) + (CY) + ((Ri))

Binary Mode Source Mode

1 2

2

0 0 1 1 1 r r r

Binary Mode = [Encoding]
Source Mode = [AS][Encoding]

ADDC
(A) f--- (A) + (CY) + (Rn)

A-33

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

AJMP addr11

Function: Absolute jump

Description: Transfers program execution to the specified address, which is formed at run time by
concatenating the upper five bits of the PC (after incrementing the PC twice), opcode bits 7-
5, and the second byte of the instruction. The destination must therefore be within the same
2-Kbyte "page" of program memory as the first byte of the instruction following AJMP.

Flags:

CY AC ov N z

Example: The label "JMPADR" is at program memory location 0123H. After executing the instruction

AJMP JMPADR

at location 0345H, the PC contains 0123H.

Binary Mode Source Mode

Bytes: 2 2

States: 3 3

[Encoding] ~a_1_o_a_9_a_a_o~~~o_o_o~1~~I I a7a6a5a4 a3 a2 a1 ao

Hex Code in: Binary Mode= [Encoding]
Source Mode= [Encoding]

Operation: AJMP
(PC) t- (PC) + 2
(PC.10:0) t- page address

ANL <dest>,<SrC>

Function: Logical-AND

Description: Performs the bitwise logical-AND (A) operation between the specified variables and stores
the results in the destination variable.

Flags:

A-34

The two operands allow 10 addressing mode combinations. When the destination is the
register or accumulator, the source can use register, direct, register-indirect, or immediate
addressing; when the destination is a direct address, the source can be the accumulator or
immediate data.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

CY AC ov N z
./ ./

__ I

Example:

Variations

ANLdir8,A

Bytes:

States:

[Encoding]

INSTRUCTION SET REFERENCE

Register 1 contains OC3H (11000011 B) and register O contains 55H (01010101 B). After
executing the instruction

ANL R1,RO

register 1 contains 41 H (01000001 B).

When the destination is a directly addressed byte, this instruction clears combinations of bits
in any RAM location or hardware register. The mask byte determining the pattern of bits to
be cleared would either be an immediate constant contained in the instruction or a value
computed in the register or accumulator at run time. The instruction

ANL P1,#01110011 B

clears bits 7, 3, and 2 of output port 1 .

Binary Mode Source Mode

2 2
2t 2t

tlf this instruction addresses a port (Px, X= 0-3), add 2 states.

~-0_1_0_1_~ __ 0_0_1_0_~1 I directaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(dir8) ~ (dir8) A (A)

ANL dir8,#data

Binary Mode Source Mode

Bytes: 3 3

States: 3t 3t
tlf this instruction addresses a port (P x, x = 0-3), add 1 state.

[Encoding] ~-0_1 _0_1_~ __ 0_0_1_1_~1 I direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL

ANLA,#data

Bytes:

States:

[Encoding]

I

(dir8) ~ (dir8) A #data

Binary Mode

2

Source Mode

2

0 1 0 1 I o 1 o o I immed. data

I immed. data

A-35

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(A) ~ (A) A #data

ANLA,dir8

Bytes:
States:

Binary Mode
2

1t

Source Mode
2

1t
tlf this instruction addresses a port (Px, x= 0-3), add 1 state .

[Encoding]__0_1_0_1 _ __.__0_1_0_1 _ __.I I direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(A) ~ (A) A (dir8) .

ANLA,@Ri

Bytes:
States:

Binary Mode

1

2

Source Mode
2

3

[Encoding] 0101 0 1 1 i

Hex Code in: Binary Mode = [Encoding]
Source Mode= (AS](Encodlng]

Operation: ANL

ANLA,Rn

Bytes:
States:

[Encoding]

(A) ~ (A) A ((Ri))

Binary Mode
1

0 1 0 1

Source Mode
2

2

1 r r r

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodlng]

Operation: ANL

ANLRmd,Rms

Bytes:
States:

[Encoding]

A-36

(A) ~ (A) A (Rn)

Binary Mode

3

2

Source Mode
2

.___0_1_0_1~_._~1_1_0_0~___.I I ssss ssss

I

inte'® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode= [Encoding]

Operation: ANL
(Rmd) t- (Rmd) A (Rms)

ANL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 3 2

[Encoding] '---0~1_0_1~~~-1_1_0_1~~1 ~I ~-t_t_tt~~~-T~T_T_T~~
Hex Code in: Binary Mode= [A5][Encoding]

Source Mode= [Encoding]

Operation: ANL
(WRjd) t- (WRjd) A (WRjs)

ANL Rm,#data

Binary Mode Source Mode

Bytes: 4 3
States: 3 2

[Encoding] ~-0~1_0_1~~'---1~1_1_0~~11 ~ ~-s_s_s_s~~~~o_oo_o~~~~-#d_a_ta~~
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode= [Encoding]

Operation: ANL
(Rm) t- (Rm) A #data

ANL WRj,#data16

Bytes:

States:

[Encoding]

Binary Mode Source Mode

5 4

4 3

~-0_1_0_1_~_1 _1 _1 _o ~' ~' __ t t_t_t -~-0 _1 o_o ~' I #data hi I I #data 1ow

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WRj) t- (WRj) A #data16

ANL Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3t 2t
tlf this instruction addresses a port (P x, x = ~3), add 1 state.

[Encoding] ~-0~1_0_1~~'---1~1_1_0~~' ~I ~-s_s_s_s~~'--_0_0~0_1~~~d_ir_ec_t_a_d_dr~

I A-37

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) f- (Rm) A (dir8)

ANL WRj,dirS

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding] 0 1 0 1 1 1 10 I I tt t t 0 1 0 1 direct addr

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WRj) f- (WRj) A (dir8)

ANL Rm,dir16

Binary Mode Source Mode
Bytes: 5 4

States: 3 2
[Encoding]

0101 1 1 1 0 I I ssss 0 0 1 1 I I direct I I direct

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) f- (Rm) A (dir16)

ANL WRj,dir16

Binary Mode Source Mode
Bytes: 5 4
States: 4 3

[Encoding]

0 101 1 1 1 0 I I tt t t 0 1 1 1 I I direct I I direct

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WRj) f- (WRj) A (dir16)

A-38

INSTRUCTION SET REFERENCE

ANL Rm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

0 101 1 1 1 0 I I tt t t 1 0 0 1 I I ssss 0000

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

Operation: ANL
(Rm) f- (Rm) A ((WRj))

ANL Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3
States: 4 3

[Encoding]

0 101 1 1 1 0 I I uuuu 1 0 1 1 I I ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode= [Encoding]

Operation: ANL
(Rm) f- (Rm) A ((DRk))

ANL CY,<src-bit>

Function: Logical-AND for bit variables

Description: If the Boolean value of the source bit is a logical 0, clear the CV flag; otherwise leave the CY
flag in its current state. A slash ("/") preceding the operand in the assembly language
indicates that the logical complement of the addressed bit is used as the source value, but
the source bit itself is not affected.

Flags:

Example:

I

Only direct addressing is allowed for the source operand.

CY AC ov N

Set the CY flag if, and only if, P1 .0 = 1, ACC. 7 = 1, and OV = O:

MOV CY,P1 .0 ;Load carry with input pin state
ANL CY,ACC.7 ;AND carry with accumulator bit 7
ANL CY,/OV ;AND with inverse of overflow flag

z

A-39

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

ANL CY,bit51

Bytes:

States:

[Encoding]

Binary Mode

2

1t

Source Mode

2

1t
tlf this instruction addresses a port (Px, x = 0-3), add 1 state .

.___1_0_0_0 _ __,_ __ 0_0_1..,..0 _ ___,j j bit addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL

ANL CY,/bit51

Bytes:
States:

[Encoding]

(CY) ~ (CY) A (bit51)

Binary Mode

2

1t

Source Mode

2

1t
tit this instruction addresses a port (Px, x = 0-3), add 1 state .

.___1_0_1_1 _ _..__o_o_o_o _ __.I 1 bit addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY)~ (CY) A 0 (bit51)

ANLCY,bit

Binary Mode Source Mode

Bytes: 4 3
States: 3t 2t

tit this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding]

~-1_0_1_0_~_1 _0_0_1 ~' ~' _1_o_o_o_~ __ o __ ~_Y_Y_Y~I I dir addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) ~ (CY) A (bit)

ANL CY,/bit

Binary Mode Source Mode

Bytes: 4 3
States: 3t 2t

tit this instruction addresses a port (Px, x = 0-3), add 1 state.

A-40 ___ l _

INSTRUCTION SET REFERENCE

[Encoding]

~-1_0_1_0_~_1_o0_1 ~I l~_1_1_1_1_~ __ o __ ~ __ Y _Y Y_~I I dir addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) <---- (CY) A 0 (bit)

CJNE <dest>,<src>,rel

Function: Compare and jump if not equal.

Description: Compares the magnitudes of the first two operands and branches if their values are not
equal. The branch destination is computed by adding the signed relative displacement in the
last instruction byte to the PC, after incrementing the PC to the start of the next instruction. If
the unsigned integer value of <dest-byte> is less than the unsigned integer value of <src­
byte>, the CY flag is set. Neither operand is affected.

Flags:

Example:

Variations

I

The first two operands allow four addressing mode combinations: the accumulator may be
compared with any directly addressed byte or immediate data, and any indirect RAM
location or working register can be compared with an immediate constant.

CY AC ov N z
./ ./ ./

The accumulator contains 34H and R7 contains 56H. After executing the first instruction in
the sequence

CJNE R7,#60H,NOT _EQ

NOT_EQ: JC REQ_LOW

;R7 = 60H

; IF R7 < 60H

;R7 > 60H

the CY flag is set and program execution continues at label NOT _EQ. By testing the CY flag,
this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then executing the instruction,

WAIT: CJNE A,P1 ,WAIT

clears the CY flag and continues with the next instruction in the sequence, since the
accumulator does equal the data read from P1. (If some other value was being input on P1,
the program loops at this point until the P1 data changes to 34H.)

A-41

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

CJNE A,#data,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3

States: 2 5 2 5

[Encoding] 1 0 1 1 0100 I immed. data· rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: (PC) ~ (PC) + 3
IF (A)'* #data
THEN

(PC) ~ (PC) + relative offset
IF (A)< #data

CJNE A,dir8,rel

Bytes:

States:

THEN
(CY)~ 1

ELSE
(CY) ~.O

Binary Mode

Not Taken

3

3

Taken

3

6

Source Mode

Not Taken Taken

3 3

3 6

[Encoding] .____1_0_1 _1 _ __,_ __ 0_1_0_1 _ __,j I direct addr rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: (PC) ~ (PC) + 3
IF (A) *-dir8
THEN

A-42

(PC) ~ (PC) + relative offset
IF (A)< dir8
THEN

(CY)~ 1
ELSE

(CY)~O

__ _J_ __

INSTRUCTION SET REFERENCE

CJNE @Ri,#data,rel

Binary Mode

Not Taken Taken

Bytes:

States:

3

3

3
6

Source Mode

Not Taken Taken

4 4

4 7

[Encoding] 1 0 1 1 0 1 1 i I immed. data rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode= [AS][Encoding]

Operation: (PC) <-- (PC) + 3
IF ((Ri)) tc #data
THEN

(PC).- (PC)+ relative offset
IF ((Ri)) <#data
THEN

(CY)<-- 1
ELSE

(CY)<-- 0

CJNE Rn,#data,rel

Binary Mode

Not Taken Taken

Bytes: 3 3

States: 2 5

Source Mode

Not Taken Taken

4 4

3 6

[Encoding] 1 01 1 1 r r r I immed. data rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode= [AS][Encoding]

Operation: (PC) <-- (PC) + 3
IF (Rn) tc #data
THEN

CLRA

(PC) <-- (PC) + relative offset
IF (Rn) <#data
THEN

(CY)<-- 1
ELSE

(CY)<-- 0

Function: Clear accumulator

Description: Clears the accumulator (i.e., resets all bits to zero).

Flags:

CY AC ov

I

N

./

z
./

A-43

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Example: The accumulator contains SCH (010111008). The instruction

CLRA

clears the accumulator to OOH (000000008).

Binary Mode Source Mode

Bytes: 1

States:

[Encoding] 1 1 1 0 0 100

Hex Code in: Binary Mode= [Encoding]
Source Mode= [Encoding]

Operation: CLR
(A) f- 0

CLR bit

Function: Clear bit

Description: Clears the specified bit. CLR can operate on the CY flag or any directly addressable bit.

Flags: Only for instructions with CY as the operand.

Example:

Variations

CLR bit51

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

A-44

CY AC ov N

Port 1 contains 5DH (010111018). After executing the instruction

CLR.P1.2

port 1 contains 59H (010110018).

Binary Mode Source Mode

4 3

2t 2t

tlf this instruction addresses a port (Px, x = 0-3), add 2 states.

~-1_1 _0_0_~ __ 0_0_1_0_~1 I Bit addr

Binary Mode= [Encoding]
Source Mode = [Encoding]

CLR
(bit51) f- 0

z

I

INSTRUCTION SET REFERENCE

CLRCY

Binary Mode Source Mode

Bytes: 1

States: 1

[Encoding] 1 1 0 0 0 0 1 1

Hex Code in: Binary Mode= [Encoding]
Source Mode = [Encoding]

Operation: CLR
(CY) <----0

CLR bit

Binary Mode Source Mode

Bytes: 4 4
States: 4t 3t

tit this instruction addresses a port (P x, x = 0-3), add 2 states.

[Encoding]

~-1_0_1 _0_~ __ 1_0_0_1 ~[~[__ 1_1_o_o_~ __ o __ ~ __ Y_Y_Y_~[[dir addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode= [Encoding]

Operation: CLR
(bit)<---- 0

CMP <dest>,<SrC>

Function: Compare

Description: Subtracts the source operand from the destination operand. The result is not stored in the
destination operand. If a borrow is needed for bit 7, the CY (borrow) flag is set; otherwise it is
clear.

Flags:

I

When subtracting signed integers, the OV flag indicates a negative result when a negative
value is subtracted from a positive value, or a positive result when a positive value is
subtracted from a negative value.

Bit 7 in this description refers to the most significant byte of the operand (8, 16, or 32 bit)

The source operand allows four addressing modes: register, direct, immediate and indirect.

CY AC ov N z
,/ ,/ ,/ ,/ ,/

A-45

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Example: Register 1 contains OC9H (110010018) and register O contains 54H (010101008). The
instruction

CMP R1,RO

clears the CY and AC flags and sets the OV flag.

Variations

CMP Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2
States: 2

[Encoding] c.___1_0_1_1_--"'---1_1_0_0_--"f LI __ s_s_s_s_--"'---s_s_s_s _ __,

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rmd) - (Rms)

CMP WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 3 2

[Encoding] ~-1_0_1~1~~~1_1_1_0~~1 Ll~_t_t_t_t~-'-~-T_T_T~T~~
Hex Code in: Binary Mode = [AS][Encoding]

Source Mode = [Encoding]

Operation: CMP
(WRjd) - (WRjs)

CMP DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2
States: 5 4

[Encoding] L-_1_0_1_1_--" __ 1_1 _1 _1 _ __.I I LI LI LI LI

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: CMP
(DRkd) - (DRks)

A-46

uuuu

__ I_

infel® INSTRUCTION SET REFERENCE

CMP Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding] 1 0 1 1 1 1 1 0 I I ssss 0000 I I #data

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm)-#data

CMP WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3
[Encoding]

1 0 1 1 1 1 1 0 I I t t t t 0100 I I #data hi I I #data low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(WRj) - #data16

CMP DRk,#Odata16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

1 0 1 1 1 1 1 0 I I uuuu 1000 I I #data hi I I #data low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode= [Encoding]

Operation: CMP
(DRk) - #Odata 16

CMP DRk,#1data16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5
[Encoding]

1 0 1 1 1 1 1 0 I I uuuu 1 1 0 0 I I #data hi I I #data hi

I A-47

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(DRk) - #1data16

CMP Rm,dir8

Binary Mode Source Mode

Bytes: 4 3
States: 3t 2t

tlf this instruction addresses a port (Px, x = 0--3), add 1 state.

[Encoding] .___1_0_1 _1 _ __._ __ 1 _1_1_0 _ __.I I s s s s

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) - (dirB)

CMP WRj,dir8

Bytes:

States:

Binary Mode

4

4

Source Mode

3

3

0001 I I dir addr

[Encoding] ,___1_0_1 _1 _ __._ __ 1_1_1_0 _ __.I '~--t_t_t _t _ __._ __ 0_1_0_1 _ __.I I dir addr

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

Operation: CMP

CMP Rm,dir16

Bytes:

States:

[Encoding]

(WRj)- (dirB)

Binary Mode Source Mode

5 4
3 2

,___1 _0_1_1 _ __._ __ 1_1_1_0_~1 ~I __ s_s_s_s _ __._ __ 0_0_1_1'_~1 I dir addr I I dir addr

Hex Code in:

Operation:

A-48

Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

CMP
(Rm) - (dir16)

_,

infel® INSTRUCTION SET REFERENCE

CMP WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

1 0 1 1 1 1 1 0 I I It t t 0 1 1 1 I I dir addr I I dir addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode= [Encoding]

Operation: CMP
(WRj)- (dir16)

CMPRm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

1 0 1 1 1 1 1 0 I I tttt 1 0 0 1 I I ssss I I 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode= [Encoding]

Operation: CMP
(Rm)- ((WRj))

CMPRm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

1 0 1 1 1 1 1 0 I I uuuu 1 0 1 1 I I ssss I I 0000

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: CMP
(Rm)- ((DRk))

CPLA

Function: Complement accumulator

Description: Logically complements (0) each bit of the accumulator (one's complement). Clear bits are
set and set bits are cleared.

I A-49

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Flags:

CY AC ov N z
./ ./

Example: The accumulator contains SCH (010111008). After executing the instruction

CPLA

the accumulator contains OA3H (101000118).

Binary Mode Source Mode

Bytes: 1

States:

[Encoding] 1 1 1 1 0 100

Hex Code in: Binary Mode = [Encoding]
Source Mode= [Encoding]

Operation: CPL

CPL bit

Function:
Description:

Flags:

Example:

Variations

CPL bit51

Bytes:

States:

[Encoding]

A-50

(A) f- 0(A)

Complement bit
Complements (0) the specified bit variable. A clear bit is set, and a set bit is cleared. CPL
can operate on the CY or any directly addressable bit.

Note: When this instruction is used to modify an output pin, the value used as the original
data is read from the output data latch, not the input pin.

Only for instructions with CY as the operand.

CY AC ov N z
./

Port 1 contains 58H (010111018). After executing the instruction sequence

CPL P1 .1
CPL P1 .2

port 1contains58H (010110118).

Binary Mode

2

2t

Source Mode

2

2t
tlf this instruction addresses a port {Px, x= 0-3), add 2 states.

~-1_0_1 _1 _~_0_0_1 _o_~I I bit addr

_ l_

i ntel ® INSTRUCTION SET REFERENCE

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CPL
(bit51) (-- 0(bit51)

CPL CY

Binary Mode Source Mode
Bytes: 1

States:

[Encoding] 1 0 1 1 0 0 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CPL
(CY)~ 0(CY)

CPL bit

Bytes:

Binary Mode

4

Source Mode

3
States: 4t 3t

tlf this instruction addresses a port (P x, x = 0-3), add 2 states.

[Encoding]

~-1_0_1_0_~_1 0_0_1 ~I ~I _1_0_1_1_~ __ 0 _~ __ Y_Y_Y ~I I dir addr

Hex Code In: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: CPL
(bit) ~ 0(bit)

DAA

Function: Decimal-adjust accumulator for addition

Description: Adjusts the 8-bit value in the accumulator that resulted from the earlier addition of two
variables (each in packed-BCD format), producing two 4-bit digits. Any ADD or ADDC
instruction may have been used to perform the addition.

If accumulator bits 3:0 are greater than nine (XXXX1010-XXXX1111), or if the AC flag is set,
six is added to the accumulator, producing the proper BCD digit in the low nibble. This
internal addition sets the CY flag if a carry out of the lowest 4 bits propagated through all
higher bits, but it does not clear the CY flag otherwise.

I

If the CY flag is now set, or if the upper four bits now exceed nine (1010XXXX-1111XXXX),
these four bits are incremented by six, producing the proper BCD digit in the high nibble.

A-51

BX930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Flags:

Example:

Bytes:

States:

[Encoding]

Again, this sets the CY flag if there was a carry out of the upper four bits, but does not clear
the carry. The CY flag thus indicates if the sum of the original two BCD variables is greater
than 100, allowing multiple-precision decimal addition. The OV flag is not affected.

All of this occurs during one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding OOH, 06H, 60H, or 66H to the accumulator, depending on
initial accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the accumulator to BCD
notation, nor does DA A apply to decimal subtraction.

CY AC ov N z

The accumulator contains 56H (0101011 OB), which represents the packed BCD digits of the
decimal number 56. Register 3 contains 67H (01100111 B), which represents the packed
BCD digits of the decimal number 67. The CY flag is set. After executing the instruction
sequence

ADDC A,R3
DAA

the accumulator contains OBEH (10111110) and the CY and AC flags are clear. The
Decimal Adjust instruction then alters the accumulator to the value 24.H (00100100B),
indicating the packed BCD digits of the decimal number 24, the lower two digits of the
decimal sum of 56, 67, and the carry-in. The CY flag is set by the Decimal Adjust instruction,
indicating that a decimal overflow occurred. The true sum of 56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01 H or 99H. If the
accumulator contains 30H (representing the digits of 30 decimal), then the instruction
sequence,

ADDA,#99H
DAA

leaves the CY flag set and 29H in the accumulator, since 30 + 99 = 129. The low byte of the
sum can be interpreted to mean 30 - 1 = 29.

Binary Mode

1

Source Mode

1

1 1 0 1 0100

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DA

A-52

(Contents of accumulator are BCD)
IF [[(A.3:0) > 9] V [(AC)= 1]]

THEN (A.3:0) f- (A.3:0) + 6
AND

IF [[(A.7:4) > 9] V [(CY)= 1]]
THEN (A.7:4) +-- (A.7:4) + 6

_ _L __

INSTRUCTION SET REFERENCE

DEC byte

Function: Decrement

Description: Decrements the specified byte variable by 1. An original value of OOH underflows to OFFH.

Flags:

Example:

Variations

DECA

Bytes:

States:

[Encoding]

Four operands addressing modes are allowed: accumulator, register, direct, or register­
indirect.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

CY AC ov N z
,/

Register 0 contains 7FH (011111118). On-chip RAM locations 7EH and 7FH contain OOH
and 40H, respectively. After executing the instruction sequence

DEC @RO
DEC RO
DEC @RO

register 0 contains 7EH and on-chip RAM locations 7EH and 7FH are set to OFFH and 3FH,
respectively.

Binary Mode

1

Source Mode

1

0001 0100

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DEC

DECdirB

Bytes:

States:

[Encoding]

I

(A)~ (A)-1

Binary Mode

2

2t

Source Mode

2

2t
tlf this instruction addresses a port (Px, x= 0-3), add 2 states.

~-0_0_0_1 _~_0_1_0_1_~1 j dir addr

A-53

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DEC
(dir8) f- (dir8) - 1

DEC@Ri

Binary Mode Source Mode
Bytes: 1 2

States: 3 4

[Encoding] 0001 0 1 1 i

Hex Code in: Binary Mode = [Encoding]
Source Mode= [AS][Encoding]

Operation: DEC

DEC Rn

Bytes:

States:

[Encoding]

((Ri)) f- ((Ri)) - 1

Binary Mode

1

0001

Source Mode

2

2

1 r r r

Hex Code in: Binary Mode = [Encoding]
Source Mode= [AS][Encoding]

Operation: DEC
(Rn) f- (Rn) - 1

DEC <dest>,<srC>

Function: Decrement

infel®

Description: Decrements the specified variable at the destination operand by 1, 2, or 4. An original value
of OOH underflows to OFFH.

Flags:

CY AC ov N z
.t

Example: Register 0 contains 7FH (01111111 B). After executing the instruction sequence

DEC R0,#1

register 0 contains 7EH.

Variations

A-54

INSTRUCTION SET REFERENCE

DEC Rm,#short

Binary Mode Source Mode

Bytes: 3 2

States: 2

[Encoding] ~-0_0_0_1_~ __ 1_0_1_1_~1 l~_s_s_s_s_~ __ o_1 __ ~ __ v_v __ ~

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode= [Encoding]

Operation: DEC
(Rm) r (Rm) - #short

DEC WRj,#short

Binary Mode Source Mode

Bytes: 3 2
States: 2

[Encoding] ~-0_0_0~1~~~1_0_1~1~~1 ~l __ t_t_t_t_~ __ o_1 __ ~ __ v_v __ ~
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode= [Encoding]

Operation: DEC
(WRj) r (WRj) - #short

DEC DRk,#short

Binary Mode Source Mode

Bytes: 3 2
States: 5 4

[Encoding] ~_0_0_0_1_~~-1_0_1_1_~1 1 u u u u

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode= [Encoding]

Operation: DEC
(DRk) r (DRk) - #short

DIV <dest>,<src>

Function: Divide

1 1 vv

Description: Divides the unsigned integer in the register by the unsigned integer operand in register
addressing mode and clears the CY and OV flags.

I A-55

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Flags:

Variations

DIV Rmd Ams

Bytes:

States:

For byte operands (<desl>,<src> = Rmd,Rms) the result is 16 bits. The 8-bit quotient is
stored in the higher byte of the word where Rmd resides; the 8-bit remainder is stored in the
lower byte of the word where Rmd resides. For example: Register 1 contains 251 (OFBH or
11111011 B) and register 5 contains 18 (12H or 0001001 OB). After executing the instruction

DIV R1,R5

register 1 contains 13 (ODH or 00001101 B); register O contains 17 (11 H or 00010001 B),
since 251 = (13 X 18) + 17; and the CY and OV bits are clear (see Flags).

The CY flag is cleared. The N flag is set if the MSB of the quotient is set. The Z flag is set if
the quotient is zero.

CY AC ov N z
0 ,/ ,/

Exception: if <src> contains OOH, the values returned in both operands are undefined; the
CY flag is cleared, OV flag is set, and the rest of the flags are undefined.

CY AC ov N z
0 ? ?

Binary Mode Source Mode

3 2
11 10

[Encoding] ~~1_0_0_0~~~-1~1_0_0~~1 ~l~_s_s_s_s~~~-s~s_s_s~~

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode= [Encoding]

Operation: DIV (8-bit operands)
(Rmd) r remainder (Rmd) I (Rms) if <dest> md = 0,2,4,.., 14
(Rmd+ 1) r quotient (Rmd) I (Rms)

DIV WRjd,WRjs

Bytes:

States:

[Encoding]

(Rmd-1) r remainder (Rmd) I (Rms) if <dest> md = 1,3,5,.., 15
(Rmd) r quotient (Rmd) I (Rms)

Binary Mode Source Mode

3 2

22 21

1000 1 1 0 1 I I tt t t TTTT

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

A-56 __ J_

Operation:

DIVAB

Function:

Description:

Flags:

Hex Code in:

Example:

Bytes:

States:

[Encoding]

I

INSTRUCTION SET REFERENCE

DIV (16-bit operands)
(WRjd) <---- remainder (WRjd) I (WRjs) if <de st> jd = 0, 4, 8, ... 28
(WRjd+2) <----quotient (WRjd) I (WRjs)

(WRjd-2) <----remainder (WRjd) I (WRjs) if <dest> jd = 2, 6, 10, ... 30
(WRjd) <---- quotient (WRjd) I (WRjs)

For word operands (<dest>,<src> = WRjd,WRjs) the 16-bit quotient is in WR(jd+2), and the
16-bit remainder is in WRjd. For example, for a destination register WR4, assume the
quotient is 1122H and the remainder is 3344H. Then, the results are stored in these register
file locations:

Location 4 5 6 7

Contents 33H 44H 11 H 22H

Divide

Divides the unsigned 8-bit integer in the accumulator by the unsigned 8-bit integer in register
B. The accumulator receives the integer part of the quotient; register B receives the integer
remainder. The CY and OV flags are cleared.

Exception: if register B contains OOH, the values returned in the accumulator and register B
are undefined; the CY flag is cleared and the OV flag is set.

CY AC ov N z
0 ,/ ,/ ,/

For division by zero:

CY AC ov N z
0 ? ?

Binary Mode = [Encoding]
Source Mode = [Encoding]

The accumulator contains 251 (OFBH or 11111011 B) and register B contains 18 (12H or
0001001 OB). After executing the instruction

DIVAB

the accumulator contains 13 (OOH or 00001101 B); register B contains 17 (11 Hor
00010001 B), since 251 = (13 X 18) + 17; and the CY and OV flags are clear.

Binary Mode Source Mode

1

10 10

100 0 0 100

A-57

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Hex Code in: Binary Mode= [Encoding]
Source Mode= [Encoding]

Operation: DIV
(A) ~ quotient (A)/(B)
(B) ~ remainder (A)/(B)

DJNZ <byte>,<rel-addr>

Function: Decrement and jump if not zero

Description: Decrements the specified location by 1 and branches to the address specified by the second
operand if the resulting value is not zero. An original value of OOH underflows to OFFH. The
branch destination is computed by adding the signed relative-displacement value in the last
instruction byte to the PC, after incrementing the PC to the first byte of the following
instruction.

Flags:

Example:

Variations

A-58

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

CY AC ov N z

The on-chip RAM locations 40H, 50H, and 60H contain 01 H, 70H, and 15H, respectively.
Alter executing the following instruction sequence

DJNZ 40H,LABEL 1
DJNZ 50H,LABEL:2
DJNZ 60H,LABEL

on-chip RAM locations 40H, 50H, and 60H contain OOH, 6FH, and 14H, respectively, and
program execution continues at label LABEL2. (The first jump was not taken because the
result was zero.)

This instruction provides a simple way of executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction.

The instruction sequence,

MOV R2,#8
TOGGLE: CPL P1 .7

DJNZ R2,TOGGLE

toggles P1. 7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each
pulse lasts three states: two for DJNZ and one to alter the pin.

_I

INSTRUCTION SET REFERENCE

DJNZ dir8,rel

Bytes:

States:

Binary Mode

Not Taken

3

3

Taken

3

6

Source Mode

Not Taken Taken

3 3

3 6

[Encoding] ~-1 _1_0_1 _ _,_ __ 0_1_0_1_~1 I direct addr I I rel. addr

Hex Code in: Binary Mode= [Encoding]
Source Mode= [Encoding]

Operation: DJNZ

DJNZ Rn,rel

Bytes:

States:

(PC) ~ (PC) + 2
(dirB) ~ (dirB) - 1
IF (dirB) > O or (dirB) < O

THEN
(PC) ~ (PC) + rel

Binary Mode

Not Taken Taken

2 2
2 5

Source Mode

Not Taken Taken

3 3

3 6

[Encoding] ~-1 _1_0_1 _ _,_ __ 1 _r_r _r -~I I rel. addr

Hex Code in: Binary Mode= [Encoding]
Source Mode= (AS](Encoding]

Operation: DJNZ

ECALL <dest>

(PC) ~ (PC) + 2
(Rn) ~ (Rn) - 1
IF (Rn) > O or (Rn) < O

THEN
(PC) ~ (PC) + rel

Function: Extended call

Description: Calls a subroutine located at the specified address. The instruction adds four to the program
counter to generate the address of the next instruction and then pushes the 24-bit result
onto the stack (high byte first), incrementing the stack pointer by three. The 8 bits of the high
word and the 16 bits of the low word of the PC are then loaded, respectively, with the
second, third and fourth bytes of the ECALL instruction. Program execution continues with
the instruction at this address. The subroutine may therefore begin anywhere in the full 16-
Mbyte memory space.

Flags:

CY AC ov N z

I A-59

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Example:

Variations

ECALL addr24

Bytes:

States:

[Encoding]

The stack pointer contains 07H and the label "SUBRTN" is assigned to program memory
location 123456H. After executing the instruction

ECALL SUBRTN

at location 012345H, SP contains OAH; on-chip RAM locations 08H, 09H and OAH contain
01 H, 23H and 45H, respectively; and the PC contains 123456H.

Binary Mode Source Mode

5 4

14 13

1 0 0 1 1 0 1 0 addr23-
addr16

addr15--addr8 I addr7-addr0

Hex Code in: Binary Mode = [ASJ[Encoding]
Source Mode= [Encoding]

Operation: ECALL

ECALL @DRk

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

EJMP <dest>

Function:

A-60

(PC) t-- (PC) + 4
(SP) t-- (SP) + 1
((SP)) t-- (PC.23:16)
(SP) t-- (SP) + 1
((SP)) t-- (PC.15:8)
(SP) t-- (SP) + 1
((SP)) t-- (PC.7:0)
(PC) +-- (addr.23:0)

Binary Mode Source Mode

3 2

12 11

1 0 0 1 1 0 0 1 I I
Binary Mode = [ASJ[Encoding]
Source Mode = [Encoding]

EC ALL
(PC) t-- (PC) + 4
(SP) t-- (SP) + 1
((SP)) t-- (PC.23:16)
(SP) t-- (SP) + 1
((SP)) t-- (PC.15:8)
(SP) t-- (SP) + 1
((SP)) t-- (PC.7:0)
(PC) t-- ((DRk))

Extended jump

uuuu

l

i ntel ® INSTRUCTION SET REFERENCE

Description: Causes an unconditional branch to the specified address by loading the 8 bits of the high
order and 16 bits of the low order words of the PC with the second, third, and fourth
instruction bytes. The destination may be therefore be anywhere in the full 16-Mbyte
memory space.

Flags:

CY AC ov N z

Example: The label "JMPADR" is assigned to the instruction at program memory location 123456H.
The instruction is

EJMPJMPADR
Variations

EJMP addr24

Binary Mode Source Mode

Bytes: 5 4
States: 6 5

[Encoding] 1000 1 0 1 0

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: EJMP
(PC) <--- (addr.23:0)

EJMP @DRk

Binary Mode Source Mode

Bytes: 3 2
States: 7 6

addr23-
addr16

[Encoding] ~-1_0_0_0_~~-1_0_0_1_~1 I u u u u

Hex Code in: Binary Mode =[AS][Encoding]
Source Mode = [Encoding]

Operation: EJMP
(PC)<--- ((DRk))

ERET

Function: Extended return

addrl 5--addr8 I addr7-addr0

Pops byte 2, byte 1, and byte O of the 3-byte PC successively from the stack and
decrements the stack pointer by 3. Program execution continues at the resulting address,
which normally is the instruction immediately following ECALL.

Flags: No flags are affected.

I A-61

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Example:

Bytes:
States:

[Encoding]

The stack pointer contains OBH. On-chip RAM locations 08H, 09H and OAH contain 01 H,
23H and 49H, respectively. After executing the instruction

ERET

the stack pointer contains 08H and program execution continues at location 012349H.

Binary Mode Source Mode

3 2
10 9

1 0 1 0 1 0 1 0

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode= [Encoding]

Operation: ERET

INC<Byte>

(PC.23:16) f-- ((SP))
(SP) f-- (SP) - 1
(PC.15:8) f-- ((SP))
(SP) f-- (SP) - 1
(PC.7:0) f-- ((SP))
(SP) f-- (SP) - 1

Function: Increment

Description: Increments the specified byte variable by 1. An original value of FFH overflows to OOH.
Three addressing modes are allowed for 8-bit operands: register, direct, or register-indirect.

Flags:

Example:

Variations

INCA

Bytes:

States:

[Encoding]

A-62

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

CY AC ov N z
.I

Register O contains ?EH (0111111108) and on-chip RAM locations ?EH and 7FH contain
OFFH and 40H, respectively. After executing the instruction sequence

INC @RO
INC RO
INC @RO

register O contains 7FH and on-chip RAM locations 7EH and 7FH contain OOH and 41 H,
respectively.

Binary Mode Source Mode

1

0000 0 100

I

infel® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode= [Encoding]

Operation: INC
(A)<---- (A)+ 1

INCdir8

Binary Mode Source Mode

Bytes: 2 2
States: 2t 2t

tit this instruction addresses a port (Px, x = 0-3), add 2 states .

[Encoding] .__o_o_o_o _ __, __ 0_1_0_1 _ __,I I direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode= [Encoding]

Operation: INC
(dir8) <---- (dir8) + 1

INC@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 3 4

[Encoding] 0000 011i

Hex Code in: Binary Mode = [Encoding]
Source Mode= [AS][Encoding]

Operation: INC
((Ri) <---- ((Ri)) + 1

INC Rn

Binary Mode Source Mode

Bytes: 1 2

States: 2

[Encoding] 0000 1 r r r

Hex Code in: Binary Mode = [Encoding]
Source Mode= [AS][Encoding]

Operation: INC
(Rn) <---- (Rn) + 1

INC <dest>,<src>

Function: Increment

Description: Increments the specified variable by 1, 2, or 4. An original value of OFFH overflows to OOH.

I A-63

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Flags:

CY AC OV N z
,/

Example: Register O contains 7EH (0111111106). After executing the instruction

INC R0,#1

register 0 contains 7FH.
Variations

INC Rm,#short

Binary Mode Source Mode
Bytes: 3 2
States: 2

[Encoding] ~-0_0_0_0_~ __ 1_0_1_1_~1 l~_s_s_s_s_~ ___ oo __ ~ __ v_v_~

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode= [Encoding]

Operation: INC
(Rm) f-- (Rm) +#short

INC WRj,#short

Binary Mode Source Mode

Bytes: 3 2

States: 2

[Encoding] ~-0_0_0_0_~ __ 1_0_1_1_~1 l~_t_t_t_t_~ ___ o_1 ___ __ v_v_~

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: INC
(WRj) f-- (WRj) + #short

INC DRk,#short

Binary Mode Source Mode

Bytes: 3 2
States: 4 3

[Encoding] ~-0_0_0_0_~ __ 1_0_1_1_~1 1 u u u u

Hex Code in:

Operation:

A-64

Binary Mode= {AS][Encoding]
Source Mode= [Encoding]

INC
(DRk) f-- (DRk) + #shortdata pointer

11 vv

INSTRUCTION SET REFERENCE

INC DPTR

Function: Increment data pointer

Description: Increments the 16-bit data pointer by one. A 16-bit jncrement (modulo 216) is performed; an
overflow of the low byte of the data pointer (DPL) from OFFH to OOH increments the high
byte of the data pointer (DPH) by one. An overflow of the high byte (DPH) does not
increment the high word of the extended data pointer (DPX = DR56).

Flags:

CY AC ov N z
,/ ,/

Example: Registers DPH and DPL contain 12H and OFEH, respectively. After the instruction
sequence

Bytes:

States:

[Encoding]

INC DPTR
INC DPTR
INC DPTR

DPH and DPL contain 13H and 01 H, respectively.

Binary Mode Source Mode

1

1 0 1 0 0 0 1 1

Hex Code in: Binary Mode= [Encoding]
Source Mode= [Encoding]

Operation: INC

JB bit51,rel
JB bit,rel

(DPTR) +-- (DPTR) + 1

Function: Jump if bit set

Description: If the specified bit is a one, jump to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.

Flags:

CY AC ov N z

I A-65

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Example:

Variations

JB bit51,rel

Bytes:

States:

[Encoding]

Input port 1 contains 1100101 OB and the accumulator contains 56 (010101108). After the
instruction sequence

JB P1.2,LABEL1
JB ACC.2,LABEL2

program execution continues at label LABEL2.

Binary Mode Source Mode

Not Taken

3

Taken

3

Not Taken Taken

3 3

2 5 2 5

.___0_0_1_0 __ .___o_o_o_o_~I 1 bit addr I I rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JB

JB bit,rel

Bytes:

States:

[Encoding]

(PC) ~ (PC) + 3
IF (bit51) = 1

THEN
(PC) ~ (PC) + rel

Binary Mode

Not Taken

5

4

Taken

5

7

Source Mode

Not Taken Taken

4 4
3 6

j.__1_0_1_0~..__1_0_0_1___,I j~_o_o_1_o~~~o~~~Y_Y~~ I direct addr I I rel. addr

Hex Code in:

Operation:

A-66

Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

JB
(PC) ~ (PC) + 3
IF (bit)= 1

THEN
(PC) ~ (PC) + rel

I __

JBC bit51,rel
JBC bit,rel

Function:
Description:

Flags:

Example:

Variations

JBC bit51,rel

Bytes:

States:

[Encoding]

INSTRUCTION SET REFERENCE

Jump if bit is set and clear bit
If the specified bit is one, branch to the specified address; otherwise proceed with the next
instruction. The bit is not cleared if it is already a zero. The branch destination is computed
by adding the signed relative displacement in the third instruction byte to the PC, after incre­
menting the PC to the first byte of the next instruction.

Note: When this instruction is used to test an output pin, the value used as the original data
is read from the output data latch, not the input pin.

CY AC ov N z

The accumulator contains 56H (0101011 OB). After the instruction sequence

JBC ACC.3,LABEL 1
JBC ACC.2,LABEL2

the accumulator contains 52H (0101001 OB) and program execution continues at label
LABEL2.

Binary Mode

Not Taken

3

4

Taken

3

7

Source Mode

Not Taken Taken

3
4

3
7

~-0_0_0_1_~~-o_o_o_o_~I I bit addr I I rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode= [Encoding]

Operation: JBC

JBC bit,rel

Bytes:

States:

I

(PC) f-- (PC) + 3
IF (bit51) = 1

THEN
(bit51) f-- 0

(PC) f-- (PC) + rel

Binary Mode

Not Taken

5

4

Taken

5

7

Source Mode

Not Taken

4

3

Taken

4

6

A-67

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

[Encoding]

~I _1_0~1_0~'--1_0_0~1~1 1~_0_0~0_1~_,__~o~~-'--Y~Y_Y~~
Hex Code in: Binary Mode = [AS][Encoding]

Source Mode= [Encoding]

Operation: JBC

JC rel

(PC) <- (PC) + 3
IF (bit51) = 1
THEN
(bit51) <- 0
(PC) <- (PC) + rel

Function: Jump if carry is set

I direct addr I I rel. addr

Description: If the CY flag is set, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.

Flags:

CY AC ov N

Example: The CY flag is clear. After the instruction sequence

JC LABEL 1
CPL CY
JC LABEL 2

the CY flag is set and program execution continues at label LABEL2.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 2 2 2 2

States: 4 4

[Encoding] ~-0_1_0_0_~~-o_o_o_o_~I I rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode= [Encoding]

Operation: JC

A-68

(PC) <- (PC) + 2
IF (CY)= 1

THEN
(PC) <- (PC) + rel

z

l

INSTRUCTION SET REFERENCE

JE rel

Function: Jump if equal

Description: If the Z flag is set, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.

Flags:

CY AC ov N

Example: The Z flag is set. After executing the instruction

JE LABEL1

program execution continues at label LABEL 1.

Binary Mode Source Mode

Bytes:

States:

Not Taken

3

2

Taken

3

5

Not Taken

2

[Encoding] .___0_1 _1_0 _ ___, __ 1_0_0_0 _ __.I I rel. addr

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: JE

JG rel

(PC) f- (PC) + 2
IF (Z) = 1

THEN (PC) f- (PC) + rel

Function: Jump if greater than

Taken

2

4

z

Description: If the Z flag and the CY flag are both clear, branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice.

Flags:

Example:

I

CY AC ov N z

The instruction

JG LABEL1

causes program execution to continue at label LABEL 1 if the Z flag and the CY flag are both
clear.

A-69

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Bytes:

States:

Binary Mode

Not Taken

3

2

Taken

3

5

Source Mode

Not Taken Taken

2 2

1 4

[Encoding] ~-0_0_1_1_~~-1_0_0_0_~1 I rel. addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JG
(PC) ~ (PC) + 2
IF (Z) = 0 AND (CY) = 0

THEN (PC) ~ (PC) + rel

JLE rel

Function: Jump if less than or equal

Description: If the Z flag or the CY flag is set, branch to the address specified; otherwise proceed with the
next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice.

Flags:

Example:

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

A-70

CY AC ov N z

The instruction

JLE LABEL1

causes program execution to continue at LABEL 1 if the Z flag or the CY flag is set.

Binary Mode

Not Taken

3
2

Taken

3

5

Source Mode

Not Taken Taken

2 2
4

~-0_0_1_0_~~-1_0_0_0_~1 I rel. addr

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

JLE
(PC) ~ (PC) + 2
IF (Z) = 1 OR (CY) = 1

THEN (PC) ~ (PC) + rel

_J

INSTRUCTION SET REFERENCE

JMP@A+DPTR

Function: Jump indirect

Description: Add the 8-bit unsigned contents of the accumulator with the 16-bit data pointer and load the
resulting sum into the lower 16 bits of the program counter. This is the address for
subsequent instruction fetches. The contents of the accumulator and the data pointer are
not affected.

Flags:

Example:

Bytes:

States:

[Encoding]

CY AC ov N z

The accumulator contains an even number from O to 6. The following sequence of instruc­
tions branch to one of four AJMP instructions in a jump table starting at JMP _ TBL:

JMP _TBL:

MOV
JMP
AJMP
AJMP
AJMP
AJMP

DPTR,#JMP _ TBL
@A+DPTR
LA BELO
LABEL1
LABEL2
LABEL3

If the accumulator contains 04H at the start this sequence, execution jumps to LABEL2.
Remember that AJMP is a two-byte instruction, so the jump instructions start at every other
address.

Binary Mode

1

5

Source Mode

1

5

0 1 1 1 0 0 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JMP

JNB bit51,rel
JNB bit,rel

Function:

Description:

I

(PC.15:0) t- (A) + (DPTR)

Jump if bit not set

If the specified bit is clear, branch to the specified address; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.

A-71

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Flags:

Example:

Variations

JNB bit51,rel

Bytes:

States:

[Encoding]

CY AC ov N z

Input port 1 contains 1100101 OB and the accumulator contains 56H (010101108). After
executing the instruction sequence

JNB P1.3,LABEL1
JNB ACC.3,LABEL2

program execution continues at label LABEL2.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

3 3 3 3

2 5 2 5

.___0_0_1 _1 _ __._ __ o_o_o_o _ __,I 1 bit addr I I rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JNB

JNB bit,rel

Bytes:

States:

[Encoding]

I 1 0 1 0

Hex Code in:

Operation:

A-72

(PC) ~ (PC) + 3
IF (bit51) = 0

THEN (PC) ~ (PC) + rel

Binary Mode

Not Taken Taken

5 5

4 7

1 0 0 1 I I 0 0 1 1

Binary Mode = [A5][Encoding]
Source Mode= [Encoding]

JNB
(PC) ~ (PC) + 3
IF (bit)= 0

THEN
(PC) ~ (PC) + rel

Source Mode

Not Taken Taken

4 4

3 6

0 yy I direct addr I I rel. addr

I

INSTRUCTION SET REFERENCE

JNC rel

Function: Jump if carry not set

Description: If the CY flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice to point to the next
instruction. The CY flag is not modified.

Flags:

Example:

CY AC ov

The CY flag is set. The instruction sequence

JNC LABEL1
CPL CY
JNC LABEL2

N z

clears the CY flag and causes program execution to continue at label LABEL2.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 2 2 2 2

States: 4 1 4

[Encoding] ~-0_1 _0_1_~ __ 0_0_0_0_~[j rel. addr

Hex Code in: Binary Mode= [Encoding]
Source Mode = [Encoding]

Operation: JNC

JNE rel

(PC) ~ (PC) + 2
IF (CY)= 0

THEN (PC) ~ (PC) + rel

Function: Jump if not equal

Description: If the Z flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.

Flags:

CY AC ov N z

Example: The instruction

JNE LABEL1

causes program execution to continue at LABEL 1 if the Z flag is clear.

I A-73

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Bytes:

States:

Binary Mode

Not Taken

3

2

Taken

3

5

Source Mode

Not Taken Taken

2 2

4

[Encoding] ~-0_1 _1_1_~ __ 1_0_0_0 _ __,I I rel. addr

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: JNE

JNZ rel

(PC) f- (PC) + 2
IF (Z) =0

THEN (PC) f- (PC) + rel

Function: Jump if accumulator not zero

Description: If any bit of the accumulator is set, branch to the specified address; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice. The
accumulator is not modified.

Flags:

Example:

CY AC ov N

The accumulator contains OOH. After executing the instruction sequence

JNZ LABEL1
INCA
JNZ LABEL2

z

the accumulator contains 01 Hand program execution continues at label LABEL2.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 2 2 2 2

States: 2 5 2 5

_ [Encoding] ~-0_1 _1_1_~ __ 0_0_0_0_~1 I rel. addr

Hex Code in: Binary Mode= [Encoding]
Source Mode= [Encoding]

Operation: JNZ

A-74

(PC) f- (PC) + 2
IF (A) ;t 0

THEN (PC) f- (PC) +rel

I

INSTRUCTION SET REFERENCE

JSG rel

Function: Jump if greater than (signed)

Description: If the Z flag is clear AND the N flag and the OV flag have the same value, branch to the
address specified; otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

Flags:

CY AC ov N z

Example: The instruction

JSG LABEL 1

causes program execution to continue at LABEL 1 if the Z flag is clear AND the N flag and
the OV flag have the same value.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 4

[Encoding] ~-0_0_0_1 _ ___,~_1_0_0_0 _ __,I I rel. addr

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: JSG

JSGE rel

(PC) f- (PC) + 2
IF [(N) = 0 AND (N) = (OV)]

THEN (PC) f- (PC) + rel

Function: Jump if greater than or equal (signed)

Description: If the N flag and the OV flag have the same value, branch to the address specified;
otherwise proceed with the next instruction. The branch destination is computed by adding
the signed relative displacement in the second instruction byte to the PC, after incrementing
the PC twice.

Flags:

CY AC ov N z

I A-75

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Example: The instruction

JSGE LABEL1

causes program execution to continue at LABEL 1 if the N flag and the OV flag have the
same value.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 4

[Encoding] ~-0_1_0_1_~_1_0_0_0_~1 I rel. addr

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: JSGE

JSL rel

(PC) ~ (PC) + 2
IF [(N) = (OV)]

THEN (PC) ~ (PC) + rel

Function: Jump if less than (signed)

Description: If the N flag and the OV flag have different values, branch to the address specified;
otherwise proceed with the next instruction. The branch destination is computed by adding
the signed relative displacement in the second instruction byte to the PC, after incrementing
the PC twice.

Flags:

Example:

Bytes:

States:

[Encoding]

Hex Code in:

A-76

CY AC ov N z

The instruction

JSL LABEL1

causes program execution to continue at LABEL 1 if the N flag and the OV flag have different
values.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

3 3 2 2
2 5 4

~-0_1_0_0_~_1_0_0_0 _~I I rel. addr

Binary Mode = [AS][Encoding]
Source Mode= [Encoding]

l __ _

Operation:

JSLE rel

JSL
(PC) f- (PC) + 2
IF (N)o1-(0V)

THEN (PC) f- (PC) + rel

Function: Jump if less than or equal (signed)

INSTRUCTION SET REFERENCE

Description: If the Z flag is set OR if the the N flag and the OV flag have different values, branch to the
address specified; otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

Flags:

CY AC ov N z

Example: The instruction

JSLE LABEL1

causes program execution to continue at LABEL 1 if the Z flag is set OR if the the N flag and
the OV flag have different values.

Bytes:

States:

Binary Mode

Not Taken

3

2

Taken

3

5

Source Mode

Not Taken Taken

2 2

4

[Encoding] .___o_o_o_o _ ___J'---1_0_0_0 _ __.I I rel. addr

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode = [Encoding]

Operation: JSLE

JZ rel

(PC) f- (PC) + 2
IF {(Z) = 1 OR [(N) * (OV)]}

THEN (PC) f- (PC) + rel

Function: Jump if accumulator zero

Description: If all bits of the accumulator are clear (zero), branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice. The accumulator is not modified.

Flags:

CY AC ov N z

I A-77

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Example: The accumulator contains 01 H. After executing the instruction sequence .

JZ LABEL1
DECA
JZ LABEL2

the accumulator contains OOH and program execution continues at label LABEL2.

Bytes:

States:

Binary Mode

Not Taken

2

2

Taken

2

5

Source Mode

Not Taken Taken

2 2

2 5

[Encoding] ~-0_1 _1_0 _ __. __ o_o_o_o_ I I rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JZ

LCALL <dest>

(PC) f- (PC) + 2
IF(A)=O

THEN (PC) f- (PC) + rel

Function: Long call

Description: Calls a subroutine located at the specified address. The instruction adds three to the
program counter to generate the address of the next instruction and then pushes the 16-bit
result onto the stack (low byte first). The stack pointer is incremented by two. The high and
low bytes of the PC are then loaded, respectively, with the second and third bytes of the
LCALL instruction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the 64-Kbyte region of memory where the next
instruction is located.

Flags:

Example:

LCALL addr16

Bytes:

States:

[Encoding]

A-78

CY AC ov N z

The stack pointer contains 07H and the label "SUBRTN" is assigned to program memory
location 1234H. After executing the instruction

LCALL SUBRTN

at location 0123H, the stack pointer contains 09H, on-chip RAM locations 08H and 09H
contain 01 Hand 26H, and the PC contains 1234H.

Binary Mode

3
9

Source Mode

3

9

0001 0 0 1 0 I addr15-addr8 J addr7-addr0

I

i nfel ® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: LCALL

LCALL@WRj

Bytes:

States:

(PC) f- (PC) + 3
(SP) f- (SP) + 1
((SP)) f- (PC.7:0)
(SP) f- (SP) + 1
((SP)) f- (PC.15:8)
(PC) f- (addr.15:0)

Binary Mode

3

9

Source Mode

2

8

[Encoding] ~-1 _o 0_1_~_1 _o 0_1_~1 ~I _t_t_t t_~I I 0 1 0 0

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: LCALL

LJMP <dest>

(PC) f- (PC) + 3
(SP) f- (SP) + 1
((SP)) f- (PC.7:0)
(SP) f- (SP) + 1
((SP)) f- (PC.15:8)
(PC) f- ((WRj))

Function: Long Jump

Description: Causes an unconditional branch to the specified address, by loading the high and low bytes
of the PC (respectively) with the second and third instruction bytes. The destination may
therefore be anywhere in the 64-Kbyte memory region where the next instruction is located.

Flags:

Example:

I

CY AC ov N z

The label "JMPADR" is assigned to the instruction at program memory location 1234H. After
executing the instruction

LJMPJMPADR

at location 0123H, the program counter contains 1234H.

A-79

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

LJMP addr16

Binary Mode Source Mode

Bytes: 3 3
States: 5 5

[Encoding] 0000 0 0 1 0 j addr15--addr8

Hex Code in: Binary Mode = [Encoding]
Source Mode= [Encoding]

Operation: LJMP
(PC) +--- (addr.15:0)

LJMP@WRj

Bytes:

States:

Binary Mode

3

6

Source Mode

2

5

j addr7-addr0

[Encoding] ~-1 _o_o _o _ _,___1_0_0_1_~1 ._I _t_t_t t_~j j o 1 o o

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: LJMP
(PC) +--- ((WRj))

MOV <dest>,<src>

Function: Move byte variable

Description: Copies the byte variable specified by the second operand into the location specified by the
first operand. The source byte is not affected.

Flags:

A-80

This is by far the most flexible operation. Twenty-four combinations of source and
destination addressing modes are allowed.

CY AC ov N z

I

INSTRUCTION SET REFERENCE

Example: On-chip RAM location 30H contains 40H, on-chip RAM location 40H contains 1 OH, and
input port 1 contains 1100101 OB (OCAH). After executing the instruction sequence

MOV R0,#30H ;RO<= 30H
MOV A,@RO ;A<= 40H
MOV R1 ,A ;R1 < = 40H
MOV B,@R1 ;B<=10H
MOV @R1,P1 ;RAM (40H) < = OCAH
MOV P2,P1 ;P2 #OCAH

register O contains 30H, the accumulator and register 1 contain 40H, register B contains
1 OH, and on-chip RAM location 40H and output port 2 contain OCAH (1100101 OB).

Variations

MOV A,#data

Binary Mode Source Mode

Bytes: 2 2
States:

[Encoding] 0 1 1 1 0100

Hex Code in: Binary Mode= [Encoding]
Source Mode= [Encoding]

Operation: MOV
(A) f--- #data

MOV dir8,#data

I immed. data

Binary Mode Source Mode

Bytes: 3 3

States: 3t 3t
tlf this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] ~_0_1 _1_1_~~-0_1 _0_1_~J J direct addr

Hex Code in: Binary Mode= [Encoding]
Source Mode= [Encoding]

Operation: MOV
(dir8) f--- #data

MOV @Ri,#data

Binary Mode Source Mode

Bytes:

States:

[Encoding]

Hex Code in:

I

2 3
3 4

0 1 1 1 0 1 1 i

Binary Mode = [Encoding]
Source Mode= [A5][Encoding]

I immed. data

J immed. data

A-81

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Operation: MOV
((Ri)) <---#data

MOV Rn,#data

Binary Mode Source Mode

Bytes: 2 3
States: 2

[Encoding] 0 1 1 1 1 r r r r

Hex Code in: Binary Mode = [Encoding]
Source Mode = [AS][Encoding]

Operation: MOV
(Rn) <--- #data

MOV dir8,dir8

I immed. data

Binary Mode Source Mode

Bytes: 3 3
States: 3 3

[Encoding] I I direct addr I I direct addr
~----~----~

100 0 0 1 0 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) <--- (dir8)

MOV dir8,@Ri

Binary Mode Source Mode

Bytes: 2 3
States: 3 4

[Encoding] I I direct addr
~----~----~

1000 0 1 1 i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [AS][Encoding]

Operation: MOV
(dir8) <--- ((Ri))

MOV dir8,Rn

Binary Mode Source Mode

Bytes: 2 3
States: 2t 3t

tit this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] ~-1_0_0_0 _ __,'--_1_r_r_r_~I I direct addr

A-82 I

intel® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode= [AS)[Encoding]

Operation: MOV
(dirB) f- (Rn)

MOV @Ri,dir8

Binary Mode Source Mode

Bytes: 2 3
States: 3 4

[Encoding) ~-1 _0_1_0 __ ~_0_1_1_i_~I I direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode= [AS)[Encoding]

Operation: MOV
((Ri)) f- (dirB)

MOV Rn,dir8

Binary Mode Source Mode

Bytes: 2 3
States: 1t 2t

tlf this instruction addresses a port (Px, x= 0-3), add 1 state .

[Encoding] .___1_0_1_0_---''---1_r_r_r _ __,I I direct addr

Hex Code in: Binary Mode= [Encoding)
Source Mode= [AS)[Encoding]

Operation: MOV

MOV A,dir8

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

I

(Rn) f- (dirB)

Binary Mode Source Mode

2 2
1t 1t

tlf this instruction addresses a port (Px, x= 0-3), add 1 state .

.___1_1 _1_0_---''---0_1 _0_1 _ __,I I direct addr

Binary Mode= [Encoding]
Source Mode= [Encoding]

MOV
(A) r (dir8)

A-83

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

MOV A,@Ri

Bytes:

States:

[Encoding]

Binary Mode

1

2

Source Mode

2

3

1 1 1 0 0 1 1 i

Hex Code in: Binary Mode = [Encoding]
Source Mode= (A5][Encoding]

Operation: MOV

MOVA,Rn

Bytes:
States:

[Encoding]

(A) <- ((Ri))

Binary Mode

1

1 1 1 0

Source Mode

2

2

1 r r r

Hex Code in: Binary Mode = [Encoding]
Source Mode= [A5][Encoding]

Operation: MOV
(A)<- (Rn)

MOVdir8,A

Binary Mode Source Mode

Bytes: 2 2
States: 2t 2t

tit this instruction addresses a port (Px, x= 0-3), add 1 state .

[Encoding] .___1_1_1 _1 _ __,_ __ 0_1_0_1 _ _,j j direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode= [Encoding]

Operation: MOV
(dir8) <- (A)

MOV@Ri,A

Binary Mode Source Mode

Bytes: 1 2
States: 3 4

[Encoding] 1 1 1 1 0 1 1 i

A-84

I -

infel® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode= [Encoding]
Source Mode = [AS][Encoding]

Operation: MOV
((Ri))f---(A)

MOV Rn,A

Binary Mode Source Mode

Bytes: 1 2

States: 2

[Encoding] 1 1 1 1 1 1 1 r

Hex Code in: Binary Mode = [Encoding]
Source Mode= [AS][Encoding]

Operation: MOV
(Rn) f---(A)

MOV Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2
States: 2

[Encoding] ~-0~1_1_1~~~-1~1_0_0~~' '~~s_s_s_s~~~-s_s~s_s~~
Hex Code in: Binary Mode = [AS][Encoding]

Source Mode = [Encoding]

Operation: MOV
(Rmd) f--- (Rms)

MOV WRjd,WRjs

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

I

Binary Mode Source Mode

3 2

2

.___0_1~1_1~_,_~_1_1_0_1~__,I ~'~-t_t_t_t~~~-T_T_T~T~-
Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

MOV
(WRjd) f--- (WRjs)

A-85

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

MOV DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

[Encoding] 0 1 1 1 1 1 1 1 I I uuuu uuuu

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode= [Encoding]

Operation: MOV
(DRkd) f- (DRks)

MOV Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding] 0 1 1 1 1 1 1 0 I I ssss 0000 I I #data

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode= [Encoding]

Operation: MOV
(Rm) f- #data

MOV WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

0 1 1 1 1 1 1 0 I I t t t t 0 100 I I #data hi I I #data low

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: MOV
(WRj) f- #data16

MOV DRk,#Odata16

Binary Mode Source Mode

Bytes: 5 4

States: 5 4

[Encoding]

0 1 1 1 1 1 1 0 I I uuuu 1000 I I #data hi I I #data low

A-86 I

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRk) r #Odata16

MOV DRk,#1data16

Binary Mode Source Mode

Bytes:

States:

[Encoding]

5 4

5 4

~-0_1_1_1 __ ~_1_1 _1_0_~1 I LI LI LI LI

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRk) f- #1data16

MOV Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3t 2t

INSTRUCTION SET REFERENCE

1 1 0 0 I I #data hi I I #data low

tit this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0 1 1 1 1 1 1 0 I I ssss 0001 I I direct addr

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) f- (dir8)

MOV WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding] 0 1 1 1 1 1 1 0 I I tt t t 0 1 0 1 I I direct addr

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) r (dir8)

I A-87

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

MOV DRk,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 6 5

[Encoding] 0 1 1 1 1 1 1 0 I I u· u u u 1 1 0 1 I I direct addr

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRk) f--- (dir8)

MOV Rm,dir16

Binary Mode Source Mode

Bytes: 5 4
States: 3 2

[Encoding]

0 1 1 1 1 1 1 0 I I ssss 0 0 1 1 I I direct addr I I direct addr

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) f--- (dir16)

MOV WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

0 1 1 1 1 1 1 0 I I tt tt 0 1 1 1 I I direct addr I I direct addr

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: MOV
(WRj) f--- (dir16)

MOV DRk,dir16

Binary Mode Source Mode
Bytes: 5 4

States: 6 5
[Encoding]

0 1 1 1 1 1 1 0 I I uuuu 1 1 1 1 I I direct addr I I direct addr

A-88 I

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: MOV
(DRk) r (dir16)

MOVRm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 2 2

[Encoding]

0 1 1 1 1 1 1 0 I I tttt 1 0 0 1 I I ssss 0000

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) r ((WRj))

MOV Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3
States: 4 3

[Encoding]

0 1 1 1 1 1 1 0 I I uuuu 1 0 1 1 I I ssss 0000

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) r ((DRk))

MOV WRjd,@WRjs

Binary Mode Source Mode

Bytes: 4 3

States: 4 3
[Encoding]

0000 1 0 1 1 I I TTTT 1000 I I t t t t 0000

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRjd) r ((WRjs))

I A-89

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

MOV WRj,@DRk

Bytes:

States:

[Encoding]

Binary Mode

4

5

Source Mode

3

4

.___o_o_o~o~-'-~1_0_1~1~~1 I uuuu

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode= [Encoding]

Operation: MOV
(WRj) ~ ((DRk))

MOVdirS,Rm

Bytes:

States:

Binary Mode

4

4t

Source Mode

3

3t

1 0 1 0 I l~_t_t_tt~~~oo_o_o~~

tlfthis instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] .____0_1_1_1 _ __,__1_0_1_0 _ __.I I s s s s

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: MOV
(dir8) ~ (Rm)

MOV dirS,WRj

Binary Mode Source Mode

Bytes: 4 3

States: 5 4

[Encoding] 0 1 1 1 1 0 1 0 I I

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ~ (WRj)

MOV dirS,DRk

Binary Mode Source Mode

Bytes: 4 3

States: 7 6

[Encoding] 0 1 1 1 101 0 I I

A-90

tt I I

uuuu

0 0 1 1 I I direct addr

0 1 0 1 I I direct addr

1 1 0 1 I I direct addr

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ~ (DRk)

MOV dir16,Rm

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

0 1 1 1 1 0 1 0 I I ssss 0 0 1 1 I I direct addr I I direct addr

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir16) ~ (Rm)

MOV dir16,WRj

Binary Mode Source Mode

Bytes: 5 4

States: 5 4

[Encoding]

0 1 1 1 1 0 1 0 I I t t t t 0 1 1 1 I I direct addr I I direct addr

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: MOV
(dir16) ~ (WRj)

MOV dir16,DRk

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

0 1 1 1 1 0 1 0 I I uuuu 1 1 1 1 I I direct addr I I direct addr

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir16) ~ (DRk)

I A-91

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

MOV@WRj,Rm

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

0 1 1 1 1 0 1 0 I I ti I I 1 0 0 1 I I ssss 0000

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRj)) f--- (Rm)

MOV@DRk,Rm

Binary Mode Source Mode

Bytes: 4 3

States: 5 4

[Encoding]

0 1 1 1 1 0 1 0 I I uuuu 1 0 1 1 I I ssss 0000

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: MOV
((DRk)) f--- (Rm)

MOV @WRjd,WRjs

Binary Mode Source Mode

Bytes: 4 3

States: 5 4

[Encoding]

0001 1 0 1 1 I I ti ti 1000 I I TTTT 0000

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: MOV
((WRjd)) f--- (WRjs)

MOV @DRk,WRj

Binary Mode Source Mode

Bytes: 4 3

States: 6 5

A-92 ___ l

intel® INSTRUCTION SET REFERENCE

[Encoding]

0001 1 0 1 1 I I uuuu 1 0 1 0 I I tt tt 0000

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

Operation: MOV
((DRk)) <---- (WRj)

MOV Rm,@WRj + dis16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

0000 1 0 0 1 I I ssss tt t t I I dis hi I I dis low

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

Operation: MOV
(Rm)<---- ((WRj)) +(dis)

MOV WRj,@WRj + dis16

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

0 100 1 0 0 1 I I t t t t TTTT I I dis hi I I dis low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode= [Encoding]

Operation: MOV
(WRj) <---- ((WRj)) +(dis)

MOV Rm,@DRk + dis16

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

0 0 1 0 1 0 0 1 I I ssss uuuu I I dis hi I I dis low

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

Operation: MOV
(Rm) <---- ((DRk)) +(dis)

I A-93

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL intel®

MOV WRj,@DRk + dis16

Binary Mode Source Mode

Bytes: 5 4

States: 8 7

[Encoding]

0 1 1 0 1 0 0 1 I I tt t t uuuu I I dis hi I I dis low

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode= [Encoding]

Operation: MOV
(WRj) t- ((DRk)) +(dis)

MOV @WRj + dis16,Rm

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

0001 1 00 1 I I t t t t ssss I I dis hi I I dis low

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRj)) +(dis) t- (Rm)

MOV @WRj + dis16,WRj

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

0 1 0 1 1 0 0 1 I I tt t t TTTT I I dis hi I I dis low

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode= [Encoding]

Operation: MOV
((WRj)) + (dis) t- (WRj)

MOV @DRk + dis16,Rm

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

0 0 1 1 1 0 0 1 I I uuuu ssss I I dis hi I I dis low

A-94 __ J

infe'® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
((DRk)) +(dis) f- (Rm)

MOV @DRk + dis16,WRj

Binary Mode Source Mode

Bytes:

States:

[Encoding]

5 4

8 7

.___0_1 _1_1 _ ___. __ 1_0_0_1 _ __,I I u u u u

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
((DRk)) +(dis) f- (WRj)

MOV <dest-bit>,<src-bit>

Function: Move bit data

tt t t I l~_d_is_hi_~I I dis low

Description: Copies the Boolean variable specified by the second operand into the location specified by
the first operand. One of the operands must be the CY flag; the other may be any directly
addressable bit. Does not affect any other register.

Flags:

Example:

Variations

MOV bit51,CY

Bytes:

States:

[Encoding]

Hex Code in:

I

CY AC ov N z
./

The CY flag is set, input Port 3 contains 11000101 B, and output Port 1 contains 35H
(001101018). After executing the instruction sequence

MOV P1.3,CY
MOV CY,P3.3
MOV P1.2,CY

the CY flag is clear and Port 1 contains 39H (00111001 B).

Binary Mode Source Mode

2 2

2t 2t

tlf this instruction addresses a port (Px, x = 0-3), add 2 states.

~-1 _0_0_1 __ ~_0_0_1_0_~1 I bit addr

Binary Mode = [Encoding]
Source Mode = [Encoding]

A-95

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Operation: MOV
(bit51) f--- (CY)

MOV CY,bit51

Binary Mode Source Mode

Bytes: 2 2
States: 1t 1t

tit this instruction addresses a port (Px, x= 0-3), add 1 state .

[Encoding] .___1_0_1_0 _ __. __ 0_0_1 _o _ __,I I bit addr

Hex Code in: Binary Mode= [Encoding]
Source Mode = [Encoding]

Operation: MOV
(CY) f--- (bit51)

MOV bit,CY

Binary Mode Source Mode

Bytes: 4 3

States: 4t 3t

tit this instruction addresses a port (Px, x = 0-3), add 2 states.

[Encoding]

'---1 _o _1 _o _ _.___1_0_0_1 _ _,I 1 1 o o 1

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

Operation: MOV
(bit) f--- (CY)

MOV CY,bit

Binary Mode Source Mode

Bytes: 4 3

States: 3t 2t

0 yyy

tit this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding]

'---1 _0_1 _0_~_1_0_0_1 _ _,I I 1 o 1 o

Hex Code in:

Operation:

A-96

Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

MOV
(CY) f---(bit)

0 yyy

I I direct addr

I I direct addr

·--L

INSTRUCTION SET REFERENCE

MOV DPTR,#data16

Function: Load data pointer with a 16-bit constant

Description: Loads the 16-bit data pointer (DPTR) with the specified 16-bit constant. The high byte of the
constant is loaded into the high byte of the data pointer (DPH). The low byte of the constant
is loaded into the low byte of the data pointer (DPL).

Flags:

CY AC ov N

Example: After executing the instruction

MOV DPTR,#1234H

DPTR contains 1234H (DPH contains 12H and DPL contains 34H).

Binary Mode Source Mode

Bytes: 3 3

States: 2 2

[Encoding] ~-1_0_0_1_~ __ o_o_o_o_~j I data hi

Hex Code in: Binary Mode= [Encoding]
Source Mode= [Encoding]

Operation: MOV
(DPTR) ~ #data16

MOVC A,@A+<base-reg>

Function: Move code byte

I I data low

z

Description: Loads the accumulator with a code byte or constant from program memory. The address of
the byte fetched is the sum of the original unsigned 8-bit accumulator contents and the
contents of a 16-bit base register, which may be the 16 LSBs of the data pointer or PC. In
the latter case, the PC is incremented to the address of the following instruction before being
added with the accumulator; otherwise the base register is not altered. Sixteen-bit addition is
performed.

Flags:

CY AC ov N z

I A-97

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Example: The accumulator contains a number between O and 3. The following instruction sequence
translates the value in the accumulator to one of four values defined by the DB (define byte)
directive.

REL PC: INC A
MOVC A,@A+PC
RET
DB 66H
DB 77H
DB 88H
DB 99H

If the subroutine is called with the accumulator equal to 01 H, it returns with 77H in the
accumulator. The INC A before the MOVC instruction is needed to "get around" the RET
instruction above the table. If several bytes of code separated the MOVC from the table, the
corresponding number would be added to the accumulator instead.

Variations

MOVC A,@A+PC

Bytes:

Binary Mode

1

Source Mode

1

States: 6

[Encoding] 1000 0 0 1 1

Hex Code in: Binary Mode= [Encoding]
Source Mode= [Encoding]

Operation: MOVC
(PC) <-- (PC) + 1
(A)<-- ((A) + (PC))

MOVC A,@A+DPTR

6

Binary Mode Source Mode

Bytes: 1

States: 6 6

[Encoding] 1001 0 0 1 1

Hex Code in: Binary Mode= [Encoding]
Source Mode = [Encoding]

Operation: MOVC
(A) <-- ((A) + (DPTR))

MOVH DRk,#data16

Function: Move immediate 16-bit data to the high word of a dword (double-word) register

Description: Moves 16-bit immediate data to the high word of a dword (32-bit) register. The low word of
the dword register is unchanged.

A-98 _ _J_

INSTRUCTION SET REFERENCE

Flags:

CY AC ov N

Example: The dword register DRk contains 5566 7788H. After the instruction

MOVH DRk,#1122H

executes, DRk contains 1122 7788H.
Variations

MOVH DRk,#data16

Bytes:

States:

[Encoding]

Binary Mode Source Mode

5 4
3 2

z

~-0_1_1_1_~_1_0_1_0_~1 I u u u u 1 1 0 0 J J #data hi J J #data low

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: MOVH
(DRk).31 :16 f- #data16

MOVSWRj,Rm

Function: Move 8-bit register to 16-bit register with sign extension

Description: Moves the contents of an 8-bit register to the low byte of a 16-bit register. The high byte of
the 16-bit register is filled with the sign extension, which is obtained from the MSB of the 8-
bit source register.

Flags:

Example:

Variations

I

CY AC ov N z

Eight-bit register Rm contains 055H (01010101 B) and the 16-bit register WRj contains
OFFFFH (11111111111111118). The instruction

MOVSWRj,Rm

moves the contents of register Rm (01010101 B) to register WRj (i.e., WRj contains
00000000 01010101 B).

A-99

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

MOVSWRj,Rm

Bytes:

States:

[Encoding]

Binary Mode

3

2

Source Mode

2

~-0~0_0_1~~~-1_0~1_0~~1 ~l~_t_t_t_t~~~~s_s_s_s~~
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: MOVS

(WRj).7--0 ~ (Rm).7--0
(WRj).15-8 ~ MSB

MOVX <dest>,<src>

Function: Move external

Description: Transfers data between the accumulator and a byte in external data RAM. There are two
types of instructions. One provides an 8-bit indirect address to external data RAM; the
second provides a 16-bit indirect address to external data RAM.

Flags:

Example:

Variations

A-100

In the first type of MOVX instruction, the contents of RO or R1 in the current register bank
provides an 8-bit address on port 0. Eight bits are sufficient for external 1/0 expansion
decoding or for a relatively small RAM array. For larger arrays, any port pins can be used to
output higher address bits. These pins would be controlled by an output instruction
preceding the MOVX.

In the second type of MOVX instruction, the data pointer generates a 16-bit address. Port 2
outputs the upper eight address bits (from DPH) while port 0 outputs the lower eight address
bits (from DPL).

For both types of moves in nonpage mode, the data is multiplexed with the lower address
bits on port 0. In page mode, the data is multiplexed with the contents of P2 on port 2 (8-bit
address) or with the upper address bits on port 2 (16-bit address).

It is possible in some situations to mix the two MOVX types. A large RAM array with its
upper address lines driven by P2 can be addressed via the data pointer, or with code to
output upper address bits to P2 followed by a MOVX instruction using RO or R1.

CY AC ov N z

The 8X930Ax controller is operating in nonpage mode. An external 256-byte RAM using
multiplexed address/data lines (e.g., an Intel 8155 RAM/l/Ommer) is connected to port 0.
Port 3 provides control lines for the external RAM. ports 1 and 2 are used for normal 1/0. RO
and R1 contain 12H and 34H. Location 34H of the external RAM contains 56H. After
executing the instruction sequence

MOVXA,@R1
MOVX@RO,A

the accumulator and external RAM location 12H contain 56H.

I

MOVX A,@DPTR

Bytes:

States:

[Encoding]

Binary Mode

1

5

Source Mode

1

5

1 1 1 0 0000

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVX

MOVXA,@Ri

Bytes:

States:

[Encoding]

(A)~ ((DPTR))

Binary Mode

1

3

Source Mode

1

3

1 1 1 0 0 0 1 i

Hex Code in: Binary Mode = [Encoding]
Source Mode= [A5][Encoding]

Operation: MOVX
(A)~((Ri))

MOVX @DPTR,A

Bytes:

States:

[Encoding]

Binary Mode

1

5

Source Mode

1

5

1 1 1 1 0000

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVX

MOVX@Ri,A

Bytes:

States:

[Encoding]

Hex Code in:

I

((DPTR)) ~(A)

Binary Mode

1

4

Source Mode

1

4

1 1 1 1 0 0 1 i

Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

INSTRUCTION SET REFERENCE

A-101

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Operation:

MOVZWRj,Rm

MOVX
{{Ri)) f- {A)

Function: Move 8-bit register to 16-bit register with zero extension

Description: Moves the contents of an 8-bit register to the low byte of a 16-bit register. The upper byte of
the 16-bit register is filled with zeros.

Flags:

Example:

Variations

MOVZWRj,Rm

Bytes:

States:

[Encoding]

CY AC ov N z

Eight-bit register Rm contains 055H (01010101 B) and 16-bit register WRj contains OFFFFH
(11111111 111111118). The instruction

MOVZWRj,Rm

moves the contents of register Rm (01010101 B) to register WRj. At the end of the operation,
WRj contains 00000000 01010101 B.

Binary Mode

3
2

Source Mode

2

.___o~o_o_o~__..___1_0~1_0~__.I ~l~_t_t_t_t~~'--~s_s_s_s~__.
Hex Code in: Binary Mode = [AS][Encoding]

Source Mode = [Encoding]

Operation: MOVZ
{WRj)7-0 f- {Rm)7-0
{WRj)15-8 f- 0

MUL <dest>,<src>

Function: Multiply

Description: Multiplies the unsigned integer in the source register with the unsigned integer in the
destination register. Only register addressing is allowed.

A-102

For 8-bit operands, the result is 16 bits. The most significant byte of the result is stored in the
low byte of the word where the destination register resides. The least significant byte is
stored in the following byte register. The OV flag is set if the product is greater than 255
{OFFH); otherwise it is cleared.

For 16-bit operands, the result is 32 bits. The most significant word is stored in the low word
of the dword where the destination register resides. The least significant word is stored in
the following word register. In this operation, the OV flag is set if the product is greater than
OFFFFH, otherwise it is cleared. The CY flag is always cleared. The N flag is set when the
MSB of the result is set. The Z flag is set when the result is zero.

I

INSTRUCTION SET REFERENCE

Flags:

Example:

CY AC ov N z
0 ,/ ,/ ,/

Register R1 contains 80 (50H or 1001 OOOOB) and register RO contains 160 (OAOH or
1001 OOOOB). After executing the instruction

MUL R1,RO

which gives the product 12,800 (3200H), register RO contains 32H (00110010B), register R1
contains OOH, the OV flag is set, and the CY flag is clear.

MUL Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2
States: 6 5

[Encoding] ,___1~0_1_0~--'~-1~1_0_0~__.I ~l~_s_s_s_s~__,.___s~s_s_s~__,
Hex Code in: Binary Mode= [AS][Encoding]

Source Mode= [Encoding]

Operation: MUL (8-bit operands)
if <dest> md = 0, 2, 4, .. , 14
Rmd f- high byte of the Rmd X Ams
Rmd+ 1 f- low byte of the Rmd X Ams
if <dest> md = 1, 3, 5, .. , 15
Rmd-1 f- high byte of the Rmd X Ams
Rmd f- low byte of the Rmd X Ams

MUL WRjd,WRjs

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

I

Binary Mode Source Mode

3 2

12 11

~-1_0~1_0~~~-1_1_0_1~~1 ~I ~-t_t_t_t~~~~tt_t_t~~
Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

MUL (16-bit operands)
if <dest> jd = 0, 4, 8, .. , 28
WRjd f- high word of the WRjd X WRjs
WRjd+2 f- low word of the WRjd X WRjs
if <dest> jd = 2, 6, 10, .. , 30
WRjd-2 f- high word of the WRjd X WRjs
WRjd f- low word of the WRjd X WRjs

A-103

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

MULAB

Function: Multiply

Description: Multiplies the unsigned 8-bit integers in the accumulator and register B. The low byte of the
16-bit product is left in the accumulator, and the high byte is left in register B. If the product is
greater than 255 (OFFH) the OV flag is set; otherwise it is clear. The CY flag is always clear.

Flags:

CY AC ov N z
0 ./ ./

Example: The accumulator contains 80 (50H) and register B contains 160 (OAOH). After executing the
instruction

MULAB

which gives the product 12,800 (3200H), register B contains 32H (0011001 OB), the
accumulator contains OOH, the OV flag is set, and the CY flag is clear.

Binary Mode Source Mode

Bytes: 1

States: 5 5

[Encoding] 1 0 1 0 0 100

Hex Code in: Binary Mode = [Encoding]
Source Mode= [Encoding]

Operation: MUL

NOP

(A) <-- low byte of (A) X (B)
(B) <-- high byte of (A) X (B)

Function: No operation

Description: Execution continues at the following instruction. Affects the PC register only.

Flags:

CY AC ov N z

A-104 I

Example:

Bytes:

States:

[Encoding]

INSTRUCTION SET REFERENCE

You want to produce a low-going output pulse on bit 7 of Port 2 that lasts exactly 11 states. A
simple CLR-SETB sequence generates an eight-state pulse. (Each instruction requires four
states to write to a port SFR.) You can insert three additional states (if no interrupts are
enabled) with the following instruction sequence:

CLR P2.7
NOP
NOP
NOP
SETB P2.7

Binary Mode Source Mode

1

1

0000 0000

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: NOP
(PC) ~ (PC) + 1

ORL <dest> <SrC>

Function: Logical-OR for byte variables

Description: Performs the bitwise logical-OR operation (V) between the specified variables, storing the
results in the destination operand.

Flags:

Example:

I

The destination operand can be a register, an accumulator or direct address.

The two operands allow twelve addressing mode combinations. When the destination is the
accumulator, the source can be register, direct, register-indirect, or immediate addressing;
when the destination is a direct address, the source can be the accumulator or immediate
data. When the destination is register the source can be register, immediate, direct and
indirect addressing.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

CY AC ov N z
.I .I

The accumulator contains OC3H (11000011 B) and RO contains 55H (01010101 B). After
executing the instruction

ORLA,RO

the accumulator contains OD7H (110101118).

A-105

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

When the destination is a directly addressed byte, the instruction can set combinations of
bits in any RAM location or hardware register. The pattern of bits to be set is determined by
a mask byte, which may be a constant data value in the instruction or a variable computed in
the accumulator at run time. After executing the instruction

ORL P1 ,#0011001 OB

sets bits 5, 4, and 1 of output Port 1.

ORLdir8,A

Binary Mode Source Mode
Bytes: 2 2

States: 2t 2t
tlf this instruction addresses a port (P x, x = 0-3), add 2 states.

[Encoding] ~-0_1_0_0_~ __ 0_0_1_0_~1 I directaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(dir8) <--- (dir8) V (A)

ORL dir8,#data

Binary Mode Source Mode

Bytes: 3 3
States: 3t 3t

tlf this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] ~-0_1 _o_o_~~-0_0_1_1_~1 I direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(dir8) <--- (dir8) V #data

ORL A,#data

Binary Mode Source Mode

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

A-106

2 2

1

0 100 0 100

Binary Mode = [Encoding]
Source Mode= [Encoding]

ORL
(A) <--- (A) V #data

I immed. data

I immed. data

I

INSTRUCTION SET REFERENCE

ORLA,dirB

Binary Mode Source Mode

Bytes: 2 2
States: 1t 1t

tit this instruction addresses a port (P x, x = 0-3), add 1 state.

[Encoding] ~-0_1_0_0 __ ~_0_1 _0_1_~1 I direct addr

Hex Code in: Binary Mode= [Encoding]
Source Mode= [Encoding]

Operation: ORL
(A),._ (A) V (dir8)

ORL A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

[Encoding] 0 1 0 0 0 1 1 i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [AS][Encoding]

Operation: ORL
(A),._ (A) V ((Ri))

ORLA,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 2

[Encoding] 0 100 1 r r r

Hex Code in: Binary Mode = [Encoding]
Source Mode = [AS][Encoding]

Operation: ORL

ORL Rmd,Rms

Bytes:

States:

[Encoding]

I

(A) ,._ (A) V (Rn)

Binary Mode

3

2

Source Mode

2

~-0_1_0_0_~ __ 1_1_0_0_~1 ~l __ s_s_s_s __ ~_s_s_s_s_~

A-107

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

Operation: ORL
(Rmd) f- (Rmd) V (Rms)

ORL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 3 2

[Encoding] ~-0_1_0_0_--1-__ 1_1_0_1_~1 l~_t_t_tt~~~-T_T~T_T~~
Hex Code in: Binary Mode= [A5][Encoding]

Source Mode = [Encoding]

Operation: ORL

ORL Rm,#data

Bytes:

States:

[Encoding]

Hex Code in

Operation:

(WRjd)f-(WRjd) V (WRjs)

Binary Mode Source Mode

4 3
3 2

~-0_1 _o_o_--1-__ 1 _1_1_0_~1 I s s s s

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ORL
(Rm) f- (Rm) V #data

ORL WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

0000 I l~_#d_a_ta_~

~-0_1_0_0 _ __,_ __ 1 _1 _1 _o___.I ._I __ t_t t_t _ __,__0_1 _o _o___.I J #data hi I J #data low

Hex Code in:

Operation:

A-108

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ORL
(WRj) f- (WRj) V #data16

I

INSTRUCTION SET REFERENCE

ORL Rm,dir8

Binary Mode Source Mode

Bytes: 4 3
States: 3t 2t

tlfthis instruction addresses a port (Px, X= 0-3), add 1 state.

[Encoding] ~-0_1 _o_o _ ___,~_1_1 _1_0_~1 ~I __ s_s_s_s _ ___, __ 0_0_0_1_~1 I direct addr

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: ORL
(Rm) <---(Rm) V (dir8)

ORL WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding] ~-0_1_0_0 _ ___,~_1_1 _1_1_~1 l~ __ t_t_t_t _ ___, __ 0_10_1_~1 I direct addr

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: ORL
(WRj) <--- (WRj) V (dir8)

ORL Rm,dir16

Bytes:

States:

[Encoding]

Binary Mode Source Mode

5 4

3 2

~-0_1_0_0 _ ___, __ 1 _1_1_0_~1 ~I __ s_s_s_s -~--0_0_1_1 -~I I direct addr I I direct addr

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: ORL
(Rm) <---(Rm) V (dir16)

ORL WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

I
A-109

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

[Encoding]

0100 1 1 1 0 I I t t t t 0 1 1 1 I I direct addr I I direct addr

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

Operation: ORL
(WRj) ~ (WRj) V (dir16)

ORL Rm,@WRj

Binary Mode Source Mode

Bytes: 4 3
States: 3 2

[Encoding]

0100 1 1 1 0 I I t t t t 1 0 0 1 I I ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) ~ (Rm) V ((WRj))

ORL Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

~~0_1_0_0~~~~1_1_1_o~~jj ~ ~-u_u_u_u~~~~1_0_1_1~~' '~~s_s_s~s~~~o~o_o_o~~
Hex Code in: Binary Mode= [A5][Encoding]

Source Mode= [Encoding]

Operation: ORL
(Rm) ~(Rm) V ((DRk))

ORL CY,<src-bit>

Function: Logical-OR for bit variables

Description: Sets the CY flag if the Boolean value is a logical 1; leaves the CY flag in its current state
otherwise . A slash ("/") preceding the operand in the assembly language indicates that the
logical complement of the addressed bit is used as the source value, but the source bit itself
is not affected.

Flags:

CY AC ov N z
,/

A-110

I

INSTRUCTION SET REFERENCE

Example: Set the CY flag if and only if P1 .0 = 1, ACC. 7 = 1, or OV = O:

MOV CY,P1 .0 ;LOAD CARRY WITH INPUT PIN P10
ORL CY,ACC.7 ;OR CARRY WITH THE ACC. BIT 7
ORL CY,/OV ;OR CARRY WITH THE INVERSE OF OV.

Variations

ORL CY,bit51

Binary Mode Source Mode

Bytes: 2 2
States: 1 t 1t

tlf this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] ,___0_1 _1_1 _ __. __ 0_0_1 _o _ __,I I bit addr

Hex Code in: Binary Mode= [Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) f- (CY) V (bit51)

ORL CY,/bit51

Binary Mode Source Mode

Bytes: 2 2
States: 1t 1t

tlf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] ~-1_0_1_0_~.___o_o_o_o _ __.I I bit addr

Hex Code in: Binary Mode= [Encoding]
Source Mode= [Encoding)

Operation: ORL
(CY) f- (CY) V-, (bit51)

ORL CY,bit

Binary Mode Source Mode

Bytes: 4 3

States: 3t 2t

tlf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding]

~-1 _0_1 _0_~_1_0_0_1_~1 I o 1 1 1

Hex Code in:

Operation:

I

Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

ORL
(CY) f- (CY) V (bit)

0 yyy I I direct addr

A-111

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

ORL CY,/bit

Binary Mode Source Mode

Bytes: 4 3

States: 3t 2t
tit this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding]

c___1_0_1_0 _ _,__1_0_0_1 _ __.I 1 1 1 1 o 0 yyy I I direct addr

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) <--- (CY) V --, (bit)

POP <Src>
Function: Pop from stack

Description: Reads the contents of the on-chip RAM location addressed by the stack pointer, then
decrements the stack pointer by one. The value read at the original RAM location is
transferred to the newly addressed location, which can be 8-bit or 16-bit.

Flags:

Example:

Variations

POP dir8

Bytes:

States:

[Encoding]

Hex Code in:

A-112

CY AC ov N z

The stack pointer contains 32H and on-chip RAM locations 30H through 32H contain 01 H,
23H, and 20H, respectively. After executing the instruction sequence

POP DPH
POP DPL

the stack pointer contains 30H and the data pointer contains 0123H. After executing the
instruction

POP SP

the stack pointer contains 20H. Note that in this special case the stack pointer was
decremented to 2FH before it was loaded with the value popped (20H).

Binary Mode Source Mode

2 2
3 3

'---1 _1_0_1 _ _,_ __ o_o_o_o _ __,\ \ direct addr

Binary Mode = [Encoding]
Source Mode = [Encoding]

I

INSTRUCTION SET REFERENCE

Operation:

POP Rm

Bytes:

States:

POP
(dirB) ~((SP))
(SP) ~ (SP) - 1

3

3

2

2

[Encoding] .___1_1_0_1 _ __. __ 1_0_1_0 _ __,j ~I __ s_s_s_s _ __. __ 1_0_0_0 _ __,

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: POP

POPWRj

Bytes:

States:

(Rm) ~((SP))
(SP) ~ (SP) - 1

Binary Mode Source Mode

3 2

5 4

[Encoding] ...___1_1_0_1 __ .___1_0_1_0 _ __.I ~I __ t_t_t_t _ __. __ 1_0_0_1 _ __,

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode= [Encoding]

Operation: POP

POP DRk

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

PUSH <dest>
Function:

(SP) ~ (SP) - 1
(WRj) ~((SP))
(SP) ~ (SP) - 1

Binary Mode Source Mode

3 2

10 9

~-1_1 _0_1_~~-1_0_1_0_~1 I LI LI LI LI

Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

POP
(SP) ~ (SP) - 3
(DRk) ~((SP))
(SP) ~ (SP) - 1

Push onto stack

1 0 1 1

Description: Increments the stack pointer by one. The contents of the specified variable are then copied
into the on-chip RAM location addressed by the stack pointer.

I A-113

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Flags:

CY AC ov N z

Example: On entering an interrupt routine, the stack pointer contains 09H and the data pointer
contains 0123H. After executing the instruction sequence

PUSH DPL
PUSH DPH

the stack pointer contains OBH and on-chip RAM locations OAH and OBH contain 01 H and
23H, respectively.

Variations

PUSH dir8

Binary Mode Source Mode

Bytes: 2 2
States: 4 4

[Encoding] ~-1_1 _o_o_~ __ o_o_o_o_~I I direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode= [Encoding]

Operation: PUSH

PUSH #data

Bytes:

States:

[Encoding]

(SP) f- (SP) + 1
((SP)) f- (dir8)

Binary Mode

4

4

Source Mode

3

3

~-1 _1 _0_0_~_1_0_1_0_~1 I o o o o
Hex Code in: Binary Mode = [Encoding]

Source Mode= [Encoding]

Operation: PUSH

PUSH #data16

Bytes:

States:

[Encoding]

(SP) f- (SP) + 1
((SP)) f- #data

Binary Mode Source Mode

5 4

6 5

0010 I ~I _#d_a_ta_~

~-1_1_0_0_~_1 _o _1 _o ~I l~_o_o_o_o_~_o _1 _1 o_~I I #data hi I I #data lo

Hex Code in:

A-114

Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

I

INSTRUCTION SET REFERENCE

Operation:

PUSH Rm

Bytes:

States:

PUSH
(SP) f- (SP) + 2
((SP)) f- MSB of #data16
((SP)) f- LSB of #data16

Binary Mode Source Mode

3 2
4 3

[Encoding] '-----1_1_0_0_~ __ 1_0_1_0_~1 ~l __ s_s_s_s_~~-1_0_0_0_~

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode = [Encoding]

Operation: PUSH

PUSH WRj

Bytes:

States:

(SP) f- (SP) + 1
((SP)) f- (Rm)

Binary Mode Source Mode

3 2
5 4

[Encoding] ~-1_1_0_0~~~-1_0_1_0~~' ~' ~-t_t_t_t~~--1_0_0_1~~
Hex Code in: Binary Mode= [A5][Encoding]

Source Mode = [Encoding]

Operation: PUSH

PUSH DRk

Bytes:

States:

[Encoding]

(SP) f- (SP) + 1
((SP)) f- (WRj)
(SP) f- (SP) + 1

Binary Mode Source Mode

3 2
9 8

'-----1_1 _o_o_~~-1_0_1_0_~! I u u u u

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode = [Encoding]

Operation: PUSH

RET
Function:

(SP) f- (SP) + 1
((SP)) f- (DRk)
(SP) f- (SP) + 3

Return from subroutine

1 0 1 1

Description: Pops the high and low bytes of the PC successively from the stack, decrementing the stack
pointer by two. Program execution continues at the resulting address, which normally is the
instruction immediately following ACALL or LCALL.

I A-115

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Flags:

Example:

Bytes:

States:

[Encoding]

CY AC ov N z

The stack pointer contains OBH and on-chip RAM locations OAH and OBH contain 01 H and
23H, respectively. After executing the instruction,

RET

the stack pointer contains 09H and program execution continues at location 0123H.

Binary Mode Source Mode

1 1

7 7

0010 0 0 1 0

Hex Code in: Binary Mode= [Encoding]
Source Mode = [Encoding]

Operation: RET

RETI

(PC).15:8 f--- ((SP))
(SP) f--- (SP) - 1
(PC).7:0 f--- ((SP))
(SP) f--- (SP) - 1

Function: Return from interrupt

Description: This instruction pops two or four bytes from the stack, depending on the INTR bit in the
CONFIG1 register.

Flags:

A-116

If INTR = 0, RETI pops the high and low bytes of the PC successively from the stack and
uses them as the 16-bit return address in region FF:. The stack pointer is decremented by
two. No other registers are affected, and neither PSW nor PSW1 is automatically restored to
its pre-interrupt status.

If INTR = 1, RETI pops four bytes from the stack: PSW1 and the three bytes of the PC. The
three bytes of the PC are the return address, which can be anywhere in the 16-Mbyte
memory space. The stack pointer is decremented by four. PSW1 is restored to its pre­
interrupt status, but PSW is not restored to its pre-interrupt status. No other registers are
affected.

For either value of INTR, hardware restores the interrupt logic to accept additional interrupts
at the same priority level as the one just processed. Program execution continues at the
return address, which normally is the instruction immediately after the point at which the
interrupt request was detected. If an interrupt of the same or lower priority is pending when
the RETI instruction is executed, that one instruction is executed before the pending
interrupt is processed.

CY AC ov N z

I

INSTRUCTION SET REFERENCE

Example: INTR = 0. The stack pointer contains OBH. An interrupt was detected during the instruction
ending at location 0122H. On-chip RAM locations OAH and OBH contain 01 H and 23H,
respectively. After executing the instruction

RETI

the stack pointer contains 09H and program execution continues at location 0123H.

Binary Mode Source Mode

Bytes: 1 1

States (INTR = 0): 9 9
States (INTR = 1): 12

[Encoding] 0 0 1 1 0 0 1 0

Hex Code in: Binary Mode= [Encoding]
Source Mode = [Encoding]

Operation for INTR = O:
RETI
(PC).15:8 f--((SP))
(SP) f-- (SP) - 1
(PC).7:0 .. ((SP))
(SP) f--(SP) - 1

Operation for INTR = 1:

ALA

RETI
(PC).15:8 f-- ((SP))
(SP) f-- (SP) - 1
PC).7:0 f-- ((SP))
(SP) f-- (SP) - 1
(PC).23:16 f-- ((SP))
(SP) f-- (SP) - 1
PSW1 f-- ((SP))
(SP) f-- (SP) - 1

Function: Rotate accumulator left

12

Description: Rotates the eight bits in the accumulator one bit to the left. Bit 7 is rotated into the bit O
position.

Flags:

CY AC ov N z

Example: The accumulator contains OC5H (11000101 B). After executing the instruction,

RLA

the accumulator contains 8BH (10001011 B); the CY flag is unaffected.

I A-117

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Binary Mode Source Mode

Bytes: 1

States:

[Encoding] 0010 0 0 1 1

Hex Code in: Binary Mode= [Encoding]
Source Mode = [Encoding]

Operation: RL

RLCA

(A).a+ 1 <--- (A).a
(A).O <--- (A).7

Function: Rotate accumulator left through the carry flag

Description: Rotates the eight bits in the accumulator and the CY flag one bit to the left. Bit 7 moves into
the CY flag position and the original state of the CY flag moves into bit O position.

Flags:

CY AC ov N z
./ ./

Example: The accumulator contains OC5H (11000101 B) and the CY flag is clear. After executing the
instruction

Bytes:

States:

[Encoding]

RLCA

the accumulator contains BAH (1000101 OB) and the CY flag is set.

Binary Mode

1

1

Source Mode

1

0 0 1 1 0 0 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RLC

RRA

(A).a+ 1 <--- (A).a
(A).O <---(CY)
(CY) <--- (A).7

Function: Rotate accumulator right

Description: Rotates the 8 or 16 bits in the accumulator one bit to the right. Bit O is moved into the bit 7 or
15 position.

Flags:

CY AC ov N z
./ ./

A-118

I

INSTRUCTION SET REFERENCE

Example:

Bytes:

States:

[Encoding]

The accumulator contains OC5H (110001018). After executing the instruction

RRA

the accumulator contains OE2H (1110001 OB) and the CY flag is unaffected.

Binary Mode

1

Source Mode

1

0000 0 0 1 1

Hex Code in: Binary Mode= [Encoding]
Source Mode= [Encoding]

Operation: RR

RRCA

(A).a f- (A).a+ 1
(A).7 f- (A) .0

Function: Rotate accumulator right through carry flag

Description: Rotates the eight bits in the accumulator and the CY flag one bit to the right. Bit O moves into
the CY flag position; the original value of the CY flag moves into the bit 7 position.

Flags:

CY AC ov N z
,/ ,/ ,/

Example: The accumulator contains OC5H (11000101 B) and the CY flag is clear. After executing the
instruction

RRCA

the accumulator contains 62 (0110001 OB) and the CY flag is set.

Binary Mode Source Mode

Bytes: 1

States:

[Encoding] 0001 0 0 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RRC

SETB <bit>

Function:

I

(A).a f- (A).a+ 1
(A).7 f- (CY)
(CY) f- (A).O

Set bit

A-119

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Description: Sets the specified bit to one. SETS can operate on the CY flag or any directly addressable
bit.

Flags: No flags are affected except the CY flag for instruction with CY as the operand.

CY AC ov N z
,/

Example: The CY flag is clear and output Port 1 contains 34H (001101 OOS). After executing the
instruction sequence

SETB bit51

Bytes:

States:

SETS CY
SETS P1.0

the CY flag is set and output Port 1 contains 35H (00110101 S).

Binary Mode Source Mode

2 2

2t 2t

tlf this instruction addresses a port (Px, x= 0-3), add 2 states .

[Encoding] .___1_1 _0_1 _ __, __ 0_0_1_0 _ ___.I I bit addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SETS
(bit51} ~ 1

SETB CY

Binary Mode Source Mode
Bytes: 1

States:

[Encoding] 1 1 0 1 0 0 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode= [Encoding]

Operation: SETS
(CY)~ 1

SETB bit
Binary Mode Source Mode

Bytes: 4 3

States: 4t 3t

tlfthis instruction addresses a port (Px, x= 0-3), add 2 states.

[Encoding]

~-1 _0_1 _0_~_1_0_0_1_~1 I 1 1 o 1 0 yyy I I direct addr

A-120

I

i ntet ® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: SETB
(bit)~ 1

SJMP rel

Function: Short jump

Description: Program control branches unconditionally to the specified address. The branch destination
is computed by adding the signed displacement in the second instruction byte to the PC,
after incrementing the PC twice. Therefore, the range of destinations allowed is from 128
bytes preceding this instruction to 127 bytes following it.

Flags:

Example:

Bytes:

States:

[Encoding]

CY AC ov N z

The label "RELADR" is assigned to an instruction at program memory location 0123H. The
instruction

SJMP RELADR

assembles into location 01 OOH. After executing the instruction, the PC contains 0123H.

(Note: In the above example, the instruction following SJMP is located at 102H. Therefore,
the displacement byte of the instruction is the relative offset (0123H-0102H) = 21 H. Put
another way, an SJMP with a displacement of OFEH would be a one-instruction infinite loop.)

Binary Mode Source Mode

2 2
4 4

.___1_-0_0_0 _ __. __ o_o_o_o _ _..I I rel. addr

Hex Code in: Binary Mode= [Encoding]
Source Mode= [Encoding]

Operation: SJMP

Sll <src>

(PC) ~ (PC) + 2
(PC) ~ (PC) + rel

Function: Shift logical left by 1 bit

Description: Shifts the specified variable to the left by 1 bit, replacing the LSB with zero. The bit shifted
out (MSB) is stored in the CY bit.

Flags:

CY AC ov N z
./ ./ ./

I
A-121

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Example:

Variations

SLLRm

Bytes:

States:

[Encoding)

Hex Code in:

Operation:

SLLWRj

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

SRA <src>

Register 1 contains OCSH (11000101 B). After executing the instruction

SLL register 1

Register 1 contains 8AH (1000101 OB) and CY= 1.

Binary Mode Source Mode

3 2

2

0 0 1 1 1 1 1 0 I I
Binary Mode = [AS][Encoding]
Source Mode = [Encoding)

SLL
(Rm).a+ 1 <--- (Rm).a
(Rm).O <--- 0
CY<--- (Rm).7

Binary Mode Source Mode

3 2

2

0 0 1 1 1 1 1 0 I
Binary Mode= [AS][Encoding]
Source Mode = [Encoding)

SLL
WRj).b+1 <--- (WRj).b
(WRj).0 <--- 0
CY<-- (WRj).15

I

ssss

t t t t

0000

0 100

Function: Shift arithmetic right by 1 bit

Description: Shifts the specified variable to the arithmetic right by 1 bit. The MSB is unchanged. The bit
shifted out (LSB) is stored in the CY bit.

Flags:

CY AC ov N z

A-122

I_

INSTRUCTION SET REFERENCE

Example: Register 1 contains OC5H (11000101 B). After executing the instruction

SRA register 1

Register 1 contains OE2H (1110001 OB) and CY= 1.
Variations

SRA Rm

Binary Mode Source Mode

Bytes: 3 2

States: 2

[Encoding] 0000 1 1 1 0 I I
Hex Code in: Binary Mode= [AS][Encoding]

Source Mode = [Encoding]

Operation: SRA
(Rm).7 ~ (Rm).7
(Rm).a ~ (Rm).a+1
cY~(Rm).o

SRAWRj

Binary Mode Source Mode

Bytes: 3 2

States: 2

[Encoding] 0000 1 1 1 0 I
Hex Code in: Binary Mode= [AS][Encoding]

Source Mode = [Encoding]
Operation: SRA

SRL <src>

(WRj).15 ~ (WRj).15
(WRj).b ~ (WRj).b+ 1
CY~ (WRj).O

Function: Shift logical right by 1 bit

I

ssss

tttt

0000

0 100

Description: SAL shifts the specified variable to the right by 1 bit, replacing the MSB with a zero. The bit
shifted out (LSB) is stored in the CY bit.

Flags:

Example:

I

CY AC ov N

.!

Register 1 contains OC5H (11000101 B). After executing the instruction

SAL register 1

Register 1contains62H (011000108) and CY= 1.

z
.!

A-123

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

SRLRm

Binary Mode Source Mode

Bytes: 3 2
States: 2

[Encoding] ~-0_0_0_1_~_1_1_1_0_~1 l~_s_s_s_s_~_o_o_o_o_~

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: SRL

SRLWRj

Bytes:

States:

(Rm).7 f---0
(Rm).a f-- (Rm).a+1
CYf-- (Rm).O

Binary Mode

3
2

Source Mode

2

[Encoding] .___0_0~0_1~_._~_1_1_1_0~__.I l.__~t_t_t_t~_._~_0_1_0_0~__,

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: SRL
(WRj).15 f-- 0
(WRj).b f-- (WRj).b+ 1
CYf-- (WRj).O

SUB <desb,<src>

Function: Subtract

Description: Subtracts the specified variable from the destination operand, leaving the result in the
destination operand. SUB sets the CY (borrow) flag if a borrow is needed for bit 7.
Otherwise, CY is clear.

When subtracting signed integers, the OV flag indicates a negative number produced when
a negative value is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.

Bit 7 in this description refers to the most significant byte of the operand (8, 16, or 32 bit).

The source operand allows four addressing modes: immediate, indirect, register and direct.

Flags:

CY AC ov N z
./ ./ ./

tFor word and dword subtractions, AC is not affected.

A-124

I

INSTRUCTION SET REFERENCE

Example: Register 1 contains OC9H (11001001 B) and register O contains 54H (01010100B). After
executing the instruction

SUB R1,RO

register 1 contains 75H (01110101 B), the CY and AC flags are clear, and the OV flag is set.
Variations

SUB Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 2

[Encoding] ~-1~0_0_1~~~-1~1_0_0~~' ~' ~-s_s_s_s~~~-s~s_s_s~~
Hex Code in: Binary Mode = [AS][Encoding]

Source Mode= [Encoding]

Operation: SUB
(Rmd) ~ (Rmd) - (Ams)

SUB WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

[Encoding] ~-1~0_0_1~~~-1~1_0_1~~'' ~ ~-t_t_t_t~~~-T~T_T_T~~

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRjd) ~ (WRjd) - (WRjs)

SUB DRkd,DRks

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

I

Binary Mode Source Mode

3 2

5 4

~-1_0_0_1_~_1_1_1_1_~1 I LI LI LI LI

Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

SUB
(DRkd) ~ (DRkd) - (DRks)

uuuu

A-125

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

SUB Rm,#data

Bytes:

States:

Binary Mode

4

3

Source Mode

3

2

[Encoding] ~-1_0_0_1_~_1_1_1_0_~1 1 s s s s

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode= [Encoding]

Operation: SUB
(Rm) f- (Rm) - #data

SUB WRj,#data16

Bytes:

States:

[Encoding]

Binary Mode

5

4

Source Mode

4

3

0000

'----1 _0_0_1 _ _,___1_1_1_0 _ _,I ._I __ t t_t t _ ___,__0_1_0_0 _ _,I I #data hi

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: SUB
(WRj) f-(WRj)-#data16

SUB DRk,#data16

Bytes:

States:

[Encoding]

Binary Mode Source Mode

5 4

6 5

~-1_0_0_1_~ __ 1 _1_1_0_~1 1 u u u u

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: SUB
(DRk) f- (DRk) - #data16

SUB Rm,dir8

Bytes:

States:

Binary Mode

4

3t

Source Mode

3

2t

1000 1 1 #data hi

I l.____#d_a_ta _ _,

#data low

#data low

tlfthis instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding]

Hex Code in:

A-126

~-1_0_0_1_~ __ 1_1_1_0_~1 I s s s s

Binary Mode= [AS][Encoding]
Source Mode = [Encoding]

0001 I I direct addr

I

INSTRUCTION SET REFERENCE

Operation: SUB
(Rm) ~(Rm) - (dir8)

SUB WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding] 1 0 0 1 1 1 1 0 I I It t t 0 1 0 1 I I direct addr

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRj) ~ (WRj) - (dir8)

SUB Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

1 0 0 1 1 1 1 0 I I ssss 0 0 1 1 I I direct addr I I direct addr

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

Operation: SUB
(Rm) ~ (Rm) - (dir16)

SUB WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

1 0 0 1 1 1 1 0 I I t t t t 0 1 1 1 I I direct addr I I direct addr

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

Operation: SUB
(WRj) ~ (WRj) - (dir16)

SUB Rm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

1 0 0 1 1 1 1 0 I I It t t 1 0 0 1 I I ssss 0000

I A-127

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode= [Encoding]

Operation: SUB
(Rm)<---- (Rm) - ((WRj))

SUB Rm,@DRk

Bytes:

States:

[Encoding]

Binary Mode Source Mode

4 3

4 3

~-1_0_0_1_~ __ 1_1_1 _o_~I I u u u u

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

Operation: SUB
(Rm)<---- (Rm)- ((DRk))

SUBB A,<src-byte>

Function: Subtract with borrow

1 0 1 1 II~ _ss_s_s~[I 0000

Description: SUBB subtracts the specified variable and the CY flag together from the accumulator,
leaving the result in the accumulator. SUBB sets the CY (borrow) flag if a borrow is needed
for bit 7, and clears CY otherwise. (If CY was set before executing a SUBB instruction, this
indicates that a borrow was needed for the previous step in a multiple precision subtraction,
so the CY flag is subtracted from the accumulator along with the source operand.) AC is set
if a borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit
6, but not into bit 7, or into bit 7, but not bit 6.

Flags:

Example:

A-128

When subtracting signed integers the OV flag indicates a negative number produced when a
negative value is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit).

The source operand allows four addressing modes: register, direct, register-indirect, or
immediate.

CY AC ov N z
,/ ,/ ,/ ,/ ,/

The accumulator contains OC9H (110010018), register 2 contains 54H (010101 OOB), and
the CY flag is set. After executing the instruction

SUBB A,R2

the accumulator contains 74H (01110100B), the CY and AC flags are clear, and the OV flag
is set.

I

INSTRUCTION SET REFERENCE

Notice that OC9H minus 54H is 75H. The difference between this and the above result is due
to the CY (borrow) flag being set before the operation. If the state of the carry is not known
before starting a single or multiple-precision subtraction, it should be explicitly cleared by a
CLR CY instruction.

Variations

SUBB A,#data

Binary Mode Source Mode

Bytes: 2 2
States:

[Encoding] 1 0 0 1 0 100

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SUBB
(A) ~ (A) - (CY) - #data

SUBB A,dir8

I immed. data

Binary Mode Source Mode

Bytes: 2 2

States: 1 t 1t
tit this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] ~-1_0_0_1_~~-0_1 _0_1_~! I direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SUBB
(A) ~ (A) - (CY) - (dir8)

SUBB A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

[Encoding] 1 0 0 1 0 1 1 i

Hex Code in: Binary Mode = [Encoding]
Source Mode= [AS][Encoding]

Operation: SUBB
(A) ~ (A) - (CY) - ((Ri))

SUBBA,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 2

[Encoding] 1 0 0 1 1 r r r

I A-129

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Hex Code in: Binary Mode = [Encoding]
Source Mode= [AS][Encoding]

Operation: SUBB
(A) f- (A) - (CY) - (Rn)

SWAP A

Function: Swap nibbles within the accumulator

Description: Interchanges the low and high nibbles (4·bit fields) of the accumulator (bits 3-0 and bits 7-
4). This operation can also be thought of as a 4-bit rotate instruction.

Flags:

CY AC ov N z

Example: The accumulator contains OC5H (110001'01 B). After executing the instruction

SWAP A

the accumulator contains 5CH (010111 OOB).

Binary Mode Source Mode

Bytes: 1

States: 2 2

[Encoding] 1 1 0 0 0100

Hex Code in: Binary Mode = [Encoding]
Source Mode= [Encoding]

Operation: SWAP
(A).3:0 ---; f- (A).7:4

TRAP

Function: Causes interrupt call

Description: Causes an interrupt call that is vectored through location OFF007BH. The operation of this
instruction is not affected by the state of the interrupt enable flag in PSWO and PSW1 .
Interrupt calls can not occur immediately following this instruction. This instruction is
intended for use by Intel-provided development tools. These tools do not support user
application of this instruction.

Flags:

CY AC ov N z

Example: The instruction

TRAP

causes an interrupt call to location OFF007BH during normal operation.

A-130 I

INSTRUCTION SET REFERENCE

Binary Mode Source Mode

Bytes: 2

States (2 bytes): 11 10

States (4 bytes): 16 15

[Encoding] 1 0 1 1 1 0 0 1

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: TRAP

XCH A,<byte>

SP f- SP-2
(SP) r PC
PC f- (OFF007BH)

Function: Exchange accumulator with byte variable

Description: Loads the accumulator with the contents of the specified variable, at the same time writing
the original accumulator contents to the specified variable. The source/destination operand
can use register, direct, or register-indirect addressing.

Flags:

Example:

Variations

XCH A,dirB

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

I

CY AC ov N z

RO contains the address 20H, the accumulator contains 3FH (00111111 B) and on-chip RAM
location 20H contains 75H (01110101 B). After executing the instruction

XCH A,@RO

RAM location 20H contains 3FH (00111111 B) and the accumulator contains 75H
(01110101 B).

Binary Mode Source Mode

2 2

3t 3t
tit this instruction addresses a port (Px, x= 0-3), add 2 states.

~-1 _1_0_0 __ ~_0_1_0_1_~1 I direct addr

Binary Mode = [Encoding]
Source Mode = [Encoding]

XCH
(A) __, f- (dir8)

A-131

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

XCHA,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 4 5

[Encoding] 1 1 0 0 0 1 1 i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [AS][Encoding]

Operation: XCH
(A) -7 <---- ((Ri))

XCH A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 3 4

[Encoding] 1100 1rrr

Hex Code in: Binary Mode= [Encoding]
Source Mode= [AS][Encoding]

Operation: XCH
(A) -7 <---- (Rn)

Variations

XCHDA,@Ri

Function: Exchange digit

Description: Exchanges the low nibble of the accumulator (bits 3-0), generally representing a
hexadecimal or BCD digit, with that of the on-chip RAM location indirectly addressed by the
specified register. Does not affect the high nibble (bits 7-4) of either register.

Flags:

Example:

Bytes:

States:

A-132

CY AC ov N z

RO contains the address 20H, the accumulator contains 36H (0011011 OB), and on-chip RAM
location 20H contains 75H (01110101 B). After executing the instruction

XCHD A,@RO

on-chip RAM location 20H contains 76H (0111011 OB) and 35H (00110101 B) in the accumu­
lator.

Binary Mode Source Mode

1 2

4 5

I

INSTRUCTION SET REFERENCE

[Encoding] 1 1 0 1 0 1 1 i

Hex Code in: Binary Mode = [Encoding)
Source Mode= [Encoding]

Operation: XCHD
(A).3:0 -7 f- ((Ri)).3:0

XRL <dest>,<src>

Function: Logical Exclusive-OR for byte variables

Description: Performs the bitwise logical Exclusive-OR operation (V) between the specified variables,
storing the results in the destination. The destination operand can be the accumulator, a
register, or a direct address.

Flags:

Example:

Variations

XRL dir8,A

Bytes:

States:

[Encoding]

I

The two operands allow 12 addressing mode combinations. When the destination is the
accumulator or a register, the source addressing can be register, direct, register-indirect, or
immediate; when the destination is a direct address, the source can be the accumulator or
immediate data.

(Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.)

CY AC ov N z
./

The accumulator contains OC3H (11000011 B) and RO contains OAAH (101010108). After
executing the instruction

XRL A,RO

the accumulator contains 69H (01101001 B).

When the destination is a directly addressed byte, this instruction can complement combina­
tions of bits in any RAM location or hardware register. The pattern of bits to be comple­
mented is then determined by a mask byte, either a constant contained in the instruction or
a variable computed in the accumulator at run time. The instruction

XRL P1 ,#00110001 B

complements bits 5, 4, and O of output Port 1.

Binary Mode Source Mode

2 2

2t 2t

tlfthis instruction addresses a port (Px, x= 0-3), add 2 states.

~-0_1_1_0 __ ~_0_0_1 _o_~I I direct addr

A-133

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Hex Code in: Binary Mode = [Encoding]
Source Mode= [Encoding]

Operation: XRL
(dir8) f- (dir8) 'i (A)

XRL dir8,#data

Binary Mode Source Mode

Bytes: 3 3

States: 3t 3t
tlf this instruction addresses a port (P x, x = 0-3), add 1 state.

[Encoding] .___0_1_1_0 __ ,___0_0_1_1 _ __,I I direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode= [Encoding]

Operation: XRL
(dir8) f- (dir8) 'i #data

XRL A,#data

Binary Mode Source Mode

Bytes: 2 2
States:

[Encoding] 0 1 1 0 0 100

Hex Code in: Binary Mode = [Encoding]
Source Mode= [Encoding]

Operation: XRL
(A) f- (A) 'i #data

XRL A,dir8

I immed. data

Binary Mode Source Mode

Bytes: 2 2
States: 1t 1t

I immed. data

tit this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] ~-0_1 _1_0_~ __ 0_1_0_1_~1 I direct addr . I
Hex Code in: Binary Mode= [Encoding]

Source Mode = [Encoding]

Operation: XRL
(A) f- (A) 'i (dir8)

XRLA,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

A-134 I

[Encoding] 0 1 1 0 0 1 1 i

Hex Code in: Binary Mode= [Encoding]
Source Mode= [AS][Encoding]

Operation: XRL
(A) ~ (A) V ((Ri))

XRL A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 2

[Encoding] 0 1 1 0 1 r r r

Hex Code in: Binary Mode= [Encoding]
Source Mode = [AS][Encoding]

Operation: XRL
(A) ~ (A) V (Rn)

XRL Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2
States: 2 1

[Encoding] ~-0_1 _1 _0_~ __ 1 _1_0_0_~1 1 s s s s

Hex Code in: Binary Mode= [AS][Encoding]
Source Mode= [Encoding]

Operation: XRL
(Rmd) ~ (Rmd) V (Rms)

XRL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 3 2

INSTRUCTION SET REFERENCE

ssss

[Encoding] .___0_1_1_0~_._~1_1_0_1~---'' ~'~-t_tt_t~~~T_T_T~T~
Hex Code in: Binary Mode= [AS][Encoding]

Source Mode= [Encoding]

Operation: XRL
(WRds) ~ (WRjd) V (WRjs)

XRL Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

I A-135

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

[Encoding] .___0~1_1_0~__,_~_1_1_1_0~__.I ~I ~-s_s_s_s~__,_~_o_o_o_o~__.I l.__~#d_a_ta~__,
Hex Code in: Binary Mode = [AS][Encoding]

Source Mode= [Encoding]

Operation: XRL
(Rm) r (Rm) 'v' #data

XRL WRj,#data16

Bytes:

States:

[Encoding]

Binary Mode Source Mode

5 4

4 3

~-0_1 _1 _o _~_1_1_1_0_~1 ~I __ t t_t _t -~-0_1_0_0_~1 I #data hi

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode= [Encoding]

Operation: XRL
(WRj) r (WRj) 'v' #data 16

XRL Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3t 2t

tlf this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] 0 1 1 0 1 1 1 0 I I ssss 0001 I
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode= [Encoding]

Operation: XRL
(Rm) r (Rm) 'v' (dir8)

XRL WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding] 0 1 1 0 1 1 1 0 I I tt t t 0 1 0 1 I
Hex Code in: Binary Mode= [A5][Encoding]

Source Mode= [Encoding]

Operation: XRL
(WRj) r (WRj) 'v' (dir8)

A-136

J J #data low

I direct addr

I direct addr

I

inte'® INSTRUCTION SET REFERENCE

XRL Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

0 1 1 0 1 1 1 0 I I ssss 0 0 1 1 I I direct addr I I dirB addr

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) f- (Rm) V' (dir16)

\XRL WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

0 1 1 0 1 1 1 0 I I t t t t 0 1 1 1 I I direct addr I I direct addr

Hex Code in: Binary Mode= [A5][Encoding]
Source Mode= [Encoding]

Operation: XRL
(WRj) f- (WRj) V' (dir16)

XRL Rm,@Wrj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

0 1 1 0 1 1 1 0 I I t t t t 1001 I I ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) f- (Rm) V' ((WRj))

XRL Rm,@Drk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

0 1 1 0 1 1 1 0 I I uuuu 1 0 1 1 I I ssss I I 0000

I A-137

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Hex Code In:

Operation:

A-138

Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

XRL
(Rm) f- (Rm)'<:/ ((DRk))

I

B
Signal Descriptions

I

APPENDIX B
SIGNAL DESCRIPTIONS

This appendix provides reference information for the external signals of the 8X930Ax. Pin as­
signments for the 68-pin 8X930Ax are shown in Figure B-1 and listed by functional category in
Table B-1.

Table B-2 describes each of the signals. It lists the signal type (input, output, power, or ground)
and the alternative functions of multi-function pins. Table B-3 shows how configuration bits
RDI:O (referred to in Table B-2) configure the A17, A16, RD#, WR# and PSEN# pins for exter­
nal memory accesses. Table B-4 gives the USB rates and the 8X930Ax operating frequencies as
a function of PLLSEL2:0.

I

AD7 /P0.7
AD6/P0.6
AD5/P0.5
AD4/ P0.4
AD3/P0.3
AD2/P0.2
AD1 /P0.1
ADO/ PO.O

VssP
Veep

P3.0/RXD
P3.1 /TXD

P3.2/ INTO#
P3.3/ INT1#

P3.4/TO
P3.5/T1

P3.6/WR#

View of component as
mounted on PC board

60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44

Reserved
Reserved
Reserved
Reserved
Reserved
Dpo
DMo
ECAP
VssP
Veep
SOF#
Reserved
Reserved
Reserved
Reserved
Reserved
PLLSELO

Figure B-1. 8X930Ax 68-pin PLCC Package

A4392-01

B-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table B-1. 8X930AxPin Assignments Arranged by Functional Categories

Address & Data lnpuVOutput USB Signals

Name Pin Name Pin Name Pin

ADO/PO.O 17 P1.0/T2 28 ECAP 53

AD1/P0.1 16 P1.1/T2EX 29 Dpo 54

AD2/P0.2 15 P1.2/ECI 30 DMo 55

AD3/P0.3 14 P1.3/CEXO 31 PLLSELO 44

AD4/P0.4 13 P1.4/CEX1 32 PLLSEL1 42

AD5/P0.5 12 P1.5/CEX2 33 PLLSEL2 43

AD6/P0.6 11 P1 .6/CEX3/WAIT# 34 SOF# 50

AD7/P0.7 10 P1 .7/CEX4/A17/WCLK 35

A8/P2.0 9 P3.0/RXD 20

A9/P2.1 8 P3.1/TXD 21

A10/P2.2 7 P3.2/INTO# 22

A11/P2.3 6 P3.3/INT1# 23

A12/P2.4 5 P3.4/TO 24

A13/P2.5 4 P3.5/T1 25

A14/P2.6 3 P3.6/WR# 26

A15/P2.7 2 P3.7/RD#/A16 27

A16/P3.7/RD# 27

A17/P1 .7/CEX4/WCLK 35

Processor Control Power & Ground Bus Control & Status

Name Pin Name Pin Name Pin

P3.2/INTO# 22 Vee 36,68 P3.6/WR# 26

P3.3/INT1# 23 Veep 19,51 A16/P3.7/RD# 27

EA# 67 Vss 1, 37 ALE 66

AST 41 VSSP 18,52 PSEN# 65

XTAL1 38 AVee 40

XTAL2 39

B-2

SIGNAL DESCRIPTIONS

Table B-2. Signal Descriptions

Signal
Type Description

Alternate
Name Function

A17 0 Address Line 17. Eighteenth external address bit (A 17) in P1 .7/CEX4/WCLK
extended bus applications. Selected by configuration bits
RD1 :0 (UCONFIG0.3:2). See Table B-3.

A16 0 Address Line 16. Seventeenth external address bit (A 16) in RD#
extended bus applications. Selected by configuration bits
RD1 :0 (UCONFIG0.3:2). See Table B-3.

A15:8t 0 Address Lines. Upper address lines of the external bus. P2.7:0

AD?:Ot 1/0 Address/Data Lines. Multiplexed lower address lines and data P0.7:0
lines of the external bus.

ALE 0 Address Latch Enable. ALE signals the start of an external -
bus cycle and indicates that valid address information is
available on lines A15:8 and AD?:O. An external latch can use
ALE to demultiplex the address from the address/data bus.

AV cc PWR Analog V cc· A separate V cc input for the USB phase-locked -
loop circuitry.

CEX2:0 1/0 Programmable Counter Array (PCA) Input/Output Pins. P1 .5:3
CEX3 These are input signals for the PCA capture mode and output P1.6/WAIT#
CEX4 signals for the PCA compare and PWM modes. P1 .7/A17/WCLK

DPo, DMo 1/0 USB Port 0. Root USB port. Dp0 and DMo are the data plus and -
data minus lines of differential USB port 0. These lines do not
have internal pullup resistors. For low-speed devices, provide
an external 1.5 KO pullup resistor at DMo· For full-speed
devices, provide external 1.5 KO pullup resistor at Dpo·

NOTE: Either Op0 or DMo must be pulled high. Otherwise a
continuous SEO (USB reset) will be applied to these inputs
causing the 8X930Axto stay in reset.

EA# I External Access. Directs program memory accesses to on- -
chip or off-chip code memory. EA#= 1 directs program memory
accesses to on-chip code memory if the address is within the
range of the on-chip code memory; otherwise the access is to
external memory. EA#= O directs program memory accesses to
external memory. Devices without on-chip program memory
should have EA# strapped to V88 . The value of EA# is latched
at reset.

ECAP I External Capacitor. Must be connected to a 0.1 µF capacitor -
(or larger) to ensure proper operation of the differential line
driver. The other lead of the capacitor must be connected to
Vss·

ECI I PCA External Clock Input. External clock input to the 16-bit P1 .2
PCA timer.

t The descriptions of A 15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage mode chip configuration. If the
chip is configured for page mode operation, port O carries the lower address bits (A7:0), and port 2 carries
the upper address bits (A 15:8) and the data (07:0).

I B-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table B-2. Signal Descriptions (Continued)

Signal
Type Description

Alternate
Name Function

INT1:0# I External Interrupts 0 and 1. These inputs set bits IE1 :0 in the P3.3:2
TCON register. If bits IT1 :0 in the TCON register are set, bits
IE1 :0 are set by a falling edge on INT1#/INTO#. If bits INT1 :0
are clear, bits IE1 :Oare set by a low level on INT1 :0#.

P0.7:0 1/0 Port 0. This is an 8-bit, open-drain, bidirectional 1/0 port. AD7:0

P1.0 1/0 Port 1. This is an 8-bit, bidirectional 1/0 port with internal T2
P1.1 pull ups. T2EX
P1.2 ECI
P1.5:3 CEX2:0
P1.6 CEX3/WAIT#
P1.7 CEX4/ A 17 /WCLK

P2.7:0 1/0 Port 2. This is an 8-bit, bidirectional 1/0 port with internal A15:8
pull ups.

P3.0 1/0 Port 3. This is an 8-bit, bidirectional 1/0 port with internal RXD
P3.1 pull ups. TXD
P3.3:2 INT1:0#
P3.5:4 T1:0
P3.6 WR#
P3.7 RD#/A16

PLLSEL.2:0 I Phase Locked Loop Select. Three-bit code selects USB data -
rate (see Table B-4).

PSEN# 0 Program Store Enable. Read signal output to external -
memory. Asserted for the memory address range specified by
configuration bits RD1 :0 (UCONFIG0.3:2) See Table B-3. Also
see RD#.

RD# 0 Read. Read signal output to external data memory. Asserted P3.7/A16
for the memory address range specified by configuration bits
RD1 :0 (UCONFIG0.3:2). See Table B-3. Also see PSEN#.

RST I Reset. Reset input to the chip. Holding this pin high for 64 -
oscillator periods while the oscillator is running resets the
device. The port pins are driven to their reset conditions when a
voltage greater than V IH1 is applied, whether or not the
oscillator is running. This pin has an internal pulldown resistor,
which allows the device to be reset by connecting a capacitor
between this pin and Vee·

Asserting RST when the chip is in idle mode or powerdown
mode returns the chip to normal operation.

RXD 1/0 Receive Serial Data. RXD sends and receives data in serial P3.0
1/0 mode 0 and receives data in serial 1/0 modes 1 , 2, and 3.

SOF# 0 Start of Frame. This pin is asserted for eight states when an -
SOF token is received.

T1:0 I Timer 1 :0 External Clock Inputs. When timer 1 :O operates as P3.5:4
a counter, a falling edge on the T1 :0 pin increments the count.

t The descriptions of A 15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage mode chip configuration. If the
chip is configured for page mode operation, port 0 carries the lower address bits (A7:0), and port 2 carries
the upper address bits (A 15:8) and the data (D7:0).

B-4 I

SIGNAL DESCRIPTIONS

Table B-2. Signal Descriptions (Continued)

Signal
Type Description

Alternate
Name Function

T2 1/0 Timer 2 Clock Input/Output. For the timer 2 capture mode, P1 .0
this signal is the external clock input. For the clock-out mode, it
is the timer 2 clock output.

T2EX I Timer 2 External Input. In timer 2 capture mode, a falling edge P1.1
initiates a capture of the timer 2 registers. In auto-reload mode,
a falling edge causes the timer 2 registers to be reloaded. In the
up-down counter mode, this signal determines the count
direction: 1 = up, O = down.

TXD 0 Transmit Serial Data. TXD outputs the shift clock in serial 1/0 P3.1
mode O and transmits serial data in serial 1/0 modes 1, 2, and
3.

Vee PWR Supply Voltage. Connect this pin to the +5V supply voltage. -

Veep PWR Supply Voltage. Connect this pin to the +5V supply voltage. -

Vss GND Circuit Ground. Connect this pin to ground. -

VssP GND ~~ultGrou~.Coo~ci~~~n~groood. -

WAIT# I Real-time Wait State Input. The real-time WAIT# input is enabled P1.6/CEX3
by writing a logical '1' to the WCON.O (RTWE) bit at S:A7H.
During bus cycles, the external memory system can signal
'system ready' to the microcontroller in real time by controlling
the WAIT# input signal on the port 1.6 input.

WCLK 0 Wait Clock Output. The real-time WCLK output is driven at port P1 .7/CEX4/A17
1.7 (WCLK) by writing a logical '1' to the WCON.1 (RTWCE) bit
at S:A7H. When enabled, the WCLK output produces a square
wave signal with a period of one-half the oscillator frequency.

WR# 0 Write. Write signal output to external memory. Asserted for the P3.6
memory address range specified by configuration bits RD1 :O
(UCONFIG0.3:2) See RD# and Table B-3.

XTAL1 I Input to the On-chip, Inverting, Oscillator Amplifier. To use -
the internal oscillator, a crystal/resonator circuit is connected to
this pin. If an external oscillator is used, its output is connected
to this pin. XTAL 1 is the clock source for internal timing.

XTAL2 0 Output of the On-chip, Inverting, Oscillator Amplifier. To -
use the internal oscillator, a crystal/resonator circuit is
connected to this pin. If an external oscillator is used, leave
XTAL2 unconnected.

t The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage mode chip configuration. If the
chip is configured for page mode operation, port O carries the lower address bits (A7:0), and port 2 carries
the upper address bits (A 15:8) and the data (D7:0}.

I
B-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table B-3. Memory Signal Selections (RD1 :0)

RD1:0 A17/P1.7/
A16/P3.7/RD# PSEN# P3.6/WR# Features

CEX4/WCLK

0 0 A17 A16 Asserted for Asserted for writes to 256-Kbyte external
all addresses all memory locations memory

0 1 P1 .7/CEX4/ A16 Asserted for Asserted for writes to 128-Kbyte external
WCLK all addresses all memory locations memory

1 0 P1.7/CEX4/ P3.7 only Asserted for- Asserted for writes to 64-Kbyte external
WCLK all addresses all memory locations memory. One

additional port pin.

1 1 P1.7/CEX4/ RD# asserted Asserted for Asserted only for 64-Kbyte external
WCLK for addresses addresses writes to MCS® 51 memory. Compatible

s?F:FFFFH 2'.BO:OOOOH microcontroller data with MCS 51
memory locations. microcontrollers.

NOTE: RD1 :0 are bits 3:2 of configuration byte UCONFIGO (Figure 4-3 on page 4-5).

Table B-4. 8X930Ax Operating Frequency

Internal XTAL1 XTAL1

PLLSEL2 PLLSEL1 PLLSELO USB Rate
Frequency

Frequency
Clocks

Pin 43 Pin 42 Pin 44 (2) for CPU
Fosc

per
Comments

and State (1) (1) (1)
Peripherals T06c/State
(1/TCLK) (3) (5)

0 0 1 1.5 Mbps 3 Mhz 6Mhz 2 PLL Off
(Low Speed)

1 0 0 1.5 Mbps 6 Mhz (4) 12 Mhz 2 PLL Off
(Low Speed)

1 1 0 12 Mbps 12 Mhz (4) 12 Mhz 1 PLLOn
(Full Speed)

NOTES:
1. Other PLLSELx combinations are not valid.
2. The sampling rate is 4X the USB rate.
3. The BX930Ax datasheet AC timing specification defines the following symbols: CPU frequency= FcLK

= 1/TCLK·
4. The 8X930Ax CPU and peripherals frequency is 3 Mhz (low clock mode) until the LC bit in PCON is

cleared.
5. The number of XTAL 1 clocks per state (Tosclstate) depends on the PLLSEL2:0 selection. When the

CPU is operating in low clock mode (3 MHz), there are four T05Jstate for PLLSEL2:0 = 100 or 110.

B-6 I

c
Registers

I

APPENDIX C
REGISTERS

This appendix is a reference source of information on the 8X930A.x special function registers
(SFRs). The SFR map in Table C-1 provides the address and reset value for each SFR. SFRs with
double borders are endpoint-indexed. For additional information, see "Special Function Registers
(SFRs)" on page 3-15. Tables C-2 through C-7 list the SFRs by functional category. The remain­
der of the appendix contains descriptive tables of the SFRs arranged in alphabetical order. Use
the prefix "S:" with SFR addresses to distinguish them from other addresses.

0/8

FB

FO

EB

EO

DB

DO

ca

co

BB

BO

AB

AO

98

90

88

80

0/8

I

Table C-1. 8X930AxSFR Map

1/9 2/A

1/9 2/A

3/B

IPH1
00000000

3/B

MCS 251 microcontroller SFRs

4/C 5/D 6/E

4/C 5/D 6/E

L'::l 1 ===:'..11 I Endpoint-indexed SF Rs

7/F

FF

F7

EF

E7

DF

D7

CF

C7

BF

B7

AF

A7

9F

97

BF

87

7/F

C-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

C.1 SFRS BY FUNCTIONAL CATEGORY

C-2

Table C-2. Core SFRs

Mnemonic Name Address

AC ct Accumulator S:EOH

st B register S:FOH

PSW Program Status Word S:DOH

PSW1 Program Status Word 1 S:D1H

5pt Stack Pointer - LSB of SPX S:81H

SP Ht Stack Pointer High - MSB of SPX S:BEH

DPTRt Data Pointer (2 bytes) -
DPLt Low Byte of DPTR S:82H

DP Ht High Byte of DPTR S:83H

DPXL1 Data Pointer Extended, Low S:84H

PCON Power Control S:87H

PCON1 USB Power Control. S:DFH

IENO Interrupt Enable Control Register O S:A8H

IEN1 Interrupt Enable Control Register 1 S:B1H

IPHO Interrupt Priority Control High 0 S:B7H

IPLO Interrupt Priority Control Low O S:B8H

IPH1 Interrupt Priority High Control Register 1. S:B3H

IPL1 Interrupt Priority Low Control Register 1. S:B2H

1These SFRs can also be accessed by their corresponding registers in the
register file.

Table C-3. 1/0 Port SFRs

Mnemonic Name Address

PO Port 0 S:80H

P1 Port 1 S:90H

P2 Port 2 S:AOH

P3 Port 3 S:BOH

____ J

REGISTERS

Table C-4. Serial 1/0 SFRs

Mnemonic Name Address

SCON Serial Control S:98H

SBUF Serial Data Buffer S:99H

SADEN Slave Address Mask S:B9H

SAD DR Slave Address S:A9H

Table C-5. USB Function SFRs

Mnemonic Name Address

EPCON Endpoint Control Register. S:E1H

EPINDEX Endpoint Index Register. S:F1H

FADDR Function Address Register. S:BFH

FIE Function Interrupt Enable Register. S:A2H

FIFLG Function Interrupt Flag Register. S:COH

RXCNTH Receive FIFO Byte-Count High Register. S:E?H

RXCNTL Receive FIFO Byte-Count Low Register. S:E6H

RX CON Receive FIFO Control Register. S:E4H

RXDAT Receive FIFO Data Register. S:E3H

RXFLG Receive FIFO Flag Register. S:E5H

RXSTAT Endpoint Receive Status Register. S:E2H

SOFH Start of Frame High Register. S:D3H

SOFL Start of Frame Low Register. S:D2H

TXCNTH Transmit Count High Register. S:F?H

TXCNTL Transmit Count Low Register. S:F6H

TX CON Transmit FIFO Control Register. S:F4H

TXDAT Transmit FIFO Data Register. S:F3H

TXFLG Transmit Flag Register. S:F5H

TXSTAT Endpoint Transmit Status Register. S:FAH

I C-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table C-6. Timer/Counter and Watchdog Timer SFRs

Mnemonic Name Address

TLO Timer/Counter O Low Byte S:8AH

THO Timer/Counter O High Byte S:8CH

TL1 Timer/Counter 1 Low Byte S:8BH

TH1 Timer/Counter 1 High Byte S:8DH

TL2 Timer/Counter 2 Low Byte S:CCH

TH2 Timer/Counter 2 High Byte S:CDH

TCON Timer/Counter 0 and 1 Control S:88H

TMOD Timer/Counter O and 1 Mode Control S:89H

T2CON Timer/Counter 2 Control S:C8H

T2MOD Timer/Counter 2 Mode Control S:C9H

RCAP2L Timer 2 Reload/Capture Low Byte S:CAH

RCAP2H Timer 2 Reload/Capture High Byte S:CBH

WDTRST WatchDog Timer Reset S:A6H

C-4 I

REGISTERS

Table C-7. Programmable Counter Array (PCA) SFRs

Mnemonic Name Address

CCON PCA Timer/Counter Control S:DSH

CMOD PCA Timer/Counter Mode S:D9H

CCAPMO PCA Timer/Counter Mode O S:DAH

CCAPM1 PCA Timer/Counter Mode 1 S:DBH

CCAPM2 PCA Timer/Counter Mode 2 S:DCH

CCAPM3 PCA Timer/Counter Mode 3 S:DDH

CCAPM4 PCA Timer/Counter Mode 4 S:DEH

CL PCA Timer/Counter Low Byte S:E9H

CH PCA Timer/Counter High Byte S:F9H

CCAPOL PCA Compare/Capture Module O Low Byte S:EAH

CCAP1L PCA Compare/Capture Module 1 Low Byte S:EBH

CCAP2L PCA Compare/Capture Module 2 Low Byte S:ECH

CCAP3L PCA Compare/Capture Module 3 Low Byte S:EDH

CCAP4L PCA Compare/Capture Module 4 Low Byte S:EEH

CCAPOH PCA Compare/Capture Module O High Byte S:FAH

CCAP1H PCA Compare/Capture Module 1 High Byte S:FBH

CCAP2H PCA Compare/Capture Module 2 High Byte S:FCH

CCAP3H PCA Compare/Capture Module 3 High Byte S:FDH

CCAP4H PCA Compare/Capture Module 4 High Byte S:FEH

I C-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

C.2 SFR DESCRIPTIONS

This section contains a complete description of all 8X930A.x SFRs in alphabetical order.

NOTE
All SFR bits are software read/write unless otherwise noted in the bit
definition.

ACC Address: S:EOH
Reset State: 0000 OOOOB

Accumulator. ACC provides SFR access to the accumulator, which resides in the register file as byte
register R11 (also named ACC). Instructions in the MCSB> 51 architecture use the accumulator as both
source and destination for calculations and moves. Instructions in the MCS 251 architecture assign no
special significance to R11. These instructions can use byte registers Rm (m = 0-15) interchangeably.

7 0

Accumulator Contents

Bit Bit Function Number Mnemonic

7:0 ACC.7:0 Accumulator.

B Address: S:FOH
Reset State: 0000 OOOOB

B Register. The B register provides SFR access to byte register R10 (also named B) in the register
file. The B register is used as both a source and destination in multiply and divide operations. For all
other operations, the B register is available for use as one of the byte registers Rm, m = 0-15.

7

B Register Contents

Bit Bit Function Number Mnemonic

7:0 B.7:0 B Register.

C-6

0

I

I

REGISTERS

CCAPxH, CCAPxL (x = 0-4) Address: CCAPOH,L

Reset State:

CCAP1H,L
CCAP2H,L
CCAP3H,L
CCAP4H,L

S:FAH, S:EAH
S:FBH, S:EBH
S:FCH, S:ECH
S:FDH, S:EDH
S:FEH, S:EEH
XXXXXXXXB

PCA Module Compare/Capture Registers. These five register pairs store the 16-bit comparison value
or captured value for the corresponding compare/capture modules. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

7 0

High/Low Byte of Compare/Capture Values

Bit Bit
Function

Number Mnemonic

7:0 CCAPxH.7:0 High byte of PCA comparison or capture values.

CCAPxL.7:0 Low byte of PCA comparison or capture values.

C-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

CCAPMx (x = 0-4) Address:

Reset State:

CCAPMO
CCAPM1
CCAPM2
CCAPM3
CCAPM4

S:DAH
S:DBH
S:DCH
S:DDH
S:DEH

XOOO OOOOB

PCA Compare/Capture Module Mode Registers. These five registers select the operating mode of the
corresponding compare/capture module. Each register also contains an enable interrupt bit (ECCFx)
for generating an interrupt request when the module's compare/capture flag (CCFx in the CCON
register) is set. See Table 11-3 on page 11-14 for mode select bit combinations.

7 0

'--~~~_,__E_C_O_M_x~.__C~A_P_P_x---'-~C-A_P_N_x__,I l~~M_A_T_x~_,__T_O_G~x~'---P_W_M_x~_,___E_C_C_F_x__,

Bit Bit Function
Number Mnemonic

7 - Reserved:

The value read from this bit is indeterminate. Write a zero to this bit

6 ECOMx Compare Modes:

ECOMx = 1 enables the module comparator function. The comparator is
used to implement the software timer, high-speed output, pulse width
modulation, and watchdog timer modes.

5 CAPPx Capture Mode (Positive):

CAPPx = 1 enables the capture function with capture triggered by a
positive edge on pin CEXx.

4 CAPNx Capture Mode (Negative):

CAPNx= 1 enables the capture function with capture triggered by a
negative edge on pin CEXx.

3 MATx Match:

Set ECOMxand MATxto implement the software timer mode. When
MATx = 1, a match of the PCA timer/counter with the compare/capture
register sets the CCFx bit in the CCON register, flagging an interrupt.

2 TOGx Toggle:

Set ECOMx, MATx, and TOGxto implement the high-speed output
mode. When TOGx = 1, a match of the PCA timer/counter with the
compare/capture register toggles the CEXx pin.

1 PWMx Pulse Width Modulation Mode:

PWMx = 1 configures the module for operation as an 8-bit pulse width
modulator with output waveform on the CEXx pin.

0 ECCFx Enable CCFx Interrupt:

Enables compare/capture flag CCF x in the CCON register to generate
an interrupt request.

C-8 l __

I

REGISTERS

CCON Address: S:DBH
Reset State: OOXO OOOOB

PCA Timer/Counter Control Register. Contains the run control bit and overflow flag for the PCA
timer/counter, and the compare/capture flags for the five PCA compare/capture modules.

7 0

~~c_F~~~c_R~~~~~~~c_c_F_4~1 ~l~c_c_F_3~~-c_c_F2~~-c_c_F_1~~-c_c_F_o~

Bit Bit
Number Mnemonic

7 CF

6 CR

5 -

4:0 CCF4:0

CH,CL

Function

PCA Timer/Counter Overflow Flag:

Set by hardware when the PCA timer/counter rolls over. This generates
an interrupt request if the ECF interrupt enable bit in CMOD is set. CF
can be set by hardware or software but can be cleared only by software.

PCA Timer/Counter Run Control Bit:

Set and cleared by software to turn the PCA timer/counter on and off.

Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

PCA Module Compare/Capture Flags:

Set by hardware when a match or capture occurs. This generates a PCA
interrupt request if the ECCFx interrupt enable bit in the corresponding
CCAPMx register is set. Must be cleared by software.

Address:

Reset State:

S:F9H
S:E9H

0000 OOOOB

CH, CL Registers. These registers operate in cascade to form the 16-bit PCA timer/counter.

7 0

High/Low Byte PCA Timer/Counter

Bit Bit
Function Number Mnemonic

7:0 CH.7:0 High byte of the PCA timer/counter

CL.7:0 Low byte of the PCA timer/counter

C-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

CMOD Address: S:D9H
Reset State: OOXX XOOOB

PCA Timer/Counter Mode Register. Contains bits for selecting the PCA timer/counter input, disabling
the PCA timer/counter during idle mode, enabling the PCA WOT reset output (module 4 only}, and
enabling the PCA timer/counter overflow interrupt.

7 0

.___c_1_o_L~,___w_o_T_E~..___~~~..___~~------'' '~~~~--'-~C_P_s_1~,___c_P_s_o~..___~E_C_F______,

Bit Bit
Function Number Mnemonic

7 CIDL PCA Timer/Counter Idle Control:

CIDL = 1 disables the PCA timer/counter during idle mode. CIDL = O
allows the PCA timer/counter to run during idle mode.

6 WDTE Watchdog Timer Enable:

WDTE = 1 enables the watchdog timer output on PCA module 4.
WDTE = 0 disables the PCA watchdog timer output.

5:3 - Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2:1 CPS1:0 PCA Timer/Counter Input Select:

CPS1 CPSO

0 0 Fosc /12
0 1 Fosc /4
1 0 Timer O overflow
1 1 External clock at ECI pin (maximum rate= Fosc /8)

0 ECF PCA Timer/Counter Interrupt Enable:

ECF = 1 enables the CF bit in the CCON register to generate an interrupt
request.

C-10

I

I

REGISTERS

DPH Address: S:83H
Reset State: 0000 OOOOB

Data Pointer High. DPH provides SFR access to register file location 58 (also named DPH). DPH is
the upper byte of the 16-bit data pointer, DPTR. Instructions in the MCs® 51 architecture use DPTR
for data moves, code moves, and for a jump instruction (JMP @A+DPTR). See also DPL and DPXL.

7 0

DPH Contents

Bit Bit
Function Number Mnemonic

7:0 DPH.7:0 Data Pointer High:

Bits 8-15 of the extended data pointer, DPX (DR56).

DPL Address: S:82H
Reset State: 0000 OOOOB

Data Pointer Low. DPL provides SFR access to register file location 59 (also named DPL). DPL is the
low byte of the 16-bit data pointer, DPTR. Instructions in the MCs® 51 architecture use the 16-bit data
pointer for data moves, code moves, and for a jump instruction (JMP @A+DPTR). See also DPH and
DPXL.

7 0

DPL Contents

Bit Bit Function
Number Mnemonic

7:0 DPL.7:0 Data Pointer Low:

Bits 0-7 of the extended data pointer, DPX (DR56).

C-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

DPXL Address: S:84H
Reset State: 0000 0001 B

Data Pointer Extended Low. DPXL provides SFR access to register file location 57 (also named
DPXL). Location 57 is the lower byte of the upper word of the extended data pointer, DPX = DR56,
whose lower word is the 16-bit data pointer, DPTR. See also DPH and DPL.

7

Bit Bit
Number Mnemonic

7:0 DPXL.7:0

EPCON

DPXL Contents

Function

Data Pointer Extended Low:

Bits 16-23 of the extended data pointer, DPX (DR56).

Address
Reset State

0

S:E1H
0011 0101 B
0001 00008

Endpoint Control Register. This SFR configures the operation of the endpoint referenced by EPINDEX.
The reset value is 00110101 B for endpoint 1 and 000100008 for endpoints 1, 2, and 3.

7 0

RXSTL TXSTL CTLEP RXSPM I ~l~R_x_1E~~-R_xE_P_E_N~~T_x_o_E~~T_x_E_P_E_N~

Bit Bit
Function Number Mnemonic

7 RXSTL Stall Receive Endpoint:

Set this bit to stall the receive endpoint. Clear this bit only when the host has
intervened through commands sent down endpoint 0. When this bit is set
and RXSETUP is clear, the receive endpoint will respond with a STALL
handshake to a valid OUT token. This bit does not affect the reception of
SETUP tokens by a control endpoint. The state of this bit is sampled on a
valid OUT token.

6 TXSTL Stall Transmit Endpoint:

Set this bit to stall the transmit endpoint. This bit should only be cleared
when the host has intervened through commands sent down endpoint 0.
When this bit is set and RXSETUP is clear, the receive endpoint will respond
with a STALL handshake to a valid IN token.The state of this bit is sampled
on a valid IN token.

t x =endpoint index. See EPINDEX.

C-12 I

EPCON (Continued) Address
Reset State X=Oi"

X= 1, 2, 3t

REGISTERS

S:E1H
0011 0101 B
0001 OOOOB

Endpoint Control Register. This SFR configures the operation of the endpoint referenced by EPINDEX.
The reset value is 001101018 for endpoint 1 and 0001 OOOOB for endpoints 1, 2, and 3.

7 0

,__R_x_s_T_L--'-~T_x_s_T_L~'---c_T_L_E_P___.~R_x_s_P_M_,\ ~' ~R_X_IE~~-RX_E_P_E_N~~T_x_o_E~~T_X_E_P_E_N~

Bit Bit Function
Number Mnemonic

5 CTLEP Control Endpoint:

Set this bit to configure the endpoint as a control endpoint. Only control
endpoints are capable of receiving SETUP tokens. The state of this bit is
sampled on a valid SETUP token.

4 RXSPM Receive Single Packet Mode:

Set this bit to configure the receive endpoint for single data packet
operation. When enabled, only a single data packet is allowed to reside in
the receive FIFO. The state of this bit is sampled on a valid OUT token.
Note: For control endpoints (CTLEP=1), this bit should be set for single
packet mode operation as the recommended firmware model. However, it is
acceptable to have a control endpoint with dual packet mode configuration
as long as the firmware handles the endpoint correctly.

3 RXIE Receive Input Enable:

Set this bit to enable data from the USB to be written into the receive FIFO.
If cleared, the endpoint will not write the received data into the receive FIFO
and at the end of reception, it returns a NAK handshake on a valid OUT
token if the RXSTL bit is not set.This bit does not affect a valid SETUP
token.

2 RXEPEN Receive Endpoint Enable:

Set this bit to enable the receive endpoint. When disabled, the endpoint
does not respond to a valid OUT or SETUP token. The state of this bit is
sampled on a valid OUT or SETUP token. This bit is hardware read-only and
has the highest priority among RXIE and RXSTL. Note that endpoint 0 is
enabled for reception upon reset.

1 TXOE Transmit Output Enable.

This bit is used to enable the data in the transmit FIFO to be transmitted. If
cleared, the endpoint returns a NAK handshake to a valid IN token if the
TXSTL bit is not set. The state of this bit is sampled on a valid IN token.

0 TXEPEN Transmit Endpoint Enable:

This bit is used to enable the transmit endpoint. When disabled, the
endpoint does not respond to a valid IN token. Th,E? state of this bit is
sampled on a valid IN token. This bit is hardware read only. Note that
endpoint 0 is enabled for transmission upon reset.

t x = endpoint index. See EPINDEX.

I
C-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

EPINDEX Address S:F1 H
Reset State 1XXX XXOOB

Endpoint Index Register. This SFR selects the endpoint to use as an index to endpoint-specific SFRs.

7

Bit Bit
Number Mnemonic

7:2 -

1:0 EPINX1:0

FAD DR

0

Function

Reserved:

Write zeros to these bits.

Note: Although the reset state for bit 7 is '1 ', always write zeros to bits 7:2 of
this register.

Endpoint Index Select:

Used to select the function endpoint number to be indexed. The 8X930Ax is
set up accordingly: the USB SFR definitions for TXDAT, TXCON, TXFLG,
TXCNTH/L, RXDAT, RXCON, RXFLG, RXCNTH/L, EPCON, TXSTAT, and
RXSTAT are adjusted for the selected endpoint. The SFRs are connected to
the appropriate transmit/receive FIFO pair. This register is hardware read-
only.

EPINX1 EPINXO
0 0
0 1
1 0
1 1

Endpoint 0. Control Transfer
Endpoint 1.
Endpoint 2.
Endpoint 3.

Address:
Reset State:

S:8FH
0000 OOOOB

Function Address Register. This SFR holds the address for the USB device. During bus enumeration it
is written with a unique value assigned by the host.

7 0

A6:0

Bit Bit
Function Number Mnemonic

7 - Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

6:0 A6:0 7-bit Programmable Function Address:

This register is programmed through the commands received via endpoint 0
on configuration, which should be the only time the firmware should change
the value of this register. This register is read-only by hardware.

C-14

I

I

REGISTERS

FIE Address: S:A2H
Reset State: 0000 OOOOB

Function Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for
the four function endpoints.

7 0

.__F_R_x_1E_3___..__FT~X_IE_3__..~F_R_x_1E_2---'-~FT_X_l_E2___,ll ~ _F_R_X~IE_1___,~FT~X_IE_1__,_~F_R_x_1E_o_._~FT-X_IE_o__.

Bit Bit
Number Mnemonic Function

7

6

5

4

3

2

1

0

NOTE:

FRXIE3 Function Receive Interrupt Enable 3:

Enables receive done interrupt for endpoint 3 (FFiXD3).

FTXIE3 Function Transmit Interrupt Enable 3:

Enables transmit done interrupt for endpoint 3 (FTXD3).

FRXIE2 Function Receive Interrupt Enable 2:

Enables the receive done interrupt for endpoint 2 (FRXD2).

FTXIE2 Function Transmit Interrupt Enable 2:

Enables the transmit done interrupt for endpoint 2 (FTXD2).

FRXIE1 Function Receive Interrupt Enable 1:

Enables the receive done interrupt for endpoint 1 (FRXD1).

FTXIE1 Function Transmit Interrupt Enable 1:

Enables the transmit done interrupt for endpoint 1 (FTXD1).

FRXIEO Function Receive Interrupt Enable 0:

Enables the receive done interrupt for endpoint 0 (FRXDO).

FTXIEO Function Transmit Interrupt Enable 0:

Enables the transmit done interrupt for endpointO (FTXDO).

For all bits, a '1' means the interrupt is enabled and will cause an interrupt to be signaled to
the microcontroller. A 'O' means the associated interrupt source is disabled and cannot
cause an interrupt, even though the interrupt bit's value will still be reflected in the FIFLG
register.

C-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Address:
Reset State:

FIFLG S:COH
000000008

Function Interrupt Flag Register. Contains the USB Function's Transmit and Receive Done interrupt
flags for non-isochronous endpoints.

7 0

~F_R_X_D_3~~FTX~_D_3~~F_R_X_D_2~~FT_X_D_2~' '~F_R_X_D_1~~FT~X_D_1~~F_R_X_DO~~-FT_X_D_o~

Bit . Bit
Number Mnemonic Function

7

6

5

4

3

2

1

0

NOTE:

C-16

FRXD3 Function Receive Done Flag, Endpoint 3:

This bit is set by hardware to indicate that there is either:

1. Valid data waiting to be serviced in the receive FIFO for function
endpoint 3 and that the data was received without error and has been
acknowledged; or

2. Data was received with a Receive Data Error requiring firmware
intervention to be cleared.

FTXD3 Function Transmit Done Flag, Endpoint 3:

Hardware sets this bit to indicate that one of two conditions exists in the
transmit Fl FO for function endpoint 3:

1. The transmit data has been transmitted and the Host has sent an
acknowledgment which was successfully received; or

2. A transmit data-related error occurred during transmission of the data
packet, which requires servicing by firmware to be cleared.

FRXD2 Function Receive Done Flag, Endpoint 2:

This bit is similar to FRXD3, above, except that it applies to function
endpoint2.

FTXD2 Function Transmit Done Flag, Endpoint 2:

This bit is similar to FTXD3, above, except that it applies to function
endpoint2.

FRXD1 Function Receive Done Flag, Endpoint 1:

This bit is similar to FRXD3, above, except that it applies to endpoint 1.

FTXD1 Function Transmit Done Flag, Endpoint 1:

This bit is similar to FTXD3, above, except that it applies to endpoint 1.

FRXDO Function Receive Done Flag, Endpoint 0:

This bit is similar to FRXD3, above, except that it applies to endpoint 0.

FTXDO Function Transmit Done Flag, Endpoint O:

This bit is similar to FTXD3, above, except that it applies to endpoint 0.

For all bits in the Interrupt Flag Register, a '1' indicates that an interrupt is actively pending; a
'O' indicates that the interrupt is not active. The interrupt status is shown regardless of the
state of the corresponding interrupt enable bit in the FIE. Bits are set-only by hardware and
clearable in software. Software can also set the bits for text purposes, allowing the interrupt
to be generated in software.

__ J__

I

REGISTERS

IENO Address: S:A8H
Reset State: 0000 OOOOB

Interrupt Enable Register 0. IENO contains two types of interrupt enable bits. The global enable bit
(EA) enables/disables all of the interrupts (including those in IEN1), except the TRAP interrupt, which
is always enabled. The remaining bits enable/disable the other individual interrupts.

7 0

~-E_A~~~E_C~~~E_T2~~~E_s~I l~_E_T_1~~-E_x1~~~E_To~~~Ex_o~

Bit Bit
Function Number Mnemonic

7 EA Global Interrupt Enable:

Setting this bit enables all interrupts that are individually enabled by bits
0-6. Clearing this bit disables all interrupts, except the TRAP interrupt,
which is always enabled.

6 EC PCA Interrupt Enable:

Setting this bit enables the PCA interrupt.

5 ET2 Timer 2 Overflow Interrupt Enable:

Setting this bit enables the timer 2 overflow interrupt.

4 ES Serial 1/0 Port Interrupt Enable:

Setting this bit enables the serial 1/0 port interrupt.

3 ET1 Timer 1 Overflow Interrupt Enable:

Setting this bit enables the timer 1 overflow interrupt.

2 EX1 External Interrupt 1 Enable:

Setting this bit enables external interrupt 1.

1 ETD Timer O Overflow Interrupt Enable:

Setting this bit enables the timer O overflow interrupt.

0 EXO External Interrupt O Enable:

Setting this bit enables external interrupt 0.

C-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

IEN1 Address: S:B1 H
Reset State: XXXX XOOOH

Interrupt Enable Register 1 . Contains the enable bits for the USB interrupts.

7 0

Bit Bit
Function Number Mnemonic

7:3 - Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2 ESR Enable Suspend/Resume:

USB Global Suspend/Resume Interrupt Enable bit.

1 EF Enable Function:

Transmit/Receive Done interrupt enable bit for non-isochronous USB
function endpoints.

0 ESOF Enable Start-of-Frame:

Any Start-of-Frame interrupt enable bit for isochronous endpoints.

C-18

-_l

I

REGISTERS

IPHO Address: S:B?H
Reset State: XOOO OOOOB

Interrupt Priority High Control Register 0. IPHO, together with IPLO, assigns each interrupt in IENO a
priority level from O (lowest) to 3 (highest):

IPHO.x IPLO.x Priority Level

o O O (lowest priority)

0 1 1

0 2

3 (highest priority)

7 0

~~~~~-IP_H_o_.6~~-IP_H_o_.5~~-IP_H_o_._4~1 l~l_P_H_o_.3~~-IP_H_o_.2~~-IP_H_o_.1~~-IP_H_o_.o~ 

Bit Bit Function Number Mnemonic 

7 - Reserved: 

The value read from this bit is indeterminate. Write a zero to this bit. 

6 IPH0.6 PCA Interrupt Priority Bit High 

5 IPH0.5 Timer 2 Overflow Interrupt Priority Bit High 

4 IPH0.4 Serial 1/0 Port Interrupt Priority Bit High 

3 IPH0.3 Timer 1 Overflow Interrupt Priority Bit High 

2 IPH0.2 External Interrupt 1 Priority Bit High 

1 IPH0.1 Timer O Overflow Interrupt Priority Bit High 

0 IPHO.O External Interrupt O Priority Bit High 

C-19 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

IPLO Address: S:B8H 
Reset State: XOOO OOOOB 

Interrupt Priority Low Control Register 0. IPLO, together with IPHO, assigns each interrupt in IENO a 
priority level from O (lowest) to 3 (highest): 

IPHO.x IPLO.x Priority Level 

0 0 0 (lowest priority) 

0 1 1 

0 2 
3 (highest priority) 

7 0 

'---~~---'~l_P_Lo_.6~-'--IP_L_o_.5~"'---IP_L_0_.4__,I ~l~1P_L_o_.3~~1_P_Lo_._2~~1_PL_o_.1~~-IP_L_o_.o~ 

Bit Bit Function Number Mnemonic 

7 - Reserved: 

The value read from this bit is indeterminate. 

Write a zero to this bit. 

6 IPL0.6 PCA Interrupt Priority Bit Low 

5 IPL0.5 Timer 2 Overflow Interrupt Priority Bit Low 

4 IPL0.4 Serial 1/0 Port Interrupt Priority Bit Low 

3 IPL0.3 Timer 1 Overflow Interrupt Priority Bit Low 

2 IPL0.2 External Interrupt 1 Priority Bit Low 

1 IPL0.1 Timer O Overflow Interrupt Priority Bit Low 

0 IPLO.O External Interrupt 0 Priority Bit Low 

C-20 

I 



I 

REGISTERS 

IPH1 Address: S:B3H 
Reset State: XOOO OOOOB 

Interrupt Priority High Control Register 1. IPH1, together with IPL 1, assigns each interrupt in IEN1 a 
priority level from 0 (lowest) to 3 (highest): 

IPH1 .x IPL 1.x Priority Level 

O O 0 (lowest priority) 

0 1 

0 2 

3 (highest priority) 

7 0 

'--~~~~~~~~~~~~~~~~!~I ~~~~~l_P_H_1._2~'---IP_H_1_.1~~-IP_H~1._o~ 

Bit Bit Function Number Mnemonic 

7:3 - Reserved: 

Values read from these bits are indeterminate. Write zeros to these bits. 

2 IPH1.2 Global Suspend/Resume Interrupt Priority Bit High 

1 IPH1.1 USB Function Interrupt Priority Bit High 

0 IPH1.0 USB Any SOF Interrupt Priority Bit High 

C-21 



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL 

IPL1 Address: S:B2H 
Reset State: XOOO OOOOB 

Interrupt Priority Low Control Register 1. IPL 1, together with IPH1. assigns each interrupt in IEN1 a 
priority level from O (lowest) to 3 (highest): 

IPH1 .x IPL 1.x Priority Level 

O O 0 (lowest priority) 

0 1 1 

0 2 
3 (highest priority) 

7 0 

~~~~~~~~~~~~~~~~! ~I ~~~~-l_P_L1_._2~~l_PL_1_.1~~-IP_L_1_.o~ 

Bit Bit
Number Mnemonic

7:3 -

2 IPL1.2

1 IPL1 .1

0 IPL1.0

PO

Function

Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

Global Suspend/Resume Interrupt Priority Bit Low

USB Function Interrupt Priority Bit Low

USB Any SOF Interrupt Priority Bit Low

Address:
Reset State:

S:SOH
11111111B

Port 0. PO is the SFR that contains data to be driven out from the port O pins. Read-modify-write
instructions that read port O read this register. The other instructions that read port O read the port O
pins. When port O is used for an external bus cycle, the CPU always writes FFH to PO, and the former
contents of PO are lost.

7 0

PO Contents

Bit Bit
Function Number Mnemonic

7:0 P0.7:0 Port O Register:

Write data to be driven onto the port O pins to these bits.

C-22 I

I

P1 Address:
Reset State:

REGISTERS

S:90H
111111118

Port 1. P1 is the SFR that contains data to be driven out from the port 1 pins. Read-modify-write
instructions that read port 1 read this register. Other instructions that read port 1 read the port 1 pins.

7 0

Bit Bit
Number Mnemonic

7:0 P1.7:0

P2

P1 Contents

Function

Port 1 Register:

Write data to be driven onto the port 1 pins to these bits.

Address:
Reset State:

S:AOH
1111 11118

Port 2. P2 is the SFR that contains data to be driven out from the port 2 pins. Read-modify-write
instructions that read port 2 read this register. Other instructions that read port 2 read the port 2 pins.

7 0

Bit Bit
Function

Number Mnemonic

7:0 P2.7:0 Port 2 Register:

Write data to be driven onto the port 2 pins to these bits.

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

P3 Address:
Reset State:

S:BOH
1111 11118

Port 3. P3 is the SFR that contains data to be driven out from the port 3 pins. Read-modify-write
instructions that read port 3 read this register. Other instructions that read port 3 read the port 3 pins.

7 0

P3 Contents

Bit Bit Function Number Mnemonic

7:0 P3.7:0 Port 3 Register:

Write data to be driven onto the port 3 pins to these bits.

C-24 I

I

REGISTERS

PCON Address: S:87H
Reset State: OOXX OOOOB

Power Control Register. Contains the power off flag (POF) and bits for enabling the idle and
powerdown modes. Also contains two general-purpose flags and two bitS that control serial 1/0
functions-the double baud rate bit and a bit that selects whether accesses to SCON.7 are to the FE
bit or the SMO bit.

7 0

~S_M_O_D_1~_s_M_O_DO~~-L_C~~~PO_F~' '~~G_F_1~~-G_FO~~'~-P_D~~~ID_L~

Bit Bit Function
Number Mnemonic

7 SMOD1 Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See "Baud Rates" on page 12-10.

6 SMODO SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SMO bit.
See Figure 12-2 on page 12-5.

5 LC Low Clock Enable:

When this bit is set, the CPU and peripherals (except the USB module)
operate at 3 MHz. This bit is automatically set after a reset. Clearing this
bit through firmware causes the operating clock to return to the hardware
selection speed.

4 POF Power Off Flag:

Set by hardware as Vee rises above 3 V to indicate that power has been
off or Vee had fallen below 3 .v and that on-chip volatile memory is
indeterminate. Set or cleared by software.

3 GF1 General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

2 GFO General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

1 PD Powerdown Mode Bit:

When set, activates powerdown mode.
Cleared by hardware when an interrupt or reset occurs.

0 IDL Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.

C-?!'i

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

PCON1 Address: S:DFH
Reset State: XXXX XOOOB

USB Power Control Register. Facilitates USB power control of the 8X930Ax, including global
suspend/resume and USB function resume.

7 0

Bit Bit Function Number Mnemonic

7:3 - Reserved:

The value read from these bits are indeterminate. Write zeroes to these
bits.

2 RWU Remote Wake-up Bit: (Cleared by hardware)

1 = wake-up. This bit is used by the USB function to initiate a remote
wake-up. Set by firmware to drive resume signaling on the USB lines to
the host or upstream hub. Cleared by hardware. Note: do not set this bit
unless the USB function is suspended (GSUS = 1). See Figure 14-4 on
page 14-10.

1 GRSM Global Resume Bit: (Set by hardware)

1 =resume. Set by hardware when a global resume is detected on the
USB lines. This bit is ORed with GSUS to generate the interrupt.t
Cleared by software when servicing the GRSM interrupt. (This bit can
also be set/cleared by software for testability.) This bit is not set if remote
wakeup is used (see RWU). See Figure 14-4 on page 14-10.

0 GSUS Global Suspend Bit: (Set and cleared by hardware)

1 = suspend. This bit is set by hardware when global suspend is
detected on the USB lines. This bit is ORed with the GRSM bit to
generate the interrupt.t During this ISR, software should set the PD bit
to enter the suspend mode. Cleared by firmware when a resume occurs.
See Figure 14-4on page 14-10.

t Software should prioritize GRSM over GSUS if both bits are set simultaneously.

C-26 I

I

REGISTERS

PSW Address: S:DOH
Reset State: 0000 OOOOB

Program Status Word. PSW contains bits that reflect the results of operations, bits that select the
register bank for registers RO-R7, and two general-purpose flags that are available to the user.

7 0

~_c_v_~_Ac_~_F_o_~_R_s_1 ~I I RSo OV UD p

Bit Bit
Function

Number Mnemonic

7 CY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBS) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by logical bit, bit move, multiply, decimal adjust, and some rotate and
shift instructions (see Table 5-1 O on page 5-16).

6 AC Auxiliary Carry Flag:

The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise it is cleared. This flag is useful for BCD
arithmetic (see Table 5-10 on page 5-16).

5 FO FlagO:

This general-purpose flag is available to the user.

4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers RO-R7).

RS1 RSO Bank Address

0 0 0 OOH-07H
0 1 1 08H-OFH.
1 0 2 10H-17H
1 1 3 18H-1FH

2 ov Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2's-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 UD User-definable Flag:

This general-purpose flag is available to the user.

0 p Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all
instructions update the parity bit. The parity bit is set or cleared by
instructions that change the contents of the accumulator (ACC, Register
R11).

C-27

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

PSW1 Address: S;D1 H
Reset State: 0000 OOOOB

Program Status Word 1. PSW1 contains bits that reflect the results of operations and bits that select
ttie register bank for registers RO-R7.

7 0

~-C_Y~~~A_C~~~N~~~R_s_1~ll~_R_So~~~o_v~~~z~~~~~

Bit Bit Function
Number Mnemonic

7 CY Carry Flag:

Identical to the CY bit in the PSW register.

6 AC Auxiliary Carry Flag:

Identical to the AC bit in the PSW register.

5 N Negative Flag:

This bit is set ifthe result of the last logical or arithmetic operation was
negative. Otherwise it is cleared.

4:3 RS1:0 Register Bank Select Bits 0 and 1:

Identical to.the RS1:0 bits in the PSW register.

2 ov Overflow Flag:

Identical to the OV bit in the PSW register.

1 z Zero Flag:

This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.

0 - Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

C-28 __ J_ -

I

REGISTERS

RCAP2H, RCAP2L Address: RCAP2H S:CBH
RCAP2L S:CAH

Reset State: 0000 00008

Timer 2 Reload/Capture Registers. This register pair stores 16-bit values to be loaded into or captured
from the timer register (TH2/TL2) in timer 2.

7 0

High/Low Byte of Timer 2 Reload/Capture Value

Bit Bit
Function

Number Mnemonic

7:0 RCAP2H.7:0 High byte of the timer 2 reload/recapture register

RCAP2L.7:0 Low byte of the timer 2 reload/recapture register

C-29

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

RXCNTH,
RXCNTL

Address:

Reset States:
Endpoint 1

Endpoints 0, 2, 3

S:E?H
S:E6H

RXCNTH XXXX XXOOB
RXCNTL 0000 OOOOB

RXCNTL XXXO OOOOB

Receive FIFO Byte-count High and Low Registers. High and low register in a two-register ring buffer
used to store the byte count for the data packets received in the receive FIFO specified by EPINDEX.

15 (RXCNT) Endpoint 1 8
~I ~~~,~~--,-~~-,-~---,1~1 ~~-.---~--,-~BC-9--.~B-ca___,

7 (RXCNTL) 0

~I ~B_C7~~'~-B_C_6~~-B_c_s~~-B_C4~'~'~B_C3~~-B_c_2~~-B_c_1~~-BC_o~

7 (RXCNTL) Endpoints 0, 2, 3 0
,~.~~~,~~~~~~~-B-C-4~,~, ~BC-3~~8-C-2~~8-C-1~~B-C-O~

Bit Bit
Function Number Mnemonic

Endpoint 1 (x= 1)t

15:10 - Reserved. Write zeros to these bits.

9:0 BC9:0 Receive Byte Count.
Ten-bit, ring buffer byte count register stores receive byte count (RXCNT)
of O to 1023 bytes for endpoint 1 only.

Endpoints 0, 2, 3. (x = O, 2, 3) t

7:0 - Reserved. Write zeros to these bits.

4:0 BC4:0 Receive Byte Count.
Five-bit, ring buffer byte count register stores receive byte count (RXCNT)
of O to 16 bytes for endpoints 0, 2, and 3.

t x= endpoint index. See the EPINDEX register.

C-30 I

REGISTERS

RX CON Address: S:E4H
Reset State: OXOO 01 OOB

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0

RXCLR RXWS RXFFRC II~ _R_x_1_s_o__. __ A_R_M _ _,_A_D_v_w_M__,__R_E_v_w_P~

Bit Bit
Function

Number Mnemonic

7 RXCLR Clear the Receive FIFO:

Set this bit to flush the entire receive FIFO. All flags in RXFLG revert to their
reset states (RXEMP is set; all other flags clear). The ARM, RXISO and
RXWS bits in this register and the RXSEQ bit in the RXSTAT register are not
affected by this operation. Hardware clears this bit when the flush operation
is completed.

6 - Reserved:

Values read from this bit are indeterminate. Write zero to this bit.

5 RXWS Receive FIFO Wait-state Read:

At the 8X930Ax tore frequency of 12 MHz, not all instructions that access
the receive Fl FO are guaranteed to work due to critical paths inherent in the
8X930Ax architecture.While all MOV instructions from the receive FIFO are
guaranteed to work at 12 MHz, arithmetic instructions (e.g., ADD, SUB, etc.)
where the receive FIFO is the source and the register file the destination
may not work at this speed. For applications using arithmetic instructions,
set the RXWS bit to read the receive FIFO with one wait state - this will
eliminate the critical path. This bit is not reset when the RXCLR bit is set.

4 RXFFRC FIFO Read Complete:

Set this bit to release the receive FIFO when a data set read is complete.
Setting this bit "clears" the RXFIF "bit" (in the RXFLG register)
corresponding to the data set that was just read. Hardware clears this bit
after the RXFIF bit is cleared. All data from this data set must have been
read. Note that FIFO Read Complete only works if STOVW and EDOVW are
cleared.

3 RXISO Isochronous Data Type:

Set this bit to indicate that the receive FIFO is programmed to receive
isochronous data and to set up the USB Interface to handle an isochronous
data transfer. This bit is not reset when the RXCLR bit is set; it must be
cleared by software.

t The write marker and write pointer should only be controlled manually for testing (when the ARM bi! is
clear). At all other times the ARM bit should be set and the ADVWM and REVWP bits should be left alone.

I C-31

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

RX CON Address: S:E4H
Reset State: OXOO 01 OOB

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0

.__R_x_c_L_R__,~~~~-'---R_XW~S--'~R_X_FF_R_c__.I ~I _R_x_1_s_o__,~_A_R_M~_._A_o_v_w~M__,__R_E_v_w~P-'

Bit
Number

2

0

Bit
Mnemonic

ARM

ADV WM

REVWP

Function

Auto Receive Management:

When set, the write pointer and write marker are adjusted automatically
based on the following conditions:

RXISO RX Status Write Pointer

X ACK Unchanged

0 NAK Reversed

Write Marker

Advanced

Unchanged

1 NAK Unchanged Advanced

When this bit is set, setting REVWP or ADVWM has no effect. Hardware
neither clears nor sets this bit. This is a sticky bit that is not reset when
RXCLR is set.

Note: This bit should always be set, except for testing.

Advance Write Marker: t
(For non-ARM mode only) Set this bit to advance the write marker to the
origin of the next data set. Advancing the write marker is used for back-to­
back receptions. Hardware clears this bit after the write marker is advanced.
Setting this bit is effective only when the REVWP, ARM and RXCLR bits are
clear.

Reverse Write Pointer: t
(For non-ARM mode only) Set this bit to return the write pointer to the origin
of the last data set received, as identified by the write marker. The FIU can
then re-receive the last data packet and write to the receive FIFO starting
from the same origin when the host re-sends the same data packet.
Hardware clears this bit after the write pointer is reversed. Setting this bit is
effective only when the ADVWM, ARM, and RXCLR bits are all clear.

REVWP is used when a data packet is bad. When the function interface
receives the data packet again, the write starts at the origin of the previous
(bad) data set.

t The write marker and write pointer should only be controlled manually for testing (when the ARM bit is
clear). At all other times the ARM bit should be set and the ADVWM and REVWP bits should be left alone.

C-32 _L_

I

REGISTERS

RX DAT Address: S:E3H
Reset: XXXX XXXXB

Receive FIFO Data Register. Receive FIFO data specified by EPINDEX is stored and read from this
register.

7 0

RXDAT.7:0

Bit Bit Function Number Mnemonic

7:0 RXDAT.7:0 To write data to the receive FIFO, the FIU writes to this register. To read
data from the receive FIFO, the 8X930Ax reads from this register. The
write pointer and read pointer are incremented automatically after a write
and read, respectively.

C-33

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

RXFLG Address: S:ESH
Reset State: OOXX 10008

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0

~R_X_Fl_F_1~_R_X_F_IF_O~~~~~~~~I I RXEMP RXFULL RXURF RXOVF

Bit
Number

7:6

5:4

3

C-34

Bit
Mnemonic

RXFIF[1:0]

RXEMP

Function

Receive FIFO Index Flags: (read-only)

These read-only flags indicate which data packets are present in the receive
FIFO (see Table 7-6 on page 7-26). The RXFIF bits are updated after each
write to RXCNT to reflect the addition of a data packet. Likewise, the RXFIF
bits are cleared in sequence after each setting of the RXFFRC bit. The next­
state table for RXFIF bits is shown below for operation in dual packet mode.

RXFIF[1 :O] Operation Flag Next RXFIF[1 :O] Next Flag

00 Adv WM X 01 Unchanged
01 Adv WM X 01 Unchanged
1 O Adv WM X 11 Unchanged

00
01
11
10

xx

Set RXFFRC X
Set RXFFRC X
Set RXFFRC X
Set RXFFRC X

Rev WP X

00
00
10/01
00

Unchanged

Unchanged
Unchanged
Unchanged
Unchanged

Unchanged

When the receive FIFO is programmed to operate in single packet mode
(RXSPM set in EPCON), valid RXFIF states are 00 and 01 only.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. RXFIF is "incremented" by the USB and
"decremented" by firmware.Therefore, setting RXFFRC "decrements"
RXFIF immediately. However, a successful USB transaction within a frame
"increments" RXFIF only at SOF. For traceability, you must check the RXFIF
flags before and after reads from the receive FIFO and the setting of
RXFFRC in RXCON.

NOTE: To simplify firmware development, it is recommended that you utilize
control endpoints in single-packet mode only.

Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

Receive FIFO Empty Flag (read-only):

Hardware sets this flag when the write pointer is at the same location as the
read pointer AND the write pointer equals the write marker and neither
pointer has rolled over. Hardware clears the bit when the empty condition no
longer exists. This is not a sticky bit and always tracks the current status of
the receive FIFO, regardless of ISO or non-ISO mode.

I

I

REGISTERS

RXFLG (Continued) Address: S:E5H
Reset State: OOXX 10008

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0

,__R_x_F_1_F_1_,_~R_x_F_1F_o___.~~~---''--~~--'I I RXEMP RXFULL RXURF RXOVF

Bit Bit
Function

Number Mnemonic

2 RXFULL Receive FIFO Full Flag (read-only):

Hardware sets this flag when the write pointer has rolled over and equals
the read pointer. Hardware clears the bit when the full condition no longer
exists. This is not a sticky bit and always tracks the current status of the
receive FIFO, regardless of ISO or non-ISO mode.

1 RXURF Receive FIFO Underrun Flag.

Hardware sets this bit when an additional byte is read from an empty receive
FIFO or RXCNT. Hardware does not clear the bit, so you must clear it in
firmware. When the receive FIFO underruns, the read pointer will not
advance - it remains locked in the empty position.

n ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
firmware, RXURF is updated immediately. You must check the RXURF flag
after reads from the receive FIFO before setting the RXFFRC bit in RXCON.

NOTE: When this bit is set, the FIFO is in an unknown state. It is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register.

0 RXOVF Receive FIFO Overrun Flag.

This bit is set when the FIU writes an additional byte to a full receive FIFO or
writes a byte count to RXCNT with FIF1 :0 = 11. This is a sticky bit that must
be cleared through software, although it can be cleared by hardware if a
SETUP packet is received after an RXOVF error had already occurred.

When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register. When the receive FIFO
overruns, the write pointer will not advance - it remains locked in the full
position.

n ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by the
USB, RXOVF is updated only at the next SOF regardless of where the
overrun occurred during the current frame.

C-35

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

RXSTAT Address: S:E2H
Reset State: 0000 OOOOB

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX.

7 0

~R_x_s_Eo_~R_x_s_E_T_uP~_s_T_o_vw_..__E_o_o_vw___.l I Rxsovw I Rxvo10 RXERR RXACK

Bit Bit Function Number Mnemonic

7 RXSEQ Receiver Endpoint Sequence Bit (read, conditional write):

This bit will be toggled on completion of an ACK handshake in response to
an OUT token. This bit will be set (or cleared) by hardware after reception of
a SETUP token.

This bit can be written by firmware if the RXSOVW bit is set when written
together with the new RXSEQ value. t
Note: Always verify this bit after writing to ensure that there is no conflict with
hardware, which could occur if a new SETUP token is received.

6 RXSETUP Received Setup Token:

This bit is set by hardware when a valid SETUP token has been received.
When set, this bit causes received IN or OUT tokens to be NAKed until the
bit is cleared to allow proper data management for the transmit and receive
FIFOs from the previous transaction.

IN or OUT tokens are NAKed even if the endpoint is stalled (RXSTL or
TXSTL) to allow a control transaction to clear a stalled endpoint.

Clear this bit upon detection of a SETUP token after the firmware is ready to
complete the status stage of a control transaction.

5 STOVW Start Overwrite Flag (read-only):

Set by hardware upon receipt of a SETUP token for any control endpoint to
indicate that the receive FIFO is being overwritten with new SETUP data.
When set, the FIFO state (Fl F and read pointer) resets and is locked for this
endpoint until EDOVW is set. This prevents a prior, ongoing firmware read
from corrupting the read pointer as the receive FIFO is being cleared and
new data is being written into it. This bit is cleared by hardware during the
handshake phase of the setup stage.

This bit is only used for control endpoints.

4 EDOVW End Overwrite Flag:

This flag is set by hardware during the handshake phase of a SETUP stage.
It is set after every SETUP packet is received and must be cleared prior to
reading the contents of the FIFO. When set, the FIFO state (FIF and read
pointer) remains locked for this endpoint until this bit is cleared. This
prevents a prior, ongoing firmware read from corrupting the read pointer
after the new data has been written into the receive FIFO.

This bit is only used for control endpoints.

t Under normal operation, this bit should not be modified by the user.

tt The SIE will handle all sequential bit tracking. This bit should only be used when initializing a new
configuration or interface.

C-36 I

REGISTERS

RXSTAT (Continued) Address: S:E2H
Reset State: 0000 OOOOB

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX.

7 0

~R_x_s_Ea_~R_x_s_E_T_UP~_s_T_o_vw_~E_D_o_vw~l I Rxsovw I RXVOID RX ERR RXACK

Bit Bit
Function

Number Mnemonic

3 RXSOVW Receive Data Sequence Overwrite Bit:

Write a '1' to this bit to allow the value of the RXSEQ bit to be overwritten.
This is needed to clear a STALL on a control endpoint. Writing a 'O' to this bit
has no effect on RXSEQ. This bit always returns 'O' when read. t, tt

2 RXVOID Receive Void Condition (read-only):

This bit is set when no valid data is received in response to a SETUP or
OUT token due to one of the following conditions:

1. The receive FIFO is still locked.

2. The EPCON register's RXSTL bit is set for a non-control endpoint.

This bit is set and cleared by hardware. For non-isochronous transactions,
this bit is updated by hardware at the end of the transaction in respond to a
valid OUT token. For isochronous transactions, it is not updated until the
next SOF.

1 RX ERR Receive Error (read-only):

Set when an error condition has occurred with the reception. Complete or
partial data has been written into the receive Fl FO. No handshake is
returned. The error can be one of the following conditions:

1. Data failed CRC check.

2. Bit stuffing error.

3. A receive FIFO goes into overrun or underrun condition while receiving.

This bit is updated by hardware at the end of a valid SETUP or OUT token
transaction (non-isochronous) or at the next SOF on each valid OUT token
transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is
updated with the RXACK bit at the end of data reception and is mutually
exclusive with RXACK.

0 RXACK Receive Acknowledged (read-only):

This bit is set when data is received completely into a receive FIFO and an
ACK handshake is sent. This read-only bit is updated by hardware at the
end of a valid SETUP or OUT token transaction (non-isochronous) or at the
next SOF on each valid OUT token transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is
updated with the RXERR bit at the end of data reception and is mutually
exclusive with RXERR.

Under normal operation, this bit should not be modified by the user.

tt The SIE will handle all sequential bit tracking. This bit should only be used when initializing a new
configuration or interface.

I C-37

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

SAD DR Address: S:A9H
Reset State: 0000 OOOOB

Slave Individual Address Register. SADDR contains the device's individual address for multiprocessor
communication.

7 0

Slave Individual Address

Bit Bit Function Number Mnemonic

7:0 SADDR.7:0

SADEN Address: S:B9H
Reset State: 0000 OOOOB

Mask Byte Register. This register masks bits in the SADDR register to form the device's given address
for multiprocessor communication.

7 0

Mask for SADDR

Bit Bit
Function

Number Mnemonic

7:0 SADEN.7:0

SBUF Address: S:99H
Reset State: XXXX XXXXB

Serial Data Buffer. Writing to SBUF loads the transmit buffer of the serial 1/0 port. Reading SBUF
reads the receive buffer of the serial 1/0 port.

7 0

Data SenVReceived by Serial 1/0 Port

Bit Bit
Function

Number Mnemonic

7:0 SBUF.7:0

C-38 I

I

REGISTERS

SCON Address: S:9SH
Reset State: 0000 OOOOB

Serial Port Control Register. SCON contains serial 1/0 control and status bits, including the mode
select bits and the interrupt flag bits.

7 0

~F_El_S_M_o~~S_M_1~~~S_M_2~~-R_E_N~~I l~_T_B_s~~~RB_S~~~-Tl~~~-R_I~~

Bit Bit Function
Number Mnemonic

7 FE Framing Error Bit:

To select this function, set the SMODO bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by software, not by valid
frames.

SMO Serial Port Mode Bit O:

To select this function, clear the SMODO bit in the PCON register.
Software writes to bits SMO and SM 1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Software writes to bits SM1 and SMO (above) to select the serial port
operating mode.

SMO SM1 Mode Description Baud Rate
0 0 0 Shift register Fosc/12
0 1 1 S-bit UART Variable
1 0 2 9-bit UART F oscl32t or F osc/64 t
1 1 3 9-bit UART Variable

tselect by programming the SMOD bit in the PCON register (see section
"Baud Rates" on page 12-10).

5 SM2 Serial Port Mode Bit 2:

Software writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:

To enable reception, set this bit. To enable transmission, clear this bit.

3 TBS Transmit Bit S:

In modes 2 and 3, software writes the ninth data bit to be transmitted to
TBS. Not used in modes 0 and 1.

2 RBS Receiver Bit S:

Mode O: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.

C-39

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

SCON (Continued) Address: S:98H
Reset State: 0000 00008

Serial Port Control Register. SCON contains serial 1/0 control and status bits, including the mode
select bits and the interrupt flag bits.

7 0

~F_E_IS_M~O~~S_M~1~~~S_M_2~~~R_E_N~I l~~T_B_8~~~R_B_8~~~-T_l~~~-R_I~~

Bit Bit Function Number Mnemonic

1 Tl Transmit Interrupt Flag Bit:

Set by the transmitter after the last data bit is transmitted. Cleared by
software.

0 RI Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by software.

C-40 I

I

REGISTERS

SOFH Address: S:D3H
Reset State: 0000 00008

Start of Frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7 0

,__so_F_A_c_K_.__As_o_F_...____so_F_1E_,__FT_L_o_c_K__.l l s0Foo1s I Ts1 o TS9 TS8

Bit Bit Function Number Mnemonic

7 SOFA CK SOF Token Received without Error (read-only):

When set, this bit indicates that the 11-bit time stamp stored in SOFL and
SOFH is valid. This bit is updated every time a SOF token is received from
the USB bus, and it is cleared when an artificial SOF is generated by the
frame timer. This bit is set and cleared by hardware.

6 ASOF Any Start-of-Frame:

This bit is set by hardware to indicate that a new frame has started. The
interrupt can result either from reception of an actual SOF packet or from an
artificially-generated SOF from the frame timer. This interrupt is asserted in
hardware even if the frame timer is not locked to the USB bus frame timing.
When set, this bit is an indication that either an actual SOFpacket was
received or an artificial SOF was generated by the frame timer. This bit must
be cleared by software or inverted and driven to the SOF# pin. The effect of
setting this bit by software is the same as hardware: the external pin will be
driven with an inverted ASOF value for eight Tel.Ks.

This bit also serves as the SOF interrupt flag. This interrupt is only asserted
in hardware if the SOF interrupt is enabled (SOFIE set) and the interrupt
channel is enabled.

5 SOFIE SOF Interrupt Enable:

When this bit is set, setting the ASOF bit causes an interrupt request to be
generated if the interrupt channel is enabled. Hardware reads but does not
write this bit.

4 FTLOCK Frame Timer Locked (read-only):

When set, this bit indicates that the frame timer is presently locked to the
USB bus' frame time. When cleared, this bit indicates that the frame timer is
attempting to synchronize to the frame time.

3. SOFODIS SOF# Pin Output Disable:

When set, no low pulse will be driven to the SOF# pin in response to setting
the ASOF bit. The SOF# pin will be driven to '1' when SOFODIS is set.
When this bit is. clear, setting the ASOF bit causes the SOF# pin to be
toggled with a low pulse for eight TcLKs.

2:0 TS10:8 Time stamp received from host:

TS10:8 are the upper three bits of the 11-bit frame number issued with an
SOF token. This time stamp is valid only if the SOFACK bit is set.

C-41

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

SOFL Address: S:02H
Reset State: 0000 00008

Start-of-Frame Low Register. Contains the lower eight bits of the 11-bit time stamp received from the
host.

7

Bit Bit
Number Mnemonic

7:0 TS7:0

SP

0

TS7:0

Function

Time stamp received from host:

This time stamp is valid only if the SOFACK bit in the SOFH register is set.
TS7:0 are the lower eight bits of the 11-bit frame number issued with a SOF
token. IF an artificial SOF is generated, the time stamp remains at its
previous value and it is up to firmware to update it. These bits are set and
cleared by hardware.

Address:
Reset State:

S:81H
0000 01118

Stack Pointer. SP provides SFR access to location S3 in the register file (also named SP). SP is the
lowest byte of the extended stack pointer (SPX = ORSO). The extended stack pointer points to the
current top of stack. When a byte is saved (PUSHed) on the stack, SPX is incremented, and then the
byte is written to the top of stack. When a byte is retrieved (POPped) from the stack, it is copied from
the top of stack, and then SPX is decremented.

7 0

SP Contents

Bit Bit
Function Number Mnemonic

7:0 SP.7:0 Stack Pointer:

Bits 0-7 of the extended stack pointer, SPX (ORSO).

C-42 I

I

REGISTERS

SPH Address: S:BEH
Reset State: 0000 OOOOB

Stack Pointer High. SPH provides SFR access to location 62 in the register file (also named SPH).
SPH is the upper byte of the lower word of DR60, the extended stack pointer (SPX). The extended
stack pointer points to the current top of stack. When a byte is saved (PUSHed) on the stack, SPX is
incremented, and then the byte is written to the top of stack. When a byte is retrieved (POPped) from
the stack, it is copied from the top of stack, and then SPX is decremented.

7 0

SPH Contents

Bit Bit Function
Number Mnemonic

7:0 SPH.7:0 Stack Pointer High:

Bits 8-15 of the extended stack pointer, SPX (DR(60)).

C-43

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

T2CON Address:
Reset State:

S:C8H
0000 OOOOB

Timer 2 Control Register. Contains the receive clock, transmit clock, and capture/reload bits used to
configure timer 2. Also contains the run control bit, counter/timer select bit, overflow flag, external flag,
and external enable for timer 2.

7 0

~-T_F_2~~~EX_F_2~~-R_C_L_K~~-T_C_L_K~I J~E_X_E_N_2__.~_T_R_2~~-C_IT_2_#~~C_P_IR_L_2_#__,

Bit Bit
Function Number Mnemonic

7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by software. TF2 is not set if
RCLK=1orTCLK=1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN = 1).

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes· timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:

Setting this bit starts the timer.

1 C/T2# Timer 2 Counter/Timer Select:

C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK = 1 or TCLK = 1.

C-44 I

I

REGISTERS

T2MOD Address: S:C9H
Reset State: XXXX XXOOB

Timer 2 Mode Control Register. Contains the timer 2 down count enable and clock-out enable bits for
timer2.

7 0

Bit Bit Function
Number Mnemonic

7:2 - Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

1 T20E Timer 2 Output Enable Bit:

In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.

0 OGEN Down Count Enable Bit:

Configures timer 2 as an up/down counter.

C-45

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

TCON Address: S:88H
Reset State: 0000 OOOOB

Timer/Counter Control Register. Contains the overflow and external interrupt flags and the run control
and interrupt transition select bits for timer 0 and timer 1.

7 0

TF1 TR1 TFO TRO I l~_1_E1~~~1_T_1~~~1E_o~~~1T_o~

Bit Bit Function
Number Mnemonic

7 TF1 Timer 1 Overflow Flag:

Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 Timer 1 Run Control Bit:

SeVcleared by software to turn timer 1 on/off.

5 TFO Timer 0 Overflow Flag:

Set by hardware when the timer 0 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TAO Timer O Run Control Bit:

SeVcleared by software to turn timer 1 on/off.

3 IE1 Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT1 #pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear this bit to select level-triggered (active low).

1 IEO Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INTO# pin.
Edge- or level- triggered (see ITO). Cleared when interrupt is processed
if edge-triggered.

0 ITO Interrupt 0 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 0.
Clear this bit to select level-triggered (active low).

C-46

I

I

TMOD Address:
Reset State:

REGISTERS

S:89H
0000 00008

Timer/Counter Mode Control Register. Contains mode select, run control select, and counter/timer
select bits for controlling timer O and timer 1.

7 0

'--G~AT_E_1~~-c_1T_1_#~-'--~M_1_1~-'--~M_o_1__,l~I _G~AT_E_o~~-C_IT_O_#~~~M_1_0~-'--~M_o_o___,

Bit Bit Function
Number Mnemonic

7 GATE1 Timer 1 Gate:

When GATE1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATE1 = 1 and TR1 = 1, external signal INT1 gates the
timer input.

6 C/T1# Timer 1 Counter/Timer Select:

C/T1 # = O selects timer operation: timer 1 counts the divided-down
system clock. C/T1 # = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.

5,4 M11,M01 Timer 1 Mode Select:

M11 M01
0 0 Mode O: 8-bit timer/counter (TH1) with 5-bit prescalar (TL 1)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL 1). Reloaded

from TH1 at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.

3 GATEO Timer O Gate:

When GATED = 0, run control bit TRO gates the input signal to the timer
register. When GATEO = 1 and TRO = 1, external signal INTO gates the
timer input.

2 CITO# Timer O Counter/Timer Select:

CITO# = O selects timer operation: timer O counts the divided-down
system clock. CITO#= 1 selects counter operation: timer 0 counts
negative transitions on external pin TO.

1, 0 M10, MOO Timer O Mode Select:

M10 MOO
0 0 Mode O: 8-bit timer/counter (TO) with 5-bit prescalar (TLO)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TLO). Reloaded

from THO at overflow.
1 1 Mode 3: TLO is an 8-bit timer/counter. THO is an 8-bit

timer using timer 1's TR1 and TF1 bits.

C-47

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

THO,TLO Address: THO S:8CH
TLO S:8AH

Reset State: 0000 OOOOB

THO, TLO Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
O or separately as 8-bit timer/counters.

7 0

High/Low Byte of Timer 0 Register

Bit Bit
Function

Number Mnemonic

7:0 TH0.7:0 High byte of the timer O timer register.

TL0.7:0 Low byte of the timer O timer register.

TH1, TL1 Address: TH1 S:8DH
TL1 S:8BH

Reset State: 0000 OOOOB

TH1, TL 1 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
1 or separately as 8-bit timer/counters.

7 0

High/Low Byte of Timer 1 Register

Bit Bit Function
Number Mnemonic

7:0 TH1.7:0 High byte of the timer 1 timer register.

TL1.7:0 Low byte of the timer 1 timer register.

C-48

I

I

REGISTERS

TH2, TL2 Address: TH2 S:CDH
TL2 S:CCH

Reset State: 0000 00008

TH2, TL2 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
2.

7 0

High/Low Byte of Timer 2 Register

Bit Bit
Function Number Mnemonic

7:0 TH2.7:0 High byte of the timer 2 timer register.

TL2.7:0 Low byte of the timer 2 timer register.

C-49

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

TXCNTH,
TXCNTL

Address:

Reset States: Endpoint 1

Endpoints 0, 2, 3

S:F7H
S:F6H

TXCNTH XXXX XXOOB
TXCNTL 0000 OOOOB

TXCNTL XXXO OOOOB

Transmit FIFO Byte-count High and Low Registers. High and low register in a two-register ring buffer
used to store the byte count for the data packets in the transmit FIFO specified by EPINDEX. Note that
TXCNTH exists only for function endpoint 1 and is unavailable for all other endpoints. During normal
operations, these registers should only be written by the 8X930Ax CPU.

15 (TXCNTH) Endpoint 1 8
~, ~~~,~~-----.~~---,-~----,,~, ~~..--~-,-~BC-9----.~B-C8----,

7(TXCNTL) 0

~' ~B_C7~~'~-B_C_6~~-B_C_5~~-B_C_4~' ~' ~B_C3~~-B_c_2~~-B_c_1~~-BC_o~
7 (TXCNTL) Endpoints 0, 2, 3 0

~, ~~~,~~~~~~~-B-C-4~,~, ~BC-3~~B-C-2~~B-C-1~~B-C-O~

Bit Bit Function Number Mnemonic

Endpoint 1 (x= 1)t

15:10 - Reserved.

Write zeros to these bits.
'

9:0 BC9:0 Transmit Byte Count.
Ten-bit, ring buffer byte count register stores transmit byte count (TXCNT)
of Oto 1023 bytes for endpoint 1 only.

Endpoints 0, 2, 3. (x= O, 2, 3)t

7:0 - Reserved.

Write zeros to these bits.

4:0 BC4:0 Transmit Byte Count.
Five-bit, ring buffer byte count register stores transmit byte count (TXCNT)
of 0 to 16 bytes for endpoints 0, 2, and 3.

t x = endpoint index. See the EPI NDEX register.
NOTE: To send a status stage after a CNTL write or no data control command or a null packet, write Oto

TXCNT.

C-50

I

TX CON Address:
Reset State:

REGISTERS

S:F4H
X=1t OOOX0100B

x = 0, 2, 3t OXXX 01 DOB

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0

~T_x_c_LR~~F_F_sz_._1 ~-F_F_s_z._o~--~11 TXISO ATM ADV RM REVRP

Bit Bit Function Number Mnemonic

7 TXCLR Transmit Clear:

Setting this bit flushes the transmit FIFO, sets the EMPTY bit in TXFLG, and
clears all other bits in TXFLG. After the flush, hardware clears this bit.
Setting this bit does not affect the ATM, TXISO, and FFSZ bits.

6:5 FFSZ[1:0] FIFO Size:

These two bits are used for FIFO size configuration by function endpoint 1
only. The endpoint 1 FIFO size configurations (in bytes) are:

FFSZ[1:0] Transmit Size Receive Size

00 256 256
01 512 512
10 1024 0
11 0 1024

These bits are not reset when the TXCLR bit is set in the TXCON register.

NOTE: The receive FIFO size is also set by the TXCON FFSZ bits.
Therefore, there are no corresponding FFSZ bits in RXCON.

4 - Reserved:

Values read from this bit are indeterminate. Write zero to this bit.

3 TXISO Transmit Isochronous Data:

Software sets this bit to indicate that the transmit FIFO contains isochronous
data. The FIU uses this bit to set up the handshake protocol at the end of a
transmission. This bit is not reset when TXCLR is set and must be cleared
by software.

x = endpoint index. See EPINDEX.

H The read marker and read pointer should only be controlled manually for testing (when the ATM bit is
clear). At all other times the ATM bit should be set and the ADVRM and REVRP bits should be left alone.

I C-51

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

TXCON (Continued) Address:
Reset State:

S:F4H
X= 1 t 000X 01008

X= 0, 2, 31 OXXX 01008

US8 Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0

.__T_x_c_L_R____,c..._F_F_s_z_.1_..__F_F_s_z_.o____,'------'11 TXISO ATM ADV RM REVRP

Bit Bit Function Number Mnemonic

2 ATM Automatic Transmit Management:

Setting this bit (the default value) causes the read pointer and read marker
to be adjusted automatically as indicated:

ISO TX Status Read Pointer Read Marker

x ACK Unchanged Advanced*
0 NAK Reversed** Unchanged
1 NAK Unchanged Advanced*

* to origin of next data set ** to origin of the data set last read

When this bit is set, setting REVRP or ADVRM has no effect. This is a sticky
bit that is not reset when TXCLR is set, but can be set and cleared by
software. Hardware neither clears nor sets this bit.

Note: This bit should always be set, except for testing.

1 ADV RM Advance Read Marker Control (non-ATM mode only) tt:
Setting this bit advances the read marker to point to the origin of the next
data packet (the position of the read pointer) to prepare for the next packet
transmission. Hardware clears this bit after the read marker is advanced.
Setting this bit is effective only when the REVRP, ATM, and TXCLR bits are
all clear.

0 REV RP Reverse Read Pointer Control (non-ATM mode only) tt:
In the case of bad transmission, the same data stack may need to be
available for retransmit. Setting this bit reverses the read pointer to point to
the origin of the. last data set (the position of the read marker) so that the FIU
can reread the last set for retransmission. Hardware Clears this bit after the
read pointer is reversed. Setting this bit is effective only when the ADVRM,
ATM, and TXCLR bits are all clear.

x = endpoint index. See EPINDEX.

1"t The read marker and read pointer should only be controlled manually for testing (when the ATM bit is
clear). At all other times the ATM bit should be set and the ADV RM and REV RP bits should be left .alone.

C-52

I

REGISTERS

TXDAT Address: S:F3H
Reset State: XXXX XXXXB

USB Transmit FIFO Data Register. Data from the transmit FIFO specified by EPINDEX is written to and
stored in this register.

7 0

Transmit Data Byte

Bit Bit Function
Number Mnemonic

7:0 TXDAT[7:0] Transmit Data Byte (write-only)t:

To write data to the transmit FIFO, write to this register. The write pointer
and read pointer are incremented automatically after a write and read
respectively.

·r This register can be read by firmware, but it should only be read if Fl F1 :O * 00.

I C-53

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

TXFLG Address: S:F5H
Reset State: OOXX 10008

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0

'--T_x_F_1F_1__.~T_x_F_1F_o~..__~~--''--~~--'I I TXEMP TXFULL TXU RF TXOVF

Bit
Number

7:6

5:4

3

Bit
Mnemonic

TXFIF[1:0]

TXEMP

Function

FIFO Index Flags (read-only}:

These flags indicate which data sets are present in the transmit FIFO. The
FIF bits are set in sequence after each write to TXCNT to reflect the addition
of a data set. Likewise, TXFIF1 and TXFIFO are cleared in sequence alter
each advance of the read marker to indicate that the set is effectively
discarded. The bit is cleared whether the read marker is advanced by
software (setting ADVRM) or automatically by hardware (ATM = 1). The
next-state table for the TXFIF bits is shown below:

TXFIF[1 :O] Operation Flag Next TXFIF[1 :O] Next Flag

00 Wr TXCNT X 01
01 WrTXCNT X 11
10 WrTXCNT X 11
11 WrTXCNT X 11

00
01
11
10

Adv RM
Adv RM
Adv RM
Adv RM

x
x
x
x

00
00
10/01
00

Unchanged
Unchanged
Unchanged
TXOVF = 1

Unchanged
Unchanged
Unchanged
Unchanged

XX Rev RP X Unchanged Unchanged

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. TXFIF is "incremented" by firmware and
"decremented" by the USS.Therefore, writes to TXCNT "increment" TXFIF
immediately. However, a successful USB transaction any time within a
frame "decrements" TXFIF only at SOF.

You must check the TXFIF flags before and alter writes to the transmit FIFO
and TXCNT for traceability.

NOTE: To simplify firmware development, configure control endpoints in
single-packet mode.

Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

Transmit FIFO Empty Flag (read-only):

Hardware sets this bit when the write pointer has not rolled over and is at the
same location as the read pointer. Hardware clears this bit when the
pointers are at different locations.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status.

t When set, all transmissions are NAKed.

C-54

I

REGISTERS

TXFLG (Continued) Address: S:F5H
Reset State: OOXX 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0

~T_X_Fl_F_1~_T_X_F_IF_O~~~~~~~~I I TXEMP TXFULL TXURF I TXOVF

Bit Bit
Function

Number Mnemonic

2 TXFULL Transmit FIFO Full Flag (read-only):

Hardware sets this bit when the write pointer has rolled over and equals the
read marker. Hardware clears this bit when the full condition no longer
exists.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status. Check this bit to avoid causing a TXOVF condition.

1 TXU RF Transmit FIFO Underrun Flag:

Hardware sets this flag when an additional byte is read from an empty
transmit FIFO or TXCNT [This is caused when the value written to TXCNT is
greater than the number of bytes written to TXDAT.]. This is a sticky bit that
must be cleared through software. When this flag is set, the FIFO is in an
unknown state, thus it is recommended that you reset the FIFO in your error
management routine using the TXCLR bit in TXCON.

When the transmit FIFO underruns, the read pointer will not advance - it
remains locked in the empty position.t

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
USB, TXURF is updated at the next SOF regardless of where the underrun
occurs in the frame.

0 TXOVF Transmit FIFO Overrun Flag:

This bit is set when an additional byte is written to a full FIFO or full TXCNT
with TXFIF1:0=11. This is a sticky bit that must be cleared through
software. When this bit is set, the FIFO.is in an unknown state, thus it is
recommended that you reset the FIFO in your error management routine
using the TXCLR bit in TXCON.

When the receive FIFO overruns, the write pointer will not advance - it
remains locked in the full position. Check this bit after loading the FIFO prior
to writing the byte count register.t

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by
firmware, TXOVF is updated immediately. Check the TXOVF flag after
writing to the transmit FIFO before writing to TXCNT.

t When set, all transmissions are NAKed.

I
C-55

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

TX STAT Address: S:F2H
Reset State: 0000 OOOOB

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0

~T_xs_E_a~---~--~l _Tx_F_L_us_H~l I Txsovw I Txvo10 TXERR TXACK

Bit Bit Function Number Mnemonic

7 TXSEQ Transmitter's Current Sequence Bit (read, conditional write):

This bit will be transmitted in the next PIO and toggled on a valid ACK
handshake. This bit is toggled by hardware on a valid SETUP token. This bit
can be written by firmware if the TXSOVW bit is set when written together
with the new TXSEQ value. t

6:5 - Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

4 TXFLUSH Transmit FIFO Packet Flushed:

When set, this bit indicates that hardware flushed a stale ISO data packet
from the transmit FIFO due to a TXFIF = '11' at SOF. This bit is set by
hardware, but can also be set by software with the same effect.t

3 TXSOVW Transmit Data Sequence Overwrite Bit:

Write a '1' to this bitto allow the value of the TXSEQ bit to be overwritten.
Writing a 'O' to this bit has no effect on TXSEQ. This bit always returns 'O'
when read.t, tt

2 TXVOID Transmit Void (read-only):

A void condition has occurred in response to a valid IN token. Transmit void
is closely associated with the NAK/STALL handshake returned by function
after a valid IN token, due to the conditions that cause the transmit FIFO to
be unenabled or not ready to transmit.

Use this bit to check any NAK/STALL handshake ever returned by function.

This bit does not affect the FTXDx, TXERR or TXACK bits. This bit is
updated by hardware at the end of a non-isochronous transaction in
response to a valid IN token. For isochronous transactions, this bit is not
updated until the next SOF.

Under normal operation, this bit should not be modified by the user.

tt The SIE will handle all sequential bit tracking. This bit should only be used when initializing a new
configuration or interface.

C-56

I

REGISTERS

TXSTAT (Continued) Address: S:F2H
Reset State: 0000 00008

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0

~T_xs_E_o~---~--~\ _Tx_F_L_us_H~I \ Txsovw \ Txvo1D TXERR TXACK

Bit Bit
Function

Number Mnemonic

1 TXERR Transmit Error (read-only):

An error condition has occurred with the transmission. Complete or partial
data has been transmitted. The error can be one of the following:

1. Data transmitted successfully but no handshake received.
2. Transmit FIFO goes into underrun condition while transmitting.

The corresponding transmit done bit (FTXDx in FIFLG) is set when active.
For non-isochronous transactions, this bit is updated by hardware together
with the TXACK bit at the end of the data transmission (this bit is mutually
exclusive with TXACK). For isochronous transactions, this bit is not updated
until the next SOF.

0 TXACK Transmit Acknowledge (read-only):

Data transmission completed and acknowledged successfully. The
corresponding transmit done bit (FTXDx in FIFLG) is set when active. For
non-isochronous transactions, this bit is updated by hardware together with
the TXERR bit at the end of data transmission (this bit is mutually exclusive
with TXERR). For isochronous transactions, this bit is not updated until the
next SOF.

t Under normal operation, this bit should not be modified by the user.

tt The SIE will handle all sequential bit tracking. This bit should only be used when initializing a new
configuration or interface.

I

WDTRST Address: S:A6H
Reset State: XXXX XXXXB

Watchdog Timer Reset Register. Writing the two-byte sequence 1 EH-E1 H to the WDTRST register
clears and enables the hardware WDT. The WDTRST register is a write-only register. Attempts to
read it return FFH. The WDT itself is not read or write accessible. See Chapter 10, "Timer/Counters
and WatchDog Timer."

7

WDTRST Contents (Write-only)

Bit Bit
Function

Number Mnemonic

7:0 WDTRST.7:0 Provides user control of the hardware WDT.

0

C-57

D
Data Flow Model

I

APPENDIX D
DATA FLOW MODEL

This appendix describes the data flow model for the 8X930Ax USB transactions. This data flow
model, presented in truth table form, is intended to bridge the hardware and firmware layers of
the 8X930Ax. It describes the behavior of the 8X930Ax in response to a particular USB event,
given a known state/configuration.

The types of data transfer supported by the 8X930Ax are:

• Non-isochronous transfer (interrupt, bulk)

• Isochronous transfer

• Control Transfer

Table D-1. Non-isochronous Transmit Data Flow

TXFIF
New

TX TX TX
TX TX TX

USB Event TXFIF OVF URF Inter- Comments (1 :0)
(1 :0) ERR ACK Void (1) (1) rupt

Response

00 Received IN 00 no no 1 no no None NAK No data was
token, but no chg chg chg chg loaded, so
data or NAK
TXOE = 0

Received IN 00 no no 1 no no None NAK Control
token, chg chg chg chg endpoint only.
RXSETUP = Endpoint will
1 NAK when

RXSETUP =
1 even if
TXSTL = 1

Data loaded 01 no no no no no None NIA Software
into FIFO chg chg chg chg chg should always
from CPU, check TXFIF
CNT written bits before

loading and
TXOVF after
loading.

Data loaded 00 no no no 1 no None NA Ks Only overrun
into FIFO, chg chg chg chg future trans- Fl FO error can
FIFO error actions occur here.
occurs Software

should always
checkTXOVF
before write
CNT.

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.

I D-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table D-1. Non-isochronous Transmit Data Flow (Continued)

TXFIF New
TX TX TX

TX TX TX
USB

(1 :0) Event TXFIF
ERR ACK Void

OVF URF Inter-
Response Comments

(1 :0) (1) (1) rupt

01/10 Received IN 00 0 1 0 no no Set Send data ACK
token, data chg chg transmit received, so
transmitted, interrupt no errors.
host ACKs Read marker

advanced

Received IN 01/10 1 0 0 no no Set Send data SIE times-out.
token, data chg chg transmit Read ptr'
transmitted, interrupt reversed.
no ACK
(time-out)

Received IN 01/10 no no 1 no no None NAK, NAKs Received
token, but chg chg chg chg future trans- Setup token
RXSETUP = actions (or transmit
1 (orTXOE = except disabled), so
0) SETUP. IN tokens are

NAKed. (2)

Received IN 01/10 1 0 0 no 1 Set Send data Only
token, data chg transmit with bit- underrun FIFO
transmitted, Inter- stuff error. error can
FIFO error rupt NA Ks occur here.
occurs future trans- Read ptr

actions. reversed.

Received IN 01/10 1 O (no 1 no 1 (no None NAK Treated like a
token with (no chg) chg chg) ''void"
existing chg) condition.
FIFO error
and TXERR
set.

Received IN 00 0 1 0 no no Set Send data Data is
token chg chg transmit retransmitted.
without interrupt TXACK is set
existing andTXERR is
FIFO error cleared. The
butTXERR TXERR was
set, data set by
re trans- previous
mitted, host transaction
AC Ks when host

time-out.

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.

D-2

I

DATA FLOW MODEL

Table D-1. Non-isochronous Transmit Data Flow (Continued)

TXFIF
New

TX TX TX
TX TX TX

USB
Event TXFIF OVF URF Inter- Comments

(1:0) (1 :0) ERR ACK Void (1) (1) rupt Response

Data loaded 11 no no no no no None N/A Software
into FIFO chg chg chg chg chg should always
from CPU, check TXFIF
CNT written bits before

loading and
TXOVF after
loading.

Data loaded 01/10 no no no 1 no None NA Ks Only overrun
into FIFO, chg chg chg chg future trans- Fl FO error can
FIFO error actions occur here.
occurs. CNT Software
not written should always
yet. checkTXOVF

before write
CNT

Note: no
TXERR, but
TXOVF set.

11 Received IN 10 or 0 1 0 no no Set Send data ACK
token, data 01 chg chg transmit received, so
transmitted, interrupt no errors.
host ACKs Read marker

advanced.

Received IN 11 1 0 0 no no Set Send data SIE times-out.
token, data chg chg transmit Read ptr
Ira nsm itted, interrupt reversed.
no ACK
(time-out)

Received IN 11 0 0 1 no no None NAK, NAKs Received
token, but chg chg future trans- Setup token
RXSETUP = actions (or transmit
1 (orTXOE = disabled), so
0) IN tokens are

NAKed. (2)

Received IN 11 1 0 0 no 1 Set Send data Only FIFO
token, data chg transmit with bit- underrun
transmitted, interrupt stuff error, error can
FIFO error NAK future occur here.
occurs transactions Read ptr

reversed.

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.

I
D-3

8X930AxUNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table D-1. Non-isochronous Transmit Data Flow (Continued)

TXFIF New TX TX TX TX TX TX use Event TXFIF OVF URF Inter- Comments
(1 :0) (1:0) ERR ACK Void (1) (1) rupt Response

Received IN 11 1 0 1 no 1 None NAK Treated like a
token with (no (no chg (no ''void"
existing chg) chg) chg) condition.
FIFO error
and TXERR
set.

Received IN 10 or 0 1 0 no no Set Send data Data is
token 01 chg chg transmit retransmitted.
without interrupt TXACK is set
existing and TXERR is
FIFO error cleared. The
butTXERR TXERRwas
set, data set by
re trans- previous
milted, host transaction
AC Ks when host

time-out.

Data loaded 11 no no no 1 no None N/A Writing into
into FIFO chg chg chg chg CNTwhen
from CPU, TXFIF = 11
CNT written sets TXOVF

bit. Software
should always
check TXFIF
bits before
loading.

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.

D-4

I

DATA FLOW MODEL

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode

New (at next SOF)

TXFIF
TX TX TX TX USB

(1 :0)
Event FIF

TX TX TX
OVF URF Inter-

Response
Comments

(1:0) (1,2) (1,2) rupt
(2) ERR ACK Void

00 Received IN 00 no no 1 no no None Send null No data was
token, but no data chg chg chg chg data packet loaded, so send
orTXOE=O null data

packet. This
event should
never happen.

Data loaded into 01 no no no no no None N/A Software
FIFO from CPU, chg chg chg chg chg should always
CNT written check TXFIF

bits before
loading and
TXOVF after
loading.

Data loaded into 00 no no no 1 no None N/A Only overrun
FIFO, FIFO error chg chg chg chg FIFO error can

occur here.
Software
should always
checkTXOVF
before write
CNT

01/10 Received IN 00 0 1 0 no no None Send data No ACK (time-
token, data chg chg out) for ISO.
transmitted with Read marker
or without trans- advance.ct.
mission error

Received IN 00 1 0 0 no 1 None Send CRC Only underrun
token, data trans- chg with bit-stuff FIFO error can
milted, FIFO error occur here.
error occurs Read marker

advanced.

NOTES:
1. These are sticky bits, which must be cleared by firmware.
2. TXFIF, TXOVF and TXURF are l]andled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.
TXFIF: TXFIF is "incremented" by firmware and "decremented" by USB. Therefore, writes to TXCNT will
"increment" TXFIF immediately. However, a successful USB transaction anytime in a frame will only "decrement"
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.

3. Note: This table assumes TXEPEN and ATM are enabled.

I D-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode (Continued)

New (at next SOF)

TXFIF
TX TX TX TX use Event FIF OVF URF Inter- Comments (1:0) (1:0) TX TX TX (1,2) (1,2) rupt

Response

(2) ERR ACK Void

Received IN 01/10 1 0 1 no 1 None Send null Treated like a
token with (no (no chg (no data packet "void" condition.
existing FIFO chg) chg) chg)
error

Received IN 01/10 0 0 1 no no None Send null Endpoint not
token, but TXOE chg chg data packet enabled for
=0 transmit, but

no NAK for
ISO.

Data loaded into 11 no no no no no None N/A Software
FIFO from CPU, chg chg chg chg chg should always
CNTwritten checkTXFIF

bits before
loading and
TXOVF after
loading.

Data loaded into 01/10 no no no 1 no None N/A Only overrun
FIFO, FIFO error chg chg chg chg FIFO error can
occurs occur here.

Software
should always
checkTXOVF
before write
CNT

Note: no
TXERR, but
TXOVF set.

11 Received IN 10 or 0 1 0 no no None Send data No ACK (time-
token, data 01 chg chg out) for ISO.
transmitted with Read marker
or without trans- advanced.
mission error

NOTES:
1. These are sticky bits, which must be cleared by firmware.
2. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.
TXFIF: TXFIF is "incremented" by firmware and "decremented" by USB. Therefore, writes to TXCNT will
"incremenf' TXFIF immediately. However, a successful USB transaction anytime in a frame will only "decrement"
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.

3. Note: This table assumes TXEPEN and ATM are enabled.

D-6

I

DATA FLOW MODEL

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode (Continued)

New {at next SOF)

TXFIF
TX TX TX TX

USB Event FIF OVF URF Inter- Comments (1 :0) (1 :0) TX TX TX {1,2) (1,2) rupt
Response

(2) ERR ACK Void

Received IN 10 or 1 0 0 no 1 None Send data Only a FIFO
token, data trans- 01 chg with bit-stuff underrun error
mitted, FIFO error can occur
error occurs here. Read

marker
advanced.

Received IN 11 1 0 1 no 1 None Send null Treated like a
token with (no (no chg (no data packet "void" condition.
existing FIFO chg) chg) chg)
error

Received IN 11 0 0 1 no no None Send null Endpoint not
token, but TXOE chg chg data packet enabled for
=0 transmit, but

no NAK for
ISO.

Receive SOF 10 or no no no no no None None Host never read
indication 01 chg chg chg chg chg (SOF last frame's

interrupt ISO. packet.
set) Read marker

ASOF and ptr

set. advanced,
oldest packet
is flushed from
FIFO.

Data loaded into 11 no no no 1 no None N/A CNT written
FIFO from CPU, chg chg chg chg when TXFIF=11
CNTwritten will setTXOVF

bit.

Software
should always
check TXFIF
bits before
loading.

NOTES:
1. These are sticky bits, which must be cleared by firmware.
2. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.
TXFIF: TXFIF is "incremented" by firmware and "decremented" by USB. Therefore, writes to TXCNT will
"incremenf' TXFIF immediately. However, a successful USB transaction anytime in a frame will only "decrement"
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.

3. Note: This table assumes TXEPEN and ATM are enabled.

I D-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1)

FIF New RX RX RX RX RX RX RX USB
(1 :0) Event FIF ERR ACK Void Setup OVF URF Inter- Response Comments

(1 :0) (1) (1) rupt

00 Received 00 no no 1 no no no None NAK FIFO not ready.
OUT token, chg chg chg chg chg
but RXIE = 0

Received 00 no no no no no no None None FIFO not
OUT token, chg chg chg chg chg chg loaded. Write
but timed-out ptr reversed.
waiting for
data

Received 01 0 1 0 0 no no Set ACK Received, no
OUT token, chg chg receive errors, advance
no errors interrupt write marker.

Received 00 1 0 0 0 no no Set Time-out Write ptr
OUT token, chg chg receive reversed.
data CRC or interrupt (Possible to
bit-stuff error have RXERR

cleared by
hardware
before seen by
software.)

Received 00 1 0 0 0 1 no Set Time-out, Only RXOVF
OUT token, chg receive NAK FIFO error can
FIFO error interrupt future occur, requires
occurs transac- firmware inter-

lions vention.

Received 00 1 0 1 0 1 no None NAK Considered to
OUT token (no (no (no chg be a "void"
with FIFO chg) chg) chg) condition. Will
error already NAK until
existing software clears

condition.

Received 00 no no 1 no no no None ACK Last ACK
OUT token, chg chg chg chg chg corrupted, so
but data send again but
sequence ignore the data.
mismatch

Received 01 0 1 0 1 0 0 Set ACK RXIE or RXSTL
SETUP receive has no effect.
token, no interrupt (2)
errors RXSETUPwill

be set (control
endpoints only).

NOTE:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are

enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

D-8 I

DATA FLOW MODEL

Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

FIF New RX RX RX RX RX RX RX USB
(1 :0)

Event FIF ERR ACK Void Setup OVF URF Inter- Response Comments
(1 :0) (1) (1) rupt

Received 00 1 0 0 0 0 0 Set Time-out FIFO is reset
SETUP receive automatically
token, but interrupt and FIFO data
timed-out is invalid. (2)
waiting for
data

Received 00 1 0 0 1 0 0 Set Time-out Write ptr
SETUP receive reversed, (2)
token, data interrupt
CRC or bit-
stuff error

Received 00 1 0 0 1 1 0 Set Time-out, (2)
SETUP receive NAK
token, FIFO interrupt future
error occurs transac-

tions

Received 01 0 1 0 1 0 0 Set ACK Causes FIFO
SETUP receive to reset
token with interrupt automatically,
FIFO error forcing new
already SETUP to be
existing received. RXI E

or RXSTL has
no effect. (2)
RXSETUPwill
be set (control
endpoints only).

CPU reads 00 no no no no no 1 None NAK FIFO was
FIFO, chg chg chg chg chg future empty when
causes FIFO transac- read. Should
error lions, always check

except RXFIF bits
SETUP before reading.

01 Received 01 no no 1 no no no None NAK FIFO not ready,
OUT token chg chg chg chg chg so data is

ignored (CRC or
FIFO error not
possible)

NOTE:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are

enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

I D-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

FIF
New

RX RX RX RX
RX RX RX

USB Event FIF OVF URF Inter- Comments
(1 :0) (1 :0) ERR ACK Void Setup (1) (1) rupt Response

Received 01 0 1 0 1 0 0 Set ACK Causes FIFO
SETUP receive to reset
token, no interrupt automatically,
errors forcing new

SETUP to be
received. RXIE
or RXSTL has
no effect. (2)
RXSETUPwill
be set (control
endpoints only).

Received 01 1 0 0 0 0 0 Set 1ime-out FIFO is reset
SETUP receive automatically
token, but interrupt and FIFO data
timed-out is invalid. (2)
waiting for
data

Received 00 1 0 0 1 0 0 Set 1ime-out Write ptr
SETUP receive reversed. RXIE
token, data interrupt or RXSTL has
CRC or bit- no effect. (2)
stuff error RXSETUPwill

be set (control
endpoints only).

Received 00 1 0 0 1 1 0 Set 1ime-out, (2) (control
SETUP receive NAK endpoints only).
token, FIFO interrupt future
error occurs transac-

tions

Received 01 0 1 0 1 0 0 Set ACK Causes FIFO
SETUP receive to reset
token with interrupt automatically,
FIFO error forcing new
already SETUP to be
existing received. RXIE

or RXSTL has
no effect. (2)
RXSETUPwill
be set (control
endpoints only).

CPU reads 00 no no no no no no None None
FIFO, sets chg chg chg chg chg chg
RX FF RC

NOTE:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are

enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

D-10 I

DATA FLOW MODEL

Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

FIF
New

RX RX RX RX
RX RX RX

USB
Event FIF OVF URF Inter- Comments (1 :0) (1 :0) ERR ACK Void Setup (1) (1) rupt Response

CPU reads 01 no no no no no 1 None lime-out, Software
FIFO, chg chg chg chg chg NAK should check
causes FIFO future RXURF bit
error. transac- before writing
RXFFRC not tions RXFFRC.
set yet.

CPU reads 00 no no no no no 1 None lime-out, Software
FIFO, chg chg chg chg chg NAK should check
causes FIFO future RXURF bit
error. Set transac- before writing
RXFFRC. tions RX FF RC.

NOTE:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are

enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)

FIF
New

RX RX RX RX
RX RX RX

USB
Event FIF OVF URF Inter- Comments

(1 :0)
(1 :0)

ERR ACK Void Setup
(1) (1) rupt Response

00 Received 00 no no 1 no no no None NAK Fl FO not ready.
OUT token, chg chg chg chg chg
but RXIE = 0

Received 00 no no 1 no no no None None FIFO not loaded.
OUT token, chg chg chg chg chg Write ptr
but timed-out reversed.
waiting for
data

Received 01 0 1 0 0 no no Set ACK Received, no
OUT token, chg chg receive errors, advance
no errors interrupt write marker.

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
3. Note: Dual-packet mode is NOT recommended for Control endpoints.

I D-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

FIF
New

RX RX RX RX
RX RX RX use Event FIF OVF URF Inter- Comments (1 :0) (1 :0) ERR ACK Void Setup (1) (1) rupt Response

Received 00 1 0 0 0 no no Set lime-out Write ptr
OUT token, chg chg receive reversed.
data CRC or interrupt (Possible to have
bit-stuff error RXERR cleared

by hardware
before seen by
software.)

Received 00 1 0 0 0 1 no Set lime-out, Only RXOVF
OUT token, chg receive NAK FIFO error can
FIFO error interrupt future occur, requires
occurs transac- firmware inter-

lions vention.

Received 00 1 O(no 1 0 1 no None NAK Considered to be
OUT token (no chg) (no chg a ''void"
with FIFO chg) chg) condition. Will
error already NAK until
existing software clears

condition.

Received 00 no no no no no no None ACK Last ACK
OUT token, chg chg chg chg chg chg corrupted, so
but data send again but
sequence ignore the data.
mismatch

Received 01 0 1 0 1 0 0 Set ACK Causes FIFO to
SETUP receive reset automati-
token, no interrupt cally, forcing new
errors (dual SETUP to be
packet mode received. RXIE
not recom- or RXSTL has no
mended!) effect. (2)

RXSETUP will be
set (control
endpoints only).

Received 00 1 0 0 0 0 0 Set lime-out FIFO is reset
SETUP receive automatically and
token, but interrupt FIFO data is
timed-out invalid. (2)
waiting for
data

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
3. Note: Dual-packet mode is NOT recommended for Control endpoints.

D-12 I

DATA FLOW MODEL

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

FIF
New

RX RX RX RX
RX RX RX use

Event FIF OVF URF Inter· Comments
(1:0) (1 :0) ERR ACK Void Setup (1) (1) rupt Response

Received 00 1 0 0 1 0 0 Set Time-out Write ptr
SETUP receive reversed, RXIE
token, data interrupt or RXSTL has no
CRC or bit- effect. (2)
stuff error RXSETUP will be
{dual packet set {control
mode not endpoints only).
recom-
mended)

Received 00 1 0 0 1 1 0 Set Time-out, RXIE or RXSTL
SETUP receive NAK has no effect. (2)
token, FIFO interrupt future RXSETUP will be
error occurs Iran sac- set (control

lions endpoints only).

Received 01 0 1 0 1 0 0 Set ACK Causes FIFO to
SETUP receive reset automati-
token with interrupt cally, forcing new
FIFO error SETUP to be
already received. RXIE
existing or RXSTL has no

effect. (2)
RXSETUP will be
set {control
endpoints only).

CPU reads 00 no no no no no 1 None NAK FIFO was empty
FIFO, chg chg chg chg chg future when read.
causes FIFO Iran sac- Should always
error lions check RXFIF bits

before reading.

01/10 Received 01/10 no no 1 no no no None NAK Fl FO not ready.
OUT token, chg chg chg chg chg
but RXIE = 0

Received 01/10 no no 1 no no no None None FIFO not loaded.
OUT!oken, chg chg chg chg chg Write ptr
but timed-out reversed.
waiting for
data

Received 11 0 1 0 0 no no Set ACK Received, no
OUT token, chg chg receive errors, advance
no errors interrupt write marker.

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
3. Note: Dual-packet mode is NOT recommended for Control endpoints.

I D-13

I

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = O) (Continued)

FIF
New

RX RX RX RX
RX RX RX

USB
Event FIF OVF URF Inter- Comments

(1:0) (1 :0) ERR ACK Void Setup (1) (1) rupt Response

Received 01/10 1 0 0 0 no no Set TI me-out Write ptr
OUT token, chg chg receive reversed.
data CRC or interrupt (Possible to have
bit-stuff error RXERR cleared

by hardware
before seen by
software.)

Received 01/10 1 0 0 0 1 no Set TI me-out, Only RXOVF
OUT token, chg receive NAK FIFO error can
FIFO error interrupt future occur, requires
occurs transac- firmware inter-

tions vention.

Received 01/10 1 O(no 1 0 1 no None NAK Considered to be
OUT token (no chg) (no chg a "void"
with FIFO chg) chg) condition. Will
error already NAK until
existing software clears

condition.

Received 01/10 no no no no no no None ACK Last ACK
OUT token, chg chg chg chg chg chg corrupted, so
but data send again but
sequence ignore the data.
mismatch

Received 01/10 0 1 0 1 0 0 Set ACK Causes FIFO to
SETUP receive reset automati-
token, no interrupt cally, forcing new
errors (dual- SETUP to be
packet mode received .. RXIE
not recom- or RXSTL has no
mended) effect. (2)

RXSETUP will be
set (control
endpoints only).

Received 01/10 1 0 0 0 0 0 Set · TI me-out FIFO is reset
SETUP receive automatically,
token, but interrupt forcing new
timed-out SETUP to be
waiting for received. (2)
data

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
3. Note: Dual-packet mode is NOT recommended for Control endpoints.

0-14 I

DATA FLOW MODEL

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = O) (Continued)

FIF New RX RX RX RX RX RX RX USB Event FIF OVF URF Inter- Comments (1:0) (1 :0) ERR ACK Void Setup (1) (1) rupt Response

Received 00 1 0 0 1 0 0 Set Time-out Write ptr
SETUP receive reversed. RXIE
token, data interrupt or RXSTL has nc
CRC or bit- effect. (2)
stuff error
(dual-packet
mode not
recom-
mended)

Received 00 1 0 0 1 1 0 Set Time-out, RXIE or RXSTL
SETUP receive NAK has no effect, (2)
token, FIFO interrupt future RXSETUP will be
error occurs Iran sac- set (control

lions endpoints only).

Received 01/10 0 1 0 1 0 0 Set ACK Causes FIFO to
SETUP receive reset automati-
token with interrupt cally, forcing new
FIFO error SETUP to be
already received. (2)
existing RXSETUP will be

set (control
endpoints only).

CPU reads 00 no no no no no no None None
FIFO, sets chg chg chg chg chg chg
RXFFRC

CPU reads 01/10 no no no no no 1 None Time-out, Software should
FIFO, chg chg chg chg chg NAK check RXURF bit
causes FIFO future before writing
error. Iran sac- RXFFRC.
RXFFRC not lions
set yet.

CPU reads 00 no no no no no 1 None Time-out, Software should
FIFO, chg chg chg chg chg NAK check RXURF bit
causes FIFO future before writing
error. Set transac- RXFFRC.
RXFFRC. lions

11 Received 11 no no 1 no no no None NAK FIFO not ready,
OUT token chg chg chg chg chg so data is

ignored (CRC or
FIFO error not
possible).

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
3. Note: Dual-packet mode is NOT recommended for Control endpoints.

I D-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table D-4. Non-isochronous.Receive Data Flow in Dual-packet Mode (RXSPM = O) (Continued)

FIF New
RX RX RX RX RX ~x RX

USB
[1:0)

Event FIF
ERR ACK Void Setup

OVF URF Inter-
Response

Comments
(1 :0) (1) (1) rupt

Received 01 0 1 0 1 0 0 Set ACK Causes FIFO to
SETUP receive reset automati-
token, no interrupt cally, forcing new
errors (dual· SETUP to be
packet mode received. (2)
not recom· RXSETUP will be
mended!) set. (control

endpoints only).

Received 11 1 0 0 0 0 0 Set Time-out Fl FO is reset
SETUP receive automatically and
token, but interrupt FIFO data is
timed-out invalid. (2)
waiting for
data

Received 00 1 0 0 1 0 0 Set Time-out Write ptr
SETUP receive reversed. RXIE
token, data interrupt or RXSTL has no
CRC or bit- effect. (2)
stuff error
(dual-packet
mode not
recom-
mended).

Received 00 1 0 0 1 1 0 Set Time-out, RXIE or RXSTL
SETUP receive NAK has no effect. (2)
token, FIFO interrupt future RXSETUP will be
error (dual- transac- set (control
packet mode tions endpoints only).
not recom-
mended).

Received 01 0 1 0 1 0 0 Set ACK Causes FIFO to
SETUP receive reset automati-
token with interrupt cally, forcing new
FIFO error SETUP to be
already received. (2)
existing RXSETUP will be

set (control
endpoints only).

CPU reads 10/01 no no no no no no None None
FIFO, sets chg chg chg chg chg chg
RXFFRC

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
3. Note: Dual-packet mode is NOT recommended for Control endpoints.

D-16 I

DATA FLOW MODEL

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = D) (Continued)

FIF New RX RX RX RX RX RX RX use Event FIF OVF URF Inter- Comments (1:0) (1:0) ERR ACK Void Setup (1) (1) rupt Response

CPU reads 11 no no no no no 1 None NA Ks Software should
FIFO, chg chg chg chg chg future check RXURF bil
causes FIFO transac- before writing
error. tions FFRC
RXFFRC not
written yet.

CPU reads 10/01 no no no no no 1 None NA Ks Software should
FIFO, chg chg chg chg chg future check RXURF bil
causes FIFO transac- before writing
error. Set tions FFRC
RXFFRC.

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enablec
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
3. Note: Dual-packet mode is NOT recommended for Control endpoints.

I D-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table D-5. Isochronous Receive Data Flow In Dual-packet Mode (RXSPM = 0)

New (at next SOF) RX RX RX FIF Event RXFIF OVF URF Inter- use Comments
(1:0) (1:0) RX RX RX (1,2) (1,2) rupt Response

(2) ERR ACK Void

)0 Received OUT 00 no no 1 no no None None/ FIFO not ready,
token, but RXIE chg chg chg chg Time-out or timed-out
=0 waiting for data

packet, but no
NAKsent

Received OUT 00 no no no no no None None/ FIFO not loaded.
token, but chg chg chg chg chg Time-out
timed-out
waiting for data

Received OUT 01 0 1 0 no no None None/ Received, no
token, .no errors chg chg Time-out errors, advance

write marker

Received OUT 01 1 0 0 no no None None/ Bad data still
token, data chg chg Time-out loaded into
CRC or bit-stuff FIFO.
error

Received OUT 01 1 0 0 1 no None None/ OnlyRXOVF
token, FIFO chg Time-out FIFO error can
error occurs occur, requires

firmware, inter-
vention.

Received OUT 00 1 (no 0 (no 1 1 (no no None None/ Treated like a
token with chg) chg) chg) chg Time-out "void" condition.
FIFO error
already existing

CPU reads 00 no no no no 1 None None/ FIFO was
FIFO, causes chg chg chg chg Time-out empty when
FIFO error read. Should

always check
RXFIFbits
before reading.

'.!OTES:
I. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
~. RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF. _
RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is "incremented" by USB and "decremented" by firmware. Therefore, setting RXFFRC will
"decremenf' RXFIF immediately. However, a successful USB transaction anytime in a frame will only "incremenf'
RXFIF at SOF. ,
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated attfte end of transaction.

D-18 I

DATA FLOW MODEL

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New (at next SOF)
RX RX RX

FIF
Event

RXFIF
OVF URF Inter-

USB
Comments (1 :0) (1 :0) RX RX RX

(1,2) (1,2) rupt
Response

(2) ERR ACK Void

Receive SOF no up- up- up- up- no None None/ Flags are
indication chg/up dated dated dated dated chg (SOF Time-out updated at SOF.

dated interrupt) Software must
check for RXFIF
= 00 condition
to detect no ISO
packet received
this frame.

01/10 Received OUT 01/10 no no 1 no no None None/ FIFO not ready.
token, but RXIE chg chg chg chg Time-out
=0

Received OUT 01/10 no no no no no None None/ FIFO not loaded
token, but chg chg chg chg chg Time-out
timed-out
waiting for data

Received OUT 11 0 1 0 no no None None/ Received, no
token, no errors chg chg Time-out errors, advance

write marker.

Received OUT 11 1 0 0 no no None None/ Possible to
token, data chg chg Time-out have RXERR
CRC or bit-stuff cleared by
error hardware

before seen by
software.
Reverse write
pointer.

Received OUT 11 1 0 0 1 no None None/ Only OVF FIFO
token, FIFO chg Time-out error can occur,
error occurs requires

firmware inter-
vention.

Received OUT 01/10 no no 1 no no None None/ Treated like a
token with chg chg chg chg Time-out "void" condition.
FIFO error
already existing

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled
2. RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.
RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is "incremented" by USB and "decremented" by firmware. Therefore, setting RXFFRC will
"decrement" RXFIF immediately. However, a successful USB transaction anytime in a frame will only "increment"
RXFI F at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.

I D-19

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = O) (Continued)

New (at next SOF)
RX RX RX

FIF
Event

RXFIF
OVF URF Inter- USB

Comments (1 :0) (1 :0) RX RX RX
(1,2) (1,2) rupt

Response
(2) ERR ACK Void

CPU reads 00 no no no no no None None/
FIFO, sets chg chg chg chg chg Time-out
RX FF RC

CPU reads 00 no no no no 1 None None/ Software should
FIFO, causes chg chg chg chg Time-out check RXURF
FIFO error bit before

writing RXFFRC.

11 Received OUT 11 no no 1 no no None None/ FIFO not ready,
token chg chg chg chg Time-out but data must be

taken. This
situation should
never happen.

Received SOF no up- up- up- up- no None None/ Error condition
indication chg/ dated dated dated dated chg (SOF Time-out (not handled by

up- interrupt) hardware).
dated Software should

not allow this
condition.

CPU reads 10 or no no no no no None None/
FIFO, sets 01 chg chg chg chg chg Time-out
RXFFRC

CPU reads 11 no no no no 1 None None/ Software should
FIFO, causes chg chg chg chg Time-out check RXURF
FIFO error. bit before
RXFFRC not writing RXFFRC.
set yet.

CPU reads 10 or no no no no 1 None None/ Software should
FIFO, causes 01 chg chg chg chg Time-out check RXURF
FIFO error. Set bit before
RXFFRC. writing RXFFRC.

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.
RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USS, RXOVF is updated at SOF.
RXFIF: RXFIF is "incremented" by USB and "decremented" by firmware. Therefore, setting RXFFRC will
"decrement" RXFIF immediately. However, a successful USB transaction anytime in a frame will only "increment"
RXFI F at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.

D-20 I

infel.

Glossary

I

GLOSSARY

This glossary defines acronyms, abbreviations, and terms that have special meaning in this man­
ual. (Chapter I, "Guide to this Manual," discusses notational conventions and general terminol­
ogy.)

#Odata16

#ldata16

#data

#data16

#short

ACK

accumulator

addrll

addrl6

addr24

ALU

assert

I

A 32-bit constant that is immediately addressed in an
instruction. The upper word is filled with zeros.

A 32-bit constant that is immediately addressed in an
instruction. The upper word is filled with ones.

An 8-bit constant that is immediately addressed in an
instruction.

A 16-bit constantthat is immediately addressed in an
instruction.

A constant, equal to 1, 2, or 4, that is immediately
addressed in an instruction.

Acknowledgment. Handshake packet indicating a
positive acknowledgment.

A register or storage location that forms the result of
an arithmetic or logical operation.

An 11-bit destination address. The destination can be
anywhere in the same 2 Kbyte block of memory as the
first byte of the next instruction.

A 16-bit destination address. The destination can be
anywhere within the same 64 Kbyte region as the first
byte of the next instruction.

A 24-bit destination address. The destination can be
anywhere within the 16 Mbyte address space.

Arithmetic-logic unit. The part of the CPU that
processes arithmetic and logical operations.

The term assert refers to the act of making a signal
active (enabled). The polarity (high/low) is defined by
the signal name. Active~low signals are designated by
a pound symbol(#) suffix; active-high signals have no
suffix. To assert RD# is to drive it low; to assert ALE
is to drive it high.

Glossary-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

big endien form

binary-code compatibility

binary mode

bit

bit (operand)

bit51

bit stuffing

bulk transfer

bus enumeration

byte

clear

code memory

configuration bytes

dir8

dir16

DPTR

Glossary-2

Method of storing data that places the most significant
byte at lower storage addresses.

The ability of an 8X930Ax to execute, without
modification, binary code written for an MCS 51
microcontroller.

An operating mode, selected by a configuration bit,
that enables an 8X930Ax to execute, without
modification, binary code written for an MCS 51
microcontroller.

A binary digit.

An addressable bit in the 8X930Ax architecture.

An addressable bit in the MCS 51 architecture.

Insertion of a 'O' bit into a data stream to cause an
electrical transition on the data wires allowing a PLL
to remain locked.

Non-periodic, large, "bursty" communication
typically used for a transfer that can use any available
bandwidth and can also be delayed until bandwidth is
available.

Detecting and identifying USB devices.

Any 8-bit unit of data.

The term clear refers to the value of a bit or the act of
giving it a value. If a bit is clear, its value is "O'';
clearing a bit gives it a "O" value.

See program memory.

Bytes, residing in on-chip non-volatile memory, that
determine a set of operating parameters for the
8X930Ax.

An 8-bit direct address. This can be a memory address
or an SFR address.

A 16-bit memory address (OO:OOOOH-OO:FFFFH)
used in direct addressing.

The 16-bit data pointer. In 8X930Ax microcontrollers,
DPfR is the lower 16 bits of the 24-bit extended data
pointer, DPX.

I

DPX

deassert

doping

double word

dword

edge-triggered

encryption array

endpoint

EPROM

external address

FET

FIFO

I

GLOSSARY

The 24-bit extended data pointer in 8X930A.x
microcontrollers. See also DPTR.

The term deassert refers to the act of making a signal
inactive (disabled). The polarity (high/low) is defined
by the signal name. Active-low signals are designated
by a pound symbol(#) suffix; active-high signals have
no suffix. To deassert RD# is to drive it high; to
deassert ALE is to drive it low.

The process of introducing a periodic table Group III
or Group V element into a Group IV element (e.g.,
silicon). A Group III impurity (e.g., indium or
gallium) results in a p-type material. A Group V
impurity (e.g., arsenic or antimony) results in an n­

type material.

A 32-bit unit of data. In memory, a double word
comprises four contiguous bytes.

See double word.

The mode in which a device or component recognizes
a falling edge (high-to-low transition), a rising edge
(low-to-high transition), or a rising or falling edge of
an input signal as the assertion of that signal. See also
level-triggered.

An array of key bytes used to encrypt user code in the
on-chip code memory as that code is read; protects
against unauthorized access to user's code.

A uniquely identifiable portion of a USB device that
is the source or sink of information in a
communication flow between the host and the device.

Erasable, programmable read-only memory

A 16-bit or 17-bit address presented on the device
pins. The address decoded by an external device
depends on how many of these address bits the
external system uses. See also internal address.

Field-effect transistor.

Circular data buffer associated with an endpoint. Each
endpoint has a transmit FIFO and a receive FIFO.
Transmit FIFOs are written by the 8X930Ax CPU
then read by the FIU for transmission. Receive FIFOs

Glossary-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

FIU

function

idle mode

input leakage

integer

internal address

interrupt handler

interrupt latency

interrupt response time

interrupt service routine (ISR)

isochronous data

isochronous transfer

level-triggered

low clock mode

LSB

Glossary-4

are written by the FIU following reception then read
by the CPU.

Function Interface Unit. Manages data received and
transmitted by the USB module.

A USB device that provides a capability to the host.

The power conservation mode that freezes the core
clocks but leaves the peripheral clocks running.

Current leakage from an input pin to power or ground.

Any member of the set consisting of the positive and
negative whole numbers and zero.

The 24-bit address that the device generates. See also
external address.

The module responsible for handling interrupts that
are to be serviced by user-written interrupt service
routines.

The delay between an interrupt request and the time
when the first instruction in the interrupt service
routine begins execution.

The time delay between an interrupt request and the
resulting break in the current instruction stream.

The software routine that services an interrupt.

A stream of data whose timing is implied by its
delivery rate.

One of four USB transfer types, isochronous transfers
provide periodic, continuous communication between
host and device.

The mode in which a device or component recognizes
a high level (logic one) or a low level (logic zero) of
an input signal as the assertion of that signal. See also
edge-triggered.

The default mode upon reset, low clock mode ensures
that the Ice drawn by the 8X930Ax is less than one
unit load.

Least-significant bit of a byte or least-significant byte
ofa word.

I

maskable interrupt

MSB

multiplexed bus

n-channel FET

n-type material

nonmaskable interrupt

npn transistor

NRZI

OTPROM

p-channel FET

p-type material

PC

phase-locked loop

PLL

program memory

I

GLOSSARY

An interrupt that can be disabled (masked) by its
individual mask bit in an interrupt enable register. All
8X930Ax interrupts, except the software trap
(TRAP), are maskable.

Most-significant bit of a byte or most-significant byte
ofa word.

A bus on which the data is time-multiplexed with
(some of) the address bits.

A field-effect transistor with an n-type conducting
path (channel).

Semiconductor material with introduced impurities
(doping) causing it to have an excess of negatively
charged carriers.

An interrupt that cannot be disabled (masked). The
software trap (TRAP) is the 8X930Ax's only
nonmaskable interrupt.

A transistor consisting of one part p-type material and
two parts n-type material.

Non Return to Zero Invert. A method of encoding
serial data in which ones and zeroes are represented
by opposite and alternating high and low voltages
where there is no return to zero (reference) voltage
between encoded bits. Eliminates the need for clock
pulses.

One-time-programmable read-only memory, a version
ofEPROM.

A field-effect transistor with a p-type conducting
path.

Semiconductor material with introduced impurities
(doping) causing it to have an excess of positively
charged carriers.

Program counter.

A circuit that acts as a phase detector to keep an
oscillator in phase with an incoming frequency.

See phase-locked loop.

A part of memory where instructions can be stored for
fetching and execution.

Glossary-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

powerdown mode

PWM

rel

reserved bits

resume

RT

SIE

set

SFR

sign extension

sink current

SOF

source-code compatibility

source current

Glossary-6

The power conservation mode that freezes both the
core clocks and the peripheral clocks.

Pulse-width modulated (outputs).

A signed (two's complement) 8-bit, relative
destination address. The destination is -128 to +127
bytes relative to the first byte of the next instruction.

Register bits that are not used in this device but may
be used in future implementations. Avoid any
software dependence on these bits. In the 8X930A.x,
the value read from a reserved bit is indeterminate; do
not write a "1" to a reserved bit.

Once a device is in the suspend state, its operation can
be resumed by receiving non-idle signaling on the
bus. See also suspend.

Real-time

Serial Bus Interface Engine. Handles the
communications protocol of the USB.

The term set refers to the value of a bit or the act of
giving it a value. If a bit is set, its value is "1"; setting
a bit gives it a "1" value.

A special function register that resides in its
associated on-chip peripheral or in the 8X930A.x core.

A method for converting data to a larger format by
filling the extra bit positions with the value of the
sign. This conversion preserves the positive or
negative value of signed integers.

Current flowing into a device to ground. Always a
positive value.

Start of Frame. The SOF is the first transaction in
each frame. SOF allows endpoints to identify the start
of frame and synchronize internal endpoint clocks to
the host.

The ability of an 8X930A.x to execute re-compiled
source code written for an MCS 51 microcontroller.

Current flowing out of a device from V cc· Always a
negative value.

I

source mode

SP

SPX

state time (or state)

suspend

UART

USB

WDT

word

wraparound

I

GLOSSARY

An operating mode that is selected by a configuration
bit. In source mode, an 8X930A.x can execute re­
compiled source code written for an MCS 51
microcontroller. In source mode, the 8X930A.x cannot
execute unmodified binary code written for an MCS
51 microcontroller. See binary mode.

Stack pointer.

Extended stack pointer.

The basic time unit of the device; the combined
period of the two internal timing signals, PHI and
PH2. (The internal clock generator produces PH 1 and
PH2 by halving the frequency of the signal on
XTALl.) With a 16 MHz crystal, one state time
equals 125 ns. Because the device can operate at
many frequencies, this manual defines time
requirements in terms of state times rather than in
specific units of time.

A low current mode used when the USB bus is idle.
The 8X930A.x enters suspend when there is a constant
idle state on the bus lines for more than 3.0 msec.
When a device is in suspend state, it draws less than
500 µA from the bus. See also resume.

Universal asynchronous receiver and transmitter. A
part of the serial 1/0 port.

Universal Serial Bus. An industry-standard extension
to the PC architecture with a focus on Computer
Telephony Integration (CTI), consumer, and
productivity applications.

Watchdog timer, an internal timer that resets the
device if the software fails to operate properly.

A 16-bit unit of data. In memory, a word comprises
two contiguous bytes.

The result of interpreting an address whose
hexadecimal expression uses more bits than the
number of available address lines. Wraparound
ignores the upper address bits and directs access to the
value expressed by the lower bits.

Glossary-7

Index

I

#Odatal6, A-3
#ldatal6, A-3
#data

definition, A-3
#datal6, A-3
#short, A-3
8X930Ax, 1-1

block diagram, 2-2

A
A15:8, 9-1

description, 15-2
A16

description, 15-2
AC flag, 5-17, 5-18
ACALL instruction, 5-14, A-24, A-26
ACC, 3-12, 3-17, C-2, C-6
Accumulator, 3-14

in register file, 3-12
AD7:0, 9-1

description, 15-2
ADD instruction, 5-8, A-14
ADDC instruction, 5-8, A-14
addrll, 5-12, A-3
addr16, 5-12, A-3
addr24, 5-12, A-3
Address spaces, See Memory space, SFRs, Register

file, External memory, Compatibility
Addresses

internal vs external, 4-10
Addressing modes, 3-5, 5-4

See also Data instructions, Bit instructions,
Control instructions

AJMP instruction, 5-14, A-24
ALE

caution, 13-6
description, 15-2
extended, 4-11
following reset, 13-6
idle mode, 14-5

ANL instruction, 5-9, 5-10
for bits, A-23

ANL/ instruction, 5-10
for bits, A-23

I

INDEX
Arithmetic instructions, 5-8, 5-9

table of, A-14, A-15, A-16

B
B register, 3-14, C-6

as SFR, 3-17, C-2
in register file, 3-12

Base address, 5-4
Baud rate, See Serial 110 port, Timer I, Timer 2
Big endien form, 5-2
Binary and source modes, 2-4, 4-12-4-13, 5-1

opcode maps, 4-12
selection guidelines, 4-12

Bit address
addressing modes, 5-11
definition, A-3
examples, 5-10

Bit instructions, 5-10-5-11
addressing modes, 5-4, 5-10

bit51, 5-10, A-3
Broadcast address, See Serial 110 port
Bulletin board service (BBS), 1-7, 1-9
Bus cycles

See External bus cycles

c
Call instructions, 5-14
Capacitors

bypass, 13-2
CCAP1H-CCAP4H, CCAP1L-CCAP4L, 3-20,

C-5, C-7
CCAPMl-4, 3-20, 11-15, C-5, C-8

interrupts, 6-6
CCON, 3-20, 11-14, C-5, C-9
CEX4:0, 9-1
CH, CL, 3-20, C-5, C-9
CJNE instruction, A-25
Clock, 2-7

external, 2-7, 13-3
idle and powerdown modes, 14-5
idle mode, 14-5
on-chip crystal, 2-7
on-chip PLL, 2-7
PLLSEL2:0, 2-8, 13-1

lndex-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

powerdown mode, 14-6, 14-7
sources, 13-2
USB rates (table), 2-8, B-6

CLR instruction, 5-9, 5-10, A-17, A-23
CMOD, 3-20, 11-13, C-5, C-10

interrupts, 6-6
CMP instruction, 5-8, 5-13, A-15
Code constants, 4-14
Code fetches

external, 15-1, 15-6
internal, 15-6
page hit and page miss, 15-6
page mode, 15-6

Code memory
MCS 51 architecture, 3-3
See also On-chip code memory, External code

memory
Compatibility (MCS 251 and MCS 51

architectures), 3-2-3-5
address spaces, 3-2, 3-4
external memory, 3-5
instruction set, 5-1
SFR space, 3-5
See also Binary and source modes

CompuServe, 1-7
Configuration

array, 4-1
external, 4-3
on-chip, 4-2

bits, 4-4
external memory, 4-7
overview, 4-1
wait state, 4-11

Configuration bytes
bus cycles, 15-15
UCONFIGO, 4-1
UCONFIGO (table), 4-5
UCONFIGl, 4-1
UCONFIGl (table), 4-6
verifying, 16-1

Control instructions, 5-11-5-15
addressing modes, 5-11, 5-13
table of, A-24

Core, 2-6
SFRs, 3-17, C-2

CPL instruction, 5-9, 5-10, A-17, A-23
CPU, 2-6

block diagram, 2-6

lndex-2

Crystal
on-chip oscillator, 13-2

CY flag, 5-17, 5-18

D
DA instruction, A-16
Data instructions, 5-4-5-10

addressing modes, 5-4
Data Pointer, C-2
Data pointer, See DPH, DPL, DPTR, DPX, DPXL
Data transfer instructions, 5-9-5-10

table of, A-22
See also Move instructions

Data types, 5-2
Datasheets

onWWW, 1-7
DEC instruction, 5-8, A-15
Destination register, 5-3
dirl6, A-3
dir8, A-3
Direct addressing, 5-4

in control instructions, 5-12
Displacement addressing, 5-4, 5-7
DIV instruction, 5-8, A-16
Division, 5-8
DJNZ instruction, A-25
Documents

ordering, 1-7
related, 1-5

DPH, DPL, 3-14, C-11
asSFRs, 3-17,C-2

DPTR, 3-14
in jump instruction, 5-12

DPX, 3-5, 3-12, 3-14, 5-4
DPXL, 3-14, C-12

asSFR, 3-17,C-2
external data memory mapping, 3-5, 5-4, 5-9
reset value, 3-5

E
EA#, 3-8

description, 15-2
ECALL instruction, 5-14, A-24
ECI, 9-1
EJMP instruction, 5-14, A-24
EMAP# bit, 3-9, 4-14
Encryption, 16-1

I

Encryption array, 16-1
key bytes, 16-5

EPCON, 7-6, C-12
EPINDEX, 7-5, C-14
ERET instruction, 5-14, A-24
Escape prefix (ASH), 4-12
Extended ALE, A-1, A-11
Extended stack pointer, See SPX
External address lines

number of, 4-8
See also External bus

External bus
inactive, 15-3
pin status, 15-15, 15-16
structure in page mode, nonpage mode, 15-6

External bus cycles, 15-3-15-16
definitions, 15-3
extended ALE wait state, 15-10
extended RD#/WR#/PSEN# wait state, 15-8
nonpage mode, 15-3, 15-5
page mode, 15-6-15-8
page-hit vs page-miss, 15-6
Real-time wait states, 15-8

External code memory
example, 15-20, 15-30
idle mode, 14-5
powerdown mode, 14-6

External memory, 3-9
design examples, 15-17-15-30
MCS 51 architecture, 3-2, 3-4, 3-5

External memory interface
configuring, 4-7-4-14
signals, 15-3

External RAM
example, 15-26
exiting idle mode, 14-6

F
FO flag, 5-17
FADDR, 7-13, C-14
FaxBack service, 1-7, 1-8
FIE, 6-3, 6-7, C-15
FIFLG, 6-3, 6-9, C-16
Flash memory

example, 15-18, 15-20, 15-30
Frame Timer, 6-9

I

G
Given address, See Serial 110 port
Global resume interrupt, 6-10
Global suspend interrupt, 6-10

H
Hardware

application notes, 1-6
Help desk, 1-7

I/O ports, 9-1-9-7
external memory access, 9-6, 9-7
latches, 9-2
loading, 9-6
pullups, 9-5
quasi-bidirectional, 9-5
SFRs, 3-15
See also Ports 0-3

Idle mode, 2-6, 14-1, 14-5
entering, 14-5
exiting, 13-5, 14-5
external bus, 15-3

INDEX

IENO, 3-17,6-3,6-6,6-11,6-21, 12-11, 14-7,C-2,
C-17

IENl, 3-17, 6-3, 6-12, 6-21, C-2, C-18
Immediate addressing, 5-4
INC instruction, 5-8, A-15
Indirect addressing, 5-4

in control instructions, 5-12
in data instructions, 5-6

Instruction set
MCS 251 architecture, A-l-A-138
MCS 51 architecture, 5-1

Instructions
arithmetic, 5-8
bit, 5-10
data, 5-4
data transfer, 5-9
logical, 5-9

INTl:O#, 6-1, 9-1, 10-1, 10-2
pulse width measurements, 10-11

Intel Architecture Labs, 1-8
Interrupt request, 6-1

cleared by hardware, 6-4, 6-5
Interrupt service routine

exiting idle mode, 14-5

lndex-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

exiting powerdown mode, 14-7
Interrupts, 6-1-6-22

blocking conditions, 6-21
detection, 6-4
edge-triggered, 6-4, 6-5
enable/disable, 6-11
exiting idle mode, 14-5
exiting powerdown mode, 14-7
external (INTl:O#), 6-1, 6-3, 6-18, 14-7
global enable, 6-11
global resume (GRSM), 14-3, 14-6
global suspend (GSUS), 14-3, 14-6
instruction completion time, 6-17
latency, 6-16-6-20
level-triggered, 6-4, 6-5
PCA, 6-5
polling, 6-16, 6-17
priority, 6-1, 6-3, 6-4, 6-5, 6-13-6-15
priority within level, 6-13
processing, 6-16-6-22
request, See Interrupt request
response time, 6-16, 6-17
sampling, 6-4, 6-17
serial port, 6-6
service routine (ISR), 6-4, 6-5, 6-16, 6-21, 6-

22
sources, 6-3
timer/counters, 6-5
vector cycle, 6-21
vectors, 3-3, 6-4, 6-5

INTR bit
and RETI instruction, 4-14, 5-15

IPHO, 3-17, 6-3, 6-14, 6-21, C-2, C-19
bit definitions, 6-13

IPHl, 3-17, 6-3, 6-15, 6-21, C-2, C-21
bit definitions, 6-13

IPLO, 3-17, 6-3, 6-14, 6-21, C-2, C-20
bit definitions, 6-13

IPL!, 3-17, 6-3, 6-15, C-2, C-22
bit definitions, 6-13

Isochronous RX dataflow
Dual-packet mode, D-18

Isochronous TX dataflow
Dual-packet mode, D-5

ISR, See Interrupts, service routine

lndex-4

J
JB instruction, 5-13, A-24
JBC instruction, 5-13, A-24
JC instruction, A-24
JE instruction, A-24
JG instruction, A-24
JLE instruction, A-24
JMP instruction, A-24
JNB instruction, 5-13, A-24
JNC instruction, A-24
JNE instruction, A-24
JNZ instruction, A-24
JSG instruction, A-25
JSGE instruction, A-25
JSL instruction, A-24
JSLE instruction, A-25
Jump instructions

bit-conditional, 5-13
compare-conditional, 5-13, 5-14
unconditional, 5-14

JZ instruction, A-24

K
Key bytes, See Encryption array

L
Latency, 6-16
LCALL instruction, 5-14, A-24
LJMP instruction, 5-14, A-24
Lock bits

protection types, 16-5
verifying, 16-1

Logical instructions, 5-9
table of, A-17

Low clock mode, 14-1, 14-8
entering, 14-8
exiting, 14-9

M
MCS 251 microcontroller

core, 2-6
Memory space, 2-5, 3-1, 3-5-3-9

compatibility, See Compatibility (MCS 251
and MCS 51 architectures)

regions, 3-2, 3-5
reserved locations, 3-5

I

Miller effect, 13-3
MOV instruction, A-19, A-20, A-21

for bits, 5-10, A-23
MOVC instruction, 3-2, 5-9, A-21
Move instructions

table of, A-19
MOVH instruction, 5-9, A-21
MOVS instruction, 5-9, A-21
MOVX instruction, 3-2, 5-9, A-21
MOVZ instruction, 5-9, A-21
MUL instruction, 5-8
Multiplication, 5-8

N
N flag, 5-9, 5-18
Noise reduction, 13-2, 13-3
Non-isochronous RX dataflow

Dual-packet mode, D-11
Single-packet mode, D-8

Non-isochronous TX dataflow, D-1
Nonpage mode

bus cycles, See External bus cycles, Nonpage
mode

bus structure, 15-3
configuration, 4-7
design example, 15-22, 15-26
port pin status, 15-16

Nonvolatile memory
verifying, 16-1-16-6

NOP instruction, 5-14, A-25

0
On-chip code memory, 15-8

accessing in data memory, 4-14
accessing in region 00:, 3-9
idle mode, 14-5
setup for verifying, 16-3-16-4
starting address, 3-8, 16-1
top eight bytes, 3-8, 4-1, 16-2
verifying, 16-1

On-chip oscillator
hardware setup, 13-1

On-chip RAM, 3-8

I

bit addressable, 3-8, 5-11
bit addressable in MCS 51 architecture, 5-11
idle mode, 14-5
MCS 51 architecture, 3-2, 3-4

reset, 13-6
ONCE mode, 14-1

entering, 14-9
exiting, 14-9

Opcodes

INDEX

for binary and source modes, 4-12, 5-1
map, A-4

binary mode, 4-13
source mode, 4-13

See also Binary and source modes
ORL instruction, 5-9, 5-10

for bits, A-23
ORL/ instruction, 5-10

for bits, A-23
Oscillator

at startup, 13-6
ceramic resonator, 13-3
during reset, 13-4
on-chip crystal, 2-7, 13-2
on-chip PLL, 2-7
ONCE mode, 14-9
powerdown mode, 14-6, 14-7
verifying nonvolatile memory, 16-3

ov bit, 5-17, 5-18
Overflow See OV bit

p
Pbit, 5-17
PO, 3-19, 9-2, C-2, C-22
Pl, 3-19, 9-2, C-2, C-23
P2, 3-19, 9-2, C-2, C-23
P3, 3-19, 9-2, C-2, C-24
Page mode, 2-6

address access time, 15-6
bus cycles, See External bus cycles, page

mode
configuration, 4-7
design example, 15-20, 15-29
port pin status, 15-16

PAGE# bit, 4-7
Parity See P bit
PCA

compare/capture modules, 11-1
idle mode, 14-5
pulse width modulation, 11-10
SFRs, 3-20, C-5
timer/counter, 11-1

lndex-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

watchdog timer, 11-1, 11-9
PCON, 3-17, 12-7, 14-2, 14-5, 14-6, C-2, C-25

idle mode, 14-5
powerdown mode, 14-7
reset, 13-5

PCONl, 3-17, 14-3, 14-6, C-2, C·26
Peripheral cycle, 2-7
Phase 1 and phase 2, 2-7
Phone numbers, customer support, 1-7
Pin conditions, 14-4
Pins

unused inputs, 13-2
Pipeline, 2-7
POP instruction, 3-14, 5-10, A-22
Port 0, 9-2

and top of on-chip code memory, 16-2
pullups, 9-7
structure, 9-3
See also External bus

Port 1, 9-2
structure, 9-3

Port 2, 9-2
and top of on-chip code memory, 16-2
structure, 9-4
See also External bus

Port 3, 9-2
structure, 9-3

Ports
at power on, 13-6
exiting idle mode, 14-6
exiting powerdown mode, 14-6
extended execution times, 5-1, A-1, A-11
verifying nonvolatile memory, 16-3, 16-4

Power supply, 13-2
Powerdown mode, 2-6, 14-1, 14-6-14-7

accidental entry, 14-5
entering, 14-7
exiting, 13-5, 14-7
external bus, 15-3

Program status word See PSW, PSWJ
PSEN#

caution, 13-6
description, 15-2
idle mode, 14-5
regions for asserting, 4-8

PSW, 5-17, A-26
PSW, PSWl, 3-17, 5-15-5-16, C-2, C-27, C-28

conditionaljumps, 5-13

lndex-6

effects of instructions on flags, 5-16
PSWl, 5-18, A-26, C-2
Pull ups, 9-7

ports 1, 2, 3, 9-5
Pulse width measurements, 10-11
PUSH instruction, 3-14, 5-10, A-22

R
RCAP2H, RCAP2L, 3-19, 10-4, 12-12, C-4, C-29
RD#, 9-1

described, 15-2
regions for asserting, 4-8

RD 1 :0 configuration bits, 4-8
Read-modify-write instructions, 9-2, 9-4
Real-time wait states, 15-11
Register addressing, 5-4, 5-5
Register banks, 3-2, 3-9

accessing in memory address space, 5-4
implementation, 3-9, 3-12
MCS 51 architecture, 3-2
selection bits (RSl:O), 5-17, 5-18

Register file, 2-7, 3-1, 3-5, 3-9-3-14
address space, 3-2
addressing locations in, 3-12
and reset, 13-6
MGS 51 architecture, 3-4
naming registers, 3-12
register types, 3-12

Registers, See Register addressing, Register banks,
Register file ·

rel, A-3
Relative addressing, 5-4, 5-12
Reset, 13-4-13-7

cold start, 13-5, 14-1
entering ONCE mode, 14-9
exiting idle mode, 14-5
exiting powerdown mode, 14-7
externally initiated, 13-5
need for, 13-6
operation, 13-6
power-on reset, 13-1, 13-6
timing sequence, 13-6, 13-7
USB initiated, 13-5
warm start, 13-5, 14-1
WDT initiated, 13-5

RET instruction, 5-14, A-24
RETI instruction, 5-15, 6-1, 6-21, 6-22, A-24

I

Return instructions, 5-14
RL instruction, A-17
RLC instruction, A-17
Rotate instructions, 5-9
RR instruction, A-17
RRC instruction, A-17
RST, 13-5, 13-6, B-4

ONCE mode, 14-9
See Reset

RTWCE (Real-time WAIT CLOCK Enable) Bit,
15-12

RTWE (Real-time WAIT# Enable) Control Bit,
15-12

RXCNTH, 7-28, C-30
RXCNTL, 7-28, C-30
RXCON, 7-29, C-31
RXD, 9-1, 12-1

mode 0, 12-2
modes 1, 2, 3, 12-7

RXDAT, 7-27, C-33
RXFLG, 7-31, C-34
RXSTAT, 7-10, C-36

s
SADDR, 3-19, 12-2, 12-8, 12-9, 12-10, C-3, C-38
SADEN, 3-19, 12-2, 12-8, 12-9, 12-10, C-3, C-38
SBUF, 3-19, 12-2, 12-3, C-3, C-38
SCON, 3-19, 12-2, 12-3, 12-4, 12-7, C-3, C-39

bit definitions, 12-1
interrupts, 6-6

Security, 16-1
Serial Bus Interface Engine, 7-1
Serial 1/0 port, 12-1-12-13

I

asynchronous modes, 12-7
automatic address recognition, 12-8-12-10
baud rate generator, 10-7
baud rate, mode 0, 12-2, 12-10
baud rate, modes 1,2,3, 12-7, 12-11-12-13
broadcast address, 12-9
data frame, modes 1, 2, 3, 12-7
framing bit error detection, 12-7
full-duplex, 12-7
given address, 12-8
half-duplex, 12-2
interrupts, 12-1, 12-8
mode 0, 12-2-12-3
modes 1, 2, 3, 12-7

multiprocessor communication, 12-8
SFRs, 3-19, 12-2, C-3
synchronous mode, 12-2
timer 1 baud rate, 12-11, 12-12
timer 2 baud rate, 12-12-12-13
timing, mode 0, 12-6

SETB instruction, 5-10, A-23
SFRs

accessing, 3-15
address space, 3-1, 3-2
idle mode, 14-5
MCS 51 architecture, 3-4
powerdown mode, 14-6
reset initialization, 13-6
reset values, 3-15
tables of, 3-15
unimplemented, 3-15

Shift instruction, 5-9
Signature bytes

values, 16-6
verifying, 16-1, 16-6

SJMP instruction, 5-14, A-24
SLL instruction, 5-9, A-17
SOF# pin, 6-10
SOFH, 7-12, C-41
SOFL, 7-13, C-42
Software

application notes, 1-6
Solutions OEM, 1-8
Source register, 5-3
SP, 3-14, 3-17, C-2, C-42
Special function registers See SFRs
SPH, 3-14, 3-17, C-2, C-43
SPX, 3-12, 3-14
SRA instruction, 5-9, A-18
SRL instruction, 5-9, A-18
State time, 2-7
SUB instruction, 5-8, A-14
SUBB instruction, 5-8, A-14
SWAP instruction, 5-9, A-18

T
Tl:O, 9-1, 10-2
T2, 9-1, 10-2

INDEX

T2CON, 3-19, 10-1, 10-4, 10-11, 10-18, 12-13, C-
4, C-44

baud rate generator, 12-12

lndex-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'S MANUAL

T2EX, 9-1, 10-2, 10-12, 12-12
T2MOD, 3-19, 10-1, 10-4, 10-11, 10-17,C-4,C-45
Target address, 5-4
TCON, 3-19, 10-1, 10-4, 10-6, 10-9, C-4, C-46

interrupts, 6-1
Tech support, 1-7
TH2, TL2

baud rate generator; 12-12, 12-13
THx, TLx (x= 0, 1, 2), 3cl9, 10-4, C-4, C-48, C-49
Timer 0, 10-4-10-9

applications, 10-10
auto-reload, 10-5
interrupt, 10-4
mode 0, 10-4 ·
mode 1, 10-5
mode 2, 10-5
mode 3, 10-6
pulse width measurements, 10-11

Timer 1
applications, 10-10
auto-reload, 10-10
baud rate generator, 10-6 ·
interrupt, 10-6
mode 0, 10-7
model, 10-7
mode 2, 10-10
mode 3, 10-10
pulse width measurements, 10-11

Timer 2, 10-11-10-18
auto-reload mode, 10-13
baud rate generator, 10-15
capture mode, 10-12
clock out mode, 10-15
interrupt, 10-12
.mode select, 10-16

Timer/counters, 10-1-10-18
external input sampling, 10-2
internal clock, 10-1
interrupts, 10-1
overview, 10-1-10-2
registers, 10-4
SFRs, 3-19, C-4
signal descriptions, 10-2
See also Timer 0, Timer 1, Timer 2

TMOD, 3-19, 10-1, 10-4, 10-6, 10-8, 12-11, C-4,
C-47

Tosc, 2-9
TRAP instruction, 5-15, 6-3, 6-11, 6-22, A-25

lndex-8

TXCNTH, 7-19, C-50
TXCNTL, 7-19, C-50
TXCON, 7-20, C-51
TXD, 9-1, 12-1

mode 0, 12-2
modes 1, 2, 3, 12-7

. TXFLG, 7-22, C-54
TXSTAT, 7-8, C-56

u
UART, 12-1
UCONFIGl:O

See Configuration bytes
UD flag, 5-17
USB

configuration descriptor, 8-2
device descriptor, 8-2
function ·

suspend and resume, 14-1
function operations

post-receive, 8-9
post-transmit, 8-6
pre-transmit, 8-5
receive, 8-8
transmit, 8-3

function resume interrupt, 6-10
function routines

overview, 8-1
receive, 8-2
receive SOF, 8-1, 8-14
setup, 8-1, 8-12
transmit, 8-2

globalresume, 14-8
global suspend, 14-6
idle state, 8-1, 8-2
Interrupts

Any SOF, 6-5
Function, 6-5, 6-6-6-9
Function resume, 6-10
Global suspend/resume, 6-5, 6-10
Start-of-Frame, 6-9-6-10

module, 2-3, 2-10
block diagram, 2-3

power control, 14-6
powerdown, 14-6
programming models, 8-1
remote wake-up, 14-8

I

Transaction dataflow model, 7-1, D-1
unenumerated state, 8-1, 8-2

USB FIFO Information

v

Receive, 7-24
RXFLG, 7-31, C-34
scooping, 7-24
write marker, 7-24, 8-8
write pointer, 7-24, 8-8

Transmit
Capacities, 7-4
Data Set Management, 7-1 7
Data/Byte Count Registers, 7-15
read marker, 7-14
read pointer, 7-14, 8-3
TransmitFIFO, 7-14
TXCNTUTXCNTH, 7-15
write pointer, 8-3

Vee, 13-2
during reset, 13-4
power off flag, 14-1
power-on reset, 13-6
powerdown mode, 14-7

Verifying nonvolatile memory, 16-1
Vss, 13-2

w
Wait state, 5-1, A-1, A-11

configuration bits, 4-11
extended ALE, 4-11
RD#/WR#/PSEN#, 4-11

WAIT# (Wait State) Input, 15-2
Watchdogtimer(hardware), 10-1, 10-17, 10-19

enabling, disabling, 10-17
in idle mode, 10-19
in powerdown mode, 10-19
initiated reset, 13-5
overflow, 10-1 7
SFR (WDTRST), 3-19, 10-4, C-4

Watchdog Timer (PCA), 11-1, 11-9
WCLK (Wait Clock) Output, 15-2
WCON (Real-time wait state control), 15-11
WDTRST, 3-19, 10-4, 10-17, C-4, C-57
World Wide Web, 1-7
WR#, 9-1

described, 15-2

I

x
XALE# bit, 4-11
XCH instruction, 5-9, A-22
XCHD instruction, 5-9, A-22
XRL instruction, 5-9
XTALl, XTAL2, 13-2

capacitance loading, 13-3

z
Z flag, 5-9, 5-18

INDEX

lndex-9

infel.

United States
Intel Corporation
2200 Mission College Boulevard
P.O. Box 58119
Santa Clara, CA 95052-8119

Japan
Intel Japan K.K.
5-6 Tokodai
Tsukuba-shi
Ibaraki-ken, 300-26

France
Intel Corporation (IPA)
1 Qai de Grenelle
BP 543
75725 Paris Cedex 15

United Kingdom
Intel Corporation (U.K.) Ltd.
Pipers Way
Swindon, SN3 lRJ Wiltshire
England·

Germany
Intel GmbH
Dornacher Strasse 1
D-85622 Feldkirchen bei Muenchen

Hong Kong
Intel Semiconductor Ltd.
32/F, Two Pacific Place
88 Queensway, Central

Canada
Intel Semiconductor of Canada, Ltd.
190 Attwell Drive, Suite 500
Rexdale, Ontario M9W 6H8

Order Number 272921-00 I
Printed in USA/USB96-893 l 73/896 2.SKIBC HLS

0 Printed on Recycled Material

