icrocontroller User’s Manual

8X930Ax Universal Serial Bus

M

=.n¢ .- 8X930Ax Universal Serial Bus Microcontroller User’s Manual

8X930Ax

Universal Serial Bus
Microcontroller
User’s Manual

July 1996

intel.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or oth-
erwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel retains the right to make changes to specifications and product descriptions at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
*Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION, July 1996

intgl.

CHAPTER 1
GUIDE TO THIS MANUAL
1.1 MANUAL CONTENTS
1.2
1.3
1.3.1
1.3.2
1.4
1.4.1
1.4.2
1.4.3
1.4.4

Data Sheet .
Application Notes

CompuServe Forums .
FaxBack Service . "
Bulletin Board System (BBS)

CHAPTER 2
INTRODUCTION
2.1
2.1.1
2.2
2.2.1
222
223
2.3
2.4
2.5
25.1
252
253
2.6

8X930Ax Features

CPU .
Clock and Reset Umt

ON-CHIP MEMORY
UNIVERSAL SERIAL BUS MODULE
ON-CHIP PERIPHERALS...

Programmable Counter Array (PCA)
Serial I/0 Port

CHAPTER 3
MEMORY PARTITIONS
3.1 ADDRESS SPACES FOR 8X930Ax
3.1.1
3.2
3.2.1
322
3.2.2.1
323
3.3
3.4
3.4.1
3.4.141
34.1.2

8X930Ax MEMORY SPACE

On-chip Code Memory ..

8X930Ax REGISTER FILE

Dedicated Registers

NOTATIONAL CONVENTIONS AND TERMINOLOGY
RELATED DOCUMENTS ..ottt e e e e

APPLICATION SUPPORT SERVICES
WO WIdE WED ...ttt ettt et st se e s e e et st be e s e s e saabanens

MCS 251 MICROCONTROLLER CORE

INtErruUPt HaNGIEKcooiiei e e ettt e s te e e e e s en

Timer/Counters and Watchdog Tlmer

OPERATING CONDITIONS ...ttt ettt e s s e e e e e

Compatibility with the MCS® 51 Architecture

On-chip General-purpose Data BAMcccooiiiiiiii et e e

BYTE, WORD, AND DWORD REGISTERS.......cccccitiiiiririe et e s e
Accumulator and B RegiSterccuiviiiiiiiiiieniieirie et s
Extended Data Pointer, DPX ...t st e e ee e e e e enan e aes

CONTENTS

1-9

...3-8

Accessing On-chip Code Memory in Reglon 00 .. 3-9
EXErNaAl MEMOIY ...covi ittt et e e e s an e e

3-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL ln‘bl®

3.4.1.3 Extended Stack POINEE, SPXoeeoveeeeeeeeeeeeesesseeeeseesceseseesseesesssensesteneeneeeenns 314

3.5 SPECIAL FUNCTION REGISTERS (SFRS)cccccevcimiiiinirienceine e e 3-15
CHAPTER 4
DEVICE CONFIGURATION
4.1 CONFIGURATION OVERVIEWcuoiiiiiiiieeiineiiner et et e e er e e e snesnnenss s 41
4.2 DEVICE CONFIGURATION ..ottt ettt st e sr s et b e s asbes s s i sane s 4-1
4.3 THE CONFIGURATION BITS.... ..ottt sttt s e 4-4
4.4 CONFIGURING THE EXTERNAL MEMORY INTERFACE.......c..ccooiniiniiiiinciirieinns 4-7
441 Page Mode and Nonpage Mode (PAGE#)ccccccvviniinninnniinicci e 4-7
4.4.2 Configuration Bits RD1:0cccecouiiiiiiiiiiiic s s 4-8
4421 RD1:0 =00 (18 External Address BitS)c.ccccvviriiiiniiinnnnic e s 4-10
4.42.2 RD1:0=01 (17 External Address BitS)c.ccoeeeiiniiicniiiiininiii e, 4-10
4.42.3 RD1:0=10 (16 External Address BitS)cocevvinmiicnniiiiiiiiciieccce e, 4-10
4424 RD1:0 =11 (Compatible with MCS 51 Microcontrollers)ccecenverennecnrinnnne 4-11
4.4.3 Wait State Configuration Bits . rrrerrrere e sensses e s nne e 4211
4.43.1 Configuration Bits WSA1 0# WSB1 O# ... 4-11
4.4.3.2 Configuration Bit XALE# ..ot 4-11
45 OPCODE CONFIGURATIONS (SRC)....ccccsitiriiiiniie e e 4-12
4.5.1 Selecting Binary Mode or Source Mode .. e 4212
4.6 MAPPING ON-CHIP CODE MEMORY TO DATA MEMORY (EMAP#) 4-14
47 INTERRUPT MODE (INTRY) ...cutiiiiiestiniiet sttt s e s s s 4-14
CHAPTER 5
INSTRUCTIONS AND ADDRESSING
5.1 SOURCE MODE OR BINARY MODE OPCODES.........ccccooiniiinrninecsie e 5-1
5.2 PROGRAMMING FEATURES OF THE 8X930Ax ARCHITECTURE.............ccceeevenn. 51
5.2.1 (D= e B Y/ o= T 5-2
5.2.1.1 Order of Byté Storage for Words and Double Wordscccccceeviviiinennninccinnn i 5-2
5.2.2 Register Notationccccccoiiiiiiiiiiii i e s 5-2
5.2.3 Address Notationccccciiiiiiiiiiiiiiic e 5-2
5.2.4 AdAressing MOUESc..oicuiiririiiiciii et e e e 5-4
5.3 DATA INSTRUCTIONS ..ottt s s s e s sr e s 5-4
5.3.1 Data Addressing MOdEsSicccviii i e s 5-4
5.3.1.1 Register AddreSSsingcccovueiviiiiiiiiii s e e 5-5
5.3.1.2 IMMEAIAtE ..ceoeiiiiieeie e e e e 5-5
LI T T T B 11 =T PSP 5-5
5.3.1.4 INAIrECL ...oeeiiiiiieis et e e e s e 0 D70
5.3.1.5 Displacementccoiiuiiiiiiiiinieinir e e e e 5-7
5.3.2 Arithmetic INStrUCHIONSc.cciiiiiiiinic i 5-8
5.3.3 Logical INStrUCIONSc.occeuiiiiiiiiciii i e 5-9
5.3.4 Data Transfer INSrUCHONScccovviiiiiiiiiiini e e e 5-9
5.4 BIT INSTRUCTIONS ...ttt et e s et e e e s s 5-10
5.4.1 11 o [o [(=Tt T I T PTIN 5-10

|nte|® CONTENTS

5.5 CONTROL INSTRUCTIONS .. PP PPUPPTPUPPRUPPPRUPPRPRRR - 2% I
5.5.1 Addressing Modes for Control lnstructlons ... 5-12
5.5.2 Conditional JUMPScuiiiiieiiiee ettt ettt st e sa e e e sas e naraae e aa 5-13
5.5.3 UNconditional JUMPSuueuiiiiiiiiiisiieeieiessesiee et ee s seesas e sas e aassenean e snaesassnaee e e ene 5-14
5.5.4 Calls and REIUIMSccccuiiiiiiiiiiieieeeee ettt et et eeraeaes et s saeessreae s e 5-14

5.6 PROGRAM STATUS WORDSccccoiiiiiiicne it s snssenene. 9215

CHAPTER 6
INTERRUPT SYSTEM
6.2 8X930Ax INTERRUPT SOURCES .. 6-3
6.2.1 External INTerruPLScc.oi it e e e e e e s 6-3
6.2.2 Timer Interrupts .. SO RPUPRTUPRPPNY ¢ oo
6.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERHUPT .. 6-5

6.4 SERIAL PORT INTERRUPT......ccccott ittt sttt s sreesse e st s s e annens O-0
6.5 USB INTERRUPTS. ...ttt ettt e e s es st et et et crses e sreen e nr srens st e ennn s B0
6.5.1 USB FUNCHON INTEITUPE ...ccveiiiiiiieeieie ettt et e s e s a0 076
6.5.2 USB Start of Frame INterruptcccoveeeeiicniieiicceii e ese e e . 029
6.5.3 USB Global Suspend/Resume Interruptc.cccemueiierisenmnnsnnnnicieesensneevenenee . 6-10

6.5.3.1 GIODAl SUSPENGoooeviiiiiiee ettt et e e et eeae e srn e s e 6-10
6.5.3.2 GIlObal RESUMEccuoiiuiiiiiieiiiei et et ettt et st e b et s anaen e 6-10
6.5.3.3 USB Remote WaKe-UPcccccrruiermriieinriiirieceiee e srssssn e srnessnesves e senne s 0210
6.6 INTERRUPT ENABLE ...ttt sttt ettt et sttt e s st na e sre e 6-11
6.7 INTERRUPT PRIORITIEScctiitiietireiere ettt e st sre s e s s e sresre s 6-13
6.8 INTERRUPT PROCESSINGcoitieieiie ettt sttt esree e e ser e s s 6-16
6.8.1 Minimum Fixed INterrupt TiMecccoioiiiiiiieic et e 6-17
6.8.2 Variable Interrupt Parametersccccccoeiiiiiiin i s 6-17
6.8.2.1 Response Time Variablesccccceciiiimieirinin ittt s e 6-17
6.8.2.2 Computation of Worst-case Latency With Variablesccccccvecvniininninnnnnnne 6-19
6.8.2.3 Latency CalCulationsc.coiiiiirir ittt et et ee e 6-20
6.8.2.4 BIOcking CONAItIONScccciiiiiiiie it e st 6-21
6.8.2.5 Interrupt VECLOr CYCIEooocuiiiiiiiece e e e e 6-21
6.8.3 ISRS IN PrOCESScceiiiiiceiiieiiciin et st sttt e s e s e s b e e 6-22
CHAPTER 7
UNIVERSAL SERIAL BUS
71 USB FUNCTION INTERFACE..........cciiii ettt ser e essne e sannsnne e 121
7141 Serial Bus Interface ENgine (SIE)ccccviieiiiiiin ittt e s s 7-1
7.1.2 Function Interface Unit (FIU)cccooeiiiiiiiieeeee e e e s 7-1
7.1.3 Special Function Registers (SFRS)cccoieiiiiniiniinci i 7-2
7.1.4 USB FUNCHON FIFO’S ...ttt ettt et s eea e s e sre et sn e sr e s 7-4
715 The FIU SFR St ...ttt e st s st ettt en e enaenes 7-4
7.2 TRANSMIT FIFOS ...ttt sttt vttt e r s st s ehe s e s se e s re s en e enee e 7-14
7.21 Transmit FIFO OVEIVIEWc..ooviiriiiieiniieeiee sttt s st st s e e sne e seseeenae s 7-14

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

7.2.2 Transmit FIFO REQISIErS ...c..ccuiiiiiiiiiii ettt e et e e e 7-15
7.2.3 Transmit Data Register (TXDAT) ...coociiiiiiiiniini it 7-15
7.2.4 Transmit Byte Count Registers (TXCNTL/TXCNTH)ccovviivininncnicnsiiicienins 7-15
7.2.5 Transmit Data Set Management ... e 7-17
7.3 RECEIVE FIFOS ottt sttt st st e e sttt st et s sre s 7-24
7.3.1 Receive FIFO OVEIVIBWccoiviiiiiiiii ittt s s st e 7-24
7.3.2 Receive FIFO REQISTEIScoccuuiiiiii ittt ettt et s s e e e snae s sanns 7-25
7.3.2.1 Receive Data Register (RXDAT)ooieiieiriiiie it e sene e ee e v 7-25
7.3.2.2 Receive Byte Count Registers (RXCNTL/RXCNTH)ccooivrieivmeiiiinenicieieens 7-25
7.3.3 Receive FIFO Data Set Managementccccevuriiiiiiniiecneie st s eeeeees 7-26
T4 SIEDETALLS ..ot s et e st et st e et e e ars 7-33
7.5 SETUP TOKEN RECEIVE FIFO HANDLING........cccecotiirie ittt e 7-33
7.6 ISO DATA MANAGEMENToiiiiiiitiiitiet ettt et s e e e s e e 7-34
7.6.1 Transmit FIFO ISO Data Managementccuevceiverieenneenn st 7-34

7.6.2 Receive FIFO ISO Data Managementc.cccooviniiecniricnisneninnne e ssennnn e 7239

CHAPTER 8)
USB PROGRAMMING MODELS
8.1 OVERVIEW OF PROGRAMMING MODELScccoiniiiiiiiicii et 8-1
8.1.1 Unenumerated State ... 8-2
8.1.2 1dIE SHALE .ot e e et e s e s e e e e s 8-2
8.1.3 Transmit and Receive ROULINEScccocviiiiiiiiiiiin e e et e 8-2
8.1.4 USB INerrupts ..ot s e 82
8.2 TRANSMIT OPERATIONSooiiii ittt e sr s e s s e s sn e e 8-3
8.2.1 OVEIVIBW ..ottt e st sttt s et ee e st be s et she et it st e st srbe e eanne s 8-3
8.2.2 Pre-transmit Operationsccccceiiiiiiiiiicini s e e e e 87D
8.2.3 Post-transmit Operationsccooceeiiiiiiiiniie i s 8-6
8.3 RECEIVE OPERATIONS.ot sttt st et s s e e b et 8-8
8.3.1 OVEIVIEW ..oueeeeieieete sttt et st e et ese e et sees e asaes e aan e sbeseeases e stane st st enastanssnnsannneseennan 8-8
8.3.2 POSt-receive OPErationscccoieeeiiieirieiiirerie e st eeseae et e s e see srseeeanee s 8-9
8.4 SETUP TOKEN ..ottt et e e s s sn e sre b e e sn s e s benseesenens 8-12
8.5 START OF FRAME (SOF) TOKENceoiiiiie ittt et s e encne s 8-14
CHAPTER 9
INPUT/OUTPUT PORTS ,
9.1 INPUT/OUTPUT PORT OVERVIEW ..ottt e 9-1
9.2 /O CONFIGURATIONS.......ooiitiiiie ettt e s et e sr s e eresr e e e s e 9-2
9.3 PORT 1 AND PORT 3 ...ttt sttt st e e s s s sn e srn s 9-2
9.4 PORT 0 AND PORT 2 ...ttt st st e s et e s e s s san sns 9-2
9.5 READ-MODIFY-WRITE INSTRUCTIONScooct ittt s sreesecresee e s 9-4
9.6 QUASI-BIDIRECTIONAL PORT OPERATION......cccettetiniie ettt ese s s e 9-5
9.7 PORT LOADINGcotiitiet sttt ettt st e e st s er s s asb s sh st e e er st e e e sres e 9-6
9.8 EXTERNAL MEMORY ACCESS ..ottt s s e s 9-6

Vi I

Intel ® CONTENTS

CHAPTER 10
TIMER/COUNTERS AND WATCHDOG TIMER

10.1 TIMER/COUNTER OVERVIEW...... .ottt ettt et 10-1
10.2 TIMER/COUNTER OPERATION... ...ttt ittt ettt ettt ae e 10-1
T0.83 TIMER Ottt e et e st et e e ete e st ee e eb e et e e eae e sbe e e eaeee e saesaaeeeasbe e eane 10-4
10.3.1 Mode 0 (13-bit TIMEr) ..cccoviuiiiiiieciie ittt es e sesn e en e eeeees 1025
10.3.2 Mode 1 (16-bit Timer) . . TSRO UUPPPTUUPURTUPRPRRRRTRIR ¢ 211
10.3.3 Mode 2 (8-bit Timer Wlth Auto reload) S PRRUPUPSUPPURRRPRR [0 511
10.3.4 Mode 3 (Two 8-bit Timers) 10-6
10 41 Mode 0 (13 b|t Tlmer) ... 10-7
10.4.2 Mode 1 (16-bit Timer) . . S PRSP URPUPRPPORRRROPRPRPT I 0 T 4
10.4.3 Mode 2 (8-bit Timer W|th Auto reload) e tree et eneeseetesesnriereesenteanssssnnsnneseneeseensnnnes 10-10
10.4.4 MOAE 3 (HAI) oot ettt e st e e rere e sre e e 10-10
10.5 TIMER 0/1 APPLICATIONS.......cociiiiiiienieiniee et reies st sninesnee e esnineeeeeeaees. 10-10
10.5.1 . Auto-load Setup EXamMPIeccueiiiiiiiiiin ittt e 10-10
10.5.2 Pulse Width Measurementsc.ccccccveiiiiiiiiriniiriee e ee e esceesesene e 10-11
T0.6 TIMER 2.ttt e et e e et et e e et e et be ettt ae st ee et e e e e eaeae e enereee e ere e s 10-11
10.6.1 Capture MOAEccoceiiiiiiiiiriiie et e e e ssrbe e ssnnneeesneneees 10712
10.6.2 Auto-reload MOdEcccocuiimiiiiiiiii et serie e s e s eeenens 10213
10.6.2.1 Up Counter Operationcccoevveieeeiriiiesiieinsrin e snnnse s sssnnnsnnens 10-13
10.6.3 Up/Down Counter OPErationcoeeerueirieeeierieieeentie et e sre e an e seese s 10-14
10.6.4 Baud Rate Generator MOdecooccceiiiiiiiiiiiirivieie e ee e aee s neenenn. 10-15
10.6.5 CIOCK-OUE MOAEooviiiiiiiitieictir ettt ettt et e b e bt sne e s eb e e enne s 10-15
10.7 WATCHDOG TIMER ..ottt ettt ettt s et e e sbe e e e e 10-17
10.7.1 DeSCrIPON ...ttt e e e e e 10-17
10.7.2 USINgthe WDT ...oooiiiiiiiiiecs ettt e crnesnne s snnns e e e 1 0= 19
10.7.3 WDT During Idle MOdeccceeiiiiiiiiiiiiie et esrineee e 10219
10.7.4 WDT During POWErDOWNccccccoiiiiniiniccinin i 10219

CHAPTER 11
PROGRAMMABLE COUNTER ARRAY

11.1 PCA DESCRIPTIONoiiiiiriinie ettt e se e sesesreenesnes e snen s e e snnees 1121
11.1.1 Alternate Port USAgeccoveieeiiririiisiinicce e vt e s e s s snne e 1122

11.2 PCA TIMER/COUNTER... OO UPRU PR TRUPPYPPUOPURIPRPO [y Y21

11.3 PCA COMPARE/CAPTURE MODULES OO PO SUPUPPRUPPRPUPPPUPRUPRPPOR [y X1
11.3.1 16-bit Capture Modecccccciiiiiieiiieccice e e eeesneecenieeeen 1 125
11.3.2 Compare MOUEScooccueiiiriiiie et ce et se e e s s e sreaes seeeesss e seaessnresassnsnsnenes 1 176
11.3.3 16-bit Software Timer Mode .. 11-7
11.3.4 High-speed Output MOGEccceiiiiiiiiniiiie e et e e 11-8
11.3.5 PCA Watchdog Timer Modecccoviviiiiiiiiiit i 11-9
11.3.6 Pulse Width Modulation Modecccceeiiiiieeiiniiniecine e ene 11210

I vii

L]
8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

CHAPTER 12
SERIAL I/0 PORT
12,1 OVERVIEW ...ttt st e sttt e e e st s seae s sa e et aaeans e e n e e e an 12-1
12.2 MODES OF OPERATION.ottt ettt e e sr e st e s s be e ses et ae s s ae s e snnean 12-2
12.2.1 Synchronous Mode (MOdE 0)ccceeiruiiiieinieinieieiseres e e sr e et eeeeeebn e e 12-2
12.2.1.1 Transmission (MO 0)ccceeceiieiiiniiiinin et et s e 12-2
12.2.1.2 Reception (MOUE 0)ccooouiieieieectiee et eetie e teee et st e eaate s te st ae s senanaen snneans 12-3
12.2.2 Asynchronous Modes (Modes 1,2, and 3)cccvevieeiiiirciiennc e s 12-7
12.2.2.1 Transmission (MOAES 1, 2, 3) ..cciieeriieiciiicniieieties et st eessreeesrbes st e asese s seaeessin e ens 12-7
12.2.2.2 Reception (MOdes 1, 2, 3) ..oooueiiiiieiiecciieeeie et s eer e snn e eevie e e 12-7
12.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)....cccccccvrvvnneeniiennnenennnnns 12-7
124 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3)......cccceceiieieiierieee 12-8
125 AUTOMATIC ADDRESS RECOGNITION.....cocciiiiiieenieer ettt 12-8
12.5.1 GIVEN AQAIESS c..vueiiiciieeciiieeeie ettt et se e et e e e e et e et e ee s e s e et e sar e snnaseanes 12-8
12.5.2 Broadcast AQArESScuiiiiieiiiii et s et es st e s e e st ae e e e e e e s e e e ean 12-9
12.5.3 RESEE AQAIESSES ...oeiciieiiiie ittt ettt s e ar e et e s st e st e ae s et e enan e 12-10
12,6 BAUD RATES oottt et ee et e s e s sae e ete e e ne e et e e eae e esans saaan et besnns 12-10
12.6.1 Baud Rate for Mode 0 Tcccoooeiciieciscecerceeeeceeeee et eneeeenreeen. 1210
12.6.2 Baud Rates for Mode 2ccocevvcvvevieniennn SRR P RO RTP TN 12-11
12.6.3 Baud Rates for Modes 1 and 3 Toooeeieeeeee ettt ee e 12-11

12.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3) Tccccccoevvverrecrveisircnnen 12211
12.6.3.2 Selecting Timer 1 as the Baud Rate Generator T ..o 12211
12.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3)cccccoeevrvivvcvnninninnnen. 12-12
12.6.3.4 Selecting Timer 2 as the Baud Rate Generator Tcc.ccooooevvvievirriirnesnnanes 12-12

CHAPTER 13
MINIMUM HARDWARE SETUP .
13.1 MINIMUM HARDWARE SETUPoicoer ettt et sennieeessnneeessnaeeenennnns. 1371
13.2 ELECTRICAL ENVIRONMENT ...ttt vttt s sneave et e seseesnnees 1371
13.2.1 Power and Ground PiNScccoiiiiiiieieiiiin s ces e e e s srane s sssnaessrse e ssneassssnsnans 1 372
13.2.2 UNUSEA PINS ..uueiiiiiiiiii ettt stn st e e e e ere s s srn sennaes s e s st nnee e ensenaeaes | 372
13.2.3 N0iS€ CONSIAErationSccceeeiiiieieiiiiiie e ie e e er e ceesene e s e eseveesesse e sraee s s ssrnsaes | 372
13.3 CLOCK SOURGCES. ...ttt sttt sessae e srtnte e se s e aessnnesesnneeesnsnenesansens 1 372

13.3.1 On-chip OSCIllator (Crystal)coceirerririeiinie it e e se e e 13-2
13.3.2 On-chip Oscillator (Ceramic Resonator)cccccceeeierecseienisn s seesesiennne e 13-3
18.8.3 EXEEINAI ClOCK ...uvviiieiiiiiceies ettt et ettt s e ettt sbse et e e et eneaeenae e a 13-3
13.4 BESET ottt ettt et e st et e e st eae et eh e e e et e b eh b ereenneean 13-4
13.4.1 Externally Initiated Resetsccccccovence.e. e e e e e s 13-5
13.4.2 WDT Initiated RESELSeeiiiiiiiee et et 13-5
13.4.3 USB Initiated RESEtScoiiiiiiiiiiiieiee et e e 13-5
13.4.4 ReSet OPErationcccoeiciiei it ettt s s e 13-6

13.4.5 POWEr-0Nn RESELouviiiiiiieiiieice ettt e ee e s see s sr s e e s srrananeae e ens 1 370

viii I

intgl.

CHAPTER 14
SPECIAL OPERATING MODES

141 GENERAL.....co ittt
142 POWER CONTROL REGISTERS........coooeeveveeeeeteteeeeereve e
14.2.1 Serial I/O CoNtrol BitSccueeceeeniireitir e ettt et e e e
14.2.2 Power Off FIag ...cccoeovvieiii et e
14.3.1 Entering ldle MOdeoooiiii e e e e
14.3.2 EXItiNG 1dIE MOoiieiiiiiee ettt ettt e r e e e e
14.4 USB POWER CONTROL ..ottt ctiii it ce s seestte e ere st s e ee e st st e e e e st ans e snean s
14.4.1 Global SUSPENd MOEccciiiiiiiiie et e e er e e e s
14.4.1.1 Powerdown Modecccceeeeiiieeciieiir e ee e
14.4.1.2 Entering Powerdown MOdEcccoeiiiiinii e e
14.4.1.3 Exiting Powerdown Modeccoceieviniiiniccnncnine,
14.4.2 Global Resume MOdeccocoiiiiiiiiiiie e
14.4.3 USB Remote WakKe-Upccccorvemeenieiiecinieie e
14.5 LOW CLOCK MODE........oooiiieieireie et eee et sr e aneae v eaes
14.5.1 Entering Low Clock Modeccccceoiiviemiiiincnieeere e

14.5.2 Exiting Low Clock Mode ..

14.6 ON-CIRCUIT EMULATION (ONCE) MODE
14.6.1 Entering ONCE MoOdeccccvivimiiniiir e
14.6.2 EXiting ONCE MOGEcciiiiiiii ettt et e e e s

CHAPTER 15
EXTERNAL MEMORY INTERFACE

15.1 OVERVIEW ..

15.2 EXTERNAL BUS CYCLES ...
15.2.1 Bus Cycle DefiNitiONSccoveiiieiiieie e e e e e e e s
15.2.2 Nonpage Mode Bus Cyclesccccoviviciniiiiniincccenn.
15.2.3 Page Mode Bus CYCleScccovinmiiiccinniiiiii e

15.3 WAIT STATES...

15.4 EXTERNAL BUS CYCLES WITH CONFIGURABLE WAIT STATES
15.4.1 Extending RD#/WR#/PSEN# ..

15.4.2 Extending ALE .

15.5 EXTERNAL BUS CYCLES WITH REAL TIME WAIT STATES
15.5.1 Real-time WAIT# Enable (RTWE)cccovvriiiii s
15.5.2 Real-time WAIT CLOCK Enable (RTWCE)ccccoiniririiiiisece e,

15.5.3 Real-time Wait State Bus Cycle Diagrams

15.6 CONFIGURATION BYTE BUS CYCLES........ccoivie ettt

. 15.7 PORT 0 AND PORT 2 STATUS ..

15.7.1 Port 0 and Port 2 Pin Status in Nonpage Mode
15.7.2 Port 0 and Port 2 Pin Status in Page Mode
15.8 EXTERNAL MEMORY DESIGN EXAMPLES.......ccccci oo

CONTENTS

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL lnt€l®

15.8.1 Example 1: RD1:0 =00, 18-bit Bus, External Flash and RAMccc.coeceeveeenrinenen. 15-18
15.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External Flash and RAMc.cc.cccuvunni. ...15-20
15.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External RAM ettt tanieee e ee et aen et areaene 15-22
15.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External RAMccccccoviiiiniiviien e 15-24
15.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External EPROM and RAM15-26
15.8.5.1 An Application Requiring Fast Access to the Stackccccevvinniiiiiniciein, 15-26
15.8.5.2 An Application Requiring Fast Access to Data .. e ennene. 1526
- 15.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External EPROM and RAM 15-29
15.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External Flash eeererherrere e e e arrararire b rens 15-30
CHAPTER 16
VERIFYING NONVOLATILE MEMORY
161 GENERAL..... ottt ettt e st s e e st sa et a e e sae e r e 16-1
16.1.1 Considerations for On-chip Program Code Memorycc.ccovvreciieeninireensri e 16-1
16.2 VERIFY MODES........ccccevvnnee. bttt e it st R et e e e et e R att s ts et eee b seResseeRREent sra b benannres 16-3
16.3 GENERAL SETUP....coiiiiiitiete ettt hesastee ke e st e v ste st et ess e s aen et aas e enean neae 16-3
16.4 VERIFY ALGORITHM. . ..ottt ittt e et e e b se et sa e s n e e e e 16-4
16.5 LOCK BIT SYSTEM.. oottt ettt ettt sttt sre v st es e aen e ae e san e neae 16-5
16.5.1 ENCIYPHON AITAY ..ottt et et st e e s e e e et re e s e saeeeasa e e eas 16-5

16.6 SIGNATURE BYTESiciciiricici st se s en et st snnne. 1070

APPENDIX A
INSTRUCTION SET REFERENCE
A.1 NOTATION FOR INSTRUCTION OPERANDS.........oooi e e A-2
A2 OPCODE MAP AND SUPPORTING TABLEScccccoiiimnerrreeire e seeneeeseieeneene. A4
A.3 INSTRUCTION SET SUMMARY ... SRR PUPRRPY T I |
A3.1 Execution Times for Instructlons Accessmg the Port SFRs e ———— A-11
A3.2 INStruction SUMMAIESc.cooiiiii e e e e A-14
A4 INSTRUCTION DESCRIPTIONSoooiiiiiiie e e e e e e A-26
APPENDIX B
SIGNAL DESCRIPTIONS
APPENDIX C
REGISTERS
C.1 ~ SFRS BY FUNCTIONAL CATEGORYcccirieieieritre ettt esee s s s e een C-2

C.2 SFRDESCRIPTIONS.. ...ttt e st st s s s s s C-6

intel.
APPENDIX D
- DATA FLOW MODEL

GLOSSARY

INDEX

CONTENTS

Xi

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

FIGURES

Figure Page
2-1 8X930Ax in a Universal Serial Bus SYStem.........ccociiviiiiniineeenicntire e e s 2-1
2-2 Functional Block Diagram of the 8X930AX.......ccoeiiiviiiiniieie i . 252
2-3 8X930Ax USB Module Block Diagramccouevvieerieninniisinnini i s e 2-3
2-4 THE CPU ...ttt st sttt st e st et se b e e e b aes e se e se s et ettt st st s en s e 2-6
2-5 Clocking Definitions (PLL Off)ccoviiviiieieveineeec e, eerereresir i enreeseranne 2-9
2-6 Clocking Definitions (PLL ON)cooviiieiniie ettt st s e ss e s 2-9
3-1 Address Spaces for the 8X9B0AXcccocieiivmiiriiiiiiir et s s s 3-1
3-2 Address Spaces for the MCS® 51 Architecturecccceceeiiisiinicinecnciinncne, 3-3
3-3 Address Space Mappings MCS® 51 Architecture to MCS® 251 Architecture............. 3-4
3-4 BXIB0AX AAArESS SPACE ...cvverveieeierie ettt sttt eee et et e s s et s sa b e e s 3-6
3-5 ‘Hardware Implementation of the 8X930Ax Address Spacecccoecveeeeeneeceineieneen 37
3-6 The Register File ... e 3-10
3-7 Register File LOCAtIONS 07cciviiiiiiiiieieiie et e e e s 3-11
3-8 Dedicated Registers in the Register File and their Correspondung SFRS....cccvnevinnne 3-13
4-1 Configuration Array (On-Chip).......ccuuiiiiiiieiiiiin e e 4-2
4-2 Configuration Array (EXErnal).......ccc.eecieieiniiiieiris s s 4-3
4-3 User Configuration Byte 0 (UCONFIGO)ccceeiiviiinieisiie it neaeane 4-5
4-4 User Configuration Byte 1 (UCONFIGT) ...cccueeiiiiiiiiieiie e st 4-6
4-5 Internal/External Address Mapping (RD1:0 = 00 and 01).......ccccevviinieiieinnmniccneen e 4-8
4-6 Internal/External Address Mappmg (HD1 0=10and 11) .t 4-9
4-7 Binary Mode Opcode Map.... SO TSV UPPOUUPRPPPPPPRUPPRTPIR: T k<
4-8 Source Mode OpCode Mapccceeviiriiieiee i st e e s 4-13
5-1 Word and Double-word Storage in Big Endien Form ... 5-3
5-2 Program Status Word RegiSter.............ccecvriieininiiirc et S 5-17
5-3 Program Status Word 1 RegISter..........ccevvieiiiiniiiiein it et e e s 5-18
6-1 Interrupt Control SYSTEMcccoviiiiiii i e e 6-2
6-2 USB Function Interrupt Enable Register ... e 6-7
6-3 USB Function Interrupt Flag Register.........ccocceevinii i, 69
6-4 Interrupt Enable RegiSter O ... iiiiicciinne e s 6-11
6-5 USB Interrupt Enable RegisSteroivieieiiiinin e 6-12
6-6 IPHO: Interrupt Priority High Register 0. 6-14
6-7 IPLO: Interrupt Priority LOW Register O............ccecvieviiiivininiin i 6-14
6-8 IPH1: Interrupt Priority High Register 1........ccccooiiniiiiiic 0. 6-15
6-9 IPL1: Interrupt Priority LOW Register 1........ccouviieniiiiiniici s e 6-15
6-10 The INterTUPt PrOCESScoiieiecie et e e e e s s 6-16
6-11 Response Time Example #1 ... e e 6-18
6-12 Response Time EXample #2 ... e e e s 6-19
7-1 EPINDEX: Endpoint Index RegiSterc..cccverviriiiiicnniiiiinc e 7-5
7-2 EPCON: Control Endpoint REGISter.........ccccciuiiiriieiiriceiree et 7-7
7-3 TXSTAT: Transmit FIFO Status Register.........ccccooviiiiiinnne s 7-9
7-4 RXSTAT: Receive FIFO Status REGISter.........c.oveuvereveiririeeseiesnssiesssssssesssessnsssesens 7-11
7-5 SOFH: Start of Frame High Register. ..o e 7-12
7-6 SOFL: Start of Frame Low Registercocveiieiiiniicniin et s 7-13
7-7 FADDR: Function Address RegiSter.........ccccvivireriiiniicnieie i e 7-13
Xii

intgl.

CONTENTS
FIGURES

Figure Page
7-8 Transmit FIFO OULNE.........c.cceecciiii it 1= 14
7-9 Transmit Byte Count Registers..........cccconiiiiiiiiiinic e s 7-16
7-10 TXDAT: Transmit FIFO Data RegiSter...........ccvivimiiiiniriie et 7-18
7-11 TXCNTH/TXCNTL Transmit FIFO Byte Count Registers..........cccccoeeeervieniennniienennnn 7-19
7-12 TXCON: Transmit FIFO Control REGiSter........cccocuiviiiniiiineieeii et 7-21
7-13 TXFLG: Transmit FIFO Flag Registerc.ccoiiiveeiici e eves e 723
7-14 RECEIVE FIFO ..ottt et st et e st e en e e st ene e ene e 7-25
7-15 RXDAT: Receive FIFO Data REQISIErccerveiriie vttt et 7-27
7-16 RXCNTH/RXCNTL: Receive FIFO Byte Count Registers........c.cccccorimviviieecnenennnen 7-28
7-17 RXCON: Receive FIFO Control REGIStErccuveiriirieie et 7-30
7-18 RXFLG: Receive FIFO Flag Register...........cccccociiiiiiiii i 7-32
8-1 Program FIOWcooe ottt e sttt e et e e e et sr e s e st ene e sn e e ae 8-1
8-2 High-level View of Transmit Operationsc.cccecverienies e iieme e s 8-4
8-3 Pre-transmit ISR (Non-ISOCRIroNOUS)ccccivirii it e 8-5
8-4 Post-transmit ISR (NON-iSOChrONOUS).........cccuevieiiienirinie ettt e00. 870
8-5 Post-transmit ISR (ISOChroNOUS)cccoviiiiiiiii e 857
8-6 High-level View of Receive Operations............ccceivviiiiiinccisiiicse e 8-9
8-7 Post-receive ISR (NON-ISOCAIONOUS)ceeiiereeerie ettt et e e e 8-10
8-8 Receive SOF ISR (ISOChIONOUS)cccvviviiiir e cetrieessie e esreees e snse e see s snsneeeee e 8= 11
8-9 Post-receive ISR (CONrol)...........ueuvir ittt et e st ere e e e 8-13
8-10 Hardware Operations for SOF TOKEN........c.cccveeriitiriiesiineir e st st sen e e 8-14
9-1 Port 1. and Port 3 SrUCIUre............cvueiiiii e e 9-3
9-2 PO O STIUCIUIE ...ttt et st st st st e e sae st st be st ea e saeenes 9-3
9-3 POt 2 SHHUCLUIE ... et e et e e s e e e eene 9-4
9-4 Internal Pullup Configurationscocecooniinieiein i s e 9-6
10-1 Basic Logic of the TImer/COUNtErSccccevviriieeieecnnneeeireeneeses s seesreseneseenneees 10-3
10-2 Timer 0/1 in Mode 0 and MOAE Tcccomiiiiiie i ettt e re e e 10-5
10-3 Timer 0/1 in Mode 2, AULO-REI0AM...........ccouieeiiiiie it 10-6
10-4 Timer 0 in Mode 3, TWO 8-bit TIMErsS....cccc.coimiiiiiirii e et 10-7
10-5 TMOD: Timer/Counter Mode Control RE@IStercccvriuiirceeiniiee e enesren e 10-8
10-6 TCON: Timer/Counter Control REJISErccceveicieernee e neerseieesrsvresseissenasnennees 10-9
10-7 Timer 2; Capture MOcocoieieie e et st e e etae s saaes e eeraes 10-12
10-8 Timer 2: Auto Reload Mode (DCEN = 0)......c.cccoieviiiee et s en e e 10-13
10-9 Timer 2: Auto Reload Mode (DCEN = 1) ... s 10-14
10-10 Timer 2: CIOCK OUt MOGE........cccorier ettt ee ettt ee e st b e s are e eenee e 10-16
10-11 T2MOD: Timer 2 Mode Control RegiSter..........ccoviiiirieinieeiiieiiinie e e e 10-17
10-12 T2CON: Timer 2 Control REGISIENcvveeuriveireer e e e e e s e 10-18
11-1 Programmable Counter Array.............cccuiieinince et s e 11-3
11-2 PCA 16-bit Capture MOEcccoiveiiieieetr e et e e e e s 11-6
11-3 PCA Software Timer and High-speed Output Modes............cccooeeiivnnceiiininecrecieennas 11-8
11-4 PCA Watchdog Timer MOdE...........cccceiniiiiiieceeeeee e e 11-10
11-5 PCA 8-Dit PWM MOGE ..ottt ettt e e e e she s s er e ea e ee 11-11
11-6 PWM Variable DUty CYCIec.ueecceeieieiiriie et e e et e e esses s e 11-12
11-7 CMOD: PCA Timer/Counter Mode RegiSter...........ccuvivurirririrerineicie e 11-13
xiii

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

FIGURES
Figure Page
11-8 CCON: PCA Timer/Counter Control Register...........cu i iinncinree s 11-14
11-9 CCAPMx: PCA Compare/Capture Module Mode Registers.............cccccevcceerniinnnn. 11-15
121 Serial Port Block Diagram ... rereter et erer e e ar e e aressaeare e sreraneseneenrn e aideerens .12-3
S 12-2 SCON: Serial Port Control Reglster ... 12-5
12-3 MO O TIMING..veeuereeeutiereseeeeeereteseesesesssesese s e sessssessss st sessasssebesesssassssesastsnssessnsasas 12-6

12-4 Data Frame (Modes 1, 2, aNd 3)cceveiieiieiie e et e e e

12-5 Timer 2 in Baud Rate Generator Modecccc.oiivimincveen e e 12-14
13-1 MINIMUM SEIUP ..eve e et e e e e s enr e e 13-1
13-2 CHMOS ON-Chip OSCIllAtOr. ... cceuvicieeseesieineiestirer e e stecre st ee et e seeersiseaaeers s e eranssesnaes 13-3
13-3 External Clock Connection for the 8X930AXcccvviininniiiiniiesn e 13-4
13-4 External Clock Drive Waveforms...........ccccoiviiviinniiininnsncnecse e e 13-4
13-5 Reset Timing Sequenceccocevririnenen. S PPN J PV 13-7
14-1 Power Control (PCON) ReGISTEN.cciivir ittt s e s e e s 14-2
14-2 USB Power Control (PCON1) RegiSterccccvueriieivnneinicersie e seeeeee e 14-3
14-3 Idle and Powerdown CloCk CONtIOlcociverinie et et e s 14-4
14-4 Suspend/Resume Program with/without Remote Wake-upcccoovveeeiiiiiveennnneen. 14-10
15-1 Bus Structure in Nonpage Mode and Page Mode.........cccccce i siin e 15-1
15-2 External Code Fetch (Nonpage ModE)........coveririnciiniinis et st 15-4
15-3 External Data Read (Nonpage MOode)ccccevieieeeeiiieeiseen v e ces e e sn e nine. 1525
15-4 External Data Write (Nonpage Mode)covcirririimnerieiene e e e er e e e 15-5
15-5 External Code Fetch (Page Mode)........ccocoieivcenirin it e e s 15-7
15-6 External Data Read (Page Mode)c..ccioueee et e e e et nr e s e 15-7
15-7 External Data Write (Page Mode)... .15-8
. 15-8 External Code Fetch (Nonpage Mode One RD#/PSEN# Walt State) .15-9
15-9 External Data Write (Nonpage Mode, One WR# Wait State)cccoceve i 15-9
15-10 External Code Fetch (Nonpage Mode, One ALE Wait State)..........ccceevvecviniincnnns 15-10
15-11 Real-time Wait State Control Register (WCON)... . .15-11
15-12 External Code Fetch/Data Read (Nonpage Mode Real tlme Walt State) 15-13
15-13 External Data Write (Nonpage Mode, Real-time Wait State)cccccevvvivirincnnenn. 15-13
15-14 External Data Read (Page Mode, Real-time Wait State)cccceceececivrininenc . 15-14
15-15 = External Data Write (Page Mode, Real-time Wait State)............cccccoveniininiicieis 15-14
15-16 . Configuration BYte BUS CYCIEScveveeurueeerieneieie s retenier s e s e ses e e 15-15
15-17 Bus Diagram for Example 1: 80930AD in Page Modeccccuuerennieriieenicresseneen. 15-18
15-18 Address Space for Example 1.........cocvviii i 15-19
15-19 Bus Diagram for Example 2: 80930AD in Page Modeccccvvenniniiiccinninnneinss 15-20
15-20 Address Space for EXample 2.........ccoooviiiiiii i 15-21
15-21 Bus Diagram for Example 3: 83930AE in Nonpage Modecccveeiiiiiininiicnes 15-22
15-22 Memory Space for EXample 3........coviiiiisiini e e e 15-23
15-23 Bus Diagram for Example 4: 83930AE in Nonpage Modeccecenninnevciiincnnns 15-24
15-24 Address Space for EXample 4cccoveeriieieeninne et sr e e sre s n s s 15-25
15-25 Bus Diagram for Example 5: 80930AD in Nonpage Mode.............cccveiiiininininnnn, 15-27
"~ 15-26 Address Space for Examples 5 and 6..........ccoeviirioiiieen s e, 15-28
15-27 Bus Diagram for Example 6: 80930AD in Page Modecc.ccvinnninnicciiiennns 15-29
15-28 Bus Diagram for Example 7: 80930AD in Page Modec.ccviininniicciiciiennns 15-30
Xiv

|nte|® CONTENTS

FIGURES
Figure Page
16-1 Setup for Verifying Nonvolatile Memoryccuvcininin e 16-4
16-2 Verify BUS CYCIESc.oiiuiiiiiiiiiciieciii e vt st e st e e e i 16-4
B-1 8X930Ax 68-pin PLCC Package.............. e e e e e B-1

I XV

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

TABLES

Table Page
1-1 Intel Application SUPPOIt SEIVICES........cccvviiiiiie it e e 1-7
2-1 8X930AX Features SUMMAIYccccociiiiiiiiirieiiin et e s s e s 2-5
2-2 8X930Ax Operating FreqUENCYocceiniiiiiiiiiee ettt st st s seee e 2-8
3-1 AdAress MapPiNgS...ccuoui i it et s e st s st ser b e be s 3-4
3-2 Minimum Times to Fetch Two Bytes Of COde........cccovvveviiiririveieciieenie et e 3-9
3-3 Register Bank Selectionccovviiiieiiinie it e e s 3-11
3-4 Dedicated Registers in the Register File and their Corresponding SFRs................... 3-14
3-5 BXIB0AX SFR MaAP.....cuiiiiiieeirieiie it ettt s s s s e s s e 3-16
3-6 C0rE SFRS.....eiiiiitiie ettt e e et e e e s s et e nae e ent 3-17
3-7 USB FUNCHON SFRSooiiiiiiicin ettt et e e e e s e e e s 3-18
3-8 /O POIt SFRS ...coviiii it sttt st srtniie s sttt eares e e e e e es e e et e st s seesrae s 3-19
3-9 Serial I/O SFRSutiviiiiiis it sttt ettt et et e e s e e e s 3-19
3-10 Timer/Counter and Watchdog Timer SFRSccccvivviniiivn e 3= 19
3-11 Programmable Counter Array (PCA) SFRS......ccccoviiivecrcnniiciie e s 3220
4-1 External Addresses for Configuration Arraycceeeviiveniinin s 4-2
4-2 Memory Signal Selections (RD1:0)cco.iviieiviinr et et 4-7
4-3 RD#, WR#, PSEN# External Wait States..........ccccovveiviniiiin i e 4-11
4-4 Examples of Opcodes in Binary and Source Modes.........c.oevveeiveieeveiriivieinsieensveee e 4-14
5-1 Data TYPES ...ttt et et et e e e e e sr e e e s san e aaan s 5-2
5-2 Notation for Byte Registers, Word Registers, and Dword Registerscccovvernnnenne 5-3
5-3 Addressing Modes for Data Instructions in the MCS® 51 Architecture............ccc...... 5-5
5-4 Addressing Modes for Data Instructions in the MCS 251 Architecture.........................5-7
5-5 Bit-addressable LOCAtIONSccccvviiceiiiiiiieinc i e e 5-11
5-6 Addressing TWO Sample Bits.........ccoicierieiin et et e s e s st s 5-11
5-7 Addressing Modes for Bit INStrUCHONS.........ccciviiieeciiiie e e 5-11
5-8 Addressing Modes for Control INStruCtioNS............coveirvteriienieiieinie e 5-13
5-9 Compare-conditional JuMp INSEIUCHIONScvcvveriiriciniiii e e e 5-14
5-10 The Effects of Instructions on the PSW and PSW1 Flags..........ccocoveviiceniininceniennnes 5-16
6-1 Interrupt System INPUt SIGNAIS ...ccccvveiiiiiie it e e et s 6-1
6-2 Interrupt System Special Function Registersccccvvvriieinin v 6-3
6-3 Interrupt Control MatriX.........ccoieiiiiiie e e e e e 6-4
6-4 USB Interrupt Control MatriXcccueeiiieniin it e ese e e e se s e sre s 6-5
6-5 LEVEI Of PHOTYcei ettt et e s e e st s nr e e sae e sae e s e e saaes 6-13
6-6 Interrupt Priority Within Levelcco it e e 6-13
6-7 Interrupt Latency Variables ... e e 6-20
6-8 Actual vs. Predicted Latency Calculations............ccocvviimniiiniiniicnciscis e 6-20
7-1 SigNal DESCHPHONS......ccueie ittt s e s e e sr e s s e s 7-2
7-2 USB FUNCHON SFRSooiiiiiiin ettt s e st s e s s an e e se e snnenne 7-3
7-3 8X930AX FIFO Configurationscocceiuriieeriieesinseieeereie s e s s e s sns 7-4
7-4 Writing to the Byte Count RegISTer.........covcciiiiiciniiiine e 7-17
7-5 Truth Table for Transmit FIFO Management.............cocevevieieseenrensnsenese e 7-18
7-6 Status of the Receive FIFO Data Sets............ccoccrveveninnecniniennenecnise e svise e 7226
7-7 Truth Table for Receive FIFO Management.............cccuueeeeeeunirenneeeessesssessssesnseessnssens 7-27
9-1 Input/Output Port Pin DeSCriptionsc.cceeeeeiiiviineesici e 9-1
xvi

|nte|® CONTENTS

Table

9-2

10-1
10-2
10-3
11-1
11-2
11-3
12-1
122
12-3
12-4
12-5
12-6
14-1
15-1
15-2
15-3
16-1
16-2
16-3
16-4
165

A-2
A-3

A-5

A-6

A-7

A-8

A-9

A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22

TABLES

Page
Instructions for External Data MOVES..........c...cociviieieentieeeie et e e 9-7
EXtErnal Signalsooeiceeeieie et e e eaas 10-2
Timer/Counter and Watchdog Timer SFRSccccviiiinienieceieie e 10-4
Timer 2 Modes of OPeration.........ccccoouiiiiii e et s e e e enens 10-16
PCA Special Function Registers (SFRS)cocoverirnveentieir st eeree e e 11-4
EXtErnal SIgNalscooiiiioniin et e e e e 11-4
PCA MOAUIE MOGESoeiuiieireeie ettt st e et se et satee e et e aeeneesbesaeennas 11-14
Serial POr SIgNaIScccoviiiiiiiriie et e et st s 12-2
Serial Port Special Function Registers...........cccoviviiivie e 12-2
Summary of Baud Ratesc.ccoeiee i ettt e e e 12-11
Timer 1 Generated Baud Rates for Serial /O Modes 1 and 3.........ccccoeveciivveveeinenes 12-12
Selecting the Baud Rate GENerator(S)ccvevrerirreeieneneeneiesee st seeeer e s 12-13
Timer 2 Generated Baud Ratesccceoriieriiir it sttt e e 12-14
Pin Conditions in Various MOAES..........cccuviiiiirieinrie it e e et s e senre s 14-4
External Memory Interface Signals...........cccovvviriiininie i e s e srs 15-2
Bus Cycle Definitions (NO Wait States)ccceeverriiieenieninr e 15-4
Port 0 and Port 2 Pin Status In Normal Operating Mode............ccccoviveiencrnnenenen.. 15-16
SigNal DESCHPHIONSc.urviiiie ettt stttk et e e v b e et ettt na e sse e e ene 16-2
VErify MOGBSoooviiiiriii ittt et sre e e e st e sn e se e sr e saenes 1 O°O
LOCK Bit FUNCHON ...ttt et e et s et e sttt e st e e e e 16-5
Contents of the Signature Bytes.........ccoviviiiii v e 16-6
TIMING DEfiNItIONS ..ot et st e e e e e e eesesnen 16-6

Notation for Register Operands...........cccvevveeevnsiesieeneie e sresiee e e seesvvesseesnsesseesssesnes A-2
Notation for Direct AAreSSeS..........ccevervrervrceir et ettt eerees s srmne e e eeeneee s AS3

Notation for Immediate AAAreSSingccceevireiviinir e e e e A-3
Notation for Bit Addressing.... BT RPURRPNY . T
Notation for Destinations in Control Instructlons B PO RPURURPRPRRRIIRY L T
Instructions for MCS® 51 MicroControllers...........occvveruerieernesineseieiree s sesrneseen e A-4
Instructions for the 8X930AxX ArChiteCtUrecoviiviieeirir e e e e A-5
Data INSTIUCIONSccouiiiiiir ittt et et es e e be s e e aes e eeanen A-6
High Nibble, Byte 0 of Data INStructions...........c.ceecciriniiiineenie e e e A-6
Bit INSEUCHIONS ...ttt ettt et ee et e e e e e e et e an e e sr e eeaes A-7
Byte 1 (High Nibble) for Bit INStrUCHONS..........coviiieieii e A-7
PUSH/POP INSIIUCHONScoiviiiiiiirireieisties et te e st e e e e ceeseees st e een e snneesrnenanes A-8
CONtrol INSLIUCHONSccueiiiiiieiieie st sttt e e e st e s s s ee s esesae e sneanes A-8
Displacement/Extended MOVS...........cooiiricieiiiieee et et et e sar e st ene e eeae e eaes A-9
INC/DEQC ... oottt st st sttt et sttt saeas e e reas sb s aaeastaaneea e ssnnnanees A-10
Encoding for INC/DEQC ..o ettt s s e s A-10
] 0111 O S O OO ORISR A-10
State Times to Access the Port SFRS.......ccccovviiiniiinirce et A-12
Summary of Add and Subtract INStruCtions..........ccoevvveciiveienine e e A-14
Summary of Compare INStTUCHONScoceeiiieniiie st e se e e A-15
Summary of Increment and Decrement Instructions .. SRR . O £-1
Summary of Multiply, Divide, and Decimal-adjust lnstructlons A-16

Xvii

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

TABLES
Table Page
A-23 Summary of Logical INSTrUCIONSccouiriiiieiiiin et e e e e A-17
A-24 Summary of Move Instructions... A-19
A-25 Summary of Exchange, Push, and Pop Instructlons ... A-22
A-26 Summary of Bit INStrUCHiONS.......cc.uoiiiiiiien e A-23
A-27 Summary of Control INSrUCHONSc.cueevieiiiiiciieie et e e s A-24
A-28 Flag SYMDOIS......ccoiiiiitc et et s e A-26
B-1 8X930Ax Pin Assignments Arranged by Functional Categories.............cccceevreecerrennne. B-2
B-2 SigNaAl DESCHIPLIONScvuiiue ittt ettt st s et as e e et eae e s aes e st se e nean B-3
B-3 . Memory Signal Selections (RD1:0)cccccviiriieiieiriieniiirseercrerirarrae e e st e e e sne s e enes B-6
B-4 8X930AxX Operating FrEQUENCYcccireririrreiiieineie e e e s sreeiesrete e eesssessessnssssesssnsnes B0
C-1 BX9IB0AX SFR MaP.....cciriiiireriireiintiris et s sttt et e e et et e C-1
C-2 COrE SFRS....ciiiiriiice ittt st st sr e saeres e e e sn e nees OF 2
C-3 /O POt SFRS ...ttt sttt et s st st st er e s s e e st ere bt et C-2
C-4 Serial /O SFRSoociiiii ettt et e e e et e e C-3
C-5 USB FUNCHON SFRS ...ttt ittt s s e s s e svs e e sre e saeas s e et seeasean C-3
C-6 Timer/Counter and Watchdog Timer SFRScccociviiiiininiictinresen e C-4
C-7 Programmable Counter Array (PCA) SFRS......cccvie ittt se C-5
D-1 Non-isochronous Transmit Data FIOW ... D-1
D-2 Isochronous Transmit Data Flow in Dual-packet Mode...........cccccovveinnrncmnininnnneenens D-5
D-3 Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) D-8

D-4 Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)................
D-5 Isochronous Receive Data Flow in Dual-packet Mode (RXSPM =0)

xviii

intel.

Guide to this Manual

intgl.

CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the 8X930Ax microcontroller; a new family of products for universal se-
rial bus (USB) applications. This manual is intended for use by both software and hardware de-
signers familiar with the principles of microcontroller architecture.

1.1 MANUAL CONTENTS

This chapter provides an overview of the manual with brief summaries of the chapters and appen-
dices. It also explains the terminology and notational conventions used throughout the manual,
provides references to related documentation, and tells how to contact Intel for additional infor-
mation.

Chapter 2, “Introduction” — provides an overview of device hardware. It covers core functions
(pipelined CPU, clock and reset unit, and interrupts), I/O ports, on-chip memory, and on-chip pe-
ripherals (USB, timer/counters, watchdog timer, programmable counter array, and serial I/O
port).

Chapter 3, “Memory Partitions” — describes the three address spaces of the 8X930Ax: mem-
ory address space, special function register (SFR) space, and the register file. It also provides a
map of the SFR space showing the location of the SFRs and their reset values and explains the
mapping of the address spaces relative to the MCS® 51 and MCS® 251 architectures into the ad-
dress spaces of the 8X930Ax.

Chapter 4, “Device Configuration” — describes microcontroller features that are configured at
device reset, including the external memory interface (the number of external address bits, the
number of wait states, page mode, memory regions for asserting RD#, WR#, and PSEN#), bina-
ry/source opcodes, interrupt mode, and the mapping of a portion of on-chip code memory to data
memory. It describes the configuration bytes and how to program them for the desired configu-
ration. It also describes how internal memory maps into external memory.

Chapter 5, “Instructions and Addressing” — provides an overview of the instruction set. It de-
scribes each instruction type (control, arithmetic, logical, etc.) and lists the instructions in tabular
form. This chapter also discusses the addressing modes, bit instructions, and the program status
words. Appendix A, “Instruction Set Reference” provides a detailed description of each instruc-
tion.

Chapter 6, “Interrupt System’ — describes the 8X930Ax interrupt circuitry which provides a
TRAP instruction interrupt and ten maskable interrupts: two external interrupts, three timer inter-
rupts, a PCA interrupt, a serial port interrupt, and three USB interrupts. This chapter also discuss-
es the interrupt priority scheme, interrupt enable, interrupt processing, and interrupt response
time.

Chapter 7, “Universal Serial Bus” — describes the operation of the 8X930Ax serving as a USB
function. The USB function interface manages communications between the USB host and the
embedded function. The USB module consists of a serial bus interface engine (SIE), a function
interface unit (FIU), a differential transceiver and FIFO data buffers.

I 1-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Chapter 8, “USB Programming Models” — describes the programming models of the
8X930Ax USB function interface. This chapter provides flow charts of suggested firmware rou-
tines for using the transmit and receive FIFOs to perform data transfers between the host PC and
the embedded function and describes how the firmware interacts with the USB module hardware.

Chapter 9, “Input/Output Ports”— describes the four 8-bit I/O ports (ports 0-3) and discusses
their configuration for general-purpose I/0. This chapter also discusses external memory access-
es (ports 0, 2) and alternative special functions. ’

Chapter 10, “Timer/Counters and WatchDog Timer” — describes the three on-chip tim-
er/counters and discusses their application. This chapter also provides instructions for using the
hardware watchdog timer (WDT) and describes the operation of the WDT during the idle and
powerdown modes.

Chapter 11, “Programmable Counter Array” — describes the PCA on-chip peripheral and ex-
plains how to configure it for general-purpose applications (timers and counters) and special ap-
plications (programmable WDT and pulse-width modulator).

" Chapter 12, “Serial I/O Port” — describes the full-duplex serial I/O port and explains how to
program it to communicate with external peripherals. This chapter also discusses baud rate gen-
eration, framing error detection, multiprocessor communications, and automatic address recog-
nition.

Chapter 13, “Minimum Hardware Setup” — describes the basic requirements for operating
the 8X930Ax in a system. It also discusses on-chip and external clock sources and describes de-
vice resets, including power-on reset.

Chapter 14, “Special Operating Modes” — provides an overview of the idle, powerdown, and
on-circuit emulation (ONCE) modes and describes how to enter and exit each mode. This chapter
also describes the power control (PCON) special function register and lists the status of the device
pins during the special modes and reset. '

Chapter 15, “External Memory Interface” — describes the external memory signals and bus
cycles and provides examples of external memory design. It provides waveform diagrams for the
bus cycles, bus cycles with wait states, and the configuration byte bus cycles. It also provides bus
cycle diagrams with AC timing symbols and definitions of the symbols.

Chapter 16, “Verifying Nonvolatile Memory” — provides instructions for verifying bn-chip
program memory, configuration bytes, signature bytes, and lock bits. '

Appendix A, “Instruction Set Reference” — provides reference information for the instruction
set. It describes each instruction; defines the bits in the program status word registers (PSW,
PSW1); shows the relationships between instructions and PSW ﬂags and lists hexadecimal op-
codes, instruction lengths, and execution times.

Appendix B, “Signal Descriptions” — describes the function(s) of each device pin. Descrip-
tions are listed alphabetically by signal name. This appendix also provides a list of the signals
grouped by functional category.

Appendix C, “Registers” — accumulates, for convenient reference, copies of the register defi-
nition figures that appear throughout the manual.

intel.

GUIDE TO THIS MANUAL

Appendix D, “Data Flow Model”— describes the data flow model for the 8X930Ax USB trans-

actions.

Glossary — a glossary of terms has been provided for reference of technical terms.

Index — an index has been included for your convenience.

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are used in this manual. The Glossary defines other
terms with special meanings.

#

italics

XXXX

Assert and Deassert

Instructions

The pound symbol (#) has either of two meanings, depending on the
context. When used with a signal name, the symbol means that the
signal is active low. When used with an instruction pneumonic, the
symbol prefixes an immediate value in immediate addressing mode.

Italics identify variables and introduce new terminology. The context
in which italics are used distinguishes between the two possible
meanings.

Variables in registers and signal names are commonly represented by
x and y, where x represents the first variable and y represents the
second variable. For example, in register Px.y, x represents the
variable [1-4] that identifies the specific port, and y represents the
register bit variable [7:0]. Variables must be replaced with the correct
values when configuring or programming registers or identifying
signals.

Uppercase X (no italics) represents an unknown value or a “don’t
care” state or condition. The value may be either binary or
hexadecimal, depending on the context. For example, 2XAFH (hex)
indicates that bits 11:8 are unknown; 10XX in binary context
indicates that the two LSBs are unknown.

The terms assert and deassert refer to the act of making a signal
active (enabled) and inactive (disabled), respectively. The active
polarity (high/low) is defined by the signal name. Active-low signals
are designated by a pound symbol (#) suffix; active-high signals have
no suffix. To assert RD# is to drive it low; to assert ALE is to drive it
high; to deassert RD# is to drive it high; to deassert ALE is to drive it
low.

Instruction mnemonics are shown in upper case to avoid confusion.
When writing code, either upper case or lower case may be used.

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL - Intel®

Logic 0 (Low)
Logic 1 (High)

Numbers

Register Bits

Register Names

Reserved Bits

Set and Clear

Signal Names

An input voltage level equal to or less than the maximum value of
V.. or an output voltage level equal to or less than the maximum
value of V. See data sheet for values.

An input voltage level equal to or greater than the minimum value of
Vy, or an output voltage level equal to or greater than the minimum
value of V. See data sheet for values.

Hexadecimal numbers are represented by a string of hexadecimal
digits followed by the character H. Decimal and binary numbers are
represented by their customary notations. That is, 255 is a decimal
number and 1111 1111 is a binary number. In some cases, the letter B
is added for clarity. '

Bit locations are indexed by 7:0 for byte registers, 15:0 for word
registers, and 31:0 for double-word (dword) registers, where bit 0 is
the least-significant bit and 7, 15, or 31 is the most-significant bit. An
individual bit is represented by the register name, followed by a
period and the bit number. For example, PCON.4 is bit 4 of the
power control register. In some discussions, bit names are used. For
example, the name of PCON.4 is POF, the power-off flag.

Register names are shown in upper case. For example, PCON is the
power control register. If a register name contains a lowercase
character, it represents more than one register. For example,
CCAPMx represents the five registers: CCAPMO through CCAPM4.

Some registers contain reserved bits. These bits are not used in this
device, but they may be used in future implementations. Do not write
a “1” to a reserved bit. The value read from a reserved bit is indeter-
minate. ’

The terms set and clear refer to the value of a bit or the act of giving
it a value. If a bit is set, its value is “1”; setting a bit gives it a “1”
value. If a bit is clear, its value is “0”; clearing a bit gives it-a “0”
value.

Signal names are shown in upper case. When several signals share a
common name, an individual signal is represented by the signal name
followed by a number. Port pins are represented by the port abbrevi-
ation, a period, and the pin number (e.g., P0.0, P0.1). A pound
symbol (#) appended to a signal name identifies an active-low signal.

|nte|® GUIDE TO THIS MANUAL

Units of Measure The following abbreviations are used to represent units of measure:
A amps, amperes
DCV direct current volts
Kbyte kilobytes
KQ kilo-ohms
mA milliamps, milliamperes
Mbyte megabytes
MHz megahertz
ms milliseconds
mW milliwatts
ns nanoseconds

pF picofarads

w watts

\" volts

HA microamps, microamperes
uF microfarads

us microseconds

uw microwatts

1.3 RELATED DOCUMENTS

The following documents contain additional information that is useful in designing systems that
incorporate the 8X930Ax. To order documents, please call Intel Literature Fulfillment (1-800-
548-4725 in the U.S. and Canada; +44(0) 793-431155 in Europe).

Embedded Microcontrollers Order Number 270646
Embedded Processors Order Number 272396
Embedded Applications | Order Number 270648
Packaging Order Number 240800
Universal Serial Bus Specification ‘ Order Number 272904

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL In@®

1.3.1 Data Sheet

The data sheet is included in Embedded Microcontrollers and is also available individually.

8X930Ax Universal Serial Bus Microcontroller Order Number 272917

1.3.2 Application Notes
The following MCS 251 application notes apply to the 8X930Ax.

AP-125, Designiﬁg Microcontroller Systems Order Number 210313
for Electrically Noisy Environments

AP-155, Oscillators for Microcontrollers Order Number 230659
AP-708, Introducing the MCS® 251 Microcontroller Order Number 272670
—the 8XC251SB

AP-709, Maximizing Performance Using MCS® 251 Microcontroller ~ Order Number 272671
—Programming the 8XC251SB

AP-710, Migrating from the MCS® 51 Microcontroller to the Order Number 272672
 MCS 251 Microcontroller (8XC251SB)—Software and Hardware
Considerations

The following MCS 51 microcontroller application notes also apply to the 8X930Ax.

AP70, Using the Intel MCS® 51 Boolean Processing Capabilities Order Number 203830
AP-223, 8051 Based CRT Terminal Controller Order Number 270032
AP-252, Designing With the 80C51BH » Order Nu}nber 270068
AP-425, Small DC Motor Control Order Number 270622
AP-410, Enhanced Serial Port on the 83C51FA Order Number 270490
AP-415, 83C51FA/FB PCA Cookbook Order Number 270609
AP-476, How to Implement I2C Serial Communication Order Number 272319

Using Intel MCS® 51 Microcontrollers

-y

|nte|® GUIDE TO THIS MANUAL

1.4 APPLICATION SUPPORT SERVICES

You can get up-to-date technical information from a variety of electronic support systems: the
World Wide Web, CompuServe, the FaxBack* service, and Intel’s Brand Products and Applica-
tions Support bulletin board service (BBS). These systems are available 24 hours a day, 7 days a
week, providing technical information whenever you need it.

In the U.S. and Canada, technical support representatives are available to answer your questions
between 5 a.m. and 5 p.m. Pacific Standard Time (PST). Outside the U.S. and Canada, please con-

tact your local distributor. You can order product literature from Intel literature centers and sales
offices.

Table 1-1 lists the information you need to access these services.

Table 1-1. Intel Application Support Services

Service U.S. and Canada Asia-Pacific and Japan Europe
World Wide Web | URL: http://www.intel.com/ | URL: http://www.intel.com/ | URL: http://www.intel.com/
CompuServe go intel go intel go intel
FaxBack* 800-525-3019 503-264-6835 +44(0)1793-496646
916-356-3105
| BBS 503-264-7999 503-264-7999 +44(0)1793-432955
916-356-3600 916-356-3600
Help Desk 800-628-8686 Please contact your local | Please contact your local
916-356-7999 distributor. distributor.
Literature 800-548-4725 708-296-9333 +44(0)1793-431155 England
+81(0)120 47 88 32 +44(0)1793-421777 France
+44(0)1793-421333 Germany

1.4.1 World Wide Web

We offer a variety of technical and product information through the World Wide Web (URL: ht-
tp://www.intel.com/design/mcs96). Also visit Intel’s Web site for financials, history, and news.

1.4.2 CompuServe Forums

Intel maintains several CompuServe forums that provide a means for you to gather information,
share discoveries, and debate issues. Type “go intel” for access. The INTELC forum is set up to
support designers using various Intel components. For information about CompuServe access and
service fees, call CompuServe at 1-800-848-8199 (U.S.) or 614-529-1340 (outside the U.S.).

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

1.4.3 FaxBack Service

The FaxBack service is an on-demand publishing system that sends documents to your fax ma-
chine. You can get product announcements, change notifications, product literature, device char-
acteristics, design recommendations, and quality and reliability information from FaxBack 24
hours a day, 7 days a week.

Think of the FaxBack service as a library of technical documents that you can access with your
phone. Just dial the telephone number and respond to the system prompts. After you select a doc-
ument, the system sends a copy to your fax machine.

Each document is assigned an order number and is listed in a subject catalog. The first time you
use FaxBack, you should order the appropriate subject catalogs to get a complete listing of doc-
ument order numbers. Catalogs are updated twice monthly. In addition, daily update catalogs list
the title, status, and order number of each document that has been added, revised, or deleted dur-
ing the past eight weeks. The daily update catalogs are numbered with the subject catalog number
followed by a zero. For example, for the complete microcontroller and flash catalog, request doc-
ument number 2; for the daily update to the microcontroller and flash catalog, request document
number 20.

The following catalogs and information are available at the time of publication:

Solutions OEM subscription form

Microcontroller and flash catalog

Development tools catalog

Systems catalog

Multimedia catalog

Multibus and iRMX® software catalog and BBS file listings

Microprocessor, PCI, and peripheral catalog

Quality and reliability and change notification catalog

o ® N o kWD =

iAL (Intel Architecture Labs) technology catalog

Inte|® GUIDE TO THIS MANUAL

1.4.4 Bulletin Board System (BBS)

Intel’s Brand Products and Applications Support bulletin board system (BBS) lets you download
files to your PC. The BBS has the latest ApBUILDER software, hypertext manuals and
datasheets, software drivers, firmware upgrades, application notes and utilities, and quality and
reliability data.

Any customer with a PC and modem can access the BBS. The system provides automatic config-
uration support for 1200- through 19200-baud modems. Use these modem settings: no parity, 8
data bits, and 1 stop bit (N, §, 1).

To access the BBS, just dial the telephone number (see Table 1-1 on page 1-7) and respond to the
system prompts. During your first session, the system asks you to register with the system oper-
ator by entering your name and location. The system operator will set up your access account
within 24 hours. At that time, you can access the files on the BBS.

NOTE

In the U.S. and Canada, you can get a BBS user’s guide, a master list of BBS
files, and lists of FaxBack documents by calling 1-800-525-3019. Use these
modem settings: no parity, 8 data bits, and 1 stop bit (N, 8, 1).

intel.

Introduction

intel.

CHAPTER 2
INTRODUCTION

The 8X930Ax is a peripheral interface chip for Universal Serial Bus (USB) applications. It sup-
ports the connection of a PC peripheral, such as a keyboard or a modem, to a host PC via the USB.
The USB is specified by the Universal Serial Bus Specification. Much of the material in this doc-
ument rests on this USB specification.

In the language of the USB specification, the 8X930Ax is a USB device. A USB device can serve
as a function by providing an interface for a peripheral, and it can serve as a hub by providing
additional connections to the USB. The 8X930Ax described in this manual serves as a USB func-
tion. Figure 2-1 depicts the 8X930Ax in a USB system.

Host PC

USB Hub

Mouse Modem Printer

Function Function Function
A4395-01

Figure 2-1. 8X930Ax in a Universal Serial Bus System

I 2-1

L]
8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL In

System Bus and I/O Ports

- P0.7:0 P2.7:0
Port 0 Port 2
Drivers Drivers

Register
File

ROM

Data Bus (8)

Data .
Memory
Interface

k T For details, see the USB module block diagram.

Data Address (24)

RAM

Peripheral
Interface

Interrupt
Handler

1/0 Ports and

Peripheral Signals

P1.7:0

P3.7:0

Port 1
Drivers

Port 3
Drivers

1B Bus (8)

Watchdog
Timer

Timer/
Counters

PCA

Serial /0

uss’

USB Ports

A4340-01

Figure 2-2. Functional Block Diagram of the 8X930Ax

|nte|® INTRODUCTION

2.1 PRODUCT OVERVIEW

The 8X930Ax can be briefly described as an MCS® 251 microcontroller with an on-chip USB
module, and additional pinouts provided for USB operations. As shown in the functional block
diagram (Figure 2-2), the 8X930Ax consists of a microcontroller core, on-chip ROM (optional)
and RAM, I/O ports, the on-chip USB module, and on-chip peripherals.

The microcontroller core together with the USB module provide the capabilities of a USB device.
The block diagram in Figure 2-3 shows the main components of the USB module and how they

interface with the CPU. The other microcontroller peripherals are not essential to operation as a
USB device. »

The 8X930Ax uses the standard instruction set of the MCS 251 architecture.

usB
Wires e g
[a) (=)
Y Yy
Transceiver
'r A
Serial Bus
Interface Engine
(SIE)
A
Control Y
ontro
r > " Function [
— Interface Unit <____—> ®
<::> (FIU) a
A 2
8]
C-II?U { {—° Control 3
® =
8 Y £
— g
L FIFOs <:> (=
L Control . | |
A4231-02

Figure 2-3. 8X930Ax USB Module Block Diagram

I) 2-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

2.1.1 8X930Ax Features

The major features of the 8X930Ax are listed below and summarized in Table 2-1. The 8X930Ax
is derived from the 8XC251Sx microcontroller which provides the following features:

® 256 Kbytes of external memory addressability

® On-chip RAM (512 or 1024 bytes)

® On-chip ROM (0, 8 or 16 Kbytes)

® Four 8-bit I/O ports: one open drain port, three quasi-bidirectional ports
¢ Code compatibility with MCS® 51 microcontrollers

¢ On-chip peripherals:

— Serial I/O port: standard MCS 51 microcontroller Universal Asynchronous Receiver
Transmitter (UART)

— Programmable counter array (PCA): 5 capture/compare modules configurable for
timing, counting, or PWM

— Three general-purpose timer/counters
— Dedicated 14-bit hardware watchdog timer

In addition, the 8X930Ax has an on-chip USB module which provides the USB capability. The
major features of the USB module include:

¢ Standard universal serial bus interface
¢ Four USB function endpoints.
® Three pairs of 16-byte transmit/receive FIFO data buffers for endpoints 0, 2, 3.

® One pair of configurable transmit/receive FIFO data buffers for endpoint 1. (Sizes: 256/256,
512/512, 0/1024, or 1024/0 bytes)

¢ Phase-locked loop (1.5 Mbps and 12 Mbps USB data rates)

You can configure the 8X930Ax to specify binary mode or source mode as the opcode arrange-
ment. Either mode executes all of the MCS 51 architecture instructions and all of the MCS 251
architecture instructions. However, source mode is more efficient for MCS 251 architecture in-
structions, and binary mode is more efficient for MCS 51 architecture instructions. In binary
mode, object code for an MCS 51 microcontroller runs on the 8X930Ax without recompiling. For
details see “Opcode Configurations (SRC)” on page 4-12.

Certain instructions operate on 8-, 16-, or 32-bit operands, providing easier and more efficient
programming in high-level languages such as C. Additional features include the TRAP instruc-
tion, a displacement addressing mode, and several conditional jump instructions. Chapter 5, “In-
structions and Addressing,” describes the instruction set and compares it with the instruction set
for MCS 51 microcontrollers.

2-4 I

Table 2-1. 8X930Ax Features Summary

On-chip Memory

Device ROM RAM
Number (Kbytes) (Bytes)
80930AA 0 512
83930AA 8 512
83930AB 16 512
80930AD 0 1024
83930AD 8 1024
83930AE 16 1024

General features:
Address space 256 Kbytes
External bus (multiplexed)

Address 16, 17, or 18 bits
Data 8 bits
Register file 40 bytes.
Interrupt sources 11
I/O ports Four 8-bit I/O ports
On-chip Peripherals:
Serial I/O port

Programmable counter array (5 modules)
Three general-purpose timer/counters
Hardware WDT.

USB features:
Standard Universal Serial Bus Interface
4 function endpoints — one pair of configurable
transmit/receive FIFOs (up to 1023 bytes total)
and three 16 byte transmit/receive FIFO pairs
On-chip clock/PLL
USB rates 1.5 and 12 Mbps

INTRODUCTION

MCS 251 microcontrollers store both code and data in a single, linear 16-Mbyte memory space.
The usable memory space of the 8X930Ax consists of four 64-Kbyte regions (256 Kbytes). The
external bus provides up to 256 Kbytes of external memory addressability. The special function
registers (SFRs) and the register file have separate address spaces. Refer to Chapter 3, “Memory
Partitions” for a description of the address modes.

Each pin of the four 8-bit I/O ports can be individually programmed as a general I/O signal or as
a special-function signal that supports the external bus or one of the on-chip peripherals. Ports PO
and P2 comprise a 16-line external bus, which transmits a 16-bit address multiplexed with 8 data
bits. (You can also configure the 8X930Ax to have a 17-bit or an 18-bit external address bus. Re-
fer to “Configuring the External Memory Interface” on page 4-7.) Ports P1 and P3 carry bus-con-
_ trol and peripheral signals.

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Inbla

The 8X930Ax has two power-saving modes. In idle mode, the CPU clock is stopped, while clocks
to the peripherals continue to run. In global suspend mode (powerdown), the on-chip oscillator is
stopped, and the chip enters a static state. An enabled interrupt or a hardware reset can bring the
chip back to its normal operating mode from idle or powerdown. Refer to Chapter 14, “Special
Operating Modes,” for details on the power-saving modes.

22 MCS 251 MICROCONTROLLER CORE

The MCS 251 microcontroller core contains the CPU, the clock and reset unit, the interrupt han-
dler, the bus interface, and the peripheral interface. The CPU contains the instruction sequencer,
ALU, register file, and data memory interface.

221 CPU

Figure 2-4 is a functional block diagram of the CPU (central processor unit). The 8X930Ax fetch-
es instructions from on-chip code memory two bytes at a time, or from external memory in single
bytes. The instructions are sent over the 16-bit code bus to the execution unit. You can configure
the 8X930Ax to operate in page mode for accelerated instruction fetches from external memory.
In page mode, if an instruction fetch is to the same 256-byte “page” as the previous fetch, the
fetch requires one state (two clocks) rather than two states (four clocks).

Code Bus (16)U ﬂCode Address (24)

Instruction Sequencer <:> Interrupt Handler

| srci(g)

PANIIVAN

‘VV

| src2 (8)

< H 1[:

ALU Register Mgr?:gry Data Bus (8)
File
Interface Data Address (24)

| és}ms) it 1\r_l

Figure 2-4. The CPU

A4272-01

2-6 I

|nte|® INTRODUCTION

The 8X930Ax register file has forty registers, which can be accessed as bytes, words, and double
words. As in the MCS 51 architecture, registers 0—7 consist of four banks of eight registers each,
where the active bank is selected by the program status word (PSW) for fast context switches.

The 8X930Ax is a single-pipeline machine. When the pipeline is full and code is executing from
on-chip code memory, an instruction is completed every state time. When the pipeline is full and
code is executing from external memory (with no wait states and no extension of the ALE signal),
an instruction is completed every two state times.

2.2.2 Clock and Reset Unit
The timing signal for the 8X930Ax can be provided by:

* an external frequency source connected to XTAL

¢ an on-chip oscillator employing an external crystal/resonator connected across XTAL and
XTAL,.

* an on-chip oscillator phase-locked to one of the above sources.

Device pins PLLSEL2:0 select the operating rate of the USB module and turn the PLL on and
off. Table 2-2 lists the USB operating rates and crystal frequencies as a function of the phase-
locked loop select code. “Clock Sources” on page 13-2 discusses the requirements for external-
clock signals and on-chip oscillators.

The basic unit of time for 8X930Ax microcontrollers is the state time (or state). States are divided
into two phases identified as phase I and phase 2. See Figures 2-5 and 2-6. The 8X930Ax periph-
erals operate on a peripheral cycle, which is six state times. A specific time within a peripheral
cycle is denoted by its state and phase. For example, the PCA timer is incremented once each pe-
ripheral cycle in phase 2 of state 5 (denoted as S5P2).

When the PLL is on, the frequency of the internal clock distributed to the CPU and peripherals is
twice as great as for the case of PLL off (at Fogc = 12 MHz).

As shown in Table 2-2 and Figure 2-5, when the PLL is off (PLLSEL2:0 =001 or 100), there are
2 Tpgc/state. As shown in Table 2-2 and Figure 2-6, when the PLL is on (PLLSEL2:0 = 110), there
is 1 Tgc/state.

The reset unit places the 8X930Ax into a known state. A chip reset is initiated by asserting the
RST pin, by a USB initiated reset, or by allowing the watchdog timer to time out (refer to Chapter
13, “Minimum Hardware Setup”).

I -

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table 2-2. 8X930Ax Operating Frequency

intgl.

Internal XTAL1 XTAL1
PLLSEL2 | PLLSEL1 | PLLSELO | USBRate | F1eduencV | proquency | Clocks
Pind3 | Pin42 | Pin44 @) Fosc P Comments
))) and State
Peripherals Tosc /State
(1Ter) (3) (5)
0 0 1 1.5 Mbps 3 Mhz 6 Mhz 2 PLL Off
(Low Speed)
1 0 0 1.5 Mbps 6 Mhz (4) 12 Mhz 2 PLL Off
(Low Speed)
1 1 0 12 Mbps 12 Mhz (4) 12 Mhz 1 PLL On
(Full Speed)
NOTES:
1. Other PLLSELx combinations are not valid.
2. The sampling rate is 4X the USB rate.
3. The 8X930Ax datasheet AC timing specification defines the following symbols: CPU frequency = F¢ ¢
=1/Tgk-
4. The 8X930Ax CPU and peripherals frequency is 3 Mhz (low clock mode) until the LC bit in PCON is
cleared.
5. The number of XTAL1 clocks per state (Togc/state) depends on the PLLSEL2:0 selection. When the

CPU is operating in low clock mode (3 MHz), there are four Tog/state for PLLSEL2:0 = 100 or 110.

2.2.3 Interrupt Handler

The interrupt handler can receive interrupt requests from eleven maskable sources and the TRAP
instruction. When the interrupt handler grants an interrupt request, the CPU discontinues the nor-
mal flow of instructions and branches to a routine that services the source that requested the in-
terrupt. You can enable or disable the interrupts individually (except for TRAP) and you can
assign one of four priority levels to each interrupt. Refer to Chapter 6, “Interrupt System,” for a
detailed description.

2.3 ON-CHIP MEMORY

For ROM devices, the 8X930Ax provides on-chip program memory beginning at location
FF:0000H. See Table 2-1 for memory options. Following a reset, the first instruction is fetched
from location FF:0000H. For devices without ROM, instruction fetches are always from external
memory.

The 8X930Ax provides on-chip data RAM beginning at location 00:0020H (i.e., just above the
four banks of registers RO—R7 which occupy the first 32 bytes of the memory space). See Table
2-1 for memory options. Data RAM locations can be accessed with direct, indirect, and displace-
ment addressing. Ninety-six of these locations (20H-7FH) are bit addressable.

"Tte'@ INTRODUCTION

Phase 1 Phase 2
P1 P2
XTAL1 |
—
Tosc

2 Togc = State Time

’ State 1 I State 2 l State 3 State 4 State 5 I State 6 |
P1 P2 | P1 P2 | Pl P2 |P1 P2]|P1|P2]|P1I|P2

| Peripheral Cycle '
I~ prereiy |

A2604-02

Figure 2-5. Clocking Definitions (PLL off) t

IP1|P2|

XTAL1 I
=
Tosc
1 Togc = State Time
State 1 2 3 4 5 6

[P1 P2|P1 P2|P1 P2|P1 P2|P1 P2|P1 P2

XTAL1 | | | | I l | | | | | | I
'«—— Peripheral Cycle ——»l
(6 States)

A5086-01

Figure 2-6. Clocking Definitions (PLL on) TT

T Figure 2-5 shows timing for PLL off (PLLSEL2:0 = 001 or 100) and 8X930Ax not in low-clock mode. 2 Togc./State.
T Figure 2-6 shows timing for PLL on (PLLSEL2:0 = 110) and 8X930Ax not in low-clock mode. 1 Tgc../State.

2-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Int€|®

2.4 UNIVERSAL SERIAL BUS MODULE

The universal serial bus module provides a USB interface between the host PC and the product
in which the 8X930Ax is embedded. Data port 0 (Dpg, D)) provides the upstream connection.
Figure 2-3 shows the main components of the USB module.

The serial interface engine (SIE) handles the communication protocol of universal serial bus. The
function interface unit (FIU) manages data received and transmitted by the USB module. The
8X930Ax supports four function endpoints. Each endpoint contains a transmit FIFO and a receive
FIFO. See Table 2-1. Transmit FIFOs are written by the CPU, then read by the FIU for transmis-
sion. Receive FIFOs are written by the FIU following reception, then read by the CPU. All trans-
mit FIFOs have the same architecture, and all receive FIFOs have the same architecture.

Operation of the USB module is described in detail in Chapter 7, “Universal Serial Bus,” and
Chapter 8, “USB Programming Models.”

2.5 ON-CHIP PERIPHERALS

The on-chip peripherals, which reside outside the microcontroller core, perform-specialized func-
tions. Software accesses the peripherals via their special function registers (SFRs). The 8X930Ax
has four peripherals: the watchdog timer, the timer/counters, the programmable counter array
(PCA), and the serial 1/O port. '

2.,5.1 Timer/Counters and Watchdog Timer

The timer/counter unit has three timer/counters, which can be clocked by the oscillator (for timer
operation) or by an external input (for counter operation). You can set up an 8-bit, 13-bit, or 16-
bit timer/counter, and you can program them for special applications, such as capturing the time
of an event on an external pin, outputting a programmable clock signal on an external pin, or gen-
erating a baud rate for the serial /O port. Timer/counter events can generate interrupt requests.

The watchdog timer is a circuit that automatically resets the 8X930Ax in the event of a hardware
or software upset. When enabled by software, the watchdog timer begins running, and unless
software intervenes, the timer reaches a maximum count and initiates a chip reset. In normal op-
eration, software periodically clears the timer register to prevent the reset. If an upset occurs and
software fails to clear the timer, the resulting chip reset disables the timer and returns the system
to a known state. The watchdog and the timer/counters are described in Chapter 10, “Tim-
er/Counters and WatchDog Timer.”

2.5.2 Programmable Counter Array (PCA)

The programmable counter array (PCA) has its own timer and five capture/compare modules that
perform several functions: capturing (storing) the timer value in response to a transition on an in-
put pin; generating an interrupt request when the timer matches a stored value; toggling an output
pin when the timer matches a stored value; generating a programmable PWM (pulse width mod-
ulator) signal on an output pin; and serving as a software watchdog timer. Chapter 11, “Program-
mable Counter Array,” describes this peripheral in detail.

2-10 I

Inu ® | INTRODUCTION

2.5.3 Serial I/O Port

The serial I/O port provides one synchronous and three asynchronous communication modes.
The synchronous mode (mode 0) is half-duplex: the serial port outputs a clock signal on one pin
and transmits or receives data on another pin.

The asynchronous modes (modes 1-3) are full-duplex (i.e., the port can send and receive simul-
taneously). Mode 1 uses a serial frame of 10 bits: a start bit, 8 data bits, and a stop bit. The baud
rate is generated by overflow of timer 1 or timer 2. Modes 2 and 3 use a serial frame of 11 bits: a
start bit, eight data bits, a programmable ninth data bit, and a stop bit. The ninth bit can be used
for parity checking or to specify that the frame contains an address and data. In mode 2, you can
use a baud rate of 1/32 or 1/64 of the oscillator frequency. In mode 3, you can use the overflow
from timer 1 or timer 2 to determine the baud rate.

In its synchronous modes (modes 1-3) the serial port can operate as a slave in an environment
where multiple slaves share a single serial line. It can accept a message intended for itself or a
message that is being broadcast to all of the slaves, and it can ignore a message sent to another
slave.

2.6 OPERATING CONDITIONS

The 8X930Ax is designed for a commercial operating environment and to accommodate the op-
erating rates of the USB interface. For detailed specifications, refer to the current 8X930Ax Uni-
versal Serial Bus Microcontroller datasheet. For USB module operating rates see “Clock and
Reset Unit” on page 2-7.

intel.

Memory Partitions

CHAPTER 3
MEMORY PARTITIONS

The 8X930Ax has three address spaces: a memory space, a special function register (SFR) space,
and a register file. This chapter describes these address spaces as they apply to the 8X930Ax. It
also discusses the compatibility of the MCS® 251 architecture and the MCS® 51 architecture in
terms of their address spaces.

3.1 ADDRESS SPACES FOR 8X930Ax

Figure 3-1 shows the memory space, the SFR space, and the register file for 8X930Ax. (The ad-
dress spaces are depicted as being eight bytes wide with addresses increasing from left to right
and from bottom to top.)

Memory Address Space
16 Mbytes

SFR Space
512 Bytes

Register File
64 Bytes

A4100-01

Figure 3-1. Address Spaces for the 8X930Ax

3-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL InU®

Itis convenient to view the unsegmented, 16-Mbyte memory épace as consisting of 256 64-Kbyte
regions, numbered 00: to FF:.

NOTE

The memory space in the 8X930Ax is unsegmented. The 64-Kbyte “regions”
00:, 01:, ..., FF: are introduced only as a convenience for discussions.
Addressing in the 8X930Ax is linear; there are no segment registers.

On-chip RAM is located at the bottom of the memory space, beginning at location 00:0000H. The
first 32 bytes (00:0000H-00:001FH) provide storage for a part of the register file. The on-chip,
general-purpose data RAM resides just above this, beginning at location 00:0020H.

On-chip ROM (code memory) is located in the top region of the memory space, beginning at lo-
cation FF:0000H. Following device reset, execution begins at this address. The top eight bytes of
region FF: are reserved for the configuration array.

The register file has its own address space (Figure 3-1). The 64 locations in the register file are
numbered decimally from 0 to 63. Locations 0-7 represent one of four switchable register banks,
each having eight registers. The 32 bytes required for these banks occupy locations 00:0000H-
00:001FH in the memory space. Register file locations 8-63 do not appear in the memory space.
See “8X930Ax Register File” on page 3-9 for a further description of the register file.

The SFR space accommodates up to 512 8-bit special function registers with addresses S:000H-
S:1FFH. SFRs implemented in the 8X930Ax are shown in Table 3-6 on page 3-10. In the MCS
251 architecture, use the prefix “S:” with SFR addresses to distinguish them from the memory
space addresses 00:0000H-00:01FFH. See “Special Function Registers (SFRs)” on page 3-15 for
details on the SFR space.

3.1.1 Compatibility with the MCS® 51 Architecture

The address spaces in the MCS 51 architecture’ are mapped into the address spaces in the MCS
251 architecture. This mapping allows code written for MCS 51 microcontrollers to run on MCS
251 microcontrollers. (Chapter 5, “Instructions and Addressing” discusses the compatibility of
the two instruction sets.) :

Figure 3-2 shows the address spaces for the MCS 51 architecture. Internal data memory locations
00H-7FH can be addressed directly and indirectly. Internal data locations 8OH-FFH can only be
addressed indirectly. Directly addressing these locations accesses the SFRs. The 64-Kbyte code
memory has a separate memory space. Data in the code memory can be accessed only with the
MOVC instruction. Similarly, the 64-Kbyte external data memory can be accessed only with the
MOVX instruction.

The register file (registers RO-R7) comprises four switchable register banks, each having eight
registers. The 32 bytes required for the four banks occupy locations 00H-1FH in the on-chip data
memory.

Figure 3-3 shows how the address spaces in the MCS 51 architecture map into the address spaces-
in the MCS 251 architecture; details are listed in Table 3-1. '

T MCS®S51 Microcontroller Family User’s Manual (Order Number; 272383)

o e]

intel.

MEMORY PARTITIONS

The 64-Kbyte code memory for MCS 51 microcontrollers maps into region FF: of the memory
space for MCS 251 microcontrollers. Assemblers for MCS 251 microcontrollers assemble code
for MCS 51 microcontrollers into region FF:, and data accesses to code memory are directed to
this region. The assembler also maps the interrupt vectors to region FF:. This mapping is trans-
parent to the user; code executes just as before, without modification.

FFFFH
Code
(MOVC)
0000H
FFFFH RO Register File R7
External Data
(MOVX)
0000H
FFH FFH
Internal Data SFRs
(indirect) (direct)
80H 80H
7FH
Internal Data
(direct, indirect)
JooH

A4139-01

Figure 3-2. Address Spaces for the MCS® 51 Architecture

3-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Memory Address Space
16 Mbytes

FFFFH

MCS® 51 Architecture
Code Memory

FF:0000H] 0000H

02:0000H |

MCS 51 Architecture
External Data Memory

01:0000H | 0000H

FFH

MCS 51 Architecture

Internal Data Memory

00:0000H | 00H

0

SFR Space
512 Bytes

MCS 51 Architecture

SFRs

Register File
64 Bytes

A4133-01

Figure 3-3. Address Space Mappings MCS® 51 Architecture to MCS® 251 Architecture

Table 3-1. Address Mappings

MCS® 51 Architecture MCS® 251 Architecture
Memory Type . . Data .
Size Location Addressing Location
Indirect using . .
Code 64 Kbytes 0000H-FFFFH MOVC instr. FF:0000H-FF:FFFFH
5 : Indirect using . .
External Data 64 Kbytes 0000H-FFFFH MOVX instr. 01:0000H-01:FFFFH
128 bytes 00H-7FH Direct, Indirect | 00:0000H-00:007FH
Internal Data ;
128 bytes 80H-FFH Indirect 00:0080H-00:00FFH
SFRs 128 bytes S:80H-S:FFH Direct S:080H-S:0FFH
Register File 8 bytes RO-R7 Register RO-R7
34

Inte|® MEMORY PARTITIONS

The 64-Kbyte external data memory for MCS 51 microcontrollers is mapped into the memory
region specified by bits 16-23 of the data pointer DPX, i.e., DPXL. DPXL is accessible as register
file location 57 and also as the SFR at S:084H (see “Dedicated Registers” on page 3-12). The re-
set value of DPXL is 01H, which maps the external memory to region 01: as shown in Figure 3-3.
You can change this mapping by writing a different value to DPXL. A mapping of the MCS 51
microcontroller external data memory into any 64-Kbyte memory region in the MCS 251 archi-
tecture provides complete run-time compatibility because the lower 16 address bits are identical
in the two address spaces.

The 256 bytes of on-chip data memory for MCS 51 microcontrollers (0OH-FFH) are mapped to
addresses 00:0000H-00:00FFH to ensure complete run-time compatibility. In the MCS 51 archi-
tecture, the lower 128 bytes (0OH-7FH) are directly and indirectly addressable; however the up-
per 128 bytes are accessible by indirect addressing only. In the MCS 251 architecture, all
locations in region 00: are accessible by direct, indirect, and displacement addressing (see
“8X930Ax Memory Space” on page 3-5).

The 128-byte SFR space for MCS 51 microcontrollers is mapped into the 512-byte SFR space of
the MCS 251 architecture starting at address S:080H, as shown in Figure 3-3. This provides com-
plete compatibility with direct addressing of MCS 51 microcontroller SFRs (including bit ad-
dressing). The SFR addresses are unchanged in the new architecture. In the MCS 251
architecture, SFRs A, B, DPL, DPH, and SP (as well as the new SFRs DPXL and SPH) reside in
the register file for high performance. However, to maintain compatibility, they are also mapped
into the SFR space at the same addresses as in the MCS 51 architecture.

3.2 8X930Ax MEMORY SPACE

Figure 3-4 shows the logical memory space for the 8X930Ax microcontroller. The usable mem-
ory space of the 8X930Ax consists of four 64-Kbyte regions: 00:, 01:, FE:, and FF:. Code can
execute from all four regions; code execution begins at FF:0000H. Regions 02:-FD are reserved.
Reading a location in the reserved area returns an unspecified value. Software can execute a write
to the reserved area, but nothing is actually written.

All four regions of the memory space are available at the same time. The maximum number of
external address lines is 18, which limits external memory to a maximum of four regions (256
Kbytes). See “Configuring the External Memory Interface” on page 4-7, and “External Memory
Design Examples” on page 15-17.

Locations FF:FFFSH-FF:FFFFH are reserved for the configuration array (see Chapter 4, “Device
Configuration”). The two configuration bytes for the 8X930Ax are accessed at locations
FF:FFF8H and FF:FFF9H; locations FF:FFFAH-FF:FFFFH are reserved for configuration bytes
in future products. Do not attempt to execute code from locations FF:FFF8H-FF:FFFFH. Also,
see the caution on page 4-3 regarding execution of code from locations immediately below the
configuration array.

Figure 3-4 also indicates the addressing modes that can be used to access different areas of mem-
ory. The first 64 Kbytes can be directly addressed. The first 96 bytes of general-purpose RAM
(00:0020H-00:007FH) are bit addressable. Chapter 5, “Instructions and Addressing,” discusses
addressing modes.

I 3-5

L]
8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL lnte|®

Memory Address Space

16 Mbytes
FR-FFFFH] &
FF:0000H
FE:FFFFH
FE:0000H
Indirect and
Displacement
Addressing

Regions 02-FD\

are Reserved | (16 Mbytes)

£ ¢

N\

01:FFFFH
01:0000H _
00:FFFFH Direct Addressing
’ (64 Kbytes)
00:0080H _ _ _ _ _ ______ ..
020k 00:007FH Bit Addressing
00:0
Register Addressing t F - - - - - - - - - - - - Go0G1EH (96 Bytes)

(32 Bytes) 00:0000H R

A4385-01

Figure 3-4. 8X930Ax Address Space

-

an@, MEMORY PARTITIONS

~FF:FFF7H

External Memory

FE:FFFFH

External Memory

FE:0000H

Regions 02-FD
are Reserved

¢ ¢

N

01:FFFFH

External Memory

01:0000H

00:FFFFH

External Memory

T Eight-byte configuration array (FF:FFF8H - FF:FFFFH)

1 Four banks of registers R0-R7 (32 bytes, 00:0000H - 00:001FH)
' . A4382-02

Figure 3-5. Hardware Implementation of the 8X930Ax Address Space

3-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL an@;

Figure 3-5 shows how areas of the memory space are implemented by on-chip RAM and external
memory. The first 32 bytes of on-chip RAM store banks 0-3 of the register file (see “8X930Ax
Register File” on page 3-9).

3.2.1 On-chip General-purpose Data RAM

On-chip RAM (512 or 1024 bytes) provides general data storage (Figure 3-5). Instructions cannot
execute from on-chip data RAM. The data is accessible by direct, indirect, and displacement ad-
dressing. Locations 00:0020H-00:007FH are also bit addressable.

3.2.2 On-chip Code Memory

The 8X930Ax is available with 0, 8 or 16 Kbytes of on-chip ROM located in memory region FF:.
(Figure 3-5). Table 2-1 on page 2-5 lists the amount of on-chip code memory for each device. On-
chip ROM is intended primarily for code storage, although its contents can also be read as data
with the indirect and displacement addressing modes. Following a chip reset, program execution
begins at FF:0000H. Chapter 16, “Verifying Nonvolatile Memory,” describes the procedure for
verifying the contents of on-chip ROM.

A code fetch within the address range of the on-chip ROM accesses the on-chip ROM only if
EA# = 1. For EA# =0, a code fetch in this address range accesses external memory. The value of
EA# is latched when the chip leaves the reset state. Code is fetched faster from on-chip code
memory than from external memory. Table 3-2 lists the minimum times to fetch two bytes of code
from on-chip memory and external memory.

NOTE

If your program executes exclusively from on-chip ROM (not from external
memory), beware of executing code from the upper eight bytes of the on-chip
ROM (FF:1FF8H-FF:1FFFH for 8 Kbytes, FF:3FF8H-FF:3FFFH for 16
Kbytes). Because of its pipeline capability, the 8XC251Sx may attempt to
prefetch code from external memory (at an address above FF:1FFFH/
FF:3FFFH) and thereby disrupt I/O ports 0 and 2. Fetching code constants
from these eight bytes does not affect ports 0 and 2.

If your program executes from both on-chip ROM and external memory, code
can be placed in the upper eight bytes of on-chip ROM. As the 8XC251Sx
fetches bytes above the top address in the on-chip ROM, code fetches automat-
ically become external bus cycles. In other words, the rollover from on-chip
ROM to external code memory is transparent to the user.

3-8 . I

InU@, MEMORY PARTITIONS

Table 3-2. Minimum Times to Fetch Two Bytes of Code

Type of Code Memory State Times

On-chip Code Memory 1

External Memory (page mode)

External Memory (nonpage mode)

3.2.2.1 Accessing On-chip Code Memory in Region 00:

Devices with 16 Kbytes of on-chip code memory can be configured so that the upper half of the
on-chip code memory can also be read as data at locations at the top of region 00: (see “Mapping
On-chip Code Memory to Data Memory (EMAP#)” on page 4-14). That is, locations FF:2000H-
FF:3FFFH can also be accessed at locations 00:E000H-00:FFFFH. This is useful for accessing
code constants stored in ROM. Note, however, that all of the following three conditions must hold
for this mapping to be effective:

® The device is configured with EMAP# = 0 in the UCONFIG1 register (See Figure 4-3 on
page 4-5).
e EA#=1.

* The access to this area of region 00: is a data read, not a code fetch.

If one or more of these conditions do not hold, accesses to the locations in region 00: are referred
to external memory.

3.23 External Memory

Regions 01:, FE:, and portions of regions 00: and FF: of the memory space are implemented as
external memory (Figure 3-5). For discussions of external memory, see “Conﬁgurmg the External
Memory Interface” on page 4-7, and Chapter 15, “External Memory Interface.”

3.3 8X930Ax REGISTER FILE

The 8X930Ax register file consists of 40 locations: 0-31 and 56—63, as shown in Figure 3-6.
These locations are accessible as bytes, words, and dwords, as described in “Byte, Word, and
Dword Registers” on page 3-12.” Several locations are dedicated to special registers (see “Dedi-
cated Registers” on page 3-12); the remainder are general-purpose registers.

Register file locations 07 actually consist of four switchable banks of eight registers each, as il-
lustrated in Figure 3-7 on page 3-11. The four banks are implemented as the first 32 bytes of on-
chip RAM and are always accessible as locations 00:0000H-00:001FH in the memory address
space.t Only one of the four banks is accessible via the register file at a given time. The accessi-

T Because these locations are dedicated to the register file, they are not considered a part of the general-purpose,
1-Kbyte, on-chip RAM (locations 00:0020H-00:041FH).

I 3-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL ||"\‘|.'e|®

ble, or “active,” bank is selected by bits RS1 and RSO in the PSW register, as shown in Table 3-3.

(The PSW is described in “Program Status Words” on page 5-15.”) This bank selection can be
used for fast context switches.

Register file locations 8-31 and 56-63 are always accessible. These locations are implemented
as registers in the CPU. Register file locations 3255 are reserved and cannot be accessed.

Register File

Byte Registers

Note: R10=B
R11 = ACC

R8 | R9 |R10JR11}R12|R13]R14|R15

RO|R1{R2|R3|R4|R5]| R6}R7

56 | 57|58 |59 [60]61]62]63

Word Registers

Locations 32-55 are Reserved

Banks 0-3

24 125126127 |28]29]30] 31 WR24 | WR26 | WR28 | WR30
1617118119120 | 21|22 |23 WR16 [WR18 | WR20 | WR22
101111213} 14|15 WR8 WR10 | WR12 | WR14

WRO WR2 WR4 WR6

Dword Registers

DR56=DPX | DR60 = SPX
DR24 DR28
DR16 DR20
DR8 DR12
DRO DR4

A4099-01

3-10

Figure 3-6. The Register File

MEMORY PARTITIONS

PSW bits RS1:0
select one bank
to be accessed via
the register file.

Register File

Banks 0-3

Memory Address Space

18H 1FH
10H 17H
08H OFH
00H 07H

Banks 0-3
accessible
in memory
address space

A4215-01
Figure 3-7. Register File Locations 0-7
Table 3-3. Register Bank Selection
PSW Selection Bits
Bank Address Range
RS1 RSO
Bank 0 00H-07H 0 0
Bank 1 08H-0FH 0 1
Bank 2 10H-17H 1 0
Bank 3 18H-1FH 1 1
3-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

3.4 BYTE, WORD, AND DWORD REGISTERS

Depending on its location in the register file, a register is addressable as a byte, a word, and/or a
dword, as shown on the right side of Figure 3-6. A register is named for its lowest numbered byte
location. For example:

R4 is the byte register consisting of location 4.
WR4 is the word register consisting of registers 4 and 5.
DR4 is the dword register consisting of registers 4-7.

Locations RO-R15 are addressable as bytes, words, or dwords. Locations 16-31 are addressable
only as words or dwords. Locations 56-63 are addressable only as dwords. Registers are ad-
dressed only by the names shown in Figure 3-6 — except for the 32 registers that comprise the
four banks of registers RO—R7, which can also be accessed as locations 00:0000H-00:001FH in
the memory space.

3.4.1 Dedicated Registers

The register file has four dedicated registers:
® R10 is the B-register
¢ R11 is the accumulator (ACC)
¢ DR56 is the extended data pointer, DPX
* DR6O is the extended stack pointer, SPX

These registers are located in the register file; however, R10; R11; the DPXL, DPH, and DPL
bytes in DR56; and the SPH and SP bytes in DR60 are also accessible as SFRs. The bytes of DPX
and SPX can be accessed in the register file only by addressing the dword registers. The dedicated
registers in the register file and their corresponding SFRs are illustrated in Figure 3-8 and listed
in Table 3-4.

3411 Accumulator and B Register

The 8-bit accumulator (ACC) is byte register R11, which is also accessible in the SFR space as
ACC at S:EOH (Figure 3-8). The B register, used in multiplies and divides, is register R10, which
is also accessible in the SFR space as B at S:FOH. Accessing ACC or B as a register is one state
faster than accessing them as SFRs.

Instructions in the MCS 51 architecture use the accumulator as the primary register for data
moves and calculations. However, in the MCS 251 architecture, any of registers R1-R15 can
serve for these taskst. As aresult, the accumulator does not play the central role that it has in MCS
51 microcontrollers.

¥ Bits in the PSW and PSW 1 registers reflect the status of the accumulator. There are no equivalent status indicators for
the other registers.)

3-12 I

In@@, MEMORY PARTITIONS

Register File SFRs

A4152-02

Figure 3-8. Dedicated Registers in the Register File and their Corresponding SFRs
3.4.1.2 Extended Data Pointer, DPX

Dword register DR56 is the extended data pointer, DPX (Figure 3-8). The lower three bytes of

DPX (DPL, DPH, DPXL) are accessible as SFRs. DPL and DPH comprise the 16-bit data pointer
DPTR. While instructions in the MCS 51 architecture always use DPTR as the data pointer, in-

structions in the MCS 251 architecture can use any word or dword register as a data pointer.

DPXL, the byte in location 57, specifies the region of memory (00:—FF:) that maps into the 64-
Kbyte external data memory space in the MCS 51 architecture. In other words, the MOVX in-
struction addresses the region specified by DPXL when it moves data to and from external mem-
ory. The reset value of DPXL is 01H.

I _ 313

-
8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL InU@,

3.4.1.3 Extended Stack Pointer, SPX

Dword register DR60 is the stack pointer, SPX (Figure 3-8). The byte at location 63 is the 8-bit
stack pointer, SP, in the MCS 51 architecture. The byte at location 62 is the stack pointer high,
SPH. The two bytes allow the stack to extend to the top of memory region 00:. SP and SPH can
be accessed as SFRs.

Two instructions, PUSH and POP directly address the stack pointer. Subroutine calls (ACALL,
ECALL, LCALL) and returns (ERET, RET, RETI) also use the stack pointer. To preserve the
stack, do not use DR60 as a general-purpose register.

Table 3-4. Dedicated Registers in the Register File and their Corresponding SFRs

Register File SFRs
Name Mnemonic | Reg. | Location Mnemonic | Address
—_ — 60 — —
Stack — — 61 — —
Pointer DR60
(SPX) | Stack Pointer, High SPH 62 SPH S:BEH
Stack Pointer, Low SP : 63 SP S:81H
— J— 56 —_— —
Da}a Data Pointer Extended, Low DPXL 57 DPXL S:84H
Pointer DR56
(DPX) 5PTR Data Pointer, High DPH 58 DPH S:83H
Data Pointer, Low DPL 59 DPL S:82H
Accumulator (A Register) A R11 11 ACC S:EOH
B Register B R10 10 B S:FOH

3-14 I

lnte|® MEMORY PARTITIONS

3.5 SPECIAL FUNCTION REGISTERS (SFRS)

The special function registers (SFRs) reside in their associated on-chip peripherals or in the core.
The SFR memory map in Table 3-5 gives the addresses and reset values of the 8X930Ax SFRs.
SFR addresses are preceded by “S:” to differentiate them from addresses in the memory space.
Shaded locations in Table 3-5 and locations below S:80H and above S:FFH are unimplemented,
i.e., no register exists. If an instruction attempts to write to an unimplemented SFR location, the
instruction executes, but nothing is actually written. If an unimplemented SFR location is read, it
returns an unspecified value. Descriptive tables for the SFRs are presented in alphabetical order
in Appendix C.

NOTE
SFRs may be accessed only as bytes; they may not be accessed as words or
dwords.

The following tables list the mnemonics, names, and addresses of the SFRs:
Table 3-6 — Core SFRs

Table 3-7 — USB Function SFRs

Table 3-8 — I/O Port SFRs

Table 3-9 — Serial I/O SFRs

Table 3-10 — Timer/Counter and Watchdog Timer SFRs
Table 3-11 — Programmable Counter Array (PCA) SFRs

I 3-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table 3-5. 8X930Ax SFR Map

in

0/8 19 2/A 3/B 4/C 5/D 6/E 7/F
F8 :
FO EPINDEX || TXSTAT TXDAT TXCON TXFL TXCNTL TXCNTH
1xxxxx00 0xxx0000 XXXXXXKXX 000x0100 00xx1000 XXXXXXXX XXXXXXXX
E8
EO EPCON RXSTAT RXCNTH
00x1xxxx 00000000 XXXXXXXX
D8 SCAP PCON1
_ Q0 Xxxx0000
DO SOFL SOFH

00000000 | 00000000

BO IPL1

00000000

IPH1
00000000

A8

A0
00000000

98

90

88

1/9 2/A
MCS 251 microcontroller SFRs

4/C 5/D 6/E

‘El Endpoint-indexed SFRs

3-16

FADDR
00000000

FF

EF

E7

DF

D7

CF

c7

8F

MEMORY PARTITIONS
Table 3-6. Core SFRs

Mnemonic Name Address
ACCt Accumulator S:EOH
Bt B Register S:FOH
PSW Program Status Word S:DOH
PSWA1 Program Status Word 1 S:D1H
SPt Stack Pointer — LSB of SPX S:81H
SPHf Stack Pointer High — MSB of SPX S:BEH
DPTR* Data Pointer (2 bytes) -

DPL*t Low Byte of DPTR S:82H

DPH* High Byte of DPTR S:83H
DPXL? Data Pointer Extended, Low S:84H
PCON Power Control S:87H
PCON1 USB Power Control. S:DFH
IENO Interrupt Enable Control 0 S:A8H
IEN1 Interrupt Enable Register 1. S:B1H
IPHO Interrupt Priority Control High 0 S:B7H
IPLO Interrupt Priority Control Low 0 S:B8H
IPH1 Interrupt Priority High Control Register 1. S:B3H
IPL1 Interrupt Priority Low Control Register 1. S:B2H

T These SFRs can also be accessed by their corresponding registers in the register
file (see Table 3-4).

3-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

3-18

Table 3-7. USB Function SFRs

intel.

Mnemonic

Name Address
EPCON Endpoint Control Register. S:E1H
EPINDEX Endpoint Index Register. S:F1H
FADDR Function Address Register. S:8FH
FIE Function Interrupt Enable Register. S:A2H
FIFLG Function Interrupt Flag Register. S:COH
RXCNTH Receive FIFO Byte-Count High Register. S:E7H
RXCNTL Receive FIFO Byte-Count Low Register. S:E6H
RXCON Receive FIFO Control Register. S:E4H
RXDAT Receive FIFO Data Register. S:E3H
RXFLG Receive FIFO Flag Register. S:E5H
RXSTAT Endpoint Receive Status Register. S:E2H
SOFH Start of Frame High Register. S:D3H
SOFL Start of Frame Low Register. S:D2H
TXCNTH Transmit Count High Register. S:F7H
TXCNTL Transmit Count Low Register. S:F6H
TXCON Transmit FIFO Control Register. S:F4H
TXDAT Transmit FIFO Data Register. S:F3H
TXFLG Transmit Flag Register. S:F5H
TXSTAT Endpoint Transmit Status Register. S:FAH

lnt€I® MEMORY PARTITIONS

Table 3-8. I/O Port SFRs

Mnemonic Name Address
PO Port 0 S:80H
P1 Port 1 S:90H
P2 Port 2 S:AOH
P3 . Port 3 S:BOH

Table 3-9. Serial VO SFRs

Mnemonic Name Address
SCON Serial Control S:98H
SBUF Serial Data Buffer S:99H
SADEN Slave Address Mask S:B9H
SADDR Slave Address S:A9H

Table 3-10. Timer/Counter and Watchdog Timer SFRs

Mnemonic Name Address
TLO Timer/Counter 0 Low Byte S:8AH
THO Timer/Counter 0 High Byte S:8CH
TLA Timer/Counter 1 Low Byte S:8BH
THA1 Timer/Counter 1 High Byte S:8DH
TL2 Timer/Counter 2 Low Byte S:CCH
TH2 Timer/Counter 2 High Byte S:CDH
TCON Timer/Counter 0 and 1 Control S:88H
TMOD Timer/Counter 0 and 1 Mode Control S:89H
T2CON Timer/Counter 2 Control S:C8H
T2MOD Timer/Counter 2 Mode Control S:CoH
RCAP2L Timer 2 Reload/Capture Low Byte S:CAH
RCAP2H Timer 2 Reload/Capture High Byte S:CBH
WDTRST WatchDog Timer Reset S:A6H

I 3-19

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL lntQI@,

Table 3-11. Programmable Counter Array (PCA) SFRs

Mnemonic Name) Address
CCON PCA Timer/Counter Control S:D8H
CMOD PCA Timer/Counter Mode S:D9H
CCAPMO PCA Timer/Counter Mode 0 S:DAH
CCAPM1 PCA Timer/Counter Mode 1 S:DBH
CCAPM2 PCA Timer/Counter Mode 2 S:DCH
CCAPM3 PCA Timer/Counter Mode 3 S:DDH
CCAPM4 PCA Timer/Counter Mode 4 S:DEH
CL PCA Timer/Counter Low Byte S:E9H
CH PCA Timer/Counter High Byte S:FOH
CCAPOL PCA Compare/Capture Module 0 Low Byte S:EAH
CCAP1L PCA Compare/Capture Module 1 Low Byte S:EBH
CCAP2L PCA Compare/Capture Module 2 Low Byte S:ECH
CCAP3L PCA Compare/Capture Module 3 Low Byte S:EDH
CCAP4L PCA Compare/Capture Module 4 Low Byte S:EEH
CCAPOH PCA Compare/Capture Module 0 High Byte S:FAH
CCAP1H PCA Compare/Capture Module 1 High Byte S:FBH
CCAP2H PCA Compare/Capture Module 2 High Byte S:FCH
CCAP3H PCA Compare/Capture Module 3 High Byte S:FDH
CCAP4H PCA Compare/Capture Module 4 High Byte S:FEH

3-20 I

intel.

4

Device Conﬁguration

intel.

CHAPTER 4
DEVICE CONFIGURATION

The 8X930Ax provides design flexibility by configuring certain operating features during device
reset. These features fall into the following categories:

¢ external memory interface (page mode, address bits, wait states, range for RD#, WR#, and
PSEN#)

¢ source mode/binary mode opcodes
¢ selection of bytes stored on the stack by an interrupt
* mapping of the upper portion of on-chip code memory to region 00:

You can specify a 16-bit, 17-bit, or 18-bit external addresses bus (256 Kbyte external address
space). Wait state selection provides 0, 1, 2, or 3 wait states.

This chapter provides a detailed discussion of device configuration. It describes the configuration
bytes and provides information to aid you in selecting a suitable configuration for your applica-
tion. It discusses the choices involved in configuring the external memory interface and shows
how the internal memory space maps into external memory. See “Configuring the External Mem-
ory Interface” on page 4-7. “Opcode Configurations (SRC)” on page 4-12 discusses the choice
of source mode or binary mode opcode arrangements.

4.1 CONFIGURATION OVERVIEW

The configuration of the 8X930Ax is established by the reset routine based on information stored
in configuration bytes. The 8X930Ax stores configuration information in two user configuration
bytes (UCONFIGO and UCONFIG]1) located in code memory. Devices with no on-chip code
memory fetch configuration data from external memory. Factory programmed ROM devices use
customer-provided configuration data supplied on floppy disk.

4.2 DEVICE CONFIGURATION

The 8X930Ax reserves the top eight bytes of the memory address space (FF:FFF8H-FF:FFFFH)
“for an eight-byte configuration array (Figure 4-1). The two lowest bytes of the configuration array
are assigned to the two configuration bytes UCONFIGO (FF:FFF8H) and UCONFIG1
(FF:FFF9H). Bit definitions of UCONFIGO and UCONFIG1 are provided in Figures 4-3 and 4-4.
The upper six bytes of the configuration array are reserved for future use.

When EA# = 1, the 8XC251Sx obtains configuration information at reset from on-chip nonvola-
tile memory at addresses FF:FFF8H and FF:FFF9H. For ROM devices, configuration informa-
tion is entered at these addresses during fabrication. The user can verify configuration
information stored on-chip using the procedures presented in Chapter 16, “Verifying Nonvolatile
Memory.”

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL IntQI®

For devices without on-chip program memory, configuration information is accessed from exter-
nal memory using these same addresses. The designer must store configuration information in an
eight-byte configuration array located at the highest addresses implemented in external code
memory. See Table 4-1 and Figure 4-2. When EA# = 0, the microcontroller obtains configuration
information at reset from external memory using internal addresses FF:FFF8H and FF:FFFOH.

8-Kbyte 16-Kbyte
Devices _t Devices

FF:FFFFH
FF:FFFEH
FF:FFFDH
FF:FFFCH
FF:FFFBH
FF:FFFAH

FF:FFFOH | UCONFIGT
FF:FFF8H | UCONFIGO

FF:0000H FF:0000H

For EA# = 1, configuration information is obtained from the
on-chip configuration array located in non-volatile memory
at addresses FF:FFF8H - FF:FFFFH.

Detail. On-chip configuration array.
A4393-01

Figure 4-1. Configuration Array (On-chip)

Table 4-1. External Addresses for Configuration Array

Size of External Address of Address of

Address Bus Configuration Array on Configuration Bytes
(Bits) External Bus (2) on External Bus (1)

16 ' FFF8H-FFFFH UCONFIG1: FFF9H

UCONFIGO: FFF8H

17 1FFF8H-1FFFFH UCONFIG1: 1FFF9H

UCONFIGO: 1FFF8H

18 3FFF8H-3FFFFH UCONFIG1: 3FFF9H

UCONFIGO: 3FFF8H

NOTES:

1. When EA# = 0, the reset routine retrieves UCONFIGO and UCONFIG1 from
external memory using the internal addresses FF:FFF8H and FF:FFF9H
which appear on the external address bus (A17, A16, A15:0) as shown in this
table. See Figure 4-2.

2. The upper six bytes of the configuration array are reserved for future use.

42 : I

DEVICE CONFIGURATION

1FF9H
1FF8H

1:FFF9H
1:FFF8H

8 Kbytes

3FF9H
3FF8H

16 Kbytes

32 Kbytes

64 Kbytes
FFF9H vt

Y
e

128 Kbytes v

+

[

3:FFF9H
3:FFF8H

This figure shows the addresses of configuration bytes UCONFIG1 and UCONFIGO in external memory for
several memory implementations. For EA# = 0, configuration information is obtained from configuration bytes
in external memory using internal addresses FF:FFF8H and FF:FFF9H. In external memory, the eight-byte
configuration array is located at the highest addresses implemented.

xxFFFH

xxFFEH
xxFFDH
xxFFCH

x:xFFBH

xxFFAH ,

xxFF9H | UCONFIG1
xxFF8H | UCONFIGO

Detail.
Configuration array in external memory.

A4394-01

The eight highest addresses in the

Figure 4-2. Configuration Array (External)

memory address space (FF:FFF8H-

FF:FFFFH) are reserved for the configuration array. Do not read or write
application code at these locations. These address are also used to access the
configuration array in external memory, so the same restrictions apply to the
eight highest addresses implemented in external memory. Instructions that
might inadvertently cause these addresses to be accessed due to call returns or
prefetches should not be located at addresses immediately below the
configuration array. Use an EJMP instruction, five or more addresses below
the configuration array, to continue execution in other areas of memory.

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL IntGI®

4.3 THE CONFIGURATION BITS

This following list briefly describes the configuration bits contained in configuration bytes
UCONFIGO and UCONFIGI1 (Figures 4-3 and 4-4):

® SRC. Selects source mode or binary mode opcode configuration.

¢ INTR. Selects the bytes pushed onto the stack by interrupts.

° EMAP#. Maps on-chip code memory (16 Kbyte devices only) to memory region 00:.
The following bits configure the external memory interface:

* PAGE#. Selects page/nonpage mode and specifies the data port.

® RDI1:0. Selects the number of external address bus pins and the address range for RD#, WR,
and PSEN#.

* XALE#. Extends the ALE pulse.
e WSAIL:0#. Selects 0, 1, 2, or 3 wait states for all memory regions except 01:.
* WSBI1:0#. Selects 0, 1, 2, or 3 wait states for memory region 01:.

e EMAP#. Affects the external memory interface in that, when asserted, addresses in the
range 00:EO00H-00:FFFFH access on-chip memory.

]

"Ttel® DEVICE CONFIGURATION

UCONFIGO Address: FF:FFF8H (2)
1), (3 .
7 0
[— | wsa | wsao# | xALE# || RD1 | RDO PAGE# | SRC |
Bit Bit .
Number | Mnemonic Function
7 - Reserved:
Reserved for internal or future use. Set this bit when programming
UCONFIGO.
6:5 WSA1:0# | Wait State A (all regions except 01:):

For external memory accesses, selects the number of wait states for RD#,
WR#, and PSEN#.

WSA1# WSAO#

0 0 Inserts 3 wait states for all regions except 01:
0 1 Inserts 2 wait states for all regions except 01:
1 0 Inserts 1 wait state for all regions except 01:
1 1 Zero wait states for all regions except 01:

4 XALE# Extend ALE:

Set this bit for ALE = T

Clear this bit for ALE = 3T (adds one external wait state).

3:2 RD1:0 Memory Signal Selection:

RD1:0 bit codes specify an 18-bit, 17-bit, or 16-bit external address bus and
address ranges for RD#, WR#, and PSEN#. See Table 4-2 on page 4-7.

1 PAGE# Page Mode Select:

Clear this bit for page mode enabled with A15:8/D7:0 on P2 and A7:0 on PO.
Set this bit for page mode disabled with A15:8 on P2 and A7:0/D7:0 on PO.
0 SRC Source Mode/Binary Mode Select:

Set this bit for source mode.
Clear this bit for binary mode (opcodes compatible with MCS 51 microcon-
troliers).

NOTES:

1. User configuration bytes UCONFIGO and UCONFIG1 define the configuration of the 8X930Ax.

2. Address. UCONFIGO is the lowest byte of the 8-byte configuration array. When EA# = 1, the 8X930Ax
fetches configuration information from an on-chip configuration array located in nonvolatile memory at
the top of region FF:. When EA# = 0, the 8X930Ax fetches configuration information from a configura-
tion array located at the highest addresses implemented in external memory using addresses
FF:FFF8H and FF:FFF9H. The physical location of the configuration array in external memory
depends on the size and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 16.

Figure 4-3. User Configuration Byte 0 (UCONFIGO)

I 4-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL InU®

UCONFIG1 Address: FF:FFF9H (2)

(1,3)

7 0

| - | - — | w~nm || — WsB1# | WSBO# | EMAP# |

Bit Bit .

Number | Mnemonic Function

75 - Reserved:
Reserved for internal or future use. Set these bits when programming
UCONFIG1.

4 INTR Interrupt Mode:

If this bit is set, interrupts push 4 bytes onto the stack (the 3 bytes of the PC
and PSW1). If this bit is clear, interrupts push the 2 lower bytes of the PC
onto the stack. See “Interrupt Mode (INTR)” on page 4-14.

— Reserved. Write a ‘1’ to this bit.

21 WSB1:0# | External Wait State B (Region 01:):
WSB1# WSBO#
0 0 Inserts 3 wait states for region 01:
0 1 Inserts 2 wait states for region 01:
1 0 Inserts 1 wait state for region 01:
1 1 Zero wait states for region 01:

0 EMAP# EPROM Map:

For devices with 16 Kbytes of on-chip code memory, clear this bit to map the
upper half of on-chip code memory to region 00: (data memory). This maps
FF:2000H-FF:3FFFH to 00:E000H-00:FFFFH. If this bit is set, mapping
does not occur and addresses in the range 00:E000H-00:FFFFH access
external RAM. See “Mapping On-chip Code Memory to Data Memory
(EMAP#)” on page 14.

NOTES:

1. User configuration bytes UCONFIGO and UCONFIG1 define the configuration of the 8X930Ax.

2. Address. UCONFIG1 is the second lowest byte of the 8-byte configuration array. When EA# = 1, the
8X930Ax fetches configuration information from an on-chip configuration array located in nonvolatile
memory at the top of region FF:. When EA# = 0, the 8X930Ax fetches configuration information from a
configuration array located at the highest addresses implemented in external memory using addresses
FF:FFF8H and FF:FFF9H. The physical location of the configuration array in external memory
depends on the size and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 16.

Figure 4-4. User Configuration Byte 1 (UCONFIG1)

DEVICE CONFIGURATION

Table 4-2. Memory Signal Selections (RD1:0)

. A17/P1.7/
RD1:0 CEX4/WCLK A16/P3.7/RD# PSEN# P3.6/WR# Features
0 0 |A17 A16 Asserted for | Asserted for writes to | 256 Kbyte external
all addresses | all memory locations | memory
0 1 P1.7/CEX4/ A16 Asserted for | Asserted for writes to | 128 Kbyte external
WCLK all addresses | all memory locations | memory
1 0 | P1.7/CEX4/ P3.7 only Asserted for | Asserted for writes to | 64 Kbyte external
WCLK all addresses | all memory locations | memory. One
additional port pin.
11 P1.7/CEX4/ RD# asserted | Asserted for | Asserted only for 64 Kbyte external
WCLK for addresses | >80:0000H writes to MCS® 51 memory. Compatible
< 7F:FFFFH microcontroller data | with MCS 51
memory locations. microcontrollers.

NOTE: RD1:0 are bits 3:2 of configuration byte UCONFIGO (Figure 4-3).

4.4 CONFIGURING THE EXTERNAL MEMORY INTERFACE

This section describes the configuration options that affect the external memory interface. The
configuration bits described here determine the following interface features:

* page mode or nonpage mode (PAGE#)
¢ the number of external address pins — 16, 17, or 18 (RD1:0)
¢ the memory regions assigned to the read signals RD# and PSEN# (RD1:0)
* the external wait states (WSA1:0#, WSB1:0#, XALE#)

* mapping a portion of on-chip code memory to data memory (EMAP#)

4.41

Page Mode and Nonpage Mode (PAGE#)

The PAGE# bit (UCONFIGO.1) selects page-mode or nonpage-mode code fetches and deter-
mines whether data is transmitted on P2 or PO. See Figure 15-1 on page 15-1 and “Page Mode
Bus Cycles” on page 15-6 for a description of the bus structure and page mode operation.

® Nonpage mode: PAGE# = 1. The bus structure is the same as for the MCS 51 architecture
with data D7:0 multiplexed with A7:0 on P0O. External code fetches require two state times

(4T50)-

® Page mode: PAGE# = 0. The bus structure differs from the bus structure in MCS 51
controllers. Data D7:0 is multiplexed with A15:8 on P2. Under certain conditions, external

code fetches require only one state time (2Tgc).

4-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Inte|®

4.4.2 Configuration Bits RD1:0

The RD1:0 configuration bits (UCONFIGO0.3:2) determine the number of external address lines
and the address ranges for asserting the read signals PSEN#/RD# and the write signal WR#.
These selections offer different ways of addressing external memory. Figures 4-5 and 4-6 show
how internal memory space maps into external memory space for the four values of RD1:0. Chap-
ter 15, “External Memory Interface,” provides examples of external memory designs for each

choice of RD1:0.

RD1:0 = 00

PO, P2, A16, A17

Notes:

1. Maximum external
memory.

2. Single read signal

RD1:0 = 01

PO, P2, A16

Note:
Single read signal

18 external address bits:

17 external address bits:

Internal Memory with
Read/Write Signals

FF:
FE:

PSEN#, WR#

01:
00:

PSEN#, WR#

Internal Memory with
Read/Write Signals

PSEN#, WR#

PSEN#, WR#

External
Memory
256 Kbytes
A17:16
11 FF:
10 FE:
01 01
00 00
External
Memory
128 Kbytes
A16
1 01, FF:
0 00:, FE:
A4218-02

Figure 4-5. Internal/External Address Mapping (RD1:0 = 00 and 01)

48

-
|nte|® DEVICE CONFIGURATION
RD1:0=10
16 external address bits: Internal Memory with External
PO, P2 Read/Write Signals Memory
64 Kbytes
Notes: F
1. Single read signal :
2. P3.7/RD#/A16 functions PSEN#, WR# =
only as P3.7 |:| 00:, 01:, FE:, FF:
PSEN#, WR# |2
00:
RD1:0 =11

16 external address bits:
PO, P2

Note: -
1. Compatible with MCS® 51
microcontrollers

2. Cannot write to regions FC:—FF:

Internal Memory with
Read/Write Signals

FF:
FE:

PSEN#

RD#, WR#

External
Memory

128 Kbytes

FE:, FF:
00:, 01:

A4217-02

Figure 4-6. Internal/External Address Mapping (RD1:0 = 10 and 11)

49

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Int9|®

A key to the memory interface is the relationship between internal memory addresses and exter-
nal memory addresses. While the 8X930Ax has 24 internal address bits, the number of external
address lines is less than 24 (i.e., 16, 17, or 18, depending on the values of RD1:0). This means
that reads/writes to different internal memory addresses can access the same location in external
memory.

For example, if the 8X930Ax is configured for 18 external address lines, a write to location
01:6000H and a write to location FF:6000H accesses the same 18-bit external address (1:6000H)
because A16 = 1 and A17 = 1 for both internal addresses. In other words, regions 00: and FE:
map into the same 64 Kbyte region in external memory.

In some situations, however, a multiple mapping from internal memory to external memory does
not preclude using more than one region. For example, for a device with on-chip ROM configured
for 17 address bits and with EA# = 1, an access to FF:0000H-FF:3FFFH (16 Kbytes) accesses
the on-chip ROM, while an access to 01:0000H-01:3FFFH is to external memory. In this case,
you could execute code from these locations in region FF: and store data in the corresponding
locations in region 01: without conflict. See Figure 4-5 and “Example 1: RD1:0 =00, 18-bit Bus,
External Flash and RAM” on page 15-18.”

44.21 RD1:0 = 00 (18 External Address Bits)

The selection RD1:0 = 00 provides 18 external address bits: A15:0 (ports PO and P2), A16 (from
P3.7/RD#/A16), and A17 (from P1.7/CEX4/A17/WCLK). Bits A16 and A17 can select four 64
Kbyte regions of external memory for a total of 256 Kbytes (top half of Figure 4-5). This is the
largest possible external memory space. See “Example 1: RD1:0 = 00, 18-bit Bus, External Flash
and RAM” on page 15-18.

44.2.2 RD1:0 = 01 (17 External Address Bits)

The selection RD1:0 = 01 provides 17 external address bits: A15:0 (ports PO and P2) and A16
(from P3.7/RD#/A16). Bit A16 can select two 64 Kbyte regions of external memory for a total of
128 Kbytes (bottom half of Figure 4-5). Regions 00: and FE: (each having A16 = 0) map into the
same 64 Kbyte region in external memory. This duplication also occurs for regions 01: and FF:.

This selection provides a 128 Kbyte external address space. The advantage of this selection, in
comparison with the 256 Kbyte external memory space with RD1:0 = 00, is the availability of pin
P1.7/CEX4/A17/WCLK for general I/O, PCA T/O or real-time wait clock output. I/O P3.7 is un-
available. All four 64 Kbyte regions are strobed by PSEN# and WR#. Chapter 15 “External
Memory Interface,” shows examples of memory designs with this option.

4.4.23 RD1:0 = 10 (16 External Address Bits)

ForRD1:0= 10, the 16 external address bits (A15:0 on ports PO and P2) provide a single 64 Kbyte
region in external memory (top of Figure 4-6). This selection provides the smallest external mem-
ory space; however, pin P3.7/RD#/A16 is available for general I/O and pin P1.7/CEX4/A17 is
available for general I/O or PCA I/O. This selection is useful when the availability of these pins
is required and/or a small amount of external memory is sufficient.

4-10 : I

|n".'e|® DEVICE CONFIGURATION

44.24 RD1:0 = 11 (Compatible with MCS 51 Microcontroliers)

The selection RD1:0 = 11 provides only 16 external address bits (A15:0 on ports PO and P2).
However, PSEN# is the read signal for regions FE:—FF:, while RD# is the read signal for regions
00:-01: (bottom of Figure 4-6). The two read signals effectively expand the external memory
space to two 64 Kbyte regions. WR# is asserted only for writes to regions 00:-01:. This selection
provides compatibility with MCS 51 microcontrollers, which have separate external memory
spaces for code and data.

4.4.3 Wait State Configuration Bits

You can add wait states to external bus cycles by extending the RD# WR#/PSEN# pulse and/or
extending the ALE pulse. Each additional wait state extends the pulse by 2T.. A separate wait
state specification for external accesses via region 01: permits a slow external device to be ad-
dressed in region O1: without slowing accesses to other external devices. Table 4-3 summarizes
the wait state selections for RD#,WR#,PSEN#. For waveform diagrams showing wait states, see
“External Bus Cycles With Configurable Wait States” on page 15-8.

4.4.3.1 Configuration Bits WSA1:0#, WSB1:0#

The WSA1:0# wait state bits (UCONFIGO.6:5) permit RD#, WR#, and PSEN# to be extended by
1, 2, or 3 wait states for accesses to external memory via all regions except region 01:. The
WSB1:0# wait state bits (UCONFIG1.2:1) permit RD#, WR#, and PSEN# to be extended by 1,
2, or 3 wait states for accesses to external memory via region 01:.

4.4.3.2 Configuration Bit XALE#

Clearing XALE# (UCONFIGO.4) extends the time ALE is asserted from Ty to 3Ty This ac-
commodates an address latch that is too slow for the normal ALE signal. Figure 15-10 on page
15-10 shows an external bus cycle with ALE extended.

Table 4-3. RD#, WR#, PSEN# External Wait States

8X930Ax

Regions WSA1# WSAO#

00: FE: FF: 0 0 3 Wait States
0 1 2 Wait States
1 0 1 Wait State
1 1 0 Wait States

Region 01: WSB1# WSBO#
0 0 3 Wait States
0 1 2 Wait States
1 0 1 Wait State
1 1 0 Wait States

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL InU®

4.5 OPCODE CONFIGURATIONS (SRC)

The SRC configuration bit (UCONFIGO0.0) selects the source mode or binary mode opcode ar-
rangement. Opcodes for the 8X930Ax architecture are listed in Table A-6 on page A-4 and Table
A-7 on page A-5. Note that in Table A-6 every opcode (OOH-FFH), is used for an instruction ex-
cept ASH (ESC), which provides an alternative set of opcodes for columns 6H through FH. The
SRC bit selects which set of opcodes is assigned to columns 6H through FH and which set is the
alternative. :

Binary mode and source mode refer to two ways of assigning opcodes to the instruction set for
the 8X930Ax architecture. One of these modes must be selected when the chip is configured. De-
pending on the application, binary mode or source mode may produce more efficient code. This
section describes the binary and source modes and provides some guidelines for selecting the
mode for your application.

The 8X930Ax architecture has two types of instructions:
* instructions that originate in the MCS® 51 architecture
* instructions that are common with the MCS® 251 architecture

Figure 4-7 shows the opcode map for binary mode. Area I (columns 1 through 5 in Table A-7)
and area II (columns 6 through F) make up the opcode map for the instructions that originate in
the MCS 51 architecture. Area III in Figure 4-7 represents the opcode map for the instructions
that are common with the MCS 251 architecture (Table A-7). Some of these opcodes are reserved
for future instructions. Note that the opcode values for areas II and III are identical (06H-FFH).
To distinguish between the two areas in binary mode, the opcodes in area III are given the prefix
ASH. The area III opcodes are thus ASO6H-ASFFH.

Figure 4-8 shows the opcode map for source mode. Areas II and III have switched places (com-
pare with Figure 4-7). In source mode, opcodes for instructions in area II require the A5SF escape
prefix while opcodes for instructions in area III do not.

To illustrate the difference between the binary-mode and source-mode opcodes, Table 4-4 shows
the opcode assignments for three sample instructions.

4.5.1 Selecting Binary Mode or Source Mode

If a system was originally developed using an MCS 51 microcontroller, and if the new 8X930Ax-
based system will run code written for the MCS 51 microcontroller, performance will be better
with the 8X930Ax running in binary mode. Object code written for the MCS 51 microcontroller
runs faster on the 8X930Ax.

However, if most of the code is rewritten using the MCS 251 instruction set, performance will be
better with the 8X930Ax running in source mode. In this case, the 8X930Ax can run significantly
faster than the MCS 51 microcontroller.

If you have code that was written for an MCS 51 microcontroller and you want to run it unmod-
ified on an 8X930Ax, choose binary mode. You can use the object code without reassembling the
source code. You can also assemble the source code with an assembler for the MCS 251 architec-
ture and have it produce object code that is binary-compatible with MCS 51 microcontrollers.

4-12 L

|nte|® DEVICE CONFIGURATION

A5H Prefix
0H 5H 6H FH 6H FH
OH ! OH
I . I I
FH : FH
MCS® 51 MCS 51 MCS 251
Architecture Architecture Architecture
A4131-01
Figure 4-7. Binary Mode Opcode Map
A5H Prefix
OH 5H 6H FH 6H FH
OH ! OH
I ; I I
FH : FH
MCS® 51 MCS 251 MCS 51
Architecture Architecture Architecture

A4130-01

Figure 4-8. Source Mode Opcode Map

I ' 4-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table 4-4. Examples of Opcodes in Binary and Source Modes

Opcode
Instruction
Binary Mode | Source Mode
DEC A 14H 14H
SUBB A,R4 9CH A59CH
SUB R4,R4 A59CH 9CH

If a program uses only instructions from the MCS 51 architecture, the binary-mode code is more
efficient because it uses no prefixes. On the other hand, if a program uses many more new instruc-
tions than instructions from the MCS 51 architecture, source mode is likely to produce more ef-
ficient code. For a program where the choice is not clear, the better mode can be found by
experimenting with a simulator.

For both architectures, an instruction with a prefixed opcode requires one more byte for code stor-
age, and if an additional fetch is required for the extra byte, the execution time is increased by
one state. This means that using fewer prefixed opcodes produces more efficient code.

4.6 MAPPING ON-CHIP CODE MEMORY TO DATA MEMORY (EMAP#)

For devices with 16 Kbytes of on-chip code memory (83930AB), the EMAP# bit (UCONFIG1.0)
provides the option of accessing the upper half of on-chip code memory as data memory. This
allows code constants to be accessed as data in region 00: using direct addressing. See “Accessing
On-chip Code Memory in Region 00:” on page 3-9 for the exact conditions required for this map-
ping to be effective.

EMAP# = 0. For the 83930AB, the upper eight Kbytes of on-chip code memory (FF:2000-
FF:3FFFH are mapped to locations 00:EOO0OH-00:FFFFH.

EMAP# = 1. Mapping of on-chip code memory to region 00: does not occur. Addresses in the
range 00:EO00H—-00:FFFFH access external RAM.

4.7 INTERRUPT MODE (INTR)

The INTR bit (UCONFIG1.4) determines what bytes are stored on the stack when an interrupt
occurs and how the RETT (Return from Interrupt) instruction restores operation.

For INTR = 0, an interrupt pushes the two lower bytes of the PC onto the stack in the following
order: PC.7:0, PC.15:8. The RETI instruction pops these two bytes in the reverse order and uses
them as the 16-bit return address in region FF:.

For INTR = 1, an interrupt pushes the three PC bytes and the PSW 1 register onto the stack in the
following order: PSW1, PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four bytes
and then returns to the specified 24-bit address, which can be anywhere in the 16 Mbyte address
space.

4-14 I

intel.

Instructions and
Addressing

intel.

CHAPTER 5
INSTRUCTIONS AND ADDRESSING

The instruction set for the architecture supports the instruction set for the MCS® 51 architecture
and MCS® 251 architecture. This chapter describes the addressing modes and summarizes the in-
struction set, which is divided into data instructions, bit instructions, and control instructions. The
program status word registers PSW and PSW1 are also described. Appendix A, “Instruction Set
Reference,” contains an opcode map and a detailed description of each instruction.

NOTE
The instruction execution times given in Appendix A are for code executing
from external memory and for data that is read from and written to on-chip
RAM. Execution times are increased by accessing peripheral SFRs, accessing
data in external memory, using a wait state, or extending the ALE pulse.

For some instructions, accessing the port SFRs (Px, x = 3:0) increases the
execution time. These cases are noted in the tables in Appendix A.

5.1 SOURCE MODE OR BINARY MODE OPCODES

Source mode and Binary mode refer to the two ways of assigning opcodes to the instruction set
of the 8X930Ax. Depending on the application, one mode or the other may produce more efficient
code. The mode is established during device reset based on the value of the SRC bit in configu-
ration byte UCONFIGO. For information regarding the selection of the opcode mode, see “Op-
code Configurations (SRC)” on page 4-12. ’

5.2 PROGRAMMING FEATURES OF THE 8X930Ax ARCHITECTURE

The instruction set for 8X930Ax microcontrollers provides the user with instructions that exploit
the features of the MCS 251 architecture while maintaining compatibility with the instruction set
for MCS 51 microcontrollers. Many of the MCS 251 architecture instructions operate on 8-bit,
16-bit, or 32-bit operands. (In comparison with 8-bit and 16-bit operands, 32-bit operands are ac-
cessed with fewer addressing modes.) This capability increases the ease and efficiency of pro-
gramming the 8X930Ax microcontroller in a high-level language such as C.

The instruction set is divided into data instructions, bit instructions, and control instructions.
These are described in this chapter. Data instructions process 8-bit, 16-bit, and 32-bit data; bit in--
structions manipulate bits; and control instructions manage program flow.

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL V|nte|®

5.2.1 Data Types

Table 5-1 lists the data types that are addressed by the instruction set. Words or dwords (double
words) can be in stored memory starting at any byte address; alignment on two-byte or four-byte
boundaries is not required. Words and dwords are stored in memory and the register file in big
endien form.

Table 5-1. Data Types -

Data Type Number of Bits
Bit 1
Byte 8
Word 16
Dword (Double Word) 32

5.2.1.1 Order of Byte Storage for Words and Double Words

The 8X930Ax microcontroller stores words (2 bytes) and double words (4 bytes) in memory and
in the register file in big endien form. In memory storage, the most significant byte (MSB) of the
word or double word is stored in the memory byte specified in the instruction; the remaining bytes
are stored at higher addresses, with the least significant byte (LSB) at the highest address. Words
and double words can be stored in memory starting at any byte address. In the register file, the
MSB is stored in the lowest byte of the register specified in the instruction. For a description of
the register file, see “8X930Ax Register File” on page 3-9. The code fragment in Figure 5-1 il-
lustrates the storage of words and double words in big endien form. .

5.2.2 Register Notation

In register-addressing instructions, specific indices denote the registers that can be used in that
instruction. For example, the instruction ADD A,Rn uses “Rn” to denote any one of RO, R1, ...,
R7; i.e., the range of n is 0-7. The instruction ADD Rm,#data uses “Rm” to denote RO, R1, ...,
R15;i.e., the range of m is 0-15. Table 5-2 summarizes the notation used for the register indices.
When an instruction contains two registers of the same type (e.g., MOV Rmd,Rms) the first index
“d” denotes “destination” and the second index “s” denotes “source.”

5.2.3 Address Notation

In the 8X930Ax architecture, memory addresses include a region number (00:, 01:, ..., FF:) (Fig-
ure 3-5 on page 3-7). SFR addresses have a prefix “S:” (S:000H-S:1FFH). The distinction be-
tween memory addresses and SFR addresses is necessary because memory locations 00:0000H-
00:01FFH and SFR locations S:000H-S:1FFH can both be directly addressed in an instruction.

INSTRUCTIONS AND ADDRESSING

Memory
200H 201H

202H 203H

| AsH | BeH |

il

MOV WRO,#A3B6H
MOV 00:0201H,WR0
MOV DR4,#0000C4D7H

Register File
o 1 2 3 4 5 6 7
{ AsH [BeH | | ooH | ooH [can [D7H |
Qv—-" - —— e
WRO DR4

Contents of register file and memory after execution

A4242-01

Figure 5-1. Word and Double-word Storage in Big Endien Form

Table 5-2. Notation for Byte Registers, Word Registers, and Dword Registers

Roguter | fyger | Destnaton | Souree
Ri — — Ro, R1
Byte Rn — — RO-R7
Rm Rmd Rms RO-R15
Word WR;j WRjd WRjs WRO0, WR2, WR4, ..., WR30
Dword DRk DRkd DRks DRO, DR4, DR8, ..., DR28, DR56, DR60

Instructions in the MCS 51 architecture use 80H-FFH as addresses for both memory locations
and SFRs, because memory locations are addressed only indirectly and SFR locations are ad-
dressed only directly. For compatibility, software tools for 8X930Ax microcontrollers recognize
this notation for instructions in the 8X930Ax architecture. No change is necessary in any code
written for MCS 51 controllers.

For the MCS 251 architecture instructions, the memory region prefixes (00:, 01, ..., FF:) and the:
SFR prefix (S:) are required. Also, software tools for the 8X930Ax architecture permit 00: to be
used for memory addresses 00H-FFH and permit the prefix S: to be used for SFR addresses in

instructions in the 8X930Ax architecture.

5-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL IntQI®

5.2.4 Addressing Modes

The 8X930Ax architecture supports the following addressing modes:
* register addressing: The instruction specifies the register that contains the operand.
¢ immediate addressing: The instruction contains the operand.
¢ direct addressing: The instruction contains the operand address.

* indirect addressing: The instruction specifies the register that contains the operand
address.

¢ displacement addressing: The instruction specifies a register and an offset. The operand
address is the sum of the register contents (the base address) and the offset.

¢ relative addressing: The instruction contains the signed offset from the next instruction to
the target address (the address for transfer of control, e.g., the jump address).

¢ bit addressing: The instruction contains the bit address.

More detailed descriptions of the addressing modes are given in “Data Addressing Modes” on
page 5-4, “Bit Addressing” on page 5-10, and “Addressing Modes for Control Instructions” on
page 5-12.

5.3 DATAINSTRUCTIONS

Data instructions consist of arithmetic, logical, and data-transfer instructions for 8-bit, 16-bit, and
32-bit data. This section describes the data addressing modes and the set of data instructions.

5.3.1 Data Addressing Modes

This section describes the data-addressing modes, which are summarized in two tables: Table 5-4
for the instructions that are native to the MCS 51 architecture, and Table 5-4 for the data instruc-
tions in the MCS 251architecture.

NOTE
References to registers RO-R7, WR0-WR6, DRO, and DR2 always refer to the
register bank that is currently selected by the PSW and PSW1 registers (see
“Program Status Words” on page 5-15). Registers in all banks (active and
inactive) can be accessed as memory locations in the range 00H-1FH.

Instructions from the MCS 51 architecture access external memory through the
region of memory specified by byte DPXL in the extended data pointer
register, DPX (DR56). Following reset, DPXL contains 01H, which maps the
external memory to region O1:. You can specify a different region by writing to
DRS56 or the DPXL SFR (see “Dedicated Registers” on page 3-12).

INSTRUCTIONS AND ADDRESSING

intgl.

5.3.1.1 Register Addressing

Both architectures address registers directly:

® MCS 251 architecture. In the register addressing mode, the operand(s) in a data instruction
are in byte registers (RO-R15), word registers (WR0, WR2, ..., WR30), or dword registers
(DRO, DR4, ..., DR28, DR56, DR60).

® MCS 51 architecture. Instructions address registers RO-R7 only.

5.3.1.2 Immediate

Both architectures use immediate addressing.

® MCS 251 architecture. In the immediate addressing mode, the instruction contains the data
operand itself. Byte operations use 8-bit immediate data (#data); word operations use 16-bit
immediate data (#datal6). Dword operations use 16-bit immediate data in the lower word,
and either zeros in the upper word (denoted by #0datal6), or ones in the upper word
(denoted by #1datal6). MOV instructions that place 16-bit immediate data into a dword
register (DRk), place the data either into the upper word while leaving the lower word
unchanged, or into the lower word with a sign extension or a zero extension.

The increment and decrement instructions contain immediate data (#short = 1, 2, or 4) that
specifies the amount of the increment/decrement.

* MCS 51 architecture. Instructions use only 8-bit immediate data (#data).

5.3.1.3 Direct

® MCS 251 architecture. In the direct addressing mode, the instruction contains the address of
the data operand. The 8-bit direct mode addresses on-chip RAM (dir8 = 00:0000H-
00:007FH) as both bytes and words, and addresses the SFRs (dir8 = S:080H-S:1FFH) as
bytes only. (See the second note in “Data Addressing Modes” on page 5-4 regarding SFRs
in the MCS 251 architecture.) The 16-bit direct mode addresses both bytes and words in
memory (dir16 = 00:0000H-00:FFFFH).

¢ MCS 51 architecture. The 8-bit direct mode addresses 256 bytes of on-chip RAM (dir8 =
00H-7FH) as bytes only and the SFRs (dir8 = 80H-FFH) as bytes only.

Table 5-3. Addressing Modes for Data Instructions in the MCS® 51 Architecture

Address Range of Assembly Language
Mode Operand Reference Comments
. RO-R7
Register 00H-1FH (Bank selected by PSW)
Immediate Operand in Instruction | #data = #00H—#FFH
00H-7FH dir8 = 00H-7FH On-chip RAM
Direct dir8 = 80H-FFH
SFRs or SFR mnemonic. SFR address

5-5

-
8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table 5-3. Addressing Modes for Data Instructions in the MCS® 51

Address Range of Assembly Language
Mode Operand Reference Comments
Accesses on-chip RAM or the
00H-FFH @Ro0, @R1 lowest 256 bytes of external
data memory (MOVX).
Indirect Accesses external data
0000H-FFFFH @DPTR, @A+DPTR memory (MOVX).
0000H-FFFFH @A+DPTR, @A+PC Accesses region FF: of code
! memory (MOVC).

5.3.1.4 Indirect

In arithmetic and logical instructions that use indirect addressing, the source operand is always a
byte, and the destination is either the accumulator or a byte register (R0O-R15). The source address
is a byte, word, or dword. The two architectures do indirect addressing via different registers:

® MCS 251 architecture. Membry is indirectly addressed via word and dword registers:

— Word register (@WRj,j=0, 2,4, ..., 30). The 16-bit address in WRj can access
locations 00:0000H-00:FFFFH. .

— Dword register (@DRk, k =0, 4, 8, ..., 28, 56, and 60). The 24 least significant bits can
access the entire 16-Mbyte address space. The upper eight bits of DRk must be 0. (If
you use DR60 as a general data pointer, be aware that DR60 is the extended stack
pointer register SPX.)

® MCS 51 architecture. Instructions use indirect addressing to access on-chip RAM, code
memory, and external data RAM. (See the second note in “Data Addressing Modes” on
page 5-4 regarding the region of external data RAM that is addressed by instructions in the
MCS 51 architecture.)

— Byte register (@Ri, i = 1, 2). Registers RO and R1 indirectly address on-chip memory
locations 00H-FFH and the lowest 256 bytes of external data RAM.

— 16-bit data pointer (@ DPTR or @ A+DPTR). The MOVC and MOVX instructions use
these indirect modes to access code memory and external data RAM.

. — 16-bit program counter (@ A+PC). The MOVC instruction uses this indirect mode to
access code memory.

5-6 |

intel.

INSTRUCTIONS AND ADDRESSING

Table 5-4. Addressing Modes for Data Instructions in the MCS 251 Architecture

Address Range of Assembly Language
Mode Operand Notation Comments
00:0000H—00:001FH RO-R7, WRO-WRS, DRO, and
. R0O-R15, WR0—WR30, DR2 are in the register bank
Register (RO-R7, WRO-WR3, | pRro—DR28, DR56, DR60 currently selected by the
DRO, DR2) (1) PSW and PSW1.
Immediate, N.A. (Operand is in the _ Used only in increment and
2 bits instruction) #short=1,2, or4 decrement instructions.
Immediate, N.A. (Operand is in the _
8 bits instruction) #daias = #00H-#FFH
Immediate, N.A. (Operand is in the _
16 bits instruction) #data16 = #0000H—#FFFFH
Direct 00:0000H-00:007FH dir8 = 00:0000H-00:007FH On-chip RAM
irect,
8 address bits dir8 = S:080H-S:1FFH (2)
SFRs or SFR mnemonic SFR address
Direct, 00:0000H-00:FFFFH | dir16 = 00:0000H-00:FFFFH
16 address bits : . - ’
Indirect, . .
16 address bits 00:0000H-00:FFFFH @WR0-@WR30
Indirect, i e @DR0-@DR30, @DR56, Upper 8 bits of DRk must be
24 address bits 00:0000H-FF:FFFFH @DR60 00H.
@WR;j + dis16 =
Displacement, Offset is signed; address
| 00:0000H-00:FFFFH @WRO + OH through S |
16 address bits 9 wraps around in region 00:.
: @WR30 + FFFFH ps around n reg!
@DRK + dis24 =
Displacement @DRO + 0H through Offset is signed, upper 8 bits
> | 00:0000H—FF:FFFFH @DR28 + FFFFH !
24 address bit ! of DRk t be O0H.
s @DRS56 + (OH-FFFFH), mustbe
@DR60 + (OH-FFFFH)
NOTES:

1. These registers are accessible in the memory space as well as in the register file (see “8X930Ax
Register File” on page 3-9).
2. The MCS 251 architecture supports SFRs in locations S:000H-S:1FFH; however, in the 8X930Ax all
SFRs are in the range S:080H-S:0FFH.

5.3.15 Displacement

Several move instructions use displacement addressing to move bytes or words from a source to
a destination. Sixteen-bit displacement addressing (@ WRj+dis16) accesses indirectly the lowest
64 Kbytes in memory. The base address can be in any word register WRj. The instruction contains
a 16-bit signed offset which is added to the base address. Only the lowest 16 bits of the sum are
used to compute the operand address. If the sum of the base address and a positive offset exceeds
FFFFH, the computed address wraps around within region 00: (e.g. FOOOH + 2005H becomes

. L]
8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL InU@,

1005H). Similarly, if the sum of the base address and a negative offset is less than zero, the com-
puted address wraps around the top of region 00: (e.g., 2005H + FOOOH becomes 1005H).

Twenty-four-bit displacement addressing (@ DRk+dis24) accesses indirectly the entire 16-Mbyte
address space. The base address must be in DRO, DR4, ..., DR24, DR28, DR56, or DR60. The
upper byte in the dword register must be zero. The instruction contains a 16-bit signed offset
which is added to the base address.

5.3.2 Arithmetic Instructions

The set of arithmetic instructions is greatly expanded in the MCS 251 architecture. The ADD and
SUB instructions (Table A-19 on page A-14) operate on byte and word data that is accessed in
several ways:

® as the contents of the accumulator, a byte register (Rn), or a word register (WRj)
° in the instruction itself (immediate data)
® in memory via direct or indirect addressing

The ADDC and SUBB instructions (Table A-19) are the same as those for MCS 51 microcontrol-
lers.

The CMP (compare) instruction (Table A-20 on page A-15) calculates the difference of two bytes
or words and then writes to flags CY, OV, AC, N, and Z in the PSW and PSW1 registers. The
difference is not stored. The operands can be addressed in a variety of modes. The most frequent
use of CMP is to compare data or addresses preceding a conditional jump instruction.

Table A-21 on page A-15 lists the INC (increment) and DEC (decrement) instructions. The in-
structions for MCS 51 microcontrollers are supplemented by instructions that can address byte,
word, and dword registers and increment or decrement them by 1, 2, or 4 (denoted by #short).
These instructions are supplied primarily for register-based address pointers and loop counters.

The 8X930Ax architecture provides the MUL (multiply) and DIV (divide) instructions for un-
signed 8-bit and 16-bit data (Table A-22 on page A-16). Signed multiply and divide are left for
the user to manage through a conversion process. The following operations are implemented:

® eight-bit multipliéation: 8 bits x 8 bits — 16 bits

® sixteen-bit multiplication: 16 bits x 16 bits — 32 bits

* eight-bit division: 8 bits * 8 bits — 16 bits (8-bit quotient, 8-bit remainder)

® sixteen-bit division: 16 bits 3 16 bits — 32 bits (16-bit quotient, 16-bit remainder)

These instructions operate on pairs of byte registers (Rmd,Rms), word registers (WRjd, WRjs), or
the accumulator and B register (A,B). For 8-bit register multiplies, the result is stored in the word
register that contains the first operand register. For example, the product from an instruction
MUL R3,R8 is stored in WR2. Similarly, for 16-bit multiplies, the result is stored in the dword
register that contains the first operand register. For example, the product from the instruction
MUL WR6,WR1S8 is stored in DR4.

5-8 I

|nte|® INSTRUCTIONS AND ADDRESSING

For 8-bit divides, the operands are byte registers. The result is stored in the word register that con-
tains the first operand register. The quotient is stored in the lower byte, and the remainder is stored
in the higher byte. A 16-bit divide is similar. The first operand is a word register, and the result is
stored in the double word register that contains that word register. If the second operand (the di-
visor) is zero, the overflow flag (OV) is set and the other bits in PSW and PSW1 are meaningless.

5.3.3 Logical Instructions

The 8X930Ax architecture provides a set of instructions that perform logical operations. The
ANL, ORL, and XRL (logical AND, logical OR, and logical exclusive OR) instructions operate
on bytes and words that are accessed via several addressing modes (Table A-23 on page A-17).
A byte register, word register, or the accumulator can be logically combined with a register, im-
mediate data, or data that is addressed directly or indirectly. These instructions affect the Z and N
flags.

In addition to the CLR (clear), CPL (complement), SWAP (swap), and four rotate instructions that
operate on the accumulator, 8X930Ax microcontroller has three shift commands for byte and
word registers:

¢ SLL (Shift Left Logical) shifts the register one bit left and replaces the LSB with 0
¢ SRL (Shift Right Logical) shifts the register one bit right and replaces the MSB with 0
* SRA (Shift Right Arithmetic) shifts the register one bit right; the MSB is unchanged

5.3,4 Data Transfer Instructions

Data transfer instructions copy data from one register or memory location to another. These in-
structions include the move instructions (Table A-24 on page A-19) and the exchange, push, and
pop instructions (Table A-25 on page A-22). Instructions that move only a single bit are listed
with the other bit instructions in Table A-26 on page A-23.

MOV (Move) is the most versatile instruction, and its addressing modes are expanded in the
8X930Ax architecture. MOV can transfer a byte, word, or dword between any two registers or
between a register and any location in the address space.

The MOVX (Move External) instruction moves a byte from external memory to the accumulator
or from the accumulator to memory. The external memory is in the region specified by DPXL,
whose reset value is 01H (see “Dedicated Registers” on page 3-12).

"~ The MOVC (Move Code) instruction moves a byte from code memory (region FF:) to the accu-
mulator.

MOVS (Move with Sign Extension) and MOVZ (Move with Zero Extension) move the contents
of an 8-bit register to the lower byte of a 16-bit register. The upper byte is filled with the sign bit
(MOVS) or zeros (MOVZ). The MOVH (Move to High Word) instruction places 16-bit immedi-
ate data into the high word of a dword register.

The XCH (Exchange) instruction interchanges the contents of the accumulator with a register or
memory location. The XCHD (Exchange Digit) instruction interchanges the lower nibble of the

"
8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Int9|®

accumulator with the lower nibble of a byte in on-chip RAM. XCHD is useful for BCD (binary
coded decimal) operations.

The PUSH and POP instructions facilitate storing information (PUSH) and then retrieving it
(POP) in reverse order. Push can push a byte, a word, or a dword onto the stack, using the imme-
diate, direct, or register addressing modes. POP can pop a byte or a word from the stack to a reg-
ister or to memory.

5.4 BIT INSTRUCTIONS

A bit instruction addresses a specific bit in a memory location or SFR. There are four categories
of bit instructions:

¢ SETB (Set Bit), CLR (Clear Bit), CPL (Complement Bit). These instructions can set,
clear or complement any addressable bit.

¢ ANL (And Logical), ANL/ (And Logical Complement), ORL (OR Logical), ORL/ (Or
Logical Complement). These instructions allow ANDing and ORing of any addressable bit
or its complement with the CY flag.

* MOV (Move) instructions transfer any addressable bit to the carry (CY) bit or vice versa.

* Bit-conditional jump instructions execute a jump if the bit has a specified state. The bit-
conditional jump instructions are classified with the control instructions and are described
in “Conditional Jumps” on page 5-13.

5.4.1 Bit Addressing

The bits that can be individually addressed are in the on-chip RAM and the SFRs (Table 5-5). The
bit instructions that are unique to the MCS 251 architecture can address a wider range of bits than
the instructions from the MCS 51 architecture.

There are some differences in the way the instructions from the two architectures address bits. In
the MCS 51 architecture, a bit (denoted by bit51) can be specified in terms of its location within
a certain register, or it can be specified by a bit address in the range 00H-7FH. The 8X930Ax
architecture does not have bit addresses as such. A bit can be addressed by name or by its location
within a certain register, but not by a bit address.

Table 5-6 illustrates bit addressing in the two architectures by using two sample bits:

e RAMBIT is bit 5 in RAMREG, which is location 23H. “RAMBIT” and “RAMREG” are
assumed to be defined in user code.

* IT1is bit 2 in TCON, which is an SFR at location 88H.

5-10 I

InU@. v INSTRUCTIONS AND ADDRESSING

Table 5-5. Bit-addressable Locations

Bit-addressable Locations
Architecture
On-chip RAM SFRs
MCS® 251 Architecture 20H-7FH All defined SFRs
: SFRs with addresses ending in OH or 8H:
MCS 51 Architecture 20H-2FH 80H. 88H, 90H, 98H, .., F8H

Table 5-7 lists the addressing modes for bit instructions and Table A-26 on page A-23 summarizes
the bit instructions. “Bit” denotes a bit that is addressed by an instruction in the MCS 251 archi-
tecture and “bit51” denotes a bit that is addressed by an instruction in the MCS 51 architecture.

Table 5-6. Addressing Two Sample Bits

Location Adcﬂgcs’:ing Arl\cn:ﬁi?:cft}re Arntl:ll('l:i?ei?:l re
Register Name RAMREG.5 RAMREG.5
Register Address 23H.5 23H.5
On-chip RAM
Bit Name RAMBIT RAMBIT
Bit Address 1DH NA
Register Name TCON.2 TCON.2
SFR Register Address 88.2H S:88.2H
Bit Name I T
Bit Address 8A NA

Table 5-7. Addressing Modes for Bit Instructions

Archi- Variants | Bit Address Memory/SFR Address Comments

tecture
MCS® 251 Memory | NA 20H.0-7FH.7
Architecture
(bit) SFR NA All defined SFRs

Memory | 00H-7FH 20H.0-7FH.7
il SFR t defined
Architecture _ s are not define!
(bit51) SFR |8oH-FBH | jXILOXXH.7 Wheto XX=80, | ot ai bit-addressable
T T e e locations.

5.5 CONTROL INSTRUCTIONS

Control instructions—instructions that change program flow—include calls, returns, and condi-
tional and unconditional jumps (see Table A-27 on page A-24). Instead of executing the next in-
struction in the queue, the processor executes a target instruction. The control instruction provides

I 5-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

the address of a target instruction either implicitly, as in a return from a subroutine, or explicitly,
in the form of a relative, direct, or indirect address.

The 8X930Ax has a 24-bit program counter (PC), which allows a target instruction to be any-
~ where in the 16-Mbyte address space. However, as discussed in this section, some control instruc-

tions restrict the target address to the current 2-Kbyte or 64-Kbyte address range by allowing only
the lowest 11 or lowest 16 bits of the program counter to change.

5.5.1

Addressing Modes for Control Instructions

Table 5-8 lists the addressing modes for the control instructions.

Relative addressing: The control instruction provides the target address as an 8-bit signed
offset (rel) from the address of the next instruction.

Direct addressing: The control instruction provides a target address, which can have 11 bits
(addr11), 16 bits (addr16), or 24 bits (addr24). The target address is written to the PC.

— addrll: Only the lower 11 bits of the PC are changed,; i.e., the target address must be in

5-12

the current 2-Kbyte block (the 2-Kbyte block that includes the first byte of the next
instruction).

addr16: Only the lower 16 bits of the PC are changed,; i.e., the target address must be in
the current 64-Kbyte region (the 64-Kbyte region that includes the first byte of the next
instruction).

— addr24: The target address can be anywhere in the 16-Mbyte address space.
Indirect addressing: There are two types of indirect addressing for control instructions:

— For the instructions LCALL @WRj and LIMP @WRj, the target address is in the

current 64-Kbyte region. The 16-bit address in WRj is placed in the lower 16 bits of the
PC. The upper eight bits of the PC remain unchanged from the address of the next
instruction.

For the instruction JMP @ A+DPTR, the sum of the accumulator and DPTR is placed in
the lower 16 bits of the PC, and the upper eight bits of the PC are FF:, which restricts
the target address to the code memory space of the MCS 51 architecture.

Int€'® INSTRUCTIONS AND ADDRESSING

Table 5-8. Addressing Modes for Control Instructions

Description Ac:;irnc',evsiz eBdits Address Range
Relative, 8-bit relative address (rel) 8 -128 to +127 from first byte of next instruction
Direct, 11-bit target address (addr11) 1 Current 2 Kbytes
Direct, 16-bit target address (addr16) 16 Current 64 Kbytes
Direct, 24-bit target address (addr24)t 24 00:0000H-FF:FFFFH
Indirect (@ WRj)t 16 Current 64 Kbytes
Indirect (@ A+DPTR) 16 s;t;l};bit% 1r<-3|_|g);ion specified by DPXL (reset

fThese modes are not used by instructions in the MCS® 51 architecture.

5.5.2 Conditional Jumps

The 8X930Ax architecture supports bit-conditional jumps, compare-conditional jumps, and
jumps based on the value of the accumulator. A bit-conditional jump is based on the state of a bit.
In a compare-conditional jump, the jump is based on a comparison of two operands. All condi-
tional jumps are relative, and the target address (rel) must be in the current 256-byte block of
code. The instruction set includes three kinds of bit-conditional jumps:

® JB (Jump on Bit): Jump if the bit is set.
* JNB (Jump on Not Bit): Jump if the bit is clear.
* JBC (Jump on Bit then Clear it): Jump if the bit is set; then clear it.
“Bit Addressing” on page 5-10 describes the bit addressing used in these instructions.

Compare-conditional jumps test a condition resulting from a compare (CMP) instruction that is
assumed to precede the jump instruction. The jump instruction examines the PSW and PSW1 reg-
isters and interprets their flags as though they were set or cleared by a compare (CMP) instruction.
Actually, the state of each flag is determined by the last instruction that could have affected that
flag.

The condition flags are used to test one of the following six relations between the operands:
* equal (=), not equal ()
® greater than (>), less than (<)
¢ greater than or equal (=), less than or equal (<)

For each relation there are two instructions, one for signed operands and one for unsigned oper-
ands (Table 5-9).

I 5-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Inte|®

Table 5-9. Compare-conditidnal Jump Instructions

Operand Relation
Type = # > < § £
Unsigned JG JL JGE JLE
JE JNE
Signed JSG JSL JSGE JSLE

5.5.3 Unconditional Jumps

There are five unconditional jumps. NOP and SJMP jump to addresses relative to the program
counter. AJMP, LIMP, and EJMP jump to direct or indirect addresses.

* NOP (No Operation) is an unconditional jump to the next instruction.
* SJMP (Short Jump) jumps to any instruction within -128 to 127 of the next instruction.

* AJMP (Absolute Jump) changes the lowest 11 bits of the PC to jump anywhere within the
current 2-Kbyte block of memory. The address can be direct or indirect.

* LJMP (Long Jump) changes the lowest 16 bits of the PC to jump anywhere within the
current 64-Kbyte region.

* EJMP (Extended Jump) changes all 24 bits of the PC to jump anywhere in the 16-Mbyte
address space. The address can be direct or indirect.

5.5.4 Calls and Returns
The 8X930Ax architecture provides relative, direct, and indirect calls and returns.

ACALL (Absolute Call) pushes the lower 16 bits of the next instruction address onto the stack
and then changes the lower 11 bits of the PC to the 11-bit address specified by the instruction.
The call is to an address that is in the same 2-Kbyte block of memory as the address of the next
instruction.

LCALL (Long Call) pushes the lower 16 bits of the next-instruction address onto the stack and
“then changes the lower 16 bits of the PC to the 16-bit address specified by the instruction. The
call is to an address in the same 64-Kbyte block of memory as the address of the next instruction.

ECALL (Extended Call) pushes the 24 bits of the next instruction address onto the stack and then
changes the 24 bits of the PC to the 24-bit address specified by the instruction. The call is to an
address anywhere in the 16-Mbyte memory space.

RET (Return) pops the top two bytes from the stack to return to the instruction following a sub-
routine call. The return address must be in the same 64-Kbyte region.

ERET (Extended Return) pops the top three bytes from the stack to return to the address follow-
ing a subroutine call. The return address can be anywhere in the 16-Mbyte address space.

514 I

Inte'® INSTRUCTIONS AND ADDRESSING

RETI (Return from Interrupt) provides a return from an interrupt service routine. The operation
of RETI depends.on the INTR bit in the UCONFIG1 or CONFIG1 configuration byte:

® For INTR =0, an interrupt pushes the two lower bytes of the PC onto the stack in the
following order: PC.7:0, PC.15:8. The RETI instruction pops these two bytes and uses them
as the 16-bit return address in region FF:. RETI also restores the interrupt logic to accept
additional interrupts at the same priority level as the one just processed.

® For INTR =1, an interrupt pushes the three PC bytes and PSW1 onto the stack in the
following order: PSW1, PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four
bytes and then returns to the specified 24-bit address, which can be anywhere in the 16-
Mbyte address space. RETI also clears the interrupt request line. (See the note in Table 5-8
regarding compatibility with code written for MCS 51 microcontrollers.)

The TRAP instruction is useful for the development of emulations of an 8X930Ax microcontrol-
ler.

5.6 PROGRAM STATUS WORDS

The Program Status Word (PSW) register (Figure 5-2) and the Program Status Word 1 (PSW1)
register (Figure 5-3) contain four types of bits:

* CY, AC, OV, N, and Z are flags set by hardware to indicate the result of an operation.
® The P bit indicates the parity of the accumulator.

* Bits RSO and RS1 are programmed by software to select the active register bank for
registers RO-R7.

¢ FO and UD are available to the user as general-purpose flags.

The PSW and PSW1 registers are read/write registers; however, the parity bit in the PSW is not
affected by a write. Individual bits can be addressed with the bit instructions (see “Bit Address-
ing” on page 5-10). The PSW and PSW1 bits are used implicitly in the conditional jump instruc-
tions (see “Conditional Jumps” on page 5-13).

The PSW register is identical to the PSW register in MCS 51 microcontrollers. The PSW1 regis-
ter exists only in MCS 251 microcontrollers. Bits CY, AC, RS0, RS1, and OV in PSW1 are iden-
“tical to the corresponding bits in PSW; i.e., the same bit can be accessed in either register. Table
5-10 lists the instructions that affect the CY, AC, OV, N, and Z bits.

I 5-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table 5-10. The Effects of Instructions on the PSW and PSW1 Flags

intel.

Instruction Type

Instruction

Flags Affected (1), (5)

(03 4 OV | AC(2) N
ADD, ADDC, SUB, X X X X X
SUBB, CMP
Arithmetic INC, DEC X X
MUL, DIV (3) 0 X X X
DA X X X
ANL, ORL, XRL, CLR A, X X
CPL A, RL, RR, SWAP
Logical
RLC, RRC, SRL, SLL, X X X
SRA (4)
CJNE X X
Program Control
DJNE X X

NOTES:

1. X =the flag can be affected by the instruction.

0 = the flag is cleared by the instruction.

apLN

accumulator (ACC, Register R11).

The AC flag is affected only by operations on 8-bit operands.

if the divisor is zero, the OV flag is set, and the other bits are meaningless.
For SRL, SLL, and SRA instructions, the last bit shifted out is stored in the CY bit.
The parity bit (PSW.0) is set or cleared by instructions that change the contents of the

|nte|® INSTRUCTIONS AND ADDRESSING

PSW Address: S:DOH
Reset State: 0000 0000B
! 0
cY AC FO RS1 || RSO ov | up P
Nug:Ler Mne?rlntonic Function
7 cy Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by logical bit, bit move, multiply, decimal adjust, and some rotate and
shift instructions (see Table 5-10).

6 AC Aucxiliary Carry Flag:

The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise, it is cleared. This flag is useful for BCD
arithmetic (see Table 5-10).

5 FO Flag O:
This general-purpose flag is available to the user.
4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers RO-R7).

RS1 RSO Bank Address

0 0 0 00H-07H

0 1 1 08H-0FH

1 0 2 10H-17H

1 1 3 18H-1FH
2 ov Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2's-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 ub User-definable Flag:
This general-purpose flag is available to the user.
0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all
instructions update the parity bit. The parity bit is set or cleared by
instructions that change the contents of the accumulator (ACC, Register
R11).

Figure 5-2. Program Status Word Register

5-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

PSW1 Address: S:D1H
Reset State: 0000 0000B
7 ‘ 0
cY AC | N | mst || mso | ov z —
NuE:oer Mne?:onic Function
7 cY Carry Flag:
) Identical to the CY bit in the PSW register.
6 AC Aucxiliary Carry Flag:
Identical to the AC bit in the PSW register.
5 N Negative Flag:

This bit is set if the result of the last logical or arithmetic operation was
negative (i.e., bit 15 = 1). Otherwise it is cleared.

4-3 RS1:0 Register Bank Select Bits 0 and 1:

Identical to the RS1:0 bits in the PSW register.
2 ov Overflow Flag:

Identical to the OV bit in the PSW register.
1) z Zero Flag:

| This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.

0 —_ Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

Figure 5-3. Program Status Word 1 Register

5-18 I

intel.

Interrupt System

intel.

CHAPTER 6
INTERRUPT SYSTEM

6.1 OVERVIEW

The 8X930Ax, like other control-oriented microcontroller architectures’, employs a program in-
terrupt method. This operation branches to a subroutine and performs some service in response
to the interrupt. When the subroutine completes, execution resumes at the point where the inter-
rupt occurred. Interrupts may occur as a result of internal 8X930Ax activity (e.g., timer overflow)
or at the initiation of electrical signals external to the microcontroller (e.g., serial port communi-
cation). In all cases, interrupt operation is programmed by the system designer, who determines
priority of interrupt service relative to normal code execution and other interrupt service routines.
Ten of the eleven interrupts are enabled or disabled by the system designer and may be manipu-
lated dynamically.

A typical interrupt event chain occurs as follows. An internal or external device initiates an inter-
rupt-request signal. This signal, connected to an input pin (see Table 6-1) and periodically sam-
pled by the 8X930Ax, latches the event into a flag buffer. The priority of the flag (see Table 6-2)
" is compared to the priority of other interrupts by the interrupt handler. A high priority causes the
handler to set an interrupt flag. This signals the instruction execution unit to execute a context
switch. This context switch breaks the current flow of instruction sequences. The execution unit
completes the current instruction prior to a save of the program counter (PC) and reloads the PC
with the start address of a software service routine. The software service routine executes as-
signed tasks and as a final activity performs a RETI (return from interrupt) instruction. This in-
struction signals completion of the interrupt, resets the interrupt-in-progress priority, and reloads
the program counter. Program operation then continues from the original point of interruption.

Table 6-1. Interrupt System Input Signals

Signal P Multiplexed
Name Type Description With
INT1:04# I External Interrupts 0 and 1. These inputs set bits IE1:0 in the P3.3:2

TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0
are controlled by a negative-edge trigger on INT1#/INTO#. If bits
INT1:0# are clear, bits IE1:0 are controlled by a low level trigger on
INT1:0#.

NOTE: Other signals are defined in their respective chapters and in Appendix B, “Signal Descriptions.”

T A non-maskable interrupt (NMI#) is not included on the 8X930Ax.

I . 6-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL In

Interrupt Enable Priority Enable
Highest

IENO IPHO/IPLO Priority

Interrupt

0

ITO
11 _
Timer 0

0 ‘
INT1# IT1 .

Timer 1

INTO#

PCA
Counter
Overflow

PCA
Match or
Capture

Receive

Transmit ——————»]

Timer 2 —————> TF2
T2EX [F——{ExF2

USB Endpoint Done ¢ |

Re()e' e -FRXD
IV X i

IENT ' |PH1/IPL1

0
i FTXIEx
Transmit iy
Any Start 0 § soFiE
of Frame
SOFH.6 19sorrs

uUsB
Resume

usSB
Suspend

Lowest Priority Interrupt
A5042-01

Figure 6-1. Interrupt Control System

|n'l'e|® INTERRUPT SYSTEM

Table 6-2. Interrupt System Special Function Registers

Mnemonic Description Address

FIE USB Function Interrupt Enable Register. Enables and disables the receive S:A2H
and tran$mit done interrupts for the four function endpoints.

FIFLG USB Function Interrupt Flag Register. Contains the USB Function’s S:COH

Transmit and Receive Done interrupt flags for non-isochronous endpoints.

IENO Interrupt Enable Register 0. Enables individual programmable interrupts. S:A8H
Also provides a global enable for the programmable interrupts. The reset value
for this register is zero (interrupts disabled).

IEN1 Interrupt Enable Register1. Enables individual programmable interrupts for S:B1H
the USB interrupts. The reset value of this register is zero (interrupts disabled).

IPLO Interrupt Priority Low Register 0. Establishes relative priority for program- S:B8H
mable interrupts. Used in conjunction with IPHO.

IPHO Interrupt Priority High Register 0. Establishes relative priority for program- S:B7H
mable interrupts. Used in conjunction with IPLO.

IPL1 Interrupt Priority Low Register 1. Establishes relative priority for program- S:B2H
mable interrupts. Used in conjunction with IPH1.

IPH1 Interrupt Priority High Register 1. Establishes relative priority for program- S:B3H
mable interrupts. Used in conjunction with IPL1.

NOTE: Other SFRs are described in their respective chapters and in Appendix C, “Registers.”

6.2 8X930AxINTERRUPT SOURCES

Figure 6-1 illustrates the interrupt control system. The 8X930A x has eleven interrupt sources; ten
maskable sources and the TRAP instruction (always enabled). The maskable sources include two
external interrupts (INTO# and INT1#), three timer interrupts (timers 0, 1, and 2), one program-
mable counter array (PCA) interrupt, one serial port interrupt, and three USB interrupts. Each in-
terrupt (except TRAP) has an interrupt request flag, which can be set by software as well as by
hardware (see Table 6-3). For some interrupts, hardware clears the request flag when it grants an
interrupt. Software can clear any request flag to cancel an impending interrupt.

6.2.1 External Interrupts

External interrupts INTO# and INT1# (INTx#) pins may each be programmed to be level-trig-
gered or edge-triggered, dependent upon bits ITO and IT1 in the TCON register (see Figure 10-6
on page 10-9). If ITx = 0, INTx# is triggered by a detected low at the pin. If ITx = 1, INTx# is
negative-edge triggered. External interrupts are enabled with bits EX0 and EX1 (EXx) in the
IENO register (see Figure 6-4). Events on the external interrupt pins set the interrupt request flags
IEx in TCON. These request bits are cleared by hardware vectors to service routines only if the
interrupt is negative-edge triggered. If the interrupt is level-triggered, the interrupt service routine
must clear the request bit. External hardware must deassert INTx# before the service routine com-
pletes, or an additional interrupt is requested. External interrupt pins must be deasserted for at
least four state times prior to a request.

I 6-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Int€l®

External interrupt pins are sampled once every four state times (a frame length of 666.4 ns at 12
MHz). A level-triggered interrupt pin held low or high for any five-state time period guarantees
detection. Edge-triggered external interrupts must hold the request pin low for at least five state
times. This ensures edge recognition and sets interrupt request bit EXx. The CPU clears EXx au-
tomatically during service routine fetch cycles for edge-triggered interrupts.

Table 6-3. Interrupt Control Matrix

Global Timer | Serial | Timer Timer
+
Interrupt Name Enable PCA 2 Port 1 INT1# 0 INTO#
Bit Name in IENO
Register EA EC ET2 ES ET1 EX1 ETO EXO0
Interrupt Priority-
Within-Level
(10 = Low Priority, NA 7 6 5 4 3 2 1
1 = High Priority)
Bit Names in:
IPHO Reserved | IPH0.6 | IPHO0.5 | IPHO.4 | IPHO.3 IPHO.2 IPHO.1 IPHO.0
IPLO Reserved | IPL0.6 | IPLO.5 | IPLO.4 | IPLO.3 IPLO.2 IPLO.1 IPL0.0
Programmable for
Negative-edge
Triggered or Level- NA Edge No No No Yes No Yes
triggered Detect?
Interrupt Request
Flag in CCON, CF, TF2,
T2CON, SCON, or NA~ | cchx | ExF2 | RLTH | TR IET TFO | IEO
TCON Register
Interrupt Request . Edge Edge
Flag Cleared by No No No No Yes Yes, Yes Yes,
Hardware? Level No Level No
ISR Vector Address NA FF: FF: FF: FF: FF: FF: FF:
0033H | 002BH | 0023H | 001BH | 0013H | 000BH | 0OO0O03H

T The 8X930Ax also contains a TRAP interrupt, not cleared by hardware, with a vector address of
FFO07BH. For a discussion of TRAP and other interrupt sources, see “8X930Ax Interrupt Sources” on

page 6-3.

Additional interrupts specific to USB operation appear in Table 6-4.

6-4

intgl.

INTERRUPT SYSTEM
Table 6-4. USB Interrupt Control Matrix
USB Function Any SOF
Interrupt Name SususeEa c?/liloebsad me [Non-Isochronous [Isochronous
P Endpoint] Endpoint]
Bit Name in IEN1
Register ESR EF ESOF
Interrupt Priority-
Within-Level
(10 = Low Priority, 10 o 8
1 = High Priority)
Bit Names in:
IPH1 IPH1.2 IPH1.1 IPH1.0
IPL1 IPL1.2 IPL1.1 IPL1.0
Programmable for
Negative-edge
Triggered or Level- N/A N/A NiA
triggered Detect?
Interrupt Request
Flag in PCON1, LGSUS FTXDx, FRXDx ASOF
FIFLG, or SOFH GRSM x=0,1,2,3
Register
Interrupt Request
Flag Cleared by No No No
Hardware?
ISR Vector Address FF:0053H FF:004BH FF:0043H

6.2.2 Timer Interrupts

Two timer-interrupt request bits TFO and TF1 (see TCON register, Figure 10-6 on page 10-9) are
set by timer overflow (the exception is Timer 0 in Mode 3, see Figure 10-4 on page 10-7). When
a timer interrupt is generated, the bit is cleared by an on-chip hardware vector to an interrupt ser-
vice routine. Timer interrupts are enabled by bits ET0, ET1, and ET2 in the IENO register (see
Figure 6-4).

Timer 2 interrupts are generated by a logical OR of bits TF2 and EXF2 in register T2CON (see
Figure 10-12 on page 10-18). Neither flag is cleared by a hardware vector to a service routine. In
fact, the interrupt service routine must determine if TF2 or EXF2 generated the interrupt, and then
clear the bit. Timer 2 interrupt is enabled by ET?2 in register IENO.

6.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT

The programmable counter array (PCA) interrupt is generated by the logical OR of five event
flags (CCFx) and the PCA timer overflow flag (CF) in the CCON register (see Figure 11-8 on
page 11-14). All PCA interrupts share a common interrupt vector. Bits are not cleared by hard-
ware vectors to service routines. Normally, interrupt service routines resolve interrupt requests
and clear flag bits. This allows the user to define the relative priorities of the five PCA interrupts.

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL InU®

The PCA interrupt is enabled by bit EC in the IENO register (see Figure 6-1). In addition, the CF
flag and each of the CCFx flags must also be individually enabled by bits ECF and ECCFx in reg-
isters CMOD and CCAPMyx, respectively, for the flag to generate an interrupt (see Figure 11-7 on
page 11-13 and Figure 11-9 on page 11-15).

NOTE
CCFx refers to five separate bits, one for each PCA module (CCF0, CCF1,
- CCF2, CCF3, CCF4). CCAPMXx refers to 5 separate registers, one for each
PCA module (CCAPMO, CCAPM1, CCAPM?2, CCAPM3, CCAPM4).

6.4 SERIAL PORT INTERRUPT

Serial port interrupts are generated by the logical OR of bits RI and TI in the SCON register (see
Figure 12-2 on page 12-5). Neither flag is cleared by a hardware vector to the service routine. The
service routine resolves RI or TI interrupt generation and clears the serial port request flag. The
serial port interrupt is enabled by bit ES in the IENO register (see Figure 6-4).

6.5 USB INTERRUPTS

There are three types of USB interrupts: The USB function interrupt, to control the flow of non-
isochronous data; the start of frame interrupt (SOF), to monitor the transfer of isochronous' data;
and the global suspend/resume interrupt, to allow USB power control. These interrupts.are en-
abled using the IEN1 register. See Table 6-4 and Figure 6-5.

6.5.1 USB Function Interrupt

The USB function generates two types of interrupts to control the transfer of non-isochronous da-
ta: the receive done interrupt and the transmit done interrupt. Individual USB Function interrupts
are enabled by setting the corresponding bits in the FIE register (Figure 6-2).

NOTE

In order to use any of the USB function interrupts, the EF bit in the IEN1
register must be enabled.

6-6 I

|nte|® INTERRUPT SYSTEM

FIE Address: S:A2H
Reset State: 0000 0000B
7 0

[FRXIE3 1 FTXIE3] FRXIE2 T FTXIE2 || FRXIE1 | FTXIE1] FRXIEO T FI'XIEO—,I

Nuﬁ::)er MnelBTIntonic Function

7 FRXIE3 Function Receive Interrupt Enable 3:

Enables receive done interrupt for endpoint 3 (FRXD3).
6 FTXIE3 Function Transmit Interrupt Enable 3:

Enables transmit done interrupt for endpoint 3 (FTXD3).
5 FRXIE2 Function Receive Interrupt Enable 2:

Enables the receive done interrupt for endpoint 2 (FRXD2).
4 FTXIE2 Function Transmit Interrupt Enable 2:

Enables the transmit done interrupt for endpoint 2 (FTXD2).
3 FRXIE1 Function Receive Interrupt Enable 1:

Enables the receive done interrupt for endpoint 1 (FRXD1).
2 FTXIE1 Function Transmit Interrupt Enable 1:

Enables the transmit done interrupt for endpoint 1 (FTXD1).
1 FRXIEO Function Receive Interrupt Enable 0:

Enables the receive done interrupt for endpoint 0 (FRXDO).
0 FTXIEO Function Transmit Interrupt Enable 0:

Enables the transmit done interrupt for endpoint0 (FTXDO).

NOTE: For all bits, a ‘1’ means the interrupt is enabled and will cause an interrupt to be signaled to
the microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot
cause an interrupt, even though the interrupt bit’s value will still be reflected in the FIFLG
register.

Figure 6-2. USB Function Interrupt Enable Register

The USB Function Interrupt Flag Register (FIFLG, as shown in Figure 6-3) is used to indicate
pending function interrupts. For all bits in FIFLG, a ‘1’ indicates that an interrupt is actively
pending; a ‘0’ indicates that the interrupt is not active. The interrupt status is shown in the FIFLG
register regardless of the state of the corresponding interrupt enable bit in the FIE Register (Figure
6-2).

The USB function generates a receive done interrupt for an endpoint x (x = 0-3) by setting the
FRXDx bit in the FIFLG register (Figure 6-3). Only non-isochronous transfer can cause a receive
done interrupt. Receive done interrupts are generated only when all of the following are true:

1. A valid SETUP or OUT token is received to function endpoint x, and
2. Endpoint x is enabled for reception (RXEPEN in EPCON = ‘1°), and

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Int9|®

5.

Receive is enabled (RXIE = ‘1’) and STALL is disabled (RXSTL = ‘0”) for OUT tokens
(or the token received is.a SETUP token), and

A data packet is received with no time-out — regardiess of transmission errors (CRC, bit-
stuffing) or FIFO errors (overrun, underrun), and

There is no data sequence PID error.

Because the FRXDx bit is set and a receive done interrupt is generated regardless of transmission
errors, this condition means either: '

L.

Valid data is waiting to be serviced in the receive FIFO for function endpoint x and that the
data was received without error and has been acknowledged; or

Data was received with a receive data error and requires firmware intervention to be
cleared. This could be either a transmission error or a FIFO-related error. You must check
for these conditions and respond accordingly in the interrupt service routine (ISR).

The USB function generates a transmit done interrupt for an endpoint x (x = 0-3) by setting the
FI'’XDx bit in the FIFLG register (Figure 6-3). Only non-isochronous transfer can cause a transmit
done interrupt. Transmit done interrupts are generated only when all of the following are true:

1
2
3.
4

5.

A valid IN token is received to function endpoint x, and’
Endpoint x is enabled for transmission (TXEPEN = ‘1°), and
Transmit is enabled (TXIE = ‘1’) and STALL is disabled (TXSTL = ‘0’), and

A data packet/byte count has been loaded in the transmit FIFO and was transmitted in

.response to the IN token — regardless of whether or not a FIFO error occurs, and

An ACK is received from the host or there was a time-out in the SIE.

Because the FTXDx bit is set and a transmit done interrupt is generated regardless of transmission
errors, this condition means either:

1.

6-8

The transmit data has been transmitted and the host has sent an acknowledgment to
indicate that is was successfully received; or

A transmit data error occurred during transmission of the data packet, which requires
servicing by firmware to be cleared. You must check for these conditions and respond
accordingly in the ISR.

NOTE

Setting an endpoint interrupt’s bit in the Function Interrupt Enable register
(FIE register, as shown in Figure 6-2) means that the interrupt is enabled and
will cause an interrupt to be signaled to the microcontroller. Clearing a bit in
the FIE register disables the associated interrupt source, which can no longer
cause an interrupt even though its value will still be reflected in the FIFLG
register.

Int9|® INTERRUPT SYSTEM

FIFLG Address: S:COH
Reset State: 0000 0000B
7 0

FRXD3 | FTxD3 | FRxD2 | FTXD2 “ _FRXD1 LFTXD1] FRXDO | FTXDO

Bit Bit . Function
Number Mnemonic

7 FRXD3 Function Receive Done Flag, Endpoint 3
6 FTXD3 Function Transmit Done Flag, Endpoint 3
5 FRXD2 Function Receive Done Flag, Endpoint 2
4 FTXD2 Function Transmit Done Flag, Endpoint 2
3 FRXD1 Function Receive Done Flag, Endpoint 1
2 FTXD1 Function Transmit Done Flag, Endpoint 1
1 FRXDO Function Receive Done Flag, Endpoint O
0 FTXDO Function Transmit Done Flag, Endpoint 0

NOTE: For all bits in the Interrupt Flag Register, a ‘1" indicates that an interrupt is actively pending; a
‘0’ indicates that the interrupt is not active. The interrupt status is shown regardless of the
state of the corresponding interrupt enable bit in the FIE. Bits are set-only by hardware and
clearable in software. Software can also set the bits for text purposes, allowing the interrupt
to be generated in software.

Figure 6-3. USB Function Interrupt Flag Register

6.5.2 USB Start of Frame Interrupt

The USB start of frame interrupt (SOF) is used to control the transfer of isochronous data. The
8X930Ax frame timer attempts to synchronize to the frame time automatically. When the frame
timer is locked to the USB frame time, hardware sets the FTLOCK bit in SOFH (Figure 7-5 on
page 7-12). To enable the start of frame interrupt, set the SOFIE bit in SOFH. The 8X930Ax gen-
erates a SOF interrupt whenever a start of frame packet is received from the USB lines (or when-
ever an SOF packet should have been received — i.e., an artificial SOF) by setting the ASOF bit
in SOFH.

The 8X930Ax uses the SOF interrupt to signal either of two complementary events:

1. When transmitting: The next isochronous data packet needs to be retrieved from memory
and loaded into the transmit FIFO in preparation for transmission in the next frame; or

2. When receiving: An isochronous packet has been received in the previous frame and
needs to be retrieved from the receive FIFO.

Since the SOF packet could be corrupted, there is a chance that a new frame could be started with-
out successful reception of the SOF packet. For this reason, an artificial SOF is provided. The
frame timer signals a time-out when an SOF packet has not been received within the allotted
amount of time. In this fashion, the 8X930Ax generates an SOF interrupt reliably once each frame

I 6-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

within 1 ps of accuracy, except when this interrupt is suspended or when the frame timer gets out-
of-sync with the USB bus frame time.

In summary, in order to utilize the USB start of frame functionality for isochronous data transfer,
the following must all be true:

1. The global enable bit must be set (i.e., the EA bit must be set in the IENO register)

2. The isochronous endpoint any SOF interrupt must be enabled (the ESOF bit must be set in
the IEN1 register)

3. The SOF interrupt must be enabled (the SOFIE bit must be set in the SOFH Register)

NOTE
The SOF interrupt is brought out to an external pin (SOF#) in order to provide

a 1 ms pulse, subject to the accuracy of the USB SOF. This pin is enabled by
clearing the SOFODIS bit in the SOFH register.

6.5.3 USB Global Suspend/Resume Interrupt

The 8X930Ax supports USB power control through firmware. The USB power control register
(PCON1, as shown in Figure 14-2 on page 14-3) facilitates USB power control of the 8X930Ax,
including global suspend/resume and USB function resume.

6.5.3.1 Global Suspend

When a global suspend is detected by the 8X930Ax, the global suspend bit (GSUS of PCON1) is
set and the GS/Resume interrupt is generated. Global suspend is defined as bus inactivity for
more than 3 ms on the USB lines. For additional information, see “Global Suspend Mode” on
page 14-6.

6.5.3.2 Global Resume

When a global resume is detected by the 8X930Ak, the global resume bit (GRSM of PCON1) is
set and the Global Suspend/Resume interrupt is generated. As soon as resume signaling is detect-
ed on the USB lines, the oscillator is restarted. After executing the resume interrupt service rou-
tine, the 8X930Ax resumes operation from where it was when it was interrupted by the suspend
interrupt. For additional information, see “Global Resume Mode” on page 14-8.

6.5.3.3 USB Remote Wake-up

The 8X930Ax can also initiate resume signaling to the USB lines through remote wakeup of the
USB function while it is in powerdown/idle mode. While in powerdown mode, remote wakeup
has to be initiated through assertion of an enabled external interrupt. The external interrupt has to
be enabled and it must be configured with level trigger and with higher priority than a suspend/re-
sume interrupt. An external interrupt restarts the clocks to the 8X930Ax and program execution
branches to the external interrupt service routine.

Within this external interrupt service routine, you must set the remote wakeup bit (RWU in
PCONI1) to drive resume signaling on the USB lines to the host or upstream hub. After executing
the external ISR, the program continues execution from where it was put into powerdown mode

6-10 I

|nte|® INTERRUPT SYSTEM

and the 8X930Ax resumes normal operation. For additional information, see “USB Remote
Wake-up” on page 14-8.

6.6 INTERRUPT ENABLE

Each interrupt source (with the exception of TRAP) may be individually enabled or disabled by
the appropriate interrupt enable bit in the IENO register at S:A8H (see Figure 6-4) or the IEN1
register at S:B1H (see Figure 6-5). Note IENO also contains a global disable bit (EA). If EA is
set, interrupts are individually enabled or disabled by bits in IENOQ and IEN1. If EA is clear, all
interrupts are disabled.

IENO Address: S:A8H
Reset State: 0000 0000B
7 0
EA] EC [ET2 ES J | ET1 | EX1 ETO EX0
Bit Bit

. ion
Number Mnemonic Functio

7 EA Global Interrupt Enable:

Setting this bit enables all interrupts that are individually enabled by bits
0-6. Clearing this bit disables all interrupts, except the TRAP interrupt,
which is always enabled.

6 EC PCA Interrupt Enable:

Setting this bit enables the PCA interrupt.
5 ET2 Timer 2 Overflow Interrupt Enable:

Setting this bit enables the timer 2 overflow interrupt.
4 ES Serial I/O Port Interrupt Enable:

Setting this bit enables the serial /O port interrupt.
3 ET1 Timer 1 Overflow Interrupt Enable:

Setting this bit enables the timer 1 overflow interrupt.
2 EX1 External Interrupt 1 Enable:

Setting this bit enables external interrupt 1.
1 ETO Timer 0 Overflow Interrupt Enable:

Setting this bit enables the timer 0 overflow interrupt.
0 EX0 External Interrupt O Enable:

Setting this bit enables external interrupt 0.

Figure 6-4. Interrupt Enable Register 0

I ' 6-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Intel®

IEN1 Address: S:B1H
Reset State: XXXX X000H
7 0
I - | = | = - || = ESR | FEF ESOF
Nuﬁ\i:aer Mne?rlitonic Function
7:3 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 ESR Enable Suspend/Resume:
USB Global Suspend/Resume Interrupt Enable bit.
1 EF Enable Function:
Transmit/Receive Done interrupt enable bit for non-isochronous USB
function endpoints.
0 ESOF Enable Start of Frame:
Any start of frame interrupt enable bit for isochronous endpoints.

Figure 6-5. USB Interrupt Enable Register

6-12 I

|nte|® INTERRUPT SYSTEM

6.7 INTERRUPT PRIORITIES

Ten of the eleven 8X930Ax interrupt sources (TRAP excluded) may be individually programmed
to one of four priority levels. This is accomplished with the IPHX.x/IPLX.x bit pairs in the inter-
rupt priority high (IPH1/IPHO in Figure 6-6 and 6-8) and interrupt priority low (IPL1/IPLO) reg-
isters (Figures 6-7 and 6-9). Specify the priority level as shown in Table 6-5 using IPHO.x (or
IPH1.x) as the MSB and IPLO.x (or IPL1.x) as the LSB. '

Table 6-5. Level of Priority

Priority Level IPH1.x, IPL1.x | IPHO.x, IPLO.x
0 Lowest Priority 00 00
1 01 01
2 10 10
3 Highest Priority 11 11

A low-priority interrupt is always interrupted by a higher priority interrupt but not by another in-
terrupt of equal or lower priority. The highest priority interrupt is not interrupted by any other in-
terrupt source. Higher priority interrupts are serviced before lower priority interrupts. The
response to simultaneous occurrence of equal priority interrupts (i.e., sampled within the same
four-state interrupt cycle) is determined by a hardware priority-within-level resolver (see Table
6-6).

Table 6-6. Interrupt Priority Within Level

Priority Number Interrupt Name
1 (Highest Priority) INTO#
2 Timer 0
3 INT1#
4 Timer 1
5 Serial Port
6 Timer 2
7 PCA
8 USB Any SOF
9 USB Function
10 USB Global Suspend/Resume

l 6-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intgl.

IPHO Address: S:B7H
: Reset State: X000 0000B
7 0
— | iPHO6 | IPHO.5 | IPHO.4 || 1PHO3 | IPHo2 | IPHO | IPHOO
NuBmI:)er Mne|B1:tonic Function
7 — Reserved. The value read from this bit is indeterminate. Write a zero to
"| this bit. '
6 IPHO.6 PCA Interrupt Priority Bit High
5 IPHO.5 Timer 2 Overflow Interrupt Priority Bit High
4 IPHO0.4 Serial /O Port Interrupt Priority Bit High
3 IPHO.3 Timer 1 Overflow Interrupt Priority Bit High
2 IPHO0.2 External Interrupt 1 Priority Bit High
1 IPHO.1 Timer 0 Overflow Interrupt Priority Bit High
0 IPHO0.0 External Interrupt O Priority Bit High
Figure 6-6. IPHO: Interrupt Priority High Register 0
IPLO Address: S:B8H
Reset State: - X000 0000B
7 : 0
— | o6 [pLos | pLo4 || iPLos | IPLO2 | IPLO.1 IPLO.O
Nuﬁ:oer Mne?rlutonic Function
7 —_ Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.
6 IPLO.6 PCA Interrupt Priority Bit Low
5 IPLO.5 Timer 2 Overflow Interrupt Priority Bit Low
4 IPLO.4 Serial I/O Port Interrupt Priority Bit Low
3 IPLO.3 Timer 1 Overflow Interrupt Priority Bit Low
2 IPLO.2 External Interrupt 1 Priority Bit Low
1 IPLO.1 Timer O Overflow Interrupt Priority Bit Low
0 IPLO.O External Interrupt O Priority Bit Low
Figure 6-7. IPLO: interrupt Priority Low Register 0
6-14

.
|nte|® INTERRUPT SYSTEM
IPH1 Address: S:B3H

Reset State: X000 0000B
7 0
— — — |l IPH1.2 | IPH1.1 | IPH1.0
Nuﬁ::aer MnelBTlltonic Function
7:3 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 IPH1.2 Global Suspend/Resume Interrupt Priority Bit High
IPH1.1 USB Function Interrupt Priority Bit High
0 IPH1.0 USB Any SOF Interrupt Priority Bit High
Figure 6-8. IPH1: Interrupt Priority High Register 1
IPL1 Address: S:B2H
Reset State: X000 0000B
7 0
| — — — || PLi2 | IPL11 | IPL1O
Nuﬁ\i:aer Mne?r:tonic Function
7:3 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 IPL1.2 Global Suspend/Resume Interrupt Priority Bit Low
IPL1.1 USB Function Interrupt Priority Bit Low
0 IPL1.0 USB Any SOF Interrupt Priority Bit Low

Figure 6-9. IPL1: Interrupt Priority Low Register 1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Int9|®

6.8 INTERRUPT PROCESSING

Interrupt processing is a dynamic operation that begins when a source requests an interrupt and
lasts until the execution of the first instruction in the interrupt service routine (see Figure 6-10).
Response time is the amount of time between the interrupt request and the resulting break in the
current instruction stream. Latency is the amount of time between the interrupt request and the
execution of the first instruction in the interrupt service routine. These periods are dynamic due
to the presence of both fixed-time sequences and several variable conditions. These conditions
contribute to total elapsed time. :

Response Time

1
External S
Interrupt
Request .

S Ending Instructions

Latency

A4153-01

Figure 6-10. The Interrupt Process

Both response time and latency begin with the request. The subsequent minimum fixed sequence
comprises the interrupt sample, poll, and request operations. The variables consist of (but are not
limited to): specific instructions in use at request time, internal versus external interrupt source
requests, internal versus external program operation, stack location, presence of wait states, page-
mode operation, and branch pointer length.)

NOTE

In the following discussion, external interrupt request pins are assumed to be
inactive for at least four state times prior to assertion. In this chapter all
external hardware signals maintain some setup period (i.e., less than one state
time). Signals must meet Vi and Vi specifications prior to any state time
under discussion. This setup state time is not included in examples or calcula-
tions for either response or latency.

616 I »

|nte|® INTERRUPT SYSTEM

6.8.1 Minimum Fixed Interrupt Time

All interrupts are sampled or polled every four state-times (see Figure 6-10). Two of eight inter-
rupts are latched and polled per state time within any given window of four state-times. One ad-
ditional state time is required for a context switch request. For code branches to jump locations
in the current 64-Kbyte memory region (compatible with MCS 51 microcontrollers), the context
switch time is 11 states. Therefore, the minimum fixed poll and request time is 16 states (4 poll
states + 1 request state + 11 states for the context switch = 16 state times).

Therefore, this minimum fixed period rests upon four assumptions:

® The source request is an internal interrupt with high enough priority to take precedence over
other potential interrupts,

¢ The request is coincident with internal execution and needs no instruction completion time,
® The program uses an internal stack location, and

¢ The ISR is in on-chip ROM.

6.8.2 Variable Interrupt Parameters

Both response time and latency calculations contain fixed and variable components. By defini-
tion, it is often difficult to predict exact timing calculations for real-time requests. One large vari-
able is the completion time of an instruction cycle coincident with the occurrence of an interrupt
request. Worst-case predictions typically use the longest-executing instruction in an architecture’s
code set. In the case of the 8X930Ax, the longest-executing instruction is a 16-bit divide (DIV).
However, even this 21- state instruction may have only 1 or 2 remaining states to complete before
the interrupt system injects a context switch. This uncertainty affects both response time and la-
tency.

6.8.2.1 Response Time Variables

Response time is defined as the start of a dynamic time period when a source requests an interrupt
and lasts until a break in the current instruction execution stream occurs (see Figure 6-10). Re-
sponse time (and therefore latency) is affected by two primary factors: the incidence of the re-
quest relative to the four-state-time sample window and the completion time of instructions in the
response period (i.e., shorter instructions complete earlier than longer instructions).

NOTE

External interrupt signals require one additional state time in comparison to
internal interrupts. This is necessary to sample and latch the pin value prior to
a poll of interrupts. The sample occurs in the first half of the state time and the
poll/request occurs in the second half of the next state time. Therefore, this
sample and poll/request portion of the minimum fixed response and latency

I 6-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|«®

time is five states for internal interrupts and six states for external interrupts.
External interrupts must remain active for at least five state times to guarantee
interrupt recognition when the request occurs immediately after a sample has
been taken (i.e., requested in the second half of a sample state time).

If the external interrupt goes active one state after the sample state, the pin is not resampled for
another three states. After the second sample is taken and the interrupt request is recognized, the
- interrupt controller requests the context switch. The programmer must also consider the time to
complete the instruction at the moment the context switch request is sent to the execution unit. If
9 states of a 10-state instruction have completed when the context switch is requested, the total
response time is 6 states, with a context switch immediately after the final state of the 10-state
instruction (see Figure 6-11).

Response Time =6

osc

State Time

INTO#

Sample INTO# L] LT | | ||
Request LI

Ten State
Instruction

A4155-02

Figure 6-11. Response Time Example #1

Conversely, if the external interrupt requests service in the state just prior to the next sample, re-
sponse is much quicker. One state asserts the request, one state samples, and one state requests
the context switch. If at that point the same instruction conditions exist, one additional state time
is needed to complete the 10-state instruction prior to the context switch (see Figure 6-12). The
total response time in this case is four state times. The programmer must evaluate all pertinent
conditions for accurate predictability.

6-18 L

IntGI ® INTERRUPT SYSTEM

Response Time = 4

0osc
State Time Ly
INTO# ﬂw
Sample INTO# I~ | 1 ||
Request LI
Ten State S
Instruction

A4154-02

Figure 6-12. Response Time Example #2

6.8.2.2 Computation of Worst-case Latency With Variables

Worst-case latency calculations assume that the longest 8X930Ax instruction used in the program
must fully execute prior to a context switch. The instruction execution time is reduced by one
state with the assumption the instruction state overlaps the request state (therefore, 16-bit DIV is
21 state times - 1 = 20 states for latency calculations). The calculations add fixed and variable
interrupt times (see Table 6-7) to this instruction time to predict latency. The worst-case latency
(both fixed and variable times included) is expressed by a pseudo-formula:

FIXED_TIME + VARIABLES + LONGEST_INSTRUCTION = MAXIMUM LATENCY PREDICTION

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |n'l'e|®

Table 6-7. Interrupt Latency Variables

External
INTO#, >64K External External | External
Variable | INT1#, | EXtormal | Bage | jump 1o | MEMON | “gack Stack | Stack
T2EX ‘ ISR (1) State <64K (1) >64K (1) | Wait State
Number
of 1 per 1 per
States 1 2 T 8 bus cycle 4 8 bus cycle
Added
NOTES:

1. <64K/>64K means inside/outside the 64-Kbyte memory region where code is executing.
2. Base-case fixed time is 16 states and assumes:

— A 2-byte instruction is the first ISR byte. — Internal execution
— <64K jump to ISR — Internal stack
— Internal peripheral interrupt

6.8.2.3 Latency Calculations

Assume the use of a zero-wait-state external memory where current instructions, the ISR, and the
stack are located within the same 64-Kbyte memory region (compatible with memory maps for
MCS 51 microcontrollers.) Further, assume there are 3 states yet to complete in the current 21-
state DIV instruction when INTO# requests service. Also assume INTO0# has made the request one
state prior to the sample state (as in Figure 6-12). Unlike Figure 6-12, the response time for this
assumption is three state times as the current instruction completes in time for the branch to occur.
Latency calculations begin with the minimum fixed latency of 16 states. From Table 6-7, one state
is added for an INTO# request from external hardware; two states are added for external execu-
tion; and four states for an external stack in the current 64-Kbyte region. Finally, three states are
added for the current instruction to complete. The actual latency is 26 states. Worst-case latency
calculations predict 43 states for this example due to inclusion of total DIV instruction time (less
one state).

Table 6-8. Actual vs. Predicted Latency Calculations

Latency Factors Actual Predicted
Base Case Minimum Fixed Time 16 16
INTO# External Request 1 1
External Execution
<64K Byte Stack Location
‘| Execution Time for Current DIV Instruction | 3 20
TOTAL . 26 43

6-20 J

|nte|® INTERRUPT SYSTEM

6.8.2.4 Blocking Conditions

If all enable and priority requirements have been met, a single prioritized interrupt request at a
time generates a vector cycle to an interrupt service routine (see CALL instructions in Appendix
A, “Instruction Set Reference”). There are three causes of blocking conditions with hardware-
generated vectors:

1. An interrupt of equal or higher priority level is already in progress (defined as any point
after the flag has been set and the RETI of the ISR has not executed).

2. The current polling cycle is not the final cycle of the instruction in progress.

. 3. The instruction in progress is RETI or any write to the IENO, IEN1, IPHO, IPH1, IPLO or
IPL1 registers.

Any of these conditions blocks calls to interrupt service routines. Condition two ensures the in-
struction in progress completes before the system vectors to the ISR. Condition three ensures at
least one more instruction executes before the system vectors to additional interrupts if the in-
struction in progress is a RETI or any write to IENO, IEN1, IPHO, IPH1, IPLO or IPL1. The com-
plete polling cycle is repeated every four state-times.

6.8.2.5 Interrupt Vector Cycle

When an interrupt vector cycle is initiated, the CPU breaks the instruction stream sequence, re-
solves all instruction pipeline decisions, and pushes multiple program counter (PC) bytes onto the
stack. The CPU then reloads the PC with a start address for the appropriate ISR. The number of
bytes pushed to the stack depends upon the INTR bit in the UCONFIG1 (Figure 4-4 on page 4-6)
configuration byte. The complete sample, poll, request and context switch vector sequence is il-
lustrated in the interrupt latency timing diagram (Figure 6-10).

NOTE
If the interrupt flag for a level-triggered external interrupt is set but denied for
one of the above conditions and is clear when the blocking condition is
removed, then the denied interrupt is ignored. In other words, blocked interrupt
requests are not buffered for retention.

I » 6-21

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL ||T|.'e|®

6.8.3 ISRs in Process

ISR execution proceeds until the RETI instruction is encountered. The RETI instruction informs
the processor that the interrupt routine is completed. The RETT instruction in the ISR pops PC
address bytes off the stack (as well as PSW1 for INTR = 1) and execution resumes at the suspend-
ed instruction stream.

NOTE
Some programs written for MCS 51 microcontrollers use RETI instead of RET
to return from a subroutine that is called by ACALL or LCALL (i.e., not an
interrupt service routine (ISR)). In the 8X930Ax, this causes a compatibility
problem if INTR = 1 in configuration byte CONFIG]. In this case, the CPU
pushes four bytes (the three-byte PC and PSW1) onto the stack when the
routine is called and pops the same four bytes when the RETT is executed. In
contrast, RET pushes and pops only the lower two bytes of the PC. To
maintain compatibility, configure the 8X930Ax with INTR = 0.

With the exception of TRAP, the start addresses of consecutive interrupt service routines are eight
bytes apart. If consecutive interrupts are used (IEO and TFO, for example, or TFO and IE1), the
first interrupt routine (if more than seven bytes long) must execute a jump to some other memory
location. This prevents overlap of the start address of the following interrupt routine.

6-22 I

intel.

7

Universal Serial Bus

intel.

| CHAPTER 7
UNIVERSAL SERIAL BUS

This chapter and Chapter 8, “USB Programming Models,” describe the operation of the 8X930Ax
serving as a USB function. For an overview of the USB module, see Chapter 2, “Introduction.”
Table 7-1 lists device signals associated with the USB. Pin assignments are shown in Appendix B.

A data flow model for the USB transactions, intended to bridge the hardware and firmware layers
of the 8X930Ayx, is presented in truth table form in Appendix D. The data flow model describes
8X930Ax behavior in response to a particular USB event, given a known state/configuration.

7.1 USB FUNCTION INTERFACE

The USB function interface manages communications between the USB host and the embedded
function. It consists of a serial bus interface engine (SIE), which handles the communication pro-
tocol of the universal serial bus, and a function interface unit (FIU), which handles data transfer
and provides the interface between the SIE and the 8X930Ax CPU. These units, along with the
differential transceiver and the FIFO data buffers, comprise the USB module. The block diagram
in Figure 2-3 on page 2-3 shows the relationships between these components and how they inter-
face with the CPU.

The USB module interfaces with the USB by means of the differential USB root port, Dy and
Dyo-

7.1.1 Serial Bus Interface Engine (SIE)

The SIE is the universal serial bus protocol interpreter. It serves as the communicator between the
8X930Ax and the host PC through the USB lines. For additional information on the SIE, see “SIE
Details” on page 7-33.

A complete description of the USB can be found in Universal Serial Bus Specification. For a de-
scription of the transceiver see the “Driver Characteristics” and “Receiver Characteristics” sec-
tions of the “Electrical” chapter of the Universal Serial Bus Specification. For electrical
characteristics and data signal timing, see the “Bus Timing/Electrical Characteristics” and “Tim-
ing Diagram” sections of the same chapter.

7.1.2 Function Interface Unit (FIU)

The FIU manages USB data transactions for the 8X930Ax. It controls the operation of the FIFOs,
monitors the status of the data transaction, and at the appropriate moment transfers event control
to the CPU through an interrupt request. The exact nature of a data transaction depends on the
type of data transfer and the initial conditions of the transmit and receive FIFOs.

The 8X930Ax supports four types of data transfer: control transfer (endpoint 0), interrupt transfer,
isochronous transfer, and bulk transfer. The 8X930Ax provides a pair of FIFO data buffers — a
transmit FIFO and a receive FIFO — dedicated to each endpoint.

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Int3I®

Table 7-1. Signal Descriptions

Alternate
Function

Signal
Name

PLLSEL2:0 | Phase Lock Loop Select. Three-bit code selects the USB data —
rate (see Table 2-2 on page 2-8).

SOF# (o] Start of Frame. The SOF# pin is asserted for eight states when —
. an SOF token is received.

Type Description

Dro, Duo I/O | USB Port 0. D¢ and D, are the data plus and data minus —_
lines of differential USB port 0. These lines do not have internal
pullup resistors. For low-speed devices, provide an external 1.5
KQ pullup resistor at D,o. For full-speed devices, provide an
external 1.5 KQ pullup resistor at Dgy.

NOTE: Either Dy or Dyg must be pulled high. Otherwise a
continuous SEO (USB reset) will be applied to these inputs
causing the 8X930Ax to stay in reset.

ECAP ! External Capacitor. Must be connected to a 0.1uF capacitor —
(or larger) to ensure proper operation of the differential line
driver. The other lead of the capacitor must be connected to
Ves-

7.1.3 SPECIAL FUNCTION REGISTERS (SFRs)

The FIU controls operations through the use of four sets of special functions registers (SFRs): the
FIU SFRs, the transmit FIFO SFRs, the receive FIFO SFRs, and the USB interrupt SFRs. Table
7-2 lists the special function registers (SFRs) described in this chapter. USB interrupt SFRs are
described in Chapter 6, “Interrupt System.” Table 3-5 on page 3-16 is an address map of all the
8X930Ax SFRs.

The registers in the FIU SFR set are: EPINDEX, EPCON, TXSTAT, RXSTAT, SOFL, SOFH, and
FADDR. These registers are defined in Figures 7-1 through Figure 7-7.

The registers in the transmit FIFO SFR set are TXDAT, TXCON, TXFLG, TXCNTL, and
TXCNTH. These registers are defined in Figures 7-10 through 7-13 beginning on page 7-18.

The registers in the receive FIFO SFR set are RXDAT, RXCON, RXFLG, RXCNTL, and
RXCNTH. These registers are defined in Figures 7-15 through 7-18 beginning on page 7-27.

The transmit SFR set, the receive SFR set, EPCON, TXSTAT, and RXSTAT are endpoint-in-
dexed, i.e., they are assigned to operate in conjunction with the FIFO pair associated with the se-
lected endpoint.

The endpoint index SFR (EPINDEX) specifies the current endpoint (index value x =0, 1, 2, 3).

CAUTION

Unless otherwise noted in the bit definition, SFR bits can be read and written
by software. All SFRs should be written using read-modify-write instructions
only, due to the possibility of simultaneous writes by hardware and firmware.

7-2 I

intgl.

UNIVERSAL SERIAL BUS

Table 7-2. USB Function SFRs

Mnemonic Description Address

EPCON Endpoint Control Register. Configures the operation of the endpoint S:E1H
specified by EPINDEX.

EPINDEX | Endpoint Index Register. Selects the appropriate endpoint. S:F1H

FADDR Function Address Register. Stores the USB function address for the S:8FH
device. The host PC assigns the address and informs the device via
endpoint 0.

RXCNTH | Receive FIFO Byte-Count High Register. High register in a two-register S:E7H
ring buffer used to store the byte count for the data packets received in the
receive FIFO specified by EPINDEX.

RXCNTL Receive FIFO Byte-Count Low Register. Low register in a two-register S:E6H
ring buffer used to store the byte count for the data packets received in the
receive FIFO specified by EPINDEX.

RXCON Receive FIFO Control Register. Controls the receive FIFO specified by S:E4H
EPINDEX.

RXDAT Receive FIFO Data Register. Receive FIFO data is read from this register S:E3H
(specified by EPINDEX).

RXFLG Receive FIFO Flag Register. These flags indicate the status of data S:E5H
packets in the receive FIFO specified by EPINDEX.

RXSTAT Endpoint Receive Status Register. Contains the endpoint status of the S:E2H
receive FIFO specified by EPINDEX.

SOFH Start of Frame High Register. Contains isochronous data transfer enable S:D3H
and interrupt bits and the upper three bits of the 11-bit time stamp received
from the host.

SOFL Start of Frame Low Register. Contains the lower eight bits of the 11-bit S:D2H
time stamp received from the host.

TXCNTH Transmit Count High Register. High register in a two-register ring buffer S:F7H
used to store the byte count for the data packets in the transmit FIFO
specified by EPINDEX.

TXCNTL Transmit Count Low Register. Low register in a two-register ring buffer S:F6H
used to store the byte count for the data packets in the transmit FIFO
specified by EPINDEX.

TXCON Transmit FIFO Control Register. Controls the transmit FIFO specified by S:F4H
EPINDEX. ‘

TXDAT Transmit FIFO Data Register. Transmit FIFO data is written to this register S:F3H
(specified by EPINDEX).

TXFLG Transmit Flag Register. These flags indicate the status of data packets in S:F5H
the transmit FIFO specified by EPINDEX.

TXSTAT Endpoint Transmit Status Register. Contains the endpoint status of the S:FAH
transmit FIFO specified by EPINDEX.

7-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

7.1.4 USB Function FIFO’s

The 8X930Ax provides eight FIFOs in support of the four USB function endpoints — a transmit/
receive FIFO pair for each endpoint. Table 7-3 lists the 8X930Ax FIFOs and gives the byte ca-
pacity of each. The FIFOs associated with function endpoints 0, 2, and 3 have capacities of 16
bytes. As shown in the table, bits FFSZ.1:0 of the TXCON SFR permit the endpoint 1 transmit/re-
ceive FIFO pair to be partitioned as follows: 256/256, 512/512, 1024/0, or 0/1024 bytes.

Transmit FIFOs are written by the 8X930Ax CPU and then read by the function interface for
transmission. Receive FIFOs are written by the function interface following reception and then
read by the CPU. All transmit FIFOs have the same architecture, and all receive FIFOs have the
same architecture.

Table 7-3. 8X930Ax FIFO Configurations

Endpoint Select Transmit FIFOs Receive FIFOs FIFO Size

(EPINDEX.1:0) (FFSZ.1:0)t

00 - Endpoint 0 . 16 bytes 16 bytes XX
(Control)

01 Endpoint 1 256 bytes 256 bytes 00
512 bytes 512 bytes 01
1024 bytes 0 bytes 10
. 0 bytes 1024 bytes 11
10 Endpoint 2 16 bytes 16 bytes) XX
11 Endpoint 3 16 bytes 16 bytes XX

 Bits FFSZ.1:0 are bits 7:6 of register TXCON, and are accessible for endpoint 1
only (EPINDEX = 01).

7.1.5 The FIU SFR Set

The two low-order bits of the endpoint index register (EPINDEX, bits EPINX1:0) contain the
current endpoint index value (x = 0, 1, 2, 3). The index value indicates the endpoint. Use the bi-
nary form OxxxxxyyB to write the index value to the EPINDEX register, where yy is the encoded
endpoint address (i.e., 00 for endpoint 0, 01 for endpoint 1, etc.). See Table 7-3.

It is recommended that programmers set the contents of EPINDEX once, at the start of each rou-
tine, instead of writing the EPINDEX register prior to each access of an endpoint-indexed SFR.
This means that interrupt service routines must save the contents of the EPINDEX register at the
start of the routine and restore the contents at the end of the routine to prevent the EPINDEX reg-
ister from being corrupted.

|

intel.

UNIVERSAL SERIAL BUS

EPINDEX Address S:F1H
Reset State 1XXX XX00B
7 0
— — — - || = — EPINX1 | EPINXO 1
Bit Bit .
Number | Mnemonic Function
7:2 — Reserved:
Write zeros to these bits.
Note: Although the reset state for bit 7 is ‘1°, always write zeros to bits 7:2 of
this register.
1:0 EPINX1:0 Endpoint Index Select:

Used to select the function endpoint number to be indexed. The 8X930Ax is
set up accordingly: the USB SFR definitions for TXDAT, TXCON, TXFLG,
TXCNTH/L, RXDAT, RXCON, RXFLG, RXCNTH/L, EPCON, TXSTAT, and
RXSTAT are adjusted for the selected endpoint. The SFRs are connected to
the appropriate transmit/receive FIFO pair. This register is hardware read-
only.

EPINX1 EPINXO

0 0 Endpoint 0. Control Transfer
0 1 Endpoint 1.
1 0 Endpoint 2.
1 1 Endpoint 3.

Figure 7-1. EPINDEX: Endpoint Index Register

7-5

L]
8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL IntG|®

EPCON Address S:E1H
i Reset State x=0t 0011 0101B
x=1,2,3% 0001 0000B
7 0
| RXsTL | TXsTL CTLEP | RXSPM || RXIE | RXEPEN | TXOE | TXEPEN
Bit Bit :
Number | Mnemonic Function
7 RXSTL Stall Receive Endpoint:

Set this bit to stall the receive endpoint. Clear this bit only when the host has
intervened through commands sent down endpoint 0. When this bit is set
and RXSETUP is clear, the receive endpoint will respond with a STALL
handshake to a valid OUT token. This bit does not affect the reception of
SETUP tokens by a control endpoint. The state of this bit is sampled on a
valid OUT token.

6 TXSTL Stall Transmit Endpoint:

Set this bit to stall the transmit endpoint. This bit should only be cleared
when the host has intervened through commands sent down endpoint 0.
When this bit is set and RXSETUP is clear, the receive endpoint will respond
with a STALL handshake to a valid IN token.The state of this bit is sampled
on a valid IN token.

5 CTLEP Control Endpoint:

Set this bit to configure the endpoint as a control endpoint. Only control
endpoints are capable of receiving SETUP tokens. The state of this bit is
sampled on a valid SETUP token.

4 RXSPM Receive Single Packet Mode:

Set this bit to configure the receive endpoint for single data packet
operation. When enabled, only a single data packet is allowed to reside in
the receive FIFO. The state of this bit is sampled on a valid OUT token.
Note: For control endpoints (CTLEP=1), this bit should be set for single
packet mode operation as-the recommended firmware model. However, it is
acceptable to have a control endpoint with dual packet mode configuration
as long as the firmware handles the endpoint correctly.

3 RXIE Receive Input Enable:

Set this bit to enable data from the USB to be written into the receive FIFO.
If cleared, the endpoint will not write the received data into the receive FIFO
and at the end of reception, it returns a NAK handshake on a valid OUT
token if the RXSTL bit is not set.This bit does not affect a valid SETUP
token.

2 RXEPEN Receive Endpoint Enable:

Set this bit to enable the receive endpoint. When disabled, the endpoint
does not respond to a valid OUT or SETUP token. The state of this bit is
sampled on a valid OUT or SETUP token. This bit is hardware read-only and
has the highest priority among RXIE and RXSTL. Note that endpoint 0 is
enabled for reception upon reset.

t x = endpoint index. See EPINDEX.

76 ' _ I

|nte|® UNIVERSAL SERIAL BUS

EPCON (Continued) Address S:E1H
Reset State x=0f 0011 0101B
x=1,2,3" 0001 0000B

7 0

| RXSTL | TXSTL J CTLEP [RXSPM][RXIE IRXEPEN TXOE | TXEPEN

Bit Bit

Number | Mnemonic Function

1 TXOE Transmit Output Enable.

This bit is used to enable the data in the transmit FIFO to be transmitted. If
cleared, the endpoint returns a NAK handshake to a valid IN token if the
TXSTL bit is not set. The state of this bit is sampled on a valid IN token.

0 TXEPEN Transmit Endpoint Enable:

This bit is used to enable the transmit endpoint. When disabled, the
endpoint does not respond to a valid IN token. The state of this bit is
sampled on a valid IN token. This bit is hardware read only. Note that
endpoint 0 is enabled for transmission upon reset.

t x = endpoint index. See EPINDEX.

Figure 7-2. EPCON: Control Endpoint Register

I | | o

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Int3|®-

TXSTAT

7

Address: S:F2H
Reset State: 0000 0000B

0

TXSEQ

— TXFLUSH | | TXSOVW | TXVOID | TXERR LTXACK 1

Bit
Number

Bit
Mnemonic

Function

7

TXSEQ

Transmitter’s Current Sequence Bit (read, conditional write): t

This bit will be transmitted in the next PID and toggled on a valid ACK
handshake. This bit is toggled by hardware on a valid SETUP token. This bit
can be written by firmware if the TXSOVW bit is set when written together
with the new TXSEQ value.

6:5

Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

TXFLUSH

Transmit FIFO Packet Flushed:

When set, this bit indicates that hardware flushed a stale 1ISO data packet
from the transmit FIFO due to a TXFIF = ‘11’ at SOF. This bit is set by
hardware, but can also be set by software with the same effect.t

TXSOVW

Transmit Data Sequence Overwrite Bit:

Write a ‘1’ to this bit to allow the value of the TXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on TXSEQ. This bit always returns ‘0’
when read. 1

TXVOID

Transmit Void (read-only):

A void condition has occurred in response to a valid IN token. Transmit void
is closely associated with the NAK/STALL handshake returned by function
after a valid IN token, due to the conditions that cause the transmit FIFO to
be unenabled or not ready to transmit.

Use this bit to check any NAK/STALL handshake ever returned by function.
This bit does not affect the FTXDx, TXERR or TXACK bits. This bit is
updated by hardware at the end of a non-isochronous transaction in

response to a valid IN token. For isochronous transactions, this bit is not
updated until the next SOF.

t Under normal operation,

this bit should not be modified by the user.

T The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new
configuration or interface.

7-8

]
|nte|@ UNIVERSAL SERIAL BUS

TXSTAT (Continued) Address: S:F2H
Reset State: 0000 0000B
7 0
rTXSEQ | — | — TXFLUSH' [szovw LTXVOID | TXERR | TXACK]
Bit Bit Function

Number | Mnemonic

1 TXERR Transmit Error (read-only):

An error condition has occurred with the transmission. Complete or partial
data has been transmitted. The error can be one of the following:

1. Data transmitted successfully but no handshake received.
2. Transmit FIFO goes into underrun condition while transmitting.

The corresponding transmit done bit (FTXDx in FIFLG) is set when active.
For non-isochronous transactions, this bit is updated by hardware together
with the TXACK bit at the end of the data transmission (this bit is mutually
exclusive with TXACK). For isochronous transactions, this bit is not updated
until the next SOF.

0 TXACK Transmit Acknowledge (read-only):

Data transmission completed and acknowledged successfully. The
corresponding transmit done bit (FTXDx in FIFLG) is set when active. For
non-isochronous transactions, this bit is updated by hardware together with
the TXERR bit at the end of data transmission (this bit is mutually exclusive
with TXERR). For isochronous transactions, this bit is not updated until the
next SOF.

T Under normal operation, this bit should not be modified by the user.

t The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new
configuration or interface.

Figure 7-3. TXSTAT: Transmit FIFO Status Register

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL IntGI@,

RXSTAT

7

Address: S:E2H
Reset State: 0000 0000B

0

RXSEQ

RXSETUP |

STova EDOVW—I | RXSOVW | RXVOID | RXERR | RXACK

Bit
Number

Bit
Mnemonic

Function

7

RXSEQ

Receiver Endpoint Sequence Bit (read, conditional write):

This bit will be toggled on completion of an ACK handshake in response to
an OUT token. This bit will be set (or cleared) by hardware after reception of
a SETUP token.

This bit can be written by firmware if the RXSOVW bit is set when written
together with the new RXSEQ value.

Note: Always verify this bit after writing to ensure that there is no conflict with
hardware, which could occur if a-new SETUP token is received.

RXSETUP

Received Setup Token:

This bit is set by hardware when a valid SETUP token has been received.
When set, this bit causes received IN or OUT tokens to be NAKed until the
bit is cleared to allow proper data management for the transmit and receive
FIFOs from the previous transaction. .

IN or OUT tokens are NAKed even if the endpoint is stalled (RXSTL or
TXSTL) to allow a control transaction to clear a stalled endpoint.

Clear this bit upon detection of a SETUP token after the firmware is ready to
complete the status stage of a control transaction.

STOVW

"| Start Overwrite Flag (read-only):

Set by hardware upon receipt of a SETUP token for any control endpomt to
indicate that the receive FIFO is being overwritten with new SETUP data.
When set, the FIFO state (FIF and read pointer) resets and is locked for this
endpoint until EDOVW is set. This prevents a prior, ongoing firmware read
from corrupting the read pointer as the receive FIFO is being cleared and
new data is being written into it. This bit is cleared by hardware during the
handshake phase of the setup stage.

This bit is only used for control endpoints.

EDOVW

End Overwrite Flag:

This flag is set by hardware during the handshake phase of a SETUP stage.
It is set after every SETUP packet is received and mustbe cleared prior to
reading the contents of the FIFO. When set, the FIFO state (FIF and read
pointer) remains locked for this endpoint until this bit is cleared. This
prevents a prior, ongoing firmware read from corrupting the read pointer
after the new data has been written into the receive FIFO.

This bit is only used for control endpoints.

T Under normal operation,

1t The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new
configuration or interface.

this bit should not be modified by the user.

7-10

|nte|® UNIVERSAL SERIAL BUS

RXSTAT (Continued) Address: S:E2H
Reset State: 0000 0000B

7 0
| RXSEQ IRXSETUP] STOVW | EDOVW][Rxsovw RXVOID | RXERRJ RXACK

Bit Bit .
Number | Mnemonic Function
3 RXSOVW | Receive Data Sequence Overwrite Bit: T

Write a ‘1’ to this bit to allow the value of the RXSEQ bit to be overwritten.
This is needed to clear a STALL on a control endpoint. Writing a ‘0’ to this bit
has no effect on RXSEQ. This bit always returns ‘0’ when read. t1

2 RXVOID Receive Void Condition (read-only):

This bit is set when no valid data is received in response to a SETUP or
OUT token due to one of the following conditions:

1. The receive FIFO is still locked.

2. The EPCON register’'s RXSTL bit is set for a non-control endpoint.

This bit is set and cleared by hardware. For non-isochronous transactions,
this bit is updated by hardware at the end of the transaction in respond to a
valid OUT token. For isochronous transactions, it is not updated until the
next SOF.

1 RXERR Receive Error (read-only):

Set when an error condition has occurred with the reception. Complete or
partial data has been written into the receive FIFO. No handshake is
returned. The error can be one of the following conditions:

1. Data failed CRC check.

2. Bit stuffing error.

3. A receive FIFO goes into overrun or underrun condition while receiving.
This bit is updated by hardware at the end of a valid SETUP or OUT token
transaction (non-isochronous) or at the next SOF on each valid OUT token
transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is

updated with the RXACK bit at the end of data reception and is mutually
exclusive with RXACK.

0 RXACK Receive Acknowledged (read-only):

This bit is set when data is received completely into a receive FIFO and an
ACK handshake is sent. This read-only bit is updated by hardware at the
end of a valid SETUP or OUT token transaction (non-isochronous) or at the
next SOF on each valid OUT token transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is
updated with the RXERR bit at the end of data reception and is mutually
exclusive with RXERR.

T Under normal operation, this bit should not be modified by the user.

T The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new
configuration or interface.

Figure 7-4. RXSTAT: Receive FIFO Status Register

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nU®

SOFH Address: S:D3H
Reset State: 0000 0000B
7 0
SOFACK | ASOF SOFIE | FTLOCK | | sOFODIS | Tst10 TS9 TS8
NuBmI:)er Mnélz::)nic Function
7 SOFACK | SOF Token Received without Error (read-only):

When set, this bit indicates that the 11-bit time stamp stored in SOFL and
SOFH is valid. This bit is updated every time a SOF token is received from
the USB bus, and it is cleared when an artificial SOF is generated by the
frame timer. This bit is set and cleared by hardware.

6 ASOF Any Start-of-Frame:

This bit is set by hardware to indicate that a new frame has started. The
interrupt can result either from reception of an actual SOF packet or from an
artificially-generated SOF from the frame timer. This interrupt is asserted in
hardware even if the frame timer is not locked to the USB bus frame timing.
When set, this bit is an indication that either an actual SOF packet was
received or an artificial SOF was generated by the frame timer. This bit must
be cleared by software or inverted and driven to the SOF# pin. The effect of
setting this bit by software is the same as hardware: the external pin will be
driven with an inverted ASOF value for eight T «s.

This bit also serves as the SOF interrupt flag. This interrupt is only asserted
in hardware if the SOF interrupt is enabled (SOFIE set) and the interrupt
channel'is enabled.

5 SOFIE SOF Interrupt Enable: -

When this bit is set, setting the ASOF bit causes an interrupt request to be
generated if the interrupt channel is enabled. Hardware reads but does not
write this bit.

4 FTLOCK Frame Timer Locked (read-only):

When set, this bit indicates that the frame timer is presently locked to the
USB bus’ frame time. When cleared, this bit indicates that the frame timer is
attempting to synchronize to the frame time.

3 SOFODIS | SOF# Pin Output Disable:

When set, no low pulse will be driven to the SOF# pin in response to setting
the ASOF bit. The SOF# pin will be driven to ‘1’ when SOFODIS is set.
When this bit is clear, setting the ASOF bit causes the SOF# pin to be
toggled with a low pulse for eight T, .s.

2:0 TS10:8 Time stamp received from host:

TS10:8 are the upper three bits of the 11-bit frame number issued with an
SOF token. This time stamp is valid only if the SOFACK bit is set.

Figure 7-5. SOFH: Start of Frame High Register

7-12 l

lnte|® UNIVERSAL SERIAL BUS

SOFL Address: S:D2H
Reset State: 0000 0000B
7 0
TS7:0
Bit Bit

Number | Mnemonic Function

7:0 TS7:0 Time stamp received from host:

This time stamp is valid only if the SOFACK bit in the SOFH register is set.
TS7:0 are the lower eight bits of the 11-bit frame number issued with a SOF
token. If an artificial SOF is generated, the time stamp remains at its
previous value and it is up to firmware to update it. These bits are set and
cleared by hardware.

Figure 7-6. SOFL.: Start of Frame Low Register

FADDR Address: S:8FH
Reset State: 0000 0000B

7 0

| - | » A6:0
Bit Bit .
Number | Mnemonic Function
7 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.
6:0 AB:0 7-bit Programmable Function Address:

This register is programmed through the commands received via endpoint 0
on configuration, which should be the only time the firmware should change
the value of this register. This register is read-only by hardware.

Figure 7-7. FADDR: Function Address Register

I 7-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

7.2 TRANSMIT FIFOS

The 8X930Ax has four USB function transmit FIFOs, one for each endpoint. In this manual, the
term transmit FIFO refers to the transmit FIFO associated with the current endpoint as specified
by the EPINDEX register.

7.2.1 Transmit FIFO Overview
The transmit FIFOs are circulating data buffers with the following features:
* support for up to two separate data sets of variable sizes'
* abyte count register to store the number of bytes in the data sets
* protection against overwriting data in a full FIFO
® capability to retransmit the current data set

All transmit FIFOs have the same architecture (Figure 7-8). The transmit FIFO and its associated
logic can manage up to two data sets, data set 0 (dsO) and data set 1 (ds1). The ability to have two
data sets in the FIFO supports back-to-back transmissions.

| From CPU> | Write Pointer |———
8X930 CPU T
Writes to FIFO
Data Set 1
l FIU Reads FIFO
<[Read Pointer | [To UsB Inten‘ac>
REVRP ADVRM
Byte Count Data Set 0
Registers
TXCNTH
TXCNTL [«——] Read Marker |
A4258-02

Figure 7-8. Transmit FIFO Outline

The CPU writes to the FIFO location specified by the write pointer, which increments by one au-
tomatically following a write. The read marker points to the first byte of data written to a data
set, and the read pointer points to the next FIFO location to be read by the function interface. The
read pointer increments by one automatically following a read.

T When operating in dual packet mode, the maximum packet size should be at most half the
FIFO size to ensure that both packets will simultaneously fit in the FIFO (see the Endpoint
description in the Universal Serial Bus Specification).

7-14 I

|nte|® UNIVERSAL SERIAL BUS

When a good transmission is completed, the read marker can be advanced to the position of the
read pointer to set up for reading the next data set. When a bad transmission is completed, the
read pointer can be reversed to the position of the read marker to enable the function interface to
re-read the last data set for retransmission. The read marker advance and read pointer reversal can
be accomplished two ways: explicitly by software or automatically by hardware, as specified by
bits in the transmit FIFO control register (TXCON).

7.2.2 Transmit FIFO Registers
There are five registers directly involved in the operation of the transmit FIFOs:
* TXDAT, the transmit FIFO data register

* TXCNTH and TXCNTL, the transmit FIFO byte count registers referred to jointly as
TXCNT

¢ TXCON, the transmit FIFO control register
¢ TXFLG, the transmit FIFO flag register

These registers are endpoint indexed, i.e., they are used as a set to control the operation of the
transmit FIFO associated with the current endpoint specified by the EPINDEX register. Figures
7-10 through 7-13 beginning on page 7-18 describe the transmit FIFO registers and provide bit
definitions.

7.2.3 Transmit Data Register (TXDAT)

Bytes are written to the transmit FIFO via the transmit FIFO data register (TXDAT).

7.2.4 Transmit Byte Count Registers (TXCNTL/TXCNTH)

The format of the transmit byte count register depends on the endpoint. For endpoint 1, registers
TXCNTH and TXCNTL form a two-register, ten-bit ring buffer which accommodates packet siz-
es of 0 to 1023 bytes. For endpoints 0, 2, and 3, TXCNTL is used alone as a five-bit ring buffer
to accommodate packet sizes of 0 to 16 bytes. These formats are shown in Figure 7-11 on page
7-19. The term TXCNT refers to either of these arrangements.

The transmit FIFO byte count register (IXCNT) stores the number of bytes in either of the two
data sets, data set O (dsO) and data set 1 (ds1). The FIFO logic for maintaining the data sets as-
sumes that data is written to the FIFO in the following sequence:

1. The CPU first writes data bytes to TXDAT.

2. The CPU writes the number of bytes that were written to TXDAT to the byte count
register TXCNT. TXCNT must be written after the write to TXDAT to guarantee data
integrity. For function endpoint 1, TXCNTL should be written after TXCNTH. Writing to
TXCNTH does not affect the TXFIF bits, however writing to TXCNTHL does set the
associated TXFIF bits.

I 7-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Inu@,

NOTE

TXCNTH does not need to be written if it is always 00H, as the reset value is
00H. However, if TXCNTH is not 00H, it should always be written even
though the value does not change from the previous cycle; this is because the
byte count registers are 2-byte circular buffers and not “static” registers.

For all endpoints except function endpoint 1, TXCNTH is not available and
TXCNTL only contains BC4:0. Bits 7:5 are reserved in this case and should
always be written with ‘0’.

The function interface reads the byte count register to determine the number of bytes in the set.

The transmit byte count register has a read/write index to allow it to access the byte count for ei-
ther of the two data sets (see Figure 7-9). After reset, the read/write index points to data set O.
Thereafter, the following logic determines the position of the read/write index:

* After a write to TXCNT, the read/write index (TXFIF) is toggled
* After a read of TXCNT, the read/write index (TXFIF) is unchanged

The position of the read/write index can also be determined from the data set index bits, FIF1:0
(see “Transmit Data Set Management” on page 7-17).

Byte Count, dsO Byte Count, ds1

Read/Write Select

Byte Count

Byte Count Register
Endpoint 1: TXCNTL/TXCNTH
Endpoint 0,2,3: TXCNTL

A4261-02

Figure 7-9. Transmit Byte Count Registers

7-16 . I

intgl.

7.2.5 Transmit Data Set Management

Two read-only data set index bits, FIF1:0 in the TXFLG register, indicate which data sets (dsO
and/or ds1) have been written into the FIFO (see the left side of Table 7-4). FIFx = 1 indicates that
data set x has been written. Following reset, FIF1:0 = 00, signifying an empty FIFO. FIF1:0 also
determine which data set is written next. Note that FIFO specifies the next data set to be written,
except for the case of FIF1:0 = 11. In this case further writes to TXDAT or TXCNT are ignored.

NOTE

Two events cause the data set index bits to be updated:

* A new data set is written to the FIFO: the 8X930Ax writes bytes to the FIFO via TXDAT

and writes the number of bytes to TXCNT. The data set index bits are updated after the

write to TXCNT. This process is illustrated in Table 7-4.

® A data set in the FIFO is successfully transmitted: the function interface reads a data set

UNIVERSAL SERIAL BUS

To simplify firmware development, it is recommended that you utilize control
endpoints in single-packet mode only.

from the FIFO, and when a good transmission is acknowledged, the read marker is

advanced to the read pointer. The data set index bits are updated after the read marker is

advanced. Note that in ISO mode, this happens at the next SOE.

Table 7-4. Writing to the Byte Count Register

Data Sets Written Set for Next Write
FIFT:0 to TXCNT
s1 ds0
0 0 | No No (Empty) ds0
0 1 No Yes (1 set) ds1
1 0 | Yes No (1 set) ds0
1 1 | Yes Yes (2 sets) Write ignored

—_—

Write bytes
to TXDAT.

Write byte
count to
TXCNT

FIF1:0

0 1

1 1

1 1

1 1
7-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Inbl®

Table 7-5 summarizes how the actions following a transmission depend on the TXISO bit, the
ATM bit, the TXACK bit, and the TXERR bit.

Table 7-5. Truth Table for Transmit FIFO Management

TXISO ATM TXERR TXACK
(TXCON.3) | (TXCON.2) | (TXSTAT.1) | (TXSTAT.0) Action at End of Transfer Cycle

X X 0 0 No operation.

X 0 0 1 Read marker, read pointer, and TXFIF bits
remain unchanged. Managed by software.

X 0 1 0 Read marker, read pointer, and TXFIF bits
remain unchanged. Managed by software.

0 1 0 1 Read marker advanced automatically. The
TXFIF bit for the corresponding data set is
cleared.

0 1 1 0 Read pointer reversed automatically. The
TXFIF bit for the corresponding data set
remains unchanged.

1 1 X X Read marker advanced automatically. The
TXFIF bit for the corresponding data set is
cleared at the SOF.

NOTE

For normal operation, set the ATM bit in TXCON. Hardware will
automatically control the read pointer and read marker, and track the TXFIF

bits.
TXDAT Address: S:F3H
Reset State: ~ xxxx xxxxB
7 0
Transmit Data Byte
Bit Bit .

Number | Mnemonic Function

7:0 TXDAT[7:0] | Transmit Data Byte (write-only):
To write data to the transmit FIFO, write to this register. The write pointer
and read pointer are incremented automatically after a write and read
respectively.

Figure 7-10. TXDAT: Transmit FIFO Data Register
7-18

lntel® UNIVERSAL SERIAL BUS

TXCNTH, Address: S:F7H

TXCNTL S:F6H

Reset States: Endpoint 1 TXCNTH XXXX XX00B

TXCNTL 0000 0000B

Endpoints 0, 2, 3 TXCNTL XXX0 0000B

15 (TXCNTH) Endpoint 1 8

. -1 - [=1 - JL - [—] s [Bos |

7 (TXCNTL) 0

| Bc7 | Bce | Bos | Bca || Bes | Bc2 | BC1 | BCO |

7 (TXCNTL) Endpoints 0, 2, 3 : 0

| — | = | =] B4 || Bcs | B2 | BOt | BCO |
Bit Bit Function

Number Mnemonic

Endpoint 1 (x = 1)f

15:10 —_ Reserved.
Write zeros to these bits.
9:0 BC9:0 Transmit Byte Count.

Ten-bit, ring buffer byte count register stores transmit byte count (TXCNT)
of 0 to 1023 bytes for endpoint 1 only.

Endpoints 0, 2, 3. (x=0, 2, 3)f

7:0 — Reserved.
Write zeros to these bits.
4:0 BC4:0 Transmit Byte Count.

Five-bit, ring buffer byte count register stores transmit byte count (TXCNT)
of 0 to 16 bytes for endpoints 0, 2, and 3.

T x = endpoint index. See the EPINDEX register.

Figure 7-11. TXCNTH/TXCNTL Transmit FIFO Byte Count Registers

NOTE

To send a status stage after a control write or no data control command or a
null packet, write 0 to TXCNT.

| 7-19

L]
8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

TXCON Address: S:F4H
Reset State: x=1% 000X 0100B
x=0,2,3t 0XXX 0100B

7 ' 0
TXCLR FFSZ.1 FFSZ.0 — | | TXISO ATM ADVRM | REVRP

Bit Bit .
Number | Mnemonic Function
7 TXCLR Transmit Clear:

Setting this bit flushes the transmit FIFO, sets the EMPTY bit in TXFLG, and
clears all other bits in TXFLG. After the flush, hardware clears this bit.
Setting this bit does not affect the ATM, TXISO, and FFSZ bits, or the
TXSEQ bit in the TXSTAT register.

6:5 FFSZ[1:0] | FIFO Size:

These two bits are used for FIFO size configuration by function endpoint 1
only (EPINDEX = 01). The endpoint 1 FIFO size configurations (in bytes)

are:
FFSZ[1:0] Transmit Size Receive Size
00 256 256
01 512 512
10) 1024 0
11 0 1024

These bits are not reset when the TXCLR bit is set in the TXCON régister.

NOTE: The receive FIFO size is also set by the TXCON FFSZ bits.
Therefore, there are no corresponding FFSZ bits in RXCON.

4 — Reserved:
Values read from this bit are indeterminate. Write zero to this bit.

3 TXISO Transmit Isochronous Data:

Software sets this bit to indicate that the transmit FIFO contains isochronous
data. The FIU uses this bit to set up the handshake protocol at the end of a
transmission. This bit is not reset when TXCLR is set and must be cleared
by software.

t x=endpoint index. See EPINDEX.

T The read marker and read pointer should only be controlled manually for testing (when the ATM bit is
clear). Atall other times the ATM bit should be set and the ADVRM and REVRP bits should be left alone.

7-20 I

|nte|® UNIVERSAL SERIAL BUS

TXCON (Continued) Address: S:F4H
Reset State: x=17 000X 0100B
x=0,2,3" 0XXX 0100B
7 : 0
LTXCLR J FFSZ.1 T FFSZ.0 — || TXISO ATM ADVRM | REVRP
Bit Bit Function

Number | Mnemonic

2 ATM Automatic Transmit Management:

Setting this bit (the default value) causes the read pointer and read marker
to be adjusted automatically as indicated:

ISO TXStatus Read Pointer Read Marker

X ACK Unchanged Advanced*
0 NAK Reversed** Unchanged
1 NAK Unchanged Advanced”
* to origin of next data set ** to origin of the data set last read

When this bit is set, setting REVRP or ADVRM has no effect. This is a sticky
bit that is not reset when TXCLR is set, but can be set and cleared by
software. Hardware neither clears nor sets this bit.

Note: This bit should always be set, except as a testability feature.

1 ADVRM Advance Read Marker Control (non-ATM mode only) t1:

Setting this bit advances the read marker to point to the origin of the next
data packet (the position of the read pointer) to prepare for the next packet
transmission. Hardware clears this bit after the read marker is advanced.
Setting this bit is effective only when the REVRP, ATM, and TXCLR bits are
all clear.

0 REVRP Reverse Read Pointer Control (non-ATM mode only) t1:

In the case of bad transmission, the same data stack may need to be
available for retransmit. Setting this bit reverses the read pointer to point to
the origin of the last data set (the position of the read marker) so that the FIU
can reread the last set for retransmission. Hardware clears this bit after the
read pointer is reversed. Setting this bit is effective only when the ADVRM,
ATM, and TXCLR bits are all clear.

T x=endpoint index. See EPINDEX.

1t The read marker and read pointer should only be controlled manually for testing (when the ATM bit is
clear). At all other times the ATM bit should be set and the ADVRM and REVRP bits should be left alone.

Figure 7-12. TXCON: Transmit FIFO Control Register

l ' 7-21

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL an@:

TXFLG . Address: S:F5H
Reset State: 00XX 1000B
7 . 0
TXFIF1 | TXFIFO — — [rTXEMP | TxFuLL | TXURF | TxOVF |
Bit Bit Functi
Number | Mnemonic unction
7:6 TXFIF[1:0] | FIFO Index Flags (read-only):

These flags indicate which data sets are present in the transmit FIFO. The
FIF bits are set in sequence after each write to TXCNT to reflect the addition
of a data set. Likewise, TXFIF1 and TXFIFO are cleared in sequence after
each advance of the read marker to indicate that the set is effectively
discarded. The bit is cleared whether the read marker is advanced by
software (setting ADVRM) or automatically by hardware (ATM = 1). The
next-state table for the TXFIF bits is shown below:

TXFIF[1:0] Operation Flag Next TXFIF[1:0] = Next Flag

00 Wr TXCNT X 01 Unchanged
01 Wr TXCNT X 1 Unchanged
10 Wr TXCNT X 1 Unchanged
1 Wr TXCNT X 11 TXOVF =1
00 Adv RM X 00 Unchanged
01 Adv RM X 00 Unchanged
11 Adv RM X 10/01 Unchanged
10 Adv RM X 00 Unchanged
XX Rev RP X Unchanged Unchanged

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. TXFIF is “incremented” by firmware and
“decremented” by the USB.Therefore, writes to TXCNT “increment” TXFIF
immediately. However, a successful USB transaction any time within a
frame “decrements” TXFIF only at SOF.

You must check the TXFIF flags before and after writes to the transmit FIFO
and TXCNT for traceability.

NOTE: To simplify firmware development, configure control endpoints in
single-packet mode.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
3 TXEMP Transmit FIFO Empty Flag (read-only):

Hardware sets this bit when the write pointer has not rolled over and is at the
same location as the read pointer. Hardware clears this bit when the
pointers are at different locations.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status.

T When set, all transmissions are NAKed.

7-22 I

|nte|® UNIVERSAL SERIAL BUS

TXFLG (Continued) V Address: S:F5H

Reset State: 00XX 1000B
7 0
f TXFIF1 | TXFIFO — | — JLTXEMP | TXFULL | TXURF | TXOVF
Bit Bit .
Number | Mnemonic Function
2 TXFULL Transmit FIFO Full Flag (read-only):

Hardware sets this bit when the write pointer has rolled over and equals the
read marker. Hardware clears this bit when the full condition no longer
exists.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status. Check this bit to avoid causing a TXOVF condition.

1 TXURF Transmit FIFO Underrun Flag:

Hardware sets this flag when an additional byte is read from.an empty
transmit FIFO or TXCNT [This is caused when the value written to TXCNT is
greater than the number of bytes written to TXDAT.]. This'is a sticky bit that
must be cleared through software. When this flag is set, the FIFO is in an
unknown state, thus it is recommended that you reset the FIFO in your error
management routine using the TXCLR bitin TXCON.

When the transmit FIFO underruns, the read pointer will not advance — it
remains locked in the empty position.t

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
USB, TXURF is updated at the next SOF regardless of where the underrun
occurs in the frame.

0 TXOVF Transmit FIFO Overrun Flag:

This bit is set when an additional byte is written to a full FIFO or full TXCNT
with TXFIF1:0 = 11. This is a sticky bit that must be cleared through

‘| software. When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in your error management routine
using the TXCLR bit in TXCON.

When the receive FIFO overruns, the write pointer will not advance — it
remains locked in the full position. Check this bit after loading the FIFO prior
to writing the byte count register.t

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by
firmware, TXOVF is updated immediately. Check the TXOVF flag after
writing to the transmit FIFO before writing to TXCNT.

T When set, all transmissions are NAKed.

Figure 7-13. TXFLG: Transmit FIFO Flag Register

I 7-23

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Int9|®

7.3 RECEIVE FIFOs

The 8X930Ax has four USB function receive FIFOs — one for each endpoint. In this manual, the
term receive FIFO refers to the receive FIFO associated with the current endpoint as specified by
the EPINDEX register.

7.3.1 Receive FIFO Overview

The receive FIFOs are circulating data buffers with the following features:
* support for up to two separate data sets of variable sizes’
* abyte count register that accesses the number of bytes in the data sets
* flags to signal a full FIFO and an empty FIFO
* capability to re-receive the last data set

Figure 7-14 illustrates a receive FIFO. A receive FIFO and its associated logic can manage up to
two data sets, data set 0 (dsO) and data set 1 (ds1). The ability to have two data sets in the FIFO
supports back-to-back receptions.

In many ways the receive FIFO is symmetrical to the transmit FIFO. The FIU writes to the FIFO
location specified by the write pointer, which increments by one automatically following a write.
The write marker points to the first byte of data written to a data set, and the read pointer points
to the next FIFO location to be read by the 8X930Ax. The read pointer increments by one auto-
matically following a read.

When a good reception is completed, the write marker can be advanced to the position of the write
pointer to set up for writing the next data set. When a bad reception is completed, the write pointer
can be reversed to the position of the write marker to enable the FIU to rewrite the last data set
after receiving the-data again. The write marker advance and write pointer reversal can be accom-
plished two ways: explicitly by software or automatically by hardware, as specified by bits in the
receive FIFO control register.

It is not practical for the 8X930Ax to begin scooping the receive FIFO before all bytes are re-
ceived and successfully acknowledged because the reception may be bad. Once it begins scoop-
ing the FIFO, the 8X930Ax can use the FIFO empty flag to signal an end to reading data.

The FIU can monitor the FIFO full flag (RXFULL bit in RXFLG) to avoid ovefwriting data in
the receive FIFO. The 8X930Ax can monitor the FIFO empty flag (RXEMP bit in RXFLG) to
avoid reading a byte when the FIFO is empty.

t When operating in dual packet mode, the maximum packet size should be at most half the
FIFO size to ensure that both packets will simultaneously fit in the FIFO (see the endpoint
descriptor in the Universal Serial Bus Specification).

7-24 l

|nte|® UNIVERSAL SERIAL BUS

FIU Writes to FIFO
<—] Write Pointer | ¢ From USB Interface]

Data Set 1

{ Tocru | | Read Pointer |——> Write Marker

8X930 CPU
Reads FIFO
Data Set 0 Byte Count
Registers
RXCNTH
RXCNTL

A4259-02

Figure 7-14. Receive FIFO

7.3.2 Receive FIFO Registers

There are five registers directly involved in the operation of the receive FIFOs:
* RXDAT, the receive FIFO data register

®* RXCNTH and RXCNTL, the receive FIFO byte count registers referred to jointly as
RXCNT

¢ RXCON, the receive FIFO control register
® RXFLG, the receive FIFO flag register

These registers are endpoint indexed, i.e., they are used as set to control the operation of the re-
ceive FIFO associated with the current endpoint specified by the EPINDEX register. Figures 7-15
through 7-13 beginning on page 7-27 describe the receive FIFO registers and provide bit defini-
tions.

7.3.2.1 Receive Data Register (RXDAT)
Bytes read from the receive FIFO via the receive FIFO data register (RXDAT).

7.3.2.2 Receive Byte Count Registers (RXCNTL/RXCNTH)

The format of the receive byte count register depends on the endpoint. For endpoint 1, registers
RXCNTH and RXCNTL form a ten-bit ring buffer which accommodates packet sizes of 0 to
1023 bytes. For endpoints 0, 2, and 3, RXCNTL is used alone as five-bit ring buffer to accommo-
date packet sizes of 0 to 16 bytes. These formats are shown in Table 7-16 on page 7-28. The term
RXCNT refers to either of these arrangements.

I 7-25

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Int9|®

The receive FIFO byte count register (RXCNT) stores the number of bytes in either of the two
data sets, data set 0 (dsO) and data set 1 (ds1). The FIFO logic for maintaining the data sets as-
sumes that data is written to the FIFO in the following sequence:

1. The USB interface first writes the received data packet into the receive FIFO.

2. The USB interface then writes the number of bytes that were written into the receive FIFO
to the byte count register RXCNT. RXCNTL must be written after the data packet has
been received into the receive FIFO to guarantee data integrity.

NOTE
For all endpoints except function endpoint 1, RXCNTH is not available and

RXCNTL only contains BC4:0. Bits 7:5 are reserved in this case and will
always be read as ‘0’.

The CPU reads the byte count register to determine the number of bytes in the set.

The receive byte count register has a read/write index to allow it to access the byte count for either
of the two data sets. This is similar to the methodology used for the transmit byte count register
— see Figure 7-9 on page 7-16. After reset, the read/write index points to data set 0. Thereafter,
the following logic determines the position of the read/write index:

* After a read of RXCNT, the read/write index (RXFIF) is unchanged
® After a write of RXCNT, the read/write index (RXFIF) is toggled

The position of the read/write index can also be determined from the data set index bits, FIF1:0
(see “Receive FIFO Data Set Management” on page 7-26).

NOTE
RXCNT should only be read if FIF1:0 # 00.

7.3.3 Receive FIFO Data Set Management

As in the transmit FIFO, the receive FIFO uses a pair of bits (FIF1:0 in the RXFLG register) to
indicate which data sets are present in the receive FIFO (see Table 7-6).

Table 7-6. Status of the Receive FIFO Data Sets

Data Sets Written
FIF1:0

ds1 ds0
0 0 [No No (Empty)
0 1 No Yes (1 set)
1 0 |Yes No (1 set)
1 1 | VYes Yes (2 sets)

Table 7-7 summarizes how the actions following a reception depend on the RXISO bit, the ARM
bit, and the handshake issued by the 8X930Ax.

7-26 |

intel.

UNIVERSAL SERIAL BUS

Table 7-7. Truth Table for Receive FIFO Management

RXISO ARM RXERR RXACK .
(RXCON.3) | (RXCON.2) | (RXSTAT.1) | (RXSTAT.0) Action at End of Transfer Cycle

X X 0 0 No operation.

X 0 0 1 Write marker, write pointer, and RXFIF bits
remain unchanged. Managed by software.

X 0 1 0 Write marker, write pointer, and RXFIF bits
remain unchanged. Managed by software.

0 1 0 1 Write marker advanced automatically. The
RXFIF bit for the corresponding data set is
set.

0 1 1 0 Write pointer reversed automatically.The
RXFIF bit for the corresponding data set is
cleared.

1 1 X X Write marker advanced automatically. If data
was written to the receive FIFO, the RXFIF bit
for the corresponding data set is set.

NOTE

For normal operation, set the ARM bit in RXCON: hardware will
automatically control the write pointer and write marker and track the RXFIF

bits.

RXDAT Address: S:E3H
Reset: XXXX XXXXB

7 0

RXDAT7:0 |
Bit Bit .
Number | Mnemonic Function
7:0 RXDAT.7:0 | To write data to the receive FIFO, the FIU writes to this register. To read

data from the receive FIFO, the 8X930Ax reads from this register. The
write pointer and read pointer are incremented automatically after a write

and read, respectively.

Figure 7-15. RXDAT: Receive FIFO Data Register

7-27

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

RXCNTH, Address: S:E7H
RXCNTL S:E6H
Reset States:
Endpoint 1 RXCNTH XXXX XX00B
RXCNTL 0000 0000B
Endpoints 0,2, 3 RXCNTL XXX0 0000B
15 (RXCNT) Endpoint 1 8
L - 1 - - | = JI = 1 — | Boe | Bcs |
7 (RXCNTL) 0
| Bc7 | BCe Bcs | Bca || Bcs [Bc2 [BOt [BGO |
.7 (RXCNTL) Endpoints 0, 2, 3 0
| = | — | —] Bca || B3 | Bc2 | BCt | BCO |
Bit Bit .
Number | Mnemonic Function
Endpoint 1 (x = 1)f
15:10 — Reserved. Write zeros to these bits.
9:0 BC9:0 Receive Byte Count.

Ten-bit, ring buffer byte count register stores receive byte count (RXCNT)
of 0 to 1023 bytes for endpoint 1 only.

Endpoints 0, 2, 3. (x=0, 2, 3)t

7:0

Reserved. Write zeros to these bits.

4:0

BC4:0

Receive Byte Count.
Five-bit, ring buffer byte count register stores receive byte count (RXCNT)
of 0 to 16 bytes for endpoints 0, 2, and 3.

 x = endpoint index. See the EPINDEX register.

Figure 7-16. RXCNTH/RXCNTL: Receive FIFO Byte Count Registers

CAUTION

Do not read RXCNT to determine if data is present in the receive FIFO.
Always read the FIF bits in the RXFLG register. RXCNT contains random
data during a receive operation. A read attempt to RXCNT during the time the
receive FIFO is empty causes the RXUREF flag in RXFLG to be set. Always
read the FIF bits to determine if data is present in the receive FIFO. The
RXFLG FIF bits are updated after RXCNT is written (at the end of the receive
operation).

7-28

intgl.

UNIVERSAL SERIAL BUS

RXCON

7

Address: S:E4H
Reset State: 0X00 0100B

0

RXCLR [

RXWS | RXFFRC | | RXISO | ARM | ADVWM | REVWP

Bit
Number

Bit
Mnemonic

Function

7

RXCLR

Clear the Receive FIFO:

Set this bit to flush the entire receive FIFO. All flags in RXFLG revert to their
reset states (RXEMP is set; all other flags clear). The ARM, RXISO and
RXWS bits in this register and the RXSEQ bit in the RXSTAT register are not
affected by this operation. Hardware clears this bit when the flush operation
is completed.

Reserved:
Values read from this bit are indeterminate. Write zero to this bit.

RXWS

Receive FIFO Wait-state Read:

At the 8X930Ax core frequency of 12 MHz, not all instructions that access
the receive FIFO are guaranteed to work due to critical paths inherent in the
8X930Ax architecture.While all MOV instructions from the receive FIFO are
guaranteed to work at 12 MHz, arithmetic instructions (e.g., ADD, SUB, etc.)
where the receive FIFO is the source and the register file the destination
may not work at this speed. For applications using arithmetic instructions,
set the RXWS bit to read the receive FIFO with one wait state — this will
eliminate the critical path. This bit is not reset when the RXCLR bit is set.

RXFFRC

FIFO Read Complete:

Set this bit to release the receive FIFO when a data set read is complete.
Setting this bit “clears” the RXFIF “bit” (in the RXFLG register)
corresponding to the data set that was just read. Hardware clears this bit
after the RXFIF bit is cleared. All data from this data set must have been
read. Note that FIFO Read Complete only works if STOVW and EDOVW are
cleared.

RXISO

Isochronous Data Type:

Set this bit to indicate that the receive FIFO is programmed to receive
isochronous data and to set up the USB Interface to handle an isochronous
data transfer. This bit is not reset when the RXCLR bit is set; it must be
cleared by software.

t The write marker and write pointer should only be controlled manually for testing (when the ARM bit is
clear). At all other times the ARM bit should be set and the ADVWM and REVWP bits should be left alone.

7-29

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL InU@,

RXCON

Address: S:E4H
Reset State: 0X00 0100B

0

RXCLR —

RXWS | RXFFRC || RXISO ARM ADVWM REVWP]

Bit Bit
Number | Mnemonic

Function

2 ARM

Auto Receive Management:

When set, the write pointer and write marker are adjusted automatically
based on the following conditions:

RXISO RX Status Write Pointer Write Marker
X ACK Unchanged Advanced
0 NAK Reversed Unchanged
1 NAK Unchanged Advanced .

When this bit is set, setting REVWP or ADVWM has no effect. Hardware
neither clears nor sets this bit. This is a sticky bit that is not reset when
RXCLR is set.

Note: This bit should always be set, except for testing.

1 ADVWM

Advance Write Marker: t

(For non-ARM mode only) Set this bit to advance the write marker to the
origin of the next data set. Advancing the write marker is used for back-to-
back receptions. Hardware clears this bit after the write marker is advanced.
Setting this bit is effective only when the REVWP, ARM and RXCLR bits are
clear. .

0 REVWP

‘(bad) data set.

Reverse Write Pointer: 1

(For non-ARM mode only) Set this bit to return the write pointer to the origin
of the last data set received, as identified by the write marker. The FIU can
then re-receive the last data packet and write to the receive FIFO starting
from the same origin when the host re-sends the same data packet.
Hardware clears this bit after the write pointer is reversed. Setting this bit is
effective only when the ADVWM, ARM, and RXCLR bits are all clear.

REVWP is used when a data packet is bad. When the function interface
receives the data packet again, the write starts at the origin of the previous

T The write marker and write pointer should only be controlled manually for testing (when the ARM bit is
clear). At all other times the ARM bit should be set and the ADVWM and REVWP bits should be left alone.

Figure 7-17. RXCON: Receive FIFO Control Register

7-30

intel.

UNIVERSAL SERIAL BUS

RXFLG

7

Address: S:E5H
Reset State: 00XX 1000B

0

RXFIF1 | RXFIFO |

— [— H RXEMP | RXFULL | RXURF | RXOVF

Bit
Number

Bit
Mnemonic

Function

7:6

RXFIF[1:0]

Receive FIFO Index Flags: (read-only)

These read-only flags indicate which data packets are present in the receive
FIFO (see Table 7-6 on page 7-26). The RXFIF bits are updated after each

write to RXCNT to reflect the addition of a data packet. Likewise, the RXFIF
bits are cleared in sequence after each setting of the RXFFRC bit. The next-
state table for RXFIF bits is shown below for operation in dual packet mode.

RXFIF[1:0] Operation Flag Next RXFIF[1:0] Next Flag

00 Adv WM X 01 Unchanged
01 Adv WM X 01 Unchanged
10 Adv WM X 1 Unchanged

00 Set RXFFRC
01 Set RXFFRC

00 Unchanged
00 Unchanged
1 Set RXFFRC 10/01 Unchanged
10 Set RXFFRC 00 Unchanged

XX Rev WP X Unchanged Unchanged

When the receive FIFO is programmed to operate in single packet mode
(RXSPM set in EPCON), valid RXFIF states are 00 and 01 only.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. RXFIF is “incremented” by the USB and
“decremented” by firmware.Therefore, setting RXFFRC “decrements”
RXFIF immediately. However, a successful USB transaction within a frame
“increments” RXFIF only at SOF. For traceability, you must check the RXFIF
flags before and after reads from the receive FIFO and the setting of
RXFFRC in RXCON.

NOTE: To simplify firmware development, it is recommended that you utilize
control endpoints in single-packet mode only.

XXX X

54

Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

RXEMP

Receive FIFO Empty Flag (read-only):

Hardware sets this flag when the write pointer is at the same location as the
read pointer AND the write pointer equals the write marker and neither
pointer has rolled over. Hardware clears the bit when the empty condition no
longer exists. This is not a sticky bit and always tracks the current status of
the receive FIFO, regardless of ISO or non-ISO mode.

T When set, all transmissions are NAKed.

7-31

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Inte'®

RXFLG (Continued) Address: S:E5H
Reset State: 00XX 1000B
7 0
[RXFIF1 | RXFIFO | — — |LRXEMP | RXFULL | RXURF J RXOVF—|
Bit Bit Function

Number | Mnemonic

2 RXFULL Receive FIFO Full Flag (read-only):

Hardware sets this flag when the write pointer has rolled over and equals
the read pointer. Hardware clears the bit when the full condition no longer
exists. This is not a sticky bit and always tracks the current status of the
receive FIFO, regardless of ISO or non-1ISO mode.

1 RXURF Receive FIFO Underrun Flag:

Hardware sets this bit when an additional byte is read from an empty receive
FIFO or RXCNT. Hardware does not clear this bit, so you must clear it in
firmware. When the receive FIFO underruns, the read pointer will not
advance — it remains locked in the empty position.t

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
firmware, RXURF is updated immediately. You must check the RXURF flag
after reads from the receive FIFO before setting the RXFFRC bit in RXCON.

NOTE: When this bit is set, the FIFO is in an unknown state. It is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register.

0 RXOVF Receive FIFO Overrun Flag.

This bit is set when the FIU writes an additional byte to a full receive FIFO or
writes a byte count to RXCNT with FIF1:0 = 11. This is a sticky bit that must
be cleared through software, although it can be cleared by hardware if a
SETUP packet is received after an RXOVF error had already occurred.t

When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register. When the receive FIFO
overruns, the write pointer will not advance — it remains locked in the full
position.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by the
USB, RXOVF is updated only at the next SOF regardiess of where the
overrun occurred during the current frame.t

T When set, all transmissions are NAKed.

Figure 7-18. RXFLG: Receive FIFO Flag Register

7-32 I

|nte|® UNIVERSAL SERIAL BUS

7.4 SIE DETAILS

The USB employs differential data signaling; refer to the signaling levels table in the “Electrical”
chapter of Universal Serial Bus Specification. The specification defines: differential’ 1’, differen-
tial’0’, idle (’J’ state), non-idle (K’ state), start of packet, end of packet, disconnect, connect,
reset, and resume. The USB employs NRZI data encoding when transmitting packets. Refer to
“Data Encoding/Decoding” in the Universal Serial Bus Specification for a description of NRZI
data encoding and decoding. To ensure adequate signal transitions, bit stuffing is employed by
the SIE when transmitting data. The SIE also does bit unstuffing when receiving data. Consult
the “Flow Diagram for Bit Stuffing” figure in the “Bit Stuffing” section of the “Electrical” chap-
ter for more information on bit stuffing.

Bits are sent out onto the bus, least significant bit (LSb) first, followed by the next LSb, and so
on. Bytes are sent out onto the bus least significant byte (LSB) first, followed by the next LSB
and so on. The SIE ensures that the LSb is first, but the 8X930Ax programmer must order the
bytes.

The SIE decodes and takes care of all packet types and packet fields mentioned in “Protocol Lay-
er” chapter of Universal Serial Bus Specification. The FIU communicates data information and
handshaking instructions to the SIE. Programmers should consult the “Interconnect Description,”
“USB Devices,” and “USB Host” chapters of Universal Serial Bus Specification for detailed in-
formation on how the host and function communicate.

7.5 SETUP TOKEN RECEIVE FIFO HANDLING

SETUP tokens received by a control endpoint must be ACKed even though the receive FIFO is
not empty. When a SETUP token is detected by the FIU, the FIU sets the STOVW bit of RXSTAT
and then flushes the receive FIFO by hardware, setting the RXCLR bit of RXCON. The STOVW
indicates a SETUP initiated over-write (flush) is in progress. After the SETUP transaction is com-
pleted (i.e., ACK handshake), the FIU clears STOVW and sets EDOVW, indicating the receive
FIFO over-write is complete and FIFO contents are stable. Reception of any SETUP packet, re-
gardless of whether the receive FIFO is full or empty always sequences through the STOVW,
EDOVW sequence described above.

Note that if the receive FIFO flush occurs in the middle of an 8X930Ax CPU data read cycle
(from a previous USB transaction), the receive FIFO may underrun, thus setting the RXUREF bit
of RXFLG and positioning the read pointer in an unknown state. To prevent this, STOVW resets
and locks the read pointer. Firmware can monitor the STOVW and EDOVW flags to determine
whether the underrun was due to a SETUP token received. If so, firmware needs to clear the
EDOVW bit. Clearing the EDOVW bit will also clear the RXURF bit and revert the read pointer
to the reset position. At this point, firmware is ready to read the SETUP data packet.

CAUTION

For SETUP packets, firmware must clear EDOVW prior to reading data from
the FIFO. If this is not done, data read from the FIFO will be invalid.

After processing a data packet, firmware should always check the STOVW and EDOVW flags
before setting the RXFFRC bit. When a SETUP packet either has been or is being received, set-
ting of RXFFRC does not occur if either STOVW or EDOVW is set. It is up to the user to clear

I 7-33

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL lntG|®

EDOVW which disables the RXFFRC blocking mechanism. Also note that the RXSETUP=1
condition will cause IN tokens to automatically be NAKed until RXSETUP is cleared. This is true
even if the transmit and/or receive endpoint is stalled (TXSTL=1, RXSTL=1), and is done to al-
low the clearing of a stall condition on a control endpoint.

NOTE

To simplify firmware development, it is recommended that you utilize control
endpoints in single-packet mode only.

7.6 1SO DATA MANAGEMENT

ISO data management must always be performed in dual-packet mode. Interrupts are not gener-
ated when an ISO transmit or receive cycle is completed; ISO protocols should always be syn-
chronized to the SOF interrupt. When transmitting, data written into the transmit FIFO at frame
n is pre-buffered to be transmitted in frame n+1. This guarantees that data is always available to
the host when requested anytime in a frame. When receiving, data written into the receive FIFO
at frame n is pre-buffered to be read-out in frame n+1. This guarantees that data from the host is
always available to the function every frame.

Isochronous data transfer is always guaranteed if the OUT or IN tokens from the host are not cor-
rupted. When IN or OUT tokens to a function are corrupted, the host does not re-send the token.
The function will need to recognize this error condition and reconfigure the endpoints according-

ly.

7.6.1 Transmit FIFO ISO Data Management

When an IN token is corrupted, the data to be transmitted from the transmit FIFO for an isochro-
nous endpoint in the current frame will be flushed. Due to latency concerns, this is handled by
hardware. This error condition can be detected by checking TXFIF = “11” at SOF. When this oc-
curs, the first data packet will be flushed and the transmit FIFO read-pointers and read-markers
will be advanced to the start “address” of the second data packet. The TXFIF will also be updated.
Therefore, the second packet will be ready to be transmitted for the next frame. The first data
packet is lost.

For firmware traceability of FIFO status flags, some flags are updated immediately while others
are updated only at SOF. TXOVF, TXURF and TXFIF are handled using the following rule: firm-
ware events cause status change immediately while USB events only cause status change at SOF.
For example:

¢ TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
¢ TXUREF: Since underrun can only be caused by SIE, TXURF is updated at SOF.

* TXFIF: TXFIF is “incremented” by firmware and “decremented” by hardware. Therefore,
writes to TXCNT will “increment” TXFIF immediately. However, a successtul USB
transaction anytime in a frame will only “decrement” TXFIF at SOF.

7-34 l

|n'te|® UNIVERSAL SERIAL BUS

The following bits do not follow the above rule:
e TXEMP/TXFULL: These always reflect the current status of the FIFO.
* TXFLUSH: Firmware can detect a flush by monitoring this bit.

7.6.2 Receive FIFO ISO Data Management

When an OUT token is corrupted, the data to be received by the receive FIFO for an isochronous
endpoint in the current frame will be lost. There is no hardware implementation to track this error
condition and should be managed by firmware. This condition can be detected by checking
RXFIF = “00” at SOF. “Reconstruction” of the lost data is application specific and should be
managed by firmware.

For firmware traceability of FIFO status flags, some flags are updated immediately while others
are updated only at SOF. RXOVF, RXURF and RXFIF are handled using the following rule: firm-
ware events cause status change immediately while USB events only cause status change at SOF.

¢ RXUREF: Since underrun can only be caused by firmware, RXURF is updated immediately.
* RXOVF: Since overrun can only be caused by SIE, RXOVF is updated at SOF.

¢ RXFIF: RXFIF is “incremented” by hardware and “decremented” by firmware. Therefore,
setting RXFFRC will “decrement” RXFIF immediately. However, a successful USB
transaction anytime in a frame will only “increment” RXFIF at SOF.

* RXEMP/RXFULL: The rule does not apply to the RXEMP and RXFULL flags, which
always reflect the current status of the FIFO..

I 7-35

intel.

3

USB Programming
Models

intel.

CHAPTER 8
USB PROGRAMMING MODELS

This chapter describes the programming models of the USB function interface. It provides flow
charts of suggested firmware routines for using the transmit and receive FIFOs to perform data
transfers between the host PC and the embedded function. It also describes briefly how the firm-
ware interacts with the USB module hardware during these operations. For a description of the
USB function interface as well as its FIFOs and special functions registers (SFRs), refer to Chap-
ter 7, “Universal Serial Bus.” Data operations refer to data transfers over the USB, whereas event
operations are hardware operations such as attach and detach. For details on data flow in USB
transactions refer to Appendix D.

8.1 OVERVIEW OF PROGRAMMING MODELS

The USB function interface employs four types of routines: receive, transmit, setup, and receive
SOF. Program flow is depicted in Figure 8-1 along with the type of token associated with each
routine. Following device reset, the USB function enters the unenumerated state and after enu-
meration by the host, the idle state. From the idle state, it can enter any of the four routines.

| Unenumerated l

Y

)lldle/AppIication Code |

IN
token

Receive

/ /

Figure 8-1. Program Flow

A4260-02

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

8.1.1 Unenumerated State

Following device reset, the USB function enters the unenumerated state. Initially the function ad-
dress register FADDR contains the default value O0H. The host PC performs bus enumeration in
which it identifies and addresses devices attached to the bus. During enumeration, a unique ad-
dress assigned by the host is written to FADDR. The bus enumeration process has four steps:

1. Get descriptor. The host requests and reads the device descriptor to determine such
information as device class, USB specification compliance level, maximum packet size
for endpoint 0, vendor id, product id, etc. For detailed information on device descriptors,
see the “Device Framework” chapter in Universal Serial Bus Specification.

2. Set address. The host sends the 8X930Ax’s function address in a data packet using
endpoint 0. Device firmware interprets the data and instructs the CPU to write the function
address to FADDR.

3. Get configuration. The host requests and reads the device configuration descriptor to
determine such information as the number of interfaces and endpoints; endpoint transfer
type, packet size, and direction; power source; maximum power; etc. For detailed
information on configuration descriptors, see the “Device Framework” chapter in
Universal Serial Bus Specification. When the host requests the configuration descriptor,
all related interface and endpoint descriptors are returned.

4. Set configuration. The host assigns a configuration value to the device to establish the
current configuration. Devices can have multiple configurations.

8.1.2 Idle State

Following bus enumeration, the USB function enters the idle state. In this state, the 8X930Ax ex-
ecutes application code associated with the embedded function. Upon receipt of a token with the
assigned address, the module enters the designated routine.

8.1.3 Transmit and Receive Routines

When the 8X930Ax is sending and receiving packets in the transmit and receive modes, its oper-
ation depends on the type of data that is transferred—isochronous or non-isochronous—and the
adjustment of the FIFO markers and pointers—automatic or manual. These differences affect
both the 8X930Ax firmware and the operation of the 8X930Ax hardware. For isochronous data,
a failed transfer is not retried (lossy data). For non-isochronous data, a failed transfer can be re-
peated. Data that can be repeated is considered lossless data. Automatic adjustment of the FIFO
markers and pointers is accomplished by the function interface hardware. Manual adjustment is
accomplished by the 8X930Ax firmware.

8.1.4 USB Interrupts

For an explanation of the USB global suspend/resume, function, and SOF interrupts, see Chapter
6, “Interrupt System.”

8-2 I

|nte|® ' USB PROGRAMMING MODELS

8.2 TRANSMIT OPERATIONS

8.2.1 Overview

A transmit operation occurs in three major steps:
1. Pre-transmit data preparation by firmware
2. Data packet transmission by function interface hardware
3. Post-transmit management by' firmware

These steps are depicted in a high-level view of transmit operations (Figure 8-2). The pre-transmit
and post-transmit operations are executed by the two firmware routines shown on the left side of
the figure. Function interface hardware (right side of the figure) transmits the data packet over the
USB line. Details of these operations are described in “Pre-transmit Operations” on page 8-5 and
“Post-transmit Operations” on page 8-6.

Transmit operations for non-isochronous data begin with an interrupt request from the embedded
function (e.g., a keyboard entry). The pre-transmit routine (ISR) for the function writes the data
from the function to the transmit FIFO where it is held until the next IN token. Upon receipt of
the next valid IN token, the function interface shifts the data out of the FIFO and transmits it over
the USB. If the data packet is not ready for transmission, 8X930Ax hardware responds to the IN
token with a NAK. The post-transmit routine checks the transmission status and performs data
management tasks.

Completion of data transmission is indicated by a handshake returned by the host. This is then
used to generate a transmit done interrupt to signal the end of data transmission to the CPU. The
interrupt can also be used for activity tracking and fail-safe management. Fail-safe management
permits recovery from lockups that can only be cleared by software.

For ISO data transmission, the cycle is similar. The significant differences are: the cycle is initi-
ated by a start of frame (SOF) interrupt, there is no handshake associated with ISO transfer, and
a transmit done interrupt is not generated. For ISO data transfers, the transaction status is updated
at the end of the USB frame. The 8X930Ax supports one ISO packet per frame per endpoint.

Two bits in the transmit FIFO control register (TXCON, Figure 7-12 on page 7-21) have a major
influence on transmit operation:

® The TXISO bit (TXCON.3) determines whether the transmission is for isochronous data
(TXISO = 1) or non-isochronous data (TXISO = 0). For non-isochronous data only, the
function interface receives a handshake from the host, toggles or does not toggle the
sequence bit, and generates a transmission done interrupt (Figure 8-2). Also, for non-
isochronous data, the post-transmit routine is an ISR; for isochronous data the post-transmit
routine is an ISR initiated by an SOF token.

* The ATM bit (TXCON.2) determines whether the FIFO read marker and read pointer are
managed automatically by the FIFO hardware (ATM = 1) or manually by the second
firmware routine (ATM = 0). Use of the ATM mode is recommended. The ADVRM and
REVRP bits, which control the read marker and read pointer when ATM = 0, are used
primarily for test purposes. See bit definitions in TXCON (Figure 7-12).

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL Inte|®

Firmware ‘ Hardware
(SIE, FIU, FIFOs)

) Interrupt
(keyboard, joystick, modem)

ISR
Pre-transmit Write FIFO
i * Write data to transmit
Routine IN Token

o Write TXCNT /—\ *

i * Send data over USB
* : If ATM =1:
RETI — Adjust FIFO read marker and
read pointer
¢ If TXISO = 0:
TXISO = 0: Transmit done interrupt — Receive host handshake
TXISO = 1: SOF interrupt - Manage TXSEQ bit
* Generate transmit done interrupt
* or SOF interrupt

ISR
Post-
Transons1it * Check status \/

. *If ATM=0:
Routine |~ _ A gjust FIFO read
marker and read pointer

Y

RETI

A4262-02

Figure 8-2. High-level View of Transmit Operations

8-4

|nte|® USB PROGRAMMING MODELS

8.2.2 Pre-transmit Operations

Transmitted data originates in the embedded function, which might be a keyboard, mouse, joy-
stick, scanner, etc. In event-control applications, the end function signals the availability of data
with an interrupt request for the pre-transmit interrupt service routine (ISR). The ISR should pre-
pare the data for transmission and initiate the transmission process. The flow chart in Figure 8-3
illustrates a typical pre-transmit ISR.

For the case of isochronous data, the interrupt is triggered by the USB function in response to a
start of frame (SOF) packet.

Start: Non-ISO

Vacancy No

in Transmit
FIFV
TXFIF1:0 # 11 in Dual-packet Mode

Yes TXFIF1:0 = 00 in Single-packet Mode

Transfer Packet to
Transmit FIFO through
XDAT

Errorin Yes

Transmit FIFO? /X vF 1 (overflow)

No

Error
Recovery

Write Packet Size to
TXCNT

RETI
A5071-01

Figure 8-3. Pre-transmit ISR (Non-Isochronous)

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL InU®

8.2.3 Post-transmit Operations

Transmission status is updated at the end of data transmission based on the handshake received
from the host (non-isochronous data) or based on the transmission process itself (isochronous
data). For a non-isochronous transfer, the function interface generates a transmit done interrupt.
The purpose of the post-transmit service routines is to manage the transmitter’s state and to ensure
data integrity for the next transmission. For isochronous data, the post-transmit routine should be
embedded within the transfer request routine because both are triggered by an SOF. The flow of
operations of typical post-transmit ISRs is illustrated in Figure 8-4 (non-isochronous data) and
Figure 8-5 (isochronous data).

Start: Transmit Done ISR

|

Identify Interrupt and Endpoint
(check FTXDx bits in FIFLG register)

Clear Interrupt Flag
(FTXDx Bit)

Read Transaction Status
(TXSTAT Register)

(TXACK = 1) No Transmit Yes (TXERR = 1)
Error?

Failed CRC,
Bit-stuffing, or
Timeout from Host No

(Underrun Flag
TXURF = 1?)

Errorin
Transmit
FIFO?

| DataError recovery |

T T
Advance Transmit FIFO to Reverse Transmit FIFO to
Next Packet Transmit Current Packet Retry
RETI

1 Buffer Segmentation Management. Executed automatically by hardware, based on transaction
status, if ATM bit in TXCON is set. '

A5072-01

Figure 8-4. Post-transmit ISR (Non-isochronous)

USB PROGRAMMING MODELS

Start: SOF ISR

For
Each Endpoint,
Read Transaction Statu

(TXACK=1) No

(TXSTAT)
Transmit Error?,
+
Advance Transmit
FIFO to next packet
Write Next Packet
to Transmit FIFO
Overflow Yes (TXOVF = 1)

Error in Transmit
FIFO?

Write Packet Size
to TXCNT

N Yes (TXERR = 1)
(Failed CRC, Bit

Stuffing, or Timeout

from Host) No Errorin

Transmit FIFO?

Yes (TXURF = 1)

Transmit FIFO
Error Recovery

\

Advance Transmit
FIFO to Next Packet

\

Write Next Packet
to Transmit FIFO

Overflow

Yes .} .
Error in Transmit

| Error Recovery l

(TXOVF = 1) FIFO?

Write Packet Size
to TXCNT

i

/

RETI

¥ Buffer Segmentation Management. Executed automatically

by hardware at the end of a data transaction if ATM bit

in TXCON is set. For isochronous transactions, there is no retry of current packet regardless of transaction status.

A5073-01

Figure 8-5. Post-transmit

ISR (Isochronous)

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

8.3 RECEIVE OPERATIONS

8.3.1 Overview

" A receive operation is always initiated by the host, which sends an OUT token to the 8X930Aux.
The operation occurs in two major steps: '

1. Data packet reception by the function interface (hardware)
2. Post-receive management by firmware

These steps are depicted in a high-level view of the receive operations in Figure 8-6. The post-
receive operations are executed by the firmware routine shown on the left side of the figure. For
details see “Post-receive Operations” on page 8-9. Function interface hardware (right side of fig-
ure) receives the data packet over the USB line.

Receive operations for non-isochronous data begin when the 8X930Ax receives a valid OUT to-
ken from the host. The received data is written to a data buffer FIFO. The 8X930Ax indicates
completion of data received by returning a handshake to the host.

At the end of the receive cycle, the 8X930Ax generates a receive done interrupt to notify the CPU
that a receive operation has occurred. Program execution branches to the interrupt service routine
and transfers the data packet from the receive FIFO to its destination. The interrupt can also be
used for fail-safe management and activity tracking.

For isochronous data, receive cycles are somewhat different. Data transactions are initiated by an
OUT token. At the end of the OUT transaction, the 8x930Ax does not return handshake to the
host and the receive done interrupt is not generated. Instead, the SOF interrupt is used for post
receive management. The data reception status is updated at the next SOF. The 8X930Ax supports
one ISO packet per frame per endpoint.

Two bits in the receive FIFO control register (RXCON, Figure 7-17 on page 7-30) have a major
influence on receive operation:

® The ISO bit (RXCON.3) determines whether the reception is for isochronous data (ISO = 1)
or non-isochronous data (ISO = 0). For non-isochronous data only, the function interface
sends a handshake to the host, checks the sequence bit, and generates a receive-done
(FRXDx) interrupt. Also, for non-isochronous data, the post-receive routine is an ISR; for
isochronous data the post-receive routine can be a normal subroutine or ISR initiated by an
SOF token.

* The ARM bit (RXCON.2) determines whether the-FIFO write marker and write pointer are
managed automatically by the FIFO hardware (ARM = 1) or manually by the firmware
routine (ARM = 0). Use of the ARM mode is recommended. The ADVWM and REVWP
bits, which control the write marker and write pointer when ARM = 0, are used primarily
for test purposes. See bit definitions in RXCON (Figure 7-17).

USB PROGRAMMING MODELS

Post-
Receive
Routine

Firmware

RXISO = 0: Receive done interrupt
RXISO = 1: SOF interrupt

{

ISR

* Check status and read data
o |f ARM =0:
— Adjust FIFO write marker
and write pointer

-

RETI

Hardware
(SIE, FIU, FIFOs)

OUT Token

Y

* Send data over USB
*If ARM = 1:
— Adjust FIFO write marker and
write pointer
*If ISO=0:
— Send host handshake
— Adjust RXSEQ bit
* Generate receive done interrupt
or SOF interrupt

A4265-02

Figure 8-6. High-level View of Receive Operations

8.3.2 Post-receive Operations

Reception status is updated at the end of data reception based on the handshake received from the
host (non-isochronous data) or based on the transmission process itself (isochronous data). For a
non-isochronous transfer, the function interface generates a receive done interrupt (FRXDx). The
purpose of the post-receive service routine is to manage the receiver’s state to ensure data integ-
rity and latencyfor the next reception. The post-receive routine also transfers the data in the re-
ceive FIFO to the end function. For isochronous data, the post-receive routine should be called
by the SOF ISR.

Flow diagrams for typical post-receive routines are presented in Figure 8-7 (non-isochronous da-
ta) and Figure 8-8 (isochronous data).

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nU®

Start: Receive Done ISR

|

Identify Function Interrupt and Endpoint
(Check FRXDx Bits in FIFLG Register)

}

| Clearinterrupt Flag |

Check

(RXACK=1) No RXSTAT for Yes (RXERR=1)

Receive
Error
: (RXOVF=1)
A ot (Failed CRC or Bit Stuffing) ~ No Errorin
{ Receive FIFO?
T

Reverse Receive FIFO
to current packet retry

Yes (RXOVF=1)

Check for
Another Packet in
Receive FIFO
(RXFIF1:0 # 00 in Dual
Port Mode)

Receive FIFO

| Read Data Packet(s) |
Error Recovery

Error in
Receive
FIFO?

Yes (RXURF = 1)

Receive FIFO
Error Recovery

Unlock Current Packet from
Receive FIFO (set RXFFRC
Bit in RXCON)

!

/

RETI

¥ Buffer Segmentation Management. Executed automatically by hardware at the end of a data transaction
if ARM bit in RXCON is set.

A5070-01

Figure 8-7. Post-receive ISR (Non-isochronous)

8-10 L

USB PROGRAMMING MODELS

Start: SOF ISR

For

RXACK=1) No Each Endpoint, Yes RR =
() Read Transaction Status (RXERR=1)
(RXSTAT)
Transmit Error?,
f)
Advance Receive (Failed CRC)
FIFO to Next Packet or Bit Stuffing) No Error in
Receive FIFO?
) i

R ta Packet | Advance Receive FIFO Yes (RXOVF =1)

_ to Next Packet Receive
Receive FIFO
Error Recovery

Error
in Receive No
FIFO?
Data Reconstruction
Yes by Application for
(RXURF = 1) Lost Data
Receive FIFO

Error Recovery

Data Reconstruction
by Application for
Lost Data

Unlock FIFO
(set RXFFRC)

Unlock Current Packet
from Receive FIFO
(set RXFFRC bit in RXCON)

T Buffer Segmentation Management. Executed automatically by hardware at the end of a data
transaction if ARM bit in TXCON is set. For isochronous transactions, there is no retry of current

/

RETI

packet regardless of transaction status.

A5074-01

Figure 8-8. Receive SOF ISR (Isochronous)

8-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL InU@,

8.4 SETUP TOKEN

An endpoint must be configured as a control endpoint in order to respond to SETUP tokens. (This
will only be endpoint 0, since it must serve as a control endpoint.) Refer to the “Protocol Layer”
section of the Universal Serial Bus Specification for details.of SETUP token transactions and pro-
tocol.

A control data transfer is initiated by a valid SETUP token (i.e., the token PID received is good).
Receive data transfer operations for a control endpoint are very similar to data transfers on non-
control endpoints for non-setup tokens. However, the response of a control endpoint is different
when it receives a setup token.

USB protocol specifies that setup tokens must be received and ACKed. Following receipt of a
setup token, a control endpoint flushes the contents of the receive FIFO before writing it with re-
ceived setup data. This may create an error condition in the FIFO due to the asynchronous nature
of FIFO reads by the CPU and simultaneous writes by the function interface. Figure 8-9 illustrates
the operations of a typical post-receive routine for a control endpoint.

8-12 L

intel.

USB PROGRAMMING MODELS

Start: Receive Done ISR

Identify Interrupt Endpoint

(check FRXDx bits in the FIFLG register)

Clear Interrupt Flag

Check
(RXACK = 1) No RXSTAT for Yes (RXERR = 1)
Receive
Error
No
Normal
Yes (RXSETUP = 1) Error
Handling
Setup Token Received OUT Token
Clear EDOVW Received
]
Read Data Packet
(STOVW =0 and
Receive FIFONO EDOVW =0)
Qverwrite?
Yes
(STOVW =1 or
EDOVW = 1)
Overwrite
Completed
Unlock Current Packet Error
Yes from Receive FIFO Recovery
(STOVW =0 and (set RXFFRC bit in RXCON)
EDOVW = 1) |
Clear Overwrite Bit (STOVW =0 and
(EDOVW) eceive FIFO No EDOVW = 0)
T Overwrite?,
(STOVW =1 or
EDOVW =1)
Clear Firmware
Setup Flag
(STOVW =0 and Y
EDOVW=1) y '
Clear Overwrite Bit
(EDOVW)
| y
o . RETI
Inhibited in hardware if STOVW or EDOVW are asserted.

A5075-01

Figure 8-9. Post-receive ISR (Control)

8-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER'’S MANUAL |nte|®

8.5 START OF FRAME (SOF) TOKEN

Figure 8-10 illustrates the hardware operations performed by the function interface for a start of
frame (SOF) token. The host issues an SOF token at a nominal rate of once every 1.0 ms. An SOF
token is valid if the PID is good. The SOF token is not endpoint-specific; it should be received
by every node on the bus.

Valid SOF Token

(SOFH.e)| setAsOFBit |

End of
Transfer

Clear |(SOFH.7)
SOFACK
Bit

(SOFH.7) Set SOFACK.
(SOF token received
without error)

Y

(SOFH, SOFL)[Write SOF Registers I

r

Generate SOF Pulse
by Asserting SOF# Pin

¢

Done

A4267-02

_ Figure 8-10. Hardware Operations for SOF Token

814 ' I

intel.

- Input/Output Ports

intel.

CHAPTER 9
INPUT/OUTPUT PORTS

The 8X930Ax has four 8-bit input/output (I/O) ports for general-purpose I/O, external memory
operations, and specific alternate functions (see Table 9-1). This chapter describes the ports and
provides information on port loading, read-modify-write instructions, and external memory ac-
cesses.

9.1 INPUT/OUTPUT PORT OVERVIEW

All four 8X930Ax I/O ports are bidirectional. Each port contains a latch, an output driver, and an
input buffer. Port 0 and port 2 output drivers and input buffers facilitate external memory opera-
tions. Port O drives the lower address byte onto the parallel address bus, and port 2 drives the up-
per addiess byie onto the bus. In noupage mode, ihe data is muitipiexed with the iower address
byte on port 0. In page mode, the data is multiplexed with the upper address byte on port 2. Port
1 and port 3 provide both general-purpose I/O and special alternate functions.

Table 9-1. Input/Output Port Pin Descriptions

N';in': e Type :ilrt‘e;lr;z:z Alternate Description Alfl_e;;:te
P0.7:0 | 1/0 |AD7:0 Address/Data (Nonpage Mode), Address (Page Mode) 110
P1.0 /0 | T2 Timer 2 Clock Input/Output 110
P1.1 /10 | T2EX Timer 2 External Input |
P1.2 /0 | ECI PCA External Clock Input l
P1.3 /0 | CEXO0 PCA Module 0 I/0 /0
P1.4 /0 | CEX1 PCA Module 1 1/0 /0
P1.5 /10 | CEX2 PCA Module 2 I/0 110
P1.6 /0 | CEX3/WAIT# PCA Module 3 /0 : 1/0
P1.7 I/O | CEX4/A17/WCLK | PCA Module 4 I/O or 18th Address Bit 1/0(0)
P2.7:0 | I/O |A15:8 Address (Nonpage Mode), Address/Data (Page Mode) 1{e]
P3.0 /0 | RXD Serial Port Receive Data Input 1{1/O)
P3.1 /0 [TXD Serial Port Transmit Data Output O (O)
P3.2 I/O | INTO# External Interrupt O l
P3.3 /O |INT1# External Interrupt 1 |
P3.4 /0 |TO Timer O Input |
P3.5 /0 | T1 Timer 1 Input |
P3.6 /0 | WR# Write Signal to External Memory O
P3.7 /O | RD#/A16 Read Signal to External Memory or 17th Address Bit (0]

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL InU@,

9.2 1/0 CONFIGURATIONS

Each port SFR operates via type-D latches, as illustrated in Figure 9-1 for ports 1 and 3. A CPU
“write to latch” signal initiates transfer of internal bus data into the type-D latch. A CPU “read
latch” signal transfers the latched Q output onto the internal bus. Similarly, a “read pin” signal
transfers the logical level of the port pin. Some port data instructions activate the “read latch” sig-
nal while others activate the “read pin” signal. Latch instructions are referred to as read-modify-
write instructions (see “Read-Modify-Write Instructions” on page 9-4). Each I/O line may be in-
dependently programmed as input or output.

9.3 PORT 1 AND PORT 3

Figure 9-1 shows the structure of ports 1 and 3, which have internal pullups. An external source
can pull the pin low. Each port pin can be configured either for general-purpose I/O or for its al-
ternate input or output function (Table 9-1).

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x =
1, 3). To use a pin for general-purpose input, set the bit in the Px register. This turns off the output
driver FET.

To configure a pin for its alternate function, set the bit in the Px register. When the latch is set, the
“alternate output function” signal controls the output level (Figure 9-1). The operation of ports 1
and 3 is discussed further in “Quasi-bidirectional Port Operation” on page 9-5.

9.4 PORT 0 AND PORT 2

Ports 0 and 2 are used for general-purpose I/O or as the external address/data bus. Port 0, shown
in Figure 9-2, differs from the other ports in not having internal pullups. Figure 9-3 on page 9-4
shows the structure of port 2. An external source can pull a port 2 pin low.

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x =
0, 2). To use a pin for general-purpose input set the bit in the Px register to turn off the output
driver FET.

INPUT/OUTPUT PORTS

Vee
Alternate | I
Read Output gtelina
Latch /LI Function ullup
~ | P3.x
Internal): l
Bus P3.x Q
. Latch
Write to
Latch cL Q#
1 o 1
| ~
Read A
Pin - Allelnale
Input
Function
A2239-01
Figure 9-1. Port 1 and Port 3 Structure
Address/
Read Data Control Vee
Latch J4 L
< -
P0O.x
Internal _‘D
Bus P0.x N
Write Latch 1
rite to
Latch cL a# 9
1
Read \rl
Pin
A2238-01
Figure 9-2. Port 0 Structure
9-3

. L]
8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL InU®

Address Vee
| Control v
Read Internal
Latch Pullup
1
’\1 —(
. P2.x
Intelgnuasl D Q ly |
P2.x
Latch
Write to .
Latch cL Q#
1
Read \I“I
Pin
A2240-01

Figure 9-3. Port 2 Structure

When port 0 and port 2 are used for an external memory cycle, an internal control signal switches
the output-driver input from the latch output to the internal address/data line. “External Memory
Access” on page 9-6 discusses the operation of port 0 and port 2 as the external address/data bus.

NOTE

Port 0 and port 2 are precluded from use as general purpose I/O ports when
used as address/data bus drivers.

Port 0 internal pullups assist the logic-one output for memory bus cycles only.
Except for these bus cycles, the pullup FET is off. All other port O outputs are
open drain.

9.5 READ-MODIFY-WRITE INSTRUCTIONS

Some instructions read the latch data rather than the pin data. The latch based instructions read
the data, modify the data, and then rewrite the latch. These are called “read-modify-write” in-
structions. Below is a complete list of these special instructions. When the destination operand is
a port, or a port bit, these instructions read the latch rather than the pin:

ANL (logical AND, e.g., ANL Pl, A)

ORL ’ (logical OR, e.g., ORL P2, A)

XRL (logical EX-OR, e.g., XRL P3, A)

JBC (jump if bit = 1 and clear bit, e.g., JBC P1l.1, LABEL)
CPL (complement bit, e.g., CPL P3.0)

INC (increment, e.g., INC P2)

an® INPUT/OUTPUT PORTS

DEC (decrement, e.g., DEC P2)

DJINZ (decrement and jump if not zero, e.g., DJINZ P3, LABEL)
MOV PX.Y, C (move carry bit to bit Y of port X)

CLR PX.Y (clear bit Y of port X)

SETB PX.Y (set bit Y of port x)

It is not obvious that the last three instructions in this list are read-modify-write instructions.
These instructions read the port (all 8 bits), modify the specifically addressed bit, and write the
new byte back to the latch. These read-modify-write instructions are directed to the latch rather
than the pin in order to avoid possible misinterpretation of voltage (and therefore, logic) levels at
the pin. For example, a port bit used to drive the base of an external bipolar transistor cannot rise
above the transistor’s base-emitter junction voltage (a value lower than V). With a logic one
written to the bit, attempts by the CPU to read the port at the pin are misinterpreted as logic zero.
A read of the latch rather than the pin returns the correct logic-one value.

9.6 QUASI-BIDIRECTIONAL PORT OPERATION

Port 1, port 2, and port 3 have fixed internal pullups and are referred to as “quasi-bidirectional”
ports. When configured as an input, the pin impedance appears as logic one and sources current
(see the 8X930Ax datasheet) in response to an external logic-zero condition. Port O is a “true bi-
directional” pin. The pin floats when configured as input. Resets write logical one to all port
latches. If logical zero is subsequently written to a port latch, it can be returned to input conditions
by a logical one written to the latch. For additional electrical information, refer to the current
8X930Ax datasheet.

NOTE

Port latch values change near the end of read-modify-write instruction cycles.
Output buffers (and therefore the pin state) update early in the instruction after
the read-modify-write instruction cycle.

Logical zero-to-one transitions in port 1, port 2, and port 3 utilize an additional pullup to aid this
logic transition (see Figure 9-4). This increases switch speed. The extra pullup briefly sources 100
times the normal internal circuit current. The internal pullups are field-effect transistors rather
than linear resistors. Pullups consist of three p-channel FET (pFET) devices. A pFET is on when
the gate senses logical zero and off when the gate senses logical one. pFET #1 is turned on for
two oscillator periods immediately after a zero-to-one transition in the port latch. A logic one at
the port pin turns on pFET #3 (a weak pullup) through the inverter. This inverter and pFET pair
form a latch to drive logic one. pFET #2 is a very weak pullup switched on whenever the associ-
ated nFET is switched off. This is a traditional CMOS switch convention. Current strengths are
1/10 that of pFET #3.

I 9-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

r 2 Osc. Periods Vee Vee Vee
[P1 —-l P2 ——l P3
Port
Q#
From n
Port _ { r
Latch %
Input Data CI.______Oﬂ__..
Read Port Pin l /\
A2242-01

Figure 9-4. Internal Pullup Configurations

9.7 PORT LOADING

Output buffers of port 1, port 2, and port 3 can each sink 1.6 mA at logic zero (see V,, specifica-
tions in the 8X930Ax data sheet). These port pins can be driven by open-collector and open-drain
devices. Logic zero-to-one transitions occur slowly as limited current pulls the pin to a logic-one
condition (Figure 9-4 on page 9-6). A logic-zero input turns off pFET #3. This leaves only pFET
#2 weakly in support of the transition. In external bus mode, port O output buffers each sink 3.2
mA at logic zero (see Vg, ; in the 8X930Ax data sheet). However, the port 0 pins require external
pullups to drive external gate inputs. See the latest revision of the 8X930Ax datasheet for com-
plete electrical design information. External circuits must be designed to limit current require-
ments to these conditions.

9.8 EXTERNAL MEMORY ACCESS

The external bus structure is different for page mode and nonpage mode. In nonpage mode (used
by MCS 51 microcontrollers), port 2 outputs the upper address byte; the lower address byte and
the data are multiplexed on port 0. In page mode, the upper address byte and the data are multi-
plexed on port 2, while port O outputs the lower address byte.

The 8X930Ax CPU writes FFH to the PO register for all external memory bus cycles. This over-
writes previous information in P0. In contrast, the P2 register is unmodified for external bus cy-
cles. When address bits or data bits are not on the port 2 pins, the bit values in P2 appear on the
port 2 pins.

9-6 I

|nte|® INPUT/OUTPUT PORTS

In nonpage mode, port 0 uses a strong internal pullup FET to output ones or a strong internal pull-
down FET to output zeros for the lower address byte and the data. Port 0 is in a high-impedance
state for data input.

In page mode, port O uses a strong internal pullup FET to output ones or a strong internal pull-
down FET to output zeros for the lower address byte or a strong internal pulldown FET to output
zeros for the upper address byte.

In nonpage mode, port 2 uses a strong internal pullup FET to output ones or a strong internal pull-
down FET to output zeros for the upper address byte. In page mode, port 2 uses a strong internal
pullup FET to output ones or a strong internal pulldown FET to output zeros for the upper address
byte and data. Port 2 is in a high-impedance state for data input.

NOTE
In external bus mode port 0 outputs do not require external pullups.

There are two types of external memory accesses: external program memory and external data
memory (see Chapter 15, “External Memory Interface”). External program memories utilize sig-
nal PSEN# as a read strobe. MCS 51 microcontrollers use RD# (read) or WR# (write) to strobe
memory for data accesses. Depending on its RD1:0 configuration bits, the 8X930Ax uses PSEN#
or RD# for data reads (See “Configuration Bits RD1:0” on page 4-8).

During instruction fetches, external program memory can transfer instructions with 16-bit ad-
dresses for binary-compatible code or with the external bus configured for extended memory ad-
dressing (17-bit or 18-bit). ‘

External data memory transfers use an 8-, 16-, 17-, or 18-bit address bus, depending on the in-
struction and the configuration of the external bus. Table 9-2 lists the instructions that can be used
for these bus widths.

Table 9-2. Instructions for External Data Moves

Bus Width Instructions
8 MOVX @Ri; MOV @Rm; MOV dir8
16 MOVX @DPTR; MOV @WRj; MOV @ WRj+dis; MOV dir16
17 MOV @DRk; MOV @ DRk-+dis
18 MOV @DRk; MOV @ DRk-+dis
NOTE

Avoid MOV PO instructions for external memory accesses. These instructions
can corrupt input code bytes at port 0.

External signal ALE (address latch enable) facilitates external address latch capture. The address
byte is valid after the ALE pin drives V. For write cycles, valid data is written to port O just prior
to the write (WR#) pin asserting V,,; . Data remains valid until WR# is undriven. For read cycles,
data returned from external memory must appear at port 0 before the read (RD#) pin is undriven
(refer to the 8X930Ax datasheet for specifications). Wait states, by definition, affect bus-timing.

I . 9-7

intgl. :
Timer/Counters and
WatchDog Timer

intel.

CHAPTER 10
TIMER/COUNTERS AND WATCHDOG TIMER

This chapter describes the timer/counters and the watchdog timer (WDT) included as peripherals
on the 8X930Ax. When operating as a timer, a timer/counter runs for a programmed length of
time, then issues an interrupt request. When operating as a counter, a timer/counter counts nega-
tive transitions on an external pin. After a preset number of counts, the counter issues an interrupt
request.

The watchdog timer provides a way to monitor system operation. It causes a system reset if a soft-
ware malfunction allows it to expire. The watchdog timer is covered in “Watchdog Timer” on
page 10-17.

10.1 TIMER/COUNTER OVERVIEW

The 8X930Ax contains three general-purpose, 16-bit timer/counters. Although they are identified
as timer 0, timer 1, and timer 2, you can independently configure each to operate in a variety of
modes as a timer or as an event counter. Each timer employs two 8-bit timer registers, used sep-
arately or in cascade, to maintain the count. The timer registers and associated control and capture
registers are implemented as addressable special function registers (SFRs). Four of the SFRs pro-
vide programmable control of the timers as follows:

¢ Timer/counter mode control register (TMOD) and timer/counter control register (TCON)
control timer 0 and timer 1

¢ Timer/counter 2 mode control register (2MOD) and timer/counter 2 control register
(T2CON) control timer 2

Table 10-1 describes the external signals referred to in this chapter. Table 10-2 briefly describes
the SFRs referred to in this chapter. For a map of the SFR address space, see Table 3-5 on page
3-16. Timer/Counter Operation

10.2 TIMER/COUNTER OPERATION

The block diagram in Figure 10-1 depicts the basic logic of the timers. Here timer registers THx
and TLx (x = 0, 1, and 2) connect in cascade to form a 16-bit timer. Setting the run control bit
(TRx) turns the timer on by allowing the selected input to increment TLx. When TLx overflows
it increments THx; when THx overflows it sets the timer overflow flag (TEx) in the TCON or
T2CON register. Setting the run control bit does not clear the THx and TLx timer registers. The
timer registers can be accessed to obtain the current count or to enter preset values. Timer 0 and
timer 1 can also be controlled by external pin INTx# to facilitate pulse width measurements.

The C\Tx# control bit selects timer operation or counter operation by selecting the divided-down
system clock or external pin Tx as the source for the counted signal.

For timer operation (C/Tx# = 0), the timer register counts the divided-down system clock. The
timer register is incremented once every peripheral cycle, i.e., once every six states (see “Clock
and Reset Unit” on page 2-7). Since six states equals 12 clock cycles, the timer clock rate is

I 10-1

-
8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Fosc/12. Exceptions are the timer 2 baud rate and clock-out modes, where the timer register is
incremented by the system clock divided by two.

NOTE

For the case of PLL on (PLLSEL2:0 =110), a peripheral cycle equals six Togc
so the timer clock rate is Fgc /6. For the timer 2 baud rate and clock-out
modes, the timer register is incremented at the PLL rate (12 MHz). See “Clock
and Reset Unit” on page 2-7. -

For counter operation (C/Tx# = 1), the timer register counts the negative transitions on the Tx ex-
ternal input pin. The external input is sampled during every SSP2 state. “Clock and Reset Unit”
on page 2-7 describes the notation for the states in a peripheral cycle. When the sample is high in
one cycle and low in the next, the counter is incremented. The new count value appears in the
register during the next S3P1 state after the transition was detected. Since it takes 12 states (24
oscillator periods) to recognize a negative transition, the maximum count rate is 1/24 of the os-
cillator frequency. There are no restrictions on the duty cycle of the external input signal, but to
ensure that a given level is sampled at least once before it changes, it should be held for at least
one full peripheral cycle.

Table 10-1. External Signals

Signal

A Alternate
Name Type Description

Function

T2 /O | Timer 2 Clock Input/Output. This signal is the external clock input P1.0
for the timer 2 capture mode; and it is the timer 2 clock-output for the
clock-out mode.

T2EX | Timer 2 External Input. In timer 2 capture mode, a falling edge P11
initiates a capture of the timer 2 registers. In auto-reload mode, a
falling edge causes the timer 2 registers to be reloaded. In the up-
down counter mode, this signal determines the count direction:
high = up, low = down.

INT1:04 | External Interrupts 1:0. These inputs set the IE1:0 interrupt flags in | P3.3:2
the TCON register. TCON bits IT1:0 select the triggering method:

| IT1:0 = 1 selects edge-triggered (high-to-low);|T1:0 = 0 selects level-
triggered (active low). INT1:04# also serves as external run control for
timer 1:0 when selected by TCON bits GATE1:0#.

T1:0 | Timer 1:0 External Clock Inputs. When timer 1:0 operates as a P3.5:4
counter, a falling edge on the T1:0 pin increments the count.

10-2 I

|nte|® TIMER/COUNTERS AND WATCHDOG TIMER

XTAL1 [} +12

> THx | TLx |Overflow
(8 Bits) | (8 Bits)
1

Tx D
C/Tx#

x=0,1,0r2 TRx

TFx

Interrupt
Request

A4121-02

Figure 10-1. Basic Logic of the Timer/Counters t

1 This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input O of the C/Tx# selector is twice that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page

2-8.

10-3

L]
8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table 10-2. Timer/Counter and Watchdog Timer SFRs

Mnemonic Description Address

TLO Timer 0 Timer Registers. Used separately as 8-bit counters or in cascade S:8AH

THO as a 16-bit counter. Counts an internal clock signal with frequency Foq/12 S:8CH
(timer operation) or an external input (event counter operation).

TL1 Timer 1 Timer Registers. Used separately as 8-bit counters or in cascade S:8BH

TH1 as a 16-bit counter. Counts an internal clock signal with frequency Fogc/12 S:8DH
(timer operation) or an external input (event counter operation).

T2 Timer 2 Timer Registers. TL2 and TH2 connect in cascade to provide a S:CCH

TH2 16-bit counter. Counts an intenal clock signal with frequency Fogo/12 S:CDH
(timer operation) or an external input (event counter operation).

TCON Timer 0/1 Control Register. Contains the run control bits, overflow flags, S:88H
interrupt flags, and interrupt-type control bits for timer 0 and timer 1.

TMOD Timer 0/1 Mode Control Register. Contains the mode select bits, S:89H
counter/timer select bits, and external control gate bits for timer 0 and
timer 1.

T2CON Timer 2 Control Register. Contains the receive clock, transmit clock, and S:C8H

capture/reload bits used to configure timer 2. Also contains the run control
bit, counter/timer select bit, overflow flag, external flag, and external enable
for timer 2.

T2MOD Timer 2 Mode Control Register. Contains the timer 2 output enable and S:C9H
down count enable bits.

RCAP2L Timer 2 Reload/Capture Registers (RCAP2L, RCAP2H). Provide values S:CAH

RCAP2H to and receive values from the timer registers (TL2,TH2). S:CBH
WDTRST | Watchdog Timer Reset Register (WDTRST). Used to reset and enable S:A6H
the WDT.

10.3 TIMERO

Timer O functions as either a timer or event counter in four modes of operation. Figures 10-2,
10-3, and 10-4 show the logical configuration of each mode.

Timer 0 is controlled by the four low-order bits of the TMOD register (Figure 10-5) and bits 5, 4,
1, and O of the TCON register (Figure 10-6). The TMOD register selects the method of timer gat-
ing (GATEOQ), timer or counter operation (T/CO#), and mode of operation (M10 and M0O). The
TCON register provides timer O control functions: overflow flag (TFO), run control (TRO), inter-
rupt flag (IEO), and interrupt type control (ITO).

For normal timer operation (GATEO = 0), setting TRO allows TLO to be incremented by the se-
lected input. Setting GATEO and TRO allows external pin INTO# to control timer operation. This
setup can be used to make pulse width measurements. See “Pulse Width Measurements” on page
10-11.

Timer 0 overflow (count rolls over from all 1s to all Os) sets the TFO flag generating an interrupt
request.

10-4 I

n
IntQI® TIMER/COUNTERS AND WATCHDOG TIMER

10.3.1 Mode 0 (13-bit Timer)

Mode 0 configur