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PREFACE

At Advanced Micro Devices we are committed to helping you solve design problems with innovative
products that give you maximum flexibility to meet your particular needs. In the past, you often have had to
choose between costly semi-custom products and standard devices that limit your design options. Now
there's another choice.

Programmable Array Logic (PAL) devices from AMD give you the best of two worlds: the architectural
flexibility of custom design and immediate availability, multiple-sourcing, and low cost of standard products.

PAL devices are user-programmable logic building blocks that give you the freedom to structure
components for a specific application, often using a single PAL package to create functions that once would
have required the use of hundreds of conventional TTL gates.

This handbook is your guide to AMD's growing list of PAL devices. It is intended to be both an introduction
to field programmable logic devices, as well as a resource manual for experienced designers. In the
following pages you will find data and descriptions of new, proprietary devices from AMD, as well as
information on standard products. Whether you need CMOS, ECL, or TTL, AMD offers solutions to your °
design problems that give you a choice.

Best of all, AMD offers you the industry's leading commitment to quality, reliability, innovation, and customer
satisfaction. If you have a question about any of the products described in this book or simply want to know
more about the use of programmable logic devices, call your local Advanced Micro Devices' Sales Office.

W

W.J. Sanders il
Chairman, and Chief Executive Officer
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SECTION 1— INTRODUCTION TO &1
PROGRAMMABLE LOGIC .

1.1 THE PROGRAMMABLE LOGIC DESIGN
ALTERNATIVE

1.2 AN INTRODUCTION TO PROGRAMMABLE LOGIC
ARCHITECTURE

1.3 HOW TO DESIGN WITH PROGRAMMABLE LOGIC
DEVICES






1.1. THE PROGRAMMABLE LOGIC
DESIGN ALTERNATIVE

Today's logic designer can choose from a wide variety of
circuit alternatives. One way to categorize these alternatives is
by the extent to which they are customized for a specific
application. The designer's options include general-purpose
standard products, programmable logic, gate arrays, standard
cells, and full custom integrated circuits (ICs) (Figure 1-1).

Standard products are defined by the IC manufacturer for a
wide market and cannot be altered by the user. Examples of
standard products are TTL and CMOS SSI/MSI devices, fixed

instruction set MOS microprocessors, and microprogramma-
ble building blocks. Custom logic, on the other hand, is defined
by the user for a specific application. Programmable logic
devices have attributes of both standard products and custom
logic. The IC manufacturer defines an architecture that a user
can program by programming (or blowing) appropriate fuses to
fit the application. Programmable Array Logic (PAL) devices,
Programmable Logic Arrays (PLAs) and small Programmable
Read-Only Memories (PROMs) are examples of programma-
ble logic.

DIGITAL LOGIC
FAMILIES

STANDARD SEMICUSTOM CUSTOM
PRODUCTS PRODUCTS PRODUCTS

I |
PROGES&AIEAABLE GATE STANDARD

DEVICES ARRAYS CELLS

PF002411

Figure 1-1. Basic Categories of Digital Logic

Each of these design alternatives offers distinct advantages
and disadvantages in terms of cost, availability, and architec-
tural flexibility. Many system designs today, such as the
controller board in Figure 1-2, incorporate each of the design

approaches to some degree. The following analysis will help
the system designer to select the best logic type for a
particular function.
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Figure 1-2. A System Design Using PAL Devices

Photo courtesy of Data Systems Design, Inc.

DEDICATED GENERAL-PURPOSE
DEVICES — STANDARD PRODUCTS

There are five main advantages of standard products. They
require little IC engineering expertise by the user, provide
lowest cost for an individual device, usually have the best
application support, provide the maximum logic density per
device and are available off-the-shelf with no development
lead time.

Standard products require little IC-level engineering effort by
the user. The responsibility for design, test, and debugging is
born by the IC manufacturer. Since the IC manufacturer is
doing this on a large scale, the process is very efficient.

Standard products are very cost-effective per logic function.
They are high volume products, and this volume results in
lower manufacturing cost and thus lower price per unit. The

increased competition encouraged by alternate sourcing also

results in lower cost.

The design support available for standard products is general-
ly far greater than that for semicustom and custom devices.
Application software (assemblers, simulators), hardware (emu-
lators) and literature (manuals, books, application notes) make
them easier to use.

Since standard products reach a much larger market, the
engineering effort necessary to provide this support can be
spread over a large number of units, reducing the cost. When
a custom logic device is used, this support must be developed
by the engineer doing the design.

Standard products are optimized for high-volume production.
The density of logic functions is therefore generally much
greater than on semicustom logic. A fixed instruction set
microprocessor or microprogrammable building block duplicat-
ed with gate arrays or programmable logic devices might take
several packages compared to the single dedicated device.

The last main advantage of standard products is their off-the-
shelf availability. There is no development lead time in the use
of these devices, so system design can proceed rapidly. By
using standard products the system designer can introduce a

system to the market more quickly and exploit the value of
market leadership.

The three potential disadvantages of standard products are
potentially poor fit to specific applications, higher system cost,
and the lack of competitive features and advantages. A
standard product, by the very nature of its generality, is not
ideal for anyone. It includes too much functionality for some
applications and not enough for others. The architecture is
seldom ideal for a particular application. Standard products
also offer a limited performance selection. IC manufacturers
pick a specific performance level aiming at as large a market
as possible.

Due to the general-purpose nature of standard products, it is
difficult to achieve the lowest package-count solution. Addi-
tional components are required to tailor the function to fit a
specific need.

Even though individual devices may be lower in price, more of
them must be used, raising the cost for the total system when
considering the additional PC boards, testing, power supplies,
fans, etc. ’

Another disadvantage of standard products is the lack of
competitive features and advantages. Anyone can buy them
so it is difficult to differentiate one system supplier's hardware
from another's. It is also very easy for a competitor to copy a
design based on standard products.

CUSTOM AND SEMICUSTOM LOGIC
DEVICES

The custom and semicustom logic alternatives offer the
systems designer important advantages over standard prod-
ucts. Reduced package count, compared to SSI/MSI imple-
mentations, is of paramount importance. Custom and semi-
custom logic also provide the designer additional freedom in
architecture. This freedom to develop innovative solutions to
an application problem can add a significant competitive
advantage to a product.

There are four main types of custom and semicustom logic
today: fully custom logic, gate arrays, standard cell designs,
and programmable logic. Fully ""handcrafted’ custom-IC logic




designs give the user the benefits of low system IC count and
potentially low variable manufacturing cost per device, but the
cost to develop a custom IC can be very high. This alternative
makes sense only when production volumes will be very high
and the system design will be very stable. Semicustom
approaches such as programmable logic, gate arrays, and
standard cell designs reduce the IC development cost of the
full custom solution by trading off the chip-layout efficiency.

A gate-array design requires the customization of only a few
interconnection layers in the semiconductor process. Stan-
dard cell designs require completely custom fabrication, but
the design and layout are simplified by the use of a standard
building-block library. A gate array has lower engineering cost
and faster development time than a standard cell-based
device. Standard cell devices, on the other hand, allow more
logic variety and more efficient utilization of silicon than a gate
array.

Gate arrays and the other custom/semicustom alternatives
have four main disadvantages when compared to standard
products. They are increased user engineering time and effort,
higher cost per individual device, inferior high-level support
tools, and lower density. -

Engineering effort for a gate array can significantly increase
the cost of a system design. Not only must the system be
designed, but the gate arrays themselves must be designed,
debugged and put into production. Both design tasks, chip as
well as system, take similar amounts of engineering resources,
possibly doubling the design effort and investment. Because
of constraints on second-sourcing alternatives, semicustom
logic devices can end up being substantially more expensive.
Only if the complete system solution can be optimized will the

total cost be reduced. Another factor to be considered is the
chance of design problems with a gate array, standard cell, or
fully custom device. If extra iterations are necessary — or
even worse, a bug is discovered after a product has been
released, correcting the problem can take several months or.
longer. These potential costs are difficult to estimate and have
virtually no upper limit.

The third disadvantage of custom and semicustom logic is the
inadequacy of high-level support. Semiconductor manufactur-
ers cannot provide significant support in the form of software,
development systems, application notes, or books for a
custom logic design because each implementation is different.
The existing gate array and standard-cell design tools require
extensive training and a large investment in time and money
for the user. The designer must document the design fully and
provide enough support for the system engineer to use the
customized device correctly.

Finally, a key disadvantage of gate arrays is the reduced
density and therefore high silicon cost compared to a dedicat-
ed general-purpose device. They are designed by repeating a
common loosely packed structure, leaving wide channels for
the metal interconnect. For a given set of design rules, a gate
array will typically require two to five times the silicon area for
the same gate count. ‘

PROGRAMMABLE LOGIC DEVICES

Programmable logic devices combine the best characteristics
of standard and custom products. They offer the flexible
architecture of a custom design as well as the off-the-shelf
availability and reduced investment, both in engineering time
and device cost, of a standard product (see Table 1-1).

TABLE 1-1. IC SELECTION CRITERIA FOR DIFFERENT ARCHITECTURES

Standard Products Gate Arrays/ Programmable
Criteria Standard Cell Logi
TTL SSI/MS! LSl andard Cells ogic
Development Lead Time Immediate Immediate Weeks/Months Hours
Development Cost None None & $20K Low
Second Sources Many Several Few Many
Architectural Flexibility Medium Low High Medium
Logic Density Low High Medium/High Medium
IC Design
Expertise None None Some/Much None
Required




Programmable logic has the fastest design cycle time of any
form of customizable logic. Instead of months or years, as with
other semicustom or full custom designs, a programmable
logic-based design can be created in just hours. This fast
turnaround time allows a revolutionary interactive approach to
system design. The engineer can try out a new architectural
approach and evaluate it very quickly. If it does not work, a
new idea can be quickly defined, programmed and ready to
evaluate. The speed with which a new design approach can
be explored and evaluated creates a design environment that
enhances innovation.

Programmable logic devices enjoy the same high-volume
production economics as standard products. Producing identi-
cal blank elements by the millions of units per year, the

manufacturer can achieve low cost. A volume market attracts
multiple vendors and encourages price competition, as well as
provides alternate source security. The cost advantages of a
standard product are retained with programmable logic de-
vices, but since the parts are then customized, system designs
may be differentiated from the competition. In fact, truly
innovative system designs implemented using programmable
logic are even patentable, further protecting a design from the
competition.

The engineering effort and time needed to design, test, debug
and put into production a programmable logic-based system
device is larger than the effort necessary when using standard
products, but substantially less than when using custom
elements (Figure 1-3).

Cost
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Figure 1-3. Relative Development Time vs. Cost for Alternative Logic Implementations

Software tools are provided to reduce this overhead consider-
ably. These permit designs to be specified in terms of Boolean
equations, state transition equations, or gate array-like sche-
matics. The software input specification format serves as a
""data sheet" for the particular application and generates the
essential documentation information. Simulation and test vec-
tor generation programs also exist to reduce the engineering
effort associated with debugging and testing, both in prototyp-
ing and production environments.

Compared to other forms of semicustom logic, the maximum
available logic density of a programmable logic device is
smaller, and the manufacturing costs per equivalent gate of
logic are greater. Since the fixed costs associated with using
programmable logic are lower, however, this semicustom
alternative has an advantage in lower volume designs. In fact,
at the annual procurement volume of the majority of industrial
electronic systems in production today —a few thousand
systems per year — programmable logic has the lowest cost
per gate of any form of custom logic available (see Figure 1-4).
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Figure 1-4. Programmable Logic Provides the Lowest Cost Per Gate of the
Three Semicustom Techniques at Volumes up to About 5K

Programmable logic devices also offer significant user benefits
over non-customizable standard product solutions. These
include design optimization, design security, improved perfor-
mance, cost reductions through board space and inventory
cost savings, and reliability improvements through reductions
in parts count and interconnections.

Flexibility

With the availability of programmable logic the designer is not
constrained by the available selection of fixed-function TTL
SSI/MSI parts. If a desired TTL function did not exist, the
designer previously had to use several packages to generate
it. With programmable logic devices the designer can easily
create a customized part for a specific application.

Design modifications are also easier to implement in program-
mable logic-based systems. Changes may be made by repro-
gramming a device, rather than re-laying out a board. The time
required for prototyping changes can be reduced by several
weeks, and the cost can be substantially lower.

Design Security

Programmable logic devices can be used to enhance the
security of a logic design. By programming a special ''security
fuse,” the user can disable the fuse verify logic circuitry. This
prevents unauthorized duplication of the device, while not
interfering with the part's logic functionality. Programmable
logic is ideal for any application where design security is
essential.

Performance

System performance can be increased through the use of
programmable logic. The designer has the freedom to opti-
mize the system architecture by tailoring programmable de-
vices to implement it precisely. Thus a design may be
implemented in the most efficient manner, frequently improv-
ing performance. In addition, when a logic function is imple-
mented in multiple SSI/MSI packages, the total delay incurred
includes the time required for several on- and off-chip buffers.
When the same function is implemented in a single program-
mable logic device the average delay per logic gate is reduced
because there is only one pair of I/0 buffers.

Cost Reduction

Programmable logic devices can provide complexity equiva-
lent to hundreds of TTL gates. Implementing a design in
programmable logic can therefore significantly reduce the
board space or the number of boards necessary to implement
a given function. This results in lower system cost, or
alternatively, the ability to provide more function in the same
enclosure.

Reliability

Compared to standard TTL SSI/MSI, programmable logic
reduces the number of packages necessary to implement a
given function. In some cases an entire PC board can be
eliminated. This reduction in parts count will result in increased
system reliability. Reducing the number of packages also
reduces the number of external connections between devices
in the system. Since these connections are often the least
reliable portions of a digital system, the use of programmable
logic can improve system reliability in this manner, too.

PROGRAMMABLE LOGIC FROM
ADVANCED MICRO DEVICES

The remainder of this Handbook will focus on the programma-
ble logic devices offered by Advanced Micro Devices. Includ-
ed will be discussions of their architecture and features, how
to design with them, hardware and software tools, testability,
technology, reliability, applications, and detailed product spec-
ifications.

Advanced Micro Devices offers a broad family of PAL-type
programmable array logic devices. These devices feature a
programmable-AND array which feeds into a set of fixed-OR
gates. As any logic function can be expressed in an AND/OR
sum-of-products (SOP) form, these basic elements can be
programmed to satisfy a wide variety of complex custom logic

. requirements.

Tables 1-2 and 1-3 show AMD's PAL product family and the
features incorporated in AMD's products: on-chip registers,
feedback paths, output enable control, user-programmable
output logic macrocells, programmable output polarity, vari-
able product term distribution, buried registers, special test




functions, etc. Today's devices range from 200 to over 1000 AMD is not restricting itself to just the PAL architecture. Also

gates of functional complexity. Performance is high, with available is a PROM-based fuse-programmable sequencer,
propagation delays lower than 15 ns and clock rates greater the Am29PL141. In the future, AMD will be offering program-
than 40 MHz. ECL PAL devices featuring 125-MHz operation mable logic devices based on other architectures that may be
are available. optimized for specific types of applications.

TABLE 1-2. INDUSTRY-STANDARD 20-PIN MEDIUM COMPLEXITY PAL FAMILY

Part Number Array Inputs Logic OE Outputs

Ten Dedicated, . . Six Bidirectional,
16L8 Six Bidirectional Eight 7-Wide AND-OR-INVERT Programmable Two Dedicated

Eight Dedicated, Four 8-Wide AND-OR ‘Dedicated Registered Inverting
16R4 Four Feedback,

Four Bidirectional Four 7-Wide AND-OR-INVERT Programmable Bidirectional

Eight Dedicated, Six 8-Wide AND-OR Dedicated Registered Inverting
16R6 Six Feedback,

Two Bidirectional Two 7-Wide AND-OR-INVERT ) Programmable Bidirectional

Eight Dedicated, . . . . .
16R8 Eight Feedback Eight 8-Wide AND-OR Dedicated Registered Inverting

Ten Dedicated, N . Six Bidirectional,
16H8 Six Bidirectional Eight 7-Wide AND-OR Programmable | ., Dedicated

Ten Dedicated, . . .
16LD8 Six Bidirectional Eight 8-Wide AND-OR-INVERT — Dedicated

Ten Dedicated, . . ’ .
16HD8 Six Bidirectional Eight 8-Wide AND-QR — Dedicated




TABLE 1-3. ADVANCED PAL DEVICES FROM ADVANCED MICRO DEVICES

Part Number Technology Propag?ttlo)n Delay Description
PD.
18P8 Bipolar TTL 15 ns 20-Pin, 18-Input Combinatorial PAL with Programmable
Polarity
20L8 Bipolar TTL 15 ns 24-Pin PAL Family with 8 Registered/Combinatorial
20R4 Outputs
20R6
20R8
20L10 Bipolar TTL 15 ns 24-Pin, 20-Input, 10-Output Combinatorial PAL
22P10 Bipolar TTL 15 ns 24-Pin, 22-Input, 10-Output Combinatorial PAL with
Programmable Polarity
20RP4 Bipolar TTL 15 ns 24-Pin PAL Family with 10 Registered/Combinatorial
20RP6 Outputs and Programmable Polarity
20RP8
20RP10
22XP10 Bipolar TTL 20 ns 24-Pin PAL Family with EXCLUSIVE-OR Capability, 10
20XRP4 Registered/Combinatorial Outputs, and Programmable
20XRP6 Polarity
20XRP8
20XRP10
22V10 Bipolar TTL 25 ns 24-Pin "Family of One" with 10 Programmable Output
. Logic Macrocells (OLMs)
23588 Bipolar TTL 20 ns 20-Pin PAL Sequencer with 4 OLMs, 4 Qutput Registers,
and 6 Buried State Registers
20EV8 Bipolar ECL 6 ns 24-Pin ECL PAL with 8 Registered OLMs
20EG8 Bipolar ECL 6 ns 24-Pin ECL PAL with 8 Latched OLMs
29M16 E2 CMOS 35 ns 24-Pin High Complexity CMOS
PAL with 16 OLMs and 2 Clock Inputs
29MA16 E2 CMOS 35 ns 24-Pin High Complexity Asynchronous CMOS
PAL with 16 OLMs and Product-Term Driven Clocks
APPLICATIONS CONCLUSION

PAL devices are used in a broad base of applications. They
are used frequently in minicomputers, workstations, personal
computers, and peripherals. They show up in military as well
as commercial applications. They are used both as glue-logic
replacement and as building block ICs for high-level functions
in the control and data paths of computer systems. Detailed
application examples are provided in this Handbook.

Programmable logic combines the strengths of the dedicated
general purpose and the custom logic design approaches. It
offers user-customizability with immediate turn-around time.
This revolutionary design approach results in innovative, low
cost designs, maximizing the competitive advantage of the
systems in which they are used. AMD offers a broad family of
programmable logic devices. Their architecture and features
will be described in more detail in the next chapter.




1.2 AN INTRODUCTION TO
PROGRAMMABLE LOGIC
ARCHITECTURE

PAL (Programmable Array Logic), PROM (Programmable
Read-Only Memory), and PLA (Programmable Logic Array)
devices are the three most popular programmable logic
devices (PLDs). All three share the same basic, two-level,
internal AND-OR structure shown in Figure 1-5. The AND
array is the first level, it accepts all the inputs (both true and
complement), performs the desired AND functions on these
inputs and drives the next level. The second-level OR array
combines various AND functions together producing the
desired (AND-OR) outputs. This basic AND-OR structure
makes PLDs ideal for implementing logic equations in Boolean
sum-of-products (SOP) form.

Inputs
1st Level AND Array
2nd Level OR Array

Outputs

Figure 1-5. Basic Programmable Logic
Device Architecture

PROM PAL PLA
AND Fixed Programmable | Programmable
OR Programmable Fixed Programmable

The major differences between these PLDs are in their
programmability and their capability for supporting various
logic features (Figure 1-6). -

Figure 1-6. Variation of AND-OR Programma-
bility of PLDs

PLD NOTATION

For ease of use and better understanding, a simple convention
has been adopted for programmable logic devices. Figures 1-
7 and 1-8 depict these rules. Figure 1-7.a shows the logic
equivalent of a programmable AND array and Figure 1-7.b
shows the simplified conventional representation for an AND
array. Figure 1-8 shows the equivalent technique for describ-
ing an OR array.

NP
INPUT FUSES

INPUT

LD000710

Figure 1-7.a Programmable-AND Array Logic
Equivalent

TRUE AND
COMPLEMENT
BUFFER
b PROGRAMMABLE
INPUT CONNECTIONS
TO N-INPUT AND
A %
: 414
. \
[ XX ]
INPUT —h PRODUCT TERM
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Figure 1-7.b Programmable-AND Array Logic
Diagram Notation
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Figure 1-8.a Programmable-OR Array Logic
Equivalent
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Figure 1-8.b Programmable-OR Array Logic
Diagram Notation

The AND-gate inputs are represented by a single line,
commonly described as the product term. All array inputs (true
and complement of each device input) are shown connecting
to a single input AND gate. In reality each input will have both
of its true and complement routed to the AND array. Thus, an
n input device will have AND gates with 2n inputs. For
example, the AmPAL16R8 has sixteen inputs, but all these
inputs and their complements (i.e., thirty-two lines) are routed

to each AND gate. In a programmable-AND array, each row
and column intersection, as shown in Figure 1-9, represents a
fusible input connection to the AND gate. The fuse state,
either left intact or blown, determines the customized function
of the device. An intact fuse connects the corresponding input
to the product term, a blown fuse disconnects that input line
from the product term.

- Blown

N
row \

column

- Intact

row

column
DF006130

Figure 1-9. Fdsible Arrays — Customizable Logic Functions Determined by Fuse State

Figure 1-10.a shows the fuse implementation of the logic
AND-OR function (A » B + C » D)*. To get the A « B function,
the fuses connecting input lines A and B to the first product
term are left intact, while the fuses connecting input lines C
and D to the 1st product term are blown. To get the C » D
function, the fuses connecting input lines C and D to the
second product term are left intact, while the fuses connecting

input lines A and B to the second product term are blown. in
the example here, the inputs are shown in their true forms
only, without their complements. Figure 1-10.b shows the
simplified conventional representation of this function. An X at
the intersection of input line and product line represents an
intact fuse; a missing X represents a blown fuse.

*The symbol * or * represents the logical-AND function while + represents the logical-OR function.
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Figure 1-10.a Fuse Implementation of AND-OR

A

S o ¥ 9

Four programmable Inputs
{product terms) to each
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X = Fuse Not Blown
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Figure 1-10.b Conventional Representation

Initially, all the AND gates of the programmable-AND array are
connected, via fuses, to both the true and complement of
every input. By selective programming of fuses, the AND gates
may be "'connected" to only the true input (by blowing the
complement fuse), to only the complement input (by blowing
the true fuse), or to neither type of input (by blowing both
fuses). establishing a logical don't care.

An AND gate with all fuses blown assumes the logical-true (1)
state. When all the true and complement fuses are left intact,
an unconditional logical-false (0) results on the output of the
AND gate. An AND gate with all of its input fuses intact is
represented by an "'X' within the AND gate.

ANATOMY OF A PROM DEVICE

Figure 1-11 shows the basic architecture of a very simple
combinatorial PROM device using the notation-of Figure 1-7,
1-8, and 1-8. The PROM shown has four inputs (with corre-
sponding buffers), sixteen AND gates, and four OR outputs.
The most important feature of the PROM architecture is that
an array of fixed-AND gates feeds programmable-OR gates.
The PROM inputs are fully decoded by the fixed-AND array.
This means that every combination of inputs is represented by
a separate AND gate, 2n AND gates in a PROM with n inputs.
For example, the PROM of Figure 1-7 has four inputs and has
sixteen AND gates.
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Figure 1-11. PROM Array Structure
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Notion of Min Terms and Product Terms

PROM devices incorporate the concept of Min term. Before
we define a Min term, let us define first a Literal.

A Literal is either a variable or its complement. A Min term of n
variables is a product of n literals containing all the variables in
either true or complement form, but not both. For n variables,
there are a maximum of 2" Min terms. For example the
variables A, B, C, have the following eight Min terms:

/A « /B« /C

/A+«/B+ C

/A« B+ /C
/A« B+ C

A+ /B+/C

A+«/B+ C
As B+ /C
A+ B+« C
While PROMSs incorporate the concept of Min terms (since all
the inputs are fully decoded), the PAL or PLA devices
incorporate the concept of product terms. A product term of n
variables is defined to be a product of 1 to n literals containing
either one, two or many variables (up to n), in either true or
complement form, but not both forms of the same variable.
For example, for three input variables such as A, B, C there
can be twenty-six different product terms:

6 A /A B /B G, /C

(12) A+B, A+C, B+C /A+B /A+C, /B+C
A /B, A +/C, B +/C, /A +/B, /A +/C, /B +/C

A+B+C /A*+B+C A+/B-C,A+B+/C
/A +/B +/C, /A +/B » C, A+ /B +/C, /A +B+«/C

A PROM can be used for simple logic functions. Since the OR
array is programmable, the outputs can be programmed
individually from every possible input combination. This allows
a PROM device to implement a separate and independent
logic function on each of its outputs. Thus, each PROM output
can implement any logic function limited only by the number of
inputs available.

®

Since all the PROM inputs are fully decoded, applications such
as look-up tables, character generators, code converters, and
various function generators which require every input combi-
nation to be programmable are good candidates for PROMs.

However, PROMs have a fixed number of inputs and a fixed
number of outputs. For example, a 4K x 8 PROM has twelve
" inputs and eight outputs. Thus it needs 4,024 fixed-AND gates
to fully decode its twelve inputs. This fixed input/output
- structure is a major limitation of a PROM devics, especially for
logic functions. A logic function requiring a different mix of
inputs and outputs — even though the total number may be
less than that offered by the structure of a PROM — will not be
able to use that PROM device. Thus, a function requiring
thirteen inputs and six outputs would not fit into the previously
mentioned 4K x 8 device, even though it requires a smaller
total number of inputs and outputs (13 + 6) than the device
offers (12 + 8).

Another limitation of the PROM devices is that it is difficult to
accomodate a large number of inputs. Each additional input,
doubles the size of fuse matrix. For example, a ten-input,
eight-output function requires a PROM with 8K fuses. Increas-
ing the inputs to eleven increases the fuse array size to 16K
fuses. Because of this, the largest PROM presently available
is limited to fourteen inputs (16K x 8).

Typical logic fuctions can easily have up to sixteen inputs
which would require a PROM with 64K locations. For four
outputs, this would{ require 256K locations. However, few

applications, especially for logic functions, would require all
possible input combinations. A large number of fuses would
therefore not be used. Also, typical output functions don't
always come in data granularity matching the PROM width.
For example, data path functions tend to be wider than the
path itself because of additional functions such as parity bits,
ripple carry, and serial inputs and outputs etc. Thus, these
would not be well served by fixed width PROM sizes.

Various control path functions, such as state machines, can
also quickly use up both inputs and outputs. A PROM with a
register on the outputs as a state machine would require both
logical inputs and state feedback inputs, while generating
control outputs and state feedback outputs. Note that for each
bit of state information, the feedback inputs and outputs are
tied together, using up an input and output pin (Figure 1-12).
Thus, when a large number of states are required, very few
input and output pins are left over to do something else.

LOGICAL
INPUTS

A 4

FULLY DECODED
FIXED
AND ARRAY

STATE
FEEDBACK v

PROGRAMMABLE
OR ARRAY

v

REGISTER

D>

CONTROL-
OUTPUTS

BDO006700

Figure 1-12. Registered PROM State Machine
ANATOMY OF A PAL DEVICE

The array architecture of a PAL device is shown in Figure 1-13.
The basic PAL structure is exactly opposite that of a PROM:
the AND array is programmable and the OR array is fixed.
Unlike PROMs, the inputs are not fully decoded. There are six
inputs to the PAL array of Figure 1-13, but only sixteen AND
gates (not 2° gates). Since the AND array of a PAL device is
programmable, all the inputs need not be fully decoded. This
helps to remove one of the key inefficiencies of a PROM (2"
gates for n inputs), allowing PAL devices to have considerably
more inputs.

In other words: increasing the number of inputs does not result
in a dramatic increase in the number of fuses. For example,
increasing the number of inputs (from six to ten) for the
example of Figure 1-13 increases the fuse array only from
12x 16, to 20x 16.

The fixed-OR array of a PAL device dictates to which OR gate
any particular AND gate connects. In Figure 1-13, four AND
gates are dedicated to each OR gate in the array. Sincs, for a
PAL device, the output provides the sum of a limited number
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of AND gates, the number of AND gates required by an
equation must not exceed this number.

Besides their larger number of inputs, PAL devices contain
many additional architectural features which make them ideal

for implementing logic functions. These features include
programmable 170 pins, registered or combinatorial outputs
with internal feedback to the array, outputs with programmable
polarities, etc. (A detailed description of further features is
provided later in this chapter)
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Figure 1-13. PAL Array Architecture

ANATOMY OF A PLA DEVICE

The array architecture of a PLA device is shown in Figure 1-14.
The PLA architecture has both the AND array and the OR
array user-programmable. This gives additional logic capability
over PROMS and PAL devices. PLAs combine the advantages
of PAL devices over PROMs (the programmable-AND plane),
with the advantages of PROMs over PAL devices (the
programmable-OR plane). PLA devices can include the same
logic features which overcome the limitations of too few
inputs, the allocation of inputs versus outputs, registered
feedback, or output polarity, although few commercially avail-
able devices actually implement them. The programmable-OR
array allows AND gates to be tied to OR gates, as desired, by
blowing appropriate fuses. Here logic functions are limited by
the total number of AND gates allocated to all outputs, instead
of by the AND gates allocated to a particular OR gate in a PAL
device. Thus, logic functions requiring a larger number of AND
gates may be allocated to a particular OR gate appropriately.

Additionally, a PLA structure allows true sharing of AND gates
for an output; the same AND gate may drive multiple outputs.
This allows more efficient utilization of AND gates in a PLA
than in a PAL device.

The disadvantages of PLAs are not quite so obvious. Because
of the extra programmable-OR plane, a given signal has to
pass through two programmable arrays; as a result, PLAs are
inherently slower than PAL devices and PROMs. This can
make a PLA unsuitable for many high-performance applica-
tions. Also, in practice the user can seldom take advantage of
allocating a large number of AND gates to a particular OR
gate. The number of AND gates required for a particular
equation is related to the number of inputs to the equation.
Equations using a large number of AND gates, with a large
number of inputs pins, can be very cumbersome. Traditional
logic design techniques such as Karnaugh maps cannot
handle much more than five or six inputs, and computer aid for
this task is not generally available. Also, because of the added
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silicon real estate required for the programmable-OR array,
most of the commercial PLAs have fewer AND gates than
comparable PAL devices.

In data-path applications such as barrel shifters, the sharing of
AND gates between outputs is almost impossible. Here
individual equations are dependent upon their individual data

line (i.e., the equation for output QO is dependent on DO; Q1 is
dependent on D1, etc). Here, PAL devices which do not have
to provide AND-gate sharing for output, tend to fit better. Since
the critical path of most systems is in the data path, PAL
devices tend to be better suited for these applications, since
they are faster than PLAs.
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Figure 1-14. PLA Array Architecture

SUMMARY

PAL, PROM, and PLA devices represent three programmable
logic architectures. Although very similar in basic array archi-
tecture, they differ significantly in their ability to implement
logic functions, in their applications and in their programmabili-
ty aspects.

Each device type implements an AND-OR two-level logic array
which allows implementation of logic equations in SOP form.
The PROM is the most limited of the three device types. While
it is able to implement any logic function it has very few inputs
to work with. In a PROM device, all inputs are fully decoded, all
the Min terms are generated, and each output provides the
sum of Min terms of all the input variables. The PROM has a
fixed number of inputs and outputs and does not provide any
architectural features to enhance logic design capability.

PLA devices, on the other hand, provide the most flexible
architecture of the three for implementation of logic equations
by using a programmable-AND array and a programmable-OR
array. However, in practice the added flexibility of the PLA can
seldom be effectively used. Further, the PLAs' inherent lower
speed is unacceptable in high-performance designs.

The PAL device, sits in between. It provides significant
capability to implement logic functions. Its programmable-AND
array allows equations with many inputs. Its other architectural
features such as programmable 1/0O, internal register feed-
back, and choice of output polarity allow optimization of pin
allocation and logic equations. :

Table 1-4 summarizes the advantages and disadvantages of
the three programmable logic architectures.
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TABLE 1-4. COMPARISON OF THREE DIFFERENT PROGRAMMABLE LOGIC ARCHITECTURES

PROM

PAL

PLA

Full decoding of all input

variables variables

Partial decoding of all input

Partial decoding of all input variables

Generate all Min terms
Terms

Generate limited number of Product

Generate limited number of Product
Terms

Each output provides sum of Min
terms

Each output provides sum of
limited number of Product Terms

Each output can provide sum of all
the Product Terms

Limited Architecture features

Additional Architecture features

Additional Architecture features

Speed—Faster Speed—Fastest Speed—Slowest
Flexibility
Limited Better than PROM Maximum

Easy to understand and use

Fairly easy to understand and use

Hard to understand and use

DETAILED ARCHITECTURE OF PAL
DEVICES — CAPABILITIES
Figure 1-15 shows the detailed architecture of a typical PAL

device, and its important architecture variables. Four most
important components of PAL architecture are:

AND plane

OR plane
Storage elements
1/0 pins

O
CLK CONTROL
[ RESET/PRESET 3 l .
, I
=>——=— proa. FIXED OUTPUT —3
[>—{s—] AND OR
PLANE PLANE CELLS
FEEDBACK
MUX
BD006690

Figure 1-15. PAL Architecture
PAL Architectural Variables

® Number of Inputs
® Number of AND Gates

® Number of OR Outputs
® Number of PTs/Output
@ Distribution of PTs

® Nature of Output Cells
@ Nature of Feedback

® Dedicated 1/0
@ Bidirectional 1/0

® Prog. Polarity
® Number of Banks
o Clock Control

RESET/PRESET Control
PRELOAD

Architecture of the AND Plane

This plane provides the interconnection of inputs (both true
and complement) to the AND gates to form both logical and
control product terms. Logical product terms are used for logic
functions and control product terms are used for control

functions such as Output-Enable control, RESET, PRESET,
PRELOAD, and observability.

The total number of inputs and product terms determine the
size of the AND plane. While the first-generation PAL devices
had up to 2K fuses and 64 product terms (each with 32 inputs),
the trend is towards larger AND planes.
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Architecture of the OR Plane

This plane determines the connectivity of the "'logical ORing'
of the AND gates to the outputs, and defines three things: the
number of OR outputs, the number of product terms (PTs) per
output, and the distribution of PTs per output whether same or
variable.

In a typical PAL architecture, the outputs of the AND gates are
connected to fixed-OR gates. The limitation of the PAL
devices' AND-OR plane is the number of inputs to the AND
gates, the number of AND gates, and the number of "OR"
outputs. While first-generation devices had seven-eight logical
product terms per output and a maximum of eight OR outputs,
the trend is toward a larger number of outputs with more
product terms per output.

Architecture of Output Cells

The architecture of the output cells specifies at least the
following:

® Nature of output

® Nature of flip-flop used as storage element

® Organization of outputs

® Flexibility of feedback path

The output(s) can be configured to have either sequential
(registered) or combinatorial capability, as well as polarity
control for active HIGH and active LOW.

The flip-flops used for output cells can be one of the following:
edge-triggered D-type flip-flops, J-K, S-R, or T flip-flops, or
latches. Flip-flops are good for clocked synchronous system
designs, while latches are good for asynchronous logic
applications. .

D-type flip-flops are the easiest to design with, while J-K flip-
flops are probably the most flexible. However, thers is a trade-
off especially on the OR array for implementing either D or J-K
type flip-flop. A disadvantage of the J-K flip-flop is that both
the inputs have to be driven by the OR array. This increases
the OR-array size. The disadvantage of the D flip-flop is that it
requires a HOLD term to hold a particular state; J-K flip-flops
do not need HOLD terms. It is conceivable that a given logic
function could be implemented with a smaller number of
product terms with J-K rather than D flip-flops. However, this is
application dependent. For state-machine designs involving a
large number of frequent state transitions, the benefits of J-K
over D becomes less important. '

Traditionally, for PAL devices, speed and architecture simplici-
ty have been the most important criteria and most PAL
devices use D-type flip-flops only. Lately even other types of
flip-flops are being offered on PAL devices.

The organization of the output cells determine whether all the
cells are organized as a single bank (with a common clock), or
configured into multiple banks with separate clocks.

The output cell structure also determines the flexibility of the
feedback path. The feedback may be from the combinatorial
output, registered output or from the 1/0 pins. The feedback
paths can be either a single or multiple lines for increased
flexibility.

Architecture of I/0 Pins

The 1/0 pin architecture determines whether a pin may be
defined as a dedicated input pin, dedicated output pin, or a
dynamically-controllable 170 pin.

While the first-generation devices had 'a limited number of
dedicated input pins, few output pins, and few programmable
1/0 pins, the newer PAL-type devices have more programma-
ble I/0 pins.

PAL Nomenclature

PAL devices are known in the industry by the following
nomenclature:
PAL xx

zz
Maximum Number of Outputs
Combinatorial or Maximum
number of Registers

Type of Outputs

R = Registered
L = Active LOW
H = Active HIGH
P = Programmable Polarity
V = Versatile Output

Macro Cells
X = Exclusive-OR output
S = Sequencer-Type device
M = Input/Output Macro Cells
A = Asynchronous outputs
G = Latched Outputs

- Maximum Number of Array
Inputs

_

For example, the AmMPALHCT29M16 (which is a 24-pin CMOS
PAL device) has a maximum of twenty-nine inputs to its AND
array, and sixteen input/output macrocells. Since the maxi-
mum number of inputs (twenty-nine) plus the outputs (sixteen)
exceed the total number of pins in the package, it implies that
the device has feedback and/or bidirectional 1/0 pins.

PAL ARCHITECTURAL FEATURES AND
BENEFITS

PAL devices contain many architectural features which make
them ideal for implementing logic functions. These features
include:

® Programmable 1/0 pins

Flexible Output-Enable control and Bidirectional 1/0
Dedicated versus programmable output structure
Programmable polarity

Flexible clocking scheme

Buried state registers

Miscellaneous features

— Accessibility

~ Controllability

— Testability

- Observability

Programmable 1/0 Pins

Programmable input/output pins are one of the most impor-
tant resources of a PAL device. They allow the PAL device to
be tailored to fit the required allocation of inputs and outputs.
PAL devices can thus implement far more complex and
different logic functions than a PROM — even one with more
pins.

Flexible Output Enable Control & Bidirectional
170

Logic diagrams for the bidirectional output structures of the
PAL devices are shown in Figures 1-16.a and 1-16.b. One
important feature of the PAL devices' bidirectional output is
the flexibility in controlling the Output Enable.

The Output Enable can be either dedicated (controlled by a
pin) or programmable (controlled by a product term from the
AND array).

The output buffer associated with the output pin may be
programmed in one of three ways: as a dedicated output, a
dedicated input, or a dynamically controllable input/output.

When programmed as a dedicated output, the output buffer is
always enabled and the logic function is fed back to the AND
array. This feedback path allows more complex logic functions
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to be implemented by using two or more levels of AND-OR
gating.

When programmed as a dedicated input, the AND-OR gate
associated with that pin is unused. This ability to trade off
outputs for inputs is one of the big advantages of PAL devices
over other programmable logic devices, especially PROMs.
The designer is no longer limited to a fixed number of input
and output pins. The ratio may be programmed to fit the
intended application. .

Finally, when programmed as a dynamically controllable
input/output buffer (i.e., enabled/disabled by a logical combi-
nation of one or more inputs) this pin may be used as an input,
while retaining the full logical capability of the AND-OR gate.
This is-especially useful in control applications (microproces-
sor handshaking protocols) and bus-oriented data operations
(data steering and data storage/manipulation). A serial input/
output pin is a common example. When shifting left the pinis a
serial input, but when shifting right the pin is a serial output.
This mode provides maximum utilization of the PAL architec-
tural resources.

PROGRAMMABLE
OUTPUT
ENABLE

| /7-WIDE A0l
o

: " .
D= £ 4
LD000640
Figure 1-16.a Active-LOW Bidirectional Output
PROGRAMMABLE
OUTPUT
ENABLE
7.WIDE AND-OR
o
] D—t) K‘
LD000650

Figure 1-16.b Active-HIGH Bidirectional Output

Figures 1-17.a and 1-17.b show the active-LOW and active-

HIGH versions of PAL devices with dedicated outputs. Here
the outputs are always enabled and the AND gate previously
used for the Output-Enable function can be used for an extra
logic product term. The feedback path from output to input is

still provided, allowing for implementation of multi-level logic.
This extra AND gate makes these outputs ideal for non-bus- .
oriented logic replacement, especially complex control-signal
generation, encoding, and decoding.

8-WIDE

/ AND-OR-INVERT

o

LD000620

Figure 1-17.a Active-Low Dedicated Output




8-WIDE

AND-OR

>

Figure 1-17.b Active-HIGH D

LD000630

edicated Output

Individual product-term control for each Output-Enable func-
tion gives the designer the ability to configure each output on
an individual basis. On the other hand, a common, dedicated
Output Enable (Figure 1-18) makes registered PAL devices
ideal for bus-oriented systems. The registered PAL device can

be programmed to provide data storage, operation, or steering
functions, the result of which is placed on the data bus by
enabling the output buffer. Since most PAL devices have
24 mA current sinking capability, they can drive most on-board
buses and many backplane buses.

INVERTING
8-WIDE OUTPUT
AND-OR ¢ ocK BUFFER

D-TYPE

REG
D o
a
P
<
DEDICATED
REG FEEDBACK OUTPUT
BUFFER ENABLE
LD000610

Figure 1-18 Registered Output

Figures 1-19 and 1-20 show the output structure of second-
generation devices such as the AmPAL18P8 and the Am-
PAL22V10, where each output is controlled by a separate
Output Enable product term. Figures 1-21.a and 1-21.b show
the output structure of the AmPAL23S8. Here, besides a

separate product-term contro! for each output, there is a
polarity fuse. This polarity fuse allows the designer to control
the Output Enable as a combination of various signals
(DeMorganized equations) rather than a single AND term. This
is especially useful in bus-control applications.
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Figure 1-20.a AmPAL22V10 Output Logic Macrocell Diagram

S, S, Output Configuration
0 0 Register/Active LOW

0 1 Register/Active HIGH

1 0 Combinatorial/Active LOW

1 1 Combinatorial/Active HIGH

0 = Unblown_Fuse
1 =Blown Fuse
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Figure 1-20.b Output Configurations of AmPAL22V10
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Figure 1-21.a AmPAL23S8 Output Logic Macrocell

1-20




From Buried

Register Output
Common

Observability Term _D

=—
Common E

Synchronous
PRESET

PO

P7
or
P11

Clock

Common
to all

Outputs Async

{

OQutput Enable

MUX
VO Pin

RESET

To AND

is_t

—

Array

LD000591

Figure 1-21.b AmPAL23S8 Output Register

Dediqated vs. Programmable Output Structure

PAL devices come with either dedicated or programmable
output structures which can be registered or combinatorial.
While the first-generation devices such as the 16LD8, 16HDS8,
etc., had dedicated active-LOW/HIGH outputs and the 16R4/
16L8 devices had dedicated registered or combinatorial out-
puts, the trend is towards PAL devices with more flexible
output structures.

Figure 1-20 shows the output architecture for the Am-
PAL22V10 where each output can be defined and its architec-
ture programmed on an individual basis. Each output is user-
programmable for either registered or combinatorial operation.
This flexibility allows the designer to optimize the device
design by having only as many registers or combinatorial
outputs as needed.

One common feature of most registered PAL devices is the
registered output with feedback to the array. This registered
feedback path fits the classical state-machine design. The
register's input is driven by the AND-OR array and is used to
store the logic information. Once the data is stored in the
register, it can act either as output or present state informa-
tion. The registered PAL device can thus be used as a
synchronous state machine. The feedback acts as the "'pres-
ent state' information which, combined with the ''present
inputs is used to generate the '"next state' information.

Programmable Polarity

Programmable polarity allows the designer to configure the
output as either active HIGH or active LOW. First-generation
devices lacked this capability. The second-generation PAL
devices such as the 18P8, 23S8, 22V10, 20EV8, 20XRP10,
and third-generation devices such as the 20M16 CMOS PAL
Family all incorporate this feature.

Programmable polarity, along with the choice between either
registered or combinatorial output, allows the designer to
operate an individual output in one of four modes: Registered/
Active LOW, Registered/Active HIGH, Combinatorial/Active
LOW, and Combinatorial/Active HIGH. Note that the associat-
ed feedback path also changes with the output mode. This
capability gives the designer more flexibility to optimize the
device for the particular application requirements.

Number of Product Terms/Output and
Distribution of Product Terms

The logic capability of a PAL device is determinod by the
number of product terms per output and how thoy aro
distributed. The larger the number of product torms por output
the more powerful is the device's logic capability. Howevor,
there has to be a balance between logic flexibility and
utilization efficiency. Increasing the number of product terms
per output unnecessarily results in inefficient utilization of
device resources. For replacing SSI/MSI devices, a maximum
of sixteen product terms per output is considered adequate.

The other factor which determines the logic capability is the
distribution of product terms: whether product terms are
distributed equally or unequally. Variable product-term distribu-
tion allocates different numbers of logical product terms to the
individual outputs, increasing the complexity of logical func-
tions to be performed. With sixteen logical terms allocated to
an output, up to sixteen logical terms can be evaluated in a
single clock cycle, without requiring any feedback.

Flexible Clocking Scheme

Most of the registered PAL devices can be used for synchro-
nous state machines. For most of the simple synchronous
state machines, one common clock for all the registers is
adequate. However, some applications may require more than
one clock, preferably with programmable polarity, so that
registers or banks of registers can be triggered either by the
rising or trailing edge. Multiple clocks with programmable
polarity are useful for building pipelined systems — where
different elements of the system can possibly be triggered by
different edges.

In a PAL device, however, a pin is a valuable resource. A
dedicated clock pin for registered devices may be appropriate,
but PAL devices with both registered or combinatorial outputs
might not want to waste a dedicated clock pin used for
registered operation only. Hence, the pin is clock as well as
input. Glue-logic applications might want a product-term-
driven clock. This provides a separate clock for each flip-flop.
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Buried State Registers

The output storage elements of the PAL device are used
either as outputs or as state bits. Typically these output
storage elements are associated with I/0 pins, and are driven
by the AND-OR array. The number of output/state registers,
1/0 pins, and array size (product terms) are the three most
important resources of programmable logic devices. These
three resources are always in short supply. For optimum state-
machine design, system designers always strive to achieve an
optimum balance of these resources.

Traditional first-generation devices such as the 16R4/16R6/
16R8 have been used as SSI/MSI logic replacement and for
doing state-machine designs. However, because of a limited
number of registers, only simple state machines can be

designed with these devices. For more complex state-ma-
chine designs, designers have asked for dedicated buried
state registers. These registers are driven from the same
AND-OR array, but, they are not tied to the output pins.
Therefore, they are called ''buried registers." However, they
are accessible and controllable by the AND-OR array, just like
the output registers. These buried registers provide extra
functionality. They could be used for keeping track of various
"internal flags" for generating timing and various other inter-
nal contro! information, without tying up the valuable 1/0 pins.

Figure 1-22 shows the architecture of the AmPAL23S8, the
industry's first bipolar PAL-based sequencer device. As seen
from the block diagram, this device offers six dedicated buried
registers in addition to eight output registers. Figure 1-23
shows the architecture of its buried registers.
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Figure 1-22. Block Diagram of AmPAL28S8
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Figure 1-23. AmPAL23S8 Burled State Register
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MISCELLANEOUS FEATURES —
ACCESSIBILITY, CONTROLLABILITY,
TESTABILITY AND OBSERVABILITY

PAL- and PLA-based sequencer devices need a large number
of internal registers that are easily accessible, controllable,
testable, and observable.

Power-up RESET

Power-up RESET resets all internal registers during system
power-up. All the registered devices in the AMD PAL Family
have been designed to reset automatically during system
power-up. This feature is especially valuable in simplifying
state-machine initialization.

Due to the asynchronous operation of the power-up RESET

and the wide range of possible V. rise time, certain condi-

tions are necessary to insure a valid power-up reset. For

AMD's PAL devices, these conditions are:

® The V¢ rise must be monotonic

® Following reset, the clock input must not be driven from
LOW to HIGH until all applicable input and feedback setup
times are met.

RESET/PRESET

The ability to RESET and PRESET registers increases the
system functionality.

These RESET/PRESET functions can be asynchronous or
synchronous, and can be controlled either by a dedicated pin
or by a product term driven from the AND array.

If these functions are driven by product term(s), these could be
either a common product term or individual product terms.
When the synchronous product term is asserted (HIGH), the
output registers will be loaded with a HIGH on the next LOW-
TO-HIGH clock transition. When the asynchronous RESET
product term is asserted (HIGH), the output registers will be
immediately loaded with a LOW (independent of the clock).
These functions are particularly useful for applications such as
system power-on and reset.

PRELOAD

PRELOAD allows any arbitrary value to be loaded into the PAL
device's output registers. AMD's registered PAL devices are
designed with unique PRELOAD circuitry that provides an
easy method of testing registered devices for logical function-
ality.

PRELOAD is the only way to allow full logic verification of
programmed registered PAL devices and thus guarantee
correct logical functionality. Without PRELOAD, many device

failures cannot be discovered until the device is tested as a
part of the finished system.

A typical functional test sequence would be to verify ail
possible state transitions for the device being tested. This
requires the ability to set the state registers into an arbitrary
"'present state’ value and to set the device inputs to any
arbitrary "'present input' value. Once this is done, the state
machine is clocked into the "next state,” which is then
checked to validate the transition from the present state. In
this way any state transition can be checked.

Without PRELOAD, it is difficult and in some cases impossible

, to test an arbitrary present state value. This can lead to logic

verification sequences that are either incomplete or excessive-
ly long. Long test sequences result when the feedback from
the state registers "interferes’ with the inputs, forcing .the
machine to go through many transitions before it can reach a
particular state value. The test sequence becomes excessive-
ly long when a state must be reentered many times to test a
wide variety of input combinations.

In addition, complete logic verification may become impossible
when states that need to be tested are never entered with
normal state transitions. ''Forbidden'* or don't-care states that
are not normally entered need to be tested to ensure that the
state machine returns to a valid state.

PRELOAD eliminates these problems by providing the capabil-
ity to go directly to any desired arbitrary state. Thus test
sequences may be greatly shortened and all possible states
can be tested, greatly reducing test time and development
costs, and guaranteeing proper system operation.

Observability of Buried State Registers

The AmPAL23S8 is the first PAL device to offer product-term
controlled, observable buried state registers. The observability
product term, driven by a common AND-OR array, allows the
system designers to observe buried registers under pin control
or product-term control (by a combination of various input
signals). The contents of the buried registers can be moni-
tored for system debugging purposes.

An observablity product term controls a set of six inverting
buffers, which serve both the six buried registers and six
output registers (four output registers and two output logic
macrocells). The observability product term causes the six
buffers to disable signal flow from the six output registers to
the 1/0 pins, and enables signal flow from the six buried
registers to the respective 1/0 pins (Figures 1-21.a and
1-21.b). This feature is especially useful for system-level
testing and debugging.
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SUMMARY

Table 1-6 summarizes different architectural features and their benefits for the system designers.

TABLE 1-5. PAL ARCHITECTURAL FEATURES AND THEIR BENEFITS

Features Benefits
e Removes limitation of fixed 1/0s
. e Offers variable number of I/0s
Programmable 1/O Pins e Allows allocation of 1/0s based on application
requirements
e Dedicated inputs
Bidirectional 1/0 Capability e Dedicated outputs '
o Dynamically controliable 1/0s
Programmable Polarity e Simplifies deMorganization of equations
Registered Outputs with Feedback e Simplifies state-machine design
Combinatorial Outputs with Feedback e Allows muitiple levels of logic
. e Variable number of registered/combinatorial outputs
Output Logic Macrocell e Simplifies Mealy-Moore-type state-machine design
Variable Distribution of Product Terms e Better application fit
. N e Better synchronous. design
Flexible Clocking Scheme e Eases pipelined system design
. o Offers multiple clocks
Product-Term-Driven Clocks e Good for glue-logic applications
. . e Frees up I/0 Pins )
Buried State Registers o' Offers more complex state-machine design capability
Asynchronous RESET/PRESET e Better system initialization
PRELOAD e Better testability
Power-Up RESET o System initialization
Observability of Buried State Registers .

Simplifies system testing and debugging




1.3 HOW TO DESIGN WITH
PROGRAMMABLE LOGIC

DEVICES

INTRODUCTION

Programmable Logic Devices (PLDs) with their programmable-
AND-OR array structures are ideal for implementing Boolean
logic functions expressed in sum-of-products (SOP) form. Any
logic function can be implemented in a PAL device as long as
the number of inputs, outputs, and the number of product
terms required do not exceed what is available on the device.

The SOP form can be derived from truth/function tables, state
or timing diagrams, and Karnaugh maps. High-level software
packages are available to ease this derivation.

Logic Equations

Digital systems are based on the Boolean logic system, which
processes only two types of values: 0 and 1. These two values
are processed through electronic circuits known as gates to
produce an output. Combinations of such gates can be used
to implement a logical equation that generates outputs based
on combinations of inputs. These outputs can be interpreted
as data or used as inputs to other logic networks.

All digital logic can be expressed in terms of three fundamen-
tal logic gates: AND (+), OR (+), and NOT (/). These logic
gates or functions are manipulated using Boolean algebraic

theorems and laws to simplify and reduce complex logic
expressions.

Implementing Boolean Equations in PAL
Devices

The programmable-AND and fixed-OR structure of a PAL
device require that logic expressions be expressed in the SOP
form. in SOP form, the maximum number of logic levels is two:
an AND and an OR operation. Any NOT or invert operation is
assumed to occur before the AND plane of the PLD and
therefore does not contribute to the propagation delay through
the PLD AND-OR plane.

For example: A+ (B.+ C+ (D + E)) in Figure 1-24 is a four-level
logic expression. The subexpression D + E must be evaluated
before ANDing with C. This is then ORed with B before finally
ANDing with A. The logically equivalent SOP form Is:
A+B + A+C+D + A+C+E.

The SOP equation maps directly into the PAL device structure:
each product term (A+ B, A+C+D, and A«C+E) is programmed
into the AND array of the output dedicated to this logic
expression. This output must have at least three product terms
to express this logic equation (Figure 1-25).

mooOw >

F = A (B+C+ (D+E))
LD000540

CONVERT TO SOP FORM

F = A+ (B+Ce (D+E)
F=A*(B+ C*D + C*E)
F=A*B + A'C'D + A'C'E

moow >

- inputs go through
only two levels of

logic (AND, OR) to
generate the functien F

LD000551

Figure 1-24 A Simple Combinatorial Logic Expression
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Figure 1-25 Logic Expression Mapped into a PAL Device

From Concept to Implementation

Designing with programmable logic usually involves three
phases: design, programming, and testing. In the design
phase, you specify Boolean functions, i.e., logic equations for
solving the problem. In the programming phase, the logic
equations are converted into SOP expressions, which are then

translated into a device fuse map used to program the device.
The test phase ensures that the programmed logic device
performs the functions specified.

DESIGN PHASE

The design phase can be further partitioned into a number of
basic steps (Figure 1-26).
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Figure 1-26. PAL Design Process

Define Problem

Defining the particular logic function to solve the problem is
the first step in the design phase. Here you identify the nature
of the problem to be solved: whether a combinatorial function
(such as address decoding, priority encoding, data multiplex-
ing/demultiplexing, or generating control signals), or a se-

quential function (such as counting, data shifting, or imple-.

menting. a particular state machine).
Identify Design Requirements

After you have defined the problem, choose a device based
on the design requirements: number of input/output pins,
. number of product terms, registered or combinatorial outputs,
polarity, power consumption and speed.

Generate Boolean-Logic Equations

Identification of inputs, outputs, and signed polarity may be
easy. However, the number of product terms used to solve the
design problem is determined only after the necessary Bool-
ean logic equations have been generated.

Generating Boolean-logic equations for combinatorial logic is
relatively straightforward. You start with the inputs, outputs,
and the truth table. You can derive logic equations from the
truth table by grouping the ''1s" (for active-HIGH outputs) or
"'0s'" (active-LOW outputs). Grouping the '"0s" instead of

"1s" has the effect of inverting the equations. This is a
convenient and common technique for generating inverted
logic for use in activs~LQW PAL devices.

Generating logic equations for ‘sequential circuits is more
complex. You have to define the inputs, outputs, and states.
You then draw a state diagram, specifying all the appropriate
state transitions to generate the state table. Regular digital
design methods are then used to assign states such that
redundant states are eliminated to obtain the minimal number
of states.

After the states have been determined, assign state numbers
and use logic minimization techniques to arrive at the minimum
amount of logic necessary to implement the sequential func-
tion.

The logic equations derived from truth tables, state diagrams
and Karnaugh maps are converted into the SOP form to fit into
a PAL device. You can use computer-aided design (CAD) tools
to' greatly speed up the logic design process. These CAD
packages allow you to express the design solution in a high-
level syntax such as logic schematics or logic language
descriptions. They also take the truth tables, state diagrams,
flowcharts, and other high-level descriptions of the solution
and automatically generate logic equations in SOP form. The
equations can be minimized if they exceed the number of
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product terms available on the device. These CAD packages
are rolatively inexpensive and available from a number of
vendors including DATA 1/0 (ABEL*), Personal CAD systems
(CUPL*), and AMD (AmCUPL, and PLPL).

We will demonstrate designing with a PAL device with a simple
design example. We want to implement the following combma-
torial logic function (Figure 1-27):

O1=/I

02 = /11«12

O3=11+13

04 = /(/13+14)

05 = /(/13+15416 + i7 + 18+19)
OB = /(i8+19 + /13+/17+19+110)

Figure 1-27. Logic Design Example

For this example, the optimized Boolean equations can be
written in the SOP form:

Ot =/1
02 = /11+12
O3=11+13
O4=[3+/14
O5 = (I3 + /15 + /16)+/17+(/18 + /19)
= (13/17 + /15+/17 + /16+/17)+(/18 + /19)
= [3¢/17+/18 + /15+/17+/18 + /16+/17+/18
+[3+/17+/19 + /154/17+/19 + /16+/17+/19
06 = (/18 + /19)+(13 + 17 + /19 + /110)
= /18+13 + /18417 + /18+/19 + /18+/110
+ /19413 + /19¢17 + /19+/19 + /19+/110

Outputs O5 and O6 have six and eight PTs, respectively. -

Using logic minimization (available with most PLD design
packages), O6 can be reduced to the following equation with
only four PTs.

06 = /19 + /18+I3 + /18+17 + /18+/110

Logic minimization reduces the number of PTs necessary to
represent a function such that the logic expression can fit into
an output on a PLD. If the number of PTs after minimization
still exceeds the number of PTs for the output pin, then you will
have to use a larger PLD with more PTs per output.

Inverted Logic Expressions

In the above example, we have specified active-HIGH outputs.
However, if you wanted to use an active-LOW PLD such as the
AmPAL16L8, the equations in-Figure 1-27 would have to be
converted from active HIGH to active LOW by applying
DeMorgan's theorem as follows:

/01 =11

/02=11+/12

/03 = /11+/13

104 = /13+14

/05 = /13+15+16 + 17 + [8+19
/06 = 18+19 + /I3+/17+19+(10

The equations are in the SOP form and can map directly into a
PLD.

Note that more advanced PLDs such as the AmPAL22V10
have output macrocells which give the user many output
options. These outputs can be programmed with HIGH or
LOW polarity. Since the output pin is programmable, you can
choose between the active-HIGH or active-LOW implementa-
tion, whichever, gives the lowest number of PTs per output.

Verify Design

After you have generated the logic equations, you can perform
logic simulation on the resulting equations to test for correct
functionality before actually programming a part. This is an
inexpensive and fast way to catch mistakes. The simulation
procedure uses test conditions or vectors which specify the
inputs to and ‘expected outputs from a PLD. Some CAD
systems can generate the test vectors automatically, or you
can generate them manually.

If manual test vector generation is performed, it is usually done
by the logic designer who knows the design best. The
designer creates a function table showing the inputs and
expected outputs into and from the device. A CAD package
can then convert the data in the function/truth table into a
valid test vector format acceptable by the simulator and the
PLD programmer/tester to be used.

PROGRAMMING PHASE

Once you are satisfied with the results of logic simulation, a
device map can be generated from the equations. Figure 1-28
shows the logic diagram of the AmPAL16L8 for implementing
above equations. We have arbitrarily assigned outputs O1-06
to pins 14-19, and the inputs [1-110 to pins 2-9, 11, and 13.

O1 is assigned to pin 19. To make this output the inverse of 11,
connect input line 0 to product term 1 and disconnect all the
remaining links for this product term. For fuse-based PLDs,
you have to selectively make disconnections by blowing fuses.
Connections are indicated by an X at the intersection of input
line O and product term 1 in Figure 1-28.

Since the other PTs for the "'O1'" output OR gate are unused,
their outputs are forced to zero by connecting all the links.
When all the links are connected, both the true and comple-
ment value of an input are fed to a PT, resulting in a logic zero.
In Figure 1-28 unused PTs (with all connections intact) are
indicated by Xs in the AND gates at the OR gate inputs.

The final consideration for *O1'" output is the output enable.
The logic diagram and logic equation for the function'O1 do
not show output enable function. This means that '"O1"
should be always enabled. In Figure 1-28, PT 0O controls the
Output Enable function for "O1". PT 0 is always TRUE/HIGH
when all the links in a PT are disconnected.
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Figure 1-28. Logic Diagram for Example of Using the AmPAL16L8
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The next output /02 is the OR function of |1 and /12. The
equation /02 = |1 + /12 is represented in the PLD by leaving
input line 0 (I1) connected to PT 9 and disconnecting the rest
of the links on this PT. Then since an OR function is needed,
we move to the next PT and leave input line 5 (/12) connected
while disconnecting the other links in PT 10. Since PT 11
through 15 will be unused, we indicate this by putting an X in
the AND gates at the input of the NOR gate. Function 02 is
also always enabled, hence no X is put in the AND gate
representing the enable product term PT 8, indicating that all
the links in PT 8 have been disconnected.

Output /03 is the AND of /11 and /13. To implement this, input
line 1 (/11) is connected to PT 17. Since we want an AND
function, input line 9 (/13) is also connected to PT 17. These
connections are represented by Xs. The other links in PT 17
are disconnected. Since the rest of the PTs are unused, an X
is placed in the AND gates for PT 18 through 23. The Output-
Enable PT for /03 is also left blank, which will always enable
the output /03.

Output /04 is similar to /03. To generate the AND function,
input line 9 (/13) and input 12 (14) are connected to PT 25,
while the rest of the links in PT 25 are disconnected. The other
PTs are unused, and the output is always enabled.

Output /05 is generated by ANDing /13, 15, and 16 on PT 33,
connecting 17 to PT 34, ANDing 18 and 19 on PT 35, and
leaving PTs 36-39 unused.

/08 is generated by ANDing I8 and 19 on PT 41 and ANDing
/13, /17,19, and 110 on PT 42. Product terms 43 through 47 are
left unused. For both outputs /05 and /06, the output enable
PTs 32 and 40 are left blank to always enable the respective
outputs. ’

Since pins 12 and 13 are not being used as outputs, Xs are put
in the AND gates for all these product terms.

As you can see, any function can be put into the SOP form and
then a device map generated for it. However, it is very time
consuming to generate these maps by hand. Therefore, PLD
CAD packages have been developed which automatically
generate the PLD map from the Boolean equations. The map
can then be loaded into a PLD programmer to program the
device.

One such first-generation Assembler based CAD package,
called AMPALASM20*, was developed by AMD. it allows you
to enter Boolean equations using regular logical operators
(AND, OR) and produces a device map. Figures 1-29 and 1-30
show the example in Figure 1-27 written in AMPALASM20 and
the resulting device map.

PAL16L8

PAT001

DESIGN EXAMPLE

ADVANCED MICRO DEVICES

NC 1112131451617 18 GND .
19 NC 110 06 05 04 03 02 01 VCC

/01=11

/02=11+/12

/03=/11 « /13

/04 = /13+14

/05 = /13415416 + /17 + 18419
/06 = 18+19 + /13+/17+19+110

Figure 1-29. Abbreviated AmMPALASM20 Input

*We have used AMPALASM20 for illustration purpose only. The trend is towards

d C

See "'Design Aid Software for Programmable Logic" section.
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DESIGN EXAMPLE

0123

o J—
1 Xeow
2 XXXx

4567

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

11
8901

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

1111
6789

———

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

2222
0123

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

2222
4567

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

11

X
. XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX

~X--
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX

X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

/12

, /11%/13

/13%14

/13%15%16

X-X-
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
58 XXXX
59 XXXX
60 XXXX
61 XXXX
62 XXXX
63 XXXX

LEGEND:

XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXXx
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
¥XXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

+ FUSE NOT BLOWN

(L,N,0)

NUMBER OF FUSES BLOWN = 493

Figure 1-30. AmMPALASM20 Output Fuse Map

X-X-
X~
XXXX
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XXXX

18*19

XXXX
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XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

- : FUSE BLOWN

/13#/17%19%110

(H,P,1)

TB000250
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TESTING PHASE

Two tests can be performed after the part is programmed.
First, the PLD programmer can verify that only the links/
connections specified in the device map have been pro-
grammed in the part. Second, the programmed part can be
tested for correct functionality; the same test vectors used for
logic simulation can be used to test that the device generates
the correct outputs for a given combination of inputs. The test
vectors in the device map will be in a JEDEC-standard format
(see Device Map).

If the device does not function as expected or differs from the
logic simulation results, then the device is malfunctioning. The
test phase can be performed on PLD programmers with
testing capability. *

THE DEVICE MAP
Fuse-Based and Erasable PLDs

Fuse-based PLDs have fuses that form the links or connec-
tions in the device. Electrically-erasable PLDs or UV-erasable
PLDs have erasable cell arrays that form the connections.
Erasable PLDs can be considered as having "erasable links"
in this discussion.

Fuse-based PLDs are shipped by the manufacturer with all
fuse links intact. A function is programmed into the part by
selectively blowing or programming the fuse links that are not
needed. On the other hand, an erased PLD has no connec-
tions at all. The designer will have to selectively make
connections in order to implement a function. These fuses or
links are specified in a data file called a fuse map or a device
map.

This device map can be expressed in many formats, but one of
the most common formats is the Joint Electronic Devices
Engineering Council (JEDEC) standard which is supported by
most PLD programmers and semiconductor manufacturers.

The JEDEC Standard (No. 3-A May 1986)

The standard put forth by the JEDEC committee contains
many options which are used for transferring data between a
PLD development system and a PLD programmer/tester. A
minimum configuration JEDEC-device map file contains at
least the following fields: F, L, and C.

This is a sample JEDEC-device map file:
tFot
L0000 0110 0100 1000 1010*

L0032 1000 0000 0000 0000*
Co078*

Figure 1-31. Minimum Configuration Device
Map File

The device map file starts with a design-specification field
which may contain any ASCIl character (except "*'") to
describe the design. This field is terminated by an "*".

The F field specifies the default link state of any unspecified
fuses in the PLD. In Figure 1-31, ""F0" will set all unspecified
fuses in the PLD to the O state (i.e., a low resistance link
specifying a connection between two points) A '"1'" would
have specified a high-resistance link or no logical connection
between two points. In fuse-based PLDs, a ''1'" would have
instructed the PLD programmer to burn/blow the fuse con-
necting two points. The programmer will leave the fuse
connected when a ''0" is received.

The L field specifies the address of the fuse link that is to be
programmed. A sequence of binary numbers follows which
specifies the fuse states of the fuses starting at the address

specified by the L field. Referring to Figure 1-31, the first fuse
to be programmed is at location ''0000" decimal and the fuse
state is ''0"".

The binary digits following the first "0 refer to the fuses
following the fuse at location 0. When an "'*"' is detected, the
fuse link information field terminates unless another Lxoocx is
specified. In Figure 1-31, sixteen fuse states are transmitted
beginning at fuse location 0. More fuse information will be
transferred to the PLD programmer, but will now start at fuse
location 32 decimal because of the new L field L0032.

The C field specifies the fuse checksum that is used by the
PLD programmer to detect transmitting and receiving errors.
This checksum is for all the fuses in the PLD, not only for the
fuses specified in the file. The fuse checksum is a 4-digit
hexadecimal value representing the unsigned 16-bit sum of 8-
bit bytes formed with the fuse states. The 8-bit bytes are
formed as follows:

word 0 msb . Isb

716 4(83)12(1]0

7186 413121110 fuse #
word 1 msb Isb

716(5|4(312(1(0

15114 1131121111101 91 8 fuse #
word 4 msb Isb

7|16(5(4(3|2(1]0

391381371361351341331321 fuse #
word 12 msb Isb

716 413|2(1]0

x | x x 1991981971961 fuse #

8-bit bytes formed for a PLD with 100 fuses

Unused bits in the last byte are filled with ""0s"’. For the fuse
map example, the fuse checksum is calculated as follows:

0010 0110
0101 0001
0000 0000
0000 0000
0000 0001
0000 0000

Word 0
Word 8
Word 16
Word 24
Word 32
Word 40

0000 0000
0111 1000

Wort.i 96
Total

-

0078H

A PLD data sheet will usually show the JEDEC fuse numbers
for every fuse link in the device. PLD CAD packages usually
have a JEDEC fuse-map generator which relieves the design-
er from having to individually program the fuses in a PLD to
implement a logic circuit.

TESTING THE PLD

If the PLD programmer has functional testing capability, test
vectors can be inserted into the fuse map file. These test
vectors begin with a "'V'" and a decimal vector number
followed by a sequence of characters symbolizing the inputs
and expected outputs to every pin on the device. Each vector
is terminated by an "'*"', For example, the AmPAL22V10 has
twenty-four pins. If the signals A,B, and C are assigned to pins
1, 2, and 23, then the following test vectors can be used to
check that a two-input XOR function programmed into the
AmPAL22V10 is functioning properly.
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Xo*
Vo1
vo2
Vo3
Vo4

BOXXXMUXUXXXNXXXXXXKXXXXLN
01 XXOOOXXNIXXXXXXXHN
10XXOOKXXXNXXXXXXXXXXHN
1 1OXXXNXXXXXXXXXXLN

pin 1
pin 2.

pin 23

The X field defines the don't care condition in the test vectors.
The N field represents power pins and pins that are not tested.
In this case the two Ns in the four vectors represent the Vgc
and ground pins.

There are many test-vector specification options available, but
this is the minimum configuration for including test vectors in a
fuse map file. This test-vector file is normally appended to the
end of the fuse-map file to improve readability and documenta-
tion, but it can actually be placed anywhere in the fuse-map
file if the test engineer so desires. These vectors were
manually generated, but some CAD packages support auto-
matic test vector generation.

PLD PROGRAMMER TRANSMISSION
PROTOCOL

The data transfer protocol used to transfer the fuse map to a
PLD programmer is simple. The transmission consists of the
start-of-text (STX) character, the fuse-map information (fuse-
link states, test-vector information, and fuse checksum), the
end-of-text (ETX) character, and the transmission checksum.
The transmission checksum is the unsigned 16-bit sum
(modulo 65,535) of all the ASCIl characters transmitted
between and including the STX and ETX.

XA XB XC XD XOR_Y (XA,XB,XC,XD)

0o 0 0 O 0
0 0 0 1 1
o 0 1 0. 1
0 0 1 1 0
0.1 0 0 1
o 1 0 1 0
o1 1 0 0
o 1 1 1 1
1 0 0 0 1
i1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
i1 0 1 1
11 1 0 1
i1 11 0

Figure 1-32.a. 4-Bit XOR Truth Table and

Some computer operating systems do not allow users to
control what characters are sent. If this is the case with your
PLD development system, then the transmission checksum
must be disabled by always sending the dummy value ''0000"".
Any PLD programmer complying with this JEDEC standard will
always accept this as a valid transmission checksum.

DESIGN EXAMPLES

We will illustrate the design examples of two combinatorial
functions and two sequential functions using PAL devices. For
the combinatorial examples we will show the implementation
of a 4-bit "'exclusive-OR generator'' and an 8:1 MUX in a PAL
device. Instead of using standard SSI/MSI devices, both
functions can be performed in the same PAL device.

Identify Device Requirements

The 4-bit XOR requires four inputs and one output pin; the 8:1
MUX requires eight data lines, three select lines, and one MUX
output. The PLD selected must therefore have at least fifteen
inputs and two outputs. In this example, we are also assuming
active-HIGH outputs. The AmPAL18P8 fits all the 1/0 require-
ments. However, the number of product terms (PTs) can only
be determined from the function table.

Figures 1-32.a and 1-32.b show the truth tables for both these
functions. Figure 1-32.c shows logic diagrams for both 4-input
XOR and 8:1 MUX functions. The XOR and MUX functions can
be described in a high-level language-type syntax (Figure
1-33) directly from these truth tables. (For detailed discussion
of PLPL syntax, see "'Design-Aid Software for Programmable
Logic" section).

XOR__Y (XA XB,XC,XD) = /XA#+/XB+/XC» XD

+ /XA+/XB+ XC+/XD
+ /XA+» XB#/XC+/XD
+/XA» XB+* XC» XD
+ XA«/XB+/XC+/XD
XA+/XB+ XC+ XD
XA+ XB+/XC» XD

+
+
+ XA+ XBe XC+/XD

Logic Equations
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S0 D7 D6 D5 D4 D3 D2 D1 DO MUX_Y

o
N
1))
oty

0 0 0)x x x x x x x DO Do

0 0 1. Xx.x x x x DI x D1 MUX_Y=/82-/S1-/SDQ(;
01 0 x x x x x D2 x x D2 /S2+/S1« S0+ D1
0 1 1 x x x x D3 x x x D3 /S2+« S1+/S0+ D2
1 0 0 x x x D4 x x x x D4 /82« S1~ SO« D3
1 0 1 x x D5 x x x x X D5 S$2+/S1+/S0+» D4
1 1 0 x D6 x x X X X X D6 S2+/S1« SO+ D5
1t 1 1 D7 x x x X X X X D7 S2« S14+/S0+ D6

S2» S1+ S0+ D7

Flgure 1-32.b. 8:1 MUX Truth Table and Logic Equations

Based on the function table, we see that the XOR and MUX has eight PTs per output, and hence satisfies all the 1/0 and
functions require eight PTs each. Figure 1-32.c shows the PT requirements.
logic diagram for both of these functions. The AmPAL18P8

IXA XORY = /XA + /XB » /XC * XD +
e © /XA« /XB s /XC * /XD + /52
o IXA + XB » /XC * /XD + /81 )
XA * /XB * /XC * /XD + /50
IXA + XB » XC * XD + Do
/XA XA * /XB » XC * XD + .
8 . XA + XB + /XC * XD + /52
%D , XA » XB * XC « /XD | Ig‘i)
D1
XC ’2?
XD 1580 ——
D2 —
XC 8 —
X0 XORY gg — ) '
5 ) } MUXY
%
g3 ' ’/gf —
XD 150 ——]
D4 ——
ia |
82 ————d
XC 181 ——
XD b p—
D§ ——
P ‘
1XC %
Yt MUXY = /52 » /S1 * /S0 » DO + 2 —-—D___.
/S2 + /51 % 50 * D1 + o —
/52 « S1+ /S0 D2 + :
XA rv
X4 a: /S22 §1+50+ D3 +

S2 v /S1 % /SO * D4 + s2
S2 » /ST + S0+ D5 + s1
§2 « 51+ /S0 + D6 + et
S2 +S1+ 80+ D7 . .

Figure 1-32.c. Logic Diagrams for a 4-Input XOR and 8:1 MUX

LD000520
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"test vectors to be used for simulation*

IN  S2 S1 SO XA XB XC XD D7 D6 D5 D4 D3 D2 D1 DO;

OUT XOR_Y MUX_Y

TEST_VECTORS

"This logic description file written in PLPL defines

DEVICE XORMUX (AMPAL18P8)

’

:1

an AmPAL18P8 performing a 4-bit EXOR and an 8

multiplexing function®

BEGIN

put test"
112 S1 S0 XA X8 XC XD D7 D6 D5 D4 D3 D2 Dt DO

YXOR_Y out

Y MUX_Y"

| x

=1 X8=2 XC=3 Xx0=1

PIN XA

L X;
H X
.

X X X0 000X XX X X X X X
X X X000 1T XX XXX XX X

X X X 00

7 04 =8D5=90D6=130D7 =14

D1 =5 Dp2=6 D3

D0 = 4

X;

15 s1 =162 =17
18 XOR_Y

S0 =

0 X X X X X X'X X

1

= 19;

MUX_Y

L X
H X;
L

L
H

1T XX X X X X X X

X X X 001

X XX 0100XXXXX X X X

BEGIN

X X X X X X X X X;

101

1
1

X X X 0
X X X 0

X X X 0

*4-bit EXOR function®

XOR_Y = XA XOR XB XOR XC XOR XD
CASE (S2,51,50)

X;

10 X X X X X X X X

X X X X X X X X X;

1

000X X X X X X X X

1

BEGIN

H X;
L X
L X;
H X
L X
H X

X X X 1

il 0, then select DO"

tnes are a

=D0; “if select L

0) MUX_Y
1) MUX_Y = D1

00 1T X X X X X X X X

1
1
1

X X X
X X X
X X X
X X X 1

:

2) MUX_Y = D2

01 0 X X X X X X X X

0

7

3) MUX_Y = D3

.

1T XX X X X X X X

1

:

4) MUX_Y = D4

.

100 X X X X X X X X

5) MUX_Y = D5

’

101X X X X X X X X

1

X X X

3<%
x
x
x x
x
> x
>x x
> X
x >
=
o -
-e
- -
- -
x x
x x
x x
. e
85
won
ol
x
£=
s R

L;

X H

>
o
>
3
>
x
>
>
b3
>
s
v ox
[
14
o ox
o
3 >
o
3o
3
> o
1
50
o
m
o
@
o
2]
w
7]
<
o
.
3
K4
.-
=)
e .
ua
xz
w

000X X X X X X X X X X X 1
00 1T X X X X X X X X XX 0X

X L;
X H;
X

X X X X X X X x X X 1x
0 X X X X X X X X X 0 X X
0 X X X X X X X X X 1 XX

1

0
1
1
1
1

[}

L;

’

X H

0
0

X L;
X H;
X
X

X
X

T X XX XX X X X 0 X X X

X X X

1

1T X XX X X X X X

L;

100X X XXXXXO0XX X X
00 X X X XXX X 1

1
1

H;

X X X X

L;

001 X X X X XX 0 XXX XX

H;

X X X X XX 1Xx X X X X
10 X, X X X X0 X X X X X X

1

1

X L

1
1

X H;
X t;
X

1
1
1

00X X XXX 1 XXXXXX

1 X X X X 0 X X X X X X X

1 X X X X

X X X X X X X H;

1

1
END.

TB000370

Figure 1-33. Logic Description File for the XOR and MUX Functions
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Test vectors can be generated (Figure 1-34) from the logic
description file (Figure 1-33) and sent to a simulator to test the
logic equations. In this example, the vectors are generated
from the test vectors specified manually. After simulation
(Figure 1-35), a device map (Figure 1-36) is generated from
these equations and the PLD programmed (Figure 1-37) with
the map.

The inputs XA, XB, XC, XD, DO through D7, and select lines SO
through S2 may be assigned to any input or I/0 pin as shown
in the AmPAL18P8 logic diagram. The outputs XOR__Y and

MUX Y have been assigned to pins 18 and 19. Since we
have not specified any Output-Enable product term, PLPL
assumes that the outputs will always be enabled. In the
completed device map (Figure 1-37), all the connections for
the Output- Enable PTs for the two outputs XOR_Y and
MUX__Y have been disconnected which will always enable
the outputs.

The input and output signals can be reassigned to different
pins on the PLD package to fit your PC board routing
requirements. .

V0001 OOOXXXXXXNOXXXXXXXLN
V0002 O0OXXXXXXN1XXXXXXXHN
V0003 001XXXXXXNOXXXXXXXHN
V0004 OOTXXXXXXNIXXXXXXXLN
V0005 010XXXXXXNOXXXXXXXHN
V0006 010XXXXXXNIXXXXXXXLN
V0007 OT1XXXXXXNOXXXXXXXLN
V0008 OT1XXXXXXNTXXXXXXXHN
V0009 100XXXXXXNOXXXXXXXHN
V0010 100XXXXXXNTXXXXXXXLN
V0011 101XXXXXXNOXXXXXXXLN
V0012 101XXXXXXNIXXXXXXXHN
V0013 110XXXXXXNOXXXXXXXLN
V0014 110XXXXXXN IXXXXXXXHN
V0015 111XXXXXXNOXXXXXXXHN
V0016 111XXXXXXN 1XXXXXXXLN
V0017 XXXOXXXXXNXXXXOOOLXN
V0018 XXX1XXXXXNXXXXOOOHXN
VOB19 XXXXOXXXXNXXXX10OLXN
V0020 XXXX1XXXXNXXXX1OOHXN
V0021 XXXXXOXXXNXXXX010LXN
V0022 XXXXX1XXXNXXXXO1OHXN
V0023 XXXXXXOXXNXXXX110LXN
V0024 XXXXXXTXXNXXXX110HXN
V0025 XXXXXXXOXNXXXX001LXN
V0026 XXXXXXX1XNXXXX0OTHXN
V0027 XXXXXXXXONXXXX101LXN
V0028 XXXXXXXXTNXXXX101HXN
V0029 XXXXXXXXXNXXOX011LXN
V0030 YXXXXXXXXNXX1X011HXN
V0031 XXXXXXXKXNXXXO111LXN
V0032 XXXXXXXXXNXXX111THXN

*

* % % % % % * X % % % % * % % ¥ % % F * % ¥ * ¥ % F * % ¥ 2 *

TB000360

Figure 1-34. Test Vectors for EXOR and 8:1 MUX PLD Design




LEL

V0001 INPUT OUTPUT V0008 INPUT ouTPUT - V0015 INPUT OUTPUT

1111 1 mn 7" 11 1
Pin # 1 1234567891234567 89 Pin # @ 1234567891234567 89 Pin # : 1234567891234567 89
Expected: OOOXXXXXXOXXXXXX ===> XL Expected: 011XXXXXX1XXXXXX ===> XH Expected: 111X000XOXXXXXX ===> XH
Computed: L Computed: . LH Computed: LH
v0002 INPUT QUTPUT V0009 INPUT OUTPUT V0016 IRPUT OUTPUT
1M1 1 1mMmn 1 ARRREREI n
Pin #  : 1234567891234567 89 Pin #  : 1234567891234567 89 Pin # @ 1234567891234567 89
Expected: 000XXXXXX1XXXXXX ===> XH Expected: 100XXXXXXOXXXXXX ===> XH Expected: T11XXXXXXTXXXXXX ===> XL
Computed: - LH Computed: LH Computed: L
V0003 INPUT QUTPUT V0010 INPUT OUTPUT V0017 INPUT OUTPUT
ARERERE] n mm 1 11111 11
Pin #  : 1234567891234567 89 Pin # @ 1234567891234567 89 - Pin#  : 1234567891234567 89
Expected: 001XXXXXXOXXXXXX ===> XH Expected: 100XXXXXXIXXXXXX ===> XL Expected: XXXOXXXXXXXXX00Q ===> LX
Computed LH Computed: L Computed: LL
V0004 INPUT ouTPuT Vo011 INPUT OUTPUT V0018 INPUT OUTPUT
1M 11 nm 1" 1111111 11
Pin # @ 1234567891234567 89 Pin # @ 1234567891234567 89 . Pin # 1 1234567891234567 89
Expected: O001XXXXXXIXXXXXX ===> XL Expected: 101XXXXXXOXXXXXX ===> XL Expected: XXX1XXXXXXXX000 ===> HX
Computed: L Computed: 18
V0005 INPUT ouTPUT V0012 INPUT oUTPUT
RRRRARE 1 miim 1" mmm 1
Pin # @ 1234567891234567 89 Pin # @ 1234567891234567 89 Pin #  : 1234567891234567 89
Expected: G10XXXXXXOXXXXXX ===> XH Expected: 101OOXXXIXXXXXX ===> XH Expected: XXXX0X000O0XX100 ===> LX
Computed: LH LK Computed: L
V0006 INPUT OUTPUT OUTPUT V0020 INPUT OUTPUT
1111111 11 1111 1" mun 1
Pin # @ 1234567891234567 89 Pin # @ 1234567891234567 89 Pin # : 1234567891234567 89
Expected: OOXXXXXXIXXXXXX ===> XL Expected: 110XXXXXXOXXXXXX ===> XL Expected: XXXX1XOOXXXXX100 ===> HX
Computed: LL Computed: LL Computed: HL
V0007 INPUT OUTPUT Vo014 INPUT ouTPUT V0021 INPUT OUTPUT
RARRERE] | 1M 1 111 11
Pin # @ 1234567891234567 89 Pin # : 1234567891234567 89 Pin # @ 1234567891234567 89
Expected: 01TXXXXXXOXXXXXX ===> XL Expected: T10XXXXXXIXXXXXX ===> XH Expected: XXXXXOXXXXXXX010 ===> LX
Computed : L Computed: LH Computed: LL
TB000350

Figure 1-35. Simulation Run for EXOR and MUX PLD Design
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V0022 INPUT OUTPUT V0029 INPUT ouTPUT Listing sum-of-products equations for XORMUX

1 1 11 1
Pin # @ 1234567891234567 89 Pin # @ 1234567891234567 89 XOR_Y = /XA*XB*/XD*/XC
Expected: XXXXX1XXOXXXX010 ===> KX Expected: XXXXXXXXXXX0X011 ===> LX + [XA*XB*XD*XC
Computed: HL Computed: L + [XA*/XB*XD*/XC
------------------------------------------------------------------------------ + [XA®/XB*/XD*XC
V0023 INPUT © ouTPuT V0030 INPUT ouTPUT + XA*/XB*/XD*/XC

1min 11 RARAERE] 1 + XA*/XB*XD*XC
Pin # @ 1234567891234567 89 Pin # 1 1234567891234567 89 + XA*XB*XD*/XC
Expected: YOOOMXXOXXXXXX110 ===> LX Expected: XX000XXXXXX1X011 ===> HX + XA*XB*/XD*XC;
Computed: (A8 Computed: : HL
---------------------------------------------------------------------- MUX_Y = /S2*/S1*/s0*D0
V0024 INPUT ouTPUT V0031 INPUT oUTPUT + /S2%/S1%S0*D1

1111111 11 . oo 1 + /S2*S1*/S0*D2
Pin # & 1234567891234567 89 Pin # @ 1234567891234567 89 + /S2*S1*s0*D3
Expected: XXOOXXIXXXXXX110 ===> HX Expected: XXXXOXXXXOOXX0111 ===> LX + S2*/S1%/S0*D4
Computed: HL Computed: L + S2*/S1*S0*D5S
------------------------------------------------------------------------------ + S2*S1*/S0*D6
V0025 INPUT ouTPUT V0032 INPUT OUTPUT + S2*S1*s0*D7;

111111 1" 1M 1
Pin # 1 1234567891234567 89 Pin # : 1234567891234567 89
Expected: YXX000XOXX)OXX001 ===> LX Expected: XX00000000XX1111 ===> KX

1R Computed: HL
ouTPUT
1111 1 Simulation completed, Errors detected = 0

Pin # : 1234567891234567 89
Expected: XXOMXXTXXXXX001 ===> HX

Computed: HL
V0027 INPUT ouTPUT
11111 1

Pin # 1 1234567891234567 89
Expected: XX00XXX0XXXX101 ===> LX

Computed: LL
V0028 INPUT OUTPUT
minm 1"

Pin # : 1234567891234567 89
Expected: XXXOOXXXIXXXX101 ===> HX

TB000340

Figure 1-35. (Cont'd.)
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Title: XORMUX

Part Type: PAL18P8*
DEVICE: PAL18P8*
MFG: AMD*

FO*

10000
L0036
L0072
L0108
L0144
L0180
L0216
L0252
L0288
L0324
L0360
L0396
L0432
L0468
£0504
L0540
L0576
L0612
L0648
L0684
L0720
L0756
L0792
10828
L0864
L0900
L0936
L0972
L1008
L1044
L1080
L1116
L1152
L1188
L1224

T 1111 1111 1111 1111 1111 1111 1111 11
1010 1011 1111 1111 1111 1111 1111 1101 111*

1010 0111 1111 1111 1111 1111 1111 1110 1111*-

0110 1011 1117 1111 111171111 1111 1110 111>
0110 0111 1111 1111 1111 1111 1111 1101 111>
1001 1011 1111 1111 1111 1111 1111 1110 1111
1001 0111 1111 1111 1111 1111 1111 1101 111>
0101 1011 1111 1111 1111 1111 1111 1101 111>
0101 0111 1111 1111 1111 1111 1111 1110 1111*
1111 1191 1111 1111 1111 1111 1911 1111 1
1111 1111 0110 1110 1110 1111 1111 1111 1111+
1111 1111 1110 0110 1101 1111 1111 1111 1111+
1111 1111 1110 1101 0110 1111 1111 1111 111>
1111 1111 1110 1101 1101 0111 1111 1111 11N>
1111°1111 1101 1110 1110 1111 0111 1111 1111*
1111 1111 1101 1110 1101 1111 1111 0111 1111*
1111 1111 1101 1101 1110 1111 1101 1111 1111*
1111 1111 1101 1101 1101 1101 1111 1111 1111*
0000 0000 0000 0000 0000 0000 G000 COCO0 0CO0*
0000 0000 00G0 0000 0000 0000 GOCO 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 00CO 00CO 00OO*
0000 0000 0000 0000 00CO 0000 0000 0000 0000*
0000 0000 0000 COCO 0000 0000 00CO 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 00CO 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 C000*
0000 0000 0000 0000 0000 0000 0000 000G 0CO0*
0000 0000 0000 00C0 0000 0000 0000 0000 0000*
0000 0000 0000 0G00 0000 0000 0000 0000 GCOO*
0000 0000 0000 0000 0000 0000 0000 000G COO0*
0000 0000 0000 0000 0000 0000 0000 0000 0O0O*
0000 0000 0000 0000 G000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 000C 0000*

11260
L1296
L1332
L1368
L1404
L1440
L1476
L1512
L1548
L1584
L1620
L1656
L1692
L1728
L1764
11800
L1836
11872
L1908
L1944
L1980
L2016
L2052
L2083
L2124
L2160
L2196
L2232
L2268
L2304
L2340
L2376
L2412
L2448
L2484
12520
L2556
L2592
C4B76*
B97A

0000 0000 0000 0000 C00C 0000 0000 00GO 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 G000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 00CO 0GOO0 COCO 0000 0COG*
0000 0000 0000 0000 0000 0000 GOCO GCO0 0O0O*
0000 0000 0000 0000 0000 0000 0000 00GO 0000*
0000 0000 0000 0000 0000 G000 0000 G000 00CO*
0000 0000 0000 0000 0000 0000 G000 0000 0O0O*
0000 0000 0000 000G 0000 0000 G000 0000 0000
0000 0000 0000 0000 00CO0 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 GO0C 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 00CO 0000 0000 00CO 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0COC*
0000 0000 0000 0000 00CO 0000 0000 0000 0000*
0000 0600 0000 00G0 0000 0000 0000 0000 00CO*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0COC*
0000 0000 0000 00CO 0000 0000 0000 G000 0000*
0000 0000 0000 0000 000C 0000 00CO 0000 0000*
0000 0000 0000 0000 G000 0CO0 0000 0000 0000*
0000 0000 0000 00CO 00CO 0000 0000 0000 0000*
0000 0000 0000 0000 0060 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 000G*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0G00 0000*
0000 0000 0000 0000 0000 0000 G000 00GO 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 GOCO 0000 0000 0000 0000 0000*
0000 0000 0CO0 0000 0000 0000 000G 0OCO 0000*
0000 0000 0000 00CO 0000 0000 0000 00CO 0000*
0000 0000. 0000 0000 0000 0000 0000 0000 0COO*
0000 0000 0000 0000 0000 0000 0000 0000 000C*
11000000*

TB000380

Figure 1-36. Device/Fuse Map for EXOR and MUX PLD Design
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Eight 8-Wide AND-OR Structures
- Combinatorial outputs
- Programmable output enable for each output
- Programmable polarity on each output

Figure 1-37. AmPAL18P8 Programmed with EXOR and MUX Design
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SEQUENTIAL DESIGN EXAMPLE

Next we will show implementation of a 4-bit binary up-counter
and a decade counter in a single PAL device.

Design of a Synchronous Binary Counter

Counters are one of the simplest types of sequential networks.
A synchronous counter is usually built from a number of flip-
flops which change state in a prescribed sequence when input
pulses are received. The operation of the flip-flops is synchro-
nized to a common input pulse (a common clock).

Synchronous counters are used for state sequencing, delay
timing and event counting. The key to designing a counter is
knowing when a bit should be toggled. For an up-counter, a bit
is toggled whenever every bit of lesser significance is ''1"" (see
the counting sequence of Figure 1-38).

Conversely, for a down-counter, a bit is toggled whenever
every bit of lesser significance is ''0". In both cases, the LSB
is always toggled. By ANDing all bits of lesser significance
along with the complement of the current data in the register,
the problem of when this bit is to be toggled is solved.
However, to complete the design, the bit must remain un-
changed under all other conditions. This can be accomplished
by ORing the complements of the lesser significant bits
together and then ANDing the result with the current data in
the register (Figure 1-39). The equation in Figure 1-39 can be
changed into the SOP form (Figure 1-40) for direct implemen-
tation in a PAL device. Thus, if a bit is to be toggled, the
complement of the current data will be clocked in; if not, the
data remains unchanged by clocking in the current data.

A 4-bit binary up-counter example illustrates this approach.
We will build this 4-bit binary counter using D flip-flops. The
state of the counter is determined by the state of the individual
flip-flops. For example, if flip-flop A is in state 0, B in state 1, C
in state 1 and D in state 0, the state of the counter is 0110.
Initially all the flip-flops are set to the zero state. When a clock
pulse is received, the counter will change to state 0001; when
a second clock pulse is received, the state will change to
0010, etc. The state-counting sequence is shown in Figure
1-38. ’

Figure 1-41 shows the state diagram for a 4-bit binary up-
counter. Typical counter functions are loading data, counting,
and "'holding" data. The function table is shown in Figure 1-42
and the logic diagram in Figure 1-43.

CURRENT NEXT
STATE STATE
0000 0001

0001 0010
0010 0011
0011 0100
0100 0101
0101 0110
0110 0111
0111 1000
1000 1001
1001 1010
1010 1011
1011 1100
1100 1101
1101 1110
1110 1111
1111 0000

Figure 1-38. Counting Sequence

/Q0
/an
/Q2 /TOGGLE
Qi ,
/TOGGLE = Qie(/Q0 + /Q1 + /Q2 + u+ /Qir)
LD000500

Figure 1-39. Logic for Not Toggling Bit |

/Q0
Qi

Q1
Qi
/TOGGLE
/Q2
Qi

/Qi-
Qi

=
=

/TOGGLE = /Q0®Qi + /Q1eQi + /Q20Qi + .. + /Q-1eQi
LD000510

Figure 1-40. Equivalent Form of Figure 1-39
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DF006140

OUTPUTS

Q0o

Q2 Q1 Qo

Q3

Q2o Qip

Q3

Q2o Qg Q0o

Q3¢

INPUTS

S

So

1

Figure 1-41. State Diagram of a 4-Bit Binary Up-Counter (16 States)

CLEAR
LOAD
COUNT

HOLD

TB000320

Function Table for 4-Bit Binary Up-Counter

Figure 1-42.

142



18junog-dn Areuig yg-v “ev-1 ainbig

09990009

] ]
T gl gl o
-

0

o
o

a a

—t

A00710

AN

—l

aaiatafaima'

=

1-43



Expanding the number of bits in the counter is done by
expanding the function table to incorporate the additional bits.
Karnaugh maps, although not essential, can be used to find
the required equations in SOP form for a PAL-device imple-
mentation. in general, besides any fixed overhead for control
functions (CLEAR, LOAD, and HOLD in this example) bit n will
require additional n product terms. Therefore, if this example
4-bit counter is to be expanded to 5 bits, the fifth bit will require
five product terms plus three additional product terms for
clearing, loading, and counting (see Figure 1-44). Note that the
original 4-bit block is unaffected by the addition of the fifth bit.

This basic counter is easily expandable to perform more
complex functions.

A high-level language design specification for the 4-bit binary
counter is shown in Figure 1-45. Corresponding test vectors
are shown in Figure 1-46 and are used as inputs by the
simulator to test the logic equations. Figure 1-47 shows the
PLPL Optimizer's output; Figure 1-48, the equations list; Figure
1-49, the simulation run; Figure 1-50, the device map; and
Figure 1-51, the implementation of this function in an Am-
PAL16R8 device (Note that Figures 1-46 through 1-51 also
implement a decade-counter function, the description for
which follows). '

e o™ — — T~ T T — == == -
5 | 5 5 5 5 |

~ | |

b t !
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Figure 1-44. 5-Bit Binary Up-Counter
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DEVICE BIN_DCD_CNTR (AMPAL16R8) IF (/BIN(31*/BIN[2)*/BIN[13* BIN[O1) THEN BIN[3:0] := 2;
“An AMPAL16R8 programmed as a dual base counter: binary and decimal® IF (/BIN[3)*/BINE2)* BIN[11*/BINIO1) TREN BIN[3:0] := 3;
PINCLK=1 s1=2 sO=3 DI3:0] =5,6,7,8 “data® ‘ IF (/BIN[31*/BIN[2]* BIN[11* BIN[O]) THEN BIN(3:0) := 4;
/BIN(3:0] = 19,18,17,16 "“binary counter active LOW" IF (/BIN[31* BIN[2)*/BIN[1)*/BIN[O]) THEN BIN[3:0] := 5;
/0CD(3:0) = 15,14,13,12; “decimal counter active LOW" IF (/BIN[3]* BIN[21*/BIN[1)* BIN[O]) THEN BIN(3:0] := 6;
BEGIN IF (/BIN[31* BIN[21* BIN[1]*/BIN[0)) THEN BIN[3:0] := 7;
IF (/S1*/S0) THEN “clear" IF (/BIN[3]* BIN{21* BIN[1]* BIN[O]) THEN BIN[3:0] := 8;
BEGIN 1F ( BIN[3]*/BIN[21*/BIN[1]1*/BIN[O]) THEN BIN[3:0] := 9;
BIN[3:0] := 0; “output is active LOWM IF ¢ BINI[3]*/BIN[2)*/BIN[11* BIN[O]) THEN BIN[3:0] := 10;
0CD(3:0]1 := 0; IF ¢ BIN[3)*/BIN(2}* BIN{1)*/BIN[0)) THEN BIN[3:0] := 11;
END; IF ( BINI3)*/BIN(2)* BIN[1]* BIN[O]) THEN BIN[3:0) := 12;
IF (/S1*S0) THEN “load" \ IF ( BIN{3]* BIR[2)*/BIN{1)*/BIN[0)) THEN BIN[3:0] := 13;
BEGIN . IF ( BIN(3]* BIN[21*/BIN{1]* BINIO}) THEN BIN[3:0) := 14;
BIN[3:0) := DI3:0]; IF ( BIN[3)* BIN[21* BIN[1)*/BIN{O}) THEN BIN{3:0) := 15;
0CD(3:0) := D[3:0); IF ( BINI3)* BIN[2]* BIN[11* BIN[0)) THEN BIN([3:0] := O;
END; END;
IF (S1%/S0) THEN =~ “hold" END.
BEGIN TEST_VECTORS
BIN[3:0] := BIN[3:0]; “hold BIN-and DCD active LOW* IN  CLK,S1,50,0(3:0]; I_0 BIN[3:0],0CD(3:0);.
0CD(3:0] := DCDI3:0]; BEGIN
END; “CLK S1 SO DATA | BIN[3:0] DCD(3:0]"
1F (S1*S0) THEN ucount™ c 0 10110 LHHL LHHL ; "load"
BEGIN c 1 01 LHHL LHHL -; “hold"
IF (/DCD[3)1*/DCD[21*/DCOL1)*/DCOL0]) THEN ' DCD([3:0] := 1; c 0 o010 LLLL LLLL ; ®clear, start count from O
IF (/DCO(3)*/DCD{21*/DCD[11* DCOI0]) THEN DCD(3:0) := 2; c 1 10110 LLLH LLLK ;- “count®
IF (/DCD(3)*/DCD[2}* DCD[11*/0CD(0]) THEN DCD{3:0] := 3;° c 1 1010 LR LLHL ; “count® -
IF. (/DCO(33*/DCD(21* DCOL1)* DCOIO}) THEN DCD(3:0) := &4; c 1 1010 LLEH ° LLHH ; “count®
IF (/DCO(3)* DCDI21*/DCOL{11*/DCD01) THEN DCD(3:0) := 5; - c. 1 1010 LHLL LHLL ; “count®
IF (/0CDL3]* DCD(2]1*/DCDL11* DCDIO]) THEN -DCO[3:0} := 6; c 1 10110 LHLR LHLH ; “count™
IF (/0CD(31* DCOL2}* Dw[i]'/Dm[o]) THEN DCD{3:0} :=7; c 1 1010 LHHL LHHL ; "count®
IF (/DCD3)* DCDL21* DCOL1)* DCDI0)) THEN DCDI3:0) :='8; € 1 10110 LHHH LHHH ; “count®
IF ( DCD(33*/0CD[2)*/DCO{11*/DCD[0]) THEN DCD(3:0) := 9; c 1 1010 HLLL HLLL ; “count“ .
IF ¢ DCO(3)*/DCO[21*/DCD[11* DCD[0)) THEN . DCO(3:0] := O; c 1 1010 HLLH HLLH ; “count™
IF ¢ DCD(33*/DCO(21* DCO[11*/DCD(0]) THEN OCD[3:0) := O; C 1 10110 HLHL LLLL ; “count™
IF ( DCD[3)*/DCDL21* DCD{1)* DCO[O}) THEN DCD[3:0) := O; c 1 1on10 HLHH LLLH ; *“count™:
1F ¢ DCO[3)* DCD[2)*/DCDL11*/DCD[0]) THEN OCD[3:0] := O; c 1 10110 HHLL LLHL ;  “count™
IF ( DCOI3]* DCD{21*/DCD{1)* DCDIOI) THEN DCD[3:0] := 0; c 1 10110 HHLH LLHH ; “count®
IF ¢ DCD[31* DCDL21* DCO[1)*/DCDL0)) THEN DCD(3:0] := 0; c 1 10110 HHHL LHLL ; “count®
IF ¢ DCD[3]* DCD[2]* DCDL11* DCD[0]) THEN OCD{3:0] := O; c 1 10110 HHHH LHLH ; “count"
[ 1 10110 Lt LHHL ; “count®
IF (/BIN[3]*/BIN[2]*/BIN[11*/BIN{0]) THEN BIN[3:0] := 1; END.
) TB000310

Figure 1-45. Logic Description File for the 4-Bit Binary Counter and a Decade Counter, Written in PLPL Format




V0001 CO1X0T10XNXHLLHHLLHN
V0002 C10X1111XNXHLLHHLLHN
V0003 €OO0X0110XNXHRHHHRHEN
V0004 €11X0110XNXLHHHLHHHN
V0005 C11X0110XNXHLHHHLHHN
V0006 C11X0110XNXLLHHLLHHN
V0007 C11X0110XNXHHLHHHLHN
V0008 C11X0110XNXLHLHLHLHN
V0009 C11X0110XNXHLLHHLLHN
V0010 C11X0110XNXLLLHLLLHN
V0011 C11X0110XNXHHHLHHHLN
V0012 C11X0110XNXLHHLLKHLN
V0013 C11X0110XNXHHHHHLHLN
V0014 C11X0110XNXLHHHLLHLN
V0015 C11X0110XNXHLHHHHLLN
V0016 C11X01 10XNXLLHHLKLLN
V0017 C11XO110XNXHHLHHLLLN *
V0018 C11X0110XNXLHLHLLLLN *
V0019 C11X0110XNXHLLHHHHHN *

TB000300
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Figure 1-46. Test Vectors Specification for 4-Bit Binary Counter and the Decade

Counter )
BIN_DCD_CNTR ) , 1 = 2%/14%15%13 +
PAL16R8 L . 2%/14%15%12 '+
CLK 1 INPUT 12*3%6 +
S$1 2 INPUT T3+
SO 3 INPUT 2¢3*14*15+/13%/12 ;
0131 5 INPUT 13 = 2%/13%15%12 +
0[2] 6 INPUT ’ 2%313*15%/12 +
D[] 7 INPUT 724347 +
D(O] 8 INPUT 2*/3*/13 ;
/DCDI0] 12 OUTPUT REGISTERED INVERTED 12 = 2%3*12%15 +
/DCD {13 13 OUTPUT REGISYERED INVERTED 2*3*12%14%13 +
/0CD[2) 14 OUTPUT REGISTERED INVERTED 12%3*8 +
/DCD[3] 15 OUTPUT REGISTERED INVERTED 2*/3*112 ;

/BINLO] 16 OUTPUT REGISTERED INVERTED
/BIN{1] 17 QUTPUT REGISTERED INVERTED
JBIN{2] 18 OUTPUT REGISTERED INVERTED
/BINI3] 19 QUTPUT REGISTERED INVERTED -
Ll " .
19 = 22/19%18 +
22/19%17 &
24/19*16 +
12%3%5 +
24734719 +
203%19+/184/17%/16 ;
18 = 2071807 +°
2%/18*16 +
203%18%/174/16 +
J243% +
/3018 ;
17 = 29717416 +=
24317/16 +
73T 4 -
o 23417 ;
16 = 243416 +
38 N
C 2*734/16 ;-
15 = 20/15%14213%12 +
7243%5 +
22315 +
2230154/ 142 /134/12 ;

TB000290

Figure 1-47. PLPL Optimizer Output for the 4-Bit Binary Counter and the
Decade Counter
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Listing sum-of-products equations for BIN_DCD_CNTR

BIN[3]

ST*BIN[3]*/BIN[2)
S1*BIN[3]*/BIN[1]
S1*BIN[3]*/BIN(0] 1
/S1%S0%D [3)

S1*/SO*BIN (3]

S1*S0*/BIN[31*BIN[2] *BIN[11*BIN[0]; -
S1*BIN[2]*/BIN[1]

S1*BIN[2}*/BIN(0]
S1%S0*/BIN[2] *BIN [1]*BIN{0]
/81%S0*D [2)

S1*/S0*BIN(2] ;

ST*BIN[1]*/BIN[0)
S1*S0*/BIN[11*BIN (0]

/51%S0*D {1

S1*/SO*BIN[11;

S1*S0*/BIN[0]

/S1%S0*D [0}

S1*/SO*BIN(0) ;

S1*DCD [31*/DCD [21*/DCD [13*/DCD [0}
/S1%S0%D [3) A
$1*/S0%DCD (31
S$1*50*/DCD [3)*DCD [2]*DCD [11*DCD [0] ;
S1*DCD [2]*/DCD [3]*/DCO (1]

$1*DCD 2] */DCD [3)*/DCD (0]
/51%S0*D [2]

S1*/S0*DCD (2] : o
S$1#S0*/DCD {21 */DCD [31*DCD [11*DCD [0 ;
S1*DCD [11*/DCD [31*/DCD (0]

S$1*S0%/DCD [1*/DCD [31*DCD [0}
/S1%S0*D [1]

S1%/S0*DCD [11;

S1%S0*/DCD [01*/DCD [3]
$1*S0*/DCD [0] */DCD [2] */DCD [1]
/S1%S0*D (0]

S1*/S0*DCD [01 ;

+ + + + +

BIN(2]

+ + + +

BININ]

+ + +

BIN([0]

+ +

DCD (3]

+ + +

DCD [2]

+ + + o+

pCo 1)

+++‘l;

DCD (0]

+ + o+

TB000280

Figure 1-48. PLPL Listing of Equations for the 4-Bit Binary Countef and the
Decade Counter
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Pin# :.

Computed:

Pin #
Expected:
Computed:

INPUT

1
1234567891
€01X0110xx

1234567891
C10X1111XX

C00X0110XX

1234567891
C1IX0110xX

1234567891
C11X0110XX

1234567891
C11X0110xX

1234567891
C11X0110xX

OUTPUT
11111
23456789
===> HLLHHLLR
HLLHHLLH

oUTPUT
1111111
23456789
===> HLLHHLLH
HLLHHLLK

OUTPUT
1111111
23456789
===> HHHHHHHH
HHHHHHRH

- OUTPUT
St
23456789
===> LHHHLHHK
LHHHLHAH

T OUTPUT
1mmm
23456789

===> HLRHHLHH
HLHRHLHR

OUTPUT
mmnm
23456789
===> LLHHLLHH
LLHHL!I.HH

OUTPUT
ERRRRARE]
23456789
===> HHLHHHLH
HHLHHHLH

Figure 1-49. Simulation Run for

V0008 INPUT OUTPUT
1 11111111
Pin #  : 1234567891 23456789
Expected: C11X0110XX ===> LHLHLHLH
Computed: LHLHLHLK
V0009 INPUT OUTPUT
1 11111
Pin # : 1234567891 23456789
Expected: CHIX0110XX ===> HLLHHLLH
Computed: HLLHHLLK
V0010 INPUT OUTPUT
1 1111
Pin # @ 1234567891 - 23456789
Expected: C11X0110XX ===> LLLHLLLN
Computed: LLLHLLLH
Voot INPUT ouTPUT
’ 1 1nimnm
Pin # : 1234567891 .- 23456789
Expected: C11X0110XX ===> HHHLHHHL
Computed: ’ HHHLHHHL
V0012 INPUT oUTPUT
1 nnim

Pin #  : 1234567891 23456789
Expected: C11X0110XX ===> LHHLULHHL

Computed: LHHLLHHL
V0013 INPUT ouUTPUT

1 1nIm
Pin # : 1234567891 23456789
Expected: C11X0110XX ===> HHHHHLHL
Computed: HHHHHLHL
V0014 INPUT ouTPUT

1 EREERELE!
Pin # @ 1234567891 23456789
Expected: C11X0110XX ===> LHHHLLHL
Computed: LHHHLLHL

V0015 INPUT OUTPUT

1 1M1
Pin # : 1234567891 23456789
Expected: C11X0110XX ===> HLHHHHLL
Computed: HLHHHHLL
V0016 INPUT ouTRUT

1 1111111
Pin # : 1234567891 23456789
Expected: C11X0110XX ===> LLHHLNLL
Computed: LLKHLHLL
Vo017 INPUT OUTPUT

1 11111111

Pin # : 1234567891 23456789
Expected: C11X0110XX ===>- HHLKHLLL

Computed: RHLHHLLL
V0018 INPUT OouTPUT

1 AARRRERES
Pin # @ 1234567891 23456789
Expected: C11X0110XX ===> LHLHLLLL
Computed: LHLHLLLL
V0019 INPUT OUTPUT

1 mm
Pin # @ 1234567891 23456789
Expected: C11X0110XX ===> HLLHHHHH
Computed: HLLEHRHHH

Simulation completed, Errors detected = 0

TB000270
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Title: BIN_DCD_CNTR
Part Type: PAL16R8*
DEVICE: PAL16R8*
MFG: AMD* 1
Fo*

L0000 0110 1101 1111 1111 1111 1111 1111 1111*
L0032 0110 1111 1101 1111 1111 1111 1111 1111*
L00s4 0110 1111 1111 1101 1111 1111 1111 1111*
L0096 1011 0111 1111 0111 1111 1111 1111 1111*
L0128 0110 1011 1111 1111 1111 1111 1111 1M1*
L0160 0101 0110 1110 1110 1111 1111 1111 1111*
L0256 0111 1110 1101 1111 1111 1111 1111 1111*
L0288 0111 1110 1111 1101 1111 1111 1111 1111*
L0320 0111 0101 1110 1110 1111 1111 1111 1111*
L0352 1011 0111 1111 1111 0111 1111 1111 1111*
L0384 0111 1010 1111 1111 1111 1111 1111 1111*
£0512 0111 1111 1110 1101 1111 1111 1111 1111*
L0544 0111 0111 1101 1110 1111 1111 1111 1111*
L0576 1011 0111 1111 1111 1111 0111 1111 1111*
L0608 0111 1011 1110 1111 1111 1111 1111 1111*
L0768 0111 0111 1111 1101 1111 1111 1111 1111*
L0800 1011 0111 1111 1111 1111 1111 0111 1111*
L0832 0111 1011 1111 1110 1111 1111 1111 1111*
L1026 0111 1111 1111 1111 1110 1101 1101 1101*
L1056 1011 0111 1111 0111 1111 1111 1111 1111*
L1088 0111 1011 1111 1111 1110 1111 1111 1111*
L1120 0111 0111 1111 1111 1101 1110 1110 1110*
L1280 0111 1111 1111 1111 1101 1110 1101 1111*
L1312 0111 1111 1111 1111 1101 1110 1111 1101*
L1346 1011 0111 1111 1111 0111 1111 1111 1111*
L1376 0111 1011 1111 1111 1111 1110 1111 1111*
L1408 0111 0111 1111 1111 1101 1101 1110 1110*
L1536 0111 1111 1111 1111 1101 1111 1110 1101*
L1568 0111 0111 1111 1111 1101 1111 1101 1110*
L1600 1011 0111 1111 1111 1111 0111 1111 1111+
L1632 0111 1011 1111 1111 1111 1111 1110 1114*
L1792 0111 0111 1111 1111 1101 1111 1111 1101*
L1826 0111 0111 1111 1111 1111 1101 1101 1101*
L1856 1011 0111 1111 1111 1111 1111 0111 1111*
L1888 0111 1011 1111 1111 1111 1111 1111 1110%
crcco*

40F8

TB000260

Figure 1-50. Device Map for the 4-Bit Binary Counter and the Decade Counter
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4-Bit Decade Counter with D Flip-Flops TABLE 1-6. FUNCTION TABLE FOR A 4-BIT

Table 1-6 shows the current and next state description of a 4- DECADE COUNTER
bit decade counter. Figure 1-52 shows the state-counting
sequence. INPUTS OUTPUTS

. N + + + +
A decade counter can be implemented with four flip-flops and S1]S2/A|B]C/DIA B IC D
some additional logic. The four flip-flops are represented by CLEAR| 0 | 0 | x| x|x|x| 0} 0})0]0 1
four variables A, B, C, and D. A represents the most significant Iégﬁ?ﬂ ? ; 3 3 ; 3 %3 %2 %’ 5;0
bit and D represents the least significant bit. Note that the next 3 o lololol1]ololt1]o
states are unspecified for present states 1010, 1011, 1100, 1 olololilololol1 1
1101, 1110 and 1111, 1 ofolol1l1]o]l1]lolo
Logic for each flip-flop's output can be derived easily either : g g : g ? 8 } ? (1,
from the state table or by the Karnaugh-map method. Figure 1 olol1ltlolol 1]1 1
1-53 shows a four-variable Karnaugh-map format. A separate 1 oflol1{1{1{1]loflo]|o
Karnaugh map is required for each flip-flop. States 1010, 1 ol1{olo]Jol1|ojo] 1
1011, 1100, 1101, 1110 and 1111 are indicated as don't-care 1 0 tfjofojt1jofoiofo
states by placing X in the Karnaugh maps. HOLD 1 1 |xfx[x]x]Q3|Q2]Q1]|Q0

Figures 1-54, 1-55, 1-56, and 1-57 show the next state maps
for A*, B*, C* and D* as functions of A, B, C, and D. These
next state maps are easily generated from Table 1-6.

Examination of the next state table indicates that the first
seven transitions, states 0 to 6, do not produce a *'1'' output at
the most significant flip-flop (A). Therefore, the map entry for
this flip-flop in these states is set to ""0"" (Figure 1-54). When
current state is either 7 or 8, the next state for this flip-flop
becomes ''1'" and for current-state 9, the next state is "'0".

Karnaugh maps for B*, C*, and D* can be derived similarly.

Having created the Karnaugh maps, we can attempt to
minimize the Boolean expression for each flip-flop. Figure
1-58.a shows the unsimplified Min term expressions for each
flip-flop derived from the state table. in Karnaugh-map minimi-
zation, Min term expressions can be simplified by grouping
them with don't-care terms. Figure 1-58.b shows the Kar-
naugh-map minimization of the different functions.

Once the minimized SOP logic equations are generated the DF006150
translation to a corresponding PAL device is relatively straight-

forward. Figure 1-51 shows the implementation of both the

4-bit binary counter and the decade counter in a single Figure 1-52. State Diagram of a 4-Bit Decade

AmPAL16R8 PAL device. Counter (10 States)

CD

AB ’

00 01 11 10
00
01
11
10

Figure 1-53. Four-Variable Karnaugh-Map Format
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CD

00
01
1
10

CcD

00
01
1
10

CcD

.00 01 11 10
00 ] 0 0 (]
o1 0 0 {1 0
1 X X x| |
| 1} 0 X x__|_
Figure 1-54. Next State Map for A*
00 01 11] 10
0 0 1] 0
Rk 0 1
wXJ 1 X X X
0 0 X X
Figure 1-55. Next State Map for B*
cD
00 01 1 10
00 0 (1] 0 1]
01 0 bl 0 1|
1 X X X X
10 0 0 X x|
Figure 1-56. Next State Map for C*.
00 01 1 10
1] 0 0 1|
1 0 0 I
X X X | X
K] 0 X x|

Figure 1-57. Next State Map for D*

A* =BCD +A*/D

~ B* =/B*'C*D+B*/C+B*/D

C* =C*/D + /A*/C*D

D*=/D
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A* = /A+B+C+D + A+/B+/C+/D

B* =/A+/B+C+D + /A+B+/C+/D + /A+B+/C+D + /A+B+C+/D
GC* =/A+/B+/CsD + /A+/B+C+/D + /A+B+/C+/D + /A+B+C+/D
D* =/A+/B+/C+/D + /A+«/B+C«/D + /A+B+/C+/D + /A+B+C+/D + A */B+/C+/D

Figure 1-58.a. Reduced Equations from Function Table

At =B+C+D + A+/D

B* = /B+C+D + B+/C + B+/D
C* =C+/D+ /A+/C+«D
D*=/D

Flgure 1-58.b. Reduced Equations from Karnaugh Map

A high-level language design specification for the 4-bit decade
counter is shown in Figure 1-45. Corresponding test vectors
are shown in Figure 1-46 and are used as inputs for the
simulator to test the logic equations. Figure 1-47 shows the
PLPL Optimizer's output; Figure 1-48, the equation fist; Figure
1-49, the simulation run; Figure 1-50, the device map; and
Figure 1-51, the implementation of this function in an Am-
PAL16R8 device (Note that Figures 1-45 through 1-51 also
implement a 4-bit binary counter function).

This simple example shows the advantages of using PLDs:

® User-defined functions can be programmed quickly,

® Two or more logic circuits can be integrated into a single
PLD,

® PC board space is saved and power consumption reduced.

Numerous PLD CAD packages are available that simplify the
system designer's tasks. You can express the circuit at a
higher level instead of being restricted to the early design
methodology of truth-table/Karnaugh-map/logic equation. De-
signs can now be expressed through a schematic-entry
system, or through a high-level language syntax which concur-
rently improves design documentation.

In this chapter we have shown detailed design steps neces-
sary for designing with PAL devices. A later section in this
handbook contains more examples of logic design with PAL
devices.
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2.1 SOFTWARE SUPPORT FOR
AMD’S PROGRAMMABLE
LOGIC DEVICES

Several design-aid software tools are available to the system
designers to assist them in designing-in programmable logic
devices (PLDs). Section 2.1.1 provides an introduction to
these tools, while Sections 2.1.2 through 2.1.4 describe in
detail the capabilities and features of some of the software
packages currently available.

2.1.1 DESIGN-AID SOFTWARE FOR
PROGRAMMABLE LOGIC
The main function of programmable logic design-aid software

is to translate a custom logic design specification into a format
which can be accepted by a programmer (Figure 2-1).

Programmable logic software is also an excellent tool for
design simulation and documentation. Simulation aids in
debugging an initial design and helps to assure that a device
will operate as intended the first time instead of requiring
multiple design iterations. Documentation capability is essen-
tial for someone other than the original designer to understand
a custom programmable logic-specification.

I CIRCUIT CONCEPT I

PROGRAMMING MATRIX PATTERNS

LOGIC (PROM)
PROGRAMMER

BLANK PLD

PROGRAMMABLE LOGIC
DESIGN SOFTWARE

PROGRAMMED

DEVICE
YOUR PRODUCT

LD000750

Figure 2-1. The Programmable Logic Development Cycle

Design Software for Programmable Logic

Available design software may be classified into two major
categories: Assemblers and Compilers.

Boolean Assemblers

These programs allow you to use symbolic names for signals
appearing on input and output pins. Equations must, however,
be written at the fuse level, creating more work for the
designer and producing a logic description which may be more
difficult to understand.

Commonly available program of this type is PALASM.
Logic Compilers

In contrast to the lower-level Boolean assemblers, the compil-
er lets the designer write logic descriptions at a higher level:

i.e., at a level that more accurately reflects the design concept.
This type of software increases productivity while producing
designs that are more thoroughly documented.

Available programs of this type are CUPL, ABEL, AmCUPL
and PLPL.

When applied to programmable logic-design software, the
term "'universal" compiler (Figure 2-2) refers to the ability of
the compiler to support all programmable-logic device types,
all popular logic (PROM) programmers, and a large number of
popular development computers. In addition, universal compil-
ers offer a variety of input design formats such as state
machines, high-level Booleai. equations, truth tables, or logic
schematics.




| TRUTH TABLES I HIGH-LEVEL STATE ILOGIC SCHEMATICSI
EQUATIONS MACHNES
UNIVERSAL
COMPLER
PAL NEXT GENERATION | woevices | [ Prows |

DEVICES

PROGRAMMABLE DEVICES

LD000760

Figure 2-2. The Universal Compiler

A universal compiler's syntax offers a general and easy
description of the desired configuration of the chosen pro-
grammable logic device. This means that the functionality
embodied in a particular logic description can be programmed
into the same PLD from different manufacturers without
altering the description at all.

In addition, the high-level description of the design provides
flexibility in changing the design if so desired. A designer might
use a particular type of PLD. Later, when fixes or enhance-
ments require more product terms or an architectural configu-
ration that the chosen PLD cannot support, the function can
easily be placed in an alternate device. In many cases this will
allow design maodifications without altering printed circuit
boards which may have already been manufactured.

Logic Simulation

Most of the programmable-logic software design-aid tools also
offer logic-simulation capability to the designers. Logic simula-
tion is typically performed to verify the logical design (logic
equations) prior to programming an actual device. This may
save some of the time spent trouble-shooting a programmable
logic design using conventional techniques (scope and logic
analyzer).

A simulation file consists of a table of stimulus patterns
applied to inputs and response patterns expected at outputs.
The simulator compares each stimulus/response pattern (vec-
tor) with the logic equations to verify that the expected
response agrees with that produced according to the equa-
tions.

Not simulating may be of little consequence for simple
designs, but for complex designs, especially complex sequen-
tial logic, it is well worth the time.

Testing Programmable Logic
Programmable-logic software design-aid tools also assist the

~ designer in testing the PLDs after they have been pro-

grammed.

Before shipping a PLD, programmabilty may be verified by the
manufacturer by exercising the device's address and program-
ming circuitry on redundant test sites.

After the device has been received and programmed by the
user, the logic programmer will read the states of all the fuses
in the device and compare them with the data stored in the
programmer's memory to check the status of the program-
ming matrix in its verify cycle (Figure 2-3). If any mismatches
are detected, the device is rejected.

INPUTS
PROGRAMMING
MATRIX

1

Tested During
Programmer Verify
Cycle

OUTPUTS
FIXED LOGIC

Tested By Applying
Functional Test
Vectors

LDO000770

Figure 2-3. Programmable Logic Device Testing




However, a correct fuse verify does not guarantee that the
device will work properly, since the fixed logic of the device
has not been fully tested. To ensure proper operation, the
device must be functionally tested.

Functional testing of PLDs involves applying stimulus patterns
to a device while looking for the expected response. The test
sequence consists of a table of stimulus/response patterns
similar to those used to perform a simulation. Programmable-
logic software design-aid programs offer the capability of
generating these test patterns.

These patterns (test vectors) are produced by creating a
simulation input file containing stimulus/response patterns.
After running the simulator to verify the integrity of the vectors,
they are appended to the JEDEC down-loadable file which
already contains the programming patterns for the particular
target device.

We can now see that there are two distinct benefits of logic
simulation in working with PLDs.

LOGIC SIMULATION

DESIGN VEFIIFICATION4—l—>TEST VECTOR GENERATION

Third-Party Software

Many different programmable-logic design-aid software pro-
grams and software programs resident on programmable logic
programmers are available. Table 2-1 lists some current
suppliers of the these design tools. Contact the indicated
companies for the status of their particular product.

The next three chapters of this section describe in detail the
features of four high-level software design aids which support
AMD's programmable logic devices. These software programs
are ABEL, CUPL, AmCUPL, and PLPL.

- TABLE 2-1. THIRD-PARTY SOFTWARE DESIGN-AID TOOLS

Vendor Software Hardware Platform
Data 1/O Corp. ABEL IBM PC or compatible
10525 Willows Road N.E. DEC VAX (VMS, UNIX)
Redmond, WA 98073 Apollo (AEGIS)
(206) 881-6444 Sun Microsystems (UNIX)
DASH/CADAT IBM PC or compatible
DASH/ABEL

ISDATA LOGIC IBM PC or compatible
Haid-und-Neu-Str. 7. DEC VAX (VMS, UNIX)
D-7500 Karlsruhe Apollo (AEGIS)
West Germany
(0721) 693092
JMC PROMAC Division PALASM PROMAC P3
2999 Monterey/Salinas Highway
Monterey, CA 93940
(408) 373-3607
Personal CAD Systems Inc. CuPL IBM PC or compatible
1290 Parkmoor Avenue DEC VAX (VMS, UNIX)
San Jose, CA 95126 -
(408) 9711300 CAE IBM PC or compatible
MMI PALASM IBM PC or compatible
(Public Domain) PC (CPM-80)

DEC VAX (VMS, UNIX)
AMD PLPL IBM PC or compatible
(Public Domain) DEC VAX (UNIX)
Valley Data Sciences PERFECT IBM PC or compatible
2426 Charleston Road VISTA
Mountain View, CA 94043
(415) 968-2900

2.1.2 ABEL o DASH/ABEL —a schematic-diagram interface that con-

ABEL is a complete logic-design too! that lets you easily
describe and implement programmable logic designs in PAL
devices, IFLs, and PROMs. ABEL consists of a special-
purpose, high-level language that is used to describe logic
designs, and a language processor that converts logic de-
scriptions to programmer-load files. Programmer-load files
contain the information necessary to program and test pro-
grammable logic devices. Figure 2-4 shows ABEL used with
Data 1/0's Model 29 Logic Programmer in programmable logic
development system.

ABEL may be used with several other Data /O design

development tools such as:

® PLDtest— an automatic test-vector generator that allows
100% testing of programmed logic parts

verts schematic designs to ABEL source files

PROMIink — a program that permits control of and commu-
nication with Data I/0 programmers by means of a person-
al computer

Features of the ABEL design language are: )
® Universal syntax for all programmable logic types
® High-level, structured design language

® Flexible forms for describing logic:

- Boolean Equations

~ Truth Tables

- State Diagrams

Test Vectors for simulation and testmg
Time-Saving Macros and Directives
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Figure 2-4. ABEL — A Logic Design Tool

The ABEL language processor also has many powerful
features:

® Syntax checking

® Verification that a desrgn can be implemented with a
chosen part

Logic reduction

Design simulation

Automatic design documentation

Creation of programmer-load files in JEDEC and PROM
format

Together, the ABEL design language and language processor
make it easy to design and test logic functions that are to be
implemented with programmable logic devices. For exampls,
you can design a three-input AND function with the inputs A,
B, and C and the output Y using a truth table like this:

truth__table ''3-input AND gate"
(ABC] —¥)
[0,X..X] =8 ;
[X,0X] —8;
[.X.,.X., 0] —9 ;
[1, 1,11 = ;

The ".X."s in the table indicate ""don't-care’* conditions, and
the output Y is set to 1 only when all three inputs equal 1. You
also could have specified the output Y in terms of simple
Boolean operators and have achieved the same result. This is
done here, where "&" is the logical AND operator:

Y=A&B&C;
Design Process with ABEL

ABEL lets you choose the type of description that is best
suited to the logic being described, or the type of description

you feel most comfortable with. And, in most cases, the same
description can be used for many different devices simply by
changing the device specification. ABEL enters the design
process in a way that reduces errors and saves time. You can
think about designs in a logical, functional way, describe them
in that fashion, and then test your design to see that-it
operates as expected, all without worrying about which fuses
should be blown or left intact.

Figure 2-5 shows the logic-design process and the role ABEL
takes in it. Beginning with the design concept, the designer
creates the ABEL source file required by the language
processor in order for it to generate the programmer-load file.
The source file is written by you and contains a complete
description of your logic design. You can create the source file
manually by means of a text editor (or word processor) that
generates ASCI! files, or you can use DASH/ABEL to convert
a DASH-generated schematic of the design to an ABEL
source file.

The source file is presented to the ABEL language processor
which performs several functions to produce a programmer-
load file (in JEDEC format) and design documentation. The
first ABEL function, Parse, checks the syntax of the source file
and flags any errors. Transform converts the logic description
to an intermediate form. Reduce performs logic reduction, and
Fusemap creates the programmer-load file. The programmer-
load file can then be downloaded to the logic programmer to
program parts, or can be first transmitted to PLDtest, an
automatic test-vector generator. The Simulate function tests
the design of the part against your test vectors contained in
the source file and reports any functional failure of the design.
The Document function generates a listing of the source file, a
drawing of the logic device pin assignments, and a listing of
the programmer-load file.
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Figure 2-5. Logic Design Steps with ABEL

More About ABEL Features
Design Checking

The language processor checks your logic design for correct
language syntax and explicitly tells you where an error occurs
and what the error is. The language processor also checks
your design to see if it can be implemented on the chosen
device. For example, if a device input pin is used as an output
in an equation, the language processor detects and reports
the error.

Logic Reduction

The language processor reduces your logic design to a near
minimal form, so that you do not have to perform the tedious
task of logic reduction by traditional methods such as Kar-
naugh maps. You may choose different levels of reduction
based on the design and the device.

Simulation of a design is performed after a logic design has
been reduced and converted to a programmer-load fite. The
simulation facility uses device characteristics, a fuse map, and
test vectors to simulate the actual operation of the device. The

fuse map and test vectors used for simulation are the same as
those that will be used to program and test the real device.

Functional Device Testing

If test vectors are specified in a source file, the programmer-
load file created by the language processor contains these
vectors in a form that can be used to test a programmed
device with a logic programmer.

Standard JEDEC-Format Programmer-Load File

The standard programmer-load file created by the language
processor conforms with the JEDEC Standard, No. 3, for data
transfer to logic programmers. JEDEC-format files are used to
transfer PAL and IFL designs to the logic programmer. Other
formats for PROM programmers are supported.

System Requirements

ABEL presently runs on the following computers and operating
systems. Versions for additional systems are under develop-
ment.

® [BM/AT/XT and MS-DOS compatibles

® VAX/VMS

® VAX/Unix

25




® Sun
® Valid
® Apollo/Mentor

The configuration information and installation instructions for
ABEL differ for each type of system. To install ABEL in your
particular system, refer to the installation guide supplied with
your ABEL package. In addition to ABEL, you will need an
editor or word processor with which to create ABEL source
files. This may be any editor of your choice as long as as it
produces a standard ASCII file.

Note: Some word processors, such as WordStar, operate in
more than one mode, and may create non-standard ASCII files
that cannot be used with ABEL. If you are using such a word
processor, choose the mode of operation that creates print-
able ASCI! files.

For downloading programmer-load files to a logic programmer,
you will need:
® An RS-232C port and a cable to connect to the programmer.
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2.1.2 ABEL

DESIGN TOOLS FOR PROGRAMMABLE LOGIC

Michael Holley
Project Engineering Manager
FutureNet Corporation
10525 Willows Road N.E.
Redmond, WA 98073-9746

Programmable logic devices consist of
an array of logic gates whose
interconnections may be programmed to
implement specific logic designs.
Gate interconnections are programmed
by opening selected fuses while
leaving others intact. The logic
gates are generally arranged so that
the device inputs are connected to AND
gates which are in turn connected to
OR gates. Two common types of
structures are the PAL'™ structure,
vhere the AND array is programmable,
and the FPLA structure where both the
AND and OR arrays are programmable.

Figure 1 shows the fuses opened and
left intact for a basic PAL'™ in order
to provide the function expressed in
the equations. This PAL'™ application
is quite simple and the fuses to be
blown could be determined with a low-
level design tool, such as PALASM'™, or
even manually. However, many next-
generation programmable logic devices
contain complex macro cells that
require powerful design tools to
efficiently program them. 1In addition
to the AND and OR gate interconnect-
ions, many newer devices contain
programmable registers and
programmable feedback paths from the
outputs back to the AND gate inputs.

To program a programmable logic
device, a conceptual design must be
converted to a binary bit pattern that
is loaded into a logic programmer.
Since the gates are arranged in a sums
of products form (AND-OR), early
design tools required that the user
transform the design to the sums-of-
products form. The next generation
programmable logic devices have multi-
level logic so you don't have convert
the design to the sum-of-products
form, just sum-of-products equations.

PERSONAL SILICON FOUNDRY

One solution to the programming of
complex programmable logic devices is
the Personal Silicon Foundry from Data
I/0 Corporation. This desk-top system
contains all the design tools and
hardware to take a design from
conception to programmed devices in
just a few hours. PSF allows the
engineer to express the design in the
form of Boolean equations, truth
tables, state diagrams, or even
schematic diagrams. Design tools
within PSF transform the design
description, after logic reduction,
into a sums of products form and then
into the required bit patterns to
program the logic device. This paper
provides a brief description of the
Personal Silicon Foundry and how it
enhances the PC engineering
workstation as a complete design
system.

PSF includes an IBM-AT or -XT and a
logic programmer, plus the following:

ABEL (Advanced Boolean Expression
Language) - a high-level logic
design language used to describe
and implement programmable logic
designs and a multi-program
language processor to process
logic descriptions (in ASCII
format) to JEDEC~format logic
programmer load files.

Programmer load files contain the
information necessary to program
. and test programmable logic
devices.

DASH - a full-featured schematic

design system that provides

graphics output to
printers/plotters and design file
output to post-processes of

CAD/CAE systems.
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S

3 = INTACT FUSE

Figure 1.

DASH-ABEL - a schematic capture
interface tool that allows logic
designs to be expressed as a
schematic diagram. DASH-ABEL
also allows designs within
schematic diagrams to be
processed by ABEL.

PLDtest - a programmable logic device
fault analysis tool that insures
complete testing of devices after
they are programmed.

To proceed from design concept through
to programmed devices, several basic
steps are followed, with optional
choices to accomodate a variety of
design situations. The flowchart
presented in figure 2 shows the
general flow of the design,-
simulation, testing, and programming
operations provided by the system.

Intact PAL Fuses

g

and the Logic Equations

USING ABEL

The heart of the PSF is the ABEL
Language Processor. The input to the
language processor is a source file
that contains all elements of the
design, declarations for the target
logic device, test vectors, etc. The
ABEL source file is created in either
of two ways: 1) with a text editor
that generates an ASCII file, or 2)
with the DASH schematic editor.

If a text editor is used, the designer
keys-in the design using the desired
method, i.e., equations, truth tables,
or state diagrams (plus logic device
pin information, test vectors, etc.)
to produce a design description
similar to those shown in figures 3
and 4. The partial source file in.
figure 3 describes a seven-segment
display decoder by means of a truth
table. The partial source file in
figure 4 shows how a design (a traffic
signal controller) is expressed by
means of a state diagram.
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| DESIGN CONCEPT I
Y *
v DASH-2
TEXT EDITOR DASH-ABEL
SCHEMATIC
CAPTURE
y Y
ABEL
SOURCE FILE
JEDEC FUSEMAP :
FILE SIMULA-
; TION =
SIMULATE | RESULTS
PLDTEST !
TEST VEC- —=sy
TOR l DOCUMENT DESIGN
GENERA- DOCUMEN-
TION ABEL LANGUAGE TATION
PROCESSOR
y LoGIC >
PROGRAMMER .
Flgure 2. Logic Design Steps with PSF

If the DASH schematic editor was used
to express the design, it would be
translated by the DASH-ABEL Schematic
Capture program to produce source file
with Boolean equations substituted for
the logic circuit. (Refer to Session -
8 for more information on the
schematic capture feature of PSF.)

Reduction of Logic Terms

As indicated in figqure 2, the

completed source file is input to the
ABEL Language Processor. The first
step is the Parse-Transfor process.
These programs read the source file
and convert truth table or state
diagrams to Boolean equations in a non-
minimized form.

The subsequent Reduce program applies
DeMorgan's theorem to convert the
equations to the sum-of-products form
minimize the logic description so that
fewer product terms are used in the
programmable logic device.

Fusemap and Simulation

The Fusemap program processes the
output file from the Reduce program
and creates a programmer load file.
The output of the Fusemap program is
passed either to the Simulate program
or (in JEDEC format) to the logic
programmer or to PLDtest.

‘-dB2”
title “BCD to seven segment display decoder
Data 1/0 Corp Redmond WA 27 Feb 1986~
"
a

module bed7rom flag

BCD-to~seven-seguent decoder

" £ g |b
" —— segument identification
" el d |e
" -
U6 device “RASPB”;
p3,p2,D1,D0 pin 10,11,12,13;
a,b,¢,d,e,f,g pin 1,2,3,4,5,6,7;
ena pin 15;
bed - (D3,02,01,D0];
led = [a,b,c,d,e,f,g];
ON,OFF = 0,1; " for common anode LEDs
LyH,X,2 = 0,1,0X0,42.3
truth_table
(bcd => (2, b, ¢, d, ¢, £, g
0 =-> [ ON, ON, ON, ON, ON, ON, OFF];
1 =-> [OFF, ON, ON, OFF, OFF, OFF, OFF};
2 => [ ON, ON, OFF, ON, ON, OFF, ONJ;
3 -> [ ON, ON, ON, ON, OFF, OFF, ON];
4 => [OFF, ON, ON, OFF, OFF, ON, ONJ;
5 => [ ON, OFF, ON, ON, OFF, ON, ON]);
6 =-> [ ON, OFF, ON, ON, ON, ON, OoN];
7 -> [ oN, ON, ON, OFF, OFF, OFF, OFF];
8 -> [ oN, ON, ON, ON, ON, ON, ON];
9 =->[ oN, ON, ON, ON, OFF, ON, ON);
Figure 3. An ABEL Source File Using a

Truth Table to Describe the Design
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2.1.2 ABEL (Cont'd.)

state_diagram Count

State 0: case SenseA & !SenseB : 0;
. : !SenseA & SenseB : 43
(SenseA == SenseB) : 1;
endcase;
State 1: goto. 23 "Delay three clocks
State 2: goto 3;
State 3: goto 43
State 4: GreenA := Off;
YellowA := On ;
goto 5;
State 5: YellowA := Off;
RedA := On ;
RedB 1= Off;
GreenB := On ;
goto 8;
State 6: goto. 15; "Unused states
State 7: goto 15;
State 8: case !SenseA & SenseB : 8;
) SenseA & !SenseB : 12;
(SenseA == SenseB) : 9;
endcase;
State 9: goto 10; "Delay three clocks
State 10: goto 11;
State 11: goto 123
State 12: GreenB := Off;
YellowB := On ;
goto 13;
State 13: YellowB
RedB
RedA
GreenA :
goto 0;
State 1l4: goto 15; "Unused state
State 15: ‘GreenA := On ; "Power on initillze state
YellowA := Off;
RedA := Off;
GreenB := Off;
YellowB := Off;
RedB := On ;
goto 0;

@page

Figure 4. Using a State Diagram to Describe a Logic Design in an ABEL Source File
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The Simulate program uses the design
and device information to simulate
operation of the design in a
programmable logic device. That is,
it simulates operation of the device
as if it were already programmed with
the information contained in Fusemap
output file. If the design fails to
operate in accordance with the test
vectors, errors are listed that
indicate any failed functions. The
flagged errors allow the design to be
corrected early in the development
stage, before any programmable logic
devices are actually programmed.

The Programmer Ioad File and PLDtest

After successful simulation, the JEDEC
programmer load file is passed on to
the logic programmer so that parts can
then be programmed with the logic
design. Before device programming,
the JEDEC file can be passed through
PLDtest, a fault analysis tool that
insures complete testing of
programmable logic devices. PLDtest
generates a series of test vectors
that are added to the JEDEC file so
that the logic programmer can perform
additional testing on each device
after it is programmed. This lowers
the device failure rate by identifying
marginal devices before they can be
placed in inventory or installed in
the end-product. Since programmable

logic devices cannot be adequately
tested before they are programmed with
the logic design, manufactures cannot
provide this type of testing and fault
grading before device leave the
factory.

Design Documentation

The final step of the ABEL Language
processor is that of providing design
documentation. This feature is of
real benefit to engineers take no
delight in producing thorough
documentation. The Document program
generates printed reports. Included
in the documentation is signal
name/pin informaton for the device, a
list of reduced equations that show
the design, a pinout diagram of the
device, a representation of the
fusemap, and the test vectors.

CONCILUSION

Personal Silicon Foundry is a complete
design, simulate, and testing system
for programmable logic. .It is
intended to reduce the time between
concept and programmed parts to a
matter of hours. All operating
software is tried and proven with more
than a year of service in the customer
base. :
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2.1.3 CUPL, AmCUPL

Designer’s Guide to:
Programmable logic—Part 1

Compiler-based
software and PLDs
improve logic design

Programmable logic devices allow you to
complete a design faster than you can using
SSI devices or custom ICs, and PLD
implementations take up less space than do
SS8I-based civcuits. Moveover, easy-to-use
compiler-based languages that don’t vequire
you to understand PLD architectures make
PLD:s tncreasingly attractive for '

lagic designs.

Bob Osann, -Asststed Technology

Circuits that incorporate programmable logic devices
(PLDs) take up less board space than do SSI-based
implementations and require less design time than do
custom-IC or SSI-based versions. But until recently,
the PLDs’ unusual architecture and lack of software
support made designers hesitant to use the devices,
despite the advantages they offer. Compiler-based soft-
ware, however, is simplifying PLD use; this high-level
software makes it unnecessary for you to be concerned
with the PLDs’ internal details when implementing
logic functions with the devices.

This first article in this 3-part series, which is aimed
at first-time PLD users, discusses basic PLD architec-
ture and shows you how to replace two simple logic

EDN January 10, 1985

designs with PLDs using a compiler-based PLD design
language. Part 2 will show you how to replace more
complicated combinatorial and registered-TTL designs
with PLDs. Part 3 will introduce the state-machine
concept and show you how to implement a logic design
directly, without ever developing a gate-level descrip-
tion of the system. .

Although the PLD approach lets you go from logic
function to PLD circuit without conceiving a gate-level
description, when designers decide to use PLDs, they
usually have either completed TTL designs that they
want to shrink or else gate-level descriptions of circuits
they don't want to implement in discrete logic. There-
fore, the first two articles in this series target convert-
ing existing designs.

Why use a PLD?

. For one-of-a-kind designs, prototypes, or small pro-
duction runs, designers have traditionally taken the
discrete approach. Discrete designs are easy to modify
and inexpensive to manufacture in small quantities, and
you can complete them more quickly than you can
complete custom or semicustom designs. For produc-
tion runs over 500, designers have typically chosen the
semicustom and custom routes and sacrificed short
design cycles and ease of modification to reduce manu-
facturing costs.

PLDs bridge the gap between bulky discrete designs
and long custom-IC design cycles. On the one hand,
PLD designs are easier to modify than SSI-based ones
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2.1.3 CUPL, AmCUPL (Cont'd.)

and use much less space. Moreover, depending on the
application, they can cost less than SSI-based imple-
mentations for even small production runs. And on the
other hand, although custom ICs can prove more eco-
nomical than PLDs for large production runs, PLD
design cycles are much shorter. So, if you need to get a
small, inexpensive design to market quickly and can’t
wait for a completed custom design, PLDs can provide
you with a quick stand-in until your custom design is
completed.

In general, the PLD architecture contains a fixed
logic array made of AND gates—whose outputs feed

A PLD approach allows designers to go
from a logic function to a PLD-based
civeuit without conceiving a gate-level
description.

OR gates—and a programming matrix. The program-
ming matrix is made up of fuses that you blow with a
programming device. By blowing the appropriate
fuses, you can achieve any AND/OR product or combi-
nation. Fig 1 shows the PAL-type and FPLA-type
architectures. The total number of terms that you can
generate is limited only by the size of the matrix.
Because you can represent any logical function as the
logical sum of product terms, you can realize any logical
function using a PLD. A product term consists of any
combination of input variables or their complements
ANDed together. A logical sum is any combination of

AND
FUSE
MATRIX

@ H

—OouT,

FUSE
MATRIX

-
@—(FOUTI

Fig 1—Typical PLDs use one of two general architectures to permit
implementation of a wide range of logic functions. PAL-type devices
(a) prove easier to use, but FPLAs (b) provide more flexibility by
allowing two levels of programmability.

[ CONCEPTUALIZE THE LOGICAL DESIGN I

| creaTE THE LoGIcC-DESCRIPTION FILE |

I RUN CUPL FOR TARGET PLD

EDIT SOURCE FILE

A\

A

YES
COMPILE ERRORS?
NO

I SIMULATE FOR DESIGN VERIFICATION I

[DOWNLOAD AND PROGRAM TARGET PLD]

DEBUG PROTOTYPE

LOGIC DESIGN ERRORS?

NO

DESIGN COMPLETE

CREATE SIMULATION INPUT FILE
FOR TEST-VECTOR GENERATION

}

RUN SIMULATOR TO PRODUCE
JEDEC FILE (DOWNLOADABLE)
WITH TEST VECTORS

| propucrion ReLease |

Fig 2—PLDs greatly simplify logic design. After you complete the
logic-description file, the PLD software automatically compiles the
data for downloading to a programming device.
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45 OUT,

Fig 3—When using CUPL, you can always write your logic equa-
tions in positive logic, regardless of the actual polarity of the signals
entering the device. For example, the two cases illustrated above both
yield the same logic equation: OUT=IN,&IN..

Fig 4—Some PLD devices use an inverting output buffer. As o
result, to accommodate applications that demand an active-high
output signal, the compiler often must generate extra product terms
that might make the design too big for the target PLD.

product terms ORed together. Using De Morgan’s
theorems,

(AB)=A+B, and
(A+B)=AB.

Then, using the distributive property,

A(B+C)=A+B, and
(A+B)(C+D)=AC+AD+BC+BD.,

The PLD software determines the best form of the
equation that will fit into a PLD, which uses a general
architecture to permit implementation of a wide range
of functions. The software should allow you to think in
terms of logical functions rather than gates. The better
the software, the more you can abstract from the
details of discrete design and attend to system
concerns.

Once you've decided to use a PLD approach, you'll
need to choose the software development support for
that device. You can use two basic types of software:
assembler-based software and compiler-based software
(Ref 1). Assembler-based software is supplied by the
PLD manufacturer; it typically supports only that
manufacturer’s devices. If you buy PLDs in large
quantity, you can usually get the software for well
under $100. An alternative to assembler-based soft-
ware is the compiler-based software sold by Data 1/0
and Assisted Technology. Compiler-based software
supports almost all PLD devices and programmers;
typical prices range from $750 for a version that runs on
CP/M-based systems to $2695 for a version that runs on’
VAX/VMS systems. ‘

Although compiler-based software is more expen-
sive, it will make your PLD design task easier. Capabil-
ities such as symbolic signal representation and macro

EDN January 10, 1985

substitution make it easier for you to formulate and
enter your logic equations. These improvements allow
you to formulate your design at a higher conceptual
level; that is, you can think in terms of systems instead
of individual circuits.

Fig 2 illustrates the PLD design process using As-
sisted Technology’s CUPL language. (The Abel lan-
guage, developed by Data 1/0, could also be used
to demonstrate the techniques involved.)

The CUPL syntax

Before you can design with CUPL, you have to learn
the syntax. CUPL’s operators, which were chosen
largely from the C programming language, are as
follows:

&=logical AND
#=logical OR
$=Ilogical exclusive-OR
!=logical negation.

You can place comments anywhere within a CUPL
logic specification by using the symbol /* for “start
comment” and the symbol */ for “end comment.” You
can also nest parentheses to any level, as in this
example: OUT=!((A&B)&(C#(D&E))).

To facilitate clear documentation, CUPL allows you
to use symbolic names of arbitrary length (the first 31
characters must be unique). Symbolic names can repre-
sent pin variable names, internal device nodes, inter-
mediate variables, bit-field representations, and sym-
bolic constants. To further improve clarity, you can use
the underscore character—

RAM_PARITY_INT_EN.

When you're converting an existing design, CUPL
allows you to give symbolic names to internal nodes
within your design. For example, for flip-flops con-
nected to the pin PIN__VAR, you would name the node
as follows:

o D-type flip-flop—PIN__VAR.D=Expression
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® JK-type flip-flop—PIN__VAR.J=Expression,
PIN_VAR.K=Expression
® RS-type flip-flop—PIN__VAR.R=Expression,
PIN__VAR.S=Expression. )
For 3-state-device enable signals connected to a pin,
you would write:
o PIN__VAR.OE=Expression
e [PIN__VAR LIST].OE=Expression,
as in [DATAT"..0].0OE=Expression: If you're leaving the
3-state device enabled, you don’t have to write an
equation for it.

Handling signal polarities

One issue that often confuses first-time PLD users is
the representation of signal polarities. In CUPL, you
can always write equations in positive logic, regardless
of the polarity of the signals entering the device.
Because all signals entering the PLD are buffered, you
have access to both the true and complement versions
of the input signal for your logic equations. Fig 3
illustrates two simple cases. For each case—if you were
using the PLD as an AND gate—you would write the
same logic equation: QUT=IN,&IN,.

The specification of signal polarities is complicated by
the inverting-output architecture of, for instance,
20-pin PAL devices (Fig 4). If you need an active-low
output polarity, this doesn’t create a problem. In this
case, the compiler has to implement only one P (prod-
uct) term. However, if you need an active-high output
signal, the compiler must apply De Morgan’s theorem,

_______________________ -
PLD EQUIVALENT

15 OUT

Fig 5—With CUPL, you can often replace a TTL design without
understanding its function. You just name the pins and nodes,
combine them according to gate relationships in the circuit, and the
software does the rest.

The PLD architecture contains a fixed
logic array made of a programming
matrix and AND gates whose
outputs feed OR gates.

Fig 6—Reduced propagation delays are one of the benefits of using
PLDs. A PLD implementation of the circuit shown here has, on the
average, half the propagation delay of the discrete implementation.

and !OUT;=!(IN,&IN;) becomes !IN;#!IN;. Note that
this equation contains two product terms. The addition-
al space the compiler requires reduces the probability
that the compiler will be able to fit the logic function
into the target PLD.

CUPL can eliminate this problem for PLD devices
that have programmable output polarities. CUPL auto-
matically chooses the output polarity that will result in
the fewest number of P terms.

Reduce keystrokes

One of CUPL’s (and Abel's) major advantages is
macro substitution, the ability to use a single variable
name to represent a complex logical equation. For
example, if you define “INT_VAR” as “A&B#C,” the
compiler will insert A&B#C every time it encounters
INT_VAR.

Because macro substitution lets you use fewer key-
strokes to write equations, it saves time and reduces
the probability that you'll make input errors. By using
macro substitution, you can write your logic specifica-
tion in a hierarchical fashion, breaking complex equa-
tions into more manageable and readable pieces.

.~ The logic description

The heart of CUPL is the logic-description file
(LDF), which contains your logic equations, pin decla-
rations, intermediate variables, and documentation de-
seribing the device’s function. You must complete the
LDF to prepare your logic equations for downloading to
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a programming device. Table 1 shows the format for a
CUPL LDF that was written for a memory decoder.
The following example shows you how to complete
the logic equation, pin declaration, and intermediate
variable portions of an LDF for the design in Fig 5.
First, you write the pin declarations using the same
names and signal polarities that appear on your sche-
matic. Next, you name the output of each gate in the

schematic. In the example, STROBE, A, and !GATE
are the intermediate variables. Using the intermediate
variable definitions, you then write an equation for the
output:

PIN 4=!IN;

PIN 5=IN,

PIN 6=IN;
PIN 15=0UT

TABLE 1—SOURCE
SPECIFICATION FILE FORMAT

FUNCTION DESCRIPTION
PART NO 1 DER INFORMATION:
MEMDEC IDENTIFIES THE
DATE 07/18/84 RTICULAR LOGIC
SOURCE FILE
SANN
COMPANY 1
ASSEMBLY  PC-RAM
LOCATION 47
THIS DEVICE DEOODES ADDRESSES TITLE BLOCK
E DYNAMIC RAM AND DESCRI
PROV!DES THE RAS STFIOBES AS PLAIN TERMS WHAT
THIS DEVICE DOES.

WELL AS A SIGNAL THAT INITIATES
CAS.

ALLOWABLE TARGET DEVICE DEVICE MENU: LISTS

TYPES: PAL 16L8, 825153, ALL TARGET DEVICE TYPES

EP300. THAT MAY BE USED.

INPUTS: PIN DECLARATIONS

PIN [1..6] = [A 19..14]) CPU ADDRESS BUS

PIN(7,8] = F[MEMW, MEMR] MEMORY DATA STROBES

PIN9 = | REF_ADR_EN INDICATES REFRESH CYCLE IN PROGRESS

PIN 11 = | REF_RAS
PIN 13 = ALT_I.OC

STROBE FOR RAS-ONLY REFRESH
PLACE MEMORY IN ALTERNATE RANGE

ouT
PIN ns Sy =1 [RAs3..0) RAM ROW ADDRESS STROBES

PIN 14 = 1 CAS__| ENABLE CAS STROBES
DECLARATIONS AND INTER- WRITE EQUATIONS FOR
MEDIATE VARIABLE DEFINITIONS: BIT‘FIELD DEC RATIONS
MEDIATE VARIABLES
WHICH WILL BE SUBSTITUTED
LATER USI
SUBSTITUTIO :
FIELD MEMADR MMQ,.AI‘I MORY ADDRESS
MEM REQ = MEMW # MEMR MEMORY REQUEST
LOGIC EQUATIONS: WRITE EQUATIONS FOR
QUTPUTS IN TERMS O
INPUTS AND FEEDBACK AS IN:
OUTPUT = INPUT 1 & FEEDEACK 1
#INPUT 2 & FEEDBACK 2
# INPUTS N & FEEDBACK N
FUNCTION DESCRIPTION
RAS 3 = MEMREQ & ! REF_ADR_EN &
(! ALT_LOC & MEMADR: PRIMARY RANGE
# ALT_LOC & MEMADR: FCOOO FFFF ) ALTERNATE RANGE
# REF_ADR__EN & REF_RAS REFRESH CYCLE

RAS 2 = MEMREQ & | REF_ADR_EN &
(' ALT_LOC & MEMADR: [08000. . . 0BF!

FF] PRIMARY RANGE
# ALT_LOC & MEMADR: {F8000. . . FBFFF)

ALTERNATE RANGE

¥ REF_ADR_EN & REF_RAS REFRESH CYCLE
mﬂs A'u" 'fggiegs&u';«g“‘wﬁ EOFEL PRIMARY RANGE
IMAR
MEMADR: 24000 | BTFFF)  ALTERRATE NANGE
AL ADR AN & FEF "RAS REFRESH CYCLE
AT e EMADE oo SaF PRIMARY RANGE
#ALT_LOC & MEMADR: ,FOOOO FFR ALIEANATE Renoe
EF_ADR_EN & REF _| REFRESH CYCLE
CAS  INT < MEMREQ &1 REF_ADR_FEN b ARY RANGE
§ ALTLO & MEMADR: [99000: - - e ALTERNATE RANGE

A=1IN,
STROBE =!(!IN)#!IN; /*!({IN;) =IN,*1
IGATE=!(A&IN;,)
OUT=STROBE&!GATE.

The following expressions show this strategy applied
to the more complicated design in Fig 6:

A=!IN,
B=!(IN;&IN,&!IN;)
C=I(1IN;)#!(!IN,)
D=!C
E=!(C&IN;)
F=!B&!D&'E
G=A#F
10UT=(G&INy).

The design in Fig 6 illustrates another advantage of
using PLDs instead of discrete logic. The propagation
delay in the PLD implementation is often less than that
in the discrete design. The discrete design for this
circuit requires at least three TTL packages and has
five levels of delay. The total delay time is 50 nsec (five
levels times 10 nsec/level) for LS packages and 26 nsec
(4x4 nsec+10 nsec) for a combination of LS and Schott-
ky TTL packages. In an equivalent PLD circuit, the
maximum delay is 25 nsec; typical delay is only 15 nsec.

Registered PLDs

Some of the more complicated types of PLDs use
flip-flops in their output stages to store information.
Most of these PLDs provide integral feedback paths.
The simplest registered PLDs contain D-type flip-flops,
which transfer the signal at their D input to their Q
output after one clock pulse (more specifically, after the
application of a positive-going leading edge). The equa-
tions for the flip-flop in Fig 7 are

OUTPUT.D=G&INPUT /*UPDATE WITH INPUT*/
#!G&OUTPUT; /*MAINTAIN CURRENT OUTPUT*/
/*VIA INTERNAL FEEDBACK DATA*/.

For simple registered designs, you'can often model

EDN January 10, 1985

2-16




2.1.3 CUPL, AmCUPL (Cont'd.)

Compiler-based software for PLD design
includes such features as symbolic signal
representation and macro substitution.

the circuit with a timing diagram. Using the timing the smallest possible number of product terms to keep a
diagram, you can write your logic equations easily. In D flip-flop set for several clock cycles. Here, the
the Fig 8 timing diagram for a D-type flip-flop, INPUT, flip-flop’s output is fed back until some condition is met
initiates the input pulse, and INPUT, terminates the that again enables the flip-flop.

output pulse. The pin declarations are If the registered PLD contained JK flip-flops, the
expressions would be 2
PIN 3=!INPUT, ,
PIN 6=!INPUT; OUTPUT.J=INPUT; /* SET FF*/
PIN 1=CLOCK OUTPUT.K=INPUT;; /* RESET FF*/.

PIN 14=0UTPUT,
To handle more complicated sequential designs, you

and the corresponding logic equations are can model your circuit as a multiple-flip-flop system
. S that uses a common clock. (Virtually all currently
OUTPUT.D=!0UTPUT&INPUT 2 /*SET FF*/ available registered PLDs use common clocks for their

# OUTPUT&!INPUT 1‘/ * KEEP FF SETZ’ flip-flops.) For example, to convert TTL designs that
;*G%}If:?ké’?g%l: /1 ! use cascaded flip-flops (in which the outputs of some

flip-flops are used to clock other flip-flops), you must

These equations demonstrate one method for using find the originating clock in the circuit, which is usually

s urrmar
CLOCK (]
1INPUT, -
!INPUT,-L-I
ou'rpur--—l | I

- Fig 8—Converting logic designs to PLDs is easy once you've
Fig 7—Some PLDs use registered outputs to introduce storage completed a timing diagram for your circuit. This one represents
elements into their architecture, operation of a D-type flip-flop.

J§ OUTPUT (REGISTERED)

TABLE 2—CUPL OPTION FLAGS

PRODUCE YOUR_FILE_NAME.ABS FOR LATER USE BY CSIM.

PRODUCE YOUR__FILE__NAME.LST WITH LINE NUMBERS AND ERROR MESSAGES.
PRODUCE YOUR__FILE__NAME.HL DOWN-LOADABLE HL FORMAT FILE FCR IFL.
PRODUCE YOUR_FILE_NAME.HEX MM! PAL ASCII-HEX FORMAT FILE
PRODUCE YOUR_FILE_NAME.DOC WITH FUSE MAP FILE.

PRODUCE YOUR__FILE_NAME.DOC WITH FULLY EXPANDED EQUATIONS.
PROGRAM SECURITY FUSE.

DISABLE GLOBAL PRODUCT-TERM MERGING. (FPLA DEVICES).

PERFORM NO LOGIC MINIMIZATION.

PERFORM LOCAL LOGIC MINIMIZATION.

PERFORM LOGIC MINIMIZATION UNTIL EQUATIONS FIT IN TARGET DEVICE.
PERFORM FULL LOGIC MINIMIZATION.

DEACTIVATE UNUSED OR-TERMS. (INCREASES SPEED IN FPLAs).

SET ALTERNATE SEARCH PATH FOR PLD DEVICE DATABASE.

PRODUCE YOUR__FILE_NAME. JED, THE JEDEC FORMAT DOWNLOADABLE FILE
AUTOMATICALLY RUN CSIM AFTER RUNNING CUPL

WECCUOZIZIZTZIIOXNI >
o =20
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the highest-frequency source in the circuit. In most
cases, the timing skew from one flip-flop output to the
next is tolerable. ‘

The TTL circuit in Fig 9 contains an LS161 counter
whose output is decoded in an LS138. The decoded
output sets and resets flip-flops at various points in the
timing cycle. The timing diagram in Fig 10 is based on
the assumption that the clock rate is sufficiently high
that the propagation delays from SYSCLK to OUT, and
OUT: are not significant. If you were to implement this
design in a PLD, the pinout would look like the one
shown in Fig 11. Outputs Q, and Q, were added to make
all eight time slots in the circuit’s cycle a unique
combination of the four outputs. Adding Q, and Q,
results in a timing sequence like the one in Fig 12,

You can now write the logic equations by noting, for
each output, each place in the timing cycle where the
output reads high (the flip-flop is set). For example,
QUT, is set during time slots 2, 3, and 4. (The equation
for the D input should include representations of time
slots 1, 2, and 3; these time slots occur immediately
before the flip-flop is set.) For time slots 1 through 3,
you can now write

OUT,.D=!0UT,&!0UT&Q&!Q: /*TIME SLOT 1*/
#0UT,&!0UT:&!Q,&!Q, /*TIME SLOT 2*/
#OUT,&!0UT:&Q&!Q, /*TIME SLOT 3*/.

Writing these equations is easier if you first define each
time slot in terms of the register outputs that are fed

L5138
LS161
Y, b
SYSCLK Q. Y,
Q, B Y0
—OICLR -Q, ALY,
.Y
o v,
Y‘
Yll
LS10
E: LS00 LS04
o0—
IRESET

$208 doai

Fig 9—When converting l q to PLDs, you
can model your circuit as a group of flip-flops driven by a common
clock.

Compiler-supported symbolic names can
represent pin variable names, internal
device nodes, intermediate variables,
bit-field representations, and

symbolic constants.

TMESLOT] 0 0| 1 | 2| 34l 5161 710l
SYSCLK

IRESETem—d ,
S e
Y

our,

2

Fig 10—This timing diagram is based on the assumption that the
Fig 9 circuit uses a clock rate that is not significantly affected by
propagation delays from SYSCLK to OUT, and OUT:.

PIN 1= SYSCLK
PIN 2= IRESET
PIN 13=0UT,
PIN 14=0UT,
PIN 15=Q,

PIN 16=Q,

Fig 11—Adding outputs Q, and Q, of this PLD implementation of the
Fig 9 circuit makes each of the eight intervals in the Fig 12 timing
cycle a unique combination of the circuit’s four outputs.

back into the programmable array:

TSe=!0UT,&!0UT:&!Qu&!Qy; /*TIME SLOT 0%/
TS,=!0UT,&!0UT:&Qe&!Q;; /*TIME SLOT 1*/
TS;=0UT,&!0UT:&!Qu&!Q,; /*TIME SLOT 2*/
TS;=0UT,&!0UT:& Q&!Q;; /*TIME SLOT 3*/
TS,=0UT,&0UT:&!Qo&!Q;; /*TIME SLOT 4*/
TS;=!0UT,&0UT:&!Q:&!Q,; /*TIME SLOT 5*/
TSe=!0UT,&0UT:&Qu&!Q;; /*TIME SLOT 6*/

You can now write the equations for the four registered
outputs in terms of TS, through TS; (TS; is not needed);
CUPL performs the following substitutions:

OUT,.D=TS#TS:#TSs

OUTz. D = TSa# TS4#TSs
Qo. D= TSo#TSz#TSs
Q.D=TS;.

" Running CUPL

Once you've completed the LDF, you're ready to
compile the LDF for downloading to the PLD program-
mer. To compile the file, you type an expression that
follows this format:

CUPL [FLAGS] TARGET_DEVICE__CODE
YOUR_FILE__NAME.
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PLDs with an inverting-output
“architecture complicate selection of

signal polarities.
mestor Lo Lol rlelalalslel zlol ) 2
svscikd L L LML LrmuLrr .
Y —
outy— I e
ourT, 1
Qe — I L1 1 _r
Q, |

Fig 12—O0nce you’ve rewritten the Fig 10 timing diagrams to reflect
the PLD configuration in Fig 11, you can write a set of logic
equations for implementing the PLD design.

For example, the sequence CUPL -J -A P16L8 RAM-
CNTRL compiles the source file for a RAM controller
that is targeted for a PAL16LS8. The J and A symbols
are chosen from a table of CUPL option flags (Table 2).
In this case, the compiler produces a JEDEC file and an
absolute-format file to be used later by CUPL'’s simula-
tor, CSIM (Ref 1). The resulting compiled code is
downloaded to the programmer, which then blows the
appropriate fuses in the PLD.

The designs discussed thus far are simple but useful
for describing the PLD design process. The next two
articles will extend the discussion to more advanced
designs, .and finally, to the state-machine approach.

EDN
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Designer’s Guide to:
Programmable logic—Part 2

Use PLDs to shrink
complex, discrete

logic designs

As discrete combinatorial and sequential
logic circuits become more complex, it
becomes more difficult to convert them to
PLD equivalents. With the help of
compiler-based software, though, yow’ll be
converting complicated logic designs in no
time.

Bob Osann, Assisted Technology Inc

Converting complicated discrete designs to their PLD
(programmable logic device) equivalents can be an
imposing task for the first-time PLD user or for the
engineer who's been laboring with outmoded PLD
software tools. New compiler-based software, howev-
er, makes it easy for you to implement even complex
logic designs with PLDs. :
This article, the second in a 3-part series on PLD
design, introduces a few of the more advanced features
of the compiler-based PLD design language CUPL and
shows you how to use those features to convert compli-
cated sequential and combinatorial SSI logic designs to
PLD equivalent designs. Part 1 of the series demon-
strated some elementary features of CUPL and showed
you how to apply those features in a few simple designs.
Part 3 will introduce CUPL’s state-machine syntax and

EDN January 24, 1985

show you how to move directly from logic ideas to PLD
implementations without developing a gate-level de-

~ scription of your system.

CUPL lets you use a systems approach

The CUPL high-level PLD support language enables
you to develop your logic designs using a systems
approach. This approach not only speeds the design
process but facilitates the generation of logic descrip-
tions that are easy to understand.

CUPL supports a systems approach with several

- advanced features, which give you a self-documenting

syntax, allow you to use fewer keystrokes to develop
your systems, and let you use symbolic names that
correspond to whatever function you're trying to imple-
ment. CUPL also gives you a flexible format, which lets
you describe several similar systems in less time than it
would take to describe the systems using a more rigid
format.

One of CUPL's advanced features is its bit-field
capability, which allows you to use a single symbolic
name to represent a group of bits (such as an address
bus or state bit field). This feature saves you key-
strokes when you're formulating your design equations
and makes the resulting equations easier to read. Once
you've defined a symbolic name, you can use that name
to represent either a single hexadecimal value or a
range of hexadecimal values. For example, in an ad-
dress-decoding application, you could equate the sym-
bolic name MEMADR with [ADR7, ADR6, ADRS,
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PLDs are effective replacements for both
simple and complex combinatorial and
sequential discrete logic Aesigns.

ADR4, ADR3, ADR2, ADR1, ADRO]. You could then
substitute [ADR7. .. 0] for [ADR7, ADR6, ADRS,
ADR4, ADR3, ADR2, ADR1, ADRO]. The resulting
equation, FIELD MEMADR=[ADR7 . ..}, assigns
the name MEMADR to the address bus.

CUPL speeds bit-field comparisons

Another CUPL feature is its “:” operator, which can
perform bit-field comparisons and operations quickly
and efficiently. This feature is particularly useful for
describing such features as an address decoder. When
the compiler is performing a bit-field comparison, the
operator “.” compares a bit field with either a hexadeci-
mal or an octal constant value or a hexadecimal or octal
list of constant values (hexadecimal is the default
value). When you're describing an address decoder, for
example, the statement MEMADR: [A000 . . . EFFF]
is true if the address MEMADR falls in the hexadecimal
range' A000 to EFFF (inclusively). Note that hexadeci-
mal constant values must contain the proper number of
nibbles' to include the most significant bit of the bit
field. In the above expression, the most significant bit
of the E in EFFF corresponds to A15 in MEMADR.

You can also use the “:” operator for bit-field opera-
tions, as in the following equation:

I0OADR: & REPLACES AT&A6&A5&A4&A3&A2&A1&A0
IOADR: # REPLACES AT#AG#AS#A4#A3#A2#A1#A0.

Another timesaving CUPL feature is the preprocess-

or, which lets you write general-purpose logic descrip-
tions that you can tailor to suit more than one applica-
tion. For example, you might write a general-purpose
decoder that you could adapt to 8-, 16-, or 32-bit
applications by changing a few symbolic names and
ranges.

The CUPL preprocessor is a program that operates
on the CUPL source file before it’s compiled. The
preprocessor’s string-substitution function, for exam-
ple, can replace one symbolic name with another until
some condition is met. When it encounters the state-
ment $DEFINE ARG1 ARG2, for instance, the pre-
processor replaces ARGl with ARG2 until it encoun-
ters the statement §UNDEF ARG1. You could use the
arguments in this example to represent different ver-
sions of your decoder. You could make ARG represent,
say, the 8-bit decoder, and you could make ARG2
represent the 16-bit decoder. : '

The preprocessor also allows you to delay inclusion of
a file until compile time. Again, this feature lets you
generalize your functions. For example, you could write
several files that represent several specific cases of a
general application. To implement different functions,
you'd just include different file names. In the statement
$INCLUDE FILENAME, the referenced file becomes
part of the LDF (logic description file) only at compile
time.

Conditional control structures extend even further
the ability to create generalized files. They allow you to

@ PAL16R8
INPUT ‘2 |
G 3], PLD Ro OUTPUT (REG/INV)
CLOCK 1
e g
®)
PAL16R8
INPUT 2[
G 3, PLD R 1OUTPUT (REG/INV) _
o—
CLOCK 1
—_— s

Y10RD
IOWR
A?
As

As
Ay

Az__—l
A,

A

{BUFFEN

A

Fig 1—These two PLDs show two possible output configurations
for a PLD with a fized inverting output buffer. PLDs with program-
mable output polarity eliminate the confusion that fived output
devices cause.,

Fig 2—Address decoders are typical targets for first-time PLD
users. A simple application like this address decoder shows how you
can benefit from software features like macro substitution, range
Sfunctions, and list notation.
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PARTNO 2600A00004 ;

NAME MEMDEC ;
DATE 02/14/84 ;
REV 02;

DESIGNER  OSANN ;

COMPANY  ASSISTED TECHNOLOGY ;

ASSEMBLY PC-RAM ;
LOCATION  U76 ;

TABLE 1 — MEMDEC LOGIC DESCRIPTION FILE

/* THIS DEVICE DECODES ALL MEMORY ACCESSES FOR BOTH PRIMARY AND
/* ALTERNATE LOCATIONS. IT GENERATES THE RAS SIGNALS FOR THE FOUR
/*  BANKS OF 16K DYNAMIC RAMS AS WELL AS THE SIGNAL THAT INITIATES

/* THE CAS SIGNALS.

PIN[1..6]
PIN[7,8]
PIN9
PIN 11
PIN 13

PIN 14

MEMREQ

RAS3

RAS2

RAS1

RASO

CAS_INIT

/** INPUTS **/

/** OUTPUTS **/
PIN[19..16)

FIELD MEMADR

Il

t

/** ALLOWABLE TARGET DEVICE TYPES: PAL16L8, 825153, PAL16P8 -

= [A19.14] ;/* CPU ADDRESS BUS */

= | [MEMWMEMR] :/* MEMORY DATA STROBES */

= IREF_ADR_EN :/* INDICATES REFRESH CYCLE IN PROGRESS */
= IREF_RAS ;/* STROBE FOR RAS-ONLY REFRESH */

= ALT_LOC ;7" PLACE MEMORY IN ALTERNATE RANGE */

= I[RAS3..0] ;/* RAM ROW ADDRESS STROBES */

= ICAS_INIT ;/* ENABLE CAS STROBES */

/** DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS **/
= [A19..14) ;/* MEMORY ADDRESS */
= MEMW # MEMR ;/* MEMORY REQUEST */

/** LOGIC EQUATIONS **/

MEMREQ & |REF_ADR_EN &

('ALT_LOC & MEMADR:[0C000..0FFFF]
# ALT_LOC & MEMADR:(FC000..FFFFF))
# REF_ADR_EN & REF_RAS ;

MEMREQ & |REF_ADR_EN &
('ALT_LOC & MEMADR:[08000..0BFFF]
# ALT_LOC & MEMADR:[F8000..FBFFF])
# REF_ADR_EN & REF_RAS ;

MEMREQ & 'REF_ADR_EN &
(IALT_LOC & MEMADR:{04000..07FFF]
# ALT_LOC & MEMADR:{F4000..F7FFF])
# REF_ADR_EN & REF_RAS ;

MEMREQ & {REF._ADR_EN &
(!ALT_LOC & MEMADR:[00000..03FFF]
# ALT_LOC & MEMADR:[F0000..F3FFF])
# REF_ADR_EN & REF_RAS ;

MEMREQ & !REF_ADR_EN &
('ALT_LOC & MEMADR:[00000..0FFFF]
# ALT_LOC & MEMADR:{F0000..FFFFF]);

/* PRIMARY RANGE */
/* ALTERNATE RANGE */
/* REFRESH CYCLE */

/* PRIMARY RANGE */
/* ALTERNATE RANGE */
/* REFRESHCYCLE */

/* PRIMARY RANGE */
/* ALTERNATE RANGE */
/" REFRESH CYCLE */

/* PRIMARY RANGE */
/* ALTERNATE RANGE */
/* REFRESH CYCLE */

/* PRIMARY RANGE */
/* ALTERNATE RANGE */

EDN January 24, 1985
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compile particular portions of your LDF when you've
complied with certain conditions. When you use the
format

$IFDEF ARG

... STATEMENTS. ..
$ELSE

...STATEMENTS...
$ENDIF,

the statements are compiled only if the argument ARG
has been defined. When you use the format

$IFNDEF ARG
) ...STATEMENTS. ..
$ELSE
... STATEMENTS. ..
$ENDIF,

the statements are compiled only if the argument ARG
has not been defined.

Output programmability saves space

One CUPL feature that can save you considerable
space in your design is the language’s ability to support
a PLD with programmable output polarity. For PLDs
with this feature, the CUPL compiler chooses whichev-

By using symbolic names to vepresent bit
fields such as addvess buses, you can not
only save keystrokes, but you can make your
designs virtually self documenting.

er output polarity results in logic equations that use the
smallest number of product terms. Although output-
programmability support is a useful PLD option, many
widely used PLDs contain inverting output buffers that
are fixed instead of programmable. The examples that
follow demonstrate the limitations of PLDs that don’t
have programmable output polarity.

For instance, Fig 1 illustrates the architecture for a
PLD that uses a single D flip-flop and an inverter in its
output stage. Fig la shows a design that uses an
active-high output name, and Fig 1b shows one that
uses an active-low output name. The pin declarations
for Fig 1a are ‘

PIN 1 = CLOCK
PIN 2 = INPUT
PIN3=G .

PIN 18 = !OUTPUT.

To see why support for output programmability is so
important, imagine that the flip-flop’s output is fed
back to keep it set. The polarity used in the output
name makes a significant difference in the number of
product (P) terms that are fed back.

A19.A14 1RAS3.0
.. 4 x
MEMDEC . ok X8
[ ..
o IORD, IOWR PAL16LS ICAS_INIT 4% 532 -
o0 OR
PR —T28 ] gniss
\REF. RAS DYNAMIC
RAM
— I DELAY LINE I ADDRESS
MUX
A13.0 #x1
1BUS_AK 1
L
—y
[ 'BUs_REQ A7-0
AFSHONT l SELA  SELB
RFSH l
TIMER RESET 1 pavsens
OR
'REF_REQ 825157 IRFSH_ADR_EN
CLR
D> REFRESH ADDRESS COUNTER
ICLR_REF_TMR
Fig 3—Memory decoders (MEMDET) svaee oo challenging application for PLD conversions. This decoder is a portion of a dynamic RAM

contralles
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TABLE 2 — RFSHCNT LOGlC DESCRIPTION FILE
 PARTNO  2600A00005 ;

NAME RFSHCNT ;
DATE 02/19/84 ;
REV 02;

DESIGNER  OSANN ;
COMPANY  ASSISTED TECHNOLOGY ;

/* THIS DEVICE RESPONDS TO THE REFRESH REQUEST(REF_REQ) GENERATED
/* BY THE REFRESH INTERVAL TIMER. IT PRODUCES THE SIGNALWHICH ~

/* GATES THE REFRESH COUNTER ADDRESS INTO THE RAM ADDRESS BUS

/* AS WELL AS THE REFRESH RAS STROBE AND THE CLEAR PULSE FOR

/* THE REFRESH INTERVAL TIMER.

!
*
¢/
¥/
*!

/** ALLOWABLE TARGET DEVICE TYPES: PAL16R6, 825157 .
/** INPUTS **/

PIN1 = CLK /" CPUCLOCK*/

PIN2 = REF_REQ ; "REFRESH REQUEST FROM INTERVAL TIMER
PIN3 = IBUS_AK i /* BUS ACKNOWLEDGE FROM CPU */

PIN4 = RESET /" SYSTEM RESET */

PIN 11 = 10E i /" TIED TO GROUND */

/** OUTPUTS **/

PIN 18 = IBUS_REQ /" BUS REQUEST TO CPU */

PIN17 = IREF_ADR_EN ;/" ENABLE REFRESH ADDRESS */

PIN 16 = IREF_RAS ;/* STROBE FOR RAS-ONLY REFRESH */

PIN 15 = IREF.RAS_DLY1 ;/* REF-RAS DELAYED 1 CLOCK */
‘PIN 14 = |REF.RAS.DLY2 ;" REF_RAS DELAYED 2 CLOCKS */

PIN13 "= ICLR.REF_.TMR ;" PULSE TO CLEAR RFRSH INTERVAL TIMER */

/** DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS **/

REF_RAS.D = IRESET & (ST:30 # ST:38 # ST:3C) ;
REF_RAS_DLY1.D = IRESET & (ST:38 # ST:3C # ST:3E) ;
REF_RAS_DLY2.D = IRESET & (ST:3C # ST:3E # ST:36) ;
CLR_REF_TMR.D = IRESET & ST:36 ;

*!

*/

FIELD ST = [BUS_REQ, I ALL OUTPUTS ARE PART OF */
REF_ADR_EN, / THE STATE BIT FIELD. "/
REF_RAS, :
REF_RAS_DLY1,
REF_RAS.DLY2,
‘ CLR_REF_TMR] ;
/** LOGIC EQUATIONS **/
BUS-REQ.D = IRESET &
IBUS_REQ & REF_REQ FSETITY
# BUS_REQ & ( ST:20 # ST:30 /" KEEP IT SET*/
# ST:38 # ST:3C , /" KEEP IT SET*/
#ST:3E ) ); /* KEEP IT SET*/
REF_ADRLEN.D = IRESET & :
(!REF_ADR_EN & BUS_AK & BUS_REQ , rSETITY
# REF_ADR_EN & ( ST:30 # ST:38 I KEEP IT SET*/

#ST:3C#ST:3E) ); MKEEP IT SET*/

EDN January 24, 1985
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If you choose an active-high output name, the logic
equations are

OUTPUT.D = G & INPUT /* UPDATE WITH INPUT */
# !G & OUTPUT /* MAINTAIN CURRENT OUTPUT */
/* VIA INTERNAL FEEDBACK PATH */,

Because of the inverting output buffer, the equations
that you must program into the array are
I0UTPUT.D = G & INPUT # !G & OUTPUT)
10UTPUT.D = !G & !OUTPUT # !INPUT & G #
1INPUT & 10UTPUT.
Notice the extra product terms that are created. If, on
the other hand, you choose an active-low output name,
the pin declarations are
PIN 1 = CLOCK
PIN 2 = INPUT

PIN3 =G .
PIN 18 = !OUTPUT,

and the final equations are

OUTPUT.D = G & INPUT /* UPDATE WITH INPUT */ -
#!G & OUTPUT /* MAINTAIN CURRENT OUTPUT */

/* VIA INTERNAL FEEDBACK PATH */.

As you can see, when PLDs have fixed inverting
buffers, the active-low output condition requires the
fewest number of P terms.

Now that you're familiar with CUPL'’s features,
you're ready to apply them to more complicated sys-
tems. When a logic designer uses a PLD for the first
time in a new design, the designer’s target area is often
the address-decode function. Fig 2 shows a simple
1/0-decoding circuit that creates a buffer-enable signal
for 1/0 reads or writes when the decoded address falls
in the hexadecimal range 10 through 12, inclusively. If
you were to implement this address-decoding function
using assembler-based software, your equations would
look like the following ones:

BUFFEN=IORD*/AT*/A6*/A5*A4*/A3*/A2*/A1*/A0
+IORD*/AT*/A6*/A5* A4*/A3*/A2*/A1* AQ
+IORD*/AT7*/A6*/A5*A4*/A3*/A2* A1*/A0
+IOWR*/AT*/A6"/A5* A4°/A3%/A2*/A1*/A0
+IOWR*/AT*/A6*/A5* A4*/A3*/A2*/A1* A0 ..
+IOWR*/A7*/A6"/A5* A4*/A3*/A2* A1*/A0.

If you were to implement the address-decoding fune-
tion using CUPL, your equations would look like this:

FIELDADR = [A7..0];
IOREQ = IORD # IOWR;
BUFFEN = IOREQ & ADR:(10. . 12];.

To write equations using CUPL, you first define the

address bus as a bit field where ADR=[A7 ... 0]. The

Conditional control structures improve
compiler flexibility. They allow the compiler
to delay decisions until cevtain predefined
conditions ave met.

compiler then substitutes [A7 . . . 0] whenever it sees
ADR. You then combine the strobe signals and give
them the arbitrary name IOREQ where IOREQ
=]ORD#IOWR. Finally, you write an equation for the
output BUFFEN in terms of the intermediate variables
IOREQ and ADR so that BUFFEN=IOREQ&ADR:[10
.. . 12]. The list-notation and range functions, as well
as macro substitution, are all used here. The final code
takes less time to write and is much easier to read than
code written in an assembler-based language, and it’s
virtually self documenting.

Fig 3 shows the CUPL design technique in a more
complicated decoder application, a dynamic RAM con-
troller. The PLD MEMDEC in Fig 3 provides the
memory decoder function. It supplies four 16kx8-bit
banks of dynamic RAM with RAS (row address strobe)
signals and generates a signal that initiates the CAS
(column address strobe). The initiating signal first
passes through a delay line and then recombines with
the RAS signals to produce the CAS.

MEMDEC decodes address bits A19 through A14 of
a 20-bit address space and maps the 64k-byte block to
either the top or the bottom of the memory map shown
in Fig 4. The jumper-selectable input called ALT_LOC

FFFFF
FC000 BANK3
BANK 2
F8000 ATLOC=1
BANK 1
F4000 BANKO
F0000
MEMORY
MAP
OFFFF
0000 BANK3
08000 BANK2 AF_LOC =0
BANK1
04000 BANKO
00000

Fig 4—This memory map shows two possible locations for address
bits A19 through A4 of a 20-bit address space. MEMDEC decodes
the bits and maps the 64k-byte block to either the top or the bottom of
the menory map. .
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determines whether the top or the bottom of the
memory map is used. Table 1 shows a completed LDF
for the memory decoder.

Not only does CUPL simplify combinatorial desxgns,
but it's useful for implementing sequential designs as
well. Because PLDs contain both the logic array and
registers in the same package, they’re particularly
powerful for implementing registered logic. The PLD
named RFSHCNT in the RAM controller shown in Fig
3 handles the sequential aspects of refresh control for
the dynamic RAM in a typical pP system.

RFSHCNT responds to a refresh signal from the
refresh internal timer (usually 14 psec) by driving the
CPU’s bus-request line high. After receiving a bus-
acknowledge signal from the CPU, RFSHCNT then
generates signals for address MUX control and RAS-
only refresh timing.

RFSHCNT also provides a signal that resets the
refresh interval timer and clocks the refresh-address
counter. Fig 5 shows the timing diagram for
RFSHCNT. Note that the registered output signals
are shown as logical true even though the actual
outputs are active low. Because the equations are based
on signals in the timing diagram, in order for the
registered outputs to be shown as logical true, the
target device must have either an inverting output

Programmable-output capability allows the
compiler to save PLD space. Thus, yow'll
need fewer PLDs when yow’re converting
your design.

buffer or programmable-output-polarity capability.

Table 2 shows the LDF for RFSHCNT. The LDF
uses the hexadecimal values that define the time slots
shown in the timing diagram. Note the use of CUPL’s
bit-field capability in the equations that specify the D
flip-flop’s state.

CUPL's compiler-based techniques simplify the con-
version of complicated SSI circuits to their PLD equiva-
lents. Part 3 of this series will show you how to simplify
the logic design process even further by using the
state-machine approach. EDN

Author’s biography
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(OUT) REF_RAS
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(OUT) CLR_REF_TMR

1

Fw 5—The registered output signals shown in this timing diagram for RFSHCNT are shown as logical true even though the actual outputs
are active low. Because the equatu:ma are based on the timing diagram, the target device must be inverting, or it must have
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Designer’s Guide to:
Programmable logic—Part 3

State-machine
approach speeds

ogic design

To exercise a PLD’s full potential for
shortening design time and improving
documentation, use the state-machine
approach. This approach lets you formulate
a behavioval description of your system and
implement it divectly in a PLD, without
ever developing an equation-level
vepresentation.

Bob Osann, Assis(ed Technology

Using the state-machine approach and a compiler-based
PLD design language like CUPL, you can bypass the
gate- and equation-level stage in logic design and move
directly from a system-level description to'a PLD
implementation. Unlike assembler-based approaches,
the state-machine approach lets you document your
design in a_manner that’s understandable to future
users of your design. ’

Actually, few logic designers currently use the state-
machine approach in their logic designs. This isn’t
surprising: The technique seems difficult to learn at
first. But CUPL makes the state-machine approach less
formidable by handling many of the decisions you would

EDN February 7, 1985

normally have to make. Furthermore, CUPL gives you
a general and simple state-machine model like the one
shown in Fig 1. The software automatically fits, the
model to your application.

Defining the state model

In general, a state machine is a logic circuit with
flip-flops. Because a flip-flop’s output can be fed back to
its own or some other flip-flop’s input, a flip-flop’s input
value may depend on both its own output and that of
other flip-flops. Consequently, the final value for a
flip-flop’s output depends on its own previous values, as
well as those of other flip-flops.

The CUPL state-machine model uses six compo-

NONREGISTERED OUTPUTS

INPUTS e
COMBINATORIAL REGISTERED
Swele - | L srorace OUTPUTS .

| REQISTERS | state BiTS

—

Fig 1—State-machine theory can be complicated, but CUPL allows
you to abstract from the theory’s complicated details. Using this
simple model and an easy-to-learn syntax, you can quickly con-

_ struct state-machine models of your system.

2-27




2.1.3 CUPL, AmCUPL (Cont'd.)

When you use the state-machine approach,
you dow’t have to write a logic-equation-
level description of your system before
implementing it in a PLD.

|

CLOCK

co

STATE BIT

REGISTERED T
OUTPUT hd

1

T +T

NONREGISTERED OUPUT
(DEPENDS ONLY ON STATE)

L<——=ope

INPUT

NONREGISTERED OUTPUT
(DEPENDS ON STATE AND INPUT)

I

J.___...._—
k_ T“+T"
] L

Ty —>] f—

Fig 2—This timing diagram characterizes CUPL’s simple state-machine model. The setting or resetting of the registered output depends on
the status of the state bit. Conversely, nonregistered outputs can depend either on only the current state bit's status or on both the state bit's

status and the input’s status.

nents: inputs, combinatorial logic, storage registers,
state bits, registered outputs, and nonregistered out-
puts. Fig 2 shows the timing relationships between
these components. ‘ ' :
Inputs are signals entering the device that originate
in some other device. Combinatorial logic is any combi-
nation of logical gates (usually AND-OR) that produces
an output signal that’s valid T (propagation delay
time) nsec after any of the signals that drive these

gates changes. Ty is the time delay between the -

initiation of an input or feedback event and the occur-
rence of a nonregistered output.’

State bits are storage-register outputs that are fed
back to drive the combinatorial logic. They contain the
present-state information. Storage registers are any
flip-flop elements that receive their inputs from the
state machine’s combinatorial logic. Some registers are
used for state bits, while others are used for registered
outputs. The registered output is valid T, nsec after
the clock pulse occurs. T is the time delay between the
initiation of a clock signal and the occurrence of a valid
flip-flop output.

For the system to operate properly, you must meet
your PLD’s requirements for setup and hold times. For
most PLDs, the setup time (T,,) usually includes both
the propagation delay of the combinatorial logic and the
actual setup time of the flip-flops. Ti, is the time it takes
for the result of either a feedback or an input event to
appear at the input to a flip-flop. A subsequent clock
input cannot be applied until this result becomes valid
at the flip-flop’s input. These flip-flops may be either D,

RS, or JK types (but RS and JK types are used more
often in state-machine implementations because they
require fewer product (P) terms than D types do).

Nonregistered outputs are outputs that come direct-
ly from the combinatorial logic gates. They may
be functions of the state bits and the input signals (and
have asynchronous timing), or they may be purely
dependent on the current state-bit values, in which case
they become valid T.+Ty nsec after an active clock
edge occurs.

Registered outputs are outputs that come from the
storage registers but are not included in the actual
state-bit field (ie, a bit field composed of all the state
bits). State-machine theory requires that the setting or
resetting of these registered outputs depend on the
transition from a present state to a next state. This
allows a registered output to be either set or reset ina
given state, depending on how the machine came to be
in that state. Thus, a registered output can assume a
“don’t care” operation mode. In the “don’t care” mode,
the registered output will remain at its last value as
long as the current state transition does not specify
that registered output.

The state-machine syntax

To help you implement. this state-machine model
quickly, CUPL supplies a general and simple state-
machine syntax. This syntax gives you a single, simple
format that allows you to describe any function in the
state machine. The general format for the state-ma-
chine syntax is
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SEQUENCE state_bit._field {

PRESENT present_state
IF input_cond NEXT next_state
IF input_cond NEXT next_state
IF...

PRESENT present_state
IF input_cond NEXT next_state
IF input_cond NEXT next_state
IF...

OUT outputs ;
OUT outputs ;

OUT outputs ;
OUT outputs ;

PRESENT . . .
}

Each present-state block within this format de-
scribes both asynchronous (present state) and synchro-
nous (transition) activity. Using this format, you can
describe any component of the state machine. For
example, the formats for registered outputs would be

IF input._cond NEXT next_state OUT outputs
D SmE— ~
CONDITIONAL OUTPUT ASSOCIATED
TRANSITION WITH TRANSITION
or
NEXT next_state OUT outputs
—_—
UNCONDITIONAL OUTPUT ASSOCIATED
TRANSITION WITH TRANSITION,

depending on whether the transition is conditional or
not. To use these equations for describing your system,
you need to learn how to use the CUPL keywords. For
example, when you use a Next statement, you're telling
the compiler that all of the outputs in that block are
registered outputs whose values depend on transition

information (ie, information about the transition from
the present state to the next state). Using the If
statement signifies a conditional event. When you use
the If keyword in a nonregistered description, you
signify that the input and output events will have an
asynchronous dependence. The absence of a Next key-
word signifies a nonregistered event.

For nonregistered outputs, you would use the format

IF input_cond OUT outputs

INPUT CONDITION NO STATE OUTPUTS ASSOCIATED
AFFECTS OUTPUT TRANSITION WITH INPUT CONDITION

AFTER Ty AND PRESENT STATE.
or
OUT outputs
NO INPUT NO STATE OUTPUT ASSOCIATED
CONDITION TRANSITION SOLELY WITH PRESENT

STATE. VALID
Tw + Tw AFTER
CLOCK.

Much of the reason for choosing either the registered
or nonregistered format for an output depends on the
system timing. For fully synchronous systems that
require tight timing, the registered output provides
fast response—it responds within T, nsec after the
occurrence of a clock pulse. This quick response gives
the circuit time to use that registered output as an
input somewhere else in the circuit before the next
clock pulse occurs.

Conversely, you would use the nonregistered output
in asynchronous applications. You would also use the

STATE
DIAGRAM

out
1 REG_OUT

OUT REG_OUT

T NON_REG__QUT =INPUT

NON_REG_OUT
INPUT —

PLD REG_OUT
Q1
CLOCK
Qo

Fig 3—This model for a free-running 2-bit counter demonstrates CUPL’s state-machine syntaz.

nonregistered output, and one registered output.

The counter has one input, one

EDN February 7, 1985
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nonregistered output in simpler applications, such as
present-state decoders.

To better understand the state-machine model and its
syntax, consider a simple example: a free-running 2-bit
counter with one input, one registered output, and one

diagram. The circles represent states (specific combina-
tions of the state bits), and the arrows represent the
transitions between states. Because the transitions in
this example are unconditional, the counter is free-
running. Accordingly, the logic description uses no If

nonregistered output. Fig 3 shows the state-transition

keywords in statements that signify a Next state. The

To design logic systems with
PLDs, you could use the func-
tion-table approach, which com-
plements the state-machine ap-
proach. The function-table
approach is useful in applications
such as code converters, where -
input/output relationships are
best represented in tabular
form.

CUPL's parallel-operation ca-
pability makes it easy for you to
develop these tabular represen-
tations. Using that feature, you
can declare bit fields and use
them on either the right or left
side of the equation. -

The parallel operation feature
allows you to operate uniformly

B3
B2
B1

»n

Y1

» |
o

| GATED MUX

@o
S
o

>
]
cd

PAL16R4
. OR
828155

o |~

A1

AD
SaTEt2 2]
CLOCK 1

[

D

seL1 13] seLo e |'1 Gno

Fig A—In code-conversion applications,
like this dual 4-to-1 multiplerer, you can
best describe the system using n tabular
Sformat. .

The function-table approach

TABLE A—GATED MUX LOGIC DESCRIPTION FILE

PARTNO PL10007;

NAME . GATED MuX;

DATE 09/17/84;

REV 01;

DESIGNER  ARONSO|

COMPANY ASSISTED TECHNOLOGY

ASSEMBLY PC_.IO;
LOCATION  u23,

FRE TR T T T Ty
/* THIS DEVICE FUNCTIONS AS A DUAL 4-TO-1 MUX WITH INVERTING !
/* REGISTERED OUTPUTS. THE MUX QUTPUTS ARE ONLY CLOCKED INTO THE  */
/* REGISTERS WHEN THE GATE INPUT IS ACTIVE. *

BLE "I'AR.G.E.T.DEVICE TY'PES AL16R4 , BZS‘IS? .

sasvessens

S1*t INPUTS *t1
PIN 1 = CLOCK

: 1* SYSTEM CLOCK */
PIN[2.5] = [B3. 0 31" INPUT GROUP B */
PIN[6.9] = [A3. i 1* INPUT GROUPA M
PIN 13 = SEL1 1 1* SELECT 1 +/
PIN 19 = SELO ; (" SELECT 0 °/
PIN 12 = GATE i 1* GATES MUX OUTPUT INTO REGISTER */
PIN 11 = I0E 1 1* OUTPUT ENABLE .

I** OUTPUTS **/

PIN 15 =1Y1 ; 1* REGISTER QUTPUT FROM GROUP B °/
PIN 16 = 1Y0 i I* REGISTER OUTPUT FROM GROUP A */

l‘ * DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS **/

FIELD OUT = [Y1..0]; /* OUTPUT BITS */
FIELD SEL = [SEL1. 0] 1* SELECT CONTROL BITS */

1** LOGIC EQUATIONS **/
QUTD = 'GATE & OUT

sresescrieteiiaratiitiiesiienny

GATE & ( [B8,A3] & SEL:3 1* NOTE: A
# [B2/A2) & SEL:2 /*  ONE EQUATION DESCRIBES */
# (B1,A1] & SEL:1 i~ BOTH OUTPQT'VARIABLES. )i

# (BOAQ & SEL:0);

ey

EDN February 7, 1985
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nonregistered output is active on a count of two (S2)
when the input is active. The registered output is set on
the transition from S2 to S3 and reset on the transition
from S3 to S0. Table 1 gives the logic description for
the counter.

An application that incorporates hysteresis shows the

To make the state-machine approach easier
to learn, CUPL uses a model that incor-
porates both the Mealy and Moore models.
You use the same model for all cases.

importance of using transition information in addition
to present-state information. Consider, for instance, a
circuit that performs threshold detection on an analog
signal, but requires a hysteresis band both wider and
more accurate than the hysteresis band an analog
comparator could achieve. In such an application, you

TABLE B—HEXDISP LOGIC DESCRIPTION FILE 7 aa
PARTNO = CT0002;
NAME : gg;glsp; DATAD 0] |6 '8
FD‘EglGNER $1kAH’t ALt ppoisp |51
Eggemg& Sf,ss;ﬂ? ES%';'SOLOGV INC; DATA2 12} ”3.;23 j4___!D
I
LOCATION  U1T; DaTA3 13] FQUVALENT 1S ¢
/* THIS IS A HEXADECIMAL-TO-SEVEN-SEGMENT A N :
I* DECODER CAPABLE OF DRIVING COMMON-ANODE R ° LRBIL___ 4 16
/* LEDS. T INCORPORATES BOTH A RIPPLE- Fa a8 .
1+ BLANKING INPUT (TO INHIBIT DISPLAYING " G 1 i 9 !RBO
I* LEADING ZEROES) AND A RIPPLE-BLANKING ’ v .
/* OUTPUT TO ALLOW FOR EASY CASCADING OF Y ' .
I* DIGITS. ET  ic .
I L 0
. * Flg B—Though a PROM was used to
;' ALLOWABLE TARGET DEVICE TYPES: 32 x 8 PROM (825123 OR EQUIV) | ; segment decoder, you could use the same

/** INPUTS "%/
PIN [10..13] = [D0..3] ;

PIN 14 = (RBI; /* RIPPLE BLANKING INPUT

1** QUTPUTS **/

PIN g A] = Ikﬁ B, C D E,F.G); /* SEGMENT OUTPUT LINES
/* RIPPLE BLANKING OUTPUT

/** DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS **/

/* HEXADECIMAL INPUT FIELD

FIELD DATA = [D3..0];
AL.C.D.E.F.G] ; /* DISPLAY SEGMENT FIELD

FIELD SEGMENT=[A

$DEFINE ON_ b1
SDEFINE OFF 'b'0

1** LOGIC EQUATIONS **/

/* DATA INPUT LINES TO DISPLAY

/* SEGMENT LIT WHEN LOGICALLY "ON" */
{"oiﬁgMENT DARK WHEN LOGICALLY |

Sfunction table to implement this state ma-
chine in a PLD.

g
N
on an entire parallel data path.

. It’s easy to write a description
¥ in this manner, as you can see
from Fig A’s 4-to-1 multiplexer,
which has an inverting regis-
tered output. Table A contains
the multiplexer’s LDF.

The hexadecimal-to-7 segment
decoder in Fig B also lends itself
well to tabular representation.

l
!

oA B c D E F *t L0 nelie
SEGMENT = Again, bit-field notation is con-
ot ON, ON, ON, ON, ON ON, OFF] & DATAD & IRBI . o -
;: ; :; z %F': 8“. o?__rg. og;. 055, 8;;. og; : Bﬂ:;; venient for describing the logical
rs M c%'?‘:: gﬁ: SN; ON. 8FF: OFF  ON| & DATAD function. Incidentally, because
4 # | . ON, OFF, OFF. ON. ON! & DATA4 it'’s a si ircuit, this i -
"5 # |ON. OFF, ON. ON. OFF, ON, OFF] & DATAS it's a simple circuit, this imple-
rre:l # |ON, OFF, ON, ON, ON, ON, OFFf & DATA:® mentation uses a PROM as the
7 # |ON, ON, ON, OFF. OFF, OFF, OFF] & DATA7 . .
U LISY BN SN o o BN BNEBNR e o eler BRO
1Al M (?FN: o%,;: 8ﬁ: 055: 82: gN; oN & 82”5'* are sufficient and bipolar PROMs
tB: # F, . , \ . ON, TAB i i
rrcH # [ON, OFF. OFF, ON. ON ON OFF} & DATAC are inexpensive), but you could
o 4 [OFF.  ON. ON. ON. ON. OFF, ON} & DATAD also implement these funetion
IE*l # |ON. OFF. OFF, OFF, ON ON, ON| & DATAF; tables in PLDs. Table B con-

tains the decoder’s LDF,

RBO = RBI & DATAQ;

EDN February 7, 1985
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FIELD COUNT =

TABLE 1—LOGIC DESCRIPTION FOR 2-BIT COUNTER

(o1, Qoj; /* LET'S CALL THE STATE BIT FIELD “COUNT" */
I............................h..................'................./
$DEFINE SO 0 /*DEFINE SYMBOLIC NAMES FOR THE ACTUAL STATE BIT CONSTANT _ */
SDEFINE S1 1 /* VALUES USING PREPROCESSOR COMMANDS. CONSTANTS DEFAULT */
SDEFINE S22 /*  TO HEX AND REPRESENT VALUES OF “COUNT" WITHIN THE *
SOEFINES3S /' .. ... SEQUENCE'BLOCKBELOW, . ' .
SEQUENCE COUNT {  /* NOTE USE OF BRACES FOR ENCLOSING STATE i
" SEQUENCE DESCRIPTION BLOCK. i
PRESENT S0
NEXT S1;
PRESENT S1
NEXT S2,
PRESENT S2  IF INPUT OUT NON_REG_OUT; /*  ASYNCHRONOUS WITHIN §2  */
NEXT S3 OUT REG_OUT; ” SETS ON TRANSITION i
PRESENT S3
NEXT S0 OUT !REG_OUT ; } " RESETS ON TRANSITION i
need transition information in order to achieve hystere-
sis. One way to solve this problem would be to con- COMPARATOR
. . X ANALOG_IN PLD
struct a tracking A/D converter in which the threshold DIRECTION R0 | TRIGGER
detector output (digital Schmitt-trigger output) is a
registered output of the state machine (Fig 4). Roj—2
The three counter bits that feed the D/A converter op—ar | o
compose the state bits. To create the hysteresis, you set L fol—20
the trigger output only on the transition from S5 to S6
and reset the trigger only on the transition from S2 to

S1. At all other times, you place the trigger output in a
“don’t care” state. The trigger output may have differ-
ent values in states S2 through S5 depending on how
the machine arrived at those states.

Fig 5 shows a state diagram for the system. All
states in which you can set the trigger output are shown
on top and all states in which you can reset the trigger

Fig 4—To realize the hysteresis function in ‘this state-machine
model for an analog comparator with digital hysteresis, you must set
or reset the registered output by using transition information rather
than present-state information.

N EEHE L -

| o S S S

Fig 5—The state diagram for the a/nélog comparator with hysteresis shows that a state’s value can be history-dependent. The trigger output
can have different values in stateés S2 through S5 depending on how the machine arrives at those states.
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The CUPL state-machine syntax allows you
to specify any state-machine component
with a single format, thus simplifying the
state-machine description.

TABLE 2—SCHMITT LOGIC DESCRIPTION FILE

PARTNO CT0001;

NAME SCHMITT;
DATE 6/30/84;
REVISION 01;

DESIGNER T KAHL;

COMPANY  ASSISTED TECHNOLOGY INC;
ASSEMBLY  ANALOG__INTERFACE;
LOCATION  U27;

R R R R R R R

/* THIS DEVICE RECEIVES A ‘COUNT DIRECTION' COMMAND FROM AN ANALOG ‘!
/* COMPARATOR AND RESPONDS BY INCREMENTING OR DECREMENTING AN ‘!
/* INTEGRAL UP/DOWN COUNTER. A REGISTERED OUTPUT IS CREATED AND ACTS */
5 AS A DIGITAL SCHMITT TRIGGER WITH HYSTERESIS. */

R R R R R R

1** INPUTS **/

PIN 1 = CLOCK; /* CLOCK PIN FOR THE COUNTER */
PIN 2 = DIRECTION; /* DIRECTION OF COUNT MODE PIN */
1** QUTPUTS **/

PIN [14..16] = QO /* COUNTER STATE BITS *
PIN 17 = |TRIG EH /* SCHMITT TRIGGER OUTPUT BIT  */
" DECLAHATIONS AND INTERMEDIATE VARIABLE DEFINITIONS **/

UP = DIRECTION; 1* COUNTER MODES )
DOWN = IDIRECTION;;

FIELD COUNT = [Q2..0); 1" FIELD FOR COUNTER STATES *!
$DEFINE S0 0 /* COUNTER STATES DEFINED AS  */
$DEFINE S1 1 /* STATES 0 THRU 7 *
$DEFINE S2 2

$DEFINE S3 3

$DEFINE S4 4

$DEFINE S5 5

$DEFINE S6 €

$DEFINE §7 7

SEQUENCE COUNT {

PRESENT SO

IF UP NEXT 81;

IF DOWN NEXT S0;
PRESENT S1

IF Ui NEXT §2;

IF DOWN NEXT S0;
PRESENT S2

IF UP NEXT 83;

IF DOWN NEXT S1 OUT !ITRIGGER;
PRESENT S3 .

IF UP NEXT 84;

IF DOWN NEXT 82;
PRESENT S4 .

IF UP NEXT S§;

IF DOWN NEXT 83;
PRESENT S5

IF UP NEXT S6 OUT TRIGGER;

IF DOWN NEXT S4
PRESENT S6

IF UP NEXT §7;

IF DOWN NEXT §5;
PRESENT §7

IF UP NEXT S7:

IF DOWN NEXT S6;

EDN February 7, 1985

2-33



2.1.3 CUPL, AmCUPL (Cont'd.)

are shown on the bottom. Note that states S2, S3, S4,
and S5 appear twice because they can have two differ-
ent values. Each state’s value depends on the system’s
previous state.

Note also that the state bits in this application supply
information to the outside world; in this case, the
information consists of inputs to a D/A converter. When
you give the PLD access to the outside world, you
deviate from the standard Mealy and Moore state-
machine models, but you can squeeze more logic into
your PLD.

Table 2 gives the state machine’s logic description
file (LDF). In the LDF, you declare the state bits as a
bit field and give them the symbolic name “Count.”
Next, you use the input Direction to define names for
the Up and Down counter modes. You then complete
the numerical state assignment for states SO through
S7 by using the $Define command from CUPL’s pre-
processor.

In defining the state machine, you use If and Next
keywords for every present-state block. When you use
Next, you indicate that the state machine’s activity is
synchronous; when you use If, you indicate that the
transitions are conditional. The transitions’ direction
depends on the direction the counter counts in, which is
in turn determined by the value of the Direction input.

Though applications like counters and comparators
with hysteresis may not seem very complicated, they
serve to show that designing with PLDs is a straight-
forward task, whether you're using the devices to
replace existing designs or using them in a state-
machine design. EDN
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AmCUPL — The High-Level Software Tool for
PAL Designs :

To provide a low-cost, high-level design-aid software tool for
AMD's programmable logic devices, AMD and Personal CAD
Systems have developed AmCUPL. With AmCUPL, you can
create custom-design solutions using AMD's PAL devices in a
matter of minutes. This shorter design cycle and other benefits
such as lower cost, higher performancse, and higher reliability
result in a significant competitive advantage in your market-
place.

High-Level Design Support

AmCUPL has many features which make it extremely powerful
and easy to use:

® Choice of logic description formats:

- State diagrams

- High-level Boolean equations

- Truth tables

Portfolio of four different logic minimization algorithms
Automatic enhanced DeMorgan expansion capability
PALASM-to-AmCUPL translator

User-defined logic functions

User-friendly syntax

Built-in logic simulator

Full Support for AMD PAL Devices at a Very Low
Cost

AmCUPL supports all the advanced PAL devices from AMD,
including the AmPAL22V10 and AmPAL18P8. All the ad-
vanced features of these devices, including programmable
output logic macrocells, programmable output polarity, and
distributed product terms, can be effectively used with Am-
CUPL. Future releases of AmCUPL will support upcoming PAL
devices from AMD.

Yet, AmMCUPL provides all this support at a very low cost. This
includes full user support from Personal CAD Systems, Inc., of
San Jose, California.

Easy Upgrade Path

When you purchase AmCUPL you have an option to upgrade
to CUPL from Personal CAD Systems within one year. The
AmCUPL cost can be credited against this upgrade. CUPL
offers the same functionality as AmCUPL but also supports
PAL devices from other vendors. The PC/MS-DOS version of
AmCUPL is distributed by AMD on IBM formatted 5-1/4'
floppy disks; a CUPL manual is included.

AmCUPL — The cost-effective, easy-to-use, and complete
design tool for your custom design inventions. For additional
information on AmCUPL or other AMD PAL devices, contact
one of AMD's sales offices, authorized reps, or distributors.

2.1.4 PLPL

Programmable Logic Programming Language (PLPL) is a new
design tool that makes it easy to design, verify, and test logic
functions that are to be implemented with programmable logic
devices. It is an integrated, top-down, hierarchical, and com-
plete design language which provides clear problem definition
in a variety of ways. This results in solutions that are self
documenting. PLPL allows multiple-input formats which means
the function of a device can be expressed in terms of a state
transition or truth table, high-level constructs, or Boolean
equations.

In a summary, PLPL is the heart of a new programmable logic
computer-aided design (CAD) environment that allows you to
take full advantage of the benefits associated with using
programmable logic devices. It aids in:

Defining the problems to be solved

Creating a solution

Verifying the solution by simulation

Generating test vectors

Optimizing/minimizing the intermediate equations
Providing an interactive- or a batch-mode of operation

Functionally, PLPL accepts a logic-description input file and
creates a JEDEC-standard fuse map downloadable to a logic
programmer. The flow of this procedure is shown in Figure 2-6.
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Figure 2-6. PLPL Design Flow
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PLPL Features

Major features of PLPL are:

® Employs high-level block-structured hardware-description

language optimized for programmable logic devices

Uses C language for flexibility and portability

Supports multiple design techniques:

~ PALASM:-like sum-of-products Boolean equatlons

- Extended Boolean-logic description: Parenthesized
equations, DeMorgan's laws, Macro-substitution capa-
bility, and pin vectors

- High-level constructs such as: IF THEN ELSE, FOR,
CASE, and FUNCTION CALLS

Provides a convenient and powerful human interface:

- Both interactive or batch mode

- Optional menu-driven capability

- Extensive error checking

~ Interactive help facility

- Direct programmer interface

® Supports current AMD PAL devices
® Permits adding new devices quickly because it is data-base
driven

Structure of the PLPL Environment

In the PLPL CAD environment, each program is governed by a
separate program module, with all the modules tied together in
a top-down fashion. The software modules (Figure 2-7) are as
follows:

® Qperations Processor

PLPL Compiler

PLPL Data Base

PLPL List Equations

PLPL Optimizer

PLPL Test-Vector Generator

PLPL Simulator

JEDEC Fuse-Map Generator

PALASM-to-PLPL Translator
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Figure 2-7. Structure of the PLPL Environment

PLPL Operations Processor (OP)

The PLPL OP is the interface module that defines the program
structure. It is an interactive, menu-driven shell that provides
the user interface to the compiler, the JEDEC fuse-map
generator, the simulator, the test-vector generator, the opti-
mizer, and other device-specific utilities. With the operations
processor, a comprehensive help facility can be consulted or,
if required, a "'shell escape" may be executed. Shell-escape
capability allows a temporary exit from PLPL for the execution
of certain system operations, such as editing or looking at the
contents of various other files. It should be noted, however,
that the internal state inside the shell is maintained.

PLPL Compiler

The PLPL compiler converts PLPL design specifications into
the form needed by the JEDEC fuse-map generator, and other
modules (such as the simulator, test-vector generator, and the
optimizer). In addition, it flags all syntax and device-limitation
errors. For example, a device-limitation error might indicate
that a PAL device has an insufficient number of product terms
to accommodate a particular logic equation. PLPL compiler is
designed to be device-indepedent, and obtains all of its device
data from the data base.

PLPL Data Base
The PLPL data base serves three purposes:

1) Stores all the architectural (device-dependent) information
associated with supported devices and supplies this data to
the compiler and JEDEC fuse-map generator. This arrange-
ment makes the latter modules transparent to variations in the
architecture of the devices.

2) Provides the fléxibility to add new devices — making the
PLPL environment more powerful. All it takes to add a new
device is adding a description file to the PLPL data base.

3) Serves as a standard cell library, thereby automating
programmable logic design. The PLPL data base supports all
current AMD PAL devices.

PLPL List Equations

The PLPL list equations lists all the PLPL-generated Boolean
equations. :

PLPL Optimizer

The PLPL-optimizer package optimizes the list of Boolean
equations generated by the PLPL compiler. By reducing all
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redundant product terms, this package results in an optimum
list of equations.

PLPL Test-Vector Generator

The PLPL test-vector generator generates test vectors for a
PLPL-design specification. The test vectors can be used by
the PLPL simulator to test the device exhaustively.

PLPL Simulator

The PLPL simulator enhances the confidence that the device
will function as designed. In PLPL, simulation is performed
with user-created test-table files consisting of input and
expected output (optional) test vectors. The PLPL simulator
uses the test vectors and the outputs of the PLPL compiler
(intermediate equation) to model the device's output behavior.
The simulator's output is compared to the expected test-
vector outputs, if specified, and error messages are issued
when results do not match. A test table may be concatenated,
or linked, with the design-input specification, or it may be kept
in a separate file. Separating the test table from the device
specification provides flexibility, allowing more than one test
table to be attached to a design.

JEDEC Fuse-Map Generator

The JEDEC fuse-map generator accepts design details from
the PLPL compiler. It is employed following successful simula-
tion. It arranges the fuse pattern required for programming the
device into a JEDEC-transfer format. This format is supported
by all major suppliers of logic programmers. This module
generates a fuse map that can be down-loaded directly to a
PAL/PROM programmer.

PLPL Input Specification

Figure 2-8 shows a simple PLPL-input specification. It is an
example of an 8-bit shift register implemented with the
AmPAL22V10. The system editor is used to create the input
specification. In general, a minimum PLPL input specification
requires a HEADING, a PINLIST, and an EQUATION section.
(The example shown contains additional comment strings and
an optional macro section.)

Heading (Keyword DEVICE)

The heading identifies a title for the design along with the
device used. The heading begins with the keyword, DEVICE.
An optional title may follow the keyword. It is separated by
white space (space(s), carriage return(s), or tab(s)). The
device used is enclosed within parentheses following the title
much like a function call in high-level software. In the example,
the title is SHFT8BIT and the programmable device used is
the AmPAL22V10.

Optlonal Comment String

In the example, a comment string appears between the
heading and pinlist. A comment string is initiated and terminat-
ed by the double quote symbol, and all text between double
quotes is ignored by the compiler. Comment strings may
appear anywhere in the specification, where a white space
can legally appear.

Pinlist (Keyword PIN)

The pinlist assigns symbolic names to the pins within the
device to help describe each pin's actual function. The pinlist
begins with the keyword PIN. The general format in which the
pin name and number is entered is as follows:

PIN NAME = PIN NUMBER
CLOCK =1

The pin name represents the user-specified symbolic name;
the pin number is the actual device pin; the equal sign links the

example:

two. Pin names and number may be separated from the equal
sign with white space. The pinlist may be entered in any order,
with white space as a separator between the keyword and the
first entry, and also between succeeding entries. The pinlist is
terminated by a semicolon. In addition, multiple pins may be
grouped in a single statement designated as a pin vector.
Examples from Figure 2-8 are shown below:

example: D[7:0] = 3,4567,8,9,10

(same as D[7] = 3, D[6] = 4, D[5] =5, D[4] = 6, D[3] =7,
D[2] = 8, D[1] = 9, D[0] = 10]

example: Q[0:7] = 15:22

The symbolic pin-vector name is concatenated with numbers

for each symbolic pin enclosed in brackets. There is a one-to-

one mapping of the symbolic pin-vector name with the

symbolic pin enclosed in brackets (i.e. D[7] = 3, D[6] = 4, etc.).

A colon is used to define a sequential series of numbers and a

comma is used to concatenate numbers. Colons and commas

can be used together for both symbolic and actual pin-number

declarations.

Optional Macro Section (Keyword DEFINE)

A macro section appears between the pinlist and equation
sections of the example. This section begins with the keyword
DEFINE followed by white space. Each macro definition is
terminated with a semicolon, and white space can be used for
formatting purposes. A macro allows function(s) with fixed
arguments to be defined with a single symbolic name and
‘'used repeatedly throughout the equation section. Note that
LOAD, SHFTR, SHFTL, and HOLD were defined in the macro
section and used in the equation section as part of the
definition of Q[7] through Q[O].

Equations (Keyword BEGIN)

The equation section is used to define the functions assigned
to each of the output pins. The equation section begins with
the keyword BEGIN followed by white space, and is terminat-
ed with the keyword END. (The period must follow END.) The
general Boolean format for equations used in the examples is
shown below:

PIN NAME : = EXPRESSION;

example: Q[7]: = LOAD+D[7] + SHFTR+RILO+
SHFTL+Q[6] + HOLD+Q[7];
example: RILO = Q[7];

Where the EXPRESSION is a sequence of PIN-NAMES (or
their complements) separated by operators, and the PIN
NAME is the symbolic input/output (or its complement) taken
from the pinlist, the operator ':=" defines a sequential
expression and ''="' defines a combinatorial expression. The
operators used in the examples are shown below:
Operator Symbols: »: — AND (product)
+ —OR (sum)
/ —NOT (complement, prefix
to an expression)
; — expression terminator
1= — sequential expression
= — combinatorial expression

PLPL Benefits

The major benefit of using PLPL is that it decreases the time
and costs associated with creating a design. This is possible
because PLPL permits a device to be developed, simulated,
and modified before it is programmed. It is also possible
because PLPL is structured, self-documenting, and easy to
employ. .

PLPL has been released into the Public Domain and is
available free of charge to any user.




DEVICE

SHFT8BIT (AmPAL22V10)

"This is a simple example of an 8-bit
shift register using the AmPAL22V10."

PIN CLOCK =1 RESET = 13 SEL{1:0] =21
RILO = 23 LIRO = 14
D([7:0] = 3,45,6,7.8,9,10
Qlo:7] = 15:22

DEFINE LOAD = /SEL[O] * /SEL[1]; "loads data'
SHFTR = SEL[O] * /SEL[1]; "'shifts right"
SHFTL = /SEL[0O] * SEL[1]; "'shifts left"
HOLD = SEL[O] * SEL[1]; "holds data"

BEGIN

IF (RESET) THEN ARESET ()

IF (SHFTL) THEN ENABLE (RILO) ;
RILO = Q7]
Q[7] = LOAD«D[7] + SHFTR+RILO + SHFTL-QI[6]
Q[e] = LOAD+D[6] + SHFTR+Q[7] + SHFTL+Q[5]
Q[5] = LOAD:D[5] + SHFTR+«Q[6] + SHFTL-Q[4]
Q4] = LOAD+D[4] + SHFTR«Q[5] + SHFTL+Q[3]
Q3] = LOADsD[3] + SHFTR+«Q[4] + SHFTL+Q[2]
Q2] = LOAD+D[2] + SHFTR+Q[3] + SHFTL+1[1]
Q1] = LOAD+D[0] + SHFTR+«Q[1] + SHFTL+LIRO

IF  (SHFTR) THEN ENABLE (LIRO) ;

LIRO = Q[0};
END.
Figure 2-8. Sample PLPL Input Specification

HOLD-Q[7] :
HOLD+Q[6] ;
HOLD+Q[5] ;
HOLD~Q[4] ;
HOLD+Q[3] ;
HOLD-Q[2] ;
HOLD+Q[O0] ;
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2.2 PROGRAMMING HARDWARE

AMD's programmable logic devices are manufactured using
IMOX, a high-performance, oxide-isolated process. Platinum-
silicide fuses are used for the device programming elements.
The platinum-silicide-fuse technology has a superior record of
programming yield and reliability. Programming algorithms
have been developed by AMD to achieve consistent program-
ming yields in excess of 99%. To maintain this extremely high
programming yield, AMD subjects all approved programming
equipment to a complete testing and qualification procedure.

The fusing algorithm, which is described in detail in the
reliability report, is designed to minimize tight tolerance
requirements on the programming equipment. Input pins are
used in the programming mode to gate fusing current through
the programming path from a programming voltage applied to
an output. The delivery of fusing current is therefore controlled
by the switching speed of internal circuitry, not programmer
circuitry. This minimizes the need for programmer recalibra-
tion. However, it is strongly recommended that users maintain
a log with each programmer to collect a record of the hours of
service use and the programming yield of each lot. The
programming equipment should be calibrated after every 50
hours of service or whenever AMD PAL programming yields
fall below 98%.

PROGRAMMER APPROVAL CRITERIA

Full details of the required programming parameters, wave-
forms and addressing schemes are provided on each device
data sheet.

The minimum requirements for approval of a programmer by
AMD are:

1) Must support all current AMD PAL products.
2) Must achieve at least 98% programming yield.

3) Must accept download of a JEDEC-standard PLDTF file via
an RS-232C input port.

4) Must generate a JEDEC-standard checksum.

5) Must verify at HIGH and LOW V. extremes after program-
ming.

6) Must program and verify the security fuse.

7) Must be capable of reading a non-AMD PAL device and
storing the pattern during any adaptor and/or setup changes
necessary for programming the pattern into an AMD device.

Although not required for AMD approval, additional desirable
features are:

1) Support of JEDEC-standard structured test vectors.

2) Support of some form of signature test scheme using the
signature of a known good part.

3) Continuity test capability.
4) Fast programming and verification.
5) Handler support.

WHY USE AN AMD-QUALIFIED
PROGRAMMER ?

Programmers qualified by AMD have been tested for all the
required features. They have been checked for accuracy of
the programming voltages, currents, and timing parameters. In
addition, a yield sample has been run to confirm that yields
meet AMD's high standards. AMD considers the qualification
procedure very important to maintaining control of the pro-
gramming conditions seen by AMD parts and thereby assuring
excellent customer programming yields. For this reason, AMD
reserves the right to disallow any returns of product pro-
grammed on an unqualified programmer.

QUALIFIED PROGRAMMING EQUIPMENT

The list of AMD-qualified PAL programmer models appears in
Table 2-2. New programming equipment and vendors are
constantly under evaluation. Contact your AMD Field Applica-
tions Engineer or the factory to determine the approval status
of any equipment not listed here.

AMD is commited to maintaining continued close working
relationships with the major programmer manufacturers so
that new programmable logic devices will be properly support-
ed in a timely manner.
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TABLE 2-2. AMD-QUALIFIED PAL PROGRAMMER MODELS

AMD PAL

Programmer " Socket

Vendor Personallty

) Models Module Adapter
DATA 1/0 Corporation MODELS 100A, 19, LOGICPAK 303A - 004
10525 Willows Rd. N.E. 29A, 29B 303A-011A
P.O. Box 97046 303A-011B
Redmond, WA 98073-9746 — - "
(206) 881-6444 UniSite 40 Not Required Not Required
DIGILEC, INC. 803 FAM52 DA53, DAS5S
1602 Lawrence Ave.
Suite 113
Ocean, NJ 07712
(210) 493-2420
KONTRON ELECTRONICS, INC. MODEL-MPP-80S Not Required SA37

1230 Charleston Road
Mountain View, CA 94039
(800) 227-8834

or EPP80 -~

STAG MICROSYSTEMS
528-5 Weddell Drive

MODEL-PPZ

ZM2200 Not Required

Sunnyvale, CA 94086
(408) 745-1991

ZL30A/ZL32

Not Required Not Required

STRUCTURED DESIGN, INC.
988 Bryant Way

Sunnyvale, CA 94087

(408) 737-7131

SD1040
PAL Burner

Not Required Not Required

VALLEY DATA SCIENCES
2426 Charleston Road
Mountain View, CA 94043
(415) 968-2900

VDS 160

Not Required Not Required

JMC PROMAC DIVISION
2999 Monterey Highway
Monterey, CA 93940
(408) 373-3607

PROMAC-P3

Not Required Not Required

GENERAL GUIDELINES FOR USING
PROGRAMMING HARDWARE

There are two common situations when a PAL user wants to
program parts:

1) The user has a master device and wants to program the
master pattern into new unprogrammed parts from the same
or from a different manufacturer.

2) The user has a file that is in JEDEC-standard Programmable
Logic Data Transfer Format (PLDTF) and wants to send the
file to a programmer and program parts.

All AMD-approved programmers can accomplish either of
these tasks. Here are some general guidelines.

Programming with the Use of a Master Device

Suppose you have a master device and you want to program
an AMD device of the same type with exactly the same
pattern. The master device can be an AMD device or another
manufacturer's functionally equivalent device. Follow these
steps:

1) Set the programmmer to read (or copy) the master device.
This may require having a hardware adaptor for the master
and entering a product code unique to the manufacturer and
device type.

2) Install the correct adaptor (if required). Enter the appropri-
ate product-code information. Then place the master device in
the corract socket and read its fuse pattern into the program-
mer memory. Use whatever button-pushing sequence is
required by the programmer for this operation.

3) The pattern is now in the programmer memory and will
remain there unless the memory is cleared or the programmer
power is turned off. Changing an adaptor or product code will
not erase the memory. Usually at the end of a copy operation
a checksum will be displayed. Make a note of this number. The
checksum is an algorithmically calculated code unique to the
pattern loaded into memory. It can be very helpful in diagnos-
ing any programming problems. If a part is to be reused
frequently as a master device, it is good practice to write the
checksum on the top of the part. Never proceed with
programming without checksum agreement after reading a
master.

Error Detection

As a matter of curiosity, take the part out of the socket once
and read an empty socket; also read a known blank part (using
the right adaptor). Checksums from these two situations will
be helpful in diagnosing two common problems when pro-
gramming from masters: A) Forgetting to lock down the socket
lever to make good contact after loading a part, and B)
Loading an unprogrammed part as a master by mistake.

4) Now prepare the programmer for the AMD device to be
programmed with the master pattern loaded into memory.
Some programmers require different adaptors for different
manufacturer's parts. If the programmer being used has this
requirement be sure to use an AMD adaptor only for AMD
parts. Using a non-AMD adaptor can cause permanent dam-
age to AMD parts. Always check for adaptor compatibility.

5) Everything's okay. You have the AMD adaptor, the right
AMD device code, and you wrote down the checksum that you
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got after loading the master. Now put the programmer in the
. mode used for programming from its memory and execute the
programming operation.

There is some variation in the sequence of events carried out
by different programmers during the programming cycle, but
all of them program and verify the appropriate fuses to match
the pattern in the programmer memory. Such operations as
Blank Checks, lliegal Bit Checks, Test Vector Testing, and
Security Fuse Programming can be a part of the programming
sequence. Check the Programmer Manufacturer's manual for
the availability and appropriate use of these features.

The essential part of the programming cycle is the program-
ming and verification of each fuse followed by a verification of
all fuses at both LOW and HIGH V.. At the very end of the
programming sequence you will see the checksum for the part
you have just programmed. This checksum should agree with
the master-part checksum. You now have an AMD part that is
functionally identical to the master.

Programming from a JEDEC File .

A JEDEC-standard file is the output of design-software pack:
ages used to specify fuse-blowing information to a program-
mer. All programmers approved for use on AMD parts will
accept JEDEC files. A JEDEC file is normally prepared on a
computer. The unique aspect of programming from a JEDEC
file is the transfer of the file to the programmer. After the file
has been transfered into the programmer, the programming
task is identical to programming from a master with one
exception. The exception is that design software may be used
to prepare test vectors to be applied to a device immediately

following the programming cycle. These vectors will be
transmitted with the JEDEC fuse file and they have a JEDEC-
standard format of their own.

General guidelines for transfer of a JEDEC file and program-
ming are as follows:

1) Make sure your file is in the standard JEDEC format. This
will not be a problem if you are using software for file
preparation that adheres to this standard.

2) Connect the JEDEC file source to the programmer with an
RS-232C cable. The programmer manual will describe the
connection details.

3) Prepare the programmer for receiving a JEDEC file over a
link. This will generally involve entering the product-code
information and putting the programmer into a ready-to-
receive mode.

4) Transmit the file from the computer source using commer-
cially available communications software or operating-system
file-transfer software such as PIP.

5) After transmission a checksum should appear on the
programmer display. Part of the JEDEC-standard file is a
checksum. If the displayed checksum is the same as the
JEDEQC file-generated checksum, transmission has been suc-
cessful. .

6) Program an AMD PAL device now by first installing an AMD
adaptor (if needed) and then entering the programming mode.
Finally, put a part in the socket and execute the programming
operation.
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2.3 TESTING INFORMATION

Section 2.3.1 and 2.3.2 describe in detail the general testing
requirements for programmable logic devices and how AMD
has designed-in special test circuitry to permit complete
testing on its programmable logic devices. Section 2.3.3
explains why it is difficult for a programmable-logic device
manufacturer to provide specifications for switching delay
minimums.

2.3.1 FACTORY TESTING OF PAL
DEVICES

Advanced Micro Devices' bipolar PAL devices include special
test circuitry to permit thorough AC and DC testing on an
unprogrammed unit. The test circuitry is used to ensure good
programming Yyield and to verify that devices will meet all
parametric and switching specifications after programming.

Programming circuitry testing includes tests to assure unique
addressing of all fuses. The ability of all circuitry in the
programming path to handle the large currents and voltages
necessary to blow fuses reliably is also thoroughly checked.
To accomplish this, special test pads are provided which are
accessible only during wafer probing. Using thess, AMD
confirms that each fuse driver is uniquely decoded and can
deliver and sink the necessary current to blow fuses.

Each PAL device has special test fuses. These test fuses are
blown during factory testing to prove beyond reasonable doubt
that the device is capable of opening all fuses when pro-
grammed by the user.

The special probing pads and test fuses are all employed in
programmability testing. This testing coupled with AMD's
excellent process control gives industry-leading programming
yields (> 98%) for all AMD PAL devices.

Other test circuitry, enabled by high voltages on device pins,
checks functionality, AC and DC parameters under conditions
that simulate post programming operation. All of the circuitry,
levels and modes necessary to operation after programming
are checked under worst-case conditions. For example, all
input buffers are tested for functionality by switching them
through a test product term to a single output, and all product
term AND gates are switched and sensed for uniqueness and
functionality.

Because a large percentage of die area is devoted to fixed-
logic circuitry, some percentage of units can fail to function to

- the desired truth table, even though all fuses are correctly
programmed. This problem will vary from manufacturer to
manufacturer. Without effective on-chip test circuitry, function-
al yield after programming is largely dependent on process
control. As a result, lot-to-lot variability of AC performance and
functionality is to be expected from manufacturers with test-
circuitry deficiencies in their products.

AMD's special test circuits and extensive factory-testing
procedures have almost entirely eliminated this problem
(> 99.9% PPFY). However, if absolute assurance is required,
functional testing with test vectors simulating actual operation

can be performed on PAL-device programmers or automatic
test equipment.

Test vectors are relatively easy to generate for combinatorial
designs using PAL devices. Sequential function testing is more
difficult. AMD's PAL devices are designed to provide the
capability of loading the output registers to any desired value
during testing. This featurs, known as PRELOAD, simplifies
functional testing of sequential devices. Sequencer products
such as the AmPAL23S8 include buried registers. A feature
called OBSERVABILITY has been designed into these prod-
ucts along with PRELOAD to allow control and functional test
of the buried registers. Other features which AMD verifies with
built-in test circuitry are polarity, asynchronous RESET, syn-
chronous RESET and output macrocell functionality.

2.3.2 HOW TESTABILITY IS DESIGNED
INTO AMD'S PROGRAMMABLE LOGIC
DEVICES

Thorough testing of programmable logic devices by the
manufacturer is important to both the performance of pro-
grammable logic and its cost of use.

Field programmable logic devices are different from other
semiconductor products in that the user must complete the
manufacturing process by programming and function testing
the parts.

Programming is normally accomplished on commercially avail-
able programming equipment. Functional testing may be
performed on a programmer, on automatic-test equipment, or
at the board or system level. Figure 2-9 illustrates where
device failure detection can occur. Clearly, the cost implica-
tions of failure become more serious with each advancing
step.

As a result of assuming the responsibility of programming and
test, the user gets all the benefits of a custom function with the
cost and availability advantages of a standard product. How-
ever, the user must also deal with those parts that don't
program successfully or don't function to advertised specifica-
tions after programming.

The earliest programmable logic devices did not include test
circuitry to allow thorough testing of the AC and functional
performance prior to programming. AMD was the first manu-
facturer to add test circuitry to allow thorough device testing.

How well a manufacturer does the job of testing before
shipping can make a difference to the user in:

1) Programming yield
2) Post programming functional yield (PPFY)
3) Uniformity of performance

This paper describes the techniques used at Advanced Micro
Devices to allow testing of these three important attributes on
every device before shipment to the user.
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Figure 2-9. User-Processing of Programmable Devices

Programming Yleld

Programming yield is the measure of success of the program-
ming operation. Large-volume users of programmable logic
keep records of the programming-yield history of their supp!i-
ers' parts. Programming yield is considered by these users to
be an important element in judging the overall suitability of
different suppliers' parts.

Why do users care? After all, manufacturers offer a ''money-
back' guarantee on all valid programming rejects. The users

can simply keep the rejects separated from the good parts and
send the bad ones back to the manufacturer for credit or a
refund.

This sounds simple, but Figure 2-10 shows what could be
involved.

Everybody loses in this operation. The manufacturer loses in
return handling and evaluation costs; the user loses In return
handling costs and also in added purchasing and inventory
costs to compensate for programming yield losses.
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Figure 2-10. Reject Return Processing

Post Programming Functional Yield

Experienced PROM and EPROM users are sometimes puz-
zled by the fact that not all programmable logic devices
function correctly even though they have successfully com-
pleted a programmming operation and fuse verification check.

With PROMSs, a one-for-one relationship exists between ad-
dress states and programming elements’. That is, the state of
each output for each address is dependent on the condition of
only one fuse. Sensing a desired fuse state after programming
therefore practically guarantees correct functional operation
(At least at the voltage and temperature conditions of the
programming operation).

With programmable logic devices, the relationship between
programming success and post programming functionality is
not one-for-one. Except for the simplest of patterns and
devices, the relationship is highly complex. Feedback buffers
allow the creation of more than one level of logic; latches,
counters, shift registers, even oscillators can be created.
Special fuse functions such as polarity control, output enables,
register/nonregister selection, and buried registers complicate
the relationship further.

This is the power of programmable logic —but the test
challenge that results from this versatility can be substantial.
Logic states for programmable logic devices can be multiple-
fuse dependent. The fuse-verification procedure that exam-
ines each fuse uniquely is therefore not sufficient, as it is with
PROMSs, for guaranteeing functionality.

All programmable-logic-device manufacturers must create
special on-chip programming circuitry and modes to allow
programming and verification of each individual fuse. A review
of the data sheets for different manufacturers’ products gives
a good idea of the special requirements for programming
programmable logic devices. The complexity of programming

may vary significantly from manufacturer to manufacturer, but
all have one thing in common — successful programming by
itself cannot guarantee functionality.

The user's job does not end then with the programming
operation. To be assured of a functional part, a comprehen-
sive set of test vectors must be designed by the user and
applied to the part. Many programmable-device programmers
accept test vectors along with fuse-blowing vectors and will
apply the test vectors to the part following the programming
operation. AMD's PRELOAD feature greatly simplifies the test
generation problem for registered parts.

Test-Vector Generation

The matter of test vector-generation is not trivial. The logic
designer can generally write a series of functional states
representing the expected operation of the part in the actual
application, but what about all of the Don't Care states?

A great deal of work is going into automatic test vector
generation for programmable logic devices. Parts manufactur-
ers, programmer manufacturers, design software manufactur-
ers and users all have efforts in progress. Some products are
on the market.

Effective test vector generators have been or will be devel-
oped, but convenience will be key to their routine application.
To be convenient to use generators must run on a wide variety
of computing equipment, but best of all, they should run on the
same equipment used to process the logic equations into fuse
blowing vectors. Efficient algorithms will be needed so that
large mainframe computers are not required to generate test
vectors for the more complex parts.

Data 1/0's Fingerprint

Another alternative for function testing is a signature-test
technique such as Data 1/0's "'Fingerprint''. This technique

* Programming elements can be fuses, floating-gate MOS devices, open-base NPN transistors, etc.

245




applies a pseudorandom series of test vectors to a known
good part and generates a Fingerprint value based on its
response. Each part tested thereafter must generate the same
Fingerprint. to be considered a '"good' functional part.

To our knowledge, no one has done comprehensive studies of
the effectiveness of this technique. Our limited observation
indicates that the Fingerprint test is much better than no test
at all. However, certain patterns can give unpredictable
responses when subjected to random test conditions. Parts
with these patterns cannot be Fingerprint tested reliably.
Structured vector testing with either automatically or manually
generated vectors is needed in these cases. The benefit of the
Fingerprint approach is that it requires no effort on the part of
the user, other than recognition of non-Fingerprintable pat-
terns.

Post programming functional yield (PPFY) is clearly another
distinct measure of the quality of a programmable-logic-device
manufacturer's parts. Although the user has the same right of
return as with programming rejects, detection of bad parts can
be significantly more complex and more costly at this stage.

As shown later in this chapter, the part manufacturer can
design-in additiona! test circuitry that guarantees virtually
100% post programming functional yield.

Uniformity of Performance

The buyer of a programmable logic part has the right to expect
that the performance specifications appearing on the manu-
facturer's data sheet will be met for all legitimate applications
of the part. This applies to each and every logic path and
function.

A glance at the logic diagram for an unprogrammed part
shows that, with the array in its unprogrammed state, no
amount of activity of the inputs can make any output switch.
Without any fuse programming, the AND gates see both the
true and complement of all inputs. .

Obviously if post-programming performance is to be guaran-
teed with confidence, test circuitry must be provided to allow
each path to be tested to data-sheet performance before
programming. Manufacturers vary in the degree to which they
provide this pre-programming testability within their parts. The
uniformity of performance of devices will reflect the degree of
testability that has been designed-in.

Approach to Designing In Testability in AMD's
PAL Devices

AMD's approach to the the design of programmable logic was
strongly influenced by the goal to provide users with the
industry's best programming yield, post programming function-
al yield and uniformity of performance.

Designing programmable logic can be viewed as a three-
dimensional task involving high-performance logic design,
fuse-programming circuit design,and test circuit design.

The first dimension is the design of a high-performance logic
circuit with SSI/MSI-competitive switching speeds and very
high output drive for bus environments.

The second dimension of programmable logic design is the
programming circuit design. The emphasis of this design is to

provide circuitry that will deliver large programming currents to
individual fuses. Special decoders, demultiplexers, buffers,
and mode-select circuitry are needed. The circuits need not be
fast since programming occurs at microsecond speeds. Be-
cause the circuitry is not used after programming, it is
desirable that it only consume power during programming and
not during operation. Since large voltages are required to
generate fusing current, survival under high voltage is also a
must. All of these requirements are quite different from the
logic-circuit requirements but must be achieved within the
same part.

Testability is the third dimension of programmable logic
design. This overlay of circuitry provides the means to
exercise the part through all of the possible paths that might
be activated by programming. Another need for test circuitry is
to insure that the programming circuitry will function properly.
Testability is then important to achieving high programming
yields, post-programming functionality and performance to
data-sheet specifications through all possible paths.

The unique challenge of programmable logic design is to
integrate these three dimensions in the most efficient manner.
This is no easy task!

Testabllity in the Programming Circuitry

Good programming yields are in the high ninety percents.
AMD PAL programming yields are typically higher than 98%.

Three things contribute to AMD's high success rate in blowing
fuses:

1) Uniform fuse cross sections,

2) Pre-testing of the current delivery and sink capability of
column drivers and row drivers through use of wafer-sort test
pads, and

3) Sample fusing of test rows.
Uniformity of Fuse Cross Sections

The AMD IMOX process gives consistently uniform, platinum-
silicide fuse cross sections. Uniformity is monitored by mea-
suring fuse-resistance test patterns on a sample basis in every
wafer lot. The data is processed for mean and standard
deviation and trend plots are maintained. Material not meeting
fuse-width-control limits is scrapped.

Testing for Fusing Current Dellvery _Capablllty

On every AMD PAL device there are two extra pads that are
probed at wafer sort. These extra pads are used to gain
access to the fuse array for special testing at wafer sort. The
connection of these pads to the fuse array is shown in Figure
2-11.

The programming process involves selection of individual
column and row drivers to deliver and sink programming
current through x-y selected fuses. The extra test pads allow
easy access for individually testing the source and sink
capability of each column and row driver. Also a reverse-
leakage check of all of the Schottky diodes in the array is
possible by applying bias between the pads. Without the test
pads, all of these tests would be impossible or would have to
be accomplished in a less direct and less effective manner.
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Figure 2-11. Extra Test Pads for Wafer-Sort Testing of the Column and Row

Drivers and the Fuse Array

Sample Programming

To further assure programmability, the AMD PAL devices
include an extra test input buffer with fuses connected to each
of the array columns.

Blowing one test-buffer fuse per column accomplishes two
important things. First, a sample fuse has been blown using
each of the column drivers. The sample fuse is exactly the
same dimension as all of the normal array fuses, and the test-
buffer drivers sinking the programming current are of identical
design to all of the normal drivers. Before shipment, then,
each AMD PAL device has had a sample of fuses blown on

the test buffer. For example, sixty-four fuses are blown on the
test word of every AmPAL16L8, one per product term.

The second purpose in blowing the sample fuses is to create a
pattern for AC and functional testing.

Testability to Guarantee Functionality After
Programming

A typical PAL devics, the AmPAL16R4, is shown in Figure 2-
12. Not shown in the logic diagram are the components
located at each horizontal and vertical line intersection. For
AMD bipolar-PAL devices, a fuse and a Schottky diode reside
at each cross point as shown in Figure 2-11.
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The horizontal or "'Product Term' line is then the common
anode connection for a 32-wide diode AND gate. The user's
job is to figure out which of the thirty-two inputs should be
connected to the AND gates. The inputs not needed must be
disconnected by blowing the fuse shown in series with the
diode.

Thankfully this decision does not have to be made 2,048
(32 x 64) times by a user. Through the wonders of design-aid
software ( PALASM, ABEL, CUPL, PLPL, etc.), the user simply
writes a few Boolean equations describing the desired func-

tion of the device. The software then generates fusing

instructions for a programmer and all of the undesired AND-
gate connections are blown away.

The obvious problem from a manufacturer's test standpoint is:
""How can it be guaranteed through testing that the device will
work after fuses are blown?" [f the only logic in the device was
that shown in Figure 2-12, there would be no chance. With
sixteen LOW levels and sixteen HIGH levels presented to
each AND gate, the LOWSs win. All sixty- four AND outputs are
always stuck LOW, and there is no way to get the output to
wiggle for AC- or DC-test purposes. This is the raw state of any
device before programming.

TEST ENABLE
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INPUT OR TRUE CONNECTED

FEEDBACK COMPLEMENT

BUFFER UNCONNECTED OUTPUT

o— 51

ENABLE

QUTPUT
-O

FEEDBACK

BUFFER
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Figure 2-13. Testing All Input and Feedback Buffers through the Special Test

AND Gate

Necessary Testabllity Requirements

Something more is needed in every PAL device to assure
100% functional yield after programming. The AMD PAL
designs have an overlay of test circuitry that accomplishes the
following:

1) Each input and feedback buffer can be checked for
functionality.

2) Each of the AND gates can be switched HIGH and LOW
and uniquely sensed by an output.

Achievement of these two things is necessary to the guaran-
tee of 100% post programming functional yield.

Under normal operating conditions the test circuitry is inactive
and consumes very little power. What causes it to come alive?
Supervoltages! Supervoltages are levels substantially higher
than V¢ so that under normal operating conditions accidental
activation of a test mode cannot occur.

In this paper a double line on the input side of a logic symbol
indicates that the HIGH level must be a supervoltage to
activate it.

Checking the Input and Feedback Buffers

Functionality of the input and feedback buffers is checked with
the aid of the extra AND gate dedicated to this function. Figure
2-13 illustrates the AND gate and its associated enabling
circuitry.

The noninverting or true side of each input and feedback
buffer is connected to the special test AND gate. The AND

gate is activated by a supervoltage on one of the input pins.
The function actually takes two activating inputs to implement
since the use of one for activation prevents that pin from being
tested for functionality. Having an alternate pin to activate the
function solves this problem.

Only the non-inverting side of each buffer is hooked up to the
AND gate because each buffer is constructed from two
inverters in series. The first inverter must work for the second
one to work, so that checking the second one is sufficient to
prove that they both work. ’

The feedback from the output used for the test cannot be fed
to the test AND gate, such a connection would make the test
output oscillate. For this reason its feedback input is not
connected and is tested by creating another test AND gate on
a different output and routing it there.

Since the special AND gate used to test all of the buffers is
identical to those used in the normal operating path, switching
each input through this path provides the means for testing the
switching performance of each buffer.

Testing the AN_D Gates

The next important test requirement is to make sure that all of
the AND gates work and will switch at data-sheet speeds. This
test challenge is a little more complex.

What is needed in this case is:

1) A means for decoding one AND gate at a time in each
output.
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2) A way to force all input and feedback buffers to a HIGH
level on both true and complement outputs.

3) A special input of identical design to a normal input that can
be used to switch the decoded AND gates.

These requirements are met by the circuitry shown in Figure
2-14, .

The decoder to select one AND gate at a time in each output
serves a dual purpose. It is the same decoder that provides
unique selection of product term lines for the programming
and fuse-verify operation. it responds to binary combinations
of TTL signals at three input pins and provides one of eight
active-HIGH level signals to decode the AND gates.

The special test input that is used in this mode also serves a
dual purpose. It was mentioned earlier in this paper that a
programming sample was performed on each part. This
special test input is the input that carries the test fuses. During

the sample programming operation the fuses are blown in a
pattern that allows switching of all sixty-four AND gates, one in
each output, for each of the eight decode states.

The input to the special buffer for AND-gate testing is one of
the normal input pins, but the buffer is inactive for normal
operation and must be activated by supervoltage levels
applied to two other inputs.

The supervoltage levels also provide the signal to force all of
the buffer outputs HIGH, which is one of the three necessary
requirements for AND-gate testing.

Since the design of the special buffer is identical to all of the
normal input buffers, it serves as a surrogate buffer for speed
testing all of the AND gates. In the AND-gate test mode, all
eight outputs are switched at oncse, since one AND gate is
selected in each output. For registered outputs, the AND-gate
switching path provides the means to test setup and hold
times.
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b INPUT GATES
DISABLE

BUFFER

TYPICAL
OUTPUT

ENABLES
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INPUT
TEST
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DECODER TEST NORMAL
ENABLE INPUTS INPUTS
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Figure 2-14. Testing All AND Gates through the Speclal Test Input Buffers

Uniformity of Performance

Only a complete test to data-sheet parameters by the manu-
facturer can assure uniformity of performance. There is no
other way. Pronouncements of ''guaranteed by design'
should be read as "too difficult to test or no allowance for
testing''.

This paper has shown it is possible to design-in the means to
exercise all switching paths in AMD PAL devices to data-sheet
limits and conditions before programming.

The user of AMD PAL devices, therefore can expect excellent
uniformity of performance to the data-sheet parameters after
programming.

Summary

The central idea of this paper is that design for testability prior
to programming is possible in programmabie logic — and it
pays off. It pays off for the user in fewer rejects at program-
ming and at functional and AC test. For those that have no
means for functional test after programming it pays off in not
having to locate a defective part with a board- or system-level
test. For the semiconductor manufacturer it pays off in lower
returns handling cost.

All Advanced Micro Devices programmable logic devices have
designed-in testability and are achieving yields of greater than
98% for programming and better than 99.9% functional and
AC test yields after programming. Even higher goals have
been set for future products.
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2.3.3 SPECIFICATIONS FOR SWITCHING-
DELAY MINIMUMS

All system designers would like non-zero minimum-delay
specifications, as well as maximum-delay specifications for all
AC parameters. With these numbers they could optimally
design system timing. Device manufacturers understand this
need and would like to meet it. Two major reasons make it
impractical to provide minimum specifications.

The first reason is that maximum specifications are based on
conditions that create a ''worst-case'" environment for the
device. Maximum loading, longest delay path, multiple output
switching, and V¢ and temperature at worst-case extremes
are examples of these conditions. These conditions can be
closely duplicated in an automatic-test-system environment
and therefore can be guaranteed by test.

In contrast, minimum-delay specifications must be based on
"best-case’ conditions for a device. It is true that in a system
both completely best-case and worst-case conditions for a
group of devices could not practically coexist. However,
anything other than the best ""best case'' cannot be assumed
when providing specifications on a data sheet.

The device manufacturer is then faced with trying to create a
""best-case' environment for test in order to guarantee

minimums. This requirement is inconsistent with the high-
volume test environment of handlers, high-capacitance test
heads, etc.

The second major problem with providing minimum specifica-
tions is the constant evolution and upgrade of products to
achieve better performance. Minimum specifications are an
unreasonable constraint to this effort.

Many system lifetimes are longer than the product lifetimes of
the ICs from which they are designed. This means that more
than one generation of an IC must meet the original system
needs. A common reason for IC redesign is to make products
faster. Faster products then replace the previous generation
slower products. The conflict of this trend with guaranteed
minimums is obvious.

A good example of the evolution of product performance is the
popular AmPAL16L8. Before AMD entered the PAL-device
market this product was originally offered with 35 ns speed.
AMD entered the market with 25-ns parts and speed selec-
tions of 20 ns. The next evolution was to 15 ns, and now 10-
and 7.5-ns parts are under development. Since each new
generation can substitute for the previous generation when
only maximum AC specifications are guaranteed, the progres-
sion to faster parts is not hindered unnecessarily. Minimum AC
specifications would have seriously complicated this evolution.
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2.4 AMD PROGRAMMABLE ARRAY
LOGIC RELIABILITY

INTRODUCTION

Advanced Micro Devices' bipolar Programmable Array Logic
(PAL) devices are based on two key technologies with many
years of high-volume production experience behind them.

1) IMOX — The basic process technology employed is IMOX,
an advanced ion-implanted, oxide-isolated structure. IMOX
provides very high-performance devices with predictable man-
ufacturing yields. It has accumulated many millions of hours of
life-test history through its application to the Am27S Series of
PROMs and the Am2900 Family of bipolar microprocessors.

A comprehensive report on IMOX reliability titted IMOX RELI-
ABILITY REPORT (AMD Publication #03687A) is available for
those interested in a detailed presentation on this subject.

2) Platinum-silicide fuses — This fuse structure was originally
developed for use on Advanced Micro Devices' families of
junction-isolated PROMs. It quickly established a new stan-
dard of excellence for high programming yields and long-term
reliability. Several years ago it was applied to a new generation
of ultra high-performance PROMs based on the IMOX pro-
cess.

This combination of IMOX and platinum-silicide fuses has an
outstanding record of reliability which has been verified
repeatedly through in-house life testing and by high-reliability
customer-qualification testing and system use.

Advanced Micro Devices' PAL devices are fabricated with this
same combined-process technology. Not only is the technolo-
gy for building PAL devices and PROMs the same, but also the
programming algorithm and programming circuitry used to
program the platinum-silicide fuses are the same in all
characteristics of importance. The result is that the conditions
seen by an AMD-PAL fuse are the same as those seen by an
AMD-PROM fuss.

Due to the common process technology, fuse-design and
fuse-programming circuitry design, reliability and program-
ming-yield results are expected to be the same for PAL
devices and PROMs. Data accumulated to date on PAL
devices appears to confirm this expectation.

This report describes:

1) The characteristics of the platinum-silicide fuse and pro-
gramming conditions for the fuse.

2) Reliability resuits accumulated to date on IMOX PAL ICs
and PROMs.

3) The dynamic and static burn-in circuits used for high-
temperature reverse-bias (HTRB) reliability testing.

4) Thermal resistance values for AMD PAL devices.

5) Equivalent gate counts for use in reliability calculations.

PLATINUM-SILICIDE FUSE
Fusing Technique

Advanced Micro Devices’ PAL circuits are designed to use a
programming algorithm which minimizes the requirements on

the programmer, yet allows the circuit to fuse the platinum-
silicide links quickly and reliably.

The sequence of events to program a fuse are:
1) Ve power is applied to the chip.

2) The address of the fuse to be programmed is selected by
TTL/ECL levels on the appropriate address pins.

3) The outputs are disabled.
4) The programming voltage is then applied to one output.

5) A fuse enable is accomplished by raising an input to a level
above normal TTL operating voltage. This action gates the
current flow through the proper fuse, resulting in an open fuse
in a few microseconds.

6) The output programming voltage is lowered and then
removed.

7) The device is enabled and clocked if required. The output
state then indicates whether successful programming has
occurred. If programming has not occurred a sequence of
much longer pulses is applied until programming occurs.

8) The sequence of 2 through 7 is repeated for each bit which
must be programmed.

There are several advantages to this technique relative to that
used by other PAL manufacturers. First, the two high-current
power sources, Vg and the voltage applied to the output, do
not have critical timing requirements. As the fusing current is
gated through the fuse actively, there is no dependence on the
rise rate of the programming voltage. A fast application of
fusing current is desirable for optimum fusing. Since the output
programming voltage does not have to be applied rapidly,
breakdown and latchback problems attributed to fast voltage
rise times on the output are avoided.

This programming procedure has a second major advantage.
If the fuse does not open during the first programming pulss,
longer programming pulses are used. With the platinum-
silicide fuse, longer programming pulses may be safely applied
with no danger of developing a reliability problem. The
algorithm can therefore be designed to minimize the time
required to program by using a fast first pulse followed by a
longer pulse if needed to blow the occasional fuse that does
not open with the first short pulse. Most devices do program
satisfactorily with all short pulses.

Fuse Characteristics

When a fast (less than 500-ns rise time) current pulse is
applied to a fuse, the fuse voltage rises abruptly to a value
determined by the room temperature resistance. However, it
then quickly falls to a value of approximately 2 V. This value is
nearly independent of the applied current. During the period of
time the fuse is molten, the fuse current drops very abruptly to
zero indicating the separation of the platinum-silicide into two
distinct sections. Scanning Electron Microscope photographs
of the resulting fuses (Figure 2-15) indicate that the typical
case is a sharp clean separation in excess of a micron. This
separation occurs in the center of the fuse because the '"bow-
tie" structure (Figure 2-16) concentrates the energy density in
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the center away from the aluminum interconnect lines. The Melted material is then "'wicked'* from the center of the fuse to
energy density in the center of the fuse creates temperatures either side due to surface tension.
substantially greater than those required to melt the silicide.

Unprogrammed Fuse

Programmed Fuse

Figure 2-15. Scanning Electron Microscope Photos — Unprogrammed and
Programmed Fuses
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Figure 2-16. Bow-Tie Fuse Design

Reliabllity of Fuses Programmed Under Non-
Optimal Conditions

The marginally opened fuse has been studied at AMD in detail
even though it rarely occurs in practice. Under conditions
where the fuse is purposely blown at much slower rates, it is
possible for the fuse to assume a high-impedance state which
is sensed as an open fuse by the circuit. This occurs when the
fuse cools before separation is achieved. Electrical and SEM
studies of fuses blown under these conditions indicate that a
small conductive path of silicon remains of sufficiently high
resistance to prevent the power transfer required for complete
opening on subsequent programming attempts.

Under these slow-blow conditions, sufficient time exists for the
heat flow to carry a significant amount of energy away from the
fuse preventing the normal abrupt separation.

To investigate what might happen if a fuse were subjected to
these under-blow conditions, a large number of fuses were
deliberately programmed this way at AMD. After over two
thousand hours of life testing there were no failures. It is clear
from the study that partially blown platinum-silicide fuses are

stable even though they will rarely occur in circuits which have
been programmed under normal conditions.

It should be noted that most manufacturers carefully specify
the conditions under which their devices must be programmed
in order to avoid reliability problems. Reliability data available
on these devices must be assumed to have been generated
using optimally programmed devices.

The study described here, and over forty billion fuse hours of
data from life testing many different production lots of PROMs
and PAL devices demonstrates the outstanding reliability
record of the platinum-silicide fuse under a wide variety of
conditions.

RELIABILITY TESTING DATA

Data on the reliability of PAL and PROM devices with
platinum-silicide fuses is gathered via AMD's Reliability Moni-
tor Program (RMP). The RMP is an ongoing program conduct-
ed on all device types across all product lines, and is designed
to ensure that all AMD devices meet acceptable reliability
levels. A summary of the RMP tests for hermetic- and plastic-
molded packages are shown in Tables 2-3 and 2-4.
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TABLE 2-3. RELIABILITY MONITOR PROGRAM FOR DEVICES IN HERMETIC PACKAGES

Typical
Test Conditions Sample
Size -
Infant 160 hours at 125°C ambient. Initial and end-point 300
Mortality electrical tests.
Operating 1000 hrs (1160 total) at 125°C ambient. 120
Life Initial and end-point electrical tests. :
Temperature 1000 cycles, (-65°C to 150°C), 30 min/cycle. 50*
Cycle end-point-hermeticity and electrical test.
150°C 1000 hours at 150°C ambient. 50
Operating Initial and end-point electrical tests.
Cycle

* These units are hermetically tested prior to commencement of test.

TABLE 2-4. RELIABILITY MONITOR PROGRAM FOR DEVICES IN MOLDED PACKAGES

Typical
Test Conditions Sample
Size
Infant 160 hours at 125°C or 85°C ambient (T, < 150°C nominal). 300
Mortality Initial and end-point electrical tests.
Operating 1000 hrs (1160 total) @ 125°C or 85°C ambient 120
Life (T, < 150°C, nominal). Initial & end-point electrical tests.
Temperature 85°C/85% RH/low-power bias, 500 hours and 1000 hrs. 50
And Initial, interim, and end-point electrical tests.
Humidity
Temperature A. 1000 cycles: -65°C to 150°C, 30 minutes/cycle. High 50
Cycle temperature (75°C min) functional end-point electrical test.
Pressure 121°C, 15 psi, 160 hours, unbiased, initial end-point 50
Cooker electrical test.
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Data on AMD PAL and PROM devices has been gathered over
millions of device hours and more than 40 billion fuse hours of
high-temperature operating life tests (HTOL). The life-test
circuits used in this work conform to MIL-STD-883 Method

1005, Conditions C and D, and are shown in Figure 2-17. A’
summary of this data is shown in Table 2-5, which indicates a
projected unit-failure rate {(at 60% confidence) of 0.0002%/
1000 hours at 70°C.
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Figure 2-17. Life-Test Circuits for AMD PALs
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TABLE 2-5. BIPOLAR PAL AND PROM RELIABILITY SUMMARY

Unit Failure Unit Failure
Total Total Rate at 60% | Rate at 60%
Unit Fuse Fuse Confidence Confidence
Production Units Hours Hours Unit Related %/1000 HRS | %/1000 HRS
Product Lots Tested | (Thousands) (Billions) Failures Failures at 125°C at 70°C
20-pin IMOX 16 2,088 2,088 5.345 1] 0 0.0217 0.0002
PALs :
24-pin IMOX 2 219 219 1.484 0 0 0.1250 0.0009
PALs
275191 IMOX 7 1,057 1,057 17.318 1 0 0.0922 0.0007
{16K-bit PROM) .
275180/181 12 463 926 7.586 0 0 0.1100 0.0010
(8K-bit PROM) .
275184/185 15 556 1112 9.109 ] 0 0.0900 0.0008
IMOX
(8K-bit PROM)
27825 IMOX 5 720 720 2.950 0 0 0.0466 0.0003
(4K~bit PROM) .
TOTAL 57 5,103 6,122 43.792 1 0 0.0211 0.0002

PALs & PROMs




Results of AMD's RMP are updated periodically and can be
obtained. through inquiry to any of the AMD Sales Offices
listed in the back of this handbook.

THERMAL RESISTANCE

The thermal-resistance values given in Table 2-6 can be used
to calculate the junction temperatures (T} of a given device at
a given ambient or case temperature (T, or Tg) and power
level (P). The formulas below describe the relaﬂonsh:p be-
tween these variables:

Ty=Tg + 0P

Ty=Ta + 0P
TABLE 2-6. THERMAL RESISTANCE VALUES

Package Type | Pins 05 (2%
Cerdip 20 60 11
Plastic DIP 20 61 30
LCC 20 61 CR
PLCC 20 CR CR
Cerdip 24 57 15
Plastic DIP 24 60 CR
LCC 28 CR CR
PLCC 28 58 CR

CR = Consult your local AMD representative.

EQUIVALENT GATE COUNT

Some methods of reliability prediction, such as those outlined
in MIL-HDBK-217, incorporate into the reliability formula a
variable to account for device complexity. This is based on the
assumption that—all other things being equal—as the
complexity of a device increases, the probability of failure also
increases.

In order for the reliability formula to account for this phenome-
na, some means of comparing device complexity must be
used. The most predominant ''measuring stick'" used today is

the equivalent gate count, the "equivalent gate'' being a two-
input NAND gate.

Unfortunately, the only standard adopted to date is the gate
itself and not how to translate various logic configurations into
equivalent two-input NAND gates.

Take for instance, a 32-input NAND gate. From a reliability
standpoint, it is easy to see how a 32-input NAND gate is
about as complex as sixteen 2-input NAND gates. Yet from a
pure logic-conversion standpoint, it takes at least fifty-three 2-
input NAND gates to functionally replace the 32-input NAND
gate.

In addition, there are circuit configurations that do not repre-
sent any particular traditional logic block, but perform some
other functions such as sense amplifiers or |nput-voltage
circuitry.

Programmable Logic Devices complicate matters even more
due to the wide range of post-pogrammed configurations that
are possible, ranging from a very simple utilization using few
product terms to a more extensive utilization.

Listed in Table 2-7 are equivalent gate counts for AMD's
bipolar PAL devices. The equivalent gate count is given as a
range for each of the devices to accomodate the range of
possible post-programmed configurations and the inherent
ambiguities associated with translating the device logic into a
2-input NAND-gate equivalent. The values shown in Table 2-7
are intended to give the user an idea of device complexity
based on typical gate utilization of the programmed device.

TABLE 2-7. EQUIVALENT GATE COUNT

Device Gate Count
16XX 200 - 300
18P8 250 ~ 350

22V10 700 - 800

20XRP 400 - 600

20EVS 600 - 700
23S8 900 -~ 1100
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2.5 PROGRAMMABLE LOGIC
TECHNOLOGY

AMD uses both Bipolar and CMOS technologies to manufac-
ture programmable logic devices. Sections 2.5.1 and 2.5.2
provide a detailed description of these two technologies.

2.5.1 IMOX-III™ — Advanced Bipolar
Technology for PAL Devices

In order to meet the next-generation requirements for speed
and density in PAL devices, AMD has developed an advanced
bipolar technology called IMOX-ll. Although IMOX-III repre-
sents a major breakthrough which will allow further scaling to
the sub-micron region, the technology also shares many
features in common with AMD's prior generations of
technology, IMOX-Il and IMOX-IIS.

The revolutionary breakthrough of IMOX-lll is the use of
reactive-ion-etched grooves, called slots, to isolate the tran-

sistors. These slots are 1.5 microns wide, over 6 microns
deep, and are filled with dielectric material (Figure 2-18).
Because the transistors are not isolated by junctions, space
for depletion spreading is not necessary. Also, since the slots
are etched anisotropically, thicker EPI layers can be isolated
without increasing the isolation widths. Essentially, no density
penalty is paid to achieve high breakdown voltages. Higher
breakdown voltages are needed to support the programming
voltages required to blow fuses in bipolar PAL devices.
Smaller device sizes translates into faster circuits through
smaller die sizes and reduced capacitances of active devices
and metal interconnect. Another advantage of the slot isola-
tion is reduced collector to substrate capacitance which offers .
improved performance in many circuit configurations.
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