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PREFACE 

At Advanced Micro Devices we are committed to helping you solve design problems with innovative 
products that give you maximum flexibility to meet your particular needs. In the past, you often have had to 
choose between costly semi-custom products and standard devices that limit your design options. Now 
there's another choice. 

Programmable Array logic (PAL) devices from AMD give you the best of two worlds: the architectural 
flexibility of custom design and immediate availability, multiple-sourcing, and low cost of standard products. 

PAL devices are user-programmable logic building blocks that give you the freedom to structure 
components for a specific application, often using a single PAL package to create functions that once would 
have required the use of hundreds of conventional TTL gates. 

This handbook is your guide to AMD's growing list of PAL devices. It is intended to be both an introduction 
to field programmable logic devices, as well as a resource manual for experienced designers. In the 
following pages you will find data and descriptions of new, proprietary devices from AMD, as well as 
information on standard products. Whether you need CMOS, ECl, or TTL, AMD offers solutions to your 
design problems that give you a choice. 

Best of all, AMD offers you the industry's leading commitment to quality, reliability, innovation, and customer 
satisfaction. If you have a question about any of the products described in this book or simply want to know 
more about the use of programmable logic devices, call your local Advanced Micro Devices' Sales Office. 

W.J. Sanders III 
Chairman, and Chief Executive Officer 
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1.1. THE PROGRAMMABLE LOGIC 
DESIGN ALTERNATIVE 

Today's logic designer can choose from a wide variety of 
circuit alternatives. One way to categorize these alternatives is 
by the extent to which they are customized for a specific 
application. The designer's options include general-purpose 
standard products, programmable logic, gate arrays, standard 
cells, and full custom integrated circuits (ICs) (Figure 1-1). 

Standard products are defined by the IC manufacturer for a 
wide market and cannot be altered by the user. Examples of 
standard products are TTL and CMOS SSI/MSI devices, fixed 

instruction set MOS microprocessors, and microprogramma­
ble building blocks. Custom logic, on the other hand, is defined 
by the user for a specific application. Programmable logic 
devices have attributes of both standard products and custom 
logic. The IC manufacturer defines an architecture that a user 
can program by programming (or blowing) appropriate fuses to 
fit the application. Programmable Array Logic (PAL) devices, 
Programmable Logic Arrays (PLAs) and small Programmable 
Read-Only Memories (PROMs) are examples of programma­
ble logic. 

DIGIT AL LOGIC 
FAMILIES 

I 

I J I 
STANDARD SEMICUSTOM CUSTOM 
PRODUCTS PRODUCTS PRODUCTS 

I 
I I I 

PROGRAMMABLE 
GATE STANDARD 

LOGIC 
DEVICES 

ARRAYS CELLS 

PF002411 

Figure 1-1. Basic Categories of Digital Logic 

Each of these design alternatives offers distinct advantages 
and disadvantages in terms of cost, availability, and architec­
tural flexibility. Many system designs today, such as the 
controller board in Figure 1-2, incorporate each of the design 

approaches to some degree. The following analysis will help 
the system designer to select the best logic type for a 
particular function. 
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Figure 1·2. A System Design Using PAL Devices 

Photo courtesy of Data Systems Design, Inc. 

DEDICATED GENERAL-PURPOSE 
DEVICES - STANDARD PRODUCTS 

There are five main advantages of standard products. They 
require little IC engineering expertise by the user, provide 
lowest cost for an individual device, usually have the best 
application support, provide the maximum logic density per 
device and are available off-the-shelf with no development 
lead time. 

Standard products require little IC-Ievel engineering effort by 
the user. The responsibility for design, test, and debugging is 
born by the IC manufacturer. Since the IC manufacturer is 
doing this on a large scale, the process is very efficient. 

Standard products are very cost-effective per logic function. 
They are high volume products, and this volume results in 
lower manufacturing cost and thus lower price per unit. The 
increased competition encouraged by alternate sourcing also 
results in lower cost. 

The design support available for standard products is general­
ly far greater than that for semicustom and custom devices. 
Application software (assemblers, simulators), hardware (emu­
lators) and literature (manuals, books, application notes) make 
them easier to use. 

Since standard products reach a much larger market, the 
engineering effort necessary to provide this support can be 
spread oyer a large number of units, reducing the cost. When 
a custom logic device is used, this support must be developed 
by the engineer doing the design. 

Standard products are optimized for high-volume production. 
The density of logic functions is therefore generally much 
greater than on semicustom logic. A fixed instruction set 
microprocessor or microprogrammable building block duplicat­
ed with gate arrays or programmable logic devices might take 
several packages compared to the single dedicated device. 

The last main advantage of standard products is their off-the­
shelf availability. There is no development lead time in the use 
of these devices, so system design can proceed rapidly. By 
using standard products the system designer can introduce a 
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system to the market more quickly and exploit the value of 
market leadership. 

The three potential disadvantages of standard products are 
potentially poor fit to specific applications, higher system cost, 
and the lack of competitive features and advantages. A 
standard product, by the very nature of its generality, is not 
ideal for anyone. It includes too much functionality for some 
applications and not enough for others. The architecture is 
seldom ideal for a particular application. Standard products 
also offer a limited performance selection. IC manufacturers 
pick a specific performance level aiming at as large a market 
as possible. 

Due to the general-purpose nature of standard products, it is 
difficult to achieve the lowest package-count solution. Addi­
tional components are required to tailor the function to fit a 
specific need. 

Even though individual devices may be lower in price, more of 
them must be used, raising the cost for the total system when 
considering the additional PC boards, testing, power supplies, 
fans, etc. 

Another disadvantage of standard products is the lack of 
competitive features and advantages. Anyone can buy them 
so it is difficult to differentiate one system supplier's hardware 
from another's. It is also very easy for a competitor to copy a 
design based on standard products. 

CUSTOM AND SEMICUSTOM LOGIC 
DEVICES 
The custom and semicustom logic alternatives offer the 
systems designer important advantages over standard prod­
ucts. Reduced package count, compared to SSIIMSI imple­
mentations, is of paramount importance. Custom and semi­
custom logic also provide the designer additional freedom in 
architecture. This freedom to develop innovative solutions to 
an application problem can add a significant competitive 
advantage to a product. 

There are four main types of custom and semicustom logic 
today: fully custom logic, gate arrays, standard cell designs, 
and programmable logic. Fully "handcrafted" custom-IC logic 



designs give the user the benefits of low system IC count and 
potentially low variable manufacturing cost per device, but the 
cost to develop a custom IC can be very high. This alternative 
makes sense only when production volumes will be very high 
and the system design will be very stable. Semicustom 
approaches such as programmable logic, gate arrays, and 
standard cell designs reduce the IC development cost of the 
full custom solution by trading off the chip-layout efficiency. 

A gate-array design requires the customization of only a few 
interconnection layers in the semiconductor process. Stan­
dard cell designs require completely custom fabrication, but 
the design and layout are simplified by the use of a standard 
building-block library. A gate array has lower engineering cost 
and faster development time than a standard cell-based 
device. Standard cell devices, on the other hand, allow more 
logic variety and more efficient utilization of silicon than a gate 
array. 

Gate arrays and the other custom/semicustom alternatives 
have four main disadvantages when compared to standard 
products. They are increased user engineering time and effort, 
higher cost per individual device, inferior high-level support 
tools, and lower density. 

Engineering effort for a gate array can significantly increase 
the cost of a system design. Not only must the system be 
designed, but the gate arrays themselves must be designed, 
debugged and put into production. Both design tasks, chip as 
well as system, take similar amounts of engineering resources, 
possibly doubling the design effort and investment. Because 
of constraints on second-sourcing alternatives, semicustom 
logic devices can end up being substantially more expensive. 
Only if the complete system solution can be optimized will the 

total cost be reduced. Another factor to be considered is the 
chance of design problems with a gate array, standard cell, or 
fully custom device. If extra iterations are necessary - or 
even worse, a bug is discovered after a product has been 
released, correcting the problem can take several months or 
longer. These potential costs are difficult to estimate and have 
virtually no upper limit. 

The third disadvantage of custom and semicustom logic is the 
inadequacy of high-level support. Semiconductor manufactur­
ers cannot provide significant support in the form of software, 
development systems, application notes, or books for a 
custom logic design because each implementation is different. 
The existing gate array and standard-cell design tools require 
extensive training and a large investment in time and money 
for the user. The designer must document the design fully and 
provide enough support for the system engineer to use the 
customized device correctly. 

Finally, a key disadvantage of gate arrays is the reduced 
density and therefore high silicon cost compared to a dedicat­
ed general-purpose device. They are designed by repeating a 
common loosely packed structure, leaving wide channels for 
the metal interconnect. For a given set of design rules, a gate 
array will typically require two to five times the silicon area for 
the same gate count. 

PROGRAMMABLE LOGIC DEVICES 

Programmable logic devices combine the best characteristics 
of standard and custom products. They offer the flexible 
architecture of a custom design as well as the off-the-shelf 
availability and reduced investment, both in engineering time 
and device cost, of a standard product (see Table 1-1). 

TABLE 1-1. IC SELECTION CRITERIA FOR DIFFERENT ARCHITECTURES 

Standard Products Gate Arrays! Programmable Criteria 
TIL SSIIMSI LSI Standard Cells Logic 

Development Lead Time Immediate Immediate Weeks/Months Hours 

Development Cost None None ~ $20K Low 

Second Sources Many Several Few Many 

Architectural Flexibility Medium Low High Medium 

Logic Density Low High Medium/High Medium 

IC Design 
Expertise None None Some/Much None 
Required 
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Programmable logic has the fastest design cycle time of any 
form of customizable logic. Instead of months or years, as with 
other semicustom or full custom designs, a programmable 
logic-based design can be created in just hours. This fast 
turnaround time allows a revolutionary interactive approach to 
system design. The engineer can try out a new architectural 
approach and evaluate it very quickly. If it does not work, a 
new idea can be quickly defined, programmed and ready to 
evaluate. The speed with which a new design approach can 
be explored and evaluated creates a design environment that 
enhances innovation. 

Programmable logic devices enjoy the same high-volume 
production economics as standard products. Producing identi­
cal blank elements by the millions of units per year, the 

.. 
en 
o 
U 

Weeks 

manufacturer can achieve low cost. A volume market attracts 
multiple vendors and encourages price competition, as well as 
provides alternate source security. The cost advantages of a 
standard product are retained with programmable logic de­
vices, but since the parts are then customized, system designs 
may be differentiated from the competition. In fact, truly 
innovative system designs implemented using programmable 
logic are even patentable, further protecting a design from the 
competition. 

The engineering effort and time needed to design, test, debug 
and put into production a programmable logic-based system 
device is larger than the effort necessary when using standard 
products, but substantially less than when using custom 
elements (Figure 1-3). 

Months Years 

Time 
OP002220 

Figure 1·3. Relative Development Time vs. Cost for Alternative Logic Implementations 

Software tools are provided to reduce this overhead consider­
ably. These permit designs to be specified in terms of Boolean 
equations, state transition equations, or gate array-like sche­
matics. The software input specification format serves as a 
"data sheet" for the particular application and generates the 
essential documentation information. Simulation and test vec­
tor generation programs also exist to reduce the engineering 
effort associated with debugging and testing, both in prototyp­
ing and production environments. 
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Compared to other forms of semicustom logic, the maximum 
available logic density of a programmable logic device is 
smaller, and the manufacturing costs per equivalent gate of 
logic are greater. Since the fixed costs associated with using 
programmable logic are lower, however, this semicustom 
alternative has an advantage in lower volume designs. In fact, 
at the annual procurement volume of the majority of industrial 
electronic systems in production today - a few thousand 
systems per year - programmable logic has the lowest cost 
per gate of any form of custom logic available (see Figure 1-4). 



10K lOOK 
Volume Per Year 

OP002210 

Figure 1-4. Programmable Logic Provides the Lowest Cost Per Gate of the 
Three Semlcustom Techniques at Volumes· up to About 5K 

Programmable logic devices also offer significant user benefits 
over non-customizable standard product solutions. These 
include design optimization, design security, improved perfor­
mance, cost reductions through board space and inventory 
cost savings, and reliability improvements through reductions 
in parts count and interconnections. 

Flexibility 

With the availability of programmable logic the designer is not 
constrained by the available selection of fixed-function TTL 
SSIIMSI parts. If a desired TTL function did not exist, the 
designer previously had to use several packages to generate 
it. With programmable logic devices the designer can easily 
create a customized part for a specific application. 

Design modifications are also easier to implement in program­
mable logic-based systems. Changes may be made by repro­
gramming a device, rather than re-Iaying out a board. The time 
required for prototyping changes can be reduced by several 
weeks, and the cost can be substantially lower. 

Design Security 

Programmable logic devices can be used to enhance the 
security of a logic design. By programming a special "security 
fuse," the user can disable the fuse verify logic circuitry. This 
prevents unauthorized duplication of the device, while not 
interfering with the part's logic functionality. Programmable 
logic is ideal for any application where design security is 
essential. 

Performance 

System performance can be increased through the use of 
programmable logic. The designer has the freedom to opti­
mize the system architecture by tailoring programmable de­
vices to implement it precisely. Thus a design may be 
implemented in the most efficient manner, frequently improv­
ing performance. In addition, when a logic function is imple­
mented in multiple SSI/MSI packages, the total delay incurred 
includes the time required for several on- and off-chip buffers. 
When the same function is implemented in a single program­
mable logic device the average delay per logic gate is reduced 
because there is only one pair of I/O buffers. 
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Cost Reduction 

Programmable logic devices can provide complexity equiva­
lent to hundreds of TTL gates. Implementing a design in 
programmable logic can therefore significantly reduce the 
board space or the number of boards necessary to implement 
a given function. This results in lower system cost, or 
alternatively, the ability to provide more function in the same 
enclosure. 

Reliability 

Compared to standard TTL SSI/MSI, programmable logic 
reduces the number of packages necessary to implement a 
given function. In some cases an entire PC board can be 
eliminated. This reduction in parts count will result in increased 
system reliability. Reducing the number of packages also 
reduces the number of external connections between devices 
in the system. Since these connections are often the least 
reliable portions of a digital system, the use of programmable 
logic can improve system reliability in this manner, too. 

PROGRAMMABLE LOGIC FROM 
ADVANCED MICRO DEVICES 

The remainder of this Handbook will focus on the programma­
ble logic devices offered by Advanced Micro Devices. Includ­
ed will be discussions of their architecture and features, how 
to design with them, hardware and software tools, testability, 
technology, reliability, applications, and detailed product spec­
ifications. 

Advanced Micro Devices offers a broad family of PAL-type 
programmable array logic devices. These devices feature a 
programmable-AND array which feeds into a set of fixed-OR 
gates. As any logic function can be expressed in an AND/OR 
sum-of-products (SOP) form, these basic elements can be 
programmed to satisfy a wide variety of complex custom logic 
requirements. 

Tables 1-2 and 1-3 show AMD's PAL product family and the 
features incorporated in AMD's products: on-chip registers, 
feedback paths, output enable control, user-programmable 
output logic macrocells, programmable output polarity, vari­
able product term distribution, buried registers, special test 



functions, etc. Today's devices range from 200 to over 1000 AMD is not restricting itself to just the PAL architecture. Also 
gates of functional complexity. Performance is high, with available is a PROM·based fuse·programmable sequencer, 
propagation delays lower than 15 ns and clock rates greater the Am29Pl141. In the future, AMD will be offering program· 
than 40 MHz. Eel PAL devices featuring 125-MHz operation mabie logic devices based on other architectures that may be 
are available. optimized for specific types of applications. 

TABLE 1-2. INDUSTRY-STANDARD 20-PIN MEDIUM COMPLEXITY PAL FAMILY 

Part Number Array Inputs Logic OE Outputs 

16la 
Ten Dedicated, 

Eight 7-Wide AND·OR·INVERT Programmable 
Six Bidirectional, 

Six Bidirectional Two Dedicated 

Eight Dedicated, Four a·Wide AND·OR ,Dedicated Registered Inverting 
16R4 Four Feedback, 

Four Bidirectional Four 7-Wide AND·OR·INVERT Programmable Bidirectional 

Eight Dedicated, Six a·Wide AND·OR Dedicated Registered Inverting 
16R6 Six Feedback, 

Two Bidirectional Two 7-Wide AND·OR·INVERT Programmable Bidirectional 

16Ra 
Eight Dedicated, 

Eight a·Wide AND·OR Dedicated Registered Inverting 
Eight Feedback 

16Ha 
Ten Dedicated, 

Eight 7-Wide AND·OR Programmable 
Six Bidirectional, 

Six Bidirectional Two Dedicated 

16lDa 
Ten Dedicated, 

Eight a·Wide AND·OR·INVERT - Dedicated 
Six Bidirectional 

16HDa 
Ten Dedicated, 

Eight a·Wide AND·OR - Dedicated 
Six Bidirectional 
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TABLE 1·3. ADVANCED PAL DEVICES FROM ADVANCED MICRO DEVICES 

Part Number Technology 
Propagation Delay 

Description 
(tpo) 

1BPB Bipolar TTL 15 ns 20-Pin, 1B-lnput Combinatorial PAL with Programmable 
Polarity 

20LB Bipolar TTL 15 ns 24-Pin PAL Family with B Registered/Combinatorial 
20R4 Outputs 
20R6 
20RB 

20L10 Bipolar TTL 15 ns 24-Pin, 20-lnput, 10-0utput Combinatorial PAL 

22P10 Bipolar TTL 15 ns 24-Pin, 22-lnput, 10-0utput Combinatorial PAL with 
Programmable Polarity 

20RP4 Bipolar TTL 15 ns 24-Pin PAL Family with 10 Registered/Combinatorial 
20RP6 Outputs and Programmable Polarity 
20RPB 
20RP10 

22XP10 Bipolar TTL 20 ns 24-Pin PAL Family with EXCLUSIVE-OR Capability, 10 
20XRP4 Registered/Combinatorial Outputs, and Programmable 
20XRP6 Polarity 
20XRP8 
20XRP10 

22V10 Bipolar TTL 25 ns 24-Pin "Family of One" with 1 0 Programmable Output 
Logic Macrocells (OLMs) 

23SB Bipolar TTL 20 ns 20-Pin PAL Sequencer with 4 OlMs, 4 Output Registers, 
and 6 Buried State Registers 

20EV8 Bipolar ECL 6 ns 24-Pin ECl PAL with 8 Registered OLMs 

20EG8 Bipolar ECL 6 ns 24-Pin ECL PAL with 8 Latched OLMs 

29M16 E2 CMOS 35 ns 24-Pin High Complexity CMOS 
PAL with 16 OLMs and 2 Clock Inputs 

29MA16 E2 CMOS 35 ns 24-Pin High Complexity Asynchronous CMOS 
PAL with 16 OlMs and Product-Term Driven Clocks 

APPLICATIONS CONCLUSION 

PAL devices are used in a broad base of applications. They 
Programmable logic combines the strengths of the dedicated 
general purpose and the custom logic design approaches. It 

are used frequently in minicomputers, workstations, personal offers user-customizability with immediate turn-around time. 
computers, and peripherals. They show up in military as well This revolutionary design approach results in innovative, low 
as commercial applications. They are used both as glue-logic cost designs, maximizing the competitive advantage of the 
replacement and as building block ICs for high-level functions systems in which they are used. AMD offers a broad family of 
in the control and data paths of computer systems. Detailed programmable logic devices. Their architecture and features 
application examples are provided in this Handbook. will be described in more detail in the next chapter. 
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1.2 AN INTRODUCTION TO 
PROGRAMMABLE LOGIC 
ARCHITECTURE 

PAL (Programmable Array Logic), PROM (Programmable 
Read-Only Memory), and PLA (Programmable Logic Array) 
devices are the three most popular programmable logic 
devices (PLDs). All three share the same basic, two-level, 
internal AND-OR structure shown in Figure 1-5. The AND 
array is the first level, it accepts all the inputs (both true and 
complement), performs the desired AND functions on these 
inputs and drives the next level. The second-level OR array 
combines various AND functions together producing the 
desired (AND-OR) outputs. This basic AND-OR structure 
makes PLDs ideal for implementing logic equations in Boolean 
sum-of-products (SOP) form. 

Inputs 

1st Level 

2nd Level 

Outputs 

Figure 1-5. Basic Programmable Logic 
Device Architecture 

INPUT 
FUSES 

INPUT 

LD000710 

Figure 1-7.a Programmable-AND Array Logic 
Equivalent 

The major differences between these PLDs are in their 
programmability and their capability for supporting various 
logic features (Figure 1-6). 

PROM PAL PLA 

AND 

OR 

Fixed 

Programmable 

Programmable Programmable 

Fixed Programmable 

1-8 

Figure 1-6. Variation of AND-OR Programma­
bility of PLDs 

PLD NOTATION 
For ease of use and better understanding, a simple convention 
has been adopted for programmable logic devices. Figures 1-
7 and 1-8 depict these rules. Figure 1-7.a shows the logic 
equivalent of a programmable AND array and Figure 1-7.b 
shows the simplified conventional representation for an AND 
array. Figure 1-8 shows the equivalent technique for describ­
ing an OR array. 

INPUT 

INPUT 

TRUE AND 
COMPLEMENT 

BUFFER 

LD000701 

Figure 1-7.b Programmable-AND Array Logic 
Diagram Notation 



LD000730 

Figure 1-8.a Programmable-OR Array Logic 
Equivalent 

The AND-gate inputs are represented by a single line, 
commonly described as the product term. All array inputs (true 
and complement of each device input) are shown connecting 
to a single input AND gate. In reality each input will have both 
of its true and complement routed to the AND array. Thus, an 
n input device will have AND gates with 2n inputs. For 
example, the AmPAL 16R8 has sixteen inputs, but all these 
inputs and their complements (Le., thirty-two lines) are routed 

- Blown 

row ----------------r---------~----

column 

PROGRAMMABLE 
CONNECTIONS 
TO N·INPUT OR 

LD000720 

Figure 1-8.b Programmable-OR Array Logic 
Diagram Notation 

to each AND gate. In a programmable-AND array, each row 
and column intersection, as shown in Figure 1·9, represents a 
fusible input connection to the AND gate. The fuse state, 
either left intact or blown, determines the customized function 
of the device. An intact fuse connects the corresponding input 
to the product term, a blown fuse disconnects that input Ii no 
from the product term. 

-Intact 

row 

column 
DF006130 

Figure 1-9. Fusible Arrays - Customlzable Logic Functions Determined by Fuse State 

Figure 1-10.a shows the fuse implementation of the logic 
AND-OR function (A " B + C " D)". To get the A" B function, 
the fuses connecting input lines A and B to the first product 
term are left intact, while the fuses connecting input lines C 
and D to the 1 st product term are blown. To get the C " D 
function, the fuses connecting input lines C and D to the 
second product term are left intact, while the fuses connecting 

input lines A and B to the second product term are blown. In 
the example here, the inputs are shown in their true forms 
only, without their complements. Figure 1·10.b shows' the 
simplified conventional representation of this function. An X at 
the intersection of input line and product line represents an 
intact fuse; a missing X represents a blown fuse. 

·The symbol • or • represents the logical·AND function while + represents the logical-OR function. 
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Figure 1-10.a Fuse Implementation of AND-OR 

A B c o 

Four programmable Inputs 
(product terms) to each 
AND gate 

x - Fuse Not Blown 

LD000690 

Figure 1-10.b Conventional Representation 

Initially, all the AND gates of the programmable·AND array are 
connected, via fuses, to both the true and complement of 
every input. By selective programming of fuses, the AND gates 
may be "connected" to only the true input (by blowing the 
complement fuse), to only the complement input (by blowing 
the true fuse), or to neither type of input (by blowing both 
fuses). establishing a logical don't care. 

An AND gate with all fuses blown assumes the logical·true (1) 
state. When all the true and complement fuses are left intact, 
an unconditional logical·false (0) results on the output of the 
AND· gate. An AND gate with all of its input fuses intact is 
represented by an "X" within the AND gate. 
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ANATOMY OF A PROM DEVICE 

Figure 1·11 shows the basic architecture of a very simple 
combinatorial PROM device using the notation of Figure 1·7, 
1·8, and 1·9. The PROM shown has four inputs (with corre· 
sponding buffers), sixteen AND gates, and four OR outputs. 
The most important feature of the PROM architecture is that 
an array of fixed·AND gates feeds programmable·OR gates. 
The PROM inputs are fully decoded by the fixed·AND array. 
This means that every combination of inputs is represented by 
a separate AND gate, 2n AND gates in a PROM with n inputs. 
For example, the PROM of Figure 1·7 has four inputs and has 
sixteen AND gates. 
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Figure 1·11. PROM Array Structure 
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Notion of Min Terms and Product Terms 

PROM devices incorporate the concept of Min term. 8efore 
we define a Min term, let us define first a Literal. 

A Literal is either a variable or its complement. A Min term of n 
variables is a product of n literals containing all the variables in 
either true or complement form, but not both. For n variables, 
there are a maximum of 2n Min terms. For example the 
variables A, 8, C, have the following eight Min terms: 

IA * 18 * IC 
IA * 18 * C 
IA * 8 * IC 
IA * 8 * C 
A * 18 * IC 
A * 18 * C 
A * 8 * IC 
A * 8 * C 

While PROMs incorporate the concept of Min terms (since all 
the inputs are fully decoded), the PAL or PLA devices 
incorporate the concept of product terms. A product term of n 
variables is defined to be a product of 1 to n literals containing 
either one, two or many variables (up to n), in either true or 
complement form, but not both forms of the same variable. 
For example, for three input variables such as A, 8, C there 
can be twenty-six different product terms: 

(6) A, I A, 8, 18, C, IC 

(12) A * 8, A * C, 8 * C, I A * 8, I A * C, 18 * C 
A */8, A */C, 8 */C, IA */8, IA */C, 18 */C 

(8) A * 8 * C, I A * 8 * C, A * 18 * C, A * 8 * IC 
IA */8 */C, IA */8 * C, A * 18 */C, IA * 8 * IC 

A PROM can be used for simple logic functions. Since the OR 
array is programmable, the outputs can be programmed 
individually from every possible input combination. This allows 
a PROM device to implement a separate and independent 
logic function on each of its outputs. Thus, each PROM output 
can implement any logic function limited only by the number of 
inputs available. 

Since all the PROM inputs are fully decoded, applications such 
as look-up tables, character generators, code converters, and 
various function generators which require every input combi­
nation to be programmable are good candidates for PROMs. 

However, PROMs have a fixed number of inputs and a fixed 
number of outputs. For example, a 4K x 8 PROM has twelve 
inputs and eight outputs. Thus it needs 4,024 fixed-AND gates 
to fully decode its twelve inputs. This fixed input/output 
structure is a major limitation of a PROM device, especially for 
logic functions. A logic function requiring a different mix of 
inputs and outputs - even though the total number may be 
less than that offered by the structure of a PROM - will not be 
able to use that PROM device. Thus, a function requiring 
thirteen inputs and six outputs would not fit into the previously 
mentioned 4K x 8 device, even though it requires a smaller 
total number of inputs and outputs (13 + 6) than the device 
offers (12 + 8). 

Another limitation of the PROM devices is that it is difficult to 
accomodate a large number of inputs. Each additional input, 
doubles the size of fuse matrix. For example, a ten-input, 
eight-output function requires a PROM with 8K fuses. Increas­
ing the inputs to eleven increases the fuse array size to 16K 
fuses. 8ecause of this, the largest PROM presently available 
is limited to fourteen inputs (16K x 8). 

Typical logic fuctions can easily have up to sixteen inputs 
which would require a PROM with 64K locations. For four 
outputs, this would, require 256K locations. However, few 
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applications, especially for logic functions, would require all 
possible input combinations. A large number of fuses would 
therefore not be used. Also, typical output functions don't 
always come in data granularity matching the PROM width. 
For example, data path functions tend to be wider than the 
path itself because of additional functions such as parity bits, 
ripple carry, and serial inputs and outputs etc. Thus, these 
would not be well served by fixed width PROM sizes. 

Various cQntrol path functions, such as state machines, can 
also quickly use up both inputs and outputs. A PROM with a 
register on the outputs as a state machine would require both 
logical inputs and state feedback inputs, while generating 
control outputs and state feedback outputs. Note that for each 
bit of state information, the feedback inputs and outputs are 
tied together, using up an input and output pin (Figure 1-12). 
Thus, when a large number of states are required, very few 
input and output pins are left over to do something else. 

STATE 
FEED8ACK 

FULLY DECODED 
FIXED 

AND ARRAY 

PROGRAMMABLE 
OR ARRAY 

80006700 

Figure 1·12. Registered PROM State Machine 

ANATOMY OF A PAL DEVICE 
The array architecture of a PAL device is shown in Figure 1-13. 
The basic PAL structure is exactly opposite that of a PROM: 
the AND array is programmable and the OR array is fixed. 
Unlike PROMs, the inputs are not fully decoded. There are six 
inputs to the PAL array of Figure 1-13, but only sixteen AND 
gates (not 26 gates). Since the AND array of a PAL device is 
programmable, all the inputs need not be fully decoded. This 
helps to remove one of the key inefficiencies of a PROM (2n 
gates for n inputs), allowing PAL devices to have considerably 
more inputs. 

In other words: increasing the number of inputs does not result 
in a dramatic increase in the number of fuses. For example, 
increasing the number of inputs (from six to ten) for the 
example of Figure 1-13 increases the fuse array only from 
12 x 16, to 20 x 16. 

The fixed-OR array of a PAL device dictates to which OR gate 
any particular AND gate connects. In Figure 1-13, four AND 
gates are dedicated to each OR gate in the array. Since, for a 
PAL device, the output provides the sum of a limited number 



of AND gates, the number of AND gates required by an 
equation must not exceed this number. 

Besides their larger number of inputs, PAL devices contain 
many additional architectural features which make them ideal 
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+ INDICATES FIXED CONNECTION 

for implementing logic functions. These features include 
programmable liD pins, registered or combinatorial outputs 
with internal feedback to the array, outputs with programmable 
polarities, etc. (A detailed description of further features is 
provided later in this chapter) 
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Figure 1-13. PAL Array Architecture 

ANATOMY OF A PLA DEVICE 

The array architecture of a PLA device is shown in Figure 1-14. 
The PLA architecture has both the AND array and the OR 
array user-programmable. This gives additional logic capability 
over PROMS and PAL devices. PLAs combine the advantages 
of PAL devices over PROMs (the programmable-AND plane), 
with the advantages of PROMs over PAL devices (the 
programmable-OR plane). PLA devices can include the same 
logic features which overcome the limitations of too few 
inputs, the allocation of inputs versus outputs, registered 
feedback, or output polarity, although few commercially avail­
able devices actually implement them. The programmable-OR 
array allows AND gates to be tied to OR gates, as desired, by 
blowing appropriate fuses. Here logic functions are limited by 
the total number of AND gates allocated to all outputs, instead 
of by the AND gates allocated to a particular OR gate in a PAL 
device. Thus, logic functions requiring a larger number of AND 
gates may be allocated to a particular OR gate appropriately. 
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Additionally, a PLA structure allows true sharing of AND gates 
for an output; the same AND gate may drive multiple outputs. 
This allows more efficient utilization of AND gates in a PLA 
than in a PAL device. 

The disadvantages of PLAs are not quite so obvious. Because 
of the extra programmable-OR plane, a given signal has to 
pass through two programmable arrays; as a result, PLAs are 
inherently slower than PAL devices and PROMs. This can 
make a PLA unsuitable for many high-performance applica­
tions. Also, in practice the user can seldom take advantage of 
allocating a large number of AND gates to a particular OR 
gate. The number of AND gates required for a particular 
equation is related to the number of inputs to the equation. 
Equations using a large number of AND gates, with a large 
number of inputs pins, can be very cumbersome. Traditional 
logic design techniques such as Karnaugh maps cannot 
handle much more than five or six inputs, and computer aid for 
this task is not generally available. Also, because of the added 



silicon real estate required for the programmable-OR array, 
most of the commercial PLAs have fewer AND gates than 
comparable PAL devices. 

In data-path applications such as barrel shifters, the sharing of 
AND gates between outputs is almost impossible. Here 
individual equations are dependent upon their individual data 
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line (Le., the equation for output 00 is dependent on DO: 01 is 
dependent on D1, etc). Here, PAL devices which do not have 
to provide AND-gate sharing for output, tend to fit better. Since 
the critical path of most systems is in the data path, PAL 
devices tend to be better suited for these applications, since 
they are faster than PLAs. 
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Figure 1·14. PLA Array Architecture 

SUMMARY 

PAL, PROM, and PLA devices represent three programmable 
logic architectures. Although very similar in basic array archi­
tecture, they differ significantly in their ability to implement 
logic functions, in their applications and in their programmabili­
ty aspects. 

Each device type implements an AND-OR two-level logic array 
which allows implementation of logic equations in SOP form. 
The PROM is the most limited of the three device types. While 
it is able to implement any logic function it has very few inputs 
to work with. In a PROM device, all inputs are fully decoded, all 
the Min terms are generated, and each output provides the 
sum of Min terms of all the input variables. The PROM has a 
fixed number of inputs and outputs and does not provide any 
architectural features to enhance logic design capability. 

1-14 

PLA devices, on the other hand, provide the most flexible 
architecture of the three for implementation of logic equations 
by using a programmable-AND array and a programmable-OR 
array. However, in practice the added flexibility of the PLA can 
seldom be effectively used. Further, the PLAs' inherent lower 
speed is unacceptable in high-performance designs. 

The PAL device, sits in between. It provides significant 
capability to implement logic functions. Its programmable-AND 
array allows equations with many inputs. Its other architectural 
features such as programmable 110, internal register feed­
back, and choice of output polarity allow optimization of pin 
allocation and logic equations. 

Table 1-4 summarizes the advantages and disadvantages of 
the three programmable logic architectures. 



TABLE 1-4. COMPARISON OF THREE DIFFERENT PROGRAMMABLE LOGIC ARCHITECTURES 

PROM PAL PLA 

Full decoding of all input Partial decoding of all input 
Partial decoding of all input variables 

variables variables 

Generate all Min terms 
Generate limited number of Product Generate limited number of Product 
Terms Terms 

Each output provides sum of Min Each output provides sum of Each output can provide sum of all 
terms limited number of Product Terms the Product Terms 

Limited Architecture features Additional Architecture features Additional Architecture features 

Speed-Faster Speed-Fastest Speed-Slowest 

Flexibility 

Limited Better than PROM Maximum 

Easy to understand and use Fairly easy to understand and use Hard to understand and use 

DETAILED ARCHITECTURE OF PAL • AND plane 

DEVICES - CAPABILITIES • OR plane 
• Storage elements 

Figure 1-15 shows the detailed architecture of a typical PAL • I/O pins 
device, and its important architecture variables. Four most 
important components of PAL architecture are: 

OE 
elK CONTROL 

l~ . ~ I RESET/PRESET 
I/O 

.... PROG. FIXED OUTPUT --t -C 
~ AND - OR -

-
r-Q:-- PLANE PLANE CELLS -

IFEEDBACK1 I MUX J 

80006690 

Figure 1-15. PAL Architecture 

PAL Architectural Variables 

• Number of Inputs • Number of OR Outputs • Nature of Output Cells • Dedicated I/O 
• Number of AND Gates • Number of PTslOutput • Nature of Feedback • Bidirectional 1/0 

• Distribution of PTs • Prog. Polarity 
• Number of Banks 
o Clock Control 
• RESET IPRESET Control 
• PRELOAD 

Architecture of the AND Plane functions such as Output-Enable control, RESET, PRESET, 
PRELOAD, and observability. 

This plane provides the interconnection of inputs (both true The total number of inputs and product terms determine the 
and complement) to the AND gates to form both logical and size of the AND plane. While the first-generation PAL devices 
control product terms. Logical product terms are used for logic had up to 2K fuses and 64 product terms (each with 32 inputs), 
functions and control product terms are used for control the trend is towards larger AND planes. 

1-15 



Architecture of the OR Plane 

This plane determines the connectivity of the "logical DRing" 
of the AND gates to the outputs, and defines three things: the 
number of OR outputs, the number of product terms (PTs) per 
output, and the distribution of PTs per output whether same or 
variable. 

In a typical PAL architecture, the outputs of the AND gates are 
connected to fixed-OR gates. The limitation of the PAL 
devices' AND-OR plane is the number of inputs to the AND 
gates, the number of AND gates, and the number of "OR" 
outputs. While first-generation devices had seven-eight logical 
product terms per output and a maximum of eight OR outputs, 
the trend is toward a larger number of outputs with more 
product terms per output. 

Architecture of Output Cells 

The architecture of the output cells specifies at least the 
following: 
• Nature of output 
• Nature of flip-flop used as storage element 
• Organization of outputs 
• Flexibility of feedback path 

The output(s) can be configured to have either sequential 
(registered) or combinatorial capability, as well as polarity 
control for active HIGH and active LOW. 

The flip-flops used for output cells can be one of the following: 
edge-triggered D-type flip-flops, J-K, S-R, or T flip-flops, or 
latches. Flip-flops are good for clocked synchronous system 
designs, while latches are good for asynchronous logic 
applications. 

D-type flip-flops are the easiest to design with, while J-K flip­
flops are probably the most flexible. However, there is a trade­
off especially on the OR array for implementing either D or J-K 
type flip-flop. A disadvantage of the J-K flip-flop is that both 
the inputs have to be driven by the OR array. This increases 
the OR-array size. The disadvantage of the D flip-flop is that it 
requires a HOLD term to hold a particular state; J-K flip-flops 
do not need HOLD terms. It is conceivable that a given logic 
function could be implemented with a smaller number of 
product terms with J-K rather than D flip-flops. However, this is 
application dependent. For state-machine designs involving a 
large number of frequent state transitions, the benefits of J-K 
over D becomes less important. 

Traditionally, for PAL devices, speed and architecture simplici­
ty have been the most important criteria and most PAL 
devices use D-type flip-flops only: Lately even other types of 
flip-flops are being offered on PAL devices. 

The organization of the output cells determine whether all the 
cells are organized as a single bank (with a common clock), or 
configured into multiple banks with separate clocks. 

The output cell structure also determines the flexibility of the 
feedback path. The feedback may be from the combinatorial 
output, registered output or from the I/O pins. The feedback 
paths can be either a single or multiple lines for increased 
flexibility. 

Architecture of 1/0 Pins 

The I/O pin architecture determines whether a pin may be 
defined as a dedicated input pin, dedicated output pin, or a 
dynamically-controllable I/O pin. 

While the first-generation devices had' a limited number of 
dedicated input pins, few output pins, and few programmable 
I/O pins, the newer PAL-type devices have more programma­
ble I/O pins. 
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PAL Nomenclature 

PAL devices are known in the industry by the following 
nomenclature: 

PAL xx y zz 

l Maximum Number of Outputs 
Combinatorial or Maximum 
number of Registers 

Type of Outputs 
R = Registered 
L = Active LOW 
H = Active HIGH 
P = Programmable Polarity 
V = Versatile Output 

Macro Cells 
X = Exclusive-OR output 
S = Sequencer-Type device 
M = Input/Output Macro Cells 
A = Asynchronous outputs 
G = Latched Outputs 

- Maximum Number of Array 
Inputs 

For example, the AmPALHCT29M16 (which is a 24-pin CMOS 
PAL device) has a maximum of twenty-nine inputs to its AND 
array, and sixteen input/output macrocells. Since the maxi­
mum number of inputs (twenty-nine) plus the outputs (sixteen) 
exceed the total number of pins in the package, it implies that 
the device has feedback and/or bidirectional I/O pins. 

PAL ARCHITECTURAL FEATURES AND 
BENEFITS 
PAL devices contain many architectural features which make 
them ideal for implementing logiC functions. These features 
include: 
• Programmable I/O pins 
• Flexible Output-Enable control and Bidirectional 110 
• Dedicated versus programmable output structure 
• Programmable polarity 
• Flexible clocking scheme 
• Buried state registers 
• Miscellaneous features 

- Accessibility 
- Controllability 
- Testability 
- Observability 

Programmable 1/0 Pins 

Programmable input/output pins are one of the most impor­
tant resources of a PAL device. They allow the PAL device to 
be tailored to fit the required allocation of inputs and outputs. 
PAL devices can thus implement· far more complex and 
different logic functions than a PROM - even one with more 
pins. 

Flexible Output Enable Control & Bidirectional 
1/0 

Logic diagrams for the bidirectional output structures of the 
PAL devices are shown in Figures 1-16.a and 1-16.b. One 
important feature of the PAL devices' bidirectional output is 
the flexibility in controlling the Output Enable. 

The Output Enable can be either dedicated (controlled by a 
pin) or programmable (controlled by a product term from the 
AND array). 

The output buffer associated with the output pin may be 
programmed in one of three ways: as a dedicated output, a 
dedicated input, or a dynamically controllable input/output. 

When programmed as a dedicated output, the output buffer is 
always enabled and the logic function is fed back to the AND 
array. This feedback path allows more complex logic functions 



to be implemented by using two or more levels of AND-OR Finally, when programmed as a dynamically controllable 
gating. input!output buffer (Le., enabled/disabled by a logical combi-

nation of one or more inputs) this pin may be used as an input, 

When programmed as a dedicated input, the AND-OR gate while retaining the full logical capability of the AND-OR gate. 

associated with that pin is unused. This ability to trade off This is especially useful in control applications (microproces-

outputs for inputs is one of the big advantages of PAL devices sor handshaking protocols) and bus-oriented data operations 

over other programmable logic devices, especially PROMs. (data steering and data storage/manipulation). A serial input! 
The designer is no longer limited to a fixed number of input output pin is a common example. When shifting left the pin is a 

and output pins. The ratio may be programmed to fit the serial input, but when shifting right the pin is a serial output. 

intended application. This mode provides maximum utilization of the PAL architec-
tural resources. 
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Figure ·1-16.a Active-LOW Bidirectional Output 
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Figure 1-16.b Active-HIGH Bidirectional Output 

Figures 1-17.a and 1-17.b show the active-LOW and active- still provided, allowing for implementation of mUlti-level logiC. 
HIGH versions of PAL devices with dedicated outputs. Here This extra AND gate makes these outputs ideal for non-bus-
the outputs are always enabled and the AND gate previously oriented logic replacement, especially complex contrOl-signal 
used for the Output-Enable function can be used for an ex1ra generation, encoding, and decoding. 
logic product term. The feedback path from output to input is 
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Figure 1-17.a Active-LOW Dedicated Output 
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Figure 1-17.b Active-HIGH Dedicated Output 

Individual product-term control for each Output-Enable func- be programmed to provide data storage, operation, or steering 
tion gives the designer the ability to configure each output on functions, the result of which is placed on the data bus by 
an Individuat basis. On the other hand, a common, dedicated enabling the output buffer. Since most PAL devices have 
Output Enable (Figure 1-18) makes registered PAL devices 24 mA current sinking capability, they can drive most on-board 
ideal for bus-oriented systems. The registered PAl device can buses and many backplane buses. 
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Figure 1-18 Registered Output 

Figures 1-19 and 1-20 show the output structure of second- separate product-term control for each output, there is a 
generation devices such as the AmPAL 18P8 and the Am- polarity fuse. This polarity fuse allows the designer to control 
PAL22V10, where each output is controlled by a separate the Output Enable as a combination of various signals 
Output Enable product term. Figures 1-21.a and 1-21.b show (DeMorganized equations) rather than a single AND term. This 
the output structure of the AmPAL23S8. Here, besides a is especially useful in bus-control applications. 

I 
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Figure 1-21.b AmPAL23S8 Output Register 

Dedicated vs. Programmable Output Structure 

PAL devices come with either dedicated or programmable 
output structures which can be registered or combinatorial. 
While the first-generation devices such as the 16LD8, 16HD8, 
etc., had dedicated active-LOW/HIGH outputs and the 16R41 
16L8 devices had dedicated registered or combinatorial out­
puts, the trend is towards PAL devices with more flexible 
output structures. 

Figure 1-20 shows. the output architecture for the Am­
PAL22Vl0 where each output can be defined and its architec­
ture programmed on an individual basis. Each output is user­
programmable for either registered or combinatorial operation. 
This flexibility allows the designer to optimize the device 
design by having only as many registers or combinatorial 
outputs as needed. 

One common feature of most registered PAL devices is the 
registered output with feedback to the array. This registered 
feedback path fits the classical state-machine design. The 
register's input is driven by the AND-OR array and is used to 
store the logic information. Once the data is stored in the 
register, it can act either as output or present state informa­
tion. The registered PAL device can thus be used as a 
synchronous state machine. The feedback acts as the "pres­
ent state" information which, combined with the "present 
inputs" is used to generate the "next state" information. 

Programmable Polarity 

Programmable polarity allows the designer to configure the 
output as either active HIGH or active LOW. First-generation 
devices lacked this capability. The second-generation PAL 
devices such as the 18P8, 23S8, 22Vl0, 20EV8, 20XRP10, 
and third-generation devices such as the 29M16 CMOS PAL 
Family all incorporate this feature. 

Programmable polarity, along with the choice between either 
registered or combinatorial output, allows the designer to 
operate an individual output in one of four modes: Registeredl 
Active LOW, Registeredl Active HIGH, Combinatoriall Active 
LOW, and Combinatorial/Active HIGH. Note that the associat­
ed feedback path also changes with the output mode. This 
capability gives the designer more flexibility to optimize the 
device for the particular application requirements. 
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Number of Product Terms/Output and 
Distribution of Product Terms 

The logic capability of a PAL device is detorminod by tho 
number of product terms per output and how thoy aro 
distributed. The larger the number of product torms por output 
the more powerful is the device's logic capability. Howovor, 
there has to be a balance between logic flexibility and 
utilization efficiency. Increasing the number of product terms 
per output unnecessarily results in inefficient utilization of 
device resources. For replaCing SSI/MSI devices, a maximum 
of sixteen product terms per output is considered adequate. 

The other factor which determines the logic capability is the 
distribution of product terms: whether product terms are 
distributed equally or unequally. Variable product-term distribu­
tion allocatesdifferent numbers of logical product terms to the 
individual outputs, increasing the complexity of logical func­
tions to be performed. With sixteen logical terms allocated to 
an output, up to sixteen logical terms can be evaluated in a 
single clock cycle, without requiring any feedback. 

Flexible Clocking Scheme 

Most of the registered PAL devices can be used for synchro­
nous state machines. For most of the simple synchronous 
state machines, one common clock for all the registers is 
adequate. However, some applications may require more than 
one clock, preferably with programmable polarity, so that 
registers or banks of registers can be triggered either by the 
rising or trailing edge. Multiple clocks with programmable 
polarity are useful for building pipelined systems - where 
different elements of the system can possibly be triggered by 
different edges. 

In a PAL device, however, a pin is a valuable resource. A 
dedicated clock pin for registered devices may be appropriate, 
but PAL devices with both registered or combinatorial outputs 
might not want to waste a dedicated clock pin used for 
registered operation only. Hence, the pin is clock as well as 
input. Glue-logiC applications might want a product-term­
driven clock. This provides a separate clock for each flip-flop. 



Burled State Registers 

The output storage elements of the PAL device are used 
either as outputs or as state bits. Typically these output 
storage elements are associated with 1/0 pins, and are driven 
by the AND-OR array. The number of output/state registers, 
1/0 pins, and array size (product terms) are the three most 
important resources of programmable logic devices. These 
three resources are always in short supply. For optimum state­
machine design, system designers always strive to achieve an 
optimum balance of these resources. 

Traditional first-generation devices such as the 16R4/16R61 
16R8 have been used as SSI/MSIIogic replacement and for 
doing state-machine designs. However, because of a limited 
number of registers, only simple state machines can be 

Inputs 

designed with these devices. For more complex state-ma­
chine designs, designers have asked for dedicated buried 
state registers. These registers are driven from the same 
AND-OR array, but, they are not tied to the output pins. 
Therefore, they are called "buried registers." However, they 
are accessible and controllable by the AND-OR array, just like 
the output registers. These buried registers provide extra 
functionality. They could be used for keeping track of various 
"internal flags" for' generating timing and various other inter­
nal control information, without tying up the valuable 1/0 pins. 

Figure 1-22 shows the architecture of the AmPAL23S8, the 
industry's first bipolar PAL-based sequencer device. As seen 
from the block diagram, this device offers six dedicated buried 
registers in addition to eight output registers. Figure 1-23 
shows the architecture of its buried registers. 
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Macrocells 
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Figure 1·22. Block Diagram of AmPAL28S8 
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MISCELLANEOUS FEATURES­
ACCESSIBILITY, CONTROLLABILITY, 
TESTABILITY AND OBSERVABILITY 
PAL- and PLA-based sequencer devices need a large number 
of internal registers that are easily accessible, controllable, 
testable, and observable. 

Power-up RESET 

Power-up RESET resets all internal registers during system 
power-up. All the registered devices in the AMD PAL Family 
have been designed to reset automatically during system 
power-up. This feature is especially valuable in simplifying 
state-machine initialization. 

Due to the asynchronous operation of the power-up RESET 
and the wide range of possible Vee rise time, certain condi­
tions are necessary to insure a valid power-up reset. For 
AMD's PAL devices, these conditions are: 
• The Vee rise must be monotonic 
• Following reset, the clock input must not be driven from 

LOW to HIGH until all applicable input and feedback setup 
times are met. 

RESET IPRESET 

The ability to RESET and PRESET registers increases the 
system functionality. 

These RESET IPRESET functions can be asynchronous or 
synchronous, and can be controlled either by a dedicated pin 
Q! by a product term driven from the AND array. 

If these functions are driven by product term(s), these could be 
either a common product term or individual product terms. 
When the synchronous product term is asserted (HIGH), the 
output registers will be loaded with a HIGH on the next LOW­
TO-HIGH clock transition. When the asynchronous RESET 
product term is asserted (HIGH), the output registers will be 
immediately loaded with a LOW (independent of the clock). 
These functions are particularly useful for applications such as 
system power-on and reset. . 

PRELOAD 

PRELOAD allows any arbitrary value to be loaded into the PAL 
device's output registers. AMD's registered PAL devices are 
designed with unique PRELOAD circuitry that provides an 
easy method of testing registered devices for logical function­
ality. 

PRELOAD is the only way to allow full logic verification of 
programmed registered PAL devices and thus guarantee 
correct logical functionality. Without PRELOAD, many device 
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failures cannot be discovered until the device is tested as a 
part of the finished system. 

A typical functional test sequence would be to verify all 
possible state transitions for the device being tested. This 
requires the ability to set the state registers into an arbitrary 
"present state" value and to set the device inputs to any 
arbitrary "present input" value. Once this is done, the state 
machine Is clocked Into the "next state," which is then 
checked to validate the transition from the present state. In 
this way any state transition can be checked. 

Without PRELOAD, it is difficult and in some cases impossible 
to test an arbitrary present state value. This can lead to logic 
verification sequences that are either incomplete or excessive­
ly long. Long test sequences result when the feedback from 
the state registers "interferes" with the inputs, forcing .the 
machine to go through many transitions before it can reach a 
particular state value. The test sequence becomes excessive­
ly long when a state must be reentered many times to test a 
wide variety of input combinations. 

In addition, complete logic verification may become impossible 
when states that need to be tested are never entered with 
normal state transitions. "Forbidden" or don't-care states that 
are not normally entered need to be tested to ensure that the 
state machine returns to a valid state. 

PRELOAD eliminates these problems by providing the capabil­
ity to go directly to any desired arbitrary state. Thus test 
sequences may be greatly shortened and all possible states 
can be tested, greatly reducing test time and development 
costs, and guaranteeing proper system operation. 

Observablllty of Burled' State Registers 

The AmPAL23S8 is the first PAL device to offer product-term 
controlled, observable buried state registers. The observability 
product term, driven by a common AND-OR array, allows the 
system designers to observe buried registers under pin control 
or product-term control (by a combination of various input 
signals). The contents of the buried registers can be moni­
tored for system debugging purposes. 

An observablity product term controls a set of six inverting 
buffers, which serve both the six buried registers and six 
output registers (four output registers and two output logic 
macrocells). The observability product term causes the six 
buffers to disable signal flow from the six output registers to 
the 110 pins, and enables signal flow from the six buried 
registers to the respective 1/0 pins (Figures 1-21.a and 
1-21.b). This feature is especially useful for system-level 
testing and debugging. 



SUMMARY 

Table 1-5 summarizes different architectural features and their benefits for the system designers. 

TABLE 1-5. PAL ARCHITECTURAL FEATURES AND THEIR BENEFITS 

Features Benefits 

• Removes limitation of fixed 1I0s 

Programmable 110 Pins • Offers variable number of 1I0s 

• Allows allocation of 1I0s based on application 
requirements 

• Dedicated inputs 
Bidirectional 110 Capability • Dedicated outputs 

• Dynamically controllable 1I0s 

Programmable Polarity • Sfmplifies deMorganization of equations 

Registered Outputs with Feedback • Simplifies state-machine design 

Combinatorial Outputs with Feedback • Allows multiple levels of logic 

Output Logic Macrocell • Variable number of registered/combinatorial outputs 

• Simplifies Mealy-Moore-type state-machine design 

Variable Distribution of Product Terms • Better application fit 

Flexible Clocking Scheme • Better synchronous. design 

• Eases pipelined system deSign 

Product-Term-Driven Clocks • Offers multiple clocks 

• Good for glue-logic applications 

Buried State Registers • Frees up 110 Pins 
•. Offers more complex state-machine design capability 

Asynchronous RESET/PRESET • Better system initialization 

PRELOAD • Better testability 

Power-Up RESET • System initialization 

Observability of Buried State Registers • Simplifies system testing and debugging 
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1.3 HOW TO DESIGN WITH 
PROGRAMMABLE LOGIC 
DEVICES 

INTRODUCTION 
Programmable Logic Devices (PLDs) with their programmable­
AND-OR array structures are ideal for implementing Boolean 
logic functions expressed in sum-of-products (SOP) form. Any 
logic function can be implemented in a PAL device as long as 
the number of inputs, outputs, and the number of product 
terms required do not exceed what is available on the device. 

The SOP form can be derived from truth/function tables, state 
or timing diagrams, and Karnaugh maps. High-level software 
packages are available to ease this derivation. 

Logic Equations 

Digital systems are based on the Boolean logic system, which 
processes only two types of values: 0 and 1. These two values 
are processed through electronic circuits known as gates to 
produce an output. Combinations of such gates can be used 
to implement a logical equation that generates outputs based 
on combinations of inputs. These outputs can be interpreted 
as data or used as inputs to other logic networks. 

All digital logic can be expressed in terms of three fundamen­
tal logic gates: AND (-), OR (+), and NOT (/). These logic 
gates or functions are manipulated using Boolean algebraic 
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theorems and laws to simplify and reduce complex logic 
expressions. 

Implementing Boolean Equations In PAL 
Devices 

The programmable-AND and fixed-OR structure of a PAL 
device require that logic expressions be expressed in the SOP 
form. In SOP form, the maximum number of logic levels is two: 
an AND and an OR operation. Any NOT or invert operation is 
assumed to occur before the AND plane of the PLD and 
therefore does not contribute to the propagation delay through 
the PLD AND-OR plane. 

For example: A- (B. + C- (D + E» in Figure 1-24 is a four-level 
logic expression. The subexpression D + E must be evaluated 
before ANDing with C. This is then ORed with B before finally 
ANDing with A. The logically equivalent SOP form Is: 
A-B + A-C-D + A-C-E. 

The SOP equation maps directly into the PAL device structure: 
each product term (A- B, A-C-D, and A-C-E) is programmed 
into the AND array of the output dedicated to this logic 
expression. This output must have at least three product terms 
to express this logic equation (Figure 1-25). 

CONVERT TO SOP FORM 
F = A • (B+C * (D+E)) 
F = A-(B+ CoD + C-E) 
F = A -B + A * C· D + A* C* E 

jj~ 
- Inputs go through 

only two levels of 
logic (AND, OR) to 

generate the function F 

LD000551 

Figure 1-24 A Simple Combinatorial Logic Expression 

1-25 



CONNECTION INTACT 

\ .. INPUT LINE NUMBER 

_"'-.. 0 1 2 3 4 5 6 7 8 9 

PRODUCT 0 
TERM 

NUMBER 1 

NO CONNECTION 

J 
P-F 

}-----~ 

I 

2 

3 --~+-+-~~-+-r~~--------~X 

A 

B 

c 

0 

E 

'" ,.;t 

A ... 

~ .... 
...... 

;:? .. 
~ ........ 

C All CONNECTIONS 
INTACT 

LD000560 

Figure 1-25 Logic Expression Mapped Into a PAL Device 

From Concept to Implementation 

Designing with programmable logic usually involves three 
phases: design, programming, and testing. In the design 
phase, you specify Boolean functions, Le., logic equations for 
solving the problem. In the programming phase, the logic 
equations are converted into SOP expressions, which are then 

1-26 

translated into a device fuse map used to program the device. 
The test phase ensures that the programmed logic device 
performs the functions specified. 

DESIGN PHASE 
The design phase can be further partitioned into a number of 
basic steps (Figure 1-26). 



Define Problem 

!"""""""" ~ ~;I~ ~"~~~""; ~~~~~~""""""""""": 
· 1 · · . · . · . l CREATE A SOLUTION l · . · . · . l Identify Requirements : 
: - I/O, PTs, Speed : 
l Select Proper PAL : · . · ! . · . · . · . · , , , 
: GENERATE BOOLEAN EQUATIONS : , . 
, , , ! . · , · , , . 
: OPTIMIZE BOOLEAN EQUATIONS : , 1 · , . · , , , , , · . 
: VERIFY DESIGN : · . , , · , , , 
: Generate Test Vectors : 
: Simulate : , . 
~::::::::::::::::::::}..::::::::::::::::::::::::~ 
· "i . · , : GENERATE FUSE MAP : , . · ! . · . · , · , 
! PROGRAM THE DEVICE 1 
;:::::::::::::::::::::t::::::::::::::::::::::::: i 
1 TESTING THE DEVICE : 
! .................................................. ~ 

80006790 

Figure 1-26. PAL Design Process 

Defining the particular logic function to solve the problem is 
the first step in the design phase. Here you identify the nature 
of the problem to be solved: whether a combinatorial function 
(such as address decoding, priority encoding, data multiplex­
ing/demultiplexing, or generating control signals), or a se­
quential function (such as counting, data shifting, or imple­
menting. a particular state machine). 

"1 s" has the effect of inverting the equations. This is a 
convenient and common technique for generating inverted 
logic for use in activ6-LOW PAL devices. 

Generating logic equations for . sequential circuits is more 
complex. You have to define the inputs, outputs, and states. 
You then draw a state diagram, specifying all the appropriate 
state transitions to generate the state table. Regular digital 
design methods are then used to assign states such that 
redundant states are eliminated to obtain the minimal number 
of states. 

Identify Design Requirements 

After you have defined the problem, choose a device based 
on the design requirements: number of input/output pins, 

I number of product terms, registered or combinatorial outputs, 
polarity, power consumption and speed. 

Generate Boolean-Logic Equations 

Identification of inputs, outputs, and signed polarity may be 
easy. However, the number of product terms used to solve the 
design problem is determined only after the necessary Bool­
ean logic equations have been generated. 

Generating Boolean-logic equations for combinatorial logic is 
relatively straightforward. You start with the inputs, outputs, 
and the truth table. You can derive logic equations from the 
truth table by grouping the "1s" (for active-HIGH outputs) or 
"as" (active-LOW outputs). Grouping the "as" instead of 
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After the states have been determined, assign state numbers 
and use logic minimization techniques to arrive at the minimum 
amount of logic necessary to implement the sequential func­
tion. 

The logic equations derived from truth tables, state diagrams 
and Karnaugh maps are converted into the SOP form to fit into 
a PAL device. You can use computer-aided design (CAD) tools 
to' greatly speed up the logic design process. These CAD 
packages allow you to express the design solution in a high­
level syntax such as logic schematics or logic language 
descriptions. They also take the truth tables, state diagrams, 
flowcharts, and other high-level descriptions of the solution 
and automatically generate logic equations in SOP form. The 
equations can be minimized if they exceed the number of 



product terms available on the device. These CAD packages 
are relatively Inexpensive and available from a number of 
vendors including DATA 1/0 (ABEL*), Personal CAD systems 
(CUPL *), and AMD (AmCUPL, and PLPL). 

We will demonstrate designing with a PAL device with a simple 
design example. We want to implement the following combina­
torial logic function (Figure 1-27): 

01 -/11 
02 -/11*12 
03 -11 + 13 
04 - 1(/13*14) 
05 - 1(/13*15*16 + 17 + 18*19) 
06 -/(18*19 + 113*/17*19*110) 

Figure 1·27. Logic Design Example 

For this example, the optimized Boolean equations can be 
written in the SOP form: 

01 .. /11 
02 -/11*12 
03 -11 + 13 
04 -13 + /14 
05 - (13 + 115 + 116)*/17*(/18 + /19) 

- (13*/17 + 115*117 + 116*/17)*(118 + /19) 
-13*/17*118 + 115*/17*118 + 116*/17*/18 

+ 13*/17*/19 + 115*/17*/19 + 116*/17*/19 
06 - (/18 + 119)*(13 + 17 + 119 + 1110) 

-118*13 + 118*17 + 118*119 + 118*1110 
+ 119*13 + 119*17 + 119*119 + 119*1110 

Outputs 05 and 06 have six and eight PTs, respectively. 
Using logic minimization (available with most PLD design 
packages), 06 can be reduced to the following equation with 
only four PTs. 

06'" 119 + 118*13 + 118*17 + 118*1110 

Logic minimization reduces the number of PTs necessary to 
represent a function such that the logiC expression can fit into 
an output on a PLD. If the number of PTs after minimization 
still exceeds the number of PTs for the output pin, then you will 
have to use a larger PLD with more PTs per output. 

Inverted Logic Expressions 

In the above example, we have specified active-HIGH outputs. 
However, if you wanted to use an active-LOW PLD such as the 
AmPAL16L8, the equations in Figure 1-27 would have to be 
converted from active HIGH to active LOW by applying 
DeMorgan's theorem as follows: 

101 -11 
102 -11 + 112 
103 - 111 */13 
104 -/13*14 
105 - /13*15*16 + 17 + 18*19 
106 - 18*19 + 113*/17*19*110 
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The equations are in the SOP form and can map directly Into a 
PLD. 

Note that more advanced PLDs such as the AmPAL22V10 
have output macrocells which give the user many output 
options. These outputs can be programmed with HIGH or 
LOW polarity. Since the output pin is programmable, you can 
choose between the active-HIGH or active-LOW implementa­
tion, whichever, gives the lowest number of PTs per output. 

Verify Design 

After you have generated the logic equations, you can perform 
logic simulation on the resulting equations to test for correct 
functionality before actually programming a part. This is an 
inexpensive and fast way to catch mistakes. The simulation 
procedure uses test conditions or vectors which specify the 
inputs to and expected outputs from a PLD. Some CAD 
systems can generate the test vectors automatically, or you 
can generate them manually. 

If manual test vector generation is performed, it is usually done 
by the logic designer who knows the design best. The 
designer creates a function table showing the inputs and 
expected outputs into and from the device. A CAD package 
can then convert the data in the functionltruth table into a 
valid test vector format acceptable by the simulator and the 
PLD programmerltester to be used. 

PROGRAMMING PHASE 

Once you are satisfied with the results of logic simulation, a 
device map can be generated from the equations. Figure 1-28 
shows the logic diagram of the AmPAL16L8 for implementing 
above equations. We have arbitrarily assigned outputs 01-06 
to pins 14-19, and the inputs 11-110 to pins 2-9, 11, and 13. 

01 is assigned to pin 19. To make this output the inverse of 11, 
connect input line 0 to product term 1 and disconnect all the 
remaining links for this product term. For fuse-based PLDs, 
you have to selectively make disconnections by blowing fuses. 
Connections are indicated by an X at the intersection of input 
line 0 and product term 1 in Figure 1-28. 

Since the other PTs for the "01" output OR gate are unused, 
their outputs are forced to zero by connecting all the links. 
When all the links are connected, both the true and comple­
ment value of an input are fed to a PT, resulting in a logic zero. 
In Figure 1-28 unused PTs (with all connections Intact) are 
indicated by Xs In the AND gates at the OR gate inputs. 

The final consideration for "01" output Is the output enable. 
The logic diagram and logic equation fo'r the function '01 do' 
not show output enable function. This means that "01" 
should be always enabled. In Figure 1-28, PT 0 controls the 
Output Enable function for "01". PT 0 Is always TRUEIHIGH 
when all the links in a PT are disconnected. 
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Figure 1-28. Logic Diagram for Example of Using the AmPAL 16L8 
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The next output 102 is the OR function of 11 and 112. The 
equation 102 ... 11 + 112 is represented in the PLD by leaving 
input line 0 (11) connected to PT 9 and disconnecting the rest 
of the links on this PT. Then since an OR function is needed, 
we move to the next PT and leave input line 5 (/12) connected 
while disconnecting the other links in PT 10. Since PT 11 
through 15 will be unused, we indicate this by putting an X in 
the AND gates at the input of the NOR gate. Function 02 is 
also always enabled, hence no X is put in the AND gate 
representing the enable product term PT 8, indicating that all 
the links in PT 8 have been disconnected. 

Output 103 is the AND of 111 and 113. To implement this, input 
line 1 (/11) is connected to PT 17. Since we want an AND 
function, input line 9 (/13) is also connected to PT 17. These 
connections are reprasented by Xs. The other links in PT 17 
are disconnected. Since the rest of the PTs are unused, an X 
is placed In the AND gates for PT 18 through 23. The Output­
Enable PT for 103 is also left blank, which will always enable 
the output 103. 

Output 104 is similar to 103. To generate the AND function, 
input line 9 (/13) and input 12 (14) are connected to PT 25, 
while the rest of the links in PT 25 are disconnected. The other 
PTs are unused, and the output is always enabled. 

Output lOS is generated by ANDing 113, IS, and 16 on PT 33, 
connecting 17 to PT 34, ANDing 18 and 19 on PT 35, and 
leaving PTs 36-39 unused. 

106 is generated by ANDing 18 and 19 on PT 41 and ANDing 
113,/17,19, and 110 on PT 42. Product terms 43 through 47 are 
left unused. For both outputs lOS and 106, the output enable 
PTs 32 and 40 are left blank to always enable the respective 
outputs. ' 

Since pins 12 and 13 are not being used as outputs, Xs are put 
in the AND gates for all these product terms. 

As you can see, any function can be put into the SOP form and 
then a device map generated for it. However, it is very time 
consuming to generate these maps by hand. Therefore, PLD 
CAD packages have been developed which automatically 
generate the PLD map from the Boolean equations. The map 
can then be loaded into a PLD programmer to program the 
device. 

One such first-generation Assembler based CAD package, 
called AmPALASM20*, was developed by AMD. It allows you 
to enter Boolean equations using regular logical operators 
(AND, OR) and produces a device map. Figures 1-29 and 1-30 
show the example in Figure 1-27 written in AmPALASM20 and 
the resulting device map. 

PAL16L8 
PAT001 
DESIGN EXAMPLE 
ADVANCED MICRO DEVICES 
NC 11 12 13 14 15 16 17 18 GND 
19 NC 110 06 05 04 03 02 01 VCC 

101 .. 11 
102 = 11 + 112 
103 = 111 * 113 
104 = 113*14 
lOS = 113*15*16 + 117 + 18*19 
106 = 18*19 + 113*/17 .. 19*110 

Figure 1-29. Abbreviated AmPALASM20 Input 

'We have used AmPALASM20 lor illustration purpose only. The trend is towards advanced Compller·based CAD packages. 
See "Design Aid Software lor Programmable Logic" section. 
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DESIGN EXAMPLE 

11 1111 1111 2222 2222 2233 
0123 4567 8901 2345 6789 0123 4567 8901 

o ---- ---- ---- ---- ---- ---- ---- ----
I X--- ---- ---- --T"- ---- ---- ---- ---- II 
2 XXXX XXXX XXXX XXXX XXX X XXXX XXXX XXXX 
3 XXXX XXXX XXXX XXXX xxx X XXXX XXXX xxx X 
4 XXXX XXXX XXXX XXXX XXXX XXXX XXX X XXXX 
5 XXX X XXXX XXXX XXXX XXXX XXXX XXXX XXX X 
6 XXXX XXXX XXX X XXXX XXX X XXXX XXXX XXXX 
7 XXXX XXX X XXXX XXXX XXXX XXXX XXXX XXXX 

8 ---- ---- ---- ---- ---- ---- ---- ----
9 X--- ---- ---- ---- ---- ---- ---- ---- II 

10 ---- -X-- ---- ---- ---- ---- ---- ---- /12 
11 XXX X . XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
12 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
13 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
14 XXXX XXXX XXX X XXXX XXXX XXXX XXXX XXXX 
15 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 

16 ---- ---- ---- ---- ---- ---- ---- ----
17 -X-- ---- -X-- ---- ---- ---- ---- ---- /11*/13 
18 XXXX XXXX XXX X XXXX XXXX XXXX XXX X XXXX 
19 XXX X XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
20 XXXX XXXX XXX X XXXX XXXX XXXX XXX X XXXX 
21 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX X 
22 XXXX XXXX XXXX XXXX XXXX XXXX XXX X XXXX 
23 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 

24 ---- ---- ---- ---- ---- ---- ---- ----
25 ---- ---- -X-- X--- ---- ---- ---- ---- /13*14 
26 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
27 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
28 XXXX XXXX XXXX XXXX XXXX XXXX XXX X XXXX 
29 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
30 XXXX XXXX XXX X XXXX XXXX XXXX XXXX XXXX 
31 XXXX XXXX XXXX XXXX XXX X XXXX XXX X XXXX 

32 ---- ---- ---- ---- ---- ---- ---- ----
33 ---- ---- -X-- ---- X--- X--- ---- ---- !I3"I5""16 
34 ---- ---- ---- ---- ---- ---- X--- ---- 17 
35 ---- ---- ---- ---- ---- ---- ---- X-X- 18*19 
36 XXXX XXXX XXX X XXXX XXXX XXXX XXX X XXX X 
37 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
38 XXXX XXXXXXXX XXXX XXXX XXXX XXXX XXXX 
39 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX X 

40 ---- ---- ---- ---- ---- ---- ---- ----
41 ---- ---- ---- ---- ---- ---- ---- X-X- 18*19 
42 ---- ---- -X-- ---- ---- ---- -XX- --X- /13*/17*19*110 
43 XXXX XXXX XXXX XXXX XXXX XXXX XXX X XXXX 
44 XXXX XXXX XXXX XXXX XXX X XXXX XXXX XXXX 
45 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
46 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
47 XXXX XXXX XXX X XXXX XXXX XXXX XXXX XXXX 

48 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
49 xxxx XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
50 XXX X XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
51 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
52 XXXX XXX X XXXX XXXX XXXX XXXX XXXX xxxx 
53 XXXX XXXX XXXX XXXX XXXX XXXX XXX X XXXX 
54 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
55 XXXX XXXX XXXX XXXX XXXX XXXX XXX X XXXX 

56 XXXX XXX X XXXX XXXX XXXX XXXX XXXX XXXX 
57 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
58 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
59 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
60 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
61 XXX X XXXX XXXX XXXX XXXX XXXX XXXX XXXX 
62 XXXX XXX X XXXX XXXX ),XXX XXXX XXXX XXXX 
63 XXXX XXXX XXX X XXXX XXXX XXXX XXXX XXXX 

LEGEND: X: FUSE NOT BLOWN (L,N,O) -: FUSE BLOWN (H,P,1) 

NpMBER OF FUSES BLOWN = 493 

TB000250 

Figure 1·30. AmPALASM20 Output Fuse Map 
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TESTING PHASE 
Two tests can be performed after the part is programmed. 
First, the PLD programmer can verify that only the links/ 
connections specified in the device map have been pro­
grammed in the part. Second, the programmed part can be 
tested for correct functionality; the same test vectors used for 
logic simulation can be used to test that the device generates 
the correct outputs for a given combination of inputs. The test 
vectors in the device map will be in a JEDEC-standard format 
(see Device Map). 

If the device does not function as expected or differs from the 
logic simulation results, then the device is malfunctioning. The 
test phase can be performed on PLD programmers with 
testing capability. 

THE DEVICE MAP 
Fuse-Based and Erasable PLDs 

Fuse-based PLDs have fuses that form the links or connec­
tions in the device. Electrically-erasable PLDs or UV-erasable 
PLDs have erasable cell arrays that form the connections. 
Erasable PLDs can be considered as having "erasable links" 
in this discussion. 

Fuse-based PLDs are shipped by the manufacturer with all 
fuse links intact. A function is programmed into the part by 
selectively blowing or programming the fuse links that are not 
needed. On the other hand, an erased PLD has no connec­
tions at all. The designer will have to selectively make 
connections in order to implement a function. These fuses or 
links are specified in a data file called a fuse map or a device 
map. 

This device map can be expressed in many formats, but one of 
the most common formats is the Joint Electronic Devices 
Engineering Council (JEDEC) standard which is supported by 
most PLD programmers and semiconductor manufacturers. 

The JEDEC Standard (No.3-A May 1986) 

The standard put forth by the JEDEC committee contains 
many options which are used for transferring data between a 
PLD development system and a PLD programmer/tester. A 
minimum configuration JEDEC-device map file contains at 
least the following fields: F, L, and C. 

This is a sample JEDEC-device map file: 

*FO* 
LOOOO 0110 0100 1000 1010* 
L0032 1000 0000 0000 0000* 
C0078* 

Figure 1-31. Minimum Configuration Device 
Map File 

The device map file starts with a design-specification field 
which may contain any ASCII character (except "*") to 
describe the design. This field is terminated by an "*". 

The F field specifies the default link state of any unspecified 
fuses in the PLD. In Figure 1-31, "Fa" will set all unspecified 
fuses in the PLD to the a state (Le., a low resistance link 
specifying a connection between two points) A "1" would 
have specified a high-resistance link or no logical connection 
between two points. In fuse-based PLDs, a "1" would have 
instructed the PLD programmer to burn/blow the fuse con­
necting two points. The programmer will leave the fuse 
connected when a "0" is received. 

The L field specifies the address of the fuse link that is to be 
programmed. A sequence of binary numbers follows which 
specifies the fuse states of the fuses starting at the address 
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specified by the L field. Referring to Figure 1-31, the first fuse 
to be programmed is at location "0000" decimal and the fuse 
state is "0". 

The binary digits following the first "0" refer to the fuses 
following the fuse at location O. When an "*" is detected, the 
fuse link information field terminates unless another Lxxxx is 
specified. In Figure 1-31, sixteen fuse states are transmitted 
beginning at fuse location O. More fuse information will be 
transferred to the PLD programmer, but will now start at fuse 
location 32 decimal because of the new L field L0032. 

The C field specifies the fuse checksum that is used by the 
PLD programmer to detect transmitting and receiving errors. 
This checksum is for all the fuses in the PLD, not only for the 
fuses specified in the file. The fuse checksum is a 4-digit 
hexadecimal value representing the unsigned 16-bit sum of 8-
bit bytes formed with the fuse states. The 8-bit bytes are 
formed as follows: 

wo,d 0 m : 1 : 1 : 1 : 1 : 1 I'~b 1 '"'"" 

worn '1::bl,6.1,~ I,: 1,3, 1,201 : I'~b I fus." 

::::::::::::::::::::::::::::::::::::::::::::::::::: 

word 4 msb Isb 

I :913
6

813
5
713: 13

3
51 :J 3~ 13

0

21 fuse # 
::::::::::::::::::::::::::::::::::::::::::::::::::: 

worn 'I :i : 1 : 1 : 1 :.1 :81.~ 1 :: 1 '"'"" 
a-bit bytes formed for a PLD with 100 fuses 

Unused bits in the last byte are filled with "Os". For the fuse 
map example, the fuse checksum is calculated as follows: 

Word a 
Word 8 
Word 16 
Word 24 
Word 32 
Word 40 

0010 0110 
0101 0001 
0000 0000 
0000 0000 
0000 0001 
0000 0000 

Word 96 0000 0000 

Total 0111 1000 0078H 

A PLD data sheet will usually show the JEDEC fuse numbers 
for every fuse link in the device. PLD CAD packages usually 
have a JEDEC fuse-map generator which relieves the design­
er from having to individually program the fuses in a PLD to 
implement a logic circuit. 

TESTING THE PLD 
If the PLD programmer has functional testing capability, test I 

vectors can be inserted into the fuse map file. These test 
vectors begin with a "V" and a decimal vector number 
followed by a sequence of characters symbolizing the inputs 
and expected outputs to every pin on the device. Each vector 
is terminated by an "*". For example, the AmPAL22V10 has 
twenty-four pins. If the Signals A,B, and C are assigned to pins 
1,2, and 23, then the following test vectors can be used to 
check that a two-input XOR function programmed into the 
AmPAL22V10 is functioning properly. 



XO* 
V01 OOXXXXXXXXXNXXXXXXXXXXLN* 
V02 01XXXXXXXXXNXXXXXXXXXXHN* 
V03 10XXXXXXXXXNXXXXXXXXXXHN* 
V04 11XXXXXXXXXNXXXXXXXXXXLN* 

pin 1 tt pin 23 t 
pin 2 

The X field defines the don't care condition in the test vectors. 
The N field represents power pins and pins that are not tested. 
In this case the two Ns in the four vectors represent the Vee 
and ground pins. 

There are many test-vector specification options available, but 
this is the minimum configuration for including test vectors in a 
fuse map file. This test-vector file is normally appended to the 
end of the fuse-map file to improve readability and documenta­
tion, but it can actually be placed anywhere in the fuse-map 
file if the test engineer so desires. These vectors were 
manually generated, but some CAD packages support auto­
matic test vector generation. 

PLD PROGRAMMER TRANSMISSION 
PROTOCOL 
The data transfer protocol used to transfer the fuse map to a 
PLD programmer is simple. The transmission consists of the 
start-of-text (STX) character, the fuse-map information (fuse­
link states, test-vector information, and fuse checksum), the 
end-of-text (ETX) character, and the transmission checksum. 
The transmission checksum is the unsigned 16-bit sum 
(modulo 65,535) of all the ASCII characters transmitted 
between and including the STX and ETX. 

XA XB XC XD XOR Y (XA,XB,XC,XD) 

0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 1 
0 0 1 1 0 

Some computer operating systems do not allow users to 
control what characters are sent. If this is the case with your 
PLD development system, then the transmission checksum 
must be disabled by always sending the dummy value "0000". 
Any PLD programmer complying with this JEDEC standard will 
always accept this as a valid transmission checksum. 

DESIGN EXAMPLES 

We will illustrate the design examples of two combinatorial 
functions and two sequential functions using PAL devices. For 
the combinatorial examples we will show the implementation 
of a 4-bit "exclusive-OR generator" and an 8:1 MUX in a PAL 
device. Instead of using standard SSI/MSI devices, both 
functions can be performed In the same PAL device. 

Identify Device Requirements 

The 4-bit XOR requires four inputs and one output pin; the 8:1 
MUX requires eight data lines, three select lines, and one MUX 
output. The PLD selected must therefore have at least fifteen 
inputs and two outputs. In this example, we are also assuming 
active-HIGH outputs. The AmPAL18P8 fits all the I/O require­
ments. However, the number of product terms (PTs) can only 
be determined from the function table. 

Figures 1-32.a and 1-32.b show the truth tables for both these 
functions. Figure 1-32.c shows logic diagrams for both 4-input 
XOR and 8:1 MUX functions. The XOR and MUX functions can 
be described in a high-level language-type syntax (Figure 
1-33) directly from these truth tables. (For detailed discussion 
of PLPL syntax, see "Design-Aid Software for Programmable 
Logic" section). 

0 1 0 0 1 XOR _ Y (XA,XB,XC,XD)'" /XA*/XB*/XC* XD 
0 1 0 1 0 + /XA*/XB* XC*/XD 
0 1 1 0 0 + /XA* XB*/XC*/XD 
0 1 1 1 1 + /XA* XB* XC* XD 

, 1 0 0 0 1 + XA*/XB*/XC*/XD 
1 0 0 1 0 + XA*/XB* XC* XD 
1 0 1 0 0 + XA* XB*/XC* XD 
1 0, 1 1 1 + XA* XB* XC*/XD 
1 1 0 0 0 
1 1 0 1 1 
1 1 1 0 1 
1 1 1 1 0 

Figure 1-32.a. 4·81t XOR Truth Table and Logic Equations 
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52 51 50 07 06 05 04 03 02 01 00 MUX Y 

0 0 O· X X X X X X X 00 00 

0 0 01 01 
MUX Y = 152*/51 */50* 

X X X X X X X 
00 

0 1 0 X X X X X 02 X X 02 152*/51 * 50* 01 
0 1 1 X X X X 03 X X X 03 152* 51 */50* 02 
1 0 0 X X X 04 X X X X 04 152* 51 * 50* 03 
1 0 1 X X 05 X X X X X 05 52*/51 */50* 04 
1 1 0 X 06 X X X X X X 06 52*/51 * 50* 05 
1 1 07 X X X X X X X 07 52* 51 */50* 06 

52* 51 * 50* 07 

Figure 1-32.b. 8:1 MUX Truth Table and Logic Equations 

Based on the function table, we see that the XOR and MUX 
functions require eight PTs each. Figure 1-32.c shows the 
logic diagram for both of these functions. The AmPAL18P8 

has eight PTs per output, and hence satisfies all the 1/0 and 
PT requirements. 

IXA 
IXB 
IXC 

XO 

IXA 
IXB 
xc 

IXO 

IXA 
XB 

IXC 
IXO 

IXA 
XB 
xc 
XO 

XA 
XB 

IXC 
XO 

XA 
XB 
xc 

IXO 

XA 
IXB 
IXC 
IXO 

XA 
IXB 
XC 
XO 

XORY = IXA • IXB • IXC • XO + 
IXA • IXB • IXC • IXO + 
IXA • XB • IXC • IXO + 
XA • IXB • IXC • IXO + 
IXA • XB • xc • xo + 
XA • IXB • xc • xo + 
XA • XB • IXC • XO + 
XA • XB • xc • IXO 

MUXY = 152 • IS1 • ISO • 00 + 
152 • IS1 • SO • 01 + 
152 • Sl • ISO • 02 + 
152·S1·SO·00+ 
52 • IS1 • ISO • 04 + 
52 • IS1 • SO • 05 + 
52 • Sl • ISO • 06 + 
52 • Sl • SO • 07 

152 
IS1 
ISO 
DO 

152 
IS1 
so 
01 

152 
Sl 

ISO 
02 

152 
Sl 
SO 
03 

52 
IS1 
ISO 
04 

52 
IS1 
SO 
05 

52 
Sl 

ISO 
06 

52 
Sl 
SO 
07 

Figure 1-32.c. Logic Diagrams for a 4-lnput XOR and 8:1 MUX 
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DEVICE XORMUX (AMPAL 18P8) 

"This logic description file written in PLPL defines 

an AmPAL18P8 performing a 4·bit EXOR and an 8:1 

IIIJltiplexing fll'lCtion" 

PIN XA = 1 XB = 2 xc = 3 XO = 11 

BEGIN 

DO = 4 01 = 5 02 = 6 03 = 7 04 = 8 05 = 9 06 = 13 07 = 14 

SO = 15 Sl = 16 S2 = 17 

MUX_Y = 18 XOR_Y = 19: 

XOR_Y = XA XOR XB XOR XC XOR xo: "4·bit EXOR function" 
CASE (S2,Sl,SO) 

BEGIN 

0) MUX_Y = DO: "if select lines are all 0, then select DO" 

1) MUX_Y = 01: 

2) MUX_Y = 02: 

3) MUX_Y = 03: 

4) MUX_Y = 04: 

5) MUX_Y = OS: 

6) MUX_Y = 06: 

7) MUX_Y = 07: 

END: "end of CASE statement" 

END. 

TEST_VECTORS "test vectors to be used for silllJlation" 

IN . S2 Sl SO XA XB XC xo 07 06 05 04 03 02 01 DO: 

OUT XOR_Y MUX_Y: 

BEGIN 

"XOR_Y output test" 

"S2 S1 SO XA XB XC XO 07 06 05 04 03 02 01 DO 

X X X 0 0 0 0 X X X X X X X X 

X X X 0 0 0 1 X X X X X X X X 

X X X 001 0 X X X X X X X X 

X X X 0 0 1 X X X X X X X X 

I XOR_Y MUX_Y" 

L X; 

X X X 0 0 0 X X X X X X X X 

X X X 0 0 1 X X X X X X X X 

X X X 0 1 0 X X X X X X X X 

XXXO l1XXXXXXXX 

X X X 1 0 0 0 X X X X X X X X 

X X X 0 0 X X X X X X X X 

X X X 0 0 X X X X X X X X 

X X X 0 1 X X X X X X X X 

X X X 1 0 0 X X X X X X X X 
X X X 0 1 X X X X X X X X 

X X X 0 X X X X X X X X 

X X X X-X X X X X X X 

"MUX_Y output test" 

o 0 0 X X X X X X X X X X X 0 

o 0 0 X X X X X X X X X X X 
o 0 X X X X X X X X X X 0 X 

001 X X X X X X X X X X X 

o lOX X X X X X X X X 0 X X 

o 0 X X X X X X X X X 1 X X 

o X X X X X X X X 0 X X X 

X; 

H X; 

X; 

X; 

X; 

X; 
X; 

X: 
Xi 
X; 

H X; 

L X; 

X; 

X: 
X; 

X L: 

X H; 

X L: 

X H; 

X L; 

X H; 

X L; 

o 1 X X X X X X X X X X X X H: 

o 0 X X X X X X X 0 X X X X X L; 

o 0 X X X X X X X X X X X X H; 

o X X X X X X 0 X X X X X X L; 

o X X X X X X X X X X X X H; 
OX. X X X X 0 X X X X X X X L; 

o X X X X X X X X X X X X H; 
X X X X 0 X X X ·X X X X X L; 

X X X X 1 X X X X X X X X H; 
END. 

TBOOO370 

Figure 1-33. Logic Description File for the XOR and MUX Functions 



Test vectors can be generated (Figure 1-34) from the logic 
description file (Figure 1-33) and sent to a simulator to test the 
logic equations. In this example, tho vectors are generated 
from the test vectors specified manually. After simulation 
(Figure 1-35), a device map (Figure 1-36) is generated from 
these equations and the PLD programmed (Figure 1-37) with 
the map. 

The inputs XA, XB, XC, XD, DO through D7, and select lines SO 
through S2 may be assigned to any input or 1/0 pin as shown 
in the AmPAL 18P8 logic diagram. The outputs XOR _ Y and 

MUX Y have been assigned to pins 18 and 19. Since we 
have not specified any Output-Enable product term, PLPL 
assumes that the outputs will always be enabled. In the 
completed device map (Figure 1-37), all the connections for 
the Output- Enable PTs for the two outputs XOR Y and 
MUX Y have been disconnected which will alwayS-enable 
the outputs. 

The input and output signals can be . reassigned to different 
pins on the PLD package to fit your PC board routing 
requirements. 

V0001 OOOXXXXXXNOXXXXXXXLN * 
V0002 OOOXXXXXXN1XXXXXXXHN * 
V0003 001XXXXXXNOXXXXXXXHN * 
V0004 001XXXXXXN1XXXXXXXLN * 
VOOOS 010XXXXXXNOXXXXXXXHN * 
V0006 010XXXXXXN1XXXXXXXLN * 
V0007 011XXXXXXNOXXXXXXXLN * 
V0008 011XXXXXXN1XXXXXXXHN * 
V0009 100XXXXXXNOXXXXXXXHN * 
V0010 100XXXXXXN1XXXXXXXLN * 
V0011 101XXXXXXNOXXXXXXXLN * 
V0012 101XXXXXXN1XXXXXXXHN * 
V0013 110XXXXXXNOXXXXXXXLN * 
V0014 110XXXXXXN1XXXXXXXHN * 
V0015 111XXXXXXNOXXXXXXXHN * 
V0016 111XXXXXXN1XXXXXXXLN * 
V0017 XXXOXXXXXNXXXXOOOLXN * 
V0018 XXX1XXXXXNXXXXOOOHXN * 
V0019 XXXXOXXXXNXXXX100LXN * 
V0020 XXXX1XXXXNXXXX100HXN * 
V0021 XXXXXOXXXNXXXX010LXN * 
V0022 XXXXX1XXXNXXXX010HXN * 
V0023 XXXXXXOXXNXXXX110LXN * 
V0024 XXXXXX1XXNXXXX110HXN * 
V0025 XXXXXXXOXNXXXX001LXN * 
V0026 XXXXXXX1XNXXXX001HXN * 
V0027 XXXXXXXXONXXXX101LXN * 
V0028 XXXXXXXX1NXXXX101HXN * 
V0029 XXXXXXXXXNXXOX011LXN * 
V0030 XXXXXXXXXNXX1X011HXN * 
V0031 XXXXXXXXXNXXX0111LXN * 
V0032 XXXXXXXXXNXXX1111HXN * 

TB000360 

Figure 1·34. Test Vectors for EXOR and 8:1 MUX PLD Design 
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~ ..... 

VOOOl INPUT OOTPUT 

1111111 11 

Pin # 1234567891234567 89 

Expected: OOOXXXXXXOXXXXXX ===> XL 

C~ted: LL 
................................... -....... 

VOOO2 INPUT OOTPUT 

1111111 11 

Pin # 1234567891234567 89 

Expected: OOOXXXXXX1XXXXXX ===> XH 

C~ted: LH 
..... __ ....... _ ... _---_ ..... _-.- ............. _---

VOOO3 INPUT OOTPUT 

1111111 11 

Pin # 1234567891234567 89 

Expected: 00lXXXXXXOXXXXXX ===> XH 

C~ted: lH 
..... _-----_ ........ __ ... _-_ ........ _ ... _---- .... --

VOOO4 INPUT OOTPUT 

1111111 11 

Pin # 1234567891234567 89 

Expected: 00lXXXXXX1XXXXXX ===> Xl 

C~ted: Ll 
.... _-----_ ....... __ ................. ---_ ... _---
VOOO5 INPUT OOTPUT 

1111111 11 

Pin # 1234567891234567 89 

Expected: 010XXXXXXOXXXXXX ===> XH 

C~ted: lH 
---------_ ....... _----_ ... -_ ......... ---------

VOOO6 INPUT OOTPUT 

1111111 11 

pin # 1234567891234567 89 

Expected: 010XXXXXX1XXXXXX ===> Xl 

C~ted: II 
............ _--- ... ---_ ......................... _-------_ .... --

VOOO7 INPUT OOTPUT 

1111111 11 

Pin # 1234567891234567 89 

Expected: 011XXXXXXOXXXXXX ===> Xl 

C~ted: LL 

VOOO8 INPUT OUTPUT 

1111111 11 

Pin # 1234567891234567 89 

Expected: 011XXXXXX1XXXXXX ===> XH 

C~ted: LH 

VOO09 INPUT OOTPUT 

1111111 11 

Pin # 1234567891234567 89 

Expected: 100XXXXXXOXXXXXX ===> XH 

C~ted: lH 

VOO10 INPUT OOTPUT 

1111111 11 

Pin # 1234567891234567 89 

Expected: 100XXXXXX1XXXXXX ===> Xl 

C~ted: Ll 

VOOll . INPUT OOTPUT 

1111111 11 

Pin # 1234567891234567 89 

Expected: 101XXXXXXOXXXXXX ===> Xl 

C~ted: Ll 
--_ ... -----_ ..... _ ..... _ .. _---_ .. _ ........ _ .. _ ... -
VOO12 INPUT OOTPUT 

1111111 11 

Pin # 1234567891234567 89 

Expected: 101XXXXXX1XXXXXX ===> XH 

C~ted: LH 

VOO13 INPUT OOTPUT 

1111111 11 

Pin # 1234567891234567 89 

Expected: 110XXXXXXOXXXXXX ===> -Xl 

C~ted: Ll 
......... -.-_ ............. --_ .. _---- ..... _ ...... _----- .... 
VOO14 INPUT OOTPUT 

1111111 11 

Pin # 1234567891234567 89 

Expected: 110XXXXXX1XXXXXX ===> XH 

C~ted: LH 

V0015 INPUT OOTPUT 

1111111 11 

Pin # 1234567891234567 89 

Expected: lllXXXXXXOXXXXXX ===> XH 

C~ted: LH 

V0016 INPUT 

1111111 

OOTPUT 

11 

Pin # 1234567891234567 89 

Expected: lllXXXXXX1XXXXXX ===> Xl 

C~ted: II 

V0017 INPUT 

1111111 

OOTPUT 

11 

Pin # : 1234567891234~67 89 

Expected: XXXOXXXXXXXXXOOO ===> LX 

C~ted: Ll 

V0018 INPUT OOTPUT 

1111111 11 

Pin # 1234567891234567 89 

Expected: XXX1XXXXXXXXXOOO ===> HX 

C~ted: HL 

VOO19 INPUT OOTPUT 

1111111 11 

Pin tI 1234567891234567 89 

Expected: XXXXOXXXXXXXX100 ===> LX 

CoqxJted: LL 

VO020 INPUT OOTPUT 

1111111 11 

Pin tI 1234567891234567 89 

Expected: XXXX1XXXXXXXX100 ==> HX 

C~ted:· HL 

VO021 INPUT OOTPUT 

1111111 11 

Pin # 1234567891234567 89 

Expected: XXXXXOXXXXXXX010 ===> lX 

C~ted: LL 

T8000350 

Figure 1·35. Simulation Run for EXOR and MUX PLD Design 



l:J 
CD 

V0022 INPUT OOTPUT 

1111111 11 

Pin II 1234567891234567 89 
Expected: XJOO(X1XXXXXXX010 ===> HX 

CoqlUted: HL 

VO023 

Pin II 

INPUT 

1111111 

1234567891234567 

OOTPUT 

11 

89 

Expected: XXXXXXOXXXXXX110 ===> LX 

C~ted: LL 

V0024 INPUT OOTPUT 

1111111 ' 11 

Pin II 1234567891234567 89 
Expected: XXXXXX1XXXXXX110 ===> HX 

CoqlUted: HL 

VO025 INPUT OOTPUT 

1111111 11 

Pin II 1234567891234567 89 
Expected: XXXXXXXOXXJOO(001 ===> LX 

CoqlUted: LL 

V0026 INPUT OOTPUT 

1111111 11 

Pin II 1234567891234567 89 
Expected: XXXXXXX1XJOO(X001 ===> HX 

CoqlUted: HL 

V0027 INPUT OOTPUT 

1111111 11 

Pin II 1234567891234567 89 
Expected: XJOO(XJOO(OXJOO(101 ===> LX 

C~ted: LL 

V0028 INPUT OOTPUT 

1111111 11 

Pin i# 1234567891234567 89 
Expected: XXXXXXXX1XXXX101 ===> HX 

CoqlUted: HL 

V0029 INPUT OOTPUT 

1111111 11 

Pin II 1234567891234567 89 

Expected: XXXXXXXXXXXOX011 ===> LX 

C~ted: LL 

VOOlO INPUT OOTPUT 

1111111 11 

Pin II 1234567891234567 89 

Expected: XXJOO(XJOO(XX1X01 f ===> HX 

C~ted: HL 

VOOl1 INPUT 

1111111 

OOTPUT 

11 

Pin II : 1234567891234567 89 

Expected: XXXXXXXXXXXX0111 ===> LX 

C~ted: LL 

VOOl2 

Pin II 

INPUT 

1111111 

1234567891234567 

OOTPUT 

11 

89 

Expected: XXXXXXXXXXXX1111 ===> HX 

C~ted: HL 

SillLllation cocrpleted, Errors detected = 0 

Figure 1-35. (Cont'd.) 

Listing sun'of'products equations for XORfiI./X 

XOR_Y = /XA*XB*IXD*/XC 

+ /XA*XB*XD*XC 

+ /XA*/XB*XD*/XC 

+ /XA*/XB*IXD*XC 

+ XA*/XB*/XD*/XC 

+ XA*/XB*XD*XC 

+ XA*XB*XD*/XC 

+ XA*XB*/XD*XC; 

fiI./X_Y = /S2*/S1*/SO*00 

+ /S2*/S1*SO*01 

+ /S2*S1*/SO*02 

+ /S2*S1*S0*03 

+ S2*/S1*/S0*04 

+ S2*/S1*SO*05 

+ S2*S1* ISO*06 

+ S2*S1*S0*07; 

TBOOO340 



Title: XORMUX L 1260 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

Part Type: PAL 18P8* L 1296 0000 0000 0000 0000 0000 0000 0000 0000 0000* 
DEVICE: PALl8P8* L 1332 0000 0000 0000 0000 0000 0000 0000 0000 0000* 
MFG: NI)* Ll368 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

FO* L 1404 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

LOOOO 1111 1111 1111 1111 1111 1111 1111 1111 1111* L 1440 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

LOO36 1010 1011 1111 1111 1111 1111 1111 1101 1111* L 1476 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

LOO72 10100111 1111 1111 1111 1111 1111 1110 1111*~ L 1512 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L010S 0110 1011 1111 1111 1111'1111 1111 1110 1111* L1548 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

LOl44 0110 0111 1111 1111 1111 1111 1111 1101 1111* L 1584 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

LOl80 1001 1011 1111 1111 1111 1111 1111 1110 1111* L 1620 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0216 1001 0111 1111 1111 1111 1111 1111 1101 1111* L1656 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0252 0101 1011 1111 1111 1111 1111 1111 1101 1111* L1692 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0288 0101 0111 1111 1111 1111 1111 1111 1110 1111* L 1728 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

LOl24 1111 1111 1111 1111 1111 1111 1111 1111 1111* L 1764 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0360 1111 1111 0110 1110 1110 1111 1111 1111 1111* L 1800 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0396 1111 1111 1110 0110 1101 1111 1111 1111 1111* L 1836 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0432 1111 1111 1110 1101 0110 1111 1111 1111 1111* L 1872 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0468 1111 1111 1110 1101 1101 0111 1111 1111 1111* L 1908 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0504 11111111 1101 1110 1110 1111 0111 1111 1111* L1944 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0540 1111 1111 1101 1110 1101 1111 1111 0111 1111* L 1980 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

W L0576 1111 1111 1101 1101 1110 1111 1101 1111 1111* L2016 0000 0000 0000 0000 0000 0000 0000 0000 0000* 
(0 

L0612 1111 1111 1101 1101 1101 1101 1111 1111 1111* L2052 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0648 0000 0000 0000 0000 0000 0000 0000 0000 0000* L2088 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0684 0000 0000 0000 0000 0000 0000 0000 0000 0000* L2124 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0720 0000 0000 0000 0000 0000 0000 0000 0000 0000* L2160 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0756 0000 0000 0000 0000 0000 0000 0000 0000 0000* L2196 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0792 0000 0000 0000 0000 0000 0000 0000 0000 0000* L2232 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0828 0000 0000 0000 0000 0000 0000 0000 0000 0000* L2268 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0864 0000 0000 0000 0000 0000 0000 0000 0000 0000* L2304 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0900 0000 0000 0000 0000 0000 0000 0000 0000 0000* L2340 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0936 0000 0000 0000 0000 0000 0000 0000 0000 0000* L2376 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L0972 0000 0000 0000 0000 0000 0000 0000 0000 0000* L2412 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L 1008 0000 0000 0000 0000 0000 0000 0000 0000 0000* L2448 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L 1044 0000 0000 0000 0000 0000 0000 0000 0000 0000* L2484 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L 1 080 0000 0000 0000 0000 0000 0000 0000 0000 0000* L2520 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L 1116 0000 0000 0000 0000 0000 0000 0000 0000 0000* L2556 0000 0000 0000 0000 0000 0000 0000 0000 0000* 

L1152 0000 0000 0000 0000 0000 0000 0000 00000000* L2592 11000000* 
L 1188 0000 0000 0000 0000 0000 0000 0000 0000 0000* C4876* 

L1224 0000 0000 0000 0000 0000 0000 0000 0000 0000* B97A 

TBOO0380 

Figure 1-36. Device/Fuse Map for EXOR and MUX PLD Design 
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Eighteen Array Inputs 
10 dedicated 
8 bidirectional 110 

Eight 8-Wlde AND-OR Structures 
Combinatorial outputs 
Programmable output enable for each output 
Programmable polarity on each output 

Figure 1·37. AmPAL 18P8 Programmed with EXOR and MUX Design 
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SEQUENTIAL DESIGN EXAMPLE 

Next we will show implementation of a 4-bit binary up-counter 
and a decade counter in a single PAL device. 

Design of a Synchronous Binary Counter 

Counters are one of the simplest types of sequential networks. 
A synchronous counter is usually built from a number of flip­
flops which change state in a prescribed sequence when input 
pulses are received. The operation of the flip-flops is synchro­
nized to a common input pulse (a common clock). 

Synchronous counters are used for state sequencing, delay 
timing and event counting. The key to designing a counter is 
knowing when a bit should be toggled. For an up-counter, a bit 
is toggled whenever every bit of lesser significance is "1" (see 
the counting sequence of Figure 1-38). 

Conversely, for a down-counter, a bit is toggled whenever 
every bit of lesser significance is "0". In both cases, the LSB 
is always toggled. By ANDing all bits of lesser significance 
along with the complement of the current data in the register, 
the problem of when this bit is to be toggled is solved. 
However, to complete the design, the bit must remain un­
changed under all other conditions. This can be accomplished 
by ORing the complements of the lesser significant bits 
together and then ANDing the result with the. current data in 
the register (Figure 1-39). The equation in Figure 1 ~39 can be 
changed into the SOP form (Figure 1-40) for direct implemen­
tation in a PAL device. Thus, if a bit is to be toggled, the 
complement of the current data will be clocked in; if not, the 
data remains unchanged by clocking in the current data. 

A 4-bit binary up-counter example illustrates this approach. 
We will build this 4-bit binary counter using D flip-flops. The 
state of the counter is determined by the state of the individual 
flip-flops. For example, if flip-flop A is in state 0, B in state 1, C 
in state 1 and D in state 0, the state of the counter is 0110. 
Initially all the flip-flops are set to the zero state. When a clock 
pulse is received, the counter will change to state 0001; when 
a second clock pulse is received, the state will change to 
0010, etc. The state-counting sequence is shown in Figure 
1-38. 

Figure 1-41 shows the state diagram for a 4-bit binary up­
counter. Typical counter functions are loading data, counting, 
and "holding" data. The function table is shown in Figure 1-42 
and the logic diagram in Figure 1-43. 

100 

101 
102 

IOj-1 

100 
OJ 

101 
OJ 

102 
01 

101·1 
01 

CURRENT 
STATE 
000 0 
000 1 
001 0 
o 0 1 1 
o 1 0 0 
o 1 0 1 
o 1 1 0 
0·1 1 1 
1 000 
1 0 0 1 
101 0 
1 0 1 1 
1 1 0 0 
1 1 0 1 
1 1 1 0 
1 1 1 1 

NEXT 
STATE 
000 1 
001 0 
o 0 1 1 
o 1 0 0 
o 1 0 1 
o 1 1 0 
o 1 1 1 
1 000 
1 0 0 1 
101 0 
1 0 1 1 
1 1 0 0 
1 1 0 1 
1 1 1 0 
1 1 1 1 
000 0 

Figure 1-38. Counting Sequence 

OJ 

/TOGGLE = OJ. (/00 + /01 + 102 + .... + /OJ-1) 

I TOGGLE 

LD000500 

Figure 1-39. Logic ~or Not Toggling Bit I 

e 
e 
e 

I TOGGLE 

ITOGGLE = 100eOI.+ loa 01 + 102eOI + .... + 101·1eOI 
LD000510 

Figure 1-40. Equivalent Form 01 Figure 1-39 

1-41 
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Figure 1-41. State Diagram of a 4-Blt Binary Up-Counter (16 States) 

CLEAR 
LOAD 

COUNT 

HOLD 

INPUTS OUTPUTS 

S1 So Q30 Q20 Q10 QOo Q3 Q2 

0 0 X X X X 0 0 

0 1 X X X X 03 02 

1 0 0 0 0 0 0 0 

1 0 0 0 0 1 0 0 

1 0 0 0 1 0 0 0 

1 0 0 0 1 1 0 1. 

1 0 0 1 0 0 0 1 

1 0 0 1 0 1 0 1 

1 0 0 1 1 0 0 1 

1 0 0 1 1 1 1 0 

1 0 1 0 0 0 1 0 

1 0 1 0 0 1 1 0 

1 0 1 0 1 0 1 0 

1 0 1 0 - 1 1 1 1 

1 0 1 1 0 0 1 1 

1 0 1 1 0 1 1 1 

1 0 1 1 1 0 1 1 

1 0 1 1 1 1 0 0 

1 1 X X X X Q30 Q20 

Figure 1-42. Function Table for 4-Blt Binary Up-Counter 

1-42 

Q1 
0 

01 
0 

·1 

1 
0 
0 
1 
1 
0 
0 
1 

1 
0 
0 
1 
1 

0 

Q10 

Qo 
0 

Do 
1 
0 
1 

0 
1 

0 
1 
0 
1 
0 
1 
0 
1 

0 
1 

0 

000 

TB000320 
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Expanding the number of bits in the counter is done by 
expanding the function table to incorporate the additional bits. 
Karnaugh maps, although not essential, can be used to find 
the required equations in SOP form for a PAL-device imple­
mentation. In general, besides any fixed overhead for control 
functions (CLEAR, LOAD, and HOLD in this example) bit n will 
require additional n product terms. Therefore, if this example 
4-bit counter is to be expanded to 5 bits, the fifth bit will require 
five product terms plus three additional product terms for 
clearing, loading, and counting (see Figure 1-44). Note that the 
original 4-bit block is unaffected by the addition of the fifth bit. 

This basic counter is easily expandable to perform more 
complex functions. 

A high-level language design specification for the 4-bit binary 
counter is shown in Figure 1-45. Corresponding test vectors 
are shown in Figure 1-46 and are used as inputs by the 
simulator to test the logic equations. Figure 1-47 shows the 
PLPL Optimizer's output; Figure 1-4B, the equations list; Figure 
1-49, the simulation run; Figure 1-50, the device map; and 
Figure 1-51, the implementation of this function in an Am­
PAL 16RB device (Note that Figures 1-46 through 1-51 also 
implement a' decade-counter function, the description for 
which follows). 

r - - - - - - - - - - - - otUO.NAU.IllCouNTERilocK - - - - - - - - - - - , 

~ ~ ~ 

"~_I:DIJ "dJi 

Figure 1-44. 5-Blt Binary Up-Counter 
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DEVICE BIN_OCO_CNTR (AHPAL 16R8) 

"An AlrPAL 16R8 programned as a dual base counter: binary and decimal" 
PIN CU:: = 1 51 = 2 so = 3 0[3:0] = 5,6,7,8 "data" 

IBIN[3:0] = 19,18,17,16 "binary counter active LOW" 

IOCO[3:0] = 15,14,13, 1Z; "decimal counter active LOW" 

BEGIN 

IF (151*/50) THEN "clear" 
BEGIN 

BIN[3:0] := 0; "output is active LOY" 

OCO [3:0] := 0; 

END; 
IF (151*50) THEN "load" 

BEGIN 

BIN [3:0] := 0 [3:0]; 

OCO [3:0] := 0 [3:0]; 

END; 
IF (51*/50) THEN 

BEGIN 

"hold" 

BIN[3:0] := BIN[3:0]; "hold BIN and OCO active LOW" 

DCO[3:0] := DCO[3:0]; 

END; 
If (51*50) THEN "count" 

BEGIN 
If (/DCO[3]*IDCO[2]*/OCO[1]*IDCO[O]) THEN' DCO[3:0] := 1; 

If (/DCO[3]*/OCO[Z]*IDCD[1l* OCO[O]) THEN OCD[3:0] := Z; 

If (/DCO[3]*/DCO[2]* OCO[1]*/DCO[O]) THEN DCO[3:0] := 3; 

If. (fOCO [3] * IDCO [Z] * OCO [1] * OCO [0]) THEN DCO [3:0] := 4; 

If (fDCO [3] * DCO [Z] * IDCO [1] * IDCO [0]) THEN DCO[3:0] :'" 5; . 

If (IDCO[3]* DCO[Z]*/OCO[1]* DCO[O]) THEN -DCO[3:0l := 6: 

If (IDCO[3]* DCO[Z]* DCOrtl*/OCO[O]) THEN OCO[3:0] := 7; 

If (/DCO[3]* OCO[Z]* OCO[1]* OCO[O]) THEN OCO[3:0] :=8; 

If ( DCO[3]*/OCD[Z]*/OCO[1]*IDCO(O]) THEN DCO[3:0] := 9; 

If ( OCO [3]*/OCD [2] */OCO [1]* OCO [0]) THEN· OCD[3:0] := 0; 

If ( DCD[3]*/OCO[Z]* OCO(1)*/DCO[O]) THEN DCO[3:0] := 0: 

If ( DCD [3] * lOCO [Z] * DCO [1] * DCO [0]) THEN OCO[3:0] := 0; 

If ( DCD [3] * DCO [Z] * lOCO [1] * IDCO [0]) THEN DCO[3:0] := 0; 

If ( DCO[3]* DCO[Z]*/DCO[1]* OCO[O]) THEN OCD [3:0] := 0; 

IF ( OCD [3] * OCO [Z] * OCO [1] * lOCO [0]) THEN OCO[3:0] := 0; 

IF ( DCO[3]* OCO[Z]* OCO[1]* DCO[O]) THEN DCO [3:0] := 0; 

IF (/BIN[3]*/BIN[Z]*/BIN[1J*/BIN[0]) THEN BIN[3:0] := 1; 

IF (fBIN[3]*/BIN[Z]*/BIN[1]* BIN[O]) THEN BIN [3:0] := Z; 

IF (/BIN[3]*/BIN[Z]* BIN[1]*/BIN[O]) THEN BIN [3:0] := 3; 

IF (fBIN[3]*/BIN[Z]* BIN[1]* BIN[O]) THEN BIN [3:0] := 4; 

IF (fBIN [3]* BIN [Z]*/BIN [1]*/BIN [0]) THEN BIN[3:0] := 5; 

IF (fBIN[3]* BIN[Z]*/BIN[1]* BIN[O]) THEN BIN[3:0] := 6; 

IF (fBIN[3]* BIN[Z]* BIN[1]*/BIN[O]) THEN BIN[3:0] := 7; 

IF (fBIN[3]* BIN[Z]* BIN[1]* BIN[O]) THEN BIN[3:0] := 8; 

IF ( BIN[3]*/BIN[Z]*/BIN[1]*/BIN[0]) THEN BIN [3:0] := 9; 

IF ( BIN[3]*/BIN[Z]*/BIN[1]* BIN[O]) THEN BIN[3:0] := 10; 

IF ( BIN[3]*/BIN[Z]* BIN[1]*/BIN[O]) THEN BIN[3:0] := 11; 

IF ( BIN[3]*/BIN[Z]* BIN[1]* BIN[O]) THEN BIN[3:0] := 12; 

IF ( BIN[3]* BIN[Z]*/BIN[1]*/BIN[O]) THEN BIN[3:0] := 13; 

IF ( BIN[3]* BIN[Z]*/BIN[1]* BIN[O]) THEN BIN[3:0] := 14; 

IF ( BIN[3]* BIN[Z]* BIN[1]*/BIN[O]) THEN BIN[3:0] := 15; 

IF ( BIN[3]* BIN[Z]* BIN[1]* BIN[O]) THEN BIN[3:0] := 0; 

END; 

END. 

TEST_VECTORS 

IN CLK,S1 ,50,0 [3:0]; 1_0 BIN[3:0] ,OCO[3:0];_ 

BEGIN 

"CLK 51 SO DATA BIN [3:0] OCO [3:0]" 

C 0 1 0110 LHHL LHHL ; "load" 
C 1 o 1111 LHHL LHHL .; "hold" 
C 0 00110 LLLL LLLL ; "clear; start count frOID 0" 

C 1 0110 LLLH LLLH ; "count~ 

C 1 0110' LLHL LLHL ; "count" 
C 1 0110 LLHH LLHH· ; "count" 
C. 1 0110 LHLL LHLL ; "count" 
C 1 0110 LHLH LHLH ; "count" 
C 1 0110 LHHL LHHL ; "count· 
C 1 0110 LHHH LHHH ; "count" 
C 1 0110 HLLL HLLL : ·count" 
C 1 0110 HLLH HLLH ; "count· 
C 1 0110 HLHL LLLL "count· 
C 1 0110 HLHH LLLH ; "count", 
C 1 0110 HHLL LLHL : "count" 
C 1 0110 HHLH LLHH ; "count" 
C 1 0110 HHHL LHLL ; "count" 
C 1 0110 HHHH LHLH ; "count" 
C 1 1 0110 LLLL LHHL ; I·Ccx..lt ll 

END. 

T8000310 

Figure 1-45. Logic Description File for the 4-Blt Binary Counter and a Decade Counter, Written In PLPL Format 



V0001 C01X0110XNXHLLHHLLHN * 

V0002 C10X1111XNXHLLHHLLHN * 

V0003 COOX0110XNXHHHHHHHHN * 

V0004 C11X0110XNXLHHHLHHHN * 

V0005 C11X0110XNXHLHHHLHHN * 

v0006 C11X0110XNXLLHHLLHHN * 

V0007 C11X0110XNXHHLHHHLHN * 

V0008 C11X0110XNXLHLHLHLHN * 

v0009 C11X0110XNXHLLHHLLHN * 

V0010 C11X0110XNXLLLHLLLHN * 

V0011 C11X0110XNXHHHLHHHLN * 

V001Z C11X0110XNXLHHLLHHLN * 

V0013 C11X0110XNXHHHHHLHLN * 

V0014 C11X0110XNXLHHHLLHLN * 

V0015 C11X0110XNXHLHHHHLLN * 

v0016 C11X0110XNXLlHHlHLLN * 

V0017 c11X0110XNXHHLHHLLLN * 

v0018 C11X0110XNXLHLHLLLLN * 

v0019 C11X0110XNXHLLHHHHHN * 

TB000300 

Figure 1-46. Test Vectors Specification for 4-Blt Binary Counter and the Decade 
Counter 

BIN_DCD_CNTR 
PAL 16R8 

tLK 1 INPUT 
S1 2 INPUT 

so 3 INPUT 
0[3] 5 INPUT 

0[2] 6 INPUT 

0[1] 7 INPUT 
0[0] 8 INPUT 

IDCD[O] 12 OUTPUT REGISTERED INVERTED 

/DCD[1] 13 OUTPUT REGISTERED INVERTED 
/DCD[2] 14 OUTPUT REGISTERED INVERTED 
/DCD[3] 15 OUTPUT REGISTERED INVERTED 
/BIN[O] 16 OUTPUT REGISTERED INVERTED 
/BIN[1] 17 OUTPUT REGISTERED INVERTED 
iSIN[2] 18 OUTPUT REG I STEREO INVERTED 
/BIN[3] 19 OUTPUT REGISTERED INVERTED 

19 = 2*/19*18 + 

2*/19*17 <-

2*/19*16 + 
12*3*5 + 

2*/3*/19 + 
2*3*19*/18*/17*/16 ; 

18 • 2*/18*17 +' 

2*/18*16 + 

2*3*18*/17*/16 + 

/2*3*6 + 

2*/3*/18 ; 

17" 2*/17*,16 +. 
2*3*17*/16 + 

/2*3*7 + 

2*/3*/17 ; 

16 = 2*3*16 + 

/2*3*8 + 
2*/3*/16 ;' 

15 • 2*/15*14*13*12 + 

/2*3*5 + 
2*/3*/15 + 

2*3*15*/14*/13*/12 ; 

14 = 2*/14*15*13 + 
2*/14*15*12+ 

/2*3*6 + 

2*/3*/14 + 

2*3*14*15*/13*/12 ; 

13 = 2*/13*15*12 + 

2*3*13*15*/12 + 

/2*3*7 + 

2*/3*/13 ; 
12 = 2*3*12*15 + 

2*3*12*14*13 + 
12*3*8 + 

2*/3*/12 ; 

TB000290 

Figure 1-47. PLPL Optimizer Output for the 4-Blt Binary Counter and the 
Decade Counter 
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Listing sum-of-products equations for BIN_OCO_CNTR 

BIN [3] := S1*BIN[3]*/BIN[2] 
+ S1*BIN[3]*/BIN[1] 
+ S1*BIN[3]*/BIN[0] 
+ /S1*SO*0[3] 
+ S1*/SO*BIN[3] 
+ S1*SO*/BIN[3]*BIN[2]*BIN[1]*BIN[0]; 

BIN [2] := S1*BIN[2]*/BIN[1] 
+ S1*BIN[2]*/BIN[0] 
+ S1*SO*/BIN[2]*BIN[1]*BIN[0) 
+ /S1*SO*0 [2] 
+ S1*/SO*BIN[2); 

BIN [1) := S1*BIN[1)*/BIN[0] 
+ S1*50*/BIN[1]*BIN[0] 
+ /S1*50*0 [1] 

+ S1*/SO*BIN [1]; 

BIN [0] := 51*50* /BIN [0] 

+ /S1*50*0 [0] 
+ S1*/SO*BIN[O]; 

OCO [3] := S1*OCO[3]*/OCO[2]*/OCO[1)*/OCO[0] 
+ /51*SO*0 [3] 
+ S1*/50*OCO [3] 
+ S1*SO*/OCO[3]*OCD[2]*OCD[1]*OCO[0); 

OCD [2] := S1*OCO[2]*/OCO[3]*/OCD[1] 
+ S1*OCO[2]*/OCO[3)*/OCD[0] , 
+ /S1*50*0 [2] 
+ 51*/SO*DCD[2] 
+ S1*SO*/OCD[2]*/DCD[3)*DCO[1]*DCD[0); 

OCD [1] := S1*DCD[1]*/OCO[3)*/OCD[0] 
+ S1*SO*/DCD[1]*/DCD[3]*DCD[0] 
+ /S1*S,0*D [1] 

+ S1*/SO*DCD[1]; 
OCD [0) := S1*50*/DCD[0]*/DCD[3] 

+ S1*SO*/DCD[0)*/DCD[2)*/DCD[1] 
+ /51*SO*D [0] . 
+ S1*/SO*DCD[0]; 

TBOOO280 

Figure 1·48_ PLPL Listing of Equations for the 4-Blt Binary Counter and the 
Decade Counter 
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IR 

VOOOl INPUT OUTPUT 

11111111 

Pin # : 1234567891 23456789 

Expected: C01XOll0XX ===> HLLHHLLH 

Conp.rted: HLLHHLLH 

v0002 

Pin # 

INPUT 

1 

1234567891 

OUTPUT 

11111111 

23456789 

Expected: Cl0X1111XX ===> HLLHHLLH 

COIIpIted: HLLHHLLH 

VOO03 INPUT OUTPUT 

11111111 

Pin' 1234567891 23456789 

Expected: COOX0110XX ===> HHHHHHHH 

CcqlUted: HHHHHHHH 

VOOO4 INPUT OUTPUT 

1 11111111 

Pin # : 1234567891 23456789 

Expected: CllX0110XX ===> LHHHLHHH 

CClq)Uted: LHHHLHHH 

VOO05 INPUT . OUTPUT 

11111111 

Pin' :. 1234567891 23456789 

Expected: Cl1X0110XX ===> HLHHHLHH 

COIIflUted: HLHHHLHH 

V0006 INPUT 

·1 

OUTPUT 

11111111 

Pin # : 1234567891 23456789 

Expected: C11X0110XX ===> LLHHLLHH 

C~ted: LLHHLLHH 

OUTPUT 

11111111 

Pin # 1234567891 23456789 

Expected: Cl1X0110XX ===> HHLHHHLH 

V0007 INPUT 

,COf1lJUted: HHLHHHLH 

VO008 I NPUT OUTPUT 

11111111 

Pin # 1234567891 23456789 

Expected: C11X0110XX ===> LHLHLHLH 

C~ed: LHLHLHLH 

VOOO9 INPUT OUTPUT 

11111111 

Pin # : 1234567891 23456789 

Expected: Cl1X0110XX ===> HLLHHLLH 

Conprted: HLLHHLLH 

V0010 INPUT OUTPUT 

11111111 

Pin' 1234567891 23456789 

Expected: C11X0110XX ===> LLLHLLLH 

COIIflUt ed: LLLHLLLH 

VO011 INPUT OUTPUT 

1 11111111 

Pin' ': 1234567891 23456789 

Expected: C11XOll0XX ===> HHHLHHHL 

COIIpJted: HHHLHHHL 

v0012 INPUT OUTPUT 

11111111 

Pin' : 1234567891 23456789 

Expected: C11X0110XX ===> LHHLLHHL 

C~ted: LHHLLHHL 

VOO13 INPUT OUTPUT 

11111111 

Pin II 1234567891 23456789 

Expected: Cl lXOl 10XX ===> HHHHHLHL 

C~ted: HHHHHLHL 

VOO14 INPUT OUTPUT 

11111111 

Pin # 1234567891 23456789 

Expected: C11XOll0XX ===> LHHHLLHL 

COf1lJUt ed : LHHHLLHL 

V0015 INPUT OUTPUT 

11111111 

Pin # : 1234567891 23456789 

Expected: CllXOll0XX ===> HLHHHHLL 

C~ted: HLHHHHLL 

V0016 INPUT OUTPUT 

11111111 

Pin # 1234567891 23456789 

EXpected: C11X0110XX ==> LLHHLHLL 

COIIpJted: LLHHLHLL 

VO017 INPUT OUTPUT 

11111111 

Pin' 1234567891 23456789 

Expected: Cl1X0110XX ==-> HHLHHLLL 

COIIflUted: HHLHHLLL 

VO018 INPUT OUTPUT 

11111"1 

Pin # : 1234567891 23456789 

Expected: Cl1X0110XX ===> LHLHLLLL 

COIIpJted: LHLHLLLL 

VO019 INPUT OUTPUT 

11111111 

Pin' 1234567891 23456789 

Expected: CllX0110XX ===> HLLHHHHH 

COIIflUted: HLLHHHHH 

Sirrulation coq:lleted. Errors detected = 0 

TB000270 

Figure 1-49. Simulation Run for the 4-Bit Binary Counter and the Decade Counter 



Title: BIN_DCD_CNTR 
Part Type: PAL16R8* 
DEVICE: PAL16R8* 
MFG: AMD* 
FO* 
LOOOO 0110 1101 1111 1111 1111 1111 1111 1111* 
L0032 0110 1111 1101 1111 1111 1111 1111 1111* 
L0064 0110 1111 1111 1101 1111 1111 1111 1111* 
L0096 1011 0111 1111 0111 1111 1111 1111 1111* 
L0128 0110 1011 1111 1111 1111 1111 1111 1111* 
L0160 0101 0110 1110 1110 1111 1111 1111 1111* 
L0256 0111 1110 1101 1111 1111 1111 1111 1111* 
L0288 0111 1110 1111 1101 1111 1111 1111 1111* 
L0320 0111 0101 1110 1110 1111 1111 1111 1111* 
L0352 1011 0111 1111 1111 0111 1111 1111 1111* 
L0384 0111 1010 1111 1111 1111 1111 1111 1111* 
L0512 0111 1111 1110 1101 1111 1111 1111 1111* 
L0544 0111 0111 1101 1110 1111 1111 1111 1111* 
L0576 1011 0111 1111 1111 1111 0111 1111 1111* 
L0608 0111 1011 1110 1111 1111 1111 1111 1111* 
L0768 0111 0111 1111 1101 1111 1111 1111 1111* 
L0800 1011 0111 1111 1111 1111 1111 0111 1111* 
L0832 0111 1011 1111 1110 1111 1111 1111 1111* 
L1024 0111 1111 1111 1111 1110 1101 1101 1101* 
L1056 1011 0111 1111 0111 1111 1111 1111 1111* 
L1088 0111 1011 1111 1111 1110 1111 1111 1111* 
L1120 0111 0111 1111 1111 1101 1110 1110 1110* 
L1280 0111 1111 1111 1111 1101 1110 1101 1111* 
L1312 0111 1111 1111 1111 1101 1110 1111 1101* 
L1344 1011 0111 1111 1111 0111 1111 1111 1111* 
L1376 0111 1011 1111 1111 1111 1110 1111 1111* 
L1408 0111 0111 1111 1111 1101 1101 1110 1110* 
L1536 0111 1111 1111 1111 1101 1111 1110 1101* 
L1568 0111 0111 1111 1111 1101 1111 1101 1110* 
L1600 1011 0111 1111 1111 1111 0111 1111 1111* 
L1632 0111 1011 1111 1111 1111 1111 1110 1111* 
L1792 0111 0111 1111 1111 1101 1111 1111 1101* 
L1824 0111 0111 1111 1111 1111 1101 1101 1101* 
L1856 1011 0111 1111 1111 1111 1111 0111 1111* 
L1888 0111 1011 1111 1111 1111 1111 1111 1110* 
C7CC9* 
40F8 

TB000260 

Figure 1·50. Device Map for the 4·Blt Binary Counter and the Decade Counter 
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4-Blt Decade Counter with D Flip-Flops 

Table 1-6 shows the current and next state description of a 4-
bit decade counter. Figure 1-52 shows the state-counting 
sequence. 

A decade counter can be implemented with four flip-flops and 
some additional logic. The four flip-flops are represented by 
four variables A, B, C, and D. A represents the most significant 
bit and 0 represents the least significant bit. Note that the next 
states are unspecified for present states 1010, 1011, 1100, 
11 01, 111 0 and 1111. 

Logic for each flip-flop's output can be derived easily either 
from the state table or by the Karnaugh-map method. Figure 
1-53 shows a four-variable Karnaugh-map format. A separate 
Karnaugh map is required for each flip-flop. States 1010, 
1011, 1100, 1101, 1110 and 1111 are indicated as don't-care 
states by placing X in the Karnaugh maps. 

Figures 1-54, 1-55, 1-56, and 1-57 show the next state maps 
for A + , B+ , C+ and 0+ as functions of A, B, C, and D. These 
next state maps are easily generated from Table 1-6. 

Examination of the next state table indicates that the first 
seven transitions, states 0 to 6, do not produce a "1" output at 
the most significant flip-flop (A). Therefore, the map entry for 
this flip-flop in these states is set to "0" (Figure 1-54). When 
current state is either 7 or 8, the next state for this flip-flop 
becomes" 1" and for current-state 9, the next state is "0". 

Karnaugh maps for B+ , C+, and 0+ can be derived similarly. 

Having created the Karnaugh maps, we can attempt to 
minimize the Boolean expression for each flip-flop. Figure 
1-58.a shows the unsimplified Min term expressions for each 
flip-flop derived from the state table. In Karnaugh-map minimi­
zation, Min term expressions can be simplified by grouping 
them with don't-care terms. Figure 1-56.b shows the Kar­
naugh-map minimization of the different functions. 

Once the minimized SOP logic equations are generated the 
translation to a corresponding PAL device is relatively straight­
forward. Figure 1-51 shows the implementation of both the 
4-bit binary counter and the decade counter in a single 
AmPAl16R6 PAL device. 

CD 

A B 
00 

00 

01 

11 

10 

TABLE 1-6. FUNCTION TABLE FOR A 4-BIT 
DECADE COUNTER 

01 

CLEAR 
LOAD 
COUNT 

HOLD 

INPUTS 

S1 S2 

0 0 
0 1 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 1 

A B C 

X X X 
x x x 
0 0 0 
0 0 0 
0 0 1 
0 0 1 
0 1 0 
0 1 0 
0 1 1 
0 1 1 
1 0 0 
1 0 0 
x x x 

OUTPUTS 

0 A+ B+ c+ 0+ 

X 0 0 0 0 
x 03 02 01 DO 
0 0 0 0 1 
1 0 0 1 0 
0 0 0 1 1 
1 0 1 0 0 
0 0 1 0 1 
1 0 1 1 0 
0 0 1 1 1 
1 1 0 0 0 
0 1 0 0 1 
1 0 0 0 0 
x 03 02 01 00 

DF006150 

Figure 1-52. State Diagram of a 4-Blt Decade 
Counter (10 States) 

11 10 

Figure 1-53. Four-Variable Karnaugh-Map Format 
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CO 

AB 
00 61 11 10 

00 ti 0 0 0 

01 0 0 111 0 

11 Xl X L X J IX 
10 _ 1J 0 X l!< 

Figure 1-54. Next State Map for A+ 

CO 

AB 
00 01 111 I 10 

00 0 0 L 1 J 0 

01 
-,.. , 

I 1 I 11 0 f1 
11_ I X I xl X IX __ L._.J_ .... - .J 

L __ .-
10 0 0' r xl X 

I I 
Figure 1-55. Next State Map for B+ 

CO 

AB 
00 01 11 10 

00 0 11 1 0 r 1 I 
01 0 L 1 J 0 ! 1 ! 
11 X X X I X I 
10 0 0 X L X J 

Figure 1-56. Next State Map for C+, 

CO 

AB 
00 01 11 10 

00 11 0 0 r 1 

01 1\ 0 0 1 0+ - 10 

11 XI X X X 

10 1J 0 X lX 
Figure 1-57. Next State Map for' D+ 
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A+ = IA*8*C*D + A*/8*/C*/D 
8+ = IA*/8*C-D + IA-8-/C-/D + IA*8*/C*D + IA*8*C*/D 
C+ = IA*/8-/C*D + IA-/8-C*/D + IA-8*/C-/D + IA-8-C-/D 
D+ = IA*/8*/C-/D + IA-/8-C-/D + I A*8-/C*/D + I A*8*C-/D + A * 18-/C*/D 

Figure 1-58.a. Reduced Equations from Function Table 

A+ = 8-C-D + A*/D 
8+ = 18*C-D + 8-/C + 8*/D 
C+ = C*/D + IA-/C-D 
D+ = ID 

Figure 1-58.b. Reduced Equations from Karnaugh Map 

A high-level language design specification for the 4-bit decade 
counter is shown in Figure 1-45. Corresponding test vectors 
are shown in Figure 1-46 and are used as inputs for the 
simulator to test the logic equations. Figure 1-47 shows the 
PLPL Optimizer's output; Figure 1-48, the equation list; Figure 
1-49, the simulation run; Figure 1-50, the device map; and 
Figure 1-51, the implementation of this function in an Am­
PAL16R8 device (Note that Figures 1-45 through 1-51 also 
implement a 4-bit binary counter function). 

This simple example shows the advantages of using PLDs: 
• User-defined functions can be programmed quickly, 
• Two or more logic circuits can be integrated into a single 

PLD, 
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• pC board space is saved and power consumption reduced. 

Numerous PLD CAD packages are available that simplify the 
system designer's tasks. You can express the circuit at a 
higher level instead of being restricted to the early design 
methodology of truth-table/Karnaugh-map/logic equation. De­
signs can now be expressed through a schematic-entry 
system, or through a high-level language syntax which concur­
rently improves design documentation. 

In this chapter we have shown detailed design steps neces­
sary for designing with PAL devices. A later section in this 
handbook contains more examples of logic design with PAL 
devices. 
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2.1 SOFTWARE SUPPORT FOR 
AMD'S PROGRAMMABLE 
LOGIC DEVICES 

Several design-aid software tools are available to the system 
designers to assist them in designing-in programmable logic 
devices (PLDs). Section 2.1.1 provides an introduction to 
these tools, while Sections 2.1.2 through 2.1.4 describe in 
detail the capabilities and features of some of the software 
packages currently available. 

2.1.1 DESIGN-AID SOFTWARE FOR 
PROGRAMMABLE LOGIC 

The main function of programmable logic design-aid software 
is to translate a custom logic design specification into a format 
which can be accepted by a programmer (Figure 2-1). 

LCIRCUIT CONCEPT J 

Programmable logic software is also an excellent tool for 
design simulation and documentation. Simulation aids in 
debugging an initial design and helps to assure that a device 
will operate as intended the first time instead of requiring 
multiple design iterations. Documentation capability is essen­
tial for someone other than the original designer to understand 
a custom programmable logic-specification. 

[~~~~!ffi[} ___ --11 PROGRAMMABLE LOGIC I I YOUR COMPUTER I DESIGN SOFTWARE 

PROGRAMMING MATRIX PATTERNS 

.--__ ........ __ -, PROGRAMMED 

LOGIC (PROM) II-~D~EV~IC~E=----~OO~RmlliCT1 
PROGRAMMER I YOUR PRODUCT J I BLANK PLD 

LD000750 

Figure 2·1. The Programmable Logic Development Cycle 

Design Software for Programmable Logic 

Available design software may be classified into two major 
categories: Assemblers and Compilers. 

Boolean Assemblers 

These programs allow you to use symbolic names for signals 
appearing on input and output pins. Equations must, however, 
be written at the fuse level, creating more work for the 
designer and producing a logic description which may be more 
difficult to understand. 

Commonly available program of this type is PALASM. 

Logic Compliers 

In contrast to the lower-level Boolean assemblers, the compil­
er lets the designer write logic descriptions at a higher level: 

2-1 

i.e., at a level that more accurately reflects the design concept. 
This type of software increases productivity while producing 
designs that are more thoroughly documented. 

Available programs of this type are CUPL, ABEL, AmCUPL 
and PLPL. 

When applied to programmable logic-design software, the 
term "universal" compiler (Figure 2-2) refers to the ability of 
the compiler to support all programmable-logic device types, 
all popular logic (PROM) programmers, and a large number of 
popular development computers. In addition, universal compil­
ers offer a variety of input design formats such as state 
machines, high-level Boolea~. equations, truth tables, or logic 
schematics. 



TRUTH TABLES LOGIC SCHEMATICS 

UNIVERSAL 
COMPILER 

LD000760 

Figure 2-2. The Universal Complier 

A universal compiler's syntax offers a general and easy 
description of the desired configuration of the chosen pro­
grammable logic device. This means that the functionality 
embodied in a particular logic description can be programmed 
into the same PLO from different manufacturers without 
altering the description at all. 

In addition, the high-level description of the design provides 
flexibility in changing the design if so desired. A designer might 
use a particular type of PLO. Later, when fixes or enhance­
ments require more product terms or an architectural configu­
ration that the chosen PLO cannot support, the function can 
easily be placed in an alternate device. In many cases this will 
allow design modifications without altering printed circuit 
boards which may have already been manufactured. 

Logic Simulation 

Most of the programmable-logic software design-aid tools also 
offer logic-simulation capability to the designers. Logic simula­
tion is typically performed to verify the logical design (logic 
equations) prior to programming an actual device. This may 
save some of the time spent trouble-shooting a programmable 
logic design using conventional techniques (scope and logic 
analyzer). 

Tested During 
Programmer Verify 

Cycle 

A simulation file consists of a table of stimulus patterns 
applied to inputs and response patterns expected at outputs. 
The simulator compares each stimulus/response pattern (vec­
tor) with the logic equations to verify that the expected 
response agrees with that produced according to the equa­
tions. 

Not simulating may be of little consequence for simple 
designs, but for complex designs, especially complex sequen­
tial logic, it is well worth the time. 

Testing Programmable Logic 

Programmable-logic software design-aid tools also assist the 
designer in testing the PLOs after they have been pro­
grammed. 

Before shipping a PLO, programmabilty may be verified by the 
manufacturer by exercising the device's address and program­
ming Circuitry on redundant test sites. 

After the device has been received and programmed by the 
user, the logic programmer will read the states of all the fuses 
in the device and compare them with the data stored in the 
programmer's memory to check the status of the program­
ming matrix in its verify cycle (Figure 2-3). If any mismatches 
are detected, the device is rejected. 

r-------~ OUTPUTS 
FIXED LOGIC 

Tested By Applying 
Functional Test 

Vectors 

LD000770 

Figure 2-3. Programmable Log.le Device Testing 
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However, a correct fuse verify does not guarantee that the We can now see that there are two distinct benefits of logic 
device will work properly, since the fixed logic of the device simulation in working with PLDs. 
has not been fully tested. To ensure proper operation, the LOGIC SIMULATION 
device must be functionally tested. 

DESIGN VERIFICATION 1. TEST VECTOR GENERATION Functional testing of PLDs involves applying stimulus patterns 
to a device while looking for the expected response. The test 
sequence consists of a table of stimulus/response patterns Third-Party Software 
similar to those used to perform a simulation. Programmable-

Many different programmable-logic design-aid software pro-logic software design-aid programs offer the capability of 
generating these test patterns. grams and software programs resident on programmable logic 

programmers are available. Table 2-1 lists some current 

These patterns (test vectors) are produced. by creating a 
suppliers of the these design tools. Contact the indicated 

simulation input file containing stimulus/response patterns. 
companies for the status of their particular product. 

After running the simulator to verify the integrity of the vectors, The next three chapters of this section describe in detail the 
they are appended to the JEDEC down-Ioadable file which features of four high-level software design aids which support 
already contains the programming patterns for the particular AMD's programmable logic devices. These software programs 
target device. are ABEL, CUPL, AmCUPL, and PLPL. 

TABLE 2-1. THIRD-PARTY SOFTWARE DESIGN-AID TOOLS 

Vendor Software Hardware Platform 

Data I/O Corp. ABEL IBM PC or compatible 
10525 Willows Road N.E. DEC VAX (VMS, UNIX) 
Redmond, WA 98073 Apollo (AEGIS) 
(206) 881-6444 Sun Microsystems (UNIX) 

DASH/CADAT IBM PC or compatible 
DASH/ABEL 

ISDATA LOGIC IBM PC or compatible 
Haid-und-Neu-Str. 7 DEC VAX (VMS, UNIX) 
0-7500 Karlsruhe Apollo (AEGIS) 
West Germany 
(0721) 693092 

JMC PROMAC Division PALASM PROMAC P3 
2999 Monterey/Salinas Highway 
Monterey, CA 93940 
(408) 373-3607 

Personal CAD Systems Inc. CUPL IBM PC or compatible 
1290 Parkmoor Avenue DEC VAX (VMS, UNIX) 
San Jose, CA 95126 CAE IBM PC or compatible (408) 971-1300 

MMI PALASM IBM PC or compatible 
(PubliC Domain) PC (CPM-80) 

DEC VAX (VMS, UNIX) 

AMD PLPL IBM PC or compatible 
(PubliC Domain) DEC VAX (UNIX) 

Valley Data Sciences PERFECT IBM PC or compatible 
2426 Charleston Road VISTA 
Mountain View, CA 94043 
(415) 968-2900 

2~1.2 ABEL • DASH/ABEL - a schematic-diagram interface that con-

ABEL is a complete logic-design tool that lets you easily 
verts schematic designs to ABEL source files 

• PROMlink - a program that permits control of and commu-
describe and implement programmable logic designs in PAL nication with Data I/O programmers by means of a person-
devices, IFLs, and PROMs. ABEL consists of a special- al computer 
purpose, high-level language that is used to describe logic 
deSigns, and a language processor that converts logic de- Features of the ABEL design language are: 
scriptions to programmer-load files. Programmer-load files • Universal syntax for all programmable logic types 
contain the information necessary to program and test pro- • High-level, structured deSign language 
grammable logic devices. Figure 2-4 shows ABEL used with • Flexible forms for describing logic: 
Data I/O's Model 29 Logic Programmer in programmable logic - Boolean Equations 
development system. - Truth Tables 
ABEL may be used with several other Data I/O design - State Diagrams 
development tools such as: • Test Vectors for simulation and testing 

• PLDtest - an automatic test-vector generator that allows • Time-Saving Macros and Directives 
100% testing of programmed logic parts 
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Figure 2·4. ABEL - A Logic Design Tool 

The ABEL language processor also has many powerful 
features: 
• Syntax checking 
• Verification that a design can be Implemented with a 

chosen part 
• Logic reduction 
• Design simulation 
• Automatic design documentation 
• Creation of programmer-load files· in JEDEC and PROM 

format 

Together, the ABEL design language and language processor 
make it easy to design and test logic functions that are to be 
implemented with programmable logic devices. For example, 
you can design a three-input AND function with the inputs A, 
B, and C and the output Y using a truth table like this: 

truth_table "3-input AND gate" 
(A,B,C] -¥) 

[O,.X.,.X.] ----i ; 
[.X.,O,.X.] ----i; 
[.X.,.X., 0] ----i ; 

[1, 1, 1] ..... ; 

The ".X."s in the table indicate "don't-care" conditions, and 
the output Y is set to 1 only when all three inputs equal 1. You 
also could have specified the output Y in terms of simple 
Boolean operators and have achieved the same result. This is 
done here, where "&" is the logical AND operator: 

Y=A&B&C; 

Design Process with ABEL 

ABEL lets you choose the type of description that is best 
suited to the logic being described, or the type of description 
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you feel most comfortable with. And, in most cases, the same 
description can be used for many different devices simply by 
changing the device specification. ABEL enters the design 
process in a way that reduces errors and saves time. You can 
think about designs in a logical, functional way, describe them 
in that fashion, and then test your design to see that· it 
operates as expected, all without worrying about which fuses 
should be blown or left intact. 

Figure 2-5 shows the logic-design process and the role ABEL 
takes in it. Beginning with the design concept, the designer 
creates the ABEL source file required by the language 
processor in order for it to generate the programmer-load file. 
The source file is written by you and contains a complete 
description of your logiC design. You can create the source file 
manually by means of a text editor (or word processor) that 
generates ASCII files, or you can use DASHI ABEL to convert 
a DASH-generated schematic of the design to an ABEL 
source file. 

The source file is presented to the ABEL language processor 
which performs several functions to produce a programmer­
load file (in JEDEC format) and design documentation.· The 
first ABEL function, Parse, checks the syntax of the source file 
and flags any errors. Transform converts the logic description 
to an intermediate form. Reduce performs logic reduction, and 
Fusemap creates the programmer-load file. The programmer­
load file can then be downloaded to the logic programmer to 
program parts, or can be first transmitted to PLDtest, an 
automatic test-vector generator. The Simulate function tests 
the design of the part against your test vectors contained in 
the source file and reports any functional failure of the design. 
The Document function generates a listing of the source file, a 
drawing of the logic device pin assignments, and a listing of 
the programmer-load file. 
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Figure 2-5. Logic Design Steps with ABEL 

More About ABEL Features 

Design Checking. 

The language processor checks your logic design for correct 
language syntax and explicitly tells you where an error occurs 
and what the error is. The language processor also checks 
your design to see if it can be implemented on the chosen 
device. For example, if a device input pin is used as an output 
in an equation, the language processor detects and reports 
the error. 

Logic Reduction 

The language processor reduces your logic design to a near 
minimal form, so that you do not have to perform the tedious 
task of logic reduction by traditional methods such as Kar­
naugh maps. You may choose different levels of reduction 
based on the design and the device. 

Simulation of a design is performed after a logic design has 
been reduced and converted to a programmer-load file. The 
simulation facility uses device characteristics, a fuse map, and 
test vectors to simulate the actual operation of the device. The 
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fuse map and test vectors used for simulation are the same as 
those that will, be used to program and test the real device. 

Functional Device Testing 

If test vectors are specified in a source file, the programmer­
load file created by the language processor contains these 
vectors in a form that can be used to test a programmed 
device with a logic programmer. 

Standard JEDEC-Format Programmer-Load File 

The standard programmer-load file created by the language 
processor conforms with the JEDEC Standard, No.3, for data 
transfer to logic programmers. JEDEC-format files are used to 
transfer PAL and IFL designs to the logic programmer. Other 
formats for PROM programmers are· supported. 

System ReqUirements 

ABEL presently runs on the following computers and operating 
systems. Versions for additional systems are under develop­
ment. 
• IBM/AT/XT and MS-DOS compatibles 
• VAXIVMS 
• VAX/Unix 



• Sun 
• Valid 
• Apollo/Mentor 

The configuration information and installation instructions for 
ABEL differ for each type of system. To install ABEL in your 
particular system, refer to the installation guide supplied with 
your ABEL package. In addition to ABEL, you will need an 
editor or word processor with which to create ABEL source 
files. This may be any editor of your choice as long as as it 
produces a standard ASCII file. 
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Note: Some word processors, such as WordStar, operate in 
more than one mode, and may create non-standard ASCII files 
that cannot be used with ABEL. If you are using such a word 
processor, choose the mode of operation that creates print­
able ASCII files. 

For downloading programmer-load files to a logic programmer, 
you will need: 
• An RS-232C port and a cable to connect to the programmer. 
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DESIGN TOOLS FOR PROGRAMMABLE LOGIC 

Michael Holley 
Project Engineering Manager 

FutureNet Corporation 
10525 Willows Road N.E. 

Redmond, WA 911073-9746 

Programmable logic devices consist of 
an array of logic gates whose 
interconnections may be programmed to 
implement specific logic designs. 
Gate interconnections are programmed 
by opening selected fuses while 
leaving others intact. The logic 
gates are generally arranged so that 
the device inputs are connected to AND 
gates which are in turn connected to 
OR gates. Two common types of 
structures are the PALtm structure, 
where the AND array is programmable, 
and the FPLA structure where both the 
AND and OR arrays are programmable. 

Figure 1 shows the fuses opened and 
left intact for a basic PAVm in order 
to provide the function expressed in 
the equations. This PAVm application 
is quite simple and the fuses to be 
blown could be determined with a low­
level design tool, such as PALASMtm , or 
even manually. However, many next­
generation programmable logic devices 
contain complex macro cells that 
require powerful design tools to 
efficiently program them. In addition 
to the AND and OR gate interconnect­
ions, many newer devices contain 
programmable registers and 
programmable feedback paths from the 
outputs back to.the AND gate inputs. 

To program a programmable logic 
device, a conceptual design must be 
converted to a binary bit pattern that 
is loaded into a logic programmer. 
Since the gates are arranged in a sums 
of products form (AND-OR), early 
design tools required that the user 
transform the design to the sums-of­
products form. The next generation 
programmable logic devices have multi­
level logic so you don't have convert 
the design to the sum-of-products 
form, just sum-of-products equations. 
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PERSONAL SILICON FOUNDRY 

One solution to the programming of 
complex programmable logic devices is 
the Personal Silicon Foundry from Data 
I/O Corporation. This desk-top system 
contains all the design tools and 
hardware to take a design from 
conception to programmed devices in 
just a few hours. PSF allows the 
engineer to express the design in the 
form of Boolean equations, truth 
tables, state diagrams, or even 
schematic diagrams. Design tools 
within PSF transform the design 
descripti'on, after logic reduction, 
into a sums of products form and then 
into the required bit patterns to 
program the logic device. This paper 
provides a brief description of the 
Personal Silicon Foundry and how it 
enhances the PC engineering 
workstation as a complete design 
system. 

PSF includes an IBM-AT or -XT and a 
logic programmer, plus the following: 

ABEL (Advanced Boolean Expression 
Language) - a high-level logic 
design language used to describe 
and implement programmable logic 
designs and a multi-program 
language processor to process 
logic descriptions (in ASCII 
format) to JEDEC-format logic 
programmer load files. 
Programmer load files contain the 
information necessary to program 
and test programmable logic 
devices. 

DASH - a full-featured schematic 
design system that provides 
graphics output to 
printers/plotters and design file 
output to post-processes of 
CAD/CAE systems. 
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X A& B& C& 0 
# I A&! B& C & 0 
# E & ! F & ! G; 

!x 

x = INTACT FUSE 

Figure 1. Intact PAL Fuses and the Logic Equations 

DASH-ABEL - a schematic capture 
inteTface tool that allows logic 
designs to be expressed as a 
schematic diagram. DASH-ABEL 
also allows designs within 
schematic diagrams to be 
processed by ABEL. 

PLDtest - a programmable logic device 
fault analysis tool that insures 
complete testing of devices after 
they are programmed. 

To proceed from design concept through 
to programmed devices, several basic 
steps are followed, with optional 
choices to accomodate a variety of 
design situations. The flowchart 
presented in figure 2 shows the 
general flow of the design,' 
simulation, testIng, and programming 
operations provided by the system. 
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USING ABEL 

The heart 'of the PSF is the ABEL 
Language Processor. The input to the 
language processor is a source file 
that contains all elements of the 
design, declarations for the target 
logic device, test vectors, etc. The 
ABEL source file is created in either 
of two ways: 1) with a text editor 
that generates an ASCII file, or 2) 
with the DASH schematic editor. 

If a text editor is used, the designer 
keys-in the design using the desired 
method, i.e., equations, truth tables, 
or state diagrams (plus logic device 
pin information, test vectors, etc.) 
to produce a design description 
similar to those shown in figures 3 
and 4. The partial source file in . 
figure 3 describes a seven-segment 
display decoder by means of a truth 
table. The partial source file in 
figure 4 shows how a design (a traffic 
signal controller) is expressed by 
means of a state diagram. 
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LOGIC 
PROGRAMMER 

Figure 2. Logic Design steps with PSF 

If the DASH schematic editor was used 
to express the design, it would be 
translated by the DASH-ABEL Schematic 
capture program to produce source file 
with Boolean equations substituted for 
the logic circuit. (Refer to Session' 
8 for more information on the 
schematic capture feature of PSF.) 
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Reduction of Logic Terms 

As indicated in figure 2, the 
completed source file is input to the 
ABEL Language Processor. The first 
step is the Parse-Trans for process. 
These programs read the source file 
and convert truth table or state 
diagrams to Boolean equations in a non­
minimized form. 

The subsequent Reduce program applies 
DeMorgan's theorem to convert the 
equations to the sum-of-products form 
minimize the logic description so that 
fewer product terms are used in the 
programmable logic device. 

Fusemap and Simulation 

The Fusemap program processes the 
output file from the Reduce program 
and creates a programmer load file. 
The output of the Fusemap program is 
passed either to the Simulate program 
or (in JEDEC format) to the logic 
programmer or to PLDtest. 

module bcd7rom flag '-d82' 
title 'BCD to seven segment display decoder 
Data I/O Corp Redmond WA 27 Feb 1986' 

fig I b 

e I d I c 

BCD-to-leven-aegQlnt decoder 

segment identification 

U6 deVice 'RA5P8'; 

03,02,01,00 
a,b,c,d,e,f,g 
ena 

pin 10,11,12,13; 
pin 1,2,3,4,5,6,7; 
pin 15; 

bed · (03,02,01,00); 
led · (lI,b,c,d,e,f,g) ; 

ON ,OFF · 0,1; " for COQQon anodl 
L,H,X,Z • 0,1,. X ••• Z.; 

LEO. 

truth table 
( bed -> ( a , b , c , d , • , f , g ]) 

0 -> ( ON, ON, ON, ON, ON, ON, OFF) ; 
1 -> (OFF, ON, ON, OFF, OFF, OFF, OFF) ; 
2 -> ( ON, ON, OFF, ON, ON, OFF, ON) ; 
3 -> ( ON, ON, ON, ON, OFF, OFF, ON) ; 
4 -> (OFF, ON, ON, OFF, OFF, ON, ON) ; 
5 -> ( ON, OFF, ON, ON, OFF, ON, ON) ; 
6 -> ( ON, OFF, ON, ON, ON, ON, ON) ; 
7 -> ( ON, ON, ON, OFF, OFF, OFF, OFF) ; 
8 -> ( ON, ON, ON, ON, ON, ON, ON) ; 
9 -> ( ON, ON, ON, ON, OFF, ON, ON); 

Figure 3. An ABEL Source File Using a 
Truth Table to Describe the Design 
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state_diagram Count 

State 0: 

State 1: 
State 2: 
State 3: 

State 4: 

State 5: 

State 6: 
State 7: 

State 8: 

State 9: 
State 10: 
State 11: 

State 12: 

State 13: 

State 14: 
State 15: 

@page 

case 

endcase; 

SenseA & ISenseS 
ISenseA & SenseB 
(SenseA == SenseS) 

o· , 
4 ; 
1 ; 

goto 
goto 
goto 

2 • , "Delay three clocks 
3 • , 
4 • , 

GreenA := Off; 
YellowA := On ; 
goto 5; 

YellowA : = Off; 
Red A :.:::: On , 
RedB := Off; 
GreenB := On ; 
goto 8 ; 

goto 15 ; 
goto 15 ; 

"Unused states 

case I SenseA & SenseB 
SenseA & ISenseB 

(SenseA == SenseB) 

8 ; 
12 ; 
9 • , 

endcase; 

goto 
goto 
goto 

10 ; 
11; 
12 ; 

GreenB := Off; 
YellowB := On ; 
go to 13; 

YellowB := Off; 
Red B := On , 
RedA := Off; 
GreenA . - On ; 
goto 0; 

goto 15 ; 
'GreenA := On , 
YellowA := Off; 
RedA := Off; 
GreenB := Off; 
YellowB := Off; 
Red B : = On ; 
goto O· , 

"Delay three clocks 

"Unused state 
"Power on initilize state 

Figure 4. Using a state Diagram to Describe a Logic Design in an ABEL Source File 
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The simulate program uses the design 
and device information to simulate 
operation of the design in a 
programmable logic device. That is, 
it simulates operation of the device 
as if it were already programmed with 
the information contained in Fusemap 
output file. If the design fails to 
operate in accordance with the test 
vectors, errors are listed that 
indicate any failed functions. The 
flagged errors allow the design to be 
corrected early in the development 
stage, before any programmable logic 
devices are actually programmed. 

The Programmer Load File and PLDtest 

After successful simulation, the JEDEC 
programmer load file is passed on to 
the logic programmer so that parts can 
then be programmed with the logic 
design. Before device programming, 
the JEDEC file can be passed through 
PLDtest, a fault analysis tool that 
insures complete testing of 
programmable logic devices. PLDtest 
generates a series of test vectors 
that are added to the JEDEC file so 
that the logic programmer can perform 
additional testing on each device 
after it is programmed. This lowers 
the device failure rate by identifying 
marginal devices before they can be 
placed in inventory or installed in 
the end-product. Since programmable 
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logic devices cannot be adequately 
tested before they are programmed with 
the logic design, manufactures cannot 
provide this type of testing and fault 
grading before device leave the 
factory. 

Design Documentation 

The final step of the ABEL Language 
processor is that of providing design 
documentation. This feature is of 
real benefit to engineers take no 
delight in producing thorough 
documentation. The Document program 
generates printed reports. Included 
in the documentation is signal 
name/pin informaton for the device, a 
list of reduced equations that show 
the design, a pinout diagram of the 
device, a representation of the 
fusemap, and the test vectors. 

CONCLUSION 

Personal Silicon Foundry is a complete 
design, simulate, and testing system 
for programmable logic. .It is 
intended to reduce the time between 
concept and programmed parts to a 
matter of hours. All operating 
software is tried and proven with more 
than a year of service in the customer 
base. 
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Designer's Guide to: 
Programmable logic-Part 1 

Compiler-based 
software and PLDs 

improve logic design 

Programmable logic devices allow you to 
complete a design faster than you can Using 
SSI devices or custom ICsJ and PW 
implementations take up less space than do 
SSI-based circuits. MoreoverJ . easy-to-use 
compiler-based languages that don't require 
you to understand PW architectures make 
PWs increasingly attractive for . 
logic designs. 

Bob Osann, Assisted Technology 
Circuits that incorporate programmable logic devices 
(PLDs) take up less board space than do SSI-based 
implementations and require less design time than do 
custom-IC or SSI-based versions. But until recently, 
the PLDs' unusual architecture and lack of software 
support made designers hesitant to use the devices, 
despite the advantages they offer. Compiler-based soft­
ware, however, is simplifying PLD use; this high-level 
software makes it unnecessary for you to be concerned 
with the PLDs' internal details when implementing 
logic functions with the devices. 

This first article in this a-part series, which is aimed 
at first-time PLD users,· discusses basic PLD architec­
ture and shows you how to replace two simple logic 
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designs with PLDs using a compiler-based PLD design 
language. Part 2 will show you how to replace more 
complicated combinatorial and registered-TIL designs 
with PLDs. Part 3 will introduce the state-machine 
concept and show you how to implement a logic design 
directly, without ever developing a gate-level descrip­
tion of the system. 

Although the PLD approach lets you go from logic 
function to PLD circuit without conceiving a gate-level 
description, when designers decide to use PLDs, they 
usually have either completed TIL designs that they 
want to shrink or else gate-level descriptions of circuits 
they don't want to implement in discrete logic. There­
fore, the first two articles in this series target convert­
ing existing designs. 

Why use a PLD? 
For one-of-a-kind designs, prototypes, or small pro­

duction runs, designers have traditionally taken the 
discrete approach. Discrete designs are easy to modify 
and inexpensive to manufacture in small quantities, and 
you can complete them more quickly than you can 
complete custom or semi custom designs. For produc­
tion runs over 500, designers have typically chosen the 
semicustom and custom routes and sacrificed short 
design cycles and ease of modification to reduce manu­
facturing costs. 

PLDs bridge the gap between bulky discrete designs 
and long custom-IC design cycles. On the one hand, 
PLD designs are easier to modify than SSI-based ones 
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and use much less space. Moreover, depending on the 
application, they can cost less than SSI-based imple­
mentations for even small production runs. And on the 
other hand, although custom Ies can prove more eco­
nomical than PLDs for large production runs, PLD 
design cycles are much shorter. So, if you need to get a 
small, inexpensive design to market quickly and can't 
wait for a completed custom design, PLDs can provide 
you with a quick stand-in until your custom design is 
completed. 

In general, the PLD architecture contains a fixed 
logic array made of AND gates-whose outputs feed 

FUSE 
I MATRIX OUT, 

I 
I 
I 
I 

~) L~ ______________________ _ 

~-------------------------1 

(PRODUCT TERM) I 

FUSE{ MATRIX 

I 
I 
I 
I 
I 
I 

~) _______ ~ _________________ J 

Fig I-Typical PLD8 use one of two general architecture8 to permit 
implementation of a wide range of logic functions. PAL-type devices 
(a) prove easier to use, but FPLAs (b) provide more flexibility by 
allowing two levels of programmability. 

A PW approach allows designers to go 
from a logic .fUnction to a PW-based 
circuit without conceiving a gate-level 
description. 

OR gates-and a programming matrix. The program­
ming matrix is made up of fuses that you blow with a 
programming device. By blowing the appropriate 
fuses, you can achieve any AND/OR product or combi­
nation. Fig 1 shows the PAL-type and FPLA-type 
architectures. The total number of terms that you can 
generate is limited only by the size of the matrix. 

Because you can represent any logical function as the 
logical sum of product terms, you can realize any logical 
function using a PLD. A product term consists of any 
combination of input variables or their complements 
ANDed together. A logical sum is any combination of 

Fig 2-PLD8 greatly 8implify logic de8ign. After you complete the 
logic-description file, the PLD software automatically compiles the 
data for downloading to a programming device. 
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2-13 



2.1.3 CUPL, AmCUPL (Cont'd.) 

Fig 3-When using CUPL, you can always write your logic equa­
tions in positive logic, regardless of the actual polarity of the signals 
entering the 'device. For example, the two cases illustrated above both 
yield the same logic equation: OUT=IN/&INl . 

product terms ORed together. Using De Morgan's' 
theorems, 

(AB)=A+B, and 

(A+B)=AB. 

Then, using the distributive property, 

A(B+C)=A+B, and 

(A+B)(C+D)=AC+AD+BC+BD. 

The PLD software determines the best form of the 
equation that will fit into a PLD, which uses a general 
architecture to permit implementation of a wide range 
of functions. The software should allow you to think in 
terms of logical functions rather than gates. The better 
the software, the more you can abstract from the 
details of discrete design and attend to system 
concerns. 

Once you've decided to use a PLD approach, you'll 
need to choose the software development support for 
that device. You can use two basic types of software: 
assembler-based software and compiler-based software 
(Ref 1). Assembler-based software is supplied by the 
PLD manufacturer; it typically supports only that 
manufacturer's devices. If you buy PLDs in large 
quantity, you can usually get the software for well 
under $100. An alternative to assembler-based soft­
ware is the compiler-based software sold by Data I/O 
and Assisted Technology. Compiler-based software 
supports almost all PLD devices and programmers; 
typical prices range from $750 for a version that runs on 
CP/M-based systems to $2695 fora version that runs on 
VAXNMS systems. 

Although compiler-based software is more expen­
sive, it will make your PLD design task easier. Capabil­
ities such as symbolic signal representation and macro 
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Fig 4-Some PLD devices use an inverting output buffer. As a 
reslllt, to accommodate applications that demand an active-high 
olltPllt signal, the compiler often must genemte extm product terms 
that might make the design too big for the target PLD. 

substitution make it easier for you to formulate and 
enter your logic equations. These improvements allow 
you to formulate your design at a higher conceptual 
level; that is, you can think in terms of systems instead 
of individual circuits. 

Fig 2 illustrates the PLD design process using As­
sisted Technology's CUPL language. (The Abel lan­
guage, developed by Data I/O, could also be used 
to demonstrate the techniques involved.) 

The CUPL syntax 
Before you can design with CUPL, you have to learn 

the syntax. CUPL's operators, which were chosen 
largely from the C programming language, are as 
follows: 

& = logical AND 
# = logical OR 
$=logical exclusive-OR 
! = logical negation. 

You can place comments anywhere within a CUPL 
logic specification by using the symbol /* for "start 
comment" and the symbol */ for "end comment." You 
can also nest parentheses to any level, as in this 
example: OUT= !«A&B)&(C#(D&E))). 

To facilitate clear documentation, CUPL allows you 
to use symbolic names of arbitrary length (the first 31 
characters must be unique). Symbolic names can repre­
sent pin variable names, internal device nodes, inter­
mediate variables, bit-field representations, and sym­
bolic constants. To further improve clarity, you can use 
the underscore character-

RAM..PARITYJNT_EN. 
When you're converting an existing design, CUPL 

allows you to give symbolic names to internal nodes 
within your design. For example, for flip-flops con­
nected to the pin PIN_ VAR, you would name the node 
as follows: 

• D-type flip-fl0I>-PIN_ VAR.D=Expressitm 
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• JK-type flip-flop--PIN_ VAR.J = Expression, 
PIN_ VAR. K= Expression 

• RS-type flip-flop--PIN_ VAR.R = Expression, 
PIN_ VAR.S= Expression. 

For 3-state-device enable signals connected to a pin, 
you would write: 

• PIN_VAR.OE=Expression 
• [PIN_ VAR LIST].OE=Expression, 

as in [DATA7 .. 0].OE = Expression; If you're leaving the 
3-state device enabled, you don't have to write an 
equation for it. 

Handling signal polarities 
One issue that often confuses first-time PLD users is 

the representation of signal polarities. In CUPL, you 
can always write equations in positive logic, regardless 
of the polarity of the signals entering the device. 
Because all signals entering the PLD are buffered, you 
have access to both the true and complement versions 
of the input signal for your logic equations. Fig 3 
illustrates two simple cases. For each case-if you were 
using the PLD as an AND gate-you would write the 
same logic equation: OUT=IN1&IN2• 

The specification of signal polarities is complicated by 
the inverting-output architecture of, for instance, 
20-pin PAL devices (Fig 4). If you need an active-low 
output polarity, this doesn't create a problem. In this 
case, the compiler has to implement only one P (prod­
uct) term. However, if you need an active-high output 
signal, the compiler must apply De Morgan's theorem, 

,----------------------, 
I 41 LSOO PLD EQUIVALENT II 
.IN, STROBE 

INz 5 I 
I I 
1 I 
I 115 OUT 

1 
I 
1 
1 
I 

IN3 61 
L ______________________ J 

Fig 5-With CUPL, you can often replace a TTL design without 
understanding its function. You just name the pins and nodes, 
combine them according to gate relationships in the circuit, and the 
software does the rest. 

The pm architecture contains a fixed 
logic array made of a programming 
matrix and AND gates whose 
outputs fled OR gates. 

IN.---------~ 

Fig 6-Reduced propagation delays are one of the benefits of using 
PLDs. A PLD implementation of the circuit slwum here has, on the 
average, half the propagation delay of the discrete implementation. 

and !OUT1=!(IN1&IN2) becomes !lN1#!lN2• Note that 
this equation contains two product terms. The addition­
al space the compiler requires reduces the probability 
that the compiler will be able to fit the logic function 
into the target PLD. 

CUPL can eliminate this problem for PLD devices 
that have programmable output polarities. CUPL auto­
matically chooses the output polarity that will result in 
the fewest number of P terms. 

Reduce keystrokes 
One of CUPL's (and Abel's) major advantages is 

macro substitution, the ability to use a single variable 
name to represent a complex logical equation. For 
example, if you define "INT_ VAR" as "A&B#C," the 
compiler will insert A&B#C every time it encounters 
INT_VAR. 

Because macro substitution lets you use fewer key­
strokes to write equations, it saves time and reduces 
the probability that you'll make input errors. By using 
macro substitution, you can write your logic specifica­
tion in a hierarchical fashion, breaking complex equa­
tions into more manageable and readable pieces. 

The logic description 
The heart of CUPL is the logic-description file 

(LDF), which contains your logic equations, pin decla­
rations, intermediate variables, and documentation de­
scribing the device's function. You must complete the 
LDF to prepare your logic equations for downloading to 
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a programming device. Table 1 shows the format for a 
CUPL LDF that was written for a memory decoder. 

The following example shows you how to complete 
the logic equation, pin declaration, and intermediate 
variable portions of an LDF for the design in Fig 5. 
First, you write the pin declarations using the same 
names and signal polarities that appear on your sche­
matic. Next, you name the output of each gate in the 

TABLE 1-S0URCE 
SPECIFICATION FILE FORMAT 

FUNCTION 

PART NO 900 16487 
NAME MEMDEC 
DATE 07/18/84 
REV 03 
DESIGNER OSANN 
COMPANY ATI 
ASSEMBLY PC-RAM 
LOCATION 417 

THIS DEVICE DECODES ADDRESSES 
FOR THE DYNAMIC RAM AND 
PROVIDES THE RAS STROBES AS 
WELL AS A SIGNAL THAT INITIATES 
CAS. 

ALLOWABLE TARGET DEVICE 
TYPES: PAL 16L8, 825153, 
EP300. 

INPUTS: 
PIN 1) .. 6l- IA 19 .. 14) 

~:~ ~,_81 RE~~~~~~MR) 
PIN 11 - I REF_RAS 
PIN 13 _ ALT_LOC 

OUTPUTS: 

~:~ ~~~ 16~;s~_H~~i' 3 .. 0) 

DECLARATIONS AND INTER­
MEDIATE VARIABLE DEFINITIONS: 

~~~D R~~M~~EMJi'~9MEO~4) 
LOGIC EQUATIONS: 

FUNCTION 

DESCRIPTION 

HEADER INFORMATION: 
IDENTIFIES THE 
PARTICULAR LOGIC 
SOURCE FILE 

TITLE BLOCK: 
DESCRIBES IN 
PLAIN TERMS WHAT 
THIS DEVICE DOES. 

DEVICE MENU: LISTS 
ALL TARGET DEVICE TYPES 
THAT MAY BE USED. 

PIN DECLARATIONS: 
CPU ADDRESS BUS 
MEMORY DATA STROBES 
INDICATES REFRESH CYCLE IN PROGRESS 
STROBE FOR RAS-ONL Y REFRESH 
PLACE MEMORY IN ALTERNATE RANGE 

RAM ROW ADDRESS STROBES 
ENABLE CAS STROBES 

WRITE EQUATIONS FOR 
BIT-FIELD DECLARATIONS 
AND INTERMEDIATE VARIABLES 
WHICH WILL BE SUBSTITUTED 
LATER USING MACRO­
SUBSTITUTION: 
MEMORY ADDRESS 
MEMORY REQUEST 

WRITE EQUATIONS FOR 
OUTPUTS IN TERMS OF 
INPUTS AND FEEDBACK AS IN: 
OUTPUT - INPUT 1 & FEEDBACK 1 

, INPUT 2 & FEEDBACK 2 
, INPUTS N & FEEDBACK N 

DESCRIPTION 

RAS 3 - MEMREQ & I REF JDILEN & 

~ ~t~=tgg : ~~~~g~: 1=:: :~~fF~) 
, REF JDILEN & REF J\AS 

RAS 2 - MEMREQ & I REF JDR_EN & 

~ ~t~=tgg: ~~~~g~: 1=:: :~~~~~ 
, REF JDRJN & REF _RAS 

RAS 1 - MEMREQ & I REF JDR_EN & 

~ ~t~=tgg : ~~~~g~: 1=:: J~~~~ 
, REF JDILEN & REF _RAS 

RAS 0 - MEMREQ & I REF JDILEN & 

~ ~t~=tgg: ~~~~g~: 1=:: :~~~m 
, REF JDILEN & REF _RAS . 

CAS_INIT _ MEMREQ & I REF JDR_EN & 

~ ~H=tgg: ~~~~g~: 1=:: :~m~ 
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PRIMARY RANGE 
ALTERNATE RANGE 
REFRESH CYCLE 

PRIMARY RANGE 
ALTERNATE RANGE 
R~FRESH CYCLE 

PRIMARY RANGE 
ALTERNATE RANGE 
REFRESH CYCLE 

PRIMARY RANGE 
ALTERNATE RANGE 
REFRESH CYCLE 

PRIMARY RANGE 
ALTERNATE RANGE 

schematic. In the example, STROBE, A, and !GATE 
are the intermediate variables. Using the intermediate 
variable definitions, you then write an equation for the 
output: 

PIN 4=!INI 
PIN 5=IN2 
PIN 6=IN3 

PIN 15=OUT 
A=iIN2 

STROBE=!(!IN1)#!IN2; 1"'!(!INd =IN1*1 
!GATE = !(A&IN3) 

OUT= STROBE & !GATE. 

The following expressions show this strategy applied 
to the more complicated design in Fig 6: 

A=!lNI 
B=!(IN1&IN2&!IN3) 

C= !(!lN3)#!(!IN4) 

D=!C 
E=!(C&INs) 

. F=!B&!D&!E 
G=A#F 

!OUT=(G&IN6 ). 

The design in Fig 6 illustrates another advantage of 
using PLDs instead of discrete logic. The propagation 
delay in the PLD implementation is often less than that 
in the discrete design. The' discrete design for this 
circuit requires at least three TTL packages and has 
five levels of delay. The total delay time is 50 nsec (five 
levels times 10 nsecllevel) for LS packages and 26 nsec 
(4x4 nsec+ 10 nsec) for a combination ofLS and Schott­
ky TTL packages. In an equivalent PLD circuit, the 
maximum delay is 25 nsec; typical delay is only 15 nsec. 

Registered PLDs 
. Some of the more complicated types of PLDs use 
flip-flops in their output stages to store information. 
Most of these PLDs provide integral feedback paths. 
The simplest registered PLDs contain D-type flip-flops, 
which transfer the signal at' their D input to their Q 
output after one clock pulse (more specifically, after the 
application of a positive-going leading edge). The equa­
tions for the flip-flop in Fig 7 are 

OUTPUT,O=G&INPUT rUPDATE WITH INPUT'! 

2-16 

#!G&OUTPUT; !'MAINTAIN CURRENT OUTPUT'! 
!'VIA INTERNAL FEEDBACK DATA'!. 

For simple registered designs, you can often model 
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Compiler-based software for PW design 
includes such features as symbolic signal 
representation and macro substitution. 

the circuit with a timing diagram. Using the timing 
diagram, you can write your logic equations easily. In 
the Fig 8 timing diagram for a D-type flip-flop, INPUT2 

initiates the input pulse, and INPUT1 terminates the 
output pulse. The pin declarations are 

PIN 3= !INPUT1 

PIN 6= !INPUT2 

PIN l=CLOCK 
PIN 14=OUTPUT, 

and the corresponding logic equations are 

OUTPUT.D=!OUTPUT&INPUT 2 /*SET FF*/ 
# OUTPUT&!lNPUT 1; /* KEEP FF SET·/ 

I /. UNTIL INPUT PI 
I*GOES ACTIVE·/. 

These equations demonstrate one method for using 

Fig 'l-8ome PLD, we reglltered output, to introduce storage 
elements into their architecture. 

the smallest possible number of product terms to keep a 
D flip-flop set for several clock cycles. Here, the 
flip-flop's output is fed back until some condition is met 
that again enables the flip-flop. 

If the registered PLD. contained JK flip-flops, the 
expressions would be 

OUTPUT.J=INPUT2; r SET FF*/ 
OUTPUT.K=INPUT1; /* RESET FF*/. 

To handle more complicated sequential designs, you 
can model your circuit· as a multiple-flip-flop system 
that uses a common clock. (Virtually all currently 
available registered PLDs use common clocks for their 
flip-flops.) For example, to convert TTL designs that 
use cascaded flip-flops (in which the outputs of some 
flip-flops are used to clock other flip-flops), you must 
find the originating clock in the circuit, which is usually 

CLOCKJl...rLf1. .J-UU1..J'1.I 
!INPUT1--------~ 

IINPUT2~--­

OUTPUT~---

Fig ~onverting logic de,igM to PLD, II eQlII once you've 
completed a timing diagram for your circuit. This one represents 
operation of a D·type flip·flop. 

TABLE 2-CUPL OPTION FLAGS 

A PRODUCE VOUR_FILE_NAME.ABS FOR LATER USE BV CSIM. 
L PRODUCE VOUR_FILE_NAME.LST WITH LINE NUMBERS AND ERROR MESSAGES. 
I PRODUCE VOUR_FILE_NAME.HL DOWN·LOADABLE HL FORMAT FILE FOR IFL. 
H PRODUCE.VOUR_FILE_NAME.HEX MMI PAL ASCII·HEX FORMAT FILE. 
F PRODUCE VOUR_FILE_NAME.DOC WITH FUSE MAP FILE. 
X PRODUCE VOUR_FILE_NAME.DOC WITH FULLV EXPANDED EQUATIONS. 
G PROGRAM SECURITY FUSE. 
R DISABLE GLOBAL PRODUCT·TERM MERGING. (FPLA DEVICES). 
MO PERFORM NO LOGIC MINIMIZATION. 
M1 PERFORM LOCAL LOGIC MINIMIZATION. 
M2 PERFORM LOGIC MINIMIZATION UNTIL EQUATIONS FIT IN TARGET DEVICE. 
M3 PERFORM FULL LOGIC MINIMIZATION. 
o DEACTIVATE UNUSED OR·TERMS. (INCREASES SPEED IN FPLAs). 
U SET ALTERNATE SEARCH PATH FOR PLD DEVICE DATABASE. 
J PRODUCE VOUFL-FILLNAME.JED, THE JEDEC FORMAT DOWNLOADABLE FILE 
S AUTOMATICALL V RUN CSIM AFTER RUNNING CUPL 

EON January 10, 1985 
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the highest-frequency source in the circuit. In most 
cases, the timing skew from one flip-flop output to the 
next is tolerable. 

The TTL circuit in Fig 9 contains an LS161 counter 
whose output is decoded in an LS138. The decoded 
output sets and resets flip-flops at various points in the 
timing cycle. The timing diagram in Fig 10 is based on 
the assumption that the clock rate is sufficiently high 
that the propagation delays from SYSCLK to OUT1 and 
OUT2 are not significant. If you were to implement this 
design in a PLD, the pinout would look like the one 
shown in Fig 11. Outputs Qo and QI were added to make 
all eigh~ time slots in the circuit's cycle a unique 
combination of the four outputs. Adding Qo and QI 
results in a timing sequence like the one in Fig 12. 

You can now write the logic equations by noting, for 
each output, each place in the timing cycle where the 
output reads high (the flip-flop is set). For example, 
OUT1 is set during time slots 2,3, and 4. (The equation 
for the D input should include representations of time 
slots 1, 2, and 3; these time slots occur immediately 
before the flip-flop is set.) For time slots 1 through 3, 
you can now write 

OUT1.D=!OUT1&!OUT2&Qo&!Q1 I*TIME SLOT 1*/ 
#OUT1&!OUT2&!Qo&!QI I*TIME SLOT 2*/ 
#OUT1&!OUT2&Qo&!QI rTIME SLOT 3*/. 

Writing these equations is easier if you first define each 
time slot in terms of the register outputs that are fed 

5V 

LS161 

IRESET 

Fig 9-When converting complex 8equential de8ig1l8 toPLD8, you 
can model your circuit as a group of flip-flops driven by a common 
clock. 

Compiler-$upported symbolic names can 
represent pin variable names) internal 
device nodes) intermediate variables) 
bit-field. representations) and 
symbolic constants. 

IRESET ----=.i 

OUTa-------..1 

Fig IO-Thi8 timing diagram is based on the assumption that· the 
Fig 9 circuit uses a clock rate that is not significantly affected by 
propagation delays from SYSCLK to OUT, and OUT,. 

PIN 1 • SYSCLK 
PIN 2.IRESET 
PIN 13-0UT, 
PIN 14.0UTa PIN 15-0, 
PIN 16-00 

PLO 

Fig ll-Adding output8 Q, and Q, o/this PLD implementation o/the 
Fig 9 circuit makes each 0/ the eight intervals in the Fig 12 timing 
cycle a unique combination 0/ the circuit's four oUtputs. 

back into the programmable array: 

TSo=!OUTI&!OUT2&!QO&!QI; I*TIME SLOT 0""/ 
TS1=!OUT1&!OUT2&Qo&!QI; /*TIME SLOT 1*/ 
TS2=OUT1&!OUT2&'!Qo&!QI; I*TIME SLOT 2*/ 
TS3=OUT1&!OUT2&Qo&!QI; I*TIME SLOT 3*/ 
TS4=OUT1&OUT2&!Qo&!QI; /*TIME SLOT 4*/ 
TSs=!OUT1&OUT2&!Qo&!QI; I*TIME SLOT 5*/ 
TS6=!OUT1&OUT2&Qo&!QI; /*TIME SLOT 6*/ 

You can now write the equations for the four registered 
outputs in terms of TSo through TSs (TS7 is not needed); 
CUPL performs the following substitutions: 

OUT1.D=TS1#TS2#TSa 
OUT2.D = TS3#TS4#TSs 

Qo.D=TSo#TSz#TSs 
QI.D=TSs. 

Running CUPL 
Once you've completed the LDF, you're ready to 

compile the LDF for downloading to the PLD program­
mer. To compile the file, you type an expression that 
follows this format: 

CUPL [FLAGS] TARGET_DEVICE_CODE 
YOUR_FILE_NAME. 
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Pills with an inverting-output 
architecture cotnplicate selection of 
signal polarities. 

TIME SLOT I 0 I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 0 I 
SYSCLK 

. RESET----.J 

OUT1------' 

OUT2-------.... 

Ql-----------....... JL-

Fig I2-Once gou've rewritten the Fig 10 timing diagrams to reflect 
the PLD configuration in Fig 11, you can write a set of logic 
equations for implementing the PLD design. 

For example, the sequence CUPL .J -A P16L8 RAM­
CNTRL compiles the source file for a RAM controller 
that is targeted for a PAL16L8. The J and A symbols 
are chosen from a table of CUPL option flags (Table 2). 
In this case, the compiler produces aJEDEC file and an 
absolute-format file to be used later by CUPL's simula­
tor, CSIM (Ref. 1). The resulting compiled code is 
downloaded to the programmer, which then blows the 
appropriate fuses in the PLD. 

The designs discussed thus far are simple but useful 
for describing the . ~LD design process. The next two 
articles will extend the discussion to more advanced 
designs,and finally, to the state-machine approach. 

~DN 
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Designer's Guide to: 
Programmable logic-Part 2 

Use PLDs to shrinl< 
complex, discrete 

logic designs 
As discrete combinatorial and sequential 
logic circuits become more complC-?', it 
becomes more difficult to convert them to 
PWequivalents. With the help of 
compiler-based software, though, you'll be 
converting complicated logic designs in no 
time. 

Bob Osann, Assisted Technology Inc 

Converting complicated discrete designs to their PLO 
(programmable logic device) equivalents can be an 
imposing task for the first-time PLO user or for the 
engineer who's been laboring with outmoded PLO 
software tools. New compiler-based software, howev­
er, makes it easy for you to implement even complex 
logic designs with PLOs. 

This article, the second in a 3-part series on PLO 
design, introduces a few of the more advanced features 
of the compiler-based PLO design languageCUPL and 
shows you how to use those features to convert compli­
cated sequential and combinatorial SSI logic designs to 
PLO equivalent designs. Part 1 of the series demon­
strated some elementary features of CUPL and showed 
you how to apply those features in a few simple designs. 
Part 3 will introduce CUPL's state-machine syntax and 

EON January 24, 1985 

show you how to move directly from logic ideas to PLD 
implementations without developing a gate-level de­
scription of your system. 

CUPL lets you use a systems approach 
The CUPL high-level PLO support language enables 

you to develop your logic designs using a systems 
approach. This approach not only speeds the design 
process but facilitates the generation of logic descrip­
tions that are easy to understand. 

CUPL supports a systems approach with several 
, , advanced features, which give you a self-documenting 

syntax, allow you to use fewer keystrokes to develop 
your systems, and let you use symbolic names that 
correspond to whatever function you're trying to imple­
ment. CUPL also gives you a flexible format, which lets 
you describe several similar systems in less time than it 
would take to describe the systems using a more rigid 
format. 

One of CUPL's advanced features is its bit-field 
capability, which allows you to use a single symbolic 
name to represent a group of bits (such as an address 
bus or state bit field) .. This feature saves you key­
strokes when you're formulating your design equations 
and makes the resulting equations easier to read. Once 
you've defined a symbolic name, you can use that name 
to represent either a single hexadecimal value or a 
rang~ of hexadecimal values. For example, in an ad­
dress-decoding application, you could equate the sym­
bolic name MEMAOR with [ADR7, ADR6, AOR5, 

2-20 
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PLDs are effective replacements for both 
simple and complex combinatorial and 
sequential discrete logic designs. 

ADR4, ADR3, ADR2, ADRl, ADRO]. You could then 
substitute [ADR7 ... 0] for [ADR7, ADR6, ADR5, 
ADR4, ADR3, ADR2, ADRl, ADRO]. The resulting 
equation, FIELD MEMADR=[ADR7 ... ], assigns 
the name MEMADR to the address bus. 

CUPL speeds hit-field comparisons 
Another CUPL feature is its ":" operator, which can 

perfonn bit-field comparisons and operations quickly 
and efficiently. This feature is particularly useful for 
describing such features as an address decoder. When 
the compiler is performing a bit-field comparison, the 
operator ":" compares a bit field with either a hexadeci­
mal or an octal constant value or a hexadecimal or octal 
list of constant values (hexadecimal is the default 
value). When you're describing an address decoder, for 
example, the statement MEMADR: [AOOO ... EFFF] 
is true if the address MEMADR falls in the hexadecimal 
range' AOOO to EFFF (inclusively). Note that hexadeci­
mal constant values must contain the proper number of 
nibbles' to include the most significant bit of the bit 
field. In the above expression, the most significant bit 
of the E in EFFF corresponds to A15 in MEMADR. 

You can also use the ":" operator for bit-field opera­
tions, as in the following equation: 

IOADR: & REPLACES A7&A6&A5&A4&A3&A2&Al&AO 
IOADR: II REPLACES A7I1A6I1A5I1A4I1A311A2I1AIIIAO. 

Another timesaving CUPL feature is the preprocess-

(I) 
PAL16R8 

INPUT 2 
I 

(REG/INV) G 
PLD 

OUTPUT 3 
Ro~ I r-

CLOCK 1 

(b) 
PAL16R8 

INPUT 2 
I 

(REG/INV) • G 3 PLO 
Ro .... IOUTPUT 

I 
r-

CLOCK 1 

Fig I-The.e two PLD •• holD two poaible output configurutiolll 
fryr a PLD with a fixed inverting output buffer. PLD. with program­
mable output polarity eliminate the confusion that fixed output 
device. cause., 

or, which lets you write general-purpose logic descrip­
tions that you can tailor to suit more than one applica­
tion. Fbr example, you might write a general-purpose 
decoder that you could adapt to 8-, 16-, or 32-bit 
applications by changing a few symbolic names and 
ranges. 

The CUPL preprocessor is a program that operates 
on the CUPL source file before it's compiled. The 
preprocessor's string-substitution function, for exam­
ple, can replace one symbolic name with another until 
some condition is met. When it encounters the state­
ment $DEFINE ARGI ARG2, for instance, the pre­
processor replaces ARG 1 with ARG2 until it encoun­
ters the statement $UNDEF ARGI. You could use the 
arguments in this example to .represent different ver­
sions of your decoder. You could make ARGl represent, 
say, the 8-bit decoder, and you could make ARG2 
represent the IS-bit decoder. 

The preprocessor also allows you to delay inclusion of 
a file until compile time. Again, this feature lets you 
generalize your functions. Fbr example, you could write 
several files that represent several specific cases of a 
general application. To implement different functions, 
you'd just include different file names. In the statement 
$INCLUDE FILENAME, the referenced file becomes 
part of the LDF (logic description file) only at compile 
time. 

Conditional control structures extend even further 
the ability to create generalized files. They allow you to 

!IORD 

!I(MIR 

A7 

Ae !BUFFEN 
As 

Aa 
Az 

A. 

A, 

Ao 

Fig 2-AddrelB decoders are typical target. for first-time PLD 
Uters. A simple application like this address decoder shows how you 
cat! benefit from software features like macro substitution, range 
functions, and list notation. 
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TABLE 1 - MEMDEC LOGIC DESCRIPTION FILE 
PARTNO 
NAME 
DATE 
REV 
DESIGNER 
COMPANY 
ASSEMBLY 
LOCATION 

2600A00004 ; 
MEMDEC; 
02'14'84 ; 
02 ; 
OSANN; 
ASSISTED TECHNOLOGY; 
PC-RAM: 
U76 ; 

, ...................................................................................................................... , 
r THIS DEVICE DECODES ALL MEMORY ACCESSES FOR BOTH PRIMARY AND ., 
r ALTERNATE LOCATIONS. IT GENERATES THE RAS SIGNALS FOR THE FOUR ., 
r BANKS OF 16K DYNAMIC RAMS AS WELL AS THE SIGNAL THAT INITIATES ., 
r THE CAS SIGNALS. ., , ...................................................................................................................... , 
r' ALLOWABLE TARGET DEVICE TYPES: PAL16L8, 82S153, PAL 16P8 . .., 

I"" INPUTS •• , 
PIN [1 .. 6) 
PIN [7,8) 
PIN9 
PIN11 
PIN 13 

r' OUTPUTS •• , 
PIN [19 .. 16) 
PIN 14 

= [A19 .. 14) 
= ! [MEMW,MEMR) 
= !REF _ADFLEN 
= !REF_RAS 
= ALLLOC 

= ![RAS3 .. 0) 
= !CAS_INIT 

; r CPU ADDRESS BUS" 
; r MEMORY DATA STROBES', 
; r INDICATES REFRESH CYCLE IN PROGRESS" 
; r STROBE FOR RAS-ONLY REFRESH', 
; r PLACE MEMORY IN ALTERNATE RANGE', 

; r RAM ROW ADDRESS STROBES', 
; r ENABLE CAS STROBES ., 

r' DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS •• , 

FIELD MEMADR 

MEMREQ 

= [A19 .. 14) 

= MEMW#MEMR 

; r MEMORY ADDRESS" 

; r MEMORY REQUEST', 

I"" LOGIC EQUATIONS •• , 

RAS3 MEMREQ & !REF_ADR_EN & 
(!ALT_LOC & MEMADR:[OCOOO .. OFFFF) 
# ALT_LOC & MEMADR:[FCOOO .. FFFFF)) 
# REF_ADR_EN & REF_RAS ; 

RAS2 MEMREQ & !REF_ADFLEN & 
(!ALT_LOC & MEMADR:[08000 .. 0BFFF] 
# ALT_LOC & MEMADR:[F8000 .. FBFFF]) 
# REF_ADFLEN & REF_RAS ; 

RAS1 MEMREQ & !REF_ADFLEN & 
(!ALLLOC & MEMADR:[04000 .. 07FFF) 
# ALT_LOC & MEMADR:[F4000 .. F7FFF)) 
# REF_ADFLEN & REF_RAS ; 

RASO MEMREQ & !REF_ADFLEN & 
(!ALLLOC & MEMADR:[OOOOO .. 03FFF) 
# ALLLOC & MEMADR:[FOOOO .. F3FFF)) 
# REF_ADFLEN & REF_RAS ; 

CAS_INIT MEMREQ & !REF_ADFLEN & 
(!ALLLOC & MEMADR:[OOOOO .. OFFFF] 
# ALLLOC & MEMADR:[FOOOO .. FFFFF)); 
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r PRIMARY RANGE', 
r ALTERNATE RANGE', 
r REFRESH CYCLE ., 

r PRIMARY RANGE', 
r ALTERNATE RANGE', 
r REFRESH CYCLE', 

r PRIMARY RANGE', 
r ALTERNATE RANGE', 
r REFRESH CYCLE', 

r PRIMARY RANGE', 
r ALTERNATE RANGE', 
r REFRESH CYCLE', 

r PRIMARY RANGE"' 
r ALTERNATE RANGE', 
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compile particular portions of your LDF when you've 
complied with certain conditions. When you use the 
format 

$IFDEF ARG 

$ELSE 

$ENDIF, 

· .. STATEMENTS ... 

· .. STATEMENTS ... 

the statements are compiled only if the argument ARG 
has been defined. When you use the format 

$IFNDEF ARG 
· .. STATEMENTS ... 

$ELSE 

$ENDIF, 
· .. STATEMENTS ... 

the statements are compiled only if the argument ARG 
has not been defined. 

Output programmabil~ty saves space 
One CUPL feature that can save you considerable 

space in your design is the language's ability to support 
a PLD with programmable output polarity. For PLDs 
with this feature, the CUPL compiler chooses whichev-

A19 .. A14 
MEMDEC 

CPU nORD, nOvVR PAL16l8 
ALLLOC OR 

JMPR 825153 
!REF_RAS 

A13 .. Q I 
IBUS...AK I 

I !BUS_REQ 

- RFSHCNT ~ 
RFSH RESET 
TIMER PAL16R6 

OR 
!REF_REQ 825157 

CLR I 
I ICLfLREF_TMR I 

By using symbolic names to represent bit 
fields such as address buses) you can not 
only save keystrokes) but you can make your 
designs virtually self documenting. 

er output polarity results in logic equations that use the 
smallest number of product terms. Although output­
programmability support is a useful PLD option, many 
widely used PLDs contain inverting output buffers that 
are fixed instead of programmable. The examples that 
follow demonstrate the limitations of PLDs that don't 
have programmable output polarity. 

For instance, Fig 1 illustrates the architecture for a 
PLD that uses a single D flip-flop and an inverter in its 
output stage. Fig la shows a design that uses an 
active-high output name, and Fig Ib shows one that 
uses an active-low output name. The pin declarations 
for Fig la are 

PIN 1 = CLOCK 
PIN 2 = INPUT 
PIN 3 = G 
PIN 18 = ! OUTPUT. 

To see why support for output programmability is so 
important, imagine that the flip-flop's output is fed 
back to keep it set. The polarity used in the output 
name makes a significant difference in the number of 
product (P) terms that are fed back. 

IRAS3 .. Q 4 x 
16k x 8 

4x532~ 
!CAS3 .. Q 

!CAS_INIT 

I DYNAMIC 
RAM 

DELAY LINE ADDRESS 
MUX 

(4 x 1) 

I 
I I-- A7 .. Q 

r--- SELA SELB 

I 

!RFSH...ADR_EN 

L I REFRESH ADDRESS COUNTER r 

Fig 3-Jf('mnrl/ d/T{j(I('r.~ nfF..fnr:~) ;""'" ., "/",II"l!qill{l "/,,,/i('(llill" IiI/' P[,D rnllversions. This decoder is a portion ola dynamic RAM 
('(//111'1'//" 
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TABLE 2 - RFSHCNT LOGIC DESCRIPTION FILE 
PARTNO 
NAME 
DATE 
REV 
DESIGNER 
COMPANY 

2600AOOOO5 ; 
RFSHCNT; 
02119/84 ; 
02 ; 
OSANN; 
ASSISTED TECHNOLOGY; 

/ ...................................................................................................................... / 
/* THIS DEVICE RESPONDS TO THE REFRESH REOUEST(REF_REO) GENERATED ./ 
/* BY THE REFRESH INTERVAL TIMER. IT PRODUCES THE SIGNAL WHICH . • / 
/* GATES THE REFRESH COUNTER ADDRESS INTO THE RAM ADDRESS BUS ./ 
/* AS WELL AS THE REFRESH RAS STROBE AND THE CLEAR PULSE FOR ./ 
/* THE REFRESH INTERVAL TIMER. ./ 
/ ...................................................................................................................... / 
/*. ALLOWABLE TARGET DEVICE TYPES: PAL16R6, 82S157 

/*. INPUTS •• / 
= CLK ; /* CPU CLOCK·/ 

.. / 
PIN 1 
PIN2 
PIN3 
PIN4 
PIN11 

= REF_REO 
= IBUS_AK 
= RESET 

; /*REFRESH REOUEST FROM INTERVAL TIMER·/ 
; /* BUS ACKNOWLEDGE FROM CPU ./ 

/*. OUTPUTS •• / 
PIN18 

= IOE 

= !BUS_REO 

; /* SYSTEM RESET·/ 
; /* TIED TO GROUND·/ 

; /* BUS REOUEST TO CPU· / 
PIN 17 = !REF_ADFLEN 

= IREF_RAS 
; /* ENABLE REFRESH ADDRESS· / 

PIN16 
PIN 15 = IREF_RAS_DLY1 

= IREF_RAS_DLY2 
= ICLFLREF_TMR 

; /* STROBE FOR RAS-ONLY REFRESH· / 
; /* REF_RAS DELAYED 1 CLOCK·/ 

PIN 14 ; /* REF_RAS DELAYED 2 CLOCKS·/ 
PIN 13 ; /* PULSE TO CLEAR RFRSH INTERVAL TIMER ./ 

/*. DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS •• / 

FIELD ST = [BUS_REO, /* ALL OUTPUTS ARE PART OF·/ 
REF_ADFLEN, /* THE STATE BIT FIELD .• / 
REF_RAS, 
REF _RAS_DLY1, 
REF _RAS_DLY2, . 
CLFLREF_TMRJ ; 

/** LOGIC EOUATIONS •• / 

BUS_REO.D = !RESET & 
IBUS_REO & REF_REO 
# BUS_REO & ( ST:20 # ST:30 

# ST:38 # ST:3C 
# ST:3E ) ); 

REF_ADFLEN.D = !RESET & 
(IREF_ADFLEN & BUS...AK & BUS-REO 
# REF_ADFLEN & (ST:30 # ST:38 

# ST:3C # ST:3E ) ); 

REF_RAS.D = !RESET & (ST:30 # ST:38 # ST:3C) ; 

REF _RAS_DLY1.D = IRESET & (ST:38 # ST:3C # ST:3E) ; 

REF_RAS_DLY2.D = IRESET & (ST:3C # ST:3E # ST:36) ; 

CLFLREF_TMR.D = IRESET & ST:36 ; 
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/* KEEP IT SET·/ 
/* KEEP IT SET·/ 
/* KEEP IT SET·/ 

/* SETIT·/ 
/* KEEP IT SET· / 
/*'KEEP IT SET·/ 
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If you choose an active-high output name, the logic 
equations are 

OUTPUT.D = G & INPUT r UPDATE WITH INPUT '1 
# !G & OUTPUT r MAINTAIN CURRENT OUTPUT 'I 

r VIA INTERNAL FEEDBACK PATH 'I. 

Because of the inverting output buffer, the equations 
that you must program into the array are 

!OUTPUT. D = !(G & INPUT # !G & OUTPUT) 
!OUTPUT.D = !G & !OUTPUT # !INPUT & Gil 

!INPUT & !OUTPUT. 

Notice the extra product terms that are created. If, on 
the other hand, you choose an active-low output name, 
the pin declarations are 

PIN 1 = CLOCK 
PIN 2 = iNPUT 
PIN 3 = G 
PIN 18 = !OUTPUT, 

and the final equations are 
OUTPUT.D = G & INPUT I' UPDATE WITH INPUT 'I . 

#!G & OUTPUT I' MAINTAIN CURRENT OUTPUT 'I 
I' VIA INTERNAL FEEDBACK PATH 'I. 

As you can see, when PLDs. have fixed inverting 
buffers, the active-low output condition requires the 
fewest number of P terms. 

Now that you're familiar with CUPL's features, 
you're ready to apply them to more compt'icated sys­
tems. When. a logic designer uses a PLD for the first 
time in a new design, the designer's target area is often 
the address-decode function. Fig 2 shows a simple 
Va-decoding circuit that creates a buffer-enable signal 
for 110 reads or writes when the decoded address falls 
in the hexadecimal range 10 through 12, inclusively. If 
you were to implement this address-decoding function 
using assembler-based software, your equations would 
look like the following ones: 

BUFFEN=IORD'/A7'/A6'/A5'A4'/A3'/A2'/Al'/AO 
+ IORD'/A7'/A6'/A5' A4'/A3'/A2'/Al' AO 
+ IORD'/A7'/A6'/A5' A4'/A3'/A2' Al'/AO 
+ IOWR'/A7'/A6'/A5' A4'/A3'/A2'/Al'/AO 
+ IOWR'/A7'/A6'/A5' A4'/A3'/A2'/Al' AO 
+ IOWR'/A7'/A6'/A5' A4'/A3'/A2' Al'/AO. 

If you were to implement the address-decoding func­
tion using CUPL, your equations would look like this: 

FIELDADR = [A7 .. 0]; 
IOREQ = lORD II IOWR; 
BUFFEN = IOREQ & ADR:[10 .. 12);. 

To write equations using CUPL, you first define the 
address bus as a bit field where ADR=[A7 ... 0]. The 

Conditwnal control structures improve 
compiler flexibility. They-allow the compiler 
to delay decisions until certain predefined 
conditwns are met. 

compiler then substitutes [A 7 ... 0] whenever it sees 
ADR. You then combine the strobe signals and give 
them the arbitrary name IOREQ where IOREQ 
=IORD#IOWR. Finally, you write an equation for the 
output BUFFEN in terms of the intermediate variables 
IOREQ and ADR so that BUFFEN = IOREQ&ADR:[1O 
... 12]. The list-notation and range functions, as well 
as macro substitution, are all used here. The final code 
takes less time to write and is much easier to read than 
code written in an assembler-based language, and it's 
virtually self documenting. 

Fig 3 shows the CUPL design technique in a more 
complicated decoder application, a dynamic RAM con­
troller. The PLD MEMDEC in Fig 3 provides the 
memory decoder function. It supplies four 16kx8-bit 
banks of dynamic RAM with RAS (row address strobe) 
signals and generates a signal that initiates the CAS 
(column address strobe). The initiating signal first 
passes through a delay line and then recombines with 
the RAS signals to produce the CAS. 

MEMDEC decodes address bits A19 through A14 of 
a 20-bit address space and maps the 64k-byte block to 
either the top or the bottom of the memory map shown 
in Fig 4. The jumper-selectable input called ALT_LOC 

FFFFF 

] moc·, 
FCOOO 

BANK 3 

BANK 2 
F8000 

BANK 1 
F4000 

BANKO 
FOOOO 

MEMORY 
MAP 

n r 
OFFFF 

] ~uoc·o ocooo BANK 3 

08000 
BANK 2 

BANK 1 
04000 

BANKO 
00000 

Fig 4-This memory map shows two possible locatiofUI for address 
bits A19 through AU of a 20-bit address space. MEMDEC decodes 
the bits and maps the 64k-byte block to either the top or the bottom of 
the I/Iel/lory map. 
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determines whether the top or the bottom of the 
memory map is used. Table 1 shows a completed LDF 
for the memory decoder. 

Not only does CUPL simplify combinatorial designs, 
but it's useful for implementing sequential designs as 
well. Because PLDs contain both the logic array and 
registers in the same package, they're particularly 
powerful for implementing registered logic. The PLD 
named RFSHCNT in the RAM controller shown in Fig 
3 handles the sequential aspects of refresh control for 
the dynamic RAM in a typical JLP system. . 

RFSHCNT responds to a refresh signal from the 
refresh internal timer <usually 14 JLsec) by driving the 
CPU's bus-request line high. Mter receiving a bus­
acknowledge signal from the CpU, ·RFSHCNT then 
generates signals for address MUX control and RAS­
only refresh timing. . 

RFSHCNT also provides a signal that resets the 
refresh interval timer and clocks the refresh-address 
counter. Fig 5 shows the timing diagram for 
RFSHCNT. Note that the registered output signals 
are shown as logical true even though the actual 
outputs are active low. Because the equations are based 
on signals in the timing diagram, in order for the 
registered outputs to be shown as logical true, the 
target device must have either an inverting output 

(STATE) TIME SlOT 

(OUT) BUSJlEQ 

(IN) I BUS..AK 

(OUT) REF ..ADFLEN 

(OUT)REF_RAS ________ .J 

(OUT, NC) REF_RAS-DlYl 

(OUT, NC) REF JWLOlY2 

Programmable-output capability allows the 
compiler to save PLD space. Thus) you'll 
need fewer PLDs when you're converting 
your design. 

buffer or programmable-output-polarity capability. 
Table 2 shows the LDF for RFSHCNT. The LDF 

uses the hexadecimal values that define the time slots 
shown in the timing diagram. Note·the use of CUPL's 
bit-field capability in the equations that specify the D 
flip-flop's state. 

CUPL's compiler':'based techniques simplify the con­
version of complicated SSI circuits to their PLD equiva­
lents. Part 3 of this series will show you how to simplify 
the logic design process even further by using the 
state-machine approach. BDII 

Author's biography 
Bob Osallll is president and chief executive officer at As­
sisted Technology Inc (San Jose, CA). He received his 
BSEE from Cornell University and was previously em­
ployed at Millennium Systems Inc (Santa Clara, CA); Bob 
holds three patents in the areas of consumer and industrial 
electronics. His interests include sports cars, airplanes, 
and music. 

(OUT)ClFLREF_TMR ___________________ 11 ...... ___ _ 

Fig 5-The reggtered.output .lgMllshoum in this timing diagram/or RFSHCNT are shoum as logical true e1,'en though the actual outputs 
are active low. Because the equations are based on the timing diagram, the target device must be inverting, or it mUlt have 
programmable-output capability. 
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Designer's Guide to: 
Programmable logic-Part 3 

State-machine 
ap roach speeds 

ogic· design 

To exercise a pWJs full potential for 
shortening design time and improving 
documentation) use the state-machine 
approach. This approach lets you formulate 
a behavioral description of your system and 
implement it directly in a PW) without 
ever developing an equation-level 
representation. 

Bob Osann, Assist,ed Technology 

Using the state-machine approach and a compiler-based 
PLD design language like CUPL, you can bypass the 
gate- and equation-level stage in logic design and move 
directly from a system-level description to a PLD 
implementation. Unlike assembler-based approaches, 
the state-machine approach lets you document your 
design in a. manner that's understandable to future 
users of your design. 

Actually, few logic designers currently use the state­
machine approach in· their logic designs. This isn't 
surPrising: The technique seems difficult to learn at 
first. But CUPL makes the state-machine approach less 
formidable by handling many of the decisions you would 

EDN February 7, 1985 

normally have to make. Furthermore, CUPL gives you 
a general and simple state-machine model like the one 
shown in Fig 1. The software automatically fits, the 
model to your application. 

D~fining the state model 
In general, a state machine is a logic circuit with 

flip-flops. Because a flip-flop's output can be fed back to 
its own or some other flip-flop's input, a flip-flop's input 
value may depend on both its own output and that of 
other flip-flops. Consequently, the final value for a 
flip-flop's output depends on its own previous values, as 
well as those of other flip-flops. 

The CUPL state-machine model uses six compo-

INPUTS ----.. _---:.;N:;:::ON:..::R.:.:;E;;;::GI:;::.:ST:.:;E:.;.:RE:.:::D..:::;O.::..UT:..:.P.::..UT:,.::..S 

REGISTERED 
OUTPUTS· 

Fig l-State·machine theory can be complicated, but CUPL allows 
you to abstract from the theory's complicated details. Using this 
simple model and an easy-to-learn syntax, you can quickly con­
struct state-machine models of your system. 
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CLOCK I 
Teo ----+j STATE BIT 

REGISTERED Teo -=' OUTPUT 

NONREGISTERED OUPUT ---+J (DEPENDS ONLY ON "STATE) 

INPUT 

NONREGISTERED OUTPUT .1 (DEPENDS ON STATE AND INPUT) 

When you use the state-machine approach) 
you don)t have to write a logic-equation­
le'pel description of your system before 
implementing it t'n a PW. 

r= 
p== I+-- Teo+Tpd 

F Tco + Tpd 

I 
Tpd ~ ~ 

Fig 2-This timing diagram characterizes CUPL's simple state-machine model, The setting or resetting of the registered output depends on 
the ,~tatus of the state bit. Conversely, nonregistered outputs call depend either on only the current state bit's status or on both the state bit's 
statns and the input's status. 

nents: inputs, combinatorial logic, storage registers, 
state bits, registered outputs, and nonregistered out­
puts. Fig 2 shows the timing relationships between 
these components. 

Inputs are signals entering the device that originate 
in some other device. Combinatorial logic is any combi­
nation of logical gates (usually AND-OR) that produces 
an output signal that's valid T pd (propagation delay 
time) nsec after any of the signals that drive these 
gates changes. T pd is the time delay between the . 
initiation of an input or feedback event and the occur­
rence of a nonregistered output. 

State bits are storage-register outputs that are fed 
back to drive the combinatorial logic. They contain the 
present-state information. Storage registers are any 
flip-flop elements that receive their inputs from the 
state machine's combinatorial logic. Some registers are 
used for state bits, while others are used for registered 
outputs. The registered output is valid T co nsec after 
the clock pulse occurs. T co is the time delay between the 
initiation of a clock signal and the occurrence of a valid 
flip-flop output. 

For the system to operate properly, you must meet 
your PLD's requirements for setup and hold times. For 
most PLDs, the setup time (T.u) usually includes both 
the propagation delay of the combinatorial logic and the 
actual setup time of the flip-flops. T.u is the time it takes 
for the result of either a feedback or an input event to 
appear at the input to a flip-flop. A subsequent clock 
input cannot be applied until this result becomes valid 
at the flip-flop's' input: These flip-flops may be either D, 
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RS, or JK types (but RS and JK types are used more 
often in state-machine implementations because they 
require fewer product (P) terms than D types do). 

Nonregistered outputs are outputs that come direct­
ly from the combinatorial logic gates. They may 
be functions of the state bits and the input signals (and 
have asynchronous timing), or they may be purely 
dependent on the current state-bit values, in which case 
they become valid Tco+Tpd nsec after an active clock 
edge occurs. 

Registered outputs are outputs that come from the 
storage registers but are not included in the actual 
state-bit field (ie, a bit field composed of all the state 
bits). State-machine theory requires that the setting or 
resetting of these registered outputs depend on the 
transition from a present state to a next state. This 
allows a registered output to be either set or reset in a 
given state, depending on how the machine came to be 
in that state. Thus, a registered output can assume a 
"don't care" operation mode. In the "don't care" mode, 
the registered output will remain at its last value as 
long as the current state transition does not specify 
that registered output. 

The state-machine syntax 
To help you implement this state-machine model 

quickly, CUPL supplies a general and simple state­
machine syntax. This syntax gives you a single, simple 
format that allows you to describe any function in the 
state machine. The general format for the state-ma­
chine syntax is 
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SEQUENCE statlLbiLfield { 
PRESENT presenLstate 

IF inpuLcond NEXT nexLstate OUT outputs ; 
IF inpuLcond NEXT nexLstate OUT outputs; 
IF ... 

PRESENT presenLstate 
IF inpuLcond NEXT nexLstate OUT outputs ; 
IF inpuLcond NEXT nexLstate OUT outputs; 
IF ... 

PRESENT ... 
} 

Each present-state block within this fonnat de­
scribes both asynchronous (present state) and synchro­
nous (transition) activity. Using this fonnat, you can 
describe any component of the state machine. For 
example, the fonnats for registered outputs would be 

IF inpuLcond NEXT nexLstate OUT outputs 

CONDITIONAL OUTPUT ASSOCIATED 
TRANSITION WITH TRANSiTION 

or 

NEXT nexLstate OUT outputs 
'---.-----' 

UNCONDITIONAL OUTPUT ASSOCIATED 
TRANSITION WITH TRANSITION, 

depending on whether the transition is conditional or 
not. To use these equations for describing your system, 
you need to learn how to use the CUPL keywords. For 
example, when you use a Next statement, you're telling 
the compiler that all of the outputs in that block are 
registered outputs whose values depend on transition 

NON_REG_OUT -INPUT 

OUT RECLOUT 

infonnation (ie, infonnation about the transition from 
the present state to the next state). Using the If 
statement signifies a conditional event. When you use 
the If keyword in a nonregistered description, you 
signify that the input and output events will have an 
asynchronous dependence. The absence of a Next key­
word signifies a nonregistered event. 

For nonregistered outputs, you would use the fonnat 

IF inpuLcond OUT outputs 

INPUT CONDITION NO STATE OUTPUTS ASSOCIATED 
AFFECTS OUTPUT TRANSITION WITH INPUT CONDITION 

or 

AFTER Tpd AND PRESENT STATE. 

NO INPUT 
CONDITION 

OUT outputs 

NO STATE OUTPUT ASSOCIATED 
TRANSITION SOLELY WITH PRESENT 

STATE. VALID 
Teo + Tpd AFTER 

CLOCK. 

Much of the reason for choosing either the registered 
or nonregistered fonnat for an output depends on the 
system timing. For fully synchronous systems that 
require tight timing, the registered output provides 
fast response-it responds within T co nsec after the 
occurrence of a clock pulse. This quick response gives 
the circuit time to use that registered output as an 
input somewhere else in the circuit before the next 
clock pulse occurs. 

Conversely, you would use the nonregistered output 
in aSynchronous applications. You would also use the 

INPUT 

PLD 

01 
CLOCK 

00 

Fig 3-This model for a free·running 2-bit counter demonstrates CUPL's state-machine syntax. The counter has one input, one 
nonregistered output, and one registered output. 
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nonregistered output in simpler applications, such as 
present-state decoders. 

diagram. The circles represent states (specific combina­
tions of the state bits), and the arrows represent the 
transitions between states. Because the transitions in 
this example are unconditional, the' counter is free­
running. Accordingly, the logic description uses no If 
keywords in statements that signify a Next state. The 

To better understand the state-machine model and its 
syntax, consider a simple example: a free-running 2-bit 
counter with one input, one registered output, and one 
nonregistered output. Fig 3 shows the state-transition 

The function-table approach 
To design logic systems with ---------------------------
PLDs, you could use the func­
tion-table approach, which com­
plements the state-machine ap-
proach. The function-table 
approach is useful in applications 
such as code converters, where' 
input/output relationships are 
best represented in tabular 
form. 

CUPL's parallel-operation ca­
pability makes it easy for you to 
develop these tabular represen­
tations. Using that feature, you 
can declare bit fields and use 
them on either the right or left 
side of the equation. 

The parallel operation feature 
allows you to operate uniformly 

B3 2 

B2 3 15 I Yl 

Bl 4 GATED MUX 

BO· 5 

A3 6 PAL16R4 
OR 

A2 7 82S155 

Al 8 16 I YO 

AO 9 

GATE 12 12 

CLOCK 1 

SELl 13 ~9 11 GND 

Fig A-In code-conversion applications, 
like this duaI4-to-l mulfiple.rer, you can 
best describe the systelll /I.<illl} " f(JllI/lnr 
format, " 

TABLE A-GATED MUX LOGIC DESCRIPTION FILE 

PARTNO 
NAME 
DATE 
REV 
DESIGNER 
COMPANY 
ASSEMBLY 
LOCATION 

PL10007; 
GATED MUX; 
09'17'84; 
01; 
ARONSON; 
ASSISTED TECHNOLOGY; 
PC_IO; 
U23, , .......................................................................... , 

,. THIS DEVICE FUNCTIONS AS A DUAL 4-TO-l MUX WITH INVERTING ., 
,. REGISTERED OUTPUTS, THE MUX OUTPUTS ARE ONLY CLOCKED INTO THE ., r .. ~~~!~T~~.~ :'f~.~~ .~~~. ~!'.~~ J~f.~T .'? ~~.~Iy!= ............................. . 1.: ~ 
,. ALLOWABLE TARGET DEVICE TYPES: PAL16R4, 82S155 ., , .......................................................................... , 

, .. INPUTS .. , 

PIN 1 
PIN 12 .. 51 
PIN 6 .. 9 
PIN 13 
PIN 19 
PIN 12 
PIN 11 

= CLOCK 

"IB3
"
01 z A3 .. 0 

= SELl 
= SELO 
= GATE 
= fOE 

, .. OUTPUTS .. , 

PIN 15 
PIN 16 

= !Yl 
= !YO 

,. SYSTEM CLOCK ., 
,. INPUT GROUP B ., 
,. INPUT GROUP A ., 
,. SELECT 1 ., 
,. SELECT 0 " 
,. GATES MUX OUTPUT INTO REGISTER ., 
,. OUTPUT ENABLE" 

; ,. REGISTER OUTPUT FROM GROUP B ., 
; ,. REGISTER OUTPUT FROM GROUP A ., 

, .. DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS .. , 

FIELD OUT = [Y1..0]; ,. OUTPUT BITS ., 
FIELD SEL = [SEL1..0] ;" SELECT CONTROL BITS ., 

, .. LOGIC EQUATIONS .. , 

OUT.D = !GATE & OUT 
/I GATE & ( IB3,A31 & SEL:3 

/I B2,A2 & SEL:2 
/I (Bl,Al & SEL:l 
/I (BO,AO & SEL:.O ) ; 

2·30 

, .............................. , 
,. NOTE: ., 
,. ONE EQUATION DESCRIBES ., 
,. BOTH OUTPUT VARIABLES. " , .............................. , 
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To make the state-machine approach easier 
to learn) CUPL uses a model that incor­
porates both the Mealy and Moore models. 
You use the same model for all cases. 

nonregistered output is active on a count of two (82) 
when the input is active. The registered output is set on 
the transition from 82 to sa and reset on the transition 
from sa to 80. Table 1 gives the logic description for 
the counter. 

An application that incorporates hysteresis shows the 

importance of using transition information in addition 
to present-state information. Consider, for instance, a 
circuit that performs threshold detection on an analog 
signal, but requires a' hysteresis band both wider and 
more accurate than the hysteresis band an analog 
comparator could achieve. In such an application, you 

TABLE B-HEXDISP LOGIC DESCRIPTION FILE 
PARTNO CTOOO2; 
NAME . HEXDISP; 
DATE 615/84; 
REV 01; 
DESIGNER T KAHt; 
COMPANY ASSISTED TECHNOLOGY INC; 
ASSEMBLY DISPLAY_BOARD; 
LOCATION U17; 

/ ........................................................................... / 
/. THIS IS A HEXADECIMAL.TO.SEVEN.SEGMENT A ./ 
/. DECODER CAPABLE OF DRIVING COMMON·ANODE I¥NIII ./ 
/. LEOS. IT INCORPORATES BOTH A RIPPLE· F'I '. B ./ 
/. BLANKING INPUT (TO INHIBIT DISPLAYING 'I G 'i ./ 
:: 6~~~~~fJ~~E51t~8RAE~~~LJA~tt.~~~~GOF 'I¥NII'I :: 
/' DIGITS. E'I 'IC ./ 
/. 'I 'I ./ 

:: 'wt!" :: 
/ ........................................................................... / 

'/. ALLOWABLE TARGET DEVICE TYPES: 32 x 8 PROM (82S123 OR EQUIV) ./ / ........................................................................... / 
/ •• INPUTS •• / 

~:~ ~~0.~1~kBI;[DO .. 31 ; 

/ .. OUTPUTS .. / 

~:~ ~ .. 11 : i~B~~,D,E,F,Gl; 

/. DATA INPUT LINES TO DISPLAY 
/. RIPPLE BLANKING INPUT 

/. SEGMENT OUTPUT LINES 
/. RIPPLE BLANKING OUTPUT 

/ .. DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS .. / 

~:~tg g~~tEN~.3iA~~,C,D,E,F,Gl ; j: ~~~~~C~~~~~NJ'TU~I:L~LD 

./ 

./ 

./ 

./ 

'/ 
./ 

$DEFINE ON 'b'l /. SEGMENT LIT WHEN LOGICALLY "ON" ./ 
$DEFINE OFF 'b'O /. SEGMENT DARK WHEN LOGICALLY 

."OFF" ./ 

/ .. LOGIC EQUATIONS .. / 

/. A B C 0 E F G ./ 
SEGMENT· 
/. 0'/ ON, ON, ON, ON, ON, ON, OFF & DATA:O & !RBI 
/'1'/ /I OFF ON, ON, OFF, OFF, OFF, OFF & DATA: 1 
I' 2 ./ /I ON, ON, OFF, ON, ON, OFF, ON & DATA:2 
/. 3 ./ /I ON, ON, ON, ON, OFF, OFF, ON & DATA: 3 
I' 4 ./ /I OFF, ON, ON, OFF, OFF, ON, ON & DATA: 4 
I' 5 ./ /I ON, OFF, ON, ON, OFF, ON, OFF & DATA: 5 
I' 6 ./ /I ON, OFF, ON, ON, ON, ON, OFF & DATA: 6 
/. 7'/ /I ON, ON, ON, . OFF, OFF, OFF, OFF & DATA:7 
/. 8'/ /I ON, ON, ON, ON, ON, ON, ON & DATA:8 
/. 9 ./ /I ON, ON, ON, OFF, OFF, ON, ON & DATA:9 
/. A'/ /I ON, ON, ON, OFF, ON, ON, ON & DATA:A 
/. B'/ /I OFF, OFF, ON, ON, ON. ON. ON & DATA:B 
/. C'/ /I ON, OFF, OFF, ON, ON, ON, OFF & DATA:C 
/. 0'/ /I OFF. ON. ON, ON, ON, OFF, ON & DATA:D 
/. E'/ /I ON. OFF. OFF. ON, ON, ON, ON & DATA:E 
/. F ./ /I ON. OFF. OFF, OFF, ON, ON, ON & DATA:F; 

RBO • RBI & DATA:O; 
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IA 

DATA 0 10 19 

DATA 1 11 HEXDISP IC 

DATA 2 12 82S123 !D OR 
DATA 3 13 EQUIVALENT IE 

IF 

I RBI 14 !G 

I RBO 

Fig B-Though a PROM waS used to 
implement this simple hexadecimal·tOo7 
segment decoder, you could use the same 
function table to implement this state ma­
chine in a PLD. 

on an entire parallel data path. 
It's easy to write a description 
in this manner, as you can see 
from Fig A's 4-to-l mUltiplexer, 
which has an inverting regis­
tered output. Table A contains 
the multiplexer's LDF. 

The hexadecimal-to-7 segment 
decoder in Fig B also lends itself 
well to tabular representation. 
Again, bit-field notation is con­
venient for describing the logical 
function. Incidentally, because 
it's a simple circuit, this imple­
mentation uses a PROM as the 
target device (because 16 pins 
are sufficient and bipolar PROMs 
are inexpensive), but you could 
also implement these function 
tables in PLDs. Table B con­
tains the decoder's LDF. 



2.1.3 CUPL, AmCUPL (Cont'd.) 

TABLE 1-LOGIC DESCRIPTION FOR 2-BIT COUNTER 

FIELD COUNT = [Q1, QO]; /* LET'S CALL THE STATE BIT FIELD "COUNT" "' 

, "*" * * * * * * * * * *" * * * * * * * *.* * * * * *. * * * * * * * * * * * * * * * * * * ~ * * * * * * * * * * * * * * * * * , 
$DEFINE SO 0 '*DEFINE SYMBOLIC NAMES FOR THE ACTUAL STATE BIT CONSTANT *' 
$DEFINE S1 1 '* VALUES USING PREPROCESSOR COMMANDS. CONSTANTS DEFAULT *' 
$DEFINE S2 2 /* TO HEX AND REPRESENT VALUES OF "COUNT" WITHIN THE *' 
$DEFINE S3 3 /* "SEQUENCE" BLOCK BELOW. *' 

, * * * ~* * * * * * * * ** * * * *" * * * * * * * *" * * * * * *" * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' 

SEQUENCE COUNT { '* /* 
NOTE USE OF BRACES FOR ENCLOSING STATE 

SEQUENCE DESCRIPTION BLOCK. 

PRESENT SO 

PRESENT S1 
NEXT S1; 

NEXT S2, 
PRESENT S2 IF INPUT OUT NON_REG_OUT; /* 

NEXT S3 OUT REG_OUT; /* 
PRESENT S3 

NEXT SO OUT !REG_OUT ; } 

need transition information in order to achieve hystere­
sis. One way to solve this problem would be to con­
struct a tracking AID converter in which the threshold 
detector output (digital Schmitt-trigger output) is a 
registered output of the state machine (Fig 4). 

The three counter bits that feed the DI A converter 
compose the state bits. To create the hysteresis, you set 
the trigger output only on the transition from S5 to S6 
and reset the trigger only on the transition from S2 to 
S1. At all other times, you place the trigger output in a 
"don't care" state. The trigger output may have differ­
ent values in states S2 through S5 depending on how 
the machine arrived at those states. 

/* 

ASYNCHRONOUS WITHIN S2 
SETS ON TRANSITION 

RESETS ON TRANSITION 

PLD 

DIRECTION 

CLOCK 

*' *' 

*' */ 

*' 

RO 

RO 

RO 

RO 

I TRIGGER 

02 

01 

00 

Fig 5 shows a state diagram for the system. All 
states in which you can set the trigger output are shown 
on top and all states in which you can reset the trigger 

Fig 4-To realize the hysteresis function in this state-machine 
model for an analog comparator with digital hysteresis, you must set 
or reset the registered output by using transition information rather 
than present-state information. 

G..-- TRIGGER-1 

TRIGGER-O 

Fig 5-The state diagram for: the ~n~log comparator with hysteresis shows that a state's value can be history-dependent. The trigger output 
can have different values in states 82 through 85 depending on how the machine arrives at those states. 

EDN February 7, 1985 
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EDN February 7, 1985 

The CUPL state-machine syntax allows you 
to specify any state-machine component 
with a single format) thus simplifying the 
state-machine description. 

TABLE 2-SCHMITT LOGIC DESCRIPTION FILE 

PARTNO 
NAME 
DATE 
REVISION 
DESIGNER 
COMPANY 
ASSEMBLY 
LOCATION 

CT0001; 
SCHMITT; 
6/30/84; 
01; 
T KAHL; 
ASSISTED TECHNOLOGY INC; 
ANALOG_INTERFACE; 
U27; 

/ ........................................................................... / 
/. THIS DEVICE RECEIVES A 'COUNT DIRECTION' COMMAND FROM AN ANALOG ./ 
/. COMPARATOR AND RESPONDS BY INCREMENTING OR DECREMENTING AN ./ 
/. INTEGRAL UP/DOWN COUNTER. A REGISTERED OUTPUT IS CREATED AND ACTS ./ 
/. AS A DIGITAL SCHMITT TRIGGER WITH HYSTERESIS. ./ / ........................................................................... / 
/ •• INPUTS •• / 

PIN 1 
PIN 2 

/ .. OUTPUTS .. / 

PIN (14 .. 16) 
PIN 17 

= CLOCK; 
= DIRECTION; 

= ![00 .. 21; 
= (TRIGGER; 

/. CLOCK PIN FOR THE COUNTER ./ 
/. DIRECTION OF COUNT MODE PIN ./ 

/. COUNTER STATE BITS ./ 
/. SCHMITT TRIGGER OUTPUT BIT ./ 

/ .. DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS .. / 
UP = DIRECTION; /. COUNTER MODES ./ 
DOWN = !DIRECTION;; 

FIELD COUNT = [02 .. 0); 

$DEFINE SO 0 
$DEFINE S1 1 
$DEFINE S2 2 
$DEFINE S3 3 
$DEFINE S4 4 
$DEFINE S5 5 
$DEFINE S6 6 
$DEFINE S7 7 

SE~UENCE COUNT { 

PRESENT SO 
IF UP 
IF DOWN 

PRESENT S1 
IF UP 
IF DOWN 

PRESENT S2 
IF UP 
IF DOWN 

PRESENT S3 
IF UP 
IF DOWN 

PRESENT S4 
IF UP 
IF DOWN 

PRESENT S5 
IF UP 
IF DOWN 

PRESENT S6 
IF UP 
IF DOWN 

PRESENT S7 
IF UP 
IF DOWN 

/. FIELD FOR COUNTER STATES ./ 

/. COUNTER STATES DEFINED AS ./ 
/. STATES 0 THRU 7 ./ 

NEXT S1; 
NEXT SO; 

NEXT S2; 
NEXT SO; 

NEXT S3; 
NEXT S1 

NEXT S4; 
NEXT 52; 

NEXT 55; 
NEXT 53; 

NEXT 56 
NEXT S4 

NEXT 57; 
NEXT 55; 

NEXT S7; 
NEXT S6; 
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OUT !TRIGGER; 

OUT TRIGGER; 
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are shown on the bottom. Note that states 82, 83, 84, 
and 85 appear twice because they can have two differ­
ent values. Each state's value depends on the system's 
previous state. 

Note also that the state bits in this application supply 
information to the outside world; in this case, the 
information consists of inputs to a D/A converter. When 
you give the PLD access to the outside world, you 
deviate from the standard Mealy and Moore state­
machine models, but you can squeeze more logic into 
your PLD. 

Table 2 gives the state machine's logic description 
file (LDF). In the LDF, you declare the state bits as a 
bit field and give them the symbolic name "Count." 
Next, you use the input Direction to define names for 
the Up and Down counter modes. You then complete 
the numerical state assignment for states 80 through 
87 by using the $Define command from CUPL's pre­
processor. 

In defining the state machine, you use If and Next 
keywords for every present-state block. When you use 
Next, you indicate that the state machine's activity is 
synchronous; when you use If, you indicate that the 
transitions are conditional. The transitions' direction 
depends on the direction the counter counts in, which is 
in turn determined by the value of the Direction input. 

Though applications like counters and comparators 
with hysteresis may not seem very complicated, they 
serve to show that designing with PLDs is a straight­
forward task, whether you're using the devices to 
replace existing designs or using them in a state-: 
machine design. EDIt 

Author's biography 
Bob Osann is president and chief exec­
utive officer at Assisted Technology 
Inc (San Jose, CAY. He received his 
BSEE from Cornell University and 
was previously employed at Millenni­
um Systems Inc (Santa Clara, CAY. 
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consumer and industrial electronics. 
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AmCUPL - The High-Level Software Tool for 
PAL Designs 

To provide a low-cost, high-level design-aid software tool for 
AMD's programmable logic devices, AMD and Personal CAD 
Systems have developed AmCUPL. With AmCUPL, you can 
create custom-design solutions using AMD's PAL devices in a 
matter of minutes. This shorter design cycle and other benefits 
such as lower cost, higher performance, and higher reliability 
result in a significant competitive advantage in your market­
place. 

Hlgh-Lovel Doslgn Support 

AmCUPL has many features which make it extremely powerful 
and easy to use: 
• Choice of logic description formats: 

- State diagrams 
- High-level Boolean equations 
- Truth tables 

• Portfolio of four different logic minimization algorithms 
• Automatic enhanced De Morgan expansion capability 
• PALASM-to-AmCUPL translator 
• User-defined logic functions 
• User-friendly syntax 
• Built-in logic simulator 

Full Support for AMD PAL Devices at a Very Low 
Cost 

AmCUPL supports all the advanced PAL devices from AMD, 
including the AmPAL22V10 and AmPAL 18P8. All the ad­
vanced features of these devices, including programmable 
output logic macrocells, programmable output polarity,' and 
distributed product terms, can be effectively used with Am­
CUPL. Future releases of AmCUPL will support upcoming PAL 
devices from AMD. 

Yet, AmCUPL provides all this support at a very low cost. This 
includes full user support from Personal CAD Systems, Inc., of 
San Jose, California. 
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Easy Upgrade Path 

When you purchase AmCUPL you have an option to upgrade 
to CUPL from Personal CAD Systems within one year. The 
AmCUPL cost can be credited against this upgrade. CUPL 
offers the same functionality as AmCUPL but also supports 
PAL devices from other vendors. The PC/MS-DOS version of 
AmCUPL is distributed by AMD on IBM formatted 5-1/4' 
floppy disks; a CUPL manual is included. 

AmCUPL - The cost-effective, easy-to-use, and complete 
design tool for your custom design inventions. For additional 
information on AmCUPL or other AMD PAL devices, contact 
one of AMD's sales offices, authorized reps, or distributors. 

2.1.4 PLPL 

Programmable Logic Programming Language (PLPL) is a new 
design tool that makes it easy to design, verify, and test logic 
functions that are to be implemented with programmable logic 
devices. It is an integrated, top-down, hierarchical, and com­
plete design language which provides clear problem definition 
in a variety of ways. This results in solutions that are self 
documenting. PLPL allows multiple-input formats which means 
the function of a device can be expressed in terms of a state 
transition or truth table, high-level constructs, or Boolean 
equations. 

In a summary, PLPL is the heart of a new programmable logic 
computer-aided design (CAD) environment that allows you to 
take full advantage of the benefits associated with using 
programmable logic devices. It aids in: 
• Defining the problems to be solved 
• Creating a solution 
• Verifying the solution by simulation 
• Generating test vectors 
• Optimizing/minimizing the intermediate equations 
• Providing an interactive- or a batch-mode of operation 

Functionally, PLPL accepts a logic-description input file and 
creates a JEDEC-standard fuse map downloadable to a logic 
programmer. The flow of this procedure is shown in Figure 2-6. 
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Figure 2-6. PLPL Design Flow 

PLPL Features 

Major features of PLPL are: 
• Employs high-level block-structured hardware-description 

language optimized for programmable logic devices 
• Uses C language for flexibility and portability 
• Supports multiple design techniques: 

- PALASM-like sum-of-products Boolean equations 
- Extended Boolean-logic description: Parenthesized 

equations, DeMorgan's laws, Macro-substitution capa­
bility, and pin vectors 

- High-level constructs such as: IF THEN ELSE, FOR, 
CASE, and FUNCTION CALLS 

• Provides a convenient and powerful human interface: 
- Both interactive or batch mode 
- Optional menu-driven capability 
- Extensive error checking 
- Interactive help facility 
- Direct programmer interface 
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• Supports current AMD PAL devices 
• Permits adding new devices quickly because it is data-base 

driven 

Structure of the PLPL Environment 

In the PLPL CAD environment, each program is governed by a 
separate program module, with all the modules tied together in 
a top-down fashion. The software modules (Figure 2-7) are as 
follows: 
• Operations Processor 
• PLPL Compiler 
• PLPL Data Base 
• PLPL List Equations 
• PLPL Optimizer 
• PLPL Test-Vector Generator 
• PLPL Simulator 
• JEDEC Fuse-Map Generator 
• PALASM-to-PLPL Translator 



PALASM-TO-PLPL 
TRANSLATOR 

PLPL DESIGN 
SPECIFICATION 

SIMULATION 
SPECIFICATION 

INTERMEDIATE EQUATIONS 

JEDEC TRANSFER FORMAT 

80006721 

Figure 2-7. Structure of the PLPL Environment 

PLPL Operations Processor (OP) 

The PLPL OP is the interface module that defines the program 
structure. It is an interactive, menu-driven shell that provides 
the user interface to the compiler, the JEDEC fuse-map 
generator, the simulator, the test-vector generator, the opti­
mizer, and other device-specific utilities. With the operations 
processor, a comprehensive help facility can be consulted or, 
if required, a "shell escape" may be executed. Shell-escape 
capability allows a temporary exit from PLPL for the execution 
of certain system operations, such as editing or looking at the 
contents of various other files. It should be noted, however, 
that the internal state inside the shell is maintained. 

PLPL Complier 

The PLPL compiler converts PLPL design specifications into 
the form needed by the JEDEC fuse-map generator, and other 
modules (such as the simulator, test-vector generator, and the 
optimizer). In addition, it flags all syntax and device-limitation 
errors. For example, a device-limitation error might indicate 
that a PAL device has an insufficient number of product terms 
to accommodate a particular logic equation. PLPL compiler is 
designed to be device-indepedent, and obtains all of its device 
data from the data base. 
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PLPL Data Base 

The PLPL data base serves three purposes: 

1) Stores all the architectural (device-dependent) information 
associated with supported devices and supplies this data to 
the compiler and JEDEC fuse-map generator. This arrange­
ment makes the latter modules transparent to variations in the 
architecture of the devices. 

2) Provides the flexibility to add new devices - making the 
PLPL environment more powerful. All it takes to add a new 
device is adding a description file to the PLPL data base. 

3) Serves as a standard cell library, thereby automating 
programmable logic design. The PLPL data base supports all 
current AMD PAL devices. 

PLPL List Equations 

The PLPL list equations lists all the PLPL-generated Boolean 
equations. 

PLPL Optimizer 

The PLPL-optimizer package optimizes the list of Boolean 
equations generated by the PLPL compiler. By reducing all 



redundant product terms, this package results in an optimum 
list of equations. 

PLPL Test-Yector Generator 

The PLPL test-vector generator generates test vectors for a 
PLPL-design specification. ;The test vectors can be used by 
the PLPL simulator to test the device exhaustively. 

PLPL Simulator 

The PLPL simulator enhances the confidence that the device 
will function as designed. In PLPL, simulation is performed 
with user-created test-table files consisting of input and 
expected output (optional) test vectors. The PLPL simulator 
uses the test vectors and the outputs of the PLPL compiler 
(intermediate equation) to model the device's output behavior. 
The simulator's output is compared to the expected test­
vector outputs, if specified, and error messages are issued 
when results do not match. A test table may be concatenated, 
or linked, with the design-input specification, or it may be kept 
in a separate file. Separating the test table from the device 
specification provides flexibility, allowing more than one test 
table to be attached to a design. 

JEDEC Fuse-Map Generator 

The JEDEC fuse-map generator accepts design details from 
the PLPL compiler. It is employed following successful simula­
tion. It arranges the fuse pattern required for programming the 
device into a JEDEC-transfer format. This format is supported 
by all major suppliers of logic programmers. This module 
generates a fuse map that can be down-loaded directly to a 
PAL/PROM programmer. 

PLPL Input Specification 

Figure 2-8 shows a simple PLPL-input specification. It is an 
example of an 8-bit shift register implemented with the 
AmPAL22V10. The system editor is used to create the input 
specification. In general, a minimum PLPL input specification 
requires a HEADING, a PINLlST, and an EOUATION section. 
(The example shown contains additional comment strings and 
an optional macro section.) 

Heading (Keyword DEYICE) 

The heading identifies a title for the design along with the 
device used. The heading begins with the keyword, DEVICE. 
An optional title may follow the keyword. It is separated by 
white space (space(s), carriage return(s), or tab(s». The 
device used is enclosed within parentheses following the title 
much like a function call in high-level software. In the example, 
the title is SHFT8BIT and the programmable device used is 
the AmPAL22V10. 

Optional Comment String 

In the example, a comment string appears between the 
heading and pinlist. A comment string is initiated and terminat­
ed by the double quote symbol, and all text between double 
quotes is ignored by the compiler. Comment strings may 
appear anywhere in the specification, where a white space 
can legally appear. 

Plnllst (Keyword PIN) 

The pin list assigns symbolic names to the pins within the 
device to help describe each pin's actual function. The pinlist 
begins with the keyword PIN. The general format in which the 
pin name and number is entered is as follows: 

PIN NAME = PIN NUMBER 

example: CLOCK = 1 

The pin name represents the user-specified symbolic name; 
the pin number is the actual device pin; the equal sign links the 
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two. Pin names and number may be separated from the equal 
sign with white space. The pinlist may be entered in any order, 
with white space as a separator between the keyword and the 
first entry, and also between succeeding entries. The pinlist is 
terminated by a semicolon. In addition, multiple pins may be 
grouped in a single statement designated as a pin vector. 
Examples from Figure 2-8 are shown below: 

example: 0[7:0] - 3,4,5,6,7,6,9,10 
(same as 0[7] - 3, 0[6] - 4, 0[5] .. 5, 0[4] - 6, 0[3] - 7, 

0[2] - 8, 0[1] - 9, 0[0] - 10) 
example: 0[0:7)" 15:22 

The symbolic pin-vector name is concatenated with numbers 
for each symbolic pin enclosed in brackets. There is a one-to­
one mapping of the symbolic pin-vector name with the 
symbolic pin enclosed in brackets (Le. 0[7] = 3, 0[6] = 4, etc.). 
A colon is used to define a sequential series of numbers and a 
comma is used to concatenate numbers. Colons and commas 
can be used together for both symbolic and actual pin-number 
declarations. 

Optional Macro Sect/on (Keyword DEFINE) 

A macro section appears between the pinlist and equation 
sections of the example. This section begins with the keyword 
DEFINE followed by white space. Each macro definition is 
terminated with a semicolon, and white space can be used for 
formatting purposes. A macro allows function(s) with fixed 
arguments to be defined with a single symbolic name and 
'used repeatedly throughout the equation section. Note that 
LOAD, SHFTR, SHFTL, and HOLD were defined in the macro 
section and used in the equation section as part of the 
definition of 0[7] through 0[0). 

Equations (Keyword BEGIN) 

The equation section is used to define the functions assigned 
to each of the output pins. The equation section begins with 
the keyword BEGIN followed by white space, and is terminat­
ed with the keyword END. (The period must follow END.) The 
general Boolean format for equations used in the examples is 
shown below: 

PIN NAME : = EXPRESSION; 

example: 0[7): = LOAD*D[7] + SHFTR*RILO+ 
SHFTL*0[6) + HOLD*0[7); 

example: RILO = 0[7); 

Where the EXPRESSION is a sequence of PIN· NAMES (or 
their complements) separated by operators, and the PIN 
NAME is the symbolic input/output (or its complement) taken 
from the pinlist, the operator ":-" defines a sequential 
expression and "=" defines a combinatorial expression. The 
operators used in the examples are shown below: 

Operator Symbols: *: - AND (product) 
+ -OR (sum) 

PLPL Benefits 

I - NOT (complement, prefix 
to an expression) 

; - expression terminator 
:= - sequential expression 
= - combinatorial expression 

The major benefit of using PLPL is that it decreases the time 
and costs associated with creating a design. This is possible 
because PLPL permits a device to be developed, simulated, 
and modified before it is programmed. It is also possible 
because PLPL is structured, self-documenting, and easy to 
employ. 

PLPL has been released into the Public Domain and is 
available free of charge to any user. 



DEVICE 

PIN 

DEFINE 

BEGIN 

CLOCK 
RILO 
0[7 :0] 
0[0:7] 

LOAD 
SHFTR 
SHFTL 
HOLD 

SHFTOBIT (AmPAL22V10) 

"This is a simple example of an 8-bit 
shift register using the AmPAL22V10." 

RESET = 13 SEL [ 1 : 0] = 2,11 
23 LlRO 14 
3,4,5,6,7,8,9,10 
15: 22 

ISEL[O] 
SEL[O] 

ISEL[O] 
SEL[O] 

ISEL [1]; 
ISEL [1]; 
SEL[ 1]; 
SEL[ 1]; 

"loads data" 
"shifts right" 
"shifts left" 
"holds data" 

IF (RESET) THEN ARESET (); 

IF (SHFTL) THEN ENABLE (RILO) ; 
RILO 0[7] ; 

0[7] LOAD*D [7] + SHFTR*RILO + SHFTL*O [6] 
0[6] LOAD*D [6] + SHFTR*O [7] + SHFTL*O [5] 
0[5] LOAD*D [5] + SHFTR*O [6] + SHFTL*O [4] 
0[4] LOAD*D [4] + SHFTR*O [ 5] + SHFTL*O [3] 
0[3] LOAD*D [3] + SHFTR*0[4] + SHFTL*O [2] 
0[2] LOAD*D [2] + SHFTR*0[3] + SHFTL*1 [1 ] 
O[ 1] LOAD*D [0] + SHFTR*O [ 1 ] + SHFTL*LlRO 

IF (SHFTR) THEN ENABLE (LlRO); 
LlRO = 0 [0] ; 

END. 

Figure 2-0. Sample PLPL Input Specification 
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+ HOLD·0[7] 
+ HOLD*0[6] 
+ HOLD*0[5] 
+ HOLD*0[4] 
+ HOLD*0[3] 
+ HOLD*O [2] 
+ HOLD*O[O] 



2.2 PROGRAMMING HARDWARE 

AMD's programmable logic devices are manufactured using 
IMOX, a high-performance, oxide-isolated process. Platinum­
silicide fuses are used for the device programming elements. 
The platinum-silicide-fuse technology has a superior record of 
programming yield and reliability. Programming algorithms 
have been developed by AMD to achieve consistent program­
ming yields in excess of 99%. To maintain this extremely high 
programming yield, AMD subjects all approved programming 
equipment to a complete testing and qualification procedure. 

The fusing algorithm, which is described in detail in the 
reliability report, is designed to minimize tight tolerance 
requirements on the programming equipment. Input pins are 
used in the programming mode to gate fusing current through 
the programming path from a programming voltage applied to 
an output. The delivery of fusing current is therefore controlled 
by the switching speed of internal circuitry, not programmer 
circuitry. This minimizes the need for programmer recalibra­
tion. However, it is strongly recommended that users maintain 
a log with each programmer to collect a record of the hours of 
service use and the programming yield of each lot. The 
programming equipment should be calibrated after every 50 
hours of service or whenever AMD PAL programming yields 
fall below 98%. 

PROGRAMMER APPROVAL CRITERIA 
Full details of the required programming parameters, wave­
forms and addressing schemes are provided on each device 
data sheet. 

The minimum requirements for approval of a programmer by 
AMD are: 

1) Must support all current AMD PAL products. 

2) Must achieve at least 98% programming yield. 

3) Must accept download of a JEDEC-standard PLDTF file via 
an RS-232C input port. 

4) Must generate a JEDEC-standard checksum. 

5) Must verify at HIGH and LOW Vee extremes after program­
ming. 
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6) Must program and verify the security fuse. 

7) Must be capable of reading a non-AMD PAL device and 
storing the pattern during any adaptor and/or setup changes 
necessary for programming the pattern into an AMD device. 

Although not required for AMD approval, additional desirable 
features are: 

1) Support of JEDEC-standard structured test vectors. 

2) Support of some form of signature test scheme using the 
signature of a known good part. 

3) Continuity test capability. 

4) Fast programming and' verification. 

5) Handler support. 

WHY USE AN AMD·QUALIFIED 
PROGRAMMER ? 
Programmers qualified by AMD have been tested for all the 
required features. They have been checked for accuracy of 
the programming voltages, currents, and timing parameters. In 
addition, a yield sample has been run to confirm that yields 
meet AMD's high standards. AMD considers the qualification 
procedure very important to maintaining control of the pro­
gramming conditions seen by AMD parts and thereby assuring 
excellent customer programming yields. For this reason, AMD 
reserves the right to disallow any returns of product pro­
grammed on an unqualified programmer. 

QUALIFIED PROGRAMMING EQUIPMENT 
The list of AMD-qualified PAL programmer models appears in 
Table 2-2. New programming equipment and vendors are 
constantly under evaluation. Contact your AMD Field Applica­
tions Engineer or the factory to determine the approval status 
of any equipment not listed here. 

AMD is commited to maintaining continued close working 
relationships with the major programmer manufacturers so 
that new programmable logic devices will be properly support­
ed in a timely manner. 



TABLE 2·2. AMD·QUALIFIED PAL PROGRAMMER MODELS 

Vendor Programmer 
AMD PAL 

Socket Personality 
Models Module 

Adapter 

DATA I/O Corporation 
10525 Willows Rd. N.E. 
P.O. Box 97046 

MODELS 100A, 19, LOGICPAK 303A-004 

Redmond, WA 98073-9746 
(206) 881-6444 

DIGILEC, INC. 
1602 Lawrence Ave. 
Suite 113 
Ocean, NJ 07712 
(210) 493-2420 

29A, 29B 

UniSite 40 

803 

303A-011A 
303A-011B 

Not Required Not Required 

FAM52 DA53, DA55 

KONTRON ELECTRONICS, INC. 
1230 Charleston Road 

MODEL-MPP-80S Not Required SA37 
or EPP80 , 

Mountain View, CA 94039 
(800) 227-8834 

STAG MICROSYSTEMS 
528-5 Weddell Drive 
Sunnyvale, CA 94086 
(408) 745-1991 

MODEL-PPZ ZM2200 Not Required 

ZL30AlZL32 Not Required Not Required 

SD1040 Not Required Not Required STRUCTURED DESIGN, INC. 
988 Bryant Way PAL Burner 
Sunnyvale, CA 94087 
(408) 737-7131 . 

VALLEY DATA SCIENCES 
2426 Charleston Road 
Mountain View, CA 94043 
(415) 968-2900 

VDS 160 Not Required Not Required 

JMC PROMAC DIVISION 
2999 Monterey Highway 
Monterey, CA 93940 

PROMAC-P3 Not Required Not Required 

(408) 373-3607 

GENERAL GUIDELINES FOR USING 
PROGRAMMING HARDWARE 

There are two common situations when a PAL user wants to 
program parts: 

1) The user has a master device and wants to program the 
master pattern into new unprogrammed parts from the same 
or from a different manufacturer. 

2) The user has a file that is in JEDEC-standard Programmable 
Logic Data Transfer Format (PLDTF) and wants to send the 
file to a programmer and program parts. 

All AMD-approved programmers can accomplish either of 
these tasks. Here are some general guidelines. 

Programming with the Use of a Master Device 

Suppose you have a master device and you want to program 
an AMD device of the same type with exactly the same 
pattern. The master device can be an AMD device or another 
manufacturer's functionally equivalent device. Follow these 
steps: 

1) Set the programmmer to read (or copy) the master device. 
This may require having a hardware adaptor for the master 
and entering a product code unique to the manufacturer and 
device type. 

2) Install the correct adaptor (if required). Enter the appropri­
ate product-code information. Then place the master device in 
the correct socket and read its fuse pattern into the program­
mer memory. Use whatever button-pushing sequence is 
required by the programmer for this operation. 
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3) The pattern is now in the programmer memory and will 
remain there unless the memory is cleared or the programmer 
power is turned off. Changing an adaptor or product code will 
not erase the memory. Usually at the end of a copy operation 
a checksum will be displayed. Make a note of this number. The 
checksum is an algorithmically calculated code unique to the 
pattern loaded into memory. It can be very helpful in diagnos­
ing any programming problems. If a part is to be reused 
frequently as a master device, it is good practice to write the 
checksum on the top of the part. Never proceed with 
programming without checksum agreement after reading a 
master. 

Error Detection 

As a matter of curiosity, take the part out of the socket once 
and read an empty socket; also read a known blank part (using 
the right adaptor). Checksums from these two situations will 
be helpful in diagnosing two common problems when pro­
gramming from masters: A) Forgetting to lock down the socket 
lever to make good contact after loading a part, and B) 
Loading an unprogrammed part as a master by mistake. 

4) Now prepare the programmer for the AMD device to be 
programmed with the master pattern loaded into memory. 
Some programmers require different adaptors for different 
manufacturer's parts. If the programmer being used has this 
requirement be sure to use an AMD adaptor only for AMD 
parts. Using a non-AMD adaptor can cause permanent dam­
age to AMD parts. Always check for adaptor compatibility. 

5) Everything's okay. You have the AMD adaptor, the right 
AMD device code, and you wrote down the checksum that you 



got after loading the master. Now put the programmer in the 
mode used for programming from its memory and execute the 
programming operation. 

There is some variation in the sequence of events carried out 
by different programmers during the programming cycle, but 
all of them program and verify the appropriate fuses to match 
the pattern in the programmer memory. Such operations as 
Blank Checks, Illegal Bit Checks, Test Vector Testing, and 
Security Fuse Programming can be a part of the programming 
sequence. Check the Programmer Manufacturer's manual for 
the availability and appropriate use of these features. 

The essential part of the programming cycle is the program­
ming and verification of each fuse followed by a verification of 
all fuses at both LOW and HIGH Vee. At the very end of the 
programming sequence you will see the checksum for the part 
you have just programmed. This checksum should agree with 
the master-part checksum. You now have an AMD part that is 
functionally identical to the master. 

Programming from a JEDEC File 

A JEDEC-standard file is the output of design-software pack­
ages used to specify fuse-blowing information to a program­
mer. All programmers approved for use on AMD parts will 
accept JEDEC files. A JEDEC file is normally prepared on a 
computer. The unique aspect of programming from a JEDEC 
file is the transfer of the file to the programmer. After the file 
has been transfered into the programmer, the programming 
task is identical to programming from a master with one 
exception. The exception is that design software may be used 
to prepare test vectors to be applied to a device immediately 
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following the programming cycle. These vectors will be 
transmitted with the JEDEC fuse file and they have a JEDEC­
standard format of their own. 

General guidelines for transfer of a JEDEC file and program­
ming are as follows: 

1) Make sure your file is in the standard JEDEC format. This 
will not be a problem if you are using software for file 
preparation that adheres to this standard. 

2) Connect the JEDEC file source to the programmer with an 
RS-232C cable. The programmer manual will describe the 
connection details. 

3) Prepare the programmer for receiving a JEDEC file over a 
link. This will generally involve entering the product-code 
information and putting the programmer into a ready-to­
receive mode. 

4) Transmit the file from the computer source using commer­
cially available communications software or operating-system 
file-transfer software such as PIP. 

5) After transmission a checksum should appear on the 
programmer display. Part of the JEDEC-standard file is a 
checksum. If the displayed checksum is the same as the 
JEDEC file-generated checksum, transmission has been suc­
cessful. 

6) Program an AMD PAL device now by first installing an AMD 
adaptor (if needed) and then entering the programming mode. 
Finally, put a part in the socket and execute the programming 
operation. 



2.3 TESTING INFORMATION 

Section 2.3.1 and 2.3.2 describe in detail the general testing 
requirements for programmable logic devices and how AMD 
has designed-in special test circuitry to permit complete 
testing on its programmable logic devices. Section 2.3.3 
explains why it is difficult for a programmable-logic device 
manufacturer to provide specifications for switching delay 
minimums. 

2.3.1 FACTORY TESTING OF PAL 
DEVICES 
Advanced Micro Devices' bipolar PAL devices include special 
test circuitry to permit thorough AC and DC testing on an 
unprogrammed unit. The test circuitry is used to ensure good 
programming yield and to verify that devices will meet all 
parametric and switching specifications after programming. 

Programming circuitry testing includes tests to assure unique 
addressing of all fuses. The ability of all circuitry in the 
programming path to handle the large currents and voltages 
necessary to blow fuses reliably is also thoroughly checked. 
To accomplish this, special test pads are provided which are 
accessible only during wafer probing. Using these, AMD 
confirms that each fuse driver is uniquely decoded and can 
deliver and sink the necessary current to blow fuses. 

Each PAL device has special test fuses. These test fuses are 
blown during factory testing to prove beyond reasonable doubt 
that the device is capable of opening all fuses when pro­
grammed by the user. 

The special probing pads and test fuses are all employed in 
programmability testing. This testing coupled with AMD's 
excellent process control gives industry-leading programming 
yields (> 98%) for all AMD PAL devices. 

Other test circuitry, enabled by high voltages on device pins, 
checks functionality, AC and DC parameters under conditions 
that simulate post programming operation. All of the circuitry, 
levels and modes necessary to operation after programming 
are checked under worst-case conditions. For example, all 
input buffers are tested for functionality by switching them 
through a test product term to a single output, and all product 
term AND gates are switched and sensed for uniqueness and 
functionality. 

Because a large percentage of die area is devoted to fixed­
logic circuitry, some percentage of units can fail to function to 
the desired truth table, even though all fuses are correctly 
programmed. This problem will vary from manufacturer to 
manufacturer. Without effective on-Chip test circuitry, function­
al yield after programming is largely dependent on process 
control. As a result, lot-to-Iot variability of AC performance and 
functionality is to be expected from manufacturers with test­
circuitry deficiencies in their products. 

AMD's special test circuits and extensive factory-testing 
procedures have almost entirely eliminated this problem 
( > 99.9% PPFY). However, if absolute assurance is required, 
functional testing with test vectors simulating actual operation 
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can be performed on PAL-device programmers or automatic 
test equipment. 

Test vectors are relatively easy to generate for combinatorial 
designs using PAL devices. Sequential function testing is more 
difficult. AMD's PAL devices are designed to provide the 
capability of loading the output registers to any desired value 
during testing. This feature, known as PRELOAD, simplifies 
functional testing of sequential devices. Sequencer products 
such as the AmPAL23S8 include buried registers. A feature 
called OBSERVABILITY has been designed into these prod­
ucts along with PRELOAD to allow control and functional test 
of the buried registers. Other features which AMD verifies with 
built-in test circuitry are polarity, asynchronous RESET, syn­
chronous RESET and output macrocell functionality. 

2.3.2 HOW TESTABILITY IS DESIGNED 
INTO AMD'S PROGRAMMABLE LOGIC 
DEVICES 
Thorough testing of programmable logic devices by the 
manufacturer is important to both the performance of pro­
grammable logic and its cost of use. 

Field programmable logic devices are different from other 
semiconductor products in that the user must complete the 
manufacturing process by programming and function testing 
the parts. 

Programming is normally accomplished on commercially avail­
able programming equipment. Functional testing may be 
performed on a programmer, on automatic-test equipment, or 
at the board or system level. Figure 2-9 illustrates where 
device failure detection can occur. Clearly, the cost implica­
tions of failure become more serious with each advancing 
step. 

As a result of assuming the responsibility of programming and 
test, the user gets all the benefits of a custom function with the 
cost and availability advantages of a standard product. How­
ever, the user must also deal with those parts that don't 
program successfully or don't function to advertised specifica­
tions after programming. 

The earliest programmable logic devices did not include test 
circuitry to allow thorough testing of the AC and functional 
performance prior to programming. AMD was the first manu­
facturer to add test circuitry to allow thorough device testing. 

How well a manufacturer does the job of testing before 
shipping can make a difference to the user in: 

1) Programming yield 

2) Post programming functional yield (PPFY) 

3) Uniformity of performance 

This paper describes the techniques used at Advanced Micro 
Devices to allow testing of these three important attributes on 
every device before shipment to the user. 
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Figure 2-9. User-Processing of Programmable Devices 

Programming Yield 

Programming yield is the measure of success of the program· 
ming operation. Large-volume users of programmable logic 
keep records of the programming-yield history of their suppli­
ers' parts. Programming yield is considered by these users to 
be an Important element in judging the overall suitability of 
different suppliers' parts. 

Why do users care? After all, manufacturers offer a "money­
back" guarantee on all valid programming rejects. The users 
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can simply keep the rejects separated from the good parts and 
send the bad ones back to the manufacturer for credit or a 
refund. 

This sounds simple, but Figure 2-10 shows what could be 
involved. 

Everybody loses in this operation. The manufacturer loses in 
return handling and evaluation costs; the user loses in return 
handling costs and also in added purchasing and inventory 
costs to compensate for programming yield losses. 
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Figure 2·10. Reject Return Processing 

Post Programming Functional Yield 

Experienced PROM and EPROM users are sometimes puz­
zled by the fact that not all programmable logic devices 
function correctly even though they have successfully com­
pleted a programmming operation and fuse verification check. 

With PROMs, a one-for-one relationship exists between ad­
dress states and programming elements·. That is, the state of 
each output for each address is dependent on the condition of 
only one fuse. Sensing a desired fuse state after programming 
therefore practically guarantees correct functional operation 
(At least at the voltage and temperature conditions of the 
programming operation). 

With programmable logic devices, the relationship between 
programming success and post programming functionality is 
not one-for-one. Except for the simplest of patterns and 
devices, the relationship is highly complex. Feedback buffers 
allow the creation of more than one level of logic; latches, 
counters, shift registers, even oscillators can be created. 
Special fuse functions such as polarity control, output enables, 
register/nonregister selection, and buried registers complicate 
the relationship further. 

This is the power of programmable logic - but the test 
challenge that results from this versatility can be substantial. 
Logic states for programmable logic devices can be multiple­
fuse dependent. The fuse-verification procedure that exam­
ines each fuse uniquely is therefore not sufficient, as it is with 
PROMs, for guaranteeing functionality. 

All programmable-logic-device manufacturers must create 
special on-chip programming circuitry and modes to allow 
programming and verification of each individual fuse. A review 
of the data sheets for different manufacturers' products gives 
a good idea of the special requirements for programming 
programmable logic devices. The complexity of programming 

may vary significantly from manufacturer to manufacturer, but 
all have one thing in common - successful programming by 
itself cannot guarantee functionality. 

The user's job does not end then with the programming 
operation. To be assured of a functional part, a comprehen­
sive set of test vectors must be designed by the user and 
applied to the part. Many programmable-device programmers 
accept test vectors along with fuse-blowing vectors and will 
apply the test vectors to the part following the programming 
operation. AMD's PRELOAD feature greatly simplifies the test 
generation problem for registered parts. 

Test-Vector Generation 

The matter of test vector-generation is not trivial. The logic 
designer can generally write a series of functional states 
representing the expected operation of the part in the actual 
application, but what about all of the Don't Care states? 

A great deal of work is going into automatic test vector 
generation for programmable logic devices. Parts manufactur­
ers, programmer manufacturers, design software manufactur­
ers and users all have efforts in progress. Some products are 
on the market. 

Effective test vector generators have been or will be devel­
oped, but convenience will be key to their routine application. 
To be convenient to use generators must run on a wide variety 
of computing eqUipment, but best of all, they should run on the 
same equipment used to process the logic equations into fuse 
blowing vectors. Efficient algorithms will be needed so that 
large mainframe computers are not required to generate test 
vectors for the more complex parts. 

Data 110's Fingerprint 

Another alternative for function testing is a Signature-test 
technique such as Data 1I0's "Fingerprint". This technique 

• Programming elements can be fuses. floating.gate MOS devices. open-base NPN transistors. etc. 
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applies a pseudorandom series of test vectors to a known 
good part and generates a Fingerprint value based on its 
response. Each part tested thereafter must generate the same 
Fingerprint to be considered a "good" functional part. 

To our knowledge, no one has done comprehensive studies of 
the effectiveness of this technique. Our limited observation 
indicates that the Fingerprint test is much better than no test 
at all. However, certain patterns can give unpredictable 
responses when subjected to random test conditions. Parts 
with these patterns cannot be Fingerprint tested reliably. 
Structured vector testing with either automatically or manually 
generated vectors is needed in these cases. The benefit of the 
Fingerprint approach is that it requires no effort on the part of 
the user, other than recognition of non-Fingerprintable pat­
terns. 

Post programming functional yield (PPFY) is clearly another 
distinct measure of the quality of a programmable-logic-device 
manufacturer's parts. Although the user has the same right of 
return as with programming rejects, detection of bad parts can 
be significantly more complex and more costly at this stage. 

As shown later in this chapter, the part manufacturer can 
design-in additional test circuitry that guarantees virtually 
100% post programming functional yield. 

Uniformity of Performance 

The buyer of a programmable logic part has the right to expect 
that the performance specifications appearing on the manu­
facturer's data sheet will be met for all legitimate applications 
of the part. This applies to each and every logic path and 
function. 

A glance at the logic diagram for an unprogrammed part 
shows that, with the array in its unprogrammed state, no 
amount of activity of the inputs can make any output switch. 
Without any fuse programming, the AND gates see both the 
true and complement of all inputs. 

Obviously if post-programming performance is to be guaran­
teed with confidence, test circuitry must be provided to allow 
each path to be tested to data-sheet performance before 
programming. Manufacturers vary in the degree to which they 
provide this pre-programming testability within their parts. The 
uniformity of performance of devices will reflect the degree of 
testability that has been designed-in. 

Approach to Designing In Testability In AMD's . 
PAL Devices 

AMD's approach to the the design of programmable logic was 
strongly influenced by the goal to provide users with the 
industry's best programming yield, post programming function­
al yield and uniformity of performance. 

Designing programmable logic can be viewed as a three­
dimensional task involving high-performance logiC design, 
fuse-programming circuit design,and test circuit design. 

The first dimension is the design of a high-performance logic 
circuit with SSI/MSI-competitive switching speeds and very 
high output drive for bus environments. 

The second dimension of programmable logic design is the 
programming circuit design. The emphasis of this design is to 
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provide circuitry that will deliver large programming currents to 
individual fuses. Special decoders, demultiplexers, buffers, 
and mode-select circuitry are needed. The circuits need not be 
fast since programming occurs at microsecond speeds. Be­
cause the circuitry is not used after programming, it ,is 
desirable that it only consume power during programming and 
not during operation. Since large voltages are required to 
generate fusing current, survival under high voltage is also a 
must. All of these requirements are quite different from the 
logic-circuit requirements but must be achieved within the 
same part. 

Testability is the third dimension of programmable logic 
deSign. This overlay of circuitry provides the means to 
exercise the part through all of the possible paths that might 
be activated by programming. Another need for test circuitry is 
to insure that the programming circuitry will function properly. 
Testability is then important to achieving high programming 
yields, post-programming functionality and performance to 
data-sheet specifications through all possible paths. 

The unique challenge of programmable logic design is to 
integrate these three dimensions in the most efficient manner. 
This is no easy taskl 

Testability In the Programming Circuitry 

Good programmi!1g yields are in the high ninety percents. 
AMD PAL programming yields are typically higher than 98%. 

Three things contribute to AMD's high success rate in blowing 
fuses: 

1) Uniform fuse cross sections, 

2) Pre-testing of the current delivery and sink capability of 
column drivers and row drivers through use of wafer-sort test 
pads, and 

3) Sample fusing of test rows. 

Uniformity of Fuse Cross Sections 

The AMD IMOX process gives consistently uniform, platinum­
silicide fuse cross sect,ions. Uniformity is monitored by mea­
suring fuse-resistance test patterns on a sample basis in every 
wafer lot. The data is processed for mean and standard 
deviation and trend plots are maintained. Material not meeting 
fuse-width-control limits is scrapped. 

Testing for Fusing Current Delivery Capability 

On every AMD PAL device there are two extra pads that are 
probed at wafer sort. These extra pads are used to gain 
access to the fuse array for special testing at wafer sort. The 
connection of these pads to the fuse array is shown in Figure 
2-11. 

The programming process involves selection of individual 
column and row drivers to deliver and sink programming 
current through x-y selected fuses. The extra test pads allow 
easy access for individually testing the source and sink 
capability of each column and row driver. Also a reverse­
leakag~ check of all of the Schottky diodes in the array is 
possible by applying bias between the pads. Without the test 
pads, all of these tests would be impossible or would have to 
be accomplished in a less direct and less effective manner. 
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Figure 2-11. Extra Test Pads for Wafer-Sort Testing of the Column and Row 
Drivers and the Fuse Array 

Sample Programming 

To further assure programmability, the AMD PAL devices 
include an extra test input buffer with fuses connected to each 
of the array columns. 

Blowing one test-buffer fuse per column accomplishes two 
important things. First, a sample fuse has been blown using 
each of the column drivers. The sample fuse is exactly the 
same dimension as all of the normal array fuses, and the test­
buffer drivers sinking the programming current are of identical 
design to all of the normal drivers. Before shipment, then, 
each AMD PAL device has had a sample of fuses blown on 

2-47 

the test buffer. For example, sixty-four fuses are blown on the 
test word of every AmPAL16L8, one per product term. 

The second purpose in blowing the sample fuses is to create a 
pattern for AC and functional testing. 

Testability to Guarantee Functionality After 
Programming 

A typical PAL device, the AmPAL16R4, is shown in Figure 2-
12. Not shown in the logic diagram are the components 
located at each horizontal and vertical line intersection. For 
AMD bipolar-PAL devices, a fuse and a Schottky diode reside 
at each cross pOint as shown in Figure 2-11. 
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Figure 2-12. AmPAL 16R4 Logic Diagram 
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The horizontal or "Product Term" line is then the common 
anode connection for a 32-wide diode AND gate. The user's 
job is to figure out which of the thirty-two inputs should be 
connected to the AND gates. The inputs not needed must be 
disconnected by blowing the fuse shown in series with the 
diode. 

Thankfully this decision does not have to be made 2,048 
(32 x 64) times by a user'. Through the wonders of deSign-aid 
software ( PALASM, ABEL, CUPL, PLPL, etc.), the user simply 
writes a few Boolean equations describing the desired func­
tion of the device. The software then generates fusing 

TYPICAL 
INPUT OR 
FEEDBACK 
BUFFER 

INPUT 
INPUT 

TRUE CONNECTED 
COMPLEMENT 
UNCONNECTED 

instructions for a programmer and all of the undesired AND­
gate connections are blown away. 

The obvious problem from a manufacturer's test standpoint is: 
"How can it be guaranteed through testing that the device will 
work after fuses are blown?" If the only logic in the device was 
that shown in Figure 2-12, there would be no chance. With 
sixteen LOW levels and sixteen HIGH levels presented to 
each AND gate, the LOWs win. All sixty- four AND outputs are 
always stuck LOW, and there is no way to get the output to 
wiggle for AC- or DC-test purposes. This is the raw state of any 
device before programming. . 

TEST ENABLE 

TEST 
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GATE 

FEEDBACK 
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Figure 2-13. Testing All Input and Feedback Buffers through the Special Test 
AND Gate 

Necessary Testability Requirements 

Something more is needed in every PAL device to assure 
100% functional yield after programming. The AMD PAL 
deSigns have an overlay of test circuitry that accomplishes the 
following: 

1) Each input and feedback buffer can be checked for 
functionality. 

2) Each of the AND gates can be switched HIGH and LOW 
and uniquely sensed by an output. 

Achievement of these two things is necessary to the guaran­
tee of 100% post programming functional yield. 

Under normal operating conditions the test circuitry is Inactive 
and consumes very little power. What causes it to come alive? 
Supervoltagesl Supervoltages are levels substantially higher 
than Vee so that under normal operating conditions accidental 
activation of a test mode cannot occur. 

In this paper a double line on the input side of a logic symbol 
indicates that the HIGH level must be a supervoltage to 
activate it. 

Checking the Input and Feedback Buffers 

Functionality of the input and feedback buffers is checked with 
the aid of the extra AND gate dedicated to this function. Figure 
2-13 illustrates the AND gate and its associated enabling 
circuitry. 

The non inverting or true side of each input and feedback 
buffer is connected to the special test AND gate. The AND 
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gate is activated by a supervoltage on one of the input pins. 
The function actually takes two activating inputs to implement 
since the use of one for activation prevents that pin from being 
tested for functionality. Having an alternate pin to activate the 
function solves this problem. 

Only the non-inverting side of each buffer is hooked up to the 
AND gate because each buffer is constructed from two 
inverters in series. The first inverter must work for the second 
one to work. so that checking the second one is sufficient to 
prove that they both work. . 

The feedback from the output used for the test cannot be fed 
to the test AND gate, such a connection would make the test 
output oscillate. For this reason its feedback Input is not 
connected and is tested by creating another test AND gate on 
a different output and routing it there. 

Since the special AND gate used to test all of the buffers is 
identical to those used in the normal operating path, switching 
each input through this path provides the means for testing the 
switching performance of each buffer. 

Testing the AND Gates 

The next important test requirement is to make sure that all of 
the AND gates work and will switch at data-sheet speeds. This 
test challenge is a little more complex. 

What is needed in this case is: 

1) A means for decoding one AND gate at a time in each 
output. 



2) A way to force all input and feedback buffers to a HIGH 
level on both true and complement outputs. 

3) A special input of identical design to a normal input that can 
be used to switch the decoded AND gates. 

These requirements are met by the circuitry shown in Figure 
2-14. 

The decoder to select one AND gate at a time in each output 
serves a dual purpose. It is the same decoder that provides 
unique selection of product term lines for the programming 
and fuse-verify operation. It responds to binary combinations 
of TTL signals at three input pins and provides one of eight 
active-HIGH level signals to decode the AND gates. 

The special test input that is used in this mode also serves a 
dual purpose. It was mentioned earlier in this paper that a 
programming sample was performed on each part. This 
special test input is the input that carries the test fuses. During 
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the sample programming operation the fuses are blown in a 
pattern that allows switching of all sixty-four AND gates, one in 
each output, for each of the eight decode states. 

The input to the special buffer for AND-gate testing is one of 
the normal input pins, but the buffer is inactive for normal 
operation and must be activated by supervoltage levels 
applied to two other inputs. 

The supervoltage levels also provide the signal to force all of 
the buffer outputs HIGH, which is one of the three necessary 
requirements for AND-gate testing. 

Since the design of the special buffer is identical to all of the 
normal input buffers, it serves as a surrogate buffer for speed 
testing all of the AND gates. In the AND-gate test mode, all 
eight outputs are switched at once, since one AND gate is 
selected in each output. For registered outputs, the AND-gate 
switching path provides the means to test setup and hold 
times. 

NORMAL 
INPUTS 

AND 
GATES 
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Figure 2·14. Testing All AND Gates through the Special Test Input Buffers 

Uniformity of Performance 

Only a complete test to data-sheet parameters by the manu­
facturer can assure uniformity of performance. There is no 
other way. Pronouncements of "guaranteed by design" 
should be read as "too difficult to test or no allowance for 
testing". 

This paper has shown it is possible to design-in the means to 
exercise all switching paths in AMD PAL devices to data-sheet 
limits and conditions before programming. 

The user of AMD PAL devices, therefore can expect excellent 
uniformity of performance to the data-sheet parameters after 
programming. 
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Summary 

The central idea of this paper is that design for testability prior 
to programming is possible in programmable logic - and it 
pays off. It pays off for the user in fewer rejects at program­
ming and at functional and AC test. For those that have no 
means for functional test after programming it pays off in not 
having to locate a defective part with a board- or system-level 
test. For the semiconductor manufacturer it pays off in lower 
returns handling cost. 

All Advanced Micro Devices programmable logic devices have 
designed-in testability and are achieving yields of greater than 
98% for programming and better than 99.9% functional and 
AC test yields after programming. Even higher goals have 
been set for future products. 



2.3.3 SPECIFICATIONS FOR SWITCHING· 
DELAY MINIMUMS 

All system designers would like non-zero minimum-delay 
specifications, as well as maximum-delay specifications for all 
AC parameters. With these numbers they could optimally 
design system timing. Device manufacturers understand this 
need and would like to meet it. Two major reasons make it 
impractical to provide minimum specifications. 

The first reason is that maximum specifications are based on 
conditions that create a "worst-case" environment for the 
device. Maximum loading, longest delay path, multiple output 
switching, and Vee and temperature at worst-case extremes 
are examples of these conditions. These conditions can be 
closely duplicated in an automatic-test-system environment 
and therefore can be guaranteed by test. 

In contrast, minimum-delay specifications must be based on 
"best-case" conditions for a device. It is true that in a system 
both completely best-case and worst-case conditions for a 
group of devices could not practically coexist. However, 
anything other than the best "best case" cannot be assumed 
when providing specifications on a data sheet. 

The device manufacturer is then faced with trying to create a 
"best-case" environment for test in order to guarantee 
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minimums. This requirement is inconsistent with the high­
volume test environment of handlers, high-capacitance test 
heads, etc. 

The second major problem with providing minimum specifica­
tions is the-constant evolution and upgrade of products to 
achieve better performance. Minimum specifications are an 
unreasonable constraint to this effort. 

Many system lifetimes are longer than the product lifetimes of 
the ICs from which they are designed. This means that more 
than one generation of an IC must meet the original system 
needs. A common reason for IC redesign is to make products 
faster. Faster products then replace the previous generation 
slower products. The conflict of this trend with guaranteed 
minimums is obvious. 

A good example of the evolution of product performance is the 
popular AmPAL 16L8. Before AMD entered the PAL-device 
market this product was originally offered with 35 ns speed. 
AMD entered the market with 25-ns parts and speed selec­
tions of 20 ns. The next evolution was to 15 ns, and now 10-
and 7.5-ns parts are under development. Since each new 
generation can substitute for the previous generation when 
only maximum AC specifications are guaranteed, the progres­
sion to faster parts is not hindered unnecessarily. Minimum AC 
specifications would have seriously complicated this evolution. 



2.4 AMD PROGRAMMABLE ARRAY 
LOGIC RELIABILITY 

INTRODUCTION 

Advanced Micro Devices' bipolar Programmable Array Logic 
(PAL) devices are based on two key technologies with many 
years of high-volume production experience behind them. 

1) IMOX- The basic process technology employed is IMOX, 
an advanced ion-implanted, oxide-isolated structure. IMOX 
provides very high-performance devices with predictable man­
ufacturing yields. It has accumulated many millions of hours of 
life-test history through its application to the Am27S Series of 
PROMs and the Am2900 Family of bipolar microprocessors. 

A comprehensive report on IMOX reliability titled IMOX RELI­
ABILITY REPORT (AMD Publication #03687A) Is available for 
those interested in a detailed presentation on this subject. 

2) Platinum-silicide fuses - This fuse structure was originally 
developed for use on Advanced Micro Devices' families of 
junction-isolated PROMs. It quickly established a new stan­
dard of excellence for high programming yields and long-term 
reliability. Several years ago it was applied to a new generation 
of ultra high-performance PROMs based on the IMOX pro­
cess. 

This combination of IMOX and platinum-silicide fuses has an 
outstanding record of reliability which has been verified 
repeatedly through in-house life testing and by high-reliability 
customer-qualification testing and system use. 

Advanced Micro Devices' PAL devices are fabricated with this 
same combined-process technology. Not only is the technolo­
gy for building PAL devices and PROMs the same, but also the 
programming algorithm and programming circuitry used to 
program the platinum-silicide fuses are the same in all 
characteristics of importance. The result is that the conditions 
seen by an AMD-PAL fuse are the same as those seen by an 
AMD-PROM fuse. 

Due to the common process technology, fuse-design and 
fuse-programming circuitry design, reliability and program­
ming-yield results are expected to be the same for PAL 
devices and PROMs. Data accumulated to date on PAL 
devices appears to confirm this expectation. 

This report describes: 

1) The characteristics of the platinum-silicide fuse and pro­
gramming conditions for the fuse. 

2) Reliability results accumulated to date on IMOX PAL ICs 
and PROMs. 

3) The dynamic and static burn-in circuits used for high­
temperature reverse-bias (HTRB) reliability testing. 

4) Thermal resistance values for AMD PAL devices. 

5) Equivalent gate counts for use in reliability calculations. 

PLATINUM-SILICIDE FUSE 

Fusing Technique 

Advanced Micro Devices' PAL circuits are designed to use a 
programming algorithm which minimizes the. requirements on 
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the programmer, yet allows the circuit to fuse the platinum­
silicide links quickly and reliably. 

The sequence of events to program a fuse are: 

1) Vee power is applied to the chip. 

2) The address of the fuse to be programmed is selected by 
TTL/ECL levels on tho appropriate address pins. 

3) The outputs are disabled. 

4) The programming voltage is then applied to one output. 

5) A fuse enable is accomplished by raising an input to a level 
above normal TTL operating voltage. This action gates the 
current flow through the proper fuse, resulting in an open fuse 
in a few microseconds. 

6) The output programming voltage is lowered and then 
removed. 

7) The device is enabled and clocked if required. The output 
state then indicates whether successful programming has 
occurred. If programming has not occurred a sequence of 
much longer pulses is applied until programming occurs. 

8) The sequence of 2 through 7 is repeated for each bit which 
must be programmed. 

There are several advantages to this technique relative to that 
used by other PAL manufacturers. First, the two high-current 
power sources, Vee and the voltage applied to the output, do 
not have critical timing requirements. As the fusing current is 
gated through the fuse actively, there is no dependence on the 
rise rate of the programming voltage. A fast' application of 
fusing current is desirable for optimum fusing. Since the output 
programming voltage does not have to be applied rapidly, 
breakdown and latchback problems attributed to fast voltage 
rise times on the output are avoided. 

This programming procedure has a second major advantage. 
If the fuse does not open during the first programming pulse, 
longer programming pulses are used. With the platinum­
silicide fuse, longer programming pulses may be safely applied 
with no danger of developing a reliability problem. The 
algOrithm can therefore be designed to minimize the time 
required to program by using a fast first pulse followed by a 
longer pulse If needed to blow the occasional fuse that does 
not open with the first short pulse. Most devices do program 
satisfactorily with all short pulses. 

Fuse Characteristics 

When a fast (less than 500-ns rise time) current pulse is 
applied to a fuse, the fuse voltage rises abruptly to a value 
determined by the room temperature resistance. However, it 
then quickly falls to a value of approximately 2 V. This value is 
nearly independent of the applied current. During the period of 
time the fuse is molten, the fuse current drops very abruptly to 
zero indicating the separation of the platinum-silicide into two 
distinct sections. Scanning Electron Microscope photographs 
of the resulting fuses (Figure 2-15) indicate that the typical 
case is a sharp clean separation in excess of a micron. This 
separation occurs in the center of the fuse because the "bow­
tie" structure (Figure 2-16) concentrates the energy density in 



the center away from the aluminum interconnect lines. The 
energy density in the center of the fuse creates temperatures 
substantially greater than those required to melt the silicide. 

Melted material is then "wicked" from the center of the fuse to 
either side due to surface tension. 

Unprogrammed Fuse 

Programmed Fuse 

Figure 2-15. Scanning Electron Microscope Photos - Unprogrammed and 
Programmed Fuses 
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Figure 2-16. Bow-Tie Fuse Design 

Reliability of Fuses Programmed Under Non­
Optimal Conditions 

The marginally opened fuse has been studied at AMD in detail 
even though it rarely occurs in practice. Under conditions 
where the fuse is purposely blown at much slower rates, it is 
possible for the fuse to assume a high-impedance state which 
is sensed as an open fuse by the circuit. This occurs when the 
fuse cools before separation is achieved. Electrical and SEM 
studies of fuses blown under these conditions indicate that a 
small conductive path of silicon remains of sufficiently high 
resistance to prevent the power transfer required for complete 
opening on subsequent programming attempts. 

Under these slow-blow conditions, sufficient time exists for the 
heat flow to carry a significant amount of energy away from the 
fuse preventing the normal abrupt separation. 

To investigate what might happen if a fuse were subjected to 
these under-blow conditions, a large number of fuses were 
deliberately programmed this way at AMD. After over two 
thousand hours of life testing there were no failures. It is clear 
from the study that partially blown platinum-silicide fuses are 
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stable even though they will rarely occur in circuits which have 
been programmed under normal conditions. 

It should be noted that most manufacturers carefully specify 
the conditions under which their devices must be programmed 
in order to avoid reliability problems. Reliability data available 
on these devices must be assumed to have been generated 
using optimally programmed devices. 

The study described here, and over forty billion fuse hours of 
data from life testing many different production lots of PROMs 
and PAL devices demonstrates the outstanding reliability 
record of the platinum-silicide fuse under a wide variety of 
conditions. 

RELIABILITY TESTING DATA 
Data on the reliability of PAL and PROM devices with 
platinum-silicide fuses is gathered via AMD's Reliability Moni­
tor Program (RMP). The RMP is' an ongoing program conduct­
ed on all device types across all product lines, and is designed 
to ensure that all AMD devices meet acceptable reliability 
levels. A summary of the RMP tests for hermetic- and plastic­
molded packages are shown in Tables 2-3 and 2-4. 



TABLE 2-3. RELIABILITY MONITOR PROGRAM FOR DEVICES IN HERMETIC PACKAGES 

Typical 
Test Conditions Sample 

Size 

Infant 160 hours at 125°C ambient. Initial and end-point 300 
Mortality electrical tests. 

Operating 1000 hrs (1160 total) at 125°C ambient. 120 
Life Initial and end-point electrical tests. 

Temperature 1000 cycles, (-65°C to 150°C), 30 min/cycle. 50· 
Cycle end-point-hermeticity and electrical test. 

150°C 1000 hours at 150°C ambient. 50 
Operating Initial and end-point electrical tests. 
Cycle 

• These units are hermetically tested prior to commencement of test. 

TABLE 2-4. RELIABILITY MONITOR PROGRAM FOR DEVICES IN MOLDED PACKAGES 

Typical 
Test Conditions Sample 

Size 

Infant 160 hours at 125°C or 85°C ambient (TJ < 150°C nominal). 300 
Mortality Initial and end-point electrical tests. 

Operating 1000 hrs (1160 total) @ 125°C or 85°C ambient 120 
Life (TJ < 150°C, nominal). Initial & end-point electrical tests. 

Temperature 85°C/85% RH/low-power bias, 500 hours and 1000 hrs. 50 
And Initial, interim, and end-point electrical tests. 
Humidity 

Temperature A. 1000 cycles: -65°C to 150°C, 30 minutes/cycle. High 50 
Cycle temperature (75°C min) functional end-point electrical test. 

Pressure 121°C, 15 psi, 160 hours, unbiased, initial end-point 50 
Cooker electrical test. 
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Data on AMD PAL and PROM devices has been gathered over 
millions of device hours and more than 40 billion fuse hours of 
high-temperature operating life tests (HTOL). The life-test 
circuits used in this work conform to MIL-STD-883 Method 

Vee 

EIGHT 
R2 RESISTORS 

Vcc= 5 V Min. 
R2 = 270 n (±5%, 1'4 W) 

ClKo - 100 kHz @ 50% duty cycle 
ClKn + , = 1/2 freq of ClKn 

(a) 20-Pin Dynamic Burn-In 
MIL-STD-883-C Condition D 

Vee 

Vcc= 5 V Min. 
R, = 270 n (±5%, 1'4 W) 

(c) 24-Pin Static Burn-In 
MIL-STD-883-C Condition C 

CD010140 

CD010150 

1005, Conditions C and D, and are shown in Figure 2-17. A 
summary of this data is shown in Table 2-5, which indicates a 
projected unit-failure rate (at 60% confidence) of 0.0002%1 
1000 hours at 70°C. 

Vee 

Vee = 5 V Min. 
R, = 270 n (±5%, 1'4 W) 

(b) 20-Pin Static Burn-In 
MIL-STD-883-C Condition C 

Vee 

Vcc= 5 V Min. 
R2 = 270 n (±5%, 1'4 W) 

ClKo = 100 kHz 
ClKn + , = 112 freq of ClKn 

(b) 24-Pin Dynamic Burn-In 
MIL-STD-883-C Condition D 

CD010130 

TEN 
R2 RESISTORS 

CD010160 

Figure 2-17. Life-Test Circuits for AMD PALs 
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TABLE 2-5. BIPOLAR PAL AND PROM RELIABILITY SUMMARY 

Unit Failure Unit Failure 
Total Total Rate at 60% Rate at 60% 
Unit Fuse Fuse Confidence Confidence 

Production Units Hours Hours Unit Related %/1000 HRS %/1000 HRS 
Product Lots Tested (Thousands) (Billions) Failures Failures at 125DC at 70DC 

2O-pin IMOX 16 2,088 2,088 5.345 0 0 0.0217 0.0002 
PAls 

2'8lin IMOX 2 219 219 1.484 0 0 0.1250 0.0009 
PAls 

275191 IMOX 7 1,057 1,057 17.318 1 0 0.0922 0.0007 
(16K-bit PROM) 

275180/181 12 463 926 7.566 0 0 0.1100 0.0010 
(8K-bit PROM) 

275184/185 15 556 1112 9.109 0 0 0.0900 0.0008 
IMOX 

(8K-bit PROM) 

275251MOX 5 720 720 2.950 0 0 0.0466 0.0003 

I\) 
(4K-bit PROM) 

~ TOTAL 57 5,103 6,122 43.792 1 0 0.0211 0.0002 
PALs & PROMs 



Results of AMD's RMP are updated periodically and can be 
obtained, through inquiry to any of the AMD Sales' Offices 
listed in the back of this handbook. 

THERMAL RESISTANCE 
The thermal-resistance values given in Table 2-6 can be used 
to calculate the junction temperatures (TJ) of a given device at 
a given ambient or case temperature (T A or T d and power 
level (P). The formulas below describe the relationship be­
tween these variables: 

TJ=Tc + OJCP 

TJ = TA + OJAP 

TABLE 2-6. THERMAL RESISTANCE VALUES 

Package Type Pins OJA OJC 

Cerdip 20 60 11 

Plastic DIP 20 61 30 

LCC 20 61 CR 

PLCC 20 CR CR 

Cerdip 24 57 15 

Plastic DIP 24 60 CR 

LCC 28 CR CR 

PLCC 28 58 CR 

CR = Consult your local AMD representative. 

EQUIVALENT GATE COUNT 
Some methods of reliability prediction, such as those outlined 
in MIL-HDBK-217, incorporate into the reliability formula a 
variable to account for device complexity. This is based on the 
assumption that - all other things being equal- as the 
complexity of a device increases, the probability of failure also 
increases. 

In order for the reliability formula to account for this phenome­
na, some means of comparing device complexity must be 
used. The most predominant "measuring stick" used today is 
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the equivalent gate count, the "equivalent gate" being a two­
input NAND gate. 

Unfortunately, the only standard adopted to date is the gate 
itself and not how to translate various logic configurations into 
equivalent two-input NAND gates. 

Take for instance, a 32-input NAND gate. From a reliability 
standpoint, it is easy to see how a 32-input NAND gate is 
about as complex as sixteen 2-input NAND gates. Yet from a 
pure logic-conversion standpoint, it takes at least fifty-three 2-
input NAND gates to functionally replace the 32-input NAND 
gate. 

In addition, there are circuit configurations that do not repre­
sent any particular traditional logic block, but perform some 
other functions such as sense amplifiers or input-voltage 
circuitry. 

Programmable Logic Devices complicate matters even more 
due to the wide range of post-pogrammed configurations that 
are possible, ranging from a very simple utilization. using few 
product terms to a more extensive utilization. 

Listed in Table 2-7 are equivalent gate counts for AMD's 
bipolar PAL devices. The equivalent gate count is given as a 
range for each of the devices to accomodate the range of 
possible post-programmed configurations and the inherent 
ambiguities associated with translating the device logic into a 
2-input NAND-gate equivalent. The values shown in Table 2-7 
are intended to give the user an idea of device complexity 
based on typical gate utilization of the programmed device. 

TABLE 2-7. EQUIVALENT GATE COUNT 

Device Gate Count 

16XX 200-300 

18P8 250-350 

22V10 700-800 

20XRP 400-600 

20EV8 600-700 

23S8 900-1100 



2.5 PROGRAMMABLE LOGIC 
TECHNOLOGY 

AMO uses both Bipolar and CMOS technologies to manufac­
ture programmable logic devices. Sections 2.5.1 and 2.5.2 
provide a detailed description of these two technologies. 

2.5.1 IMOX-IIITM - Advanced Bipolar 
Technology for PAL Devices 
In order to meet the next-generation requirements for speed 
and density in PAL devices, AMO has developed an advanced 
bipolar technology called IMOX-ili. Although IMOX-III repre­
sents a major breakthrough which will allow further scaling to 
the sub-micron region, the technology also shares many 
features in common with AMO's prior generations of 
technology, IMOX-II and IMOX-IIS. 

The revolutionary breakthrough of IMOX-III is the use of 
reactive-ion-etched grooves, called slots, to isolate the tran-

N EPI 

W BURIED LAYER 

P SUBSTRATE 

sistors. These slots are 1.5 microns wide, over 6 microns 
deep, and are filled with dielectric material (Figure 2-18). 
Because the transistors are not isolated by junctions, space 
for depletion spreading is not necessary. Also, since the slots 
are etched anisotropically, thicker EPI layers can be isolated 
without increasing the isolation widths. Essentially, no density 
penalty is paid to achieve high breakdown voltages. Higher 
breakdown voltages are needed to support the programming 
voltages required to blow fuses in bipolar PAL devices. 
Smaller device sizes translates into faster circuits through 
smaller die sizes and reduced capacitances of active devices 
and metal interconnect. Another advantage of the slot isola­
tion is reduced collector to substrate capacitance which offers ' 
improved performance in many circuit configurations. 

SIDEWALL OXIDE 

I 
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, I 
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Figure 2-18. Slot Isolation 
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Overall, the IMOX-III process is a major step forward com­
pared to IMOX-IIS. In addition to the slot isolation, stepper 
lithography, dry metal, and via etching have been imple­
mented, resulting in a dramatic reduction in design rules. The 
slot isolation allows the silicon pitch to be reduced by one 
third. The steppers and plasma metal etching allow the metal 
pitch to be shrunk by one third also. Furthermore, the IMOX-1I1 
process was designed with a 20% shrink in mind. This scaling 
can be accomplished simply by shrinking the masks. 

The IMOX-III process shares many familiar features with its 
predecessor, IMOX-IIS. Oxide-walled bases and emitters are 
used to reduce the size and parasitic capacitances of transis­
tors. Ion-implanted emitters and bases are used to achieve the 
profile control necessary for high-performance transistors. The 
reliability of the transistor structure used in IMOX-III has been 
proven over millions of hours of high-temperature tests on 
AMD products that use IMOX-II and IMOX-IIS processes. 

Another key feature familiar to users of older generation AMD­
PAL devices is the fuse technology. IMOX-1I1 uses platinum­
silicide fuses, identical to the fuse technology used on older­
generation IMOX PAL devices. Programming yields are the 
highest of any fuse technology, and programming times are 
extremely short (about 300 ns). The reliability of the platinum­
silicide fuse is unsurpassed by any other fuse technology. 

The IMOX-III technology also features two levels of metalliza­
tion as does IMOX-II and IMOX-IIS. However, in the IMOX-III 
technology, both layers are stepper defined and plasma 
etched. 

The IMOX-III technology is being applied to a family of high­
performance PAL devices. The first of these is a "D-speed" 
20-pin PAL Ie, which will run at 10 ns. Also designed in the 
IMOX-III technology are a family of high-performance EeL 
PAL devices. The first of these are the 24-pin AmPAL20EV8 
and AmPAL20EG8. These parts have 3600 programmable 
fuses in the AND/OR array. The high performance inherent in 
the IMOX-III technology gives the these EeL PAL devices a 
propagation delay of 6 ns and a cycle time of 8 ns (3.5-ns 
clock-to-output plus 4.5-ns setup time). This enables the 
AmPAL20EV8 or the AmPAL20EG8 to support a 125-MHz 
system. Table 2-8 lists the processes that are used to 
fabricate AMD's PAL devices. 

IMOX-III technology will enable AMD to develop third and 
fourth generations of PAL devices that will be significantly 
faster and more complex than the current devices. It will also 
reduce the cost of the new devices by significantly reducing 
die sizes or allowing more features to be added without 
increasing current die sizes. Faster and more complex PAL 
devices will permit system designers to build advanced 
computers, communications systems and instrumentation sys­
tems at a much lower cost. 

TABLE 2·8. PROCESSES USED TO FABRICATE AMD'S PAL DEVICES 

Maximum Propagation 
Device Process Delay/Maximum Frequency 

16xx Family IMOX-II 25 ns 

16xxB Family IMOX-IIS 15 ns 

16xxD Family IMOX-III 10 ns 

22V10 IMOX-IIS 25 ns 

22V10B IMOX-III 15 ns 

18P8 IMOX-IIS 15 ns 

23S8 IMOX-IIS 20 ns/40 MHz 

20EV8 IMOX-III 6 ns/125 MHz 

20EG8 IMOX-III 6 ns 

20XRP Family I MOX-IIS 15 ns 

21VT8B IMOX-III 15 ns 
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2.5.2 ADVANCED CMOS TECHNOLOGY 
FOR PAL DEVICES 
In addition to the commonly used bipolar TTL and ECL 
technologies, AMD also manufactures programmable logic 
devices using an advanced CMOS EEPROM-based technolo­
gy. This technology offers several significant advantages. 
Mainly it allows AMD to offer lower power parts of high 
complexity. PAL devices based on this technology can also be 
reprogrammed, unlike the bipolar fuse-based parts. In addi­
tion, since the EE-cells can be reprogrammed, these devices 
can be 100% tested at the factory before being shipped to the 
customer. 

This production-tested CMOS process employs state-of-the­
art design rules. It uses stepper lithography on all critical levels 
with a minimum feature size of 1.5 microns. The transistor gate 
oxide thickness is approximately 300 Jt This advanced 
process permits volume production of EEPAL devices with 
state-of-the-art speed-power performance. In addition, contin-

ued technology enhancements are in development that will 
result in significantly reduced dimensions and increased 
packing densities, allowing production of even faster circuits at 
lower cost. 

The EE-cell, which can be electrically erased and repro­
grammed, contains a floating gate transistor structure (two 
layers of polysilicon) with a tunnel oxide region of less than 
100 $. through which electrons can "tunnel" to either charge 
or discharge the cell (See Figure below). An additional 
enhancement transistor has been added in series with the 
storage cell to prevent leakage in the non-selected discharged 
cells (as they have a negative threshold) during a charge 
sensing cycle. This transistor also protects non-selected EE­
cells on the same word line during the charge cycle. The 
tunnel oxide process developed by AMD allows easy manu­
facturing of ultra-high quality, thermally grown thin oxide 
capable of withstanding the high fields associated with the 
tunneling mechanism. 

DIFFUSED 
~j~~~~~::::...!~~~~~~~~~~~::: DIFFUSED 

DRAIN ______ ~ 

EE-Cell 

The EEPAL process has a proven history of reliability since it 
has been used to manufacture N-channel EEPROM devices 
for several years at AMD. These devices have been in the field 
for a long period and have gone through extensive testing at 
the factory (See the Am9864 Reliability Report which can be 
obtained by contacting an AMD representative). 

Users of devices that are based on EE-cell technology have 
two concerns about the technology: Endurance (number of 
pr9gram or write cycles) and Data Retention (charge storage 
from the last time the cell was updated). The endurance issue . 
is of little significance to EEPAL users, as opposed to 
EEPROM users, since the PAL devices are usually repro­
grammed only several times, whereas EEPROMS are written 
up to 10,000 times. AMD's process is capable of supporting 
higher impedance levels than are specified for PAL devices. 

The second concern arises over the leakage of charge from 
the EE-cell over a period of time, thus potentially degrading 
the device's performance. At AMD this issue is resolved by 
designing the PAL circuits so that performance is guaranteed 
to the factory specifications under worst-case conditions for a 
minimum of 10 years. If the device is reprogrammed with the 
same or a different pattern during this period, functionality is 
assured for another 10 years from that time. 

The CMOS PAL Family could have been implemented with 
either EPROM or EEPROM technologies, both of which are in 
production at AMD. AMD chose the EEPROM technology to 
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manufacture PAL devices because of the superior flexibility it 
offered without compromising performance. 

One of the major benefits of EEPROM technology is 100% 
testability. The EEPAL devices can be fully and more easily 
tested since they are electrically erasable. Compared to 
EEPAL devices, EPAL (based on EPROM technology) devices 
cannot be easily reprogrammed since they require a lengthy 
amount of exposure to ultraviolet light to be erased. Also, if 
EPAL devices are placed in a conventional non-windowed 
package (which is easier and cheaper to produce), they 
cannot be reprogrammed. EEPAL devices do not face these 
problems. EPAL devices also require additional circuitry to 
improve testability due to the lack of flexibility in programming. 
This adds significantly to the design cycle time since additional 
design and debugging time are required. Overall, EE-cell 
based technology is more attractive in the long run to 
manufacture PAL devices. 

With both bipolar (TTL and ECL) and CMOS technology 
capabilities, AMD is in an ideal position to meet customers' 
needs for different programmable logic devices. AMD can 
choose the proper technology to produce the PAL device that 
the customer requires. Where blazing speed is needed bipolar 
is the technology of choice, whereas for low-power high­
complexity devices CMOS technology is appropriate. Over the 
next several years enhancements will be made to both these 
technologies allowing production of even faster, lower power, 
and more complex PAL devices. The flexibility to choose 
technology permits AMD to better serve its customers. 
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3.1 OVERVIEW 

Programmable Logic Devices (PLDs) are off-the-shelf custom 
devices. Combining the flexibility of custom logic and off-the­
shelf availability of standard products, programmable logic 
devices offer attractive logic design solutions. Because their 
higher levels of integration and other features such as pro­
grammable I/O pins, polarity controls, flexible output 
structures, etc. (see Section 1 for detailed discussion), designs 
based on PAL devices result in lower parts count compared 
with those based on discrete SSI/MSI logic. Existing PAL 
devices have been widely used to consolidate random logic 
into a structured form in many digital systems. PLDs are used 
in MOS microprocessors, single-chip microcomputer systems, 
and in bipolar bit-slice microprocessor-based systems. Typi­
cally, domain of PLD applications includes all SSI/MSI logic. 
Wherever SSI/MSllogic is used, PLDs are likely candidates for 
those applications. 

Applications for PAL devices can be in one of the following 
categories: 

SSUMSI Logic Replacement: This includes combinatorial 
logic functions (such as special-purpose decoders/priority en­
coders, multiplexers/demultiplexers, comparators, ad­
ders/subtractors), synchronous or asynchronous sequential 
functions (such as special-purpose counters-binary counters, 
decade counters, gray-code counters, Johnson counters, 
modulo counters using registered flip-flops) or logic using 
latches and glue logic (for replacing many discrete flip-flops). 

State-Machine Applications: These can be very simple state 
machines such as counters or more complex state machines 
such as bus controllers, bus arbiters, DRAM controllers, DMA 
controllers, FIFO controllers, or dual-port memory controllers. 

Microprocessor/Single-Chip Microcomputer Interface: In­
terface to various LSIIVLSI peripheral controller chips. 

Other Miscellaneous Functions: Such as memory-refresh 
generation, wait-state generation, timer/counter functions, er­
ror detection/control and memory scrubbing functions. These 
functions may also include various I/O interface and support 
-such as intelligent I/O ports, data-communications interface 
(for protocol conversion), display or front-panel interface, key­
board scanning, disk and tape drive controls, standalone 
microprocessor-based controllers (stepper-motor control, sen­
sor monitor, etc.), or support for image processing and signal 
processing. 

APPLICATION OF PAL DEVICES 
IN DIGITAL SYSTEMS 

A typical digital system can be partitioned into three general 
areas: 1) data path, 2) control path, and 3) interface path (glue 
area). 
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Data-path functions typically include data manipulation (ALUs), 
data storage (register file, pipeline registers, etc.) and data­
steering/selection (multiplexing/demultiplexing). Typically, the 
data-path portion of a system is the most structured portion. 
This is likely to be defined relatively early in the design cycle, 
and is less likely to be changed. Usually performance and 
density are important for the data-path area. 

Control-path functions include the timing, sequencing and 
decision making segments of the digital system. These sec­
tions are normally implemented with state machines-either 
with random logic, PROMs, bI"'RAMs. The control section is the 
most complex portion of a digital system. It is likely to contain 
subtle errors and requires many changes during prototyping. 
Performance and design turnaround time tend to be critical for 
the control path, while density considerations are less 
important. 

Interface or glue applications fulfill miscellaneous functions. 
Typically, interface Circuitry connects various LSI modules, 
SU9h as microprocessors, peripherals, memories, and gate ar­
rays. For interface applications, logic flexibility and design turn­
around time are critical. 

PAL devices, because of their general-purpose nature, are 
used in all of these areas. 

In the data path they can be used for data steering and data 
manipulation. Using PAL devices for data steering simplifies 
the implementation of a multiple-bus architecture. Data 
manipulation may include functions such as 16/32/64-bit CllS­

tomizable bidirectional shifters, barrel shifters, constant­
generation logic, and sign-extension logic. 

In control path, PAL devices are used extensively for 
optimizing control functions, such as instruction predecoding, 
double pipelining control, register-file control, and special in­
struction control. 

Interface and glue-logic applications include interfacing various 
peripherals to different microprocessors, and interfacing differ­
ent peripherals to different buses. PAL devices are ideal for 
replacing SSI/MSI devices, for saving board space and provid­
ing user customizability. There are several problems associ­
ated with interfacing a general-purpose peripheral device to a 
microprocessor. The system designer has to watch for various 
control signals that each chip uses and its compatibilities. 

One of the most common use of PAL devices for interfacing 
applications is to perform chip-select decoding and address 
decoding from address and status signals. PAL devices offer 
the flexibility of timing generation and doing timing changes. 
Timing changes can be simply implemented by adding or 
changing a term in the logic equations and reprogramming the 
device. 



For interfacing different peripherals to microprocessors, PAL 
devices can be used for generating address strobes, data 
strobes, ReadlWrite and interrupt-acknowledge signals based 
on the status information available from the microprocessor. 
They can be used for generating coordinated timing signals 
-such as simultaneous assertion/disassertion of various sig­
nals, automatic insertion of a variable number of wait states to 
match different-speed microprocessors and peripherals. 

For various bus-interface applications, the most common use 
of the PAL device is for implementing bus-arbitration and bus­
control functions. Bus arbitration and bus grant control function 
Is done by monitoring various transfer-request signals and 
deciding which request gets the bus and when it gets the bus. 
In mUlti-master systems, some sort of arbitration scheme and 
prioritization scheme needs to be incorporated. This can be 
done by assigning different priorities to different bus masters. 

'Bus arbitration functions include request synchronization, bus 
grant/access control functions and generation of various con­
trol signals. 

This application section is organized into the following sub­
sections: 

3-2 

Section 3.2 describes simple combinatorial functions (such as 
multiplexers/demultiplexers, encoders/decoders and com­
parators) implemented with PAL devices. 

Section 3.3 describes some sequential applications such as 
counters (Modulo counters, Johnson counter, dual 4-bit BCD 
counter, and a Grey-binary counter) and shifters. 

Section 3.4 describes various microprocessor interfaces to dif­
ferent peripheral chips using PAL devices. 

Section 3.5 describes various bus interface and bus functions 
(such as bus arbitration, bus control) using PAL devices. 

Section 3.6 describes various miscellaneous functions imple­
mented with PAL devices. 

Many of the examples shown are paper designs and modifi­
cations may be necessary when using them in actual 
applications. AMD assumes no responsibility for the use of any 
application described. 



3.2 COMBINATORIAL LOGIC 

3.2.1 MULTIPLEXERS 

The multiplexer (also called data selector) is used to selectively 
route data from several inputs to one output. 

Three 4-to-1 Multiplexers (Am PAL 18P8) 

A simple 4-to-1 multiplexer has four data input lines and two 
control lines that select which one of the four data inputs is to 
be passed to the output. The function table for this device is 
shown in Table 3-1. 

Each AND gate has a data input and a two-input combination 
of select inputs. Given one of four possible combinations of 
select bits, only the AND gate corresponding to this combina­
tion is enabled, allowing the desired input data to pass to the 
output. This can easily be expanded to accommodate more 
data by adding more select lines and data inputs. For every n 
select lines there can be 2n data inputs, each of which require 
one product term. 

TABLE 3-1. FUNCTION TABLE FOR 4-TO-1 MULTIPLEXER 

Inputs Output 

S1 SO D3 D2 D1 DO V 

0 0 X X X 0 0 

0 0 X X X 1 1 

0 1 X X 0 X 0 

0 1 X X 1 X 1 

1 0 X 0 X X 0 

1 0 X 1 X X 1 

1 1 0 X X X 0 

1 1 1 X X X 1 

Three 4-to-1 multiplexers require twelve inputs, three outputs, 
and two control select pins, for a total of seventeen inputloutput 
pins. Each output needs four product terms. These require­
ments are satisfied by a single AmPAL 18P8 device. The cor­
responding PLPL specification and the sum-of-products 
equations generated by the compiler are shown in Figure 3-1. 

Four 3-to-1 Multiplexers (Am PAL 18P8) 

Four 3-to-l multiplexers require twelve inputs, four outputs, 
and two control select pins, for a total of eighteen inputloutput 
pins. Each output needs three product terms. These require­
ments are satisfied by a single AmPAL 18P8 device. The cor­
responding PLPL specification and the sum-of-products 
equations generated by the compiler are shown in Figure 3-2. 
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16-to-1 Multiplexer (AmPAL22V10) 

The 16-to-l multiplexer requires sixteen inputs, one output, 
and four control select pins, for. a total of twenty-one in­
putloutput pins. These requirements are satisfied by a single 
AmPAL22V10 device. The corresponding PLPL specifications 
and the sum-of-products equations generated by the compiler 
are shown in Figure 3-3. 

3.2.2 DEMULTIPLEXER 

A decoder with an enable input can function as a demultiplexer. 
A demultiplexer is a circuit that receives information on a single 
line and transmits this information on one of 2n possible output 
lines. The selection of a specific output line is controlled by the 
bit values of n selection lines. 

Dual 2-to-4 Demultiplexers (Am PAL 16H8) 

This design implements dual 2-to-4 demultiplexers on an Am­
PAL 16H8. Each demultiplexer is individually enabled but 
shares the same select input lines with the other (see Table 3-2 
and 3-3). The corresponding PLPL specification and the sum­
of-products equations generated by the compiler are shown in 
Figure 3-4. 

TABLE 3·2. FUNCTION TABLE FOR 
FIRST DEMULTIPLEXER 

Inputs 
Outputs 

Enable 

G1 

H 

X 

L 

L 

L 

L 

Select 

C1 B A V1[O] V1[1] V1[2] 

X X X H H H 

L X X H H H 

H L L L H H 

H L H H L H 

H H L H H L 

H H H H H H 

TABLE 3-3. FUNCTION TABLE FOR 
SECOND DEMULTIPLEXER 

Inputs 
Outputs 

Enable Select 

G2 C2 B A V2[O] V2[1] V2[2] 

H X X X H H H 

X H X X H H H 

L L L L L H H 

L L L H H L H 

L L H L H H L 

L L H H H H H 

V1[3] 

H 

H 

H 

H 

H 

L 

V2[3] 

H 

H 

,H 

H 

H 

L 
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DEVICE THREE_4_TO_1_MULTlPLXER (PAL18P8) 

PIN DAO = 1 DA1 = 2 DA2 = 3 DA3 = 4 

DBO = 5 DB1 = 6 DB2 = 7 DB3 = 8 

DCO = 9 DC1 = 11 DC2 = 12 DC3 = 13 

ruTA = 14 

ruTB = 15 

ruTC = 16 

SELO = 17 

SEL 1 = 18 ; 

DEFINE 

SO = ISELO * ISEL 1 

S1 = ISELO * SEL1 

S2 = SELO * ISEL 1 

S3 = SELO * SEL1 

BEGIN 

IF (SO) THEN BEGIN 

ruTA = DAO ; 

ruTB = DBO ; 

ruTC = DCO ; 

END; 

IF (S1) THEN BEGIN 

ruTA = DA1 

ruTB = DB1 

ruTC = DC1 

END; 

IF (S2) THEN BEGIN 

ruTA = DA2 ; 

ruTB = DB2 ; 

ruTC = De2 ; 

END; 

IF (S3) THEN BEGIN 

ruTA = DA3 ; 

ruTB = DB3 ; 

ruTC = DC3 ; 

END; 

END. 

TEST_VECTORS 

IN DAO DA1 DA2 DA3 DBO DB1 DB2 DB3 

DCO DC1 DC2 DC3 SELO SEL 1 

ruT ruTA ruTB ruTC; 

BEGIN 

"DA[0:3] DB[0:3] DC[0:3] SELO SEL1 ruTA ruTB ruTC" 

1 0 0 0 o 1 1 1 1 0 0 0 0 0 H L H • , 
o 1 0 0 1 0 1 1 o 1 0 0 0 L H • , 
o 0 1 0 1 1 0 1 o 0 1 0 0 H • , 
o 0 0 1 1 1 1 0 o 0 0 1 

o 1 1 1 1 000 o 1 1 1 0 0 L • , 
1 0 1 1 o 1 0 0 1 0 1 1 0 L • , 
1 1 0 1 o 0 1 0 o 1 1 0 L • , 
1 1 1 0 o 0 0 1 1 1 1 0 L ; 

END. 

Figure 3-1. AmPAL18P8 PLPL Specification-Three 4-to-1 Multiplexers 



c.l 
U, 

DEVICE FOOR_3_TO_1_MULTIPLXER (PAL 18P8) 

FOOR 3: 1 MULTIPLEXER 

PIN 

BEGIN 

END. 

DAO = 1 DA1 = 2 DA2 = 3 

DBO = 4 DB1 = 5 DB2 = 6 

DCO = 7 DC1 = 8 DC2 = 9 

DDO = 11 DD1 = 12 DD2 = 13 

OOTPUTA = 14 OOTPUTB = 15 

OOTPUTC = 16 OOTPUTD = 17 

SELECTO = 18 SELECT1 = 19 ; 

IF (/SELECTO) THEN BEGIN 

OOTPUTA = DAO ; 

OOTPUTB = DBO ; 

OOTPUTC = DCO ; 

OOTPUTD = DDO ; 

END; 

IF (SELECTO*/SELECT1) THEN BEGIN 

OOTPUTA = DA1 

OOTPUTB = DB1 

OOTPUTC = DC1 

OOTPUTD = DD1 

END; 

IF (SELECTO*SELECT1) THEN BEGIN 

OOTPUT A = DA2 ; 

OOTPUTB = DB2 ; 

OOTPUTC = DC2 ; 

OOTPUTD = 002 ; 

END 

TEST_VECTORS 

IN DAO DA1 DA2 DBO DB1 DB2 DCO DC1 DC2 000 DD1 DD2 

SELECTO SELECT1 ; 

OOT OOTPUTA OOTPUTB OOTPUTC OOTPUTD ; 

BEGIN 

liD D D ODD DOD ODD S S 

"A A A B B B C C C DOD E E 

"0 1 2 o 1 2 o 1 2 o 1 2 L L OOTPUT OOTPUT OOTPUT OOTPUT" 

o 1 A B C 0 II 

00 o 1 1 1 0 0 o 1 1 o X 

o 1 0 1 0 1 o 1 0 1 0 1 1 0 

o 0 1 1 1 0 o 0 1 1 1 0 1 1 

o 1 1 1 0 0 o 1 1 1 0 0 o X 

1 0 1 o 1 0 1 0 1 o 1 0 1 0 

1 1 0 o 0 1 1 1 0 o 0 1 11 

END .. 

Figure 3-2. AmPAL18P8 PLPL Specification-Four 3-to-1 Multiplexers 



DEVICE 

PIN 

BEGIN 

c.l 
0, 

END. 

-16_TO_1_MUlTIPlEXER (PAl22V10) 

DO = 1 01 = 2 02 = 3 03 = 4 

04 = 5 05 = 6 06 = 7 07 = 8 

08 = 9 09 = 10 010= 11 011= 13 

012= 14 013= 15 014= 16 015= 17 

OUTPUT = 18 

SElO = 19 SEl1 = 20 

SEl2 = 21 SEl3 = 22 ; 

CASE (SElO, SEl1, SEl2, SEl3) 

BEGIN 

0) OUTPUT = DO 

1) OUTPUT = 01 

2) OUTPUT = 02 

3) OUTPUT = 03 . 

4) OUTPUT = 04 

5) OUTPUT = 05 

6) OUTPUT = 06 

7) OUTPUT = 07 

8) OUTPUT = 08 

9) OUTPUT = 09 

10) OUTPUT = 010 ; 

11) OUTPUT = 011 ; 

12) OUTPUT = 012 ; 

13) OUTPUT = 013 

14) OUTPUT = 014 

15) OUTPUT = 015 

END 

TEST_VECTORS 

IN DO 01 02 03 04 05 060708 09 010 011 012 013 014 015 

SElO SEl1 SEl2 SEl3 ; 

OUT OUTPUT; 

BEGIN 

"0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

"0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 

012345 

1000000000000000 

0100000000000000 

0010000000000000 

0001000000000000 

0000100000000000 

0000010000000000 

0000001000000000 

0000000100000000 

0000000010000000 

0000000001000000 

0000000000100000 

0000000000010000 

0000000000001000 

0000000000000100 

0000000000000010 

0000000000000001 

o 1 1 1 1 1 1111 111 

1 0 1 1 1 11 

1 0 1 1 1111 11 

1 1 0 1 1111 11 

o 1 

1 1 1 1 0 1 1 1111 

1 1 1 1 1 0 1 1111 

1 1 1 1 1 0 1 1111 

1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 

1 1 1 1 1 1 0 1 1 

o 1 1 

1 0 1 

1 0 1 
1 1 1 0 1 

1 1 1 1 0 

SElO SEl1 SEl2 SEl3 OUTPUT" 

000 0 

o 0 

o 0 0 

o 0 1 

o 1 0 0 

o 0 

o 0 
1 1 

o 0 0 

o 0 

o 
o 
1 0 

o 

o 0 

o 0 

o 
o 

o 
o 
1 

o 
1 

o 
1 

o 

o 
1 
o 
1 
o 
1 

o 

000 

o 0 1 

010 

o 
1 o o 

o 
o 

H ; 

H ; 

H ; 

H ; 

H ; 

H ; 

H ; 

H ; 

H ; 

H ; 

H ; 

H ; 

H ; 

H ; 

H ; 

H ; 

l ; 

l ; 

l ; 

l ; 

l ; 

l ; 

l ; 

l ; 

l ; 

l ; 

l ; 

l ; 

l ; 

l ; 

l ; 

l ; 

Figure 3-3. AmPAL22V10 PLPL Specification-16-to-1 Multiplexer 
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DEVICE DUAl_2_TO_ 4_DEJlJlTlPlEXER (PAl18P8) 

PIN A = 2 B = 1 

BEGIN 

G1 = 3 G2 = 4 
e1=5 C2=6 

Y1 [0:3) = 19: 16 

Y2[0:3) = 15:12 ; 

IF (G1 + len THEN Yl[O:3] = 181111 

IF (/G1 * e1) THEN BEGIN 

END; 

CASE (B.A) 

BEGIN 

END; 

1800) BEGIN 

Yl[O] = 0 : 

Y1[1:3] = #8111 

END ; 

#801) BEGIN 

END ; 

yl[l) = 0 ; 

yl[O.2.3] = #8111 

1810) BEGIN 

END ; 

Y1(2) = 0 ; 

Yl[O.1.3) = 18111 

1811) BEGIN 

Y1 [3] = 0 ; 

Y1 [0:2] = #8111 

END ; 

IF (G2 + C2) THEN Y2[0:3] = 181111 

IF (/G2 * fC2) THEN BEGIN 

CASE (B.A) 

BEGIN 

1800) BEGIN 

Y2[O] = 0 : 
Y2[1:3] = flB111 

END; 
#801) BEGIN 

END 

Y2(1] = 0 ; 

y2[0.2.3] = 18111 

1810) BEGIN 

END ; 

Y2[2] = 0 ; 

Y2[O.1.3) = 18111 

1811) BEGIN 

END : 
END ; 

END; 

END. 

TEST_VECTORS 

IN B A G1 e1 G2 C2 ; 
OUT Y1 [0:3] Y2[0:3] ; 

BEGIN 

"B A G1 e1 G2 C2 Y1 [0:3] 

Y2[3] = 0 ; 
Y2[0:2) = 18111 

Y2[0:3] II 

II .................................................... ___ ......... ____ .... ____ .. H 

X X X X H H H H H H H H ; 

o 0 0 1 0 0 L H H H l H H H ; 

o 1 0 1 0 0 H L H H H L H H ; 

1 0 0 0 0 H H L H H H L H ; 

1 1 0 0 0 H H H L H H H L ; 

X X X 0 X H H H H H H H H ; 

END. 

Figure 3-4. AmPAL 16H8 PLPL Specification-Dual 2·to-4 Multiplexers 



Gray Code to Decimal Demultiplexer 
(AmPAL22V10) 

This design implements an excess-3-gray-to-decimal decoder 
(see Table 3-4). It is functionally equivalent to '44A and 'L44 
MSI circuits and can be implemented in a single AmPAL22V1 0 
device. The corresponding PLPL specification and the sum-of­
products equations are shown in Figure 3-5. 

PIN A = 4 B = 3 C = 2 0 = 1 

Y [0:9] = 14:23 ; 

BEGIN 

CASE ( D,C,B,A) 

BEGIN 

#80010) Y [0:9] = #80111111111 

#80110) Y [0:9] = #81011111111 

#80111) Y[0:9] = #81101111111 

#80101) Y[0:9] = #81110111111 

#80100) Y [0:9] = #81111011111 

#81100) Y [0:9] = #B1111101111 

#81101) Y [0:9] = #81111110111 

#81111) Y[0:9] = #81111111011 

#81110) Y[0:9] = #81111111101 

#81010) Y[0:9] = #81111111110 ; 

#80000) Y[0:9] = #81111111111 

#80001) Y [0:9] = #81111111111 

#80011) Y[0:9] = #81111111111 

#81000) Y [0:9] = #81111111111 

#81001) Y[0:9] = #81111111111 

#81011) Y [0:9] = #81111111111 

END; 

END. 

TABLE 3-4. FUNCTION TABLE FOR GRAY-CODE­
TO-DECIMAL DEMULTIPLEXER 

Excess-3-Gray-lnput Decimal Outputs 

No. D C B A yO y1 y2 y3 y4 y5 y6 y7 yO y9 

0 L' L H L L H H H H H H H H H 

1 L H H L H L H H H H H H H H 

2 L H H H H H L H H H H H H H 

3 L H L H H H H L H H H H H H 

4 L H L L H H H H L H H H H H 

5 H H L L H H H H H L H H H H 

6 H H L H H H H H H H L H H H 

7 H H H H H H H H H H H L H H 

8 H H H L H H H H H H H H L H 

9 H L H L H H H H H H H H H L 

I H H H H H H H H H H H H H H 

N H L H H H H H H H H H H H H 

V H L L H H H H H H H H H H H 

A H L L L H H H H H H H H H H 

L L L L L H H H H H H H H H H 

I L L L H H H H H H H H H H H 

D L L H H H H H H H H H H H H 

TEST_VECTORS 

IN 0 C B A ; 

OOT Y[0:9]; 

BEGIN 

"0 C B A YO Y1 Y2 Y3 Y4 YS Y6 Y7 Y8 Y9" 

o 0 1 0 H • , 
o 1 1 0 H • , 
o 1 1 1 H H L H H H H H H H • , 
o 1 0 1 H H H L H H H H H • , 
o 1 0 0 H H H H H H ; 

11 0 0 H H L H H H H • , 
1 1 0 1 H H H ; 

1111 H H H ; 

1 1 1 0 H H H H H H H H L H • , 
1 0 1 0 H H H H H H H H H L ; 

o 0 0 X H H H H H H H H H H ; 

1 0 0 X H H H H H H H H H H • , 
x 0 1 H H H H H H H H H H • , 

END. 

Figure 3-5. AmPAL22V10 PLPL Specification-Gray Code to Decimal Demultiplexer 
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3.2.3 ENCODERS/DECODERS 

A binary code of r bits is capable of representing up to 2n 

distinct elements of coded information. A decoder is a com­
binatorial circuit that converts binary information from n input 
lines to a maximum of 2n unique output lines. If the n-bit 
decoded information has unused or don't-care combinations, 
the decoder output will have less than 2n outputs. 

An encoder is a digital function that produces a reverse opera­
tion from that of a decoder. An encoder has 2n (or less) input 
lines and n output lines. The output lines generate the binary 
code for the 2n variables. 

A priority encoder establishes an input priority to ensure that 
only the highest-priority input line is encoded. 

16-to-4 Priority Encoder (AmPAL22V10) 

The 16-to-4 priority encoder requires sixteen inputs and four 
outputs, for a total of twenty input'output pins. Each output 
needs eight product terms. These requirements are satisfied 
by a single AmPAL22V10 device. The function table (Table 
3-5), PLPL specification and sum-of-products equations 
generated by the compiler are shown in Figure 3-6. 

TABLE 3-5. FUNCTION TABLE FOR 16-to-4 PRIORITY ENCODER 

Inputs Outputs 

10 11 12 13 14 15 16 17 18 19 110 111 112 113 114 115 103 102 101 100 

X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H H H H 
X X X X X X X X X X X X X X X 0 L L L L 

X X X X X X X X X X X X X X 0 1 L L L H 
X X X X X X X X X X X X X 0 1 1 L L H L 

X X X X X X X X X' X X X 0 1 1 1 L L H H 
X X X X X X X X X X X 0 1 1 1 1 L H L L 

X X X X X X X X X X 0 1 1 1 1 1 L H L H 
X X X X X X X X X 0 1 1 1 1 1 1 L H H L 

X X X X X X X X 0 1 1 1 1 1 1 1 L H H H 
X X X X X X X 0 1 1 1 1 1 1 1 1 H H L L 

X X X X X X 0 1 1 1 1 1 1 1 1 1 H L L H 
X X X X X 0 1 1 1 1 1 1 1 1 1 1 H L H L 

X X X X 0 1 1 1 1 1 1 1 1 1 1 1 H L H H 
X X X 0 1 1 1 1 1 1 1 1 1 1 1 1 H H L L 

X X 0 1 1 1 1 1 1 1 1 1 1 1 1 1 H H L H 
X 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H H H L 
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DEVICE PRIORITY_ENCODER_16_TO_4 (PAL22V10) 

"ENCOOE 16 DATA LINES DECIMAL INTO 4 LINE BINARY" 

PIN 11 = 1 12 = 2 13 = 3 14 = 4 15 = 5 

16 = 6 17 = 7 18 = 8 19 = 9 110 = 10 

111 = 11 112 = 13 113 = 14 114 = 15 

115 = 16 10 = 23 

/0(3:0] = 17:20 ; 

BEGIN 

END. 

IF (11*12*13*14*15*16*17*18*19*110*111*112*113*114*115) THEN 

0(3:0] = #80000 ; 

IF (/115) THEN 0[3:0] = 15 : 

IF (115*/114) THEN 0(3:0] ,;, 14 : 

IF (115*114*/113) THEN 0[3:0] = 13 

IF (115*114*113*1112) THEN 0(3:0] = 12 : 

IF (115*114*113*112*1111) THEN 0[3:0] = 11 

IF (115*114*113*112*111*/110) THEN 0(3:0] = 10 : 

IF (115*114*113*112*111*110*/19) THEN 0[3:0] = 9 : 

IF (115*114*113*112*111*110*19*/18) THEN 0[3:0] = 8 : 

IF (l15*114*113*112*111*110*19*18*/!7) THEN 0(3:0] = 7 : 

IF (115*114*113*112*111*110*19*18*17*/16) TH~N 0[3:0] = 6 : 

IF (115*114*113*112*111*110*19*18*17*16*115) THEN 

0(3:0] = 5 : 

IF (115*114*113*112*111*110*19*18*17*16*15*/14) THEN 

0[3:0] = 4 : 

IF (115*114*113*112*111*110*19*18*17*16*15*14*113) THEN 

0(3:0] = 3 : 

IF (115*114*113*112*111*110*19*18*17*16*15*14*13*/12) THEN 

0(3:0] = 2 : 

IF (115*114*113*112*111*110*19*18*17*16*15*14*13*12*111) THEN 

0(3:0] = 1 : 

TEST_VECTORS 
IN 10 11 12 13 14 15 16 17 18 19 110 111 112 113 114 115 ; 

OUT /0(3:0]: 

BEGIN 

"I I I I I I I I I I I II I I I 

"0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 

012345 

X111111111111111 

XXXXXXXXXXXXXXXO 

XXXXXXXXXXXXXX01 

XXXXXXXXXXXXX011 

XXXXXXXXXXXX0111 

XXXXXXXXXXX01111 

XXXXXXXXXX011111 

XXXXXXXXX0111111 

XXXXXXXX01111111 

XXXXXXX01111111 

XXXXXX0111111111 

XXXXX01111111111 

XXXX011111111111 

XXX0111111111111 

XX011111 1111111 

X011111111111111 

END. 

0000" 

3 2 1 0" 

H H H H: 

L L L L: 

L L L H: 

L L H L: 

L L H H: 

L H L L: 

L H L H: 

L H H L: 

L H H H: 

H L L L: 

H L L H: 

H L H L: 

H L H H: 

H H L L: 

H H L H; 

H H H L: 

Figure 3-6. AmPAL22V10 PLPL Specification-16-t0-4 Encoder 



GCR (4B-5B) 
Encoder IDecoder 

One of the more common logic functions performed on serial 
data is the data encode/decode function. Usually it is desir· 
able to map (encode) the logical bit stream to a physical bit 
stream, adjusting for the peculiarities of the particular trans· 
mission or storage media. 

Noise, bandwidth, and reliability considerations may mean 
that a different data format would be desirable when data is 
sent along to or stored on a given media. For example, group· 
coded recording (GCR) formats take a given number of data 
bits and encode them with a larger number of bits. A 48-58 

GCR code would take 4 data bits and encode them into 16 
states with 5 new bits. A particular 48·58 code is shown in Table 
3·6. 

This mapping allows at most two zeros to occur-in succes­
sion. Also note that data combinations with more than one 
zero at the beginning and end of the word are excluded. This 
is necessary to insure that when data words are serialized, no 
more than two zeros occur in succession at any point in the 
bit stream. Finally, the data combination 11111 is reserved as 
a synchronization mark. In tape systems, this results in in· 
creased bit density and eases clock synchronization. 

TABLE 3-6. 4B-SB CODE 

4B·5B Code 
4-Bit Data S·Bit Data 

000 0 o 0 1 

o 0 0 1 0 

001 0 001 0 

o 0 1 1 001 

0 o 0 1 o 1 

0 0 1 0 o 1 

0 1 0 0 0 

0 1 1 1 0 11 

000 0 1 0 

0 o 1 0 0 o 1 

010 0 0 1 0 

o 1 1 0 o 1 1 

o 0 1 1 0 

0 1 0 0 1 

0 0 0 

0 

03862A-93 
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The system diagram in Figure 3-7 shows how the GCR En­
coderlDecoder (GCR EID) interfaces to a tape drive and tape 
controller. Parallel input data is given to the GCR EID, con­
verted to the 5-bit format, serialized, and written to the tape. 
On a read, the serial data from the tape is parallelized, con­
verted back to the 4-bit format and output to the output data bus. 
Additionally, during a read, two status signals are developed. 
The first signal, INV, indicates the presence of an invalid input, 
ie., too many zeros in succession. The second status signal, R, 
indicates the detection of the synchronization mark (11111). 

The operation modes for the GCR E/D are shown in the Data­
Flow Diagrams of Figure 3-8. The control signal definition and 
operation functions are indicated for each operation mode. 
In particular, the data flow between each bit of the output 
register is indicated schematically. 

The first mode of operation of the GCR EID is the HOLD 
mode. When ENABLE is HIGH, all data operations on the out· 
put register are disabled, independent of the two mode con­
trols, Ml and Mo. The output data is simply fed· back to the 
register inputs. Thus the register content is retained after the 
clock transition. 

When the ENABLE input is LOW, the operations indicated by 
the M 1 and Mo mode bits are executed on the clock transition. 
When Ml and Moareboth LOW, theSERIALSHIFTIN modeis 
selected. In this mode the output register is configured as a 
serial shift register. The serial input is consecutively shifted 
into the register until all 5 bits from the tape have been stored, 
MSB at Y 3 and LSB at SERIAL OUT. 

The CONVERT SERIAL INPUT AND LOAD operation is se­
lected when ENABLE is LOW, Ml is HIGH and Mo is LOW. 
After the 5 bits of data have been serialized by the SERIAL 
SHIFT IN instruction, the 5B code must be converted to a 4B 
code. This is accomplished by taking the outputs of the 5 
register bits and converting them to 4 bits with combinatorial 
logic. On the clock transition, the result is loaded into the Y 
register. On the same clock transition that loads the con­
verted data into the Y register, the serial input is loaded into 
the serial output register. Because the serial data is being 
read continuously, one data bit per clock transition, the con­
version must be done without missing a serial data bit. 

The CONVERT PARALLEL INPUT AND LOAD operation is 
selected when ENABLE is LOW, Ml is HIGH and Mo Is HIGH. 
This mode takes the 4 input data bits and converts them to 
the 5 bit representation. The resuit is loaded Into the output 
register on the clock transition. The LSB of the 5B representa­
tion is loaded into the Y 3 bit of the output register and the 
MSB is loaded into the serial output bit. This configuration, in 
conjunction with the next Instruction, allows the serial data 
to be written to the tape drive one bit per clock transition. 

The final operation, SERIAL SHIFT OUT, Is selected when 
ENABLE is LOW, Ml is LOW and Mo is HIGH. After the CON­
VERT PARALLEL INPUT AND LOAD operation is executed, 
the SERIAL SHI FT OUT operation outputs the converted data 
to the tape drive. A series of one convert operation followed 
by 4 shift operations will transfer a sequence of 5-bits to the 
tape drive, one bit per clock cycle. 

INPUT DATA BUS 

SERIAL·IN 
TAPE 
DRIVE SERIAL·OUT 

CONTROL STATUS 
DATA 

MODE ENCODER/DECODER 

CONTROLLER ... ......:I.:.:.N~V_-I 
H 

CLK--4-------------------~ 

OUTPUT DATA BUS 

03862A·94 

Figure 3-7. Typical Tape Storage System 
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ENABLE Ml MO 

X X 

OPERATION DATA· FLOW DIAGRAM 

HOLD 

[Q[Q[Q[Q~ 
SERIAL 

SHIFT IN 

CONVERT 
SERIAL INPUT 

AND LOAD 

CONVERT 
PARALLEL INPUT 

AND LOAD 

SERIAL 
SHIFT OUT 

Y3 Y2 

Figure 3·8. GCR E/D Mode Definitions 
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Yl YO 

Yo 

SERIAL 
OUTPUT 

SERIAL 
INPUT 

SERIAL 
OUTPUT 
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Design Approach (Am PAL 16R6) 

The PAL implementation of the GCR Encoder/Decoder takes 
advantage of the multiplexer-like structure of the AND-OR ar­
ray. Each valid combination of ENA8LE, M1 and Mo selects a 
different set of AND terms. In some cases, only one term is 
selected (in data steering operations for example). In other 
cases, multiple AND terms are selected to implement a com­
binatorial logic function (the 58-to-48 conversion for example). 
This concept, using the control inputs to enable one or more 
AND terms, allows the direct implementation of the PAL design 
from the mode Data-Flow Diagrams (with a little Karnaugh map 
help). The K-Maps for the 58-to-48 conversion logic and the 
48-to-58 conversion logic for the Y 3 output are shown in Figures 
3-9 and 3-10. Given these maps and the flow diagrams in Figure 
3-8, the 800lean equations can be constructed for the Y 3 output. 
The resulting equation, in PALASM format, is shown in Figure 
3-11. 

It is important to note that the equation in Figure 3-11 is written 
for the inverse of the Y 3 output (Y3). This is necessary if true 
data is desired on the output pin because of the inverting 
nature of the output buffer on the PAL. The inverted form of 
the equation is easily implemented by selecting the negative 
version of the data (Y3 in the hold operation for example) or by 
grouping zeros In a combinatorial logic function (see Figures 
3-9 and 3-10). Notice that the multiplexer strategy works equally 
well for active-LOW or active-HIGH logic functions. 

Once the transformation of the Data-Flow Diagrams and 
K-Maps to· 800lean equations is understood, the interested 
reader should be able to construct K-Maps for the other Y out­
puts and, in conjunction with the Data·Flow Diagrams of 

2 00 01 11 

00 x x x 
01 X 1 1 

11 X 1 1 

10 ()( 0 0 

SOUT=O 

10 Y3Y2 00 

x 00 x 
X 01 1 

X 11 0 
-

~ ----xr 1 0 rt<X 

Ai =Y3*Y2 +Y:i*SOUT 

01 1 1 10 

x x X 

1 1 1 

0 x 01 

0 0 0)) 

SOUT =1 

03862A·96 

Figure 3-9. 58-to-48 Conversion K-Map for Y 3 Output 

Va:= EN*Ya 

EN*M1*MQ*Y2 

EN * M1 * Mo * SOUT 
EN * M1 * MQ * Y3 * SOUT 

EN * M1 * MQ * Va * Y2 
EN * Mr * Mo * 03 * Do 
EN * M1 * Mo * 01 * Do 

Figure 3-8, write the PALASM equations for the resulting logic 
functions. This exercise will help the reader to fully appreci­
ate the advantages of the Data-Flow Diagram/Multiplexer 
method of PAL design. Consult the full PALASM listing (Figures 
3-15 and 3-16) for the complete solutions. 

It is important to note that the diagrams and equations in Fig­
ures 3-12, 3-13, and 3-14 specify the true output for invalid 
signal (INV), rather than INV which appears in the system dia­
gram of Figure 3-7. This is necessary if the correct data is 
desired on the output pin and is due to the inverting nature of the 
output buffer on the PAL device. 

Once the data portion of the Encoder/Decoder is completed, 
only the two status outputs, Hand INV, need to be Imple­
mented. H Indicates the synchronization mark (11111) has 
been detected and is simply an AND ofY3 through SouT.INV 
indicates an Invalid serial Input was received. 

The TNV signal Is registered and held until the clear INV flag 
input (CIF) Is brought LOW, deactivating the flag. Only during 
a 58-48 conversion operation (M1 = HIGH, Mo= LOW) is the 
INV flag activated. Figures 3-12 and 3-13 show the INV flag 
mode definitions and the intermediate INVALID logic equation 
respectively. 

In this case, an active-LOW output is desired so the active­
HIGH form of the INV signal is developed internally. Ones 
are grouped in the intermediate combinatorial logic function 
(INVALID) and the true version of the data is selected. The 
complete PALASM equation for INV is given in Figure 3-14. 

00 01 11 10 

00 1 1 1 '0 
01 1 1 1 0 

1 1 OJ 1 1 fa 

1 0 --.V 1 1 ~ 

03862A·97 

Figure 3-10. 48-to-58 Conversion K-Map for Y3 Output 

+ iHOLD 

+ iSERIAL SHIFT IN 

+ is ERIAL SHIFT OUT 

+ iCONVERT SERIAL 

+ ilNPUT AND LOAD 

+ iCONVERT PARALLEL 

ilNPUT AND LOAD 

Figure 3-11. PALASM Equation for V3 
03862A·98 
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CIF Mt Mo OPERATION DATA· FLOW DIAGRAM 

"0" 

X X CLEAR INV -Q FLAG 

INV 

0 HOLDINV -9] 0 FLAG 
1 

INV 

SETINV 
FLAG 

INV 

Figure 3·12. INV Flag Mode Definitions 03862A·99 

00 01 11 10 V3V2 00 01 11 10 

00 ~ 1 1 1 r--_~ Km.1 1 1 

01 1 0 0 1 01 0\ 0 0 0 

11 1 0 0 1 11 OJ 0 <D 0 

10 Lm 0 0 ..!-. 10 ~O 0 0 

INVALID=Yi*Y2 + 
Vi*Yj*VO + 
Vij * Sour + 
V3 * Va * Vt * Vo * Sour 03862A·100 

Figure 3·13. PALASM Equation for INVALID 

INV:= CIF*INV ;HOLD INV FLAG 

CIF * Mt * Mo * Va • Vi 
~ * Mt * Mo * Yo * Sour 
CiF * Mt * Mo • Y2 * Vi' * Yo 
CIF. Mt • Mo • V3 • V2· Vt • Vo • Sour 

+ ;SET INV FLAG IF INVALID IS TRUE 

+ 
+ 

03862A·101 
Figure 3·14. PALASM Equation for INV 
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TABLE 3-7. FUNCTION TABLE FOR GCR (4B-5B) ENCODER/DECODER 

FUNCTION TABLE 

ex IE lEN MI MO D3 D2 DI DO SIN ICIF Y3 Y2 YI YO SOUT IINV IH 
--------------------------------------------------------------

; HIGH Z TEST 
X H X X X X X X X X X Z Z Z Z Z Z X 

; INITIALIZE IINV 
C L X X X X X X X X L X X X X X H X 

; SERIAL SHIFT IN TEST 
C L H H H H H H H X H H :H H H L H H 
C L H L L X X X X H H H H H L H H H 
C L H L L X X X X H H H H L H H H H 
C L H L L X X X X H H H L H H H H H 
C L H L L X X X X H H L H H H H H H 
C L H L L X X X X H H H H H H H H L 

; SYNCHRONIZATION MARK DETECT TEST 
C L H H H L L L L X H H L L H H H H 

4B TO SB CONVERSION FOLLOWED BY SB TO 4B RECONVERSION 
; NOTE THAT DURING RECONVERSION THE BIT ORDER IS REVERSED 
C L H H L X X X X L H L L H H L H H 
C L H H H L L L H X H H H L H H .H H 
C L H H L X X X X L H L L L H L H H 
C L H H H L L H L X H L H L L H H H 
C L H H L X X X X L H H L L H L H H 
C L H HH L L H H X H H H L L H H H 
C L H H L X X X X L H L L L L L H H 
C L H H H L H L L X H H L H H H H H 
C L H H L X X X X L H L H H H L H H 
C L H H H L H L H X H H L H L H H H 
C L H H L X X X X L H L 'H L H L H H 
C L H H H L H H L X H L H H L H H H 
C L H H L X X X X L H H H L H L H 'H 
C L H H H L H H H X H H H H L H H H 
C L H H L X X X X L H L H L L L H H 
C L H H H H L L L X H L H .L H H H H 
C L H H L X X X X L H H L H H L H H 
C L H H H H L L H X H H L. L H L H H 
C L H H L X X X X L H L L H L L H H 
C L H H H H L H L X H L H L H L H H 
C L H H L X X X X l' H H L H L L H H 
C L H H H H L H H X H H H L H L H H 
C L H H L X X X X L H H L L L L H H 
C L H H H H H L L X H' L H H H H H H 
C L H H L X X X. X L H H H H H L H H 
C L H H H H H L H X H H L H H L H H 
C L H H L X X X X L H L HHL L H H 
C L H H H H H H L X H L H H H L H H 
C L H H L X X X X L H H H H L L H H 
C L H H H H H H H X H H H 'H H L H H 
C L H H L X X X X ·L H H H L L L H H 
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TABLE 3-7. FUNCTION TABLE FOR GCR (4B-5B) ENCODER/DECODER (ContinueEl) 

; SERIAL SHIFT IN TEST 
C L H H H H H H H X H 
C L H L H X X X X X H 
C L H L H X X X X X H 
C L H L H X X X X X H 
C L H L H X X X X X H 
C L H L H X X X X X. H 
C L H L H X X X X X H 

DESCRIPTION 

H H H H L 
L H H H H 
H L H H H 
H H L H H 
H H H L H 
H H H H L 
L H H 'H H 

H 
H 
H 
H 
H 
H 
H 

H 
H 
H 
H 
H 
H 
H 

THIS PART IMPLEMENTS A 4B SB ENCODER/DECODER FOR TAPE DRIVES. ON 
A WRITE IT ENCODES THE 4B INPUT DATA TO THE SB FORMAT AND SERIALIZES 
THE DATA. ON A READ THE SB DATA IS SHIFTED IN, RECONVERTED TO THE 
4B FORMAT, AND OUTPUT TO THE DATA BUS. 
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PAL16R6 PAL DESIGN SPECIFICATION 
PAT003 WARREN K. MILLER 2/15/82 
4B-5B ENCODER/DECODER 
ADVANCED MICRO DEVICES 

CK Ml MO D3 D2 Dl DO /EN /CIF GND 
/E SIN /INV YO Yl Y2 Y3 SOUT /H VCC 

/SOUT :- EN*/SOUT + : HOLD 
/EN*/Ml*/MO*/SIN + :SERIAL SHIFT IN 
/EN*/Ml* MO*/YO + : SERIAL SHIFT OUT 
/EN* Ml*/MO*/SIN + : CONVERT SERIAL INPUT AND LOAD 
/EN* Ml* MO* D3* Dl + :CONVERT PARALLEL INPUT AND LOAD 
/EN* Ml* MO* D3* DO 

/YO :- EN*/YO + 
/EN*/Ml*/MO*/SOUT + 
/EN*/Ml* MO*/Yl .+ 
/EN* Ml*/MO*/SOUT + 
/EN* Ml*/MO* Y3* Y2*/YO + 
/EN* Ml* MO*/D3* Dl + 
/EN* Ml* MO*/D3* D2* DO 

/Yl :- EN*/Yl + 
/EN*/Ml*/MO*/YO + 
/EN*/Ml* MO*/Y2 + 
/EN* Ml*/MO*/YO + 
/EN* Ml*/MO* Y3* Y2 + 
/EN* Ml* MO*/D2 

/Y2 :- EN*/Y2 + 
/EN*/Ml*/MO*/Yl + 
/EN*/Ml* MO*/Y3 + 
/EN* Ml*/MO*/Yl + 
/EN* Ml* MO*/D3*/Dl*/DO + 
/EN* Ml* MO*/D3* D2*/Dl + 
/EN* Ml* MO* D3*/Dl* DO 

/Y3 :- EN*/Y3 + 
/EN*/Ml*/MO*/Y2 + 
/EN*/Ml* MO*/SOUT + 
/EN* Ml*/MO* Y3* SOUT + 
/EN* Ml*/MO* Y3*/Y2 + 
/EN* Ml* MO* D3*/DO + 
/EN* Ml* MO* Dl*/DO 

INV :- /CIF* INV + ;HOLD INV FLAG 
/CIF* Ml*/MO*/Y3*/Y2 + ;SET INV FLAG IF INVALID TRUE 
/CIF* Ml*/MO*/Y2*/Yl*/YO + 
/CIF* Ml*/MO*/YO*/SOUT + 
/CIF* Ml*/MO* Y3* Y2* Yl* YO* SOUT 

H - Y3* Y2* Yl* YO* SOUT 

Figure 3-15. PALASM Lilting (pg. 1 of 3) 
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PAL16R6 PAL DESIGN SPECIFICATION 
PAT003 WARREN K. MILLER 2/15/82 
4B-5B ENCODER/DECODER 
ADVANCED MICRO DEVICES 
*D9724 
*FO* 
LOOOO 1111 1111 1111 1111 1111 1111 1111 1111 * 
10032 1111 1101 1101 1101 1101 1101 1111 1111 * 
L0256 1111 1110 1111 1111 1111 1111 1011 1111 * 
L0288 1011 1011 1111 1111 1111 1111 0111 1110 * 
L0320 1011 0111 1111 1111 1111 1110 0111 1111 * 
L0352 0111 1011 1111 1111 1111 1111 0111 1110 * 
L0384 0111 0111 0111 1111 0111 1111 0111 1111 * 
L0416 0111 0111 0111 1111 1111 0111 0111 1111 * 
L051Z 1111 1111 1110 1111 1111 1111 1011 1111 * 
L0544 1011 1011 1111 1110 1111 1111 0111 1111 * 
L0576 1011 0110 1111 1111 1111 1111 0111 1111 * 
L0608 0111 1001 1101 1111 1111 1111 0111 1111 * 
L0640 0111 1011 1101 1110 1111 1111 0111 1111 * 
L0672 0111 0111 0111 1111 1111 1011 0111 1111 * 
L07040111 0111 1111 1111 0111 1011 0111 1111 * 
L0768 1111 1111 1111 1110 1111 1111 1011 1111 * 
L0800 1011 1011 1111 1111 1110 1111 0111 1111 * 
L0832 1011 0111 1110 1111 1111 1111 0111 1111 * 
L0864 0111 1011 1111 1111 1110 1111 0111 1111 * 
L0896 0111 0111 1011 1111 1011 1011 0111 1111 * 
L0928 0111 0111 1011 0111 1011 1111 0111 1111 * 
L0960 0111 0111 0111 1111 1011 0111 0111 i111 * 
L1024 1111 1111 1111 1111 1110 1111 1011 1111 * 
L1056 1011 1011 1111 1111 1111 1110 0111 1111 * 
L1088 1011 0111 1111 1110 1111 1111 0111 1111 * 
Ll120 0111 1011 1111 1111 1111 1110 0111 1111 * 
L1152 0111 1011 1101·1101 1111 1111 0111 1111* 
Ll184 0111 0111 1111 1011 1111 1111 0111 1111 * 
L1280 1111 1111 1111 1111 1111 1110 1011 1111 * 
L1312 1011 1010 1111 1111 1111 1111 0111 1111 * 
L1344 1011 0111 1111 1111 1110 1111 0111 1111 * 
L1376 0111 1010 1111 1111 1111 1111 0111 1111 * 
L1408 0111 1011 1101 1101 1111 1110 0111 1111 * 
L1440 0111 0111 1011 1111 0111 1111 0111 1111 * 
L1472 0111 0111 1011 0111 1111 0111 0111 1111 * 
L1536 1111 1111 1111 1111 1111 1111 1110 0111 * 
L1568 0111 1011 1110 1110 1111 1111 1111 0111 * 
L1600 0111 1011 1111 1110 1110 1110 1111 0111 * 
L1632 0111 1010 1111 1111 1111 1110 1111 0111 * 
L1664 0111 1001 1101 1101 1101 1101 1111 0111 * 
C8E23*· 
VOOOI XXXXXXXXX01XZZZZZZX1 * 
V0002 CXXXXXXXOOOXHXXXXXXI * 
V0003 C1111111100XHHHHHLHI * 
V0004 COOXXXX11001HLHHHHHI * 
V0005 COOXXXX11001HHLHHHHI * 
V0006 COOXXXX11001HHHLHHHI * 
V0007 COOXXXX11001HHHHLHHI * 
V0008 COOXXXX11001HHHHHHLI * 

Figure 3-15. PALASM Listing (pg. 2 of 3) 
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V0009 CIIOOOOIIOOXHHLLHHHI * 
VOOIO CIOXXXXIIOOOHHHLLLHI * 
VOOll CllOOOlllOOXHHLHHHHI * 
VOOI2 CIOXXXXIIOOOHHLLLLHl * 
V0013 CIIOOIOIIOOXHLLHLHHl * 
VOOI4 CIOXXXXIIOOOHHLLHLHl * 
VOOIS CIIOOIIIIOOXHLLHHHHl * 
VOOI6 CIOXXXXlIOOOHLLLLLHI * 
VOOl7 CllOlOOIIOOXHHHLHHHI * 
VOOl8 ClOXXXXIIOOOHHHHLLHl * 
VOOl9 CIIOlOlllOOXHLHLHHHI* 
V0020 ClOXXXXllOOOHHLHLLHl * 
V002I CllOllOlIOOXHLHHLHHl * 
V0022 ClOXXXXllOOOHHLHHLHl * 
V0023 CIIOIllI100XHLHHHHHl * 
V0024 ClOXXXXll000HLLHLLHl * 
V002S CllIOOOIIOOXHHLHLHHl * 
V0026 ClOXXXXllOOOHHHLHLHl * 
V0027 CllIOOllIOOXHHLLHLHl * 
V0028 ClOXXXXll000HLHLLLHl * 
V0029 ClllOlOllOOXHHLHLLHl * 
V0030 ClOXXXXllOOOHLHLHLHl * 
V0031 CIIIOIIIlOOXHHLHHLHl * 
V0032 ClOXXXXllOOOHLLLHLHl * 
V0033 CilIlOOlI00XHHHHLHHl * 
V0034 CIOXXXXIlOOOHHHHHLHl * 
V003S CllllOllI00XHHHLHLHl * 
V0036 ClOXXXXllOOOHLHHLLHl * 
V0037 ClllllOllOOXHHHHLLHl * 
V0038 ClOXXXXllOOOHLHHHLHl * 
V0039 CllllllllOOXHHHHHLHl * 
V0040 ClOXXXXllOOOHLLHHLHl * 
V004l ClllllllIOOXHHHHHLHl * 
V0042 COlXXXXllOOXHHHHLHHl * 
V0043 COlXXXXllOOXHHHLHHHl * 
V0044 COIXXXXIlOOXHHLHHHHl * 
V004S COlXXXXllOOXHLHHHHHI * 
V0046 COlXXXXllOOXHHHHHLHI * 
V0047 COlXXXXllOOXHHHHLHHl * 
CA76 

Figure 3-15. PALASM Listing (pg. 3 of 3) 
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Columns: Inputs (0-31) 
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Figure 3-16. Logic Diagram for GCR Encodes/Decodes USing AmPAL16R6 
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3.2.4 COMPARATORS 

The comparison of two numbers is an operation that 
determines if one number is equal to the other number. 

6-Bit Comparator (Am PAL 18P8) 

The 6-bit comparator establishes when two 6-bit data strings 
(AO-A5 and BO-B5) are equivalent (NE = L). Because the 
maximum number of product terms for each output pin is eight, 
we use one additional output pin (UPNE) for the comparison of 
the three most significant bits (UPNE = L if the upper three bits 
are equivalent). It requires twelve inputs and two outputs, for a 
total of sixteen input/output pins. These requirements are 

satisfied by a single Am PAL 18P8 device. The corresponding 
PLPL specification and the sum-of-products equations 
generated by the compiler are shown in Figure 3-17.< 

Octal Comparator (AmPAL22V10) 

The octal comparator establishes when two 8-bit data strings 
(AO-A7 and BO-B7) are equivalent (NE = L). It requires sixteen 
inputs, and one output pin. The single output needs sixteen 
product terms. These requirements are satisfied by one single 
AmPAL22V10. The corresponding PLPL specification and 
sum-of-products equations generated by the compiler are 
shown in Figure 3-18. 
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DEVICE SIX_BIT_MAGNITUDE_COMPARATORS (PAL18P8) 

PIN AS = 1 

B5 = 7 
A4 = 2 
B4 = 8 

A3 = 3 A2 = 4 A1 = 5 AO = 6 
B3 = 9 B2 = 11 B1 = 12 BO = 13 

UPNE = 14 liTHE UPPER THREE BITS NOT EQUALII 
t~E = 15 ; 

BEGIN 

END. 

UPNE = A5*/B5 + /A5*B5 
+ A4*/B4 + /A4*B4 
+ A3*/B3 + /A3*B3; 

NE = UPNE 
+ A2*/B2 + /A2*B2 
+ A1*/B1 + /A1*B1 
+ AO*/BO + /AO*BO ; 

TEST_VECTORS 
IN AS A4 A3 A2 A1 AO B5 B4 B3 B2 B1 BO ; 
OUT UPNE NE ; 

BEGIN 
IIA A A A A A B B B B B B II 

115 4 3 2 1 0 54321 0 UPNE NEil 

1 0 0 0 0 0 000 0 0 0 H H ; 
o 1 0 0 0 0 000 000 H H ; 
001 000 000 0 0 0 H H ; 
000 1 0 0 o 0 0 0 0 0 L H ; 
o 0 001 0 000 000 L H • , 
o 0 000 1 o 0 0 0 0 0 L H ; 
o 000 0 0 1 0 0 0 0 0 H H • , 
o 000 0 0 o 1 0 0 0 0 H' H ; 

o 0 0 0 0 0 001 000 H H ; 
000 0 0 0 000 1 0 0 L H • , 
o 0 00 0 0 o 0 001 0 L H ; 
o 0 0 0 0 0 o 0 0 001 L H • , 
o 0 0 0 0 0 o 0 0 0 0 0 L L ; 
111111 111111 L L • , 
10101 0 10101 0 L L ; 
010101 o 1 0 1 0 1 L L • , 
00100 1 00100 1 L L ; 

END. 

Figure 3-17. AmPAL18P8 PLPL Speclflcatlon-S-Blt Comparator 
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DEVICE OCTAL_COMPARATOR (PAL22V10) 
PIN A7 =1 A6 = 2 AS = 3 A4'= 4 

A3 = 5 A2 = 6 A1 = 7 AO = 8 
B7 = 9 B6= 10 B5 = 11 B4 = 13 
B3 = 14 B2 = 15 B1= 16 BO = 17 
NE =18; 

BEGIN 
NE = A7*/B7 + /A7*B7 

+ A6*/B6 +/A6*B6 
+ AS*/B5 + /AS*BS 
+ A4*/B4 + /A4*B4 
+ A3*/B3 + /A3*B3 
+ A2*/B2 + /A2*B2 
+ A1*/B1 + /A1*B1 
+ AO*/BO + /AO*BO ; 

END. 
T~ST_VECTORS 

IN A7 A6 AS A4 A3 A2 A1 AO B7 B6 85 B4 B3 B2 B1 80; 
OUT NE; 
BEGIN 
"A A A A A A A A B B B B B B 8 8 Nil 
"7 6 S 4 3 2 1 0 7 6 S 432 1 0 E" 
1 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 H ; 

o 1 0 0 0 0 0 0 o 0 0 0 0 000 H ; 

001 000 0 0 o 0 0 0 0 0 0 0 H • , 
00010 0 0 0 o 0 0 0 0 0 0 0 H 
o 0 001 000 o 0 0 0 000 0 H ; 
o 0 0 001 0 0 o 0 000 0 0 0 H ; 
o 0 0 0 001 0 o 0 0 0 0 0 0 0 ' H ; 
o 0 0 0 000 1 o 0 0 0 000 0 H ;' 
o 0 0 0 0 0 0 0 ·100.00000 H ; 
o 0 0 0 0 0 0 0 o 1 0 0 0 000 H ; 
o 0 0 0 0 0 0 0 001 000 0 0 H 

o 0 0 0 0 0 0 0 000 1 000 0 H ; 
o 0 0 0 0 0 0 0 o 0 0 0 1 000 H ; 
00'000000 o 0 0 0 01 0 0 H ; 
o 0 0 0 0 0 0 0 o 0 0 0 0 0 1 0 H ; 
o 0 0 0 0 0 0 0 o 0 0 0 000 1 H ; 
o 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 L ; 
11111111 11111111 L ; 

" 1010101 0 1010101 0 L 
o 1 0 1 0 1 0 1 o 1 0 1 0 1 0 1 L ; 

END. 

Figure 3-18. AmPAL22V10 PLPL Specification-Octal Comparator 
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3.2.5 ,ADDRESS DECODING AND CHIP 
SELECT GENERATION SIMPLIFIED 
WITH COMBINATORIAL PAL DEVICES 

Combinatorial PAL devices are used extensively in digital com­
puter systems for address decoding and chip-select generation 
functions, For these functions, a combinatorial PAL device with 
a large number of inputs/outputs and programmable polarity 
for its outputs is preferable. The AmPAL 18P8, a second­
generation combinatorial PAL device is ideal for these applica­
tions. Compared to the standard 20-pin combinatorial PAL 
devices such as 16LB/16H8, it offers three significant advan­
tages: two extra bidirectional I/Os, increased number of prod­
uct terms for every output, and programmable polarity for each 
of its eight outputs. Its extra inputs allows it to decode a larger 
number of address bits in a single device. Its programmable 
polarity allows generation of both active-LOW and active-HIGH 
chip selects from the same device for different peripherals. 
This obviates the need for separate PAL devices with dedi­
cated polarity (such as 16L8/16H8) and also results in faster 
speed. 

For chip-select functions, a system designer often has to 
generate stable latched chip selects, and chip selects for 
memories without OE pins; whereas address decoders, imple­
mented with PAL devices, can also be used to implement cer­
tain system-specific tricks such as boot-address generation, 
and switching between Real and Virtual modes of operation. 

1 1 

o 

Figure 3-19.a STATIC 1 Hazard 

- -

O~' ~ 
o 

Stable Latched Chip-Select Generation 

The address decoding function often requires latching the 
"decoded chip select (CS)" line. This is needed for most 
memory and peripheral devices. To generate this stable CS, 
designers often have to take into account possible hazard con­
ditions. These hazard conditions can be handled easily by a 
PAL device such as the AmPAL 18PB. 

Hazard Definitions and Brief Explanations 

Hazards are timing problems and unwanted switching tran­
sients that arise due to gat~ and wiring delays. These un­
wanted transients may occur at the outputs of combinatorial or 
asynchronous sequential networks because different paths of 
the network may have different propagation delays. 

A network is said to have a "STATIC 1 Hazard" if its output 
momentarily goes to 0 when it should remain at constant 1, due 
to some input change; and it is said to have a "STATIC 0 
Hazard" if its output momentarily goes to 1 when it should 
remain at constant O. A network is said to have "DYNAMIC 
Hazards" when its output oscillates a few times (from 1 - > 0 
or 0 - > 1) before it returns to a stable state. In all of these 
cases, the steady-state output of the network is correct, but 
switching transients cause "glitches" to appear at the outputs. 
Figures 3-19.a through 3-19.c show various types of hazards. 

1 ...-

o 0 

Figure 3-19.b STATIC 0 Hazard 

o -

Figure 3-19.c,DYNAMIC Hazards 
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Figure 3-20 shows the example of a network with a "STATIC 1 
Hazard." Here, output Y is equal to X1 • X2 + /X2 • Y. This is a 
sum-of-products equation. It can be implemented with either 

NAND gates (shown in Figure 3-20), or with simple AND-OR 
gates in a PAL device. 

Figure 3-20. NAND Implementation of V = X1 * X2 + IX2 * V 

The logic in Figure 3-20 shows the sum-of-product form of 
design. Signal X2 can be an LE signal (usually ALE or AS in 
most microprocessors), Y is the feedback from the output for 
generating the stable CS signal. X1 can be an AND term of a 
number of address signals (e.g., X1 = A3 • A4 • A5). For 
simplicity sake, we would use X1 as a single Signal. Figure 
3-21 shows the Karnaugh Map for this function. 

static hazard 

Figure 3·21. Karnaugh Map 

As we can see in the Karnaugh Map, there is a possibility of 
a hazard when signal X2 transitions. 

Consider the case when initially X1 & Y = 1, and X2 Is also 1. 
Now let's say X2 transitions to O. The output Y should remain a 
constant 1 ; however, the output may momentarily go to 0 if the 
gates switch in the following sequence: gate 1 switches to 0, 
then Y goes to 0, then the inverter output goes to 1, gate 2 
switches to 0, and finally, Y goes to 1. Note that there is pos­
sibility of this hazard only because of different gate delays. 

This kind of hazard results in momentary false outputs, and 
may cause serious problems if the output is used as an input 

for other asynchronous networks. For example, if the signal Y 
is used as the CS signal for some memory or· peripheral 
device, it Is likely to result in erroneous behavior of the system 
because of this momentary false output. These kinds of 
hazards cause the network to go Into wrong stable states. 

Figure 3-22 shows the Karnaugh Map and its associated stable 
states. If the network is in stable state 4 (repr,esented by X1 = 
1, X2 = 1, and Y = 1), and if the X2 input is changed to 0, the 
next stable state should be 5 and not 2. However, if Y momen­
tarily goes to 0 and is fed back before /X2 goes to 1, the output 
of gate 2 will remain 1 and the output might be O. 

X1 X2 

Y 00 01 11 10 

0 

1 

CD ® 4 ® 
® 3 (1) ® 

X2 transitions from 1 to 0 

Figure 3·22. Stable States for the Function 

V = X1 * X2 + IX2 * V _ 

Avoiding Hazard Conditions 

These hazard conditions can be avoided easily with PAL 
devices. The hazard condition of Figure 3-22 can be eliminated 
by an extra AND gate as shown in Figure 3-23. This extra AND 
gate prevents the false output for Y. Providing this extra AND 
gate with a PAL device is very easy. It is simply an unused 
product term. 
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Y 

Y = X 1 X2+IX2Y 

+X1 Y 

Extra gate used 
to avoid GLITCH 

Figure 3-23. Hazard Elimination with an Extra Gate 

Generating Chip Selects (CS) for Memories­
With or Without Output Enable (OE) 

Most of the second-generation memories have both output 
enable (OE) and chip select (CS) pins. This separate and inde­
pendent OE line eliminates the bus-contention problem com­
pletely. The OE line is used by the microprocessor for getting 
data "on",or "off" the system data bus, and the microproces­
sor is always' in control. Without this the system is always 
asynchronous with respect to the microprocessor/memory 
interface. 

However, some memories do not have a separate OE pin. 
Generating CS for these memories could cause serious bus­
contention problems is such situations. Often this problem is 
solved by gating the CS with READ or WRITE signals as 
follows: 

CS = X * /R 
+ X * IW (X is combination of certain address lines) 

WE=/W 

This approach allows usually sufficient time for other buffers on 
the data bus to tristate. This works well for the read cycles in 
which the memory/peripheral is expected to be the only bus 
driver. However, for write cycles where usually the processor is 
the data bus driver, this doesn't quite solve the problem 
completely. 

In the above equations, CS is generated either from the READ 
or WRITE line. There is still no way to ensure that CS is 
generated after the WE line to the peripheral/memory is as­
serted LOW since CS is not controlled by WE at all. This prob­
lem however can be solved by controlling the CS line from the 
WE signal, by gating the /W Signal with the WE signal (for CS) 
as follows: 

CS = X * /R 
+ X */W * /WE 

This ensures that the WE of peripheral/memory is LOW before 
the CS is asserted. This, however, solves part of the problem. 

On the other edge, WE should be disasserted only after CS is 
disasserted. This can be accomplished by controlling /WE from 
the /CS-by gating /CS along with the /WE line (as follows): 

WE = /W */CS 

This ensures the assertion of /WE as long as CS is asserted 
and W is LOW. As soon as the /CS is disasserted, the /WE of 
the peripheral/memory will be disasserted. 

These signals /CS and /WE used for controlling each other are 
nothing but the feedback from the appropriate I/O pins. The 
AmPAL 18P8 provides feedback from all of its I/O pins to imple­
ment these functions. These feedbacks ensure logic safety, 
and provide smooth functioning of the design without using any 
additional components. 

The PAL devices can be used also for providing flexible 
address-decoding functions. 

Mapping Boot Address Difficulty 
Solved with a PAL Device 

Usually single-board systems use one or two ROMs for imple­
menting booting software. For example, a single 1-Mbit ROM 
provides 64K words (64K x 16) of memory. 

In iAPX86 microprocessor-based systems, the bootstrap ad­
dress is at the end of the address space. This can present 
problems in systems with only one or two ROMs. 
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In such cases, a slight trick in the address decoder can usually 
save one extra ROM chip to be placed at the boot location. 
During initialization. the boot-strap address can be decoded to 
a location in the ROM and the boot code is placed in that ROM 
in addition to usual software. After booting is complete, an 
external flip-flop (START) can be asserted to allow normal 
addressing of the ROM address space (see Figure 3-24). 

CS2 = A19" A18 " A17 " A16 "/START Boot Address 
+ /A19 "/A18 " /A17" /A16" START after booting' 

is complete 

One has to be careful and not execute the boot code again. An 
extra product term of the PAL device allows use of the same 
ROM for both functions. 

4 

--------- 4 
4 

--------- 4 

FFFFF 

D 
D 

ROMl 

ROM2 

Boot Address 
Decode 

Figure 3-24. Boot Address Decoding Scheme 

Switching Between Real and Virtual 
Modes of Operation 

in the 80286 microprocessor, for maintaining upward-com­
patibility with the 8086/8088 Microprocessor Family, two 
modes of operation are provided: Real and Virtual/Protected 
mode. 

The Real mode is compatible to iAPX 88/86 and has 1 Mbyte of 
physical address space: The 80286 is initialized in this Real 
mode with the bootstrap address of FFFFO (AO-A19) at the 
bottom of this address space. Switching to the Virtual/ 
Protected mode of operation allows for the AO-A23 address 
bits with 16 Mbytes of physical address space. In the Real 
mode, the system bootstrap ROMs must. respond to the 
address available (with 1 Mbyte), ignoring the upper four 
A20-A23 address lines. In Protected mode, these same ad­
dress lines address only the top 1 Mbyte of the available 16 
Mbytes of address space. Thus, based on control signal 
PROT, the address decoder decides which address bits to use 
to generate CS for the same location in memory. The circuit 
should allow the capability of resetting to restart the chip from 
Real mode. The bootstrap-ROM CS can be generated as 
follows: 

CS = A19 "A18 "A17 "A16" PROT 
+ /A23 "/A22 "/A21 "/A20 "A19 "A18 "A17 "A16 "PROT" 

PROT = /MODE + RESET" PROT 

Note that MODE indicates Real mode, and /MODE indicates 
Virtual mode. 

During START, the signal PROT initializes as LOW, which al­
lows Real-mode address decoding. When switching to Virtual 
mode, the processor explicitly changes the state of a register 
mode to LOW. 

MODE = H =Real mode 
MODE = L = Virtual/Protected mode 

This allows the PAL-based internal latch to store the state of 
the Virtual mode in output PROT whose feedback is used to 
address the Virtual mode address space (Note that this flexibil­
ity is again provided by a simple product term of the PAL 
device). 

A similar approach can be used even for the iAPX 386. The 
switching between Reaf and Virtual/Protected mode is identical 
except that In Virtual mode, the addressing needs to be based 
on extra bits A20-A32, whereas in iAPX 286, only A20-A23 
need to be implemented. 
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3.3 SEQUENTIAL LOGIC 

3.3.1 COUNTERS 

Nine-Bit Up-Down Counter 

An up-down counter is also known as a bidirectional counter, 
and is capable of counting in either direction through a certain 
sequence. For example, a 4-bit up-down binary counter can 
count up through its sequence (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12, 13, 14, 15) and then can be reversed to count down (15, 
14,13,12,11,10,9,8,7,6,5,4,3,2,1,0). 

In general, most up-down counters can be reversed at any 
point in their counting sequence. For example, the 4-bit binary 
up-down counter can be made to go through the following 
sequence: 

Design Requirements 

Figure 3-25 shows the block diagram of a 9-bit up-down 
counter. In addition to the nine registered outputs for the 
counter, there are five other inputs: one clock pin, one 
UP/DOWN control, one CLEAR, one Output Enable and one 
HOL[).input. 

The counter counts up, when a HIGH is asserted on the 
UP/DOWN control signal and clock pulses are applied. It 
counts down when a LOW is asserted on the UPIDOWN con­
trol signal and the clock pulses are applied. HOLD, when as­
serted, holds the state of the last count. CLEAR resets the 
entire counter to O. Output Enable enables the value of counter 
on the output pins. 

Design Approach 

For the ease of implementation, the counter is partitioned into 
two separate counters: one 4-bit and the other 5-bit. The 5-bit 
counter is enabled every time the counter reaches the value 15 
(when the counter is counting up) and value 0 (when counting 
down). 

To minimize product-term requirements, an external pin is 
used to generate a "ONE" signal based on the least significant 
4 bits of the counter value ( 0[3] * 0[2] * 0[1] * 0[0]). 

Table 3-8 shows the function table for the 9-bit up-down 
counter. Figure 3-26 shows the PLPL specification and Figure 
3-27 shows the fuse map of a 9-bit up-down counter imple­
mented with single AmPAL22V10 device. 

As shown in the fuse map, a total of 106 product terms are 
required to implemente this function. The most significant bit of 
the counter (08) requires 16 product terms. 

TABLE 3·8. FUNCTION TABLE FOR THE 9-BIT UP·DOWN COUNTER 

ClK OE ClR HlD 
UP/ 

08 07 06 OWN 

X 0 X X X Z Z Z 
X 1 1 X X 0 0 0 
1 1 0 1 X 08 07 06 
1 1 0 0 1 0 0 0 
1 1 0 0 1 0 0 0 

COUNT UP 

1 1 0 0 1 1 1 1 
1 1 0 0 0 1 1 1 
1 1 0 0 0 1 1 1 

COUNT DOWN 

1 1 0 0 0 0 0 0 

05 04 03 02 

Z Z Z Z 
0 0 0 0 

05 04 03 02 
0 0 0 0 
0 0 0 0 

1 1 1 1 
1 1 1 1 
1 1 1 1 

0 0 0 0 
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'. DEVICE NINE_BIT_UP _DO\lN_COUNTER (PAL22Vl0) 

PIN CLOCK = 1 

HOLD = 5 

UP = 2 CLEAR = 3 EN = 4 

ONE = 14 

Q[8:0] = 19,18,17,16,15,20,21,22,23 i 

DEFINE ZERO = IQ[3] * IQ[2] * IQ[I] * IQ[O] 

DOWN = IUP i 
II NOTE: DUE TO PRODUCT TERM LIMITATIONS, MUST GENERATE 'ONE' 

SIGNAL ON A PIN TO FIT THE DESIGN IN THE PAl. 'ZERO' CAN 

BE DETECTED IIITH INTERNAL PRODUCT TERMS. II 

BEGIN 

IF ( EN ) THEN ENABLE (Q [8:0]) i 

ONE = Q[3] * Q[2] * Q[1] * Q[O] ; 

IF ( CLEAR ) THEN ARESET(Q [8:0]) i 

IF 

IF 

HOLD ) THEN Q[8:0] := 0[8:0] 

UP ) THEN BEGIN 

CASE (Q[3:0]) 

BEGIN flBOOOO) Q[3:0] := #BOOOI i 

f:BOOOl) 0 [3:0] := #B0010 i 

t;'B0010) 0 [3:0] := #B0011 ; 

tiBOOll) Q[3:0] := #B0100 ; 

tiB0100) Q [3:0] := #BOI01 i 

#B010l) Q[3:0] := #BOll0 i 

t;'BOll0) Q[3:0] := #BOlll i 

tiBOlll) Q[3:0] := #81000 ; 

tiBl000) Q[3:0] := #Bl001 ; 

#Bl00l) Q [3:0] := #Bl010 ; 

#Bl0l0) Q[3:0] := #Bl0ll ; 

tiBl0ll) Q[3:0] := #Bll00 ; 

#Bl100) 0[3:0] := #Bll0l ; 

#81101) 0[3:0] := #Blll0 ; 

#Bl110) Q[3:0] := #Bllll ; 

#81111) Q[3:0] := #80000 ; 

END; 

IF ( ONE ) THEN BEGIN 

CASE (Q[8:4]) 

BEGIN #800000) Q [8:4] := #BOOOOI ; 

#800001) Q[8:4] := #B00010 ; 

#B00010) Q[8:4] := #BOOOll ; 

#B00011) Q[8:4] := #800100 ; 

#B00100) Q[8:4) := #B0010l ; 

#800101) Q[8:4] := #BOOll0 ; 

END; 

END; 

END; 

#800110) Q[8:4] := #800111 i 

#800111) Q[8:4] := #B01000 i 

#B01000) Q[8:4] := #801001 i 

#801001) Q[8:4] := #B010l0 i 

#801010) Q[8:4] := #801011 i. 

#801011) Q[8:4] := #801100 ; 

#801100) Q[8:4] := #B01101 ; 

#801101) Q[8:4] := #801110 ; 

#BOlll0) Q[8:4] := #B01111 ; 

#801111) Q[8:4] := #Bl0000 i 

#810000) Q [8:4] := #Bl000l i 

#Bl0001) Q [8:4] := #Bl0010 i 

#810010) Q [8:4] := #Bl00ll ; 

#Bl0011) Q[8:4] := #Bl0100 i 

#Bl0l00) Q[8:4] := #Bl0l01 i 

#Bl0101) Q [8:4] := #Bl0110 i 

#Bl0ll0) Q [8:4] := #Bl0lll ; 

#Bl0l11) Q[8:4] := #Bll000 ; 

#Bll000) Q [8:4] := #Bll001 i 

#Bll001) Q [8:4] := #Bl1OIO i 

#811010) Q[8:4] := #Bl1011 ; 

#Bl1011) Q[8:4] := #Bl1100 i 

#Bl1100) Q[8:4] := #Bll101 i 

#Bl1101) Q[8:4] := #Bl1110 i 

#Bllll0) Q[8:4] := #Bl1111 i 

#Bl1111) Q[8:4] := #BOOOOO i 

ELSE Q[8:4] := Q[8:4] 

IF (DO\lN ) THEN BEGIN 

CASE (Q[3:0]) BEGIN #80000) Q[3:0] := #Bl111 ; 

#BOOOl) Q[3:0] := #BOOOO i 

#80010) Q[3:0] := #BOOOI ; 

#B0011) Q[3:0] := #B0010 ; 

#80100) Q [3:0] := #B0011 i 

#B010l) Q [3:0] := #B0100 ; 

Figure 3-26. PLPL Specification for a 9-Bit Up-Down Counter (1 of 2) 



#80110) 0[3:0] := #80101 : #811101) 0[8:4] := #811100 : 

#80111) 0[3:0] := #80110 : #811110) 0[8:4] := #811101 : 

#81000) 0[3:0] := #80111 : #811111) 0[8:4] := #811110 : 

#81001) 0[3:0] := #81000 : END: 

#Bl0l0) 0 [3:0] := #81001 : END: 

#81011) 0[3:0] := #81010 : ELSE 0[8:4] := 0[8:4] 

#81100) 0[3:0] := #81011 : END: 

#81101) 0[3:0] := #81100 : END. 

#81110) 0[3:0] := #81101 : TEST_VECTORS 

#81111) 0[3:0] := #81110 : IN CLOCK UP CLEAR EN HOLD : 

END: OUT ONE 0[8:0] 

IF ( ZERO) THEN BEGIN BEGIN 

CASE (0 [8:4]) BEGIN #SOOOOO) 0[8:4] := #811111 : "C U C 0 0 0 0 0 0 0 o II 

#800001) 0[8:4] := #800000 : ilL P L 0 8 7 6 5 4 3 o II 
#800010) 0[8:4] := #800001 : "0 L 

#800011) 0[8:4] := #800010 : "C A 

#800100) 0[8:4] := #800011 : "K R 

#800101) 0[8:4] := #800100 : P X X X X L L 

#800110) 0[8:4] := #800101 : C 1 0 1 0 H :"COUNT UP" 

#800111) 0[8:4] := #800110 : C 1 0 1 0 l : 

#801000) 0[8:4] := #800111 : C 1 0 0 H : 

(,) #801001) 0[8:4] := #801000 : P X X X H : "PRELOAD REGS" 

W #801010) 0[8:4] := #801001 : C 1 0 1 l :"COUNT UP II 
I\J 

#801011) 0 [8:4] := #801010 : C 1 0 1 H • 

#801100) 0[8:4] := #801011 : C 1 0 l • 

#801101) 0[8:4] := #801100 : C 1 0 H : 

#801110) 0[8:4] := #801101 : C X 0 l' H :"HOLD II 

#801111) 0[8:4] := #801110 : COO 0 L : "COUNT DO\IN " 

#810000) 0[8:4] := #801111 ; COO H : 

#810001) 0[8:4] := #810000 ; COO L • 

#810010) 0 [8:4] := #810001 ; COO H ; 

#810011) 0[8:4] := #810010 ; COO 0 L • 

#810100) 0[8:4] := #810011 ; COO 0 H ; 

#810101) Q [8:4] := #810100 ; COO 0 L ; 

#810110) 0[8:4] := #810101 ; COO H ;"COUNT DN/IIRAP AROUND" 

#810111) 0[8:4] := #810110 ; C X X X X Z ;"DISABLE OUTPUTS" 

#Bll000) 0[8:4] := #810111 ; C X 1 0 L ;"CLEAR II 

#811001) 0[8:4] := #811000 ; P X X X H ; "PRELOAD REGS" 

#811010) 0 [8:4] := #811001 ; C 1 0 1 L :"COUNT UP/WRAP AROUND" 

#811011) 0[8:4] := #Bl1010 ; C 1 H ; 

#Bl1100) 0[8:4] := #811011 ; C 1 0 L L L L L L L ; 

END. 

Figure 3-26. PLPL Specification-9-Bit Up-Down Counter (2 of 2) 



ClK 
INPUT LINES 

to.. 
..... 0 . I 12 11 20 2. 21 32 :II <0 

AR 
OIl 

0 

~ 
OE 

0 

I 

2 

~ 

Cl EAR" 
3 

OE 
0 

EN 13 

4 

O~ 

lD 11 

5 
OE 

0 

11 

• 
OE 

0 

13 

7 

o~ 

" • 
OIl 

0 

I 

I 
Oe 

0 

7 

0 

SP 
1 
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Modulo-360 Counter 

A typical n-blt binary counter has a maximum modulus equal to 
2", where n is the number of stages. However, it can be 
modified to have a lesser modulus, without changing the num­
ber of stages. This may be necessary for applications where a 
non-power-of-two modulus is required. 

Often it is necessary to introduce signal delays into logic 
design to meet tight timing requirements such as to allow for 
bus skew, access time or different propagation delays through 
devices along two different signal paths. A typical example of 
this is the introduction of wait states to allow for access times of 
different memory elements. Counters or delay lines are com­
monly used to introduce the delay. Counters have the advan­
tage of programmability to generate the required delay and are 
possibly easier to synchronize with the master device. A 
modulo counter, Implemented with a PAL device can be used 
for these kind of applications. 

Design Requirements 

For example, If a counter with modulus of 17 is required, five 
flip-flops will be required because a four-stage counter has 
maximum modulus of 16. Similarly, to implement modu10-360 
counter, nine flip-flops will be required. 

However, to achieve a lesser modulus In an n-stage counter, 
some of the "natural" states have to be skipped. For example, 
a five-stage counter has a natural counting sequence from 0 to 
31. If the counter is to be redefined as modulus 17 counter, 

024 [4] [3J [2J [1] [OJ 

then the states 18 to 31 have to be skipped. That means the 
counter circuitry has to be modified. Whenever the counter 
reaches state 17 it must be reset to state 0, rather than count­
ing up to state 18. 

Design Approach 

Design approach for modulo-counters of any desired length is 
quite similar to that of typical binary or BCD counters. In a 
simple case, Boolean equations can be derived from the func­
tion table covering all possible states of the counter. However, 
the size of the function table increases with the number of 
states. For large counters, generating Boolean equations can 
become tedious and time consuming. 

Another approach for implementing the modulo-counter is to 
partition the deSign into smaller state machines. We know that 
a modu10-360 counter requires nine flip-flops. However, in­
stead of implementing this as a straight 9-bit counter from the 
function table we can implement this as two counters: one 4-bit 
counter (counting from 0 to 14) and another 5-bit counter 
(counting from 0 to 23). Together the two counters count up to 
360. The signal M OUT is asserted when the counter counts up 
to 360. 

Figure 3-28 shows the block diagram of a 9-bit loadable, 
modu10-360 counter. It needs nine inputs, nine outputs, one 
clock pin, one LOAD pin, one RESET, and one M OUT (module 
output) pin. Figure 3-29 shows the PLPL specification of this 
modulo-360 counter. Figure 3-30 shows the implementation of 
this function in a single AmPAl22V10 device. 

015 [3J [2J [lJ [OJ 

~ ......... _ .................... --- -- -- -- --------------- ... -------- -- -- -- ------------------

A[B:4] 
lOAD 

RST 
elK 

I 
I 
I 
I 
I 
I 

5~ , 

I 

I 

MODULO 24 
-_ .. 

5 BITS 

I 

A [3:0] 4 .... 

MODULO 15 

IIF~ 4 BITS 
I 
I 

I 
I 
I 

_ Figure 3-28. Block Diagram 
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DEVICE MODULO_360_COUNTER (PAL22Vl0) 

PIN CLle: = 1 RST = 2 

'lOAD = 3 

BEGIN 

A[8:0] = 4:11,13 

Q24[4:0] = 18:14 

Q15[3:0] = 22:19 

M_OUT = 23; "ASSERTED IlHEN COUNT BECCJoIES 360" 

IF (RST) THEN ARESET(); 

IF (LOAD) THEN BEGIN 

Q24[4:0] := A[8:4]; 

Q15 [3:0] := A [3:0]; 

END; 

ELSE BEGIN 

IF (Q24 [4]* /Q24 [3] *Q24 [2] *Q24 [1] *Q24 [0] * 

Q15[3]*Q15[2]*Q15[1]*/Q15[0]) THEN M_OUT = 1; 

CASE (Q24 [4:0]) BEGIN "MODULO 24 " 

#BOOOOO) BEGIN 

Q15 [3:0] := Q15 [3:0]; 

Q24[4:0] := #BOOO01; 

END; 

#B00001) BEGIN 

Q15 [3:0] := Q15 [3:0]; 

Q24 [4:0] := #BOO010; 

END; 

#B00010) BEGIN 

Q15 [3:0] := Q15[3:0]; 

Q24[4:0j :=#BOOOll; 

END; 

#B00011) BEGIN 

Q15 [3:0] := Q15[3:0]; 

Q24 [4:0] := #B00100; 

END; 

#B00100) BEGIN 

Q15 [3:0] := Q15 [3:0]; 

Q24[4:0] := #B0010l; 

END; 

#B00101) BEGIN 
Q15 [3:0] := Q15 [3:0]; 

Q24[4:0] := #B00110; 

END; 

#B00110) BEGIN 

Q15[3:0] := Q15[3:0]; 

Q24[4:0] := #B00ll1; 

END; 

#B00111) BEGIN 
Q15 [3:0] := Q15 [3:0]: 

Q24 [4:0] := #B01000; 

END; 

#B01000) BEGIN 

Q15 [3:0] := Q15 [3:0]; 

Q24 [4:0] := #B0100l; 

END; 

#B0100l) BEGIN 

Q15 [3:0] := Q15 [3:0]; 

Q24 [4:0] := #B01010: 

END; 

#B01010) BEGIN 

Q15 [3:0] := Q15 [3:0]; 

Q24[4:0] := #B01011; 

END; 

#B010l1) BEGIN 

Q15[3:0] := Q15[3:0]; 

Q24[4:0] := #B01100; 

END; 

#B01100) BEGIN 

Q15[3:0] := Q15[3:0]; 

Q24[4:0] := #BOll0l; 

END; 

#BOll0l) BEGIN 

Q15 [3:0] := Q15 [3:0]; 

Q24[4:0] := #BOlll0; 

END; 

#BOlll0) BEGIN 

Q15[3:0] := Q15[3:0]; 

Q24[4:0] := #BOllll; 

END; 

#BOllll) BEGIN 

Q15 [3:0] := Q15 [3:0]; 

Q24 [4:0] := #Bl0000; 

END: 

Figure 3-29. PLPL Specification for a Modulo 360 Counter (1 of 2) 
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#810000) BEGIN 

015 [3:0) := 015 [3:0); 

024[4:0) := #B10001; 

END; 

#B10001) BEGIN 

015 [3:0) := 015 [3:0); 

024 [4:0) := #B10010; 

END; 

#810010) BEGIN 

015 [3:0) := 015 [3:0); 

024[4:0) := #B10011; 

END; 

#B10011) BEGIN 

015 [3:0) := 015 [3:0); 

024 [4:0] := #B10100; 

END; 

#B10100) BEGIN 

015 [3:0) := 015 [3:0); 

024[4:0] := #B10101; 

END; 

#810101) BEGIN 

015 [3:0] := 015 [3:0); 

024[4:0) := #B10110; 

END; 

#810110) BEGIN 

015 [3:0) := 015 [3:0]; 

024[4:0) := #B10111; 

END; 

#810111) BEGIN 
024 [4:0] := #800000; 

CASE (015 [3:0) BEGIN 

#80000) 015[3:0) := #BOO01; 

#B0001) 015 [3:0) := #B0010; 

#80010) 015 [3:0) := #80011; 

#80011) 015 [3:0) := #80100; 

#B0100) 015 [3:0) := #B0101; 

#80101) 015 [3:0) := #80110; 

#B0110) 015[3:0] := #80111; 

#B0111) 015[3:0) := #B1000; 

#81000) 015 [3:0) := #B1001; 

#B1001) 015 [3:0] := #B1010; 

#B1010) 015[3:0] := #B1011; 

END; 

END. 

END; 

TEST_VECTORS 

END; 

END; 

IN CLK RST LOAD A[8:0); 

OOT 024 [4:0] 015 [3:0) H_OUT; 

BEGIN 

"CLK RST LOAD A[8:0] 

X X XXXXXXXXX 

C 1 1 0 1 0 1 1 1 00 

0 XXXXXXXXX 

XXXXXXXXX 

XXXXXXXXX 

o 1 1 1 1 1 1 1 0 

XXXXXXXXX 

XXXXXXXXX 

XXXXXXXXX 

X~XXXXXXX 

XXXXXXXXX 

0 XXXXXXXXX 

0 XXXXXXXXX 

XXXXXXXXX 

XXXXXXXXX 

XXXXXXXXX 

XXXXXXXXX 

END. 

#B1011) 015 [3:0] := #B1100; 

#81100) 015[3:0] := #B1101; 

#B1101) 015[3:0) := #B1110; 

#B1110) 015 [3:0) := #BOOOO; 

024 [4:0) 015[3:0) H_OOT" 

L L L L L L L L L L • 

H L H L H H H L L L • 

H L H H L H H L L L • 

H L H H H H H L L L • 

L L L L L H H L H 

L H H H H H H H L 

H L L L L H H H L 

H L L L H H H H L 

H L L H L H H H L 

H L L H H H H H L 

H L H L L H H H L 

H L H L H H H H L 

H LH H L H H H L 

H L H H H H H H L 

L L L L L L L L L 

L L L L H L L L L 

L L L H L L L L L L ; 

Figure 3-29. PLPL Specification for a Modulo 360 Counter (2 of 2) 
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Nine-Bit Johnson Counter 

The Johnson counter is also known as a "circular-shift counter" 
and produces a special counting sequence. The sequence for 
a five-stage Johnson counter is shown in Table 3-9. Note that, 
the five-stage sequence has a table of 10 valid states and 22 
invalid states (Table 3-9). In general an n-stage (bit) Johnson 
counter will produce a modulus of 2n. Figure 3-31 shows the 
state diagram of a five-stage counter. 

As seen from the sequence table of the five-stage counter, the 
counter first fills up with 1's from left to right and then it fills up 
with O's again. Note from the counting sequence that unlike a 
normal binary counter, Johnson counter is a unit distance 
counter. Like a Gray code counter, its output changes only one 
bit at a time. One major advantage of Johnson counter's count­
ing sequence is that it can be readily decoded with two input 
AND gates, and hence, is sl,litable for high-speed applications 
where output can be decoded safely. 

TABLE 3-9. FIVE-STAGE JOHNSON COUNTER SEQUENCE 

QO Q1 Q2 Q3 Q4 QO Q1 Q2 Q3 Q4 

0 0 0 0 0 0 1 0 0 0 
1 0 0 0 0 0 0 1 0 0 
1 1 0 0 0 1 0 1 0 0 
1 1 1 0 0 0 1 1 0 0 
1 1 1 1 0 0 0 0 1 0 
1 1 1 1 1 1 0 O. 1 0 
0 1 1 1 1 0 1 0 1 0 
0 0 1 1 1 1 1 0 1 0 
0 0 0 1 1 0 0 1 1 0 
0 0 0 0 1 1 0 1 1 0 

0 1 1 1 0 
VALID STATES 1 0 0 0 1 

0 1 0 0 1 
1 1 0 0 1 
0 0 1 0 1 
1 0 1 0 1 
0 1 1 0 1 
1 1 1 0 1 
1 0 0 1 1 
0 1 0 1 1 
1 1 0 1 1 
1 0 1 1 1 

INVALID STATES 

3-38 



VALID STATES 

08479A-31 

Figure 3-31. 5-Stage Johnson Counter State Diagram 
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Design Considerations 

The implementation of a Johnson counter is relatively straight 
forward and is the same regardless of the number of stages. 
Implementing this with D-type flip-flops, the Q output of each 
flip-flop is connected to the D input of the following stage. The 
single exception is that the Q output of the last stage is comple­
mented and connected to the D input of the first stage. 

One disadvantage of this counter is the number of invalid 
states. For an n-stage counter, the number of invalid states is 
equal to 2n-2n. For example, a three-stage Johnson counter 
has two invalid states, a four-stage counter has eight invalid 
states, and a five-stage counter has 22 invalid states. The 
number of invalid states increases almost exponentially with 
the length of the counter (for example, a nine-stage counter 
has 494 invalid states): The bigger the counter becomes, tho 
more are the chances of its entering an illegal state. Once the 
counter enters an invalid state, it may be difficult to recover. 

eLK 

Care should be taken when designing Johnson counter to 
prevent it from entering invalid states. Often even self­
correcting logic should be incorporated to allow the counter to 
get out of illegal states. 

Design Requirement 

Figure 3-32 shows the block diagram of a 9-bit Johnson 
counter. The counting sequence shown in Table 3-9 for 5-bit 
counter can easily be expanded to 9-bits. This counter (with 
load capability) requires nine input pins, nine output pins, a 
LOAD pin, one RESET, and invalid status pin and one clock 
pin. During power-on, the counter resets to zero state. 

Figure 3-33 shows the PLPL specification for this counter. Fig­
ure 3-34 shows the fuse map for this counter implemented with 
a single AmPAL22V10 instead of four SSI/MSI devices. Addi­
tionally, an error flag for invalid states is incorporated in the 
design to indicate error condition. 

Figure 3-32. Block Diagram of a 9-Bit Johnson Counter 
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CAl 

~ 

DEVICE NINE_BIT_JOHNSON_COUNTER (AmPAL22V10) 

PIN 

BEGIN 

CLK = 1 

RST = 2 

A[8:0] = 3:11 

0[8:0] = 14:21,23 

VF = 22 "VALID STATE FLAG" 

LOAD = 13 ; 

IF (RST) THEN ARESET(0[8:0)'; 

IF (LOAD) THEN 0[8:0] := A[8:0) 

ELSE BEGIN 

CASE (0 [8:0]) 

BEGIN 

#BOOOOOOOOO) 0 [8: 0] : = #B 1 00000000 ; 

#Bl00000000) 0[8:0) := #Bll0000000 ; 

#Bll0000000) 0[8:0] := #B111000000 ; 

#Bl 11000000) 0 [8:0] : = #B111100000 ; 

#Bllll00000) 0[8:0) := #B111110000 ; 

#Bl 1 1 1 10000) 0 [8:0) := #Bl 1 1 1 1 1000 ; 

#B111 11 1000) 0[8:0) := #B1 1 1 1 1 1100 ; 

#Bl 1 1 111 100) 0 [8:0) := #B1 1 1111110 ; 

#Bll1111110) 0[8:0] := #B111111111 

#B111111111) 0[8:0] := #B011111111 

#B011111111) 0[8:0] := #B001111111 

#BOO 1111 1 1 1) 0 [8: 0] : = #BOOO 111111 

#B000111111) 0[8:0) := #BOOO011111 

#B000011111) 0[8:0] := #BOOOO01111 

#BOOOOOl 11 1) 0 [8:0] := #BOOOOOOl 1 1 

#BOOOOOOl 11) 0 [8:0] := #BOOOOOO011 

#B000000011) 0[8:0] := #BOOOOOOOOl 

#B000000001) 0 [8:0] := #BOOOOOOOOO ; 

END; 

END; 

CASE (0 [8:0]) 

BEGIN 

#BOOOOOOOOO) VF = 1 

#B100000000) VF = 1 

#Bll0000000) VF = 1 

#8111000000) VF = 1 

#B111100000) VF = 1 

#B111110000) VF = 1 

#B111111000) VF = 
#Bl 1 111 1 100) VF = 

#B111111110) VF = 1 

#B111111111) VF = 1 

#8011111111) VF = 1 

#8001111111) VF = 1 

#B000111111) VF = 1 

#6000011111) VF = 1 

#8000001111) VF = 1 

#8000000111) VF = 1 

#8000000011) VF = 1 

#6000000001) VF = 1 

END; 

END. 

TEST_VECTORS 

IN CLK RST LOAD A[8:0]; 

OUT 0[8:0] VF; 

BEGIN 

L 

"C R 0 

"L S A AAAAAAAAA 000000000 

"K T 0 876543210 876543210 

X 1 X XXXXXXXXX LLLLLLLLL 

C 0 1 111111111 HHHHHHHHH 

COO XXXXXXXXX LHHHHHHHH 

COO XXXXXXXXX LLHHHHHHH 

COO XXXXXXXXX LLLHHHHHH 

C 0 1 1 0 1 0 1 0 1 0 1 HLHLHLHLH 

COO XXXXXXXXX LLLLLLLLL 

COO XXXXXXXXX HLLLLLLLL 

C 0 1 1 1 1 1 1 1 1 1 0 HHHHHHHHL 

COO XXXXXXXXX HHHHHHHHH 

COO XXXXXXXXX LHHHHHHHH 

COl 000000001 LLLLLLLLH 

COO XXXXXXXXX LLLLLLLLL 

END. 

Figure 3-33. PLPL Specification for 9-Bit Johnson Counter 
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Figure 3-34. Fuse Map for a 9-Bit Johnson Counter 
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Gray Code Counter and Gray-to-Binary 
Code Conversion 

Gray code is an important unweighted code which exhibits only 
a single bit change from one code number to the next. This 
feature is especially important in high-speed data communica­
tion applications, where data is transmitted from one part of a 
system to another and where the error susceptibility increases 
with the number of bit changes between adjacent numbers in a 
sequence. It is also commonly used in applications such as 
real-time process control and shaft encoders where each seg­
ment is assigned a separate bit. 

Table 3-10 shows a listing of five-bit Gray code for decimal 
numbers 0 through 31. Note that there is only single bit change 
between any two Gray code numbers. The corresponding bi­
nary numbers are shown for reference. For instance, going 
from decimal value 11 (Binary 01011) to 12 (Binary 01100), the 
Gray code changes from 01110 to 01010. Only the third bit 
changes; the others'remain the same. 

The Gray code can be extended to any number of bits. Conver­
sion from Gray to binary (or visa versa) is relatively simple. 

Conversion from Gray-to-Binary Code 

To convert from Gray code to binary, the following rules apply: 

• The most significant bit (the left-most) in the binary code is 
the same as the corresponding bit in the Gray code. 

• Going from left to right, add the next Gray code bit to the 
previous binary bit to generate the next binary bit. Disregard 
the carries (Figure 3-35). 

This can be conveniently implemented with exclusive-OR 
gates. Figure 3-36 shows the logic diagram for converting 5-bit 
Gray code to binary code. 

GRAY CODE o o o 

1 1 1 1 

;1/1/1/1 
1 0 000 

BINARY GATE 

Figure 3-35. Gray Code to Binary Code Conversion 
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TABLE 3-10. 5-BIT GRAY CODE 

DECIMAL GRAY BINARY 

0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 1 0 0 0 0 1 

2 0 0 0 1 1 0 0 0 1 0 

3 0 0 0 1 0 0 0 0 1 1 

4 0 0 1 1 0 0 0 1 0 0 

5 0 0 1 1 1 0 0 1 0 1 

6 a 0 1 0 1 0 0 1 1 a 
7 0 0 1 0 0 0 0 1 1 1 

8 0 1 1 0 0 0 1 0 0 0 

9 0 1 1 0 1 0 1 0 0 1 

10 0 1 1 1 1 0 1 0 1 0 

11 0 1 1 1 0 0 1 0 1 1 

12 0 1 0 1 0 0 1 1 0 0 

13 0 1 0 1 1 0 1 1 0 1 

14 0 1 0 0 1 0 1 1 1 0 

15 0 1 0 0 0 0 1 1 1 1 

16 1 1 0 0 0 1 0 0 0 0 

17 1 1 0 0 1 1 0 0 0 1 

18 1 1 0 1 1 1 0 0 1 0 

19 1 1 0 1 0 1 0 0 1 1 

20 1 1 1 1 0 1 0 1 0 0 

21 1 1 1 1 1 1 0 1 0 1 

22 1 1 1 0 1 1 a 1 1 a 
23 1 1 1 0 0 1 0 1 1 1 

24 1 0 1 0 0 1 1 0 0 0 

25 1 0 1 0 1 1 1 0 0 1 

26 1 0 1 1 1 1 1 0 1 0 

27 1 0 1 1 0 1 1 0 1 1 

28 1 0 0 1 0 1 1 1 0 0 

29 1 0 0 1 1 1 1 1 0 1 

30 1 0 0 0 1 1 1 1 1 0 

31 1 0 0 0 0 1 1 1 1 1 



GREY CODE 

00 

01 

02 

03 

04 

BINARY CODE 

BO 

81 

82 

83 

---------e-----------------------------84 
08470A-34 

Figure 3-36. Logic Diagram for Gray COde-to-Blnary Conversion 

Design Requirements and Approach 

Implementation of a 5-bit Gray code counter requires at least 
five flip- flops and some extra logic. Implementation of 5-bit 
Gray-to-binary code conversion can be accomplished with 
XOR gates or in a PAL device that has enough product terms. 

Figure 3-37 shows the PLPL specification of 5-bit Gray code 
counter and 5-bit Gray-to-binary converter. Figure 3-38 shows 
the corresponding fuse map of this function implemented in a 
single AmPAL22V10 device. As shown in the fuse map the 
least significant bit requires 16 product terms for Gray-to­
binary conversion. 
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DEVICE F IVE_B IT_GRAY _CODE_COUNTER (PAl22VtO) " GRAY CODE TO BINARY CODE CONVERSION " 

PIN B[4] = Q[4] 

ClK = t B[3] = Q[3] XOR Q[4] : 

RST = 2 B [2]' = Q[2] XOR Q [3] XOR Q [4] 

Q[4:0] = 18:14 B[1] = Q[1] XOR Q[2] XOR Q[3] XOR Q[4] 

B[4:0] = 23:19: B[O] = Q[O] XOR Q [1] XOR Q [2] XOR Q[3] XOR Q [4] 

BEGIN END. 

IF (RST) THEN ARESETCQ[4:0]) TEST_VECTORS 

CASE (Q[4:0]) IN ClK RST: 

BEGIN 1_0 Q[4:0] ; 

#BOOOOO) Q [4: 0] := #800001 OUT B[4:0] ; 

#B00001) Q[4:0] := #800011 BEGIN 

#B00011) Q[4:0] := #B00010 : "C R Q Q Q Q Q BBBBB" 

#B00010) Q[4:0] := #800110 : "l S 4 3 2 1 0 4 3 2 1 0 II 

#B00110) Q[4:0] := #B00111 ; "K T 

#B00111) Q[4:0] := #B00101 : C 1 L L L L L LLLLL: 

#B00101) Q[4:0] := #B00100 ; C 0 L L L L H LLLLH; 

#B00100) Q[4:0] := #801100 ; C 0 L L L H H LLLHL: 

#B01100) Q[4:0] := #801101 ; C 0 L L L H L LLLHH; 

#B01101) Q[4:0] := #B01111 ; C 0 L L H H L LLHLL: 

#B01111) 0[4:0] := #B01110 : C 0 L L H H H LLHLH; 

#B01110) Q[4:0] := #B01010 : C 0 L L H L H LLHHL: 

#B01010) Q[4:0] := #B01011 : C 0 L L H L L LLHHH; 

#B01011) Q[4:0] := #B01001 : C 0 L H H L L LHLLL; 

#B01001) Q[4:0] := #801000 ; P 0 L H L L L LHHHH; 

#B01000) Q[4:0] := #811000 ; C 0 H H L L L HLLLL: 

#B11000) Q[4:0] := #B11001 : C 0 H H L L H HLLLH; 

#B11001) Q[4:0] := #B11011 ; P 0 H L L L L HHHHH; 

#B11011) Q[4:0] := #811010 ; C 0 L L L L L LLLLL; 

#B11010) 0[4:0] := #B11110 ; C 0 L L L L H LLLLH; 

#B11110) Q [4:0] := #B11111 ; END. 

#B11111) Q[4:0] := #B11101 ; 

#B11101) 0[4:0] := #B11100 ; 

#B11100) 0[4:0] := #B10100 ; 

#B10100) Q[4:0] := #B10101 ; 

#B10101) 0[4:0] := #B10111 ; 

#B10111) Q[4:0] := #B10110 ; 

#B10110) Q[4:0] := #B10010 : 

#B10010) Q[4:0] := #B10011 : 

#B10011) 0[4:0] := #B10001 ; 

#B10001) Q [4:0] := #B10000 ; 

#B10000) Q[4:0] := #BOOOOO : 

END: 

Figure 3-37. PLPL Specification for a 5-Blt Gray Code Counter and 5-Blt Gray-to-Blnary Converter 

3-45 



elK 
INPUT LINES 

..... .... 0 . . " 
,. 20 ,. ,. J' JI co 

loR 
OE 

0 

~ 
O~ 

R ST . 
2 

O~ 
I 

11 

3 

O~ 

1J 

4 

O~ 

15 

5 
OE 

0 

15 

a 
O~ 

13 

7 
OE 

0 

" • 
~ 

• 
• Oe 

0 

7 

10 

SP 
11 

Figure 3-38. Fuse Map for a Gray Code Counter 

3-46 

~ 
~ 

l>--
t:=1 

:=J 

l:>-~ 
:::::} 

~ 
~ 

~b-
~ 
~ 

.... 

~ 

E 
~C>-~ 
~ 

~ 
>--, 

.... 

~ 
~p-:= 
~ 
~ 

-

== 
=<~ :=; 

~ 

§b-
;::: 
::::: 

§. 

F 

ASYNCHRONOUS RE 
(TO ALL REGISTERS) 

=~' _ LOGIC 
..... CRO· 

_I>CELL 

84 
23 

'--

-~:r' CELL 

r--I> 
-

83 
22 

'--

~~:r' CELL 

1--1> 

82 
21 

'--

~5rr' CELL 

r---I> 

81 
20 

-

~~O-I, ..... CRO-
CELL 

r---I> 

80 

-

~;J~ CELL 

r---I> 

a4 

-

~5rr" CELL 

1--1> 

a3 

'--

-~:r CELL 

-I> 

a2 
16 

'--

-:6-' ..... CRO-
CELL 

r--> 

a1 
15 

-

EP=~E'n-' ,-->CELL 

ao 
14 

"SviiCHRoNous PRESET 

13 
(TO ALL REOISlPS) 



3.3.2 SHIFTERS 

Eight-Bit Arithmetic/Logic Shifter 

Most commonly used logical operators are: AND, OR, XOR 
and COMPLEMENT. An AND operator is used for masking or 
clearing chosen bits of certain operands. An OR operator can 
be used for "setting" some required bits to value 1. An XOR 
operator can be used for generating check-sums or comparing 
two operands. A COMPLEMENT operator can be used for 
'inverting logic levels. 

All these four operators, together with "shift" operation can be 
used for functions such as: serial-to-parallel conversion, 
scaling, normalization, or for matching bit patterns. Shift oper­
ator can also be used for doing multiplication or division. There 
are four major shift operators: Logical SHIFT, Arithmetic 
SHIFT, ROTATE, and ROTATE with CARRY. 

[£] 07 06 

@?J 06 05 

~ 0 07 

~ 07 05 

~ 07 07 06 

i i 
CARRY SIGN 

BIT BIT 

Logical-SHIFT operation shifts the data either right or left. Typi­
cally it fills the shifted bit with zero, and loads the CARRY bit 
from the bit shifted out. In Logical-SHIFT operation, the sign-bit 
is usually not preserved. 

Arithmetic SHIFT is very similar to the Logical SHIFT except 
that the sign is preserved. For example, for shifting right, the 
sign-bit is copied into the next pOSition. Often this is referred to 
as sign extension and can be used to either normalize a num­
ber or scale a two's-complement number. For shifting left, the 
sign-bit is left unchanged. 

Simple ROTATE just rotates the data. The MSB and the LSB 
are linked together. In ROTATE with CARRY, the CARRY bit 
also acts as part of the shift register. Figure 3-39.a shows the 
diagramatic representation of Arithmetic and logic shifter. 

01 DO DATA 

DO 0 LOGICAL SHIFT 
LEFT 

02 01 LOGICAL SHIFT 
RIGHT 

00 0 ARITHMETIC 
SHIFT LEFT 

02 01 ARITHMETIC 
SHIFT RIGHT 

Figure 3-39.a Arithmetic and Logic Shifter 
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Design Requirements and Approach 

An 8-bit combined arithmetic/logic registered shifter shifts data 
left or right both logically or arithmetically, maintaining the sign­
bit appropriately. 

Such a shifter requires eight data inputs, eight data outputs, a 
clock pin, a LOAD pin, an Output-Enable pin, a CARRY (CRY) 
output pin, and two control pins: one control pin to signify Arith­
metic or Logical SHIFT, and one control pin to specify direction 

(left or right). For ROTATE with CARRY function, it uses the 
CARRY pin. Figure 3-39.b shows the block diagram of an 8-bit 
registered arithmetic/logical shifter while Table 3-11 shows the 
function table. 

This function can be easily implemented in a single Am­
PAL22V10 device. The AmPAL22V10 can provide up to 22 
inputs and 10 outputs, enough for 9 registered outputs and for 
all other inputs. 

07 06 05 04 03 02 01 00 

eLK -----I~ 
LOAO ~ 

OE -----I~~ AmPAL 22V10 t-----i ... ,. CRY 

SHIFT :-

.. SEL .... 

r " " 'r " , 'r " 
07 06 05 04 03 02 01 00 08479A-32 

Figure 3-39.b Block Diagram of 8-Blt Registers-Arithmetic Logic Shifter 

TABLE 3-11. FUNCTION TABLE FOR 8-BIT ARITHMETIC LOGIC SHIFTER 

EN SEL SHIFT LD 07 06 05 04 03 02 01 DO CRY 07 06 05 04 03 02 01 00 

0 X X X X X X X X X X X Z Z Z Z Z Z Z Z Z 
1 X X 1 07 06 05 04 03 02 01 DO X 07 06 05 04 03 02 01 DO 

1 0 0 0 X X X X X X X X 07 06 05 04 03 02 01" DO 0 

1 0 1 1 X X X X X X X X DO 0 07 06 05 04 03 02 01 

1 1 0 1 X X X X X X X X 06 07 05 04 03 02 01 DO 0 

1 1 1 1 X X X X X X X X DO 07 07 06 05 04 03 02 01 

Figure 3-40 shows the PLPL specification for this function. 
Figure 3-41 shows the fuse map of 8-bit registered arith­
metic/logical shifter function implemented in a single Am­
PAL22V10. As shown in the figure, each output requires only 

five logical product terms: one for LOAD, one for arithmetic 
shift right; one for arithmetic shift left, one for logical shift right, 
and one for logical shift left. 
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DEVICE EIGHT_BIT_ARITHMETlC_LOGIC_SHIFTER (PAL22V10) 

PIN CIC = 1 

SEL = 2 .. HIGH .> ARITHMETIC SHIFT, LOY .> LOGICAL SHIF'T" 

SHIFT = 3 

EN = 4 
LOAD = 5 

II HIGH .> RIGHT SHI FT, 

II OUTPUT ENABLE .. 

0[7:0) = 6:11,13,14 

CRY = 15 

Q[7:0) = 23:16; 

DEFINE LOGIC = ISEL ; 

ARITH = SEL; 

LEFT = ISHI FT ; 
RIGHT = SHI FT ; 

BEGIN 

IF (EN) THEN ENABLEO 

IF (LOAD) THEN Q[7:0) := 0[7:0) 

ELSE BEGIN 

IF (ARITH*RIGHT) THEN BEGIN 

LOY .> LEFT SHIFT" 

Q[n := Q[n ; .. Q[n IS A SIGN BIT .. 

Q[6] := Q[n ; 

END; 

Q [5:0] := Q [6: 1] 

CRY := Q[O] ; 

IF (ARITH*LEFT) THEN BEGIN 

Q[n := Q[n ; 

Q[6:1] := Q[5:0] 

Q[O] := 0 ; 

CRY := Q[6] ; 

END; 

IF (LOGIC*RIGHT) THEN BEGIN 

Q[7] := 0 ; 

Q[6:0] := Q[7:1l 

CRY := Q[O] ; 

END; 

IF (LOGIC*LEFT) THEN BEGIN 

Q[7:1] := Q[6:0] 

Q[O] := 0 ; 

CRY := Q[7] ; 

END. 

TEST_VECTORS 

IN CKSEL SHIFT EN LOAD 0[7:0) 

OUT CRY Q[7:0) 

BEGIN 
"CIC SEL SHIFT EN LOAD 07 06 05 04 03 02 01 DO CRY Q7 Q6 Q5 Q4 Q3 Q2 Q1 QO" 

C X X 0 0 X X X X X X X X Z Z Z Z Z Z Z Z Z ; 

C X X 1 1 0 1 1 0 1 1 H L H H ; 

C 1 1 0 X X X X X X X X H H H ; 

C 0 0 X X X X X X X X L H L ; 

C 0 0 X X X X X X X X H L ; 

C 0 0 X X X X X X X X H L 

C 0 0 X X X X X X X X H 

C 0 0 0 X X X X X X X X H H 

C 0 0 0 X X X X X X X X L 

END. 

END; Figure 3-40. PLPL Specification for an 8-Bit Arithmetic Logic Shifter 
END 
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Eight-Bit Registered Barrel Shifter 

In most data processing systems, some form of data shifting or 
rotation is necessary. This elementary function is used in such 
diverse applications as floating-point arithmetic and string 

manipulation. In a typical computer, the shifter is located on the 
output of the ALU. This architecture allows single-cycle add 
and shift, and mask and shift operations (See Figure 3-42.a for 
a typical computer ALU architecture). 

INPUT DATA BUS 

CK---tl» 

REGISTER 
FILE 

OE-R 
)~~_\ 03862A-81 

~ OUTPUT DATA BUS V 
Figure 3-42.a Typical ALU Architecture 

Design Requirements 

A barrel shifter takes input data and cyclically rotates it by an 
arbitrary number of bit positions. This cyclic rotation implies 
that the data rotated from the most significant end of the shifter 
is returned to the least significant end. The name barrel shifter 
is used because of the circular nature of the shift operation. 
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The storage register on the output of the shifter is used in this 
architecture to pipeline the data operation, increasing through­
put. The three-state buffer on the register output is necessary 
to interface the ALU to the output data bus. 



Design Approach 

An 8-bit registered barrel shifter requires at least eight data 
inputs, eight registered data outputs, three control lines to 
specify shift distance, a clock input, a Reset input and an Out­
put Enable that controls the tri-state buffer on the register 
output. 

Figure 3-42.b shows the block diagram for an 8-bit registered 
barrel shifter while Table 3-12 shows the function table. 

As seen from Figure 3-42.b, the regist,ered barrel shifter func­
tion requires a total of 14 inputs and 8 outputs. This function 
can be easily implemented in a single AmPAL22V10 device. 
The AmPAL22V1 0 can provide up to 22 inputs and 10 outputs. 
The.dynamic I/O programmability of the AmPAL22V10 permits 
it to meet the I/O requirement. 

Figure 3-43 shows the PLPL specification for this function. 
Figure 3-44 shows the fuse map of 8-bit registered barrel shift­
er function implemented in AmPAL22V10. 

07 06 05 04 03 02 01 DO 

80 
81 
82 

elK 

82 

0 
0 
0 
0 
1 
1 
1 
1 

, 'r " 'r " r 'r 'r 

.. 
AmPAL22V10 ... ... ... 

... 
h ... 

r---' 

" , r 'r r 'r r 'r 'r 
07 06 05 04 03 02 01 00 

Figure 3-42.b Block Diagram for an 8-Blt Registered Barrel Shifter 

TABLE 3-12. FUNCTION TABLE FOR AN 8-BIT REGISTERED BARREL SHIFTER 

Control In Input To Output Mapping 
81 80 07 06 05 04 03 02 Q1 

0 0 07 06 05 04 03 02 01 
0 1 06 05 04 03 02 01 DO 
1 0 05 04 03 02 01 DO 07 
1 1 04 03 02 01 DO 07 06 
0 0 03 02 01 DO 07 06 05 
0 1 02 01 DO 07 06 05 04 
1 0 01 DO 07 06 05 04 03 
1 1 DO 07 06 05 04 03 02 
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DEVICE 

PIN ClK = 1 
0[7:0] = 2:9 
SEl2 = 13 SEl1 = 11 

RST = 15: 

IQ[7:0] = 23: 16 
SElO = 10 

OE = 14 
BEGIN 

IF (RST) THEN ARESET(): 
IF (OE) THEN ENABlE(Q[7:0J): 
IF (/SEl2 * ISEl1 * ISElO) THEN Q[7:0] := 0 [7:0] : 

IF (/SEl2 * ISEl1 * SElO) THEN Q[7:0] := 0 [6:0] , 0[7] : 

IF (fSEl2 * SEl1 * ISElO) THEN Q[7:0] := 0 [5 :0] , 0[7:6] ; 

IF (fSEl2 * SEl1 * SElO) THEN Q[7:0] := 0 [4:0], 0[7:5] : 

IF ( SEL2 * ISEl1 * ISElO) THEN Q[7:0] := 0 [3:0], 0[7:4] ; 

IF SEl2 * ISEl1 * SElO) THEN Q[7:0] := 0 [2:0] , 0[7:3] ; 

IF SEl2 * SEl1 * ISElO) THEN Q[7:0] := 0·[1:0], 0[7:2] : 

IF SEl2 * SEl1 * SElO) THEN Q[7:0] : = 0 [0], 0 [7: 1] : 

END. 

II FUNCTION TABLE SPEC I FICATION II 

TEST_VECTORS 

IN ClK RST 0[7:0] SEl2 SEl1 SElO: 
1_0 OE: 
OUT Q[7:0]: 
BEGIN 
IIClK RST 0 [7:0] SEl2 SEl1 SElO OE Q[7:0] II 

II II 

C 00000000 0 0 ZZZZZZZZ; 

C 0 11111111 0 1 0 HHHHHHHH: 

C 1 XXXXXXXX X X X llllllll: 

C 0 XXXXXXXX X X X 0 ZZZZZZZZ: 

C 0 00000000 0 0 0 llLLllLL: 

C 0 11111111 0 0 0 HHHHHHHH; 

C 0 01111111 1 0 0 HHHHlHHH; 

C 0 01111111 0 1 0 HHHHHHlH: 

C 0 01111111 0 HHlHHHHH: 
END. 

Figure 3·43. PLPl Specification for an 8-Blt Registered Barrel Shifter 
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3.4 MICROPROCESSOR 
INTERFACE LOGIC 

3.4.1 THE INTERFACE PROBLEM 
Several problems are associated with interfacing a peripheral 
device to a CPU when the two families are not designed to be 
pin-to-pin compatible. One major problem involves the various 
control signals that each chip uses. What's more, the popular 
MOS microprocessors differ not only in their instruction set and 
internal architecture, but also in their 1/0 interface signals and 
timing, and in the way they handle DMA and interrupts. Part of 
the pin incompatibility involves genuine signal differences or 
timing differences. Some pin-to-pin differences require nothing 
more than name changes. 

Problems to Look for When Interfacing 

The following is a list of areas to watch out for when interfacing, 
and are discussed in detail: 

I. Timing 

A. Setup and Hold Times 

I. CS setup and hold to strobe. 
ii. Address setup and hold to strobe. 
iii. Data setup and hold to strobe (rising or falling) 

Note: Strobe may be RD, WR, or OS. 

B. Pulse Widths 

AS or ALE pulse widths. 
ii. RD, WR, OS pulse widths. 

Pulse widths can usually be stretched by inserting 
Wait States if necessary. 

C. Interrupts 

Interrupt structures vary. Mixing interrupt structures 
is the toughest because two or more different sets of 
timings may need to be generated. 

cs 

RD 

II. Metastable Operation 

When to expect a cause of problem and the solutions. 

III. Bus Structures 

i. MULTIBUS 
ii. iLBX 
iii. ISBX Multichannel 

I. Timing 

Setup and Hold Times 

If one remembers nothing else from this book, one should 
remember the following: The most common interfacing error is 
the violation of setup and hold times! More specifically, three 
areas of setup and hold time relationships need close atten­
tion, and we will discuss them after a brief overview. 

Setup and hold time are the minimum time the proper signal 
must be on the bus before and after the strobe. Minimum setup 
and hold time criterion must be met for proper interface opera­
tion. When interfacing involves direct hookup, individual 
specification can be looked up and the worse case calculated 
to meet timing requirements. If the interface involves additional 
components, such as buffers or transceivers, the data to strobe 
timing relationship may change and correction by delay 
devices such as flip-flops or latches may be necessary to bring 
the system circuit within timing requirements. The following are 
areas that need special attention: 

i) Chip select (CS) setup and hold time to strobe. (Figure 
3-45). . 

Here we use RD as the strobe. ts is the minimum CS to 
strobe setup time. tH is the minimum hold time. Com-· 
parisons are made in conditions where these require­
ments are not met and could lead to the wrong device 
being selected (Figures 3-46 and 3-47). 

02188A-1 

Figure 3-45. 
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02188A-2 

Figure 3-46. 

i tpw+t s r cs 

RD \ I 
02188A-3 

Figure 3-47. 

Note that it is often assumed that CS and RD or CS and 
W R are simply gated together. This is true for most periph­
erals but not in all cases. Check the manufacturer's 
specification. It is often possible to implement and simplify 
the design but manufacturers do not guarantee operation 
in these unusual modes. 

ii) Address setup and hold times to strobe. 
(Figures 3-48 and 3-49) 

The figures illustrate the relationships between strobe to 
address setup and hold, and CS. Address setup time is 
measured with respect to the leading edge of the strobe. If 
the strobe is not sufficiently delayed, after the address is 
valid, the address setup time requirement y!iII not be met. 

Address hold time will not b9 met if CS is, due to internal 
delay, late in going HIGH. This can be compensated by 
delaying the WR strobe. Failure in meeting either require­
ment will result in incorrect addressing. 

iii) Data setup and hold times to strobe (WR). 
(Figures 3-48 and 3-49) 
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The data setup and hold times are measured with respect 
to the rising edge of the strobe. The data is represented 
here as a window. If the strobe goes HIGH too late, data 
hold time will not be met, and incorrect data may be read. 
This may happen if the strobe is purposely delayed to meet 
Address setup and hold times. The data can be latched to 
allow a larger window so that data hold time can be met. 



ADDR 

cs 

VR 

DATA 

Figure 3-48. 
02188A-4 

ADDR 

cs 

VR 
t os 

DATA 

Figure 3-49. 
02188A-5 

II. Metastable Operation 

Metastable conditions occur in all flip-flops when the active 
clock edge samples the input at exactly the same time the input 
changes state. When this happens, the cross-coupled latch at 
the output can reach a balanced, symmetrical condition in 
which it will remain for some arbitrary time before returning to 
its proper state. This problem is faced by designers when 
interfaCing asynchronous digital signals. Although most difficul­
ties can be overcome somewhat easily, there is a more funda­
mental problem that defies a perfect solution. The following is a 
general overview of the metastable problem. 

Latches and flip-flops are normally considered I;>i-stable 
devices, since they have two unconditionally stable operating 
points, either HIGH or LOW. There is, however, a third operat­
ing point when the cross-coupled arrangement is exactly bal­
anced. This operating point is stable only if there is no noise in 
the system and the system is perfectly balanced. The condition 
is called metastable (meta=Greek for "between"). A metas­
table condition will last only long enough for the circuit to fall 
into one of the two stable operating points. This period can be 
many micro-seconds, or milliseconds, for devices as fast as a 
74S74 flip-flop. If a flip-flop has reached the balanced, metas­
table condition, it may remain in this state for an undetermined 
time, perhaps 1000 times longer than its normal response 
speed. Previously, the designer of asynchronous system had 
only one remedy for the metastable problem; two or more 
synchronizer flip-flops could be cascaded. This can reduce the 
probability of a metastable output but will also increase the 
throughput delay. 
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When to Expect this to Cause a Problem? 

In most digital systems, certain asynchronous events 
(keystrokes, incoming data, interrupts) must be synchronized 
to the computer clock. The textbook solution is a fast, clocked 
flip-flop, like the 74S74, in which the asynchronous Signal is 
applied to the 0 input and clocked with the system clock. This 
usually results in a perfectly synchronized output. 

If the data sheet specified a setup time requirement (3 ns), this 
means that any Signal that arrives at least 3 ns before the clock 
edge will achieve the intended result, i.e., a HIGH will set, a 
LOW will reset the flip-flop. Great for synchronous systems! 
But what happens when the asynchronous input violates this 
setup time requirement and changes less than 3 ns before the 
clock edge? Most of the time, nothing. The actual moment 
where the flip-flop samples the 0 input is somewhere in the 
guaranteed range, i.e., somewhere less than 3 ns before the 
clock. So the flip-flop makes the decision. It either senses the 
change on the asynchronous input and therefore changes the 
Q output, or it ignores the change and doesn't change the Q 
output. So the only thing lost is one clock cycle. Unfortunately 
that's not always true. If the 0 input changes exactly at the 
same moment that the flip-flop makes its decision, it might 
transfer exactly the amount of energy to kick the output latch 
into the metastable balanced condition, from which it will 
recover after an unpredictable delay (measured in nanosec­
onds, microseconds or even milliseconds). 

Any latch, flip-flop or register has a "moment of truth" some­
where inside the guaranteed range of setup time where it ac­
tually makes up its mind. If the input changes at that very 
moment, the output is no longer synchronous. This "moment of 
truth" is a very short window. For TTL flip-flops, it is of the order 
of 10 ps; for MOS devices, it is more like 50 ps to 100 ps. 
For purposes of this discussion, this timing window will be 
called "t". 

Here are two extreme examples. In each case there is a need 
to synchronize asychronous inputs that have no phase or fre­
quency relationship with the computer clock. 

• Data signal derived from a disk, roughly 6 MHz with enough_ 
frequency modulation and jitter to make it totally asynchro­
nous to the 10-MHz computer clock. 

Every time the Data Signal falls into the "window", the probabil­
ity of hitting the window is t divided by the clock period, or even 
simpler: clock frequency times t. . 

M Metastable Rate f(D) . f(C) . t 
f(D) Device Frequency 6 MHz. 10 MHz. 

10 ps 
f(C) Clock Frequency 600 Hz 

The synchronizer goes metastable 600 times per second. 

• Keyboard entry: one keystroke per second synchronized 
with a 1 OO-kHz clock. 

M = Metastable Rate = 1 Hz . 105 Hz . 10 ps = 1 a-6Hz 

The synchronizer goes metastable with a statistical probability 
of once per 106 sec., I.e., once every six weeks (assuming 5 
eight-hour days/week). 

"Going metastable" here means that the synchronizer output is 
within a mid-level or oscillation range for an unpredictable time. 
Most occurrences will last less than 50 ns, but may occasion­
ally last much longer - perhaps many microseconds. This cer­
tainly can upset the timing chain. 

A metastable latch or flip-flop has an unpredictable delay and 
will therefore change its output at a time that differs from the 
value obtained from the worst case timing analYSis. In a slow 
system this usually doesn't matter, but in a fast system it can 
lead to a "crash". 

Solutions 

We cannot eliminate the basic problems but we can reduce the 
probability in two ways: 

1) Cascade two or more synchronizer flip-flops, which Is the 
method employed in all "metastable free" systems. 

2) Use flip-flops that are less prone to metastable operation 
than the popular 74S74. For example, the AMD Am29821-
26 registers are "metastable-hardened". They show no os­
cillations and only a minimal increase in output delay when 
hit right in the window. 

Metastable operation is an inherent, so far incurable disease of 
all asynchronous interfaces. Once understood, the problem 
can be handled by reducing its probability to an acceptable 
level. AMD's Am29821-26 registers vastly minimize this 
problem. The Am29800 registers, while not totally immune to 
this problem, are "metastable hardened" by means of a unique 
circuit design that reduces both the probability and the delay of 
any metastable condition. An artificially induced metastable 
condition that failed to produce any output oscillation merely 
increased the clock-to-output delay by 6 ns. This is an improve­
ment of many orders of magnitude over previously available 
designs. 

III. Bus Structures 

In the course of interfacing, special attention must be applied 
to the different standard bus systems. They are standard be­
cause they have the acceptance and support of the industry; 
different because each evolved to satisfy a particular function. 

Bus systems are developed to increase the flexibility and ex­
pandability of the mother board. They are also developed to cut 
cost and hardware overheads. Since each bus structure has its 
unique area of operation, each must be carefully matched for 
proper interfacing. 

The following are brief explanations on different major bus 
structures and areas of their involvement 

Big MULTIBUS VS. LIttle MULTIBUS 

The big MULTIBUS architecture connects the single-board 
computer with its CPU, memory and I/O to the outside world. 
The so-called little MULTIBUS is the bus between the CPU and 
the other components on the single-board computer. 
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MULTIBUS 

The MULTIBUS evolved, in structure, from 8-bit to 16-bit capa­
bility; and in architecture, expansion via the iSBX bus and 
Multi-channel bus, and iLBX bus. Expansions were necessary 
because a single system bus structure was no longer capable 
of supporting the demands of today's high-speed, high­
performance VLSI microprocessor technology, and its increas­
ingly complex configurations. 

ILBX 

The iLBX bus provides users the architectural solution that 
extends the high-performance benefits of a processor's on­
board local bus to off-board memory resources. Powerful iLBX 
system modules can be created using the bus to connect a 
single board computer and multiple memory cards. The iLBX 
bus preserves the advantages in performance and architecture 
of on-board memory, while allowing a wide range of memory 
capabilities to match application requirements. 

iSBX 

The iSBX bus provides users with a low cost, on·board expan­
sion solution for Multibus single board computers. The iSBX 
boards allow addition in the areas of parallel liD, serial liD, 
peripheral controllers, and high-speed math, without going to 
the expense of additional full Multibus board. iSBX bus com­
patible boards enable users to buy exactly the capabilities they 
require for their Multibus systems, which keeps both system 
size and system cost at a minimum. 

Multichannel 

Multichannel bus provides users with a separate path for DMA 
liD block transfers. The new VLSI microprocessors that 
process data at very high rates require the connection of 
numerous high-speed liD devices to the system bus. The Mul­
tichannel bus provides for high-speed block transfers of data 
over an 8/16-bit wide data path between peripherals and single 
board computer resources. 

Motorola has its own equivalents to these busses. The signals 
and interfaces are slightly different but the functions are similar, 
and the objective of higher throughput is the same. 
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3.4.2 INTERFACING TO THE 
8086/80186/80286 

Overview 
The 8086 is a general-purpose 16-bit microprocessor CPU. 
The CPU has a 16-bit data bus multiplexed with 16 address 
outputs. There are 4 additional address lines (segment ad­
dresses which are multiplexed with STATUS) that increase the 
memory range to 1 Mbyte. 8086 addresses are specified as 
bytes. In a 16 bit word, the least significant byte has the lower 
address and the most significant byte has the higher address. 
This is compatible with 8080, 8085, Z80 and PDP11 
addressing schemes but differs from the Z8000· and 68000 
addressing. 

The data bus is "asynchronous", Le., the CPU machine cycle 
can be stretched without clock manipulation by inserting Wait 
states between t2 and t3 of a read or write cycle to accom­
modate slower memory or peripherals. Unlike the 68000, the 
8086 has separate address space for liD (64 kBytes). 

The 8086 can operate in MIN. or MAX. mode. Maximum mode 
offloads certain bus control functions to a peripheral device 
and allows the CPU to operate efficiently in a· co-processor 
environment. A brief discussion on both the MIN. and MAX. 
modes are as follows: 

MIN. mode: liD addressing is defined by a HIGH or the 
101M output, and activated by the RD output 
for reading from memory, or liD or activated 
by the WR output for writing to memory 
or liD. 

DMA: The Bus is requested by activating the HOLD input to 
the 8086. Bus Grant is confirmed by the HLDA output 
from the 8086. 

MAX. mode: liD operation is controlled by two outputs 
(8086 plus from the 8288. 
8288) 10RC: active during Read from liD 

10WC: active during Write to liD 
MRDC: active during Read from memory 
MWTC: active during Write to memory 

DMA: The Bus is requested and Bus Grant is acknowledged 
on the same pin (RQ/GTO OR RQ/GT1) through a 
pulsed handshake. 

Interrupts In Min. and Max. Modes: 

Interrupt is requested by activating the INTR or NMI inputs to 
the 8086. 

Interrupt is acknowledged by the INTA pin on a MIN. mode 
8086 or by the INT A pin on the 8288 in MAX. mode. 

Note: There is no RD or 10RC during the interrupt­
acknowledge sequence. 

8086 and Z8000 Peripherals 

Z8000 peripherals may be interfaced to the 8086 in many 
ways. One thing distinguishes the Z80xx peripherals from 
others is that they require data to be valid prior to the falling 
edge of DS during a write. The way to go about meeting this 
requirement is to use a 7 4LS7 4 to delay the falling edge of W R 
and OR RD with WR. By using the asynchronous ready mode 
of the 8284A and the other half of the 74LS74, one Wait State 
is inserted in both the read and write cycles, and thus stretches 
DS to meet the minimum pulse width requirements. In the ex­
amples that follow, one assumes that there are other devices in 
the system that require the use of the Am9519A. In another 
example, the Am9519A is not needed to interface the peripher­
als interrupt structure. INTA is tied HIGH since the vector will 
be supplied by the Am9519A. The interrupt service routine can 
read the peripheral status to determine the cause of the inter­
rupt. The service routine should also clear IP and IUS before 
returning to mainline code. Note, since INTA is tied HIGH, IUS 
needs not be cleared. If INTA is activated, IUS must also be 
cleared. 

Many of the design examples in this book use PAL devices. 
PAL devices, in many cases, will be the most cost-effective 
solution. The SSI examples show what is being accomplished 
much clearer than by using a PAL device, which is a black box 
to many. Gates are often left over from one circuit which can be 
used to implement other circuits. Whether to use a PAL device 
or do a discreet design is an individualistic choice and is not 
always clear-cut. As a general rule, if you can replace four or 
more packages, use a PAL device. 
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8086 and Am7990 LANCE 
The LANCE, Am7990, has been designed to be interfaced 
easily with the popular 16-bit microprocessors (8086/80186, 
68000, Z8000, LSI-11). Most of the interface logic is embedded 
inside the chip and is program selectable. 

MAX. or MIN. mode. The 8086 has a bidirectional signal for 
both Bus .Request and Bus Grant (RQ /GT). Both Bus Request 
(RQ), and Bus Grant (GT) to/from 8086 are one CPU clock 
wide, and are synchronous to the CPU clock. Figure 3-50 
shows a PAL design for the conversions in MAX. mode. This 
PAL device is utilized to include other external logic require­
ments for interfacing the LANCE to 8086. The interface dia­
gram is similar to the one for the 80186 to LANCE interface 
except for the changes made in programming the PAL device. 
Interface timing diagram is shown in Figure 3-51. 

Although the LANCE itself has a multiplexed bus, it can easily 
be interfaced to demultiplexed buses with a minimal amount of 
effort. The following designs assume that the processor and 
the LANCE reside on the same board. Address buffers and 
data transceivers are set up to be shared between the proces­
sor and the LANCE. All of these designs use PALs to reduce 
the parts count. 

The 8086 to LANCE interface requires a different Bus Request 
handshake, depending on whether the 8086 is configured in 

Figure 3-52 shows a block diagram on the 8086 to Am7990 
interface, in MIN. mode. The interface also employs a PAL 
device to minimize parts count. The PAL equations are given in 
Figure 3-53. 
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-~l 
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AmPAL16R4 
86J90.PAL 

.. CiT HOCi)' 

L, 
-

iU Hi:Dl 
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AM PAL 16R11 
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RASOUL OSKour 
MARCH 20, 19811 

8086 RQ/GT CONVERSION TO lANCE HOLD/HlDA 
ADVANCED MICRO DEVICES 
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HLDA u GT'iii • IILDA'D'2 
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This PAL converts the request and grant (RQ/GT) of 8086, 
when configured in maximum mode, to the LANCE Am7990 
HOLD /HLDA. Both request (input to 8086) and grant (output 
from 8086) are one clock wide and are synchronous to the 
CPU clock. 

Figure 3·50. 8086 RG/GT, Am7990 HOLD/HiJ5A Conversion PAL Device 
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Figure 3-52. Am7990 to 8086 Interface 
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PAL16L8 
PAT 
FILE: 86-90-A.PAL 

8086 MINIMUM MODE TO LANCE INTERFACE 
AMD 

KHUYNH NGUYEN 

AUG 185 

ALE /AS DTR NC NC DEN NC /READY HLDA GND 
NC /DPURDY READ /R /T /DAS /WR /RD LE vec 

/LE = /ALE + /AS 
/CPURDY = /READY 

; CPU (86) IS BUS MASTER 

IF (/HLDA) DAS = RD + WR 
IF (/HLDA) /READ = DTR 
IF (/HLDA) T = DTR 
IF (/HLDA) R = /DTR * DEN 

; LANCE IS BUS MASTER 

IF (HLDA) RD = READ * DAS 
IF (HLDA) WR = /READ * DAS 

Figure 3-53. Source Listing for Example of Figure 3-52 
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80186 to Am7990 LANCE Interface 

Similar to the 8086 to Am7990, this interface uses a PAL 
device design to reduce the parts count. Figure 3-54 shows 
the interface block diagram.B0186/LANCE address and data 
buses can be connected directly together since they both have 
multiplexed buses. It seems natural to program the LANCE for 
ALE output. However, the PAL device equations or indeed a 
discrete design is easier if AS (CSR3, ACON=l) is used. This 

ADDRESS 
BUS 

is because the LANCE tristates ALE, the 186 does not. The 
INTR, READY, and HOLD signals from the LANCE are open 
drain and should be pulled up. The BMl signal from the 
LANCE or BHE from the 186 along with AO can be used to 
decode the data transfer type (Word/Byte). The external ad­
dress buffers and data transceivers are enabled by the LANCE 
and the 186. The buffers and transceivers are enabled by 
whichever device is the master. The user should program the 
BCON, BSWP to 0, and ACON to 1 in CSR3. 

DATA r-
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Figure 3-54. 80186 to Am7990 Interface 
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8086 and Am9516 Universal 
DII,'IA Controller Interface 

Am9516 in MIN. Mode 

Figure 3-55 illustrates the interface of the Am9516 to the 
8086 in the MIN. mode configuration. Figure 3-57 illustrates 
the interface in MAX. mode. The interfaces could be accom­
plished by using rather complex implementation of standard 
SSI/MSllogics. Examples here replace the logic portion with a 
PAL device. The MIN. Mode uses the PAL device 16L8. This is 
a good example of "GARBAGE COLLECTION". It reduces the 
amount of real estate, interconnections, parts, and part types. 

HOLD 

HLDA 

8086 
DT/A DTI 

HLDA 
ITBEN 

nrn IDEN IRBEN 

ALE ALE P ALE 0 

AmPAL16L8 
Ao 

ISEL 

ADo BIO 

RD IRD IDS 

WR IWR IRW 
ALE 

MIlO 

fI 
JJ 

Both interface examples accomplish two major functions. First, 
when the Am9516 is bus master, it converts RD and WR into 
ANi and OS, and vice versa when the Am9516 is not the bus 
master. Secondly the buffer controls, TBEN and REBN, are 
generated from DEN and OT/R. 

The two examples show different types of latches and 
transceivers and there are many more to choose from. The 
designer selects those that best meet system requirements 
while trying to minimize the number of different parts that must 
be stocked. Figure 3-56 shows the PAL equations for this 
example. 
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LATCH 'I R TRANSCEIVER DECODER 

MIlO JmWA 
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Figure 3-55. The Am9516 UDC to 8086 CPU Interface (Minimum Mode) 
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AmPAL16L8 PALASM FILE 

PAL16L8 
PATOOI 
Am9516 to 8086 min mode interface chip 
Advanced Micro.Devices 

NC ALED ALEP HLDA BW ADO DT /DEN /SEL GND 
NC /RBEN /RD ALE AO /RW /DS /WR /TBEN VCC 

IF (/HLDA) DS = RD + WR 
IF (/HLDA) RW = DT 
IF (/HLDA) TBEN = /DT * /SEL * DEN 
IF (/HLDA) RBEN = DT * /SEL * DEN 
IF (HLDA) RD = /RW * DS 
IF (HLDA) WR = RW * DS 
ALE = /ALEP * /ALED 
AO = /ADO * /BW * HLDA * ALED + 

ADO * BW * HLDA * ALED + 
/ADO * /HLDA * ALEP + 
AO * /ALEP + AO * /ALED 

DESCRIPTION 

THIS PAL CONVERTS THE CONTROL SIGNALS TO INTERFACE THE 8086 IN 
MIN MODE TO THE Am9516 DMA CONTROLLER. ANOTHER EXAMPLE SHOWS HOW 
THIS IS DONE IN MAX MODE. 

Figure 3·56. Source listing for Example of Figure 3·55. 

Am9516In MAX. Mode 

This MAX. mode interface between the 8086 and Am9516 
(Figure 3-57) also uses PAL devices to reduce component 
count. 

The example makes several assumptions which result in a 
slightly more complex design than absolutely necessary. The 
8086 is assumed to be in MAX. Mode, and the design has to be 
compatible with a MULTIBUS or similar interface; the 16R4 
and 8288 could be eliminated if this is not the case. 

The 16R6 (Figure 3-57) is a PAL device that performs a 
function similar to the 8288, that is, it converts the processor's 
status signals and clock into control signals. In this case, the 
signals are, RiW, and Data Strobe (DS), Interrupt Acknowl­
edge (INTA) and Peripheral Acknowledge (PACK). This PAL 
device, Figure 3-59, basically generates ZBUS signals for 
Zilog peripherals. In the example, it connects to the Am9516 
(UDC). The DMA Controller is very similar to the AmZ8016 
except its bus interface has been modified to interface to non­
multiplexed buses. This was changed from the previous design 
using a 16R8 to eliminate problems due to skew between OSC 
and CLK. 

The 16R4, Figure 3-58, has two functions. The first is con­
necting the MIN. Mode protocol of the Am9516 or similar 

device to the MAX. Mode protocol for bus exchange. The 
74LS03s are used to aid in this function. The timing waveform 
illustrates what happens in detail. The basic philosophy is that 
a rising edge on the HOLD input generates a pulse that is one 
clock wide. The CPU samples this pulse and, in response, 

. issues a one-clock-wide pulse. The 16R4 uses this response \ 
pulse to generate HLDA. When the Am9516 has completed the 
necessary transfer, HOLD transitions HIGH to LOW. This gen­
erates another pulse to the CPU signalling that the Am9516 is 
done and that the CPU may continue .. 

The second function of the 16R4 is the conversion of RiW, 
DS and M/iO into the MULTIBUS-compatible signals 
IMRDC, IMWTC, !I0RC, and !I0WC, when HLDA is HIGH. It is 
possible to collapse the 74LS03s into the PAL device, thus 
reducing the external logic required to only one open collector 
inverter. The disadvantage, however, is that it adds two addi­
tional clocks for the bus exchange overhead, one during ac­
quisition of the bus and one on bus release. For block 
transfers, this is not significant but it may be undesirable when 
performing single transfers, or short burst, or when in Demand 
Mode. To eliminate the 74LS03, change the equation for R2 to 

IR1 • ID2 + R1 • D2, 

and then drive the I[RQ/GT] line with a 74LS05 from the R2 
output. . 

3-66 



C lOCK m 

r .., 

! 
ClK 

a'~ 
ClK

HOlD 

HlDA 

AmPAL16R4 

Jm/Q'T ... 

8086 
H CPU t CEN 

lOB 8288 

~ ClK Am 
S2 S2 ~ 

'S1 'S1 MW'TC 
SO SO ~ 

~ 
~ 

I IlOCK 10E 
IRDY 

m ClK IRW 

-+ 150 IDS 
~ 151 /lACK 

152 lAS 

AmPAL16R6 

AmPAL16R4 PALASM File 

B> Type Am95l6 PAL 
PAL16R4 
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Figure 3-57. 

CLK /RQGT HOLD NC NC NC /RW /DS MIO GND 
JOE /MWTC /MRDC HLDA /D2 /R2 /Rl /IOWC /IORC VCC 

IF (HLOA) IORC 
IF (HLDA) IOWC 
IF (HLDA) MRDC 
IF (HLDA) MWTC 

Rl := HOLD 

R2 := /Rl 

D2 := Rl 

/MIO * DS * /RW 
/MIO * DS * RW 
MIO * DS * /RW 
MIO * OS * RW 

/HLDA := /Rl + /D2 * /HLDA + 
/RQGT * /HLDA 

DESCRIPTION 

BREQ 

BACK 

--+ ~ 

-+ P/O 

-+ ClK 

Am9516 
R/W UDC 

~ 

M/TO 

~ 

THIS DEVICE CONVERTS THE MIN MODE SIGNALS HOLD AND HLDA TO THE 
MAX" MODE /RQGT PROTOCOL. ADDITIONALLY IT GENERATES THE 8288 
EQUIVALENT CONTROL OUTPUTS /MRDC, /MWTC, /IORC, AND /IOWC. THIS 
PAL WAS USED TO CONNECT THE Am95l6 TO THE 8086 IN MAX MODE. 

Figure 3-58. Source Listing for Example of Figure 3-57 
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AmPAL16R6PAL DESIGN SPECIFICATION 
PAT 005 BY JOE BRCICH 5/10/83 
8086 TO 85XX PERIPHERAL INTERFACE & JAMES WILLIAMSON 7/21/83 
ADVANCED MICRO DEVICES 

CLOCK RESET CLK 
10E lAS IPI 

ISO 
IRW 

lSI 
IDS 

/S2 lLOCK NC NC GND 
IPO IIACK IRDY CLKD VCC 

PO := lRESET * SO * IPO * IPI 
lRESET * SI * IPO * IPI 
lRESET * S2 * IPO * IPI 
lRESET * SO * PI 
lRESET * SI * PI 
lRESET * S2 * PI 

PI := lRESET * PO * IPI 
lRESET * PI * SO 
lRESET ~ PI * SI 
lRESET * PI * S2 

DS :- IIACK * IPO 
IIACK * IPO 

lACK * SO 
DS * SO * 
DS * SO * 
DS * ISO * 

* PI * SO * lSI * S2 
* PI * ISO * SI * S2 
* SI * S2 * PO * IPI * LOCK 
SI * S2 

lSI * S2 
SI * S2 

RW := SO * lSI * S2 

+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

lACK := lRESET * SO * SI * S2 * IPO * IPI * lLOCK 
lRESET * lACK * SO * SI * S2 * PO * IPI * lLOCK 
IRESET * lACK * LOCK * IDS 
lRESET * lACK * lLOCK * DS * IPO * PI 

RDY := lRESET * 
IRESET * 
lRESET * 
lRESET * 
lRESET * 
lRESET * 

ICLKD = CLK 

SO 
ISO 
RDY 
RDY 
lACK 
RDY 

* lSI * S2 * PO * PI 
* SI * S2 * PO * PI 
* SO * lSI * S2 
* ISO * SI * S2 
* SO * SI * S2 * DS 
* SO * SI * S2 

AS = ICLKD * PO * IPI * IIACK * CLK 

DESCRIPTION 

+ 
+ 
+ 
+ 
+ 

THIS PAL TRANSLATES 8086 BUS SIGNALS INTO COMPATIBLE SIGNALS 
FOR THE 9516. IT IS ALSO APPLICABLE TO 85XX PERIPHERALS BY 
ALTERING IRW AND IDS TO IRD AND IWR. ONE FLIP FLOP IS AVAILABLE 
TO GIVE THE NECESSARY DELAY TO THE FALLING EDGE OF IWR. THE DATA 
STROBE TIMING FOR A WRITE CYCLE IS DELAYED UNTIL THE FALLING EDGE 
OF T2 TO MEET THE REQUIREMENTS OF THE 85XX PARTS. THIS DESIGN 
ASSERTS RDY TO DEMAND ONE WAIT STATE FROM. THE 8086. THIS WAIT 
STATE IS NOT LONG ENOUGH FOR DESIGNS WHICH USE AN 8 MHZ 8086. 
THEREFORE, WITH AN 8 MHz CPU, 85XXA PERIPHERALS SHOULD BE USED. 
AS AN ALTERNATIVE, THREE WAIT STATES CAN BE USED BY ALTERING THE 
RDY EQUATION. THIS PAL ALSO TRANSFORMS THE 8086 TWO CYCLE 
INTERRUPT ACKNOWLEDGE INTO A SINGLE CYCLE OF THE TYPE NECESSARY 
FOR 85XX PARTS. THIS IS MADE POSSIBLE BY SAMPLING THE LOCK 
STATUS, PO, PI, AND lACK SIGNALS. 

NOTE; THE CLK SIGNAL MUST BE EXTERNALLY INVERTED. 

Figure 3-59. Source listing for Example of Figure 3-57. 
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80186 to Am9516 Universal DMA Controller 

The addition of the Am9516 to an 80186 design is a natural 
choice in systems requiring four channels of DMA. Figure 3-60 
shows the interface between the 80186 and the Am9516 with a 
PAL device. PCSs is programmed to provide a latched Al 
signa/. 

16MHz 

o rill 
ARDY .L 

PCSs 
PCSo 

HOLD ~ 

HLDA 

This interface accomplishes two major control transformations. 
First, it converts R D and W R into RIW and DS when the 80186 
is Bus Master, and vice versa when the Am9516 is Bus Master. 
Secondly, the transceiver control signals, TBEN and RBEN, 
are generated from DEN and DT/R. This example shows only 
one possible configuration. Other configurations can be made 
as dictated by system requirements. A PAL device is used here 
to reduce board space. 

0 Q~ WAlT 
74LS74 

CP 
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BREQ 

,!c~ '!~ 
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80186 Am9516 
DTIR DT 

HLDA 
ITBEN ~ 

om IDEN IRBEN JmER 
ALE ALEP ALE 0 ~. ALE 

AmPAL16L8 IS~ ..L 

eg 

ADo BW I~ B/W 
1m IRD IDS D'S 

WR IWR IRW .~ R/W 
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S2 M/iC5 

CLKOUT CP Q CLOCK 

AD1S-ADo 74LS74 AD1S-ADo 

It r D a~ iI~ 

~ {jr 
I G 

Am25LS373 
10 yT Am2949 

LATCH "I ~ TRANSCEIVER 
1Q 

~ 
ARDY 1m WR M/iC5 Ao 
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Figure 3-60. Am9516 to 80186 Interface 
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AmPAL16L8 PALASM File 

PAL16L8 
PAT001 
Am9516 to 80186 interface chip 
Advanced Micro Devices 

NC ALED ALEP HLDA BW ADO DT 
NC IRBEN IRD ALE AO IRW IDS 

IF (/HLDA) DS RD + WR 
IF (/HLDA) RW = DT 
IF (/HLDA) TBEN = IDT * ISEL * DEN 
IF (/HLDA) RBEN = DT * ISEL * DEN 
IF (HLDA) RD = IRW * DS 
IF (HLDA) WR = RW * DS 
ALE = I ALEP * I ALED 
AO = IADO * IBW * HLDA * ALED + 

ADO * BW * HLDA * ALED + 
IADO * IHLDA * ALEP + 
AO * IALEP + 
AO * IALED 

DESCRIPTION 

IDEN 
IWR 

ISEL GND 
ITBEN VCC 

THIS PAL CONVERTS THE CONTROL SIGNALS TO INTERFACE THE 80186 TO 
THE Am9516 DMA CONTROLLER. OTHER EXAMPLES SHOW HOW THIS IS DONE 
FOR THE 8086 IN MIN AND MAX MODES. 

Figure 3-61. Source Listing for Example of Figure 3-60 
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iAPX286 to Am9568 Data Ciphering 
Processor Interface 

This interface is designed for an 8-MHz CPU where the DCP is 
synchronously operating at the maximum clock rate of 4 MHz. 
Block diagram for the interface is shown in Figure 3-62. The 
Am9568 requires a narrower width of address strobe than the 
Am9518. This works comfortably with the 60-ns address strobe 
width of an 8-MHz CPU. 

The MULTIBUS Mode Select input of the Bus Controller 82288 
is tied LOW to optimize the command and control signals for 
short bus cycles. The Command Delay (CMDLY) becomes 
active-HIGH for one 16-MHz clock cycle whenever the DCP is 
selected to delay the Read and Write strobes by 125 ns. This 
satisfies the timing requirement of the minimum delay between 
ALE inactive and Read or Write strobe active of the DCP. An 
open-collector gate must be added to allow other peripherals to 
drive this input. 

The ALE, IORC and IOWC outputs of the 82288 are wired 
directly to the DCP. ALE strobes a D-Flip-Flop to store the state 
of Chip Select for the entire cycle. 

0 3 and the latched Chip Select CSL are ANDed externally to 
generate the Synchronous Ready for the 82284. The 82284 
samples the line at the falling edge of the clock. The registered 

output IT 3 is clocked with the rising edge of the same clock, 
thus satisfying the setup and hold time requirements of the 
82284. Two Wait States are inserted. 

Half of the PAL device operates as a bidirectional Ad­
dress/Data Multiplexer. During the Address Latch Enable ac­
tive phase, the state of A1 Cij1d A2 is transferred to the AD1 and 
AD2 pin of the PAL device. The DCP latches this two bit­
address with the falling edge of ALE. 

When IORC and CSL are active, the states of AD1 and AD2 
are passed to 01 and 02 respectively. The DCP Register can 
be read. If IOWC and CSL are active, the data path is turned 
around: 01 and 02 are inputs, AD1 and AD2 are outputs. 

The Address Hold Time of the PAL device is sufficient because 
the address information is passed to AD1 and AD2 whenever 
IORC'CSL or IOWC'CSL are not true, Le. whenever data is 
not transferred Ot;tween the CPU and the DCP. 

The Read Data Hold Time requirement of 5 ns of the Am9568 
is satisfied by the propagation delay of the PAL device. 

The Read Data Hold Time requirement of 5 ns of the iAPX286 
is also satisfied by the PAL device. 

The Master Port Chip Select (MCS) input of the DCP is con­
nected to the unlatched address decoder output. 
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Figure 3-64 shows the source listing and Figure 3-65 provides 
the pin descriptions. 



~--------------~~--;---------·Imm 

~----------------------~--------+I~ L-____ ..I 

02188A-43 

Figure 3-62. IAPX286·Am9568 Interface 

The DCP Clock 
The PAL device synchronizes the DCP clock to the Data 
Strobes IORC and IOWC (Figure 3-63). It also divides the 
16-MHz system clock (8-MHz CPU clock) down to the maxi­
mum DCP clock rate of 4 MHz. At this clock rate, the Data 
Strobe Delay to the DCP clock must be 0-30 ns. The Bus 
Controller is specified to generate a Data Strobe timing of 3-15 
ns to the falling edge of CLK (16 MHz). Because of the higher 
propagation delay of a standard PAL device, the registered 
outputs are toggled at the rising edge of CLK before the Data 
Strobes become inactive. This gives additional 32.5 ns for the 
DCP clock signal path. 

01 to 03 are three outputs of the PAL device state machine. 
The registered outputs are clocked with the rising edge of the 
16-MHz 82284 clock. Whenever ALE and CS are active, 01 to 
03 are set to the initial state. 01 to 03 are outputs of a 3-bit 
down counter, with 03 as the most significant bit. 

03 is used to generate the SRDY signal for the 82284 as 
mentioned above. . 

O2 is the DCP clock. This design must guarantee that the 
minimum DCP clock HIGH or LOW time is at least 115 ns or 
two 16-MHz clock cycles. This is done by toggling O2 only 
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during phase 2 cycles of the CPU. The CPU design guarantees 
that there is always a phase 1 cycle between two phase 2 
cycles. 

Assuming a typical PAL device propagation delay of 25 ns, 
timing parameter tCDS (Time Clock Data Strobe) is 10.5 to 
22.5 ns ( 3 + 32.5 - 25 ns to 15 + 32.5 - 25 ns). This satisfies 
the 0 to 30 ns requirement. 

The Am PAL 16R4 has active-LOW outputs. But one output, O2, 

should be active-HIGH. The equation for O2 was derived to be 

O2 = ALE * CS 0, * O2 0, * O2 

To compensate for the inversion in the PAL device, either de 
Morgan Theorem or Karnaugh-Veitch diagrams can be used to 
convert it to the form shown in PAL device Design Specifica­
tion. 

Improvements 

The DCP needs two Wait States only when the Control Regis­
ters are read. Data Register read or writes and Control 
Register reads can be executed with only one Wait State, 
which improves the Data Ciphering speed of this interface. The 
more sophisticated Wait control logic and the two external TTL 
gates can be integrated into one AmPAL22V10 device. 
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Figure 3-63. Timing Diagram 
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PAL16R4 PAL DESIGN SPECIFICATION 
DCP043 JUERGEN STELBRINK 8-23-83 
iAPX286 - Am9568 (DCP) INTERFACE DEVICE 
ADVANCED MICRO DEVICES 

CLK ICS CSL ALE IIORC IIOWC A1 A2 NC GND 
IOE D1 D2 IQ1 Q2 IQ3 CMDLY AD1 AD2 VCC 

Q1 .- ALE*CS + IQ1 

IQ2 := Q1*/Q2*/ALE + Q1*/Q2*ICS + /Q1*Q2*/ALE + IQ1*Q2*ICS 

Q3 := ALE*CS + Q1*Q2*Q3 + /Q1*Q2*Q3 + Q1*/Q2*Q3 + /Q1*/Q2*/Q3 

ICMDLY .- IALE+/CS 

IF(CSL*IORC) ID1 IAD1 

IF(CSL*IORC) ID2 /AD2 

IF(CSL*/IORC) /AD1 IA1*ALE + /D1*/ALE 

IF(CSL*/IORC) /AD2 IA2*ALE + ID2*/ALE 

FUNCTION TABLE 

CLK ICS CSL ALE IIORC A1 A2 D1 D2 AD1 AD2 IQ1 IQ2 IQ3 CMDLY 

I C 
I M 

C I C A 0 A A I I / D 
L C S L R A A D D D D Q Q Q L 
K S L E ·C· 1 2· 1 2 1 2 1 ·2 3 Y COMMENT 

---------------------------------------------------------------
C L H H H L L Z Z L L L L L H 1 (ICS ACTIVE) 
X L H H H L H Z Z L H L L L H 
X L H H H H H Z Z H H L L L H 
C L H L H H L L If L H H L L L 2 (WRITE CYCLE) 
X H H L L L L L H L H H L L L (READ CYCLE) 
C H H L L H L L H L H L H L L 3 
C H H L L H L L L L L H H L L 4 
C H H L L H L H H H H L L H L 5 
C H H L H H L H H H H H L H L 6 
C H H L H H L L L L L L H H L 7 
C H H L H H L H L H L H H H L 8 

C H L H H X X Z Z Z Z L L L L 1 (NO /CS) 

Figure 3·64. Source Listing for the Example of Figure 3·62 
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DESCRIPTION: 

INPUT SIGNALS: 

CLK 

/CS 

CSL 

ALE 

A1,A2 

/IORC 

/IOWC 

16 MHZ SYSTEM CLOCK OF THE 82284 SYSTEM TIMING CONTROLLER. 
THIS CLOCKS TRIGGERS THE D-FLIP-FLOPS OF FOUR PAL OUTPUTS 

ACTIVE LOW UNLATCHED CHIP SELECT OF THE ADDRESS DECODER 

ACTIVE HIGH LATCHED CHIP SELECT. IT HAS TO BE ACTIVE TO THE 
RISING EDGE OF ALE OF THE NEXT CYCLE 

ADDRESS LATCH ENABLE OF THE 82288 BUS CONTROLLER 

DEMULTIPLEXED ADDRESS INPUTS. THEY CARRY THE 2-BIT REGISTER 
ADDRESS FOR THE DCP 

INPUT/OUTPUT READ CONTROL OF THE 82288 

INPUT/OUTPUT WRITE CONTROL OF THE 82288 

OUTPUT SIGNALS: 

/Q1 

/Q2 

/Q3 

CMDLY 

INTERNAL STATE SIGNAL. IT IS DIVIDED BY TWO FROM CLK AND 
SYNCHRONIZED TO ALE 

INTERNAL STATE SIGNAL. IT IS DIVIDED BY TWO FROM /Q1 AND 
SYNCHRONIZED TO ALE. IT IS THE INVERTED DCP CLOCK (4MHZ). 
THE RIGHT EDGE OF Q2 IS SYNCHRONOUS TO THE DATA STROBES 
/IORC AND /IOWC, IF TWO WAIT STATES ARE INSERTED. 

INTERNAL STATE SIGNAL. IT IS DIVIDED BY TWO FROM /Q2 AND 
SYNCHRONIZED TO ALE. IT IS USED TO GENERATE THE SYNCHRONOUS 
READY (/SRDY) FOR THE 82284. EXTERNALLY IT HAS TO BE 
LOGICALLY AND'ED WITH THE THE LATCHED CHIP SELECT (CSL). 

COMMAND DELAY GOES ACTIVE FOR ONE CLOCK WIDTH TO DELAY THE 
DATA STROBES. THE AM9568 REQUIRES A DELAY BETWEEN ALE 
INACTIVE AND DATA STROBE ACTIVE. 

BIDIRECTIONAL SIGNALS: 

D1,D2 DEMULTIPLEXED DATA BUS LINES TO 8086 CPU 

AD1,AD2 MULTIPLEXED ADDRESS/DATA BUS LINES FOR THE DCP 

Figure 3-65. Pin Description for the Example of Figure 3-62 
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Am8530 to 80286 Interface 

The Am8530 is a high-speed, dual-channel serial communica­
tions controller that supports a variety of advance 
communication protocols .. It supports data rates up to 
1.5M bps. 

This design note shows an Am8530 to an 80286 CPU interface 
when no interrupts are used (Figures 3-66 and 3-67). The 
design is for a CPU running at 5 MHz with a 100-ns system 
clock cycle time. This clock is used to generate the clock for the 
6-MHz Am8530 SCC. 

Chip select generated by the external decoder in an 80286 
system that is enabled by the M/IO- line will go inactive with the 
falling edge of Tc-phase 1. However, the chip enable for the 

'" 82288 
.. BUS 

CONT.ROLLER 

80286 
CPU 

'" 1/0 Iro. 

DECODER IV .. 
MlIO-

.... 82284 , 
CLOCK .. GENERATOR 

SRDYEN R 
08749A·2 

r 

SCC should stay valid for the entire read or write cycle. The 
PAL device generates the chip enable signal for the SCC using 
a structure equivalent to two cross-coupled NOR gates. 

The Am8530 requires a minimum pulse width of 250 ns for RD 
and WR control signals. For a 100-ns cycle time 80286 with no 
wait state, these controls will be active for 200 ns only. SRDY 
control is generated for the 82284 bus controller to guarantee 
minimum RD and WR pulse widths for the Am8530. 

CMDLY is not used in this design because the address to read 
or write control setup time required is only 80 ns for the 
Am8530; with a 100-ns system cycle time, the time between 
ALE valid and IIORC or IIOWC valid is 100 ns. Even after 
accounting for the address latch delay, 80-ns timing will still 
be met. 

RD 

WR 

8530 
SCC 

.. IORC CE p 

~ IOWC 
~ ALE 8530ClK --.. 

AmPAl16R4 
.. 

CS 

~ ClK 

SRDY 

Figure 3-66. Am8530-IAPX286 Interface 
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Co) 

..:... 

...... 

.. THIS PLPL FILE IS FOR A 16R4 THAT IMPLEMENTS THE LOGIC .. COUNT DOYN SPECIFICATION FOR THE COUNTER ... 
NECESSARY TO INTERFACE AN Am8530 (SCC) TO AN 80286 SYSTEM." .. Q2 OF THE COUNTER IS THE CLOCK INPUT OF THE Am8530 ... 

DEVICE Am8530_to_80286 (PAl16R4) 

PIN 
ClK = 1 VCC = 20 
ICS = 2 ICE = 19 
ALE = 3 /lNTSO = 18 
IIORC = 4 IQ [1] = 17 
IIOYC = 5 IQ[2] = 16 
NC1 = 6 IQ[3] = 15 
NC2 = 7 NC5 = 14 
NC3 = 8 ISRDY = 13 
NC4 = 9 NC6 = 12 
GND = 10 NC7 = 11 

BEGIN 

.. CHIP ENABLE FOR THE Am8530 IS DERIVED FROM ALE AND 
THE EXTERNAL DECODER CHIP SELECT OUTPUT. .. 

CE = CS * ALE + INTSO ; 
INTSO = I( 10RC * 10YC) + CE 

.. SYNCHRONIZE THE COUNTER YITH ALE ... 

IF ( CS * ALE ) THEN Q[3:1] = 7 ; 

CASE ( Q [3 : 1] ) 
BEGIN 
0)Q[3:1] :=7; 
1 )Q[3:1] :=0; 
2 ) Q [3: 1] : = 1 ; 
3 ) Q [3 : 1] : = 2 ; 
4 ) Q[3:1] := 3 
5)Q[3:1] :=4; 

6 ) Q [3: 1] := 5 ; 
7 ) Q [3: 1] := 6 ; 
END ; 

.. SRDY IS GENERATED FOR YAIT STATE GENERATION, IT IS SENT 
TO THE 82284 CLOCK GENERATOR ... 

SRDY = I(Q[3] * CE) 

END. 

Figure 3-67. Source Listing for AmPAL16R4 for the Example of Figure 3-66 



Am9518 to 80286 Interface 

The Am9518 Data Ciphering Processor encrypts and decrypts 
data using the National Bureau of Standards encryption al­
gorithm. The DCP can be operated in either Multiplexed­
control or the Direct-control mode. This design shows the logic 
necessary to interface the Am9518 Data Ciphering Processor 
to an 80286 microprocessor system with a system clock cycle 
time of 100 ns. The DCP is operated in the Multiplexed-control 
mode with the C/K- pin tied LOW. (A HIGH level on C/K- will 
place the device in Direct-control mode. This mode is suitable 
for ciphering data using a high-speed controller for high-speed 
applications. ) 

Two PAL devices are used to interface the Am9518 DCP to the 
80286. The DCP has a multiplexed addressldata port. Note 
that only two bits (MP2 and MP1) are used for DCP register 

A 
0 0 -07 'oj 

" 82288 
... BUS 

CONTROLLER 

80286 CMOLY 40-

CPU 

I 
I " I/O h , 

DECODER I'-" ... 
MIlO-

addressing. PAL device 1 performs the necessary ad­
dressldata multiplexing since the 80286 has non-multiplexed 
address and data busses. Memory readlwrite and data strobe 
control signals for the DCP are also generated by this device. 

PAL device 2 generates the clock for the Data Ciphering Pro­
cessor by dividing the system clock that is synchronized with 
ALE and CS active. It also generates CMDLY for the 82288 
bus Controller to insert a delay between MAS inactive and 
MRD or MWR active for the Am9518. Note that ALE cannot be 
inverted and tied to the Am9518 Master Address Strobe. Mas­
ter Address Strobe requires a minimum width of 115 ns­
device 2 generates MAS to meet this width requirement. This 
device also generates the SRDY signal for the 82284 Clock 
Generator to insert wait states during Am9518 read and write 
cycles. 

fI. 

L 0 1-0 2 AD{AD2 J 
--v 
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-- IOWC 
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MOS MOS 
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~ 
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Figure 3-68. Am9518-IAPX286 Interface 
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.:... 
(0 

" THIS PLPL FILE IS FOR A 16R4 PAL DEVICE THAT IMPLEMENTS 

PART OF THE LOGIC NECESSARY TO INTERFACE AN Am9518 (DCP) 

TO AN 80286 SYSTEM. ANOTHER PAL DEVICE (16L8) IS NEEDED 

FOR THE COMPLETE DESIGN. " 

DEVICE Am9518_TO_80286_2 (PAL 16R4) 

PIN 

CLK = 1 VCC = 20 

ICS = 2 IMCS 19 

ALE = 3 IMAS 18 

CSL = 4 IQ[1] 17 

NC1 = 5 IQ[2] 16 

NC2 = 6 IQ[3] 15 

NC3 = 7 ICMDLY 14 

NC4 = 8 ISRDY 13 

NC5 " 9 NC6 12 

GND = 10 NC7 11 

BEGIN 

" MASTER CHIP S!:LECT FOR THE Am9518 IS DERIVED FROM 

UNLATCHED CHIP SELECT AND INTERNAL STATE. " 

MCS = Q[2] * CS 

" MASTER ADDRESS STROBE MUST MEET THE MINIMUM PULSE 

IIIDTH REQUIREMENT, IT IS DERIVED FROM AN INTERNAL 

STATE BECAUSE ALE IS NOT IIIDE E~OUGH. " 

MAS = ICHDLY 

" COMMAND DELAY TO DELAT !I0RC AND IIO\IC GENERATED BY 

THE 82288 BUS CONTROLLER. " 

CMDLY := I(Q[2] * CS) 

" SYNCHRONIZE THE COUNTER IIITH ALE. " 

IF ( CS * ALE) THEN Q[3:1] = 7 ; 

" COONT DO\IN SPECIFICATION FOR THE COUNTER. " 

" Q2 OF THE COUNTER IS THE CLOCK INPUT OF THE Am9518. " 

CASE ( Q[3:1] ) 

BEGIN 

o ) Q[3:1] := 7 ; 

1 ) Q [3:1] := 0 ; 

2 ) Q [3: 1] := 1 ; 

3 ) Q [3: 1] : = 2 ; 

4 ) Q[3:1] := 3 ; 

5)Q[3:1]:=4; 

6 ) Q [3: 1] := 5 ; 

7 ) Q [3: 1] := 6 ; 

END; 

" SRDY IS GENERATED FOR IIAIT STATE GENERATION, IT IS SENT 

TO THE 82284 CLOCK GENERATOR. " 

SRDY = I(Q [3] * CS) 

ENe. 

Figure 3-69. Source Listing for AmPAL16R4 for the Example of Figure 3-68 



" THIS PLPL FILE IS FOR A 16L8 PAL DEVICE THAT IMPLEMENTS 

PART OF THE LOGIC NECESSARY TO INTERFACE AN Am9518 (DCP) 

TO AN 80286 SYSTEM. ANOTHER PAL DEVICE (16R4) IS NEEDED 

FOR THE COMPLETE DESIGN. " 

DEVICE Am9518_TO_80286_1 (PAL 16L8) 

PIN 

DTR = 1 VCC = 20 

A1 = 2 IMRII = 19 

A2 = 3 lAO 1 = 18 
/I0RC = 4 IAD2 F'17 

IIOWC = 5 /INTSO .. 16 

ALE = 6 ICSL ,= 15 

ICS = 7 102 = 14 

NC1 = 8 101 = 13 

NC2 = 9 IMDS = 12 

GND = 10 NC3 , = 11 ; 

BEGIN 
" 

" MEMORY R'/II FOR THE Am9$18 IS DERIVED FROM DT/R·. " 

MRII • IDTR ; 

" MEMORY DATA STROBE P,OR THE Am9518 IS DERIVED FROM 

10RC' AND IOWC·. ", : 

" , , ' 
MDS = I(lORC + IOWt;),'; 

" LATCHED CHIP SELEb IS DERIVED FROM ALE AND THE 

EXTERNAL DECOOER' CHIP SELECT OUTPUT. " 

CSL = CS * ALE + INTSO ; 

INTSO = I( IPRC * IOWC) + CSL 

" THE FOLLOWING SPECIFICATION IS FOR MULTIPLEXING THE 

ADDRESS AND DATA SIGNALS OF THE 80Z86 FOR THE MASTER 

PORT OF THE Am9518. " 

IF ( CSL * 10RC) THEN 01 = AD1 ; 

IF ( CSL * IIORC ) THEN AD1 = A1 * ALE + 01 * IALE 

IF ( CSL * 10RC) THEN 02 = AD2 ; 

IF ( CSL * IIORC ) THEN AD2 = A2 * ALE + 02 * IALE ; 

END. 

Figure 3·70. Source Listing for AmPAL16L8 for the Example of Figure 3·68 
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3.4.3 INTERFACING TO THE 68000/68020 
The 68000 has an asynchronous, 16-bit, bidirectional, data 
bus. Data types supported by the 68000 are: bit data, integer 
data of 8, 16, or 32 bit, 32-bit addresses and binary-coded 

decimal data. It can transfer and accept data in either words or 
bytes. The DTACK input indicates the completion of a data 
transfer. When the processor recognizes DT ACK during a read 
cycle, the data is latched and the bus cycle terminates. When 
DT ACK is recognized during a write cycle, the bus cycle also 
terminates. An active transition of DT ACK indicates the ter­
mination of a data transfer on the bus. All control and data lines 
are sampled during the 68000's clock HIGH time. The clock is 

internally buffered, which results in some slight differences in 
the sampling and recognition of various signals. The 68000 
mask sets prior to CC1 and allows DT AC K to be recognized as 
early as 82, and all devices allow BERR or DTACK to be 
recognized in 84,86, etc., which terminates the cycle. If the 
required setup time is met during S4, DTACK will be 
recognized during S5 and S6, and data will be captured during 
86. DTACK signal is internally synchronized to allow for valid 
operation in an asynchronous system. If an asysnchronous 
control signal does not meet the required setup time, it is possi­
ble that it may not be recognized during that cycle. Because of 
this, synchronous systems must not allow DTACK to precede 
data by more than 40 to 240 nanoseconds, depending on the 
speed of the particular processor. I/O is memory-mapped, i.e., 
there are no special I/O control signals, any peripheral is 
treated as a memory location. 
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DMA: This Bus is requested by activating the SR input of the 
68000. Bus Arbitration is started by the BG output going active. 
The Bus is available when AS becomes inactive. The request­
ing device must acknowledge bus mastership by activating the 
BGACK input to the CPU. 

The 23-bit address (A1 ... A23) is on a unidirectional, three-state 
bus, and can address 8 M words (16 M bytes) of memory or 
I/O. It provides the address for bus operation during all cycles, 
except the interrupt cycles. During interrupt cycles, address 
lines A 1, A2 and A3 provide information about the level of 
interrupt being serviced. Instead of Ao and SYTEIWORD, 
there are two separate data strebe lines for the two bytes in a 
word. A note of caution here, the 68000 treats the MSB of the 
lower byte as an even byte, or word address. The same goes 
with processors such as the Z8000. Processors such as the 
8086 treats the lower byte as the odd byte. 

Interrupt is requested by activating any combination of the in­
terrupt inputs to the 68000 (IPLO ... 2), indicating the encoded 
priority level of the interrupt requester (inputs at or below the 
current processor priority are ignored). The 68000 automati­
cally saves the status register, switches to supervisor mode, 
fetches a vector number from the interrupting device, and dis­
plays the interrupt level on the address bus. For interfacing 
with old 68000 peripherals, the 68000 issues an Enable signal 
at one-tenth of the processor clock frequency. There are a 
number of AMD proprietary third generation peripherals that 
can be interfaced to the 68000 CPU, to improve system perfor­

mance. This section deals mainly with the interfacing of the 
68000 and some of the AMD proprietary peripherals. 



... 

The 68000 and ArnZ8530 Interface with Interrupts 

This example shows how a Programmable Array Logic (PAL) 
device simplifies the task of interrupt generation compared to 
the MSI implementation. The block diagram for the interface 
via a PAL device is shown in Figure 3-71. The timing diagram 
(Figure 3-72) illustrates the Interrupt Acknowledge cycle. As in 
the other designs, RD is generated during Interrupt Acknowl­
edge to place the vector on the bus. 

The timing during register programming is not shown. The PAL 
device allows selection of one or two Wait States by making Wo 
HIGH or LOW, respectively. The table below shows the appro­
priate number of Wait States as a function of CPU speed. 

Part CPU Speed Walt States 

85XX 4 MHz 1 
85XX 6 MHz 2 
85XXA 8 MHz 2 
85XXA 10 MHz 2 

PAL device equations are shown in Figure 3-73. 
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Figure 3-71. 68000 to AmZ8530 Connection Using a PAL 
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PAL16R4 PAL DESIGN SPEC 
PAT 002 JOE BRCICH 9 SEPT 83 
68000 TO 8500 OR 9500 PERIPHERALS 
ADVANCED MICRO DEVICES 

CLOCK ICS RW I LOS 
IOE IINTA lACK IC 

A :- A*/B + B *c + lAS 

B :- A*/C + /A*C + 
lAS 

C :- IA*/B.*AS + B*C*AS 

OLDS :- LOS 

IWO lAS 
IB IA 

FCO FCl 
IDLOS IRD 

FC2 GND 
IWR VCC 

RD - LOS*DLOS*RW*/INTA + A*C*INTA*AS + A*/B*INTA*AS 

WR - LOS * IRW 

INTA - FCO*FC1*FC2*AS 

ACK - IINTA*/A*/B*/C*/WO + IINTA*/A*/B*C*WO + 
INTA*/B*A + ACK * LOS 

DESCRIPTION 
THIS PAL DEVICE INTERFACES 85XX·TYPE PERIPHERALS TO THE 

68000 MICRO PROCESSOR. IT INSERTS 1 OR 2 WAIT STATES AS 
SELECTED BY IWO-O IS ONE AND IWO-l IS TWO WAIT STATES. FOUR 
WAIT STATES ARE INSERTED DURING INTERRU~ ACKNOWLEDGE CYCLES. 
ALSO THE RD OUTPUT GENERATED DURING INTA IS A FUNCTION OF THE 
INTERNAL STATE MACHINE AND NOT A FUNCTION OF LOS. OE CAN BE 
LEFT OPEN SINCE THE FLIP FLOP OUTPUTS ARE NOT USED DIRECTLY. 
THE FALLING EDGE OF RO IS DELAYED IN ORDER TO GUARENTEE 
THE CS TO RD SETUP TIME REQUIREMENTS. 

Figure 3-73. Source listing for the Example of Figure 3-71 

68000 and AMD Proprietary Peripherals Interface 

AMD manufactures a large number of peripherals which can be 
interfaced with a number of microprocessor devices. The user 
is advised to verify that the appropriate microprocessor inter­
face specification is met. Two of the important parameters are 
setup and hold times to ensure that peripherals will work with 
both fast and slow CPUs. In some cases the in~ertion of a wait 
state is all that is required. In the following sections, the inter­
face between a number of the AMD proprietary peripheral 
products with the 68000 are discussed. 

3-84 

The Am29809 Comparator and the Am29806 Com­
parator/Decoder provide high-speed address selection as well 
as an open collector acknowledge driver. This allows 
memories and peripherals to be conveniently wire ORed to the 
processor's DT ACK pin. 

68000 and Am7990 LANCE Interface 

The design of the LANCE has made it easier for the user to 
interface the device with demultiplexed buses. The exaxmple 
shown here is an interface to be compatible with an 8 MHz or 
faster 68000 (Figure 3-74). The two flip-flops are needed to 
adapt the LANCE bus request handshake to the 68000. 
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Autovectoring is used since the Am7990 does not return a 
vector during interrupt acknowledge cycles. The BYTE and 
OAS signals of LANCE are used to generate the U OS and LOS 
when LANCE is in Bus Master mode; the UOS and LOS is used 
to generate the OAS when LANCE is in Bus Slave mode. It 

takes two latches to demultiplex the LANCE address/data lines 
to adapt to the 68000 address bus. The flip-flops can be 
replaced by an AMPAL22V10 to minimize parts count. Equa­
tions for the AmPAL16L8 are shown in Figure 3-75. 

PAL16L8 JOE BRCICH 
PAT002 2 FEB ,84 
68000 TO LANCE INTERFACE 
ADVANCED MICRO DEVICES 

lAS 
ICS 

IF 

IF 

RW 
ITB 

BYTE 
IUDS 

I HOLD 
IDAS 

NC IBG AO NC 
ICLRl BR ICLR2 

(/BGACK) RB - CS*RW*UDS + CS*RW*LDS 

(/BGACK) TB -CS*/RW 

IBGACK GND 
ILDS IRS VCC 

IF (BGACK) ,UDS - DAS*/AO*BYTE + IBYTE*DAS 

IF (BGACK) LOS -DAS*AO*BlTE + IBYTE*DAS 

IF (/BGACK) DAS - UDS*LDS 

CLRl -IAS*BG 

CLR2 - BGACK 

IBR - IHOLD 

DESCRIPTION 

; DELAY 

THE GOAL OF THIS INTERFACE WAS TO BE COMPATIBLE 
WITH 8 MHZ AND FASTER 68000'S WHILE MINIMIZING PARTS COUNT. 
THE AM22V10 COULD BE USED TO ELIMINATE THE TWO FLIP-FLOPS 
SHOWN. AUTOVECTORING IS USED SINCE THE 7990 DOES NOT RETURN 
A VECTOR DURING INTERRUPT ACKNOWLEDGE CYCLES. 
NOTE PROGRAM BSWP, BCON TO 1 ,AND ACON TO 0 IN CSR3 REG. 

Figure 3·75. Source Listing for the Example of Figure 3·74 
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68000 to AmZ8068 Data Ciphering 
Processor Interface 

Figures 3-76 and 3-77 show the 68000-DCP interface and 
the interface timing. This interface provides a two-chip solution 
to add high-speed data ciphe~ing to a 68000-based system. 
About 500 kbyte/sec are possible in a CPU-controlled transfer. 
The ciphering rate can be increased with a sophisticated DMA 
controller, or with several DCPs operating in parallel. The CPU 
operates at 8 MHz and the DCP operates synchronously at 
4 MHz. The Interface Controller, a PAL device, generates the 
Address and Data Strobes for the DCP and the Data Acknowl­
edge for the CPU. It also divides the CPU clock by two and 
synchronizes it to the Data Strobes. 

The main features of this interface are: 

- Multiplexed Control Mode 

- Demultiplexed address and data bus 

- Two-Cycle Operation 
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- Clock Synchronization with two Low Cycles after the Data 
Strobes 

- About 500 kbyte/sec ciphering speed 

Data transfers between the CPU and the DCP are accom­
plished by a two-cycle operation. First the address of an inter­
nal register is latched in, then the data is transferred. This 
causes a small overhead in the initialization phase, but im­
proves the ciphering rate in a high-speed data ciphering ses­
sion. The rate of 500 kbyte/sec can be reached only if a 
high-speed peripheral device is connected to the Slave Port 
and the DCP is programmed for dual port configuration. 

The PAL device is programmed to allow only DCP transfers to 
the DCP. The PAL device equations are shown in Figure 3-80. 
Ao must be odd to make the CPU transfer the data on the Low 
byte of the data bus. A "0" on A, indicates an Address Latch 
Cycle, whereas a "1" on A, indicates a Data Transfer Cycle. Ao 
must be "1" in both cycles. 
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Figure 3-76. AmZ8068 to 68000 Interface 
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02188A-74 
Figure 3-77. 68000-AmZ8068 Address Latch Cycle (Al = Low) 

An address decoder generates the Chip Select for the DCP. 
The Address Strobe indicates a valid address. The PAL device 
is only activated if the Lower Data Strobe becomes active while 
the Upper Data Strobe stays inactive. This means that data is 
transferred in MOVE.B instructions with an odd peripheral 
address. 

The PAL device provides two Data Acknowledge outputs. 
DTACK 1 is an active Low TTL output. DTACK 2 has the same 
timing as DT ACK 1 , but is an Open Collector output. (The 
Open Collector output is realized by a three-state output which 
has only two states, Low or Floating.) 

Address Latch Cycle 

In this cycle only a Master Port Address Strobe (MAS) is 
generated. Master Port Chip Select (MCS) is tied to Low. LOS 
is sent to the MAS output. The minimum pulse width of LOS is 
115 ns; 80 ns are required for the AmZ8068. 

DT ACK is activated with the falling edge of the CPU clock after 
cycle S2. The CPU inserts no Wait states. DT ACK is deac­
tivated with the first edge of CLK after AS becomes inactive. 

Data Read Cycle: (Figure 3-78) 

The generation of MDS in a Data Read Cycle is similar to the 
Data Write Cycle. Because the CPU activates LOS one cycle 
earlier, there is no need for a Wait State. The minimum pulse 
width of LOS is 240 ns; the DCP requires 200 ns for a Status 
Register read. DT ACK is activated using the same logical con­
dition as in the Data Write cycle. Because of the earlier activa­
tion of LOS, DTACK becomes active earlier and the CPU 
inserts no Wait states. 

Data Write Cycle: (Figure 3-79) 

A Data Write Cycle is performed with Ao is HIGH, AS, CS and 
LOS are LOW. The minimum pulse width of LOS is not suffi­
cient for the DCP which requires at least 125 ns. One Wait 
state or a slower system clock will satisfy this parameter. In this 
interface, one Wait state is inserted by activating DTACK at the 
end of S4. 

The DCP clock is synchronized in Data Read or Write Cycles 
by forcing it Low when DTACK becomes active. This guaran­
tees that the DCP clock has a falling edge just before LOS 
(MDS) rises. The delay of the DCP clock to CLK is typically 8 
ns for a normal speed PAL device. The delay of LOS to MDS is 
typically 12 ns. The delay of LOS to the system clock is 0-70 ns 
for the 8 MHz version. This results in a delay of 4-74 ns of MDS 
to the DCP clock. The DCP requires 0-50 ns when operating at 
the maximum clock rate. 

This problem is solved by stretching the clock for one cycle. 
The DCP clock stays LOW for two cycle in the end of a transfer 
cycle. This is done automatically by the PAL device (see 
Til11ing Diagram). 

A Sample. Data Ciphering Session 

The interface was built on a Motorola 68000 evaluation board. 
The instructions are shown below. These instructions were 
executed with the "MACSBUG 1.32" evaluatron board monitor. 

Address Register: 
Ao ................. Address Latch Address (A1 =O,Ao= 1) 
A1 ............ ! ..... Data Transfer Address (A1=1,Ao=1) 
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Figure 3-7S. 6S00o-AmZS06S Data Read Cycle (A1 = HIGH) 
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Figure 3-79. 68000-AmZS068 Data Write Cycle (A1 = HIGH) 
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PAL16R4 PAL DESIGN SPECIFICATION 
DCP044 JUERGEN STELBRINK 8-24-83 
68000 - AmZ8068 (DCP) INTERFACE DEVICE 
ADVANCED MICRO DEVICES 

CLK2 
IOE 

ICS lAS IUDS ILDS RW 
lMAS IMDS DCPCLK NC NC 

Al CLK NC GND 
IDTACKl CLKl IDTACK2 VCC 

ICLK~ CLK INVERT CLOCK TO TRIGGER THE REGISTERED 
OUTPUTS WITH THE FALLING EDGE OF CLK 

MAS AS*LDS*/UDS*/RW*/A1*CS 

MDS AS*LDS*/UDS*Al*CS 

IDCPCLK := DCPCLK + 
IDTACK1*CS*AS*LDS*/UDS + 
DTACK1*/AS*/LDS*/UDS 

DTACK1 := AS*LDS*/UDS*A1*CS + 
AS*/RW*/A.1*CS 

IF (DTACK1*AS*CS) DTACK2 DTACK1. 

FUNCTION TABLE 

CLK2 CLK CLK1 ICS lAS ILDS IUDS RW A1 
DCPCLK lMAS IMDS IDTACK1 IDTACK2 

D 
C 

C C I I P I 
L C L I I L U C M 
K L K C A D D R A. L A 
2 K 1 S S S S W 1 K S 

CLOCK INVERT 
X L H X X X X X X X X 
X H L X X X X ,X X X X 
DATA WRITE CYCLE 
C X X L H H H H H X H 
C X X L L H H L H X H 
C X X L L L H L H L H 
C X X L L L H L H H H 
C X X L L L H L H L H 
X X X L H H H L H L H 
C X X H H H H L X L H 
C X X H L X H X X H H 
DATA READ CYCLE 
C X X H H H H H H X H 
C X X L L L H H H L H 

I 
M 
D 
S 

X 
X 

H 
H 
L 
L 
L 
H 
H 
H 

H 
L 

DIVIDE BY TWO 

'IWO CLOCKS LOW IN 
THE END OF A DATA CYCLE 

DATA TRANSFER CYCLE 
ADDRESS LATCH CYCLE. 

I I 
D D 
T T 
A A 
C C 
K K 
1 2 COMMENT 

X X 
X X 

H Z SO 
H Z S2 
L L S4 
L L SW (1 WAIT STATE) 
L L S6 
L Z S7 
H Z SO 
H Z S2 

H Z SO, , 
L L S2 

Figure 3-80. Source Listing for the Example of Figure 3-76 
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C x X L L L H H H H H L L L S4 
C X X L L L H H H L H L L L S6 
X X X L H H H H H L H H L Z S7 
C X X L H H H H H L H H H Z SO 
C x x X H H H H H H H H H Z S2 
ADDRESS LATCH CYCLE 
C X X L L H H L L X H H L L S2 
C X X L L L H L L X L H L L S4 
C X X L L L H L L X L H L L S6 
X X X L H H H L L X H H L Z S7 
C X X X H H H L L X H H H Z SO 

-------------------------------------------------------------------
DESCRIPTION: 

INPUT SIGNALS: 

CLK2 CLOCK FOR THE REGISTERED OUTPUTS OF THE PAL. IT IS 
CONNECTED TO CLKI 

CLK 8 MHZ 68000 SYSTEM CLOCK 

ICS CHIP SELECT FOR DCP (A2-A23 ARE RELEVANT) 

lAS ADDRESS STROBE 

ILDS LOWER DATA STROBE USED TO TIME THE MASTER PORT DATA STROBE 

IUDS UPPER DATA STROBE HAS TO BE INACTIVE DURING ALL TRANSFERS 

Al ADDRESS BIT I DISTINGUISHES BETWEEN ADDRESS LATCH AND 
DATA TRANSFER CYCLES 

AI=LOW ADDRESS LATCH 
AI=HIGH DATA TRANSFER 

RW READI WRITE CONTROL 

OUTPUT SIGNALS: 

IMAS MASTER PORT ADDRESS STROBE 

IMDS MASTER PORT DATA STROBE 

CLKI INVERTED CLOCK CLK 

IDTACKI LOW ACTIVE DATA ACKNOWLEDGE FOR 68000 
ONE WAIT STATE IS INSERTED IN A DATA WRITE CYCLE 

IDTACK2 LOW ACTIVE DATA ACKNOWLEDGE FOR 68000 (OPEN COLLECTOR) 

DCPCLK 4 MHZ DCP CLOCK, IT IS SYNCHRONIZED TO THE MASTER PORT 
DATA STROBE. IN A DATA TRANSFER CYCLE DCPCLK STAYS TWO 
CLK CYCLES LOW TO DELAY THE FIRST RISING EDGE OF THE 

Figure 3-80. Source listing for the Example of Figure 3-76 (Continued) 
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68000 and a Single Am9516 DMA 
Controller Interface 

The Am9516 Universal DMA Controler (UDC) is a high-perfor­
mance peripheral interface circuit for 8086 and 68000 CPUs. 
The UDC was designed to interface with non-multiplexed ad­
dress and data bus systems. However, because it is basically a 
modified 8016, several incompatabilities remain. ALE is more 
like the 8086 than the 68000. Although the timing of ALE 
closely matches the AS of the 68000, it does not tristate when 
the 9516 is not the bus master. The major obstacle in this 
design was generating the proper Data Hold time for a slave 
write; the 8-MHz and 10-MHz CPU provides 30 ns and 20 ns, 
respectively, while the 9516 requires 40 ns. The newer, 8 and 
1 O-MHz versions only require 10-ns Hold time, thus simplifying 
the design. 

The interface design shown here (Figure 3-81) uses an Am­
PAL16R4 to insert a Wait State and truncate DS to the 9516 
early. PAL device equations are shown in Figure 3-82. In this 
case the shortened DS strobes data into the 9516 while the 
CPU holds data valid for almost 1 clock cycle afterwards. This 
Wait State is inserted only during slave write. This Wait State is 

actually a small penalty to pay, because most of the registers 
are being loaded by the UDC itself by means of a linked-list 
control structure. This results in very few writes being done 
directly to the UDC. 

Another interface problem to be addressed is the bus ex­
change protocol. The BREQ and BACK handshake of the UDC 
is converted to the three-wire handshake of the 68000 by the 
PAL device and a 7403 package (open-collector NAND Gate). 
This is done by a state machine internal to the PAL device. The 
state assignment was done to minimize external logic. This is 
very different from the discrete design In the Am9516 data 
sheet because the PAL doesn't have preset and clear on its 
flip-flops. 

The UDC can support the bus error function by means of its 
EOP pin. If a bus error occurs during a DMA transfer, an EOP 
will cause the OMA operation to stop and interrupt the CPU. 
The CPU can read status, address, word count, or anything 
else it may need to take corrective action. The UDC may then 
be restarted or reprogrammed appropriately. 

The control signals LOS and UDS are generated by the PAL 
device when the UOC is the bus master. This is a straightfor­
ward combination of DS, AO, and Bm. 
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Figure 3·81. The Am9516 UOC to 68000 CPU Interface 

Note that the address latch and data transceiver, along with the 
address decode logic, are present in any case. The 68450 and 
68440 also multiplex address and data, thus the PAL device is 

the only extra component required to make the 9516 a low-cost 
alternative. Additionally, the 6-MHz 9516 has the same data 
throughput as the 8-MHz 68450. 
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PAL16R4 PAL DESIGN SPECIFICATION 
PAT006 JOE BRCICH 9/01/83 
68000 TO Am95l6 INTERFACE WITH DATA HOLD CORRECTION 
ADVANCED MICRO DEVICES 

CLK RW AO BREQ IBG IDSI lAS IBW /CS GND 
10E /LDS IUDS DSO Ic BACK IBR ITB IRS VCC 

IF(/BACK) RS Ics * RW * UDS + 
Ics * RW * LOS 

IF(/BACK) TB Ics * IRW 

IF(BACK) UDS DSI * lAO * IBW + 
BW * DSI 

IF(BACK) LDS DSI * AO * IBW + 
BW * DSI 

BR := BREQ * BG * BR * AS + 
BREQ * IBG * IBACK 

IBACK := IBREQ + 
IBREQ * IBG + 

IBREQ * AS + 
IBREQ * IBACK + 
IBG * IBACK + 
AS * IBACK 

C := UDS * IBACK + 
LOS * IBACK 

IDSO := BACK + 
IBACK * IRW * C 

DESCRIPTION 
IF BREQ*BACK IS TRUE THE Am95l6 HAS THE, BUS, OTHERWISE THE 68000 
HAS THE BUS. THIS PAL CONNECTS THE Am95l6 TO THE 68000 WITH ONE 
WAIT STATE DURING WRITES WHILE SHORTENING IDS TO ACHIEVE PROPER 
DATA HOLD TIME. IT ALSO CONVERTS THE BUS EXCHANGE PROTOCOL INTO 
68000 FORMAT. THIS DESIGN ASSUMES NO OTHER BUS MASTERS IN THE 
SYSTEM. IRS AND ITB CONTROL THE TRANSCEIVERS WHEN CPU IS BUS 
MASTER. Ics MUST BE A FUNCTION OF ALL DEVICES CONNECTED TO THE 
CPU BUS NOT JUST THE Am95l6 Ics AS SHOWN HERE. 

Th~ Ics to ~ set-~ ~ of ~~ ns is me~ in th~ following way~: -rr Durlng a rea cycle the only eftect-rrom not meetlng tnls 
set-up time is that the data valid access time from the Am95l6 
will be delayed by a proportional amount. Since the minimum IDS 
Low width from the 10-MHz 68000 (during a read) is 193 n~ and tne 
minimum IDS Low width to the Am95l6 is 150 ns, we have 43 ns 
margin not counting gate delays which will further increase this 
margin. 

2) During a write cycle this is not an issue since the IDS 
comes later and is stretched longer due to the Wait state. 

Figure 3-82. Source listing for the Example of Figure 3-81 
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68000 and Dual Am9516 DMA 
Controllers Interface 

There has been interest shown in connecting two Am9516 
DMA Controllers to obtain four channels. The example here 
shows that such a system can be built by incorporating one 
PAL device. AMO's new 22V10 (Figure 3-83). Address and 
data buses are not shown as they are straightforward and 
require no explanation. The PAL device, designated 68K1602, 
converts the two OREQs into the 68000 three-wire handshake, 
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prioritizes the request, and converts the control signals appro­
priately. Equations for the PAL device are shown in Figure 
3-84. 

The key parameters are: 1) data hold with respect to the rising 
edge of OS during a write, and 2) OT ACK setup time. Control 
for a data bus transceiver is shown because it will be required 
in most systems. The PAL device provides these signals when 
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Figure 3-83. Dual Am9516 UDCs to 68000 CPU Interface 
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PAL 22V10 
PAT 001 
68000 TO DUAL 9516 INTERFACE 
ADVANCED MICRO DEVICE~ 

CLK RW AO 
/CS /LOS 

BREQl BREQ2 
IUDS /DS /C 

/BG 
/AS 

JOE BRCICH 
5 APRIL 83 

NC 
/BR 

ALE 1 /BW ALE 2 /BGACK 
BACK2 BACKl /TB /RB 

GND 
VCC 

BR - BREQ1*/BGACK + BREQ1*BG + 
BREQ2*/BGACK + BREQ2*BG 

BACKl 

BACK2 

IF (lBGACK) RB 

IF (I BGAS K) TB 

BREQ1*BG*/AS + /BG*BGACK 

BREQ2*/BREQ1*BG*/AS + /BG*BGACK 

CS*RW*UDS + CS*RW*LOS 

CS*/RW 

IF (/BGACK*AS) OS :- AS*/C*/RW + AS*RW 

IF (BGACK) AS 

IF (BGACK) UDS 

IF (BGACK) LOS 

ALEl + ALE2 

DS*/AO*/BW + BW*DS 

DS*AO*/BW + BW*DS 

IF (AS) C :- UDS*BGACK + LOS*BGACK 

DESCRIPTION 
THE GOAL IN THIS DESIGN WAS TO BE COMPATIBLE WITH 

8 MHZ AND FASTER 68000'S. BECAUSE THE EQUATIONS FOR OS AND 
C WOULO EXTEND INTO THE NEXT CYCLE, THE OUTPUTS WERE TRI­
STATED TO TERMINATE THESE SIGNALS EARLIER. THIS REQUIRES THAT 
PULL UP RESISTORS BE PLACED ON THESE OUTPUTS. THE INVERTED 
CLOCK WAS USED TO PROVIDE MORE SETUP TIME FOR OTACK IN THESE 
HIGH SPEED SYSTEMS. AT 8MHZ THE EQUATIONS CAN BE MODIFIED AND 
THE PULL UP RESISTORS ELIMINATED. THIS EXAMPLE IMPLEMENTS 
FIXED PRIORITY WHERE BREQ1 IS HIGHEST. NOTE THAT /AS SHOULD 
NOT BE INCLUDED IN THE ADDRESS DECODER. 

Figure 3-84. Source Listing for the Example of Figure 3-83 

The Am9S16s are shown with independent clocks. The clocks 
may be divided from the CPU clock or may be generated inde­
pendently of the CPU. Because WAIT must meet the set-up 
and hold times, DT ACK may need synchronization by the use 
of a flip-flop, as shown. This flip-flop may be eliminated in 
synchronous systems. . 

The clock is inverted to the PAL device to meet DT ACK set-up 
time in systems of 10 MHz or faster. This inverter may be 
deleted in slower systems, if appropriate changes to the PAL 
device equations are made. This PAL device implements fixed 
priority between the Am9S16s. BREQ1 is the highest priority. 
Rotating priority can be implemented by adding another PAL 
device. 

EOP s are pulled up separately, but could be tied together 
since they affect a channel only if it is active. The bus-error 
function can be supported by connecting BE~R and EOP . 
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If a bus error occurs, EOP will stop the current transfer and 
interrupt the CPU. The Interrupt Service routine can read the 
status to determine if EOP caused the interrupt or if termina­
tion was normal. If EOP caused the interrupt, the Address 
Register can be read to determine where the bus error oc­
curred. After the problem is corrected, the CPU can program 
the Am9516 to complete the transfer or do an alternate trans­
fer, as appropriate. 

When operating the DMA in interleave mode, an external EOP 
should be gated with DACK to prevent affecting the wrong 
channel. This is unnecessary if interleave is not used, since the 
UDC releases the bus. 

This arbiter design supports both serial and parallel-expansion 
techniques and is therefore compatible with VME bus protocol. 
Bus grant out was implemented with an external gate due to a 
shortage of pins. The VME/BCLR function was not imple­
mented because the Am9516 does not support preemption. 



Am8500 to 68000 Interface 

Modern 16-bit mi croprocessors, such as the 8086, Z8000, and 
68000, are being used to form the nucleus of powerful per­
sonal/business computers and engineering workstations. 
However, support peripheral chips are virtually non-existent 
for the most recently introduced 16-bit CPUs such as the 
Motorola 68000. Since the modern microprocessor system 
depends as much on the peripheral controllers as it does on 
the CPU, it is important for a system designer to have a large 
variety of peripheral chips available. The 8500 family of 
peripheral chips from AMD provides users of non-multi­
plexed bus microprocessors, such as the 68000, a variety of 
powerful peripheral chips that can be interfaced easily with a 
single programmable array logic (AMD PAL) device. 

The Am8500 Family 

The Am8500 Family is a group of programmable peripheral 
chips which offload a variety of system functions from the 
main CPU. They support a variety of operating modes which 
are specified by writing to their control registers. The current 
members of the family include the Am8536 Counter/Timer 
and Parallel I/O Unit (CIO), the Am8038 FIFO Input/Output In­
terface Unit (FlO), and the Am8530 Serial Communications 
Controller (SCC). While the object of this article is not to dis-. 
cuss the capabilities of the Am8500 Family, a brief overview is 
necessary to fully understand its interface requirements. 

The Am8536 is a counter/timer chip which has available three 
16-bit counters. These timer/counters have features such as 
duty-cycle control (pulsed, one-shot, or square waved), retrig­
gering options, and external access control lines. The CIO 
also provides up to 20 lines of programmable I/O ports. The 
Am8038 FlO is an asynchronous 128-byte buffer specially 
designed to be used by two CPUs or a CPU and a peripheral 
device as a communication or data buffer. It supports a vari­
ety of handshake interfaces on both I/O ports. Finally, the 
Am8530 SCC is a dual-channel, multi-protocol data communi­
cations peripheral. The SCC functions as a serial-tC'-parallel, 
parallel-to-serial converter/controller. It supports a wide vari­
ety of serial communications protocols and includes exten­
sive on-board hardware such as baud rate generators, digital 
phase-locked-loops, and crystal oscillators to reduce the 
need for external logic. 

The Control and frequently used Data registers are accessed 
in a different manner. These registers are accessed using a 
single cycle or write. This scheme allows the CPU to interact 
efficiently with the 8500 peripherals during normal use. The 
slower, clumsier initialization procedure is used much less 
frequently and protects the user from altering the operation 
mode accidentally. 

All the members of the Am8500 Family are controlled and con­
figured by software. The host CPU initializes the Am8500 
operating modes by writing to the internal mode/options 
registers. The internal mode registers are not directly ad­
dressable by the CPU like the Control and some data regis­
ters. Instead, a two cycle process is needed to write to them. 
First, the address of the mode/options register being 
modified is written to the Control register; next, the data is 
written to the mode/options register via the Control register. 
The Am8500 peripheral has an internal state machine to keep 
track of whether address or data is being written to the Con· 
trol register. Reading the value of the mode/options register 
is accomplished by first, writing an address to the Control 
register, and second, reading the mode/options data from the 
Control register. 

Design Requirements 

There are several problems associated with interfacing a 
general-purpose peripheral device to a CPU. One major prob­
lem involves the various control signals each chip uses. 
Unless the two families are designed to be pin-for-pin com­
patible (e.g., the AMD/lntel 8086/8087/8089), there generally is 
going to be minor variations between them; the same problem 
exists when interfacing the 8500 peripherals to the 68000. Part 
of the pin incompatibility involves genuine signal differences 
while other pins only require name changes. 

The data pins (Do-D7) on the 8500 parts are conneoted di­
rectly to the lower 8 data lines on the 68000 bus. The register 
select pins (Ao, A1, A/B, D/G)* can be directly connected to A1 
and A2 of the 68000 address bus. The RD and WR lines have to 
be generated from the 68000's R/Wand AS/UDS/LDS signals. 
The 8500 clock (PCLK) is generated by dividing down the 
68000 clock. 

* Note: The register select/control pins have different names on each 
of the 8500 peripherals. 
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The Interrupt Request line (INT) can be wlre·ORed together 
and connected to one of the IPLo-IPL2 Inputs on the 68000, 
giving all the peripherals a common Interrupt priority level. 
An alternate method might be to give each of the peripherals 
a separate priority level (which would require priority en­
coding). The Interrupt acknowledge line must be generated 
from the CPU status lines (FCo-FC:v by the PAL. Whenever an 
Interrupt acknowledge cycle Is started, FCO-FC2 equal all 
ones. The Interrupt daisy chain control pins (lEI and lEO on 
each 8500 device) are tied together in a standard priority 
daisy chain arrangement (see Figure 3-85). When implementing 
the daisy chain, arbitration delay down the chain must be ac­
counted for in the PAL signal generation logic. The chip enable 
pins for each of the 8500 devices must come from the system 
memory mapping logic. The system designer must also provide 
an 8500 PAL enable line to select the PAL controller whenever 
anyone of the 8500 devices has been selected. The DTACK 

+ 5V 

L'A" """ ..... 

HIGHEST 
PRIORITY 

PERIPHERAL 

85001 r---. 9500 

(FIRST) 

85001 
9500 

(MIDDLE) 

signal back to the CPU will be generated by the PAL logic using 
an internally implemented state counter to generate the correct 
timing. The output is implemented as a simulated open collector 
output so that other non-Am8500 peripherals in the system can 
use the DTACK line. 

Another problem with interfacing general-purpose peripherals to 
the 68000 is timing. Most peripherals run at speeds con­
siderably slower than the 8, 10, 12, and 16-MHz CPUs being 
produced today. This means using either a slower clock or divid­
ing down the CPU clock. In the case of the 8500 family, this 
generally means dividing the CPU clock in half and using a CPU 
operating at less than or equal to 12 MHz. Aside from just speed 
problems, system integrators frequently have to tackle subtle 
timing differences between signals or from devised signal equiv­
alents, e1L2eriving tbE Am8500 RD, WR, and DTACK from the 
68000's LDS and R/W; or guaranteeing data setup and hold 
times. 

r- .. 85001 
9500 

(MIDDLE) 

~ 

LOWEST 
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PERIPHERAL 

85001 
9500 
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\ tsetUe 'I INTACK r-
AD \ r-
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Figure 3-85. 

TABLE 3-13. INTERRUPT DAISY CHAIN/PROPAGATION DELAY 

Chain Position (ns) 

Peripheral First Middle Last 

8536 CIO 350 150 100 

8038 FlO 350 150 100 

8530 SCC 250 120 120 

Note: First position timing Is INTACK to lEO. 
Middle position timing Is lEI to lEO. 
Last position timing Is lEI to data strobe set· up. 

03862A·122 
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The 68000 has two ways of interfacing to peripherals such as 
the 8500 family. The first uses the special VPA (Valid Peripher­
al Address) input pin on the 68000. The VPA pin can be acti­
vated by the Am8500 device select logic at the start of a cycle 
to tell the 68000 that a peripheral is being accessed. This in­
terface was designed to allow the slow, synchronous bus 
6800 peripherals to talk to the 68000's asynchronous bus un­
til the new 68000 peripherals could be produced. Also, the 
VPA interface has a slow access rate (a minimum peripheral 
access time of over 1000 ns not including recovery time) 
which would slow down the CPU considerably. And, since all 
the 68000 peripherals are being designed to use the asyn­
chronous method, this interface will not be discussed. 

When writing data, the 68000 puts address and data onto 
their respective buses and uses the DTACK line as a "got 
data successfully" handshake from the selected device. 
When the DTACK line is recognized, the 68000 removes ad­
dress and data one CPU clock later. This method allows the 
user to take advantage of the asynchronous bus of the 68000. 
The major difference between the 8500 family and the 68000 
DTACK timing is the way data is strobed in and out of the 8500 
chips. The 8500 devices sample the data on the falling edge 
of WR. The 68000 asserts an address (when reading) onto the 
bus and then uses the DTACK signal from the selected 
peripheral (memory Included) to indicate valid data and then 
samples on the next falling edge of the CPU clock. The other­
method of interfacing the Am8500 family to the 68000 uses 
the Data Transfer Acknowledge (DTACK) cycle. 

PCLK 
(~4MHz) 

Design Approach 

Two different methods of interfacing 8500 devices to the 68000 
. bus will be presented. One method allows the user to obtain 

fast access to all the 8500 devices. However, some minimum 
software requirements are imposed. The other interface slows 
down the access rate by the CPU but guarantees all 8500 
minimum timing specifications and imposes no software 
overhead. 

There are several timing requirements imposed by the 8500 
family. The first involves read/write access to the parts. The 
8500 (4 MHz) peripherals have a read/write/interrupt acknowl­
edge timing as shown in Figure 3-86. The minimum read/write 
access time is 400 ns. This means the PAL interface must 
guarantee a valid access cycle of greater than 400 ns (by forcing 
the 68000 to execute several wait states). 

The basic read or write cycle gene.@ted ~e PAL interface 
looks like Figure 3-88. The 68000 R/W and LOS lines have been 
converted into 8500 RD and WR control signals and with a state 
timing generator, produce the 68000 data valid signal DT ACK. 
While the 8500 peripherals latch the data internally on the falling 
ed~f WR, all 9500 (Intel-type) peripherals use the rising edge 
of WR to strobe in data. So, the timing used is designed to 
guarantee proper setup and hold time for both Am8500 and 
Am9500 devices. 

READ 
CYCLE 

OFPE~~~~~~r------~------~~ ______ ~J>------+------------

DATA IN 
TO PERIPHERAL 

i-"----------------'-\ ___________________ } ~:~I~ 
1----- t5ellle-----+1 

DAT~----------------------------~~_V_A_L_ID_D_A_I_A_J 

Figure 3-86. Am8500 Interface Timing (4 MHz) 
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The DTACK control logic is the only control line which 
employs any sort of special timing in both of the PAL inter­
faces. In order to guarantee proper setup and hold time for 
write operations to the 9500 parts, it was necessary to start 
the DTACK cycle in the middle of a PCLK cycle. Hence, it was 
necessary to use the CPU clock to condition the'assertion of 
DTACK. Using the Co(PCLK) and the C1-C3 inputs only, would 
have allowed a potential setup time violation during a write oper­
ation under worst case conditions for an 8 MHz 68000. 

The Interrupt acknowledge cycle is very similar to the 
readlwrite cycle; only two differences exist. First, the inter­
rupt acknowledge cycle Involves only a read operation (see 

interrupt acknowledge timing in Figure 3-88). Secondly, the 
read cycle needs to be stretched out to allow time for the inter­
rupt daisy chain to resolve priority. If a parallel priority resolution 
scheme is used, then only the priority decode time delay and 
peripheral response time is added on to the interrupt cycle. The 
interrupt time delay varies, based on the number of 8500 
devices in the daisy chain. The time delay is based on the 
8500's position in the chain: first, somewhere in the middle, and 
the last device in the daisy chain (see Table 3-13). Both of the 
current PAL interfaces assume there are three 8500 peripherals 
in the interrupt daisy chain. 

Figure 3-87. 03862A·124 

cpu 
CLOCK 

CO 

\ 
\ ~--~----------------l ~~~~WRITE I 

I 
LJ 

\~ __ AR_BIT_RM_ION_DEL_~*_---__ ~I ______ ~I 1 
-------------------~ ~--------- ~6;~~~~DGE 

AD \ / CYCLE 
'-----~---' 

LJ 
"Delay time assumes three Am8500 devices In the daisy chain. 

Note: R5 and WR may not be asserted LOW simultaneously. 

Figure 3-88. PAL-Generated Interface Signals 
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The PAL interfaces offered are designed to give the system 
designer maximum flexibility in integrating Am8500 periph­
erals with 68000-based systems. The first version is designed 
to allow maximum access to the 8500 devices (see Figure 
3-89.a). It does this by delegating the read/write recovery time 
into software. All 8500 peripherals have a minimum post access 
recovery time; i.e., they can't be accessed for a minimum period 
of time after being read or written (see Table 3-14). Generally, 
this restriction manifests itself only if the CPU has to make 
repeated accesses to the same peripheral part rapidly. While the 
instruction fetch time of the CPU allows for some recovery time, 
it doesn't guarantee enough time (since the average recovery 
time is approximately 1000 ns and a 68000 instruction fetch 
requires a minimum of 500 ns (it 8 MHz). Hence, the first design 
requires the user to implement minimum software recovery time. 

The software recovery routines in this case generally take the 
form of executing 1-2 instructions (depending on execution 
and fetch time) in between accessing the same 8500 device. 
For most systems, these instruction executions can be used 
to process the data just received. Another method of insuring 
the minimum peripheral recovery time is to juggle the access­
ing of the 8500 devices in the system so the recovery time re­
quirement is not violated. 

The second design (see slow PAL timing in Figure 3-89.b) 
relieves the user of all software considerations when using the 
Am8500 parts. The recovery time is built into the PAL design. 
This is done by delaying access on the read/write and then 
taking advantage of the 68000 next instruction fetch to guaran­
tee that the minimum recovery time is given. Also, a minor 
change was required in the interrupt acknowledge timing; i.e., 
stretching out the INTACK timing slightly to avoid a potential 
glitch on the AD line after an interrupt acknowledge cycle. 

The advantage of software-independent hardware is offset 
by longer read/write cycles to the peripherals, even for single 
accesses. Also, the user is denied access to another 8500 
peripheral until the minimum recovery time has been met for 
the previous one. However, having software-independent 
hardware is sometimes an important feature in a system; and 
slowing down the peripheral access rate slightly is a small 
price to pay for it. Note, the interrupt acknowledge cycles for 
both designs are virtually the same. This occurred because 
the normal interrupt processing by the 68000 guarantees that 
another access to the 8500 parts cannot occur in time to 
violate their access recovery times. Hence no software delay 
is needed for the fast access interface. 

The interrupt acknowledge delay (for the daisy-chained prior­
ity resolution scheme) in this example has been chosen by 
using an assumption of three 8500 peripherals in the chain. 
Larger or smaller numbers of parts in the daisy chain would 
increase or decrease this result with minor changes to the 
PAL logic equations. The design is flexible enough to support 
the addition of at least 3 more peripherals in the daisy chain. 

The PAL equations and logic diagram for both designs are shown 
in Figures 3-91, 3-92, 3-93, 3-94, 3-95, and Tables 3-15 and 3-16. 
The equations were derived directly from their respective timing 
diagrams (Figures 3-89.a and 3-89.b). Some obvious logic 
simplification was done on the initial equations to reduce the 
number of terms. The integration of the Am8500 peripherals and 
the PAL timing generator are shown in a sample configuration in 
Figure 3-90. 

Finally, the design presented was optimized for an 8-MHz 68000 
system and 4-MHz 8500 parts. The timing/state counter (CO-C4) 

only counts as far as it is needed. Higher performance CPUs, up 
to 12 MHz, can be used with this interface, but 6-MHz 8500 
parts will have to be used. 

TABLE 3-14. PERIPHERAL ACCESS RECOVERY TIME 

Peripheral Recovery Time 
(4MHz) 

8530 SCC Greater than 6 PCLK cycles + 200 ns 

8536 CIO Greater than 3 PCLK cycles or 1000 ns 

8038 FlO Greater than 1000 ns 

03862A-126 

3-101 



68000 CPU CLOCK 

CO (PCLK) 

C1 

C2 

C3 

AD 

WR 

DTACK 

~ 
0 LOS 
I\) 

READ DATA 

WRITE DATA 

INTACK 

AD 

DTACK 

LOS 

READ DATA 

1 r 1--

___________ ....... 1 

\ I 

\ I 

LJ 
\ \ I 

--------(c __ u )>-__ .,....-___ _ 

---~( )>---------

\ ! 

\ I 

LJ 
\ \ ! 

~------------« ))---

Figure 3-89.a "Fast" PAL Am8500 to MC68000 
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Figure 3-89.b "Slow" PAL Am8500 to MC68000 
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Figure 3-90. PAL Am8500 to MC68000 Hookup 
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PAL16R4 PAL DESIGN SPECIFICATION 
PATOSO MARK YOUNG 1/21/83 
FAST AM8S00 TO MOTOROLA 68000 PAL 
ADVANCED MICRO DEVICES 
CLK DCLK /CS /RESET /LDS RW FCO FCI FC2 GND 
JOE /RD /WR /C3 /C2 /Cl /CO /INTACK /DTACK VCC 

; STATE MACHINE COUNTER CO - C3 
CO.- /CO 

Cl .- C()i</Cl*CS~<LDS~</RESET 
+ /C~<Cl*CS-l'<LDSi}/RESET 

C2.- CO*Cl*/C2*CS*/RESET 
+ /Cl*C2*CS*/RESET 
+ /CO*Cl *C2~<CS* /RESET 

C3 .- CO*Cl*C2*/C3*CS*/RESET 
+ /Cl*/C2*C3*CS*/RESET 
+ /C~<Cl * /C2*C3-:<CS~< /RESET 

RD Cl * /C2~} /C3*RW* /INTACKi<CS~< /RESET 
+ /Cl*C2*/C3*RW*/INTACK*CS*/RESET 
+ CO*Cl *C2* /C3~<INTACK~<CS* /RESET 
+ RDi<INTACK*CS~< /RESET 

WR Cl * /C2* /C3* /RW*CSi< /INTACK* /RESET 
+ /Cl *C2* /C3* /RW*CS*/INTACKI< /RESET 

: DATA ACKNOWLEDGE 

; 8S00 CLK 

NORMAL READ 
NORMAL READ 
INTERRUPT ACKNOWLEDGE 
INTERRUPT ACKNOWLEDGE 

WRITE OPERATION 
WRITE OPERATION 

IF (CS) DTACK = /DCLKi</CO*/Cli<C2i</C3*/INTACK*/RESET 
+ DTACK*RD~< /RESET 
+ DTACK*WR*/RESET 
+ /DCLK~<COi< /Cl * /C2*C3*INTACK* /RESET 

; INTERRUPT ACKNOWLEDGE 
INTACK = FCQ-l'<FCl*FC2*Cl*/C3*LDS*/RESET 

+ C2*FCO*FCl*FC2*/RESET 
+ /Cl*C3*FCO*FCl*FC2*/RESET 
+ /CO*Cl*C3~<FCo*FCl*FC2*/RESET 

Figure 3-91. Source Listing for the Example of Figure 3-89.a 
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TABLE 3-15. 

FUNCTION TABLE: 
; 
; NOTE: FOR THE SIMULATION, ALL THE SIGNALS USED ARE AT THE 
; PIN LEVEL (I.E. WHAT THE CHIP SEES AND PUTS OUT). THE 
; ONE EXCEPTION ARE THE CO - C3 PINS. THESE ARE DEFINED 
; AT THE REGISTER OUTPUT LEVEL (NON-INVERTED) BECAUSE 
; THEY WERE DIRECTLY DERIVED FROM THE TIMING DIAGRAMS 
; AND THIS MAKES IT EASIER TO RELATE TO· THE TIMING 
; DIAGRAM. 
; 

CLK DCLK Ics IRESET ILDS RW FCO FCI FC2 
IOE IRD IWR CO Cl C2 C3 IINTACK IDTACK 

; I 
; I I I 
; R N D 
; D E I T T 
; C C I S L F F F I I I A A 
; L L C E D R C C C 0 R W C C C C C C 
; K K S T S W 0 1 2 E D R 0 1 2 3 K K 
------------------------------------------------------------------------
, 
; RESET SEQUENCE 
C H H L X X X X X L H H H L L L H Z 
L L H L X X X X X L H H H L L L H Z 
C H H H X X X X X L H H L L L L H Z 
L L H H X X X X X L H H L L L L H Z 
C H H H X X X X X L H H H L L L H Z 
L L H H X X X X X L H H H L L L H Z 

; 
;WRITE OPERATION (RW=L) 
C H H H X X X X X L H H L L L L H Z 
L L H H X X X X X L H H L L L L H Z 
C H H H X X X X X L H H H L L L H Z 
L L H H X X X X X L H H H L L L H Z 
C H H H X X X X X L H H L L L L H Z 
L L L H L L X X X L H H L L· L L H H 
C H L H L L X X X L H H H L L L H H 
L L L H L L X X X L H H H L L L H H 
C II L H L L X X X L H L L H L L H H 
L L L H L L X X X L H L L H L L H H 
C H L H L L X X X L H L H H L L H H 
L L L H L L X X X L H L H H L L H H 
C II L H L L X X X L H L L L H L H H 
L L L H L L X X X L H L L L H T. H L 
C H T. H L L X X X L H L H L H L H L 
L L L H L L X X X L H L H L H T. H L 
C H T. H L H X X X L H H L H H L H H 
L L H H X X X X X L H H L H H T. H Z 
C H H H X X X X X L H H H L L L H Z 
L L H H X X X X X L H H H L L L H Z 

; 
;INTACK CYCLE 
C H H H X X X X X L H H L L L L H Z 
L L H H X X X X X L H H L L L L H Z 
C H H H X X X X X L H H H L L L H Z 
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TABLE 3·15. (Continued) 

L L H H X X X X X L H H H L L L H Z 
C H L H L H H H ' H L H H L H L L L H 
L L L H L H H H H L H H L H L L L H 
C H L H L H H H H L H H H H L L L H 
L L L H L H H H H L H H H H L L L H 
C H L H L H H H H L H H L L H L L H 
L L L H L H H H H L H H L L H L L H 
C H L H L H H H H L H H H L H L L H 
L L L H L H H H H L H H H L H L L H 
C H L H L H H H H L H H L H H L L H 
L L L H L H H H H L H H L H H L L H 
C H L H L H H H H L L H H H H L L H 
L L L H L H H H H L L H H H H L L H 
C H L H L H H H H L L H L L L H L H 
L L L H L H H H H .L L H L L L H L H 
C H L H L H H H H L L H H L L H L H 
L L L H L H H H H L L H H L L H L L 
C H L H L H H H H L L H L H L H L L 
L L L H L H H ·H H L L H L H L H L L 
C H L H L H H H H L H H H H L H H H 
L L H H H X X X X L H H H H L H H Z 
C H H H H X X X X L H H L L L L H Z 
L L H H H X X X X L H H L L L L H Z 
----------------------------------------------------------------------

DESCRIPTION: 
THE FASTZTOM PAL PROVIDES INTERFACING BETWEEN THE SINGLE CHIP 8500 TO 
THE 68000. THE PAL USED IS A MEANS TO PROVIDE FOR THE FASTEST POSSIBLE 
INTERFACE. THE REQUIREMENTS FOR THIS MAXIMUM ACCESS UTILIZES IMPLE-
MENTED SOFTWARE FOR REPEATED ACCESSES. THE USER, HENCE, IS ABLE TO GET 
MAXIMUM ACCESS WITH MINIMAL WAIT STATE INSERTION. THE INTERFACE 
PROVIDES TOTAL SIGNAL COMPATIBILITY. 
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PAL16R4 PAL DESIGN SPECIFICATION 
PAT050 MARK YOUNG 1/21/83 
FAST AM8500 TO MOTOROLA 68000 PAL 
ADVANCED MICRO DEVICES 
*D9724 
*FO* 
LOOOO 1111 1011 1111 1111 1111 1111 1111 1111 * 
L0032 1011 1101 0101 1101 1110 1101 1111 1111 * 
L0064 1110 1111 0111 1111 1111 1111 1111 1110 * 
L0096 1110 1111 0111 1111 1111 1111 1110 1111 * 
L0128 1011 1110 0110 1101 1101 1110 1111 1111 * 
L0256 1111 1111 1111 1111 1111 1111 1111 1111 * 
L0288 1111 1111 0111 1010 1111 0101 0111 0111 * 
L0320 1111 1111 0111 1111 1110 0111 0111 0111 * 
L0352 1111 1111 0111 1101 1111 0110 0111 0111 * 
L0384 1111 1111 0101 1110 1111 0110 0111 0111 * 
L0512 1111 1111 1101 1111 1111 1111 1111 1111 * 
L0768 1111 1011 0110 1001 1111 1111 1111 1111 * 
L0800 1111 1011 0101 1010 1111 1111 1111 1111 * 
L1024 1111 1011 0110 1110 1101 1111 1111 1111 * 
L1056 1111 1011 0111 1101 1110 1111 1111 1111 * 
L1088 1111 1011 0101 1110 1110 1111 1111 1111 * 
L1280 1111 1011 0110 1110 1110 1101 1111 1111 * 
L1312 1111 1011 0111 1101 1101 1110 1111 1111 * 
L1344 1111 1011 0101 1110 1101 1110 1111 1111 * 
L1536 1111 1111 1111 1111 1111 1111 1111 1111 * 
L1568 1111 1001 0111 1110 1001 1101 1111 1111 * 
L1600 1111 1001 0111 1101 1010 1101 1111 1111 * 
L1792 1111 1111 1111 1111 1111 1111 1111 1111 * 
L1824 1111 1001 0111 1110 0101 1101 1111 1111 * 
L1856 1111 1001 0111 1101 0110 1101 1111 1111 * 
L1888 1111 1010 0110 1110 1110 1101 1111 1111 * 
L1920 1111 1010 0111 1111 1111 1111 1111 1110 * 
C58CO* 
VOOOI C110XXXXXOOHHHHHLHZ1 * 
V0002 0010XXXXXOOHHHHHLHZ1 * 
V0003 C111XXXXXOOHHHHHHHZ1 * 
V0004 0011XXXXXOOHHHHHHHZ1 * 
V0005 C111XXXXXOOHHHHHLHZ1 * 
V0006 0011XXXXXOOHHHHHLHZ1 * 
V0007 C111XXXXXOOHHHHHHHZ1 * 
V0008 0011XXXXXOOHHHHHHHZ1 * 
V0009 C111XXXXXOOHHHHHLHZ1 * 
V0010 0011XXXXXOOHHHHHLHZ1 * 
V0011 C111XXXXXOOHHHHHHHZ1 * 
V0012 000100XXXOOHHHHHHHHI * 
V0013 C10100XXXOOHHHHHLHHI * 
V0014 000100XXXOOHHHHHLHHI * 
V0015 C10100XXXOOHLHHLHHHI * 
V0016 000100XXXOOHLHHLHHHI * 
V0017 C10100XXXOOHLHHLLHHI * 
V0018 000100XXXOOHLHHLLHHI * 
V0019 C10100XXXOOHLHLHHHHI * 
V0020 000100XXXOOHLHLHHHLI * 
V0021 C10100XXXOOHLHLHLHLI * 

Figure 3-92. Fuse Map and Test Vectors for the Example of Figure 3-89.a 
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V0022 OOOlOOXXXOOHLHLHLHLl * 
V0023 CIOIOIXXXOOHHHLLHHHI * 
V0024 OOllXXXXXOOHHHLLHHZl * 
V002S CIIIXXXXXOOHHHHHLHZl * 
V0026 OOllXXXXXOOHHHHHLHZl * 
V0027 CIIIXXXXXOOHHHHHHHZl * 
V0028 OOllXXXXXOOHHHHHHHZl * 
V0029 CIIIXXXXXOOHHHHHLHZl * 
V0030 OOllXXXXXOOHHHHHLHZl * 
V0031 CIOI0111100HHHHLHLHl * 
V0032 OOOlOllllOOHHHHLHLHl * 
V0033 CIOIOIIIIOOHHHHLLLHI * 
V0034 OOOlOllllOOHHHHLLLHl * 
V003S CIOIOIIIIOOHHHLHHLHI * 
V0036 OOOlOllllOOHHHLHHLHl * 
V0037 CIOIOIIIIOOHHHLHLLHI * 
V0038 OOOlOlll100HHHLHLLHl * 
V0039 CIOIOIIIIOOHHHLLHLHI * 
V0040 OOOlOllllOOHHHLLHLHl * 
V0041CIOIOllllOOLHHLLLLHl * 
V0042 OOOlOllllOOLHHLLLLHl * 
V0043 CIOIOIIIIOOLHLHHHLHI * 
V0044 OOOlOll1100LHLHHHLHl * 
V004S CIOIOIIIIOOLHLHHLLHI * 
V0046 OOOlOllllOOLHLHHLLLl * 
V0047 CIOIOIIIIOOLHLHLHLLI * 
V0048 OOOlOllllOOLHLHLHLLl * 
V0049 CIOIOIIIIOOHHLHLLHHI * 
VOOSO OOlllXXXXOOHHLHLLHZl * 
VOOSI CIIIIXXXXOOHHHHHHHZl * 
VOOS2 OOlllXXXXOOHHHHHHHZl * 
7BCF 

Figure 3-92. (Continued) 
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PAL16R4 PAL DESIGN SPECIFICATION 
PATOSI ~~RK YOUNG 1/21/83 
SLOW AM8S00/9S00 TO MOTOROLA 68000 PAL 
ADVANCED MICRO DEVICES 
CLK DCLK /CS /RESET /LDS RW FCO FCI FC2 GND 
JOE /RD /WR /C3 /C2 /Cl /CO /INTACK /DTACK VCC 

STATE MACHINE COUNTER CO --C3 

CO.- /CO 

Cl .- CO*/Cli~/C2*LDS*CS*/RESET 
+ /CO*Cl i~ /C2*LDSi~CSi~ /RESET 
+ CO-l~ /Cl *C2-l~LDS*CSi~ /RESET 
+ /CO*Cl *C2*C2* /C3*LDSi~CS* /RESET 

C2 .- CO*Cl*/C2*CS*/RESET 
+ /Cl i~C2*CS* /RESET 
+ /CO*Cl*C2i~/C3*CSi~/RESET 

C3.- CO*Cl*C2*/C3*CS*/RESET 
+ /C2*C3*CS*/RESET 
+ /Cl *C2i~C3*CSi~ /RESET 

RD Cl * /C2*CJ1~RWi~CSi~ /INTACKi~ /RESET 
+ /Cl*C2*C3i~RW*CS*/INTACKil-/RESET 
+ CO*CliI-C2''l- /C3*INTACK* /RESET 
+ /Cl*/C2i·C3*INTACK*/RESET 
+ /CO*Cl*/C2-l·C3i~INTACK*/RESET 

WR Cl * /C2*C3* /RWi~CS* /INTACKi·/RESET 
+ ICI *C2i·CJ1, /RW*CS* /INTACKi} /RESET 

; DATA ACKNOWLEDGE 

8S00 CLK 

NORMAL READ 
NORMAL READ 
INTERRUPT ACKNOWLEDGE 
INTERRUPT ACKNOWLEDGE 
INTERRUPT ACKNOWLEDGE 

WRITE OPERATTON 
WRITE OPERATION 

IF (CS) DTACK = /DCLK*/COi~/Cli~C2*C3*/INTACKi'/DTACK*/RESET 
+ DTACKiI-RDi~/RESET 
+ DTACKiI-WR* /RESET 
+ /DCLK*CQi. /Cl * /C2i~C3*INTACKi~ /RESET 

; INTERRUPT ACKNOWLEDGE 
INTACK = FCO*FCI *FC2i~Cl i, /C3*LDS*CS*'/RESET 

+ C2* /C3*FCO*FCl i'FC2*CS* /RESET 
+ IC2*C3*FCOi~FCl*FC2i~CS*/RESET 

Figure 3-94. Source Listing for the Example of Figure 3-S9.b 
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TABLE 3-16. 

FUNCTION TABLE: 

; 
; NOTE: FOR THE SIMULATION, ALL THE SIGNALS USED ARE AT THE 
; PIN LEVEL (I.E. WHAT THE CHIP SEES AND PUTS OUT). THE 
; ONE EXCEPTION ARE THE CO - C3 PINS. THESE ARE DEFINED 
; AT THE REGISTER OUTPUT LEVEL (NON-INVERTED) BECAUSE 
; THEY WERE DIRECTLY DERIVED FROM THE TIMING DIAGRAMS 
; AND THIS MAKES IT EASIER TO RELATE TO THE TIMING 
; DIAGRAM. 
; 

CLK DCLK ICS IRESET ILDS RW FCO FCl FC2 
10E IRD IWR CO Cl C2 C3 IINTACK IDTACK 

; 
; I 
j / I I 
j R N D 
j D E I T T 
: C C / S L F F F I I I A A 
j L L C E D R C C C 0 R W C C C C C C 
; K K S T S W 0 1 2 E D R 0 1 2 3 K K 
------------------------------------------------------------------------
j 
jRESET SEQUENCE 

C H H L X X X X X L H H H L L L H Z 
L L H L X X X X X L H H H L L L H Z 
C H H H X X X X X L H H L L L L H Z 
L L H H X X X X X L H H L L L L H Z 
C H H H X X X X X L H H H L L L H Z 
L L H H X X X X X L H H H L L L H Z 

j 
jWRITE OPERATION (RW=L) 

C H H H X X X X X L H H L L L' L H Z 
L L H H X X X X .X L H H L L L L H Z 
C H H H X X X X X L H H H L L L H Z 
L L H H X X X X X L H H H L L L H Z 
C H H H X X X X X L H H L L L L H Z 
L L L H L L X X X L H H L L L L H H 
C H L H L L X X X L H H H L L L H H 
L L L H L L X X X L H H H L L L H H 
C H L H L L X X X L H H L H L L H H 
L L L H L L X X X L H H L H L L H H 
C H L H L L X X X L H H H H L L H H 
L L L H L L X X X L H H H H L L H H 
C H L H L L X X X L H H L L H L H H 
L L L H L L X X X L H H L L H L H H 
C H L H L L X X X L H H H L H L H H 
L L L H L L X X X L H H H L H L H H 
C H L H L H X X X L H H L H H L H H 
L L L H L L X X X L H H L H H L H H 
C H L H L L X X X L H H H H H L H H 
L L L H L L X X X L H H H H H L H H 
C H L H L L X X X L H H L L L H H H 
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TABLE 3-16. (Continued) 

L L L H L L X X X L H H L L L H H H 
C H L H L L X X X L H H H L L H H H 
L L L H L L X X X L H H H L L H H H 
C H L H L L X X X L H L L H L H H H 
L L L H L L X X X L H L L H L H H H 
C H L H L L X X X L H L H H L H H H 
L L L H L L X X X L H L H H L H H H 
C H L H L L X X X L H L L L H H H H 
L L L H L L X X X L H L L L H H H L 
C H L H L L X X X L H L H L H H H L 
L L L H L L X X X L H L H L H H H L 
C H L H L L X X X L H H L H H H H H 
L L L H L L X X X L H H L H H H H H 
C H H H H H X X X L H H H L L L H Z 
L L H H X X X X X L H H H L L L H Z 
C H H H X X X X X L H H L L L L H Z 
L L H H X X X X X L H H L L L L H Z 

; 
;INTACK CYCLE 

C H H H X X X X X L H H H L L L H Z 
L L H H X X X X X L H H H L L L H Z 
C H L H L H H H H L H H L H L L L H 
L L L H L H H H H L H H L H L L L H 
C H L H L H H H H L H H H H L L L H 
L L L H L H H H H L H H H H L L L H 
C H L H L H H H H L H H L L H L L H 
L L L H L H H H H L H H L L H L L H 
C, H L H L H H H H L H H H L H L L H 
L L L H L H H H H L H H H L H L L H 
C H L H L H H H H L H H L H H L L H 
L L L H L H H H H L H H L H H L L H 
C H L H L H H H H L L H H H H L L H 
L L L H L H H H H L L H H H H L L H 
C H L H L H H H H L L H L L L H L H 
L L L H L H H H H L L H L L L H L H 
C H L H L H H H H L L H H L L H L H 
L L L H L H H H H L L H H L L H L L 
C H L H L H H H H L L H L H L H L L 
L L L H L H H H H L L H L H L H L L' 
C H L H L H H H H L H H H H L H L H 
L L H H H X X X X L H H H H L H H Z 
C H H H X X X X X L H H L L L L H Z 
L L H H X X X X X L H H L L L L H Z 
----------------------------------------------------------------------

DESCRIPTION: 
THE SLOWZTOM PAL IS A SELF-CONTAINED 8500 TO 68000 INTERFACE. THERE IS 
NO USER SOFTWARE REQUIRED FOR THIS INTERFACE, BUT THERE IS A TRADE-OFF 
OF SLOWER ACCESS TIME. AGAIN, THE INTERFACE PROVIDES TOTAL SIGNAL 
COMPATIBILITY. 
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PAL16R4 PAL DESIGN SPECIFICATION 
PAT051 MARK YOUNG 1/21/83 
SLOW AM8500/9500 TO MOTOROLA 68000 PAL 
ADVANCED MICRO DEVICES 
*D9724 
*FO* 
LOOOO 1111 1011 1111 1111 1111 1111 1111 1111 * 
L0032 1001 1101 0101 1101 1110 1110 1111 1111 * 
L0064 1110 1111 0111 1111 1111 1111 1111 1110 * 
L0096 1110 1111 0111 1111 1111 1111 1110 1111 * 
L0128 1011 1110 0110 1101 1101 1110 1111 1111 * 
L0256 1111 1111 1111 1111 1111 1111 1111 1111 * 
L0288 1111 1011 0111 1010 1111 0101 0111 0111 * 
L0320 1111 1011 0111 1111 1110 0101 0111 0111 * 
L0352 1111 1011 0111 1111 1101 0110 0111 0111 * 
L0512 1111 1111 1101 1111 1111 1111 1111 1111 * 
L0768 1111 1011 0110 1001 1101 1111 1111 1111 * 
L0800 1111 1011 0101 1010 1101 1111 1111 1111 * 
L0832 1111 1011 0110 1001 1110 1111 1111 1111 * 
L0864 1111 1011 0101 1010 1110 1101 1111 1111 * 
L1024 1111 1011 0110 1110 1101 1111 1111 1111 * 
L1056 1111 1011 0111 1101 1110 1111 1111 1111 * 
L1088 1111 1011 0101 1110 1110 1101 1111 1111 * 
L1280 1111 1011 0110 1110 1110 1101 1111 1111 * 
L1312 1111 1011 0111 1111 1101 1110 1111 1111 * 
L1344 1111 1011 0111 1101 1110 1110 1111 1111 * 
L1536 1111 1111 1111 1111 1111 1111 1111 1111 * 
L1568 1111 1001 0111 1110 1001 1110 1111 1111 * 
L1600 1111 1001 0111 1101 1010 1110 1111 1111 * 
L1792 1111 1111 1111 1111 1111 1111 1111 1111 * 
L1824 1111 1001 0111 1110 0101 1110 1111 1111 * 
L1856 1111 1001 0111 1101 0110 1110 1111 1111 * 
L1888 1111 1110 0110 1110 1110 1101 1111 1111 * 
L1920 1111 1110 0111 1101 1101 1110 1111 1111 * 
L1952 1111 1110 0101 1110 1101 1110 1111 1111 * 
C5D43* 
VOOOI C110XXXXXOOHHHHHLHZ1 * 
V0002 001OXXXXXOOHHHHHLHZ1 * 
V0003 C1l1XXXXXOOHHHHHHHZ1 * 
V00040011XXXXXOOHHHHHHHZ1 * 
V0005 C111XXXXXOOHHHHHLHZ1 * 
V0006 0011XXXXXOOHHHHHLHZ1 * 
V0007 C111XXXXXOOHHHHHHHZ1 * 
V0008 0011XXXXXOOHHHHHHHZ1 * 
V0009 C111XXXXXOOHHHHHLHZ1 * 
V0010 0011XXXXXOOHHHHHLHZ1 * 
V0011 C111XXXXXOOHHHHHHHZ1 * 
V0012 000100XXXOOHHHHHHHHl * 
V0013 C10100XXXOOHHHHHLHHl * 
V0014 000100XXXOOHHHHHLHHl * 
V0015 C10100XXXOOHHHHLHHHl * 
V0016 000100XXXOOHHHHLHHHl * 
V0017 C10100XXXOOHHHHLLHHl * 
V0018 000100XXXOOHHHHLLHHl * 
V0019 C10l00XXXOOHHHLHHHHl * 

Figure 3-94. Fuse Map and Test Vectors for the Example of Figure 3-89.b 
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V0020 OOOlOOXXXOOHHHLHHHHl * 
V0021 CIOIOOXXXOOHHHLHLHHI * 
V0022 OOOlOOXXXOOHHHLHLHHl * 
V0023 CIOIOIXXXOOHHHLLHHHI * 
V0024 OOOlOOXXXOOHHHLLHHHl * 
V0025 CIOIOOXXXOOHHHLLLHHI * 
V0026 OOOlOOXXXOOHHHLLLHHl * 
V0027 CIOIOOXXXOOHHLHHHHHI * 
V0028 OOOlOOXXXOOHHLHHHHHl * 
V0029 CIOIOOXXXOOHHLHHLHHI * 
V0030 OOOlOOXXXOOHHLHHLHHl * 
V0031 CIOIOOXXXOOHLLHLHHHI * 
V0032 OOOlOOXXXOOHLLHLHHHl * 
V0033 CIOIOOXXXOOHLLHLLHHI * 
V0034 OOOlOOXXXOOHLLHLLHHl * 
V0035 CIOIOOXXXOOHLLLHHHHI * 
V0036 OOOlOOXXXOOHLLLHHHLl * 
V0037 CIOIOOXXXOOHLLLHLHLI * 
V0038 OOOlOOXXXOOHLLLHLHLl * 
V0039 CIOIOOXXXOOHHLLLHHHI * 
V0040 OOOlOOXXXOOHHLLLHHHl * 
V0041 CIIIIIXXXOOHHHHHLHZl * 
V0042 OOllXXXXXOOHHHHHLHZl * 
V0043 C111XXXXXOOHHHHHHHZl * 
V0044 OOllXXXXXOOHHHHHHHZl * 
V0045 CIIIXXXXXOOHHHHHLHZl * 
V0046 OOllXXXXXOOHHHHHLHZl * 
V0047 CIOIOIIIIOOHHHHLHLHI * 
V0048 OOOlOllllOOHHHHLHLHl * 
V0049 CIOIOIIIIOOHHHHLLLHI * 
V0050 OOOlOllllOOHHHHLLLHl * 
V0051 CIOIOIIIIOOHHHLHHLHI * 
V0052 OOOlOllllOOHHHLHHLHl * 
V0053 CIOIOIIIIOOHHHLHLLHI * 
V0054 OOOlOllllOOHHHLHLLHl * 
V0055 CIOIOIIIIOOHHHLLHLHI * 
V0056 OOOlOllllOOHHHLLHLHl * 
V0057 CIOIOIIIIOOLHHLLLLHI * 
V0058 OOOlOllllOOLHHLLLLHl * 
V0059 CIOIOIIIIOOLHLHHHLHI * 
V0060 OOOlOllllOOLHLHHHLHl * 
V0061 CIOIOIIIIOOLHLHHLLHI * 
V0062 OOOlOllllOOLHLHHLLLl* 
V0063 CIOIOIIIIOOLHLHLHLLI * 
V0064 OOOlOllllOOLHLHLHLLl * 
V0065 CIOIOIIIIOOHHLHLLLHI * 
V0066 OOlllXXXXOOHHLHLLHZl * 
V0067 C111XXXXXOOHHHHHHHZl * 
V0068 OOllXXXXXOOHHHHHHHZl * 
F7FD 

Figure 3-94. (Continued) 
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Am7970A CEP Interface to the 68000 CPU 

This design presents an example of how to use 
the CEP in a 68000 system. Though the 
Am7970A was designed for easy interface to the 
iAPX family, it can easily be adapted to the 68000. 

General Discussion 

The example may be a part of a workstation 
environment or an image storage application such 
as an optical disk storage device. Also note that all 
FAX applications (Group 3 and 4) are well served. 

Figure 3-96 is the Am7970A CEP interface to the 
68000 CPU. This illustration only shows how the 
system interface of the CEP is embedded in such 
a system. If very high throughput is desired, the 
document interface of the CEP should be 
connected to a large memory bank to buffer the 
image data. The logic for the document buffer 
interface is straightforward. Using memory 
connected to the document side as a source 
buffer (image data) and the system interface as the 
destination buffer (coded data), a whole page of 
image data with a resolution of 300 pixels per inch 
can be compressed in 1-4 seconds. 

The document buffer may be loaded through the 
CEP system interface in transparent mode. It could 
also be designed as a dual port memory which is 
loaded directly by the CPU or by a DMA device. A 
third approach could load the document buffer 
directly by a scanner or a image processing 
peripheral device. The last method reduces the 
necessary data transfers to an absolute minimum 
and is therefore the preferred solution for very 
high performance applications. 

This design assumes that the 68000 is connected 
to a memory bank, either onboard or via a bus 
interface. By setting the appropriate mode in the 
CEP'S command register, the user determines 
whether this memory contains either the source or 
the destination buffers forthe CEP, orboth. 

Hardware Description 

A latch and two drivers are used to demultiplex the 
data from address bits A 16-A23 of the CEP and to 
direct the byte-oriented data stream of the CEP to 
the upper and lower bytes of the data bus of the 
68000. On even addresses, data is transfered 
through the upper half of the bus; on odd 

addresses, data passes through the lower half of 
the 68000 data bus. 

All register accesses into the CEP are performed 
through the upper data bus because all CEP 
register addresses are even. They are addressed 
by the signals AO-A7. 

Almost all of the conversion logic for the control 
signals was combined into one PAL. This 
minimizes the hardware required for customizing 
the CEP to any kind of processor. The 
AmPAL22V10 was chosen because it provides 
more outputs than most other PALs and provides 
full freedom in choice of output characteristics 

. (polarity, latched/unlatched function). The PAL 
equations are written for the PLPL PAL assembler. 
They ·can easily be changed for any other available 
PAL Assembler. Refer to Figure 3-97 and Figure 
3-98 for the Pal Device equations. 

The PAL converts the'· RD, WR and AD signals of 
the CEP to UDS, LOS, and RIW signals of the 
68000. It provides the control signals for the data 
transceivers and transforms the two-wire bus 
arbitration Signals of the CEP (HRQ, HLDA}JQ the 
three-wire arbitration scheme of the 68000 (BR,BG 
and BGACK). . 

The 68000 CPU uses a memory mapped I/O 
address scheme. The I/O interface logic assigns a 
memory area to the CEP internal re~ters using 
standard address comparators. The CS output is 
validated by AS LOW. In sophisticated operating 
systems the CEP access should be reserved to 
supervisor level· memory accesses. Here this is 
accomplished by an LS138 decoding this access 
mode from the signals FCO-2. The output is used 
to enable the comparators. 

When designing the memory interface, care 
should be taken thaUhe setup time for the READY 
input is meet. If the environment does not provide 
this demand, the READY signal coming from the 
memory must be syn,ehronized with a flip-flop 
register. 

Operation 

Interrupt Handling 

The CEP notifies the CPU about an exception 
condition (e.g. end of page) by driving the INTR 
line HIGH. The CEP does not produce interrupt 
vectors by itself. If a specific application demands a 
user vector to be asserted by the peripheral, an 
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Figure 3-96. Am7970A CEP to 68000 CPU Interface 07666A5-1 
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DEVICE (AMPAL22VI0) 
"7970A CEP to 68000 Interface Controller 
CEP68KPAL VERSION 1. 0 
AMD Wolfgang Kemmler 9-12-85 " 

PIN 
CLK VCC 24 
ICS 2 IBHEN 23 
ALE 3 IBLEN 22 
IBG 4 AD 21 
HRQ 5 HLDA 20 
RESET 6 IRD 21 
NC 7 IWR 19 
NC 8 IUDS 18 
NC 9 lLOS 17 
NC 10 IRW 16 
NC 11 NC 15 
GND 12 NC 14 

BEGIN 

IF RESET ) THEN ARESET() ; 

IF HLDA THEN ENABLE ( RW HLDA RW = WR ; 

IF HLDA THEN ENABLE ( UDS UDS RD * lAO + WR * lAO 

IF HLDA THEN ENABLE ( LOS LDS RD * AD + WR * AD ; 

IF IHLDA THEN ENABLE ( RD RD IRW * UDS ; 

IF IHLDA THEN ENABLE ( WR WR RW * UDS ; 

IF IHLDA THEN ENABLE ( AD ) ; AD = UDS 

BHEN HLDA * lAO * RD + HLDA * lAO * WR + CS * UDS 

BLEN = HLDA * AD * RD + HLDA * AD * WR + CS * LDS 

BR := HRQ * BG * BR * AS + HRQ * IBG * IHLDA ; 

IHLDA := IHRQ + IHRQ * IBG + IHRQ * AS + IHRQ * IHLDA 
+ BG * IHLDA + AS * IHLDA ; 

END 

Figure 3-97. PLPL Specification for the Example of Figure 3-96 
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PAL16R4 CEP to 68000 Interface Controller 
VERSION 1.0 
CEP68KB 
AMD WOLFGANG KEMMLER 9-12-85 

CLK /RD /WR HRQ ALE /CS /BG NC NC GND 
JOE /DTACK READY /BR HLDA NC NC /AS /BGACK VCC 

BR := HRQ * BG * BR * AS + HRQ * /BG * /HLDA 

/HLDA := /HRQ + /HRQ * /BG + /HRQ * AS + /HRQ * /HLDA 
+ BG * /HLDA + AS * /HLDA 

IF ( CS ) DTACK = READY 

IF ( HLDA ) READY = DTACK * RD + DTACK * WR 

IF ( HLDA ) AS = ALE 

BGACK = HLDA 

Figure 3-98. CEP to 68000 Interface Controller 07666A5-3 

interrupt controller such as the Am9519A must be 
used. 

To avoid an additional interrupt controller, this 
design follows an easier approach to service the 
interrupt request for the. CPU, using .the 68000 
auto vector mode. The status decoder generates 
the interrupt acknowledge signal from the status 
lines FO-F2. This signal is used to drive the VPA 
input of the CPU. If this line instead of DTACK is 
asserted during an interrupt acknowledge cycle, 
the 68000 will use the internal auto vectors instead 
of an externally supplied vector. 

The interrupt inputs of the 68000 are directly 
connected to the inverted INTR signal of the CEP 
without using the usual priority encoder. 
Assuming that the auto vector mode of the CPU is 
used as described above, 2 more peripherals 
could notify an interrupt request to the CPU by this 
method. With respect to all possible combinations 
of pending interrupt requests, the auto vector 
table would have to look like this: 

TABLE 3-17. EXCEPTION VECTOR TABLE 

Vector No. Assignment 

25 Auto Vector 1 
26 Auto Vector 2 
27 Auto Vector 2 
28 Auto Vector 4 
29 Auto Vector 4 
30 Auto Vector 4 
31 Auto Vector 4 

The vectors are selected by the 68000 according 
to the the priority of the interrupt inputs IPLO-IPL2. 

This schematic shows the CEP connected to IPL2 
giving it the highest priority. The CEP removes 
INTR with the next access to a command register. 

68000 Accesses to the Am7970A CEP 

Registers (Slave Mode) 

By driving CS LOW, the address decoder notifies 
the CEP that the CPU wants to access the CEP 
internal registers. The CEP reacts by driving 
READY LOW and interrupting its internal 
microprogram. The READY signal is an output of 
the CEP as long it is in slave mode. Depending on 
the internal status of the CEP, READY is released 
after 4 - 50 CEP clock cycles. 

The CEP provides a totally asynchronous slave 
interface. This keeps the logic very simple. The 
data hold time for a "slave write access" is 20 ns 
minimum which perfectly matches the 68000 up to 
a CPU clock frequency of 10 MHz. 

Data transfers in slave mode are generally passed 
through the upper bus driver (D8-D15) because all 
registers are located at even addresses. 

Am7970A CEP System Memory Access 

(Master Mode) 

The CEP drives HRQ HIGH to gain bus control. As 
soon as HLDA goes HIGH it enables its system 
interface lines and start a memory access. 

In this operating mode, READY is an input to the 
CEP. READY is connected to the inverted DACK 
of the 68000 system. The CEP s~les the 
READY line before driving the RD or WR signals 
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LOW. These signals are used to provide the UDS 
and LOS signals which normally are asserted much 
earlier in typical 68000 systems. Therefore, the 
DTACK line which signals the completion of the 
memory access, cannot be asserted earlier than RD 
or WR. This causes an automatic wait state for each 
CEP memory transfer. 

The full performance of the CEP in a 68000 system 
can only be reached if the memory design is opti­
mized not only' for the 68000 but also for the specific 
CEP timing. If UDS and LOS are only used to enable 
the data driver of the memory banks and if the 
memories are fast enough, and if the READY line is 

driven HIGH during master access all the time 
(disregarding DTACK), then the CEP can be used 
without a wait state. 

NOTE: 
The CEP needs only 3 clock cycles for a 
memory transfer while the 68000 CPU 
takes 4. An additional wait cycle would 
equal the access times of both devices, 
assuming they are running at the same 
clock frequency. A CEP running at 5 MHz 
without a wait state, on the other hand, 
would match the memory access time of an 
8-MHz 68000. A 5-MHz CEP does not nec­
essarily reduce the performance of faster 
clocked CPUs. 
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Am8530 to 68020 Interface 

This design note shows the logic to interface a 6-MHz Am8530 
Serial Communications Controller to the 68020 CPU running at 
10 Mhz with a system clock cycle time of 100 ns. The Am8530 
is a high-performance, dual-channel SCC that supports data 
rates up to 1.5M bps and a variety of communication protocols. 

The PAL device generates the IRD and IWR control signals for 
the Am8530 from the 68020 IDS and RIW- control signals. It 
also generates the clock for the SCC by dividing the 68020 
system clock. This meets the 165-ns minimum cycle time for 
the 6-MHz SCC clock. 

.A 
D[24:31J K 

'I 

" A_BUS I/O vi h 
DECODER ~ 

68020 
CPU 

R/W-

DSACK[1] 

DSACK[O] 

Also, a state machine is implemented to perform the hand­
shake necessary for byte transfers on the 68020 bus. The state 
machine transition diagram is shown in Figure 3-100. Normally, 
DSACK[1 :0] is inactive. When this device is selected, a wait 

state is inserted and then data transfer is acknowledged by 
asserting DSACK[1 :0] for byte transfer. When the CPU 
deasserts the address strobe, DSACK[1 :0] is negated. 
DSACK[1 :0] will be driven by other devices on the 68020 sys­
tem bus. The PAL device enables DSACK[1 :0] only when the 
CPU performs a read or write cycle for the SCC; at other times 
DSACK[1 :0] lines are three-stated. 

Since the Am8530 is a byte-wide peripheral, it is connected to 
the upper byte of the 32-bit wide 68020 data bus. 
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Figure 3-99_ Am8530 to 68020 Interface 
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" THIS PLPL FILE IS FOR A 16R4 THAT IMPLEMENTS THE LOGIC 

NECESSARY TO INTERFACE AN Am8530 (SCC) TO A 68020 SYSTEM. " 

DEVICE Am8530_TO_68020 (PAL 16R4) 

PIN 

CLK = 1 VCC = 20 

lAS = 2 DSACK[1] = 19 
IDS = 3 DSACK[O] = 18 
RY = 4 ST[U = 17 

ICS = 5 ST[O] = 16 

NC1 = 6 Q = 15 

NC2 = 7 NC5 = 14 

NC3 = 8 YR = 13 

NC4 = 9 RD = 12 

GND = 10 NC6 = 11 ; 

BEGIN 

" READ AND YRITE CONTROL SIGNALS ARE DERIVED FROM 

R/Y' AND OS'. " 

YR = I(DS 'It IRY) ; 
RD = I(DS 'It RY) ; 

II THE INCOMING CLOCK IS DIVIDED BY 2 TO GENERATE THE 

CLOCK FOR THE Am8530. " 

CASE ( Q ) 

BEGIN 

0) Q := 1; 
1) Q := 0; 

END; 

II THE FOLLOYING COOE IMPLEMENTS THE STATE MACHINE TO 

PERFORM DSACK OPERATION. IT INSERTS YAIT STATES, 

ASSERTS DSACK FOR BYTE TRANSFER AND REMOVES DSACK 

YHEN AS I S NEGATED. " 

IF ( ICS ) ENABLE ( DSACK [1 :0] 

IF ( ST[1:0] = #B10 ) 

CASE 

END. 

THEN DSACK [1 :0] = #B10; 

ELSE DSACK[1:0] = #811; 

( ST[1 :0] ) 

BEGIN 

#BOO) BEGIN 

IF ( ICS ) 

THEN ST[1:0] := #BOO ; 

ELSE ST [1 :0] := #801; 

END; 

#B01) ST [1 :0] := #810; 

#B10) BEGIN 

IF ( lAS ) 

THEN ST[1 :0] := #800 ; 

ELSE ST[1 :0] := #B10; 

END; 

END 

Figure 3·101. PLPL Specification for the 8530 to a 68020 Interface 
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A PAL-Based Direct Memory Access 
Controller for the 68020 

Introduction 

Direct Memory Access operation on the 68020 system bus 
provides an interesting design challenge. There are many 
design issues that need to be addressed for an efficient DMA 
design. 

The 68020 can accomodate memory blocks and peripherals of 
different widths (8, 16, and 32 bits) on the system bus. The 
68020 imposes a connectivity requirement on slave devices 
wherein 8-bit devices must be connected to the uppermost 
byte of the data bus and 16-bit devices must be connected to 
the upper word of the data bus. 

Issues related to device data width are: What kinds of transfers 
will be supported by the DMA device? How flexible should be 
the data funneling scheme? (Data funneling refers to packing 
and unpacking data when mixed width transfers-8-to-16, 8-
to-32, etc.-are performed.) Data funneling can be further 
complicated when it becomes necessary to perform upper-to­
lower and lower-to-upper byte swap (i.e., a device with a word­
wide bus may write (read) the byte on the lower byte of the data 
bus, whereas the 68020 reads (writes) the byte on the upper 
byte of the upper data bus). 

The 68020 system bus allows a memory read (or write) opera­
tion in three clock cycles. With a 16-MHz 68020 this translates 
to a memory cycle time of approximately 180 ns. In a high­
performance design, it would be desirable to have a 32-bit 
wide, no-wait-state memory. Speed of the DMA operation in 
such a system should be limited only by the memory speed 
and not the DMA hardware itself. Incorporating an off-the-shelf 
DMA controller in the 68020 system must be evaluated on this 
basis. 

Another aspect of Direct Memory Access operation is the block 
size of the data transfer. With a 32-bit wide address bus, the 
choice of block size is indeed large. Also, there should be no 
unreasonable restriction on the starting address of the source 
and destination transfer areas. 

Design Objectives-Fast and Simple I 

This design note shows one possible implementation of DMA 
logic for the 68020 system using PAL devices. This is a no-frills 
design for performing single-cycle, 32-bit, memory-to-memory 
transfers. It is possible to incorporate other features using 
more logic. These features may prove useful in some specific 
applications. 

The design objectives are as follows: perform 32-bit memory­
to-memory transfers without any wait states, support transfer 
to and from any area in the memory with a block transfer size of 
at least 64K bytes, and support preemptive DMA operation. 

Implementation Detail 

A block diagram of the DMA logic is shown in Figure 3-102. 

Two address pointers, a counter, a data latch, and a control 
register make up the DMA logic. Two PAL devices are used to 
implement the DMA control logic. An Am PAL 16R4 PAL device 
is used to perform the control-state sequencing and some 
control-signal generation, and an Am PAL 1618 device is used 
to generate the remaining control signals. The state sequenc­
ing PAL device is clocked with a 32-MHz signal (2 x SYS ClK). 

There are two address pointers-one for source and the other 
for destination area. The pointers are 30 bits wide-the upper 
word of each pointer is a segment register that is written by the 
CPU before a DMA transfer is initiated; the CPU must perform 
segment register maintainance (Le., if the transfer area spans 
a segment boundary, the CPU must break up the transfer into 
two separate operations and update the segment register be­
tween the two DMA operations). 

The lower word of the pointer is a 14-bit incrementor that is 
loaded by the CPU before the DMA operation is initiated; since 
the lower address word can be loaded by the CPU it can start 
the transfer at any long-word boundary memory addresses. 
This pointer is incremented by the DMA logic as each transfer 
is performed. Address bits A 1 and AO are stuck-at-zero since 
the DMA controller handles long words only. 

A 32-bit data latch is used to temporarily hold the fetched data 
long-word from the source. During destination writes, this 
becomes the source of data. 

Depending on the characteristics of the RAM devices used in 
the system, it is possible to modify the control logic such that it 
is not necessary to have the external 32-bit data latch tempo­
rarily hold the long-word being transferred. 

Assuming DRAMs are used in the system, here is how that 
scheme will work: the controller starts a read cycle from the 
source, after allowing for read access time, the address and 
RAS applied to the source are taken away while maintaining 
CAS to the source. This frees up the address bus for driving 
the destination address while maintaining valid data on the 
data bus with the source data: The write operation to the des­
tination is now initiated. The address for destination is provided 
by the destination address pointer and the data comes directly 
from the source DRAM. The transfer cycle is completed by 
removing the RAS and CAS to the destination and the CAS to 
the source. 

A 14-bit decrementor that is loaded by the CPU is used to track 
the number of long-words transferred in the current DMA cycle. 
This counter is loaded by the CPU before a new DMA opera­
tion is initiated. The decrementor is decremented by the DMA 
control logic as each transfer is performed. A count of zero 
indicates the end of current DMA operation. 

A command register is used to start the DMA operation by 
writing the GO bit. The zero detect signal of the counter 
(CTRZERO) is used to reset the GO bit. 

DMA related pointers, counter and command register are 
shown in Figure 3-103. These locations are mapped to the 
68020 memory space. They are all written by the 68020 before 
the DMA operation is initiated (by writing the GO bit of the 
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command register). The address pointer count (lower word of 
the address pointer) is incremented by the DMA controller on 
every transfer cycle. 

The DMA transfer cycle is a tight twelve-state sequence. It 
requires the destination pointer to be incremented while the 
read operation is in progress, and the source pointer to be 
incremented while the write operation is in progress. This 
necessitates initializing the destination pointer with a value that 
is one less than the desired destination transfer area start 
address. 

It is possible to map the command and the counter locations to 
the same long-word address; and they can be written in the 
same long-word write cycle by the CPU. There should be no 
timing problems when count and GO is written simultaneously 
because the bus arbitration must take place before the DMA 
logic can use the count value. When the CPU regains control of 
the system bus, it should read the count register to determine if 
the transfer is complete. 

DMA preemption is implemented in the control state machine. 
Bus Grant (BG) can be negated by an external bus arbiter at 
any time and the DMA controller will complete the current bus 
cycle and give up the system bus by deasserting the Bus Grant 
Acknowledge (BGACK) signal. Another device can now 
become the bus master; however since the transfer is not com­
plete, the DMA logic will keep the Bus Request (BR) signal 
active and attempt to complete the transfer whenever the other 
bus master relinquishes the bus. 

A state diagram for the DMA controller state machine is shown 
in Figure 3-104. Note that all signals are assumed active HIGH 

in this state transition diagram. The device stays in the IDLE 
state until a DMA operation is started by writing the GO bit of 
the command register. The controller then requests the bus 
(BRa state) and after the bus is granted (BGT state), it initiates 
memory-to-memory transfers-read followed by write cycles; 
note that one memory-to-memory transfer cycle is an in­
divisible operation. 

The DMA preemption is performed in state WS5. When the 
external arbiter signals that the bus is needed by another po­
tential bus master (by negating BG), the DMA controller gives 
up the bus and enters the BRa state and stays there until the 
bus is returned to the DMA controller. 

The current DMA transfer is complete when the count value 
reaches zero. It causes the DMA controller to give up the sys­
tem bus (BR is negated) and forces the DMA state machine 
into the idle state. 

Conditions for state transitions are shown in the state transition 
diagram (Figure 3-104). Figure 3-106 shows the specification 
for a PAL device (AmPAL16R4) to implement this state dia­
gram. Table 3-18 shows the control outputs as a function of the 
current state. This table can be used to derive the PAL 
specification for the control output generation (combinatorial 
only) PAL device (Am PAL 16L8). It should be noted that it is 
necessary to three-state some of the control signals by using 
the BR and BGACK control inputs. 

A timing diagram for major signals in a memory-to-memory 
transfer cycle is shown in Figure 3-105. The DMA controller 
essentially generates the timings of the 68020 system bus for 
memory read and write cycles. 
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" THIS IS THE STATE MACHINE SPECIFICATION FOR THE 68020 CASE ( S1[3:0] 

DHA CONTROllER lOGIC. • VINEET DUJARI 08/15/86 " IDLE) IF ( IGO ) THEN S1[3:0] := IDLE; 

ELSE ST [3:0] := BRQ 

DEVICE 68020_DHA (PAl16R4) BRQ IF ( IBG ) THEN S1[3:0] := BRQ 

ELSE ST [3:0] := BGT 

PIN clIe = 1 VCC = 20 BGT ) ST [3:0] := RSO ; 

IBG = 2 IBR = 19 

GO = 3 IBGACK = 18 RSO ) ST [3:0] := RS1 ; 

CTR_ZERO = 4 ST[3] =17 RS1 ) ST [3:0] := RS2 ; 

IDSACK [1] = 5 ST[2] = 16 RS2 ) ST [3:0] := RS3 ; 

IDSACK [0] = 6 S1[1] = 15 RS3 ) ST [3:0] := RS4 ; 

INIT = 7 ST[O] = t4 RS4 ) IF ( DSACK[t:O] ) THEN S1[3:0] := RS5 

NC2 = 8 lAS = 13 ElSE ST [3:0] := RS4 

NC3 = 9 IDS = t2 RS5 ) S1[3:0] := \ISO; 

GND = to NC4 = 11 ; 

~ 
\ISO ) ST [3:0] := \lS1 ; 

~ " STATES ARE DEFINED BELOII. " \1st ) S1[3:0] := \lS2 ; 

\lS2 ) S1[3:0] := \lS3 ; 

DEFINE IDLE = 0 ; BRQ = 1 ; BGT = 2 ; \lS3 ST [3:0] := \lS4 ; 

RSO = 3 ; RSl = 4 ; RS2 = 5 ; \lS4 IF ( DSACK[t :0] ) THEN S1[3:0] := \ISS; 

RS3 = 6 ; RS4 = 7 ; RS5 = 8 ; ElSE ST [3:0] := \lS4 ; 

\ISO = 9 ; \1st = 10 ; \lS2 = 11 \ISS BEGIN 

\153 = 12 ; \lS4 = 13 ; \ISS = t4 _IF (' CTR_ZERO ) THEN 51[3:0] := IDLE 

IF ( IBG ) THEN S1[3:0] := BRQ ; 

"THE STATE TRANSITION SPECIFICATION FOllOllS. IT IS IF ( BG * ICTR_ZERO ) THEN S1[3:0] := RSO; 

DERIVED FROM THE STATE TRANSITION DIAGRAM. " END; 

BEGIN END; 

IF ( _NIT) THEN RESET ( 51[3:0] ) ; END. 

IF ( BR * BGACK ) THEN ENABLE ( AS, OS 

Figure 3-106.a PLPL Specification for the 68020 DMA Controller Logic 
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II THIS IS THE PLPL SPECIFICATION FOR THE LO\IER·UPPER BYTE 

OF THE 68020 DMA ADDRESS POINTER • 

• VINEET DUJARI 08/19/86 II 

DEVICE LO\IER_UPPER_ADR_PTR (ArnPAL22V10) 

PIN 

cLie = 1 VCC = 24 

0[8] = 2 . A[8] = 23 

0[9] = 3 A[9] = 22 

0[10] = 4 A[10] = 21 

0[11] = 5 A[11] = 20 

0[12] = 6 A[12] 19 

0[13] = 7 A [13] 18 

0[14] = 8 A[14] 17 

0[15] = 9 A[15] 16 

LD = 10 NC1 15 

INC = 11 CT 14 

GND = 12 ENB =13 

II THIS DEVICE GETS A LOAD INPUT (LD) FROM THE CPU THAT 

LOADS THE VALUE FROM THE DATA BUS TO THE COUNTER 

REGISTER. INCREMENT CONTROL (INC) INCREMENTS THE 

COUNTER PROVIDED THE COUNT (Cl) CONTROL IS ACTIVE. II 

BEGIN 

IF ( ENB ) THEN ENABLE ( A[15:8] ) 

A[15] := 

LD * 0[15] 

/INC * A[15] 

+ II LOAD VALUE II 

+ II RECIRCULATE VALUE II 

INC * CT * ( II COUNT UP II 

IA[15] * A[14] * A[13] * 
A[12] * A[11] * A[10] * 
A [9] * A[8] + 

A [15] * IA [14] + 

A [15] * IA [13] + 

A[15] * IA[12] + 

A[15] * IA[11] , + 

A[15] * IA[10] + 

A [15] * IA [9] + 

A [15] * IA [8] 

) + 

INC * ICT .. A[15] : II RECIRCULATE VALUE II 

A[14] := 

LD * 0[14] + II LOAD VALUE II 

IINC * A[14] + II RECIRCULATE VALUE II 

INC * CT * ( II COUNT UP II 

IA [14] * A [13] * A [12] * 
A[11] * A[10] * A[9] * 
A [8] + 

A[14] * IA[13] + 

A[14] * IA[12] + 

A [14] * iA [11] + 

A[14] * IA[10] + 

A[14] * IA[9] + 

A[14] * IA[8] 

+ 

INC * ICT * A[14] : II RECIRCULATE VALUE II 

Figure 3-106.b PLPL Specification for the 68020 DMA Controller Logic (Continued) 
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A[13] := 

LO * 0[13] 

/INC * A[13] 

+ " LOAD VALUE " 

+ " RECIRCULATE VALUE" 

INC * CT * ( " COUNT UP II 

IA[13] * A[12] * A[l1] * 
A[10] * A[9] * A[8] + 

A[13] * IA[12] + 

A[13] * IA[ll] + 

A[13] * IA[10] + 

A[13] * IA[9] + 

A[13] * IA[8] 

) + 

INC * ICT * A[13] " RECIRCULATE VALUE " 

A[12] := 

LO * 0[12] 

IINC * A[12] 

INC * CT * ( 

+ " LOAD VALUE " 

+ " RECIRCULATE VALUE " 

" COUNT UP " 

IA[12] * A[l1] * A[10] * 
A [9] * A[8] 

A[12] * IA[ll] 

A[12] * IA[10] 

A[12] * IA[9] 

A[12] * IA[8] 

+ 

+ 

+ 

A[10] := 

LO * 0[10] 

IINC * A[10] 

INC * CT * ( 

+ " LOAD VALUE " 

+ " RECIRCULATE VALUE " 

" COUNT UP " 

IA[10] * A[9] * A[8] + 

A[10] * IA[9] + 

A[10] * IA[8] 

) + 

INC * ICT * A[10] 

A [9] := 

LO * 0[9] 

/INC * A[9] 

INC * CT * 
IA[9] * A[8] 

A[9] * IA[8] 

INC * ICT * A[9] 

A[8] := 

LO * 0[8] 

/INC * A[8] 

+ 

+ 

+ 

" RECIRCULATE VALUE " 

+ " LOAD VALUE " 

+ " RECIRCULATE VALUE " 

" COUNT UP " 

" RECIRCULATE VALUE" 

" LOAD VALUE " 

+ " RECIRCULATE VALUE" 

INC * CT * ( " COUNT UP " 

IA[8] 

) + ) 

INC * ICT * A[12] 

A[11] := 

LO * 0[11] 

/INC * A[1l] 

INC * CT * ( 
IA[l1] * A[10] * A[9] 

A [8] 

) 

A[l1] * IA[10] 

A[ll] * IA[9] . 

A[l11 * IA[B] 

INC * ICT * A[l1] 

" RECIRCULATE VALUE" 

+ " LOAD VALUE " 

+ " RECIRCULATE VALUE" 

" COUNT UP " 

+ 

" RECIRCULATE VALUE " 

INC * ICT * A[8] 

END. 

Figure 3-106.b PLPL Specification for the 68020 DMA Controller Logic (Continued) 
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" THIS IS THE PLPL SPECIFICATION FOR THE LOWER·LOWER A[n := 

BYTE OF THE 68020 DMA ADDRESS POINTER. LD * D[n + II LOAD. VALUE II 

• VINEET DUJARI 08/19/86 II /INC * Am + II RECIRCULATE VALUE" 

INC * " COUNT UP " 
DEVICE LOWER_LOWER_ADR]TR (AmPAL22V10) lAm * A [6] * A[5] * 

A[4] * A[3] * A[2] * 
PIN Am * IA[6] + 

CLI( = 1 VCC = 24 Am * IA[5J + 
Dm = 2 Am = 23 Am * IA[4] + 
Df6] = 3 A [6] = 22 Am * IA[3] + 
D[5] = 4 A[5] =21 Am * IA[2] 
D[4] = 5 A[4] = 20 ) ; 
0[3] = 6 A [3] = 19 

D[2] = 7 A[2] = 18 A [6] := 

NC1 = 8 NC3 = 17 LD * D[6] + " LOAD VALUE " 
NC2 = 9 NC4 = 16 IINC * A[6] + " RECIRCULATE VALUE" 
LD = 10 NC5 = 15 INC * II COUNT UP " 

~ INC =11 CT = 14 IA[6] * A[5] * A[4] * 

~ GND = 12 ENB = 13 ; A[3] * A[2] + 
A[6] * IA[5] + 

" THIS DEVICE GETS A LOAD INPUT (LD) FRC»4 THE CPU A[6] * IA[4] + 

THAT LOADS THE VALUE FRC»4 THE DATA BUS TO THE A[6] * IA[3] + 

COUNTER REGISTER. INCREMENT CONTROL (INC) INCREMENTS A[6] * IA[2] 

THE COUNTER. COUNT (Cl) CONTROL IS GENERATED FOR ) ; 
THE UPPER· BYTE. II 

A[5] := 

BEGIN LD * D[5] + II LOAD VALUE II 

IINC * A[5] + " RECIRCULATE VALUE II 

IF ( ENB ) THEN ENABLE ( A[7:2] ) INC * " COUNT UP II 

IA[5] * A[4] * A[3] * 
A[2] + 
A[5] * IA[4] + 

A[5] * IA[3] + 

A[5] * IA[2] 

) ; 

Figure 3-106.c PLPL Specification for the 68020 DMA Controller Logic (Continued) 



A[4] := 

LO * 0[4] + II LOAD VALUE II 

IINC * A[4] + II RECIRCULATE VALUE II 

INC * II COUNT UP II 

IA[4] * A[3] * A[2] + 
A[4] * IA[3] + 

A[4] * IA[2] 

) ; 

A[3] := 

LO * 0[3] + II LOAD VALUE II 

/INC * A[3] + II RECIRCULATE VALUE II 

INC * II COUNT UP II 

IA[3] * A[2] + 
A[3] * IA[2] 

) ; 

A[2] := 

LO * 0[2] + II LOAD VALUE II 

IINC * A[2] + II RECIRCULATE VALUE II 

INC * II COUNT UP II 

IA[2] 

) ; 

CT := A[7] * A[6] * A[S] * A[4] * A[3] * A[2] 

END. 

Figure 3·106.c PLPL Specification for the 68020 DMA Controller Logic (Continued) 
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~ 
t.l 
en 

State 

IDLE 

BRa 

BGT 

RSO 

RSl 

RS2 

RS3 

RS4 

RS5 

WSO 

WSl 

WS2 

WS3 

WS4 

WS5 

BR BGACK 

0 0 

1 0 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

AS DS R/W- INC_SRC 

Z Z Z 0 

Z Z Z 0 

Z Z Z 0 

0 0 R 0 

1 1 R 0 

1 1 R 0 

1 1 R 0 

1 1 R 0 

0 0 R 0 

0 0 W 1 

1 0 W 1 

1 0 W 0 

1 1 W 0 

1 1 W 0 

0 0 W 0 

TABLE 3-18. OUTPUT TABLE 

Outputs 

ENB_SRC INC_DST ENB_DST DATA_ENB DATA_LTH CTR_DEC SIZl SIZO 

0 0 0 0 0 0 Z Z 

0 0 0 0 0 0 z Z 

0 0 0 0 0 0 z Z 

1 1 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 

1 0 0 0 1 1 0 0 

1 0 0 0 0 1 0 0 

0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 1 1 0 0 0 0 

0 0 1 1 0 0 0 0 

0 0 1 1 0 0 0 0 

0 0 1 1 0 0 0 0 



3.4.4 INTERFACING TO THE 8088/80188 

Overview 

The 8088 CPU is an 8-bit processor designed around the 8086 
internal structure. Most functions of the 8088 are identical to 
the equivalent 8086. The 8088 fetches and writes 16-bit words 
in two consecutive bus cycles. Both the 8086 and the 8088 
handle the external bus the same way but the 8088 handles 
only 8-bits at a time; and both appear identical to the software 
engineer, with the exception of execution time. 

The hardware interface of the 8088 contains the major differ­
ences between the two CPUs. The pin assignments are nearly 
identical, however, with the following functional changes: 

Aa-A15 These pins are only address outputs on the 
8088. They are latched internally and remain 
valid throughout a bus cycle in a manner 
similar to the 8085 upper address lines. 

SSO Provides the SO status information in the mini­
mum mode. This output occurs on pin 34 in 
minimum mode only. 

DT/R, 101M, and SSO provide the complete bus status in 
minimum mode. 

101M has been inverted to be compatible with the 
MCS-85 bus structure. 

ALE is delayed by one clock cycle in the minimum mode when 
entering HALT, to allow the status to be latched with ALE. 

The 8088 and AMD Proprietary Peripherals 

The evolution of chip design has taken the 8-bit environment 
into the 16-bit environment. While the new generation of pe­
ripheral devices are often 16 bits wide, the older, established 
8-bit orientation of CPUs and peripherals are still significant. 
Interfacing a 16-bit peripheral with an 8-bit CPU often encoun­
ters data path incompatibility and involves bus control 
manipulation. This type of integration mainly involves separat­
ing the control and data paths from the new peripheral and the 
system. 

The ability to mix different data path widths can improve sys­
tem functionality, performance, and cost. It is less expensive to 
use an 8-bit bus in a new design because the memory require­
ments are generally cheaper. A designer can use this data path 
mixing to upgrade the existing system until a new system 
design is warranted, or the designer can simply improve on the 
existing design as new peripherals become available. AMD 
makes a number of proprietary peripherals and the following 
sections show users with 8-bit systems how to incorporate 
those AMD products into their designs. 

8088 and Am8052 CRT Controller Interface 

The interface technique between the Am8052 CRT Controller 
and an 8-bit microprocessor also applies to the 8088 and 
Am8052 interface. 

There are two fundamental issues associated with mixing 
devices that communicate over different-sized buses. The first 
problem is allowing the two devices to communicate on a 
"common" data bus. Consider, for example, a 16-bit system 
utilizing 8- and 16-bit peripherals. Overcoming the mismatched 
data paths requires some form of controlled multiplex­
ingldemultiplexing of the different data paths. In addition, extra 
control signals for partitioning the 16-bit word into 8-, and 16-bit 
units may be required. Today, most of the 16-bit CPU based 
systems that use 8-bit peripherals usually use just the lower 
half of the data bus to transfer data to and from the peripheral. 
However, this scheme does not work when interfacing 16-bit 
peripherals to 8-bit CPUs, especially when these peripherals 
have bus master capability. 

Data Funnelling 

When a 16-bit peripheral attempts to transfer data over an 8-bit 
bus (memory write cycle or slave read cycle), the 16-bit data 
bus has to be broken down into two bytes and transferred 
sequentially. First, the lower 8-bits are transferred out on the 
bus (Figure 3-107.a), and then in the next transfer cycle the 
upper 8-bits of the 16-bit word are sent out (Figure 3-107.b). 
The generalized bus timing for such an operation is shown in 
Figure 3-107.c. Figures 3-108.a, 3-108.b, and 3-108.c show 
the opposite case; a bus read operation from an 8-bit bus to a 
16-bit peripheral. Here, the first byte read from the system 
must be latched. Once the second byte has been fetched, the 
16-bit peripheral reads in the assembled 16-bit (2-byte) word. 
Additionally, provisions may need to be made for the case 
when the 16-bit peripheral accesses single bytes. 

Interruptions of the two cycle transfer must be analyzed very 
carefully. Master transfers may not be interrupted by slave 
accesses while being in the middle of a two-cycle transaction. 
Similar, slave accesses may not be interrupted by master 
transfers. While the interface funnels the data, the current bus 
cycle needs to be stretched. When the peripheral is bus mas­
ter, as shown in Figures 3-107.a, 3-107.b, and 3-107.c, the 
16-bit peripheral is holding its data available for what would 
normally be two complete bus transfer cycles. This stretch can 
be achieved by delaying the transfer acknowledge signal to the 
peripheral, causing it to wait (WAIT asserted). 

In slave mode, the 8-bit CPU would have to make two con­
secutive read operations to examine a 16-bit peripheral status 
register. The peripheral must not become bus master in­
between the first and second read operations since this in­
validates the results of the first read operation. This function 
can be handled in two different ways: if the CPU has a bus lock 
instruction (for example, like the iAPX family of CPUs), then the 
programmer uses one of these before the CPU accesses the 
peripheral. Alternately, the CPU can disable the arbitration 
logic while it is performing the critical uninterruptible slave 
transfer. 
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a) 16 BIT 
DEVICE 

16 BIT 

a BIT 
SYSTEM 

a BIT 
SYSTEM 

b) DEVICE 

ADDRESS --< 'u A
1S

-A
1 

\. ___________________ ---J~ 

Ao~~ ____________ ~1 

c) a-BIT ------{(:JD~<~7~:O~>:::})----~{C2D~<~15~:a~>~>--DATA BUS . . . . 

WR,RD \ I \ r-. 
DAT!;~~---<\. ________ ~D_<~15~:O~> _________ ~· }---

MEM/IO , r--
ArC .... Kr.N .... O:nWrr:L;;;ED~G;.;:E "-.J '\-J . 

Figure 3-107. Bus Master Write or Slave Read Operation 
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Developing the Control and Data Transfer Interface 

Designing the control interface to allow mixing 8- and 16-bit 
peripherals requires an analysis of the data and control flow. 
The data flow automatically defines the data path design (see 
Figures 3-107 and 3-108). The bus master operation by the 
peripheral is relatively straightforward. During a write opera­
tion, the data is written out sequentially: the lower byte first and 
then the upper byte (or vice-versa). During a read operation, 
the data is fetched sequentially. The byte fetched first is 
latched, to hold the data until the peripheral can read it. In the 
second byte read cycle, the remaining byte is fetched, the 
16-bit word is assembled from the two bytes, and the 16-bit 

a) 

b) 

c) 

16 BIT 
DEVICE 

16 BIT 
DEVICE 

ADDRESS --< 
A,s-A, 

Ao 

8-BIT DATA 
BUS 

WR, RD 

16-81T DATA 
BUS 

MEMIIO 
ACKNOWLEDGE 

( D < 15:8 > 

\ 

word is loaded into the peripheral. Similarly, WAIT is asserted 
until the second byte read cycle can be te~minated. 

The slave mode of operation works almost identically to the 
perip~eral bus master mode. The master read cycle is similar 
to the slave write cycle, and the master write cycle is similar to 
the slave read cycle. In general, if the peripheral puts data on 
the narrower system bus, the peripheral can keep the data 
active in both sequential system bus cycles. On the other hand, 
if data is loaded into the peripheral, the interface logic has to 
latch the data of the first fetch cycle, whereas the data of the 
second cycle can be loaded directly into the peripheral (no 
latching required). 

\ 
) < 

I \ 
( 

8 BIT 
SYSTEM 

8 BIT 
SYSTEM 

>-
I 

D < 7:0 > ~ 

r-
D < 15:0 > 

02188A-46 
Figure 3·108. Bus Master Read or Slave Write Operation 
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When defining the interface, the designer must make a con­
scious choice of which byte (upper or lower) to latch during 
peripheral read operations (or conversely, slave peripheral 
write operations). Once this decision has been made, the CPU 
must always access the latched data byte first (during a slave 
write) and then access the non-latched byte to complete the 
transfer. This· restriction is a minor one with no extra software 
overhead; yet it could affect the ease of the programmer's 
coding if not handled properly. For example, if the programmer 
uses a compiler to generate the software for the system, extra 
care may be necessary to ensure that the compiler generates 
the correct addressing sequence. An alternative to this solution 
would be to latch both the upper and lower data bytes. In that 
case, the cost of the interface would be increased, as would 
the complexity, with no gain in performance. 

The state diagram (Figure 3-109) illustrates the control se­
quence implemented in the 8!16-bit bus control logic. It also 
depicts how uninterrupted word transfers will occur and how 
the addresses for upper and lower bytes are generated. In 

cr.0
AS =1+ 

SO CS=1 + 
MROY=1 

AS=O· RW=1 • MRDY=O 

(s):JMRDV=' 

TMRDV=' 

8:JMRDV
=' 

T MRDV=' 

8:JMRDV
=' 

TMRDV=' 

addition, the specific bus timing of the peripheral and the data 
bus must be examined to quantify the state control flow and' 
provide information on data latching, read/write control 
strobes, and addressing to and from the peripheral. The state· 
control flow is broken down Into three parts bus master read, 
slave read, and slave write operations. 

The three control signals that must be generated by the 8/16- , 
bit control unit are: Address bit 0 (Ao), peripheral hold (WAIT), 
and bus read (R D). The Ao line is generated by the control 
logic to indicate which byte is to be transferred in bus master 
modes only. Otherwise, the Ao generated by the system is 
used to indicate which byte is being accessed. The WAIT line 
holds up the peripheral during transfers. The RD line is re­
quired to indicate successive transfer cycles on the bus. The 
peripheral's control signals strobe active only once, because 
the two-cycle transfer must be kept hidden from the peripheral. 

The slave transfer flow is almost identical, except that the CPU 
is generating the bus signals and the transfer directions are 
reversed, that is, a bus write goes into the peripheral. 

COMMENTS 

WAIT TILL PERIPHERAL TAKES BUS; 
MAKE SURE MEMORY ACKNOWLEDGE IS 
NOT ASSERTED. 

READ IN UPPER BYTE; Ao=1; 
WAIT FOR MEMORY ACKNOWLEDGE; 
ISSUE RD STROBE. 

WAIT FOR MEMORY ACKNOWLEDGE 
TOGO AWAY. 

READ IN THE LOWER BYTE; Ao=O; 
WAIT FOR MEMORY ACKNOWLEDGE; 
ISSUE RD STROBE. 

STROBE IN DATA TO PERIPHERAL; 
DEASSERT WAIT; 
WAIT FOR SUCCESSFUL READ. 

02188A-47 

Figure 3·109. Bus Master Read State Flow-Control 
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The conceptual logic for the 16- to a-bit data flow example is 
shown in Figure 3-110. The data on the upper byte is latched 
when data is being read (as a bus master) and read or written 
(as a bus slave). Although this interface must latch data com­
ing from the 8-bit data bus into the peripheral, it also needs to 
act as transceiver when the peripheral is sending data out to 
the system. The ideal part to accomplish such an interface 
would be one that has a three-stated output, with an a-bit wide 
latch, in one direction and a three-stated driver in the other 
direction. The Am2952 8-bit bidirectional 1/0 port combines the 
upper data bus latch and upper data driver chips into one IC. It 
provides two a-bit clocked 1/0 ports, each with three-state out­
put controls and individual clocks and clock enables. An 
Am2949 bidirectional bus transceiver completes the logic re­
quired to buffer the data path. 

The state flow control requires logic capable of sequentially 
moving from state to state, holding in a particular state, and 
being reset or initialized back to a predefined state. This design 
integrates the state machine generator and the control signal 
logic into the same Programmable Array Logic (PAL) device. 

A considerable amount of logic is required to generate the 
data-path flow logic and the bus control signals. This is espe­
cially true if the peripherals and CPUs have different signal 
conventions (for example, AS, OS, and RNi versus ALE, RD, 
and WR). Conversion between different signal conventions, 
signal polarity changes, and extra functions (such as generat­
ing Ao) requires quite a bit of logic and design effort. If the 
peripheral has bus master capability, additional information, 
such as bus arbitration controls, must be fed into the next state 
determination logic to decide what control sequence to follow. 

STATE 
MACHINE ••• ------- CS 

• OS .... f-----.... 

RiW .... f-----.... 

WAIT ~-------t 

PERIPHERAL 
SIDE 

BUS • .~~----.. Ao 
CONTROL 

TRANSLATION • .~-----.. RD 
LOGIC 

& • ..------WR 
FUNNEL LOGIC 

CONTROL 

DATA 
FUNNEL 
LOGIC 

• ..------ MEMACK 

CONTROL 
LINES 

CPU 
SIDE 

Figure 3-110. Conceptual 16/8-Bit Conversion Logic 
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Figure 3-111 shows a typical B/16-bit control interface which 
combines all the individual components discussed above. The 
state machine and the bus and latch controls have to be tightly 
coupled in order to transfer data between the B-bit and 16-bit 
buses. The generalized machine is designed under the as­
sumption that the peripheral has bus master capability. If this is 
not the case, the design can be greatly simplified. 

Since the CRTC does not modify system memory, no provision 
for a bus master write operation is required. This is important 
because it eliminates the need to generate a system write 
control signal (WR). In addition, the control and display infor­
mation will always be aligned on word boundaries. This 
relieves the B/16-bit control logic from worrying about funneling 
the bytes and performing odd/even byte transfers. It also saves 
control inputs from the AmB052 because all transfers are 
words; there is no need for upper and lower data strobes or 
byte high enable inputs/outputs. 

The slave accesses by the CPU are either pointer writes (to 
select the desired control/status register) or 16-bit data 
read/write operations. The pointer write operation is really an 
B-bit operation because only the lower B bits of the data form 
the register address. The three different transfer timings are 
shown in Figures 3-112, 3-113, and 3-114. 

Two special conditions have been incorporated into the state 
flow diagrams whenever a transfer is first initiated. Before a 
new transfer cycle is attempted (that is, while the state ma­
chine is waiting in SO), the memory acknowledge must be 
inactive. This prevents any interference from the last transfer. 
The second special condition occurs when the AmB052 
asserts the RiW line to indicate a write operation. Whenever 
the AmB052 updates the upper 8 bits of the 24-bit address 
latch, the RiW line indicates a write operation (in conjunction 
with AS). The AmB052 is not actually performing a system data 
write, only an address latch update. Hence, the state flow 
reflects this fact by not starting a sequence if the RiW line is 
active Low from the AmB052. 

ClK 
IA~2-·-l 

I 
ClKEN ------+------,~ I 

OE ---------+--.. 

D < 15:8 > 

OE ------I 

TEN -------------'1 
REN--l 

D < 7:0 > 

Am2949 

I 

Figure 3-111. Data Funnel Logic 
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MEMACK 
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Ao 
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Figure 3·112_ Bus Master Read Timing Diagram 
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Figure 3·113. Slave Read Timing Diagram 
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Figure 3-114. Slave Write Timing Diagram 

These simplifications make it possible to combine the Am8052 
to an 8-bit CPU control interface in a single AmPAL22V10 
device (Figure 3-115) which also converts the bus control 
signals from AS, DS, and Rm to RD and WR. Figure 3-115 
shows the assembled control and data transfer logic for this 
interface. The minimum Am8052 and bus control signals that 
have to be generated are RD, Ao, DS, Rm. Although OS and 
RiW are used as inputs during a bus master operation by the 
Am8052, the AmPAL22V1 0 must convert the CPU R D and W R 
signals to OS and RiW for slave 1/0 operations. The signals Ao 
and R D are generated by the control logic when the Am8052 is 
performing a read access to the system. The WAIT (or not 
READY) signal to the Am8052 also needs to be generated by 
the control logic. Additionally, the four control signals of the 
bidirectional port and transceiver are generated. 

Trade-Ofts and Limitations 

In a design dramatically affecting the 1/0 of th.e system, a 
number of trade-offs and limitations should be noted. The most 
obvious limitation in using 16-bit peripherals on an S-bit bus is 
that the 16-bit peripheral will be under-utilized. The speed of all 
1/0 operations will be cut by 50%. Consequently, the bus 
utilization percentage will go up if the 16-bit peripheral 
represents a significant factor of the bus usage. A CRT control­
ler like the Am8052 might use 5% to 10% of the bus bandwidth 
for display information when using 16-bit 1/0. Converting to 
S-bit 1/0 would double bus usage to 10% or 20%. 
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Figure 3-115. Am8052 8-Bit Interface 

Another factor that might affect the bus usage is the efficiency 
of the 8- to 16-bit conversion control logic. If the state machine 
designed to perform the 8/16-bit conversion (or 16/32-bit) is 
improperly designed; then extra transfer overhead may be in­
troduced. This could mean that a sequential transfer of two 8-
bit values takes longer than two single 16-bit transfers. The 
system designer must weight the cost of the extra overhead on 
a case-by-case basis. Most interfaces outside a system's im­
mediate family require some kind of extra interface logic 
anyway. Therefore, by optimizing the control Signals and incor­
porating them into programmable logic devices such as the 
AmPAL22V10, the IC count can be dramatically reduced. 

8088 and AmZ8068 Data Ciphering 
Processor Interface 
Figure 3-116 shows the CPU-DMA interface. The CPU is op­
erating in Maximum Mode. The bus arbitration handshake of 
the DMA controller (HREQ and HACK) must be translated into 
the Bus Request/Grant handshake of the 8088 CPU. 

If the CPU is programmed to operate in Minimum Mode, both 
devices have the same bus arbitration handshake. The HREQ 
and HACK of the DMA controller can be connected directly to 
the corresponding pins of the CPU (HREQ to HACK). 
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The central part of this interface is a PAL device, which has 
been programmed for the 8088 CPU timing. The PAL equation 
for this interface is shown in Figure 3-121. The Chip Select 2 
(CS2) input of the PAL device must be stable during the 
entire I/O transfer. This is guaranteed by decoding CS2 from 
the latched address/data bus of the 8088 (Ao-A15 in Figure 
3-116). 

~ 
8288 , 

~ ClK 8088 
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(5-8 MHz) 

RO/GT ~ 8284 1) 

-+ READY ~ CS11. 
ADa-AD15 DECODER [ , CS3 CS:z r 
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~D ClK 
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10WC 
IORC 

READY DACK 
ClK1 

ClK2 
ClK 
MAS 

MDS 

AmPAL16R4A 

Master Port ReadlWrite is latched in the 0 Flip-Flop. It is 
clocked in an output operation with C S3 active. One of the data 
lines is latched in to define the status on the MRIW input. This 
is necessary because the DCP requires a set-up time of 100 ns 
of MRIW to the Data Strobe. Generation of MRIW for each 
cycle of a high-speed data transfer session of the DMA control­
ler would extend each cycle and slow d()wn the maximum 
throughput. This logic cannot be integrated into the PAL device 
because of the flip-flop's asynchronous clock. 
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Figure 3-116. 8088-Am9517-AmZ8068 Interface 
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Before executing an access to the DCP, the CPU must latch 
the MRIW. The transfer itself is evaluated In a two-cycle opera­
tion. 

Master Port Address Strobe (MAS) is only generated if the CPU 
executes an output instruction to a specific I/O address (CS2 
active, Ao=Low) (Figure 3-117) Address Latch Enable of the 
CPU (ALE) canno,t be used for the generation of M~S because 

the CPU must set up the DCP for data transfer before a DMA 
transfer session is started. The DCP is set up by putting out a 
OOH (data register address) to the I/O address mentioned 
above. 

Figures 3-118 and 3-119 show data read and write cycles. 
Figure 3-120 shows DMA data read and write cycles. 

VALID X"' ___________________ _ 

DMAClK, 
DCP ClK 

R/W 

. Ao (lATCHED) 

-------------------------------------------------------

--------------~~--------------+-------------~~-----
READY ---------------+-~ 

(ASYNCHRONOUS TO CPU) 

\\.-_--11 

02188A-55 

Figure 3-117. Address Latch Cycle Timing (CPU-OCP) 
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ADDRESS ___ J X VALID X'-__________________ _ 

DMAClK, 
DCP ClK 

R/W 

Ao 

READY 

---------------------------------------------------

Figure 3-118. Data Write Cycle Timing (CPU-DCP) 
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ADDRESS 

ALE 

DMACLK, 
DCP CLK 

R/W 

READY 

X 
-.l 

VALID X 

C( ===----J/~ 

02188A·57 

Figure 3-1.19. Data Read Cycle Timing 
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Figure 3-120. DMA-DCP Timing Diagram 
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I ( 

PALl6R4 PAL DESIGN SPECIFICATION 
DCP049 JUERGEN STELBRINK 8-12-83 
8088- AM95l7(DMA)- AMZ8068(DCP) INTERFACE DEVICE 
ADVANCED MICRO DEVICES 

CLKl CLK2 /CS /IOR /IOW AO 
JOE /MDS READY /Q1 /Q2 /Q3 

MAS := IOW*/IOR*CS*/AO*/Q3*/MAS 

Ql := CS*IOR*/IOW*RW*/Q2 + 
CS*IOW*/IOR*/RW*/Q3 + 
DACK*IOR*/IOW*RW*/Q2 + 
DACK*IOW*/IOR*/RW*/Q3 

\ Q2 ~= CS*IOR*/IOW*RW*Ql + 
r I CS*IOR*/IOW*RW*Q2 + 

DACK*IOR*/IOW*RW*Ql + 
D~,CK*IOR* /IOW*RW*Q2 

Q3 .- CS*IOW*/IOR*/RW*Q1 + 
CS*IOW*/IOR*/RW*Q2 + 
DACK*IOW*/IOR*/RW*Ql + 
DACK*IOW*/IOR*/RW*Q2 

MDS CS*AO*IOR*/IOW*RW + 
DACK*IOR*/IOW*RW + 
Q2*AO + 
CS*AO*IOW*/IOR*/RW*/Q3+ 
DACK*IOW*/IOR*/RW*/Q3 

/READY CS*/AO*IOW*/IOR*/RW*/Q3+ 
CS*AO*IOW*/IOR*/RW*/Q3 + 
CS*AO*IOR*/IOW*RW*/Q2 

/CLK CLK2 

FUNCTION TABLE 

CLKl CLK2 /CS /IOR /IOW /D~CK AO RW 

/ 
i C C / / D / / 

L L / I I A C M M 
K K C 0 0 C A R L A 0 
1 2 S R W K 0 W K S S 

RW 
/MAS 

/DACK NC GND 
NC CLK VCC 

; ~~STER PORT ADDRESS STROBE 

MASTER PORT READ 

MASTER PORT WRITE 

ADDRESS LATCH CYCLE 
DATA WRITE CYCLE 

DCP CLOCK 

CLK /MAS /MDS READY /Ql /Q2 /Q3 

R 
E 
A / / / 
D Q Q Q 
Y 1 2 3 COMMENT 

---------~---------------------------------------------------
CLOCK GENERATION 
X L X X X X X X H X X X X X X 
X H X X X X X X L X X X X X X 

ADDRESS LATCH 
C X H H H H L L X H H H H H H CPU 
X X L H L H L L X H H L H H H 

Figure 3-121. Source Listing for 8088 to Z80S8 DCP Interface 
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C X L H L H L L X L H L L H H 
C X L H L H L L X H H H L H L 
C X H H H H ·L L X H H H H H H 
READ DATA 
X X H H H H H H X H H H H H H CPU 
X X L L H H H H X H L L H H H 
C X L L H H H H X H L L L H H 
C X L L H H H H X H L H L L H 
C X L L H H H H X H L H H L H 
C X H H H H H H X H H H H H H 
X X H L H L X H X H L H H H H CYCLE S3 (DMA) 
C X H L H L X H X H L H L H H 
C X H L H L X H X H L H L L H CYCLE S4 
C X H H H H X H X H H H H H H CYCLE S2 
WRITE DATA 
X X L H L H H L X H L L H H H CPU 
C X L H L H H L X H L L L H H 
C X L H L H H L X H H H L H L 
C X H H H H H L X H H H H H H 
X X H H L L H L X H L H H H H CYCLE S3 (DMA) 
C X H H L L H L X H L H L H H 
C X H H L L H L X H H H L H L CYCLE S4 
C X H H H H H L X H H H H H H CYCLE S2 
INVALID CYCLES 
X X L L L H H H X H H H H H H 
X X L L H H H L X H H H H H H 
X X L H L H H H X H H H H H H 

----------------------------------------------------------------
DESCRIPTION: 

THIS PAL GENERATES ALL NECESSARY BUS CONTROL SIGNALS, TO 
INTERFACE A 8088 CPU AND A AM95l7 DMA CONTROLLER TO THE AMZ8068 
DATA CIPHERING PROCESSOR. THE MAXIMUM SYSTEM CLOCK FOR THE DMA 
CONTROLLER AND THE DCP IS 4 MHZ, THE SYSTEM CLOCK OF THE CPU CAN 
BE UP TO 8 MHZ. THE DEVICES ARE WORKING ASYNCHRONOUSLY. 

INPUT SIGNALS: 

CLKl, DMA CLOCK 
CLK2 

/CS CHIP SELECT FOR THE DCP, GENERATED BY A DECODER LOGIC 

/IOR INPUT/ OUTPUT READ 

/IOW INPUT/ OUTPUT WRITE 

AD LEAST SIGNIFICANT BIT OF THE Z80 ADDRESS BUS TO SELECT 
THE TYPE OF OPERATION: 
AO LOW SELECT DCP REGISTER FOR NEx'r DATA CYCLES 

(ADDRESS LATCH) 
AO = HIGH READ OR WRITE INTERNAL REGISTER 

Figure 3-121. Source Listing for 8088 to Z8068 DCPlnterface (Continued) 
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/DACK 

RW 

(DATA TRANSFER TO CONTROL, MODE, INPUT OR 
OUTPUT REGISTER) 

DMA ACKNOWLEDGE FROM DMA CONTROLLER, TREATED.AS /CS=LOW 
AND AO=HIGH 

READ/ WRITE SIGNAL STORED IN A EXTERNAL LATCH, TO ALLOW 
A DMA OPERATION WITHOUT WAIT STATES. THIS SOLVES THE 
PROBLEM OF THE SETUP TIME OF MR/W OF THE MASTER PORT TO 
MDS GOING ACTIVE. THE STATUS OF THIS SIGNAV.MUST AGREE 
WITH /IOR OR /IOW OR THE PAL GENERATES NO STROBES. 

OUTPUT SIGNALS: 

CLK 

/MAS 

/MDS 

/Ql, 
/Q2, 
/Q3 

INVERTED DMA CLOCK FOR THE DCP 

MASTER PORT ADDRESS LATCH ENABLE, ACTIVE DURING ADDRESS 
LATCH CYCLES TO LATCH THE REGISTER ADDRESS ON MPl AND MP2 
(2 LINES OF THE MASTER PORT BUS) AND THE STATE OF /MCS 
IN. THEDCP STORES INTERNALLY THE ADDRESS AND CHIP SELECT 
TO THE NEXT ADDRESS LATCH CYCLE 

MASTER PORT DATA STROBE, TO TIME DCP DATA TRANSFERS 

INTERNAL USED STATE SIGNALS (DO NOT CONNECT). Ql IS ACTIVE 2 
CLOCK CYCLES IN ALL CYCLES. IT IS USED TO GENERATE THE DELAYED 
Q2 AND Q3. Q2 IS ACTIVE IN A DATA READ CYCLE. IT ALLOWS /MDS 
TO BE ACTIVE UNTIL /IOR HAS GONE INACTIVE. Q3 IS ACTIVE IN AN 
ADDRESS LATCH OR DATA WRITE CYCLE. Q3 DISABLES READY AND /MDS 
IN THE SECOND HALF OF THE CYCLE. 

Figure 3-121. Source Listing for 8088 to Z8068 DCP Interface (Continued) 
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8088 to Am9516 UDC Interface 
Figure 3-122 shows the Data bus and Control Interface be­
tween an 8088 microprocessor and an Am9516. This interface 
is accomplished by using an AmPAL22V10, a 74LS161 
counter, an Am2952 bidirectional I/O port, and an Am2949 
bidirectional transceiver. Figures 3-123 and 3-124 show the 
PAL device timing for both the Bus Master and the Bus Slave 
cases. 

In this design, certain simplifying constraints have been made. 
Word operations are only allowed during command chaining 
operations when the Am9516 is Bus Master. During Slave 
Write operations, the first byte output to the Am9516 must have 
an odd address, and the following second byte an even ad­
dress. Conversely, during a Slave Read cycle, the first byte 
read from the Am9515 must be at an even address and the 
second at the next higher odd address. Furthermore, for both 

slave and master operations, the system must use the latched 
Ao (LAO) from the AmPAL22V10 as its sole AO. That is, this 
LAo must circumvent any address latching to memory and so 
is to be used directly. 

As can be seen from the figures, the AmPAL22V10 manip­
ulates the control signals to the transceivers and latches so 
that bytes can be funneled into words during Am9516 Com­
mand Chaining operations and Slave Writes, and words can be 
funneled into bytes during Am9516 Slave Reads. Also, LAO is 
alternately toggled in order to provide the dual address (16-
bits) during chaining operations. 

Figure 3-125 shows the PLPL equations and resulting sum-of­
products equations for the design (PLPL is a higher level "C­
like" language for PAL devices). For those not familiar with "C" 
or Pascal, the intermediate sum-of-products form shows the 
equations in Boolean form. 

vee ... 

oc 

I I 
MIIOHOLD .+--+------------________ ~ BREQM/IO 

HLDA BACK 

ALE 1 ALE 

8088 1m ...--I-.... -+------..... /RD ALE HLDA IBW 1+----1 B/W 9516 
WR ~ IWR IDSI+--__ ~ OS 

>--+ READY AmPAL IRW I.. R/W 

...-1H-+-+------+I ~ RESET 22V10 IWAIT WAIT 
.-----ILAo _8088_9516 CK I+-....... __ ~ CLOCK 

RESET r~ RESET 

ADo-AD7 Ao --+ Ao So SI S2 IA IB ,:::

L I~ ADo-ADI5 CS l*-

I I~---~~~----e 

NIC QA Qs Qe 
L Q 74LS161 

~)o----<l 0 CLOCK.<J.oIH-+-HH....-_-J 

.---..... H-+-+-""'llL-~ CL~A~ LOAD 

~~ 

1 

CLOCK 

16 

... V"8 

-
.... '7 

2952 
CEs OEBs I+-
ClR OEBR 

CDR_S 

4F-

Figure 3-122. The Am9516 UDC to 8088 CPU Data Bus and Control Interface 
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Am'S18 
CLOCK 

ALE ~------------- -----SLAV'w"nL.·-_-_____ ---ln .... _____ -S_LAV_" .... EAon --------=s 
LATCHED .. 

ISEL ~L.-_\r;>--___ ---.J 

m~~~ ~~~ ____ ~ ____ ~_ 

Figure 3·123. The Am9516 UDC to 8088 CPU Bus Slave Timing 

ALE ~'--______________ ___' 

xxx 
~ ________ ~r__l~ ________ ~r___l~ ______ .... 

I 

1.....-_--1,-
L--____ -Ir 

LJ LJ 

S,=" L 
~ ________ ~nL _________ ~r_ 

02188A-62 
Figure 3·124. The Am9516 UDC to 8088 CPU Bus Master Timing 

3-156 



DEVICE _8088_9516 (pa122VlO) 

"This is a PLPL file to implement an interface between the 8-bit 
8088 and the 16-bit Am9516. This design assumes that the Am95l6 
is programmed for byte operations and so only accesses l6-bit 
words during chaining. -James Williamson" 

PIN 

CK 1 IRD 23 
S[0:2J 2:4 IWR 22 
AD 5 LAO 21 
ISEL 6 IDS 20 
ALE 7 IRW 19 
HLDA 8 IWAIT 18 
IBW 9 IA 17 
READY 10 IB 16 
RESET 11 Ic 15 

BEGIN 
ID =' 14; 

IF (RESET) THEN ARESET(): 
II ============================================================== II 
"This section defines the wiggles when the Am9516 is Bus Master" 
11==============================================================11 

IF (HLDA) THEN ENABLE(); 
IF (/s[2J * HLDA) THEN BEGIN 

IF (/S[lJ * IS[OJ) THEN 

ELSE 

END; 

LAO ICK * BW + IBW * AD * ALE + 
IBW * LAO * IALE 

LAO BW + IBW * AD * ALE + 
IBW * LAO * IALE 

IF (HLDA) THEN 
CASE (S[2:0J) 

BEGIN 
1) BEGIN 

RD 

END; 

A 
WR 
C 
WAIT 

2) BEGIN 
RD 

END; 

B 
A 
WR 
C 
WAIT 

IRW * DS 
IBW * IRW * ICK 
IBW * RW * DS 
IBW * RW 
1 

IRW * DS 
BW 
IBW * IRW 
IBW * RW * DS 
IBW * RW 
BW 

Figure 3-125. Pl.Pl. Specification for 8088 to Am9516 Interface 
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3 ) BEGIN 
RD /RW • DS • B 
B BW'· CK 
A /BW • RD 
WR /BW • RW • DS 
C /BW • RW 
WAIT BW 

END: 

5) BEGIN 
RD /RW • DS 
A /BW • /CK 
WAIT BW 

END: 

6) BEGIN 
RD /R'fl • DS 
A BW 

END: 

7 ) BEGIN 
RD /RW • DS 
A /RD 

END: 

END; 

"===============================================================" 
"This section defines the wiggles when the 8088 is Bus Master" 
"=================================================~=============" 

BEGIN 

LAO AO • ALE • SEL + 
LAO • /ALE • SEL 

B LAO * WR * SEL 
A /LAO • WR * SEL 
DS A + 

/LAO • RD· SEL 
C /LAO • RD • SEL 
D LAO • RD * SEL 

END; 

END. 

Figure 3-125. PLPL Specification for 8088 to Am9516 Interface (Continued) 
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Am7970A CEP Interface to the 80188 CPU 

This application note shows how to use the 
Am7970A CEP in a low-cost environment. The 8-
bit data interface of the CEP to the 8-Bit 80188 
microprocessor is simple. It reduces the number of 
additional drivers, latches and control logic to an 
absolute minimum. The 80188 also provides an 
interrupt controller and a chip select decoder. No 
additional parts are necessary to access and 
control the Am7970A CEP. 

General Discussion 

This example assumes a single board approach 
with an onboard memory bank which may vary from 
64 kbytes to 1 Mbyte. By adding drivers to the 
control signals and to the address lines A8-A 15 it 
could easily be expanded into a bus controlled 
system. One Mbyte of memory is sufficient for 
storing the image data 0'1 one page with a 
resolution of 300 pixels per inch. This allows the 
CEP to compress or expand such a picture without 
interruption and with a minimum of software 
overhead. A smaller memory bank might be 
chosen for cost reasons. 

This design does not use the faster document 
buffer interface of the CEP. Both the image data 
and the compressed data are passed through the 
system interface. Therefore, bus arbitration is 
incurred for every single transferred byte limiting 
the use of this example to low throughput 
applications. 

It is definitely sufficient for FAX applications and 
may even serve very well for image storage 
applications where speed is not the most important 
factor. In these cases a memory bank of 64 to 128 
kbytes is sufficient because the CEP is capable of 
processing fractions of a whole page without 
producing inconsistencies in the coded image 
data. 

An additional memory bank connected to the 
document buffer interface will improve the overall 
throughput of the compression or expansion by a 
factor of four. This buffer. should be used only to 
store the image data because it requires a data rate 
approximately 10 times higher than the 
compressed data. 

Hardware Description 

Figure 3-126 is a diagram of the Am7970A CEP to 
80188 CPU interface. It shows how the address 
and data lines of the CPU and the CEP are 
transformed into a common demultiplexed memory 
bus. Additional peripheral devices could either be 
located on this memory bus or be connected 
directly to the CPU interface. 

The Am7970A CEP multiplexes the data on the 
address lines A 16-A23 while the CPU multiplexes 
data on the address lines AO-A7. These are the 
only differences between the two interfaces. All 
control signals can be used without conversion. 

The 80188 CPU provides a 50% duty cycle clock 
output which can be used to drive the CEP. If the 
CPU runs on a higher clock rate, the CEP has to be 
driven by either an additional clock generator or a 
CPU clock that has been divided down. This may 
be very useful because the CEP needs only three 
clock cycles for a memory access while the 80188 
needs four cycles .. Running the CEP with a slower 
clockrate than the CPU does not necessarily result 
in slower memory access. 

The READY signal coming from the memory 
interface must meet the setup time of the CEP 
READY input. For Revision A of the Am7970, a 
wait state must also be inserted for each memory 
access from the CEP. Figure 3-127 shows the logic 
to be added to the design above. 
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WR WR 

TO MEMORY BUS 
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l 111111 G 
A .... ADDRESS 

ADO-AD7 
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EN 
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1 Am7970A 
CPU 8 CEP 

G EN 
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Figure 3-126. Am7970A CEP to 80188 CPU Interface 07666A5-4 
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AD AD 
WR WR 

CPU CEP 

READY READY 

~------------,CS 

07666A5-S Figure 3-127. Wait State Circuit 

Operation 

80188 CPU Access to the Am7970A CEP 

The CEP has many registers which provide 
programmability of many different options such as 
paper size, memory address control, and status 
information. Access to these registers is started by 
driving the CS signal LOW. This input is driven by 
the Peripheral Chip Select Output of the 80188. 
This signal also disables the data transceiver to the 
memory bus. The different registPrs are 
addressed by the address lines AO-A7 which are 
directly connected to the CEP. The CEP drives 
READY LOW as long as it needs to move the data 
to or from the appropriate register. This operation 
is called "slave access". 

Am7970A CEP Access to the Memory 

As soon as the CEP is started, it activates its 
internal DMA device to gain control of the memory 
buffer. It signals this to the CPU by driving HRQ 
HIGH. It then waits until HLDA is driven HIGH by 
the CPU to acknowledge that the bus is released. 
The CEP then starts a memory access. HLDA also 
enables the address latch for the CEP and disable 
the ones for the CPU. The CEP releases the bus 
after each byte transfer. This operation is called 
"master access". 

The data transceiver is activated all the time except 
during a slave access. It norm'!!!Y drives data onto 
the memory bus. Only when RD goes LOW and 
CS is not active, the direction of the data 
transceiver is swnched to the opposite direction. 
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Am7979A CEP Evaluation Board 

• Interface for IBM PC/XT or IBM AT on the same 
board. 

• Automatic recognition of PC or ATenviroment. 
• Full master mode capability in IBM AT using AT 

memory for system bus access. 
• 1 MByte dynamic memory on board. 
• Dualport arbitration allows memory access from 

CEP system and document side. 
• PC/XT has full access into the on board memory 

addressing it as 16 64 kbyte blocks in page 
mode. 

• All operating modes of CEP can be evaluated 
wnh maximum performance. 

• CEP hardware reset initiated by I/O address 
access. 

• Clock rate supplied by plug in exchangableclock 
generators or from an external input. . 

• All 110 adresses are memory mapped. 
• Jumper selectable DRQ/DACK and IRQ lines. 
• Performs master access to AT memory 

The CEP Evaluation Board In An IBM PC/XT 

The IBM PC/XT does not allow another DMA 
master beside its own on-board DMA device 
working on the extension bus. Any attempt do so 
without changing the logic on the mother board will 
cause serious bus contention. That requires a 
separate memory bank dedicated to the CEP and 
accessible by the IBM PC/XT. 



It is also quite useful to have enough memory 
dedicated to the document bus to hold a whole 
page of image data with a resolution of 300 
Pixel/inch in memory. The evaluation board solves 
this problem by giving both sides of the CEP full 
access to a 1 Mbyte dynamic memory bank. That 
gives the user the freedom to asign as much 
memory to any side of the CEP as neccessary. 

The on-board "system bus" is shared by the CEP 
system interface and the CPU. So that makes it a 
three port memory design. 

Normally the "system bus" is dedicated to the CEP 
system interface. If the CPU wants to access the 
evaluation board through this bus from the 
extension bus it drives "SBUSRQ" LOW by 
accessing an I/O address. The CPU is then kept 
waiting by the logic with "IOCHRDY" until the CEP 
releases "HRQ". Then "HLDA" is driven LOW by 
the interface logic to prevent the CEP from 
reaccessing the bus. 

As long as "SBUSRQ" is LOW, the CPU has free 
access to the system bus. The document bus side 
is kept in Wan state while "SBUSRQ" is active. 

"SBUSRQ" is latched and must be reset by 
another I/O access to a different address after 
completion of the read and write cycles onto the 
evaluation board. The CPU accesses the CEP 
registers by driving "CEPRQ", it accesses the 
memory bank by driving "MEMRQ" and accesses 
the page latch by driving "PAGE" LOW through 
different I/O addresses. 

Since the IBM PC/XT I/O addr-ess layout does not 
support enough consecutive I/O addresses, all 
CEP I/O addresses are memory mapped in this 
design. 

While the CEP is compressing or expanding a 
document, the CPU either polls the status register 
of the CEP or waits for an interrupt caused by the 
completion or an exception of the process. 

The CEP Evaluation Board In An IBM AT 

The IBM PC/XT extension bus connector is fully 
compatible with the new IBM AT connector. The 
AT introduces an additional connector to provide 
the extra signals needed for the increased memory 
size and the 16-bit data format. The AT also offers 
a fully compatible PC/XT mode. Thus all functions 
of the evaluation board designed for the IBM 
PC/XT will also work on the AT without any change 
in software and hardware. 

In addition the evaluation board wants to make use 
of the master mode capability offered by the AT 
extension bus. To do so it uses the signals of the 
added connector to perform a proper bus 
arbitration on the extension bus. A ground pin on 
that connector will tell the board that it is 
connected to the AT. 

For slave mode, everything said in the previous 
chapter will work the same except that there is now 
no need for driving the "SBUSRQ" signal before 
accessing the board because the system bus is 
automatically released by the CEP due to the bus 
arbitration. The access of the AT onto the 
evaluation board is still in 8-bit PC/XT compatible 
mode. 

In master mode the system interface of the CEP 
will no longer access the on-board memory but will 
place its address and data signals onto the AT 
extension bus giving free access to all the memory 
that is provided by the IBM AT. The bytes coming 
out of and going into the CEP have to be divided 
into the upper and lower data bus of the AT 
according to the address being even or uneven. 

Figure 3-128 is a system map of the Evaluation 
Board. Figure 3-129 is a block diagram. The PAL 
device equations are shown in Figure 3-130. 
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X'OOOOO' 

X'20000' 

X'40000' 

X'60000' 

X'SOOOO' 

X'90000' 

X'AOOOO' 

X'BOOOO' 

X'COOOO' 

X'FOOOO' 

X'100000' 

256KB RAM ON 
IBM PC/AT SYSTEM BOARD 

FUTURE EXPANSION 
(256 KB) 

ADDRESS ASSIGNED TO CEP, 
RESET, SBUSRQ, AND PAGE REG ISlER 

64K RAM OF CEP SYSTEM BOARD 
MEMORY (1 PAGE OUT OF 1 MBYTE) 

64 KB GRAPHICS DISPLA. Y BUFFER 

40 KB SYSTEM ROM 

ADDITIONAL AT 
MEMORY EXTENSION 

~ 

} SEL= 1 

} SEL=2 

) SEL=3 

Figure 3-128. Evaluation Board System Memory Map 
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Figure 3-129.a CEP Evaluation Board Interface for IBM PC/XT and AT (Part 1) +5V 5 MHZ 
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PARTNO 
NAME 
DATE 
REV 
DESIGNER 
COMPANY 
ASSEMBLY 
LOCATION 

NONE; 
EVBPALl; 
11-6-85; 

1.1; 
W6lfgang Kemmler; 

Advanced Micro Devices; 
CEP Evaluation Board; 
U61; 

1* Pal Assembler: CUPL (Assisted Technology) *1 
/********************************************************/ 

1* 
1* 
1* 
1* 

Address Decoder for 
Am7970 CEP Evaluation Board 

*1 
*1 
*1 
*1 

1********************************************************1 

1* Target Device Type : PAL16L8 *1 

1* Outputs : *1 

PIN 19 IPAGE; 1* Latch enable foe Page Latch *1 
PIN 17 ICEPRQ; 1* CEP Chip Select *1 
PIN 16 ISBUSRQ; 1* On Board System Bus Request *1 
PIN 15 IADDR; 1* Interm. Signal for Addr. Decoding *1 
PIN 14 RSOUT; 1* RESET *1 
PIN 12 IMEMRQ; 1* On Board Memory Request *1 

1* Inputs : *1 
PIN [1 .. 7) [A13 .. 19); 1* Addresses from Extension Bus *1 
PIN [8 .. 9) [SO .. 1); 1* Address range select inputs *1 
PIN 10 GND; 
PIN 11 ISMEMW; 1* Write Signal from Ext. Bus *1 
PIN 13 RSIN ; 1* RESET Input from Ext. Bus *1 
PIN 18 BALE; 1* Address latch enable " " *1 
PIN 20 VCC; 

1* Declarations and Intermediate Variable Definitions 
FIELD UADDR [A17 .. 19); 1* Upper Address Range *1 
FIELD LADDR [A13 .. 15); 1* Lower Address Range *1 
FIELD SEL [SO, Sl); 1* Address range select field 

1* Address range definitions: *1 

1* Upper Address range : *1 
USEL3 UADDR: [80000 .. 9ffff); 
USEL2 
USELI 

UADDR: [60000 .. 7ffff); 
UADDR: [40000 .. 6ffff); 

1* Lower Address range: *1 

*1 

*1 

ADRO IA16&ADDR&LADDR: [OOOO .. lfff); I*CEP register access *1 
ADRI IA16&ADDR&LADDR: [2000 •• 3fff); I*ask for S-Bus *1 
ADR2 IA16&ADDR&LADDR: [4000 •• 5fff); I*release S-Bus */ 
ADR3 ~ !A16&ADDR&LADDR: [600a .. 7fff); I*Pageaddr. into Pageregister */ 
ADR4 IA16&ADDR&LADDR: [8000 .• 9fff); I*CEP hardware RESET aktiv *1 
ADR5 = IA16&ADDR&LADDR: [aOOO •. bfff); I*CEP hardware RESET inaktiv */ 

Figure 3·130. Evaluation Board PAL Device Equations 
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/*LOGIC EQUATIONS : */ 
ADDR = SEL:3 & USEL3 & !BALE /*SEL selects 3 allowed */ 

II SEL:2 & USEL2 & !BALE /* "addressranges (blocks of*/ 
II 'SEL: 1 & USEL1 & !BALE /* "128kBytes ) * / 

MEMRQ = A16 & ADDR & !BALE /*Access on board memory access*/ 

SBUSRQ = ADR1 & SMEMW /*Request the S-Bus */ 

PAGE 

II SBUSRQ & ! (ADR2 & SMEMW) ; 

ADR3 & SMEMW; /*Load Page address into */ 
/*Pageregister*/ 

RSOUT ADR4 & SMEMW & RSIN 
II RSOUT & ! (ADR5 & SMEMW) 

/*Software controlled */ 
/* Hard Reset */ 

CEPRQ ADRO & !RSOUT ; /*CEP Register Access */ 
/* (Memory mapped )*/ 

PARTNO 
NAME 
DATE 
REV 
DESIGNER 
COMPANY 
ASSEMBLY 
LOCATION 

NONE; 
EVBPAL2A; 
11-6-85; 
1. 2; 

Wolfgang Kemmler; 
Advanced Micro Devices; 
CEP Evaluation Board; 
U31; 

/* Pal Assembler: CUPL (Assisted Technology) */ 
/***************************************************** ***1 
/* 

/* 
/* 

/* 

IBM XT/AT Extension Bus Interface Controller 
for Am7970 CEP Evaluation Board 

*/ 

*/ 

*1 
*1 

/***************************************************** ***1 

/* Target Device Type : AmPal 22V10 */ 

/* Outputs: */ 
PIN 23 IOCHRDY; /* Open ColI. Extension Bus Signal */ 
PIN 22 !RD; /* CEP Signal */ 
PIN 21 !WR; /* */ 

PIN 20 !BLEN; /* Data transceiver low enable */ 

PIN 19 !BHEN; /* Data transceiver high enable */ 
PIN 18 !ADDRC; /* Address receiver enable */ 

PIN 17 DIR; 1* Direction controll of data transc. */ 
PIN 16 SBHE; /* Extension Bus Signal * / 
PIN 15 DELRDY; /* Signal helps generating two wait states */ 

1* for Rev.A CEP - IBM AT interface combination 

PIN 14 IONRDY; /* Interm. I/O Not Ready Signal */ 

/* Input: */ 
PIN 1 CLK; /* CEP clock (5 MHz) */ 
PIN !SBUSRQ; /* On board system bus access request */ 

PIN 
PIN 
PIN 
PIN 
PIN 
PIN 
PIN 
PIN 10 
PIN 11 
PIN 12 
PIN 13 
PIN 24 

!CEPRQ; 
!MEMRQ; 

!ATEN; 
HLDA; 
READY; 
ACKAi 
!SMEMW; 

!SMEMR; 
SAO; 
GND; 
!PAGE; 
VCC; 

/* CEP register access request */ 
/* On board memory access request *1 
/* AT Mode enable *1 
/* CEP signal */ 
/* CEP signal */ 
/* Acknowledge from on board memory *1 
/* Extension bus signal */ 

/* * / 
/* */ 

1* Page latch access request */ 

Figure 3-130. Evaluation Board PAL Device Equations (Continued) 
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/* Logic Equations */ 

WR.OE !HLDA WR SMEMW & (CEPRQ MEMRQ) 

RD.OE !HLDA RD SMEMR & (CEPRQ MEMRQ) 

BHEN ATEN & SAO & (RD * WR) ; 

BLEN AT EN & !SAO & (RD * WR) * CEPRQ & !HLDA & (SMEMR SMEMW) 
MEMRQ & !HLDA & (SMEMR SMEMW) 
PAGE & ! HLDA ; 

IOCHRDY.OE = IONRDY; IOCHRDY !IONRDY 

IONRDY = HLDA & SBUSRQ 
* !HLDA & (SMEMR SMEMW) 

& (MEMRQ & !ACKA * CEPRQ & !READY) 

ADDRC !HLDA & (CEPRQ * MEMRQ) 

DIR = HLDA & WR * !HLDA & SMEMR 

SBHE.OE = AT EN ; SBWE !SAO ; 

DELRDY.D = RD * WR 
DELRDY.AR = 'b'O ; DELRDY.SP 'b' 0.; 

PART NO NONE; 
NAME EVBPAL2B; 
DATE 1-13-85; 
REV 1. 3; 
DESIGNER Wolfgang Kemmler; 
COMPANY Advanced Micro Devices; 
ASSEMBLY CEP Evaluation Board; 
LOCATION U30; 
/*Pal Assembler: CUPL (Assisted Technology) */ 
/***************************************************** ***1 
/* 
/* 
/* 
/* 

IBM XT/AT Extension Bus Arbiter 
for the CEP Evaluation Board 

* / 
*/ 

*/ 
*/ 

/***************************************************** ***1 

/* Target Device Type : AmPa122V10 

/* Inputs 
PIN CLK; 
PIN !RD; 
PIN !WR; 
PIN HRQ; 
PIN ACKA; 
PIN !SBUSRQ; 
PIN = !DACK; 
PIN ! PAGE; 
PIN !ATMD; 

* / 
/* Extension bus clock */ 
/* CEP signal */ 
/* 
/* 

*/ 
*/ 

/* On board memory acknowledge */ 
/* Onboard system bus request */ 
/* Extension bus arbitration signal */ 
/* Page Latch access request */ 
/* AT Mode Indicator */ 

*/ 

PIN 10 REVA; /* CEP Revision A Indicator (adds 1 wait state)*/ 
PIN 11 

PIN 13 
ALE; 
DELRDY; 

/* CEP signal */ 
/* Delay Ready */ 

/* Outputs : */ 
PIN 23 = !MASTER; /* Extension bus arbitration signal */ 

Figure 3-130. Evaluation Board PAL Device Equations (Continued) 
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PIN 22 DREQ; /* */ 
PIN 21 !MEMW; /* Extension bus signal */ 
PIN 20 !MEMR; /* */ 
PIN 19 READY; /* CEP signal * / 
PIN 18 HLDA; /* */ 
PIN 17 !ATEN; /* Enable master interface to AT ext. 
PIN 16 ENTER; /* Onboard memory access request */ 
PIN 15 EARLY; /* Intermediate signal for "ENTER" 
PIN 14 PAGLE; /* PAGE LATCH ENABLE signal 
/* Logic Equations * / 

ATEN .D MASTER & ATMD; 
ATEN.AR 'b'O ; ATEN.SP = 'b'O 

MASTER.OE = HRQ & HLDA , ATMD; 
MASTER.D HRQ & HLDA , ATMD; 
MASTER.AR 

DREQ.D 

DREQ.AR 

'b'O ; MASTER.SP 

HRQ & ATMD & !DACK 
* DREQ & HRQ & ATMD 

'b'O DREQ.SP 'b'O 

MEMW.OE ATEN MEMW = WR 

MEMR.OE ATEN MEMR = RD 

HLDA = !ATMD & HRQ & !SBUSRQ 
# !ATMD & HLDA & HRQ 

ATMD & DACK & DREQ 
ATMD & HLDA & DREQ 

EARLY ALE # EARLY & !RD & !WR 

'b'O 

*/ 

ENTER (EARLY & !ALE * RD # WR) & !ATMD & HLDA 

PAGLE ALE & HLDA * PAGE & !HLDA ; 

READY.OE = HLDA ; 

*/ 

READY = HLDA & ATMD & (RD * WR) & (DELRDY & REVA * !REVA) * ACKA & !ATMD & (REVA & (RD # WR) # !REVA) ; 

PARTNO 
NAME 
DATE 
REV 
DESIGNER 
COMPANY 
ASSEMBLY 
LOCATION 

NONE; 
EVBPAL3; 
11-13-85; 
1. 4; 

Wolfgang Kemmler; 
Advanced Micro Devices; 
Am7970 CEP Evaluation Board; 
U64; 

/* Pal Assembler: CUPL (Assisted Technology) 

bus */ 

*/ 
/************************************************************/ 

/* */ 
/* Dual Port Dynamic Memory Access/Refresh Controller */ 
/* for Am7970 CEP Evaluation Board */ 
/* */ 
/************************************************************/ 

/* Target Device Type : PAL22V10 */ 

/* Inputs */ 
PIN 1 clock /* 5MHz clock synchr. & inverted */ 

Figure 3-130. Evaluation Board PAL Device Equations (Continued) 
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tab3 
tab5 
dale 
!drd 
!dwr 
tab2 

/* to CEP clock */ 

/* 60% Tab of lSOns delay line 
/* 100% 
/* CEP signal document side 
/* 
/* 
/* 40% Tab of delay line 
/* CEP signal system side 
/* 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

PIN 
PIN 3 
PIN 4 
PIN 5 
PIN 6 
PIN 7 
PIN 8 
PIN 
PIN 10 
PIN 11 
PIN 12 
PIN 13 

!wr ; 
!rd ; 
!memrq 
fr ; 
GND ; 
enter 

/* On board memory request */ 

/* REFRESH from IBM AT; DACKO from IBM XT */ 

/* CEP system interface access request */ 

/* Outputs : */ 
PIN 23 tabO /* Input of delay line 

PIN 22 
PIN 21 
PIN 20 

!rfrq ; 
!we ; 
endcyc; 

/* Interm. signal for refresh arb. 
/* Write enable for on board memory 
/* Intermediate signal for document 
/* side arbitration */ 

PIN 19 
PIN 18 
PIN 17 
PIN 16 
PIN 15 
PIN 14 

fh; 
!enb 
ackb 
acka 
lena 
casi 

/* Interm. signal for refresh arb. 
/* Enable document side to memory 
/* Acknowlege document side access 
/* system 
/* Enable system side to memory 
/* CASI for 2968 

/* Logic Equations */ 

ena = enter & !rfrq & !enb & ! (!fh & fr) & !tab3 
# (rd # wr) & !rfrq & !enb & memrq & !tab3 
# ena (enter # rd # wr) & ! rfrq ; 

enb (!dale & !endcyc # drd # dwr) & ! (!fh 
& !enter & !rfrq & lena & !tab3 
# enb & (!dale & !endcyc # drd # dwr) 

endcyc = drd # dwr endcyc & !dale ; 

tabO = ena # enb # rfrq & (!tab3 # !tabS) 

acka.d ena !rfrq 

ackb.d enb !rfrq 

fh = fr & rfrq & tabO # 

rfrq = fr & !fh & lena 
# rfrq & (tabO # 

we = ena & !enb & !rfrq 

casi = tab2 & (we # ena 

acka.ar 'b'O 
acka.sp 'b'O 
ackb.ar 'b'O 
ackb.sp 'b'O 

!enb 

lena 

fh & fr 

& !enb & !tab3 
tab2) 

wr # enb lena 

rd # enb drd) 

fr) 

!rfrq & lena 

!rfrq & dwr 

*/ 

*/ 
*/ 
*/ 

*/ 

*/ 
*/ 

*/ 
*/ 
*/ 

Figure 3·130. Evaluation Board PAL Device Equations (Continued) 
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3.4.5 INTERFACING TO THE zao AND zaooo 
Z80 and Am9568 Data Ciphering Processor 
with the Am9517 DMA Controller 
This application design shows how to operate the ciphering 
throughput up to 890 Kbyte/s by using the advanced 8-bit DMA 
Controller Am9S17A-S (also called the 8237-S). The host CPU 
is a Z80A. (Figure 3-131) 

The CPU sets up a data block in memory and programs the 
DMA controller to transfer this data block to the DCP via the 
Master Port. The DCP encrypts the data. A high-speed periph­
eral device can readout the ciphered data from the Slave Port. 
This dual-port configuration allows data input and output simul­
taneously and increases the throughput, compared to a single­
port configuration, by a factor of two. In the single-port 
configuration, only the Master Port is used for data transfer; it 
handles both the clear and ciphered data. 

The multiplexed address/data bus of the DCP is simulated in a 
two-cycle operation. For output operation to an even address, 
the PAL interface timing controller generates a Master Port 
Address Strobe (MAS) to select one of the internal registers. 
Subsequent I/O operations to an odd address (Ao=HIGH) 
transfer data to or from the preselected DCP register. During 
I/O operations to an odd address, the PAL device generates 
Master Port Data Strobes (MRD or MWR). Before the DMA 
block transfer starts, the CPU must preselect the DCP data 
register. The register address of the data register is DOH. 

The DMA controller operates in "flyby" mode. Data is trans­
ferred on the system data bus one byte at a time from memory 
to the DCP, or vice versa, without going through a DMA regis­
ter. An I/O Read (lOR) and Memory Write (MEMW) or I/O 
Write (lOW) and Memory Read (MEMR) are active at the 
same time. The DCP is selected by DMA Acknowledge 
(DACK). The PAL device treats DACK as CS active and 
Ao=HIGH. In this design the DMA controller can only execute 
data transfer cycles; it is not able to change the internal register 
address of the DCP. 
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The DMA controller is set up for Demand Transfer Mode. It 
releases the bus when the data request input goes inactive. 
The Master Port Flag (MFLG) is wired to the data request 
input. The flag output goes active when the DCP is ready to 
accept data, or the output data is ready to be read out. After 
transferring one block of data (8 bytes), this flag goes inactive 
until a new block can be put in or read out. The inactive time 
depends on the response time of the peripheral logic at the 
Slave Port. This flag is inactive for a minimum of five clocks. 

Speed 

The DMA controller needs three clock cycles to transfer one 
byte. After each block transfer (8 bytes), the DMA controller 
releases the bus and requests it back if MFLG goes active 
again. This time is assumed to be 12 clocks. The ciphering of 
one block is done concurrently with the input of the next block; 
the internal operation is pipelined. The maximum throughput 
can be calculated as: 

T = 8 / (8 * 3 + 12) * 4 MHz = 0.89 Mbyte/s 

The Compressed Transfer mode of the DMA controller cannot 
be used, because the PAL synchronization logic needs normal 
timing to synchronize the Data Strobes to the DCP clock. 

Initialization 

The Multiplexed Control Mode C/K =LOW) of the DCP is 
selected to enable access to the internal registers. The CPU 
first programs the Mode Register to reset the DCP and to set 
up the port configuration and ciphering mode. After that, the 
keys and initial vectors can be loaded. To initialize the DCP for 
DMA transfer, the CPU executes one Address Latch Cycle, to 
pre-select the data register. 

The DMA controller must be programmed such that DREQ and 
DACK are active LOW. 

Timing 

The PAL device simulates the multiplexed address/data bus of 
the DCP assuming a two-cycle operation mode. In the first 
cycle the CPU latches the address of the internal register into 
the DCP; subsequent cycles transfer data to or from the se­
lected register. Address Ao distinguishes the two cycles 
(Fiure 3-132). An I/O instruction with Ao=LOW generates an 
address latch cycle; an I/O instruction with Ao=HIGH gener­
ates a data transfer cycle. 

The DMA controller must be initialized for "extended" I/O write 
in order to have a similar I/O bus timing to the Z80A CPU. A 
"late" I/O write delays the Master Port Write Strobe (MWR) to 
the DCP by one clock cycle. If a late write is used, the data bus 
will not be valid at the time data is latched. 

To execute a DCP-to-memory transfer, the DMA does an I/O 
read and memory write. The DMA controller can be 
programmed for an "extended" or "late" write, depending on 
the memory design. 

In "flyby" mode the DMA controller generates no I/O address, 
so the CPU has to preselect the Qata Input or Output Register. 
A DMA Acknowledge (DACK) enables MRD or MWR to con­
trol the data transfer. 

Figure 3-132 shows the DMA-DCP data transfer timing. When 
the DMA Controller has transferred one block of data, the data 
transfer has to be stopped until the DCP is ready for the next 
block transfer. The DCP makes the DMA Controller stop the 
transfer by deactivating MFLG. If MFLG is LOW, data may be 
transferred; if MFLG is HIGH, the DCP does not accept data 
transferred. The timing of the MFLG to DREQ path is the most 
critical in this application. If MFLG is deactivated too late, the 
DMA Controller will issue another data transfer which will be 
disregarded by the DCP. The critical signal path will be 
analyzed below. 

To prevent the DMA from issuing another cycle the Data Re­
quest input has to go inactive by the falling edge of the DMA 
clock at the end of cycle S3. The DMA controller samples the 
input at this time and instigates another cycle if the request is 
still active. The setup time of DREQ is 0 ns. The Master Port 
Flag which is connected to the DREQ input goes inactive in the 
eighth cycle with a maximum delay time of 150 ns after the 
Data Strobes: The Data Strobe itself has a maximum delay 
time of 190 ns (Am9517 A-5) after the rising edge of the clock in 
cycle S2. That gives a time window of 375 ns of which 340 ns 
are already used for the two delays (190 ns + 150 ns). The 
propagation delay of a fast PAL device is 25 ns. This leaves. 
10 ns for other delays in the signal path. 

The PAL design assumes that the system memory needs no 
Wait States. 

The peripheral logic at the Slave Port can use the Slave Port 
Flag (SFLG) to time the transfer. If SFLG is active LOW, data 
can be written to or read from the data register. Figure 3-133 
shows the PAL device equations for this interface. 
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PAL16R4 PAL DESIGN SPECIFICATION 
DCP048 JUERGEN STELBRINK 8-9-83 
Z80A- AM9517(DMA)- AM9568(DCP) INTERFACE DEVICE 
ADVANCED MICRO DEVICES 

CLK1 CLK2 /CS /IOR /IOW AO /MFLG /DACK NC GND 
JOE /MWR /MRD /Q1 /Q2 /Q3 MALE NC CLK VCC 

/MALE := /IOW+IOR+/CS+AO+MALE ; MASTER PORT ADDRESS STROBE 

Q1 := CS*AO*IOR*/IOW*/Q2 + 
CS*AO*IOW*/IOR*/Q3 + 
DACK*IOR*/IOW*/Q2 + 
DACK*IOW*/IOR*/Q3 

Q2 := CS*AO*IOR*/IOW*Q1 + 
CS*AO*IOR*/IOW*Q2 + 
DACK*IOR*/IOW*Ql + 
DACK*IOR*/IOW*Q2 

Q3 := CS*AO*IOW*/IOR*Q1 + 
CS*AO*IOW*/IOR*Q2 + 
DACK*IOW*/IOR*Q1 + 
DACK*IOW*/IOR*Q2 

MRD CS*AO*IOR*/IOW + MASTER PORT READ 
DACK*IOR*/IOW + 
Q2 

MWR CS*AO*IOW*/IOR*/Q3 + MASTER PORT WRITE 
DACK*IOW*/IOR*/Q3 

/CLK CLK2 DCP CLOCK 

FUNCTION TABLE 

CLK1 CLK2 /CS /IOR /IOW /DACK AO CLK MALE /MRD /MWR /Q1 /Q2 /Q3 

/ 
C C / / D M / / 
L L / I I A C A M M / / / 
K K C 0 0 C A L L R W Q Q Q 
1 2 S R W K a K E D R 1 2 3 COMMENT 

---------------------------------------------------------
CLOCK GENERATION 
X L X X X X X H X X X X X X 
X H X X X X X L X X X X X X 

ADDRESS LATCH 
C X H H H H L X L H H H H H CYCLE T2 (CPU) 
C X L H L H L X H H H H H H CYCLE TW 
C X L H L H L X L H H H H H CYCLE T3 
C X H H H H L X L H H H H H CYCLE T1 
READ DATA 

X X H H H H H X L H H H H H CYCLE TW (CPU) 
X X L L H H H X L L H H H H 
C X L L H H H X L L H L H H 
C X L L H H H X L L H L L H CYCLE TW (EXTRA WAIT STATE) 
C X L L H H H X L L H H L H CYCLE T3 
C X H H H H H X L H H H H H CYCLE Tl 
X X H L H L X X L L H H H H CYCLE S3 (DMA) 
C X H L H L X X L L H L H H 
C X H L H L X X L L H L L H CYCLE S4 
C X H H H H X X L H H H H H CYCLE S2 

Figure 3-133. Source Listing for the Z80 to Am9568 DCP Interface 
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WRITE DATA 
X X L H L H H X L H L H H H CYCLE TW (CPU) 
C X L H L H H X L H L L H H 
C X L H L H H X L H H L H L CYCLE T3 
C X H H H H H X L H H H H H CYCLE Tl 
X X H H L L H X L H L H H H CYCLE S3 (DMA) 
C X H H L L H X L H L L H H 
C X H H L L H X L H H L H L CYCLE S4 
C X H H H H H X L H H H H H CYCLE S2 

DESCRIPTION: 

THIS PAL GENERATES ALL NECESSARY BUS CONTROL SIGNALS, TO 
INTERFACE A Z80A CPU AND A AM95l7 DMA CONTROLLER TO THE AM9568 
DATA CIPHERING PROCESSOR. THE MAXIMUM SYSTEM CLOCK FOR ALL PARTS 
IS 4 MHZ. 

1 INPUT AND 3 INPUT/ OUTPUT PINS ARE NOT USED. 

INPUT SIGNALS: 

CLKl, 
CLK2 

/CS 

/IOR 

/IOW 

Z80 SYSTEM CL0CK 

CHIP SELECT FOR THE DCP, GENERATED BY A DECODER LOGIC 

INPUT/OUTPUT READ 

INPUT/OUTPUT WRrTE 

AO LEAST SIGNIFICANT BIT OF THE Z80 ADDRESS BUS TO SELECT 
THE TYPE OF OPERATION: 

/DACK 

AO LOW SELECT DCP REGISTER FOR NEXT DATA CYCLES 
(ADDRESS LATCH) 

AO = HIGH READ OR WRITE INTERNAL REGISTER 
(DATA TRANSFER TO CONTROL, MODE, INPUT OR 
OUTPUT REGISTER) 

DMA ACKNOWLEDGE FROM DMA CONTROLLER, TREATED AS /CS=LOW 
AND AO=HIGH 

OUTPUT SIGNALS: 

CLK 

MALE 

/MRD 

/MWR 

/Ql, 
/Q2, 
/Q3 

INVERTED SYSTEM CLOCK FOR THE DCP 

MASTER PORT ADDRESS LATCH ENABLE, ACTIVE DURING ADDRESS 
LATCH CYCLES TO LATCH THE REGISTER ADDRESS ON MPl AND MP2 
(2 LINES OF THE MASTER PORT BUS) AND THE STATE OF /MCS 
IN. THE DCP STORES INTERNALLY THE ADDRESS AND CHIP SELECT 
TO THE NEXT ADDRESS LATCH CYCLE 

MASTER PORT READ, TO ENABLE REGISTER READ OPERATIONS 

MASTER PORT WRITE, TO ENABLE REGISTER WRITE OPERATIONS 

INTERNAL USED STATE SIGNALS (DO NOT CONNECT). Ql IS ACTIVE 2 
CLOCK CYCLES IN EACH DATA TRANSFER OR DMA ACKNOWLEDGE CYCLE. 
IT IS USED TO GENERATE THE DELAYED Q2 AND Q3. Q2 IS USED TO 
HOLD /MRD ACTIVE UNTIL /IOR IS GONE INACTIVE. Q3 MASKS /MWR 
OFF. 

Figure 3-133. Source Listing for the zao to Am956a DCP Interface (Continued) 
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Z80 to Am9518/Am9568 DCP 
This chapter shows, in two examples, how the Data Ciphering 
Processor (DCP) can be interfaced to a Z80 (Z80A, Z80B) 
CPU (Figure 3-134). All interface control signals are generated 
by one PAL device. 

In CPU transfer mode,ciphering speed can reach up to 280 
Kbyte/s. A Z80A DMA controller can double this value, and a 
Z80-DMA-DCP hookup can increase the speed to 1.1 Mbyte/s. 

The multiplexed address/data bus of the DCP is simulated 
using a two-cycle operation mode. An output instruction to an 
even address (Ao=LOW) selects one of the internal registers 
of the DCP. In all subsequent I/O operations with Ao=HIGH, 
the CPU can transfer data to or from DCP registers. The regis­
ter address stays latched in the chip until the next Address. 
Strobe latches in a new address. The Address Latch Cycle 
does not represent significant overhead in an encryption or 
decryption session because, once the DCP is initialized and 
the data register is selected, no further Address Latch Cycle is 
needed. 

ClK 

~,I 
DECODER ~ AlJ-A7 ADDR )I 

,'1 
Vee 

L."' .... 
"""r 1 WAIT 

zao IORO 
ZaOA 

AlJ ZaOB 

WR 

.4 
00-07 

'1 

I/O addresses: XXXX XXX0 - Address Latch Cycle 
XXXX XXX1 - Data Transfer Cycle 

X - User definable 

The Am PAL 16R4 device controls the interface timing. It gener­
ates the synchronized strobe signals for the DCP and the Wait 
for the CPU to extend the cycles. 

The PAL device is programmed to allow two operation modes. 
In Mode A the DCP works with the same clock rate as the CPU. 
Mode B increases the ciphering speed by allowing higher than 
4-MHz system clock rates for the CPU. In this mode, the PAL 
device provides half the system clock rate for the DCP. 

A system with a ZSOB at 6 MHz and an AmZ8068 at 3 MHz 
increases the ciphering speed compared to a system where 
both the CPU and the DCP clock are 4 MHz; the limiting factor 
is the data transfer capability of the CPU. 

The key requirement in interfacing the DCP to a 280 CPU is to 
meet the timing relationship between the Master Port Data 
Strobe (MDS) and the DCP clock. The rising edge of MDS 
must be synchronous to the falling edge of the clock. 

I OSC I 
1 
I 

oJ .~ 

ClKl ClK2 
CS ClK 1---+ ClK 

AmPAL16R4 MCS 1---+ MCS 

MAS ~ MAS 

WAIT MDS r--+ MDS 

IORO Am951al 
AlJ 

ClKB ~ 
AmZa068 

WR 01-
OE AlB 

~ Not, 
MR/W 

~ 
MPo-MP7 , C/K 

Note 1: AlB = HIGH: Z80·9518/Z80A·80G8 (MODE A) V 
AlB = lOW: Z80B·80G8 (MODE B) 

02188A-97 

Figure 3-134. Z80-DCP Interface 
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The Operation Modes 

Mode A: Both the Z80 CPU and the DCP are operating syn­
chronously at the same frequency. The DCP clock is 
inverted. This mode can be used with system clocks 
up to 4 MHz. No extra Wait States are inserted. 

Mode B: To get higher ciphering throughput, the data transfer 
speed of the Z80 bus should be increased by using a 
higher system clock rate. In Mode B the PAL device 
divides the system clock by two to generate the DCP 
clock. The DCP clock is synchronized to the MDS by 
delaying the clock one half cycle if they are not in 

. phase (Figures 3-137 and 3-138). During a Data 
Write Cycle, one extra Wait State is inserted. An 
AmZ8068 must be used in this mode, even at a DCP 
clock rate of 3 MHz, because of its faster register 
access time. 

Figure 3-134 shows the interface. The AlB input of the PAL 
device is wired HIGH to select Mode A or LOW to select 
Mode B. 

The Interface Timing 

Address Latch Cycle: (Figures 3-135 and 3-136) 

Master Port Chip Select (MCS) is active when lORa and CS 
are active LOW and Ao=LOW (even address). Master Port 
Address Strobe (MAS) is strobed LOW for one system clock 
cycle during the Z80's automatically inserted Wait cycle T w to 
meet the hold time requirement of MAS HIGH to MCS HIGH 
(parameter 35). 

Data Read Cycle: (Figures 3-135 and 3-137) 

A Data Read Cycle reads the register whose address was 
latched in the previous Address Latch Cycle. MCS and MAS 
are inactive the whole cycle. MDS is active-during the last two 
clock cycles, Tw and T 3. In both A and B Modes, no Wait State 
is inserted. WR and Ao must be HIGH. In Mode B the OCP 
clock is set HIGH in the beginning of T 3 using an internal signal 
Q to synchronize the falling edge of the DCP clock to the rising 
edge of MOS. Q is only active in Mode B during Wait State Tw. 
This interface meets the data hold time of the Z80, because the 
data is stable to the beginning of T 1 of the next machine cycle. 

Data Write Cycle 

In this cycle, the CPU can write one byte into the addressed 
register. MCS and MAS are inactive. WR is active and Ao is 
HIGH. 

Mode A (Figure 3-135) 

MOS is strobed LOW for Tw. The OCP reads the data in at the 
beginning of T 3. No Wait State is inserted. 

Mode B (Figure 3-138) 

MOS is strobed LOW for the Wait cycle Tw and the additional 
Wait cycle Tw to meet the minimum data strobe active time 
(parameter 44) of the DCP. The OCP reads the data in at the 
begin of T3. 

Data Ciphering Speed 

The byte transfer capability of the Z80 system bus limits the 
data ciphering throughput of the OCP. A Z80 OMA controller 
doubles the maximum throughput compared to a CPU­
controlled transfer as indicated in the following table: 

TABLE 3-19. 

System Clk DCP Clk CPU DCP Mode N T 

6MHz 3 MHz Z80B AmZ8068 B 168/176 0.28/0.27 
4 MHz 4 MHz Z80A AmZ8068 A 168 0.19 
2.5 MHz 2.5 MHz Z80 Am9518 A 168 0.14 

N - Number of DCP clock cycles to transfer and cipher 8 
bytes of data. In CPU-controlled modes the use of the 
Z80 block transfer commands like INIR, IN DR, OTIR or 
OTOR is assumed. 

T - Throughput In Mbytels 

The formula for calculating the throughput is: 

T = (8 • f) I (N + m) Mbytels 

f - OCP clock in MHz 

8 - 8 bytes per block 

m - Number of extra OCP clock cycles to get a minimum 
delay time of five clocks between transferring the last 
byte of one block and the first byte of the next block. In 
CPU controlled transfers m=O can be assumed, be­
cause the CPU has to evaluate instruction fetches and 
memory data transfers between two 1/0 accesses. 
M FLG indicates if the OCP accepts data transfer. 
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T1 T2 TW* T3 

CPU ClK 

iORCi \ I 
A1-A7 ==x VALID PORT ADDRESS 

WAIT 

MCS 

WR 

Ao 

MAS 

DCPClK 

7 \ 

\ I 
\ I 

\ 

\ I 

\\-____ ~I 

* AUTOMATICAllY INSERTED BY THE zao CPU, 
(NO MORE WAIT'S ARE AllOWED) 

x= 

r 
ADDRESS 
CYCLE 

WRITE 
DATA 
CYCLE 

READ 
DATA 
CYCLE 

Figure 3-135. Z80-Am95181Z80A-AmZ8068 Timing Diagram (Mode A) 
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DCPClK(1) 

OR 

DCP ClK(2) 

02188A·99 

Figure 3·136. Address Latch Cycle (Mode 8) 
(No Clock Synchronization) 

CPU ClK 

Ao 

DCP ClK(1) 

OR 

DCP ClK(2) 

TW* 

* AUTOMATICAllY INSERTED WAIT STATE 

02188A·100 

Figure 3·137. Data Read Cycle (Mode 8) 
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TW Tw 
T2 (NOTE 1) (NOTE 2) T3 

CPU ClK 

Ao 

WAIT --------------, 
(NOTE 3) 

DCP ClK(1) 

OR 

DCP ClK(2) 

NOTE: 1. AUTOMATICAllY INSERTED WAIT STATE 
2. EXTRA WAIT STATE 
3. OPEN COllECTOR OUTPUT 

Figure 3-138. Data Write Cycle (Mode B) 

MODEA 

ClK1.ClK2~ 

MODES 

AS 

elK: ____ I~ L.._.._ -_ ---' _ _____,: ~r-----

Figure 3·139. Clock Timing Diagram (Mode A and B) 

3-181 

02188A-101 

02188A-102 



PAL16R4 PAL DESIGN SPECIFICATION 
DCP046 JUERGEN STELBRINK 5/2/83 
Z80- AM9518/AMZ8068 INTERFACE CONTROLLER 
ADVANCED MICRO DEVICES 

CLKl CLK2 /CS /IORQ AO /WR AB NC NC GND 
JOE NC /WAIT /CLKB /Q /MDS /MAS /MCS CLK VCC 

MCS IORQ*CS*/AO 

MAS := IORQ*CS*/AO*WR*/MAS 

MDS := IORQ*CS*WR*/MDS*AO*AB + 
IORQ*CS*WR*AO*/MDS*/Q*/AB + 
IORQ*CS*WR*AO*MDS*Q*/AB + 
IORQ*CS*/WR*AO 

CLKB:= /CLKB*/Q*/AB 

/CLK CLK2*AB + 
CLKB 

Q := IORQ*CS*/MDS*/Q*AO*/AB 

IF (Q*WR) WAIT 

FUNCTION TABLE 

CLKI CLK2 AB 

C C 
L L / 
K K A C 
1 2 B S 

/CS 

/ 
I 
0 
R A 
Q 0 

/IORQ 

/ 
W 
R 

AO /WR 

/ / / 
C M M M 
L CAD 
K S S S 

/ 
W 

MASTER PORT CHIP SELECT 

MASTER PORT ADDRESS STROBE 

WRITE DATA STROBE (MODE A) 
WRITE DATA STROBE (MODE B) 
WRITE DATA STROBE (MODE B) 
READ DATA STROBE (MODE A+B) 

CLOCK FOR MODE B 

(MODE A) 
(MODE B) 

USED TO GENERATE MDS AND WAIT 

WAIT TO Z80 

CLK /MCS /MAS /MDS /WAIT /Q /CLKB 

A 
I/ 
T Q 

C 
L 
K 
B COMMENT 

MODE A: Z80- AM9518 OR Z80A- AMZ8068 INTERFACE 
(DCP CLOCK = CPU CLOCK) 

CLOCK GENERATION 

X L H X X X X H X X X Z H H 
X H H X X X X L X X X Z H H 

ADDRESS LATCH 

H X H H H X H X H H H Z H H MACHINE CYCLE Tl 
L X H L H L H X H H H Z H H 
C X H L H L H X H H H Z H H 
H X H L L L L X L H H Z H H CYCLE T2 
C X H L L L L X L L H Z H H 
C X H L L L L X L H H Z H H CYCLE TW 
H X H L H L H X H H H Z H H CYCLE T3 

Figure 3·140. Source listing for the Z80 to Am9518/Am9568 Interface 
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C X H L H L H X H H H Z H H 

WRITE DATA OPERATION 

C X H L H H H X H H H Z H H CYCLE Tl 
C X H L L H L X H· H L Z H H CYCLE T2 
C X H L L H L X H H H Z H H CYCLE TW 
C X H L H H H X H H H Z H H CYCLE T3 

READ DATA OPERATION 

C X H L H H H X H H H Z H H CYCLE Tl 
C X H L L H H X H H L Z H H CYCLE T2 
C X H L L H H X H H L Z H H CYCLE TW 
C X H L H H H X H H H Z H H CYCLE T3 

INVALID OPERATION . (READ IN ADDRESS LATCH) 

C X H L L L H X L H H Z H H NO /MAS 

/ / 
C C I / / / w C 
L L / 0 / C M M M A L 
K K A C R A W L C A D I / K 
1 2 B S Q 0 R K S S S T Q B COMMENT 

;-------------------------------------------------------------------------
MODE B: Z80B- AMZ8068 INTERFACE 

(DCP CLOCK = CPU CLOCK/2) 

WRITE DATA OPERATION 

C X L H H H H L H H H Z H L CYCLE Tl 
C X L H H H H H H H H Z H H CYCLE T2 
C X L L L H L L H H L L L L FIRST WAIT CYCLE (CLK=L) 
C X L L L H L H H H L Z H H SECOND WAIT CYCLE 
C X L L L H L L H H H Z H L CYCLE T3 

C X L L L H L H H H L L L H FIRST WAIT CYCLE (CLK=H) 
C X L L L H L H H H L Z H H SECOND WAIT CYCLE (SYNC !) 
C X L L L H L L H H H Z H L CYCLE T3 

READ DATA OPERATION 

C X L H H H H H H H H Z H H CYCLE Tl 
C X L H H H H L H H H Z H L CYCLE T2 
C X L L L H H H H H L Z L H WAIT CYCLE 
C X L L L H H H H H L Z H H CYCLE T3 (SYNC! ) 
C X L L H H H L H H H Z H L NEXT CYCLE 

--------------------------------------------------------------------------

FIgure 3·140. Source LIsting for the ZSO to Am9518/Am956S Interface (ContInued) 
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DESCRIPTION: 

THIS PAL G~NERATES ALL NECESSARY BUS CONTROL SIGNALS, TO INTERFACE 
THE AM95l8 OR AMZ8068 TO THE Z80 CPU WITH A SYSTEM CLOCK UP TO 6 MHZ. 

2 INPUT AND 1 INPUT/ OUTPUT PINS ARE NOT USED, SO THAT FOR EXAMPLE 
A DATA BUS TRANSCEIVER CONTROL LOGIC CAN BE ADDED. 

IN SYSTEMS WITH A CLOCK UP TO 4 MHZ, THE DCP RUNS DIRECTLY AT THIS 
FREQUENCY (MODE A, INPUT AB = HIGH) . 
IF THE FREQUENCY IS HIGHER, THE DCP IS DIVIDED BY TWO FROM THE 
SYSTEM CLOCK (MODE B, AB = LOW). 

INPUT PINS: 

CLKl, 
CLK2 

/CS 

/IORQ 

AO 

/WR 

AB 

CLKl IS THE CLOCK INPUT FOR THE FOUR INTERNAL D-FLIP-FLOPS. 
THEY ARE CLOCKED BY THE RISING EDGE OF CLKl. THE DCP DATA 
STROBE MUST BE SYNCHRONOUS TO THE FALLING EDGE OF THE CLOCK: 
THE INVERTED CLK2 IS THEREFORE SENT TO THE OUTPUT CLK. 
IN MODE B CLK2 IS SYNCHRONIZED BEFORE IT APPEARS ON THE CLK 
OUTPUT. BOTH INPUTS ARE CONNECTED TO THE Z80 SYSTEM CLOCK. 

CHIP SELECT GENERATED BY AN ADDRESS DECODER LOGIC 
(ACTIVE LOW). IF /CS IS ONLY ACTIVE IN I/O CYCLES, 
THE /IORQ INPUT CAN BE WIRED LOW. 

INPUT/ OUTPUT REQUEST O~ THE Z80 (LOW ACTIVE) 

LEAST SIGNIFICANT BIT OF THE ~80 ADDRESS BUS 
TO SELECT TYPE OF OPERATION: 
AO= LOW SELECT REGISTER FOR NEXT DATA CYCLES 

(ADDRESS LATCH) 
AO= HIGH READ OR WRITE INTERNAL REGISTER 

(DATA TRANSFER TO CONTROL, MODE, INPUT 
OR OUTPUT REGISTER) 

WRITE SIGNAL OF THE Z80, DEFINES DATA TRANSFER DIRECTION 

AB= HIGH 
AB= LOW 

MODE A 
MODE B 

OUTPUT SIGNALS: 

/WAIT 

/MCS 

/MAS 

/MDS 

CLK 

/CLKB 

/Q 

ACTIVE LOW DURING FIRST WAIT CYCLE IN WRITE DATA 
OPERATION IN MODE B, TO GENERATE AN EXTRA WAIT STATE. 
THE OTHER TIME /WAIT IS IN THREE STATE. 

MASTER PORT CHIP SELECT, ONLY ACTIVE IN ADDRESS LATCH 
. CYCLES 

MASTER PORT ADDRESS STROBE, ACTIVE IN ADDRESS CYCLES 
TO LATCH THE REGISTER ADDRESS AND /MCS IN. THE DCP 
STORES INTERNALLY THE ADDRESS AND THE CHIP SELECT 

TO THE NEXT ADDRESS LATCH CYCLE 
MASTER PORT DATA STROBE TO ENABLE DATA TRANSFER TO THE 
INTERNAL REGISTERS OF THE DCP 

DCP CLOCK, IN MODE B SYNCHRONIZED TO THE MASTER PORT DATA 
STROBE (lMDS) 

DCP CLOCK OUTPUT INTERNALLY USED FOR MODE B (NOT CONNECT) 

INTERNAL STATUS SIGNAL (NOT CONNECT) 

Figure 3·140. Source Listing for the Z80 to Am9518/Am9568 Interface (Continued) 
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ZSOOllS002 Overview 

This CPU has a 16-bit data multiplexed address/data bus (the 
Z8001 has 7 additional non-multiplexed address outputs, 
called segment bits, extending its memory address range to 8 
Mbyte). 

Z8001l8002 addresses are specified as bytes. In a 16-bit word 
the least significant byte has the higher address, the most 
significant byte has the lower address. This differs from the 
8080, 8085, 8086, and Z80. Moreover, 16-bit and 32-bit words 
must be aligned with an even address. 

The 8-bit peripherals should be connected to the lower half of 
the Z8001/2 data bus and must be addressed with odd ad­
dresses (non-contiguous addressing). 

The data bus is "asynchronous"; i.e. the CPU machine cycle 
can be stretched without clock manipulation by inserting Wait 
States between T2 and T3 of a read or write cycle to accom­
modate slower memory or peripherals. 

Separate address space for I/O (64 kbytes) defined by Status 
Code 0010 on the four Status outputs and by the ANi output 
from the Z8001l2. Addresses are guaranteed valid before the 
rising edge of AS. 

Data from I/O must be valid before the rising edge of OS. Data 
to I/O is valid during OS. 

OMA: The bus is requested by activating the BUSAQ input to 
the Z8001/2. 
Bus Grant is confirmed by the BUSAK output from the 
Z8001l2. 

Interrupt is requested by activating either the NMI (non­
maskable), NVI (non-vectored interrupt), VI (vectored inter­
rupt), or SEGT (segment trap from the memory management 
unit). 

Interrupt is acknowledged by the STATUS code output from the 
Z8001l2. During the Interrupt Acknowledge Cycle the Z8001/2 
reads a 16-bit word containing an 8-bit jump vector for vectored 
interrupt.' . 

Z8001 to Am7990 LANCE Interface 

Z8001 interface to the LANCE is easily accomplished since the 
Z8000 also has a multiplexed bus and most of the control 
signals can directly be connected (Figures 3-141 and 3-142). 
This design also uses the PAL (Am PAL 16L8) to reduce parts 
count. INTA pin of the LANCE is connected to NVI pin of the 
Z8001, since LANCE does not return a vector during the inter­
rupt acknowledge cycle. The PAL uses the status lines ST3 -

STo (when Z8000 is the bus master), or HLOA from LANCE 
(when LANCE is in bus master mode), to generate M, the 
memory request signal. The user should program the ACON, 
BCON, and BSWP to 1, prior to initializing the LANCE. When 
the LANCE is the bus master, OALI and OALO control the 
transceiver. When the CPU is the bus master, T and Rare 
generated from AiW and OS to control the transceiver. 

Al1PAL 16L8 
PATOOl 

RASOUL M. OSKOUY 
HARCH 13, 1984 

File: Z8K90.PAL 

Z8001 TO LANCE INTERFACE 
ADVANCED MICRO DEVICES 

lAS IHLDA READ ICS IDS IREADY ST3 ST2 STl GUO 

STO IT IH I'rIAIT LE I R ric ric NC VCC 

IF I(HLDA) T IREAD·/CS 

IF (/IILDA) R = READ*DS*/CS 

H = IHLDA*STJ*/ST2·/ST1·/STO + 

IHLDA*/ST2*/ST1*STO + 

IIILDA*STj*ST2·/STl + 

HLDA 

wAIT IREADY 

ILE = AS 

Figure 3-141. Source Listing for the Example of Figure 3-142 
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AD1S-ADo 

SNo-SN6 

lAS 

IDS 

R/W 

Z8001 

WAif 

ST3 

ST2 

ST1 

STo 

WI 
BUSRQ 
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BNi 

RESEf 
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l Am29841 
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BUS 
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Vee 
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~ TO SYSTEM 
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.. 
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It It Vee -r-

~ 
ICE LE 1M lAS IDS READ IT IR 

NlAIT IREADY .. -
ST3 t 
ST2 

AmPAL16L8 "Fi"E'ADVFROM 
Z8K90.PAL SYSTEM .. ST1 

r STo Vee Vee 
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. 
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Figure 3·142. Z8000·AmZ8068 Interface 
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3.5 BUS INTERFACE LOGIC 

3.5.1 MULTIBUS TO Am9516 INTERFACE 

This interface shows the Am9516 connected to the MULTIBUS 
(Figure 3-143). This is accomplished by two PAL device 
designs. The equations for the PAL devices are shown in Fig­
ures 3-144 and 3-145. The first designated Am9516MBC does 
the MULTIBUS arbitration as defined by the MULTIBUS 
specification. Common bus request (CBRO) was not imple­
mented in this design. Additionally this design holds the bus as 
long as BREO is active. If the user wishes to release the bus 
after each transaction the Am9516 should be programmed for 
CPU interleave. 

The second PAL device in this interface designated 9516MBC, 
converts the Am9516 signals into MULTIBUS control signals. 
It also generates RD and WR for the 8530 so that flyby trans-

fers can be don~. When not doing flyby, this part of the PAL 
device should be changed. There are several considerations 
when using the SCC with DMA not addressed here. These are 
covered in a separate application. This example will work for 
moderate serial data serial data rates. To operate the SCC at 
maximum speed, a local RAM should be used as bus arbitra­
tion overhead could cause problems. The main purpose here 
was to illustrate the versatility of PAL devices and how 
easy it is to interface apparently incompatible devices to the 
MULTIBUS. 

The two PAL device shown are similar in function to the 8289 
and 8288 shown with the 8086 CPU. A similar design could be 
done for processors such as the 68000 or other bus masters 
such as the 8052 CRT controller which has its own DMA. 
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Figure 3-143. Am9516 to 8086 in a MULTIBUS<& Environment 02188A-128 



PAL16L8 
PAT 002 
MULTI BUS CONTROL FOR 9516 
ADVANCE MICRO DEVICES 

BACK MIO NC NC /DACK NC NC NC 

PAL DESIGN SPECIFICATION 
JOE BRCICH 9 SEPT 82 

/CEN GND 
NC /RD /IORC /DS /MWTC /MRDC /IOWC /RW /WR VCC 

IF (BACK) IORC /MIO*DS*/RW*CEN 

IF (BACK) IOWC = /MIO*DS*RW*CEN 

IF (BACK) MRDC = MIO*DS*/RW*CEN 

IF (BACK) MWTC = MIO*DS*RW*CEN 

RD - DACK*RW*BACK + IORC*/BACK 

WR- DACK*, (W*BACK + IOWC */BACK 

IF (I BACK) OS = IORC + IOWC 

IF (lBACK) RW = IOWC 

DESCRIPTION 

THIS PAL CONVERTS MULTIBUS SIGNALS INTO 9516 COMPATIBLE SIGNALS AND 
VICE VERSA. IT ALSO SUPPORTS THE 8530 IN FLYBY MODE. 

Figure 3-144. Source Listing for MULTIBUS to Am9516 Interface 
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PAL16R4 
PAT 004 
MULTI BUS ARBITER FOR 9516 
ADVANCE MICRO DEVICES 

PAL DESIGN SPECIFICATION 
JOE BRCICH 30 JULY 84 

/BCLK /XACK BRQ /BSY /BPRN /DS NC /IORC /CS GND 
JOE /RBEN /TBEN BACK /CEN /BREQ /BUSY /BPRO /WAIT VCC 

IF (/BACK) TBEN = IORC * CS 

IF (/BACK) RBEN = /IORC * CS 

WAIT = /XACK * BACK 

BREQ := BRQ 

BPRO - /BRQ * BPRN 

/BACK :- /BUSY 

BUSY:- BREQ * BPRN * /BSY * /BUSY + 
BREQ * BUSY * BPRN + OS * BUSY 

CEN :- BACK 

DESCRIPTION 

/CEN DELAYS THE COMMANDS TO MEET THE MULTIBUS REQUIREMENT THAT ADDRESS 
AND DATA BE VALID AT LEAST 50 NS PRIOR TO CONTROL ACTIVE. IF WE DO 
NOT ALLOW PREEMPTION; REMOVE BPRN FROM THE SECOND EXPRESSION IN THE 
BUSY EQUEATION AND ELIMINATE THE THIRD EXPRESSION. 

Figure 3-145. Source Listing for MULTIBUS to Am9516 I.nterface 
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3.5.2 Z-8US AND 8088/8086 INTERFACE 

This application note describes how replacing two 8086 sup· 
port chips with a Z8000 support chip and an AmPAl16R8A 
allows the 8086 CPU to interface directly to the Z·BUS. Since 
the timing of the signals used is the same for the 8088 CPU, 
this circuit wili'work equally well in those applications. 

Interfacing the 8086 CPU to the Z·BUS allows 8086 users to 
take advantage of the very powerful Z8000 peripheral and 
memory support circuits that are available. The Z8000 
peripheral circuits in particular offer the user higher 
throughput rates, simpler control software and less system 
overhead requirements than any previous generation periph· 
eral family for any CPU. 

Design Requirements 

The 8086 CPU can operate in two different modes. In mini· 
mum mode, it generates all the bus control and timing 
signals for the 8086 (8085, 8088) buses directly on,chip. In 
maximum mode, the CPU puts out status information early in 
each bus cycle and relies on an external bus controller chip, 
the 8288, to generate timing and control signals. This im· 
plementation uses the CPU in maximum mode and replaces 
the 8288 with a programmable array logic element 

56pF 
17 

READY ,r 3000 10 
X2 OSC 

RESET OUT 
14 

ZCK 
8 

E:::J 15MHz 

11 
X1 

AmZ8127 

(Am PAL 16R8A) that generates the Z·BUS timing and control 
signals from the status signals provided by the CPU. It also 
makes use of the AmZ8127 clock generator to allow precise 
timing resolution by providing an oscillator signal at 3 times 
the CPU clock frequency. The AmZ8127 provides all the clock 
generation functions of an 8284A as well as several addi­
tional functions. Either clock chip will work in this system. 

The bus controller provides the following functions: 

-Generates AS, DS, INTACK and R/W with proper timing 
relative to address and data. 

-Provides simultaneous assertion of AS and DS during 
reset. 

-Automatic insertion of 1 wait state for all 1/0 cycles. 
-Synthesizes a single Z·BUS interrupt acknowledge cycle 

from the 8086 lACK cycles. 

Figure 3-146 shows the circuit interconnection diagram. The 
system uses a high-speed Am PAL 16R8A to generate AS, DS, 
R/W and INTACK of the Z-BUS, RDY for wait state generation, 
and three internal state variables. The registers are clocked with 
the 15-MHz OSC signal from the 8127. The five input signals to 
the PAL are 5-MHz CPU Clock Signal (ClK), System Reset 
(RESET), and the three CPU Status States (So, 5" 5;). 

15MHz 
CK 

18 
RDY 

5MHz 
RESET 

ClK 
17 

INTACK 

AmPAl16R8A AS 

RESET SO 26 SO 55 

J"': 51 27 51 
13 

52 28 6 52 14 
4/8 READY R/W 

8086 
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Figure 3-146. Circuit Interconnection Diagram 
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The CPU Indicates the start of a bus cycle bybrlnglng at least 
one of the status lines low from the idle high state (see 
Figure 3-147). This starts an internal timing sequence within the 
PAL which corresponds closely to the various T states of a 
bus cycle. AS is asserted during the time ClK is lOW during 
T1. 55 is asserted at the start of T3. If it is an I/O cycle, then 
RDY would be disabled for one ClK period straddling T2 and 
T3 causing the 8127 to request 1 walt state afterT3.ln either 
case, DS remains asserted until after the first 1/3 of T4, which 
is identified by the status lines returning to the idle state dur­
ing the previous cycle. RIW is generated by sampling So and 
S1 during AS. 

It Is In the realm of Interrupts where the Z8000 peripherals 
shine over other perlperhals. Each peripheral can identify 
many different exception conditions during Its operation. 
The occurrence of one or more of these conditions causes ac­
tivation of a single interrupt request line. The peripheral 
wants the CPU to respond with a single interrupt acknowl­
edge cycle, during which the peripheral resolves priority and 
provides the CPU with enough status and vector information 
to allow it to respond to the exception without any further in­
terrogation of the peripheral. This allows interrupt driven 
systems to achieve very high data throughput rates. 

I n I ~ I Th I ~ I n I ~ I Th I ~ I ~ I n I 

81270SC t t t t t t t t t t t t t t t t t t t t t t t t·t t t t t t t t 
r--r66.6ns 

8127 CLK 

8086 So. 51.52 

Po 

'RfW ~'--____________ -' 
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Figure 3-147. Memory and 110 Timing Diagram 
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The 8086 CPU responds to an interrupt request with a se­
quence of two interrupt acknowledge cycles, and only in the 
second is any data read off the bus. As stated before, the 
Z-BUS peripherals require only one acknowledge cycle. The 
timing cif this has to be such that there is enough delay be­
tween AS going HIGH and DS going LOW to allow any priori­
tizing daisy chains to settle, and DS has to be wide enough to 
allow the peripheral time to place vector or status informa­
tion on the bus. Figure 3-148 shows how these two require­
ments are accomplished by turning the two acknowledge cycles 
into one. The first cycle allows only AS and the second asserts 
only DS and does so for the complete cycle. This appears to the 
peripheral as one very long bus cycle which is identified as an 
interrupt acknowledge cycle by the assertion of INTACK. 

Design Approach 

To implement this design in an AmPAL 16RBA requires recogniz­
ing the Z-BUS timing characteristics in Figures 3-147 and 3-14B. 
The major characteristic to consider is counting the phases of a 
bus cycle. Internal state variables Po and'P1 are the result (see 
Figure 3-149). An additional internal state variable (12) is neces­
sary to count the second bus cycle of an interrupt acknowledge 
sequence. As shown in Figure 3-150, 12 in conjunction with 
INTACK allows AS to be asserted only in the first interrupt ac­
knowledge cycle and DS only in the second. The RESET input is 
used to initialize the internal variables and assert AS and DS. 
Note also that Sa and ~ are included in the DS equation to 
prevent DS from being asserted during a halt cycle. 

I nih I Th I n I ~ I ~ I nih I Th I ~ I n 

8127 osc t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t r-+66.6ns 

8127 ClK 

8086 SO. 51. 52 \"" ____ S_=_O ___ ...J! S=7 \"" _____ S_=_O _____ -J! S=7 

Po ___ ...I 

p, _____ ...J 

12 r-------_---11 

IN~CK ~~ _____________________________________ ~ 

LJ 
os 
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Figure 3-148. Interrupt Acknowledge Timing Diagram 
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The fact that AMD PALs are user programmable allows a 
great deal of flexibility forthe designer. Mlnortlmlng changes 
are easily Implemented by simply adding or changing a term 
In the logic equations and reprogramming the device. In this 
system, we have timing resolution to 67 ns. This same confi.gu­
ration can be used with a 24-MHz crystal for 8-MHz CPU chips. 
The logic equations would change because the OSC period 
would be 42 ns. The only hardware change would be the crystal. 

An additional PAL could also perform chip select decoding 
based on both address and status signals. 

P1 Po PHASE 

0 0 IDLE 

0 1 ASTIME 

Conclusion 

We have seen how a properly programmed PAL can be used 
to replace a specialized bus controller chip and allow an 8086 
CPU to Interface directly to Z·BUS peripheral(s) and/or 
memory systems. This brings all the advantages of the supe­
rior Z8000 peripheral family In terms of both throughput and 
ease of use to 8086 users with no Increase in chip count while 
still allowing a wide range of design flexibility. The logic 
diagram and PALASM equations for the AmPAL 16R8A 8086 to 
Z-BUS interface chip are shown in Figures 3-151, 3-152,3-153, 
and Table 3-20. 

CPU T STATES 

T4, T1 

T1 
1 0 AS TO OS DELAY T2 
1 1 OS TIME T3, Tw 
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Figure 3-149. 

12 INTACK AS OS 
NO NO YES YES 
NO YES YES NO 
YES YES NO YES 

03862A·107 

Figure 3-150. 
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PAL16R8 PAL DESIGN SPECIFICATION 
PAT004 NICK ZWICK 6/21/82 
8086 TO Z-BUS INTERFACE CHIP 
ADVANCED MICRO DEVICES 
CK RESET CLK ISO /SI /S2 NC NC NC GND 
/E /PO /Pl /RW /DS /AS /INTACK RDY /12 VCC 

;INTERNAL STATE VARIABLES 

PO := /RESET* SO*/PO*/Pl*/CLK + 

PI 

/RESET* SI*/PO*/Pl*/CLK + 
/RESET* S2*/PO*/Pl*/CLK + 
/RESET*PO*/CLK + 
/RESET*Pl*CLK* SO + 
/RESET*Pl*CLK* SI + 
/RESET*Pl*CLK* S2 

:= /RESET*PO*/Pl*CLK 
/RESET*Pl*/CLK 
/RESET*Pl*CLK* SO 
/RESET*Pl*CLK* SI 
/RESET*Pl*CLK* S2 

+ 
+ 
+ 
+ 

12 := /RESET*INTACK*/I2*GLK*PO*Pl + 
/RESET*I2*/Pl + 
/RESET*I2*/PO + 
/RESET*I2*PO*Pl*/CLK 

;Z-BUS OUTPUT SIGNALS 

AS := RESET + 
/PO*/Pl*CLK*/I2 + 
AS*/PO*/I2*/DS 

DS := RESET + 
/INTACK*/PO*Pl*CLK*SO + 
/INTACK*/PO*PI*CLK*S1 + 
12* SO* SI* S2 + 
DS*PO*Pl 

RW := AS*SO*/SI + 
RW*/AS 

INTACK := /RESET* SO* SI* S2 + 
/RESET*INTACK*/I2*Pl + 
/RESET*I2 

/RDY := /RESET*SO*/SI* S2*/PO*Pl + ;DISABLE READY ON I/O OP 
/RESET*/SO*SI* S2*/PO*Pl 

Figure 3-151. Source Listing for the Z-Bus to 8088/8086 Interface 
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TABLE 3-20. FUNCTION TABLE 

FUNCTION TABLE 
CK RESET CLK IS2 lSI ISo PO PI 12 lAS IDS IRW IINTACK RDY 
-------------------------------------------------------------
; 
; INITIALIZE 
C H X X X X L L L L L X H H 
; 
;MEMORY WRITE OPERATION 
C L L H H H L L L H H H H H 
C L H H H L L L L L H H H H 
C L L H H L H L L L H L H H 
C L L H H L H L L H H L H H 
C L H H H L L H L H H L H H 
C L L H H L L H L H H L H H 
C L L H H L L H L H H L H H 
C L H H H L H H L H L L H H 
C L L H H L H H L H L L H H 
C L L H H H H H L H L L H H 
C L H H H H L L L H L L H H 
C L L H H H L L L H H L H H 
C L L H H H L L L H H L H H 
; 
;1/0 READ OPERATION 
C L H L L H L L L L H L H H 
C L L L L H H L L L H H H H 
C L L L L H H L L H H H H H 
C L H L L H L H L H H H H H 
C L L L L H L H L H H H H L 
C L L L L H L H L H H H H L 
C L H L L H H H L H L H H L 
C L L L L H H H L H L H H H 
C L L L L H H H L H L H H H 
C L H L L H H H L H L H H H 
C L L L L H H H L H L H H H 
C L L H H H H H L H L H H H 
C L H H H H L L L H L H H H 
C L L H H H L L L H H H H H 
; 
;TWO CYCLE INTERRUPT SEQUENCE 
C L H L L L L L L L H H L H 
C L L L L L H L L L H H L H 
C L L L· L L H L L H H H L H 
C L H L L L L H L H H H L H 
C L L L L L L H L H H H L H 
C L L L L L L H L H H H L H 
C L H L L L H H L H H H L H 
C L L L L L H H L H H H L H 
C L L H H H H H L H H H L H 
C L H H H H L 'L H H H H L H 
C L L H H H L L H H H H L H 
C L L H H H L L H H H H L H 
C L H L L L L L H H L H L H -
C L L L L L H L H H L H L H 
C L L L L L H L H H L H L H 
C L H L L L L H H H L H L H 
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TABLE 3-20. FUNCTION TABLE (Continued) 

C L L L L L L H H H L H L H 
C L L L L L L H H H L H L H 
C L H L L L H H H H L H L H 
C L L L L L H H H H L H L H 
C L L H H H H H H H L H L H 
C L H H H H L L L H L H L H 
C L L H H H L L L H H H H H 
----------------------------------------------------------

DESCRIPTION 
THIS DEVICE IS USED FOR INTERFACING THE 8086 CPU DIRECTLY TO THE Z-BUS 
ALLOWING INTEGRATION OF THE VERY POWERFUL Z8000 PERIPHERAL AND MEMORY 
SUPPORT CIRCUITS INTO 8086 SYSTEMS. THE DEVICE IS DESIGNED TO WORK IN 
CONJUNCTION WITH THE Z8127 CLOCK GENERATOR FOR PRECISE TIMING 
RESOLUTION. 
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PAL16R8 PAL DESIGN SPECIFICATION 
PAT004 NICK ZWICK 6/21/82 
8086 TO Z-BUS INTERFACE CHIP 
ADVANCED MICRO DEVICES 
*D9724 
*FO* 
LOOOO 1001 0111 1110 1111 1111 1111 1110 1110 * 
L0032 1010 1111 1111 1111 1111 1111 1101 1111 * 
L0064 1010 1111 1111 1111 1111 1111 1111 1101 * 
L0096 1010 1011 1111 1111 1111 1111 1110 1110 * 
L0256 1011 1111 1011 0111 1011 1111 1110 1101 * 
L0288 1011 1111 0111 1011 1011 1111 1110 1101 * 
L0512 1011 1111 1011 1011 1011 1111 1111 1111 * 
L0544 1001 1111 1110 1111 1111 1111 1110 1111 * 
L0576 1010 1111 1111 1111 1111 1111 1111 1111 * 
L0768 0111 1111 1111 1111 1111 1111 1111 1111 * 
L0800 1101 0111 1111 1111 1111 1111 1101 1101 * 
L0832 1101 1111 1111 1110 1101 1111 1111 1101 * 
L1024 0111 1111 1111 1111 1111 1111 1111 1111 * 
L1056 1111 0111 1001 1111 1111 1111 1110 1101 * 
L1088 1111 0111 1101 1011 1111 1111 1110 1101 * 
Ll120 1110 1111 1011 1011 1011 1111 1111 1111 * 
Ll152 1111 1111 1111 1111 1110 1111 1110 1110 * 
L1280 1111 1111 1011 0110 1111 1111 1111 1111 * 
L1312 1111 1111 1111 1101 1111 1110 1111 1111 * 
L1536 1011 0111 1111 1111 1111 1111 1101 1110 * 
L1568 1011 1011 1111 1111 1111 1111 1110 1111 * 
L1600 1011 0111 1011 1111 1111 1111 1110 1111 * 
L1632 1011 0111 1111 1011 1111 1111 1110 1111 * 
L1664 1011 0111 1111 1111 1011 1111 1110 1111 * 
L1792 1011 1011 1011 1111 1111 1111 1101 1101 * 
L1824 1011 1011 1111 1011 1111 1111 1101 1101 * 
L1856 1011 1011 1111 1111 1011 1111 1101 1101 * 
L1888 1011 1011 1111 1111 1111 1111 1111 1110 * 
L1920 1011 0111 1011 1111 1111 1111 1110 1111 * 
L1952 1011 0111 1111 1011 1111 1111 1110 1111 * 
L1984 1011 0111 1111 1111 1011 1111 1110 1111 * 
C711D* 
VOOOI C1XXXXXXXOXHHXLLllliHl * 
V0002 C00111XXXOXHHHHHHHHl * 
V0003 C01011XXXOXHHHHLHHHl * 
V0004 C00011XXXOXLHLHLHHHl * 
V0005 C00011XXXOXLHLHHHHHl * 
V0006 C01011XXXOXHLLHHHHHl * 
V0007 COOOllXXXOXHLLHHHHHl * 
V0008 C00011XXXOXHLLHHHHHl * 
V0009 C01011XXXOXLLLLHHHHl * 
V0010 C00011XXXOXLLLLHHHHl * 
V0011 C00111XXXOXLLLLHHHHl * 
V0012 C01111XXXOXHHLLHHHHl * 
V0013 C00111XXXOXHHLHHHHHl * 
V0014 C00111XXXOXHHLHHHHHl * 
V0015 C01100XXXOXHHLHLHHHl * 
V0016 C00100XXXOXLHHHLHHHl * 
V0017 C00100XXXOXLHHHHHHHl * 

Figure 3-152. Fuse Plot and Test Vectors for the Z-Bus to 8088/8086 Interface 
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VOOl8 cOIIOOXXXOXHLHHHHHHI * 
VOOl9 cOOIOOXXXOXHLHHHHLHI * 
V0020 cOOIOOXXXOXHLHHHHLHI * 
V0021 COIIOOXXXOXLLHLHHLHI * 
V0022 COOl o OXX XOXLLHLHHHH I * 
V0023 cOOIOOXXXOXLLHLHHHHI * 
V0024 cOIIOOXXXOXLLHLHHHHI * 
V0025 cOOIOOXXXOXLLHLHHHHI * 
V0026 cOOIIIXXXOXLLHLHHHHI * 
V0027 COIIIIXXXOXHHHLHHHHI * 
V0028 cOOIIIXXXOXHHHHHHHHI * 
V0029 cOlOOOXXXOXHHHHLLHHI * 
V0030 cOOOOOXXXOXLHHHLLHHI * 
V0031 cOOOOOXXXOXLHHHHLHHI * 
V0032 cOIOOOXXXOXHLHHHLHHI * 
V0033 cOOOOOXXXOXHLHHHLHHI * 
V0034 COOOOOXXXOXHLHHHLHHI * 
V0035 cOIOOOXXXOXLLHHHLHHI * 
V0036 cOOOOOXXXOXLLHHHLHHI * 
V0037 COOIIIXXXOXLLHHHLHHI * 
V0038 COIIIIXXXOXHHHHHLHLI * 
V0039 COOIIIXXXOXHHHHHLHLI * 
V0040 COOIIIXXXOXHHHHHLHLI * 
V0041 COIOOOXXXOXHHHLHLHLI * 
V0042 cOOOOOXXXOXLHHLHLHLl * 
V0043 COOOOOXXXOXLHHLHLHLI * 
V0044 cOlOOOXXXOXHLHLHLHLl * 
V0045 COOOOOXXXOXHLHLHLHLI * 
V0046 cOOOOOXXXOXHLHLHLHLl * 
V0047 cOIOOOXXXOXLLHLHLHLI * 
V0048 cOOOOOXXXOXLLHLHLHLl * 
V0049 cOOIIIXXXOXLLHLHLHLl * 
V0050 cOIIIIXXXOXHHHLHLHHl * 
V0051 cOOIIIXXXOXHHHHHHHHl * 
A334 

Figure 3·152. Fuse Plot and Test Vectors for the Z·Bus to 8088/8086 Interface (Continued) 
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Figure 3-153. Logic Diagram for 8086 to Z-Bus Interface Using AmPAL16R8 

3-200 



3.5.3 AN AMD PAL MULTIBUS ARBITER 

The popularity of bus oriented systems can be traced to their 
low cost, flexibility, and expandability. Expansion is easy 
because a well defined standard enforces compatibility and 
simplifies interfacing. The MULTI BUS is a good example of a 
popular and easily used bus standard. However, all of these 
bus systems require some way of interacting with the other 
devices on the bus. This interaction is generally controlled by 
an arbitration unit. This application note will describe how a 
PAL can be used to construct a custom MULTI BUS arbiter 
which is higher performance and more economical than the 
LSI alternatives. 

Design Requirements 

Since the MULTI BUS can have more than one master trying to 
use the bus at the same time, an arbitration scheme is re­
quired to ensure correct operation of the system. Prioritiza­
tion is accomplished by assigning different access priorities 
to the diiferent bus masters. The two implementations avail­
able to assign priority are serial and parallel. The serial 
method involves a daisy chain of bus grant ins (BPRN) and 
bus grant outs (BPRO) with higher priority devices occupying 
the positions closer to the beginning of the chain (Figure 3-154). 
The parallel method prioritizes the bus requests (BREO) of all the 
masters and generates a bus grant in (BPRN) to the master of 
highest priority (Figure 3-.155). The priority decoder of Figure 
3-155 is easily implemented in a single AmPAL 16L8 (Figure 
3-156). 

The timing requirements for the MULTIBUS are very easy to 
implement and are designed to handle the usual timing prob­
lems that appear in many systems. Control signals are all ac­
tive LOW so that unconnected signals don't interfere with the 

HIGHEST 
PRIORITY 
DEVICE 

normal operation of the bus. All bus arbitration is synchronous 
and all data transfers are asynchronous (see Figure 3-157). The 
only requirement is that an address be valid 50 ns before any 
control signals (read or write) become active. This prevents 
subtle timing problems caused by slow buffer/driver turn-on 
times. 

The arbitration and grant timing (illustrated in Figure 3-158) is 
also straightforward. Transfer requests are sent to the ar­
biters which then decide who gets the bus. If a master device 
is currently using the bus and is ordered off, it is allowed to 
complete its current bus transfer cycle (i.e., .the current word 
or byte only). If the master, which was overrUled, still needs 
the bus, it must wait until its priority is high enough to regain 
the bus. 

A typical sequence is initiated when an external request is 
received (SREO) from a master device. This signal is synchro­
nized to insure a valid bus request, minimizing the possibility 
of a metastable state occurring. After synchronization, the 
bus priority out (i3PR'O) line is disabled to signal lower priority 
masters in the chain that a higher priority master wants the 
bus (serial method). In the parallel method, bus request and 
common bus request (BREQ and CBREO) are asserted to let 
the other MULTI BUS arbiters know a master wants the bus. 
Now, if the bus is not busy (BUSY is inactive), then the arbiter 
grants the requesting master access to the bus and asserts 
BOS'? The address buffers are enabled at this time, one cycle 
ahead of the read and write signals. When the master re­
ceives a bus acknowledge (XACK) from the slave device, a 
single transfer cycle has occurred. The bus master then re­
leases the bus and if it needs to do more transfers, another 
arbitration/grant cycle must take place. 

LJ 
LOWEST 
PRIORITY 
DEVICE 
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Figure 3-154. Serial Priority Resolution 
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Figure 3·156. PAL Implementation of Parallel Priority Resolution for MULTIBUS 
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Design Approach 

The first step in actually designing the arbiter was to convert the 
arbitration/grant and control signal sequence into a simple state 
transition diagram (see Figure 3-159). The state diagram was 
then partitioned into its three basic components: 

-request/synchronization 
-grant/access logic 
-control signals 

The bus request logic decides when to issue a bus request 
using SREQ along with a qualifying read or write request (RD or 
WR). This signal is then fed through a double synchronizer 
(states 1 and 2). This creates an internally stable bus request 

RESET = 0 

RESET=O 

RESET = 0 

signal for the arbiter state machine (see Figure 3-160). Next, this 
request is fed into a bus grant flip-flop through some intervening 
logic. The intervening logic uses current bus status lines to de­
termine whether to acquire the bus, give it up after the current 
transfer cycle is complete, or hold the bus (see grant/access 
logic in Figure 3-161). The final major function is the bus control 
logic. After successful aCquisition of the bus, the appropriate 
control Signals (MRDC, MWTC, IORC, IOWC) and address buf­
fer enables must be asserted. In this case, the address buffer 
enable/grant (AEN) line is run through a .!!!E:!!op to become a 
delayed read/write control signal enable (OEN). This gives the 
drivers enough turn-on and setup time (100 ns minimum) for the 
address to stabilize on the MULTIBUS. The bus transfer control 
signal logic is illustrated in Figure 3-162. 

mrn ~~~ MULTIBUS 
OR BUSY = 0 REQUEST 

AND ~ = 1 SYNCHRONIZATION 

FfD=OAND~=1 
OR 

WR=OANDREm=1 
OR 

mrn=OAND~=1 AND RESET=1 

03862A-115 

Figure 3·159. PAL MULTIBUS Arbiter State Transition Diagram 
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Figure 3·160. Request Synchronizer 
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Figure 3·161. Grant/Access Logic 
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Figure 3·162. Bus Transfer Control 
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The RESET line is run to all the registers to provide a synchro­
nous reset for arbiter initialization. The full MULTIBUS standard 
requires a control signal drive capability of 32 mA for all of its 
control lines. The PAL 24 mA drive specification can drive up to 
7 cards on the bus, which is more than adequate for almost all 
applications. 

A couple of Interesting features are available which show the 
flexibility and functionality of PALs in a custom logic design 
such as this. The available MULTI BUS arbiters, like most LSI 
devices, have been optimized for one processor family. Any 
microprocessor (from the Z80 to the 8086, Z8000 or 68000) can 
be Interfaced to the MULTI BUS by tailoring the request logic 
of the PAL arbiter. This can result in a significant parts count 
reduction. The MULTI BUS uses open collector drivers for 
several signal lines (BUSY and CBREQ). While PALs don't 
have open collector drivers, that condition can easily be 

INTA 

MilO 

AD 

WR 

SREQ 
AmPAL16R4 

BPRN 

RESET 

simulated by enabling the output drivers only when the out­
put is active. In addition, most MULTI BUS arbiters force each 
master to re·arbitrate for access to the bus at the end of each 
data transfer. However, in the PAL arbiter design, If a master 
is executing multiple data transfers and if no master of 
higher priority is requesting the bus then the current master 
can retain the bus and execute more transfers. This reduces 
bus arbitration overhead and Increases bus bandwidth. Fi· 
nally, at the completlo"n of all transfers, the current bus 
master normally' releases the bus. In this design, If no one 
wants the bus, the last master to use It holds onto the bus on 
the assumption that It Is going to be the next user. If it Is, ar­
bitration time Is saved. If not, no time Is lost. 

Figure 3-163 shows a block diagram of the arbiter and bus 
control logic (which fits into 1/2 of an AmPAL16L8). A complete 
logic diagram and PALASM equations of the AmPAL16R4 are 
shown in Figures 3-164, 3-165, 3-166, and Table 3-21 .. 

INTA 

MRDC 
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Figure 3-163. PAL MULTIBUS Arbiter with Bus Control Logic 
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PAL16R4 PAL DESIGN SPECIFICATION 
PAT005 MARK S. YOUNG 6/22/82 
MULTIBUS ARBITER 
ADVANCED MICRO DEVICES 
BCLK /RD /WR /SREQ /RESET /BPRN NC NC NC GND 
/E /CBREQ /BUSY /SYNC /BPRO /AEN /OEN /BREQ NC VCC 

SYNC := /RESET*SREQ*RD + 
/RESET*SREQ*WR 

BPRO := /RESET*SYNC 

AEN := /RESET* AEN*BPRO*WR + 
/RESET* AEN*BPRO*RD + 
/RESET*BPRO*BPRN*/BUSY + 
/RESET* AEN*BPRN*/CBREQ 

OEN := /RESET*SREQ*AEN 

IF(BPRO*/AEN) CBREQ = BPRO*/AEN 

IF(AEN) BUSY = AEN 

BREQ = BPRO + 
AEN 

Figure 3-164. Source Listing for the MULTIBUS Arbiter 
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TABLE 3·21. FUNCTION TABLE 

FUNCTION TABLE 

BCLK /E /RESET /RD /WR /SREQ /BPRN SYNC BPRO AEN OEN CBREQ BUSY BREQ 
---------------------------------------------------------------------
; 
; INITIALIZE , . 

C L L X X X X L L L L L L L 
; 
jWRlTE OPERATION 
C L H H H L L L L L L L L L 
C L H H L L L H L L L L L L 
C L H H L L L H H L L H L H 
C L H H L L L H H H L L X H 
C L H H L L L H H H H' L H H 
C L H H L L L H H H H L H H 
C L H H L L L H H H H L H H 
C L H H H L L L H H H L H H 
C L H H H H L L L H L L H H 
j 
jREMOVE THE ARBITER FROM THE BUS 
C L H H H H H L L L L L L L 
; 
jREAD OPERATION (WITH BUS CONTENTION) 
C L H H H L L L L L ,L L H L 
C L H L H L L H L L L L H L 
C L H L H L L H H L L H H H 
C L H L H L L H H L L H H H 
C L H L H L L H H L L H H H 
C L H L H L L H H H L L X H 
C L H L H L L H H H H L H H 
C L H L H L L H H H H L H H 
C L H L H L L H H H H L H H 
C L H L H L L H H H H L H H 
C L H H H L L L H H H L H H 
C L H H H H L L L H L L H H 
---------------------------------------------------------------------

DESCRIPTION 
THIS DEVICE IS A MULTIBUS ARBITER. IT SUPPORTS BOTH SERIAL AND PARALLEL 
BUS ARBITRATION SCHEMES. INTERNAL SYNCHRONIZATION LOGIC MINIMIZES THE 
POSSIBILITY OF METASTABLE CONDITIONS. THE GRANT/ACCESS LOGIC HAS BEEN 
DESIGNED TO MINIMIZE BUS ARBITRATION OVERHEAD. THE TRANSFER CONTROL 
LOGIC HAS BEEN DESIGNED TO ALLOW INTERFACING A WIDE VARIETY OF 
PROCESSORS TO THE MULTIBUS. 

3·208 



PAL16R4 PAL DESIGN SPECIFICATION 
PAT005 MARK S. YOUNG 6/22/82 
MULTIBUS ARBITER 
ADVANCED MICRO DEVICES 
*D9724 
*FO* 
L0256 1111 1111 1111 1111 1111 1111 1111 1111 * 
L0288 1111 1111 1111 1111 1110 1111 1111 1111 * 
L0320 1111 1111 1111 1110. 1111 1111 1111 1111 * 
L0512 1111 1111 1011 0110 1111 1111 1111 1111 * 
L0768 1111 1011 1111 0110 1110 1111 1111 1111 * 
L0800 1011 1111 1111 0110 1110 1111 1111 1111 * 
L0832 1111 1111 1111 0111 1010 1111 1101 1111 * 
L0864 1111 1111 1111 0110 1011 1111 1111 1101 * 
L1024 1111 1111 1111 0111 1111 1110 1111 1111 * 
L1280 1011 1111 1011 0111 1111 1111 1111 1111 * 
L1312 1111 1011 1011 0111 1111 1111 1111 1111 * 
L1536 1111 1111 1111 1110 1111 1111 1111 1111 * 
L1568 1111 1111 1111 1110 1111 1111 1111 1111 * 
L1792 1111 1111 1111 1101 1110 1111 1111 1111 * 
L1824 1111 1111 1111 1101 1110 1111 1111 1111 * 
C3602* 
VOOOI CXXXOXXXX0011HHHHHX1 * 
V0002 C11010XXX0011HHHHHX1 * 
V0003 C10010XXX0011LHHHHX1 * 
V0004 C10010XXXOOL1LLHHLX1 * 
V0005 C10010XXX001XLLLHLX1 * 
V0006 C10010XXX001LLLLLLX1 * 
V0007 C10010XXX001LLLLLLX1 * 
VOOO8C10010XXX001LLLLLLX1 * 
V0009 C11010XXX001LHLLLLX1 * 
V0010 C111l0XXX001LHHLHLX1 * 
VOOll C11111XXX001lHHHHHX1 * 
V0012 Cl1010XXX0010HHHHHX1 * 
V0013 C01010XXX0010LHHHHX1 * 
V0014 C010l0XXXOOLOLLHHLX1 * 
V0015 C01010XXXOOLOLLHHLX1 * 
V0016 C01010XXXOOLOLLHHLX1 * 
V0017 C01010XXX001XLLLHLX1 * 
V0018 C01010XXX001LLLLLLX1 * 
V0019 C01010XXX001LLLLLLX1 * 
V0020 COl010XXXOOlLLLLLLXl * 
V0021 C01010XXX001LLLLLLX1 * 
V0022 Cl1010XXXOOlLHLLLLX1 * 
V0023 C11110XXX001LHHLHLX1 * 
5484 

Figure 3-165. Fuse Plot and Test Vectors for the MULTIBUS Arbiter 

3-209 



Columns: Inputs (0-31) 
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Figure 3-166. Logic Diagram for MULTIBUS Arbiter Using AmPAL16R4 
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3.5.4 VME BUS CONTROL 
SIMPLIFIED WITH PLDS 

A High-Performance Bus 

The VMEbus is a high-performance asynchronous bus capa­
ble of supporting multiple 16- and 32-bit processors. Its 
asynchronous nature permits easy implementation of hard­
ware controllers that reduce the time required for bus control 
tasks such as bus arbitration. By offloading these tasks to 
hardware, bus arbitration time is minimized which conse­
quently maximizes the overall bus transfer rate. 

This article describes PLD implementations of two such con­
trollers in a typical VMEbus system: the bus arbiter and the 
interrupter that comply with the VMEbus protocol. These state 
r1achines use to require multi-chip designs consisting of se-

PROCESSORI 
MASTER 1 

CPU I---

r-

ADDRI ~ F 
DATA .. P 

REG C 

~ 
'--r-

, 

PROCESSORI 
MASTER 2 

CPU -

-' 
ADDRI ~ F 
DATA .. P 

REG C 

~ 
-, 

VMEbus 

quencers, microprogrammed control stores, and other MSI/LSI 
chips. By using the AmPAL22Vl0 programmable logic device 
(PLD), you can reduce substantially the number of chips 
needed for these state-machine implementations. 

Functional Modules 

A typical VMEbus-based computer system contains a bus ar­
biter and an interrupt handler board. A processor/master in­
itiates a data transfer to a slave by requesting control of the 
data bus from the bus arbiter. Once bus control has been 
granted to a master, control signals to and from the master and 
slave are exchanged which follow predefined protocols. These 
protocols guarantee an orderly transfer of data between the 
communicating modules. Interrupt servicing capability is 
provided by the interrupt handler board (see Figure 3-167) 

CACHE/SLAVE 

HIGH-r SPEED 
RAM 

~ 

I ADDRESS I 
DECODER 

EJ , 
REG 

BUS 
ARBITER 

I AmPAL22Vl0 

08749A·17 

I 

Figure 3-167.lntermodule Communication Through Am29PL141 (FPCs) and PLDs in a VMEbus System 

Steps in Designing the Bus Controllers 

VMEbus protocols outline the steps to perform any bus-related 
operation, such as transferring data over the bus between two 
modules. These protocols are described using flow diagrams 
'with interactions between the communicating modules shown 
through various interface signals. For example, the priority bus 
arbiter flow diagram (Figure 3-168) shows how bus requests 
between two modules using the same request line are 
resolved. 

The flow diagrams are analyzed to pick out the functions that 
can be incorporated into PLDs, and then state machines are 
created for these functions. These state machines can be 
described logically, or with flowchart symbols such as rectan­
gular blocks (to symbolize events or control signals) and deci­
sion diamonds (to determine control program flow). Logic 
equations are then written for these state machines. 

This methodical process is used in designing the two PLD­
based VMEbus controllers: the bus arbiter and interrupt hand­
Ier controller. 
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A PLD Bus Arbiter 

Before any module can perform a data transfer, it must request 
control of the data transfer bus from the bus arbiter. This 
design uses a priority option bus arbiter implemented on a 
single AmPAL22V10 that monitors the four bus request lines 
BRO-3(L), with BR3(L) assigned the highest priority. 

Based on the flow diagram (Figure 3-168), the arbiter grants 
the bus to the requesting module using the highest active re- , 
quest line, in this case BR1 (L). A bus grant signal is daisy­
chained to all the devices using this request line to resolve 
simultaneous bus requests from two or more modules. This 
dictates that the arbiter be in the first slot of the VMEbus sys­
tem, and that the module physically closest to the arbiter 
through the daisy-chain will get the bus grant. 
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Figure 3·168. Bus Arbitration ~Iow Diagram for TlNo Bus 
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All bus requests are processed in parallel by the AND-OR 
array of the PlD. This allows priority arbitration to occur in a 
single clock cycle, which minimizes arbitration time and max­
imizes the data transfer rate on the VMEbus. 

When the bus is free, the module using the highest active bus 
request line is granted the bus. This is described with Boolean 
logic notation where registered outputs are defined with ':=': 

IF (/BBSY*(BRO+BR1 +BR2+ 
BR3)) THEN BEGIN 
IF (BR3) THEN 

BG3IN:= 1 ; 
IF (/BR3*BR2) THEN 

BG2IN:= 1 ; 
IF (lBR3*/BR2*BR1) THEN 

BG1IN:= 1 ; 

IF (lBR3*/BR2*/BR1*BRO) 
THEN BGOIN := 1 ; 

END; 

if bus not busy and a 
request line is active 

if BR3 is active, grant 
bus to device on BR3 

activate bus grant 
daisy chain 2 

if BR1 is active and BR3 
and BR2 are not, then 
grant bus to device 
using request line 1 

BRO-3 and BGOIN to 
BG31N are active low 

The AmPAl22V1 0 can be programmed with normal or inverted 
outputs and the logic software can support active high or low 
input polarities. 

BG1IN(l) is asserted until the requesting module asserts 
BBSY(l). This is defined in logic equation form as: 

IF (lBBSY*BG1IN) THEN 
BG11N := 1; 

Priority Arbitration Options 

I 
continuo e asserting 

BG11N until BBSY 
becomes active 

It may be necessary for the arbiter to force the current bus 
master to relinquish bus control for certain conditions, such as 
if a higher priority operation must be attended to. This is done 
by asserting the bus clear signal BClR(l) based on the priority 
of the bus current bus master and the bus clear conditions. 

The PlD arbiter keeps track of the current bus master's priority 
by recording which bus request line was used to gain control of 
the bus. For example, two output registers called BUS_ 
MASTER will be set to the binary value "2" if the current bus 
master used BR2(l) to gain control of the bus. 

In this design, BClR(l) will be activated under two conditions: 

1. If BUS_MASTER is 2,1 or 0 and the active bus request 
line is 3 or 2 

2. If BUS_MASTER is 0, and any bus request line is active. 

When BUS_MASTER is 3, then the arbiter will not honor any 
bus requests until the bus busy line BBSY(l) is low. The above 
conditions are expressed logically as: 

IF (BBSY*(BRO+BR1 +BR2+BR3)) THEN 
BEGIN IF (BR3*( /(MASTER[1 :0] = 3) ) ) THEN 

BClR := 1; "assert BClR if MASTER <> 3" 
IF (lBR3*BR2*( /(MASTER[1 :0] = 3) ) ) THEN 

BClR:= 1; 
IF (MASTER[1 :0] = 0) THEN 

BClR:= 1; 
END; 

Once the BClR(l) line is active, then it should be held until the 
current bus master releases BBSY(l). This is logically ex­
pressed as BClR = BClR*BBSY, or in a high-level syntax, 

IF (BClR*BBSY) THEN 
BClR:= 1; 

The BClR(l) signal is defined such that uninterruptible 
devices use BR3(l). Devices that can be temporarily 
suspended to accommodate interrupts and higher-priority op­
erations are assigned to bus request line O. The BClR condi­
tions will vary with your application, but any modifications will 
only require redefinitions of the high-level logic expressions. 

The AmPAl22V10 is ideal as the bus arbiter because of the 
inpuUoutput signal requirements and the large number of prod­

, uct terms needed to logically define the bus grant and bus clear 
. signals. 

Processing Interrupts 

When real-time or urgent response is needed by a processor, it 
generates an interrupt request signal and waits for the interrupt 
acknowledge signal IACK(l) and IACKIN(l) daisy-chain sig­
nal. A 3-bit value is then read from the VMEbus when the data 
strobes are active; this value indicates which interrupt request 
line was acknowledged. These 3-bits are decoded to deter­
mine if it matches the processor's request level. 

If the interrupt is acknowledged, then the interrupting proces­
sor puts its status or ID byte on the data bus for the interrupt 
handler. This data is used by the interrupt handler as an inter­
rupt vector. This proces'sor can then wait in a loop until the 
IACK(l) signal from the interrupt handler is driven HIGH to 
signify interrupt service completion. 

Interrupt Handling: The hlterrupt Handler 
Preprocessor (IHP) 

To handle external I/O or special system events (e.g., timeout, 
overflow), interrupts are supported on the VMEbus through an 
interrupt handler (IH) module. 

The logic complexity of the IH (See VMEbus Architecture) is 
reduced by offloading some of the initial interrupt recognition 
tasks to a PlD. An AmPAl22V10 can be programmed as an 
IHP to preprocess interrupt requests, obtain the bus and han­
dle data transfers (such as interrupt acknowledge signals). 
Control is passed to the interrupt handler only when the IHP 
latches the interrupt vector. 
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Interrupt request processing, bus acquisition, and the interrupt 
vector transfer phase are all specified using logic equations 
which are written using a high-level Boolean notation. The Am­
PAL22V10 monitors seven interrupt request lines and five 
other control inputs, and generates ten registered outputs to 
send control signals to the interrupt handler and the VMEbus 
drivers. 

Interrupt Logic 

All interrupt request lines are monitored according to the fol­
lowing logic equation: 

IF (IR1 + IR2 + IR3 + IR4 + IR5 + IR6 + IR7) THEN 
BR3 := 1 ; 1 this interrupt handler uses 1 

the BR3 request line 

If any of the interrupt lines are active, then BR3(L) is asserted. 
This initiates the bus acquisition phase. 

The next step is to wait for the bus grant in signal. Only when 
BGIN3(L) is active will BBSY(L) be active. This is expressed 
logically as: 

IF (BR3*/BG3IN) THEN 
BR3:= 1 ; =1-- [A) 

IF (BR3*BG3IN + BBSY*/SERVICE_DONE) 
THEN -- [B) 

BBSY:= 1 ; 

Equation [A) continually asserts BR3(L) as long as BG3IN(L) is 
not active, while [B) asserts BBSY(L) only when request line 
BR3(L) and BG3IN(L) are active, or if service has not been 
completed once the IHP asserts BBSY(L). 

When the IHP is the bus master, it puts the 3-bit interrupt-line 
acknowledge value on the bus and applies the data strobes. 
When the DTACK(L) signal is received from the interrupter, the 
IHP then strobes the status byte from the bus into a register on 
the interrupt handler card. The IHP informs the interrupt hand­
Ier that a status/lD byte is ready and to commence interrupt 
servicing. 

The IHP takes only a single clock cycle to resolve interrupt 
priorities because all interrupt/input signal lines are processed 
in parallel by the PLD. This is expressed in a logic description 
language as follows : 

IF (BBSY) THEN 
BEGIN 

(1) IF (IR7) THEN 
INTR[2:0) := 7 ; 

IF (/IR7*IR6) THEN 
INTR[2:0] := 6 ; 

IF (/IR7*/IR6*IR5) THEN 
INTR[2:0) := 5 ; 

IR7 was active 
3-bit value acknowledging 
interrupt line 7 
IR6 active, IR7 inactive 
acknowledge interrupt line 6 
IR5 highest priority 
interrupt line active 

(2) IF (/IR7*/IR6*/IR5*/IR4"/IR3*/IR2"IR1) THEN 
INTR[2:0) := 1 ; I acknowledge interrupt line 11 

END; 

As noted above, if both the IR7(L) and BBSY(L) signal are 
active in (1), then regardless of the value of the other interrupt 
lines, the 3-bit value generated will be "111" or 7. In (2), if 
IR1 (L) and BBSY(L) are active and the other six control signals 
are inactive, then the 3-bit output value will be "001" or 1. In 
(2), IR1 (L) is the highest priority line active. 

The remaining preprocessing involves completing the interrupt 
vector byte transfer. This is logically expressed as: 

IF (BBSY) THEN 
. BEGIN 

lACK := 1; begin interrupt acknowledge 
(X) IF (DTACK) THEN daisy chain; if device sends 

LATCH_STATUS := 1; data transfer acknowledge 
END; (DTACK) signal, then latch 

IF (lACK) THEN the status 
AS := 1; I assert the address strobe signal to inform 

the interrupter that the interrupt 
acknowledge level is ready 

Once the 8-bit status or ID byte is transferred successfully via 
the DTACK(L) signal (X), the IHP PAL device informs the inter­
rupt handler module to begin the interrupt service routine: 

IF (BBSY"LATCH_STATUS +BBSY"START _SERVICE" 
ISERVICLDONE) THEN 

START_SERVICE := 1; 

In this design, the START_SERVICE signal is constantly as­
serted until the interrupt handler generates a SERVICLDONE 
signal, at which point START_SERVICE is brought LOW. The 
above equations will generate the timing diagram in Figure 
3-169. 
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Figure 3·169. Timing Diagram 

Controller Design Simplified need only analyze the bus protocols, convert these into state 
with Development Tools machines and then write assembly language programs or high­

level logic equations to describe these state machines. The 
The task of programming FPCs and PLDs as VMEbus control- assembler and logic software "Yill then process these programs 
lers is simplified with the development tools. The designer and equations to fit into the FPC or PLD. . 
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DEVICE ARBITER (AMPAL22V1O) "VMEbus Priority !lrbiter Option 

For this appl ication, if the bus is busy, then bus requests wi II be 

deferred unti I the BBSY(L) (bus busy I ine active LO\I) goes HIGH, 

unless the bus request is of a higher priority. In this case, the 

bus clear signal BCLR(L) is asserted and the current bus master 

re~inquishes contr!Jl. If the bus is free and 2 or more masters 

request service, then the bus is granted to the master with the 

higher pri ori ty request line. " 

PIN CLK = 1 

/BBSY = 2 

/BRO = 3 

/BRl = 4 

/BR2 = 5 

/BR3 = 6 

/BCLR = 23 

/BGOIN = 22 

/BGlIN = 21 

/BG2IN = 20 

/BG3IN = 19 

HASTER [1 :0] = 18,17; 

IF (BG3IN*/BBSY) THEN 

BG31N := 1 ; 

IF (BG2IN*/BBSY) THEN 

BG21N := 1 ; 

IF (BGlIN*/BBSY) THEN 

BGlIN := 1 ; 

IF (BGOIN*/BBSY) THEN 

BGOIN := 1 ; 

IF (BG3IN*BBSY) THEN 

HASTER[1:0] :=3; 

IF (BG2IN*BBSY) THEN 

HASTER [1 :0] := 2 ; 

IF (BGlIN*BBSY) THEN 

MASTER[1:0] := 1 ; 

IF (BGOI N*BBSY) THEN 

MASTER[1:0] := 0 ; 

" when requester responds with BBSY active, then" 

" HASTER is set to the I ine currently control I ing" 

" the bus; this is used internally for future 

" bus priority resolution 

IF (BBSY) THEN "when bus busy, then remember current bus master line" 

HASTER [1 :0] := MASTER [1 :0] ; 

"if a higher priority bus request occurs and the bus is busy, then begin 

bus resolution (by using bus clear BCLR) under the following conditions: 

BEGIN if BR3 and present bus master is not using bus line 3; i.e., once a device 

"if a bus request occured and bus = free, then activate the bus grant in uses BR3, then no one can force it to relinquisn the bus or 

I ine corresponding to the highest priority bus request line 

IF (fBBSY*(BRO+BR1+BR2+BR3» THEN 

BEGIN 

IF (BR3) THEN 

BG31N := 1 ; 

IF (fBR3*BR2) THEN 

BG21N := 1 ; 

IF (/BR3*/BR2*BR1) THEN 

BGlIN := 1 ; 

IF (fBR3*/BR2*/BR1*BRO) THEN 

BGOIN := 1 ; 

END; 

"while the bus grant in line is active and the bus is still busy, 

then latch the bus grant signa I s unt i I BBSy( L) becomes act i ve" 

if BR2 and present bus master is not 3; i.e., BR2 can assert bus clear 

except when the presetn bus master obtained the bUs using bus line 3 or 

if BRl and the bus master obtained the bus using bus request line 0, then 

assert BCLR 

==> if BRO is act i vated when the bus is busy, then do not assert BCLR; BRO 

devices cannot force anyone off the bus. This is one possible priority 

implementation. 

IF (BBSY*(BRO+BR1+BR2+BR3» THEN "if a bus request occured and bus = busy" 

BEGIN 

IF (BR3*(fMASTER[1]+/MASTER[0]» THEN "if BR3 and present master is not" 

BEGIN 

BCLR := 1 ; 

IF (BCLR*BBSY) THEN 

BCLR := 1; 

END; 

" using line 3, then assert BCLR " 

Figure 3-170. PLPL Specifications for the Example of Figure 3-167 (1 of 4) 
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IF (fBR3*BR2*(fMASTER [1] +/MASTER [0]» THEN 

BEGIN 

BClR := 1 ; 

IF (BClR*BBSY) THEN 

BClR := 1; 

END; 

IF (fBR3* /BR2*BR1* /MASTER [1J * /MASTER [0]) THEN 

BEGIN 

BClR := 1 ; 

IF (BClR*BBSY) THEN 

BClR := 1; 

END; 

END; 

END. 
"Test vectors used for sirrulation and testing" 

TEST_VECTORS 

IN ClK. /BBSY • /BRO • /BR1 • /BR2 • /BR3 ; 

OOT IBClR • IBGOIN • IBGlIN • /BG2IN • IBG31N • HASTER[t:O] 

BEGIN 

/ I / / / / / / / / 

"cbbbbb bbbbbmm" 

"lsrrrr c g g 9 9 s SOl 

'! Ie y 0 1 23 r 0 1 2 3 1 0" 
-_ .... --------_ .. --------- .. ----

C 1 0 1 1 1 XXXXXXX; 

COl 1 1 1 XXXXXXX; 

C 1 1 1 1 1 XXXXXXX; 

C 1 1 0 0 1 XXXXXXX; 

COl 1 1 1 XXXXXXX; 

COl 1 1 0 XXXXXXX; 

COl 1 0 XXXXXXX; 

COl 1 0 XXXXXXX; 

C 1 1 1 1 0 XXXXXXX; 

C 1 1 1 1 0 XXXXXXX; 

C 1 1 1 1 0 XXXXXXX; 

COl 1 1 XXXXXXX; 

COO 1 1 XXXXXXX; 

COOl 1 XXXXXXX; 

COlO 1 XXXXXXX; 

COl o 1 XXXXXXX; 

COl 1 1 0 XXXXXXX; 

END. 

Figure 3-170. PLPL Specifications for the Example of Figure 3-167 (2 of 4) 
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DIi.VICE INTR_HND_CTRLR (AMPAL22V10) " VMEbus interrupt handler preprocessor 

This PAL serves as an interface between the interrupt servicing logic in the 

interrupt handler and the bus arbiter: when an interrupt is detected, the 

PAL requests the bus from the arbi ter. IIhen the bus is granted, the bus 

busy BBSY(L) is asserted. The 3 bit code corresponding to the highest 

priority interrupt request is put on the bus, and both IACK(L) and AS(L) 

are also asserted. The PAL waits for DTACK(L) LOll and then latches the 

status/lD byte. The START_SERVICE signal informs the interrupt handler 

to begin the interrupt service sequence with the status/lD byte latched in. 

Note: this interrupt handler interface PAL handles all interrupts using 

bus request line BR3; this is appl ication·dependent " 

PIN 

CLK = 1 
/lR1 = 2 
IIR2 = 3 
/lR3 = 4 
IIR4 = S 
/IRS = 6 
/lR6 = 7 
IIR7 = 8 
IDTACK = 9 

IBG31N = 10 

SERVICE_DONE = 13 

"interrupt request lines 1 to highest priority 7" 

"data transfer ack; used by interrupter to indi cate 

status/lD data byte ready on bus " 

"bus grant in signal from arbiter" 

"signal from interrupt handler indicating 

service complete" 

LATCH_STATUS = 23 "latches data from bus for interrupt service routine" 

IBBSY = 22 "bus busy" 

IIACK = 21 "interrupt acknowledge" 

lAS = 20 "address strobe" 

IBR3 = 19 "bus request signal to bus arbiter" 

GET_BUS = 18 "used internally by PAL" 

INTR[2:0] = 1S:17 "3·bit level code put on bus 

START_SERVICE = 14-; "sent from PAL to intr handler" 

BEGIN 

"if any interrupt request -line is active, then try getting the bus. All the 

interrupts handled by this PAL will use the bus request line BR3. A 

request can occur only when no other interrupt is being serviced (i .e., 

bus should not be busy and bus grant in should not be active) " 

IF (fBBSY*/BG3IN*(lR1 + IR2 + IR3 + IR4 + IRS + IR6 + IR7» THEN 

BEGIN 

GET_BUS := 1 

BR3 := 1 "subject to appl ication" 

END; 

"if interrupt handler wants the bus, the bus grant line is still inactive, 

and the interrupt request is still active, then continue requesting the bus " 

IF (GET_BUS*BR3*/BG3IN*(lR1 + IR2 + IR3 + IR4 + IRS + IR6 + IR7» THEN 

BEGIN 

BR3 := 1 ; 

GET_BUS := GET_BUS 

END; 

"if bus grant in line is active, then assert the bus busy signal" 

IF (Gc:T_BUS*BG3IN + BBSY*/SERVICE_DONE) THEN 

6BSY := 'I ; 

"if interrupt h.andler received bus, then acknowledge the interrupt" 

IF (BBSY) THEN 

BEGIN 

IF (fSTART_SERVICE) THEN 

lACK := 1 ; 

IF (DTACK) THEN 

LATCH_STATUS := 1 

IF.(lR7) THEN 

"when the interrupter responds with DTACK(L), then " 

"latch the status/lD byte into the interrupt handler" 

INTR[2:0] := 7 ; 

IF (fIR7*IR6) THEN 

"IR7 line is highest priority" 

INTR[2:0] := 6 ; 

IF (fIR7*/lR6*IRS) THEN 

INTR[2:0] := S ; 

IF (/lR7*/lR6*/lRS*IR4) THEN 

INTR[2:0] := 4 ; 

IF (fIR7*/lR6*/lRS*/lR4*IR3) THEN 

INTR[2:0] := 3 ; 

IF (fIR7*/lR6*/IRS*/lR4*/IR3*IR2) THEN 

INTR[2:0] := 2 ; 

IF (fIR7*/lR6*/IRS*/lR4*/IR3*/lR2*IR1) THEN 

INTR[2:0] := 1 ; "IR1 line is lowest priority" 

END; 

Figure 3-170. PLPL Specifications for the Example of Figure 3-167 (3 of 4) 
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IF (lACJC*/AS + IACJC*/OTACK) THEN "hold the interrupt acknowledge level mtil" 

INTR[2:0] := INTR[2:0] ; "strobed by address strobe signal or mtil 

the interrupter acknowledges the 3·bit 

level with DTACK 

Bif the lACK line is active and interrupt servicing has not yet begm 

activate the address strobe line AS II 

IF (lACJC*/START_SERVICE) THEN 

AS := 1 ; 

"send the start service signal mtil service is done" 

IF (BBSY*LATCH_STATUS + BBSY*START_SERVICE*/SERVICE_DONE) THEN 

START_SERVICE := 1 ; 

END. 

TEST_VECTORS 

IN ClK, /lR1 , IIR2 , IIR3 , IIR4 , /IRS , IIR6 , /lR7 , 

/OTACK , IBG3IN , SERVICE_DONE; 

ruT START_SERVICE, GET_BUS, INTR [2:0] , lATCH_STATUS, 

lAS, /lACK, IBBSY , IBR3 ; 

BEGIN 

nC111111111 
B l I I 1 I 1 lID B 
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3.6 MISCELLANEOUS 
LOGIC FUNCTIONS 

3.6.1 8088 TO Am2968 INTERFACE 

Introduction 

This application note describes the implementation of a timing 
generator which interfaces between the 8088 and the Am2968 
Dynamic Memory Controller (DMC) using programmable logic 
and a delay line. The implementation does not account for any 
error detection and correction (EDC) circuitry. 

The timing generator, like the Am2970, is needed in memory 
systems utilizing a dynamic memory controller. It serves as an 
interface between the processor and the controller and gener­
ates the necessary control signals for the controller. 

A dynamic memory controller, in brief, interfaces between a 
processor and the dynamic memory array. It steers the appro­
priate address inputs and Rowand Column Address Strobes 
(RAS and CAS) required in the selected memory operations 
(Le. refreshing, read/write). 

The following sections will introduce and illustrate the imple­
mentation of the timing generator using AMD's 20-pin PAL 
devices, and also show its interface to AMD's Am2968 (DMC) 
and Intel's 8088 processor. Figure 3-171 shows the block dia­
gram of the interface. Programmable logic was chosen be­
cause it is readily available, simple to use and reduces the 
number of devices required to implement specific functions. 

Interface Overview 

The implementation of this timing generator is not a general 
purpose application. It is dedicated specifically to a particular 
processor, the Intel 8088, and is limited to accessing only four 

banks of memory. The range of the four banks of memory is 
therefore 1 Mbyte-with 256K in each bank.· This limitation is 
set by the fact that no additional decoding circuitry has been 
added. Decoding is done with the two address lines (A 18-A 19) 
of the 8088, thus allowing only four banks to be selected. 

The clock to the 8088 and the two PAL devices is provided by 
the 8284A. The ClK signal from the 8284A is connected di­
rectly to the ClK input of the 8088 and also to ClK of RASER 
(PAL16R4). The PClK of the 8284A connects to the PClK 
input of HlDR (PAL 16R6) to operate the 6-bit counter. Note 
that the clock operates on a 1/3 and 2/3 duty cycle. 

Description of PAL Device Function 

The function of RASER (PAL16R4) is to create RASI (Row 
Address Strobe) and CASI (Column Address Strobe) at the 
appropriate time. RASI is generated directly from the device, 
whereas CASI is generated from MRASI via a delay line. Fig­
ure 3-172 shows the timing delays between the controller and 
processor interface signals. The two modes of operation which 
the timing is focused on is Refresh w/o Scrubbing and 
ReadlWrite. By toggling the state of the mode control pin MC1 
to either a lOW or HIGH respectively, and with MCO tied lOW 
(at the Am2968), the desired mode is generated. The mode 
control pin MC1 is generated based on the state of the proces­
sor's interface pins: loiM, DTiR' and SSO. The combination of 
these signals decodes the processor's current bus cycle and 
indicates the ongoing memory activity (for more detail see 
Intel's Microprocessor Handbook). The MUX Select pin 
(MSEl) is also generated from the delay line. It determines 
whether a Row or Column address is sent to the memory 
address input based on the mode control inputs, MCO and 
MC1. 
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Figure 3·172. Interface Timing 

A two-bit counter implemented internal to the (PAL16R4) 
RASER is used to keep track of the internal state of RASI 
during the ReadIWrite or Refresh operations. In a normal 
memory ReadIWrite operation, the appropriate RASn outputs 
from the DMC will be activated in response to RASI going 
HIGH, as shown in the memory timing in Figure 3-175, during 
this time ALE initiates the cycle. In Refresh mode, receiving 
RASI will force all the RASn outputs of the DMC to go Low. 
FALE initiates the refresh cycle, since no ALE occurs during 
this time, as shown in refresh timing of Figure 3-175. The 
counter is also configured such that, during memory opera­
tions, sufficient time has been allotted within the cycle for RAS 
precharge (required in DRAMS) to occur. 

b) HLDR (PAL16R6) 

The function of the (PAL 16R6) HLDR is to generate the two 
signals-FALE (False Address Latch Enable) and HLD (Hold). 
FALE controls the internal latches (ALS and ALR) of the 
(PAL 16R4) RASER and initiates the refresh cycle independent 
of the processor's ALE (Address Latch Enable) signal. 

06829A-2 

The (PAL 16R6) HLDR is essentially a 6-bit counter that gener­
ates 64 T-Clock cycles for the Intel 8088 processor. When a 
hold request (HLD) is made and a hold acknowledge (HLDA) is 
received from the processor, FALE will be generated for the 
(PAL 16R4) RASER to initiate the refresh cycle. Refresh is per­
formed every 8 f.Ls which is double the required frequency. This 
time is derived in the Refresh Calculations section of this appli­
cation note. The 8088 processor allows request only at the end 
of the bus cycle. A bus cycle duration is 4 T-Clocks, thus 
refresh is performed at cycles "60-63" as noted in the function 
table in the HLDR design specification. Figure 3-172 refresh 
timing shows this critical portion of the timing activity when 
RASI is generated for refresh. During CLK (0 - 0*), (this cor­
responds to PCLK count value 62), the processor acknowl­
edge is received and RASI becomes active. While RASI is 
HIGH, the internal 2-bit counter will cycle through its count 
sequence (0* - 3*); at the end of the sequence as indicated by 
PCLK count value 63 (Le., CLK 3*), RASI will become inactive. 
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PAL16R4 2968- TO 8088 I/F 
RASER G.R. SPEARS 7/6/84 
VER .001 AMO BELLEWE.WA 

CLK RES ALE FALE lOM DTR SSO CIJ(2 NU2 GNO 
TRI MRASI RASI /MCl NC /B /A /ALR /ALS VCC 

ALS - FALE*/ALE*/ALR + RES 

ALR - /A*B*/ALS + A*/ALS 

/RASI - /A*/B*/RES + RES*CIJ(2 

/MRASI - IOM*/DTR + IOM*DTR + /IOM*DTR*SSO + 
/A*/8 

A :- /A*/RES*/ALS + /A*/RES*ALE 

8 :- A*/B*/RES*/ALS + /A*8*/RES*/ALS 

MCl :- IOM*/DTR*ALE*/RES + DTR*SSO*ALE*/RES + 
IOM*DTR*/SSO*ALE*/RES + MC1*/ALE*/RES 

FUNCTION TA8LE 
CLK CIJ(2 ALE FALE IOM OTR SSO !GAS I RASI /MCl /ALR /ALS /8 /A: RES 
; 
;C C A F I 0 S M R / / / / / R 
;L L L A 0 or S R A M A A 8 A E 
;X X E L M R 0 A s C L L S 
; 2 E S I 1 R S 
; I 
------------------------------------------------------------------------

C X X X L L L X X H X X H H H ;M 
C X X X L L L X X H X X H H L : 
H X L H L L L L L H H L H H L ;E 
L X L H L L L L L H H L H H L ;M 
L X H H L L L L L H H H H H L ; 
C X H H L L L H H H L H H L L ;A 
H X L H L L L H H H L H H L L ;e 
L X L H L L L H H H L H H L L ;c 
C X L H L L L H H H L H L H L JI 
H X L H L L L H H H L H L H L .c , .. 
L X L H L L L H H H L H L H L • c ,~ 

C X L H L L L H H H L H L L L : 
H X L H L L L H H H L H L L L · , 
L X L H L L L H H H L H L L L : 
C X L H H H L L L H H L H H L · , 
H X L H H H L L L H H L H H L ; 
L X H H H H L L L H H H H H L ; 
C X H H H H L L H L L H H L L ; 
H X H H H H L L H L L H H L L ; 
L X L H H H L, L H L L H H L L ; 
C X L H H H L L H L L H L H L ; 
H X L H H H L L H L L H L H L : 

Figure 3·173. Source Listing for the 8088 to Am2968 Interface (AmPAL 16R4) 
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L X L H H H L L H L L H L H L :5 
C X L H H H L L H L L H L L L 
H X L H H H L L if L L H L L L 
L X L H H H L L H L L H L L L 
C X L H H H L L L L H L H H L 
H X L H X X X X X X H L H H L 
L X H H X X X X X X H H H H L 
C X H H X X X X X X L H H L L 
H X H H X X X X X X L H H L L 
L X L H X X X X X X L H H L L 

------------------------------------------------------------------------
DESCRIPTION 

END 

Figure 3·173. Source listing for the 8088 to Am2968 Interface (Am PAL 16R4) (Continued) 
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PAL16R6 
HLOR" 
VER .000 

296S TO sass I/F 
G.R. SPEARS 7/6/S4 
AMD BELLEVUE.WA 

PCLK RASI MRASI HLOA RES CLK MCl NU2 NU3 GND 
TRI IFALE IF IE 10 IC IB IA HLD VCC 

A: - IA*/RES*MCl 

B: - A*/B*/RES*MCl + /A*B*/RES*MCl 

C: - A*B*/C*/RES*MCl + /B*C*/RES*MCl + /A*C*/RES*MCl 

0: - A*B*C*/O*/RES*MCl + /C*O*/RES*MCl + IB*O*/RES*MCl + 
IA*O*/RES*MCl 

E: - A*B*C*O*/E*/RES*MCl + 10*E*/RES*MCl + IA*E*/RES*MCl + 
IB*E*/P~S*MCl + IC*E*/P~S*MCl 

F: • IA*r*/RES*MCl + IC*F*/RES*MCl + IB*F*/RES*MCl + 
10*F*/RES*MCl + A*B*C*O*E*/F*/RES*MCl + IE*F*/RES*MCl 

IHLD • IC + 10 + IE + IF 

FALE - HLDA*CLK*RASI*/MRASI 

FUNCTION TABLE 

PCLK HLD RES MCl IF IE 10 IC IB IA HLDACLK RASI MRASI IFALE 
-----------------------------------------------------------------
1 
C X H H H H H H H H L X L L H 
H L L H H H H H H H L X L L H 
C L L H H H H H H L L X L L H 
C L L H H H H H L H L X L L H 
C L L H H H H H L L L X L L H 
C H L H L L L L H H L X L L H ;60 
C H L H L L L L H L L X L L H ;61 
C H L H L L L L L H H H H L L ;62 
C H L H L L L L L L H L L L H ;63 
C L L H H H H H H H L X L L H ;0 
----------------------------------------------------------------
DESCRIPTION 

Figure 3·174. Source Listing for the 8088 to Am2968 Interface (Am PAL 16R6) 
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Tl T2 T3 T4 

ALE ____________ ~/uO \~ ____________________________ ___ 

RASI ________________ ~I \~ ____ __ 

ADDRESS ------------~<:~ _____ ~ __ l_D_A_~ __ ~ ________ ~:>~---------------

!"'EMORY TIMING 

rALE-------------------\~ ________ ~1 

RASI --------------------------~I \~----

AOORESS----------------~<: __________ ~ ___ ID __ A_~ __ ~ ________ _J:>~---------

««« »») 

Figure 3-175. Refresh Timing 

, 06829A-3 

Refresh Timing Calculations Required refresh time = 4 msl 256 = 15.6 I-ls. 

The timing calculations are based on Intel's 8088 processor 
being in minimum mode (8 MHz) and a cell array of 128 rows. 

The 8088 clock period is 8 MHz, thus 

From the above calculations, refreshing needs to be performed 
at least every 15 I-ls. But for this application, memory is being 
refreshed every 8 I-ls as shown below: 

t = 1 If = 1/8 M = 125 ns. 

Refreshing for DRAMs are performed on 128 rows every 2 ms. 
The calculations for the above memory array is determined to 
be: 

Required refresh time = 2 msl 128 = 15.6 I-ls. 

Thus the required time for 256 row cell array will be: 

Refresh time = 64 T-clock cycles x 125 ns = 8 J.LS. 

Delay Line Taps Computation 

The calculations for the assignment of the delay line taps is 
based on the parameters CASI and MSEL relative to RASI 
making a transition to the active state. See the timing in Figure 
3-175. 
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Figure 3-176. Delay Line Timing Diagram 
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MSEL may switch some time after T2. T2 is calculateq to be as 
follows: 

T2 = tRAH + t24 = 20 + 11 = 31 ns. 

where T2 = delay time from RASI to MSEL 
tRAH = Row Address Hold Time of the DRAM 
t24 = skew time for an to RASn of the DMC 

Thus, after 31 ns MSEL should initiate its active transition. 

CASI is calculated to make its change; T3 ns relative to RASi. 
The calculated value is as follows: 

T3 = T2 + t25 +' tAse = 31 + 33 + 0 = 64. 

where T3 = delay from RASI to CASI 
t25 = skew time for an to CASn of the DMC 
tAse = column setup time of the DRAM 

Thus, 64 ns after RASI initiates its transition, CAS I may begin 
to go active. 

For simplicity, delay line taps may be assigned as follows: 

RASI ---------- MSEL - 30 ns 
RASI ---------- CASI - 60 ns 

Counter and Mode Function Table 

The following function tables describe the activity of the 
RASI/MRASI during the specific modes of the processor's in­
terface signals (101M, DT/R and SSO) and the state of the 
internal counter which controls RASI/MRASi. Note: RASI will 
be active during the counter sequences between 1 to 3 as 
shown below. 

3.6.2 A GENERAL-PURPOSE INTERFACE 
FOR THE Am2968 

Introduction 

This application note describes a general-purpose timing gen­
erator that simulates the asynchronous operation of the 
Am2970 and illustrates the interface of the Am2968 (successor 
to the Am2964) Dynamic Memory Controller (OMC) to various 
processors. The timing generator interfaces between the DMC 
and the processor by generating signals such as RASI (Row 
Address Strobe), CASI (Column Address Strobe), and WE 
(Write Enable). It consists of a PAL device, a timer, and a delay 
line. 

The Am2968 (DMC) is a controller which interfaces between a 
processor and the dynamic memory array. It utilizes a timing 
generator to initiate refresh or memory cycles. When the DMC 
receives the correct control signal from the timing generator, it 
generates the appropriate address outputs (an), and Rowand 
Column Address Strobes (RASn and CASn) based on the input 
control signals from the processor. These signals are needed 
to perform operations such as memory readlwrite and refresh. 

The first section illustrates the general implementation of 
the timing generator using AMD's 20-pin PAL device 
(AmPAL 16L8) and a commercially available delay line and 
timer (Figure 3-177). Programmable logic was selected be­
cause it is readily available, simple to use, and requires only a 
single device to implement the desired functions. The succeed­
ing application note illustrates the interface of this timing gener­
ator to Motorola'S MC68000 processor. 

TABLE 3·22. 

TWO BIT COUNTER 
A B 

0 0 

0 0 ;0 
1 0 ;1 
0 1 ;2 
1 1 ;3 

TABLE 3-23. 

TWO BIT COUNTER 
Sequence 101M DTIR 

0 0 
0 1 0 
0 1 
0 1 1 
0 0 1 

3 ------ 0 0 
3 ------ 0 0 
3 ------ 0 1 

Note: This design does not allow the user to insert Wait States 
during memory operations! Wait States may be inserted in 
interrupt or 1/0 cycles. 
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SSO 

o ------
1 ..... _--
o ------
1 ............ 
1 ----.. -
o ------
1 _ .. ----
o ------

RASI 

0 

0 
1 
1 
1 

MRASI COMMENTS 

o ------- lACK 
o ------- lOR 
o ------- lOW 
o ------- HALT 
o ------- PASSIVE 
1 CODE ACCESS 
1 RO 
1 WR 
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Figure 3-177. System Block Diagram 

Interface Overview 

The implementation of this timing generator is a general­
purpose solution. The timing generator can be interfaced to 
various processors by simply asserting the proper control sig­
nals from the particular processor. The required interface sig­
nals are C S (Chip Select), R/W (Read/Write), 8/W 
(8yte/Word), OS (Data Strobe) and CYCREO (Cycle Request); 
see Figure 3-178. As an example, for the MC68000, (see 
MC68000 Interface), AS (address strobe) from the 68000 
replaces CYCREO, and UDS (Upper Data Strobe) & lOS 
(lower Data Strobe) replaces OS and 8m. 
The design emulates a subset of the Am2970 (Memory Timing 
Controller) operating in asynchronous mode, asserting no Wait 
States for memory accesses, and the 20-pin programmable 
logic device (AmPAL16LB) has tpd = 15 ns (8-speed). 8-
speed devices were chosen to guarantee that the required 
interface signals would meet the setup time required by the 
memory device. The application note is based on three main 
cycles: memory, refresh, and memory/refresh. The memory/ 
refresh cycle allows priority servicing of refresh over memory 
operation if both memory and refresh requests are generated 
simultaneously. 

The refresh timer, implemented with a 555 timer, needs to 
generate a FR (Forced Refresh) signal which is negative­
edge-triggered every 15 f1s. This means that a refresh will 

06829A·5 

occur when a low-going edge on the FR signal is detected. As 
shown in Figure 3-179, with FR HIGH, FRH (Forced Refresh 
High) will be set. When FA detects a lOW-going edge, this will 
cause RFRO (refresh request) to go lOW. With RFRO active, 
RASI will also become active. The 15 f1s value is derived from 
the dynamic memory refresh timing requirements; refresh is 
normally required over 256 rows every 4 ms. This equates to a 
required refresh cycle every 15.6 f1s. In this application, the 
refresh timer generates FR approximately every 9.8f1s. For 
details see Refresh Timer Calculations. 

The Am PAL 1618 generates the RASI output based on either a 
cycle request from the processor or a refresh request from the 
timer. The RASI is also an input to the delay line .from which 
MSEl (MUX Select) and CASI are generated. 

The dynamic memory array to be accessed is limited to only 
four banks. This is equivalent to one megaword of memory, 
assuming 256K DRAMs and only one controller is used. Extra 
banks of memory may be added to expand the amount of 
memory required for particular applications. To do this, addi­
tional controllers must be used. The selection of byte or word 
for memory write operations is provided by the two signals 
WEH (Write Enable HIGH) and WEl (Write Enable lOW). The 
upper and/or lower bytes may be written by activating either 
WEH or WEl as appropriate. 
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Figure 3·178. Interface Diagram 
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Figure 3·179. Arbitration Logic 
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TlmGen (PAL 16L8) 

The function of TimGen (PAL 16L8) is to generate RASI (Row 
Address Strobe). and also arbitrate between memory cycle 
and refresh cycle requests. The generation and arbitration 
logic shown in Figure 3-179 implements an S-R latch. With 
either a Memory Cycle Request (RWRO) or a Refresh Cycle 
Request (RFRO), RASI will be generated for the DMC so the 
appropriate memory control signals may be generated accord­
ingly. The memory and Refresh timing diagram in Figure 3-183 
illustrates the states of the interface signals for each of the 
cycles. But, if either one of the two cycle requests occurs in the 
middle of an existing cycle, the current cycle will be allowed to 
finish before the next request is acknowledged. Meanwhile, the 
latch illustrated in Figure 3-179, holds the new request in its 

feedback loop. In the event that simultaneous requests are 
made by both the memory and refresh cycles, this latch ar­
bitrates the request by allowing refresh to have higher priority. 

The Arbitrated Refresh Cycle Timing 1 in Figure 3-180 notes 
the following: since the S-R latch is effectively edge-triggered, 
it waits for a HIGH on FR to set FRH (Force Refresh HIGH). 
Upon detecting a LOW-going level on the FR signal, refresh 
will occur and RASI will be asserted. 

Because the design must allow for both memory byte and word 
operations, the two signals, WEH and WEL , are generated 
as selectors for writing either a byte or word during write opera­
tions. They are direct inputs to memory's WE (Write Enable) 
signal. 

I ~<--~E:F'~E:SH CYCLE::-->~I<~-ME:MO~Y CYCLe:~ 
CS ~ 

Cr'CRtO 

~ 

F'~ J 
F'~H ..J 
~F'~a 

(~ASI) T0 

(MSE:L)T20 

(CASI) T40 

T60 

T80 

TllZl0 

J DTACK 

Figure 3-179. Arbitrated Refresh Cycle Timing 1 
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PAL16L8 
TIMGEN 
VER 1.00 

GEN IN'l'ERP'ACE TO 2968 
LEE/YEE 12/19/84 
AMO 

/CS /CYCREQ /FR /SUP RW BW AOO /DS T100 GND 
Tao /OTACI< TO FRH /RFRQ /RWRQ /WEL /WEH JOE VCC 

/FRH - FR*/FRH + TO*RFRQ 

RWRQ - CS*CYCREQ*/RFRQ*/T100 + RWRQ*/T100 

RFRQ - FR*FRH*/RWRQ*/T100 + RFRQ*/T100 

/TO - /RWRQ*/RFRQ + T80 

IF (CS*RWRQ*/RFRQ*T80) OTACK - CS*RWRQ*/RFRQ*T80 

WEH - /SOP*RWRQ*CS*/BW*/RW + /SOP*RWRQ*CS*BW*AOO*/RW 

WEL - /SOP*RWRQ*CS*/BW*/RW + /SUP*RWRQ*CS*BW*/AOO*/RW 

OJ!! - CS*RW*DS 

FUNCTION TABLE 

/CS /CYCREQ /FR T100 /DTACK /RWRQ FRH /RFRQ TO T80 AOO /WEH /WEL 
JOE /SUP RW BW /DS 
, 
; 
;/ / / T / / F / T T A / / / / R B 
;C C F 1 D R R R 0 8 0 W W 0 S W W 
;s Y R 0 T W H F 0 0 E E E U 

C 0 A R R H L P 
R C Q Q 
E I< 
Q 

H H L L H H L H L L L H H H L X X 
H H H L H H H H L L L H H H L. X X 
H H H L H H H H L L L H H H L X X 
H H H L H H H H L L L H H H L X X 
L H H L H H H H L L L H H H L X X 
L H H L H H H H L L L H H H L X X 

; BOTH MEMORY AND REFRESH CYCLES MAKE REQUEST--ACKNOWLEDGE REFRESH CYCLE 
L L L L H L L L L H L H H H L X X 
L L L L H L L L L H L H H H L X X 
L L L L H L L L L H L H H H L X X 
L L L L H L L L L H L H H H L X X 
L L· L L H L L L L H L H H H L X X 
L L L L H L L L L H L H H H L X X 
L L L H H H L H L H L H H H L X X 
L L L H H H L H L H L H H H L X X 
L L L H H H L H L H L H H H L X X 
L L L H H H L H L L L H H H L X X 

Figure 3-181. Source Listing for a General-Purpose Interface for the Am2968 (AmPAL16L8) 
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L L L H H H L H L L L H H H L X X 
L L L H H H L H L L L H H H L X X 

; END REFRESH -- ACmOWLEDGE MEMORY CYCLE -- (WRITE) 
L L H L H L H H H L L L L H H X L 
L L H L H L H H H L L L L H H L L 
L L H L L L H H L H L L L H H L L 
L L H L L L H H L H L L L H H L L 
L L H L L L H H L H L L L H H L L 

;READ OPERATION 
L L H L L L H H H L L H H L L H L 
L L H L L L H H H L L H H L L H L ------------------------------------------------------------------------

.DESCRIPTION 

Figure 3-181. Source Listing for a General-Purpose Interface for the Am2968 (Am PAL 16L8) (Continued) 
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Refresh Timer Calculations 
Figure 3-182 shows the setup for the forced refresh (FR) timer. 
The timer used is a commercially-available 555 timer. 
The general timer equation is as follows, it must be solved for 
Rl, R2 and C values. This will satisfy the refresh requirement 
of less than or equal to 15.6 IJ.S 

T = 0.693 (Rl + 2R2)C < 4 ms/256 = 15.6 IJ.S. 

For the following values of R1, R2 and C 

Rl = R2 = 10K and C = 470 pF 

the timer will generate a refresh every 9.8 IJ.s which satisfies 
the refresh requirement. The specified values for Rl , R2 and C 
allow for 30% tolerance. 

Delay Line Assignment 
The calculations for the assignment of delay line taps are 
based on the MSEL and CASI parameters relative to RASI 
being active. The calculations below indicate the relative mini· 
mum times. MSEL (T20) is calculated to be: 

T20 = tRAH + t24 = 15 + 11 = 26 ns. 

where T20 = delay from RASI to MSEL 
tRAH = row address hold time of the DRAM 
t24 = skew time for an to RASn of the DMC 

..... -.-...17 

a 

Thus, after a minimum of 26 ns from the time RASI becomes 
active, MSEL may be asserted. CASI (T40) calculated relative 
to RASI is: 

T40 = T20 + tAse + t25' = 26 + 0 + 33 = 59 ns. 

where T40 = delay from RASI to CASI 
tAse = column setup time of the DRAM 
t25 = skew time for an to CASn of the DMC 

Thus, after a minimum of 59 ns from the time RASI becomes 
active, CASI may make its active transition. The delay line 
assignment is shown in Figure 3-178. For convenience, the 
values calculated above have been approximated and are 
shown below: 

, RASI ••••• MSEL - 30 ns 

RASI ••••• CASI - 60 ns 

Two other significant delay taps which are not interface outputs 
but deserve some mention are T80 and T100, The values for 
these two signals are, respectively, 80% and 100% of the delay 
line. The T80 output delay is used as a hold time at the end of 
the refresh cycle so that RFRO (MC1) remains valid for some 
time. This allows the row address counter and precharge to be 
updated' before another cycle begins.' Tl00 prevents the 
memory cycle from beginning too soon, it ensures that the 
current cycle has ended before a new cycle will begin' (see 
Memory and Refresh timing diagram, Figure 3-183). 

sss 
'Tlt'EA 

1 s 

fl!lol!llUf" 

-----------+----~ 

Figure 3-182. Refresh Timer 
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Figure 3·183. Memory And Refresh Timing 
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3.6.3 MC68000 TO Am2968 INTERFACE 

This application note shows how the general-purpose timing 
generator can be configured to interface between Motorola's 
MC68000 and the Am2968. Figure 3-184 shows the block dia­
gram of the interface. The correct interface signals must be 
adapted from the processor to the TimGen (PAL 16L8) and the 
Am2968. Note, from Figure 3-185, that AS (Address Strobe) 
replaces CYCREQ, and UDS (Upper Data Strobe) and LDS 
(Lower Data Strobe) replace DS and S/N. 

Asserting the Address Strobe signal (AS), which is connected 
to the LE input, latches the valid address into the Am296S. 
UDS and LDS are controls indicating the flow of data on the 
data bus (DOO-D15) during memory read/write operations. Sy 
asserting the correct polarity on these two signals (U DS & 
LDS), either a byte or a word may be accessed. 

The following sections wi" show the timing requirements which 
are being considered-that is, the desired processor operating 
frequency and the appropriate DRAM. Timing diagrams are 
also included to show the status of the interface signals during 
read/write operations for various processor frequencies. 

MC68000 Timing Requirements 

In generating the hardware for the timing interface for the 
MC6S000 to the Am296S, the overall system timing require­
ments must be considered to guarantee that the desired 
memory access time can be met. 

The following general equation formulates the parameters 
which must be considered in generating the read cycle time for 
the 6S000 processor. The write cycle time may be similarly 
generated. 

tREAD = 2tcyc + tCH - tCHSLx - tDICL - 2tPAL - t2 - tLATCH + 
Ntcyc 

tREAD = read cycle time 

tCYC = clock period of the processor 

IcH = clock width High of the processor 

tCHSLx = clock High to AS, DS Low of the processor 

tDICL = data in to clock Low (setup time) of the processor 

tPAL = programmable logic access time 

t2 = delay from RASI to RASn of the DMC 

tlatch = delay through latch 

N = number of inserted Wait States. 

For simplicity, zero Wait States have been assumed in select­
ing the appropriate DRAMs. If Wait States had been asserted, 
the appropriate DRAM must be selected to meet the overall 
tREAD cycle time. Note that the access time of the DRAM (tACe) 
must be less than or equal to tREAD cycle time or else access to 
memory will be missed. The following evaluations show the 
calculated tACC based on the various processor operating fre­
quencies: S MHz, 10 MHz and 12.5 MHz. 

MC6S000 W/WAIT STATES 

8 MHz 

tREAD = (250 + 55 - 60 - 15 - 30 - 23 - 13 + N • 125) ns 
(164 + 125N) ns 

DRAM tACC = 150 ns 

10 MHz 

tREAD = (200 + 45 - 55 - 10 - 30 - 23 - 13 + N • 100) ns 
(114 + 100N) ns 

DRAM tACC = 100 ns 

12.5 MHz@ 

(160 + 35 - 55 - 10 - 30 - 23 - 13 + N • SO) ns 
(64 + SON) ns 
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Figure 3-184. 68000 System Diagram 
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Figure 3-186. Read and Write Cycle Timing Diagram 06829A·13 

@ for this particular frequency, asserting at least one 
Wait State will allow tREAD = 144 ns, thus DRAM tACC 
= 120 ns 

Figure 3-186 shows the read and write cycle timing 
diagrams relative to the processor's cycle time. The 8 

MHz and 10 MHz are shown on the same diagram 
because of their similarity. Figure 3·187 shows the 
read and write timing for the processor operating at 
12.5 MHz with Wait States asserted during these 
operations. 
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PAL16L8 
TIMGEN 
VER 1.00 

GEN INTERFACE tor 68K 
LEE/YEE 1-18-85 
AMD 

ICS lAS IFR ISUP RW T80 IUDS ILDS T100 GND 
Ne IOTAClC TO FRH IRFRQ IRWRQ lWEL lWEH IOE VCC 

IFRH - FR*/FRH + TO*RFRQ 

RWRQ - CS*AS*/RFRQ*/T100 + RWRQ*/T100 

RFRQ - FR*FRH*/RWRQ*/T100 + RFRQ*/T100 

ITO - IRWRQ*/RFRQ + T80 

IF (CS*RWRQ*/RFRQ*T80) DTACK - CS*RWRQ*/RFRQ*T80 

WEB - ISUP*RWRQ*CS*UDS*/RW 

WEL - ISUP*RWRQ*CS*LDS*/RW 

OE - CS*RW*UDS + RW*CS*LDS 

- FUNCTION TABLE 

ICS lAS IFR T100 IDTACK IRWRQ FRH IRFRQ TO T80 lWEH lWEL 
IOE ISUP RW UDS LOS 
; 
; 
;1 I I T I I F I T T I I I I ;e A P' 1 D R R R a 8 W W 0 S 
;S s R a T W H F 0 E E E U 
1 0 A R R H L P 
1 e Q Q 

K 

R 
W 

U L 
0 D 
S S 

------------------------------------------------------------------------
H H L L H H L H L L H H H L X X X 
H H H L H H H H L L H H H L X X X 
H H H L H H H H L L H H H L X X X 
H H H L H H H H L L H H H L X X X 
L H H L H H H H L L H H H L X X X 
L H H L H H H H L L H H H L X X X 

;BOTH MEMORY AND REFRESH CYCLES MAKE REQUEST--ACKNOWLEDGE REFRESH CYCLE 
L L L L H L L L L H H H H L X X X 
L L L L H L L L L H H H H L X X X 
L L L L H L L L L H H H H L X X X 
L L L L H L L L L H H H H L X X X 
L L L L H L L L L H H H H L X X X 
L L L L H L L L L H H H H L X X X 
L L L H H H L H L H H H H L X X X 
L L L H H H L H L H H H H L X X X 
L L L H H H L H L H H H H L X X :x 
L L L H H H L H L L H H H L X X )' 

Figure 3-188. Source Listing for the 68000 Interface 
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L L L H H H L H L L H H H L X X X 
L L L H H H /L H L L H H' H L X X X 

: END REFRESH -- ACl(NOWLEDGE MtMORY CYCLE -- (WRITE) 
L L H L H L! H H H L L L H H X H H 
L L H L H L/ H H H L L L H H L H H 
L L H L L t; H H L H L L H H L H H 
L L H L L ,L H H L H L L H H L H H 
L L H L L L H H L H L L H H L H H 

;READ OPERATION 
L L H L L L H H H L H H L L H H H 
L L H L L L H H H L H H L L H H H 
-----------------------------------------------------------------------~ DESCRIPTION 
THIS PAL IMPLEMENTS THE TIMING INTERFACE BETWEEN THE AK2968 DMC AND 
MOTOROLA'S MC68000 

Figure 3-188. Source Listing for the 68000 Interface (Continued) 
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3.6.4 GENERAL-PURPOSE 
DUAL-PORT ARBITER 

Introduction 

This application note shows the implementation of a general­
purpose dual-port arbiter interfacing three processors, a 
Dynamic Memory Controller (Am2968A DMC), and dynamic 
memory. The arbiter, implemented with two programmable ar­
ray logic (PAL) devices, and a delay line, can provide a simple 
and complete arbitration solution operating in asynchronous 
mode. This application note shows the general interface fol­
lowed by specific applications to three microprocessor groups: 

(1) iAPX-type processors 
(2) AmZ8000 
(3) MC68000-type processors 

The programmable logic equations for the three specific appli­
cations are included at the end of this application note. 

The interface consists of two PAL devices (TIMGEN2A and 
TIMGEN2B), a timer, a delay line, and two multiplexers. Figure 

"r---
A01A-A20A 20 0 

v 

" MUX 18 AN 

" 
v 

A01B-A20B 20 1 2 
~ 

v.......§~ 
, SELN 

L r---o-
E 

~ L LE 
TIMER A 1 

TAPl 
RASI 

~ TAP2 
RWROA Y2 

TAP3 
MSEL 

TAPO L 3 CASI 

XACK~+- TAP4 o I 

CYCR~~=: TIMEGEN TAPS 4 N 

2A ~ 
C5~-t 

RFRO 

CY~~~~ WEH 

WEL 

AmPAL16L8 

~ ~ ~ 
CSI\-t 

3-189 shows the block diagram of the system which includes 
the arbiter logic implemented with the PAL devices. These two 
devices, TIMGEN2A and TIMGEN2B, provide the control sig­
nals to the DMC as well as to the dynamic memory. The pur­
pose of the arbiter is to mediate when two processors request 
for memory cycles, or when refresh cycles need to be per­
formed. The first PAL device, TIMGEN2A, generates the sig­
nals for the DMC and the Address MUX; it also contains the 
arbitration logic. The second device, TIMGEN2B, generates 
the control signals for the memory and the data bus latches. 

The Am2968A Dynamic Memory Controller (DMC) interfaces 
between the processors and the dynamic memory array. The 
DMC provides the required addresses either for the memory or 
the refresh cycles. For memory cycles, the addresses are 
generated by the processor and latched into the DMC. For 
refresh cycles, the addresses are generated by a 20-bit 
counter internal to the DMC. When the DMC receives the cor­
rect control signals, it generates the appropriate address (an) 
and the Rowand Column Address Strobes (RASn and CASn) 
that are required to perform memory read/write and refresh. 

Programmable logic devices are' selected because they are 
readily available and they minimize chip count. 

Am2968A 

ON ~ 
V 

RASN DYNAMIC 
RAM 

CASN . 
MCO 

fi ~ 

MCl 

i 
DON DIN 

J. ~t 
RD4:-t f-
~-t LATCH 

1 
LATCH MUX 

~ BHENA-t TIMEGEN 
LEA 

:I~ ~=: 
LE 

2B OEA 

I OEB 

~::: 
OEA 0 1 
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I' lr >-
B~:::::: 
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I 
16 
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{). ~'v~ 

DOOA-D15A 000B-D15B 

Figure 3.189. Block Diagram 
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Interface Overview 

The dual-port arbiter can be interfaced to various processors, 
using the proper control signals from the particular processor. 
Typically, the processor interface signals are CS (Chip Select), 
CYCREO (Cycle Request), RD (Read), and WR (Write), see 
Figure 3-189. 

The two PAL devices, TIMGEN2A and TIMGEN2B are de­
signed to operate in the following modes: 

(1) generate proper control signals when cycle request is 
made 

(2) arbitrate between two processor requests 
(3) arbitrate between a refresh request and processor request 
(4) arbitrate between a refresh request and two cycle requests 

Requests by the processor are made when CS and CYCREO 
are valid and the memory address is present. During dual-port 
arbitration, the occurrence of simultaneous requests, for in~ 

stance, CSA (Chip Select Port A), CYCREOA (Cycle Request 
Port A) and FR (Forced Refresh), will result in the granting of a 
refresh cycle and the appropriate address being generated 
accordingly by the DMC. 

TIMGEN2A generates the appropriate control signals to the 
data and address multiplexers, the delay line, and the memory 
controller. These control signals are: RASI (Row Address 
Strobe Input), SEL (Processor Address Mux Select), and MC1 
(Mode Control Input). RASI is generated for all read/write and 
refresh cycles. It is also used as the delay line input from which 
MSEL (MUX Select for the DMC) and CASI (Column Address 
Strobe Input) are generated. SEL allows the correct port ad­
dress, A or B, to be the input to the DMC depending upon 
which port is acknowledged. MC1 specifies the operating 
mode of the DMC, read/write or refresh (see Am2968A data 
sheet). 

The arbitration logic prioritizes and grants the requests for 
read/write' cycles from either port, A or B, and refresh cycles. 
The Mode Table (Table 3-24) shows the order of precedence. 
When simultaneous request for a read/write or refresh cycle 
occurs, the refresh cycle will be given priority. The connection 
of RFRO (Refresh Request) from TIMGEN2A to MC1 of the 
DMC, as shown in the block diagram, implicitly gives refresh 
the precedence. When simultaneous read/write requests are 
made by processor A and processor B, processor A will be 
given priority over B. Again,' the' order of precedence is set 
implicitly by the connection of RWROA (ReadlWrite Request 
port A) to the select input signal of the processor address MUX. 

The second programmable logic device, TIMGEN2Bgener­
ates the OE (Output Enable) signal for the data bus latches 
and the WE (Write Enable) signal for memory. The inputs to 
TIMGEN2B are,the control signals-CSA, CSB, RDA (Read 
A), RDB (Read B), WRA (Write A) and WRB (Write B). Signals 
such as BHEN (Byte High Enable) and AOO, the least signifi­
cant bit of the address, have been inciuded to show their func­
tion (if available). These two signals are provided by the 
processor (Le., iAPX-type processors) and together they deter­
mine whether a word or byte transfer is to be performed during 
memory operations. 

R1 

R2 

C 

+5V 

8 

555 
TIMER 

0.01 ~F 

Figure 3-190. Refresh Timer Diagram 

, TABLE 3-24. MODE SELECT TABLE 

- CYCREO 
FR GRANT 

Port A Port B 

L L L FR (refresh) 
L L H FR (refresh) 
L H L FR (refresh) 
L H H FR (refresh) 
H L L PORT A (~P Req) 
H L H PORT A (~P Req) 
H H L PORT B (~P Req) 
H H H no activity 

. 08479A 3-189T 

Refresh Timer and Calculations 

The refresh timer below shows one'method of implementing an 
external refresh clock. This section is optional if an alternate 
source is used. The refresh timer, implemented with a 555 
timer, needs to generate an active-LOW edge-triggered signal 
at least once every 15 IJ.s. This means that a refresh occurs 
when a LOW-going edge on the FR Signal is detected. The 15 
us value is derived from the dynamic memory refresh timing 
requirements; refresh is normally required, over 256 rows, 
every 4 ms. This equates to a required refresh cycle every 
~6 IJ.s. In this application, the refresh ,timer generates 
FR approximately once every 9.8 ~s. Figure 3-190 shows the 
circuit for the forced refresh (FR) timer. The timer is a 
commercially-available 555 timer. The delay equation shown 
below must be solved for R1, R2, and C values. This satisfies 
the refresh requirement of less than, or equal to, 15.6 IJ.s 

T = 0.693 (R1 + 2R2) C < 4 ms/256 = 15.6 IJ.s 

For the following values of R1, R2 and C 

R1 = R2 = 10K and C = 470 pF 

the timer generates a refresh every 9.8 IJ.S which allows some 
margin in the refresh requirement. The specified values for R1 , 
R2, and C allow for 30% total discrete component tolerance. 
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TIMGEN2A 

The function of TIMGEN2A is to generate RASI (Row Address 
Strobe Input) and arbitrate between processor and refresh 
cycles. Based on the arbitration, TIMGEN2A also generates 
RWRQ (Read/Write Request), or RFRQ (Refresh Request), 
that determines the type of cycle to be performed. TIMGEN2A 
can arbitrate between refresh and processor requests and also 
arbitrate between Port A and Port B processor requests. 

When simultaneous refresh and processor requests are 
generated, refresh (RFRQ) will be given priority. The priority is 
implicit by design because the RFRQ output of TIMGEN2A is 
connected to MC1 of the Am296SA DMC. When RFRQ 
becomes active (LOW), MC1 forces the DMC into refresh 
mode. 

When simultaneous processor requests are made, RWRQA 
(Read/Write Request of Port A) will be granted before RWRQB 
(Read/Write Request of Port B). This priority is also implicit by 
design because the RWRQA output is connected to SEL of the 
processor's address multiplexer. When RWRQA becomes ac­
tive, address from Port A will be selected for input to the Row 
and Column Address latches of the Am296SA, also, the data 
from Data Bus A will be allowed to flow to the inputs of the 
DRAMs. In either case, RASI must be generated to initiate any 
of the cycles. Once RASI is generated, the control signals, 
MSEL and CASI, will be generated from the delay line relative 
to RASI. 

TIMGEN28 

The function of TIMGEN2B is to generate WE (Write- Enable) 
for memory and also OE (Output Enable) to control the flow of 
data through the data bus latches. The inputs to TIMGEN2B 
are, CSA, RDA (Read Strobe A), WRA (Write Strobe A). CSB, 
RDB (Read Strobe B), and WRB (Write Strobe B). In addition, 
there are BHENA (Byte High Enable A) and BHENB (Byte High 
Enable B), AOOA (least significant address bit for Port A) and 
ADOB (least significant address bit for Port B). These signals 
are generated by the processor and are used to specify either 
byte or word transfers. 

The following description outlines the operation of TIMGEN2B. 
If CSA and RDA become active (LOW), TIMGEN2B will cause 
OEA to become active (LOW), enabling the data bus latches 
and allowing data corresponding to address A to flow onto the 
system data bus (read operation). The identical procedure oc­
curs for Port B when the control inputs for Port B is active. The 
block diagram shown in Figure 3-1S9 shows a multiplexer for 
the system data bus. This multiplexer controls the data flow 
into memory from either processor A or processor B, during 
write operations. The select to the MUX is controlled by 
RWRQA, the same signal that controls the select to the pro­
cessor address MUX, allowing address Port A to implicitly have 
higher priority during processor memory access. 

The following sections provide general information about 
interfacing the arbiter to various major types of processors; 
they are: the iAPX-type, the AmZSOOO, and the MC6S000-type 
processors. The PAL devices for the three types of processors 
will be identified as follows: TIMGEN2A and TIMGEN2B are for 

the iAPX-type; TIMGEN3A, TIMGEN3B for the AmZSOOO; and 
TIMGEN4A and TIMGEN4B are for the MC6S000-type. When 
mixing different processor in an interface, some of the control 
signals mentioned for the particular groups may need to be 
modified to be applicable to the processor under consideration. 
The designer can tailor the design to meet specific needs with 
simple modification to the PAL logic equations provided. 

Interfacing the iAPX-Type Processors 

The control signals required for TIMGEN2A are shown in Figure 
3-191.a. These signals are: CS, CYCREQ, FR and the delay 
line outputs (TAP1-TAP5). CS and CYCREQ are provided by the 
processor. FR is the· refresh request from the refresh timer. 
Sources to this input can be provided either by the timer 
described in this application note or other appropriate sources. 
TAP1-TAP5 are the timing delay outputs used to regulate many 
of the signal generation. The outputs generated from this PAL 
device are TAPO (RASI), XACKA, XACKB, and the grants for 
processor and refresh requests. 

The signals for TIMGEN2B are RD, WR, BHE, and AOO. For 
byte/word transfers, the designer should consult the appropri­
ate processor data sheet. In general, this processor group 
uses BHE in conjunction with AOO to define the transfer func­
tion of the data bus. The outputs from this PAL device are: 
Write Enables, Latch Enables, and Outputs Enables. 

Interfacing the AmZ8000 

The control signals required for this interface are shown in 
Figure 3-191.b. For TIMGEN3A, the general controls are Cs 
and CYCREQ, FR and the delay line outputs (TAP1-TAP5). CS 
and CYCREQ are generated by the processor. FR is the refresh 
request from the refresh timer. TAP1-TAP5 are the delay line 
outputs used to regulate the signal generation. The outputs from 
this PAL device are WAlTA, WAITB, TAPO (RASI), and the 
grants for processor and refresh requests. 

The control signals for TIMGEN3B are Rjiiii, DS, AOO and Biw. 
For byte/word transfers, the designer should consult the pro­
cessor data sheet for correct signal generation. The outputs 
from this PAL device are: Write Enables, Latch Enables, and 
Outputs Enables. 

Interfacing the MC68000-Type Processors 

The control signals required for this interface are shown in 
Figure 3-191.c. For TIMGEN4A, the general controls are Cs 
and CYCREQ, FRand the delay line outputs (TAP1-TAP5). Cs 
and CYCREQ are generated by the processor. FR is the refresh 
request from the refresh timer. TAP1-TAP5 are the delay line 
outputs used to regulate signal generation. The outputs 
generated from this PAL device are: DTACKA, DTACKB, TAPO 
(RASI) and the grants for processor and refresh request. 

The control Signals for TIMGEN4B are Riw, UDS, and LDS. 
For byte/word transfers, the designer should consult the re­
spective processor data sheet for correct signal generation. 
For example, to obtain either byte or word transfers with the 
MC6S000, three signals, UDS, LOS and R/W, must provide the 
correct levels to guarantee the correct data transfers, see 
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MC68000 Data Bus Control Table in the User's Manual. The 
outputs generated from this PAL device are: Write Enables, 
Latch Enables and Output Enables. 

The programmable logic device equations for all three in­
terfaces are shown in Figures 3-192 and 3-193. 

CSA ... .. 
CYCREOA ... -_ .... ---

CSB ... XACKA ... 
po .. ---

CYCREOB .. XACKB ... .. .. 
TAP 1 .. AmPAL16L8A TAP 0 ... .. .. --
TAP2 .. TIMGEN2A RFRO ... 
TAP3 :.. 

.. 
RWROA ... .. .. 

TAP4 ... RWROB .. .. .. 
TAPS ... .. 

FR ... .. 

TAP3 .. .. 
~A .. -- .. 
RDA .. -- .. 

WRA ... 
--- po 

BHENA .. 
OEA po .. 

AOOA .. 
OEB --_. po .. 

BHENB .. 
WEL -- .. AmPAL22V10A .. 

WRB .. 
WEH -- .. TIMGEN2B ... 

ROB .. .. 
-- .. LEA ... 
CSB .. .. .. LEB ... 

AOOB .. .. 
.. 

SUP .. 
RFRO .. 

RWROA ... .. 
RWROB .. .. 

08479A 3-191 

Figure 3-191.a Interface for 8086,80186, and 80286-Type Processors 
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CSA .. .. 
CYCREOA .. -_ .. --

GSB .. WAlTA ... .. .. --
CYCREOB .. WAITB ... .. .. 

TAP 1 ... Am PAL 18P8 TAP 0 ... .. -- .. 
TAP2 .. TIMGEN3A RFRO ... .. .. 
TAP3 ... RWROA .. .. .. 
TAP4 .. RWROB .. 

.... .. 
TAPS ... _ ... 

FR .. .. 

CSA .. .. 
RWA ... 

DSA ... 

BWA .. ... 
AOOA .. OEA -- ... ... 
BWB ... OEB 

... -- .. ... 
DSB ... WEL 

.. 
-- .. AmPAL22V10 .. 
RWB ... WEH 

.. 
-- .. TIMGEN3B .. 
CSB ... LEA .. 

AOOB ... 
... 

LEB ... 
SUP .. 

.. 
-- ... 
RFRO ... --- ... 

RWROA ... --- ... 
RWROB ... .. 

TAP3 .... ... 

08479A 3-192 

Figure 3-191.b Interface for ZaOOD-Type Processors 
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08479A 3-193 

TAP 2 

TAP 3 

TAP 4 

TAP 5 

FR 

~A .. 

RWA ... -- . 
UOSA ... 

iOSA ... 

LOSB ... 

UDSB .... -. 
RWB ... -. -
CSB .... -. 

TAP3 .... -- -. 
SUP .... -_ .. 

RFRO ... --- .. 
RWROA .. --- .. 
RWROB .. .. 

AmPAL 16L8A 

TIMGEN4A 

AmPAL22V10A 

TIMGEN4B 

OTA KA 

OTACKB 

RFR 

RWROA 

RWROB 

TAP 0 

LEA 

LEB 

OEA 

OEB 

WEH 

WEL 

Figure 3-191.c Interface for MC68000-Type Processors 
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ADVANCED MICRO DEVICES 

GENERAL DUAL-PORT DRAM INTERFACE TIMING PAL DEVICE #1 

T1MGEN2A VERSION 1.0 

ICSA ICYCREQA ICSB ICYCREQB TAP1 TAP2 TAP3 TAP4 TAPS GND 

IFR IXACKA IXACKB TAPO FRH IRFRQ IR\lRQA IRIJRQB NC VCC 

IFRH FR* IFRH + TAPO*RFRQ 

RFRQ = FR*FRH*/RIJRQA*/RIJRQB*/TAPS + RFRQ*/TAPS 

DEVICE (PAL22V10) 

"ADVANCED MICRO DEVICES" 

"GENERAL DUAL-PORT DRAM INTERFACE TIMING PAL DEVICE #2" 

"T1MGEN2B VERSION 1.0" 

PIN ICSA IRDA IIJRA IBHENA AOOA IBHENB I\lRB IRDB ICSB 

AOOB IOEA lOEB ISUP IRFRQ IRIJRQA IRIJRQB IIJEL IIIEH LEB LEA 

BEGIN 

IJEH = ISUP*RIJRQA* IRFRQ*CSA*IJRA*BHENA 

RIJRQA = CSA*CYCREQA* IRFRQ* IRWRQB* ITAPS + RIJRQA* ITAPS + lSUP*RIJRQB* IRFRQ* IRIJRQA*CSB*IJRB*BHENB 

R\lRQB = CSB*CYCREQB*/RFRQ*/RIJRCA*/TAPS + RIJRQB*/TAPS 

ITAPO = IRFRQ*/RIJRQA*/RIJRQB + TAP4 

IF (CSA*RWRQA*/RFRQ*TAP4) XACKA = CSA*RIJRQA*/RFRQ*TAP4 

IF (CSB*RWRQB* IR FRQ* IRIJRQA*TAP4) XACKB = CSB*RIJRQB* IRFRQ* IRIJRQA*TAP4 

DESCR I PTI ON 

PAL DEVICE THAT ARBITRATES AND GENERATES DUAL-PORT DRAM TIMING INTERFACE 

CONTROL SIGNALS FOR AMB086, AMB0186, AMB0286-TYPE MICROPROCESSORS 

IJEL ISUP*RIJRQA* IRFRQ*CSA*IJRA* IAOOA 

+ ISUP*RIJRQB* IR FRQ* IRIJRQA*CSB*IJRB* I AOOB 

OEA = CSA*RIJRQA* IRFRQ*RDA 

OEB CSB*RIJRQB* IRFRQ*RDB 

LEA = CSA*RIJRQA* IRFRQ*RDA*TAP3 

LEB = r:SB*RIJRQB*/RFRQ*RDB*TAP3 

END. 

"DESCRIPTION" 
"PAL DEVICE THAT GENERATES DUAL-PORT DRAM INTERFACE CONTROL SIGNALS FROM" 

"AMB086, AMB0186, AMB02B6 TYPE CONTROL SIGNALS UIJR, IRD, IBHE)." 

Figure 3-192. PLPL Specification for the Example of Figure 3-191.a 
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ADVANCED MICRO DEVItES 

GENERAL DUAL-PORT DRAM INTERFACE TIMING PAL DEVICE #1 

TIMGEN3A VERSION 1.0 

ICSA ICYCREQA ICSB ICYCREQB TAP1 TAP2 TAP3 TAP4 TAP5 GND 

IFR IWAITA IWAITB TAPO FRH IRFRQ IRWRQA IRWRQB NC VCC 

IFRH FR*/FRH + TAPO*RFRQ 

RFRQ = FR*FRH*/RWRQA*/R\lRQB*/TAP5 + RFRQ*/TAP5 

R~QA = CSA*CYCREQA*/RFRQ*/RIJRQB*/TAP5 + RIJRQA*/TAP5 

R\lRQB = CSB*CYCREQB*/RFRQ*/RIJRQA*/TAP5 + RIJRQB*/TAP5 

ITAPO = IRFRQ*/RWRQA*/RIJRQB + TAP4 

IF (CSA*R\lRQA*/RFRQ*TAP4) IIJAlTA = CSA*R\JRQA*/RFRQ*TAP4 

IF (CSB*R\lRQB* IRFRQ* IRWRQA*TAP4) IIJAlTB = CSB*R\JRQB* IRFRQ* IR\lRQA*TAP4 

DESCRIPTION 

PAL DEVICE THAT ARBITRATES AND GENERATES DUAL -PORT DRAM TIMING INTERFACE 

CONTROL SIGNALS FOR ZSOOO-TYPE MICROPROCESSORS 

DEVICE (PAL22V10) 

"ADVANCED MICRO DEVICES" 

"GENERAL DUAL-PORT DRAM INTERFACE TIMING PAL DEVICE #2" 

"TIMGEN3B VERSION 1.0" 

PIN ICSA RWA IDSA BIJA AOOA BW IDSB RW ICSB TAP3 

AOOB IOEA lOEB ISUP IRFRQ IR\lRQA IR\lRQB I\lEL I\lEH LEA LEB 

BEGIN 

IJEH = ISUP*R\lRQA* IRFRQ*CSA* IRIJA* IBIJA 

+ ISUP*R\lRQA * IR FRQ*CSA * IRIJA *BWA * AOOA 

+ ISUP*RIJRQB* IRFRQ* IR\lRQA *CSB* IRW* IBW 

+ ISUP*RWRQB* IRFRQ* IRIJRQA*CSB* IRWB*BW*AOOB 

\JEL ISUP*R\lRQA* IRFRQ*CSA* IRIJA* IBWA 

+ ISUP*R\lRQA * IR FRQ*CSA * IR\JA *B\JA * I AOOA 

+ ISUP*R\lRQB* IRFRQ* IR\lRQA*CSB* IRIJB* IB\JB 

+ ISUP*R\lRQB* IRFRQ* IRIJRQA*CSB* IRW*BIJB* IAOOB 

OEA = CSA*RIJRQA*/RFRQ*RIJA*DSA 

OEB = CSB*R\lRQB* IR FRQ*RW*DSB 

LEA = CSA*R\lRQA*/RFRQ*RIJA*TAP3 

LEB = CSB*R\lRQB* IRFRQ*RW*TAP3 

END. 

"DESCRIPTION" 

"PAL DEVICE THAT GENERATES DUAL-PORT DRAM INTERFACE CONTROL SIGNALS FROM" 

"Z8000 TYPE CONTROL SIGNALS (8/IJ. R/\J. IDS)." 

Figure 3-193.3 PLPL Specification for the Example of Figure 3-191_b 
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ADVANCED MICRO DEVICES 

GENERAL DUAL-PORT DRAM INTERFACE TIMING PAL DEVICE #1 

TIMGEN4A VERSION 1_0 

/CSA /CYCREQA /CSB /CYCREQB TAP1 TAP2 TAP3 TAP4 TAPS GND 

/FR /DTACKA /DTACKB TAPO FRH /RFRQ /RIJRQA /RIJRQB NC VCC 

/FRH FR*/FRH + TAPO*RFRQ 

RFRQ = FR*FRH*/RIJRQA*/RIJRQB*/TAPS + RFRQ*/TAPS 

RIJRQA = CSA*CYCREQA* /RFRQ* /RIJRQB* /TAPS + RIJRQA* /TAPS 

RIJRQB CSB*CYCREQB* /RFRQ* /RIJRQA* /TAPS + RIJRQB* /TAPS 

/TAPO = /RFRQ* /RIJRQA* /RIJRQB + TAP4 

IF (CSA*RIJRQA*/RFRQ*TAP4) DTACKA = CSA*RIJRQA*/RFRQ*TAP4 

IF (CSB*RIJRQB* /R FRQ* /RIJRQA *TAP4) DTACKB CSB*RIJRQB* /R FRQ* /RIJRQA *T AP4 

DESCRIPTION 

PAL DEVICE THAT ARBITRATES AND GENERATES DUAL-PORT DRAM TIMING INTERFACE 

CONTROL SIGNALS FOR MC68000-TYPE MICROPROCESSORS 

DEVICE (PAL22V10) 

"ADVANCED MICRO DEVICES" 

"GENERAL DUAL-PORT DRAM INTERFACE TIMING PAL DEVICE #2" 

"TlMGEN4B VERSION 1.0" 

PIN /CSA RIJA /UDSA /LDSA NCS /LDSB /UDSB RIJB /CSB TAP3 

NC10 /OEA /OEB /SUP /RFRQ /RIJRQA /RIJRQB /IJEL /IJEH LEA LEB 

BEGIN 

IJEH /SUP*RIJRQA* /RFRQ*CSA* /RIJA*UDSA 

+ /SUP*RIJRQB* /RFRQ* /RIJRQA*CSB* /RIJB*UDSB 

IJEL /SUP*RIJRQA* /RFRQ*CSA* /RIJA*LDSA 

-+ /SUP*RIJRQB* /RFRQ* /RIJRQA*CSB*/RIJB*LDSB 

OEA CSA*RIJRQA* /RFRQ*RIJA*(UDSA + LDSA) 

OEB = CSB*RIJRQB*/RFRQ*RIJB*(UDSB + LDSB) 

LEA = CSA*RIJRQA*/RFRQ*RIJA*TAP3 

LEB CSB*RIJRQB* /RFRQ*RIJB*TAP3 

END. 

"DESCR I PT ION" 

"PAL DEVI CE THAT GENERATES DUAL -PORT DRAM I NTERFACE CONTROL SI GNALS FROM" 

"MC68000 TYPE CONTROL SIGNALS (R/IJ, UDS, LDS)_" 

Figure 3-193.b PLPL Specification for the Example of Figure 3-191.c 



3.6.5 CUSTOMIZE A FLEXIBLE 
DRAM CONTROLLER USING 
SECOND-GENERATION PAL DEVICES 

Ever increasingly dense DRAMs and their interface to the 
emerging 32-bit sophisticated microprocessors provide in­
creasing number of system options to the designer. In order to 
utilize these advanced features available on the DRAMs and to 
satisfy the individual system design requirements of different 
systems, often customizable DRAM controllers are required. 
PAL-based sequencer devices such as AmPAL23S8 provide 
effective control sequencing power, flexibility/customizability of 
design along with ease of use, and offer a desirable alternative 
to the dedicated functionality of VLSI DRAM controllers. 

The following megabit DRAM controller design, based on Am­
PAL23S8, illustrates the ease by, which a PAL device can be 
easily customized to fulfill system reqUirements. It supports 
data bus sizing and data alignment features, which although 
required for emerging 32-bit microprocessors, are not yet 
easily and adequately supported by VLSI controllers. 

A DRAM controller needs to support, at the minimum, the fol­
lowing functions: 

1. Flexible refresh generation mechanism 
2. Flexible arbitration scheme 
3. Processor handshake protocol 
4. Processor cycle timing and control signals 
5. Refresh cycle timing and control signals. 

Flexible Refresh Generation Mechanisms 

For refresh generation, different system designs may require 
either burst mode, intermittent mode, or both kinds of refresh. 
In the burst mode, refresh request would occur once very four 
milliseconds to meet the dynamic RAM's speed. For a megabit 
RAM with a 512 refresh cycle requirement, all 512 refresh 
cycles will be performed consecutively. The major disadvan­
tage of the burst refresh approach is that memory becomes out 
of service for a long time. Intermittent refresh minimizes the out 
of service time by stealing single cycles between two proces­
sor cycles. This cycle stealing is performed by a predefined 
arbitration mechanism that prioritizes different cycle requests. 
This design illustrates both intermittent and burst mode 
refreshes. 

Flexible Arbitration Scheme 

The arbitration in most designs involves prioritizing memory 
accesses for: the read cycle, write cycle, read-modify-write 
cycle, and refresh cycle. 

The DRAM controller must allow both asynchronous memory 
and refresh cycle requests. It should decide whether a memory 
cycle is an access cycle or a refresh cycle. Typically for inter­
mittent refresh, the cycles are derived from the oscillator, which 
operates asynchronously with the system clock. Its arbiter 
grants a request when the refresh request is made and no 
memory cycle is either occurring or pending. If a refresh cycle 
is in progress and a memory request is made, then the memory 

access is inhibited until the refresh is complete. If a memory 
cycle is in progress, the arbiter inhibits the refresh cycle until 
the current cycle is completed. However it needs to remember 
that a refresh request was made and grant that request on 
completion of the processor cycle. Of course when refresh and 
processor access are requested simultaneously, the refresh is 
given priority. The AmPAL23S8's buried registers are very use­
ful for performing such arbitration functions. between equal 
asynchronous events. These registers can also be used for 
remembering refresh cycle requests and for later initiating 
refresh cycle execution. 

However, some designs may require additional functions such 
as prioritizing competing processor requests, or requiring a 
specific kind of handshake mechanism between the processor 
and DRAM controller. All such functions can be achieved with a 
PAL sequencer by using chip resources such as I/O pins, bur­
ied registers, and product terms. On the other hand, some 
systems may not require such functions as read-modify-write 
cycles, and the PAL sequencer device's resources can be con­
served for other system functions. 

Flexible Handshake Protocol 

PAL sequencer devices provide customizing capabilities to in­
terface to system processors. The logic required for interface 
protocols for the iAPX family or the 68000 family microproces­
sors are easily built using the PAL device's internal resources. 
The design example described here is for a 68020 processor­
interface signal. 

Processor Cycle Execution 

Different DRAMs can have different processor cycles. Some 
just support the basic read/write cycles, while others support 
extended functions such as page-mode, ripple-mode, or static­
column-mode cycles. Some DRAMs also support additional 
functions, such as the transfer cycle in VRAMs (DRAMs opti­
mized for video applications). PAL sequencer devices allow 
only user-definable functionality to be implemented in the 
design, which optimizes resources and improves system per­
formance. Another advantage offered by such designs is the 
ability to customize the design to DRAM timing requirements, 
which can vary significantly between -12, -15, -20 parts. All 
timing functions are easily implemented and modified using 
buried state registers. 

Our design implements the basic read, write', and read-modify­
write cycles required in most designs. The timings required 
assume a -12 memory part. The processor-cycle execution 
involves address multiplexing, and timing control signal gener­
ation. For address multiplexing, Am29841 10-bit buffers are 
used. The multiplexing of the row or column address is under 
the control of the DRAM controller. 

Generation of timing and control signals, RAS, CAS, WE, and 
DACK is also the core function of the controller. The controller 
switch~S the address for multiplexing and produces RAS, CAS, 
WE in a sequence that is understandable by particular DRAMs. 
It also generates a handshake signal "DACK" for the CPU, to 
indicate whether or not the memory is ready to be accessed. 
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Refresh Cycle Execution 

DRAMs support different types of refresh cycles. Some 
DRAMs support CAS-before-RAS-refresh, which embeds the 
refresh-address counter along with the memory and eliminates 
the need for an external counter. Some designs may require 
the Hidden refresh or the standard RAS-only refresh. Depend­
ing upon system requirements the designer can optimize the 
design and resources. For this example, the PAL device has 
been designed to execute a RAS-only refresh. However, it can 
be easily modified to support CAS before RAS refresh, or hid­
den refresh also, if needed. 

MBIT DRAM Controller with Data Alignment 
and Dynamic Bus Sizing 

In many cases, currently available DRAM controllers do not 
support the esoteric requirements of different system designs. 
The designer is left to make his/her own DRAM controller. The 
AmPAL23S8 with its embedded extra buried state registers 
provides an excellent tool for designing such a flexible, fast 
DRAM controller. It also offers the right speed to interface to 
the emerging 8/16-MHz processors allowing superior synchro­
nous designs with few or no wait states. 

Some of the emerging 32-bit microprocessors, such as 68020 
and 80386, support the concept of dynamic bus sizing and 
misaligned data transfers. Currently, there is no DRAM control­
ler that uses the advantages offered by these two features 
effectively. 

Dynnmlc Data Bus Sizing 

Dynamic bus sizing allows the processor to handle variable­
width data buses (8, 16, or 32 bits) on a cycle-by-cycle basis. 
Dynamic bus sizing makes the size of R/W port/channel trans­
parent to the software designer. 

The M68020 allows operand transfers to or from 8-, 16-, and 
32-bit ports by dynamically determining the port size during 
each bus cycle. Similarly, iAPX80386 allows operand transfers 
to or from 16-, and 32-bit ports by determining the port size 
during each bus cycle. During an operand transfer, the slave 
device signals its port size and transfer status (complete or not) 
to the processor using DSACKY inputs for 68020 (Ready & 
BS16 for 80386). 

DSACK1 DSACKO 
H H 
H L 

L H 

L L 

Insert Wait States 
Complete Cycle-

Data bus port size 8 bits 
Complete Cycle-

Data bus port size 16 bits 
Complete Cycle-

Data bus port size 32 bits 

The design implemented shows a 68020 interface, but it can 
be easily modified to accommodate the iAPX386. M68020 al­
ways attempts to transfer the maximum data (32 bits) in a 
single cycle. If the port responds with a size smaller than 32-

bits, the processor repeats the cycles with the remaining bytes 
of data. For each cycle, M68020 informs the slave of the num­
ber of bytes it is attempting to transfer by two signals SIZO, 
SIZ1, as follows: 

SIZO, SIZ1 SIZE 
0 1 Byte 

0 Word 
3 Byte 

0 0 Long Word 

To accommodate various system tradeoffs, system designs 
with heterogeneous memory organization sizes such as 32-
bits, 16- bits or 8-bits are common. For example, it is often 
preferable to have smaller external bus sizes, but retain 32-bit 
internal memory access on a board. As the DMA-bus width is 
16/8, it may be preferable to have part 8/16-bit organization of 
system memory for allowing easy DMA transfers. Similarly, in a 
graphics system, because of stripe architecture, the video­
memory-frame buffer-access may be 32-bit with four pixel 
stripe of 8-bit planes, but the scratch-pad memory of the lookup 
table memory may be. of smaller width. PAL devices allow 
customizable, dynamic memory, data-bus sizing based on vari­
ous system requirements, such as address range (address 
signals), or jumper-selectable static control for increasing 
memory width. 

Misaligned Transfers 

Dynamic sizing is used also in conjuction with address bits AO, 
A 1 to support misaligned data transfers. An example of data­
bus size with misaligned data transfers is a word write to a long 
word with an address offset of 1 byte (AO/A 1 = 01). MC68020 
& iAPX386 contain internal bus multiplexers to route the data 
to the correct data lines. Both also generate the extra cycles 
necessary to complete a misaligned transfer. However, exter­
nal circuitry is still needed to generate the correct write enables 
and chip selects to support both functions. PAL devices, how­
ever, can be customized to support both these functions easily. 

A1 AO Offset 
0 0 o Bytes 
0 1 1 Byte 

0 2 Bytes 
3 Bytes 

By decoding AO and A 1, the two transfer data-size signals, 
SIZEO and SIZE1, and the size of the port being addressed, 
PAL devices can easily support dynamic-bus sizing and 
generate appropriate chip-select signals for the four banks of 
memory. 

The DRAM Controller 

The DRAM controller consists of two AmPAL23S8s: the first is 
called the Timing and Arbitration PAL device, and the second is 
called the Data Sizing and Alignment PAL device (Figure 
3-194). 
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Figure 3-194. A Megabit DRAM Controller 

The Timing and Arbitration Controller 

The timing and arbitration PAL device performs the following 
functions: 

1. Arbitration between current cycle, refresh cycle & CPU 
cycle 

2. Read-write-cycle execution 
3. Read-modify-write-cycle execution 
4. Refresh-cycle execution 
5. Interface Signaling 

For arbitration, the timing and arbitration PAL device arbitrates 
between the processor request MREQ signal and the refresh 
request RFCLK, giving the highest priority to the current cycle, 
next to the refresh request, and finally to the processor cycle. 
This sequence supports both intermittant refresh and burst­
mode refresh. It also uses a mechanism to store the refresh 
requests when the processor cycle is in progress for servicing 
later. 

For address multiplexing,' it generates the appropriate 
ROWADD and COLADD signals to multiplex the row and col­
umn addresses on to the memory address bus. During refresh 

cycles it asserts the RFSH signal by applying the refresh-row 
address on the memory-address bus. 

This PAL device executes the read-and-write cycles as well as 
read- modify-write cycles. The selection between these two is 
under the control of the processor signal RMC. 

All timing requirements of the different cycles are shown in the 
timing diagram in Figure 3-196. All the timings of the different 
cycles are under the control of internal registers. The operation 
of the state machine to perform all these functions. is also 
shown in Figure 3-197. This state diagram has been derived 
directly from the timing diagrams and the arbitration require­
ments of the design. This state machine is implemented by five 
of the six available buried state registers on the device, and is 
used primarily for timing and arbitration functions. The sixth 
buried state register which implements a flag function, is repre­
sented as a small, independent state machine, and described 
below. The state operation was written in AmCUPL, a high 
level language based PLD software package (Figure 3-198.a), 
which decodes the s.tate description and generates the 
Boolean Logic equation file directly (Figure 3-198.b). Figure 
3-198.c shows the statistics for this PAL (product term usage 
etc) and figure 3-198.5d shows the corresponding fuse plot for 
this PAL. 
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Figure 3·197. State Diagram for the Timing and Arbitration PAL 

Arbitration Between Current Cycles, 
Refresh Cycle, and CPU Cycle 

The request for a refresh is received by signal line RFCLK, The 
CPU requests a cycle by asserting MREQ line. The MREQ 
signal is assumed to be generated synchronously. This signal 
can be generated based upon different system requirements 
-either as a simple decode of address lines, read/write sig­
nals or from some virtual to physical address translation 
scheme, for some complex systems. If a cycle is in progress, 
as indicated by states other than state 0, no arbitration for a 
fresh cycle is performed. In such a case, this PAL device con­
tinues to execute the current cycle and sequence through dif­
ferent states. This effectively implies that the current cycle is 
given the most priority and no other cycle is initiated until its 
completion. When the current cycle is complete (indicated by 
state 0) the PAL device arbitrates between the MREQ signal 
and the buried register 85 flag. This buried register flag is used 
to latch the request for refresh RFCLK, which is usually only 

one clock cycle duration, The operation of this flag is controlled 
by a second small state machine (two states only) in the same 
device. This second state machine is also shown in Figure 
3-197. When RFCLK is HIGH, this state machine toggles to 
state 1 (85 = 1) and stays in that state until the refresh cycle is 
executed (indicated by RFSH signal LOW); it then toggies back 
to state 0 (85 = 0), preparing itself for the next refresh request 
RFCLK. 

For the first state machine, the arbitration begins on state O. If 
85 is HIGH, a refresh cycle is given priority and the state 
machine jumps to state 16 to execute a refresh cycle. If, on the 
other hand, there is no refresh request pending (indicated by 
the 85 flag being equal to 0) and MREQ is asserted, a proces­
sor cycle is started by jumping to state 1. If none of these 
condition exist the state machine stays in state 0, polling for 
any of these events to occur. Such a scheme can support both 
burst-mode and intermittent-refresh. 
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NAME 

PARTNO 

DATE 

MEGABIT DRAM TIMING & ARBITRATION CONTROLLER; 

Afij>AL 23S8 

03,24,86 ; 

REV 01 ; 

DESIGNER KAPIL SHANKAR 

C(J4PANY ADVANCED MICRO DEVICES 

ASSEMBLY NONE; 

LOCATION SUNNYVALE, CA 

DEVICE P23S8 ; 

,***************************.******.* •••••••••••••••••••• *.** •••••• , ,. ,. ,. 
., 
*' ., 

, ••••••••••• * ••• * ••• * ••••••••••••••••••••••••••••••••••••••• * ••• * •• , 
,. Allowable Target Device Types: THE ONLY ONE ., , .................................................................. , 
, .. Inputs .. , 
PIN 2 MREQ 

PIN 3 ADSELO 

PIN 4 ADSEL1 

PIN 5 RMC ; 

PIN 6 RFCLK 

PIN 7 INIT 

,.. Outputs *., 
PIN 19 = RO'WADD 

PIN 18 !RASO ; 

PIN 17 !COLADD 

PIN 16 IRAS1 

PIN 15 !RAS2 

PIN 14 !RFSH 

PIN 13 !RAS3 

PIN 12 !SIG ; 

NODE [BO,B1,B2,B3,B4,B5] 

'** Declarations and Intermediate Variable Definitions **' 

FIELD STMA = [BO,B1,B2,B3,B4] 

FIELD STMB = [B5] ; 

FIELD BANK = [ADSEL 1, ADSELO] 

BANKO = BANK 0 

BANK1 = BANK 1 

BANK2 = BANK 2 

BANK3 = BANK 3 

$DEFINE SAO 'b'OOOOO 

$DEFINE SA1 'b'OOO01 

$DEFINE SA2 'b'OO010 

$DEFINE SAl 'b'OO011 

$DEFINE SA4 'b'00100 

$DEFINE SA5 'b'00101 

$DEFINE SA6 'b'00110 

$DEFINE SA7 'b'00111 

$DEFINE SA8 'b'01000 

$DEFINE SA9 'b'01001 

$DEFINE SA10 'b'01010 

$DEFINE SA11 'b'01011 

$DEFINE SA12 'b'01100 

$DEFINE SA13 'b'01101 

$DEFINE SA14 'b'01110 

$DEFINE SA15 'b'01111 

$DEFINE SA16 'b'10000 

$DEFINE SA17 'b'10001 

$DEFINE SA18 'b'10010 

$DEFINE SA19 'b'10011 

$DEFINE SA20 'b'10100 

$DEFINE SA21 'b'10101 

$DEFINE SA22 'b'10110 

'** STATE MACHINE A **' 
'** STATE MACHINE B **' 
'** MEMORY BANK ADDRESSED **' 

, •• STATE 0 •• , 

'*. STATE 1 •• , 
, •• STATE 2 •• , 

, •• STATE 3 *., 
, •• STATE 4 •• , 

'*. STATE 5 •• , 
, •• STATE 6 •• , 

'** STATE 7 •• , 

, •• STATE 8 *., 
, •• STATE 9 **' ,.* STATE 10 *., 

, •• STATE 11 *., 
,.* STATE 12 •• , 

, •• STATE 13 .*' 
,.* STATE 14 •• , 

'** STATE 15 **' 
,.* STATE 16 •• , 

,.* STATE 17 •• , 

, •• STATE 18 •• , 

, •• STATE 19 •• , 

,.* STATE 20 .*,-
,.* STATE 21 •• , 

'** STATE 22 **' 

Figure 3-198.a Source Code for Timing and Controller PAL 
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SOEFINE SBO 'b'O 

SOEFINE SB1 'b" 

/** Logic Equations **/ 

/** THE FIRST STATE MACHINE **/ 

SEQUENCE STMA ( 

/** STATE 0 **/ 
/** STATE 1 **/ 

/** POLLING FOR PROCESSOR OR REFRESH CYCLES **/ 

PRESENT SAO IF! B5 & ! "REQ & BANKO 

IF !B5 & !MREQ & BANK1 

IF IB5 & !MREQ & BANK2 

IF !B5 & !MREQ & BANa 

/** PROCESSOR CYCLE ** / 
/** JlJtP TO STATE SA1 **/ 

NEXT SA 1 ruT RASO ; 

NEXT SA1 ruT RAS1 ; 

NEXT SA 1 ruT RAS2 ; 

NEXT SA 1 ruT RAS3 ; 

/** ASSERT THE RAS FOR THE MEMORY BANK ADDRESSED **/ 

IF B5 

/** REFRESH CYCLE ** / 
/** JlJtP TO STATE SA16 **/ 

NEXT SA 16 ruT RO\JADD 

ruT RFSH ; 

/** REMOVE RO\J ADDRESS AND SET UP REFRESH ADDRESS ** / 

DEFAULT 

/** ELSE POLL AGAIN **/ 
/** STAY IN STATE SAO **/ 

/** THIS IS THE PROCESSOR CYCLE **/ 

PRESENT SA 1 I F BANKO 

IF BANK1 

IF BANK2 

IF BANa 

NEXT SAO 

NEXT SA2 

NEXT SA2 

NEXT SA2 

NEXT SA2 

NEXT SAl 

/** REMOVE RO\J ADDRESS AND SET UP COLUMN ADDRESS ** / 

ruT RASO ; 

ruT RAS1 ; 

ruT RAS2 ; 

ruT RAS3 ; 

ruT RO\JADD 

ruT COLADD 

ruT SIG ; 

/** ASSERT SIG TO INFORM DATA SIZING & ALIGNMENT PAL OF PROCESSOR CYCLE **/ 

PRESENT SA2 I F BANKO 

IF BANK1 

IF BANKl 

IF BANa 

/** MEMORY ACCESS TIME DELAY **/ 

PRESENT SAl I F BANKO 

IF BANK1 

IF BANKl 

IF BANa 

PRESENT SA4 I F BANKO & RfIC 

IF BANK1 & R.IC 

IF BANKl & R.IC 

IF BANIC3 & RMC 

IF RMC 

NEXT SAl 

NEXT SA3 

NEXT SA3 

NEXT SA3 

NEXT SAl 

NEXT SA4 

NEXT SM 

NEXT SM 

NEXT SM 

NEXT SM 

NEXT SA5 

NEXT SA5 

NEXT SAS 

NEXT SA5 

NEXT SAS 

OUT RAsa; 

ruT RAS1 ; 

ruT RAS2 ; 

ruT RAS3 ; 

ruT RO\JADD 

ruT COLADD 

ruT SIG ; 

ruT RASO ; 

OUT RAS1 ; 

ruT RAS2 ; 

ruT RAS3 ; 

ruT RO\JADD 

ruT COLADD 

ruT SIG ; 

ruT IRASO ; 

ruT !RAS1 ; 

ruT IRAS2 ; 

ruT !RAS3 ; 

ruT I RO\JADD 

ruT ICOLADD 

ruT SIG ; 

/** DISTINGUISH BETWEEN READ WRITE OR READ MODIFY WRITE CYCLES **/ 
/** IF RMC HIGH EXECUTE AS READ WRITE CYCLE **/ 
/** JlJtP TO STATE SA5 **/ 
/** ALSO REMOVE COLUMN ADDRESS AND APPLY RO\J ADDRESS ** / 
/** ALSO REMOVE THE RAS SIGNAL **/ 

IF BANKO & IR"C NEXT SA8 ruT RAsa ; 

IF BANK1 & ! IUIC NEXT SA8 ruT RAS1 ; 

IF BANKl & !RMC NEXT SA8 ruT RAS2 ; 

IF BANa & IRMC NEXT SA8 ruT RAS3 ; 

IF IRMC NEXT SA8 ruT I RO\JADD 

ruT ICOLADD 

ruT SIG ; 

/** IF RMC LO\J EXECUTE READ MOO I FY WR ITE CYCLE ** / 
/** JlJtP TO STATE SA8 **/ 

/** ALSO REMOVE COLlJtN ADDRESS AND ASSERT RO\J ADDRESS ** / 

Figure 3-198.8 Source Code for Timing and Controller PAL (Continued) 
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PRESENT SA5 NEXT SA6 ruT !SIG ; 

/** RAS PRECHARGE TIME DELAY **/ 

PRESENT SA6 NEXT SA7 

PRESENT SA7 NEXT SAO 

/** PROCESSOR READ WRITE CYCLE COMPLETE **/ 

/** THIS IS THE READ MODIFY WRITE CYCLE **/ 

PRESENT SA8 I F BANKO 

IF BANK1 

IF BANK2 

IF BANKl 

NEXT SA9 

NEXT SA9 

NEXT SA9 

NEXT SA9 

NEXT SA9 

ruT RASO ; 

ruT RAS1 ; 

ruT RAS2 ; 

ruT RAS3 ; 

ruT SIG ; 

/** ACCESS TIME DELAY FOR BOTH READ AND WRITE **/ 

PRESENT SA9 I F BANKO 

IF BANK1 

IF BANK2 

IF BANKl 

PRESENT SA10 IF BANKO 

IF BANK1 

IF BANK2 

IF BANK3 

PRESENT SA 11 I F BANKO 

IF BANK1 

IF BANK2 

IF BANKl 

PRESENT SA 12 I F BANKO 

IF BANK1 

IF BANK2 

IF BANK3 

NEXT SA10 ruT RASO ; 

NEXT SA10 ruT RAS1 ; 

NEXT SA10 ruT RAS2 ; 

NEXT SA10 ruT RAS3 ; 

NEXT SA10 ruT SIG ; 

NEXT SA 11 ruT RASO ; 

NEXT SA11 ruT RAS1 ; 

NEXT SA 11 ruT RAS2 ; 

NEXT SA 11 ruT RAS3 ; 

NEXT SA11 ruT SIG ; 

NEXT SA12 ruT RASO ; 

NEXT SA12 ruT RAS1 ; 

NEXT SA12 ruT RAS2 ; 

NEXT SA 12 ruT RAS3 ; 

NEXT SA12 ruT SIG ; 

NEXT SA13 ruT RASO ; 

NEXT SA13 ruT RAS1 ; 

NEXT SA13 ruT RAS2 ; 

NEXT SA'l3 ruT RAS3 ; 

NEXT SA13 ruT SIG ; 

/** THIS IS THE READ WRITE CYCLE **/ 

PRESENT SA13 IF BANKO 

IF BANK1 

IF BANK2 

IF BANKl 

/** REMOVE THE RAS SIGNAL **/ 

PRESENT SA14 

/** RAS PRECHARGE TIME DELAY **/ 

PRESENT SA15 

NEXT SA 14 ruT I RASO ; 

NEXT SA14 ruT IRAS1 ; 

NEXT SA14 ruT IRAS2 ; 

NEXT SA 14 ruT I RAS3 ; 

NEXT SA14 ruT SIG ; 

-NEXT SA15 ruT ISIG; 

NEXT SAO; 

/** PROCESSOR READ MODIFY WRITE CYCLE COMPLETE **/ 

/** THIS IS THE MEMORY REFRESH CYCLE **/ 

PRESENT SA16 

/** ASSERT ALL FruR RAS SIGNALS **/ 

PRESENT SA17 

/** REFRESH TIME DELAY **/ 

PRESENT SA18 

NEXT SA 17 ruT RASO 

ruT RAS1 

ruT RAS2 

ruT RAS3 

ruT ROWADD 

ruT RFSH ; 

NEXT SA18 ruT RASO 

ruT RAS1 

ruT RAS2 

ruT RAS3 

ruT ROWADD 

ruT RFSH ; 

NEXT SA19 ruT RASO 

ruT RAS1 

ruT RAS2 

ruT RAS3 

ruT ROWADD 

OUT ltFSII ; 

Figure 3-198.a Source Code for Timing and Controller PAL (Continued) 
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PRESENT SA19 NEXT SA20 ruT ! RASO 

ruT !RAS1 

ruT !RAS2 

ruT !RAS3 

ruT ! ROWADD 

ruT !RFSH ; 

/** REMOVE ALL RAS SIGNALS **/ 

/** ALSO REMOVE REFRESH ADDRESS AND ASSERT ROW ADDRESS ** / 

PRESENT SA20 

/** RAS PRECHARGE TIME DELAY **/ 

PRESENT SA21 

PRESENT SA22 

/** TERMINATE MEMORY REFRESH CYCLE **/ 

/** GO BACK TO POLLING STATE **/ 
} 

/** THE FIRST STATE MACHINE COMPLETE **/ 

/** THE SECOND STATE MACHINE **/ 

SEQUENCE STMB { 

PRESENT SBO IF RFCLK 

DEFAULT 

/** JUMP TO STATE SB1 **/ 

/** REMEMBER REFRESH REQUEST **/ 

PRESENT SB1 IF RFSH 

DEFAULT 

/** JUMP TO STATE SBO **/ 

/** REFRESH CYCLE EXECUTED THUS RETURN **/ 

/** THE SECOND STATE MACHINE COMPLETE **/ 

NEXT SA21 

NEXT SA22 

NEXT SAO 

NEXT SB1 ; 

NEXT SBO ; 

NEXT SBO ; 

NEXT SB1 ; 

/**-EQlJATlONS FOR SYSTEM INITIALIZATION AFTER RESET **/ 

[BO •• B5] .ar = !lNIT 

RASO.AR ! INIT ; 

RAS1.AR IINIT ; 

RO\lADD.AR ! INIT ; 

COLADD.AR !lNIT ; 

RAS2.AR IINIT ; 

RAS3.AR ! INIT ; 

RFSH.AR ! INIT ; 

SIG.AR !INIT ; 

/* THESE ARE THE ruTPUT ENABLES */ 

RASO.OE 'B'1 

RAS1.OE 'B'1 

ROWADD.OE 'B" 

COLADD.OE 'B'1 

RAS2.OE 'B" 

RAS3.OE 'B'1 

RFSH.OE 'B'1 

SIG.OE 'B'1 

Figure 3-198.a Source Code for Timing and Controller PAL (Continued) 
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******************************************************************************* 
MEGABIT 

******************************************************w************************ 

CUPL 

Device 

Created 

Name 

Partno 

Revision 

Date 

Designer 

Corrpany 

Asserrbly 

Location 

2.11a Serial# 9·99999·999 

p23s8 Library DLI8·e·22·4 

~ed Jul 30 10:47:14 1986 

MEGABIT DRAM TIMING & AR8ITRATION CONTROLLER 

AflI>AL 23S8 

01 

03/24/86 

KAPIL SHANKAR 

ADVANCED MICRO DEVICES 

NONE 

SUNNYVALE, CA 

=============================================================================== 
Expanded Product Terms 

=============================================================================== 

RFSH.ar => 

! INIT 

RFSH.oe => 

RFSH.d => 

! BO & ! 8 1 & ! 82 & ! B3 & ! B4 & 85 

# ! 81 & ! 82 & ! 83 & 84 

# ! 80 & B 1 & ! B2 & ! 83 & 84 

BO.ar => 

! INIT 

BO.d => 

! BO & ! 81 & 82 & ! 83 & B4 

# !BO & !B1 & !MREQ & !B2 & !B3 & !B4 & !BS 

# ! BO & ! B2 & ! B3 & B4 

# ! BO & B3 & ! B4 

# ! BO & B 1 & ! B3 & ! B4 

# ! BO & ! B 1 & B2 & ! B3 & ! B4 & RMC 

STHA => 

BO , B1 , B2 , B3 , B4 

B1.ar => 

! INIT 

81.d => 

! BO & 81 & ! B2 & ! B3 & 84 

# BO & ! B1 & B3 & ! B4 

# BO & ! B1 & ! 83 

# !BO & B1 & !B4 

STM8 => 

B5 

82.ar => 

! INIT 

82.d => 

! 81 & 82 & ! 83 & B4 

# BO & 81 & ! 82 & ! B3 & B4 

# ! BO & I B 1 & 82 & 83 & ! B4 

# BO & B 1 & ! B2 & ! B4 

# ! 80 & ! 81 & B2 & ! B3 & ! B4 & RMC 

# 80 & !81 & B2 & !84 

# ! 80 & 81 & 82 & ! 84 

B3.ar => 

! INIT 

83.d => 

! BO & 81 & B2 & B3 & ! B4 

# 81 & !B2 & B3 & !B4 

# ! BO & ! B 1 & B2 & ! B3 & ! B4 & ! RMC 

# ! B1 & B3 & ! B4 

B4.ar => 

!INIT 

B4.d => 

Figure 3·198.b Boolean Logic Equation for the Timing and Arbitration PAL 
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B1 & !B2 & !B3 & B4 

# IBO & IB1 & !B2 & IB3 & !B4 & B5 

# !B1 & !B3 & B4 

B5.ar => 

IINIT 

B5.d => 

IB5 & RFCLK 

, !RFSH & !B5 

SIG.ar => 

IINIT 

SIG.oe => 

1 

SIG.d => 

BO & IB2 & IB3 & IB4 

, ISO & B1 & I B2 & ! B4 

# I BO & I B1 & B2 & I B4 

, BO & !B1 & B2 & B3 & !B4 

# !B1 & IB2 & B3 & IB4 

# BO & B 1 & I B2 & B3 & I B4 

COLADO.ar => 
IINIT 

COLADD.oe => 

1 

COLADD.d => 

BO & I B2 & I B3 & I B4 

# IBO & B1 & IB2 & IB3 & IB4 

BANKO => 

IADSELO & !ADSEL 1 

BANK1 => 

ADSELO & I ADSEL 1 

BANK2 => 

IADSELO & ADSEL1 

BANG => 

ADSELO & ADSEL 1 

RO\lADD.ar => 

IINIT 

RO\lADD • oe => 

1 

R~ADD.d => 

IBO & IB1 & IB2 & !B3 & !B4 & B5 

# BO & I B2 & I B3 & ! B4 

# IBO & B1 & IB2 & IB3 

# IB1 & IB2 & IB3 & B4 

RASO.ar => 

! INIT 

RASO.oe => 

1 

RASO.d => 

IBO & IB1 & !MREQ & IB2 & IB3& IB4 & IADSELO & IB5 & IADSEL1 

. # BO & IB2 & !B3 & IB4 & IADSELO & IADSEL1 

# IBO & B1 & IB2 & IB4 & IADSELO & IADSEL1 

# I BO & B1 & I B2 & I B3 & B4 

# IBO & IB1 & B2 & IB3 & IB4 & IADSELO & IADSEL1 & IRMC 

# IB1 & IB2 & B3 & IB4 & IADSELO & IADSEL1 

# BO & B1 & IB2 & B3 & IB4 & IADSELO & IADSEL1 

# IBO & IB1 & B2 & B3 & !B4 & IADSELO & !ADSEL1 

# IB1 & IB2 & !B3 & B4 

RAS1.ar => 

IINIT 

RAS1.oe => 

1 

Figure 3-198.c Statistics for the Timing and Arbitration PAL 
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RAS1.d => 

IBO & !B1 & !MREQ & !B2 & !B3 & !B4 & ADSELO & IBs & !ADSEL1 

, BO & !B2 & IB3 & !B4 & ADSELO & !ADSEL1 

II !BO & B1 & !B2 & !B4 & ADSELO & !ADSEL1 

II !BO & B1 & IB2 & !B3 & B4 

II !BO & IB1 & B2 & !B3 & !B4 & ADSELO & !ADSEL1 & !RMC 

II !B1 & IB2 & B3 & !B4 & ADSELO & !ADSEL1 

II BO & B1 & !B2 & B3 & !B4 & ADSELO & !ADSEL1 

# IBO & !B1 & B2 & B3 & !B4 & ADSELO & !ADSEL1 

# ! B1 & ! B2 & ! B3 & B4 

RAS2.ar => 

lINn 

RAS2.oe => 

1 

RAS2.d => 

!BO & !B1 & IMREQ & !B2 & !B3 & !B4 & !ADSELO & !Bs & ADSEL1 

# BO & ! B2 & ! B3 & ! B4 & ! ADSELO & ADSEL 1 

# !BO & B1 & !B2 & IB4 & !ADSELO & ADSEL1 

# ! BO & B 1 & ! B2 & ! B3 & B4 

# !BO & !B1 & B2 & !B3 & IB4 & !ADSELO & ADSEL1 & !RMC 

# !B1 & !B2 & B3 & !B4 & !ADSELO & ADSEL1 

# BO & B1 & !B2 & B3 & !B4 & !ADSELO & ADSEL1 

# !BO & !B1 & B2 & B3 & !B4 & !ADSELO & ADSEL1 

# ! B 1 & ! B2 & ! B3 & B4 

RAS3.ar => 

lINn 

RAS3.oe => 

1 
RAS3.d => 

!BO & !B1 & !MREQ & !B2 & !B3 & !B4 & ADSELO & !Bs & ADSEL1 

# BO & ! B2 & ! B3 & ! B4 & ADSELO & ADSEL 1 

# !BO & B1 & !B2 & !B4 & ADSELO & ADSEL1 

# ! 60 & 61 & ! 62 & ! 63 & 64 

# !BO & !B1 & B2 & !B3 & !B4 & ADSELO & ADSEL1 & !RMC 

# !B1 & !B2 & B3 & !B4 & ADSELO & ADSEL1 

# BO & B1 & !B2 & B3 & !B4 & ADSELO & ADSEL1 

# !BO & IB1 & B2 & B3 & IB4 & ADSELO & ADSEL1 

# !B1 & IB2 &'IB3 & B4 

BANK => 
ADSEL 1 , ADSELO 

============================================================================== 
Synbol Table 

============================================================================== 

Pin Variable 

Pol Name 

RFSH 

RFSH 

RFSH 

RFSH 

BO 

BO 

BO 

INn 

STMA 

B1 

B1 

B1 

MREQ 

STMB 

B2 

B2 

B2 

B3 

B3 

B3 

B4 

B4 

B4 

ADSELO 

Bs 

Ext 

ar 

oe 
d 

ar 

d 

ar 

d 

ar 

d 

ar 

d 

ar 

d 

Pin 

14 

14 

14 

14 

21 

21 

21 

7 

0 

22 

22 

22 

2 

0 

23 

23 

23 

24 

24 

24 

25 

25 

25 

3 

26 

Type 

V 

X 

X 

X 

N 

M 

M 

V 

F 

M 

M 

V 

N 

M 

M 

N 

M 

M 

N 

M 

M 

V 

N 

Ptenns 

Used 

3 

1 

6 

4 

7 

1 
4 

1 

3 

Max Min 

Ptenns Level 

8 

10 

10 

8 

1 
8 

6 
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B5 

B5 

AOSEL1 

RHC 

SIG 

SIG 

SIG 

SIG 

COLAOO 

COLAOO 

COLAOO 

COLAOO 

BANKO 

BANK1 

BANK2 

BANK3 

RO\IAOO 

RO\IAOO 

RO\IAOO 

RO\IAOO 

RFCLK 
(,) 

RASO N 
en 

RASO -l>-

RASO 

RASO 

RAS1 

RAS1 

RAS1 

RAS1 

RAS2 

RAS2 

RAS2 

RAS2 

RAS3 

RAS3 

RAS3 

RAS3 

BANK 

LEGEND fieLd 

ar 

d 

ar 

oe 

d 

ar 

oe 

d 

ar 

oe 
d 

ar 

oe 

d 

ar 

oe 

d 

ar 

oe 

d 

ar 

oe 

d 

26 

26 

4 

5 
12 

12 

12 

12 

17 

17 

17 

17 

o 
o 

H 

H 

V 

V 

V 

X 

X 

X 

V 

X 

X 

X 

1 

2 

6 

2 

1 

6 

8 

8 

N node I intermediate variable T function 

V variabLe X extended variable U undefined 

Fuse PLot 

CBS 

6072 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

1 SP 

6118 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

o AA 
o . 6164 

19 V 

19 

19 

19 

6 

18 

18 

18 

18 

16 

16 

16 

16 

15 

15 

15 

15 

13 

13 

13 

13 

o 

X 

x 
x 
V 

V 

x 
x 
X 

V 

X 

X 

x 
V 

x 
X 

x 
V 

x 
X 

X 

4 

9 

.1 
9 

9 

9 

8 

10 

12 

12 

10 

Pin #19 6210 Mode x-xx 

0000 

0046 - - - - - - - - - -x- - - - - - -x- - -X-it- - - --x- - - - - - - -x- - ----

0092 - - - - - - -- - -x- - - - - - -x- - - -x- - - - - -x- - - - - - - - - - - - ---

0138 - - - - -- -- - - - - - - - - - -x- - -x- -x- - - -x- - - - - - - - - - - - - --

0184 - ---- - ---- -x--- ---x---- -x--- --x---- -- ------ ---
0230 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

0276 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

0322 XXXXXXXXXXXXXXXXXXXXUXXXXXXXXXlOCXXXXXXXX.tXAXX 

0368 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Pin #18 6214 Hode -xxx 

0414 

0460 -x- - -x- - -xx- - - - - - -x- - -x-x- - - - -x- - - - - -~x- - - - - --

0506 - - - - -x-- -xx- - - - - - -x- - - -x- - - - - -x- - - - - - - - - - - - ---

0552 - - - - -x-- -xx- - - - - - -x- - -x- -x- - - - - - - - - - - - - - - - - - --

0598 - - - - - - - - - - -x- - - - - -x- - -x- -x- - - -x- - - - - - - - - -- - - --

0644 - - - - -x- - -xx- -x- - - - -x- -x-x- - - - -x- - - - - - - - - - - - - --

0690 - - - - -x- - -xx- - - - - - -x- - - - -x- - - - - -x- -- - - - - - - - - - --

0736 - - - - -x- - -xx- - - - - - -x- - - -x-x- - - - -x- -- -- --- ---- --
0782 - - - - -x- - -xx- - - - - - - -x- -x-x- - - - - -x- - - - - - - - - - - - --

0828 - - - - - - - - - - -x- - - - - -x-- - - -x- - - - -x- - - - - - - - - - - - ---

0874 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Node 25 
o default variabLe H extended node 0920 - - - - - - - - - - -x - - - - - -x - - - - - -x - - - -x - - - - - - - - - - - - - - -

0966 - - --- - --- -x--- --- -x---x-x---- -x-- -- ----x- - ----

Figure 3-198.d Fuse Plot and Chip Diagram for the Timing and Arbitration PAL Device 



(..) 

N 
en 
U'1 

1012 •••••••••• ·X··········· ·X···· ·x··············· 
1058 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1104 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1150 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin #17 6218 Mode'x 

1196 

1242 ··········x·······x····x······x··············· 
1288 ••••••••• ·x······ ·X·· ·X· ·X··· ·x··············· 
1334 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1380 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1426 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1472 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1518 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1564 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Node 23 

1610 ···········x·······x····x .•••• x ••••.. · .. ·· .... 
1656 ••••••••••• X· ••••• X· ••• x . x' ••• x' •••••••••••••• 

1702 ••••• ·····x······· ·X· ·x·x····· ·x······· ...... . 
1748 ••••••••• ·X·· .... ·X··· ·X·X· ............•..•••. 
1794 ••••••••• ·X·X· ... "x"x'x'" ··x······ .....•... 
1840 """ ""x'" .... 'x"'xx""" ...........•... 
1886 •••.••.•• ·x········x· ·x··x····· ....•.......... 
1932 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin #16 6220 Mode·x 

1978 

2024 ·X· ·X··· ·xx······ 'x" ·X·X···· ·x······ ·x······· 
2070 •••• x' ... xx' ...... x' ... x' •.... x" ............ . 
2116 ••• ·x····xx·· .••. 'x" ·X· ·X·· •.•.•....•.......• 
2162 •••••••• ···x····· ·X·· 'x"x'" ·x···· .........•. 
2208 ••• ·X··· ·xX· ·x···· ·X· ·x·x···· ·x··············· 
2254 ••• ·X··· ·xx······ 'x"" ·x····· ·x·············· 
2300 ····x·· "xx" .•. "x'·"x·x· ... ·x········ ....•. 
2346 •• ··X··· 'xx'" ""'x"x'X'" ···X······ ......•. 
2392 •••••••••• ·x····· ·x···· ·x···· ·x··············· 
2438 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
2484 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
2530 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Node 21 

2576 •••••••• "'x' ······x· ·X·X· ····x··· ........... . 
2622 'x""'" ·x······ ·X·· ·x·x···· ·x······ 'x""'" 
2668 .•••••.•••• X· ..... X· .. X· ...... X· .•...••..••.•. 

2714 

2760 ••••••••• ·x·········· ·X· ·X··· ·x··············· 
2806 ••••••••• ·x·x····· ·X· ·x·x···· ·x··············· 

2852 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
2898 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
2944 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
2990 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Node 22 

3036 •••••••••• ·x····· ·X·· ·X· ·X··· ·x··············· 
3082 ••••••••• ·x··········· ·xx····· ·x·············· 
3128 •••••••••••••••••••••• ·xx"·' ·x··············· 
3174 ••••••••• ·X·········· ·X· ·x···················· 
3220 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
3266 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
3312 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
3358 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
3404 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
3450 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin #15 6222 Mode·x 

3496 

3542 'x" ·x· 'x'x""" 'x" ·x·x···· ·x······ ·x······· 
3588 •••• ·X· 'x'x""" 'x'" ·x····· ·x··············· 
3634 •••• 'x' ·x·x······ ·X·· 'x' ·x···················· 
3680 •••••••••• ·X····· ·X·· 'x' ·X··· ·x··············· 
3726 •••. 'x' 'x'x' 'x"" 'x' 'x'x"" 'x""""""'" 
3m .... 'x' 'x'x""" ·X···· ·x"'·· ·x·············· 
3818 •••• 'x' ·x·x······ ·X··· ·x·x···· ·x·············· 
3864 •••• 'x' ·x·x······· 'x' ·x·x····· ·x·············· 
3910 •••••••••• ·x····· ·x···· ·x···· ·x··············· 
3956 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
4002 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
4048 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Node 24 

4094 ··········x········x··x··x·····x·············· 
4140 ··········x·······x······x·····x·············· 
4186 ··········x··x·····x··x·x·····x··············· 
4232 ··········x·············x······x·············· 
4278 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
4324 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
4370 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
4416 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin #14 6224 Mode·x 

4462 

Figure 3-198.d Fuse Plot and Chip Diagram for the Timing and Arbitration PAL Device (Continued) 



4508 ••••••••• ·x··· ····x· ··x·x···· ·x· ·······x··· ..• 
4554 •••••••••• ·x····· ·x···· ·x···· ·x··············· 
4600 •••••••••• ·x····· ·x·· ·x· ·x··· ·x··············· 
4646 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
4692 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
4738 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
4784 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
4830 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Node 26 
4876 .'.'.' ••••••• ···x···· ........ '.' ... ···x······· 
4922 ··································x···x······· 
4968 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
5014 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
5060 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
5106 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin #13 6226 Mode xxxx 
5152 .' •••••••••••••••••••••••••••••••••••••••••••• 

5198 ·x· ·x·· ·x·x······ ·x·· ·x·x···· ·X······ ·x······· 
5244 ••• ·x·· ·x·x······ ·x··· ·X····· ·x··············· 
5290 ····x···x·x·······x···x··x···················· 
5336 ••••••••• ··X· .... ·X·· ·X··X··· ·X········ ...... . 
5382 .'. ·X·· 'X'x' ·X···· ·X· ·X·X···· ·x··············· 
5428 .'. 'x" ·x·x······ ·x···· ·x····· ·x·············· 
5474 .,. ·X·· ·X·X······ ·X··· ·x·x···· ·x·············· 
5520 ., ··X···X·X······ ··X· ·X·X···· ··x······· '.'.". 
5566 ···········x······x·····x·····x··············· 
5612 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin #12 6230 Mode ·xxx 
5658 •••••••••••••••••••••••••••••••••••••••••••••• 

5704 ··········x·······x····x······x··.············· 
5750 ··········x·······x···x··x···················· 
5796 ··········x········x··x·x····················· 
5842 ., ••••••• ·X·· ••••• ·X·· ·xX· ·····x······· .... ". 
5888 ··········x·······x·····x······x·············· 
5934 ··········x·······x····x·x·····x·············· 
5980 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
6026 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

LEGEND X fuse not blown 
fuse blown 

Chip Diagram 

••••••••••• • ••••••••• * 
• 

•••• 
* 1 
•••• 

• 
•••• 

MREQ • 2 
•••• 

• 
•••• 

ADSELO ." 3 

•••• 
• 

•••• 
ADSEL 1 • 4 

•••• 
.... 

RMC • 5 
•••• 

• 
•••• 

RFCLK • 6 

• 
•••• 

INIT • 7 
•••• 

• 
•••• 
• 8 .**. 
**** 
* 9 

**** 
.. ** 

GNO * 10 

**** 
* 

• * 

MEGABIT 

* 
* ••• 
20 • VCC 
* ••• 

* 
* ••• 
19 • R~ADD 
* ••• 
* 
* ••• 
18 • IRASO 
* ••• 
* 
* ••• 
17 • ICOLADD 
* ••• 
* 
* ••• 
16 • IRAS1 
* ••• 
* 
• ••• 
15 • IRAS2 
* ••• 
* 
* ••• 
14 • IRFSH 
* ••• 
* 
* •• * 
13 * IRAS3 

* •• * 
* 
**.* 
12 * ISIG 

**** 
**** 
11 * 
**** 
* 

**** .. * .. * .. * .. ************ 

Figure 3-198.d Fuse Plot and Chip Diagram for the Timing and Arbitration PAL Device (Continued) 
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Processor Read Write Cycle Execution 

When the processor cycle wins the arbitration, indicated by 
state 1, the timing and control signals required for the proces­
sor cycle are initiated. 

There are four memory banks in the design each with four 
Mbytes of memory organized as 1 M X 32 bits, as shown in 
Figure 3-195. The Timing and Arbitration PAL devicegener­
ates the four RASO-RAS3 signals, one for each memory bank. 
The selection of one of these four RAS signals depends upon 
the two input ADSELO & ADSEL 1 signals. In most systems 
these would constitute the high bits of system-processor ad­
dress bus. 

After asserting the appropriate RAS signal, the state machine 
jumps to state 2 to manipulate its address-handling signals. 
For address multiplexing, this timing and arbitration PAL device 
generates the appropriate ROWADD and COLADD signals to 
multiplex the row and column addresses on to the memory­
address bus. In state 2 it removes the ROWADD signal and 
asserts the COLADD signal to allow assertion of the column 
address to the memory. At the same ,time it asserts another 
signal, SIG that is used to inform the Data" Sizing and Align­
ment PAL device of the existance of a processor requested 
cycle, and to generate the appropriate CAS signals for the 
memory. 

The state machine then sequences through till state 4, allowing 
for the data-access time. At state 4, it decides between the 
read-write cycle or a read-modify-write cycle, based on proces­
sor signal RMC, and jumps to either state 5 (for read-write 
cycle) or state 8 (for read-modify-write cycle). For read-write 
cycle, it removes the RAS signals and waits for another cycle 
for the RAS precharge time before completing the cycle. Simul­
taneously, it also removes COLADD signal and asserts 
ROWADD signal, preparing the memory for the next processor 
cycle. The SIG signal to the Data Sizing and Alignment PAL 
device is also removed. The DSACK signal (acknowledgment 
to the processor) and the WE signals (for a write cycle) are 
generated if and when required under the control of the Data 
Sizing and Alignment PAL device. 

Processor Read Modify Write Cycle Execution 

When the processor requests a read-modify-write cycle by 
asserting RMC signal, the Timing and Arbitration PAL device 
automatically increases the length of the cycle. It keeps the 

RAS asserted for the appropriate duration of a read-modify­
write cycle. At the same time, the Data Sizing and Alignment 
PAL device generates the appropriate WE and DSACK sig­
nals. After this extended RAS assertion, the Timing and Ar­
bitration PAL device completes the cycle, similar to the 
read-write cycle. 

Refresh Cycle Execution 

When the arbitration is won by the refresh cycle, the Timing 
and Arbitration Control PAL device executes a RAS-only 
refresh cycle. On state 16 it removes the ROWADD signal and 
asserts the RFSH signal, which applies the refresh row­
address on to the memory-address bus. Then in state 17 it 
generates all four RASO-RAS3 signals, refreshing all memory 
banks. It then counts for a few states, depending upon the 
refresh timing requirements of the memory, before removing 
the RAS and RFSH signals. On removal of the RFSH signal, 
the external 10-bit refresh-row address-counter (Am PAL 
22V10) is also incremented for the next row. 

Interface Signalling 

An additional function performed by this PAL device is to inform 
the Data Sizing and Alignment PAL device of the execution 
timing reference of a processor cycle. It does this by asserting 
SIG signal LOW for all processor cycles. This signal is basi­
cally used as a synchronizing signal between these two inde­
pendent PAL devices. 

Data Sizing and Alignment PAL 

The Data Sizing and Alignment PAL device performs the 
following functions: 

1. CAS generation (for dynamic sizing and alignment) 
2. DSACK generation (for dynamic sizing and alignment) 
3. WE generation for write/read-modify-write cycles. 

The Data Sizing and Alignment PAL device's state machine 
diagram (shown in Figure 3-199) is synchronized to the Timing 
and Arbitration PAL device's state machine by using signal 
SIG. This PAL device has no function for a refresh cycle. For a 
processor cycle, it asserts appropriate signals CASO-CAS3, 
WE and generates the cycle-complete signals DSACKO­
DSACK1 to the system processor. The state machine functions 
are implemented in the four buried state registers on this 
device. 

3-267 



READ-MODIFY­
WRITE CYCLE 

WE, 
DSACK, 
CAS 

Note: Where 'signal designations appear 
both above and below a line, the upper 
indicates inputs and the lower, outputs. 

08479A-25 

RW· RMC '5SACi<. 
WE CAS • 

·Oupu!§ independent 
of RW and -RMC 

Figure 3-199. State Diagram for the Data Sizing and Alignment PAL 
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CAS Generation 

The state machine starts at initial polling state 0, and remains 
at this state until receiving a SIG signal from the Timing and 
Arbitration PAL device indicating the start of a processor cycle. 
The maximum allowable data width for the 68020 processor is 
32 bits. The data bus is split into four-byte wide segments. The 
CAS signals for these four-byte segments are independently 
controlled, allowing independent byte-wide read-write capabil­
ity. These four CAS 0-3 signals strobe the column address for 
the LOW-to-HIGH order bytes of memory. They also allow read 
and write for low-low, low-middle, high-middle and high-high 
bytes of a 32-bit data port. For 16-bit data port size, CAS-2-3 
provides the low- and high-byte strobes respectively. For an 
8-bit port, only CAS3 is used. 

In state 1 the CAS signals are asserted. Which CAS signals 
are asserted depends upon the PORT size available, the DATA 
size transfer being attempted by the processor, and the align­
ment of transfer required. As explained before, the attempted 
transfer data size is encoded on two SIZO, SIZ1 bits by the 
processor and the alignment is indicated by the least signifi­
cant address bits AO, A 1 of the processor. 

The port size isvery application-dependent. Different systems 
might require either static or dynamic selection of this port size. 
For example the designer can define different address ranges 
where the port size may be different. Alternately, jumpers can 
also define the port size. For illustrative purposes general­
purpose means are provided to control data-port size and the 
consequent generation of CAS signals. Two input pins PRTO & 
PRT1 define the size of the port. 

Port Size 

As described above, based on the input pins PRT1, PRTO the 
size of data bus is decided. 

PRTO PRT1 SIZE 
L L 8 bits 
L H 16 bits 
H L 16 bits 
H H 32 bits 

For 32-bit ports, all four CAS signals need to be asserted, but 
for a 16-bit port, only two CAS signals need to be asserted. For 

an 8-bit port CAS3 is always asserted. The processor always 
attempts to transfer the maximum possible amount of data. Its 
SIZO,1 signal encodes the amount of data being transferred'. 

The table below illustrates the relationship of the data size, port 
size, and alignment that is decided by address bits A 1, AO. 
Assertion of appropriate CAS signals is dependent upon: port 
size PRTO, PRT1 or; attempted transfer data size SIZEO, 
SIZE1 and address bits AO, A 1 shown in Table 3-25. 

The data from Table 3-25 is used in the state description syn­
tax to generate the CAS signals for state 1. The software 
compiles the boolean equations for this logic directly. 

Once asserted, the CAS signals are held asserted for the req­
uisite timing durations by the state machine until the appropri­
ate read-write or read-modify-write cycles are completed. 

DSACK Acknowledge to CPU 

The amount of data received by any device is dependent upon 
its port size. Based on the port size PRTO, 1, the encodings for 
DSACKO, 1 are generated to acknowledge the CPU and inform 
it of the port size. The acknowledgment timing is synchronized 
by the state machine. For read-write cycles, the DSACK sig­
nals are generated in state 1 and removed on cycle completion 
in state 4. 

For read-modify-write cycle a slight complication exists. The 
read-modify-write cycle requires two DSACK signals for read 
and write. The first DSACK (used for both RIW & RMW cycles) 
is generated in state 1 and removed in either state 4 or state 5. 
The second, required for read-modify-write cycle only is 
generated in state 8 and removed in state 11 . 

WE Generation 

For the read-write cycle only, in state 1 based on RMC HIGH 
(not a read-modify-write cycle) and RIW being LOW (write 
cycle), the WE is generated for normal write cycles. For read­
modify-write cycle, a delayed WE signal is generated always 
based upon the internal 4-bit state counter in state 8 (Figure 
3-196). Figure 3-200.a shows the high-level language specifi­
cations for this PAL (using AmCUPL). Figure 3-200.b shows 
the corresponding Boolean logic equations; Figure 3-200.c 
shows the statistics for this PAL device, and Figure 3- 200.d 
shows the fuse plot for this device. 
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TABLE 3·25. DATA BUS ACTIVITY FOR BYTE, WORD, AND LONG WORD PORTS 

Data Bus Active Sections 

Ti'ansfer Byte (B)-Word (W)-Long Word (L) Ports 

Size SIZ1 SIZO A1 AO 031-024 023-016 015-08 07-00 

0 1 0 0 BWL - - -

Byte 0 1 0 1 B WL - -
0 1 1 0 BW - L -
0 1 1 1 B W - L 

1 0 0 0 BWL WL - -
Word 

1 0 0 1 B WL L -
1 0 1 0 BW W L L 
1 0 1 1 B W - L 

1 1 0 0 BWL WL L -
Three- 1 1 0 1 B WL L L 
Byte 1 1 1 0 BW W L L 

1 1 1 1 B 'va.; - L 

0 0 0 0 BWL WL L L 
Long 0 0 0 1 B WL L L 
Word 0 0 1 0 BW W L L 

0 0 1 1 B W - L 
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NAME 

PARTNO 

DATE 

MEGABYT DRAM DATA SIZING & ALIGNMENT CONTROLLER; 

A!R>AL 2358 ; 

03/24/86 ; 

REV 01 ; 

DESIGNER KAPIL SHANKAR 

CttlPANY ADVANCED MICRO DEVICES 

ASSEMBLY NONE; 

LOCATION SUNNYVALE, CA 

DEVICE P23S8 ; 

/****************************************************************** / 

/* 
/* 
/* 

*/ 

*/ 
*/ 

/****************************************************************** / 

/* Allowable Target Device Types: THE ONLY ONE */ 
/******************************************************************/ 

/** Inputs **/ 

PIN 2 SIG 

PIN 3 AO 

PIN 4 A1 

PIN 5 R" ; 
PIN 6 RHC ; 

PIN 7 SIZO 

PIN 8 SIZ1 

PIN 9 PRTO 

PIN 11 PRT1 

PIN 12 INIT 

/** Outputs **/ 

PIN 19 !WE 

PIN 18 !CAS2 

PIN 17 !CASO 

PIN 16 !CAS3 

PIN 15 !CAS1 ; 

PIN 14 !DSACK1 

PIN 13 !DSACKO 

NODE [BO,B1,B2,B3] 

/** Declarations and Intermediate Variable Definitions **/ 

FIELD STM = [BO,B1,B2,B3] 

FIELD PORTSIZE = [PRT1, PRTO] 

PORT8 = PORTSIZE : 0 ; 

PORT16 = PORTSIZE : 2 ; 

PORT32 = PORTSIZE 3 ; 

/** DEFINE THE STATES 

SDEFINE SAO 'b'OOOO 

SDEFINE SA1 'b'0001 

SDEFlNE· SA2 'b'0010 

SDEFINE SAl 'b'0011 

SDEFINE SA4 'b'0100 

SOEFINE SA5 'b'0101 

SDEFINE SA6 'b'0110 

SDEFINE SA7 'b'0111 

SDEFINE SA8 'b'1000 

SDEFINE SA9 'b'1001 

SDEFINE SA10 'b'1010 

SDEFINE SA11 'b'1011 

**/ 

/** Logic Equations **/ 

/** THE STATE MACHINE **/ 

SEQUENCE STH { 

/** THE STATE MACHINE **/ 

/** SIZE OF THE PORT **/ 
/** INTERFACED TO PROCESSOR **/ 

/** 8 BIT "IDE PORT **/ 

/** 16 BIT "IDE PORT **/ 

/** 32 BIT "IDE PORT **/ 

/** STATE 0 **/ 

/** STATE 1 **/ 

/** STATE 2 **/ 
/** STATE 3 **/ 

/** STATE 4 **/ 

/** STATE 5 **/ 

/** STATE 6 **/ 
/** STATE 7 **/ 

/** STATE 8 **/ 

/** STATE 9 **/ 

/** STATE 10 **/ 

/** STATE 11 **/ 

/** POLLING FOR SIG INDICATING A PROCESSOR CYCLE **/ 

Figure 3-200.a Source Code for Data Sizing and Alignment PAL 
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/- PORT DATA OFFSET STATE OUTPUT **/ 
PRESENT SAO 

/** FOR PORTSIZE 8 **/ 
IF ISIG & PORT8 

/** GENERATE ACKNOWLEDGE **/ 
IF ISIG & PORT8 

/** FOR PORTSIZE 16 **/ 
IF !SIG & PORT16 & !AO 

NEXT SA 1 OUT CAS3 ; 

NEXT SA1 OUT DSACKO ; 

NEXT SA 1 OUT CAS3 i 

IF ISIG & PORT16 & ISIZO & SIZ1 & AO NEXT SA1 OUT CAS2 i 

/** GENERATE ACKNOWLEDGE **/ 
IF !SIG & PORT16 

/** FOR PORTSIZE 32 **/ 
/** BYTE TRANSFER SIZE **/ 

IF !SIG & PORT32 & !A1 & !AO 

IF ISIG & PORT32 & IA1 & AO 

NEXT SA 1 OUT DSACK1 

NEXT SA 1 OUT CAS3 i' 

NEXT SA 1 OUT CAS2 i 

IF ISIG & PORT32 & !A1 & !SIZO NEXT SA1 OUT CAS2 i 

IF ISIG & PORT32 & IA1 & SIZ1 NEXT SA1 OUT CAS2 i 

IF ISIG & PORT32 & A1 & lAO NEXT SA1 OUT CAS1 

IF ISIG & PORT32 & IA1 & ISIZ1 & ISIZO NEXT SA1 OUT CAS1 

IF ISIG & PORT32 & IA1 & SIZ1 & SIZO NEXT SA1 OUT CAS1 

IF !SIG & PORT32 & !A1 & AO & !SIZO 

IF ISIG & PORT32 & A1 & AO 

IF ISIG & PORT32 & !SIZ1 & !SIZO 

IF ISIG & PORT32 & AO & SIZ1 & SIZO 

/** GENERATE ACKNOWLEDGE ** / 
IF ISIG & PORT32 

/** JUMP TO STATE SA1 **/ 

NEXT SA1 OUT CAS1 

NEXT SA1 OUT CAS3 i 

NEXT SA1 OUT CAS2 i 

NEXT SA1 OUT CAS1 i 

NEXT SA 1 OUT DSACKO 

OUT DSACK1 i 

/** ASSERT THE CAS FOR THE RIGHT PORTSIZE DATASIZE AND ADDRESS OFFSET **/ 

IF !SIG & !R~ & RMC NEXT SA1 OUT \ole i 

/** GENERATE \olE FOR READ WRITE CYCLE ONLY **/ 

IF SIG NEXT SAO 

/** ELSE ~AIT FOR THE PROCESSOR CYCLE **/ 
/** POLL AGAIN **/ 
/** STAY IN STATE SAO **/ 

/** THIS IS THE PROCESSOR CYCLE START **/ 

PRESENT SA1 

IF CASO NEXT SA2 

IF CAS1 NEXT SA2 

IF CAS2 NEXT SA2 

IF CAS3 NEXT SA2 

IF IR~ & RMC NEXT SA2 

IF PORT8 NEXT SA2 

IF PORT16 NEXT SA2 

IF PORT32 NEXT SA2 

OUT CASO i 

OUT CAS1 i 

OUT CAS2 i 

OUT CAS3 i 

OUT \ole i 
OUT DSACKO ; 

OUT DSACK1 i 

OUT DSACKO 

OUT DSACK1 

NEXT SA2 i 

/** HOLD CAS GENERATED IN THE LAST STATE **/ 
/** IF W ITE CYCLE AND NOT READ MOD I FY WR ITE CYCLE ASSERT \ole ** / 
/** JUMP TO STATE SA2 **/ 

PRESENT SA2 

IF CASO NEXT SAl OUT CASO i 
IF CAS1 NEXT SAl OUT CAS1 i 
IF CAS2 NEXT SAl OUT CAS2 i 
IF CAS3 NEXT SAl OUT CAS3 i 
IF IR~ & RMC NEXT SAl OUT \ole i 
IF PORT8 NEXT SAl OUT DSACKO ; 

IF PORT16 NEXT SAl OUT DSACK1 i 
IF PORT32 NEXT SAl OUT DSACKO 

OUT DSACK1 

NEXT SAl i 

/** HOLD CAS GENERATED IN THE LAST STATE **/ 
/** HOLD \ole FOR ACCESS DURATION **/ 
/** JUMP TO STATE SAl **/ 

PRESENT SAl 

IF RMC NEXT SA4 OUT! CASO 

OUT !CAS1 

OUT !CAS2 

Figure 3-200.a Source Code for Data Sizing and Alignment PAL (Continued) 
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OUT !CAS3 

OUT IIlE 

OUT !DSACKO 

OUT ! DSACK1 ; 

/** FOR READ WRITE CYCLE REMOVE CAS AND IlE FOR CYCLE COMPLETION **/ 
/** ACKNO\ILEDGE CYCLE COMPLETION BY ACKNOT **/ 

/** JUMP TO STATE SA4 **/ 

IF CASO & ! RMC NEXT SAS OUT CASO ; 

IF CAS1 & IRMC NEXT SAS OUT CAS1 ; 

IF CAS2 & ! RMC NEXT SAS OUT CAS2 ; 

IF CAS3 & ! RMC NEXT SAS OUT CAS3 ; 

IF !RMC NEXT SAS OUT !DSACKO 

OUT ! DSACK1 ; 

/** FOR READ MODIFY WRITE CYCLE CONTINUE TO ASSERT CAS SIGNALS **/ 
/** ACKNO\ILEDGE COMPLETION OF READ PORTION OF THE CYCLE BY ACKNOT **/ 
/** JUMP TO STATE SAS **/ 

/** REMAINING PORTION OF THE READ WRITE CYCLE **/ 

PRESENT SA4 NEXT SAO; 

/** GO BACK TO POLLING STATE SAO ** / 

/** COMPLETI ON OF READ WR ITE CYCLE ** / 

/** REMAINING PORTION OF THE READ MODIFY WRITE CYCLE **/ 

PRESENT SAS 

IF CASO NEXT SA6 OUT CASO ; 

IF CAS1 NEXT SA6 OUT CAS1 ; 

IF CAS2 NEXT SA6 OUT CAS2 ; 

IF CAS3 NEXT SA6 OUT CAS3 

NEXT SA6 ; 

/** CONTINUE THE READ MODIFY WRITE CYCLE **/ 

PRESENT SA6 

IF CASO NEXT SA7 OUT CASO ; 

IF CAS1 NEXT SA7 OUT CAS1 ; 

IF CAS2 NEXT SA7 OUT CAS2 ; 

IF CAS3 NEXT SA7 OUT CAS3 ; 

NEXT SA7 ; 

/** CONTINUE THE READ MODIFY WRITE CYCLE **/ 

PRESENT SA7 

IF CASO NEXT SA8 OUT CASO ; 

IF CAS1 NEXT SA8 OUT CAS1 ; 

IF CAS2 NEXT SA8 OUT CAS2 ; 

IF CAS3 NEXT SA8 OUT CAS3 ; 

IF PORT8 NEXT SA8 OUT DSACKO ; 

IF PORT16 NEXT SA8 OUT DSACK1 ; 

IF PORT32 NEXT SA8 OUT DSACKO 

OUT DSACK1 

NEXT SA8 OUT WE ; 

/** THIS IS THE WRITE PORTION OF THE READ MODIFY WRITE CYCLE **/ 
/** GENERATE THE IlE SIGNAL FOR ENABLING WRITE **/ 
/** GENERATE THE CORRECT ACKNO\ILEDGE FOR THE WRITE CYCLE PORTION ** / 
/** CONTINUE TO ASSERT CAS **/ 

PRESENT SA8 

IF CASO NEXT SA9 OUT CASO ; 

IF CAS1 NEXT SA9 OUT CAS1 ; 

IF CAS2 NEXT SA9 OUT CAS2 ; 

. IF CAS3 NEXT SA9 OUT CAS3 ; 

IF PORT8 NEXT SA9 OUT DSACKO ; 

IF PORT16 NEXT SA9 OUT DSACK1 ; 

IF PORT32 NEXT SA9 OUT DSACKO 

OUT DSACK1 

NEXT SA9 OUT WE ; 

/** THIS IS THE WRITE PORTION OF THE READ MODIFY WRITE CYCLE **/ 

Figure 3-200.a Source Code for Data Sizing and Alignment PAL (Continued) 
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PRESENT SA9 

IF CASO 

IF CAS1 

IF CAS2 

IF CAS3 

IF PORTS 

IF PORT16 

IF PORT32 

NEXT SA 10 OUT CASO ; 

NEXT SA10 OUT CAS1 ; 

NEXT SA10 OUT CAS2 ; 

NEXT SA10 OUT CAS3 ; 

NEXT SA 10 OUT DSACICO ; 

NEXT SA 10 OUT DSACK1 ; 

NEXT SA 10 OUT DSACKO 

OUT DSACK1 

NEXT SA10 OUT \IE ; 

/** THIS IS THE WRITE PORTION OF THE READ MOOIFY WRITE CYCLE **/ 

PRESENT SA 10 

NEXT SA 11 OUT ! CASO 

OUT !CAS1 

OUT !CAS2 

OUT !CAS3 

OUT !DSACKO 

OUT !DSACK1 

OUT !\IE ; 

/** COMPLETION OF THE WRITE PORTION OF THE READ MOOIFY WRITE CYCLE **/ 
/** REMOVE ALL CAS \IE AND ACKNOWLEDGE C(JoIPLETlON **/ 

/** REMAINING PORTION OF THE READ MOOIFY WRITE CYCLE **/ 

PRESENT SA11 NEXT SAO; 

/** GO BACK TO POLLING STATE SAO **/ 
/** COMPLETION OF THE READ MODIFY WRITE CYCLE **/ 
} 

/** THE STATE MACHINE COMPLETE **/ 

/** EQUATIONS FOR SYSTEM INITIALIZATION AFTER RESET **/ 

[BO •• B3J .ar = IINIT ; 

CASO.AR = !lNIT ; 

CAS1.AR = IINIT ; 

DSACKO.AR IINIT 

DSACK1.AR IINIT 

CAS2.AR ! INIT 

CAS3.AR !INIT 

\IE.AR !INIT 

/* THESE ARE THE OUTPUT ENABLES * / 

CASO.OE 'B'1 

CAS1.OE 'B'1 
DSACKO.OE 'B'1 

DSACK1.OE 'B'1 
CAS2.OE 'B'1 

CAS3.OE 'B'1 
\IE.OE 'B'1 

Figure 3-2OO.a Source Code for Data Sizing and Alignment PAL (Continued) 
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******************************************************************************* 
MEGABYT 

****************** •• *************** •• ****************************************** 

CUPL 

Device 

Created 

Name 

Partno 

Revision 

Date 

Designer 

Corrpany 

Assembly 

Location 

BO.ar ~> 

! INIT 

BO.d => 

2.11a Serial#l 9-99999-999 

p23s8 Library DLlB-e-22-4 

Wed Jul 30 10:13:11 1986 

MEGABYT DRAM DATA SIZING & ALIGNMENT CONTROLLER 

Arri'AL 23S8 

01 

03/24/86 

KAPIL SHANKAR 

ADVANCED MICRO DEVICES 

NONE 

SUNNYVALE, CA 

Expanded Product Terms 

!BO & !B2 & B3 

#I BO & B 1 & I B2 & I B3 & ! RMC 

#I IPRTO & !BO & !B1 & !B2 & !B3 & ISIG 

#I I BO & B1 & I B3 

#I IBO & IB1 & !B2 & IB3 & RMC & !SIG & IRW 

#I PRTO & PRT1 & !BO & !B1 & IB2 & IB3 & ISIG 

B1.ar => 

!INIT 

B1.d => 

!BO & B1 & IB2 & B3 

#I aD & I a 1 & I a2 & a3 

#I !BO & B1 & !B3 

#I PRTO & PRT1 & BO & IB1 & !B2 

#I !PRTO & BO & !B1 & !B2 

#I BO & ! B1 & I B3 

DSACKO.ar => 

IINIT 

DSACKO • oe => 

1 

DSACKO.d => 
!PRTO & !PRT1 & !BO & !B1 & !B2 & !B3 & !SIG 

#I PRTO & PRT1 & !BO & !B1 & !B2 & !B3 & ISIG 

#I !PRTO & IPRT1 & BO & !B1 & !B2 

#I !PRTO & IPRT1 & !BO & B1 & !B2 & !B3 

#I PRTO & PRT1 & !BO & B1 & !B2 & IB3 

fI PRTO & PRT1 & !B1 & IB2 & B3 

#I IPRTO & !PRT1 & BO & B1 & B2 & !B3 

#I PRTO & PRT1 £. BO & B1 & B2 & !B3 

#I !PRTO & !PRT1 & !BO & !B1 & !B2 & B3 

B2.ar => 

! INIT 

B2.d => 

! BO & B1 & B2 & I B3 

#I BO & ! B1 & B2 & I B3 

#I BO & B 1 & I B2 & I B3 

DSACK1.ar => 

IINIT 

DSACK1.oe => 

1 

DSACK1.d => 
PRT1 & IBO & IB1 & IB2 & IB3 & ISIG 

#I PRT1 & BO & IB1 & IB2 

#I PRT1 & IBO & B1 & IB2 & IB3 

#I PRT1 & IBO & IB1 & IB2 & B3 
# PRT1 & BO & B1 & BZ & IB3 

B3.ar => 

IINIT 

Figure 3-200.b Boolean Logic Equations for the Data Sizing and Alignment PAL 
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B3.d => 

!BO & B1 & !B2 & B3 

# !B1 & !B2 & B3 

# BO & B1 & B2 & IB3 

PORT32 => 

PRTO & PRTt 

PORTt6 => 

IPRTO & PRTt 

DSACKO => 

PRTO & PRTt & BO & IBt & !B2 & !B3 

STH => 

BO , B1 , B2 , B3 

PORTSIZE => 

PRTt , PRTO 

\lE.ar => 

! INlT 

\IE.oe => 

t 

\lE.d => 

IBO & !B1 & !B2 & !B3 & RHC & !SIG & !R\I 

# BO & ! Bt & ! B2 & ! B3 & RHC & ! R\I 

# I BO & B 1 & ! B2 & ! B3 & RHC & I R\I 

# !Bt & !B2 & B3 

# BO & B1 & B2 & ! B3 

CASO.ar => 

! INlT 

CASO.oe => 

t 

CASO.d => 

BO & !B1 & !B3 & CASO 

# !50 & 8t & !53 & CASO 

# ! B t & ! B2 & B3 & CASO 

# BO & B 1 & I B2 & ! B3 & ! RHC & CASO 

# BO & B 1 & B2 & ! B3 & CASO 

CASt.ar => 

! INlT 

CAS1.oe => 

1 

CASt.d => 

PRTO & PRTt & !AO & IBO & A1 & IBt & IB2 & !B3 & !SIG 

# PRTO & ISIZO & PRTt & !Sllt & !BO & !At & !B1 & IB2 & !B3 & !SIG 

# PRTO & SIZO & PRTt & SIZ1 & !BO & IAt & !Bt & IB2 & IB3 & ISIG 

# PRTO & ISIIO & PRTt & AO & !BO & !A1 & IBt & !B2 & IB3 & !SIG 

# PRTO& SIZO & PRTt & SIZt & AD & IBO & 18t & !B2 & IB3 & ISIG 

# BO & IBt & !B3 & CASt 

# !BO & Bt & IB3 & CASt 

# !Bt & !B2 & B3 & CASt 

# BO & Bt & !B2 & !B3 & !RHC & CASt 

# BO & B 1 & B2 & ! B3 & CAS 1 

CAS2.ar => 

! INlT 

CAS2.oe => 

1 

CAS2.d => 

!PRTO & !SIZO & PRT1& SIlt & AD & !BO & !Bt & !B2 & !B3 & !SIG 

# PRTO & PRTt & AD & !BO & !A1 & !Bt & !B2 & IB3 & !SIG 

# PRTO & !SIZO & PRTt & !BO & !At & !Bt' & !B2 & !B3 & !SIG 

# PRTO & PRTt & SIZt & !BO & !At & iB1 & !B2 & IB3 & !SIG 

# PRTO & ISIZO & PRT1 & !SIZt & !BO & !B1 & !B2 & !B3 & !SIG 

# BO & ! B1 & ! B3 & CAS2 

# ! BO & B 1 & ! B3 & CAS2 

# ! Bt & ! B2 & B3 & CAS2 

# BO & B1 & ! B2 & ! B3 & ! RHC & CAS2 

# BO & B1 & B2 & ! B3 & CAS2 

CAS3.ar => 

Figure 3-200.b Boolean Logic Equations for the Data Sizing and Alignment PAL (Continued) 



! INIT B1 ar 22 M 

B1 d 22 M 6 10 
CAS3.oe => DSACKO 13 V 

1 DSACKO ar 13 X 

DSACKO oe 13 X 

CAS3.d => DSACKO d 13 X 9 10 
!PRTO & !PRT1 & !BO & !B1 & !B2 & !B3 & !SIG B2 23 N 

# !PRTO & PRT1 & !AO & !BO & !B1 & !B2 & !B3 & !SIG B2 ar 23 M 1 
# PRTO & PRT1 & !AO & !BO & !A1 & !B1 & !B2 & !B3 & !SIG B2 d 23 M 3 a 
# PRTO & PRT1 & AO &- !BO & A1 & !B1 & !B2 & !B3 & !SIG DSACK1 14 V 

# BO & !B1 & !B3 & CAS3 DSACK1 ar 14 X 

# ! BO & B1 & ! B3 & CAS3 DSACK1 oe 14 X 

# !B1 & !B2 & B3 & CAS3 DSACK1 d 14 X a 
# BO & B1 &. !B2 & !B3 & !RMC & CAS3 B3 24 N 
# BO & B 1 & B2 & ! B3 & CAS3 B3 ar 24 M 

B3 d 24 M 3 a 
PORTa => RMC 6 V 

! PRTO & ! PRT1 SIG 2 V 

PORT32 0 
INIT .oe => PORT16 0 

0 DSACKO d 0 
w 

STM 0 N ....., 
PORTSIZE 0 ....., 

=============================================================================== WE 19 V 

Synbol Table WE ar 19 X 

=============================================================================== I WE oe 19 X 

WE d 19 X 5 8 
Pin Variable Pterms Max Min CASO 17 V 
Pol Name Ext Pin Type Used Pterms Level CASO ar 17 X 

CASO oe 17 X 

CASO d 17 X 5 a 
PRTO 9 V CAS1 15 V 
SIZO 7 V CAS1 ar 15 X 

PRT1 11 V CAS1 oe 15 X 

SIZ1 a V CAS1 d 15 X 10 12 
AO 3 V CAS2 18 V 

BO 21 N CAS2 ar 18 X 
BO ar 21 M 1 CAS2 oe 18 X 1 1 
BO d 21 M 6 10 CAS2 d 18 X 10 10 
INIT 12 V CAS3 16 V 
A1 4 V CAS3 ar 16 X 
B1 22 N CAS3 oe 16 X 

Figure 3-200.c Statistics for Data Sizing and Alignment PAL Device 
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CAS3 d 16 X 9 12 
RW 5 V 

PORT8 0 
INIT oe 12 D 0 

LEGEND field D defaul t vari able M extended node 
N node intermediate variable function 
V variable X extended variable U lJ1defined 

=============================================================================== 
Fuse Plot 

OBS 

60n xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

SP 

6118 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

AR 
6164 

Pin #19 6210 Mode -xxx 
0000 
0046 -x-'- '" -. -. -x--x-x-' -x-x· --- -x--- --.-- -- -----
0092 - -. - - ••••• -. -x- -x-x-' - -xx- - -. -x- - - - •• -. - -. - - --

0138 • --.--.-. -. -'X-'x-x- --x' -x-' --x--- -- --. -. -----

0184 - •• --'-- -- ••• -- - - -x'--- -x-' --- -x- - -- -- - -. --.--
0230 ••••• - - • - - - - •• - - - - -x - - -x -x' - - • x - • - - - - - - - - - - • - -

0276 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0322 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0368 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin #18 6214 Mode -xxx 
0414 
0460 'x- 'x- - -. - - •• - -. - -x- - -X'x- -. -xx-x-' - 'x- -x" - --

0506 -x' ·x-· - -x-'" - •• -x' - -x·x-·· - -x' - -. -x' - -x-' - --
0552 ·x·· -" - -x- -. - - •• -x" -x-x··· 'xx' - -. -x' - -x-" --
0598 -x-' - - •• 'x- - - - -. - -x- - -x·x-· - - 'x-x- - -x' - -x- -. -. 
0644 -x" -. - - -. -. - - -. - -x-' -X'x- -. -xX-'x- -x-' -x- - - --
0690 -. - - -. 'x" - - - - - •• - •• - - -xx- - - - 'x" - -. - -. - - - - - --

0736 -- - - - --x- - -- - - - - -- - - --x- -x- - - -x-- - - - -- - - - -----
0782 - - - - - - -x- - - - - - - -- -x- -- --x---,,'·x-·· - - •• - •• -. --
0828 • - - - -. -x-···· -. - -XX"-'X'x" - -x- - ••••••••••••• 

0874 - •••• - 'x" - - - •• - - - -x" 'x-x-" 'x' -. - •••• - - - •••• 

Node 25 
0920 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
0966 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1012 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1058 xxxxxxxxxxxxxxxxxxxxxxxxx 
1104 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1150 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin #17 6218 Mode·x 
1196 
1242 ••• - -- ••••• - -. -x-"- -. 'xx' - •• -x' -. - ••••••••••• 

1288 ··-···········-x····--x··x····x·--·······, .. --· 

1334 ··········-····x··x·····x······x·····-····-·--
1380 •• - •• - •• -. - ••• 'x-xx-' "X'X"'-x' - •• - - - •••• - - -. 
1426 •••• - ••••• -. -. 'x-' -x' "X'x'" 'x- - - •••••••• - - •• 

14 n xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1518 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1564 xxXxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Node 23 
1610 • - - - - - -. - - - ••• -- •• 'x- -x- -x- - - -x' - - •• - - - - - - - - •• 

1656 •• - - - - - - - •• - -. - - - - -x- - -xx-'" 'x' - - - - - - - - -. - - •• 
1702 - - -. - - - - - •• - - - - - - -x- - - -x-x- -. 'x' - - - - - - - - -. - -" 
1748 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1794 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1840 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

1886 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
1932 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin #16 6220 Mode-x 

1978 
2024 'x-- --- - - - -. - --- --X-'-x-x-- ---x----- -x---x----

2070 'x-' -x- - -. - - - -. - - -x- - -x-x- - - - -x- - - - - -x- -x- - - --
2116 'x- - -x- - -x-- - --- --x- - -x-x-----x-- ---x- --x' - ---

2162 -x- -x- - -x- - - - - - - - -x- - -x-x- - - - -x- - - - -x- - -x' - - --
2208 • - - • - - - - - • - - - - - - - • - - -x -xx - - - • -x - - - - - - - - - - - - - - • 
2254 •• -. - - - - -. - - -" - -. - - -xx' -x' -. -x' - - -. - - ••• - - -.-
2300 -. -. - - - ••• -. -. - - - -x- -x- -x-' -. - 'x- - - - - - - - -. - - •• 
2346 •• - -. - •• -. - -. - - - -xx- 'x-x-x- - - -x- - - •• - - ••• - - - -. 

Figure 3-200.d Fuse Plot and Chip Diagram for Data Sizing and Alignment PAL Device 
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2392 -- - - -- -- - --- - ----- -x-x-x-x- ---x- --- - --- - -- ----
2438 xxxxxxxxxxxxxXXXXXXXXXXXXXxxxxxxxxxxxxxxxxxxxx 
2484 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
2530 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Node 21 

2576 - - -- -- -- - -- - - - ----x-- -x--- -- ---x--- -- -- --- ----
2622 - - --- -- - - - - - -----xx-- - -x-x- ---x- -- -- --- -- -- ---
2668 -x- - -- -- -- - - -- - ---x- --x-x- - - - -x---- --x-- - - ----
2714 -- -- - -- - - - - - - ------ - - -x--x- ---x- -- -- -- --- -- ---
2760 -x- - - - -- - -- - -x- -x-x-- -x-x- -- --x---- -- -- --- ----
2806 -x-- - - -- - - - -- -- ---x- --x-x- - - - -x- -- --x- --x-- ---
2852 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
2898 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
2944 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
2990 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Node 22 

3036 - - -- -- -- - -- - - - - -- -x- - -x- -x- - -- -x- -- -- -- - - -- ---
3082 -- - -- - - - - - - - - - ----x- -- -xx- - -- - -x-- -- --- --- ----
3128 - - - -- - -- - - - - - - --- - -- - -x--x- - - -x- - - - - - --- - -----
3174 -- -- -- - - - - - - - --- --x- -- -xx-- - - - - - - - - -x-- -x- - ---
3220 -- - -- - -- - - - - - - - - - -x-- - -xx- - ---- -- -- --x- -- -- ---
3266 - - - - -- - - - - - - - - -- - - -- - --xx- - - - -x- -- - - - -- --- ----
3312 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
3358 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
3404 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
3450 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin #15 6222 Mode-x 

3496 

3542 -x-- -x-'-x- - - - - -- - -x- --x-x- - -- -x- -- - -x-- -x- - ---
3588 -x- - -- -- -x- - -- - -- -x-- -x-x- - - -xx--x--x- - -x- -- --
3634 -x-- - - - - -x- - - - -- --x- --x-x- - -x-x-x- - -x---x-----
3680 -x--x- -- -x- - -- - -- -x- - -x-x- - - -xx- - - - -x- - -x- -- --
3726 -x- -x- -- - - - -- - ----x--.-x-x~--x-x-x- - -x---x-- ---
3m -- --- --- ---- -- ---- ---- -xx--x- -x--- -- - -- -------
3818 - - - --- - - -- - -- - -- --- - --x- -x-x--x- --- -- --- - - -- --
3864 - - -- -- -- - -- - ------x-- ---x- -x---x- --- - -- --- - ---
3910 -- - --- -- -- --- --- -xx- ---x-x-x- -x- - --- - - ---- ----
3956 - --- -- -- - -- --- -- - - -x-- -x-x-x- -x- ----- --- ---- --

4002 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

4048 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Node 24 

4094 ------ ---- -- ------x---x--x---- -x-- - - -- - --- - ---
4140 ---- --------- -----x-----x- -- ---x- --- - - --- - -- --
4186 ------------ -- - ----x-- -x-x--- -x--- - ---- - --- ---
4232xxx~~oou~~oou~~ocu~~ocuoou 

4278 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
4324 xxxxxxxxxxxxxxxxxxxxxxxxxx 
4370 xx 
4416 xxxxxxxx 

Pin .14 6224 Mode-x 

4462 

4508 -x---- -- ---- --- ---x- --x-x- - - - -x- - -- - - - - -x- - ---
4554 :------------- ----x----xx- -- - - - ---- - --- -x-- ---
4600 ------ -- ---- -- ----x---x--x-- - -x- - -- -- - - -x- -.--
4646 -------------- - - --x---x-x--- - - -x--- --- - -x-- ---
4692 - ----- ------ -------x---x-x- - - -x- - ----- --x- - ---
4738 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
4784 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
4830 xxxx 

Node 26 

4876 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
4922 XXllXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

4968 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
5014 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
5060 xxxxxxxxxxxxxxx~xxxxxxxxxxxxxx 

5106 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Pin '13 6226 Mode xxxx 

5152 
5198 -x---------- --- ---x- --x-x- ----x- --- --x- - -x- - --
5244 -x---- - ------- ----x---x-x--- - -x- - - --x-- -x- -- --
5290 -------- ----- -- - --x- -- -xx- - - -- - - --- - -x- --x- ---
5336 - - -- - - - - - - - - - - - - - -x- - -x- -x- - - -x- - - - - -x- - -x- - --
5382 -------------- -- --x-- -x--x- - - -x- --- -x-- -x-- ---
5428 ------------ --- - --x- ----x---- - -x- - - -x- - -x- - ---
5474 ------------ -- -- - - -x-- -x-x- - --x- - -- - -x- - -x- - --
5520 - ------- -- --- --- ---x- --x-x----x- - - - -x- - -x-- - --
5566 -- -------- -- ---- --x---x-x- - - - - -x- - - - -x- - -x- - --
5612 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Pin '12 6230 Mode -xx-

Figure 3-200.d Fuse Plot and Chip Diagram for Data Sizing and Alignment PAL Device (Continued) 
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5658 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
5704 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
5750 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
5796 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
5842 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
5888 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
5934 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
5980 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
6026 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

LEGEND X fuse not blown 

fuse blown 

Chip Diagram 

*********** *********** 
* * * 

**** **** 
* 1 20 * VCC 

**** 
MEGABYT * 

**** 
SIG * 2 19 * UIE 

**** **** 

***'" **** 
AO * 3 18 * !CAS2 

**** **** 
* 

**** **** 
A1 * 4 17 * ICASO 

**** **** 

**** **** 
RII * 5 16 * !CAS3 

**** **** 

* 

RMC * 6 15 * !CAS1 

**** **** 

**** **** 
SIZO * 7 14 * !DSACK1 

**** **** 
SIZ1 * 8 13 * !DSACKO 

**** 

**** 
PRTO * 9 12 * INIT 

**** 

**** **** 
GND * 10 11 * PRT1 

**** **** 

*************************** 

Figure 3-200.d Fuse Plot and Chip Diagram for Data Sizing and Alignment PAL Device (Continued) 



3.6.6 DYNAMIC MEMORY CONTROL STATE SEQUENCER 

An example of a control path application for an AMD PAL is in 
a memory system. Most large memory systems use MOS 
dynamic RAMs. Their high density allows packing a large 
memory size into a small board area. Dynamic RAM prices 
also,make them very cost effective. 

Dynamic RAMs require external logic for address multiplex­
ing, timing generation and refresh control. This application 
note shows the use of an AmPAL 16R8A and an Am2964B to 
provide the necessary external logic for a typical dynamic 
memory system. The PAL is used as a state sequencer for 
timing generation and the Am2964B provides specialized 
control circuitry and reduces timing skew between control 
Signals. This Implementation replaces about 20 SSIIMSI 
packages. 

r-
/8 

I 

/8 
I 

/2 
I 

~ 

Ul r---+ 
:l 

DeSign Requirements 

A system block diagram is shown in Figure 3-201. The control 
bus provides most of the inputs to the PAL state seguen~r. 
These include: Memory Request (MREQ), READ/WRITE (RW), 
RESET (RST), Refresh Clock (RFCK), and Read-Modify-Write 
(RMW). Two upper address lines of the address bus serve as 
board selects (BS1, BSo), and one local signal, SLOW/FAST 
Memory (FAST), allows use of either slow or fast memory. A 
READ/WRITE sequence is initialized by MREQ ANDed with the 
proper board select conditions and a refresh sequence is in­
itialized by RFCK. If both sequences are requested at the same 
time, a refresh sequence is performed. RW when HIGH selects 
a READ operation and when LOW selects a WRITE operation. 
RMW when HIGH selects a Read-Modify-Write cycle. 
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Figure 3·201. Dynamic Memory Controller 03862A,86 
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The outputs of the PAL provide the timing and control inputs to 
the Am2964B. These are: Row Address Strobe (RAS~dress 
Multiplexer Select (MS), Column Address Strobe (CAS), and 
Refresh (RFSH). In addition, the PAL provides the Write Enable 
(WE) to the Memory Array. Figure 3·202 shows the timing for 
fast READIWRITE cycles. The memory cycle is initiated by 
MREQ going LOW. The PAL responds by bringing RAS LOW at 
to, followed by MS going LOW at tl, and finally bringing CAS 
LOW at t2. If RW is LOW, WE is also brought LOW at t2• WE is 

held LOW until t4 • RAS, MS and CAS are brought HIGH at ts. 
The rising edge of any of these 3 signals may be used to latch 
output data during a Read operation. The state sequencer is 
then disabled for 3 states to allow for memory precharge. 

By holding the FAST input LOW, an extended memory cycle is 
available to accommodate slower RAMs. The timing appears in 
Figure 3·203. 

, , 
'---- _______ ...J 

, 
'-- --RW 

1Ui§~'_ ______ __JI 

MS \'_ ____ -...J1 
\ ____ -..J! 
, I 
'-_':"'...J 

03862A·87 

Figure 3-202. Fast READ/WRITE Cycle 

to Is IS 17 IS I; ho hl h2 113 114 

25MHz elK 

ADR@g: 

~~ _________________________________ -JI 

RW 
, I '- _____________________ ...J \ 

'- -
rorn~ _________________________ _JI 

MS \_----------------------_1 
\_------------------~I 
, ; 
'-- _____ ...J 

03862A·88 

Figure 3·203. Extended Memory Cycle 
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RAS-Only refresh cycle timing is shown in Figure 3-204. The 
refresh cycle is initiated when RFC'S..JEes HIGH. The RFSH 
output goes LOW at to. followed by RAS at t,. The Am2964B 
supplied the necessary refresh address. RAS is brought back 
HIGH at t5 and precharge is then timed out. An extended refresh 
cycle for slower memory is available also. Burst refresh can be 
accomplished by leaving RFCK HIGH for as many refresh 
cycles as desired. 

Read-Modlfy-Write cycle timing is activated by setting RMW 
HIGH. This is especially valuable in systems with Error De­
tection/Correction (EDC) capability. Data can be read, 
modified by the EDC circuitry (Am2960). and If necessary, 
written back to memory in a single memory cycle. Read­
Modify-Write cycle timing is shown in Figure 3~205. Note that 
WE goes LOW at the end of the cycle. 

25MHzCLK 

RFCKJ 
\ --------------------

RFSH~~ ____________________________ _JI ________ _ 

\'--____ ...J! 
MS 

03862A-89 

Figure 3-204. RAS-Only Refresh Cycle 

25MHzCLK 

ADDRESS ... _=~ __________________ ......£I_~~~~=~~~~IlQ~==~~ __ _ 
~~~ ___________________________________ ._JI \~ ______ _ 

RMWW 

\ RW 

~-----~----~------------~ 
RAS~~ _______________________________ ._J! 

MS \'--____________________ --...J! 
, ___________________ ...J! 

\ , 
~_-J 

Figure 3-205. Read-Modlfy-Write Cycle 
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Design Approach 

The first step in the state sequencer design process is to define 
the timing waveforms for all of the functions desired. Figures 
3-202, 3-203, 3-204 and 3-205 are the result. Next, characteris­
tics of the resulting waveforms are examined. Initially, the se­
quencer is waiting on the MREQ or RFCK input. If MREQ goes 
LOW, the RAS to MS to CAS sequence is initiated. If RFCK 
goes HIGH, the RFSH to RAS sequence is initiated. Both se­
quences are equivalent to a simple "shift" function. Once the 
shift sequence is completed and the signals are asserted, they 
must stay asserted for a specific time depending on the selected 
function. To time the length that signals must stay asserted re-

RMW--+ 

FAST 

~ 

FUNCTION 
SELECT/ 

CONTROL 4 
'S515 

RFCK 

RW 

BS1, BSo 

quires a "counting" function. The precharge sequence at the 
end of all cycles also requires "counting". This partitions most of 
the design into two smaller functional blocks; a shifter and a 
counter. The remaining function select and control logic is parti­
tioned into a "multiplexer-like" functional block. Figure 3-206 
shows the PAL partitioned into functional blocks. By dividing the 
design into blocks, its implementation becomes simple. 

Figures 3-207,.3-208, 3-209, and Table 3-26 show PAL equa­
tions and a logic diagram for the AmPAL 16R8A dynamic memory 
state sequencer. 

CP 

.. RST WR 

SHIFT 
RAS 

RST SHIFTER 1 MS 

'S195 CA§ 

SL 
~ 

INC/DEC Q2 

HOLD COUNTER 1 Q1 

RST 
'S161 

03862A·91 

Figure 3-206. Partitioned Design/PAL Equivalent 
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PAL16R8 PAL DESIGN SPECIFICATION 
PAT002 BRAD S. KITSON 2/10/82 
DYNAMIC MEMORY CONTROL STATE SEQUENCER 
ADVANCED MICRO DEVICES 
CK RFCK /RST RW /MREQ RMW FAST BS1 BSO GND 
/E /QO /Q1 /Q2 /RFSH /WE /CAS MS /RAS VCC 

QO := /RST* /MS*/QO + 

Q1 

Q2 

RFSH 

WE 

CAS 

/MS 

:= 

.-

/RST* RFSH*RAS*/QO + 
/RST*/FAST*/QO*Q2 + 
/RST*/FAST*/QO*Q1 + 
/RST*/FAST* Q1*Q2 + 
/RST* FAST*/RMW*QO*/Q1 + 
/RST* FAST*/RMW*QO*/Q2 

/RST* RAS*/QO* Q1 + 
/RST* RAS* QO*/Q1 + 
/RST*/RAS* QO* Q1 + 
/RST*/RAS*/QO* Q2 

/RST*RAS*Q2 + 
/RST* QO*Q2 + 
/RST*RAS*QO*Q1 

:= /RST*RFCK*/Q2*/Q1*/QO*/RAS + 
/RST*RFSH*RAS + 
/RST*RFSH*/FAST* Q1 + 
/RST*RFSH* Q2 

:= /RST*/RW*/MS*/RFSH*/RMW*/QO*/Q2 + 
/RST*/RW*/MS*/RFSH*/RMW*/Q1*/Q2 + 
/RST*/RW*/MS*/RFSH* RMW*/QO* Q1*Q2 + 
/RST*/RW*/MS*/RFSH* RMW* QO*/Q1*Q2 

:= /RST*/RFSH*/MS*/QO + 
/RST*/RFSH*/MS*/Q1 + 
/RST*/RFSH*/MS*/Q2 

:= /RST*/RFSH*RAS*/QO + 
/RST*/RFSH*RAS*/Q1 + 
/RST*/RFSH*RAS*/Q2 

RAS:= /RST*/RFCK*/QO*/Q1*/Q2*MREQ*/BS1*/BSO + 
/RST*/RFSH*/QO*/Q1*/Q2*}mEQ*/BS1*/BSO + 
/RST* RFSH*/QO*/Q1*/Q2 + 
/RST*RAS*/QO + 
/RST*RAS*/Q1 + 
/RST*RAS*/Q2 

Figure 3-207. Source Listing for Dynamic Memory Control State Sequencer 
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TABLE 3-26. 

FUNCTION TABLE 

CK /E /RST /MREQ BSl BSO RFCK RW RMW FAST RAS /MS CAS WE RFSH Q2 Ql QO 
----------------------------------------------------------------------
; 
; INITIALIZE 
C L L X X X X X X X L L L L L L L L 
; 
;FAST WRITE OPERATION 
C L H L L L L X X X H L L L L L L L 
C L H X X X X X X X H H L L L L L L 
C L H X X' X X L L H H H H H L L L H 
C L H X X X X L L H H H H H L L H H 
C L H X X X X L L H H H H L L H L H 
C L H X X X X L L H H H H L L H H H 
C L H X X X X L L II L L L L L II L L 
C L H X X X X L L H L L L L L L H L 
C L H X X X X L L H L L L L L L L L 
; 
jRAS ONLY REFRESH CYCLE 
C L H H X X H X X X L L L L H L L L 
C L H X X X H X X X II L L L H L L L 

I C L H X X X X X X H H L L L H L L H 
C L H X X X X X X H H L L L H L H H 
C L H X X X X X X H H L L L H H L H 
C L H X X X X X X H H L L L H H H H 
C L H X X X X X X H L L L L H H L L 
C L H X X X X X X H L L L L H L H L 
C L H X X X X X X H L L L L L L L L 
; 
;READ-MODIFY-WRITE OPERATION 
C L H L L L L X X X H L L L L L L L 
C L H X X X X X X X H H L L L L L L 
C L H X X X X L H L H H H L L L L H 
C L H X X X X L H L H H H L L L H L 
C L H X X X X L H L H H H L L L H H 
C L H X X X X L H L H H H L L H L L 
C L H X X X X L H L H H H L L H L H 
C L H X X X X L H L H H H H L H H L 
C L H X X X X L H L H H H H L H H H 
C L H X X X X L H L L L L L L H L H 
C L H X X X X L H L L L L L L H L L 
C L H X X X X L H L L L L L L L H H 
----------------------------------------------------------------------

DESCRIPTION 
DYNAMIC MEMORY CONTROL STATE SEQUENCER FOR USE WITH THE AM2964B MEMORY 
CONTROLLER. THE SEQUENCER PROVIDES /RAS,MS,/CAS, & REFRESH TIMING 
GENERATION TO THE AM2964B AND /WETO THE DRAMS. IT SUPPORTS BOTH FAST 
(l50NS) AND SLOW (300NS) READ/WRITE CYCLES, /RAS ONLY REFRESH, BURST 
REFRESH, AND READ-MODIFY-WRITE FOR MEMORY BOARDS OF UP TO 256K. 
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PAL16R8 PAL DESIGN SPECIFICATION 
PAT002 BRAD S. KITSON 2/10/82 
DYNAMIC MEMORY CONTROL STATE SEQUENCER 
ADVANCED MICRO DEVICES 
*D9724 
*FO* 
LOOOO 1011 0111 1111 1011 1111 1101 1001 1001 * 
L0032 1111 0111 1111 1011 1101 1101 1001 1001 * 
L0064 1111 0111 1111 1111 1110 1101 1101 1101 * 
L0096 1110 0111 1111 1111 1111 1111 1111 1101 * 
L0128 1110 0111 1111 1111 1111 1111 1101 1111 * 
L0160 1110 0111 1111 1111 1111 1101 1111 1111 * 
L0256 1110 0111 1111 1111 1101 1111 1111 1101 * 
L0288 1110 0111 1111 1111 1101 1111 1101 1111 * 
L0320 1110 0111 1111 1111 1101 1101 1111 1111 * 
L0512 1111 0110 1111 1111 1101 1111 1111 1101 * 
L0544 1111 0110 1111 1111 1101 1111 1101 1111 * 
L0576 1111 0110 1111 1111 1101 1101 1111 1111 * 
L0768 1111 0110 1011 1111 1001 1101 1111 1101 * 
L0800 1111 0110 1011 1111 1001 1101 1101 1111 * 
L0832 1111 0110 1011 1111 0101 1110 1110 1101 * 
L0864 1111 0110 1011 1111 0101 1110 1101 1110 * 
L1024 0101 0111 1111 1111 1111 1101 1101 1101 * 
L1056 1110 0111 1111 1111 1110 1111 1111 1111 * 
L1088 1111 0111 1111 1111 1110 1011 1110 1111 * 
Ll120 1111 0111 1111 1111 1110 1110 1111 1111 * 
L1280 1110 0111 1111 1111 1111 1110 1111 1111 * 
L1312 1111 0111 1111 1111 1111 1110 1111 1110 * 
L1344 1110 0111 1111 1111 1111 1111 1110 1110 * 
L1536 1110 0111 1111 1111 1111 1111 1110 1101 * 
L1568 1110 0111 1111 1111 1111 1111 1101 1110 * 
L1600 1101 0111 1111 1111 1111 1111 1110 1110 * 
L1632 1101 0111 1111 1111 1111 1110 1111 1101 * 
L1792 1111 0110 1111 1111 1111 1111 1111 1101 * 
L1824 1110 0111 1111 1111 1110 1111 1111 1101* 
L1856 1111 0111 1111 1111 1111 1010 1111 1101 * 
L1888 1111 0111 1111 1111 1111 1011 1110 1101 * 
L1920 1111 0111 1111 1111 1111 1010 1110 1111 * 
L1952 1111 0111 1111 1111 1011 0111 1101 1110 * 
L1984 1111 0111 1111 1111 1011 0101 1111 1110 * 
C713B* 
VOOOI CXOXXXXXXOOHHHHHHHHI * 
V0002 C01XOXXOOOOHHHHHHHLI * 
V0003 CX1XXXXXXOOHHHHHHLLl * 
V0004 CX10X01XXOOLHHHLLLLI * 
VOOOS CX10X01XXOOLLHHLLLLI * 
V0006 CX10X01XXOOLHLHHLLLl * 
V0007 CX10X01XXOOLLLHHLLLI * 
V0008 CX10X01XXOOHHLHHHHHl * 
V0009 CX10X01XXOOHLHHHHHHl * 
V0010 CX10X01XXOOHHHHHHHHl * 
V0011 C11X1XXXXOOHHHLHHHHl * 
V0012 C11XXXXXXOOHHHLHHHLI * 
V0013 CX1XXX1XXOOLHHLHHHLI * 
V0014 CX1XXX1XXOOLLHLHHHLl * 

Figure 3-208. Fuse Plot and Test Vectors for Dynamic Memory Control State Sequencer 
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V0015 CXIXXXIXXOOLHLLHHHLI * 
V0016 CXIXXXIXXOOLLLLHHHLI * 
V0017 CXIXXXIXXOOHHLLHHHHI * 
V0018 CXIXXXIXXOOHLHLHHHHI * 
V0019 CXIXXXIXXOOHHHHHHHHI * 
V0020 COIXOXXOOOOHHHHHHHLI * 
V0021 CXIXXXXXXOOHHHHHHLLI * 
V0022 CXIOXIOXXOOLHHHHLLLI * 
V0023 CXIOXIOXXOOHLHHHLLLI * 
VQ024 CXIOXIOXXOOLLHllliLLLl * 
V0025 CXIOXIOXXOOHHLHHLLLI * 
V0026 CXlOXlOXXOOLHLllliLLLl * 
V0027 CXIOXIOXXOOHLLHLLLLI * 
V0028 CXIOXIOXXOOLLLHLLLLI * 
V0029 CX10XlOXXOOLHLHHHHHl * 
V0030 CXIOXIOXXOOHHLHHHHHI * 
V0031 CXIOXIOXXOOLLHHHHHHI * 
395F 

Figure 3-208. Fuse Plot and Test Vectors for Dynamic Memory Control State Sequencer (Continued) 

3-288 



CK 

Columns: Inputs (0-31) 
Rows' Product Terms (0-63) 

~----------------------------------------------------, 

'O---r~~~1-r+~-r~--r+1-r-~-r+--r~~-+~-r~-r~--~r~--\ 
"---r~-r __ ~r+~-r~--~~~~-r+--r~~-+~-r~-r~~4 r-4 ~ 

::---r~~~1-r+~-r~--r+1-r-~r++--r~1--+~~~-r~~1 ~~ __ -+~----- I ~ 

:: t.-/ D Q c-~ Q2 

.,.:: --+-H--+--HH-+--H-+-I--+-+-Hf--+-+-H--+-+-+-+--H-+-+---i-+-+-+-------i~ ~ A ~ ~ 

FAST ~~~-++++_++++-++++_++++-++++_~I~~~=t~~=======~~--lr----~ 

+ = Fuse intact ----®- = All fuses intact + = Fuse blown 03862A·92 

Figure 3-209. Logic Diagram for Dynamic Memory Control State Sequencer Using AmPAL16R8A 
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3.6.7 82284 and 82288 EMULATION IN 
AN IBM PC/AT COMPUTER USING 
TWO AmPAL16R8B DEVICES 

Two AmPAL 16R8B devices and four TTL pack­
ages generate the signals necessary to run an 
80286 system at 12.5 MHz. This reduces the cost 
and Improves the speed of the 80286 mlcro­
system. The first PAL device, AmPAL284, is used 
to emulate the 82284 Clock Driver and Ready 
Interface functions. The second PAL device, 
AmPAL288, Is used to emulate the 82288 Bus 
Controller functions. This application generates 
the Signals used in most non-MULTIBUS 80286 
systems. The design has been tested in an AT com­
puter. These PAL devices are not pin-for-pin com­
patible with the parts they emulate nor do they 
generate all the signals that an 80286 can use in­
cluding some MULTIBUS Signals. However, applica­
tions requiring additional signals can be designed by 
adding additional circuitry. 

The simplified Block Diagram below shows the 
relationship of the PAL devices to the AT compu­
ter. Figure 3-210 is the schematic diagram of the 
emulator and Table I shows the AT Interface wiring 
chart. 

The PAL device equations are written in ABEL and 
are Included in this application note. The source 
code, the reduced equations, and a fuse map Is 
included for each PAL device. 

The AmJ)AL284 Description 

A crystal oscillator Is used to generate a clock at 
twice the 80286's Internal clock speed. The PAL 
device is clocked with the Inverted CPU clock. The 
Output Enable pin Is grounded to always generate 
the output signals. The Reset signal Is buffered 
with a Schmitt trigger 74LS14 so that an RC circuit 
can be used to provide a time delay. After the 
Schmitt trigger, a 74F74 flip-flop is used to 
synchronize to the Inverted CPU clock. The 
Ready Enables of the 82284 are connected 
together on the AT design and are connected to 
the RDYEN pin of the AmPAL284. The ARDY 
signal is synchronized to the Inverted 80286 clock. 
The latched ready LARDY and the SRDY are 
sampled to generate the READY to the 80286. 

The state machine shown in Figure 3-211 is used 
to generate the TS and the TC states. This state 
machine has four states IDLE, TS2, TC1 and TC2. 
The state machine requires registered outputs CO 
and 01 to implement it. The state machine goes to 
the T82 state when either SO or S1 goes LOW 
signalling the start of a bus cycle (refer to Table 3-27 
and Figure 3-212). The ALE signal goes active HIGH 
for the TS2 state and then goes inactive. On the next 
clock the state machine goes to the TC1 state 
making DEN and DT/R signals active. The next 
clock causes the state machine to go to state TC2. 
The state machine either goes to IDLE, making DEN 
and DT/R inactive if ROY is active, or to TC1 if ROY 
is not active. The state machine must return to TC1 , 
if ROY is not active, to keep an even number of clock 
cycles for each inserted TC state. 

Block Diagram 

RES so INTA 
10RC 

AmPAL284 AmPAL288 i5WC 
ARDY ClK 81 

EMULATING MRDC 
EMULATING MWTc 

8RDY 82284 M/iO 82288 DT/R 

80286 DEN 
ALE 

AO- A23 

DO - D15 
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vee 
vee 

2700 

URn 
AmPAL2 •• 

BCNTRL 

.. 57 

MR5C 111 

iN7i'C IS 

lORe 17 

IOwC 
1NTA 

63~ 

~----~----------------+--4--~-+--~~~ 
4-

L--__ .,5 ik 
~ -----------'"--~ 

CMDLY -------------...,.--------' 
10281 CPU 

CPU HLDA -------------------------------------' 

0847943-2104 

Figure 3-210. Schematic Diagram of the 82284 and 82288 Emulator 

Table 1. Emulator to IBM PC/AT Interface Wiring Chart 

Socket Pins Emulator Board Devices (Pin Nos.) 
on AT Board AmPAL284 AmPAL288 74F74 745240 74502 

a~2a4 {eln Ng 1 
ARm (1) 

SRDym 
0(12) 

~~g*~~ __ (3) RDYEN (6) 
FlCV(7) READY (4) I1'EArrY' (12) 

ClK (10) Out (18) 
RES. (11) 0(2) 
RESET (12) 0(5) 

a221Ul U':!ln Ng 1 
51 (3) Si (3) S1 (3) 
ALE (5) ALE (17) 
MB(6) MB(4) MB(t1) 
CMDlY (7) 

MRDC (19) 
In (3) 

~(8) 
~(9) MWTC (18) 
~(11) IOWC (16) 
~(12) IORC (17) 
mTA(13) 

CEN(5) 
INTA(1S) 

In (8) CEN (15) 
DEN (16) 

DT/Ft (18) 
Out (14) 

DT/Ii (17) 
MIlO (4) MlTO (18) 

S'n(2) S'n(19) SO (2) 

3.S.711lL 1 .... 
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TABLE 3-28. Command and Control Outputs for Each Type of Bus Cycle 

Type of - Command DT/R ALE,DEN 
Bus Cycle MIlO S1 SO Activated State Issued 

--
Interrupt 0 0 0 INTA LOW YES 
Acknowledge 

--1/0 Read 0 0 1 10RC LOW YES . 
1/0 Write 0 1 0 10WC HIGH YES 

None; idle 0 1 1 None HIGH NO 

HalV Shutdown 1 0 0 None HIGH NO 

Memory Read 1 0 1 MRDC LOW YES 

Memory Write 1 1 0 MWTC HIGH YES 

None; idle 1 1 1 None HIGH NO 

Q1 00 

IDLE 1 1 

TS2 1 0 

TC1 0 0 

TC2 0 1 

08479A 3·211 

FIgure 3-211. AmPAL State MachIne 
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The RCMD signal goes active when the SO and 51 
signals decode a Read or Interrupt Acknowledge 
cycle. This signal is used by the DT/R signal to 
control the trannsmit or the receive direction of the 
data transceivers and by the AmPAL288. The 
Command and Control outputs for each type of 
bus cycle are given in Table 3-28. Figure 3-212 
shows the cycle timing. 

The AmPAL284 source program listing, the 
reduced equations and the JEDEC fuse map are 
shown in Figure 3-213. 

The AmPAL288 Description 

The AmPAL288 uses the 00, 01, SO, 51, and 
Miio inputs to latch the state of the current cycle. 
As shown in the PAL equations, these signals are 
internal signals and are not used by the AT. The 
RCMD signal is an input and WCMD, MEM, and INT 
are internally generated. With these latched 
signals and the CMDEN, the commands are gen­
erated. The five. commands are IOWC, IORC, 
INTA, MRDC, and MWTC. These commands are 
only enabled when the MB signal is LOW. When 
MB goes HIGH the commands are high imped­
ance(off). 

CLK 

ALE 

DEN 

DTiFi 

iNi'A 
iORC 
i5Wc 

MRc5C 
MWTc 

TS 

------------------~ 

03479A 3·212 

The AmPAL288 source program listing, reduced 
equations and the JEDEC fuse map are shown in 
Figure 3-214. 

PAL Device Selection 

AmPAL 16R8B speed devices are required for 
operation at 12.5 MHz and up. The specifications 
on any faster 80286 are not established at this 
time, but this PAL device solution can go faster. 
For 10 MHz and slower operation, AmPAL16R8A 
speed devices are adequate. 

Umitations of This Design 

This PAL device design does not fully emulate the 
82284 and the 82288. It provides the signals 
necessary for anlBM PC/AT design. An oscillator 
is not included, so an external crystal oscillator 
must be used. The clock requires a pullup resis­
tor to meet the VOH of the 80286. Multibus 
operation is not performed. PCLK and MCE 
'signals are not generated. The READY signal is 
not open collector. The ARDYEN and SRDYEN 
signals would have to be externally gated if 
required. 

TC· IDLE 

write 

read 

• TC cycle continues until ROY is sampled lOW 

Figure 3·212. Cycle Timing Diagram 
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flag '-R2'; 

title 
'PAL16R8 PAL DEVICE LOGIC EQUATION 
82284 PAL device emulation for the AT 
COPYRIGHT 1986 ADVANCED MICRO DEVICES, INC. Doug Kern 8/13/86 

PAL284 device 'P16R8'; 

"declarations 

TRUE,FALSE = 1,0; 
HIGH,LOW = 1,0; 
X,Z,C = .X.,.Z.,.C.; 

GND,VCC 
pin 10,20; 

CLK,SO,Sl,MB,CEN,RDYEN,SRDY,LARDY,RESET,EN 
pin 1,2,3,4,5,6,7,8,9,11; 

DEN,DT R,ALE,RCMD,QO,Q1,AR,RDY 
pin 1i,18i17,16,15,14,13,12; 

QSTATE = [Q1,QO];"STATE MACHINE. REGISTERS 
"STATE ASSIGNMENTS 

IDLE 
TS2 
TC1 
TC2 

STATE_DIAGRAM 

STATE 

STATE 

STATE 

STATE 

"B11; 
"B10; 
"BOO; 
"B01; 

QSTATE 

IDLE: 

TS2: 

TC1: 

TC2: 

CASE ISO 
lSI 
Sl & SO 

ENDCASE; 

GOTO TC1; 

GOTO TC2; 

CASE RDY 
lRDY 

ENDCASE; 

(Continued) 

TS2; 
TS2; 
IDLE; 

:TC1; 
: IDLE; 

Figure 3·213. AmPAL284 Source Program Listing 
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EQUATIONS 
!DT_R :=!RCMD & Q1 & !QO 

# !DT R & !Q1 & !QO 
# !DT::=R & lQ1 & QO & RDY; 

!RCMD := Q1 & QO & !Sl & ISO "INTA 
# Q1 & QO & !Sl & SO "READ 
# !RCMD & Q1 & !.QO 
# !RCMD & !Q1 & !QO 
# !RCMD & !Q1 &QO & RDY; 

!RDY := !SRDY & !RDYEN & Sl & SO 
# !LARDY & !RDYEN & Sl & SO 
# RESET; 

!DEN := Ql & !QO & !MB & CEN 
# !Q1 & !QO & !MB & CEN 
# !Q1 & QO & !MB & CEN & RDY 
# Q1 & !QO & MB & lCEN 
# !Q1 & lQO & MB & lCEN 
# !Ql & QO & MB & lCEN & RDY; 

ALE := Q1 & QO & IS1 
# Q1 & QO & ISO; 

Figure 3-213. (Continued) AmPAL284 Source Program Listing 
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ABEL (tm) version 1.00 - Document Generator 26-Aug-86 
PAL16R8 PAL DEVICE LOGIC EQUATION 
82284 PAL device emulation for the AT 
COPYRIGHT 1986 ADVANCED MICRO DEVICES, INC. Doug Kern 8/13/86 
Equations for Module AMD 

Device PAL284 

Reduced Equations: 

Q1 := ! «RDY & !Q1 &"QO # !QO»; 

QO : = ! ( ( ! Sl & Q1 

RCMD 

RDY 

DEN 

ALE 

# (!SO & Q1 
# (ROY & !Q1 & QO 
# Q1 & ! QO) ) ) ) ; 

:= ! «RDY & !Q1 & !DT R 
# (!RCMD & Q1 & !QO 
# !Q1 ~ !QO & !DT_R»); 

:= !«!Sl & Q1 & QO 
# (RDY & !RCMD & !Q1 
# ! RCMD & ! QO) ) ) ; 

:= !«!SRDY & Sl & SO & !RDYEN 
# (Sl & SO & !RDYEN & !ARDY 
# RESET»); 

:= ! «RDY & !Q1 & !MB & CEN 
# (RDY & !Q1 & MB & !CEN 
# ( !QO & !MB & CEN 
# !QO & MB & ! CEN) ) ) ) ; 

:= ! ( (Sl & SO # (!Q1 # !QO») ; 

Figure 3-213. (Continued) AmPAL284 Reduced Equations 
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ABEL(tm) version 1.00 
JEDEC file for: P16R8 
Created on: 26-Aug-86 
PAL16R8 
82284 PAL Device emulation for the AT 
COPYRIGHT 1986 ADVANCED MICRO DEVICES, 
QP20* QF2048* 
LOOOO 
11111111101101111111111011111101 
11111111011110111111111011111101 
11111111101101111110111111111111 
11111111011110111110111111111111 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111110111111111111111011111101 
11111111111111101110110111111111 
11111110111111111110111011111111 . 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
01110111111111111111111111111111 
11111111111111111111111011111111 
11111111111111111110111111111111 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111011111111111101110111111111 
11111111111111101111111011111101 
11111111111111101110111111111111 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111011111111111111110111111111 
10111111111111111111110111111111 

PAL DEVICE LOGIC EQUATION 

INC. ' Doug Kern 8/13/86* 

11111111111111111101111011111101 
11111111111111111110110111111111 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111111111111111101111011111101 
11111111111111111110111111111111 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
01110111111111111011101111111111 
01110111111111111011111110111111 
11111111111111111111111111110111 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000* 
C4DOB* 
C8AO 

Figure 3-213. (Continued) AmPAL284 JEDEC Fuse Map 
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flag '-R2'; 

title 
'PAL16R8 PAL DEVICE LOGIC EQUATION 
82288 emulation PAL device for the AT 
COPYRIGHT 1986 ADVANCED MICRO DEVICES, INC. Doug Kern 8/13/86 

PAL288 device 'P16R8'; 

"declarations· 

TRUE,FALSE = 1,0; 
HIGH,LOW = 1,0; 
X,Z,C = .X.,.Z.,.C.; 

GND,VCC 

EQUA'rIONS 

!MRDC 

IMWTC 

1 IORC 

!IOWC 

I INTRA 

pin 10,20; 

CLK,SO,Sl,M IO,CMDEN,RCMD,RDY,Ql,QO,MB 
pin 1,2,3,4,5,6,7,8,9,11; 

MRDC,MWTC,IORC,IOWC,INTRA,MEM,INT,WCMD 
pin 19,18,17,16,15,14,13,12; . 

:= !MEM & !RCMD & Q1 & lQO & CMDEN 
# !MEM & !RCMD & !Ql·& lQO & CMDEN 
# !MEM & lRCMD & lQl & QO & RDY & CMDEN; 

:= IMEM & lWCMD & Q1 & lQO & CMDEN 
# IMEM & lWCMD & IQ1 & IQO & CMDEN 
# IMEM & lWCMD & lQ1 & QO & RDY & CMDEN; 

:= MEM & INT & !RCMD & Qi & IQO & CMDEN 
# MEM & INT & 1 RCMD & lQl & !QO & CMDEN 
#. MEM & INT & 1 RCMD & !Q1 & QO & RDY & CMDEN; 

:= MEM & IWCMD & Ql & lQO & CMDEN 
# MEM & !WCMD & !Q1 & !QO & CMDEN 
# MEM & !WCMD & !Q1 & QO & RDY & CMDEN; 

:= !INT & Q1 & !Qo & CMDEN 
# lINT & !Ql & !QO & CMDEN 
# lINT & !Q1 & QO & RDY & CMDEN; 

!MEM := Ql & QO & M_IO & !Sl & SO 
# Ql & QO & M IO & 51 & ISO 
# !MEM & Ql & TQo 
# !MEM & !Q1 & IQO 
# !MEM & lQ1 & QO & RDY; 

(Continued) 

Figure 3·214. AmPAL288 Source Program Listing 
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lINT 

lWCMD 

:= Q1 & QO & 1M IO & 151 & 150 
# lINT & Q1 & lQO 
# !INT & !Q1 & !QO 
# !INT & !Q1 & QO & ROY; 

:= Q1 & QO & 51 & 150 
# !WCMD & Q1 & !QO 
# !WCMD & lQ1 & !QO 
# !WCMD & !Q1 & QO & ROY; 

Figure 3-214. (Continued) AmPAL288 Source Program Listings 

Reduced Equations: 

MRDC := ! «ROY & !RCMD & !Q1 & !MEM & CMDEN 
# !RCMD & !QO & !MEM & CMDEN»; 

MWTC := ! «!WCMD & ROY & !Q1 & !MEM & CMDEN 
# !WCMD & !QO & !MEM & CMDEN»; 

IORC : = !( (ROY & ! RCMD & ! Q1 & MEM & INT & CMDEN 
# !RCMD & !QO & MEM & INT & CMDEN»; 

IOWC := ! «!WCMD & ROY & !Q1 & MEM & CMDEN 
# !WCMD & !QO & MEM & CMDEN»; 

INTRA := ! «ROY & !Q1 & !INT & CMDEN # !QO & !INT & CMDEN)) 

MEM := !«!51 & SO & Q1 & QO & M IO 
# (51 & !50 & Q1 & QO & M-IO 
# (ROY & !Q1 & !MEM 
# ! Q 0 & ! MEM» » ; 

INT := !«!51 & !50 & Q1 & QO & !M_IO 
# (ROY & !Q1 & !INT 
4# ! QO & ! INT» ) ; 

WCMD := !«51 & ISO & Q1 & QO 
# (!WCMD & ROY & !Q1 
# ! WCMD & ! QO) ) ) ; 

Figure 3-214. (Continued) AmPAL288 Reduced Equations 
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ABEL (tm) Version 1.00 
JEDEC file for: P16R8 
Created on: 26-Aug-86 
PAL16R8 PAL DEVICE LOGIC EQUATION 
82288 emulation PAL device for the AT 
COPYRIGHT 1986 ADVANCED MICRO DEVICES, 
QP20* QF2048* 

INC. Doug Kern 8/13/86* 

LOOOO 
11111111111101111011011010111111 
11111111111101111011111011111011 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111111111101111111011010111110 
11111111111101111111111011111010 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111111111101111011010110011111 
11111111111101111011110111011011 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111111111101111111010110111110 
11111111111101111111110111111010 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
11111111111101111111011110101111 
11111111111101111111111111101011 

00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
01111011011111111111111101110111 
10110111011111111111111101110111 
11111111111111111111011010111111 
11111111111111111111111011111011 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
10111011101111111111111101110111 
11111111111111111111011110101111 
11111111111111111111111111101011 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000 
10110111111111111111111101110111 
11111111111111111111011110111110 
11111111111111111111111111111010 
00000000000000000000000000000000 
00000000000000000000000000000000 
00000800000000000000000000000000 
00000000000000000000000000000000 
00000000000000000000000000000000* 
C45A1* 
C83F 

Figure 3-214. (Continued) AmPAL288 JEDEC Fuse Map 
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3.6.8 INTERFACING THE 80186 
MICROPROCESSOR TO THE 8087 
WITH THE AmPAL22V10A DEVICE 

This application note shows how to interface the 
8087 Numeric Oata Processor (NOP) to the 80186 
High Integration Microprocessor using two 
AmPAL22V10A devices. It demonstrates some of 
the details of 80186 and 8087 design, as well as 
tradeoffs and design decisions made in designing 
with PAL devices. The hardware features of the 
80186 and 8087, and AmPAL22V10A are in their 
respective data sheets and are not' discussed 
herein. 

Introduction 

The proliferation of 8088-based IBM PC Personal 
Computers and PC-Compatibles has lead to the 
development of higher performance, lower cost 
versions of that "de facto" standard. One 
important requirement for these "compatibles" is to 
provide 8087 Numeric Processor support, as does 
the IBM PC. An 80186/8087 combination would 
be the ideal choice, given the low cost and high 
performance of the 80186 and the vast 
throughput improvements gained from the 8087 in 
number crunching. 

The 80186 is a much higher performance 
microprocessor than the 8088 used in the IBM PC. 
The 80186 incorporates several system 
components on-chip (Le., OMA, Counter/Timers, 
Interrupt Controller), as well as improved control 
circuitry with pipe lining to provide instruction 
execution performance up to six times that of the 
standard 8086. With the addition of the 8087 NOP 
co-processor to perform concurrent numeric 
operations, the 80186/8087 combination is the 
lowest cost-per-function number cruncher 
available. 

Unfortunately, the interface of the 80186 to the 
8087 is not as straight forward as it is with the 8088 
to 8087 interface; however the interface can be 
implemented with two AmPAL22V10A devices 
and a few discrete components (Figure 3-215). 
The circuit allows full speed 8 MHz operation (with 
the 8087-2). With faster microprocessor devices 
(80186-1, and 10 MHz 8087), and faster PAL 
devices, the circuit can operate at 10 MHz. In 
addition, the interface of the 80188 serves to 
decrease system cost by reducing the data path 
width (and hence the number of components) 
while still yielding high performance. 

DeSign Considerations 

The 8087 acts as a master/slave co-processor to 
the 80186. The 8087 tracks all 80186 operations 
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(instruction fetch, data readlwrite, idle, etc.), 
monitoring various external I/O signals of the 
80186 to determine its internal state. Upon 
detecting a numeric instruction in the instruction 
stream fetched by the 80186, the 8087 requests 
control of the system bus, and becomes a bus 
master until ns operations are completed. 

It is very important that the 8087 remains in 
complete synchronization with the 80186. Herein 
lies the problem with an 80186 to 80B7 interface. 
A number of issues impacting synch- ronization; 
and their solutions are discussed below. 

CPU Clock Synchronization 

The 80186 contains an intemal crystal 
oscillator/clock generator circuit which generates 
the 80186 timing. All external bus operations are 
synchronized to the 50% duty cycle clock 
generated. In contrast, the 8087 requires a 33% 
duty cycle clock normally generated by the 8284 
Clock Generator chip. 

This problem is solved with a clock shaping circuit, 
using delay lines and a few discrete gates; this 
circuit shortens the clock HIGH time into the 8087. 
This is sufficient, as most inout signals to the 8087 
are synchronous to the rising edge of the 8087 
CPU clock, not the displaced falling edge (Figure 3-
216). 

Oueue Status 

The 8087 tracks the 80186 status via several 
external signals. The Oueue Status signals 
(OSO,OS1) provide valuable information to the 
8087 regarding the 80186 internal pre-fetch buffer 
and instruction execution status. The 80186 
provides (and removes) these signals 1/2 clock 
cycle before the 8087 requires them. A simple 
circuit performs the appropriate delay for the 8087 
to use these signals. 

This circuit also forces the OSO and OS1 signals to 
an inactive state upon System Reset, signalling an 
"idle" condition to the 8087 until the circuit is 
enabled by the 80186. This is necessary to force 
the 8087 into instruction synchronization with the 
80186 right after Reset, when the 80186 
operation is unusual. 

The 80186 does not usually emit the OSO and 
OS1 outputs in its default configuration. These 
signals are generated on ALE/OSO and WR*/OS1 
by strapping RO*/OSMO* LOW at Reset. An 8288 
Bus Controller is required to decode the SO-S2 
status lines from the 80186 or 8087 (whichever is 
bus master) to generate· the proper ReadlWrite 
and ALE signals. 



ALE r- .. - ~ MRDC ..... 
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Figure 3·215. 80186 to 8087 Interface 
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80186 
CLKOUT 

1 k.Cl 330 n 

delay line - (1/6 f - 3tPD) 

L..-____________ -.,;.._-.. CLK_186 

0847A3·216 L..-_________________ + CLK_186* 

Figure 3-216. Clock Shaping Circuit 

Ready Synchronization 

The 8087 monitors the current 80186 bus activity 
via its SO-52 Status Lines and the Ready Input 
line. There are no problems with the SO-S2 lines, 
but Ready may cause some problems. 

First, the 80186 has on-board software­
programmable chip-select and wait-state 
generation logic. This is useful in reducing 
external chip count, but the 8087 is unable to 
externally track these internally generated wait­
states. The solution is to disable all programmable 
wait states (program them to "0"), recognize the 
external Ready signal, and insert any necessary 
wait states to the 80186 and 8087 with the Ready 
input line. In addition, since the 8087 cannot 
access the chip-select logic on the 80186, any 
memory that is used by the 8087 must be selected 
with external chip-select logic. This is typical only 
for main system RAM; other EPROM and 1/0 ports 
typically are not accessed by the 8087. They may 
still be selected via the 80186-generated 
MCS/UCS and PCS lines, as long as "zero wait 
states" are programmed. 

Note that the 80186 has several on-board 1/0 
registers that the 8087' doesn't "know about". 
These registers are all accessed in zero wait states, 

except for the CounterlTimer registers, which 
cause the insertion of one wait state. Ready 
signals must be simulated for the 8087 when the 
80186 selects these on-board registers, forcing 
zero or one wait states,' depending on the 
particular register selected. It must be assumed 
that the on-board registers remain at the default 
base address FFOOH in the 1/0 space (I.e., the 
Relocation Register is not altered). 

Secondly, consider the situation just after· Reset. 
Following Reset, the 80186 automatically inserts 
three internal wait states for all memory accesses 
(I.e., to a Boot PROM) until the chip-select and wait­
state registers are programmed. Again, the 8087 
will lose synchronization with the 80186, because 
it does not "see" these wait states. The solution is 
to force the 8087 into an idle state after Reset by 
forcing its eso and eS1 inputs to "00" (idle), so it 
won't track the 80186 operations at all. When the 
80186 completes programming its internal wait­
state registers, it enables the eso and eS1 inputs 
to the 8087 via an 110 signal, and executes at least 
two consecutive JUMP instructions. The JUMP 
instructions effectively flush the internal prefetch 
queues, and the 8087 acquires synchronization 
with the 80186. The following code is an example 
of the final synchronization routine, after Reset, 
and in programming the on-board registers: 

; The 80186 register initialization code 
; completed above.The 8087 is idle. 

L1: 

L2: 

out ok_to_goJ>ort, al 
jmp L1 

jmp L2 

System code follows here. The 8087 
is now synchronized and active. 
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enable QS signals 
jump to flush queue 

jump to flush queue 



Finally, the proper Ready inputs must be provided 
to the 80186 and the 8087. The 8087 requires a 
synchronous Ready signal (SRDY)· to be valid at 
the rising edge (middle) of T3 or Tw, while the 
80186 requires the synchronous Ready input to 
be valid on the falling (leading) edge of T3 or Tw. 
Circuitry must be provided to perform the proper 
synchronization and to provide adequate setup 
times for the 80186 and 8087 SRDY signals. In 
addition, extra circuitry is necessary to synchronize ' 
an asynchronous Ready signal from the system 
hardware. 

RO/GT to HOLD/HLDA Conversion 

Upon detecting any NDP instructions from the 
80186 instruction stream, the 8087 must become 
a Bus Master in order to obtain and store 
operands/results in memory. The 8087 requests, 
and is granted, bus control via its ROIGTO signal. 
This is normally a single-wire handshake supported 
by the 8086 microprocessor; however, the 80186 
uses a two-wire HOLD/HLDA interface. The 
solution is to build a small state machine that 
converts the RQ/GTO pulsed protocol to the HOLD 
and HLDA signals required by the 80186. 

In order to support other Bus Masters in addition to 
the 80~7 (Le.,an external DMA controller), the 
RO/GT1 input to the 8087 is used. In this manner,: 
the external Bus Request is "daisy-chained" 
through the 8087' to, the 80186. Again, the 
ROIGT1 isa single-wire handshake signal. A 
second state machine is built to convert external 
HOLD and HLDA type signals of typical DMA 
controller chips to the single-wire RO/GT1 protocol 
of the 8087. 

Interface Circuits 

The interface' circuit is implemented with two 
AmPAL22V10A devices, a delay line (or 
capacitor), and a few Schottky or "AS" gat~s (see 
Figures 3-215& 3-216). The system requires two 
synchronously clocked circuits based on the 
80186 clock (CLK_186), as well as the inverted 
80186 clock (CLK_186*). Therefore, the design is 
partitioned among two AmPAL22V10A's (PALA 
and PALS), with CLK_186 and CLK_186* as 
inputs. 

Clock Shaping Circuitry 

The Clock is shaped with a Schottky delay line and 
"S" or "ALS" gates, shown in Figure 3-216. The 
delay line tap determines ,the 8087 clock HIGH 
times, and is - 10 ns for an 8 MHz clock, to yield 
the nominal 42 ns clock HIGH time required. For 
faster clocks (i.e., 10 MHz), this delay must be de­
creased appropriately (and may be eliminated) de-

pending on the delays through the three inverters. 

The three-inverter chain provides: 1) buffering of 
the CLK_186 and CLK_186* signals for 
distribution throughout the system, and, 2) 
increased drive for the delay line. The output of 
the delay line is pulled up in this circuit, to provide ' 
adequate VIH for the AND gate. Also note the 
strong 330 ohm pull-up on the CLK_87 clock 
output; this is to provide the nominal 3.9 V VIH 
required by the clock input of the 8087 (Ref. 4). 

PALADesign 

PALA is clocked with the positive 80186 clock, 
CLK_186. This AmPAL22V10A device contains 
the ROIGTO to HOLD/HLDA (80186) synchronous 
state machine circuitry, the internal Chip-select wait­
state generator circuitry (used for ,accessing 
internal 80186 registers), and the 80186 Ready 
signal synchronization. The PALA equations are 
listed in Figure 3-218. 

RQ/GTO (8087) Conversion to HOLO/HLOA (80186) 

The State Machine Transition diagram is shown in 
Figure 3-217. This circuit samples the RO/GTO 
output from the,8087, and waits for a pulse on that 
line, signalling an 8087 Hold Request. This 
causes generation of the HOLD to the 80186. 
The state machine then waits for an HLDA signal 
from the 80186, and generates a Hold 
Acknowledge pulse to the 8087 on RO/GTO. 
When the 8087 next pulses the RQ/GTO line, the 
state machine removes the HOLD signal from the 
80186, signalling the end of the HOLD reguest. 

Since RO/GTO isa bi-directional signal,' the state 
machine sets it to high impedance "off", except 
when enabled during the Hold Acknowledge 
pulse. Generation of this ,signal demonstrates the 
versatility of the AmPAL22V10 device for such bi­
directional three-state applications. 

Note the values supplied for the State Machine 
variables: A Gray code was used, as in most state 
machine designs, to minimize glitching on the 
outputs as the state variables change from state to 
state (Gray codes have the benefit that only one bit 
changes per code transition). 

Ready Synchronization and Internal-Register 
Chip-Select Logic 

The signal SRDY_186 is a composite system 
Ready signal; it is synchronized for the 
synchronous SRDY input to the 80'186 (this signal 
is in turn synchronized in PALS for the 8087 
SRDY). SYS_READY is an input to the PALA 
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device, and is synchronized (by PALS) version of 
the external Memory/lO Ready from the system. 
Note that the 80186 ARDY (Asynchronous Ready) 
input must be strapped LOW. 

In order to generate the proper Ready signals to 
the 8087 when selecting internal 80186 registers, 
PAL A decodes the 80186 'address, and 
generates the proper Ready signal. The internal 

CLK_186 

RQ GTO ------, 
(tolfrom 8087) 

HOLD 
(to 80186) 

REQUEST GRANT 
(FROM 8087) (TO 8087) 

HLDA ______ ..... ~""' 
(from 80186) 

STATE[1:0] 
(interal) T 1 T 2 

RESET=1 

TIMER_RDY signal is generated whenever the 
internal CounterlTimer registers are selected (1/0 
address FF50-FF6F). This signal inserts one wait 
state in the synchronous Ready line, SRDY_186. 
In addition, the SRDY_186 signal is forced to a 
"Ready" state whenever any internal 80186 
registers, other than the CounterlTimers, are 
selected. 

T4 

U 
RELEASE 

(FROM 8087) 

NOTE: state machine 
is clocked on 
positive edge 
of CLK_186. 

08749A3-217 

Figure 3-217. RQ/GTO-to-Hold/HLDA Converter 
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DEVICE PALA_8087_80186_Interface (PAL22V10); 

************************************************************************************** 
**** 
**** 
**** 
**** 
**** 
**** 

PAL A 

This PAL converts from 8087 RQ/GT Handshake TO 80186 HOLD/HLDA Signals 

and generates the ready synchronization logic for the 80186 and 8087 

**** 
**** 
**** 
**** 
**** 
**** 

************************************************************************************** 
PIN 

II **** INPUTS ****11 

CLK = 1 II 50% duty cycle 80186 clock 

RESET 

HLDA 

A[15:6] 

/lORC 

/AIOWC 

SYS_READY 

= 2 II Active HIGH reset from 80186 II 
= 3 II 80186 HLDA output 

= 4:11,13,14 II 80186 Address lines 15 •• 6 

15 II 10 Read Conmand from 8288 

16 

17 

" **** OUTPUTS ****11 

STATE[1:0] = 23:22 

HOLD 21 

TIMER_ROY 

SRDY_186 

19 
18 

II 8288 Advanced 10 wri te conmand" 

II synchronized READY from systemll 

II State Machine State Vari ables II 
II 80186 HOLD input 

II Internal timer chip'select (Inserts ONE W.S.) 

II Synchronous 80186 READY signal ll 

II **** BIDIRECTIONAL INPUT/OUTPUTS **** II 

= 20; II RQ/GT I/O. (active low) MUST HAVE PULLUPI II 

DEFINE 

II State variable state value assignments. 

T_1 = 0 II State 1 

T_2 = 1 II State 2 

T_3 = 3 " State 3 

T_4 = 2 II State 4 

BEGIN 

II ***************************************************************11 
II **** ****11 
II **** RQ/GT to HOLD/HLDA Converter State Machine Definition ****" 
" **** ****" 
II ***************************************************************11 

I F (RESET) THEN ARESET (); 

CASE ( STATE[1:0] ) BEGIN 

T_1 ) BEGIN 
IF (RG_GTO) II Wait for 1st request from 8087 II 

THEN STATE[1:0] := T_1 

ELSE STATE [1 :0] := T_2 

HOLD := 0; II Deassert HOLD to while here 80186 II 

END; 
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END; 

BEGIN 

IF (HLDA) 

THEN STATE [1 :0] := T_3 

ELSE STATE[1 :0] := T_2 

HOLD .- 1; 

BEGIN 

" Wait for HOLD AKNOWLEOGE from 80186 " 

" Assert HOLD to 80186. Also, RQ/GT is " 

" pulsed to signal GRANT to 8087 (see below) " 

STATE[1:0] := T_4; 

HOLD := 1; 
" One idle state to el iminate RQ/GT contention" 

END; 

T_4 BEGIN 

IF eRG_GTO) " Wait for RELEASE pulse from 8087 " 
THEN STATE[1:0] := T_4 

ELSE STATE [1 :0] := T.J 

HOLO := 1; 

ENO; 

END; 

RG_GTO = 0; " RG_GTO is tri ·state controlled I/O, active LOW " 

IF CCSTATE[1:0] = T_2) * (HLOA» 

THEN ENABLE( RG_GTO ); " Pulse RQ/GT output during state 2 to signal HOLD ACKNOWLEDGE (GRANT) to 8087 " 

" *************************************" 
" **** 
" **** 
" **** 

****11 

READY Synchronization logic ****" 
****" 

" *************************************" 

" Internal timer registers selected (insert one w.s. with registered output) 

TIMER_ROY := (fIORC + IAIOWC) * (A[15:6] = #B1111111101) 

II 80186 SRDY synchronous ready generation. Synchronize ready inputs for 80186 SRDY input. 

" No wait states if any internal 80186 registers (at 1/0 address OffXXh) selected .. 

.. except for the internal TIMER registers" 

SRDY_186 := TIMER_ROY + SYS_REAOY + «(fIORC + IAIOWC) * (A[15:8] = #811111111) * (A[15:6] 1= #81111111101»; 

END. 
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Listing sum·of·products equations for PALA_8087_80186_lnterface 

• I • ' 

SROY_186 := /I0RC*A [15]*A[14] *A[13]*A[12]*A [11]*A [10] *A [9] *A[8] */A [6] 

+ A [15]*A [14] *A [13] *A [12] *A [11]*A [10]*A [9] *A [8]*/A [6]*/AIOIolC 

+ TIMER_ROY 

+ SYS_REAOY 

+ A [15] *A[14] *A [13] *A [12]*A[11]*A [10]*A [9] *A [8] *A [7] */AIO\oIC 

+ /I0RC*A [15] *A[14] *A[13]*A [12]*A [11]*A [10] *A [9]*A [8] *A [7] ; 

SROY_186.ARESET = RESET; 

TIMER_ROY := A [15] *A [14]*A [13]*A [12] *A[11] *A [10] *A [9] *A [8] */A [7] *A [6] 

* /AIO\oIC 
+ A[15] *A [14] *A [13]*A [12] *A[11]*A [10] *A [9] *A[8] */A [7]*A [6] 

* /I0RC; 

T1MER_RoY.ARESET = RESET; 

RG_GTO = 0; 
RG_GTO.TRISTATE = /STATE[1]*STATE[0]*HLOA; 

RG_GTO.ARESET = RESET; 

HOLD := STATE [0] 

+ STATE[1]; 

HOLD .ARESET = RESET; 

STATE [0] := /RG_GTO* /STATE [1] 

+ /STATE[1]*STATE[O]; 

STATE[O].ARESET = RESET; 

STATE[1] := STATE[O]*HLOA 

+ RG_GTO*STATE [1] 

+ STATE[1J*STATE[O]; 

STATE[1].ARESET = RESET; 
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PALB Design 

PALB is clocked with the inverted 80186 clock, 
CLK 186*. This PAL device contains the external 
DMA- HOLD/HLDA to RQ/GT1 interface to the 
8087, the Queue Status control logic, and the 
synchronization circuitry necessary for the various 
Ready signals. The equations for PALS are listed 
in Figure 3-220. 

External HOLD/HLDA Conversion to 
RQ/GT1 (8087) 

This protocol conversion circuit for external bus 
HOLD requesters performs the converse function 
of that described above for PALA. The State 
Machine Transition diagram is shown in Figure 3-
219. 

The state machine waits for an external HOLD 
request on the EHOLD input. It then generates a 
Hold Request pulse on the RQ/GT1 pin to the 
8087. It then waits for a Hold Acknowledge pulse 
from the 8087, and generates EHLDA to the 
external requestor. When the external Ho!d 
Request is removed, the circuit generates a 
Release pulse to the 8087 on the RQ/GT1 pin, 
and returns to state 1. Again, the versatility of the 
AmPAL22V10A is demonstrated by the bi­
directional three-state capability of the device. 

Gray codes were not used for the state 
assignments in this case. The codes were chosen 
to minimize the three-state enable term for the 
RQ/GT1 output. The RQ/GT1 outputs are enabled 
during States 2 and 4, to generate output pulses. 

State assignments chosen with Gray codes would 
have required two product terms for the three­
state enable (/STATE[1]*STATE[0] + 
STATE[1]*/STATE[0]), and the AmPAL22V10A 
can only support one product term for the three­
state enable signal. The state encoding chosen 
allows one product term for this function. There is 
minimal glitching on the outputs of this circuit, 
even though Gray codes were not used, because 
the EHLDA term is registered, and the RQ/GT1 
term is generated from a minimization that is fully 
covered onthe Karnaugh map (Reference 1). 

Queue Status Control Circuit 

The Queue Status inputs from the 80186 are 
delayed by 1/2 clock cycle in this circuit for proper 
prssentation to the 8087 as DSQO and DSQ1. In 
addition, the OK_ TO_GO signal forces these 
signals LOW after Reset, until the TRIP input 
receives a pulse. Recall that the 8087 must be idle 
after Reset until all internal 80186 registers are 
programmed. The TRIP input is generated by a 
chip select to an 110 port from the 80186. 

Ready Synchronization 

This circuit synchronizes the asynchronous 
SYSTEM_ARDY Ready signal. and presents the 
SYS_READY signal to PALA. The SRDY_186 
input to the 80186 is also synchronized by this 
circuit to be presented as' the SRDY _87 to the 
8087. 

Conclusion 

Due to the power and flexibility of the 
AmPAL22V10A device, the interface between the 
80186 microprocessor and the apparently 
incompatible 8087 Numeric Processor can be 
implemented wtth a small amount of circuitry. 
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EHOLD=O 

RESET';'1 

EHOLD=1 

08749A3-219 

Figure 3-219. External Hold/HLDA-to-RO/GT1 Converter 
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************************************************************************************** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 

**** 
PAL B **** 

**** 
This PAL performs part of the 8087 to 80186 interface function. Here, we **** 
delay Queue Status from the 80186 properly for the 8087. The logic is **** 
clocked off of the INVERTED 80186 clock. We also generate some of the **** 
si gnals used for the synchronous READY inputs to the 8087 and 80186. **** 
This logic is clocked off inverted ClK to guarantee adequate set·up times **** 
We also perform the HOLD •• > RQ/GT1 protocol for EXTERNAL bus masters. **** 

**** 
************************************************************************************** 

PIN 

II **** INPUTS ****11 

/ClK = 1 
RESET = 2 
Qsa = 3 
QS1 = 4 
SYSTEM_ARDY = S 

SRDY_186 = 6 

TRIP = 7 

EHOLD = 8 

II **** OUTPUTS ****11 

DQSO 23 

DQS1 22 

SYS_READY 21 

SRDY_87 20 

OK_TO_GO 19 

STATE [1 :0] 18:17 

EHLDA 16 

SOX duty cycle 80186 clock externally INVERTED 

Active HIGH reset from 80186 II 
Queue StatusO input from 80186 II 
Queue Status1 input from 80186 II 

System Asynchronous ready, to be synchronized 

Synchronous Ready for 80186 

Signal from 80186 to enable DQS[1 :0] outputs to 8087 

HOLD request from external DMA Master connected to 8087 

II Delayed queue status 0 to 8087 .. 

II Delayed queue status 1 to 8087 II 

" Synchronized system ready 

II Synchronous ready for 8087 

II Signal used to enable Queue Status outputs to 8087 (DSQ[1 :0] 

" EHOlD/EHlDA to 8087 RQ/GT1 hanshake state variables 

" EHOLD Acknowledge to external DMA MASTER connected to 8087 

" **** BIDIRECTIONAL INPUT/OUTPUTS **** II 

15; " 8087 RQ/GT1 DMA control for external master 

DEFINE 

II State variable state value assignments. 

" NOTE: These codes were chosen to minimize the RQ/GT signal implementation II 

t_1 0 II State 1 

T_2 1 .. State 2 

T_3 2 .. State 3 

T_4 = 3 .. State 4 II 
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BEGIN 

" ****************************************************************" 
" **** ****" 
" **** EHOLD/EHLDA TO RQ/GT1 Converter State Machine Definition ****" 
" **** for DMA interface to 8087 ****" 
" **** ****" 
" *****************.,.**********************************************" 

IF (RESET) THEN ARESET(); 

CASE ( STATE [1 :0] ) BEGIN 

END; 

BEGIN 

END; 

IF ( EHOLD ) 

THEN STATE[1:0] := T_2; 

ELSE STATE[1:0] := T_l; 

EHLDA := 0; 

" Wait for EHOLD REQUEST from external master" 

" De-assert EHOLD acknowledge " 

T_2 BEGIN 

STATE[1:0] := T_3; " Kill Time " 

EHLDA := 0; " and pulse RQ_GT to signal request to 8087 " 

END; 

BEGIN 

END; 

END; 

IF ( EHOLD 

THEN STATE [1 :0] := T_3; 

ELSE STATE[1:0] := T_4; 

" ~ait for master to release EHOLD request" 

IF (lEHLDA ) " Set EHLDA when RQ/GT GRANT pulse comes from 8087 " 

BEGIN 

THEN IF URQ_GT1) 

THEN EHLDA := 1; 

ELSE EHLDA := 0; 

ELSE EHLDA := 1; 

STATE[1:0] := T_1; 

EHLDA := 0; 

" Kill time, and pulse RQ_GT to signal RELEASE" 

" RQ_GT1 is tri -state controlled, and pulsed active low 

" The following controlS the RQ_GT signals 

RQ_GT1 = 0; 

IF «STATE[1:0] T_2) + (STATE [1 :0] 

Figure 3-220. (Continued) 
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II ****************************************************************11 
II **** ****11 
II **** MisceLLaneous Synchronization logicl ****11 
II **** ****11 

II ****************************************************************11 

II OK_lO_GO signal is tripped from an 80186 signal (i/o write) after it has set all 

II of its internal registers properly. Until then, OK_lO_GO is false and disables DQS[1 :0] II 

END. 

IF ( IOK_lO_GO ) 

lHEN IF (TRIP) 

lHEN OK_lO_GO := 1; 

ELSE OK_lO_GO .- 0; 

ELSE OK_lO_GO := 1; 

II Delay Queue Status to 8087 

II Qual ify with OK_lO_GO signal from 80186 after it is reset II 

DQSO:= OK_lO_GO * QSO; 

DQS1 := OK_lO_GO * QS1; 

II Synchronize Asynchronous System Ready II 

II Synchronize 80186 SRDY input for 8087 II 

Figure 3-220. (Continued) 
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Listing sum-of-products equations for PALB_8087_80186_lnterface 

RQ_GT1 = 0: 

RQ_GT1. TRISTATE = STATE [0]: 

RQ_GT1.ARESET = RESET: 

EHLDA := STATE[1]*/STATE[0]*/RQ_GT1 

+ STATE [1] */STATE [0] *EHLDA: 

EHLDA .ARESET = RESET: 

STATE [0] := EHOLD*/STATE [1]*/STATE [0] 

+ /EHOLD*STATE[1]*/STATE[Q]: 

STATE [0] .ARESET = RESET; 

STATE[1] := STATE[1]*/STATE[O] 

+ /STATE[1]*STATE[0]: 

STATE[ll .ARESET = RESET; 

OK_TO_GO := TRIP 

+ OK_TO_GO: 

OK_TO_GO.ARESET = RESET; 

SRDY_87 := SRDY_186; 

SRDY _87 .ARESET = RESET; 

SYS_READY := SYSTEM_ARDY; 

SYS_READY.ARESET = RESET; 

DQS1 := OK_TO_GO*QS1; 

DQS1.ARESET = RESET; 

DQSO := OK_TO_GO*QSO; 

DQSO. ARESET = RESET; 

Figure 3-220. (Continued) 
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3.6.9 A MUL TIBUS ARBITER DE~IGN 
FOR 10 MHz PROCESSORS 

This application note describes the imple­
mentation of a bus arbiter using an AmPAl 16R4 to 
interface the 10 MHz 80186 to the MUlTIBUS 
multi-master environment. The PAL equations for 
bus exchange were developed based on func­
tional and timing requirements specified in the Intel 
MUlTIBUS Specification, June, 1982. The inter­
face shown addresses the bus master case in 
regards to bus exchange only. No attempt has 
been made to include the requirements for bus 
slave operation, interrupt handling or byte opera­
tions. This note assumes a knowledge of 
MUl TIBUS operations and signal names. 

Overview 

The system environment is assumed to be a 
collection of loosely coupled independent 
processors' which communicate through a com­
mon memory on the system bus. Each processor 
in this system possesses ns own local resources. 

A block diagram showing the interface of one 
such processor, an 80186, to the system bus, 
MUlTIBUS, is shown in Figure 3-225. A block of 
the 80186's address space is allocated to system 
memory. Access into this portion of the address 
map generates a request for the system bus via 8' 
programmable memory chip-select pin. Once a 
request is generated by the CPU, the AmPAl 
arbiter and the 8288 bus controller combine to 
perform a bus exchange and transfer cycle. 

In this design the arbiter maintains control of the 
system bus and therefore must be forced off either 
by a higher priority master (BPRN goes HIGH) or a 
Common Bus Request (CBRa). 

Functional Requirements 

On the MUlTIBUS, the bus exchange process 
begins when the Bus Request (BREa) goes lOW 
(parallel priority resolution scheme), or when 
BPRO goes HIGH to succeeding masters (serial 
priority resolution scheme). If the requesting 
master is granted priority (BPRN enabled) and the 
bus is not under control of another master (BUSY 
disabled), then the master may take control of the 
bus by forCing BUSY LOW. 

An optional request mechanism, Common Bus 
Request, used in conjunction with either parallel or 
serial priority has been implemented in this design. 

It reduces bus acquisnion overhead by allowing 
bus retention across transfer cycles, unless a 
request is pending (CBRa is lOW). For example, 
in parallel priority the requesting master asserts 
both BREa and CBRO to force the current master 
off the bus. Once acquisition is complete CBRa is 
released for use by another master. 

Timing Considerations 

Bus eXChan9aon MUlTIBUS is a synChronous 
process. BRE ,BPRO, BUSY and CBRQ are all 
synchronized with the trailing edge (HIGH-to­
lOW transition) of BClK. BClK is a MUlTIBUS 
Signal having a duty cycle of approximately 50% 
and a maximum frequency of 1 0 MHz. There is no 
requirement for synchronization between BClK 
and any other clock in a MUlTIBUS system. 
Synchronizer circuits must be used on signals 
that cross clock boundaries, because it is possi­
ble (as in this design) for the processor clock to be 
asynchronous to BClK. 

Bus priority on MUlTIBUS resolution takes place 
in one BClK cycle. If the serial priority scheme is 
implemented, this requirement will place an upper 
limit on the number of masters allowed for a given 
BClK rate. The parallel priority scheme allows 
the relationship between BClK and the number of 
masters to be independent. Whichever is chosen, 
the MUlTIBUS specified minimum setup time of 
22 ns (resolution to clock), plus the desire to keep 
the BPRN to BPRO propagation delay to a mini­
mum, points to the use of an "1\' speed PAL 
device (Figure 3-226). 

The MUlTIBUS bus exchange timing requires a 
BUSY setup time before clock of 25 ns (see Fig­
ure 3-226). Release by one master and acquisi­
tion by another takes place on two successive 
HIGH to lOW transitions of BClK. 

PAL Design Description 

The PAL design specification with supporting 
timing diagrams are shown in Figures 3-227 and 
3-228. The following remarks are in addition to the 
comments found on the PAL design specification. 

The term "BRap*AEN" found in the equation for 
"BREO" is required to keep the arbiter from 
recapturing the bus when it is the releasing master. 
This can occur when a CBRa forced the 
surrender, and the processor cycle which follows 
the just completed cycle accesses the system 
memory. 
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Using BREQ to disable BPRO results in a 40 ns 
delay worst case from clock (tCO + tPD). Taking 
into account the 22 ns setup (see Fig. 3-226) and 
clock skew (3 ns max) leaves 35 ns of cycle (10 
MHz BCLK), if the serial priority resolution 
scheme is being employed. Lower priority mas­
ters using this design would exhibit a 25 ns worst 
case delay BPRN to BPRO. Use an external gate 
to im~lement the equation "BPRO = 
BPRN*BREQ" if the serial priority is required when 
using more than tWQ masters. 

Note the inversion of BLCK for use by the PAL 
device. PAL registers load data on the LOW to 
HIGH clock transition of pin 1. 

MUL TIBUS address setup before Command (50 
ns min.) is determined by the 8288 bus controller. 
The 8288 specification guarantees 115 ns 
minimum between AEN going LOW and 
Commands going active. 

MUL TIBUS address hold after Command (50 ns 
min.) is satisfied by using the ALE signal from the 
8288 instead of the 80186. The 8288 Command 
lines go inactive on the HIGH to LOW transition of 
CLKOUT at the beginning of T4 (30 ns max delay). 
The 8288 ALE Signal goes active on the HIGH to 
LOW transition of CLKOUT at the beginning of T1 
(1/2 clock cycle later than ALE from the 80186). 
The minimum hold time is therefore 100 ns - 35 ns 
=65 ns. 

REFERENCES: 

1) Intel Multibus Specification #9800688-04, June 
1982 

2) Intel iAPX 86,88 Users Manual, August 1981 

3) Advanced Micro Devices' MOS Micro-
processors and Peripheral's, 1985 

4) Intel Component Data Catalog, 1982 
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Figure 3 .. 226. Bus Exchange AC Timing 
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AmPAL16R4 
PATOOl 
Multibus Arbiter 
Advanced Micro Devices 
BLCK /BPQ /LOCK /BPRN NC NC NC NC NC GND 
fOE /BPRO /BUSY /AEN /BREQ /LOCKP /BRQP /CBRQ NC VCC 

BRQP := BRQ 

LOCKP := LOCK 

BREQ 

BPRO 

AEN 

BRQP*/AEN 
+ BRQP*BREQ 
+ BREQ*BPRN*/CBRQ 
+ BREQ*LOCKP 

BPRN*/BREQ 

BREQ*/BUSY*BPRN 
+ BREQ*/AEN 
+ AEN*BPRN*/CBRQ 

IF (AEN) BUSY AEN 

IF (BREQ*/AEN) CBRQ BREQ*/AEN 

08479A3-223 

iCPU SYSTEM BUS REQUEST SYNC TO BCLK 

iCPU LOCK SIGNAL SYNC TO BCLK 

iREQUEST SYSTEM BUS IF NOT CURRENT BUS 
iMASTER. HOLD TILL CPU RELEASES. WHEN 
iCPU RELEASES HOLD IF NO OTHER 
iREQUESTORS. HOLD ON CPU LOCK. 

iFORCE OFF LOWER PRIORITY REQUESTORS IF 
iREQUESTING, IF NOT PASS PRIORITY THRU. 

iAQUIRE SYSTEM BUS AND ENABLE ADDRESS 
iBUFFERS. WHEN CPU RELEASES HOLD IF NO 
iOTHER REQUESTORS. 

iALLOWS BUSY TO EMULATE O.C. I/O PIN. 

iREQUEST SYS BUS VIA CBRQ UNTIL AQUIRED 

Figure 3-227. AmPAL 16R4 Arbiter DeSign Specification 
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tmif. . SPECIAL REPORT or~ Mlr~ICOPt1PUTER SYSTEMS cg 

lOGIC~l At TERNATIVES 
IN SUPt~MiNI DESIGN 
Becoming the technology of choice in superminicomputer 
design, programmable array logic mixes with alternative 
devices to meet desi~n constraints. 

II 
II 1 
II 

by Bradford S. Kitson and 
B. Joshua Rosen 

IT I 

Programmable array logic devices have been a 
driving force behind the latest generation of 32-bit 
superminicomputer designs. These supermini­
computers range from redesigns of existing archi­
tectures that reduce cost or overcome packaging 
limitations, to designs requiring ultrafast turn­
around, to high performance architectures speci­
fied to take fuIl advantage of such devices. 

Superminicomputers designed with program­
mable array logic (PAL®) include the VAX~I1/730 

Bradford S. Kitson is section manager in product 
planning and applications for programmable logic 
devices at Advanced Micro Devices, 901 Thompson 
PI, Sunnyvale, CA 94088. He holds a BS in electrical 
engineering and computer science from the University 
of California at Berkeley. 

B. Joshua Rosen is manager of processor design at 
Dataflow Systems Corp, 42 Nagog Park, Acton, MA 
01720. He was manager of processor development at 
Computervision Corp, Bedford, MA, when this article 
was written. He holds a BA in physics from Lawrence 
University and an MSEE from Northwestern 
University. 
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from Digital Equipment Corp, the MV/SOOO and 
MV/l<.XXXJ from Data General, and Computervision's 
APu'"(analytic processing unit). A reimplementa­
tion of the original VAX-1I/7S0, the VAX-l 1/730 sup­
piies 250/0 of the performance in 10% of the board 
space. Programmable array logic was chosen by 
the MV /SOOO designers to all ow the shortest possible 
design cycle and to catch up with their competitors. 
The MV/lOOOO upgrades performance of the 
MV /SOOO. The Computervision APU was designed 
for high performance with PAL devices in mind, 
and provides exceIlent examples of how to use such 
devices to their fuIlest. 

Logic design alternatives 
Although by no means the only option, pro­

grammable array logic has become the technology 
of choice in superminicomputer design. Logic 
design alternatives (Fig 1) include standard prod­
ucts (fixed-function devices), semi-custom 
(programmable logic, gate arrays, and standard 
ceIls), and fuIly-custom logic devices. In supermini­
computer design, the primary alternatives are stan­
dard products, gate arrays, and PAL devices. The 
best choice for any given function depends upon 
the design alternative capabilities, the design con­
straints, and the function actually being 
implemented. 
Reprinted with pormission of COMPUTER DESIGN 
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Fig 1 Basic categories of digital logic present designers with . 
trade-off opportunities. Standard products fit where cost is a 
major concern; custom and semi-custom products can be used 
where high diversity is desirable. 

Via fuse programming, a PAL device allows the 
designer to construct a custom device or group of 
devices that precisely implement a desired func­
tion. In contrast, fixed-function transistor­
transistor logic (TTL) small scale integration! 
medium scale integration (SSIIMSI) alternatives 
seldom seem to fit any application in the desired 
way. Thus, the SSIIMSI designer usually pays 
penalties via extra logic levels in the critical path 
and an increased package count. Gate arrays allow 
custom devices to be created via mask program­
ming. However, designers using a gate array must 
finalize architecture early in the design cycle. Any 
errors will require a mask change, which can take 
months. 

In most cases, the best choice is a combination of 
the alternatives and probably includes some 
memory as well. Typically, the six basic design con­
straints are performance (speed), cost, density 
(packaging), power dissipation, reliability, and 
design turnaround. Assigning a priority to these 
constraints will usually define the logic alternative 
that a machine is based on. Actual implementation 
trade-offs are made at the function level. The three 
basic functional portions of a design are data path, 
control path, and interface. 

Standard products have their place 
Standard products are defined as devices created 

for a wide market. Examples of standard products 
are TTL SSIIMSI, fixed instruction set metal oxide 
semiconductor (MOS) microprocessors, and micro­
programmable large scale integration (LSI) building 
blocks. These devices are usually multiple sourced 
and produced in high volume, resulting in lower 
individual device costs. In a design where cost is the 
main concern, and performance, power dissipation, 
density, and design turnaround are of little or no 
importance, standard products are probably the 
best choice. In a design such as a superminicom-
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puter, where these other considerations have a high 
priority, inherent disadvantages limit standard 
product use. 

While SSIIMSI devices offer fast individual gates, 
on a system level their density, power dissipation, 
and reliability characteristics are not as good as ' 
those of the alternatives. In addition, design turn­
around characteristics are inadequate because 
changes usually require printed circuit (PC) boards 
to be laid out again. In most superminicomputers, 
therefore, SSIIMSI gates are used only in selected 
critical path functions that require one or two gate 
levels (at the expense of density and power dissipa~ 
tion), and in interface applications, such as bus 
buffers, latches, registers, and transceivers. 

Standard LSI products (mostly bipolar) offer 
exceptional performance, power dissipation, density, 
and reliability characteristics, but their inflexible 
architectures limit their application range. Super­
minicomputer designers rely on proprietary, highly 
complex architectures to differentiate their designs 
from those of their competitors, and LSI imposes 
an architecture. Therefore, applications are limited 
to general purpose, well-defined functions in the 
data path, such as parallel multipliers and arith­
metic logic units (ALUS) that can benefit from their 
high performance characteristics. 

Gate arrays are "cast in concrete" 
Semi-custom gate arrays are defined by inte­

grated circuit (Ic) manufacturers as large arrays of 
unconnected gates. End users specify how gates are 
interconnected with actual interconnection occurring 
at the metal-mask layer of the IC process. The main 
advantages of gate arrays are high density and the 
ability to customize a design, while primary dis­
advantages are cost and design turnaround. Each 
custom device is single sourced and low volume; 
therefore they are not cost-effective unless the 
application is density limited or the volume is very 
high. Gate arrays can adversely affect design turn­
around because the system designer must design 
both the IC and the system in which the IC is used. 
In addition, any change in the gate array requires 
new masks and a delay for each mask iteration. 

By using gate arrays only where the design can be 
defined early, designers minimize these turnaround 
disadvantages. They then hedge their bets by sur­
rounding the gate arrays with logic that can correct 
any design bug(s) discovered later on. As in LSI, 
what is "cast in concrete" is usually the data path. 
However, gate arrays allow more of the data path 
to be integrated because the device can be optimized 
for specific design requirements. A proprietary 
16-bit ALU slice might be a typical gate array. 

Gate arrays are also used to interface multiple 
onboard buses together as data path "glue." 
Control-path and interface applications, however, 
tend to be too likely to change. Therefore, control 
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path functions are based on implementation tech­
niques such as writable-control-store (WCS). Inter­
face applications frequently require changes 
because of the need to interface one designer'S 
board to another's. Consider the critical timing 
between a cache, an instruction fetching unit, and 
multiple register-files. The exception handling 
capability required for typical operations, such as a 
cache miss, can be an in determinant problem 
affecting all of the above-mentioned functional 
units in the system. Should a bug occur in the cache 
unit, the interface section of all other units will have 
to be changed to accommodate the correction. 

PAL structure paves the data path 
Combining simplicity and flexibility, the basic 

PAL structure is a fuse-programmable AND gate 
array that drives fixed connection OR gates, allow­
ing logic to be implemented in sum-of-products 
(AND-OR) Boolean form. 

By selectively blowing the appropriate fuses, a 
PAL device can implement any logic function as 
long as the number of inputs or AND gates required 
does not exceed the number provided in the device 

~~----------------~--~--~ 
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chosen. In the AmPALl6R4, for example, the true 
and complement version of each of the 16 inputs is 
connected via fuses to each of the 64 AND gates in 
the device (Fig 2). PAL devices provide additional 
features, such as programmable input/output (I/O) 
pins and registered outputs with internal feedback 
that further enhance their ability to implement 
logic functions efficiently. Programmable IIOS are 
especially useful for trading off the number of 
device outputs for inputs to fit the exact number 
required by the logic functions being implemented. 
Internal registered feedback is desirable when 
implementing complex state machine designs. 

Programmable logic devices, like gate array, are 
semi-custom devices. Created by the IC manufac­
turer, they are alterable by fuse programming for a 
specific application. Designed specifically for logic­
oriented applications, PAL devices enable designers 
to create custom devices with fast turnaround time. 
PAL devi,ces compare favorably to alternative 
devices in terms of performance, cost, density, 
power dissipation, and reliability. They fall behind 
gate arrays and LSI in density and power dissipa­
tion, and behind SSI/MSI in individual device cost. 
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(Note however, that PAL devices are cheaper on a 
system basis.) 

Performance and density characteristics of PAL 
devices have led to significant applications in the 
data paths of superminis where they are used along 
with LSI and/or gate arrays. These devices serve to 
"glue" the LSI and the "cast in concrete" gate 
arrays into the system. If necessary, the design turn 
around capability that they display can be used to 
optimize the data path architecture and, in some 
cases, fix a bug in a gate array by reprogramming the 
PAL devices around it. Typical data path functions 
for the devices include barrel shifters, masking, 
code conversion, and multiple bus interface. 

Design turnaround becomes especially beneficial 
in the control path and interface portions of a 
design. Most control path functions are highly ran­
dom and are prone to change and/or error. While 
WCS allows design changes to be made by rewriting 
microcode, PAL devices permit changes that cannot 
be made in microcode, or would adversely affect 
system performance. For instance, one supermini­
computer manufacturer has established the rule 
that a gate array can be used in the control path 
only if eight or more PAL devices are necessary for 
the same function. In interface design, from a den­
sity standpoint, PAL devices allow the interface to 
merge with the data path "glue" function. Since 
the interface is just as likely to change as the 

8lSBs 

PAls 

Fig 3 Multiplier calculates 56-bit x 56-bit product. Partial 
product generation logic uses seven 8 x 8 slices to form 8 x 
56-bit multiplication array. Carry-save adders implement 
3-to-2 counting techniques to form two operands that are 
summed In a lookahead ,\LU. 
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control path, but without the benefit of WCS, design 
turnaround becomes a factor. If one board's 
designer needs to change the interface, the designs 
of many other boards are impacted. Updates on all 
boards can be easily made by reprogramming one 
or more PAL devices. These devices can also pro­
vide the drive capability required by this appli­
cation area. 

Designing with PAL devices in mind 
Trade-offs among PAL devices and other digital 

logic alternatives were key factors in Computervi­
sion's APU design. In conjunction with standard 
products, such as ALUS, LSI multipliers, and 
memory devices, PAL devices were used to create a 
patented architecture not feasible in standard TTL 
SSIIMSI. 

Designed as a very high speed 32-bit supermini­
computer for engineering applications, the Com­
putervision APU is twice as fast as competitive 
designs, yet occupies the same board space. Its 
designers, instead of merely replacing TTL SSIIMSI 
with PAL devices, used PAL as customizable logic 
building blocks. This allowed them to implement 
powerful logic functions in a minimum of space. 

The APU processor board set is divided into four 
modules. The parser/sequencer contains an instruc­
tion processor that fetches and decodes instruc­
tions in parallel with the execution unit. The 
control processor performs address and integer 
computations and the floating point pipe (FPP) per­
forms both scalar and vector floating point opera­
tions. The cache/address translation unit contains 
a 256-s10t area page table entry cache and a 
16K-byte memory cache. 

Approximately 25070 of the chips in the APU board 
set are in PAL. Since the APU is the first implemen­
tation of the new CPU architecture, many design 
aspects are subject to change as the architecture 
evolves. PAL devices permit designers to rapidly 
modify hardware to fit the architecture needs. and 
to implement feature and performance enhance­
ments with minimal impact on the development 
schedule. 

Ability to generate a very large number of custom 
I,Cs (over 200 different PAL codes are used in the 
APU), significantly reduces the processor's size 
while increasing overall performance. This means 
that, although the APU and Digital Equipment 
Corp's VAX-II 1750, a gate array-based machine, 
consume exactly the same amount of board space, 
the APU is more than twice as fast. In fact, the 
APU'S Fortran performance is substantially faster 
than that of the VAX-II 1780, a machine that con­
sumes 5.2 times as much board space as the APU. 

Designed as a high speed arithmetic extension to 
the APU execution engine, the APU FPP, unlike 
comparable machines, is an integral part of the 
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Without adding pipe latency, the APU 
is able to accumulate partial products 
at a rate of 8 x 56 bits every 112 ns. 

combination of 3 equally weighted bits can be 
recoded into a 2-bit field. 

This makes it possible to reduce the three oper­
ands generated by the multiplication process (high 
and low partial products and 64-bit intermediate 
product) into only two operands which may then 
be summed together in a single lookahead ALU. 
The 3-to-2 recoding requires no-carry propagate 
logic and is therefore very fast. Only one level of 
pipelining is required because of the 3-to-2 
counter's speed, resulting in both a reduced parts 
count and a reduced pipe latency. 

In the APU floating point engine, 16 AmPALl6R6s, 
programmed as triple 3-to-2 counters, are used to 
reduce the three multiplication operands to two 
intermediate results [Fig 4(b»). The registered PAL 
outputs are connected to the input buses of the 
Mantissa ALU that is also used for floating point 
addition and subtraction. The Mantissa ALU then 
calculates the next intermediate product in parallel 
with the partial products calculations occurring in 
the 8 x 8 multipliers. This intermediate product and 
the new partial products are recoded by the 3-to-2 
counter PAL devices to form the next pair of inter­
mediate results. This process continues until the 
complete 56 x 56 product is generated. Thus, with­
out adding pipe latency, the APU is able to accumu­
late partial products at a rate of 8 x 56 bits every 
112 ns, which coincides with the basic nanocycle 
machine time. 

Barrel shifter, a a·level implementation 
The APU's barrel shifter performs left shift, right 

shift, and rotate operations of. ° to 63 bits in a 
single microcycle. Used mainly for floating point 
prescale and normalize operations, the barrel 
shifter (Fig 5) is implemented in three stages: the 
word rotater, nibble shifter, and bit shift and mask 
logic. It is controlled by associated prescale, 
leading zero detect, and mask control logic. 

Prescale logic converts the signed difference pro­
duced by the exponent arithmetic units based on 
the comparisons of the two operand exponents, 
into an absolute shift distance. This shift distance 
is then used to right shift (prescale) the smaller 
operand Mantissa of a floating point add or sub­
tract operation. The leading zero detect logic deter­
mines the left shift distance required to produce a 
left-justified (normalized) result. Mask' control 
logic converts rotated data to shifted data by mask­
ing off the appropriate leading or trailing .bits to 
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implement right or left shifts. These three sections 
are implemented in PAL. 

Implementing the 3-level, 64-bit barrel shifter in 
MSI requires the use of Am25SlO 4-bit shifters. The 
first level is the word rotater which performs a cir­
cular rotate of 0, 16, 32 or 48 bits. Although imple­
mentation is simple, the MSI solution requires 16 
packages. The second level is the nibble shifter, 
essentially identical to the word rotater but wired 
to rotate 0, 4, 8, or 12 bits. The final barrel shifter 
stage requires not only bit rotate but also leading 
and trailing bit masking and sticky bit computation 
(ie, the logical OR of the masked-out bits). An MSI 
solution requires not only the 16 packages of 
AM25SlOs, used in each preceding level, but also 16 
AND gate packages for masking, with another 16 
AND packages for the sticky bit computation. Con­
trol logic for the mask operation requires as much 
logic as the entire shift path. A more practical solu­
tion consists of building separate left and right 

EXPONENT 
AlU OUTPUT 

64·BIT 
INPUT DATA 

64·BIT 
OUTPUT OATA 

Fig 5 Implementation of 64-bit "Nearest Neighbor Shifter" 
is in three stages: word rotater, nibble shifter, and bit shift and 
mask logic. Control derives from associated prescale, leading 
zero detect, and mask control logic. 
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internal architecture and not an optional add-on. 
As a result, the FPP not only accelerates scalar and 
vector floating point arithmetic, but also performs 
byte, word, double-word, and quad-word string 
operations. In addition, it serves to enhance the 
performance of important non floating point 
instructions such as Procedure Call and Return. A 
total of 79 PAL devices are used for both control­
and data-path applications on the FPP board. 

Counter solves multiplication problem 
The heart of the FPP is the multiplier section 

(Fig 3). Double-precision floating point mUltiplica­
tion requires the calculation of a 56-bit x 56-bit 
product. Unfortunately, 56 x 56 parallel multipliers 
do not exist on silicon. From a cost/performance 
standpoint, the best solution is to use a number of 
small multipliers to build an intermediate sized par­
allel multiplier and then produce a large product 
(56 x 56) in mUltiple cycles. 

Partial product generator FPP logic uses seven 
Am25S558 8 x 8 multiplier slices to implement an 8 x 
56-bit multiplication array. Each multiplier chip 
produces a 16-bit product. In general, the 8 most 
significant bits (MSBS) of each partial product gen­
erator must be added to the 8 least significant bits 
(LSBS) of the next higher slice to generate the full 

INPUTS OUTPUTS 
000 00 

FAlUo 001 01 
010 01 
011 10 
100 01 PAo 
101 10 
110 10 
III 11 PBo 

(a) 

Fig 4 Carry-save adders use 3-to-2 
counting techniques to recode any 
three equally weighted bits into a 
2-bit field (a). Sixteen PAL units 
form triple 3-to-2 counters (b) to 
reduce the three multiplication 
operands to two intermediate 
results. FAlU1 

PA1 

PB1 

64-bit partial product. Exceptions are the 8 MSBS 
and LSBS. 

This technique also requires the ability to accu­
mulate partial products with the partial products 
from previous cycles. Thus, each cycle must be 
accompanied by two additions: the partial product 
summation and the intermediate product accumu­
lation. While this can be done by following the 
multipliers with two levels of lookahead adders, 
usually 74S181s, the resulting nanocycle time is 
approximately three times longer than the partial 
product generation time of the 8 x 8 multipliers. 
Modifying this scheme, however, by adding reg­
isters between each level of logic, the pipeline 
multiplier reduces the nanocycle time to near the 
propagation delay time of the multiplier chips plus 
the clock to output time of the multiplier register 
plus the setup time of the intermediate result reg­
ister. This scheme has two disadvantages: increased 
pipe latency, caused by the two extra levels of 
pipelining, and a high parts count. 

Still another technique involves replacing one 
level of the pipe and one level of lookahead adders 
with carry-save adders between the partial product 
generators and the pipeline registers. Carry-save 
adders are used to implement a technique that is 
called 3-to-2 counting. As seen in Fig 4(a), any 
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FA! 
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fA2 

fii2 

fAJ 

(b) 
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WAi 

WAz 

Fig 6 Word rotation, first level of 3-level shifter, consists 
of eight PAL units, each programmed as two 4-bU rotators. 
It performs a circular rotate of 0, 16, 32, or 48 bits. 

Fig 7 Nibble shifter makes up second level of barrel 
shifter. It is wired to rotate 0, 4, 8, or 12 bits. 

Wi 

Wi 

shifters, 48 packages apiece, and not implementing 
a sticky bit at all. 

Implemented in PAL, a 64-bit rotater and shifter 
with sticky bit computation requires considerably 
fewer packages than a unidirectional MSI shifter. 
The word rotater consists of eight identical PAL 
devices programmed as two 4-bit rotaters/package 
(Fig 6). The nibble shifter requires four Am25sIOs 
and eight PAL devices programmed as 6-bit wide, 
4-place shifters (Fig 7). The bit shift and mask logic 
requires 16 PAL devices in the data path and two 
PAL devices in the control path. (Fig 8). 

To implement the masking function required for 
shifting, a technique called "Nearest Neighbor 
Shifting" (U.S. patent pending, Computervision 
Corp) is used. Each shift and mask PAL device has 
an enable input from one mask control PAL unit. 
In addition, each shift and mask PAL device is also 
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Fig 8 Bit shift and mask logic for barrel shifler requires 16 
PAL devices in the data path and two PAL devices in the 
control path. Each shift and mask PAL device has an enable 
input from one inask control PAL device and is connected to 
enable inputs of its left and right neighbors. The 64-bit 
masking operation requires only 16 control lines. 

COMPUTER DESISI/November 1983 

Fig 9 "Nearest Neighbor" interconnection is used to 
implement masking function for shifting. A mask control PAL 
device determines if all 4 bits are to be masked; enables from 
the adjacent slice determine if the PAL device is at shift 
boundary. 

connected to the enable inputs from its left and 
right-hand neighbors (Fig 9). The mask control 
PAL input determines if all 4 bits from the slice 
should be masked off. Enables from the adjacent 
slice determine if a PAL unit is at a shift boundary. 
If only one of the neighboring slices is disabled, the 
shift and mask PAL unit masks off from 0 to 3 of 
the bits adjacent to the disabled slice, depending on 
the bit-rotation distance. In this way, the 64-bit 
masking operation can be implemented with only 
16 control lines as opposed to at least 64 for an 
SSIIMSI solution. 

In addition to performing the final shift and 
mask operation, the bit-shifter PAL unit also com­
putes the logical OR of the masked-out bits at each 
slice position. These outputs are then logically 
oRed to generate a sticky bit. The extra hardware 
required is less than two SSI packages. The entire 
PAL barrel shifter requires 38 devices to implement 
64-bit rotation, left shifting, right shifting, and 
sticky bit accumulation. An MSI-based left/right 
shifter, without sticky bit computation, requires a 
minimum of 96 parts. In addition, the logic re­
quired for implementing the prescale and normal­
ize operations is significantly reduced through the 
I.\se of PAL devices. 
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3.7.2 Article Reprint 

PLDs As Semicustom Substitutes 
Om Agrawal. Advanced Micro Devices Inc .. Sunnyvale. CA 

Jim Beck. Chronon Computer Corp .. Mountain View. CA 

TOday'S system designers can choose from at least five 
ways to implement their applications: Standard prod­
ucts (SSI, MSI, LSI-fixed-function devices), pro­

grammable logic, gate arrays, standard cells, and full-custom 
logic devices. With each alternative come tradeoffs related to 
architectural flexibility. time, and development cost (Figure 
1). The best choice for a given design usually depends on the 
designer's priorities. Table 1 illustrates the selection criteria 
for various alternatives. 

Generic Advantages of PLDs 

Programmable logic devices (PLDs) are off-the-shelf CllS­

tomizable devices that combine the flexibility of custom logic 
with the easy availability of standard products. The major 
advantages of PLDs over other semicustom solutions such as 
gate arrays and standard cells include reduced development 
time, greater design interactivity, and lower overall system 
development cost. 

PLDs offer the fastest design cycle of any' semicustom 
device. Since the architecture of a PLD is defined by its 
programmable fuse pattern, PLDs can be programmed within 
hours, instead of the weeks to months required for gate arrays 
and standard cells. Besides allowing an interactive approach 
to system design, this fast turnaround time encourages experi­
mentation in the sense that different architectures can be tried 
out with a minimum of overhead. If the implementation does 
not work. new devices can be programmed quickly and 
inexpensively, in comparison to other semicustom alterna­
tives. The system development costs and capital equipment 
costs associated with PLDs are also substantially less than 
those of gate arrays and standard cells. 

In addition, the total engineering effort required to design, 
test, debug, and bring into production a system using PLDs is 
substantially less than that required for other semicustom 
alternatives. Currently, high-level tools are being developed 
to further simplify the process of designing with PLDs. 
Compiler-based software languages for specifying original 
logic equations can generate a minimum number of interme­
diate equations with built-in optimizers. There are support 
tools, such as simulators and test vector generators, for 
debugging and testing in both the prototyping and production 
environments. 

Architectural Variations in PLDs 

Substantial progress has been made wlth PLDs in the past 
few years. They are currently accepted as a viable option for 
system design, and they are becoming a preferred approach to 
logic design. 

VLSI DESIGN June /985 

FIGURE 1. Development time, cost, and archi­
tectural flexibility tradeoffs. 

PROMs, PAL' devices, and PLAs constitute the three most 
prevalent programmable logic devices. All these PLDs have 
the same basic two-level AND-OR architecture, but they vary 
in their allocation of logic features and their methods of 
programmability. 

The basic AND-OR structure makes PLDs natural for 
implementing logic equations in Boolean sum-of-products 
form. However, unlike PROMs, which have a fixed AND 
array structure, the programmable AND array structure of 
PALs and PLAs makes them suitable for handling a larger 
number of inputs. This programmable AND structure also 
means that the inputs are not fully decoded. allowing more 
than one address to select the same word. Also, more than one 
word in the array can be selected simultaneously. PAL 
devices and PLAs therefore overcome one 'of the key ineffi­
ciencies of PROMs: a fixed number of inputs. Because the 
PAL devices do not need the fuses and programming and 
testing circuitry for the OR array, they are typically 15% 
faster than PLAs for a given logic capability. . 

Besides supporting a greater number of inputs, the other 
architectural benefits of PAL devices include programmable 
bidirectional I/O pins, programmable combinatorial or regis­
tered outputs, polarity control, and flexible product term 
distribution. 

The basic PAL architecture incorporates a fuse-program­
mable AND array that drives fixed-connection OR gates. By 
blowing the appropriate fuses of the AND array, a designer 

lPAL is a trademark of, and used under license from, Monolithic Memories, Inc 
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TABLE l. Selection criteria 10r di11erent alternatives. 

can create a PAL device to implement any logic function 
expressed in a sum-of-products form, so long as the number 
of inputs per AND gate, and the number of OR outputs, do 
not exceed the capacity of the given device. 

For a PAL device, the degree of its programmability and 
architectural flexibility is determined somewhat by the num­
ber of fuses that form its programmable AND/OR gate. Each 
programmable AND gate is called a product term; these can 
be configured to provide either the logic functions (for form­
ing the outputs) or control functions (for generating control 
signals). The first generation, 20-pin PAL devices such as 
16L8 or the 16R8 have 64 logical product terms and 8 control 
product terms, with a total of 2K fuses. The second-genera­
tion PAL device, illustrated by the AmPAL22VIO, has an 
array of 5808 fuses with a total of 132 product terms. Of these 
132, 120 are logical product terms and 12 are control product 
terms (Figure 2). 

Each product term consists of a fixed number of inputs. 
These inputs may be dedicated or fed back, or they may 
consist of bidirectional VO pins. Whereas the first-generation 
devices had 32 inputs per product term, the 22V 10 has 44 
inputs to drive each product term (up to 22 inputs with both its 
true version and its complements). 

Programmable VOs allow the programming of the outp!.:t 
buffers through a control product term; they also allow the 
output to be configured as a dedicated output pin, a dedicated 
input pin, or a dynamically controllable inpuUoutput. This 
makes the device useful in fitting the exact number of inputs 
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FIGURE 3. The 22VIO output logic macrocell diagram. 

or outputs required for desired functions. To be used as an 
output, the output buffer is always enabled (i.e., all the fuses 
associated with that product term are blown), and the pin 
behaves as an output pin. For an input pin, the product term 
associated with that output buffer is unused. Dynamically 
controllable inpuUoutput buffers result from the output-en­
able product term being enabled or disabled by a logical 
combination of one or more inputs. Such buffers are useful in 
microprocessor bus-oriented applications, such as data steer­
ing, storage, or manipulation. 

Output macrocells increase the regularity and design free­
dom available with the PAL devices. These macrocells allow 
any or all of the liD pins to have either registered or combina­
torial outputs, of either polarity (active high or active low). 
The programmable output-polarity control feature of the 
macrocell allows the designer to program either the true or 
complementary version of a logical term, whichever makes 
the most efficient use of the chip's AND array. Also, associ­
ated with each macrocell is an individual output-enable con­
trol term that configures the liD pins for either input or 
output. Macrocells with individual liD-enables allow design­
ers to customize each chip's architecture to fit its own 
application, using different combinations of registered and 
combinatorial inputs and outputs (Figure 3). 

Another concept that is quite useful to system designers is 
the "variable distribution of product terms." This approach 
aids in implementing functions such as counters, exclusive 
OR functions, or complex state machines, where different 
states require different numbers of product terms. This is 
especially useful in counter applications, in which the least 
significant bit(s) of a counter require fewer product terms than 
the most significant bit(s). Besides offering more architectur­
al flexibility, this results in optimum use of chips' internal 
resources. 

The first generation of PAL devices offered a fixed distri­
bution of product terms, with a maximum of eight logical 
product terms per output. With variable distribution of prod­
uct terms, and a larger riumberofproduct terms per output (up 
to 16), the 22VlO allows more complex functions 10 be 
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implemented than was previously possible in a single PAL 
device. 

Application of PALs in SystomDasign 

A system designer typically partitions his task into three 
general areas: data-path, control-path, and interface (glue) 
applications. 

Data-path applications typically include data manipulation 
(ALUs), data storage (register files, pipeline registers), and 
data steering/selection (multiplexing/demultiplexing). In 
these applications, performance and density are critical. Typi­
cally, the data-path portion of a system is the most structured 
portion, so this is likely to be defined relatively early in the 
design cycle and is unlikely to require changes during proto­
typing. Hence turnaround time normally is not critical for the 
data-path portion of a typical system. 

Control-path applications usually include the timing, se­
quencing, and decision-making portions of a digital system. 
These sections are normally implemented with state rna­
chines--either random logic in either PROMs or RAMs. The 
control section is the most complex portion of a digital 
design, and it is likely to contain subtle errors and to require 
many changes during prototyping. Performance and turnar­
ound time tend to be critical for the control path, while 
density considerations are less important. 

Interface or glue applications fulfill the miscellaneous 
functions. Typically, interface circuitry connects LSI mod­
ules, such as microprocessors, peripherals, and gate arrays. 
For interface applications, turnaround time is quite critical. 

PAL devices, because of their general-purpose nature, are 
used in all of these applications-<iata path, control, and 
interface. In the data path, they can be used for data steering 
and data manipulation. Using PAL devices for data steering 
simplifies the implementation of a multiple-bus architecture. 
Data manipulation may include functions such as 16/32 
bidirectional shifters, barrel shifters, constant-generation log­
ic, and sign-extension logic. PALs are also used extensively 
for optimizing control functions, such as instruction pre­
decoding. double pipelining control, register file control, and 
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FIGURE 4. A 32-bit bidiroctional shift or using 22VIOs. 

special-instruction control. 
Most of the design support for PAL devices has been 

concentrated on either sequential controllers or expanded 
versions of available MSI parts. However, in these two 
applications, alternative choices often diminish the appeal of 
PALs. For example, in sequential-controller designs, PROMs 
compete with PAL devices, because they do not have the 
product term limitation of the PAL devices. In the case of 
expanded MSI functions, the idea of implementing a 28-bit 
counter with a single 40-pin PAL device, for example, 
requires careful cost analysis before one can seriously consid­
er replacing multiple-sourced SSI and MSI chips. 

Here we wiIIlook at some alternative uses for PAL devices 
that are not normally presented in the literature. The applica­
tions described make extensive use of the Am22VIO. Al­
though the 22VlO is not the most complex device offered in 
the PAL universe, it does have the speed and features neces­
sary for high-performance TTL designs. 

Two applications using the 22VlO are presented here: a 32-
bit bidirectional shifter, and an interrupt mask and control 
register. The shifter is a relatively straightforward design that 
can easily be implemented with SSIIMSI multiplexers; how­
ever, using PAL devices offers some significant component 
savings. The interrupt mask and control register demonstrates 
how PALs can combine several functions to athieve a clean 

design of a traditionally messy circuit. The two applications 
make use of some features of PAL devices that are especially 
valuable for digital system design, as follows. 

Control Decoding/Pre-Decoding. This function is normal­
ly done outside the data path, early in the CPU clock cycle, 
but can often be performed in parallel inside a data-path PAL. 
The savings in both clock time and complexity of control can 
be substantial. 

The use of PAL devices as macro instruction registers 
illustrates how chips can be used to optimize a routine 
function and help pre-decode the functions. An instruction 
register typically is used to receive instructions from the data 
bus during memory fetch operations. The instruction is then 
decoded by the control sequencer section and executed. 
Separating the information used during the decoding cycle 
from the execution cycle helps improve performance. This 
may allow the instruction register to pre-decode instructions 
"on the fly" as they come off the data bus, without losing any 
data in the instruction word. This results in a significant 
increase in control-sequence speed. 

Concatenation of Functions. This reduces parts counts and 
eliminates the associated interchip delays. A simple example 
is an MSI part followed by a latch or register, which can 
easily be replaced with a PAL. 

Reduction of Signal Loading by PALs. When several MSI 
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parts are replaced with a single PAL, the number of loads and 
the signal delay are both reduced. 

Availability of Multiple Outputs of Selectable Polarity 
Simultaneously. As with the signal loading point above, 
mUltiple outputs may mean faster signals, simplified wiring, 
and simplified data steering. 

Implementation of a program counter (PC) with PAL 
devices is an excellent example of how PALs can be used in 
data steering applications. Typically, the PC is implemented 
as an incrementing register that is parallel-loaded from the 
ALU output, and which sources multiple buses: a memory 
address bus to initiate memory fetch operations, and a internal 
bus for relative branch address computation. Since a typical 
MSI device has few three-state outputs, it cannot drive two 
separate buses. Implementing this with SSIiMSI devices, 
therefore, requires additional three-state controls adding un­
necessary delay in the memory path, compared to the PAL­
device solution. 

Inclusion of Additional Functionality Not Envisioned in the 
Original Design. Whether this takes the form of "fixing an 
oversight" or "upgrading the features," unused PAL pins 
and extra product terms arc available for the system designer 
to consider "what else" a computer might do. 

Support for Minimum Parts Count. Often, the objective is 
to build high-performance CPUs that require a minimum of 
board space. This requires a design with as few parts as 
possible while implementing a complex machine in parallel. 
For such applications, PAL devices can aid system designers, 
because of their ability to implement complex custom func­
tions at relatively high speeds. 

A 32-Bit Bidirectional Shifter Using PAL Devices 

For data-path applications, designers often need greater bit­
manipulation and bit-shifting capability than is offered by off­
the-shelf SSIIMSI devices. A conventional shift register usu­
ally shifts its entire contents only one bit position in a clock 
cycle. Multiple bit shifts require multiple clocks, thus penal­
izing performance. 

Bidirectional shifters can shift data both to the left and to 
the right. For a left shift, data is shifted (toward the most 
significant bit), usually with zero fill at the least significant bit 
(LSB). For a right shift, data moves toward the LSB, filled by 
a "bit" that is controlled externally. Usually, this fill bit is 
either zero (for zero fill) or a sign bit. 

Designing a shifter with MSI to allow a simultaneous 32-
bit bidirectional shift can be approached in several ways. 
Conceptually, 32 32-to-1 multiplexers would be the simplest 
design. Here, only one rank of parts would do the job in the 
time defined by the propagation delay of this multiplexer. 
However, the loading of each data and control bit (32 loads), 
the wiring mess, and the lack of real 32-to~ I SSIIMSI 
multiplexers in particular force slower, multiple-rank 
designs. . 

In a multiple-rank shifter, each level of logic (rank) per­
forms a shift operation of something less than the full amount. 
The shift amounts of all the ranks, when multiplied together, 
must equal or exceed the total shift amount desired. For the 
32-bit case, five ranks of 2-to- I mUltiplexers would do the job 
(2' = 32), using 40 16-pin parts. 

In order to minimize the chip count, off-the-shelf' 'shift­
ers" or parts designed to permute input and output lines can 
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be used. Some of the available devices include the Am25SI0 
(TTL 4-bit), the Flool58 (lOOK ECL, 8-bit) and the 
MClO808 (10K ECL, 16-bit). For the target 32-bit TTL 
bidirectional shifter design, 3 ranks of the Am25S 10, with 
each rank using 8 devices, would perform the shift in 39 ns 
(typical) or 60 ns (maximum). . 

The design presented here uses only two ranks of shifters, 
made from PAL devices. The first rank, using five 22VlOs, 
shifts the input bits to the left or right by 0, I, 2, or 3 places. 
The second rank uses four 22V I Os and rotates each input bit 
to one of 8 outputs Figure 4. 

The first-rank shifter acts as a 7-to-1 multiplexer for each of 
the 32 output bits. The number of product terms available in 
the 22V 10 varies between 8 and 16, depending on which 
output is used. The 32 data inputs are numbered from bit 0 to 
IF, and the fill signal is controlled externally. This capability 
provides logical shift, with either zeroes pulled in, or any 
other bit controlled externally, for a shift-down operation. 

Bits SO through S4 provide the total (32-bit) shift amount. 
The actual number of bit positions to be shifted can be 
programmed by the user with these bits. The direction signal 
specifies either a left or right shift. Table 2 shows the output 
equations for B'F' B'E' B'2' and Bo bits (intermediate signals). 

The first-rank PAL devices provide 0-, 1-, or 3-bit bidirec­
tional shift capability, specified by SO and S I. The three-state 
control OE signal facilitates rapid data-bus access in bus­
organized systems and can be used to increase the number of 
places shifted. As seen from Table 2, the equations use seven 
product terms to implement the 7-to-1 multiplexer function 
for the 7 left or right bits. 

The second rank of PALs uses four 22V lOs and rotates 
each input bit to one of 8 outputs. lust for providing the 8-
place rotator function, exactly eight product terms are needed 
for each output, as shown below: 

IF = /S2 */S3 *IS4 *B1F + 
S2 */S3 *IS4 *B16 + 

/S2 * S3 */S4 *B 17 + 
S2 * S3 */S4 *B13 + 

/S2 */S3 * S4 *BF + 
S2 */S3 * S4 *B6 + 

/S2 * S3 * S4 *B7 + 
S2 * S3 * S4 *B3 

Because the AmPAL22VIO can provide up to 22 inputs 
and 10 outputs, it has more than enough capacity for this 
simple 8-bit rotating' function. With its excess input/output 
and product-term capability, the AmPAL22V 10 device is 
able to incorporate more functions in the second rank, as 
shown below. 

The second rank of 22V 10 shifters can operate in any four 
user-programmable modes, determined by the logic levels 
applied to pins FO, FI (function pins) as shown in Table 3. 

MODE 0 

Mode 0 specifies rotl1tion to the right by N nibbles as 
determined by the three bits S2, S3, and S4; it also inserts the 
"FILL" bit, which specifies the logic level to fiIl the posi­
tions left empty by the shift. The FILL bit is controIIed 
externally. Mode 0 also specifies "LOAD WORD" oper­
ations from memory. For this, the shift amount has to be "0 
nibble," because there is no filling or shifting in this mode. 
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TABLE 2. 32-bit bidirectional shifter first-rank 
output equations. 

TABLE 4. 32-bit bidirectional shifter second­
rank: equations. 

MODEl 

This mode specifies the "LOAD BYTE" operation, en­
abling a "rotate right" by N nibbles (or 2N bytes), after 
which a byte is loaded and empty bits are filled with the FILL 
bit. For this, the least significant bit (S2) must be 0, as shown 
in Table 4. The upper empty bits in the left-hand side are 
filled with the "FILL" signal. 

MODE 2 

This mode specifies "ROTATE LEFT" by N nibbles. The 
amount of nibbles to be shifted (N) is determined by S2, S3, 
and S4. For a left shift, the right end is filled with zeros. This 
mode also specifies store operation by byte, half-word (two 
bytes), and full word. The proper amount of shift, specified in 
S2 through S4, has to be provided by the appropriate external 
control signals. 

MODE 3 

This mode is similar to Mode I, except that it loads a half­
word (2 bytes). Data is always right-aligned. 

As shown in Table 5, the most significant bit needs 22 
product terms. After optimization, these product terms are 
reduced to 14 product terms, a number that the 22VIO can 
accommodate. 
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TABLE 3. Functional modes of the second rank 
of the bidirectional shifter. 

TABLE 5. The Mode I LOAD BYTE operation re­
quires that 52 be zero. 

The eight outputs of the second-rank PALs need 14, 13, 
13, 12, 13, 12, 10, and 9 product terms, in that order. The 
number of product terms available in the 22V 10 varies 
between 8 and 16, depending on which output is used. Using 
eight outputs of the 22VIO, which have 14, 14, 16, 12, 16, 
12, 10, and 10 product terms for these outputs, only eight 
product terms (for these outputs) are left unused. 

Implementing a 32-bit bidirectional shifter will take 16 
first-generation PAL devices (AmPAL 16H8/16L8). Imple­
menting these with SSIIMSI, such as Am25S 10, will increase 
the device count to 24. 

Gate Array Implementation of the 
32-Bit Bidirectional Shifter 

Implementing the straight 32-bit bidirectional shifter would 
take about 1,412 gates in CMOS, as shown in Table 6. 
However, the minimum number of 110 pads will be more than 
96 [32 data inputs, 32 outputs, and 32 intermediate signals 
(B,F'O), plus at least 7 control signals]. Also, for the gate 
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13 gat8S 
4 
9 
7 

13 x 64 = 832 
4 x 32 = 128 
9x32= :228 
7x32= m 

~41Z 

TABLE 6. Gates required for Implemontation of 
a 32-bit bidirectional shifter In CMOS. 
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FIGURE 5. A 4-bit vectored priority interrupt 
controller Implemented with tho 22VIO. 

array implementation, 32 on-chip buffers and 32 2-to-1 multi­
plexers will be needed for the 32 intermediate bus signals (B1F 

to Bo). This will require a total of approximately 1,600 to 
1,700 gates for a gate array implementation. With the require­
ment for at least 96 I/O pads, the choice for the CMOS gate 
array (using LSI Logic's gate arrays) will be either LL5220 
(2224 gates) or LL7420 (4242 gates). 

Interrupt Mask and Control Register 

This example illustrates the use of 22VlOs to simplify the 
design of an interrupt system; to reduce its cost, size, and 
package count; and to increase its speed and reliability. 

A good interrupt system should handle multiple interrupt 
requests, prioritize interrupt requests, nest the interrupts' 
service routines (for serving higher-order -interrupts), and 
enable/disable interrupts on the fly (dynamically). It should 
also provide selective masking of individual interrupt re­
quests, and flexibility in the method of clearing interrupt 
requests, as well as a fast interrupt-response system. Ideally, 
it should also support hardware modularity. 

Handling the qualification, latching, and priority ordering 
of interrupts often seems to require a disproportionate number 
of chips. With the 22VIO, however, a registered 4-bit inter­
rupt mask with tristate outputs, a master interrupt-mask bit, 
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INTERRUPTS[15:121 

INTERRUPTS[H:8) 

FIGURE 6. A 16-bit vectored priority Interrupt 
controller using 22VIOs. 

four individual interrupt inputs, a registered priority encoder, 
and a non-latched interrupt detected output can all be included 
in one chip. The interrupt-mask register includes a master 
reset and a load-enable pin to ease interfacing with other 
tristate buses. The priority encoder can also detect any combi­
nation of input signals considered to be "illegal," and gener­
ate a fatal error signal. Figure 5 shows the use of the 22VlO in 
this application, which uses 13 inputs and 8 outputs of the 
22VIO. 

A four-bit mask register is used to mask individual inter­
rupts. Considerable flexibility is provided for controlling the 
mask register. Interrupt requests on lines INTO through INT3 
are ANDed with the corresponding bits of the MASK regis­
ter, and results are sent to a 4-input priority encoder; this 
produces a 2-bit ~ncoded vector representing the highest 
priority interrupt, which is not masked. The LOADMSK 
signal loads the MASK register from the input lines. The 
entire mask register is cleared by the MSKRESET.L signal. 
The MSKOE.L signal enables the MASK register outputs 
onto the three-state output bus. VECTOR[l:O] provides the 
encoded interrupt-vector outputs. The interrupt-detect circuit­
ry flags any unmasked interrupt input and generates the 
INTDET signal. FATALDET signal provides the illegal 
state. Table 7 shows the PLPL (programming language for 
programmable logic) description of this 4-bit vectored prior­
ity-interrupt controller. 

Structuring of the interrupt logic with a PAL device is 
beneficial in two ways. This approach provides hardware 
modularity, which easily supports expansion. Additional 
modules may be added as the need to service additional 
requests arises. This hardware modularity also provides a 
structural regularity to the hardware design, which simplifies 
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TABLE 7. PLPL specification of a 4-bit interrupt 
controller. 

system architecture and reduces the number of SSIIMSI 
packages. For more than 4 interrupt bits, the vectored outputs 
of multiple 22V lOs can be combined externally using another 
PAL, as shown in Figure 6. As an alternative, however, the 
logic that uses these interrupt vectors (such as the program 
counter) can also be constructed with PALs and can combine 
the vectors internally. 

Myths of Gate Counts and 
Gate-Equivalent Comparisons 

The "gate-flation" of PAL devices and the associated 
marketing claims are a constant source of confusion in the 
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industry. While various attempts have been made to develop a 
"gate equivalent" fonnula for PALs, there does not exist an 
acceptable definition. 

Comparing PAL devices and gate arrays on a gate-equiv­
alent basis is like comparing apples and oranges. For PAL 
devices, it probably does not make too much sense to try to 
develop a "gate equivalent" fonnula. This is because, for 
system designers, gate arrays and PAL devices are different 
semicustom alternatives, each having their own distinct ad­
vantages and disadvantages. 

Existing PAL devices are perceived by system designers to 
be strictly SSIIMSI replacement devices, rather than replace­
ments for gate arrays. Although as an academic exercise one 
may try to do equivalent gate counts for PAL devices, 
boasting PAL devices' gate-equivalent capabilities only adds 
to the confusion. 

As was mentioned at the beginning of this article, the major 
advantages offered by PALs over other semicustom alterna­
tives (such as gate arrays and standard cells) include faster 
turnaround time, design interactivity, and lower development 
cost. In addition, PAL devices are available off-the-shelf 
from many sources. 

System designers who might be able to afford gate arrays 
but cannot afford their longer turnaround times, as well as 
those whose volumes do not justify going to gate arrays, 
should very seriously consider designing with PAL devices. 

Instead of trying to work out gate counts of a design first 
and then figuring out whether a given PAL device can 
implement this, system designers should try to focus instead 
on the capabilities offered by a particular PAL device. For 
optimum usage, an attempt should be made to fully utilize the 
capability of a PAL device-its 1I0s, product tenns, and 
registers. In applications that can make use of most or all of a 
PAL device's features, chips such as the 22VlO can offer 
substantial advantages to the designer, compared to any 
alternative implementation. 0 
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3.7.3 Article Reprint 

Hanging a user-customized macrocell at each output of an LSI-level 
fuse-programmable array logic gives' it the flexibility of a gate array. 
The result: Less hardware is needed for high-level functions. 

Reprint with perml .. lon 'rom ELECTRONIC DESIGN 

Programmable logic chip 
rivals. gate arrays in flexibility 

Designers of semi custom les have long appre-
. ciated the in-house programming capabilities of 

programmable array logic devices. But gate arrays, 
with their LSI densities and wider opportunities for 
customization, are an inviting alternative, even if 
they must be sent out for metal-mask processing. 
Which approach should 
the designer use? 

An agonizing choice be­
tween convenience and 
versatility is no longer 
necessary. The first fuse­
programmable chip capa­
ble of implementing LSI 
circuits blends the advan­
tages of both types. The 
result is more cost­
effective designs with 
higher-level functions 
than previous pro­
grammable logic devices 
offered and a shorter 
turn-around time than is 
possible with gate arrays. 

The new chip, the 
AmPAL22V10, can be 
thought of as a fuse­
programmable gate array, 
since at twice the density of previous programmable 
array logic devices, it replaces the equivalent of log­
ic circuits having 500 to 1000 gates (see "Blending 
Programmable Logic. and Gate Arrays," p. 97). In 

Bred Kltlon, Section Manager 
Devld LeWI, Managing Director 
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Advanced Micro Devices Inc. 
901 Thompson Place, PO Box 3453 
Sunnyvale, Calif. 94088 
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fact, because of its flexible, programmable architec­
ture, the chip spans the breadth of standard SSI, 
MSI, and present-generation PAL devices, often ac­
complishing what could not be practically done with 
several such chips. 

Designers program the 22V10 by opening fusable 
links in any or all of its 10 
output macrocells, as well 
as in its AND-gate array, 
developing the needed log­
ic functions. Though the 
AND-gate structure 
makes the unit similar to 
other PAL devices, the 
chip's 10 output logic mac­
rocells afford a substan­
tial new degree of design 
freedom (Fig. 1). 

What's more, at the 
chip's output pins are 10 
three-state output buff­
ers, each fed by a mac­
rocell and controlled 
through a separate out­
put-enable AND gate. 

The macrocells provide 
the 22V10's key features: 
They can be configured to 

make any or all of the 110 pins act either sequen­
tially or combinatorially and have either active 
highs or active lows. Additionally the Output En­
able can individually control the 1/0 terminals to 
act as output pins, input pins, or bidirectional ports. 
Thus the designer can readily change the chip's ar­
chitecture. 

Within the array, each AND gate is fed by the 
true and complementary levels of the chip's 12 input 
lines, one of which doubles as a clock line. Also, each 
AND gate is fed by the true and complementary 
levels of the 10 feedback outputs from the output 
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Semicuatom lea: Programmable logic 

logic macrocells. 
Each of the AND gates therefore has 44 inputs, 

and there are a total of 132 AND gates in the array. 
The result is over 5800 fuses that can be pro-
grammed to perform the desired function. . 

A total of 120 of the input AND gates are distrib­
uted to drive 10 OR gates, forming the logical part 
of the AND array. In addition, one AND gate is 
assigned to control each of the 10 three-state out­
puts, and the remaining two gates activate synchro­
nous register presets and asynchronous register 
resets. 

The array itself consists of 10 AND-gate macro­
cells (five similar pairs), each logically ORing the 
outputs of anywhere from 8 to 16 AND gates. The 
AND gates are distributed so that the two out­
ermost macrocells in the array logically OR to­
gether eight AND gates. The next two outermost 
macrocells logically OR together 10 AND gates; the 

eLlUl, 

Programmable 
AND 

(44~'32) 

ANO-gate 
macrocell 

AND-gate 10 
macrocell 

ANO-gatB 12 
macrocell 

o-~11jloCD ANO-galB 10 
macrocell 

ANO-gate 
macrocell 

1. A fUM-programmable LSI device combine. the eHiciency 
of programmable logic array. with the flexibility of gate 
array •• Ten u.er-deflnable output macrocell. allow the 
de.lgner to .. t the logic output. individually for one of four 
configuration •. They can even be u.ed a. Input. or 
dynamically controlled 1/0. 
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next, 12 AND gates; and so on, traveling inward 
along the array. In other words, moving toward the 
array's center, two AND gates are added to succes­
sive pairs of macrocells, ending with the two inner­
most macrocells, each ORing 16 AND gates apiece. 

The variable distribution of AND gates is partic­
ularly useful when implementing counting, ex-· 
elusive-OR functions, and complex state machines. 
For example, a 10-bit binary counter has only one 
AND gate on the LSB but requires an additional 
gate for each succeeding bit, for a total of 10 AND 
gates to implement the MSB. Should a hold, parallel 
load, or specialized function also be desired, the 
MSB requires even more AND gates. 

To program the array into its familiar sum-of­
products Boolean function, a designer blows the cor­
responding fuse links. Those links initially con­
nected the chip's pins and their complements to all 
132 of the 44-input AND gates. As mentioned, the . 
designer can also program any OR-gate output to be 
a dedicated input or a dynamically controlled 110 
pin. This is possible because the connection from an 
output macrocell to its output pin is through a 
three-state output buffer and is controlled by an 
output-enable AND gate. Turning off the connec­
tion turns the output pin into an input. Otherwise 
the pin remains connected to the output macrocell, 
fed by the OR gate. 

An output with a difference 

The chip's output section is where it appears more 
like a gate array than a PAL device. The output 
macrocells allow the designer, by individually set­
ting the outputs to be either sequentially or combi­
natorially and either active high or active low, to 
program either the true or complementary version 
of a logical term-whichever makes the most effi­
cient use of the chip's AND array and fits the chip 
to the application. Furthermore, independent con­
trol over the active state helps the designer conform 
to common logic conventions, thus avoiding con­
fusion and error. 

For example, certain functions, such as chip se­
lects and resets, tend to be active low. The output 
macrocells avoid contradictions with convention by 
inverting outputs, individually changing them when 
necessary to conform. Finally, by individually 
selecting either sequential or combinatorial out­
puts, the macrocells impart to the chip the capacity 
for implementing more functions than is possible 
wi th existing PALs. 

The macrocell (Fig. 2a) contains three main logic 
blocks: a rising-edge- triggered D-type flip-flop 
with asynchronous reset and synchronous preset in­
puts, a four-to-one output-path selection multiplex­
er, and a two-to-one feedback-path selection multi-
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plexer. Two fuses are imbedded in each macrocell to 
control the four possible output configurations: Rn 
selects sequential or combinatorial operation; P n se­
lects active low or active high. 

With both fuses intact, the output is sequential 
and active low (Fig. 2b). The Q output of the flip­
flop passes to an inverting output buffer, and the Q 
output feeds back to the AND array internally. This 
configuration is particularly suitable for state­
machine designs. Alternatively, by programming 
(blowing) P n, the designer can make the output ac­
tive high. 

On the other hand, by programming only Rn, the 
designer makes the output combinatorial and active 
low. For this scheme, the OR-gate output bypasses 
the flip-flop and feeds the inverting output buffer 
directly. At the same time, the feedback multiplexer 
passes the output back into the array (Fig. 2c). 

By programming both fuses, the designer makes 
the output combinatorial and active high, and, 
again, the feedback multiplexer passes the output 
back to the array. This configuration serves best for 
"glue" logic and for generating complex control 
functions. 

Finally, when the device is programmed in the 
combinatorial configuration, the programmable 
Output Enable can be used to transform an output 
pin into a dedicated input or a dynamically con­
trolled 110 terminal. Once enabled as a dedicated 

input, however, a pin's output function is sacrificed. 
This capability is extremely valuable when par­
titioning functions into the device. The limitation is 
no longer the numbers of input devices, but the total 
number of device pins. Lastly, as a dynamically con­
trolled 110, the pin serves both functions, meeting 
most bus requirements. 

Intelligent use 

One of the most challenging jobs in designing 
microprocessor systems is installing intelligent pe­
ripheral controllers-that is, controllers that can 
transfer data themselves and so unburden the pro­
cessor from inefficient polling operations. One solu­
tion is to build a custom intelligent controller from 
scratch using the 22VIO (Fig. 3). This controller gov­
erns data flowing between a microprocessor and up 
to eight peripheral devices, all conforming to the 
Small Computer Systems Interface standard (SCSI, 
the ANSI X3T9.2/82-2). 

The interface consists of an 8-bit bidirectional 
data port (DB7-DBo); three control outputs­
Acknowledge (ACK), Select (SEL), and Reset 
(RST); and fiv! control inputs-Request (~), 
Control/Data (C/D), Message (MSG), Busy (BSY), 
and Input/Output (1/0). There are additional 
signals, unrelated to the SCSI standard. They in­
clude several microprocessor controls, such as ad­
dress lines Al and A2 for setting the data's desti-

Blending programmable logic and gate arrays 

Centered on a fuse-programmable AND array, the 
architecture of a PAL (programmable array logic) 
device offers designers a powerful, instantly mod­
ifiable logic building block. As a reSUlt, PAL devices 
are used in a wide variety of applications, ranging 
from microprocessor-based systems to supermini­
computers. 

Since gate arrays are not programmed in house, 
they have a much slower turnaround time and higher 
cost. Yet gate arrays' simple logic structure makes 
them easier to customize than PAL devices, and their 
larger size makes for denser logic structures. 

A gate array's simpler structure can be a draw­
back, however. For example, typical gate arrays are 
based on just two- or three-input gates; therefore, to 
implement complex functions, they often require 
many gate levels, which results in slow logic struc­
tures. In contrast, PAL devices, like memories, make 
more efficient use of their silicon area and can be 
configured into fast logic structures. Consequently, 
even with a slight overhead for programming cir­
cuitry, PAL densities are beginning to rival those of 
gate arrays. 

However, innovative circuit techniques and an 
oxide-isolated bipolar process team up in the 
AmPAL22V10 and combine the advantages of PAL 

devices and gate arrays. For example, the pro­
grammable output macrocells are deslgned to add 
only one Schottky diode in the delay path. As a 
result, the chips selected for high speed have a worst­
case input-to-output propagation delay and setup 
time of only 25 ns, as well as a worst-case clock-to­
output delay of a speedy 15 ns, over the commercial 
temperature range. Also, the oxide-isolated process 
fits the chip's ability to implement complex func­
tions into a 24-pin, O.S-in.-wide package. 

For convenience, a feature called Preload loads the 
chip's internal registers with an arbitrary value, so 
that the designer can perform a complete post­
programming functional test. In fact, Preload is a 
necessity for testing state machines, where the suc­
cessive states depend on past and present values, as 
well as on the inputs. Without Preload, complex and 
sometimes impossible sequences would have to be 
entered before the first test could be performed. 

What's more, platinum silicide fuse technology 
makes programming faster and increases reliability, 
and a well-controlled melting rate yields large, sta­
ble, nonconductive gaps. Address circuitr:y, much like 
that of a PROM, blows one fuse at a time, and pro­
gramming is done with an algorithm that is easily 
adapted to a wide variety of available machines. 
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nation, read and write controls (lORD and IOWR), 
Interrupt Request (lNTREQ), Chip Select 
(CSSCSI), System Clock (SYSCLK), and buffer and 
latch enables (BE and LE) for passing bus Qata be­
tween the processor and its peripherals. 

In operation, the controller assigns one of eight 
peripheral devices to be a master by activating SEL 
and at the same time sends the master's address to 
the SCSI data port. From then on, when a device 
notifies the controller that it needs to transfer ei­
ther a command or data, the controller interrupts 
the host processor. In turn, the processor reads the 
controller's status register to determine which de­
vice is requesting service and the type of request it 
is making. After its status register is read, the con­
troller removes the interrupt request and carries 
out the required transfer. 

Meanwhile the selected device issues a BSY 
signal, letting the other devices Know that the bus is 
in use. The data transfer is managed by the hand­
shake s~ls ACK and REQ, and the processor ac­
tivates RST as needed by pulling both WR and RD 
low at the same time. , 

I Vee 

I 
I 
I 

Matching the chip to its application starts with 
an assessment of the available resources against 
those needed to do the job. In general, that means 
establishing that the chip has enough input and 
output pins and product terms to accommodate the 
logic functions required by the application. 

As to the pinouts, the 10 outputs required by the 
application do, in fact, match the 10 available on the 
chip. Four of the pins are used for the bidirectional 
data bus and the rest are dedicated outputs. As for 
inputs, the SCSI controller requires 11, which the 
chip more than satisfies with its total of 12. 

Next the designer develops the product terms 
needed to execute the controller's job and compares 
the number and size of the required terms with the 
number available from the chip. The resulting con­
troller equations (see Table 1) number 10, and these 
nestle neatly into the chip's 10 available AND-gate 
macrocells. Also, the maximum number of terms in 
anyone equation-in this case, those making up the 
acknowledgment function-is only 6, compared 
with the chip's capacity of 8 to 16. Thus the control­
ler function fits easily into a single programmable 

vo. 

.L _________________ ~ 

(a) 

(b) (c) 

2. Each 01 10 output macrocell. (a) are independently lun-programmed lor one 01 .Iour 
conliguratlon •• Fu.e Rn control. whether the output. are nquentlal or combinatorial, and 
lu.e Pn determine. whether they are active high or active low. With no lu .. e blown, the 
output i •• equential and active low (b). Blowing only R" give. a combinatorial active-low 
output, and blowing only Pn give. a .equential active-high output. Finally, blowing both 
lu.e. change. the output to combinatorial and active high (c). 
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logic array, as can more complicated micro­
processor peripheral interfaces. 

The 22VlO's real power, however, becomes appar­
ent when it is needed to fill an application that 
appears to demand more than the chip's resources 
can deliver. Insufficient input or output pins or 
product terms are frequent shortcomings of many 
devices when the job is very formidable. With its 
highly versatile I/O architecture, however, the 
22V10 can accommodate conditions that would 
make chips even larger than itself inadequate. 

Table 1. Peripheral controller equations 

Comblnatorlll eqUltlon, 

BE - CS· RD' A2' A1 

[E-cs·ViR·A2 
03 - A, • C + A, • ACK 

02 - A, • M + A1 • SEL 

01 - A, '8 + A1 • RST 

Do - A, • i + A1 • R 

8equenlill equilloni 

INTREQ - R • (i • C • M + J • C • M + i • C • M + ICM) 

ACK-~ • ~ • ~ • A1 • Qa+R • ACK • ( cs • WR • A2 • A1 ) + 
R • CS • RD • A2 • A1 

SEL - CS • ViR • A2 • A1 • 02 + B • SEL • ( cs • WR • A2 • A1 ) 

RST - AD • ViR + CS • ViR • A2 • A1 • 01 + 
RST' ( CS • WR • A2 • A1 ) 

SYSCLK 
CSSCSI 

IOWR 
lORD 

A. 
A, 

INTREQ 
Data 3 
Data 2 
Data 1 
DalaO 

0.t.7-O 

A. 
A, 

BE 

Octal 
buffer 

Octal 
latch 

3. The problem of dellgning an Intelligent peripheral 
controller Is simplified by the 22V10's flexible 110 structure. 
With the freedom to a"lgn different architectures to 
different pins, the designer can make better use of the 
chip's Input and output pins and product terms. 

Electronic D.,lgn • December 8. 1983 

For example, one of the most complicated func­
tions to perform with a digital computer is floating­
point arithmetic, or more specifically the nor­
malizing of numbers in the process. As a result, no 
standard MSI or LSI logic for normalization exists. 
Yet the programmable array is well-suited to inte­
grating at least part of this complicated logic func­
tion. 

Normalization is necessary because a floating­
point number is represented in two parts: a man­
tissa and an exponent. The mantissa is a fractional 
number that is adjusted, or normalized, so that a 
binary 1 always occupies the most significant bit. To 
normalize a floating-point number without chang­
ing its value, a compensating adjustment must be 
made to the exponent. In effect, the exponent, a 
power of two, is incremented for each bit position 
that the mantissa is shifted to the left. 

Because the process of normalization can be very 
costly if done wholly in parallel, it is more efficient 
to process a number one byte at a time. Further­
more, because of the function's complexity, it is rea­
s~nable to partition the normalization unit into two 
units: an execution unit, which acts on the incoming 
data, and a control unit, which directs the execution 
unit. Thus the two units together form a byte-wide 
floating-point normalization (BFN) unit, with the 
programmable logic array making up the execution 
unit (Fig. 4). 

The design of the execution unit breaks up log­
ically into the four main instruction categories; De­
tect, Normalize, Merge, and Shift. Detect tests the 
incoming data for a binary one in any bit position. 
When such a nonzero byte appears, a flag, F, 
informs the control unit and tells it to begin the 
normalization process. Next, the Normalize com­
mand determines the number of bit positions to 
shift the incoming byte, in order to put its first bit 
in the most significant position. Then the Shift com­
mand adjusts the input data to the left by the spec­
ified number of bit positions, filling the lower bits 
with Os. Finally, the Merge command adds in the 
full numbers' remaining bits, adjusting them so 
that the entire number is intact and shifted. 

From the beginning, even before the equations of 
the execution unit have been fully developed, it ap­
pears that the resources of the programmable array 
will be insufficient for the job (see Table 2). Four­
teen input pins are needed, against the chip's 12, 
and 12 output pins are needed, whereas the chip has 
only 10. Nevertheless, a closer look at the execution 
unit equations, with an eye toward consolidating 
1/0 pins and functions, turns up paths around the 
seeming shortages. 

One "problem" that proves not to be one is the 
number of outputs. Although they number 13, not 
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all are active at the same time. For example, the 
outputs Vo- V 2, which specify the number of shift 
positions as a three-bit binary number, are active 
only when no other outputs are. Thus they can share 
their output circuitry with other signals, relieving 
the output shortage. 

However, combining the shift outputs with other 
terms creates a product-term deficiency. Yet, again, 
careful observation reveals a solution. One way to 
reduce the product terms of a function is to invert it, 
using the programmable array's output macrocell. 
The most likely candidate for such a reduction is the 
function with the most product terms. Although 
there are several, the best, because it is relatively 
removed functionally from the others, is the detec­
tion flag, F. Its function is given by: 

F=~+~+~+~+~+~+~+~ 

where D7 through Do are input data bits, which, if 
any are high, indicate a nonzero byte. 

Table 2. Allocation of chip resources 
Input plnl Output pine 

Number Nlmel Number Ham" Product terml 

CLK. F (detection flag). 

When De Morgan's theorem is applied, the long 
OR string of active-high data reduces to a single 
AND term, saving a total of seven product terms. 
StiU, two input pins must be found for the pro­
grammable array to fully incorporate the logic of 
the execution unit. Since De Morgan's theorem can­
not minimize the logic any further, the only answer 
is to locate any product terms that underuse the 
chip's resources, combine them, and lend their out­
put pins to the cause by making them 110 pins. 

Examination of the instruction input specifica­
tion (see Table 3) reveals that during Detect only 
three of the five instruction inputs are necessary, 
freeing the two others to be used as outputs. There­
fore instruction bits 10 and 11 can share the outputs 
that were previously dedicated to shift bits Vo and 
Vb thus meeting the execution unit's final require­
ments in a single chip.o 

require- 14 0-,-00. 12 Vz-Vo. 114 required Table 3. Instruction definitions 
menta 

R8IOUrces 

Final 
require-
menta 

14-10 

12 Nol1e 10 

CLK. 
0-,-00. 

12 14-IZ. 12 
I,IV,. 
IolVo 

R7-Ro 

None 

I,IV,. 
IolVo. 
R71Vz. 
RolF. 
Re-R, 

Function unit 
clock (SO ns) 

(elK) 

Inltructlon 
120 evallable code (~-Io) 

Detect OOXXX 
Normalize OOXXX 

108 required 
Merge 01NzNzNo 
Shift 10NzN,No 

Data Input (100 ns). 
Or,O. 

Instructions. 
I.-I. 

Values. 
B~~~~I~~~~(~t~!nt Status BFN v.-v. 

(detection execution 
control unit flag and unit 

others) 

- r~ ~ 

BFN functional unit 

Result output. 
Rr-Ra 

Detecllon 

"" 
0 
1 
X 
X 

Exponent Input 

1 

Exponent 
adjustment 
functional 

unit 

+ 
Exponent output 

4. Floating-point arIthmetic i. a hardware-inten.ive proce.. that, for the mo.t part, hal 
defied integration. Vet by partitioning the ta.k. Into .maller pIece., a de.igner can 
apply the power of the programmable array to the job. The chip'. flexibility 
contributa. to It •• ucce .. ful Implementation a. a floating-point executIon unit, ev.n 
though it. r •• ource. may •• em in.uHiclent. 
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PAL device buries registers, 
brings state machines to life 
Om Agrawal and Kapil Shankar 
AdvCllCed Mcro Devices nc., 901 Thompson Pl., P.O. Box 3453, Sumyvale, CA 94088; (408) 732·2400. 

Designers who build state machines from pro­
grammable logic devices (PLDs) must develop 
good juggling skills. The job usually takes a careful 
balancing of the I/O pins, the product terms, and 
the registers that store states and output bits. But 
because these resources all are limited in a PLD, 
performance and compactness often have to be sac­
rificed in favor of the desired function. 

Ideally, state-machine designers need a PLD 
with buried, or internal, state registers, compact 

Housed in a 20-pin 
DIP, the smallest PAL 
device to date for 
building state ma­
chines sports registers 
that save 110 pins, yet 
it Is easy to test. 

packaging and high 
speed. Buried registers 
free valuable I/O pins; a 
small package saves 
precious board space; 
and high operating 
speed speaks for itself. 

Approaching the 
ideal is the AmPAL-
23S8, the first 20-pin 
programmable array 
logic (PAL) device de­

signed specifically for building state machines and 
sequencers. Its architecture is more flexible than 
any 24- or 28-pin PAL device or programmable 
logic array (PLA). For exampl~, it has 14 edge­
triggered, D-type flip-flops (Fig. 1 ). That alone 
compares favorably with 24-pin bipolar PAL de­
vices, which have up to 10 registers, and with 24-
and 28-pin PLAs, which have 12 to 14 registers. 
Only 40-pin PAL devices with 16 registers surpass 
the new chip. 

As significant is the fact that of the chip's regis­
ters, six hold buried state bits. By definition, the 
buried registers do not merely free I/O pins: In­
deed, they actually enhance the chip's value as a 
state machine. Driven by the chip's AND-OR 
array the buried state registers, along with the eight 
registers dedicated to I/O pins, make possible a 
wide range of states and outputs. 

Moreover, the buried state bits can be easily 
accessed, controlled, and observed. Although the 

first two attributes are common among PAL de­
vices, the third has always 'presented problems. The 
23S8 is the first chip whose product-term array 
makes the buried state registers observable. 

Of the other eight registers, four serve in output 
. logic macrocells and four store output states. Each 

macrocell contains three main blocks (Fig. 2). One 
block is the register, a rising-edge-triggered flip­
flop sharing asynchronous reset and synchronous 
preset inputs with all the other flip-flops. The other 
two blocks are multiplexers, one of them selecting 
from one of four output paths, the other from one of 
two feedback paths. 

The logic chip is small, fast, and easy to program. 
Packaged in a 0.3-in. DIP, it is half the width of 
28- and 40-pin PAL and PLA type devices. More­
over, it comes in 33- and 28.5-MHz versions, with 
propagation delays of 20 and 25 ns, respectively. 
The faster version is an ideal companion for new 
8-MHz, l6-bit microprocessors, as well as for 
16-MHz, 32-bit units. Even at 28.5 MHz, the new 
chip is faster than existing bipolar PLA-based se­
quencers, which operate from 20 to 25 MHz. It also 
beats equivalent-density PAL devices operating at 
or below 25 MHz. 

Programming takes place by blowing reliable 
and fast platinum silicide fuses, and using available 
software packages. Like all PAL devices, the 23S8's 
fusible AND-OR array is a direct measure of its 
capability. With 6200 fuses, it is three to six times 

Distribution of logic product terms 

Fllp·flops 

Locallon Number AND gales ORed 

Mocrocels 2 8 
2 10 

OJtput phs 2 8 
2 12 

Buied 2 6 

(ntemal) 2 8 

registers 2 10 
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the size of standard 20-pin bipolar PAL devices. In fact, it 
is larger than all other bipolar PLDs except for the 40-pin 
chips, which are three to four times as large and have 
some 8000 fuses. The new chip's fuse array handles all 14 
registers,'with 6 to 12 logic products for each output, and 
up to 23 inputs-9 of them dedicated, 8 for feedback, and 

Four 
output 

registers 
with 

polarity 
tontrol 

1. The AmPAL23S8 Is the first 20-pln PAL device de­
Signed specifically for building state machines 
and sequencers. II contains 14 registers, 6 of 
them burled and requiring no 1/0 pins, 4 dedi­
cated to output macrocells, and 4 storing output 
blls. The states of the burled registers are easily 
observed, which simplifies debugging. 

ElectroniC Dellgn • .).Jy 24. 1986 

3-343 

6 for the buried states. 
The number and distribution of the chip's product 

terms are two other measures of its capability. It has alto­
gether 135 product terms for logic and control functions. 
Moreover, the AND array that drives the 14 flip-flops is 
variably distributed (see the table, p. 101). 

The distribution of the 124 logic product terms helps 
adapt the chip to system requirements, while optimizing 
its internal resources. (Of the II other terms, 8 control 
output, the remaining 3 control preset, reset, and observ­
ability, respectively.) For additional flexibility in de­
signing powerful state machines, the chip can trade off the 
product terms of its buried registers. 

OBSERVABILlTV CLOSE UP 

The chip's observable product term is generated by the 
AND-OR array, along with an ability to preload the 
buried registers. Observability helps check a buried regis­
ter's state, so that a designer can monitor any register dur­
ing debugging. 

Under control either of a single pin or of a combination 
of six input signals, the observable product term drives a 
set of inverting buffers. In normal operation, the buffers 
also serve the four dedicated output registers and two of 
the four macrocells. When activated, therefore, the ob­
servable product term disables signal flow from those reg­
isters and macrocells and simultaneously connects the six 
buried registers to their respective I/O pins. 

Flexibility in configuring a state machine derives from 
the independent control of output and feedback multi­
plexers. Each output macrocell has three fuses, two to 
determine the output path and one the feedback path. The 
fuses can configure the macrocells in eight ways: a combi­
natorial or a registered output with either an I/O pin or a 
registered fe.edback. Each of those four variations offers 
either active high or active low outputs. 

In the output path, fuse 5( determines whether the out­
put is active high or active low. The output-nature fuse, 
S2, selects sequential or combinatorial operation. When 
both of those fuses are intact, a flip-flop's Q pin passes 
through an inverting buffer, making the output active low 
and registered. 

On the other hand, programming or blowing S( renders 
the output term active high; blowing S2 causes the output 
to bypass the register, making it combinatorial. A combi­
natorial output with feedback can, moreover, provide 
more than one level of ORing logic. Finally, fuse S3 con­
trols the feedback path, sending either the flip-flop's Q 
output or the I/O pin back into the array. 

Controlling each output's enable line through a prod­
uct term from the AND array creates further options by 
transforming an I/O into a dedicated input, a dedicated 
output, or a dynamically controlled I/O pin. A designer 
can thus adjust the number of input and output pins, and 
have the dynamic I/O capability required by most buses. 

• 



Each output enable product term is further associated 
with an individual polarity fuse: This polarity fuse allows 
designers to modify a control signal to enable outputs us­
ing De Morgan's theorem, which is especially useful for 
bus control applications. 

2. Each programmable macrocell has three main 
blocks: a rising-edge-Iriggered D-type flip-flop, 
an output multiplexer, and a feedback multi­
plexer. The output multiplexer selects from one of 
four output sources; the feedback multiplexer 
feeds either an 1/0 pin or the flip-flop's Q output 
into the programmable AND-OR array. 

AS o---------------------------~ 

RMC 

Initialize 

The chip's high speed and buried state registers make it 
an ideal foundation for a flexible and fast dynamic RAM 
controller that meets the complex requirements of the lat­
est microprocessors. Even at a 16-MHz processor clock 
rate it can become a controller with few or no wait states 
that might otherwise have to be built from scratch. 

There is, for example, no ready-made controller that 
can take advantage of dynamic bus sizing-the auto­
matic adjustment to the amount of data movable in one' 
bus cycle. Nor can any off-the-shelf unit handle misal­
igned data, that is, when an operand falls outside its 
proper memory boundaries. Bus sizing and data align­
ment are features of the recently arrived Motorola 68020 
and the Intel 80386, both 32-bit microprocessors. But a 
controller able to perform the two functions can be built 
around two 23S8s, one for timing and arbitration logic 
and the other for datl! sizing and alignment (Fig. 3). 

The timing and arbitration chip arbitrates among 
present, refresh, and CPU cycles; executes read or write, 
read-modify-write, and refresh cycles; and asserts inter­
face signals. The chip first arbitrates between the proces­
sor's Memory Request (MREQ) and Refresh Request 
(RFCLK) signals. It gives priority to the cycle currently 
being executed, follows this with the refresh cycle, and 
concludes with the processor cycle. Both intermittent and 
burst-mode refresh schemes are therefore possible. 

The design's timing relationships and arbitration re­
quirements define a state-machine diagram (Fig. 4). The 

To dynamic RAM 
address lines 

actual state machine 

~----------ORASo-RAS. 

employs five of the six 
available buried regis­
ters. The sixth register 
is a flag and so acts as a 
small, independent state 
machine. Either of two 
software packages­
Cupl from Personal 
CAD Systems Inc. 's 
Assisted Technology 
Division (San Jose, 
Calif.) or Abel from 
Data I/O Corp. (Red­
mond, Wash. )-easily 
describes the state oper­
ations. (Cupl is the lan­
guage used in this par­
ticular example.) 

Ao-A, 

Silo-SIZ, 

PTRo-PRT, 

RIW 

AmPAL23S80o-031-----------00CASo-CAS. 

~o~dd:I;~ns~~nn~ 0.1----------_-0 WE 

0,-0.1----------_.0 DSACKo-DSACK,' 

Clock 0-------------' 

3. Two 2358s lie at the heart of an advanced dynamic RAM controller that 
compares well In its data-transfer features-such as dynamic bus sizing and 
handling misaligned data-with recent 32-bit microprocessors. One of the two 
main PAL devices controls the timing and arbitration of the memory cyctes; 
the other sizes and aligns data transfers. 

No arbitration takes 
place during the exe­
cution of a cycle, which 
is indicated by a state 
other than O. The tim­
ing and arbitration chip 
stores any refresh re­
quest and responds to it 
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later, continuing to follow the current cycle through its 
various states. Thus the current state automatically takes 
priority, and no other cycle is started until the current one 
is complete. 

At the end of the cycle, at state 0, the timing and arbi­
tration chip arbitrates between MREQ (a CPU cycle) 
and RFCLK. In the small independent state machine, 
the buried register /lag, Bs, latches RFCLK, which may 
last no longer than one clock cycle. When RFCLK is 
high, B5 toggles to state I and stays there until the refresh 
cycle is executed. Then it toggles back to state 0 to be 
ready for the next RFCLK. 

During refresh cycles, the timing and arbitration chip 
asserts the Refresh signal (RFSH), which supplies the re­
freshed row address to the memory address bus. The chip 
also generates the Rowand Column Address Enable 
Lines, ROWADD and COLADD, which mUltiplex ad­
dresses onto the memory bus. At state 16, the chip re­
moves ROWADD and asserts RFSH;state 17 asserts the 
Row Address Strobe signal (RAS) and refreshes all 
memory banks before removing RAS and RFSH. Re-

Proce •• or crcle 

SiG. COLADD. ROWADD 

Reed end 
writ. crcle 

RMC 

SIG 

moving RFSH increments an external I O-bit refresh-row­
address counter (AmPAL22VIO) to the next row. 

If no refresh request is pending during state 0 and 
MREQ is asserted, a processor cycle begins and the ma­
chine jumps to state I. Otherwise the machine stays in 
state 0 and polls for either a refresh or processor cycle. 

The PAL chip responds to the processor's signalRMC 
to execute a read, a write, or a read-modify-write cycle, 
with the internal registers controlling timing for the dif­
ferent cycles. If, for instance, the memory consists of 
4 Mwords, organized as four equal banks of 32-bit words, 
the chip asserts a RAS signal for each bank-RASo 
through RAS 3• 

The strobe signal being asserted depends on address­
select signals ADSELo and ADSEL

" 
which in most sys­

tems are the high bits of the processor's address bus. After 
asserting the proper strobe, the machine jumps to state 2 
to manipulate the address-handling signals. For instance, 
to mUltiplex addresses, ROWADD and COLADD are 
again asserted. 

In state 2, the timing and arbitration chip removes 
ROWADD and asserts COL­
ADD, along with SIG, the refer­
ence that tells the data-sizing and 

R.'r •• h crcl. alignment chip that a processor cy-

RAS. RFSH. ROWADD 

cle is in progress. SIG syn­
chronizes the two 23S8s and in­
structs the data-sizing and 
alignment PAL to send a column­
address strobe (CAS) to memory. 

The state machine remains in 
state 2 for an extra-cycle, and then 
moves to state 4 to allow time to ac­
cess the data. There it decides, 
based on processor signal RMC, 
whether to execute a read, a write, 
or a read-modify-write cycle. Be-
fore completing a read or write ac­
cess, the timing and arbitration 
chip removes RAS and waits for 
one more cycle to allow for the 
RAS precharge time. Simulta­
neously, it switches back to ROW­
ADD from COLADD in prepara­
tion for the next processor cycle, 
and disables SIG. 

Note: When signal designations appear 
above and below a line. the upper Indicates 
Inputs and the lower. outputs. 

When the RMC signal requests 
a read-modify-write cycle, the 
timing and arbitration chip auto­
matically lengthens the cycle. It 
holds RAS until DSACK and WE 
signals have been asserted, and 
only then completes the cycle. 

4. A state diagram for the timing and arbitration chip reflects Its oper­
ation for selecting and orchestrating the memory cycles. The chip 
walts In state 0 to handle either a processor cycle or a refresh cycle; 
the latter takes priority over any but a cycle currently In progress. The 
chip performs refresh, read, write, and read-modify-write cycles. 
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cle. It creates WE for the write and read-modify-write cy­
cles, and it accepts SIG, which synchronizes the chip's 
differentstates (Fig. 5) with those of the timing and 
arbitration chip. 

Four of the data-sizing and alignment chip's buried 
state registers generate its state-machine function. The 
machine starts polling in state 0 and stays there until it re­
ceives SIG, the start of a processor cycle. 

The 68020 has a 32-bit maximum data width and a 
data bus divided into four byte-wide segments, each inde­
pendently controlled by a CAS signal from the data­
sizing and alignment chip. The processor can therefore 
read and write byte-wide data over any segment. 

The four CAS signals, CASo to CAS), strobe the col­
umn address from the high- to low-order memory bytes. 
The signals also allow the microprocessor to read and 
write across the low-low, low-middle, high-middle, and 
high-high bytes of a 32-bit data port. The data-sizing and 
alignment chip must assert all four CAS signals for a 
32-bit port; only CAS2 and CAS) are needed to supply a 
16-bit port's low- and high-byte strobes; while for an 8-bit 
port, CAS) is enough. 

Note: Where signal deIIgnatJons 
eppew aboft IIICI below • line, 
the upper indicates Inputs and 
the Iowa', outputs. 

5. The data-sizing and alignment chip works only 
during a processor cycle and walts In state 0 until 
one Is requested. II the processor calls for a read 
or a write cycle, the chip asserts DSACK, CAS, 
and, for a write cycle, WE. For a read-modlfy-wrlte 
cycle, It asserts two DSACK signals, one each for 
the read and write segments. 

Electronic Design· J..t.t 24. 1986 

The data-sizing and alignment chip asserts the CAS 
signals in state 1, and selects them according to the size of 
the port in use, the width of the data being moved, and 
how the data aligns with the port. Coding on input pins 
PRTo and PRT 1 shows the port size; signals SIZo and 
SIZI from the microprocessor show data width; and the 
microprocessor's least-significant address bits, Ao and 
Alo give the alignment. 

THE PROCESSORS PREFERENCE 

The size of the port dictates the amount of data that can 
be transferred in anyone cycle. Based on the PRT signals 
the state machine asserts DSACK signals, which ac­
knowledge the CPU and tell it how much data it can 
move, since it will always try to move as much as possible. 
The state machine synchronizes the aCknowledgment 
timing, asserts the required CAS signals, and holds them 
until the read, write, or read-modify-write cycle is com­
plete. 

A read cycle's DSACK signal is asserted in state I and 
remains until the end of the cycle at state 4. A write cycle 
is identical, except for the additional WE signal. But a 
read-modify-write cycle requires two DSACK signals, 
one for reading, the other for writing. The first DSACK is 
the same as that for a read or a write cycle; the second 
DSACK occurs in state 8 and remains until state 11, with 
a delayed WE asserted in state 8 by an internal 4-bit 
counter. 0 
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MIXING DATA PA1r~~ 
EXPANDS OPTIO~$ ~~ 
SYSTEM DESIGN 
Chip designers are creating powerful CPUs and peripherals 
with 16- and 32-bit parts" Mixing these with 8-bit parts 
overcomes limitations imposed by established designs,. 
incomplete families, and software incompatibility. 

by Mark S. Young and 
James R. Williamson 

Integrating 16- and 32-bit peripherals and CPUs 
into 8-bit designs, at the simplest level, means 
separating the control and data paths from new 
peripherals and the systems. Mixing different data 
path widths and control protocols, however, makes 
possible major improvements in function, perfor­
mance, and cost. 

The price/performance curve of VLSI chips, for 
example, allows designers to obtain more and bet­
ter functions for the same amount of money every 
year. Alternately, the functionality of a device can 
remain constant while the price falls. 

Moreover, these new devices with wider data paths 
can extend the life of older designs. For example, 
many of the most popular personal computers today 
use the 8088 microprocessor and, therefore, are con­
strained to an 8-bit data path. Designers of add-on 
accessories for these personal computers prefer the 

-----------

Mark S. Young is a product planning engineer at 
Advanced Micro Devices. Inc (Sunnyvale. Calif). He 
holds a BA in computer science from the University 
of California at Berkeley. 

James R. Williamson is an applications engineer at 
A MD. He holds a BS in electrical engineering from 
the California State Polytechnic University. Pomona. 

newer 16-bit peripherals. These peripherals will let 
users preserve their software investments, improve 
performance, and stave off obsolescence. 

Mixing different data path widths can also enhance 
new designs. For example, it is less expensive to usc 
an 8-bit bus in a new design because the memory 
requirements are generally cheaper. Only half as 
many dynamic RAMs are necessary for the same 
number of kilobytes of memory. In addition, an 
8-bit bus needs much less control and support logic. 
Designers can mix smaller data path peripherals with 
wider data path CPUs. This allows them to introduce 
systems based on the newer, more powerful 32-bit 
CPUs even before 32-bit peripherals are available. 

Designers can use this mixing method to obtain 
wider data paths from existing designs until a new 
system design is warranted. They can also use parts 
in unexpected applications. For example, cost­
conscious terminal manufacturers might want to use 
the Am80S2I8IS2A chip set (the 80S2 is an advanced 
CRT controller and the 81S2A is a video system con­
troller) in new terminals based on the relatively 
inexpensive 80S I microprocessor. Mixing the 8-bit, 
single-chip microprocessor with the 16-bit CRT con­
troller allows designers to maximize the cost/perfor­
mance ratio of the terminal. 

Mixed data path widths can improve bus utiliza­
tion as well. A 16-bit peripheral in a 32-bit system 
only occupies half the data bus for data transfers. 
If the designer mixes the data paths correctly, how­
ever,' the 16-bit peripheral could transfer data as 
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32-bit chunks and improve bus efficiency by 100 per­
cent for that peripheral. 

Two central concerns stem from mixing devices 
that communicate over different-sized buses. The 
first problem results when two devices communicate 
on a "common" data bus. Consider, for example, 
a 32-bit system utilizing 8- and l6-bit peripherals. 
Overcoming the'mismatched data paths requires 
some form of controlled mUltiplexing/demultiplexing 
of the different data paths. In addition, extra con­
trol signals for partitioning the 32-bit word into 8-, 
16-, and 32-bit chunks may be required. 

Many l6-bit CPU -based systems that use 8-bit 
peripherals normally use just the lower 8 bits of the 
data bus to transfer data to and from the peripheral. 
This method does not work in systems using l6-bit 
peripherals and 8-bit CPUs, however, and it tends 
to break down in systems with 8-bit peripherals hav­
ing bus master capability. 

A bus multiplexing method involves multiple 
transfers when taking data from or adding data to 
a mismatched data bus. For example, before a l6-bit 
peripheral can transfer data over an 8-bit bus, the 
16-bit data must be divided into two 8-bit chunks. 
It is then transferred sequentially. First, the lower 
8 bits are transferred out on the bus. Then, in the 
next transfer cycle, the upper 8 bits of the l6-bit 
word are sent out. The major difference in the oppo­
site case-a bus read operation from an 8-bit bus 
to a l6-bit device-is that the first byte read from 
the system must be latched. Once the second byte 
has been fetched, the l6-bit peripheral reads in the 
assembled l6-bit (2-byte) word. Additional provi­
sions may be needed when the 16-bit peripheral only 
wants to access a single byte. 

The other major problem in mixed data path 
transfers is the actual data read/write operation. The 
nature of the mUltiple transfer forces designers to 
guarantee that the stretched transfer will occur and 
that it will not be interrupted. Two aspects of stretch­
ing the transfer cycle from or to the peripheral illus­
trate the complexity of this problem. 

The first case, when the peripheral is the bus 
master, is the simplest. A 16-bit peripheral holds its 
data available for what normally would be two com­
plete bus transfer cycles. This function can be per­
formed when the transfer acknowledge signal to the 
peripheral is delayed, If the data was latched instead 
of holding the peripheral in a mUltiple word transfer, 
however, the device could try to send the next 16-bit 
data word and its "ncw" address. The procedure 
of latching the data and releasing the peripheral 
should not be used, therefore, be~ause it may inter­
fere with the addressing of the remaining (pending) 
8-bit transfer. 

Whenever a device acts as a bus slave to a CPU 
that cannot access the device's natural word width 
in a single operation, a different constraint appears. 
The sequence must be set up so the peripheral cannot 
obtain the bus while the CPU is in the middle of a 
slave read/write operation. In a typical system, the 
CPU is the last device in the interrupt queue. It is 
possible for the peripheral to become bus master 
between the first and second read operations and in­
validate the results of the first read operation in a 
realtime system. This is because an 8-bit CPU would 
have to perform two consecutive read operations to 
examine a 16-bit peripheral control register. 

This function can be handled two different ways, 
If the CPU has a bus lock instruction, as in the iAPX 
family of CPUs, the programmer must use one of 
these instructions before the CPU accesses the 
peripheral. Alternately, the CPU needs 10 disable 
the arbitration logic while it is performing the unin­
terruptible access with the 16-bit peripheral. 

Crucial cycle 
The uninterruptible word transfer cycle is crucial 

for maintaining the integrity of the data transferred. 
When either the CPU or a peripheral on the bus 
makes an access using the 8/ 16-bit control logic, it 
,must complete the larger device's word access before 
relinquishing the bus. If this requirement is not met, 
a transfer's integrity can be violated easily by some 
other device. This interrupts the transfer, and cor­
rupts or aborts the mUltiplexing sequence. 

To illustrate this point, consider a system consist­
ing of an 8-bit CPU and several 8- and 16-bit periph­
erals. Assume one of the peripherals is executing a 
block transfer of l6-bit data onto the 8-bit bus. If 
the CPU interrupted the transfer in order to poll the 
peripheral during a half-word transfer, two undesir­
able events would occur. Either the multiplexing 
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sequence would be damaged irreparably when the 
CPU polled the peripheral, or the CPU would read 
garbage from the peripheral. 

Designing the control interface to allow mixing 
of 8- and 16-bit peripherals requires attention to the 
data and control flow. During a write operation, the 
data is written out sequentially: the lower byte comes 
before the upper byte (or vice versa). The read oper­
ation differs only because the data bus is 8 bits and 
because it forgets the last byte transferred; it knows 
the current byte only. Hence, the interface requires 
that one Of the bytes be latched until the full 16-bit 
word has been assembled. 

The slave mode of operation works almost the 
same as the peripheral bus master mode. The single 
exception is the slave write operation. When the 
interface is defined, the designer must make a con­
scious choice about which byte (upper or lower) to 
latch during peripheral read operations (or con­
versely, slave peripheral write operations). Once this 
decision has been made, the CPU must always access 
the latched data byte first (during a slave write) and 
then access the non-latched byte to complete the 
transfer. This restriction is minor, requiring no extra 
software overhead. It could affect the ease of the 
programmer's coding if not handled properly, how­
ever. For example, if the programmer used a com­
piler to generate the software for the system, extra 
care may be necessary to ensure the compiler gener­
ates the correct addressing sequence. 

An alternative solution would be to latch both the 
upper and lower data bytes. In this case, however, 
the cost of the interface would increase, as would 
the complexity, with no appreciable gain. The con­
trol flow in these designs derives from two differ-

ent sources: the state control flow itself and the 16-bit 
peripheral interfacing with the 8-bit bus. A state dia­
gram can be used to specify how uninterrupted word 
transfers will occur and how the upper and lower 
byte address is generated. 

In additIOn, the specific bus timing of the periph­
eral and the data bus must be examined to quantify 
the state control flow. These timing specifics also 
provide information on data latching, read/write 
control strobes, and addressing to and from the 
peripheral. The state control flow is divided into four 
operations: bus master read, bus master write, slave 
read, and slave write. 

For a bus master read/write operation from a 
16-bit peripheral device operating on an 8·bit bus, 
four control signals must be generated by the 
8/16-bit control unit: address bit 0 (AO), periRheral 
hold (WAIT), bus read (RD), and bus write (WR). 
The AO line is generated by the 8/16-bit control logic 
to indicate which byte is to be transferred in bus 
master modes only. Otherwise, the AO generated by 
the system is used to indicate which byte is being 
accessed. The WAlT line holds up the peripheral 
during transfers. The RD and WR lines are required 
to indicate successive transfer cycles on the bus. 

Hidden transfers 
The peripheral's signals will only strobe active 

once because it does not know that two transfers are 
being executed. The slave transfer flows are almost 
identical, except the CPU is generating the bus sig­
nals and the transfer directions are reversed (ie, a 
bus write goes into the peripheral). 

For this 16- to 8-bit data flow example, the data 
on the upper byte only needs to be latched when data 

STATE fLOW EQUIVALENTS SO SI SI S2 S3 S3 S3 S4 
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In addition to a state flow 
diagram, a liming diagram 
can be used to describe such 
data read/write operations as 
a master bus read. 
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is being read (as bus master) or written (as a bus 
slave), An interface to handle this operation needs 
to latch data coming from the 8-bit data bus into 
the peripheral, it also needs to act as transceiver 
when the peripheral is sending data out to the system. 
A device with a clocked, tri-state output that has ari 
8-bit wide latch in one direction and a tri-state trans­
ceiver in the other direction would be ideal for 
accomplishing such an interface. 

The Am2952 8-bit bidirectional 110 port provides 
a good enough match to the logic and allows the 
upper data bus latch and upper data transceiver chips 
to be combined on one Ie. It provides two 8-bit 
clocked 110 ports, each with tri-state output con­
trols and individual clocks and latch enables. An 
Am2949 bidirectional bus transceiver completes the 
logic required for the data path function. 

The state flow control requires logic that can move 
sequentially from state to state, hold in a particular 
state, and be reset or initialized back to a predefined 
state. Depending on the number of states required 
(generally less than 16 distinct states for a design of 
this complexity), a 3- or 4-bit counter should be able 
to solve the problem nicely. 

Considerable bus control logic is required to gen­
erate the data path flow logic and the bus control 
signals. This is especially true if the peripherals and 
CPUs use different signal conventions (eg, when AS, 
OS, and R/W use address latch enable, RD, and 
WR). Conversion from one signal convention to 

another, changes in signal polarity, and provision 
for extra functions (such as generating AO) require 
a lot of logic synthesis ability. If the peripheral has 
bus master capability, such additional information 
as bus arbitration controls must be fed into the next 
5tate determination logic in order to decide what con­
trol sequence to follow. 

Customized interface minimizes cost 
An 8/16-bit control interface between the Am8052 

CRT controller and an 8-bit CPU provides a good 
example of how customizing a general interface can 
reduce costs, (The CRT controller is designed'with 
a 16-bit data interface.) The onboard DMA unit 
fetches data from system memory and the CPU polls 
tht: CRT·~onirolkr's intt:fIIal status and control 
registers. Because the CRT controller does not 
modify system memory, however, a bus master write 
operation is unnecessary, Thus, there is no reason 
to generate a system write control signal (WR). 

In addition, the control and display information 
must be aligned on word boundaries. This require­
ment relieves the 8/16-bit control logic from funneling 
the bytes and performing odd/even byte transfers. 
It also saves control inputs from the CRT controller 
because all transfers are words; that is, no need 
exists for upper and lower data strobes or byte high 
enable inputs. 

The bus master read operations are standard 16-bit 
data transfers divided into two 8-bit transfers. The 
CPU's slave accesses are either pointer writes (to 
select the desired control/status register) or 16-bit 
data read/write operations. (Pointer write operations 

1'r.1:ni>f:-:::::"'- C P C 
V==;'==,.I S'O, 

Tht' slalt' machint' and 'Iht' bus and lalch controls 
ha\t' 10 Ix- couplt'd in order to transft'r dala bt'hnen 
the 8- and 16-bit buSt's. This ~eneraJized machine is 
de'Si~ned with tht' assumption that the peripheral has 
bus master ClIpabilit~·. If Ihis is not the caSt'. the 
design can bt' ~reatl~ simplified. 
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are actually 8-bit operations because only the lower 
8 bits of the data form the register address.) The bus 
master read operation can be represented by a state 
flow diagram or a timing diagram. Conceptually, 
state flow diagrams are easier to understand, but tim­
ing diagrams usually convey more information. 
Other state flow diagrams can be derived directly 
from the timing diagrams of the CRT controller to 
8-bit interface. 

Simplifications allow synthesis on one device 
Two special conditions must be met in the state 

machine implemented in the 8/16 interface. First, 
before a new transfer cycle is attempted (when the 
state machine is waiting in the initial state, SO), 
memory acknowledge (MRDY) must be inactive. 
This prevents interference from the last transfer. 

The second special condition occurs when the 
CRT controller asserts the R/W line to indicate a 
write operation. Although the CRT controller does 
not write data into system memory, when it updates 
the upper 8 bits of the 24-bit address latch the R/W 
line indicates a write operation (in conjunction with 
AS). The CRT controller is not actually performing 
a system data write, only an address latch update. 
The state machine, therefore, must not start a bus 
sequence if the R/W line is held active low by the 
CRT controller during a bus master operation. 

These simplifications in design allow the CRT con­
troller to 8-bit CPU control interface to be synthe­
sized in a single AmPAL22V10 programmable logic 
array device. In addition, the bus control signals are 
converted from AS, OS, and R/W to RO and WR. 
The minimum CRT controller and bus control sig­
nals that must be generated are RD, AO, OS, and 
R/W. Although the CRT controller uses OS and 
R/W as inputs during a bus master operation, the 

The logic for control and 
data transfer bet"een an 
Am8052 and 8-bit CPU has 
the control interface 
implemented in an 
AmPAL22VIO. 

PAL device must convert the CPU RO and WR sig­
nals to OS and t/W for slave I/O operations. 

The signals AD and RO are generated by the con­
trollogic when the CRT controller is performing a 
read access to system. The WAIT (or not READY) 
signal to the CRT controller must also be generated 
by the control logic. The data flow controls require 
six additional contruls to load and strobe the latch, 
and to enable transceivers to pass data to and from 
the 8-bit bus. Theoretically, 4 more bits (outputs) 
are required to represent all the control states needed 
to manipulate the 8/16-bit control logic. This means 
the design appears to need 14 output logic units in 
a PAL device to perform the required task. 

Reducing the 14 output cells to the 10 cells avail­
able in the PAL device requires a closer look at the 
timing and output switching functions. The AO and 
RO control lines are in effect part of the system bus 
control and, therefore, cannot be multiplexed easily. 
The OS and R/W lines to the CRT controller are 
also fixed because they must be valid throughout the 
entire transfer cycle as well. 

This leaves 6 of the 10 output logic cells of the 
PAL device to represent the remaining 10 identified 
control lines. This method of minimization involves 
careful state synthesis, analysis of the signal switch­
ing functions during the transfers, and utilization 
of several control pins on the CRT controller. By 
using the BREQ, BACKI, BACKO, CS, and C/O 
inputs to the PAL device, we can reduce the num­
ber of unique states required to 8 instead of 15. This 
reduces the number of logic cells required for the 
state machine from 4 to 3 bits. 

At this stage, the design requires seven control sig­
nals to manipulate the data transfer registers and 
WAIT line. The two latch enables (CEs and CDR) 
on the Am2952 bidirectional I/O port can be 
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permanently enabled. By controlling the clock signal 
to the latches, the controls required for three pins 
can be reduced to one. The interface control state 
machine will only use the correct side of the dual 
latches on the bidirectional I/O port. 

The Am8052 CRT controller helps considerably 
with its own control bus interface. Two signals 
provided by the CRT controller, TBEN and RBEN, 
switch the data transceivers in the correct direction 
regardless of the type of data transfer (as a bus 
master or bus slave). When the controller is a bus 
master performing a read operation, or when it is 
a bus slave undergoing a write operation, therefore, 
the RBEN signal is strobed to obtain the correct 
polarity. By using this line, two of the· remaining 
six control lines can be eliminated (REN on the 
Am2949 and OEAS on the Am2952). Although the 
TBEN line performs a similar function, it does not 
function correctly in a 16- to 8-bit multiplexed 
bus environment. 

Two of the remaining control lines (OEAS on the 
Am2952 and 10 on the bidirectional bus transceiver) 
must be generated by individual cells in the PAL 
device. The two clock enables on the Am2952 are 
permanently enabled. The two Am2952 clocks are 
tied together to minimize the amount of logic re­
quired in the PAL device used to generate clock 
strobes to the latches. 

This leaves the design with three logic cells and 
four output functions (the WAIT line to the CRT 
controller and the'3 state bits). Careful analysis of 

the state flows and timing diagrams indicates that. 
the WAIT line is only asserted in 4 of the 8 states. 
A clever assignment of state numbers to the state 
flow sequence allows the WAlT line to be absorbed 
into the 3 state encoding bits. The logic equations 
for the AmPAL22V 10 device can be derived directly 
from the timing diagrams. 

An unusual problem might occur when a periph­
eral device operates as a bus slave on a smaller data 
bus, such as a 16-bit peripheral to 8-bit CPU. During 
the first slave write operation, the chip select CS is 
enabled by the bus master making the access. No 
actual data-just the data latch-is strobed into the 
peripheral, however. After the first byte of data has 
been written, the second access causes the full 16-bit 
data to be strobed into the peripheral. 

If the designer is using a common CS function to 
both the peripheral and the 8/ 16-bit control logic, 
the controller logic must be designed not to glitch 
or strobe any of the control lines to the peripheral 
(it must prevent OS, R/W from being enabled, for 
example). For some peripheral devices, glitches on 
the control lines might cause the register to be written 
accidentally onto a register that will be overwritten 
in the next write cycle anyway. With other periph­
erals this might be a catastrophic event. Many 
devices acting as bus slaves have write recovery time 
requirements (ie, a certain minimum interval between 
consecutive write operations). Glitches on the con­
trollines might force the next (and final) write oper­
ation to be delayed-or cause a violation of the 

The data bus and control 
interface between an 8-bit 
8088 CPU and a 16-bit 
Am9516 DMA controller uses 
an AmPAL22VI0 for 
control, and a 74LS161 for 
state sequencing along with 
a bidirectional 110 port 
and transceiver. 
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device specifications. Glitches might evade any spe­
cial addressing/register accessing scheme used in the 
peripheral. This might occur, for example, if the 
slave device requires the user to write the address 
of the register that was accessed immediately before 
the register was written. In this case, glitches or use­
less control strobes could wreck the sequence. 

The problem can also be solved by using two lines. 
In this solution, one of the lines would go to the 
peripheral device and the other would conn,ect to the 
8/16-bit controller. The chip select to the peripheral 
is activated each time a slave read occurs (for both 
upper and lower byte accesses), or when a slave write 
operation occurs and the unlatched 8-bit data is 
being written. The chip select function to the 8/16-bit 
controller is chosen each time the peripheral is 
selected normally (for slave read/writes on both 
upper and lower 8-bit data transfers). This problem 
is bypassed completely when two separate chip select 
functions are used: one for loading up the Am2952 
latch during a slave write/read and one to strobe the 
Am8052 controller into action when it is needed by 
the 8-bit CPU. 

Bus conversion maximizes flexibility 
A data bus and control interface to an 8088 8-bit 

microprocessor and Am9516 16-bit DMA controller 
can be created using four devices: an AmPAL22VI0 
for the control block, a 74LS161 counter for the state 
sequencer, an Am2952 bidirectional I/O port, and 
an Am2949 bidirectional transceiver. 

This design incorporates certain simplifications. 
The DMA controller requires word accesses only 
during command chaining and for slave register ac­
cesses. The 8/16-bit data transfer interface for bus 
master operations (ie, DMA data transfer functions) 
is handled automatically as a programmable option. 
During slave write operations, the first byte output 
to the DMA controller must have an odd address 
and the following second byte an even address. Con­
versely, during a slave read cycle, the first byte read 
from the DMA controller must be at an even address 
and the second at the next higher odd address. 

Furthermore, for bus master operations, the sys­
tem must use the latched address line AO (LAO) from 
the AmPAL22VI0 as its sole AO. Because the logic 
is already available, the system does not have to pro­
vide this function. LAO now becomes the system ad­
dress bit 0 with full 24-mA drive capability. 

Deciding on a means for controlling the funneling 
of the data stream-that is, transforming 16-bit data 
into 8-bit data and vice versa-was the first step in 
deriving this example. As mentioned earlier, simply 
dividing each 16-bit access into two 8-bit data trans­
fer cycles presents one way of doing this. On out­
going accesses (I6-bit path from the DMA controller) 
during the first cycle, the upper half of the 16-bit 
path is latched while the lower half passes through 
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PIN 

BEGIN 

CK = 1 
S[0:2) = 2:4 
AD = 5 
lSEL = 6 
ALE = 7 
HLOA = 8 
IBW = 9 
READY = 10 
RESET = 11 

IRO = 23 
IWR = 22 
LAO = 21 
IDS = 20 
IRW = 19 
IWAIT = 18 
IA = 17 
IB = 16 
IC = 15 
10 = 14; 

IF (RESEn THEN ARESET( ); 
This section defines the wiggles when the Am9516 is bus master 

IF (HLOA) THEN ENABLE( ); 
IF (/Si2) • HLOA) THEN BEGIN 

IF (S[I) • IS[On THEN 

END; 
IF 

END; 

LAO = ICK * BW + IBW * AD • 
ALE + I BW • LAO • IALE ; 

ELSE 
LAO = BW + IBW • AD * 

ALE + IBW * LAO • IALE ; 

(HLOA) THEN 
(CASE) (S[2:0)) 

BEGIN 
1) BEGIN 

'RO =/RW'OS 
A = IBW • IRW • ICK 
WR' = IBW • RW • OS 
C = IBW' RW 
WAIT = 1 

END; 
2) BEGIN 
RO = IRW • OS 
B = BW 
A = IBW' IRW 
WR = IBW • RW • OS 
C = IBW' RW 
WAIT = IBW 

END; 
3) BEGIN 
RD = IRW • OS • B 
B =BW'CK 
A = IBW • RD 
WR = ISW • RW • OS 
C = lOW' RW 
WAIT = BW 

END; 
5) BEGIN 
RO = IRW • OS 
A = ISW • ICK 
WAIT = BW 

END; 
6) BEGIN 
RD = IRW • DS 
A = IBW 

END; 
7) BEGIN 
RD = IRW • OS 
A = IRD 

END; 

This section defines the wiggels when the 8088 is bus master 
BEGIN 

END. 

LAO= AD • ALE • SEL + LAO • I ALE • SEL 
B = LAO • WR • SEL 
A = lLAD • WR • SEL 
OS = A + lLAO • RO • SEL 
C = lLAO • RD • SEL 
D = LAO • RD • SEL 
END; 

This PLPL file implements an interface between the 
8-bit 8088 and the 16-bit Am9516. 

I 



Programming the PAL and the counter 

In writing the Programming Language for Program­
mable Logic (PLPL) file to control the operation of 
the AmPAL22V10 and the 74LS161 counter, the 
Inputs to the PAL device from the counter are as­
signed SO, S1, and S2, respectively. Then, it is pos­
sible to apply a "sculptured design" technique to 
the entire timing diagram (see figure in Panel, "A 
matter of timing") by using the Case statement from 
PLPL. By aSSigning combinatorial equations to only 
one binary partition or column at a time (Case), the 
designer can Ignore all other aspects of the design 
for the time being and generate simple equations 
directly from the timing waveforms. 

During clock time T1 of the Am9516's word read 
cycle the state of the 74LS161 (SO, S1, S2) is cleared 
to 000 by the assertion of address latch enable 
(ALE). LAO Is the only output control signal from the 
CRT controller asserted during this period. This sig­
nal is handled as a special case, however. During 
tlmd T2 of the DMA controller's word read cycle, 
the AD and WAIT outputs from the CRT controller 
must be asserted. This time partition corresponds 
to the state inputs S2, S 1, SO = 001. Therefore, the 
first Case equations are 

CASE (5[2:0)) 
BEGIN 
1) BEGIN 

AD= IAW·DS ; Transform Control 

WAIT=1 

END; 

; Signals lAW and OS 
; into Intel IRD 

; Assert Wait 
; unconditionally 

During time T2 of the DMA controller's byte read 
cycle, A Is the only additional output not already 

a tri-state buffer onto the 8-bit bus. During the sec­
ond cycle, the tri-state buffer is turned off and the 
previously latched half of the data is driven onto the 
bus. On incoming accesses (8-bit path to 16-bit path), 
the process is reversed. 

The control mechanisms that perform this cycling 
depend on the WAIT and R/W signals passing to 
and from the DMA controller, and on the ability 
to enable or disable the latches and transceivers selec­
tively. The Am2952 bidirectional I/O port was 
chosen because of its dual registers and its flexible 
control. The AmPAL22VlO device was chosen to 
match the required number of control pins and func­
tions_ Since the complexity of this design requires 
the use of all of the PAL's I/O pins for control func­
tions, however, it was necessary to use a 74LSl61 
counter to provide the state sequencer function. 

Programming with PLPL 
It has long been the logic designer's "art" to merge 

the often very different concepts and notations of tim­
ing information with Boolean logic. Yet, the evolu-

accounted for in the Case statement. This signal 
allows a byte of data to flow through the bidirec­
tional bus transceiver into the DMA controller 
during byte read operations. Some additional con­
straints are placed on this signal, however: it must 
only be asserted in time T2 on byte read operations 
(the BIW input) and it must be delayeC!.Qy a half 
clock period from the rising edge of T2 (CK signal). 
Thus the Case statement becomes 

CASE (512:0)) 
BEGIN 
1) BEGIN 

RD= IRW·DS 
A= IBW·/RW·/CK 

WAIT=1 

END; 

; enable the 
; receiver 

Finally, by examining the last time T2 elements 
(WR and C) during the DMA controller's byte write 
cycle, the remaining terms in Case 1 are derived. 
With the exception of LAO, the remaining equations 
were developed in the same fashion. Clearly, this 
"sculptured" technique is a very simple and 
methodical means for arriving at the Boolean re­
quirements for a logiC block. 

As the PLPL listing shows, the signal LAO was 
handled slightly differently from the previously dis­
cussed method. The number of product terms gen­
erated via the Case statement made this approach 
necessary. The number exceeded the upper limit 
(16 terms) for a programmable logic array. As a prac­
tical matter, therefore, it was necessary to optimize 
this signal manually. However, it should be noted 
that this step will not be necessary once the fully 
optimized version of PLPL becomes available. 

tion of a syntax to fully express this art has taken 
a long time. AMD recently developed such a language 
for programming the AmPAL22VlO, however. 

"Programming Language for Programmable 
Logic," or PLPL, allows the designer to specify a 
design using mUltiple input formats. This specifica­
tion flexibility supports the variety of design 
approaches necessary to express different design 
problems efficiently. These formats range from sim­
ple sum-of-products Boolean equations to high level 
constructs. PLPL also supports the input specifica­
tions for many types of ANDIOR based devices, in­
cluding all of the current AMD programmable logic 
array and PROM devices. 

PLPL is block structured, and includes the high 
level language constructs If-Then-Else, Case, and 
For; all familiar to many programmers of the C and 
Pascal languages. Macros, functions, constants, and 
variables may also be used in PLPL. The language 
also facilitates use, clarity, and self-documentation. 

Such current programmable logic technology and 
associated programming langua;,"f'< as PLPL allow 
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A matter of timing 
The complex AmPAL22V10 design used the accom­
panying timing diagram to correspond to the 
desired waveforms. They are partitioned by the 
respective binary state (or count) from the counter. 

The desired timing requirements during the 
period when the DMA controller is bus master 
appears below. During time T1, address latch 
enable (ALE) is asserted by the DMA controller to 
denote the beginning of the cycle; a short time later, 
an address is driven onto the bus. This address is 
valid at the falling edge of ALE. The control signal 
LAO (latched AO), therefore, must be valid at this 
time, as well. In this phase of the cycle, it must also 
be high to enable the odd byte from memory to be 
loaded into the bidirectional I/O port. In addition, 
the assertion of ALE performs the function of reset­
ting the 74LS161 counter to 0000 in order to syn­
chronize the cycle. 

During time T2, the DMA controller will assert its 
OS signal. The timing for this signal, in conjunction 
with the Rrw signal (asserted in T1) must be trans-

formed into an 8088-e~valent RD signal. During 
a word read cycle, this RD signal also must be arti­
ficially negated and then reasserted to accomplish 
a double byte read. At the same time, the DMA con­
troller must be "parked" in order to multiplex or 
assemble a word. Thus, the WAIT signal is also 
asserted at time T2. During time TW (S2, S1, 
SO = 010), the receiver clock enable control signal 
B must be asserted in order to allow the next sys­
tem clock's rising edge to strobe the upper byte into 
the bidirectionalI/O port. This is accomplished dur­
ing the next TW period (S2, S1, SO=011). 

During the remainder of the word read cycle, RD 
is negated and then reasserted after LAO has been 
forced low 1'0 address the even byte. A is then 
asserted to allow both the previously latched upper 
byte and the current lower byte to be driven onto 
the DMA controller's pins. And finally, the WAIT sig­
nal is negated, allowing the DMA controller to finish 
its read cycle by strobing in the 16 bits of command 
data on its data pins. 

Am9516 Am9516 Am9516 I:: WORD READ CYCLE ~BYTEREADCYCLE_~BYTEWRITECYCLE_I 
Am9516 
CLOCK 

TI-I-Tl+TW--!-TW-!-TW--j-TW--!--TW-j-Tl TI-j-Tl-j-TW-I-Tl-I-TI--j-T2-!-TW-j-TJ-j 

AlE _JlL--____________ ----JnL _____ --Jn .... _____ _ 
Do 10 011 

DATA LATCHED DATA IN 

LAO~ IiX LATCHEDAo LATCHEDAo 

IRD~L __________ ~~L __________ ~r----lL ________ ~ 
~~ /'------------------1 

IB------L-j 
IA-----------------, .------. 

L-____ ----J1 .... I ___ ~ 

IWR------------------------------------, r---
~--~I 

IC------------------------------------, 

WAIT~L ____________________ -J 

So 

highly organized application-oriented control blocks 
to be formed easily. These tools can conceptually 
raise the designer above the details of the design at 
the logic level and directly translate the necessary 
response characteristics from a timing diagram. 

This approach can be referred to as a "sculptured 
design" technique because it is analogous to the way 
solid stone is formed according to an artist's image. 
Raw logic can be transformed directly into useful con­
trol functions from the desired timing information. 

L 
~ ____________________ ~r_ 

The AmPAL22V1O is, in essence, a fuse-program­
mable gate containing up to 22 inputs and 10 out­
puts. It can define and program that architecture of 
each output on a pin by pin basis. Thus, the designer 
is free to optimize the design mix between registered 
and combinatorial functions as needed. 

The AmPAL22VIO is programmed by opening fus­
able links in any or all of its 10 output macrocells, 
as well as in its AND gate array. The AND gate struc­
ture is very similar to other PAL devices; therefore 
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It allows the same powerful, yet familiar features. 
However, it is the AmPAL22VIO's 10 output logic 
macrocells that give the designer substantial new 
design freedom. Moreover, at each macrocell out­
put is a tri-state output buffer controlled by a 
separate output-enable AND gate. . 

These macrocells provide the AmPAL22VIO's key 
features. They can be configured to make any or all 
of the I/O pins act either in sequence or in combi­
nation and have either active-high or active-low char­
acteristics. Furthermore, the output enables can 
individually control the direction of the pins so they 
act as outputs, inputs, or bidirectional ports. 

A number of trade-offs and limitations are appar­
ent in a design that so dramatically affects the input 
and output of the system. The most obvious limita­
tion stems from under utilization of 16-bit periph­
erals on an 8-bit bus-the speed of all I/O operations 
are cut in half. As a result, bus utilization will 
increase if the l6-bit peripheral represents a signifi­
cant factor of the bus use. A CRT controller such 
as the Am8052 might use 5 to 10 percent of the bus 
bandwidth for display information when using 16-bit 
I/O. Converting to 8-bit I/O would double bus use 
to 10 to 20 percent. Another factor that might affect 
the bus usage is the efficiency of the 8- to 16-bit con-

version control logic. If the state machine designed 
to perform the 8/16-bit (or 16/32-bit) conversion is 
improperly designed, extra transfer overhead might 
be introduced. This might mean a sequential transfer 
of two 8-bit values would take twice as long a single 
16-bit transfer. 

The design constraints might limit the use of the 
peripheral to byte-only operations during data trans­
fers (as in the design using the DMA Am9516 con­
troller), and slow it down by a factor of two during 
command operations. For such a DMA device as the 
Am95l6; the extra time required for command fetch­
ing is not usually a significant portion of bus time. 

System designers will have to weigh the cost of 
the extra overhead on a case-by-case basis. The ben­
fits may well justify these limitations-particularly 
when the bus is self-limiting, but the device charac­
teristics allow for value-added designs. In addition 
to bus degradation for certain configurations, extra 
logic and design effort are involved. Most interfaces 
outside a system's immediate family require some 
kind of extra imerface"iogic, however. By manipulat­
ing the signals and incorporating them into program­
mable logic devices such as the AmPAL22V1O device, 
therefore, most of this logic is free. 
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3.7.6 Article Reprint 

SEMICONDUCTOR TECHNOLOGY 

High Performance 
DMA For The VMEbus 
by Mike Wodopian, Field Applications Engineer, Advanced Micro Devices 

esigned for direct memory access with minimal CPU 
intervention. the Am9516 from Advanced Micro 
Devices (Sunnyvale. CA) is a general-purpose micro-

processor peripheral. It can be tailored to specific applications 
by simply reprogramming on-board registers. This reprogram­
ming is generally accomplished by the DMA Controller's 
linked-list data structure without involving the CPU. A 
VMEbus system board is a case in point. The Am9516 performs 
memory-to-memory. memory-to-peripheral and peripheral-to­
peripheral transfers at rates up to 4 Mbytes/sec (using the 
6-MHz version). Each chip can address up to 16 Mbytes of 

memory. and single DMA burst capability of up to 128 Kbytes 
further enhances operation. 

In addition to DMA operations. transfer-and-scarch opera­
tions or search functions aionc can be performed. Users enter 
the desired pattern into the on-board pattern match register and 
a mask register is included to eliminate certain bits from the pat­
tern match. When a match condition (or a no-match condition) 
is found. an interrupt is generated to inform the host processor. 

To remain compatible with existing peripherals. the Am9516 
can perform a byte packing/unpacking function. This allows 
efficient use of word-organized memory when intertacing to 
byte-organized memory or peripherals. The part has the ability 

Figure 1: The interconnection of the Am9516 to the VMEbus requires two PALs. 
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to load its own control parameters into its on-board registers in 
order to facilitate loading of initialization parameters. The CPU 
writes these parameters to local memory, informs the Am9516 
of the data block address and issues a start chain command to 
key the initialization process. 

Upon completion of a DMA operation, the Am9516 can do 
one of several things. For systems requiring DMA between two 
areas of memory, on-board base registers are provided for each 
channel. This allows fast reloading of the current address and 
operation count registers. Changing direction of the transfer 
simply requires changing the state of the "flip bit" in the chan­
nel mode register. Upon completion, the Am9516 can perform 
another chain operation to prepare for a different type ofDMA 
transfer. Using its on-board interrupt logic, the device can in­
form the host of its completion status by sending an interrupt 
and responding to the host with a user-specified interrupt 
vector. 

To accommodate slow memory or peripherals, the Am9516 
provides a means to add wait states. The wait line can be driven 
with normal types of transfer acknowledge signals, such as 
XACK in a Multibus environment, READY in an 8086 system 
or DTACK in a 68000 system. With the Am95 16, wait states can 
also be added under software control. Users simply program 
the transfers' required number of wait states (0, 1,2 or4 may be 
selected) into the address register tag field: This feature makes 
it possible to stretch bus cycles without hardware overhead. 

The VMEbus makes provisions for address modifier lines to 
allow implementation of paging schemes and memory manage­
ment functions. These lines also allow access to several sequen­
tiallocations of storage while providing only one address. VME 
also caters to 32-bit data fields and 32-bit address tields. The 
bus design makes provisions for system or module failures. 
Signals such as bus time-out, bus error and power fail can serve 
as fault-finding mechanisms to ensure overall system integrity. 

Interfacing The Bus 
A basic interface to the VMEbus may be based on the Am95 16. 
Although features such as bus exceptions or address modifier 
codes are not considered here, the basic approach can expand 
to allow for additional features or special user requirements. 
The system design uses an Option One priority arbitration 
scheme, but could easily be expanded to implement other for­
mats. PAL devices minimize the hardware required for user­
customization of this system. The design uses two PAls: an 
AmPALl6R4 device, which performs basic signal translations 
to and from the Am9516 when it is a master.or a slave on the 
VMEbus; and an AmPALl6L8 for handling bus arbitration and 
interrupt responses. A breakdown ofthe signal descriptions us­
ed are shown in Table 1. 

PAll provides the logic that interfaces to the VMEbus when 
the peripheral chip is either a master or a slave. When the 
Am9516 is configured as a bus slave to another master residing 
on the VMEbus, the address is decoded to generate an Am9516 
chip select signal. This signal is also latched (LCS) to begin an 
internal state sequence in PALl. State variables A and B deter­
mine both the start and the end of the required Am9516 data 
strobe (DS) and the'" 1E acknowledge signal (DTACK). 
Timing of these signal lnges slightly depending on whether 
the cycle is read or write. 

When the Am9516 is a bus master, PAll generates all VME-

Table 1: Breakdown of the signal descriptions used in the interface of 
the Arn9516 to the VMEbus. 

required control signals not directly generated by the Am95l6. 
The address strobe generated by 8-MHz and la-MHz versions 
ofthe Am9516 does not meet the VME address valid to address 
strobe falling edge set-up time. Thus, state variables A and B 
must be used to create this address strobe signal. An external 
buffer on the output of A provides sufficient drive for the 
VME address strobe control line. PAll also generates the cor­
rect VME Data Strobe (D50,DSI) combination from the 
Am9516's Data Strobe, Address Line Ao and the Byte/Word 
signals. 

Table 2 shows the PAL equation, the pinout of the device, 
logical equations for all signals and a function table (truth table). 
Figure 1 details the interconnection of the Am9516 to the two 
interface PAL devices and the VMEbus. 

Requesting The Bus 
PAL2 controls the acquisition of the VMEbus by the Am9516 
and generates the signals for both the Am9516 and the VMEbus 
during interrupt acknowledge cycles. To obtain use of the 
VMEbus, the Am9516 requests the bus by driving its BREQ line 
high. Thi~al is received as an input by PAL2. A VME bus 
request (BRX) is generated only if there is no active bus­
grant-in (BGXIN). Such gating ensures that the Am9516 does 
not steal the bus from a lower priority master that was just 
granted use of the bus. Upon receipt of an active bus-grant-in 
(BGXIN) from the VME arbiter, PAL2 generates an active 
HAS BUS signal indicating to the Am9516 that it now has con­
,trol of the system bus. Simultaneously, PAL2 generates the 
VME "bus busy~ signal (BBSY), indicating to the VME arbiter 
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and other VME masters that the bus is in use. 
PAL2 also generates the proper levels on bus-grant-out 

(BGXOUT) to continue the bus acknowledge daisy chain. This 
design assumes an Option One arbiter which responds only to 
requests on bus request line 3 (BR3) and depends upon the daisy 
chain for prioritization. VME also specifics a parallel method 
for bus arbitration that could, with minor modifications, be 
implemented using this PAL design. Because an Option One ar­
biter is assumed, PAL2 does not generate a bus clear signal. The 
signal is only used by Option One priority arbiters to inform the 
present master on the bus that a higher priority master would 
like use of the bus. This design also implements an option called 
"release when done.~ which releases bus busy (BBSY) when the 
Am9516 indicates that it no longer wants use of the VME. 

The other portion of this PAL creates the proper signal 
sequence during an interrupt acknowledge cycle. When the chip 
encounters a condition that should generate an interrupt. it 
drives its interrupt (lNT) line low. This interr~ignal drives 
one of the VME interrupt request lines (IRQI-IRQ7) as well as 
an input to PAL2. Upon receipt of an interrupt acknowledge 
(lACK) signal. the PAL device decodes the three low-order 
address lines. If the present interrupt acknowledge cycle is at 
the Am9516's predetermined level when interrupt acknowledge 
in (IACKIN) is received low. PAL2 generates the 9516INTA 
signal that drives the Am9516 interrupt acknowledge input 
(lNTACK). The Am9516 then responds by driving the data bus 
with its user-programmable vector. 

PALl also plays a role in interrupt acknowledge cycles. When 
it detects a valid 9516INTA signal. an internal state sequence 
begins which generates the proper transfer acknowledge 
(OTACK) to the interrupt handler. When PALl sees the data 
strobe (OSo) go high. the cycle ends and OTACK is driven back 
high. PAL2 also generates the proper signal level on inter­
rupt-acknowledge-out (lACKOUT) to complete the interrupt 
acknowledge daisy chain. Table 3 is the PAL equation for PAL2 
and details the pinout of this part as well as the equations that 
define its operation. 

Meeting VME Power Requirements 
The VME specification puts some rather stringent dc require­
ments on bus signals. AMO manufactures a family of bus inter­
face parts that satisfy the requirements for most of the VMEbus 
signals. The bus grant and the interrupt acknowledge daisy­
chain signals need not be buffered since their drive requirement 
is moderate. Other signals, such as AS and DS, are buffered by 
a 74S244. 

As a bus slave. the OMA card must receive an address from 
the VMEbus and decode it to generate a chip select to the 
Am95l6. AMO's 29809 and 29806 equal-to comparators suit 
this need. In this slave mode. the Am29827 10-bit buffer 
receives all necessary control signals from the VMEbus to 
initiate the required bus cycle at the Am9516. To complete the 
cycle. PALl generates a OTACK signal which must go through 
a 74S09 gate to meet the drive requirements of OTACK on 
VME. The Am2986l isa data transceiver needed to drive the 
VMEbus or the Am9516. 

As a bus master, the same Am29861 ICs provide the trans­
ceiver functions necessary on the VME data bus. The direction 
in this case is controlled by the Am9516 rather than the PALl 
outputs. The lower 16 bits of address out of the Am9516 are 1at-
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CK WRITE LCS HASBUS BW AO ALE 051 195161NTA GNO 
IDE IRBE !TBE IB IA 10TACK IDS 1051 1050 VCC 

:INTERNAL STATE VARIABLES 

A : .. fLCSxOSxfHASBU5 
fLCSxfHASBUSXAxOSOxWRITE 
ILCSx/HASBUSXAxOS1xWRITE 
ALExlBxHASBUS 

IALExiBxHASBUSxA 
95161NTAx/AxiBxDSO 
95161NTAxAxBxDSO 

:=/LCSxAxiHASBUS 
ILCSx/HASBUSxBxOSOxWRITE 
ILCSx/HASBUSxBxDSlxWRITE 
AxlBxHASBU5 
95161NTAx/AxiBxDSO 
95161NTAxAx/BxDSO 
95161NTAxiAxBxOSO 

+ :EON FOR lA-SLAVE 
+ :EON FOR lA-SlAVE RD ONLY 
+ :EON FOR lA-SLAVE RD ONLY 
+ :EON FOR IA-9516 MASTER 
+ :EON FOR IA·9516 MASTER 
+ :EON FOR IA·INTA CYCLE 

:EON FOR IA-INTA CYCLE 

+ :EON FOR IB·SLAVE ROIWR 
+ :EON FOR IS-SLAVE RD ONLY 
+ :EON FOR IB·SLAVE RD ONLY 
+ :EON FOR IB·9516 MASTER 
+ :EON FOR IB·INTA CYCLE 
+ :EON FOR IB·INTA CYCLE 

:EON FOR IB·INTA CYCLE 

;9516 OUTPUTS TO VME 

OS :=/LCSx/Bx/HASBUS 
ILCSxBxOSOxWRlTE 
ILCSxBxOS1xWRITE 

+ :EON FOR IDS·SLAVE RDIWR 
+ :EQN FOR IDS·SLAVE RO ONLY 

:EON FOR IDS-SLAVE RD ONLY 

OTACK :=lDSxiHASBUSxAxOSOxIWRITE + :EQN FOR IDTACK·SLAVE WR 
/DSx/HASBUSxAx051x1WRITE + :EON FOR IDTACK·SLAVE WR 
OSx/HA$BUSxAxBxOSOxWRlTE + :EON FOR IDTACK·SLAVE RD 
OSxiHASBUSxAxBx051xWRITE + :EQN FOR IDTACK·SLAVE RD 
95161NTAxiAxBxOSO . :EON FOR 10TACK·INTA CYCLE 

: BUFFER ENABLE 

IF (/HASBUS) TBE=AxIWRITE :XMIT BUF EN·SLAVE WRITE 

IF (lHASBUS+9516INTA) RBE .. AxOSxWRITE + :RCV BUF ENJ..SLAVE READ 
95161NTAxOSO . 

:VME DATA STROBES WHEN 951615 A MASTER 

IF (HASBUS) OSD-IOSlxBWxIAOx/A + :EDN FORQSG.9156 MASTER 
IOSlxBWxADx/A 

IF, (HASBUS) OSl.IOSlx/BWxIAOxfA + :EQN FOR 051-9516 MASTER 
IDSI+BW+/AO+/A 

Table 2a: PALl handles signal translations to and from the Am9516 for 
both master and slave situations. 

ched in an Am29845. Since it meets all requirements for driv­
ing the VME address lines. the Am29845 drives the bus direct­
ly. An additional Am29827 buffers the high-order address lines 
(AI6-A23). as well as the read/write line. onto the system bus. 
Because of the h~ drive requirements specified for the VME 
data strobes (050. OSI) and address strobe (AS), the 
PAL cannot drive the bus directly. A 74S244 is used in this 
instance since it meets the 64-mA sink current specified by the 
VME. In addition to OTACK, three other signals must go 
through a 74S09 open collector ANO gate to provide the drive 
capability and proper output type. These are an interrupt signal 
out of the Am9516 (lNT) and bus request (BRX) and bus busy 
(BBSY) out of PAL2. 

Handling Bus Exceptions 
Both the Am9516 and the VMEbus provide users with 
mechanisms for handling bus errors and subsystem failures. 
The VME specification provides for a bus time-out module that 
can flag system errors or problems. This module monitors the 
data strobe lines, DTACK and bus error (BERR) signals. When 
a falling edge is detected on either of the data strobes. this 
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module begins a time-out sequence. If the module times-outs 
before a valid DTACK signal or BERR signal. or a rising edge 
of either of the data strobes occurs. then this module will drive 
BERR low. which completes the data transfer.and automatically 
flags a bus error. 

The Am9516 can also use a portion of this feature to abort a 
DMA in progress if a bus exception is detected. In master mode. 
the Am9516 could monitor the bus error signal (BERR) and. 
when active, it drives the Am9516 OP input low. Subsequently, 
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the Am9516 stops current DMA operation and relinquishes the 
system bus. The Am9516 could then generate an interrupt to the 
system indicating that a system error or problem has occurred. 
The VME board could also monitor the bus ac fail line which 
indicates that power is going down. In such a fatal situation, 
should the Am9516 have control of the bus, it should give it up. 
This scheme could be implemented using the Am9516 end-of­
process (EOP) control line. 

Although this design represents the implementation of an 
interrupt driven system, a simpler system could be designed that 
does not take advantage of the Am9516 interrupt logic. In fact. 
such a simple system might use one AMD 24-pin PAL device 
(AmPAL22VIO) rather than two. However. the built-in interrupt 
controller adds flexibility within the system and provides for fast 
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z:' 'Z'X' 
H H X 
H H X 

x H" ;CHECK Hi~z VARIABLES 
X H ;START OF WRITE CYCLE 
X H ;SECOND CLOCK CYCLE 

L H X X H !THIRDCi.OCKcyCU;, 
L H X X H ;FOURTH CLOCK CYCLE 
L H X 
H H X 
H H X 

X H." ;FtFTH CLOCK CYCLE 

H H Ii 
H H H 
H H L 
L H L 
L H' L 
L H' L 
L H;;,'l 
L H l1 ·'H 
H' H';'H 

X. H ;SIXTH CLOCK CYCLE' 
X' H :FINAL CYCLE 

.X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 

H .' ;STAAT OF READ CYCLE '. 
H' ;FIRST CYCLE ' 
H ;SECONO CLOCK CYCLE 
H !THIRD CLOCK cYcLE 
H ;FOURTH CLOCK CYCLE 
H 9516 DATA VAUD , 
H ":DATA STAYS VALID-.DS, LOW ." , 
H ;FINISH·OSOl1 GO HIGH ' 
H :END CYCLE/START NEXT 

H H\'H L H' H ,;CHECK DATA STRoBE 3'9 
H Z·;·Z. L H H.;CHECKBUFENA3-S 
H ZZ ·H:.H H ;:$!i1~MI\STR·WOROREAO 

H 'H 
H H 

H X 
H L 
H L 
H L 
H L 
H H 
H H 
H l.­
tt '. L 
tt :L 
~ L 

L H, H 
l .L I.­
L t l 

H H 
H H 
H H 
H H 
.H H 

H 
H 
L 
L 
H 

L z'i L L H· ;SECONDCYClE 
, H: 7. 'z L l H • !THIRD CYCLE 

'.~ ".~ .',·i: :t' t, ~ ~~D~D:~~:N:~~~~~~~~rf;';.;; ,H';. H 
Hff. 
H H 

.H' H 
.;'~ H' 

H.H, 

L H L' 
H l' H 
L,L (; 
t L .t.; 
L L L 

,.HH 

',H H 
", H "'M 

H H 
HH 
H 'M 
H H 

,H 'H 

H 
'H 
H 
Ii 

"H' 
Ii 
11, 

H . Z. "Z" l L .. , H. :avref{EAOv~.".,...~~ .... ~.,.." ... ·;} 
H ·z i ie' L,' H ';WOADREAq .... 
HZ' Z L: \ If 'H' ;fOURTH CYCLE ; 
H Z Z!l.·' t, .. H;RFTHCYCUC 
H. ,Z,,:, t.. L., H H 19516DS~ 

Table 2b: Truth table for PAL1. PALl allows the interface between the Am95l6 and the VMEbus, 
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PAL16L8 
PAL 2 

Ne BREQ IBGXIN IIACK IIACKIN 1f>S liNT A1 A2 GND 
AJ NC IMYLEVL BAA IIACKOUT HASBUS IBGXOUT BBSY 195161NTA vec 

.:Bt!S.EXCHANGE VARIABLES 

/SAX =lBREO+HASBUS+BGXIN+~BSY 

IHASBUS . =IBREQ+/BGXINxiBREO+IHASBUS+/BBSY 

IB8SY :a/HAS8US 

OOXOUT, =BGXlNxBRXxlBSSY+ 
BGXINxBGXOUTx/BBSY 

;INTA,CYClI; VARIABLES 

95l61NTA' ";MYLEVLxINTxIACKINx/IACKOUT 

IACKOUT. =IMYLEVELxIACKINxAS + 
IlNTxlACKINxAS + 
I~KIN~xIACKOUT 

~A1xA2xA3xIACl<xINT ;THIS SETS THE INTERRUPT LEVEL 
;OF THE 9516. THIS DESIGN 
;ASSUMES AN INT LEVEL OF 7. 
;THE USER CAN CHANGE THIS BY 
;REWRITING THIS EQUATION m SET 
;THE DESIRED tNT LEVEL. 

Table 3a: PAL2 is required to interface the AM9516 to the VMEbus. 

FUNcrlON TABLE 

interrupt processing. Whenever a DMA operation is ter­
minated, the Am9516 can generate an interrupt. There is also 
a two-level interrupt queue so that a new DMA cycle can start 
before an interrupt acknowledge cycle occurs. Reading the 
interrupt save register will give the interrupt handler the data 
needed to determine the cause of the interrupt. 

VME Address Modifier Codes 
As specified by YME, address modifer lines allow the master 
presently on the bus to pass additional information to the slave 
it is addressing. Some of the address modifier codes are defined 
by YME to perform certain functions, while others are user­
defined. These address modifier codes allow such features as 
system partitioning (i.e., privileged or Ilonprivileged accesses), 
memory mapping or sequential access cycles that allow access 
of several locations without providing a separate address each 
time. The design does not account for address modifier codes 
even though YME specifies that all masters should drive these 
lines. This is left to the potential user since the system will need 
to be configured to meet those specific requirements. 
o Editor's note: A complete set of timing diagrams for this 
design is available upon request from AMD. For further infor­
mation, please circle 619. DC 

How useful did you find this article? Please circle the appropriate 
number on the Reader Inquiry Card. 

Very Useful 
Useful 
Somewhat Useful 

....... 613 
.. 614 

..... 615 

BREO IBGXIN IIACK IIACKIN lAS liNT 195161NTA 
IIACKOUT HAS8US 18GXOUT 188SY 18AX A1 A2 A3 IMYLEVL 

I 
I I I I 

I I 1 A H 8 M 
B I A 6 C A G I Y 

;8 G I C I I K S X B L 
;A X A K I I N 0 B 0 B B E 
;E I C I A N T U U U S A A A A V 
;0 N K N S T A T S T Y X 2 3 L 

X X X X X L X X X X X X H ;STATIC BUS ACTIVITY 
X X X X X L X X X X X X H 
X X X X X L X H X X X X H 
H L H H H L- H H H X X X H 
X X X X X L L H H X: X X .H 
X X X X X L .H H H X X X H· 
H L H H H L H H L X X X H 
H L H H H H H L H X X X H 

.Hd L H H H H H L H X X X, H 

'Ii H L H X X X X X 
H H L H X X X X. X 
H Ii L H X. X L t. L 
H H L H X X '1:1 to( I;L 
1. H L H X X H,c H ~H 
I. H L H X X H ".H H 
H H. L H X X, H <tt, fi~,: , 
H L t. H X X t. . L: ,t.: 
H L L H; , X.' X L. :,t: ;>L 

Table 3b: Truth table for PAL2. PAL2 provides VMEbus arbitration as well as generating the signals for an interrupt acknowledge cycle. 
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3.7.7 Article Reprint 

APPLICATIONS NOTEBOOK 

A Demultiplexed Analog Subsystem 

The new monolithic analog to digital 
I converters generally do not provide a 

16-bit formatted data word for immediate 
processing by a CPU. These AID con­
verters usually multiplex data through an 
eight-bit port in byte and nibble form. 
There is no easy way for a processor, re­
gardless of the ALU bit size, to handle this 
unformatted data directly since it requires 
demultiplexing and reformatting the data 
coming from the converter. This results in 
inefficient and slow data processing. For 
an existing system to use one ofthese new 
converters it could be a major undertaking 
to modify the system software to achieve 
the proper data format for processing. 

Advanced Micro Devices' Am6U2, 
which multiplexes 12 bits of data through 
an eight-bit port in two's compliment, re­
quires the following algorithm to reformat 
the data for a 16-bit processor. In the first 
read ofthe converter's port, the four most 
significant bits of a 12-bit data word are 
read into one of the processor's registers 
(bit locations BO through B3). In the sec­
ond read, the eight least significant bits 
are read into a different register (bit loca­
tions BO through B7). To merge the two 
registers, the processor must do a logical 
shift of the four most significant bits to lo­
cations B8 through Bll in the first register. 
Bll is tested for sign, and, ifnegative, bits 
B12 through B15 are set. The shifted and 
corrected register must then be merged 
with the second register to get a formatted 
data word of any value for processing. An 
analogous operation must be done if the 
conversion code is one's offset. The added 
processing time required is now equiva­
lent to five or six instructions per data 
fetch. 

The following design, using a PAL 
device, is a hardware/software solution 
for the interface of the Am6112 to a 16-bit 
processor - shown in Figure 1. This 
hardware design doesn't require the five or 
six instructions for formatting to be used 
each time there is a data fetch, thus avoid­
ing an untenable software modification or 
an increase in processing time. 

The first step in the design is to con­
struct a timing chart (Figure 2). The chart 
shows the timing interactions between the 
PAL device and the Am6112. After work­
ing out the timing, schematics are drawn 
and the allocation of inputs and outputs 
can be assigned to the PAL device (Figure 

SB 

RD 
WR 

c/O 

00-03 00-07 
CLKIN 

Oemux 

12Bit 
AID 

Converter 

AM29845' 

~----------~~------~OE 
AM29845 

Analog 

Sample & 
Hold 

8·15 

0-7 

+ 
Analog 

In 

Figure 1: Circuit diagram showing AM D's Am6112, ADC, controlled by AMD's new Am PAL22V1 0 
PAL with a parallel 16-bit bus interface. The AmPAL22V10 functions as a state machine to initial­
ize and control the sample and hold device, the Am6112. and provide the logic necessary to de­
multiplex 12 bits of data from the Am6112 and place it into a 16 bit data format with corrected sign bit. 

~~---------------------'LJ~-----

BLSB u 
Figure 2: Analog to digital conversion cycle showing power up initialization-states 0 to 2, start of 
conversion - state 3, conversion cycle - states 5 and 6. and latching of data from conversion -states 
6and 8_ The first entry point isthe power up sequence in stateOandthesecond Isin state 9. Instates 
5 and 9 the clock does not run until conversion is complete or an external conversion is requested, 
respectively_ 
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1). Finally, the sequential states and the 
Boolean equations are defined and assem­
bled. In this instance the sequential states 
are the successive binary states of the 
timing. 

The parts used in the intcrf..!ce design are 
Advanced Micro Devices' AmPAL22VlO, 
the Am6ll2 l2-bit analog to digital con­
verter, and two Am29845 bus registers. 
The AmPAL22VlO is mnemonically called 
"DEMUX ," meaning de-multiplexer. 

Thedesign requires minimal clocking 
during the actual conversion of the analog 
signal in the Am6112. This is done by 
gating the acknowledge signal from the 
Am6ll2 and one ofthe binary states from 
the state counter with the clock signal 
through the PAL device. There is also 
minimal clocking when the Am6112 is 
idle. Again, by gating the clock with a bi­
nary state from the state counter and the 
signal that requests a conversion, clock­
ing in the circuit is minimized. In the 
PALASM source listing, the clock control 
equation has ADR4 through ADR7 fac­
tors. These factors are the I/O address 
lines from the CPU. The I/O address de-

coding for chip select is done in the 
AmPAL22VIO for the conversion circuitry. 

After an external conversion request, 
the clock is gated on to start the Am6112's 
conversion. The external conversion re­
quest signal is the control bus' write signal. 
Thus the first equation forthe PAL device 
is state 5 ami acknowledge low, or state 9 
and external conversion request low which 
allows the clock to run the state counter. 

Not clocking during conversion or 
while idle prevents unwanted noise, espe­
cially in the analog signal, and minimizes 
the overall system noise generation due to 
output switching. Using these design rules 
does not alter the actual conversion time 
in the Am61\2. The Am6ll2 requires ap­
proximately 141/2 clock periods for a con­
version. The state machine requires \3 
clocks but three overlap with the clocking 
of the Am61\2. Thus, the total number of 
clocks in a conversion is 241f2 from the 
leading edge of the control bus' write 
signal. 

Creating the Boolean equations for the 
interface design is a heuristic process 
using the timing chart. For example, in 
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ClKABCO~ 
ACI'CA Be 0 

ACK A SCD . c/o 
fiB) 

ABC D 
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ABC~RD 
ABCO[)J('91 

CLK2 •. A.B.CD~4MSB 

ClK2IABC.O~8LSB 

"""'00-("""'81 Sf! 

Figure 3: Graphic representation of the 
functions expressed in the PALASM source 
listing DEMUX for the AmPAL22V10 PAL. 

defining the read equation from the tim­
ing figure, read must be low during state 
zero, state six and state eight. The actual 
logic for the read signal is implemented as 
shown in Figure 3, and its Boolean expres­
sion is in the accompanying PALASM list­
ing (Figure 4). In states two and three, the 
write signal will go active low during only 
the first half of each state's clock cycle 
rather than for the whole period as in the 
read signal. For the command/data signal 
the timing figure shows it going low in the 
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CLKIN RS EXCR'SYSRD ACK CLK D3 AORO ADR4 AOR5 AOR6 GND 
AOR7 ABC 0 00 CLKO ISH ICD IWR IRO VCC 

; CONTROL SIGNALS 
RO .. IA'/B'/C' + IA'B'C'/O 

WR .. IN/B'/C'/O + IA'B'/C'/D'CLKO + 
A'B'/C'/O'CLKO + IA'B'/C'O'ICLKO 

co - IA'B'/C'IO'ICLK + A'B'/C'/O'/ACK + 
IA'/B'C'IO'/ACK + INIB'/C'O + A'B'C'/O 

SH - IA'/B'IC'/O + A'/B'/C'/O'CLKO + 
IA'B'IC'O +NB'/C'O +IN/B'C'O'CLKO 

; CLOCK OUTPUT FOR STATE COUNTER 
CLKO .. CLK + A'IB'ACK'C'/O + 

A'/B'IC'O'EXCR'AOR4'AOR5'/AOR6'AOR7 
; EXCR & 10 @ 1/0 AOOR CX 

; CONVERSION MODE CONTROL 
; 1/0 AOOR COH AND C1H IF (IA'B'/C'/O'CLKO'/AORO + 

IA'B'/C'O'ICLKO'IAORO) DO .. SH ; AORO = LOW IS 1's & IF HIGH is 2's. 

; STATE COUNTER ANO ADDITIONAL CONTROL SIGNALS 
A: = INIO'RS + INO'RS 

IF (/A'B'C'/O'103) B: = N/B'IC'/O'RS + IA'B'/C'/O'RS + ; [SNCB] 
A'/B'C'ID'RS + IA'B'C'/O'RS + ; SIGN CONTROL 
N/B'IC'O'RS + IA'B'/C'O'RS + ; BIT 
IA'/B'C'O'RS 

IF (IN/B'/C'D'/CLKO) C: m A'B'/C'/D'RS + IA'/B'C'/D'RS + ; [BLSB] 
A'/B'C'/O'RS + IA'B'C'/O'RS + ; STROBE 
A'B'IC'D'RS 

IF (IA'B'C'/O'/CLKO) 0: :: NB'C'/O'RS + IA'IB'/C'O'RS + ; [4MSB] 

FUNCTION TABLE 
CLK CLKO CLKIN 

H H C 
H H H 
L L L 
H H C 
H H H 

A'IB'/C'O'RS + IA'B'IC'O'RS + ; STROBE 
A'B'/C'D'RS 

EXCR ACK RO WR CD SH 00 03 0 

X X X X X X Z X X 
H X L L H L Z X Z 
X L L L H L Z X Z 
X L H H H L Z X Z 
X L H H H L Z X Z 

Figure 4: PALASM lisling and example ollunction table lor application. 

C 

X 
Z 
Z 
Z 
Z 

B A 

X X 
Z L 
Z L 
Z H 
Z H 

latter half of state two. remaining low 
through states three and lilur and rising to 
the hi!!h state. inactive. in state live. It also 
has a ~ynchronous relationship to the ac­
knowledge signal from the Am6112: com­
mand/data is "anded" such that it will not 
go inactive until the acknowledge signal 
becomes inactive. 

in!! to DOofthe Am6112. serves as an out­
p~tduring initialization in the first halfof 
state two. 

The other control signals arc similarto 
the read. write. and command/data sig­
nals. The data signal. DO ofthe PAL. go-

To generate all of the control signals. a 
lilur-bit counter was created in the PAL 
devicetocount from zero to 12. At reset. 
or power-up. the counter starts at zero and 
goes through one cycle. oreounts to nine. 
then stops until the CPU exerts an active 
low on the write control\ine. States 10. II 
and 12 oceur after the active leading edge 

3-364 

RS 

L ;0 
H ;0 
H ;0 
H ;1 
H ; 

of the write signal. and provide a sampling 
window for the sample and hold circuit. 
In state 12. the state counter is loaded with 
a four-bit binary value of three. On the 
next clock edge. that which would se­
quenceacountertostate 13. thecounteris 
synchronously loaded with the value three 
and sequencing ofthe converter occurs for 
a conversion. 

The B. C And D outputs of the counter 
are normally tri-stated. B. C and D out-
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puts are pulled to ground via resistors. 
When a strobe for data enable is needed 
for one of the bus latches, eitherC or D's 
output is taken out oftri-state and driven 
active high. 8's output state is determined 
by the sign bit from the Am61l2 converter. 

It drives input bits 812 through 815 of the 
high hal f of the data bus latch in order to 
move the sign bittothe most significant bit 
position; this eliminates the need for soft­
ware modifications. If the sign bit is posi­
tive. or active low, the output is not taken 

3-365 

out oftri-state. If the sign is negative. or 
active high. the output is taken out oftri­
state and driven active high. 
- Garret Spears. FieldApplicatians En­
gineer. Advanced Micro Devices. Sunny­
vale. C4 
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Advanced Programming Language for Programmable Logic Design 

by 

Om Agrawal 
Dept. MGR., Customizable Logic Product Planning 

Advanced Micro Devices 
991 Thompson Place 
Sunnyvale, CA 94988 

INTRODUCTION 

With persistent advancements of 
LSI!VLSI technology, new generation of 
pro g r a mm a b I e I S1 g i c d 7 vic e ~ ( P L D s ). -
especially PAL (s) rlvaillng density 
and flexibility of gate arrays are 
appearing on the horizon. 

PLDs with faster speed, denser 
arrays (with increasing number of 
log i c a I, pro d u c t t e r m s), b.tl t t e; r 
architectural features, bUilt in 
support for diagnosability and with 
sophisticated software design tools, 
are finding wider and wider 
applications in various systems. 

Two major factors which are 
fueling the growth of such advanced 
programmable logic devices are: Better 
software tools and better technology. 
Software tools are providing the "ease 
of design"; while better technology is 
providing the increased architectural 
flexibility, faster speed, reduced 
power and increased functional 
density. The major focus in this paper 
will be on the software side; on an 
advanced Programmable Logic 
Programming Language (PLPL). 

ADVANCES IN SOFTWARE 

With the increasing complexity and 
flexibiliies of programmable logic 
devices, the need for better software 
tools becomes increasingly important. 
While the first generation software 
tools such as PALASM was adequate for 
relatively low complexity, first 
generation programmable logic devices, 
they are inadequate in several 
respects for future generation 
devices. 

DESIRED FEATURES FOR ADVANCED SOFTWARE 
TOOLS FOR PROGRAMMABLE LOGIC 

o Compiler based rather than Assembler 
based 

While the first generation software 
package was, relatively low level 

* PAL is a registered trademark of and 
is used under license from Monolithic 
Memories, Inc. 

machine language and Assembler based, 
the next generation software has. to be 
Compiler based for simplifying the 
tasks of the designers and for 
utilizing the complexity of the future 
generation devices. 

o High Level 
Language 

Block Structured 

For utilizing the complexity of 
future devices, and minimizing the 
task of relatively complex logic 
designs, the software should specifiy 
the design equations in a high level, 
block structured language. 

o Ease of Portability to different 
Operating Systems 

The software should be developed 
in a high level language to allow it 
to be ported to different operting 
systems relatively easily. 

o User Friendly 

The software package should be an 
easy and convenient tool, with all the 
features tailored towards USER 
fr iendli ness. 

o Technology Independent, Device 
Independent and Hardware Programming 
Equipment independent 

The software package should be 
able to support multiple programmable 
logic devices (PALs, PLAs and PROMs), 
with multiple technologies (Bipolar 
and CMOS); should run on a large 
number of operating systems (running 
on multiple machines - from low end 
PCs to very high end Main frame 
computers) and should support a large 
number of hardware programming 
equipments built by various 
manufacturers. 

o Should support multiple design 
formats, and should allow clear 
problem definition with relatively 
High Level Constructs 
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The software package should 
support problem definitions in 
multiple design formats and High Level 
Constructs - multiple design formats 
such as PALASM like sum-of-products 
Boolean equations, extended Boolean 
logic descriptions, DeMorgan's Laws, 
Macro substitution capability, pin 
vector specifications; and high level 
register transfer and state machine 
descriptions with high level 
constructs such as IF-THEN-ELSE, FOR, 
CASE, and FUNCTION CALLS. It shauld 
allow the devices to be expressed in 
terms of their functions rather than 
the implementation of their~functions. 

o Should simplify the tasks of the 
designers 

It should allow the designers to 
take full advantage of designing with 
programmable logic devices and should 
help them with all the aspects of the 
design - starting from defining the 
problem to be solved, creating a 
solution, verifying the solution by 
simulation, generating the test 
vectors, optimizing the list of 
Boolean equations. 

o Interactive or Batch Mode of 
Operation 

The software package should have 
the capability of providing both 
interactive and batch mode of 
operation for designing with 
programmable logic devices. 

o Ease of adding n'ew devices 

The software package should be 
developed to support relatively easily 
the addition of new programmable logic 
devices. The environment should be 
preferably a Data Base Table driven, 
to achieve this functionality. 

The software package should 
support problem definitions in 
multiple design formats and High Level 
Constructs - multiple design formats 
such as PALASM like sum-of-products 
Boolean equations, extended Boolean 
logic descriptions, DeMorgan's Laws, 
Macro substitution capability, pin 
vector specifications; and high level 
register transfer and state machine 
descriptions with high level 
constructs such as IF-THEN-ELSE, FOR, 
CASE, and FUNCTION CALLS. It should 
allow the devices to be expressed in 
terms of their functions rather than 
the implementation of their functions. 

o Should simplify the tasks of the 
designers 

It should allow the designers to 
take full advantage of designing with_ 
programmable logic devices and should 
help them with all the aspects of the 
design starting from defining the 
problem to be solved, creating a 
solution, verifying the solution by 
simulation, generating the test 
vectors, optimizing the list of 
Boolean equations. 
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o Interactive 
Operation 

or Batch Mode of 

The software package should 
the capability of providing 
interactive and batch mode 
operation for designing 
programmable logic 'devices. 

o Ease of adding new devices 

have 
both 

of 
with 

The software package should be 
developed to support relatively easily 
the addition of new programmable logic 
devices. The environment should be 
preferably a Data Base Table driven, 
to achieve this functionality. 
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s'rRUCTURE OF PLPL ENVI RONHENT 

Programmable Logic Programming 
Language (PLPL) is such an advanced 
software package - with all the ,above 
features. It provides an integrated 
top-down, hierarchical and complete 
package for designing with 
programmable logic devices. With its 
advanced features, it is a new design 
approach for further enhancing the 
short desi~n turnaround time 
associated with all programmable logic 
devices. 

Written in language ~ for 
portability and flexibility, it is a 
high level, block structured hardware 
description language for programmable 
logic devices. With its Data base, 
table driven format, it h~s the 
capability to support multiple AND-OR 
logic based programmable logic devices 
such as PALs, PLAs and PROMs. It is 
designed to be a convenient tool for 
the USERs; and supports multiple 
design techniques such as PALASM like 
sum-of-products Boolean equations, 
extended Boolean logic descriptions 
(Parenthesized equations, DeMorgan's 
laws, Macro substitution capability, 
and Pin vectors). With its interactive 
or batch mode of operation; optional 
tri-level menu driven capability; 
extensive error checking and help 
facility; and with direct hardware 
programming equipment interface, it is 
quite user friendly and easy to use. 

PLPL is the heart of a new 
programmable logic computer aided 
design environment. This environment 
with all its flexibility allows the 
designer to take full advantage of 
designing with pro~rammable logic 
devices and allows all the tasks 
associated with the designing of 
programmable logic devices to be 
performed with ease and confidence. 
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Structured in a top-down, 
hierarchical fashion, in ,PLPL CAD 
environment, each program is governed 
by a separate program module. Nine 
independent modules make up the PLPL 
environment (fig. 1): The Operations 
Processor, The PLPL Compiler, PLPL 
Data Base Map, JEDEC Fuse Map 
Generator, List Equations, PLPL 
Simulator, PLPL Optimizer, PLPL 
Semi-automatic Test Vector Generator 
and PALASM to PLPL Translator. 

The OPERATIONS PROCESSOR 

The Operations Processor is an 
interactive, tri-level, menu driven 
interface module that provides the 
interface for all other modules of the 
PLPL CAD environment such as the 
Compiler, JEDEC Fuse Hap Generator, 
List Equations, Simulator, Test Vector 
Generator, Optimizer etc. With its 
extensive "help"'facility, it is 
designed to be quite user friendly. 
Also, it provides an "escape" 
capability to temporarily exit the 
PLPL environment to execute certain 
system operations (of the particular 
operating systems) - such as editing 
or looking at the contents of other 
files. 

THE PLPL COMPILER 

The PLPL Compiler is the heart of 
the PLPL environment. It converts 
appropriate PLPL design specifications 
into an intermediate file form - to be 
accepted by otherPLPL modules - such 
as JEDEC Fuse Map Generator, List 
Equations, Simulator etc. The PLPL 
Compiler parses the PLPL input 
specifications, checks for possible 
syntax errors and flags any possible 
device limitation errors. The PLPL 
Compiler is designed to be device 
independent. All the device specific 
information such as its 
architectural features and other 
features are provided to it from the 
PLPL Da ta Base. 



THE PLPL DATA BASE 

The PLPL Data Base stores all 
device dependent architectural 
information (associated with all the 
programmable logic devices - that ar~ 
supported by PLPL) and supplies this 
information to other modules who need 
it - such as the Compiler, JEDEC Fuse 
Map Generator, and the Simulator. This 
centralized nature of the data base, 
provides the flexibility to add new 
devices quickly to the PLPL 
environment. Future addition of new' 
devices to PLPL impact~only this 
module. 

JEDEC FUSE MAP GENERATOR 

T his mod u 1 e has the 
responsibility for generating the 
appropriate fuse map pattern for down 
loading directly to a hardware 
programmer. It arranges the fuse 
pattern into appropriate JEDEC 
transfer format, supported by all 
suppliers of programmable logic 
programmers. 

LIST EQUATIONS 

This module takes the 
intermediate file (generated by the 
Compiler) and generates all 
appropriate Boolean equations. 

PLPL SIMULATOR 

This module performs the 
simulation using user created test 
vector tables, consisting of specified 
inputs and expected outputs. This 
simulator uses the specified test 
vector inputs and the outputs of the 
Compiler's intermediate file to model 
the device's output behaviour. The 
simulation output is cQmpared to the 
expected test vector outputs, and 
appropriate error messages are 
generated, when results do not match. 
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PLPL OPTIMIZER 

This module optimizes the list of 
Boolean equations generated by the 
PLPL Compiler. With the elimination of 
all redundant product terms, this 
results in an optimum list of 
equations for optimum utilization of 
the device. 

PLPL SEMI-AUTOMATIC TEST VECTOR 
GENERATOR 

This :--rl"'e generates .test vectors 
(semi) automatically for a PLPL design 
specification. The test vectors 
generated by this module can be used 
by the Si~ulator to test the device. 

PALASM TO PLPL TRANSLATOR 

This module reformats PALASM 
specifications into appropriate 
transformations that is acceptable to 
the PLPL Compiler. This provides 
downward compatibility with existing 
equations for converting to PLPL. 

PLPL PROGRAM STRUCTURE 

This section describes the 
structure of PLPL input specification 
and some of the capabilities of PLPL 
language. 

All PLPL input specifications 
require as a minimum the following 
three basic structures (fig. 2): 

o a HEADING 
o a DECLARATION BODY and 
o a PROGRAM BODY 

The HEADING specifies the title, 
if any, of the design and the device 
type that is to be programmed. 

The DECLARATION BODY is where pin 
names, macros, constants, and 
variables are specified. It is 
separted from the HEADING with a white 
space. In PLPL, white space is defined 
to blanks (spaces), tabs, newlines, 
formfeeds (A L), and comments. 
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The PROGRAM BODY contains the 
logic specification that _is to be 
programmed. 

Fi~tire 3. shows the detail 
structure of a PLPL program and table 
1. shows the formal requirements of 
PLPL organization. As seen from this 
table, every' PLPL program must have ~ 
PIN declaration. Since all the 
elements need to be declared before 
they are used in the program, usually 
the pin declaration is the very first 
declaration within a program 
specification. The declarations: are 
followed by the main program: block, 
which is bracketed by the keywords 
BEGIN and END. (with the period). 

The PROGRAM BODY section begins 
with the keyword BEGIN (also a 
statement operator) and is terminated 
with the statement operator -END. (with 
the period). Any combination of 
Boolean equations ~nd high level 
descriptions using the IF-THEN-ELSE, 
CASE, and FOR constructs may appear 
between ,the opening -and closing 
statement operators. The section may 
be null (containing no statements), 
but the statement operators 
(BEGIN-END.) may still appear. ,This 
section may only appear once in a 
specification. 

THE HEADING 

Excluding comments and white 
spaces, the HEADING must be the first 
line of a PLPL input specification. 
The syntax for the heading is as 
follows: 

DEVICE title_specifier (part_name) 

The heading consists of three 
parts: a) the keyword DEVICE~ b) an 
optional title_specifier and c) a 
part specifier or device name. The 
program HEADING should always begin 
with the keyword DEVICE. The 
title name is optional, but wh.n 

. speci ned, the title should have no 
spaces in it. The part_name'should be 
a valid partname. Note that ;HEADING 
definition can span multiple lines, 
with comments inserted in between, if 
so desired. 
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THE DECLARATION BODY 

Thr~e types of declarations are 
supported in PLPL: 

o PIN - for pin assignments 
o DEFINE - for MACRO and CONSTANT 

definitions 
;0 VAR - fo~ variable list 

,de.finitions 

Only ~he PIN declaration is 
man~atory in PLPL. 

PIN DECLARATION 

PIN declarations section allows to 
equate user defined identifiers to 
physical device pins. It begins with 
the keyword PIN and is terminated w~th 
a se~icolon. PLPL supports two types 
of.~in as~ignments: Simple and Vector. 
Simple pin li,st declarations assign 
user defined symbolic names to the 
pins withirithe r~al device, for 
describing 'the pins' actual functions. 
Vector pin list assignments assign a 
group of multiple pins to a pin 
vector. Whereas, the Simple pin 
declaration, equates a pin number (a 
number that represents t~e-actual pin 
on the device) to a simple pin_name; 
the' pin vector" declaration 
concatenates the symbolic pin vector 
name with the numbers inclosed in 
brackets, for each symbolic pin. There 
is a one to one mapping beteween the 
order of the numbers with in the 
brackets on the left hand side and the 
numbers specified- on the right hand 
side. The syntax for a pin_vector 
assignment is ~s follows: 

pi~_name [subscrip't_set] .. pin_set 

In, pin_vector, assignments, colon 
and comma, can be used together for 
both sy~bolieand actual pin numbers. 
For example: 

DATA(7:~] • 3,4,5,6,7,B,9,1~ can also 
be expressed as 

DATA(7:5,4,3:~1 • 3,4,5:1~ or also as 

DATA(7:~1 • 3:1~. 



T his add s g rea t de a 1 o-f 
flexibility, clarity, and conciseness 
to input specification. Instead of 
dealing with each pin individually, 
all of the pins together can be 
considered as a single unit. A set of 
pins that interfaces to a bus is a 
good example of where this can be used 
quite advantageously. This also 
provides a clear and powerful way to 
describe state machines. 

DEFINE DECLARATION 

This section allows two types of 
declarations: MACROS and CONSTANTS. 

MACROS provide the capability of 
representing a complicated expression 
wit~ a single symbolic name. Since, 
only the macro name and not the whole 
expression that it represents is used 
in the equation section of the program 
body, macros make specifications more 
concise. Macros also make design 
changes to be made easily. A single 
change to a macro definition is much 
easier to make than a change that must 
be repeatedly made throughout the 
equation section. 

CONSTANT declaration, while 
conceptually similar to a MACRO, is 
restricted to the assignment of a 
number to a constant_name. 

VAR DECLARATION 

Like Macro definition section, 
this is an optional section, and is 
used to declare all the variables used 
in PLPL program. It begins with the 
keyword VAR, follwed by a 
variable list and is terminated with a 
semicolon. 

THE PROGRAH BODY 

PLPL is a block structured 
language and encourages modular 
programming. As seen in table 1. PLPL 
program has at least a declaration 
body followed by a main program body. 
The main program body is bracketed by 
the keywords BEGIN and END. 
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Blocks of statements delimited by 
BEGIN and END; may appear in various 
locatio~s with in the program. 
However, the last program body must be 
followed by a period. in PLPL, a block 
of statements bracketed by the 
statement operators BEGIN and END; is 
treated as a single statement. 

STATEHENT STRUCTURE 

Four types of statements are 
supported in PLPL: 

o The Assignment Statements 
o The Conditional Statements 
o The Loop Statements 
o Function Calls 

ASSIGNHENT STATEHENT 

An Assignment statement consists 
of a variable identifier followed by 
the assignment symbol = or := followed 
by a valid expression. Expressions 
that appear on the right hand side of 
an assignment operator come in two 
flavors: Boolean and Arithmetic. 

Boolean expressions consist of 
identifiers that represent pins and 
macros and logical operators combined 
in the infix format (i.e., operators 
in between two operands). For example, 
assuming that the identifiers are 
defined appropriately . 

Q OUT[l] * /RESET * HOLD + DATA[l] 
is a valid Boolean expression. 

Also, multiple assignments to the 
same variable are allowed in PLPL. If 
an identifier appears on the left hand 
side of more than one assignment 
statement in the program body, the 
actual "value" of this identifier will 
be the logical "OR" of each 
expression; 

An Arithmetic expression consists 
of numbers; constants, and variables 
combined with arithmetic operators in 
the infix format. PLPL supports only 
integer expressions. In integer 
expressions, all variables, constants 
and results of functions must be 
integers. 
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CONDITIONAL STATEMENTS 

PLPL provides two types of 
conditional statements - to support 
either binary decision capability or 
multi-way decision capability. These 
two statements are: 

o IF-THEN-ELSE statements 
o CASE statements 

IF-THEN-ELSE statement is used to 
make binary decisions. Figure 4 and 5 
show the examples of IF-TH~N-ELSE 
statements. Since,.the ELSE part is 
optional, the ELSE is concatenated 
with the closest previous ELSE-less 
IF. 

The CASE statement provides 
multi-way decision making capability. 
It causes a branch to one of several 
statements depending on the value of 
CASE argument. This statement is quite 
powerful in specifying state machines. 
Used in state machine design, the CASE 
statement can merge with the IF 
condition so ~hat a state diagram can 
be directly translated into a PLPL 
specification. This statement is also 
quite powerful for handling memory 
address range for address decoding 
functions. Figures 6, and 7 
illustrates the use of CASE statement 
for handling memory address ranges for 
address decoding. 

LOOP STATEMENT 

For controlled looping, PLPL 
supports a high level FOR construct. 
This construct allows execution of a 
loop with the automatic incrementation 
of a counter variable. FOR,loops 
provide a simple way to evaluate many 
expressions that incorporate pin 
vectors. ,This is quite powerful for 
compacting equation specifications. 
Compact yet completely understandable 
specifications can be created with 
minimal effort. Figure 8. illustrates 
th~ use of FOR statement. 

FUNCTION CALLS 

PLPL supports three types of 
FUNCTION CALLS (predefined functions): 

o ENABLE () 
o ARESET () 
o SET () 

The ENABLE function is used to 
selectively enable output pins in a 
device; and the arguments to the 
function must be output or i'nput/ouput 
pins. Typically this function is used 
in conjunction with the IF statement. 
If a call to this function never 
appears in a specification, pins 
defined as outputs are assumed always 
enabled. 

ARESET is a function provided 
specifically for the AmPAL22Vle, and 
is used to cause an asynchronous RESET 
of the output registers. SSET is also 
a function provided specifically. for 
the AmPAL22Vle. A call to this 
function causes a synchronous set to 
occur, i.e., the output registers are 
set to a high state. Since, both the 
ARESET and SSET mechanism apply to all 
the outputs, all the arguments to the 
functions are ignored. 
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FUTURE TRENDS IN SOFTWARE SUPPORT 

For software support of existing 
and future, complex programmable logic 
devices, most of the efforts are being 
spent on the development of high level 
language based advanced software 
package. Technology indepenedent, 
device independent, and programmer 
independent software tools are 
becoming mandatory for wider 
acceptance of these devices. Complete 
software packages - helping the 
designers with with all the aspects of 
the design processes are beginning to 
emerge. Also, with the development of 
advanced software packages, the 
architecture of these devices will be 
made more transparent to the designers 
so that they will spend their time in 
solving the problems rather than 
incremental optimal utilization of the 
internal resources of the device. 

With the availability of these 
advanced software package such as 
PLPL, the tasks of the designers will 
be simplified. Instead of specifying 
the complicated designs by Boolean 
equations only, the designers will be 
able to specify them directly on state 
diagram level using High Level 
Language (HLL) type specifications, 
directly on engineering work stations. 
Software tools will help designer in 
specifying the problem, simulation of 
design verification, test vector 
generation, and post programming 
verification. Advances in programmable 
logic software will be integrated with 
capturing the schematic entry, direct 
state diagram level representation, 
state minimization, netlist 
generation, specfication of design at 
high level language, automatic 
simulation, verification and 
downloading into a programmer. The 
improved design methodology will allow 
the system designers to exploit their 
system systems knowledge without 
having to learn the internal details 
of particular ICs. It will result in 
better use of engineering talents and 
bringing down the cost of designing a 
product. 

• 
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TABLE 1 FORMAT OF PLPL PROGRAM ORGANIZATION 

MANDATORY OPTIONAL 

Proaram Heading x 

DEVICE x 

TITLE_SPECIFIER )( 

(PART_NAME) )( 

Declaration Bod~ x 

PIN LIST declarations x 

PIN VECTOR declarations x 

MACRO definitions x 

CONSTANT definitions x 

i 
VARIABLE definitions x 

PROGRAH Body x 

BEGIN x 
Statement x 
Statements x 

END. x 
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Figure 

Examples of valid IF statements 

Example 1 

BEGIN 

IF 

o 

IE 
) 

THEN 

C - A * B 

END. "Example of IF statement spanning multiple 

lines· 

Example 2 

BEGIN 

IF (al THEN 

END. 

Example 3 

BEGW 

IF (al THEN 

END. 

BEGIN 

IF (b) THEN e • c: 

ELSE e • d: 

BEGIN 

END: 

IF (b) THEN e • C I 

ELSE e • d I 

Figure 5 

IF (al THEN 

BEGIN 

END. 

END; 

ELSE 

BEGIN 

END; 

IF (bl THEN 

BEGIN 

END; 

ELSE 

BEGIN 

END; 

f • e; 
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Figure 6 

Example for CASE statement 
"The following two examples illustrate the use of CASE statement 
for handling memory address range for address decoding function. 
The first example illustrates decoding in a normal fashion. " 

DEVICE test (Ampal16L8) 

PIN 

DEFINE 

BEGIN 

END. 

A1S .. 1 
A14 - 2 
A13 so 3 
A12 .. 4 
All .. S 
/RESET .. 6 
/MREQ .. 7 

/ME!-!l .. 19 
/MEM2 - 18 
/MEH3 .. 17 
/MEM4 • 16 
/MEMS .. lS 
/MEM6 .. 14 
/MW7 • 13 
/ME118 .. 121 

~IEMOP .. /RESET • MREQ: 

"MEMl is active from 0000H to 0FFFH" 
MEMl • MEMOP * /A1S * /A14 • /A13 • /A121 

"MEM2 is active from 1000H to lFFFH" 
MEM2 - MEMOP • /A1S * /A14 • /A13· A121 

"MEM3 is active from 2000H to 27FFH" 
MEM3 .. I1EMOP • /A1S • /A14 * A13· /A12 * /Alll 

"MEM4 is active from 2800H to 2FFFH" 
MEM4 - MEMOP * /A1S * /A14· A13 * /A12· All: 

"MEMS is active from 3000H to 37FFH" 
MEl·IS .. MEt-lOP * /A1S * /A14 * A13· A12· /All: 

"MEM6 is active from 3800H to 3FFFH" 
MEM6 .. MEMOP * /A1S • /A14 * A13· A12· Alll 

"MEM7 is active from 4000H to SFFFH" 
MEMl .. MEMOP • /A1S * A14 * /A13 1 

"MEMS is active from 6000H to 7FFFH" 
MENS .. MEMOP • /A1S· A14· A13 I 
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Figure 7 

"the same example with the use of CASE statement" 

DEVICE test (Ampal16L8) 

PIN 
A(l5:11] = 1:5 "Doing the decoding just looking at bits 

A15 - All only" 

DEFINE 

BEGIN 

/RESET 6 

/!1REQ 7 

/MEM[1:8] 19;12: 

MEMOP /RESET * MREQ: 

CASE (A[lS: 11] 
BEGIN 

"MEMl is active from 00£10H to OFFFH" 
IB0£100£1, #B0£1001) MEM[l] = MEMOP : 

"MEM2 is active from l£1£1£1H to IFFFH" 
#B0£101£1, #B0£1011) HEM[2] = MEMOP : 

"MEM3 is active from 20£1£1H to 27FFH" 
#BOOI0£1) MEM[3] = MEMOP : 

"MEM4 is active from 28£1£1H to 2FFFH" 
#B0GI0l) MEM[4] = MEMOP : 

"MEMS is active from 3£100H to 37FFH" 
#BOOll£1) MEM[5] = MEMOP : 

"MEM6 is active from 3S0£1H to 3FFFH" 
#BOOll1) MEM[6] = MEMOP : 

"MEM7 is active from 40£1£1H to 5FFFH" 
#B01£100, #B01£101), #BOI010, #B01£111) MEM[7] = MEMOP 

"MEMS is active from 6000H to 7FFFH" 
#B01l00, #BOllOl), #BOll10, #B01111) MEM[S] MEMOP 

END: 

END. 
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Figure 

Example for CASE statement 

"the following two examples illustrate the use of CASE statements 
for handling address ranges for address decoding " 

DEVICE decoder (Ampal16LB) 

PIN ENAB - 4 

BEGIN 

END. 

0[":7J .. 12:19: 

CASE (ENAB) 
BEGIN 

END: 

0) 
1) 

/0[":7J .. tBllllllll: 
/0~":7J m 0[":7J: 

"The same example treated different way" 

DEVICE decoder (Ampal16LB) 

PIN ENAB - 4 

BEGIN 

SEL (1:3J - 1:3 
0[0:7J - 12:19: 

CASE (ENAB) 
BEGIN 

0) /0[0:7J • tBll111111: 
1) CASE (SEL(3:1J) 

BEGIN 

0) /0[0J • 
1) /OElJ -

1: 
1: 

2) /0(2) - 1: 3) /0[3J - 1: 
4) /0(4) - 1: 
S) /0(5) - 1: 
6) /0(6) - 1: 7) /0[7J - 1: 

END: 
END: 

END. 
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Figure 

Some Examples of FOR statements 

Example 

BEGIN 

FOR (X = " TO 7) 

BEGIN 

Q[X] = D[X] 

END: 

END. 

Example 2 

BEGIN 

FOR (X = 1 TO 8) 
BEGIN 

Y = X PLUS 1 

Z = X MINUS 1: 

Q[X] := LOAD*D[X] + HOLD*Q[X] + SHFTR*Q[Y] + SHFT1*Q[Z]: 

END: 

END. 

Example 3 

BEGIN 

PIN NUM_PLUS_l = PIN_NUM PLUS 1: 

PIN_NUM_MINUS_l = PIN_NUM MINUS 1: 

FOR (PIN_NUM = 1 TO 8) 

Q_OUT [PIN_NUM] := LOAD * DATA [PIN_NUM] + 
SHFTR * Q_OUT [PIN NUM_PLUS_l] + 
SHFTL * Q_OUT [PIN_NUM_MINUS_IJ + 

HOLD * Q_OUT [PIN_NUMJ: 

END. 
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3.7.9 Article Reprint 

Test Methods for Programmable Logic 

by Jenny Yee 
Product Planning Applications Engineer 

Advanced Micro Devices, Inc 
Sunnyvale, CA 94988 

Introduction 

The p~rpose of this paper is to 
investigate the methods used to test 
programmable logic devices. Because 
these devices are user-programmable, 
they offer the user/designer the 
flexibility of defining the function of 
a device for a particular application. 
After the function has been defined the 
des igner needs to ver i fy that the 
function will work correctly in a 
programmed device. He needs a simple 
method that allows him to easily 
generate test patterns which reflect the 
functions he has defined. After 
function definition and verification, 
the design is implemented by programming 
a device. Since large quantities of 
devices may be programmed using the same 
design, testing is again called for, in 
order to insure that the devices are 
fully. functional before they are 
integrated into systems. Because the 
objectives and methods of testing during 
design and programming are different, it 
is reasonable to examine them 
separately. 

The Design Process: Simulation 

The typical design process tends to be 
trial-and-error. The first attempt at a 
design usually gets modified. Because 
programmable logic devices can be 
quickly changed --- the old device can 
be pulled out, a new one programmed in 
seconds and plugged back into the system 
- they allow the designer a fast design 
cycle time. 

The necessity to verify that a function 
will work correctly before it is 

actually implemented in a programmable 
logic device is analogous to the need to 
verify that a logic design using 
standard TTL devices is correct before 
the design is built. The method used in 
logic design to perform such 
verifications is logic simulation. This 
allows the designer to define a model of 
the logic structure on a system, subject 
the model to test patterns and use the 
outputs to determine whether the logic 
is correct. 

Simulation can also provide the 
necessary verifications for designers 
using programmable logic devices. 
Altpough the process is slightly 
different than TTL logic simUlation, its 
purpose is the same. 

Figure 1 shows the basic flow of 
programmable logic device simUlation. 
The simulator accepts a test pattern 
consisting of inputs (both device inputs 
and internal current state information) 
and outputs generated by the designer. 
The designer should create the patterns 
by specifying the input and output 
states expected during actual operation 
of the dev ice. This is the best way to 
verify that the design is correct and 
the programmed devices will work 
properly the first time. Together with 
the device model, which is itself 
implicit in the simulator, the simulator 
generates outputs. It then makes a 
comparison between the outputs specified 
by the designer and those it generates 
and flags any discrepancies. The 
designer determines if the error 
occurred in the function definition or 
in the test pattern and makes the 
necessary modifications. 
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FIGURE 1. 

Simulation can be recommended for 
programmable logic device verification 
not only because it can provide the 
necessary evaluations for an exact 
specification of the device, but because 
the required specification of test 
patterns (inputs/outputs), or test 
vectors, can be easi ly generated and 
modified by the designer. The manner in 
Which the designer presents the patterns 
is expl iei t. Figure 2 shows a test 
pattern for a decoder in the PALASM 
function table format. (Note the forced 
inputs on the left and expected outputs 
on the right.) For this simple example 
the table is easily generated, but for 
more complex designs it may become 
cumbersome. 

Both combinatorial and sequential 
designs need to be verified using 
simulation. Sequential devices have 
regi-sters and internal feedback and 
combinatorial devices do not. 
Verification of combinatorial devices is 
a function of input conditions only, 
whereas sequential devices require a 
method by which registers can be loaded 
to some current state so next state 
transitions can be sequenced. Figure J 
shows a test pattern for a shift 
register using the same PALASM. format. 
It lacks current state definition 

capability. The table must have register 
initialization in the first vector. All 
succeeding vectors then use the previous 
vector output as a current state. 
Advanced Micro Devices offers a hardware 
capability in its sequential 
programmable logic devices called 
Pre load, wh ich allows the user to 
initialize registers to obtain a 
current state. This additional 
capability makes test pattern generation 
easier, but requires test support. The 
example in the following section will 
show how test patterns can be modified 
to utilize the hardware capability. 

Preload Vectors 

Advanced Micro Devices offers an 
upgraded version of PALASM called 
AmPALASM20 that allows a user to specify 
a current state df the device, via 
special Preload Vectors. A preload 
vector contains the letter P in the 
normal clock position of the function 
table and the desired current state in 
the output position. A vector in the 
same form as Figure J that preloads a 
current state of all LOWs, or ZEROs, is 
shown below: 

P XX1(XXXX x X L L L L 

* PALASM is a trademark of and is used under I icense from 
Monolithic Memories, Inc." 
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FUNCTION TABLE 

i •• Forced Inputs·········· Expected Outputs··· 
52 51 50 07 06 05 04 03 02 01 DB 

------------------------------------------------
L L L L L L L L L L H 
L L H L L L L L L H L 
L H L L L L L L H L L 
L H H L L L L H L L L 
H L L L L L H L L L L 
H L H L L H L L L L L 
H H L L H L L L L L L 
H H H H L L L L L L L 
-----------------------------------------------
DESCRIPTION 
THIS DEVICE IMPEMENTS A 3 TO B DECODER. THE 
SAMPLE SHOWS THE DESIGN OF THE DECODER USING 
PAL. 

FIGURE 2 

FUNCTION TABLE 
i 
i ····Forced Inputs····· ·Input/Output· ·Expected Outputs· 

CK 51 !;0 03 02 01 00 OE SRISLO SLISRO 03 02 01 00 
-------------------------------------------------------------, 
i LOAD AND SHIFT RIGHT 
C t. L L L L L L Z Z L L L L 
C H H X X X X L Z Z L L L L 
C L H X X X X L H L H L L L 
C L H X X X X L L L L H L L 
C L H X X X X L L H L L H L 
C L H X X X X L L L L L L L 

, 
i LOAD AND SHIFT LEFT 
C L L H H H H L Z Z H H H H 
C H H X X X X L Z Z H H H H 
C H L X X X X L H L H H H L 
C H L X X X X L H H H H L H 
C H L X X X X L L H H L H H 
C H L X X X X L H H H H H H 
i. 
iHOLD 
C H H X X X X L H H H H 

------------------------------------------------------------
DESCRIPTION 
THIS DEVICE IMPLEMENTS A SHIFT REGISTER. THE LAYOUT PROVIDED 
IS A DEMONSTRATION OF HOW THE SHIFT REGISTER MAY BE DESIGNED 
USING A PAL. 

FIGURE 3 

3-384 



I 
An Alternative Approach to Simulation 

Although function tables are widely used 
for input/output specification, some may 
find them to be too rigid, tedious and 
cumbersome. There are methods to 
improve the format of presentation and 
manner of description that make the 
specifications much easier to generate 
and modify. The following shift 
register example will suggest a'more 
powerful alternative to the PALASM 
function table format presented in 
Figures 2 and 3. 

Beginning wlth the listing of the names 
of signals in the device, a suggested 
declaration list might appear as 
follows: 

IN CLK SEL[l:") DATA[3:") JOE; 
1_0 SRILO SLIRO; 
CS 0[3: "); 
NS 
OUT 0[3:") ; 

VAR abc d i; 
CONST LOAD " SHIFT_RT 1 

SHIFT_LT 2 
HOLD 3; 

This 1 ist suggests that all signa 1 s of 
the device be identified in fields of 
their respective functions. The signal 
names are specified in fields as well. 
This proc.edure helps clarify the 
function being simulated and also 

defines the structure of the function 
table itself. 

In this example, there are five fields 
to declare device information -
INPUTS (IN), INPUTS/OUTPUTS (I 0), CURRENT 
STATE(CS), NEXT STATE(NS), and 
OUTPUTS(OUT) -- but only four are 
actually used. The num~er of fields 
used in a function table depends on the 
the design being simulated. For 
example, a combinatorial design may only 
require the IN and OUT fields. 

The first declaration identifies the 
inputs(IN) followed by the list of 
signals: clock (CLK), selectG and 
selectl (SEL[1:0), data0, datal, 
data2, data3 (DATA[3:0)).,output enable 
(IDE). It reserves a one-field bit for 
the clock, two bits for select, four for 
data, and one for output enable. Note 
that for the case of select and data, 
signals are concatenated into a field to 
simplify the identification of the 
vector list. 

The second and third declarations list 
I/O and current state(CS) entries, 
respectively. The I/O signals, SRILO 
(shift right input/shift left output) 
and SLIRO (shift left input/shift right 
output), are used to specify the state 
of the input or output bit being 
Shifted. Current state is used to 
initialize the state of the registers. 
The fourth declaration identifies the 
next state (NS) entry. It is usually 
used in conjunction with current 
state(CS) to specify sequential state 
machine transitions. (It is unused in 
this example and actually does not need 
to be shown.) The fifth declaration 
identifies the output(OUT) pins 
(0[3:") • 

variables and constants are available 
and must be declared prior to use in the 
test pattern. They make the test 
pattern easier to u~derstand and more 
convenient for the designer to generate. 
Variables allow the designer to generate 
a single vector .that may be used 
iteratively by simply changing the value 
of'the variables. Constants allow 
meaningful names to be SUbstituted for 
less descriptive numeric values for bits 
and fields. 

Figure 5 shows a complete function table 
for the shift register example. A 
deClaration list with variables and 
constants is included. The test pattern 
is represented between the BEGIN and END 
keywords. A comment field (enclosed in 
double quotes) above the test vectors 
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Shift Register Example 

Simulate 

IN CLK SEL[l:G) DATA[3:G) 10E 
I 0 SRILO SLIRO; 
CS 0[3:G); 
OUT 0[3:13); 

VAR 
CONST 

BEGIN 

abc d i; 
LOAD 13 

SHIFT RT .. 1 
SHIFT-LT • 2 

HOLD • 3; 

"* •••••••••• IN •••••••••• •••••• : ••••• I O·····:··CS··· :··OUT··" 
"CLK SEL[l:13) DATA[3:13) 10E SRILO -SLIRO 0[3:13) 0[3:13)"" 

x X X H 

C LOAD abcd L 

C SHIFT_RT X L 

C SHIFT_LT X L 

C HOLD X L 

END. 

"Reserved Characters 
X • DON'T CARE C • CLOCK 
Z • TRI-STATE "COMMENrS" 

X X X 

X X X 

d abcd 

a abcd 

X X abcd 

P • PRELOAD 
NOT APPLICABLE 

Z 

abcd 

iabc 

bcdi 

abcd 

H • HIGH 
L • LOli" 

FIGURE 

specifies that the fields and signal 
inputs are in the same order as 
previously specified. The IN field is 
first, followed by 1_0, CS, and OUT, as 
veIl as CLK preceding SEL[l:13), etc. 

The first vector of the function table 
tests the device's ability to generate 
tristate outputs. The output enable 
(/OE) is active LOW; forcing. it HIGH (H) 
causes the outputs (0[3:131) to be made 
tristate (Z). The rest of the signals 
in the vector are not required and are 
set to don't cares (X). The second 
vector ~akes use of variables and 
constants to test a load function. The 
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constant LOAD in the select field is 
used to clarify what function is chosen. 
The d a t a i n put 'f i e 1 d con t a ins the 
variable string (abed), which is loaded 
into the outputs following the clock 
pulse. The clock (CLK) entry in the 
table has the letter C to Signify a 
positive-edge-triggered clock pulse that 
causes the next state of the device to 
be entered. The third vector uses 
constants and vectors to test the shift 
right function. The data field is not 
required and is set to don't cares. 
Following the clock transition the 
outputs will have the result of the 
shift. The variable string (abed) will 



have the variable (i) shifted in from 
the right, and the variable (d) wi 11 be 
shifted out. The succeeding vectors in 
the pattern may be understood in the 
same way as those above. The result is 
that only five vectors specify a test of 
the shift register, as contrasted to 
twelve for only a partial definition in 
the PALASM format. 

The Production Process: Post-Programming 
Function Verification 

After a design is successfully verified 
it can be implemented on a device by 
programming the device'S internal fuse 
array. A few or a great many devices 
may be programmed depending on the 
appl ication of the design. Independent 
of the volume of devices, post­
programming verification is necessary to 
insure that the devices are fully 
functional devices before they are 
integrated into systems. 

Post-programming verification tests the 
functional capability of the programmed 
device using test vectors. These 
vectors are similar to the test patterns 
used in simulation, but more of them are 
needed. Cost and test time increase 
linearly with the number of vectors 
being tested. If the vectors are not 
readily available or complete, they must 
be generated by the user or a computer. 
For a user the task of generating the 
number of vectors needed for an 
extensi ve post-programming test can be 
tedious and error-prone. Post­
programming vectors generated by a 
computer are more complete and accurate. 

Fuse Programming and Verification 

The fuse array is the internal element 
that defines the logic structure of the 
device upon programming. When the user 
obtains the device from the manufacturer 
all the fuses in the array are intact. 
After programming, the array is a 

combination of intact and blown fuses. 
Depending on the selection of fuses that 
are required to implement the desirpd 
function. The programming of fuses is 
done by blowing one fuse at a time. As 
they are blown, the fuses are 
individually checked by the programmer 
for correctness. As soon as programming 
is completed, the user may also perform 
a global fuse array verification using a 
programmer. Fuse array verify checks 
the fuse pattern on the device against 
the test pattern stored in the 
programmer's memory. The success of 
this verification partially indicates 
that the device is functional. 

Preload 

Preload is a hardware feature that has 
been added to the register circuitry of 
all AMO's registered programmable logic 
devices. This feature simplifies 
testing since current state of the 
registers can be set to a known value 
just 1 ike any other input. Thus the 
preload capabi 1 i ty reduces the task of 
sequential testing to the much easier 
combinatorial test problem. 

Figure 5 shows a simple example of state 
testing. Without preload it would be 
difficult to access state 3 without 
sequencing through states D, 1, and 2. 
Furthermore, this process would be 
iterative for each test of state 3. 
With preload, state j can be entered 
directly and tested. Thus test time is 
saved because less vectors are required. 
Power-up initialization is difficult t~ 

test. Typically, a state machine has 
additional don't care states that only 
affect power-up. Should any of these 
don't cares be entered on power-up the 
machine must be able to exit them to 
start normal operation. Preload allows 
these states to be entered and tested to 
see if they can be exited. Preload is 
invaluable in the test methods examined 
in the next section. 
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TESTING OF STATES 
FIGURE 5. 

PunctioD Testing 

The different methods used for post­
programming functional testing differ in 
how the input and output test vectors 
are generated and appl ied, and in how 
many vectors are needed. Functional 
testing methods for programmable logic 
dev ices fa 11 int 0 the categor ies of 
User-generated, Exhaustive, Pseudorandom 
and Path Sens it i zat ion. 

Of the four methods, user-generated 
~equires the most amount of knowledge 
about the actual design. Someone, 
usually the designer, must generate the 
input and output test vectors. Th is 
method is very attractive if, the vectors 
were already created for simulation or 
some other previous test. The level of 
testing can be tailored, but if a 
complete functional test is needed or 
desired, vectors required may be 
prohibitive. The simulation vectors of 
Figure 4 can be used for a complete test 
if the designer writes software that 
expands the number of vector's by us i ng 
all the possible ~ombinations of the 
variables and 'don't care inputs, and if 
the Preload facility is available .• 

This method of testing is inadequate if 
the vectors are for some reason not 
readily available - for example, if pre­
programming testing is done out of 
house. 

With exhaustive technique the designer 
attempts to test all possible input and 
current state combinations against all 
possible expected outputs. Input and 
current state may be created simply by 
sequencing through the possibilities. 
The Preload facility is needed to 
generate the current states. The 
expected outputs either need to be 
calculated from the design specification 
with software, or some signature 
analysis technique on the output results 
must be employed. 

With this scheme lGG\ functional testing 
can be accompl ished. An additional 
advantage is that if signature analysis 
is employed no vectors need to be 
calculated. The diiadvantage of this 
methods is that the worst-case number of 
vectors must be applied: 21l-pin PAL" 
r~quires 2l7or l28,G1l0 vectors. While 
128,000 vectors might be applied 
economically" as devices get more. 
complex, the number of vectors may 
become unmanageable. 

The Pseudorandom testing technique 
performs a device test by generating 
random test inputs and utilizing a 
signature analysis on the output 
results. The advantages of this 
technique is that no vectors need to be 
calculated and the level of testing can 
be controlled by the number of vectors 
applied. This type of testing is useful 
for combinatorial and simple sequential 
designs, but is of little use on complex 
sequential designs since with random 
inputs it is not possible to apply the 
proper sequence of inputs to cause the 
proper state transitions. Because of 
its random nature this technique can't 

* PAL 1S a registered trademark of and is used under license from 
Monolithic Memoz::ies, Inc." 
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User- Exhaustive Pseudo- Path 
Generated random Sensitization 

Method of 
Input Vector User Hardware Hardware Hardware 
Generation (Software) 

User Automatic Signature Automatic 
Output Vector (Software)/ Analysis (Software) 
Generation Sig. Analysis 

Application 
• of Vectors dependent Worst-case Selectable Minimal 
Required 

Test Vector 
Software 
Req'd 

Preload 
Capability 
Req'd 

(expandable 
with software) 

Maybe. 

Yes 

Maybe 

Yes 

Table 

make use of the important Preload 
capability which makes sequential 
testing easy when used with other 
techniques. 

Path Sensitization testing, also known 
as stuck-at-one/stuck-at-zero testing, 
has previously been used only in large 
test programs such as TEGAS. This 
technique attempts to isolate certain 
paths of a device and apply tests that 
assure that each path is functional. In 
the case of PALs, the paths tested are 
in the AND array matrix. Each gate must 
be isolated and tested for stuck~at-one 

and stuck-a t-zero. 

The advantages of this technique are 
that HHl% functional testing can be 
accomplished with few vectors, and 
Preload can be employed to make 
sequential testing simple. The 
disadvantage is that complex software is 
necessary to generate the test vectors. 
As yet, no readily available path 

No Yes 

No Yes 

sensitlzation software has been shown to 
generate a list of vectors that 
guarantees IGG% functional testing. 

A summary of functional test methods 
appears in Table 1. 

Conclusion 

This paper has attempted to present test 
methods for the designer to use du~ing 
the different stages of development of 
programmable logic devices. Simulation 
was recommended for verification during 
the design process, and its requirements 
and benefits were discussed. Several 
alternate methods were offered for 
verification of device functionality 
following programming and verification 
of programming. The ability to preload 
was shown to simplify sequential device 
verification; its requirements Were also 
discussed. 
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3.7.10 Article Reprint 

DESIGN ENTRY 

Fuse-programmable chip 
takes command· 

of distributed systems 

The first fuse-programmable controller 
eliminates bulky and expensive designs, freeing distributed 

intelligence to carve out a greater niche for itself. 

I
n much the same way that cars and highways 
spawned the suburbs, standard microprocessor 
buses and add-on boards have distributed pro­

cessing intelligence, revolutionizing the design of 
digital systems. Breaking systems into independent 
modules shortens the design cycle, eases upgrades, 
and accelerates fault diagnosis. But despite these ad­
vantages, an essential element has been missing: a 
one-chip controller geared specifically to the needs of 
distributed intelligence. 

Without that critical ingredient, engineers have 
been forced to turn to less than optimal solutions. 
One approach relies on boards packed with as many 
as 35 SSI and MSI devices. Another tack is to go with 
a powerful-yet costly-VLSI chip. Alternatively, a 
programmable logic device can be pressed into ser­
vice, but such circuitry lacks the computing power to 
control peripherals. . . 

The missing element, a fuse-programmable con­
troller chip, is now here. By mixing intelligence and 
control, the Am29PLI41 stakes out new territory for 
distributed systems. The 20-MHz IC combines for the 
first time all of the elements of an intelligent micro­
code controller. Its powerful sequencing logic.steps 
through the controller's 64-by-32-bit pipelined 
PROM. That fuse-programmable memory stores a 
user-defined microprogram drawn from a set of 29 

Om Agrawal and Deepak Mithani 
Advanced Micro Devices Inc., 901 Thompson Pl., 
P.O. Box 3453, MS 47, Sunnyvale, CA 94088; 
(408) 749-2903. 

"Rer:mted with permission tan Electaric ~ VoI.33, No.24, 
~ Hayden Pl.bl~ Co., m, 1985: 

microinstructions, including a repertoire of jumps, 
multiple branches (or case statements), and sub­
routine calls. All can be executed conditionally, de­
pending upon the outcome of one of eight tests. In 
addition, a serial shadow register on the 28-pin chip 
helps designers diagnose system troubles right down 
to a particular IC. (In the past, expediency often dic­
tated that complex trouble-shooting be avoided for 
as long as possible.) 

Four basic blocks 

The controller comprises four main functional 
blocks. Three of them-the microaddress control 
logic, condition code selector, and microinstruction 
decoder-form the cornerstone of the controller, the 
address sequencer. The fourth is a microprogram 
memory (64 by 32 bits) with a pipelined register and 
serial shadow register (Fig. 1). 

For the most part, the elements of the address 
sequencer are fairly typical. Nevertheless, the way in 
which they are organized and connected, as well as 
the instruction set, make the chip unique. For ex­
ample, the microaddress control portion of the 
sequencer contains one register for counting loops 
and another for stacking subroutine return address­
es. Yet either register can be employed to double the 
capacity of the other. Consequently, the chilJ can nest 
two levels of loop counting or two levels of subroutine 
branching (the instruction set reflects those abili­
ties). And the high degree of interaction between ele­
ments, particularly within the microaddress control 
logic, makes necessary a highly sophisticated micro-

Electronic Ce'ign • October t7. 1985 
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DESIGN ENTRY 

Fuse-programmable controller 

instruction set. 
The microaddress control logic is the brain of the 

address sequencer, since it generates the addresses 
that access the microinstructions. At any time, the 
address that is called depends on the preceding in­
struction and the outcome of any conditional tests. 

Within the control logic, a program-counter multi­
plexer supplies the PROM's 6-bit address. The multi­
plexer takes the address from a microprogram 
counter, incremented program counter, branch con­
trollogic, or subroutine register. Because the pro­
gram counter contains the address of the currently 
executing instruction, that instruction is executed 
again when the program counter is selected as the 
address source. As a result, the counter plays a fun­
damental role in tallying loops and executing "wait 
until true" instructions. 

The incrementer holds the next address in the 
sequence, and is the expected source when no jumps 
are executed and no branch or subroutine conditions 
exist. When conditional statements like "if ... 
then ... else" and multiple branches pass the re­
quired tests, or when unconditional jumps are exe­
cuted, the branch control logic supplies the address. 
Finally, when the program calls a subroutine, the 

, subroutine register supplies the necessary address. 
A multiplexer selects one of three address sources. 

If only one stack level is needed, the value stored in 
the subroutine register is chosen. When the count 
register feeds the subroutine register, however, it 
furnishes an additional stack level. The third source, 
the incrementer, supplies the subroutine's return 
addresses. 

Doing double duty 

If not needed for a second subroutine level, the 
count register can, among other functions, execute it­
erative loops and time external events. To accom­
plish the former, the controller loads the register 
with the number of iterations to be run. Each iter­
ation decrements the register until it reaches zero. 
The zero-detection logic associated with the counter 
informs the chip's microinstruction decoding logic 
when the register "bottoms out." 

U sing the same logic, an instruction can be re­
peated a set number of times. Repeated executions of 
the same instruction is a simple way to insert wait 
states and, therefore, build an interface to different 
microprocessors and peripherals. 

The count register is loaded from any of four 
, sources: a decrementer, for normal loops; an instruc-

Electronic D •• lgn • October 17. 1985 
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tion field; the subroutine register; and the branch­
controllogi'c. The last derives a 6-bit value from a 
data field in a microinstruction. 

The branch-control logic, a powerful block within 
the sequencer, calculates the 6-bit value either by ap­
plying the microinstruction data field directly or by 
using it to mask the chip's six test inputs, To through 
T5• In the second case, the masked input actually be­
comes the branch address. Moreover, either the data 
field or masked test value serves as both a branch ad­
dress and a count value. 

The same control logic also compares the masked 
test inputs to a constant in a microinstruction field. 
The outcome of this check affects a flip-flop. The lat­
ter's condition itself becomes a factor in deciding 
conditional branch and subroutine instructions. If a 
match occurs, the flip-flop is set. Alternatively, the 
flip-flop remains unchanged if there is no match. 
Because the flip-flop does not change when there is 
no match, it is particularly useful for comparing 
ASCII characters and other 6-bit fields, as well as for 
successively checking the chip's test inputs. 

Controlling conditions 

A set flip-flop is one of the eight aforementioned 
tests that fulfills a conditional branch or subroutine. 
Through its condition-code selection logic, the con­
troller is able to check each of its six test input lines, 
as well as the Condition Code input. Further, an 
exclusive-OR gate within the selection logic switches 
the meaning, or interpretation, of a test result. In 
other words, with no external hardware, a test condi­
tion can be asserted either when a match occurs or 
when one does not. 

The final component of the chip's sequencer sec­
tion is the microinstruction decoder. That pro­
grammable logic array generates the IC's internal 
control signals based on the microinstruction being 
executed and the test results reported by the con­
dition-code logic. 

The Ie's fourth functional block comprises the 
fuse-programmable microprogram memory, pipe­
lined register, and serial shadow register. The pipe­
line register is 32 bits wide, and stores the micro­
instruction being run. The next address is calculated 
by the sequencer and its contents is fetched from the 
microprogram memory. The upper 16 bits of the 
pipeline's output remain within the chip to sequence 
addresses and control internal functions. 

Only the 16 low-order bits link to the outside, as 
user-defined control lines. Of these, the upper byte is 

II 
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1. The 20-MHz Am29PL 141 is the first complete microprogrammable controller chip, making it an important 
building block for distributed processing systems. Its powerful sequencing logic steps the controller through 
its pipelined PROM. The fuse-programmable memory is 64 by 32 bits. 
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Fuse-programmable controller 

put in the high-impedance state by setting a micro­
instruction's Output Enable bit to O. Moreover, chips 
can be cascaded readily if more than 16 control bits 
are needed (Fig. 2). 

The serial shadow register, also 32-bits wide, sim­
plifies device- and system-level diagnostics. It can be 
loaded in parallel with the contents of the pipelined 
register or loaded serially from the Serial Data Input 
pin. On the other hand, the serial register can also 
load the pipeline or shift data out serially. It also may 
simply hold the data sent to it. 

To check out the chip, an instruction is shifted 
serially into the shadow register and then loaded in 
parallel into the pipeline. Doing so forces the instruc­
tion to be executed, and its results transferred back 

from the pipeline into the shadow register. From 
there it is shifted out for diagnosis. If all the shadow 
registers in a system are tied together, a series diag­
nostic loop is created that isolates a problem down to 
a single chip. 

The shadow fuse 

A separate fuse must be blown to set up the serial 
shadow register. When that is done, four pins are 
redefined to handle diagnostics. Specifically, the 
Condition Code and Zero lines and Output Data Bits 
6 and 7 become, respectively, the Serial Data In 
(SDI), Serial Data Out (SDO), Diagnostic Clock 
(DCLK), and Mode control lines. 

The strength of any controller-and the advantage 

Condition Code 0--...-----------. 
(From eysteml 

T.-T • ........ ---

Output 
o 

2. When an application calls for more than 16 control bits, two or more chips can be 
cascaded horizontally. The lower 16 bits of each of the chip's 32-bit microinstructions 
(of which there are 29) serve to control a system's components. Eight of these 16 con­
trol bits can be put into a high-impedance state under microinstruction control; the oth­
er 8 bits are always enabled. 
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of a microprogrammed system that employs it-lies 
in an engineer's ability to specify the sequence in 
which microinstructions are executed. To ensure 
that ability, the controller executes all the basic 
high-level constructs required for structured micro­
programming. Its 29 op codes include sequential in­
structions, conditional instructions, dual branching 
forks, and multibranching case statements. Iterative 
executions, like For, While, When, and Until, round 
out the set. In addition, Jump, Jump to Subroutine, 
Loop, and Compare instructions allow designers to 
store very complex algorithms in the chip's 64-word 
memory. 

Instruction formats fall into two categories. The 
first is for general microinstructions; the second is 
for the chip's Compare instructions. The latter com­
pare a 6-bit test input to a masked constant. The 
Compare instructions are well-suited for character 
searches, as well as key searches in a look-up table. 

A single-precision, floating-point peripheral board 

(2) Am29PL141 
controllers 

(Fig. 3) presents a good example of the part that the 
controller plays in a distributed system. As a micro­
programmed design, the peripheral serves as an add­
on math accelerator card that plays with different 
hosts and buses. The controller orchestrates the ac­
tions of the floating-point processor, and various reg­
isters, register files, and memory chips. 

Simple arithmetic 

The processor is simple to use, partly because it in­
curs no pipeline delays. It conforms to IEEE and oth­
er industry standards, and takes only a single clock 
cycle to add, subtract, or multiply. It needs five cycles 
to divide, using the Newton-Raphson method that in­
verts one of the factors and multiplies. In operation, 
to divide X by Y the chip fetches the approximate in­
verse of Y from a PROM-based table and multiplies 
it by X. One or two iterations of this method increase 
the initial accuracy. 

The floating-point board works with a microword 

(2) 
Dual-access 
register Illes 
(Am29334) 

Floating-point 
processor 
(Am29325) 

L.:-------.... ----....,.----tStatus 

~--------~----------~ 

To reo_tile 

3. In a typical application, the controller oversees the workings of a floating-point pro­
cessor board. Host instructions sent to the FIFO and instruction registers initiate sub­
routines in the controller that generate the signals that run the board. Two controllers 
are employed to supply the necessary number of control signals. 
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of at least 25 bits, 9 more than available with one con­
troller. Thus the design employs two controller chips. 
The floating-point processor requires five command 
bits. Three are instructions and two select the input 
source. It also needs three control bits to enable its 
trio of data registers. Two other chips (each a dual­
access four-port register of 64 words by 18 bits) tem­
porarily store commands. They accept 12 register ad­
dress bits (6 for source' and 6 for destination) from 
the host or the controller's microprogram memory. 

Data passes to and from the host through input 
and output registers on the board, which call for 
their own enable signals. Another bit is needed to ad­
vance the FIFO instruction register. One is necessary 
to enable and another to select a status word. (The 
floating-point chip supplies status information, 
which is available to the controller through its test 
inputs as well as to the host through the register file.) 
Seven control bits are left for miscellaneous tasks. 

Operation begins when at least one 16-bit instruc­
tion is loaded from the host into the peripheral's 
FIFO register. The instruction consists of a 4-bit op 
code, a 6-bit source-register address, and a 6-bit ad­
dress for the second source register, which also stores 

4. Loading an instruction into the FIFO starts the pe­
ripheral and activates the controller, which loads an 
external instruction register and decodes the op 
code field. The op code initiates a subroutine in the 
controller, issuing the proper control signals, ad­
vancing the FIFO register, and loading the next 
instruction. 

the results. Until an instruction is received, the con­
troller is in the wait state (Fig. 4). When an instruc­
tion arrives, however, the FIFO's Empty signal acti­
vates the controller, which then reads the command 
from the FIFO into a separate instruction register. 
The controller also loads the instruction's op code in­
to its test inputs. It then masks the two unused test 
bits and jumps to a subroutine that performs the. 
operation specified by the op code. After completing 
it, the controller advances the FIFO register to load 
the next instruction. 

The peripheral executes up to 16 op codes. The first 
eight are single-cycle operations and identical to 
those of the floating-point processor. They consist of 
addition, subtraction, multiplication, and format 
conversion instructions. The remaining op codes are 
used to load, store, and divide data, and a multiple cy­
cle instruction multiplies and accumulates values. 
The four remaining op codes can be defined by the 
user to implement application-related operations. 

Software and hardware tools are a necessary part 
of such projects as the foregoing peripheral. The soft­
ware assembles high-level microprograms and a 
JEDEC output file that specifies the fuse pattern to 
be burned into the PROM array. Currently, a pro­
gram 'called Fuse Formatter, which runs on the IBM 
PC personal computer,lets designers enter hexadeci­
mal code that corresponds to PROM data. From that 
code, the program creates a file that is downloaded 
directly to one of several PROM programmers. The 
latter blow the corresponding fuses in the micro­
program memory and are the only required hard­
ware tools. 0 

Om Agrawal is the product planning manager for 
programmable logic devices at AMD. He has designed 
16- and 32-bit minicomputers, and is the coauthor of a 
book on high-speed memory systems. Agrawal holds a 
PhD in electrical engineering and computer science 
from Iowa Strite University. He also received an MBA 
from the University of Santa Clara. 

As a senior product marketing engineer for the 
company's microprocessor division, Deepak Mithani, 
designs and markets bipolar microprocessors. He 
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University and an MSEE from the University of 
Wisconsin. 
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Bruce Threewitt, Manager, Product Planning 
Advanced Micro Devices, Sunnyvale, CA 

: hen it comes to generating 
complex, high-resolution dig­
ital waveforms, Advanced 

Micro Devices' Am2971 picks up 
where older parts leave off. Precise 
time delays once required the use of 
either a hybrid structure consisting 
of an analog delay line combined 
with digital logic or costly counters 
driven by high-frequency clocks. On 
the one hand, analog delay lines have 

:::x::. 

7·20 MHz 

short enough tap-to-tap time delays, 
or resolutions, to be usable for han­
dling the tighter timing relation­
ships of dynamic and static RAMs. 
However, those lines cannot also ac­
commodate the longer total delays 
needed by these devices. 

On the other hand, the desired 
waveforms can be obtained digitally 
from the outputs of one or more 
binary counters. But to achieve reso­
lutions of 10 ns, counters must be 
driven with 100-MHz clock frequen­
cies, which are difficult to distribute 
around a board. 

The programmable event genera­
tor (PEG) a monolithic Ie, offers 
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a more elegant solution for theprob­
lem of generating complex high­
speed timing waveforms (see Fig. 
1). Applications for the PEG (see 
box, "A new PEG in the designer's 
tool box") range from simply cor­
recting the clock skew that· results 
from distributing a clock signal on 
a backplane to generating complex 
state-machine timing. The PEG's 12 
output lines can be programmed by 

EVENT EVENT EVENT EVENT 
0 1 2 31 

• 
• 
• I 

X 

I 
Fig. 1. In response to a logic tran­
sition on Its trigger (TRIG) input, the 
PEG will generate 12 simultaneous 
user-programmed timing waveforms 
on Its To to Tn output lines. 

the user to assume either a logic­
high or a logic-low level within each 
of 32 time slots or events. The fre­
quency of these events-that is, the 
frequency of the output waveforms 
-is also programmable. But it is the 
precision and resolu tion of these 
waveforms that is the PEG's claim 
to fame (see Fig. 2). 

Internal operation 
The PEG is an edge-triggered 

logic device that generates a pre­
programmed digital waveform in 
response to a triggering signal. It 
consists of four basic blocks: a next­
address and event store, a start-ad-
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dress store, an oscillator and cIock­
control block, and control logic (see 
Fig. 9) . A total of 623 user-program­
mable platinum-silicide fuses, simi­
lar to those used in AMD's bipolar 
PROMs and programmable array 
logic devices, are located throughout 
these blocks. 

When the PEG's fuses are being 
programmed, the 12 timing-tap out­
puts (To to T 11) are used as fuse~ 
address inputs. A thorough descrip­
tion of the procedure for program­
ming the PEG can be found on its 
data sheet, so for the purpose of 
understanding what goes on inside 
the chip, let's assume that it has al­
ready been programmed. 

An output-timing sequence is ini­
tiated by a logic transition at the 
TRIG input. Two u'ser-program­
mabIe fuses are located in the trig­
ger-polarity block. One of them is a 
polarity-select fuse, which when un-

Fig. 2. Tap-to-tap resolution of an 
analog delay line (a) is not indepen­
dent of its total delay time. However, 
the PEG's 12 programmable output 
waveforms (b) are independent of 
one another. Resolutions down to 
10 ns can be easily obtained. 

TIL GND TIL Vce 

FLTR TRIG 

X2 ClKOUT 

eLK/xl Tll 

A2 TIO 

Al T9 

AO TS 

TO T 7 

T I T6' 

T2 TS 

T3 T4 

PLL GND PLL Vee 

programmed will cause the timing 
sequence to start during a negative 
transition of the TRIG input. If it 
is programmed, the sequence starts 
when a positive transition occurs. 

The second fuse in this block is 
used to define the end of a timing 
sequence. If this fuse is left,unpro­
grammed, the timing sequence is 
stopped on the trailing edge of TRIG 
pulse. Otherwise if the second fuse 
is programmed, the end of the tim­
ing sequence is defined by the stop 
bits as programmed by the user into 
the next-address/event generator 
functional block. 

Customized waveforms 

ent starting point for the 12 output 
waveforms. For example, three dif­
ferent addresses in this store could 
be used to initialize output wave­
forms that implement the read-, 
write-, and page-mode timing se­
quences of a dynamic RAM. 

The five bits of each address are 
used to select one of thirty-two 18-
bit locations from the next-address 
and event store (also a PROM). 
Each 18-bit string contains three 
groups of information. The first 5 
bits define the next address of the 
desired timing sequence. The next 
12 bits define the logic levels on each 
of the timing-output lines (To to 
TIl) . The 18th bit is a sequence-stop 
bit. As the timing sequence pro­
gresses from the first to the thirty­
second event-store address, the out-

A transition at the TRIG input 
latches three address bits, Ao to A 2 , 

which are decoded by the start-ad­
dress store, which serves as an 8 x 
5-bit mapping PROM. Each of its 
eight addresses represents a differ-

. put lines will produce 12 independent 
waveforms. 

The assumption so far is that the 

INPUT INPUT 

TAP 1 
I RESOLUTION 

TAP 1 TAP 2 

TAP 2 
TAP 3 

TAP 3 

TAP 4 TAP 4 

TAP 5 TAP 5 

(a) 
TOTAl DElAY~ 

EVENT EVENT EVENT EVENT 
(b) 

~fg~;U~I~~ "---
n n + 1 n + 2 n + 3 

INTERNAL CLOCK 
Ie = 100 MHz (MAX) 

TRIG X 

AO'A2 xx 

Tx 

Ty 

v 1"--SKEW (1 ns MAX)--t r-
/ 

I 

T Z / 

X, y, Z = 0, 1,2, ",11 PULSE WIDTH 

x= Y = Z (20 ns MIN) 

n= 0, 1,2, ",31 
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FLTR +-;;fj---;::::L..i..----. 
ClK/Xl---.....-.! 

X2--;-----I~~~~ 
CLKOUT ..... f_O ___ ---' 

stop-function fuse has not been 
programmed. If it has, the timing 
sequence will no longer stop on the 
trailing edge of the TRIG pulse. The 
end of a timing sequence will instead 
be defined by the stop bit. When a 
timing sequence encounters a stop 
bit, the entire sequence comes to a 
halt, and the 12 timing-output lines 
remain at their current logic level. 

Each of the timing-waveform out­
puts has a minimum useful cycle 
time of 40 ns (or 20 ns per change). 
When the PEG is operating at its 
maximum internal-clock frequency 
(fe = 100 MHz), the outputs must 
be programmed to remain un­
changed for at least two clock pe­
riods for each change of logic level. 
That is, although an output can only 
change a minimum of every 20 ns, 
the timing resolution between events 
among taps may be as low as 10 ns. 
When the. PEG's internal clock is 
programmed to operate at 50 MHz or 
slower, the timing waveform can be 
programmed to change once each 
clock period. And its clock-frequency 
range is low enough-from 7 to 20 
MHz-for the user to drive the 
PEG's CLK input from the system 
clock via an internal clock input pin. 

Alternatively, the designer may 
opt for crystal control by connecting 
a 7 to 20-MHz crystal to the Xl and 
X2 inputs of the PEG. And thanks 
to the five fuses within the oscillator 
and clock-control block, the user can 
also set the frequency of the output 
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START· 
ADDRESS 
• STORE 

(8 x 5 BITS) 

Integrated Circuits 

REGISTER 

INTERNAL CLOCK f c 

Fig. 3. The PEG consists of four basic blocks: a next-address and event store, 
a start-address store, an oscll/ator and clock-control block, and control logic. 

waveforms. Four of these fuses are 
used to select fe. 

When an external crystal is used, 
the PEG's internal phase-locked loop 
(PLL) will treat the crystal's fre­
quency as an input-reference fre­
quency, fb and will multiply it by a 
programmable value (1, 5, 10, %, %, 
or 1(J4) to obtain the desired value of 
fo (see Fig. 4). Also an output-clock 
frequency, fo, is available on the 
CLKOUT pin. This output clock­
whose frequency is either ;f; or lAo 
of the internal-cIock frequency­
may be used to synchronize the out-

A new PEG In the 
designer's tool box 

Designers no longer have to grap­
ple with low-resolution analog de­
lay lines or costly timing logic 
when high-speed waveforms are 
needed. The Am2971 program­
mable event generator, trade­
marked PEG, from Advanced Mi­
cro Devices has 12 output lines 
that can produce and accurately 
place logic transitions as short as 
20 ns, with a minimum waveform­
to-waveform resolution of 10 ns. 

$$$$$$ ============ 
Packaged in a 24-pin DIP, the 

PEG is available for $12.07 and 
$17.75 ea/l00 for plastic and ce­
ramic parts, respectively. For 
details, call Robert Eminian at 
408-749-4411, or circle 351. 
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puts of the PEG with the remainder 
of the system. And speaking of sys­
tems, the PEG comes in very handy 
for generating the specialty cycles 
offered by today's DRAMs. 

DRAM-timing application 
Typically, the system designer 

must use more than one analog de­
lay line and some external logic to 
produce the multiple CAS pulses 
needed for the page-mode cycles of 
some DRAMs. Timing designs using 
high-speed clocks and counters are 
equally cumbersome in this case. 
Once again, the PEG chip offers a 
streamlined solution because it can 
readily generate the multiple CAS 
pulses. 

Another job for the PEG comes 
about as a result of the use of multi­
plexed address lines on high-density 
DRAM boards. Because the many 
address lines present a relatively 
large capacitive load to the multi­
plexer, significant time delays are 
introduced in the address-timing 
waveforms. 

Typically, a signal provided by the 
system switches one or more ad­
dress-multiplexer ICs. This signal 
must be accurately timed to change 
state after time interval 1 in Fig. 5. 
The performance of the individual 
DRAM-and ultimately of the entire 
memory system in which it resides­
depends on reducing interval 2 as 
much as possible. Interval 1 is 15 to 
20 ns in most standard DRAM spe-
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I 
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I 

ClKOUT (10) 

MUX 
+1 

1------...... +2 

+4 

(a) OSCWTOR 
AND 

ClOCK CONTROl. 
Fig. 4. The PEG can be clocked by' 
an external crystal (a) or by the sys­
tem clock. On-chIp programmable 
clock-control logIc (b) enables the 
user to set the Internal-clock fre­
quency, fe. 

~ ~--------------

cifications. Thus, a resolution of 10 
to 15 ns is desirable for the DRAM­
timing waveforms-an easy job for 
the PEG. 

What's more, the PEG can be used 
to generate the necessary timing 
waveforms for multi-array mem­
ories too. In video-DRAM systems, 
for example, the rising edge of the 
transfer-enable signal, TRG, must 
be accurately placed relative to the 
rising edge of the serial-port clock 
signal, SC. When the PEG is used to 
generate both waveforms, the de­
signer has full control over the reso-

lution between the rising edges of 
the TRG and SC signals. 

More events and/or channels 
In some applications, 12 output 

channels are sufficient but more than 
32 event states are necessary. These 
additional states can be obtained by 
connecting two PEGs as shown in 
Fig. 6. After PEG 1 has cycled 
through its 82 states, its To line 
triggers PEG 2. The second PEG 
will then begin its timing sequence 
at the start address specified by PEG 
1. If necessary, the clock frequency 
of PEG 2 may be changed by using 
the clock output of PEG 1 as the 
clock input to PEG 2. Otherwise, the 
internal clocks and TRIG polarities 

~~ ------------------~~~ ____ VA_UD_D_A_TA ______ _J»_ 
Fig. 5. In this DRAM delayed-write cycle, interval 1 must be kept to within 10 
or 15 ns, and interval 2 rhust be as short as possible. When mounted on the 
same DRAM memory board, the PEG could be used to generate the RAS, 
CAS, and WE signals. 
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Fig. 6. By connecting two PEGs, de­
signers can obtaIn tIming wavoforms 
that consist of more than 32 events. 

of the two PEG chips are indepen­
dently programmable. 

If the waveforms must be nested, 
one of the output taps of PEG 2 can 
be used to remove the TRIG signal 
from PEG 1. PEGs can also be par­
alleled for applications in which 82 
event states are sufficient but more 
than 12 output channels are needed. 
For example, when 12 to 24 channels 
are needed, the designer can simply 
drive two PEG chips with the same 
input signals and use as many of the 
output lines as necessary. 0 
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PLDs llnplell1ent 
encoder/decoder 
for disl< drives 

By using software to define programmable 
logic devices as run-length-limited encode/ 
decode systems, you can design disk-drive 
systems that have 50% more data-storage 
capacity than drives that implement the 
MFMcode. 

Arthur Khu and Rudy Sterner, 
Advanced Micro Devices Inc 

When you're designing a disk-drive system, you can 
implement run-length-limited (RLL) 2,7 encoding/de­
coding circuitry in your design by using only three 
programmable-logic devices (PLDs) and two shift reg­
isters. You design the encoder and decoder as state 
machines and use the timing diagrams to determine 
what the timing and control signals must be. 

To create a disk controller with encoding/decoding 
features, you can use three AmPAL22VIO PLDs and a 
disk controller such as the Am9580/Am9582 chip set 
(Fig 1). The Am9580 hard-disk controller and the 
Am9582 disk-data separator perform all the general 
disk-control functions. The PLDs have appropriate 
architectures for implementing the encoding and decod­
ing state machines. Further, you can reprogram the 
PLDs to implement higher density ratios for data 
encoding, and you can increase your system's. speed 
simply by using faster PLDs. 

An RLL code is a code in which the number of zeros 
between ones-the run length-is definite. The "2,7" 

EDN September 18, 1986 

designation means that the code for the binary data 
string has at least two and at most seven zeros separat­
ing the ones. RLL codes increase the density of data 
stored on a disk by reducing the number of recorded 
pulses (ones) necessary to represent a given amount of 
data. This reduction allows the disk-drive circuitry to 
pack the ones closer together, increasing the amount of 
data on the disk. 

In comparison with the (de facto) industry-standard 
approach, MFM, the RLL 2,7 code increases by 50% 
the amount of data you can store on a disk drive (see 
box, "RLL 2,7 code vs MFM code"). In addition, RLL 

Fig I-A complete disk controller requires only two VLSI IGs, a 
PLD-based encoding/decoding system, and a drive interface. The 
hard-disk controller and the disk-data sepamtor provide generic 
disk-drive control, and the PLDs provide RLL 2,7 encoding and 
decoding, which increases disk stomge capacity. 
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TABLE 1 - RLL 2,7 CODING RULES 

DATA 2,7 CODE 

10 1000 
11 0100 

000 100100 
010 001000 

011 000100 
0010 00001000 
0011 00100100 

2,7 decoding circuitry recovers quickly from code-de­
tection errors. 

As Table 1 shows, RLL 2,7 encoding circuitry trans­
lates seven data strings into 2,7 code. You can break 
any binary non-return-to-zero (NRZ) data string into 
combinations of the seven data strings. To obtain the 

decoded data string, the circuitry matches the 2,7 code 
patterns with the seven 2,7 code strings in Table 1. 

Because 2,7 code strings have variable lengths (they 
can be 2, 3, or 4 bits long), your design will need control 
logic that controls the output from the encoder/decoder 
as translation takes place. Encoding and decoding state 
machines (Figs 2 and 3) implement this control logic 
from the code in Table 1 (see box, "Convert RLL 2,7 
code to a state machine"). The encoding state machine 

KEY: 
DATA BIT TO 
CODE 

~ 2 LOOK·AHEAD BITS 
00_2.7 CODE FOR 

DATA BITO 

AMC-IF ADDESS MARK 

-0('-, ~.I?~~~~I~::ODUCED 

(a) NOTE: STATES O. 3. 4. AND 5 ARE USED FOR ADDRESS-MARK GENERATION 

TO CODE 00101100 ••• 

CODE CYCLE To T, 

CURRENT STATE 0 2 0 

BIT TO CODE BIT TO CODE BIT TO CODE 

CONTENTS 

'''.'0"'.5£''''-" '''''' O"'~ '''''' " ~ OF 4-BIT 
INPUT 
SHIFT 
REGISTER 
IN REG 

2-BIT LOOK-AHEAD 2-BIT LOOK·AHEAD 

SHIFT IN A NEW BIT SHIFT IN A NEW BIT 
BEFORE GOING TO BEFORE GOING TO 
CYCLE T, CYCLE T. 

2. 7 CODE TO 
LOAD INTO OUTREG 00 00 

NEXT 2 0 
STATE (b) 

Fig 2-The encoder state machine (a) describes the translation of input data into RLL 2,7 code. The first two cycles in the encoding of the 
data string 00101100 (b) demonstrate how the encoder determines the correct code by examining both the bit to be encoded and the next two 
(look-ahead) bits. 
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produces two 2,7 code bits for each data bit received. 
The decoding state machine, on the other hand, pro­
duces one data bit for every two bits of 2,7 code. The 
clocking scheme in these encoding/decoding state ma­
chines is simpler than the familiar table-look-up meth-

During decoding, circuitry matches the 
RLL 2,7 code patterns with the seven RLL 
2,7 code strings to obtain the corresponding 
decoded data string. 

od, which requires suspended operation during encod­
ing and decoding. 

You can implement both of these encoding/decoding 
2,7 state machines with one PLD device (lC I ) and two 
shift registers (INREG and OUTREG) (Fig 4). To 

KEY: 
2 PODE BITS TO DECODE 

!Q(QQj-2-CODE-BIT LOOK-AHEAD 
1 -DECODED DATA BIT 

00 - 2 CODE BITS TO 
-0 DECODE; NO NEED 

"~~~~~~;-;~T~~T 
00-2 CODE BITS TO DECODE 

AMF-ACTtVATE ADDRESS­
MARK-FOUND SIGN 

(a) NOTE: STATES O. 3. 5. AND 6 ARE USED WHEN DETECTING ADDRESS MARKS 

TO DECODE 00100010 ... 

DECODE CYCLE S, 
CURRENT 

0 3 2 STATE 

2 CODE BITS TO DECODE 2 CODE BITS TO DECODE 2 CODE BITS TO DECODE 

t t ~ CONTENTS ,,,., ~ ",., ~~~IAL ~ 1 I 0 I 0 I 0 I+- ~ERIAL 
OF 4-BIT OUT . IN 
INPUT t t SHIFT 
REGISTER 2-CODE-BIT LOOK-AHEAD 2-CODE-BIT LOOK-AHEAD 

INREG 

SHIFT IN TWO NEW CODE SHIFT IN TWO NEW CODE 
BITS BEFORE GOING BITS BEFORE GOING 
TO CYCLE S, TO CYCLE S. 

DECODED DATA 
BIT TO LOAD 0 1 
INTO OUTREG 

(b) 
NEXT 

3 2 STATE 

Fig 3-This decoder state machine (a) represents the translation of RLL 2, 7 code into an output data stream. To determine the correct output 
data, the decoder examines four code bits-two bits to be decoded and two look-ahead bits, as shown in the example in b. 
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Because the RLL 2,7 code contains two bits 
for every one bit of data, the timing cir­
cuitry divides the clock signal for the coded 
data, producing a data clock. 

synchronize the encoder/decoder with the hard-disk 
controller, you use two other PLDs (IC2 and IC3) to 
provide clock-generation and address-mark-control 
logic. IC I is a AmPAL22VlO, which has sufficient 
capacity to implement the two state machines. ICz, also 
an AmPAL22VlO, utilizes the PLD's large capacity and 
programmable output cells to implement the address­
mark-control circuitry. An AmPAL16HD8 (lC3), which 
is sufficient for implementing the clock circuitry and the 
random logic, completes the design. 

2. The encoding state machine begins in state zero; the 
first four bits of the data to be encoded are in the shift 
register INREG. For the data stream in the figure, the 
encoder, beginning in the first cycle (To) reads the first 
bit in the stream as 0 and sees that the next two bits 
(the look-ahead bits) in INREG are 0 and 1, respective­
ly. According to the state diagram, the encoder pro­
duces a 00 output because, as Table 1 shows, input data 
starting with 001 translates to a character string that 
starts with 00. The encoder then enters state 2, shifts 
the encoded 0 out of INREG, and shifts in the next 
(fifth) bit of the data to be encoded. 

To understand the state-machin~ implementation of 
the RLL 2,7 encoder, consider the state machine in Fig 

RLL 2,7 code vs MFM code 
Although the RLL 2,7 and MFM ,...------------------------, 

coding methods can both in­
crease a disk drive's capacity, 
RLL 2,7 code is more compact. 
A disk drive that implements 
the RLL 2,7 code can, therefore, 
store 50% more data than can a 
drive that implements the MFM 
code. 

On the magnetic medium in 
the disk drive (hard-disk or flop­
py-disk drives), binary data ap­
pears as a change in flux (repre­
senting a one) or as no change in 
flux (representing a zero). Be­
cause the disk density is limited 
by the minimum distance be­
tween flux transitions, the maxi­
mum data density depends on 
how the data is encoded. 

MFM is an RLL code with the 
designation 1,3;1,2;1. RLL 2,7 
code (its full designation is 
2,7;1,2;3) allows a minimum of 
two zeros between each one, and 
MFM code allows a minimum of 
one zero. RLL 2,7 code can 
store as much as 50% more data 
in a given number of flux 
changes than can MFM code; 
therefore, RLL 2,7 code can 
store as much as 50% .more data 
on a given section of magnetic 

DATA: 1100110011 

MFM 
11 lOCO 1 lOCO 1 1 
1 r-l 11 r=J I 
LJ L-..J L-..J L--I 
I I I I I I I I I I I 

C=CLOCK PULSE 
MINIMUM FLUX· 
TRANSITION SPACING 

DATA: 1 1 00 1 1 00 1 1 RLL 2,7 
CODE' 0100 00100100 00100100 

1

0 1 00001 00 1 00001 001 00 

:::J L:::J ~ 
I I I I I I I I I I I I I I I I I I I 

I~'''O'"'" 
J L...J L...J 
I I I I I I I I I I I I I I I I I I I I I 

Fig A-Data storage that's 50% nwre dense is the principal advantage of RLL 2,7 code 
over the de facto standard MFM code. Because it needs fewer transitions to describe 
data, the RLL 2,7 code takes up only 67% of the disk storage space that MFM code 
occupies. 

medium. 
Consider the example in Fig 

A. The data stream 1100110011 
is represented by eight transi­
tions in MFM code, and by five 
transitions in RLL 2,7 code. 
When the disk drive uses the 
minimum distance between tran­
sitions to record the RLL 2,7 
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code, the RLL 2,7 code takes 
67% of the space that the MFM 
code takes, so it has space avail­
able to store 50% more data. In 
most applicati~ns, the actual 
storage increase is between 35% 
and 40%, because some disk 
space is reserved for sector and 
data-field markers. 
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In the second cycle (T,) of the encoding process, the 
encoder sees that the data bit is 0 and the two look­
ahead bits are 1 and 0, respectively. According to the 
state diagram, when the encoder is in state 2 and sees 
010, its output is 00. As before, the encoder then moves 
to the next state (in this case, state 0) and shifts a new 
bit into INREG. The rest of the encoding process 
proceeds similarly. 

The decoding process is similar to the encoding 
process. The decoder, which is described as a state 
machine (Fig 3), accepts two input bits in RLL 2,7 
format and sees the next two coded bits as look-ahead 
bits. In contrast to the encoder, the decoder produces 
one output bit for every two input bits. 

To implement this encoder and decoder circuitry with 

PLDs, you can use PLD-d~sign tools such as CUPL 
from Personal CAD Systems Inc (San Jose, CA) and 
Abel from Data I/O Corp (Redmond, WA). These 
software tools include syntaxes that you can use to 
describe state machines as well as general logic equa­
tions. 

To control the rate at which IC, (in Fig 4) receives 
data and code, IC2 and IC3 implement the timing signals 
shown in Fig 5. Three signals (Read, Write, and 
Code_Clock) from the hard-disk controller and disk­
data separator form the basis of the timing signals. 

First, the timing circuitry produces a clock signal, 
RcLClk; from the Code_Clock signal that originates at 
the disk-data separator's FDDAM output. Because the 
RLL 2,7 code contains two bits for everyone bit of 

-
-" 

Am9582 V DRIVE CONTROL ) 
DISK-DATA , DRIVE 

~ SEPARATOR 
READ 

INTERFACE 
~ 

DRIVE 

WRITE 

FDDAM f-- LOAD -RG WG 

~ /\ OUTREG 

~ 4-BIT SHIFT REGISTER J A 

SHIFT~ 

f2 .. f 
IC, AMC AMC 

IC2 
AmPAL22Vl0 AmPAL22Vl0 

RLl2,7 COMPLT ADDRESS-MARK 
ENCODER! RD_ClK GENERATOR! 

READ WRITE - AMF DECODER DETECTOR 

t 

f4 
4 

;-BIT SHIFT REGISTER r--
AMF I r SHIFLIN 

INREG 

DATA/CODE 
Am9580 

~ HARD-DISK RD_ClK 
CONTROLLER IC. ~_LATCH AmPAL16HD8 

GLUE lOGIC 
CODE-CLOCK 

CONTROL SIGNALS 

CODE-CLOCK 
.A 

K 2,7 CODE TO/FROM DRIVE INTERFACE 
BINARY DATA .... I AMC 

Fig 4-The encoding/decoding circuitry includes three PLDs_ Ie, implements the encoding and decoding state machines_ Ie, nwnitors Ie, 
and provides special timing and input signals_ lea implements glue logic and timing signals_ 
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Before the disk-drive system can decode data 
on the disk, it must synchronize itself with 
the disk's data clock to find out when the 
data bits begin. 

data, the t.iming circuitry divides the clock signal for 
the coded data (CodELClock), producing a data clock 
signal, RcLClk. The timing circuitry then uses Code_ 
Clock and RcLClk to control the timing of shift­
register. control signals ShifLOut and ShifLIn. 

Because the timing circuitry loads and shifts data 
produced by IC I at the points indicated on the timing 
diagram in Fig 5, the only clock signal that ICI requires 
to code or decode data in INREG is the RcLClk signal. 

To control the transfer of data and code, the ShifLIn 
signal latches data or code into INREG, and the 
ShifLOut signal controls the output of OUTREG. For 
example, when encoding data, the encoder produces 
two bits of code on each rising edge of RcLClk. Because 

To obtain the equations you need to program the 
PLDs, examine the timing diagrams. The timing dia­
grams show that the state-machine design requires 
only a few timing signals to implement the controller. 

Convert RLL 2,7 code to a state machine 
You can use a sunple algorithmic ,--------------------------, 

procedure to convert a code 
table to an encoding state ma­
chine. For each row of the code 
table, you create, a simple 2-
state expression for the conver­
sion of the data into the code. 
Then you combine the expres­
sions into one state machine for 
the entire table. 
. For the code in Table 1 of the 

accompanying article, you con­
sider each data bit and the asso­
ciated pair of bits of RLL 2,7 
code. For example, the first row 
of the table contains two data 
bits: one, which is associated 
with the code 10, and zero, 
which is associated with the 
code 00. The state machine for 
this row begins in state zero 
(which is arbitrarily assigned) 
and changes state when it sees 
that the first data bit is a one 
and the next bit (the look-ahead 

. bit) is a zero. This change of 
state, which appears graphically 
in Fig Aa, results in the out­
put 10. 

Note that the state machine 
must evaluate the look-ahead 
hit. If this bit is a one instead of 
a zero, the input data will be 11, 
corresponding to the second row 
of the table, so your state ma­
chine must generate a 01. Fbr 

START START 

~~ETO ~~o ~!1Ql ~!ill OOR1G~Dll \!1Ql)IT 0 10 01 00!1Ql 01 
10 00 do 10 

t 
RLL2,7 CODE r:.) \!.. 1 lA 1 

(al STATE TRANSITION FOR t (el ENCODE DATA ROW 11 \ 
2,7 DATA ROW 10 USING THE SAME PROCEDURE \ 

(bl DATA ROW 10 IS 
COMPLETELY CODED (dl COMBINE THE STATE 
BY THIS STATE MACHINES FOR DATA 
MACHINE ROWS 10 AND 11 

Fig A~reating a .tate m=h1ne from a code table is a 2-part process. First, ycm 
create a simple state machine fur each row in tM table, and tMn ycm combine tM 8tate 
machines into one state machine fur tM whole table. 

this code table, no more than 
two look-ahead bits are neces­
sary for encoding any data bit. 

If the state machine is in state 
one, and the input data is zero, 
the state machine produces a 00 
output and returns to state zero 
(Fig Ab.) Note that the data bit 
encoded in this state is the look­
ahead bit from the previous 
state and that no look-ahead bit 
is necessary for encoding be­
cause the zero is the last bit in 
data row 10. 
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You use this procedure to cre­
ate state machines for the other 
table rows as well. Fig Ac, for 
example, contains the state ma­
chine for data row 11. Because 
all the state' machines have the 
same beginning state (state 
zero), you can combine them to 
form the complete encoding 
state machine. Furthermore" the 
state machines may share other 
states, as shown in the combina­
tion of the two data rows 
(Fig Ad). 

EDN September 18, 1986 



the Load signal is high at the same time that RcLClk is 
high, the bits are loaded into the shift register. Because 
the frequency of ShifLOut is twice that of RcLClk, 
ShifLOut shifts both encoded bits out before the next 
encoded bits are loaded. ShifLIn presents the next 
data bit to the encoder at the same time that the second 
encoded bit is shifted out, starting the next encode 
cycle. 

READ DECODE 

CODE CLOCK ..J1JLJ1JUlSlJL 
/DEC,DE TWO ~E BI~ 

RD.ClK ~ 

lOAD J ( ( ( 
SHIFT .. OUT ~,Y\L 

lOAD ONE DECODED ClATA BIT 

READ, J 

SHIFT IN 

/!HIFT IN TWO NEW CODE BITS 

LFLFL.J1J1.J1Sl 
INREG AND OUTREG lOAD WHEN lOAD AND SHIFT ARE HIGH; 
THEY SHIFT WHEN lOAD IS lOW AND SHIFT IS HIGH 

lOGIC EQUATIONS: 

Before the disk-drive system can decode data on the 
disk, it must synchronize itself with the data clock from 
the disk and find out when the data bits begin. To assist 
the circuitry in synchronization and initialization, you 
can place synchronization signals, as well as a marker 
indicating the beginning of data, at the beginning of the 
RLL code. When the RLL circuitry reads these pat­
terns, it's ready to decode RLL data. 

WRITE/ENCODE 

CODE-CLOCK ..J1JLJ1JUlSlJL 
~ ENCODE ONE DATA BIT 

RD_ClK ~ 
lOAD 

~ 
SHIFLOUT ~ 

SHIFT OUT SECOND BIT 

WRITE -.J 

SHIFLIN 

RD_ClK := IRD_ClK (A REGISTERED SIGNAL FROM IC2) 
SHIFT_IN = READ'/CODE-ClOCK+WRITE'RD_ClK 
SHIFLOUT = READ'/RD_ClK+WRITE'CODE-ClOCK 
lOAD ~ READ+WRITE'RD_ClK 

CODE_CLOCK: CODE·RATE CLOCK SIGNAL FROM FDOAM PIN 
ON Am9582 DISK·DATA SEPARATOR 

READ. WRITE : READ!WRITE MODE SIGNALS FROM Am9580 
HARD-DISK CONTROllER ' 

RD_ClK : DATA-RATE CLOCK DERIVED FROM CODE-CLOCK 

SHIFT_IN: COMBINATORIAL SIGNAL FROM IC2 

SHIFT_OUT, lOAD: COMBINATORIAL SIGNALS FROM IC, 

Fig 5-The U'mlng slgna18 from IC, and IC, control the loading and shifting of code and data in the INREG and OUTREG registers. Note 
that the clock and shifting signals for the coded bits have twice the frequency of those for the data bits, a situation that corresponds to the 2:1 
density ratio between code and data. 
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If the decoder detects any pattern before it 
detects the address marker) the circuit resets 
itself and begins the initialization sequence 
anew. 

a DETECTED AS1l CODE RECOVERS 
COMPLETELY 

~ 
Eo 

OAIA 0 

CODE 00 

CODE 
DETECTED 00 

DECODED 
DATA a 
CURRENT a 
NEXT 3 ~S<,,,o, 

DECODING 
MACHINE 

E, 

0 

00 

00 

a 
3 

a 

E2 E3 E. E. 

1 U 1 0 

10 00 10 00 

111] 00 10 00 

a a 1 a 
a a 3 2 

a 3 2 a 

LSTART 
ERROR 
RECOVERY 

E. E1 

0 0 

00 10 

00 10 

a a 
a 3 

3 a 

Ea E9 

1 1 

01 00 

01 00 

1 1 

a 4 

4 a 

Fig 6-The ability to recover from an error is a useful feature of 
RLL 2,7 code. An error at cycle E, results in incorrectly translated 
data until the machine recovers fully. 

The synchronization field comprises a series of pat­
terns that allow the phase-locked loop in the disk-data 
separator to synchronize to the frequency of the incom­
ing data. These patterns represent the maximum fre­
quency input. For RLL 2,7 code, that input is 100100, 
because this code has the fewest permissible zeros 
between ones. Using the highest possible frequencies 
minimizes the synchronization time, so the patterns are 
completed quickly. 

A marker that follows the synchronization field indi­
cates the beginning of data. This marker, the address 
mark, must be distinct from all other code words. For 

. example, you can use a pattern that violates the code 
rule.s, such as a string of zeros (this string is called "dc 
erase" because it removes all flux transitions from the 
recording medium). Alternatively, you can use a pat­
tern that obeys the code rules but is not a defined code 
pattern. In the examples in this article, the pattern 
00000100 identifies the beginning of data. Although this 
pattern is not a defined code word, it doesn't violate the 
RLL 2,7 code rules as long as it's preceded by no more 
than two zeros in a row. 

When the 100100 pattern is synchronizing the circuit­
ry, the circuitry produces the RcLClk signal, which is 
in phase with the pattern. In order for the decoder to 
operate properly, the R<LClk signal must rise with the 
first one in the pattern and fall with the second one. 
However, because of the repetitive nature of the pat­
tern, the circuitry could produce a falling edge of 
RcLClk on the first one in the pattern and a rising edge 
on the second one, in which case the circuitry would not 

be in synchronization with the beginning of the data. 
The encoding circuitry resolves this synchronization 

problem by inserting the pattern "0100" eight times 
between the synchronization field and the address 
mark. The phase-locked-loop system locks onto the 
0100 pattern, and the RcLClk control circuitry in IC2 

sets itself to decode the data correctly. 
To put the synchronization and marker data into the 

RLL 2,7 code on the disk, you must design the RLL 2,7 
encoder to produce the signals. When the signal WG 
(from the hard-disk controller IC3) goes high, the data is 
encoded to all zeros. The encoder translates the zeros 
as the synchronization pattern 100100, which is then 
stored on disk. 

Next, the address-mark-control (AMC) signal from 
the hard-disk controller sets an internal latch in IC2, 

producing the output AIlLLatch, which forces IC3 to 
put ones in the INREG register. The encoding circuitry 
codes the ones as the string 0100. After the eighth 0100 
pattern, IC2 sets the Complt signal high. On sensing 
Complt, IC. writes the address mark. 

The encoding circuitry must have the first four data 
bits in INREG by the time the address mark is written. 
IC. writes two patterns for the address mark. At the 
start of the second address-mark pattern, Ie. sets AMF 
(Address Mark Found) High and resets AIlLLatch low. 
The assertion of AMF signals the hard-disk controller 
to begin shifting data into INREG for encoding. Be­
cause four RcLClk cycles occur while the address-mark 
pattern is being written, the first four bits are shifted 
into INREG by the time the second address mark is 
written. 

The decoder circuit has two safeguards that prevent 
it from identifying the address-mark pattern incorrect­
ly. First, the decoder must detect at least five 0100 
patterns before it acknowledges the address-mark pat­
terns. Second, if it detects any pattern before it detects 
the address mark, the circuit resets itself and begins 
the initialization sequence. 

IC2 implements' these two safeguards by monitoring 
the RLL code that ICI decodes. When the hard-disk 
controller asserts the RG and AMC signals, IC2 sets 
Complt and AIlLLatch low. IC2 sets Complt high when 
it detects the fifth consecutive 0100 pattern, enabling 
Ie. to detect the address qIark. If the input to IC. is 
anything other than a 0100 pattern or an address mark, 
IC2 sets Complt low, and the initialization begins anew. 

If Ie. successfully detects the address-mark pattern, 
it sets AMF high. The assertion of AMF causes IC2 to 
set AIlLLatch high, thus enabling the output of OUT-
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REG to send decoded data to the hard-disk controller. 
AIlL.Latch remains high as long as RG is high. 

RLL 2,7 encoding also provides for error recovery. 
Whenever a disk-drive system reads code from a disk, 
the read/write heads or the transmission cables can 
cause transmission errors. One of the properties of 
RLL 2,7 code is that any single-bit error (for example, a 
coded one detected as a zero) will correct itself after a 
run of at most 16 correctly detected bits. 

In short, whenever a 2-bit pattern doesn't match any 
of the expected patterns for a particular state of the 
decoding circuitry, the decoding state machine returns 
to state zero and generates a zero as a translation for 
the erroneous code bits. Then the decoder shifts the 
next two code bits into the INREG register and contin­
ues decoding from state zero. 

In such cases, the decoding state machine can cor­
rectly decode coded data, but it may not recover 
immediately upon returning to state zero. As Fig 6 
shows, although the code bits that the decoder detects 
may be valid, the decoded data is incorrect because the 
error has forced that state machine into the wrong 
state. In this example, the decoder doesn't recover until 
6 code bits later (in cycle E6), when it again falls into 
the correct state and accurately decodes the data. EDN 
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SECTION 4 - PRODUCT 
SPECIFICATIONS 

4.1 Field Programmable Logic Selector Guide, 

4.2 Glossary 

4.3 AmPAL 16XX Family 20-Pin IMOX Programmable 
Array Logic (PAL) Elements 

4.4 AmPAL 16XXD Family 20-Pin IMOX Ultra High­
Speed Programmable Array Logic (PAL) 
Elements 

4.5 AmPAL 1SPS 20-Pin IMOX Programmable Array 
Logic 

4.6 AmPAL20EGS IMOX-III ECL Programmable Array 
Logic 

4.7 AmPAL20EVS IMOX-III ECL Programmable Array 
Logic 

4.S AmPAL21VTS 24-Pin Dual-Clock Programmable 
Array Logic 

4.9 AmPAL22V10 24-Pin IMOX Programmable Array 
Logic (PAL) 

4.10 AmPAL22V10B 24-Pin IMOX Programmable Array 
Logic (PAL) 

4.11 AmPAL23SS 20-Pin IMOX PAL-Based Sequencer 

4.12 AMD 24-Pin Standard PAL Family 

4.13 AMD 24-Pin Enhanced PAL Family 

(Continued) 



4.14 AMD 24-Pin XOR PAL Family ... 

4.15 AmPALHC29M16/AmPALHCT29M16 24-Pln 
E2_ Based CMOS Programmable Array Logic 

4.16 AmPALHC29MA16/AmPALHCTMA 16 24-Pin 
E2-Based CMOS Programmable Array Logic 

4.17 Bipolar PROMs as Programmable Logic Products 

4.18 Am29PL 141 Fuse Programmable Controller (FPC) 

4.18 Am2971 Programmable Event Generator (PEG) 



4.1 FIELD PROGRAMMABLE LOGIC SELECTOR GUIDE 
Features of PAL Devices Advantages of AMD PAL Devices 

• High speed electrically programmable array logic elements • AMD's superior Bipolar technology ensures industry-leading speed/power families of 
• User customizable logic patterns, generated in minutes with PROM type program- PALs 

mers • Platinum-Silicide fuses and added test words ensure -programming yields> 98% 
• Improves performance and reduces board area and cost of existing TTL SSI/MSI • Post Programming Functional Yield (PPFY) > 99.8% 

designs • Reliability assured through more than 70 billion fuse hours of life testing with no 
• Easy to use software design aids available failures 
• Security fuse prevents copying of logic by competitors • Full AC and DC parameter testing at the factory through on-board testing curcuitry 

• Power-up reset simplifies state machine design 
• Industry-leading quality guarantees 

COMMERCIAL PRODUCTS ONLY 

MAX MAX MAX MIN MAX MIN 
PGMMBLE 

# Icc 'MAX tpD ts teo IOL INPUT OUTPUT ARRAY LOG. LOGIC 
DEVICE NAME PINS rnA MHz ns ns ns rnA STRUCTURE STRUCTURE SIZE PTs OE OP STRUCTURE 

16HD8A 20 155 N/A 25 N/A N/A 24 16 INPUTS: 8 OUTPUTS: 32x64 64 OED OED EIGHT 8-WIDE 

! 16HD8L 80 35 24 6 Bidirectional 8 Dedicated, Active HIGH AND-OR 
16HD8 155 35 24 10 Dedicated 

16H8A 20 155 N/A 25 N/A N/A 24 16 INPUTS: 8 OUTPUTS: 32x64 56 + PRG OED EIGHT 7-WIDE 
18H8L 80 35 24 6 Bidirectional 6 Bidirectional and 8 DE AND-OR 
16H8 155 35 24 1 0 Dedicated 2 Dedicated, Active HIGH PTs 

16LD8A 20 155 N/A 25 N/A N/A 24 16 INPUTS: 8 OUTPUTS: 32x64 64 OED OED EIGHT 8-WIDE 
16LD8L 80 35 24 6 Bidirectional 8 Dedicated, Active LOW AND-DR-INVERT 
16LD8 155 35 24 10 Dedicated 

*16L8D 20 180 N/A 10 N/A N/A 24 16 INPUTS: 8 OUTPUTS: 32x64 56 + PRG OED EIGHT 7-WIDE 
*16L8BL 90 15 24 6 Bidirectional 6 Bidirectional, 8 DE AND-DR-INVERT 
16L8B 180 15 24 10 Dedicated Active LOW PTs 

*16L8AQ 45 25 12 2 Dedicated, Active LOW 
16L8AL 90 25 24 
16L8A 180 25 24 
16L8Q 45 35 12 
16L8L 90 35 24 

I 

16L8 180 35 24 
--
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FIELD PROGRAMMABLE LOGIC SELECTOR GUIDE 

I 

COMMERCIAL PRODUCTS ONLY 

MAX MAX MAX MIN MAX MIN 
PGMMBLE 

# Icc fMAX tpD ts tco IOL INPUT OUTPUT ARRAY LOG. LOGIC 
DEVICE NAME PINS rnA MHz ns ns ns rnA STRUCTURE STRUCTURE SIZE PTs OE OP STRUCTURE I 

*16R4D 20 180 55.5 10 10 8 24 16 INPUTS: 8 OUTPUTS: 32x64 60 + 4 OED FOUR 8-WIDE 
*16R4BL 90 40 15 13 12 24 4 Bidirectional 4 Bidirectional 40E PRG AND-OR 
l6R4B 180 40 15 13 12 24 8 Dedicated 4 Registered PTs 4 FOUR 7-WIDE 

*16R4AQ 45 28.5 25 20 15 12 4 Feedback OED AND-OR-INVERT 
. l6R4AL 90 28.5 25 20 15 24 

l6R4A 180 28.5 25 20 15 24 
16R4Q 45 18 35 30 25 12 
l6R4L 90 18 35 30 25 24 
l6R4 180 18 35 30 25 24 

*16R6D 20 180 55.5 10 10 8 24 16 INPUTS: 8 OUTPUTS: 32x64 62 + 2 OED SIX 8-WIDE 
*16R6BL 90 40 15 13 12 24 2 Bidirectional 2 Bidirectional 20E PRG AND-OR 
16R6B 180 40 15 13 12 24 8 Dedicated 6 Registered PTs 6 TWO 7-WIDE 

*16R6AQ 45 28.5 25 20 15 12 6 Feedback OED AND-OR-INVERT 
l6R6Al .90 28.5 '25 20 15 24 
l6R6A 180 28.5 25 20 15 24 
l6R6Q 45 18 35 30 25 12 
l6R6l 90 18 35 30 25 24 

f' 
I\) l6R6 180 18 35 30 25 24 

*16RSD 20 180 55.5 N/A 10 8 24 16 INPUTS: 8 OUTPUTS: 32x64 64 OED OED EIGHT 8-WIDE 
*16RSBl 90 40 13 12 24 8 Dedicated 8 Registered AND-OR 
16RSB 180 40 13 12 24 8 Feedback 

*16RSAQ 45 28.5 20 15 12 
l6RSAl 90 28.5 20 15 24 
l6RSA 180 28.5 20 15 24 
l6RSQ 45 18 30 25 12 
l6RSl 90 18 30 25 24 
16RS 180 18 30 25 24 

1SPSB 20 180 N/A 15 N/A N/A 24 18 INPUTS: 8 OUTPUTS: 36x72 64 + PRG PRG EIGHT 8-WIDE 
1SPSAl 90 25 24 8 Bidirectional 8 Bidirectional, Active 80E AND-OR 
lSPSA 180 25 24 10 Dedicated HIGH or LOW PTs 
lSPSQ 55 35 12 
lSPSl 90 35 24 

lOH20EVS 24 220 125 6 4.5 3.5 N/A 20 INPUTS: 8 OUTPUTS: 40x90 80 + PRG PRG VARIABLE PTs: 
10020EVS 220 125 6 4.5 3.5 8 Bidirectional 8 OLMs: Choose REG or AP, AR, 8-8-
(ECl) 11 Dedicated COMB, Active HIGH & 8 OE 12-12-12-12-

1 INPUT or CLK or LOW PTs 8-8 

lOH20EGS 24 220 125 6 4.5 3.5 N/A 20 INPUTS: 8 OUTPUTS: 40x90 80 + PRG PRG VARIABLE PTs: 
lOO20EGS 220 125 6 4.5 3.5 8 Bidirectional 8 OLMs: Choose LATCHED AP, AR, 8-8-
(ECl) 11 Dedicated or COMB, Active HIGH & 8 OE 12-12-12-12-

1 INPUT or LE or LOW PTs 8-8 



COMMERCIAL PRODUCTS ONLY 

MAX MAX MAX MIN MAX MIN 
PGMMBLE 

# Icc fMAX l;.o ts leo IOL INPUT OUTPUT ARRAY LOG. LOGIC 
DEVICE NAME PINS rnA MHz ns ns ns mA STRUCTURE STRUCTURE SIZE PTs OE OP STRUCTURE 

20LOB 24 210 N/A 15 N/A N/A 24 20 INPUTS: 8 OUTPUTS: 40x72 64+ PRG DED EIGHT 7-WIDE 
2018A 210 25 24 7 Bidirectional 7 Bidirectional, Active LOW 8 DE AND-DR-INVERT 
2OL8AL 105 25 24 13 Dedicated 1 Dedicated, Active LOW PTs 

2OL10B 24 210 N/A 15 N/A N/A 24 20 INPUTS: 10 OUTPUTS: 40x76 66 + PRG DED TEN 3-WIDE 
20L 10-20 165 20 24 12 Dedicated 8 Bidirectional 10 AND-DR-INVERT 
20L10A 165 25 24 8 Feedback 2 Dedicated DE 
20L10AL 105 25 24 PTs 

2ORP4B 24 210 30 15 15 12 24 20 INPUTS: 10 OUTPUTS: 40x90 84 + PRG PRG SIX (6-2)-WIDE 
20RP4A 210 25 25 25 15 24 6 Bidirectional 6 Bidirectional 6 DE AND-OR 
20RP4AL 105 25 25 25 15 24 10 Dedicated 4 REG Inverting PTs FOUR 8-WIDE 

4 Feedback AND-OR 

20RP6B 24 210 30 15 15 12 24 20 INPUTS: 10 OUTPUTS: 40x90 86 + PRG PRG TEN 8-WIDE 
20RP6A 210 25 25 25 15 24 4 Bidirectional 4 . Bidirectional 4 DE AND-DR-INVERT 
20RP6AL 105 25 25 25 15 24 12 Dedicated 6 Registered PTs 

6 Feedback 

.;. 20RP8B 24 210 30 15 15 12 24 20 INPUTS: 10 OUTPUTS: 40x90 88 + PRG PRG TEN 8-WIDE 
l> 20RP8A 210 25 25 25 15 24 2 Bidirectional 2 Bidirectional 2 DE AND-OR 

20RP8AL 105 25 25 25 15 24 10 Dedicated 8 Registered PTs 
8 Feedback 

20RP10B 24 210 37 N/A 15 12 24 20 INPUTS: 10 OUTPUTS: 40x80 80 PRG PRG TEN 8-WIDE 
20RP10A 210 25 25 15 24 10 Dedicated 10 Registered AND-OR 
20RP10AL - 105 25 25 15 24 10 Feedback 

20R4B 24 210 37 15 15 12 24 20 INPUTS: 8 OUTPUTS: 40x72 68 + PRG DED FOUR 8-WIDE 
20R4A 210 25 25 25 15 24 4 Bidirectional 4 Bidirectional 4 DE AND-OR 
20R4AL 105 25 25 25 15 24 12 Dedicated 4 Registered PTs FOUR 7-WIDE 

4 Feedback AND-DR-INVERT 

20R6B 24 210 37 15 15 12 24 20 INPUTS: 8 OUTPUTS: 40x72 70 + PRG DED SIX 8-WIDE 
20R6A 210 25 25 ·25 15 24 2 Bidirectional 2 Bidirectional 2 DE AND-OR 
20R6A4 105 25 25 25 15 24 12 Dedicated 6 Registered PTS TWO-7·WIDE 

6 Feedback AND-OR-INVERT 

20R8B 24 210 37 15 15 12 24 20 INPUTS: 8 OUTPUTS: 40x72 72 PRG DED EIGHT 8-WIDE 
20R8A 210 25 25 25 15 24 12 Dedicated 6 Registered AND-OR 
20R8AL 105 25 25 25 15 24 8 Feedback 

20XRP4-20 24 210 30 20 20 13 24 20 INPUTS: 10 OUTPUTS: 40x90 84 + PRG PRG FOUR 
20XRP4-30 180 22.2 30 30 15 24 6 Bidirectional 6 Bidirectional 6 (2-6)-WIDE 
20XRP4-40 180 14.3 40 40 30 24 10 Dedicated 4 Registered OE AND-OR-XOR 
20XRP4-30L 90 22.2 30 30 15 24 4 Feedback PTs SIX 8-WIDE 
20XRP4-40L 90 14.3 40 40 30 24 AND-OR-INVERT 
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FIELD PROGRAMMABLE LOGIC SELECTOR GUIDE 

COMMERCIAL PRODUCTS ONLY 

MAX MAX MAX MIN MAX MIN 
PGMMBLE IF Icc fMAl( tpD ts teo IOL INPUT OUTPUT ARRAY LOG. LOGIC 

DEVICE NAME PINS mA MHz ns ns n9 mA STRUCTURE STRUCTURE SIZE PTs OE OP STRUCTURE 

20XRP6-20 24 210 30 20 20 13 24 20 INPUTS: 10 OUTPUTS: 40x90 86 + PRG PRG SIX 
20XRP6-S0 180 22.2 30 30 15 24 4 Bidirectional 4 Bidirectional 4 (2-6)-WIDE 
20XRP6-40 180 14.3 40 40 30 24 6 Feedback 6 Dedicated OE AND-OR-XOR 
20XRP6-S0L 90 22.2 30 30 15 24 10 Dedicated PTs FOUR 8-WIDE 
20XRP6-40L 90 14.3 40 40 30 24 AND-OR-INVERT 

20XRP8-20 24 210 30 20 20 13 24 20 INPUTS: 10 OUTPUTS: 40x90 80 + PRG PRG EIGHT 
20XRP8-S0 180 22.2 30 30 15 24 2 Bidirectional 2 Bidirectional 10 (2-6)-WIDE 
20XRP8-40 180 14.3 40 40 30 24 10 Dedicated 8 Registered OE AND-OR-XOR 
20XRP8-S0L 90 22.2 30 30 15 24 8 Feedback PTs TWO 8-WIDE 
20XRP8-40L 90 14.3 40 40 30 24 AND-OR-INVERT 

20XRP1D-20 24 210 30 N/A 20 13 24 20 INPUTS: 10 OUTPUTS: 40x80 80 OED OED TEN 
20XRP1D-SO 180 22.2 30 15 24 10 Dedicated 10 Registered (2-6)-WIDE 
20XRP1D-40 180 14.3 30 15 24 10 Feedback AND-OR-XOR 
20XRP1D-30L 90 22.2 30 15 24 
20XRP1D-40L 90 14.3 40 30 24 

22P10B 24 210 N/A 15 N/A N/A 24 20 INPUTS: 10 OUTPUTS: 40x9O 80 + PRG PRG TEN 8-WIDE .,.. 
J,. 22P10A 210 25 24 10 Bidirectional 10 Bidirectional 100E AND-OR 

22P10AL 105 25 24 12 Dedicated PTs INVERT 

*22V10B 24 180 45.5 15 12 10 24 22 INPUTS: 10 OUTPUTS: 44 x 132 120 + PRG PRG VARIABLE PTs: 
*22V10AL 90 28.5 25 20 15 24 10 Bidirectional 10 OlMs: Choose REG or AR,SP, 8-10-12-14-
22V10A 180 28.5 25 20 15 24 12 Dedicated COMB, Active HIGH or lOW & 8 OE 16-16-

*22V100 45 18 35 30 25 12 PTs 14-12-10-8 
22V10L 90 18 35 30 25 24 
22V10 180 18 35 30 25 24 

22XP1D-2O 20 210 N/A 20 N/A N/A 24 22 INPUTS: 10 OUTPUTS: 40x90 80 + PRG PRG TEN 
22XP1D-30 180 30 24 1 0 Bidirectional 10 Bidirectional, Active 10 (2-6)-WIDE 
22XP1D-40 180 40 24 12 Dedicated HIGH or lOW OE AND-OR-XOR-
22XP1D-SOL 90 30 24 PTs 

i 

22XP1D-40L 90 40 24 

2358-20 20 200 33 20 17 13 16 23 INPUTS: 8 OUTPUTS: 46x 135 124 + PRG 4 VARIABLE PTs: I 

2358-25 200 28.5 25 20 15 16 9 Dedicated (plus 6 BSRs) SP, AR, PRG, 8-10-6-8-8-
4 Feedback 4 Registered OBS, 4 12-10-10-12-
4 Programmable 4 OlMs: Choose REG or & 8 OE OED 8-8-6-10-8 
6 Internal COMB, Active HIGH PTs 

Feedback or lOW 



COMMERCIAL PRODUCTS ONLY 

MAX MAX MAX MIN MAX MIN 
PGMMBLE 

# Icc fMAX tpD ts tco IOL INPUT OUTPUT ARRAY LOG. LOGIC 
DEVICE NAME PINS rnA MHz ns ns ns rnA STRUCTURE STRUCTURE SIZE PTs OE OP STRUCTURE 

*HC29M16-35 24 120 20 35 27 23 6 29 INPUTS: 16 OUTPUTS: 58 x 188 176 + PRG PRG VARIABLE PTs: 
*HC29M16-45 120 15 45 34 32 6 3 Dedicated 16 I/O Logic Macrocells 80E, 8-8-8-8-
(CMOS I/O) 8 Dedicated REGILA TCH/COMB AR, AP, 8-8-8-8-

Feedback Active HIGH or LOW OBS 12-12-12-12-
*HCT29M16-35 24 120 20 35 27 23 6 1 CLK/LE/I PRELOAD 16-16-16-16 
*HCT29M16-45 120 15 45 34 32 6 1 OEII PTs 
(TTL I/O) 16 1/0 LMs 

*HC29MA16-35 24 120 20 35 27 23 6 29 INPUTS: 16 OUTPUTS: 58 x 184 128 + PRG PRG VARIABLE PTs: 
*HC29MA 16-45 120 15 45 34 32 6 4 Dedicated 16 1/0 Logic Macrocells 16 AR & 5-5-5-5-
(CMOS I/O) 1 OEII REGILA TCH/COMB AP, 16 5-5-5-5-

8 Dedicated Active HIGH or LOW CLK/LE, 9-9-9-9-
*HCT29MA 16-35 24 120 20 35 27 23 6 Feedback 40E, 13-13-13-13 
*HCT29MA 16-45 120 15 45 34 32 6 16 1/0 LMs OBS & 
(TTL I/O) PRELOAD 

PTs 

KEY TO ABBREVIATIONS: 
~ 

&. 
* Under Development tco Max. Clock to Output Delay tpD Max. Propagation Delay 

OE Output Enable COMB Combinatorial IOL Min. Output Drive Current 

PT Product Term OLM Output Logic Macrocell LE Latch Enable 

OP Output Polarity I/O LM Input/Output Logic Macrocell OBS Observability 

REG Register{ed) Icc Input Current ts Min. Setup Time 

AR Asyncronous RESET N/A NOT Applicable BSR Buried State Register 

SP Synchronous PRESET f MAX Max. Operating Frequency; DED Dedicated 

AP Asynchronous PRESET fMAX = 1/{ts + leo) 
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DESIGN-AID SOFTWARE TOOLS FOR AMD PAL DEVICES 

Vendor Software Hardware Platform 
Data I/O Corp. ABEL IBM PC or compatible 
10525 Willows Road N.E. DEC VAX (VMS. UNIX) 
Redmond. WA 98073 Apollo (AEGIS) 
(206) 881-6444 Sun Microsystems (UNIX) 

DASH/CADAT IBM PC or compatible 
DASH/ABEL 

ISDATA LOGIC IBM PC or compatible 
Haid-und-Neu-Str. 7 DEC VAX (VMS. UNIX) 
0-7500 Karlsruhe Apollo (AEGIS) 
West Germany 
(0721) 693092 

JMC PROMAC Division PALASM PROMAC P3 
2999 Monterey/Salinas Highway 
Monterey. CA 93940 
(408) 373-3607 

Personal CAD Systems Inc. CUPL IBM PC or compatible 
1290 Parkmoor Avenue DEC VAX (VMS. UNIX) 
San Jose. CA 95126 CAE IBM PC or compatible (408) 971-1300 

MMI PALASM IBM PC or compatible 
(PubliC Domain) PC (CPM-80) 

DEC VAX (VMS. UNIX) 

AMD PLPL IBM PC or compatible 
(PubliC Domain) DEC VAX (UNIX) 

AMD AmCUPL IBM PC or compatible 
901 Thompson Place 
Sunnyvale CA 94088 
(408) 732-2400 

Valley Data Sciences PERFECT IBM PC or compatible 
2426 Charleston Road VISTA 
Mountain View. CA 94043 
(415) 968-2900 

AMD-QUALIFIED PAL PROGRAMMER MODELS 

Programmer AMD PAL . Socket Vendor Personality . Models Module Adapter 

DATA I/O Corporation MODELS 100A. 19. LOGICPAK 303A-004 
10525 Willows Rd. N.E. 29A. 29B 303A-011A 
P.O. Box 97046 303A-011B 
Redmond. WA 98073-9746 UniSite 40 Not Required Not Required (206) 881-6444 

DIGILEC. INC. 803 FAM52 DA53. DA55 
1602 Lawrence Ave. 
Suite 113 
Ocean. NJ 07712 
(210) 493-2420 

KONTRON ELECTRONICS. INC. MODEL-MPP-80S Not Required SA37 
1230 Charleston Road or EPP80 
Mountain View. CA 94039 
(800) 227-8834 

STAG MICROSYSTEMS MODEL-PPZ ZM2200 Not Required 
528-5 Weddell Drive 
Sunnyvale. CA 94086 ZL30AlZL32 Not Required Not Required 
(408) 745-1991 

STRUCTURED DESIGN. INC. SD1040 Not Required Not Required 
988 Bryant Way PAL Burner 
Sunnyvale. CA 94087 
(408) 737-7131 

VALLEY DATA SCIENCES VDS 160 Not Required Not Required 
2426 Charleston Road 
Mountain View. CA 94043 
(415) 968-2900 

JMC PROMAC DIVISION PROMAC-P3 Not Required Not Required 
2999 Monterey Highway 
Monterey. CA 93940 
(408) 373-3607 
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4.2 GLOSSARY 

PAL PARAMETER DEFINITION 

VOLTAGE 

VOH (High-level Output Voltage) 
The minimum HIGH logic level guaranteed for all outputs 
under worst-case operating conditions. 

VOL (Low-level Output Voltage) 
The maximum LOW logic level guaranteed for all outputs 
under worst-case operating condtions. 

VIH (High-level Input Voltage) 
The minimum HIGH level voltage that may be applied to any 
input that is guaranteed to represent a HIGH logic level. 

VIL (Low-level Input Voltage) 
The maximum LOW level voltage that may be applied to any 
input that is guaranteed to represent a LOW logic level. 

VI (Input Clamp Voltage) 
The maximum input clamp voltage is a measure of the 
clamping capability of an input clamp diode provided on 
every input. The input clamp diode suppresses ringing due 
to transmission-line impedance mismatching. 

CURRENT 

IOH (High-level Output Current) 
The current forcing condition used to test the HIGH logic 
level, VOH' 

IOL (Low-level Output Current) 
The current forcing condition used to test the logic-LOW 
level, VOL' 

IIH (High-level Input Current) 
The current measured into an input pin when a I-:IGH logic 
level is applied to the input pin. 

II (Input Current with Maximum Input Voltage) 
The current measured into an input pin when the maximum 
allowable input voltage is applied to the input pin. 

IlL (Low-level Input Current) 
The current measured out of an input pin when a LOW logic 
level is applied to the input pin. 

loZH (High-level Leakage Current) 
The current measured into a three-stated output pin when a 
high logic level is applied to the output pin. The three-state 
condition is overriding a logic-LOW level output state. 

IOZL (Low-level Leakage Current) 
The current measured out of a three-stated output pin when 
a LOW logic level is applied to the output pin. The three­
state condition is overriding a logic-HIGH level output state. 

Isc (Output Short Circuit Current) 
The current out of an output pin when VOUT = 0.5 V is 
applied to an output that is in a logic-HIGH level state. 

Icc (Power Supply Current) 
The current into the Vee terminal of the device when the 
device is in its maximum power logic condition. . 

CAPACITANCE 

CIN (Input Capacitance) 
The capacitance at an input pin at VIN 
1 Mhz. 

2.0 V and f 
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COUT (Output Capacitance) 
The capacitance at an output pin or 1/0 pin at VOUT = 2.0 V 
and f = 1 Mhz. 

TIMING PARAMETERS 

tpD (Propagation Delay Time) 
The tpD parameter specifies the delay time for an output to 
switch logic levels as measured between a reference level 
on the input causing the output to change and a reference 
level on the changing output. 

tpzx (Output Enable Time, Three State to Active 
Output) 

The tpzx parameter specifies the delay time for a dedicated 
enable buffer to switch a registered output from a three­
state to an active-HIGH or active-LOW logic level, the 
standard load pull-up resistor must be disconnected to 
establish a LOW level during three-state for tZH measure­
ments. 

tpxz (Output Disable Time, Active Output to Output 
Disable) 

The tpxz parameter specifies the delay time for a dedicated 
enable buffer to switch a registered output from an active­
HIGH or active-LOW level to a three-state condition. Special 
measurement levels and loads are specified for these tests 
to minimize the effect of the test environment. 

tEA (Output Enable Time, Three State to Active 
Output) 

The tEA parameter specifies the delay time for a 
combinatorial or macrocell output to switch from a three­
state to an active-HIGH or active-LOW level. The switching 
path is through normal inputs and special enable product 
terms associated with the outputs. The standard load pull­
up resistor must be disconnected to establish a LOW level 
during three-state for tZH measurements. 

tER (Output Disable Time, Active to Three-State 
Output) 

The tER parameter ~pecifies the delay time for combinatorial 
or macrocell output to switch from an active-HIGH or active­
LOW level to a three-state condition. The switching path is 
through normal inputs and special enable product terms 
associated with the outputs. Special measurement levels 
and loads are specified for these tests to minimize the effect 
of the test environment. 

ts (Setup Time) 
The ts parameter defines the minimum time a valid data 
level must precede a clock input edge to assure it is 
accepted by a storage device (e.g., register). 

tH (Hold Time) 
The tH parameter defines the minimum time a valid data 
level must be held after a clock input edge to assure it is 
accepted by a storage device (e.g., register). 

tco (tC01) (Clock to Output Time, External) 
The teo parameter specifies the delay between the active 
clock edge and a registered output switching to an active­
HIGH or LOW level. 

!c02 (Clock to Output Time, Internal) 
The tco2 parameter specifies the delay between the active 
clock edge and a combinatorial output driven by feedback 
from a switching register. 
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t p (tp1 ) (Clock Period, External) 
The tp parameter specifies the clock period when registered 
outputs are a function of both internal and external signals. 

t p2 (Clock Period, Internal) 
The tp2 parameter specifies the clock period when 
registered outputs are a function of internal signals only. 

tw (Clock Width) 
The tw parameter specifies the minimum clock pulse width, 
either HIGH or LOW level, that will still allow proper function 
of registers. In some cases simultaneous minimum width of 
both HIGH and LOW levels is not allowed. This is true when 
tp is greater than two times two 

FREQUENCY 

fMAX (flMAX) (Maximum Frequency, External) 
The fMAX parameter is derived from the clock period (l/tp or 
1/tp1 ). It is equal to the maximum clocking frequency when 
registered outputs are a function of both internal and 
external signals. 
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f2MAX (Maximum Frequency, Internal) 
The f2MAX parameter is derived from the clock period (1/tp2). 

It is equal to tho maximum clocking frequency when 
registered outputs are a function of internal signals only. 

ASYNCHRONOUS RESET TIMING PARAMETERS 

tAW (Asynchronous-Reset Pulse Width) 
The tAW parameter specifies the width of the asynchronous 
reset pulse. (The minimum value for this parameter is the 
worst case propagation delay minus the best-case 
propagation delay.) 

tAR (Asynchronous-Reset Recovery Time) 
The tAR parameter specifies the time for the asynchronous­
reset signal to become inactive. 

tAP (Asynchronous-Reset Propagation Delay) 
The tAP parameter specifies the delay between the 
registered outputs to become reset and the associated 
asynchronous-reset input. 



AmPAL *16XX Family 
20-Pin IMOX™ Programmable Array Logic (PAL) Elements 

DISTINCTIVE CHARACTERISTICS 

• AMD's superior IMOX technology • PRELOAD feature permits full logical verification 
- Guarantees tpD = 15 ns Max. "B" Versions • Reliability assured through more than 70 billion fuse 

• High·Speed, Half-Power ("AL") and Ouarter-Power hours of life testing with no failures 
("0") versions • Full AC and DC parametric testing at the factory through 

• Platinum-silicide fuses and added test words ensure on-board testing circuitry 
programming yields> 98% • AMD's industry-leading quality guarantees 

• Post Programming Functional Yields (PPFY) of 99.9% 

GENERAL DESCRIPTION 

AMD PAL devices are high-speed, electrically programma- power versions. The very High-Speed "8" versions 
ble array logic elements. They. utilize the familiar sum-of- (tpD = 15 ns) run approximately 40% faster than the High-
products (AND-OR) structure allowing users to program Speed" A" versions (tpD = 25 ns). High-Speed, Half-Power 
custom logic functions to fit most applications precisely. "AL" versions (tpD = 25 ns, Icc = 90 mAl are available, as 
Typically they are a replacement for low-power Schottky well as Standard-Speed, Half-Power "L" versions (tpD 
SSI/MSI logic circuits, reducing chip count by more than 5 = 35 ns, Icc* = 80 mAl. Ouarter-Power "0" versions (tpD 
to 1 and greatly simplifying prototyping and board layout. = 35 ns, ICC = 45 mAl are also available. 

Seven different devices are available, including both regis-
Please see the following pages for Block Diagrams. 

tered and combinatorial devices, in six different speed and *Combinatorial functions 

PRODUCT SELECTOR GUIDE 

AMD PAL Speed/Power Families 

tpD IS (1) tco (1) ICC (2) IOL 
ns (Max.) ns (Min.) ns (Max.) mA (Max.) rnA (Min.) 

Family C Devices M Devices C Devices M Devices C Devices M Devices C/M Devices C Devices M Devices 
Very High-Speed 15 20 13 18 12 15 180 24 12 ("B") Versions 
High-Speed 25 30 20 25 15 20 155 (2) 24 12 ("A") Versions 
High-Speed, 
Half-Power 25 30 20 25 15 20 90 24 12 
("AL") Versions 
Standard Versions 35 40 30 35 25 25 155 (2) 24 12 
Half·Power 35 40 30 35 25 25 80 (2) 24 12 ("L") Versions 
Quarter-Power 35 40 30 35 25 25 45 12 8 ("Q") Versions 
(1) Sequential functions 
(2) Combinatorial functions 

AMD PAL FUNCTIONS 

Part Array Output Package 
Number Inputs Logic Enable Outputs Pins 

16R8 Eight Dedicated, Eight 8-Wide AND·OR Dedicated Registered Inverting 20 Eight Feedback 
Eight Dedicated, Six 8·Wide AND·OR Dedicated Registered Inverting 

16R6 Six Feedback, 
Two 7·Wide AND·OR·INVERT Bidirectional 

20 
Two Bidirectional Programmable 

Eight Dedicated, Four 8·wide AND·OR Dedicated Registered Inverting 
16R4 Four Feedback, 

Four 7·Wide AND·OR·INVERT Bidirectional 
20 

Four Bidirectional Programmable 

16L8 Ten Dedicated, Eight 7·Wide AND·OR·INVERT Programmable Six Bidirectional 20 Six Bidirectional Two Dedicated 

16H8 Ten Dedicated, Eight 7·Wide AND·OR Programmable Six Bidirectional 20 Six Bidirectional Two Dedicated 

16LD8 Ten Dedicated, Eight 8·Wide AND·OR·INVERT - Dedicated 20 Six Bidirectional 

16HD8 Ten Dedicated, Eight 8·Wide AND·OR - Dedicated 20 Six Bidirectional 

IMOX is a trademark of Advanced Micro Devices, Inc. 

~ 
PublicatiQn # Rev. ~mendment 

'PAL is a registered trademark of and is used under license from Monolithic Memories, Inc. 03323 E /0 
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AmPAL *16XX Family 

I 
BLOCK DIAGRAMS 

AmPAL16RB AmPAL16R6 

OED Of 

J 1-

~"~~ OUTPUT 

OUTPUT D Q OUTPUT 

INPUTS~ ~_l 
INPUTS 

OUTPUT OUTPUT 

OUTPUT OUTPUT 

PRc:~'t:.~~ND I ~I 
PROGRAMMABLE AND 

- ~ 
ARRAY (M I 32) 

i" 

~~ 
DUTPUT 

0 

1- _ 

OUTPUT OUTPUT 

OUTPUT OUTPUT 

OUTPUT INPUT/OUTPUT 

CPD 
CP 

8D002720 8D002730 



! 

BLOCK DIAGRAMS (Co nt' d.) 

AmPAl16R4 

0Ec>~-----------------------------. 

INPUTS~~ 

CP 

PROGRAMMABLE AND 
ARRAY (64 .32) 

~INPUT/OUTPUT 

~INPUT/OUTPUT 

I---f>o--i::> OUTPUT 

I---f>o--C> OUTPUT 

I--I><>-C> OUTPUT 

I---f>o--i::> OUTPUT 

~INPUT/OUTPUT 

~IHPUT/OUTPUT 

INPUTS~ 

80002740 

AmPAl16l8 

>---t"> 0 [J OUTPUT 

>---f>O ~ INPUT/OUTPUT 

~ INPUT/OUTPUT 

>---f"> 0 ~ INPUT/OUTPUT 

PROGRAWIABLE AND rl ==~tt::~~---------l 
ARRAY (64 • 32) 

>---t~D ~INPUT/OUTPUT 

~ INPUT/OUTPUT 

>---t.>o ~ INPUT/OUTPUT 

>------i>O----- OUTPUT 

80002750 

Anwe.:l XX9h1VdW'd 



AmPAL *16XX Family 

BLOCK DIAGRAMS (Cont'd.) 

AmPAL16H8 AmPAL16LD8 

~OUTPUT 

INPUTS~~ 

>----f~ ~ INPUT/OUTPUT ~oUTPUT 

10 
INPUTS r::::>+-r:::::: 

~ INPUT/OUTPUT 
~OUTPUT 

~OUTPUT 

~ INPUT/OUTPUT 

! 
I\) 

PROGRAMMABLE AND ~I ==:~tllr----..J 
ARRAY (64 • 32) 

~OUTPUT 

INPUT/OUTPUT PROGRAIoIIIAElLE AND r:l ==~~t:~t-----l 
ARRAY (54 x 32) 

~OUTPUT 

>---f~ ~ INPUT/OUTPUT 

~OUTPUT 

>---f~ ~ INPUT/OUTPUT 
~OUTPUT 

>-----f>------- OUTPUT >------C>o----C OUTPUT 

80003170 80002760 



BLOCK DIAGRAMS (Cont'd.) 

AmPAL16HD8 

>--o----r> OUTPUT 

>--D-...... --C> OUTPUT 

>--t>-.... -c> OUTPUT 

>--i~-+--C> OUTPUT 

>--i>-...... -~>OUTPUT 

>--t>-.... --L.::> OUTPUT 

>--t>-.... --t......:> OUTPUT 

>---D----L.:> OUTPUT 

80003181 
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CONNECTION DIAGRAMS 
Top View 

DIPs* 

(NOTE 1) VCC 

(NOTE 10) 

(NOTE 9) 

(NOTE 8) 

(NOTE 7) 

(NOTE 6) 

(NOTE 5) 

(NOTE 4) 

(NOTE 3) 

GND (NOTE 2) 

CD010020 S1 
~ 

Note: Pin 1 is marked for orientation. 

16L8 16R8 16R6 16R4 16H8 

Notes: 1 I elK elK elK I 

2 I OE OE OE I 

3 0 0 1/0 1/0 0 

4 1/0 0 0 1/0 1/0 

5 1/0 0 0 0 1/0 

6 1/0 0 0 0 1/0 

7 1/0 0 0 0 1/0 

8 1/0 0 0 0 1/0 

9 1/0 0 0 1/0 1/0 

10 0 0 1/0 1/0 0 

"Also available in 20-Pin Ceramic Flatpack. Pinouts identical to DIPs. 
"" Also available in 20-Pin Plastic leaded Chip Carrier. Pinouts identical to lCC. 

PIN DESIGNATIONS 

I = Input 
1/0 = Input/Output 
0= Output 

Vce = Supply Voltage 
GND = Ground 
ClK = Clock 
OE = Output Enable 

4-14 

LCC** 

;:::- ~ 
w w 
I- 0 I-
0 0 
~ 

0 
~ > 

(NOTE 9) 

(NOTE 8) 

(NOTE 7) 

(NOTE 6) 

(NOTE 5) 

(\j' en ~ 
w w W 
l- I- I-
0 0 0 
~ ~ ~ 

CD010030 

16HD8 16LD8 

I I 

I I 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 



ORDERING INFORMATION 

Standard Products 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by 
a combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Package Type 
D. Temperature Range 
E. Optional Processing 

AMPAL16RB 8 

-L-I _____ E. OPTIONAL PROCESSING 
81ank = Standard processing 

8 = 8urn In 

L..---------D. TEMPERATURE RANGE 
C = Commercial (0 to + 75°C) 
E = Extended Commercial (-55 to + 125°C) 

~-------------C. PACKAGE TYPE 
P = 20·Pin Plastic DIP (PD 020) 
D = 20·Pin Ceramic DIP (CD 020) 
J = 20·Pin Plastic Leaded Chip Carrier 

(PL 020) 
L = 20·Pin Ceramic Leadless Chip Carrier 

(CL 020) 

L..-________________ B. SPEED/POWER 

- A. DEVICE NUMBER/DESCRIPTION 
AmPAL16XX Family 

See Product Selector Guide 

20·Pin IMOX Programmable Array Logic 

Valid Combinations 

AMPAL 16R8/81 AI AL/L/O 

AMPAL 16R6/81 AI AL/L/O 

AMPAL 16R4/81 AI AL/L/O 

AMPAL 16LB!8! AI AL/L/O 

AMPAL16H8/A1L 

AMPAL 16LDBI AIL 

AMPAL 16HDBI AIL 

PC, DC, DC8, DE, 
JC, LC, LE 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMD's standard military grade 
products. 
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ORDERING INFORMATION (Cont'd.) 

APL Products 

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved 
Products List) products are fully compliant with MIL-STD-883C requirements. CPL (Controlled Products List) products are 
processed in accordance with MIL-STD-883C, but are inherently non-compliant because of package, solderability, or surface 
treatment exceptions to those specifications. The order number (Valid Combination) for APL products is formed by a 
combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Device Class 
D. Package Type 
E. Lead Finish 

AMPAL16R8 R 

tl....-____ E. LEAD FINISH 
A a Hot Solder DIP 
C- Gold 

'----------D. PACKAGE TYPE 
R - 20·Pin Ceramic DIP (CD 020) 
2 ~ 20·Pin Ceramic Leadless Chip 

Carrier (CL 020) 
S - 20·Pin Ceramic Flatpack (CF 020) 

'-------------C. DEVICE CLASS 
IB ~ Class B 

'------------------B. SPEED OPTION 

- A. DEVICE NUMBER/DESCRIPTION 
AmPAL16XX Family 

See Product Selector Guide 

20·Pin IMOX Programmable Array Logic 

Valid Combinations 
AMPAL 16R8/BI AI AL/L/Q 

AMPAL 16R6/BI AI AL/L/Q 

AMPAL16R4/BI AI AL/L/Q 

AMPAL 16L8/BI AI ALlLlQ 

AMPAL16H8/A1L 

AMPAL 16LD81 AIL 

AMPAL 16HD81 AIL 

IBRA, IB2C, 
IBS.I\ 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations or to check for newly released valid 
combinations. 

Group A Tests 

Group A tests consist of Subgroups 1, 2, 3, 4, 9, 10, 11. 

4-16 



Generic 

16L6 

16R6 

16R6 

16R4 

DESC Certified PAL Devices 

AMD Part Number DESC Numbers 

AmPAL 16L6A1BRA 6103607RX 

AmPAL 16L6A1B2C 61036072X 

AmPAL16L6A1BSA 6103607SX 

AmPAL 16L6L/BRA 6103611RX 

AmPAL 16L6L/B2C 61036112X 

AmPAL 16L6L1BSA 6103611SX 

AmPAL16L6/BRA 6103601RX 

AmPAL 16L6/B2C 61036012X 

AmPAL16R6A/BRA 6103606RX 

AmPAL 16R6A1B2C 61036062X 

AmPAL16R6A1sSA 6103606SX 

AmPAL 16R6L/BRA 6103612RX 

AmPAL 16R6L1B2C 61036122X 

AmPAL 16R6L1BSA 6103612SX 

AmPAL16R6/BRA 6103602RX 

AmPAL16R6/B2C 61036022X 

AmPAL 16R6A1BRA 6103609RX 

AmPAL 16R6A1B2C 61036092X 

AmPAL16R6A1BSA 6103609SX 

AmPAL 16R6L1BRA 6103613RX 

AmPAL 16R6L/B2C 61036132X 

AmPAL 16R6L1BSA 6103613SX 

AmPAL 16R6/BRA 6103603RX 

AmPAL 16R6/B2C 61036032X 

AmPAL 16R4A/BRA 6103610RX 

AmPAL 16R4A1B2C 61 0361 02X 

AmPAL 16R4A/BSA 6103610SX 

AmPAL16R4L/BRA 6103614RX 

AmPAL 16R4L1B2C 61036142X 

AmPAL16R4L/BSA 6103614SX 

AmPAL16R4/BRA 6103604RX 

AmPAL 16R4/B2C 61036042X 
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FUNCTIONAL DESCRIPTION 

AMD PAL Family Characteristics 

All members of the AMD PAL Family have common electrical 
characteristics and programming procedures. All parts are 
produced with a fusible link at each input to the AND-gate 
array, and connections may be selectively removed by apply­
ing appropriate voltages to the circuit. 

Initially the AND gates are connected, via fuses, to both the 
TRUE and complement of each input. By selective program­
ming of fuses the AND gates may be "connected" to only the 
TRUE input (by blowing the complement fuse), to only the 
complement input (by blowing the TRUE fuse), or to neither 
type of input (by blowing both fuses) establishing a logical 
"don't care." When both the TRUE and c()mplement fuses 
are left intact a logical FALSE results on the output of the AND 
gate, while all fuses blown results in a logical-TRUE state. The 
outputs of the AND gates are connected to fixed-OR gates. 
The only limitations imposed are the number of inputs to the 
AND gates (up to 16) and the number of AND gates per OR 
(up to 8). 

All parts are fabricated with AMD's fast programming, highly 
reliable Platinum-Silicide Fuse technology. Utilizing an easily 
implemented programming algorithm, these products can be 
rapidly programmed to any customized pattern. Extra test 
words are pre-programmed during manufacturing to ensure 
extremely high field programming yields (> 98%), and provide 
extra test paths to achieve excellent parametric correlation. 

Power-Up RESET 

The registered devices in the AMD PAL family have been 
designed to reset during system power-up. Following power­
up, all registers will be initialized to zero, setting all the outputs 
to a logic 1. This feature provides extra flexibility to the 
designer and is especially valuable in simplifying state ma-
chine initialization. " 

4-18 

PRELOAD 

AMD PAL devices are designed with unique PRELOAD 
circuitry that provides an easy method of testing registered 
devices for logical functionality. PRELOAD allows any arbitrary 
state value to be loaded into the registered output of an AMD 
PAL device. 

A· typical functional test sequence would be to verify all 
possible state transitions for the device being tested. This 
requires the ability to set the state registers into an arbitrary 
"present state" value and to set the device inputs to any 
arbitrary "present input" value. Once this is done, the state 
machine is clocked into a new state or "next state." The next 
state is then checked to validate the transition from the 
present state. In this way any state transition can be checked. 

Without PRELOAD, it is difficult and in some cases impossible 
to load an arbitrary present state value. This can lead to logic 
verification sequences that are either incomplete or excessive­
ly long. Long test sequences result when the feedback from 
the state register "interferes" with the inputs, forcing the 
machino to go through many transitions before it can reach an 
arbitrary state value. Therefore the test sequence will be 
mostly state initialization and not actual testing. The test 
sequence becomes excessively long when a state must be 
reentered many times to test a wide variety of input combina­
tions. 

In addition, complete logic verification may become impossible 
when states that need to be tested cannot be entered with 
nor·mal state transitions. For example, even though necessary, 
the state entered when a machine powers up cannot be 
tested, because it cannot be entered from the main sequence. 
Similarly, "forbidden" or "don't care" states that are not 
normally entered need to be tested to ensure that they return 
to the main sequence. 

PRELOAD eliminates these problems by providing the capabil­
ity to go directly to any desired arbitrary state. Thus test 
sequences may be greatly shortened, and all possible states 
can be tested, greatly reducing test time and development 
costs, and guaranteeing proper in-system operation. 
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Figure 1. AmPAL 16R8 Logic Diagram 
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INPUTS (0-31) 
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Figure 2. AmPAL 16R6 Logic Diagram 
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Figure 3. AmPAL 16R4 Logic Diagram 
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Figure 4. Am PAL 16L8 Logic Diagram 
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INPUTS (0-31) 1------------------------------------------------------------------, 
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Figure 6, Am PAL 16LD8 Logic Diagram 
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Figure 7. AmPAL 16HD8 Logic Diagram 
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state for the registers can be set to optimize test sequencing. 8!. PRELOAD of Registered Outputs 

>< AMD PAL registered outputs are designed with extra circuitry The pin levels and timing necessary to perform the PRELOAD 
function are detailed below: ~ to allow loading each register asynchronously to either a HIGH 

,.. 
... 
..J 
c( 
D. 
E 
c( 

~-----tD------~---tD----~-----tD------+------tD------~--tD---i 

PIN 11 V \ 
W 

- ~VIU' 

PIN 2 
,r-------~----------,,~------------~------~----V~ 

) \ 
~------------~--------~-----V., 

~r-----------~----------~,~------~-----V~ 

REGISTERED ~J-----------"""f-------~) I\. V--H 
OUTPUT ---.J , 1/>----""'" 

I\. ) I\...-L 

Power-Up Reset 

Level forced on registered output 
pin during PRELOAD cycle 

o V to VeeH or OPEN 

The registered devices in the AMD PAL Family have been 
designed to reset during system power-up. Due to the asyn­
chronous operation of the power-up reset and the wide range 
of ways Vee can rise to its steady state, two conditions are 

REGISTERED 
OUTPUT 

CLOCK 

Parameters 

tpR 

ts 

tw 

DescrIption 

Power-Up 
Reset Time 

Input or Feedback 
Setup Time 

Clock Width 

4-26 

State of the output 
pin after cycle 

HIGH 

LOW 

I I VIIJ' 

PF001141 

required to ensure a valid power-up reset. These conditions 
are: 

1. The Vee rise must be monotonic. 

2. Following reset, the clock input must not be driven from low 
to high until all applicable input and feedback setup times 
are met. 

WF022300 

Min. Typ. Max. Units 

600 1000 ns 

See Switching 
Characteristics 



ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 

Storage Temperature ............................ -65 to + 150°C Commercial (C) Devices 

Supply Voltage to Ground Potential 
Temperature (T A) .................................. 0 to + 75°C 

(Pin 20 to Pin 10) Continuous ............. -0.5 to + 7.0 V 
Supply Voltage (Vce) .................... +4.75 to +5.25 V 

DC Voltage Applied to Outputs Extended Commercial (E) Devices 
(Except During Programming) ....... -0.5 V to + VCC Max. Temperature (TA) ..........................•........ -55°C Min. 

DC Voltage Applied to Outputs Temperature (Te) ................................ + 125°C Max. 
During Programming ........................................ 2.1 V Supply Voltage (VCe) .................... +4.50 to +5.50 V 

Output Current Into Outputs During 
Military (M) Devices* 

Programming (Max Duration of 1 sec) ............. 200 mA 
DC Input Voltage ................................. -0.5 to + 5.5 V 

Temperature (TA) ................................... -55°C Min. 

DC Input Current .................................. -30 to + 5 mA 
Temperature (T e) ................................ + 125°C Max. 
Supply Voltage (Vce) .................... + 4.50 to + 5.50 V 

Stresses above those listed under ABSOLUTE MAXIMUM Operating ranges define those limits between which the 
RA TINGS may cause permanent device failure. Functionality functionality of the device is guaranteed. 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device *Military product 100% tested at Tc = + 25°C, + 125°C, 
reliability. and -55°C. 

DC CHARACTERISTICS over operating range unless otherwise specified; included in Group A, Subgroup 1, 
2, 3, 4 tests unless otherwise noted 

Parameter Parameter Typ. 
Symbol Description Test Conditions Min • (Note 1) Max. Units 

"0" IOH --2 mA . COM'L 

VOH Output HIGH Voltage 
Vee· Min., 

IOH --3.2 mA COM'L 2.4 3.5 V VIN -VIH 
or VIL All others IOH --2 mA MIL 

"B," "A," "Std." IOL" 24·mA COM'L 

Vee· Min., "AL," & "L" IOL ·12 mA MIL 
VOL Output LOW Voltage VIN - VIH IOL-12 mA COM'L 0.5 V 

or VIL "0" 
IOL - 0 mA MIL 

VIH Input HIGH Level Guaranteed Input Logical HIGH 2.0 5.5 V (Note 2) Voltage for All Inputs 

VIL Input LOW Level Guaranteed Input Logical LOW O.S V (Note 2) Voltage for All Inputs 

Vee· Max., "B," "AL," & "0" -20 -100 
IlL Input LOW Current 

liN" 0.40 V "A," "L," & "Std." -20 -250 
p.A 

IIH Input HIGH Current Vee - Max., VIN" 2.7 V 25 p.A 

II Input HIGH Current Vee - Max., VIN" 5.5 V 1.0 mA 

Ise Output Short-Circuit Current Vee - Max., Vour" 0.5 V (Note 3) -30 -60 -90 mA 

16LSA, 16HOA, 16HDOA, 
16LDBA, 16L8, 16H8, 110 155 
16HD8, 16LD8 

16L8L, 16HBL, 16HDBL, 55 
, 

BO 16LDBL 
I 16RBB, 16R6B, 16R4B, 

ICC Power Supply Current All Inputs - GND, 16LBB, 16RBA, 16R6A, 1BO mA 
Vee - Max. 16R4A, 16RB, 16R6, 16R4 

16RBL, 16R6L, 16R4L, 
16LBAL, 16RBAL, 16R6AL, 60 90 
16R4AL 

16LBO, 16RBQ, 16R60, 45 16R40 

VI Input Clamp Voltage Vee - Min., liN - -1B mA -0.9 -1.2 V 

IOZH Output Leakage Current Vee - Max., VIL - O.B V VO-2.7 V 100 

IOZL (Note 4) VIH" 2.0 V Vo - 0.4 V -100 
p.A 

CIN Input CapaCitance VIN" 2.0 V @ f - 1 MHz (Note 5) 6 

Cour Output Capacitance Your - 2.0 V @ f .. 1 MHz (Note 5) 9 pF 

Notes: 1. Typical limits are at Vee - 5.0 V and TA· 25°C. 
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included. 
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. 

Your - 0.5V has been· chosen to avoid test problems caused by tester ground degradation. 
4. I/O pin leakage is the worst case of IOZX or IIX (where X - H or L). 
5. These parameters are not 100% tested, but are periodically sampled. 
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SWITCHING CHARACTERISTICS over operating range unless otherwise specified; included in Group A, 
~ubgroup 9, 10, 11 tests unless otherwise noted 

COMMERCIAL RANGE 

"A" & "AL" "Std," "L" & "0" 
"8" Version Version Versions 

Parameter Parameter Typ. Typ. Typ. 
No. Symbol Description (Note 1) Min. Max. (Note 1) Min. Max. (Note 1) Min. Max. Units 

Input or Feedback to Non-Registered 
1 tpo Output 16L8, 16R6, 16R4, 16LD8, 16H8, 12 15 17 25 23 35 ns 

16HD8 

2 tEA 
Input to Output Enable 16L8, 16R6, 12 15 17 25 23 35 ns 16R4, 16H8 

3 tER 
Input to Output Disable 16L8, 16R6, 12 15 17 25 23 35 ns 16R4, 16H8 

4 tpzx 
Pin 11 to Output Enable 16R8, 16R6, 8 15 12 20 17 25 ns 16R4 

5 tpxz 
Pin 11 to Output Disable 16R8, 16R6, 8 15 12 20 17 25 ns 16R4 

6 tco Clock to Output 16R8, 16R6, 16R4 8 12 12 15 17 25 ns 

7 ts 
Input or Feedback Setup Time 16R8, 10 13 15 20 20 30 ns 16R6, 16R4 

8 tH Hold Time 16R8, 16R6, 16R4 -8 0 -10 0 -10 0 ns 

9 tp Clock Period (ts + tcol 25 35 55 ns 

10 tw Clock Width 10 15 25 ns 

11 fMAX. Maximum Frequency 40 28.5 18 MHz 

Notes: 1. Typical limits are at Vcc = 5.0 V and TA = 25°C. 
2. tpo is tested with switch SI closed and CL = 50 pF. 
3. For three-state outputs, output enable times are tested with CL = 50 pF to the 1.5 V level; SI is open for high impedance to HIGH 

tests and closed for high impedance to LOW tests. Output disable times are tested with CL = 5 pF. HIGH to high impedance tests 
are made to an output voltage of VOH - 0.5 V with 81 open; LOW to high impedance tests are made to the VOL + 0.5 V level 
with 81 closed. 

MILITARY RANGE 

"A" & "AL" "Std," "L" & "0" 
"8" Version Version Versions 

Parameter Parameter Typ. Typ. Typ. 
No. Symbol Description (Note 1) Min. Max. (Note 1) Min. Max. (Note 1) Min. Max. Units 

Input or Feedback to Non-Registered 
1 tpo Output 16L8, 16R6, 16R4, 16LDB, 16HB, 12 20 17 30 23 40 ns 

16HD8 

2 tEA 
Input to Output Enable 16L8, 16R6, 12 20 17 30 23 40 ns 16R4, 16H8 

3 tER 
Input to Output Disable 16L8, 16R6, 12 20 17 30 23 40 ns 16R4, 16H8 

4 tpzx 
Pin 11 to Output Enable 16R8, 16R6, 8 20 12 25 17 25 ns 16R4 

5 tpxz 
Pin 11 to Output Disable 16R8, 16R6, 8 20 12 25 17 25 ns 16R4 

6 teo Clock to Output 16R8, 16R6, 16R4 8 15 12 20 17 25 ns 

7 ts 
Input or Feedback Setup Time 16R8, 10 18 15 25 20 35 ns 16R6, 16R4 

8 tH Hold Time 16R8, 16R6, 16R4 -8 0 -10 0 -10 0 ns 

9 tp Clock Period (ts + tcol 33 45 60 ns 

10 tw Clock Width 12 20 25 ns 

11 fMAX. Maximum Frequency 30 22 16.5 MHz 

Notes: 1. Typical limits are at Vcc=5.0 V and TA=25°C. 
2. tpo is tested with switch 81 closed and CL = 50 pF. 
3. For three-state outputs, output enable times are tested with CL = 50 pF to the 1.5 V level; SI is open for high impedance to 

HIGH tests and closed for high impedance to LOW tests. Output disable times are tested with CL = 5 pF. HIGH to high 
impedance tests are made to an output voltage of VOH - 0.5 V with SI open; LOW to high impedance tests are made to the 
VOL + 0.5 V level with 81 closed. 
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INPUTS 

Note: C1 and C2 are to bypass Vcc to ground. 

TEST OUTPUT LOADS 

"Std," "B," "A," "AL" & "L" "0" 

Pin Name Commercial Military Commercial 

R1 200 n 390 n 390 n 
R2 390 n 750 n 750 n 
C1 1 p.F 1 p.F 1 /IF 

C2 0.1 /IF 0.1 /IF 0.1 p.F 

CL 50 pF 50 pF 50 pF 
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CP 
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COMBINATORIAL 
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SWITCHING WAVEFORMS 
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WF002571 

KEY TO TIMING DIAGRAM 

WAVEFORM INPUTS OUTPUTS 

MUST BE WILL8E 
STEADY STEADY 

- MAY CHANGE WILLBE 
CHANGING FROM H TO L 
FROM H TO L 

.- MAY CHANGE WILL BE 
CHANGING FROM L TOH FROM LTD H 

- DON'T CARE: CHANGING: 
ANY CHANGE STATE 
PERMITTED UNKNOWN 

H. 
CENTER 

DOES NOT LINE IS HIGH 
APPLY IMPEDANCE 

"OFF"STATE 

KSOOOO10 

OUTPUT CIRCUITRY 

Vee 

OUTPUT 

IHPUTOH PAOGAIUIINCI 
I/DnNl CURR!HTPAnt 

PRELOAD 
CIRCUITRY 
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PROGRAMMING 

Each AMD PAL fuse is programmed with a simple sequence of AMD PAL devices have been designed with many internal test 
voltages applied to two control pins (1 and 11) and program- features that are used to assure high programming yield and 
ming voltage pulse applied to the output under programming. correct logical operation for a correctly programmed part. 
Addressing of the 2048 element fuse array is accomplished 

An additional fuse is provided on each AMD PAL circuit to 
with normal TIL levels on eight input pins (five select the input 

prevent unauthorized copying of AMD PAL fuse patterns when 
line number and three select the product term number). VCC is 

design security is desired. Blowing the security fuse blocks 
maintained at a normal I~vel throughout the programming and 

entry to the fuse pattern verify mode. 
verify cycle - no extra high levels are required. 

The necessary sequence levels for programming any fuse is 
To blow the security fuse: 
1. Power up part to VCCP 

shown in the Programming Waveforms. The address of each 2. Raise Pin 5 to VHH. 
fuse in terms of Input Line Number and Product Term Line 3. Pulse Pin 11 from ground to Vop for a 50llsec 
Number is defined by the Fuse Address Tables 1 and 2. duration. 
Current, voltage and timing requirements for each pin are 4. Perform a normal end-of-programming verify cycle at 
specified in the Programming Parameter Table below. VCCL and VCCH. All fuse locations should be sensed 

The 16L8, 16R8, 16R6, 16R4, 16H8, 16LD8 and 16HD8 use as blown if the security fuse has been successfully 

identical programming conditions and sequences. blown. 

After all programming has been completed, the entire array 
Note that parts with the security fuse blown may not be 

should be reverified at VCCL and again at VCCH. Reverification 
returned as programming rejects. 

can be accomplished by reading all eight outputs in parallel AMD PAL devices normally have high programming yields 
rather than one at a time. The array fuse verification cycle ( > 98%). Programming yield losses are frequently due to poor 
checks that the correct array fuses have been blown and can socket contact, equipment out of calibration or improperly 
be sensed by the outputs. used. 

PROGRAMMING PARAMETERS TA = 25°C 

Parameter Parameter 
Symbol Description Min. Typ. Max. Units 

lPin 1 @ 10-40 rnA 10 11 12 
VHH Control Pin Extra High Level V 

IPin 11 @ 10-40 rnA 10 11 12 
Vop Program Voltage Pins 12-19 @ 15-200 rnA 18 20 22 V 

VIHP Input HIGH Level During Programming and Verify 2.4 5 5.5 V 

VILP Input LOW Level During Programming and Verify 0.0 0.3 0.5 V 

Vccp Vcc During Programming @ ICC - 50-200 rnA 5 5.2 5.5 V 

VCCL VCC During First Pass Verification @ ICC - 50-200 rnA 4.1 4.3 4.5 V 

VCCH VCC During Second Pass Verification @ ICC = 50-200 rnA 5.4 5.7 6.0 V 

Successful Blown Fuse I 16L8, 16R8, 16R6, 16R4, 16LD8 0.3 0.5 
VSlown Sense Level @ Output 116H8, 16HD8 

V 
2.4 3 

VOp/dt Rate of Output Voltage Change 20 250 VIps 

dVll/dt Rate of Fusing Enable Voltage Change (Pin 11 Rising Edge) 100 1000 V/p.s 

Fusing Time First Attempt 40 50 100 ps 
tp 

Subsequent Attempts 4 5 10 ms 

to Delays Between Various Level Changes 100 200 1000 ns 

tv Period During which Output is Sensed for VSlown Level 500 ns 

VONP Pull-Up Voltage On Outputs Not Being Programmed VCCp-0.3 Vccp Vccp+ 0.3 V 

R Pull-Up Resistor On Outputs Not Being Programmed 1.9 2 2.1 kn 
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Name 

ABEL 

CUPL 

AmCUPL 

Name 

Data I/O 
10525 Willow Road N.E. 
Redmond, WA 93052 

Stag Microsystems 
52B·5 Weddell Drive 
Sunnyvale, CA 940B6 

Structured Design 
1700 Wyatt Drive 
Suite 3 
Santa Clara, CA 950B4 

Valley Data Sciences 
2426 Charleston Road 
Mountain View, CA 94043 

Digelec 
5B6 Weddell Drive 
Suite 1 
Sunnyvale, CA 940B9 

JMC 
2999 Monterey Rd. 
Monterey, CA 93940 

Design Aid Software for AmPAL 16XX Family 

Vendor Versions Notes 

Data 110 IBM PC 

(206) BB 1·6444 VAXIVMS Rev 1.1 
VAX/UNIX 

IBM PC 
P·CAD Systems VAXIVMS Rev 2.1 
(40B) 971·1300 VAX/UNIX 

CPM BO/B6 

Advanced Micro Devices IBM PC Supported by 
(40B) 732·2400 P·CAD Systems 

AMD Qualified Programmers 

Programmer 
Model(s) AMD PAL Personality Module Socket Adapter 

Systems 19, 29 950·1942·0044 303A·004, Rev 3 or newer 

60 N/A 360A·001,· Rev 4 or newer 

Model PPZ 2200 
On Board 

ZL30 On Board Module (Rev 3B or new~r) 

SD·1000J N/A On Board 

160 Series N/A On Board 

803 Series FAM·52 DA·53 

PROMAC P3 On·board Module rev 2.0 On Board 
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PROGRAMMING TIMING DIAGRAM 

V"'P 
PINS 
2-Q JI~ ~NPUT LINE NUMBER AND PRODUCT TERM LINE NUMBER ADDRESSES ~ 
PIN! 

PROGRAMMED 
OUTPUT 

PIN" 

J 

~\\ 
1///1 

r--tO-

1/ 

z 

I-to 

FUSING 
TIME 
t-

V , 
J 

II 
I 

to 
I 

tp-

PROGRAMMING 

TABLE 1. INPUT ADDRESSING 

Input 
Input Line Number 

Line 
Address Pin States 

Number 9 8 7 6 5 

0 L L L L L 
1 L L L L H 
2 L L L H L 
3 L L L H H 
4 L L H L L 
5 L L H L H 
6 L L H H L 
7 L L H H H 
8 L H L L L 
9 L H L L H 
10 L H L H L 
11 L H L H H 
12 L H H L L 
13 L H H L H 
14 L H H H L 
15 L H H H H 
16 H L L L L 
17 H L L L H 
18 H L L H L 
19 H L L H H 
20 H L H L L 
21 H L H L H 
22 H L H H L 
23 H L H H H 
24 H H L L L 
25 H H L L H 
26 H H L H L 
27 H H L H H 
28 H H H L L 
29 H H H L H 
30 H H H H L 
31 H H H H H 

\ 
~ 

~V 
~ 

-to 

I 
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V1LP 

VHH 

V1HP 

V 1LP 

VOP 
~ 

H 

" 
I VOH 

VOL 
L 1\ 

! , VHH 

1\ 
V1LP 

to tv to CYCLE to to ENDS 

VERIFY 

PF001100 

SIMPLIFIED PROGRAMMING DIAGRAM 

PINS 
2-1 

Vccp VONP 

PF000380 

TABLE 2. PRODUCT TERM ADDRESSING 

Product Term 
Select 

Address Pin 
Product Term Line Number 4 3 2 

0 8 16 24 32 40 48 56 L L L 
1 9 17 25 33 41 49 57 L L H 
2 10 18 26 34 42 50 58 L H L 
3 11 19 27 35 43 51 59 L H H 
4 12 20 28 36 44 52 60 H L L 
5 13 21 29 37 45 53 61 H L H 
6 14 22 30 38 46 54 62 H H L 
7 15 23 31 39 47 55 63 H H H 

Pin Pin Pin Pin Pin Pin Pin Pin 
19 18 17 16 15 14 13 12 

Programming Access and Verify Pin 
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AmPAL*16XXD Family 
20-Pin IMOX™ Ultra High-Speed Programmable Array Logic (PAL) Elements 

ADVANCE INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• AMD's superior IMOX technology • PRELOAD feature permits full logical verification 
- Guarantees tpD = 10 ns Max. "0" version • Reliability assured through more than 70 billion fuse 

• Very high-speed, half-power ("BL") and high-speed, hours of life testing with no failures 
quarter-power ("AQ") versions • Full AC and DC parametric testing at the factory through 

• Platinum-silicide fuses and added test words ensure on-board testing circuitry 
programming yields> 98% • AMD's industry-leading quality guarantees 

• Post Programming Functional Yields (PPFy) of 99.9% 

GENERAL DESCRIPTION 

AMD PAL devices are high-speed, electrically programma- Four different devices are available, including both regis-
ble array logic elements. They utilize the familiar sum-of- tered and combinatorial devices. These three new speed 
products (AND-OR) structure allowing users to program and power options extend the current AmPAL 16XX Family, 
custom logic functions to fit most applications precisely. allowing the designer to precisely match system require-
Typically they are a replacement for low-power Schottky ments. 
SSIIMSI logic circuits, reducing chip count by more than 5 

Please see the "AmPAl16XX Family" data sheet (Publica-
to 1 and greatly simplifying prototyping and board layout. 

tion No. 033230) for Block Diagrams. 

PRODUCT SELECTOR GUIDE 

AMD PAL Speed/Power Families 

tpD ts (1) teo lee (2) IOL 
Family ns (Max.) ns (Max.) ns (Max.) rnA (Max.) mA (Min.) 

Ultra High-Speed 
("D") Versions 10 10 B 1BO 24 

Very High-Speed, 
Half-Power 15 13 12 90 24 
("BL") Versions 

High-Speed, 
Quarter-Power 25 20 15 55 12 
(" AQ") Versions 

(1) Sequential functions 
(2) Combinatorial functions 

AMD PAL FUNCTIONS 

Part Array Output Package 
Number Inputs Logic Enable Outputs Pins 

16RB Eight Dedicated, Eight B-Wide AND-OR Dedicated Registered Inverting 20 Eight Feedback 

Eight Dedicated, Six B-Wide AND-OR Dedicated Registered Inverting 
16R6 Six Feedback, 20 

Two Bidirectional Two 7-Wide AND-OR-INVERT Programmable Bidirectional 

Eight Dedicated, Four B-wide AND-OR Dedicated Registered Inverting 
16R4 Four Feedback, 20 

Four Bidirectional Four 7-Wide AND-OR-INVERT Programmable Bidirectional 

16LB Ten Dedicated, Eight 7-Wide AND-OR-INVERT Programmable Six Bidirectional 20 Six Bidirectional Two Dedicated 

IMOX is a trademark of Advanced Micro Devices. Inc. I P!,!blicatiQn # Rev. Amendment 
'PAL is a registered trademark of and is used under license from Monolithic Memories, Inc. 08486 A /0 
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AmPAL*18P8 
20-Pin IMOX™ Programmable Array Logic 

DISTINCTIVE CHARACTERISTICS 

• Individually programmable output polarity on each 
output 

o Pin compatible superset of most combinatorial 20-pin 
PALs 

• Eight logical product terms per output for increased 
logic power 

• Increased input/output flexibility 
- 18 possible array inputs 
- Eight bidirectional I/Os with individually controllable 

output enable 

• Ultra high-speed version tpo = 15 ns maximum 
• Superior quality 

- Full AC and DC parametric testing performed on 
every part 

- Extensive on-chip test circuitry ensures post-program­
ming functional yield (PPFY) of 99.9% 

• Platinum-Silicide fuses ensure high programming 
yield> 98%, fast programming and unsurpassed reli­
ability 

GENERAL DESCRIPTION 

The AmPAL 18P8 is an ultra high-performance, functionally 
enhanced 20-pin Programmable Array Logic element. It 
utilizes the familiar sum-of-products (AND-OR) structure 
allowing users to program custom logic functions to pre­
cisely fit their application. 

The AmPAL 18P8 offers significantly enhanced functional 
capabilities when compared to other combinatorial 20-pin 
PAL devices. These include two additional bidirectional I/O 
pins as well as additional product terms (bringing each 
output to eight logical and one three-state control product 

BLOCK DIAGRAM 

10 

80005942 

term) for extra logic power. The device also features 
individually user programmable output polarity, giving the 
designer the capability to handle both active HIGH and 
active LOW outputs on the same device. 

A wide variety of speed/power selections is available, 
allowing precise matching to system requirements. The 
ultra high-speed version offers 15 ns maximum input to 
output propagation delay, opening up many new applica­
tions for the use of programmable logic. 

PRODUCT SELECTOR GUIDE 

Family 
AmPAL18P8 

Part No. 

Power Quarter Half Full 
Grade Power Power Power 

Ordering 
18P8Q 18P8L 18P8AL 18P8A 18P8B 

Part t~o. 

Speed Standard High 
Ultra 
High 

Grade Speed Speed Speed 

Max. STDIAPL STolAPL STDIAPL STD1APL STDlAPL 
Access 

35
1

40 35
1

40 25-1 30 25130 15
1

20 
Time (ns) 

Max. 
Operating 

55 90 180 
Current 
(mA) 

STO - AMD "Standard" products 
APL = AMD "Approved Products List" products 

·PAL is a registered trademark of and is used under license from Monolithic Memories. Inc. Publication # Rev. Amendment 
IMOX Is a trademark of Advanced Micro Devices. Inc. 05799 0 /0 
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Note: Pin 1 

CONNECTION DIAGRAMS 
Top View 

Vee 

VO 

VO 

VO 

VO 

VO 

VO 

VO 

VO 

CD009210 

0 
Z 
<!! 

LCC· 

~ g 

110 

1/0 

1/0 

1/0 

1/0 

g g 

CD009220 

is marked for orientation. ·Same Pinouts apply for PLCC. 

ORDERING INFORMATION 

Standard Products 

AMO standard products are available in several packages and operating ranges. The order number (Valid 
Combination) is formed by a combination of: A. Device Number 

AMPAL1BPB 

B. Speed/Power Option 
C. Package Type 
D. Temperature Range 
E. Optional Processing 

..Q.

1 

T .... _____ E• OPTIONAL PROCESSING 

L.---------D. :::::::~~:: :~~::ing 
C - Commercial (0 to + 70°C) 
E - Extended Commercial (-55 to + 125°C) 

'---------------C. PACKAGE TYPE 
P - 20·Pin Plastic DIP (PO 020) 
o - 20·Pin Ceramic DIP (CD 020) 
J - 20-Pin Plastic Leaded Chip Carrier 

(PL 020) 
L - 20-Pin Ceramic Leadless Chip Carrier 

(CL 020) 

L..-_______________ B. SPEED/POWER OPTION 

A. DEVICE NUMBER/DESCRIPTION 
AmPAL1BPB 
20-Pin IMOX Programmable 
Array Logic 

B - Ultra High Speed/Standard Power 
A - High Speed/Standard Power 

AL - High Speed/Half Power 
L - Standard Speed/Half Power 
Q - Standard Speed/Quarter Power 

Valid Combinations 
Valid Combinations 

AMPAL1BPBB 

AMPAL1BPBA 

AMPAL18P8AL 

AMPAL18PBL 

AMPAL18P8Q 

PC, DC, DE, 
JC, LC, LE 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMO 
sales office to confirm availability of specific valid, 
combinations, to check on newly released combinations, and 
to obtain additional, data on AMO's standard military grade 
pr<?ducts. 
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ORDERING INFORMATION (Cont'd.) 

APL Products 

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL 
(Approved Products List) products are fully compliant with MIL-STD-883C requirements. CPL (Controlled Products List) 
products are processed in accordance with MIL-STD-883C. but are inherently non-compliant because of package, solderability, 
or surface treatment exceptions to those specifications. The order number (Valid Combination) for APL products is formed by a 
combination of: A. Device Number 

B. Speed/Power Option 
C. Device Class 
D. Package Type 
E. Lead Finish 

AMPAL1BPB 

A .... I _____ E. LEAD FINISH 

A = Hot Solder DIP 
C= Gold 

L..-________ D. PACKAGE TYPE 

R = 20-Pin Ceramic DIP 
(CD 020) 

2 = 20-Pin Ceramic Leadless Chip Carrier 
(CL 020) 

L..-------------C. DEVICE CLASS 
/B = Class B 

L..-----------------B. SPEED/POWER OPTION 

- A. DEVICE NUMBER/DESCRIPTION 
AmPAL1BPB 
20-Pin IMOX Programmable 
Array Logic 

Valid Combinations 

AMPAL1BPBB 

AMPAL1BPBA 

AMPAL1BPBAL /BRA. /B2C 

AMPAL1BPBL 

AMPAL1BPSQ 

B = Ultra High Speed/Standard Power 
A = High Speed/Standard Power 

AL = High Speed/Half Power 
L = Standard Speed/Half Power 
Q - Standard Speed/Quarter Power 

Valid Combinations 

Valid Combinations Ii'st configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales' office to confirm availability of specific valid 
combinations or to check for newly released valid 
combinations. 
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Group A tests consist of Subgroups 
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INPUTS (0-35) 

H=tt~=====~~~-------11 
012 S .. 5. 7 • "011 12,)'415 1117,.11 20212223 24252121 212130:" 32333435 

Eighteen Arr;;.y Inputs 
1 0 dedicated 
8 bidirectional 110 

Eight a-Wide AND-OR Structures 
Combinatorial outputs 
Programmable output enable for each output 
Programmable polarity on each output 
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FUNCTIONAL DESCRIPTION 

The AmPAL 1 BPB is a functionally enhanced Programmable 
Array Logic (PAL) device. The Block Diagram on page one 
shows the basic architecture of the AmPAL 1 BPB. There are up . 
to eighteen inputs and eight outputs available. The inputs are 
connected to a programmable AND array which contains 72 
logical product terms. Initially the AND gates are connected, 
via fuses, to both the true and complement of every input. By 
selective programming of fuses, the AND gates may be 
"connected" to only the true input (by blowing the comple­
ment fuse) to only the complement input (by blowing the true 
fuse), or to neither type of input (by blowing both fuses), 
establishing a logical "don't care." When both the true and 
complement fuses are left intact, a logical false results on the 
output of the AND gate. An AND gate with all fuses blown will 
assume the logical true state. 

The AmPAL1BP8 has a possible maximum of 1B input pins, 
two more than previous 20-pin PALs. The extra inputs extend 
the functional capabilities of the device, which reduces design 
limitations, making it easier to design with and more flexible. 

The AmPAL 1 BPB can be programmed with more complex 
logic equations due to the eight product terms and one control 
term for each output. The control terms. also. allow for each of 
the eight bi-directionalllOs to be three-stated, greatly expand­
ing the realm of design possibilities. 

The eight bi-directionall/O pins enhance the usefulness of the 
AmPAL 1 BPB by allowing for greater complexity of logic 
equations and hence more logic power. 

The AmPAL1BPB also has programmable output polarity, 
giving the designer the choice of either active HIGH or active 

LOW on each of the eight outputs. This simplifies the task of 
programming the AmPAL18P8 and allows more freedom in 
optimizing the logic functions. The high-speed version of the 
AmPAL18PB boasts 15 ns maximum input-to-output propaga­
tion delay, which makes it the fastest TTL-compatible PAL on 
the market today, and creates new possibilities for the use of 
programmable logic devices in a wide variety of applications. 

The AmPAL 18P8 is manufactured using Advanced Micro 
Devices' IMOX oxide isolation process. This advanced pro­
cess permits an increase in density and a decrease in internal 
capacitance, resulting in the fastest possible programmable 
logic devices. The AmPAL 18PB is fabricated with AMD's fast­
programming, highly reliable Platinum-Silicide Fuse technolo­
gy. Utilizing an easily implemented programming algorithm, 
these products can be rapidly programmed to any customized 
pattern. 

Platinum-Silicide was selected as the fuse-link material to 
achieve a well-controlled melt rate, resulting in large non­
conductive gaps that ensure very stable, long-term reliability. 
Extensive operating testing has proven that this low-field, 
large gap technology offers the best reliability for fusible link 
programmable logic. 

The AmPAL 18P8 has been designed with extensive internal 
test circuitry that allows the programming and operating 
circuitry in the part to be thoroughly tested at the. factory 
b~fore programming. This assures excellent programming 
yield and functional performance to data sheet parameters 
after programming. The Post-Programming Functional Yield 
(PPFY) for this device is conSistently better than 99.9%. 

INPUT IOUTPUT DIAGRAMS 
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Input 

AX 
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ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 

Storage Temperature ............................ -65 to + 150°C Commercial (C) Devices 

Supply Voltage Temperature (T A) .................................. 0 to + 75°C 

with Respect to Ground ...........•......... -0.5 to + 7.0 V Supply Voltage (Vee) ..........•....•.... +4.75 to +5.25 V 

DC Voltage Applied to Outputs Extended Commercial (E) Devices 
(except during programming) ........... -0.5 to +Vee Max. Temperature (T A) : .................................. - 55°C Min. 

DC Voltage Applied to Temperature (T e) ................................ + 125°C Max. 
Outputs During Programming ...•...................•..... 16 V Supply Voltage (Vee) .................... + 450 to + 5.50 V 

Output Current Into Outputs 
During Programming Military (M) Devices 

(Maximum duration of 1 second) .................... 200 mA Temperature (TA)' ..............•................... -55°C Min. 

DC Input Voltage ................................. -0.5 to + 5.5 V Temperature (T e) ....•..•........................ + 125°C Max. 

DC Input Current ................................ -30 to + 5.0 mA Supply Voltage (Vee) .................... + 4.50 to + 5.50 V 

Stresses above those listed under ABSOLUTE MAXIMUM Operating ranges define those limits between which the 
RA T1NGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 

functionality of the device is guaranteed. 

maximum ratings for extended periods may affect device 
reliability. ' 

DC CHARACTERISTICS over operating range unless otherwise specified; included in Group A, Subgroup 1, 

2, 3 tests unless otherwise noted 

Parameter Parameter 
Test Conditions Min. 

Typ. 
Max. Units 

Symbol Description (Note 1) 

1 BPBA, 1BPB8 
IOH = -3.2 mA 1BPBL, 1BPBAL COM'L 2.4 3.5 Volts 

VOH Output HIGH Voltage IOH =-2 mA 1BPBO 

IOH --2 mA (all versions) MIL 
Vee - Min., 1BPBA, 1BPB8 
VIN"" IOL a 24 mA 
VIH or 1BPBL, 1BPBAL COM'L 

VOL Output LOW Voltage Vil IOl=12 mA 1BPSO 0.50 Volts 

IOL = 12 mA A, 8, AL, L 

IOl -S mA 1BPSO MIL 

VIH Input HIGH level Guaranteed Input Logical HIGH Voltage lor All Inputs 2.0 Volts (Note 2) 

Vil Input LOW level Guaranteed Input Logical LOW Voltage lor All inputs O.B Volts (Note 2) 

III Input LOW Current Vee - Max., VIN "" 0.40 V -20 -100 pA 

IIH Input HIGH Current Vee"" Max., VIN "" 2.7 V 25 pA 

II Input HIGH Current Vee = Max., VIN "" 5.5 V 1.0 mA 

Ise Output Short Circuit Current Vee = Max., VOUT = 0.5 V (Note 3) -30 -60 -90 mA 

11SPSA, 1BPB8 1S0 

lee Power Supply Current Vee = Max. 11SPSL, 1BPBAL 90 mA 

11SPSO 55 

VI Input Clamp Voltage Vee = Min., liN - :'1B mA -0.9 -1.2 Volts 

IOZH Vee - Max., Vil = O.S V I Vo-2.7 V 100 

IOZl 
Output Leakage Current VIH -2.0 V I VO- 0.4 V -250 pA 

CIN Input Capacitance VIN = 2.0 V @ 1= 1 MHz 6 

COUT Output Capacitance VOUT = 2.0 V @ 1= 1 MHz 9 
pF 

Notes: 1. Typical limits are at Vee - 5.0 V and TA = 25°C. 
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included. 
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. 

VOUT = 0.5 V has been chosen to avoid test problems caused by tester ground degradation. 

CAPACITANCE 

Parameter Parameter 
Test Conditions Typ. Units 

Symbol Description 

CIN Input Capacitance VIN "" 2.0 V @ f = 1 MHz 6 

COUT Output Capacitance VOUT"" 2.0 V @ I"" 1 MHz 9 
pF 

Note: These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modilied where 
capacitance may be affected. 
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KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS OUTPUTS 

---
MUST BE WILL BE 
STEADY STEADY ----- MAY CHANGE 

WILLBE 
CHANGING FROM H TO L FROM H TO L 

JJJJlJ MAY CHANGE 
WILLBE 
CHANGING 

FROM L TO H FROM L TO H 

-- DON'TCARE; CHANGING; 
ANY CHANGE STATE 
PERMITTED UNKNOWN 

H 
CENTER 

DOES NOT LINE IS HIGH 
APPLY IMPEDANCE 

"OFF"STATE 

KSOOO010 

SWITCHING TEST CIRCUIT 

tJ-
I 
20 

INPUTS OUT 

-
10 ~PUTs-=-

L..----ir:---' 

~ 
Note: Cl and C2 are to bypass Vcc to 

ground during testing. 

TEST OUTPUT LOADS 

Power R, (n) R2 (n) CL (pF) C, (J.LF) 

Grade STD APL STD APL STD/APL STD/APL 

lSPSB 
A 200 390 390 750 50 0.1 AL 
L 

lSPSQ 390 600 750 1200 50 0.1 

STD = AMD "Standard" products 
APL = AMD "Approved Products List" products 

TC003050 

C2 (J.LF) 

STD/APL 

0.01 

0.01 

SWITCHING CHARACTERISTICS over operating range unless otherwise specified; included in Group A, 
Subgroup 9, 10, 11 tests unless otherwise noted 

Commercial Military 

18P88 18P8A/AL 18P8L/Q 18P88 18P8A1AL 18P8L/Q 

Parameter Description Typ. Max. Typ. Max. Typ. Max. Typ. Max. Typ. Max. Typ. Max. Units 

tpD Input to Output Delay 12 15 15 25 25 35 12 20 15 30 25 40 ns 

tEA Input to Output Enable 12 15 15 25 25 35 12 20 15 30 25 40 ns 

tEA Input to Output Disable 12 15 15 25 25 35 12 20 15 30 25 40 ns 

Notes: 1. Typical limits are at Vee = 5.0 V and TA = 25°C. 
2. tpo· is tested with switch S, closed and CL = 50 pF. 
3. For three-state output, ·output enable times are tested with CL = 50 pF to the 1.5 V level; S, is open for high-impedance to HIGH 

tests and closed for high-impedance to LOW tests. Output disable times are tested with CL = 5 pF. HIGH to high-impedance tests 
are made to an output voltage of VOH - 0.5 V with S, open; LOW to high-impedance tests are made to the VOL + 0.5 V level 
with St closed. 

SWITCHING WAVEFORM 

WF021820 
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PROGRAMMING 

Each AMD PAL fuse is programmed with a simple sequence of checks that the correct array fuses have been blown and can 
voltages applied to two control pins (1 and 11) and a be sensed by the outputs. 
programming voltage pulse applied to the output being pro-

AMD PALs have been designed with many internal test 
grammed. Addressing of the 2600 element fuse array is 

features that are used to assure high programming yield and 
accomplished with TIL and VHH levels on eight input pins (five 

correct logical operation for a correctly programmed part. 
select the input line riumber and three select the product term 
number). VCC is maintained at a normal level throughout the An additional fuse is provided on each AMD PAL circuit to 
programming and verify cycle - no extra high Vcc levels are prevent unauthorized copying of AMD PAL fuse patterns when 
required. design security is desired. Blowing the security fuse blocks 

entry to the fuse pattern verify mode. 

The necessary sequence of levels for programming any fuse is To blow the security fuse: 
shown in the Programming Waveforms. The address of each 1. Power to V cCP 
fuse in terms of Input Line Number and Product Term Line 2. Raise Pin 11 to VOP 
Number is defined by the Fuse Address Tables 1 and 2. 3. Pulse Pin 5 to VHH for 50 microseconds 10 times 
Current, voltage and timing requirements for each pin are 4. Reverify the entire array. A secured device will verify 
specified in the Programming Parameter Table on the follow- as if all fuses in the array are blown 
ing page. 

Note that parts with the security fuse blown may not be 

After all programming has been completed, the entire array returned as programming rejects. 

should be reverified at VCCL and again at VCCH. Reverification AMD PALs normally have high programming yields (> 98%). 
can be accomplished by reading all eight outputs in parallel Programming yield losses are frequently due to poor socket 
rather than one at a time. The array fuse verification cycle contact or equipment out of calibration or improperly used. 

Design Aid Software for AmPAL 18P8 

Software Software 
Vendor Package Comments 

P·CAD 
Systems CUPL 
(408) 971-1300 

Advanced Developed and 
Micro Devices AmCUPL supported by P·CAD 
(408) 732·2400 Systems 
Data I/O ABEL (206) 881-6444 

AMD Qualified Programmers 

Name Programmer 
AMD PAL Personality Module Socket Adapter Model(s) 

Data 1/0 System 19, 29 950-1942-0044 303A·004, rev 3 or newer 
10525 Willow Road N.E. 
Redmond, WA 98052 60 N/A 360A-001, rev 4 or newer 

Stag Microsystems Model PPZ Revision 19 
528·5 Weddell Drive On Board 
Sunnyvale, CA 94086 ZL30 On Board Module (rev 38 or newer) 
Structured Design 
1700 Wyatt Drive SD-1000J Under Development On Board Suite 3 
Santa Clara, CA 95084 
Valley Data Sciences 
2426 Charleston Road 160 Series Under Development On Board 
Mountain View, CA 94043 
Digelec 
586 Weddell Drive 803 Series Under Development Under Development Suite 1 
Sunnyvale, CA 94089 

JMC 
2999 Monterey Rd. PROMAC P3 On-Board Module rev 2.0 On Board 
Monterey, CA 93940 
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PROGRAMMING PARAMETERS T A = 25°C 

Parameters Description Min. Typ. Max. Units 

VHH 
CAJntrol Pin Extra High Level I Pins 1 & 11 @ 10-40 mA 

10 11 12 Volts 
Address Extra High Level I Pins 4, 5, and 9, @ VHH 

VOP Program Voltage Pins 12 -19 @ 15-200 mA 14 15 16 Volts 

VIHP Input High Level During Programming and Verify 2.4 5 5.5 Volts 

VILP Input Low Level During Programming and Verify 0.0 0.3 0.5 Volts 

Vccp Vcc During Programming @ ICC - 50 - 200 mA 5 5.2 5.5 Volts 

VCCL VCC During First Pass Verification @ Icc - 50 - 200 mA 4.4 4.5 4.6 Volts 

VCCH VCC During Second Pass Verification @ Icc - 50 - 200 mA 5.4 5.5 5.6 Volts 

VSlown Successful Blown Fuse Source Level @ Output 0.3 0.5 Volts 

dVop/dt Rate of Output Voltage Change 20 250 V/p.sec 

dV,,/dt. Rate of Fusing Enable Voltage Change (pin 11 rising edge) 20 1000 V/p.sec 

Fusing Time First Attempt 10 50 100 p.sec 
tp 

Subsequent Attempts (maximum of 8) 4 5 10 msec 

to Delays Between Various Level Changes 100 1000 15000 ns 

tv Period During which Output is Sensed for VSlown Level 100 1000 15000 ns 

VONP Pull·Up Voltage On Outputs Not Being Programmed Vccp-0.3 Vccp Vccp + 0.3 Volts 

R Pull·Up Resistor On Outputs Not Being Programmed 1.9 2 2.1 kn 

PROGRAMMING WAVEFORMS 

~~~~~~~~~~~~~~--~--~ ~"'\ r VKM 

I \ / 

PlNS~/ . eLV'HP 
INPUT UNE NU;";SER AND PRODUCT TERr" UNE NUMBER ADDRESSES 

2-9~1," , f VILP 

VHH 

PIN 1 I .~ V1HP j FUSING \. 
nME j\-{ ~ V1LP ; -r , VOP 

H 
VOH \.\.\.\., Z j \ z / 

J 
PROGRAMMED 

OUTPUT I///i - \ L 
~ VOL , ; 

, VHH 

I '": , 
PIN 11 

J \ V1LP to to to tp to to to to tv to 
CYCLE 
ENOS 

PROGRAMMING VERIFY 

WF021231 

*The Pulse to VIHP on pin 1 is unnecessary for fuse verification on combinatorial parts. It is used as a 

clock pulse on registered parts and is kept to maintain algorithm compatibility. 
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TABLE 1. INPUT ADDRESSING 

Input 
Line 

Number 9 

0 L 
1 L 
2 L 
3 L 
4 L 
5 L 
6 L 
7 L 
8 L 
9 L 

10 L 
11 L 
12 L 
13 L 
14 L 
15 L 
16 H 
17 H 
18 H 
19 H 
20 H 
21 H 
22 H 
23 H 
24 H 
25 H 
26 H 
27 H 
28 H 
29 H 
30 H 
31 H 
32 HH 
33 HH 
34 HH 
35 HH 
36· HH 

L - VILP 
H = VIHP 
HH =VHH 
·Output polarity. 

Input Line Number 
Address Pin States 

8 7 6 5 

L L L L 
L L L H 
L L H L 
L L H H 
L H L L 
L H L H 
L H H L 
L H H H 
H L L L 
H L L H 
H L H L 
H L H H 
H H L L 
H H L H 
H H H L 
H H H H 
L L L L 
L L L H 
L L H L 
L L H H 
L H· L L 
L H L H 
L H H L 
L H H H 
H L L L 
H L L H 
H L H L 
H L H H 
H H L L 
H H L H 
H H H L 
H H H H 
L L L L 
L L L H 
L L H L 
L L H H 
L H L L 

. SIMPLIFIED PROGRAMMING DIAGRAM 

PINS 
2-9 

PIN 1 

PAL 

R 

LD000050 

TABLE 2. PRODUCT TERM ADDRESSING 

Product Term 
Select 

Address Pin 

Product Term Line Number 4 3 2 

0 9 18 27 36 45 54 63 L L L Output Enable 
1 10 19 28 37 46 55 64 L L H 
2 11 20 29 38 47 56 65 L H L 
3 12 21 30 39 48 57 66 L H H 
4 13 22 31 40 49 58 67 H L L 
5 14 23 32 41 50 59 68 H L H 
6 15 24 33 42 51 61 69 H H L 
7 16 26 34 43 52 61 70 H H H 
8 17 26 35 44 53 62 71 HH L L 

L~ITT" 

P P P P P P P P HH L H Output Polarity 

Pin Pin Pin Pin Pin Pin Pin Pin 
L = VILP 19 18 17 16 15 14 13 12 
H =VIHP 

Programming Access and Verify Pin HH=VHH 
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AmPAL *10H20EG8/ AmPAL 10020EG8 
IMOX-IIITM Eel Programmable Array logic 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• High-performance tpD = 6 ns, fMAX = 125 MHz 
• Eight user-programmable output logic macrocells for 

latched or combinatorial operation 
• A registered version of the device is available as 

AmPAl10H20EV8 or AmPAl1 0020EV8 (see AMD Pub­
lication No. 06176A) 

• Up to twenty inputs and eight outputs 
• Individually user-programmable output polarity 
• Variable product-term distribution for increased design 

flexibility 
• Individual product term for output enable 

• Asynchronous-RESET and PRESET capability 
• Power-up RESET capability 
• PRELOAD for improved testability 
• Special designed-in test features for full AC and DC 

te&ting 
• Platinum-silicide fuses ensure high programming yield, 

fast programming and unsurpassed reliability 
• 10KH/100K ECl options 
• 50-ohm drive with wired-OR capability 
• 24-pin 300 mil DIPs and 28-pin chip carrier packages 

GENERAL DESCRIPTION 

The AmPAl1 OH20EG8/ AmPAl 1 0020EG8 is an advanced 
bipolar ECl Programmable Array logic (PAL) device. It 
uses the familiar sum-of-products (AND-OR) single array 
logic structure, allowing users to program custom logic 
functions. Fabricated with AMD's new advanced bipolar 
IMOX-III SLOT-isolation process technology and combining 
the innovative architectural features of the AmPAl22V10, _ 
the AmPAl1 OH20EG8/ AmPAl 1 0020EG8 represents the 
most advanced ECl PAL device available on the market 
today. 

The AmPAL10H20EG8/AmPAL10020EG8 contains up to 
twenty inputs and eight outputs. It incorporates AMD's 
unique output logic macrocell (as in the AmPAL22V10), 
which allows the user to define and program the architec­
ture of each output on an individual basis. Each output can 
be user-programmable for either latched or combinatorial 
operation. Each output also has user-programmable out­
put-polarity control, further simplifying the design. The 
flexibility of the programmable output logic macrocells 

permits the system designer to tailor the device to paticular 
application requirements. 

Increased logic power has been built into the Am­
PAL10H20EG8/AmPAl10020EG8 by providing a variable 
number of logical product terms per output. Four outputs 
have twelve logical product terms each, and the other four 
have eight logical product terms each. This variable alloca­
tion of logical product terms allows complex functions to be 
implemented in a single ECl PAL device. Each output also 
has a separate output-enable product term. 

System operation has been enhanced by the addition of 
asynchronous-PRESET and RESET product terms for the 
AmPAl1 OH20EG8/ AmPAl 1 0020EG8. These product 
terms are common to all latched outputs. 

The AmPAl1 OH20EG8/ Am PAL 1 0020EG8 incorporates 
power-up RESET on all latched outputs. It also has the 
unique capability to PRELOAD latches to any desired state 
during testing. PRELOAD permits full logical verification 
during testing. 

BL OCK DIAGRAM 

PAOGR.UIUA8LE AND ARRAY 
,..40) 

·PAL Is a registered trademark of and is used under license from Monolithic Memories, Inc. 
IMOX is a trademark of Advanced Micro Devices, Inc. 
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co 
C!J CONNECTION DIAGRAMS w 
Q 
N 

DIPs LCC· Q 
Q ,.. 
..J C\I 
II( 

I§" 8 0. ~ ~ ~ E 11 Vee 
.r > -

II( 
12 ..... 111 co 

C!J 
LE/112 110 1/01 I/OS W 

Q 
N 1/01 I/0a 1/02 :z: 1/07 
Q 

1/02 1/07 ,.. 
VC01 • VC02 

..J Ve01 Ve02 II( 
c. 

1/03 1/06 
NC NC 

E « 1/04 1/05 
1/03 II0e 

13 19 1/04 1/05 

14 la 13 19 

15 17 

VEE 16 
_"t _Ill Iff ~ .!P l:- .!P 

CD010170 > 
CD0101S0 

* Also available in PLCC. Pinouts identical to LCC. 

Note: Pin 1 is marked for orientation. 

PIN DESCRIPTION 

11- 111 Dedicated Input Pins (11) VCC Circuit Ground 

1/0 1-1/0 8 Bidirectional Input/Output Pins (8) 
VC01, VC02 Circuit Ground Pins for Outputs (2) 

[E/l12 latch Enable or Input Pin 

NC No Connect VEE Negative Supply Voltage 
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ORDERING INFORMATION 

Standard Products 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by 
a combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Package Type 
D. Temperature Range 
E. Optional Processing 

AMPAl10H20EGB C 

-L=T E. OPTIONAL PROCESSING 
Blank = Stan~ard processing 

B = Burn-In 

D. TEMPERATURE RANGE 
C = Commercial (0 to + 75°C)* 
E = Extended Commercial (- 55 to + 125°C) 

• (0 to B5°C for 100K ECl) 

'-------------C. PACKAGE TYPE 
P = 24-Pin Slim Plastic DIP (PD3024) 
D = 24-Pin Slim Ceramic DIP (CD3024) 
J = 2B-Pin Plastic leaded Chip 

Carrier (Pl 02B) 
l = 2B-Pin Ceramic leadless Chip 

Carrier (Cl 02B) 

L..-_______________ B. SPEED OPTION 

'--A. DEVICE NUMBER/DESCRIPTION 
AmPAl10H20EGB = 10KH ECl 
AmPAl10020EGB = 100K ECl 

-6 = 6 ns 
-B = B ns· 

IMOX-1I1 ECl Programmable Array logic 

·Extended Commercial Range only. 

Valid Combinations 

AMPAl10H20EGB-6 

AMPAl10020EGB-6 

AMPAl10H20EGB-B 

AMPAl10020EGB-B 

PC, DC, DCB, 
JC, lC, lCB 

DE, lE 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMD's standard military grade 
products. 
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ORDERING INFORMATION (Cont'd.) 

APL Products 

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved 
Products List) products are fully compliant with MIL-STD-883C requirements. CPL (Controlled Products List) products are 
processed in accordance with MIL-STD-883C, but are inherently non-compliant because of package, solderability, or surface 
treatment exceptions to those speCifications. The order number (Valid Combination) for APL products is formed by a 
combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Device Class 
D. Package Type 
E. Lead Finish 

AMPAl10H20EG8 

i .... _____ E. LEAD FINISH 
A - Hot Solder DIP 
C - Gold 

1---------0. PACKAGE TYPE 
L - 24-Pin Slim Ceramic DIP (CD3024) 
3 - 28-Pin Ceramic leadless Chip 

Carrier (Cl 028) 

'--------------c. DEVICE CLASS 
/8 - Class 8 

'-----------------B. SPEED OPTION 
-8 = 8 ns 

- A. DEVICE NUMBER/DESCRIPTION 
AmPAL10H20EG8 (10KH ECl) 
IMOX-III Programmable Array logic 

I Valid Combinations J 
I AMPAL10H20EG8-8 I /8LA, /83C I 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations or to check for newly released valid 
combinations. 

Group A Tests 
Group A tests consists of Subgroups: 

1, 2, 3, 7, 8, 9, 10 & 11. 
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FUNCTIONAL DESCRIPTION 

The AmPAL 1 OH20EG8! AmPAL1 0020EG8 is an advanced 
bipolar ECL I/O PAL device. It contains a programmable fuse 
array organized in the familiar sum-of-products (AND-OR) 
structure. 

The block diagram in Figure 1 illustrates the basic architecture 
of the AmPAL10H20EG8!AmPAL10020EG8. There are up to 
twenty external inputs and eight outputs. The inputs are 
connected to a programmable-AND array. Initially, the AND 
gates are connected, via fuses, to both the true and comple­
ment of every input. By selective programming (blowing) of the 

fuses, the AND gates may be "connected" to only the true 
inputs, the complement inputs, or to neither type of input. 
When both the true and complement fuses are left intact, a 
logical-FALSE results at the output of the AND gate. An AND 
gate with all the fuses blown will assume the logicar-TRUE 
state. The outputs of the AND gates are connected to fixed­
OR gates. 

There are an average of ten product terms per OR gate 
(output), distributed in a variable fashion. Four outputs have 
eight product terms each while the other four have twelve 
product terms each. This variable distribution of product terms 
allows more complex logical functions to be implemented. 

PAOGRAMIAA8LE AND ARRAY 
(10140) 

I/O I/O I/O I/O I/O I/O I/O I/O 

80006751 

Figure 1. Block Diagram 

Output Logic Macrocells 

A useful feature of the AmPAL10H20EG8!AmPAL10020EG8 
is its versatile programmable output-Iogic-macrocell structure. 
It allows the user to program the outputs on an individual basis 
in a very flexible manner. 

The AmPAL10H20EG8!AmPAL10020EG8 output logic ma­
crocell incorporates a transparent latch. As shown in the 
output logic macrocell diagram, each macrocell contains two 

'b 

programmable fuses - So and S1, for programming the out­
put functions. S1 controls whether the output will be latched or 
combinatorial. So controls the output polarity (active-HIGH or 
active-LOW). Depending on the states of these two fuses, an 
individual output operates in one of four modes: Latched! 
Active-LOW, Latched! Active-HIGH, Combinatorial/ Active­
LOW, and Combinatorial/Active-HIGH. Each output is also 
provided with a separate output enable product term. 

liOn 

CM/w-+------' 

L0000811 

Figure 2. AmPAL10H20EG8/AmPAL10020EG8 Output Logic Macrocell 
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50 = 0 

5, = 1 

LD000422 
LD000431 

Figure 3-1. Latched/Active-LOW Figure 3-3. Combinatorial! Active-LOW 

So = 1 

5, = 1 

D Q 1----<" 

LD000442 
LD000451 

Figure 3-2. Latched/ Active-HIGH Figure 3-4. Combinatorial! Active-HIGH 

51 50 Output Configuration' 

0 0 Latchedl Active-LOW 

0 1 Latchedl Active-HIGH 

1 0 Combinatorial I Active-LOW 

1 1 Combinatorial I Active-HIGH 

Feedback 

o = Unblown Fuse 
1 = Blown Fuse 

Another feature of the AmPAL 1 OH20EG81 AmPAL 1 0020EG8 
output macrocell structure is the flexibility of its feedback 
selection. The feedback can be from either the 1/0 line or the 
latched output. The feedback multiplexer is also controlled by 
the S1 fuse. The feedback path changes with the output-mode 
selection. If the output is selected to be latched, the feedback 
is latched. If the output is combinatorial, the feedback is from 
the 1/0 line. This feature enables the designer to optimally use 
the device to meet precise application requirements. Addition­
ally, it also allows him/her to perform control tasks, such as 
arbitration functions, easily. 

Output Enable 

Each of the eight output logic macrocells of the Am­
PAL 1 OH20EG81 AmPAL 1 0020EG8 contains a dedicated prod­
uct term for output-enable function. When this product term is 
asserted LOW, the output is forced into a LOW state where it 
remains un,iI the output-enable product term goes HIGH. 

PRESET and RESET 

To improve in-system functionality, the AmPAL 1 OH20EG81 
AmPAL 1 0020EG8 has additional PRESET and RESET prod-
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uct terms. Common asynchronous-RESET and PRESET are 
provided for all the latches of the AmPAL10H20EG8/Am­
PAL10020EG8. When the asynchronous PRESET product 
term is asserted HIGH the output latches are loaded with a 
HIGH and when the RESET product term is asserted HIGH the 
output latches are loaded with a LOW. For the RESETI 
PRESET to work the latches should be in latched and not 
transparent mode. These functions are particularly useful for 
system power-on and reset. 

PRELOAD 

To simplify testing, the AmPAL 1 OH20EG8! AmPAL 1 0020EG8 
is designed with PRELOAD circuitry that provides an easy 
method for testing logical functionality. PRELOAD allows any 
arbitrary values to be loaded into the PAL device's output 
latches. 

A typical functional-test sequence would be to verify all 
possible outputs for the device being tested. To verify these 
transitions requires the ability to set the latches to an arbitrary 
"present state" value and to set the device inputs to any 
arbitrary "present input" value. Once this is done, the latch 
enable is driven transparent to allow logic to determine the 



"new state" of the outputs. These outputs can then be 
checked to validate the design. 

Without PRELOAD capability, it is difficult and in some cases 
impossible to load an arbitrary value into the latches. This can 
lead to logic-verification sequences which are either incom­
plete or excessively long. With PRELOAD capability, logic 
verification sequences can be greatly shortened, hence reduc­
ing the test time and the development costs, and guaranteeing 
proper in-system operation. 

Fabrication 

The AmPAL 1 OH20EGS/ AmPAL 1 0020EGS is manufactured 
using Advanced Micro Devices' new IMOX-III SLOT-isolation 
process. This advanced process offers increased density and 
reduced internal capacitance resulting in the fastest possible 
programmable logic devices. 

The AmPAL1 OH20EGS/ AmPAL 1 0020EGS is fabricated with 
AMD's fast programming and highly reliable platinum-silicide 
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fuse technology. Utilizing an easily implemented programming 
algorithm, these products can be rapidly programmed to any 
customized pattern. Platinum-silicide was selected as the 
fuse-link. material to achieve a well controlled melt rate 
resulting in large non-conductive gaps which ensure very 
stable, long-term reliability. Extensive operating testing has 
proven that this low-field, large-gap technology offers the best 
reliability for fusible-link programmable logic. 

Testing 

The AmPAL10H20EGS/AmPAL 10020EGS contains many in­
ternal test features, including circuitry and extra fuses which 
allow AMD to test each part before shipping. This ensures 
extremely high post-programming functional yields. The test 
fuses are programmed to assure the ability of each part to 
perform correct programming. There are extra test words 
which are preprogrammed during manufacturing and tested to 
ensure correct logical operation and provide extra test paths 
to achieve excellent parametric correlation. 
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Figure 4. Logic Diagram - JEDEC Fuse Numbering for Am PAL 10H20EG8/10020EG8 ' 

Note: Pin out for DIP only. 
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ABSOLUTE MAXIMUM RATINGS 
Storage Temperature ............................ -65 to + 150°C 
Supply Voltage (VEE) 

with Respect to Ground ......................... -8 V to 0 V 
DC Input Voltage 

with Respect to Ground ........................... VEE to 0 V 
Output Current 

-Continuous ................................................. 35 rnA 
-Surge ...................................................... 100 rnA 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA T1NGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

OPERATING RANGES 
Commercial (C) Devices - 100K Devices 

Temperature (T A) Operating Free Air ........ 0 to + 85°C 
Supply Voltage (VEE) ......................... -5.7 to -4.2 V 

Commercial (C) Devices - 10KH Devices 
Temperature (T A) Operating Free Air ........ 0 to + 75°C 
Supply Voltage (VEE) .......... : ........... -5.46 to -4.94 V 

Extended Commercial (E) Devices 
Temperature (T A) ................................... -55°C Min. 
Temperature (Tc) Operating Case .......... + 125°C Max; 
Supply Voltage (VEE) ...................... -5.72 to -4.68 V 

Military* (M) Devices 
Temperature (TA) ................................... -55°C Min. 
Temperature (T c> ................................ + 125°C Max. 
Supply Voltage (VEE) ...................... -5.72 to -4.68 V 

Operating ranges define those limits between which the 
functionality of the device is guaranteed. 

*Military product 100% tested at Tc= + 25°C, +125°C 
and -55°C. 

DC CHARACTERISTICS over operating range unless otherwise specified 

AmPAL 10H20EG8 (Commercial) 

Parameter 
Symbols 

Parameter 
Description Test Conditions Min. 

VOH Output HIGH Voltage 

VIN = VIH (Max.) or VIL (Min.) 

VOL Output LOW Voltage 

Input HIGH Voltage Guaranteed Inpu~ HIG.H V~!t~ge 
(Note 3t.·.. ,,', \ 

" 

VIN = VIL (Min.) 

Power Supply Current All Inputs and Outputs Open 

Table continues on following page. 
Notes: See notes following Military DC characteristics table. 
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TA = O·C -1020 

TA = +25·C -980.·, 

Loading is TA = +75~C. <'::920'" 
50 n to -2.0 V TA = O·G ¥ d -1959 

.'. 

; T.4;.= + 25·0' .. '1950, 

: ;TA";'+75~ 1.''::-1950'1 

i TA""O·C \ ',,-117(}'';' 

TA= +~5~C\ ' -1130 

TA = + 25·C -1950 

TA = +75·C -1980 

TA = +25·C 

TA = + 75·C 

TA = O·C 0..5 

T A = + 75·C 0..3 

TA = O·C -230. 

TA = +25·C -230. 

TA=+75·C -230 

Max. Units 

-84~ 

-~1Q mV 

·· ... -.73p 
\~1&30 

-'183P mV 

-1600 

-840 

-810 mV 

-735 

-1480 

-1480 mV 

-1450 

220 

220 p.A 

220 

p.A 

mA 
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AmPAL 10H20EG8 (Military); included in Group A, Subgroup 1, 2, 3 tests unless otherwise noted. 

Parameter Parameter 
Symbols Description Test Conditions Min. Max . Units 

TA - O'C TBD TBD 

VOH Output HIGH Voltage TA-+2S'C TBD TBD fjv 
Loading is TA - + 75'C TBD Teo 

VIN - VIH (Max.) or VIL (Min.) 
SO n to -2.0 V TA - O'C TBD <*BO,":~ .J:,~\ 

VOL Output LOW Voltage TA - +2S'C TeO' 'reo,., 
TA" + 75'C ",,'''TBO' \ TaD .. '\ ...•. '\ 
TA - O'C \1'80 )/TBO\ '\,..; .• w> 

VIH input H!GH Voltage Guaranteed Input HIGH Voltage 
TA.·'+25~C iflD /TBQ' mV (Note 3) 
TA," +.7$OC' 

'" 
Teo TBD"-

,,\~' 
TA "" O°C-'" 'TBD\, " Teo 

VIL Input LOW Voltage Guaranteed Input LOW Voltage TA -;+25'C ;JBD:. TBD mV (Note 3) . « ... 
TA - t7~'C TeO TBD 

\'\\,' ',,' TA~ O.·C'~ Teo TBD 

IIH Input HiGH Current VIN - VIH (Ma'(.) TA";,+'25'C TBD TBD pA 

,.,h" _\ '~ \.~\ \\ , \, TA - + 75'C TBO TBD 

w' ".."~.,\ ".\ \\~\~\\' TA - O'C TeO T8D 

IlL Input LOW Current 
VIN '\~iL\(~j\.)\<:::.". \~.<. TA" +2S'C TBD T8D pA 

TA - +7S'C T8D TBD 

'''', \'" \ \. . \ .... /) TA - O'C T8D TBD 

lEE Power Supply Current, '\ All Input~ 'apd\~~~~ ppen TA - +2S'C TBD T8D mA 

~ .,' ",', <:\,) TA - +7S'C T8D T8D 

/'\ . /' " 

AmPAL 10020EG8(Commercial) ... /" , ';," / 

Parameter''. . Parameter ./' 
Symbol~h\ Description .. Test Conditions Min. Max. Units 

,/ VOH \" ",Output Voltage HIGH -102S -880 mV 

\ VOL ../'/: O!.rtput Voltage LOW VIN - VIH (Max.) or VIL (Min.) -1810 -1620 mV Loading is 
VOHC,," Output Voltage HIGH 50 n to -2.0 V -103S mV 

VOLC\' Output Voltage LOW VIN .. VIH (Min.) or VIL (Max.) -1610 mV 

VIH\ .:; input Voltage HIGH Guaranteed Input Voltage HIGH (Note 3) -1165 -880 mV 

VIL Input Voltage LOW Guaranteed Input Voltage LOW (Note 3) -1810 -1475 mV 

IIH Input Current HIGH VIN - VIH (Max.) 220 p.A 

IlL Input Current LOW VIN - VIL (Min.) O.S pA 

lEE Power Supply Current All Inputs and Outputs Open -230 mA 

Notes: 1. Guaranteed with transverse air flow exceeding 400 linear F.P.M. 
2. The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: 

"Max." the value closest to positive infinity. 
"Min." the value closest to negative infinity. 

3. These are absolute voltages with respect to the device ground pin and inciude all overshoots due to system and/or tester noise. 
Do not attel)'lpt to test these values without suitable equipment and fixturing. 

4-54 



SWITCHING CHARACTERISTICS over operating range unless otherwise specified; included in Group A, 
Subgroup 9, 10, 11 tests unless otherwise noted 

C Devices ElM Devices 

-6 TBD -8 c TBD 
Parameter 

Mini No. Symbol Parameter Description Test Conditions Min. Max. Min. Max. Min. Max. Max. 

1 tPD Input or Feedback to Output 6 \'"'" I~.:.-,< \ '" !3 ", I 
2 tEA Input to Output Enable 6 (#"'. \1\0 :;8, \, \. 

3 tER Input to Output Disable #6 i, \\, "'>e'c, ( ';~\ ';'" 

4 tLEO LE to Output I' ""'" \:3.q i 1/ :' ." "\, ,\,W"\ 4.5 ?'~'\ t 

Input or Feedback Setup --"\' \" '~~~'" " \ 

"L.f 
'c. 

5 ts : \ \. 5.5 
Time 

"", '" \, 
""'" ", r;' se~ Syiit~hl~g, I \ "\ 

6 tH Hold Time \ \ \ I\est CIrcuit, '\ \ 'q) 0 
1\ \' \'\'\1.' \ \, '\ \' 

7 tw LE Widt~, .<~\ '\ ,'\ \. \; \'\\ \,;.1 , 3 5 

8 tAW 
"J",synCt:m:~riO'us. '\ \ \ 

.' :' 
\"'::. \.,,' 

6 8 
,.BESETJPRES.cr Width I',,,· 

J" E,,\' )\synb,hrqnop,~/ ') Iw/v' 

e.RES,ET (PflE§ET' 6 8 
'\ Reco~wy Trine 

'\ S~ 
\ ",,:Asynchronous 

10 RESET IPRESET to Latched 6 8 
Output RESET IPRESET 
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Units 
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-0.9 V 

SWITCHING TEST CIRCUIT 

0.1 JlF 0.1 JlF 

OUTPUT 

-5.2 V for 10KH 
-4.5 V for 100K 

*CL = 5 pf for 10KH 
CL = 3 pf for 100KH 

-2.0V 

SWITCHING TEST WAVEFORM 

INPUT PULSE 

-1.7 V - __ --' 

tR = tF = 2.2 ns Max. for 10KH 
tR = tF = 1.0 ns Max. for 100K . 
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KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS OUTPUTS 

MUST BE WILLBE 
STEADY STEADY 

-- MAY CHANGE 
WILLBE 
CHANGING FROM H TO L FROM H TO L 

J[[[ff MAY CHANGE 
WILL BE 
CHANGING 

FROM L TOH FROML TOH 

--- OON'T CARE: CHANGING: 
ANY CHANGE STATE 
PERMITTED UNKNOWN 

H 
CENTER 

DOES NOT LINE IS HIGH 
APPLY IMPEDANCE 

"OFF" STATE 

KSOOOO10 

SWITCHING WAVEFORMS 

INPUTS, 110, FEEDBACK 

JtIJJ............ _---JX'--o----IYtt:JA_------.JX""'-_L 

LATCH ENABLE 

IS IS IH 

I 
W 

ASYNC RESET/PR;,:;;E;;;;;S.=.ET.:.-+---4 _____ -+ _______ -f1 

LATCHED 

OUTPUTS 

COMBINATORIAL 

OUTPUTS 
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PRELOAD OF LATCHED OUTPUTS and the timing necessary to perform the PRELOAD function 
are detailed below. 

The AmPAL 1 OH20EGS/ AmPAL 1 0020EGS latched outputs 
are provided with circuitry to allow loading each latch to either PRELOAD is accessed by applying Vpp on pin 23. The data to 
a HIGH or LOW stat£'. This simplifies testing as any state can be preloaded is set on the output pins. Bringing pin 23 back to 
be loaded into the latches to control outputs. The pin levels a logic-LOW level latches the data into the output latches. 

Parameter Parameter 
Symbol Description Min. Typ. Max. Units 

VIH 
Input HIGH Level During -1.1 -0.9 -0.7 V PRELOAD and Verify 

VIL 
Input LOW Level During -1.85 -1.65 -1.45 V PRELOAD and Verify 

Vpp PRELOAD Enable Voltage 1.8 2.0 2.2 V Applied to Pin 23 

PIN3 
V1H 

vpp , , 
PIN23 --.I L 

VOH I VIH 

OUTPUTS vOL r\. IV1L " DISABLE OUTPUTS I APPLY EXTERNAL DATA PRELOADED I REMOVE EXTERNAL 
ENABLE PRELOAD INPUTS TO BE AND PRELOAD INPUTS 

PRELOADED DISABLED 
WF023100 

PRELOAD Timing Waveform 

POWER-UP RESET power-up RESET and the wide range of ways Vcc can rise to 

The latches in the AmPAL 1 OH20EGS/ AmPAL 1 0020EGS have 
been designed with the capability to RESET during system 

steady state, two conditions are required to insure a valid 
power-up RESET. These conditions are: 

power-up. Following power-up, all latches will be LOW. The 1. The Vcc rise must be monotonic. 
output state will depend upon the state of the output buffer 
and the polarity fuse. This feature provides extra flexibility to 2. Following RESET, the Latch Enable must not be driven 
the designer. A timing diagram and a parameter table are transparent until all applicable input and feedback setup 
shown below. Due to the asynchronous operation of the times are met. 

"1 
Vee 

POWER 

tpR 

LATCHED 
ACTIVE-LOW OUTPUT 

PIN 

LE 

,w~ 
WF022303 

Parameter Parameter 
Symbol Description Min. Typ. Max. Units 

tpR 
Power-Up 600 1000 ns RESET Time 

ts 
Input or Feedback 
Setup Time See Switching Characteristics 

tw LE Width 
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PROGRAMMING AND VERIFICATION After a certain programming time, the fuse is blown and the 

The AmPAL10H20EGS/AmPAl10020EGS is programmed 
programming voltage is removed from Ve02. The device is 
back in the verification mode. latch Enable is HIGH during 

and verified using AMD's ECl programmable-Iogic-program- programming. It is then brought lOW to enable the latches 
ming algorithm. The fuse to be programmed is selected by its and verify for VBlown level (VIHP or VILP). After verification is 
input line number (array row), its product-term number (array done, the programming voltage is removed from Ve01 and the 
column), and by the output associated with it (one at a time). part is back in normal mode. 
The levels for addressing the rows and columns are all in ECl 
(10KH) levels. The fuse is then programmed and verified by Security Programming 
applying a simple sequence of voltages as shown in the 

A security fuse is provided on each AmPAl10H20EGSI programming waveform diagram. The values of the program-
ming voltages are shown in the table of programming parame- AmPAl1 0020EGS to protect any user proprietary logic design. 

ters. It is addressed and programmed like any other fuse in the 
array. Once blown, the circuitry enabling any fuse verification 

Input line numbers (0 to 39) are addressed using a full decode and latch PRELOAD is permanently disabled. The security 
scheme via ECl levels on pins 9 - 11 and 13 - 15 where pin fuse is verified by verifying the whole fuse array as if every 
15 is the lSB and pin 9 is the MSB. Input line addressing is fuse was blown. 
shown in Table 1. Note that one input line is given to select all 

Programming Yield the architectural fuses. / 

Product terms are addressed using a full decode scheme via AMD PAL devices have been designed to ensure extremely 
ECl levels on pins 1, 2, 22 and 23 where pin 23 is the lSB and high programming yields. To help ensure that a part was 
pin 1 is the MSB. Product terms (column number) addressing correctly programmed, once the programming is completed 
is shown in Table 2. the entire fuse array should be re-verified at both lOW and 

The sequence of signals and events associated with them 
HIGH Vee. Re-verification can be accomplished by reading all 
eight outputs in parallel rather than one at a time. This 

during programming and verification modes is shown in the verification cycle checks that the array fuses have been blown 
Programming Waveforms. The row and column addresses are and can be sensed by the outputs under varying conditions. 
set up on the corresponding input pins. Then Ve01 (pin 6) is 
brought to a programming voltage of Veop. The normal I/O AMD PAL devices contain many internal features, including 
pins are now disabled and the address decode is enabled. The Circuitry and extra fuses to test the ability of each part to 
device is now in a verification mode. Ve02 (pin 19) is now perform programming before shipping, and to assure a correct 
brought to the Veop programming voltage. The programming logical operation for a correctly programmed part. Program-
mode is enabled. A high voltage of Vop (Fuse-Enable Voltage) ming-yield losses are most likely due to poor programming 
on the output pin corresponding to the fuse to be blown socket contact, programming equipment out of calibration, or 
activates the programming voltage, and the fusing is started. improper usage of said equipment. 

PROGRAMMING PARAMETERS (TA = 25°C) 

Parameter Symbol Parameter Description Min. Typ. Max. Units 

VIHP Input HIGH level During Programming & Verify -1.1 -0.9 -0.7 V 

VILP Input lOW level During Programming & Verify -1.S5 -1.65 -1.45 V 

Fuse Enable Voltage Applied to Output Being 
VOP Programmed @ 1 - 25 mA (Additional SO mA 1.S 2.0 2.2 V 

if Output Terminated to 50-ohm load) 

Veop 
Programming Voltage Applied to Ve01, Ve02 14.0 15.0 16.0 V 
@ 15-200 mA 

Ve01 & Power Supply for· the Output Stage Sourcing -0.1 0 0.1 V 
Veo2 

Vee During Programming & Verify 
Veep Icc = 50 - 250 mA Sourcing -0.3 0 0.3 V 

ICC = 50 - 150 mA Sinking 

VEEP VEE During Programming & Verify -5.4 -5.2 -5.0 V 

VONP Termination Voltage for Output-load Resistor -2.1 -2.0 -1.9 V 

R Output-load Resistor 47.5 50.0 52.5 n 
Fusing Time First Attempt 40 50 100 p.s 

tp 
Fusing Time Second Attempt 4 5 10 ms 

to Delays Between Various level Changes 100 200 1000 ns 

tv 
PRELOAD During Which Output is Sensed for 

500 ns 
VSLOWN (VIHP or VILP) level 
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Input Line Number 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

63* 

* Architecture Row 

TABLE 1. INPUT ADDRESSING 

Address Pin States 

9 10 11 13 

L L L L 

L L L L 

L L L L 

L L L L 

L L L H 

L L L H 

L L L H 

L L L H 

L L H L 

L L H L 

L L H L 

L L H L 

L L H H 

L L H H 

L L H H 

L L H H 

L H L L 

L H L L 

L H L L 

L H L L 

H L L L 

H L L L 

H L L L 

H L L L 

H L L H 

H L L H 

H L L H 

H L L H 

H L H L 

H L H L 

H L H L 

H L H L 

H L H H 

H L H H 

H L H H 

H L H H 

H H L L 

H H L L 

H H L L 

H H L L 

RESERVED 

H H H H 
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14 15 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

H H 



TABLE 2. COLUMN NUMBER ADDRESSING 

Address Output Pins 

4 S 7 8 17 
2 22 23 oun OUT2 OUT3 OUT4 OUTS 

L L L L 0 0 0 0 0 

L L L H 1 1 

L L H L 2 2 2 2 2 

L L H H 3 3 3 3 3 

L H L L 4 4 4 4 4 

L H L H 5 5 5 5 5 

L H H L 6 6 6 6 6 

L H H H 7 7 7 7 7 

H L L L 8 8 

H L L H 9 9 

H L H L 10 10 

H L H H 11 11 

H H L L OE OE OE OE OE 

H H L H OP OP OP OP OP 

H H H L RIC RIC RIC RIC RIC 

H H H H SF AR 

AR = Async. RESET 
AP = Async. PRESET 
OE = Output Enable 

RIC = ReglComb Fuse 
OP == Output Polarity Fuse 
SF = Security Fuse 

PROGRAMMING WAVEFORMS 

AOORESS --v- 2V
IHP 

~ ..... -------------------(2 VILP 

J 

r----------------------~VeoP I , 

I 
I 

V
OP

_ 

~Ve01 

, Veop 

\-------+.....r:> V C02 

, , ,--+-c:> VIHP 
OUTPUT '.. / ~ ~, .. 
PINS __ I--+I'-Jt..,-+-_..1 i \"-I-___ --ALY-_-+~") VILP 

~ 

to to to tp to to 1 tv 1 to t 
... ........... -""..... ....----.. ... -.. ~ ...... ... ... 0 • 
- .. - .. I I 

2 3 4 567 8 9 

18 20 21 
OUT6 OUT7 OUTS 

0 0 0 

1 1 

2 2 2 

3 3 3 

4 4 4 

5 5 5 

6 6 6 

7 7 7 

8 8 

9 9 

10 10 

11 11 

OE OE OE 

OP OP OP 

RIC RIC RIC 

AP 

1. Rowand Column addresses 
applied. 

2. Normal 110 pins disabled. 
3. Programming Voltage applied 

address decode enable. 
4. Output associated with fuse 

to be blown selected. Fusing 
time started. 

5. Fusing time ended. 
6. Programming Voltage removed. 

Device in Verification Mode. 
7. LE Pulse. 
8. Verify for VBLOWN level. 
9. End of Programming and 

Verification Cycle. 

-WF023110 
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AmPAL 10H20EG8/AmPAL 10020EG8 PROGRAMMING SUPPORT INFORMATION 

Hardware Vendor Programmer Model(s) Personality Module Socket Adaptor 

Data I/O System 29 Under Development Not Required 
10525 Willow Road N.E. 
Redmond, WA 98052 

UNISITE 40 Not Required Not Required (206) 881·6444 

Stag Microsystems 
Model PPZ Under Development Not Required 528·5 Weddell Drive 

Sunnyvale, CA 94089 
(408) 745·1991 or Model ZL30A Under Development Not Required 
(800) 227·8836 

The machines noted above have been qualified by AMD to ensure high programming yields. Check with the factory to 
determine current status of equipment noted as "Under Development," or for other available models. 

Design-Aid Software for Am PAL 10H20EG8! AmPAL 10020EG8 

Software Vendor Software Package Comments 

P·CAD Systems, Inc. 
1290 Parkmoor Ave. 

CUPL 
San Jose, CA p5126 
(408) 971·1300 

Advanced Micro Devices, Inc. 
901 Thompson PI. 

AmCUPL 
Supported by P·CAD 

Sunnyvale, CA 94088 Systems, Inc. 
(408) 732·2400 

Data I/O 
10525 Willow Road N.E. 

ABEL 
Redmond, WA 98052 
(206) 881·6444 
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AmPAL *10H20EV8/ AmPAL 10020EV8 
IMOX-IWM Eel Programmable Array logic 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

II High-performance tpD = 6 ns, fMAX = 125 MHz 
• Eight user-programmable output logic macrocells for 

registered or combinatorial operation 
• A latched version of the device is available as Am­

PAL 1 OH20EGB or AmPAL 1 0020EGB (see AMD Publica­
tion No. OB545A) 

• Up to twenty inputs and eight outputs 
• Individually user-programmable output polarity 
• Variable product-term distribution for increased design 

flexibility 
• Individual product term for output enable 

• Asynchronous-RESET and PRESET capability 
• Power-up RESET capability 
• PRELOAD for improved testability 
• Special designed-in test features for· full AC and DC 

testing 
• Platinum-silicide fuses ensure high programming yield, 

fast programming and unsurpassed reliability 
e 10KH/100K ECL options 
• 50-ohm drive with wired-OR capability 
• 24-pin 300 ITlii DIPs and 2B-pin chip carrier packages 

GENERAL DESCRIPTION 

The AmPAl1 OH20EVBI AmPAL 1 0020EVB is an advanced 
bipolar ECL Programmable Array Logic (PAL) device. It 
uses the familiar sum-of-products (AND-OR) single array 
logic structure, allowing users to program custom logiC 
functions. Fabricated with AMD's new advanced bipolar 
IMOX-III SLOT-isolation process technology and combining 
the innovative architectural features of the AmPAL22V10, 
the AmPAL 1 OH20EVBI AmPAL 1 0020EVB represents the 
most advanced ECL PAL device available on the market 
today. 

The AmPAl10H20EVB/AmPAL10020EV8 contains up to 
twenty inputs and eight outputs. It incorporates AMD's 
unique output logic macrocell (as in the AmPAL22V10), 
which allows the user to define and program the architec­
ture of each output on an individual basis. Each output can 
be user-programmable for either registered or combinatori­
al operation. Each output also has· user-programmable 
output-polarity control, further simplifying the design. The 
flexibility of the programmable output logic macrocells 

permits the system designer to tailor the device to paticular 
application requirements. 

Increased logic power has been budt into the Am­
PAl1 OH20EV81 AmPAl1 0020EV8 by providing a variable 
number of logical product terms per output. Four outputs 
have twelve logical product terms each, and the other four 
have eight logical product terms each. This variable alloca­
tion of logical product terms allows complex functions to be 
implemented in a single ECL PAL device. Each output also 
has a separate output-enable product term. 

System operation has been enhanced by the addition of 
asynchronous-PRESET and RESET product terms for the 
AmPAL 1 OH20EV81 AmPAL 1 0020EV8. These product 
terms are common to all registered outputs. 

The AmPAL 1 OH20EV81 AmPAL 1 0020EVB incorporates 
power-up RESET on all registered outputs. It also has the 
unique capability to PRELOAD registers to any desired 
state during testing. PRELOAD permits full logical verifica­
tion during testing. 

BLOCK DIAGRAM 

I/O I/O I/O 

PROGRAMMA8LE AND ARRAY 
(10.40) 

I/O I/O 

'PAL is a registered trademark of and is used under license from Monolithic Memories, Inc. 
IMOX is a trademark of Advanced Micro Devices, Inc. 
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co 
> CONNECTION DIAGRAMS U.I 
0 
N 

DIPs LCC· 0 
0 ,.. 
-I cs: § Q. 8 E 11 VCC _N .r ~ > - :£ cs: 

12 ...... 111 CO 
> 

110 U.I CLKlI12 1/°1 1/08 
0 
N 1/01 II0e :::z::: 1/°2 1/07 0 ,.. 1/02 1/07 
to 

VC01 VC02 -I 
VC01 VC02 cs: 

Q. NC NC E I/0s I/0a 
cs: 

1/04 1/05 110 a IIOe 

IS 19 1/°4 1/°5 

14 Ie la 19 
15 17 

VEE la 
-~ _Ill IH ~ .!P l:- ~ 

CD010171 > 
CD010181 

• Also available in PLCC. Pinouts identical to LCC. 

Note: Pin 1 is marked .for orientation. 

PIN DESCRIPTION 

11- 111 Dedicated Input Pins (11) Vee Circuit Ground 

1/0 1- 1/08 Bidirectional Input/Output Pins (8) 
Ve01. Ve02 Circuit Ground Pins for Outputs (2) 

CLKII12 Clock or Input Pin 

NC No Connect VEE Negath.~e Supply Voltage 
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ORDERING INFORMATION 

Standard Products 

AMO standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by 
a combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Package Type 
D. Temperature Range 
E. Optional Processing 

AMPAll0H20EV8 .& -

~ E. OPTIONAL PROCESSING 
Blank - Standard processing 

B - Burn·in 

D. TEMPERATURE RANGE 
C = Commercial (0 to + 75'C)" 
E - Extended Commercial (-55 to + l25'C) 

" (0 to 85'C for lOOK ECl) 

'-------------C. PACKAGE TYPE 
P .. 24·Pin Slim Plastic DIP (PD3024) 
D = 24·Pin Slim Ceramic DIP (CD3024) 
J .. 28·Pin Plastic leaded Chip 

Carrier (Pl 028) 
l - 28·Pin Ceramic leadless Chip 

Carrier (Cl 028) 

L...-______________ B. SPEED OPTION 

'---A. DEVICE NUMBER/DESCRIPTION 
AmPAll0H20EV8 -10KH ECl 
AmPAL10020EV8" lOOK ECl 

-6" 6 ns 
-8 - 8 ns" 

IMOX·III ECl Programmable Array logic 

"Extended Commercial Range only. 

Valid Combinations 

AMPAll0H20EV8·6 

AMPAll0020EV8·6 

AMPAll0H20EV8·8 

AMPAll0020EV8·8 

PC, DC, DCB, 
JC, lC, lCB 

DE, lE 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMO 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMO's standard military grade 
products. 
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ORDERING INFORMATION (Cont'd.) 

APL Products 

AMD products for Aerospace and Defense applications are available In several packages and operating ranges. APL (Approved 
Products List) products are fully compliant with MIL-STD-883C requirements. CPL (Controlled Products List) products are 
processed in accordance with MIL-STD-883C, but are inherently non-compliant because of package, solderability, or surface 
treatment exceptions to those specifications. The order number (Valid Combination) for APL products is formed by a 
combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Device Class 
D. Package Type 
E. Lead Finish 

AMPAl10H20EV8 

..b.~i E. lEAD FINISH 
A, = Hot Solder DIP 

, C= Gold 

D. PACKAGE TYPE 
l = 24-Pin Slim Ceramic DIP (CD3024) 
3 a 28-Pin Ceramic leadless Chip 

Carrier (Cl 028) 

L..------------C. DEVICE CLASS 
IB - Class B 

L..-_______________ B. SPEED OPTION 

L...- A. DEVICE NUMBER/DESCRIPTION 
AmPAl10H20EV8 (10KH ECl) 
IMOX-III Programmable Array logic 

I Valid Combinations I 
I AMPAL10H20EV8-8' . I ' IBLA, 183C I 

-8 = 8 ns 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations or to check for newly released "alid 
combinations. 

Group A Tests 

Group A tests consists of Subgroups: 
1, 2, 3, 7, 8, 9, 10 & 11. 
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FUNCTIONAL DESCRIPTION 

The AmPAL 1 OH20EV81 AmPAL 1 0020EV8 Is an advanced 
bipolar ECL I!O PAL device. It contains a programmable fuse 
array organized in the familiar sum-of-products (AND-OR) 
structure. 

The block diagram In Figure 1 Illustrates the basic architecture 
of the. AmPAL 1 OH20EV81 AmPAL 1 0020EV8. There are up to 
twenty external Inputs and eight outputs. The inputs are 
connected to a programmable-AND array. Initially, the AND 
gates are connected, via fuses, to both the true and comple­
ment of every Input. By selective programming (blowing) of the 

CUll 

fuses, the AND gates may be "connected" to only the true 
inputs, the complement Inputs, or to neither type of input. 
When both the true and complement fuses are left intact, a 
logical-FALSE results at the output of the AND gate. An AND 
gate with all the fuses blown will assume the logical-TRUE 
state. The outputs of the AND gates are connected to fixed­
OR gates. 

There are an average of ten product terms per OR gate 
(output), distributed in a variable fashion. Four outputs have 
eight product terms each while the other four have twelve 
product terms each. This variable distribution of product terms 
allows more complex logical functions to be implemented. 

PIIOGIWIIWlLE AND ARRAY 
(10"0) 

I/O 

80006752 

Figure 1. Block Diagram 

Output Logic Macrocells 

A useful feature of the AmPAL10H20EV8/AmPAL10020EV8 
is its versatile programmable output-Iogic-macrocell structure. 
It allows the user to program the outputs on an individual basis 
in a very flexible manner. 

The AmPAL 1 OH20EV81 AmPAL 1 0020EV8 output logic macro­
cell incorporates an edge triggered register. As shown in the 
output logic macrocell diagram, each macrocell contains two 

programmable fuses - So and 51, for programming the out­
put functions. S1 controls whether the output will be registered 
or combinatorial. So controls the output polarity (active-HIGH 
or active-LOW). Depending on the states of these two fuses, 
an individual output operates in one of four modes: Regls­
teredl Active-LOW, Registeredl Active-HIGH, Combinatorial! 
Active-LOW, and Combinatorial! Active-HIGH. Each output is 
also provided with a separate output enable product term. 

liOn 

L0000812 

Figure 2. AmPAL 10H20EV81 AmPAL 10020EV8 Output Logic Macrocell 
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110 = 0 

8, = 0 

LDO00422 

Figure 3-1. Registered! Active-LOW 

So =, 
8, = 0 

LDO00442 

Figure· 3-2. Registered! Active-HIGH 

LD000431 

Figure 3-3. Combinatorial! Active-LOW 

LD000451 

Figure 3-4. Combinatorial! Active-HIGH 

51 50 Output Configuration 

0 0 Registeredl Active-LOW 

0 1 Registeredl Active-HIGH 

1 0 Combinatorial/ Active-LOW 

1 1 Combinatorial/ Active-H IGH 

Feedback 

o = Unblown Fuse 
1 = Blown Fuse 

Another feature of the AmPAL 1 OH20EV81 AmPAL1 0020EV8 
output macrocell structure is the flexibility of its feedback 
selection. The feedback can be from either the I/O line or the 
registered output. The feedback multiplexer is also controlled 
by the S1 fuse. The feedback path changes with the output­
mode selection. If the output is selected to be registered, the 
feedback is registered. If the output is combinatorial, the 
feedback is from the I/O line. This feature enables the 
designer to optimally use the device to meet precise applica­
tion requirements. Additionally, it also allows him/her to make 
complex control state machines for particular design require­
ments. 

Output Enable 

Each of the eight output logic macrocells of the Am­
PAL 1 OH20EV81 AmPAL 1 0020EV8 contains a dedicated prod­
uct term for output-enable function. When this product term is 
asserted LOW, the output is forced into a LOW state where it 
remains until the output-enable product term goes HIGH. 
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PRESET and RESET 

To improve in-system functionality, the AmPAL 1 OH20EV81 
AmPAL 1 0020EV8 has additional PRESET and RESET prod­
uct terms. Common asynchronous-RESET and PRESET are 
provided for all the registers of the AmPAL 1 OH20EV81 Am­
PAL10020EV8. When the. asynchronous PRESET product 
term is asserted HIGH the output registers are loaded with a 
HIGH and when the RESET product term is asserted HIGH the 
output registers are loaded with a LOW independent of the 
clock. These functions are particularly useful for system 
power-on and reset. 

PRELOAD 

To simplify testing, the AmPAL10H20EV8/AmPAL10020EV8 
is designed with PRELOAD circuitry that provides an easy 
method for testing logical functionality. PRELOAD allows any 
arbitrary values to be loaded into the PAL device's output 
registers. 

A typical functional-test sequence would be to verify all 
possible outputs for the device being tested. To verify these 
transitions requires the ability to set the state registers to an 
arbitrary "present state" value and to set the device inputs to 



any arbitrary "present input" value. Once this is done, the 
state machine is then clocked into a new state, or "next 
state." The next state is then checked to validate the 
transition from the present state. In this way any state 
transition can be checked. 

Without PRELOAD capability, it is difficult and in some cases 
impossible to load an arbitrary present state value into the 
registers. This can lead to logic-verification sequences which 
are either incomplete or excessively long. With PRELOAD 
capability, logic verification sequences can be greatly short­
ened, hence reducing the test time and the development 
costs, and guaranteeing proper in-system operation. 

Fabrication 

The AmPAL 1 OH20EV81 AmPAL 1 0020EV8 is manufactured 
using Advanced Micro Devices', new IMOX-III SLOT-isolation 
process. This advanced process offers increased density and 
reduced internal capacitance resulting in the fastest possible 
programmable logic devices. 

4-69 

The AmPAL1 OH20EV81 AmPAL 1 0020EV8 is fabricated with 
AMD's fast programming and highly reliable platinum-silicide 
fuse technology. Utilizing an easily implemented programming 
algorithm, these products can be rapidly programmed to any 

,customized pattern. Platinum-silicide was selected as the 
fuse-link material to achieve a well controlled melt rate 
resulting in large non-conductive gaps which ensure very 
stable, long-term reliability. Extensive operating testing has 
proven that this low-field, large-gap technology offers the best 
reliability for fusible-link programmable logic. 

Testing 

The AmPAL10H20EV8/AmPAL10020EV8 contains many in­
ternal test features, including circuitry and extra fuses which 
allow AMD to test each part before shipping. This ensures 
extremely high post-programming functional yields. The test 
fuses are programmed to assure the ability of each part to 
perform correct programming. There are extra test words 
which are preprogrammed during manufacturing and tested to 
ensure correct logical operation and provide extra test paths 
to achieve excellent parametric correlation. 

» 
3 
"'CJ » 
r .. .... 
o 
:I: 
I\) 
o 
m 
< 
Q) ...... » 
3 
"'CJ » 
r .... 
o 
o 
I\) 
o m 
< 
Q) 



!: w o 
N g ,.. ... 
~ 
E 
~ 
!: w o 
N 
:x: o ,.. 
:.. 
~ 
~ 

INPUT LIlIES 3-r!> 
I 04 I 11 11 • 14 • .. • 

~---1: i'--cc 1111 1111 1111 1111 1111 1111 1111 1111 1111 IIII 
1_ I .. 

I -.. " 3l1li , 

"" I" If 
I =~or: ....., 

I .., 
5lII I &l1li 

=~" , 

"" "' II III 
1 or: 

e 

I 

L 
11 

I lIlT 
2--1> 

co: l_ It 
138 
13E111 I 14l1li 
14 ... 

-~" 
1&31 

II II I11II1 1_ 
1_ 

~co: l?a11 It 

I 

~: II III II II III I I 
2SaII It ~ -- I --

~ )-

:1--- -
J-~ 
r-r-:=11o 
~ f>1'ACAO 

CELL. 
< 

"--

>-r-:=1o 
....... ~ I'ACAO 

CELL. 

"--

r- ....... :=l1n 
....... ~-

CELL. 
<.~ - "--

~l1o ClllTFUT 

)0- f-- L.OGlC 

f--~-

T:: 
~ 

21 
104 
11 T .. -11-_ 

I:: 

T:: 

T:: 

5 --

7 --
le 

_11 
_11 

.... -=r5" -11 

~o: 
I I IIIII1 

1:: 
I 1'tF-

CELL. 
I--

'---------l1:a11 

l1ee 
3aIII -------

I 

-----" 13 , or: 
I 

I 

------:--" 
1~ 

15 

Ul - fIA - lIP 

\ 

, 
I III III III 

>--~ 1:: e --
>-~~E I:: 

17 --~ 

~..,. 

AII'I'NCI'-..e 

LD000840 

Figure 4. Logic Diagram - JEDEC Fuse Numbering for AmPAL 10H20EV81 AmPAL 10020EV8 

Note: Pin out for DIP only. 
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ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 
Storage Temperature ............................ -65 to + 150°C Commercial (C) Devices - 100K Devices 
Supply Voltage (VEE) Temperature (T A> Operating Free Air ........ 0 to + 85°C 

with Respect to Ground ......................... -8 V to 0 V Supply Voltage (VEE) ......................... -5.7 to -4.2 V 
DC Input Voltage 

Commercial (C) Devices - 10KH Devices 
with Respect to Ground .............. : ............ VEE to 0 V 

Temperature (T A) Operating Free Air ........ 0 to + 75°C 
Output Current 

Supply Voltage (VEE) .....•................ -5.46 to -4.94 V 
-Continuous ..................... , ........................... 35 mA 
-Surge ....................................................... 100 mA Extended Commercial (E) Devices 

Stresses above those listed under ABSOLUTE MAXIMUM 
Temperature (T A) ..................................• - 55°C Min. 

RA TlNGS may cause permanent device failure. Functionality 
Temperature (Te) Operating Case .......... + 125°C Max. 

at or above these limits is not implied. Exposure to absolute 
Supply Voltage (VEE) ...................... -5.72 to -4.68 V 

maximum ratings for extended per/ods' may affect device Military* (M) Devices 
reliability. Temperature (TA) ................................... -55°C Min. 

Temperature (T C) ................................ + 125°C Max. 
Supply Voltage (VEE) ...................... -5.72 to -4.68 V 

Operating ranges define those limits between which the 
functionality of the device is guaranteed. 

*Military product 100% tested at TC = + 25°C, + 125°C 
and -55°C. 

DC CHARACTERISTICS over operating range unless otherwise specified 

AmPAL 1 OH20EV8 (Commercial) 

Parameter Parameter 
Symbols Description Test Conditions Min. Max. Units 

TA=O°C -1020 -840, 

VOH Output HIGH Voltage TA = +2SoC -980 -810j rnV 

VIN = VIH (M~.i or VIL (Min.) Loading is TA = +7SoC ~ ... 92(r' '-735; 

SO n to -2.0 V TA=O°C- ·=::1950\ '-,1630 

VOL Output LOW Voltage TA_:" +2S~C ;-1950,.. -1630 rnV 

-,-"'\ TA",,"+7SoC >-'1950 \ -1600/ 

\\ TA~J)·C>, 'l..1170\; 
,. 

-840 

VIH Input HIGH Voltage Guaranteed Input HIGH . TA"""::t-25'C, '~:-'1130 -810 rnV 
(Note 3) ;:':':~\ :\'\, ',: "'\ \ ,', \\ TA = + 75'C -1070 -735 

.~ \'~ti .\.\ \ \. \' .:\ TA =O'C -1950 -1480 

VIL Input LOW Voltage Guatante¥' 'i~UI::~~, TA = + 25'C -1950 -1480 rnV 
(NotlJ. S\ \ \ \: 

,d'), r'~\', ' '\ \, , TA = + 75°C -1980 -1450' 

<,"Y \ \ \ \\ """"J TA = O°C 220 

IIH Input-HIGH, CurrenL<\ I " " VIN =YIIt"(~aX:r TA = +2S·C 220 IlA 
(' 4'-:;;#'''''''\\ \ ,~-;'~;'&'~ .\ ~<~ .. ~~;~:,.) \#~~ TA = + 75·C 220 

/r;~\l' ,~, \/_0/ "\ \ \,/~~) " ,,'" TA =O·C 0.5 

\I~'ro~l:(u,~ ~~ VIN = VIL (Min.) TA = + 25°C 0.5 IlA 
't \ \;.,>'* TA = + 75·C 0.3 

\, <;' \ ... .,;' TA =O·C -230 
Power Supply Current All Inputs and Outputs Open TA = +2S·C -230 rnA 

TA = +7S·C -230 

Table continues on following page. 
Notes: See notes following Military DC characteristics table. 
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AmPAL 10H20EV8 (Military); included in Group A, Subgroup 1, 2, 3 tests unless otherwise noted. 

Parameter 
Symbols 

VOH 

Parameter/ 
Sym~o!~\~. 

.,.,,·'10H.· .. '\ '. 

\ . \:'OL I I 
\ VOHC'" 

,"Ole' 

VtH '\ 
VIL \,,;../ 

IIH 

IlL 

lEE 

Parameter 
Description 

Output HIGH Voltage 

Output LOW Voltage 

Input HIGH Voltage 

Input LOW Voltage 

Input HIGH Current 

Input LOW Current 

Test Conditions Min. Max. Units 

VIN - VIH (Max.) or VIL (Min.) 

Guaranteed Input HIGH Voltage 
(Note,3) 

TA - o·c Teo Teo 

Teo Teo ("~V 
Loading is T A - + 75·C TeO Teo \ \ 

50 n to -2.0 V TA" o·c Teo <'i8D'", \ j 

TA - +25·C 

T A - + 25·C TeD<'~ ·····rBO., "mV 

TA - + 75·C /TBP" \ TeD '>'" 
TA - o·c ,TeD If TBO, 
TA .... ~25·C ,,<fe!) , I, 'T80 '\ mV 
T A '" + 75"C, T~O\, TeD / 

mV 

VA 

'\ \, \,,\, '<"\ ,.; T A ~ O·C TeO Teo 

Power Supply Current \ All Inputs<and.O~ Open TA - +25·C Teo Teo 

// " " " \. \ \ ... f TA-+75.C Teo Teo 

mA 

1.\,/ \ Parameter //" 0 

J> 

/)Desc:rIP,lol(·.. .-' Test Conditions Min. Max. Units 

Output Vol~.,HIGH -1025 -880 mV 

'Output Voltage' LOW VIN .. VIH (Max.) or VIL (Min.) -1810 -1620 ' mV Loading is 
Ovtpc./t Voltage HIGH 50 n to -2.0 V -1035 mV 

Output Voltage LOW VIN - VIH (Min.) or VIL (Max.) -1610 mV 

Input Voltage HIGH Guaranteed Input Voltage HIGH (Note 3) -1165 -880 mV 

Input Voltage LOW Guaranteed Input Voltage LOW (Note 3) -1810 -1475 mV 

Input Current HIGH VIN - VIH (Max.) 220 pA 

Input Current LOW VIN - VIL (Min.) 0.5 pA 

Power Supply Current All Inputs and Outputs Open -230 mA 

Notes: 1. Guaranteed with transverse air flow exceeding 400 linear F.P.M. 
2. The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: 

"Max." the value closest to positive infinity. 
"Min." the value closest to negative infinity. .' 

3. These are absolute voltages with respect to the device ground pin and include all overshoots due to system and/or tester noise. 
Do not attempt to test these values without suitable equipment and fixturing. 
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SWITCHING CHARACTERISTICS over operating range unless otherwise specified; included in Group A, 
Subgroup 9, 10, 11 tests unless otherwise noted 

C Devices ElM Devices 

-6 TBD -8 TBD 
Parameter 

No. Symbol Parameter Description Test Conditions Min. Max. Min. Max. Min. Max. Min. Max. Units 

1 tpD 

2 

3 

4 teo 

5 ts 

6 

7 tp 

8 tw 

9 

10 

Input or Feedback to Output 

Input to Output Enable 

Input to Output Disable 

Clock to Output 

Input or Feedback Setup 
Time 

Hold Time 

Clock Period (ts + teo) 

Clock Width 

Maximum FrequencY:' \ 

Asynchropous,,,,/' e \ \ 

, RESET/PRE:SEJ' ~dth, 

" " A~ybchronous 

12 
RESET/PRESET to 
Registered Output 
RESET/PRESET 

4.? 

See SWitchtriq " 0 
Test Cirpuit 

' '" \8\, 
~ >\: '\ t \\, \ 

'\ ,\. ~ < "j Z .,. . 3\' 
\ '>" • '\ \ ~ ,~ 

\\<::~:,~j t 

j ,p" 

\",,) 6 
" 

6 
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't':':· 1"-' 

.,,5.5 ns 
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INP~UT';"""""'II'--I 

12 

-0.9 V 

SWITCHING TEST CIRCUIT 

0.1 ~F 0.1 ~F 

V· EE 

-5.2 V for 10KH 
-4.5 V for 100K 

OUTPUT 

·CL = 5 pf for 10KH 
CL = 3 pf for 100KH 

SWITCHING TEST WAVEFORM 

INPUT PULSE 

-1.7V--_--I 

tR = tF = 2.2 ns Max. for 10KH 
tR = tF = 1.0 ns Max. for 100K 
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INPUTSVO. 
REGISTERED 

FEEDBACK ~1U1'-___ ..J11o:i 

CP 

REGISTERED 
OUTPUTS: 

KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS OUTPUTS 

MUST BE WILLBE 
STEADY STEADY 

-- MAY CHANGE WILL BE 
CHANGING FROM H TO L 
FROM H TO L 

lI!lIJ MAY CHANGE 
WILLBE 
CHANGING 

FROM L TOH FROM L TOH 

--- DON'T CARE; CHANGING; 
ANY CHANGE STATE 
PERMITTED UNKNOWN 

H 
CENTER 

DOES NOT LINE IS HIGH 
APPLY IMPEDANCE 

"OFF" STATE 

KSOOOO10 

SWITCHING WAVEFORMS 

_ ______ ~.tPD ___________ ~~~_ COMBINATORIAL 
OUTPUTS: 

WF022284 
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PRELOAD OF REGISTERED OUTPUTS ing. The pin levels and the timing necessary to perform the 
PRELOAD function are detailed below. 

The AmPAL 1 OH20EV81 AmPAL 1 0020EV8 registered outputs 
are provided with circuitry to allow loading each register to PRELOAD is accessed by applying Vpp on pin 23. The data to 
either a HIGH or LOW state. This simplifies testing as any be preloaded is set on the output pins. Bringing pin 23 back to 
state can be loaded into the registers to control test sequenc- a logic-LOW level loads the data into the output registers. 

Parameter Parameter 
Symbol Description Min. Typ. Max. Units 

VIH 
Input HIGH Level During -1.1 -0.9 -0.7 V PRELOAD and Verify 

VIL 
Input LOW Level During -1.85 -1.65 -1.45 V PRELOAD and Verify 

Vpp PRELOAD Enable Voltage 1.8 2.0 2.2 V Applied to Pin 23 

PIN3 
V1H 

vPP , , 
PIN 23 -----.l '----

VOH I VIH 
OUTPUTS vOL ~ LVIL I\. 

DISABLE OUTPUTS I APPLY EXTERNAL DATA PRELOADED I REMOVE EXTERNAL 
ENABLE PRELOAD INPUTS TO BE AND PRELOAD INPUTS 

PRELOADED DISABLED 
WF023100 

PRELOAD Timing Waveform 

POWER-UP RESET the power-up RESET and the wide range of ways Vcc can rise 

The registers in the AmPAL 1 OH20EV81 AmPAL 1 0020EV8 
have been designed with the capability to RESET during 

to steady state, two conditions are required to insure a valid 
power-up RESET. These conditions are: 

system power-up. Following power-up, all registers will be 1. The VCC rise must be monotonic. 
LOW. The output state will depend upon the state of the 
output buffer and the polarity fuse. This feature provides extra 2. Following RESET, the eLK input must not be driven from 
flexibility to the designer. A timing diagram ahd a parameter LOW-to-HIGH until all applicable input and feedback 
table are shown below. Due to the asynchronous operation of setup times are met. 

"1 
Vee 

POWER 

IPR 

4~ 
REGISTERED ACTIVE 

LOW OUTPUT 

CLOCK 

'-Iw 

WF022301 

Parameter Parameter 
Symbol Description Min. Typ. Max. Units 

tpR Power·Up 600 1000 ns RESET Time 

ts 
Input or Feedback 
Setup Time See SWitching Characteristics 

tw Clock Width 
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PROGRAMMING AND VERIFICATION After a certain programming time, the fuse is blown and the 

The AmPAl1 OH20EV81 AmPAl 1 0020EV8 is programmed and 
programming voltage is removed from Ve02. The device is 
back in the verification mode. A high clock pulse triggers the 

verified using AMD's ECl programmable-logic-programming output registers which are then verified for VSlown level (VIHP 
algorithm. The fuse to be programmed is selected by its input or VILP). After verification is done, the programming voltage is 
line number (array row), its product-term number (array col- removed from Ve01 and the part is back in normal mode. 
umn), and by the output associated with it (one at a time). The 
levels for addressing the rows and columns are all in ECl 
(10KH) levels. The fuse is then programmed and verified by 

Security Programming 

applying a simple sequence of voltages as shown in the A security fuse is provided on each AmPAL10H20EV81 
programming waveform diagram. The values of the program- AmPAl1 0020EV8 to protect any user proprietary logic design. 
ming voltages are shown in the table of programming parame- It is addressed and programmed like any other fuse in the 
ters. array. Once blown, the circuitry enabling any fuse verification 

Input line numbers (0 to 39) are addressed using a full decode 
and register PRELOAD is permanently disabled. The security 
fuse is verified by verifying the whole fuse array as if every 

scheme via ECl levels on pins 9 - 11 and 13 - 15 where pin 
fuse was blown. 

15 is the lSB and pin 9 is the MSB. Input line addreSSing is 
shown in Table 1. Note that one input line is given to select all Programming Yield 
the architectural fuses. 

Product terms are addressed using a full decode scheme via AMD PAL devices have been designed to ensure extremely 

ECl levels on pins 1, 2, 22 and 23 where pin 23 is the lSB and high programming yields. To help ensure that a part was 

pin 1 is the MSB. Product terms (column number) addressing correctly programmed, once the programming is completed 

is shown in Table 2. the entire fuse array should be re~verified at both lOW and 
HIGH Vee. Re-verification can be accomplished by reading all 

The sequence of signals and events associated with them eight outputs in parallel rather than one at a time. This 
during programming and verification modes is shown in the verification cycle checks that the array fuses have been blown 
Programming Waveforms. The row and column addresses are and can be sensed by the outputs under varying conditions. 
set up on the corresponding input pins. Then Ve01 (pin 6) is 
brought to a programming voltage of Veop. The normal 1/0 AMD PAL devices contain many internal features, including 
pins are now disabled and the address decode is enabled. The circuitry and extra fuses to test the ability of each part to 
device is now in a verification mode. Ve02 (pin 19) is now perform programming before shipping, and to assure a correct 
brought to the Veop programming voltage. The programming logical operation for a correctly programmed part. Program-
mode is enabled. A high voltage of VOP (Fuse-Enable Voltage) ming-yield losses are most likely due to poor programming 
on the output pin corresponding to the fuse to be blown socket contact, programming equipment out of calibration, or 
activates the programming voltage, and the fusing is started. improper usage of said equipment. 

PROGRAMMING PARAMETERS (TA = 25°C) 

Parameter Symbol Parameter Description Min. Typ. Max. Units 

VIHP Input HIGH level During Programming & Verify -1.1 -0.9 -0.7 V 

VILP Input. lOW level During Programming & Verify . -1.85 -1.65 -1.45 V 

Fuse Enable Voltage Applied to Output Being 
VOP Programmed @ 1 - 25 mA (Additional 80 mA 1.8 2.0 2.2 V 

if Output Terminated to 50-ohm load) 

Veop 
Programming Voltage Applied to Ve01, Ve02 14.0 15.0 16.0 V 
@ 15-200 mA 

Ve01 & Power Supply for the Output Stage Sourcing -0.1 0 0.1 V 
Veo2 

Vee During Programming & Verify 
Veep lee = 50 - 250 mA Sourcing -0.3 0 0.3 V 

lee = 50 - 150 mA Sinking 

VEEP VEE During Programming & Verify -5.4 -5.2 -5.0 V 

VONP Termination Voitage for Output-load Resistor -2.1 -2.0 -1.9 V 

R Output-load Resistor 47.5 50.0 52.5 n 
Fusing Time First Attempt 40 50 100 p.s 

tp 
Fusing Time Second Attempt 4 5 10 ms 

to Delays Between Various level Changes 100 200 1000 ns 

tv 
PRELOAD During Which Output is Sensed for 

500 ns 
VSLOWN (VIHP or VILP) level 
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Input Line Number 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

63* 

* Architecture Row 

TABLE 1. INPUT ADDRESSING 

Address Pin States 

9 10 11 13 

L L L L 

L L L- L 

L L L L 

L L L L 

L L L H 

L L L H 

L L L H 

L L L H 

L L H L 

L L H L 

L L H L 

L L H L 

L L H H 

L L H H 

L L H H 

L L H H 

L H L L 

L H L L 

L H L L 

L H L L 

H L L L 

H L L L 

H L L L 

H L L L 

H L L H 

H L L H 

H L L H 

H L L H 

H L H L 

H L H L 

H L H L 

H L H L 

H L H H 

H L H H 

H L H H 

H L H H 

H H L L 

H H L L 

H H L L 

H H L L 

RESERVED 

H H H H 
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14 15 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

L L 

L H 

H L 

H H 

H H 



TABLE 2. COLUMN NUMBER ADDRESSING 

Address Output Pins 

1 2 22 23 
4 5 7 8 17 18 20 21 

OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 OUT8 

L L L L 0 0 0 0 0 0 0 0 

L L L H 1 1 1 1 1 1 1 1 

L L H L 2 2 2 2 2 2 2 2 

L L H H 3 3 3 3 3 3 3 3 

L H L L 4 4 4 4 4 4 4 4 

L H L H 5 5 5 5 5 5 5 5 

L H H L 6 6 6 6 6 6 6 6 

L H H H 7 7 7 7 7 7 7 7 

H L L L - 8 8 - - 8 8 -
H L L H - 9 9 - - 9 9 -
H L H L - 10 10 - - 10 10 -
H L H H - 11 11 - - 11 11 -
H H L L OE OE OE OE OE OE OE OE 

H H L H OP OP OP OP OP OP OP OP 

H H H L RIC RIC RIC RIC RIC RIC RIC RIC 

H H H H SF AR - - - - AP -
AR = Async. RESET 
AP = Async. PRESET 
OE = Output Enable 

RIC = ReglComb Fuse 
OP = Output Polarity Fuse 
SF = Security Fuse 

PROGRAMMING WAVEFORMS 

ADDRESS 

?V
IHP =x VILP 

Veop 

I , 
1. Rowand Column addresses 

Ve01 j I\-?V
e01 

applied. 
2. Normal 1/0 pins disabled. 
3. Programming Voltage applied. 

I , Veop Address decode enabled. 

V
eo2 j ~ 

4. Output associated with fuse 
:> V

eo2 
to be blown selected. Fusing 
time started. 

5. Fusing time ended. 

Vop~ 
6. Programming Voltage removed. 

.) VIHP 
Device in Verification Mode . , J \ I 7. Clock Pulse. 

OUTPUT 8. Verify for VSLOWN level. 
PINS ~ j ~ VILP 

\. 9. End of Programming and 
Verification Cycle. 

CLK ")V
ILP \. 

to to to ... tp to ~o J tv J to ..,.to • ... .. ... .. . - I I 
1 2 3 4 5 6 7 8 9 

WF023110 
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Hardware Vendor 

Data I/O 
10525 Willow Road N.E. 
Redmond, WA 98052 
(206) 881·6444 

Stag Microsystems 
528·5 Weddell Drive 
Sunnyvale, CA 94089 
(408) 745·1991 or 
(800) 227·8836 

Programmer Model(s) Personality Module Socket Adaptor 

System 29 Under Development Not Required 

UNISITE 40 Not Required Not Required 

Model PPZ Under Development Not Required 

Model ZL30A Under Development Not Required 

!oJ The machines noted above have been qualified by AMD to ensure high programming yields. Check with the factory to 
:. determine current status of equipment noted as "Under Development," or for other available models. 

E 
c:( 

Design-Aid Software for AmPAL 10H20EV8/AmPAL 10020EV8 

Software Vendor Software Package Comments 

p·CAD Systems, Inc. 
1290 Parkmoor Ave. 

CUPL 
San Jose, CA 95126 
(408) 971·1300 

Advanced Micro Devices, Inc. 
901 Thompson PI. AmCUPL 

Supported by P·CAD 
Sunnyvale, CA 94088 Systems, Inc. 
(408) 732·2400 

Data I/O 
10525 Willow Road N.E. 

ABEL 
Redmond, WA 98052 
(206) 881·6444 
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AmPAL *21VTB 
24-Pin Dual-Clock Programmable Array Logic 

ADVANCE INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Enhanced second-generation PAL architecture 
• 15 ns maximum propagation delay, fMAX = 40 MHz 
• Up to twenty-one inputs and eight outputs 
• Two banks of four user-programmable output logic 

macrocells for registered or combinatorial operation 
• Individually user-programmable output polarity 
• Variable product term distribution for increased design 

flexibility 
• Individual or common clock with programmable polarity 

for each bank of output logic macrocells 
• Two product terms for enable of each output 

• Asynchronous-RESET and synchronous-PRESET prod­
uct terms for each bank of output logic macrocells 

• Power-up RESET and PRELOAD capability 
• Superior quality 

- Full AC and DC parametric testing performed on 
every part 

- Exclusive on-chip test circuitry ensures post-program­
ming functional yield (PPFY) of 99.9%. 

• Platinum-silicide fuses ensure high programming yield 
(> 98%), fast programming and unsurpassed reliability 

GENERAL DESCRIPTION 

The AmPAL21VT8 is an ultra-fast and enhanced second­
generation Programmable Array Logic (PAL) device. It uses 
the familiar sum-of-products (AND-OR) single array logic 
structure, allowing users to customize logic functions by 
programming the device for specific applications. Fab'ricat­
ed with AMD's new advanced bipolar IMOX-1I1 SLOT­
process technology and incorporating, with enhancements, 
the innovative architectural features of the AmPAL22V10, 
the AmPAL21VT8 is an ex1remely versatile PAL device. 

The AmPAL21 VT8 contains up to twenty-one array inputs 
and eight outputs. The eight outputs are output logic 
macrocells (as in the AmPAL22V10) organized into two 
banks of four each. Each output logic macrocell is capable 
of being programmed as "combinatorial" or "registered" 
with active-HIGH or active-LOW polarity. Each of the two 
banks of output logic macrocells can be clocked individually 
or with a common clock. In addition, the individual/common 
clock has user-programmable polarity. This flexibility per­
mits the system designer to tailor the device to the 
particular application requirements. 

. Increased logic power has been built into the AmPAL21VT8 
by providing a variable number of logical product terms per 
output. Four outputs have twelve logical product terms 
each and the other four have six1een logical product terms 
each. This variable allocation of logi cal product terms 
allows complex logic functions to be implemented in a 
'single AmPAL21VT8. 

The AmPAL21VT8 also offers designers increased flexibili­
ty and control over the output enable function. Each output 
is logically controlled by an OR of two logical product terms. 
This allows the designer to use more complex control than 
previously available. 

System operation has been enhanced by the addition of 
synchronous-PRESET and asynchronous-RESET product 
terms common, to all the output logic macrocells in a bank. 
·The AmPAL21VT8 also incorporates power-up RESET on 
all the registered outputs. It also has the capability to 
PRELOAD registers to any desired state during testing. 
This is essential to permit full logic verification during test. 

BLOCK DIAGRAM 

CK2/1 

1/0 

CLOCK' 

PROGRAMMABLE AND ARRAY 
(132 X 42) 

1/0 

'PAL Is a registered trademark 01 and Is used under license Irom Monolithic Memories, Inc. 
IMOX Is a trademark 01 Advanced Micro Devices, Inc. 
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FUNCTIONAL DESCRIPTION 

c( OEl 
Q. 
E 
c( 

OE2 

PO 

Pll/P15 ------1 

CLOCK l/CLOCK2 

COMMON SYNC PRESET PER BANK 

TO AND ARRAY 

OUTPUT ENABLE 

a 

FEEDBACK MUX 

S2 

Figure 1. AmPAL21VT8 Output Logic Macrocell 

OPERATING RANGES 
Commercial (C) Devices 

Temperature (T A> .................................. 0 to + 75°C 
Supply Voltage (Vcc) ................ + 5.75 V to + 5.25 V 
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AmPAL *22V10 
24-Pin IMOX™ Programmable Array Logic (PAL) 

DISTINCTIVE CHARACTERISTICS 

• Second-generation PAL architecture 
• Increased logic power- up to 22 inputs and 10 outputs 
• Increased product terms - average 12 per output 
• Variable product term distribution improves ease of use 
• Each output user programmable for registered or combi­

natorial operation 
• Individually user programmable output polarity 
• Extra terms provide logical synchronous PRESET and 

asynchronous RESET capability 

• Comes in standard and high-speed versions - 18 ns 
typical propagation delay 

• TTL-level PRELOAD for improved testability 
• Packaged in 24-pin Slim DIP and 28-pin chip carrier 

packages 
• Platinum-Silicide fuses ensure high programming yield, 

fast programming and unsurpassed reliability 
• Full AC and DC testing done at the factory utilizing 

special designed-in test features 

GENERAL DESCRIPTION 

The AmPAL22V10 is a second-generation Programmable 
Array Logic (PAL) device. It utilizes the familiar sum-of­
products (AND-OR) logic structure, allowing users to pro­
gram custom logic functions. The AmPAL22V10 is an 
extension of the PAL concept. First-generation devices 
were largely limited to TTL-replacement applications. The 
AmPAL22V10 permits the development of custom LSI 
functions of 500 to 800 equivalent gate complexity. 

The AmPAL22V10 contains up to 22 inputs and 10 outputs. 
It incorporates the unique capability of defining and pro­
gramming the architecture of each output on an individual 
basis. Each output is user programmable for either regis­
tered or combinatorial operation. This allows the designer 
to optimize the device deSign, by having only as many 
registers as needed. In addition each output has user­
programmable output polarity, further simplifying design 
and contributing to the precise application requirements. 

Increased logic power has been built into the AmPAL22V1 0 
by increasing the number of product terms from 8-per­
output to an average of 12-per-output. Further innovation 
can be seen in the introduction of variable product term 
distribution. This technique allocates from 8 to 16 logical 
product terms to each output (please refer to block diagram 
for distribution details). This variable allocation of terms 
allows far more complex functions to be implemented than 
in previous devices . 

System operation has been enhanced by the addition of a 
synchronous-PRESET and an asynchronous-RESET prod­
uct term. These terms are common to all output registers. 

The AmPAL22V1 0 also incorporates power-up RESET and 
the unique capability to PRELOAD the output registers to 
any desired state during testing. PRELOAD is essential to 
permit full logical verification during test. 

BLOCK DIAGRAM 

I/O I/D I/O 1/0 

IMOX is a trademark of Advanced Micro Devices. inc. 

1/0 

PROGAA .... ULl! 
ANDAAAAY 
(132)'') 

I/O 

PAL is a registered trademark of and Is used under license from Monolithic Memories. Inc. 
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CONNECTION DIAGRAM 
Top View 

LCC· DIPs·· 

~ 

8 

~ 
CKII 

!i 0 g ::. 

110 

110 

110 

NC 

110 

1/0 

110 

!i - 0 g ::. 

CD010000· 
GND 

* Also available in PLCC. Pinouts identical to LCC. 
**Also available in Flatpack. Pinouts identical to DIPs. 

ORDERING INFORMATION 

Standard Products 

vcc 
1/0 

1/0 

1/0 

1/0 

1/0 

1/0 

1/0 

I/O 

1/0 

I/O 

CD010010 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is 
formed by a combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Package Type 
D. Temperature Range 
E. Optional Processing 

L=. E. OPTIONAL PROCESSING 
. Blan~ : ~~~~~~rd processing 

D. TEMPERATURE RANGE 
C - Commercial (0 to + 75°C) 
E - Extended Commercial (- 55 to + 125°C) 

~-----------------------C.PACKAGETYPE 
P - 24-Pin Plastic DIP (PD3024) 
D = 24-Pin Ceramic DIP (CD3024) 
J - 28-Pin Plastic Leaded Chip Carrier (PL 028) 
L - 28-Pin Ceramic Leadless Chip Carrier (CL 028) 

~--------------------------":"'-----B. SPEED OPTION 
Blank = 35 ns­

A-25 ns 

A. -DEVICE NUMBER/DESCRIPTION 
AmPAL22V10 
24-Pin IMOX Programmable Array Logic 

Valid Combinations 

I-_A_M_P_A_L2_2_V_1_0 ____ ----I1 PC, DC, DCB, DE, 
AMPAL22V10A I JC, LC, LE 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMD's standard military grade 
products. 
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ORDERING INFORMATION 

APL Products 

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL 
(Approved Products List) products are fully compliant with MIL-STD-883C requirements. CPL (Controlled Products List) 
products are processed in accordance with MIL-STD-883C, but are inherently non-compliant because of package, solderability, 
or surface treatment exceptions to those specifications. The order number (Valid Combination) is formed 
by a combination of: A. Device Number 

I 

. B. Speed Option (if applicable) 
C. Device Class 
D. Package Type 
E. Lead Finish 

AMPAL22V10 

i'--_____ E. LEAD FINISH 
A = Hot Solder DIP 
C = Gold 

1.-________ D. PACKAGE TYPE (per 09-000) 
L - 24-Pin Ceramic DIP (CD3024) 
K = 24-Pin Ceramic Flatpack (CF 024) 
3 = 28-Pin Ceramic Leadless Chip Carrier 

(CL 028) 

1.-____________ C. DEVICE CLASS 

18 = Class 8 

1.-________________ B. SPEED OPTION 

'--A. DEVICE NUMBER/DESCRIPTION 
AmPAL22V10 
24-Pin IMOX Programmable Array Logic 

Valid Combinations I 

Blank = 40 ns 
A = 30 ns 

Valid Combinations 

I AMPAL22V1 0 
AMPAL22V10A I IBLA/B3C/BKA I 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations or to check for newly released valid 
combinations. 

Generic 

22V10 

Group A Tests 

Group A tests consist of Subgroups 
1,2,3, 7,8,9, 10, and 11. 

DESC Certified PAL Devices 

AMD Part Number DESC Numbers 

AmPAL22V10AlBLA 5962-8605301 LX 

AmPAL22V10AlB3C 5962-86053013X 

AmPAL22V10A/BKA 5962-8605301 KX 
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FUNCTIONAL DESCRIPTION 

The AmPAL22V10 is a second-generation Programmable 
Array Logic device. It contains a programmable fuse array 
organized in the familiar sum-of-products (AND-OR) structure. 

The block diagram below shows the basic architecture of the 
AmPAL22V10. There up to 22 inputs and 10 outputs available. 
The inputs are connected to a programmable-AND array 
which contains 120 logical product terms. Initially the AND 
gates are connected, via fuses, to both the TRUE and 
complement of every input. By selective programming of fuses 
the AND gates may be "connected" to only the TRUE.input 
(by blowing the complement fuse), to only the complement 
input (by blowing the TRUE fuse), or to neither type of input 
(by blowing both fuses) establishing a logical "don't care." 
When both the TRUE and complement fuses are left intact, a 
logical FALSE results on the output of the AND gate. An AND 
gate with all fuses blown will assume the logical-TRUE state. 
The outputs of the AND gates are connected to fixed-OR 
gates. There is an average of 12 product terms per OR gate 
(output), and as the block diagram shows, variable product 
term distribution has been implemented. This technique allo­
cates different quantities of logical product terms to different 
outputs, allowing more complex logical functions to be per­
formed than were previously possible. Up to 16 logical terms 
can be evaluated in one output in a single clock cycle (no 
feedback necessary). 

Cl</' 

Output logic Macrocells (OlMs) 

A dramatic innovation in logic design is the implementation on 
the AmPAL22V10 of variable output architecture. This allows 
the user to program on an output-by-output basis the function 
of the outputs. As shown in the Output Logic Macrocell (OLM) 
diagram below, each output cell contains two additional fuses 
(So and 51). 51 controls whether the output will be registered 
or combinatorial. So controls the output polarity (active HIGH 
or active LOW). Depending on the states of these 2 fuses, an 
individual output will operate in one of four modes (see logic 
diagrams on next page). Registered! Active LOW; Registered! 
Active HIGH; Combinatorial! Active LOW; Combinatorial! Ac­
tive HIGH. (Note that the feedback path also changes with 
output mode.) This innovation gives the designer more flexibili­
ty and enables him to optimize the device for precise 
application requirements. It also allows for better device 
utilization - you only program as many registers as are 
needed. 

PRESET/RESET 
To improve in-system functionality, tho AmPAL22V10 has 
additional PRESET and RESET product terms. These terms 
are connected to all registered outputs. When the synchro­
nous-PRESET product term is asserted (HIGH), the output 
registers will be loaded with a HIGH on the next LOW-to-HIGH 
clock transition. When the asynchronous-RESET product term 
is asserted (HIGH), the output registers will be immediately 
loaded with a LOW (independent of the clock). These func­
tions are particularly useful for applications such as system 
power-on and reset. 

I'IIOCIRAMMA8UI 
ANOMfU,Y 
(132.44) 

I/O I/O I/O '/0 '/0 I/O I/O I/O 

Figure 1. Block Diagram 

I I L __ ~ ___ ~ 
LDO00411 

Figure 2. Output Logic Macrocell Diagram 
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Output Configuration 

Registered! Active LOW 

Registered/ Active HIGH 

Combinatorial/Active LOW 

Combinatorial/Active HIGH 



PRELOAD 

To simplify testing, the AmPAL22V10 is designed with unique 
PRELOAD circuitry that provides an easy method of testing 
registered devices for logical functionality. PRELOAD allows 
any arbitrary state value to be loaded into the output registers. 

A typical functional test sequence would be to verify all 
possible state transitions for the device being tested. To verify 
these transitions requires the ability to set the state registers 
into an arbitrary "present state" value and to set the device 
inputs to any arbitrary "present input" value. Once this is 
done, the state machine is then clocked into a new state, or 
"next state." The next state is then checked to validate the 
transition from the present state. In this way any state 
transition can be checked. 

Without PRELOAD, it is difficult and in some cases impossible 
to load an arbitrary present state value. This can lead to logic 
verification sequences that are either incomplete or excessive­
ly long. Long test sequences result when the feedback from 
the state register "interferes" with the inputs, forcing the state 
machine to go through many state transitions before it can 
reach an arbitrary state value. Therefore the test sequence will 
be mostly state initialization and not actual testing. The test 
sequence becomes excessively long when a state must be 
reentered many times to test a wide variety of input combina­
tions. 

In addition, complete logic verification may become impossible 
when states that need to be tested cannot be entered with 
normal state transitions. For example, the state which the 
machine powers up into cannot be tested because it cannot 

AR 

o Q 

LD000420 

Figure 3-1. Registered! Active LOW 

LD000440 

Figure 3-2. Registered! Active HIGH 
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be entered from the main sequence. Similarly, ','forbidden" or 
don't care states that are not normally entered need to be 
tested to ensure that they return to the, main sequence. 

PRELOAD eliminates these problems by providing the capabil­
ity to go directly to any desired arbitrary state. Thus test 
sequences may be greatly shortened, and all possible states 
can be tested; greatly reducing test time and development 
costs, and guaranteeing proper in-system operation. 

Fabrication 

The AmPAL22V10 is manufactured using Advanced Micro 
Devices' IMOX oxide isolation process. This advanced pro­
cess permits an increase in density and a decrease in imernal 
capacitance resulting in the fastest possible programmable 
logic devices. 

The AmPAL22V10 is fabricated with AMD's fast programming, 
highly reliable Platinum-Silicide Fuse technology. Utilizing an 
easily implemented programming algorithm, these products 
can be rapidly programmed to any customized pattern. Extra 
test words are preprogrammed during manufacturing to en­
sure extremely high field programming yields (> 98.5%), and 
provide extra test paths to achieve excellent parametric 
correlation. 

Platinum Silicide was selected as the fuse-link material to 
achieve a well-controlled melt rate resulting in large non con­
ductive gaps that ensure very stable, long-term reliability. 
Extensive operating testing has proven that this low-field, 
large-gap technology offers the best reliability for fusible link 
programmable logic. 

LD000430 

Figure 3-3. Combinatorial! Active LOW 

LD000450 

Figure 3-4 Combinatorial! Active HIGH 
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Figure 5. Logic Diagram - JEDEC Fuse Numbering 
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ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 

Storage Temperature ............................ -65 to + 150°C Commercial (C) Devices 
Supply Voltage to Ground Potential Temperature (T A) Operating Free Air ••... O°C to + 75°C 

(Pin 24 to Pin 12) Continuous ................ -0.5 to + 7 V Supply Voltage (Vee) ................•.•.. +4.75 to +5.25 V 
DC Voltage Applied to Outputs, Extended Commercial (E) Devices 

(Except During Programming) ....... -0.5 V to + Vee Max. Temperature (T A) ................................... - 55°C Min. 
DC Voltage Applied to Outputs Temperature (T e) .....................•.......... + 125°C Max. 

During Programming ........................................ 16 V Supply Voltage (Vee) ........ : ........... +4.50 to +5.50 V 
Output Current into Outputs During Programming 

(Max. Duration of 1 sec) ..............•............... 200 mA Military (M) Devices* 

DC Input Voltage ...................•.•...•....... -0.5 to + 5.5 V Temperature (T A) ........................•.......... - 55°C Min. 

DC Input Current .................................. -30 to +5 mA Temperature (T e) . Operating· Case .......... + 125°C Max. 

Ambient Temperature with Power Applied ........... + 125°C Supply Voltage (Vee) •.........•.•..•.... +4.50 to +5.50 V 

Stresses above those listed under ABSOLUTE MAXIMUM Operating ranges define those limits between which the 
RA TlNGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 

functionality of the iJevice is guaranteed. 

maximum ratings for extended periods may affect device *Military Product 100% tested at Te = + 25°C, + 125°C, 
reliability. and -55°C. 

DC CHARACTERISTICS over operating range unless otherwise specified; included in Group A, Subgroup 1, 
2, 3 tests unless otherwise noted 

Parameter Parameter Typ. 
Symbol Description Test Conditions Min. (Note 1) Max. Units 

Vee = Min., 
IOH =-3.2 mA C Devices 

VOH Output HIGH Voltage ElM 2.4 3.5 Volts VIN - VIH or VIL IOH=-2 mA Devices 

Vee = Min., 
IOL= 16 mA C Devices 

VOL Output LOW Voltage ElM 0.50 Volts VIN - VIH or VIL IOL = 12 mA Devices 

VIH Input HIGH Level Guaranteed Input Logical HIGH Voltage lor all Inputs 2.0 Volts (Note 2) 

VIL Input LOW Level Guaranteed Input Logical LOW Voltage lor all Inputs 0.8 Volts (Note 2) 

III Input LOW Current Vee - Max., VIN = 0.40 V -20 -100 p.A 

IIH Input HIGH Current Vee - Max., VIN = 2.7 V 25 p.A 

II Input HIGH Current Vee = Max., VIN = 5.5 V 1.0 mA 

Ise Output Short-Circuit Current Vee = Max., VOUT = 0.5 V (Note 3) -30 -50 -90 mA 

ICC Power Supply Current Vee-Max. 150 180 mA 

VI Input Clamp Voltage Vee = Min., liN = -18 mA -0.9 -1.2 Volts 

IOZH Output Leakage Current Vee - Max., Vil = 0.8 V Vo = 2.7 V 100 

IOZl (Note 4) VIH = 2.0 V Vo = 0.4 V -100 
p.A 

I Pins 1, 13 11 
CIN t Input Capacitance VIN = 2.0 V @ I = 1 MHz (Note 5) I Others 6 

COUT t Output Capacitance VOUT = 2.0 V @I= 1 MHz (Note 5) 9 pF 

Notes: 1. Typical limits are· at Vee = 5.0 V and T A = 25°C. 
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included. 
3. Not more than one output should be tested at a time. Duration 01 the short circuit should not be more than one second. 

VOUT = 0.5 V has been chosen to avoid test problems caused by tester ground degradation. 
4. 110 pin leakage is the worst case 01 IOZX or IIX (where X = H or· L). 
5. Pinout lor DIPs only. 

t Not included in Group A tests. 
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SWITCHING CHARACTERISTICS over operating range unless otherwise specified; included in Group A, 
Subgroup 7, 8, 9, 10, 11 tests unless otherwise noted 

C Devices ElM Devices 

"A" "Std" "A" "Std" 
Parameter Parameter Test Typ. 

Symbol Description Conditions (Note 1) Min. Max. Min. Max. Min. Max. Min. Max. Units 

tpo Input or Feedback to 18 25 35 30 40 ns Non-Registered Output 

tEA Input to Output Enable 
C Devices 18 25 35 30 40 ns 

tER Input to Output Disable R1 - 300 18 25 35 30 40 ns 

teo Clock to Output R2- 39O 10 15 25 20 25 ns 

ts 
Input or Feedback Setup 13 20 30 25 35 ns Time 

tH Hold Time -10 0 0 0 0 ns 

tp Clock Period (ts + teo) 35 55 45 60 ns 

tw Clock Width 15 25 20 30 ns 

'MAX Maximum Frequency 28.5 18 22 16.5 MHz 

tAW Asynchronous Reset Width ElM Devices 
25 35 30 40 ns 

R1 - 390 

tAR 
Asynchronous Reset R2 -750 25 35 30 40 ns Recovery Time 

tAP 
Asynchronous Reset to 

30 40 35 45 ns Registered Output Reset 

Notes: 1. Typical limits are at Vee - 5.0 V and T A - 25°C. 
2. tpo Is tested with switch S1 closed and CL - 50 pF. 
3. For three-state outputs, output enable times are tested with CL - 50 pF to the 1.5 V level; S1 is open for high· impedance to 

HIGH tests and closed for high-Impedance to LOW tests. Output disable times are tested with CL - 5 pF. HIGH to high-
Impedance tests are made to an output voltage of VOH - 0.5 V with S1 open; LOW to high-impedance tests are made to the 
VOL + 0.5 V level with S1 closed. 

SWITCHING TEST CIRCUIT KEY TO SWITCHING WAVEFORMS 

IV~o-- WAVEFORM INPUTS OUTPUTS 

81 
---

~ 
MUST BE WILLBE 
STEADY STEADY ---

OUTPUT 

~I -- MAY CHANGE WILLBE 

FROM H TO L CHANGING 
FRDM H TO L 

~ 

JJJJJJ MAY CHANGE 
WILL BE 

~ CHANGING FROM L TO H 
FROM L TOH 

TC001190 -- DON'TCARE; CHANGING; 
ANY CHANGE STATE 
PERMITTED UNKNOWN 

H 
CENTER 

DOES NOT LINE IS HIGH 
APPLY IMPEDANCE 

"OFF" STATE 

KSOOO010 
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FROM 
OUTPUT 

LOGIC 
MACROCELL 

OUTPUT 
DISABLE 

Vee 

INPUT ON 
1/0 PINS 
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PRELOAD OF REGISTERED OUTPUTS 

The AmPAL22V10 registered outputs are provided with circuit­
ry to allow loading each register synchronously with either a 

1---10 

II 
PINS 2, 3 VILP I 

PIN 1 V1LP 

VOH 

REGISTERED 
OUTPUT VOL 

PRELOAD 
ENA8L£O 
OUTPUTS 
DISABLED 

Power-up RESET 

OUTPUT 
FORCED 
TOVIHP 
ORVILP 

ID 

, 
J 

VIHP 

V1LP 

PRELOAD 
DATA 

CLOCKED 
IN 

Level forced 
on registered 
output pin during 
PRELOAD cycle 

The registered devices in the AMD PAL Family have been 
designed with the capability to reset during system power-up. 
Following power-up, all registers will be reset to LOW. The 
output state will depend on the polarity of the output buffer. 
This feature provides extra flexibility to the designer and is 
especially valuable in simplifying state machine initialization. A 
timing diagram and parameter table are shown below. Due to 

10 

VHH 

HIGH or LOW. This feature will simplify testing since any state 
can be loaded into the registers to control test sequencing. 

The pin levels and timing necessary to perform the PRELOAD 
function are detailed below. Parameters are listed in the 
Programming Parameters table (page 12). 

10 lo-, 
1\ VILP 

VIHP , 
~ 

Register Q 
output state 
after cycle 

HIGH 

LOW 

OUTPUT 
FORCING 
VOLTAGE 
REMOVED 

VILP 

VOH 

VOL 

PRELOAD 
DlSACLED 

WF022293 

the asynchronous operation of the power-up reset and the 
wide range of ways Vee can rise to its steady state, two 
conditions are required to insure a valid power-up reset. These 
conditions are: 

1. The Vee rise must be monotonic. 

2. Following reset, the clock input must not be driven from 
LOW to HIGH until all applicable input and feedback setup 
times are met. 

,~~----------------------------------------------..... vcc 

POWER ___________ 4_V, ~1-o1-------IPR-------t 

REOISTERm ACTIVE 
LOW OUTPUT 

CLOCK 

--------------------------------------~ 

\\t 
WF022301 

Parameter Parameter 
Symbol Description Min. Typ. Max. Units 

tpR 
Power-Up 

600 1000 ns 
Reset Time 

t5 
Input or Feedback 
Setup Time See Switching Characteristics 

tw Clock Width 
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ProgrammIng and VerIfIcatIon Once fuses have been selected, the simple programming and 
verification sequence may be completed as shown in the 

The AmPAL22V10 is programmed and verified using AMD's programming waveform diagram. AC and DC requirements for 
standard programmable logic programming algorithm. The programming are shown In the Programming Parameters 
fuse to be programmed Is selected by input line number (array table. 
row), product term (array column), and by output (one at a 

SecurIty Fuse ProgrammIng time). The fuse Is then programmed and verified by applying a 
simple sequence of voltages to two control pins (1 and 13). A single fuse Is provided on each AmPAL22V10 part to 

Input line numbers (0 - 43) are addressed using a full decode 
prevent unauthorized copying of PAL fuse patterns. Once 
blown, the circuitry enabling fuse verification and registered 

scheme via TIL levels on pins 6 - 11 where 6 is the LSB and output PRELOAD is permanently disabled. 
11 Is the MSB. Even numbered Input lines represent the TRUE 
version of a signal and odd numbered lines represent the Programming of the security fuse Is the same as an array fuse. 
complement. Input line addressing is shown In Table 1. Note Verification of a blown security fuse is accomplished by 
that input lines 44 - 62 are reserved for further expansion and verifying the whole fuse array as if every fuse Is blown. 
input line 63 is' utilized for seleCting the fuses used for ProgrammIng YIeld programming output polarity and whether the output is regis-
tered or combinatorial. AMD PALs have been designed to insure extremely high 

Product terms are addressed using a one-of-24 addressing 
programming yields (> 98.5%). To help insure that a part was 
correctly programmed, once programming is completed, the 

scheme on pins 2 - 5 where pin 2 is the LSB and 5 is the MSB. entire fuse array should be reverified at both LOW and HIGH 
Product term addressing is shown in Table 2. Logical product VCC. Reverification can be accomplished by reading all ten 
terms (0 - 15) are selected via TTL levels on the four outputs in parallel rather than one at a time. This verification 
addressing pins. Note that outputs with fewer than 16 product cycle checks that the array fuses have been blown and can be 
terms will decode blank space for decoding values greater sensed by the outputs under varying conditions. 
than the number of product terms on that output. Architectural 
product terms are selected by placing a zener voltage level AMD PALs contain many internal test features, including 
(VHH) on the MSB (pin 5) and using pins 2 - 4 for an additional cirCUitry and extra fuses which allow AMD to test the ability of 
eight decoding states (only 5 are used). The specific decoding each part to perform programming before shipping, to assure 
of architectural features is best shown In Table 2. high programming yields and correct logical operation for a 

correctly programmed part. Programming yield losses are 
Fuse selection by output must be done one output at a time most likely due to poor programming socket contact, program-
(following control pin 1 going to VHH) as shown In the ming equipment out of calibration, or Improper usage of said 
Programming waveform diagram. equipment. 

PROGRAMMING PARAMETERS (T A = 25°C) 

Parameter Parameter 
Symbol Description Min. Typ. Max. Units 

Control Pin Extra HIGH Level I Pin 1 @ 10 -40 mA 10 11 12 
VHH (Note 1) I Pin 13 @ 10 -40 mA 

Volts 
10 11 12 

VOP Program Voltage Pins 14-23 @ 15-200 mA (Note 1) 14 15 16 Volts 
VIHP Input HIGH Level During Programming and Verify 2.4 5 5.5 Volts 
VILP Input LOW Lovol During Programming and Verify 0.0 0.3 0.5 Volts 
Veep Vec During Programming @ ICC - 50 - 200 mA 5 5.2 5.5 Volts 
VeCL Vee During First Pass Verification @ ICC - 50 - 200 mA 4.4 4.5 4.6 Volts 
VeCH Vee During Second Pass Verification @ Icc - 50 - 200 mA 5.4 5.5 5.6 Volts 
VSlown Successful Blown Fuse Sense Level @ Output 0.3 0.5 Volts 
Vop/dt Rate of Output Voltage Change 20 250 V/llSec 

V13/dt Rate of Fusing Enable Voltage Change (Pin 13 Rising Edge) 100 1000 V/p.sec (Note 1) 
Fusing Time First Attempt 10 50 100 p.sec 

tp 
Subsequent Attempts (Maximum of 6) 4 5 10 msec 

tD Delays Between Various Level Changes 100 200 15,000 ns 
tv Period During Which Output Is Sensed for VSlown Level 500 ns 
VONP Pull·Up Voltage On Outputs Not Being Programmed Vecp-0.3 VCCP Vccp+0.3 Volts 
R Pull·Up Resistor On Outputs Not Being Programmed 1.9 2 2.1 kS1 

Notes: 1. Pinout for DIPs only. 
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TABLE 1. INPUT ADDRESSING 

Input Une Number 
Input Une Address Pin States Input Line 

Number Number 
11 10 9 8 7 6 

0 L L L L L L 32 

1 L L L L L H 33 

2 L L L L H L 34 

3 L L L L H H 35 

4 L L L H L L 36 

5 L L L H L H 37 

6 L L L H H L 38 

7 L L L H H H 39 

8 L L H L L L 40 

9 L L H L L H 41 

10 L' L H L H L 42 

11 L L H L H H 43 

12 L L H H L L 

13 L L H H L H 

14 L L H H H L 

15 L L H H H H 

16 L H L L L L 

17 L H L L L H 

18 L H L L H L 

19 L H L L H H 

20 L H L H L L 

21 L H L H L H 

22 L H L H H L 

23 L H L H H H 

24 L H H L L L 

25 L H H L L H 

26 L H H L H L 

27 L H H L H H 

28 L H H H L L 

29 L H H H L H 

30 L H H H H L 

31 L H H H H H 63-

-Architecture row 
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Input Line Number 
Address Pin States 

11 10 9 8 7 

H L L L L 

H L L L L 

H L L L H 

H L L L H 

H L L H L 

H L L H L 

H L L H H 

H L L H H 

H L H L L 

H L H L L 

H L H L H 

H L H L H 

· · 
• 

· · · 
• 
• 

· 
. RESERVED 

· · 
• 

· · · · · · 
H H H H H 

6 

L 

H 

L 

H 

L 

H 

L 

H 
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L 
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TABLE 2. COLUMN NUMBER ADDRESSING 

I Column Number 

0 0 0 0 0 0 0 

1 1 1 1 1 1 1 

2 2 2 2 2 2 2 

3 3 3 3 3 3 3 

4 4 4 4 4 4 4 

5 5 5 5 5 5 5 

6 6 6 6 6 6 6 

7 7 7 7 7 7 7 

8 8 8 8 8 8 

- 9 9 9 9 9 9 

10 10 10 10 10 

- 11 11 11 11 11 

12 12 12 12 

- - - 13 13 13 13 

- - 14 14 

- - 15 15 -
OE OE OE OE OE OE OE 

P P P P P P P 

R R R R R R R 

AR* - -

SF 

Pin Pin Pin Pin Pin Pin Pin 
23 22 21 20 19 18 17 

Programming Access and Verify Pin 

Legend: L EO VILP 
H -VIHP 

HH ... VHH 

Column Number 
Select Address 

Pin States 

5 4 3 2 Description 

0 0 0 L L L L Logical PTs 

1 1 1 L L L H Logical PTs 

2 2 2 L L H L Logical PTs 

3 3 3 L L H H Logical PTs 

4 4 4 ·L H L L Logical PTs . 

5 5 5 L H L H logical PTs 

6 6 6 L H H ·L Logical PTs 

7 7 "7 L H H H Logical PTs 

8 8 H L L L Logical PTs 

9 9 H L L H Logical PTs 

10 H L H L Logical PTs 

11 H L H H Logical· PTs 

H H L L Logical PTs 

H H L H Logical PTs 

- H H H L Logical PTs 

H H H H Logical PTs 

OE OE OE HH L L L Output Enable 

P P P HH L L H Output Polarity 

R R R HH L ·H L Register/Non-Register Output 

SP*· HH L H L 
* Asynchronous RESET 
**Synchronous PRESET 

HH H L H 
Security. Fuse 
(Special Verify Required) 

Pin Pin Pin 
17 15 14 

4-96 



PROGRAMMING WAVEFORMS 

PINS ---\ ~-----------------~ 
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" J~ 

I 

I 

/ 
,~ 

{ 
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~ 
I 

\ 
VHH ,........., V1H, 

1\ H FUSING 
TIME 

Vop 

1\ H 

Z , J 

1\ I 
L J 

V
HHV 

J 
ID ~ -to-----I-IO~ I---1,----10--1--10----10-

PINU 

--+f-
INPUTUNE FUSING 

NUMBER AND COLUMN ENABLED 
NUMBER SELECTEO 

PROORAMMING 
VOLTAGE 
APPUED 

OUTPUTS DISABLED 
NORMAL INPUTS 

DISABLED. PROORAMMING 
Dt!CODI ENABLED 

PROORAMMING 
VOLTAGE 
REMOVED 

OUTPUTS RI!GISTERS VERI FY CYCLI 
ENABLED CLOCKED ENDS 

FU SE BLOWN. LOW 

WF022580 

4-97 



C) .... 
> 
C'II 
C'II ... 
..J 
< 
D. 
E 
< 

AmPAL22V10 PROGRAMMING EQUIPMENT INFORMATION 

Vendor Programmer Model (s) Personality Module Socket Adapter 

Data 1/0 
Logicpak 303A-004 

System 19, 29 or 100 715-1983-003 
10525 Willow Road N.E. (Rev 4 or Newer) 

(Rev 3 or Newer) 
Redmond, WA 98052 

360A-001 (206) 881-6464 Model 60A or 60H (Rev 2 or Newer) On-Board 

JMC PROMAC Division 
2999 MontereylSalinas PROMAC P3 Highway (Rev 2.0 or Newer) On-Board On-Board 
Monterey, CA 93940 
(408) 373-3622 

Stag Microsystems 
Model PPZ Zm2200 On-Board 

528-5 Weddell Drive (Rev 10 or Newer) (Rev 10 or Newer) 
Sunnyvale, CA 94086 
(408) 745-1991 or Model ZL30A On-Board On-Board 
(800) 227-8836 (Rev 38 or Newer) (Rev 38 or Newer) 

Structured Design 
988 Bryant Way SD 1040 PAL Burner On-Board On-Board Sunnyvale, CA 94087 (Rev V1.02A or Newer) 
(408) 988-0725 

Valley Data Sciences 
2426 . Charleston Road VDS 160 Series On-Board On-Board Mt. View, CA 94043 (Rev 1.03 or Newer) 
(415) 968-2900 

Varix Corporation 
122 Spanish Village Omni-Programmer Suite 608 Under Development Under Development 
Dallas, TX 75248 SPO-300 

(214) 437-0777 

Wavetek-Digelec 
1602 Lawrence Ave., 

FAM52 DA55 
Suite 113 803 Series (Rev 5.4 or Newer) (Rev B3 or Newer) 
Ocean, NJ 07712 (Rev V1.02A or Newer) 
(210) 493-2420 

The machines noted above have been qualified by AMD to insure high programming yields. Check with the factory to 
determine the current status of vendors noted under development, or other available models. 

Design Aid Software for AmPAL22V10 

Software Software 
Vendor Package Comments 

P-CAD 
Systems CUPL 
(408) 971-1300 

Advanced Developed and supported 
Micro Devices AmCUPL 
(408) 732-2400 by P-CAD Systems 

Data 1/0 ABEL (206) 881-6444 
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AmPAL *22V10B 
24-Pin IMOX™ Programmable Array Logic (PAL) 

ADVANCE INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• B-speed (tPD - 15 ns) performance 
• Increased logic power - up to 22 inputs and 10 outputs 
• Increased product terms - average 12 per output 
• Variable product-term distribution Improves ease of use 
• Each output user-programmable for registered or combi­

natorial operation 
• Individually user-programmable output polarity 
• Extra terms provide logical synchronous-PRESET and 

asynchronous-RESET capability 

• Also comes in A-speed Low-Power (L) and Standard-
speed Quarter-Power (Q) versions 

• TTL level PRELOAD for improved testability 
• 24-pin Slim DIP and 2S-pin chip carrier packages 
• Platinum silicide fuses ensure high programming yield, 

fast programming and unsurpassed reliability 
• Full AC and DC testing done at the factory utilizing 

special designed-in test features 
• 3000-V Input ESD Protection 

GENERAL DESCRIPTION 

The AmPAL22V10B is a second-generation Programmable 
Array Logic (PAL) device. It utilizes the familiar sum-of­
products (AND-OR) logic structure, allowing users to pro­
gram custom logic functions. The AmPAL22V10B is an 
extension of the PAL concept. First-generation devices 
were largely limited to TTL replacement applications. The 
AmPAL22V10B permits the development of custom LSI 
functions of 500 to aoo equivalent gate complexity. 

The AmPAL22V10B contains up to 22 inputs and 10 
outputs. It incorporates the unique capability of defining and 
programming the architecture of each output on an individ­
ual basis. Each output Is user-programmable for either 
registered or combinatorial operation. This allows the 
designer to optimize the device design, by having only as 
many registers as needed. In addition, each output has 
user-programmable output polarity, further simplifying de­
sign and contributing to the precise application require­
ments. 

Increased logic power has been built into the 
AmPAL22V10B by increasing the number of product terms 
from a-per-output to an average of 12-per-output. Further 
innovation can be seen in the introduction of variable 
product-term distribution. This technique allocates from a to 
16 logical product terms to each output (please refer to 
block diagram for distribution details). This variable alloca­
tion of terms allows far more complex functions to be 
implemented than in previous devices . 

System operation has been enhanced by the addition of a 
synchronous-PRESET and an asynchronous-RESET prod­
uct term. These terms are common to all output registers. 

The Am PAL22V 1 OB also incorporates power-up RESET 
and the unique capability to PRELOAD the output registers 
to any desired state during testing. PRELOAD Is essential 
to permit full logical verification during test. 

BLOCK DIAGRAM 

I/O I/O I/O 

IMOX 18 a trademark of Advanced Micro Devices, Inc. 

1/0 1/0 

PROGAAIIOWILE 
ANDAIIAAV 
(132144) 

1/0 

·PAL Is a registered trademark of and Is used under license from Monolithic MemOries, Inc. 
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OPERATING RANGES 
Temperature (TAl Operating Free Air ..... O°C to + 75°C 
Supply Voltage (Vee) .................... +4.75 to +5.25 V 

Commercial (C) Devices 

SWITCHING CHA~ACTERISTICS over operating range unless otherwise specified 

ElM Devices 

"B" TBD 
Parameter 

Symbol 
Parameter Test Ty,f. ~'.~<l •• ~ \ ./ 
Description CondlUon. r (N~1),. \c~ J40x. "Min. Max. Mlnr ,Max. Min. Max. Units 

tpD 

tEA 

tEA 

teo 

Input or Feedback to·\ 1\ ~, "\ 
Non-Registered Output ¢ n .. - 15 ('~:::::::; f, '.X·"; \~O 
Input to Output Enable , ;~'C ~~t "t-? 15 ...... '\ '\\ [\ j \) 20 

Input to Output Disable \ '.s, ='31)(1 ~15,.\ \\<,,~~' 20 
\ ' \ \ .1i2 - 390 I.,,,";' Clock to Output i ~I>.;- ,,,,,:'1 Lt:' 10 \ \ " 15 

ns 

ns 

ns 

ns 

ts ns Input or Feedback 5~tiJll>~'" 1/' ~, k\ M'.-f' c,,' 17 
TIme !I ~I_~\~~\~~.~~\~\~+t~'~+"--~;.--~--~---+----r---~---+----r-----~ 
Hold Time ~~ '\) \\'\;"\ .\0' tH o ns 

tp 

tw 

fMAX 

ns 

ns 

Clock Period (ts + teal t;:~::~ F'"""'\ \ V v 22 32 
Clock Width .-'-"J ,:' f( \ \ 1-~~--+-1-1---'1--~--I---+--1-6-+--+---+--+-----l 
Maximum Frequency <, \ \' :;::. \~,,-)l "1-----+---+--4-5--1--+---11---+-3- 1-+---+--+----1 

ElM O:vices Asynchronous:"Be$8f~WiOth \. . R, .. 390 
Asynchronous ~ese,,, <.);. -' R2 - 750 
Recovery Time \ \ \'; 

Asynchronous Reset to 
Registered Output Reset 

Notes: 1. Typical limits are at Vee'" 5.0 V and TA - 25°C. 
2. tpD is tested with switch 5, closed and CL" 50 pF. 

15 20 

15 20 

20 25 

3. For three-state outputs. output enable times are tested with CL" 50 pF to the 1.5 V level; 5, is open for high-impedance to 
HIGH tests and closed for high-impedance to LOW tests. Output disable times are tested with CL - 5 pF. HIGH to high­
impedance tests are made to an output voltage of VOH - 0.5 V with 5, open; LOW to high-impedance tests are made to the 
VOL + 0.5 V level with 5, closed. 

SWITCHING TEST CIRCUIT KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS 

----
MUSTBE 
STEADY ------ MAY CHANGE 

FROM H TO L 

l!IfJJ MAY CHANGE 
FROM L TOH 

OUTPUT 

~! ~ 

~ 

TCOO1190 -- OON'TCARE; 
ANY CHANGE 
PERMITTED 

H DOES NOT 
APPLY 

This document contains information on a product under development at Advanced Micro Devices. Inc. The information is intended to 
help you to evaluate this product. AMD reserves the right to ,change 
or discontinue work on this proposed product without notice. 4·100 

OUTPUTS 

WILL BE 
STEADY 

WILL BE 
CHANGING 
FROM H TO L 

WILL BE 
CHANGING 
FROM L TOH 

CHANGING; 
STATE 
UNKNOWN 

CENTER 
LINE IS HIGH 
IMPEDANCE 
"OFF"STATE 

K5000010 

MHz 

ns 

ns 

ns 



INPUTSI/O, 
REGISTERED 

FEEDBACK 
SYNCHRONOUS 

PRESET 

CP 

ASYNCHRONOUS 
RESET 

REGISTERED 
OUTPUTS: 

SWITCHING WAVEFORMS 

_
________________ ~.tPD ________________________ ~~)_~~~--~:~~--

COMBINATORIAL ,- ~ 
OUTPUTS: 

WF022280 
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AmPAL*23S8 
20-Pin IMOX™ PAL-Based Sequencer 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• 14 Registers 
- 4 Output Logic Macrocells (OLMs) 
- 4 Output Registers 
- 6 Buried State Registers (BSRs) 

• 23 possible array inputs and 8 outputs in a 20-pin, 
package 

• 33-MHz external/ 40-MHz internal cycle time 
• Variable product term (pn distribution for increased 

design flexibility 
• Asynchronous and synchronous outputs supported for 

both Mealy- and Moore-type state-machine implementa­
tions 

• Individually user-programmable Output Enable (OE) PTs 
with polarity control 

8 PTs for observing the BSRson 6 of the output pins 
• Separate PTs for common Synchronous PRESET and 

common Asynchronous RESET of all registers 
• PRELOAD available on all registers for added test 

capability 
• 99.9% post programming functional yield (PPFy) is due 

to the complete testability of this and all other AMD PAL 
devices 

• Platinum-Silicide fuse technology produces the most 
reliable bipolar programmable devices available today 

GENERAL DESCRIPTION 

The AmPAL23S8 is the first programmable array logic 
(PAL)-based sequencer device. It utilizes the familiar sum­
of-products (AND-OR) logic structure, allowing users to 
customize logic functions by programming the device for 
specific applications. The AmPAL23S8 combines the ease 
of use of the familiar 20-pin PAL devices with the advanced 
"macrocell" concept Introduced In the AmPAL22V10, as 
well as six Buried State Registers (BSRs). 

The AmPAL23S8 provides up to twenty-three array Inputs 
and eight outputs. Four of the outputs are Output Logic 
Macrocells (OLMs) capable of being Individually programmed 
as "combinatorial" or "registered," with active-HIGH or 
active-LOW polarity on each output. The other four are 
"registered" outputs, also capable of being programmed for 
active- HIGH or LOW polarity. All the flexibility on the outputs 
result in the simplification of logiC design. The need to 
perform "DeMorgan's Law" on equations to have them fit 
into a PAL device is now a thing of the past. Each of the eight 
output registers can also be used dynamically as an Input or 
output for greater design flexibility. 

The AmPAL23S8 also offers designers increased flexibility 
and control over Output Enable (OE) functions. Each output 
Is logically controlled by an OE product term (pn, with 
programmable OE polarity control. This allows the designer 
to use more complex control than previously available. 

The six BSRs provide designers with enhanced logic power 
for sequencer applications. These registers are ,not only 
available to the system designer for use In sequencer 
applications (without the expense of a valuable I/O pin), but 
they may also be observed on the output pins during test. 
The observability of these registers on a programmable­
logic sequencer adds to the list of features which make this 
device unique, simple to design with, and simple to debug.· 

System operation has been enhanced by the addition of 
Synchronous PRESET and Asynchronous RESET PTs. The 
AmPAL23S8 also Incorporates the unique capability of 
PRELOADing the eight output registers and the BSRs to 
any desired state during testing. This is essential to permit 
full logical verification during test. 

BLOCK DIAGRAM 

Common Clock 

Burled Registers 

Input. 

9 

Programmable AND Array 

Output Logic 
Macrocells 

'PAL Is a registered trademark of and Is used under license from Monolithic Memories, Inc. 
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CONNECTION DIAGRAM 
Top View 

CLOCK Vcc 

10 1/°7 Pin Description 

11 1/°6. B5 
Vcc = Supply Voltage 

GND = Ground 
12 V0 5 • B4 

CLOCK = Clock Pin 
13 1/0 4 • B3 10 - IB = Dedicated Input Pins (9) 

14 1/03 lit B2 1100 -1/07 = Bidirectional 110 Pins (8) 

15 1/°2. B1 Bo - B5 = Observability Pins for BSRs (6) 

16 1/0 1 • BO 

17 1/°0 

GND 18 

CD009B70 
Note: Pin 1 is marked for orientation. 

ORDERING INFORMATION 
Standard Products 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by 
a combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Package Type 
D. Temperature Range 
E. Optional Processing 

AMPAL23SB 

- .... 1 _____ E. OPTIONAL PROCESSING 
Blank = Standard processing 

B = Burn-in 

'----------D. TEMPERATURE RANGE 
C = Commercial (0 to + 70°C) 
E = Extended Commercial (-55 to + 125°C) 

'--------------C. PACKAGE TYPE 
P = 20-Pin Plastic DIP (PO 020) 
D = 20-Pin Ceramic DIP (CD 020) 

'------------------B. SPEED OPTION 
-20 = 20 ns 

A. DEVICE NUMBER/DESCRIPTION 
AmPAL23SB 
20-Pin IMOX PAL-Based Sequencer 

-25 = 25 ns 
-27 = 27 ns· 
-30 = 30 ns· 

·Extended Commercial range only. 

Valid Combinations 
Valid Combinations 

AMPAL23SB-20 PC, DC, DCB 

AMPAL23S8-25 PC, DC, DCB, 
DE, DEB 

AMPAL23SB-27 
DE, DEB 

AMPAL23SB-30 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMD's standard military grade 
products. 
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ORDERING INFORMATION (Cont'd.) 

APL Products 

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved 
Products List) products are fully compliant with MIL-STD-B83C requirements. CPL (Controlled Products List) products are 
processed in accordance with MIL-STD-B83C, but are inherently non-compliant because of package, solderability, or surface 
treatment exceptions to those specifications. The order number (Valid Combination) for APL products is formed 
by a combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Device Class 
D. Package Type 
E. Lead Finish 

AMPA 23se 

tl-____ E. LEAD FINISH 
A - Hot Solder DIP 
C -Gold 

'----------D. PACKAGE TYPE 
B - 20·Pin Ceramic DIP (CD 020) 

'-------------C. DEVICE CLASS 
IB - Class B 

'-----------------B. SPEED OPTION 
-27 - 27 ns 

- A. DEVICE NUMBER/DESCRIPTION 
AmPAL2SSe 
20-Pin IMOX PAL-Based Sequencer 

Valid Combinations 

AMPAL2SS8-27 J 
i--A-M-PA-L2-SS-e--s-o ---1\ IBRA 

-SO - SO ns 

valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations or to check for newly released valid 
combinations. 

Group A Tests 

Group A Tests consist of Subgroups: 1, 2, 3, 7, B, 9, 1 D, 11 
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FUNCTIONAL DESCRIPTION 
The AmPAl23S8 is an advanced bipolar programmable array 
logic (PAl)-based sequencer. It contains a programmable 
array organized in the familiar sum-of-products structure. The 
structure of this device makes it particularly ideal" for state 
machine applications. Any design which employs the use 
of complex state functions is a prime candidate for. the 
AmPAL23S8. 

The block diagram on the front cover shows the basic 
architecture of this device; a maximum of 23 array inputs and 8 
outputs are available. The inputs are connected to a program­
mable AND array containing 135 product terms (PTs), of which 
124 are logical PTs and 11 are control PTs. Before program­
ming, the AND gates are connected to both. the true and 
complement of every input. By selectively programming fuses, 
the AND gates may be connected to only the true input, the 
complement input, or to neither type of input, establishing a 
logical "don't care". When both the true and complement 
fuses are left intact, a logical FALSE results on the output of 
the AND gate. An AND gate with all fuses blown will assume 
the logical TRUE state. The outputs of the AND gates are 
connected to OR gates. 

Variable Product Term (PT) Distribution 

The number of AND gates assigned to each OR gate varies in 
a fixed manner for each output as shown in the logic diagram 
(Figure 5). The OR- gate outputs feed dedicated registers and 
macrocells. Each OR gate averages approximately ten PTs for 
output registers and macrocells. This gives the capability of 
using from eight to twelve logical PTs on one output in a single 
clock cycle (no feedback necessary). Buried state registers 
(BSRs) have an average of eight PTs per OR gate, providing 
the capability of using from six to ten logical PTs in one BSR in 
a single clock cycle. 

Variable Output ArChitecture: Output logic 
Macrocells (OlMs) 

An innovation in logic design is the implementation on the 
AmPAL23S8 of variable output architecture on four of the 
outputs. These Output logic Macrocells (OlMs) are user 
programmable for a great deal of design flexibility. Each of the 
four OlMs can be independently programmed for eight" 
distinct configurations. The outputs can be either "registered" 
or "combinatorial;" they can also be individually programmed 
for active-HIGH or active-lOW polarity. Finally, the feedback 
paths which feed through the multiplexer back to the AND 
array can be programmed so that they originate either from 
the register or from the I/O pin. From the feedback multiplexer 
both the true and complement of the output going back to the 
array are available. All possible configurations of the OlMs are 
illustrated in Figures 4-1 through 4-8. For maximum flexibility, 
selection of output polarity and feedback path are kept 
independent of each other. 

Output Registers 

In addition to the four OlMs on the AmPAl23S8, there are 
also four output registers. The data on the output registers 
may be fed back to the array. When the output is disabled, the 
pin may be used as an external input. Since each of the eight 
outputs can obtain feedback from the pins associated with 
them, all eight of them provide the advantage of being usable 
dynamically as either inputs or outputs, significantly increasing 
design flexibility and possibilities. 

Burled State Registers (BSRs) 

One of the key features of the AmPAL23S8 is the six 
observable Buried State Registers (BSRs). All BSR outputs 
are fed directly back to the AND array for state machine 
implementation. In this manner, the advantage of having six 
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extra registers for state machine implementation is not paid for 
in output pins. The contents of each of the BSRs is observable 
on an associated pin through the use of the user-programma­
ble observability product term. 

The extensive user-programmable flexibility enhances the 
usefulness of this device for different types of state machine 
implementations. The possibility exists to create both the 
Mealy and Moore type of design in the same device. 

Programmable Output Polarity 

Each output has a user-programmable output polarity fuse 
which, when blown, indicates that the output will be active 
HIGH, and when intact, active lOW. The obvious benefit of 
this enhancement is the increased flexibility of design. With 
the choice of output polarity, there is no need to DeMorganize 
equations to fit the device, allowing for more efficient designs 
both in terms of the amount of time spent in design as well as 
effective utilization of the device. 

For further enhancement of the increased logic power of the 
AmPAL23S8, each output has a PT to control Output Enable 
(OE) with programmable polarity. 

PRESET/RESET 

To improve functionality at the system level, the AmPAl23S8 
has additional RESET and PRESET PTs. One PT controls 
Output Register and BSR PRESET, and one PT controls the 
RESET for these registers. When the Synchronous PRESET 
PT is asserted (HIGH), all registers are loaded with a HIGH on 
the next lOW-to-HIGH clock transition. When the Asynchro­
nous RESET PT is asserted, all registers are immediately 
loaded with a lOW, independent of the clock. These functions 
are particularly useful for applications such as system power­
up and RESET. 

PRELOAD 

In order to. simplify testing, the AmPAL23S8 is designed with 
PRELOAD circuitry that provides an easy method for testing 
logical functionality. PRELOAD allows any arbitrary "present 
state" values to be loaded into the OlMs, BSRs and Output 
Registers of this device. OlM Registers and BSRs are 
PRElOADed in separate cycles, allowing them to be PRE­
lOADed with different values. logic verification sequences 
can be significantly shortened, and all possible state se­
quences tested, reducing test time and development costs, 
and guaranteeing proper functionality in system. 

A typical functional test sequence would be to verify all 
possible state transitions for the device being tested. To verify 
these transitions requires the ability to set the state registers 
to an arbitrary "present state" value and to set the device 
inputs to any arbitrary "present input" value. Once this is 
done, the state machine is then clocked into a new state, or 
"next state," which can be checked to validate the transition 
from the "present state." In this way, any state transition can 
be checked. 

It is obvious that to attempt the debugging of a design using 
BSRs without the benefit of PRELOAD capability would be 
quite difficult. The combination of this feature and the BSRs 
being observable is virtually indispensible for efficient and 
trouble-free state machine design. 

Observablllty 

This extra ease of debugging the design comes from the use 
of the Observability (OBS) PT. When the OBS PT is selected, 
it disables six of the Output Registers and Macrocell buffers, 
and enables the BSR buffers onto the output pins associated 
with them, pins 13 through 18. When the OBS PT is not 
selected, the Output Registers and Macrocell buffers are 
enabled and the BSR buffers are disabled. When all the fuses 
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for this PT are intact. (i.e., OBS is not selected), the data from 
the BSRs will not be visible on the output pins, and the Output 
Registers and aLMs will be enabled . 

easily implemented programming algorithm, these products 
can be rapidly programmed to any customized pattern. Extra 
test words are preprogrammed during manufacturing to en­
sure extremely high field programming yields (> 98%), and 
provide extra test paths to achieve excellent parametric 
correlation. 

Processing. and Fuse Technology 

The AmPAL23S8 is manufactured using Advanced Micro 
Devices' IMOX oxide isolation process. This advanced pro­
cess permits an increase in density and a decrease in internal 
capacitance resulting in the fastest possible programmable 
logic devices. 

Platinum-Silicide was selected as the fuse link material to 
achieve a well controlled melt rate resulting in large, noncon­
ductive gaps that ensure very stable, long term reliability. 
Extensive operating testing has proven that this low-field, 
large-gap technology offers the best reliability for fusible link 
programmable logic. 

The AmPAL23S8 is fabricated with AMD's fast programming, 
highly reliable Platinum-Silicide fuse technology. Utilizing an 
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AR COUt.lON AS'\'NCH RESET 
SP COUt.lON SYNCH PRESET 
OBS COUt.lON oeSERVABIUTY L ________________________ ~ 

lEIU.I 

LD000172 

SO OUTPUT ENABLE POLARITY 

0 ENABLED HIGH 

1 ENABLED LOW 

S2 S3 OUTPUT CONFIGURATION 

0 0 ACTIVE LOW/REG/REG FEEDBACK 

0 1 ACTIVE LOW/REGIIO FEEDBACK 

1 o· ACTIVE LOW/COMB/REG FEEDBACK 

1 1 ACTIVE LOW/COMB/IO FEEDBACK 

0 0 ACTIVE HIGH/REG/REG FEEDBACK 

0 1 ACTIVE HIGH/REGIIO FEEDBACK 

1 0 ACTIVE HIGH/COMB/REG FEEDBACK 

1 1 ACTIVE HIGH/COMB/IO FEEDBACK 

o = UNBLOWN FUSE 
1 = BLOWN· FUSE 

Figure 1. Output Logic Macrocen (OLM) 
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Figure 2. Output Register With Polarity 
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Figure 3. Buried State Register (BSR) 
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Figure 4. Possible Configurations of the Output logic Macrocells (OlMs) 
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Figure 4. Possible Configurations of the Output logic Macrocells (OlMs) (Cont'd.) 
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ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 

Storage Temperature ............................ -65 to + 150°C Commercial (C) Devices 
Ambient Temperature with Temperature (T A) Operating Free Air ........ 0 to + 75°C 

Power Applied ............................................ + 125°C Supply Voltage (VCe) .................... +4.75 to +5.25 V 
Supply Voltage to Ground Potential Extended Commercial (E) Devices 

Continuous (Pin 20 to Pin 10) ............. -0.5 to +7.0 V Temperature (TA) ................................... -55°C Min. 
DC Voltage Applied to Outputs Temperature (T C) Operating Case , ......... + 125°C Max. 

(except during programming) ........... -0.5 to +VCC Max. Supply Voltage (VCC) .................... +4.50 to +5.50 V 
DC Voltage Applied to Outputs 

During Programming ........................................ 16 V Military (M) Devices 

Output Current into Outputs Temperature (T A) ................................... - 55°C Min. 

During Programming Temperature (T c) ................................ + 125°C Max. 

(Maximum duration of 1 second) .................... 200 mA Supply Voltage (VCC) .................... +4.50 to +5.50 V 

DC Input Voltage ................................. -0.5 to + 5.5 V 
DC Input Current ................................ -30 to + 5.0 mA Operating ranges define those limits between which the 

Stresses above those listed under ABSOLUTE MAXIMUM 
functionality of the device is guaranteed. 

RA TINGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

DC CHARACTERISTICS over operating range unless otherwise specified; included in Group A, Subgroup 1, 
2, 3 tests unless otherwise noted 

Parameter Parameter Typ. 
Symbol Description Test Conditions Min. (Note 1) MtI)c. Units 

IOH --3.2 mA C Devices 

f~ ;~<~ ,II VOH Output HIGH Voltage IOH--2 mA ElM Devices Volts 
Vee- Min., 
VIN - VIH or Vil IOl -16 mA C Devicfs . '\. 

" \\ :~:'\\ \O~O VOL Output LOW Voltage 
IOL-~\EIM~ 

Volts 

VIH Input HIGH level G"" .... d lOP! ~ O(~"~::: -\"2.!!\ 
\"",.» 

Volts (Note 2) ~ 

Vil "G,.,onlt\~~ ,A~~,,;)~.~ 
.~ 

(Note 2) Input lOW level 0.8 Volts 

III Input LOW Current ~\, ,)fee - M~;:\VI ,l\~li~ \,\ \. \ \pJ -10 -100 pA 

IIH Input HIGH yurrept tc;#'" .;Vce - M~.;;~ltJ,t-j.~Vj ~ 25 pA 

II IlJp!Jt ~<:u~.rt \ .... ~~y . \Vee -~XVlN liO~.5 V 1.0 mA 

Ise ~ G~~rt~4Uil C~t -" ~~Max., Your - 0.5 V (Note 3) -30 -45 -90 mA 

ICC \ p9.viWJ S4PP\Y"~uriJ NI\ \' ',';......? All Inputs - GND, Vec - Max. 200 mA 

VI 

" 
IDPOf Cia"" 'Voltag&."... .. Vee - Min., liN - -18 mA -0.9 -1.2 Volts 

IOZH \ . Qutput Lea)(,a"ge Current Vee - Max., Vil - 0.8 V I VO-2.7 V 100 

IOZl LANote 4) VIH - 2.0 V I VO-0.4 V -100 
pA 

Notes: 1. Typical limits are at Vee - 5.0 V and T A - 25°C. 
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are Included. 
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. 

Your - 0.5 V has been chosen to avoid test problems caused by tester ground degradation. 
4. 110 pin leakage Is the worst case of IOZX or IIX (where X - H or L). 

CAPACITANCE 

Parameter Parameter 
Symbol Description Test Conditions Typ. Units 

CIN 
I Pins 1, 11 10 

Input Capacitance VIN - 2.0 V @ f - 1 MHz I Other Pins 6 pF 

Cour Output Capacitance Your - 2.0 V @ f - 1. MHz 9 

Note: These parameters are not 100% tested, but are evaluated at Initial characterization and at any time the design is modified where 
capacitance may be affected. 
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KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS OUTPUTS 

MUST BE WILL BE 
STEADY STEADY 

-- MAY CHANGE WILLBE 

FROM H TO L CHANGING 
FROM H TOL 

.- MAY CHANGE 
WILL BE 
CHANGING FROM L TOH 
FROM L TOH 

- OON'TCARE; CHANGING; 
ANY CHANGE STATE 
PERMITTEO UNKNOWN 

H 
CENTER 

DOES NOT LINE IS HIGH 
APPLY IMPEDANCE 

"OFF" STATE 

KSOOOO10 

SWITCHING TEST CIRCUIT 

AC TEST LOAD 

5V~ 
81 

OUTPUT 0---...... ---... 

RZ 

TCOOl190 

TEST OUTPUT LOADS 

C Devices ElM Devices 

R1 I R2 R1 I R2 

300 I 390 390 I 750 

SWITCHING CHARACTERISTICS over operating range unless otherwise specified; included in Group A, 
Subgroup 7, 8, 9, 10, 11 tests unless otherwise noted 

C Devices ElM Devices 

-20 -25 -27 
Parameter Parameter Test Typ 

No. Symbol Description Conditions (Note 1) Min. Max. Min. Max. 

Input or Feedback to 
tpD Non-Registered Output 20 

tEA Input to Output Enable 25 

tER Input to Output Disable 

4 teal Clock to Output 20 

Reg. Feedback through Array 
tea2 to Combinatorial Output, 45 

Relative to External Clock 

6 ts 
Input or Feedback Setup 

22 25 Time 

tH Hold Time 

tPl 40 45 

tp2 30 35 40 

10 12 15 17 20 

11 33 2B.5 25 22.5 

12 40 33 2B.5 25 

13 ElM Devices 20 25 27 30 

14 R1 - 390 20 25 27 30 
R2 -750 

15 tAP 25 30 32 35 

Notes: 1. Typical limits are at Vee - 5.0 V and T A - 25°C. 
2. tpD Is tested with switch Sl closed and CL - 50 pF. 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

MHz 

MHz 

ns 

ns 

ns 

3. For three-state outputs, output enable times are tested with CL - 50 pF to the 1.5 V level; Sl is open for high-impedance to HIGH tests and 
closed for high-impedance to LOW tests. Output disable times are tested with CL - 5 pF. HIGH to high-impedance tests are made to an 
output voltage of VOH - 0.5 V with Sl open; LOW to high-impedance tests are made to the VOL + 0.5 V level with 51 closed. 
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PRELOAD OF OUTPUT IMACROCELL 
REGISTERS OR BURIED STATE REGISTERS 

All AmPAl23S8 registers are provided with circuitry to allow 
loading each register synchronously with a HIGH or LOW. 
Outputlmacrocell registers and buried state registers are 

1----10 

PIN I 
1\ 

PIN 2 VILP 

PIN 1 VILP 

VOlt 

REGISTERED 
OUTPUT VOL 

CHOOSE TO PREL OAD 
BURED REGISTERS 

OR OUTPUT'MACRO 
REGISTERS 

I 
I 

PRELOAD 
ENABLED 
OUTPUTS 
DISABLED 

Register 
Selection 

Buried 

OutputlMacro 

10 

Pin 5 

VHH 

~ 

OUTPUTS 
FORCED 
TOVIHP 
ORVLP 

<VIHP 

ID 

II 
I 

PRELOAD 
DATA 

CLOCKED 
IN 
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WF022285 

PRELOADed in separate cycles allowing outputlmacrocell 
registers and buried state registers to be PRELOADed with 
different values. PRELOAD will simplify testing since any state 
can be loaded into the registers to control testing sequences. 
The pin levels and timing necessary to perform the PRELOAD 
function are detailed below. Parameters are listed in the 
Programming Parameters table. 

10 

VHH 

VIHP 
VILP 

VHH 

VIHP 

VIHP 

VILP 

"\ 
\. 

10 

OUTPUT 
FORCING 
VOLTAGE 
REMOVED 

Level Forced on Register 
Output Pin· During 
PRELOAD Cycle 

VIHP 

VILP 

10-

\ 
\. 

PRELOAD 
DISABLED 

V1LP 

V1LP 

VOH 

VOL 

WF022292 

Register State 
After Cycle 

HIGH 

LOW 



POWER-UP RESET 

The registered devices in the AMD PAL Family have been 
designed with the capability to reset during system power-up. 
Following power-up, all registers will be reset to LOW. The 
output state will depend on the polarity of the output buffer. 
This feature provides an extra flexibility to the designer and is 
especially valuable in simplifying state-machine initialization. A 
timing diagram and parameter table follow. Due to the 

asynchronous operation of the power-up reset and the wide 
range of ways Vee can rise to its steady state, two conditions 
are required to ensure a valid power-up reset. These condi­
tions are: 

1. The Vee rise must be monotonic. 
2. Following reset, the clock input must not be driven from 

LOW to HIGH until all applicable input and feedback 
setup times are met. 

,~~----------------------------------------------------- VCC 

POWER ______________ 4 ..... V, rl--------tPR---------i 

REGISTERED 
OUTPUT 

CLOCK 

Parameter 
Symbol 

Parameter 
Description 

Power-Up 
Aeset Time 

ts 
Input or Feedback 
Setup Time 

tw Clock Width 

Programming and Verification 

The AmPAL23S8 is programmed and verified using AMD's 
standard programmable logic programming algorithm. The 
fuse to be programmed is selected by input line number (array 
row), product term (array column), and by one output at a time. 
The fuse is then programmed and verified by applying a simple 
sequence of voltages to two control pins (1 and 11). 

Input line numbers (0 through 46) are addressed using a full 
decode scheme via TIL levels on pins 6 through 9, where 6 is 
the least significant bit (LSB) and 9 is the most significant bit 
(MSB). Even numbered input lines represent the "true" 
version of a signal, and odd numbered lines represent the 
"complement." Input line addressing is shown in Table 1. 
Note that input lines 47 through 53 are reserved for further 
expansion. Also, input line 46 is employed in the selection of 
the fuses used for programming output polarity, feedback 
selection, and "registered" versus "combinatorial" output 
selection. 

Product terms (PTs) are addressed with the use of a 1-of-26 
addressing scheme on pins 2 through 5, where pin 2 is the 
LSB and pin 5 is the MSB. PT addressing is shown in Table 2. 
Note that the outputs with unassigned fuse numbers in Table 2 
will decode blank space for those decoding values. Logical 
PTs and architectural PTs are selected by the same address­
ing scheme. The specific decoding of architectural features is 
best shown in Table 2. 
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Min. Typ. Max. Units 

600 1000 ns 

See Switching Characteristics 

Fuse selection by output must be done one output at a time 
(following control pin 1 going to VHH) as shown in the 
Programming Waveform diagram. 

Once fuses have been selected, the simple programming and 
verification sequence may be completed as shown in the 
Programming Waveform diagram. AC and DC requirements for 
programming are shown in the Programming Parameters 
table. A detailed description of the programming algorithm is 
provided. 

Programming Yield 

AMD PALs have been designed to ensure extremely high 
programming yields ( > 98.5%). To help ensure that a part was 
correctly programmed once programming is completed, the 
entire fuse array should be re-verified at both low and high 
Vee. Ae-verification can be accomplished by reading all eight 
outputs in parallel rather than one at a time. This verification 
cycle checks that the array fuses have been blown and can be 
sensed by the outputs under varying conditions. 

AMD PALs contain many internal test features - including 
circuitry which allows AMD to test the ability of each part to 
perform programming before shipping, to assure high pro­
gramming yields and correct logical operation for a correctly 
programmed part. Programming yield losses are most likely 
due to poor programming socket contact, programming equip­
ment out of calibration, or improper use of equipment. 



PROGRAMMING PARAMETERS (T A = 25°C) 

Parameter Parameter 
Symbol Description Min. Typ. Max. Units 

Control Pin Extra High Level I Pins 1 & 11 @ 10-60 mA 10 11 12 
VHH I Pins 3, 4, 7, 8, & 9 

V 
Input Extra High Level During Programming & Verify 10 11 12 

VOP Program Voltage Pins 12 - 19 @ 15 - 200 mA 14 15 16 V 

VIHP Input High Level During Programming and Verify 2.4 5.0 5.5 V 

VILP Input Low Level During Programming and Verify 0.0 0.3 0.5 V 

Vccp Vcc During Programming (VCC-l00-200 mAl 5.0 5.2 5.5 V 

VCCL VCC During First Pass Verification 4.4 4.5 4.6 V 

VCCH VCC During Second Pass Verification 5.4 5.5 5.6 V 

VSlown Successful Blown Fuse Sense Level @ Output 0.3 0.5 V 

dVOp/dt Rate of Output Voltage Change 20 250 V1IlS 

dV1/ dt Rate of Control Voltage Change I Pins 1 & 11 20 1000 V1lls 

First Time Fusing Attempt 10 50 100 Ils 
tp 

Subsequent Attempts (maximum of 8) 4 5 10 ms 

to Delays Between Various Level Changes 100 1000 15,000 ns 

tv Period During which Output is Sensed for VSlown Level 100 1000 15,000 ns 

VONP Pull-Up Voltage On Outputs Not Being Programmed (During Programming) 5.0 Vccp 5.5 V 

IONP Current Limit Into Outputs Not Being Programmed (During Programming) 1.0 2.0 3.0 rnA 

4-116 



TTL PAL Programming Procedure 

Fusing Technique 

AMO's PAL devices have been designed to use a program­
ming algorithm which minimizes the requirements on the 
programmer while allowing the circuit to blow the Platinum­
Silicide fuse links quickly and reliably. Specifically, the follow­
ing sequence of events must take place: 

1. Vccp power is applied to the device; 

2. The appropriate input line number and column line num­
ber addresses are selected; 

3. Outputs and normal inputs are disabled; programming 
decode is enabled; 

4. The programming voltage is applied to one output; 

5. The fuse enable voltage is raised to enable a high­
threshold voltage gate. This action gates the current flow 

through the proper fuse, resulting in an open fuse in a few 
microseconds; , 

6. The output voltage is lowered (the programming voltage is 
removed); 

7. The outputs are enabled; 

8. The registers are clocked to enable the sensed bit to the 
output; 

9. Verify that the fuse has been blown (fuse 
blown = LOW). In the unlikely event that the fuse 
does not verify as blown, a maximum of eight subse­
quent attempts with much longer pulses can be ap­
plied to the fuse at a higher duty cycle; 

10. At the conclusiofl of programming, the device should be 
verified for correct data at all addresses, with two Vcc 
supply voltages, VCCH = 5.5 V, and VCCL = 4.5 V. 

PROGRAMMING WAVEFORMS 

U,8 

....... " 
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SSOCIATED OUTPUT A 
WITH PROOU 
TO BE PROGRA 

CT TERM 
MI.tEll 
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/( SELECTED INPUT LNE NUMBER AND 
COLUMN LINE NUMBER ADDRESSES STABLE :: 

Vw 

X VLp 

,'-----------_ ................................................................... , 
)( SELECTED NPUT LNE NUMBER AND 

COLUMN LNE NUMBER ADDRESSES STABLE 

"" ........ Vfti 
,,'··--\iHP 

:: X VLP 

Vfti 

/ I\_r",-, 
Vop 

/ 1\ VOH 
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AmPAL23S8 Programming Support Information 

Hardware Programmer Personality Socket 
Vendor Model(s) Module Adaptor 

Data 1/0 System 19, Under Under 
10525 Willow Road N.E. 29, or 100 Development Development 
Redmond, WA 98052 

Model60A Under Under 
or 60H Development Development 

Stag Microsystems Model PPZ Under Under 
528-5 Weddel Drive Development Development 
Sunnyvale, CA 94086 

Model ZL30 Under Under 
Development Development 

The machines noted above have been qualified by AMD to ensure high programming yields. Check with the factory to determine 
current status of equipment noted as "Under Development," or for other available models. 

Design Aid Software for AmPAL23S8 

Software Software 
Vendor Package Comments 

P-CAD 
Systems CUPL 
(408) 971-1300 

Advanced Developed and 
Micro Devices AmCUPL supported by P-CAD 
(408) 732-2400 Systems 

Data 1/0 
ABEL 

(206) 881-6444 
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TABLE 1. INPUT ADDRESSING 

Input Line Number 
Input Address State 
Line Pins 

Number 
9 8 7 6 

0 L L L L 

1 L L L H 

2 L L H L 

3 L L H H 

4 L H L L 

5 L H L H 

6 L H H L 

7 L H H H 

8 H L L L 

9 H L L H 

10 H L H L 

11 H L H H 

12 H H L L 

13 H H L H 

14 H H H L 

15 H H H H 

16 HH L L L 

17 HH L L H 

18 HH L H L 

19 HH L H H 

20 HH H L L 

21 HH H L H 

22 HH H H L 

23 HH H H H 

24 L HH L L 

25 L HH L H 

26 L HH H L 

Legend: L = VILP 
H = VIHP 

HH = VHH 
* Architecture Row 

Input 
Line 

Number 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46* 

47 

48 

49 

50 

51 

52 

53 
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Input Line Number 
Address State 

Pins 

9 8 7 6 

L HH H H 

H HH L L 

H HH L H 

H HH H L 

H HH H H 

L L HH L 

L L HH H 

L H HH L 

L H HH H 

H L HH L 

H L HH H 

H H HH L 

H H HH H 

HH HH L L 

HH HH L H 

HH HH H L 

HH HH H H 

HH L HH L 

HH L HH H 

HH H HH L 

· · · 
RESERVED 

· · · 
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TABLE 2. COLUMN NUMBER ADDRESSING 

Column Number 

OlM OlM REG REG REG REG 

0 0 0 0 0 0 

1 1 1 1 1 1 

2 2 2 2 2 2 

3 3 3 3 3 3 

4 4 4 4 4 4 

5 5 5 5 5 5 

6 6 6 6 6 6 

7 7 7 7 7 7 

8 8 8 

OBS 9 9 9 

F F 10 10 

R R 11 11 

OP OP OP OJ;> OP OP 

OE OE OE OE OE OE 

OEP OEP OEP OEP OEP OEP 

SP 

Pin Pin Pin Pin Pin Pin 
12 13 14 15 16 17 

Burled State Registers 

0 0 0 0 0 

1 1 1 1 1 

2 2 2 2 2 

3 3 3 3 3 

4 4 4 4 4 

5 5 5 5 5 

6 6 6 6 

7 7 7 7 

8 8 

9 9 

Pin Pin Pin Pin Pin Pin 
12 13 14 15 16 17 

Programming Access & Verify Pins 

Legend: L = VILP 
H =VIHP 

HH = VHH 

Column Number 
Select Address Description 

OlM OlM Pin States 

0 0 H L L L Logical PTs 

1 1 H L -L H Logical PTs 

2 2 H L H L Logical PTs 

3 3 H L H H Logical PTs 

4 4 H H L L Logical PTs 

5 5 H H L H Logical PTs 

6 6 H- H H L Logical PTs 

7 7 H H H H Logical PTs 

8 H HH L L Logical PTs 

9 H HH L H Observability 

F F H HH H L Feedback Select 

R R H HH H H Register ICombinatorial 

OP OP H L HH L Output Polarity 

OE OE H L HH H Output Enable (OE) 

OEP OEP H H HH L OE Polarity 

AR H H HH H SP = Sync. PRESET 
AR = Async. RESET 

Pin Pin Pin Pin Pin Pin 
18 19 5 4 3 2 

0 L L L L Logical PTs 

1 L L L H Logical PTs 

2 L L H L Logical PTs 

3 L L H H Logical PTs 

4 L H L L Logical PTs 

5 L H L H Logical PTs 

L H H L Logical PTs 

L H H H Logical PTs 

L HH L L Logical PTs 

L HH L H Logical PTs 

Pin Pin Pin Pin Pin Pin 
18 19 5 4 3 2 
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AMD Standard 24-Pin PAL * Family 
24-Pin IMOX™ Programmable Array Logic (PAL) Elements 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• AMD's superior IMOX technology • Reliability assured through more than 70 billion fuse 
- Guarantees tpD = 15 ns max hours of life testing with no failures 

0 Programming yields> 98% are realized via platinum- 0 Full AC and DC parametric testing at the factory through 
silicide fuse technology and the use of added test words on-board testing circuitry 

• Post Programming Functional Yield (PPFY) of 99.9% • > 3000V ESD input protection per pin 

• PRELOAD feature permits full logical verification • JEDEC-Standard LCC and PLCC pinout 

GENERAL DESCRIPTION 

AMD Standard 24-pin PAL devices are high-speed, electri- Five different devices are available, including both regis-
cally programmable array logic elements. They utilize the tered and combinatorial devices. All devices have user-
familiar sum-of-products (AND-OR) structure allowing users programmable output polarity on all outputs. A variety of 
to program custom logic functions to fit most applications speed options allow the designer maximum flexibility in 
precisely. Typically they are a replacement for low-power matching precise system requirements. The Product Selec-
Schottky SSI/MSI logic circuits, reducing chip count by tor Guide below shows the available speed options. The 
more than 5 to 1 and greatly simplifying prototyping and second table gives details about the functionality of the five 
board layout. available devices. 

Please see the following pages for Block Diagrams. 

PRODUCT SELECTOR GUIDE 

AMD PAL Speed/Power Families 

tpD ts tco ICC 10L 
ns (Max.) ns (Min.) ns (Max.) mA (Max.) mA (Min.) 

Family e Devices M Devices e Devices M Devices e Devices M Devices elM Devices e Devices M Devices 
Very High-Speed 15 20 15 20 12 13 210 24 12 ("B") Versions 
High-Speed 25 30 25 30 15 20 210· 24 12 ("A") Versions 
High-Speed, 
Half-Power 25 30 25 30 15 20 105 24 12 
("AL") Versions 
-20 & -25 Versions 20 25 20 25 13 15 165 24 12 (AmPAL20L 10 only) 

·Except AmPAL20L10 (ICC = 165 mAl 

Part Array Logic Output Outputs Package 
Number Inputs Enable Pins 

20L10 12 Dedicated, Ten (3)-Wide AND-OR Programmable 8 Bidirectional 24 8 Bidirectional 2 Dedicated 
12 Dedicated, Four (8)-Wide AND-OR Dedicated Registered 

20R4 4 Feedback, 24 
4 Bidirectional Four (7)-Wide AND-OR Programmable Bidirectional 

12 Dedicated, Six (8)-Wide AND-OR Dedicated Registered 
20R6 6 Feedback, 24 

2 Bidirectional Two (7)-Wide AND-OR Programmable Bidirectional 

20R8 12 Dedicated, Eight (8)-Wide AND-OR Dedicated Registered 24 8 Feedback 

20L8 14 Dedicated, Eight (7)-Wide AND-OR Programmable 6 Bidirectional 24 6 Feedback 2 Dedicated 

IMOX is a trademark of Advanced Micro Devices, Inc. 

I 
Pyt2li!<S!tiQn # Rev. Amendment 

'PAL Is a registered trademark of and is used under license from Monolithic Memories, Inc. 08792 A 10 
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BLOCK DIAGRAMS 

AmPAL20L10 

3 

3 
l-/ 

INPUTS ~ 
PROGRAMMABLE· 3 '"" AND ARRAY 

(40 X 40) 

3..-
l-/ 

3. 
l-/ 

3..-
l-/ 

3 
L:..../ 

3 
L-/ 

3 

3 

AmPAL20R4 

INPUTS 

CP 

·PAL is a registered trademark of and is used under license from Monolithic Memories, Inc. 
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INPUTI 
OUTPUT 

INPUTI 
OUTPUT 
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OUTPUT 
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INPUTI 
OUTPUT 

INPUTI 
OUTPUT 

INPUTI 
OUTPUT 

INPUTJ 
OUTPUT 
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:tao 
BLOCK DIAGRAMS (Cont'd.) 3C 

c 
AmPAL20R6 tJ) .... 

m 
O. 

~ 
0-
m ... 
0-

INPUTI 
OUTPUT N 

~ 
I 

INPUTS "'tJ 
PROGRAMMABLE· OUTPUT 

S· 
AND ARRAY "'tJ (40 X 64) l> 

r-
OUTPuT 

It 

." 
m 
~. 

OUTPUT -< 

OUTPUT 

OUTPUT 

OUTPUT 

INPUTI 
OUTPUT 

CP 

LDOO1170 

AmPAL20R8 

O. 

OUTPUT 

INPUTS 

PROGRAMMABLE· OUTPUT 
AND ARRAY 

(40 X 64) 

OUTPUT 

OUTPUT 

OUTPUT 

OUTPUT 

OUTPUT 

OUTPUT 

CP 

LDOO11BO 
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CONNECTION DIAGRAMS 
Top View 

DIPs* 

(NOTE 1) Vcc 
(NOTE 12) 

(NOTE 11) 

(NOTE 10) 

(NOTE 9) 

(NOTE 8) 
NC 

(NOTE 7) 

(NOTE 6) 

(NOTE 5) 

(NOTE 4) 

(NOTE 3) 

GI'IJ (NOTE 2) 

CD010250 

Note: Pin 1 is marked for orientation. 

22L10 20R4 20R6 

Notes: 1 I elK elK 

2 I OE OE 
3 0 I I 

4 I/O I/O I/O 
5 I/O I/O 0 

6 1/0 0 0 

7 1/0 0 0 

8 1/0 0 0 

9 1/0 0 0 

10 1/0 I/O 0 

11 1/0 1/0 1/0 

12 0 I I 

-Also available in 24-Pin Ceramic Flatpack. Pinouts identical to DIPs. 
--Also available in 28-Pin Plastic Leaded Chip Carrier. Pinouts identical to LCC. 

PIN DESIGNATIONS 

I'" Input 
I/O = Input/Output 
0'" Output 

Vee = Supply Voltage 
GND - Ground 
CLK = Clock 
OE "" Output Enable 
NC .. No Connect 
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ORDERING INFORMATION 

Standard Products 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) Is formed by 
a combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Package Type 
D. Temperature Range 
E. Optional Processing 

AMPAL20L8 _~ P C 

TI.. _____ E. OPTIONAL PROCESSING 
Blank - Standard processing 

B - Burn In 

L-________ D. TEMPERATURE RANGE 
C - Commercial (0 to + 75°C) 
E - Extended Commercial (- 55 to + 125°C) 

L-___________ C. PACKAGE TYPE 

P - 24-Pin Plastic DIP (PO 024) 
0- 24-Pin Ceramic DIP (CD 024) 
J - 28-Pin Plastic Leaded Chip Carrier 

(PL 028) 
L - 28-Pin Ceramic Leadless Chip Carrier 

(CL 028) 

L------------------B. SPEED/POWER 

~ A. DEVICE NUMBER/DESCRIPTION 
AMD Standard 24-Pin PAL Family 
24-Pin IMOX Programmable Array Logic 

Valid Combinations 

AMPAL20L 1 OBI -201 AI AL 

AMPAL20R481 AI AL 

AMPAL20R6BI AI AL 

AMPAL20R881 AI AL 

AMPAL20L881 AI AL 

PC, DC, 
DCB, DE, 
JC, LC, LE 

See Product Selector Guide 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported In volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMD's standard military grade 
products. 
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ORDERING INFORMATION (Cont'd.) 

APL Products 

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved 
Products List) products are fully compliant with MIL-STD-883C requirements. CPL (Controlled Products List) products are 
processed in accordance with MIL-STD-883C, but are inherently non-compliant because of package, solderability, or surface 
treatment exceptions to those specifications. The order number (Valid Combination) for APL products is formed by a 
combination of: A. Device Number 

8. Speed Option (if applicable) 
C. Device Class 
D. Package Type 
E. Lead Finish 

AMPAL20L6 

i 
L-. ----- E. LEAD FINISH 

A = Hot Solder DIP 
C = Gold 

'----------D. PACKAGE TYPE 
L = 24-Pin Ceramic DIP (CD 024) 
3 = 26-Pin Ceramic Leadless Chip 

Carrier (CL 026) 
K = 24-Pin Ceramic Flatpack (CF 024) 

L--------------C. DEVICE CLASS 
18 = Class 8 

L--________________ B. SPEED/POWER 

'--A. DEVICE NUMBER/DESCRIPTION 
AMD Standard 24-Pin PAL Family 
24-Pin IMOX Programmable Array Logic 

See Product Selector Guide 

Valid Combinations Valid Combinations 

AMPAL20L 10S/-2SIAIAL 

AMPAL20R4S1 AI AL 

AMPAL20R6S1 AI AL 

AMPAL20R6S1 AI AL 

AMPAL20L6S1 AI AL 

ISLA, 
183C, 
18KA 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations or to check for newly released valid 
combinations. 
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Group A Tests 

Group A tests consist of Subgroups 
1, 2, 3, 7, 8, 9, 10, & 11 
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FUNCTIONAL DESCRIPTION 

AMD Standard 24-Pln PAL Family 
Characteristics 

All members of the AMD Standard 24-Pin PAL Family have 
common electrical characteristics and programming proce­
dures. All parts are produced with a fusible link at each input to 
the AND gate array, and connections may be selectively 
removed by applying appropriate voltages to the circuit. 

Initially the AND gates are connected, via fuses, to both the 
true and complement of each input. By selective programming 
of fuses the AND gates may be "connected" to only the true 
input (by blowing the complement fuse), to only the comple­
ment input (by blowing the true fuse), or to neither type of input 
(by blowing both fuses) establishing a logical "don't care." 
When both the TRUE and complement fusos aro loft intact a 
logical false results on the output of the AND gate, while all 
fuses blown results in a logical-TRUE state. For combinatorial 
outputs, the AND gates are connected to fixed-OR gates 
whose outputs become device outputs. For registered outputs, 
the AND gates are connected to fixed-OR gates whose 
outputs become output register inputs. 

All parts are fabricated with AMD's last programming, highly 
reliable Platinum-Silicide Fuse technology. Utilizing an easily 
implemented programming algorithm, these products can be 
rapidly programmed· to any customized pattern. Extra' test 
words are pre-programmed during manufacturing to insure 
extremely high field programming yields (> 98%), and provide 
extra test paths to achieve excellent parametric correlation. 

Power-Up Reset 

The registered devices in the AMD PAL family have been 
designed to reset during system power-up. Following power­
up, all registers will be initialized to zero, setting all the outputs 
to a logic 1. This feature provides extra flexibility to the 
designer and is especially valuable in simplifying state ma­
chine initialization. 
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PRELOAD 

AMD PAL devices are designed with unique PRELOAD 
circuitry that provides an easy method of testing registered 
devices for logical functionality. PRELOAD allows any arbitrary 
state value to be loaded into the registered output of an AMD 
PAL device. 

A typical functional test sequence would be to verify all 
possible state transitions for the device being tested. This 
requires the ability to set the state registers into an arbitrary 
"present state" value and to set the device inputs to any 
arbitrary "present input" value. Once this is done, the state 
machine is clocked into a new state or "next state." The next 
state is then checked to validate the transition from the 
present state. In this way any state transition can be checked. 

Without PRELOAD, it is difficult and in some cases impossible 
to load an arbitrary present state value. This can lead to logic 
verification sequences that are either incomplete or excessive­
ly long. Long test sequences result when the feedback from 
the state register "interferes" with the inputs, forcing the 
machine to go through many transitions before it can reach an 
arbitrary state value. Therefore the test sequence will be 
mostly state initialization and not actual testing. The test 
sequence becomes excessively long when a state must be 
reentered many times to test a wide variety of input combina­
tions. 

In addition, complete logic verification may become impossible 
when states that need to be tested cannot be entered with 
normal state transitions. For example, even though necessary, 
the state entered when a machine powers up cannot be 
tested, because it cannot be entered from the main sequence. 
Similarly, "forbidden" or don't care states that are not 
normally entered need to be tested to ensure that they return 
to the main sequence. 

PRELOAD eliminates these problems by providing the capabil­
ity to go directly to any desired arbitrary state. Thus test 
sequences may be greatly shortened, and all possible states 
can be tested, greatly reducing test time and development 
costs, and guaranteeing proper in-system operation. 



0- 3 4-7 8-11 12-15 18-19 20-23 24-27 28-31 32-35 36-39 
0·39 0 ..,. 

1 
"- .tJ. 2 

120·159 -3 .... 
~ 

~ "."..--

8 ~ 

9 ~ 10 
11 If---7-/.:J 

3 
~ 

160·199 

280·319 

320·359 16 ..,. 
17 ~ 

~ 18 
-19 "U", 440-479 

~ 

4 
-1~ ~ 

-24 ..,. 
25 ~~ 26 

-27 -6+-'.:J 5 
.....,~ 

480·519 

600·639 

640-679 - 32 
33 

" .tJ. 34 .r-J -35 
~ 

... 760·799 

6 
~ ~ 

-40 

.tJ. 41 
"-42 1-(/ -43 ./ ... 

~ 

800·839 

920·959 

7 .. 
-U- ~ 

960·999 -48 ..,. 

1080·1119 

49 
:}i) ..L 50 

51 ..... \ .:J 8 
~ 

1120·1159 

1240·1279 

-56 
~.J. 57 

58 
59 -6+-'.:J 

9 
> 

1280·1319 64 

1400·1439 

65 ~~ 66 
-67 .r 7. J :J ..... \ 

10 
~- ,., 

1440·1479 _ 72 ..... 

1560-1599 -

73 .~ .,J. 74 1-r"1 "-75 ~ 
... 

11 
> 

0- 3 4 -7 8 -11 12-15 18-19 20-23 24-27 28-31 32-35 36-39 

Figure 1. AmPAL20L 10 Logic Diagram and JEDEC Fuse Numbering 

4·129 

23 

22 

21 

20 

19 

18 

17 

16 

15 

14 

13 

LD001210 

» 
3: 
c 
en -D) 
::J 
Co 
D) ... 
Co 

N 
0l:Io 

-b 
S· 
"tJ » r-.. 
." 
D) 

2. 
-< 



• ..I 
< a.. 
c a:: 
~ 
N 

'C a-
m 
'C 
c m -(J) 

C 
~ 
< 

, .... 
.... 

0-3 4 - 7 8-11 12-15 16-19 20-23 24-27 28-31 32-35 36-39 

~ 23 

()'39 - 8 
9 ..-.. 1 10 

11 

~"'-12 
13 

-, 14 
15 ~ 

3 

280·319 _ 

22 

32()'359 _ 16 
17 

'""' 1 18 
19 

"'-20 
21 

J 22 
23 

4 

600-639 _ 

21 

24 -25 

~~ 
26 
27 -< 
28 ~ :.,......-29 
30 
31 

5 
--1~ 

640-679 -

920·959 _ 

20 

960·999 - 32 
33 

~ 34 

~ 
35 
36 
37 
38 
39 

6 
--1~ 

1240·1279 -

19 

1280·1319 _ 40 
41 

~ 42 

~ 
43 ......... 
44 ./ 
45 
46 
47 

7 
--1~ 

1560·1599 -

18 

1600·1639 - 48 
49 ....-

~ 
50 
51 r---' ~ 

~ 
52 ./ 
53 
54 
55 

!.f> 

1880·1919 -

17 

1920·1959 - 56 
57 1J 58 
59 
60 
61 -, . I 62 ~ 63 

9 
--1~ 

""" 

2200·2239 -

16 

2240·2279 _ 64 
65 

R 1 66 
67 
68 ~ 
69 "t-" 

J 70 
71 -.:J 

10 
--Qo 

2520·2559 -

15 

11 
--1> 14 

L<J>- 13 

0- 3 4-7 8-11 12-15 16-19 20-2324-2728-3132-35 36-39 

LD001220 

Figure 2. AmPAL20R4 Logic Diagram and JEDEC Fuse Numbering 

4-130 



0- 3 4 - 7 8-11 12-15 16-19 20-23 24-2728-31 32-35 36-39 

23 

10 
11 0'39_~;. __ 1P+_ 
1~ 22 
14 

2S0-319 - 15 

320-359_16~1111111111~_~ 17 
18 
19 
20 
21 
22 

600-639-23 ~~ 21 

F1 ~ 
20 

5--1> 

960·999- 32 

PI ~ 
19 

33 
34 
35 
36 
37 
38 

1240·1279 - 39 

6--1> 

1280·1319 - 40 

F1 ~ 
18 

41 
42 
43 
44 
45 

1560·1599-
46 
47 

7 > 

1600·1639 - 48 

F1 ~ 
17 

49 
50 
51 
52 
53 
54 

1880-1919- 55 

8--1> 

1920-1959- 56 

Pl ~ 
16 

57 
58 
59 
60 
61 
62 

2200·2239 - 63 

1-1> 

0-3 4 - 7 8 - 11 12-15 18-19 20-23 24- 27 28-31 32-35 38- 39 

LD001290 

Figure 3. AmPAL20R6 Logic Diagram and JEDEC Fuse Numbering 

4·131 



..... .... 
0-3 • - 7 8-11 12-15 16-19 20-2324-27 28-3132-35 38-39 

2 
~ 23 

0·39 - 8 
9 

~~ 
10 
11 
12 
13 i U 
15 

3 

22 

280·319 -

320-359 - 16 
17 R 

~ 
18 
19 "'f-,. 

~ 
20 

~ 21 
22 --1 23 

"" 
• 

21 

6OQ.639 -

640-679 - 24 
25 r-I 

~ 
26 
27 

~ 
28 

~ 29 
30 , 
31 

5~ 

20 

920·959-

960·999- 32 
33 

~ 
34 -:r---... 35 

~ 
36 
37 
38 
39 

6 
~ 

19 

1240·1279 -

40 
t=l 41 

~ 
42 
43 . r-; 

~ 
44 
45 
46 
47 

7 :> 

1280·1319 -

18 

1560·1599 -

48 '--"\ 49 

~ 
50 

, 
51 

-;./ r1 52 
53 
54 
55 

4> 

1600·1639 -

17 

1880·1919 -

1920·1959 - 66 
57 

~ 
58 

~ r---... 59 

r1 eo ---, ~ 61 
62 
63 

9 
-1~ 

18 

2200·2239 -

64 
65 

l,-ee 
67 ""' 

~ 
68 ./ 
69 
70 
71 

10 
~ 

2240-2279 -

15 

2520-2559 -

11 
-1~ 

l<P-- 13 

0- 3 4- 7 8 -11 12-15 16-19 20-23 2.-2728-31 32-35 36-39 

LD001230 

Figure 4. AmPAL20R8 Logic Diagram and JEDEC Fuse Numbering 
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Figure 5. AmPAL20L8 Logic Diagram and JEDEC Fuse Numbering 
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PRELOAD of Registered Outputs 

The AMD Standard 24-Pin PAL devices incorporate circuitry to 
allow loading each register synchronously to either a HIGH or 

Power-Up Reset 

Level forced on registered output 
pin during PRELOAD cycle 

The registered devices in the. AMD Standard 24-Pin PAL 
Family have been designed with the capability to reset during 
system power-up. Following· power-up, all registers will be 
reset to LOW. The output state will be HIGH. This feature 
provides flexibility to the designer and is especially valuable in 
simplifying state-machine initialization. A timing diagram and 
parameter table are shown below. Due to the asynchronous , 

LOW state. This feature simplifies testing since any Initial state 
for the registers can be set to optimize test sequencing. 

The pin levels and timing necessary to perform the PRELOAD 
function are detailed below: . 

Register Q output state after 
cycle 

HIGH 

LOW 

operation of the power-up RESET and the wide range of ways 
Vee can rise to its steady state, two conditions are required to 
ensure a valid power-up RESET. These conditions are: 

1. The Vee rise must be monotonic. 

2. Following reset, the clock input must not be driven from 
LOW to HIGH until all applicable input and feedback 
setup times are met. 

,~~ .................................................................................................... vcc 

POWER ___ .... __ ............ _4V, i .... 1 _ .......... _ .... __ tpR ___ ..... ___ -t 

REGISTERED 
OUTPUT 

CLOCK 

Parameters 

tpR 

ts 

tw 

Description 

Power-Up 
Reset Time 

Input or Feedback 
Setup Time 

Clock Width 

4-134 

~ 
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Min. Typ. Max. Units 

600 1000 ns 

See Switching 
Characteristics 



ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 
Commercial (C) Devices 

Storage Temperature ............................ -65 to + 150°C 
Supply Voltage to Ground Potential 

Temperature (T A) ............... · ........... ··· .... 0 to + 75°C 

(Pin 24 to Pin 12) Continuous ............. -0.5 to + 7.0 V 
Supply Voltage (Vce) .................... + 4.75 to + 5.25 V 

Extended Commercial (E) Devices DC Voltage Applied to Outputs 
(Except During Programming) ....... -0.5 V to +VCC Max. Temperature (TA) ................................... -55°C Min. 

DC Voltage Applied to Outputs Temperature (Te) ................................ + 125°C Max. 

During Programming ........................................ 16 V Supply Voltage (Vce) .................... +4.50 to +5.50 V 

Output Current Into Outputs During Military (M) Devices* 
Programming (Max Duration of 1 sec) ............. 200 mA 

DC Input Voltage ................................. -0.5 to + 5.5 V 
Temperature (TA) ................................... -55°C Min. 

DC Input Current .................................. -30 to +5 mA 
Temperature (T e) ................................ + 125°C Max. 
Supply Voltage (Vce) .................... + 4.50 to + 5.50 V 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA TINGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

Operating ranges define those limits between which the 
functionality of the device is guaranteed. 

*Military product 100% tested at Tc = +25°C, + 125°C, 
and -55°C. 

DC CHARACTERISTICS over operating range unless otherwise specified; included in Group A, Subgroup 1, 
2, 3 tests unless otherwise noted 

Parameter 
Symbol 

VOH 

VOL 

VIH 
(Note 2) 

VIL 
(Note 2) 

IlL 

IIH 

II 

ISC 

ICC 

IOZH 

Parameter 
Description 

Output HIGH Voltage 

Output LOW Voltage 

Input HIGH Level 

Input LOW Level 

Input LOW Current 

Input HIGH Current 

Input HIGH Current 

Output Short-Circuit Current 

Test Conditions 

Vee = Min., 
VIN = VIH or VIL 

Vee = Min., 
VIN = VIH or VIL 

Guaranteed Input Logical HIGH 
Voltage for All Inputs 

Guaranteed Input Logical LOW 
Voltage for All Inputs 

Vce = Max., liN = 0.40 V 

Vee = Max., VIN = 2.7 V 

Vee = Max., VIN = 5.5 V 

IOH = -3.2 rnA COM'L 

IOH = -2 rnA MIL 

IOL = -24 rnA COM'L 

IOL = -12 rnA MIL 

Vee = Max., VOUT = 0.5 V (Note 3) ! '.\. 

COM'L \\ ~IL; , 

Input Clamp Voltage "-.. Vee = Min., '\IN'f :,1!f, mK 

OutPvt}.lea~ge \-puri~nt.~~~' ,; 
(Not~ 4) .. ' 

Vo = 2.7 V 

Vo = 0.4 V 

Notes:1;'Typical limits are alVcC =5.0 V and TA = 25°C. 

Typ. 
Min. (Note 1) Max. 

2.4 3.5 

0.5 

2.0 5.5 

O,~" 

-20' , -100/ 
............ ",<"'\" ""'25; 

\," ': } ''''1 .• 0 \. 
:,36 ·····:-;:,60·, -90 

, '\ .. '"'' 
\, ...... '\ I·' 

\ 210 

\ .... , ... :.':., .. " 165 

105 

210 

210 

105 

-0.9 -1.2 

100 

-100 

' ... 2,'}hese.are absolute valu~ with respect to device ground and all overshoots due to system or tester noise are included. 
3. Not. more than one output should be tested at a time. Duration of the short circuit should not be more than one second. 

VOUT = 0.5V·has been chosen to avoid test problems caused by tester ground degradation. 
4:,1/0 pin leakage is the worst .case of IOZX or IIX (where X = H or L). 

CAPACITANCE* 

Parameter 
Symbol 

CIN 

COUT 

Parameter 
Description 

Input Capacitance 

Output Capacitance 

Test Conditions 

VIN = 2.0 V I Pins 1, 13 
@ f= 1 MHz I Others 

VOUT = 2.0 V @ f = 1 MHz 

Typ. 

11 

6 

9 

Units 

V 

V 

V 

V 

p.A 

p.A 

rnA 

rnA 

rnA 

V 

p.A 

Units 

pF 

'These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance 
may be affected. 
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SWITCHING CHARACTERISTICS over operating range unless otherwise specified; included in Group A 
Subgroup 9, 10, 11 tests unless otherwise noted 

COMMERCIAL RANGE 

-20 Versions 
B Versions (Note 4) A & AL Versions 

Parameter Parameter Typ. Typ. Typo'~" 
<~ ~ ~~ 

'MI'~: \~ I 
No. Symbol Description (Note 1) Min. Max. (Note 1) Min. Max. (Not\ill) Max., Units 

Input or Feedback to Non-Registered ('«" 
\20 1\ 

i 
25 ' 1 tpo Output 20L 10, 20R4, 20R6, 20L8 15 

t::1 I "." 
'\ 

ns 

2 tEA 
Input to Output Enable 20L 10, 20R4, 

"'I t"" 
'(1S''\ \\ I j \'20\ ,\ \,~. ',; 25 ns 20R6, 20L8 \ , ; "' .... '.,. 

3 tER 'oput to O"'put 0;,,.,. 2OL1O, 2OR4, * \ ,\\\ \}6 ' \"',.",\, 
1\ I i ~20 \ I," \~" 25 ns 

20R6, 20L8 .. '''..., '( \ '; 

4 tpzx Pin 13 to Output Ena~l~e,20R4, 20~6,\ \ ! \\ \5\' \. ",-, . ~ .' ' 
20 ns 

20R8,#w'~'\ " , " ,\f \ l \ ,,~ 

Pin 13 to;"OutpIJtOisablfi 20R4, 20R(j. \. \ 1\'\" 
"~j '..~~ 

5 tpxz ~,20RIt''', \ \ ,,"':::~\ \ \ \ 
12 20 ns 

6 teo,··..., \ Clock tOl OjJtpiJt20R.f, 20RG. ;!ORS'\\"', 12 15 ns 

7 \ ' \, \ "Input or.Feltdtiack Setup T;i0l9'20R4, 15 25 ns ,ts \', .1 l 2OR6;~R8 \ . \ ... '~ ,/' , i \ 

B \ II{" ,/i Hold Tim~ '2OR4; 20R6, 20R8 0 0 ns 

9 \ tp', '. ClOCk Period (ts + teO) 27 40 ns 

10 'twtltWH Clock Width 10/12 15/15 ns 

11 fMAX, Maximum Frequency 37.0 25.0 MHz 

Notes: 1. Typical limits are at Vec - 5.0 V and T A - 25°C. 
2. tpo is tested with switch 5, closed and CL - 50 pF. 
3. For three-state outputs, output enable times are tested with CL - 50 pF to the 1.5 V level; 5, is open for high impedance to HIGH 

tests and closed for high impedance to LOW tests. Output disable times are tested with CL - 5 pF. HIGH to high impedance tests 
are made to an output voltage of VOH - 0.5 V with S, open; LOW to high impedance tests are made to the VOL + 0.5 V level 
with 5, closed. 

4. AmPAL20L10 only. 

MILITARY RANGE 

-25 Versions 
B Versions (Note 4) A & AL Versions f" < 

Parameter Parameter Typ. Typ. Typ.". 
>{f'''''- ", ! 

,,1 Units No. Symbol Description (Note 1) Min. Max. (Note 1) Min. Max. (N(jtEU) '~Mt~:" MaJ. 
1 tpo Input or Feedback to Non-Registered 20 r '-'25 '\ \ ,." 

.} ; 30, ns Output 20L 10, 20R4, 20R6, 20L8 <",'''\ '. ,,"\ \ '., 

Input to Output Enable 20L 10, 20R4, " as- i"",~ \ I ,) \ "-

. \ '\ \ \ . ',30 \ 2 tEA 1#,,\ ~:" 
, 25 ns 20R6, 20L8 , t \ \' ! i """",<-t 

Input to Output Disable 20L 10, 20R4, r !"~\ ~'\' "26, [\,,<,,~ \, ! "'25 " ~.~'/. \~' 3 tER \ 1,(.. '\ 30 ns 20R6, 20L8 ~, ~ \ 

4 tpzx 
Pin 13 to Output Enable..20R4, 20R6, \ \ ',\\\,\ \\ \ \; ail \ \ " .:,1 • 25 
20R8 .~'~''''; \ '\ \; 

i ns \ .~. ,,\ 

Pin 13 to putput'Oisable~,20fl4, 20R\ \ 1\.,,\\:,. .1 L 
\,#' 

5 tpxz ,.~OFla -,\ \ \ , ..... _\ \ \ . i 
20 25 ' ns 

6 tco~'~'.. \ "Clock 10 puwut20R4';' 20~6, ~20R8'~'\ \ .• , 15 20 ns 

7 \ .tS") .') \ \nput' or .' Feedback 5etup~;Tir;ne"20R4, 
20R6;N'29RB \' ... ·.;.,~#1 20 30 ns 

8 \t!i' .",,/ \,H~ld Tin1t,.20R,( 20R6, 20RB 0 0 ns 

9 'PI 'cldck Period (ts + teO) 35 50 ns 

10 tWlLtwH Clock Width 12/12 20/20 ns 

11 fMAX, Maximum Frequency 28.6 20.0 MHz 

Notes: 1. Typical limits are at Vec - 5.0 V and T A - 25°C. 
2. tpo is tested with switch 5, closed and CL - 50 pF. 
3. For three-state outputs, output enable times are tested with CL - 50 pF to the 1.5 V level; 5, is open for high impedance to 

HIGH tests and closed for high impedance to LOW tests. Output disable times are tested with CL - 5 pF. HIGH to high 
impedance tests are made to an output voltage of VOH - 0.5 V with 5, open; LOW to high impedance tests are made to the 
VOL + 0.5 V level with 5, closed. 

4. AmPAL20L 10 only. 
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INPUTS 

Note: C1 and C2 are to bypass Vee to ground. 

TEST OUTPUT LOADS 

Pin Name Commercial Military 

R1 200 n 390 n 
R2 390 n 750 n 
C1 1 JiF 1 JiF 

C2 0.1 JiF 0.1 JiF 

CL 50 pF 50 pF 
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INPUTS, 110, "!"I"rrnl~----'\·ll"I 
REGISTEREO 

fEEDBACK .J.J::J:.=I'------II"" 

CP 

REGISTERED 
OUTPUTS: 

KEY TO TIMING DIAGRAM 

WAVEFORM 

--JJJIff 

--H 

INPUT 

PROGRAM/VERIFY 
CIRCUITRY 

INPUTS 

MUST BE 
STEADY 

MAY CHANGE 
FROM H TO L 

MAY CHANGE 
FROM L TO H 

DON'T CARE; 
ANY CHANGE 
PERMITTED 

DOES NOT· 
APPLY 

OUTPUTS 

WILL BE 
STEADY 

WILL BE 
CHANGING 
FROM fl TO L 

WILLBE 
CHANGING 
FROM L TOH 

CHANGING; 
STATE 
UNKNOWN 

CENTER 
LINE IS HIGH 
IMPEDANCE 
"OFF"STATE 

KSOOOO10 

SWITCHING WAVEFORMS 

INPUT CIRCUITRY 

AX 

PROGRAII/VERIfY 
CIRCUITRY 

OUTPUT CIRCUITRY 

4·138 

FROM 
SENSE 

AMP 

OUTPUT 
DISABLE 

Vee 

INPUT 
to ARRAY 

WF002571 

IC000720 

OUTPUT 

PROGRAMMING 
CURRENT PATH 

IC000801 



Programming and Verification Security Fuse Programming 

AMD Standard 24-Pin PAL Family devices are programmed A single fuse is provided on each device to prevent unautho-

and verified using AMD's standard programmable logic algo- rized copying of PAL fuse patterns. Once blown, the circuitry 

rithm. The fuse to be programmed is selected by input line enabling fuse verification and registered output PRELOAD is 

number (array row), product term (array column), and by permanently disabled. 

output (one at a time). The fuse is then programmed and Programming of the security fuse is the same as an array fuse. 
verified by applying a simple sequence of voltages to two Verification of a blown security fuse is accomplished by 
control pins (1 and 13). . verifying the whole fuse array as if every fuse is blown. 

Input line numbers are addressed using a full decode scheme Programming Yield 
via TTL levels on pins 6-11 where 6 is the LSB and 11 is the 

AMD PAL devices have been designed to ensure extremely MSB. Even-numbered input lines represent the true version of 
a signal and odd-numbered lines represent the complement. high programming yields (> 98%). To help ensure that a part 

Input line addressing is shown in Table 1. was correctly programmed, once programming is completed, 
the entire fuse array should be verified at both LOW and HIGH 

Product terms are addressed using a 1-of-16 addressing VCC. Reverification can be accomplished by reading all ten 
scheme on pins 2-5 where pin 2 is the LSB and 5 is the MSB. outputs in parallel rather than one at a time. This verification 
Product term addressing is shown in Table 2. Logical product cycle checks that the array fuses have been blown and can be 
terms are selected via TTL levels on the four addressing pins. sensed by the outputs under varying conditions. 

Fuse selection by output must be done one output at a time AMD PAL devices contain many internal test features, includ-

(following control pin 1 going to VHH), as shown in the ing circuitry and extra fuses which allow AMD to test the ability 

programming· timing diagram. of each part to perform programming before shipping, to 
assure high programming yields and correct logical operation 

Once fuses have been selected, the Simple programming and for a correctly programmed part. Programming yield losses are 
verification sequence may be completed as shown in the most likely due to poor programming socket contact, program-
programming timing diagram. AC and DC requirements for ming equipment out of calibration, or improper usage of said 
programming are shown in the programming parameter table. equipment. 

PROGRAMMING PARAMETERS TA = 25°C 

Parameter Parameter 
Symbol Description Min. Typ. Max. Units 

VHH Control Pin Extra High Level 
IPin 1 @ 5-10 mA 10 11 12 
IPin 13 @ 5-10 mA 

V 
10 11 12 

VOP Program Voltage Pins 14-23 @ 15-200 mA 14 15 16 V 

VIHP Input HIGH Level During Programming and Verify 2.4 5 5.5 V 

VILP Input LOW Level During Programming and Verify 0.0 0.3 0.5 V 

Vccp Vcc During Programming @ ICC - 50·275 mA 5 5.2 5.5 V 

VCCL VCC During First Pass Verification @ ICC - 50-275 mA 4.4 4.5 4.6 V 

VCCH VCC During Second Pass Verification @ ICC - 50-275 mA 5.4 5.5 5.6 V 

VBlown Successful Blown Fuse Sense Level @ Output 0.3 0.5 V 
Vop/dt Rate of Output Voltage Change 20 250 V/IlS 

dV13/ dt Rate of Fusing Enable Voltage Change (Pin 13 Rising Edge) 100 1000 V/lls 

tp 
Fusing Time First Attempt 40 50 100 /lS 
Subsequent Attempts 4 5 10 ms 

to Delays Between Various Level Changes 100 200 1000 ns 

tv Period During which Output is Sensed for VBlown Level 500 ns 

VONP Pull-Up Voltage On Outputs Not Being Programmed Vccp-0.3 Vccp Vccp+ 0.3 V 
R Pull-Up Resistor On Outputs Not Being Programmed 1.9 2 2.1 kn 
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Design Aid Software for AMD Standard 24-Pln PAL Family 

Name 

ABEL 

CUPL 

AmCUPL 

Name 

Data 1/0 
10525 Willow Road N.E. 
Redmond. WA 93052 

Stag Microsystems 
528-5 Weddell Drive 
Sunnyvale. CA 94086 

Valley Data Sciences 
2426 Charleston Road 
Mountain View. CA 94043 

PINS 
2·11 

PIN1 

PROGRAMMED 
OUTPUT 

PIN 13 

Vendor Versions Notes 

Data 1/0 
IBM PC 

(206) 881-6444 VAXIVMS 
VAXIUNIX 

IBM PC 
P-CAD Systems VAXIVMS 
(408) 971-1300 VAXIUNIX 

CPM 80/86 

Advanced Micro Devices Supported by 
(408) 732-2400 IBM PC P-CAD Systems 

AMD Qualified Programmers 

Programmer 
Model(s) AMD PAL Personality Module Socket Adapter 

Systems 19. 29 950-1942-0044 303A-011A 

60 N/A Under Development 

Model PPZ Under Development 
On Board 

ZL30 Under Development 

160 Series Under Development On Board 

. PROGRAMMING TIMING DIAGRAM 

.INPUT LINE NUMBER AND PRODUCT TERM LINE NUMBER ADDRESSES 

r-------------------,~--------------------------------~----v~ 

I_--~'~------------------ V_ 

'"""""----------- vK.P 

r-~----\~----_7----------~----~-------------------- v~ 

----1--10-
10 

'"""""___________ v~ 

~----------- vOl. 

'""""" .... ---------- VHH 

'"-------_ VII.P 

IV 10 CYCLE 
ENDS 

1-----PROGRAMMING--------!----------VERIFY-------_I 

PFOO1101 
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TABLE 1. INPUT ADDRESSING 

Input 
Line 
Number 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

L = VILP 
H = VIHP 

6 

L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
H 
H 
H 
H 
H 
H 
H 
H 

Input Line Number 
' Address Pin States 

7 8 9 10 

L L L L 
L L L L 
L L L H 
L L L H 
L L H L 
L L H L 
L L H H 
L L H H 
L H L L 
L H L L 
L H L H 
L H L H 
L H H L 
L H H L 
L H H H 
L H H H 
H L L L 
H L L L 
H L L H 
H L L H 
H L H L 
H L H L 
H L H H 
H L H H 
H H L L 
H H L L 
H H L H 
H H L H 
H H H L 
H H H L 
H H H H 
H H H H 
L L L L 
L L L L 
L L L H 
L L L H 
L L H L 
L L H L 
L L H H 
L L H H 
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L 
H 
L 
H 
L 
H 
L 
H 
L 
H 
L 
H 
L 
H 
L 
H 
L 
H 
L 
H 
L 
H 
L 
H 
L 
H 
L 
H 
L 
H 
L 
H 
L 
H 
L 
H 
L 
H 
L 
H 



TABLE 2·1. PRODUCT TERM ADDRESSING (AmPAL20L 10) 

Product Term Select 
Address Pin Programming Access and Verify Pin 

5 4 3 2 23 22 21 20 19 18 17 16 15 14 

L L L L .. .'<0 .. '." [{;'.8 . 1& 24 32 40 46 56 64 72 

L L L H .... ',j .. ' 
~; ~; . ,25 33 41 49 57 66 .. 13 

L L H L ,. ,~i! i,. :/ .. '10,:.' : 1&, 2e 34 42 50 58 '. .... ee 74", .. 
L L H H ':'3;,"';' . " 11:, 19 27 36 43 51 59 67 7.5···· 

H H H H .SF'. .. 

L - VILP Loglcall Architectural Product Term Line Number 
H - VIHP 

OE - Output Enable 
SF - Security Fuse 

TABLE 2·2. PRODUCT TERM ADDRESSING (AmPAL20R4) 

Product Term Select 
Address Pin Programm!ng Accc:::: and Verify Pin 

5 4 3 2 23 22 21 20 19 18 17 16 15 
'" L L L L .. - 8 16 24 32 40 48' .56 ! 64 

L L L H ,i ';;;;. ~9 17. 25 33 41 49 ,57 65 

L L H L ',- '-,", ' 10 18 26 34 42 50 58 66' 

L L H H '-' .. ,11, 19 27 35 43 51 59 , 67 " ; >., , ----1----I--~ 
L H L L . - ,~12 20 28 . , 36 44 62 .60 .. ' 68 
L H L H , .... ~ 13 21 29 37 45 53 61 69, ' 

L H H L .'. " 
;14, ·22 30 38 46 54 62 70, 

L H H H , .. , -, 15 23 . 31 39 47 55 63 71 

H H H H SF '. 

L - VILP Loglcall Architectural Product Term Line Number 
H - VIHP 

OE - Output Enable 
SF - Security Fuse 
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TABLE 2-3. PRODUCT TERM ADDRESSING (AmPAL20R6) 

Product Term Select 
Address Pin Programming Access and Verify Pin 

5 4 3 2 23 22 21 20 19 18 17 16 15 

L L L L - 8 16 24 32 40 48 56 64 

L L L H - 9 17 25 33 41 49 57 65 

L L H L - 10 18 26 34 42 50 58 66 

L L H H - 11 19 27 35 43 51 59 67 

L H L L - 12 20 28 36 44 52 60 68 

L H L H - 13 21 29 37 45 53 61 69 

L H H L - 14- 22 30 38 46 54 62 70 

L H H H - 15 23 31 39 47 55 63 71 

H H H H SF 

L = VILP Loglcall Architectural Product Term Line Number 
H = VIHP 

OE = Output Enable 
SF = Security Fuse 

TABLE 2-4. PRODUCT TERM ADDRESSING (AmPAL20R8) , 

Product Term Select 
Address Pin Programming Access and Verify Pin 

5 4 3 2 23 22 21 20 19 18 17 16 15 

L L L L - 8 16 24 32 40 48 56 64 

L L L H - 9 17 25 33 41 49 57 65 

L L H L - 10 18 26 34 42 50 58 66 

L L H H - 11 19 27 35 43 51 59 67 

L H L L - 12 20 28 36 44 52 60 68 

L H L H - 13 21 29 37 45 53 61 69 

L H H L - 14 22 30 38 46 54 62 70 

L H H H - 15 23 31 39 47 55 63 71 

H H H H SF 

L = VILP LogicalfArchitectural Product Term Line Number 
H = VIHP 

OE = Output Enable 
SF = Security Fuse 
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TABLE 2·5. PRODUCT TERM ADDRESSING (AmPAL20L8) 

Product Term Select 
Address Pin Programming Access and Verify Pin 

5 4 3 2 23 22 21 20 19 18 17 

L L L L - 8 16 24 32 40 48 

L L L H - 9 17 25 33 41 49 

L L H L - 10 18 26 34 42 50 
L L H H - 11 19 27 35 43 51 

L H L L - 12 20 28 36 44 52 

L H L H - 13 21 29 . 37 45 53 

L H H L - 14 22 30 S8 46 54 

L H H H - 15 23 31 39 41 55 

H H H H SF 

L = VILP Loglcall Architectural Product Term Line Number 
H = VIHP 

OE = Output Enable 
SF = Security Fuse 
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AMD Enhanced 24-Pin PAL* Family 
24-Pin IMOX™ Programmable Array Logic (PAL) Elements 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• AMD's superior IMOX technology • PRELOAD feature permits full logical verification 
- Guarantees tpD = 15 ns max • Reliability assured through more than 70 billion fuse 

• Individually programmable output polarity on each out- hours of life testing with no failures 
put • Full AC and DC parametric testing at the factory through 

• Eight logical product terms per output on-board testing circuitry 

• Programming yields> 98% are realized via platinum- • > 3000V ESD input protection per pin 
silicide fuse technology and the use of added test words • JEDEC-Standard LCC and PLCC pinout 

• Post Programming Functional Yield (PPFY) of 99.9% 

GENERAL DESCRIPTION 

AMD Enhance'd 24-pin PAL devices are high-speed, electri- Five different devices are available, including both regis-
cally programmable array logic elements. They utilize the tered and combinatorial devices. All devices have user-
familiar sum-of-products (AND-OR) structure allowing users programmable output polarity on all outputs. A variety of 
to program custom logic functions to fit most applications speed options allow the designer maximum flexibility in 
precisely. Typically they are a replacement for low-power matching precise system requirements. The Product Selec-
Schottky SSIIMSI logic circuits, reducing chip count by tor Guide below shows the available speed options. The 
more than 5 to 1 and greatly simplifying prototyping and second table gives details about the functionality of the five 
board layout. Additional product terms, two additional available devices. 
outputs, and programmable output polarity are enhance-
ments over industry-standard 24-pin PAL devices. Please see the following pages for Block Diagrams. 

PRODUCT SELECTOR GUIDE 

AMD PAL Speed/Power Families 

tpD ts tco Icc 10L 
ns (Max.) ns (Min.) ns (Max.) rnA (Max.) rnA (Min.) 

Family e Devices M Devices e Devices M Devices e Devices M Devices elM Devices e Devices M Devices 

Very High·Speed 15 20 15 20 12 15 210 24 12 ("B") Versions 

High-Speed 25 30 25 30 15 20 210 24 12 (" A") Versions 
High-Speed, 
Half-Power 25 30 25 30 15 20 105 24 12 
(" AL") Versions 

Part Array Logic Output Outputs/Polarity Package 
Number Inputs Enable Pin!. 

22Pl0 12 Dedicated, Ten (B)-Wide AND-OR Programmable Bidirectional/Programmable 24 10 Bidirectional 

10 Dedicated, Four (B)-Wide AND-OR Dedicated Registered/Programmable 
20RP4 4 Feedback, 24 

6 Bidirectional Six B-Wide AND-OR Programmable Bidirectional/Programmable 

10 Dedicated, Six (B)-Wide AND-OR Dedicated Registered/Programmable 
20RP6 6 Feedback, 24 

4 Bidirectional Four B-Wide AND-OR Programmable Bidirectional/Programmable 

10 Dedicated, Eight (B)-Wide AND-OR Dedicated Registered/Programmable 
20RPB B Feedback, 24 

2 Bidirectional Two B-Wide AND-OR Programmable Bidirectional/Programmable 

20RP10 10 Dedicated, Ten (B)-Wide AND-OR Dedicated Registered/Programmable 24 10 Feedback 

'PAL is a registered trademark of and is used under license from Monolithic Memories. Inc, 

I 
Publication # Rev,' Amendment 

08791 A /0 
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BLOCK DIAGRAMS 

AmPAL22P10 

12 

PROGRAMMABLE 
AND ARRAY 

(44 X 90) 

AmPAL20RP4 

INPUT! 
ouPuY 

INPUT! 
OUTPUT 

INPuTI 
OUTPUT 

I~PUTI 

OUTPUT 

tNPuTi 
OUTPUT 

T~!":.JT 

OUTPUT 

INPuTI 
OUTPUT 

INPuTI 
OUTPUT 

INPUTI 
OUTPUT 

INPUli 
OUTPUT 

LDOO1100 

INPUTI 
ouTPuT 

INPUTI 
OUTPUT INPUTS.....,.--.---..L-----' 

PROGRAMMABLE- r:~====~~==~==~~====~ AND ARRAY r:: 
(40 X 86) 

"PAL is a registered trademark of and is used under license from Monolithic Memories, Inc_ 
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INPUT! 
OUTPUT 

1----t..:;>O--~ OUTPUT 

l--CiO-C> OUTPUT 

INPUTI 
OUTPUT 

INPUT/ 
OUTPUT 

INPUT! 
OUTPUT 

LD001110 



BLOCK DIAGRAMS (Cont'd.) 

AmPAL20RP6 

iNPUTS 

PROGRAMMABLE· 
AND ARRAY 

(40 X 84) 

AmPAL20RP8 

10 
INPUTS 

PROGRAMMABLE· 
AND ARRAY 

(40 X 82) 

4·147, 

INPUTI 
OUTPUT 

INPUT/ 
OUTPUT 

OUTPUT 

OUTPUT 

OUTPUT 

OUTPUT 

OUTPUT 

OUTPUT 

INPUT! 
OUTPUT 

INPUTI 
OUTPUT 

LDOO1120 

INPUTI 
OuTPuT 

OUTPUT 

OUTPUT 

INPUTI 
OUTPUT 

LD001130 
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BLOCK DIAGRAMS (Cont'd.) 

AmPAL20RP10 

OE ~~------------------------------------------------~ 

OUTPuT 

INPUTS 

PRO~~t~~tf}E' ~================:j~--~~ 
(40 X 80) ~-f:»-~ 

I--f:»-c> OUTPUT 

I--~k>-C> OuTPuT 

I--f:»-c> OUTPUT 

I--~k>-c> OUTPUT 

LD001140 
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CONNECTION DIAGRAMS 
Top View 

DIPs* 

(NOTE 1) VCC 

(NOTE 12) 

(NOTE 11) 

(NOTE 10) 

(NOTE 9) 

(NOTE B) 
NC 

(NOTE 7) 

(NOTE 6) 

(NOTE 5) 

(NOTE 4) 

(NOTE 3) 

Gf'D (NOTE 2) 

CD010250 

Note: Pin 1 is marked for orientation. 

22P10 20RP4 20RP6 

Notes: 1 I ClK ClK 

2 I OE OE 

3 110 I/O I/O 

4 110 I/O I/O 

5 I/O I/O 0 

6 I/O 0 0 

7 I/O 0 0 

8 I/O 0 0 

9 I/O 0 0 

10 110 I/O 0 

11 I/O I/O I/O 

12 I/O I/O I/O 

-Also available in 24-Pin Ceramic Flatpack. Pinouts identical to DIPs . 
•• Also available in 28-Pin Plastic leaded Chip Carrier. Pinouts identical to lCC. 

PIN DESIGNATIONS 

I = Input 
I/O = Input/Output 
0= Output 

Vec = Supply Voltage 
GND = Ground 
ClK = Clock 
OE = Output Enable 
NC = No Connect 
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ORDERING INFORMATION 

Standard Products 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by 
a combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Package Type 
D. Temperature Range 
E. Optional Processing 

AMPA _22P10 JL P -9-

TI-_____ E. OPTIONAL PROCESSING 
Blank - Standard processing 

B - Burn In 

'---------- D. TEMPERATURE RANGE 
C - Commercial (0 to + 75°C) 
E - Extended Commercial (-55 to + 125°C) 

L---------------C. PACKAGE TYPE 
P - 24-Pin Plastic DIP (PO 024) 
o a 24-Pin Ceramic DIP (CD 024) 
J - 28-Pin Plastic Leaded Chip Carrier 

(PL 028) 
L - 28-Pin Ceramic Leadless Chip Carrier 

(CL 028) 

~-----------------------------B. SPEED/POWER 
See Product Selector Guide 

'----- A. DEVICE NUMBER/DESCRIPTION 
AMD Enhanced 24-Pin PAL Family 
24-Pin IMOX Programmable Array Logic 

Valid Combinations Valid Combinations 

AMPAL22P1 OBI AI AL 

AMPAL20RP4BI AI AL 

AMPAL20RP6BI AI AL 

AMPAL20RP8BI AI AL 

AMPAL20RP1 OBI AI AL 

PC, ~C, 
OCB, DE. 
JC, LC, LE 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMD's standard military grade 
products. 

4-150 



ORDERING INFORMATION (Cont'd.) 

APL Products 

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved 
Products List) products are fully compliant with MIL-STD-883C requirements. CPL (Controlled Products List) products are 
processed in accordance with MIL-STD-883C, but are inherently non-compliant because of package, solderability, or surface 
treatment exceptions to those specifications. The order number (Valid Combination) for APL products is formed by a 
combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Device Class 
D. Package Type 
E. Lead Finish 

AMPAL22P10 

.AIL.. -----E. LEAD FINISH 
A = Hot Solder DIP 
C = Gold 

'----------0. PACKAGE TYPE 
L = 24-Pin Ceramic DIP (CD 024) 
3 = 28-Pin Ceramic Leadless Chip 

Carrier (CL 028) 
K = 24-Pin Ceramic Flatpack (CF 024) 

'--------------c. DEVICE CLASS 
IB = Class B 

'------------------B.SPEED/POWER 
See Product Selector Guide 

- A. DEVICE NUMBERIDESCRIPTION 
AMD Enhanced 24-Pin PAL Family 
24-Pin IMOX Programmable Array Logic 

Valid Combinations 

AMPAL22P10B/AIAL 

AMPAL20RP4BI AI AL 

AMPAL20RP6B/AIAL 

AMPAL20RP6BI AI AL 

AMPAL20RP1 OBI AI AL 

IBLA, 
IB3C, 
IBKA 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations or to check for newly released valid 
combinations. 

Group A Tests 

Group A tests consist of Subgroups 
1, 2, 3, 7, 8, 9, 10, & 11 

4-151 



to 
..J 
<1: 
D. 

C 
a:: 

I 
"It 
N 

'C 
Q) 
U 
C 
C'a .c 
c 
w 
C 
~ 
<1: 

FUNCTIONAL DESCRIPTION 

AMD Enhanced 24-Pln PAL Family 
Characteristics 

All members of the AMD Enhanced 24-Pin PAL Family have 
common electrical characteristics and programming proce­
dures. All parts are produced with a fusible link at each input to 
the AND gate array, and connections may be selectively 
removed by applying appropriate voltages to the circuit. 

Initially the AND gates are connected, via fuses, to both the 
true and complement of each input. By selective programming 
of fuses the AND gates may be "connected" to only the true 
input (by blowing the complement fuse), to only the comple­
ment input (by blowing the true fuse), or to neither type of input 
(by blowing both fuses) establishing a logical "don't care." 
When both the true and complement fuses are left intact a 
logical false results on the output of the AND gate, while all 
fuses blown results in a logical true state. For combinatorial 
outputs, the AND gates are connected to fixed-OR gates 
whose outputs become device outputs. For registered outputs, 
the AND gates are connected to fixed-OR gates whose 
outputs become output register inputs. 

All parts are fabricated with AMD's fast programming, highly 
reliable Platinum-Silicide Fuse technology. Utilizing an easily 
implemented programming algorithm, these products can be 
rapidly programmed to any customized pattern. Extra test 
words are pre-programmed during manufacturing to insure 
extremely high field programming yields (> 98%), and provide 
extra test paths to achieve excellent parametric correlation. 

Power-Up Reset 

The registered devices in the AMD PAL family have been 
designed to reset during system power-up. Following power­
up, all registers will be initialized to zero, setting all the outputs 
to a logic 1. This feature provides extra flexibility to the 
designer and is especially valuable in simplifying state ma­
chine initialization. 
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PRELOAD 

AMD PAL devices are designed with unique PRELOAD 
circuitry that provides an easy method of testing registered 
devices for logical functionality. PRELOAD allows any arbitrary 
state value to be loaded into the registered output of an AMD 
PAL device. 

A typical functional test sequence would be to verify all 
possible state transitions for the device being tested. This 
requires the ability to set the state registers into an arbitrary 
"present state" value and to set the device inputs to any 
arbitrary "present input" value. Once this is done, the state 
machine is clocked into a new state or "next state." The next 
state is then checked to validate the transition from the 
present state. In this way any state transition can be checked. 

Without PRELOAD, it is difficult and in some cases impossible 
to load an arbitrary present state value. This can lead to logic 
verification sequences that are either incomplete or excessive­
ly long. Long test sequences result when the feedback from 
the state register "interferes" with the inputs, forcing the 
machine to go through many transitions before it can reach an 
arbitrary state value. Therefore the test sequence will be 
mostly state initialization and not actual testing. The test 
sequence becomes excessively long when a state must be 
reentered many times to test a wide variety of input combina­
tions. 

In addition, complete logic verification may become impossible 
when states that need to be tested cannot be entered with 
normal state transitions. For example, even though necessary, 
the state entered when a machine powers up cannot be 
tested, because it cannot be entered from the main sequence. 
Similarly, "forbidden" or don't care states that are not 
normally entered need to be tested to ensure that they return 
to the main sequence. 

PRELOAD eliminates these problems by providing the capabil­
ity to go directly to any desired arbitrary state. Thus test 
sequences may be greatly shortened, and all possible states 
can be tested, greatly reducing test time and development 
costs, and guaranteeing proper in-system operation. 
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~ PRELOAD of Registered Outputs 
'E 
If The AMD Enhanced 24-pin PAL devices incorporate circuitry 
... to allow loading each register synchronously to either a HIGH 
..I 
c( 
Q. 

C c:: 
I 
~ 
N 

" Q) 
(.) 
C 
ctI 
.c 
c w 
C 
::E 
c( 

PINS 2 

PIN' 

REGISTERED 
OUTPUT 

f---to 

1/ 
V1LP I 

VILP 

VOH 

VOL 

PRELOAD 
ENABLED 
OUTPUTS 
DISABLED 

10 

/ 
I 

VIHP 

VILP 

OUTPUT PRELOAD 
FORCED DATA 
TOV1HP CLOCKED 
ORV1LP IN 

to 

VHH 

VIHP 

Level forced on registered output 
pin during PRELOAD cycle 

Power-Up Reset 

The registered devices in the AMD Enhanced 24-Pin PAL 
Family have been designed with the capability to reset during 
system power-up. Following power-up, all registers will be 
reset to LOW. The output state will be HIGH. This feature 
provides flexibility to ~he designer and is especially valuable in 
simplifying state-machine initialization. A timing diagram and 
parameter table are shown below. Due to the asynchronous 

or LOW state. This feature simplifies testing since any initial 
state for the registers can be set to optimize test sequencing. 

The pin levels and timing necessary to perform the PRELOAD 
function are detailed below: 

to 10_ 

, 
~ 

OUTPUT 
FORCING 
VOLTAGE 
REMOVED 

Register Q output state after 
cycle 

HIGH 

LOW 

, 
~ 

PRELOAD 
DISABLED 

V1LP 

VIlP 

VOH 

VOL 

WF022294 

operation of the power-up RESET and the wide range of ways 
Vee can rise to its steady state, two conditions are required to 
ensure a valid power-up RESET. These conditions are: 

1. The Vee rise must be monotonic. 

2. Following reset, the clock input must not be driven from 
LOW to HIGH until all applicable input and feedback 
setup times are met. 

r~~--------------------------------------------------"'VCC 

POWER __________________ 4_V, ~ ... I _------tpR--------t 

REGISTERED 
OUTPUT 

CLOCK 

Parameters 

tpR 

ts 

tw 

Description 

Power-Up 
Reset Time 

Input or Feedback 
Setup Time 

Clock Width 
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~ 
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Min. Typ. Max. Units 

600 1000 ns 

See Switching 
Characteristics 



ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 

Storage Temperature ............................ -65 to + 150°C 
Commercial (C) Devices 

Temperature (T A) .................................. 0 to + 75°C 
Supply Voltage to Ground Potential Supply Voltage (VCC) .................... +4.75 to +5.25 V 

(Pin 24 to Pin 12) Continuous ............. -0.5 to + 7.0 V 
DC Voltage Applied to Outputs Extended Commercial (E) Devices 

(Except During Programming) ....... -0.5 V to + VCC Max. Temperature (TA) ................................... -55°C Min. 

DC Voltage Applied to Outputs Temperature (T c) ................................ + 125°C Max. 

During Programming ........................................ 16 V Supply Voltage (Vce> .................... +4.50 to +5.50 V 

Output Current Into Outputs During Military (M) Devices* 
Programming (Max Duration of 1 sec) ............. 200 rnA Temperature (T A) ................................... -55°C Min. 

DC Input Voltage ................................. -0.5 to + 5.5 V Temperature (Tc) ................................ + 125°C Max. 
DC Input Current .................................. -30 to +5 rnA Supply Voltage (VCe> .................... +4.50 to +5.50 V 

Stresses above those listed under ABSOLUTE MAXIMUM Operating ranges define those limits between which the 

RA TlNGS may cause permanent device failure. Functionality functionality of the device is guaranteed. 

at or above these limits is not implied. Exposure to absolute *Military product 100% tested at Tc = + 25°C, + 125°C, 
maximum ratings for extended periods may affect device and -55°C. 
reliability. 

DC CHARACTERISTICS over operating range unless otherwise specified; in~luded in Group A, Subgroup 1, 
2, 3 tests unless otherwise noted 

Parameter Parameter Typ. 
~Max. Symbol Description Test Conditions Min. (Note 1) Units 

Vee = Min., IOH = -3.2 mA COM'L 
,~~~,' 'J 

VOH Output HIGH Voltage 2.4 V 
Y,N '" V,H or V,l IOH =-2 mA MIL /~.,'" 

Vee-Min., IOL =-24 rnA COM'L,.' :(~:: . "~'~\"~ 
" 

Val Output LOW Voltage ,{O.p V Y,N .. V,H or V,l IOL =-12 mA MIL \ '\. > 
V,H Input HIGH Level Guaranteed Input Logical HIGH 

fa>"'" \i«' ~\J> 5.5 V (Note 2) Voltage for All Inputs \, "\ 

V,L Input LOW Level Guaranteed Input Logical LOW \\ \ t"/:, ><'~) 0.8 V (Note 2) Voltage for All Inputs /"'''-. 
I,L Input LOW Current Vee" Max., liN - 0.40 V /~.\ \. . ">, \ \ \( -20 -100 p.A. 

I'H Input HIGH Current Vec - Max., Y,N = 2.7 y,,('~\ \',\ '\Y·~"< .. , '\ 1~) 25 p.A. 

I, Input HIGH Current Vee'" Max., V,N;: 5.5 \{);<:\\(.\ \ \" .",</ 1.0 rnA 

Ise Output Short·Circuit Current Vee" Max." \(ovT'1io,.0.5\Y\'(NOte~)\ \)1 -30 -60 -90 mA 

~: '.~'\ \\\J, B,'~'p 210 
lee Power Supply Current ,.~ee '" M~,' : ,,\:' .,l. .AL 

rnA 
105 

V, Input Clamp Voltage ",::\ I,Vee" Min., tlN~-1Jln;,Av -0.9 -1.2 V 

IOZH Output Leakage qurren~p'/' V~;:, Max., ,vlt.;;-».e'v VO=2.7 V 100 

IOZl (Note 4) \, (' //' , V,ti-;2.g.t¥/,)- v VO=0.4 V -100 
p.A. 

Notes: 1. Typical limits are atVCq,;;;.5.6\1'~d T ;;"~fI({ 
2. These areatlSoiufe valu~s WiIfl'Jespe6i~ device ground and all overshoots due to system or tester noise are included. 
3. Not more.than'()nE!.output\shOuld·~A~sted at a time. Duration of the short circuit should not be more than one second. 

Vour ':',O.SV has'be~~~n\?()~avOid test problems caused by tester ground degradation. 
4 .. 110 pin leakage isJhe worsr~ase of lozX' or I,X (where X .. H or L). 

. . J \ ' 
CAPACIT~NCE* 

Parameter Parameter 
Symbol Description Test Conditions Typ. Units 

Y,N = 2.0 V I Pins 1, 13 11 
C'N Input Capacitance @ f= 1 MHz I Others 6 

COUT Output Capacitance VOUT = 2.0 V @ f .. 1 MHz 9 pF 

·These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance 
may be affected. 
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SWITCHING CHARACTERISTICS over operating range unless otherwise specified; included in Group A 
Subgroup 9, 10, 11 tests unless otherwise noted 

COMMERCIAL RANGE 

"8" Version "A" &' "AL" Versions 

Typ. Typ. r:1 
No. 

Parameter 
Symbol 

Parameter 
Description (Note 1) Min. Max. (Note 1) ~" M,~~I Units 

2 

3 

4 

tpo Input or Feedback to Non-Registered Output 
22P10, 20RP4, 20RP6, 20RP8 

9 \ tp \...;.1 Clock Period (15 + teo) 

10 '-~ twL/twH Clock Width 

o 
27 

10/12 

ns 

ns 

ns 

ns 

o ns 

40 ns 

15/15 ns 

11 fMAX. Maximum Frequency 37.0 25.0 MHz 

Notes: 1. Typical limits are at Vee - 5.0 V and T A - 25°C. 
2. tpo is tested with switch 81 closed and CL - 50 pF. 
3. For three-state outputs, output enable times are tested with CL - 50 pF to the 1.5 V level; 81 is open for high Impedance to HIGH 

tests and closed for high impedance to LOW tests. Output disable times are tested with CL - 5 pF. HIGH to high impedance tests 
are made to an output voltage of VOH - 0.5 V with 81 open; LOW to high impedance tests are made to the VOL + 0.5 V level 
with 81 closed. 

MILITARY RANGE 

No. 

2 

Parameter 
Symbol 

tpo 

Parameter 
Description 

Input or Feedback to Non-Registered Output 
22P10, 20RP4, 20RP6, 20RP8 

"8" Version "A" & "AL" Versions 

Typ. Typ. r1 
(Note 1) Min. Max. (Note l) ... r~' M~/ 

3 tER Input to Output Disable 22P10, 20R~4, 2QAP6;\ \ '\\ ~v"". \\ ~,',' '\ \~ .... - 30 
20RP8 _ ~ \ I"" \ \ '\\" " ~I\'·,~ \.~ 

Units 

ns 

ns 

ns 

4 tpzx Pin 13 to Output.Enable 2QR~4'\U2\\ \\ ["': ~\ rii20 25 ns 
20RP10"",~ \ \ \ \ '\ H'!I" .... I~OO+-+-·_"~'--+-' __ +-__ +-_--+ __ +-_--I 

t- Ff\~2-to"'tiutP~;t O~sable 20~f>4, ~'" \ 0FPa,.) \..~} '-' 20 25 ns 
pxz ... ,.........'-·i\2b1=!'110 ~ \ " ., , , , " J' \" 

5 

15 20 

20 30 

at> c;..,..,tH' \~.\ ~..,.rme 20RP4, 20RP6, 20RP8, 20RP10 o o 
9 , tp \..c," Clock Period (ts + tCO) 35 50 

10 \..." tWL/twH Clock Width 12/12 20/20 

11 fMAX. Maximum Frequency '28.6 20.0 

Notes: 1. Typical limits are at VCC - 5.0 V and T A - 25°C. 
2. tpo is tested with switch 81 closed and CL - 50 pF. 
3. For three-state outputs, output enable times are tested with CL - 50 pF to the 1.5 V level; 81 is open for high impedance to 

HIGH tests and closed for high Impedance to LOW tests. Output disable times are tested with CL - 5 pF. HIGH to high 
impedance tests are made to an output voltage of VOH - 0.5 V with 81 open; LOW to high impedance tests are made to the 
VOL + 0.5 V level with 81 closed. 
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INPUTS 

Note: C1 and C2 are to bypass Vee to ground. 

TEST OUTPUT LOADS 

Pin Name Commercial Military 

R1 200 n 390 n 
R2 390 n 750 n 
C1 1 j.l.F 1 j.l.F 

C2 0.1 j.l.F 0.1 j.l.F 

CL 50 pF 50 pF 
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INPUTS. I/O. T!"I'!ftII_---_I".,~ 
REGISTERED 

FEEDBACK ,,/,J:i,:u:tll'-___ -JIW~ 

CP 

REGISTERED 
OUTPUTS: 

SWITCHING WAVEFORMS 

________________ :llimj·L _______________________ L~~U~~+-~M+®~~T---COMBI~~~~~~ 'a.. r1 (( ({ 

KEY TO TIMING DIAGRAM 

WAVEFORM 

--
JJJJJJ 

--]HK 

INPUT 

PROGRAM,lVERlFY 
CIRCUITRY 

INPUTS 

MUST BE 
STEADY 

MAY CHANGE 
FROMH TOl 

MAY CHANGE 
FROM l TOH 

DON'T CARE; 
ANY CHANGE 
PERMITTED 

DOES NOT 
APPLY 

OUTPUTS 

Will BE 
STEADY 

Will BE 
CHANGING 
FROM H TO l 

WllLBE 
CHANGING 
FROML TOH 

CHANGING; 
STATE 
UNKNOWN 

CENTER 
LINE IS HIGH 
IMPEDANCE 
"OFF" STATE 

KSOOOO10 

INPUT CIRCUITRY 

PROGIWI/VERIFY 
CIRCUITRY 

OUTPUT CIRCUITRY 
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OUTPUT 
DISABLE 

Vee 

INPUT 
TO ARRAY 

WF002571 

IC000720 

OUTPUT 

PROGRAMMING 
CURRENT PATH 

IC000801 



Programming and Verification Security Fuse Programming 

AMD Enhanced 24·Pin PAL Family devices are programmed A single fuse is provided on each device to prevent unautho· 
and verified using AMD's standard programmable logic algo· rized copying of PAL fuse patterns. Once blown, the circuitry 
rithm. The fuse to ta programmed is selected by input line enabling fuse verification and registered output PRELOAD is 
number (array row), product term (array column), and by permanently disabled. 
output (one at a time). The fuse is then programmed and 
verified by applying a simple sequence of voltages to two Programming of the security fuse is the same as an array fuse. 
control pins (1 and 13). Verification of a blown security fuse is accomplished by 

Input line numbers are addressed using a full decode scheme verifying the whole fuse array as if every fuse is blown. 

via TTL levels on pins 6·11 where 6 is the LSB and 11 is the 
Programming Yield MSB. Even·numbered input lines represent the true version of 

a signal and odd· numbered lines represent the complement. 
AMD PAL devices have been designed to ensure extremely 

Input line addressing is shown in Table 1. Note that input line 
63 is utilized for selecting the fuses used for programming 

high programming yields ( > 98%). To help ensure that a part 

output polarity. 
was correctly programmed, once programming is completed, 
the entire fuse array should be verified at both LOW and HIGH 

Product terms are addressed using a 1·of·16 addreSSing Vee. Reverification can be accomplished by reading all ten 
scheme on pins 2·5 where pin 2 is the LSB and 5 is the MSB. outputs in parallel rather than one at a time. This verification 
Product term addressing is shown in Table 2. Logical and cycle checks that the array fuses have been blown and can be 
architectural product terms are selected via TTL levels on the sensed by the outputs under varying conditions. 
four addressing pins. 

Fuse selection by output must be done one output at a time 
AMD PAL devices contain many internal test features, includ· 
ing circuitry and extra fuses which allow AMD to test the ability 

(following control pin 1 going to VHH), as shown in the 
of each part to perform programming before shipping, to 

programming timing diagram. assure high programming yields and correct logical operation 
Once fuses have been selected, the simple programming and for a correctly programmed part. Programming yield losses are 
verification sequence may be completed as shown in the most likely due to poor programming socket contact, program· 
programming timing diagram. AC and DC requirements. for ming equipment out of calibration, or improper usage of said 
programming are shown in the programming parameter table. equipment. 

PROGRAMMING PARAMETERS T A = 25°C 

Parameter Parameter 
Symbol Description Min. Typ. Max. Units 

IPin 1 @ 5·10 mA 10 11 12 
VHH Control Pin Extra High Level 

I Pin 13 @ 5·10 mA 
V 

10 11 12 

VOP Program Voltage Pins 14·23 @ 15·200 mA 14 15 16 V 

VIHP Input HIGH Level During Programming and Verify 2.4 5 5.5 V 

VILP Input LOW Level During Programming and Verify 0.0 0.3 0.5 V 

VCCP VCC During Programming @ Icc - 50·275 mA 5 5.2 5.5 V 

VCCL VCC During First Pass Verification @ ICC'" 50·275 mA 4.4 4.5 4.6 V 

VCCH VCC DUring Second Pass Verification @ Icc" 50·275 mA 5.4 5.5 5.6 V 

VBlown Successful Blown Fuse Sense Level @ Output 0.3 0.5 V 

Vop/dt Rate of Output Voltage Change 20 250 V//ls 

dV13/dt Rate of Fusing Enable Voltage Change (Pin 13 Rising Edge) 100 1000 V//ls 

Fusing Time First Attempt 40 50 100 IlS 
tp 

Subsequent Attempts 4 5 10 ms 

to Delays Between Various Level Changes 100 200 1000 ns 

tv Period During which Output is Sensed for VBlown Level 500 ns 

VONP Pull·Up Voltage On Outputs Not Being Programmed VCCp-0.3 VCCP VCCp+ 0.3 V 

R Pull·Up Resistor On Outputs Not Being Programmed 1.9 2 2.1 kn 
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Design Aid Software for AMD Enhanced 24-Pln PAL Family 

Name 

ABEL 

CUPL 

AmCUPL 

Name 

Data 110 
10525 Willow Road N.E. 
Redmond. WA 93052 

Stag Microsystems 
528-5 Weddell Drive 
Sunnyvale. CA 94086 

Valley Data Sciences 
2426 Charleston Road 
Mountain View. CA 94043 

PINS 
2-11 

PIN! 

PROGRAMMED 
OUTPUT 

PIN!3 

Vendor Versions Notes 

Data 110 
IBM PC 

(206) 881-6444 VAXIVMS 
VAX/UNIX 

IBM PC 
P-CAD Systems VAXIVMS 
(408) 971-1300 VAX/UNIX 

CPM 80186 

Advanced Micro Devices Supported by 
(408) 732-2400 

IBM PC 
P-CAD Systems 

AMD Qualified Programmers 

Programmer 
Model(s) AMD PAL Personality Module Socket Adapter 

Systems 19. 29 950-1942-0044 303A-011A 

60 N/A Under Development 

Model PPZ Under Development 
On Board 

ZL30 Under Development 

160 Series Under Development On Board 

PROGRAMMING TIMING DIAGRAM 

~NPUT LINE NUMBER AND PRODUCT TERM LINE NUMBER ADDRESSES 

r-------------------,~--------------------------------------~H 

• ..----,:------------------- V1HP 

\------------- V'LP 

r-+-----~7-----7----------~----~-------------------- ~p 

-----+--10-

1------------- VDH 

~----------- VOL 

1--.. ---------- VHH 

'--------- V1LP 
IV 10 CYCLE 

ENOS 

I----------PROGRAMMING--------'f----------VERIFY ----------_1 

PFOOll0l 
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TABLE 1. INPUT ADDRESSING 

Input Input Line Number 

Line Address Pin States 

Number 6 7 8 9 

0 L L L L 
1 L L L L 
2 L L L L 
3 L L L L 
4 L L L H 
5 L L L H 
6 L L L H 
7 L L L H 
8 L L H L 
9 L L H L 

10 L L H L 
11 L L H L 
12 L L H H 
13 L L H H 
14 L L H H 
15 L L H H 
16 L H L L 
17 L H L L 
18 L H L L 
19 L H L L 
20 L H L H 
21 L H L H 
22 L H- L H 
23 L H L H 
24 L H H L 
25 L H H L 
26 L H H L 
27 L H H L 
28 L H H H 
29 L H H H 
30 L H H H 
31 L H H H 
32 H L L L 
33 H L L L 
34 H L L L 
35 H L L L 
36 H L L H 
37 H L L H 
38 H L L H 
39 H L L H 
40* H L H L 
41* H L H L 
42* H L H L 
43* H L H L 

63" H H H H 

* Used for AmPAL22P10 only 
* * Used for programming polarity 
L- VILP 
H -VIHP 
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~ 
E TABLE 2·1. PRODUCT TERM ADDRESSING (AmPAL22P10) 

8! Product Term Select 
:.. Address Pin 

~ 
C 
it 
~ 
C'I 

" CD 
U 
C 
ca .z:. c 

LLI 

C 
::& 
C 

L - VILP 
H - VIHP 

OE - Output Enable 
POL - Polarity 

SF - Security Fuse 

TABLE 2·2. PRODUCT TERM ADDRESSING (AmPAL20RP4) 

Product Term Select 
Address Pin 

L - VILP 
H - VIHP 

OE - Output Enable 
POL - Polarity 

SF - Security Fuse 

Programming Access and Verify Pin 
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TABLE 2-3. PRODUCT TERM ADDRESSING (AmPAL20RP6) 

Product Term Select 
Address Pin Programming Access and Verify Pin 

5 4 3 2 23 22 21 20 19 18 17 16 15 14 

L L L L 0 9 18 26 34 42 . 50 58 66 75 

L L L H 1 10 19 27 35 43 
• 

51 59 67 76 

L L H L 2 11 20 28 36 44 52 60 68 77 

L L H H 3 12 21 29 37 45 53 61 69 78 

L H L L 4 13 22 30 38 46 54 62 70 79 

L H L H 5 14 23 31 39 47 55 63 71 80 

L H H L 6 15 24 32 40 48 56 64 72 81 

L H H H 7 16 25 33 41 49 57 65 73 82 

H L L L 8 17 - - - - - - 74 83 

H L L H POL POL POL POL POL POL POL POL POL POL 

H H H H SF 

L = VILP Logicall Architectural Product Term Line Number 
H = VIHP 

OE = Output Enable 
POL = Polarity 

SF = Security Fuse 

TABLE 2-4. PRODUCT TERM ADDRESSING (AmPAL20RP8) 

Product Term Select 
Address Pin Programming Access and Verify Pin 

5 4 3 2 23 22 21 20 19 18 17 16 15 14 

L L L L 0 9 17 25 33 41 49 57 65 73 

L L L H 1 10 18 26 34 42 50 58 66 74 

L L H L 2 11 19 27 35 43 51 59 67 75 

L L H H 3 12 20 28 36 44 52 60 68 76 

L H L L 4 13 21 29 37 45 53 61 69 77 

L H L H 5 14 22 30 38 46 54 62 70 78 

L H H L 6 15 23 31 39· 47 55 63 71 79 

L H H H 7 16 24 32 40 48 56 64 72 SO 
H L L L 8 - - - - - - - - 81 

H L L H POL POL POL POL POL POL POL POL POL POL 

H H H H SF 

L = VILP Logical! Architectural Product Term Line Number 
H = VIHP 

OE = Output Enable 
POL = Polarity 

SF = Security Fuse 
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TABLE 2-5. PRODUCT TERM ADDRESSING (AmPAL20RP10) 

Product Term Select 
Address Pin Programming Access and Verify Pin 

5 4 3 2 23 22 21 20 19 18 17 

L L L L 0 8 16 24 32 40 48 

L L L H 1 9 17 25 33 41 49 

L L H L 2 10 18 26 34 42 ;50 

L L H H 3 11 19 27 35 43 51 

L H L L .4 12 20 28 36 44 52 
L H L H 5 13 21 29 37 45 53 

L H H L 6 14 22 30 38 46 54 

L H H H 7 15 23 31 39, 47 55 
...... .,.<IT,"" 

H L L L - - - - - - -
H L L H POL POL POL POL POL POL POL 

H H H H SF 

L ~ VILP Loglcall Architectural Product Term Line Number 
H ~ VIHP 

OE ~ Output Enable 
POL ~ Polarity 

SF ~ Security Fuse 
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AMD 24-Pin XOR PAL * Family 
24-Pin IMOX™ Programmable Array Logic (PAL) Elements 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• AND-OR-XOR logic structure • Post Programming Functional Yield (PPFY) of 99.9% 

• AMD's superior IMOX technology • PRELOAD feature permits full logical verification 
- Guarantees tpD = 20 ns max • Reliability assured through more than 70 billion fuse 

• Individually programmable output polarity on each out- hours of life testing with no failures 
put • Full AC and DC parametric testing at the factory through 

• Eight logical product terms per output on-board testing circuitry 

• Programming yields> 98% are realized via platinum- • > 3000V ESD input protection per pin 
silicide fuse technology and the use of added test words • JEDEC-Standard LCC and PLCC pinout 

GENERAL DESCRIPTION 

AMD 24-pin XOR PAL devices are high-speed, electrically Five different devices are available, including both regis-
programmable array logic elements. They utilize the familiar tered and combinatorial devices. All devices have user-
sum-of-products (AND-OR-XOR) structure allowing users programmable output polarity on all outputs. A variety of 
to program custom logic functions to fit most applications speed options allow the designer maximum flexibility in 
precisely. Typically they are a replacement for low-power matching precise system requirements. The Product Selec-
Schottky SSI/MSI logic circuits that require an exclusive- tor Guide below shows the available speed options. The 
OR function, reducing chip count by more than 5 to 1 and second table gives details about the functionality of the five 
greatly simplifying prototyping and board layout. available devices. 

Please see the following pages for Block Diagrams. 

PRODUCT SELECTOR GUIDE 

AMD PAL Speed/Power Families 

tpo ts tco Icc IOL 
ns (Max.) ns (Min.) ns (Max.) mA (Max.) mA (Min.) 

Family e Devices M Devices e Devices M Devices e Devices M Devices elM Devices e Devices M Devices 

Very High-Speed 20 25 20 25 13 15 210 24 12 (-20 & -25) Versions 

High-Speed 30 35 30 35 15 25 1BO 24 12 (-30 & -35) Versions 

High-Speed, 
Half-Power 30 35 30 35 15 25 90 24 12 (-30L & -35L) 
Versions 

Standard 40 45 40 45 30 35 1BO 24 12 (-40 & -45) Versions 

Half-Power 
(-40L & -45L) 40 45 40 45 30 35 90 24 12 
Versions 

Part Array Logic Output Outputs/Polarity Package 
Number Inputs Enable Pins 

22XP10 12 Dedicated, Ten (2-6)-Wide AND-OR-XOR Programmable Bidirectional! Programmable 24 10 Bidirectional 

10 Dedicated, Four (2-6)-Wide AND-OR-XOR Dedicated Registered/Programmable 
20XRP4 4 Feedback, 24 

6 Bidirectional Six B-Wide AND-OR Programmable Bidirectional/ Programmable 

10 Dedicated, Six (2-6)-Wide AND-OR-XOR Dedicated Registered/ Programmable 
20XRP6 6 Feedback, 24 

4 Bidirectional Four B-Wide AND-OR Programmable Bidirectional/Programmable 

10 Dedicated, Eight (2-6)-Wide AND-OR-XOR Dedicated Registered/Programmable 
20XRP8 B Feedback, 24 

2 Bidirectional Two B-Wide AND-OR Programmable Bidirectional/ Programmable 

20XRP10 10 Dedicated, Ten (2-6)-Wide AND-OR-XOR Dedicated Registered/ Programmable 24 10 Feedback 

IMOX is a trademark of Advanced Micro Devices, Inc. I Publi!t5!tion # Rev . • Amendment 
·PAL is a registered trademark of and is used under license from Monolithic Memories, Inc. 08655 A /0 
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~ 
"e BLOCK DIAGRAMS 
co u.. 

AmPAL22XP10 ... 
...I 
<.C 
Q. INPUTI 

OUTPuT 

II: 
0 
>< INPUTI 

OUTPUT 

C 
a:: PROGRAMMABLE 

~ 
AND ARRAY INPUTI 

N 
(44 X 90) OUTPUT 

C 
:E INPUTI 

<.C OUTPUT 

INPUTI 
OUTPUT 

INPUT! 
OUTPUT 

INPUTI 
OUTPUT 

INPUT! 
OUTPUt 

INPUTI 
OUTPUT 

INPUTI 
OUTPUT 

LDOOO900 

AmPAL20XRP4 

rNPUT/ 
OUTPUT 

INPUTJ 
OUTPUT 

PROGRAMMABLE· 
AND ARRAY 

(40 X 86) INPUT' 
OUTPUT 

r--:----jr')--~_---c INPUTI 
. OUTPUT 

LD000940 

"PAL is a registered trademark of and is used under license from Monolithic Memories, Inc. 

4·170 



INPUTS...,...,.--.... , 

OE 

BLOCK DIAGRAMS (Cont'd.) 

AmPAL20XRP6 

PROGRAMMABLE· ~::::::::::::==::~;---~ 
AND ARRAY 

(40 X 84) 

INPUTI 
OUTPUT 

INPUTI 
OUTPUT 

I---C)O-~ OUTPUT 

I---C)O-~ OUTPUT 

I---C)O-~ OUTPUT 

OUTPUT 

INPUTI 
OUTPUT 

)-----'I'\---...j....f"»-----~ INPUTI 

AmPAL20XRP8 

OUTPUT 

LD000920 

INPUTI 
OUTPUT 

OUTPUT 

PROGRAMMABLE· ~~~~~~):~~~~==~~ AND ARRAY 
(40 X 82) 1--f:)O-~ OUTPUT 

OUTPUT 

OUTPUT 

I---C)O-~ OUTPUT 

>--:----'\I~--+-r)o..-----c INPUTI 
OUTPUT 

LD000930 
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OE 

INPUTS ........ -y---.~--' 

BLOCK DIAGRAMS (Cont'd.) 

AmPAL20XRP10 

I--t~-c:> OUTPUT 

..... --jJo.-c> OUTPUT 

PRO~N~~~t:tE. ~===============l~~~O 
(40 X 80) I--t~-c:> OUTPUT 

t---I~-c:> OUTPUT 

..... --jJo.-c:> OUTPUT 

..... --jJo.-c:> OUTPUT 

I---jJo.-c:> OUTPUT 

I---jJo.-c:> OUTPUT 

I--t::»--c:> OUTPUT 

LOOOO91 0 
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CONNECTION DIAGRAMS 
Top View 

DIPs* 

(NOTE 1) VCC 

(NOTE 12) 

(NOTE 11) 

(NOTE 10) 

(NOTE 9) 

(NOTE 8) 
NC 

(NOTE 7) 

(NOTE 6) 

(NOTE 5) 

(NOTE 4) 

(NOTE 3) 

Gr-D (NOTE 2) 

CD010250 

Note: Pin 1 is marked for orientation. 

22XP10 20XRP4 20XRP6 

Notes: 1 I elK elK 

2 I OE OE 

3 1/0 1/0 1/0 

4 1/0 1/0 1/0 

5 1/0 I/O 0 

6 1/0 0 0 

7 1/0 0 0 

8 1/0 0 0 

9 1/0 0 0 

10 1/0 1/0 0 

11 1/0 1/0 1/0 

12 1/0 1/0 1/0 

-Also available in 24-Pin Ceramic Flatpack. Pinouts identical to DIPs. 
** Also available in 2B-Pin Plastic leaded Chip Carrier. Pinouts identical to LCC. 

PIN DESIGNATIONS 

I = Input 
1/0 = Input/Output 
0= Output 

Vee = Supply Voltage 
GND = Ground 
ClK = Clock 
OE = Output Enable 
NC = No Connect . 
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ORDERING INFORMATION 

Standard Products 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by 
a combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Package Type 
D. Temperature Range 
E. Optional Processing 

AMPAL22XP10 

TL _____ E. OPTIONAL PROCESSING 
Blank - Standard processing 

B - Burn In 

L-------------D. TEMPERATURE RANGE 
C - Commercial (0 to + 75°C) 
E - Extended Commercial (-55 to + 125°C) 

L------------------------C. PACKAGE TYPE 
P - 24·Pin Plastic DIP (PO 024) 
o - 24·Pin Ceramic DIP (CD 024) 
J - 28·Pin Plastic Leaded Chip Carrier 

(PL 028) 
L a 28·Pin Ceramic Leadless Chip Carrier 

(CL 028) 

L---------------------------------B. SPEED/POWER 

L...-.-- A. DEVICE NUMBER/DESCRIPTION 
AMD 24·Pin XOR PAL Family 

See Product Selector Guide 

24·Pin IMOX Programmable Array Logic 

Valid Combinations 

AMPAl22XP10·20/·301·30L/·401·40L 

AMPAL20XRP4·201 ·301 ·30LI ·401 ·40L 

AMPAL20XRP6·201 ·301 ·30LI ·401 ·40L 

AM PAL20XRP8·201 ·301·30l/·401 ·40L 

AMPAl20XRP10·201·301·30L/·401·40L 

PC, DC, 
DCB. DE, 
JC, LC, LE 

Valid Combinations 

Valid Combinations list configurations planned to .be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMD's standard military grade 
products. 
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ORDERING INFORMATION (Cont'd.) 

APL Products 

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved 
Products List) products are fully compliant with MIL-STD-883C requirements. CPL (Controlled Products List) products are 
processed in accordance with MIL-STD-883C, but are inherently non-compliant because of package, solderability, or surface 
treatment exceptions to those specifications. The order number (Valid Combination) for APL products is formed by a 
combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Device Class 
D. Package Type 
E. Lead Finish 

AMPAL22XP10 

IL.. _____ E. LEAD FINISH 
A = Hot Solder DIP 
C = Gold 

1...---------0. PACKAGE TYPE 
L = 24-Pin Ceramic DIP (CD 024) 
3 = 28-Pin Ceramic Leadless Chip 

Carrier (CL 028) 
K = 24-Pin Ceramic Flatpack (CF 024) 

'--------------C. DEVICE CLASS 
IB = Class B 

I...-----------------B.SPEED/POWER 

'---- A. DEVICE NUMBER/DESCRIPTION 
AMD 24-Pin XOR PAL Family 

See Product Selector Guide 

24-Pin IMOX Programmable Array Logic 

Valid Combinations 

AMPAL22XP1 0-25/-351 -35LI -45/-45L 

AMPAL20XRP4-251 -351 -35LI -451 -45L 

AMPAL20XRP6-251 -351 -35LI -451 -45L 

AMPAL20XRP8-25/-35/-35L/-451 -45L 

AMPAL20XRP1 0-251 -35/-35L/-451 -45L 

IBLA, 
IB3C, 
IBKA 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations or to check for newly released valid 
combinations. 
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Group A Tests 

Group A tests consist of Subgroups 
1, 2, 3, 7, 8, 9, 10, & 11 
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FUNCTIONAL DESCRIPTION 
AMD 24-Pln XOR PAL Family Characteristics 

All members of the AMD 24-Pin XOR PAL Family have 
common electrical characteristics and programming proce­
dures. All parts are produced with a fusible link at each input to 
the AND gate array, and connections may be selectively 
removed by applying appropriate voltages to the circuit. 

Initially the AND gates are connected, via fuses, to both the 
true and complement of each input. By selective programming 
of fuses the AND gates may be "connected" to only the true 
input (by blowing the complement fuse), to only the comple­
ment input (by blowing the true fuse), or to neither type of input 
(by blowing both fuses) establishing a logical "don't care." 
When both the true and complement fuses are left intact a 
logical false results on the output of the AND gate, while all 
fuses blown results in a logical true state. On the 
AmPAL22XP10 device, the AND gates are connected to fixed 
(2-6) OR-XOR structures whose outputs become device 
outputs. The remaining four (registered) devices function as 
follows: for combinatorial outputs, the AND gates are connect­
ed to fixed-OR gates whose outputs become device outputs. 
For registered outputs, the AND gates are connected to fixed 
(2-6) OR-XOR structures whose outputs become output regis­
ter inputs. 

All parts are fabricated with AMD's fast programming, highly 
reliable Platinum-Silicide Fuse technology. Utilizing an easily 
implemented programming algorithm, these products can be 
rapidly programmed to any customized pattern. Extra test 
words are pre-programmed during manufacturing to insure 
extremely high field programming yields (> 98%), and provide 
extra test paths to achieve excellent parametric correlation. 

Power-Up Reset 

The registered devices in the AMD PAL family have been 
designed to reset during system power-up. Following power­
up; all registers will be initialized to zero, setting all the outputs 
to a logic 1. This feature provides extra flexibility to the 
designer and is especially valuable in simplifying state ma­
chine initialization. 
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PRELOAD 

AMD PAL devices are designed with unique PRELOAD 
circuitry that provides an easy method of testing registered 
devices for logical functionality. PRELOAD allows any arbitrary 
state value to be loaded into the registered output of an AMD 
PAL device. 

A typical functional. test sequence would be to verify all 
possible state transitions for the device being tested. This 
requires the ability to set the state registers into an arbitrary 
"present state" value and to set the device inputs to any 
arbitrary "present input" value. Once this is done, the state 
machine is clocked into a new state or "next state." The next 
state is then checked to validate the transition from the 
present state. In this way any state transition can be checked. 

Without PRELOAD, it is difficult and in some cases impossible 
to load an arbitrary present state value. This can lead to logic 
verification sequences that are either incomplete or excessive­
ly long. Long test sequences result when the feedback from 
the state register "interferes" with the inputs, forcing the 
machine to go through many transitions before it can reach an 
arbitrary state value. Therefore the test sequence will be 
mostly state initialization and not actual testing. The test 
sequence becomes excessively long when a state must be 
reentered many times to test a wide variety of input combina­
tions. 

In addition, complete logic verification may become impossible 
when states that need to be tested cannot be entered with 
normal state transitions. For example, even though necessary, 
the state entered when a machine powers up cannot be 
tested, because it cannot be entered from the main sequence. 
Similarly, "forbidden" or don't care states that are not 
normally entered need to be tested to ensure that they return 
to the main sequence. 

PRELOAD eliminates these problems by providing the capabil­
ity to go directly to any desired arbitrary state. Thus test 
sequences may be greatly shortened, and all possible states 
can be tested, greatly reducing test time and development 
costs, and guaranteeing proper in-system operation. 
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f PRELOAD of Registered Outputs 

.f The AMD 24-pin XOR PAL devices incorporate circuitry to 
• allow loading each regist'3r synchronously to either a HIGH or 
...I 

f 
a: o 
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Q 
~ 
iii( 

PINS 2 

PIN 1 

REGISTERED 
OUTPUT 

1---10 

II 
VIlP J 

V1LP 

vOlt 

VOL 

PRELOAD 
ENABLED 
OUTPIITS 
DISABLED 

10 

If 
) 

VIHP 

VILP 

OUTPUT PRELOAD 
FORCED DATA 
TOVII~P CLOCKED 
ORVII.P IN 

10 

VHH 

VIHP 

Level forced on registered output 
pin during PRELOAD cycle 

Power-Up Reset 

The registered devices in the AMD 24-Pin XOR PAL Family 
have been designed with the capability to reset during system 
power-up. Following power-up, all registers will be reset to 
LOW. The output state will be HIGH. This feature provides 
flexibility to the designer and is especially valuable in simplify­
ing state-machine initialization. A timing diagram and parame­
ter table are shown below. Due to the asynchronous operation 

LOW state. This feature simplifies testing since any initial state 
for the registers can be set to optimize test sequencing . 

The pin levels and timing necessary to perform the PRELOAD 
function are detailed· below: 

10 lo-

, 
1\ 

OUTPUT 
FORCING 
VOLTAGE 
REMOVED 

Register Q output state after 
cycle 

HIGH 

LOW 

, 
1\ 

PRELOAD 
DISABLED 

V1LP 

VI..P 

vOlt 

VOL 

WF022294 

of the power-up RESET and the wide range of ways Vee can 
rise to its steady state, two conditions are required to ensure a 
valid power-up RESET. These conditions are: 

1. The Vee rise must be monotonic. 

2. Following reset, the clock input must not be driven from 
LOW to HIGH until all applicable input and feedback 
setup times are met. 

r~~""""""""""--------""------""""""""""""--""""""--"""'VCC 

POWER ____ .... __ ........ ____ 4_., ~~I _------tpR--------t 

REGISTERED 
OUTPUT 

CLOCK 

Parameters 

tpR 

ts 

tw 

Description 

Power-Up 
Reset Time 

Input or Feedback 
Setup Time 

Clock Width 

4-182 

\\'t 
WF022300 

Min. Typ. Max. Units 

600 1000 ns 

See Switching 
Characteristics 



ABSOLUTE MAXIMUM RATINGS 

Storage Temperature ............................ -65 to + 150°C 
Supply Voltage to Ground Potential 

(Pin 24 to Pin 12) Continuous ............. -0.5 to + 7.0 V 
DC Voltage Applied to Outputs 

(Except During Programming) ....... -0.5 V to + Vcc Max. 
DC Voltage Applied to Outputs 

During Programming ........................................ 16 V 
Output Current Into Outputs During 

Programming (Max Duration of 1 sec) ............. 200 mA 
DC Input Voltage ................................. -0.5 to + 5.5 V 
DC Input Current .................................. -30 to + 5 mA 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA TINGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

OPERATING RANGES 
Commercial (C) Devices 

Temperature (T A) .•.•......................•....... 0 to + 75°C 
Supply Voltage (VCe) .................... +4.75 to +5.25 V 

Extended Commercial (E) Devices 
Temperature (TA) ................................... -55°C Min. 
Temperature (Te) ................................ +125°C Max. 
Supply Voltage (VCe) .................... +4.50 to +5.50 V 

Military (M) Devices* 
Temperature (T A) ...................... ·· ........ · .. -55°C Min. 
Temperature (TC) ................................ + 125°C Max. 
Supply Voltage (VCe) .................... +4.50 to +5.50 V 

Operating ranges define those limits between which the 
functionality of the device is guaranteed. 

*Military product 100% tested at TC = + 25°C, + 125°C, 
and -55°C. 

DC CHARACTERISTICS over operating range unless otherwise specified; included in Group A, Subgroup 1, 
2, 3 tests unless otherwise noted 

Parameter 
Symbol 

VOH 

VOL 

VIH 
(Note 2) 

Parameter 
Description 

Output HIGH Voltage Vee = Min., 
VIN - VIH or VIL 

Output LOW Voltage Vee = Min .• 
VIN = VIH or VIL 

Input HIGH Level 

= 25°C. 
to device ground and all overshoots due to system or tester noise are included. 

~lJh,i,;nQy,ICJ' De tested at a time. Duration of the short circuit should not be more than one second. 
, avoid test problems caused by tester ground degradation. 

case of lozx or IIX (where X = H or L). 

Units 

V 

V 

V 

Units 

pF 

"These parameters are not 100% tested. but are evaluated at initial characterization and at any time the design is modified where capacitance 
may be affected. 
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SWITCHING CHARACTERISTICS over operating range unless otherwise specified; included in Group A 
Subgroup 9, 10, 11 tests unless otherwise noted 

COMMERCIAL RANGE 

-30 & -30L -40 & -40L 
-20 Version Version Versions 

Parameter Parameter Typ. Typ. TYP'~' f\ 
No. Symbol Description (Note 1) Min. Max. (Note 1) Min. Max. (Note . ':~In. Max. Units 

Input or Feedback to Non-Registered '" ~,/}\ 1 tpD Output 22XP10, 20XRP4, 20XRP6, 20 30 
~~~ 

40 ns 
20XRP8 

2 tEA 
Input to Output Enable 22XP10, 20XRP4," 20 /~ 

-"",,,;;;.; 
r'~~,~' ','40 ;~"?', ns 20XRP6, 20XRP8 , 't, 

Input to Output Disable 22XP10, 20XRP4, ~, :'./ 

)t:_~ '·';~O 3 tER 20XRP6, 20XRP8 20 L ;S:ao ns 

Pin 13 to Output Enable 20XRP4, ~~i )" f7'~''''', [,,,,:7 4 tpzx 20XRP6, 20XRP8, 20XRP10 15 ','~~. .35 ns 

5 tpxz 
Pin 13 to Output Disable 20XRP4, 15 

/~ '}Q< !"""', 35 ns 20XRP6, 20XRP8, 20XRP10 r:::~ 

6 teo 
Clock to Output 20XRP4, 20XRP6, 13 \.,~~ t' .. ·,,,": r:Jl~,;,. ;:v/ 30 ns 20XRP8, 20XRP10 

7 ts 
Input or Feedback 5etup Time 20XRP4, 20 l)~::~ '\ ·}a() ,/""~" ' 40 ns 20XRP6, 20XRP8, 20XRP10 >', c • .,'>,;' 

8 tH 
Hold Time 20XRP4, 20XRP6, 20XRP8, 0 '''', 

. "?"':>'" I\~\ 0 ns 20XRP10 

9 tp Clock Period (ts + teol A3';; '~ ;~",,"$ .•.. ',45' 70 ns 

10 tw Clock Width )<t> ',-:.. I ...... L:;;~; )15 25 ns 

11 fMAX, Maximum Frequency (;; ,,~ .. ;,~j~ 22.2 14.3 MHz 

No,,,,, ,. T";ool IIm".,a a' Vee- 5.' V "'d TA-25'C. /"'S~ "'., 
2. tpD is tested with switch 51 closed and CL - 50 pF. " 'v' 
3. For three-state outputs, output enable times are tested ~~ • <~ 1.5 V level; 51 is open for high impedance to HIGH 

'a,Is and ,~'ed 10' h;gh Imps""'''' to ~~, a ".tl>"ed .... Ct. - 5 pF. HIGH 10 hl,h Impada""a '''''' 
are made to an output voltage of VOH - 0.5 V w·(ft,s'l ~ lmpedance tests are made to the VOL + 0.5 V level 
with 51 closed. ' \ ~ ? 

"'\ <", 

'7'> 

MILITARY RANGE 

,,,,~<~, ~~1~25 Version 
-35 & -35L -45 & -45L 

"" 'Y<'~ A Version Versions 
J' ." " ">:. ; 

Parameter . 4'aJmet~~" 'J'':''' /<,l Typ. Typ. Typ. 
No. Symbol ,,/'iQescrlptlqn ""'~><'. y/ (Note 1) Min. Max. (Note 1) Min. Max. (Note 1) Min. Max. Units 

Input or/F~aCk.l(of;Jon-R~stWd 
1 tpD Output 2~H4.20XI:iP4, 20H~, 25 35 45 ns 

20XRP~ ',<,,::.~/ /'~;/; 

2 tEA loPut tOOu~put~~.aX"O, 20XRP4, 
,~OXRP6, 2O}<RPS', ." ,/ 25 35 45 ns 

3 tER (" 
Inpu~Ji)i~ab~22xp10, 20XRP4, 25 35 45 ns 
20XR Xf\P8 ~~:";' . 

4 tpz~,./, ''''''~" ~ 
<PJI'I'f3.t6 Outpul~£l1able 20XRP4, 20 25 40 ns 
,,20~RP6,20XRP8, 20XRP10 

JP'x~ 
. ,., . 

F?in 19;to''O~tput Disable 20XRP4, 5 "l .20XRP6;49XRP8, 20XRP10 20 25 40 ns 

6 too."",/ ",Clock to Output 20XRP4, 20XRP6, 15 25 35 ns 
~'* i",';,d, '.",;'/1' 20XRP8, 20XRP10 

7 ts ~'<{,.,~,/; :,:;:. , Input or Feedback Setup Time 20XRP4, 25 35 45 ns 
>',~,~ :-~PXRP6, 20XRP8, 20XRP10 

8 . tH 
".,;Hold Time 20XRP4, 20XRP6, 20XRP8, 0 0 0 ns 20XRP10 

9 tp Clock Period (ts + teol 40 60 80 ns 

10 tw Clock Width 12 20 30 ns 

11 fMAX. Maximum Frequency 25 16.7 12.5 MHz 

Notes: 1. Typical limits are at Vee - 5.0 V and TA - 25°C. 
2. tpD is tested with switch 51 closed and CL - 50 pF. 
3. For three-state outputs, output enable times are tested with CL - 50 pF to the 1.5 V level; 51 is open for high impedance to 

HIGH tests and closed for high impedance to LOW tests. Output disable times are tested with CL - 5 pF. HIGH to high 
impedance tests are made to an output voltage of VOH - 0.5 V with 51 open; LOW to high impedance tests are made to the 
VOL + 0.5 V level with 51 closed. 
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SWITCHING TEST CIRCUIT 

vee C) 15v S1 

/ 

24 

• • 
• • 

INPUTS • OUT • 
• • 
• • 

12 OUTPUTS 

l 

Note: C1 and C2 are to bypass Vee to ground. 

TEST OUTPUT LOADS 

Pin Name Commercial Military 

R1 200 n 390 n 
R2 390 n 750 n 
C1 1 p.F 1 p.F 

C2 0.1 p.F 0.1 p.F 

CL 50 pF 50 pF 
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SWITCHING WAVEFORMS 

_____________ ~~,~ __________________ ~~~~®~3~jH-~~+®~~~_ COMBI~~~~S~ __ }1 ) ) )) {( (( 

KEY TO TIMING DIAGRAM 

WAVEFORM 

-.-
--H 

INPUT 

I'ROGRAU/VERIFY 
CIRCUITRY 

INPUTS 

MUST BE 
STEADY 

MAY CHANGE 
FROM H TOL 

MAY CHANGE 
FROM L TOH 

DON'T CARE; 
ANY CHANGE 
PERMITTED 

DOES NOT 
APPLY 

OUTPUTS 

WILL BE 
STEADY 

WILLBE 
CHANGING 
FROMHTOL 

WILL BE 
CHANGING 
FROM L TOH 

CHANGING; 
STATE 
UNKNOWN 

CENTER 
LINE IS HIGH 
IMPEDANCE 
"OFF" STATE 

KSOOOO10 

INPUT CIRCUITRY 

I'ROGRAII/VERIFY 
CIRCUITRY 

OUTPUT CIRCUITRY 
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FROM 
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OUTPUT 
DISABLE 
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TO ARRAY 
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Programming and Verification Security Fuse Programming 

AMD 24-Pin XOR PAL Family devices are programmed and A single fuse is provided on each device to prevent unautho-
verified using AMD's standard programmable logic algorithm. rized copying of PAL fuse patterns. Once blown, the circuitry 
The fuse to be programmed is selected by input line number enabling fuse verification and registered output PRELOAD is 
(array row), product term (array column), and by output (one at permanently disabled. 
a time). The fuse is then programmed and verified by applying 
a simple sequence of voltages to two control pins (1 and 13). Programming of the security fuse is the same as an array fuse. 

Input line numbers are addressed using a full decode scheme 
Verification of a blown security fuse is accomplished by 

via TIL levels on pins 6-11 where 6 is the LSB and 11 is the 
verifying the whole fuse array as if every fuse is blown. 

MSB. Even-numbered input lines represent the true version of Programming Yield 
a signal and odd-numbered lines represent the complement. 

AMD PAL devices have been designed to ensure extremely Input line addressing is shown in Table 1. Note that input line 
63 is utilized for selecting the fuses used for programming high programming yields ( > 98%). To help ensure that a part 

output polarity. was correctly programmed, once programming is completed, 

Product terms are addressed using a 1-of-16 addressing 
the entire fuse array should be verified at both LOW and HIGH 
VCC. Reverification can be accomplished by reading all ten 

scheme on pins 2-5 where pin 2 is the LSB and 5 is the MSB. outputs in parallel rather than one at a time. This verification 
Product term addressing is shown in Table 2. Logical and cycle checks that the array fuses have been blown and can be 
architectural product terms are selected via TIL levels on the sensed by the outputs under varying conditions. 
four addressing pins. 

Fuse selection by output must be done one output at a time 
AMD PAL devices contain many internal test features, includ-
ing circuitry and extra fuses which allow AMD to test the ability 

(following control pin 1 going to VHH), as shown in the 
of each part to perform programming before shipping, to 

programming timing diagram. 
assure high programming yields and correct logical operation 

Once fuses have been selected, the simple programming and for a correctly programmed part. Programming yield losses are 
verification sequence may be completed as shown in the most likely due to poor programming socket contact, program-
programming timing diagram. AC and DC requirements for ming equipment out of calibration. or improper usage of said 
programming are shown in the programming parameter table. equipment. 

PROGRAMMING PARAMETERS TA = 25°C 

Parameter Parameter 
Symbol Description Min. Typ. Max. Units 

LPin 1 @ 5·10 mA 10 11 12 
VHH Control Pin Extra High Level V I Pin 13 @ 5-10 mA 10 11 12 

VOP Program Voltage Pins 14-23 @ 15-200 mA . 14 15 16 V 

VIHP Input HIGH Level During Programming and Verify 2.4 5 5.5 V 

VILP Input LOW Level During Programming and Verify 0.0 0.3 0.5 V 

Vccp Vcc During Programming @ ICC - 50-275 mA 5 5.2 5.5 V 

VCCL VCC During First Pass Verification @ ICC - 50-275 mA 4.4 4.5 4.6 V 

VCCH Vcc During Second Pass Verification @ Icc'" 50-275 mA 5.4 5.5 5.6 V 

VBlown Successful Blown Fuse Sense Level @ Output 0.3 0.5 V 

Vop/dt Rate of Output Voltage Change 20 250 V/p.s 

dV13/dt Rate of Fusing Enable Voltage Change (Pin 13 RiSing Edge) 100 1000 V/IJ.S 

Fusing Time First Attempt 40 50 100 p.s 
tp 

Subsequent Attempts 4 5 10 ms 

to Delays Between Various Level Changes 100 200 1000 ns 

tv Period During which Output is Sensed for VBlown Level 500 ns 

VONP Pull-Up Voltage On Outputs Not Being Programmed VCCp-0.3 Vccp Vccp+O.3 V 

R Pull-Up Resistor On Outputs Not Being Programmed 1.9 2 2.1 kn 
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Design Aid Software for AMD 24·Pln XOR PAL Family 

Name 

ABEL 

CUPl 

AmCUPl 

Name 

Data I/O 
10525 Willow Road N.E. 
Redmond, WA 93052 

Stag Microsystems 
528-5 Weddell Drive 
Sunnyvale, CA 94086 

Valley Data Sciences 
2426 Charleston Road 
Mountain View, CA 94043 

PINS 
2·11 

PINI 

PROGRAMMED 
OUTPUT 

PIN 13 

Vendor Versions Notes 

Data I/O IBM PC 
VAXIVMS (206) 881-6444 
VAX/UNIX 

IBM PC 
P-CAD Systems VAXIVMS 
(408) 971-1300 VAX/UNIX 

CPM 80/86 

Advanced Micro Devices Supported by 
(408) 732-2400 IBM PC P-CAD Systems 

AMD Qualified Programmers 

Programmer 
Model(s) AMD PAL Personality Module Socket Adapter 

Systems 19, 29 950-1942-0044 303A-011A 

60 N/A Under Development 

Model PPZ Under Development 
On Board 

Zl30 Under Development 

160 Series Under Development On Board 

PROGRAMMING TIMING DIAGRAM 

.INPUT LINE NUMBER AND PRODUCT TERM LINE NUMBER ADDRESSES 

r-------------------'7--------------------------------------~H 

~---------- V1LP 

r-+---~,7_----~----------~----~--------------------~p 

to 
-----1--10-

1----------- VOH 

-------- VOL 

1--... ---------- VHH 

'------- VllP 

tv 10 CYCLE 
ENDS 

I--------PROGRAMMING---------!-----------VERIFY-----__ I 

PFOO1101 
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TABLE 1. INPUT ADDRESSING 

Input Input Llno Number 

Line Address Pin States 

Number 6 7 8 9 

0 L L L L 
1 L L L L 
2 L L L L 
3 L L L L 
4 L L L H 
5 L L L H 
6 L L L H 
7 L L L H 
8 L L H L 
9 L L H L 

10 L L H L 
11 L L H L 
12 L L H H 
13 L L H H 
14 L L H H 
15 L L H H 
16 L H L L 
17 L H L L 
18 L H L L 
19 L H L L 
20 L H L H 
21 L H L H 
22 L H L H 
23 L H L H 
24 L H H L 
25 L H H L 
26 L H H L 
27 L H H L 
28 L H H H 
29 L H H H 
30 L H H H 
31 L H H H 
32 H L L L 
33 H L L L 
34 H L L L 
35 H L L L 
36 H L L H 
37 H L L H 
38 H L L H 
39 H L L H 
40* H L H L 
41* H L H L 
42* H L H L 
43* H L H L 

63** H H H H 

* Used for AmPAL22XP10 only 
** Used for programming polarity 
L = VILP 
H = VIHP 
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~ 
'E TABLE 2-1. PRODUCT TERM ADDRESSING (AmPAL22XP10) 

sf Product Term Select 
41 Address Pin Programming Access and Verify Pin 
..J 

~ ~5~ __ 4~ __ 3~ __ 2~ ___ 2_3 __ r-_2_2 __ ~ __ 2_1 __ +-__ 20 __ ~ __ 1_9 __ +-__ 18 __ ~ __ 1_7 __ ~ __ 1_6 __ +-__ 15 __ ~ __ 1_4~ 
~ ~L~ __ L~~L __ ~L __ r-__ O __ -r ___ 9~~ __ 1_6 __ ~_2-7 __ ~ __ 36 __ ~ ___ 45 __ ~ __ 5_4 __ ~ __ 6_3 __ ~~7-2 __ 4_~8-1~,~ 
o L L L H 1 10 19 28 37 46 55 64 73 82<; >< 
eLL H L 2 11 20 29 38 47 56 .65 74 83,: 
~ ~L~~L~~H--~H--r---3---r--1-2--~--2-1--~--3-0--'+---3-9--+---48---r---57---r--6-6~~--7-5--;---'84--~' 

I 

'lltN L H L L 4 13 22 31 40 49 58 67 76 85. 
~--~--+---+---~----~~----~------~-----r------+-------------~------~----~~--~ C L H L H 5 14 23 32 41 50 59 68 77 86 . 

~ ~--~--+---+---~----~~-----r------~-----r.-----~.------+------~----~------~~--~ 
C ~L __ ~H __ +-_H-+ __ L~ ____ 6 __ ~ __ 1_5_· __ ~_2_4 __ -r ___ 33 __ -r ___ 42 __ -+ ___ 5_1 __ .~ __ 6_O __ +-~6_9 __ ~ __ 7_8 __ 4-__ e_7_.c~ 

L H H H 7 16 25 34 43 52 61 70 79 68 

H L L L 8 17 26 35 44 53 62 71 60 89 
-----~------~--H L L H POL POL POL POL POL POL POL POL POL POL 

~--r---+---+---1-----~~----~------~------~-----+------+------+----------4-----~----~ 
H H H H SF i! 

L = VILP 
H .. VIHP 

OE '" Output Enable 
POL = Polarity 

SF -= Security Fuse 

Logical! Architectural Product Term Line Number 

TABLE 2·2, PRODUCT TERM ADDRESSING (AmPAL20XRP4) 

~-------------------~------------------------------------------------------.---------~--------------~ 
Product Term Select 

Address Pin Programming Accesn and Verify Pin 

5 4 3 2 23 22 21 20 19 18 17 '16 15 14 
~L--~L--~-L-+--L~---.-O---~----9--~--1-a~~--2-7---r~·-35--~~'-43--··'~--5-1--~--5-9----r--e-8~-r~-77-.~:: 
~.L~--L~~L·--~H-'~-;-----·--10--~--~1·9--~---2a---+--~36-·---+---4-4·--+---5-2--~--6-0--4-~6-9:~~~'7-8-'~. 
I----~--+_--+_-- -- ~--"-1-----'+---~----"""""+-----,,,,""1 

L L H L 2 11 20 29 37 L 45 . 53 61 70 . 1~.:g 
~L __ ~L--+-_H-+_H~ ...... _3 _-t-_1_2_.-t-_2_1_;-t __ 3_0._~ __ .2~._L..!~ .. --54--+-_-~2-.-_. ~·-1-1-· ......j.-... ~~~. ~}~"";f; 

L H L L 4 13 22 :31 39 I" 47 55 63 72., ";F:f 

:=L=:==H=::=L==:=H==:===5===:==1=4==:===2=3=,-.~. r--' 32_._t_~ -~1 ~4.i=~:·~5-_6-=-~:.I~~-=-6-=-4~~~~~.~.7~3 ... ,_.-~4_-~-.,..,~"" ...... '-''''''::''''''''l' 
L H H L 6 15 24 33' 4< 4~ 67 6S 74'<&3,'1:: 

~L~-H~f-H--f---t-------l-----+---·,"·--"-"",:·r--":"·-+---:---I----+' -':--.:- .....--...;"",... -+-........ ~.·iI .... ". ,~~.:: ..•. ""I'.'.;' 
H 7' .'. 16 25 =h'"34 .. ! 42 I. 50 ea 66 . i5', ~;.' 

I--H--i-L---'r--L-I--L-+-,-s';"" -+--17+' --1-...-. -2-6'''';'' -. . .~-:-~:--........ + "'. J . -' 67- 76: 85':' 

:=~==:=~==:==~=:==~-.. :~;..,o:-F_l =::::p:n:l:' -_. <t-~-:. _PO ___ I-_. _.' +-1 ~ •. _06"1 POI +""S+-_-_PO_-t_'~ .. ::~_~P~O-~L-:.-:.:~.-:.P-:.O~L-:.~:-=.-:_PO: .. :L: ... '.,....j("!'I.~ 
L 
H 

OE 
POL 

SF 

.. VILP 

... VIHP 

.. Output Enable 

.. Polarity 

.. Security Fuse 

Logical! Architectural Product Term Line Number 
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TABLE 2-3. PRODUCT TERM ADDRESSING (AmPAL20XRP6) 

Product Term Select 
Address Pin Programming Access and Verify Pin 

5 4 3 2 23 22 21 20 19 18 17 

L L L L '0 9 18 26 34 42 50 

L L L H 1 10 19 27 35 43 51 

L L H L 2 11 20 28 36 44 52 

L L H H 3 12 21 29 37 ,15 53 

L H L L 4 13 22 30 38 46 I 54 

L H L H 5 14 23 31 39 47 55 

L H H L G 15 24 32 40 48 56 

L H H H 7 16 25 33 41 49 57 

H L L L ..... 8 ,'. 17 - - - - -
H L L H POL POL POL POL POL POL 1 POL 

H H H H SF 

L = VILP Logical/Architectural Product Term Line Number 
H = VIHP 

OE = Output Enable 
POL = Polarity 

SF = Security Fuse 

TABLE 2-4. PRODUCT TERM ADDRESSING (AmPAL20XRP8) 

Product Term Select 
Address Pin Programming Access and Verify Pin 

5 4 3 2 23 22 21 20 19 18 17 

L L L L 0 9 17 25 33 41 49 

L L L H 1 '. 1.0 18 26 34 42 50 
f--

L L H L ! 2' :11 19 27 35 43 51 

L L H H 3 12 . 20 28 36 44 52 

L H L L , ,4'. . 13 21 29 37 45 53 

L H L H 5 14 22 SO 38 
I 

46 54 

L H H L 6 15 23 31 39 47 55 

L H H H 7' '," 16 24 32 40 48 56, 
-

H L L L 8 .• ' - - - - - --
H L L H POL POL POL POL POL POL POL 

H H H H ,"SF 

L = VILP Logical/Architectural Product Term Line Number 
H = VIHP 

OE = Output Enable 
POL = Polarity, 

SF = Security Fuse 
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TABLE 2-5. PRODUCT TERM ADDRESSING (AmPAL20XRP10) 

Product Term Select 
Address Pin Programming Access and Verify Pin 

5 4 3 2 23 22 21 20 19 18 17 

L L L L l}<':}j !",; 8' 16 24 32 40 48 

L L L H ,~,'i~;<. i'I:; 9 17 25 33 41 49 

L L H L • 
\ 10' '18 26 34 42 50 

L L H H 

;:~.'/ 

.11 19 27 35 43 51 

L H L L :"12· 2Q 28 36 44 52 

L H L H 1£ .. ·/1~. 21 29 37 45 53 

L H H L 14 22 30 38 48 54 

L H H H L,<;":.': , 16 23 31 39 47 55 

H L L L [i', :<~<;,;.;, . - - - - - -
H L L H ''i,JiOt, .PoL POL POL POL POL POL 

H H H H ~</"~ . 

L - VILP Logical! Architectural Product Term Line Number 
H - VIHP 

OE - Output Enable 
POL - Polarity 

SF - Security Fuse 
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AmPAl*HC29M16/ AmPAlHCT29M16 
24-Pin E2-Based CMOS Programmable Array Logic 

ADVANCE INFORMATION 

DISTINCTIVE CHARACTERISTICS 

o High-performance semi-custom logic replacement; 
Electrically Erasable (E2) technology allows repro­
grammability 

o 16 bidirectional user-programmable I/O logic macro­
cells for Combinatorial/Registered/Latched operation 

o Output Enable controlled by a pin or product terms 
• Variable product term distribution for increased design 

flexibility 
o Programmable clock selection with two clocks/latch 

enables (LEs) and LOW/HIGH clock/LE polarity 

• Register/Latch PRELOAD permits full logical verifica­
tion 

o Available in high-speed (tpD = 35 ns, fMAX = 20 MHz) 
and standard-speed (tpD = 45 ns, fMAX = 15.0 MHz) 
versions 

• 100% post-programming functional yield (PPFY), fast 
programming and excellent reliability assured through 
proven E2PROM technology 

• Full-function AC and DC testing at the factory 
• CMOS and TTL-compatible versions 
o 24-pin 300-mil DIP and 28-pin chip carrier packages 

GENERAL DESCRIPTION 

The AmPAL29M16 is a high-speed, E2-based CMOS Pro­
grammable Array Logic device designed for general logic 
replacement in TTL or CMOS digital systems. It offers high­
speed, low-power consumption, high programming yield, 
fast programming and excellent reliability. Programmable 
logic devices (PLDs) combine the flexibility of custom logic 
with the off-the-shelf availability of standard products, 
providing major advantages over other semicustom solu­
tions such as gate arrays and standard cells, including 
reduced development time and low up-front development 
cost. 

The AmPAL29M16 uses the familar sum-of-products (AND­
OR) structure, allowing users to customize logic functions 
by programming the device for specific applications. It 
provides up to twenty-nine array inputs and sixteen outputs. 
It incorporates AMD's unique input/output logic macrocell 
which provides flexible input/output structure and polarity, 
flexible feedback selection, multiple Output Enable choices, 
and a programmable clocking scheme. The macro cells can 
be individually programmed as "Combinatorial", "Regis­
tered", or "Latched" with active-HIGH or active-LOW 
polarity. The flexibility of the logic macrocells permits the 

system designer to tailor the device to particular application 
requirements. 

Increased logic power has been built into the 
AmPAL29M16 by providing a variable number of logical 
product terms per output. Eight outputs have eight product 
terms each, four outputs have twelve product terms each, 
and the other four outputs have sixteen product terms 
each. This variable product-term distribution allows com­
plex functions to be implemented in a single PAL device. 
Each output can be dynamically controlled by an Output 
Enable pin or Output Enable product terms. Each output 
can also be permanently enabled or diasabled. 

System operation has been enhanced by the addition of 
common asynchronous-PRESET and RESET product 
terms and a power-up RESET feature. The AmPAL29M16 
also incorporates PRELOAD and Observability functions 
which permit full logical verification of the design. 

The AmPAL29M16 is compatible with HCT (High-perfor­
mance CMOS & TTL) and HC (High-performance CMOS) 
logic levels and is offered in the space-saving 300-mil DIP 
package as well as chip carrier surface-mount packages. 

• PAL is a registered trad"mark of and is used under license from Monolithic Memories. Inc. 

I 
Publication # Rev. Amendment 

08740 A /0 
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BLOCK DIAGRAM 

CLKlLE 
I/O 1/0 I/O 1/0 I/O I/O I/O 110 

I/O I/O I/O 1/0 I/O 1/0 1/0 I/O 
80006811 
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PIN DESCRIPTION 

The following describes the functionality of all the pins on the 
24-pin DIP. The 2B-pin chip carrier has the same functionality 
with NO CONNECTS on pins 1 ,B, 15,22. 

CLK/LE (PIN 1): 
Used as dedicated clockllatch enable pin for all registers/ 
latches on the device if so selected. (See I/O Logic 
Macrocell Configurations.) This pin is a clock pin for 
macrocells configured as registers and a latch enable pin for 
macrocells configured as latches. 

I/CLK/LE PIN (PIN 13): 
Used as dedicated input or as an alternate clockllatch 
enable pin for all the registersllatches if so selected. (See 
I/O Logic Macrocell Configurations.) This pin is a clock pin 
for macrocells configured as registers and a latch enable pin 
for macrocells configured as latches. 

I/OE PIN (PIN 11): 
Used as a dedicated input pin to the AND array or as the 
Output Enable control pin (Active LOW) for all macrocells 
with pin-controlled Output Enable selected. 

10-12 (PINS 2,14,23): 
Dedicated input pins. 

I/OFO-I/OF7 (PINS 3,4,9,10,15,16,21,22): 
Eight bidirectional I/O pins with two independent feedback 
paths to the AND array. The first feedback path is a 
dedicated I/O pin feedback to the AND array for 
combinatorial input. The second feedback path consists of 
direct registerllatch feedback to the array (see Figure 1). 

1/00-1/07 (PINS 5,6,7,8,17,18,19,20): 
Eight bidirectional I/O pins with user-programmable 
registerllatch or I/O pin feedback to the AND array (see 
Figure 1). 

Vee (PIN 24): 
Supply Voltage 

GND (PIN 12): 
Circuit Ground 

ORDERING INFORMATION 

Standard Products 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by 
a combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Package Type 
D. Temperature Range 
E. Optional Processing 

AMPALHCT29M16 

TL.. _____ E. OPTIONAL PROCESSING 
Blank = Standard processing 

B = Burn-in 

L...-________ D. TEMPERATURE RANGE 
C = Commercial (0 to + 70·C) 

L...------------c. PACKAGE TYPE 
P = 24-Pin Slim Plastic DIP (PD3024) 
D = 24-Pin Slim Ceramic DIP (CD3024) 
J = 28-Pin Plastic Leaded Chip Carrier 

(PL 028) 
L = 28-Pin Ceramic Leadless Chip Carrier 

(CL 028) 

I..----------------B. SPEED OPTION 
-35=35 ns 
-45 ~ 45 ns 

- A. DEVICE NUMBER/DESCRIPTION 
AmPALHCT29M16 - CMOS/TIL-Compatible 
AmPALHC29M16 - CMOS-Compatible 

Valid Combinations 

AmPALHCT29M16-35, -45 

AmPALHC29M16-35, -45 
PC, DC, DCB, 
JC, LC, LCB 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 

. to obtain additional data on AMD's standard military grade 
products. 
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FUNCTIONAL DESCRIPTION 

Inputs 

The AmPAL29M16 has 29 inputs to drive each product term 
(up to 58 inputs with both TRUE and complement versions 
available to the AND array) as shown in the block diagram 
below. Of these 29 inputs, 3 are dedicated inputs, 16 are from 
8 I/O logic macrocells with 2 feedbacks, 8 are from other I/O 

logic macrocells with single feedback, 1 is for I/CLOCK/LE 
and 1 is for I/OE input. 

Initially the AND-array gates are disconnected from all the 
inputs. This condition represents a logical TRUE to the AND 
array. By selectively programming the E2cells, the AND array 
may be connected to either the TRUE input or the comple­
ment input. When both the TRUE and complement inputs are 
connected, a logical FALSE results at the output of the AND 
gate. 

BLOCK DIAGRAM 

CLKlLE 
VO I/O VO 

va VO VO 

Product Terms 

The degree of programmability and complexity of a PAL 
device is determined by the number of connections that form 
the programmable-AND and OR gates. Each programmable­
AND gate is called a product term. The AmPAL29M16 has 188 
product terms. 176 of these product terms provide logic 
capability and 12 are architectural or control product terms. 
Among the 12 control product terms, 2 are for common 
Asynchronous-PRESET and RESET, 1 is for Observability, 
and 1 is for PRELOAD. The other 8 are common Output 
Enable product terms. The Output Enable of each bank of 4 
macrocells can be programmed to be controlled by a common 
Output Enable pin or 2 AND/XOR product terms. It may be 
also permanently enabled or permanently disabled. 

Each product term on the AmPAL29M16 consists of a 58-input 
AND gate. The outputs of these AND gates are connected to a 
fixed-OR plane. Product terms are allocated to OR gates in a 
variable distribution across the device ranging from 8-to-16 
wide, with an average of 11 logical product terms per output. 
Increased number of product terms per output allows more 
complex functions to be implemented in a single PAL device. 
This flexibility aids in implementing functions such as counters, 
exclusive-OR functions, or complex state machines, where 
different states require different numbers of product terms. 

I/O 

I/O 
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VO I/O VO I/O 

VO 1/0 I/O I/O 

60006811 

Common asynChronous-PRESET and RESET product terms 
are connected to all Registered/Latched inputs/outputs. 
When the asynchronous-PRESET product term is asserted 
(HIGH) all the registers/latches will immediately be loaded 
with a HIGH, independent of the clock. When the asynchro­
nous-RESET product term is asserted (HIGH) all the regis­
ters/latches will be immediately loaded with a LOW, indepen­
dent of the clock. The actual output state will depend on the 
macro cell polarity selection. The latches must be in latched 
mode (not transparent mode) for the RESET/PRESET, PRE­
LOAD, and power-up RESET modes to be meaningful. 

Input/Output Logic Macrocells 

The I/O logic macrocell allows the user the flexibility of 
defining the architecture of each input or output on an 
individual basis. It also provides the capability of using the 
associated pin either as an input or an output. 

The AmPAL29M16 has 16 macrocells, one for each I/O pin. 
Each I/O rnacrocell can be programmed for combinatorial, 
registered or latched operation (see Figure 1). Combinatorial 
output is desired when the PAL device is used to replace 
combinatorial glue logic. Registers are used in synchronous 
logic applications while latches are used in asynchronous 
applications where speed is critical. The output polarity for 
each macrocell in each of the three modes of operation is 



user-selectable allowing complete flexibility of the macroce" 
configuration. 

Eight of the macroce"s (I/OFo-I/OF7) have two independent 
feedback paths to the AND array (see Figure 1). The first is a 
dedicated I/O pin feedback to the AND array for combinatorial 
input. The second path consists of a direct registerllatch 
feedback to the array. If the pin is used as a dedicated input 
using the first feedback path, the registerllatch feedback path 
Is still available to the AND array. This path provides the 
capability of using the Jegisterllatch as a buried state register/ 
latch. The other eight macroce"s have a single feedback path 
to the AND array. This feedback is user-selectable as either an 
I/O pin or a registerllatch feedback. 

Each macroce" can provide true input/output capability. The 
user can select each macrocell registerllatch to be driven by 
either the output generated by the AND-OR array or the I/O 
pin. When the I/O pin is selected as the input, the feedback 
path provides the registerllatch input to the array. When used 

Common 

as an input, each macrocell is also user-programmable for 
registered, latched, or combinatorial input. 

The AmPAL29M16 has one dedicated CLK/LE pin and one 
I/CLK/LE pin. All macrocells have a programmable select to 
choose between these two pins as the clock or the latch 
enable signal. These pins are clock pins for macrocells 
configured as registers and latch enable pins for macrocells 
configured as latches. The polarity of these CLK/LE signals is 
also individually programmable. Thus different registers can 
be driven by multiple clocks and clock phases. 

The Output-Enable mode of each of the macrocells can be 
selected by the user. The I/O pin can be configured as an 
output pin (permanently enabled) or as an input pin (perma­
nently disabled). It can also be configured as a dynamic I/O 
controlled by the Output Enable pin or by two AND-XOR 
product terms which are available for each bank of four I/O 
logic macrocells. 

IIOE Pin ----------------, 

OEPTsfor{~ r=J. L....---~ 8anksof4 
Macroce"s f-------..... 

Common Async. 
PRESET 

PO 

P7, P11 or P15 

ClKlLE 

IIClK/LE 

Common Async. 
RESET 

I/O Pins 

TOAND:========~~ _________ 1 
Array 

TOAND.: ____ ", 
Array ()o.I 

8toMUX 

~ ) 
; 8 Dedicated Feedback 

DF006181 

Figure 1. AmPALHC(HCT)29M16 110 Macrocell 

110 Logic Macrocell Configuration 

AMD's unique I/O macrocell offers major benefits through its 
versatile, programmable input/output cell structure, multiple 
clock choices, flexible Output Enable and feedback selection. 
Eight I/O macrocells with single feedback contain nine 
E2"cells, while the other eight macrocells contain eight E2cells 
for programming the input/output functions (see Table 1, 
Figure 2). 

E2cell 51 controls whether the macrocell will be combinatorial 
'or registeredllatched. 80 controls the output polarity (active­
HIGH or active-LOW). 82 determines whether the output is a 
register or a latch. 83 allows the use of the macrocell as an 
input registerllatch or as an output registerllatch. It selects 
the direction of the data path through the registerllatch. If 

connected to the usual AND-OR array output, the register/ 
latch is an output connected to the I/O pin. If connected to the 
I/O pin, the registerllatch becomes an input registerllatch to 
the AND array using the feedback data path. 

. Programmable E2cells 54 and 55 allow the user to select one 
of the four CLK/LE Signals for each macrocell. 86 and 87 are 
used to control Output Enable as pin controlled, two product 
term controlled, permanently enabled or permanently dis­
abled. 88 is a feedback multiplexer for the macrocells with a 
single feedback path only. 
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In the virgin erased state (charged, disconnected), an archi­
tectural cell is said to have a value of "1" ; In the programmed 
state (discharged, connected), an architectural cell is said to 
have a value of "0". 



Table 1. AmPAL29M16 1/0 Logic Macrocell Architecture Selections 

53 I/O Cell 52 Storage Element 

1 Output Cell Register 

o Input Cell o Latch 

51 Output Type so Output Polarity 

1 Combinatorial 1 Active LOW 

o Register/Latch o Active HIGH 

58 Feedback* 

Register/Latch 

o I/O 

'Applies to macrocells with single feedback only. 
TCO03961 

Table 1. AmPAL29M16 I/O Logic Macrocell Clock Polarity & Output Enable Selections 

(Cont'd.) 

54 55 Clock Edge/Latch Enable Level S6 S7 Output Buffer Control 

CLKlLE pin positive-going edge. active-HIGH LE Pin - Controlled 3-Slale Enable 

0 CLK/LE pin negative-going edge, active -LOW LE 0 XOR PT -Controlled 3-State Enable 

0 IICLKlLE pin positive-going edge, active -HIGH LE 0 Permanently Enabled (Output only) 

0 0 I/CLKlLE pin negative-going edge, active-LOW LE 0 0 Permanently Disabled (Input only) 

TCOO3971 

1 = Erased State (Charged or disconnected) 
o = Programmed State (Discharged or connected) 
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SOME POSSIBLE CONFIGURATIONS OF THE INPUT/OUTPUT LOGIC MACROCELL 

OUTPUT REGISTERED/ACTIVE LOW 

OUTPUT REGISTERED/ACTIVE HIGH 

So. 1 
SI .0 
Spl 
S2- 1 

LD000961 

So = 0 
SI = 0 
S3· 1 
S2" 1 

LD000971 

OUTPUT COMBINATORIAL/ACTIVE LOW 

OUTPUT COMBINATORIAL/ACTIVE HIGH 

Figure 2A: Dual Feedback Macrocells 

LD000951 

SO" 0 
SI·1 
S3 = 1 

LD000981 

OUTPUT REGISTERED/ ACTIVE LOW, I/O FEEDBACK OUTPUT COMBINATORIAL/ACTIVE LOW, I/O FEEDBACK 
SO" 1 
Sl .. 0 
S3. 1 
Sa- 0 
S2 = 1 

LD000991 

OUTPUT LATCHED/ACTIVE HIGH, I/O FEEDBACK 
so·o 
SI = 0 
S3" 1 
S8"' 0 
Sp 0 

LD001011 

LD001000 

OUTPUT COMBINATORIAL/ACTIVE HIGH, I/O FEEDBACK 

So·o 
SI • 1 
S3"' 1 
S8 = 0 

LD001021 

Figure 28: Single Feedback Macrocells 
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OUTPUT REGISTERED/ACTIVE LOW, REG. FEEDBACK OUTPUT COMBINATORIAL/ACTIVE LOW, REG. FEEDBACK 

So = 1 
SI • 0 
S3. 1 

t----t.]/O-----11C:t Sa· 1 
Spl 

L000103l 
L000104l 

OUTPUT LATCHED/ACTIVE LOW, LATCHED FEEDBACK OUTPUT COMBINATORIAL/ACTIVE LOW, LATCH FEEDBACK 

So·o 
SI .. 0 
S3· 1 
Sa· l 

t----f~-~ Sp 0 

L00010Sl 

Figure 28: Single Feedback Macrocells (Cont'd.) 

INPUT REGISTERED/LATCHED 

So. X 
SI· 0 
S3. 0 
sa. 1 (for single feedback only) 
S2. 1 Register 

• 0 Latch 

Programmable-AND Array 
L000107l 

Figure 2C: All Macrocells 
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OUTPUT 
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~D- 1 " .. " ~r rL°UTPUT IIACRO 

I H 'I I r--r-- .. ,,' ...... 

A INPUTI 
t' 

OUTPUT J IIACRO I 

!' -D-n 
.... 

1 INPUTI R21 

N OUTPUT -

I IIACRO 

{ --<:J--!!. 

~ INPUTI 
OUTPUT 
IIACRO I.,..;.;... 

~ rw "-
INPUTI 

~ 
20 

OUTPUT 
IIACRO 

~ 

'9·M ,J OUTPUT 
IIACRO L. 

, ,- ~ 
.... 19 

1 
~ OM' ~ "-

OUTPUT 
I 

IIACRO 

I 

LD001350 

Figure 3. AmPAL29M16 Logic Diagram 
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Figure 3. AmPAL29M16 Logic Diagram 
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Designed in Testability and Debugging 

PRELOAD 

To simplify testing, the AmPAL29M16 is designed with PRE­
LOAD circuitry that provides an easy method for testing logical 
functionality. Both TTL-level and supervoltage-enabled PRE­
LOAD modes are available. This offers even more test 
capability than previously implemented in AMD's PAL devices. 
The TTL-level PRELOAD product term can be useful during 
debugging, where supervoltages may not be available. 

PRELOAD allows any arbitrary state value to be loaded into 
the registers/latches of the device. A typical functional-test 
sequence would be to verify all possible state transitions for 
the device being tested. This requires the ability to set the 
state registers into an arbitrary "present state" value and to 
set the devices inputs into any arbitrary "present input" value. 
Once this is done, the state machine is clocked into a new 
state, or "next state", which can be checked to validate the 
transition from the "present state". In this way any transition 
can be checked. 

Since PRELOAD can provide the capability to go directly to 
any desired arbitrary state, test sequences may be greatly 
shortened. Also, all possible states can be tested, thus greatly 
reducing test time and development costs and guaranteeing 
proper in-system operation. 
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Observablllty 

The output register/latch observability product term, when 
asserted, suppresses the combinatorial output data from 
appearing on the I/O pin and allows the observation of the 
contents of the register/latch on the output pin for each of the 
logic macrocells. This unique feature allows for easy debug­
ging and tracing of the buried state machines. In addition, a 
capability of supervoltage observability is also provided. 

Power-Up Reset 

All the device registers/latches have been designed to reset 
during device power-up. Following the power~up, all registers/ 
latches will be cleared, setting the outputs to a state deter­
mined by the output select multiplexer. This feature provides 
extra flexibility to the designer and is especially valuable in 
simplifying state machine initialization. 

Security Cell 

A security cell is provided on each device to prevent unautho­
rized copying of the user's proprietary logic design. Once 
programmed, tho security cell disab!es the programming, 
verification, PRELOAD, and the observability modes. The only 
way to erase the protection cell is by charging the entire array 
and architecture cells, in which case no proprietary design can 
be copied. (This cell should be programmed only after the rest 
of the device has been completely programmed and verified.) 



--._-_ .. _-

ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 
Storage Temperature ............................ -65 to + 150°C Commercial (C) Devices - HCT Devices 
Ambient Temperature under bias ............. - 55 to + 125°C Temperature (T A) Operating Free Air ..... O°C to + 70°C 
Supply Voltage with Supply Voltage (Vee) .................... t4:75 to +5.25 V 

Respect to Ground ......................... -0.5 V to +7.0 V 
Commercial (C) Devices - HC Devices , 

Temperature (TA) ...................... :.; .• ~~ .. O°C to +70°C 
DC Output Voltage ...................... -0.5 V to Vee + 0.5 V 
DC Input Voltage 

(Except Pin I/OE) .................... -0.5 V to Vee + 0.5 V 
Supply Voltage (Vee) ........... : •• :.·.:~;+4.g0 to +5.50 V 

DC Input Voltage (Pin I/OE) ................ -0.6 V to + 17 V Military (M) Devices* 
DC Input Current .............................. -1 mA to + 1 mA 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA T1NGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

Operating ranges define those limits. between which the 
functionality of the device ~s guaranteed. 

*Consult Factory for Military.~pecifications 

" ",<-

DC CHARACTERISTICS over operating range unless otherwise specified "'>,, 

~ " " 

HCT Devices* 

Parameter Parameter 
Symbol Description 

VOH Output HIGH Voltage 

VOL Output LOW Voltage 

VIH Input HIGH Voltage 

VIL Input LOW Voltage 

II Input Leakage Current 

10 Output Leakage Current 

leeop Operating Current Supply 

Ise Output Short Circuit Current 
, 

CAPACITANCE 

Parameter 
Symbol 

COUT 

Parame,ter, 
Des~ription 

Input Capacitance 

Output CapacitanCE}' 

/ 

'. \:. 
-..... ", 

'. 

". .' ""~ ~! 

i ..... 
: 

Test'Condltions 

Vee = Min. .",t,. } 

VIN = VIH or YII.. /; 
10H = -2 mA~·. '/ 

".,' -'. 
10L= 6 mA 

Vee = M!r'!;:;;",.f 
10L = 4 mA 

VIN =;:.VIH'or,C¥IL 
». """.j 

10L = 20 p.A ~, ~ ..... 
''''.'." 

<;1'oaranteed Logic HIGH for all Inputs 

:C;;uara~ieed Logic LOW for all Inputs 

YIN ,..' 0 to 5.5 V, Vee = Max. 

"Jt~~ = 0 to 5.5 V, Vee = Max. 

f = fMAX, Outputs Open (10 = 0) 

Vee = Max., Vo = 0 V 

Tost Conditions 

Vee = 5.00 V., T A = 25°C 
VIN = 0 V @ f = 1 MHz 

Min. 

2.4 

2.0 

-30 

Max. Units 

V 

0.5 

0.33 V 

0.1 

V 

0.8 V 

10 p.A 

10 p.A 

120 mA 

-90 mA 

Typ. Units 

5 

8 
pF 

Note: These parameters are not 1'00% tested, but are evaluated at initial characterization and at any time the design is 
modified where capaclta~ce may be affected. 

* Consult factory for DC specification on HC Devices. 
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SWITCHING CHARACTERISTICS over operating range unless otherwise specified All values are 
determined under the loading of one TTL gate and a capacitance of 50 pF. 
All Typical values are determined at VCC = 5 V and TA = 25 C. 

-35 -45 
Parameter Parameter Parameter 

Number Symbol Description Min. Max. Min. Max. Units 

REGISTERED OPERATION (Numbers 1 through 12) 

1 tpD 
Input or 1/0 Pin to 

35 45 ns Combinatorial Output 

Output Register 

2 tSaR 
Input or 1/0 Pin to 27 34 ns Output Register Setup 

3 tCOR 
Output Register Clock 

23 32 ns to Output 

4 tHOR 
Data Hold Time for 

0 0 ns Output Register 

Input Register 

5 tSIR 
I/O Pin to Input 

6 8 ns Register Setup 

6 tCIR 
Register Feedback Clock to 

45 58 ns Combinatorial Output 

7 tHIR 
Data Hold Time for 

3 4 ns Input Register 

Clocking and Frequency 

8 tCIS 
Register Feedback to Output 

35 45 ns Register/Latch Setup 

9 fMAX 
Maximum Frequency 

20 15 MHz 
1/(tSOR + tCOR) 

10 fMAXI 
Max Internal Frequency 

28.5 22.5 MHz 
1/tCIS 

11 tCWH Clock Width HIGH 12 15 

12 tCWL Clock Width LOW 12 15 

LATCH OPERATION (Numbers 13 through 24) 

13 tpD 
Input or 1/0 Pin to 

35 45 ns Combinatorial Output 

14 tPTD 
Input or 1/0 Pin to Output 

45 55 ns via One Transparent Latch 

Output Latch 

15 tSOL 
Input or 1/0 Pin to Output 

27 34 ns Latch Setup 

16 tGOL 
Latch Enable to Transparent 

23 32 ns Mode Output 

17 tHOL 
Data Hold Time for 

0 0 ns Output Latch 

Input or 1/0 Pin to Output 
18 tSTL Latch Setup via Transparent 35 45 ns 

Input Latch 
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Parameter 

Number 

Input Latch 

19 

20 

21 

Latch Enable 

22 

23 

24 

25 

26 

27 

. 28 

29 

30 

31 

32 

-
-35 -45 

Parameter Parameter 
Symbol Description Min. Max. Min. 

tslL I/O Pin to Input Latch Setup 6 8 

Latch Feedback, Latch 
tGIL Enable Transparent Mode to 45 

Combinatorial Output 

tHIL 
Data Hold Time for 3 4 
Input Latch 

Latch Feedback Transparent 
tGIS Mode to Output Register/ 35 45 

Latch Setup 

tGWH Latch Enable Width HIGH 12 15 

tGWL Latch Enable Width LOW 12 15 

RESET/PRESET & OUTPUT ENABLE OPERATION (Numbers 25 through 32) 

Input or I/O Pin to Output 
tAPO Register/Latch RESET/ .40 

PRESET 

tAW 
Async. RESET/PRESET 35 45 
Pulse Width 

Async. RESET/PRESET to 
tARO Input Register/Latch 30 40 

Recovery 

Async. RESET/PRESET to 
tARI Input Register/Latch 20 30 

Recovery 

tpzx IIOE Pin to Output Enable 30 

tpxz I/OE Pin to Output Disable 30 

tEA 
Input or I/O to Output 35 
Enable via PT 

tER 
Input or I/O to Output 35 
Disable via PT 

-
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Max. Units 

ns 

58 ns 

ns 

ns 

ns 

ns 

55 ns 

ns 

ns 

40 ns 

40 ns 

45 ns 

45 ns 
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INPUT 
lATCH 

1/0 

1/0 

AND-OR ARRAY OUTPUT 
lATCH 

-

tGIS tGIS 
::::: :::::::::::::'::::::: ::: ______________ ~ tGTL 

1--_--+ tco L 

,.--+---t---..... tpTD 

1/0 

1/0 

tSOL .. -•.•.••.••........•.•.•••.•.•.. , ....•.•• - ''------ ~ 'tG I L 
tpTD '-------. tPTD 
tpD -------t:==========:::::j------..... tpD 

INPUT/OUTPUT SPECS (PIN lE REFERENCE) 

ClK L>---.-----------~----~ 

INPUT 
REGISTER 

tSIR .•....••.•.•. 

1/0 

1/0 

AND-OR ARRAY 

80006821 

OUTPUT 
REGISTER 

I/O 

tSOR ..•••.••.•.••••.••••...•..•••.••.•.••.. ---- ''------~ tCIR 

tpD --------t-------1f--------tt- tpD 

80006831 

INPUT/OUTPUT REGISTER SPECS (PIN ClK REFERENCE) 
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CLOCK 
INV POL 

CLOCK 
TRUE POL 

COMBINATORIAL 
INPUT & 1/0 
FEEDBACK 

REGISTERED 
INPUTS 

REGISTERED 
OUTPUTS 

COMBINATORIAL 
OUTPUTS 

ASYNC. RESET 
& PRESET 
INPUTS 

PIN DRIVEN 
OUTPUT ENB 

LATCH ENB 
INV POL 

LATCH ENB 
TRUE POL 

COMBINATORIAL 
INPUTS & 1/0 
FEEDBACK 

LATCHED 
INPUTS 

LATCHED 
OUTPUTS 

SWITCHING WAVEFORMS 

Register 

COMBINATORIAL ---~~~~r""":'--=~rllll'+-!=:r,:~~ ..... 1 J-~:t 
OUTPUTS 

ASYNC. RESET 
& PRESET 
INPUTS 

PIN DRIVEN 
OUTPUT ENB 

Latch 
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SWITCHING TEST CIRCUIT 

TO OUTPUTS 
OF DEVICE 

5V 

~ R1·6760 

tL~:F 
TC003951 

KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS ' OUTPUTS 

MUST BE WILL BE 
STEADY STEADY 

-- MAY CHANGE WILLBE 

FROM H TO L CHANGING 
FROMHTOL 

.- MAY CHANGE 
WILL BE 
CHANGING FROM L TOH 
FROML TOH 

-- DON'T CARE; CHANGING; 
ANY CHANGE STATE 
PERMITTED UNKNOWN 

H 
CENTER 

DOES NOT LINE IS HIGH 
APPLY IMPEDANGE 

"OFF"STATE 

KSOOOO10 
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AmPAL *HC29MA16/ AmPALHCT29MA16 
24-Pin E2-Based CMOS Programmable Array Logic 

ADVANCE INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• High-performance semi-custom logic replacement; 
Electrically Erasable (E2) technology allows repro­
grammability 

• 16 bidirectional user-programmable I/O logic macro­
cells for Combinatorial/Registered/Latched operation 

• Output Enable controlled by a pin or product terms 
• Variable product term distribution for increased design 

flexibility 
• Programmable clock selection with common pin clock/ 

latch enable (LE) or individual product term clock/LE 
with LOW/HIGH clock/LE polarity 

o Register/Latch PRELOAD permits full logical verifica­
tion 

o Available in high-speed (tpD = 35 ns, fMAX = 20 MHz) 
and standard-speed (tpD = 45 ns, fMAX = 15.0 MHz) 
versions 

• 100% post-programming functional yield (PPFY), fast 
programming and excellent reliability assured through 
proven E2PROM technology 

• Full-function AC and DC testing at the factory 
• CMOS and TTL-compatible versions 
• 24-pin 300-mil DIP and 28-pin chip carrier packages 

GENERAL DESCRIPTION 

The AmPAL29MA 16 is a high-speed, E2-basad CMOS 
Programmable Array Logic device designed for general 
logic replacement in TTL or CMOS digital systems. It offers 
high-speed, low-power consumption, high programming 
yield, fast programming and excellent reliability. Program­
mable logic devices (PLDs) combine the flexibility of 
custom logic with the off-the-shelf availability ot standard 
products, providing major advantages over other semicus­
tom solutions such as gate arrays and· standard cells, 
including reduced development time and low up-front 
development cost. 

The AmPAL29MA 16 uses the tamilar sum-ot-products 
(AND-OR) structure, allowing users to customize logic 
functions by programming the device for specific applica­
tions. It provides up to twenty-nine array inputs and sixteen 
outputs. It incorporates AMD's unique input/output logic 
macrocell which provides flexible input/output structure 
and polarity, flexible feedback selection, multiple Output 
Enable choices, and a programmable clocking scheme. 
The macrocells can be individually programmed as "Com­
binatorial", "Registered", or "Latched" with active-HIGH 
or active-LOW polarity. The flexibility of the logic macrocells 

permits the system designer to tailor the device to particular 
application requirements. 

Increased logic power has been built into the 
AmPAL29MA 16 by providing a variable number of logical 
product terms per output. Eight outputs have four product 
terms each, four outputs have eight product terms each, 
and the other four outputs have twelve product terms each. 
This variable product-term distribution allows complex func­
tions to be implemented in a single PAL device. Each 
output can be dynamically controlled by a common Output 
Enable pin or an individual Output Enable product terms. 
Each output can also be permanently enabled or diasabled. 

System operation has been enhanced by the addition of 
common asynchronous-PRESET and RESET product 
terms and a power-up RESET feature. The AmPAL29MA16 
also incorporates PRELOAD and Observability functions 
which permit full logical verification of the design. 

'The AmPAL29MA16 is compatible with HCT (High-perfor­
mance CMOS & TTL) and HC (High-performance CMOS) 
logic levels and is offered in the space-saving 300-mil DIP 
package as well as chip carrier surface-mount packages. 

• PAL i, a registered trademark of and is used under license from Monolithic Memories, Inc. I Publication # .B.!rt. Amendment 
08811 A /0 

4-211 Issue Date: October 1986 



CD .,... 
< 
:::E 
en 
C\I 
I­o 
J: 
..J 
c( 
Q. 
E 
< ...... 
CD .,... 
c( 
:::E 
en 
C\I o 
J: ... 
..J 
c( 
Q. 
E 
c( 

I/O I/O 

I/O I/O 

BLOCK DIAGRAM 

I/O I/O 

I/O I/O 

4-212 

-

I/O I/O I/O I/O 

I/O I/O I/O 1/0 

80006860 



-
:I> 

CONNECTION DIAGRAMS 3 
"'a 

Top View :I> 
r 

DIPs 
It 

::z:: 
0 
N 

CLK/LE vcc fD 
~ 

'0 '3 :I> .... 
1I0FO 1I0F7 . CJ) 

'" 1I0F1 1I0Fe 
:I> 
3 

1100 110 7 "'a 
:I> 

1101 1I0e r 
::I: 

1102 110 5 0 
1103 1104 

-I 
N 
fD 

1I0F2 1I0F5 ~ 

1I0F3 1I0F4 
:I> .... 

IlBE 
CJ) 

'2 
GND '1 

CD010272 

LCC* 

0 ~ "" u. 
d cj 0 u. 

~ ~ 0 
E Z _t'l :::. 

1I0F1 1I0Fe 

1100 1107 

1101 IIOe 

N.c. N.C. 

1102 1105 

1103 1104 

1I0F2 1I0F5 

t'l I~ ~ cj or ~ v u. Z u. 
~ :::. (!) ~ 

CD010281 

• Also available in PLCC. Pinouts identical to LCC. 

Note: Pin 1 is marked for orientation. 
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PIN DESCRIPTION 

The following describes the functionality of all the pins on the 
24-pin DIP. The 28-pin chip carrier has the same functionality 
with NO CONNECTS on pins 1,8,15,22. 

CLK/LE (PIN 1): 
Used as dedicated clockllatch enable pin for all reglstersl 
latches on the device If so selected. (See 110 Logic 
Macrocell Configurations.) This pin Is a clock pin for 
macrocells configured as registers and a latch enable pin for 
macrocells configured as latches. 

1l0E PIN (PIN 11): 
Used as a dedicated Input pin to the AND array or as the 
Output Enable control pin (Active LOW) for all macrocells 
with pin-controlled Output Enable selected. 

10-13 (PINS 2,13,14,23): 
Dedicated Input pins. 

IIOFO-I/OF7 (PINS 3,4,9,10,15,16,21,22): 
Eight bidirectional 110 pins with two independent feedback 
paths to the AND array. The first feedback path Is a 
dedicated 110 pin feedback to the AND array for 
combinatorial input. The second feedback path consists of 
direct reglsterllatch feedback to the array (see Figure 1). 

1/00-1107 (PINS 5,6,7,8,17,18,19,20): 
Eight bidirectional 110 pins with user-programmable 
registerllatch or 110 pin feedback to the AND array (see 
Figure 1). 

VCC (PIN 24): 
Supply Voltage 

GND (PIN 12): 
Circuit Ground 

..: ~--------------------------------------------------------------------------~ 

ORDERING INFORMATION 

Standard Products 

AMD standard products are available In several packages and operating ranges. The order number (Valid Combination) is formed by 
a combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Package Type 
D. Temperature Range 
E. Optional Processing 

AMPALHCT29MA16 .:.~ p 

TL. _____ E. OPTIONAL PROCESSING 
Blank - Standard processing 

B - Burn·ln 

'---------D. TEMPERATURE RANGE 
C - Commercial (0 to + 70'C) 

'-------------c. PACKAGE TYPE 
P - 24·Pln Slim Plastic DIP (PD3024) 
D - 24·Pln Slim Ceramic DIP (CD3024) 
J - 28·Pln Plastic Leaded Chip Carrier 

(PL 028) 
L - 28·Pln Ceramic Leadless Chip Carrier 

(CL 028) 

L.---------------B. SPEED OPTION 
-35 - 35 ns 
-45 - 45 ns 

- A. DEVICE NUMBER/DESCRIPTION 
AmPALHCT29MA16 - CMOS/TIL·Compatible 
AmPALHC29MA16 - CMOS·Compatible 

Valid Combinations 

AmPALHCT29MA16-35, -45 PC, DC, DCB, 

AmPALHC29MA16·35, -45 I JC, LC, LCB 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMD's standard military grade 
products. 
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FUNCTIONAL DESCRIPTION 

Inputs 

The AmPAL29MA 16 has 29 inputs to drive each product term 
(up to 58 inputs with both TRUE and complement versions 
available to the AND array) as shown in the block diagram 
below. Of these 29 inputs, 4 are dedicated inputs, 16 are from 
8 I/O logic macrocells with 2 feedbacks, 8 are from other I/O 
logic macrocells with single feedback and 1 is for I/OE input. 

Initially the AND-array gates are disconnected from all the 
inputs. This condition represents a logical TRUE to the AND 
array. By selectively programming the E2cells, the AND array 
may be connected to either the TRUE input or the comple­
ment input. When both the TRUE and complement inputs are 
connected, a logical FALSE results at the output of the AND 
gate. 

BLOCK DIAGRAM 

CLK/LE 
1/0 1/0 1/0 

110 1/0 1/0 

Product Terms 

The degree of programmability and complexity of a PAL 
device is determined by the number of connections that form 
the programmable-AND and OR gates. Each programmable­
AND gate is called a product term. The AmPAL29MA16 has 
178 product terms. 176 of these product terms provide logic 
capability and 2 are architectural product terms. Among the 2 
control product terms, 1 is for Observability, and 1 is for 
PRELOAD. The Output Enable of each macrocell can be 
programmed to be controlled by a common Output Enable pin 
or an individual product term. It may be also permanently 
enabled or permanently disabled. 

Each product term on the AmPAL29MA16 consists of a 58-
input AND gate. The outputs of these AND gates. are 
connected to a fixed-OR plane. Product terms are allocated to 
OR gates in a variable distribution across the device ranging 
from 4-to-12 wide, with an average of 7 logical product terms 
per output. Increased number of product terms per output 
allows more complex functions to be implemented in a single 
PAL device. This flexibility aids in implementing functions such 
as counters, exclusive-OR functions, or complex state ma­
chines, where different states require different numbers of 
product terms. 

Individual asynchronous-PRESET and RESET product terms 
are connected to all Registered/Latched inputs/outputs. 

1/0 1/0 1/0 1/0 1/0 

1/0 1/0 1/0 1/0 1/0 

80006660 

. When the asynchronous-PRESET product term is asserted 
(HIGH) all the registers/latches will immediately be loaded 
with a HIGH, independent of the clock. When the asynchro­
nous-RESET product term is asserted (HIGH) all the regis­
ters/latches will be immediately loaded with a LOW, indepen­
dent of the clock. The actual output state will depend on the 
macrocell polarity selection. The latches must be in latched 
mode (not transparent mode) for the RESET/PRESET, PRE­
LOAD, and power-up RESET modes to be meaningful. 
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Input/Output Logic Macrocells 

The I/O logic macrocell allows the user the flexibility of 
defining the architecture of each input or output on an 
individual basis. It also provides the capability of using the 
associated pin either as an input or an output. 

The AmPAL29MA16 has 16 macrocells, one for each I/O pin. 
Each I/O macrocell can be programmed for combinatorial, 
registered or latched operation (see Figure 1). Combinatorial 
output is desired when the PAL device is used to replace 
combinatorial glue logic. Registers are used in synchronous 
logic applications while latches are used in asynchronous 
applications where speed is critical. The output polarity for 
each macrocell in each of the three modes of operation is 
user-selectable allowing complete flexibility of the macrocell 
configuration. 
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Eight of the macrocells (I/OFo-I/OF7) have two independent 
feedback paths to the AND array (see Figure 1). The first is a 
dedicated I/O pin feedback to the ANDarray for combinatorial 
input. The second path consists of a direct register/latch 
feedback to the array. If the pin is used as a dedicated input 
using the first feedback path, the registerllatch feedback path 
is still available to the AND array. This path provides the 
capability of using the register/latch as a buried state register/ 
latch. The other eight macrocells have a single feedback path 
to the AND array. This feedback is user-selectable as either an 
I/O pin or a register/latch feedback. 

Each macrocell can provide true input/output capability. The 
user can select each macrocell register/latch to be driven by 
either the output generated by the AND-OR array or the I/O 
pin. When the I/O pin is selected as the input, the feedback 
path provides the register/latch input to the array. When used 

-
as an input, each macrocell is also user-programmable for 
registered, latched, or combinatorial input. 

The AmPAL29MA16 has one dedicated ClK/lE pin and an 
individual CLK/lE product term. All macrocells have a pro­
grammable select to choose between these two as the clock 
or the latch enable Signal. These signals are clock signals for 
macrocells configured as registers and latch enable signal for 
macrocells configured as latches. The polarity of these ClK/ 
lE Signals is also individually programmable. Thus different 
registers can be driven by multiple clocks and clock phases. 

The Output-Enable mode of each of the macrocells can be 
selected by the user. The I/O pin can be configured as an 
output pin (permanently enabled) or as an input pin (perma­
nently disabled). It can also be configured as a dynamic I/O 
controlled by the Output Enable pin or by product term. 

~ r-------------------------------------------------------------------------------~ 
E 
c:( Common Vee 

IJOE (Pin) -----"'-----------------~ 
Individual DE 

Individual 
Asyne. 

PRESET 

PO 

P3, P7 or P11 
Common 

CLKJLE (Pin) ----........ --.. 

Individual 
CLKlLE 

Individual 
Asyne 

RESET 

To AND~========~~~ ________ --1 

I/O Pins 

Array ~ 
8 to MUX 

TOA~~~~:~--------,-·~~--------------~----~7~/-8--D-ed-ie-a-te-d--Fe-e-d--b:cJ. 
80006870 

Figure 1. AmPALHC(HCn29MA16 1/0 Macrocell 

1/0 Logic Macrocell Configuration 

AMD's unique I/O macrocell offers major benefits through its 
versatile, programmable input/output cell structure, multiple 
clock choices, flexible Output Enable and feedback selection. 
Eight I/O macrocells with single feedback contain . nine 
E2"cells, while the other eight macrocells contain eight E2cells 
for programming the input/output functions (see Table 1, 
Figure 2). 

E2cell 51 controls whether the macrocell will be combinatorial 
or registered/latched. 50 controls the output polarity (active­
HIGH or active-lOW). 52 determines whether the input/output 
is a register or a latch. 53 allows the use of the macrocell as 
an input register/latch or as an output register/latch. It selects 
the direction of the data path through the register/latch. ·If 
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connected to the usual AND-OR array output, the register/ 
latch is an output connected to the I/O pin. If connected to the 
I/O pin, the registerllatch becomes an input register/latch to 
the AND array using the feedback data path. 

Programmable E2cells 54 and 55 allow the user to select one 
of the four ClK/lE signals for each macrocell. 56 and 57 are 
used to control Output Enable as pin controlled, product term 
controlled, permanently enabled or permanently disabled. 58 
is a feedback multiplexer for the macrocells with a single 
feedback path only. 

In the virgin erased state (charged, disconnected), an archi­
tectural cell is said to have a value of "1" ; In the programmed 
state (discharged, connected), an architectural cell is said to 
have a value of "0". 



Table 1. AmPAL29MA16 I/O Logic Macrocell Architecture Selections 

S3 I/O Cell S2 Storage Element 

Output Cell Register 

0 Input Cell 0 Latch 

S1 Output Type SO Output Polarity 

1 Combinatorial 1 Active LOW 

0 Register/Latch 0 Active HIGH 

S8 Feedback* 

1 Register/Latch' 

o I/O 

-Applies to macrocells with single feedback only. 
TC003961 

Table 1. AmPAL29MA16 I/O Logic Macrocen Clock Polarity & Output Enable Selections 

(Cont'd.) 

54 55 Clock Edge/Latch Enable Level 56 S7 Output Buffer Control 

CLKfLE pin positive-going edge, active -HIGH LE Pin - Controlled 3-State Enable 

0 CLK/LE pin negative-going edge, active -LOW LE 0 PT -Controlled 3-State Enable 

0 CLKfLE PT positive-going edge, active -HIGH LE 0 Permanently Enabled (Output only) 

0 0 CLKfLE PT negative-going edge, active-LOW LE 0 0 Permanently Disabled (Input only) 

TCOO3972 

1 = Erased State (Charged or disconnected) 
o = Programmed State (Discharged or connected) 
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SOME POSSIBLE CONFIGURATIONS OF THE INPUT/OUTPUT LOGIC MACROCELL 

OUTPUT REGISTERED/ ACTIVE LOW 

OUTPUT REGISTERED/ACTIVE HIGH 

SO·1 
S, • 0 
S3· 1 
S2" 1 

LDOO0961 

So·o 
S,. 0 
Sa- 1 
S2· 1 

LDOO0971 

OUTPUT COMBINATORIAL/ACTIVE LOW 

OUTPUT COMBINATORIAL/ACTIVE HIGH 

Figure 2A: Dual Feedback Macrocells 

LDO00951 

So = 0 
S,. 1 
S3 = 1 

LD000981 

OUTPUT REGISTERED/ACTIVE LOW, 110 FEEDBACK OUTPUT COMBINATORIAL/ACTIVE LOW, I/O FEEDBACK 
SO·1 
S, .0 
S3· 1 
Sa- 0 
S2" 1 

LDO00991 

OUTPUT LATCHED/ACTIVE HIGH, 110 FEEDBACK 
so·o 
S, .0 
Sa·1 
sa· o 
s2" 0 

LD001011 

LD001000 

OUTPUT COMBINATORIAL/ACTIVE HIGH, I/O FEEDBACK 

50·0 
5, • 1 
Sa·1 
Sa = 0 

LD001021 

Figure 28: Single Feedback Macrocells 
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OUTPUT REGISTERED/ACTIVE LOW, REG. FEEDBACK OUTPUT COMBINATORIAUACTIVE LOW, REG. FEEDBACK 

So. 1 
Sl .0 
S3· 1 

t--t.-'O--~ Sa· 1 
82. 1 

LDO01031 
LD001041 

OUTPUT LATCHED/ACTIVE LOW, LATCHED FEEDBACK OUTPUT COMBINATORIAL/ACTIVE LOW, LATCH FEEDBACK 

LDO01051 

Figure 28: Single Feedback Macrocells (Cont'd.) 

INPUT REGISTERED/LATCHED 

So. x 
sp 0 
S3· 0 
8a. 1 (for aingle feedback only) 
82. 1 Reglater 

• 0 Latch 

Programmable-AND Array 
LDO01071 

Figure 2C: All Macrocells 
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so·o 
SI·1 
S3· 1 
sa. 1 
SpO 

LD001061 
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Figure 3. AmPAL29MA16 Logic Diagram 
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Designed in Testability and Debugging 

PRELOAD 

To simplify testing, the AmPAL29MA16 is designed with 
PRELOAD circuitry that provides an easy method for testing 
logical functionality. Both TIL-level and supervoltage-enabled 
PRELOAD modes are available. This offers even more test 
capability than previously implemented in AMD's PAL devices. 
The TIL-level PRELOAD product term can be useful during 
debugging, where supervoltages may not be available. 

PRELOAD allows any arbitrary state value to be loaded into 
the registers/latches of the device. A typical functional-test 
sequence would be to verify all possible state transitions for 
the device being tested. This requires the ability to set the 
state registers into an arbitrary "present state" value and to 
set the devices inputs into any arbitrary "present input" value. 
Once this is done, the state machine is clocked into a new 
state, or "next state", which can be checked to validate the 
transition from the "present state". In this way any transition 
can be checked. 

Since PRELOAD can provide the capability to go directly to 
any desired arbitrary state. test sequences may be greatly 
shortened. Also, all possible states can be tested, thus greatly 
reducing test time and development costs and guaranteeing 
proper in-system operation. 
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Observablllty 

The output register/latch observability product term, when 
asserted, suppresses the combinatorial output data from 
appearing on the I/O pin and allows the observation of the 
contents of the register/latch on the output pin for each of the 
logic macrocells. This unique feature allows for easy debug­
ging and tracing of the buried state machines. In addition, a 
capability of supervoltage observability is also provided. 

Power-Up Reset 

All the device registers/latches have been designed to reset 
during device power-up. Following the power-up, all registers/ 
latches will be cleared, setting the outputs to a state deter­
mined by the output select multiplexer. This feature provides 
extra flexibility to the designer and is especially valuable in 
simplifying state machine initialization. 

Security Cell 

A security cell is provided on each device to prevent unautho­
rized copying of the user's proprietary logic design. Once 
programmed, the security cell disables the programming, 
verification, PRELOAD, and the observability modes. The only 
way to erase the protection cell is by charging the entire array 
and architecture cells, in which case no proprietary design can 
be copied. (This cell should be programmed only after the rest 
of the device has been completely programmed and verified.) 
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ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 

Storage Temperature ............................ -65 to + 150°C Commercial (C) Devices - HCT Devices 
Ambient Temperature under bias ............. -55 to + 125°C Temperature (TA) Operating Free Air ..... O°C to +70°C 
Supply Voltage with Supply Voltage (Vee> .................... -r[4.75 to +5.25 V 

Respect to Ground ......................... -0.5 V to +7.0 V 
Commercial (C) Devices - HC Device~~r~1:::, . 

DC Output Voltage ...................... -0.5 V to Vee + 0.5 V Temperature (T A) ......................... :~).. ooE to + 70°C 
DC Input Voltage 

Supply Voltage (Vee> ........... d;;~~~~:~ to +5.50 V 
(Except Pin 1/0E) .................... -0.5 V to Vee + 0.5 V 

. DC Input Voltage (Pin 1/0E) ................ -0.6 V to + 17 V Military (M) Devices· \ 
DC Input Current .............................. -1 mA to +1 mA ~ ~t::;~~~ 
Stresses above those listed under ABSOLUTE MAXIMUM Operating ranges define thd~e Ii'rriltt; between which the 

RA TlNGS may cause permanent device failure. Functionality functionality of the device ,~$ giJaranteed. 
, "'<) 

at or above these limits is not implied. Exposure to absolute ·Consult Factory for M~~!1,,,Sp.ecifications 
maximum ratings for extended periods may affect device .", "'J 
reliability. <~: ... '\<~~ 
DC CHARACTERISTICS over operating range unless otherwise speCifi~;~:;::.!~~~;· 
HCT Devices·· ·,t:;~:;·<>, " ,.:,.:.~'¥' 
Paramotor Parameter "'"'~~ ~.,., ... ..... ,\. 

Symbol Description Test;, Cond(tlons Min. Max. Units 

Vee = Min. /~t 
'. ij 

VOH Output HIGH Voltage VIN = VIH or/y{v;. 
10H = - 2 m1\;7,,' c( 

2.4 V 

~'~""''''~'' ! 10L = 6 mA 0.5 

VOL Output LOW Voltage 
Vee = f\{1n::::;:~.~) 

10L =4 mA 0.33 V 
VIN =(yIH~1it:YIL 

<.,~~:";\" 10L = 20 p.A 0.1 

VIH Input HIGH Voltage {~ta.c..anteed Logic HIGH for all Inputs 2.0 V 

VIL Input LOW Voltage \~~lU)teed Logic LOW for all Inputs 0.8 V 

II Input Leakage Current ~ V~".l 0 to 5.5 V, Vee - Max. 10 p.A 

10 Output Leakage Current ,~~ == 0 to .5.5 V. Vee = Max. 10 p.A 

lecop Operating Current Supply f == fMAX. Outputs Open (10 - 0) 120 mA 

Ise Output Short Circuit Current ~~~ Vee = Max .• Vo=O V . -30 -90 mA 

CAPACITANCE 

Parameter Para 
Symbol Dt!~on Test Conditions Typ. Units 

CIN Input Capac~ J1 Vee = 5.00 V .• T A = 25°C 5 

COUT Output C '. itSnW VIN = 0 V @ f = 1 MHz 8 
pF 

"\' 
Note: These parameters a.; 00% tested. but are evaluated at initial characterization and at any time the design is 

modified where' capaci ce may be affected. 

• * Consult Factory for DC speCifications for HC Devices. 
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SWITCHING CHARACTERISTICS over operating range unless otherwise specified All values are 
determined under the loading of one TTL gate and a capacitance of 50 pF. 
All Typical values are determined at VCC = 5 V and TA = 25 C. 

-35 -45 
Parameter Parameter Parameter 
Number Symbol Description . Min. Max. Min. Max. 

REGISTERED OPERATION (Numbers 1 through 20) 

1 tpD 
Input or I/O Pin to 

35 45 
Combinatorial Output 

Output Register - Pin Clock 

2 tSOR 
Input or I/O Pin to 

27 34 
Output Register Setup 

3 teOR 
Output Register Clock 

23 32 
to Output 

4 tHOR 
Data Hold Time for 

0 0 
Output Register 

Output Register - Product Term Clock 

5 tSORP 
I/O Pin or Input to Output 

20 24 
Register Setup 

6 tCORP 
Output Rogister Clock 

45 56 
to Output 

7 tHORP 
Data Hold Time for 

15 20 
Output Register 

Input Register - Pin Clock 

8 tSIR 
I/O Pin to Input Register 

6 8 
Setup 

9 tCIR 
Register Feedback Clock to 

45 58 
Combinatorial Output 

10 tHIR 
Data' Hold Time for 

3 4 
Input Register 

Clock and Frequency 

Register Feedback (Pin 

11 tCIS 
Driven Clock) to Output 

35 45 
Register/Latch (Pin Driven) 
Setup 

Register Feedback (PT 

12 tCISPP 
Driven Clock) to Output 

45 60 
Register/Latch (PT Driven) 
Setup 

13 fMAX 
Maximum Frequency (Pin 

20 15 
Driven) 1/(tSOR + tCOR) 

14 fMAXI -
Maximum Internal Frequency 

28.5 22.5 
(Pin Driven) 1/tCIS 

15 fMAXP 
Maximum Frequency (PT 

15.5 12.5 
Driven) 1/(tSORP + tCORP) 

16 fMAXIPP 
Maximum Internal Frequency 

22.5 16.5 
(PT Driven) 1/tCISPP 

17 teWH Pin Clock Width HIGH 12 15 

18 teWL Pin Clock Width LOW 12 15 

19 teWHP PT Clock Width HIGH 15 20 

20 teWLP PT Clock Width LOW 15 20 
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Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns, 

ns 

MHz 

MHz 

MHz 

MHz 

ns 

ns 

ns 

ns 
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Parameter Parameter 
Number Symbol 

21 tpD 

22 tpTD 

Output Latch - Pin LE 

23 tSOL 

24 tGOL 

25 tHOL 

26 tSTL 

Output Latch - PT LE 

27 tSOLP 

28 tGOLP 

29 tHOLP 

30 tSTLP 

Input Latch - Pin LE 

31 tSIL 

32 tGIL 

33 tHIL 

Latch Enable 

34 tGIS 

35 tGISPP 

36 tGWH 

37 tGWL 

38 tGWHP 

39 tGWLP 

-35 
Parameter 

Description Min. Max. 

LATCHED OPERATION (Numbers 21 through 39) 

input or I/O Pin to 35 
Combinatorial Output 

Input or 1/0 Pin to Output 45 
via Transparent Latch 

Input or 1/0 Pin to Output 27 
Latch Setup 

Latch Enable to Transparent 23 
Mode Output 

Data Hold Time for 0 
Output Latch 

Input or 1/0 Pin to Output 
Latch Setup via Transparent 35 
Input Latch 

Input or 1/0 Pin to Output 20 
Latch Setup 

Latch Enable to Transparent 45 
Mode Output 

Data Hold Time for 15 
Output Latch 

Input or 1/0 Pin to Output 
Latch Setup via Transparent 30 
Input Latch 

1/0 Pin to Input Latch Setup 6 

Latch Feedback, Latch 
Enable Transparent Mode to 45 
Combinatorial Output 

Data Hold Time for Input 3 
Latch 

Latch Feedback (Pin Driven) 
to Output Register/Latch (Pin 35 
Driven) Setup 

Latch Feedback (PT Driven) 
to Output Register/Latch (PT 45 
Driven) Setup 

Pin Enable Width HIGH 12 

Pin Enable Width LOW 12 

PT Enable Width HIGH 15 

PT Enable Width LOW 15 
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Min. Max. 

45 

55 

34 

32 

0 

45 

24 

56 

20 

35 

8 

58 

4 

45 

60 

15 

15 

20 

20 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

l> 
3 
"'0 
l> 
r 

It 

:::t 
o 
N 
CD 
3: 
l> .... 
0') 

"-
l> 
3 
"'0 
l> 
r 
:::t 

~ 
N 
CD 
3: 
l> .... 
0') 



co ,... 
c( 
~ 
en 
N 

b 
:I: 
..J 
c( 
D.. 
E 
c( 
....... co 
:( 
~ 
en 
N 
o 
:I: ... 
..J 
c( 
D.. 
E 
c( 

Parameter 
Number 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

-35 
Parameter Parameter 

Symbol Description Min. Max. 

RESET/PRESET & OUTPUT ENABLE (Numbers 40 through 49) 

Input or I/O Pin to Output 
tAPO Register/Latch RESET/ 40 

PRESET 

tAW 
Async. RESET/PRESET 35 
Pulse Width 

Async. RESET/PRESET to 
tARO Output Register/Latch 30 

Recovery 

Async. RESET/PRESET to 
tARI Input Register/Latch 20 

Recovery 

Async. RESET/PRESET to 
tARPO Output Register/Latch 20 

Recovery PT Clock/LE 

Async. RESET/PRESET to 
tARPI Input Register/Latch 15 

Recovery PT Clock/LE 

tpzx I/OE Pin to Output Enable 30 

tpxz I/OE Pin to Output Disable 30 

tEA 
Input or I/O to Output 35 
Enable via PT 

tER 
Input or I/O to Output 

35 
Disable via PT 
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.... 

-45 

Min. Max. Units 

55 ns 

i 
I 

45 ns I 

40 ns 

30 

25 ns 

20 ns 

40 ns 

40 ns 

45 ns 

45 ns 
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ClK 

INPUT 
REGISTER 

I/O 

I/O 

AND-OR ARRAY OUTPUT 
REGISTER 

/------. tc 0 R 

I/O 

I/O 

t / , 
SOR .. --••••......•.••••••.••••.• - ••• -.~ '------~ tCIR 

tpD _______ +-_____ ---'I--_____ ~ tpo 

8D006831 

INPUT/OUTPUT REGISTER SPECS (PIN ClK REFERENCE) 

LE 

INPUT 
LATCH 

I/O 

I/O 

AND-OR ARRAY 

tGiS tGiS 

OUTPUT 
LATCH 

::::: :::::::::::::::::::: ::: .............. ~ ton 
I--_~ tGOL 

.r---+---+---=~ tpTO 

I/O 

I/O 

,. . 

tSOL .•• _ •• _.~ ••••••••• _ •••••••••••••.... --- '--------..- tOIL 
tpTO '--____ + tpTO 

tp D -------t:::=::::=::::=::::=::::=::::::1--------. tpD 
8D006821 

INPUT/OUTPUT lATCH SPECS (PIN lE REFERENCE) 
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:E 
0) 
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o 
X 
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c( 
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E 
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ClK 
Input 

INPUT 
REGISTER 

I/O 

I/O 

tSORP 

-

AND-OR ARRAY 

I/O 

I/O 

t PO _______ +-_____ -t ______ ... t po 

INPUT/OUTPUT REGISTER SPECS (PT ClK REFERENCE) 

lE 
Input 

INPUT 
LATCH 

AND-OR ARRAY 

tSTLP ___ t-_+-_-I-_____ -ir--+t 

tpTO =--t----t----.. 

I/O 

I/O 

tSOLP ....................................... ---
tpTO ______ ---' 

80006840 

tGOLP 
tpTO 

I/O 

I/O 

tpTO 
tpo-------t===========~------~ tpo 

80006850 

INPUT/OUTPUT lATCH SPECS (PT lE REFERENCE) 
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CLOCK 
INV POL 

CLOCK 
TRUE POL 

COMBINATORIAL 
INPUT & 1/0 
FEEDBACK 

REGISTERED 
INPUTS 

REGISTERED 
OUTPUTS 

COMBINATORIAL 
OUTPUTS 

ASYN RST 
& PRESET 
INPUTS 

PIN DRIVEN 
OUTPUT ENB 

PT DRIVEN 
CLOCK INPUTS 

COMBINATORIAL 
INPUT & 110 
FEEDBACK 

REGISTERED 
OUTPUTS 

COMBINATORIAL 
OUTPUTS 

ASYN RST 
& PRESET 
INPUTS 

PIN DRIVEN 
OUTPUT ENB 

SWITCHING WAVEFORMS 

WF023270 

Register (Pin ClK Reference) 

WF023280 

Register (PT ClK Reference) 
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CD ,.. 
« 
::E 
Q) 
N 
0 
::x:: ... 
-I « 
a. 
E « 

LATCH ENB 
INV POL 

LATCH ENB 
TRUE POL 

COMBINATORIAL 
INPUTS & 1/0 
FEEDBACK 

LATCHED 
INPUTS 

LATCHED 
OUTPUTS 

COMBINATORIAL 
OUTPUTS 

ASYN RST 
& PRESET 
INPUTS 

PIN DRIVEN 
OUTPUT ENB 

PT DRIVEN 
LATCH ENB 
INPUTS 

COMBINATORIAL 
INPUTS & 110 
FEEDBACK 

LATCHED 
INPUTS 

LATCHED 
OUTPUTS 

COMBINATORIAL 
OUTPUTS 

ASYN RST 
& PRESET 
INPUTS 

PIN DRIVEN 
OUTPUT ENB 

SWITCHING WAVEFORMS (Cont'd.) 

WF023290 

Latch (Pin LE Reference) 

WF023300 

Latch (PT LE Reference) 
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SWITCHING TEST CIRCUIT 

TO OUTPUTS 
OF DEVICE 

5V 

R1- 676 n 

CLOAD 

~ R
2
- 495 11 ==~ 50 pF 

TCO03951 

KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS OUTPUTS 

---
MUST BE WILL BE 
STEADY - STEADY ----- MAY CHANGE WILLBE 

CHANGING FROMHTOL FROM H TOL 

.- MAY CHANGE WILL BE 
CHANGING FROM L TOH FROM L TOH 

-- OON'TCARE; CHANGING; 
APNCHANGE STATE 
PERMITTED UNKNOWN 

H 
CENTER 

OOESNOT LINE IS HIGH 
APPLY IMPEDANCE 

"OFF" STATE 

KSOOOO10 
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Bipolar PROMs as Programmable Logic Products 

Selection Guide 

PART . PRODUCT REGISTERED tpo/lcc 

NUMBER INPUTS OUTPUTS TERMS OUTPUTS tsu/tcp-a/lcc 
COM'L (MAX) 

Am27S19A 5 8 32 25ns/115mA 

Am27S19SA 5 8 32 15ns/115mA 

Am27S21A 8 4 256 30ns/130mA 

Am27S13A 9 4 512 30ns/130mA 

Am27S29A 9 8 512 35ns/160mA 

Am27S25A 9 8 512 8 30ns/20ns/185mA 

Am27S25SA 9 8 512 8 25ns/12ns/185mA 

Am27S33A 10 4 1024 35ns/140mA 

Am27S65A* 10 4 1024 4 23ns/10ns/165mA 

Am27S65* 10 4 1024 4 30ns/15ns/165mA 

Am27S281A 10 8 1024 35ns/185mA 

Am27S35A 10 8 1024 8 35ns/20ns/185mA 

Am27S37A 10 8 1024· 8 35ns/20ns/185mA 

Am27S185A 11 4 2048 35ns/150mA 

Am27S75* 11 4 2048 4 30ns/15ns/175mA 

Am27S75A* 11 4. 2048 4 25ns/12ns/175mA 

Am27S291A 11 .8 2048 35ns/185mA 

Am27LS291 11 8 2048 30ns/90mA 

Am27S291SA 11 8 2048 20ns/185mA 

Am27S45A 11 8 2048 8 40ns/20ns/185mA 

Am27S45SA 11 8 2048 8 25ns/10ns/185mA 

Am27S47A 11 8 2048 8 40ns/20ns/185mA 

Am27S47SA 11 8 2048 8 25ns/10ns/185mA 

Am27S41A 12 4 4096 35ns/185mA 

Am27S85* 12 4 4096 4 35ns/15ns/185mA 

Am27S85A* 12 4 4096 4 27ns/ 12ns/ 185mA 

Am27S55A 12 8 4096 8 20ns/1 Ons/ 185mA 

Am10P14/100P14 10 4 1024 10ns/-200mA 

Am1 OP44/1 00P44 12 4 4096 15ns/-200mA 

Note 1: For ordering information see Bipolar/MOS Memories Oatabook (1986) or contact your local sales office 

*These devices contain SSR™ on chip diagnotics 

4·232 



-

Am10P14/ Am100P14/ Am10KP14 
4,096-Bit (1024 x 4) ECl Bipolar PROM 

ADVANCE INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Fast Access time (8 ns typ.) - improves system cycle 
times 

• Power dissipation decreases with increasing tempera­
ture 

• Internally voltage compensated providing flat AC perfor­
mance 

• Open emitter outputs (50 n drive), wired-OR capability 

GENERAL DESCRIPTION 

The Am10P14, Am10KP14, & Am100P14 (1024-words by 
4-bits) are Schottky array, ECl Programmable Read-Only 
Memories (PROMs). 

The 10K Versions are compatible with standard voltage­
compensated 10K series EeL. The 100K Versions are 
compatible with standard temperature and voltage-com-

pensated 100K series ECL. Both are capable of satisfying 
the requirements of a variety of microprogram mabie con­
trols, mapping functions, code conversion, or logic replace­
ment. Easy word-depth expansion is provided by both 
active lOW (G1 & G3) and active HIGH (G2) output enables 
and an unterminated emitter follower output capable of 
wired-OR bus connection. 

BLOCK DIAGRAM 

Part Number 

Address Access 
Time (ns) 

Operating 
Range 

1 elF" 64 
ROW 

DECODER 

64 X 64 

PROGRAMMABLE 
ARRAY 

1 elF" 16 
COLUMN 

DECODER 4 - 1 of 16 MULTIPLEXERS 

PRODUCT SELECTOR GUIDE 

Am10P14 Am10KP14 

10 15 10 15 

C M C M 
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Am10P44/ Am100P44 
16,384-Bit (4096 x 4) ECl Bipolar PROM 

ADVANCE INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Fast access time (12 ns typical) improves system cycle 
times 

• Power dissipation decre'ases with increasing tempera­
ture 

• Internally voltage compensated providing flat AC partor­
mance 

• Open emitter outputs (50-n drive), wired-OR capability 

GENERAL DESCRIPTION 

The Am10P44 and Am100P44 (4096 words by 4 bits) are 
Schottky array, ECl Programmable Read-Only Memories 
(PROMs), 

The 10K Versions are compatible with standard voltage 
compensated 10K series ECL. The 100K versions are 
compatible with standard temperature and voltage com-

pen sated 100K series ECL. Both are capable of satisfying 
the requirements of a variety of microprogrammable con­
trols, mapping functions, code conversion, or logic replace­
ment. Easy word-depth expansion is provided by an active 
lOW output enable (G) and an unterminated emitter­
follower output capable of wired-OR bus connection, 

BLOCK DIAGRAM 

128 X 128 

PROGRAMMABLE 
ARRAY 

4 - 1 of 32 MULTIPLEXERS 

PRODUCT SELECTOR GUIDE 

Part Number 10P44 10P44 

Addr ••• Ace ... Tim. 
15 20 (n.) 

Operating 
C M 

Ring. 
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Am27S12/13 
2,048-Bit (512 x 4) Bipolar PROM 

DISTINCTIVE CHARACTERISTICS 

• High speed • Low-current PNP inputs 
• Highly reliable, ultra-fast programming Platinum-Silicide 

fuses 
o High-current open-collector and three-state outputs 
• Fast chip select 

• High programming yield 

GENERAL DESCRIPTION 

The Am27S12/13 (512 words by 4 bits) is a Schottky TTL 
Programmable Read-Only Memory (PROM). 

are compatible with low-power Schottky bus standards 
capable of satisfying the requirements of a variety of 
microprogrammable controls, mapping functions, code con­
version, or logic replacement. Easy word-depth expansion 
is facilitated by an active LOW output enable (<3). 

This device is available in both open-collector (Am27S12) 
and three-state (Am27S13) output versions. These outputs 

BLOCK DIAGRAM 

32 X 64 

PROGRAMMABLE 
ARRAY 

4 - 1 of 16 MULTIPLEXERS 

Q3 

80006400 

PRODUCT SELECTOR GUIDE 

Open-Collector Am27S12A Am27S12 Part Number 

Three-State Am27S13A Am27S13 Part Number 

Address 30 ns 40 ns 50 ns 60 ns Access Time 

Operating C M C M Range 
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Am27S18/19 
256-Bit (32 x 8) Bipolar PROM 

DISTINCTIVE CHARACTERISTICS 

• Ultra high speed • Low-current PNP inputs 
• Highly reliable, ultra-fast programming Platinum-Silicide 

fuses 
• High-current open collector and three-state outputs 
• Fast chip select 

• High-programming yield 

GENERAL DESCRIPTION 

The Am27S18/19 (32-words by 8-bits) is a Schottky TIL 
Programmable Read-Only Memory (PROM). 

This device is available in both open-collector (Am27S18) 
and three-state (Am27S19) output versions. These outputs 
are compatible with low-power Schottky bus standards 
capable of satisfying the requirements of a variety of 

microprogram mabie controls, mapping functions, code con­
versions, or logic replacements. Easy word depth expan­
sion is facilitated by an active LOW output enable (G). 

This device is 'also available in a low-power version 
Am27LS18/19. 

BLOCK DIAGRAM 

Ae) 

Al 
A2 
A;9 

A4 

Open-Collector 
Part Number 

Three-State 
Part Number 

Address 
Access Time 

Operating 
Range 

ROW 
DECODER 

32 X 8 

PROGRAMMABLE 
ARRAY 

0zJ 01 02 0;9 04 ~ Os O? 
80006140 

PRODUCT SELECTOR GUIDE 

27S19SA 27S18A 27S18 27LS18 

27S19SA 27519A .' 27S19 27LS19 

15 ns 20 ns 25 ns 35 ns 40 ns 50 ns 55 ns 70 ns 

C M C M C M C M 

~ Amendment 
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Am2 7S180 /2 7S181 /PS181 
Am27S280/27S281/PS281 

8,192-Bit (1024 x 8) Bipolar PROM 

DISTINCTIVE CHARACTERISTICS 

• Fast access time allows high system speed 
• 50% power savings on deselected parts - enhances 

reliability through total system heat reduction 

• Platinum-Silicide fuses guarantee high reliability, fast 
programming and exceptionally high programming 
yields (typ> 98%) 

• Rapid recovery from power-down state provides mini­
mum delay 

GENERAL DESCRIPTION 

The Am27S180/27S181 (1024 words by 8 bits) is a 
Schottky TIL Programmable Read-Only Memory (PROM). 

This device is available in both open-collector (Am27S180) 
and three-state (Am27S181) output versions. These out· 
puts are compatible with low-power Schottky bus standards 
capable of satisfying the requirements of a variety of 
microprogrammable controls, mapping functions, code con· 

version, or logic replacement. Easy word-depth expansion 
is facilitated by both active LOW (G1 and G2) and active 
HIGH (G3 and G4) output enables. 

This device is also available in a 300-mil. lateral-center DIP 
(Am27S280/27S281), as well as a power-switched three­
state version (Am27PS181/27PS281). 

BLOCK DIAGRAM 

64 X 128 

PROGRAMMABLE 
ARRAY 

8 - 1 of 16 MULTIPLEXERS 

0121 01 02 Cl:3 04 Os 06 07 

80006301 

-E nomenclature applies to the power-switched versions only (Am27PSXX). 

PRODUCT SELECTOR GUIDE 

Open·Coliector Am27S180A, Am27S180, - -Part Number Am27S280A Am27S280 

Three·State Am27S181A, Am27S181, Am27PS181A, Am27PS181 
Part Number Am27S281A Am27S281 Am27PS281A Am27PS281 

Address Access 35 ns 50 ns 60 ns 80 ns 50 ns 65 ns 65 ns 75 ns Time 

Operating C M C M C M C M Range 

Rev. Amendment 
C 10 
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Am27S184/185/PS185 
8,192-Bit (2048 x 4) Bipolar PROM 

DISTINCTIVE CHARACTERISTICS 

• Ultra-fast access time" A" version (35 ns Max.) - Fast 
access time Standard version (50 ns Max.) - allow 
tremendous system speed improvements 

• Platinum-Silicide fuses guarantee high reliability, fast 
programming and exceptionally high programming 
yields (typ > 98%) 

• AC performance is factory tested utilizing programmed 
test words and columns 

• Voltage and temperature compensated providing ex­
tremely flat AC performance over military range 

• Member of generic PROM series utilizing standard 
programming algorithm 

GENERAL DESCRIPTION 

The Am27S184/185 (2048-words by 4-bits) is a Schottky 
TTL Programable Read-Only Memory (PROM). 

This device is available in both open-collector (Am27S184) 
and three-state (Am27S185) output versions. These out­
puts are compatible with low-power Schottky bus standards 
capable of satisfying the requirements of a varioty of 

microprogram mabie controls, mapping functions, code con­
version, or logic replacement. Easy-word depth expansion 
is facilitated by an active LOW (G) output enable. . 

This device is also offered in a low-power, three-state 
version, the Am27LS185, as well as a power-switched 
throe-state version. 

BLOCK DIAGRAM 

128 X 64 

PROGRAMMABLE 
ARRAY 

4 - 1 of 16 MULTIPLEXERS 

03 

80006320 

PRODUCT SELECTOR GUIDE 

Open-Collector 27S184A ·27S184 Part Number 

Three-State 27S185A 27S185 . 27LS185 27PS185 Part Number 

Address Access 35 ns 45 ns 50 ns 55 ns 60 ns 65 ns 50 ns 55 ns Time 

Operating C M C M C M C M Range 

BID!:. Amendment 
C 10 
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Am27S190/27S191/PS191/LS191 l1 
Am2 7S290 /2 7S291 /PS291 /LS291 

16,384-Bit (2048 x 8) Bipolar PROM 

DISTINCTIVE CHARACTERISTICS 

• Fast access time allows high system speed • Platinum-Silicide fuses guarantee high reliability, fast 

• 50% power savings on deselected parts - enhances programming and exceptionally high programming 
reliability through total system heat reduction (27PS yields (typ > 98%) 
devices) • Voltage and temperature compensated providing ex-

• Plug in replacement for industry standard product - no tremely flat AC performance over military range 
board changes required • Rapid recovery from power-down state provides mini-

mum delay (27PS devices) 

GENERAL DESCRIPTION 

The Am27S190/191 (2048-words by 8-bits) is a Schottky is facilitated by both active LOW (G1) and active HIGH (G2 
TTL Programmable Read-Only Memory (PROM). and G3) output enables. 

This device is available in both open-collector (Am27S190) 
This device is also available in 300-mil, lateral center DIP and three-state (Am27S191) output versions. These out-

puts are compatible with low-power Schottky bus standards (Am27S290/27S291). Additionally, this device is offered in 

capable of satisfying the requirements of a variety 'of a low-power, three-state version, the Am27LS191 and 

microprogrammable controls, mapping functions, code con- Am27LS291, as well as a power-switched, three-state 

version, or logic replacement. Easy word-depth expansion version, the Am27PS191 and Am27PS291. 

BLOCK DIAGRAM 

-
Al21 C>-

Ag C>-

Ae c>- 1 2IF 128 ~ 
128 X 128 

A7 C>- ROW 

II 
PROGRAMMABLE 

AS c>- DECOOCR ARRAY 
AS c>-
A4 c>-

HHHHHHJJ-U 

A3 C>-
1 21, lS ~8 A2 C>-
COLLMN - 1 of 16 MULTIPLEXERS 

Al C>-
DECODER hi 

A2I C>-

1j,/~*......... ~ 
G~/E2 §----1 

1111111 G3/E3 '--' l 

02) °1 °2 03 °4 Os Os °7 

60006340 

*E nomenclature applies to the power-switched versions only (Am27PSXXX). 

PRODUCT SELECTOR GUIDE 

Open-Collector - Am27S190A, Am27S190, - - -Part Number Am27S290A Am27S290 
Three-State Am27S191SA, Am27S191A, Am27S191, Am27LS191*, Am27PS191A, Am27PS191, 
Part Number Am27S291SA Am27S291A Am27S291 Am27LS291* Am27PS291A Am27PS291 
Address Access 20 I 30 35 I 50 50 65 35 45 50 I 65 65 I 75 Time (ns) 
Operating Range C I M C I M C M C M C I M C I M 

*Advance Information applies only to "SA" version. 

I Pugli!.1l!tiQn # Rev. Amengmenl 
02121 C 10 
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Am27S20/21 
1,024-Bit (256 x 4) Bipolar PROM 

DISTINCTIVE CHARACTERISTICS 

• High speed • Low-current PNP inputs 
• Highly reliable, ultra-fast programming Platinum-Silicide 

fuses 
• High-current open-collector and three-state outputs 
• Fast chip select 

• High programming yield 

GENERAL DESCRIPTION 

The Am27S20/21 (256 words by 4-bits) is a Schottky TTL 
Programmable Read-Only Memory (PROM). 

This device is available in both open-collector (Am27S20) 
and three-state (Am27S21) output versions. These outputs 

are compatible with low-power' Schottky bus standards 
capable of satisfying the requirements of a variety of 
microprogrammable controls, mapping functions, code ver­
sion, or logic replacement. Easy word-depth expansion is 
facilitated by active LOW (G1 and G2) output enables. 

BLOCK DIAGRAM 

16 X 64 

PROGRAMMABLE 
8RRAY 

4 - 1 of 16 MULTIPLEXERS 

Q3 

8D006390 

PRODUCT SELECTOR GUIDE 

Open-Collector 27S20A 27S20 Part Number 

Three-State 27S21A 27S21 Part Number 

Address Access 30 ns 40 ns 45 ns 60 ns Time 

Operating C M C M Range 
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Am27S25 
4096-Blt (512 x 8) Bipolar Registered PROM 

With Preset and Clear Inp~ts 

DISTINCTIVE CHARACTERISTICS 

• 'SA' version offers ultrafast AC performance (25 ns set­
up and 12 ns clock-to-output) 

• On-chip edge-triggered registers - ideal for pipelined 
microprogrammed systems 

• Versatile synchronous and asynchronous enables for 
simplified word expansion 

• Buffered common Preset (PS) and Clear (CR) inputs 

o Slim, 24-pin, 300-mil lateral center package occupies 
approximately 1/3 the board space required by standard 
discrete PROM and register 

• Consumes approximately 1/2 the power of separate 
PROM/register combination for improved system reli­
ability 

• Platinum-Silicide fuses guarantee high reliability, fast 
programming, and exceptionally high programming 
yields (typ > 98%) 

GENERAL DESCRIPTION 

The Am27S25 (512 words by 8 bits) is a fully decoded, 
Schottky array, TTL Programmable Read-Only Memory 
(PROM), incorporating D-type master-slave data registers 
on chip. This device has three-state outputs compatible 
with low-power Schottky bus standards capable of satisfy­
ing the requirements of a variety of microprogrammable 
controls and state machines. 

This device contains an 8-bit parallel data register in the 
array-to-output path which allows PROM data to be stored 
while other data is being addressed. This meets the 

requirements for pipelined microprogrammable control 
stores where instruction execute and instruction fetch are 
performed in parallel. 

To offer -the system designer maximum flexibility, this 
device contains both asynchronous and synchronous out­
put enables as well as common asynchronous preset and 
clear register controls. 

Upon power-up the outputs (00 - 07) will be in a floating or 
high-impedance state. 

BLOCK DIAGRAM 

"e 0, 02 0:3 0. Os "s a., 

80006130 

PRODUCT SELECTOR GUIDE 
Part Number Am27S25SA Am27S25A Am27S25 

Address Set-up Time (ns) 25 30 30 35 50 55 

Clock-to-Ouput Delay (ns) 12 15 20 25 27 30 

Operating Range C M C M C M 
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Am27S28/27S29 
4,096-Bit (512 x 8) Bipolar PROM 

DISTINCTIVE CHARACTERISTICS 

• High Speed • Low-current PNP inputs 
• Highly reliable, ultra-fast programming Platinum-Silicide 

fuses 
• High-current open-collector and three-state outputs 
• Fast chip select 

• High programming yield 

GENERAL DESCRIPTION 

The Am27S28/29 (512-words by 8-bits) is a Schottky TIL 
Programmable Read-Only Memory (PROM). 

This device is available in both open collector (Am27S28) 
and three-state (Am27S29) output versions. These outputs 

are compatible with low-power Schottky bus standards 
capable of satisfying the requirements of a variety of 
microprogrammable controls, mapping functions, code con­
version, or logic replacement. Easy word depth expansion 
is facilitated by an active LOW (G) output enable. 

FUNCTIONAL BLOCK DIAGRAM 

64 X 64 

PROGRAMMABLE 
ARRAY 

80006182 

. PRODUCT SELECTOR GUIDE 

Open Collector Am27S28A Am27S28 Part Number 

Three-State Am27S29A Am27S29 Part Number 

Address Access 35 ns 45 ns 55 ns 70 ns 
Time 

Operating C M C M . Range 
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Am27S32/27S33 
4,096-Bit (1024 x 4) Bipolar PROM 

DISTINCTIVE CHARACTERISTICS 

• High speed 
o Highly reliable, ultra-fast programming Platinum-Silicide 

fuses 
• High programming yield 

• Low-current PNP inputs 
• High-current open-collector and three-state outputs 
• Fast chip select 

GENERAL DESCRIPTION 

The Am27S32/27S33 (1024-words by 4-bits) is a Schottky 
TTL Programmable Read-Only Memory (PROM). 

This device is available in both open-collector (Am27S32) 
and three-state (Am27S33) output versions. Those outputs 
are compatible with Jow-power Schotkky bus standards 

capable of satisfying the requirements of a variety of 
microprogram mabie controls, mapping functions, code con­
version, or logic replacement. Easy word-depth expansion 
is facilitated by active LOW (G; & ~) output enables. 

BLOCK DIAGRAM 

64 X 64 

PROGRAMMAELE 
ARRAY 

4 - 1 0; 16 MULTIPLEXERS 

Q3 ~I 
8D006190 

1------------------------------------...... _._ .. 
PRODUCT SELECTOR GUIDE 

Open-Collector Am27S32A Am27S32 Part Number 

Three-State Am27S33A Am27S33 Part Number 

Address 35 ns 45 ns 55 ns 70 ns Access Time 

Operating C M C M Range 
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Am27S35/ Am27S37 
8,192-Bit (1 024 x 8) Bipolar Registered PROM 

with Programmable INITIALIZE Input 

DISTINCTIVE CHARACTERISTICS 

• Slim, 24-pin, 300-mil lateral center package occupies 
approximately 1/3 the board space required by standard 
discrete PROM and register 

• Consumes approximately 1/2 the power of separate 
PROM/register combination for improved system reli­
ability 

• Versatile programmable asynchronous or synchronous 
enable for simplified word expansion 

• Buffered common INITIALIZE input either asynchronous 
(Am27S35) or synchronous (Am27S37) 

• Platinum-Silicide fuses guarantee high reliability, fast 
programming and exceptionally high programming 
yields (typ. > 98%) 

GENERAL DESCRIPTION 

The Am27S35 and the Am27S37 (1024-words by 8-bits) 
are fully decoded, Schottky array, TTL Programmable 
Read-Only Memories (PROMs), incorporating D-type mas­
ter-slave data registers on chip. These devices have three­
state outputs compatible with low-power Schottky bus 
standards capable of satisfying the requirements of . a 
variety of microprogram mabIe controls and state machines. 

These devices contain an 8-bit parallel data register in the 
array-to-output path which allows PROM data to be stored 
while other data is being addressed. This meets the 
requirements for pipelined microprogram mabIe control 

stores where instruction execute and instruction .fetch are 
performed in parallel. 

To offer the system designer maximum flexibility, these 
devices contain both asynchronous (<3) and synchronous 
(Gs) . output enables. 

These devices contain a single pin initialize function capa­
ble of loading any arbitrary microinstruction for system 
interrupt or initialization. On the Am27S35 this function 
operates asynchronously, independent of clock. The 
Am27S37 provides synchronous operation of this function. 

Upon power-up the outputs (00 - 07) will be in a floating or 
high-impedance state. 

BLOCK DIAGRAM 

80006351 

PRODUCT SELECTOR GUIDE 

Part Number Asynchronous Initialize Am27S35A Am27S35 
Part Number Synchronous Initialize Am27S37A Am27S37 

Address Setup Time ·35 ns I 40 ns 40 ns I 45 ns 

Clock-to-Output Delay 20 ns I 20 ns 25 ns I 30 ns 
Operating Range C I M C I M 
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Am27S41/27PS41 
16,384-Bit (4,096 x 4) Bipolar PROM 

DISTINCTIVE CHARACTERISTICS 

• Ultra-fast access time "A" version (35 ns Max.) - Fast 
access time Standard version (50 ns Max.) - allow 

• Platinum-Silicide fuses guarantee high reliability, fast 
programming and exceptionally high programming 
yields (typ> 98%) 

• AC performance is factory tested utilizing programmed 
test words and columns 

• Voltage and temperature compensated providing ex­
tremely flat AC performance over military range 

• Member of generic PROM series utilizing standard 
programming algorithm 

GENERAL DESCRIPTION 

The Am27S41 (4,096-words by 4-bits) is a Schottky TTL 
Programmable Read-Only Memory (PROM). 

This device has three-state outputs compatible with low­
power Schottky bus standards capable of satisfying the 
requirements of a variety of microprogram mabie controls, 

mapping functions, code conversion, or logic replacement. 
Easy-word depth expansion is facilitated by active LOW 
(G1 & G2) output enables. 

This device is also offered in a power-switched verSion, the 
Am27PS41. 

BLOCK DIAGRAM 
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*E nomenclature applies only to Am27PS power-switched versions. 

PRODUCT SELECTOR GUIDE 

Part Number 27541A 27541 

Address Access 35 ns 50 ns 50 ns 65 ns Time 

Operating Range C M C M 
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Am27S45/ Am27S4 7 
16,384-Bit (2048 x 8) Bipolar Registered PROM 

with Programmable INITIALIZE Input 

DISTINCTIVE CHARACTERISTICS 

• "SA"version offers superior performance with 25 ns 
setup time and 10 ns clock-to-output delay* 

• Slim, 24-pin, 300-mil lateral center package occupies 
approximately 1/3 the board space required by standard 
discrete PROM and register 

• Consumes approximately 1/2 the power of separate 
PROM/register combination for improved system reli-
ability . 

• Versatile programmable asynchronous or synchronous 
enable for simplified word expansion 

• Buffered common INitiALIZE input either asynchronous 
(Am27S45) or synchronous (Am27S47) 

• Platinum-Silicide fuses guarantee high reliability, fast 
programming and exceptionally high programming 
yields (typ. > 98%) 

GENERAL DESCRIPTION 

The Am27S45 and the Am27S47 (2048-words by 8-bits) 
are fully decoded, Schottky array, TTL Programmable 
Read-Only Memories (PROMs), incorporating D-type mas­
ter-slave data registers on chip. These devices have three­
state outputs compatible with low-power Schottky bus 
standards capable of satisfying the requirements of a 
variety of microprogram mabie controls and state machines. 

These devices contain an 8-bit parallel data register in the 
array-to-output path which allows PROM data to be stored 
while other data is being addressed. This meets the 
requirements for pipelined microprogrammable control 
stores where instruction execute and instruction fotch are 
performed in parallel. 

To Offer the system designer maximum flexibility, these 
devices contain a user programmable asynchronous or 
synchronous output enable. The unprogrammed .state of 
the enable pin operates as an Asynchronous Enable (~) 
input. An architecture word permits the programming of the 
functionality of this pin to Synchronous Enable (Gs). 

These devices contain a single pin initialize function capa­
ble of loading any arbitrary microinstruction for system 
interrupt or initialization. On the Am27S45 this function 
operates asynchronously, independent of clock. The 
Am27S47 provides synchronous operation of this function. 

If the architecture has been programmed to synchronous 
enable, upon power-up the outputs (00 - 07) will be in a 
floating or high-impedance state. 
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PRODUCT SELECTOR GUIDE 

Part Number Asynchronous Initialize 27S45SA* 27S45A 

Part Number Synchronous Initialize 27S47SA* 27S47A 

Address Setup Time (ns) 25 28 40 45 

Clock-to-Output Delay (ns) 10 12 20 25 

Operating Range C M C M 

CONNECTION DIAGRAMS 
Top View 
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Am27S55 
.32,768-Bit (4096 x 8) Bipolar Registered PROM 

ADVANCE INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• "A" version offers superior performance with 20 ns set­
up time and 10 ns clock-to-output delay 

• Slim, 24-pin, 300-mil lateral center package occupies 
approximately 1'3 the board space required by standard 
discrete PROM and register 

• Consumes approximately· Y2 the power of separate 
PROM/register combination for improved system reli­
ability 

• User-programmable for Asynchronous Enable, Synchro­
nous Enable, Asynchronous Initialize, or Synchronous 
Initialize 

• Platinum-Silicide fuses guarantee high reliability, fast 
programming, and exceptionally high programming 
yields (Typ. > 98%) 

GENERAL DESCRIPTION 

The Am27S55 (4096 words by 8 bits) is a fully decoded 
Schottky· Array TIL Programmable Read-Only Memory 
(PROM) incorporating Ootype master-slave data registers 
on-chip. This device has three-state outputs compatible 
with low-power Schottky bus standards capable of satisfy­
ing the requirements of a variety of microprogram mabie 
controls and state machines. 

This device contains an 8-bit parallel data register in the 
array-to-output path which allows PROM data to be stored 
while other data is being addressed. This meets the 
requirements for pipelined microprogrammable control 

stores where instruction execute and instruction fetch are 
performed in parallel. 

To offer the system designer maximum flexibility, this 
device contains a single programmable multi-functional 
input (G/Gs/ViS). The unprogrammed state of this pin 
operates as an Asynchronous Enable (G) input. An archi­
tecture word permits the programming of the functionality 
of this pin to Synchronous Enable (Gs), Asynchronous 
Initialize (i), or Synchronous Initialize (is). 

If the architecture has been programmed to synchronous 
enable, upon power-up the outputs (00 - 07) will be in a 
floating or high-impedance state. 

BLOCK DIAGRAM 

AU 

AlI'J 

As 
As 
1'17 

As 
As 
A4 

~ 

Aa 
Al 

~ 

t< 

~ ~. 

DECODER 

256 X 128 

PROGRAMMABLE 
ARRAY 

8-BIT EDGE-TRIGGERED REGISTER 

I PROGRAMMABLE INITIALIZE WORD 

~ 01 ~ 03 04 Os Os ~ 

80006440 

4-248 

Rev. Amendment 
/0 

... , 

, 
... , 
• 
( 
( , 
.. 
.... 
:: 
{ 
( 

t 
t 
.... -( 
t 
CJ 



PRODUCT SELECTOR GUIDE 

Part Number Am27S55A 

Address Setup 20 25 
Time (ns) 

Clock-to-Output 10 13 
Delay (ns) 

Operating 
C M 

Range 

CONNECTION DIAGRAM 
Top View 
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Am27S65 
4096-Bit (1024 x 4) Bipolar Registered PROM 

with SSR ™ Diagnostics Capability 

DISTINCTIVE CHARACTERISTICS 

• On-chip diagnostic shift register for serial observability 
and controllability of the output register 

• User-programmable Enable Pin for Asynchronous or 
Synchronous Enable operation 

• User-programmable Initialization Pin for Asynchronous 
or Synchronous Initialize operation 

• Slim, 24-pin, aOO-mii lateral center package permits a 
reduction in board space over standard discrete PROM 
and registers 

• Consumes approximately Y2 the power of separate 
PROM/register combination for improved system reli­
ability 

• Platinum-Silicide fuses guarantee high reliability, fast 
programming and exceptionally high programming 
yields (typ. > 98%) 

• Increased drive capability, 24 rnA IOL 

GENERAL DESCRIPTION 

This device contains a 4-bit parallel data register in the 
array-to-output path intended for normal registered data 
operations. In parallel with the output data registers is 
another 4-bit register with shifting capability, called a 
shadow register. As the name implies, the shadow register 
is intended to operate in the background of the normal 
output data register. This shadow register can be used in a 
systematic way to control and observe the output data 
register to exercise desired system functions during a 
diagnostic test mode. 

To offer the system designer maximum flexibility, this 
device contains user-programmable architecture for Enable 
and Initialize. The unprogrammed state of these pins 
operates as Asynchronous inputs (<3) and (I), respectively. 
An architecture word permits the programming of the 
functionality of these pins to Synchronous Enable (GS) and 
Synchronous Initialize (is). A non-programmable Asynchro­
nous Enable (G) is also provided. 
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PRODUCT SELECTOR GUIDE 

Part Number 27S65A 27S65 27S65A 27S65 

Address Set-up 23 ns 30 ns 27 ns 35 ns 
Time 

Clock-to-Output 10 ns 15 ns 13 ns 20 ns Delay 

Operating C C M M Range 

CONNECTION DIAGRAMS 

Top View 
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Am27S75 
8192-Bit (2048 x 4) Bipolar Registered PROM 

with SSR™ Diagnostics Capability 

DISTINCTIVE CHARACTERISTICS 

• On-chip diagnostic shift register for serial observability 
and controllability of the output register 

• User-programmable synchronous and asynchronous 
Enables 

• User-programmable for synchronous or asynchronous 
Initialize 

• Slim, 24-pin, 300-mil lateral center package permits a 
reduction in board space over standard discrete PROM 
and registers. 

• Consumes approximately 1/2 the power of separate 
PROM/register combination for improved system reli­
ability. 

• Platinum-Silicide fuses guarantee high reliability, fast 
programming and exceptionally high programming 
yields (typ. > 98%). 

• Increased drive capability, 24 mA IOL 

GENERAL DESCRIPTION 

This device contains a 4-bit parallel data register in the 
array-to-output path intended for normal registered data 
operations. In parallel with the output data registers is 
another 4-bit register with shifting capability, called a 
shadow register. As the name implies, the shadow register 
is intended to operate in the background of the normal 
output data register. This shadow register can be used in a 
systematic way to control and observe the output data 
register to exercise desired system functions during a 
diagnostic test mode. 

To offer the system designer maximum flexibility, this 
device contains user programmable architecture for Enable 
and Initialize. The unprogrammed state of these pins 
operates as Asynchronous inputs (G) and (i) respectively. 
An architecture word permits the programming of the 
functionality of these pins to Synchronous Enable (GS) and 
Synchronous Initialize (is). 

BLOCK DIAGRAM 
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PRODUCT SELECTOR GUIDE 

Part Number 27575A 27575 27575A 27575 

Address Set up Time 25 ns 30 ns 30 ns 35 ns 

Clock-to-Output 12 ns 15 ns 17 ns 20 ns 
Delay 

Operating Range C C M M 

CONNECTION DIAGRAMS 

Top View 
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Am27S85 
16,384-Bit (4096 x 4) Registered PROM 

with SSR™ Diagnostics -Capability 

DISTINCTIVE CHARACTERISTICS 

• On-chip diagnostic shift register for serial observability 
and controllability of the output register 

• User-programmable for Asynchronous Enable, Synchro­
nous Enable, .Asynchronous Initialize, or Synchronous 
Initialize 

• Slim, 24-pin, 300-mil lateral center package occupies 
approximately 1/3 the board space required by standard 
discrete PROM and register. 

• Consumes approximately 112 the power of separate 
PROM/register combination for improved system reli­
ability. 

• Platinum-Silicide fuses guarantee high reliability, fast 
programming and exceptionally high programming 
yields (typ. > 98%). 

• Increased drive capability, 24 mA IOL 

GENERAL DESCRIPTION 

This device contains a 4-bit parallel data register in the 
array-to-output path intended for normal registered data 
operations. In parallel with the output data registers is 
another 4-bit register with shifting capability, called a 
shadow register. As the name implies, the shadow register 
is intended to operate in the background of the normal 
output data register. This shadow register can be used in a 
systematic way to control and observe the output data 
register to exercise desired system functions during a 
diagnostic test mode. 

To offer the system designer maximum flexibility, this 
device contains a single programmable multi-functional 
input (G/GS/iliS). The unprogrammed state of this pin 
operates an Asynchronous Enable (G) input. An architec­
ture word permits the programming of the functionality of 
this pin to Synchronous Enable (GS), Asynchronous Initial­
ize (I), or Synchronous Initialize (is). 
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PRODUCT SELECTOR GUIDE 

Part Number 27585A 27585 27585A 27585 

Address 5et-up Time 27ns 35 ns 30 ns 40 ns 

Clock-to-Output 
12 ns 15,ns 17 ns 20 ns 

Delay 

Operatlnge Range C C M M 

CONNECTION DIAGRAMS 

Top View 
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Am29PL141 
Fuse Programmable Controller (FPC) 

DISTINCTIVE CHARACTERISTICS 

• Implements complex fuse programmable state ma-
chines 

• 7 conditional inputs, 16 outputs 
• 64 words of 32-bit-wide micr0frrogram memory 
• Serial Shadow Register (SSR M) diagnostics on chip 

(programmable option) 

• 29 high-level microinstructions 
- Conditional branching 
- Conditional looping 
- Conditional subroutine call 
- Multiway branch 

• 20 MHz clock rate, 28-pin DIP 

GENERAL DESCRIPTION 

The Am29PL 141 is a single-chip Fuse Programmable 
Controller (FPC) which allows implementation of complex 
state machines and controllers by programming the appro­
priate sequence of microinstructions. A repertoire of jumps, 
loops, and subroutine calls, which can be conditionally 
executed based on the test inputs, provides the designer 
with powerful control flow primitives. 

The Am29PL141 FPC also allows distribution of intelligent 
control throughout the system. It off-loads the central 
controller by distributing FPCs as the control for various 

self-contained functional units, such as register file/ ALU, 
I/O, interrupt, diagnostic, and bus control units. 

A microprogram address sequencer is the heart of the FPC. 
It provides the microprogram address to an internal 64-
word by 32-bit PROM. The fuse programming algorithm is 
almost identical to that used for AMD's Programmable 
Array Logic family. 

As an option, the Am29PL 141 may be programmed to have 
on chip SSR diagnostics capability. Microinstructions can 
be serially shifted in, executed, and the results shifted out 
to facilitate system diagnostics. 

BLOCK DIAGRAM 
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CONNECTION DIAGRAMS 
Top View 
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:;: ORDERING INFORMATION 
::i Standard Products 
0. 
~ AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is 
E formed by a combination of: A. Device Number 
cC B. Speed Option (if applicable) 

I 

AM29PL141 

C. Package Type 
D. Temperature Range 
E. Optional Processing 

l'--_____ E. OPTIONAL PROCESSING 
Blank - Standard processing 

B - Burn-in 

~---------D.TEMPERATURE RANGE 
C - Commercial (0 to + 70·C) 

L..------------C. PACKAGE TYPE 
o = 28-Pin Ceramic DIP (CD 028) 
L - 28-Pin Ceramic Leadless Chip Carrier (CL 028) 
x- Dice 

'-----------------B. SPEED OPTION 
Not applicable 

- A. DEVICE NUMBER/DESCRIPTION 
Am29PL141 
Fuse Programmable Controller (FPC) 

Valid Combinations 

Valid Combinations 

I AM29PL141 I DC, DCB, 
LC, XC 

Valid Combinations list cnfigurations planned to be supported 
in volume for this device. Consult the local AMD sales office 
to confirm availability of specific valid combinations, to check 
on newly released valid combinations, and to obtain additional 
data on AMD's standard military grade products. 
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ORDERING INFORMATION 
APL and CPL Products 

AMD products for Aerospace and Defense applications are available in several· packages and operating ranges. APL 
(Approved Products List) products are fully compliant with MIL-STD-883C requirements. CPL (Controlled Products List) 
products are processed in accordance with MIL-STD-883C, but are inherently non-compliant because of package, 
solderability, or surface treatment exceptions to those specifications. The order number (Valid Combination) is formed 
by a combination of: 

APL Products: A. Device Number CPL Products: A.Devlce Number 
B. Speed Option (if applicable) B. Speed Option (if applicable) 
C. Device Class 
D. Package Type 
E. Lead Finish 

C. Package Type 
D. Temperature Range 
E. CPL Status 

APL Products 

XL=i E. LEAD FINISH 
A = Hot Solder DIP . 

D. PACKAGE TVFE (per 09-000) 
X = 28-Pin (Ceramic DIP (CD 028) 

'-------------c. DEVICE CLASS 
18 = Class 8 

'-----------------8. SPEED OPTION 
Not applicable 

---- A. DEVICE NUM8ER/DESCRIPTION (Include revision letter) 

AM29PL 141 

Am29PL141 . 
Fuse Programmable Controller (FPC) 

CPL Products 

.M.L=i E. OPL STATUS 
C - CPL Certified 

D. TEMPERATURE RANGE 
M - Military (- 55 to + 125°C) 

L-.------------C. PACKAGE TVPE(per Prod. Nomenclature/16-038) 
I L - 28·Pin Ceramic Leadless Chip Carrier (CL 028) 

1....------------------'-8. SPEED OPTION 
Not applicable 

- A. DEVICE NUMBER/DESCRIPTION (Include revision letter) 
Am29PL141 
~use programmable Controller (FPC) 

Valid Combinations 

APL I Am29PL141 I IBXA 

CPL JAm29PL141 1 ILMC 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations or to check for newly released valid 
combinations. 
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PIN DESCRIPTION 

CC[SDI] Condition Code «TEST) Input) 
When the TEST (P[24:22]) field of the executing 
microinstruction is set to 6 (binary 110). CC is selected to be 
the conditional input. (Note: In SSR diagnostic configuration. 
CC is also the Serial Data Input SOl.) 

ClK Clock (Input) 
The rising edge clocks the microprogram counter. count 
register. subroutine register. pipeline register. and EQ flag. 

P[15:8] (Outputl) 
Upper eight. general-purpose microprogram control outputs. 
They are enabled by the OE signal from the microprogram 
pipeline register. When OE is HIGH. P[15:8) are enabled. 
and when LOW. P[15:8] are three-stated. 

P[7:0] [DlCK, MODE] (Outputs) 
Lower 

Lower eight. general-purpose microprogram control outputs. 
They are permanently enabled. (Note: in the SSR diagnostic 
configuration. P[7] becomes the diagnostic clock input 
OCLK and P[6] becomes the diagnostic control input 
MODE.) 

RESET 
Synchronous reset input. When it is low. the output of the 
PC MUX is forced to the uppermost microprogram address 
(63). On the next rising clock edge. this address (63) is 
loaded into the microprogram counter. the microinstruction 
at location 63 is loaded into the pipeline register and the EQ 
flag is cleared. The CREG and SREG values are 
indeterminate on reset. 

T[5:0] 
Test inputs. In conditional microinstructions. the inputs can 
be used as individual condition codes selected by the TEST 
field in the pipeline register. The T[5:0] inputs can also be 
used as a branch address when performing a microprogram 
branch. or as a count value. 

ZERO [SDO] 
Zero output. A Low state indicates that the CREG value is 
zero .. (Note: In the SSR diagnostic configuration. ZERO 
becomes the Serial Data output SOO. This change is only 
on the output pin; internally. the zero detect functions is 
unchanged.) 
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FUNCTIONAL DESCRIPTION 
Figure 1, the block diagram of the Am29PL 141 FPC, shows 
logic blocks and interconnecting buses. These allow parallel 
performance of different operations in a single microinstruc­
tion. The FPC consists of four main logic blocks: the micropro­
gram memory, microaddress control logic, condition code 
selection logic, and microinstruction decode. A fifth optional 
block is the Serial Shadow Register (SSR). 

The microprogram memory contains the user-defined instruc­
tion flow and output sequence. The microaddress control logic 
addresses the microprogram memory. This control logic 
supports high-level microinstruction functions including condi­
tional branches, subroutine calls and returns, loops, and 
multiway branches. The condition code selection logic selects 
the condition code input to. be tested when a conditional 
microinstruction is executed. The polarity of the selected 
condition code input is controlled by the POL bit in the 
microword. The microinstruction decode generates the control 
signals necessary to perform the microinstruction specified by 

the microinstruction part (P[31 : 16» of the microword. The 
SSR enables in-system testing that allows isolation of prob­
lems down to the IC level. 

MICROPROGRAM MEMORY 

The FPC microprogram memory is a 64-word by 32-bit PROM 
with a 32-bit pipeline register at its output. The upper 16 bits 
(P[31 : 16» of the pipeline register stay internal to the FPC and 
form the microinstruction to control address sequencing. The 
format for microinstructions is: a one-bit synchronous Output 
Enable OE, a five-bit OPCOOE, a one-bit test polarity select 
POL, a three-bit TEST condition select field, and a six-bit 
immediate OAT A field. The OAT A field is used to provide 
branch addresses, test input masks, and counter values. 

The lower 16 bits (P[15 : 0» of the pipeline register are brought 
out as user-defined, general purpose control outputs. The 
upper eight control outputs (P[15 : 8» are three-stated when 
OE is programmed as a LOW. The lower eight control bits (P[7 
: 0» are always enabled. 

r------------------------~ 
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1 I 
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0ImUTS 

! BDR02330 

Figure 1. Am29PL 141 Block Diagram 

*Note: These pins available only in SSR mode. 
**Note: These pins available only in normal mode. 
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MICROADDRESS CONTROL LOGIC 

The microaddress control logic consists of five smaller logic 
blocks. These are: 

PC MUX - The microprogram counter multiplexer 

P CNTR - Microprogram counter (PC) and incrementer 
(PC+ 1) 

SUBREG - Subroutine register (SREG) with subroutine 
mux (S MUX) 

CNTR - Count register (CREG) with counter mux 
(C MUX), decrementer (COUNTER-1) and zero 
detect 

GOTO - Specialized branch control logic 

The PC MUX is a six-bit, four-to-one multiplexer. It selects 
either the PC, PC+ 1, SREG, or GOTO output as the next 
microaddress input to the microprogram memory and to the 
PC. The PC thus always contains the address of the microin­
struction in the pipeline register. During a Reset, the PC MUX 
output is· forced to all ones, selecting location 63 of the 
microprogram memory. 

The P CNTR block consists of a six-bit register (PC) driving a 
six-bit combinatorial incrementer (PC+ 1). Either the present or 
the incremented values of PC can address the microprogram 
PROM. The incremented value of PC can be saved as a 
subroutine return address. The present PC value can address 
the microprogram PROM when waiting for a condition to 
become valid. PC+ 1 addresses the microprogram PROM for 
sequential microprogram flow, for unconditional microinstruc­
tions, and as a default for conditional microinstructions. 

The SUBREG block consists of a six-bit, three-to-one multi­
plexer (S MUX) driving a six-bit register (SREG). The three 
possible SREG inputs are PC+ 1, CREG, and SREG. SREG 
normally operates as a one-deep stack to save subroutine 
return addresses. PC+ 1 is the input source when performing 
subroutine calls and PC MUX is the output destination when 
performing return from subroutine. 

The CNTR block consists of a six-bit, four-to-one multiplexer 
(C MUX); driving a six-bit register (CREG); a six-bit, combinato­
rial decrementer (COUNTER-1); and a zero detection circuit. 
The CNTR logic block is typically used for timing functions and 
Iterative loop counting. 

The SUBREG and CNTR can be considered as one logic 
block because of their unique interaction. To explain this 
interaction, notice that both have an additional input source 
and output destination not used in typical operation-each 
other. This allows the CREG to be an additional stack location 
when not used for counting, and the SREG to be a nested 
count location when not used as a stack location. Thus, the 
SREG and CREG can operate in three different modes: 

1. As a separate one-deep stack and counter. 
2. As a two-deep stack. 
3. As a two-deep nested counter. 

The GOTO logic block serves three functions: 

1. It provides a six-bit count value from the DATA Field in the 
pipeline register (P[21 : 16]) or from the TEST inputs (T[5 : 
0» masked by the DATA Field (P[21 : 16». 
(This is represented by PM.) 

2. It provides a branch address from the DATA Field in the 
pipeline register (P[21 : 16]) or from the TEST inputs 
(T[5 : 0]) masked by the DATA Field (P[21 : 16]). 
(This is represented by T*M.) 

3. It compares the TEST inputs 
(T[5 : 0)) masked by the DATA Field (P[21 : 16]), called 
T*M, to the CONSTANT Field from the pipeline register 
(P[27 : 22]). If a match occurs, the EO Flip-flop is set. EO 
remains unchanged if there is no match. Constant field bits 
that correspond to marked test bits must be ZERO. 

The EO flag can be tested by the condition code selection 
logic. Multiple tests of any group of T inputs in a manner 
analogous to Sum-of-Products can be performed since a no 
match comparison does not reset the EO flag. Any conditional 
branch on EO will reset the EO flag. Conditional returns on EO 
will not change the EO flag. RESET input LOW will reset the 
EO flag. 

NOTE: A zero in the DATA Field blocks the corresponding bit 
in the TEST Field; a one activates the corresponding 
bit. 

The constant field bits that correspond to masked test field 
bits must be zero. A zero is substituted for masked test field . 
bits. The 'POL' bit is a "don't care" when using test inputs to 
load registers. 

CONDITION CODE SELECTION LOGIC 

The condition code selection logic consists of an eight-to-one 
multiplexer. The eight test conditon inputs are the device 
inputs (CC and T[5 : 0)) and the EO flag. The TEST field 
P[24 : 22] selects one of the eight conditions to test. 

The polarity bit POL in the microinstructions allows the user to 
test for either a true or false conditon. Refer to Table 2 for 
details. 
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MICROINSTRUCTION DECODE 

The microinstruction decoder is a PLA that generates the 
control for 29 different microinstructions. The decoder's inputs 
include the OPCODE Field (P[30 : 26]), the zero detection 
output from the CNTR, and the selected test condition code 
from the conditional code selection logic. 

Am29PL141 SSR DIAGNOSTICS OPTION 

As a programmable option, the Am29PL 141 FPC may be 
configured to contain Serial Shadow Register (SSR) diagnos­
tics capability. SSR diagnostics is a simple, straightforward 
method of in-system testing that allows isolation of problems 
down to the IC level. 

The SSR diagnostics configuration activates a 32-bit-wide, 0-
type register, called a "shadow" register, on the pipeline 
register inputs. The shadow register can be serially loaded 
from the SOl pin, parallel loaded from the pipeline register, or 
held. The pipeline register can be loaded from the micropro­
gram memory in normal operation or from the shadow register 
during diagnostics. A redefinition of four device pins is required 
to control the different diagnostics functions. CC also func­
tions as the Serial Oata Input (SOl), LERO becomes the Serial 
Data Output (SOO), P[7] becomes the diagnostic clock 
(OCLK), and P[6] becomes the diagnostic mode control 
(MOOE). The various diagnostic and normal modes are shown 
in Table 1. 

Serially loading a test microinstruction into the shadow register 
and parallel loading the shadow register contents into the 
pipeline register forces execution of the test microinstruction. 
The result of the test microinstruction can then be clocked into 
the pipeline register, as in normal operation mode, parallel 
loaded into the shadow register, and serially shifted out for 
system diagnostics. 



The general microinstruction format is shown below: 

Am29PL141 General Microinstruction Format 

26 25 24 22 21 16 

] [ POL ] [ TEST ] [ DATA ] 

DFROO730 

WHERE: 

OE Synchronous Output Enable for P[15:8]. 
OPCODE .. A five-bit opcode field for selecting one of the twenty-eight single data field microinstructions. 

POL A one-bit test condition polarity select. 
0'" Test for true (HIGH) condition. 
1 ... Test for false (LOW) condition. 

TEST A three-bit test condition select 

TEST[2:0] 

000 
001 
010 
011 
100 
101 
110 
111 

UNDER TEST 

T[O] 
T[l] 
T[2] 
T[3] 
T[4] 
T[5] 
CC 
EO 

DATA A six-bit conditional branch microaddress, test input mask, or counter value field doslgnalod as 
PI in microinstruction mnemonics. 

The special two data field comparison microinstruction format is shown below: 

Am29PL 141 Comparison Microinstruction Format 

31 30 28 Xl 22 21 16 

[ DE ] [ OPCODE ] [CONSTANT ] [ DATA ] 

DFROO740 

WHERE: 

OE Synchronous Output Enable for P[15:8]. 

OPCODE ... Compare microinstruction (binary 100). 
CONSTANT = A six-bit constant for equal to comparison with TeM. 
DATA A six-bit mask field for masking the incoming T[5:0] inputs. 
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TABLE 1. 

Inputs Outputs 

SOl MODE OClK ClK SOO 
Shadow Pipeline Operation 
Register Register 

D L f H.L.f So Si-1- Si Hold Serial Right Shift Register 
S31- D 

X L H.L.! t So Hold Pj-PROMi 
Normal Load Pipeline Register from 
PROM 

L H f H.L.! L 51- Pi Hold 
Load Shadow Register from Pipeline* 
Register 

X H H.L.! f SDI Hold PI-Sj 
Load Pipeline Register from Shadow 
Register 

H H t H.L.! H . Hold Hold Hold Shadow Register 

*57.56 are undefined. S15-Sa load from the source driving pins P[15]-P[8]. If P[31] in the microword is a ONE. 
S15-Sa are loaded from the pipeline register. If P[31] in the microword is a ZERO. 515 - Sa are loaded from an external 
source. 

FUNCTION TABLE DEFINITIONS 

INPUTS 
H = HIGH X = Don't Care 
L=LOW f = LOW-to-HIGH transition 

! - High-to-Low transition 

TABLE 2. 

Input 
Condition POL Condition 

Being Tested 

0 0 Fail 

0 1 Pass 

1 0 Pass 

1 1 Fail 

I 
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Am29PL 141 MICROINSTRUCTION SET DEFINITION 

• = Other instruction 

o = Instruction being described 

€ = Register in part 

Opcode Mnemonics Description 

19 

DB 

OF 

18 

GOTOPL If (con d) Then Go To Pipeline 
Conditional branch to the address 
in the PL (DATA field). The EO 
flag will bo roset if tho test field 
selects it and the condition 
passes. 

GOTOPLZ If (CREG = 0) Then Go To 
Pipeline 
.Conditional branch, when the 
CREG is equal to zero, to the 
address in the PL (DATA field). 
This instruction does not depend 
on the pass/fail condition. The EO 
flag will be reset if the test field 
selects it and the CREG is equal 
to zero. 

GOTOTM If (cond) Then Go To TM 
Conditional branch to the address 
defined by the T*M (T[5:0] under 
bitwise mask from the DATA field). 
This microinstruction is intended 
for multiway branches. The EO 
flag will be reset if the test field 
selects it and the condition 
passes. 

FORK If (cond) Then Go To Pipeline 
Else Go To (SREG) 
Conditional branch to the address 
in the PL (DATA field) or the 
SREG. A branch to PL is taken if 
the condition is true and a branch 
to SREG if false. The EO flag will 
be reset if the test field selects it 
and the condition passes. 

P = Test Pass 

F = Test Fail 

M,N are arbitrary values in the CREG or SREG 

Execution Example 

30 e 
F 

31 • 
PL (DATA) 

P 40 

41 

PFOO1420 

30 

31 
~ CREG = O. • PL(DATA) 40 

CREG:f:. 0 
32 41 

33 1 
PFOO1430 

30 4F rM I. 

31~ P 20 

40 21 1 32 

41 

PFOOl440 

30 

,:\F SREG 
31 e}----_ 

P 50 

PL 40 51 
(DATA) 

41 

PFOO1451 
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Register Transfer Description 

If (cond - true) Then 
PC - PL(data) 

Else 
PC - PC+1 

If ( CREG ~ 0 ) Then 
PC = PL(data) 

Else 
PC = PC+1 

If (cond - true ) Then 
PC = r*M 

Else 
PC = PC+1 

If (cond = true ) Then 
PC = PL(data) 

Else 
PC - SREG 
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Opcode Mnemonics Description 

04 LDPL If (cond) Then Load Pipeline 
Conditional Load the CREG from 
the PL (DATA field). 

05 LDPLN If (cond) Then Load Pipeline, 
Nested 
Conditional load the CREG from 
the PL (OAT A field) nested. The 
CREG and SREG are treated as a 
two-deep nested count register, 
the previous CREG value is 
pushed into the SREG as a 
nested count, and the CREG is 
loaded from PL. 

08 LDTM If (cond) Then Load TM 
Conditional load the CREG from 
the T*M (T[5:0) inputs under 
bitwise mask from the DATA field). 

07 LDTMN If (cond) Then Load TM, Nested 
Conditional load the CREG from 
the T*M (T[5:0) inputs under 
bitwise mask from the OAT A field) 
nested. The SREG and CREG are 
treated as a two-deep nested 
count register, the previous CREG 
value is transferred into the SREG 
and the CREG is loaded from 
T*M. 

Execution Example 

30 
I 

31 • 
CREG 

F -0--:;- PL (DATA) 
...... N 

32 • 
P 

33 

PFOO1510 

30 

31 • SREG CREG 
F 
~PL(DATA) 

...... M N 
32 • 

P 

33 

PFOO1500 

30 

31 • CREG 
F 
~T*M 

,," N 
32 • 

P 

33 

PFOO1520 

30 

31 • SREG CREG 
F 

.... ~T·M 
.... M N 

32 • 
P 

33 

PFOO1530 
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Register Transfer Description 

If (cond = true ) Then 
CREG - PL(data) 
PC - PC+ 1 

Else 
PC - PC+ 1 

If (cond - true ) Then 
SREG - CREG 
CREG - PL(data) 
PC - PC+ 1 

Else 
PC - PC+ 1 

If (cond - true ) Then 
CREG - T*M 
PC - PC+ 1 

Else 
PC - PC+ 1 

If (cond = true ) Then 
SREG = CREG 
CREG = T*M 
PC = PC+ 1 

Else 
PC = PC+ 1 

> 
3 
N 
CO 
-a 
r-..... 
~ ..... 



,.. 
Opcode Mnemonics Description Execution Example Register Transfer Description 0IIIt' ,.. 

...I 
Q. 15 PSH If (cond) Then Push If (cond .. true) Then 
CJ) Conditional push the PC + 1 into SREG - PC+ 1 
N the SREG. PC - PC+1 E Else 
c( PC - PC+ 1 

SREG 

31 • ---0--::- PC + 1 
P 32 

32 

PFOOO1S40 

17 PSHN If (cond) Then Push, Nested If (cond .. true) Then 
Conditional push the PC + 1 into CREG - SREG 
the SREG nested. This SREG .. PC+ 1 
microinstruction treats the SREG PC - PC+ 1 
and CREG as a two-deep stack, Else 
PC + 1 is pushed into SREG and PC - PC+ 1 
the previous value in SREG is 
transferred into the CREG. CREG SREG 

--~PC+1 
P N 32 

32 

PFOO1550 

14 PSHPL If (con d) Then Push, Load If (cond = true) Then 
Pipeline CREG .. PL(data) 
Conditional push the PC + 1 into 

SREG 
SREG .. PC+ 1 

the SREG and load the CREG PC .. PC+1 
from the PL (DATA field). 0-::- PC+ 1 

Else 

,/ 32 PC - PC+ 1 

~/ CREG 

31 • ---0--:;- PL (DATA) 
P N 

32 

PFOO1560 

16 PSHTM If (con d) Then Push, Load TM If (cond = true) Then 
Conditional push the PC + 1 into CREG .. T*M 
the SREG and load the CREG SREG - PC+ 1 
from the T*M (T[5:0] under bitwise SREG PC = PC+ 1 
mask from the DATA field). 0-::- PC+1 

Else 

~ 32 
PC .. PC+ 1 

/" CREG 

31 .~T·M 
P N 

32 

PFOO1570 
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Opcode 

02 

03 

00 

01 

Mnemonics Description 

RET If (cond) Then Return 
Conditional return from subroutine. 
The SREG provides the return 
from subroutine address. 

RETN 

RETPL 

RETPLN 

If (cond) Then Return Nested 
Conditional return from nested 
subroutine. This microinstruction 
treats the SREG and CREG as a 
two-deep stack providing the 
SREG value as a return address 
and the CREG value as a nested 
return address that is transferred 
into the SREG. 

If (cond) Then Return, Load 
Pipeline 
Conditional return from subroutine 
and load the CREG from the PL 
(DATA field). The SREG provides 
the return from subroutine address. 

If (cond) Then Return Nested, 
Load Pipeline 
Conditional return from nested 
subroutine and load the CREG 
from the PL (DATA field). This 
microinstruction treats the SREG 
and CREG as a two-deep stack 
providing the SREG value as a 
return address and the CREG 
value as a nested return address 
that is transferred into the SREG. 

Execution Example 

SAEO 
30 ... -0--;;- PC + 1 

."". ... -.-,,--...... 
31 

F 

PFOOlsao 

SAEO 
30 _ ... ---O-;a- PC + 1 

31 ------ CAEO SREQ 
_--0-::0-::- PC + 1 

32 

33 

30 

31 

32 

33 

30 

31 

32 

33 

_--- 32 42 

50 

PFOO1S90 

SREG 
_O-=-PC+1 

,,'" 32 

"-",,",,.... CREa SREa 

.. " _,,-"'Q-;p-;; PC + 1 

• F 

SAEG CREG 

• --0-0- PL (DATA) 
Up 32 N 

PFOOlel0 
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Register Transfer Description 

If (cond - true ) Then 
PC - SREG 

Else 
PC - PC+1 

If (cond - true ) Then 
PC - SREG 
SREG - CREG 

Else 
PC - PC+1 

If (cond - true ) Then 
CREG - PL(data) 
PC - SREG 

Else 
PC - PC+1 

If (cond - true ) Then 
PC - SREG 
SREG - CREG 
CREG - PL(data) 

Else 
PC - PC+1 



:; Opcode 
or" 

-I 
0.. 09 
0) 
N 
E 
c( 

OC 

OE 

'18 

Mnemonics Description 

DEC If (con d) Then Decrement 
Conditional decrement of the 
CREG. 

DECPL While (CREG '* 0) Walt Else 
Load Pipeline 
Conditional Hold unt11 tho counter 
is equal to zero, then load CREG 
from the PL (DATA field). This 
microinstruction Is intended for 
timing waveform generation. If the 
CREG is not equal to zero, the 
same microinstruction is refetched 
while CREG is decremented. 
Timing is complete when the 
CREG is equal to zero, causing 
the next microinstruction to be 
fetched and the CREG to be 
reloaded from PL. This instruction 
does not depend on the pass/fail 
condition. 

DECTM While (CREG '* 0) Walt Else 
Load TM 
Conditional Hold until the counter 
is equal to zero, then load CREG 
from the TOM (T[5:0] under bitwise 
mask from the DATA field). This 
microinstruction is intended for 
timing waveform generation. If the 
CREG is not equal to zero, the 
same microinstruction is refletched 
while the CREG is decremented. 
Timing is complete when the 
CREG is equal to zero, causing 
the next microinstruction to be 
fetched and the CREG to be 
reloaded from TOM. This instruction 
does not depend on the pass/fail 
condition. 

DECGOPL If (cond) Then Go To Pipeline 
Else While (CREG '* 0) Walt 
Conditional Hold/Count. The 
current microinstruction will be 
refetched and the CREG 
decremented until the condition 
under test becomes true or the 
counter is equal to zero. If the 
condition becomes true, a branch 
to the address in the PL (DATA 
field) is executed. If the counter 
becomes zero without the 
condition becoming true, a 
CONTINUE is executed. The EQ 
flag will be reset if the test field 
selects it and the condition 
passes. 

Execution Example 

30 

CREG DECREMENTER 

32 .p---~ 

33 N 

PFOO1620 

30 
CREG DECREMENTER 

"~ " 
CREG '" 0 

CREG N 

CREG .. O- __ ~ PL(DATA) 
N 

PFOO1630 

CREG DECREMENTER 

--~ 30 
,;; 

31 
CREG,. 0 N 

CREG 

32 CREG = 0 --0--::- rM 
N 

PFOO1640 

CREG DECREMENTER 

/Rd 30 
I N 

FANDCREG;I- 0 

FAND PL(DATA) CREG = 0 
32 40 

41 

PFOO1650 
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Register Transfer Description 

If (cond - true) Then 
CREG - CREG - 1 
PC - PC+1 

Else 
PC - PC+1 

While (CREG < > 0) 
CREG - CREG - 1 
PC - PC 
End While 

CREG - PL(data) 
PC - PC+ 1 

While (CREG < > 0) 
CREG - CREG - 1 
PC -PC 
End While 

CREG - TOM 
PC - PC+ 1 

While (cond - false ) 
If ( CREG < > 0) 

CREG - CREG - 1 
PC - PC 

Else 
PC - PC+1 

End While 
PC - PL(data) 



Opcode Mnemonics Description Execution Example Register Transfer Description 

1A WAIT If (cond) Then Go To Pipeline If (cond - true) Then 
Else Walt PC - PL(data) 
Conditional Hold. The current Else 
microinstruction will be refetched 30 PC-PC 
and executed until the condition 
under test becomes true. When 
true, a branch to the address in 

31 • PC F the PL (OAT A field) is executed. 
The EO flag will be reset if the P PL(DATA) 
test field selects it and the 
condition passes. 40 

41 

PFOOl660 

08 LPPL While (CREG =1= 0) Loop to While (CREG < > 0) 
Pipeline CREG' - CREG-1 
Conditional loop to the address in 

30 
PC - PL (data) 

the PL (DATA field). This End While 
microinstruction is intended to be PC - PC+ 1 
placed at the bottom of an 31 
iterative loop. If the CREG is not 
equal to zero, it is decremented 32 (signifying completion of an 

Cfti:O DeCAEMENTER iteration), and a branch to the PL CREO#O 
address (top of the loop) is 33 

• Pl(DATA) --~ executed. If the CREG is equal to 
zero, looping is complete and the 34 CREO .. O N 
next sequential microinstruction is 
executed. This instruction does not 
depend on, the passlfail condition. 
The EO flag will be reset if the 
test field selects it and CREG is 
not equal to zero. 

PF001870 

OA LPPLN While (CREG =1= 0) Loop to While (CAEG < > 0) 
Pipeline Else Nest CREG - CAEG - 1 
Conditional loop to the address in PC - PL(data) 
the PL (DATA field) nested. The 30 End While 
SREG and CREG are treated as a CREG - SREG 
two-deep nested count register, PC - PC+ 1 
and the microinstruction is 31 
intended to be placed at the 
bottom of an "inner-nested" 

32 iterative loop. If the CREG is not 
equal to zero, the CREG is 

"CREG"O 
CREG OECREMENTER 

decremented (signifying completion 33 • ~ of an iteration), and a branch to PL(DATA) 
the PL address (top of the loop) 
is executed. If the CREG is equal 34 CREG= 0, 

,to zero, the inner loop is " N 
complete, and the count value for '~G SREG 
the outer loop is transferred from Oy-O the SREG into the CREG. This 
instruction does not depend on the 
pass/fail condition. The EO flag 
will be reset if the test field 
selects it and CREG is not equal 
to zero. 

PF001880 
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Opcode Mnemonics Description Execution Example Register Transfer Description 

00 CONT Continue The next sequential PC - PC+1 
microinstruction is fetched 
unconditionally. 

30 • 

31 • 

32 • 
PFOO1690 

10-13 CMP Compare TM to Pipeline (DATA) Compare T*M and PL(data) 
(100XX This microinstruction performs EO - «T [5:01 .AND. DATA). 
binary) bitwise exclusive-or of T*M (T[5:01 XNOR. CONSTAND .OR. EO 

under bitwise mask from the DATA 
field) with CONSTANT (P[27:22]). 
If T*M equals CONSTANT, the EO 30 
flag is set to ona which may be 
branched on in a following 
microinstruction. If not equal, the 31 • T*M 'I- CONST EO flag is unaffected. This allows 
sequences of compares, in a .,0 SET EQ FLAG manner analogous to sum-of-
products, to be performed which 

", 

can be followed by a single 32 • T*M .. CONST 
conditional branch if one or more 
of the comparisons were true. 

33 Note: The EO flag is set to zero 
on reset or when EO is selected 
as the condition in a branch. 
Conditional returns on EO leave 
the flag unchanged. Constant 
field bits that correspond to 
masked test field bits must be 
zero. This instruction does not 
depend on the pass/fail condition. 

PFOO1701 

.-

\ 
I 
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MICROINSTRUCTION SET TABLE 

Pass Fall 
Code Mnemonics Definition CREG 

Content PC SREG CREG EQ PC SREG CREG EQ MUX MUX 
00 RETPL Return: Load Pipeline X SREG Hold Data NC PC+ 1 Hold Hold NC 

01 RETPLN Return Nested: Load Pipeline X SREG CREG Data NC PC+1 Hold Hold NC 

02 RET Return X SREG Hold Hold NC PC+1 Hold Hold NC 

03 RETN Return Nested X SREG CREG Hold NC PC+ 1 Hold Hold NC 

04 LDPL Load Pipalina X PC+ 1 Hold Data- NC PC+ 1 Hold Hold NC 

05 LDPLN Load Pipeline Nested X PC+ 1 CREG Data NC PC+ 1 Hold Hold NC 

06 LDTM Load T*M X PC+ 1 Hold T*M NC PC+ 1 Hold Hold NC 

07 LDTMN Load T*M Nested X PC+ 1 CREG T*M NC PC+1 Hold Hold NC 

*0 Data Hold DCRMT Reset 
08 LPPL Loop Pipeline 

-0 PC+ 1 Hold Hold NC 

09 DEC Decrement X PC+ 1 Hold DCRMT NC PC+ 1 Hold Hold NC 

OA LPPLN Loop Pipeline Nested *0 Data Hold DCRMT Reset 

=0 PC+ 1 Hold SREG NC 

GOTOPLZ *0 PC+ 1 Hold Hold NC 
OB Go to Pipeline Zero 

-0 Data Hold Hold Reset 

*0 PC Hold DCRMT NC 
OC DECPL Count/Load Pipeline 

=0 PC+ 1 Hold Data NC 

00 CONT Continue X PC+ 1 Hold Hold NC PC+ 1 Hold Hold NC 

OE DECTM Count/Load T*M 
*0 PC Hold DCRMT NC 

~O PC+ 1 Hold T*M NC 

OF GOTOTM Go to T*M X T*M Hold Hold Reset PC+ 1 Hold Hold NC 

10-13 
(100XX CMP Compare* X PC+ 1 Hold Hold Set PC+ 1 Hold Hold NC 
Binary) 

14 PSHPL Push: Load Pipeline X PC+ 1 PC+ 1 Data NC PC+ 1 Hold Hold NC 

15 PSH Push X PC+ 1 PC+ 1 Hold NC PC+ 1 Hold Hold NC 

16 PSHTM Push: Load T*M X PC+ 1 PC+ 1 T*M NC PC+ 1 Hold Hold NC 

17 PSHN Push Nested X PC+ 1 PC+ 1 SREG NC PC+ 1 Hold Hold NC 

18 FORK Fork X Data Hold Hold Reset SREG Hold Hold NC 

19 GOTOPL Go to Pipeline X Data Hold Hold Reset PC+ 1 Hold Hold NC 

1A WAIT Hold Pipeline X Data Hold Hold Reset PC Hold Hold NC 

*0 Data Hold Hold Reset PC Hold DCRMT NC 
1B DECGOPL Count: Hold Pipeline 

=0 Data Hold Hold Reset PC+ 1 Hold Hold NC 

1C CALPL Call Pipeline X Data PC+ 1 Hold Reset PC+ 1 Hold Hold NC 

10 CALPLN Call Pipeline Nested X Data PC+ 1 SREG Reset PC+ 1 Hold Hold NC 

1E CALTM Call T*M X T*M PC+ 1 Hold Reset PC+ 1 Hold Hold NC 

1F CALTMN Call T*M Nested X T*M PC+ 1 SREG Reset PC+ 1 Hold Hold NC 

EO .. ((T[5:0j. AND. DATA). XNOR. CONSTANT).OR. EO 
CONSTANT field bits that correspond to masked test field bits must be zero. 
NC .. No Change 

Notes: 
1. (I)Signifies two different operations may occur, depending on the condition. 
2. (:) Signifies two parallel operations on the same condition. 
3. The EO flag will be affected only if the test field selects it, with the exception of instructions 10 - 13. 

I 
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PROGRAMMING 

The Am29PL 141 FPC is programmed and verified using a 
simple algorithm that is almost identical to that used for AMD's 
Programmable Array Logic family. The internal programmable 
array of the Am29PL 141 is organized as a 64 word by 32 bit 
(column) PROM. The fuse to be programmed is selected by its 
address (1 of 64), the byte at that address (1 of 4), and the bit 
in the byte (1 of 8). Control of programming and verifying is 
accomplished by applying a simple sequence of voltages on 
two control pins (CLK and CG). 

The fuse address is selected using a full decode of the T[5 : 0] 
inputs, where T[5] is the MSB and T[O] the LSB. The one of 
four byte addressing is done on the P[7] (MSB) and P[6] (LSB) 
outputs. The bit selection is done one output at a time by 
applying the programming voltage (YOP) to the output pin. The 
output pins that accept VOP are P[15 : 8]. A graphical 
representation of the fuse array organization for programming, 
with fuse numbering compatible to the JEDEC standard 
programmable logic transfer format, is shown in Figure 2. 

The complete program and verify cycle timing is shown in the 
programming waveform. A programming sequence is initiated 
by raising the CLK pin to VHH. This places the device in the 
program mode and disables the output pins so that they may 
be used as fuse addressing inputs. The next step is to address 
the fuse to be blown as previously stated. Note that bit 
selection, with VOP, should follow address and byte selection. 
Raising the CC pin to VHH initiates programming and lowering 
VOP terminates programming. Lowering the CLK pin to a TTL 
LOW level places the device in the fuse verification mode by 
enabling the programming outputs, P[15 : 8]. Following a clock 
pulse the fuse may be verified on the same output as bit 
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selection was performed. This scheme allows fuses to be 
verified in parallel as a byte if desired. The verification mode is 
terminated by lowering the CC pin back to a normal TTL level. 

SSR DIAGNOSTICS CONFIGURATION 
PROGRAMMING 

One additional fuse (# 2048) is used to alter the configuration 
of the Am29PL 141 to include on-Chip SSR Diagnostics. This 
fuse is addressed by applying VHH to the RESET and T[5], 
followed by VOP on pin P[15]. To verify the diagnostic fuse, 
P[7] and P[6] must select byte #3, i.e., P[7] must be low and 
P[6] must be high. 

PROGRAMMING YIELD 

AMD programmable logic devices have been designed to 
insure extremely high programming yields (> 98%). To help 
insure that a part was correctly programmed, once the 
programming sequence is completed, the entire fuse array 
should be reverified at both low and high VCC (YCCL and 
VCCH). Reverification can be accomplished in a verification 
only mode (CC at VHH) by reading the outputs in parallel. This 
verification cycle checks that the array fuses have been blown 
correctly and can be sensed under varying conditions by the 
outputs. 

AMD programmable logic devices contain many internal test 
features, including circuitry and extra fuses which allow AMD 
to test the ability of each part to perform programming before 
shipping, to assure high programming yields, and correct 
logical operation for a correctly programmed part. Program­
ming yield losses are most likely due to poor programming 
socket contact, programming equipment that is out of calibra­
tion, or improper usage of said equipment. 



P[15:S] 
PROGRAULIING CONFIGURATION 

JEDEC 
FUSE 31 

JEDEC 
FUSE 2047 

PFR00970 
JEDEC FUSE NUMBER = 32 (FUSE ADDRESS) + 8(3 - BYTE) + (7 - BIT) 

Figure 2. Programming Configuration 

BYTE SELECT 

BYTE P[7] P[6] 

0 H L 
1 H H 
2 L L 
3 L H 

BIT SELECT 

BIT P[15] P[14] P[13] P[12] P[11] P[10] P[9] P[8] 

0 L L L L L L L H 
1 L L L L L L H L 
2 L L L L L H L L 
3 L L L L H L L L 
4 L L L H L L L L 
5 L L H L L L L L 
6 L H L L L L L L 
7 H L L L L L L L 

COLUMN DECODE 

0 CO C8 C16 C24 
1 C1 C9 C17 C25 
2 C2 C10 C18 C26 
3 C3 C11 C19 C27 
4 C4 C12 C20 C28 
5 C5 C13 C21 C29 
6 C6 C14 C22 C30 
7 C7 C15 C23 C31 
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FUSE 
ADDRESS 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

T[5] 

L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 

FUSE ADDRESS DECODE 

T[4] T[3] 

L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L H 
L H 
L H 
L H 
L H 
L H 
L H 
L H 
H L 
H L 
H L 
H L 
H L 
H L 
H L 
H L 
H H 
H H 
H H 
H H 
H H 
H H 
H H 
H H 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L H 
L H 
L H 
L H 
L H 
L H 
L H 
L H 
H L 
H L 
H L 
H L 
H L 
H L 
H L 
H L 
H H 
H H 
H H 
H H 
H H 
H H 
H H 
H H 
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T[2] T[1] T[O] 

L L L 
L L H 
L H L 
L H H 
H L L 
H L H 
H H L 
H H H 
L L L 
L L H 
L H L 
L H H 
H L L 
H L H 
H H L 
H H H 
L L L 
L L H 
L H L 
L H H 
H L L 
H L H 
H H L 
H H H 
L L L 
L L H 
L H L 
L H H 
H L L 
H L H 
H H L 
H H H 
L L L 
L L H 
L H L 
L H H 
H L L 
H L H 
H H L 
H H H 
L L L 
L L H 
L H L 
L H H 
H L L 
H L H 
H H L 
H H H 
L L L 
L L H 
L H L 
L H H 
H L L 
H L H 
H H L 
H H H 
L L L 
L L H 
L H L 
L H H 
H L L 
H L H 
H H L 
H H H 



PROGRAMMING PARAMETERS TA = 25°C 

Parameters Description 

Icc @ 5-10 'mA 
VHH Control Pin Extra High Level I CLK@ 5-10 mA 

VOP Program Voltage, P [15:8] @ 15-200 mA 

VIHP Input High Level During Programming and Verify 

VILP Input Low Level During Programming and Verify 

Vecp Vcc During Programming @ ICC = 425 mA 

VCCL VCC During First Pass Verification @ ICC = 425 mA 

VCCH VCC During Second Pass Verification @ IcC = 485 mA 

VBlown Successful Blown Fuse Sense Level @ Output 

i dVop/dt Rate of Output Voltage Change 

dVFE/dt Rate of Fusing Enable Voltage Change (CC Rising Edge) 

tp 
Fusing TIme First Attempt 

Subsequent Attempts 

to Delays Between Various Level Changes 

tv Period During which Output is Sensed for VBlown Level 

VONP Pull-Up Voltage on Outputs Not Being Programmed 

R Pull-Up Resistor on Outputs Not Being Programmed 
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Min. Typ. 

19.5 20 

19.5 20 

19.5 20 

2.4 5 

0.0 0.3 

5 5.2 

4.1 4.3 

5.4 5.7 

0.3 

20 

100 

40 50 

4 5 

100 200 

500 

VcCp-0.3 Vccp 

1.9 2 

Max 

20.5 

20.5 

20.5 

5.5 

0.5 

5.5 

4.5 

6.0 

0.5 

250 

1000 

100 

10 

Vccp + 0.3 

2.1 

Units 

Volts 

Volts 

Volts 

Volts 

Volts 

Volts 

Volts 

Volts 

V/f..Lsec 

V/f..Lsec 

f..Lsec 

msec 

ns 

ns 

Volts 

Kr2 
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T[I:O). 
P[7:1): 

CLK: 

PROGRAMMED 
OUTPUT 

P[15:1): 

CC: 

CLK: 

PROGRAMMED 
OUTPUT 
P[15:1): 

CC: 

'If 
, 

Ji\ 
FUSE ADDRESS 

) 

\ 

'I \ 
---.l FUSING \ \-~ nME 

I \ H 

~ z J ~I \1 
-'-1J \ L J\ I 

If 
I 

~IO-1-10 
10 

Ip_ 1-10 10 10 
10 

PROGRAMMING VERIFY 

Programming Waveforms 

'If FUSE ADDRESS 

j\. I 

---.l 
\ 

FUSING \ \---4 nME 

If \ H 

\\\ z I IL..! ... JI \11 
-'-1J ~ L I~ 

If 
I 

1-10-1-10 
10 

Ip_ f--Io 10 
10 

10 

PROGRAMMING VERIFY 

SSR Diagnostics Configuration Programming Waveforms 
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ABSOLUTE MAXIMUM RATINGS OPERATING RANGES \ 

Storage Temperature ............................ -65 to + 150°C Commercial (C) Devices 
(Ambient) Temperature Under Bias .......... -55 to + 125°C Temperature ........................................ 0 to + 70°C 
Supply Voltage to Ground Potential Supply Voltage ......................... + 4.75 V to + 5.25 V 

(Pin 28 to Pin 14) Continuous ....•..... -0.5 V to +7.0 V Military (M) Devices 
DC Voltage Applied to Outputs Temperature ................................... -55 to +'125°C 

(Except During Programming) ....... -0.5 V to + Vee Max. Supply Voltage ............................ + 4.5 V to + 5.5 V 
DC Voltage Applied to Outputs 

During Programming ........................................ 21 V 
Operating ranges define those limits over which the function-DC Output Current, Into Outputs During 

Programming (Max Duration of 1 sec) ............. 200 mA ality of the device is guaranteed. 

DC Input Voltage .............................. -0.5 V to + 5.5 V 
DC Input Current .......................... -30 mA to + 5.0 mA 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA TlNGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

DC CHARACTERISTICS over operating range unless otherwise specified; included in Group A, Subgroup 1, 
2, 3 tests untess otherwise noted 

Parameters Description Test Conditions Min Max Units 

Output HIGH Voltage Vee .. Min., VIN - VIH or IOH--3.0 rnA COM'L 
VOH 2.4 Volts 

VIL IOH--1.0 rnA MIL 

Output LOW Voltage Vee - Min., VIN - VIH or IOL-16 rnA COM'L 
VOL 0.50 Volts 

VIL IOL~ 12 rnA MIL 

VIH Input HIGH Level Guaranteed Input Logical HIGH Voltage for All Inputs 2.0 Volts (Note 1) 

VIL Input LOW Level Guaranteed Input Logical LOW Voltage for All Inputs O.B Volts (Note 1) 

Vee-Max. 
CLK -1.5 

III Input LOW Current P[15:6] -0.55 mA 
VIN - 0.5 V All other Inputs -0.50 

Vee" Max. 
CLK 150 

IIH Input HIGH Current P[15:6] 100 p.A. 
VIN -2.4 V All other Inputs 25 

II Input HIGH Current Vee - Max., VIN - 5.5 V 1.0 mA 

Ise Output Short Circuit Current Vee" Max., Your - 0.5 V (Note 2) -20 -BO mA 

COM'L 
TA -0 to 70·C 450 

TA -70·C 400 
lee Power Supply Current Vee· Max. mA 

Te - -55 to 125·C 490 
MIL 

Te- 125•C 420 

VI Input Clamp Voltage Vee" Min, liN - -18 rnA -1.2 Volts 

IOZH Output Leakage Current Vee - MAX, VIL - O.B V Vo-2.4 V 100 

IOZl (Note 3) VIH - 2.0 V VO·0.5 V -550 
p.A. 

Notes: 
1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included. 
2. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. Vour = 0.5 V has 

been chosen to avoid test problems caused by tester ground degradation. 
3. 1/0 pin leakage is the worst case of IOZX or IIX (where X .. H or L). 
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SWITCHING CHARACTERISTICS over operating range unless otherwise specified; included in Group A 
Subgroup 9, 10, 11 tests unless otherwise noted. (APL and CPL 
products only.) 

COMMERCIAL MILITARY 
Parameters Description Test Conditions Units 

Min. Max. Min. Max. 

1 ClK to P[15:0] 15 20 ns 

2 ClK to zrno 20 25 ns 

tpD 3 DClK to SDO 30 35 ns 

4 Mode to SDO 30 35 ns 

5 SOl to SDO 30 35 ns 

6 T[5:0] to ClK (Note 1) 40 45 t ns 

7 CC to ClK (Note 1) 40 45 t ns 

8 RESET to ClK 30 35 ns 

t5 9 Mode to ClK 30 35 ns 

10 Mode to DClK 30 35 ns 

11 SDI to DClK 30 35 ns 

12 P[15:8] to DClK 30 35 ns 

13 T[5:0] to ClK See Test 3 3 ns 

14 CC to ClK Output load 3 3 ns Conditions 
15 RESET to ClK 3 3 ns 

tH 16 Mode to ClK 3 3 ns 

17 Mode to DClK 3 3 ns 

18 SDI to DClK 3 3 ns 

19 P[15:8] to DClK 3 3 ns 

tpzx 20 ClK to P[15:8] Enable 30 35 ns 

tpxz 21 ClK to P[15:8] Disable 30 35 ns 

22 ClK Pulse Width.(HIGH and lOW) 20 25 ns 
tpw 

23 DClK Pulse Width (HIGH and lOW) 30 35 ns 

tp 24 ClK and DClK Period (Note 1) 45 50 t ns 

Notes: 
1. These parameters cannot be measured directly on unprogrammed devices. They are determined as follows: 

a. Measure delay from input (CC, T[5:0], or ClK) to PROM address out in test mode. This will measure the delay through the sequence 
logic. 

b. Measure setup time from T[5:0] input through PROM test columns to pipeline register in verify test column mode. This will measure the 
delay through the PROM and register setup. 

c. Measure delay from T[5:0) input to PROM address out in verify test column mode. This will measure the delay through the logic and 
P[15:0] outputs. 

To calculate the desired parameter measurement the following formula is used: 
Measurement (a) + Measurement (b) - Measurement (c) 

ClK PERIOD: 
ClK (a) + (b) - (c) = ClK PERIOD 

CC to ClK Set-up time: 
CC (a) + (b) - (c) = CC to ClK Set-uptime 

T[5:0] to ClK Set-up time: 
T[5:0) (a) + (b) - (c) - T[5:0] to ClK Set-up time 

t = Not included in Group A tests 
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SWITCHING WAVEFORMS 

CLK 

T[5:0) 

cc 

P[15:0) 

P[15:8) 

Normal Configuration 

SSR ™ Configuration 
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Test Philosophy and Methods 

The following points give the general philosophy that we apply 
to tests that must be properly engineered if they are to be 
implemented in an automatic testing environment. The specifics 
of what philosophies are applied to which test are shown in the 
data sheet and the data-sheet reconciliation that follow. 

Capacitive Loading for AC Testing 

Automatic testers and their associated hardware have stray 
capaCitance that varies from one type of tester to another, but 
is generally around 50 pF. This, of course, makes it impossible 
to make direct measurements of parameters that call for 
smaller capacitive load than the associated stray capacitance. 
Typical examples of this are the so-called "float delays" that 
measure the propagation delays in to and out of the high­
impedance state and are usually specified at a load capaci­
tance of 5.0 pF. In these cases, the test is performed at the 
higher load capacitance (typically 50 pF) and engineering 
correlations based on data taken with a bench setup are used 
to determine the result at the lower capacitance. 

Similarly, a product may be specified at more than one capacitive 
load. Since the typical automatic tester is not capable of 
switching loads in mid-test, it is impractical to make measure­
ments at both capacitances even though they may both be 
greater than the stray capacitance. In these cases, a measure­
ment is made at one of the two capacitances. The result at the 
other capacitance is determined frOm engineering correlations 
based on data taken with a bench setup and the knowledge that 
certain DC tests are performed in order to facilitate this correla­
tion. 

AC loads specified in the data sheet are used for bench 
testing. Automatic tester loads, which simulate the data-sheet 
loads, may be used during production testing. 

APPLICATION 

Cycle Time Calculation 

The Am29Pl141 has a 40 ns set-up time requirement on the 
T[5:0] test inputs. 

If this set-up time is violated, the part may become metastable. 
It is therefore necessary to synchronize the test inputs with the 
ClK when the test inputs are asynchronous. 
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Threshold Testing 

The noise associated with automatic testing, the long inductive 
cables, and the high gain of bipolar devices frequently give rise to 
oscillations when testing high-speed circuits. These oscillations 
are not indicative of a reject device, but instead, of an overtaxed 
system. To minimize this problem, thresholds are tested at least 
once for ~ input pin. Thereafter, "hard" high and low levels 
are used for other tests. Generally this means that function and 
AC testing are performed at "hard" input levels. 

AC Testing 

AC parameters are specified that cannot be measured accu­
rately on automatic testers because of tester limitations. Data­
input hold times fall into this category. In these cases, the 
parameter in question is tested by correlating the tester to 
bench data or oscilloscope measurements made on the tester 
by engineering (supporting data on file). 

Certain AC tests are redundant since they can be shown to be 
predicted by other tests that have already been performed. In 
these cases, the redundant tests are not performed. 

Output Short-CIrcuit Current Testing 

When performing lOS tests on devices containing RAM or 
registers, great care must be taken that undershoot caused by 
grounding the high-state output does not trigger parasitic 
elements which in turn cause the device to change state. In 
order to avoid this effect, it is common to make the measure­
ment at a voltage (Voutpuu that is slightly above ground. The 
Vee is raised by the same amount so that the result (as 
confirmed by Ohm's law and precise bench testing) is identical 
to the VOUT'" 0, Vee" Max. case. 

By selecting the appropriate speed register, 50 ns cycle time 
can be achieved. 

Register ClK - Q 10 ns 
Am29Pl141 T[5:0]-CLK Set-up 40 ns 

Cycle Time 50 ns 
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KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS OUTPUTS 

---
MUST8E WILL8E 
STEADY STEADY ----- MAY CHANGE 

WILL8E 

FROM H TO L CHANGING 
FROM H TO L 

JJJJJJ MAY CHANGE 
WILL 8E 
CHANGING FROM L TO H FROM L TOH 

-- DON'T CARE; CHANGING; 
ANY CHANGE STATE 
PERMITTED UNKNOWN 

H 
CENTER 

DOES NOT LINE IS HIGH 
APPLY IMPEDANCE 

"OFFHSTATE 

KSOOOO10 

SWITCHING TEST CIRCUITS 

Vce 

TCR01340 

TCR01330 

A. Three State Outputs B. Normal Outputs 

Notes: 1. CL = 50 pF includes scope probe, wiring and stray capacitances without device in test 
fixture. 

2. 51, 52, and 53 are closed during function tests and all AC tests except output enable 
tests. 

3. 51 and 53 are closed while 52 is open for tPZH test. 
4. CL - 5.0 pF for output disable tests. 
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SWITCHING TEST WAVEFORMS 

DATA 
INPUT - g::, 

I-t.1=~----l 0 v 

--------f ------- 3 V TIMING 
INPUT -------- 1.5 V 

---------------J-----------ov 
WFR02971 

Set-up, Hold, and Release Times 

Notes: 1. Diagram shown for HIGH data only. 
Output transition may be opposite 
sense. 

2. Cross hatched area is don't care 
condition. 

Pulse Width 

'"'"':::=f , PULSE - --- 1.5 V 

~1~---1 """, .. """ -, I-PULSE --- 1.5 V 

WFR02791 

WFR029BO 

Propagation Delay 

Enable and Disable Times 

Te.t Vx 

All tpos 5.0V *,.5Y 
tpHZ O.OV 

tpLZ 5.0V 

tpZH O.OV 

tpZL 5.0V 

...L. 
~O.5V 

O.IV -L....f'-­
i 

~
YOH 

1.5V 

O.OV 

3Y~ 
1.5Y 

YOL 

WFR026BO 

Notes: 1. Diagram shown for input Control Enable-LOW 
and input Control Disable-HIGH. 

2. 81. 82. and 83 of Load Circuit are closed 
except where shown. 

NOTE: Pulse generator for all pulses: Rate < 1.0 MHz; Zo = 50 n: tr < 2.5 ns. 
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INPUT IOUTPUT CURRENT INTERFACE CONDITIONS 

DRIVEN INPUT 

R 

IlL 

J 

ALL 
INPUTS 

R= 161<0 

Co:!!5.0 pF. ~II inputs 

ICROO533 

NORMAL THREE-STATE 
OUTPUT 

~C--------------~r-----------------~--~ ____ +-_______________ ~-1PUT~ __ ___ 

[ t 
F I~ F 

ICR00524 

CO:!!5.0 pF. all outputs 

NOTE: Actual current flow direction shown. 
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Am2971 
Programmable Event Generator (PEG) 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• Twelve programmable, registered output waveforms 
• Programmable event intervals down to 10 ns 
o Multiplying phase-locked-loop (PLL) oscillator for im­

proved timing accuracy 
• Programmable clock output for system reference at 1/5 

or 1/10 of internal phase-locked loop frequency 

• Programmable control of timing sequence start and stop 
functions 

o Can be clocked from either an external source or an on­
board crystal oscillator 

GENERAL DESCRIPTION 

The Am2971 is a very versatile timing device. It can be 
used as a digital substitute for analog delay lines or as a 
general purpose user-programmable timing/waveform gen­
erator. 

The Programmable Event Generator (PEG) has twelve 
independent, programmable, timing output waveforms. Tho 
resolution of the output waveforms is programmable down 
to 10 ns and the sequence start address is real-time user­
definable. One out of eight start addresses may be selected 
to begin the timing sequence. The PEG can be clocked 
either by its 10- 100 MHz on-Chip PLL crystal oscillator 

I 

CONTROL 
LOGIC 

\ 

START/SfOii 

(with a clock output of 1/5 or 1 /10 the PLL frequency) or by 
the existing system clock. The chip can be clocked up to 
100 MHz if the PLL is bypassed. 

The frequency of the internal clock (fC) can be programmed 
to equal1x, 5x, 10x, 5/2x, 5/4x, 10/2x or 10/4x the PEG's 
input clock frequency (fl). Programming the PEG is done in 
the same way as a PROM. 

The Am2971 complements the Am2960 Dynamic Memory 
Support Family by allowing the user to optimize his system 
design for highest performance (see Figure 3). 
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ORDERING INFORMATION (Cont'd.) 

Standard Products 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by 
a combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Package Type 
D. Temperature Range 
E. Optional Processing 

T'--_____ E. OPTIONAL PROCESSING 
Blank ~ Standard processing 

B ~ Burn·in 

I-..--,.-------D. TEMPERATURE RANGE 
C - Commercial (0 to + 70·C) 
E"" Extended Commercial (-55 to + 125·C) 

~-------------------C. PACKAGE TYPE 

A. DEVICE NUMBER/DESCRIPTION 
Am2971 
Programmable Event Generator 

Valid Combinations 

I 
PC, PCB, DC, 

AM2971 DCB, DE, DEB, 
LC, XC 

P "" 24·Pin Plastic DIP (PO 024) 
o "" 24·Pin Ceramic DIP (CD 024) 
L = 32·Pin Rectangular Ceramic Leadless 

Chip Carrier' (CLR032) 
X= Dice 

B. SPEED OPTION 
Not Applicable 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMD's standard military grade 
products. 
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ORDERING INFORMATION 

APL Products 

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved 
Products List) products are fully compliant with MIL-STD-883C requirements. CPL (Controlled Products List) products are 
processed in accordance with MIL-STD-883C, but are inherently non-compliant because of package, solderability, or surface 
treatment exceptions to those specifications. The order number (Valid Combination) for APL products is formed by a 
combination of: A. Device Number 

I 
I AM2971 

B. Speed Option (if applicable) 
C. Device Class 
D. Package Type 
E. Lead Finish 

LE. LEAD F,",SH 
A - Hot Solder DIP 
C-Gold 

'----------D. PACKAGE TYPE 
J - 24-Pin Ceramic DIP (CD 024) 
U - 32-Pin Rectangular Ceramic Leadless Chip 

Carrier (CLR032) 

L..------------C. DEVICE CLASS 
IB - Class B 

L..----------------B. SPEED OPTION 
Not Applicable 

'--- A. DEVICE NUMBER/DESCRIPTION 
Am2971 
Programmable Event Generator 

Valid Combinations 

I IBJA, IBUC 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations or to check for newly released. valid 
combinations. 

4-289 



PIN DESCRIPTION 

TRIG Trigger (Input) 
The timing cycle of the PEG can be started on either the 
positive or negative edge of the start (TRIG) pulse. The 
polarity is defined by the user as a fuse option (fuse 621) in 
the TRIGGER POLARITY block. The trailing edge of the 
start (TRIG) pulse may be used to stop the timing sequence. 
The STOP TRIG fuse (fuse 622) must not be blown if this 
option is desired. If the fuse is blown, the trailing edge of the 
start (TRIG) pulse will be disabled as a means of stopping 
the timing sequence. Instead, the PEG will search for a 
blown Stop Bit fuse in the Next Address/Event Generator. 
In the Program Mode, a high voltage level (Vop) is applied 
to the TRIG input (see Figure 5). 

Ao - A2 Addresses (Inputs (3» 
These three bits define eight locations in the Start Address 
Generator. The Start Address Generator contains the user­
programmed start locations. One of eight addresses can be 
selected for each cycle initiation. In the Program Mode, 
these inputs are unused and may be allowed to float. 

CLK/X 1 and X2 Clock/Crystal (Input/Output) 
These two pins serve as crystal inputs fl (see Figure 1). It is 
recommended that an AT Cut Parallel Resonant Crystal be 
used. An external clock may also be applied to the CLK/X1 
input with the X2 output left floating. Fuses 612 through 619 
(see Table 8) in the CLOCK CONTROL logic block enable 
the user to set the internal clock frequency as a function of 
the crystal or input clock frequency. 

FLTR Filter 
This pin is used to connect a 0.47-p.F filter capacitor 
between the phase-locked-loop and ground. 

FUNCTIONAL DESCRIPTION 

The Programmable Event Generator (PEG) block diagram may 
be divided into four blocks: Clock Control, Start Address 
Generator, Next Address/Event Generator and Control Logic. 

Internal to the CLOCK CONTROL logic are five user-program­
mable fuses. One of these (fuse number 620) is used to 
generate the desired output frequency (fa) on the CLKOUT 
option. The remaining four fuses (numbers 616 through 619) 
are used to generate the desired internal reference clock 
frequency (fe). As shown in Figure 2, there are a variety of 
internal reference frequency and external CLKOUT frequency 
options available as a function of input frequency (fl). The 
input frequency may be supplied either by an external source 
or by the internal PLL oscillator (with a crystal connected as 
shown in Figure 3). The reader is directed to Tables 6 and 7 
for an explanation of the possible internal frequency and 
output frequency options in regards to user programming. 

A timing sequence is initiated by a transition at the TRIG input. 
Two user-programmable fuses are located in the TRIGGER 
POLARITY block. One of the two fuses (fuse number 621) is 
used to define the polarity of the TRIG input.When the fuse is 
left unprogrammed, a timing sequence is initiated during a 
negative transition of the TRIG input. The second fuse in this 
block (fuse number 622) is used to define the end of a timing 
sequence. If this fuse is left unprogrammed, the timing 
sequence is stopped on the trailing edge of the TRIG pulse. If 
the fuse is programmed, the end of the timing sequence is 
defined by the Stop Bits as programmed into the Next 
Address/Event Generator functional block. 

A proper transition at the TRIG input initiates a timing 
sequence by latching the START ADDRESS GENERATOR 
inputs, Ao - A2. These latched inputs are used to select one of 
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CLKOUT Output Clock (Output) 
CLKOUT, fa, is a clock output pin which may be used for 
system reference. The output frequency for CLKOUT is 
either 1/5 or 1/10 the PLL clock frequency. It is fuse­
programmable with the fuse located in the CLOCK. 
CONTROL logic block. In the Program Mode, a high voltage 
level (VIHH) is applied to CLKOUT for a period of time (tPF). 
Applying a steady-state VIHH 'voltage to this pin for a period 
in excess of 400 p.s is not recommended. 

TO - T 11 Timing Outputs (Outputs, Active HIGH) 
These are twelve timing outputs from the Next Address/ 
Event Generator. These outputs fOllow a user-programmed 
timing pattern. Next Address/Event Generator outputs are 
registered allowing for glitch-free operation. In the Program 
Mode, To through T 10 function as address inputs to access 
each individual fuse. T 10 through T 6 serve as Column 
Address inputs and T 5 through To serve as Row Address 
inputs (see Table 8). T11 functions as a Data Input/Output 
in the Program Mode, providing access to the addressed 
fuse for programming and verification. 

Power, Ground TTL/PLL Power Pair 
Two power and two ground pins are required by the PEG 
chip. One power pair is used by the PLL (phase-locked-loop) 
and the internal ECL circuitry. The other power pair is used 
by the remainder of the chip (TTL). 

Note: A complete listing of all fuse numbers appears in 
Table 8 in the Programming Section of this 
specification. These numbers have been assigned for 
reference only. 

eight different start addresses. The user defines these 5-bit 
start addresses by programming fuses 576 - 615 as required. 
Each 5-bit start address defines a starting point for the timing 
sequence from thirty-two possible selections in the user­
defined Next Address/Event Generator block. 

After the start address, subsequent addresses are generated 
from the information programmed into the NEXT ADDRESS/ 
EVENT GENERATOR. As defined in Tables 3 and 8, each of 
the thirty-two user-defined 18-bit data strings contain three 
pieces of information. The first 5 bits (fuses) are used to define 
the next address of the desired timing sequence (out of 32 
possible addresses within the Next Address/Event Genera­
tor). The next 12 bits (fuses) are used to generate output 
waveforms to the twelve Timing Outputs (To - T 11). These 12 
bits define the current logic level at each of the twelve timing 
ouputs. As the timing sequence progresses from address to 
address, these Timing Outputs will produce 12 independent 
waveforms, as defined by the user. Since both the address 
sequences and waveform logic levels are user-programmable, 
a wide variety of output patterns may be generated. One last 
bit (fuse), the Stop Bit, is used to define the end of a timing 
sequence. 

When the Trigger Polarity Stop fuse (fuse number 622) has 
been programmed, the timing sequence will no longer stop on 
the trailing edge of the TRIG pulse. The' end of a timing 
sequence is instead defined by the Stop Bit in each of the 
thirty-two Next Address/Event Generator data strings. Each 
Stop Bit is activated by programming. When a Timing Se­
quence addresses one of the thirty-two 18-bit data strings with 
a "1'1 piogiammad into the Stop Bit. the sequence is halted. 
Whenever a sequence is halted, the Timing Outputs (To- T11) 
will remain at the last value, as defined by the data string 
containing the active Stop Bit. 



Each of the twelve timing waveform outputs (To- T11) from 
the Next Address/Event Generator has a minimum usable 
cycle of 40 ns (or 20 ns per change). When the PEG is 
operating at its maximum internal clock frequency (100 MHz). 
the outputs must be programmed to remain unchanged for at 
least two clock periods for each change of logic level. That is. 
although an output can only change every 20 ns minimum. the 
timing resolution between events may be as low as 10 ns. 
When the PEG's internal reference clock frequency (fc) is 
programmed to operate at 40 MHz or slower. the timing 
waveform can be programmed to change on every clock. 

Oscillator 

The Am2971 contains an inverting. linear amplifier which is 
intended to form the basis of a crystal oscillator. In designing 
this oscillator it is necessary to consider several factors 
related to the application. 

The first consideration is the desired frequency accuracy. This 
may be subdivided into several areas. An oscillator is consid­
ered stable if it is insensitive to variations in temperature and 
supply voltage. and if it is unaffected by individual component 
changes and aging. The design of the Am2971 is such that the 
degree to which these goals are met is determined primarily by 
the choice of external components. Various types of crystals 
are -available and the manufacturers' literature should be 
consulted to determine the appropriate type. For good temper­
ature stability. zero temperature coefficient capacitors should 
beused (Type NPO). For extreme temperature stability. an 
oven must be used or some other form of temperature 
compensation applied. 

Absolute frequency accuracy must also be considered. The 
resonant frequency varies with load capacitance. It is there­
fore important to match the load specified by the crystal 
manufacturer for a standard crystal (usually 32 pF). or to 
specify the load when ordering a special crystal. It should then 
be possible to determine from the crystal characteristics the 
load tolerance to maintain a given accuracy. If the "set-on" 
error due to load tolerance is unacceptable. a trimmer 
capacitor should be incorporated for fine adjustment. 

The mechanism by which a crystal resonates is electrome­
chanical. This resonance occurs at a fundamental frequency 
(1 st harmonic) and at all odd harmonics of this frequency 
(even harmonic resonance is not mechanically possible). 
Unless otherwise constrained crystal oscillators operate at 
their fundamental frequency. However. crystals are not gener­
ally available with fundamental frequencies above 20-25 MHz. 
At higher frequencies. an overtone oscillator must be used. In 
this case. the crystal is designed to oscillate efficiently at one 
of its odd harmonic frequencies and additional components 
are included in the oscillator circuit to prevent it oscillating at 
lower harmonics. 

Where a high degree of accuracy or stability is not required. 
the amplifier may be configured as an L-C oscillator. It may 
also be driven from an external clock source if operation is 
required in synchronous with that source. 

1 st Harmonic (Fundamental) Oscillator 

The circuit of a typical 1 st harmonic oscillator is shown in 
Figure 3. The crystal load is comprised of the two 68 pF 
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capacitors in series. This 34 pF approximates the standard 32 
pF crystal load. If a closer match is required then one of the 
capacitors should be replaced with a parallel combination of a 
fixed capaCitor and a trimmer. The nominal value of the 
combination should be 60 pF to provide proper crystal loading. 

A typical cryatal specification for use in this circuit is: 

Frequency Range: 2 - 20 MHz 
Resonance: At Parallel Mode 
Load: 32 pF 
Stability: 0.1 % or to match systems requirements 
Case: H-17 - for smaller size 
Temp Range: -30 to + 70°C 

Note: Frequency will change over temperature. 

It is a good practice to ground the case of the crystal to 
eliminate stray pick-up and keep all connections as short as 
possible. 

Note: At fundamental frequencies below 6 MHz it is possible 
for the oscillator to operate at the 3rd harmonic. To prevent 
this a resistor should be added in series with the X2 pin as 
shown in the circuit diagram. 

The resistor value should match the impedance of C: 
1 

R =Xe= 211' f C 

Design Considerations (reference Figure 1) 

1. Oscillator external connections should be less than 1" 
long - wirewrap is not recommended. 

2. Vee and GND connections should be less than 1/2" long to 
power plane. 

3. Supply decoupling includes both high frequency and bulk 
storage elements. 

4. The same considerations apply for 3rd overtc;me configura­
tions. 

l000pF 

l000PP 

,,.,. 
PF001071 

Figure 1. Typical External Connections 
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Figure 2. Clock Options 

APPLICATIONS 

The Am2971 Programmable Event Generator (PEG) is a 
universal, programmable digital delay line and timing/wave­
form generator which provides the designer an alternative to 
the expensive and difficult to use analog delay line. Because 
of the device's programmability and large number of outputs, it 
can replace several different delay lines at one time. The user 
is no longer restricted to the fixed, single event delay line. As 
one suggested application, this device can easily be used to 

eLK/X, 

1 
R-XC--- for 2·6 MHz 

211' II C 
R - 0 lor 6·20 MHz 

o R 

TC002531 

Figure 3. Fundamental Oscillator 

generate timing for the Am2968 Dynamic Memory Controller 
and the Am2969 Memory Timing Controller. 

AMD's Dynamic RAM Memory Support system solution is 
shown in Figure 4. Typically, the Timing Controller generates 
the Row Address Strobe Input (RASI) signal whenever a 
refresh or a memory cycle is requested. This signal provides a 
leading edge to the TRIG input of the PEG chip, thus Initiating 
the user-defined timing sequence. Custom-tailored waveforms 
are generated at the Timing Outputs (To - T 11), providing 
proper and precise sequencing between the Am2968 and 
Am2969 for optimum system performance. 

ADDRESS 

cPU 

Am2969 
EDC/MTC TIMING 

CONTROLLER 

WE 

SYSTEM DATA BUS 

DYNAMIC MEMORY 
ARRAY 

USING 1M, 258K, 84K, or 18K 
DRAMs 

AF003633 

Figure 4. 16-Blt High-Performance Computer Memory System Application 

PROGRAMMING 

Piogiammlng and 

The fuse links in the PEG are manufactured using AMD's 
Platinum-Silicide fuse technology. Before the device is pro-
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grammed, it can be verified to be unprogrammed by raising 
TRIG to Vop, applying appropriate voltages (VIHP and VILP) to 
the Timing Outputs (ProgrammIng ,/l.ddress Inputs). To - T 10, 
lowering CLKOUT to VILP, and observing the output voltage 
on T11 (Programming Data Input/Output). In the Programming 



Verify Mode, Timing Outputs, TO - T 10, serve as Rowand 
Column Address Inputs for each individual fuse. Timing 
Output, T 11, reflects the condition of the addressed fuse. 
Initially, T 11 should be at VOLP as each fuse is addressed, 
indicating an unprogrammed state. 

The fuse to be programmed is selected by applying the 
appropriate voltage levels (VIHP and VILP) to the Timing 
Outputs, To to T 10 (with To to T 5 acting as Row Address 
Inputs and Ts to T10 acting as Column Address Inputs). The 
fuse is programmed with an input voltage, VIHP, on Timing 
Output, T 11, and an input voltage, VIHH, on CLKOUT (see 
Figure 5 and Table 1). 

I I V 

~~ ----~! ----------------------------+:----~~ 
i4:"----PAOGRAMMING CyCLE----.-!.: 
I "" v ... PROGRAMMING ~ 

~~= ~~-----"-LE-~--D-A-~--E-U--U-A-~--------~ 
: i v, ... I d (V .... ""') -------------1-------· 
: II, :: : v_ 
I ~: I I I v., 
I,! .. : .. I ! t, : I : I I I r------

~ I I : 

CLKOUT 

!! I t. ~ t.! 1·~:· tv 't v~ 
T" --------/;.,L..--d-(V-T-")----~~'-2.-J'\ ~~~rN ,,;/ VoV' 

-D't-II, Hllmpecl.once '------"" ... ----. 

(liter CLKOUT hal gone to V .. 
remove any Ipplied voltlge It T,,) 

WF0098S2 

Figure 5. Timing Diagram for Programming 
and Verify Mode 

Most links will open within the programming time as specified 
in the Programming Parameters Table. Occasionally a link will 
be stronger and will require additional programming cycles. 
Successive links are programmed in the same manner until all 
desired bit locations have been programmed. 

When all programming has been completed, the voltage on 
CLKOUT is lowered to VILP and all voltage source removed 
from T 11. The entire array should be verified according to the 
steps in Table 2. The fuse status of each bit location may be 
observed at T 11. An unprogrammed fuse will indicate VOLP 
and a programmed fuse will indicate VOHP. 

PROGRAMMING EQUIPMENT INFORMATION 

Source 
and Location 

Programmer 
Model(s) 

AMD PEG 
Personality 
Module 

Socket 
Adapter 

Family and Device 
Code 

Data I/O 
10525 Willows Rd., N.E. 
Redmond, WA 98052 

29 or 19 

Logicpak 
950·1942-001 

TBA 

97 

The machines noted above have been qualified by AMD to 
insure high programming yields. Check with the factory to 
determine the current status of vendors noted TBA or other 
available models. 

TABLE 1. PROGRAMMING PROCEDURE • 
~--------r--_ ~ 

Step Item Description 

1 Determine location of fuses which are to be blown. 

2 

3 

4 

5 

6 

7 

Set TRIG - VOP 

Set CLKOUT - VIHP 

Set T 11 - VIHP after to 

Set CLKOUT - VIHH after to for a programming time, 
tpF 

Set CLKOUT = VIHP 

Remove applied voltage from T 11 

This disables To - T 11 as outputs and prepares the chip for 
programming. 

This will three-state T 11 and cause it to float up to VIHP. 

This prepares T 11 to accept the programming current which 
will be gated through CLKOUT. 

This gates the programming current to T 11. 

This removes the programming current from CLKOUT. 

This sets up T 11 as output for Program Verification. 

TABLE 2. PROGRAM VERIFICATION PROCEDURE 

Step Item Description 

Set TRIG - VOP after Id 

2 Set ClKOUT - VILP after Id 
3a Verify T11 - VOHP 

3b Verify T11 - VOlP 

TRIG remains at VOP during the entire programminglverify 
cycle. 

This enables T 11 as an output. 

This condition occurs if programming has been successful. 

This condition occurs if programming has been unsuccessful. 

Notes: 1. If verify indicates programming has been successful, proceed to the next fuse and program using the programming steps of the 
previous table. 

2. If verify indicates programming has been unsuccessful, return to the same fuse and re-attempt programming using the programming 
time, tpS. 
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TABLE 3. PROGRAMMING NEXT ADDRESS/EVENT GENERATOR FUSES 

TIMING OUTPUTS 
(PROGRAMMING ADDRESS INPUTS) 

PROGRAM ROW ADDRESS COLUMN ADDRESS 
FUNCTION WORD BIT T4 Ta T2 T1 TO T10 Tg Ta T7 

NEXT ADDRESS 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 1 
0 3 0 0 0 0 0 0 0 0 1 
0 4 0 0 0 0 0 0 0 1 0 

NEXT EVENT 0 0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 1 1. 
0 2 0 0 0 0 0 0 0 1 1 
0 3 0 0 0 0 0 0 1 0 0 
0 4 0 0 0 0 0 0 1 0 0 
0 5 0 0 0 0 0 0 1 0 1 
0 6 0 0 0 0 0 0 1 0 1 
0 7 0 0 0 0 0 0 1 1 0 
0 8 0 0 0 0 0 0 1 1 0 
0 9 0 0 0 0 0 0 1 1 1 
0 10 0 0 0 0 0 0 1 1 1 
0 11 0 0 0 0 0 1 0 0 0 

STOP 0 0 0 0 0 0 0 1 0 0 0 

NEXT ADDRESS 1 0 0 0 0 0 1 0 0 0 0 
1 0 0 0 0 0 1 0 0 0 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 

NEXT EVENT 30 10 1 1 1 1 0 0 1 1 1 
30 11 1 1 1 1 0 1 0 0 0 

STOP 30 0 1 1 1 1 0 1 0 0 0 

NEXT ADDRESS 31 0 1 1 1 1 1 0 0 0 0 
31 1 1 1 1 1 1 0 0 0 0 
31 2 1 1 1 1 1 0 0 0 1 
31 3 1 1 1 1 1 0 0 0 1 
31 4 1 1 1 1 1 0 0 1 0 

NEXT EVENT 31 0 1 1 1 1 1 0 0 1 0 
31 1 1 1 1 1 1 0 0 1 1 
31 2 1 1 1 1 1 0 0 1 1 
31 3 1 1 1 1 1 0 1 0 0 
31 4 1 1 1 1 1 0 1 0 0 
31 5 1 1 1 1 1 0 1 0 1 
31 6 1 1 1 1 1 0 1 0 1 
31 7 1 1 1 1 1 0 1 1 0 
31 8 1 1 1 1 1 0 1 1 0 
31 9 1 1 1 1 1 0 1 1 1 
31 10 1 1 1 1 1 0 1 1 1 
31 11 1 1 1 1 1 1 0 0 0 

STOP 31 0 1 1 1 1 1 1 0 0 0 

Notes: 1. During programming of Next Address/Event Generator Fuses, T 5 ~ VILP 
2. Refer to Table 8 for additional information. 

TABLE 4. PROGRAMMING START ADDRESS GENERATOR FUSES 

TIMING OUTPUTS 
(PROGRAMMING ADDRESS INPUTS) 

START START ROW ADDRESS COLUMN ADDRESS 
ADDRESS ADDRESS 

WORD BIT T2 T1 TO Ta T7 TS 
0 0 0 0 0 0 1 0 
0 1 0 0 0 0 1 1 
0 2 0 0 0 1 0 0 
0 3 0 0 0 1 0 1 
0 4 0 0 0 1 1 0 

1 0 0 0 1 0 1 0 
1 1 0 0 1 0 1 1 
1 2 0 0 1 1 0 0 
1 3 0 0 1 1 0 1 
1 4 0 0 1 1 1 0 

2 0 0 1 0 0 1 0 
2 1 0 1 0 0 1 1 · · · · · · · · · · · · · · · · · · · · · · · · 
6 3 1 1 0 1 0 1 
6 4 1 1 0 1 1 0 

7 0 1 1 1 0 1 0 
7 1 1 1 1 0 1 1 
7 2 1 1 1 1 0 0 
7 :3 1 1 1 1 0 1 
7 4 1 1 1 1 1 0 

Notes: 1. T5 = T10 - VIHP, T3 = T4 = Tg ~ VILP 
2. Refer to Table 8 for additional information. 
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PROGRAM 
TS FUSE 

0 000 
1 001 
0 002 
1 003 
0 004 
1 005 
0 006 
1 007 
0 008 
1 009 
0 010 
1 011 
0 012 
1 013 
0 014 
1 015 
0 016 
1 017 

0 018 
1 019 · · · · · · 
1 555 
0 556 
1 557 

0 558 
1 559 
0 560 
1 561 
0 562 
1 563 
0 564 
1 565 
0 566 
1 567 
0 568 
1 569 
0 570 
1 571 
0 572 
1 573 
0 574 
1 575 

PROGRAM 
FUSE 

(NOTE 2) 

576 
577 
578 
579 
580 

581 
582 
583 
584 
585 

586 
587 

· · · 
609 
610 

611 
612 
613 
614 
615 



TABLE 5. PROGRAMMING TIMING AND CONTROL FUSES 

TIMING OUTPUTS 
(PROGRAMMING ADDRESS INPUTS) 

COLUMN ADDRESS PROGRAM 
PROGRAM FUSE 

FUNCTIONS BIT Tg TS T7 T6 (NOTE 2) REMARKS 

0 0 1 1 1 616 See Table 6 

Internal Clock Frequency 1 1 0 0 0 617 See Table 6 
2 1 0 0 1 618 See Table 6 
3 1 0 1 0 619 See Table 6 

External Clock Frequency 0 1 0 1 1 620 See Table 7 

TRIG Input Polarity .0 1 1 0 0 621 See Table 7 

Stop Function 0 1 1 0 1 622 See Table 7 

Notes: 1. T10 = TS = T3 = VIHP, T4 = T2 - Tl ~ To ~ VILP 
2. Refer to Table 8 for additional information. 

TABLE 6. INTERNAL CLOCK FREQUENCY TRUTH TABLE 

FUSE STATE 

COLUMN 
(NOTE 4) 26 25 24 23 

INTERNAL CLOCI( FREQUENCY BIT 3 2 1 0 

fe = fl x 10 0 0 0 0 
fe = fl x 10 x 1/2 0 0 0 1 
fe = fl x 10 x 1/4 0 0 1 0 
fe = fl x S 1 0 0 0 
fe = fl x 5 x 1/2 1 0 0 1 
fe = fl x 5 x 1/4 1 0 1 0 
fe = fl X 1 0 0 

Notes: 1. 1 = Programmed 
0 = Unprogrammed 
X = Don't Care 

2. fl = Input Frequency 
fe = Internal Clock Frequency 

3. Refer to Table 5 for additional information. 
4. Column Numerals in this table are decimal representations of the binary column address signals applied to Timing Inputs, 

Tl0 - T6, to program or verify individual fuses (see Table 8). 

TABLE 7. CLKOUT/TRIG POLARITY/STOP BIT TRUTH TABLE 

FUSE STATE 

COLUMN 
FUNCTION (NOTE 5) 27 28 29 REMARKS 

Output Clock Frequency 0 X X fa = fe /lO 
1 X X fa = fpLL/5 

TRIG Polarity X 0 X Positive Edge Trigger 
X 1 X Negative Edge Trigger 

Stop (Note 4) X X 0 Stop On TRIG Trailing Edge 
X X 1 Stop When Stop Bit = 1 

Notes: 1. 1 = Programmed 
0 = Unprogrammed 
X = Don't Care 

2. fa = Output Clock Frequency (CLKOUn 
fpLL = PLL Internal Clock Frequency 

3. Refer to Table 8 for additional information. 
4. If the Stop Bit is unprogrammed, the sequencer will be free-running and will not halt until a new TRIG pulse is issued. 
5. Column numerals in this table are decimal representations of the binary column address signals applied to Timing Inputs, 

T 10 - T 6, to program or verify individual fuses (see Table 8). 
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TABLE 8. JEDEC FUSE NUMBERS* 
I 

FUSE BLOCK 

COLUMN 

L NEXT M L 
CURREtiT EVENT 

M SB L M 
S S S S T I S S 
B 

ADDRESS 
B B TO-T11 B °T B B p 

ROW 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 - - - - - - - - - - - -
1 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 - - - - - - - - - - - -
2 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 - - - - - - - - - - - -
3 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 - - - - - - - - - - - -
4 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 - - - - - - - - - - - -
5 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 - - - - - - - - - - - -
6 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 - - - - - - - - - - - -
7 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 - - - - - - - - - - - -
8 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 - - - - - - - - - - - -
9 1~ 1~ 1641~1661~168 1~ lMln 172 173 174 175 176 177 178 179 - - - - - - - - - - - -

10 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 - - - - - - - - - - - -
11 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 - - - - - - - - - - - -
12 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 - - - - - - - - - - - -
13 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 - - - - - - - - - - - -
14 252 253 254 255 256 257 258 259 260 261 262 2~ 264 265 266 267 268 269 - - - - - - - - - - - - NEXT ADDRESS! 
15 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 - - - - - - - - - - - - EVENT 
16 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 - - - - - - - - - - - - GENERATOR FUSES 
17 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 - - - - - - - - - - - -
18 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 - - - - - - - - - - - -
19 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 - - - - - - - - - - - -
20 ~~~~~~~~~~~m~~~~~~ - - - - - - - - - - - -
21 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 - - - - - - - - - - - -
22 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 - - - - - - - - - - - -
23 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 - - - - - - - - - - - -
24 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 - - - - - - - - - - - -
25 450 451 452 453 454 455 456 457 458 459 460 461 462 4~ 464 465 466 467 - - - - - - - - - - - -
26 468 469 470 471 472 473' 474 -475 476 477 478 479 480 481 482 483 484 485 - - - - - - - - - - - -
27 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 - - - - - - - - - - - -
28 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 - - - - - - - - - - - -
29 ~~~~~~~~~~~~~~~~~~ - - - - - - - - - - - -
30 ~~~~~~~~~~~~~~~~~~ - - - - - - - - - - - -
31 ~~~~~~~~~~~~~m~~~~ - - - - - - - - - - - -
32 - - - - - - - - - - - - - - - - - - 576 577 578 579 580 - - - - - - -
33 - - - - - - - - - - - - - - - - - - 581 582 583 584 585 - - - - - - -
34 - - - - - - - - - - - - - - - - - - 586 587 588 589 590 - - - - - - -
35 - - - - ~ - - - - - - - - - - - - - 591 592 593 594 595 - - - - - - - START ADDRESS 
36 - - - - - - - - - - - - - - - - - - 596 597 598 599 600 - - - - - - - FUSES 
37 - - - - - - - - - - - - - - - - - - 601 602 603 604 605 - - - - - - -
38 - - - - - - - - - - - - - - - - - - 606 607 608 609 610 - - - - - - -
39 - - - - - - - - - - - - - - - - - - 611 612 613 614 615 - - - - - - -
40 - - - - - - - - - - - - - - - - - - - - - - - 616 617 618 619 620 621 622 CLOCK CONTROL & 

TRIGGER POLARITY FUSES·· 

*Row and Column numerals in this table are decimal number representations of the Binary Rowand Column address signals applied to Ts- TO and T10- T6 respectively to program or verify each fuse individually. In this 
tablet, the reader should not confuse the use of T 10 - To as address inputs to program or verify fuses and the use of T 11 - To as Timing Outputs providing 12 programmable, registered output waveforms during normal 
operation (the output, T 11, provides the fuse condition during program or verify). 

**Includes: flntemaJ ClK, CLKOUT, TRIG Polarity and Stop Bit. 



PROGRAMMING PARAMETERS (TA'" 25°C) (Note 1) 

Parameters Description 

VIHH Control Pin Extra High Level 

VOP Program Voltage at 15 - 200 mA 

VIHP 
Input HIGH Level During Programming and 
Verify 

VILP 
Input LOW Level During Programming and 

I Verify 

Vee During Programming I Com'l 
Vccp @ IcC-250 mA I Mil 

dVT11/dt 
Rate of Output Voltage Change 
(T 11 Rising Edge) 

dVcLKour/dt 
Rate of Fuse Enable Voltage Change 
(CLKOUT Rising Edge) 

Programming Time First Attempt, tpF 
tp Programming Time Subsequent Attempts, tps 

to Delays Between Various Level Changes 

tv 
Period During which Timing Output, Tn 
is Valid for Program Verification 

VOHP 
Output HIGH Level During 
Programming and Verify 

VOLP 
Output LOW Level During 
Programming and Verify 

Notes: 1. Parameters are guaranteed by design - not tested. 
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Min. Typ. 
11.0 12.0 

14.0 15.0 

2.4 5.0 

0.0 0.3 

5.0 5.2 

5.0 5.2 

20 

100 

40.0 50.0 

4.0 5.0 

100.0 200.0 

2.5 5.0 

0.0 0.3 

Max. 
13.0 

16.0 

5.5 

0.5 

5.5 

5.5 

250 

1000 

100.0 

10.0 

1000.0 

500 

5.5 

0.4 

Units 
V 

V 

V 

V 

V 

V/p.s 

V/p.s 

p.s 

ms 

ns 

ns 

V 

V 

> 
3 
I\) 
CO .... ..... 



ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 

Storage Temperature ......................... -65°C to +150°C 
Commercial (C) Devices 

Ambient Temperature with. 
Temperature (T tJ ................................... 0 to + 70°C 

Power Applied ............................... -55°C to + 125°C TIL Vee and' PLL Vee ••••••••••••••••••••••••• 5.0 V ±10% 

Supply Voltage to Ground Potential Min ..•..............•.••••.•••••••••••.•••.•••••.••••.••••• 4.50 V 

Continuous (TTL Vee and PLL Vee) ...••• 0 V to + 7.0 V 
Max ....•..•..•..••........•...••.••••••..••.•.••••....•••.. 5.50 V 

DC Voltage Applied to Outputs For Extended Commercial (E) or Military* (M) Devices 
High Output State .•••••••••••••••••••.•.•• O V to + Vee max. Temperature (Tc) ..•.•.•. ; ••.•.......•..•..•.. -55 to + 125°C 

DC Input Voltage •.•...•..••.•.•.••.••••••.•••• -0.5 V to + 5.5 V TIL Vee and PLL Vee •••.••.•....•....••...... 5.0 V ±10% 
DC Input Current •••••.......•....•••••.••• -18 mA to + 5.0 mA Min ........................................................ 4.50 V 

Max ....................................................... 5.50 V 
Stresses above those listed under ABSOLUTE MAXIMUM 

Operating ranges define those limits between which the RA TINGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute functionality of the device is guaranteed. 

maximum ratings for extended periods may affect device *Military Product 100% tested at Te'" + 25°C, + 125°C, 
reliability. and -55°C. 

DC CHARACTERISTICS over operating range unless otherwise specified 

Parameter Parameter Te:t Com~!t!cn: Min . Max. Unit: 
. Symbol Description 

Vee-Min., I COM'L. 2.7 
VOH Output HIGH Voltage 

VIN - VIH or Vil IOH--1 mA I MIL. 2.5 V 

VOL Output LOW Voltage Vee-Min., IOl-8 mA 0.4 V VIN • VIH or Vil 

VIH Input HIGH Voltage Guaranteed Input HIGH Voltage for All Inputs 2.0 V (Note 1) 

Vil Input LOW Voltage Guaranteed Input LOW Voltage for All Inputs 0.8 V (Note 1) 

VIHC 
Input HIGH Voltage Guaranteed Input HIGH Voltage for All Inputs 3.0 V to CLK/X1 

Vile 
Input LOW Voltage Guaranteed Input LOW Voltage for All Inputs 0.8 V to CLK/X1 

VI Input Clamp Vee-Min. IIN--18 mA -1.2 V (Note 1) 

Vee- Min., CLK/X1, X2 700 VIN - 3.0 V 
IIH Input HIGH Current Vee- Max., p.A 

VIN-2.7 V Ao-A2 and TRIG 20 

Vee- Max., CLK/X1, X2 -500 VIN - 0.5 V 
III Input LOW Current Vce- Max., p.A 

VIN -0.5 V Ao-A2 and TRIG -250 

Vee· Min., CLK/X1, X2 1 mA VIN -4.0 V 

II Input Current Vee· Max., Ao-A2 100 VIN - 5.5 V 
Vee- Max., p.A 

VIN - Vee - 0.5 
TRIG 100 

Ise Output Short Circuit Current Vee-Max., Vo-o V -15 -100 mA (Note 2) VIN -0 V 

lee Power Supply Current Vee-Max. 
T - - 55·C, O·C, + 25·C 310 

mA (Note 3) T· + 70·C, + 125·C 240 

Notes: 1. Does not apply to eLK/X1 and X2. 
2. No more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. 
3. lee varies with temperature and oscillation frequency. 
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SWITCHING CHARACTERISTICS over operating range unless otherwise specified 

Parameter Parameter 
No. Symbol Description Test Conditions Min. Max. Units 

a) Pll Frequency Multiplication Mode (TIl Input 10 70 
@ ClK/Xl) 

b) Pll Frequency Multiplication Mode (Crystal @ 

CLK/Xl Input ClK/Xl. X2) 
FREQ IN 1 @ ClK/Xl Clock Frequency c) Flow-through Mode MHz 

(Note 2) (Pll bypassed) (TIl 0 85 
Input @ CLK/Xl) 

d) Flow-through Mode (PLl bypassed) (Crystal @ 
ClK/Xl. X2) 

2 tRISE @ CLKOUT Rise Time 14 ns CLKOUT (Note 2) 

3 tFALl @ ClKOUT Fall Time 10 ns CLKOUT (Note 2) 

4 tRISE @ To-Tll Rise Time 10 ns To-Tn (Note 2) 

5 tFALl @ To-Tll Fall Time 9 ns 
To - Tn (Note 2) 

tSKEW @ 
Skews between the 

6 To - T 11 Outputs (LOW-to- Cl-50 pF 3.5 ns To-Tn HIGH Transition) 

tSKEW @ 
Skews between the 

7 To - Tll Outputs (HIGH-to- Cl-50 pF 5.0 ns To-Tn lOW Transition) 

tSKEW @ 
Skews between the 

8 To - T 11 Outputs (Mixed Cl- 50 pF 8.5 ns To-Tn Transition) 

tSET TRIG TRIG~to ClK/Xl a) Pll Frequency Multiplication Mode (Note 2) 11 ns 
9 to ClK/Xl ~Setup Time b) Flow-through Mode (Pll bypassed) 11 ns 

tSET TRIG TRIG """'- to CLK/Xl a) Pll Frequency Multiplication Mode (Note 2) 6 n9 
10 to ClK/Xl -'/Setup Time b) Flow-through Mode (Pll bypassed) 4 ns 

tpD ClK/Xl to Propagation Delay from a) Pll Frequency Multiplication Mode (Note 2) 25 ns 
11 CLK/Xl -./ to the To-Tn TO-Tll Outputs b) Flow-through Mode (Pll bypassed) 23 ns 

tpD ClK/Xl to Propagation Delay from 
12 CLKOUT CLK/Xl to the ClKOUT Pll Frequency Multiplication Mode (Note 2) 17.5 ns 

Outputs 

13 tSET Ao-A2 Ao - A2 Inputs to TRIG Pll Frequency Multiplication Mode/Flow-through 1.0 ns to TRIG ~(Note 3) Mode (Pll bypassed) 

14 tHOLD Ao-A2 Ao - A2 Inputs to TRIG Pll Frequency Multiplication Mode/Flow-through 11.0 ns to TRIG ~ Hold Time (Note 3) Mode (Pll bypassed) 

Calculated Switching Characteristics 

tpERIOD Timing Resolution between 15 Resolution @ the To - T 11 Outputs 1/fl (1a or 1c) 
To-T11 

16 tpWH @ TRIG TRIG Input Pulse Width a) Pll Frequency Multiplication Mode tsET (9a) + 1/fe + 5 
(Calculated) (HIGH State) (Note 1) b) Flow-through Mode (PlL bypassed) tsET (9b) + 11f1 + 5 

17 tPWL @ TRIG TRIG Input Pulse Width a) Pll Frequency Multiplication Mode 1/fe 
(Calculated) (LOW State) (Note 1) b) Flow-through Mode (Pll bypassed) tsET (10b) 

tpD Delay from TRIG ~ to a) Pll Frequency Multiplication Mode tsET (9a) + 1/fe + tpD (11a) 
18 TRIG To-Tll 

(Calculated) To-Tll Active b) Flow-through Mode (Pll bypassed) tsET (9b) + 1/fl + tpD (11b) 

tpD Delay from TRIG "'"'- to a) Pll Frequency Multiplication Mode tsET (10a)+1IfC+tpD (11a) 
19 TRIG To-Tn 

(Calculated) To - T 11 Inactive b) Flow-through Mode (Pll bypassed) tsET (10b) + 11f1 + tpD (11b) 

Notes: 1. Not Tested; calculated using other parameters. 
2. Not Tested; correlated. 
3. Only A2 is tested. 
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SWITCHING TEST CIRCUIT 

TC003132 

A. Outputs 

Notes: 1. CL" 50 pF, the load capacitance includes scope probe, wiring, and stray capacitance without the 
device in the test fixture. 

2. 51 and 52 are open during all DC and functional testing 
3. During AC testing, switches are set as follows: 

1) For VOUT > 1.5 V, 51 is closed and 52 open 
2) For VOUT < 1.5 V, 51 is open and 52 closed 

SWITCHING TEST WAVEFORM 

Input 

Output 

4-300 

4.0 V 

---0.0 V 

t----- VOH 

VOL 

WF021341 



KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS OUTPUTS 

MUST8E WILL8E 
STEADY STEADY 

-- MAY CHANGE 
WILLSE 
CHANGING FROMHTOL FROM H TO L .- MAY CHANGE 
WILLSE 
CHANGING 

FROM L TOH FROM L TOH 

-- DON'T CARE; CHANGING; 
ANV CHANGE STATE 
PERMITTED UNKNOWN 

H 
CENTER 

DOES NOT LINE IS HIGH 
APPLY IMPEDANCE 

"OFF"STATE 

KSOOOO10 

SWITCHING WAVEFORMS 

CLKOUT 

WF022521 

TI-------J 

WF022530 

Rise Time/Fail Time/Skews 
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,.. ,... 
en 
N 
E 
c 

TYPICAL PERFORMANCE CURVE 

1.0 

0.8 Te - -WC., 

TC .~C· ,p-
0.8 

0.4 Te .. 125"C 

0.2 

~ 0 
Te =1~C 

- 250
). 

-0.2 
Te = -55"C 

~E . .!. 5k S >-
-OA 

-0.8 

-0.8 
-1.0 o 1.0 2.0 3.0 4.0 5.0 

VIN - VOLTS 

PF0010B1 

CLK/X1 Crystal Input Characteristics 
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INPUT IOUTPUT CIRCUIT DIAGRAMS 

Driven Input 
VC/:, 

Driving Output 
VC/:, 

ICO00910 

Output Configuration for CLKOUT 
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SECTION 5 - GENERAL 
·INFORMATION 

5.1 Cross Reference Guide 

5.2 Package Outlines 

5.3 Technical Report - Package Thermal 
Characteristics 

5.4 AMD Sales Offices 





5.1 CROSS REFERENCE GUIDE 
AmPAL 18P8 (Generic) 

Competitors Part Numbers 

MMI National T.I. Other 

PAL10H8 DMPAL10H8 
PAL 10L8 DMPAL10L8 
PAL12H6 DMPAL12H6 
PAl12L6 DMPAl12L6 
PAL14H4 DMPAL14H4 
PAL 14L4 DMPAL14L4 
PAl16H2 DMPAl16H2 
PAL 16L2 DMPAL16L2 

PAL16P8 DMPAl16P8 
PLHS18P8* 

Competitors Speed/Power Version 

MMI National T.I. 

COML MIL COML MIL COML MIL 

TYPE tpollcc tpollcc TYPE tpollcc tpollcc TYPE tpollcc tpollcc TYPE 

-2 60/45 80/45 A-2 35/45 50/45 

35/90 45/90 35/90 45/90 

20-PIN PAL DEVICES (Generic) 

Competitors Part Numbers 

MMI National 

PAL16L8 DMPAL16L8 
PAl16R4 DMPAL16R4 
PAL16R6 DMPAL16R6 
PAL16R8 DMPAL16R8 

Competitors Speed/Power Version 

TYPE 

A-2 

A-4 

A 

8-2 

8-4 

8 

*Signetics 
**Cypress 

MMI 

COML MIL 

tpollcc tpollcc 

35/90 50/90 

55/50 75/50 

25/180 30/180 

25/90 30/90 

35/55 50/55 

15/180 20/180 

35/180 45/180 

National 

COML MIL 

TYPE tpollcc tpollcc 

A-2 50/90 40/90 

A 25/180 30/180 

8-2 25/90 30/90 

8 15/180 20/180 

35/180 45/180 

T.I. 

(TI8)PAL 16L8 
(TI8)PAL 16R4 
(TI8)PAL 16R6 
(TI8)PAL 16R8 

T.I. 
--

COML MIL 

TYPE1 tpollcc tpollcc TYPE 

A-2 35/90 40/95 

A 25/180 30/185 

-25/-30 251100 30/105 

-15/-20 15/180 20/190 

Notes: 1. Types with two numbers follow this nomenclature: Commercial/Military. 
2. Icc = 80 mA for AmPAL 16L8 
3. Icc = 155 mA for AmPAL 16L8 
4. Extcmded Commercial temperature range. 
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Other 

COML MIL 

tpollcc tpollcc 

Other 

Other 

COML MIL 

tpollcc tpollcc 

AMD 

AmPAL18P8 
AmPAL18P8 
AmPAL18P8 
AmPAL18P8 
AmPAL18P8 
AmPAL18P8 
AmPAL18P8 
AmPAL18P8 

AmPAL18P8 
AmPAL18P8 

AMD 

COML MIL 

TYPE tpollcc tpollcc 

Q 35/45 40/55 

L 35/90 40/90 

AMD 

AmPAL16L8 
AmPAL16R4 
AmPAL16R6 
AmPAL16R8 

AMD 

COML MIL 

TYPE tpo/lcc tpollcc 
L2 35/90 40/90 

Q 35/45 40/45 

A3 25/180 30/180 

AL 25/90 30/90 

Q 35/45 40/45 

8 15/180 20/180 

Note 3 35/180 40/180 



AmPAL20EV8 

Competitors Part Numbers 

MMI National T.I. Other AMD 

AmPAL 10H20EV8 AVAIL. Q486 
AmPAL 10020EV8 AVAIL. Q486 
AmPAL10H20EG8 AVAIL. Q486 
AmPAL 10020EG8 AVAIL. Q486 

Competitors Speed/Power Version 

AMD 

COML MIL 

TYPE tpD/IEE tpD/IEE 

-6 6/220 

-8 8/2204 8/220 

AmPAL22V10 

Competitors Part Numbers 

MMI National T.I. Other AMD 

PAL22V10 CYPALC22V1 0* * AmPAL22V10 

Competitors Speed/Power Version 

T.I. CYPRESS AMD 

COML MIL COML MIL COML MIL 

TYPE tpD/lcc tpD/lcc TYPE' tpD/lcc tPD/lCC TYPE tpD/lcc tpD/lcc 

A 251180 30/180 -25/-30 25180 30/100 A 25/180 30/180 

-35/-40 35180 40/100 BLANK 35/180 40/180 

AmPAL23S8 

Competitors Part Numbers 

MMI National T.I. Other AMD 

AmPAL23S8 AVAIL. Q486 

Competitors Speed/Power Version 

AMD 

COML MIL 

TYPE tpD/lcc tpDllcc 

-20 20/200 

..;.25 25/200 

-27 27/2004 27/200 

-30 30/2004 27/200 

ENHANCED 24-PIN XOR PAL DEVICES 

Competitors Part Numbers 

MMI National T.I. Other AMD 

PAL20X4 DMPAL20X4 TIBPAL20X4 AmPAL20XRP4 AVAIL. Q486 
AmPAL20XRP6 AVAIL. Q486 

PAL20X8 DMPAL20X8 TIBPAL20X8 AmPAL20XRP8 AVAIL. Q486 
PAL20X10 DMPAL20X10 TIBPAL20X10 AmPAL20XRP10 AVAIL. Q486 

AmPAL22XP10 AVAIL. Q48~ 

See notes on page 5-1. 
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Competitors Speed/Power Versions 

MMI National T.I. Other AMD 

COML MIL COML MIL COML MIL COML MIL COML MIL 

TYPE tpo/lcc tpo/lcc TYPE tpo/lcc tpo/lcc TYPE1 tpo/lcc tpo/lcc TYPE tpo/lcc tpo/lcc TYPE1 tpo/lcc tpo/lcc 

20125 20/180 25/180 -20/-25 201210 25/210 

A 30/180 35/180 -30/-35 301180 35/180 

-30L/-35L 30/90 35/90 

50/180 60/180 50/180 60/180 -40/-45 401180 45/180 

-40L/-45L 40/90 45/90 

STANDARD 24-PIN PAL DEVICES 

Competitors Part Numbers 

MMI National T.I. Other AMD 

PAL20L8 DMPAL20L8 (TIB)PAL20L8 AmPAL20LB AVAIL. Q486 
PAL20R4 DMPAL20R4 (TIB)PAL20R4 AmPAL20R4 AVAIL Q486 
PAL20R6 DMPAL20R6 (TIB)PAL20R6 AmPAL20R6 AVAIL Q486 
PAL20R8 DMPAL20R8 (TIB)PAL20R8 AmPAL20R8 AVAIL. Q486 
PAL20L10. DMPAL20L10 (TIB)PAL20L 10 AmPAL20L10 AVAIL Q486 

Competitors Speed/Power Versions 

MMI National T.I. Other AMD 

COML MIL COML MIL COML MIL COML MIL COML MIL 

TYPE tpo/lcc tpo/lcc TYPE tpo/lcc tpo/lcc TYPE tpo/lcc tpo/lcc TYPE tpo/lcc tpo/lcc TYPE tpo/lcc tpo/lcc 

A-2 351105 50/105 A-2 35/100 40/100 AL 25/105 30/105 

A 25/210 30/210 A 25/210 30/210 A 25/210 30/210 A 25/210 30/210 

B 15/210 20/210 8 15/210 20/210 B 15/210 20/210 8 15/210 20/210 

ENHANCED 24-PIN PAL DEVICES 

Competitors Part Numbers 

MMI National T.I. Other AMD 

DMPAL20RP4 AmPAL20RP4 AVAIL Q486 
DMPAL20RP6 AmPAL20RP6 AVAIL Q486 
DMPAL20RP8 AmPAL20RP8 AVAIL. Q486 

AmPAL20RP10 AVAIL. Q486 
AmPAL22P10 AVAIL Q486 

Competitors Speed/Power Versions 

MMI National T.I. Other AMD 

COML MIL COML MIL COML MIL COML MIL COML MIL 

TYPE tpo/lcc tpo/lcc TYPE tpo/lcc tpo/lcc TYPE tpo/lcc tpo/lcc TYPE tpo/lcc tpo/lcc TYPE tpo/lcc tpo/lcc 

A-2 35/105 50/105 A-2 35/100 40/100 AL 25/105 30/105 

A 25/210 30/210 A 25/210 30/210 A 25/210 30/210 A 25/210 30/210 

B 15/210 20/210 B 15/210 20/210 B 15/210 20/210 B 15/210 20/210 

See notes on page 5-1. 
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CROSS REFERENCE GUIDE 

Competitors Package/Temperature Guide 

MMI National T.I. AMD Package Type 

CJ JC CJ DC Ceramic DIP-Commercial 

CL LC Ceramic Leadless Chip Carrier - Commercial 

CN NC CN PC Plastic DIP - Commercial 

CNL CFN JC Plastic Leaded Chip Carrier - Commercial 

MJ JM MJ DE Ceramic DIP - Extended Commercial 

ML LE Ceramic Leadless - -Extended Commercial 

MJ883B MJB IBRA 20-Pin Ceramic DIP - Military 

MJ883B MJB IBLA 24-Pin Ceramic DIP - Military 

ML883B MFKB IB2C 20-Pin Ceramic Leadless Chip Carrier - Military 

ML883B MFKB IB3C 28-Pin Ceramic Leadless Chip Carrier - MilitarY 

MW883B IBSA 20-Pin Ceramic Flatpack - Military 

MW882B IBKA 24-Pin Ceramic Flatpack - Military 

See notes on page 5-1. 
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5.2 PACKAGE OUTLINES 
Plastic Dual-In-line Packages (PO) 

PO 020 

PO 024 

PD3024 

~1.240---l 
,- 1.280 , 

e::::::::::[~ 
~ 1-.005 MIN. 

PID <# 070898 
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Ceramic Hermetic Oual-In-Line Packages (CD) 

CD 020 

.130 I' .935 I ~ .290 --I .2

0
00 .990 .015 .320 

.060 1 .150 

:~~t~r~t~ !:: 
.070 .110 .022 

PIO # 07553A 

CD 024 

1.235 
1.290 

24 13 

.510 

.605 

12 

-l I-, -I h r-I I- .005 MIN. .590 
I I I I I I .615 

.014 

.022 
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Ceramic Hermetic Dual-In-Line Packages (CD) (Cont'd.) 
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ABSTRACT 
Determination of the Thermal Resistance of Packaged De­
vices is of concern to the designer of new devices and to AMD 
customers. The Advanced Package and Material Develop­
ment group has undertaken the task of characterizing current 
AMD products and quantifying package-related influences on 
Thermal Resistance. This report describes some of these 
effects and the technique used to measure Thermal Resis­
tance. 

1.0 DEFINITION OF THERMAL 
RESISTANCE 

The reliability of an integrated circuit is largely dependent on 
the maximum temperature which the device will attain during 
operation. Because the stability of a semiconductor junction 
declines with increasing temperature, knowledge of the ther­
mal properties of the packaged device becomes an important 
factor during device design. In order to increase the operating 
lifetime of a given device, the junction temperatures must be 
minimized. This demands knowledge of the thermal resistance 
of the completed assembly and specification of the conditions 
in which the device will function properly. As devices become 
both smaller and more complex and the requirement for high 
speed operation becomes more important, heat dissipation 
will become an ever more critical parameter. 

Thermal resistance is defined as the temperature rise per unit 
power dissipation above some referenced condition. The unit 
of measure is typically °C/watt. The relationship between 
junction temperature and thermal resistance is given by: 

where: Tj 

Tx 
Pd 

OjX 

X 

= junction temperature 
= reference temperature 
= power dissipation 
= thermal resistance 
= some defined test condition 

(1) 

In general, one of three conditions is defined for measure­
ment of thermal resistance: 

Oja 

(still air) 

Oja 

(moving air) 

- thermal resistance measured with refer­
ence to the temperature at some specified 
point on the package surface. 

- thermal resistance measured with respect 
to the temperature of a specified volume of 
still air. 

- thermal resistance measured with respect 
to the temperature of air moving at a 
specified velocity. 

The relationship between OjC and Oja is 

where Oca is a measure of the heat dissipation due to natural 
convection (still air) or forced convection (moving air) and the 
effect of heat radiation and mounting techniques. OjC is 
dependent solely on material properties and package geome­
try; Oja includes the influence of the surface area of the 
package and environmental conditions. Each of these defini­
tions of thermal resistance is an attempt to simulate some 
manner in which the package device may be used. 

The thermal resistance of a packaged device, however 
measured, is a summation of the thermal resistances of the 
individual components of the assembly. These in turn are 
functions of the thermal conductivity of the component mate­
rials and the geometry of the heat flow paths. Like other 

5-13 

material properties, thermal conductivity is usually tempera­
ture dependent. For alumina and silicon, two common pack­
age materials, this dependence can amount to a 30% 
variation in thermal conductivity over the operating tempera­
ture range of the device. The thermal resistance of a compo­
nent is given by 

o 

where: L 
A 

= length of the heat flow path 
= cross sectional area of the heat 

flow path 

(2) 

K(T) = thermal conductivity as a function of 
temperature 

and the overall thermal resistance of the assembly 
(discounting convective effects) will be: 

Ln o = !;On !;-
KnAn 

But since the heat flow path through a component is influ­
enced by the materials surrounding it, determination of Land 
A is not always straightforward. 

A second factor that affects the thermal resistance of a 
packaged device is the power dissipation level and, more 
particularly, the relationship between power level and die 
geometry, i.e., power distribution and power density. By 
rearrangement of equation 1 to 

(3) 

the relationship between P d and Tj can be more clearly seen. 
Thus, to dissipate a greater quantity of heat for a given 
geometry, Tj must increase and, since the individual On will also 
increase with temperature, the increase in Tj will not be a 
linear function of increasing power levels. 

A third factor of concern is the quality of the material 
interfaces. In terms of package, construction, this relates 
specifically to the die attach bond, and for those packages 
having a heatsink, the heatsink attach bond. The quality of the 
die attach bond will most severely influence the package 
thermal resistance as this is the area which first impedes the 
transfer of heat out of the silicon die. Indeed, it seems likely 
that the initial thermal response of a powered device can be 
directly related to the quality of the die attach bond. 

2.0' EXPERIMENTAL METHOD 

The technique for measurement of ,thermal resistance involves 
the identification of a temperature-sensitive parameter on the 
device and monitoring this parameter while the device is 
powered. For bipolar integrated circuits the forward voltage of 
the substrate isolation diode provides a convenient parameter 
to measure and has the advantage of a linear dependence on 
temperature. MOS devices which do not have an accessible 
substrate diode present greater measurement difficulties and 
may require simulation through use of a specially designed 
thermal test die. Choice of the parameter to be measured 
must be made with some care to insure that the results of the 
measurement are truly representative of the thermal state of 
the device being investigated. Thus measurement of the 
substrate isolation diode which is generally diffused across the 
area of the die yields a weighted average of the condition of 



the individual junctions across the die surface. Measurement 
of a more local source would yield a less generalized result. 

For MaS devices, simulation is accomplished using the 
thermal test die. The basis for this test die is a 25 mil square 
cell containing an isolated diode and a 1 KS1 resistor. The 
resistors are interconnected from cell to cell on the wafer 
before it is cut into multiple arrays of the basic unit cell. In use 
the device is powered via the resistors with voltage or current 
adjusted for the proper level and the voltage drop of the 
individual diodes is monitored as in the case of actual devices. 

Prior to the thermal resistance test, the diode voltage/ 
temperature calibration must be determined. This is done by 
measuring the forward voltage at 1 mA current level at two 
different temperatures. The diode calibration factor is then: 

~T 
K, = 

~V 
(4) 

in units of °C/mV. For most diodes used for this test the 
voltage/temperature relationship is linear and these two 
measurement points are sufficient to determine the calibration. 

The actual thermal resistance measurement has two alternat­
ing phases: measurement and power on. The device under 
test is pulse powered with an ON duty cycle of 99% and a 
repetition rate of < 100Hz. During the brief OFF states the 
device is reverse-biased with a 1 mA current and the voltage 

drop is measured. The series of voltage readings are averaged 
over short periods and compared to the voltage reading 
obtained before the device was first powered ON. The thermal 
resistance is then computed as: 

where: K, = calibration factor 
VI = initial forward voltage value 
V, = current forward voltage value 
VH = heating voltage 
IH = heating current 

(5) 

The pulsing measurement is continued until the device has 
reached thermal equilibrium and the final value measured is 
the equilibrium thermal resistance of the device under test. 

When the end result desired is (Jja (still air), the device and the 
test fixture (typically a standard burn-in socket) are enclosed in 
a box containing approximately 1 cubic foot of air. For (JjC 

measurements the device is attached to a large metal 
heatsink. This insures that the reference point on the device 
surface is maintained at a constant temperature. The require­
ments for measurement of (Jja (moving air) are rather more 
complex and involve the use of a small wind tunnel with 
capability for monitoring air pressure, temperature and velocity 
in the area immediately surrounding the device tested. Stan­
dardization of this last test requires much careful attention. 

WAVEFORMS FOR PULSED THERMAL RESISTANCE TEST 

\\ \ 

" 

VOLTAGE 

WF009091 

)) \\ 

CURRENT 

- -
WF009080 

5-14 



3.0 Experimental Results 

The thermal resistance data included in Table 1 is representa­
tive of the output of tests on representative samples of AMD 
products. This data has resulted from an on-going program 

undertaken by members of the Advanced Package and 
Material Development group. 

The data represents what can be expected from a device in 
the specified package. Specific device types may differ; these 
numbers are for example only. 

TABLE 1. THERMAL RESISTANCE OF AMD PRODUCTS 
(Notes 1, 2, & 3) 

Pin 
Count 

20 

24 

28 

Package Type 
(Note 3) 

Ceramic DIP 
Plastic DIP 
Ceramic Flatpack 
Ceramic LCC 
Plastic LCC· 

Ceramic DIP 
Plastic DIP 
Ceramic Flatpack 

Ceramic LCC 
Plastic LCC· 

()JA ()JC 

60 11 
61 30 
CR. CR 
61 CR 
CR CR 

57 15 
60 CR 
CR CR 

CR CR 
58 CR 

Notes: 1. Representative values for each package type - for information only. 
2. Any given device may differ from these values. Consult local AMD sales office for 

specific-device information. 
3. CR Consult local AMD Representative. 
4. DIP ... Dual-In-Line Package 

LCC = Leadless Chip Carrier 
LCC· = Leaded Chip Carrier 
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ADVANCED MICRO DEVICES 
DOMESTIC SALES OFFICES 

ALABAMA ............................................... (205) 882·9122 
ARIZONA, 

Tempe ........................................ ,........ (602) 242·4400 
Tucson ............................................ ;... (602) 792·1200 

CALIFORNIA, 
EI Segundo........................................... (213) 640·3210 
Newport Beach...................................... (714) 752·6262 
San Diego ............................................ (619) 560·7030 
Sunnyvale .................................. ........... (408) 720·8811 
Woodland Hills ...................................... (818) 992·4155 

COLORADO............................................. (303) 741·2900 
CONNECTICUT, ....................................... . 

(203) 264·7800 
FLORIDA, 

Altamonte Springs.................................. (305) 339·5022 
Clearwater ............................................ (813) 530·9971 
Ft. Lauderdale....................................... (305) 484·8600 
Melbourne ............................................ (305) 729·0496 

GEORGIA............ ................... ....... .......... (404) 449·7920 
ILLINOIS ................................................. (312) 773·4422 
INDIANA................................................. (317) 244·7207 
KANSAS ................................................. (913) 451·3115 

MARYLAND ............................................. (301) 796·9310 
MASSACHUSETIS .................................... (617) 273·3970 
MINNESOTA ............................................ (612) 938·0001 
NEW JERSEy.......................................... (201) 299·0002 
NEW YORK, 

Liverpool.............................................. (315) 457·5400 
Poughkeepsie ........................................ (914) 471·8180 
Woodbury ............................................. (516) 364·8020 

NORTH CAROLINA, .................................. (919) 847·8471 
OREGON................................................ (503) 245·0080 
OHIO, 

Columbus ............................................. (614) 891·6455 
PENNSYLVANIA, 

Allentown............................................. (215) 398·8006 
Willow Grove ........................................ (215) 657·3101 

PUERTO RiCO......................................... (809) 764·4524 
TEXAS, 

Austin .................................................. (512) 346·7830 
Dallas .................................................. (214) 934·9099 
Houston ............................................... (713) 785·9001 

WASHINGTON............ ............................. (206) 455·3600 
WISCONSIN ............................................ (414) 782·7748 

INTERNATIONAL SALES OFFICES 
BELGIUM, HONG KONG, 

Bruxelles ............................ TEL: .............. (02) 771 99 93 Kowloon ............................ TEL: ...................... 3·695377 
FAX: ................ (02) 762·3716 FAX: ....................... 1234276 
TLX: ........................... 61028 TLX: ........................... 50426 

CANADA, Ontario, ITALY, Milano ........................ TEL: ................. (02) 3390541 
Kanata .............................. TEL: .............. (613) 592·0090 FAX: ................. (02) 3498000 
Willowdale .......................... TEL: .............. (416) 224·5193 TLX: ......................... 315286 
. FAX: .............. (416) 224·0056 JAPAN, Tokyo ....................... TEL: ................ (03) 345·8241 

FRANCE, FAX: ....................... 3425196 
Paris ................................. TEL: ........... (01) 45 60 00 55 TLX: .......... J24064 AMDTKOJ 

FAX: ........... (01) 46 86 21 85 LATIN AMERICA, 
TLX: ....................... 202053F Ft. Lauderdale,.................... TEL: .............. (305) 484·8600 

GERMANY, FAX: .............. (305) 485·9736 
Hannover area .................... TEL: ................ (05143) 50 55 TLX: ...... 5109554261 AMDFTL 

FAX: ................ (05143) 55 53 SWEDEN, Stockholm .............. TEL: .............. (08) 733 03 50 
TLX: ......................... 925287 FAX: .............. (08) 733 22 85 

MOnchen ............................ TEL: ................ (089) 41 14·0 TLX: ........................... 11602 
FAX: ................. (089) 406490 UNITED KINGDOM, 
TLX: ......................... 523883 Manchester area ................. TEL: ............... (0925) 828008 

Stuttgart ............................. TEL: ............. (0711) 62 33 77 FAX: ............... (0925) 827693 
FAX: ............... (0711) 625187 TLX: ......................... 628524 
TLX: ......................... 721882 London area ....................... TEL: ............... (04862) 22121 

FAX: ............... (04862) 22179 
TLX: ......................... 859103 

NORTH AMERICAN REPRESENTATIVES 
CALIFORNIA 

12 INC .............................................. OEM (408) 988·3400 
DISTI (408) 496·6868 

IDAHO 
INTERMOUNTAIN TECH MKGT ................... (208) 888·6071 

INDIANA 
SAl MARKETING CORP ............................. (317) 241·9276 

IOWA 
LORENZ SALES ....................................... (319) 377·4666 

MICHIGAN 
SAl MARKETING CORP ............................. (313) 227·1786 

NEBRASKA 
LORENZ SALES ....................................... (402) 475·4660 

NEW MEXICO 
THORSON DESERT STATES ...................... (505) 293·8555 

NEW YORK 
NYCOM, INC ............................................ (315) 437·8343 

OHIO 
Dayton 

DOLFUSS ROOT & CO .............................. (513) 433·6776 
Strongsville 

DOLFUSS ROOT & CO .............................. (216) 238·0300 
PENNSYLVANIA 

DOLFUSS ROOT & CO ................. ; ............ (412) 221·4420 
UTAH 

R2 MARKETING ........................................ (801) 595·0631 
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