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Preface 

Advanced Micro Devices is recognized as the pioneer and leader in microprogrammable "bit slice" 
integrated circuits. The Am29300 family sets the current standard in general purpose 32-bit building 
blocks. Designed for high performance and flexibility with a choice of elegant, easy to implement 
architectures, this chip set brings microprogrammable products into the next generation. 

The Am29300 generation gives the system designer flexibility both in hardware architecture and at 
the microprogram level. This 32-bit product family achieves high performance and high integration, 
while avoiding architectural restrictions. The products are designed to meet the high computational 
requirements of advanced graphics systems, image processing, high-end controllers, fault-tolerant 
processors, work stations, and other 32-bit applications limited not by process technology, but only 
by the designer's imagination. 

Chapters 2, 3, and 4 ofthis databook describe the currentfull range ofthe Am29300 product offerings 
in bipolar and CMOS technologies. Th.ree different types of data sheets are presented: Advanced 
Information, Preliminary, and Final. 

• 

• 

• 

Advanced Information data sheets are developed from simulation data after 
circuit design is completed. After a process change, advanced information is 
again provided for speed select data. 

Preliminary data sheets are based on actual measurements when silicon is . 
available and units have been tested for AC characteristics. The preliminary test 
programs are in place, but the normal fabrication process variations have not 
allowed setting of final AC limits. 

Final data-sheet status is applied to products that ,are fully characterized over 
the operating range and are in volume production. 

Over 75 application notes and technical articles have been written in 11 different languages 
describing the features and benefits of the Am29300/29C300 family. A few representative articles 
are reprinted in Chapter 6 to serve as a starting pOint for readers less familiar with the broad scope 
of this chip set. A full list of articles is offered in the bibliography of Chapter 6. 

Technical information regarding product and process reliability, as well as the Advanced Micro 
Devices model for reliability studies is provided in Chapter 7. This chapter also outlines the basic 
thermal characteristic data for the bipolar Am29300 products and describes test philosophy and 
methods. 

Chapter 8 gives general information regarding package outlines and ordering information. 
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CHAPTER 1 ~ 

Am29300/29C300 Family Overview 

1.1 Am29300/29C300 GENERAL OVERVIEW 

CMOS and Bipolar 32-Bit High Performance 
Building Blocks 

AMD's Am29300/29C300 family has been developed to 
provide systems designers with flexible, off-the-shelf, 
high-performance, 32-bit microprogrammable building 
blocks. The Am29300/29C300 family is ideal for com­
plex and calculation-intensive applications such as intel­
ligent peripheral controllers including graphics, telecom­
munications, switching systems and laser printers; artifi­
cial intelligence and RISC CPUs; array and digital signal 
processing; and a multitude of military applications. 

Am29300/29C300 Pushes the Limits of 
Your Imagination 

Flexibility of Design 

Success is driven by innovation and differentiation. While 
"me too" systems companies merely struggle to be the 
lowest cost manufacturers, innovative companies strive 
ahead toward the future. The designers of AM D's 32-bit 
family recognize the need for system innovation and 
differentiation. The Am29300/29C300 family provides 
powerful building blocks with unlimited architectural flexi­
bility, thus returning design innovation and value-added 
back to the design engineer. With the flexibility of custom 
architectures and custom microcode, system perform­
ance is limited only by imagination. 

Improve Your Time to Market 

Because AMD's 32-bit family integrates high perform­
ance features such as master/slave, parity checking, 

funnel shifters, priority encoders, and mask generators, 
the Am29300/29C300 family meets the complex func­
tional requirements of sophisticated systems and can 
eliminate the need for custom ICs. With the Am29300/ 
29C300 there are no engineering circuit turnaround 
delays, no hidden Non-Recurring-Engineering costs, no 
complex test engineering correlations, and no waiting. 
Off-the-shelf availability of a highly integrated, fully 
tested product of guaranteed quality can mean improved 
profits for the system application. 

Specifications that Count 

We provide you with the tools and data necessary to 
make your design right the first time. You can be assured 
that the specifications of the parts you order are guaran­
teed by AMD as printed in the data sheets. Designers 
require worst case guaranteed parameter values, and 
AMD provides them. AMD removes the uncertainty of 
customized design with fully guaranteed, standard, off­
the-shelf, 32-bit products. These state-of-the-art bipolar 
and CMOS building blocks are the ideal solution for 32-
bit applications. 

Military Product Posit/on 

AMD is committed to support the industry with military 
qualified and specified Am29C300 family products. The 
entire family is being offered as B83C level B fully 
compliant APL products. In addition, we plan to release 
the family in DESC military drawings. Thiswillprovidethe 
user with alternatives to source control drawings, thus 
saving cost and time. 
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Manufacturing - Processes and Planning 

AMD's Commitment to Process Technology 
Improvements 

The Am2901 industry standard bit-slice ALU is an ideal 
example of AMD's commitment to process improve­
ments. Table 1-1 and Figure 1-1 demonstrate the per-

formance improvements of the Am2901. Since its intro­
duction, the Am2901's performance has increased 
nearly three-fold while its price has dropped by a factor of 
ten. This represents 25 percent annual price/perform­
ance improvement over 12 years. The philosophy of 
performance improvements through process technolo­
gies applies to all members of AMD's microprogram­
mabie products. 

Table 1-1 
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Year Device Technology 

1975 Am2901 low-Power Schottky 

1977 Am2901A Dual layer Metal 
Ion Implantation 

1978 Am2901B Projection Printing 

1981 Am2901C ECl Internal 
TIl,l/OIMOX 

1986 Am29C01 1.61lm CMOS 

1987 Am29C01-1 1.21lm CMOS 
Speed Select 

1987 Am29C01-2 1.0 Ilm CMOS 
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Figure 1-1. Am2901 Performance 

Speed 

Die Size A,B ~G,P Power 

33 K mil2 80 ns 1.5W 

20 K mil2 65 ns 1.5W 

15 K mil2 50 ns 1.5W 

15 Kmil2 37ns 1.5W 

15 K mil2 37 ns 0.5W 

15 K mil2 28 ns 0.5W 

15 K mil2 19 ns 0.5W 
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Figure 1-2. Am29300/29C300 Performance 



Bipolar VLSI 

The Am29300 family contains some of the largest bipo­
lar ICs produced anywhere inthe world. For example, the 
Am29332 has over 5,000 gates, 31,000 devices, and 
measures 142,000 mils2. AM D's IMOX S-2 process 
allows for such integration and high performance. Future 
advances in AMD's bipolar process will include process 
''tweaks'' as well as total changes in process approach. 
These advances will provide improved performance and 
yields, directly affecting the price/performance of the 
Am29300 family. 

CMOS VLSI 

The Am29C300 family, like its bipolar counterpart, also 
contains very large die. The Am29C325 encompasses 
nearly 11 ,000 gates and measures almost 130,000 mils2. 

AMD's CS-11 is the current CMOS workhorse process 
forthe Am29C300 family. At an effective channel width of 
1.6 microns, CS-11 is capable of approaching the bipolar 
speeds on all specifications. 

There will be continued process improvements to the 
current CMOS technology. The first improvement, 
CS-11 A, will be available on all Am29C300 products in 
Q41987. CS-11A has an effective channel width of 1.2 
microns, resulting in a 25 percent performance improve­
ment over CS-11. 

Table 1-2 demonstrates the performance improvements 
expected on the Am29C300 family as these processes 
are incorporated into the family. 

Table 1-2 CMOS Evolution 

Year Process 

1986 CS-11 

1987 CS-11A 

1988 CS-21 

Effective 
Channel Length 

1.6 micron 

1.2 micron 

1.0 micron 

Typical 
Gate Delay 

1.25 ns 

0.90 ns 

0.65 ns 

The Philosophy Behind the Functionality 

When AM D introduced the 4-bit slice (memory plus ALU) 
Am2901 in 1975, semiconductor and packaging tech­
nologies prevented the integration of a 16- or 32-bit unit. 
The 4-bit slice with internal memory and external carry-
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look-ahead and a 48-pin package were the right compro­
mise then. Today, semiconductor and packaging tech­
nologies have advanced to a point where a full 32-bit ALU 
with many non-sliceable features, internal carry-Iook­
ahead, and systems access to all buses can be put on 
one chip, with expandable memory on another. This 
results in higher versatility and higher performance. 

There are several reasons for the choice of a wider data 
path. First, cycle time is improved significantly if carry 
lookahead is contained entirely on the chip. Second, 
certain powerful on-Chip functions, such as the funnel 
shifter, priority encoder, and mask generator are ex­
tremely difficult to "slice." Third, a higher level of integra­
tion leads to a more cost-effective system solution. 
These and other advantages contributed to the decision 
to make the Am29332/29C332 a complete 32-bit func­
tion rather than a slice. 

The Am29300/29C300 philosophy has also removed 
the register file from the ALU, providing the designer 
greater system flexibility and making expansion and 
regular addressing much easier. The new partitioning 
results in a number of benefits. The user gets a func­
tionally more powerful processor with two uncommitted 
input buses and gains the flexibility of adding storage 
elements to those buses. The Am29300/29C300 family 
is designed to be the most functional and powerful family 
of microprogrammable building block products available 
on the market. 

1.2 Am29300/29C300 FAMILY DEVICE 
OVERVIEW 

The Am29332129C332 32-Bit ALU - The 
Heart of a New Generation of Machines 

The Am29332/29C332 is AMD's first 32 bit wide ALU. 
Parallel processing of 32 bits of data, coupled with very 
fast cycle time, provides throughput unprecedented in 
VLSI-based systems. 

The 32-bit ALU combines maximum performance and 
integration by keeping all critical timing paths short and 
balanced. All ALU instructions have the same short cycle 
time. This includes barrel shifting, normalization, priority 
encoding and field logical operations. 

1-3 
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Figure 1-3. Am29332/29C332 32-Bit ALU 

Three Ports Facilitate High Throughput 

The Am29332/29C332 has two input ports (A and 8) and 
an output port (Y), all 32 bits wide. These three ports 
provide flexibility and accessibility for high-performance 
processor designs. Dedicated input and output ports 
provide a flow-through architecture and avoid the penalty 
associated with switching a bidirectional bus halfway 
through the cycle. In addition, the three-bus architecture 
allows easy parallel connection of other arithmetic units 
for even higher performance. 

Arithmetic and Logic Unit 

The 32-bit wide ALU in the Am29332/29C332 has full 
carry-Iookahead to improve cycle time for all arithmetic 
operations. The ALU is a unique three-input structure 
with two data input ports and a mask input that is used on 
every cycle, thus providing very powerful instructions 

1-4 

that execute in a single cycle. The mask supports byte­
aligned arithmetic operations and field logical operations 
on variable-position, variable-length fields. The byte­
aligned arithmetic operations use 8-,16-, 24-, and 32-bit 
LSS-aligned operands. Field-logical instructions operate 
on operands of arbitrary length and starting position. 

Priority Encoder 

The priority encoder generates a 5-bit vector indicating 
the highest order 'one' in the 32-bit operand. These 5 bits 
are then stored in the position field of the status register 
for use during the next cycle. The priority encoder sup­
ports all byte-aligned data types; the result is dependent 
upon the byte width specified. This function supports 
normalization necessary for floating point operations; it 
also enhances certain graphics primitives. 



64-81t Funnel Shifter 

The on-board 64-bit input, 32-bit output funnel shifter is 
much more than a conventional barrel shifter. The shifter 
can extract any contiguous field of 32 bits from a 64-bit 
input. This input may consist of concatenated A and B 
input words or, for barrel shifting, duplicated A or B input 
words. 

Residing in the ALU data path, the shifter can perform n­
bit shift or rotate in conjunction with a logical ALU 
operation-all in the same cycle, without increasing the 
length of the cycle. This capability affords single-cycle 
execution of logical operations beween unaligned fields 
- a function that would take multiple cycles in other 
architectures. 

Mask Generator 

The power and flexibility of the processor stems partly 
from its ability to generate a mask to control the width of 
an operation for each instruction without any cycle time 
penalty. The mask generator at the ALU input creates a 
contiguous field of ones and contains its own shifter to 
position this control field anywhere in the data path. The 
mask generator can also be used as a pattern generator, 
bypassing the mask through the ALU. 

Status Register 

The processor has a 32-bit wide status register that 
contains: information on position and width of the oper­
and; the ALU status flags Carry, Negative, Overflow, and 
Zero; status bits for evaluation of inequalities; a link bitfor 
multiprecision shilts; an M flag for high speed multiply 
and divide; and intermediate nibble carries for BCD 
arithmetic. An extract-status instruction is provided that 
allows any bit from the status register to be output at the 
V-port. This is particularly useful in machines employing 
stack architectures. Instructions to save and restore the 
status register are also provided. 

Multiply and Divide Support 

The chip incorporates dedicated hardware to allow effi­
cient implementation of multiply and divide algorithms for 
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both unsigned and signed arithmetic data types. The 
modified Booth multiply algorithm processes two bits 
per cycle. The four-quadrant, non-restoring divide algo­
rithm processes one bit per cycle. Since the data path 
width is fixed at 32 bits, the instructions can be simplified 
to provide ''first step," "iterate step" and "last step" com­
mands for both multiply and divide. Programming slices 
is no longer necessary since all multiply and divide steps 
are provided in the instruction set. For bUSiness-oriented 
machines, the ALU is capable of performing BCD arith­
metic on packed BCD numbers. In order to keep non­
BCD operations fast, BCD arithmetic is executed by 
binary arithmetic followed by BCD correction. 

The Instruction Set: Powerful and Flexible 
Yet Simple and Regular 

The Am29332/29C332 instruction set complements the 
powerful hardware. To ease the task of code generation, 
the instruction set is symmetrical and regular. There are 
two large classes of instructions. The first class handles 
byte-aligned data (8-,16-,24-, or 32-bit LSB-aligned). It 
is comprised of: data movement instructions; arithmetic 
instructions, including multiply and divide steps and BCD 
instructions; logical instructions; and single-bit shift and 
prioritize operations. The second class of instructions 
operates on variable-length, variable-position fields. It 
includes N-bit shift and rotate, field extract, and field 
logical operations. 

The Am29331/29C331 -16-Bit 
Micro-Interruptible Sequencer 

The Am29331/29C331 is a high speed sequencer con­
trolling the sequence of microinstructions stored in mi­
croprogram memory. The instruction set aids structured 
microprogramming and handles sequential execution, 
branches, subroutines and loops. The sequencer in­
structions may be unconditional or conditional based on 
CPU status, an on-board 8-input test multiplexer, and a 
polarity control. The sequencer has a 16-bit wide address 
path and can thus access 64K words of microcode 
memory. It is transparently interruptible at any microin­
struction boundary. 

1-5 
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Figure 1-4. Am29331/29C33116-Bit Microinterruptible Sequencer 

Balanced TImIng Means Greater Throughput 

In previous generation microprogrammed systems, the 
control path containing the sequencer has often been the 
bottleneck, because the sequencers were slower than 
the associated data paths. Not so in the Am293001 
29C300 family. The speed of the Am29331/29C331 
sequencer has been designed such that the entire sys­
tem timing is balanced between the control path and data 
path, leading to higher overall throughput. 

Micro-Level InterruptIble 

Real time interrupt handling at the microinstruction level 
is made possible by the interrupt return address register 
and the bidirectional v-port. While the interrupt address 
enters the part through the V-port, the interrupt return 
address is saved on the stack. Nested interrupts are 
handled the same way. 

1-6 

Built-In Trap Handling 

As an architectural alternative to the interrupt-driven 
approach, the Am29331/29C331 Sequencer also has 
provision for handling "traps" transparently at the micro­
instruction level, upon the occurrence of specified sys­
tem events. In this mode, ~he current microinstruction is 
aborted. The specified trap routine is executed (like an 
interrupt). But, following the trap routine, the aborted 
microinstruction is re-executed (instead of proceeding on 
to the next micrOinstruction, as in an interrupt). 

33-Level Stack 

The 33-level stack provides sufficient depth to handle 
nested loops and subroutines; it is also used to save the 
status of the sequencer when handling interrupts. Since 
the stack is externally accessible, its contents may be 



unloaded through the bidirectional D-port for diagnostic, 
debugging or fault recovery purposes. The stack may 
also be loaded from the outside through the D-port. This 
may be used for context switching, for example. 

Multitasking suppon 

By providing a HOLD control pin, the designer may use 
multiple sequencers in a multitasking system, with only 
one sequencer active at anyone time. The output v-ports 
of the sequencers are tied together to address the same 
microcode memory. This is useful, for example, for rapid 
context switching at the microinstruction level. 

Address Comparator Eases Debugging 

The seque ncer compares the address on the V-port with 
the contents of an internal break-point register. Break­
point detection is useful for debugging the system or 
gathering run-time statistics. 

Two-Branch Address Inputs 

Two separate branch address inputs, D and A, are 
provided to speed up source address selection. Both A 
and D ports can be used to load the counter. The D port 
can also be used to load or unload the stack while the A 
port may be used to input a branch or map address, 
eliminating the need to three-state selected sources. 

Built-In Test Generation Logic 

In the Am29331/29C331 , unlike previous sequencers, 
test generation logic and one layer of condition test 
multiplexer logic are built-in. This not only reduces 
component count, but also improves cycle time by mini­
mizing inter-chip delays and by moving the multiplexer 
into fast internal ECl gates. 

Multiway 

Four sets of four-bit multiway inputs are provided. Each 
such set of 4 bits can replace the four least significant bits 
of D input, allowing a direct branch to any of 16 consecu­
tive locations in the microprogram memory. The multi­
way capability allows checking of upto four simultaneous 
test conditions in a single cycle. This is obviously an 
attractive alternative to checking each test condition 
serially, a much slower multicycle process. 

The Most Versatile Sequencer Ever 

The combination of 16 bits of address, real time interrupt 
capability, two address ports, a deep stack and other 
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capabilities make this device the most feature-loaded 
sequencer ever offered. 

The Am29334/29C334 Register File 

The Am29334/29C334 is a 64 word by 18 bit, dual­
access, four-port register file. It is deliberately separate 
from the AlU to allow easy, regular expansion, both 
horizontally for wide data paths and vertically for large 
register file machines. 

Four-Pon Achltecture 

Two Read and two Write data ports allow independent 
and simultaneous access to two register file locations. 
The Read and Write ports are separated to eliminate the 
delay caused by turn-around of bidirectional buses. The 
dual-address, four-port architecture allows any combina­
tion of two reads, writes, or read-writes - no restrictions. 

Organization suppons Parity 

Since the Am29334/29C334 has a by-18 organization, it 
can store two bytes with parity in each of its 64 words. As 
a data path storage element, the register file neither 
generates nor checks parity. When used in conjunction 
with the Am29332129C332 processor (which provides 
parity checking on its inputs and parity generation on its 
output), it provides a bus compatible register file, thus 
extending parity protection to the entire data path loop. 

Array Processing Products/Arithmetic 
Accelerators 

The Am29300/29C300 family is capable of very fast 
operation on 32-bit fixed-point numbers. When greater 
dynamic range is necessary, floating-point numbers 
are often chosen. Advanced Micro Devices offers high­
speed VlSI integrated circuits designed to support the 
growing need for high-performance array and signal 
processing. Applications include graphics, image 
processing, communications, medical instrumentation, 
radar and other electronic warfare applications. Three 
AMD devices address these needs: Am29325/29C325 
32-bit Floating-Point Processor, Am29C323 32x32-bit 
Multiprecision Multiplier, and Am29C327 64-bit Float­
ing-Point Processor. These devices achieve very high 
speeds through a combination of innovative architec­
ture and AMD's advanced bipolar IMOX process and 
CMOS process. 
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Figure 1-5. Am29334f29C334 Non-Pipellned Mode 
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Figure 1-6. Am29334f29C334 Plpellned Mode 



Am29325/29C325 

The Am29325/29C325 is a high-speed, single precision 
floating-point processor. It performs 32-bit floating-point 
addition, subtraction and multiplication operations in a 
single device, using either IEEE-P754, draft 10.0 or 
DEC VAX format. 

Single-Cycle Execution 

Since performance is the objective, all 
instructions-including multiply-require only one cycle to 
execute. 

No Mandatory Plpellnlng 

Although the Am29325/29C325 FPP has input and out­
put registers to make it a general purpose accelerator, 
there are no pipeline registers internal to the floating point 
array. Even the I/O registers can be made transparent. 

Three-Bus Architecture 

The Am29325/29C325, like the Am29332/29C332, has 
a three-bus architecture, with two input buses and one 
output bus, thereby providing a bus compatible accelera­
tor. This configuration provides high I/O bandwidth allow­
ing the user to take full advantage of the single cycle, 
high-speed, floating-point ALU. Naturally, the input and 
output registers may be made transparent with individual 
clock enables. In addition, the input and output registers 
may be made transparent with independent feed-

elK·1 

c:::>+--
Select and 
Enable LInes 

~ 

R 0-31 
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through controls. The rules remain consistent - the 
system architecture achieves the highest performance 
when the component architectures do not interfere. 

Powerful Instruction Set 

The Am29325/29C325 executes the following instruc­
tions: 

• Add 

• Subtract 

• Multiply 

• Constant SubtraCt 

(R plus S) 

(R minus S) 

(R times S) 

(2 minus S) 

• Integer to Floating Point Conversion 

• Floating Point to Integer Conversion 

• IEEE to DEC Format Conversion 

• DEC to IEEE Format Conversion 

The instruction (2 minus S) is provided to support the 
Newton-Raphson division algorithm. 

Internal Data Paths Support Accumulation 

The Am29325/29C325 has two internal feedback paths 
to facilitate two-cycle internal multiply-accumulate op­
eration. The F1 bus can store the results of the multiply 
operation in an input register for subsequent accumula­
tion. The F2 bus lets the output register function as an 
accumulator by making its output available as an oper­
and for the next cycle. 

S 0-31 

Floaling·Polnt ALU 

F1·BUS 

F2·BUS 

F0-31 
09372A 1-7 

Figure 1-7. Am29325/29C325 32-81t Floating Point Processor 
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Am29C325 Stand-Alone Performance 

The Am29C325 is a stand-alone CMOS Floating Point 
Processor. When used with a simple sequencer such as 
the Am29C 1 OA, it can be used as a low cost floating-point 
engine for applications requiring iterative algorithms 
such as Chebyshev and Newton-Raphson. These algo­
rithms are used extensively in guidance, image and 
signal processing, and other DSP applications. 

Programmable lID Structure 

To provide compatability with different system buses, 
controls are provided for the following options: 

• Two 32-bit input buses and one 32-bit output bus 

• One 32-bit input bus and one 32-bit output bus 

• Two 16-bit input buses and one 16-bit output bus 

The input modes affect only the manner in which 
operands are entered into the device.' The operation 

11 
I Host System Interface 

1 ~ 
Microcode DIN 

of the floating-point ALU is not altered. For example, 
in the 32-bitlone input-bus mode, the two 32-bit inputs 
are tied together and the two input operands are 
clocked into the input registers on alternate rising and 
falling edges of the clock. In the 16-bit, 3-bus mode, the 
32-bit operands are delivered on two consecutive clock 
cycles in 16-bit increments. 

Am29C327 Double-Precision 
Floating-Point Processor 

The Am29C327 double-precision floating-point proces­
sor is a high performance, single VLSI device that imple­
ments an extensive floating-point and integer instruction 
set. It can perform operations on single-, double-, or 
mixed-precision operands. The three most popular f1oat­
ing-pointformats -IEEE, DEC, and IBM - are supported. 
IEEE operations comply with the standard P754, with 
direct implementation of specialfeatures such as gradual 
underflow and trap handling. 
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Figure 1-8. Microcoded Floating Point Co-Processor 
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Flow-Through or Plpellned 

Operations can be performed in either of two modes: 
flow-through or pipelined. In the flow-through mode, the 
ALU is completely combinatorial; this mode is best suited 
for scalar operations. Pipelined mode divides the ALU 
into one or two pipe lined stages for use in vector opera­
tions, as is often found in graphics or signal processing. 

Three-Bus Architecture 

The Am29C327 has two input buses and one output bus 
- a three-bus architecture just like the Am29C325 float­
ing-point processor. It provides flexibility and ease of 
interface, making it a very high performance accelerator. 

Input/Output Modes 

The Am29C327 supports eight I/O modes which provide 
a flexible interface to a variety of 32-bit and 64-bit 
systems. The input buses can be configured as separate 
32-bit input buses or as a single 64-bit input bus. It is 
possible to load two 64-bit operands in a single clock 
cycle. The input modes are: 

32-bit, double-cycle, LSWs first 

32-bit, double-cycle, MSWs first 

32-bit, single-cycle, LSWs first 

32-bit, single-cycle, MSWs first 

64-bit, double-cycle, R first 

64-bit, double-cycle, S first 

64-bit, single-cycle, R first 

64-bit, single-cycle, S first 

Integer or Floating-Point 

In addition to supporting 32-bit and 64-bit integer opera­
tions, the Am29C327 supports the following floating­
point formats in single- or double-precision: 

IEEE P754 version 10.1 

DEC F, DEC D, and DEC G formats 

IBM system 370 format. 

Conversion between the floating-point formats and con­
version between floating-point and integer formats are 
also provided. This is a very powerful feature not avail­
able in any other architecture. 

Mixed-Precision Operations 

All Am29C327 instructions, floating-point or integer, 
can tie performed in either single-ordouble-precision op­
erands. In addition, the user can elect to mix precisions 
within an operation. All operations are internally per­
formed in double precision; the user specifies the de­
sired precision of the input and output operands. The 

1-12 

necessary precision conversions are made in concert 
with the selected operation, with no additional cycle-time 
overhead. 

Register File and Internal Datapath Support 
Compound Operations 

The ALU of the Am29C327 has three data input ports and 
can perform operations of the form (A*B)+C. An eight­
deep register file for storing immediate results used in 
recursive operations, and the on-chip 64-bit datapath, 
facilitates compound operations such as Newton-Ra­
phson division, sum-of-products, and transcendentals. 

Comprehensive Floating-Point and Integer 
Instruction Sets 

The Am29C327 implements an extensive number of 
arithmetic and logical instructions. These instructions fall 
into the following categories: 

addition/subtraction 

multiplication 

multiplication/ accumulation 

comparison 

max/min 

saturation (clipping) 

rounding to integral value 

absolute value, negation 

reciprocal seed generation 

floating-pointf- ~ floating-point conversion 

floating-pointf- ~ integer conversion 

integerf- ~ integer conversion 

pass opera!1d 

logical operations; e.g. AND, OR, XOR, NOT 

move data 

By concatenating these operations, the user can also 
perform division, square-root extraction, polynomial 
evaluation, and other functions not implemented directly. 

Am29C323 Multiplier 

The Am29C323 is a high-speed parallel 32x32-bit multi­
plier designed to speed up systems using fixed or float­
ing-point notation. 

Three-Bus Architecture 

Justlike other members of the family, the Am29C323 has 
two input buses and one output bus. This configuration 
provides high I/O bandwidth, allowing the userto take full 
advantage of the high-speed parallel multiplier core of 
the device. 
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Figure 1-10. Am29C323 32x32 Parallel Multiplier 

Multiprecision Multiplication Made Easy 

By including 32-bit shift and accumulate to generate 
partial products, the internal architecture of the 
Am29C323 supports fast multi precision multiplication. 
Both input ports have dual 32-bit registers, and the output 
port can select from a 67-bit product register, a 32-bit 
temporary register, or directly from the 32x32-bit multi­
plier array. A complete 32x32-bit clocked multiplication 
takes a single cycle (naturally - and with no pipeliningl). 
Multiprecision multiplication uses the shift and accumu­
late logic to collect partial products starting with the least 
significant product. The number of cycles depends upon 
the input data width, with three-cycle latency, as shown 
in the table below. By using the I/O registers for pipelin-

ing, much greater throughput can be achieved. For 
example, by overlapping 64x64-bit operations, a full 128-
bit product is available every four cycles. Multiplying the 
mantissas of two double-precision 64-bit floating-point 
numbers, for example, is one possible application of this 
high speed multiprecision multiplication capacity. 

Number of Cycles 

Single Overlapped 
Operands Product Operations 

32x32 1 
64x64 7 4 
96x96 12 9 

128x128 19 16 
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Registered Buses 

All buses in the device are registered, and each register 
has its own Clock Enable. The device operates from a 
single clock, ideal for microprogrammed systems. All 
ports - input, output, and instruction - can be made 
transparent independently. 

Complete Interlocking Fault Detection 

To enhance system reliability by ensuring data integrity 
and correct hardware operation, the family supports both 
master/slave fault detection and data path parity. The 
system features byte parity checking on the inputs and 
byte parity generation on the outputs of the Am29332/ 
29C332 ALU and Am29C323 32x32-bit multiplier. Also, 
the organization of the Am29334/29C334 64x18 register 
file accommodates parity bits for each byte. The parity 
mechanism assures data path integrity. Major functional 
blocks-Am29332/29C332 ALU, Am29331/29C331 
sequencer, Am29C323 32x32 bit multiplier, and 

A 

y 

Am29C327 64-bit floating-point processor-have "mas­
ter/slave fault detection" to ensure correct operation 
without having to carry parity through complex internal 
logic (shifters, mask generators, etc.) and without having 
to pay the resulting delay penalties. In master/slave 
mode, two functional units are connected in parallel 
with one unit doing the actual operation and the other 
checking the result, on a cycle-by-cycle, bit-by-bit basis. 
The master is used forthe normal data path. In the slave, 
however, all outputs become inputs, and the slave com­
pares the outputs of the master with its own internally 
generated result. If the two don't match, an error signal 
is generated, triggering an interrupt at the microin­
struction level. No specialized software is required for 
the master/slave scheme. Also, the designer can choose 
to impose redundancy at the component or board level. 
The parity mechanism and the master/slave concept, 
which use cost-effective hardware ratherthan expensive 
software, provide a comprehensive solution for fault 
tolerant systems. 

B 
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ERROR 
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Figure 1-11. Input Parity Checking / Output Parity Checking 
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Figure 1-12. Master/Slave Error Checking 
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Am29337 16-Bit Bounds Checker 

The need for simple yet sophisticated functionality and 
board space savings created the Am29337, a 16-bit 
bounds checker. This product provides inexpensive, 
easy-to-use solutions fro the following applications: 

• intelligent address decoder 

• window clipping in graphics 

• filter in DSP 

• memory protection systems 

• RISC processors 

• muHi/paraliel processors 

• logic analyzers 

• tag/data buffers 

The Am29337 compares incoming 16-bit data against 
both lower and upper bounds and reports whether the 

SIGNED 

CHAPTER 1 
Am29300/29C300 Family Overview 

data is inside or outside the bounds. It can be cascaded 
for 32-bit data and longer without sacrificing speed. 

The Am29337 is housed in a 400 mil ceramic 28-pin DIP 
for board space savings. 

User Benefits 

• Replaces MSI devices, saves board space 

• Low-cost solution compared to conventional alter­
natives 

Distinctive Features 

• Double Comparators compare a 16-bit input num­
ber"against a lower and an upper limit 

• 16-bit operation, cascadable to longer words 

• Compares signed or unsigned numbers 
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Figure 1-13_ Am29337 Block Diagram 
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Am29338 32-Bit Byte Queue 

The Am29338 is a general purpose 32-bit intelligent 
FIFO that allows up to four bytes to be queued or de­
queued in a single cycle. 

Fabricated with AM D's IMOX-S2 technology and housed 
in a 120-pin PGA, the Am29338 meets the requirements 
for a high-speed FIFO buffer with minimum real estate. 
The part will also be made available in high-speed, low­
power 1.2 micron CMOS technology. 

Features of the Am29338 include: 

• Queuing of up to 128 bytes 

• Queuing or de-queuing of up to 4 bytes at a time 

• Byte rotation on the inputs and outputs 

• Asynchronous/synchronous operations 

• Accepts 8-, 16-, 24-, and 32-bit input data 

• Repetitive queuing of block data 

• Almost empty/full signal if less than 4 bytes available 
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Significant User Benefits 

The Am29388 i,s an excellent choice for a wide variety of 
system design problems. Its benefits include: a shorter 
design cycle when compared with implementing the 
same functions with traditional FIFOs, higher perform­
ance, off-the-shelf functionality, less board space, and 
less power than the separate parts needed to combine 
this logic. 

Applications 

• Hardware mailbox between two heterogeneous 
processors 

• I/O bus buffers between a processor and 
controller 

• Instruction prefetch queue for byte addressable 
microprocessor systems 

• Write buffer between CPU and main memory 

• Bus conversions, 8-,16-, 24-, and 32-bits. 
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Figure 1-14. Am29338 Block Diagram 

1-16 



CHAPTER 1 
Am29300/29C300 Family Overview 

1.3 A.C. AND D.C. PARAMETER DEFINITIONS 

Definition of A.C. Switching Terms 

fMAX The highest operating clock frequency. 

tplH The propagation delay time from an input change to an output LOW-to-HIGH transition. 

tpHl The propagation delay time from an input change to an output HIGH-to-LOW transition. 

tpw Pulse width. The time between the leading and trailing edges of a pulse. 

t, Rise time. The time required for a signal to change from 10% to 90% of its measured values. 

tf Fall time. The time required for a signal to change from 90% to 10% of its measured values. 

ts Set-up time. The time interval for which a signal must be applied and maintained at one input terminal 
before an active transition occurs at another terminal. 

th Hold time. The time interval forwhich a signal must be retained at one input after an active transition occu rs 
at another input terminal. 

tHZ HIGH to disable. The delay time from a control input change to the output transition from the HIGH-level 
to high-impedance (measured at 0.5V change). 

tlZ LOW to disable. The delay time from a control input change to the output transition from the LOW-level 
to high-impedance transition (measured at 0.5 V change). 

tZH Enable HIGH. The delay time from a control input change to the output transition from high-impedance 
to HIGH-level. 

tZL Enable LOW. The delay time from a control input change to the output transition from high-impedance 
to LOW-level. 

Definition of D.C. Terms 

CPD Power dissipation capacitance used to determine the no-Iqad dynamic current consumption. 

H HIGH. applying to a HIGH voltage level. 

L LOW. applying to a LOW voltage level. 

I Input 

o Output 

Negative Current flowing out of the device. 
Current 

Positive Current flowing into the device. 
Current 

III LOW-level input current with a specified LOW-level voltage applied. 

IIH HIGH-level input current with a specified HIGH-level voltage applied. 

IDl LOW-level output current. 

IOH HIGH-level output current. 

Isc Output short-circuit source current. 

Icc Supply current drawn by the device from the V cc power supply. 

IOZH Three-state off-state output current. HIGH- level voltage applied. 

lozl Three-state off-state outpu~ current. LOW- level voltage applied. 
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Vee The range of supply voltage over Which the device is guaranteed to operate. 

V1L The highest input voltage that is guaranteed to be recognized by the device as a logic lOW. 

V1H The lowest input voltage that is guaranteed to be recognized by the device as a logic HIGH. 

VOL The highest logic lOW voltage guaranteed at the output terminal while sinking the specified load current 
IOL· 

VOH The lowest logic HIGH voltage guaranteed at the output terminal when sourcing the specified source 
current low 

lEE The supply current drawn by the device from the VEE power supply for an ECl circuit. 

VEE Most negative power supply for an ECl circuit. 
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CHAPTER 2 

CMOS Family 

Am29C331 CMOS 16-Bit Microprogram Sequencer 

Am29C332 CMOS 32-Bit Arithmetic Logic Unit 

Am29C334 CMOS Four-Port Dual-Access Register File 

Am29C325 CMOS 32-Bit Floating-Point Processor­

Am29C327 CMOS Double-Precision Floating-Point Processor-

• Front page only of data sheet. See Chapter 4 for complete data sheet. 
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Am29C331 
CMOS 16-Bit Microprogram Sequencer 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• 16-Bits Address up to 64K Words 
Supports 110-ns microcycle time for a 32-bit high­
performance system when used with the other 
members of the Am29C300 Family. 

• Speed Select 
Supports 80-ns system cycle time. 

• Real-Time Interrupt Support 
Micro-trap and interrupts are handled transparently 
at any microinstruction boundary. 

• Built-In Conditional Test Logic 
Has twelve external test inputs, four of which are 
used to internally generate an additional four test 
conditions. Test multiplexer selects one out of 16 
test inputs. 

• Break-Point Logic 
Built-in address comparator allows break-points in 
the microcode for debugging and statistics collection. 

• Master/Slave Error Checking 
Two sequencers can operate in parallel as a master 
and a slave. The slave generates a fault flag for 
unequal results. 

• 33-Level Stack 
Provides support for interrupts, loops, and subrou­
tine nesting. It can be accessed through the D-bus 
to support diagnostics. 

GENERAL DESCRIPTION 

The Am29C331 is a 16-bit wide, high-speed single-chip 
sequencer designed to control the execution sequence of 
microinstructions stored in the microprogram memory. The 
instruction set is designed to resemble high-level language 
constructs, thereby bringing high-level language program­
ming to the micro level. 

The Am29C331 is interruptible at any microinstruction 
boundary to support real-time interrupts. Interrupts are 
handled transparently to the microprogrammer as an unex­
pected procedure call. Traps are also handled transparent­
ly at any microinstruction boundary. This feature allows re­
execution of the prior microinstruction. Two separate buses 
are provided to bring a branch address directly into the chip 
from two sources to avoid slow turn-on and turn-off times 
for different sources connected to the data-input bus. Four 

sets of multiway inputs are also provided to avoid slow turn­
on and turn-off times for different branch-address sources. 
This feature allows implementation of table look-up or use 
of external conditions as part of a branch address. The 
33-deep stack provides the ability to support interrupts, 
loops, and subroutine nesting. The stack can be read 
through the D-bus to support diagnostics or to implement 
multitasking at the micro-architecture level. The master/ 
slave mode provides a complete function check capability 
for the device. 

Fabricated using Advanced Micro Devices' 1.6 micron 
CMOS process, the Am29C331 is powered by a single 5-
volt supply. The device is housed in a 120-terminal pin-grid 
array package. 
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RELATED AMD PRODUCTS 

Part No. Description 

Am29114 Vectored Priority Interrupt Controller 

Am29116 High·Performance 8ipolar 16-8it Microprocessor 

Am29C116 High-Performance CMOS 16:8it Microprocessor 

Am29PL141 Field-Programmable Controller 

Am29C323 CMOS 32-8it Parallel Multiplier 

Am29325 32-8it Floating-Point Processor 

Am29C325 CMOS 32-8it Floating-Point Processor 

Am29332 32-8it Extended Function ALU 

Am29C332 CMOS 32-8it Extended Function ALU 

Am29334 64 x 18 Four-Port, Dual-Access Register File 

Am29C334 CMOS 64 x 18 Four-Port Dual-Access Register File 

Am29337 16-8it 80unds Checker 

Am29338 8yte Queue 
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Figure 1. Am29C331 Detailed Block Diagram 
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CONNECTION DIAGRAM 

120-Lead PGA* 
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PIN DESIGNATIONS 
(Sorted by Pin No.) 

PIN NO. PIN NAME 
PAD PIN 

PIN NAME 
PAD PIN 

PIN NAME 
PAD PIN 

PIN NAME 
PAD 

NO. NO. NO. NO. NO. NO. NO. 

C-S Y2 115 H-2 M3.3 10 M-5 A13 80 
C-6 GNO 113 H-3 vee 68 M-6 012 81 
C-7 A4 52 H-11 10 34 M-7 Y12 82 
C-8 Vee 53 H-12 S1 95 M-8 Y11 25 

A-1 MO. 0 1 C-g Ys 109 H-13 S3 94 M-9 A10 86 
A-2 00 120 C-10 Y6 48 J-1 GNO 11 M-10 Og 87 
A-3 Vee 59 c-n T3 44 J-2 EQUAL 71 M-11 Os 89 
A-4 A1 58 C-12 T2 104 J-3 A-FULL 70 M-12 As 30 
A-5 GNO 56 C-13 Tg 41 J-11 Vee 37 M-13 Is 91 
A-6 A3 114 0-1 M2,1 4 J-12 Vee 38 N-1 01S 16 
A-7 Y3 54 0-2 M1,1 63 J-13 Vee 39 N-2 A1S 76 
A-8 05 51 0-3 Mo,1 3 K-1 RST 13 N-3 Vee 17 
A-9 GNO 50 0-11 T6 102 K-2 OED 72 N-4 Y14 19 
A-10 06 49 0-12 Ts 43 K-3 ERROR 12 N-S GNO 20 
A-11 Vee 47 0-13 T4 103 K-11 13 92 N-6 Y13 21 
A-12 A7 106 E-1 ein 5 K-12 12 33 N-7 011 24 
A-13 Y7 46 E-2 MO,2 65 K-13 11 93 N-8 A11 84 
B-1 M1,0 61 E-3 M3,1 64 L-1 INTR 14 N-9 GNO 26 
B-2 Ao 60 E-11 GNO 97 L-2 INTEN 74 N-10 Ag 28 
B-3 Yo 119 E-12 GNO 98 L-3 INTA 73 N-11 Vee 29 
B-4 Y1 117 E-13 GNO 99 L-4 014 18 N-12 Ys 90 
B-5 A2 116 F-1 M1,2 6 L-5 013 79 N-13 Fe 31 
B·6 03 55 F-2 M2,2 66 L-6 GNO 23 
B-7 04 112 F-3 GNO 8 L-7 A12 22 
B-8 Y4 111 F-11 T1Q 100 L-8 Vee 83 
B-9 As 110 F-12 T7 42 L-9 010 85 
B-10 A6 108 F-13 Ts 101 L-10 Y1Q 27 
B-l1 07 107 G-1 M1,3 9 L-11 Yg 88 
B-12 T1 45 G-2 MO,3 67 L-12 14 32 
B-13 To 105 G-3 M3,2 7 L-13 S2 35 
C-1 M2,O 2 G-11 T11 40 M-1 SLAVE 75 
C-2 M3,0 62 G-12 So 36 M-2 HOLO 15 
C-3 01 118 G-13 ep 96 M-3 Y1S 77 
C-4 02 57 H-1 M2,3 69 M-4 A14 78 
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PIN DESIGNATIONS 
(Sorted by Pin Name) 

PIN NAME 
PIN PAD 

PIN NAME 
PIN PAD 

PIN NAME 
PIN PAD 

PIN NAME 
PIN PAD 

NO. NO. NO. NO. NO. NO. NO. NO. 

- - 37 Os M·l1 89 INTEN L·2 74 TS 0-11 102 
- - 39 Og M-l0 87 INTR L-l 14 T7 F-12 42 
- - 97 010 L-9 85 MO, 0 A-l 1 TS F-13 101 
- - 99 011 N-7 24 MO,l 0-3 3 Tg C-13 41 

A-FULL J-3 70 012 M-6 81 Mo, 2 E-2 65 Tl0 F-ll 100 
AO 8-2 60 013 L-5 79 MO,3 G-2 67 Tll G-ll 40 
Al A-4 58 014 L-4 18 Ml,O 8-1 61 GNO J-l 11 
A2 8-5 116 015 N-l 16 Ml,l 0-2 63 GNO N-5 20 
A3 A-6 114 GNO E-12 97 Ml,2 F-l 6 GNO A-9 50 
A4 C-7 52 GNO E-13 98 Ml,3 G-l 9 GNO N-9 26 
As 8-9 110 GNO E-ll 99 M2,O C-l 2 GNO A-5 56 
As 8-10 108 GNO F-3 8 M2,l 0-1 4 Vee N-3 17 
A7 A-12 106 GNO L-6 23 M2,2 F-2 66 Vee N-ll 29 
As M-12 30 GNO C-6 113 M2,3 H-l 69 Vee A-3 59 
Ag N-l0 28 Vee J-13 38 M3,O C-2 62 Vee A-ll 47 
Al0 M-9 86 Vee H-3 68 M3,l E-3 64 Vo 8-3 119 
All N-8 84 Vee C-8 53 M3,2 G-3 7 Vl 8-4 117 
A12 L-7 22 Vee L-8 83 M3,3 H-2 10 V2 C-5 115 
A13 M-5 80 Vee J-12 37 OED K-2 72 V3 A-7 54 
A14 M-4 78 Vee J-ll 39 RST K-l 13 V4 8-8 111 
A1S N-2 76 EQUAL J-2 71 So G-12 36 Vs C-9 109 

Cln E-l 5 ERROR K-3 12 Sl H-12 95 Vs C-l0 48 
CP G-13 96 FC N-13 31 S2 L-13 35 V7 A-13 46 
Do A-2 120 HOLD M-2 15 S3 H-13 94 Va N-12 90 
01 C-3 118 10 H-ll 34 SLAVE M-l 75 Vg L-l1 88 
02 C-4 57 11 K-13 93 To 8-13 105 Vl0 L-l0 27 
03 8-6 55 12 K-12 33 Tl 8-12 45 Vll M-8 25 
04 8-7 112 13 K-ll 92 T2 C-12 104 V12 M-7 82 
Os A-8 51 14 L-12 32 T3 C-ll 44 V13 N-6 21 
Os A-l0 49 Is M-13 91 T4 0-13 103 V14 N-4 19 
07 8-11 107 INTA L-3 73 Ts 0-12 43 V1S M-3 77 
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LOGIC SYMBOL 

CP A-FULL 
rn 
FC INTA 
INTR 
INTEN EQUAL 

HOLD 
ERROR 

OED 
SLAVE 

16 

LS002872 

ORDERING INFORMATION 

Standard Products 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is 
formed by a combination of: a. Device Number 

AM29C331 

b. Speed Option (if applicable) 
c. Package Type 
d. Temperature Range 
e. Optional Processing 

.Q.

1 

t'--_____ e. OPTIONAL PROCESSING 

'-----------d. ::;~::::: :~:::ing 
C ~ Commercial (0 to + 70°C) 

'-------------c. PACKAGE TYPE 
G = 120-Lead Pin Grid Array withoUt Healsink 

(CGX120) 

'------------------b. SPEED OPTION 

a. DEVICE NUMBER/DESCRIPTION 
Am29C331 
CMOS 16-Bit Microprogram Sequencer 

-' 1 = Speed Select 
- 2 - Speed Select (TBD) 

Valid Combinations 

Valid Combinations 
Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly rE!leased valid combinations, 
and to obtain additional data on AMD's standard military 
grade products. 

AM29C331i 
AM29C331-1 I GC, GCB 
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MILITARY ORDERING INFORMATION 

APL Products 

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved 
Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL 
products is formed by a combination of: a_ Device Number 

b_ Speed Option (if applicable) 
c. Device Class 
d. Package Type 
e. Lead Finish 

AM29C331 .iii 

.Q.1I------e. LEAD FINISH 
C=Gold 

'----------d. PACKAGE TYPE 
Z = 120-Lead Pin Grid Array without Heatsink 

(CGXI20) 

'-------------c. DEVICE CLASS 
/B = Class B 

- 8. DEVICE NUMBER/DESCRIPTION 
Am29C331 
CMOS 16-Bit Microprogram Sequencer 

l Valid Combinations 

I AM29C331 I /BZC I 

b. SPEED OPTION 
Not Applicable 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations or to check for newly released valid 
combinations. 
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Group A Tests 

Group A tests consist of Subgroups 
I, 2, 3, 7, 8, 9, 10, 11. 



PIN DESCRIPTION 

AO - A 15 Alternate Data (Input) 
Input to address multiplexer and counter. 

A-FULL Almost Full (Bidirectional; Three-State) 
Indicates that 28 ,,;;; SP ,,;;; 63 (meaning there are five or less 
empty locations left on stack). Also active during stack 
underflow. . 

Cin Carry In (Input, Active LOW) 
Carry-in to the incrementer. 

CP Clock Pulse (Input) 
Clocks sequencer at the LOW-to-HIGH transition. 

Do - 015 Data (Bidirectional, Three-State) 
Input to address multiplexer, counter, stack, and comparator 
register. Output for stack and stack pointer. 

EQUAL Equal (Bidirectional, Three-State) 
Indicates that the address comparator is enabled and has 
found a match. 

ERROR Error (Output) 
Indicates a master/slave error in the slave mode. Indicates 
a malfunctioning driver or contention of any output in the 
master mode. 

FC Force Continue (Input) 
Overrides instruction with CONTINUE. 

HOLD Hold (Input) 
Stops the sequencer and three-states the outputs. 

FUNCTIONAL DESCRIPTION 

Architecture 

The major blocks of the sequencer are the address multiplex­
er, the address register (AR), the stack (with the top of stack 
denoted TOS), the counter (C), the test multiplexer with logic, 
and the address comparison register (R) (Figure 1). The 
bidirectional D-bus provides branch addresses and iteration 
counts; it also allows access to the stack from the outside. 
The A-bus may be used for map addresses. There are four 
sets of four-bit multiway branch inputs (M). The bidirectional Y­
bus either outputs microprogram addresses or inputs interrupt 
addresses. The buses are all 16 bits wide. Figure 1 shows a 
detailed block diagram of the sequencer. 

Address Multiplexer 

The address multiplexer can select an address from any of 
five sources: 

1) A branch address supplied by the D-bus 

2) A branch address supplied by the A-bus 
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10 - 15 Instruction (Input) 
Selects one of 64 instructions. 

INTA Interrupt Acknowledge (Bidirectional; Three­
State, Active LOW) 

Indicates that an interrupt is accepted. 

INTEN Interrupt Enable (Input) 
Enables interrupts. 

INTR Interrupt Request (Input) 
Requests the sequencer to interrupt execution. 

Mo-3, 0-3 Multlway (Input) 
Four sets of multiway inputs providing 16-way branches. 
The first index refers to the set number. 

OED Output Enable - O-Bus (Input) 
Enables the D-bus driver, provided that the sequencer is not 
in the hold or slave mode. 

RST Reset (Input; Active LOW) 
Resets the sequencer. 

So - S3 Select (Input) 
Selects one of 16 test conditions. 

SLAVE Slave (Input) 
Makes the sequencer a slave. 

To - T 11 Test (Input) 
Provides external test inputs. 

YO-Y15 Address (Bidirectional; Three-State) 
Output of microcode address. Input for interrupt address. 

3) A multiway-branch address 

4) A return or loop address from the top of stack 

5) The next sequential address from the incrementer 

Multiway-Branch Address 

A multiway-branch address is formed by substituting the lower 
four bits of the address on the D-bus (D3, D2, D" Do) with one 
of the four sets (MoX, M1X, M2X, or M3X) of four-bit multiway­
branch addresses. The multiway-branch set is selected by the 
number D, Do, while the bits D3 and D2 are "don't cares" (see 
Figure 2). 

01 Do Multiway Set Selected 

0 0 Mox 

0 M,x 

0 M2X 

M3X 



Branch 
Address 

Multiway Inputs 

o 

~~ress IY15 
YOI 

,,'------------'--y--' r Table 4 (MaX) I 
T Base Address • ~ Table 3 (M2X) I 

L Table 2 (M1X) I 
'--

-

Table 1 (MOX) o 
1 
2 
o 

o 
'--____ ....115 

Lookup Table 

B0007460 

Notes: 1. 01 and DO select one out of four multiway sets. Oa and 02 are "don't cares." 
2. Each set of Max - Mox can select one of sixteen locations. The multiway-branch address is the 

concatenation of 015 - 04 (base address) and Mxa - Mxo. 
3. For a given base address, there can be four look-up tables, each sixteen deep. 

Figure 2. Multiway Branch 

Address Register and Incrementer 

The address register contains the current address. It is loaded 
from the interrupt multiplexer and feeds the incrementer. The 
incrementer is inhibited if GiN is taken HIGH. 

Stack 

A 33-word-deep and 16 bit-wide stack provides first-in last-out 
storage for return addresses, loop addresses, and counter 
values. Items to be pushed come from the incrementer, the 
interrupt-return-address register, the counter, or the O-bus. 
Items popped go to the address multiplexer, the counter, or 
the O-bus. 

The access to the stack via the O-bus may be used for context 
switching, stack extension, or diagnostics. As the stack is only 
accessible from the top, stack extension is done by temporari­
ly storing the whole or some lower part of the stack outside the 
sequencer. The save and the later restore are done with pop 
and push operations, respectively, at balanced points in the 
microprogram; for example, points with the same stack depth. 
The internal O-bus driver must be turned on when popping an 
item to the O-bus; if the driver is off, the item will be unstacked 
instead. The driver is normally turned on when the Output 
Enable signal is asserted and the sequencer is not being reset . 
(OED = 1, RST = 1). 

The stack pointer is a modulo 64 counter, which is increment­
ed on each push and decremented on each pop. The stack 
pointer is reset to zero when the sequencer is reset, but the 
pointer may also be reset by instruction. Thus, the stack 
pointer indicates the num.ber of items on the stack as long as 
stack overflow or underflow has not occurred. Overflow 
happens when an item is pushed onto a full stack, whereby 
the item at the bottom of the stack is overwritten. Underflow 
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happens when an item is popped from an empty stack; in this 
case the item is undefined. 

In the case of stack overflow, the SP is incremented for every 
push aiter overflow. Thus, immediately aiter the first occu­
rence of stack overflow, the SP will be equal to 34. Subse­
quent pushes will increment the SP to 35, 36 ... 61, 62, 63, 0, 
1, etc. In the case of stack underflow, the SP is decremented 
for every pop after underflow. Thus, immediately aiter the first 
occurrence of stack underflow, the SP will be equal to 63. 
Subsequent pops will decrement the SP to 62, 61, ... 2,1,0, 
63, etc. 

The contents of the stack pointer are present on the O-bus for 
all instructions except POP 0, provided the driver is turned on. 
The output signal, A-FULL, is active under the following 
condition: 28";; SP ..;; 63. 

Counter 

The counter may be used as a loop counter. It may be loaded 
from the O-bus, the A-bus, or via a pop from the stack. Its 
contents may also be pushed onto the stack. 

A normal for-loop is set up by a FOR instruction, which loads 
the counter from the 0- or A-bus with the desired number of 
iterations; the instruction also pushes onto the stack a loop 
address that points to the next sequential instruction. The end 
of the loop is given by an unconditional END FOR instruction, 
which tests the counter value against the value one and then 
decrements the counter. If the values differ, the loop is 
repeated by selecting the address at the stack as the next 
address. If the values are equal, the loop is terminated by 
popping the stack, thereby removing the loop address, and 
selecting the address from the incrementer as the next 
address. The number of iterations is a 16·bit unsigned number, 
except that the number zero corresponds to 65,536 iterations. 



By pushing and popping counter values it is possible to handle 
nested loops. 

Address Comparison 

The sequencer is able to compare the address from the 
interrupt multiplexer with the contents of the comparator 
register. The instruction SET loads the comparator register 
with the address on the D-bus and enables the comparison, 
while CLEAR disables it. The comparison is disabled at reset. 
A HIGH is present at the output EQUAL if the comparison is 
enabled and the two addresses are equal. The comparison is 
useful for detection of a break point or counting the number of 
times a microinstruction at a specific address is executed. 

Instruction Set 

The sequencer has 64 instructions that are divided into four 
classes of 16 instructions each. The instruction lines 10 -15 
use 15 and 14 to select a class, and 10 -13 to select an 
instruction within a class. The classes are: 

15 14 Classes 
o 0 Conditional sequence control, 
o 1 Conditional sequence control with inverted 

polarity, 
o Unconditional sequence control, and 
1 Special function with implicit continue. 

Note that for the first three classes 15 forces the condition to 
be true and 14 inverts the condition. The basic instructions of 
the first three classes are shown in Table 1 and the instruc­
tions of the fourth class in Table 2. 

Structured microprogramming is supported by sequencer 
instructions that singly or in pairs correspond to high-level 
language control constructs. Examples are FOR I: = D DOWN 
TO 1 DO ... END FOR and CASE N OF ... END CASE. The 
instructions have been given high-level language names 
where appropriate. Figure 2 shows how to microprogram 
important control constructs; the high-level language is on the 
left and the microcode on the right. 

Test Conditions 

The condition for a conditional instruction is supplied by a test 
multiplexer, which selects one out of sixteen tests with the 
select lines So - S3. Twelve of these are supplied directly by 
the inputs To - TIl, while the remaining four tests are generat­
ed by the test logic from the inputs T a - TIl. The following 
table shows the assignments. 

(So - S3)H Test Intended Use 

0-7 To-T7 General 
8 Ta C (Carry) 
9 Tg N (Negative) 
A Tl0 V (Overflow) 
B T11 Z (Zero or equal) 
C Ta+ Tll C + Z (Unsigned less 

than or equal, borrow mode) 
D 'fij +T11 ~ + Z (Unsigned less 

than or equal) 
E TgEllTl0 N Ell V (Signed less than) 
F (TgEllTl0) +Tll (N Ell V) + Z (Signed less 

than or equal) 

Force Continue 

The sequencer has a force continue (FC) input, which over­
rides the instruction inputs 10 -15 with a CONTINUE instruc­
tion. This makes ii possible to share the microinstruction field 
for the sequencer instruction with some other control or to 
initialize a writable control store. 

Reset 

In order to start a microprogram properly, the sequencer must 
be reset. The reset works like an instruction overriding both 
the instruction input and the force continue input. The reset 
selects the address 0 at the address multiplexer, forces the 
EQUAL output to LOW, and disregards a potential interrupt 
request. It synchronously disables the address comparison 
and initializes the stack pointer to O. The contents of the stack 
are invalid after a reset. 
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TABLE 1. INSTRUCTION SET for 1514 = 00, 01, 10 

Cond.: Fail 
15- 10 Instruction Y 

00, 10, 20 Goto 0 INC 
01, 11, 21 Call 0 INC 
02, 12, 22 Exit 0 INC 
03, 13, 23 End for 0, C'*l INC 

End for 0, C = 1 INC 
04, 14, 24 Goto A INC 
05, 15, 25 Call A INC 
06, 16, 26 Exit A INC 
07, 17, 27 End for A, C '* 1 INC 

End for A, C = 1 INC 
08, 18, 28 Goto M INC 
09, 19, 29 Call M INC 
OA, lA, 2A Exit M INC 
OB, lB, 2B End for M, C'*l INC 

End for M, C = 1 INC 
OC, lC, 2C End Loop INC 
00, 10,20 Call Coroutine INC 

OE, lE, 2E Return INC 
OF, lF, 2F End for, C'*l INC 

End for, C= 1 INC 

Condo = (Test [S J OR 15) XOR 14 
= Concatination 

C = Counter 

Stack 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Pop 
-

-
Pop 
Pop 

Cond.: Pass 
y Stack 

0 -
0 Push INC 
0 Pop 
0 -

INC -
A -
A Push INC 
A Pop 
A -

INC -
D:M -
D:M Push INC 
D:M Pop 
D:M -
INC -
TOS -
TOS Pop & 

Push INC 
TOS Pop 
TOS -
INC Pop 

INC = Output of Incrementer = AR + 1 (if Cin = LOW) 

Counter 

-
-
-
C-C-l 
C-C-l 
-
-
-
C-C-l 
C-C-l 
-
-
-
C-C-l 
C-C-l 
-
-

-
C-C-l 
C-C-1 

Note: For unconditional instructions, the action marked under "Cond: Pass" is taken. 

TABLE 2. INSTRUCTION SET for 1514 = 11 

15- 10 Instruction Y Stack Counter Compo 

30 Continue INC - - -
31 For 0 INC Push INC C-D -
32 Decrement INC - C-C-l -
33 Loop INC Push INC - -
34 Pop 0 INC Pop - -
35 Push 0 INC Push 0 - -
36 Reset SP INC SP-O - -
37 For A INC Push INC C-A -
38 Pop C INC Pop C-TOS -
39 Push C INC Push C - -
3A Swap INC TOS+-C C-TOS -
3B Push C Load 0 INC Push C C+-D -
3C Load 0 INC - C-D -
3D Load A INC - C ..... A -

Compo 

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-

3E Set INC - - R-D, Enable 
3F Clear INC - - Disable 

R = Compo Register 
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D-Mux 

SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 

II 

SP 
SP 
SP 

SP 
SP 
SP 

D·Mux 

SP 
SP 
SP 
SP 

TOS 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 



Interrupts 

The sequencer may be interrupted at the completion of the 
current microcycle by asserting the interrupt request input 
INTR. The return address of the interrupted routine is saved 
on the stack so that nested interrupts can be easily imple­
mented. An interrupt is accepted if interrupts are enabled and 
the sequencer is not being reset or held (INTEN = HIGH, 
RST = HIGH, and HOLD = LOW). The interrupt-acknowledge 
output (INTA) goes LOW when an interrupt is accepted. 

When there is no interruPt, addresses go from the address 
multiplexer to the Y-bus via the driver, and to the address 
register and the comparator via the interrupt multiplexer. When 
there is an interrupt, the driver of the sequencer is turned off, 
an external driver is turned on, and the interrupt multiplexer is 
switched. The interrupt address is supplied via the external 
driver to the V-bus, the address register, and the comparator 
(Figure 4). In order to save the address from the address 
multiplexer, the address is stored in the interrupt return 
address register, which for simplicity is clocked every cycle. 
The next microinstruction is the first microinstruction of the 
interrupt routine (Figure 5). 

In this cycle the address in the interrupt return address register 
is automatically pushed onto the stack. Therefore the microin­
struction in this cycle must not use the stack; if a stack 
operation is programmed, the result is undefined. The instruc­
tions that do not use the stack are GOTO D, GOTO A, GOTO 
M, CONTINUE, DECREMENT, LOAD D, LOAD A, SET and 
CLEAR. A RETURN instruction terminates the interrupt routine 
and the interrupted routine is resumed. Interrupts only work 
with a single-level control path. 

Traps 

A trap is an unexpected situation linked to current microin­
struction that must be handled before the microinstruction 
completes and changes the state of the system. An example 
of such a situation is an attempt to read a word from memory 
across a word boundary in a single cycle. When a trap occurs, 
the current microinstruction must be aborted and re-executed 
after the execution of a trap routine, which in the meantime will 
take corrective measures. An interrrupt, on the other hand, is 
not linked directly to the current microinstruction that can 
complete safely before an interrupt routine is executed. 

Execution of a trap requires that the sequencer ignore the 
current microinstruction, select the trap return address at the 
address multiplexer, and initiate an interrupt. This will save the 
trap return address on the stack and issue the trap address 
from an external source (Figure 6). The address register 

contains the address of the microinstruction in the pipeline 
register, thus the address register already contains the trap 
return address when a trap occurs. This address can be 
selected by the address multiplexer by disabling the incremen­
ter (CIN = 1), and using the force continue mode (FC = 1). In 
this mode the sequencer ignores the current microinstruction. 
The remaining part of the trap handling is done by the interrupt 
(Figure 7), thus the section on interrupts also applies to traps. 
There is one exception, however. The interrupt enable cannot 
be used as a trap enable as it does not control the force 
continue mode and the carry-in to the incrementer. 

Hold Mode 

The sequencer has a hold mode in which the operation is 
suspended. 

The outputs (Y, INTA, A-FULL & EQUAL) are disabled and the 
sequencer enters the hold mode immediately after the HOLD 
signal goes active. While the sequencer is in this mode, the 
internal state is left unchanged and the D-bus is disabled. The 
outputs (Y, INTA, A-FULL & EQUAL) are enabled again and 
the sequencer leaves the hold mode after the cycle immedi­
ately after the HOLD signal goes inactive. 

In a time-multiplexed multi-microprocess system there may be 
one sequencer for all processes with microprogrammed con­
text save and restore, or there may be one sequencer per 
microprocess permitting fast process switch. In the latter case 
the V-buses of the sequencers are tied together and connect­
ed to a single microprogram store. A control unit decides on a 
cycle-by-cycle basis what sequencer should be running, and 
activates the HOLD signal to the remaining sequencers. The 
hold mode has higher priority than interrupts, and works 
independently of the reset. The hold mode can only be used 
with a single-level control path. 

Master ISlave Configuration 

In some systems reliability is very important. The master/slave 
configuration that consists of two sequencers ope~ated in 
parallel is able to detect faults in both the interconnect and the 
internal function of the sequencers. One sequencer is the 
master and operates normally. The other is the slave, i.e., all 
outputs except the signal ERROR are turned into inputs and 
connected to the outputs of the master. Since the slave is 
operated in parallel with the master, it -can compare its result 
with the result of the master and signal an error if they differ. 
The error signal from the master indicates a malfunctioning 
driver or contention. Because a TTL output goes HIGH when 
power is missing, the ERROR signal also indicates power 
failure. 
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High-Level Language Constructs 

An example of high-level language constructs using Am29C331 instructions is given in Figure 3 (3-1, 3-2, 3-3, and 3-4), 

REPEAT LOOP FOR CNT: = 10 DOWN TO 1 DO FOR 0 10 
- - - -
- - - -

UNTIL CC END LOOP NOT CC END FOR END FOR 

WHILE CC DO LOOP Figure 3-2. Loop with Known Number of 
IF NOT CC THEN EXIT L Iterations 

- -
- -

END WHILE END LOOP 
L: 

LOOP LOOP 
- -

IF CC THEN EXIT IF CC THEN EXIT L 
-

END LOOP END LOOP 
L: 

Figure 3-1. Loops with Unknown Number 
of Iterations 

PUSH 0 B PUSH 0 C 
CASE I OF GOTO M IF X THEN IF NOT X THEN GOTO A 
0: - A: - IF Y THEN IF NOT Y THEN GOTO B 

- -, RETURN (TO B) - -
1: - A+2: - - -, RETURN (TO C) 

- -, RETURN (TO B) ELSE B: 
2: - A+4: - - -

- -, RETURN (TO B) - -, RETURN (TO C) 
3: - A+6: - END IF 

- -, RETURN ELSE A: 
END CASE B: IF Z THEN IF NOT Z THEN GOTO 0 

- -
- -, RETURN (TO D) 

Figure 3-3. Case Statement ELSE 0: 
(with D = A15 ... A4XXOO and - -
Mo, 0 - 3 = A311100 during the - -, RETURN (TO C) 

GOTO M instruction. A1AO must END IF 
be 00, and X signifies a don't END IF C: 
care.) 

Figure 3-4. Double-Nested If Statement 
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WhIle executing tho Inot. ot A. thO - 10 EJ 
IntOl'l'uptod and directed to B. 

Executing al A. Slac:k 

A : Continue 
A ... l: ... ~JX 
8 : Conlinue 
8+1: .. --1 L 

A+l I I I I , A ··········'··i 

I ~ ~~ts:.l~J 
LEJ I 

616 
8 

V 
On 

8~'1 
~~ 

8 

AF004191 

Figure 4. Am29C331 Interrupt Cycle 1 

A 'rap occurs at the insl. A. and the seq. i& 
directed to B. 

A : InllrUCIion Trapped 8y FC = 1. 
c.;; = I. INTR = I 

A .. l: .. 

8 : Continue I I I I B+1: 

011 

tJ 
V 

On • 

·-t>-l 
8 

" 
,., .. _·._.}--8 

AFOO4201 

Figure 6. Am29C331 Traps Cycle 1 
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Figure 5. Am29C331 Interrupt Cycle 2 
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Legend: • = Other instruction 

Instruction Set Definition 

P = Test pass 
F = Test fail o = Instruction being described 

CC = (Test [53 - So]) o = Register in part 

Opcode 
(15- 10) Mnemonics 

20H BRA - 0 

24H BRA_A 

28H BRA_ M 

Note: Opcode numbers are in hexadecimal notation. 

Description 

GOTO 0 
Unconditional branch to the address specified 
by the 0 inputs. The 0 port must be disabled to 
avoid bus contention. 

GOTO A 
Unconditional branch to the address specified 
by the A inputs. 

GOTO Multiway (0,5 - 04 MX3 - Mxo) 
Unconditional branch to the address specified 
by the M inputs concatenated with the 0 input. 
The lower four bits on the 0 bus (03 - DO) are 
replaced by one of the four sets of the four-bH 
multiway branch addresses. The multiway 
branch set is selected by bits 0, and Do while 
bits 03 and 02 are "don't cares." 

GOTO TOS 
UncondHional branch to the add,ess on the top 
of the stack. 

IF CC THEN GOTO 0 
ELSE CONTINUE 
If CC is HIGH (pass), branch to the address 
specified by O. If CC is LOW (fail), continue. 
The 0 port must be disabled to avoid bus 
contention. 

IF CC THEN GOTO A 
ELSE CONTINUE 
If CC is HIGH (pass), branch to the address 
specified by A. If CC is LOW (fail), continue. 

IF CC THEN GOTO Multiway 
(0,5 - 04 MX3 - Mxo) 
ELSE CONTINUE 
If CC is HIGH (pass), branch to the address 
specified by 0 inputs concatenated with the M 
inputs. If CC is LOW (fail) continue. The lower 
four bits on the 0 bus (03 - DO) are replaced by 
one of the four sets of the 4-bit multiway 
branch addresses. The multiway branch set is 
selected by bits 0, and Do while bits 03 and 02 
are "don't cares." 

IF CC THEN GOTO TOS 
ELSE 
POP STACK 
CONTINUE 
If CC is HIGH (pass), branch to the address on 
the top of the stack. If CC is LOW (fail), pop the 
stack and continue. 

2-15 

Execution Example 

50 

51 

52c!>-- 90 
91 

92 

PF001730 

50 

51 

53@;;- 90 

91 

92 

PF001740 



Opcode 
(Is-Ia) Mnemonics Description Execution Example 

IOH BRNC_D IF NOT CC THEN GOTO D 
ELSE CONTINUE 
If CC is LOW (pass), branch to the address 
specified by D. If CC is HIGH (fail), continue. 
The D Port must be disabled to avoid Bus 
contention. 

14H BRNC_A IF NOT CC THEN GOTO A 50 

ELSE CONTINUE 
If CC is LOW (pass), branch to the address 

51 specnied by A. If CC is HIGH (fail), continue. 

ISH BRNC_ M IF NOT CC THEN GOTO Multiway 

~rF (D15 - D4 MX3 - Mxo) 
ELSE CONTINUE 
If CC is LOW (pass), branch to the address 53 e:>p- 110 
specified by D inputs concatenated with the M 
inputs. If CC is HIGH (fail), continue. The lower 
four bits on the D bus (D3 - Do) are replaced by 91 
one of the four sets of the 4-bit. multiway 
branch addresses. The multiway branch set is 

92 selected by bits Dl and Do while bits D3 and D2 
are "don't cares." 

PFOOl750 
ICH BRNC_ S IF NOT CC THEN GOTO TOS 

H,SE 
POP STACK 
CONTINUE 
If CC is LOW (pass), branch to the address on 
the top of the stack. If CC is HIGH (fail), pop the 
stack and continue. 

21H CALL_ D CALL D 
Unconditional branch to the subroutine 
specified by the D inputs. Push the return 
address (ilddress Reg. + I) on the stack. The 
D port must be disabled to avoid bus 
contention. 

25H CALL_A CALL A 50 

Unconditional branch to the subroutine STACK 
specified by the A inputs. Push the return 51 ()-- PC.., 1 address (Address Reg. + I) on the stack. , 53 

29H CALL_ M CALL Multiway (D15 - D4 MX3 - MXO) 52~ 90 Unconditional branch to the subroutine 
specified by the D inputs concatenated with the 
multiway inputs. Push the return address 53 

~ 
91 

(Address Reg. + I) on the ,stack. The lower 
four bits on the D bus (D3 - Do) are replaced by 
one of the four sets of the 4-bit multiway 54 92 

branch addresses. The multiway branch set is 
selected by bits Dl and Do while bits D3 and D2 
are "don't cares." 

PFOQI760 
2DH CALL_S CALL TOS 

Unconditional branch to the subroutine 
specified by the address on the top of the 
stack. The stack is popped and the return 
address (Address Reg. + I) is then pushed 
onto the stack. 

-

Note: Opcode numbers are in hexadecimal notation. 
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Opcode 
(15- 10) Mnemonics Description Execution Example 

OIH CCC_ 0 IF CC, THEN CALL 0 
ELSE CONTINUE 
If CC is HIGH (pass), call the subroutine 
specified by the 0 inputs. Push the return 
address (Address Reg. + I) on the stack. If CC 
is LOW (fail), continue. The 0 port must be 
disabled to avoid bus contention. 

05H CCC_A IF CC, THEN CALL A 
ELSE CONTINUE 50 
If CC is HIGH (pass), call the subroutine 
specified by the A inputs. Push the return 
address (Address Reg. + I) on the stack. If CC 51 

is LOW (fail), continue. STACK 

09H CCC - M IF CC, THEN CALL Multiway ~!F 0- 'C+l (015 - 04 MX3 - MXO) 
" 54 ELSE CONTINUE " If CC is HIGH (pass), call the subroutine 53.';'" 90 

specified by the 0 inputs concatenated with the • 
M inputs. Push the return address (Address 54 

[\ 
91 

Reg. + I) on the stack. The lower four bits on 
the 0 bus (03 - 00) are replaced by one of the 
four sets of the 4-bit multiway branch 55 92 
addresses. The multiway branch set is selected 
by bits 01 and DO while bits 03 and 02 are 

56 "don't cares." 

PFOOI770 
OOH CCC_S IF CC, THEN CALL TOS 

ELSE CONTINUE 
If CC is HIGH (pass), call the subroutine 
specified by the address on the top of the 
stack. The stack is popped and the return 
address (Address Reg. + I) is pushed onto the 
stack. If CC is LOW (fail), continue. 

IIH CNC_ 0 IF NOT CC, THEN CALL 0 
ELSE CONTINUE 
If CC is LOW (pass), call the subroutine 
specified by the 0 inputs. Push the return 
address (Address Reg. + I) on the stack. If CC 
is HIGH (fail), continue. The 0 port must be 
disabled to avoid bus contention. 

15H CNC_A IF NOT CC, THEN CALL A 
ELSE CONTINUE 50 
If CC is LOW (pass), call the subroutine 
specified by the A inputs. Push the return 
address (Address Reg. + I) on the stack. If CC 51 
is HIGH (fail), continue. STACK 

19H CNC_ M IF NOT CC, THEN CALL Multiway 52 .)F o-'C+l 
(015 - 04 MX3 - Mxo) " 54 
ELSE CONTINUE 

, 
If CC is LOW (pass), call the subroutine 53. 90 

specified by the 0 inputs concatenated with the • 
M inputs. Push the return address (Address 54 

r\ 
91 

Reg. + I) on the stack. The lower four bits on 
the 0 bus (03 - Do) are replaced by one of the 
four sets of the 4-bit multiway branch 55 92 
addresses. The multiway branch set is selected 
by bits 01 and Do while bits 03 and 02 are 
"don't cares." 

PFOOl780 
tDH CNC_S IF NOT CC, THEN CALL TOS 

ELSE CONTINUE 
If CC is LOW (pass), call the subroutine 
specified by the address on the top of the 
stack. The stack is popped and the return 
address (Address Reg. + I) is pushed onto the 
stack. 

Note: Opcode numbers are in hexadecimal notation. 
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Opcode 
(15- 10) Mnemonics 

XTCC.-A 

Description 

EXIT TO 0 
Unconditional branch to the address specified 
by the 0 inputs and pop the stack. The 0 port 
must be disabled to avoid bus contention. 

EXIT TO A 
Unconditional branch to tha address specified 
by the A inputs and pop the stack. 

EXIT TO Multiway (015 - 04 MX3 - MXO) 
Unconditional branch to the address specified 
by the 0 inputs concatenated with the M inputs 
and pop the stack. The lower four bits on the 0 
bus (03 - DO) are replaced by one of the four 
sets of the 4·blt multiway branch addresses. 
The muHiway branch set is selected by bits 01 
and DO while 03 and 02 are "don't cares." 

EXIT TO TOS 
Unconditional branch to the address on the top 
of the stack and pop the stack. Also used for 
unconditional returns. 

IF CC, THEN EXIT TO 0 
ELSE CONTINUE 
If CC is HIGH (pass), exit to tha address 
specified by the 0 inputs and pop the stack. If 
CC is LOW (fail), continue with no pop. The 0 
port must be disabled to avoid bus contention. 

IF CC, THEN EXIT TO A 
ELSE CONTINUE 
If CC is HIGH (pass), exit to the address 
specified by the A inputs and pop the stack. If 
CC is LOW (fail), continue with no pop. 

IF CC, THEN EXIT TO Muitiway 
(015 - 04 MX3 - Mxo) 
ELSE CONTINUE 
If CC is HIGH (pass), exit to the address 
specWied by the 0 inputs concatenated with the 
M inputs and pop the stack. The lower four bits 
on the 0 bus (Da - DO) are replaced by one of 
the four sets of the 4·bit multiway branch 
addresses. The multiway branch set is selected 
by bits 01 and Do while bits 03 and 02 are 
"don't cares." 

IF CC, THEN EXIT TO TOS 
ELSE CONTINUE 
If CC is HIGH (pass), exit to the address on the 
top of the stack and pop t.he stack. If CC Is 
LOW (fail), continue with no pop. Also used for 
conditional retums. 

Note: Opcode numbers are in hexadecimal notation. 
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Opcode 
(15- 10) Mnemonics Description 

IF NOT CC, THEN EXIT TO 0 
ELSE CONTINUE 
If CC is LOW (pass), exit to the address 
specified by the 0 inputs and pop the stack. If 
CC is HIGH (fail), continue with no pop. The 0 
port must be disabled to avoid bus contention. 

IF NOT CC, THEN EXIT TO A 
ELSE CONTINUE 
If CC is LOW (pass), exit to the address 
specified by the A inputs and pop the stack. If 
CC is HIGH (fail), continue with no pop. 

IF NOT CC, THEN EXIT TO Multiway 
(015 - 04 MX3 - Mxo) 
ELSE CONTINUE 
If CC is LOW (pass), exit to the address 
specified by the 0 inputs concatenated with the 
M inputs and pop the stack. The lower four bits 
on the 0 bus (03 - 00) are replaced by one of 
the four sets of the 4·M multiply branch 
addresses. The multiway branch set is selected 
by bits 01 and Do while bits 03 and 02 are 
"don't cares." 

IF NOT CC, THEN EXIT TO TOS 
ELSE CONTINUE 
If CC is LOW (pass), exit to the address on the 
top of the stack and pop the stack. If CC is 
HIGH (fail), continue with no pop. Also used for 
conditional returns. 

IF CNT 4' 1 THEN CNT: = CNT-l 
GOTO 0 
ELSE CNT: = CNT - 1 
CONTINUE 
If the counter is not equal to one, decrement 
the counter and branch to the address 
specified by the 0 inputs. If the counter is equal 
to one, then decrement the counter and 
continue. The 0 port must be disabled to avoid 
bus contention. 

IF CNT 4' 1 THEN CNT: = CNT-l 
GOTO A 
ELSE CNT: = CNT - 1 
CONTINUE 
If the counter is not equal to one, decrement 
the counter and branch to the address 
specified by the A inputs. If the counter is equal 
to one, then decrement the counter and 
continue. 

IF CNT 4' 1 THEN CNT: = CNT - 1 
GOTO Multiway (015 - 04 MX3 - MXO) 
ELSE CNT: = CNT - 1 
CONTINUE 
If the counter is not equal to one, decrement 
the counter and branch to tHe address 
specified by the 0 inputs concatenated with the 
M inputs. The lower four bits on the 0 bus 
(03 - Do) are replaced by one of the four sets 
of the 4·bit multiway branch addresses. The 
multiway branch set is selected by bits 01 and 
Do while bits 03 and 02 are "don't cares." 

IF CNT 4' 1 THEN CNT: = CNT - 1 
GOTO TOS 
ELSE CNT: = CNT - 1 
POP STACK 
CONTINUE 
If the counter is not equal to one, decrement 
the counter and branch to the address on the 
top of the stack. If the counter is equal to one, 
then decrement the counter, pop the stack and 
continue. 

Note: Opcode numbers are in hexadecimal notation. 
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Opcode 
(15- 10) Mnemonics Description 

IF CC AND CNT"" 1 THEN CNT: ~ CNT - 1 
GOTO D 
ELSE CNT: = CNT - 1 
CONTINUE 
If CC is HIGH (pass) and the counter is not 
equal to one, decrement the counter and 
branch to the address specified by the D 
inputs. If CC is LOW (fail) or the counter is 
equal to one, then decrement the counter and 
continue. The D port must be disabled to avoid 
bus contention. 

IF CC AND CNT"" 1 THEN CNT: = CNT-l 
GOTO A 
ELSE CNT: = CNT - 1 
CONTINUE 
If CC is HIGH (pass) and the counter is riot 
equal to one, decrement the counter and 
branch to the address specified by the A inputs. 
If CC is LOW (fail) or the counter is equal to 
one, then decrement the counte: and continue. 

IF CC AND CNT"" 1 THEN CNT: = CNT - 1 
GOTO Multiway (DI5 - D4 Mxs - Mxo) 
ELSE CNT: = CNT - 1 
CONTINUE 
If CC is HIGH (pass) and the counter is not 
equal to one, decrement the counter and· 
branch to the address specified by the D inputs 
concatenated with the M inputs. The lower four 
bits on the D bus (Ds - DO) are replaced by one 
of the four sets of the 4-bit multiway branch 
addresses. The multi way branch set is selected 
by bits Dl and Do while bits D3 and D2 are 
"don't cares." 

IF CC AND CNT "" 1 THEN CNT: = CNT-l 
GOTO TOS 
ELSE CNT: = CNT-l 
POP STACK 
CONTINUE 
If CC is HIGH (pass) and the counter is not 
equal to one, decrement the counter and 
branch to the' address on the top of the stack. If 
CC is LOW (fail) or the counter is equal to one, 
then decrement the counter, pop the stack and 
continue. 

Note: Opcode numbers are in hexadecimal notation. 
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Opcode 
(15- 10) Mnemonics Description 

13H OJNCC_ 0 IF NOT CC AND CNT * 1 THEN 
CNT: = CNT-l 

. GOTO 0 
ELSE CNT: = CNT - 1 
CONTINUE 
If CC is LOW (pass) and the counter is not 
equal to one, decrement the counter and 
branch to the address specified by the 0 
inputs. If CC is HIGH (fail) or the counter is 
equal to one, then decrement the counter and 
continue. The 0 port must be disabled to avoid 
bus contention. 

17H OJNCC_A IF NOT CC AND CNT * 1 THEN 
CNT: = CNT-l 
GOTO A 
ELSE CNT: = CNT - 1 
CONTINUE 
If CC is LOW (pass) and the counter is not 
equal to one, decrement the counter and 
branch to the address specified by the A inputs. 
The content of the interrupt return address 
register and the address register is replaced by 
the A address in this case. If CC is HIGH (fail) 
or the counter is equal to one, the current 
address is incremented, appears on the bus for 
continue, and is stored into the above two 
registers. 

ISH OJNCC_M IF NOT CC AND CNT * 1 THEN 
CNT: = CNT-l 
GOTO Multiway (015 - 04 Ms - Mo) 
ELSE CONTINUE 
If CC is LOW (pass) and the counter is not 
equal to one, decrement the counter and 
branch to the address specified by the 0 inputs 
concatenated with the M inputs. The lower four 
bits on the 0 bus (Os - Do) are replaced by one 
of the four sets of the 4·bit multiway branch 
addresses. The. multiway branch set is selected 
by bits 01 and Do while bits Os and 02 are 
"don't cares." 

lFH OJNCC_ S IF NOT CC AND CNT * 1 THEN 
CNT: = CNT-l 
GOTO TOS 
ELSE CNT: = CNT - 1 
POP STACK 
CONTINUE 
If CC is LOW (pass) and the counter is not 
equal to one, decrement the counter and 
branch to the address on the top of the stack. If 
CC is HIGH (fail) or the counter is equal to one, 
then decrement the counter, pop the stack and 
continue. 

2EH RET RETURN 
Unconditional return from subroutine. The 
return address is popped from the stack. 

OEH RETCC IF CC THEN RETURN 
ELSE CONTINUE 
If CC is HIGH (pass), return from subroutine. 
The return address is popped from the stack. If 
CC is LOW (fail), continue. 

lEH RETNC IF NOT CC THEN RETURN 
ELSE CONTINUE 
If CC is LOW (pass), return from subroutine. 
The return address is popped from the stack. If 
CC is HIGH (fail), continue. 

Note: Opcode numbers are in hexadecimal notation. 
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Opcode 
(15 -10) Mnemonics 

LOOP 

Description 

INITIALIZE LOOP 
Push the Address Reg. + 1 o~ the stack, load 
the counter from the D inputs and continue. 
Use with DJUMP _5' for FOR ... NEXT loops. 
The D port must be disabled to avoid bus 
contention. 

INITIALIZE LOOP 
Push the Address Reg. + 1 on the stack, load 
the counter from the A inputs and continue. 
Use with DJUMP _5 for FOR ... NEXT loops. 

INITIALIZE LOOP 
Push the Address Reg. + 1 on the stack and 
continue. Use with BRCC_5 for 
REPEAT ... UNTIL loops, or with XTCC_D 
and BRA_5 for WHILE ... END WHILE loops. 

Pop the stack and output the value on the 0 
outputs and continue. The 0 port must be 
enabled. 

Pop the stack and store the value in the 
counter and continue. ' 

Push the 0 inputs on the stack and continue. 
The D port must be disabled to avoid bus 
contention. 

Push the counter on the stack 'and continue. 

Exchange the counter and the top of stack and 
continue. 

Note: Opcode numbers are in hexadecimal notation. 
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Opcode 
(15- 10) Mnemonics Description 

3SH STACK _C Push the counter on the stack and load the 
counter with the value of the 0 inputs and 
continue. 

3CH LOAD_ D Load the counter with the value of the D inputs 
and continue. The D port must be disabled to 
avoid bus contention. 

3DH LOAD_A Load the counter w~h the value of the A inputs 
and continue. 

30H CONT Continue. 

32H DECR Decrement the counter and continue. 

36H RESET_SP Reset the stack painter and continue. 

3EH SET Load the comparison register with the value of 
the D inputs, enable the comparator and 
continue. 

3FH CLEAR Disable the comparator and continue. 

Note: Opcode numbers are in hexadecimal notation. 
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Figure 8. Typical Control-Path Architecture For Am29C300 Family 

cp-----! 
~ (Oock to Register Status Outputs 01 the Am29C332) 

• Am29C331 
Te., Inputs _~ I\;: 

.... -----1 (Test Inputs to Y Outputs) 

y 

B0006221 

Am29C331 Outputs ~~~------------------------~ 
I----Miaoprogram Memory Access Tlme---.. 

M;croprogram X'VV'll:l~ 
Memory OUlpul. _+ ______________________ ....LlII:<A.lo<Au.NUI"I'-__ -+_ 

1----,( Register Setup Time 

WF021 093 

Figure 9. Cycle Timing Waveform" 

'This waveform shows the timing relationship for the configuration shown in Figure 8. 
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ABSOLUTE MAXIMUM RATINGS 
Storage Temperature ............................ -65 to + 150°C 
(Case) Temperature Under Bias .............. -55 to + 125°C 
Supply Voltage to 

Ground Potential Continuous ............ -0.3 V to +7.0 V 
DC Voltage Applied to Outputs For 

High Output State ................. -0.3 V to +Vee +0.3 V 
DC Input Voltage ..................... -0.3 V to + Vee + 0.3 V 
DC Output Current, Into LOW Outputs ................. 30 mA 
DC Input Current.. ......................... -1 0 mA to + 10 mA 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA TlNGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

OPERATING RANGES 
Commercial (C) Devices 

Temperature (T A) .................................. 0 to + 70°C 
Supply Voltage (Vecl ................ +4.75 V to +5.25 V 

Military* (M) Devices 
Temperature (TA) ............................. -55 to +125°C 
Supply Voltage (Vecl ................... + 4.5 V to + 5.5 V 

Operating ranges define those limits between which the 
functionality of the device is guaranteed. 

*Military Product 100% tested at T A = + 25°C, + 125°C, and 
-55°C. 

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, 
Subgroups 1, 2, 3 are tested unless otherwise noted) 

Parameter Parameter Test Conditions (Note 1) Min. Max. Unit Symbol Description 

VOH Output HIGH Voltage Vee - Min. 2.4 Volts 
V,N = V,H or V,L 

VOL Output LOW Voltage Vee = Min. 0.5 Volts 
V,N = V,H or V,L 

V,H 
Guaranteed Input Logical 2.0 Volts HIGH Voltage (Note 2) 

V,L 
Guaranteed Input Logical 0.8 Volts LOW Voltage (Note 2) 

I,L Input LOW Current -10 IJ.A 

I'H Input HIGH Current 10 IJ.A 

10ZH 10 IJ.A 

10ZL -10 IJ.A 

1~" 
Vee = Max., 29C331 40 

Static Power Supply Current COM'L 
ICC (Note 3) V,N = Vee or GND, 29C331-1/-2 50 mA 

10=0 IJ.A MIL 29C331 only 50 

Power Dissipation Capacitance Vee = 5.0 V 
Cpo (Note 4) TA = 2S'C pF Typical 

No Load 

Notes: 1. Vee conditions shown as Min. or Max. refer to the commercial and military Vee limits. 
2. These input levels provide zero-noise immunity and should only be statically tested in a noise-free environment (not functionally tested). 
3. Worst-case ICC is measured at the lowest temperature in the specified operating range. 
4. CPO determines the no-load dynamic current consumption: 

ICC (Total) = Icc (Static) + Cpo Vee f, where f is the switching frequency of the majority of the internal nodes, normally one-half of the clock 
frequency. This speCification is not tested. 
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SWITCHING CHARACTERISTICS over COMMERCIAL operating range 

A. COMBINATIONAL PROPAGATION DELAYS 

29C33l 29C331-1 29C331-2 

No. From To Max. Delay Max. Delay Max. Delay Unit 

°lS-0 Y1S-0 22' 20' 18 ns 
°lS-0 EQUAL 32 28 23 ns 
°lS-0 ERROR 36 32 26 ns 

2 A1S-0 Y15-0 20 18 16 ns 
A1S-0 EQUAL 31 ns 
A1S-0 ERROR 33 ns 

3 MX3 -XO Y1S-0 19 ns 
MX3 -XO EQUAL 29 ns 
MX3-XO ERROR 33 ns 
Y1S-0 EQUAL 31 ns 
Y1S-0 ERROR 26 ns 

4 Is-o Y31-0 24 ns 
5 Is_o °lS-0 29 ns 

Is-o EQUAL 36 ns 
Is_o ERROR 40 ns 

6 T11-0 Y15-0 ns 
T11-0 EQUAL ns 
T11-0 ERROR ns 
S3-0 Y15-0 ns 
S3-0 EQUAL ns 
S3-0 ERROR ns 

7 GP Y1S-0 ns 
8 GP 015-0 ns 
9 GP A·FULL ns 

GP EQUAL ns 
GP ERROR ns 

10 RST Y1S-0 ns 
RST °lS-0 Z:i .,~'!;'~~~~~, ns 

11 RST INTA ns 
RST EQUAL ns 
RST ERROR ns 

12 FG Y1S-0 ns 
13 FG 01S-0 ns 

FG EQUAL ns 
FG ERROR ns 
INTR Y1S-0 ns 

14 INTR INTA ,I;l, ",'"" ns 
INTR EQUAL (NQ~e 1 )i:'\ ns 
INTR ERROR '~a"'i,::";'''' ns 
INTEN Y1S-0 ns 

15 INTEN INTA ns 
INTEN EQUAL ns 
INTEN ERROR ns 
HOLD Y1S-0 ns 
HOLD INTA Z ns 
HOLD A·FULL Z ns 
HOLD EQUAL 34/Z ns 
HOLD ERROR 46 ns 
OED °lS-0 Z ns 
OED ERROR 19 ns 
INTA ERROR 19" ns 
A-FULL ERROR 21 ** ns 
EQUAL ERROR 19" ns 

16 Gin Y1S-0 24 ns 
Gin EQUAL 36 ns 
Gin ERROR 37 33 ns 
SLAVE Y1S-0 Z Z ns 
SLAVE °lS-0 Z Z ns 
SLAVE INTA Z Z ns 
SLAVE A-FULL Z Z ns 
SLAVE EQUAL Z Z ns 

Notes: See notes following Table D. 

'This includes using D as select lines for multiway sets. 
"In the slave mode. 
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SWITCHING CHARACTERISTICS over COMMERCIAL operating range (Cont'd.) 

No. 

43 
44 

From To 

RST Y15-0 
RST Y15-0 
INTR Y15-0 
INTR Y15-0 
INTEN Y15-0 
INTEN Y15-0 
HOLD Y15-0 
HOLD Y15-0 
SLAVE Y15-0 
SLAVE Y15-0 
OED Y15-0 
OED 015-0 
RST 015-0 
RST 015-0 
SLAVE 015-0 
SLAVE 015-0 
CP 015-0 
CP 015-0 
HOLD INTA 
HOLD INTA 
HOLD A·FULL 
HOLD A-FULL 
HOLD EQUAL 
HOLD EQUAL 
SLAVE INTA 
SLAVE INTA 
SLAVE A-FULL 
SLAVE A-FULL 
SLAVE EQUAL 
SLAVE EQUAL 

B. OUTPUT DISABLE TIME 

Description 

Reset-to-Address Enable 
Reset-to-Address Disable 
INTR-to-Address Enable 
INTR-to-Address Disable 
INTEN-to-Address Enable 
INTEN-to-Address Disable 
HOLD-to-Address Enable 
HOLD-to-Address Disable 
SLAVE-to-Address Enable 
SLAVE-to-Address Disable 
OED-to-Data Enable 
OED-to-Data Disable 
Reset-to-Data Enable 
Reset-to-Data Disable 
SLAVE-to-Data Enable 
SLAVE-to-Data Disable 
Clock-to-Data Enable 
Clock-to-Data Disable 
HOLD-to-INTA Enable 
HOLD-to-INTA Disable 
HOLO-to-A-FULL Enable 
HOLO-to-A-FULL Disable 
HOLD-to-EQUAL Enable 
HOLD-to-EQUAL Disable 
SLAVE-to·INTA Enable 
SLAVE-to-INTA Disable 
SLAVE-to-A-FULL Enable 
SLAVE-to-A-FULL Disable 
SLAVE-to·EQUAL Enable 
SLAVE-to-EQUAL Disable 

29C331 

22 
22 

Notes: See notes following Table D. 
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29C331-1 

Max. Value 

,!l,r~',,:'''~: 

21 

29C331·2 

Max. Value 

,""a!;r,l.''''' 
21 

Unit 

ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
hS 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
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, 

I,'~ 

I: 
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I: 
Ii 
I:' 
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SWITCHING CHARACTERISTICS over COMMERCIAL over operating range (ConI' d.) 

No. 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

No. 

53 
54 

C. SEtUP AND HOLD TIMES 

With Respect 
29C331 29C331-1 29C331-2 

Parameter For To Max. Value Max. Value Max. Value 

Data Setup 015-0 CP t 21 
Data Hold 015-0 CP t 
Alternate Data Setup A15-0 CP t 
Alternate Data Hold A15-0 CP t 
Multiway Setup MX3-XO CP t 
Multiway Hold MX3-XO CP t 
Address Setup Y15-0 CP t 
Address Hold Y15-0 CP t 
Instruction Setup 15-0 CP t 
Instruction Hold 15-0 CP t 
Forced Continue Setup FC CP t 
Forced Continue Hold FC CP t 
Test Setup T11-0 CP t 
Test Hold T11 -0 CP t 
Select Setup S3-0 CP t 
Select Hold ~O CP t 
Reset Setup RST CP t 
Reset Hold RST CP t 
Interrupt Request Setup INTR CP t 
Interrupt Request Hold INTR CP t 
Interrupt Enable Setup INTEN CP t 
Interrupt Enable Hold INTEN CP t 
Hold Mode Setup HOLD CP t 
Hold Mode Hold HOLD CP t 
Carry-In Setup 90 CP t 
Carry-In Hold Cin CP t 0 

D. MINIMUM CLOCK REQUIREMENT 

Description 

Minimum Clock LOW Time 
'Minimum Clock HIGH Time 

Notes: 1. (INTR, INTEN)-to-EQUAL is the sum of (INTR, INTEN)-to-Y disable time and Y-to-EQUAL delay 
time, 

2. CL = 50 pF; CL = 5 pF for Disable Time only. 
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Unit 

ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 

Unit 

ns 
ns 



SWITCHING CHARACTERISTICS over MILITARY operating range (for APL Products, Group A, Subgroups 
9, 10, 11 are tested unless otherwise noted) 

A. COMBINATIONAL PROPAGATION DELAYS 

No. From To 

D1S-0 Y1S-0 
D1S-0 EQUAL 
D1S-0 ERROR 

2 A1S-0 Y1S-0 
A1S-0 EQUAL 
A1S-0 ERROR 

3 MX3-XO Y1S-0 
MX3-XO EQUAL 
MX3-XO ERROR 
Y1S-0 EQUAL 
Y1S-0 ERROR 

4 Is-o Y31-0 
5 Is-o D1S-0 

Is-o EQUAL 
Is-o ERROR 

6 T11-0 Y1S-0 
T11-0 EQUAL 
T11-0 ERROR 
53-0 Y1S-0 
53-0 EQUAL 
53-0 ERROR 

7 CP Y1S-0 
8 CP D1S-0 
9 CP A·FULL 

CP EQUAL 
CP ERROR 

10 RST Y1S-0 
RS'f D1S_ 

11 RS'f IN'i'A 
RST 
RS'f 

12 FC 
13 FC 

FC 
FC 
INTR 1 -0 

14 IN NTA 
I EQUAL 

ERROR 
Y1S-0 

15 EN INTA 
EN EQUAL 

I EN ERROR 
HOLD Y1S-0 
HOLD INTA 
HOLD A·FULL 
HOLD EQUAL 
HOLD ERROR 
OED D1S-0 
OED ERROR 
INTA ERROR 
A·FULL ERROR 
EQUAL ERROR 

16 9n Y1S-0 
Cin EQUAL 
e;;; ERROR 
SLAVE Y1S-0 
SLAVE ~O 
SLAVE INTA 
SLAVE A·FULL 
SLAVE EQUAL 

Notes: See notes following Table D. 

'This includes using D as select lines for multiway sets. 
**In the slave mode, 
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29C331 

Max. Delay Unit 

30' ns 
48 ns 

29** ns 
27 ns 
44 ns 
50 ns 
30 ns 
48 ns 
55 ns 
41 ns 

ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 

' ns 
ns 
ns 
ns 

32/Z ns 
Z ns 
22 ns 
.48 ns 
55 ns 
32 ns 
37 ns 
48 ns 
55 ns 
Z ns 
21 ns 

(Note 1) ns 
49 ns 
Z ns 
21 ns 

(Note 1) ns 
49 ns 
Z ns 
Z ns 

21/Z ns 
43/Z ns 

49 ns 
26 ns 
Z ns 

29** ns 
29** ns 
29** ns 
32 ns 
48 ns 
55 ns 
Z ns 
Z ns 
Z ns 
Z ns 
Z ns 



SWITCHING CHARACTERISTICS over MILITARY operating range (Cont'd.) 

B_ OUTPUT DISABLE TIME 

29C331 

No_ From To Description Max. Value Unit 

RS'f Y15-0 Reset-to-Address Enable 26 ns 
RST Y15-0 Reset-to-Address Disable 26 ns 

43 INTR Y15-0 INTR-to-Address Enable 26 ns 
44 INTR Y15-0 INTR-to-Address Disable 26 ns 

INTEN Y15-0 INTEN-to-Address Enable 26 ns 
INTEN Y15-0 INTEN-to-Address Disable 26 ns 
HOLD Y15-0 HOLD-to-Address Enable 26 ns 
HOLD Y15-0 HOLD-to-Address Disable 26 ns 
SLAVE Y15-0 SLAVE-to-Address Enable 26 ns 
SLAVE Y15-0 SLAVE-to-Address Disable 26 ns 
OED Y15-0 OED-to-Data Enable 26 ns 
OED D15-0 OED-to-Data Disa 26 ns 
RST D15-0 Reset-to-Data 26 ns 
RST D15-0 Reset-to-Da 26 ns 
SLAVE D15-0 SLAV 26 ns 
SLAVE D15-0 e 26 ns 
CP D15-0 nable 23 ns 
CP D15-0 ta Disable 23 ns 
HOLD INT -INTA Enable 21 ns 
HOLD IN OLD-to-INTA Disable 21 ns 
HOLD A-F' HOLD-to-A-FULL Enable 21 ns 
HOLD A-F HOLD-to-A-FULL Disable 21 ns 
HOLD EQUAL HOLD-to-EQUAL Enable 21 ns 
HOLD EQUAL HOLD-to-EQUAL Disable 21 ns 
SLAVE INTA SLAVE-io-INTA Enable 21 ns 
SLAVE INTA SLAVE-to-INTA Disable 21 ns 
SLAVE A-FULL SLAVE-to-A-FULL Enable 21 ns 
SLAVE A-FULL SLAVE-to-A-FULL Disable 21 ns 
SLAVE EQUAL SLAVE-to-EQUAL Enable 21 ns 
SLAVE EQUAL SLAVE-to-EQUAL Disable 21 ns 

Notes: See notes following Table D. 
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SWITCHING CHARACTERISTICS over MILITARY operating range (Cont'd.) 

No. 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

No. 

53 
54 

C. SETUP AND HOLD TIMES 

29C331 

Parameter For With Respect To Max. Value 

Data Setup 015-0 CP i 32 
Data Hold 015-0 CP i 1 
Alternate Data Setup A15-0 CP i 32 
Alternate Data Hold A15-0 CP i 1 
Multiway Setup MX3-XO CP i 32 
Multiway Hold MX3-XO CP 1 
Address Setup Y15-0 27 
Address Hold Y15-0 2 
Instruction Setup 15-0 32 
Instruction Hold 15-0 i 0 
Forced Continue Setup FC P i 32 
Forced Continue Hold F CP i 1 
Test Setup T CP i 32 
Test Hold CP i 0 
Select Setup CP i 32 
Select Hold CP i 0 
Reset Setup CP i 32 
Reset Hold CP i 1 
Interrupt Request tup CP i 27 
Interrupt Request Hold CP i 1 
Interrupt Enable Setup CP i 27 
Interrupt Enable Hold CP i 1 
Hold Mode Setup CP i 27 
Hold Mode Hold CP i 1 
Carry-In Setup Cin CP i 30 
Carry-In Hold Cin CP i 1 

D. MINIMUM CLOCK REQUIREMENTS 

29C331 

Max. Value 

Minimum Clock LOW Time 
Minimum Clock HIGH Time 

33 
28 

Notes: 1. (INTR, INTEN)-to-EQUAL is the sum of (INTR, INTEN)-to-Y disable time and Y-to-EQUAL delay 
time. 

2. CL = 50 pF; CL = 5 pF for Disable Time only. 
3. The status of Is - 10 and FC. must not be changed during the clock LOW time. 
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Unit 

ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 

Unit 

ns 
ns 



SWITCHING TEST CIRCUIT 

S, 

VOUT ~:>-_-_-K 

~I 
IK 

TC003420 

A. Three-State Outputs 

Notes: I. CL = 50 pF includes scope probe. wiring. and stray capacitances without device in test fixture. 
2. 81. 82. 83 are closed during function tests and all AC tests except output enable tests. 
3. 81 and 83 are closed while 82 is open for tpZH test. 

81 and 82 are closed while 83 is open for tPZL test. 
4. CL = 5.0 pF for output disable tests. 

2·32 



SWITCHING TEST WAVEFORMS 

DATA 
INPUT 

\TT'1_~--r-rrT"_T"T"T'T"" ~.: v 

~1.1::: .. ~ OV 

1IIIIING ________ f -------- 3 V 
INPUT _ -------- I •• V 

-------------J---------------- OV 

WFR02970 

Notes: 1. Diagram shown for HIGH data only. Output 
transition may be opposite sense. 

2. Cross hatched area is don't care condition. 

Setup, Hold, and Release Times 

SAME PHASE f.------~----- :.5
V

V 

_n._~:,~ S=~, " 

- I' I' Jc:~ 'PLH? 'PHL 
OPPOSIT-E-PH-A-SE-"'~ 1 3 V 

INPUT TRANSITION-~ 7l----- :.5
V

V 

WFR02980 

Propagation Delay 

LOWHI~ ~ 1 PULSE ----- .5 V 

~'PW~ 
HIGH LOWHIGH_\ -f 

PUL.SE ------ 1.5 V 
I 

OUTPUT 
NORMALLV 

LOW 

OUTPUT 

WFR02790 

Pulse Width 

Disable 
3 V 

-----1.5 V 

-----0 V 

-1.5 V 

~~ ~ 

l-....-!-'ZH 'HZ ! I 
~~VOH 

NORMAL.1.Y 1.5 V -1.5 V 

HIGH 52 OPEN __ -0 V 0.5 V 

WFR02663 

Notes: 1. Diagram shown for Input Control Enable-LOW 
and Input Control Disable-HIGH. 

2. 81, 82, and 83 of Load Circuit are closed 
except where shown. 

Enable and Disable Times 
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Test Philosophy and Methods 

The following points give the general philosophy that we apply 
to tests that must be properly engineered if they are to be 
implemented in an automatic environment. The specifics of 
what philosophies applied to which test are shown. . 

1. Ensure the part is adequately decoupled at the test head. 

these cases, a measurement is made at one of the two 
capacitances. The ~esult at the other capacitance is 
predicted from engineering correlations based on data 
taken with a bench setup and the knowledge that certain 
DC measurements (IOH, 10l' for example) have already 
been taken and are within specification. In some cases, 
special DC tests are performed in order to facilitate this 
correlation. 

Large changes in supply current when the device switches 
may cause function failures due to Vee changes. 7. Threshold Testing 

2. Do not leave inputs floating during any tests, as they may 
oscillate at high frequency. 

3. Do not attempt to perform threshold tests at high speed. 
Following an input transition, ground current may change by 
as much as 400 mA in 5 - 8 ns. Inductance in the ground 
cable may allow the ground pin at the device to rise by 
hundreds of millivolts momentarily. Current level may vary 
from product to product. 

The noise associated with automatic testing, the long 
inductive cables, and the high gain of bipolar devices when 
in the vicinity of the actual device threshold frequently give 
rise to oscillations when testing high-speed circuits. These 
oscillations are not indicative of a reject device, but instead, 
of an overtaxed test system. To minimize this problem, 
thresholds are tested at least once for each input pin. 
Thereafter, "hard" high and low levels are used for other 
tests. Generally this means that function and AC testing are 
performed at "hard" input levels rather than at Vil max. 
and VIH min. 

4. Use extreme care in defining input levels for AC tests. Many 
inputs may be changed at once, so there will be significant 
noise at the device pins which may not actually reach Vil or 
VIH until the noise has settled. AMD recommends using 
Vil .;;; 0 V and VIH;;" 3 V for AC tests. 

8. AC Testing 

5. To simplify failure analysis, programs should be designed to 
perform DC, Function, and AC tests as three distinct groups 
of tests. 

6. Capacitive Loading for AC Testing 

Occasionally parameters are specified that cannot be 
measured directly on automatic testers because of tester 
limitations. Data input hold times often fall Into this catego­
ry. In these cases, the parameter in question is guaranteed 
by correlating these tests with other AC tests that have 
been performed. These correlations are arrived at by the 
cognizant engineer using data from precise bench meas­
urements in conjunction with the knowledge that certain DC 
parameters have already been measured and 
are within specification. 

In some cases, certain AC tests are redundant since they 
can be shown to be predicted by other tests that have 
already been performed. I n these cases, the redundant 
tests are not performed. 

Automatic testers and their associated hardware have stray 
capacitance which varies from one type of tester to 
another, but is generally around 50 pF. This makes it 
impossible to make direct measurements of parameters 
which call for a smaller capacitive load than the associated 
stray capacitance. Typical examples of this are the so­
called "float delays," which measure the propagation 
delays into and out of the high-impedance state, and are 
usually specified at a load capacitance of 5.0 pF. In these 
cases, the test is performed at the higher load capacitance 
(typically 50 pF), and engineering correlations based on 
data taken with a bench setup are used to predict the re­
sult at the lower capacitance. 

9. Output Short-Circuit Current Testing 

Similarly, a product may be specified at more than one 
capacitive load. Since the typical automatic tester is not 
capable of switching loads in mid-test,· it is impossible to 
make measurements at both capacitances even though 
they may both be greater than the stray capacitance. In 

When performing lOS tests on devices containing RAM or 
registers, great care must be taken that undershoot caused 
by grounding the high-state output does not trigger parasit­
ic elements which in turn cause the device to change state. 
In order to avoid this effect, it is common to make the 
measurElment at a voltage (Voutputl that is Slightly above 
ground. The Vee is raised by the same amount so that the 
result (as confirmed by Ohm's law and precise bench 
testing) is identical to the VOUT = 0, Vee = Max. case. 

SWITCHING WAVEFORMS 

KEY TO SWITCHING WAVEFORMS 

t/lUSTBE WILL BE 
STEADY SUiADY 

-- MA'I'CHAMGE WILL BE 
CHANGINCI FFlQMHTOL FI'IOMHTOL 

JJJJJJ MAY CHANGE 
WILlSE 
CHANGING FFlOML TOH FROtH TOH 

-- DON'TeARE, CHANGING: 

~::M~~~E STATE ... ,--
H 

CENTER 
~yNOT LIN£ISHICiH 

IMPEDt.NCE 
"OFF"STATE 

KSOOOO10 
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SWITCHING WAVEFORMS (Cont'd.) 

3.0 V 

I'ItIm. 1.5 V INPUTS 

OV 

.. 
If 1 1.5 V 

3.0 V 

CLOCK 

OV 

INPUT 

CLOCK t--OU~~UT -
f--OU~~UT 

DELAY 

DELAY 

OUTPUTS 

~CYCLEt CYCLE 2----to 

CLOCK \ \ 

HOLD ~, 

P' 
P' I+- (Nolet) ~ 

INTEN 

INTR 

~ @ I'" I+-@ 

'"' I 
@ .... Ir" ~ ... ~@ 

Y 
YON ~ Y()ff YON 

~ I+- (Nolo 2) 

INT·YECTBU FFER VECTOfF f- YECTON I VECTOFF 

~~ 

-----" 
TER A·I I-ADDRESS REGIS 

(Nol.3) 

URN 
TER 

INTERRUPT RET 
ADDRESS REGIS 

(Note 3) 

-
A·I I-

A * B f 

A *- A+I f 

Interrupt Timing 

\ 

B+I 

B+I 

1.5V 

'h 

I 
I 

WFR02990 

I \ 

* B+2 

* B+2 

WF025100 

Notes: 1. Interrupt Request comes from an interrupt-controller register. If reflects the CP 1 to INTR time of 
the interrupt controller. 

2. During Cycle 2, there may be contention on the V-bus if the V-bus is turned ON before the INT­
VECT buffer is turned OFF. 

3. Refer to Figures 4 and 5 for definition of A and B. 
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T,S 

INTR 

INTEN 

SWITCHING WAVEFORMS (Cont'd.) 

CP 1 \'---
":~~ 

RST ~ • l,,.--------
~ ,I: 

y 

~ 
j X~---

:~ . l~---------

WF024770 

Reset Timing 

! "".I---------...;.~i :.---- t;;\ .~" .: t;;\ : ~ : ~ ~ : \:/ =:ex ! X I >K~---------
! ~ ~ ~ Q----J.....Q-J y~v:v ~ \:J ~ ! ~v ~' ; '\J ! 

___ I-. ----,....-------I!:J1'i I t ~: 
i,i ~!: "i @ .~. t;\-!-t;5\....j ,I 1v::J:~1 

i i% i ~ " ~ ~ \ ~ i , 
,t i: ,! ! 

---~------------I~.--~' . ~ ,! i. ~i.' ! X-. l . ~f9\--": t t:::\~ 

A·FULL 

, '-.) , t }4-~~ . * I HOlD =* ! >k ... _______ _ 
t. t;6\,-----tt~ ~Q--- J......! •• _t::\ 42 \ \.:::J \ ,O~ =>K X ! >Kr ::...-----

WF025320 
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eLK 

HOLD 

y 
lNTA 
A-FULL A 

SWITCHING WAVEFORMS (Cont'd.) 

~----8------~-----@1----~~ 

A 
EQUAL ______ -.J 

Am29331 Hold Timing 

INPUT IOUTPUT CIRCUIT DIAGRAM 

(All Devices) 

DRIVING OUTPUT DRIVEN INPUT 

J 

ICR00480 
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Am29C332 
CMOS 32-Bit Arithmetic Logic Unit 

ADVANCE INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Single Chip, 32-Blt ALU 
Standard product supports 11 0 ns microcycle time 
for the 32-bit data path. It is a combinatorial ALU 
with equal cycle time for all instructions. 

• Speed Select supports 80-ns system cycle time 
• Flow-through Architecture 

A combinatorial ALU with two input data ports and 
one output data port allows implementation of either 
parallel or pipelined architectures. 

• 64-Bit In, 32-Bit Out Funnel Shifter 
This unique functional block allows n-bit shift-up, 
shift-down, 32-bit barrel shift or 32-bit field extract. 

• Supports All Data Types 
It supports one-, two-, three- and four-byte data for 
all operations and variable-length fields for logical 
operations. 

• Multiply and Divide Support 
Built-in hardware to support two-bit-at-a-time modi­
fied Booth's algorithm andone-bit-at-a-time division 
algorithm. 

• Extensive Error Checking 
Parity check and generate provides data transmis­
sion check and master/slave mode provides com­
plete function checking. 

GENERAL DESCRIPTION 

The Am29C332 is a 32-bit wide non-cascadable Arithmetic 
Logic Unit (ALU) with integration of functions that normally 
don't cascade, such as barrel shifters, priority encoders 
and mask generators. Two input data ports and one output 
data port provide flow-through architecture and allow the 
designer to implement his/her architecture with any degree 
of pipelining and no built-in penalties for branching. Also, 
the simplicity of a three-bus ALU allows easy implementa­
tion of parallel or reconfigurabfe architectures. The register 
file is off-chip to allow unlimited expansion and regular 
addressability. 

The Am29C332 supports one-, two-, three- and four-byte 
data for arithmetic and logic operations. It also supports 

multi precision arithmetic and shift operations. For logical 
operations, it can support variable-length fields up to 32 
bits. When fewer than four bytes are selected, unselected 
bits are passed to the destination without modification. The 
device also supports two-bit-at-a-time modified Booth's 
algorithm for high-speed multiplication and one-bit-at-a­
time division. Both signed and unsigned integers for all byte 
aligned data types mentioned above are supported. 

The Am29C332 is designed to support 110-ns microcycle 
time standard speed, and 80-ns microcycle time with speed 
select. The device is packaged in a 169-lead pin-grid-array 
package. 

SIMPLIFIED BLOCK DIAGRAM 

This document contains information on a product under development at Advanced Micro Devices. 
Inc. The information is intended to help you to evaluate this product. AMD reserves 
the right to change or discontinue work on this proposed product without notice. 2-38 
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RELATED AMD PRODUCTS 

Part No. Description 

Am29COl CMOS 4·Bil Microprocessor Slice 

Am29Cl0A CMOS 12·Bil Sequencer 

Am29Cl0l CMOS 16·Bit Microprocessor 

Am29112 8·Bn Cascadable Microprogram Sequencer 

Am29114 Real· Time Interrupt Controller 

Am29C116 CMOS 16·Bit Microcontroller 

Am29C323 CMOS 32 x 32 Parallel Multiplier 

Am29325 32·Bit Floating Point Processor 

Am29C325 CMOS 32·Bit Floating Point Processor 

Am29331 16·Bij Microprogram Sequencer 

Am29C331 CMOS 16-Bit Microprogram Sequencer 

Am29334 64 x 18 Four·Port. Dual·Access Register File 

Am29C334 CMOS 64 x 18 Four·Port, Dual·Access Register File 

Am29337 16·Bit Bounds Checker 

Am29338 32·Bit Byte Queue 

Am29C516 CMOS 16 x 16 Multiplier 

Am29C517 CMOS 16x 16 Multiplier wnh Separate 1/0 

CONNECTION DIAGRAM 
169·Lead PGA 
Bottom View 

A • C D • F G H J K L M N P • T U , DB8 0A6 OS1 OS, DB9 OSlO DA" DB,. DA,. OS18 PS, OS18 OS19 IlII20 DII22 DA23 PA2 

• DA5 DA5 DA1 PBO DA9 081, DA,. DA13 OSI. PAl CAli DAI1 DAI. DA20 DA21 DSZ! PB2 

> DS4 CA> DA4 PAll DAB 001. GND DB13 DBI' DA15 vee OSI1 CAli Il821 DA22 DAM DB24 

• DS2 DA2 083 . DS25 DA25 0B28 

• OSI DAI DAD DA25 llA27 DB27 

• DSO '5 P4 DS28 DA2I 0B28 

7 PI PO vee vee DA20 DA29 

• P2 PO W. 0831 DASI DS30 

• W2 W1 ... MSfRR PAS PS3 

,. ~ wo ~ "', Y20 V2I 

" D 11 GNO GNO V27 V2I 

,. ~ Ie .. vee GNO V2I 

,. 18 17 c. YO. VIS V24 

14 ...... AS SlAIIE GHD \ICC V22 

II ..m MCIn N C pya PV2 OND VII aND V7 vee va v,. !lE'V v,. V2' V20 

11 BOROW V L vee py, GNOT GND YO V5 va vee VII VI. V," VIS v,a VI? 

17 HOLll Z GNO PVO YO PeRR GND v, V. GND vee v, vee GND VI' V,. aND 

CD010463 

• This pin is not used 
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PIN DESIGNATIONS 
(Sorted by Pin No.) 

PIN NO. PIN NAME PAD PIN 
PIN NAME 

PAD PIN 
PIN NAME PAD PIN 

PIN NAME PAD 
NO. NO. NO. NO. NO. NO. NO. 

A·l DB6 1 C-9 W3 145 J·15 GND 105 R·l0 Y31 66 

A·2 DAS 164 C·l0 10 139 J·16 YS 101 R·ll GND 64 

A·3 DB4 161 Co11 GND 143 J·17 Y4 102 R·12 Vee 71 

A·4 DB2 157 C·12 15 134 K·l DB16 27 R·13 Y2S 74 

A·5 DBl 155 C·13 CP 130 K·2 PAl 25 R·14 GND 79 

A·6 DBO 153 C·14 SLAVE 127 K-3 DA15 24 R·15 Y19 82 

A·7 Pl 148 C·15 N 120 K·15 Y7 99 R·16 Y15 88 

A-8 P2 149 C·16 L 118 K·16 Y6 100 R·17 Y14 89 

A·9 W2 142 C·17 GND 117 K·17 GND 98 T·l DA23 42 

A"10 12 137 1).1 DB8 7 L·l PBl 26 T·2 DB23 41 

A·11 13 136 1).2 PBo 6 L·2 DA16 28 T·3 DA24 46 

A·12 16 133 1).3 PAO 5 L·3 Vee 22 T·4 DA25 48 

A·13 18 131 1).15 C 119 L·15 Vee 103 T·5 DA27 52 

A·14 MLiNK 129 1).16 Vee 116 L·16 Vee 103 T-6 DA28 54 

A·15 M/m 125 1).17 PYo 115 L·17 Vee 103 T·7 DAso 58 

A·16 BOROW 124 E·l DB9 9 M·l DB18 31 T-8 DAsl 60 

A·17 HOLD 123 E·2 DAg 10 M·2 DA17 30 T·9 PAs 61 

11-1 DAs 2 E·3 DAs 8 M·3 DB17 29 T·l0 Y30 67 

11-2 DB5 163 E·15 PY3 112 M·1S Y8 96 T·11 Y27 70 

B-3 DA3 160 E·16 PYl 114 M·16 Yll 93 T·12 GND 72 

B-4 DA2 158 E·17 Yo 109 M·17 Y9 95 T·13 Y23 76 

B·5 DAl 156 F·1 DB10 11 N·l DB19 33 T·14 Vee 78 

B·6 P5 152 F·2 DBll 13 N·2 DA19 34 T·15 Y21 80 

B·7 P3 150 F·3 DA10 12 N-3 DA18 32 T·16 Y18 83 

B·8 Po 147 F·j5 PY2 113 N-15 Y12 92 T·17 Y16 86 

II-g Wl 141 F·16 GND 110 N·16 YlO 94 U·l PA2 43 

11-10 Wo 140 F·17 PERR 111 N·17 Vee 97 U·2 PB2 44 

11-11 11 138 G·l DAll 14 P·l DB20 35 U·3 DB24 45 

11-12 14 135 G·2 DA12 16 P·2 DA20 36 U·4 DB26 49 

B·13 17 132 G·3 GND 21 P·3 DB21 37 U.5 DB27 51 

B·14 RS 128 G·15 GND 104 P·1S OE·Y 87 U·6 DB29 55 

B·15 MCin 126 G-16 GND 104 P·16 Y13 90 U·7 DA29 56 

11-16 V 121 G·17 GND 104 P-17 GND 91 U-8 DB30 57 

B·17 Z 122 H·l DB12 15 R·l DB22 39 u·g PB3 62 

C·l DB7 3 H·2 DA13 18 R·2 DA21 38 U·l0 Y28 69 

C·2 DA7 4 H·3 DB13 17 R·3 DA22 40 U·ll Y29 68 

Co3 DA4 162 H·15 Y3 106 R·4 DB2S 47 U·12 Y26 73 

Co4 DB3 159 H·16 Y2 107 R·5 DA26 50 U·13 Y24 75 

COS DAo 154 H·17 Yl 108 R·6 DB28 53 U·14 Y22 77 

C-6 P4 151 J·l DA14 20 R·7 Vee 63 U·15 Y2Q 81 

Co7 Vee 144 J·2 DB14 19 R-8 DB31 59 U·16 Y17 84 

C·B W4 146 J·3 DB15 23 R-9 MSERR 65 U·17 GND 85 
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PIN DESIGNATIONS 
(Sorted by Pin Names) 

PIN NAME 
PIN PAD 

PIN NAME 
PIN PAD 

PIN NAME 
PIN PAD 

PIN NAME 
PIN PAD 

NO. NO. NO. NO. NO. NO. NO. NO. 

BOROW A·16 124 DB7 C·l 3 12 A-l0 137 Vee T-14 78 

C 0-15 119 DB8 0-1 7 13 A-II 136 Vee N·17 97 

CP C-13 130 DB9 E-l 9 14 B-12 135 Vee 0-16 116 

DAo C-5 154 DBlO F-l 11 15 C-12 134 Vee H-12 71 

DAI B-5 156 DBll F-2 13 16 A-12 133 Wo B-l0 140 

DA2 B-4 158 DB12 H-l 15 17 B-13 132 WI B-9 141 

DA3 B-3 160 DB13 H-3 17 18 A-13 131 W2 A-9 142 

DA4 C-3 162 DB14 J-2 19 L C-16 118 W3 C-9 145 

DAs A-2 164 DB15 J-3 23 MCin B-15 126 W4 C-8 146 

DA6 B-1 2 DB16 K-l 27 MLINK A-14 129 Va E-17 109 

DA7 C-2 4 DB17 M·3 29 M/m A-15 125 Vt H-17 108 

DA8 E-3 8 DB18 M-l 31 MSERR R-9 65 V2 H-16 107 

DAg E-2 10 DB19 N-l 33 N C-15 120 V3 H-15 106 

DA10 F-3 12 DB20 P·l 35 OE-Y P-15 87 V4 J-17 102 

DAll G-l 14 DB2l P-3 37 Po B-8 147 V5 J-16 101 

DA12 G-2 16 DB22 R·l 39 PI A-7 148 V6 K-16 100 

DA13 H-2 18 DB23 T-2 41 P2 A-8 149 V7 K-15 99 

DA14 J-l 20 DB24 U-3 45 P3 B-7 150 V8 M-15 96 

DA15 K-3 24 DB25 R-4 47 P4 C-6 151 V9 M-17 95 

DA16 L-2 28 DB26 U-4 49 Ps B-6 152 VIa N-16 94 

DA17 M·2 30 DB27 U-5 51 PAo 0-3 5 VII M-16 93 

DA18 N-3 32 DB28 R-6 53 PAl K-2 25 V12 N-15 92 

DA19 N-2 34 DB29 U-6 55 PA2 U-l 43 V13 P-16 90 

DA20 P-2 36 DB30 U-8 57 PA3 T-9 61 V14 R-17 89 

DA2l R-2 38 DB31 R-8 59 PBo 0-2 6 VIS R-16 88 

DA22 R-3 40 GND G-3 21 PBl L-l 26 V16 T-17 86 

DA23 T-l 42 GND R-l1 64 PB2 U-2 44 VI? U-16 84 

DA24 T-3 46 GND G-17 104 PB3 U-9 62 Vt8 T-16 83 

DA2S T-4 48 GND G-15 104 PERR F·17 111 V19 R-15 82 

DA26 R-5 50 GND G-16 104 PVo 0-17 115 V20 U-15 81 

DA27 T-5 52 GND C-l1 143 PVl E-16 114 V2l T-15 80 

DA28 T-6 54 GND T-12 72 PV2 F·15 113 V22 U-14 77 

DA29 U-7 56 GND R-14 79 PV3 E-15 112 V23 T-13 76 

DA30 T-7 58 GND U-17 85 RS B-14 128 V24 U-13 75 

DA31 T-8 60 GND P-17 91 SLAVE C-14 127 V2S R·13 74 

DBa A-6 153 GND K-17 98 V B-16 121 V26 U-12 73 

DBt A-5 155 GND J-15 105 Vee R-7 63 V27 T-l1 70 

DB2 A-4 157 GND F-16 110 Vee L-16 103 V28 U-l0 69 

DB3 C-4 159 GND C-17 117 Vee L-15 103 V29 U-l1 68 

DB4 A-3 161 HOLD A-17 123 Vee L-17 103 V30 T-l0 67 

DBs B-2 163 10 C-l0 139 Vee C-7 144 V31 R-l0 66 

DBa A-I 1 11 B-ll 138 Vee L-3 22 Z B-17 122 
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LOGIC SYMBOL 

LS002911 

ORDERING INFORM~TION 

Standard Products 

AMD standard products are available in several packages and operating ranges. The order number (Valid 
Combination) is formed by a combination of: a. Device Number 

AM29C332 

b. Speed Option (if applicable) 
c. Package Type 
d. Temperature Range 
e. Optional Processing 

-1 C 

1L.. _____ e. OPTIONAL PROCESSING 
Blank = Standard processing 

B = Burn·in 

'----------d. TEMPERATURE RANGE 
C - Commercial (0 to + 85'C) 

'-------------c. PACKAGE TYPE 
G = 169-Lead Pin Grid Array without Heatsink 

(CGX169) 

'-----------------b. SPEED OPTION 

a. DEVICE NUMBER/DESCRIPTION 
Am29C332 
CMOS 32-Bit Arithmetic Logic UnR 

-1 - Speed Select 
- 2 = Speed Select (TBO) 

Valid Combinations Valid Combinations 

AM29C332 I 
AM29C332-1 I GC, GCB 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMD's standard military grade 
products. 
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ORDERING INFORMATION (Cont'd.) 

APL Products 

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved 
Products List) products are fully compliant with MIL·STD·883C requirements. The order number (Valid Combination) for APL 
products is formed by a combination of: a. Device Number 

AM2!1C332 

b. Speed Option (if applicable) 
c. Device Class 
d. Package Type 
e. Lead Finish 

.L!! 

IL _____ .. LEAD FINISH 
C-Gold 

'----------d. PACKAGE TYPE 
Z = 161I-Lead Pin Grid Array without Heatsink 

(CGX169) 

'-------------c. DEVICE CLASS 
IB -Class B 

a. DEVICE NUMBER/DESCRIPTION 
Am29C332 
CMOS 32·Bn Arithmetic Logic Unit 

b. SPEED OPTION 
Not Applicable 

I Valid COmbinations Valid Combinations 

I AM29C332 I IBZC Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations or to check for newly released valid 
combinations. 
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Group A Tests 

Group A tests include Subgroups 
1, 2, 3, 7, 8, 9, 10, 11. 



PIN DESCRIPTION 
BOROW Borrow (Input) 

When HIGH, the Carry In and Carry Out are borrows for 
subtract operations. 

C, Z, N, V, L Status (Input/Output) 
When the Register Status pin is LOW, these pins give the 
carry, Zero, Negative, Overflow and Link outputs of the ALU 
where applicable to the instruction being executed. When 
not applicable to the instruction being executed, or when the 
Register Status pin is HIGH, these pins give the outputs of 
the Carry, Zero, Negative, Overflow and Link bits of the 
internal Status Register. In Slave mode, C, Z, N, V and L 
become inputs. 

CP Clock Input (Input) 
Clocks internal registers (status, 0) at the LOW to HIGH 
transition, provided HOLD Input is LOW. 

DAo - DA31 Data Input for DA-bua (Input) 
Data Input lines for operand A. 

DBo - DB31 Data Input for DB-bus (Input) 
Data .input lines for operand B. 

HOLD Hold (Input, Active HIGH) 
When HIGH, it inhibits the update of the status and 0 
registers. 

10 -16 Instruction Inputa (Input) 
Used to select the operation to be performed. 

17 -18 Byte Width Inputs (Input) 
Byte width inputs for byte boundary aligned operand 
instructions. Selects the sources for width and pOSition 
inputs for variable field bit operands. If 17 is LOW it selects 
the width input from pins W4 - WOo If 17 is HIGH the width 
input is selected from the internal width register. Similarly if 
18 is LOW it selects the position inputs from pins Ps - Po and 
if HIGH it selects input from the internal position register. 

MCln Macro Statua Carry (Input) 
External Carry input. 

MLiNK Macro Status Link (Input) 
External link input. 

M/m Macro/Micro Select (Input) 
When HIGH, selects macro carry and macro link pins as 
input instead of micro carry and micro link from the micro­
status register. 

MSERR Maater-Slave Error (Output) 
When HIGH, this signal indicates that the master's and 
slave's data were not Identical. 

~ Output Enable (Input, Active LOW) 
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When OE=Y is HIGH the V-bus is disabled (three-stated). 

PO - Ps Position Inputs (Input) 
Position input to select the position of the least significant bit 
of a field. Also indicates the amount by which data is to be 
shifted up(Ps - LOW) or down (Ps - HIGH) or rotated. 

PAD - PA3 Parity Input for DA-bus (Input) 
Parity input for operand A on DA-bus (one per byte). 
Even parity is used for the Am29C332. 

PBo - PB3 Parity Input for DB-bus (Input) 
Parity input for operand B on DB-bus (one per byte). 

PERR Parity Error (Input/Output) 
When HIGH, indicates that a parity error was detected on 
the DA or DB inputs. 

PYo - PY3 Parity for Y-bus (Input/Output) 
Parity output for data on V-bus (one per byte). Even parity is 
used for the Am29C332. In slave mode, PVo - PV3 become 
inputs. 

RS Register Status Mode Pin (Input) 
Selects between ALU status (Register Status = LOW) or 
register status (Register Status = HIGH) on the C, Z, N, V 
and L outputs. 

SLAVE Slave (Input) 
When HIGH, this pin puts the ALU in the slave mode. All 
output pins become input pins and signals on them are 
compared with the ALU's internally generated results. When 
QE:Y is HIGH, the VO-V31 and. PVO-PV3 inputs are 
ignored. When the SLAVE pin is LOW, the ALU is put in 
master mode where outputs are generated as normal. 

Wo - W4 Width Inputs (Input) 
Width input to select the width of a contiguous bit field. 

Yo - V31 Data Outlln Lines (Input/Output) 
When QE:Y is LOW and the ALU is in the Master mode, the 
ALU result is enabled on the V-bus. When QE:Y is HIGH, 
the V-bus is three-stated. In Slave mode the V-bus acts as 
external data input. 



BOROW D---+I 

oe.vD--+I 

SLAVED--~ 

10·la D,,""",II;.c..-+I 

HOLOD_--+i 

MLINK D-+-., 

MCln ...... _..L--' 

INSTRUCTION 
OECODE 

Mli'iiD-+----.... 

CPD-IHr..,..-[> 

RS D----i 

C.Z,N.V.L MSERR 

Figure 1. Detailed Block Diagram 
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MEMORY 
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CONTROL 
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Am29C325 

32-8IT 
FLOATING POINT 

PROCESSOR 
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, 

Am29C334 
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1 

Am211C332 
32-81T 

ALU , 

32 

Am29C323 
32x32 

PARALLEL 
MULTIPUER , 

AF003484 

Figure 2. Am29C332 Family High-Performance System Block Diagram 

PRODUCT OVERVIEW 

The Am29C332 is a 32-bit wide, high-performance, non­
expandable Arithmetic Logic Unit (ALU). It has two 32-bit wide 
input ports (A and B) and one 32-bit wide output port (Y). 
These three ports provide flexibility and accessibility for high­
performance processor designs. Dedicated input and output 
ports provide a flow-through architecture and avoid the 
penalty associated with switching the bus half-way through the 
cycle for input and output of data. The chip is designed for use 
with a dual-access RAM (Am29C334) as a register file. In 
addition, the three-bus architecture facilitates the connection 
of other arithmetic units in parallel with the Am29C332 for 
high-performance systems. 

The Am29C332 supports one-, two-, three-, and four-byte 
arithmetic operations. It also supports multiprecision arithme­
tic and multiple bit shifts. For logical operations, it can handle 
variable-length fields of up to 32 bits. The chip incorporates 
dedicated hardware to allow efficient implementation of a two 
bit-at-a-time (modified Booth) multiply algorithm, supporting 
signed and unsigned arithmetic data types. Similarly, hardware 
is provided to support a bit-at-a-time divide algorithm, also 
supporting signed and unsigned arithmetic data types. An 
internal 32-bit register (a) is used by the multiply and divide 
hardware for double precision operands. For business applica­
tions, the Am29C332 supports variable-length BCD arithmetic. 

Field logical instructions operate on bit-fields taken from the A 
and B data inputs; they may be of variable width and starting 
position. A is normally the source input and B the destination 
input. In general, destination bits not falling within a specified 
field are passed by the ALU unchanged. Field width and 
position are specified either by direct inputs to the chip, or by 
entries in the status register. There are two kinds of field 
logical instructions - aligned and non-aligned. The first type of 
instruction assumes that source and destination fields are 
aligned and the operation is performed only for bits within the 
specified fields. In the second type of instruction, source and 
destination fields are normally non-aligned. However, it is 
always assumed that one field (either source or destination) is 
least-significant-bit (LSB) aligned. 

If the destination field is LSB aligned then the source field is 
downshifted in order to make it LSB aligned as well. Down-

shifting is accomplished by making the 6-bit position input 
equal to the two's complement of the number of places the 
field is to be downshifted. If the source field is LSB aligned 
then it is upshifted in order to align it with the destination. 
Upshifting is accomplished by making the position inputs equal 
to the number of places the field is to be upshifted. Any other 
type of field operation is not allowed. Whenever the field 
crosses the word boundary, the portion not falling within the 
word boundary is ignored. This effect is useful when perform­
ing operations on fields that overlap two different words. 
Instructions to perform straightforward multiple-bit shifts (ei­
ther up or down) are also provided. Additionally, it is possible 
to extract a bit-field from a word in one instruction, even if that 
field .overlaps a word boundary. 

The power and the flexibility of the processor comes partly 
from its ability to generate a mask to control the width of an 
operation for each instruction without any overhead. For all 
byte aligned instructions (three quarters of the instruction set). 
the mask is either 1. 2. 3 or 4 bytes wide and is generated froni 
the byte width input (Is - 17). For all field instructions the mask 
is of variable width and is generated from the position inputs 
(Po - P5) and the width inputs (Wo - W4). Table 1 describes 
the position displacement from the position inputs and Table 2 
the bit field from the width inputs. 

P5 
0 
0 
0 

0 
1 
1 

1 
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TABLE 1. POSITION INPUTS AND BIT 
DISPLACEMENT 

Inputs 
Bit Displacement 

P4 Ps P2 PI Po P 

0 0 0 0 0 0 
0 0 0 0 1 1 
0 0 0 1 0 2 

1 1 1 1 1 31 
0 0 0 0 0 -32 
0 0 0 0 1 -31 

1 1 1 1 1 -1 



TABLE 2. WIDTH INPUTS AND BIT FIELD 

Inputs 
Bit Field 

W4 W3 W2 W1 Wo w 

0 0 0 0 0 32 
0 0 0 0 1 1 
0 0 0 1 0 2 

1 1 1 1 1 31 

Whenever the width of the operand is less than 32-bits, all 
unselected bits from the inputs of the ALU are passed to the 
output without any modification. Depending upon the instruc­
tion type, unselected bits are taken from different sources. For 
example in all single operand instructions, bits from the source 
operand (from either A or B input) are passed in unselected bit 
positions. For two operand instructions, bits from the B input 
are passed in unselected bit positions. There are some 
exceptions which are explained in the instruction set section. 

The processor has a 32-bit status register to indicate the 
status of different operations performed. The status register is 
loaded at the rising edge of the clock with new status unless 
the HOLD signal is HIGH. The bit position for each status bit is 
given in the functional description. The least significant byte of 
the status register holds the six position bits (PRo - PRs). The 
two most significant bits of this byte may be read or loaded but 
are otherwise unused by the ALU. The second byte (bits 8 to 
15) conSists of the five width bits (WRo - WR4) and three read­
only bits that are a combinational function of other status bits, 
and which indicate useful branch conditions. The third byte 
consists of ALU status bits plus bits for high-speed multiply 
and divide. The most significant byte holds intermediate nibble 
carries for BCD operations. An extract-status instruction is 
provided which allows a Boolean value to be formed from any 
selected bit. This is particularly useful in machines employing a 
stack architecture. Instructions to save and restore the status 
register are provided. As the entire status of each instruction is 
stored in the status register, interrupts at any microinstruction 
boundary are feasible. 

The processor has a 32-bit wide priority encoder to support 
floating-point and graphics operations. The priority encoder 
supports all byte aligned data types - the result is dependent 
upon the byte width specified. The result of a priority encode is 
also loaded into the pOSition bits of the status register. The 
result of the prioritize operation can then be used in the 
following clock cycle, e.g., to normalize a floating-point num­
ber or to help detect the edge of a polygon in graphics 
applications. 

To support system diagnostics, the Am29C332 has a special 
"Master-Slave" mode. To use this mode, two chips are 
connected in parallel, and hence receive the same instructions 
and data. The master chip is used for the normal data path. 
However, in the slave chip, all outputs becomes inputs. The 
slave compares the outputs of the master with its own 
internally generated result. If the two do not match, the slave 
will activate an error signal. 

As a further diagnostic aid, byte-wise parity checking is 
performed at both the A and B data inputs. The" parity" signal 
is activated if an error is detected. Parity bits (one per byte) are 
generated for the 32-bit output bus. 

FUNCTIONAL DESCRIPTION 

A detailed description of each functional block is given in the 
following paragraphs. 

64-Blt Funnel Shifter 

The 64-bit funnel shifter is a combinatorial network. The 64-bit 
input is formed from a combination of the A and B inputs. This 
may be left-shifted by up to 31 bits before being used by the 
ALU. The output of the shifter is the most significant 32 bits of 
the result. The 64-bit shifter can be used on either the A or B 
operands to perform barrel shifts (either up or down) or 
rotates. The operation is controlled by positioning operands 
properly at the input of the 64-bit up-shifter. 

The number "n" by which the operand is shifted comes from 
two sources: the microprogram memory via the Po - Ps pins or 
the internal register (byte 0 of the status register), PRo - PRs, 
as selected by an instruction bit. 

In general, the 6-bit pOSition input, Po - Ps, takes a 6-bit two's 
complement number representing upshifts from 0 to 31 places 
(positive numbers) or downshifts from 1 to 32 places (negative 
numbers). 

Mask Generator 

The mask generator logic provides the ability to generate the 
appropriate mask for an operand of given width and position. 
The generation of the mask depends upon two types of 
instructions. The first type has byte boundary aligned oper­
ands (widths of either 1, 2, 3 or 4 bytes) with the least 
significant bit aligned to bit O. The width of an operand is 
specified by the byte width inputs (Ie and 17) as shown in Table 
3. The second type of instruction has operands of variable 
width (1 to 32 bits) and position. The operand is specified by 
the width inputs (WO - W 4) and the position inputs (Po - Ps) 
indicating the least significant bit pOSition of the operand. 
Thus, in this type of instruction the operand mayor may not be 
least significant bit aligned. Depending upon the type of 
instruction, the mask generator first generates a fence of all 
zeros starting from the least significant bit with the width 
specified either by the byte width or the width input fields. This 
fence can be upshifted by up to 31 bits by the 32-bit mask 
shifter. Whenever the mask is moved up over the 32-bit 
boundary, it does not wrap around. Instead, ONE's are 
inserted from the least significant end. This configuration 
provides the ability to operate on a contiguous field located 
anywhere in a word, or across a word boundary. 

The mask generator can be used as a pattern generator by 
allowing the mask to pass through ALU (by using the PASS­
MASK instruction). For example, a single-bit wide mask can be 
generated and by shifting it up by different amounts can give 
walking ONE or walking ZERO patterns for memory tests. 

TABLE 3. 

18 17 Width In Bytes 

0 0 4 

0 1 1 

1 0 2 

1 1 3 

Arithmetic and Logical Unit 

The ALU is a three input unit which uses the mask as a second 
or third operand in every instruction. The mask is used to 
merge two operands. For all selected bits (wherever the mask 
is 0), the desired operation specified by the instruction input is 
performed, and for all unselected bits either corresponding 
destination bits or zeros are passed through. The status of 
each operation (carry, negative, zero, overflow, link) applies to 
the result only over the specified width. For all byte aligned 
arithmetic and logical operations (first three quarters of the 
instruction set), the status is extracted from the appropriate 

2-47 



byte boundary. For all field operations (last quarter of the 
instruction set), the operand width is assumed to be 32 bits for 
status generation. The ZERO flag always indicates the status 
of all bits selected by the mask. 

The actual width of the ALU is 34 bits. There are two extra bits 
used for the high speed signed and unsigned multiplication 
instructions. These two bits are automatically concatenated to 
the most-significant end of the ALU depending upon the width 
specified for the operation. Since the modified Booth algorithm 
requires a two-bit down-shift each cycle, these ALU bits 
generate the two most-significant bits of the partial product. 

The ALU is capable of shifting data down by two bits for the 
multiplication algorithm, up by one bit for the divide algorithm 
and single-bit-up-shifts. 

The processor is capable of performing BCD arithmetic on 
packed BCD numbers. The ALU has separate carry logic for 
BCD operations. This logiC generates nibble carries (BCD digit 
carry) from propagate and generate signals formed from the A 
and B operands. In order to simplify the hardware while 
maintaining throughput, the BCD add and subtract operations 
are performed in two cycles. I n the first cycle, ordinary binary 
addition or subtraction is performed and BCD nibble carries 
are generated. These are blocked from affecting the result at 
this stage, but are saved in the status register to be used later 
for BCD correction (NCo - NC7). In the second cycle all BCD 
numbers are adjusted by examining the previously generated 
nibble carries. Since all the necessary information is stored in 
the status register, the processor can be interrupted after the 
first BCD cycle. 

Priority Encoder 

The priority encoder is provided to support floating-point 
arithmetic and some graphics primitives. The priority encoder 
takes up to 32 bits as input and generates a 5-bit wide binary 
code to indicate location of the most significant one in the 
operand. Input to the priority encoder comes from the input 
multiplexer, which 'masks all bits that the user does not want to 
participate in the prioritization. Tlie priority encoder supports 8, 
16, 24 and 32-bit operations depending upon the byte width 
specified. For each data type the priority encoder generates 
the appropriate binary weighted code. For example, when a 
byte width of two is specified (17 -Ie = 10), the output of the 
encoder is zero when bit 15 is HIGH. However, if byte width of 
four is specified (Ie -17 = 00), the output of encoder is 16 
(decimal) if bit 15 is HIGH and bits 31 -16 are LOW. Table 4 
shows the output for each data type. If none of the inputs are 
HIGH or the most significant bit of the data type specified is 
HIGH, then the output is zero. The difference between these 
two cases is indicated by the Z-flag of the status register which 
is HIGH only if all inputs are zero. 

Q-Register 

The Q-register holds dividend and quotient bits for division, 
and multiplier and product bits for multiplication. During 
division, the contents of the Q-register are shifted left, a bit at 
a time, with quotient bits inserted into bit o. During multiplica­
tion, the cOntents of the Q-register are shifted right, two bits at 

a time, with product bits inserted into the most-significant two 
bits (according to the selected byte width). The Q-register may 
be loaded from the A or B inputs and read onto the Y bus. 

Master-Slave Comparator 

All ALU outputs (except MSERR) employ three-state buffers. 
The master-slave comparator compares the input and output 
of each buffer. Any difference causes the MSERR signal to be 
made true. In Slave mode, all output buffers are disabled. 
Outputs from a second ALU may then be connected to the 
equivalent pins of the first. The comparator in the slave will 
then detect any difference in the results generated by the two. 
When the Y bus is three-stated by making Output-Enable 
false, the Y bus master-Slave comparators are disabled. 

Parity Logic 

For each byte of the DA and DB inputs there is an associated 
parity bit (8 in all). If a parity error is detected on any byte, the 
Parity-Error signal is made true. Four parity signals (one per 
byte) are also generated for the Y bus outputs. EVEN parity is 
employed for the Am29C332. 

Status Register 

All necessary information about operations performed in the 
ALU is stored in the 32-bit wide status register after every 
microcycle. Since the register can be saved, an interrupt can 
occur after any cycle. The status register can be loaded from 
either the A or B input of the chip and can be read out on the Y 
bus for saving in an external register file. For loading, the byte 
width indicates how many bytes are to be updated. The status 
register is only updated if the HOLD input is inactive. 

Each byte of the status register holds different types of 
information (see Figure 3). The least significant byte (bits 0 to 
7) holds eight position bits (PRo - PR7) for the data shifter. 
The two most significant bits are not used. The next most 
significant byte (bits 8 to 15) holds the 5-bit width field 
(WRO - WR4) for the mask generator. The three most-signifi­
cant bits of that byte (bits 13 to 15) are read-only bits that 
represent three different conditions extracted from the other 
bits of the status register. They are C + Z, N III V, and (N III 

V) + Z for bits 13, 14 and 15 respectively. These bits can be 
read on the Yo pin by the extract-status instruction. The next 
byte contains all the necessary information generated by an 
ALU operation. The least-significant four bits (bits 16 to 19) 
hold carry, negative, overflow and zero flags. Bit 20 holds link 
information for single bit shifts and bits 21 and 22 are used by 
the multiply and divide instructions. The M flag holds the 
multiplier bit for the modified Booth algorithm or it holds the 
sign comparison result for the divide algorithm. The S flag 
holds the sign of the partial remainder for unsigned division. 
Both the flags (M and S) are provided as a part of the status 
register so that multiply and divide instructions can be inter­
rupted at microinstruction boundaries. The most significant 
byte of the status register holds nibble carries for BCD 
arithmetic. Since BCD arithmetic is performed in two cycles, 
the nibble carries are saved in the first cycle and used in the 
second cycle. Since all the information is stored, BCD instruc­
tions are also interruptible at the microinstruction boundary. 
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I I 
TABLE 4. StatuSD-7: Position Register 

PR7 PRe PRs I PR4 I PRs PR2 PR1 PRo Highest Priority Encoder 
Active Bit Output 

7 6 5 4 3 0 
17 - 18 = 00 (32-bit) 

None 0 
31 0 
30 1 
29 2 
28 3 

StatuS6-12: 
Status1S: 
Status14: 
Status1S: 

Width Register 

e+Z } 
N$V 
(N$V)+Z 

Read Only 

1 30 
0 31 14 13 

17 -18 = 01 (8-bit) 
None 0 
7 0 
6 1 
5 2 

Status16: Carry 
Status17: Negative 
Status1S: Overflow 
Status19: Zero 
Status20: Link 
Status21: Multiply (and divide) Bit 
Status22: Sign Flag 

1 6 
Status23: 0 

0 7 

17 -18 = 10 (16-bit) 
None 0 

0 S M L Z V N I C 

23 22 21 20 19 18 17 16 

15 0 
14 1 Nibble Carries 

13 2 
12 3 NCe NCs 

31 30 29 28 27 26 25 24 

1 14 
0 15 

Note: Overflow is defined as follows: 
V = (carry in to MSB) ED (carry out of MSB) 

17 -18 = 11 (24-bit) Figure 3. ALU Status Register Bit Assignment 
None 0 
23 0 
22 1 
21 2 
20 3 

1 22 
0 23 
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Am29C332 INSTRUCTION SET 

Data Types 

The Am29C332 supports the following data types: 

1. Integer 
2. Binary-coded decimal 
3. Variable-length bit field 

The first two data types fall into the category of byte boundary 
aligned operands (Figure 4). The size of the operand could be 
1 byte, 2 bytes, 3 bytes or 4 bytes. All operands are least 
significant bit (bit 0) aligned. The byte width is determined by 
bits 18 and 17 of the instruction as shown in Table 5. 

TABLE 5. 

Width In 
Is 17 Bytes 

0 0 4 

0 1 1 

1 0 2 

1 1 3 

The third data type has operands of variable width (1 to 32 
bits) as shown in Figure 4. The operand is specified by width 
inputs (Wo - W4) and position inputs (Po - Ps). The position 
inputs indicate the least significant bit position of the operand. 
Depending on bits 18 and 17 of the instruction, the width and 
position inputs can be selected from either the Status Register 
or the Width and Position Pins as shown in Table 6. A 
summary of the data types available is illustrated in Table 7. 

31 23 15 - 1 BYTe 

2 Bvres 

- 3 BYTES 

I I 4 BYTES 

TB000096 

Byte Boundary Aligned Operands 

31 p. w-1 p ,.., 

W-l 

TB000630 

Variable-Length Bit Field 

p = Bit displacement of the least significant field with re­
spect to bit o. 

w = Width of bit field. 

Figure 4. Data Types 

TABLE 6. 

Position Width 

18 17 Pins Reg Pins Reg 

0 0 X X 

0 1 X X 

1 0 X X 

1 1 X X 

TABLE 7. 

Data Type Size Range 

Integer Signed Unsignad 
1 byte 8 bits -128 to +127 o to 25S 
2 bytes 16 bits _215 to o to 

+215 _1 216 _1 
3 bytes 24 bits _223 to 223_1 o to 

224_1 
4 bytes 32 bits _231 to 231 -1 o to 

232 _1 
BCD 1 to 4 bytes Numeric, 2 digits per byte. 

(8 digits) Most-significant digit may be 
used for sign. 

Variable 1 to 32 bits Dependent on. position and 
width inputs. 

Instruction Format 

The Am29C332 has two types of Instruction Formats: 

1. By1e Boundary Aligned Instructions (FORMAT 1): 

Is 

BYTE WIDTH OPCOOE 

TBOoo098 

2. Variable-Length Field Bit Instructions (FORMAT 2): 

OPCODE 

10 6 5 

WIDTH 

TB000099 

For instructions that allow a field to be shifted up or down, 
Po - Ps is a two's-complement number in the range -32 to 
+ 31 representing the direction and magnitude of the shift. For 
instructions that assume a fixed field position, Po - P 4 repre­
sent the position of the least-significant bit of the field and Ps 
is ignored. 
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Instruction Classification 

ALU instructions can be classified as follows: 

A. Byte Boundary Aligned Operand Instructions: 

1. Arithmetic 
- Binary, BCD 
- Multiply steps 
- Division steps (single and multiple precision) 

2. Prioritize 

3. Logical 

4. Single-bit shifts 

5. Data movement 

B. Variable-Length Bit Field Operand Instructions: 

1. N-bit shifts and rotates 

2. Bit manipulations 

3. Field logical operations (aligned, non-aligned, extract) 

4. Mask generation 

Three-fourths of the ALU instructions apply to operands that 
are byte boundary aligned. For these instructions, two orthog­
onal issues are the width of the operand (in bytes) and the 
contents of the high order unselected ,bytes on the Y bus. As 
mentioned earlier, the width of the operand is specified by 18 
and 17. With the exception of a few instructions, the unselected 
bytes are aSSigned values as follows: for single operand 
instructions, unselected bytes are passed unchanged from the 
source (A or B). For two operand instructions, unselected 
bytes are passed unchanged from the destination (B input). 

In the last quarter of the instruction set, the width of the 
operand is from 1 to 32 bits (based on the width input) for field 

, operations, 32 bits for N-bit shift operations and l-bit for bit­
oriented operations. In the case of field-aligned and single-bit 
operands, the position bits (Po - P 4) determine the least 
significant bit of the operand. In the case of N-bit shifts and 
field non-aligned operands, the position bits Po - Ps is a 6-bit 
Signed integer determining the magnitude and direction of the 
shift. 

Flags 

Byte-Aligned Instructions 

The zero flag always looks only at the selected bytes: 

Z - (Y and bytemask (byte width) = 0) 
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Similarly, N - sign bit (Y, byte width), where the function 
"sign-bit" returns bit 7, 15, 23, or 31 of the first argument for 
byte widths 01, 10, 11, or 00 respectively. 

Also, C - carry (byte width) returns the carry from the 
appropriate byte boundary, and: 

V - overflow (byte width) = (carry into MSB) Ell (carry 
out of MSB) 

returns the overflow from the appropriate byte boundary. 

The link (L) flag is generally loaded with the bit moved out of 
the highest selected byte in the case of upshifts, or the bit 
moved out of the least significant byte for downshifts. Figure 5 
shows the shift operation using link bit. Other status flags have 
specialized uses, explained in the following sections. 

o 
1 

Shift Down: 

Shift Up: 
1,2,3, or4 bytes 

A (orB) 

DFOO6l90 

Figure 5. Upshift/Downshift Using Link Bit 

Variable-Length Field Instruction: 

Generally, only Nand Z are-affected. N takes the most· 
significant bit of the 32·bit result (Le., N - Y3l). Z detects 
zeros in the selected field of the result (i.e., Z - (Y and 
bitmask (pOSition, width) = 0». 

Output Select 

The Register Status pin, RS, may be used to switch the C, Z, 
N, V, and L output pins between the direct output of the ALU 
and the outputs of the corresponding bits in the status register. 
If the direct status output is selected, then for instructions that 
do not affect a particular flag (e.g., carry for logical arithmetic) 
that output will reflect the state of its corresponding bit in the 
status register. Similarly, when the HOLD signal is made 
HIGH, the C, Z, N, V and L pins will be made equal to the 
contents of the status register, regardless of the RS input. 
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INSTRUCTION SET SUMMARY 

Operand Size: Variable Byte Width: " 2, 3, 4 Bytea 

Type Operation Data Type 

• Increment by one, two, four 
• Decrement by one, two, four 
• Add, addc (carry = macro/micro) Binary Integer 
• Sub, subr and BCD 

Arithmetic • Subc, subrc (carry/borrow) 
• BCD sum and 'difference correct steps 

• Negate (two's complement) 
{ (Signed and unsigned) • Multiply steps (modified Booth) Binary Integer 

• Divide steps (non-restoring) 

Prioritize • Prioritize Binary 

Logical • Not, OR, AND, XOR, XNOR, zero, sign Binary 

Single-Bit • Upshift with 0, 1, link fill { (Single and double precision) Binary 
Shifts • Downshift with 0, 1, link, sign fill 

• Zero extend 

Data • Sign extend 

Movement • Pass-status, Q-Reg Binary 
• Load-status, Q-Reg 
• Merge 

Operand Size: 32 Bits 

Type Operation Data Type 

N-Bit Shifts • Upshift by 0 to 31 bits with 0 fill 

N-Bit Rotates • Downshift by 1 to 32 bits with 0, sign fill Binary 
• Rotate by 0 to 31 bits 

Operand Size: Single Bit 

Type Operation Data Type 

Bit • Extract 

Manipulation • Set Binary 
• Reset 

Operand Size: Variable Length Bltfleld: 1 to 32 Bits 

Type Operation Oats Type 

Field Logical 
(aligned and • Not, OR, XOR, AND, extract, insert Binary 
non-aligned) 

Mask • Pass-mask Binary 
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INSTRUCTION SET GLOSSARY 
(Sorted by Opcode In Hex Notation) 

Opcode Name Opcode Name Opcode Name Opcode Name 

00 ZERO-EXTA 20 DN1-0F-A 40 AND 60 NB-SN-SHA 
01 ZERO-EXTB 21 DN1-0F-B 41 XNOR 61 NB-SN-SHB 
02 SIGN-EXTA 22 DN1-0F-AQ 42 ADD 62 NB-OF-SHA 
03 SIGN-EXTB 23 DN1-0F-BQ 43 ADDC 63 NB-OF-SHB 
04 PASS-STAT 24 DN1-1F-A 44 SUB 64 NBROT-A 
05 PASS-Q 25 DN1-1F-B 45 SUBC 65 NBROT-B 
06 LOADQ-A 26 DN1-1F-AQ 46 SUBR 66 EXTBIT-A 
07 LOADQ-B 27 DN1-1F-BQ 47 SUBRC 67 EXTBIT-B 
08 NOT-A 28 DN1-LF-A 48 SUM-CORR-A 68 SETS IT-A 
09 NOT-B 29 DN1-LF-B 49 SUM-CORR-B 69 SETBIT-B 
OA NEG-A 2A DN1-LF-AQ 4A DIFF-CORR-A 6A RSTBIT-A 
DB NEG-B 2B DN1-LF-BQ 4B DIFF-CORR-B 6B RSTBIT-B 
OC PRIOR-A 2C DN1-AR-A 4C - 6C SETBIT-STAT 
00 PRIOR-B 20 DN1-AR-B 40 - 60 RSTBIT-STAT 
OE MERGEA-B 2E DN1-AR-AQ 4E SDIVFIRST 6E NOTF-AL-B 
OF MERGEB-A 2F DN1-AR-BQ 4F UDIVFIRST 6F PASSF-AL-B 

10 DECR-A 30 UP1-0F-A 50 SDIVSTEP 70 NOTF-A 
11 DECR-B 31 UP1-0F-B 51 SDIVLAST1 71 NOTF-AL-A 
12 INCR-A 32 UP1-0F-AQ 52 MPDIVSTEPl 72 PASSF-A 
13 INCR-B 33 UP1-0F-BQ 53 MPSDIVSTEP3 73 PASSF-AL-A 
14 DECR2-A 34 UP1-1F-A 54 UDIVSTEP 74 ORF-A 
15 DECR2-B 35 UP1-1F-B 55 UDIVLAST 75 ORF-AL-A 
16 INCR2-A 36 UP1-1F-AQ 56 MPDIVSTEP2 76 XORF-A 
17 INCR2-B 37 UP1-1F-BQ 57 MPUDIVSTP3 77 XORF-AL-A 
18 DECR4-A 38 UP1-LF-A 58 REMCORR 78 ANDF-A 
19 DECR4-B 39 UP1-LF-B 59 QUOCORR 79 ANDF-AL-A 
1A INCR4-A 3A UP1-LF-AQ 5A SDIVLAST2 7A EXTF-A 
1B INCR4-B 3B UP1-LF-BQ 5B UMULFIRST 7B EXTF-B 
1C LDSTAT-A 3C ZERO 5C UMULSTEP 7C EXTF-AB 
10 LDSTAT-B 3D SIGN 50 UMULLAST 70 EXTF-BA 
1E - 3E OR 5E SMULSTEP 7E EXTBIT-STAT 
1F - 3F XOR 5F SMULFIRST 7F PASS-MASK 
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TABLE 6·1. DATA MOVEMENT INSTRUCTIONS 

Y Output 

Mnemonics Code Description Unsel Sel S M 

ZERO-EXTA 00 Zero Extend 0 A 

ZERO-EXTB 01 0 B 

SIGN-EXTA 02 Sign Extend Sign A 

SIGN-EXTB 03 Sign B 

MERGEA-B OE Merge A with B B A Merge B 

MERGEB-A OF Merge B with A A B Merge A 

TABLE 6·2. DATA MOVEMENT INSTRUCTIONS 

Y Output 

Mnemonics Code Description Unsel Sel Status Register 

PASS-STAT 04 Pass Status -Register B S 

LDSTAT-A 1C Load Status Register S A A 

LDSTAT-B 10 S B B 

TABLE 6·3. DATA MOVEMENT INSTRUCTIONS 

Y Output 

Mnemonics Code Description Unsel Sel 

PASS-Q 05 Pass Q Register B Q 

LOADQ-A 06 Load Q Q A 

LOADQ-B 07 Q B 

Note: 1. These Instructions use the byte aligned instruction format (FORMAT 1). 

Legend: Unsel = Unselected Byte(s) 

Examples: 

Sel = Selected Byte(s) 
A =A Input 
B = B Input 
Q = Q Register 
+ = Updated only if byte width is 3 or 4 
* = Updated 

Q Register 

A 

B 

L 

S 

+ 

+ 

S 

Pass lower two bytes of B to Y with zero fill on upper two bytes 

Status 

Z 

* 

* 

* 

* 

* 

* 

M L 

+ + 

+ + 

M L 

2, ZERO EXTB 

0, LOAOQ-A Load all four bytes of A into Q Register pass updated Q Resistor to Y 
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* 

* 

* 

* 

* 

* 

Status 

Z V N C 

+ + + + 

+ + + + 

Status 

Z V N C 

* * 

* * 



TABLE 7. LOGICAL INSTRUCTIONS 

Y Output Status 

Mnemonics Code Description Unsel Sel 

NOT-A 08 One's Complement A A 

NOT-B 09 B B 

ZERO 3C Pass Zero B 0 

SIGN 3D Pass Sign B O(N = 0); -l(N = 1) 

OR 3E OR B A OR B 

XOR 3F EXOR B A XOR B 

AND 40 AND B A AND B 

XNOR 41 XNOR B A XNOR B 

Note: t. These Instructions use the byte aligned instruction format (FORMAT 1). 

Legend: Unsel - Unselected Byte(s) 

Examples: 

Sel = Selected Byte(s) 
A-A Input 
B = B Input 
Q = Q Register 
• = Updated 

S M L 

2, NOT-A Complement low order two bytes of A and output to Y with 
high order two bytes of A uncomplemented. 

1, AND AND first byte of A and B. Output to Y with high three 
bytes of B. 

Z 

· · 
1 

N 

· · · · 

TABLE 8-1. SINGLE-BIT SHIFT INSTRUCTIONS (SINGLE PRECISION) 

V 

Y Output Status 

Mnemonics Code Description Unsel Sel S M 

DN1-0F-A 20 Downshift, Zero Fill A Yi=Ai+l, Ymsb=O 

DN1-0F-B 21 B Yi = Bi + 1, Ymsb = 0 

DN1-1F-A 24 Downshift, One Fill A Yi = Ai + 1, Ymsb = 1 

DN1-1F-B 25 B Yi = Bi + 1, Ymsb = 1 

DN1-LF-A 28 Downshift, Link Fill A Yi = Ai + 1, Ymsb = L 

DN1-LF-B 29 B Yi = Bi + 1, Ymsb = L 

DN1-AR-A 2C Downshift, Sign Fill A Yi=Ai+l, Ymsb=N 

DN1-AR-B 2D B Yi = Bi + 1, Ymsb = N 

UP1-0F-A 30 Upshift, Zero Fill A Yi=Ai-l, Yo=O 

UP1-0F-B 31 B Yi=Bi-l, YO=O 

UP1-1F-A 34 Upshift, One Fill A Yi=Ai-l, Yo=l 

UP1-1F-B 35 B Yi=Bi-l, Yo=l 

UP1-LF-A 38 Upshift, Link Fill A Yi=Ai-l, Yo=L 

UP1-LF-B 39 B Yi=Bi-l, Yo=L 

Note: 1. These instructions use the byte aligned instruction format (FORMAT 1). 

Example: 
2, UP1-1F-A Shift lower two bytes of A up one bit. Set LSB to 1. Fill 

unseiected bytes to upper two bytes of A. 
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TABLE 8-2. SINGLE-BIT SHIFT INSTRUCTIONS (DOUBLE r:'RECISION) 

Y Output & Q Register Status 

Mnemonics Code Description selected Bytes S M L Z V N C 

DN1·0F·AQ 22 Downshift, Zero Fill O-+A-+Q 2) · · · 
DN1·0F·8Q 23 0-+8-+Q 3) · · · 
DN1-1F-AQ 26 Downshift, One Fill l-+A-+ Q 2) · · · 
DN1-1F·8Q 27 1-+8-+ Q 3) · · · 
DNI-LF-AQ 2A Downshift, Link Fill L-+A-+ Q 2) · · · 
DNI-LF-8Q 28 L-+8-+Q 3) · · · 
DN1-AR-AQ 2E Downshift, Sign Fill N-+A-+Q 2) · · · 
DNI-AR-8Q 2F N-+8-+Q 3) · · · 
UP1-0F-AQ 32 Upshift, Zero Fill A+-Q+-O 2) · · · · 
UP1-0F-8Q 33 8+-Q+-0 3) · · * · 
UP1-1F-AQ 36 Upshift, One Fill A+-Q+-l 2) · · · · 
UP1-1F-8Q 37 8+-Q+-l 3) * · * · 
UPI-LF-AQ 3A Upshift, Link Fill A+-Q+-L 2) · * * · 
UPI-LF-SQ 38 8+-Q+-L 3) · · · · 

Notes: 1. These instructions use the byte aligned instruction format (FORMAT 1). 
2. Y Unselected byte from A, Q Unselected byte unchanged. 
3. Y Unselected byte from B, Q Unselected byte unchanged. 

Legend: Unsel = Unselected Byte(s) 
Sel = Selected Byte(s) 

A = A Input 
B = B Input 
Q = Q Register 
• = Updated 

Example: 
0, DNI-AR-SO Shift 64 bits (all 32 bits of both Band 0) 

down by one bit. LSB of B fills MSB of O. 
MSB of B set to sign bit (bit N of status register). 

61 B(32bits) H 0(32 bits) S 
ls;gnbit 

link status bit 

3, UP1-LF-AO Shift 48 bits (24-bits of A and 24-bits of 0) 
up by one b~. MSB of 24-bit 0 fliis LSB of A. 
MSB of 24-bit A sets link status bit. LSB of 
o is filled with original link value. 

~A(24bits) I ~ Q(24bits) 11 I f I 
DFOO6200 
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TABLE 9. PRIORITIZE INSTRUCTIONS 

Mnemonics Code Description Y Output 

PRIOR·A OC Prioritization Location of Highest 1 Bit 

PRIOR·B 00 

Notes: 1. These instructions use the byte aligned instruction format (FORMAT 1). 
2. Priority also loaded into STATUS <7:0> 
3. Refer to Table 4. 

Legend: A - A Input 
B - B Input 

Example: 

Q = Q Register 
• = Updated 

3, PRIOR-A Value placed on Y is 2 

Assume A is 01001011 00100010 I 00000000 00000000 

S M 

TABLE 10-1. ARITHMETIC INSTRUCTIONS 

Y Output 

Mnemonics Code Description Unsel Sel S M 

NEG·A OA Two's Complement A A+l 

NEG·B OB B B + 1 

INCR·A 12 Increment by One A A+l 

INCR·B 13 B B+l 

INCR2·A 16 Increment by Two A A+2 

INCR2·8 17 8 8+2 

INCR4·A lA Increment by Four A A+4 

INCR4·8 18 8 8+4 

DECR·A 10 Decrement by One A A-I 

DECR·8 11 8 8-1 

DECR2·A 14 Decrement by Two A A-2 

DECR2·8 15 8 8-2 

DECR4·A 18 Decrement by Four A A-4 

DECR4·8 19 8 8-4 

Notes: 1. These instructions use the byte aligned instruction format (FORMAT 1). 
2. Borrow, rather than carry, is generated if BOROW is HIGH (borrow = carry). 

Status 

L Z V . . 

Status 

L Z V N C 

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 
3. Nibble bits are set by these instructions. NEG·A (or NEG·B) and DIFF·CORR may be used to 

form 10's complement of a BCD number. Use SUM·CORR (for increment) or DIFF·CORR (for 

Example: 

decrement) to increment or decrement a BCD number. . 

Legend: Unsel = Unselected Byte(s) 
Sel = Selected Byte(s) 

A = A Input 
B = B Input 
Q = Q Register 
• = Updated 

2, DECR4·A Decrement lower two bytes of A by 4 
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TABLE 10-2. ARITHMETIC INSTRUCTIONS 

Y Output Status 

Mnemonics Code Description Unsel Sel S M L Z V N C 

ADD 42 Add B A+B * * * * 

ADDC 43 Add with Carry B A+B+C 6) * * * * 

SUB 44 Subtract B A+B+1 * * * * 

SUBR 46 B B+A+1 . · · · 
SUBC 45 Subtract with Carry B A+B+1+C 2) 6) . · · * 

SUBRC 47 B B+A+1+C 2) 6) * · · * 

SUM·CORR-A 48 Correct BCD Nibbles A Corrected A 3) * · · · 
SUM·CORR·B 49 for Addition B Corrected B 3) * · · · 
DIFF·CORR·A 4A Correct BCD Nibbles A Corrected A 3) * * .* * 

DIFF-CORR-B 4B for Subtraction B Corrected B 3) * * · · 
Notes: 1. These Instructions use the byte aligned Instruction format (FORMAT 1). . 

2. BOROW is LOW. For subtract operations, a borrow rather than a carry is stored in STATUS if BOROW is HIGH. 
Carry is always generated for ADD regardless of BOROW. 

3. First, the nibble carries NCo - NCr are tested. Any nibble carry/borrow that is set to 1 generates "6" internally as 
a correction word and then the correction word is added (SUM-CORR- ) or subtracted (DIFF-CORR- ) from the 
operand. NCo - NCr are not affected by this operation. 

4. Use SUM-CORR or DIFF-CORR to add or subtract a BCD number. 
5. Use ADDe, SUBC, or SUBRC to perform operations on integers longer than 32 bits. 
6. Carry bit is obtained from MCin if M/m is HIGH. Otherwise, carry is obtained from the C status bit. 

Legend: Unsel = Unselected Byte(s) 

Example: 

Sel = Selected Byte(s) 
A - A Input 
B - B Input 
Q = Q Register 

• - Updated only if byte width is 3 or 4 

0, ADD Add two 32-bit two's-complement Integers 
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TABLE 11-1. DIVIDE INSTRUCTIONS (Aligned Format) 

Source for Status 
16- 10 Unselected 

Name Code Description Bytes Output S M L Z V N C 

Signed Divide Steps 

SDIVFIRST 4 E First Instruction for Signed Divide B Y,Q . · · · · 
SDIVSTEP 50 Iterate Step (# bits - 1 times) B Y, Q · · · · · 
SDIVLAST1 5 1 Last Divide Instruction Unless B Y,Q · · · · 
SDIVLAST2 5A Dividend & Remainder Negative B Y · 

Unsigned Divide Steps 

UDIVFIRST 4 F First Instruction for Unsigned Divide B Y, Q · · · 
UDIVSTEP 54 Iterate Step (#bits - 1 times) B Y, Q . · · · · 
UDIVLAST 55 Last Instruction B Y,Q 0 · · · · 
Multlpreclslon Divide Steps 

MPDIVSTEP1 52 First Instruction B Y, Q 

MPDIVSTEP2 56 Executed 0 Times for Double B Y, Q 

MPSDIVSTEP3 53 Last Instruction of Inner Loop B Y, Q 

MPUDIVSTP3 57 Used for Unsigned Divide B Y, Q 

Correction Steps 

REMCORR 58 Correct Remainder After Divide B Y · 
QUOCORR 59 Correct Quotient After Divide B Y . · 

TABLE 11-2. EXAMPLE CODING FORM (Signed Division) 

'S 

~ 
N 
C'I 
C'I 
U 
'" N 

Am29C331 Am29C332 Am29C334 
E 
oC 

Cond Multi 
OP Branch Select Sel B/W OP Width Position A-IN B-IN y-oUT OE 

CONT 2 LOADO-A R2 1 

CONT 0 SIGN R3 0 

FOR 0 15 2 SDIVFIRST R4 R3 R3 0 

DJMP_S 2 SDIVSTEP R4 R3 R3 0 

CONT 2 SDIVLAsn R4 R3 R3 0 

BRCC_ 0 DONE Z 1 

CONT 2 SDIVLAST2A R4 R3 R3 0 

CONT 2 PASS-Q R1 0 

CONT 2 QUOCORR R1 R1 0 

CONT 2 REMCORR R4 R3 R3 0 

Note: Divisor in A, Dividend in A 
Quotient in Q, Remainder in B 

Legend: A = A Input 
B = B Input 
5 = Status Register 
Q = Q Register 

R1 = Quotient 
R2 = Dividend 
R3 = Remainder 
R4 = Divisor 
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TABLE 12·1. MULTIPLY INSTRUCTIONS (Aligned Format) 

Source tor Statua 
16- 10 Uneelected 

Neme Code Description Byie. Output S M L Z V N C 

Signed Multiply Step. 

SMULFIRST 5 F First multiply instruction B y(1) 

SMULSTEP 5 E Iterate step (#bits/2 - 1 ste~s) B y(1) 

Unsigned Multiply Steps 

UMULFIRST 5 B First multiply instruction B y(1) . 
UMULSTEP 5C Iterate step (#bits/2 - 1 steps). B y(1) . 
UMULLAST 5D Last multiply instruction B y(1) * 

TABLE 12·2. EXAMPLE CODING FORM (Unsigned Multiply) 

; 

2 
<'I ... ... 
~ 
E 

Am29C331 Am29C332 Am29C334 
cC 

Cond Multi 
OP Branch Select Sel B/W OP Width Position A-IN B-IN y-oUT OE 

CaNT 3 ZERO R3 R3 0 

CaNT 3 LOADQ-A R1 1 

FOR D 1110 3 ULMULFIRST R2 R3 R3 0 

DJMP_S 3 UMULSTEP R2 R3 R3 0 

CaNT 3 UMULLAST R2 R3 R3 0 

CONT 3 PASS-Q R4 0 

Note: 1. Put ALU output in B. 
2. Multiplicand in A, Multiplier in Q 

Product (HIGH) in B, Product (LOW) in Q 

Legend: A - A Input 
B = B Input 
S = Status Register 
Q = Q Register 

R1 - Multiplier 
R2 = Multiplicand 
R3 = Product (HIGH) 
R4 - Product (LOW) 
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TABLE 13. SHIFT/ROTATE INSTRUCTIONS 

Status 

Mnemonics Code Description Y Output S M L Z V N C 

NB·OF·SHA 62 Field Shift, Zero Fill Yi+ p - Ai, 0 2) · · 
NB·OF·SHB 63 Yi+ p = Bi, 0 2) · · 
NB·SN·SHA 60 Field Shift, Sign Fill Yi+p = Ai, N 2) · · 
NB·SN·SHB 61 Yi+p - Bi, N 2) · · 
NBROT·A 64 Field Rotate Yi = A(i - p)mod32 3) · · 
NBROT·B 65 Yi = B(i - p)mod32 3) · · 

Notes: 1. These instructions use the field instruction format (FORMAT 2). 
2. "p" stands for b~ displacement from Po-Ps or from PRo-PRs (-32":p":31). 

If p is positive, Vp _ 1 to Vo are equal to the fill bit. 
If P is negative, V3l to V3l + P + 1 are equal to the fill b~. 

3. The sign of the position input is ignored for this instruction and Po - P 4 are treated as a positive magnitude for a 
circular upshift. 

Legend: A ~ A Input 
B = B Input 

Examples: • 

Q = Q Register 
• = Updated 

NB·OF·SHA,,4 Shift A up 4 bits and zero fill 

NB-OF·SHB,,·17 Shift B down 17 b~s and sign fill 

'Width field not used 

TABLE 14·1. BIT·MANIPULATION INSTRUCTIONS 

Y Output 

Mnemonics Code Description Unsel Sel S M 

SETBIT·A 68 Bit Set A Yi = Ai, Yp= 1 

SETBIT·B 69 B Yi - Bi, Yp= 1 

RSTBIT·A 6A Bit Reset A Yi=Ai, Yp=O 

RSTBIT·B 6B B Yi=Bi, Yp=O 

EXTBIT·A 66 Bit Extract 0 if P > 0, Yo =~ 2) 
if P < 0, Yo= p 

EXTBIT·B 67 0 if P > 0, Yo = !!P 
if P < 0, Yo = Bp 

2) 

EXTBIT·STAT 7E 0 if p>O, Yo=Sp 2) 
if p<O, Yo=Sp 

Notes: 1. These instructions use the field instruction format (FORMAT 2). 

Status 

L Z V N C 

· · · · · · · · · · 
· · 
· 

2. V3l to V, are set to zero. "p" stands for the bit displacement from PO-P4 or from PRo-PRs. The sign of the position input Is 
ignored. 

TABLE 14·2. BIT·MANIPULATION INSTRUCTIONS 

Mnemonics Code Description Status Register 

SETBIT·STAT 6e Status Bit Set Sp= 1 

RSTBIT·STAT 60 Sp=O 

Notes: 1. These instructions use the Field instruction format (FORMAT 2). 
2. "p" stands for the bit displacement from Po - Ps or from PRo - PRs. 

Legend: Unsel - Unselected field 

Examples: 

Sel - Selected field 
A = A Input 
B = B Input 
Q = Q Register 
• - Updated 

RSTBIT·B,,3 
EXTBIT·STAT,,-4 

3rd bit is set to 0 in B 
4th bit in status register is extracted and 

inverted. 
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Y Output 

S 

S 

Status 

S M L Z V N C . . . . . . . . . . . . . . 

Ii 

I,~ 

I' 
!' 



A: 

A: 

A: 

Non-Aligned Fields Case 1: 

If position (PO·P5) ;:: 0, A Is LSB aligned 
Width (W0·W4) = 1 to 32 

If position (PO·P5) < 0, B is LSB aligned 
Width (W0·W5) = 1 to 32 

Figure 6. Field Logical Operations 
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TABLE 15. FIELD LOGICAL INSTRUCTIONS 

Y Output Status 

Mnemonics Code Description Unsel Sel S M L Z V N C 

PASSF-AL-A 73 Field Pass 3) B Vi=Ai * * 

PASSF-AL-B 6F 3) B Vi=Bi * * 

PASSF-A 72 4) B if p;;' 0, Vi = Ai _ P * * 
if P < 0, Vi _ PI = Ai * · 

NOTF-AL-A 71 Field Complement 3) B Vi-Ai · , 

NOTF-AL-B 6E 3) B Vi=Bi * * 

NOTF-A 70 4) B if p;;'O, Vi = Ai-'p * · 
if P < 0, Vi -1Pi = Ai · * 

ORF-AL-A 75 Field OR 3) B Vi-Ai OR Bi * * 

ORF-A 74 4) B if p;;' 0, Vi = Ai _ p OR Bi * · 
if P < 0, Vi _ PI = Ai OR Bi - PI * * 

XORF-AL-A 77 Field XOR 3) B Vi =Ai XOR Bi · · 
XORF-A 76 4) B if p;;' 0, Vi = Ai _ p XOR Bi · * 

if P < 0, Vi-PI= Ai XOR Bi-PI · * 

ANDF-AL-A 79 Field AND 3) B Vi =Ai AND Bi · * 

ANDF-A 78 4) B if p;;' 0, Vi = Ai _ p AND Bi · · 
if P < 0, Vi-PI = Ai AND Bi-PI · · 

EXTF-A 7A Field Extract 4) 5) 0 if p;;' 0, Vi = Ai _ P · · 
if P < 0, Vi -IPI = Ai · · 

EXTF-B 7B 4) 5) 0 if p;;' 0, Vi = Bi - P · · 
if p<O, Vi-PI=Bi * * 

EXTF-AB 7C 0 6) * * 

EXTF-BA 7D 0 7) · · 
Notes: 1. These Instrucllons use the field Instruction format (FORMAT 2). 

2. p';;i';;p+w-l. "p" stands for position displacement from Po-Ps or from PRO-PRs and "w" for the width of the bit field· 
from Wo - W4 or WRo - WR4. Whenever p + w > 32, operation takes place only over the portion of the field up to the end of 
the word. No wraparound occurs. 

3. This instruction uses the aligned format (see Figure 6). 
4. This instruction uses the unaligned field format (see Figure 6). 

p;;'O: Case 1 
p<O: Case 2 

5. " P is positive, the input is LSB aligned and V output aligned at position. 
" p is negative, the input is aligned at Ip I and V output at LSB. 

6. Firstly, the concatenation of A(High Word) and B(Low Word) Is rotated by the amount specnied by the position (p). " p is 
positive, left-rotate is performed. " p is negative, right·rotate is performed. Secondly, the least significant bits on the V output 
specified by the width (w) are extracted. 

7. Same as 6) except that B input is taken as a high word and A input as a low· word. 

Legend: Unsel = Unselected Field 
Sel = Selected Field 

A = A Input 
B - B Input 
Q = Q Register 
• = Updated 

For all examples, assume STATUS (7:0) is -7 and STATUS (12:8) is 3. 

1. O,PASSF·AL-B,I',20 Pass B to V and test if B20 to B30 
are all zero. Set Z status if so. 

B: 1~000000000OP000010l0lll00ll0l00 

Z set to 1 in this case 

2. 3,XORF-A" Exclusive-OR bits A7 - A9 with bits 
BO - B2 and output to Vo - V 2. Pass 
B3-B31 to V3-V31. Width and po­
sition values are obtained from STA· 
TUS(12: 0). 

A: 01101110001001000010111I2Q11101011 

B: 00011100001010001100101001001~ 

A9-7 $ B2-0 - V: 00011100001010001100101001 001m 
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TABLE 16. MASK "INSTRUCTION 

Y Output 

Mnemonics Code Description Unsel I Sel S J M J L 

PASS·MASK 7F Generate Mask Ps I Yi=PS J J 
. . 

Notes: 1. This Instruction uses the field Instruction format (FORMAT 2) . 
2. p';;I';;p+w-l. "p" stands for the position displacement and "w" for the width of bit field. 

Legend: Unsel - Unselected Field 
Sel - Selected Field 

A = A Input 
B= B Input 
Q - Q Register 
• - Updated 

Status 

l z I V I 
I I I 

Example: Generates an 8-bit field mask pattern starting from bit position 10. 

31 18 17 10 9 

0, PASS-MASK, 8, 10 r== 
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ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 
Storage Temperature ............................ -65 to + 150°C Commercial (C) Case Devices 
Case Temperature Under Bias (Tel ......... -55 to +125°C Temperature (T A) .................................. 0 to + 70°C 
Supply Voltage to Ground Potential Supply Voltage VCC .................. +4.75 V to +5.25 V 

Continuous ...................................... -0.3 to + 7.0 V 
Military* (M) Devices 

DC Voltage Applied to Outputs 
Temperature (T A) ............................. - 55 to + 125°C 

for HIGH Output State .............. -0.3 V to VCC + 0.3 V 
Supply Voltage (Vcel ................... +4.5 V to +5.5 V 

DC Input Voltage ........................... -0.3 to Vcc + 0.3 V 
DC Output Current, Into LOW Outputs ................. 30 mA *Military product 100% tested at T A = + 25°C, + 125°C, and 
DC Input Current ........................... -10 mA to + 10 mA -55°C. 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA TlNGS may cause permanent device failure. Functionality Operating ranges define those limits between which the 

at or above these limits is not implied. Exposure to absolute functionality of the device is guaranteed. 

maximum ratings for extended periods may affect device 
reliability. 

DC CHARACTERISTICS over operating range unless otherwise specified (for API.. Products, Group A, 

Subgroups 1, 2, 3 are tested unless otherwise noted) 

Parameter Parameter Test Conditions 
Symbol Description (Note 1) Min. Max. Unit 

VOH Output HIGH Voltage Vee = Min., .IOH = 0.4 rnA 2.4 Volts 
VIN = VIH or VIL 

Vee = Min., ·IOL =r 8 mA for 
VOL Output LOW Voltage 

VIN = VIH or VIL 
V-Bus & 4 mA for 0.5 Volts 
All Other Pins 

VIH 
Guaranteed Input Logical HIGH Voltage 2.0 Volts (Note 2) 

VIL 
Guaranteed Input Logical LOW Voltage 0.8 Volts (Note 2) 

IlL Input LOW Current Vee = Max., -10 JJ.A VIN = 0.5 V 

IIH Input HIGH Current Vee - Max., 10 JJ.A VIN = Vee-O.5 V 

10ZH vee~"'ax., 10 Vo ~2.4 V 
Off State (High Impedance) Output Current 

Vcc:- Max., 
JJ.A 

10ZL VO=0.5 V -10 

Static Power Supply Current Vce=Max., COM'L 70 
lee VIN"'Vee or GND, mA (Note 3) 

10 =0 JJ.A MIL 70 

Vee = 5.0 V, 
CPD" Power Dissipation CapaCitance (Nole 4) TA = 25°C pF Typical 

No Load 

Notes: 1. Vee conditions shown as Min. or Max .. refer to the Commercial or Military Vee limits. 
2. These input levels provide zero-noise immunity and should only be statically tested in a noise-free environment (not functionally 

tested). 
3. Worst-case lee is measured at the i<lwest temperature in the specified operating range. 
4. CPO determines the no-load dynamic CUfrent consumption: 

lee (Total) = lee (StatiC) + Cpo .Vee I, where f is the switching frequency of the majority of the internal nodes, normally one-half 
of the clock frequency. 

'*This parameter is not tested. 
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SWITCHING CHARACTERISTICS over COMMERCIAL operating range 

A. COMBINATIONAL PROPAGATION DELAYS 

29C332 29C332-1 

No. From To Max. Delay Max. Delay 

1 PAo - PA3, PBo - PBs PERR 25 20 

2 DAo-DA31,DBo-DB31 PERR 32 28 

3 DAo-DA31,DBo-DB31 PYO-PY3 59 42 

4 DAo-DA31,DBo-DB31 Yo- Y31 49 35 

5 DAo - DA31, DBo - DB31 e, Z, V, N, L 60 43 

6 DAo - DA31 , DBo - DB31 MSERR 68 49 

7 10- 18 PYo- PY3 74 53 

8 10 -18 Yo- Y31 66 47 

9 lo-Is C, Z, V, N, L 67 

10 10- 18 MSERR 77 

11 WO-W4 PYo - PY3 58 

12 WO-W4 Yo- Y31 52 

13 WO-W4 C, Z, V, N, L 57 

14 WO-W4 MSERR 62 41 

15 Po-Ps PYo - PY3 67 48 

16 Po- Ps Yo- Y31 42 

17 Po-Ps C, Z, V, N, L 43 

18 Po-Ps MSERR 45 

19 CP PYo- PY3 55 

20 CP YO-Y31 52 

21 CP C, Z, V, N, 74 55 

22 CP STATUS 28 25 

23 RS C, Z, 23 21 

24 MCin Yo ,.:v'3 43 31 

25 Mein , r:t: L 48 34 

26 MCin 52 37 

27 MLiNK 31 46 33 

28 MLiNK , V, N, L 52 37 

29 MLiNK SERR 53 38 

30 M/m Yo- Y31 46 33 

31 M/m C, Z, V, N, L 52 37 

32 M/m MSERR 53 38 

33 BOROW Yo - Y31 46 33 

34 BOROW C, Z, V, N, L 52 37 

35 BORO MSERR 53 38 

36 HOL C, Z, V, N, L 31 22 

37 HOL MSERR 35 29 

38 PYo-P'r'J' MSERR 24 22 

39 Yo - Y31 MSERR 24 22 

40 C, Z, V, N, L MSERR 24 22 

41 PERR MSERR 24 22 

2-66 

29C332-2 

Max. Delay Unit 

18 ns 

23 ns 

34 ns 

28 ns 

34 ns 

0 ns 

"""43 ns 

38 ns 

39 ns 

44 ns 

32 ns 

28 ns 

28 ns 

33 ns 

39 ns 

34 ns 

35 ns 

36 ns 

44 ns 

42 ns 

44 ns 

20 ns 

17 ns 

25 ns 

28 ns 

30 ns 

27 ns 

30 ns 

31 ns 

27 ns 

30 ns 

31 ns 

-27 ns 

30 ns 

31 ns 

18 ns 

24 ns 

18 ns 

18 ns 

18 ns 

18 ns 



SWITCHING CHARACTERISTICS over COMMERCIAL operating range (Cont'd.) 

B. SETUP AND HOLD TIMES 

29C332 29C332·1 29C332-2 
With Respect 

No. Parameter (Note 1) For To Max. Value Max. Value Max. Value Unit 

42 Input Data Setup DAo - DA31. DBo - DB31 CP i 56 31 31 ns 

43 Input Data Hold DAo- DA31, DBo - DB31 CP T 0 0 0 ns 

44 Byte Width Setup 17- 18 CP i 66 30 30 ns 

45 Byte Width Hold 17- 18 CP i 0 0 0 ns 

46 Instruction Setup 10- 16 CP T 71 37 37 ns 

47 Instruction Hold 10- 16 cPT 0 0.-;; 0 ns 

48 Width Setup WO-W4 CP T 

m' 
2a ns 

49 Width Hold WO-W4 CP T 0 ns 

50 Position Setup Po-Ps CP i 66 . 28 ns 

51 Position Hold Po- Ps CP T o . .' 0 ns 

52 Sorrow Setup SOROW cPT 51, 22 22 ns 

53 Sorrow Hold BOROW CP i '0,' ".'! 0 0 ns 

54 Macro Carry Setup MCin CP T 0' 21 21 ns 

55 Macro Carry Hold MCin cpT 0 0 ns 

56 Macro link Setup MLiNK CP T \; 22 22 ns 

57 Macro link Hold MLiNK CP T 0 0 ns 

58 Macro/Micro Setup M/m CP~ 0 22 22 ns 

59 Macro/Micro Hold M/m CP T '", 0 0 0 ns 

60 Hold Mode Setup HOLD CP 28 11 11 ns 

61 Hold Mode Hold HOLD 0 0 0 ns 

C. MINIMUM CLO REMENTS 

29C332-1 29C332-2 

No. Description ,~i'.< ".C'.'"" 
lue Max. Value Max. Value Unit 

62 Minimum Clock LOW Time r'''(\\i:l","~''f~o 20 20 ns 

63 Minimum Clock HIGH Time 20 20 20 ns 
.". 

D. 
,"i~;t'·' 

NO DISABLE TIMES 

29C332 29C332-1 29C332-2 

No. From To Description Max. Value Max. Value Max. Value Unit 

64 OE-Y YO-Y31, PYo- Output Enable Time ns 

65 OE-Y Yo - Y31, PYo Output Disable Time ns 

66 SLAVE Slave Mode ns 
C, Z, V,,~ Enable Time 

67 SLAVE 
'6? ~*~lfili!~"L PER~ 

Slave Mode ns 
Disable Time 

Notes: 1. See ti for desired mode of operation to determine clock edge to which these setup and 
h 
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SWITCHING CHARACTERISTICS over MILITARY operating range 

A. COMBINATIONAL PROPAGATION DELAYS 

Max. 

29C332 

No. From To Delay Unit 

1 PAo - PA3, PBo - PB3 PERR 28 ns 

2 OAo - OA31, OBo - OB31 PERR 35 ns 

3 OAo - OA31, DBo - 0931 PYo - PY3 65 ns 

4 OAo-OA31,OBo-OB31 YO-Y31 54 ns 

5 OAo-OA31,OBo-OB31 C, Z, V, N, L 66 ~ 
r---~6--~~0~A~0--~OA~3~1,-0~B~0~-~0~B~31~-i~M~S~ER~R~----t-~7~5--~ 

7 lo-Is PYO-PY3 82L~ 'tis 

ns 9 10 -Is C, Z, V, N, L ~ 
r---1-0--~~lo~--ls~------------~-M~S~ER~R~----~~~ ~~"'---n-s--~ 

11 PYo - PY3 64\'':'" ns 

12 ns 

13 ns 

ns c'm,Z', V, N,,,,'" 63 14 WO-W4 MSERH 68 
r-~~~~~~~~~~~~~-= ~~~~-+----~ 
r-__ 1_5 __ ~r-P~0_-_Ps~ __________ ~~P~YO~-~'i' ~r-__ 7~4 __ -r ___ n_s __ -i 

16 Po-Ps Yo' 65 ns 
r--------r~--~----------_i~-

ns r-__ 1~7--~~P~0--~Ps~----------_i~g~li L 66 
18 Po - Ps ;:;i:,""SER~, 69 ns 

19 

20 CP 

~
,':"YO-Y31 75 ns 

21 CP ~,~=,=z~,~V~,~N,~L~~---82--_i----ns--~ 
22 CP "~I, STATUS REG, 31 ns 

24 MCin L,,/ YO-Y31 47 ns 

27 MLlNI\, "iii', ,,;:i)' Yo - Y31 51 ns 

~3~"'i":H""~O:LO~: ~S~:~: N, L 

C, Z, V, N, L 

'HOLD MSERR 

38 PYO-PY3 MSERR 

39 MSERR 

40 C, Z, V, N, L MSERR 

41 PERR MSERR 
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51 

57 

58 

34 

39 

26 

26 

26 

26 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



SWITCHING CHARACTERISTICS over MILITARY operating range (Cant'd.) 

B. SETUP AND HOLD TIMES 

29C332 

Max. 
No. Parameter (Note 1) For With Respect To Value 
42 Input Data Setup DAo - DAS1, DBo- DBS1 CP T 62 

43 Input Data Hold DAo - DAs1, DBo - DBS1 CP T 0 

44 Byte Width Setup 17- le CP T 73 

45 Byte Width Hold 17- le CP T 0 

46 Instruction Setup 10-IS CP T 
47 Instruction Hold lo-Is CP T 
48 Width Setup WO-W4 CP T 
49 Width Hold WO-W4 CP T 0 

50 Position Setup PO-PS CP T 73 

51 Position Hold Po-Ps CP 0 

52 Borrow Setup BOROW CP 56 

53 Borrow Hold BOROW 0 

54 Macro Carry Setup MCin 55 

55 Macro Carry Hold MCin 0 

56 Macro Link Setup MLiNK 47 

57 Macro Link Hold MLiNK pT 0 

58 Macro/Micro Setup M/m CP T 55 

59 Macro/Micro Hold M/m CP T 0 

60 Hold Mode Setup HOLD CP T 31 

61 Hold Mode Hold HOLD CP T 0 

C. MINIMUM CL UIREMENTS 

29C332 

. Max . 
No. ,8c[!ption Value Unit 
62 Mini OW Time 22 ns 

63 Mi HIGH Time 22 ns 

LE AND DISABLE TIMES 

29C332 

Max. 
No. From To Description Value Unit 
64 ~~~{:~~l~~<i)',~~,~t~.Yo- Y31. PYo - PY3 Output Enable Time ns 

65 

~ 
""'YO-YS1, PYo-PYs Output Disable Time ns 

66 Slave Mode ns 
C, Z. V, N, L PERR Enable Time 

67 YO-YS1, PYo-PYs Slave Mode ns 
C, Z, V, N, L PERR Disable Time 

Notes: 1. See tlmlllQ diagram for deSired mode of operation to determine clock edge to which these setup and 
hold times apply. 
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ns 

ns 

ns 

ns 

ns 

ns 

ns 
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ns 
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ns 

ns 
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SWITCHING TEST CIRCUIT 

Vee 

I 

I.A 

TC001107 

A. Three-State Outputs 

Notes: 1. CL ~ 50 pF includes scops probe, wiring and stray capacitances without device in test fixture. 
2. 5" 52, 53 are closed during function tests and all AC tests except output enable tests. 
3. 5, and 53 are closed while 52 is opsn for tPZH test. 

5, and 52 are closed while 53 is opsn for tPZL test. 
4. CL - TBD for output disable tests. 

SWITCHING TEST WAVEFORMS 

DATA 
INPUT 

"'""t"TT"1'tIIII/JrT'TTT. -. --r-r-r-a-ar"T"T"7- :.: V 

~t.1=~~ ov 

lQWHIG~Ul~~_ -f \ ---- 1.5 v 

.. ~tPN-1 --------f ------- 3 V ~::.: _ -------- '.5 V 

------------1--------------___ 0 V 

WFR02970 

Setup, Hold, and Release Times 

Notes: 1. Diagram shown for HIGH data only. Output transition 
may be opposite sense. 

2. Cross hatched area is don't care condition. 

HIGH·lOW·HIGH _ ~ _'-
PULSE ~ -,----- 1.5 V 

WFR02790 

Pulse Width 



SWITCHING TEST WAVEFORMS (Cont'd.) 

SAME PHASE f ~ 3 V 

INPunRANSITION,: 1 --/--I-----1-.-I-.. -H-L :·VV 

~ . /F: 
.. LH? "HL 

OPPOSIT-E-P-HASE---'~ JL 3 V 

INPUT TRANSITION- 't\ )f------ :':V 

WFR02980 

Propagation Delay 

Test Philosophy and Methods 
The following points give the general philosophy that we apply 
to tests that must be properly engineered if they are to be 
implemented in an automatic environment. The specifics of 
what philosophies applied to which test are shown. 

1. Ensure the part is adequately decoupled at the test head. 
Large changes in supply current when the device switches 
may cause function failures due to VCC changes. 

2. Do not leave inputs floating during any tests, as they may 
oscillate at high frequency. 

3. Do not attempt to perform threshold tests at high speed. 
Following an input transition, ground current may change by 
as much as 400 mA in 5 - 8 ns. Inductance in the ground 
cable may allow the ground pin at the device to rise by 
hundreds of millivolts momentarily. 

4. Use extreme care in defining input levels for AC tests. Many 
inputs may be changed at once, so there will be significant 
noise at the device pins that may not actually reach VIL or 
VIH until the noise has settled. AMD recommends using 
VIL ..; 0 V and VIH;;" 3 V for AC tests. 

5. To simplify failure analysis, programs should be designed to 
perform DC, Function, and AC tests as three distinct groups 
of tests. 

6. Capacitive Loading for AC Testing 

Automatic testers and their associated hardware have stray 
capacitance that varies from one type of tester to another, 
but is generally around 50 pF. This, of course, makes it 
impossible to make direct measurements of parameters 
that call for a smaller capacitive load than the associated 
stray capacitance. Typical examples of this are the so­
called "float delays" which measure the propagation 
delays into and out of the high impedance state and are 
usually specified at a load capacitance of 5.0 pF. In these 
cases, the test is performed at the higher load capacitance 
(typically 50 pF) and engineering correlations based on 
data taken with a bench set up are used to predict the 
result at the lower capacitance. 

Enable Disable 

~ 
,.----3 V 

CONTAOL_ -d---- 1.5 V INPUT 

,,-----i' ----- 0 V 

:±Z~45 : 'LZ~ 
OUTPUT ~O.5 V 

NORMALLY 1.5 V -1.5 v 
LOW .3 OPEN -,f-

;---rVOl 

f-t:'ZH IHZ-~ 
OUTPUT~~--::::=VOH 

NORMALLY 15 V "-1- -1 5 V 
HIGH 52 OPEN 05 V 

---0 v 

WFR02660 

Enable and Disable Times 

Notes: 1. Diagram shown for Input Control Enable·LOW and Input Control 
Disable-HIGH. 

2. 61, 62 and 63 of Load Circuit are closed except where shown. 

Similarly, a product may be specified at more than one 
capacitive load. Since the typical automatic tester is not 
capable of switching loads in mid-test, It is impossible to 
make measurements at both capacitances even though 
they may both be greater than the stray capacitance. In 
these cases, a measurement is made at one of the two 
capacitances. The result at the other capacitance is 
predicted from engineering correlations based on data 
taken with a bench set up and the knowledge that certain 
DC measurements (IOH, IOL, for example) have already 
been taken and are within specification. In some cases, 
special DC tests are performed in order to facilitate this 
correlation. 

7. Threshold Testing 

The noise associated with automatic testing, the long, 
inductive cables, and the high gain of bipolar devices when 
in the vicinity of the actual device threshold, frequently give 
rise to oscillations when testing high-speed speed circuits. 
These oscillations are not indicative of a reject device, but 
instead, of an overtaxed test system. To minimize this 
problem, thresholds are tested at least once for each input 
pin. Thereafter, "hard" HIGH and LOW levels are used for 
other tests. Generally this means that function and AC 
testing are performed at "hard" input levels rather than at 
VIL Max. and VIH Min. 

8. AC Testing 

Occasionally, parameters are specified that cannot be 
measured directly on automatic testers because of tester 
limitations. Data input hold times often fall into this catego­
ry. In these cases, the parameter in question is guaranteed 
by correlating these tests with other AC tests that have 
been performed. These correlations are arrived at by the 
cognizant engineer by using data from precise bench 
measurements in conjunction with the knowledge that 
certain DC parameters have already been measured and 
are within specification. 
In some cases, certain AC tests are redundant since they 
can be shown to be predicted by other tests that have 
already been performed. In these cases, the redundant 
tests are not performed. 
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SWITCHING WAVEFORMS 

KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS OUTPUTS 
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STEADY STEADY 
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FROM H TOL CHANGING 
FROMH TOL 

JJJJJJ MAY CHANGE WllLSE 
FROML TOH CHANGING 

FROML TOH 

JJlJfl. DON'T CARE; CHANGING; 
ANY CHANGE STATE 
PERMITTED UNKNOWN 

]HR 
CENTER 

DOES NOT LINE IS HIGH 
APPLY IMf'EDANCE 

"OFF" STATE 

KSOOOO10 

, 
~ 
~ 

I \ I 
---- ; .. @ .. ~ 

g~:g~~ xxxxxxxxxxx -. XXXXXX 
xxxxxxxxX@.........:tl::: ~ 
JQOOOOO(lO()Qi ::: tmxx 

BOROW 

MCin 

MLiNK 'lWWWY.WW'l 

~ ::::txmx 
HOLD xxxxxxxxxxxxxxm ' XX&m 
MfflI 

WF023680 

Setup and Hold Timing 
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INPUTS· 

PERR 

C,Z,N,V,L 

MSERR 

SWITCHING WAVEFORMS (Cont'd.) 

~'-------
~-®--+! 

~r------------------------
, 

:~®0@®®~ 

~r---------------

:4 ® ®®@®@@~~®®® 
, , 

,. ~--------

~ :-.~, 

Propagation Delays (SLAVE = LOW) 

WF023691 

Inpuls: PAo-PA3, PBo-PB3, DAo-DA31, DBo-DB31, lo-Ia, WO-W4, PO-P5, CP, RS, 
MCin, MLlNK, Mlm, BOROW, HOLD 
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SLAVE 

YO'Y3l 
PYO,PY3 
C,Z,V,N,L 
PERR 

SWITCHING WAVEFORMS (Cont'd,) 

PYO·PY3 ~ 
: .. @ .' , 

YO'Y3l mx , 
4 @ 

, 
• , 

~ 
, 

C,Z,N,V,L 
, 

@ : .. ..: , 
PERR mx 

: .. @ .' , 
MSEFlR XXXXXXXXXXXXX 

WF023700 

Propagation Delay (SLAVE = HIGH) 

WF023710 

Enable/Disable I (SLAVE = HIGH) 

\'--_______ 1 
f+-@)---+. ~ 
'( , }-

WF023720 

Enable/Disable" (OE-Y = LOW) 
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INPUT/OUTPUT CIRCUIT DIAGRAMS 

Voo--------------~------
Voo ______ O_UT_P_U~Tr_-

P -----1 

I'H 

-----1 
, 

Ii :1 

1< 

ICOO0861 ICOO0871 

CI '" 5.0 pF, all inputs Co '" 5.0 pF, all outputs 

2-75 



Am29C334 
CMOS Four-Port Dual-Access Register File 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• 64 x 18 Bit Wide Register File 
The Am29C334 is a 64 x 18-bit, dual-access RAM with 
two read ports and two write ports. 

• Pipelined Data Path 
The Am29C334 can be configured to support either a 
non-pipelined data path (similar to the Am29334) or a 
pipelined data path. 

• Cascadable 
The Am29C334 is cascadable to support either wider 
word widths, deeper register files, or both. 

• Built in Forwarding Logic 
The Am29C334 provides simultaneous read/write ac­
cess to the same address for double pipelined systems. 

• Byte Parity Storage 
Width of 18 bits facilitates byte parity storage for each 
port and provides consistency with the Am29C332 
32-bit ALU. 

• Byte Write Capability 
Individual byte-write enables allow byte or full word 
write. 

BLOCK DIAGRAMS 

.... ... 
'" '" 

".C>-----I 1-----<]". 

Oi ... C>------d\T '\P-------<::::J"'. 

80003022 

Non-Pipelined Mode 

~B(H.L) 

CLI(AC::>- -c:::::J elKs 

~,c=>-------~ v--------=~. 

80007021 

Pipelined Mode 

Publication # Rev. Amendment 
08786 B 10 2-76 

Issue Date: December 1987 



GENERAL DESCRIPTION 

The Am29C334 is a 64-word by 18-bit dual-access RAM with 
two read ports and two write ports. Two independent, simulta­
neous accesses are possible and each access can be either a 
read or a write. It is designed to be used in a system that 
requires as many as two reads and two writes in a single cycle. 
The device can be configured to support either a non­
pipelined data path or a pipelined data path. 

The Am29C334 is also fully compatible with the bipolar 
Am29334. When the device is connected to the pinout 
specified for the Am29334, it will appear as a 64-word by 18-
bit array without support for pipelined operation. The pipelined 
operation of the Am29C334 is made possible because of the 
availability of unused power pins not required by the CMOS 
part. The pipelined operation is disabled by attaching the j5j"j5"E 
pin to Vee. 

RELATED AMD PRODUCTS 

Part No. Description 

Am29C323 CMOS 32-Bit Parallel Multiplier 

Am29325 32-Bit Floating Point Processor 

Am29C325 CMOS 32-Bit Floating Point Processor 

Am29331 16-Bit Microprogram Sequencer 

Am29C331 CMOS 16-Bit Microprogram Sequencer 

Am29332 32-Bit Extended Function ALU 

Am29C332 CMOS 32-Bit Extended Function ALU 

Am29334 64 x 18 Four-Port Dual-Access Register File 

Am29337 16-Bit Bounds Checker 

Am29338 128 x 9 Byte Queue 
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CONNECTION DIAGRAM 

120 Lead PGA * 

• . . 0 • . . H J • L . . 
1 AWAI AAAI AWAI OAOO OA02 OA04 0.1.01 DAO. OA12 OAU LEA iifAC VIrAL 

I ARAI AWA3 ARAI ARAO DAoa .... DA07 OA10 DAn DAn AAAS AWAS WEAH 

· AWAt AAU YSOO AWAD "" '.D DAOI iiiPi DAll OA14 DA17 ARU AW84 

4 YIOI YB02 YI03 VAoa YAOI VA" 

S GNOA VB .. VBOS VAoa VA04 GNO", 

• YB01 V80S YO'" -or, VA .. VAOI 

7 YIOI VI .. VBIO Y"7 YAOI VAOI 

I VIU YBll OEB veeA VAil VAIO 

• GNO" YBI3 YIU VAU VAU OMDA 

II YIIS VBII Y811 VAU VAiS VAU 

" Will WiBH 0801 0804 YCC OBoe OB08 OIlS '.0 ARBO YAH AR8. AWB. 

12 ft'ae LE. D ... D". VCC D ... DB" 0812 OND 0817 AWSO AWU ARU 

11 ~W85 ARBS OB07 0802 yee DBOI 0810 0814 '.D DBII 0813 ARBI AWII 

CD010320 

'Pins facing up. 

TABLE OF INTERCONNECTIONS 
(Sorted by Pin Name) 

PIN NAME PIN PAD 
PIN NAME 

PIN PAD PIN NAME 
PIN PAD 

PIN NAME 
PIN PAD 

NO. NO. NO. NO. NO. NO. NO. NO. 

DA03 E02 65 DB16 K13 93 YA05 N06 21 
DA04 F01 6 DB17 K12 33 YA06 M06 81 
DA05 F02 66 GND F03 8 YA07 L07 22 
DA06 G03 7 GND J11 37 YA08 M07 82 

ARAO 002 63 DA07 G02 67 GND J12 38 YA09 N07 24 
ARAI CO2 62 DAoa G01 9 GND J13 39 YA10 N08 84 
ARA2 B01 61 DA09 H01 69 GNDA N05 20 YAll M08 25 
ARA3 A02 120 DA10 H02 10 GNDA N09 26 YA12 L09 85 
ARA4 B03 119 DA11 J03 70 GNDA A09 50 YA13 M09 86 
ARA5 L02 74 DA12 J01 11 GNDA A05 56 YA14 L10 27 
ARBO K11 92 DA13 J02 71 lEA L01 14 YA15 M10 87 
ARB 1 M13 91 DA14 K03 12 lEB B12 45 YA16 Nl0 28 
ARB2 N12 90 DAIS K02 72 OEA L06 23 YA17 L11 88 
ARB3 M11 89 DA16 K01 13 ~ C08 53 YBOO C03 118 
ARB4. M03 77 DA17 L03 73 PIPE H03 68 YBOI A04 58 
ARB5 B13 105 Daoo C12 104 VCC E11 97 YB02 B04 117 
AWAO D03 3 DBOI C11 44 VCC E12 98 YB03 C04 57 
AWAI C01 2 DB02 013 103 VCC E13 99 YB04 B05 116 
AWA2 A01 1 DB03 012 43 VCCA L08 83 YBOS C05 115 
AWA3 B02 60 DB04 011 102 ~CA C06 113 YB06 B06 55 
AWA4 A03 59 DB05 F12 42 WEAC/CLKA M01 75 YB07 A06 114 
AWAS M02 15 DB06 F13 101 WEAH N02 76 YBoa A07 54 
AWBO L12 32 DB07 C13 41 WEAL NOI 16 YB09 807 112 
AWBI N13 31 DB08 F11 100 WEBC/elKB A12 106 YB10 C07 52 
AWB2 M12 30 DB09 GIl 40 \YEBH B11 107 YB11 B08 111 
AWB3 N11 29 DB10 G13 96 WEBl A11 47 YB12 A08 51 
AWB4 N03 17 DBll G12 36 YAOO L04 18 YB13 B09 110 
AWB5 A13 46 DB12 H12 95 YAOI M04 78 YB14 C09 109 
DAOO 001 4 DB13 L13 35 YA02 N04 W YS15 Al0 49 
DAOI E03 64 DB14 H13 94 YA03 L05 79 YB16 B10 108 
DA02 E01 5 DB15 H11 34 YA04 M05 80 YB17 Cl0 48 



TABLE OF INTERCONNECTIONS (Cont'd.) 
(Sorted by Pin No.) 

PIN 
PIN NAME 

PAD PIN 
PIN NAME 

PAD PIN 
PIN NAME 

PAD PIN 
PIN NAME 

PAD 
NO. NO. NO. NO. NO. NO. NO. NO. 

COS YB05 115 H02 DA10 10 MOS YA04 80 
C06 VCCA 113 H03 j5j"i5E 68 M06 YA06 81 
C07 YB10 52 H11 DB15 34 M07 YAOS 82 
COS OEB 53 H12 DB12 95 MOS YA11 25 

A01 AWA2 1 C09 YB14 109 H13 DB14 94 M09 YA13 86 
A02 ARA3 120 C10 YB17 48 J01 DA12 11 M10 YA15 87 
A03 AWA4 59 C11 DB01 44 J02 DA13 71 M11 ARB3 89 
A04 YB01 58 C12 DBOO 104 J03 DA11 70 M12 AWB2 30 
AOS GNDA 56 C13 DB07 41 J11 GND 37 M13 ARB1 91 
A06 YB07 114 001 DAOO 4 J12 GND 38 N01 WEAL 16 
A07 YBOS 54 002 ARAO 63 J13 GND 39 N02 WEAH 76 
AOS YB12 51 003 AWAO 3 K01 DA16 13 N03 AWB4 17 
A09 GNDA 50 011 DB04 102 K02 DA15 72 N04 YA02 19 

[,I; 
I 

A10 YB15 49 012 DB03 43 K03 DA14 12 NOS GNDA 20 
A11 WE8l 47 013 DB02 103 K11 ARBO 92 N06 YA05 21 
A12 WEBC/CLKB 106 E01 DA02 5 K12 DB17 33 N07 YA09 24 
A13 AWB5 46 E02 DA03 65 K13 DB16 93 NOS YA10 84 
B01 ARA2 61 E03 DA01 64 L01 LEA 14 N09 GNDA 26 
B02 AWA3 60 E11 VCC 97 L02 ARA5 74 N10 YA16 28 
B03 ARM 119 E12 VCC 98 L03 DA17 73 N11 AWB3 29 
B04 YB02 117 E13 VCC 99 L04 YAOO 18 N12 ARB2 90 
BOS YB04 116 F01 DA04 6 LOS YA03 79 N13 AWB1 31 
B06 YS06 55 F02 DA05 66 L06 OEA 23 
B07 YS09 112 F03 GND 8 L07 YA07 22 
BOS YS11 111 F11 DBOS 100 LOS VCCA 83 
B09 YS13 110 F12 DB05 42 L09 YA12 85 
Bl0 YS16 108 F13 DB06 101 L10 YA14 27 
B11 WEBH 107 G01 DAOS 9 L11 YA17 88 
B12 LEB 45 G02 DA07 67 L12 Aw BO 32 
B13 ARB5 105 G03 DA06 7 L13 D B13 35 
C01 AWA1 2 G11 DB09 40 M01 WEAC/CLKA 75 
CO2 ARA1 62 G12 DB11 36 M02 Aw A5 15 
C03 YBOO 118 G13 DB10 96 M03 ARB4 77 
C04 YB03 57 H01 DA09 69 M04 YA01 78 

LOGIC SYMBOL METALLIZATION AND PAD LAYOUT 

Y/ID-VAT7 Yao- VS17 

lS00222 
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ORDERING INFORMATION 
Standard Products 

AMO standard products are available in several packages and operating ranges. The order number (Valid 
Combination) is formed by a combination of: a. Device Number 

AM29C334 G 

b. Speed Option (if applicable) 
c. Package. Type 
d. Temperature Range 
e. Optional Processing 

.l<. 

TL _____ e. OPTIONAL PROCESSING 
Blank = Standard processing 

B = Burn·in 

'----------d. TEMPERATURE RANGE 
C = Commercial (0 to + 70°C) 

'-------------c. PACKAGE TYPE 
G - 120-Lead Pin Grid Array without Heatsink 

(CGXI20) 

'-----------------b. SPEED OPTION 
-I = Speed Select 

'-----8. DEVICE NUMBER/DESCRIPTION 
Am29C334 
CMOS Four-Port Dual-Access Register File 

Valid Combinations 

~~A~M~29~C~3~34~_~1 GC,GCB 
AM29C334-1 I 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMO 
sales office to confirm availability of specific valid 
combinations, to check on newly released valid combinations, 
and to obtain additional data on AMO's standard military 
grade products. 
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ORDERING INFORMATION (Cont'd.) 

APL Products 

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APl (Approved 
Products list) products are fully compliant with Mll-STD-883C requirements. The order number (Valid Combination) for APl 
products is formed by a combination of: a. Device Number 

AM29C334 

b. Speed Option (if applicable) 
c. Device Class 
d. Package Type 
e. lead Finish 

Z. ..Q. L=e. LEAD FINISH 
C=Gold 

d. PACKAGE TYPE 
Z = 120-Lead Pin Grid Array without Heatsink 

(CGX120) 

'-------------c. DEVICE CLASS 
18 = Class 8 

b. SPEED OPTION 
Not Applicable 

- a. DEVICE NUMBER/DESCRIPTION 
Am29C334 
CMOS Four·Port Dual-Access Register File 

I Valid Combinations I 
L AM29C334 I 18ZC I 

Valid Combinations 

Valid Combin'ations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations or to check for newly released valid 
combinations. 

Group A Tests 
Group A tests consist of Subgroups 

1, 2, 3, 7, 8, 9, 10, 11. 
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PIN DESCRIPTION 

ARAO - ARA5 Read Address A-Side (Input) 
The 6-bit read address input selects one of the 64 memory 
locations for output to the Y A Data Latch. 

ARBO - ARB5 Read Address B-Slde (Input) 
The 6-bit read address input selects one of the 64 memory 
locations for output to the Y B Data Latch. 

AWAO - AWA5 Write Address A-Side (Input) 
The 6-bit write address input selects one of the 64 memory 
locations for writing new data from the DA input. 

AWBO - AWB5 Write Address B-Side (Input) 
The 6-bit write address input selects one of the 64 memory 
locations for writing new data from the DB input. 

DAO-DA17 Data A-Side (Input) 
New data is written into memory from this input, as selected 
by the AWA address input. 

DBO - DB17 Data B-Side (Input) 
New data is written into memory from this input, as selected 
by the AWB address input. 

GND, VCC Power 
Power supply for the internal logic (0, 5 V). 

GNDA, VCCA Power 
. Power supply for the output drivers (0, 5 V). 

LEA Y A Data Latch Enable (Input, Active HIGH) 
The LEA input controls the latch for the Y A output port. 
When LEA is HIGH, the latch is open (transparent) and data 
from the RAM, as selected by the ARA address inputs, is 
passed to the Y A output. When LEA is LOW, the latch is 
closed and it retains the last data read from the RAM. LEA is 
disabled in the pipelined mode. 

LEB YB Data Latch Enable (Input, Active HIGH) 
The LEB input controls the latch for the Y B output port. 
When LEB is HIGH, the latch is open (transparent), and data 
from the RAM, as selected by the ARB address inputs, is 
passed to the YB output. When LEB is LOW, the latch is 
closed and it retains the last data read from the RAM. LEA is 
disabled in the pipelined mode. 

OEA Y A Output Enable (Input, Active LOW) 
When OEA is LOW, data in the Y A Data Latch is driven on 
the Y A output. When m:A is HIGH, Y A output is in the high­
impedance (off) state. 

OEB YB Output Enable (Input, Active LOW) 
When OEB is LOW, data in the YB Data Latch is driven on 
the YB outputs. When DEB is HIGH, YB output is in the high­
impedance (off) state. 

PIPE Pipeline Enable (Input, Active LOW) 
When PIPE is LOW, the input and output registers are 
enabled, allowing for pipelined operation. When HIGH, 
these registers are made transparent: 

WEAC/CLKA Write Enable A-Side Common (Input, 
Active LOW) 

When 'Nr:.AC is LOW together with WEAH or WEAL, new 
data is written into the location selected ,by the AWA 
address. When WEAC is HIGH, no data is written into the 
RAM through the A port. WEAC acts as a clock input in the 
pipeline mode for the A side. 

WEBC/CLKB' Write Enable B-Slde Common (Input, 
Active LOW) 

When WEBC is LOW together with 'Nr:.BH or WEBl, new 
data is written into the location selected by the AWB 
address. When WEBC is HIGH, no data is written into the 
RAM through the B port. WEBC acts as a clock input in the 
pipeline mode for the B side. 

WEAH High-Byte Write Enable A-Side (Input, Active 
LOW) 

When WEAH is LOW together with WEAC, new data is 
written into the high byte of the location selected by the 
AWA address input. When WEAH is HIGH, no data is written 
into the high byte. 

WEBH High-Byte Write Enable B-Slde (Input, Active 
LOW) 

When WEBH is LOW together with WEBC, new data is 
written into the high byte of the location selected by the 
AWB address input. When WEBH is HIGH, no data is written 
into the high byte. 

WEAL Low-Byte Write Enable A-Side (Input, Active 
LOW) 

When WEAL is LOW together with WEAC, new data is 
written into the low byte of the location selected by the AWA 
address input. When WEAL is HIGH, no data is written into 
the low byte. 

WEBl Low-Byte Write Enable B-Slde (Input, Active 
LOW) 

When WEBl is LOW together with WEBC, new data is 
written into the low byte of the location selected by the AWB 
address input. When WEBl is HIGH, no data is written into 
the low byte. 

YAO-YA17 Data Latch (Outputs, Three-State) 
The 18-bit Y A Data Latch outputs. 

YBO - YB17 Data Latch (Outputs, Three-State) 
The 18-bit YB Data Latch outputs. 
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FUNCTIONAL DESCRIPTION 

The heart of the Am29C334 is a high-speed 64-word by 18-bit 
dual RAM ceil array. Six write enables permit the RAM word to 
be written in one or both of its 9-bit bytes. Data to be written is 
presented to each side of the RAM array through the two data 
ports (DA and DB). 

The remainder of the logic surrounding the RAM array 
supports pipelining the RAM access and providing a forward­
ing path for data around the RAM. This forwarding path is 
needed to eliminate the latency cycle associated with consec­
utive write/read accesses to the same memory location in a 
pipelined system. 

Pipelining of the RAM is controlled by the PIPE pin. When not 
asserted (i.e., in non-pipelined mode) the registers on the 
inputs (write ports DAIB, write addresses AWAlB, and write 
enables WEAC/Bc) are made fully transparent, while the 
registers at the outputs (the read ports V AlB) are turned into 
latches, controlled by the latch enables LEAlB. 

In either mode of operation, each side of the RAM is controlled 
by its individual control signals. This means that the two sides 
of the RAM can operate at different clock rates to one 

Am29C331 
15-BIT 

SEQUENCER 

MICROPROGRAM 
MEMORY 

PlPEUNE 
REGISTER 

j 
CONTROL 
SIGNALS 

1 
Am29C325 

32-BIT 
FLOAnNG POINT 

PROCESSOR 

another. In the pipelined mode, these clock raies must have a 
known relationship between each other. 

In the non-pipelined mode, there is no need for a relationship 
between the clock rates. Two special cases of operation arise 
because of this. The first is where the location written to by 
one side is being read from the other side. In this case, known 
as A-to-B transparency, the value read is the value being 
written. The second occurs when two writes to the same 
location occur at the same time. In this case the value written 
can not be defined, but the operation is noi harmful to the 
device. 

The transparency mode (A-A or B-B) during a write 
~A = LOW) allows the data in (DA) to not only be written 
into memory, but also to appear at the output (V A) when the 
output latch (LEA) is HIGH and the output enable control 
(OEA) is LOW. 

Extensions to Four Read Ports and Two Write 
Ports 

A RAM with four read ports and two write ports can be made 
by using two dual-access RAMs and connecting each of the 
write ports, write addresses, and write enables in parallel for 
the two devices. Figure 2 details this in a non-pipelined mode. 

t 1 

Am29C334 
REGISTER 

ALE 
64x 18 

1 
i 

1 
Am29C332 

32-BIT 
ALU 

32 

1 
Am29C:i23 

32x 32 
PARALLEL 

MULTIPLIER 

AF003482 

Figure 1. Am29C300 CMOS Family High-Performance System Block Diagram 

32 Word x 36 Bit Single-Access RAM 

It is possible to convert the 64 word x 18 bit dual-access RAM 
into a 32 word x 36 bit single-access RAM. This is performed 
by storing the upper half of the 36 bits in the upper half of the 
64 words and addressing these from the A side, and storing 
the lower half of the 36 bits in the lower half of the 64 words 
and addressing these from the B side. This arrangement does 
not change the capacity of the RAM, but the dual access is 
lost (see Figure 4). 

Operational Modes 

The Am29C334 may be configured in a non-pipelined mode or 
in a pipelined mode by contrOlling the PIPE pin. This mode is 
selected via hardwiring the pin to either LOW or HIGH. This 
option should not be changed during operation. 

Non-Pipelined Data Path 

In non-pipelined mode (PIPE = 1), the Am29C334 is a flow­
through device; data is read out, used, and written back all in 
the same cycle. In this mode all the registers are made 
transparent except the registers at the two read ports that are 
configured as latches. The read port latches are controlled 
individually by the LEA and LEB, so that they are transparent 
when the latch enables are HIGH and retain the data when the 
latch enables are LOW. The "forwarding logic" incorporated 
to support the pipelined mode of operation is also disabled in 
this mode of operation (specifically, the address comparators 
are disabled). 
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In the non-pipelined mode of operation it is possible to 
simultaneously read two ports, read one port and write to the 
other, or write to two ports, concurrently. The read and write 
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addresses are internally multiplexed on 'each side. The selec­
tion of the read and write addresses is controlled by the 
exclusive-OR of the PIPE pin and WEAC/BC. Normally, the 
WE:AC/BC are connected to the system clock. With PiPE de­
asserted, the read address will be selected In the high part of 
the clock cycle (WEAC/BC = 1) and the write address selected 
only in the low part. 8y1e selection for writing on either ports Is 
controlled by the WEH/L pins. 

Two Interesting cases arise as a result of the dual access 
capability. The first occurs if a location Is written Into by one 
side while It Is being read out by the other side. In this case, 
known as A-to-8 transparency, the data being written will 
appear on the read port after the Transparency AB time (if 
other read access time parameters are met). The second case 
of interest occurs If both sides write to the same location at the 
same time. The value written as a result of this operation 
cannot be defined. 

Pipelined Data Path 

The Am29C334 can be configured in a plpellned system by 
asserting the PiPE signal (PIPE = 0) and adding an additional 
external register in the write address and the write control path 
on both A and 8 ports as shown In Figure 3. The registers on 
each side are controlled by separate clocks that are supplied 
over the WE:AC and WEBC pins. 

Typically, in a pipelined system a read - modify - write would 
span three cycles. In the second half of the first cycle, a read 
of the operand(s) is performed and the data is clocked into the 
output registers at the end of the cycle. In the second cycle, 
the operation is performed on the operands and the result is 
clocked into the data register on the write port at the end of 
the second cycle. In the first half of the third cycle, the data is 
written to the register file. Therefore, in any cycle, a pipelined 
system is writing the result of instruction n (in the first half), 

DUAL 
ACCESS 

RAM 

executing instruction n + 1, and reading the operands needed 
in instruction n + 2. In any case, a write operation followed by 
a read operation is performed in the RAM in a cycle. 

A special case arises if the data to be written by the previous 
instruction is needed in the next instruction as an operand. 
Due to the pipeline register being at its write port, the location 
is not written into until the next cycle, and hence only the 
previous value is available in the current cycle. To overcome 
this problem, "forwarding logiC" is included as shown in the 
block diagram. This logiC consists of three elements: an 
address comparator, an AND gate, and a three-to-one multi­
plexer, as shown. If the read address of the current instruction 
is the same as the write address of the previous instruction, 
and if the result is to be written, then the data to be written is 
forwarded by the forwarding multiplexer to the output regis­
ters. Since there are two write ports, forwarding paths on both 
ports are provided. As each write port has by1e write capability, 
the forwarding is further broken into the upper and lower 
by1es. 

Since each side has its own WEc/CLK control, it 'is possible to 
clock each side of the chip differently. However, if the part is 
used at different frequencies, the forwarding cannot be 
guaranteed unless the addresses compared are held valid 
long enough to allow for a comparison to be made and the 
results of the forwarding setup on the output register. 

As mentioned earlier, it is necessary to use an external write 
address and write control registers in a pipelined system. 
These registers have not been included for two reasons, First, 
it is possible for the user to abort the writing before it fills the 
internal pipe. This situation may arise in cases such as in 
"traps." Second, by providing an external write address 
register it provides the flexibility of obtaining the write address 
from several sources by using an external multiplexer. 

OUAL 
ACCESS 

RAM 

I 
I 
I 
I 
I 
I 
I 

=:-1 

AF003490 

Figure 2. RAM with Four Read Ports and Two Write Ports for Non-pipelined Mode 
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Microprogram 
Memory 

Figure 3. System Diagram With the Am29C334 In a Double Pipelined Data Path 

0 18-°315 0 0-017 
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Wee Wee,c 
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WeH WEB,H 

AWB,O-4 ::J 
LOW 

ARB,S LOW 

LE 

OE 

PPE 

Yta- V35 VO-Y17 

LSOO1791 

Figure 4. 32 x 36 RAM (Single Access) Using 64 x 18 Dual-Access RAM 
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ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 
Storage Temperature ............................. -65 to + 150°C Commercial (C) Devices 
Temperature Under Bias - TC ................ -55 to +125°C Temperature (TAl ...........•...................... 0 to + 70°C 
Supply Voltage to Ground Potential Supply Voltage .....•.....................•. + 4.75 to + 5.25 V 

Continuous ...................•............•..... -0.3 to + 7.0 V 
Military" (M) Devices 

DC Voltage Applied to Outputs 
Temperature (TA) ............................. -55 to + 125°C 

for HIGH Output State •...•...... -0.3 V to + VCC + 0.3 V 
Supply Voltage (VCC) ...•.............•....• +4.5 to +5.5 V 

DC Input Voltage ..................... -0.3 V to + VCC + 0.3 V 
DC Output Current, Into LOW Outputs ...........•....• 30 mA Operating ranges define those limits between which the 
DC Input Current .•......................... -10 mA to +10 rnA functionality of the device is guaranteed. 

Stresses above those listed under ABSOLUTE MAXIMUM " Military product 100% tested at T A = + 25°C, + 125°C, and 
RA TlNGS may cause permanent device failu;e. Functionality -55°C. 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, 
Subgroups 1, 2, 3 are tested unless otherwise noted) 

Parameter Parameter Test Conditions 
Symbol Description (Note 1) Min. Max. Unit 

Vee-Min. 
VOH Output HIGH Voltage VIN = Vil or VIH 2.4 Volts 

IOH=-4 mA 
Vee~ Min. 

VOL Output LOW Voltage VIN = Vil or VIH 0.5 Volts 
IOl=8 mA 

VIH Input HIGH Level Guaranteed Input Logical 2.0 Volts HIGH Voltage (Note 2) 

Vil Input LOW Level Guaranteed Input Logical 0.8 Volts LOW Voltage (Note 2) 

III Input LOW Current Vee = Max. -10 IlA VIN = 0.5 V 

IIH Input HIGH Current Vee = Max. 10 /lA VIN = Vee-O.S V 

10ZH Off State (High.lmpedance) Vo =2.4 V 10 

10Zl Output Current Vee = Max. 
Vo=O.S V -10 

/lA 

VIN = Vee or GND TA = -55 to 12S'C 80 mA 
ICC Static Power Supply Current Vee = Max 

TA=O to +70'C 10=0 IlA 70 mA 

CPO 
Power DiSSipation Capacitance Vee=S.O V 900 pF Typical (Note 3) TA = 2S'C No Load 

Notes: 1. Vee conditions shown as Min. or Max. refer to the commercial (±S%) Vee limits. 
2. Jhese input levels provide zero-noise immunity and should only be statically tested in a noise-free environment (not functionally 

tested). 
3. CPO determines the no-load dynamic current consumption: 

ICC (Total) = ICC (Static) + CPO Vee f, where f is the switching frequency of the majority of the internal nodes, normally one·half 
of the clock frequency. This specification is not tested. 
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SWITCHING CHARACTERISTICS over COMMERCIAL operating range unless otherwise specified 

NON·PIPELINED MODE (Note 1) 

No. 

2 

3 

4 

Parameter 

Access Time 

Access Time 

Turn·On Time 

Turn·Off Time 
(Note 2) 

Description 

ARA or ARB 10 YA or 
YB 

Test Conditions 

LEA or LEB = H 

29C334 29C334-1 29C334-2 

Min. Max. Min. Max. Min. Max. Unit 

32 26 21 ns 

~AC or WEBC to 
YA or YB LEA or LEB = H IIiI 30 IIiI 25 lit. 20 

II&;;;.--t--l 
ns 

rn:A or rn:B I to YA I_~ I_~ ~~~ ns 

or YB = High I iii I iii ns 
Impedance oil 

~:Bo;:: 1 to YA °o:~~ro I '01 ~16_-t-----l 
r-____ r-____________ _+~o=r~Y~B~==------_+--------------_+~= .~ 

5 Enable Time LEA or LEB 1 to Y A 02- 0 0 ns 

6 Transparency ~¢B or WiOB I to YA LEA or LEB = H so__ ""__ lIIIII =:;;;. ns 

7 Transparency ns YDAB or DB to YA or LEA or LEB = H, 1__ 1__ § 
~A orWEB=L ~ ~ 

r--8--~W----------T---+-A~R-A-o-r-AR-B--ro~~==A-C-+--~--~~----~-~~~~~'1-)+-~~~~~~'1)-+~ ~r-ns~ 
rite Recovery ime or WEBC ~~ _~ iii -1) 

9 Data Setup Time DA or DB to WEA or WiOB 1 15 J 13 J 13 J ns 

10 Data Hold Time DA or DB 10 WiOA or ~B 1 0;':-l1li 0 11 111 0""--: ns 
r---~~~--~-r~~~~=-~~=---------~2,m~l~m!llllr+~2~'!IIII -+-'~!IIII.l~J~~~ 

11 Address Selup Time AWA or AWB 10 WEA or Wt:B I '1Io1llhill' 110 21L ns 
r-1-2~~A~dd~~H~'d~Ti---+-A~--A~~~=E~~~~---------r-l~Ab~--L-r-""llab---+~~--+-~ ress 0 Irne WA or WB 10 YVCA or YVcB 1 1If_ iIII_ 1 &II .- ns 

13 Address Selup Time ARA or ARB 10 LEA or LEB I 2<1~ 171~ 11..L.. 

14 Address Hold Time ARA or ARB 10 LEA or LEB I 1 ~'" 1 '''' 1 

15 Lalch Close Before LEA or LEB 10 WEA or ~B I 0 I~ 0 I~ 
Write 

16 

17 

18 

Read Before Lalch 
Close 

Wrile Pulse Widlh 

Latch Dala Caplure 
Pulse Width 

WEAC or ~BC 10 LEA or LEB I 

~A or WEB (LOW) 

LEA or LEB (HIGH) 

Noles: See notes following Military lable. 
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SWITCHING CHARACTERISTICS over MILITARY operating range unless otherwise specified (for APl 
Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted) 

NON-PIPELINED MODE (Note 1) 

29C334 

No. Parameter Description Test Conditions Min. Max. Unit 

1 Access Time ARA or ARB to YA or YB LEA or LEB = H 40 ns 

2 Access Time WEAC or ~BC to Y A or LEA or LEB = H 0 37 ns 
YB 

3 Turn-On Time DEA or OEB j to YA or 0 16 ns YB Active 

,4 Turn-Off Time DEA or DEB I to YA or 0 25 (Note 2) YB = High Impedance ns 

5 Enable Time LEA or LEB I to YA or 0 21 ns 
YB 

6 Transparency ~A or ~B j to YA or 
LEA or LEB = H 0 47 ns 

YB 

7 Transparency DA or DB to YA or YB ~or~=H, 
WAor EB=L 

47 ns 

8 Write Recovery Time ARA or ARB to ~AC or (2)-(1) ns 
WEBC 

9 Data Setup Time DA or DB to ~A or ~B I 19 ns 

10 Data Hold Time DA or DB to WEA or WEB I 2 ns 

11 Address Setup Time AWA or AWB to ~A or ~B I 4 ns 

12 Address Hold Time AWA or AWB to ~A or ~B I 2 ns 

13 Address Setup Time ARA or ARB to LEA or LEB j 23 ns 

14 Address Hold Time ARA or ARB to LEA or LEB I 1 ns 

15 Latch Close Before 
LEA or LEB to WF:.A or ~B j 0 ns Write 

16 Read Before Latch ~AC or ~BC to LEA or LEB I 24 ns Close 

17 Write Pulse Width ~A or ~B (LOW) 23 

18 Latch Data Capture LEA or LEB (HIGH) 17 ns Pulse Width 

Notes: 1. ~A = ~AC + WEALtH 
WEB = WEBC + ~BLlH 

2. Y A and YB are tested independently. 
3. Minimum delays are not tested. 
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AW. 

D. 

D. 

v. 

NOTE: ~:~~~ 
'" ~eans A or 8 

-m·e 

AR· 

LE. 

liE. 

v. 

SWITCHING WAVEFORMS 

NON-PIPELINED MODE 

Read Function (* means A or B) 

Write Function (* means A or B) 

~ 

'i' 
~ 

I. 
XXXXXXXXXl. 

I ". 

XXXXXXXIII III.XX 

Transparency 
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SWITCHING CHARACTERISTICS over COMMERCIAL operating range (Cont'd.) 

PIPELINED MODE 

29C334 29C334-1 29C334-2 

No. Parameter Description Min. Max. Min. Max. Min. Max. Unit 

19 Write Data Setup Time DA or Os to ClKA or ClKS t 15 * 1~ 13 ~ ns 

20 Write Data Hold Time DA or Os to ClKA or ClKS t 1 ~ 1~ 1 ~ II"" ns 

21 Write Address Setup 
AWA or Aws to ClKA or ClKs t 23 I J! 2'-:: 20 I ~ ns Time 

22 Write Address Hold 
AWA or AWS to ClKA or ClKS t o • ::: o"'llltc ~ o III c:: ns Time I 

J_ 
II! 

23 
Write Enable Setup 

~H or ~L to ClKA or ClKs t 20 :;: 1e;: 16 : 

== 
ns Time 

0:£= b$ 24 Write Enable Hold Time WEH or WEL to ClKA or ClKs t 0 ns 

25 Read Address Setup 
ARA or ARS to ClKA or ClKS t 24 ~J 2cr-j 20 Ii ~ ns Time 

26 Read Address Hold ARA or ARS to ClKA or ClKs t °1 :u oLJ U o i U ns Time 

27 Minimum Clock Cycle ClKA or ClKS (lOW) 50 • ,. 4cr f1II 40 f ~ ns 

28 Minimum Clock Pulse. ClKA or ClKS (HIGH) 17 ::- 1';;; - 14 : ~ ns 

29 Minimum Clock Pulse ClKA or ClKS (lOW) 1711 • 14ium - 14 II! ~ ns 

30 Clock to Y YA or Ys to ClKA or ClKs 14 12 10 ns 
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SWITCHING CHARACTERISTICS over MILITARY operating range (Cont'd.) 

PIPELINED MODE 

29C334 

No. Parameter Description Min. Max. Unit 

19 Write Data Setup Time DA or DB to ClKA or ClKB I 19 ns 

20 Write Data Hold Time DA or DB to ClKA or ClKB I 2 ns 

21 Write Address Setup Time AWA or AWB to ClKA or ClKB I 27 ns 

22 Write Address Hold Time AWA or AWB to ClKA or ClKB I 2 ns 

23 Write Enable Setup Time WEH or WEL to ClKA or ClKB I 23 ns 

24 Write Enable Hold Time WEH or WEL to ClKA or ClKB I 2 ns 

25 Read Address Setup Time ARA or ARB to ClKA or ClKB I 28 ns 

26 Read Address Hold Time ARA or ARB to ClKA or ClKB I 0 ns 

27 Minimum Clock Cycle ClKA or ClKB (lOW) 55 ns 

28 Minimum Clock Pulse ClKA or ClKB (HIGH) 20 ns 

29 Minimum Clock Pulse ClKA or ClKB (lOW) 20 ns 

30 Clock to Y Y A or YB to ClKA or ClKB 18 ns 
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elK. 

WE·H•L 

D. 

Y. 

• means A or 8 

INPUTS 

CLOCK 

OUTPUTS 

SWITCHING WAVEFORMS (Cont'd.) 

PIPELINED MODE 

PREVIOUS NEW DATA 

3.0 v 
1.5 V 

OV 

" 
3.0 V 

1.5 V 
j ov 

INPUT 

CLOCK I--OU~~UT -
-OU~~UT 

DELAY 

DELAY 

2-92 
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SWITCHING TEST CIRCUIT 

S2 

S, 

VOUT ~:>-"'--'--K~--+ 

TC003424 

Notes: 1. CL = 50pF includes scope probe, wiring and 
stray capacitances without device in test fixture. 

2. S1, S2. S3 are closed during functions tests 
and all AC tests except output enable tests. 

3. S1 and S3 are closed while S2 is open for 
tPZH test. S1 and S2 are closed while S3 is 
open for tpZL test. 

4. CL = TBD for output disable tests. 

KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS OUTPUTS 

MUST BE Will BE 
STEADY STEADY 

~ MAY CHANGE WILL BE 

FROM H TO l CHANGING 
FROM H TO L 

JJJJJJ MAY CHANGE 
WilL BE 

FROM L TOH CHANGING 
FROM L TOH 

Jt/Jf1 DON°T CARE; CHANGING; 
ANY CHANGE STATE 
PERMITTED UNKNOWN 

]}-ffi 
CENTER 

DOES NOT LINE IS HIGH 
.... LY IMPEDANCE 

"OFF" STATE 

KSOOOO10 

INPUT IOUTPUT CIRCUIT DIAGRAMS 

DRIVEN INPUT 
Vee ----------,...----

OUTPUT 

----1 [ 
----1 

IC000861 
IC000870 

CI "" 5.0 pF, all inputs Co"" 5.0 pF, all outputs 
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Am29C325 
CMOS 32-Bit Floating~Point Processor 

ADVANCE INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Single Vi-51 device performs high-speed floating-point 
arithmetic . 
- Floating-point addition, subtraction, and multiplication 

in a single clock cycle 
.:. Internal architecture supports sum-of-products, 

Newton-Raphson division 
• 32-bit, three-bus flow-through architecture 

- Programmable I/O allows interface to 32- and 16-bit 
systems 

• IEEE and DEC formats 
- Performs conversions between formats 
- Perfqrms integer ~ floating-point conversions 

• Input and output registers can be made transparent 
independently 

• Pin and functionally compatible with the Bipolar 
Am29325 

• The Am29C325 uses less than one-quarter the power of 
the Am29325 

• 145 PGA requires no heatsink 

GENERAL DESCRIPTION 

The Am29C325 is a high-speed floating-point processor 
unit. It performs 32-bit single-precision floating-point addi­
tion, subtraction, and multiplication operations in a single 
VLSI circuit, using the format specified by the proposed 
IEEE floating-point standard, 754. The DEC single-preci­
sion floating-point format is also supported. Operations for 
conversion between 32-bit integer format and floating-point 
format are available, as are operations for converting 
between the IEEE and DEC floating-point formats. Any 
operation can be performed in a single clock cyple. Six 
flags - invalid operation, inexact result, zero, not-a-num­
ber, overflow, and underflow - monitor the status of opera­
tions. 

The Am29C325 has a three-bus, 32-bit architecture, with 
two input buses and one output bus. This configuration 

provides high I/O bandwidth, allows access to all buses, 
and affords a high degree of flexibility when connecting this 
device in a system. All buses are registered, with each 
register having a clock enable. Input and output registers 
may be made transparent independently. Two other I/O 
configurations, a 32-bit, two-bus architecture and a 16-bit, 
three-bus architecture, are user-selectable, easing inter­
face with a wide variety of systems. Thirty-two-bit internal 
feedforward datapaths support accumulation operations, 
including sum-of-products and Newton-Raphson division. 

Fabricated using Advanced Micro Devices' 1.2 micron 
CMOS process, the Am29C325 is powered by a single 5-
volt supply. The device is housed in a 145-lead pin-grid­
array package. 

Am29C3()O FAMILY HIGH-PERFORMANCE SYSTEM BLOCK DIAGRAM 

Am29C331 
16-BIT 

SEQUENCER 

t 16 

MICROPROGRAM 
MEMORY 

PIPELINE 
REGISTER , 
CONTROL 
SIGNALS 

Am29C334 
REGISTER 

FILE 
64 x 18 

This document contains information on a product under development at Advanced Micro 
Devices, Inc. The information is intended to help you to evaluate this product. AMD 
reseNes the right to change or discontil'1ue work on this product without notice. 2-94 
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Am29C327 
CMOS Double-Precision Floating-Point Processor 

ADVANCE INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• High-performance double-precision floating-point pro­
cessor 

• Comprehensive floating-point and integer instruction 
sets 

• Single VLSI device performs single-, double-, and 
mixed-precision operations 

• Performs conversions between precisions and between 
data formats 

• Compatible with industry-standard floating-point formats 
- IEEE 754 format 
- DEC F, DEC D, and DEC G formats 
- IBM system/370 format 

• Exact IEEE compliance for denormalized numbers with 
no speed penalty 

• Eight-deep register file for intermediate results and on­
chip 64-bit data path facilitates compound operations; 
e.g., Newton-Raphson division, sum-of-products, and 
transcendentals 

• Supports pipelined or flow-through operation 
• Fabricated with Advanced Micro Devices' 1.2 micron 

CMOS process 

SIMPLIFIED SYSTEM DIAGRAM 

R-Port S-Port 

F-Port 

DEC F, DEC 0, DEC G, and VAX are trademarks of the Digital Equipment Corporation. 
16M system/370 is a trademark: of International Business Machines, Inc. 

B0007470 

Publication # Rev. Amendment 
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CHAPTER 3 

Bipolar Family 
Am29331 16-Bit Microprogram Sequencer 

Am29332 32-Bit Arithmetic logic Unit 

Am29334 Four-Port Dual-Access Register File 

Am29434 ECl Four-Port, Dual-Access Register File 

. Am29325 32-Bit Floating-Point Processor" 

Am29337 16-Bit Bounds Checker 

Am29338 32-Bit Byte Queue 

• Front page only of data sheet. see Chapter 4 for complete data sheet. 
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Am29331 
16-Bit Microprogram Sequencer 

DISTINCTIVE CHARACTERISTICS 

• 16-Blts Address up to 64K Words 
Supports 80-1)0 ns microcycle time for a 32-bit high­
performance system when used with the other 
members of the Am29300 Family. 

• Real-Time Interrupt Support 
Micro-trap and interrupts are handled transparently 
at any microinstruction boundary. 

• Built-In Conditional Test Logic 
Has twelve external test inputs, four of which are 
used to internally generate four additional test con­
ditions. 

• Break-Point Logic 
Built-in address comparator allows break-points in 
the microcode for debugging and statistics collection. 

• Master/Slave Error Checking 
Two sequencers can operate in parallel as a master 
and a slave. The slave generates a fault flag for 
unequal results. 

• 33-Level Stack 
Provides support for interrupts, loops, and subrou­
tine nesting. It can be accessed through the D-bus 
to support diagnostics. 

• Speed improvement with Am29331A (15% faster 
than Am29331) 

GENERAL DESCRIPTION 

The Am29331 is a 16-bit wide, high-speed single-chip 
sequencer designed to control the execution sequence of 
microinstructions stored in the microprogram memory. The 
instruction set is designed to resemble high-level language 
constructs, thereby bringing high-level language program­
ming to the micro level. 

The Am29331 is interruptible at any microinstruction 
boundary to support real-time interrupts. Interrupts are 
handled transparently to the microprogram mer as an unex­
pected procedure call. Traps are also handled transparent­
ly at any microinstruction boundary. This feature allows re­
execution of the prior microinstruction. Two separate buses 
are provided to bring a branch address directly into the chip 
from two sources to avoid slow turn-on and turn-off times 

for different sources connected to the data-input bus. Four 
sets of multiway inputs are also provided to avoid slow turn­
on and turn-off times for different branch-address sources. 
This feature allows implementation of table look-up or use 
of external conditions as part of a branch address. The 33-
deep stack provides the ability to support interrupts, loops, 
and subroutine nesting. The stack can be read through the 
D-bus to support diagnostics or to implement multitasking 
at the micro-architecture level. The master/slave mode 
provides a complete function check capability for the 
device. 

The Am29331 is designed with the IMOX ™ process which 
allows internal Eel circuits with TTL-compatible I/O. It is 
housed in a 120-lead pin-grid-array package. 

SIMPLIFIED BLOCK DIAGRAM 

IlULnwAV 
-..s 

4 4 4 4 

INTA D---f REAL llME 

iNTi c-----JL-_INT_L_OG1_C--l 

TUT 
COND. 
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IMOX is a trademark of Advanced Micro Devices, Inc. 
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CPC>­
mc>-
FCC>­

INTRC>-­

INTENC>­
;me-­
HOlOC>-
oEoC>-

SLAVEC>­
EAAOA<:J---

RELATED AMI:? PRODUCTS 

Part No. Description 

Am29114 Vectored Priority Interrupt Controller 

Am29116 High·Performance Bipolar 16·Bit Microprocessor 

Am29Cl16 High·Performance CMOS 16·Bit Microprocessor 

Am29PL141 Field.programmable, Controller 

Am29C323 CMOS 32-Bit Parallel Multiplier 

Am29325 32·Bit Floating-Point Processor 

Am29C325 CMOS 32-Bit Floating-Point Processor 

Am29332 32·Bit Extended Function ALU 

Am29C332 CMOS 32·Bit Extended Function ALU 

Am29334 64 x 18 Four·Port, Dual-Access Register File 

Am29C334 CMOS 64x 18 Four·Port, Dual·Access Register File 

Am29337 16·Bit Bounds Checker 

Am29338 Byte Queue 

... II, Yo Yo 0 A 

II 

ADDRESS 
MUX 

Figure 1. Am29331 Detailed Block Diagram 
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CONNECTION DIAGRAM 

(Bottom View) 

PGA* 

Ii: 
A B C D E F G H J K L M N I: 110,0 111,0 112,0 112,1 mil 111,2 111,3 112,3 GNDT RST INTR SLAVE 015 

1,'. 

2 DO AO 113,0 111,1 110,2 112,2 110,3 113,3 EQUAL OED INTEN HOLD A15 

3 VCCT VO 01 110,1 113,1 GNDE 113,2 VCCE A·FUll ERROR iNrA V15 VCCT 

4 A1 VI 02 014 A14 Y14 

5 GNDT A2 Y2 013 A13 GNDT 

• A3 03 GNDE GNDE 012 Y13 

7 Y3 04 A4 A12 Y12 D11 

8 06 Y4 VCCE VCCE Y11 A11 

I GNOT AS Y5 010 A10 GNOT 

10 D6 AS YS Y10 09 A9 

11 VCCT 07 T3 T6 GNDE T10 T11 10 VCCE 13 Y9 08 VCCT 

12 A7 11 T2 T5 GNDE T7 SO S1 VCCE 12 14 AI VI 

13 Y7 TO T9 T4 GNDE T8 CP S3 VCCE 11 S2 15 FC 

CD010382 

·Pinout observed from pin side of package, 
Key: VCCE = Vee, ECl 

VCCT = Vee, TTL 
GNDE~ GND, ECl 
GNDT~ GND, TTL 
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PIN DESIGNATIONS 
(Sorted by Pin No.) 

PIN NO. PIN NAME PAD PIN 
PIN NAME 

PAD PIN PIN NAME PAD PIN 
PIN NAME 

PAD 
NO. NO. NO. NO. NO. NO. NO. 

- - 99 C-S Y2 115 H-2 M3. 3 10 M-S A13 80 
- - 97 C-6 GNOE 113 H-3 VCCE 68 M-6 012 81 
- - 39 C-7 A4 52 H-ll 10 34 M-7 Y12 82 
- - 37 C-S VCCE 53 H-12 Sl 95 M-S Yn 25 

A-l Mo. 0 1 C-9 Ys 109 H-13 S3 94 M-9 AlO 86 
A-2 00 120 C-10 Ys 48 J-1 GNOT 11 M-10 Og 87 
A-3 VCCT 59 C-11 T3 44 J-2 eQUAL 71 M-ll De 89 
A-4 Al 58 C-12 T2 104 J-3 A·FULL 70 "-12 Ae 30 
A-S GNOT 56 C-13 Tg 41 J-ll VCCE 38 M-13 15 91 
A-6 As 114 1).1 M2.1 4 J-12 VCCE 38 N-t 01S 16 
A-7 Y3 54 0-2 Ml.l 63 J-13 V~ 38 N-2 A1S 76 
A-S Os 51 0-3 MO. 1 3 K-1 R T 13 N-3 VCCT 17 
A-9 GNOT 50 0-11 Ts 102 K-2 OED 72 N-4 Y14 19 
A-10 Os 49 0-12 Ts 43 K-3 ERROR 12 N-S GNOT 20 
A-l1 VCCT 47 0-13 T4 103 K-11 13 92 N-6 Y13 21 
A-12 A7 106 E-1 C;;; 5 K-12 12 33 N-7 011 24 
A-13 Y7 46 E-2 Mo. 2 65 K-13 11 93 N-S An 84 
B-1 Ml.0 61 E-3 M3.1 64 L-1 INTR 14 N-9 GNOT 26 
B-2 Ao 60 E-11 GNOE 98 L-2 INTEN 74 N-10 Ag 28 
B-3 Yo 119 E-12 GNOE 98 l-3 INTA 73 N-l1 VCCT 29 
B-4 Yl 117 E-13 GNOE 98 L-4 014 18 N-12 Ye 90 
B-S A2 116 F-l M,.2 6 L-S 013 79 N-13 FC 31 
B-6 03 55 F-2 M2. 2 66 L-6 GNOE 23 
B-7 04 112 F-3 GNOE 8 L-7 A'2 22 
B-8 Y4 111 F-l1 TlO 100 L-8 VCCE 83 
B-9 As 110 F-12 T7 42 L-9 010 85 
B-l0 As 108 F-13 Te 101 L-10 YlO 27 
B-ll 07 107 G-1 Ml.3 9 L-11 Yg 88 
B-12 Tl 45 G-2 Mo. 3 67 L-12 14 32 
B-13 TO lOS G-3 M3.2 7 L-13 S2 35 
C-l M2.0 2 G-ll Tll 40 M-1 SLAVE 75 
C-2 M3. 0 62 G-12 So 36 M-2 HOLO 15 
C-3 01 118 G-13 CP 96 M-3 Y15 77 
C-4 02 57 H-l M2. 3 69 M-4 A14 78 
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PIN DESIGNATIONS 
(Sorted by Pin Name) 

PIN NAME 
PIN PAO 

PIN NAME 
PIN PAO 

PIN NAME 
PIN PAO 

PIN NAME 
PIN PAO 

NO. NO. NO. NO. NO. NO. NO. NO. 

- - 37 Oa M·11 89 INTR L·1 14 T7 F·12 42 

- - 39 09 M·10 87 MO, 0 A·1 1 Ta F-13 101 

- - 97 010 L-9 85 MO,l 0-3 3 T9 C-13 41 

- - 99 011 N-7 24 MO, 2 E-2 65 Tl0 F-11 100 

A-FULL J-3 70 012 M-6 81 MO, S G-2 67 Tll G-11 40 

AO B-2 60 01S L-5 79 Ml,O B-1 61 VCCE* C-8 53 

Al A-4 58 014 L-4 18 Ml, 1 0-2 63 VCCE* H-3 68 

A2 B-5 116 015 N-1 16 Ml,2 F-1 6 VCCE* J-11 38 

As A-6 114 EQUAL J-2 71 Ml, S G-1 9 VCCE* J-12 38 

A4 C-7 52 ERROR K-3 12 M2,0 C-1 2 VCCE* J-13 38 

A5 B-9 110 FC N-13 31 M2,1 0-1 4 VCCE* L-8 83 

Aa B-10 108 GNOE C-6 113 M2,2 F-2 66 VCCT A-3 59 

A7 A-12 106 GNOE E-11 98 M2, s H-1 69 VCCT A-11 47 

Aa M-12 30 GNOE E-12 98 MS,O C-2 62 VCCT N-3 17 

A9 N-10 28 GNOE E-13 98 MS,l E-3 64 VCCT N-11 29 

Al0 M-9 86 GNOE F-3 8 MS,2 G-3 7 Yo B-3 119 

All N-8 84 GNDE L-6 23 MS, S H-2 10 Yl B-4 117 

A12 L-7 22 GNDT* A-5 56 OEC K-2 72 Y2 C-5 115 

A1S M-5 80 GNOT* A-9 50 R8T K-1 13 YS A-7 54 

A14 M-4 78 GNOT* J-l 11 So G-12 36 Y4 B-8 111 

A15 N-2 76 GNOT* N-5 20 81 H-12 95 Y5 C-9 109 

Cln E-1 5 GNOT* N-9 26 S2 L-13 35 Ya C-10 48 

CP G-13 96 HOLO M-2 15 8S H-13 94 Y7 A-13 46 

00 A-2 120 10 H-11 34 SLAVE M-1 75 Ya N-12 90 

01 C-3 118 11 K-13 93 To B-13 105 Y9 L-11 88 

02 C-4 57 12 K-12 33 Tl B-12 45 Yl0 L-10 27 

Os B-6 55 Is K-11 92 T2 C-12 104 Yll M-8 25 

04 B-7 112 14 L-12 32 Ts C-11 44 Y12 M-7 82 

05 A-8 51 15 M-13 91 T4 0-13 103 Y1S N-6 21 

Oa A-10 49 INTA L-3 73 T5 0-12 43 Y14 N-4 19 

07 B-11 107 INTEN L-2 74 Ta 0-11 102 Y15 M-3 77 

*Single + 5-Vol! supply, 
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LOGIC SYMBOL METALLIZATION AND PAD LAYOUT 

LS002352 

ORDERING INFORMATION 

Standard Products 

Die Size: 260 x 245 mil 
Equivalent Gate Count: 2500 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is 
formed by a combination of: a. Device Number 

AM29331 

b. Speed Option (if applicable) 
c. Package Type 
d. Temperature Range 
e. Optional Processing 

J<. Jl.. L=e. OPTIONAL PROCESSING 
Blank = Standard processing 

B = Burn-in 

d. TEMPERATURE RANGE 
C = Commercial (0 to + 85°C) 

L-------------------------c. PACKAGE TYPE 

a. DEVICE NUMBER/DESCRIPTION 
Am29331/Am29331A 
16-Bit Microprogram Sequencer 

G = 120-Lead Pin Grid Array with Heatsink 
(CG 120) 

b. SPEED OPTION 
Not Applicable 

Valid Combinations 

Valid Combinations 
Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released valid combinations, 
and to obtain additional data on AMD's standard military 
grade products. 

AM29331 J I GC, GCe 
AM29331A 
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PIN DESCRIPTION 

AO - A15 Alternate Data (Input) 
Input to address multiplexer and counter. 

A-FULL Almost Full (Bidirectional, Three-State) 
Indicates that 28 ~ SP ~ 63 (meaning there are five or less 
empty locations left on stack). Also active during stack· 
under flow. 

Cin Carry In (Input, Active LOW) 
Carry·in to the incrementer. 

CP Clock Pulse (Input) 
Clocks sequencer at the LOW·to-HIGH transition. 

Do - 015 Data (Bidirectional, Three-State) 
Input to address multiplexer, counter, stack, and comparator 
register. Output for stack and stack pointer. 

EQUAL Equal (Bidirectional, Three-State) 
Indicates that the address comparator is enabled and has 
found a match. 

ERROR Error (Output, Active HIGH) 
Indicates a master/slave error in the slave mode. Indicates 
a malfunctioning driver or contention of any output in the 
master mode. 

FC Force Continue (Input, Active HIGH) 
Overrides instruction with CONTINUE. 

HOLD Hold (Input, Active HIGH) 
Stops the sequencer and three-states the outputs. 

10 - 15 Instruction (Input) 
Selects one of 64 instructions. 

FUNCTIONAL DESCRIPTION 

Architecture 

The major blocks of the sequencer are the address multiplex­
er, the address register (AR), the stack (with the top of stack 
denoted TOS), the counter (C), the test multiplexer with logic, 
and the address comparison register (R) (Figure 1). The 
bidirectional O·bus provides branch addresses and iteration 
counts; it also allows access to the stack from the outside. 
The A-bus may be used for map addresses. There are four 
sets of 4-bit multiway branch inputs (M). The bidirectional 
Y -bus either ouputs microprogram addresses or inputs inter­
rupt addresses. The buses are all 16 bits wide. Figure 1 shows 
a detailed block diagram of the sequencer. 
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INTA Interrupt Acknowledge (Bidirectional, Three­
State, Active LOW) 

Indicates that an interrupt is accepted. 

INTEN Interrupt Enable (Input, Active HIGH) 
Enables interrupts. 

INTR Interrupt Request (Input, Active HIGH) 
Requests the sequencer to interrupt execution. 

MO-3, 0-3 Multiway (Input). 
Four sets of multiway inputs providing 16-way branches. 
The first index refers to the set number. 

OED Output Enable - D-Bus (Input, Active HIGH) 
Enables the O-bus driver, provided that the sequencer is not 
in the hold or slave mode. 

RST Reset (Input, Active LOW) 
Resets the sequencer. 

So - S3 Select (Input) 
Selects one of 16 test conditions. 

SLAVE Slave (Input, Active HIGH) 
Makes the sequencer a slave. 

To - T 11 Test (Input) 
Provides external test inputs. 

YO-Y15 Address (Bidirectional, Three-State) 
Output of microcode address. Input for interrupt address. 

Address Multiplexer 

The address multiplexer can select an address from any of 
five sources: 

1) A branch address supplied by the O-bus 

2) A branch address supplied by the A-bus 

3) A multiway-branch address 

4) A return or loop address from the top of stack 

5) The next sequential address from the incrementer 

Multlway-Branch Address 

A multiway-branch address is formed by substituting the lower 
four bits of the address on the O-bus (Oa, 02, 01, Do) with one 
of the four sets (MoX, M1X, M2X, or Max) of 4-bit multiway­
branch addresses. The multiway-branch set is selected by the 
number 0100, while the bits 03 and 02 are "don't cares." 

I·: 

Ii 



Branch I I Address 1.... _______________ --1. 

Multiway Inputs o , , 
I , 
I 

~~ss ~1V._15 ___________________ .I ____ Y.~Oi 
"-----r 4 Table 4 (Max) I 

Lease Address 1 of 6 _ Table 3 (~x) I 
Table 2 (~x) I 

Table 1 (MOX) o 
1 
2 , , , , , , 

'--____ .....1 15 

Lookup Table 

80007460 
Notes: 1. 01 and 00 select one out of four multiway sets. 03 and 02 are "don't cares." 

2. Each set of M3X - Mox can select one of sixteen locations. The multiway-brarich address is the 
concatenation of 015 - 04 (base address) and MX3 - Mxo. 

3. For a given base address, there can be four look-up tables, each sixteen deep. 

Figure 2. Multlway Branch 
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Address Register 

The address register contains the current address. It is loaded 
from the interrupt multiplexer and feeds the incrementer. The 
incrementer is inhibited if CIN is taken HIGH. 

Stack 

A 33-word-deep and 16-bit-wide stack provides first-in last-out 
storage for return addresses, loop addresses, and counter 
values. Items to be pushed come from the incrementer, the 
interrupt-return-address register, the counter, or the D-bus. 
Items popped go to the address multiplexer, the counter, or 
the D-bus. 

The access to the stack via the D-bus may be used for context 
switching, stack extension, or diagnostics. As the stack is only 
accessible from the top, stack extension is done by temporari­
ly storing the whole or some lower part of the stack outside the 
sequencer. The save and the later restore are done with pop 
and push operations, respectively, at balanced points in the 
microprogram; for example, points with the same stack depth. 
The internal D-bus driver must be turned on when popping an 
item to the D-bus; if the driver is off, the item will be unstacked 
instead. The driver is normally turned on when the Output 
Enable signal is asserted and the sequencer is not being reset 
(OED = 1, RST = 1). 

The stack pointer is a modulo 64 counter, which is increment­
ed on each push and decremented on each pop. The stack 
pointer is reset to zero when the sequencer is reset, but the 
pointer may also be reset by instruction. Thus, the stack 
pointer indicates the number of items on the stack as long as 
stack overflow or underflow has not occurred. Overflow 
happens when an item is pushed onto a full stack, whereby 
the item at the bottom of the stack is overwritten. Underflow 
happens when an item is popped from an empty stack; in this 
case the item is undefined. 

The contents of the stack pOinter are present on the D-bus for 
all instructions except POP D, provided the driver is turned on. 
The output signal, A-FULL, is active under the following 
conditions: 28';;; SP .;;; 63. 

Counter 

The counter may be used as a loop counter. It may be loaded 
from the D-bus, the A-bus, or via a pop from the stack. Its 
contents may also be pushed onto the stack. 

A normal for-loop is set up by a FOR instruction, which loads 
the counter from the D- or A-bus with the desired number of 
iterations; the instruction also pushes onto the stack a loop 
address that points to the next sequential instruction. The end 
of the loop is given by an unconditional END FOR instruction, 
which tests the counter value against the value one and then 
decrements the counter. If the values differ, the loop is 
repeated by selecting the address at the stack as the next 
address. If the values are equal, the loop is terminated by 
popping the stack, thereby removing the loop address, and 
selecting the address from the incrementer as the next 
address. The number of iterations is a 16-bit unsigned number, 
except that the number zero corresponds to 65,536 iterations. 
By pushing and popping counter values it is possible to handle 
nested loops. 

Address Comparison 

The sequencer is able to compare the address from the 
interrupt multiplexer with the contents of the comparator 
register. The instruction SET loads the comparator register 
with the address on the D-bus and enables the comparison, 
while CLEAR disables it. The comparison is disabled at reset. 
A HIGH is present at the output EQUAL if the comparison is 
enabled and the two addresses are equal. The comparison is 

3-9 

useful for detection of a break point or counting the number of 
times a microinstruction at a specific address is executed. 

Instruction Set 

The sequencer has 64 instructions that are divided into four 
classes of 16 instructions each. The instruction lines 10 -Is 
use Is and 14 to select a class, and 10 -13 to select an 
instruction within a class. The classes are: 

15 14 Classes 
o 0 Conditional sequence control, 
o 1 Conditional sequence control with inverted 

polarity, 
o Unconditional sequence control, and 
1 Special function with implicit continue. 

Note that for the first three classes Is forces the condition to 
be true and 14 inverts the condition. The basic instructions of 
the first three classes are shown in Table 1 and the instruc­
tions of the fourth class in Table 2. 

Structured microprogramming is supported by sequencer 
instructions that singly or in pairs correspond to high-level 
language control constructs. Examples are FOR I: = D DOWN 
TO 1 DO ... END FOR and CASE N OF ... END CASE. The 
instructions have been given high-level language names 
where appropriate. Figure 3 shows how to microprogram 
important control constructs; the high-level language is on the 
left and the microcode on the right. 

Test Conditions 

The condition for a conditional instruction is supplied by a test 
multiplexer, which selects one out of sixteen tests with the 
select lines So - S3. Twelve of these are supplied directly by 
the inputs To - T 11, while the remaining four tests are generat­
ed by the test logic from the inputs T s - T11. The following 
table shows the assignments. 

(So - S3)H Test Intended Use 

0-7 To-T7 General 
8 Ts C (Carry) 
9 Tg N (Negative) 
A T10 V (Overflow) 
B T11 Z (Zero or equal) 
C Ts + Tn C + Z (Unsigned less 

than or equal, borrow 
mode) 

D Te + Tn C + Z (UnSigned less 
than or equal) 

E TgEllT10 N Ell V (Signed less than) 
F (Tg EIlT10) + T11 (N Ell V) + Z (Signed less 

than or equal) 

Force Continue 

The sequencer has a force continue (FC) input, which over­
rides the instruction inputs 10 - Is with a CONTINUE instruc­
tion. This makes it possible to share the microinstruction field 
for the sequencer instruction with some other control or to 
initialize a writable control store. 

Reset 

In order to start a microprogram properly, the sequencer must 
be reset. The reset works like an instruction overriding both 
the instruction input and the force continue input. The reset 
selects the address 0 at the address multiplexer, forces the 
EQUAL output to LOW, and disregards a potential interrupt 
request. It synchronously disables the address comparison 
and initializes the stack pointer to o. The contents of the stack 
are invalid after a reset. 

I~ 
I· 
I 
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TABLE 1. INSTRUCTION SET for 1514 = 00, 01, 10 

Cond.: Fail 
15- 10 Instruction Y 

00, 10, 20 Goto D INC 
01, 11, 21. Call D INC 
02, 12, 22 Exit D INC 
03, 13, 23 End for D, C-=I=1 INC 

End for D, C = 1 INC 
04, 14, 24 Goto A INC 
05, 15, 25 Call A INC 
06, 16, 26 Exit A INC 
07, 17, 27 End for A, C -=1= 1 INC 

End for A, C=l INC 
08, 18, 28 Goto M INC 
09, 19, 29 Call M INC 
OA, lA, 2A Exit M INC 
OB, lB, 2B End for M, C-=I=l INC 

End for M, C = 1 INC 
OC, lC, 2C End Loop INC 
OD, lD, 2D Call Coroutine INC 

OE, lE, 2E Return INC 
OF, lF, 2F End for, C-=I=l INC 

End for, C = 1 INC 

Cond. = (Test [S I OR Is) XOR 14 
= Concatination 

C = Counter 

Stack 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Pop 
-
-

Pop 
Pop 

Cond.: Pass 
Y Stack 

D -
D Push INC 
D Pop 
D -

INC -
A -
A Push INC 
A Pop 
A -

INC -
D:M -
D:M Push INC 
D:M Pop 
D:M -
INC -
TOS -
TOS Pop & 

Push INC 
TOS Pop 
TOS -
INC Pop 

INC = Output of Incrementer = AR + 1 (if C;;; = LOW) 

Counter 

-
-
-
C~-l 
C+-C-l 
-
-
-
C~-l 
C~-l 

-
-
-
C+-C-l 
C+-C-l 
-
-
-
C+-C-l 
C+-C-l 

Note: For unconditional instructions, the action marked under Cond.:Pass is taken. 

TABLE 2. INSTRUCTION SET for 1514= 11 

15- 10 Instruction Y Stack Counter Compo 

30 Continue INC - - -
31 For D INC Push INC C+-D -
32 Decrement INC - C+-C-l -
33 Loop INC Push INC - -
34 Pop D INC Pop - -
35 Push D INC Push D - -
36 Reset SP INC SP+-O - -
37 For A INC Push INC C+-A -
38 Pop C INC Pop C+-TOS -
39 Push C INC Push C - -
3A Swap INC TOS+-C C+-TOS -
3B' Push C Load D INC Push C C+-D -
3C Load D INC - C+-D -
3D Load A INC - C+-A -

Compo 

-
-
-
-
-
-
-
-. 
-
-
-
-
-
-
-
-
-
-
-
-

3E Set INC - - R+-D, Enable 
3F Clear INC - - Disable 

R = Comp. Register 
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D-Mux 

SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 

SP 
SP 
SP 

D-Mux 

SP 
SP 
SP 
SP 

TOS 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 
SP 



Interrupts 

The sequencer may be interrupted at the completion of the 
current microcycle by asserting the interrupt request input 
INTR. The return address of the interrupted routine is saved 
on the stack so that nested interrupts can be easily imple­
mented. An interrupt is accepted if interrupts are enabled and 
the sequencer is not being reset or held (INTEN = HIGH, 
~ - HIGH, and HOLD = LOW). The interrupt-acknowledge 
output (iNiA) goes LOW when an interrupt is accepted. 

When there is no interrupt, addresses go from the address 
multiplexer to the Y -bus via the driver, and to the address 
register and the comparator via the interrupt multiplexer. When 
there is an interrupt, the driver of the sequencer is turned off, 
an external driver is turned on, and the interrupt multiplexer is 
switched. The interrupt address is supplied via the external 
driver to the Y-bus, the address register, and the comparator 
(Figure 4). In order to save the address from the address 
multiplexer, the address is stored in the interrupt return 
address register, which for simplicity is clocked every cycle. 
The next microinstruction is the first microinstruction of the 
interrupt routine (Figure 5). 

In this cycle the address in the interrupt return address register 
is automatically pushed onto the stack. Therefore the microin­
struction in this cycle must not use the stack; if a stack 
operation is programmed, the result is undefined. The instruc­
tions that do not use the stack are GOTO D, GOTO A, GOTO 
M, CONTINUE, DECREMENT, LOAD D, LOAD A, SET and 
CLEAR. A RETURN instruction terminates the interrupt routine 
and the interrupted routine is resumed. Interrupts only work 
with a single-level control path. 

Traps 

A trap is an unexpected situation linked to current microin­
struction that must be handled before the microinstruction 
completes and changes the state of the system. An example 
of such a situation is an attempt to read a word from memory 
across a word boundary in a single cycle. When a trap occurs, 
the current microinstruction must be aborted and re-executed 
after the execution of a trap routine, which in the meantime will 
lake corrective measures. An interrrupt, on the other hand, is 
not linked directly to the current microinstruction that can 
complete safely before an interrupt routine is executed. 

Execution of a trap requires that the sequencer ignore the 
current microinstruction, select the trap return address at the 
address multiplexer, and initiate an interrupt. This will save the 
trap return address on the slack and issue the trap add~ess 
from an external source (Figure 6). The address register 

contains the address of the microinstruction in the pipeline 
register, thus the address register already contains the trap 
return address when a trap occurs. This address can be 
selected by the address multiplexer by disabling the incremen­
ter (CIN = 1), and using the force continue mode (FC - 1). In 
this mode the sequencer ignores the current microinstruction. 
The remaining part of the trap handling is done by the interrupt 
(Figure 7), thus the section on interrupts also applies to traps. 
There. is one exception, however. The interrupt enable cannot 
be used as a trap enable as it does not control the force 
continue mode and the carry-in to the incrementer. 

Hold Mode 

The sequencer has a hold mode in which the operation is 
suspended. 

When the HOLD signal goes active, the outputs (Y, iNiA, 
A-FULL & EQUAL) are disabled and the sequencer enters the 
hold mode after the current cycle. While the sequencer is in 
this mode, the internal state is left unchanged and the D-bus is 
disabled. When the HOLD signal goes inactive, the outputs (Y, 
ifiITA, A-FULL & EQUAL) are enabled again and the sequencer 
leaves the hold mode after the cycle. 

In a time-multiplexed multimicroprocess system there may be 
one sequencer for all processes with microprogrammed con­
text save and restore, or there may be one sequencer per 
microprocess permitting fast process switch. In the latter case 
the Y -buses of the sequencers are tied together and connect­
ed to a single microprogram store. A control unit decides on a 
cycle-by-cycle basis what sequencer should be running, and 
activates the HOLD signal to the remaining sequencers. The 
hold mode has higher priority than interrupts, and works 
independently of the reset. The hold mode can only be used 
with a single-level control path. 

Master/Slave Configuration 

In some systems reliability is very important. The master/slave 
configuration that consists of two sequencers operated in 
parallel is able to detect faults in both the interconnect and the 
internal function of the sequencers. One sequencer is the 
master and operates normally. The other is the slave, i.e., all 
outputs except the Signal ERROR are turned into inputs and 
connected to the outputs of the master. Since the slave is 
operated in parallel with the master, it can compare its result 
with the result of the master and signal an error if they differ. 
The error signal from the master indicates a malfunctioning 
driver or contention. Because a TTL output goes HIGH when 
power is missing, the ERROR signal also indicates power 
failure. 
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Hlgh·Level Language Constructs 

An example of high-level language constructs using Am29331 instructions is given in Figure 3 (3-1, 3-2, 3-3, and 3-4). 

REPEAT LOOP 
- -
- -

UNTIL CC END LOOP NOT CC 

WHILE CC DO LOOP 
IF NOT CC THEN EXIT L 

- -
- -

END WHILE END LOOP 
L: 

LOOP LOOP 

IF CC THEN EXIT IF CC THEN EXIT L 

END LOOP END LOOP 
L: 

Figure 3·1. Loops with Unknown Number 
of Iterations 

PUSH D B 
CASE I OF GOTO M 
0: - A:-

- -, RETURN (TO B) 
1: - A + 2: -

- -, RETURN (TO B) 
2: - A + 4: -

- -, RETURN (TO B) 
3: - A+6: -

- -, RETURN 
END CASE B: 

Figure 3·3. Case Statement 
(with D = A15 ••• A4XXOO and 
Mo, 0 - a = Aal1100 during the 
GOTO M Instruction. A1AO must 
be 00, and X signifies a don't 
care.) 
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FOR CNT: = 10 DOWN TO 1 DO FOR D 10 

END FOR END FOR 

Figure 3·2. Loop with Known Number of 
Iterations 

PUSH DC 
IF X THEN IF NOT X THEN GOTO A 

IF Y THEN IF NOT Y THEN GOTO B 
- -
- -, RETURN (TO C) 
ELSE B: 
- -
- -, RETURN (TO C) 
END IF 

ELSE A: 
IF Z THEN IF NOT Z THEN GOTO D 
- -
- -, RETURN (TO D) 
ELSE D: 
- -
- -, RETURN (TO C) 
END IF 

END IF C: 

Figure 3·4. Double·Nested If Statement 



- II-.tIng the /nit. at A, the - II EJ _ruptod and dlr_ to B. 

EHCUling III A. . Slack 

A : Conti ..... ~
A+I 

::::~III v-f L •• , 
I Mux I 'A~~ I;l 
~.~. 
~~ ~. 

a~ 
B 

Figure 4. Am29331 Interrupt Cycle 1 

A trap occurs II tile Inlt. A. and lile seq. I. 
_loa. 

Executing III A. 

A : lnatruction Trapped ay Fe = 1. 
~ = I. INTI! = I . 

A ... 1: .0. 
a : Continue 
a+l: ... 

011 

AF004192 

AFOO4201 

Figure 6. Am29331 Traps Cycle 1 
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Executing .r8. 

8+1 

AFOO4212 

Figure 5. Am29331 Interrupt Cycle 2 

.--. ... 
A 

.+' 

1--......1'---.+1 

AFOO4182 

Figure 7. Am29331 Traps Cycle 2 



Legend: • = Other instruction 

Instruction Set Definition 

P = Test pass 

F - Test fail 0= Instruction being described 
CC = (Test [53 - Sol) o = Register in part 

Opcode 
(15- 10) 

20H 

Mnemonics 

Note: Opcode numbers are in hexadecimal notation. 

Description 

GOTO 0 
Unconditional branch to the address specified 
by the 0 inputs. The 0 port must be disabled to 
avoid bus contention. 

GOTO A 
Unconditional branch to the address specHied 
by the A inputs. 

GOTO Multiway (015 - 04 MX3 - Mxo) 
Unconditional branch to the address specified 
by the M inputs concatenated with the 0 input. 
The lower four bits on the 0 bus (Da - Do) are 
replaced by one of the four sets of the four-bH 
multiway branch addresses. The multiway 
branch set is selected by bits 01 and Do while 
bits 03 and 02 are "don't cares." 

GOTO TOS 
Unconditional branch to the address on the top 
of the stack. 

IF CC THEN GOTO 0 
ELSE CONTINUE 
If CC is HIGH (pass), branch to the address 
apecified by O. If CC is .LOW (fail), continue. 
The 0 port must be disabled to avoid bus 
contention. 

IF CC THEN GOTO A 
ELSE CONTINUE 
If CC is HIGH (pass), branch to the address 
specified by A. If CC is LOW (fail), continue. 

IF CC THEN GOTO Multiway 
(015 - 04 MX3 - Mxo) 
ELSE CONTINUE 
If CC is HIGH (pass), branch to the address 
specified by 0 inputs concatenated with the M 
inputs. If CC is LOW (fail) continue. The lower 
four bits on the 0 bus (03 - Do) are replaced by 
one of the four sets of the 4-bH multiway 
branch addresses. The multiway branch set is 
selected by bits 01 and Do while bits Da and 02 
are "don't cares." 

IF CC THEN GOTO TOS 
ELSE 
POP STACK 
CONTINUE 
If CC is HIGH (pass), branch to the address on 
the top of the stack. If CC is LOW (fail), pop the 
stack and continue. 
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Opcode 
(15 -10) Mnemonics Description 

IF NOT CC THEN GOTO 0 
ELSE CONTINUE 
If CC is LOW (pass), branch to the address 
specified by O. If CC is HIGH (fail), continue. 
The 0 Port must be disabled to avoid Bus 
contention. 

IF NOT CC THEN GOTO A 
ELSE CONTINUE 
If CC is LOW (pass), branch to the address 
specified by A. If CC is HIGH (fail), continue. 

IF NOT CC THEN GOTO Multiway 
(0'5 - 04 MX3 - Mxo) 
ELSE CONTINUE 
If CC is LOW (pass), branch to the address 
specified by 0 inputs concatenated with the M 
inputs. If CC is HIGH (fail), continue. The lower 
four bits on the 0 bus (03 - Do) are replaced by 
one of the four sets of the 4-bit multiway 
branch addresses. The multiway branch set is 
selected by bits 0, and Do while bits 03 and 02 
are "don't cares," 

IF NOT CC THEN GOTO TOS 
ELSE 
POP STACK 
CONTINUE 
If CC is LOW (pass), branch to the address on 
the top of the stack. If CC is HIGH (fail), pop the 
stack and continue. 

CALL 0 
Unconditional branch to the subroutine 
specified by the 0 inputs. Push the return 
address (address Reg. + 1) on the stack. The 
o port must be disabled to avoid bus 
contention. 

CALL A 
Unconditional branch to the subroutine 
specified by the A inputs. Push the return 
address (Address Reg. + 1) on the stack. 

CALL Multiway (0'5 - 04 MX3 - MXO) 
Unconditional branch to the subroutine 
specified by the 0 inputs concatenated with the 
multiway inputs. Push the return address 
(Address Reg. + 1) on the stack. The lower 
four bits on the 0 bus (03 - DO) are replaced by 
one of the four sets of the 4-bit multiway 
branch addresses. The multiway branch set is 
selected by bits 0, and Do while bits 03 and 02 
are "don't cares." 

CALL TOS 
Unconditional branch to the subroutine 
specified by the address on the top of the 
stack. The stack is popped and the return 
address (Address Reg. + 1) is then pushed 
onto the stack. 

Note: Opcode numbers are in hexadecimal notation. 
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Opcode 
(15- IO) Mnemonics Description Execution. Example 

01H CCC_O IF CC, THEN CALL 0 
ELSE CONTINUE 
If CC is HIGH (pass), call the subroutine 
specified by the 0 inputs. Push the retum 
address (Address Reg. + 1) on the stack. If CC 
is LOW (fail), continue. The 0 port must be 
disabled to avoid bus contention. 

05H CCC_A IF CC, THEN CALL A 
ELSE CONTINUE 50 
If CC is HIGH (pass), call the subroutine 
specified by the A Inputs. Push the return 
address (Address Reg. + 1) on the stack. If CC 51 

is LOW (fail), continue. STACK 

09H CCC_M IF CC, THEN CALL Multiway 52 .)F 0- PC+l 
(015 - 04 MX3 - Mxo) / 54 
ELSE CONTINUE / 

If CC is HIGH (pass), call the subroutine 53. !IO 

specified by the 0 inputs concatenated with the 
P 

M inputs. Push the return address (Address 54 

~ 
., 

Reg. + 1) on the stack. The lower four bits on 
the 0 bus (Os - 00) are replaced by one of the 
four sets of the 4-bit multiway branch ss 112 
addresses. The multiway branch set is ""Iected 
by bits 01 and Do while bits Os and 02 are ss "don't cares." 

PFOO1770 
OOH CCC_S IF CC, THEN CALL TOS 

ELSE CONTINUE 
If CC is HIGH (pass), call the subroutine 
specified by the address on the top of the 
stack. The stack is popped and the return 
address (Address Reg. + 1) Is pushed onto the 
stack. If CC is LOW (fail), continue. 

11H CNC_O IF NOT CC, THEN CALL 0 
ELSE CONTINUE 
If CC is LOW (pass), call the subroutine 
specified by the 0 inputs. Push the retum 
address (Address Reg. + 1) on the stack. If CC 
is HIGH (fail), continue. The 0 port must be 
disabled to avoid bus contention. 

15H CNC_A IF NOT CC, THEN CALL A 
ELSE CONTINUE 50 
If CC is LOW (pass), call the subroutine 
specified by the A inputs. Push the return 
address (Address Reg. + 1) on the stack. If CC 51 

is HIGH (fail), continue. STACK 

19H CNC_M IF NOT CC, THEN CALL Mulliway 52.FD-PC+l 
(015 - 04 Mxs - Mxo) / 54 
ELSE CONTINUE ~ 

If CC is LOW (pass), call the subroutine 53. !IO 

spec~ied by the 0 inputs concatenated with the 
P 

M inputs. Push the return address (Address 54 

~ " 
Reg. + 1) on the stack. The lower four bits on 
the 0 bus (OS - DO) are replaced by one of the 
four sets of the 4-bit multiway branch ss 112 
addresses. The multiway branch set is selected 
by bits 01 and Do while bits Os and 02 are 
"don't cares." 

PFOO1780 
tDH CNC_S IF NOT CC, THEN CALL TOS 

ELSE CONTINUE 
If CC is LOW (pass), call the subroutine 
specified by the address on the top of the 
stack. The stack is popped and the return 
address (Address Reg. + 1) is pushed onto the 
stack. 

Note: Opcode numbers are in hexadecimal notstion. 
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Opcode 
(15- 10) Mnemonics Description 

EXIT TO D 
Unconditional branch to the address specified 
by the D inputs and pop the stack. The D port 
must be disabled to avoid bus contention. 

EXIT TO A 
Unconditional branch to the address specified 
by the A inputs and pop the stack. 

EXIT TO Multiway (D'5-D4 MX3-MXO) 
Unconditional branch to the address specified 
by the D inputs concatenated with the M inputs 
and pop the stack. The lower four bits on the D 
bus (D3 - Do) are replaced by one of the four 
sets of the 4-bn multlway branch addresses. 
The multiway branch set Is selected by bits DI 
and Do while D3 and D2 are "don't cares." 

EXIT TO TOS 
Unconditional branch to the address on the top 
of the stack and pop the stack. Also used for 
unconditional returns. 

IF CC, THEN EXIT TO D 
ELSE CONTINUE 
if CC is HIGH (pass), exll to the address 
specified by the D inputs and pop the stack. if 
CC is LOW (fail), continue with no pop. The D 
port must be disabled to avoid bus contention. 

IF CC, THEN EXIT TO A 
ELSE CONTINUE 
if CC is HIGH (pass), exit to the address 
specified by the A inputs and pop the stack. if 
CC Is LOW (fail), continue with no pop. 

IF ce, THEN EXIT TO' Multiway 
(D,S - D4 MX3 - Mxo) 
ELSE CONTINUE 
if CC Is HIGH (pass), exit to the address 
specified by the D Inputs concatenated with the 
M Inputs and pop the stack. The lower four bits 
on the D bus (D3.- Do) are replaced by one of 
the four sets of the 4-bit multiway branch 
addresses. The muiliway branch set is selected 
by bits D, and Do while bits Da and D2 are 
"don't cares." 

IF ce, THEN EXIT TO TOS 
ELSE CONTINUE 
if CC is HIGH (pass), exn to the address on the 
top of the stack and pop the stack. if CC is 
LOW (faii), continue wnh no pop. Also used for 
conditional returns. 

Note: Opcode numbers are in hexadecimal notation. 
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Opcode 
(15- 10) Mnemonics Description 

IF NOT CC, THEN EXIT TO D 
ELSE CONTINUE 
If CC is LOW (pass), exit to the add tess 
specified by the 0 inputs and pop the stack. If 
CC is HIGH (fall), continue with no pop. The 0 
port must be disabled to avoid bus contention. 

IF NOT CC, THEN EXIT TO A 
ELSE CONTINUE 
If CC is LOW (pass), exit to the address 
specified by the A Inputs and pop the stack. If 
CC Is HIGH (fail), continue with no pop. 

IF NOT CC, THEN EXIT TO Multiway 
(0,5 - 04 MX3 - Mxo) 
ELSE CONTINUE 
If CC is LOW (pass), exit to the address 
specified by the 0 inputs concatenated with the 
M inputs and pop the stack. The lower four bits 
on the 0 bus (03 - Do) are replaced by one of 
the four sats of the 4·blt multiply branch 
addresses. The multlway branch set Is selected 
by bits 0, and Do while bits 03 and 02 are 
"don't cares." 

IF NOT CC, THEN EXIT TO TOS 
ELSE CONTINUE 
If CC is LOW (pass), exit to the address on the 
top of the stack and pop the stack. If CC is 
HIGH (fail), continue with no pop. Also used for 
conditional returns. 

IF CNT '* 1 THEN CNT: - CNT - 1 
GOTO 0 
ELSE CNT: - CNT - 1 
CONTINUE 
If the counter is not equal to one, decrement 
the counter and branch to the address 
specified by the 0 Inputs. If the counter is equal 
to one, then decremenl the counter and 
continue. The 0 port must be disabled to avoid 
bus contention. 

IF CNT,* 1 THEN CNT: - CNT - 1 
GOTO A 
ELSE CNT: - CNT - 1 
CONTINUE 
If the counter is not equal to one, decrement 
the counter and branch to the address 
specified by the A inputs. If the counter Is equal 
to one, then decrement the counter and 
continue. 

IF CNT '* 1 THEN CNT: - CNT-l 
GOTO Multiway (0,5 - 04 MX3 - Mxo) 
ELSE CNT: = CNT - 1 
CONTINUE 
If the counter Is not equal to one, decrement 
the counter and branch to the address 
specified by the 0 inputs concatenated with the 
M inputs. The lower four bits on the 0 bus 
(03 - Do) are replaced by one of the four sets 
of the 4·bij multiway branch addresses. The 
multlway branch set is salected by bits D, and 
Do while bits 03 and 02 are "don't cares." 

IF CNT,* 1 THEN CNT: = CNT - 1 
GOTO TOS 
ELSE CNT: = CNT - 1 
POP STACK 
CONTINUE 
If the counter is not equal to one, decrement 
the counter and branch to the address on the 
top of the stack. If the counter is equal to one, 
then decrement the counter, pop the stack and 
continue. 

Note: Opcode numbers are in hexadecimal notstion. 
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Ojlcode 
(15- 10) Mnemonics Description 

IF CC AND CNT # 1 THEN CNT: - CNT-l 
GOTO 0 
ELSE CNT: - CNT - 1 
CONTINUE 
II CC Is HIGH (pass) and the counter is not 
equal to one, decrement the counter and 
branch to the address specified by the 0 
inputs. II CC is LOW (fail) or the counter is 
equal to one, then decrement the counter and 
continue. The 0 port must be disabled to avoid 
bus contention. 

IF CC AND CNT # 1 THEN CNT: - CNT - 1 
GOTO A 
ELSE CNT: - CNT - 1 
CONTINUE 
II CC is HIGH (pass) and the counter is not 
equal to one, decrement the counter and 
branch to the address specified by the A inputs. 
II CC Is LOW (fall) or the counter Is equal to 
one, then decrement the counter and continue. 

IF CC AND CNT # 1 THEN CNT: - CNT - 1 
GOTO Multlway (015 - 04 MX3 - Mxo) 
ELSE CNT: - CNT - 1 
CONTINUE 
II CC is HIGH (pass) and the counter is not 
equal to one, decrement the counter and 
branch to the address specified by the 0 Inputs 
concatenated with the M Inputs. The lower four 
bits on the 0 bus (03 - Do) are replaced by one 
of the four sets of the 4-bit multiway branch 
addresses. The multiway branch set is selected 
by bits 01 and Do while bits 03 and 02 are 
"don't cares." 

IF CC AND CNT # 1 THEN CNT: - CNT - 1 
GOTO TOS 
ELSE CNT: - CNT - 1 
POP STACK 
CONTINUE 
II CC Is HIGH (pass) and the counter is not 
equal to one, decrement the counter and 
branch to the address on the top of the stack. If 
CC is LOW (fail) or the counter is equal to one, 
then decrement the counter, pop the stack and 
continue. 

Note: Opcode numbers are in hexadecimal notation. 
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Opcode 
(15 -10) Mnemonics Description Execution Example 

13H OJNCC_ 0 IF NOT CC AND CNT "" 1 THEN 
CNT: = CNT-1 
GOTO 0 
ELSE CNT: ~ CNT - 1 
CONTINUE 
If CC is LOW (pass) and the counter is not 
equal to one, decrement the counter and 
branch to the address specified by the 0 50 
inputs. If CC is HIGH (fail) or the counter is 
equal to one, then decrement the counter and 

51 continue. The 0 port must be disabled to avoid 
bus contention. 

17H OJNCC_A IF NOT CC AND CNT "" 1 THEN 52 
CNT: = CNT-1 
GOTO A 
ELSE CNT: ~ CNT - 1 53 
CONTINUE 
If CC is LOW (pass) and the counter is not PAND COUNTER 

COUNTER ~ 1 equal to one, decrement the counter and 501.- --0- COUNT-1 
branch to the address specified by the A inputs. 
The content of the interrupt return address 
register and the address register is replaced by 55 FOR 
the A address in this case. If CC is HIGH (fail) COUNTER = 1 

or the counter is equal to one, the current 
56 address is incremented, appears on the bus for 

continue, and is stored into the above two 
registers. 

ISH OJNCC_M. IF NOT CC AND CNT "" 1 THEN PFOO1840 
CNT: = CNT-l 
GOTO Multiway (015 - 04 M3 - MO) 
ELSE CONTINUE 
If CC is LOW (pass) and the counter is not 
equal to one, decrement the counter and 
branch to the address specified by the 0 inputs 
concatenated with the M inputs. The lower four 
bits on the 0 bus (03 - Do) are replaced by one 
of the four sets of the 4·bit multiway branch 
addresses. The multiway branch set is selected 
by bits 01 and DO while bits 03 and 02 are 
"don't cares." 

lFH DJNCC_S IF NOT CC AND CNT "" 1 THEN 
CNT: = CNT-l 
GOTO TOS 
ELSE CNT: = CNT - 1 
POP STACK 
CONTINUE 
If CC is LOW (pass) and the counter is not 
equal to one, decrement the counter and 
branch to the address on the top of the stack. If 
CC is HIGH (fail) or the counter is equal to one, 
then decrement the counter, pop the stack and 
continue. 

2EH RET RETURN STACK 

Unconditional return from subroutine. The o-PC+1 
return address is popped from the stack. ~ 

~ 
OEH RETCC IF CC THEN RETURN 50 90 

ELSE CONTINUE 
If CC is HIGH (pass), return from subroutine. 
The return address is popped from the stack .. If 51 t1 

CC is LOW (fail), continue. \N lEH RETNC IF NOT CC THEN RETURN 52 
ELSE CONTINUE 
If CC is LOW (pass), return from subroutine. 
The return address is popped from the stack. If 53 @93 
CC is HIGH (fail), continue. 

PFOO1850 

Note: Opcode numbers are in hexadecimal notation. 
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Opcode 
(15- 10) Mnemonics 

LOOP 

Description 

INITIALIZE LOOP 
Push the Address Reg. + 1 on the stack, load 
the counter from the D inputs and continue. 
Use with DJUMP _9 for FOR ... NEXT loops. 
The D port must be disabled to avoid bus 
contention. 

INITIALIZE LOOP 
Push the Address Reg. + 1 on the stack, load 
the counter from the A inputs and continue. 
Use with DJUMP _9 for FOR ... NEXT loops. 

INITIALIZE LOOP 
Push the Address Reg. + 1 on the stack and 
continue. Use with BRCC_9 for 
REPEAT ... UNTIL loops, or with XTCC_D 
and BRA_9 for WHILE ... END WHILE loops. 

Pop the stack and output the value on the D 
outputs and continue. The D port must be 
enabled. 

Pop the stack and store the value in the 
counter and continue. 

Push the D inputs on the stack and continue. 
The D port must be disabled to avoid bus 
contention. 

Push the counter on the stack and continue. 

Exchange the counter and the top of stack and 
continue. 

Note: Opcode numbers are in hexadecimal notation. 
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Opcode 
(15- 10) Mnemonics Description Execution Example 

3SH STACK_C Push \he counter on the stack and load the 
counter with the value of the 0 inputs and 
continue. 

3CH LOAD_D Load the counter with the value of the 0 inputs 
STACK 

and continue. The 0 port must be disabled to 

.~~D avoid bus contention. 

3DH LOAD_A Load the counter with the value of the A inputs 
and continue. COUNTER 

COUNTER 

50 0-0 , 
51 .{ 
52 

PFOOI860 

30H CONT Continue. 

32H DECR Decrement the counter and continue. 

36H RESET_SP Reset the stack pointer and continue. 
50 

51(. 

52 

COUNTER 

50 o-CDUNT-l , 
51.)' 

52 

PFOO1890 

3EH SET Load the comparison register with the value 01 
the D inputs. enable the comparator and COMPARE 
continue. 50 0-0 

3FH CLEAR Disable the comparator and continue. 
, 

51 .{ 
52 

PFOOI900 

Note: Opcode numbers are in hexadecimal notation. 
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Figure 8. Typical Control-Path Architecture For Am29300 Family 
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Figure 9. Cycle Timing Waveform* 

• This waveform shows the timing relationship for the configuration shown in Figure 8. 
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Suggestions fQr Power and Ground Pin 
Connections 
The Am29331 operates in an environment of fast signal rise 
times and substantial switching currents. Therefore, care must 
be exercised during circuit board design and layout, as with 
any high-performance component. The following is a sug­
gested layout, but since systems vary widely in electrical 
configuration, an empirical evaluation of the intended layout is 
recommended. 

The VCCT and GNDT pins, which carry output driver switching 
currents, tend to be electrically noisy. The VCCE and GNDE 
pins, which supply the ECL core of the device, tend to produce 
less noise, and the circuits they supply may be adversely 
affected by noise spikes on the VCCE plane. For this reason, it 
is best to provide isolation between the VCCE and VCCT pins, 
as well as independent decoupling for each. Isolating the 
GNDE and GNDT pins is not required. 

Printed. Clrcuit·Board Layout Suggestions 

1. Use of a multi-layer PC board with separate power, ground, 
and signal planes is highly recommended. 

2. All VCCE and VCCT pins should be connected to the Vcc 
plane. VCCT pins should be isolated from VCCE pins by means 
of a slot cut in the VCCE plane; see Figure 10. By physically 
separating the VCCE and VCCT pins, coupled noise will be 
reduced. 

3. All GNDE and GNDT pins should be connected directly to 
the ground plane. 

4. The VCCT pins should be decoupled to ground with a 0.1-IlF 
ceramic capacitor and a 10-IlF electrolytic capacitor, placed 
as closely to the Am29331 as is practical. VCCE pins should 
be decoupled to ground in a similar manner. 

A suggested layout is shown in Figure 10. 

A BCDEFGHJ KLMN 

_.[ 
'''T~ 

.1. ... 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

~ Isolation Cut 

• = Through Hole 
Ct = Vee Plane Connection 
C 1 =C3 =C S -10J.l.F 

C2=C4 =C6 =O.1IJ.F 

Figure 10. Suggested Printed Circult·Board Layout 
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Figure 11. Am29331 Thermal Characteristics (Typical) 
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I ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 
Storage Temperature ............................ - 65 to + 150·C Commercial (C) Devices 
Temperature Under Bias - TC ................ -55 to + 125·C Temperature (Tc) .................................. O to +.85·C 

Supply Voltage to Ground Potential Supply Voltage (Vee) .................... +4.75 to +5.25 V 
Continuous ...................................... -0.5 to + 7.0 V Air Velocity ....................... 200 linear feet per minute 

DC Voltage Applied to Outputs 
for High State .......................... -0.5 V to +VCC Max Operating ranges define those limits between which the 

DC Input Voltage ................................. -0.5 to + 5.5 V functionality of the device is guaranteed. 

Stresses above those listed under ABSOLUTE: MAXIMUM 
RA TINGS may ceuse permanent device failure. Functionality 
at or above these limits is not implied. E:xposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

DC CHARACTERISTICS over operating range 

Parameters Description Test Conditions Min. Max. Unit 
(Note 1) 

Vee- Min. IOH ~-1.8 mA for YO-Y1S, IIiITA 
VOH Output HIGH Voltage 

VIN - Vil or VIH IOH - -1.2 mA for All Others 2.4 Volts 

Vee-Min. IOl -18 mA for YO-YIS, IIiITA 
VOL Output LOW Voltage 

VIN - Vil or VIH IOl - 12 mA for All Others 0.5 Volts 

VIH Input HIGH Level Guaranteed Input Logical 2.0 Volts HIGH Voltage for All Inputs 

Vil Input lOW Level Guaranteed Input logical 0.8 Volts LOW Voltage for All Inputs 

VI Input Clamp Voltage Vee-Min., -1.5 Volts IIN--18 rnA 
YO-YIS, 00-015, 1IiITA, -0.55 A·FULL, EQUAL 

Ao-AIS, MO-3, 0-3, 
10- 15, To-TH:; -0.50 

III Input LOW Current Vee-Max., So - S3, FC, In mA VIN -0.5 V OED -1.0 

SLAVE, HOLD -1.5 

CP, INTA, INTEN -2.5 

J!I'ST -3.0 

YO-YI5, 00-015, 1IiITA, 100 A·FULL, EQUAL 

Ao-AIS, MO-3, 0-3, 
50 10- 15, To-Tit 

IIH Input HIGH Current Vee- Max., So- S3, FC, n pA VIN-2.4 V OED 100 

SLAVE, HOLD 150 

CP, INTA, INTEN 250 

J!I'ST 300 

II Input HIGH Current Vee- Max., 1.0 rnA 
VIN - 5.5 V 

IOZH Off State (Hlgh·lmpedance) I VO- 2.4 V 100 
IOZl Output Current Vee· Max. I VO-0.5 V -550 

pA 

Ise 
Output Short ClrcuH Current Vee - Max. + 0.5 V -15 -65 mA (Note 2) VOUT - +0.5 V 

lee Power Supply Current 
Vee - Max. I COM'L Only 

I Te-O to +85°C 1,300 
mA (Note 3) I Te-+85°C 1,200 

Notes: 1. For conditions shown as Min. or Max., use the appropriate value specified under Operating Aanges for the applicable device type. 
2. Not more than one output should be shorted at a time. Duration of the short·clrcuit test should not exceed one second. 
3. Measured with all Inputs LOW and outputs disabled. 
4. It Is the responsibility of the user to maintain a case temperature of + 85°C or less. AMO recommends an alr velocity of at least 200 linear 

feet per minute over the heatslnk. 
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SWITCHING CHARACTERISTICS over operating range (Note 1) 

A. COMBINATIONAL PROPAGATION DELAYS 

29331 29331A 

No. From To Max. Delay Max. Delay Unit 

01S-0 Y1S-0 19 17 ns 
°1S-0 EQUAL 23 20 ns 
°1S-0 ERROR 25 22 ns 

2 A1S-0 Y1S-0 19 17 ns 
A1S-0 EQUAL 23 20 ns 
A1S-0 ERROR 25 22 ns 

3 MX3-XO Y1S-0 19 17 ns 
MX3-XO EQUAL 23 Z ns 
MX3-XO ERROR 25 ns 
Y1S-0 EQUAL 20 ns 
Y1S-0 ERROR 21 ns 

4 Is-o Y31-0 25 ns 
5 Is-o °1S-0 31 ns 

Is-o EQUAL 29 IIiII'III1iI' ns 
Is-o ERROR 29 5 ns 

6 T11-0 Y1S-0 25 ns 
T11-0 EQUAL 30 ns 
Tl1-0 ERROR 30 ns 
S3-0 Y1S-0 25 ns 
S3-0 EQUAL 30 ns 
S3-0 ERROR 30 ns 

7 CP Y1S-0 20 ns 
B CP °1S-0 20/Z ns 
9 CP A·FULL 18 ns 

CP EQUAL 25 ns 
CP ERROR 30 ns 

10 RS'i' Y1S-0 26/Z ns 
m ~O Z ns 

11 RS'i' 1 A 12 ns 
m EQUAL 27 ns 
RS'i' ERROR 29 ns 

12 FC Y15-0 21 ns 
13 FC °1S-0 23 ns 

FC EQUAL 26 ns 
FC ERROR 26 ilIIIMIIII ns 
INTR ~O Z Z ns 

14 INTR 1 A 11 ns 
INTR EQUAL (Note 2) ns 
INTR ERROR 22 ns 
INTEN ~o Z ns 

15 INTEN 11 ns 
INTEN EQUAL (Note 2) ns 
INTEN ERROR 22 ns 
HOLD Y1S-0 Z ns 
HOLD INTA Z ns 
HOLD A·FULL Z ns 
HOLD EQUAL 21/Z ns 
HOLD ERROR 19 ns 
OED °1S-0 Z ns 
OED ERROR 19 ns 
INTA ERROR 19 ns 
A·FULL ERROR 19 ns 
EQUAL ERROR 19 ns 

16 g§ Y1S-0 20 ns 
EQUAL 25 ns 

~ ERROR 26 ns 
SLAVE Y1S-0 Z Z ns 
SLAVE ~O Z Z ns 
SLAVE Z Z ns 
SLAVE A·FULL Z Z ns 
SLAVE EQUAL Z Z ns 

Notes: See notes following Table C. 
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SWITCHING CHARACTERISTICS (Cont'd.) 

B. OUTPUT DISABLE TIME 

29331 29331A 

No. From To Description Max. Value Unit 

RST Y15-0 Resel-Io-Address Enable 25 ns 
RSi' Y15-0 Resel-Io-Address Disable 25 ns 

43 INTR Y15-0 INTR-Io-Address Enable 25 ns 
44 INTR Y15-0 INTR-Io-Address Disable 25 ns 

INTEN Y15-0 INTEN-Io-Address Enable 25 ns 
INTEN Y15-0 INTEN-Io-Address Disable 25 ns 
HOLD Y15-C HOLD-Io-Address Enable 25 ns 
HOLD Y15-0 HOLD-Io-Address Disable 25 ns 
SLAVE Y15-0 SLAVE-Io-Address Enable 25 !I!.~lIiI!!!illli ns 
SLAVE Y15-0 SLAVE-Io-Address Disable 25 25 ns 
OED Y15-0 OED-Io-Data Enable 25 ns 
OED 015-0 OED-Io-Data Disable 25 ns 
RSi' 015-0 Resel-Io-Data Enable 25 ns 
RSi 015-0 Resel-Io-Data Disable 25 ns 
SLAVE 015-0 SLAVE-Io-Dala Enable 25 ns 
SLAVE 015-0 SLAVE-Io-Dala Disable 25 ns 
CP 015-0 Clock-Io-Data Enable 30 ns 
CP ~O Clock-Io-Data Disable 30 ns 
HOLD INTA HOLD-to-INTA Enable 25 ns 
HOLD INTA HOLD-Io-INTA Disable 25 ns 
HOLD A-FULL HOLD-Io-A-FULL Enable 25 ns 
HOLD A-FULL HOLD-Io-A-FULL Disable 2Ei ns 
HOLD EQUAL HOLD-Io-EQUAL Enable 25 ns 
HOLD EQUAL HOLD-Io-EQUAL Disable 25 ns 
SLAVE INTA SLA VE-IO-iN'l'A Enable 25 ns 
SLAVE INTA SLAVE-Io-INTA Disable 25 ns 
SLAVE A-FULL SLAVE-Io-A-FULL Enable 25 ns 
SLAVE A-FULL SLAVE-Io-A-FULL Disable 25 ns 
SLAVE EQUAL SLAVE-Io-EQUAL Enable 25 ns 
SLAVE EQUAL SLAVE-Io-EQUAL Disable 25 ns 

Noles: See noles following Table C. 
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SWITCHING CHARACTERISTICS (Cont'd.) i 

C. SETUP AND HOLD TIMES 

29331 29331A 

No. Parameter For With Respect To Max. Value Max. Value Unit 

17 Data Setup 015-0 CP t 8 ns 
18 Data Hold 015-0 CP t 4 ns 
19 Alternate Data Setup A15-0 CP t 8 ns 
20 Alternate Data Hold A15-0 CP t 3 ns 
21 Multiway Setup MX3-XO CP t 8 ns 
22 Multiway Hold MX3-XO CP t 2 ns 
23 Address Setup Y15-0 CP t 5 ns 
24 Address Hold Y15-0 CP t 3 i\lf.'\'Il~~.\~: ns 
25 Instruction Setup 15-0 CP ! 11 11 ns 
26 Instruction Hold 15-0 CP t 1 ns 
27 Forced Continue Setup FC CP ! 11 ns 
28 Forced Continue Hold FC CP t 0 ns 
29 Test Setup T11 -0 CP t 16 ns 
30 Test Hold T11-0 CP t 0 ns 
31 Select Setup S3-0 CP t 16 ns 
32 Select Hold S3-0 CP t 0 ns 
33 Reset Setup RST CP t 15 ns 
34 Reset Hold RST CP t 2 ns 
35 Interrupt Request Setup INTR CP t 8 ns 
36 Interrupt Request Hold INTR CP t 2 ns 
37 Interrupt Enable Setup INTEN CP t 8 ns 
38 Interrupt Enable Hold INTEN CP t 2 ns 
39 Hold Mode Setup HOLD CP t 5 ns 
40 Hold Mode Hold HOLD CP t 3 ns 
41 Carry-In Setup Cin CP t 10 ns 
42 Carry-In Hold Cin CP t 0 ns 

Notes: 1. It is the responsibility of the user to maintain a case temperature of + 85°C or less. AMD recommends 
an air velocity of at least 200 linear feet per minute over the heatsink. 

2. (INTR, INTEN)-to-EQUAL is the sum of (lNTR, INTEN)-to-Y disable time and Y-to-EQUAL delay time. 
This is not tested due to bus turnaround in Master/Slave mode. 

3. The status of 15 -10 and FC must not be changed during the Clock LOW time. 
4. CL = 50 pF; CL = 5 pF for Disable Time only. 
5. Z = Three-state output path; use Table B. 
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SWITCHING TEST CIRCUIT 

TC003420 

A. Three-State Outputs 

Notes: 1. CL = 50 pF includes scope probe, wiring, and stray capacitances without device in test fixture. 
2. 51, 52, 53 are closed during function tests and all AC tests except output enable tests. 
3. 51 and 53 are closed while 52 is open for tpZH test. 

51 and 52 are closed while 53 is open for tPZL test. 
4. CL = 5.0 pF for output disable tests. 
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SWITCHING TEST WAVEFORMS - .• 3V 
DATA 

INPUT '.5 V 

~1'1::'"~ 
oV 

3V 
nMiNG f INPUT ,.5 V 

OV 

WFR02970 
Notes: 1. Diagram shown for HIGH data only. Output 

transition may be opposite sense. 
2. Cross hatched area is don't care condition. 

Setup, Hold, and Release Times 

~MEPH_ If \ 3V 

I'PUTTRANSITIO': I. -~-'-I----- 1 -I-"-H-L :5VV 

- T 1,t=0 
'PLH? !PHL 

OPPOSIT-E-P-HAS-E ---.~ ~ 3 V 

INPUT TRANSITION-~ ./l--- :':v 
WFR02980 

Propagation Delay 

LOW·HIGH·LOW _1 ~ 
~ ~---1.5V 

~~-1~ 
HIGH·LOW·HIGH _ ~ -'-

PULSE ~ ~---1.5V 

OUTPUT 
NORMALLY 

LOW 

OUTPUT 

WFR02790 

Pulse Width 

....... 
3 V 

-----1.5V 

_____ 0 V 

-1.5 V 

S3~'ZH 'HZ I t VOL 

£~VOH 

NORMALLY 1.5 V -1.5 V 

HIGH S2 OPEN __ -0 V 0.5 V 

WFR02663 

Notes: 1. Diagram shown for Input Control Enable-LOW 
and Input Control Disable-HIGH. 

2. 51, 52, and 53 of Load Circuit are closed 
except where shown. 

Enable and Disable Times 
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Notes on Test Methods 
The following pOints give the general philosophy which we 
apply to tests which must be properly, engineered if they are to 
be implemented in an automatic environment. The specifics 'of 
what philosophies applied to which test are shown. 

1. Ensure the part is adequately decoupled at the test head. 
Large changes in supply current when the device switches 
may cause function failures due to Vee changes. 

2. Do not leave inputs floating during any tests, as they may 
oscillate at high frequency. 

3. Do not attempt to perform threshold tests at high speed. 

Similarly, a product may be specified at more than one 
capacitive load. Since the typical automatic tester is not 
capable of switching loads in mid-test, it is impossible to 
make measurements at l!lilll. capacitances even though 
they may both be greater than the stray capaCitance. In 
these cases, a measurement is made at one of the two 
capacitances. The result at the other capacitance' is 
predicted from engineering correlations based on data 
taken with a bench setup and the knowledge that certain 
DC measurements (IOH, IOl' for example) have already 
been taken and are within specification. In some cases, 
special DC tests are performed in order to facilitate this 
correlation. 

Following an input transition, ground current may change by 
as much as 400 mA in 5 - 8 ns. Inductance in the ground 
cable may allow the ground pin at the device to rise by 
hundreds of millivolts momentarily. 

7. Threshold Testing 

4. Use extreme care in defining input levels for AC tests. Many 
inputs may be changed at once, so there will be significant 
noise at the device pins which may not actually reach VIL or 
VIH until the noise has settled. AMD recommends using 
Vil .;;; 0 V and VIH;;;' 3 V for AC tests. 

5. To simplify failure analysis, programs should be designed to 
perform DC, Function, and AC tests as three distinct groups 
of tests. 

The noise associated with automatic testing, the long 
inductive cables, and the high gain of bipolar devices when 
in the vicinity of the actual device threshold frequently give 
rise to oscillations when testing high-speed circuits. These 
oscillations are not indicative of a reject device, but instead, 
of an overtaxed test system. To minimize this problem, 
thresholds are tested at least once for ~ input pin. 
Thereafter, "hard" high and low levels are used for other 
tests. Generaily this means that function and AC testing are 
performed at "hard" input levels rather than at VIL max. 
and VIH min. 

8. AC Testing 
6. CapacitivE> Loading for AC Testing 

Automatic testers and their associated hardware have stray 
capacitance which varies from one type of tester to 
another, but is generally around 50 pF. This makes it 
impossible to make direct measurements of parameters 
which call for a smaller capacitive load than the associated 
stray capacitance. Typical examples of this are the so­
called "float delays" which measure the propagation 
delays into and out of the high-impedance state, and are 
usually specified at a load capacitance of 5.0 pF. In these 
cases, the test is performed at the higher load capacitance 
(typically 50 pF), and engineering correlations based on 
data taken with a bench setup are used to predict the re­
sult at the lower capacitance. 

Occasionally parameters are specified which cannot be 
measured directly on automatic testers because of tester 
limitations. Data input hold times often fall into this catego­
ry. In these cases, the parameter in question is guaranteed 
by correlating these tests with other AC tests which have 
been performed. These correlations are arrived at by the 
cognizant engineer by using data from precise bench 
measurements in conjunction with the knowledge that 
certain DC parameters have already been measured and 
are within specification. 

In some cases, certain AC tests are redundant since they 
can be shown to be predicted by other tests which have 
already been performed. In these cases, the redundant 
tests are not performed. 

SWITCHING WAVEFORMS 

KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS OUTPUTS 

MUST BE WILL BE 
STEADY STEADY 

~ MAY CHANGE WILL BE 
CHANGING FROMHTOL FROMHTOL 

JJIJJJ MAY CHANGE WILL BE 
CHANGING FROML TOH FAOML TOH 

1IIff1 DON'T CARE; CHANGING; 
ANVCHANGE STATE 
PERMITTED UNKNOWN 

]HE: 
CENTER 

DOES NOT LINE IS HIGH 
APPLY IMPEDANCE 

"OFFHSTATE 

KSOOOO10 
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SWITCHING WAVEFORMS (Cont'd.) 

3.0 V 

INPUTS 1.5 V 

OV 

t, 

If I 1.5 V 

3.0 V 

CLOCK 

OV 

INPUT 

CLOCK ~ OU~~UT -
f----OU~~UT 

OELAY 

DELAY 

OUTPUTS 

I4--CYCLEI CYCLE 2--' 

CLOCK \ \ 

~, 
'\\ FL 

HOLD 

F~ 
I+- (Nolo 1) .... INTEN 

INTR 

~ 8 I'" 1+-8 
\-- !I 

@ .... 1,,-1 I+- ~ 4-@ 

Y 
YON '"-4! YaI'F YON 

-1 I+- (NOlO 2) 

INT-YECTBU FFER YECTOFF I YECTON -I VECTOFF 

r-e-1 
---. 

TER A-I * ADDRESS REGIS 
(Nole 3) 

AN INTERRUPT RETU 
ADDRESS REGIS 

(Nole 3) 
TER A-I * 

A 

A 

* B I-

I- A+I I-

Interrupt Timing 

\ 

11+1 

B+l 

1.5V 
~ 

th 

I 

WFR02990 

I \ 

I- B+2 

I- 11+2 

WF025100 

Notes: 1. Interrupt Request comes from an interrupt-controller register. If reflects the CP 1 to INTR time of 
the interrupt controller. 

2. During Cycle 2, there may be contention on the V-bus if the V-bus is turned ON before the INT­
VECT buffer is turned OFF. 

3. Refer to Figures 4 and 5 for definition of A and B. 
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SWITCHING WAVEFORMS (Cont'd,) 

CP 1: \'----
.:~-&-: 

RST~ • }r-------. . . 
~ y! X~----. 
:~ 

INTA' lr---------
WF024770 

Reset Timing 

-f'i'. 
CP 1/ 
~ 

,. @ -.1.1 ..... ..... 
o 

1\ X )K 
2 """ ..... - ~ f )k - - '~ 3 ..... - J< - )K 

""')(... ..... 

A 

M 

v 1 ~ 
I.:::nri: ::;; A ""\!I - _. 

- I-.. 

5k: - ~I\. - ..... - ~ )K 
~ i-' 

FC 

[l 6 """ """ - ~ ~. -
"'\l,Y - ...... 

T,S 

""" INTR 1/ 
...,. - 101 .A'i!I.. 

If" --1\ MEN 

II-
1\ 

~ ...... """ 

~..,. HOLD )( 
.no. @ 

A·FULL 

:=j )( ~ 
WF0247BO 
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INPUT/OUTPUT INTERFACE CONDITIONS 

(All Devices) 

DRIVING OUTPUT DRIVEN INPUT 

,....--... IOH IlL 

J 
~H 

ICR00480 
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Am29332 
32-Bit Arithmetic Logic Unit 

DISTINCTIVE CHARACTERISTICS 

• Single Chip, 32-Bit ALU 
Supports 8o.:s0 ns microcycle time for the 32-bit 
data path. It is a combinatorial ALU with equal cy­
cle time for all instructions. 

• Flow-through Architecture 
A combinatorial ALU with two input data ports and 
one output data port allows implementation of either 
parallel or pipelined architectures. 

• 64-Blt In, 32-Blt Out Funnel Shifter 
This unique functional block allows n-bit shift-up, 
shift-down, 32-bit barrel shift or 32-bit field extract. 

• Supports All Data Types 
It supports one-, two-, three- and four-byte data for 
all operations and variable-length fields for logical 
operations. 

• Multiply and Divide Support 
Built-in hardware to support two-bit-at-a-time modi­
fied Booth's algorithm and one-bit-at-a-time division 
algorithm. 

• Extensive Error Checking 
Parity check and generate provides data transmis­
sion check and master/slave mode provides com­
plete function checking. 

GENERAL DESCRIPTION 

The Am293~2 is a 32-bit wide non-cascadable Arithmetic 
Logic Unit (ALU) with integration of functions that normally 
don't cascade, such as barrel shifters, priority encoders 
and mask generators. Two input data ports and one output 
data port provide flow-through architecture and allow the' 
designer to implement his/her architecture with any degree 
of pipelining and no built-in penalties for branching. Also, 
the simplicity of a three-bus ALU allows easy implementa­
tion of parallel or reconfigurable architectures. The register 
file is off-chip to allow unlimited expansion and regular 
addressability. 

The Am29332 supports one-, two-, three- and four-byte 
data for arithmetic and logiC operations. It also supports 

multiprecision arithmetic and shift operations. For logical 
operations, it can support variable-length fields up to 32 
bits. When fewer than four bytes are selected, unselected 
bits are passed to the destination without modification. The 
device also supports two-bit-at-a-time modified Booth's 
algorithm for high-speed multiplication and one-bit-at-a­
time division. Both signed and unsigned integers for all byte 
aligned data types mentioned above are supported. 

The Am29332 is designed to support 80-90 ns microcycle 
time. The device is packaged in a 1S9-lead pin-grid-array 
package. 

SIMPLIFIED BLOCK DIAGRAM 

I~I~ 
08~ 

Po -P 5 C>---4<--

32 

80007040 
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RELATED AMD PRODUCTS " 

11 Part Ho. D.scrlptlon i 
Am29COl CMOS 4·Bit Microprocessor Slice It 
Am29Cl0A CMOS 12·Bit Sequencer I 
Am29Cl0l CMOS 16·Bit Microprocessor t 
Am29112 8·Bit Cascadable Microprogram Sequencer !: 
Am29114 Real·Time Interrupt Controller 

, 
Am29C116 CMOS 16·Bit Microcontroller 

Am29C323 CMOS 32 x 32 Parallel Multiplier 

Am29325 32·Bit Floating Point Processor 

Am29C325 CMOS 32·81t Floating Point Processor 

Am29331 16·Bit Microprogram Sequencer 

Am29C331 CMOS 16·Bit Microprogram Sequencer 

Am29334 64 x 18 Four·Port, Dual·Access Register File 

Am29C334 CMOS 64 x 18 Four·Port, Dual·Access Register File 

Am29337 16·Bit Bounds Checker 

Am29338 32·Bit Byte Queue 

Am29C516 CMOS 16 x 16 Multiplier 

Am29C517 CMOS 16 x 16 Multiplier with Separate 1/0 

CONNECTION DIAGRAM 
169·Lead PGA 
Bottom View 

. T , "'" CA' 087 DB. "'" DO" "." 08" !lA .. 08" pg, DB" 08" 0B20 002' 
.,.,. 

• "" !lA5 !lA7 .BO .,.. DB" 0 ... .. " DB .. P" .,.,. .,." .,." .... 0." """ P82 

· D84 !lA' OM PAD ... .." ..., DB" DB" 0." vee DB" .,." 08" ow .... D824 

· DB2 !lA' "'" 002' 
.,.,. DB26 

• DB' 0 .. DAD ""'" 0A27 DB27 

· D80 PO " 082. .... D826 

7 " P3 vee \ICC """ .... 
• P2 PO IV< ... , 0830 

• W2 W3 MIERA PAS ... 
,. ~ .. ", Y30 Y2I 

" · GOO GNO V27 Ya 

" • vee GNO V26 

" • CI' V2S V2S V24 

MlJNI( R. 'lIM' GOO \ICC Y22 

" "'" """ N PYI ..., V\l GND vee y,. """ Y21 Y20 

" "'"OW V L vee py, GNOT ON> Y. Y' Y' vee Y" Y" Y13 Y" Y1I y" 

" HOLD Z GNO ,YO YO PERR ..., 
Y' V< GNOT vee Y, vee GND Y" GNIl 

CD010462 

• This pin is not used 

Key: VCCE'; VCC, ECl 
VCCT - VCC, TTL 
GNDE = GND, ECl 
GNDT = GND, TTL 

3-37 

--_ .. _----



PIN DESIGNATIONS 
(Sorted by Pin No.) 

PIN NO. PIN NAME PAD PIN . PIN NAME PAD PIN PIN NAME PAD PIN PIN NAME PAD 
NO. NO. NO. NO. NO. NO. NO. 

A·1 DBS 1 C-9 W3 145 J-15 GND, TIL 105 R·10 Y31 66 

A-2 DAS 164 C-10 10 139 J·16 YS 101 R-11 GND, ECL 64 

A-3 DB4 161 C-11 GND, ECL 143 J-17 Y4 102 R·12 Vee, TIL 71 

A-4 DB2 157 C-12 15 134 K·1 DB1S 27 R·13 Y2S 74 

A·5 DB1 155 C·13 CP 130 K-2 PA1 25 R-14 GND, TIL 79 

A-6 DBo 153 C-14 SLAVE 127 K·3 DA15 24 R·15 Y19 82 

A·7 P1 148 C·15 N 120 K·15 Y7 99 R·16 Y15 88 

A·B P2 149 C-16 L 118 K·16 Ys 100 R·17 Y14 89 

A·9 W2 142 C·17 GND, TIL 117 K·17 GND, TIL 98 T-1 DA23 42 

A·10 12 137 0·1 DBa 7 L·1 PB1 26 T-2 DB23 41 

A·11 13 136 0-2 PBo 6 L·2 DA1S 28 T-3 DA24 46 

A-12 Is 133 0-3 PAo 5. L·3 Vee, ECL 22 T-4 DA25 48 

A·13 la 131 0-15 C 119 L·15 Vee, ECL 103 T·5 DA27 52 

A·14 MLiNK 129 0-16 Vee, TIL 116 L·16 Vee, EeL 103 T-6 DA28 54 

A·15 M/m 125 0·17 PYo 115 L-17 Vee, ECL 103 T·7 DA30 58 

A·16 BOROW 124 E-1 DBg 9 M-1 0818 31 T·B DA31 60 

A·17 HOLD 123 E-2 DAg 10 M·2 DA17 30 T-9 PA3 61 

B-1 DAs 2 E·3 DA8 B M-3 DB17 29 T·10 Y30 67 

B-2 DBs 163 E-15 PY3 112 M·15 Y8 96 T·n Y27 70 

B·3 DA3 160 E·16 PY1 114 M-16 Yn 93 T·12 GND, TIL 72 

B-4 DA2 158 E·17 Yo 109 M-17 Yg 95 T·13 Y23 76 

8-5 DA1 156 F-1 DB10 11 N·1 DB19 33 T-14 Vee, TIL 78 

B·6 P5 152 F-2 DB11 13 N-2 DA19 34 T·15 Y21 80 

B-7 P3 150 F-3 DA10 12 N·3 DA18 32 T·16 Y18 83 

B·B Po 147 F·15 PY2 113 N·15 Y12 92 T-17 Y16 86 

B·9 W1 141 F·16 GND, TIL 110 N-16 Y10 94 U·1 PA2 43 

B·10 Wo 140 F·17 PERR 111 N·17 Vee, TIL 97 U-2 PB2 44 

B·11 11 138 G·1 DAn 14 P·1 DB20 35 U-3 DB24 45 

B·12 14 135 G·2 DA12 16 P-2 DA20 36 U-4 DB26 49 

B-13 17 132 G-3 GND, ECL 21 P-3 DB21 37 U-5 DB27 51 

B-14 RS 128 G-15 GND, ECL 104 P-15 ~ 87 U-& DB29 55 

B-15 MCin 126 G-1& GND, ECL 104 P-16 Y13 90 U-7 DA29 56 

B-16 V 121 G-17 GND, ECL 104 P-17 GND, TIL 91 U-B DB30 57 

B-17 Z 122 H-1 DB12 15 R-1 DB22 39 U-9 PB3 62 

C-1 DB7 3 H-2 DA13 18 R-2 DA21 38 U-10 Y2a 69 

C-2 DA7 4 H-3 DB13 17 R-3 . DA22 40 U-11 Y29 68 

C-3 DA4 162 H-15 Y3 106 R-4 DB25 47 U-12 Y2S 73 

C-4 DB3 159 H-16 Y2 107 R-5 DA26 50 U-13 Y24 75 

C-5 DAo 154 H-17 Y1 108 R-6 DB28 53 U-14 Y22 77 

c-s P4 151 J-1 DA14 20 R-7 Vee, ECL 63 U-15 Y20 81 

Co7 Vee, ECl 144 J-2 DB14 19 R-B DB31 59 U-16 Y17 84 

CoB W4 146 J-3 DB15 23 R-9 MSERR 65 U-17 GND, TIL 85 

, 
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PIN DESIGNATIONS 
(Sorted by Pin Names) 

PIN NAME 
PIN PAD 

PIN NAME 
PIN PAD 

PIN NAME PIN PAD PIN NAME PIN PAD 
NO. NO. NO. NO. NO. NO. NO. NO. 

BOROW A·16 124 DB7 C·1 3 12 A·10 137 Vee. TTL T·14 78 

C D·15 119 DB8 D·1 7 13 A·11 136 Vee. TTL N·17 97 

CP C·13 130 DB9 E·1 9 14 B·12 135 Vee. TTL D·16 116 

DAO C·5 154 DB10 F·1 11 15 C·12 134 Vee. TTL H·12 71 

DA1 B·5 156 DB11 F·2 13 16 A·12 133 Wo B·10 140 

DA2 B·4 158 DB12 H·1 15 17 B-13 132 W1 B-9 141 

DA3 B-3 160 DB13 H-3 17 18 A-13 131 W2 A-9 142 

DA4 C-3 162 DB14 J-2 19 l C-16 118 W3 C-9 145. 

DAS A-2 164 DB1S J-3 23 MC;n B-15 126 W4 C-8 146 

DA6 B-1 2 DB16 K-1 27 MllNK A-14 129 Vo E-17 109 

DA7 C-2 4 DB17 M-3 29 M/m A-15 125 V1 H-17 108 

DAa E-3 8 DB18 M-1 31 MSERR R-9 65 V2 H-16 107 

DA9 E-2 10 DB19 N-1 33 N C-15 120 V3 H-15 106 

DA10 F-3 12 DB20 P-1 35 OE-V P-15 87 V4 J-17 102 

DA11 G-1 14 DB21 P-3 37 Po B-8 147 Vs J-16 101 

DA12 G-2 16 DB22 R-1 39 P1 A-7 148 V6 K-16 100 

DAn H-2 18 DB23 T-2 41 P2 A-8 149 V7 K-15 99 

DA14 J-1 20 DB24 U-3 45 P3 B-7 150 V8 M-15 96 

DA1S K-3 24 DB25 R-4 47 P4 C-6 151 Vg M-17 95 

DA16 L-2 28 DB26 U-4 49 Ps B-6 152 V10 N-16 94 

DA17 M-2 30 DB27 U-5 51 PAo D-3 5 V11 M-16 93 

DA18 N-3 32 DB28 R-6 53 PA1 K-2 25 V12 N-15 92 

DA19 N-2 34 DB29 U-6 55 PA2 U-1 43 V13 P-16 90 

DA20 P-2 36 DB30 U-8 57 PA3 T-9 61 V14 R-17 89 

DA21 R-2 38 DB31 R-8 59 PBo D-2 6 V1S R-16 88 

DA22 R-3 40 GND. ECl G-3 21 PB1 L-1 26 V16 T-17 86 

DA23 T-1 42 GND. ECl R-11 64 PB2 U-2 44 V17 U-16 84 

DA24 T-3 46 GND. ECl G-17 104 PB3 U-9 62 V18 T-16 83 

DA25 T-4 48 GND. ECl G-15 104 PERR F-17 111 V19 R-15 82 

DA26 R-5 50 GND. ECl G-16 104 PVo D-17 115 V20 U-15 81 

DA27 T-5 52 GND. ECl C-11 143 PV1 E-16 114 V21 T-15 80 

DA28 T-6 54 GND. TTL T-12 72 PV2 F-15 113 V22 U-14 77 

DA29 U-7 56 GND. TTL R-14 79 PV3 E-15 112 V23 T-13 76 

DA30 T-7 58 GND. TTL U-17 85 RS B-14 128 V24 U-13 75 

DA31 T-8 60 GND. TTL P-17 91 SLAVE C-14 127 V2S R-13 74 

DBo A-6 153 GND. TTL K-17 98 V B-16 121 V26 U-12 73 

DB, A-5 155 GND. TTL J-15 105 Vee. ECl R-7 63 V27 T-11 70 

DB2 A-4 157 GND. TTL F-16 110 Vee. ECl L-16 103 V28 U-10 69 

DB3 C-4 159 GND. TTL C-17 117 Vee. ECl L-15 103 V29 U-11 68 

DB4 A-3 161 HOLD A-17 123 Vee. ECl L-17 103 V30 T-10 67 

DBs B-2 163 10 C-10 139 Vee. ECl C-7 144 V31 R-10 66 

DB6 A-1 1 11 B-11 138 Vee. ECl L-3 22 Z B-17 122 
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__ -+\ BOROW 

---+\ MCi" 

---+I MLINK 

---+I Mfffi 

---+I CP 

---+\ HOLD 

---+\ RS 

LOGIC SYMBOL 

C,Z,N,V,L 

MSERR 

METALLIZATION AND PAD LAYOUT 

Die size: 367 x 387 mils 
Gate Count: 5200 
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ORDERING INFORMATION 

Standard Products 

AMD standard products are available in several packages and operating' ranges. The order number (Valid 
Combination) is formed by a combination of: a. Device Number 

b. Speed Option (if applicable) 
c. Package Type 
d. Temperature Range 
e. Optional Processing 

i 
1... -----e. OPTIONAL PROCESSING 

Blank = Standard processing 
B - Burn-in 

'----------d. TEMPERATURE RANGE 
C - Commercial (0 to + 8S"C) 

'---------------c. PACKAGE TYPE 
G - t 69-lead Pin Grid Array with Heatsink 

(CG t69) 

b. SPEED OPTION 
Not Applicable 

~ a. DEVICE NUMBER/DESCRIPTION 
Am293321 Am29332A 
32-B~ Arithmetic logic Unit 

Valid Combinations 

AM29332 I 
AM29332A I GC, GCB 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMD's standard military grade 
products. 
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PIN DESCRIPTION 

BOROW Borrow (Input) 
When HIGH, the Carry In and Carry Out are borrows for 
subtract operations. 

C, Z, N, V, L Status (Input/Output) 
When the Register Status pin is LOW, these pins give the 
Carry, Zero, Negative, Overflow and Link outputs of the ALU 
where applicable to the instruction being executed. When 
not applicable to the instruction being executed, or when the 
Register Status pin is HIGH, these pins give the outputs of 
the Carry, Zero, Negative, Overflow and Link bits of the 
internal Status Register. In Slave mode, C, Z, N, V and L· 
become inputs. 

CP Clock Input (Input) 
Clocks internal registers (status, 0) at the LOW to HIGH 
transition, provided HOLD input is LOW. 

DAo - DA31 Datil Input for DA-bus (Input) 
Data input lines for operand A. 

DBo - DB31 Data Input for DB-bus (Input) 
Data input lines for operand B. 

HOLD Hold (Input, Active HIGH) 
When HIGH, it inhibits the update of the status and 0 
registers. 

10 -16 Instruction Inputs (Input) 
Used to select the operation to be performed. 

17 -18 Byte Width Inputs (Input) 
Byte width inputs for byte boundary aligned operand 
instructions. Selects the sources for width and position 
inputs for variable field bit operands. If 17 is LOW it selects 
the width input from pins W4 - WOo If 17 is HIGH the width 
input is selected from the internal width register. Similarly if 
Ie is LOW it selects the position inputs from pins Ps - Po and 
if HIGH it selects input from the internal position register. 

MCln Macro Status Carry (Input) 
External Carry input. 

MLINK Macro Status Link (Input) 
External link input. 

Mim Macro/Micro Select (Input) 
When HIGH, selects macro carry and macro link pins as 
input instead of micro carry and micro link from the micro­
status register. 

MSERR Master-Slave Error (Output) 
When HIGH, this signal indicates that the master's and 
slave's data were not identical. 

OE-V Output Enable (Input, Active LOW) 
When OE-Y is HIGH the V-bus is disabled (three-stated). 

Po - Ps Position Inputs (Input) 
Position input to select the position of the least significant bit 
of a field. Also indicates the amount by which data is to be 
shifted up (Ps = LOW) or down (Ps = HIGH) or rotated. 

PAo - PA3 Parity Input for DA-bus (Input) 
Parity input for operand A on DA-bus (one per byte). 
Even parity is used for the Am29332. 

PBo - PB3 Parity Input for DB-bus (Input) 
Parity input for operand B on DB-bus (one per byte). 

PERR Parity Error (Input/Output) 
When HIGH, indicates that a parity error was detected on 
the DA or DB inputs. 

PYo - PY3 Parity for Y-bus (Input/Output) 
Parity output for data on Y -bus (one per byte). Even parity is 
used for the Am29332. In slave mode, PYo - PY 3 become 
inputs. 

RS Register Status Mode Pin (Input) 
Selects between ALU status (Register Status = LOW) or 
register status (Register Status = HIGH) on the C, Z, N, V 
and L outputs. 

SLAVE Slave (Input) 
When HIGH, this pin puts the ALU in the slave mode. All 
output pins become input pins and signals on them are 
compared with the ALU's internally generated results. When 
OE-Y is HIGH, the YO-Y3t and PYO-PY3 inputs are 
ignored. When the SLAVE pin is LOW, the ALU is put in 
master mode where outputs are generated as normal. 

Wo - W 4 Width Inputs (Input) 
Width input to select the width of a contiguous bit field. 

Yo - Y31 Data Outlln Lines (Input/Output) 
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When OE-Y is LOW and the ALU is in the Master mode, the 
ALU result is enabled on the V-bus. When OE-Y is HIGH, 
the V-bus is three-stated. In Slave mode the V-bus acts as 
external data input. 



BOROW 

oe:v 
SLAVE 

10.18 

HOLD 

MLINK 

MCln 

MIm 

Wo·W4 
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INSTRUCTION 
DECODE 

MUX 

32 

CP D-t-t-t--t> 

RS 

C.Z.N. V.L MSERR 

Figure 1. Detailed Block Diagram 

3·43 

PERR 

32 

8D007031 



Am29331 
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SEQUENCER 

MICROPROGRAM 
MEMORY 

PIPELINE 
REGISTER 
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32 

32 
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PARALLEL 
MULTIPUER 

AF003480 

Figure 2_ Am29332 Family High-Performance System Block Diagram 

PRODUCT OVERVIEW 
The Am29332 is a 32-bit wide, high-performance, non-expand­
able Arithmetic Logic Unit (ALU). It·has two 32-bit wide input 
ports (A and B) and one 32-bit wide output port (V). These 
three ports provide flexibility and accessibility for high-perfor­
mance processor designs. Dedicated input and output ports 
provide a flow-through architecture and avoid the penalty 
associated with switching the bus half-way through the cycle 
for input and output of data. The chip is designed for use with 
a dual-access RAM (Am29334) as a register file. In addition, 
the three-bus architecture facilitates the connection of other 
arithmetic units in parallel with the Am29332 for high-perfor­
mance systems. 

The Am29332 supports one-, two-, three-, and four-byte 
arithmetic operations. It also supports multiprecision arithme­
tic and multiple bit shifts. For logical operations, it can handle 
variable-length fields of up to 32 bits. The chip incorporates 
dedicated hardware to allow efficient implementation of a two 
bit-at-a-time (modified Booth) multiply algorithm, supporting 
signed and unsigned arithmetic data types. Similarly, hardware 
is provided to support a bit-at-a-time divide algorithm, also 
supporting signed and unsigned arithmetic data types. An 
internal 32-bit register (0) is used by the multiply and divide 
hardware for double precision operands. For business applica­
tions, the Am29332 supports variable-length BCD arithmetic. 

Field logical instructions operate on bit-fields taken from the A 
and B data inputs; they may be of variable width and starting 
position. A is normally the source input and B the destination 
input. In general, destination bits not falling within a specified 
field are passed by the ALU unchanged. Field width and 
position are specified either by direct inputs to the chip, or by 
entries in the status register. There are two kinds of field 
logical instructions - aligned and non-aligned. the fir'st type of 
instruction assumes that source and destination fields are 
aligned and the operation is performed only for bits within the 
specified fields. In the second type of instruction, source and 
destination fields are normally non-aligned. However, it is 
always assumed that one field (either source or destination) is 
least-significant-bit (LSB) aligned. 

If the destination field is LSB aligned then the source field is 
downshifted in order to make it LSB aligned as well. Down-

shifting is accomplished by making the 6-bit position input 
equal to the two's complement of the number of places the 
field is to be downshifted. If the source field is LSB aligned 
then it is upshifted in order to align it with the destination. 
Upshifting is accomplished by making the position inputs equal 
to the number of places the field is to be upshifted. Any other 
type of field operation is not allowed. Whenever the field 
crosses the word boundary, the portion not falling within the 
word boundary is ignored. This effect is useful when perform­
ing operations on fields that overlap two different words. 
Instructions' to perform straightforward multiple-bit shifts (ei­
ther up or down) are also provided. Additionally, it is possible 
to extract a bit-field from a word in one instruction, even if that 
field overlaps a word boundary. 

The power and the flexibility of the processor comes partly 
from its ability to generate a mask to control the width of an 
operation for each instruction without any overhead. For .all 
byte aligned instructions (three quarters of the instruction set), 
the mask is either 1, 2, 3 or 4 bytes wide and is generated from 
the byte width input (Is - 17). For all field instructions the mask 
is of variable width and is generated from the position inputs 
(PO-P5) and the width inputs (WO-W4). Table 1 describes 
the position displacement from the position inputs and Table 2 
the bit field from the width inputs. 

P5 

0 
0 
0 

0 
1 
1 

1 
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TABLE 1_ POSITION INPUTS AND BIT 
DISPLACEMENT 

Inputs Bit Displacement 
P4 P3 P2 P1 Po P 

0 0 0 0 0 0 
0 0 0 0 1 1 
0 0 0 1 0 2 

1 1 1 1 1 31 
0 0 0 0 0 -32 
0 0 0 0 1 -31 

1 1 1 1 1 -1 



TABLE 2. WIDTH INPUTS AND BIT FIELD 

Inputs 
Bit Field 

W4 W3 W2 Wt Wo w 

0 0 0 0 0 32 
0 0 0 0 1 1 
0 0 0 1 0 2 

1 1 1 1 1 31 

Whenever the width of the operand is less than 32-bits, all 
unselected bits from the inputs of the ALU are passed to the 
output without any modification. Depending upon the instruc­
tion type, unselected bits are taken from different sources. For 
example in all single operand instructions, bits from the source 
operand (from either A or B input) are passed in unselected bit 
positions. For two operand instructions, bits from the B input 
are passed in unselected bit positions. There are some 
exceptions which are explained in the instruction set section. 

The processor has a 32-bit status register to indicate the 
status of different operations performed. The status register is 
loaded at the rising edge of the clock with new status unless 
the HOLD signal is HIGH. The bit position for each status bit is 
given in the functional description. The least significant byte of 
the status register holds the six position bits (PRo - PR5). The 
two most significant bits of this byte may be read or loaded but 
are otherwise unused by the ALU. The second byte (bits 8 to 
15) consists of the five width bits (WRo - WR4) and three read­
only bits that are a combinational function of other status bits, 
and which indicate useful branch conditions. The third byte 
consists of ALU status bits plus bits for high-speed multiply 
and divide. The most significant byte holds intermediate nibble 
carries for BCD operations. An extract-status instruction is 
provided which allows a Boolean value to be formed from any 
selected bit. This is particularly useful in machines employing a 
stack architecture. Instructions to save and restore the status 
register are provided. As the entire status of each instruction is 
stored in the status register, interrupts at any microinstruction 
boundary are feasible. 

The processor has a 32-bit wide priority encoder to support 
floating-point and graphics operations. The priority encoder 
supports all byte aligned data types - the result is dependent 
upon the byte width specified. The result of a priority encode is 
also loaded into the position bits of the status register. The 
result of the prioritize operation can then be used in the 
following clock cycle, e.g., to normalize a floating-point num­
ber or to help detect the edge of a polygon in graphics 
applications. 

To support system diagnostics, the Am29332 has a special 
"Master-Slave" mode. To use this mode, two chips are 
connected in parallel, and hence receive the same instructions 
and data. The master chip is used for the normal data path. 
However, in the slave chip, all outputs becomes inputs. The 
slave compares the outputs of the master with its own 
internally generated result. If the two do not match, the slave 
will activate an error signal. 

As a further diagnostic aid, byte-wise parity checking is 
performed at both the A and B data inputs. The "parity" signal 
is activated if an error is detected. Parity bits (one per byte) are 
generated for the 32-bit output bus. 

FUNCTIONAL DESCRIPTION 

A detailed descriptidn of each functional block is given in the 
following paragraphs. 

64-Bit Funnel Shifter 

The 64-bit tunnel shifter is a combinatorial network. The 64-bit 
input is formed from a combination of the A and B inputs. This 
may be left-shifted by up to 31 bits before being used by the 
ALU. The output of the shifter is the most significant 32 bits of 
the result. The 64·bit shifter can be used on either the A or B 
operands to perform barrel shifts (either up or down) or 
rotates. The operation is controlled by positioning operands 
properly at the input of the 64-bit up-shifter. 

The number "n" by which the operand is shifted comes from 
two sources: the microprogram memory via the Po - P5 pins or 
the internal register (byte 0 of the status register), PRo - PR5, 
as selected by an instruction bit. 

In general, the 6-bit position input, Po - P5, takes a 6-bit two's 
complement number representing upshifts from 0 to 31 places 
(positive numbers) or downshifts from 1 to 32 places (negative 
numbers). 

Mask Generator 

The mask generator logiC provides the ability to generate the 
appropriate mask for an operand of given width and position. 
The generation of the mask depends upon two types of 
instructions. The first type has byte boundary aligned oper­
ands (widths of either 1, 2, 3 or 4 bytes) with the least 
significant bit aligned to bit o. The width of an operand is 
specified by the byte width inputs (18 and 17) as shown in Table 
3. The second type of instruction has operands of variable 
width (1 to 32 bits) and pOSition. The operand is specified by 
the width inputs (Wo - W 4) and the position inputs (Po - P5) 
indicating the least significant bit position of the operand. 
Thus, in this type of instruction the operand mayor may not be 
least significant bit aligned. Depending upon the type of 
instruction, the mask generator first generates a fence of all 
zeros starting from the least significant bit with the width 
specified either by the byte width or the width input fields. This 
fence can be upshifted by up to 31 bits by the 32-bit mask 
shifter. Whenever the mask is moved up over the 32-bit 
boundary, it does not wrap around. Instead, ONE's are 
inserted from the least significant end. This configuration 
provides the ability to operate on a contiguous field located 
anywhere in a word, or across a word boundary. 

The mask generator can be used as a pattern generator by 
allowing the mask to pass through ALU (by using the PASS· 
MASK instruction). For example, a single-bit wide mask can be 
generated and by shifting it up by different amounts can give 
walking ONE or walking ZERO patterns for memory tests. 

TABLE 3. 

18 Width In Bytes 

o o 4 

o 
o 2 

3 

Arithmetic and Logical Unit 

The ALU is a three input unit which uses the mask as a second 
or third operand in every instruction. The mask is used to 
merge two operands. For all selected bits (wherever the mask 
is 0), the desired operation specified by the instruction input is 
performed, and for all unselected bits either corresponding 
destination bits or zeros are passed through. The status of 
each operation (carry, negative, zero, overflow, link) applies to 
the result only over the specified width. For all byte aligned 
arithmetic and logical operations (first three quarters of the 
instruction set), the status is extracted from the appropriate 
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byte boundary. For all field operations (last quarter of the 
instruction set), the operand width is assumed to be 32 bits for 
status generation. The ZERO flag always indicates the status 
of all bits selected by the mask. 

The actual width of the ALU is 34 bits. There are two extra bits 
used for the high speed signed and unsigned multiplication 
instructions. These two bits are automatically concatenated to 
the most-significant end of the ALU depending upon the width 
specified for the operation. Since the modified Booth algorithm 
requires a two-bit down-shift each cycle, these ALU bits 
generate the two most -significant bits of the partial product. 

The ALU is capable of shifting data down by two bits for the 
multiplication algorithm, up by one bit for the divide algorithm 
and single-bit-up-shifts. 

The processor is capable of performing BCD arithmetic on 
packed BCD numbers. The ALU has separate carry logic for 
BCD operations. This logic generates nibble carries (BCD digit 
carry) from propagate and generate signals formed from the A 
and B operands. In order to simplify the hardware while 
maintaining throughput, the BCD add and subtract operations 
are performed in two cycles. In the first cycle, ordinary binary 
addition or subtraction is performed and BCD nibble carries 
are generated. These are blocked from affecting the result at 
this stage, but are saved in the status register to be used later 
for BCD correction (NCo - NC7). In the second cycle all BCD 
numbers are adjusted by examining the previously generated 
nibble carries. Since all the necessary information is stored in 
the status register, the processor can be interrupted after the 
first BCD cycle. 

Priority Encoder 

The priority encoder is provided to support floating-point 
arithmetic and some graphics primitives. The priority encoder 
takes up to 32 bits as input and generates a 5-bit wide binary 
code to indicate location of the most significant one in the 
operand. Input to the priority encoder comes from the input 
multiplexer, which masks all bits that the user does not want to 
participate in the prioritization. The priority encoder supports B, 
16, 24 and 32-bit operations depending upon the byte. width 
specified. For each data type the priority encoder generates 
the appropriate binary weighted code. For example, when a 
byte width of two is specified (17 -Is = 10), the output of the 
encoder is zero when bit 15 is HIGH. However,if byte width of 
four is specified (Is - 17 = 00), the output of encoder is 16 
(decimal) if bit 15 is HIGH and bits 31 -16 are LOW. Table 4 
shows the output for each data type. If none of the inputs are 
HIGH or the most significant bit of the data type specified is 
HIGH, then the output is zero. The difference between these 
two cases is indicated by the Z-flag of the status register which 
is HIGH only if all inputs are zero. 

Q-Register 

The a-register holds dividend and quotient bits for division, 
and multiplier and product bits for multiplication. During 
division, the contents of the a-register are .shifted left, a bit at 
a time, with quotient bits inserted into bit O. During multiplica­
tion, the contents of the a-register are shifted right, two bits at 

a time, with product bits inserted into the most-significant two 
bits (according to the selected byte width). The a-register may 
be loaded from the Aor B inputs and read onto the V bus. 

Master-Slave Comparator 

All ALU outputs (except MSERR) employ three-state buffers. 
The master-slave comparator compares the input and output 
of each buffer. Any difference causes the MSERR signal to be 

. made true. In Slave mode, all output buffers are disabled. 
Outputs from a second ALU may then be connected to the 
equivalent pins of the first. The comparator in the slave will 
then detect any difference in the results generated by the two. 
When the V bus is three-stated by making Output-Enable 
false, the V bus master-slave comparators are disabled. 

Parity Logic 

For each byte of the DA and DB inputs there is an associated 
parity bit (B in all). If a parity error is detected on any byte, the 
Parity-Error signal is made true. Four parity signals (one per 
byte) are also generated for the V bus outputs. EVEN parity is 
employed for the Am29332. 

Status Register 

All necessary information about operations performed in the 
ALU is stored in the 32-bit wide status register after every 
microcycle. Since the register can be saved, an interrupt can 
occur after any cycle. The status register can be loaded from 
either the A or B input of the chip and can be read out on the V 
bus for saving in an external register file. For loading, the byte 
width indicates how many bytes are to be updated. The status 
register is only updated if the HOLD input is inactive. 

Each byte of the status register holds different types of 
information (see Figure 3). The least significant byte (bits 0 to 
7) holds eight pOSition bits (PRo - PR7) for the data shifter. 
The two most significant bits are not used. The next most 
significant byte (bits B to 15) holds the 5-bit width field 
(WRo - WR4) for the mask generator. The three most-signifi­
cant bits of that byte (bits 13 to 15) are read-only bits that 
represent three different conditions extracted from the other 
bits of the status register. They are C + Z, N Ell V, and (N Ell 

V) + Z for bits 13,14 and 15 respectively. These bits can be 
read on the Va pin by the extract-status instruction. The next 
byte contains all the necessary information generated by an 
ALU operation. The least-significant four bits (bits 16 to 19) 
hold carry, negative, overflow and zero flags. Bit 20 holds link 
information for single bit shifts and bits 21 and 22 are used by 
the multiply and divide instructions. The M flag holds the 
multiplier bit for the modified Booth algorithm or it holds the 
sign comparison result for the divide algorithm. The S flag 
holds the sign of the partial remainder for unsigned division. 
Both the flags (M and S) are provided as a part of the status 
register so that multiply and divide instructions can be inter­
rupted at microinstruction boundaries. The most significant 
byte of the status register holds nibble carries for BCD 
arithmetic. Since BCD arithmetic is performed in two cycles, 
the nibble carries are saved in the first cycle and used in the 
second cycle. Since all the information is stored, BCD instruc­
tions are also interruptible at the microinstruction boundary. 
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I I 
TABLE 4. StatuSO-7: Position Register 

Highest Priority Encoder 
Active Bit Output 

PR7 PRs PRs PR4 PR3 I PR2 PR, PRo 

7 S 5 4 3 0 
17 - Is = 00 (32·bit) 

None 0 

StatusS-12: 
Status13: 
Status14: 
Status15: 

Width Register 

c+z 1 
NEBV 
(NEBV)+Z 

Read Only 

31 0 
30 1 
29 2 
28 3 

1 30 
0 31 

17- IS=01 (8·bit) 
None 0 
7 0 
6 1 
5 2 

Status16: Carry 
Status17: Negative 
Status1S: Overflow 
Status19: Zero 
Status20: Link 
Status21: Multiply (and divide) Bit 
Status22: Sign Flag 

1 6 
Status23: 0 

0 7 

17-IS = 10 (16·bit) 
None 0 

0 S M L 
I 

z 
I 

v N 
I 

C 

23 22 21 20 19 1S 17 16 

15 0 
14 1 StatuS24-31 : Nibble Carries 

13 2 
12 3 NC7 NCs NCs NC41 NC3 I NC2 INC, NCo 

31 30 29 28 27 26 25 24 

1 14 
0 15 

Note: Overflow is defined as follows: 
V = (carry in to MSB) Ell (carry out of MSB) 

17-IS = 11 (24·bit) Figure 3. ALU Status Register Bit Assignment 
None 0 
23 0 
22 1 
21 2 
20 3 

1 22 
0 23 
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Am29332 INSTRUCTION SET 
Data Types 

The Am29332 supports the following data types: 

1. Integer 
2. Binary-coded decimal 
3. Variable-length bit field 

The first two data types fall into the category of byte boundary 
aligned operands (Figure 4). The size of the operand could be 
1 byte, 2 bytes, 3 bytes or 4 bytes. All operands are least 
significant bit (bit 0) aligned. The byte width is determined by 
bits 18 and 17 of the instruction as shown in Table 5. 

TABLE 5. 

Width In 
18 17 Bytes 

0 0 4 

0 1 1 

1 0 2 

1 1 3 

The third data type has operands of variable width (1 to 32 
bits) as shown in Figure 4. The operand is specified by width 
inputs (Wo - W4) and position inputs (PO - P5). The position 
inputs indicate the least significant bit position of the operand. 
Depending on bits 18 and 17 of the instruction, the width and 
position inputs can be selected from either the Status Register 
or the Width and Position Pins as shown in Table 6. A 
summary of the data types available is illustrated in Table 7. 

31 23 15 

1 BYTE 

2 BYTES 

- I 
3 BYTES 

4 BYTES 

TB000096 

Byte Boundary Aligned Operands 

31 p. w-1 p ,.., 

.·1 

TB000630 

Variable-Length Bit Field 

p - Bit displacement of the least significant field with re­
spect to bit O. 

w = Width of bit field. 

Figure 4. Data Types 

TABLE 6. 

Position Width 

18 17 Pins Reg Pins Reg 

0 0 X X 

0 1 X X 

1 0 X X 

1 1 X X 

TABLE 7. 

Data Type Size Range . 

Integer Signed UnSigned 
1 byte 8 bits -128 to +127 o to 255 
2 bytes 16 bits _215 to o to 

+215 _1 216 _1 
3 bytes 24 bits _223 to 223_1 o to 

~4_1 

4 bytes 32 bits _231 to 231 -1 o to 
232 _1 

BCD 1 to 4 bytes Numeric, 2 digits per byte. 
(8 digits) Most-significant digit may be 

used for sign. 
Variable 1 to 32 bits Dependent on position and 

width inputs. 

Instruction Format 

The Am29332 has two types of Instruction Formats: 

1. Byte Boundary Aligned Instructions (FORMAT 1): 

I. 

BYTE WIDTH ·OPCOOE 

TB000098 

2. Varlable-Lenllth Field Bit Instructions (FORMAT 2): 

P/PR I W/WR I OPCOOE 

10 6 5 o 

WIDTH POSITION 

TB000099 

For instructions that allow a field to be shifted up or down, 
Po - P5 is a two's-complement number in the range -32 to 
+ 31 representing the direction and magnitude of the shift. For 
instructions that assume a fixed field pOSition, Po - P 4 repre­
sent the pOSition of the least-significant bit of the field and P5 
is ignored. 
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Instruction Classification 

ALU instructions can be classified as follows: 

A. Byte Boundary Aligned Operand Instructions: 

1. Arithmetic 
- Binary, BCD 
- Multiply steps 
- Division steps (single and multiple precision) 

2. Prioritize 

3. Logical 

4. Single-bit shifts 

5. Data movement 

B. Variable-Length Bit Field Operand Instructions: 

1. N-bit shifts and rotates 

2. Bit manipulations 

3. Field logical operations (aligned, non-aligned, extract) 

4. Mask generation 

Three-fourths of the ALU instructions apply to operands that 
are byte boundary aligned. For these instructions, two orthog­
onal issues are the width of the operand (in bytes) and the 
contents of the high order unselected bytes on the V bus. As 
mentioned earlier, the width of the operand is specified by Is 
and 17. With the exception of a few instructions, the unselected 
bytes are assigned values as follows: for single operand 
instructions, unselected bytes are passed unchanged from the 
source (A or B). For two operand instructions, unselected 
bytes are passed unchanged from the destination (B input). 

In the last quarter of the instruction set, the width of the 
operand is from 1 to 32 bits (based on the width input) for field 
operations, 32 bits for N-bit shift operations and l-bi! for bit­
oriented operations. In tlie case of field-aligned and single-bit 
operands, the position bits (Po - P 4) determine the least 
significant bit of the operand. In the case of N-bit shifts and 
field non-aligned operands, the position bits Po - P5 is a 6-bit 
signed integer determining the magnitude and direction of the 
shift. 

Flags 

Byte-Aligned Instructions 

The zero flag always looks only at the selected bytes: 

Z - (Y and bytemask (byte width) = 0) 

Similarly, N - sign bit (V, byte width), where the function 
"sign-bit" returns bit 7, 15, 23, or 31 of the first argument for 
byte widths 01, 10, 11, or 00 respectively. 

Also, C - carry (byte width) returns the carry from the 
appropriate byte boundary, and: 

V - overflow (byte width) = (carry into MSB) Ell (carry 
out of MSB) 

returns the overflow from the appropriate byte boundary. 

The link (L) flag is generally loaded with the bit moved out of 
the highest selected byte in the case of upshifts, or the bit 
moved out of the least significant byte for downshifts. Figure 5 
shows the shit! operation using link bit. Other status flags have 
specialized uses, explained in the following sections. 

o 
1 

Shift Qown: 

Shift Up: 

_1,2,3, or4 bytes_ 

A (or B) 

sign b~ 

1,2,3, or4 bytes 

A (or B) 

o 

DF006190 

Figure 5. Upshift/Downshift Using Link Bit 

Variable-Length Field Instruction: 

Generally, only Nand Z are affected. N takes the most­
significant bit of the 32-bit result (i.e., N - V31). Z detects 
zeros in the selected field of the result (i.e., Z - (Y and 
bitmask (position, width) = 0)). 

Output Select 

The Register Status pin, RS, may be used to switch the C, Z, 
N, V, and L output pins between the direct output of the.ALU 
and the outputs of the corresponding bits in the status register. 
If the direct status output is selected, then for instructions that 
do not affect a particular flag (e.g., carry for logical arithmetic) 
that output will reflect the state of its corresponding bit in the 
status register. Similarly, when the HOLD signal is made 
HIGH, the C, Z, N, V and L pins will be made equal to the 
contents of the status register, regardless of the RS input. 

3-49 



INSTRUCTION SeT SUMMARY 

Operand Size: Variable Byte Width: 1, 2; 3, 4 Bytes 

Type Operation Data Type 

• Increment by one, two, four 
• Decrement by one, two, four 
• Add, addc (carry = macro/micro) Binary Integer 
• Sub, subr and BCD 

Arithmetic • Subc, subrc (carry/borrow) 
• BCD sum and difference correct steps 

• Negate (two's complement) 
{ (Signed and unsigned) • Multiply steps (modified Booth) Binary Integer 

• Divide steps (non-restoring) 

Prioritize • Prioritize Binary 

Logical • Not, OR, AND, XOR, XNOR, zero, sign Binary 

Single-Bit • Upshift with 0, 1, link fill { (Single and double precision) Binary 
Shifts • Downshift with 0, 1, link, sign fill 

• Zero extend 

Data • Sign extend 

Movement • Pass-status, Q-Reg Binary 
• Load-status, Q-Reg 
• Merge 

Operand Size: 32 Bits 

Type Operation Data Type 

N-Bit Shifts • Upshift by 0 to 31 bits with 0 fill 

N-Bit Rotates • Downshift by 1 to 32 bits with 0, sign fill Binary 
• Rotate by 0 to 31 bits 

Operand Size: Single Bit 

Type Operation Data Type 

Bit • Extract 

Manipulation • Set Binary 
• Reset 

Operand Size: Variable Length Bltfleld: 1 to 32 Bits 

Type Operation Data Type 

Field Logical 
(aligned and • Not, OR, XOR, AND, extract, insert Binary 
non-aligned) 

Mask • Pass-mask Binary 
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INSTRUCTION SET GLOSSARY 
(Sorted by Opcode in Hex Notation) 

Opcode Name Opcode Name Opcode Name Opcode Name 

00 ZERO-EXTA 20 DN1-0F-A 40 AND 60 NB-SN-SHA 
01 ZERO-EXTB 21 DN1-0F-B 41 XNOR 61 NB-SN-SHB 
02 SIGN-EXTA 22 DN1-0F-AQ 42 ADD 62 NB-OF-SHA 
03 SIGN-EXTB 23 DN1-0F-BQ 43 ADDC 63 NB-OF-SHB 
04 PASS-STAT 24 DN1-1F-A 44 SUB 64 NBROT-A 
05 PASS-Q 25 DN1-1F-B 45 SUBC 65 NBROT-B 
06 LOADQ-A 26 DN1-1F-AQ 46 SUBR 66 EXTBIT-A 
07 LOADQ-B 27 DN1-1F-BQ 47 SUBRC 67 EXTBIT-B 
08 NOT-A 28 DN1-LF-A 48 SUM-CORR-A 68 SETBIT-A 

i, 
09 NOT-B 29 DN1-LF-B 49 SUM-CORR-B 69 SETBIT-B 
OA NEG-A 2A DN1-LF-AQ 4A DIFF-CORR-A 6A RSTBIT-A 
08 NEG-B 28 DN1-LF-BQ 48 DIFF-CORR-B 68 RSTBIT-B 
OC PRIOR-A 2C DN1-AR-A 4C - 6C SETBIT-STAT 
00 PRIOR-B 20 DN1-AR-B 40 - 60 RSTBIT-STAT 
OE MERGEA-B 2E DN1-AR-AQ 4E SDIVFIRST 6E NOTF-AL-B 
OF MERGEB-A 2F DN1-AR-BQ 4F UDIVFIRST 6F PASSF-AL-B 

10 DECR-A 30 UP1-0F-A 50 SDIVSTEP 70 NOTF-A 
11 DECR-B 31 UP1-0F-B 51 SDIVLASTl 71 NOTF-AL-A 
12 INCR-A 32 UP1-0F-AQ 52 MPDIVSTEPl 72 PASSF-A 
13 INCR-B 33 UP1-0F-BQ 53 MPSDIVSTEP3 73 PASSF-AL-A 
14 DECR2-A 34 UP1-1F-A 54 UDIVSTEP 74 ORF-A 
15 DECR2-B 35 UP1-1F-B 55 UDIVLAST 75 ORF-AL-A 
16 INCR2-A 36 UP1-1F-AQ 56 MPDIVSTEP2 76 XORF-A 
17 INCR2-B 37 UP1-1F-BQ 57 MPUDIVSTP3 77 XORF-AL-A 
18 DECR4-A 38 UP1-LF-A 58 REMCORR 78 ANDF-A 
19 DECR4-B 39 UP1-LF-B 59 QUOCORR 79 ANDF-AL-A 
1A INCR4-A 3A UP1-LF-AQ SA SDIVLAST2 7A EXTF-A 
18 INCR4-B 38 UP1-LF-BQ 58 UMULFIRST 78 EXTF-B 
1C LDSTAT-A 3C ZERO 5C UMULSTEP 7C EXTF-AB 
10 LDSTAT-B 3D SIGN 50 UMULLAST 70 EXTF-BA 
1E - 3E OR 5E SMULSTEP 7E EXTBIT-STAT 
1F - 3F XOR SF SMULFIRST 7F PASS-MASK 
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TABLE 6-1. DATA MOVEMENT INSTRUCTIONS 

V Output 

Mnemonics Code Description . Unsel Sel S M 

ZERO-EXTA .00 Zero Extend 0 A 

ZERO-EXTB 01 0 B 

SIGN-EXTA 02 Sign Extend Sign A 

SIGN-EXTB 03 Sign B 

MERGEA-B OE Merge A with B B A Merge B 

MERGEB-A OF· Merge B with A A B Merge A 

TABLE 6-2. DATA MOVEMENT INSTRUCTIONS 

V Output 

Mnemonics Code Description Unsel Sel Status Register 

PASS-STAT 04 Pass Status Register B S 

LOSTAT-A 1C Load Status Register S A A 

LOSTAT-B 10' S B B 

TABLE 6-3. DATA MOVEMENT INSTRUCTIONS 

V Output 

Mnemonics Code Description Unsel Sel 

PASS-Q 05 Pass Q Register B Q 

LOAOQ·A 06 Load Q Q A 

LOAOQ-B 07 Q B 

Note: 1. These Instructions use the byte aligned instruction format (FORMAT 1). 

Legend: Unsel = Unselected Byte(s) 

Examples: 

Sel = Selected Byte(s) 
A = A Input 
B = B Input 
Q = Q Register 
+ = Updated only if byte width is 3 or 4 
• = Updated 

Q Register 

A 

B 

L 

S 

+ 
+ 

S 

Pass lower two bytes of B to Y with zero fill on upper two bytes 

Status 

Z 

· · · · · · 

M L 

+ + 
+ + 

M L 

2, ZERO EXTB 

0, LOADQ-A Load all four bytes of A into Q Register pass updated Q Resistor to Y 
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TABLE 7. LOGICAL INSTRUCTIONS 

V Output Status 

Mnemonics Code Description Unsel Sel 

NOT·A 08 One's Complement A A 

NOT·B 09 B B 

ZERO 3C Pass Zero B 0 

SIGN 3D Pass Sign B O(N -0); -l(N = 1) 

OR 3E OR B A OR B 

XOR 3F EXOR B A XOR B 

AND 40 AND B A AND B 

XNOR 41 XNOR B A XNOR B 

Note: 1. These InstructIons use the byte alogned InstructIon format (FORMAT 1). 

Legend: Unsel = Unselected Byte(s) 

Examples: 

Sel = Selected Byte(s) 
A = A Input 
B = B Input 
Q = Q Register 
• = Updated 

S M L 

2, NOT·A Complement low order two bytes of A and output to Y with 
high order two bytes of A uncomplemented. 

1, AND AND first byte of A and B. Output to Y with high three 
bytes of B. 

Z 

· · 
1 

N 

· · · · 

TABLE 8-1. SINGLE-BIT SHIFT INSTRUCTIONS (SINGLE PRECISION) 

V 

V Output Status 

Mnemonics Code Description Unsel Sel S M 

DN1·0F·A 20 Downshift, Zero Fill A Yi- Ai+l, Ymsb=O 

DN1·0F·B 21 B Yi=Bi+l, Ymsb=O 

DN1·1F·A 24 Downshift, One Fill A Yi = Ai + 1, Ymsb = 1 

DN1·1F·B 25 B Yi=Bi+l, Ymsb=l 

DN1·lF·A 28 Downshift, Link Fill A Yi=Ai+l, Ymsb=l 

DN1·lF·B 29 B Yi=Bi+l, Ymsb=l 

DN1·AR·A 2C Downshift, Sign Fill A Yi=Ai+l, Ymsb-N 

DN1·AR·B 20 B Yi = Bi + 1, Ymsb = N 

UP1·0F·A 30 Upshift, Zero Fill A Yi=Ai-l, Yo=O 

UP1·0F·B 31 B Yi-Bi-l, YO-O 

UP1·1F·A 34 Upshift, One Fill A Yi-Ai-l, Yo=l 

UP1·1F·B 35 B Yi-Bi-l, Yo=1 

UP1·lF·A 38 Upshift, Link Fill A Yi=Ai-l, Yo=l 

UP1·lF·B 39 B Yi=Bi-l, Yo=l 

Note: 1. These instructions use the byte aligned Instruction format (FORMAT 1). 

Example: 
2, UP1·1F·A Shift lower two bytes of A up one bit. Set lSB to 1. Fill 

unselected bytes to upper two bytes of A. 
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TABLE 8-2. SINGLE-BIT SHIFT INSTRUCTIONS (DOUBLE PRECISION) 

Y Output & Q Register Status 

Mnemonics Code Description S,lected Bytes S M L Z V N C 
DN1-0F-AQ 22 Downshift, Zero Fill O~A~Q 2) · · · 
DN1-0F-BQ 23 O~B~Q 3) · · · 
DN1-1F-AQ 26 Downshift, One Fill 1~A~Q 2) · · · 
DN1-1F-BQ 27 1·~ B~Q 3) · · · 
DN1-LF-AQ 2A Downshift, Link Fill L~A~Q 2) · · · 
DN1-LF-BQ 2B L~B~Q 3) · · · 
DN1-AR-AQ 2E Downshift, Sign Fill N~A~Q 2) · · · 
DN1-AR-BQ 2F N~B~Q 3) · · · 
UP1-0F-AQ 32 Upshift, Zero Fill A~Q~O 2) · · · · 
UP1-0F-BQ 33 B~Q~O 3) · · · · 
UP1-1F-AQ 36 Upshift, One Fill A~Q~1 2) · · · · 
UPHF-BQ 37 B~Q~1 3) · · · · 
UP1-LF-AQ 3A Upshift, Link Fill A~Q~L 2) · · · · 
UP1-LF-BQ 3B B~Q~L 3) · · · · 

Notes: 1. These instructions use the byte aligned instruction format (FORMAT 1). 
2. Y Unselected byte from A, Q Unselected byte unchanged. 
3. Y Unselected byte from B, Q Unselected byte unchanged. 

Legend: Unsel = Unselected Byte(s) 
Sel = Selected Byte(s) 

A = A Input 
B = B Input 
Q = Q Register 
• = Updated 

Example: 
O,DNI-AR-BQ Shift 64 bits (all 32 bits of both Band 0) 

down by one bit. LSB of B fills MSB of O. 
MSB of B set to sign bit (bit N of status register). 61 B(32bits) r-.t 0(32 bits) 

S lSign bit 
link status bit 

3, UP1-LF-AQ Shift 48 bits (24-bits of A and 24-bits of Q) 
up by one bit. MSB of 24-bit Q fills LSB of A. 
MSB of 24-bit A sets link status bit. LSB of 
Q is filled with original link value. 

~A(24bits) I ~ Q(24bits) 1 I f I 
DFOO6200 

I 
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TABLE 9. PRIORITIZE INSTRUCTIONS 

Mnemonics Code Description Y Output 

PRIOR-A OC Prioritization Location of Highest 1 Bit 

PRIOR-B 00 

Notes: 1. These Instructions use the byte aligned Instruction format (FORMAT 1). 
2. Priority also loaded into STATUS <7:0> 
3. Refer to Table 4. 

Legend: A ~ A Input 
B = B Input 

Example: 

Q = Q Register 
• = Updated 

3, PRIOR-A Value placed on Y is 2 

Assume A is 01001011 00100010 I 00000000 00000000 

S M 

TABLE 10-1. ARITHMETIC INSTRUCTIONS 

Y Output 

Mnemonics Code Description Unsel Sel S M 

NEG-A OA Two's Complement A A+ 1 

NEG-B OB B B + 1 

INCR-A 12 Increment by One A A+ 1 

INCR-B 13 B B+1 

INCR2-A 16 Increment by Two A A+2 

INCR2-B 17 B B+2 

INCR4-A 1A Increment by Four A A+4 

INCR4-B 1B B B+4 

DECR-A 10 Decrement by One A A-1 

DECR-B 11 B B-1 

DECR2-A 14 Decrement by Two A A-2 

DECR2-B 15 B B-2 

DECR4-A 18 Decrement by Four A A-4 

DECR4-B 19 B 8-4 

Notes: 1. These instructions use the byte aligned instruction format (FORMAT 1). 
2. Borrow, rather than carry, is generated if BOROW is HIGH (borrow = carry). 

Status 

L Z V . . 

Status 

L Z V N C 

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 
3. Nibble bits are set by these instructions. NEG-A (or NEG-B) and DIFF-CORR may be used to 

form 10's complement of a BCD number. Use SUM-CORR (for increment) or DIFF-CORR (for 
decrement) to increment or decrement a BCD number. 

Example: 

Legend: Unsel = Unselected Byte(s) 
Sel = Selected Byte(s) 

A = A Input 
B = B Input 
Q = Q Register 
• = Updated 

2, DECR4-A Decrement lower two bytes of A by 4 
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TABLE 10-2. ARITHMETIC INSTRUCTIONS 

V Output Status 

Mnemonics Code Description Unsel Sel S M L Z V N C 

ADD 42 Add B A+B · · · · 
ADDC 43 Add with Carry B A+B+C 6) · · · · 
SUB 44 Subtract B A+B+1 · · · · 
SUBR 46 B B+A+1 · · · · 
SUBC 45 Subtract with Carry B A+13+1+C 2) 6) · · · · 
SUBRC 47 B B+A+1+C 2) 6) · · · · 
SUM-CORR-A 48 Correct BCD Nibbles A Corrected A 3) · · · · 
SUM-CORR-B 49 for Addition 

B Corrected B 3) · · · · 
DIFF-CORR-A 4A Correct BCD Nibbles A Corrected A 3) · · · · 
DIFF-CORR-B 4B for Subtraction 

B Corrected B 3) · · · · 
Notes: 1. These Instructions use the byte aligned Instruction format (FORMAT 1). 

2. BOROW is LOW. For subtract operations, a borrow rather than a carry is stored in STATUS if BOROW is HIGH. 
Carry is always generated for ADD regardless of BOROW. 

3. First, the nibble carries NCo - NC7 are tested. Any nibble carry/borrow that is set to 1 generates "6" internally as 
a correction word and then the correction word is added (SUM-CORR- ) or subtracted (DIFF-CORR- ) from the 
operand. NCO - NC7 are not affected by this operation. 

4. Use SUM-CORR or DIFF-CORR to add or subtract a BCD number. 
5. Use ADDC, SUBC, or SUBRC to perform operations on integers longer than 32 bits. 
6. Carry bit is obtained from MCin if M/iii is HIGH. Otherwise, carry is obtained from the C status bit. 

Legend: Unsel = Unselected Byte(s) 

Example: 

Sel = Selected Byte(s) 
A = A Input 
B = B Input 
Q = Q Register 

• - Updated only if byte width is 3 or 4 

0, ADD Add two 32-bit two's-complement integers 
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TABLE 11-1. DIVIDE INSTRUCTIONS (Aligned Format) 

Source for Status 
16- 10 Unselected 

Name Code Description Bytes Output S M L Z V N C 

Signed Divide Steps 

SDIVFIRST 4 E First Instruction for Signed Divide B Y, Q . · · · · 
SDIVSTEP 50 Iterate Step (# bits • 1 times) B Y, Q · · · · · 
SDIVLAST1 5 1 Last Divide Instruction Unless B Y, Q · · · · 
SDIVLAST2 5A Dividend & Remainder Negative B Y · 

Unsigned Divide Steps 

UDIVFIRST 4 F First Instruction for Unsigned Divide B Y, Q · · · 
UDIVSTEP 54 Iterate Step (# bits • 1 times) B Y, Q . · · · · 
UDIVLAST 55 Last Instruction B Y, Q 0 · · · · 
Multlpreclslon Divide Steps 

MPDIVSTEP1 52 First Instruction B Y, Q 

MPDIVSTEP2 56 Executed 0 Times for Double B Y, Q 

MPSDIVSTEP3 53 Last Instruction of Inner Loop B Y, Q 

MPUDIVSTP3 57 Used for Unsigned Divide B Y, Q 

Correction Steps 

REMCORR 58 Correct Remainder After Divide B Y · 
QUOCORR 59 Correct Quotient After Divide B Y . · 

TABLE 11-2. EXAMPLE CODING FORM (Signed Division) 

'S 

~ 
N ... ... 
'" N 

Am29331 Am29332 Am29334 
E 
C 

Cond Multi 
OP Branch Select Sel B/W OP Width Position A-IN B-IN y-oUT DE 

caNT 2 LOADO-A R2 1 

caNT 0 SIGN R3 0 

FOR 0 15 2 SDIVFIRST R4 R3 R3 0 -
DJMP S 2 SDIVSTEP R4 R3 R3 0 

caNT 2 SDIVLAST1 R4 R3 R3 0 

BRCC_ 0 DONE Z 1 

caNT 2 SDIVLAST2A R4 R3 R3 0 

CaNT 2 PASs-a R1 0 

CaNT 2 QUOCORR R1 R1 0 

CaNT 2 REMCORR R4 R3 R3 0 

Note: Divisor in A, Dividend in A 
Quotient in Q, Remainder in B 

Legend: A = A Input 
B = B Input 
S = Status Register 
Q = Q Register 

R1 = Quotient 
R2 = Dividend 
R3 = Remainder 
R4 = Divisor 
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TABLE 12-.1. MULTIPLY INSTRUCTIONS (Aligned Format) 

Source for Status 
le-Io Unselected 

Name Code Description Bytes Output S M L Z V N C 

Signed Multiply Steps 

SMULFIRST 5 F First multiply instruction B yet) 

SMULSTEP 5 E Iterate step (# bits/2 - 1 steps) B yet) 

Unsigned Multiply Steps 

UMULFIRST 5 B First multiply instruction B yet) . 
UMULSTEP 5C Iterate step (# bits/2 - 1 steps) B yet) . 
UMULLAST 5 D Last multiply instruction B yet) . 

TABLE 12-2. EXAMPLE CODING FORM (Unsigned Multiply) 

'$ 

~ 
N 
CO) 
CO) 
ell 
N 
E 

Am29331 Am29332 Am29334 < 
Cond Multi 

OP Branch Select Sel B/W OP Width Position A-IN B-IN y-oUT OE 

CaNT 3 ZERO R3 R3 0 

CaNT 3 LOADQ-A R1 1 

FOR D 11tO 3 ULMULFIRST R2 R3 R3 0 

DJMP_ S 3 UMULSTEP R2 R3 R3 0 

CONT 3 UMULLAST R2 R3 R3 0 

CaNT 3 PASS-Q R4 0 

Note: 1. Put ALU output in B. 
2. Multiplicand in A, Multiplier in Q 

Product (HIGH) in B, Product (LOW) in Q 

Legend: A = A Input 
B = B Input 
S = Status Register 
Q = Q Register 

R1 = Multiplier 
R2 = Multiplicand 
R3 = Product (HIGH) 
R4 - Product (LOW) 

I 
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TABLE 13. SHIFT/ROTATE INSTRUCTIONS 

/ Status 

Mnemonics Code Description Y Output S M L Z V N C 

NB·OF-SHA 62 Field Shift, Zero Fill Yi+p=Aj, 0 2) · · 
NB·OF-SHB 63 Yi+p = Bi, 0 2) · · 
NB-SN-SHA 60 Field Shift, Sign Fill Yi+ p = Ai, N 2) · · 
NB-SN-SHB 61 Yi+p= Bi, N 2) · · 
NBROT-A 64 Field Rotate Yi = A(i - p)mod32 3) · · 
NBROT-B 65 Yi = B(i - p)mod32 3) · · 

Notes: 1. These InstructIons use the fIeld instruction format (FORMAT 2). 
2. "p" stands for bit displacement from Po - Ps or from PRO - PRS (- 32 '" P '" 31). 

If p is positive, Y p _ I to Yo are equal to the fill bit. 
If P is negative, Y31 to Y31 + p + I are equal to the fill bit. 

3. The sign of the position input is ignored for this instruction and Po - P4 are treated as a positive magnitude for a 
circular upshill. 

Legend: A = A Input 
B = B Input 

Examples: • 

Q = Q Register 
• = Updated 

NB-OF-SHA .. 4 Shill A up 4 bits and zero fill 

NB-OF-SHB .. -17 Shill B down 17 bits and sign fill 

'Width field not used 

TABLE 14-1. BIT-MANIPULATION INSTRUCTIONS 

Y Output 

Mnemonics Code Description Unsel Sel S 

SETBIT-A 68 Bit Set A Yi =Aj, Yp= 1 

SETBIT-B 69 B Yi = Bi, Yp= 1 

RSTBIT-A 6A Bit Reset A Yi=Aj, Yp=O 

RSTBIT-B 6B B Yi = Bj, Yp = 0 

EXTBIT-A 66 Bit Extract 0 if p>O, Yo=~p 
if p<O, Yo=Ap 

2) 

EXTBIT-B 67 0 if P > 0, Yo = ~p 2) 
if P < 0, Yo = Bp 

EXTBIT-STAT 7E 0 if P > 0, Yo = ~p 
if P < 0, Yo = Sp 

2) 

Notes: 1. These instructions use the field instruction format (FORMAT 2). 

Status 

M L Z V N C 

· · · · · · · · · · 
· · 
· 

2. Y31 to YI are set to zero. "p" stands for the bit displacement from Po - P4 or from PRO - PRs. The sign of the pOSition input is 
ignored. 

TABLE 14-2. BIT-MANIPULATION INSTRUCTIONS 

Mnemonics Code Description Status Register 

SETBIT-STAT 6e Status Bit Set Sp= 1 

RSTBIT-STAT 6D Sp = 0 

Notes: 1. These instructions use the Field instruction format (FORMAT 2). 
2. "p" stands for the bit displacement from Po - Ps or from PRO - PRs. 

Legend: Unsel = Unselected field 

Examples: 

Sel - Selected field 
A = A Input 
B - B Input 
Q = Q Register 
• - Updated 

RSTBIT-B .. 3 
EXTBIT-STAT .. -4 

3rd bit is set to a in B 
4th bit in status register is extracted and 

inverted. 
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A: 

A: 

A: 

Non-Aligned Fields Case 1: 

If position (Po-P5) :?! 0, A is LSB aligned 
Width (Wo-W4) = 1 to 32 

H position (PO-P5) < 0, B is LSB aligned 
Width (WO-W5) = 1 to 32 

Figure 6. Field Logical Operations 
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TABLE 15. FIELD LOGICAL INSTRUCTIONS 

Y Output Status 

Mnemonics Code Description Unsel Sel S M L Z V N C 

PASSF·AL·A 73 Field Pass 3) B Yi=Ai · · 
PASSF·AL·B 6F 3) B Yi=Bi · · 
PASSF·A 72 4) B if p;;' 0, Yi = Ai _ P · · 

if p < D, Yi _~I = Ai · · 
NOTF·AL·A 71 Field Complement 3) B Yi=Ai · · 
NOTF·AL·B 6E 3) B Yi=Bi · · 
NOTF·A 70 4) B if P ;;'0, Yi = Ai-J? · · 

if P < 0, Yi -IPI = Ai · · 
ORF·AL·A 75 Field OR 3) B Yi=Ai OR Bi · · 
ORF·A 74 4) B if p;;' 0, Yi = Ai _ p OR Bi · · 

if P < 0, Yi _Jpl = Ai OR Bi -I~ · · 
XORF·AL·A 77 Field XOR 3) B Yi=Ai XOR Bi · · 
XORF·A 76 4) B if p;;' 0, Yi = Ai _ p XOR Bi · · 

if P < 0, Yi _ ~I = Ai XOR Bi -IPI · · 
ANDF·AL·A 79 Field AND 3) B Yi =Ai AND Bi · · 
ANDF·A 78 4) B if p;;' 0, Yi = Ai _ p AND Bi · · 

if P < 0, Yi-IPI = Ai AND Bi-IPI · · 
EXTF·A 7A Field Extract 4) 5) 0 if p;;'O, Yi=Ai-p · · 

if P < 0, Yi -IPI = Ai · · 
EXTF·B 7B 4) 5) 0 if p;;'O, Yi = Bi-p · · 

if P < 0, Yi -IPI = Bi · · 
EXTF·AB 7C 0 6) · · 
EXTF·BA 7D 0 7) · · 

Notes: 1. These instructions use the field Instruction format (FORMAT 2). 
2. p';; i';; P + w -1. "p" stands for position displacement from Po - Ps or from PRo - PRs and "w" for the width of the bit field 

from Wo - W4 or WRo - WR4. Whenever p + w > 32, operation takes place only over the portion of the field up to the end of 
the word. No wraparound occurs, 

3. This instruction uses the aligned format (see Figure 6). 
4. This instruction uses the unaligned field format (see Figure 6). 

p;;'O: Case 1 
p<O: Case 2 

5. If P is positive, the input is LSB aligned and Y output aligned at position. 
If p is negative, the input is aligned at I p I and Y output at LSB. 

6. Firstly, the concatenation of A(High Word) and B(Low Word) is rotated by the amount specified by the position (p). If P is 
positive, left·rotate is performed. If p is negative, right·rotate is performed. Secondly, the least significant bits on the Y output 
specified by the width (w) are extracted. 

7. Same as 6) except that B input is taken as a high word and A input as a low word. 

Legend: Unsel = Unselected Field 
Sel = Selected Field 

A = A Input 
B = B Input 
Q = Q Register 
• = Updated 

For all examples, assume STATUS (7: 0) is -7 and STATUS (12: 8) is 3. 

1. O,PASSF·AL·B,II,20 Pass B to Y and test if B20 to Bso 
are all zero. Set Z status if so. 

B: 1~0000000000p000010l0lll00ll0l00 

Z set to 1 in this case 

2. 3,XORF·A" Exclusive·OR bits A7 - Ag with bits 
Bo - B2 and output to Yo - Y 2. Pass 
Bs - BS1 to Ys - YS1. Width and po· 
sition values are obtained from STA· 
TUS(12: 0). 

A: 0110111000100100001 011[Qg111 01 011 

B: 00011100001010001100101001001~ 

A9-7 (j) B2-0 = Y: 00011100001010001100101001 001m 
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TABLE 16. MASK INSTRUCTION 

V Output 

Mnemonics Code Description Unsel I Sel S I M I L 

PASS·MASK 7F Generate Mask Ps I Vi= Ps I I 
'Notes: 1. This instruction uses the field instruction format (FORMAT 2), 

2. p";i";p+w-l, "p" stands for the position displacement and "w" for the width of bit field, 

Legend: Unsel - Unselected Field 
Sel = Selected Field 

A =A Input 
B = B Input 
Q = Q Register 
• = Updated 

Status 

I z I V I 
I I I 

Example: Generates an 8-bit field mask pattern starting from bit position 10. 

31 18 17 10 9 

0, PASS-MASK, 8, 10 
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APPLICATIONS 

Suggestions for Power and Ground Pin 
Connections 

The Am29332 operates in an environment of fast signal rise 
times and substantial switching currents. Therefore. care must 
be exercised during circuit board design and layout. as with 
any high·performance component. The following is a sug· 
gested layout. but since systems vary widely in electrical 
configuration. an empirical evaluation of the Intended layout is 
recommended. 

The VCCT and GNDT pins. which carry output driver switching 
currents. tend to be electrically noisy. The VCCE and GNDE 
pins. which supply the ECl core of the device. tend to produce 
less noise. and the circuits they supply may be adversely 
affected by noise spikes on the VCCE plane. For this reason. it 
is best to provide isolation between the VCCE and VCCT pins. 
as well as independent decoupling for each. Isolating the 
GNDE and GNDT pins is not required. 

A BCDE F G H J 

Printed Circuit-Board Layout Suggestions 

1. Use of a multi·layer PC board with separate power, ground. 
and signal planes is highly recommended. 

2. All VCCE and VCCT pins should be connected to the VCC 
plane. VCCT pins should be isolated from VCCE pins by means 
of a slot cut in the V CCE plane; see Figure 7. By physically 
separating the VCCE and VCCT pins. coupled noise will be 
reduced. 

3. All GNDE and GNDT pins should be connected directly to 
the ground plane. 

4. The VCCT pins should be decoupled to ground with a O.1-/lF 
ceramic capacitor and a 10·/lF electrolytic capacitor. placed 
as closely to the Am29332 as is practical. VCCE pins should 
be decoupled to ground in a similar manner. 

A suggested layout is shown in Figure 7. 

K L M N P R T U 
1 

••••••••••••••• 2 

• ••••••••• Ct ••••• 
T 

3 
I ••• •• 4 I 
I 
I •• •• j 5 C ...... \ ..... 

:~l::::: Cs 
1 ·····r··· •• •• 6 

• Ct Ct • I 7 
•• •• •• J • 8 ... ... 

9 

Ct ••• ••• ... 10 ... 
! ••• ••• I 11 
I 

! ••• Ct •• ...... 1 ..... 12 
~ ......•...... 

••• ••• . ............ C4 13 
···1·· 

I 

••• • lilt. ~ 14 

••••• •••• ct • •••• 15 
••• Ct. •••• Ct ••••• 16 

••••• •••• Ct Ct •••• 17 

lilt 

! i! I 
Ct ••••• ______ Isolation Cut 
! I I 

! ............. _ .... ! t'· .. _· ........ ,,·, 

C5 
;···········_····1 1················...1 

• - Through Hole 
Ct - Vee Plane Connection 
C, C3 = Cs = 10jlF or greater (electrolytic or tan· 

talum capac"or) 
C2 = C4 = Ce - 0.1 jlF or greater (ceramic or 

monolithic capacitor) 

C6 

Figure 7. Suggested Printed Circuit-Board Layout 
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26 
24 
22 
20 
18 
16 
14 
12 
10 

8 
6 
4 
2 
o 

400 600 

AIR VELOCllY (LINEAR FEET PER MINUTE) 

Parama.er 

-'JA Still Air 
-'JA 200 LFM 
-'JA 600 LFM 
-'JC Heat Sink 

Figure 8. Am29332 Thermal Characteristics (Typical) 
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ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 

Storage Temperature ............................ -65 to + 150°C Commercial (C) Case Devices 

Temperature Under Bias - TC ................ -55 to + 125°C Temperature (T C) .................................. 0 to + 85°C 

Supply Voltage to Ground Potential Supply Voltage VCC .................. + 4.75 V to + 5.25 V 

Continuous ...................................... -0.5 to + 7.0 V 
DC Voltage Applied to Outputs Operating ranges define those limits between which the 

for HIGH State ......................... -0.5 V to + VCC Max. functionality of the device is guaranteed. 
DC Input Voltage ................................. -0.5 to + 5.5 V 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA TlNGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

DC CHARACTERISTICS over operating range 

Parameter Parameter Test Conditions 
Symbol Description (Note 1) Min. Max. Units 

I ~ ~ 
vee - 4.75 v, 

VOH Output HIGH Voltage VIN = VIH or Vll, All Outputs -2.4 Volts 
10H = -1.2 mA 

Vee - 4.75 V, 
VOL Output LOW Voltage VIN = VIH or Vll, All Outputs 0.5 Volts 

IOl=8 mA 

VIH 
Input HIGH Level (Guaranteed Logic HIGH All Inputs 2.0 Volts Voltage) 

Vil 
Input LOW Level (Guaranteed Logic LOW All Inputs 0.8 Volts Voltage) 

VI Input Clamp Voltage Vee = 4.75 V, All Inputs -1.5 Volts IIN=-18 mA 

PYO-3 
YO-31 ' 

-0.55 

14-6 -1.50 

17 -8 -1.00 

Vee = 5.25 V, SLAVE -3.00 
III Input LOW Current mA VIN = 0.5 V OE-Y -2.50 

CLK -2.00 

C, Z, V, N, L; -0.55 PERR 

Other -0.50 

PYO-3 
YO-31 ' 

100 

14-6 150 

17-8 100 

Vee = 5.25 V, SLAVE 300 
IIH Input HIGH Current 

VIN = 2.4 V OE-Y 250 
p.A 

CLK 200 

C, Z, V, N, L; 100 PERR 

Other 50 

II Input HIGH Current Vee = 5.25 V, All 1.0 mA VIN = 5.5 V Inputs 

10ZH 
Vee - 5.25 V, All 100 

Off State Output Current 
Vo = 2.4 V Outputs 

p.A 

10Zl 
Vee = 5.25 V, Except 

-550 VO=0.5 V MSERR 

lOS 
Output Short-Circuit Current Vee = 5.75 V, -15 -50 mA (Note 2) VO=0.5 V 

Power Supply Current Te=Ot085°C 1800 mA 
ICC (Note 3) Vee = 5.25 V 

Te - 85°C 1690 mA 

Notes: 1. For conditions shown as Min. or Max., use the appropriate value specified under Operating Ranges for the applicable device type. 
2. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. 
3. Measured with all inputs HIGH and outputs disabled. 
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SWITCHING CHARACTERISTICS over operating range 

A. COMBINATIONAL PROPAGATION DELAYS 

Am29332 Am29332A 

No. From To Max. Delay Max. Delay Unit 

1 PAo-PAa. PBo-PBs pERR 19 16 ns 
2 DAo - DAal, DBo - DBsl PERR 28 24 ns 
3 DAo-DAsl,DBo-DB3l PYO-PY3 42 36 ns 
4 DAo - DAal, DBo - DB3l YO-Y3l 35 30 ns 
5 DAo - DA3l , DBo- DB31 C, Z, V, N, L 43 37 ns 
6 DAo- DAal,DBo- DB3l MSERR 49 42 ns 
7 10- 18 PYO-PYs 53 .~\I!I! ns 
8 10- 18 YO-Y3l 47 ~ ns 
9 10- 18 C, Z, V, N, L 48 

'"
411 

ns 
10 10- 18 MSERR 55 ,~: ns 
11 WO-W4 PYO-PY3 40 ns 
12 WO-W4 YO-Y3l 34 ns 
13 WO-W4 C, Z, V, N, L 35 ns 
14 WO-W4 MSERR 41 ns 
15 PO-P5 PYO-PY3 48 ns 
16 PO-P5 YO-Y3l 42 

~ 
ns 

17 PO-P5 C, Z, V, N, L 43 ns 
18 PO-P5 MSERR 45 ns 
19 CP PYO-PY3 47 ns 
20 CP YO-YSl 41 tI; ns 
21 CP C, Z, V, N, L 42 ns 
22 CP STATUS REG. 20 !ill, ns 
23 RS C, Z, V, N, L 16 tIi~ ns 
24 MCln YO-Y3l 31 ~,."" ns 
25 MCln C, Z, V, N, L 34 11111111 ns 
26 MCln MSERR 37 ... ns 
27 MLINK YO-Y31 33 (21!\ ns 
28 MLINK C, Z, V, N, L 37 ~' ns 
29 MLINK MSERR 38 ~:7 ns 
30 M/m YO-Y3l 33 :i ns 
31 M/m C, Z, V, N, L 37 ns 
32 M/m MSERR 38 ns 
33 BOROW YO-Y3l 33 tflIJII#" ns 
34 BOROW C, Z, V, N, L 37 ~ ns 
35 BOROW MSERR 38 ~ ns 
36 HOLD C, Z, V, N, L 22 d!!!Y" ns 
37 HOLD MSERR 29 2~ ns 
38 PYO-PY3 MSERR 20 17 ns 
39 YO-Y3l MSERR 19 16 ns 
40 C, Z, V, N, L MSERR 21 18 ns 
41 PERR MSERR 20 17 ns 
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SWITCHING CHARACTERISTICS (Cont'd.) 

B. SETUP AND HOLD TIMES 

Am29332 Am29332A 

No. Parameter (Note 2) For With Respect To Max. Value Max. Value Unit 

42 Input Data Setup DAo - DA3t. 080- DB31 CP T 3t ~J,." ns 

43 Input Data Hold DAo - DA31. DBo - DB31 CP t \l,1 )1i~ ns 

44 Byte Width Setup 17- 18 CP 3.0 ",;l~:" ns 

45 Byte Width Hold 17- 18 CP T 1 \I",~i',.,:,,,,,, ns 

46 Instruction Setup 10- 16 CP 37 !'~!;:l\li; ns 

47 Instruction Hold 10- 16 CP 2 \'''''2"''''\''''' ns 

48 Width Setup WO-W4 CP 28 '28' ns 

49 Width Hold WO-W4 CP a ,~~ ;~ ns 

5.0 Position Setup Po-Ps CP 28 "'!!aI,",,,,,! ns 

51 Position Hold Po-Ps CP a lra}:~ ns 

52 Borrow Setup BOROW CP 22 ,,~;::::,;", ns 

53 Borrow Hold BOROW CP 1 ,,;~,~;::' ns 

54 Macro Carry Setup MCin CP 21 ?J"'W{"i ns 

55 Macro Carry Hold MCin CP a ;'''iJ'!"\i",, ns 

56 Macro Link Setup MLiNK CP 22 'D""i'" ns 

57 Macro Link Hold MLiNK CP 1 ,~;:i'r ns 

58 Macro/Micro Setup M/m CP 22 ~2"!1 ns 

59 Macro/Micro Hold M/m CP 1 "L.""" ns 

6.0 Hold Mode Setup HOLD CP 11 ,(,t,'!!, ns 

61 Hold Mode Hold HOLD CP 1 1 ns 

C. MINIMUM CLOCK REQUIREMENTS 

Am29332 Am29332A 

No. Description Max. Value Max. ,<alue Unit 
62 Minimum Clock LOW Time 2.0 ,~,,?O,;'!i" ns 

63 Minimum Clock HIGH Time 2.0 ' \:20 ns 

D. ENABLE AND DISABLE TIMES 

Am29332 Am29332A 

No. From To Description Max. Delay Max. Delay Unit 

64 OE=Y YO-Y31. PYO-PY3 Output Enable Time 25 25 ns 

65 OE-Y YO-Y31, PYO-PY3 Output Disable Time 25 .,~~ ns 

66 SLAVE Slave Mode 25 'i;;~,,~~!:' ns 
C, Z, V, N, L Enable Time 
PERR 

67 SLAVE YO-Y31, PYO-PY3 Slave Mode 25 25 ns 
C, Z, V, N, L Disable Time 
PERR 

Notes: 1, It is the responsibility of the user to maintain a case temperature of 85·C or less, AMD recommends an air velocity of at 
least 2.0.0 linear feet per minute over the heatsink, 

2, See timing diagram for desired mode of operation to determine clock edge to which these setup and hold times apply. 
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SWITCHING TEST CIRCUITS 

I ... 

5.0 - VBE - VOL 
Al---':';;;"-:":: 

IOL + VOL 
IK 

A. Three-5tate Outputs 

Vee 

I 

TCOOII02 

2.4 V 
A2=-­

IOH 

5.0 - VBE - VOL 
Al=--':';;;"--':":: 

IOL+~ 
Ai 

B. Normal Outputs 

Notes: I. CL - 50 pF includes scope probe, wiring and stray capacitances without device in test fixture. 
2. 51, 52, 53 are closed during function tests and all AC tests except output enable tests. 
3. 51 and Sa are closed while 52 is open for tPZH test. 

51 and 52 are closed while 53 is open for tPZL test. 
4. CL = 5.0 pF for output disable tests. 

SWITCHING TEST WAVEFORMS 

Vcc 

TC001083 

DATA 
INPUT 

-r_~rI''T''I"''l.,...-----~_',., ................ -r- :.: v 

f--1'1=~-1 
LOWHIG~UL~~_ -f \ ---- 1.5 v 

~tPN-1 -------f ------- 3 V TlIoWNG 
INPUT -------- 1.5 V 

_______ ....J _________ 0 V 

HIGH·LOW·HIGH _ ~... __ if 
PULSE ~ ~ ---- 1.5 V 

WFA02970 WFA02790 

Setup, Hold, and Release Times 

Notes: 1. Diagram shown for HIGH data only. Output transition 
may be opposite sense. 

2. Cross hatched area is don't care condition. 

Pulse Width 
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SWITCHING TEST WAVEFORMS (Cont'd.) 

SAME PHASE f------\ --- :.svv 

-'~-~:'~ 5=~' .. 
~ T I.t=:~ 

'PLH? "HL 

OPPOSIT-E-P-HAS-E-..... ~ 1 3 V 

INPUT TRANSITION - f\. 1'1--- :_5
v 
V 

WFR02980 

Propagation Delay 

Test Philosophy and Methods 
The following points give the general philosophy that we apply 
to tests that must be properly engineered if they are to be 
implemented in an automatic environment. The specifics of 
what philosophies applied to which test are shown. 

1. Ensure the part is adequately decoupled at the test head. 
Large changes in supply current when the device switches 
may cause function failures due to Vee changes. 

2. Do not leave inputs floating during any tests, as they may 
oscillate at high frequency. 

3. Do not attempt to perform threshold tests at high speed. 
Following an input transition, ground current may change by 
as much as 400 mA in 5 - 8 ns. Inductance in the ground 
cable may allow the ground pin at the device to rise by 
hundreds of millivolts momentarily. 

4. Use extreme care in defining input levels for AC tests. Many 
inputs may be changed at once, so there will be significant 
noise at the device pins that may not actually reach VIL or 
VIH until the noise has settled. AMD recommends using 
VIL ..;; 0 V and VIH ~ 3 V for AC tests. 

5. To simplify failure analysis, programs should be designed to 
perform DC, Function, and AC tests as three distinct groups 
of tests. 

6. Capacitive Loading for AC Testing 

Automatic testers and their associated hardware have stray 
capacitance that varies from one type of tester to another, 
but is generally around 50 pF. This, of course, makes it 
impossible to make direct measurements of parameters 
that call for a smaller capacitive load than the associated 
stray capacitance. Typical examples of this are the so­
called "float delays" which measure the propagation 
delays into and out of the high impedance state and are 
usually specified at a load capacitance of 5.0 pF. In these 
cases, the test is performed at the higher load capacitance 
(typically 50 pF) and engineering correlations based on 
data taken with a bench set up are used to predict the 
result at the lower capacitance. 

Enable Disable 

=t r----3V 

CONTROL_ d-' ----1.5 V INPUT 

~ ___ ~j ----0 v 
L--L..'ZL tLZ-_ 

-L~---4.5V 
OUTPUT po.s V 

NORMALLY 1.5 V -1.5 V 

LOW S3 0PEN -; 

:----r VOL 

f--t:'ZH 'HZ---LL 
OUTPUT~~----=:=VOH 

NORMALLY 1.5 V ~ -1.5 V 
HIGH 52 OPEN 0.5 V 

---0 v 

WFR02660 

Enable and Disable Times 

Notes: 1. Diagram shown for Input Control Enable-LOW and Input Control 
Disable-HIGH. 

2. 5,. 52 and 53 of Load Circuit are closed except where shown. 

Similarly, a product may be specified at more than one 
capacitive load. Since the typical automatic tester is not 
capable of switching loads in mid-test, it is impossible to 
make measurements at both capacitances even though 
they may both be greater than the stray capacitance. In 
these cases, a measurement is made at one of the two 
capacitances. The result at the other capacitance is 
predicted from engineering correlations based on data 
taken with a bench set up and the knowledge that certain 
DC measurements (IOH, IOL, for example) have already 
been taken and are within specification. In some cases, 
special DC tests are performed in order to facilitate this 
correlation. 

7. Threshold Testing 

The noise associated with automatic testing. the long. 
inductive cables, and the high gain of bipolar devices when 
in the vicinity of the actual device threshold, frequently give 
rise to oscillations when testing high-speed speed circuits. 
These oscillations are not indicative of a reject device, but 
instead, of an overtaxed test system. To minimize this 
problem, thresholds are tested at least once for each input 
pin. Thereafter, "hard" HIGH and LOW levels are used for 
other tests. Generally this means that function and AC 
testing are performed at "hard" input levels rather than at 
VIL Max. and VIH Min. 

8. AC Testing 

Occasionally, parameters are specified that cannot be 
measured directly on automatic testers because of tester 
limitations. Data input hold times often fall into this catego­
ry. In these cases, the parameter in question is guaranteed 
by correlating these tests with other AC tests that have 
been performed. These correlations are arrived at by the 
cognizant engineer by using data from precise bench 
measurements in conjunction with the knowledge that 
certain DC parameters have already been measured and 
are within specification. 
In some cases, certain AC tests are redundant since they 
can be shown to be predicted by other tests that have 
already been performed. In these cases, the redundant 
tests are not performed. 
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Irl6 

Mein 

MIi'ii 

SWITCHING WAVEFORMS 

KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS OUTPUTS 

MUST BE WILL BE 
STEADY STEA,?Y 

-- MAY CHANGE WILLSE 
CHANGING FROM H TO L FROM H TO l 

JJJJI! MAY CHANGE 
WILL BE 

FROML TOH CHANGING 
FROM L TOH 

JlJJ!1 DON'T CARE; CHANGING; 
ANY CHANGE STATE 
PERMITTED UNKNOWN 

]HR 
CENTER 

DOES NOT LINE IS HIGH 
APPLY IMPEDANCE 

"OFF" STATE 

KSOOOO10 

HOLD XXXXXXXXXXXXXXX ' 

Setup and Hold Timing 
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SWITCHING WAVEFORMS (Cont'd.) 

INPUTS' ~~--------------
:+-0-~ 

PERR 

,------------

: 0 ®0®®@®®®® 
,4 It, 

C,Z,N,V,L 

MSERR 

~----------, 

Status Register ~,-----------------------

Propagation Delays (SLAVE = LOW) 

Inputs: PAo-PA3, PBo-PB3, OAo-OA31, OBo-OB31, la-Is, WO-W4, Po-Ps, CP, RS, 
MCin, MLlNK, M/m, SOROW, HOLO 
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SLAVE 

Yo -Ya1 
PYo-PYa 
C,Z,V,N,L 
PERR 

SWITCHING WAVEFORMS (Cont'd.) 

PVo-PYa mx 
: .. @ ..: 

YO-Ya1 m:< , 
• @ 

, 
• , 

mx , 

C,Z,N,V,L 
, 

@ : .. ..: 
PERR mx j 

: .. @ .' 
MSERR ~ 

WF023700 

Propagation Delay (SLAVE = HIGH) 

\ ______ -J/ 
~ ~ 
: ( , )-

WF023710 

Enable/Disable I (SLAVE = HIGH) 

,'--___ --:.J./ 
~ ~ '( , )-

WF023720 

Enable/Disable II (OE·Y = LOW) 
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INPUT IOUTPUT CIRCUIT DIAGRAM 

DRIVING OUTPUT 

IOH 
...---.... 

L 
IOL 

(All Devices) 

DRIVEN INPUT 

J 
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Am29334 
Four-Port Dual-Access Register File 

DISTINCTIVE CHARACTERISTICS 

• Fast 
With an access time of 24 ns, the Am29334 supports 
80-90 ns microcycle time when used with the Am29300 
Family for 32-bit systems, 

• 64 x 18 Bits Wide Register File 
The Am29334 is a high-performance, high-speed, dual­
access RAM with two READ ports and two WRITE 
ports. 

• Cascadable 
The Am29334 is cascadable to support either wider 
word widths, deeper register files, or both. 

• Simplified Timing Control 
Control for write enable timing and for on-chip readl 
write address multiplexer are derived from a single-
phase clock input. . 

• Byte Parity Storage 
Width of 18 bits facilitates byte parity storage for each 
port' and provides consistency with the Am29332 32-bit 
ALU. 

• Byte Write Capability 
Individual byte write enables allow byte or full word 
write. 

GENERAL DESCRIPTION 

The Am29334 is a 64-word deep and 18-bit wide dual­
access register file designed to support other members of 
the Am29300 Family by providing high-speed storage. It 
has two write and two read ports for data and four 6-bit 
address ports. Two address ports are associated with each 
pair of read and write data ports, one to read data and the 
other to write. The device is capable of performing two 
reads and two writes in one cycle. The 18-bit wide register 

file allows storage of byte parity to support parity check and 
generate in the Am29332 32-bit ALU. Independent control 
for each read and write data port allows the Am29334 to be 
used as a high-speed shared memory or as a mailbox for a 
multiprocessor system. The device is designed with an 
access time of 24 ns. It is housed in a 120-lead pin-grid­
array package. 

BLOCK DIAGRAM 

.8 

WEAL 

WEAH 

WEAC DUAL ACCESS 
RAM 

64 x 18 

"wA 

MUX 

A"A 

~AC:>--------1 

OEAL:>--------~~ 
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RELATED AMD PRODUCTS I;' 
," ,', 
U 

Part No. Description 

Am29325 32·9it Floating Point Processor 

Am29331 16-9it Microprogram Sequencer 

Am29332 32-9it Extended Function AlU 

CONNECTION DIAGRAM 

A B C D I! f G H J K L .. N 

1 AWA2 ARA2 AWAf DAOO DA02 DAO. DAoa DA09 DAf2 OAfS LEA wrn WEAl'. 

2 ARA3 AWA3 ARAf ARAD DAD3 DAOS DA07 OAf 0 OAf3 OA1S ARAS AWAS WEAH 

3 AWA4 ARA4 VBOO AWAO OAOl GIIIlE OA06 VCCE OAll OAU OA17 ARB4, AWB. 

4 VBOl VB02 VB03 VAOO VAOl VAG2 

5 GNDT VB04 YBOS VA03 VA04 GNlT 

6 VB07 VB06 VCCT m VAD6 VMS 

7 VBOS VB09 VB10 VA07 VAOS VA09 

8 VB12 VBll ill VCCT VAll VA10 

9 GNDT VB13 YB14 VA12 YA13 GNlT 

10 YB1S YB16 YB17 YA14 YA15 YA16 

11 wm 'iYEiH OBOI OB04 VCCE OBOS OB09 OB15 GIIIlE ARBO YA17 ARB3 AWB3 

12 wm LEB OBOO OB03 VCCE oB05 oBl1 oB12 GNDE oB17 AWBO AWB2 ARB2 

13 AWB5 ARBS oB07 oB02 VCCE DB06 OB10 DB14 GNDE oB16 oB13 ARBI AWBI/ 

COOl 0391 

Note: GNDT = TTL GND 
GNDE = ECl GND 
VCCT = TTL vce 
VeCE = ECl vce 
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TABLE OF INTERCONNECTIONS 
(Sorted by Pin No.) 

PIN 
PIN NAME 

PAD PIN 
PIN NAME 

PAD PIN 
PIN NAME 

PAD PIN 
PIN NAME 

PAD 
NO. NO. NO. NO. NO. NO. NO. NO. 

- - 39 C-S YB5 115 H-2 DA10 10 M-S YM 80 
- - 37 C-S TIL Vee 113 H-3 EeL Vee 68 M-S YA6 81 
- - 99 C-7 YBlO 52 H-11 DB15 34 M-7 YAB 82 
- - 97 C-8 OE8 53 H-12 DB12 95 M-8 YAll 25 
A-1 AWA2 1 C-g YB14 109 H-13 DB14 94 M-9 YA13 86 
A-2 ARA3 120 C-l0 YB17 48 J-1 DA12 11 M-10 YA15 87 
A-3 AWM 59 C-ll DBl 44 J-2 DA13 71 M-l1 ARB3 89 
A-4 YBl 58 C-12 DBO 104 J-3 DAll 70 M-12 AWB2 30 
A-S TIL GND 56 C-13 DB7 41 J-11 EeL GND 38 M-13 ARBl 91 
A-6 YB7 114 0-1 DAO 4 J-12 EeL GND 38 N-1 WEAL 16 
A-7 Yss 54 0-2 ARAO 63 J-13 EeL GND 38 N-2 WEAH 76 
A-8 YB12 51 0-3 AWAO 3 K-l DA16 13 N-3 AWS4 17 
A-9 TIL GND 50 0-11 DS4 102 K-2 DA15 72 N-4 YA2 19 
A-10 YS15 49 0-12 DB3 43 K-3 DA14 12 N-S TIL GND 20 
A-11 WESl 47 0-13 DS2 103 K-11 ARSO 92 N-6 YA5 21 
A-12 WEse 106 E-1 DA2 5 K-12 DS17 33 N-7 YA9 24 
A-13 AWS5 46 E-2 DA3 65 K-13 DS16 93 N-8 YAlO 84 
B-1 ARA2 61 E-3 DAl 64 L-1 LEA 14 N-9 TIL GND 26 
B-2 AWA3 60 E-l1 EeL Vee 98 L-2 ARA5 74 N-l0 YA16 28 
B-3 ARM 119 E-12 EeL Vee 98 L-3 DA17 73 N-11 AWS3 29 
B-4 YS2 117 E-13 EeL Vee 98 L-4 YAO 18 N-12 ARS2 90 
B-S YS4 116 F-1 DM 6 L-S YA3 79 N-13 AWSl 31 
B-6 YS6 55 F-2 DA5 66 L-6 OEA 23 
B-7 YS9 112 F-3 EeL GND 8 L-7 YA7 22 
B-8 YSll 111 F-l1 DSB 100 L-a TIL Vee 83 
B-9 YS13 110 F-12 DS5 42 L-9 YA12 85 
B-10 YS16 108 F-13 DS6 101 L-10 YA14 27 
B-l1 WESH 107 G-l DA8 9 L-11 YAH 88 
B-12 LEs 45 G-2 DA7 67 L-12 Awso 32 
B-13 ARS5 105 G-3 DA6 7 L-13 DS13 35 
C-1 AWAl 2 G-11 DS9 40 M-1 WEAe 75 
C-2 ARAl 62 G-12 DSll 36 M-2 AWA5 15 
C-3 Yso 118 G-13 DSlO 96 M-3 ARS4 77 
C-4 YS3 57 H-l DA9 69 M-4 YAl 78 

Notes: 
1. Pins E-l, E-12 and E-13 are physically shorted together in the package. 
2. Pins J-ll, J-12 and J-13 are physically shorted together in the package. 

I 
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TABLE OF INTERCONNECTIONS (Cont'd.) 
(Sorted by Pin Name) 

PIN NAME PIN PAD PIN NAME PIN PAD PIN NAME PIN PAD PIN NAME PIN PAD 
NO. NO. NO. NO. NO. NO. NO. NO. 

- - 97 DA3 E·2 65 DB16 K·13 93 VA4 M-5 80 
- - 99 DA4 F-l 6 DB17 K-12 33 VA5 N-6 21 
- - 39 DA5 F-2 66 Eel GND J-12 38 VA6 M-6 81 
- - 37 DA6 G-3 7 Eel GND F-3 8 VA7 L-7 22 

ARAO 0-2 63 DA7 G-2 67 Eel GND J-l1 38 VAS M-7 82 
ARAl C-2 62 DA8 G-l 9 Eel GND J-13 38 VA9 N-7 24 
ARA2 B-1 61 DA9 H-l 69 Eel Vee H-3 68 VA10 N-8 84 
ARA3 A-2 120 DA10 H-2 10 Eel Vee E-13 98 VA12 L-9 85 
ARM B-3 119 DAll J-3 70 Eel Vee E-ll 98 VA13 M-9 86 
ARA5 L-2 74 DA12 J-l 11 Eel Vee E-12 98 VA14 L-l0 27 
ARBO K-ll 92 DA13 J-2 71 lEA L-l 14 VA15 M-l0 87 
ARBl M-13 91 DA14 K-3 12 lEB B-12 45 VA16 N-l0 28 
ARB2 N-12 90 DA15 K-2 72 OEA L-6 23 VA17 L-ll 88 
ARB3 M-ll 89 DA16 K-l 13 OEB C-8 53 VBO C-3 118 
ARB4 M-3 77 DA17 L-3 73 TTL GND A-5 56 VBl A-4 58 
ARB5 B-13 105 DBO C-12 104 TTL GND A-9 50 VB2 B-4 117 
AWAO 0-3 3 DBl C-ll 44 TTL GND N-5 20 VB3 C-4 57 
AWAl C-l 2 DB2 0-13 103 TTL GND N-9 26 VB4 B-5 116 
AWA2 A-l 1 DB3 0-12 43 TTL Vee C-6 113 VB5 C-5 115 
AWA3 B-2 60 DB4 0-11 102 TTL Vee L-8 83 VB6 B-6 55 
AWA4 A-3 59 DB5 F-12 42 WEAe M-l 75 VB7 A-6 114 
AWA5 M-2 15 DB6 F-13 101 WEAH N-2 76 VB8 A-7 54 
AWBO L-12 32 DB7 C-13 41 WEAL N-1 16 VB9 B-7 112 
AWBl N-13 31 DB8 F-ll 100 WEBe A-12 106 VB10 C-7 52 
AWB2 M-12 30 DB9 G-l1 40 WEBH B-ll 107 VB11 B-8 111 
AWB3 N-l1 29 DB10 G-13 96 WEBL A-ll 47 VB12 A-8 51 
AWB4 N-3 17 DBll G-12 36 VAO L-4 18 VB13 B-9 110 
AWB5 A-13 46 DB12 H-12 95 VAl M-4 78 VB14 C-9 109 
DAO 0-1 4 DB13 L-13 35 VAll M-8 25 VB15 A-l0 49 
DAl E-3 64 DB14 H-13 94 VA2 N-4 19 VB16 B-l0 108 
DA2 E-l 5 DB15 H-ll 34 YA3 L-5 79 VB17 C-l0 48 
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LOGIC SYMBOL METALLIZATION AND PAD LAYOUT 

AWA• 

Y" 
Y" 
Y" 
Y" 
Y~ 

GNDA3 

Y" 
Y~ 
Y" 
Y .. 

v~. 

OEs 
Y .. 
VelO 

~::~ 
VB" 

GND ... 
Y Bt • 

YS'5 
YB'6 
V,m 

Wl:" 
WEal 
~oc 
AWB5 

LS002220 

ORDERING INFORMATION 

Standard Products 

; ; •. .. •. 
f! f! [ JJ11 
JIll 

HJl 
:: l: I ~ J J J 
Jill 

Hi: 

I III 
HH 
;H! 
1111 

11\11. 

i! JI 
i!!: Ii 

\Il,li l ; 
/; , 

1 j! 

Die Size: 258 x 251 mils 
Equivalent Gate Count: 3500 

Wl:" 
A_ 
ARB4 

Y" 
Y" 
Y" 
Y" 
GND ... 
YM 

Y" 
Y" 
Y" 
Y" 
DE. 

v~. 

Y" 
YA10 

VAil 

Y"'2 
GND .. 

VAil 

Y",~ 
YA,s 
VA'S 
YAH 

Awa] 

ARB] 

Awo2 
ARB2 

AMO standard products are available in several packages and operating ranges. The order number (Valid 
Combination) is formed by a combination of: a. Device Number 

G 

b. Speed Option (if applicable) 
c. Package Type 
d. Temperature Range 
e. Optional Processing 

1L _____ e. OPTIONAL PROCESSING 
Blank = Standard processing 

B = Burn·in 

L----------d. TEMPERATURE RANGE 
C = Commercial (T C = 0 to + 85'C) 

L------------c. PACKAGE TYPE 
G - 120·Lead Pin Grid Array with Heatsink 

(CG 120) 

b. SPEED OPTION 
Not Applicable 

a. DEVICE NUMBER/DESCRIPTION 
Am29334 
Four·Port Dual·Access Register File 

Valid Combinations 

AM29334 GC. GCB 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMO 
sales office to confirm availability of specific valid 
combinations, to check on newly released valid combinations, 
and to obtain additional data on AMO's standard military 
grade products. 
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PIN DESCRIPTION 

ARAO - ARA5 Addresses (Inputs, Active HIGH) 
The 6-bit field presented at the ARA inputs, selects one of 
64 memory words for presentation to the Y A Data Latch. 

ARBO - ARB5 Addresses (Inputs, Active HIGH) 
The 6-bit field presented at the ARB inputs, selects one of 
64 memory words for presentation to the YB Data Latch. 

V AO - VA 17 Data latch (Outputs, Three-State) 
The IS-bit Y A Data Latch outputs. 

VBO - VB17 Data Latch (Outputs, Three-State) 
The IS-bit YB Data Latch outputs. 

AWAO - AWA5 Addresses (Inputs, Active HIGH) 
The 6-bit field presented at the AWA inputs, selects one of 
64 words for writing new data from the DA inputs. 

AWBO - AWB5 Addresses (Inputs, Active HIGH) 
The 6-bit field presented at the AWB inputs, selects one of 
64 words for writing new data from the DB inputs. 

DAO - DA17 Data (Inputs, Active HIGH) 
New data is written into the word, selected by the AWA 
address inputs, through these inputs. 

DBO - DB17 Data (Inputs, Active HIGH) . 
New data is written into the word, selected by the AWB 
address inputs, through these inputs. 

lEA VA Data Latch Enable (Input) 
The LEA input controls the latch for the Y A output port. 
When LEA is HIGH, the latch is open (transparent), and data 
from the RAM, as selected by the ARA address inputs, is 
present at the Y A outputs. When LEA is LOW, the latch is 
closed and it retains the last data read from the RAM 
selected by the ARA address inputs. 

lEB VB Data Latch Enable (Input) 
The LEB input controls the latch for the Y B output port. 
When LEB is HIGH, the latch is open (transparent), and data 
from the RAM, as selected by the ARB address inputs, is 
present at the YB outputs. When LEB is LOW, the latch is 
closed and it retains the last data read from the RAM 
selected by the ARB address inputs. 

OEA VA Output Enable (Input, Active lOW) 
When OEA is LOW, data in the Y A Data Latch is present at 
the Y A outputs. If OEA is HIGH, Y A outputs are in the high­
impedance (off) state. 

OEB VB Output Enable (Input, Active LOW) 
When OEB is LOW, data in the YB Data Latch is present at 
the YB outputs. If OEB is HIGH, YB outputs are in the high­
impedance (off) state. 

WEAC Write Enable (Input, Active LOW) 
When WEAC is LOW together with WEAH and WEAL, new 
data is written into the word selected by the AWA address 
inputs. When WEAC is HIGH, no data is written into the RAM 
through the A port. 

WEBC Write Enable (Input, Active lOW) 
When WEBC is LOW together with WEBH and WEBl, new 
data is written into the word selected by the AWB address 
inputs. When WESC is HIGH, no data is written into the RAM 
through the Sport. 

WEAH High-Byte Write Enable (Input, Active LOW) 
When WEAH is LOW together with WEAC, new data is 
written into the high byte of the word selected by the AWA 
address inputs. When WEAH is HIGH, no data is written into 
the high byte of the word selected by the AWA address 
inputs. 

WEBH High-Byte Write Enable (Input, Active lOW) 
When WEBH is LOW together with WEBC, new data is 
written into the high byte of the word selected by the AWB 
address inputs. When WEBH is HIGH, no data is written into 
the high byte of the word selected by the AWB address 
inputs. 

WEAL Low-Byte Write Enable (Input, Active lOW) 
When WEAL is LOW together with WEAC, new data is 
written into the low byte of the word selected by the AWA 
address inputs. When WEAL is HIGH, no data is written into 
the low byte of the word selected by the AWA address 
inputs. 

WEBl low-Byte Write Enable (Input, Active lOW) 
When WEBl is LOW together with WEsC, new data is 
written into the low byte of the word selected by the AWB 
address inputs. When WEBl is HIGH, no data is written into 
the low byte of the word selected by the AWB address 
inputs. 
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FUNCTIONAL DESCRIPTION 

The part has two read ports (YAO-YA17, YBO-YB17), two 
write ports (DAO - DA17, DBO - DB17), four addresses 
(ARAO - ARA5, AWAO - AWA5, ARBO - ARB5, AWBO - AWB5), 
two latch enables (LEA, LEB), two output enables (OEA' OEB), 
and six write enables (WEAC, MAL, MAH, WEBC, WEBL, 
WEBH) that allow writing of data into one or both bytes of a 
word. The separate read and write addresses faCilitate cre­
ation of three- and four-address architectures and allow 
address set-up and RAM access to overlap. 

Since the A and B sides are identical, only operation of the A 
side is described. The address multiplexer provides the RAM 
with the address ARA when WEAC = HIGH and with the 
address AWA when WEAC = LOW. Internally the part is 
designed so that there is no race condition between the write 
address and the write enable. In most cases MAC and LEA 
will be connected to the clock as shown in Figure 2 so that 
reading will take place in the first part of a clock cycle and 
writing in the last part. The latch at the output of the RAM is 
transparent when LEA = HIGH and retains the data when 
LEA = LOW. The latch has a three-state output Y A controlled 
by OEA. Each word is split into two bytes of 9 bits that can be 
individually written. The low byte covers bits 0 through 8 and 
the high byte covers bits 9 through 17. One or both bytes of 
the data at DA are written into the location given by AWA when 
the common write enable (WEAC) and the appropriate byte 
write enables (WEAL and WEAH) are active. Two special 
cases then arise. First, if a location is written into and read at 

Am29331 
16-BIT 

SEQUENCER 

MICROPROGRAM 
MEMORY 

PIPELINE 
REGISTER 

t 
CONTROL 
SIGNALS 

l 
Am29325 

32-BIT 
FLOAnNG POINT 

PROCESSOR 

I 

f 

the same time, the value read is the value being written. 
Second, if a location is written into from both the A side and 
the B side, the value written is undefined, but the operation is 
not harmful. 

The transparency mode during a write (WEA = LOW) allows 
the data-in (DA) to not only be written into memory but also to 
appear at the output (Y A) when the output latch (LEA) is HIGH 
and the output enable control (OEA) is LOW. 

Extension To Four Read Ports and Two Write 
Ports 

A RAM with four read ports and two write ports can be made 
by using two dual access RAMs and connecting each of the 
write ports, write addresses, and write enables in parallel for 
the two devices. As an example, this RAM may provide data 
storage for a data ALU and an address adder as shown in 
Figure 3. A location should not be read before it has been 
written into for the first time as the contents of the two dual 
access RAMs are likely to be different upon power-up. 

32 Words x 36 Bits Single-Access RAM 

It is possible to convert the 64 words x 18 bits dual-access 
RAM into a 32 word x 36 bit single-access RAM. This is done 
by storing the upper half of the 36 bits in the upper half of the 
64 words and addressing these from the A side. Then store 
the lower half of the 36 bits in the lower half of the 64 words 
and address these from the B side. This arrangement, which is 
shown in Figure 4, does not change the capacity of the RAM, 
but the dual access is lost. 

, 
Am29334 

REGISTER 
FILE 

64 x 18 

I 

1 
Am29332 

32·BIT 
ALU 

~ 

32 

3~ '/ 

l 
Am29323 
32 x 32 

PARALLEL 
MULTIPLIER 

AF003480 

Figure 1. Am29300 Family High-Performance System Block Diagram 
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CPo WE...:. LEA 

~ X READ AND WAITE AAA 
ADDRESS SELECTION 

WEAH• WEAl 

READ DATA X 
WRITE DATA 

~ ,----AWA ------+--1 x= 
\ 

I 
I 

"-------fV 
I 

VA !x= 
I 

~D_A ~!x= X 
I 

WF009520 

Figure 2. Read th~ough VA and Write through DA in a Single Cycle (Two Bytes) 
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I 
I 
I 

=-.J 

AF003490 

Figure 3. RAM with Four Read Ports and Two Write Ports 
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LS001790 

Figure 4. 32 x 36 RAM (Single Access) Using 64 x 18 Dual-Access RAM 

APPLICATIONS 
Suggestions for Power and Ground Pin 
Connections 

The Am29334 operates in an environment of fast signal rise 
times and substantial switching currents. Therefore, care must 
be exercised during circuit board design and layout, as with 
any high-performance component. The following is a sug­
gested layout, but since systems vary widely in electrical 
configuration, an empirical evaluation of the intended layout is 
recommended. 

The YCCT and GNDT pins, which carry output driver switching 
currents, tend to be electrically noisy. The YCCE and GNDE 
pins, which supply the ECl core of the device, tend to produce 
less noise, and the circuits they supply may be adversely 
affected by noise spikes on the YCCE plane. For this reason, it 
is best to provide isolation between the YCCE and YCCT pins, 
as well as independent decoupling for each. Isolating the 
GNDE and GNDT pins is not required. 

Printed Circuit Board Layout Suggestions 

1. Use of a multi-layer PC board with separate power, ground, 
and signal planes is highly recommended. 

2. All YCCE and YCCT pins should be connected to the YCC 
plane. YCCT pins should be isolated from YCCE pins by means 
of a slot cut in the YCCE plane; see Figure 5. By physically 
separating the YCCE and YCCT pins, coupled noise will be 
reduced. 

3. All GNDE and GNDT pins should be connected directly to 
the ground plane. 

4. The YCCT pins should be decoupled to ground with a O.1-I'-F 
ceramic capacitor and a 10-I'-F electrolytic capacitor, placed 
as closely to the Am29334 as is practical. VCCE pins should 
be decoupled to ground in a similar manner. 

A suggested layout is shown in Figure 5. 
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monolithic capacitor) 
CD010900 

Figure 5. Suggested Printed Circuit Board Layout 
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Parameter 

-6-JA Still Air 
-6-JA 200 LFM 
-6-JA SOO LFM 
-6-JC Heat Sink 

200 400 600 

AIR VELOCITY (LINEAR FEET PER MINUTE) 

Figure 6. Am29334 Thermal Characteristics (Typical) 
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ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 

Storage Temperature ............................ -65 to + 150'C Commercial (C) Devices 
Temperature Under Bias - Tc ........... : .... -55 to + 125'C Temperature (Te) .....................•............ O to +85'C 
Supply Voltage to Ground Potential Supply Voitage ................... : ..... : ... +4.75 to +5.25 V 

Continuous ...................................... -0.5 to +7.0 V 
DC Voltage Applied to Outputs Operating ranges define those limits between which the 

for High State ...... , ................... -0.5 V to + Vee Max functionality of the device is guaranteed. 
DC Input Voltage ................................. -0.5 to + 5.5 V 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA TlNGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

DC CHARACTERISTICS over operating range 

Parameter Parameter Test Conditions 
Synibol Description (Note 1) Min. Max. Unit 

Vee = Min. 
VOH Output HIGH Voltage VIN = VIL or VIH 2.4 Volts 

IOH=-3 mA 

Vee = Min. 
VOL Output LOW Voltage VIN = Vil or VIH O.S Volts 

IOl = 16 mA 

VIH Input HIGH Level Guaranteed Input Logical 2.0 Volts HIGH Voltage for All Inputs 

VIL Input LOW Level Guaranteed Input Logical 0.8 Volts LOW Voltage for All Inputs 

V, Input Clamp Voltage Vee-.Min. -1.2 Volts 
I'N=-18 mA 

IlL Input LOW Current Vee = Max. -O.S mA 
VIN-O.S V 

IIH Input HIGH Current Vee = Max. so p.A 
VIN = 2.4 V 

I, Input HIGH Current Vee = Max. 1.0 mA Y,N = S.S V 

IOZH OIf·State (High·lmpedance) VO=2.4 V SO 

IOZl Output Current Vee = Max. 
Vo=O.S V -so 

p.A 

Ise 
Output Short·Circuit Current Vee - Max. to + O.S V -15 -50 rnA (Note 2) Vo=O.S V 

Te=O to +85'C 9S0 
COM'L Only 

Te= +8S'C 820 
Icc 

Power Supply Current 
Vee = Max mA (Note 3) Te = -SS to + 12S'C 

MIL Only 
Te= + 125'C 

Notes: 1. For conditions shown as Min. or Max., use the appropriate value specified under Operating Ranges for the applicable device 
type. 

2. Not more than one output should be shorted at a time. Duration of the short-circuit test should not exceed one second. 
3. Measured with all inputs HIGH. 
4. Recommended air velocity is 200 linear feet per minute. 

" 

I 
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SWITCHING CHARACTERISTICS over operating range (Note 1) 1
'1 
t 

No. Parameter Description Test Conditions Max. Delay Unit 

1 Access Time ARA or ARB to YA or YB LEA or LEB = H 24 ns 

2 Turn-On Time OEA or OEB I to YA or YB 20 ns Active 

3 Turn·Off Time (Note 2) OEA or OEB 1 to YA or Cl = 5 pF load 16 ns 
YB = High Impedance 

4 Enable Time LEA or LEB 1 to YA or YB 16 ns 

5 Transparency WEA or WEB I to YA or YB LEA or LEB = H 32 ns 

6 Transparency DA or DB to Y A or YB 
LEA or L~ = H, 33 ns 
WEA or WEB= L 

7 Data Setup Time DA or DB to WEA or WEB I 9 ns 

8 Data Hold Time DA or DB to WEA or WEB I 2 ns 

9 Address Setup Time AWA or AWB to WEA or WEB I 0 ns 

10 Address Hold Time AWA or AWB to WEA or WEB I 3 ns 

11 Address Setup Time ARA or ARB to LEA or LEB I 7 ns 

12 Address Hold Time ARA or ARB to LEA or LEB I 4 ns 

13 
Latch Close Before 

LEA or LEB I to WEA or WEB I 0 ns 
Write 

14 Write Pulse Width WEA or WEB (LOW) 18 ns 

15 Latch Data Capture 
LEA or LEB (HIGH) 10 ns 

Pulse Width 

Notes: 1. WEA - WEAC + WEALtH 
WEB = WEBC + WEBltH 

2. Y A and YB are tested independently. 
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SWITCHING TEST CIRCUIT 

Vee 

I 
5, R, =240 0 

'~'~~t 

TC003420 

Three-State Outputs 

Notes: 1. CL = 50 pF includes scope probe, wiring and stray capacitances without device in test fixture. 
2. S1, S2, S3 are closed during functions tests and ali AC tests except output enable tests. 
3. S1 and S3 are closed while S2 is open for tPZH test. 

S1 and S2 are closed while S3 is open for tpZL test. 
4. CL = 5.0 pF for output disable tests. 

SWITCHING WAVEFORMS 

3'OV=~~~=3. INPUTS 1.5 V 1.5V ~ OV 
3.0 V 

CLOCK OV 

OUTPUTS 

1/ I 1.5 V 

'------' 

l~·~--t,------.+_+-", 

INPUT 

CLOCK ~ OU~~UT -
f----OU~~UT OELAY 

DELAY 

/J 

WFR02990 
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SWITCHING WAVEFORMS (Cont'd.) 

WEAC -.J ;\ 
-: :+----@ 

ARA YJ:lJX ARA i ~ - :+-® 
~ 

LEA 
'~ 
~ '4--@--+i , , , 

: :. 0 .: 
: .. CD ~' 1 

De" \ , I 
:~ :~ 

V A X'lXJXttAX V A xm\ 
WF023530 

Read Function (same for B Port) 

WEA -----r ® 1. 
~ ~ 

i~ AWA ~ 
, 

:~ :+(!) , ='tt:IXA DA ~ DA 

WF023520 

Write Function (same for B Port) 

-

\ I WE A 

:. 0 
~: , , 

~ , , 

DA 'f:j~ YJt§YY#IIltIlX 
• 0 ~ 

~ : 

VA 'fI:A'fI:AYYXtI:I:A~ 'XtI:lIX 
WF023510 

Note: LEA = HIGH 
OEA= LOW 

Transparency Function (same for B Port) 
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INPUT IOUTPUT CIRCUIT DIAGRAM 
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Am29434 
Eel Four-Port, Dual-Access Register File 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• Fast 
With an access time of 20 ns, the Am29434 supports 
50-60 ns microcycle time when used with the Am29400 
Family for 32-bit systems. 

• 64 x 18 Bits Wide Register File 
The Am29434 is a high-performance, high-speed, dual­
access RAM with two READ ports and two WRITE 
ports. 

• Cascadable 
The Am29434 is cascadable to support either wider 
word widths, deeper register files, or both. 

• Simplified Timing Control 
Control for write enable timing and for on-chip read/ 
write address multiplexer are derived from a single­
phase clock input. 

• Byte Parity Storage 
Width of 18 bits facilitates byte parity storage for each 
port and provides consistency with the Am29432 32-bit 
ALU. 

• Byte Write Capability 
Individual byte-write enables allows byte or full word 
write. 

GENERAL DESCRIPTION 

The Am29434 is a 64-word deep and l8-bit wide dual­
access register file designed to support other members of 
the Am29400 Family by providing high-speed storage. It 
has two write and two read ports for data and four 6-bit 
address ports. Two address ports are associated with each 
pair of read and write data ports, one to read data and the 
other to write. The device is capable of performing two 
reads and two writes in one cycle. The 18-bit wide register 

file allows storage of byte parity to support parity check and 
generate in the Am29432 32-bit ALU. Independent control 
for each read and write data port allows the Am29434 to be 
used as a high-speed shared memory or as a mailbox for a 
multiprocessor system. The device is designed with an 
access time of 20 ns. It is housed in a 120-lead pin grid 
array package. 
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CONNECTION DIAGRAM 
120-Lead PGA* 

1 
A B C D E F G H J K L M N 

1 '@ @@@@@~@@@@@@ 
2 @@@@@@:@@@@@@ 
3 @@O@@@ @@@C@@ 
4 @@@ : @@@ 
5 @@@ I @@@ 
8 @@@ I @@@ 
7 f--@-@)-@- f-._-+--- -@-@-@-

B @@@ I @@@ 
I 

9 @@@ I @@@ 
10 @@@ I @@@ 
11 @@@ @@ @ $ @@@ O@@ 
12 @ @@@@ @ ~ @@@ @@@ 
13 ,@ @ @ @ @ @ @) @@@ @@@ 

I 

eD009170 

·Pinout observed from pin side of package. 

TABLE OF INTERCONNECTIONS 
(Sorted by Pin No.) 

PIN NO. PIN NAME 
PAD PIN 

PIN NAME 
PAD PIN 

PIN NAME 
PAD PIN 

PIN NAME 
PAD 

NO. NO. NO. NO. NO. NO. NO. 

- - 99 C-5 VBS 115 H-2 OA10 10 M-5 VA4 80 
- - 97 CoB Veco 113 H-3 Vee 68 M-e VA6 81 
- - 39 C-7 

~1° 
52 H-ll OB15 34 M-7 VAS 82 

- - 37 CoB 53 H-12 OB12 95 M-a VAll 25 
A-I AWA2 1 C-g VB14 109 H-13 OB14 94 M-B VA13 86 
A·2 ARA3 120 C-l0 VB17 48 J-l OA12 11 M-l0 VA15 87 
A-3 AWM 59 ColI OBI 44 J-2 DA13 71 M-l1 ARB3 89 
A·4 VBl 58 C-12 OBO 104 J-3 OAll 70 M-12 AWB2 30 
A·5 Vcco 56 C-13 OB7 41 J-l1 VEE 38 M-13 ~1 91 
A·B VB7 114 0-1 OAO 4 J-12 VEE 38 N-l AL 16 
A·7 VBS 54 1>-2 ARAO 63 J-13 VEE 38 N-2 ~AH 76 
A·a VB12 51 0-3 AWAO 3 K-l OA16 13 N-3 AWB4 17 
A·9 Veeo 50 0-11 OB4 102 K-2 DA15 72 N-4 VA2 19 
A·l0 ~5 49 0-12 OB3 43 K-3 OA14 12 N-5 Veeo 20 
A·ll EBl 47 0-13 OB2 103 K-ll ARBO 92 N-B VAS 21 
A-12 ~BC 106 E-l 0A2 5 K-12 OB17 33 N-7 VA9 24 
A-13 AWBS 46 E-2 OA3 65 K-13 DB16 93 N-a VA10 84 
8·1 ARA2 61 E-3 DAl 64 L-l LEA 14 N-B Vcco 26 
8-2 AWA3 60 E-ll Vee 9B L-2 ARA5 74 N-l0 VA1S 28 
8-3 ARM 119 E-12 Vee 98 L-3 OA17 73 N-11 AWB3 29 
8-4 VB2 117 E-13 Vee 9B L-4 VAO 18 N-12 ARB2 90 
8-5 VB4 116 F-l OA4 6 L-5 

~ 
79 N-13 AWB1 31 

8-6 VBS 55 F-2 DA5 66 L-6 23 
8-7 VB9 112 F-3 VEE 6 L-7 VA7 22 
8-a VBll 111 F-11 OB6 100 L-a Veeo 83 
8-9 VB13 110 F-12 OB5 42 L-9 VA12 85 
8-10 VB16 108 F-13 DBS 101 L-l0 VA14 27 
8-11 WEBH 107 G-l OA6 9 L-l1 VA17 B8 
8-12 LEB 45 G-2 DA7 67 L-12 AWBO 32 
8-13 ARB5 105 G-3 DA6 7 L-13 ~3 35 
C-l AWAl 2 G-l1 089 40 M-l EAC 75 
C-2 ARAl 62 G-12 OB11 36 M-2 AWA5 15 
C-3 VBO 118 G-13 OB10 96 M-3 ARB4 77 
C-4 VB3 57 H-l OA9 69 M-4 VAl 78 

1 
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TABLE OF INTERCONNECTIONS 
(Sorted By Pin Name) 

PIN 
PIN NO. 

PAD PIN 
PIN NO. 

PAD PIN 
PIN NO. 

PAD PIN 
PIN NO. 

PAD 
NAME NO. NAME NO. NAME NO. NAME NO. 

- - 99 DA4 F-1 6 LEA L-1 14 VAa M-7 82 
- - 97 DA5 F-2 66 ~ B-12 45 VAS N-7 24 
- - 39 DA6 G-3 7 L-6 23 VA10 N-8 84 
- - 37 DA7 G-2 67 ~ C-8 53 VA11 M-8 25 

ARAO 0-2 63 DA6 G-1 9 Vee H-3 68 VA12 L-9 85 
ARA1 C-2 62 DAB H-1 69 Vee E-l1, 98 VA13 M-9 86 
ARA2 N-13 61 DA10 H-2 10 E-12, VA14 L-10 27 
ARA3 A-2 120 DA11 J-3 70 E-13 VA15 M-10 87 
ARA4 B-3 119 DA12 J-1 11 Vcco N-5 20 VA16 N-10 28 
ARA5 L-2 74 DA13 J-2 71 Veeo N-9 26 VA17 L-11 88 
ARBO K-11 92 DA14 K-3 12 Veeo A-9 50 VBO C-3 118 
ARB1 M-13 91 DA15 K-2 72 Veeo A-5 56 VB1 A-4 58 
ARB2 N-12 90 DA16 K·1 13 Veeo L-6 83 VB2 B-4 117 
ARB3 M-11 89 DA17 L-2 73 Veeo C-6 113 VB3 C-4 57 
ARB4 M-3 77 DBO C-12 104 VEE F·3 8 VB4 B-5 116 
ARB5 B-13 105 DB1 C-11 44 VEE J-11, 38 Vas C-5 115 
AWAO 0-3 3 DB2 0-13 103 J-12, VB6 B-6 55 
AWA1 C-1 2 DB3 0-12 43 J-13 VB7 A-6 114 
AWA2 A-1 1 DB4 0-11 102 WEAe M-1 75 Vaa A-7 54 
AWA3 B-2 60 DB5 F-12 42 WEAH N-2 76 VB9 B-i 112 
AWA4 A-3 59 DB6 F-13 101 ~l N-1 16 VB10 C-7 52 
AWA5 M-2 15 DB7 C-13 41 WEBe A-12 106 VB11 B-8 111 
AWBO L-12 32 DBa F-11 100 WEBH B-11 107 VB12 A-8 51 
AWB1 N-13 31 DB9 G-11 40 WEBl A-11 47 VB13 B-9 110 
AWB2 M-12 30 DB10 G-13 96 VAO L-4 18 VB14 C-9 109 
AWB3 N-11 29 DB11 G-12 36 VA1 M-4 78 VB15 A-10 49 
AWB4 N-3 17 DB12 H-12 95 VA2 N-4 19 VB16 B-10 108 
AWB5 A-13 46 DB13 L-13 35 VA3 L-5 79 VB17 C-10 48 
DAD 0-1 4 DB14 H-13 94 VA4 M-5 80 
DA1 E-3 64 DB15 H-11 34 VA5 N-6 21 
DA2 E-1 5 DB16 K-13 93 VAS M-6 81 
DA3 E-2 65 DB17 K-12 33 VA7 L-7 22 
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PIN 
NAME 

AWA2 
AWAl 
AWAO 
DAO 
DA2 
DA4 
DA6 
VEE 
DA8 
DA10 
DA12 
DA14 
DA16 
LEA 

~S 
AL 

AWB4 
YAO 
YA2 
Vcco 
VAs 

bt 
YA9 
YAll 
Veeo 
YA14 
YA16 
AWB3 
AWB2 

Notes: 

TABLE OF INTERCONNECTIONS 
(Sorted by Pad No.) 

PAD PIN PIN PAD PIN PIN PAD PIN PIN PAD PIN 
NUMBER NUMBER NAME NUMBER NUMBER NAME NUMBER NUMBER NAME NUMBER NUMBER 

1 A-l AWBl 31 N·13 ARA2 61 B-1 ARBl 91 M·13 
2 e·1 AWBO 32 L-12 ARM 62 e·2 ARBO 92 K-11 
3 0-3 DBH 33 K-12 ARAO 63 0-2 DB16 93 K-13 
4 0-1 DB1S 34 H-11 DAl 64 E·3 DB14 94 H-13 
5 E·1 DB13 35 L·13 DA3 65 E·2 DB12 95 H·12 
6 F·1 DBll 36 G·12 DAS 66 F·2 DB10 96 G·13 
7 G-3 37 DA7 67 G-2 97 
8 F·3 VEE 38 J·11, J·12, J·13 Vee 68 H·3 Vee 98 E·11,E·12,E·13 
9 G-1 39 DA9 69 H·1 99 

10 H·2 DB9 40 G·11 DAll 70 J-3 DB8 100 F·11 
11 J·1 DB7 41 C-13 DA13 71 J·2 DBS 101 F·13 
12 K·3 DB5 42 F·12 DA1S 72 K·2 DB4 102 0-11 
13 K·1 DB3 43 0-12 DAH 73 L·3 DB2 103 0·13 
14 L·1 DBl 44 e·11 ~S 74 L·2 DBO 104 e·12 
15 M·2 LEB 45 B-12 AC 75 M·1 ~S 105 B·13 
16 N·1 ~5 46 A·13 WEAH 76 N-2 

WEBC 
106 A-12 

17 N-3 BL 47 A-11 ARB4 77 M·3 BH 107 B·11 
18 L-4 YBH 46 C-10 YAl 78 M-4 YB16 108 B·10 
19 N-4 YB1S 48 A·10 YA3 79 L·S YB14 109 e·9 
20 N·5 Vcco 50 A·9 YM 80 M-5 YB13 110 B·9 
21 N·6 YB12 51 A·B YA6 81 M-6 YBll 111 B-6 
22 L-7 ~~O 52 e·7 YA8 82 M·7 YB9 112 B·7 
23 L-6 53 C-6 Vcco 83 L-6 Vcco 113 C-6 
24 N-7 YB8 54 A·7 YA10 64 N·B YB7 114 A·6 
25 M-6 YB6 55 B·6 YA12 85 L-9 YBS 115 C-S 
26 N-9 Vcco 56 A·S YA13 B8 M-9 YB4 116 B·5 
27 L-l0 YB3 57 C-4 YA15 87 M-l0 YB2 117 B-4 
28 N-10 YBl 56 A·"j YAH 88 L·ll YBO 118 C-3 
29 N·11 AWA4 58 A·3 ARB3 89 M-11 ARM 119 B·3 
30 M·12 AWA3 60 B·2 ARB2 90 N·12 ARA3 120 A·2 

1. Vee is the most positive power supply voltage for internal chip logic. 
2. Veco is the most positive power supply for output buffers. 
3. VEE is the most negative power supply for all logic. 
4. Pins E-11, E-12, and E-13 are physically shorted together in the package. 
5. Pins J-11, J-12, and J-13 are physically shorted together in the package. 

LOGIC SYMBOL METALLIZATION AND PAD LAYOUT 

Die Size: 251 x 258 mils 
Equivalent gate count - 2700 gates 

LS002B21 

3-92 

Y" 
YA10 

VA" 
VA" 
Vcco 
Y"'13 
VA .. 
y Al~ 
Y ... 'b 

VA" 
AWBJ 



ORDERING INFORMATION 

Standard Products 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is 
formed by a combination of: A. Device Number 

B. Speed Option (if applicable) 
C. Package Type 
D. Temperature Range 
E. Optional Processing 

i 
L.... ----- E. OPTIONAL PROCESSING 

Blank = Standard processing 
B = Bum·in 

'----------D. TEMPERATURE RANGE 
C = Commercial (0 to + 70°C) 

'-------------C. PACKAGE TYPE 
G = 120-Pin Pin Grid Array (CG 120') 

'-----------------B. SPEED OPTION 
Not Applicable 

'---A. DEVICE NUMBER/DESCRIPTlO'N (include revision leller) 
Am29434 ECl Four-Port, Dual-Access Register File 

• Preliminary. Subject to Change. 

I Valid Combinations 

I AM29434 I GC, GCB 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released valid combinations, 
and to obtain additional data on AMD's standard military 
grade products. 
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PIN DESCRIPTION 

ARAO - ARA5 Addresses (Inputs, Active HIGH) 
The 6-bit field presented at the ARA inputs selects one of 64 
memory words for presentation to, the Y A Data Latch. 

ARBO - ARB5 Addresses (Inputs, Active HIGH) 
The six-bit field presented at the ARB inputs selects one of 
64 memory words for presentation to the YB Data Latch. 

V AO - VA 17 Data Latch (Outputs) 
The la-bit Y A Data Latch Outputs. 

VBO - VB17 Data Latch (Outputs) 
The la-bit YB Data Latch Outputs. 

AWAO - AWA5 Addr,sses (Inputs, Active HIGH) 
The six-bit field presented at the AWA inputs selects one of 
64 words for writing new data from the DA inputs. 

AWBO - AWB5 Addresses (Inputs, Active HIGH) 
The six-bit field presented at the AWB inputs selects one of 
64 words for writing new data from the DB inputs. 

DAO - DA17 Data (Inputs, Active HIGH) 
New data is written into the word. selected by the AWA 
address inputs. through these inputs. 

Dao - DB17 Data (Inputs, Active HIGH) 
New data is written into the word. selected by the AWB 
address inputs. through these inputs. 

LEA V Ii. Data Latch Enable (Input) 
The LEA input controls the Latch for the Y A output port. 
When LEA is HIGH. the latch is open (transparent) and data 
from the RAM. as selected by the ARA address inputs. is 
present at the Y A outputs. When LEA is LOW. the Latch is 
closed and it retains the last data read from the RAM 
selected by the ARA address inputs. 

LEB VB Data Latch Enable (Input) 
The LEB input controls the Latch for, the Y B output port. 
When LEB is HIGH. the Latch is open (transparent) and data 
from the RAM. as selected by the ARB address inputs. is 
present at the YB outputs. When LEB is LOW. the Latch is 
closed and it retains the last data read from the RAM 
selected by the ARB address inputs. 

OEA VA Output Enable (Input, Active LOW) 
When OEA is LOW. data in the Y A Data Latch is present at 
the Y A outputs. If OEA is HIGH. Y A outputs are in the LOW 
logiC (off) state. 

OEB VB Output Enable (Input, Active LOW) 
When OEB is LOW. data in the YB Data Latch is present at 
the YB outputs. If OEB is HIGH. YB outputs are in the LOW 
logic (off) state. 

WEAC Write Enable (Input, Active LOW) 
When WEAC is LOW together with WEAH and WEAL. new 
data is written into the word selected by the AWA address 
inputs. When WEAC is HIGH. no data is written into the RAM 
through the A port. 

MBC Write Enable (Input, Active LOW) 
When WEBC is LOW together with WEBH and WEBl. new 
data is written into the word selected by the AWB address 
inputs. When WEBC is HIGH. no data is written into the RAM 
through the B port. 

WEAH High-Byte Write Enable (Input, Active LOW) 
When WEAH is LOW together with WEAC. new data is 
written into the high byte of the word selected by the AWA 
address inputs. When WEAH is HIGH. no data is written into 
the high byte of the word selected by the AWA address 
inputs. 

WEBH High-Byte Write Enable (Input, Active LOW) 
When WEBH is LOW together with WEBc. new data is 
written into ltJe high byte of the word selected by the AWB 
address inputs. When WEBH is HIGH. no data is written into 
the high byte of the word selected by the AWB address 
inputs. 

WEAL Low-Byte Write Enable (Input, Active LOW) 
When WEAL is LOW together with WEAc. new data is 
written into the low byte of the word selected by the AWA 
address inputs. When WEAL is HIGH. no data is written into 
the low byte of the word selected by the AWA address 
inputs. 

WEBl Low-Byte Write Enable (Input, Active LOW) 
When WEBl is LOW together with WEBC. new data is 
written into the low byte of the word selected by the AWB 
address inputs. When WEBL is HIGH. no data is written into 
the low byte of the word selected by the AWB' address 
inputs. 

Vee Internal Logic Ground 
This is the most positive voltage in the internal logic. It is 
used as the reference level for internal logic. 

Veeo Out Drive Ground 
This is the most positive voltage in the output buffer logic. It 
is used as the reference level for the buffer logic. 

VEE Power Supply Volatge 
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FUNCTIONAL DESCRIPTION 

The part has two read ports C'fAO-YA17, YeO-Ye17), two 
write ports (DAO - DA17, Deo - De17), four addresses 
(ARAO-ARAS, AWAO-AWAS, AReO-ARes, Aweo-Awes), 
two latch enables (LEA, LEe), two output enables (i5EA, i5Ee), 
and six write enables <WEAC, WEAL, WEAH, WEec, WEel, 
WEeH) that allow writing of data into one or both bytes of a 
word. The separate read and write addresses facilitate cre­
ation of three- and four-address architectures and allow 
address set-up and RAM access to overlap. 

Since the A and B sides are identical, only operation of the A 
side is described. The address multiplexer provides the RAM 
with the address ARA when WEAC = HIGH and with the 
address AWA when WEAC = LOW. Internally the part is 
designed so that there is no race condition between the write 
address and the write enable. In most cases WEAC and LEA 
will be connected to the clock as shown in Figure 2 so that 
reading will take place in the first part of a clock cycle and 
writing in the last part. The latch at the output of the RAM is 
transparent when LEA = HIGH and retains the data when 
LEA = LOW. The latch has an output Y A controlled by OEA. 
Each word is split into two bytes of nine bits that can be 
individually written. The low byte covers bits 0 through 8 and 
the high byte covers bits 9 through 17. One or both bytes of 
the data at DA are written into the location given by AWA when 
the common write enable (WEAcl and the appropriate byte 
write enables (WEAL and WEAH) are active. Two special 
cases arise. First, if a location is written into and read at the 

Am29431 
16-BIT 

SEQUENCER 

1"6 
MICROPROGRAM 

MEMORY 

PlPEUNE 
REGISTER , 
CONTROL 
SIGNALS 

I 

same time, the value read is the value being written. Second, if 
a location is written into from both the A side and the B side, 
the value written is undefined, but the operation is not harmful. 

The transparency mode during a write (WEA = LOW) allows 
the data-in (DA) to not only be written into memory but also to 
appear at the output C'f A) when the output latch (LEA) is HIGH 
and the output enable control (OEA) is LOW. 

Extension To Four Read Ports and Two Write 
Ports 

A RAM with four read ports and two write ports can be made 
by using two dual access RAMs and connecting each of the 
write ports, write addresses, and write enables in parallel for 
the two devices. As an example, this RAM may provide data 
storage for a data ALU and an address adder as shown in 
Figure 3. A location should not be read before it has been 
written into for the first time as the contents of the two dual 
access RAMs are likely to be different upon power-up. 

32 Words x 36 Bits Single Access Ram 

It is possible to convert the 64 word x 18-bit dual-access RAM 
into a 32 word x 36-bit single-access RAM. This is done by 
storing the upper half of the 36 bits in the upper half of the 64 
words and addressing them from the A side. The lower half of 
the 36 bits should then be stored in the lower half of the 64 
words and addressed from the B side. This arrangement, 
which is shown in Figure 4, does not change the capacity of 
the RAM, but the dual access is lost. 

, 
~ 

Am29434 
REGISTER 

FILE 
64 x 18 -

32/ 
7 

32 

1 
Am29432 Am29423 

32-BIT 32 x 32 
ALU PARALLEL 

MULTIPUER 

I , 
AFOO3483 

Figure 1. Am29400 Family High-Per1ormance System Block Diagram 
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c:p. MAC' LEA 

~ ~ X READ AND WRITE AAA 
ADDRESS SELECTIDN 

,-----AWA -----r--.! x= 
I I 
I \ WIi",,·Wi!AL I 
I 
I 

I 

-------tV 
I 

READ DATA i X VA !>e 
I I 

WAITE DATA i X 
I 

WF009520 

Figure 2. Read through Y A and Write through DA In a Single Cycle (Two Bytes) 

------- --, 

DUAL 
ACCESS 

RAM 

.---____ ...... I 

I 
I 

DUAL 
ACCESS 

RAM 

I 
I 
I 
I 

=.J 

AFD03490 

Figure 3. RAM with 4 Read Ports and 2 Write Ports 
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I 

LOW 

LE 

LSO01790 

Figure 4. 32 x 36 RAM (Single Access) Using 64 x 18 Dual Access RAM 

APPLICATIONS 

Vcco ~===-"""=:o~ 

Suggested Printed Circuit Board Layout 

Bottom View 

ABCOEFGHJKLMN 

1 ••••••••••••• 

2 • • • • • • • • • • ••• 

a • • • • • • • 
• • • 

(!}--Z:"--~VCCO 

10 , •• 

" . . . 
12 • • • 

13 • • • 

• • • 

:.0:::0:::: 0 ... 0 .... 

~rl 
C 

Connect VCCO Directly to 
Plane . 

AF004151 

Connect Vee" VEE Directly to Plane from E-13 and J-13. 
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. ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 

Storage Temperature ............................ -65 to + 150·C Commercial (C) Devices 
Ambient TemperallJre with Temperature ........................................ 0, to + 75·C 

Power Applied .................................. -55 to + 125·C Supply Voltage ........................... -5.46 V to -4.94 V 
VEE Pin Potential to GND Pin ............. -7.0 V to + 0.5 V Air Velocity ....................... 200 linear feet per minute 
Input Voltage (DC) ................................ VEE to + 0.5 V 
Output Current (DC Output HIGH) , ... -30 mA to +0.1 mA Operating ranges define those limits between which the 

Stresses llbove those listed under ABSOLUTe MAXIMUM 
functionality of the device is guaranteed. 

RA TlNGS may cause permanent device failure. Functionality 
at or above these limits is not implied. exposure to absolute 
maximum ratings for extended periocts may affect device 
reliability. 

DC CHARACTERISTICS (Commercial) (Notes 1 and 2) 

Parameter Parameter Test Conditions Min. Typ. Max. 
Sym!KJ1 Description (Note 5) TA (Note 3) (Note 1) (Note 3) Units 

O·C -1000 -840 

VOH Output Voltage HIGH + 25·C -960 -810 mV 

+75·C -900 -720 
VIN - VIH Max. or VIL Min. O·C -t~70 -1665 

VoL Output Voltage LOW + 25·C ,,,,,,-;.0 -1650 mV' 

+ -1625 
, 1O!!> 

VOHC Output Voltage HIGH " -980 mV 

C -920 
VIN - VIH Min. or VI ,. O·C -1645 

VOLC Output Voltage LOW + 25·C -1630 mV 

+ 75·C -1605 

O·C -1145 -640 

VIH Input Voltage HIGH Voltage HIGH for + 25·C -1105 -810 mV 

+ 75·C -1045 -720 

O·C -1870 -1490 

VIL Input Voltage l uaranteed Input Voltage LOW for + 25·C -1850 -1475 mV All Inputs 
+75·C -1830 -1450 

IIH Input Current HIGH VIN - VIH Max. 
o to 220 /JA + 75·C 

IlL Input Current LOW VIN - VIL Min. + 25·C 140 /JA 

lEE Power Supply Current All Inputs and Outputs Open 
O·C 950 

mA 
+ 75·C 850 

Notes: 1. Typical values are: 
VEE = -5.2 V, Vee - GND, Vcco = GND 
Output Load - 50 nand 30 pF to -2.0 V. 

2. Guaranteed w~h transverse air flow exceeding 200 linear F.P.M. and 2·minute warm·up period. Typical thermal resistance values of the 
package' are: 
OJA (Junction·to·Ambient) = 22·C/Walt (still air) 
OJA (Juriction-to-Ambient) = 7.5·C/Walt (at 200 F.P.M. air flow) 
OJC (Junction-to-Case) - 5·C/Walt 

3. These are absolute voltages w~h respect to device ground pin and include all overshoots due to system and/or tester noise. Do not 
altempt 10 test lhese values without suitable equipment. 

I 
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SWITCHING CHARACTERISTICS (Commercial Only) 

No. !'arameters From To Test Conditions Time (ns) 

1 Access Time ARA or ARB VA or VB LEA or LEB - H 20 

2 Turn-On Time OEA or OEB= L VA or VB 10 

3 Turn-Off Time OEA or "OEB - H VA or VB-L 10 

4 Enable Time LEA or LE!l = H VA or VB 13 

5 Transparency WE'A or WE'B = L VA or VB 

~ 
28 

6 Transparency DA or DB VA or VB LEA 29 

Minimum Setup and H'\W, 
No. Parameters For "l~ \.,~~;:I~,;",,~~.';T Time (ns) 

7 Data Setup DA or DB , ci~I!.(!\1llro H) 9 

8 Data Hold DA OR DB B"'!L TO H) 2 

9 Address Setup AWA or Aw \'"br"~B (H TO L) 0 

10 Address Hold AWA. A or WE'B (L TO H) 3 

11 Address Setup .,.' LEA or LEB (H TO L) 7 

12 Address Hold ",AFi~r LEA or LEB (H TO L) 4 

13 Latch close A or'LEB 
WE'A or WEB (H TO L) 0 before Write TO L) 

Minimum Pulse Widths 

No. Parameters Input Pulse Time (ns) 

14 Write Pulse WEAorWEB HIGH - LOW - HIGH 1e 

15 Latch Data Capture LEA or LEe LOW - HIGH - LOW 10 

WEA = WEAC • (WEAL + WEAH) ··V A and VB Are Tested Independently 
WEB = WEBC • (WEBl + WEB H) 

SWITCHING TEST CIRCUIT SWITCHING TEST WAVEFORM 

*J f* 
Vee v_ 

-0.9 V 

~f------m __ m ------\ 

...... 
~t !.~ Vo 

-1.7 V 
tr = tf = 2.5 na TVP 

t~.- 1 
-w TWOO053M 

TCOOO232 

RT = 50 n termination of measurement system 
Cl - 30 pF (including stray jig capacitance) 
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WEAC 

Ki:Y TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS OUTPUTS 

---
MUST .. WILLBf 
STEA:DY STEADY ----- MAY CHANGE WILLSE 

FROM H TO~ 
CHANGING 
FftOMHTOl 

JJJJJJ MAVCHANQE 
WILLSE 

FROML TOH CHANGING 
FROM L TOH 

JIJIf1 DON'TeARE; CHANGING; 
ANY CHANGE STATE 
PERMITTED UNKNOWN 

l1HK 
CENTER 

DOES NOT LINE IS HIGH 
APPLY IMPEDANCE 

''OFF''STATE 

KSOOOO10 

SWITCHING WAVEFORMS 

!----'.-----+--+_ 'h 

J 50% '__ ___ .I 

WFR02991 

\ 
~~~~~3-------------------------------

't:t!:ti ARA 1 

~.: " 

------~!JJr:~~,,~-------------------------------------------, • Q)r----~~~, :. <D~----.~: 
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Note: U:A - HIGH 
C5EA-LOW 

SWITCHING WAVEFORMS (Cont'd.) 

\'---_---JI , ~; . 
... :4f-------I@':-----t 

, 

:~4~----~®f--------~~ , , 

Transparency Function (same for B Port) 

WF023050 

~~4 ___ @===~1:r,'-------
~ 

I ~ 

xk ! Xxxxxxxxxx , 
:~ , :+-{!) 

, 

WF023060 

Write Function (same for B Port) 
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I/O CURRENT INTERFACE DIAGRAM 

INPUT CIRCUIT 

INPUT 
R, 

~--. TO CIRCUIT 

I'H 50K 

IC000920 

OUTPUT CIRCUIT 

Vcoo 

R2 R2 

VEE 
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Am29325 
32-Bit Floating-Point Processor 

DISTINCTIVE CHARACTERISTICS 

• Single VLSI device performs high-speed floating-point 
arithmetic 
- Floating-point addition, subtraction, and multiplication 

in a single clock cycle 
- Internal architecture supports sum-of-products, 

Newton-Raphson division 
• 32-bit, three-bus flow-through architecture 

- Programmable 110 allows interface to 32- and IS-bit 
systems 

• IEEE and DEC formats 
- Performs conversions between formats 
- Performs integer ++ floating-point conversions 

• Six flags indicate operation status 
• Register enables eliminate clock skew 
;. Input and output registers can be made transparent 

independently 

GENERAL DESCRIPTION 

The Am29325 is a high-speed floating-point processor unit. 
It performs 32-bit single-precision floating-point addition, 
subtraction, and multiplication operations in a Single VLSI 
circuit, using the format specified by the proposed IEEE 
floating-point standard, P754. The DEC single-precision 
floating-point format is also supported. Operations for 
conversion between 32-bit integer format and floating-point 
format are available, as are operations for converting 
between the IEEE and DEC floating-point formats. Any 
operation can be performed in a single clock cycle. Six 
flags - invalid operation, inexact result, zero, not-a-num­
ber, overflow, and underflow - monitor the status of opera­
tions. 

The Am29325 has a three-bus, 32-bit architecture, with two 
input buses and one output bus. This configuration provides 

high 110 bandwidth, allows access to all buses and affords 
a high degree of flexibility when connecting this device in a 
system. All buses are registered with each register having a 
clock enable. Input and output registers may be made 
transparent independently. Two other 110 configurations, a 
32-bit, two-bus architecture and a IS-bit, three-bus archi­
tecture, are user-selectable, easing interface with a wide 
variety of systems. Thirty-two-bit internal feedforward data­
paths support accumulation operations, including sum-of­
products and Newton-Raphson division. 

Fabricated with the high-speed IMOX ™ bipolar process, 
the Am29325 is powered by a single 5-volt supply. The 
device is housed in a 145-terminal pin-grid-array package. 

Am29300 FAMILY HIGH·PERFORMANCE SYSTEM BLOCK DIAGRAM 

Am29331 
16-BIT 

SEQUENCER 

t 16 

MICROPROGRAM 
MEMORY 

PlPEUNE 
REGISTER , 
CONTROL 
SIGNALS 

IMOX Is a Irod.mark 01 Advanood MI«o 0.111_, lno. 
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Am29337 
16-Bit Bounds Checker 

DISTINCTIVE CHARACTERISTICS 

• Double Comparator • Out-of-Bounds Flag 
- Compares a 16·blt input number with a lower limit and 

an upper limit 
- Flags values that are outside the bounds of a lower 

and an upper limit 
• Cascadsble • Comparee Signed or Unsigned Numbers 

- 16·bit cascadable to longer words • 28-Pln Packages 

GENERAL DESCRIPTION 

The Am29337 is the 16·blt bounds checker that compares 
a 16·blt signed or unsigned number with a lower and an 
upper limit stored in the registers. The part flags values that 

are out of bounds, or triggers a counter used to count the 
number of values that lie within the given range. 

The Am29337 is cascadable up to 32 bits or greater. 

BLOCK DIAGRAM 

lOWER 
BOUND 

UPPER 
BOUND 

,..----.)11----'I'-------<::::J Cil 

,..----<=-..1 CI U 

COMPARATOR COMPARATOR 

--<J CP 

--<:J SIGNED 

OOB 

80006640 

PUplication " B& Amendment 

3·104 
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Part No. 
Am2900 

Am29COO 

Am29112 

Am29114 

Am29116 

Am29C116 

Am29117 

Am29CI17 

Am29C323 

Am29325 

Am29C325 

Am29331 

Am29C331 

Am29332 

Am29C332 

Am29334 

Am29C334 

LOGIC SYMBOL 

18 

RELATED AMD PRODUCTS 

Description 
Bipolar Bit-Slice Family 

CMOS Bit-Slice Family 

Bipolar 8-Bit Cascadable Microprogram Sequencer 

Bipolar Interrupt Controller 

Bipolar 16-Bit Microprogrammable Controller 

CMOS 16-B~ Microprogrammable Controller 

Bipolar 16-Bil Two-Port Microprogrammable Controller 

CMOS 16-BH Two-Port Microprogrammable Controller 

CMOS 32 x 32 Multiplier 

Bipolar 32-Bit Floating Point Processor 

CMOS 32-Bit Floating Point Processor 

Bipolar 16-Bit Microprogram Sequencer 

CMOS 16-Bit Microprogram Sequencer 

Bipolar 32-Bit Non-Cascadable ALU 

CMOS 32-Bit Non-Cascadabfe ALU 

Bipolar 64 x 18 Four-Port Dual-Access Register File 

CMOS 64 x 18 Four-Port Dual-Access Register File 

CONNECTION DIAGRAM 

Top View 

~5 SIGNED 

~4 ~1 
DIS 010 

012 Os 
COu Os 
008 CP 

GNO Vee 
NC ENL 

COt ENU 

Do 04 

01 05 

02 De 

Os 07 

C1u CIt. 

CD01010D 

Note: Pin 1 is marked for orientation. 

/ 

METALLIZATION AND PAD LAYOUT 

LSOD2810 
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Gate Count: 250 



ORDERING INFORMATION 

Standard Products 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by 
a combination· of: a. Device Number 

I 

b. Speed Option (if applicable) 
c. Package Type 
d. Temperature Range 
e. Optional Procesalng 

o C 

TL. _____ e. OPTIONAL PROCESSING 
Blank - Standard processing 

B- Bum-in 

'----------d. TEMPERATURE RANGE 
C - Commercial (0 to + 70°C) 

'-------------c. PACKAGE TYPE 

- a. DEVICE NUMBER/DESCRIPTION 
Am29337 
, S-BH Bounds Checker 

Valid Combinations 

o - 28-Pln Sldebrazed Ceramic DIP (S04028) 

b. SPEED OPTION 
Not Applicable 

Valid Combinations 

L AM29337 J DC,OCB, I 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMD's standard military grade 
products. 
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ORDERING INFORMATION (Cont'd.) 

APL Products 

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved 
Products List) products are fully compliant with MIL·STD·883C requirements. The order number (Valid Combination) for APL 
products is formed by a combination of: a. Device Number 

I 

b. Speed Option (if applicable) 
c. Device Class 
d. Package Type 
e. Lead Finish 

x 

I 
1.... -----a. LEAD FINISH 

C-Gold 

'----------d. PACKAGE TYPE (per 09·000) 
X = 28·Pin (400 mil) 8idebrazed Ceramic Dip 

(804028) 

'-------------c. DEVICE CLASS 
/B - Class B 

'---a. DEVICE NUMBER/DESCRIPTION 
Am29337 
16·Bil Bounds Checker 

Valid Combinations 

b. SPEED OPTION 
Nol Applicable 

Valid Combinations 

I AM29337 I /BXC 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations or to check for newly released valid 
combinations. 
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Group A Tests 
Group A tests consist of Subgroups 

1, 2, 3, 7, B, 9, 10, 11. 



PIN DESCRIPTION 

Cil. Clu Carry-Iii (Inputs) 
Carry input for cascading. 

COL. COu Carry Out (Outputs) 
carry outputs for the result of comparison. 

CF' System Clock (Input) 
Clocks limit registers at the LOW-to-HIGH transition. 

Do - D15 Data Input (Input) 
Input to the comparators and limit registers. 

FUNCTIONAL bESCRIPTION 
The Am29337 is a high-speed bounds checker that deter­
mines if a 16-bit number lies within a lower and an upper limit. 
It consists of two comparators and two limit registers. as 
shown in the Block Diagram. 

Limit Registers. Double Comparator 

The Am29337 has a lower limit register and an upper limit 
register. The values of these two registers are loaded from the 
D-bus with the load enable inputs ENl and ENU on the clock's 
rising edge. The values of the data present on the D-bus. are 
compared with the values stored in the limit registers through 
the two comparators. The comparators operate on signed 
numbers when SIGNED is HIGH and on unsigned numbers 
when it is LOW. The results of the compariSOns are given by 
the outputs COL. COu. and OOB. The definitions of carry 
inputs Cil and Clu are given in Table 1. and the combination 
of the different regions in Table 2. If the data being compared 
is out of the region. the out-of-bounds flag. OOB. which is 
defined as Cal' cOu. is set. 

ENl. ENu Load Enable (Inputs) 
Loads enables for the limit registers. 

OOB Out-of-Bounds Flag (Output) 
Flags values that are out of bounds. Defined as COL' COu. 

SIGNED Sign Input (Input) 
Selects signed comparisons whEm HIGH and unsigned 
comparisons when LOW. 

CascadlnQ 

Comparison of numbers longer than 16 bits requires cascad­
ing of two or more bounds-checker slices. Figure 1 show~ an 
example of this for a 32-bit bounds checker. The companson 
starts from the least significant slice. COL. COu. and OOB of 
the most Significant slice act as outputs of the overall bounds 
checker. while COL and COu of the least significant slice are 
connected to Cil and Clu of the most significant slice. Cil and 
C1u of the least significant slice act as inputs to th~ ~~erall 
bounds checker. The SIGNED input of the most slgmflcant 
slice identifies the value when being compared with either 
signed or unsigned number when the SIGNED input of the 
least Significant slice is tied LOW. 

The comparison can start from the most Significant slice. In 
this case. COL. COU. OOB of the least significant slice act as 
outputs of the overall bounds checker. while COL and COU of 
the most Significant slice are connected to Cil and Clu of the 
least significant slice. 
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CP 
ENL 

ENu 

TABLE 1. DEFINITION OF COL AND COU 

Inputs Outputs 

CIL Clu COL COu 

0 0 L<D D<U 
0 L<D D<:U 

0 L<:D D<U 
L<:D D<:U 

Note: 
D - Date Input 
L = Lower Unit 
U - Upper Unit 

TABLE 2. DIFFERENT COMBINATIONS OF REGIONS 

Inputs Outputs 

CIL Clu COL COu OOB Description 

0 0 Impossible 
Combination 

0 1 D<:L 
0 0 0 1 U<:D 

0 L<D<U 

,0 0 Impossible 
Combination 

0 1 D<:L 
0 0 1 U<D 

0 L<D<:U 

0 0 Impossible 
Combination 

0 1 D<L 
0 

0 1 U<:D 
0 L<:D<U 

0 0 Impossible 
Combination 

0 D<L 
0 U<D 

0 L<:D<:U 

~6-D3\ 00-015 

f" 
" 

+ 
°a- D'5 00-015 -- CP e---=: CP 

E/:I\ ENL 
ENu ---t ENu 

SIGNED _______ 
SIGNED LOW ---<0 SIGNED 

Clll+-- "L_ 

"u I+-- "u_ 

COL OOB COu COL OOB COu 

+ + + + I 
AFOO4531 

Figure 1. 32·Bit Bounds Checker 
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ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 
Storage Temperature ............................ -65 to + 150°C Commercial (C) Devices 
Temperature Under Bias- Te ................ -55 to + 125°C Temperature (TAl .................................. 0 to + 70°C 
Supply Voltage to Ground Supply Voltage (Vee) .................... +4.75 to +5.25 V 

Potential Continuous .......................... -0.5 to + 7.0 V Military (M) Devices 
DC Voltage Applied to Outputs 

Temperature (T e) ............................. -55 to + 125°C 
for HIGH State ........................... -0.5 V to Vee Max. Supply Voltage (Vee) ....................... +4.5 to +5.5 V 

DC Input Voltage ................................. -0.5 to + 5.5 V 
DC Output Current, into Outputs ......................... 30 mA Operating ranges define those limits between which the 
DC Input Current ................................ -30 to + 5.0 mA functionality of the device is guaranteed. 

Stresses above those listed under ABSOLUTE MAXIMUM Thermal Resistance (Preliminary) - SD4028 
RA TlNGS may cause permanent device failure. Functionality 8JA =40°C/W 
at or above these limits is not implied. Exposure to absolute 8Je= 15°C/W 
maximum ratings for extended periods may affect device 
reliability. 

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, 
Subgroups 1, 2, 3 are tested unless otherwise noted) 

Parameter Parameter 
Symbol Description Test Conditions (Note 1) Min. Max. Units 

VOH Output HIGH Voltage Vee = Min., VIN = VIL or VIH 2.4 V 
IOH=-1.0mA 

VOL Output LOW Voltage Vee = Min., VIN = VIL or VIH 0.5 V 
- IOL = 8.0 mA 

VIH Input HIGH Level 
Guaranteed Input Logical 

2.0 V 
HIGH Voltage for All Inputs 

VIL Input LOW Level 
Guaranteed Input Logical 

0.8 V 
LOW Voltage for All Inputs 

VI Input Clamp Voltage Vee = Min., liN = -18 mA -1.2 V 

IlL Input LOW Current Vee = Max., VIN = 0.5 V -0.5 mA 

IIH Input HIGH Current Vee = Max., VIN = 2.4 V 50 IlA 
II Input HIGH Current Vee = Max., VIN = 5.5 V 1 mA 

IOZH 
Fo - F31 Off State Vo =2.4 V 25 

IOZL 
(High Impedance) Vee = Max. IlA 
Output Current Vo =0.4 V -25 

Ise 
Output Short-Circuit 

Vee = Max., Vo=O V -15 -50 mA Current (Note 2) 

TA= + 25°C 180 

TA = 0 to +70°C 230 

lee Power Supply Current Vee = Max. TA = + 70°C 220 mA 

Te=-55 to 125°C 235 

Te = 125°C 215 

Notes: 1. For conditions as Min. or Max., use the appropriate value specified under Operating Ranges for the applicable device type. 
2. Not more than one output should be shorted at a time. Duration of the short·circuit test should not exceed one second. 

I 
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SWITCHING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, 
Subgroups 9, 10, 11 are tested unless otherwise noted) 

COM'L MIL 
Parameter 

No. Symbol Max. Delay Max. Delay Units 

1 tpo Do - 015 to COL. COu. 008 21 23 ns 

2 tpc Cil. Clu to COL. COu. 008 13 14 ns 

3 tps SIGNED to COL. COu. 008 18 18 ns 

4 \cPO CP to COL. COu. 008 22 24 ns 

5 tso Do - 015 Setup Time With Regard to CP t 12 13 ns 

6 tSl ENl. ENU Setup Time With Regard to CP t 12 13 ns 

7 tHO Do - 015 Hold Time 2 2 ns 

8 tHl ENl. ENU Hold Time 0 0 ns 

9 tpWl Clock Pulse Width LOW 12 12 ns 

10 tPWH Clock Pulse Width HIGH 12 12 ns 
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SWITCHING TEST CIRCUIT 

r 
TCA01240 

5.0 - VeE - VOL 
R1 '" --=----':.= 

IOL + VOL 

R2 
Normal Outputs 

Notes: 1. CL '" 50 pF includes scope probe, wiring, and stray capacitances without device in test fixture. 
2. 51 is closed during function tests and all AC tests except output enable tests. 
3. CL - 5.0 pF for output disable tests. 

SWITCHING WAVEFORMS 

KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS OUTPUTS 

MUST BE WILLBE 
STEADY STEADY 

~ MAVCHANGE 
WILL8E 
CHANGING FROM H TOL FROMH TOL 

lIIIfJ MAY CHANGE WILL8E 
CHANGING FROMl TOH FROML TOH 

Jl//I1 DON'TeARE; CHANGING; 
ANY CHANGE STATE 
PERMITTED UNKNOWN 

ltHR 
CENTER 

DOUNOT LINE 1$ HIGH 
APPLY IMPEDANCE 

"OFF"STATE 

KSOOOO10 
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SWITCHING WAVEFORMS (Cont'd.) 

'"i' "'" 

:xx: ~" 

~ ,r 
j\. 

... 3 

,r 
j\. SIGNED 

r ) '-
WF023030 

Propagation Delays from Data Input to Output 

CP ~ 

.a, <D 
~ 

,~ 
~ 

~~ 

.... r.:o. <D ..... 
ENL-ENU 

~", "-
• 4 

--------------~-m---;k~----
WF023040 

Loading the Limit Registers 
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INPUT IOUTPUT CIRCUIT DIAGRAM 

DRIVING OUTPUT DRIVEN INPUT 

IOH ~L 

L J r 

r 
IIH 

":" 

ICROO480 

CI "" 5.0 pF. All inputs Co "" 5.0 pF. all outputs 
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Am29338 
32-Bit Byte Queue 

ADVANCE INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Intelligent FIFO Array 
- Array of four intelligent FIFO buffers, each 9 bits wide, 

32 bits deep (RAM-based) 
• Queuing/Oequeuing 

- Allows variable width queuing/dequeuing in one cycle 
• Byte Rotation 

- Four bytes can be rotated at the input as well as at the 
output of the Byte Queue. This allows interfacing 
between incompatible byte assignments. 

• Asynchronous and Synchronous Operation 
- Supports communication between systems with differ­

ent clocks and different bus widths 
• Retransmit 

- Oata can be read out repeatedly 
• Horizontal Cascading 

- Up to four devices allow simultaneous input or output 
up to 16 bytes 

• Parity Check 
- Protects data at the input and the output 

GENERAL DESCRIPTION 

The Am29338 is an intelligent FIFO that allows up to four 
bytes to be queued and up to four bytes to be dequeued in 
a single cycle. When four devices are cascaded horizontal­
ly, up to sixteen bytes can be dequeued in a single cycle. 

The Am29338 queues variable-length data by disassem­
bling the input data, which is aligned on the least-significant 
byte of the input bus (0), into individual bytes. These bytes 
are packed internally in FIFO (first-in, first-out) order. The 
data to be dequeued is unpacked and realigned to the 
least-significant byte of the output bus (Y). Queuing and 
dequeuing can be performed simultaneously. With the 

retransmit capability, the part can repeatedly send the 
block of data stored in the queue without having to requeue 
it. This is useful for retransmitting a block of data upon 
receipt of an error in 110 applications or for loop-locking in 
instruction-prefetch applications. 

The queue operates in synchronous or asynchronous 
mode, and is useful as an instruction-prefetch queue or as 
a general-purpose FIFO buffer. 

The device is manufactured in AMO's bipolar IMOX' 
technology and comes in a 120-lead pin-grid-array pack­
age. 

BLOCK DIAGRAM 
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RELATED AMD PRODUCTS 

Part No. Description 

Am2900 Family 4·Bit Microprocessor Slice Family 

Am29COO Family CMOS .4-Bit Microprocessor Siice Family 

Am29C101 CMOS 16-Bit Microprocessor Slice 

Am29114 Real-Time Interrupt Controller 

Am29116 16-Bit Bipolar Microprocessor 

Am29116A High-Speed 16-Bit Bipolar Microprocessor 

Am29L116A Low-Power 16-Bit Bipolar Microprocessor 

Am29C116 CMOS 16-Bit Microprocessor 

Am29C116-1 CMOS 16-Bit Microprocessor 

Am29325 32-Bit Floating Point Processor 

Am29C325 CMOS 32-Bit Floating Point Processor 

Am29331 16-Bit Microprogram Sequencer 

Am29C331 CMOS 16-Bit Microprogram Sequencer 

Am29332 32-Bit Extended Function ALU 

Am29C332 CMOS 32-Bit Extended Function ALU 

Am29334 Four-Port, Dual-Access Register File 

Am29C334 CMOS Four-Port, Dual-Access Register File 

Am29337 16-Bit Cascadable Bounds Checker 
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I;: 
: 

i: 
CONNECTION DIAGRAM I, 

Bottom View I: 

I;" A B C D E F G H J K L M N j 
V16 V17 ~ V21 GNOT PVS V27 Y28 VCCT CNT2 GNDT CNT6 BOO3 I'! -., 

"1· 

2 PV2 V1S V18 V20 V23 V24 V26 V29 VS1 CNT1 CNT4 CNT5 B0Q2 

S GNDT V14 V13 V10 V22 vcce V25 GNCE V30 CNTO CNT3 BOOO BOO1 

4 V12 V11 V10 I5!:5ER IIE!ET IIXm Ii 
'. 

s VCCT YO V8 tD SSW1 OOCLK 

I Y7 PV1 GNDT QCtK 801 BSWO 

7 V6 VS V4 BOO NC D30 

8 Y2 Y3 VCCT 031 D28 D29 

• GNDT Y1 VO 027 D25 D26 

10 PVO PYERR POERR 024 P03 023 

11 VCCT A-FULL PDQ 02 vcce D6 07 012 GNCE 015 D22 D20 021 

12 FULL POS1 POSO 01 vcce 03 D6 D8 GNDE 014 PD2 019 018 

13 ~-EMPTY EMPTY os DO vcce D4 P01 011 GNCE 013 010 016 017 / 

eD011040 

legend: GNDE: GND. ECl 

GNDT: GND. TTL 

VCCE: Vee. ECL 

VCCT: Vee. TTL 
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PIN DESIGNATIONS 
(Sorted by Pin Number) 

PAD PIN 
PIN NAME 

PAD PIN 
PIN NAME 

PAD PIN 
PIN NAME 

PAD PIN PIN NAME 
NO. NO. NO. NO. NO. NO. NO. NO. 

1 Al Y16 115 C5 YS 40 Gll D7 27 Ll0 D24 

120 A2 PY2 113 C6 GND. TTL 36 G12 DS 88 III D22 

59 A3 GND. TTL 52 C7 Y4 96 G13 PDl 32 L12 PD2 

58 A4 Y12 53 C8 Vee. TTL 69 Hl Y28 35 l13 DlO 

56 A5 Vee. TTL 109 C9 Yo 10 H2 Y29 75 Ml CNT6 

114 A6 Y7 48 Cl0 PDERR 68 H3 GND. ECl 15 M2 CNT5 

54 A7 Y6 44 Cll PDo 34 Hll D12 77 M3 BDOo 

51 A8 Y2 104 C12 POSo 95 H12 D9 78 M4 RESET 

50 A9 GND. TTL 41 C13 D5 94 H13 D11 80 M5 BSW1 

49 Al0 PYo 4 01 Y21 11 Jl Vee. TTL 81 M6 801 

47 A11 Vee. TTL 63 02 Y20 71 J2 Y31 82 M7 NC 

106 A12 FUll 3 03 Y19 70 J3 Y30 25 M8 D2S 

46 A13 A-EMPTY 102 011 D2 38 Jl1 GND. ECl 86 M9 D25 

61 81 Y17 43 012 D1 38 J12 GND. ECl 87 Ml0 PD3 

60 82 Y15 103 013 Do 38 J13 GND. ECl 89 Mll D20 

119 83 Y14 5 El GND. TTL 13 Kl CNT2 30 M12 D19 

117 84 Y11 65 E2 Y23 72 K2 CNT1 91 M13 D16 

116 85 Y9 64 E3 Y22 12 K3 CNTo 16 Nl BD03 

55 86 PY1 98 Ell Vee. ECl 92 Kll D15 76 N2 BD02 

112 87 Y5 98 E12 Vee. ECl 33 K12 D14 17 N3 BD01 

111 88 Y3 98 E13 Vee. ECl 93 K13 D13 19 N4 RXMIT 

110 89 Y1 6 Fl PY3 14 II GND. TTL 20 N5 DOClK 

108 810 PYERR 66 F2 Y24 74 l2 CNT4 21 N6 BSWo 

107 811 A-FUll 8 F3 Vee. ECl 73 L3 CNT3 24 N7 D30 

45 812 PDS1 100 Fll D6 18 L4 DOEN 84 N8 D29 

105 813 EMPTY 42 F12 D3 79 L5 OEN 26 N9 D26 

2 Cl DE 101 F13 D4 23 L6 OClK 28 Nl0 D23 

62 C2 Y18 9 Gl Y27 22 L7 BOo 29 Nll D21 

118 C3 Y13 67 G2 Y26 83 L8 D31 90 N12 D18 

57 C4 YlO 7 G3 Y25 85 L9 .027 31 N13 D17 
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PIN DESIGNATIONS 
(Sorted by Pin Name) 

PAD PIN PIN NAME PAD PIN PIN NAME PAD PIN PIN NAME PAD PIN PIN NAME NO. NO. NO. NO. NO. NO. NO. NO. 

82 M7 NC 34 Hll 012 59 A3 GNO. TTL 51 A8 Y2 

46 A13 A-EMPTY 93 K13 01S 5 El GNO. TTL 111 B8 YS 

107 Bll A-FUll 33 K12 014 50 A9 GNO. TTL 52 C7 Y4 

77 M3 BOOO 92 Kll 015 2 Cl OE 112 B7 Y5 

17 N3 BOOl 91 M13 016 44 Cll POD 54 A7 Y6 

76 N2 BOO2 31 N13 017 96 G13 POl 114 A6 Y7 

16 Nl BOOs 90 N12 018 32 L12 P02 115 C5 Ya 

22 L7 BOD 30 M12 019 87 Ml0 POs 116 B5 Yg 

81 M6 BOl 89 Ml1 020 48 Cl0 PDERR 57 C4 Yl0 

21 N6 BSWo 29 Nll 021 104 C12 paSo 117 B4 Yll 

80 M5 BSWl 88 L11 022 45 B12 POSl 58 A4 Y12 

12 K3 CNTo 28 Nl0 02S 49 Al0 PYo 118 C3 Y13 

72 K2 CNTl 27 L10 024 55 B6 PYl 119 B3 Y14 

13 Kl CNT2 86 M9 025 120 A2 PY2 60 B2 Y15 

73 L3 CNTs 26 N9 026 6 Fl PY3 1 Al Y16 

74 L2 CNT4 85 L9 027 108 Bl0 PYERR 61 Bl Y17 

15 M2 CNT5 25 M8 028 23 L6 OClK 62 C2 Y18 

75 Ml CNT6 84 N8 029 79 L5 OEN 3 03 Y19 

103 013 Do 24 N7 Oso 78 M4 RESET 63 02 Y20 

43 012 01 83 L8 OSl 19 N4 RXMIT 4 01 Y21 

102 011 02 20 N5 OOClK 98 Ell Vee. ECl 64 E3 Y22 

42 F12 03 18 L4 OOEN 98 E12 Vee. ECl 65 E2 Y23 

101 F13 04 105 B13 EMPTY 98 E13 Vee. ECl 66 F2 Y24 

41 C13 05 106 A12 FUll 8 F3 Vee. ECl 7 G3 Y25 

100 Fl1 06 38 Jll GNO. ECl 56 A5 Vee. TTL 67 G2 Y26 

40 Gl1 07 38 J12 GNO. ECl 53 C8 Vee. TTL 9 Gl Y27 

36 G12 08 38 J13 GNO. ECl 47 All Vee. TTL 69 Hl Y28 

95 H12 09 68 H3 GNO. ECl 11 Jl Vee. TTL 10 H2 Y29 

35 L13 010 113 C6 GNO. TTL 109 C9 Yo 70 J3 Yso 

94 H13 011 14 Ll GNO. TTL 110 B9 Yl 71 J2 Y31 
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LOGIC SYMBOL 

32 

~ 
00.031 POO .P03 

OCLK 
FULL 

OOCLK 

QEN 
EMPTY 

I5'QE'N 
A· FULL 

A·EMPTY 
BOO·B01 

CNTO·CNTS 
BOO O .B°Ca 

RESET 
POERR 

RXMIT 
PYERR 

POSo ·POS 1 

BSWO .BSW1 

OE 
PYo .PY3 

METALLIZATION AND PAD LAYOUT 

~ ~5 § ~~~5; ;: .J>-~~>~ ~ J! ~~ti~ § ~;;.:; '$ ;: 

~ ~ g ~ ~ 

Die Size: 270 x 290 mils2 

Gate Count: 9000 

3-120 

LSOO2851 



ORDERING INFORMATION 

Standard Products 

AMO standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by 
a combination of: a. Device Number 

I 

b. Speed Option (if applicable) 
c. Package Type 
d. Temperature Range 
e. Optional Processing 

!lL.I _____ e. OPTIONAL PROCESSING 
Blank = Standard processing 

B = Burn-in 

'----------d. TEMPERATURE RANGE 
C - Commercial (0 to + 8S·C) 

'--------------c. PACKAGE TYPE 

'---8. DEVICE NUMBER/DESCRIPTION 
Am29338 
Byte Queue 

Valid Combinations 

G = 120·Lead Pin Grid Array with Heatsink 
(CG 120) 

b. SPEED OPTION 
Not Applicable 

Valid Combinations 

I AM29338 I GC, GCB I 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMO 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMO's standard military grade 
products. 
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PIN DESCRIPTION 

A-EMPTY Almost Empty (Output; Active HIGH) 
Indicates that there are less than four bytes of data in the 
queue. It is used in either synchronous or asynchronous 
operation. 

A-FULL Almost Full (Output; Active HIGH) 
Indicates that, there are less than four bytes of space 
remaining. It is used in either synchronous or asynchronous 
operation. 

BDQo - BDQ3 Bytes Dequeued (Input) 
Selects the number of bytes to be dequeued (see Table 2). 
The byte queue must operate synchronously to be able to 
dequeue more than four bytes in a single cycle. 

BQo - BQl Bytes Queued (Input) 
Selects the number of bytes to be queued (see Table 1). 

BSWo-BSWl Byte Swap (Input) 
Allows the bytes on the input to be reordered (see Table 3). 

CNTo-CNTa Byte Count (Output) 
Gives the current number of bytes in the queue. These are 
used only in synchronous operation. 

Do - 031 Data Input (Input) 
Data inputs to be queued. 

DQCLK Dequeue Clock (Input) 
Dequeues the number of bytes set up on the Y bus . .A LOW­
to-HIGH transition on this input adjusts the internal dequeue 
pointers by the number set up on the BOO lines. 

DQEN bequeue Enable (Input; Active LOW) 
While DaEN is LOW, dequeuing is performed normally. 
When OOEN is HIGH, DOCLK is disabled. 

EMPTY Empty (Output; Active HIGH) 
Indicates that the queue is empty. It is used in either 
synchronous or asynchronous operation. 

FULL Full (Output; Active HIGH) 
Indicates that the queue is full. It is used in either 
synchronous or asynchronous operation. 

OE Output Enable (Input; Active LOW) 
When OE is LOW, the four bytes following the current 
dequeue pointer and the corresponding parity bits are on Y 
and PY outputs. When OE is HIGH, Y and PY outputs are 
three stated. 

PDo - PD3 Data Input Parity (Input) 
The input parity bits for the corresponding byte on the D 
inputs. Only the bytes to be queued and the corresponding 

PD lines are checked for possible parity error. The byte 
queue has the even parity. 

PDERR Data Input Parity' Error (Output; Active 
HIGH) 

If any of the bytes to be queued have a parity error, PDERR 
is asserted. 

POSo - POSt Position (Input) 
These inputs are used to program the location of each byte 
queue in horizontally cascaded system upon ~ (see 
Table 4). 

PYo - PY3 Output Data Parity (Output; Three State) 
The output parity bits for Y outputs. When OE is HIGH, the 
parity bits of the four bytes following the dequeue pointer 
appear on these outputs. The byte queue has the even 
parity. 

PYERR Y Output Parity Error (Output; Active HIGH) 
If any of the bytes on the output has a parity error, PYERR is 
asserted. 

QCLK Queue Clock (Input) 
When OCLK is LOW, the number of bytes set up on the SO 
lines are written into the next free space in the queue from 
the data set up on the D inputs. On a LOW-to-HIGH 
transition of this input, the internal' queue pointers are 
updated. If QEliij is HIGH, OCLK has no effect. 

~ Queue Enable (Input; Active LOW) 
When OEN is LOW, queuing is performed normally. When 
OEN is HIGH, OCLK is disabled. 

RHE'i' Reset (Input; Active LOW) 
When REm is LOW, both the internal queue pOinter and 
the internal dequeue pOinter are reset to the first RAM 
location and both EMPTY and A_EMPTY are asserted. 

RXMIT Retransmit (Input; Active LOW) 
When RXMIT is LOW, the internal dequeue pointers are 
reset to the first RAM location while the internal queue 
pointers remain unchanged. This allows the data contained 
between the current queue pointer and the first RAM 
location to become available 'for dequeuing again. The 
effect of asserting RXMIT is defined only if 128 bytes or less 
have been queued since the last assertion of RESET (see 
Figure 5). 

YO-Y31 Data Output (Output; Three State) 
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on these outputs when OE is LOW. When OE is HIGH, they 
are three stated. 



FUNCTIONAL DESCRIPTION 

Architecture 

The Am29338 is a 32-bit high-performance general-purpose 
intelligent FIFO that stores up to 128 bytes in the internal RAM 
slices and queues or dequeues up to four bytes in a single 
cycle. The byte queue is divided into five functional blocks: 1) 
four memory-slice logics, 2) byte rotators for input and output 
buses, 3) rotate-enable logic, 4) byte-count logic, and 5) full/ 
empty-generate logic. The byte-oriented parity checking is 
provided on both the O-input bus and the Y -output bus. Figure 
1 shows a detailed block diagram of the byte queue. 

Memory-Slice Logic 

Figure 2 shows a detail of the memory-slice logic. It consists of 
a 32 x 9 RAM, queue and dequeue pointers, adders for the 
pointers, and a full/empty detector. The RAM has indepen­
dent 9-bit read and write ports. Soth ports are accessible 
simultaneously if different RAM locations are operated on. A 
parity bit is stored along with its corresponding byte into the 
RAM. 

The queue and dequeue pointers point to the next location 
available for dequeuing. The next locations are produced by 
the internal adders with sao _ 1 or soao _ 3 and the current 
pointer values. When RESET is asserted, both pOinters are set 
to zero and the RAM is flushed. These pointers are also used 
to indicate that the RAM is either empty or full for each 
memory slice. The slice-empty or slice-full signal is used to 

sswo 

ssw, 

FULL 

A- FULL 

CNTO•6 

EMPTY 

1m'l' sao., 

A· EMPTYCJf----L....!~~~Jt-t_-!..,...~ 

olale 

combinationally form FULL, A-FULL, EMPTY, and A-EMPTY 
signals. 

Byte Rotator 

There are two byte rotators in the byte queue. Each accepts 
36-bit wide data and performs rotation of bytes according to 
the 2-bit rotate values fed from the rotate-enable logic. The 
input byte rotator realigns and stores the bytes to be queued 
into the next free slice location. The output byte rotator 
realigns the bytes to be dequeued to the least significant byte 
of the Y -output bus. 

Rotate-Enable Logic 

The queue and dequeue rotate-enable logic keeps track of 
which slice holds the first byte of the next queue/dequeue 
operation:· A modul0-4 counter is used to rotate the data in 
operation and enables the correct slices by the number of 
bytes specified by either sao _ 1 or SDao - 3. 

The queue rotate-enable logic also performs byte and/or word 
swaps on the incoming data. The input bytes are swapped in 
one of four ways, according to Table 3, with SSWo _ 1 and the 
current modul0-4 byte count through the input byte rotator. 

Byte-Count Logic 

This logic consists of a queue count register and a dequeue 
count register. The registers are incremented during a queue/ 
dequeue operation by the number of bytes in the operation. 
The combinational subtract logic outside of these registers 
determines the number of bytes stored in the byte queue. 

----<:J RES ET 
----<:J RX MIT 
----<:J OCL K 
----<:J OOCLK 

~ POSo., 

PYERR 

80006902 

Figure 1, Am29338 Byte Queue Detailed Block Diagram 
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QCLK 

Enable' 

Slice Full' 

Slice Empty' 

RESfi' 
OQCLK 

Enable' 

POS 

Dequeue Adjust' 

'Internally generated inputs. 

Queue 
Pointer 

Dequeue 
Pointer 

h~---.----+.,--~ Write 
Port 

Full/ 
Empty 

Detector 

32 x 9 
RAM 

1-7r--'--r,,-~ Re ad 
Port 

8D0069" 

Figure 2. Memory and Slice Logic 

32 

POS, POS, 
--1 

POS, 
0 

POS, 

A A A A 
m m m m 
2 2 2 2 
9 9 9 9 
3 3 3 3 
3 poso 3 poso 0 3 poso 3 poso 

8 8 8 8 

0 

0 

Most-Significant 
Least-Significant 

8D0070'0 

Figure 3. Position Line Values in Horizontally Cascaded System 
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MOST 
SIGNIFICANT 

CHIP 

B A 9 8 

7 6 54 

3 2 1 0 

I I I I 
FED C 

FED C 

B A 9 8 

7 6 54 

3 2 1 0 

I I I I 
B A 9 8 

FED C 

B A 9 8 

7 6 54 

3 2 1 0 

I I I I 
7 6 54 

LEAST 
SIGNIFICANT 

CHIP 

FED C 

B A 9 8 

7 6 54 

3 2 1 0 

I I I I 
3 2 1 0 

Figure 4. An Example of Horizontal Cascading 

a) Before mmr 
COUNT = 8 

=- F 

B 

7 

3 

b) Allar RXMIT 

COUNT-16 

E D C 

A 9 8 

6 5 4 

2 1 0 

3 2 0 
~ 

TBOOl131 

Figure 5. Retransmit Function with the Am29338 

_ .... 0: B A E D C 

B A 
MSB LSB 

a) Betore Flrltau. ... Openrtbn b) _ .. Socond""","_ 

E 

D C B A 
Cl __ auou._ 

TBOOl141 

Figure 6. Queuing with the Am29338 

Boo06930 

Notes: 1. Each of the four segments stands for a memory size; MSB = Most-Significant Byte, and 
LSB - Least-Significant Byte. 
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MSB LSB 

E 

0 C B A E 0 C B E 0 
Da 0 C B ~ E 0 I:L!I ? ? E 0 _v: 

'"=" -0) _FIlII ~Opor_ bI--~~ o)--~~ TBOOl120 

Figure 7. Dequeuing with the Am29338 

Notes: 1. Each of the four segments stands for a memory size; MSB = Most-Significant Byte, and 
LSB = Least-Significant Byte. 

2. First, one byte is dequeued (' A '), followed by a dequeue of two bytes (' CB '). 

TABLE 1. SELECTING THE NUMBER OF BYTES TO BE QUEUED 

BOl BOD 
Bytes To Be 

Oueued 

L H 1 

H L 2 

H H 3 

L L 4 

Key: L=LOW 
H=HIGH 

TABLE 2. SELECTING THE NUMBER OF BYTES TO BE DEQUEUED 

BOQ3 BOQ2 BOQl BOQo 
Bytes To Be 

Oequeued 

L L L H 1 

L L H L 2 

L L H H 3 

L H L L 4 

L H L H 5' 

L H H L 6' 

L H H H 7' 

H L L L S' 

H L L H 9' 

H L H L 10' 

H L H H 11' 

H H L L 12' 

H H L H 13' 

H H H L 14' 

H H H H 15' 

L L L L 16' 

Key: L=LOW 
H= HIGH 

• This is possible when four of the byte queues are cascaded together. The byte queue must be operated 
synchronously to select more than four bytes for dequeuing. 
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TABLE 3. ENCODING OF BSW INPUTS 

Inputs 
Outputs 

BSW1 BSWo 

L L A B C D 

L H B A D C 

H L C D A B 

H H D C B A 

Key: L=LOW 
H= HIGH 

Note: The assumption is made that the 32-bit data "A BCD" appears on the input bus. 

TABLE 4. LOCATION IDENTIFICATION FOR HORIZONTAL CASCADING 

POSo 

L L 

L H 

H L 

H H 

Key: L = LOW 
H=HIGH 

Location 

o 

2 

3 

Note: "0" stands for the least significant chip and "3" the most significant chip. 

Operational Modes 

General Operation 

To enter data into the Am29338, the number of bytes to be 
queued is set up on the Bytes Queued (BQ) pins; the 
corresponding data to be queued is set up on the Data Input 
(D) and Data Input Parity (PD) pins, aligned to the least­
significant byte. If Queue Enable (QEN) is asserted, the data is 
entered into the Am29338 while the Queue Clock (QCLK) is 
LOW, and the internal queue pointers are updated on the 
LOW-to-HIGH transition of QCLK. 

Figure 6 shows an example of two bytes being queued, 
followed by three bytes being queued. Data is packed in the 
Am29338 so that no holes exist. 

If Output Enable (OE) is asserted, the first four bytes available 
for dequeuing and their corresponding parity appear on the 
Data Output (Y) and Data Parity (PY) pins. The number of 
these bytes to be dequeued is set up on the Bytes Dequeued 
(BDQ) pins. If Dequeue Enable (DQEN) is asserted, the LOW­
to-HIGH transition of Dequeue Clock (DQCLK) updates the 
internal dequeue pointers, removing the dequeued bytes. 

Figure 7 shows an example of one byte dequeued, followed by 
a dequeue of two bytes. The data to be dequeued next is 
least-significant-byte aligned on the output bus. 

Synchronous Mode 

Both synchronous and asynchronous operations are available 
for the byte queue. During synchronous operation, both QCLK 
and DQCLK must be asserted on the edge of a common clock 
within certain skew limits. The following signals can be used 
as valid status outputs for this mode: FULL, A-FULL, EMPTY, 
A-EMPTY, and CNTO_6. Refer to the applications section for 
an example. 

Asynchronous Mode 

During asynchronous operation, QCLK and DQCLK clocks 
may be different. It is possible to execute queue and dequeue 
operations simultaneously if different locations are accessed. 
In this mode, CNT outputs are not guaranteed as valid and 
horizontal cascading is not possible. Refer to the applications 
section for an example. 

Horizontal Cascading 

In synchronous operation, four byte queues can be horizontal­
ly cascaded together. In this case, each of the four byte 
queues hold the same data and up to sixteen bytes may be 
dequeued in a single cycle, as shown in Table 2, and Figures 3 
and 4. Each part has to be programmed with its position by the 
POS inputs, as shown in Table 4. In a normal operation, the 
internal dequeue pointer of each part is displaced according to 
the POS inputs. When RESET or RXMIT is asserted, the 
dequeue pointers are offset by the value programmed on the 
POS inputs. 

Horizontal cascading is useful in instruction buffers designed 
for systems with large, variable instructions that can span 
many bytes. 

APPLICATIONS 

Using Am29338 as an Instruction-Prefetch 
Queue 

Figure 8 shows the Am29338 used as an instruction-prefetch 
queue. Sequential 32-bit memory locations are fetched by the 
Instruction Fetch Unit (IFU) and are queued up in the byte 
queue. When the central processor needs the next instruction, 
it looks at the next four bytes from the byte queue. The central 
processor then determines the instruction length from the 
opcode and updates the dequeue pointer in the byte queue by 
setting up the instruction length on the BDQ lines and 
asserting DQCLK. When a jump occurs, the IFU flushes the 
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queue by asserting the RESET input and begins from the new reads the status of the mailbox; if it is not FULL, the routine 
address. For this application, the byte queue must be in first writes the message to the mailbox and returns to the 
synchronous mode. calling process. If the mailbox is FULL, the operating system 

Using the RXMIT input, the byte queue can resend the block 
blocks the calling process on a special queue and enables 
interrupts from the mailbox. When a slot becomes available in 

data through dequeuing rather than having to requeue it. This the mailbox, the sending processor is interrupted. The inter-
is useful for locking the loops into the byte queue and allows rupt routine sends the message to the mailbox, disables 
the processor to run faster than if it had to refetch instructions interrupts from the mailbox, and unblocks the blocked pro-
from memory or cache. Figure 9 illustrates how a loop can cess. On the receiving side, the EMPTY status of the mailbox 
execute directly out of. the byte queue. must be available to the receiving processor in order to allow 

Using Am29338 as a Hardware Mailbox in the receiving process to be blocked if the mailbox is empty. 

Multiprocessing System When a mailbox slot becomes filled, a blocked process must 
be awakened by interrupting the receiving processor. 

A mailbox is a communication device between loosely coupled 
The mailbox can be extended to operate in a heterogeneous processes in a multi-programming system. Messages from 

one process to another are queued in the mailbox on a first-in, multiprocessing system. In this type of system, processors 

first-out (FIFO) basis. In a multiprocessing system, hardware with varying data-path widths and clock frequencies are 

mailboxes are required. This can be implemented using the interconnected. For example, a 32-bit main processor may 

Am29338 as shown in Figure 10. control 8- to l6-bit coprocessors. The ability of the Am29338 
to match data-path widths and to queue and dequeue asyn-

When a process wishes to send a message to the mailbox, it chronously allows processors of different widths and clock 
calls a special operating-system routine. This routine first rates to communicate. 

.A ... < Address Bus 

.A 4r- 4r- ... 

JI 
) 

II 
OCLK 

READY 
A RESET 
m Instruction 

.A Address 2 CNT 
Fetch 

9 .. Central 
3 Unit 
3 OOCLK Instruction Processing 
8 Unit BOO " 

~T 
i. 

80006940 

Figure 8. Instruction-Prefetch Queue 

body: 

· 
· Branch Succeeds: RXMIT starts },oad;", 'h, loop from fu, b,."";", " Dequeue 

test: cmp X 50 byte queue again 
Pointer 

bit body Branch Fails: Execution 
proceeds with the following 

· :=J .jrefetched instructions -:-J 

· • Queue Pointer 

LDOO1330 
Note: This describes a block of macro instructions. 

Figure 9. Loop Locking Using Am29338 
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Inlerrupl Req 
IREO 
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Read/WIlle 

CiD' Control/lJaTi' 

interrupt Req 
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80006950 

Figure 10. Implementation of a Hardware Mailbox 

Suggestions for Power and Ground Pin 
Connections 
The Am29338 operates in an environment of fast signal rise 
times and substantial switching currents. Therefore, care must 
be exercised during circuit board design and layout, as with 
any high-performance component. The following is a sug­
gested layout, but since systems vary widely in electrical 
configuration, an empirical evaluation of the intended layout is 
recommended. 

The VCCT and GNDT pins, which carry output driver switching 
currents, tend to be electrically noisy. The VCCE and GNDE 
pins, which supply the ECl core of the device, tend to produce 
less nOise, and the circuits they supply may be adversely 
affected by noise spikes on the VCCE plane. For this reason, it 
is best to provide isolation between the VCCE and VCCT pins, 
as well as independent decoupling for each. Isolating the 
GNDE and GNDT pins is not required. 

A B C D E F G H J 

• 
K 

f 
..... 1... .. • ••• •• • •• .. •• • •• ~~ • • cir • • • • C': • • • • 
Cr • C 

• • 
..... _ ..... • • c2r" c •• • •• • el • ; • ••• •• 0:: • 

L 

• • • • • • .. 
• • • • 

Printed Circuit-Board Layout Suggestions 

1. Use of a multi-layer PC board with separate power, ground, 
and signal planes is highly recommended. 

2. All VCCE and VCCT pins should be connected to the VCC 
plane. VCCT pins should be isolated from VCCE pins by means 
of a slot cut in the VCCE plane; see Figure 11. By physically 
separating the VCCE and VCCT pins, coupled noise will be 
reduced. 

3. All GNDE and GNDT pins should be connected directly to 
the ground plane. 

4. The VCCT pins should be decoupled to ground with a O.1-j.tF 
ceramic capacitor and a 10-j.tF electrolytic capacitor, placed 
as closely to the Am29338 as is practical. VCCE pins should 
be decoupled to ground in a similar manner. 

A suggested layout is shown in Figure 11. 

M N 

• i • 2 
c: ._ ... L. . 3 

• mrS 4 

• 5 

• ~ 6 

• 7 

• C> 8 

• 9 • _ . .i_ .. 10 .. -TC4 
11 
12 

•••••• CI •• 13 

" Isolation Cut 
-I f--~I #--11----

Cs C6 

• - Through Hole 
CI - VCC Plane Connection 
Cl-C3-C5-10~F 
C2=C4=C6=O.1~ 

COOl 0890 

Figure 11. Suggested Printed Circuit-Board Layout 
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ABSOLUTE MAXIMUM RATING$ 
Storage Temperature ............................ -65 to + 150'C 
Case Temperature 

with Power Applied ........................... -ti5 to + 125'C 
Supply Voltage . 

with Respect to Ground ..................... -0.5 to + 7.0 V 
DC Voltage Applied to Outputs 

lor HIGH State ......................... -0.5 V to + VCC Max. 
DC Input Voltage .............................. -0.5 V to + 5.5 V 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA TINGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliabiliiy. 

DC CHARACTERISTICS 

Parameter 
Symbol 

VOH 

Parameter 
Description 

Output HIGH Voltage 

VOL Output LOW Voltage 

VIH Input HIGH Level 

Vil Input LOW Level 

VI Input Clamp Voltage 

III Input LOW Current 

lOZH 
lOZl 

Off State (Hig 
Output Cur 

Vee = Max. 
VIN = 5.5 V 

Vee = Max. 

OPERATING RANGES 
Commercial (C) Devices 

Case Temperature (T e) .......................... 0 to + B5'C 
Supply Voltage (Vce) .................... +4.75 to +5.25 V 
IiJA ............................................... (under 200 11m) 

Operating ranges define those limits between which the 
functionality of the device is guaranteed. 

Typ. 
Min. (Nole 2) Max. Unit 

2.4 V 

0.4 V 

2.0 V 

0.8 V 

-1.2 V 

-1.0 
mA 

-0.5 

50 !lA 

1.0 mA 

Vo = 2.4 V 50 

Vo = 0.5 V -50 
p.A 

Ise 
Output Sho 
(Note 3) 

Vee = Max. to +0.5 V -20 -80 mA 
Vo - 0.5 V 

Vee = Max. Te = 0 to +8S'C 800 900 
mA All Inputs HIGH Te= +8S'C 800 

lee Power Supply Current 

Notes: 1. For conditions shown as Min. or Max., use the appropriate value specified under Operating Ranges for the applicable device type. 
2. Typical values are for Vee = + 2S'C ambient and maximum loading. 
3. Not more than one output should be shorted at a time. Duration of the short·circuit test should not exceed one second. 
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SWITCHING CHARACTERISTICS over operating range (Note 1) 

A. Combinational Propagation Delays 

No. From To Delay Unit 

1 D PDERR 50 ns 

2 PD PDERR 50 ns 

3 DQCLK T A-EMPTY or A-FULL 44 ns 

4 DQCLK T CNT 46 ns 

5 DQCLK T EMPTY or FULL 44 ns 

6 DQCLK T PYERR 60 ns 

7 DQCLK T Y 52 ns 

8 OE PYERR ns 

9 DE Y ns 

10 QCLK T A-EMPTY or EMPTY ns 

11 QCLK T CNT ns 

12 QCLK T A-FULL or FULL 44 ns 

13 RESEi' ,j. A-FULL or FULL 44 ns 

14 RESET ~ CNT 46 ns 

15 RESET ~ EMPTY or i\iIIl~ 44 ns 

16 RESET J, PYERR 60 ns 

17 RESEi' ,j. Y 52 ns 

18 RXMIT ,j, A-FULL or FULL 44 ns 

19 RXMIT ,j, CNT 46 ns 

20 RXMIT ~ A-EMPTY or EMPTY 44 ns 

21 RXMIT J, PYERR 60 ns 

22 RXMIT ,j, Y 52 ns 

B. Setup a imes 

No. Parameter 

~M 
With Respect To Delay Unit 

23 Bytes Dequeued Setup DQCLK T 20 ns 

24 Bytes Dequeued Hold DQCLK T 0 ns 

25 Bytes Queued Setup BQ QCLK ,j. 12 ns 

26 Bytes Queued Hold ,." BQ QCLK T ns 

27 Byte Swap Setup I' BSW QCLK T 20 ns 

28 Byte Swap Hold BSW QCLK J, ns 

29 Data Setup D QCLK T 8 ns 

30 Data Hold D QCLK T ns 

31 Data Parity Setup PD QCLK T 8 ns 

32 Data Parity Hold PD QCLK T ns 

33 Dequeue Enable Setu DOEN DQCLK 8 ns 

34 Dequeue Enable DOEN DQCLK 0 ns 

35 Queue Enable selliltl dEN QCLK J, ns 

36 Queue Enable • .!iI.9Id'l\Ii."· dEN QCLK T ns 

~~"".!I. 
~\ C. Minimum Clock Requirements 

No. In ut"~ Description Delay Unit 

37 Dequeue Min. Pulse Width LOW 10 

38 DQCL Dequeue Min. Pulse Width HIGH 10 ns 

39 Dequeue Min. Cycle Time 80 

40 Queue Min. Pulse Width LOW 10 

41 QCLK Queue Min. Pulse Width HIGH 10 ns 

42 Queue Min. Cycle Time 80 

Notes: 1. Case temperature (Te)-O to + 85"C, supply voltage (Vee) =5 V ±5%. It is the responsibility of the user to maintain a case 
temperature of + 85"C or less. AMD recommends an air velocity of at least 200 linear feet per minute over the heatsink. 
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SWITCHING TEST CIRCUITS 

8, 

VOUT o--<r"'C>-t--_---K 

"I 
II< 

5.0 - VSE - VOL 
R,=----...;;....:; 

IOL + VOL 
1K 

A. Three-State Outputs 

TCO01102 

8, 

VOUT~~~--'---K 

r 
2.4 V 

R2=-­
IOH 

5.0 - VSE - VOL 
R,=--",:,;;;,--'-

IOL +YQb 
R2 

B. Normal Outputs 

Vee 

TCO01083 

Notes: 1. CL = 50 pF includes scope probe. wiring and stray capacitances without device in test fixture. 
2. 8,. 82. 83 are closed durihg function tests and all AC tests except output enable tests. 
3. 8, and 83 are closed while 82 is open for tPZH test. 

8, and 82 are closed while 83 is open for tpZL teSt. 
4. CL = 5.0 pF for output disable tests. 
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Test Philosophy and Methods 
The following points give the general philosophy that we apply 
to tests that must be properly engineered if they are to be 
implemented in an automatic environment. The specifics of 
what philosophies applied to which test are shown in the data 
sheet. 

1. Ensure the part is adequately decoupled at the test head. 
Large changes in Vee current as the device switches may 
cause erroneous function failures due to Vee changes. 

2. Do not leave inputs floating during any tests, as they may 
start to oscillate at high frequency. 

3. Do not attempt to perform threshold tests at high speed. 
Following an output transition, ground current may change 
by as much as 400 mA in 5-8 ns. Inductance in the ground 
cable may allow the ground pin at the device to rise by 
hundreds of millivolts momentarily. Current level may vary 
from product to prcduct. 

4. Use extreme care in defining input levels for AC tests. 
Many inputs may be changed at once, so there will be 
significant noise at the device pins and they may not 
actually reach VIL or VIH until the noise has settled. AMD 
recommends using VIL ..;; 0 V and VIH ;;. 3.0 V for AC tests. 

5. To simplify failure analysis, programs should be designed 
to perform DC, Function, and AC tests as three distinct 
groups of tests. 

6. Capacitive Loading for AC Testing 

Automatic testers and their associated hardware have stray 
capacitance that varies from one type of tester to another 
but is generally around 50 pF. This, of course, makes it 
impossible to make direct measurements of parameters 
that call for a smaller capacitive load than the associated 
stray capacitance. Typical examples of this are the so­
called "float delays," which measure the propagation 
delays into the high-impedance state and are usually 
specified at a load capacitance of 5.0 pF. In these cases, 
the test is performed at the higher load capacitance 
(typically 50 pF) and engineering correlations based on 
data taken with a bench set up are used to predict the 
result at the lower capacitance. 

Similarly, a product may be specified at more than one 
capacitive load. Since the typical automatic tester is not 
capable of switching loads in mid-test, it is impossible to 
make measurements at l1lilll capacitances even though 
they may both be greater than the stray capacitance. In 

these cases, a measurement is made at one of the two· 
capacitances. The result at the other capacitance is 
predicted from engineering correlations based on data 
taken with a bench setup and the knowledge that certain 
DC measurements (IOH, 10L, for example) have already 
been taken and are within spec. In some cases, special DC 
tests are performed in order to facilitate this correlation. 

7. Threshold Testing 

The noise associated with automatic testing (due to the 
long, inductive cables), and the high gain of the tested 
device when in the vicinity of the actual device threshold, 
frequently give rise to oscillations when testing high-speed 
circuits. These oscillations are not indicative of a reject 
device, but instead, of an overtaxed test system. To 
minimize this problem, thresholds are tested at least once 
for!!l!&!:! input pin. Thereafter, "hard" high and low levels 
are used for other tests. Generally this means that function 
and AC testing are performed at "hard" input levels rather 
than at VIL Max. and VIH Min. 

8. AC Testing 

Occasionally parameters are specified that cannot be 
measured directly on automatic testers because of tester 
limitations. Data input hold times often fall into this catego­
ry. In these cases, the parameter in question is guaranteed 
by correlating these tests with other AC tests that have 
been performed. These correlations are arrived at by the 
cognizant engineer using data from precise bench meas­
urements in conjunction with the knowledge that certain DC 
parameters have already been measured and are within 
spec. 

In some cases, certain AC tests are redundant since they 
can be shown to be predicted by other tests that have 
already been performed. In these cases, the redundant 
tests are not performed. 

9. Output Short-Circuit Current Testing 
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When performing los tests on devices containing RAM or 
registers, great care must be taken that undershoot caused 
by grounding the high-state output does not trigger parasit­
ic elements which in turn cause the device to change state. 
In order to avoid this effect, it is common to make the 
measurement at a voltage (Voutput) that is slightly above 
ground. The Vee is raised by the same amount so that the 
result (as confirmed by Ohm's law and precise bench 
testing) is identical to the VOUT = 0, Vee = Max. case. 

I 
1,1 



SWITCHING WAVEFORMS 

KEY TO SWITCHING WAVEFORMS 

~ 

J]J[[f 

JfJflI 
]HR 

INPUTS 

MUST8E 
STEADY 

MAY CHANGE 
FROM H Tal 

MAV CHANGE 
FROML TOH 

DON'T CARE; 
ANY CHANGE 
PERMITTED 

DOES NOT 
APPLY 

Queue Cycle 
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OUTPUTS 

WILL BE 
STEADY 

WIL.LBE 
CHANGING 
FROM HTOL 

WILL BE 
CHANGING 
FROM L TOH 

CHANGING; 
STATE 
UNKNOWN 

CENTER 
LINE IS HIGH 
IMPEO.A.NCe 
"OFF" STATE 

KSOOOO10 

WF023460 



SWITCHING WAVEFORMS (Cont'd.) 

OOCLK 

OOE~ 

8000-3 

DE 

YO-31/ 
PYO-3 

PYERR 

Full/A-Full 

Empty/A-Empty 

.----
CNTO_6 ..... _____ _ 

Empty/A-E mpty 

Full/A-Full 

CNTO_6 

YO-31 / 
PYO-3 

PYERR 

Dequeue Cycle 

----®---j. 
.A 

~ 
14 

i 
..J, 

.Jj. 

RESET Timing Diagram 

Notes: 1. Minimum time RESET must be asserted. 
2. This timing diagram is applicable to RXMIT. 
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SWITCHING WAVEFORMS (Cont'd.), 

3.0 V 

INPUTS 1.5 V 1.5V 
WNWV>M 

OV 

- .. Ih 

1.5 V I 
3.0 V 

CLOCK 

OV 

INPUT 

CLOCK I--OUWUT -

-OU~~UT 
DELAY 

DELAY 

OUTPUTS 

WFR02990 

INPUT IOUTPUT CIRCUIT DIAGRAM 

DRIVING OUTPUT DRIVEN INPUT 

J 
IOl 

ICR00480 
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CHAPTER 4 

ArHhmetic Processors 
Am29C323 CMOS 32-Bit Parallel Multiplier 

Am29325 32-Bit Floating-Point Processor 

Am29C325 CMOS 32-Bit Floating-Point Processor 

Am29C327 CMOS Double-Precision Floating-Point Processor 
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Am29C323 
CMOS 32-Bit Parallel Multiplier 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• 32-Blt Three·Bus Architecture 
- The device has two 32-bit input ports and one 32-bit 

output port with clocked multiply time of 100 ns . 
• Speed Selects 

- 80- and 55-ns speed-select parts 
• Single Clock with Register Enables 

- The Am29C323 is controlled by one clock with 
individual register enables 

• Supports Multlprecislon Multiplication 
- The device has dual 32-bit registers on each data 

input port to perform multiprecision multiplication 

• Registers can be made transparent 
- Input and output registers can be made transparent 

independently to eliminate unwanted pipeline delay 
• Supports Two's Complement, Unsigned or Mixed 

Numbers 
• Data Integrity Through Master·Slave Mode and Pari· 

ty Check/Generate 
- Parity check/generate catches inter-device 

connection errors and master/slave mode provides 
complete function check 

GENERAL DESCRIPTION 

The Am29C323 is a high-speed 32 x 32-Bit CMOS Parallel 
Multiplier with 67-Bit Accumulator. The part is designed to 
maximize system level performance by providing a 32-bit 
three bus architecture and a single clock with register 
enables. 

The Am29C323 further enhances system throughput by 
providing individual register feedthrough controls, byte 
parity checking on both input ports and generation on the 
output port, and dual input registers on each data input bus 
to support multiprecision multiplication. The Am29C323 can 
manage a wide variety of data types, including two's 

complement, unsigned, or mixed mode input formats. A 
64 x 64-bit multiplication can be performed in seven clock 
cycles, including input and output. Additional features 
provided are a format adjust control allowing for standard 
output or left shifted output suitable for fractional two's 
complement arithmetic, rounding, and master/slave opera­
tion. 

The Am29C323 is designed in low·power, high-speed 
CMOS with TTL-compatible I/O. The device is housed in a 
169-lead pin-grid-array package. 

SIMPLIFIED BLOCK DIAGR~M 

PRERR 

BD005255 

Rev. Amendment 
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Part No. 

Am29COl 

Am29C1(jA 

Am29Cl0l 

Am29112 

Am29114 

Am29Cl16 

Am29325 

Am29C325 

Am29331 

Am29C331 

Am29332 

Am29C332 

Am29334 

Am29C334 

Am29337 

Am29338 

Am29C516 

Am29C517 

,,(>---,,4..--/ 

CLK -_ 

ENiA,ENxii ~ 
ENYA,ENvi ~ 

€Hi -­
ENP_ 
fN'f-
fA--

TSEL -­
PIELD -

PSELl --

OE -­
SLAVE --

3. 

RELATED AMD PRODUCTS 

Description 

CMOS 4-Bit Microprocessor Slice 

CMOS 12-Blt Sequencer 

CMOS 16-EIi! Microprocessor 

8.Bit Cascadable Microprogram Sequencer 

Real-Time Interrupt Controller 

CMOS 16-Bit Mitrocontroller 

32-Bil Floaling Point Processpr 

CMOS 32-Bit Floating Point Processor 

16·Bit Microprogram Sequencer 

CMOS 16-Bit Microprogram Sequencer 

32·Bit Extended Function ALU 

CMOS 32·Bil Extended Function ALU 

64 x 18 Four·Port Dual Access Register File 

CMOS·64 x 18 Four·Port Dual Access Register File 

16·Bit Bounds Checker 

32·Blt Byte Queue 

CMOS 16 x 16 Multiplier 

CMOS 16 x 16 Multiplierwith Separate 110 

DETAILED BLOCK DIAGRAM 

PX 

.. 
FROM PARERR MULTIPLEXER 

PP 
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XSEL 

YSEL 

TCX 

TCY 

Aceo 
Ace, 
RND 

--fTl 

--FTP 

80003049 



CONNECTION DIAGRAM 
169·Lead PGA 
Bottom View I;, 

i·j 

I 
1': 
I 
l'i, 

A B C 0 E f G H I< ~ II N P R T U I~ ;i 
Ii: 

PV3 V31 V30 Vu Vac Va3 Vao VII VIS VIO V" ~ Vs V3 GNO ENvi PX3 
~ 

2 GND He Vat V27 PV2 V21 VI8 VI6 PVI VI2 VOt PVo Vc V2 Vo iNvii X31 

3 He PRERR He V2, V2S V22 Vee V17 Vu VI3 GND V, V. VI FTV X30 GND 

Vee PP3 He * X2t X2• X27 

P30 P31 P2t X2' ~4 ~S 

, GND P2a P27 P~ Xa3 X22 

7 P2S Pu GND Vee XII ~I 

Vee P24 PP2 X" XI7 ~ 

He He P23 XIS XIS PXI 

10 GND P22 P21 Xu Xu XII 

" Pu P20 Vee GND XIO XI2 

12 P16 PIS PI7 Xt Xa PXo 

13 Vee HOERR FTP X7 Xs X, 

U He ENP He Xa Xa X4 

IS ENi' Oe S~VE PIS P" PI2 GND P7 P, P3 Vee PI FYI TCV FTX XI Xo 

16 PSE~I FA PPI Pu P13 Pt GND PPo Ps Pc Vee iii C~ Acel TCX 00ii iNxA 

17 PSE~ TSEL GND He Vee Plo GND Pa GND P2 Vee Po Vee FIND ACCO VSEL lCSEL 

CD011030 

·Pinout observed from pin side of package. 
··Pin 169 for reference only. 
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PIN DESIGNATIONS 

(Sorted by Pin Number) 

PAO PIN PIN NAME PAO PIN PIN NAME PAO PIN PIN NAME PAO PIN PIN NAME 
NO. NO. NO. NO. NO. NO. NO. NO. 

1 A1 PY3 75 C9 P23 55 J15 P6 117 R10 X14 

168 A2 GND 72 C10 P21 51 J16 P5 116 R11 GND 

83 A3 NC 74 C11 Vee 135 J17 GND 36 R12 X9 

81 A4 Vee 153 C12 P17 14 K1 Y10 121 R13 X7 

80 A5 P30 151 C13 FTP 13 K2 Y12 40 R14 X2 

79 A6 GND 66 C14 NC 96 K3 Y13 125 R15 FTX 

160 A7 P25 146 C15 SLAVE 50 K15 P3 128 R16 rcx 

77 A8 Vee 145 C16 PP1 134 K16 P4 45 R17 ACCO 

157 A9 NC 61 C17 GND 133 K17 P2 105 T1 ENYA 

71 A10 GND 4 01 Y26 97 L1 Y11 21 T2 ENYB 

154 A11 P19 87 02 Y27 98 L2 Y9 107 T3 X30 

69 A12 P16 3 03 Y28 95 L3 GND 108 T4 X28 

68 A13 Vee 62 015 P15 53 L15 Vee 110 T5 X24 

67 A14 NC 144 016 P14 53 L16 Vee 111 T6 X23 

65 A15 ENT 60 017 NC 53 L17 Vee 113 T7 X19 

148 A16 PSEL1 5 E1 Y24 16 M1 Y7 114 T8 X17 

64 A17 PSELO 89 E2 PY2 99 M2 PYo 31 T9 X16 

85 B1 Y31 88 E3 Y25 15 M3 Y8 34 T10 X13 

84 B2 NC 142 E15 P11 132 M15 P1 119 T11 X10 

166 B3 PRERR 143 E16 P13 47 M16 ENI 120 T12 X8 

165 B4 PP3 57 E17- Vee 48 M17 Po 122 T13 X5 

164 B5 P31 6 F1 Y23 17 N1 Y5 123 T14 X3 

162 B6 P28 7 F2 Y21 101 N2 Y4 124 T15 X1 

161 B7 P26 90 F3 Y22 100 N3 Y6 42 T16 ENXB 

76 B8 P24 59 F15 P12 130 N15 FTI 127 T17 YSEl 

73 B9 NC 141 F16 P9 131 N16 ClK 22 U1 PX3 

156 B10 P22 58 F17 P10 49 N17 Vee 106 U2 X31 

155 B11 P20 91 G1 Y20 18 P1 Y3 23 U3 GND 

70 B12 P18 _92 G2 Y18 102 P2 Y2 25 U4 X27 

152 B13 HOERR 11 G3 Vee 19 P3 Y1 26 US X25 

150 B14 ENP 137 G15 GND 44 P15 rcy 28 U6 X22 

149 B15 DE 137 G16 GND 129 P16 ACC1 112 U7 X21 

63 B16 FA 137 G17 GND 46 P17 RND 29 U8 X20 

147 B17 rSEL 8 H1 Y19 20 R1 GND 115 U9 PX1 

2 C1 Y30 93 H2 Y16 103 R2 Yo 35 U10 X11 

86 C2 Y29 9 H3 Y17 104 R3 FTY 118 U11 X12 

167 C3 NC 139 H15 P7 24 R4 X29 37 U12 PXo 

82 C4 NC 56 H16 PPo 109 R5 X26 38 U13 X6 

163 C5 P29 140 H17 P8 27 R6 PX2 39 U14 X4 

78 C6 P27 94 J1 Y15 32 R7 Vee 41 U15 Xo 

158 C7 GND 10 J2 PY1 30 R8 X18 126 U16 ENXA 

159 C8 PP2 12 J3 Y14 33 R9 X15 43 U17 XSEl 

4-4 



PIN DESIGNATIONS 

(Sorted by Pin Name) 

PAD PIN PIN NAME PAD PIN PIN NAME PAD PIN PIN NAME PAD PIN PIN NAME NO. NO. NO. NO. NO. NO. NO. NO. 

45 R17 ACCO 50 K15 P3 89 E2 PY2 110 T5 X24 

129 P16 ACC1 134 K16 P4 1 A1 PY3 26 U5 X25 

131 N16 ClK 51 J16 P5 46 P17 RND 109 R5 X26 

47 M16 ENI 55 J15 P6 146 C15 SLAVE 25 U4 X27 

150 814 ENP 139 H15 P7 128 R16 TCX 108 T4 X2S 

65 A15 ENT 140 H17 Ps 44 P15 TCY 24 R4 X29 

126 U16 ENXA 141 F16 Pg 147 817 TSEl 107 T3 X30 ," 
42 T16 ENXB 58 F17 P10 68 A13 Vee 106 U2 X31 

I' 

" i 
105 T1 ENYA 142 E15 P11 81 A4 Vee 43 U17 XSEl i' 
21 T2 ENYB 59 F15 P12 77 AS Vee 103 R2 Yo 

63 816 FA 143 E16 P13 74 C11 Vee 19 P3 Yl 

130 N15 FTI 144 016 P14 57 E17 Vee 102 P2 Y2 

151 C13 FTP 62 015 P15 11 G3 Vee 18 P1 Y3 

125 R15 FTX 69 A12 P16 53 L15 Vee 101 N2 Y4 

104 R3 FTY 153 C12 P17 53 L16 Vee 17 N1 Ys 

71 A10 GND 70 812 P1S 53 L17 Vee 100 N3 Y6 

168 A2 GND 154 A11 P19 49 N17 Vee 16 M1 Y7 

79 A6 GND 155 811 P20 32 R7 Vee 15 M3 Ys 

61 C17 GND 72 C10 P21 41 U15 Xo 98 L2 Yg 

158 C7 GND 156 810 P22 124 T15 X1 14 K1 Y10 

137 G15 GND 75 C9 P23 40 R14 X2 97 L1 Y11 

137 G16 GND 76 88 P24 123 T14 X3 13 K2 Y12 

137 G17 GND 160 A7 P25 39 U14 X4 96 K3 Y13 

135 J17 GND 161 87 P26 122 T13 Xs 12 J3 Y14 

95 L3 GND 78 C6 P27 38 U13 X6 94 J1 Y15 

20 R1 GND 162 86 P2S 121 R13 X7 93 H2 Y16 

116 R11 GND 163 C5 P29 120 T12 Xs 9 H3 Y17 

23 U3 GND 80 A5 P30 36 R12 Xg 92 G2 Y1S 

152 813 HDERR 164 85 P31 119 T11 X10 8 H1 Y19 

157 A9 NC 166 83 PRERR 35 U10 X11 91 G1 Y20 

60 017 NC 56 H16 PPo 118 U11 X12 7 F2 Y21 

73 89 NC 145 C16 PP1 34 T10 X13 90 F3 Y22 

82 C4 NC 159 C8 PP2 117 R10 X14 6 F1 Y23 

83 A3 NC 165 84 PP3 33 R9 X1S 5 E1 Y24 

84 82 NC 64 A17 PSElO 31 T9 X16 88 E3 Y25 

66 C14 NC 148 A16 PSEl1 114 T8 X17 4 01 Y26 

167 C3 NC 37 U12 PXo 30 R8 X1S 87 02 Y27 

67 A14 NC 115 U9 PX1 113 T7 X19 3 03 Y2S 

149 815 OE 27 R6 PX2 29 U8 X20 86 C2 Y29 

48 M17 Po 22 U1 PX3 112 U7 X21 2 C1 Y30 

132 M15 P1 99 M2 PYo 28 U6 X22 85 81 Y31 

133 K17 P2 10 J2 PY1 111 T6 X23 127 T17 YSEl 
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LOGIC SYMBOL 

CLK 

ENXA, 'ENxB 

ENYA, EWe 

ENI 

EiiiP,ENT 

FA 

TSEL 

PSELO, PSEL 1 

OE 

SLAVE 

XSEL, YSEL 

TCX, TCY 

ACCO, ACCl 

RNO 

FTX, FTY, FTI 

FTP 

4 
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ORDERING INFORMATION 

Standard Products 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is 
formed by a combination of: a. Device Number 

AM29C323 

b. Speed Option (if applicable) 
c. Package Type 
d. Temperature Range 
e. Optional Processing 

i 
L.... -----e. OPTIONAL PROCESSING 

Blank = Standard processing 
B = Burn·in 

L..--------d. TEMPERATURE RANGE 
C = Commercial (0 to + 70·C) 

'-------------c. PACKAGE TYPE 
G = 169-Lead Pin Grid Array without Heatsink 

(CGXI69) 

L..---------------b. SPEED OPTION 
-I =80 ns 
-2-55 ns 

- •. DEVICE NUMBER/DESCRIPTION 
Am29C323 
CMOS 32-Bil Parallel Multiplier 

Valid Combinations 

AM29C323 

AM29C323-1 GC, GCB 

AM29C323-2 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMO 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMO's standard military grade 
products. 
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ORDERING INFORMATION 

APL Products 

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved 
Products List) products are fully compliant with MIL·STD-883C requirements. The order number (Valid Combination) for APL 
products is formed by a combination of: a. Device Number 

AM29C323 

b. Speed Option (if applicable) 
c. Device Class 
d. Package Type 
e. Lead Finish 

/B L JL L=e. LEAD FINISH 
C= Gold 

d. PACKAGE TYPE 
Z - 169-Lead Pin Grid Array without Heatsink 

(CGXI69) 

'-------------c. DEVICE CLASS 
/B = Class B 

a. DEVICE NUMBER/DESCRIPTION 
Am29C323 
CMOS 32·Bit Parallel Multiplier 

b. SPEED OPTION 
Not Applicable 

Valid Combinations Valid Combinations 

AM29C323 /BZC Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations or to check for newly released valid 
combinations. 
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Group A Tests 

Group A tests consist of Subgroups 
1, 2, 3, 7, 8, 9, 10, 11. 



PIN DESCRIPTION 

ACCO, ACC1 Accumulator Control (Input) 
Accumulator control lines used to determine accumulator 
function; PASS, ACCUMULATE, and SHIFT and 
ACCUMULATE. 

ClK Clock (Input) 
Clock input for all registers. 

ENI Instruction Register Enable (Input; Active LOW) 
Register enable for instruction register I. 

'EiiiP Accumulator Register Enable (Input; Active 
LOW) 

Register enable for product register P. 

EN'f Temporary Register Enable (Input; Active lOW) 
Register enable for temporary register T. 

ENXA, ENXB Multiplicand Register Enable (Input; 
Active LOW) 

Register enables for multiplicand data input registers XA 
and XB. 

ENYA, ENYB Multiplier Register Enable (Input; 
Active lOW) 

Register enables for multiplier data input registers Y A and 
VB. 

FA Format AdJust (Input) 
Format adjust selects either a full 64-bit product (HIGH) or a 
left shifted 63-bit product suitable for fractional two's 
complement arithmetic (LOW). 

FTP Feedthrough Control (Input; Active HIGH) 
Feedthrough control for product register. 

FTX, FTY, FTI Feedthrough Control (Input; Active HIGH) 
Feedthrough control lines for X, Y, and I registers. 

HOERR Hard Error Flag (Output) 
Used when two Am29C323s are configured as master and 
slave to indicate hardware errors. 

OE Output Enable Control (Input; Active lOW) 
Used to enable (LOW) or disable (HIGH) the P output port. 

Po - P31 Product Output (Input/Output; Three State) 
Product output for P port. 

FUNCTIONAL DESCRIPTION 

Architecture 

The Am29C323 comprises a high speed 32 by 32-bit multiplier 
array, a 67-bit accumulator, and a 32-bit data path. 

Multiplier Array 

The multiplier is a 32 by 32-bit array that produces a 64-bit 
product. This product is then fed to the accumulator section. 

Accumulator 

The accumulator is 67 bits wide. It performs accumulation for 
sum of product operations and multiprecision multiplication 
operations. The accumulator can perform three operations: 
store produc1 without accumUlation, accumulate product, and 
shift accumulator value and accumulate with produc1. 

The shift and accumulate shifts the value in the product 
register 32 bits to the right (effectively moving the most 
significant 32 bits to the least significant 32 bits) and sign 
extends to a full 64 bits. This shifted value is then accumulated 
with the output of the multiplier array. 
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PRRER Parity Error Flag (Input/Output; Three 
State) 

Indicates a parity error on the input buses. 

PPo - PP3 Byte Parity (Input/Output; Three State) 
Byte parity generated on P output port (even parity). 

PSELO, PSEl1 Product Control (Input) 
Used to select desired output including disabling P and PP 
output ports. 

PXo - PX3 Byte Parity (Input) 
Byte parity inputs on X input port (even parity). 

PY 0'" PY 3 Byte Parity (Input) 
Byte parity inputs on Y input port (even parity). 

RND Round Control (Input; Active HIGH) 
Round control for rounding the most significant product. 

SLAVE Master/Slave Control (Input) 
Used to determine mode of operation. 

TCX, TCY Mode Control (Input) 
Mode control inputs for each input data word; LOW for 
unsigned data and HIGH for two's complement format. 

TSEl Select Control (Input) 
Used to route the most significant product register (HIGH) or 
the least significant product register (LOW) into the 
temporary register. 

Xo - X31 Multiplicand Data (Input) 
Multiplicand data input for X port. 

XSEl X Register Select (Input) 
Control line used to route the contents of either the XA 
register (HIGH) or XB register (LOW) into the multiplier 
array. 

Yo - Y 31 Multiplier Data (Input) 
Multiplier data input for Y port. 

YSEl Y Register Select (Input) 
Control line used to route the contents of either the Y A 
register (HIGH) or YB register (LOW) into the multiplier 
array. 

The 67 -bit width is necessary to contain overflows in internal 
accumulations. These overflows are maintained and used 
when the product register is right Shifted in the multi precision 
multiplies. The lower 64 bits contain the 64-bit output while the 
upper 3 bits contain the overflow. 

Data Path 

The 32-bit data path consists of X and Y input buses; the P 
output bus; data registers XA, XB, Y A, VB, and the product 
accumulator; two multiplier input multiplexers; byte parity input 
checkers; byte parity output generators; and master/slave 
comparators. Input operands enter the device through the two 
32-bit input buses, Xo - X31 and Yo - Y3l. These operands 
may then be stored in one of the two registers for each bus 
(XA or XB for X, Y A or YB for Y) or they may be fed directly 
through to the multiplier array. Input parity checking is per­
formed as soon as the operands are put on the input buses. 
The signals used for output parity generation are taken from 
the input side of the output translator. In case of parity error, 
PRERR is enabled HIGH. 



Operational Modes 

The Am29C323 can perform signed, unsigned, or mixed mode 
multiplication. These different numerical representations are 
controlled by TCX and TCV. A HIGH input on one of these 
lines indicates to the device that the respective input should 
be treated as a two's complement number; a LOW, an 
unsigned number. The output format is unsigned when both 
inputs are unsigned, The output format is two's complement 
when either or both inputs are two's complement. 

Slave Mode 

Each output has an associated comparator which compares 
the signal on the output pin with the signal provided to the 
output driver. If any of these outputs do not agree, the HOERR 
is asserted. When not in slave mode, this enables the 
multiplier to check for contention and bus shorts. However, 
when in slave mode, one multiplier can be used to detect 
faults in both internal functions and interconnections of the 
other multiplier. This is accomplished through the master! 
slave configuration, where the two multipliers operate in 
parallel. One multiplier is the master and operates normally; 
the other operates in slave mode. 

In slave mode all outputs are turned into inputs from the 
master, except for the HOERR signal. Since the slave is 
operated in parallel with the master, it can compare the results 
it generates to those of the master and signal an error if they 
differ. 

Command Description and Formats 

The accumulator is controlled by ACCO and ACCI. These 
lines are used to select any of the three operations that the 
accumulator can perform. This instruction set is described in 
Table 1. 

The temporary output register is controlled by TSEL and FA. 
These lines are used to select any of the four different sets of 
data that can be stored in the temporary register. This 
instruction set is described in Table 2. 

The output multiplexer is controlled by PSELO, PSEL 1, and 
FA. These lines are used to select any of the five different sets 
of data that can be output through the P port. PSELO and 
PSEL 1 can also be used to disable the outputs. (This 
instruction is independent of CE.) This instruction set is 
described in Table 3. 

Format Adjust (FA) is used to select either a full 64-bit product 
or a left-shifted 63-bit product suitable for fractional two's 
complement arithmetic. This shifting increases the preCision of 
the upper half of the product word by eliminating the redun­
dant sign bit. Output Data Formats show the effect of FA. 

Round (RND) is used to round the upper 32 bits of the 64-bit 
product. If only the upper 32 bits of the product are being 
used, then the lower 32 bits are truncated when rounding is 
not used (RND = 0). If rounding is used (RND = 1), then a "1" 
is added to the most significant of the lower 32 bits. This 

results in a smaller possible error. This should only be used 
when the lower 32 bits are to be truncated. 

User Visible Register Descriptions 

The Am29C323 contains seven different register sets, each 
with its own clock enable. Two 32-bit registers are attached to 
each of the input data buses. These registers are differentiat­
ed by the suffix A or B. For example, the X bus has registers 
XA and XB. The 67-bit !iccumulator register can be used as a 
regular product register when the part is used as a multiplier 
only or as the register part of the accumulator section. The 32-
bit temporary output register is included to aid in the pipelining 
of multi precision operations. An instruction register is also 
provided. 

All of these registers can be made transparent with the 
exception of the accumulator register and the temporary 
register. The product from the multiplier can be fed directly to 
the output by using the FTP control line. 

TABLE 1. ACCUMULATOR OPERATION 
INSTRUCTIONS 

ACC1 ACCO Accumulator Operation 

0 0 PASS 

0 1 ACCUMULATE 

1 0 INVALID 

1 1 SHIFT AND ACCUMULATE 

TABLE 2. INPUT SELECT INSTRUCTIONS FOR 
TEMPORARY (T) REGISTER 

TSEL FA Temp Reg Input 

0 0 Pi-l 

0 1 Pi 

1 0 Pi+31 

1 1 Pi + 32 

TABLE 3. OUTPUT SELECT INSTRUCTIONS FOR 
PRODUCT (P) PORT 

PSEL1 PSELO FA P Port Output 

0 0 X TEMP REGISTER 

0 1 0 Pi -1 

0 1 1 Pi 

1 0 0 Pi+31 

1 0 1 Pi + 32 

1 1 X DISABLE 

4-10 



h 

[ Am29C323 X AND Y INPUT DATA FORMATS 
,~ 

?J 

!: 
Fractional Two's Complement " I:" 

TCX, TCY= 1 I: 
31 30 29 28 27 26 3 2 0 1\ 

~ j:: 

_2° 2- 1 2-2 2- 3 Z-4 2-5 2- 28 2- 29 2-30 2- 31 

Integer Two's Complement 

TCX, TCY = 1 

31 30 29 28 27 26 3 2 0 

_231 230 229 228 227 226 23 22 21 2° 

i., 
Unsigned Fractional " I 

TCX, TCY=O 

31 30 29 '28 27 26 3 2 0 

2- 1 2 2 2-3 2 4 2-5 2-6 2- 29 2- 30 2- 31 2 32 

Unsigned Integer 

TCX, TCY=O 

31 30 29 28 27 26 3 2 0 

231 230 229 228 227 226 23 22 21 2° 

4-11 



Am29C323 P-PORT OUTPUT DATA FORM~TS 

Fractional Two's Complement (Shifted)* 

FA = 0, PSEL 1 = 1, PSELO = ° 
31 30 29 28 27 26 3 2 0 

_20 2- 1 2-2 2-3 2-4 2-5 2-28 2-29 2-30 2-31 

FA=O, PSEL1 =0, PSELO= 1 

31 30 29 28 27 26 3 2 0 

2-32 2-33 2-34 Z-35 2-36 2- 37 2-60 2- 61 2- 62 2- 63 •• 

Fractional Two's Complement 

FA= 1, PSEL1 = 1, PSELO=O 

31 30 29 28 27 26 3 2 0 

_21 20 2- 1 2 2 2-3 2-4 2- 27 2 28 2-29 2- 30 

FA = 1, PSEL 1 = 0, PSELO = 1 

31 30 29 28 27 26 3 2 0 

2-31 2-32 2- 33 2- 34 2- 35 2- 36 2-59 2-60 2-61 2-62 

Integer Two's Complement 

FA = 1, PSEL1 = 1, PSELO = ° 
31 30 29 28 27 26 3 2 0 

_263 262 261 260 259 258 235 234 233 232 

FA = 1, PSEL 1 = 0, PSELO = 1 

31 30 29 28 27 26 3 2 0 

231 230 229 228 227 226 23 22 21 20 

Unsigned Fractional 

FA = 1, PSEL1 = 1, PSELO = ° 
31 30 29 28 27 26 3 2 0 

2 1 2 2 2 3 2 4 2 5 2- 6 2 29 2-30 2 31 2 32 

FA= 1, PSEL1 =0, PSELO= 1 

31 30 29 28 27 26 3 2 0 

2-33 2- 34 2-35 2-36 2- 37 2-38 2-61 2- 62 2- 63 2-64 

Unsigned Integer 

FA = 1, PSEL 1 = 1, PSELO = ° 
31 30 29 28 27 26 3 2 0 

263 262 261 260 259 258 235 234 233 232 

FA= 1, PSEL1 =0, PSELO= 1 

31 30 29 28 27 26 3 2 0 

231 230 229 228 227 226 23 22 21 20 

·In this format, an overflow occurs in the attempted multiplication of the two's complement number -1.000 with itself, yielding a 
product of + 1.000 which cannot be represented in this format. • ·This bit position (2- 63) equals zero in this format. 
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64 x 64 Multiplication 

To perform a 64 x 64-bit multiplication using the Am29C323, 
each 64-bit input must be split into two 32-bit inputs; a most 
significant half and a least significant half (XW1 and XWO or 
YWl and YWO, respectively). These 32-bit inputs are then 
used to perform the four multiplications needed to obtain the 
128-bit product. This product is represented in four 32-bit 
words, PW3 - PWo, the least significant word being PWo. The 
product is output 32 bits at a time through the product (P) port. 
The following equation shows the required multiplications: 

X * Y = «XW1 * YW1) * 264) + «XWO * YW1) * 232) 
+ «XW1 * YWO) * 232) + «XWO * YWO) • 2°)) 

P = (PW3 • 296) + (PW2 * 264) + (PW1 * 232) 
+ (PWO • 2°) 

The Am29C323 uses an internal accumulator to sum these 
intermediate products. The previous equation, in a slightly 

different form, is shown with the necessary instructions below: 

X- .XW1 XWO 
Y- YW1 YWO 

XWO * YWO - Multiply only 
XW1 • YWO - Mult & Shift/ Acc 
XWO * YW1 - Mult & Accumulate 

XW1 * YW1 - Mult & Shift! Acc 

P- PW3 PW2 PW1 PWO 

Table 4 details the movement of the input operands through 
the Am29C323. Table 5 defines the microcode required to 
perform a signed 64 x 64-bit multiplication. For an unsigned 
multiplication, TCX and TCY are LOW for all cycles. The 
operations and data movement are scheduled to produce a 
single product in seven clock cycles or a new pipelined 
product every four clock cycles. 

TABLE 4. BUS AND REGISTER CONTENTS FOR A 64 x 64-BIT SIGNED MULTIPLICATION WITH ONE 
COMPLETE EXTENDED MULTIPLICATION SHOWN IN THE UNSHADED CYCLES 

Note: MPY OP = Operation of multiplier array (X·Y) 
ACC OP = Operation of internal accumulator 

PASS = Pass through multiplier product 
ACC = Add previous result to current product 
SI A = Shift previous result then add to current product 

TABLE 5. INSTRUCTION MICROCODE FOR 64 x 64-BIT SIGNED MULTIPLICATION WITH ONE 
COMPLETE EXTENDED MULTIPLICATION SHOWN IN THE UNSHADED CYCLES 
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ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 

Storage Temperature ............................ -65 to + 150·C Commercial (C) Devices 
Ambient Temperature Under Bias ............ -55 to + 125·C Temperature (T A) .................................. 0 to + 70·C 
Supply Voltage to Ground Potential Supply Voltage (Vcc) .................... +4.75 to +5.25 V 

Continuous ...................................... -0.3 to + 7.0 V Military" (M) Devices 
Temperature (T A) ............................. - 55 to + 125·C DC Voltage Applied to Outputs For 

High Output State ..................... -0.3 to + Vcc + 0.3 V 
DC Input Voltage ......................... -0.3 to + VCC + 0.3 V 

Supply Voltage (Vce) ....................... +4.5 to +5.5 V 

DC Output Current, Into LOW Outputs ................. 30 mA 
DC Input Current ................................ -10 to + 10 mA Operating ranges define those limits between which the 

functionality of the device is guaranteed. 
Stresses above those listed under ABSOLUTE MAXIMUM 
RA TlNGS may cause permanent device failure. Functionality 
at or above these limits is not implied. ExposurfJ to absolute 
maximum ratings for extended periods may affect device 
reliability. 

"Military Product 100% tested at TA = +25·C, + 125·C, and 
-55·C. . 

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, 
Subgroups 1, 2, 3 are tested unless otherwise noted) 

Parameter 
Symbol 

VOH 

VOL 

10ZH 
10Zl 

ICC 

CPO 

Parameter 
Description 

Output HIGH Voltage 

Output LOW Voltage 

Input HIGH Level 

Input LOW Level 

Input LOW Current 

Power Dissipation 
Capacitance 
(Note 3) 

Test Conditions (Note 1) 

Vee = Min. 
Y,N = V,H or V,l 
10H --0.4 mA 

Vee = Min., 
Y,N = V,H or V,l 
IOL=4 mA 

Vee = Max .. 
Y,N = Vee or GND, 
10=0 p.A 

Vec=5.0 V, 
TA = 25·C, 
No Load 

VO=0.5 V 

COM'L 

MIL 

Notes: 1. Vee conditions shown as Min. or Max., reler to the military or commercial Vee limits. . 

Min. Max. 

2.4 

0.5 

2.0 

0.8 

-10 

10 

10 

-10 

25 

25 

3000 pF Typical 

Unit 

V 

V 

V 

V 

p.A 

p.A 

p.A 

mA 

2. These input levels provide zero noise immunity and should only be statically tested in a noise-Iree environment (not 
lunctionally tested). 

3. CPO determines the no-load dynamic current consumption: 
IcC (Total) = Icc (Static) + CPO Vee I, where I is the switching Irequency of the majority of the internal nodes, 
normally one-half of the clock frequency. This specification is not tested. 
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· SWITCHING CHARACTERISTICS over COMMERCIAL operating range 

29C323 29C323-1 29C323-2 
Parameter Parameter Test 

No. Symbol Description Conditions Min. Max. Min. Max. Min. Max. Unit 

UNCLOCKED MODE 

1 tMUC 
Unclocked Multiply Time FTX/Y/P = HIGH 120 100 70 ns 
XO-X31' YO-Y31 to PO-P31 

2 tMUCPP 
Unclocked Multiply Time FTXIYIP = HIGH 125 105 75 ns 
Xo - X31, Yo - Y31 to PPo - PP3 

3 tiP Instruction to Po - P31 (Note 1) 
Output Taken From 

120 100 

~ 
ns Adder FTI = HIGH 

4 tlPP Instruction to PPo - PP3 
Output Taken From 

125 105 ns Adder FTI = HIGH 

CLOCKED MODE '!I!ia\Ii!l~ 
5 tMC Clocked Multiply Time FTX/Y IP = LOW 100 80 Wl.7'~5 ns 

6 tpop Clock to Po - P3l 
Output Taken from 38 30 

~" ., '·;~5 
Temp or Product Reg, 

" 

ns 

7 tpopp Clock to PPo - PP3 
Output Taken from 43 35 0 ns Temp or Product Reg, 

~~::; 5 

"-
Output Taken from ;,,1' i~~"!\ 8 tpAP Clock to Po - P3l 115 ns Adder, FTX/Y/I = LOW 

i= Output Taken from 

i 
9 tpAPP Clock to PPo - PP3 i~~.~I~)\\lj~O 5 ns Adder, FTX/Y /I = LOW ~~~!\lii~, :~" 

10 Isp 
Data to Product Register Setup FTX/Y= HIGH 1 ~~,~, ns Time 

11 Data to Product Register Hold FTX/Y = HIGH 0 
.,rB1 ~ i tHP Time o iII!4 .,!!~ ns 

Instruction to Product Register 1;··i\l!!1 9~~ii! ng~~ ~." 12 tSIPT FTI = HIGH 
1: ~,'!'~~ 

- ,~~ ns 
Setup Time 1iIl •• i\\\\~ 
Instruction to Product Register Cf{Cl :i! Owlll 

'.,~'I, til 13 tHIPT FTI = HIGH ';1I,lI! 1l:~'1{I: ns Hold Time '".,,' ''',' 
14 tpWH Clock Pulse Width HIGH 21r" '",,,, 2d" ~-i 15 ns Wf 

15 tpWL Clock Pulse Width LOW 2ilx~ rlJ.~ 2q,. lid t~ I ns 

SETUP AND HOLD TIMES I' .' I Ii 111 11\ 
iiI.'liIi";ji~!!II 

16 tSXY 
Register XA, XB, YA, YB Setup iiJl~ 

,(If. 

lilT! .~l '~~ ns 
Time -.l!~l~" ~~~~ 

17 tHXY 
Register XA, XB, YA, YB Hold ~~ ilill! % ns 
Time ~ ,~~~ "l~"~~ ., 

18 tSI Instruction Register Setup Time li,)r' ~/"~' 11/1 &!l'~' 10 " iIIi!~' ns 

19 tHI Instruction Register Hold Time 0 0 I!l'lI!lI !~t!" ns 

20 tSEN Register Enable Setup Time 18 15 1!II\li'1~ , ns 

21 tHEN Register Enable Hold Time 0 0 \Ji!>l":""" ns 

22 IsTS TSEL Setup Time 18 15 Q ns 

23 tHTS TSEL Hold Time 0 0 ns 

COMMON PARAMETERS .IIl'l"V 
24 tpp PSELO - PSEL1 to Po - P3l To Active State Only 35 30 

'" .. ~ ~5 ns 

25 tppp PSELO - PSEL 1 to PPo - PP3 To Active State Only 35 30 25 ns 

26 toEPl 
0Et to Po - P31, PPo - PP3 35 30 25 ns Output Enable 

0Et or PSELO - PSEL1 to 
27 too Po - P31, PPo - PP3 Output 35 30 25 ns 

Disable 

28 tOPE Data to PRERR 35 35 30 ns 

29 IOHE Data 10 HOERR Slave = HIGH 40 40 35 ns 

Notes: 1. Instruction signals are XSEL, YSEL; TCX, TCY, ACCO, ACC1, and RND. 
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SWitCHING CHARACTERISTICS over MILITARY operating range (for APL Products, Group A, Subgroups 
9, 10, 11 are tested unless otherwise noted) , 

29C323 
Parameter Parameter Teat 

No. Symbol Description Conditions Min; Max. Unit 

UN<::LOCKED MODE 

1 tMUC 
Unclockad Multiply Tima FTX/Y/P z HIGH 140 ns 
Xo - Xal. Yo - Yal to Po - Pal 

2 tMUCPP 
Unclocked Multiply Time 

FTX/Y/P - HIGH 145 ns 
Xo-Xal. Yo-Yal to PPo-PPa 

3 tiP Instruction to Po - Pal (Note 1) 
Output Taken From Adder 

140 ns FTI m HIGH 

4 tlPP Instruction to PPo - PP3 Output Takan From Adder 145 ns FTI = HIGH 

CLOCKED MODE 

5 tMC Clocked Multiply Time FTX/Y IP = LOW 120 ns 

6 tpop Clock to Po - Pal 
Output Taken Ir Temp or 45 ns , Product Reg. 

7 tpopp Clock to PPo - PP3 
Output T p or 50 ns 
Product 

8 tpAP Clock to Po - Pal 
Output Adder, 

150 ns 
FT 

9 tpAPP Clock to PPo - PPa 
Irom Adder, 

155 ns 
LOW 

10 tsp Data to Product Register Setup Time -HIGH 135 ns 

11 tHP Data to Product Register Hold Time IY· HIGH 0 ns 

12 tSIPT Instruction to Product Reg. Setup TI = HIGH 135 ns 

13 tHIPT Instruction to Product Reg. Hoi FTI- HIGH 0 ns 

14 tpWH Clock Pulse Width HIGH 20 ns 

15 tPWL Clock Pulse Width LOW, .. ,."".,,,," 20 ns 

SElUP AND HOLD n... _ .... 
16 tSXY Register XA, XB, Time 24 ns 

17 tHXY Register XA, X Time 0 ns 

18 tSI Instruction p Time 20 ns 

19 tHI Instruction Hold Time 0 ns 

20 tSEN Register Enable tup Time 20 ns 

21 tHEN Register Enable Hold Time 0 ns 

22 tSTS TSEL Setup Time 20 ns 

23 tHTS TSEL Hold Time 0 ns 

COMMON PARAMETERS 

24 tpp PSELO - PSEL1 to Po - P31 To Active State Only 40 ns 

25 tppp PSELO - PSEU to PPo - PPa To Active State Only 40 ns 

26 toEPI C5E to Po - P31, PPo - PP3 Output Enable 40 ns 

27 too 
rn: or PSELO - PSEL 1 to Po - P31, 40 ns 
PPo - PP3 Output Disable 

28 tOPE Data to PRERR 40 ns 

29 tOHE Data to HOERR Slave = HIGH 45 ns 

Notes: 1. Instruction signals ara XSEL, YSEL, TCX, TCY, ACCO, ACC1, and RND. 

I 
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-
SWITCHING TEST CIRCUITS 

5V 

R,.uon 

~7 ",a. 

Aa • 5.1 K ::: z: 
:::z: 

TCO01082 

TC001101 

A. Three-State Outputs B. Normal Outputs 

Notes: 1. CL ~ 50 PF includes scope probe, wiring and stray capacitances without device in test fixture. 
2. 51, 52, 53 are closed during function tests and all AC tests except output enable tests. 
3. 51 and 53 are closed while 52 is open for tPZH test. 

51 and 52 are closed while 53 is open for tPZL test. 
4. CL ~ TBD for output disable tests. 

SWITCHING WAVEFORMS 

KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS OUTPUTS 

---
MUST BE Wlll8E 
STEADY STEADY ---

-u. MAY CHANGE WILL BE 

FROM H TO L CHANGING 
FROM H TO l 

JJJJJJ MAY CHANGE WILL BE 

FAOML TOH CHANGING 
FROM L TOH 

JflJf1 OON'T CARE; CHANGING; 
ANY CHANGE STATE 
PERMITTED UNKNOWN 

]HR 
CENTEFI 

DCESNOT LINE IS HIGH 
APPLY IMPEDANCE 

"OFF" STATE 

KSOOOO10 
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elK 

ENXA. ENxB. 
ENYA. ENYB. 

ENI 

INST 

TSEl 

Po - P3l 

PPo - PP3 

SWITCHING WAVEFORMS (Cont'd.) 

WF022971 

Clocked Operation: FTX, Y, P,·I = LOW 
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elK 

INST 

PPo - PP3 

SWITCHING WAVEFORMS (Cont'd.) 

I+----{j 1}---~~---_f15;}_-_t~ 

Clocked Operation: Output Taken from Adder 
(FTX, Y, I = LOW; FTP = HIGH; PSEL 1 =I=- PSELO) 
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eLK 

INST 

TSEL 

PPo - PPS 

SWITCHING WAVEFORMS (Cont'd.) 

1 .. ----<14~}_----1~t__--____(j15i)_-___t~ 

10 

1 .. ----------------~12~------------_.~~~_{ 

Clocked Operation: Input Registers Bypassed 
(FTX, Y, I = HIGH; FTP = LOW) 
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SWITCHING WAVEFORMS (Cont'd.) 

1 

'1/ 
/'\ .. 2 ... 

.. 3 .. 
'1/ 

1\ 
INST 

4 

""" """ ~ / ~ 

~ 
~/ 
~~ PPO - PP3 

WF022990 

Unclocked Mode: FTX, V, I, P = HIGH 

PSELO - PSEL1 

OE 

PPO - PP3 

WF023001 

Output Select Timing 
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SWITCHING WAVEFORMS (Cont'd.) 

Ya - Y31 • PYa - PY3 

Po - P31 • PPo - PP3 

HOERR 

3.0 V 

INPUTS 

ov 

3.0 V 

CLOCK 

ov 

OUTPUTS 

PRERR 

WF023013 

P RERR Timing 

\V _____ J~ ____________ __ 

~ .. ~_~---~~i-;:~~-2~9~---------------
1/ 

'JVVJ 1' ________ _ 

WF023024 

Slave Mode Timing 

/, 1.5 V 1.5 V 

to It> 

If J 1.5 V 
I 

INPUT 

CLOCK I--OU~~UT -
1----, T~ DELAV 

WFR02990 
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INPUT IOUTPUT CURRENT INTERFACE DIAGRAMS 

Voo--------------~r_----
OUTPUT 

Vee --------..,--

p ---~ 

= ----1 

IC000861 
IC000870 

CI '" 5.0 pF, all inputs Co'" 5.0 pF, all outputs 
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Am29325 
32-Bit Floating-Point Processor 

DISTINCTIVE CHARACTERISTICS 
• Single VLSI device performs high-speed floating-point 

arithmetic 
- Floating-point addition, subtraction, and multiplication 

In a single clock cycle 
- Internal architecture supports sum-of-products, 

Newton-Raphspn division 
• 32-bit, three-bus flow-through architecture 

- Programmable 110 allows interface to 32- and 16-bit 
systems 

• IEEE and DEC formats 
"- Performs conversions between formats 
- Performs integer ++ floating-point conversions 

• Six flags Indicate operation status 
• Register enables eliminate clock skew 
• Input and output registers can be made transparent 

Independently 

GENERAL DESCRIPTION 
The Am29325 Is a high-speed floating-point processor unit. 
It performs 32-bit single-precision floating-point addition, 
subtraction, and multiplication operations in a single VLSI 
circuit, using the format specified by the proposed IEEE 
floating-point standard, P754. The DEC single-precision 
floating-point format is also supported. Operations for 
conversion between 32-bit integer format and floating-point 
format are available, as are operations for converting 
between the IEEE and DEC floating-point formats. Any 
operation can be performed in a single clock cycle. Six 
flags - invalid operation, Inexact result, zero, not-a-num­
ber, overflow, and underflow - monitor the status of opera. 
tlons. 

The Am29325 has a three-bus, 32-bit architecture, with two 
input buses and one output bUB. This configuration provides 

high 110 bandwidth, allows access to all buses and affords 
a high degree of flexibility when connecting this device in a 
system. All buses are registered with each register having a 
clock enable. Input and output registers may be made 
transparent independently. Two other 110 configurations, a 
32-bit, two-bus architecture and a 16-blt, three-bus archi­
tecture, are user-selectable, easing interface with a wide 
variety of systems. Thirty-two-bit internal feedforward data­
paths support accumulation operations, Including sum-of­
products and Newton-Raphson division. 

Fabricated with the high-speed IMOX ™ bipplar process, 
the Am29325 is powered by a single 5-volt supply. The 
device is housed in a 145-terminal pin-grid-array package. 

Am29300 FAMILY HIGH·PERFORMANCE SYSTEM BLOCK DIAGRAM 

Am2l33, 
, .... IT 

SEQUI!NCER 

1'6 
MICROPROGRAM 

MEMORY 

PIPELINE 
REGISTER 

~ 
CONT!IOL 
SIGNALS 

IMOX I •• 'rod .... ark 01 "dvanoed M1oro o.vl_. lno. 

AFOO4650 

Pyblicatitu" ~ A.menrlmoct 
OM21 D 10 
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1 
CLKD--f-

SELECT 16 
ANDENABLE~ 

LINES 

Part No. 

Am29114 

Am29116 

Am29C116 

Am29PL141 

Am29C323 

Am29331 

Am29C331 

Am29332 

Am29C332 

Am29334 

Am29C334 

Am29337 

Am29338 

RELATED AMD PRODUCTS 

Description 

Vectored Priority Interrupt Controller 

High·Performance Bipolar 16·Bit Microprocessor 

High·Performance CMOS 16·Bit Microprocessor 

Fuse Programmable Controller 

CMOS 32·Bit Parallel Multiplier 

16·Bit Microprogram Sequencer 

CMOS 16·Bit Microprogram Sequencer 

32·Bit Extended Function ALU 

CMOS 32·Bit Extended Function ALU 

64 x 18 Four·Port, Dual·Access Register File 

CMOS 64 x 18 Four·Port, Dual·Access Register File 

16·Bit Bounds Checker 

Byte Queue 

BLOCK DIAGRAM 

FLOATING· POINT 
ALU 

PORT F 

STATUS 
FLAG 

GENERATOR 

OE C>-----d\7 
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UNDERFLOW 

ZERO 
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CONNECTION DIAGRAM 
Top View 

PGA 

A B c 0 • E F G H K L M N P R 

1 INEX 12 11 ENF 14 OBU5 DE VCCE ClK R31 A30 A25 A24 A21 A20 

2 INVA NAN 10 lID FTO FT1 VCCE VCCE ANDO AND1 R27 A28 A23 A22 A17 

3 F29 ZERO GNDT Emi Em 16132 VCCE VCCE VCCE A29 A26 GNDE GNDE R19 R18 

4 F30 F31 GNDT * R15 R16 A13 

5 F23 OVFl UNFl R14 R11 R12 

8 F26 F27 F28 R9 R10 R7 

7 F21 F24 F25 R8 R5 R6 

8 F22 F19 VCCT R3 R4 R1 

9 F17 F20 VCCT RO 13 R2 

10 F18 F15 F16 528 531 530 

11 F13 F14 F11 527 528 529 

12 F12 F9 F10 VCCE 525 524 

13 F7 Fa GNDT GNDT GNDT GNDT GNDE GNDE GNDE 58 513 514 VCCE, 522 523 

14 F8 F3 F2 GNDT FO 51 52 GNDE 54 59 510 515 518 521 520 

15 F5 F4 F1 GNDT PfAFF 50 53 55 57 56 511 512 517 516 519 

CD010490 

Key: 16/32 = S16/32 
GNDE = Ground, ECl 
GNDT = Ground, TTL 

110 = IEEE/DEC 
INEX = INEXACT 
INVA = INVALID 

OBUS = PNEBUS 
OVFl = OVERFLOW 

P/Al"F = PROJ/AFF 
UNFl = UNDERFLOW 
VCCE = Vee, ECl 
VCCT = Vcc, TTL 

"04 is an alignment pin (not connected internally). 
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PIN DESIGNATIONS 

(Sorted by Pin No.) 

PIN NO. PIN NAME PIN NO. PIN NAME PIN NO. PIN NAME PIN NO. PIN NAME 

A·1 Inexact C·7 F25 H·13 GNDE N·10 528 

A·2 Invalid C·8 VCCT H·14 GNDE N·11 527 

A·3 F29 e·g VCCT H·15 55 N·12 VCCE 

A·4 F30 C·10 F16 J·1 elK N·13 VCCE 

A·5 F23 C·11 F11 J·2 RNDo N·14 518 

A-6 F26 C·12 F10 J·3 VCCE N·15 517 

A·7 F21 C·13 GNDT J·13 GNDE P·1 R21 

A-8 F22 C·14 F2 J·14 54 P·2 R22 

A·9 F17 C·15 F1 J·15 57 P·3 R19 

A·10 F18 0·1 ENF K·1 R31 P·4 R16 

A·11 F13 0·2 IEEE/DEC K·2 RND1 P·5 R11 

A·12 F12 0·3 ENR K·3 R29 P·6 R10 

A·13 F7 0·13 GNDT K·13 58 P·7 R5 

A·14 F8 0·14 GNDT K·14 59 P·8 R4 

A·15 F5 0·15 GNDT K·15 56 p.g 13 

B·1 12 E·1 14 l·1 R30 P·10 531 

B·2 NAN E·2 FTo L·2 R27 P·11 526 

B·3 ZERO E·3 El\ffi L·3 R26 P·12 525 

B·4 F31 E·13 GNDT L·13 513 P·13 522 

B·5 OVERFLOW E·14 Fo L·14 510 P·14 521 

B·6 F27 E·15 PROJ/Al'F L·15 511 P·15 516 

B·7 F24 F·1 ONEBU5 M·1 R25 R·1 R20 

B·8 F19 F·2 FT1 M·2 R28 R·2 R17 

B·9 F20 F·3 516/32 M·3 GNDE R·3 R18 

B·10 F15 F·13 GNDT M·13 514 R·4 R13 

B·11 F14 F·14 81 M·14 515 R·S R12 

B·12 F9 F·15 50 M·1S 512 R·6 R7 

B·13 F6 G·1 OE N·1 R24 R·7 R6 

8-14 F3 G·2 VCCE' N·2 R23 R·8 R1 

B·15 F4 G·3 VCCE N·3 GNDE R·9 R2 

C·1 11 G·13 GNDE N·4 R15 R·10 530 

C·2 10 G·14 52 N·5 R14 R·11 529 

C·3 GNDT' G·15 53 N·6 R9 R·12 524 

C·4 GNDT H·1 VCCE N·7 R8 R·13 523 

C·S UNDERFLOW H·2 VCCE N·8 Rs R·14 520 

C-6 F28 H·3 VCCE N·9 Ro R·15 519 

'T and E represent TTL and Eel, respectively. 
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PIN DESIGNATIONS (Cont'd.) 

(Sorted by Pin Name) 

PIN NO. PIN NAME PIN NO. PIN NAME. PIN NO. PIN NAME PIN NO. PIN NAME. 

J-l ClK E-2 FTo R-6 R7 K-14 Sg 

0-1 ENF F-2 FT1 N-7 R8 l-14 S10 

0-3 ENR N-3 GNDE* N-6 R9 l-15 S11 

E-3 eNS H-14 GNDE P-6 R10 M-15 S12 

E-14 Fo G-13 GNDE P-5 R11 . l-13 S13 

C-15 F1 M-3 GNDE R-5 R12 M-13 S14 

C-14 F2 H-13 GNDE R-4 R13 M-14 815 

B-14 F3 J-13 GNDE N-5 R14 P-15 S16 

B-15 F4 0-15 GNDT N-4 R15 F-3 816/32 

A-15 F5 0-14 GNDT P-4 R16 N-15 817 

B-13 F6 E-13 GNDT R-2 R17 N-14 S18 

A-13 F7 F-13 GNDT R-3 R18 R-15 S19 

A-14 F8 C-4 GNDT P-3 R19 R-14 S20 

B-12 F9 C-3 GNDT R-l R20 P-14 S21 

C-12 F10 0-13 GNDT P-1 R21 P-13 S22 

C-11 Fll C-13 GNDT P-2 R22 R-13 S23 

A-12 F12 C-2 10 N-2 R23 R-12 824 

A-l1 F13 C-l 11 N-1 R24 P-12 S25 

B-11 F14 B-1 12 M-l R25 P-11 S26 

B-10 F15 P-9 13 l-3 R26 N-ll ~7 

C-l0 F18 E-1 14 l-2 R27 N-10 S28 

A-9 F17 0-2 IEEE/DEC M-2 R28 R-11 S29 

A.10 F18 A-1 INEXACT K-3 R29 R-10 S30 

B-8 F19 A-2 INVALID l-1 R30 P-10 S31 

B-9 F20 B-2 NAN K-l R31 C-5 UNDERFLOW 

A-7 F21 G-l OE J-2 RNDo J-3 VCCE 

A-8 F22 F-l ONEBU8 K-2 RND1 G-2 VCCE 

A-5 F23 B-5 OVERFLOW F-15 So G-3 VCCE 

B-7 F24. E-15 PROJ/AFF F-14 81 H-2 VCCE 

C-7 F25 N-9 Ro G-14 S2 N-13 VCCE 

A-6 F26 R-8 R1 G-15 S3 N-12 VCCE 

B-6 F27 R-9 R2 J-14 S4 H-3 VCCE 

C-6 F28 N-8 R3 H-15 S5 H-l VCCE 

A-3 F29 P-8 R4 K-15 S6 C-8 VCCT 

A-4 F30 P-7 R5 J-15 S7 C-9 VCCT 

B-4 F31 R-7 Ra K-13 S8 B-3 ZERO 

*E and T represent ECl and TTL, respectively. 

I 
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LOGIC SYMBOL 

b 
l
i'l 
T 

INEXACT 1---+ 

INVALID 1---+ 

NAN 1---+ 

OVERFLOW 1---. 

UNDERFLOW 1---. 

ZERO 1---+ 

PROJ/AFF 

LS002920 

METALLIZATION AND PAD LAYOUT 
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ORDERING INFORMATION 

Standard Producta 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is 
formed by a combination of: a. Device Number 

Am29325 

b. Speed Option (if applicable) 
c. Package Type 
d. Temperature Range 
•• Optional Processing 

11 ~LI ______ lr:~~~~~~~~~:::~~;!~~:;::::~ng 
I C - Commercial (0 to + B5'C) Case 

L------------------------c. PACKAGE TYPE 

a. DEVICE NUMBER/DESCRIPTION 
Am29325 
32-8it Floating-Point Processor 

Valid Combinations 

GC. GC8 

G - 145-Terminal Pin Grid Array (CG 145) 

b. SPEED OPTION 
Not Applicable 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMO 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMO's standard military grade 
products. 
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PIN DESCRIPTION 

RO - R31 R Operand Bus (Input) 
Ro is the least-significant bit. 

So - S31 S Operand Bus (Input) 
So is the least-significant bit. 

Fo - F31 F Operand Bus (Output) 
Fo is the least-significant bit. 

ClK Clock (Input) 
For the internal registers. 

ENR Register R Clock Enable (Input; Active lOW) 
When ENR is lOW, register R is clocked on the lOW-to­
HIGH transition of ClK. When ENR is HIGH, register R 
retains the previous contents. 

ENS Register S Clock Enable (Input; Active lOW) 
When ENS is lOW, register S is clocked on the lOW-to­
HIGH transition of ClK. When ENS is HIGH, register S 
retains the previous contents. 

ENF Register F Clock Enable (Input; Active lOW) 
When ENF is lOW, register F is clocked on the lOW-to­
HIGH transition of ClK. When ENF is HIGH, register F 
retains the previous contents. 

OE Output Enable (Input; Active lOW) 
When OE is lOW, the contents of register F are placed on 
Fo-Fa1. When OE is HIGH, Fo-Fa1 assume a high­
impedance state. 

ONEBUS Input Bus Configuration Control (Input) 
A lOW on ONEBUS configures the input bus circuitry for 
two-input bus operation. A HIGH on ONEBUS configures 
the input bus circuitry for single-input bus operation. 

FTo Input Register Feedthrough Control (Input; 
Active H,GH) 

When FTo is HIGH, registers Rand S are transparent. 

FT 1 Output Register Feedthrough Control (Input; 
Active HIGH) 

When FT 1 is HIGH, register F and the status flag register 
are transparent. 

10 -12 Operation Select Lines (Input) 
Used to select the operation to be performed by the AlU. 
See Table 1 for a list of operations and the corresponding 
codes. 

13 AlU S Port Input Select (Input) 
A lOW on la selects register S as the input to the AlU S 
port. A HIGH on la selects register F as the input to the AlU 
Sport. 

Definition of Terms 

Affine Mode 

One of two modes affecting the handling of operations on 
infinities - see the Operations with Infinities section under 
Operations In IEEE Mode. 

Biased Exponent 

The true exponent of a floating-point number, plus a constant. 
For IEEE floating-point numbers, the constant is 127; for DEC 
floating-point numbers, the constant is 128. See also True 
Exponent. 

Bus 

Data input or output channel for the floating-point processor. 

14 Register R Input Select (Input) 
A lOW on 14 selects RO - Ra1 as the input to register R. A 
HIGH selects the AlU F port as the input to register R. 

IEEE/DEC IEEE/DEC Mode Select (Input) 
When IEEE/DEC is HIGH, IEEE mode is selected. When 
IEEE/DEC is lOW, DEC mode is selected. 

S16/32 16- or 32-Blt I/O Mode Select (Input) 
A lOW on S16/32 selects the 32-bit 110 mode; a HIGH 
selects the 16-bit I/O mode. In 32·bit mode, input and 
output buses are 32 bits wide. In 16-bit mode, input and 
output buses are 16 bits wide, with the least- and most­
significant portions of the 32-bit input and output words 
being placed on the buses during the HIGH and lOW 
portions of ClK, respectively. 

RNDO. RND1 Rounding Mode Selects (Input) 
RNDo and RND1 select one of four rounding modes. See 
Table 5 for a list of rounding modes and the corresponding 
control codes. 

PROJ/AFF Projective/Affine Mode Select (Input) 
Choice of projective or affine mode determines the way in 
which infinities are handled in IEEE mode. A lOW on 
PROJ/AFF selects affine mode; a HIGH selects projective 
mode. 

OVERFLOW Overflow Flag (Output; Active HIGH) 
A HIGH indicates that the last operation produced a final 
result that overflowed the floating-point format. 

UNDERFLOW Underflow Flag (Output; Active HIGH) 
A HIGH indicates that the last operation produced a 
rounded result that underflowed the floating-point format. 

ZERO Zero Flag (Output; Active HIGH) 
A HIGH indicates that the last operation produced a final 
result of zero. 

NAN Not-a-Number Flag (Output; Active HIGH) 
A HIGH indicates that the final result produced by the last 
operation is not to be interpreted as a number. The output in 
such cases is either an IEEE Not·a·Number (NAN) or a 
DEC-reserved operand. 

INVALID Invalid Operation Flag (Output; Active 
HIGH) 

A HIGH indicates that the last operation performed was 
invalid; e.g., 00 times O. 

INEXACT Inexact Result Flag (Output; Active HIGH) 
A HIGH indicates that the final result of the last operation 
was not infinitely precise, due to rounding. 

DEC-Reserved Operand 

A DEC floating-point number that is interpreted as a symbol 
and has no numeric value. A DEC-reserved operand has a 
sign of 1 and a biased exponent of o. 
Destination Format 

The format of the final result produced by the floating-point 
AlU. The destination format can be IEEE floating point, DEC 
floating point, or integer. 

Final Result 

The result produced by the floating-point AlU. 

Fraction 

The 23 least-significant .bits of the mantissa. 
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Infinitely Precise Result 

The result that would be obtained from an operation if both 
exponent range and precision were unbounded. 

Input Opersnds 

The value or values on which an operation is performed. For 
example, the addition 2 + 3 - 5 has input operands 2 and 3. 

Mantissa 

The portion of a floating-point number containing the number's 
significant bits. For the floating-point number 1.101 x Z-3, the 
mantissa is 1.101. 

NAN (Not-a-Number) 

An IEEE floating-point number that is interpreted as a symbol, 
and has no numeric value. A NAN has a biased exponent of 
25510 and a non-zero fraction. 

Port 

Data input or output channel for the floating-point ALU. 

Projective Mode 

One of two modes affecting the handling of operations on 
infinities - see the Operations with Infinities section under 
Operation In IEEE Mode. 

Rounded Result 

The result produced by rounding the infinitely precise result to 
fit the destination format. 

True Exponent (or Exponent) 

Number representing the power of two by which a floating­
point number's mantissa is to be multiplied. For the floating­
point number 1.101 x 2-3, the true exponent is -3. 

FUNCTIONAL DESCRIPTION 

ArchItecture 

The Am29325 comprises a high·speed, floating-point ALU, a 
status flag generator, and a 32-bit data path. 

Floating-Point ALU 

The floating-point ALU performs 32-bit floating-point opera­
tions. It also performs floating-point-to-integer conversions, 
integer-to-floating-point floating-point conversions, and con­
versions between the IEEE and DEC formats. The ALU has 
two 32-bit input ports, Rand S, and a 32-bit output port, F. 

Conceptually, the process performed by the ALU can be 
divided into three stages (see Figure 1). The operation stage 
performs the arithmetic operation selected by the user; the 
output of this section is referred to as the infinitely precise 
result of the operation. The rounding stage rounds the 
infinitely precise result to fit in the destination format; the 
output of this stage Is called the rounded result. The last stage 
checks for exceptional conditions. If no exceptional condition 
is found, the rounded result is passed through this stage. If 
some exceptional condition is found (e.g., overflow, underflow, 
or an invalid operation), this section may replace the rounded 
result with another output, such as + 00, _00, !I. NAN, or 1\ DEC-

reserved operand. The output of this last stage appears on 
port F, and is called the final result. 

OPERAND R OPERANDS , , 
R S 

OPERATION STAGE 
(PERFORMS SELECTED OPERATION) 

-INFINITELY PRECISE RESULT 

ROUNDING STAGE 
(ROUNDS INFINITELY PRECISE 

RESULT) 

-ROUNDED RESULT 

EXCEPTION STAGE 
(CHECKS FOR UNUSUAL CONDITIONS) 

F 

I 
FINAL RESULT 

AFOO4540 

FIgure 1. Conceptual Model of the Process 
Performed by the FloatIng-Point ALU 

The ALU performs one of eight operations; the operation to be 
performed is selected by placing the appropriate control code 
on lines 10 -12. Table 1 gives the control codes corresponding 
to each of the eight operations. 

The floating-point addition operation (R PLUS S) adds the 
floating-point numbers on ports Rand S, and places the 
floating-point result on port F. In IEEE mode (IEEE! 
~ = HIGH) the addition is performed In IEEE floating-point 
format; in DEC mode (IEEE!DEC = LOW) the addition is 
performed in DEC format. 

The floating-point subtraction operation (R MINUS S) sub­
tracts the floating-point number on port S from the floating­
point number on port R and places the floating-point result on 
port F. In IEEE mode (IEEE!~ = HIGH) the subtraction is 
performed in IEEE floating-point point format; in DEC mode 
(IEEE!DEC = LOW) the subtraction is performed in DEC 
format. 

The floating-point multiplication operation (R TIMES S) multi­
plies the floaling-point numbers on ports Rand S, and places 
the floating-point result on port F. In IEEE mode (IEEE! 
DEC = HIGH) the multiplication is performed in IEEE floating­
point format; in DEC mode (IEEE!DEC ~ LOW) the multiplica­
tion is performed in DEC format. 

The floating-point constant subtraction (2 MINUS S) operation 
subtracts the floating-point. value on port S from 2, and places 
the result on port F. The operand on port R is not used in this 
operation; its value will not affect the operation in any way. In 
IEEE mode (IEEE!DEC = HIGH) the operation is performed in 
IEEE floating-point format; in DEC mode (IEEE!DEC = LOW) 
the operaticn is performed in DEC fermat. This opeiation is 
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used to support Newton-Raphson floating-point division; a 
description of its use appears in Appendix C. 

The integer-to-floating-point conversion (INT-TO-FP) opera­
tion takes a 32-bit, two's-complement integer on port Rand 
places the equivalent floating-point value on port F. The 

operand on port S is not used in this operation; its value will 
not affect the operation in any way. In IEEE mode (IEEEI 
~ = HIGH) the result is delivered in IEEE format; in DEC 
mode (IEEE/l5I:r: - LOW) the result is delivered in DEC 
format. 

TABLE 1. ALU OPERATION SELECT 

12 1, 10 Operation Output Equation 

0 0 0 Floating-point addition (R PLUS S) F=R+S 

0 0 1 Floating-point subtraction (R MINUS S) F= R-S 

0 1 0 Floating-point multiplication (R TIMES S) F- R'S 

0 1 1 Floating-point constant subtraction F=2-S 
(2 MINUS S) 

1 0 0 Integer-to-floating-point conversion F (floating-point) - R (integer) 
(INT-TO-FP) 

1 0 1 Floating-point-to-integer conversion F (integer) = R (floating-point) 
(FP-TQ-INT) 

1 1 0 IEEE-TO-DEC format conversion F (DEC format) = R (IEEE format) 
(IEEE-TO-DEC) 

1 1 1 DEC-TO-IEEE format conversion F (IEEE format) = R (DEC format) 
(DEC-TO-IEEE) 

The floating-point-to-integer conversion (FP-TO-INT) opera­
tion takes a floating-point number on port R and places the 
equivalent 32-bit, two's-complement integer value on port F. 
The operand on port S is not used in this operation; its value 
will not affect the operation in any way. In IEEE mode (IEEEI 
~ = HIGH) the operand on port R is interpreted using the 
IEEE floating-point format; in DEC mode (IEEE/'i5E'e = LOW) 
it is interpreted using the DEC floating-point format. 

The IEEE-to-DEC conversion operation (IEEE-TO-DEC) takes 
an IEEE-format floating-point number on port R and places the 
equivalent DEC-format floating-point number on port F. The 
operand on port S is not used in this operation; its value will 
not affect the operation in any way. The operation can be 
performed in either IEEE mode (IEEE/'i5E'e = HIGH) or DEC 
mode (IEEE/'i5E'e = LOW). 

The DEC-to-IEEE conversion operation (DEC-TO-IEEE) takes 
a DEC-format floating-point number on port R and places the 
equivalent IEEE-floating-point number on port F. The operand 
on port S is not used in this operation; its value will not affect 
the operation in any way. The operation can be performed in 
either IEEE mode (IEEE/DEC = HIGH) or DEC mode (IEEEI 
'i5E'e = LOW). 

Status Flag Generator 

The status flag generator controls the state of six flags that 
report the status of floating-point ALU operations. The flags 
indicate when an operation is invalid (e.g., 00 times 0) or when 
an operation has produced an overflow, an underflow, a non­
numerical result (e.g., a NAN- or DEC-reserved operand), an 
inexact result, or a result of zero. The flags represent the 
status of the most recently performed operation. Flag status is 
stored in the flag status register on the LOW-to-HIGH transi­
tion of CLK. When the output register feedthrough control FT 1 
is HIGH, the flag status register is made transparent. 

Data Path 

The 32-bit data path consists of the Rand S input buses; the F 
output bus; data registers R, S, and F; the register R input 
multiplexer; and the ALU port S input multiplexer. 

Input operands enter the floating-point processor through the 
32-bit Rand S input buses, RO - Ra1 and So - Sa1. Results of 
operations appear on the 32-bit F bus, Fo - Fa1. The F bus 
assumes a high-impedance state when output enable OE is 
HIGH. 

The Rand S registers store input operands; the F register 
stores the final result of the floating-point ALU operation. Each 
register has an independent clock enable (ENR, ENS, and 
ENF). When a register's clock enable is LOW, the register 
stores the data on its input at the LOW-to-HIGH transition of 
CLK; when the clock enable is HIGH, the register retains its 
current data. All data registers are fully edge-triggered - both 
the input data and the register enable need only meet modest 
setup and hold time requirements. Registers Rand S can be 
made transparent by setting FT 0, the input register feed­
through control, HIGH. Register F can be made transparent by 
setting FT 1, the output register feedthrough contrOl, HIGH. 

The register R input multiplexer selects either the R input bus 
or the floating-point ALU's F port as the inp'ut to register R. 
Selection is controlled by 14 - a LOW selects the R input bus; 
a HIGH selects the ALU F port. The ALU port S input 
multiplexer selects either register S or register F as the input to 
the floating-point ALU's S port. Selection is controlled by la­
a LOW selects register S; a HIGH selects register F. 

Deta selected by la and 14 is described in Table 2. When 
registers Rand S are transparent (FT 0 = HIGH), multiplexer 
select 14 must be kept LOW, so that the register R input 
multiplexer selects Ro - Ra1. When register F is transparent 
(FT 1 = HIGH), multiplexer select la must be kept LOW, so that 
the ALU port S input multiplexer selects register S. 
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TABLE 2. MUX SELECT 

13 Datil selected for floating-point ALU 8 port 

0 Register 5 
1 Register F 

14 Data selected for register R Input 

0 R bus 

1 Floating-point ALU port F 

I/O Modes 

The Am29325 datapath can be configured in one of three I/O 
modes: a 32-bit, two-input bus mode; a 32-bit, single-input bus 
mode; and a 16- bit, two-input bus mode. These modes affect 
only the manner in which data is delivered to and taken from 
the Am29325; operation of the floating-point AlU is not 
altered. The I/O mode is selected with the ONEBU5 and 5161 
32 controls. Table 3 lists the control codes needed to invoke 
each I/O mode. 

RBUS 

S BUS 

14 

ENR 

CLK 

ONEBUS (= lOW) 

32 
·V 3:.L 
v I 

1 - I 

-~ 
:::~ 
- I 

1/ -

32 Ro-R31 

t 
I 1 

o I 2:1 
,5 MUX 

! 
EN I 1 REGR 

L:I 
~ 
R 

TABLE 3. 1/0 MODE SELECTION 

816/32 ONEBU8 I/O Mode 

0 0 32-bit, two-input-bu8 mode 

0 1 32-bit, single-input-bus mode(·) 

1 0 16-bit, two-in put-bus rnode(·) 

1 1 Illegal I/O mode selection value 

'FT 0 must be held LOW in this mode (see text). 

32-Blt, Two-Input Bus Mode 

In this I/O mode, the Rand 5 buses are configured as 
independent 32-bit input buses, and the F bus is configured as 
a 32-bit output bus. Figure 2 is Ii functional block diagram of 
the Am29325 in this I/O mode. 

Rand 5 operands are taken from their respective input buses 
and clocked into the Rand 5 registers on the lOW-to-HIGH 
transition of ClK. Register F is also clocked on the lOW-to­
HIGH transition of ClK. Figure 5(a) depicts typical I/O timing 
in this mode. 

A 

A 
32 So-S31 

l 
1/ 

REGS E~ 
ClK 

I - ENS 

~ ~ I 0 2:1 "L 11 ~ 
MUX 51 I -

~ 
S 

I 
FLOATING-POINT 

1/ AlU - F 816/32 (=LOW) 

11 
1 

; ......... 
]EN J - I 

REGF 
CLK 

1 

1 ~ .-OE 
Am29325 

32' 
32/ Fo-F31 A 

·V I FBU5 

B0007050 

Figure 2. Functional Block Diagram for the 32-Blt, Two-Input Bus Mode 

4-34 



32-Blt, Single-Input Bu. Mode 

In this 1/0 mode, the Rand S buses are connected to a single 
32-bit multiplexed input data bus; the F bus is configured as an 
independent 32-bit output bus. Figure 3 is a functional block 
diagram of the Am29325 in this 1/0 mode. Note that both the 
Rand S bus lines must be wired to the input bus. 

Rand S operands are multiplexed onto the input bus by the 
host system. The S operand is clocked from the input bus Into 
a temporary holding register on the HIGH-to-LOW transition of 
eLK and is transferred to register S on the LOW-to-HIGH 

transition of eLK. The R operand is clocked from the input bus 
into register R on the LOW-to-HIGH transition of eLK. Register 
F is clocked on the LOW-to-HIGH transition of eLK. Figure 
5(b) depicts typical 1/0 timing in this mode. 

When placed in this 1/0 mode, the data path will not function 
properly if the Rand S registers are made transparent. 
Therefore, Input register feedthrough control FT 0 must be held 
LOW in this mode. 

RISBUslV--~--------------~~------------------~~--------------------~ 

ENR· c>-!L--t--I---oIIfN--=---' 
elK C::>--;~141'"1:_...,....--..J 

ENIb--+--------4---.'--~..., EN§' 

ONEBUS (= HIGH) C>-+-t-

S16/32 (= lOW) C>-+-t-
FlOATING·POINT 

AlU 
F 

elK ~----I> 

OEC=~~--r--------------------<~ 
Am29325 

FBUS~--~------------------------~~~~-------------------------~ 

Figure 3. Functional Block Diagram for the 32-Blt, Single-Input Bus Mode 
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16-Blt, Two-Input Bus Mode 

In this 1/0 mode, the Rand S buses are configured as 
independent 16-bit input buses, and the F bus is configured as 
a 16-bit output bus. Figure 4 is a functional block diagram of 
the Am29325 in this 1/0 mode. Note that the 16 least­
significant bits (lSBs) and 16 most-significant bits (MSBs) of 
the R, S, and F buses must be wired to their respective system 
buses in parallel. 

Thirty-two-bit operands are passed along the 16-bit data 
buses by time-multiplexing the 16 lSBs and 16 MSBs of each 
32-bit word. For the R input bus, the host system multiplexes 
the 16 lSBs and 16 MSBs of the R operand onto the 16-bit R 
bus. The 16 lSBs of the R operand are stored in a temporary 
holding register on the HIGH-to-lOWtransition of ClK. The 16 
MSBs are clocked into register R on the lOW-to-HIGH 
transition of ClK; at the same time, the 16 lSBs are 
transferred from the temporary holding register to register R. 
Transfer of data from the S input bus to the S register takes 
place in a similar fashion. Register F is clocked on the lOW­
to-HIGH transition of ClK. Circuitry internal to the Am29325 
multiplexes data from register F onto the 16-bit output bus by 
enabling the 16 lSBs of the F output bus when ClK is HIGH, 
and enabling the 16 MSBs of the F output bus when ClK is 
lOW. Figure 5(c) depicts typical 1/0 timing in this mode. 

When placed in this 1/0 mode, the data path will not function 
properly if the Rand S registers are made transparent. 
Therefore, input register feedthrough control FT 0 must be held 
lOW in this mode. Caution must also be taken in controlling 
the register R input multiplexer control line, 14, in this 1/0 
mode. 14 should be changed only when ClK is HIGH, in 

addition to meeting the setup and hold time requirements 
given in the Switching Characteristics section. 

Operation In IEEE Mode 

When input signal IEEE/i5EC is HIGH, the IEEE mode of 
operation is selected. In this mode the Am29325 uses the 
floating-point format set forth in the IEEE Proposed Standard 
for Binary Floating-Point Arithmetic, P754. In addition, the 
IEEE mode complies with most other aspects of single­
precision floating-point operation outlined in the proposed 
standard - differences are discussed in Appendix A_ 

IEEE Floating-Point Format 

The IEEE single-precision floating-point word is 32 bits wide, 
and is arranged in the format shown in Figure 6. The floating­
pOint word is divided into three fields: a single-bit sign, an S-bit 
biased exponent, and a 23-bit fraction. 

The sign bit indicates the sign of the floating-point number's 
value. Non-negative values have a sign of 0; negative values, 
a sign of 1. The value, zero may have either sign. 

The biased exponent is an 8-bit unsigned integer field repre­
senting a multiplicative factor of some power of two. The bias 
value is 127. If, for example, the multiplicative factor for a 
floating-point number is to be 28 , the value of the biased 
exponent would be a + 127; "a" is called the true exponent. 

The fraction is a 23-bit unsigned fraction field containing the 
23 lSBs of the floating-point number's 24-bit mantissa. The 
weight of fraction's MSB is 2- 1; the weight of the lSB is 2""23. 

RBUSAr~----------~--~----------------------------JI 

sBusAr~~------.. ~-..+,---------~~~~------------JV 

" I:::H'-I'-I'-I-I 

ENR I:::~~~~~~~~ 
eLK 

ONEBUS(.LOW) o--+-+­
S16/32(=HIGH) O--+-t-

S ~-+-----+-f--<::J', 

Am29325 

60007070 

Figure 4. Functional Block Diagram for the 16-Blt, Two-Input Bus Mode 

4-36 



A floating-point number is evaluated or interpreted per the 
following conventions: 

let s = sign bit 
e = biased exponent 
f= fraction 

if e = 0 and f = O ... value = (-l)s*(O) (+ 0, -0) 
if e = 0 and f '* O ... value = denormalized number 
if 0 < e < 255 ... value = (_1)s*(29 -127)*(1.I) 

(normalized number) 
if e = 255 and f = O ... value = (_l)s*(oo) (+ 00, _00) 
if e = 255 and f '* O ... value = not-a-number (NAN) 

Zero: The value zero can have either a positive or negative 
sign. Rules for determining the sign of a zero produced by an 
operation are given in the Sign BIt section. 

Denormallzed Number: A denormalized number represents a 
quantity with magnitude less than 2-126 but greater than zero. 
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Normalized Number: A normalized number represents a 
quantity with magnitude greater than or equal to 2-126 but 
less than 2128. 

Example 1: 

The number + 3.5 can be represented in floating-point 
format as follows: 

+ 3.5 = 11.12 x20 

=1.112 X21 

sign = 0 

biased exponent = 110 + 12710 = 12810 
= 100000002 

fraction = 110000000000000000000002 
(the leading 1 is implied in the format) 

Concatenating these fields produces the floating-point word 
4060000016. 



C~ J 
RBUS XXXXXXXXXx 
SBUS XXXXXXXXXXX 
FBUS X FDATA 

CLK J 
~SBUS XXXX 

FBUS X 

a) 32-Blt, Two-Input-Bus Mode 

SDATA XXXX 
FDATA 

RDATA 

SDATA 

RDATA 

b) 32-Blt, Single-input-Bus Mode 

wJ 

xxx 
XXXX 
x 

xxx 
X 

WF023730 

WF023740 

RBUS XXXXX RDATA-16LSh XXXXX RDATA-16MSBs XXXX 
SBUS XXXXX SDATA-I6LSS. xx XXX SDATA-16MSBs xxx 
FBUS X F DATA - 16 LSas X FDATA -16MSh x 

WF023750 

c) 16-Blt, Two-Input-Bus Mode 

Figure 5. Typical Bus Timing for the 1/0 Modes with FTo = LOW, FT1 = LOW 
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SIGN BIASED 
BIT(S) EXPONENT (E) FR!'ClION (F) -BrrNUMBER: 31 30 29 29 27 26 25 24 23 22 21 20 19 18 4 3 2 1 0 

I I 27 ze'z5'z4 
• I 

23 22 21 zO 12-1 2-2 2-3 2-4 2-5 ... ' 2 _ 19 ' 2-20 2-21' 2-22 2-231 

VALUE = (-1)8 (2E-127) (1.F) 

TBOO0640 

Figure 6. IEEE Mode Single-Precision Floating-Point Format 

1* 
I ~; .• 
'.' 

Example 2: Infinity: Infinity can have either a positive or negative sign. 

The number -11.375 can be represented in floating-point 
The way in which infinities are interpreted is determined by the 

format as follows: 
state of the projective/affine mode select, PROJ/ AFF. 

-11.375 = -1011.0112 x 20 
Not-a-Number: A not-a-number, or NAN, does not represent 
a numeric value, but is interpreted as a Signal or symbol. NANs 

= -1.0110112 X23 are used to indicate invalid operations, and as a means of 

sign = 1 
passing process status information through a series of calcula-
tions. NANs arise in two ways: 1) they can be generated by the 
Am29325 to indicat~ that an invalid operation has taken place 

biased exponent = 310 + 12710 = 13010 
(e.g., 00 x 0), or 2) be provided by the user as an input 
operand. There are two types of NANs, signalling and quiet 

= 100000102 (see Figure 7 for formats). 

fraction = 011011000000000000000002 IEEE Mode Integer Format 
(the leading 1 is implied in the format) 

Integer numbers are represented as 32-bit, two's-complement 
Concatenating these fields produces the floating-point word words (Figure 8 depicts the integer format). The integer word 
C136000016· can represent a range of integer values from _231 to 231 - 1. 

SIGN BIASED 
BIT EXPONENT FRACnON -31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 ,. 15 ,. 13 12 11 I. • 8 7 • 5 4 3 2 1 • 

SIGNALLING NAN I X I' 1 1 , 1 1 1 , I' x x x x x x x x x x x x x x x x x x x x x x I 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 I. 9 8 7 6 5 • 3 2 1 • 
QUIET NAN I X l' 1 1 , 1 1 , 1 I. x x x x x x x x x x x x x x x x x x x x x x I 

x = DON'T CARE AT LEAST ONE OF THE 
TWENTY· TWO LSII8 OF A QUIET NAN 

MUST BE 1 

TBOO0650 

Figure 7. Signalling and Quiet NAN Formats 

Brr NUMBER: 31 30 29 28 27 26 25 24 8 7 6 5 4 3 2 1 0 

l231' z30' 229 '228 1 227 ' 228 ' 225'224' 
-I J 1 I I 1 1. I 

... '28 ' 27' ze I 2S'24'23 22 1 21 2· 1 
TBOO0660 

Figure 8. 32-Blt Integer Format 

Operations Operations with NANs: NANs arise in two ways: 1) they can 
be generated by the Am29325 to indicate that an invalid 

All eight floating-point ALU operations discussed in the operation has taken place (e.g., 00 x 0), or 2) be provided by 
Functional Description section can be performed in IEEE the user as an input operand. There are two types of NANs, 
mode. Various exceptional aspects of the R PLUS S, R MINUS signalling and quiet (see Figure 7 for formats). 
S, R TIMES S, 2 MINUS S, INT-TO-FP, and FP-TO-INT 
operations for this mode are described below. The IEEE-TO- Signalling NANs set the invalid operation flag when they 
DEC and DEC-TO-IEEE operations are discussed separately appear as an input operand to an operation. They are useful 
in the IEEE-TO-DEC AND DEC-TO-IEEE Operations section. for indicating uninitialized variables, or for implementing user-
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designed· extensions to the operations provided. The ALU 
never produces a signalling NAN as the final result of an 
operation. 

Quiet NANs are generated for Invalid operations. When they 
appear as an Input operand, they are passed through most 
operations without setting the Invalid flag, the fioating-point-to­
integer conversion operation ~elng the exception. 

The sign of any input operand NAN is ignored. All quiet NANs 
produced as the final result of an operation have a sign of O. 

When a NAN appears as an input operand, the final result of 
the operation is a quiet NAN that is created by taking the input 
NAN and forcing bit 22 LOW and bit 21 HIGH. If an operation 
has two NANs as input operands, the resulting quiet NAN is 
created using the NAN on the R port. 

When a quiet NAN is produced as the final result of an invalid 
operation whose input operand or operands are not NANs, the 
resulting NAN will always have the value 7FA0000016. 

The NAN flag will be HIGH whenever an operation produces a 
NAN as a final result. 

Example 1: 

Suppose the floating-point addition operation is performed 
with the following input operands: 

R port: 3F80000016 (1.0*2°) 
Sport: 7FC1234516 (signalling NAN) 

Result: The signalling NAN on the S port is converted to a 
quiet NAN by forcing bit 22 LOW and bit 21 HIGH. 
The operation's final result will be 7FA1234516. 
Since one of the two input operands is a signalling 
NAN, the invalid flag will be HIGH; the NAN flag will 
also be HIGH. 

Example 2: 

Suppose the floating-point multiplication operation is per­
formed with the following input operands: 

R port: FFF1111116 (signalling NAN) 
Sport: 7FC2222216 (quiet NAN) 

Result: Since both input operands are NANs, the NAN on 
the R port is chosen for output. In addition to forCing 
bit 22 LOW, the sign bit (bit 31) is set LOW (bit 21 is 
already HIGH, and need not be changed). The 
operation's final result will be 7FB1111116. Since 
one of the two input operands is a signalling NAN, 
the invalid flag is HIGH; the NAN fiag will also be 
HIGH. 

Example 3: 

Suppose the floating-point subtraction operation is per­
formed with the following input operands: 

R port: FF80000116 (quiet NAN) 
Sport: 7F80000016 (+ 00) 

Result: To create the final result, the quiet NANs sign bit (bit 
31) is forced LOW and bit 21 is forced HIGH (bit 22 
is already LOW, and need not be changed). The final 
result will be 7FA0000116. The NAN flag will be 
HIGH. 

Operations with Denormalized Numbers: The proposed 
IEEE standard incorporates denormalized numbers to allow a 
means of gradual underflow for operations that produce non­
zero results too small to be expressed as a normalized 
floating-point number. The Am29325 does not support gradual 
underflow. If a floating-point operation produces a non-zero 
rounded result that is not large enough to be expressed as a 
normalized floating-point number, the final result will be a zero 

of the same sign; the Inexact, underflow, and zero flags will be 
HIGH. If an Input operand is a denormallzed number, the 
floating-point ALU will assume that operand to be a zero of the 
same sign. 

Operations Producing OverflOWS: If an operation has a finite 
input operand or operands, and if the operation produces a 
rounded result that is too large to fit In the destination format, 
the operation Is said to have overflowed. 

A floating-point overflow occurs if an R PLUS S, R MINUS S, R 
TIMES S, or 2 MINUS S operation with finite input operand(s) 
produces a result which, after rounding, has a magnitude 
greater than or equal to 2128. Positive or negative infinity will 
appear as the final result if the rounded result is positive or 
negative, respectively, and the overflow and inexact flags will 
be HIGH. 

Integer overflow occurs when the floating-point-to-integer 
conversion operation attempts to convert a number which, 
after rounding, is greater than 231 - 1 or less than _231. The 
final result will be quiet NAN 7FA0000016, and the invalid 
operation and NAN fiags will be HIGH. Note that the overflow 
and inexact flags remain LOW for integer overflow. 

Operations Producing Underflows: If an operation produces 
a floating-point rounded result having a magnitude too small to 
be expressed as a normalized floating-point number, but 
greater than zero, that operation is said to have underflowed. 
Underflow occurs whim an R PLUS S, R MINUS S, or R 
TIMES S operation produces a result which, aiter rounding, 
has a magnitude in the range: 

o < magnitude < ::126. 

In such cases, the final result will be +0 (0000000016) if the 
rounded result is non-negative, and -0 (8000000016) if the 
rounded result is negative. The underflow, inexact, and zero 
flags will be HIGH. 

Underflow does not occur if the destination format is integer. If 
the infinitely precise result of a floating-polnt-to-integer con­
version has a magnitude greater than 0 and less than 1, but 
the rounded result is 0, the underflow flag remains LOW. 

Operations with Infinities: In most cases, positive and 
negative infinity are valid inputs for the R PLUS S, R MINUS S, 
R TIMES S, and 2 MINUS S operations. Those cases for which 
infinities are not valid inputs for these operations are listed in 
Table 4. 

Infinities in IEEE mode can be handled either as projective or 
affine. The projective mode is selected when PROJ/m is 
HIGH; the affine mode is selected when PROJ/m is LOW. 
The only differences between the modes that are relevant to 
Am29325 operation occur during the addition and subtraction 
of infinities: 

Operation 
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Affine 
Mode ProJective Mode 

Output + 00 Output 7FA0000016 
(quiet NAN). set invalid and 
NAN flags 

Output _00 Output 7FA0000016 
(quiet NAN), set invalid and 
NAN flags 

Output + 00 Output 7FA0000016 
(quiet NAN), set invalid and 
NAN flags 

Output _00 Output 7FA0000016 
(quiet NAN), set invalid and 
NAN fi.ags 



If an R PLUS S, R MINUS S, or 2 MINUS S operation has Operations +0 + (-0) and -0 + (+0) produce a result of 0, 
infinily as an input operand or operands, the final result, if with the sign of the result determined by the table above. 
valid, is presumed to be exact. For example, adding + 00 and 

The operation +0 + (+0) produces a final result of +0; the 2.0 will produce a final result of + 00; since the result is 
considered exact, the inexact flag remains LOW. operation -0 + (-0) produces a final result of -0. 

Invalid Oparatlons: If an input operand is invalid for the R MINUS S: The operations +x- (+x) and-x- (-x) produce a 
operation to be performed, that operation is considered final result of zero; the sign of the zero is dependent on the 
invalid. When an invalid operation is performed, the floating- rounding mode: 
pOint ALU produces a quiet NAN as the final reSUlt, and the 
invalid operation flag goes HIGH. Table 4 lists the cases for Rounding Mode Sign of Result 
which the invalid flag is HIGH in IEEE mode, and the final 

Round to nearest 0 results produced for these operations. 
Round toward _ 00 1 

TABLE 4. IEEE MODE INVALID OPERATIONS 
Round toward + 00 0 

Operation Input Operand Final Result Round toward 0 0 

RPLUSS (+ 00) + (_00) 7FAOOOO016 
or (_00) + (+ 00) (quiet NAN) Operations + 0 - (+ 0) and -0 - (-0) produce a result of 0, with 

R PLUS S (+ 00) + (+ 00) 7FAOOOOO16 
the sign of the result determined by the table above. 

or (_00) + (- 00) (Note 1) (quiet NAN) The operation +0-(-0) produces a final result of +0; the 

R MINUS S (+ 00)- (+ 00) 7FAOOOO016 operation - 0 - (+ 0) produces a final result of -0. 
or (_00)- (_00) (quiet NAN) 

R TIMES S: The sign of any multiplication result other than a 
R MINUS S (+ 00)- (_00) 7FAOOOO016 NAN is the exclusive OR of the signs of the input operands. 

or (_00)_(+00) (Note 1) (quiet NAN) Therefore, if x is non-negative, 

R TIMES S (+0)* (+00) 7FAOOOO016 
+ 0 times + x produces a final result of + 0, 

or (+0)* (_00) (quiet NAN) +0 times-x produces a final result of -0, 

or (-0)' (+ 00) 
-0 times + x produces a final result of -0, 

or (-0)' (_00) -0 times -x produces a final result of + O. 

R PLUS S R or S is a signalling (Note 2) 2 MINUS S: If S equals 2, the final result is -0 for the round 

R MINUS S NAN toward _00 mode, and +0 for all other rounding modes. 

R TIMES S 
Rounding 

2 MINUS S S is a Signalling NAN (Note 2) 

FP-TO-INT R is a Signalling or (Note 2) 
Rounding is performed whenever an operation produces an 
infinitely precise result that cannot be represented exactly in 

quiet NAN the destination ·format. For example, suppose a floating-point 
FP-TO-INT R > 231 _1 7FAOOOO016 operation produces the infinitely precise result: 

or R < _(23') (quiet NAN) 
1.10101010101010101010101\01 x 23. 

Notes: 1. These cases are invalid in projective mode only. 
2. Results for these operations are described in the Operations In this example, the fraction portion of the mantissa has 25 

with NANs section. bits; the IEEE floating-point format can accommodate only 23. 
The Sign Bit The backslash (\) in the mantissa represents the boundary 

For most floating-point operations, the sign bit of the final between the first 23 bits of the fraction and any remaining bits. 

result is unambiguous; i.e., there is only one sign bit value that 
Rounding is the process by which this result is approximated 

yields a numerically correct result. Operations that produce an by a representation that fits the destination format. 

infinitely precise result of zero, however, present a problem, as There are four rounding modes in IEEE mode: 1) round to 
the IEEE floating-point format allows for representation of both nearest, 2) round toward + 00, 3) round toward _00, and 4) 
+0 and -0. The following rules can be used to determine the round toward O. The rounding mode is chosen using the 
signs of zero produced in such cases. rounding mode select lines, RNDo and RND,. Table 5 lists the 
R PLUS S: The operations +x + (-x) and -x + (+x) produce a select states needed to obtain the desired rounding mode. 
final result of zero; the sign of the zero is dependent on the 
rounding mode: TABLE 5. ROUNDING MODE SELECT 

Rounding Mode Sign of Final Result RND1 RNDo Rounding Mode 

Round to nearest 0 0 0 Round to nearest 

Round 'toward - 00 1 0 1 Round toward - 00 

Round toward + 00 0 1 Q Round toward + 00 

Round toward 0 0 1 1 Round toward 0 
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Round to Nearest: In this rounding mode the infinitely precise 
result of an operation is rounded to the closest representation 
that fits in the destination format. If the infinitely precise result 
is exactly halfway between two representations, it is rounded 
to the representation having an LSB of zero. Rounding is 
performed both for floating-point and integer destination 
formats. 

Figure 9 illustrates four examples of the round-to-nearest 
process for operations having a floating-point destination 
format. The infinitely precise result of an operation is repre­
sented by an "X" on the number line; the black dots on the 
number line indicate those values that can be represented 
exactly in the floating-point format. 

Example 1: 

In Figure 9(a), the infinitely precise result of an operation is: 

220 + 2-4 + Z- 5 = 1 .00000000000000000000000\11 x 220 

The result is rounded to the closest representable floating­
point value, 

220 + 2-3 = 1.00000000000000000000001 x 220 

Example 2: 

In Figure 9(b), the infinitely precise result of an operation is: 
220 _ Z-4 + 2-8 _ 

1.11111111111111111111111 \0001 x 219 

This result is rounded to the closest representable floating­
point value, 

220_Z-4 = 1.11111111111111111111111 x219 

Example 3: 

In Figure 9(c), the infinitely precise result of an operation is: 

_(220 + 2-3 + Z-4) 
= -1.00000000000000000000001 \1 x 220 

This result is exactly halfway between two representable 
floating-point values. Accordingly, it is rounded to the 
closest representation with an LSB of zero, or 

_(220 + 2*Z-3) = -1.00000000000000000000010 x 220 

Example 4: 

In Figure 9(d), the infinitely precise result of an operation is: 

220 + 3*2-3 = 1.00000000000000000000011 x 220 

This result can be represented exactly in the floating-point 
format, and is left unaltered by the rounding process. 

-(220 _ 3· 2-4) 220 2-4 ROUND TO 220 + 2-3 

_-4._---4._---._---(,-'0--.:---.)-4] ....... _. __ ] ... -~:-'1 -.] • .1) • • 
-(,20 + 13 , ,-3) I _(,20 1+ 2-3) I _(220 -', • 2-') 220 - ~ • 2-' I C 220 ! ,-3 I 220 + ~ • ,-, 

_(220 + 2' 2-3) -(220) a) 220 ,20 + 2' ,-, 

ROUND TO 220 - 2-4 220 + 2-4 + 2-5 

• • • • • • • ~ . • • 1K • • • • 
ROUND TO _(220 T 2-3) b) 

• 0-
+ 

• • • • • y~ • • • • • • • • 
_(220 + 2-3 + 2-4) c) 

• • • • • • • ~ • • • • 

NO CHANGE 

Q • • 
0 

d) 
AF004550 

Figure 9. Floating-Point Rounding Examples for Round-to-Nearest Mode 
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Figure 10 illustrates four examples of the round-to-nearest 
process for operations having an integer destination format. 
The infinitely precise result of an operation is represented by 
an "X" on the number line; the black dots on the number line 
indicate those values that can be represented exactly in the 
integer format. 

Example 1: 

In Figure 10(a), the infinitely precise result of an operation is: 

210 _2-2 = 00 ... 001111111111.11 

The result is rounded to the closest representable integer 
value, 

210 = 00 ... 010000000000 

Example 2: 

In Figure 1 O(b), the infinitely precise result of an operation is: 

210 + 20 + 2-3 = 00 ... 010000000001.001 

This result is r9unded to the closest representable integer 
value, 

210 + 20 = 00 ... 010000000001 

Example 3: 

In Figure 1 O(c), the infinitely precise result of an operation is: 

_(210 + 20 + :;1) _ -11 ... 101111111110.1 

This result is exactly halfway between two representable 
integer values. Accordingly, it is rounded to the closest 
representation with an LSB of zero, or 

_(210 + 2*20) = 11 ... 101111111110 

Example 4: 

In Figure 1 O(d), the infinitely precise result of an operation is: 

210 + 3*20 = 00 ... 010000000011 

This result can be represented exactly in the integer format, 
and is left unaltered by the rounding process. 

ROUND TO 2'0 

• • • • • ~ .£J • • • I I I I I I ( I I I I 
_(210 + 3) _(210 + 2) _(2'0 + 1) _(2'0) _(2'0 - 1) 2tD_ 1 2'0 2'0 + 1 2'0 + 2 2'0 + 3 

0) 
2'0 _ 2-2 

ROUND TO 2'0 + 1 

• • • • • ~ • • ~ • • 
• I 

ROUND TO _(2'0 + 2) b) 2'0 + ~ + 2-3 

• n • • • ~' • • • • • 
I 

_(210 + 20 + 2-') 0) NO CHANGE 

Q • • • • • ~ • • • • 
I 

d) 
2'0 + 3" 2,0 

AF004560 

Figure 10. Integer Rounding Examples for Round-to-Nearest Mode 
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Round Toward -co: In this rounding mode the result of an 
operation is rounded to the closest representation that is less 
than or equal to the infinitely precise result, and which fits the 
destination format. Rounding is performed both for floating­
point and integer destination formats. 

Figure 11 illustrates four examples of the round toward - 00 

process for operations having a floating-point destination 
format. The infinitely precise result of an operation is repre­
sented by an .. X" on the number line; the black dots on the 
number line indicate those values that can be represented 
exactly in the floating-point format. 

Example 1: 

In Figure 11 (a), the infinitely precise result of an operation is: 

220 +:;-4 + 2- 5 = 1.00000000000000000000000\11 x 220 

This result cannot be represented exactly in floating-point 
format, and is rounded to the next-smaller floating-point 
representation: 

220 = 1.00000000000000000000000 x 220 

Example 2: 

In Figure 11 (b), the infinitely precise result of an operation is: 

220 _ :;-4 + :;-8 = 
1.1111111111111111111111 \0001 x 219 

This. result cannot be represented exactly in floating-point 
format, and is rounded to the next-smaller floating point 
representation: 

220_:;-4_1.11111111111111111111111 x219 

Example 3: 

In Figure 11 (c), the infinitely preCise result of an operation is: 

_(220 +:;-3 + :;-4) = 
-1.00000000000000000000001 \1 x 220 

This result cannot be represented exactly in floating-pOint 
format, and is rounded to the next-smaller floating-point 
representation. 

_(220 + 2*2-3) = -1.00000000000000000000010x220 

Example 4: 

In Figure 11 (d), the infinitely precise result of an operation is: 

220 + 3*:;-3 = 1.00000000000000000000011 x 220 

This result can be represented exactly in the floating-point 
format, and is left unaltered by the rounding process. 

_(220 - 3 .. 2-4) 220 2-4 

_ ........ --_.----4I.~--_(220 __ •• 2_-4_)] .... - ... __ J ..... -~2-.] -.] RQ . . . 
_(220 + 13 " 2-3) I _(220 1+ 2-3) I _(220 _1 2 " 2-4) ~ - ~ .. 2-4 I L 22O ! 2-3 I 220 + ! .. 2-3 

_(220 + 2' 2-3) -(220) a) 220 220 + 2' 2-3 

ROUND TO 220 - 2-4 220 + 2-4 + 2-5 

• • • • • • • ~ • • ~ . • • • 
ROUND TO -(220 + 2 • 2-,,) b) 

q • • • • • • ~ • • • • • • • 
-(220 + 2-3 + 2-4) 

c) 

• • • • • • • ~ • • • • 

NO CflANGE 

q • • 
d) 

AF004510 

Figure 11. Floating-Point Rounding Examples for Round Toward _00 Mode 
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This result is rounded to the nex1-smaller representable 
integer value, 

210 + 20 = 00 ... 010000000001 

Figure 12 illustrates four examples of the round toward _ 00 

process for operations having an integer destination format. 
The infinitely precise result of an operation is represented by 
an "X" on the number line; the black dots on the number line 
indicate those values that can be exactly represented in the 
integer format. 

Example 3: 

Example 1: 

In Figure 12(a), the infinitely precise result of an operation is: 

210_2""2 = 00 ... 001111111111.11 

In Figure 12(c), the infinitely precise result of an operation is: 

_(210 + 20 + 2- 1) = 11 ... 101111111110.1 

This result is rounded to the nex1-smaller representable 
integer value: 

The result is rounded to the nex1-smaller representable 
integer value, 

210 _ 20 = 00 ... 001111111111 

Example 2: 

_(21°+2*2°) = 11 ... 101111111110 

Example 4: 

In Figure 12(b), the infinitely precise result of an operation is: 

210 + 20 + 2-3 = 00 ... 010000000001.001 

• • • • • ~ I I I I I 
_(210 + 3) _(2'0 + 2) _(210 + 1) -(2''') _(210 - 1) 0 

a) 

• • • • • 0-f---v' 
0 

ROUND TO _(2'0 + 2) b) 

,. r) • • • I--f--v' I 0 
_(210 + 20 + 2-') c) 

• • • • • 0-f---v' 
d) 

In Figure 12(d), the infinitely precise result of an operation is: 

210 + 3*20 = 00 ... 010000000011 

This result can be represented exactly in the integer format, 
and is unaltered by the rounding process. 

ROUND TO 210 - 1 

q. • • • 
I ( I I I I 

210 - 1 2'0 210 + 1 2'0 + 2 2'0 + 3 

2'0 _ 2-2 
ROUND TO 2'0 + 1 

• • CV • • 
I 

210 + 20 + 2-3 

• • • • • 
NO CHANGE 

• • • • Q 
I 

2'°+3-2° 

AF004580 

Figure 12. Integer Rounding Examples for Round Toward _00 Mode 
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Round Toward + 00: In this rounding mode the result of an 
operation is rounded to the closest representation that is 
greater than or equal to the infinitely precise result, and which 
fits the destination' format. Rounding is' performed both for 
floating-point and integer destination formats. 

Figure 13 illustrates four examples of the round toward + 00 

process for operations having a floating-point destination 
format. The infinitely precise result of an operation is repre­
sented by an "X" on the number line; the black dots on the 
number line indicate those values that can be represented 
exactly in the floating-point format. 

Example 1: 

In Figure 13(a), the infinitely precise result of an operation is: 

220 + 2-4 + 2'"5 = 1.00000000000000000000000\11 X 220 

This result cannot be represented exactly in floating-point 
format, and is rounded to the next-larger floating-point 
representation: 

220 + 2-3 = 1.00000000000000000000001 x 220 

Example 2: 

In Figure 13(b), the infinitely precise result of an operation is: 

220 _ 2'"4 + 2'"8 _ 

1.11111111111111111111111 \0001 x 219 

This result cannot be represented exactly in floating-point 
format, and Is rounded to the next-larger floating point 
representation: 

220 = 1.00000000000000000000000 x 220 

Example 3: 

In Figure 13(c), the infinitely precise result of an operation is: 

_(220 + 2-3 + 2'"4) = 
-1.00000000000000000000001 \1 x 220 

This result cannot be representlld exactly in floating-point 
format, and is rounded to the next-larger floating-point 
representation. 

_(220 + 2'"3) - -1.0000000000000000000001 x 220 

Example 4: 

In Figure 13(d), the infinitely precise result of an operation is: 

220 + 3*2'"3 - 1.00000000000000000000011 x 220. 

This result can be represented exactly in the floating-point 
format - no rounding takes place 

220_ 2-4 ROUND TO 2'" + 2-3 -(2'" - 3 ' 2-"J 
2"'-3'2-'l ] 

• lit) • • • • • 
-(2'" - 2-"] 

• • ~ .. 
I I I I I " I I L 2"'!2-3 I 2"'+~'2-3 -(2'" + 3' 2-3) -(2'" + 2-3) -(2"'-2'2-., 0 2"'-2'2-' 

-(2'" + 2' 2-3) -(220) a) 2'" 2"'+2'2-3 

• a • • a ~' a 

ROUND TO 2b 2'" + 2-' + 2-" 

• • .o. a • -- . 0 • ROUND TO 220 + 2-3 b) 
220 - 2-4 + 2-1 

• a fJ a a • • ~' a a a • a • a 
! 0 

_(Z2O + 2-3 + 2-4) c) NO CHANGE 

Q • a • • a a a ~' a • a • a • 
0 • d) 

2"'+3'2-3 

AF004590 

Figure 13, Floating-Point Rounding Examples for Round Toward + 00 Mode 
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This result is rounded to the next-larger representable 
integer value, 

210 + 2*20 = 00 ... 010000000010 

Figure 14 illustrates four examples of the round toward + 00 

process for having an integer destination format. The infinitely 
precise result of an operation is represented by an .. X" on the 
number line; the black dots on the number line indicate those 
values that can be exactly represented in the integer format. Example 3: 

Example 1: 

In Figure 14(a), the infinitely precise result of an operation is: 

210 _:<2 = 00 ... 001111111111.11 

The result is rounded to the next-larger representable 
integer value, 

In Figure 14(c), the infinitely precise result of an operation is: 

_ (21 ° + 20 + 2- 1) = 11.101111111110.1 

This result is rounded to the next-larger representable 
integer value: 

_(210 + 20) = 11...1011111111110 

210 = 00 ... 010000000000 

Example 2: 

Example 4: 

In Figure 14(b), the infinitely precise result of an operation is: 

210 + 20 +:<3 = 00 ... 010000000001.001 

• • • • • ,~ 
I I I I I 

_(2'. + 3) -(2'. + 2) ":"(210 + 1) _(2'·) -(2'. - ') 

a) 

• • • • • ,~ 

ROUND TO _(2'0 + 1) b) 

D • • • • ."--f-v' 
I 

_(2'0 + :zO + 2-') 
c) 

• • • • • rl--r' 
d) 

In Figure 14(d), the infinitely precise result of an operation is: 

210 + 3*20 = 00 ... 010000000011 

This result can be represented exactly in the integer 
format - no rounding takes place. 

ROUND TO 2'0 

• ~ • • • I 
(I 

I I I 
2'0 - 1 2'· 2'0 + 1 2'0 + 2 2'0 + 3 

2'0 _ 2-2 
ROUND TO 210 + 2 

• • .~-J • 
I 

2'0 + 20 + 2-3 

• • • • • 
NO CHANGE 

• • • • q 
2'0 + 3·:zO 

AF004600 

Figure 14. Integer Rounding Examples for Round Toward + 00 Mode 
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Round Toward 0: In this rounding mode the result of an 
operation is rounded to the closest representation whose 
magnitude Is less than" or equal to the Infinitely precise result. 
and which fits the destination format. Rounding is performed 
both for floating-point and integer destination formats. 

Figure 15 illustrates four examples of the round toward 0 
process for operations having a floating-point destination 
format. The Infinitely preCise result of an operation Is repre­
sented by an "X" on the number line; the black dots on the 
number line Indicate those values that can be represented 
exactly in the floating-point format. 

Example 1: 

In Figure 15(a), the infinitely precise result of an operation is: 

220 + 2'"4 + 2-5 _ 

1.00000000000000000000000\11 x 220 

This result cannot be represented exactly In floating-point 
format, and is rounded to: 

220 = 1.00000000000000000000000 x 220 

Example 2: 

In Figure 15(b), the Infinitely precise result of an operation Is: 

220 _ 2-4 + 2-8 -
1.11111111111111111111111 \001 x 219 

This result cannot be represented exactly in floating-point 
format, and is rounded to: 

220 _2-4 -1.11111111111111111111111 x219 

Example 3: 

In Figure 15(c). the infinitely precise result of an operation Is: 

_(220 + 2'"3 + 2'"4) _ 

-1.00000000000000000000001 \1 x 220 

This result cannot be represented exactly in floating-point 
format, and is rounded to: 

_(220 + 2'"3) = _ 1.00000000000000000000001 X 220 

Example 4: 

In Figure 15(d), the infinitely precise result of an operation is: 

220 + 3*2'"3 - 1.00000000000000000000011 X 220 

This result can be represented exactly in the floating-point 
format, and Is unaffected by the rounding process. 

_(220 - a • 2-0)] 220 - 2-0 ROUND TO 220 

220 _ s' 2-0J ] OX. • • • • • 
_(220 _ 2-">J 

• • v'-1---v • I I I I I I I c: 220 !2-a I zOO+!'2-a -(220 + 3 • 2-3) _(220 + 2-3) _(220 - 2 • 2-,,> z00-2'2-0 
-(zZO + 2 • 2-"> -(220) I) 220 " zOO+2'2-3 

ROUND TO 220 - z< 220 + 2-0 + 2-1 

• • • • • • • ~' • • iI • • • • 
0 • ROUND TO -(220 + 2-3) b) 

zOO - 2-0 + 2-1 

• • .t) • • • • vt-+-v' • • • • • • • 
+ 0 

_(220 + 2-3 + 2-"> 
0) NO CHANGE 

q • • • • • • • Y~ • • • • • • 
0 

d) 
z20+3'2-3 

AF004610 

Figure 15, Floating-POint Rounding Examples for Round Toward 0 Mode 
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Figure 16 illustrates four examples of the round toward 0 
process for operations having an integer destination format. 
The infinitely precise result of an operation is represented by 
an "X" on the number line; the black dots on the number line 
indicate those values that can be exactly represented in the 
integer format. 

Example 1: 

In Figure 16(a), the infinitely precise result of an operation is: 

210 - 2""2 - 00 ... 001111111111.11 

The result is rounded to: 

210 _20 - 00 ... 001111111111 

Example 2: 

In Figure 16(b), the infinitely precise result of an operation is: 

210 + 20 + 2-3 = 00 ... 010000000001.001 

The result is rounded to: 

210 + 20 - 00 ... 010000000001 

Example 3: 

In Figure 16(c), the infinitely precise result of an operation is: 

_(210 + 20 + 2-1) = 11...101111111110.1 

The result is rounded to: 

_(210 + 2°) -11 ... 101111111111 

Example 4: 

In Figure 16(d), the infinitely precise result of an operation is: 

210 + 3*20 = 00 ... 010000000011 

This result can be represented exactly in the integer format, 
and is unaffected by the rounding process. 

ROUND TO 2'0 - 1 

• • • • • ~ Q. • • • I I I I I I ( I I I I 
_(210 .3) -(2' •• 2) -(2,0 .,) -(21D) _(2'0 - 1) 0 210 - 1 210 210 + 1 210 + 2 210 + 3 

a) 
210 - 2-2 

ROUND TO 2'0 • 1 

• • • • • ~ • • '* I • • 
0 

ROUND TO _(2'0 • 1) 0) 210 ... 2D + 2-3 

• • D 
I 

• • v'--f---i • • • • • 
0 

_(210 • to • 2-1) c) NO CHANGE 

• • • • • v+-v' • • • • q 
0 
d) 2'O .3·to 

AF004620 

Figure 16. Integer Rounding Example. for Round Toward 0 Mode 

Flag Operation 

The Am29325 generates six status flags to monitor floating· 
point processor operation. The following is a summary of flag 
conventions in IEEE mode: 

Invalid Operation Flag: The invalid operation flag is HIGH 
when an input operand is invalid for the operation to be 
performed. Table 4 lists the cases for which the invalid 
operation flag is HIGH in IEEE mode, and the corresponding 
final result. In cases where the invalid operation flag is HIGH, 
the overflow, underflow, zero, and inexact flags are LOW; the 
NAN flag will be HIGH. 

Overflow Flag: The overflow flag is HIGH if an R PLUS S, R 
MINUS S, R TIMES S, or 2 MINUS S operation with finite input 
operand(s) produces a result which, after rounding, has a 
magnitude greater than or equal to 2128. The final result will 
be + 00 or _00. 

Underflow Flag: The underflow flag is HIGH if an R PLUS S, 
R MINUS S, or R TIMES S operation produces a result which, 
after rounding, has a magnitude in the range: 

0< magnitude < 2-126. 

The final result will be + 0 (0000000016) If the rounded result is 
non·negative, and -0 (8000000016) if the rounded result is 
negative. 

Inexact Flag: The inexact flag is HIGH If the final result of an 
R PLUS S, R MINUS S, R TIMES S, 2 MINUS S, INT-TO-FP, or 
FP-TO-INT operation is not equal to the infinitely precise 
result. Note that if the underflow or overflow flag is HIGH, the 
inexact flag will also be HIGH. 

Zero Flag: The zero flag is HIGH if the final result of an 
operation is zero. For operations producing an IEEE floating­
pOint number, the flag accompanies outputs +0 (0000000016) 
and -0 (8000000016). For operations producing an integer, 
the flag accompanies the output 0 (0000000016)' 

NAN Flag: The NAN flag is HIGH if an R PLUS S, R MINUS S, 
R TIMES S, 2 MINUS S, or FP·TO-INT operation produces a 
NAN as a final result. 

Operation In DEC Mode 

When input signal IEEE/DEC is LOW, the DEC mode of 
operation is selected. In this mode the Am29325 uses the 
single-precision floating-point format (floating F) set forth in 
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Digital Equipment Corporation's VAX Architecture Manual. In 
addition, the DEC mode complies with most other aspects of 
single-precision floating-point operation outlined in the manu­
al- differences are discussed in Appendix B. 

DEC Floatlnl!-Polnt Format 

The DEC single-precision floating-point word is 32 bits wide, 
and is arranged in the format shown in Figure 17. The floating­
point word is divided into three fields: a single-bit sign, an 8-bit 
biased exponent, and a 23-bit fraction. 

The sign bit indicates the sign of the floating-point number's 
value. Non-negative values have a "ign of 0, negative values a 
sign of 1. 

The biased exponel1t is an 8-bit unsigned integer field repre­
senting a multiplicative factor of some power of two. The bias 
value is 128. If, for example, the multiplicative factor for a 
floating-point number is to be 2a, the value of the biased 
exponent would be a + 128; "a" is called the true exponent. 

The fraction is a 23-bit unsigned fractional field containing the 
23 LSBs of the floating-point number's 24-bit mantissa. The 
weight of this field's MSB is 2""2; the weight of the LSB is 2-24. 

A floating-point number is evaluated or interpreted per the 
following conventions: 
let s = sign bit 

e - biased exponent 
f = fraction 

if e = 0 and s = O .•. value = 0 
if e - 0 and s = 1 ... value = DEC-reserved operand 
if 0 < e"; 255 ... value = (_1)s*(29 -128)*(.1f) 
(normalized number) 

Zero: The value zero always has a sign of zero. 

DEC-Reserved Operand: A DEC-reserved operand does not 
represent a numeric value, but is interpreted as a signal or 
symbol. DEC-reserved operands are used to indicate invalid 
Qperations and operations whose results have overflowed the 
destination format. They may also be used to pass symbolic 
information from one calculation to another. 

SIGN 
BIT(S) 

BIASED 
EXPONENT (E) 

Norma"zed Number: A normalized number represents a 
quantity with magnitude greater than or equal to 2"" 128 but 
less than 2127. 

Example 1: 

The number + 3.5 can be represented in floating-point 
format as follows: 

+ 3.5 = 11.12X 20 

= .1112 X22 

sign = 0 

biased exponent = 210 + 12810 = 13010 
= 100000102 

fraction = 110000000000000000000002 
(the leading 1 is implied in the format) 

Concatenating these fields produces the floating-point word 
4160000016. 

Example 2: 

The number -11.375 can be represented in floating-point 
format as follows: 

-11.375 = -1011.0112 x 20 
=-.10110112 X24 

sign = 1 

biased exponent = 410 + 12810 = 13210 
= 100001002 

fraction = 011011000000000000000002 
(the leading 1 is implied in the format) 

Concatenating these fields produces the floating-point word 
C236000016· 

DEC Mode Integer Format 

DEC mode integer format is identical to that of the IEEE,mode. 
Integer numbers are represented as 32-bit, two's-complement 
words (Figure 8 depicts the integer format). The integer word 
can represent a range of integer values from _231 to 231 - 1. 

Operations 

All eight floating-point ALU operations discussed in the 
General Description section can be performed in DEC mode. 

FRACT'ON (F) 

~~----------------------~~--------------------------------------~ Brr NUMBER: 31 30 29 26 25 24 23.22 21 20 19 18 4 3 1 0 

1 127 ' 2'l 22 ' 21 ' zO 12-2' 2-3 ' 2-4 ' 2-5 r 2-6 ' '2-20 ' 2-2" 2-22' 2-23' 2-241 

VALUE = (_I)S (2E-I28) (.IF) 

T8000671 

Figure 17. DEC-Mode Floating-Point Format 

Various exceptional aspects of the R PLUS S, R MINUS S, R 
TIMES S, 2 MINUS S, INT-TO-FP, and FP-TO-INT operatiol1s 
for this mode are described below. The IEEE-TO-PEC and 
DEC-TO-IEEE operations are discussed separately in the 
IEEE-TD-DEC and DEC-TD-IEEE Operatlona section. 

Operations with DEC-Reserved Operands: DEC-reserved 
operands arise in two ways: 1) they can be generated by the 
Am29325 to indicate that an invalid operation or floating-point 

overflow has taken place, or 2) be provided by the user as an 
input operand. 

When a DEC-reserved operand appears as an input operand, 
the final result of the operation is the same DEC-reserved 
operand. If an Qperation has two DEC-reserved operands as 
inputs, the DI=C-reserved operand on the R port becomes th!Ol 
final result. 

The NAN flag will be HIGH whenever an operation produces a 
DEC-reserved operand as ~ final result. 
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Example 1: 

Suppose the floating-point addition operation is performed 
with the following input operands: 

R port: 4080000016 (0.1*21) 
Sport: 8001234516 (DEC-reserved operand) 

Result: This operation produces the DEC-reserved operand 
on the Sport, 8001234516, as the final result. The 
NAN flag will be HIGH. 

Example 2: 

Suppose the floating-point multiplication operation is per­
formed with the following input operands: 

R port: 8076543216 (DEC-reserved operand) 
Sport: 8000000116 (DEC-reserved operand) 

Result: Since both input operands are DEC-reserved oper­
ands, the operand on the R port, 8076543216, is the 
final result of the operation. The NAN flag will be 
HIGH. 

Operations Producing Overflows: If an operation produces 
a rounded result that is too large to fit in the the destination 
format, that operation is said to have overflowed. 

A floating-point overflow occurs if an R PLUS S, R MINUS S, R 
TIMES S, or 2 MINUS S operation with finite input o:;arand(s) 
produces a result which, after rounding, has a magnitude 
greater than or equal to 2127. The final result in such cases will 
be DEC-reserved operand 8000000016; the overflow, inexact, 
and NAN flags will be HIGH. 

Integer overflow occurs when the "floating-point-to-integer" 
conversion operation attempts to convert to integer a floating­
pOint number which, after rounding, is greater than 231 - 1 or 
less than _231. The final result in such cases will be DEC­
reserved operand 8000000016; the invalid operation flag will 
be HIGH. Note that the overflow and inexact flags remain 
LOW for integer overflow. 

Operations Producing Underflows: If an operation produces 
a floating-point result which, after rounding, has a magnitude 
too small to be expressed as a normalized floating-point 
number, but greater than 0, that operation is said to have 
underflowed. Underflow occurs when an R PLUS S, R MINUS 
S, or R TIMES S operation produces a result which, after 
rounding, has the magnitude: 

0< magnitude < 2- 128. 

The final result in such cases will be 0 (0000000016). The 
underflow, inexact, and zero flags will be HIGH. 

Underflow does not occur if the destination format is integer. If 
the infinitely precise result of a floating-point-to-integer con­
version has a magnitude greater than 0 and less than 1, but 
the rounded result is 0, the underflow flag remains LOW. 

Invalid Operations: If an input operand is invalid for the 
operation to be performed, that operation is considered 
invalid. There is only one invalid operation in DEC mode: 
performing a floating-point-to-integer conversion on a value 
too large to be converted to an integer. In this case, the final 
result will be DEC-reserved operand 8000000016, and the 
invalid operation and NAN flags will be HIGH. 

Sign Bit 

For all operations producing a DEC floating-point result, the 
sign bit of the final result is unambiguous; i.e., there is only one 
sign bit value that yields a numerically correct result. 
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Rounding 

There are four rounding modes for DEC operation: 1) round to 
nearest, 2) round toward +00, 3) round toward _00, and 4) 
round toward o. The round toward + 00, round toward _00, and 
round toward 0 modes are performed in a manner identical to 
that for IEEE operation; refer to the Rounding section under 
Operation In IEEE Mode. The round to nearest mode is 
similar to that for IEEE operation, but differs in one respect: for 
the case in which the infinitely precise result of an operation is 
exactly halfway between two representable values, DEC round 
to nearest mode rounds to the value with the larger magni­
tude, rather than to the value whose LSB is o. 
Flag Operation 

The Am29325 generates six status flags to monitor floating­
point processor operation. The following is a summary of flag 
operation in DEC mode: 

Invalid Operation Flag: The invalid operation flag is HIGH if 
the FP-TO-INT operation is performed on a floating-point 
number too large to be converted to an integer. The final result 
for such an operation will be the DEC-reserved operand 
8000000016. 

Overflow Flag: The overflow flag is HIGH if an R PLUS S, R 
MINUS S, R TIMES S, or 2 MINUS S operation produces a 
result which, after rounding, has a magnitude greater than or 
equal to 2127. The final result will be the DEC-reserved 
operand 8000000016. 

Underflow Flag: The underflow flag is HIGH if an R PLUS S, 
R MINUS S, or R TIMES S operation produces a result which, 
after rounding, has a magnitude in the range: 

o < magnitude < 2 - 128. 

The final result will be 0 (0000000016) in such cases. 

Inexact Flag: The inexact flag is HIGH if the final result of an 
R PLUS S, R MINUS S, R TIMES S, 2 MINUS S, INT-TO-FP, or 
FP-TO-INT operation is not equal to the infinitely precise 
result. Note that if the underflow or overflow flag is HIGH, the 
inexact flag will also be HIGH. 

Zero Flag: The zero flag is HIGH if the final result of an 
operation is o. For operations prodUCing an integer or a DEC 
floating-point number, the flag accompanies the output 0 
(0000000016). (It should be noted that any operation produc­
ing a floating-point 0 in DEC mode will output 0000000016.) 

NAN Flag: The NAN flag is HIGH if an R PLUS S, R MINUS S, 
R TIMES S, 2 MINUS S, or FP-TO-INT operation produces a 
DEC-reserved operand as the final result. 

IEEE-TO-DEC and DEC-TO-IEEE Operations 

The IEEE-TO-DEC and DEC-TO-IEEE operations are used to 
convert floating-point numbers between the IEEE and DEC 
formats. Both operations work in a manner independent of the 
IEEE/DEC mode control. 

IEEE-TO-DEC Conversion 

The operation converts an IEEE floating-point number to DEC 
floating-point format. Most conversions are exact; in no case 
does the round mode have any effect on the final result. There 
are, however, a few exceptional cases: 

a) If the IEEE floating-point input has a magnitude greater than 
or equal to 2127, it is too large to be represented by a DEC 
floating-point number. The final result will be the DEC­
reserved operand 8000000016; the overflow, inexact, and 
NAN flags will be HIGH. 



b) If the IEEE floating-point input is a NAN, the final result will 
be the DEC-reserved operand 8000000016; the invalid and 
NAN flags will be HIGH. 

c) If the IEI:E floating-point input is a denormalized number, 
the final result will be a DEC 0 (000000016); the zero flag 
will be HIGH. 

d) If the IEEE floating-point input is + 0 or -0, the final result 
will be a DEC 0 (000000016); the zero flag will be HIGH. 

DEC·To-IEEE Conversion 

This operation converts a DEC floating-point number to IEEE 
floating-point format. Most conversions are exact; in no case 
does the round mode have any effect on the final result. There 
are, however, a few exceptional cases: 

a) If the DEC floating-point input is not 0, but has a magnitude 
less than 2-126, it is too small to be expressed as a 
normalized IEEE floating-point number. The final result will 
be an IEEE floating-point 0 having the same sign as the 
input (000000016 for positive inputs and 8000000016 for 
negative inputs); the underflow, inexact, and zero flags will 
be HIGH. 

b) If the DEC floating-point input is a DEC-reserved operand, 
the result will be quiet NAN 7FA000016; the invalid opera­
tion and NAN flags will be HIGH. 

c) If the DEC floating-point input is 0, the final result will be 
IEEE floating-point + 0 (000000016); the zero flag will be 
HIGH. 

APPLICATIONS 
Suggestions for Power and Ground Pin 
Connections 

The Am29325 operates in an environment of fast signal rise 
times and substantial switching currents. Therefore, care must 

be exercised during circuit board design and layout, as with 
any high-performance component. The following is a sug­
gested layout, but since systems vary widely in electrical 
configuration, an empirical evaluation of the intended layout is 
recommended. 

The VCCT and GNDT pins, which carry output driver switching 
currents, tend to be electrically noisy. The VCCE and GNDE 
pins, which supply the ECl core of the device, tend to produce 
less noise, and the circuits they supply may be adversely 
affected by noise spikes on the VCCE plane. For this reason, It 
is best to provide isolation between the VCCE and VCCT pins, 
as well as independent decoupling for each. Isolating the 
GNDE and GNDT pins is not required. 

Printed Clrcuit·Board Layout Suggestions 

1) Use of a multilayer PC board with separate power ground 
and signal planes is highly recommended. 

2) All VCCE and VCCT pins should be connected to the Vcc 
plane. Vccr pins should be isolated from VCCE pins by means 
of a slot cut in the VCCE plane (see Figure 18). By physically 
separating the VCCE and VCCT pins, coupled noise will be 
reduced. 

3) All GNDE and GNDT pins should be connected directly to 
the ground plane. 

4) The VCCT pins should be decoupled to ground with a 0.1-jJ.F 
ceramic capacitor and a 10-jJ.F electrolytic capacitor, placed 
as closely to the Am29325 as is practical. VCCE pins should 
be decoupled to ground in a similar manner. A suggested 
layout is shown in Figure 18. 

C2 C1 r- Isolation cut 

1 , 
· · · C -

3~ • • • · •• .. 

."~~II""'C~ 4~""tl·'''' • 

•••• •••• •••• ••• ••• ••• 
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••• ••• ••• •••• •••• •••• 
ABCD 

•• Ct •••••• 
• Ct C •••••• 
• CtCHt ••••• 

•• •• •• •• •• •• •• •• 
tt. 

• •••••• Ct. 
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• = Through Hole 
Ct = VCC Plane Connection 
C1 = C3 = 0.1 jJ.F 
C2 = C4= 10 jJ.F 

Figure 18. Suggested Printed-Circuit Board Layout (Power and Ground Connections) 
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APPENDIX A 

DIFFERENCES BETWEEN THE IEEE 
. PROPOSED STANDARD FOR BINARY 
FLOATING-POINT ARITHMETIC AND THE 
Am29325'S IEEE MODE 
When operated in IEEE mode, the Am29325 High-Speed 
Floating-Point Processor complies with the single-precision 
portion of the IEEE Proposed Standard for Binary Floating­
Point Arithmetic (P754, draft 10.0) in most respects. There are, 
however, several differences: 

Denormalized Numbers 

The Am29325 does not handle denormalized numbers. A 
denormalized inpulwill be converted to zero of the same sign 
before the specified operation takes place. The operation 
proceeds in exactly the same manner as if the input were + 0 
or -0, producing the same numerical result and flags. 

If the result of an operation, after rounding, has a magnitude 
smaller than 2 - 126, the result is replaced by a zero of the 
same sign. 

Representation of Overflows 

In some rounding modes the proposed IEEE standard requires 
that overflows be represented as the format'·s most-positive or 
most-negative finite number. In particular: 

- When rounding toward 0, all overflows should produce a 
result of the largest representable finite number with the 
sign of the intermediate result. 

- When rounding toward _"", all positive overflows should 
produce a result of the largest representable positive finite 
number. 

- When rounding toward + "", all negative overflows should 
produce a result of the largest representable negative finite 
number. 

The Am29325, however, always represents positive overflows 
as + 00 and negative overflows as - "", regardless of rounding 
mode. 

Projective Mode 

The proposed IEEE standard provides only for an affine mode 
to control the handling of infinities. The Am29325 provides 

APPENDIX B 

DIFFERENCES BETWEEN DEC VAX AND 
Am29325 DEC MODE 
Operation in DEC mode complies with most aspects of single­
precision floating:point operation outlined in the Digital Equip­
ment Corporation's VAX Architecture Manual. However, there 
are some differences that should be noted: 

Format 

The Am29325's DEC format is: 

sign 
exponent 
mantissa 

-bit 31 
-bits 30-23 
-22-0 

both affine and projective modes; the desired mode can be 
selected by the user . 

Traps 

The proposed IEEE standard stipulates that the user be able 
to request a trap on any exception. The Am29325 does not 
support trapped operation, and behaves as if traps are 
disabled. 

Resetting of Flags 

The proposed IEEE standard states that once an exception 
flag has been set, it is reset only at the user's request. The 
Am29325's flags, however, reflect the status of. the most 
recent operation. 

Generation of the Underflow Flag 

The proposed IEEE standard suggests several possible crite­
ria for determining if underflow occurs. These criteria generate 
underflow flags that differ in subtle ways. The underflow 
criteria chosen for the Am29325 stipulate that underflow 
occurs if: 

a) the rounded result of an operation has a magnitude in the 
range: 

o <magnitude< 2- 126, 

and 

b) the final result is not equal to the infinitely precise result. 

Since the Am29325 never produces a denormalized number 
as the final result of a calculation, condition (b) is true 
whenever (a) is true. Note then that the operation of the 
Am29325's underflow flag is somewhat different than that of 
an "IEEE standard" system using the same underflow criteria. 
For example, if an operation should produce an infinitely 
precise result that is exactly 2 -127, an "IEEE standard" 
system would produce that value as the final result, expressed 
as a denormalized number. Since that system's final result is 
exact, the underflow flag would remain LOW. The Am29325, 
on the other hand, would output zero; since its final result is 
not exact, the underflow flag would be HIGH. 

The VAX format is: 

sign 
exponent 
mantissa 

- bit 15 
-14-:7 
-bits 6-0, bits 31-16 

In both cases, fields are listed from MSB to LSB, with bit 31 
the MSB of the 32-bit word. Th!l Am29325's DEC format can 
be converted to VAX format by swapping the 16 LSBs and 16 
MSBs of the 32-bit word. 
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Flags vs. Exceptions 

In DEC VAX operation, certain unusual conditions arising 
during system operation may incur an exception, or an 
indication to the operating system that special handling is 
needed. 

The VAX recognizes a number of arithmetic exceptions. The 
following exceptions are relevant to the operations supported 
by the Am29325: 



Integer Overflow Trap: indicates that the last operation 
produced an integer overflow. The LSBs of the correct result 
are stored in the destination operand. 

Floating-Point Overflow Trap/Fault: indicates that the last 
operation produced, after normalization and rounding, a float­
ing-point number with magnitude greater than or equal to 2127. 
A trap replaces the destination operand with the DEC­
reserved operand 8000000016; a fault leaves the destination 
operand unchanged. 

Floating-Point Underflow Trap/Fault: indicates that the last 
operation produced, after normalization and rounding, a float­
ing-point number with magnitude less than 2 - 128. A trap 
replaces the destination operand with zero; a fault leaves the 
destination operand unchanged. 

Reserved Operand Fault: indicates that the last operation 
had a reserved operand as an input. The destination operand 
is unchanged. 

The Am29325 does not directly support DEC traps and faults. 
Rather, it indicates unusual conditions by setting one or more 
of the six status flags HIGH. Table D2 describes flag operation 
in DEC mode. 

Integer Overflow 

In cases of integer overflow, the VAX signals the integer 
overflow trap and stores the LSBs of the correct result. The 
Am29325 sets the invalid operation flag and outputs the DEC­
reserved operand 8000000016. 

APPENDIX C 

PERFORMING FLOATING-POINT DIVISION 
ON THE Am29325 

While the Am29325 does not have a floating-point division 
instruction, it can be used to evaluate reCiprocals. The 
division: 

C=AlB 

can then be performed by evaluating: 

C = A"(I/B) 

Only a modest amount of external hardware is needed to 
implement the reciprocal function. 

The technique for calculating reciprocals is based on the 
Newton-Raphson method for obtaining the roots of an equa-' 
tion. The roots of equation: 

F(x) =0 

can be found by iteratively evaluating the equation: 

Xi + 1 = Xi - F(X;)/F'(Xi) 

The process begins by making a guess as to the value of Xi, 
and using this guess or "seed" value to perform the first 
iteration. Iterations are continued until the root is evaluated to 
the desired accuracy. The number of iterations needed to 
achieve a given accuracy depends both on the accuracy of the 
seed value and the nature of F(x). 

Now consider the equation: 

F(x) = (1 Ix) - B 

Floating-Point Underflow/Overflow Operation 

The VAX Architecture Manual specifies the action to be taken 
on the destination operand when floating-point underflow or 
overflow is encountered. The Am29325 has no immediate 
control over this destination operand, as it resides somewhere 
off-chip, either in a register or memory location. This isn't so 
much a difference between the VAX specification and 
Am29325 operation as it is a difference in scope. 

The Am29325 responds to floating-point underflow by produc­
ing a final result of 0 (0000000016); the underflow, inexact, 
and zero flags will be HIGH. It responds to floating-point 
overflow by producing the DEC-reserved operand 8000000016 
as the final result; the overflow, inexact, and NAN flags will be 
HIGH. 

Handling of DEC-Reserved Operands 

If an operation has a DEC-reserved operand as an input, the 
Am29325 will produce that operand as the final result. If an 
operation has two input arguments and both are DEC­
reserved operands, the operand on port R becomes the final 
result. For the VAX, operations with a DEC-reserved operand 
input or inputs do not modify the destination operand. As 
mentioned above, control of the destination operand is be­
yond the scope of the Am29325's operation. 

Inexact Flag 

The Am29325 provides an inexact flag to indicate that the final 
result produced by an operation is not equal to the infinitely 
precise result. The VAX does not provide this flag. 

The root of F(x) is lIB. The reciprocal of B, then, can be found 
by using the Newton-Raphson method to find the root of F(x). 
The iterative equation for finding the root is: 

Xi + 1 = Xi - F(Xi)/F'(Xi) 
= Xi - (1/xi - B)/- (Xi) - 2 
= Xi (2- B"Xi) . 

It can be shown that, in order for this iterative equation to 
converge, the seed value XC must fall in the range: 

or 
0< Xo < 2/B 
2/B < XC < 0 

if B> 0 
if B< 0 

For example, if the reciprocal of 3 is to be evaluated, the seed 
value must be between 0 and 2/3. 

The error of Xi reduces quadratical~; that is, if the error of Xi is 
e, the error is reduced to order e by the next iteration. The 
number of bits of accuracy in the result, then, roughly doubles 
after every iteration. While this is only an approximation of the 
actual error produced, it is a handy rule of thumb for 
determining the number of iterations needed to produce a 
result of a certain accuracy, given the accuracy of the seed. 
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Example 1: 

Find the reciprocal of 7.25. 

Solution: 

The seed value must fall in the range: 

0< Xo < 217.25 
or 0 < Xo < .275862 

Suppose xo is chosen to be .1: 



Iteration 1: xl - X() (2 - a'X() 
- .1(2-(7.25) (.1» 
= .1275 

Iteration 2: x2 - xl (2 - a"Xl) 
... 1275(2 - (7.25) (.1275» 
-.1371421875 

Iteration 3: x3 = x2 (2 - a"X2) 
= .1371421875' 

(2 - (7.25) (.1371421875» 
- .1379265230 

The actual value of 117.25, to ten decimal places, is 
.1379310345. 

The error after each iteration is: 

Iteration xI 

0 .1 

1 .1275 

2 .1371421875 

3 .1379265230 

Example 2: 

Find the reciprocal of -.3. 

Solution: 

Error to Ten Placa. 

- 0.037931 0345 

-0.0104310345 

- 0.0007888470 

- 0.0000045115 

The seed value must fall in the range: 

2/(-.3) < X() < 0 
or -6.66 < Xo < 0 

Suppose X() is chosen to be -2.0: 

Iteration 1: Xl - X() (2 - a'X() 
- - 2.0(2 - (- .3) (-2.0» 
.. -2.8 

Iteration 2: x2 - .xl (2 - a"Xl) 
--2.8(2-(-.3) (-2.8» 
.. -3.248 

Iteration 3: X3 = x2 (2 - a 'X2) 
.. -3.248(2-(-.3) (-3.248» 
- -3.3311488 

Iteration 4: X4 - X3 (2 - B'X3) 
.. -3.3311488' 

(2-(-.3) (-3.3311488» 
.. - 3.333331902 

The actual value of 1/(-.3), to ten decimal places, is 
,-3.333333333. 

The error after each iteration is: 

I XI Error to Ten Place. 

0 -2.0 1 .333333333 

1 -2.8 0.533333333 

2 -3.248 0.085333333 

3 -3.3311488 0.002184533 

4 -3.333331902 0.000001431 

In order to implement the Newton-Raphson method on the 
Am29:l25, some means is needed to generate the seed used 
in the first iteration. One approach is to place a hardware seed 
look-up table between the R bus and the Am29325; see Table 
C1. A more detailed diagram of the look-up table appears in 
Figure C2. 
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TABLE C1. CONTENTS OF THE SEED EXPONENT PROM 

DEC IEEE 

Addresa (16) Data (16) Addresa (16) Data (16) 

000 (Note 1) 100 (Note 1) 
001 (Note 1) 101 FC 
002 FF 102 FB 
003 FE 103 FA 
004 FO 104 F9 
005 FC 105 FB 
006 FB 106 F7 
007 FA 107 F6 
OOB F9 10B F5 
009 FB 109 F4 
OOA F7 10A F3 
OOB F6 10B F2 
OOC F5 10C F1 
000 F4 100 FO 
OOE F3 10E EF 
OOF F2 10F EE 
010 F1 110 ED 
011 FO 111 EC 
012 EF 112 EB 

OEE 13 1EE OF 
OEF 12 1EF OE 
OFO 11 1FO 00 
OF1 10 1F1 OC 
OF2 OF 1F2 OB 
OF3 OE 1F3 OA 
OF4 00 1F4 09 
OF5 OC 1F5 OB 
OF6 OB 1F6 07 
OF7 OA 1F7 06 
OFB 09 1FB 05 
OF9 OB 1F9 04 
OFA 07 1FA 03 
OFB 06 1FB 02 
OFC 05 1FC 01 
OFO 04 1FD (Note 2) 
OFE 03 1FE (Note 2) 
OFF 02 1FF (Note 2) 

Notes: 1. The reciprocals of these numbers are too large to be represented in the 
selected format. 

2. The reciprocals of these numbers are too small to be represented in 
normalized IEEE format. 
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RBUS------------------1-------------~-----------

SBUS------------------4-------.------------------

HARDWARE 
LOOK-UP 

TABLE 

2:1 

R S 

Am29325 

F 

FBUS----------------------~l---------------------
AF004640 

Figure C1_ Adding a Hardware Look-Up Table to the Am29325 

The look-up table has two sections: a biased exponent look-up 
PROM, and a fraction look-up PROM. The seed-biased 
exponent look-up table is stored in a 512-by-B-bit PROM. This 
table consists of two sections: the DEC format section (which 
occupies addresses OOO-OFFI6), and the IEEE section 
(whiCh occupies addresses 100-1FFI6. The appropriate 
table will be selected automatically if address line As is wired 
to the Am29325'!> IEEE/DEC pin. The equations implemented 
by these table sections are: 

DEC table: seed biased exponent 
= 25710 -input biased exponent 

IEEE table: seed biased exponent 
= 25310 -input biased exponent 

Table C1 lists the contents of this PROM. 

The seed fraction look~up table is stored in one or more 
PROMs, the number of PROMs depending on the desired 
accuracy of the seed value. The hardware depicted in Figure 

C2 uses two 4K-by-B-bit PROMs to implement a fraction look­
up table whose inputs are the 1 2 MSBs of the input argu­
.ment's fraction. These PROMs output the 16 MSBs of the 
seed's fraction field - the remaining 7 bits of fraction are set 
to O. The equation implemented in this table is: 

. 2 
seed fraction - - 1 

1 + input fraction 
where tl'1e vallie of the input fraction falls in the range 

o .;; input fraction < 1 

Note that the seed fraction must also be constrained to fall in 
the range 

o .;; seed fraction < 1 

Therefore, if the input fraction is 0, the corresponding seed. 
fraction stored in the table must be .111...1112, not 1.02. The 
same seed fraction look-up table may be used for both IEEE 
and DEC formats. Table C2 contains a partial listing for the 
seed fraction look-up table shown in Figure C2. 
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TABLE C2. CONTENTS OF THE SEED FRACTION PROMS 

Address (16) Value of Input Fraction (10) 

000 0.0 
001 0.0002441406 
002 0.0004882812 
003 0.0007324219 
004 0.0009765625 
005 0.0012207031 
006 0.0014648438 
007 0.0017089844 
008 0.0019531250 
009 0.0021972656 
OOA 0.0024414063 
OOB 0.0026855469 
OOC 0.0029296875 

FF6 0.9975585938 
FF7 0.9978027344 
FF8 0.9980486750 
FF9 0.9982910156 
FFA 0.9985351563 
FFB 0.9987792969 
FFC 0.9990234375 
FFD 0.9992675781 
FFE 0.9995117188 
FFF 0.9997558594 

. 
R BUS • . 

IEEI!/DEC -----+---" 

Value of Seed Fraction (10) 

0.9999999999 (see text) 
0.9995118370 
0.9990239150 
0.9985362280 
0.9980487790 
0.9975615710 
0.9970745970 
0.9965878630 
0.9961013650 
0.9956151030 
0.9951290800 
0.9946432920 
0.9941577400 

0.0012221950 
0.0010998410 
0.0009775170 
0.0008552230 
0.0007329590 
0.0006107240 
0.0004885200 
0.0003663450 
0.0002442000 
0.0001220850 

• 
BIASED 

EXPONENT 
(R.o-Ro.) 

12 

12 USB. 
OF FRACTION 

(Roo-R11) 

I 

PROM Outputs (16) 

R22- R15 R14- R7 

FF FF 
FF EO 
FF CO 
FF AO 
FF 80 
FF 60 
FF 40 
FF 20 
FF 00 
FE El 
FE CO 
FE A1 
FE 81 

00 50 
00 48 
00 40 
00 38 
00 30 
00 28 
00 20 
00 18 
00 10 
00 08 

Aa A7-Ao 

Am27S15 512 x 8 
SEED EXPONENT PROM 

A11 -Ao J. A11-Ao 

(2) Am27S43 4K x • 
SEED FRAcrON PROM. 

07-00 

SEED SIGN SEED EXPONENT 

O7-Do I O7-Do 

~8 

SEED FRACTION 

AF004631 

Figure C2. The Hardware Look-Up Table 

With the hardware look-up table in place, the reciprocal of 
value B can be calculated with the following series of 
operations: 

1) Place B on both the Rand S buses. The 2 : 1 multiplexer at 
the output of the hardware look-up table should select the 
output of the look-up table (see Figure C3-A). 

2) Load the seed value xo into register R and load B into 
register S. Select the R TIMES S operation (see Figure 
C3-B). 

3) Load product B*XO into register F. Select the 2 MINUS S 
operation, and select register F as the input to the ALU S 
port (see Figure C3-C). 

4) Load 2 - B*XO into register F. Select the R TIMES S 
operation and select register F as the input to the ALU S 
port (see Figure C3-D). 

5) Load the value Xl (Xl - xo(2 - B*xell into registers Rand F. 
Select the R TIMES S operation (see Figure C3-E). 

6) Repeat steps 3 through 5 until the result has the accuracy 
desired. 
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~ I 
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I 1 2: 11 ! 0 t I I F----' REGISTER S I 
I 1 
I 
I 
I 
I 
I 
1 
I, 
I 
I 
1 

1 

I Am29325 

REGISTER R 

PORT 
R 

ALU 

PORTF 

REGISTER F 

o 

PORT 
S 

2:1 
MUX 

'-------------_.- ---------------' 
BUSF---------------------4-------------------------------

DF006210 

Figure C3-A. Data Flow for Step 1 of the Reciprocal Procedure 
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REGISTER R o i 2: 1 1 
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I 
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PORT PORT 

R S 

ALU 

PORTF 

I B·~ 
REGISTER F 

Am29325 
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FO-F31 

BUSF 

DF006220 

Figure C3·B. Data Flow for Step 2 of the Reciprocal Procedure 
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~ I 
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ALU 
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REGISTER F 
[B· Xo] 

I 
I 
I 
I 
I L _____ .J 

~-------------------- ------------------~ 
FO-F31 
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DF008230 

Figure caoC. Data Flow for Step a of the Reciprocal Procedure 
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o 
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MUX 

SEED 
LOOK-UP 

TABLE 

~----.- RO-R~ ___ ~~--l 

Ii 1 0 REGISTERS 
[B) I L __ ,-,~~~ 
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I REGISTERR 0 2:1 1! I 

(X, (X, = Xo (2-S*Xol] i~ __ .J 
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PORT PORT 

I RS I 
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Figure C3-D_ Data Flow for Step 4 of the Reciprocal Procedure 
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Figure C3·E. Data Flow for Step 5 of the Reciprocal Procedure 
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A tabular description of the operations above is given in Table and port S. The look-up table produces the value 
C3. The following examples, performed In IEEE format, .0395278910 (3D21E80016). The reciprocal is 
illustrate the process. evaluated using the procedure described above; 

Example 1: 
register values for each step are given in Table C4. 
The expected result, to the precision of the float-

Find the reciprocal of 25.3. ing-point word, Is .0395256910 (3D21E5B116). In 

Solution: The IEEE floating-point representation for 25.3 Is 
this case the expected result is produced after the 

41 CA666616. The reciprocal process is begun by 
first iteration. All subsequent iterations produce the 

feeding this value to both the seed look-up table same result, and are therefore unnecessary. 

TABLE ca. SEQUENCE OF EVENTS FOR EVALUATING RECIPROCALS 

Clock 
Cycle 10- 12 13 14 fAI!i ~ ENF Register R Register S Register F 

1 Y X 0 0 0 X - - -
2 R TIMES S 0 X 1 1 0 Xo B -
3 2 MINUS S 1 X 1 1 0 Xo B B'Xo 

4 R TIMES S 1 1 0 1 0 Xo B 2-B'Xo )FI~ 
iteration 

5 R TIMES S 0 X 1 1 0 X1 (- Xo(2 - B'Xo)) B X1(- Xo(2- B'Xc)) 

6 2 MINUS S 1 X 1 1 0 X1 B B'Xl 

7 R TIMES S 1 1 0 1 0 X1 B 2-B'X1 )-~ iteration 
8 R TIMES S 0 X 1 1 0 X2(= X1(2 - B'X1)) B X2(- X1(2 - B'X1)) 

x - DON'T CARE 

TABLE C4. INPUT BUS AND REGISTER VALUES FOR EXAMPLE 1 

Clock 
Cycle R Input S Input Register R Register S Register F 

1 3D21E800 41CA666616 - - -
(.03952789) (25.3) 

2 - - 3D21E80016 41CA666616 -
(.03952789) (25.3) 

3 - - 3D21E80016 41CA666616 3F8001D316 
(.03952789) (25.3) (1.0000556) 

4 - - 3D21E80016 41CA666616 3F7FFC5A16 
(.03952789) (25.3) (.99984419) 

5 - - 3D21E5B116 41CA666616 3D21E5B116 
~ Result of first 

(.03952569) (25.3) (.03952569) iteration 

6 - - 3D21E5B116 41CA666616 3F7FFFFF16 
(.03952569) (25.3) (.99999994) 

7 - - 3D21E5B116 41CA666616 3F80000016 
(.03952569) (25.3) (1.0) 

8 - - 3D21E5B116 41CA666616 3D21E5B116 
~ Result of second 

(.03952569) (25.3) (.03952569) iteration 
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Example 2: 

Find the reciprocal of -.4725. 

Solution: The IEEE floating-point representation for -.4725 
is BEF1EB8516. The reciprocal process is begun 
by feeding this value to both the seed look-up table 
and port S. The look-up table produces the value 
- 2.11621 0941 0 (CO07700016)' The reciprocal is 

evaluated using the procedure described above; 
register values for each step are given in Table C5. 
The expected result, to the precision of the float­
ing-point word. is -2.11640210 (C007732216)' In 
this case the expected resuli is produced after the 
first iteration. All subsequent iterations produce the 
same result, and are therefore unnecessary. 

TABLE CS. INPUT BUS AND REGISTER VALUES FOR EXAMPLE 2 

Clock 
Cycle R Input S Input Register R 

1 c007700016 BEF1EB8516 -
(-2.1162109) (-0.4725) 

2 - - COO7700016 
(-2.1162109) 

3 - - COO7700016 
(-2.1162109) 

4 - - COO7700016 
(-2.1162109) 

5 - - COO7732216 
(-2.116402) 

6 - - COO7732216 
(-2.116402) 

7 - - COO7732216 
(-2.116402) 

B - - COO7732216 
(-2.116402) 

Register S 

-

BEF1EB8516 
(-0.4725) 

BEF1EB8516 
(-0.4725) 

BEF1EB8516 
(-0.4725) 

BEF1EB8516 
(-0.4725) 

BEF1EB8516 
(-0.4725) 

BEF1EB8516 
(-0.4725) 

BEF1EBB516 
(-0.4725) 
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' Register F 

-

-

3F7FFA1416 
(0.99990963) 

3F8002F616 
(1.0000904) 

COO7732216 
(-2.116402) 

3FBOOOOO16 
(1.0) 

3FBOOOOO16 
(1.0) 

COO7732216 
(-2.116402) 

... Result of first 
iteration 

... Result of second 
iteration 



APPENDIX D 

SUMMARY OF FLAG OPERATION 

Tables 01, 02, and 03 summarize flag operation for the IEEE 
mode, the DEC mode, and for the IEEE-TO-DEC and DEC-TO­
IEEE operations. 

TABLE 01. FLAG SUMMARY FOR IEEE MODE 

Operation Conditlon(s) INV OVF UNF 

Any operation H L L 
listed in the 
IEEE Invalid 
Operations Table 

R PLUS S Input operands are finite L H L 
R MINUS S I rounded result I ;;:. 2128 
R TIMES S 
2 MINUS S 

R PLUS S 
R MINUS S 0< I rounded result 1< 2- 126 L L H 
R TIMES S 

R PLUS S Final result does not equal L 
R MINUS S infinitely precise result 
R TIMES S 
2 MINUS S 
INT-TO-FP 
FP-TO-INT 

R PLUS S Final result is zero L L 
R MINUS S 
R TIMES S 
2 MINUS S 
INT-TO-FP 
FP-TO-INT 

R PLUS S Final result is a NAN L L 
R MINUS S 
R TIMES S 
2 MINUS S 
FP-TO-INT 

Notes: INV - Invalid operation flag 
OVF - Overflow flag 
UNF - Underflow flag 
INE - Inexact flag 

ZER - Zero flag 
NAN - NAN flag 

L-LOW 
H - HIGH 
• - State of flag 

depends on the 
input operands 
and the operation 
performed 
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TABLE D2. FLAG SUMMARY FOR DEC MODE 

Operation Condltlon(s) 

FP·TO-INT Rounded result> 231_1 
or rounded result < _ 231 

FP·TO·INT Input is a DEC-reserved 
operand 

RPLUSS 
R MINUS S I Rounded resultl;;;' 2127 
R TIMES S 
2 MINUS S 

R PLUS S 
R MINUS S o < I rounded result I < 2"" 128 
R TIMES S 

R PLUS S Final result does not equal 
R MINUS S infinitely precise result 
R TIMES S 
2 MIMUS S 
INT·TO·FP 
Fp·TO·INT 

RPLUSS Final result is zero 
R MINUS S 
R TIMES S 
2 MINUS S 
INT·TO·FP 
Fp·TO·INT 

Fi PLUS S Final result is a DEC·reserved 
R MINUS S operand 
R TIMES S 
2 MINUS S 
FP·TO·INT 

Notes: INV - Invalid operation flag 
OVF = Overflow' flag 

H=HIGH 
• - State of flag 

depends on the 
input operands 
and the operation 
performed 

UNF - Underflow flag 
INE = Inexact flag 

ZER - Zero flag 
NAN = NAN flag 

L-LOW 

INV OVF UNF 

H L L 

L L L 

L H L 

L L H 

L . · 

L L · 

. . L 

INE ZER 

L L 

L L 

H L 

H H 

H . 

. H 

L L 

TABLE D3. FLAG SUMMARY FOR IEEE-TO-DEC AND DEC-TQ-IEEE CONVERSIONS 

Operation Condltlon(s) 

IEEE·TO·DEC Input is a NAN 

IEEE·TO·DEC IInput l;;;'2127 

DEC·TO·IEEE Input is a DEC·reserved operand 

DEC·TO·IEEE o < I rounded result I < 2- 128 

DEC·TO·IEEE Final result is zero 
IEEE·TO·DEC 

Notes: INV - Invalid operation flag 
OVF = Overflow flag 

H=HIGH 
• - State of flag 

depe~ds on the 
input operands 
and the operation 
performed 

UNF - Underflow flag 
INE = Inexact flag 

ZER = Zero flag 
NAN - NAN flag 

L=LOW 
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ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 
Storage Temperature ............................ -65 to + 150°C Commercial (C) Devices 
Temperature Under Bias - Te ................ -55 to + 125°C Temperature, Case (T c> ......................... 0 to + 85°C 
Supply Voltage to Ground Potential Supply Voltage (Vcc) .................... +4.75 to +5.25 V 

Continuous ...................................... -0.5 to +7.0 V Operating ranges define those limits between which the 
DC Voltage Applied to Outputs 

for HIGH State ......................... -0.5 V to + Vee Max. 
functionality of the device is guaranteed. 

DC Input Voltage ................................. -0.5 to + 5.5 V 
DC Output Current, into Outputs ......................... 30 mA 
DC Input Current ................................ -30 to + 5.0 mA 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA TlNGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

DC CHARACTERISTICS over operating ranges unless otherwise specified 

Parameter Parameter 
Symbol Description Test Conditions (Note 1) Min. Max. Units 

VOH Output HIGH Voltage Vee = Min. 2.4 Volts 
VIN = Vil or VIH 
IOH=-1.0 mA 

Val Ouput lOW Voltage Vee = Min. 0.5 Volts 
VIN = Vil or VIH 
IOl =4.0 mA 

VIH Input HIGH level Guaranteed Input logical 2.0 Volts 
HIGH Voltage for All Inputs 

Vil Input lOW level Guaranteed Input logical 0.8 Volts 
LOW Voltage for All Inputs 

VI Input Clamp Voltage Vee = Min. -1.5 Volts 
IIN=-18 mA 

III Input LOW Current Vee = Max. ClK, S16/32, OE -1.0 mA 
VIN =0.5 V Others -0.5 

IIH Input HIGH Current Vee = Max. ClK, S16/32, OE 100 jJA 
VIN = 2.4 V Others 50 

II Input HIGH Current Vcc= Max. 1 mA 
VIN = 5.5 V 

IOZH Fa - F31 Off State (High· Vee = Max. Va = 2.4 V 50 jJA 
IOZl Impedance) Output Current 

Vo=0.5 V -50 

Ise Output Short·Circuit Current Vee = Max. +0.5 V Fa-F31 Outputs -15 -50 mA 
(Note 2) Va = 0.5 V 

Flag Outputs -15 -50 

lee Power Supply Current Vee = Max. COM'l, Te = +25°C 1800 pF Typical 
(Notes 3, 4) 

COM'L Only Te = 0 to +85°C 2114 mA 
Case Temp. 

Te= +B5°C 1950 
Case Temp. 

Notes: 1. For conditions shown as Min. or Max., use the appropriate value specified under Operating Ranges for the applicable device type. 
2. Not more than .Q!le output shoud be shorted at a time. Duration of the short-circuit test should not exceed one second. 
3. Measured with OE lOW, and with all output bits (Fo-F31 and flag outputs) lOW. 
4. Worst·case Icc applies to cold start at lowest operating temperature. 
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SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified 

COM'L (Note 2) 

Tc=O to +8SoC Case Temp. 

Am2932S Am2932SA 
Parameter Parameter Test 

No. Symbol Description Conditions Min. Max. Min. Max. Units 

1 tASC Clocked Add, Subtract Time (R PLUS S, 93 83 ns 
R MINUS S, 2 MINUS S) 

2 tMC Clocked Multiply Time (R TIMES S) 93 83 ns 

3 tec Clocked Conversion Time (INT·TO·FP, 100 90 ns 
FP·TO·INT, IEEE-TO-DEC, DEC-TO-IEEE) 

4 tASUC Unclocked Add, Subtract Time (R, S to F, 125 110 ns 
Flags) for R PLUS S, R MINUS S, 
and 2 MINUS S Instructions 

5 tMUC Unclocked Multiply Time (R, S to F, Flags) FTo = HIGH 125 110 ns 
for R TIMES S Instruction FTl-HIGH 

6 teuc Unclocked Conversion Time (R, S to F, 125 110 ns 
Flags) for INT-TO-FP, FP-TO-INT, IEEE-
TO-DEC and DEC-TO-IEEE Instructions 

7 tPWH Clock Pulse Width HIGH 15 15 (Note 3) ns 

8 tPWL Clock Pulse Width LOW 15 15 (Note 3) ns 

9 tpOOFl Clock to FO - F31 and Flag Outputs FTo-LOW 125 110 ns 
FTI = HIGH 

10 tpOOF2 FTI = LOW 34 30 ns 

11 tpZL OE Enable Time Z to LOW 31 29 ns 

12 tPZH z to HIGH 26 24 ns 

13 tpLZ OE Disable Time LOW to Z 31 31 ns 

14 tPHZ HIGH to Z 26 26 ns· 

15 tPZL16 Clock t to FO-FI5 Z to LOW S16/32 = HIGH 41 39 ns 

16 tpZH16 
Enable, 16-Bit 1/0 Mode Z to HIGH OjljEBUS=LOW 33 33 ns 

17 tpLZ16 Clock + to Fo-F15 LOW to Z 26 26 ns 

18 tPHZ16 
Disable, 16-B~ 1/0 Mode 

HIGH TO Z 38 38 ns 

19 IPZL16 Clock + to F16 - F31 Z to LOW S16/32 = HIGH 30 29 ns 

20 tPZH16 
Enable, lS-Bit 1/0 Mode Z to HIGH ONEBUS=LOW 26 26 ns 

21 tpLZ16 Clock t to F16- Fal LOW to Z 34 34 ns 

22 tpHZ16 
Disable,16-B~ 1/0 Mode HIGH to Z 36 36 ns 

23 IsCE Register Clock Enable Setup Time FTo=LOW 6 6 ns 
FTI = LOW 

24 tHCE Register Clock Enable Hold Time FTo=LOW 1 1 ns 
FTI-LOW 

25 tSOl Ro-R31, SO-S31 Setup Time (Note 1) FTo = LOW 13 13 ns 

26 tH01 Ro - R31, So - S31 Hold Time (Note 1) 6 6 ns 

27 tS02 Ro-R31, So-Sal Setup Time (Note 1) FTo = HIGH 104 104 ns 

28 tH02 Ro-R31, SO-S31 Hold Time (Note 1) FTI = LOW -5 -5 ns 

29 tslO2 10 - 12 Instruction Select Setup Time FT for Destination 100 100 ns 

30 tHI02 10 - 12 Instruction Select Hold Time Register = LOW -5 -5 ns 

31 tpOI02 10 -12 Instruction Select to Fo - Fa1, Flags FTI = HIGH 129 129 ns 

32 1s13 13 Port S Input Select. Setup Time FTI -LOW 93 93 ns 

33 !H13 la Port S Input Select Hold Time -5 -5 ns 

34 tSI4 14 Register R Input Select Setup Time FTo=LOW 15 15 ns 
(Note 1) 

35 tHI4 14 Register R Input Select Hold Time 0 0 ns 
(Note 1) 

36 IsRM Round Mode Select Setup Time FT for Destination 45 45 ns 

37 tHRM Round Mode Select Hold Time Register = LOW 
0 0 ns 

38 tpRF Round Mode Select to Fo - F31, Flags FTI - HIGH 76 76 ns 

Notes: 1. See timing diagram for desired mode of operation to determine clock edge to which these setup and hold times apply. 
2. It Is the responsibility of the user to maintain a case temperature of 85°C or less. AMD recommends an air velocity of at least 200 linear feet per 

minute over the heat sink. 
3. Tester limitations necessitate this spec limit. Typical value shown is actual wQrst-case value. 

, I 
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SWITCHING TEST CIRCUITS 

6V 

1.11 

Ha 

5.0 - VeE - VOL 

VOL 
R1 = IOL +11< 

A. Three-Stste Outputs 

H, = 8200 

TCOO1104 

Vee 

TCOO1084 

5.0 - VeE - VOL 

R1 - VOL 
IOL+­

R2 

B. Normal Outputs 

Notes: 1. CL - 50 pF includes scope probe, wiring, and stray capacitances without device in test fixture. 
2. 81, 82, 83 are closed during function tests and all AC tests except output enable tests. 
3. 81 and 83 are closed while 82 is open for tPZH tesl 

81 and 82 are closed while 83 is open for tPZL test. 
4. CL = 5.0 pF for output disable tests. 

4-71 



SWITCHING TEST WAVEFORMS 

""TT_TTTTT.7~'-.~.T.TI'mfM1:TTTT7'" 3 v ,= l!llS!S!S!::! ~ 1.S V 

~~~~~ ov 
f -_sv = -------- ---------1.5 V 

------------~----------------ov 

WFR02970 
Notes: 1. Diagram shown lor HIGH data only. 

Output transition may be opposite sense. 
2. Cross hatched area Is don't care 

condition. 

Set-Up, Hold, and Release Times 

Propagation Delay 

Notes on Test Methods 

WFR02980 

The following points give the general philosophy which we 
appiy to tests which must be properly engineered if they are to 
be implemented in an automatic environment. The specifics of 
what philosophies applied to which test are shown. 

1. Ensure that the part is adequately decoupled at the test 
head. Large changes in supply current when the device 
switches may cause function failures due to Vee changes. 

2. Do not leave inputs floating during any tests, as they may 
oscillate at high frequency. 

3. Do not attempt to perform threshold tests at high speed. 
Following an input transition, ground current may change by 
as much as 400 mA in 5 to 8 ns. Inductance in the ground 
cable may allow the ground pin at the device to rise by 
hundreds of millivolts momentarily. 

4. Use extreme care In defining input levels for AC tests. Many 
Inputs may be changed at once, so there will be significant 
noise at the device pins which may not actually reach VIL or 
VIH until the noise has settled. AMD recommends using 
VIL OS;; 0 V and VIH OS;; 3 V for AC tests. 

5. To simplify failure analysis, programs should be designed to 
perform DC, Function, and AC tests as three distinct groups 
of tests. 

I.OWoHIGHoI.OW_-'-- . 0 ~ __ ' __ 1SV 
PUI.SE T ~ 0 

"'~~~~-r-~--j,===-o------- 105 V 

WFR02790 

Pulse Width 

Enable Disable 
r----- 3V 

CO~1~e~=t (d_-~_-:_-_-_-_-_:··vv 
'I.Z-:--t±zl. 

OUTPUT -C\ -4.5 V pO.6 V 
NORMAI.I.V 1.5 V ~1.6 v 

.ow 53 OPEN -: VOl. 

f--.t'ZH 'HZ-!----l! t 
OUTPUT~~-=::::VOH 

NORMALLV 1.6 V "-t- -1.5 V 
HIGH 82 OPEN 0.6 V 

---~O v 

WFR02660 
Notes: 01. Diagram shown lor Input Control Enable-

LOW and Input Control Disable-HIGH. 
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2. S1, S2 and S3 01 Load Clrcutt are closed 
except where shown. 

Enable and Disable Times 

6. Capacitative Loading for AC Testing: Automatic testers and 
their associated hardware have stray capacitance which 
varies from one type of tester to another, but generally 
around 50 pF. This, of course, makes it impossible to make 
direct measurements of parameters which call for a smaller 
capacitive load than the associated stray capacitance. 
Typical examples of this are the so-called "float delays," 
which measure the propagation delays in to and out of the 
high-impedance state, and are usually specified at a load 
capacitance of 5.0 pF. In these cases the test is performed 
at the higher load capacitance (typically 50 pF), and 
engineering correlations based on data taken with a bench 
set up are used to predict the result at the lower capaci­
tance. 

Similarly, a product may be specified at more than one 
capacitive load. Since the typical automatic tester is not 
capable of switching loads in mid·test, it is impossible to 
make measurements at both capacitances even though 
they may both be greaier than the stray capacitance. In 
these cases, a measurement is made at one of the two 
capacitances. The result at the other capacitance Is 
predicted from engineering correlations based on data 
taken .with a bench set up and the knowledge that certain 
DC measurements (e.g., IOH, IOL) have already been taken 
and are within specification. In some cases, special DC 
tests are performed in order to facilitate this correlation. 



7. Threshold Testing: The noise associated with automatic 
testing, the long, inductive cables, and the high gain of 
bipolar devices when in the vicinity of the actual device 
threshold, frequently give rise to oscillations when testing 
high-speed circuits. These oscillations are not indicative of a 
reject device, but instead, of an overtaxed test system. To 
minimize this problem, thresholds are tested at least once 
for each input pin. Thereafter, "hard" high and low levels 
are used for other tests. Generally this means that function 
and AC testing are performed at "hard" input levels rather 
than at VIL Max. and VIH Min. 

8. AC Testing: Occasionally, parameters are specified which 
cannot be measured directly on automatic testers because 

of tester limitations. Data input hold times often fall into this 
category. In these cases, the parameter in question is 
guaranteed by correlating tests with other AC tests which 
have been performed. These correlations are arrived at by 
the cognizant engineer by using data from preCise bench 
measurements in conjunction with the knowledge that 
certain DC parameters have already been measured and 
are within specification. 

In some cases, certain AC tests are redundant since they 
can be shown to be predicted by other tests which have 
already been performed. In these cases, the redundant 
tests are not performed. 

SWITCHING WAVEFORMS 

KEY TO SWITCHING WAVEFORMS 

WAVIiFOAM IMiUra OUTPUTS 

MUIT II WILL IE 
STEADY STEADY .. M.t.YCHANQE WILL II 

FROMHTOL CHANGING 
FROMHTOL 

JJJJIf MAYCHANQE 
WILLae 

FROML TOM CHANGING 
FAOML TOH -DON'T CARE; CHANQING: 

ANY CHANGE STATE 
PERMITTED UNKNOWN 

H 
CENTER 

DOES Nor LINE ISH.OH 
APPLY .... DANe, 

"OFF"ITAT£ 

KSOOOO10 

(j) t-I ---- ~ ------II 
elK __ ----IF (j) --1-1-- (j) ==:/i---

I, 

Clocked Operation: FTo = LOW 
FT1 = LOW 
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elK 

RNDo-RND, 

SWITCHING WAVEFORMS (Cont'd.) 

~I·---~---+·I·---®--~·I 
@j-"i-@-

(Xx:xx:xx'x :xW 
''\ 

eLK 

~ 
ENS 

'. 

RNDo- RNol 

'll(X 

(ji) r---
W VALlO 
I~ 

@ 

W 
J\ 

" 

@ 

CSI 

" 1\ 
-@ 

'V-I\, 

Clocked Operation: FTo = HIGH 
FT1 = LOW 

----11-- @ ==-=J 

Clocked Operation: FTo = LOW 
FT1 = HIGH 
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SWITCHING WAVEFORMS (Cont'd.) 

RNDO-RND, _ 

@ 
® 
® 

Flow-Through Operation (FTO = HIGH, FT1 = HIGH) 

CLK-----' 

INPUT DATA "".'''\AAAr..'''' 
BUS A".AI\AJ,\A.f\ .... 

32-Blt, Single-Input Bus Mode 
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elK 

R INPUT BUS. 
S INPUT BUS 

14 
(NOTE 1) 

I· 

I· 

SWITCHING WAVEFORMS (Cont'd.) 

. @ I- @ 
@ @ 

'I 
, HI-Z· 

< Ii\. 
VALID 

J 
@ r---

@ 

@ ~ , HI-Z ,/ 

J ~ 
VALID 

WF023810 

Note 1. 14 has special setup and hold time requirements in this mode. All other control signals have timing 
requirements as shown in the diagram "Clocked operation, FTO & LOW, FT1 z LOW." 

16-Blt, Two-Input Bus Mode 
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DRIVEN INPUT 

R 

',L 

J 

ClK. 16732. OE 
R=8Kil 

All OTHER INPUTS 
R = 16Kil 

ICDOO960 

OUTPUT ENABLE/DISABLE TIMING 

THREE-STATE 
OU11'UT 

NO ...... L 
OUTPUT 

V~------------~-----------------------r--------------~-----

[ 

F 
1COOO970 

C1 ""'5.0 pF, all inputs Co"'" 5.0 pF, all outputs 
NDte: Actual current flow direction shown. 
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Am29C325 
CMOS 32-Bit Floating-Point Processor 

ADVANCE INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• Single VLSI device performs high-speed floating-point 
arithmetic 
- Floating-point addition, subtraction, and multiplication 

in a single clock cycle ' 
- Internal architecture supports sum-of-products, 

Newton-Raphson division 
• 32-bit, three-bus flow-through architecture 

- Programmable 110 allows interface to 32- and 16-bit 
systems 

• IEEE and DEC formats 
- Performs conversions between formats 
- Performs integer ~ floating-point conversions 

• Input and output registers can be made. transparent 
independently 

• Pin and functionally compatible with the Bipolar 
Am29325 

• The Am29C325 uses less than one-quarter the power of 
the Am29325 

• 145 PGA requires no heatsink 

GENERAL DESCRIPTION 

The Am29C325 is a high-speed floating-point processor 
unit It performs 32-bit single-precision floating-point addi­
tion, subtraction, and multiplication operations in a single 
VLSI circuit, using the format specified by the proposed 
IEEE floating-point standard, 754. The DEC single-preci­
sion floating-point format is also supported. Operations for 
conversion between 32-bit integer format and floating-point 
format are available, as are operations for converting 
between the IEEE and DEC floating-point formats. Any 
operation can be performed in a Single clock cycle. Six 
flags - invalid operation, inexact result, zero, not-a-num­
ber, overflow, and underflow - monitor the status of opera­
tions. 

The Am29C325 has a three-bus, 32-bit architecture, with 
two input buses and one output bus. This configuration 

provides high I/O bandwidth, allows access to all buses, 
and affords a high degree of flexibility when connecting this 
device in a system. All buses are registered, with each 
register having a clock enable. Input and output registers 
may be made transparent independently. Two other I/O 
configurations, a 32-bit, two-bus architecture and a 16-bit, 
three-bus architecture, are user-selectable, easing inter­
face with a wide variety of systems. Thirty-two-bit internal 
feedforward datapaths support accumulation operations, 
including sum-of-products and Newton-Raphson division. 

Fabricated using Advanced Micro Devices' 1.2 micron 
CMOS process, the Am29C325 is powered by a Single 5-
volt supply, The device is housed in a 145-lead pin-grid­
array package. 

Am29C300 FAMILY HIGH-PERFORMANCE SYSTEM BLOCK DIAGRAM 

Am29C331 
16-BIT 

SEQUENCER 

t 16 

MICROPROGRAM 
MEMORY 

PIPELINE 
REGISTER 

~ 
CONTROL 
SIGNALS 

ThiS dOC-u"fltillli wniains information on 8 prOCluct under development at Advanced Micro 
Devices, Inc. The information is intended to help you to evaluate this product. AMD 
reserves the right to change or discontinue work on this product without notice. 4-78 
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1 
CLKD--+-

SELECT 16 
ANDENABLE~ 

LINES 

Part No. 

Am29114 

Am29116 

Am29C116 

Am29PL141 

Am29C323 

Am29331 

Am29C331 

Am29332 

Am29C332 

Am29334 

Am29C334 

Am29337 

Am29338 

RELATED AMD PRODUCTS 

Description 

Vectored Priority Interrupt Controller 

High-Performance Bipolar 16-Bit Microprocessor 

High-Performance CMOS 16-Bit Microprocessor 

Fuse Programmable Controller 

CMOS 32-Bit Parallel Multiplier 

16-Bit Microprogram Sequencer 

CMOS 16-Bit Microprogram Sequencer 

32-Bit Extended Function ALU 

CMOS 32-Bit Extended Function ALU 

64 x 18 Four-Port, Dual-Access Register File 

CMOS 64 x 18 Four-Port, Dual-Access Register File 

16-Bil Bounds Checker 

Byte Queue 

BLOCK DIAGRAM 

PORT S 

FLOATING- POINT 
ALU 

PORT F 

STATUS 
FLAG 

GENERATOR 

OEL.:>-----<ifiJ 

OVERFLOW 

UNDERFLOW 

ZERO 

80007080 
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CONNECTION DIAGRAM 
Bottom View 

PGA 

A 8 e D E F G H K L M N P R 

INEX 12 11 ENF 14 OBU5 ~ vee elK R31 R30 R25, R24 R21 R20 

2 INVA NAN 10 110 FTO FT1 vee vee RNDO RND1 R27 R28 R23 R22 R17 

3 F29 ZERO OND ~ m 16/32 vee vee vee R28 R26 OND OND R19 R"l8 

4 F30 F31 OND * R15 R18 R13 

5 F23 OVFl UNFL R14 R11 R12 

8 F28 F27 F28 R9 R10 A7 

7 F21 F24 F25 R8 RS R6 

8 F22 F19 vee R3 R4 R1 

9 F17 F20 vee RO 13 R2 

10 F18 F15 F16 528 531 530 

11 F13 F14 F11 527 526 529 

12 F12 F9 F10 vee 525 524 

13 F7 F6 OND OND OND OND OND OND OND 58 513 514 vee 522 523 

14 F8 F3 F2 OND FO 51 52 OND 54 59 510 515 518 521 520 

15 F5 F4 F1 GND PIAA' 50 S3 55 57 56 511 512 517 516 519 

CD010491 

Key: 16/32 = S16/32 
110 = IEEE/DEC 

INEX = INEXACT 
INVA = INVALID 

OBUS = ONEBUS 
OVFL = OVERFLow 

P/AFF = PROJ/AFF 
UNFL = UNDERFLOW 

*D4 is an aHgnment pin (not connected internally). 
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PIN DESIGNATIONS 

(Sorted by Pin No.) 

PIN NO. PIN NAME PIN NO. PIN NAME PIN NO. PIN NAME PIN NO. PIN NAME 

A-1 Inexact C-7 F25 H-13 GND N-10 528 

A-2 Invalid C-S Vee H-14 GND N-11 527 

A-3 F29 C-9 Vee H-15 55 N-12 Vee ~ 
A-4 F30 C-10 F16 J-1 elK N-13 Vee 

I 

A-5 F23 C-11 F11 J-2 RNDo N-14 518 

A-6 F26 C-12 F10 J-3 Vee N-15 517 

A-7 F21 C-13 GND J-13 GND P-1 R21 

A-8 F22 C-14 F2 J-14 54 P-2 R22 

A-9 F17 C-15 F1 J-15 57 P-3 R19 

A-10 F18 0-1 ENF K-1 R31 P-4 R16 

A-11 F13 0-2 IEEE/DEC K-2 RND1 P-5 R11 

A-12 F12 0-3 ENR K-3 R29 P-6 R10 

A-13 F7 0-13 GND K-13 58 P-7 R5 

A-14 F8 0-14 GND K-14 59 P-8 R4 

A-15 F5 0-15 GND K-15 Sa P-9 13 

B-1 12 E-1 14 l-1 R30 P-10 531 

B-2 NAN E-2 FTo l-2 R27 P-11 526 

B-3 ZERO E-3 ENS l-3 R26 P-12 525 

B-4 F31 E-13 GND l-13 513 P-13 522 

B-5 OVERFLOW E-14 Fo l-14 510 P-14 521 

B-6 F27 E-15 PROJ/AFF l-15 511 P-15 516 

B-7 F24 F-1 ONEBU5 M-1 R25 R-1 R20 

B-8 F19 F-2 FT1 M-2 R28 R-2 R17 

B-9 F20 F-3 516/32 M-3 GND R-3 R18 

B-10 F15 F-13 GND M-13 514 R-4 R13 

B-11 F14 F-14 51 M-14 515 R-5 R12 

B-12 F9 F-15 50 M-15 512 R-6 R7 

B-13 Fa G-1 DE N-1 R24 R-7 Ra 

B-14 F3 G-2 Vee N-2 R23 R-8 R1 

B-15 F4 G-3 Vee N-3 GND R-9 R2 

C-1 11 G-13 GND N-4 R15 R-10 530 

C-2 10 G-14 52 N-5 R14 R-11 529 

C-3 GND G-15 53 N-6 R9 R-12 524 

C-4 GND H-1 Vee N-7 R8 R-13 523 

C-5 UNDERFLOW H-2 Vee N-8 R3 R-14 520 

C-6 F28 H-3 Vee N-9 Ro R-15 519 
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PIN DESIGNATION,S (Cont'd.) 

(Sorted by Pin Name) 

PIN NO. PIN NAME PIN NO. PIN NAME. PIN NO. PIN NAME PIN NO. PIN NAME. 

~·1 ClK E-2 FTo R-6 R7 K-14 59 

0-1 ENF F-2 FTl N-? R8 l-14 510 

0-3 ENR N-3 GND N-6 R9 L-15 511 

E-3 EN5 H-14 GND P-6 Rl0 M-15 512 

E-14 Fo G-13 GND P-5 R11 L-13 513 

C-15 Fl M-3 GND R-5 R12 M-13 514 

C-14 F2 H-13 GND R-4 R13 M-14 515 

9-14 F3 J-13 GND N-5 R14 P-15 516 

9-15 F4 0-15 GND N-4 R15 F-3 516/32 

A-15 F5 0-14 GND P-4 R16 N-15 517 

9-13 F& E-13 GND R-2 R17 N-14 518 

A-13 F7 F-13 GND R-3 R18 R-15 519 

A-14 F8 C-4 GND P-3 R19 R-14 520 

9-12 F9 C-3 GND R-l R20 P-14 521 

C-12 FlO 0-13 GND P-l R21 P-13 522 

C-ll Fll C-13 GND P-2 R22 R-13 523 

A-12 F12 C-2 10 N-2 R23 R-12 524 

A-ll F13 C-l 11 N-l R24 P-12 525 

9-11 F14 9-1 12 M-l R25 1'-11 526 

9-10 F15 P-9 13 L-3 R26 N-ll 527 

C-l0 F16 E-l 14 L-2 R27 N-l0 528 

A-9 F17 0-2 IEEE/DEC M-2 R28 R-l1 529 

1\-10 F18 A-l INEXACT K-3 R29 R-l0 530 

9-8 F19 A-2 INVALID L-l R30 P-l0 531 

9-9 F20 9-2 NAN K-l R3l C-5 UNDERFLOW 

A-7 F21 G-l OE J-2 RNDo J-3 Vee 

A-8 F22 F-l ONEBU5 K-2 RNDl G-2 Vee 

A-5 F23 9-5 OVERFLOW F-15 50 G-3 Vee 

9-7 F24 E-15 PROJ/AFF F-14 51 H-2 Vee 

C-? F25 N-9 Ro G-14 52 N-13 Vee 

A-6 F26 R-8 Rl G-15 53 N-12 Vee 

9-6 F27 R-9 R2 J-14 54 H-3 Vee 

C-6 F28 N-8 R3 H-15 55 H-l Vee 

A-3 F29 P-8 R4 K-15 56 C-8 Vee 

A-4 F30 P-7 R5 J-15 57 C-9 Vee 

9-4 F31 R-7 R6 K-13 58 9-3 ZERO 

I 
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LOGIC SYMBOL 

Ra-R31 FO-F31 

INEXACT 

INVALID -
NAN 

OVERFLOW -
UNDERFLOW 

FTO,FT1 
ZERO 

LS002920 
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ORDERING INFORMATION 

Standard Products 

AMD standard products are available in several packages arid operating ranges. The order number (Valid Combination) is 
formed by a combination of: a. Device Number 

AMg~C~25 

b. Speed Option (if applicable) 
c. Package Type 
d. Temperature Range 
e. Optional Processing 

-=.1. ..Q. 

: i '-------e. OPTIONAL PROCESSING 
Blank = Standard processing 

B = Burn·in I '----------d. TEMPERATURE RANGE 
C = Commercial (0 to + 8S'C) Case 

L-------'------c. PACKAGE TYPE 
G = 14S·Lead Pin Grid Array without Heatsink 

(CGX14S) 

'------------------b. SPEED OPTION 
-1 = Speed Select 

L-- a. DEVICE NUMBER/DESCRIPTION 
Am29C325 
CMOS 32·Bit Floating,Point Processor 

Valid Combinations 

Am29C325 

AM29C32S·1 
I GC, GCB 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMD's standard military grade 
products. 
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MILITARY ORDERING INFORMATION 

APL Products 

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved 
Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL 
products is formed by a combination of: a. Device Number 

I 

AM29C325 

b. Speed Option (if applicable) 
c. Device Class 
d. Package Type 
e. Lead Finish 

.z.. ..Q. L= e. LEAD FINISH 
C- Gold 

d. PACKAGE TYPE 
Z - 145-Lead Pin Grid Array without Heatsink 

(CGX145) 

L-------------c. DEVICE CLASS 
/8 - Class 8 

b. SPEED OPTION 
Not Applicable 

~ a. DEVICE NUMBER/DESCRIPTION 
Am29C325 
CMOS 32-8it Floating-Point Processor 

Valid Combinations I Valid Combinations 

I AM29C325 I /8ZC I Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations or to check for newly released valid 
combinations. 
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Group A Tests 
Group A tests consist of Subgroups 

1,2,3,7,8,9, 10, 11. 
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PIN DESCRIPTION 

CLK Clock (Input) 
For the internal registers. 

ENF Register F Clock Enable (Input; Active LOW) 
When ENF is lOW, register F is clocked on the lOW-to­
HIGH transition of CLK. When ENF is HIGH, register F 
retains the previous contents. 

ENR Register R Clock Enable (Input; Active LOW) 
When ENR is lOW, register R is clocked on the lOW-to­
HIGH transition of ClK. When ENR is HIGH, register R 
retains the previous contents. 

ENS Register S Clock Enable (Input; Active LOW) 
When ENS is LOW, register S is clocked on the lOW-to­
HIGH transition of ClK. When ENS is HIGH, register S 
retains the previous contents. 

FO - F31 F Operand Bus (Output) 
Fo is the least-significant bit. 

FTO Input Register Feedthrough Control (Input; 
Active HIGH) 

When FTo is HIGH, registers Rand S are transparent. 

FT 1 Output Register Feedthrough Control (Input; 
Active HIGH) 

When FT1 is HIGH, register F and the status flag register 
are transparent. 

10 - 12 Operation Select Lines (Input) 
Used to select the operation to be performed by the AlU. 
See Table 1 for a list of operations and the corresponding 
codes. 

13 ALU S Port Input Select (Input) 
A lOW on 13 selects register S as the input to the ALU S 
port. A HIGH on 13 selects register F as the input to the ALU 
Sport. 

14 Register R Input Select (Input) 
A lOW on 14 selects Ro - R31 as the input to register R. A 
HIGH selects the AlU F port as the input to register R. 

IEEE/DEC IEEE/DEC Mode Select (Input) 
When IEEE/DEC is HIGH, IEEE mode is selected. When 
IEEE/DEC is lOW, DEC mode is selected. 

INEXACT Inexact Result Flag (Output; Active HIGH) 
A HIGH indicates that the final result of the last operation 
was not infinitely precise, due to rounding. 

INVALID Invalid Operation Flag (Output; Active 
HIGH) 

A HIGH indicates that the last operation performed was 
invalid; e.g., 00 times O. 

Definition of Terms 

Affine Mode 

One of two modes affecting the handling of operations on 
infinities - see the Operations with Infinities section under 
Operations in IEEE Mode. 

Biased Exponent 

The true exponent of a floating-point number, plus a constant. 
For IEEE floating-paint numbers, the constant is 127; for DEC 
floating-point numbers, the constant is 128. See also True 
Exponent. 

Bus 

Data input or output channel for the floating-point processor. 

NAN Not-a-Number Flag (Output; Active HIGH) 
A HIGH indicates that the final result produced by the last 
operation is not to be interpreted as a number. The output in 
such cases is either an IEEE Not-a-Number (NAN) or a 
DEC-reserved operand. 

OE Output Enable (Input; Active LOW) 
When DE is lOW, the contents of register F are placed on 
Fo - F31. When OE is HIGH, Fo - F31 assume a high­
impedance state. 

ONEBUS Input Bus Configuration Control (Input) 
A lOW on ONEBUS configures the input bus circuitry for 
two-input bus operation. A HIGH on ONEBUS configures 
the input bus circuitry for single-input bus operation. 

OVERFLOW Overflow Flag (Output; Active HIGH) 
A HIGH indicates that the last operation produced a final 
result that overflowed the floating-paint format. 

PROJ/AFF Projective/Affine Mode Select (Input) 
Choice of projective or affine mode determines the way in 
which infinities are handled in IEEE mode. A lOW on 
PROJ/AFF selects affine mode; a HIGH selects projective 
mode. 

Ro - R31 R Operand Bus (Input) 
Ro is· the least-significant bit. 

RNDo, RND1 Rounding Mode Selects (Input) 
RNDo and RND1 select one of four rounding modes. See 
Table 5 for a list of rounding modes and the corresponding 
control codes. 

So - S31 S Operand Bus (Input) 
So is the least-significant bit. 

S16/32 16- or 32-Bit I/O Mode Select (Input) 
A LOW on S16/32 selects the 32-bit I/O mode; a HIGH 
selects the 16-bit I/O mode. In 32-bit mode, input and 
output buses are 32 bits wide. In 16-bit mode, input and 
output buses are 16 bits wide, with the least- and most­
significant portions of the 32-bit input and output words 
being placed on the buses during the HIGH and LOW 
portions of ClK, respectively. 

UNDERFLOW Underflow Flag (Output; Active HIGH) 
A HIGH indicates that the last operation produced a 
rounded result that underflowed the floating-point format. 

ZERO Zero Flag (Output; Active HIGH) 
A HIGH indicates that the last operation produced a final 
result of zero. 

DEC-Reserved Operand 

A DEC floatir:lg-point number that is interpreted as a symbol 
and has no numeric value. A DEC-reserved operand has a 
sign of 1 and a biased exponent of O. 

Destination Format 

The format of the final result produced by' the floating-paint 
AlU. The destination format can be IEEE floating point, DEC 
floating paint, or integer. 

Final Result 

The result produced by the floating-point AlU. 

Fraction 

The 23 least-significant bits of the mantissa. 
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Infinitely Precise Result 

The result that would be obtained from an operation if both 
exponent range and precision were unbounded. 

Input Operands 

The value or values on which an operation is performed. For 
example, the addition 2 + 3 = 5 has input operands 2 and 3. 

Mantissa 

The portion of a floating-point number containing the number's 
significant bits. For the floating-point number 1.101 x 2- 3, the 
mantissa is 1.101. 

NAN (Not-a-Number) 

An IEEE floating-point number that is interpreted as a symbol, 
and has no numeric value. A NAN has a biased exponent of 
25510 and a non-zero fraction. 

Port 

Data input or output channel for the floating-point ALU. 

Projective Mode 

One of two modes affecting the handling of operations on 
infinities - see the Operations with Infinities section under 
Operation in IEEE Mode. 

Rounded Result 

The result produced by rounding the infinitely precise result to 
fit the destination format. . 

True Exponent (or Exponent) 

Number representing the power of two by which a floating­
point number's mantissa is to be multiplied. For the floating­
point number 1.101 x2- 3, the true exponent is -3. 

FUNCTIONAL DESCRIPTION 

Architecture 

The Am29C325 comprises a high-speed, floating-point ALU, a 
status flag generator, and a 32-bit data path. 

Floating-Point ALU 

The floating-point ALU performs 32-bit floating-point opera· 
tions. It also performs floating-point-to-integer conversions, 
integer-to-floating-point floating-point conversions, and con­
versions between the IEEE and DEC formats. The ALU has 
two 32-bit input ports, Rand S, and a 32-bit output port, F. 

Conceptually, the process performed by the ALU can be 
divided into three stages (see Figure 1). The operation stage 
performs the arithmetic operation selected by the user; the 
output of this section is referred to as the infinitely precise 
result of the operation. The rounding stage rounds the 
infinitely precise result to fit in the destination format; the 
output of this stage is called the rounded result. The last stage 
checks for exceptional conditions. If no exceptional condition 
is found, the rounded result is passed through this stage. If 
some exceptional condition is found (e.g., overflow, underflow, 
or an invalid operation), this section may replace the rounded 
result with another output, such as + 00, - 00, a NAN, or a DEC-

reserved operand. The output of this last stage appears on 
port F, and is called the final result. 

OPERAND R OPERAND S 

I I 
R S 

OPERATION STAGE 
(PERFORMS SELECTED OPERATION) 

- INFINITELY PRECISE RESULT 

ROUNDING STAGE 
(ROUNDS INFINITELY PRECISE 

RESULT) 

---ROUNDED RESULT 

EXCEPTION STAGE 
(CHECKS FOR UNUSUAL CONDITIONS) 

F 

I 
FINAL RESULT 

AF004540 

Figure 1. Conceptual Model of the Process 
Performed by the Floating-Point ALU 

The ALU performs one of eight operations; the operation to be 
performed is selected by placing the appropriate control code 
on lines 10 -12. Table 1 gives the control codes corresponding 
to each of the eight operations. 

The floating-point addition operation (R PLUS S) adds the 
floating-point numbers on ports Rand S, and places the 
floating-point result on port F. In IEEE mode (IEEEI 
DEC = HIGH) the addition is performed in IEEE floating'point 
format; in DEC mode (lEEE/DEC = LOW) the addition is 
performed in DEC format. 

The floating-point subtraction operation (R MINUS S) sub­
tracts the floating-point number on port S from the floating­
point number on port R and places the floating·point result on 
port F. In IEEE mode (IEEE/DEC = HIGH) the subtraction is 
performed in IEEE floating-point point format; in DEC mode 
(IEEE/DEC = LOW) the subtraction is performed in DEC 
format. 

The floating·point multiplication operation (R TIMES S) multi· 
plies the floating-point numbers on ports Rand S, and places 
the floating-point result on port F. In IEEE mode (IEEEI 
DEC = HIGH) the multiplication is performed in IEEE floating­
point format; in DEC mode (IEEE/DEC = LOW) the multiplica' 
tion is performed in DEC format. 

The floating·point constant subtraction (2 MINUS S) operation 
subtracts the floating-point value on port S from 2, and places 
the result on port F. The operand on port R is not used in this 
operation; its value will not affect the operation in any way. In 
IEEE mode (IEEE/DEC = HIGH) the operation is performed in 
IEEE floating-point format; in DEC mode (IEEE/DEC = LOW) 
the operation is performed in DEC format. This operation is 
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used to support Newton-Raphson floating-point division; a 
description of its use appears in Appendix C_ 

The integer-to-floating-point conversion (INT-TO-FP) opera­
tion takes a 32-bit,two's-complement integer on port Rand 
places the equivalent floating-point value on port F. The 

operand on port S is not used in this operation; its value will 
not affect the operation in any way. In IEEE mode (IEEE/ 
~ = HIGH) the result is delivered in IEEE format; in DEC 
mode (IEEE/~ = LOW) the result is delivered in DEC 
format. 

TABLE 1_ ALU OPERATION SELECT 

12 11 10 Operation Output Equation 

0 0 0 Floating-point addition (R PLUS S) F=R+S 

0 0 1 Floating-point subtraction (R MINUS S) F=R-S 

0 1 0 Floating-point multiplication (R TIMES S) F = R * S 

0 1 1 Floating-point constant subtraction F=2-S 
(2 MINUS S) 

1 0 0 Integer-to-floating-point conversion F (floating-point) = R (integer) 
(INT-TO-FP) 

1 0 1 Floating-point-to-integer conversion F (integer) = R (floating-point) 
(FP-TO-INT) 

1 1 0 IEEE-TO-DEC format conversion F (DEC format) = R (IEEE format) 
(IEEE-TO-DEC) 

1 1 1 DEC-TO-IEEE format conversion F (IEEE format) = R (DEC format) 
(DEC-TO-IEEE) 

The 'floating-point-to-integer conversion (FP-TO-INT) opera­
tion takes a floating-point number on port R and places the 
equivalent 32-bit, two's-complement integer value on port F. 
The operand on port S is not used in this operation; its value 
will not affect the operation in any way. In IEEE mode (IEEE/ 
DEC = HIGH) the operand on port R is interpreted using the 
IEEE floating-point format; in DEC mode (IEEE/DEC = LOW) 
it is interpreted using the DEC floating-point format 

The IEEE-to-DEC conversion operation (IEEE-TO-DEC) takes 
an IEEE-format floating-point number on port R and places the 
equivalent DEC-format floating-point number on port F. The 
operand on port S is not used in this operation; its value will 
not affect the operation in any way. The operation can be 
performed in either IEEE mode (IEEE/DEC = HIGH) or DEC 
mode (IEEE/DEC = LOW), 

The DEC-to-IEEE conversion operation (DEC-TO-IEEE) takes 
a DEC-format floating-point number on port R and places the 
equivalent IEEE-floating-point number on port F. The operand 
on port S is not used in this operation; its value will not affect 
the operation in any way. The operation can be performed in 
either IEEE mode (IEEE/DEC = HIGH) or DEC mode (IEEE/ 
~=LOW). 

Status Flag Generator 

The status flag generator controls the state of six flags that 
report the status of floating-point ALU operations. The flags 
indicate when an operation is invalid (e.g., co times 0) or when 
an operation has produced an overflow, an underflow, a non­
numerical result (e.g., a NAN- or DEC-reserved, operand), an 
inexact result, or a result of zero. The flags represent the 
status of the most recently performed operation. Flag status is 
stored in the flag status register on the LOW-to-HIGH transi­
tion of CLK. When the output register feedthrough control FTI 
is HIGH, the flag status register is made transparent. 

Data Path 

The 32-bit data path consists of the Rand S input buses; the F 
output bus; data registers R, S, and F; the register R input 
multiplexer; and the ALU port S input multiplexer. 

Input operands enter the floating-point processor through the 
32-bit Rand S input buses, Ro - RSI and So - SSI. Results of 
operations appear on the 32-bit F bus, Fo - F31. The F bus 
assumes a high-impedance state when output enable OE is 
HIGH. 

The Rand S registers store input operands; the F register 
stores the final result of the floating-point ALU operation. Each 
register has an independent clock enable (ENR, ENS, and 
ENF). When a register's clock enable is LOW, the register 
stores the data on its input at the LOW-to-HIGH transition of 
CLK; when the clock enable is HIGH, the register retains its 
current data. All data registers are fully edge-triggered - both 
the input data and the register enable need only meet modest 
setup and hold time requirements. Registers Rand S can be 
made transparent by setting FT 0, the input register feed­
through control, HIGH. Register F can be made transparent by 
setting FT" the output register feedthrough control, HIGH. 

4-88 

The register R input multiplexer selects either the R input bus 
or the floating-point ALU's F port as the input to register R. 
Selection is controlled by 14 - a LOW selects the R input bus; 
a HIGH selects the ALU F port. The ALU port S input 
multiplexer selects either register S or register F as the input to 
the floating-point ALU's S port. Selection is controlled by Is­
a LOW selects register S; a HIGH selec,ts register F. 

Data selected by Is and 14 is described in Table 2. When 
registers Rand S are transparent (FTo = HIGH), multiplexer 
select 14 must be kept LOW, so that the register R input 
multiplexer selects Ro - RSI. When register F is transparent 
(FT I = HIGH), multiplexer select Is must be kept LOW, so that 
the ALU port S input multiplexer selects register S. 



TABLE 2. MUX SELECT 

13 Data selected for floating-point ALU Sport 

0 Aegister 8 

1 Aegister F 

14 Data selected for register R input 

0 A bus 

1 Floating-point AlU port F 

110 Modes 

The Am29C325 datapath can be configured in one of three II 
a modes: a 32-bit, two-input bus mode; a 32-bit, single-input 
bus mode; and a 16- bit, two-input bus mode. These modes 
affect only the manner in which data is delivered to and taken 
from the Am2gC325; operation of the floating-point ALU is not 
altered. The 1/0 mode is selected with the ONEBU8 and 8161 
32 controls. Table 3 lists the control codes needed to invoke 
each 1/0 mode. 

R BUS 
32 

3: 
v 32 

Ro-R3' 

5 BUS 

~ 
1 I 1 2:1 o I 

15 - I MUX 

_1 1 
EN I l REGR _ 1 

L:I 
j 

ENR 

ClK 

1/ R -ONE BUS (= lOW) 

TABLE 3. 110 MODE SELECTION 

S16/32 ONEBUS I/O Mode 

0 0 32-bit, two-input-bus mode 

0 1 32-bit, single-input-bus mode(") 

1 0 16-bit, two-input-bus mode(") 

1 1 Illegal 1/0 mode selection value 

"FTO must be held LOW in this mode (see text). 

32-Blt, Two-Input Bus Mode 

In this 1/0 mode, the A and 8 buses are configured as 
independent 32-bit input buses, and the F bus is configured as 
a 32-bit output bus. Figure 2 is a functional block diagram of 
the Am29C325 in this 1/0 mode. 

A and 8 operands are taken from their respective input buses 
and clocked into the A and 8 registers on the lOW-to-HIGH 
transition of ClK. Aegister F is also clocked on the lOW-to­
HIGH transition of ClK. Figure 5(a) depicts typical 110 timing 
in this mode. 

./I 

A 
32 

So-53' 

1.L 

l REG 5 E') 
.r--I 

I -
ClK 

~ r-l 0 '.L 2:1 '.L ...--. 
MUX SJ 

.i 
S 

/ 
FlOATING·POINT 

..--. 1/ AlU 
"-' I F 516/32 (= lOW) 

1 
1/ + ......... 

]EN J - I 
REG F 

elK 

ENF 

1 

......... 1/ * r Am29C325 
OE 

32/ 3~ 
It, Fo-F3' J1 

I FBU5 

8D007051 

Figure 2. Functional Block Diagram for the 32-Blt, Two-Input Bus Mode 
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32-Blt, Single-Input Bus Mode 

In this 110 mode, the Rand S buses are connected to a single 
32-bit multiplexed input data bus; the F bus is configured as an 
independent 32-bit output bus. Figure 3 is a functional block 
diagram of the Am29C325 in this 110 mode. Note that both the 
Rand S bus lin~s must be wired to the input bus. 

Rand S operands are multiplexed onto the input bus by the 
host system. The S operand is clocked from the input bus into 
a temporary holding register on the HIGH-to-lOW transition of 
ClK and is transferred to register S on the lOW-to-HIGH 

RI5 BUS 

I, C>-+-+---j--f 

ONE BUS ( = HIGH) C>-+-+-

516/32 (= LOW) C::>--+-+-

transition of ClK. The R operand is dlocked from the input bus 
into register R on the lOW-to-HIGH transition of ClK. Register 
F is clocked on the lOW-to-HIGHtransition of ClK. Figure 
5(b) depicts typical 110 timing in this mode. 

When placed in this 110 mode, the data path will not function 
properly if the Rand S registers are made transparent. 
Therefore, inp!lt register feedthrough control FT 0 must be held 
lOW in this mode. 

ENFc:>-i-~---------------dreN--L----, 
CLK----I> 

OEC::~-+-+-----------~~ 

FSU5 

80007061 

Figure 3. Functional Block Diagram for the 32-Bit, Single-Input Bus Mode 
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16-Bit, Two-Input Bus Mode 

In this 1/0 mode, the Rand S buses are configured as 
independent 16-bit input buses, and the F bus is configured as 
a 16-bit output bus. Figure 4 is a functional block diagram of 
the Am29C325 in this I/O mode. Note that the 16 least­
significant bits (lSBs) and 16 most-significant bits (MSBs) of 
the R, S, and F buses must be wired to their respective system 
buses in parallel. 

Thirty-two-bit operands are passed along the 16-bit data 
buses by time-multiplexing the 16 lSBs and 16 MSBs of each 
32-bit word. For the R input bus, the host system multiplexes 
the 16 lSBs and 16 MSBs of the R operand onto the 16-bit R 
bus. The 16 lSBs of the R operand are stored in a temporary 
holding register on the HIGH-to-lOW transition of ClK. The 16 
MSBs are clocked into register R on the lOW-to-HIGH 
transition of ClK; at the same time, the 16 lSBs are 
transferred from the temporary holding register to register R. 
Transfer of data from the S input bus to the S register takes 
place in a similar fashion. Register F is clocked on the lOW­
to-HIGH transition of ClK. Circuitry internal to the Am29C325 
multiplexes data from register F onto the 16-bit output bus by 
enabling the 16 lSBs of the F output bus when ClK is HIGH, 
and enabling the 16 MSBs of the F output bus when ClK is 
lOW. Figure 5(c) depicts typical 1/0 timing in this mode. 

When placed in this 1/0 mode, the data path will not function 
properly if the Rand S registers are made transparent. 
Therefore, input register feedthrough control FT 0 must be held 
lOW in this mode. Caution must also be taken in controlling 
the register R input multiplexer control line, 14. in this 1/0 
mode. 14 should be changed only when ClK is HIGH, in 

addition to meeting the setup and hold time requirements 
given in the Switching Characteristics section. 

Operation in IEEE Mode 

When input signal IEEE/DEC is HIGH, the IEEE mode of 
operation is selected. In this mode the Am29C325 uses the 
floating-point format set forth in the IEEE Proposed Standard 
for Binary Floating-Point Arithmetic, P754. In addition, the 
IEEE mode complies with most other aspects of single­
precision floating-point operation outlined in the proposed 
standard - differences are discussed in Appendix A_ 

IEEE Floating-Point Format 

The IEEE single-precision floating-point word is 32 bits wide, 
and is arranged in the format shown in Figure 6. The floating­
point word is divided into three fields: a single-bit sign, an S-bit 
biased exponent, and a 23-bit fraction. 

The sign bit indicates the sign of the floating-point number's 
value. Non-negative values have a sign of 0; negative values, 
a sign of 1. The value zero may have either sign. 

The biased exponent is an S-bit unsigned integer field repre­
senting a multiplicative factor of some power of two. The bias 
value is 127. If, for example, the multiplicative factor for a 
floating-point number is to be 28 , the value of the biased 
exponent would be a + 127; "a" is called the true exponent. 

The fraction is a 23-bit unsigned fraction field containing the 
23 lSBs of the floating-point number's 24-bit mantissa. The 
weight of fraction's MSB is 2-1; the weight of the lSB is 2- 23. 

RBUS ~~~ __________ ~ __ ~ ________________________________ -J 
SBUS ~r~~--------«r--,~-----------..~-,~---------------J 

I, C:>--;f--t--t--I--i 5 

eLK 

ONEBU5 ( = LOW) 

516132 (= HIGH) 

F BU5 

51----4-------+-+--<:::::J I, 

Am29C325 

BD007071 

Figure 4. Functional Block Diagram for the 16-Bit, Two-Input Bus Mode 
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A floating-point number is evaluated or interpreted per the 
following conventions: 

let s = sign bit 
e = biased exponent 
f = fraction 

if e = 0 and f = O ... value =; (_l)s*(O) (+ 0, -0) 
if e = 0 and f * O ... value = denormalized number 
if 0 < e < 255 ... value = (_1)s*(2e - 127)*(1.I) 

(normalized number) 
if e = 255 and f = O ... value = (_l)s*(oo) (+ 00, _00) 
if e = 255 and f * 0 ... value = not-a-number (NAN) 

Zero: The value zero can have either a positive or negative 
sign. Rules for determining the sign of a zero produced by an 
operation are given in the Sign Bit section. 

Denormallzed Number: A denormalized number represents a 
quantity with magnitude less than 2- 126 but greater than zero. 

Normalized Number: A normalized number represents a 
quantity with magnitude greater than or equal to 2- 126 but 
less than 2128. 

Example 1: 

4-92 

The number + 3.5 can be represented in floating-point 
format as follows: 

+ 3.5 = 11.12 x 20 
= 1.112 X21 

sign = 0 

biased exponent = 110+ 12710= 12810 
= 100000002 

fraction = 110000000000000000000002 
(the leading 1 is implied in the format) 

Concatenating these fields produces the floating-point word 
4060000016. 



elK J 
RBUS XXXXXXXXXX 
SBUS XXXXXXXXXXX 
FBUS X FDATA 

a) 32-Bit, Two-Input-Bus Mode 

elK J 
~SBUS XXXX SOATA XXXX 

FBUS X FDATA 

b) 32-Bit, Single-Input-Bus Mode 

elK J 

RDATA 

SDATA 

RDATA 

xxx 
XXXX 
x 

xxx 
x 

WF023730 

WF023740 

RBUS XXXXX RDATA-16lSBs XXXXX RDATA-16MSBs XXXX 
SBUS xx XXX SDATA-16lSBs x x x x X SDATA-16MSBs xxx 
FBUS X F DATA - 16 lSBe X F DATA - 16 MSBs x 

WF023750 

c) 16-Bit, Two-Input-Bus Mode 

Figure 5. Typical Bus Timing for the 1/0 Modes with FTo = LOW, FT 1 = LOW 
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SIGN BIASED 
BIT(S) EXPONENT (E) FRACTION (F) -BIT NUMBER: 31 30 29 29 'Z1 29 25 24 23 22 21 20 19 18 4 3 2 1 0 

I I 27 ' :!& 25 24 2' 22 21 20 12 - 1 '2-2 2-3 I 2-4 I 2-5 I ... 2-19 2-20 2-21 2-22 2-23 1 

VALUE = (_I)S (2E•I27) (1.F) 

TBOO0640 

Figure 6. IEEE Mode Single-Precision Floating-Point Format 

Example 2: Infinity: Infinity can have either a positive or negative sign. 

The number -11.375 can be represented in floating·point 
The way in which infinities are interpreted is determined by the 

format as follows: 
state of the projective/affine mode select, PROJ/AFF. 

-11.375 = - 1011.0112 x 20 
Not-a-Number: A not·a·number, or NAN, does not represent 
a numeric value, but is interpreted as a signal or symbol. NANs 

= -1.0110112 X 23 are used to indicate invalid operations, and as a means of 

sign = 1 
passing process status information through a series of calcula· 
tions. NANs arise in two ways: 1) they can be generated by the 
Am29C325 to indicate that an invalid operation has taken 

biased exponent = 310 + 12710 = 13010 
place (e.g., 00 x 0), or 2) be provided by the user as an input 
operand. There are two types of NANs, signalling and quiet 

= 100000102 (see Figure 7 for formats). 

fraction = 011011 000000000000000002 IEEE Mode Integer Format 
(the leading 1 is implied in the format) 

Integer numbers are represented as 32·bit, two's-complement 
Concatenating these fields produces the floating-point word words (Figure 8 depicts the integer format). The integer word 
C136000016· can represent a range of integer values from - 231 to 231 - 1. 

SIGN BIASED 
BIT EXpONENT FRACTION -31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 n 10 9 • 7 6 5 4 3 2 1 0 

SlGNALUNG NAN I X 1, 1 1 1 1 1 1 1 1, x x x x x x x x x x x x x x x x x x x x x x I 

31 30 29 28 27 25 25 24 23 22 21 20 19 18 17 16 15 I. 13 12 n 10 9 , 7 6 5 4 3 2 1 0 

QUIET HAN I X 11 1 1 1 1 1 1 1 I 0 x x x x x x x x x x x x x x x x x x x x x x I 
x = DON'T CARE AT LEAST ONE OF THE 

TWENTY·TWO LSBa OF A QUIET NAN 
MUSTSE 1 

TBOO0650 

Figure 7. Signalling and Quiet NAN Formats 

BIT NUMBER: 31 30 29 29 27 26 25 24 8 7 6 5 4 3 2 1 0 

1_2311 230 229 I 228 : 227 228 1 225 224.1 ... 2' 27 I 26 I 25 I 24 I 23 I 22 I 2' ' 00 I 
I I I I I I I I l 

TBOOO660 

Figure 8. 32-8it Integer Format 

Operations Operations with NANs: NANs arise in two ways: 1) they can 
be generated by the Am29C325 to indicate that an invalid 

All eight floating-point ALU operations discussed in the operation has taken place (e.g., 00 x 0), or 2) be provided by 
Functional Description section can be performed in IEEE the user as an input operand. There are two types of NANs, 
mode. Various exceptional aspects of the R PLUS S, R MINUS signalling and quiet (see Figure 7 for formats). 
S, R TIMES S, 2 MINUS S, .INT-TO-FP, and FP-TO-INT 
operations for this mode are described below. The IEEE-TO- Signalling NANs set the invalid operation flag when they 
DEC and DEC-TO-IEEE operations are discussed separately appear as an input operand to an operation. They are useful 
in the IEEE-TO-DEC AND DEC-TO-IEEE Operations section. for indicating uninitialized variables, or for implementing user-

I I 
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designed extensions to the operations provided. The ALU 
never produces a Signalling NAN as the final result of an 
operation. 

Quiet NANs are generated' for invalid operations. When they 
appear as an input operand, they are passed through most 
operations without setting the invalid flag, the floating-point-to­
integer conversion operation being the exception. 

The sign of any input operand NAN is ignored. All quiet NANs 
produced as the final result of an operation have a sign of O. 

When a NAN appears as an input operand, the final result of 
the operation is a quiet NAN that is created by taking the input 
NAN and forcing bit 22 LOW and bit 21 HIGH. If an operation 
has two NANs as input operands, the resulting quiet NAN is 
created using the NAN on the R port. 

When a quiet NAN is produced as the final result of an invalid 
operation whose input operand or operands are not NANs, the 
resulting NAN will always have the value 7FA0000016. 

The NAN flag will be HIGH whenever an operation produces a 
NAN as a final result. 

Example 1: 

Suppose the floating-point addition operation is performed 
with the following input operands: 

R port: 3F80000016 (1.0*2°) 
Sport: 7FC1234516 (signalling NAN) 

Result: The signalling NAN on the S port is converted to a 
quiet NAN by forcing bit 22 LOW and bit 21 HIGH. 
The operation's final result will be 7FA1234516. 
Since one of the two input operands is a signalling 
NAN, the invalid flag will be HIGH; the NAN flag will 
also be HIGH. 

Example 2: 

Suppose the floating-point multiplication operation is per­
formed with the following input operands: 

R port: FFFlllll16 (signalling NAN) 
Sport: 7FC2222216 (quiet NAN) 

Result: Since both input operands are NANs, the NAN on 
the R port is chosen for output. In addition to forcing 
bit 22 LOW, the sign bit (bit 31) is set LOW (bit 21 is 
already HIGH, and need not be changed). The 
operation's final result will be 7FBlllll16. Since 
one of the two input operands is a signalling NAN, 
the invalid flag is HIGH; the NAN flag will also be 
HIGH. 

Example 3: 

Suppose the floating-point subtraction operation is per­
formed with the following input operands: 

R port: FF80000116 (quiet NAN) 
Sport: 7F80000016 (+ "") 

Result: To create the final result, the quiet NANs sign bit (bit 
31) is forced LOW and bit 21 is forced HIGH (bit 22 
is already LOW, and need not be changed). The final 
result will be 7FAOOOOl16. The NAN flag will be 
HIGH. 

Operations with Denormalized Numbers: The proposed 
IEEE ;;tandard incorporate;; denormalized number;; to allow a 
means of gradual underflow for operations that produce non­
zero results too small to be expressed as a normalized 
floating-point number. The Am29C325 does not support 
gradual underflow, If a floating-point operation produces a 
non-zero rounded result that is not large enough to be 
expressed as a normalized floating-point number, the final 
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result will be a zero of the same sign; the inexact, underflow, 
and zero flags will be HIGH. If an input operand is a 
denormalized number, the floating-point ALU will assume that 
operand to be a zero of the same sign. 

Operations Producing OverflOWS: If an operation has a finite 
input operand or operands, and if the operation produces a 
rounded result that is too large to fit in the destination format, 
the operation is said to have overflowed. 

A floating-point overflow occurs if an R PLUS S, R MINUS S, R 
TIMES S, or 2 MINUS S operation with finite input operand(s) 
produces a result which, after rounding, has a magnitude 
greater than or equal to 2128. Positive or negative infinity will 
appear as the final result if the rounded result is positive or 
negative, respectively, and the overflow and inexact flags will 
be HIGH. 

Integer overflow occurs when the floating-point-to-integer 
conversion operation attempts to convert a number which, 
after rounding, is greater than 231 -lor less than _231. The 
final result will be quiet NAN 7FA0000016, and the invalid 
operation and NAN flags will be HIGH. Note that the overflow 
and inexact flags remain LOW for integer overflow. 

Operations Producing Underflows: If an operation produces 
a floating-point rounded result having a magnitude too small to 
be expressed as a normalized floating-point number, but 
greater than zero, that operation is said to have underflowed. 
Underflow occurs when an R PLUS S, R MINUS S, or R 
TIMES S operation produces a result which, after rounding, 
has a magnitude in the range: 

o < magnitude < 2- 126. 

In such cases, the final result will be +0 (0000000016) if the 
rounded result is non-negative, and -0 (8000000016) if the 
rounded result is negative. The underflow, inexact, and zero 
flags will be HIGH. 

Underflow does not occur if the destination format is integer. If 
the infinitely precise result of a floating-point-to-integer con­
version has a magnitude greater than 0 and less than 1, but 
the rounded result is 0, the underflow flag remains LOW. 

Operations with Infinities: In most cases, positive and 
negative infinity are valid inputs for the R PLUS S, R MINUS S, 
R TIMES S, and 2 MINUS S operations. Those cases for which 
infinities are not valid inputs for these operations are listed in 
Table 4. 

Infinities in IEEE mode can be handled either as projective or 
affine. The projective mode is selected when PROJI AFF is 
HIGH; the affine mode is selected when PROJI AFF is LOW. 
The only differences between the modes that are relevant to 
Am29C325 operation occur during the addition and subtrac­
tion of infinities: 

Operation 
Affine 
Mode Projective Mode 

Output +"" Output 7FA0000016 
(quiet NAN), set invalid and 
NAN flags 

Output -"" Output 7FA0000016 
(quiet NAN), set invalid and 
NAN flags 

Output +"" Output 7FA0000016 
(quiet NAN), set invalid and 
NAN flags 

Output -"" Output 7FA0000016 
(quiet NAN), set invalid and 
NAN flags 



If an R PLUS S, R MINUS S, or 2 MINUS S operation has Operations +0 + (-0) and -0 + (+0) produce a result of 0, 
infinity as an input operand or operands, the final result, if with the sign of the result determined by the table above. 
valid, is presumed to be exact. For example, adding + 00 and 

The operation +0 + (+0) produces a final result of +0; the 2.0 will produce a final result of + 00; since the result is 
considered exact, the inexact flag remains LOW. operation -0 + (-0) produces a final result of -0. 

Invalid Operations: If an input operand is invalid for the R MIN.US S: The operations +x- (+x) and-x- (-x) produce a 
operation to be performed, that operation is considered final result of zero; the sign of the zero is dependent on the 
invalid. When an invalid operation is performed, the floating- rounding mode: 
point ALU produces a quiet NAN as the final result, and the 
invalid operation flag goes HIGH. Table 4 lists the cases for Rounding Mode Sign of Result 
which the invalid flag is HIGH in IEEE mode, and the final 

Round to nearest 0 
results produced for these operations. 

Round toward _00 1 
TABLE 4. IEEE MODE INVALID OPERATIONS 

Round toward + 00 0 

Operation Input Operand Final Result Round toward 0 0 

R PLUS S (+ 00) + (_00) 7FAOOOOOl6 
or (_00) + (+ 00) (quiet NAN) Operations + 0 - (+ 0) and - 0 - (- 0) produce a result of 0, with 

R PLUS S (+ 00) + (+ 00) 7FAOOOOOl6 
the sign of the result determined by the table above. 

or (_00) + (_00) (Note 1) (quiet NAN) The operation + 0 - (- 0) produces a final result of + 0; the 

R MINUS S (+ 00) _ (+ 00) 7FAOOOOOl6 operation -0 - (+ 0) produces a final result of -0. 
or (_00) _ (_00) (quiet NAN) R TIMES S: The sign of any multiplication result other than a 

R MINUS S (+ 00) _ (_00) 7FAOOOOOl6 NAN is the exclusive OR of the signs of the input operands. 
or (_00)_(+00) (Note 1) (quiet NAN) Therefore, if x is non-negative, 

R TIMES S (+0)*(+00) 7FAOOOOOl6 
+ 0 times + x produces a final result of + 0, 

or (+ 0) * (_00) (quiet NAN) 
+ 0 times - x produces a final result of - 0, 

or (-0) * (+ 00) -0 times + x produces a final result of -0, 

or (-0) * (_00) -0 times -x produces a final result of + O. 

R PLUS S R or S is a signalling (Note 2) 2 MINUS S: If S equals 2, the final result is -0 for the round 

R MINUS S NAN toward _00 mode, and +0 for all other rounding modes. 

R TIMES S 
Rounding 

2 MINUS S S is a signalling NAN (Note 2) 

FP-TO-INT R is a signalling or (Note 2) 
Rounding is performed whenever an operation produces an 
infinitely precise result that cannot be represented exactly in 

quiet NAN the destination format. For example, suppose a floating-point 
FP-TO-INT R > 231 _1 7FAOOOOOl6 operation produces the infinitely precise result: 

or R < _(231 ) (quiet NAN) 
1.10101010101010101010101\01 x 23. 

Notes: I. These cases are invalid in projective mode only. 
2. Results for these operations are described in the Operations In this example, the fraction portion of the mantissa has 25 

with NANs section. bits; the IEEE floating-point format can accommodate only 23. 
The Sign Bit The backslash (\) in the mantissa represents the boundary 

For most floating-paint operations, the sign bit of the final between the first 23 bits of the fraction and any remaining bits. 

result is unambiguous; i,e., there is only one sign bit value that 
Rounding is the process by which this result is approximated 

yields a numerically correct result. Operations that produce an by a representation that fits the· destination format. 

infinitely precise result of zero, however, present a problem, as There are four rounding modes in IEEE mode: 1) round to 
the IEEE floating-point format allows for representation of both nearest, 2) round toward +00, 3) round toward _00, and 4) 
+0 and -0. The following rules can be used to determine the round toward O. The rounding mode is chosen using the 
signs of zero produced in such cases. rounding mode select lines, RNDo and RNDI. Table 5 lists the 

R PLUS S: The operations + x + (-x) and -x + (+ x) produce a select states needed to obtain the desired rounding mode. 

final result of zero; the sign of the zero is dependent on the 
rounding mode: TABLE 5. ROUNDING MODE SELECT 

Rounding Mode Sign of Final Result RND1 RNDo Rounding Mode 

Round to nearest 0 0 0 Round to nearest 

Round toward _00 1 0 1 Round toward _00 

Round .toward + 00 0 1 0 Round toward + 00 

Round toward 0 0 1 1 Round toward 0 
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Round to Neareat: In this rounding mode the infinitely precise 
result of an operation is rounded to the closest representation 
that fits in the destination format. If the infinitely precise result 
Is exactly halfway between two representations, it is rounded 
to the representation having an LSB of zero. Rounding is 
performed both for floating-point and integer destination 
formats. 

Figure 9 illustrates four examples of the round-to-nearest 
process for operations having a floating-point destination 
format. The infinitely precise result of an operation is repre­
sented by an "X" on the number line; the black dots on the 
number line indicate those values that can be represented 
exactly in the floating-point format. 

Example 1: 

In Figure 9(a), the infinitely precise result of an operation is: 

220 + 2-4 + 2-5 = 1.00000000000000000000000\11 x 220 

The result is rounded to the closest representable floating­
point value, 

220 + 2- 3 = 1.00000000000000000000001 X 220 

Example 2: 

In Figure 9(b), the infinitely precise result of an operation is: 

220 _ 2-4 + 2-8 -

1.11111111111111111111111\0001 x 219 

This result is rounded to the closest representable floating­
point value, 

220 _2-4 = 1.11111111111111111111111 x219 

Example 3: 

In Figure 9(c), the infinitely precise result of an operation is: 

_(220 + 2-3 + 2-4) 
= -1.00000000000000000000001 \ 1 x 220 

This result is exactly halfway between two representable 
floating-point values. Accordingly, it is rounded to the 
closest representation with an LSB of zero, or 

_(220 + 2*2- 3) = -1.00000000000000000000010 x 220 

Example 4: 

In Figure 9(d), the infinitely precise result of an operation is: 

220 + 3"2-3 = 1.00000000000000000000011 x 220 

This result can be represented exactly in the floating-point 
format, and is left unaltered by the rounding process. 

_122• - 3' 2-4)] 
220 _ 3' 2-4] 2

2
• - 2-

4
] 

ROUND TO 220 + 2- 3 

• £J • • • • 
_12'. - 2- 4)] 

• • • ~' . 
I I I I I I I C. 22O ! 2-' I 22. + ~. 2-' _1220 + 3' 2- 3) _(220 + 2- 3) _122• _ 2' ,-4) 220 - 2' 2-4 

_(220 + 2 . 2- 3) -1220) a) 220 220 + 2' 2-3 

ROUND TO 220 - 2-4 220 + 2-4 + 2- 5 

• • • • • • • ~' • • fM • • • • 
I 

ROUND TO _(220 + 2-3) b) 
220 _ 2-4 + 2-8 

• r. • • • • • ,~' • • • • • • • 
I 0 

_(220 + 2-3 + 2-4) c) NO CHANGE 

Q • • • • • • • Y~' • • • • • • 
0 

, 
d) 

220 + 3 • 2-3 

AF004550 

Figure 9. Floating-Point Rounding Examples for Round-to-Nearest Mode 
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Figure 10 illustrates four examples of the round-to-nearest 
process for operations having an integer destination format. 
The infinitely precise result of an operation is represented by 
an "X" on the number line; the black dots on the number line 
indicate those values thllt can be represented exactly in the 
integer format. 

Example 1: 

In Figure 1 O(a), the infinitely precise result of an operation is: 

210 _2-2 = 00 ... 001111111111.11 

The result is rounded to the closest representable integer 
value, 

210 = 00 ... 010000000000 

Example 2: 

In Figure 1 O(b), the infinitely precise result of an operation is: 

210 + 20 + 2-3 = 00 ... 010000000001.001 

This result is rounded to the closest representable integer 
value, 

210 + 20 = 00 ... 010000000001 

Example 3: 

In Figure 1 O(c), the infinitely precise result of an operation is: 

_(210 + 20 + 2- 1) = -11 ... 101111111110.1 

This result is exactly halfway between two representable 
integer values. Accordingly, it is rounded to the closest 
representation with an LSB of zero, or 

_(21°+2*2°) = 11 ... 101111111110 

Example 4: 

In Figure 1 O(d), the infinitely precise result of an operation is: 

210 + 3*2° = 00 ... 010000000011 

This result can be represented exactly in the integer format, 
and is left unaltered by the rounding process. 

ROUND TO 2'0 

• • • • • v1--h' .~ • • • I I I I I I ( I I I I 
_(210 + 3) _(2'0 + 2) _(2'0 + 1) _(2'0) _(2'0 - 1) 210 - 1 2'0 2'0 + 1 2'0 + 2 2'0 + 3 

0) 
2'0 _ 2-2 

ROUND TO 2'0 + 1 

• • • • • ~ • • ~ • • 
0 I 

ROUND TO _(210 + 2) b) 2'0 + 20 + 2-3 

• 0. • • • ~ • • • • • 
I 

_(210 + 20 + 2- 1) c) NOCtiANGE 

Q • • • • • ~ • • • • 
I 

d) 
210 +3.2,0 

AF004560 

Figure 10. Integer Rounding Examples for Round-to-Nearest Mode 
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Round Toward _00: In this rounding mode the result of an 
operation is rounded to the closest representation that is less 
than or equal to the infinitely precise result, and which fits the 
destination format. Rounding is performed both for floating­
point and integer destination formats. 

Figure 11 illustrates four examples of the round toward - 00 

process for operations having a floating-point destination 
format. The infinitely precise result of an operation is repre­
sented by an "X" on the number line; the black dots on the 
number line indicate those values that can be represented 
exactly in the floating-point format. 

Example 1: 

In Figure 11 (a), the infinitely precise result of an operation is: 

220 + Z-4 + 2- 5 = 1.00000000000000000000000\11 x 220 

This result cannot be represented exactly in floating-point 
format, and is rounded to the next-smaller floating-point 
representation: 

220 = 1.00000000000000000000000 x 220 

Example 2: 

In Figure 11 (b), the infinitely precise result of an operation is: 

220 _2-4 +2 8 = 
1.1111111111111111111111\0001 x219 

This result cannot be represented exactly in floating-point 
format, and is rounded to the next-smaller floating point 
representation: 

220 _2-4 = 1.11111111111111111111111 x219 

Example 3: 

In Figure 11 (c), the infinitely precise result of an operation is: 

_(220 + 2-3 + 2-4) = 
-1.00000000000000000000001 \1 x 220 

This result cannot be represented exactly in floating-point 
format, and is rounded to the next-smaller floating-point 
representation. 

_(220 + 2*2- 3) = -1.00000000000000000000010 x 220 

Example 4: 

In Figure 11 (d), the infinitely precise result of an operation is: 

220 + 3*2-3 = 1.00000000000000000000011 x 220 

This result can be represented exactly in the floating-point 
format, and is left unaltered by the rounding process. 

• • • • • • • ~ • • ~ . • • • 
ROUND TO _(220 + 2 • 2-3) b) q • • • • • • ~ • • • • • • • 

_(220 + 2-3 + 2-4) 
c) 

• • • • • • • ~ • • • • 

NO CHANGE 

Q • • 
d) 

AF004510 

Figure 11. Floating-Point Rounding Examples for Round Toward _00 Mode 
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This result is rounded to the next-smaller representable 
integer value, 

21 ° + 20 = 00 ... 010000000001 

Figure 12 illustrates four examples of the round toward _00 

process for operations having an integer destination format. 
The infinitely precise result of an operation is represented by 
an "X" on the number line; the black dots on the number line 
indicate those values that can be exactly represented in the 
integer format. 

Example 3: 

Example 1: 

In Figure 12(a), the infinitely precise result of an operation is: 

210 _2- 2 = 00 ... 001111111111.11 

In Figure 12(c), the infinitely precise result of an operation is: 

_ (21 ° + 2° + 2- 1) = 11...101111111110.1 

This result is rounded to the next-smaller representable 
integer value: 

The result is rounded to the next-smaller representable 
integer value, 

210 _ 2'0 = 00 ... 001111111111 

Example 2: 

_(210 + 2*20) = 11 ... 101111111110 

Example 4: 

In Figure 12(b), the infinitely precise result of an operation is: 

210 + 20 + 2-3 = 00 ... 010000000001.001 

• • • • • vI---t-v' I I I I I 
_(2'0 + 3) _(210 + 2) _(2'0 + 1) _(2'0) _(210 - 1) 0 

a) 

• • • • • 0-f--v' 
0 

ROUND TO _(2'0 + 2) b) 

• n • • • v'--f--,t 
I 0 

_(2'0 + ~ + 2-') c) 

• • • • • 0--1:--1 
d) 

In Figure 12(d), the infinitely precise result of an operation is: 

210 + 3*20 = 00 ... 010000000011 

This result can be represented exactly in the integer format, 
and is unaltered by the rounding process. 

ROUND TO 2'0 - 1 

Q. • • • 
I (. I I I I 

2'0 - 1 2'0 2'0 + 1 2'0 + 2 2'0 + 3 

2'0 _ 2-2 
ROUND TO 2'0 + 1 

• • ~ • • 
I 

2'0 + 20 ... 2-3 

• • • • • 
NO CHANGE 

• • • • Q 
I 

2'0 + 3.20 

AFOO4580 

Figure 12. Integer Rounding Examples for Round Toward _00 Mode 
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Round Toward + 00: In this rounding mode the result of an 
operation is rounded to the closest representation that is 
greater than or equal to the infinitely precise result, and which 
fits the destination format. Rounding is performed both for 
floating-point and integer destination formats. 

Figure 13 illustrates four examples of the round toward + 00 

process for operations having a floating-point destination 
format. The infinitely precise result of an operation is repre­
sented by an "X" on the number line; the black dots on the 
number line indicate those values that can be represented 
exactly in the floating-point format. 

Example 1: 

In Figure 13(a), the infinitely precise result of an operation is: 

220 + 2-4 + 2- 5 = 1 .00000000000000000000000\ 11 x 220 

This result cannot be represented exactly in floating-point 
format, and is rounded to the next-larger floating-point 
representation: 

220 + 2-3 = 1.00000000000000000000001 x 220 

Example 2: 

In Figure 13(b), the infinitely precise result of an operation is: 

220 _2-4 + 2-8 = 
1.11111111111111111111111\0001 x 219 

This result cannot be represented exactly in floating-point 
format, and is rounded to the next-larger floating point 
representation: 

220 = 1.00000000000000000000000 x 220 

Example 3: 

In Figure 13(c), the infinitely precise result of an operation is: 

_(220 + 2-3 + 2-4) = 

-1.00000000000000000000001 \ 1 x 220 

This result cannot be represented exactly in floating-point 
format, and is rounded to the next-larger floating-point 
representation. 

_ (220 + 2-3) = - 1.0000000000000000000001 x 220 

Example 4: 

In Figure 13(d), the infinitely precise result of an operation is: 

220 + 3'2-3 = 1.00000000000000000000011 x 220. 

This result can be represented exactly in the floating-point 
format - no rounding takes place. 

~_2-4 ROUND TO 220 + 2-3 _(220 - 3' 2-4)J 
220 -3'2-4l l 

• ... f'J • • 
_(220 - 2-4)l 

• • • • • • ,"---t--v' • • • I I I I I I I c: 220 !2-3 I ~+~'2-3 -(~+3'2-3) _(220 + 2-3) _(220 - 2" 2-") 0 ~-2·2-4 

-(~+ 2' 2-3) -(2211) a) ~ ~+2'2-3 

• • • • • v'-f--v' • 
ROUND TO 220Q 220 + 2-4 + 2-' 

• • .o. • • eI • 
0 • ROUND TO 220 + 2-3 b) 

220 _ 2-4 + 2-8 

D • • • • • • ,~ • • • • • • • 
! 0 

_(220 + 2-3 + 2-4) 
c) NO CHANGE 

Q • • • • • • • v'-f--v' • • • • • • 
• d) 

220 + 3" 2-3 

AF004590 

Figure 13. Floating-Point Rounding Examples for Round Toward +00 Mode 
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This result is rounded to the next-larger representable 
integer value, 

210 + 2*20 = 00 ... 010000000010 

Figure 14 illustrates four examples of the round toward + 00 

process for having an integer destination format. The infinitely 
precise result of an operation is represented by an "X" on the 
number line; the black dots on the number line indicate those 
values that can be exactly represented in the integer format. Example 3: 

Example 1: 

In Figure 14(a), the infinitely precise result of an operation is: 

210 - 2-2 - 00 ... 001111111111.11 

In Figure 14(c), the infinitely precise result of an operation is: 

_(210 + 20 + 2- 1) - 11.101111111110.1 

This result is rounded to the next-larger representable 
integer value: 

The result is rounded to the next-larger representable 
integer value, 

210 = 00 ... 010000000000 

Example 2: 

_(210 + 20) = 11...1011111111110 

Example 4: 

In Figure 14(b), the infinitely precise result of an operation is: 

210 + 20 + 2'"3 = 00 ... 010000000001.001 

• • • • • vt--+-v I I I I' I 
_(210 + 3) _(210 + 2) _(210 + 1) _(2'0) _(210 - 1) 

a) 

• • • • • ~ 
ROUND TO _(210 + 1) b) 

Iff) • • • • ~ 
I 

_(210 + 2'> + 2-1) 
c) 

• • • • • ~' 

d) 

In Figure 14(d), the infinitely precise result of an operation is: 

210 + 3*20 = 00 ... 010000000011 

This result can be represented exactly In the integer 
format - no rounding takes place. 

ROUND TO 210 

• £J • • • I (I I I I 
210 - 1 2.0 210 + 1 210 + 2 210 + 3 

210 _ 2-2 
ROUND TO 21~ + 2 

• • .Jf-l • 
I 

210 + 20 + 2-3 

• • • • • 
NO CHANGE 

• • • • q 
21°+3"2° 

AFOO4600 

Figure 14. Integer Rounding Examples for Round Toward +00 Mode 
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Round Toward 0: In this rounding mode the result of an 
operation is rounded to the closest representation whose 
magnitude is less than or equal to the infinitely precise result, 
and which fits the destination format. Rounding is performed 
both for floating-point and integer destination formats. 

Figure 15 illustrates four examples of the round toward 0 
process for operations having a floating-point destination 
format. The infinitely precise result of an operation is repre­
sented by an "X" on the number line; the black dots on the 
number line indicate those values that can be represented 
exactly in the floating-point format. 

Example 1: 

In Figure 15(a), the infinitely precise result of an operation is: 

220 + 2-4 + 2-5 = 

1.00000000000000000000000\ 11 x 220 

This result cannot be represented exactly in floating-point 
format, and is rounded to: 

220 = 1.00000000000000000000000 x 220 

Example 2: 

In Figure 15(b), the infinitely precise result of an operation is: 

220 _2- 4 + 2-8 = 

1.11111111111111111111111\001 x219 

This result cannot be represented exactly in floating-point 
format, and is rounded to: 

220 _2-4 = 1.11111111111111111111111 x219 

Example 3: 

In Figure 15(c), the infinitely precise result of an operation is: 

_(220 + 2- 3 + 2-4) = 
-1.00000000000000000000001 \ 1 x 220 

This result cannot be represented exactly in floating-point 
format, and is rounded to: 

_(220 + 2-3) = -1.00000000000000000000001 x 220 

Example 4: 

In Figure 15(d), the infinitely precise result of an operation is: 

220 + 3*2-3 = 1.00000000000000000000011 x 220 

This result can be represented exactly in the floating-point 
format, and is unaffected by the rounding process. 

_(220 - 3 • 2-4)] 220 _ 2-4 
ROUND TO 220 

220 - 3' 2-4l ] OX. . . • • 
_(220 _ 2-4)) 

• • • ,~ .. 
I I I I I I I L 220 !2-3 I "'+~'2-3 _(220 + 3 • 2-3) _(220 + 2-3) -( ... - 2' 2-4) 220 - 2.2-4 

_(220 + 2 • 2-3) -(2'Oj a) 220 220 + 2.2-3 

ROUND TO 2'. - .. 220 + 2-4 + 2-5 

• • • • • • • 0--f--v • • ~ • • • • 
0 I 

ROUND TO _(220 + 2-3) b) 
220 _ 2-4 + 2-8 

• • l'l 
I 

• • • • ~ • • • • • • • 
_(220 + 2-3 + 2-4) 

0) NO CHANGE 

Q • • • • • • • ~ • .' • • • • 
• I 
d) 

220 +3-2-3 

AF004610 

Figure 15. Floating-Point Rounding Examples for Round Toward 0 Mode 
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Figure 16 illustrates four examples of the round toward 0 
process for operations having an Integer destination format. 
The infinitely precise result of an operation is represented by 
an "X" on the number line; the black dots on the number line 
indicate those values that can be exactly represented in the 
integer format. 

Example 1: 

In Figure 16(a), the infinitely precise result of an operation is: 

210 _ 2-2 - 00 ... 001111111111.11 

The result is rounded to: 

210 _ 20 = 00 ... 001111111111 

Example 2: 

In Figure 16(b), the infinitely precise result of an operation is: 

210 + 20 + 2-3 = 00 ... 010000000001.001 

The result is rounded to: 

210 + 20 - 00 ... 010000000001 

Example 3: 

In Figure 16(c), the infinitely precise result of an operation is: 

_(210 + 20 + 2- 1) -11 ... 101111111110.1 

The result is rounded to: 

_(210 + 20) = 11 ... 101111111111 

Example 4: 

In Figure 16(d), the infinitely precise result of an operation is: 

210 + 3'2° = 00 ... 010000000011 

This result can be represented exactly In the integer format, 
and is unaffected by the rounding process. 

ROUNO TO 2'0 - , 

• • • • • vt--f--0 Q. • • • I I I I I I ( I I I I 
_(210 + ~) _(210 + 2) _(210 + 1) -(2'0) -(2'0 - ') 210 - 1 2'0 2 1°+ 1 210 + 2 2'0 + 3 

0) 
2'0 _ 2-2 

ROUND TO 2'0 + 1 

• • • • • ,~A • • ~ • • 
• 0 

ROUND TO _(2'0 + 1) b) 2'0 + 20 + 2-3 

• • [j 
• 

• • ~A • • • • • 
_(2'0 + 2" + 2-') 

0 
c) NO CHANGE 

• • • • • ~' • • • • q 
0 
d) 2' °+3-2° 

AF004620 

Figure 16. Integer Rounding Examples for ROl,lnd Toward 0 Mode 

Flag Operation 

The Am29C325 generates six status flags to monitor floating­
point processor operation. The following is a summary of flag 
conventions in IEEE mode: 

Invalid Operation Flag: The invalid operation flag is HIGH 
when an input operand is invalid for the operation to be 
performed. Table 4 lists the cases for which the invalid 
operation flag is HIGH in IEEE mode, and the corresponding 
final result. In cases where the invalid operation flag is HIGH, 
the overflow, underflow, zero, and inexact flags are LOW; the 
NAN flag will be· HIGH. 

Overflow Flag: The overflow flag is HIGH if an R PLUS S, R 
MINUS S, R TIMES S, or 2 MINUS S operation with finite input 
operand(s) produces a result which, after rounding, has a 
magnitude greater than or equal to 212B. The final result will 
be + 00 or _00. 

Underflow Flag: The underflow flag is HIGH if an R PLUS S, 
R MINUS S, or R TIMES S operation produces a result which, 
after rounding, has a magnitude in the range: 

0< magnitude < 2- 126. 

The final result will be + 0 (0000000016) if the rounded result is 
non-negative, and -0 (8000000016) if the rounded result is 
negative. 

Inexact Flag: The inexact flag is HIGH if the final result of an 
R PLUS S, R MINUS S, R TIMES S, 2 MINUS S, INT· TO·FP, or 
FP·TO·INT operation is not equal to the infinitely precise 
result. Note that if the underflow or overflow flag is HIGH, the 
inexact flag will also be HIGH. 

Zero Flag: The zero flag is HIGH if the final result of an 
operation is zero. For operations producing an IEEE floating· 
point number, the flag accompanies outputs + 0 (0000000016) 
and -0 (8000000016). For operations producing an integer, 
the flag accompanies the output 0 (0000000016). 

NAN Flag: The NAN flag is HIGH if an R PLUS S, R MINUS S, 
R TIMES S, 2 MINUS S, or FP-TO·INT operation produces a 
NAN as a final result. 

Operation In DEC Mode 

When input signal IEEE/DEC is LOW, the DEC mode of 
operation is selected. In this mode the Am29C325 uses the 
single-precision floating·point format (floating F) set forth in 
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Digital Equipment Corporation's VAX Architecture Manual. In 
addition, the DEC mode complies with most other aspects of 
single-precision floating-point operation outlined in the manu­
al - differences are discussed in Appendix B. 

DEC Floating-Point Format 

The DEC single-precision floating-point word is 32 bits wide, 
and is arranged in the format shown in Figure 17. The floating­
point word is divided into three fields: a single-bit sign, an 8-bit 
biased exponent, and a 23-bit fraction. 

The sign bit indicates the sign of the floating-point number's 
value. Non-negative values have a sign of 0, negative values a 
sign of 1. 

The biased exponent is an 8-bit unsigned integer field repre­
senting a multiplicative factor of some power of two. The bias 
value is 128. If, for example, the multiplicative factor for a 
floating-point number is to be 28 , the value of the biased 
exponent would be a + 128; "a" is called the true exponent. 

The fraction is a 23-bit unsigned fractional field containing the 
23 LSBs of the floating-point number's 24-bit mantissa. The 
weight of this field's MSB is 2- 2; the weight of the LSB is 2- 24. 

A floating-point number is evaluated or interpreted per the 
following conventions: 
let s = sign bit 

e = biased exponent 
f = fraction 

if e = 0 and s = O ... value = 0 
if e = 0 and s = 1 ... value = DEC-reserved operand 
if 0 < e';;; 255 ... value = (_1)s*(2e - 128)*(.1I) 
(normalized number) 

Zero: The value zero always has a sign of zero. 

DEC-Reserved Operand: A DEC-reserved operand does not 
represent a numeric value, but is interpreted as a signal or 
symbOl. DEC:reserved operands are used to indicate invalid 
operations and operations whose results have overflowed the 
destination format. They may also be used to pass symbolic 
information from one calculation to another. 

SIGN BIASED 
BIT(S) EXPONENT (E) --

Normalized Number: A normalized number represents a 
quantity with magnitude greater than or equal to 2-128 but 
less than 2127. 

Example 1: 

The number + 3.5 can be represented in floating-point 
format as follows: 

+ 3.5 = 11.12 x 20 
=.1112 X22 

sign = 0 

biased exponent = 210 + 12810 = 13010 
= 100000102 

fraction = 110000000000000000000002 
(the leading 1 is implied in the format) 

Concatenating these fields produces the floating-point word 
4160000016. 

Example 2: 

The number -11.375 can be represented in floating-point 
format as follows: 

-11.375 = -1011.0112 x 20 
=-.10110112 X24 

sign = 1 

biased exponent = 410 + 12810 = 13210 
= 100001002 

fraction = 011 011 000000000000000002 
(the leading 1 is implied in the format) 

Concatenating these fields produces the floating-point word 
C236000016· 

DEC Mode Integer Format 

DEC mode integer format is identical to that of the IEEE mode. 
Integer numbers are represented as 32-bit, two's-complement 
words (Figure 8 depicts the integer format). The integer word 
can represent a range of integer values from _231 to 231 -1. 

Operations 

All eight floating-point ALU operations discussed in the 
General Description section can be performed in DEC mode. 

FRACTION (F) 

BIT NUMBER; 31 30 29 28 27 26 25 24 23 22 21 20 19 18 4 3 2 1 0 

I I 27 I 26 2S 24 23 22 

VALUE = (-I)S (2E•I28) (.IF) 

rB000671 

Figure 17. DEC-Mode Floating-Point Format 

Various exceptional aspects of the R PLUS S, R MINUS S, R 
TIMES S, 2 MINUS S, INT-TO-FP, and FP-TO-INT operations 
for this mode are described below. The IEEE-TO-DEC and 
DEC-TO-IEEE operations are discussed separately in the 
IEEE-TO-DEC and DEC-TO-IEEE Operations section. 

Operations with DEC-Reserved Operands: DEC-reserved 
operands arise in two ways: 1) they can be generated by the 
Am29325 to indicate that an invalid operation or floating-point 

overflow has taken place, or 2) be provided by the user as an 
input operand. 

When a DEC-reserved operand appears as an input operand, 
the final result of the operation is the same DEC-reserved 
operand. If an operation has two DEC-resllrved operands as 
inputs, the DEC-reserved operand on the R port becomes the 
final result. 

The NAN flag will be HIGH whenever an operation produces a 
DEC-reserved operand as a final result. 
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Example 1: 

Suppose the floating-point addition operation is performed 
with the following input operands: 

R port: 4080000016 (0.1'21) 
Sport: 8001234516 (DEC-reserved operand) 

Result: This operation produces the DEC-reserved operand 
on the Sport, 8001234516, as the final result. The 
NAN flag will be HIGH. ' 

Example 2: 

Suppose the floating-point multiplication operation is per­
formed with the following input operands: 

R port: 8076543216 (DEC-reserved operand) 
Sport: 8000000116 (DEC-reserved operand) 

Result: Since both input operands are DEC-reServed oper­
ands, the operand on the R port, 8076543216, is the 
final result of the operation. The NAN flag will be 
HIGH. 

Operations Producing Overflows: If an operation produces 
a rounded result that is too large to fit in the the destination 
format, that operation is said to have overflowed. 

A floating-point overflow occurs if an R PLUS S, R MINUS S, R 
TIMES S, or 2 MINUS S operation with finite input operand(s) 
produces a result which, after rounding, has a magnitude 
greater than or equal to 2127. The final result in such cases will 
be DEC-reserved operand 8000000016; the overflow, inexact, 
and NAN flags will be HIGH. 

Integer overflow occurs when the "floating-point-to-integer" 
conversion operation attempts to convert to integer a floating­
pOint number which, after rounding, is greater than 231 - 1 or 
less than _231 . The final result in such cases wili be DEC­
reserved operand 8000000016; the invalid operation flag will 
be HIGH. Note that the overflow and inexact flags remain 
LOW for integ,er overflow. 

Operations Producing Underflows: If an operation produces 
a floating-point result which, after rounding, has a magnitude 
too small to be expressed as a normalized floating-point 
number, but greater than 0, that operation is said to have 
underflowed. UnderflOW occurs when an R PLUS S, R MINUS 
S, or R TIMES S operation produces a result which, after 
rounding, has the magnitude: 

0< magnitude < 2- 128. 

The final result in such cases will be 0 (0000000016)' The 
underflow, inexact, and zero flags will be HIGH. 

Underflow does not occur if the destination format is integer. If 
the infinitely precise result of a floating-point-to-integer con­
version has a magnitude greater than 0 and less than 1, but 
the rounded result is 0, the underflow flag remains LOW. 

Invalid Operations: If an input operand is invalid for the 
operation to be performed, that operation is considered 
invalid. There is only one invalid operation in DEC mode: 
performing a floating-point-to-integer conversion on a value 
too large to be converted to an integer. In this case, the final 
result will be DEC-reserved operand 8000000016, and the 
invalid operation and NAN flags will be HIGH. 

Sign Bit 

For all operations producing a DEC floating-pOint result, the 
sign bit of the final result is unambiguous; I.e., there is only one 
sign bit value that yields a numerically correct result. 

Rounding 

There are four rounding modes for DEC operation: 1) round to 
nearest, 2) round toward +00,3) round toward _00, and 4) 
round toward O. The round toward + 00, round toward - 00, and 
round toward 0 modes are performed in a manner identical to 
that for IEEE operation; refer to the Rounding section under 
Operatlcln In IEEE Mode. The round to nearest mode is 
similar.to that for IEEE operation, but differs in one respect: for 
the case in which the infinitely precise result of an operation is 
exactly halfway between two representable values, DEC round 
to nearest mode rounds to the value with the larger magni­
tude, rather than to the value whose LSB is O. 

Flag Operation 

The Am29C325 generates six status flags to monitor floating­
point processor operation. The following is a summary of flag 
operation in DEC mode: 

Invalid Operation Flag: The invalid operation flag is HIGH if 
the FP-TO-INT operation is performed on a floating-point 
number too large to be converted to an integer. The final result 
for such an operation will be the DEC-reserved operand 
8000000016. 

Overflow Flag: The overflow flag is HIGH if an R PLUS S, R 
MINUS S, R TIMES S, or 2 MINUS S operation produces a 
result Which, after rounding, has a magnitude greater than or 
equal to 2127. The final result will be the DEC-reserved 
operand 8000000016. 

Underflow Flag: The underflow flag is HIGH if an R PLUS S, 
R MINUS S, or R TIMES S operation produces a result which, 
after rounding, has a magnitude in the range: 

o < magnitude < 2 - 128, 

The final result will be,O (0000000016) in such cases. 

Inexact Flag: The inexact flag is HIGH if the final result of an 
R PLUS S, R MINUS S, R TIMES S, 2 MINUS S, INT-TO-FP, or 
FP-TO-INT operation Is not equal to the infinitely precise 
result. Note that if the underflow or overflow flag is HIGH, the 
inexact flag will also be HIGH. 

Zero Flag: The zero flag is HIGH if the final result of an 
operation is O. For operations producing an integer or a DEC 
floating-point number, the flag accompanies the output 0 
(0000000016). (It should be noted that any operation produc­
ing a floating-point 0 in DEC mode will output 0000000016.) 

NAN Flag: The NAN flag is HIGH if an R PLUS S, R MINUS S, 
R TIMES S, 2 MINUS S, or FP-TO-INT operation produces a 
DEC-reserved operand as the final result. 

IEEE-TO-DEC and DEC-TO-IEEE Operations 

The IEEE-TO-DEC and DEC-TO-IEEE operations are used to 
convert floating-point numbers between the IEEE and DEC 
formats. Both operations work in a manner independent of the 
IEEE/DEC mode control. 

IEEE·TO·DEC Conversion 

The operation converts an IEEE floating-point number to DEC 
floating-point format. Most conversions are exact; in no case 
does the round mode have any effect on the final result. There 
are, however, a few exceptional cases: 

a) If the IEEE floating-point input has a magnitude greater than 
or equal to 2127, it is too large to be represented by a DEC 
floating-point number. The final result will be the DEC­
reserved operand 8000000016; the overflow, inexact, and 
NAN flags will be HIGH. 
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b) If the IEEE floating-point input is a NAN, the final result will 
be the DEC-reserved operand 8000000016; the invalid and 
NAN flags will be HIGH. 

c) If the IEEE floating-point input is a denormalized number, 
the final result will be a DEC 0 (000000016); the zero flag 
will be HIGH. 

d) If the IEEE floating-point input is + 0 or -0, the final result 
will be a DEC 0 (000000016); the zero flag will be HIGH. 

DEC-TO-IEEE Conversion 

This operation converts a DEC floating-point number to IEEE 
floating-point format. Most conversions are exact; in no case 
does the round mode have any ellect on the final result. There 
are, however, a few exceptional cases: 

a) If the DEC floating-point input is not 0, but has a magnitude 
less than 2- 126, it is too small to be expressed as a 
normalized IEEE floating-point number. The final result will 
be an IEEE floating-point 0 having the same sign as the 
input (000000016 for positive inputs and 8000000016 for 
negative inputs); the underflow, inexact, and zero flags will 
be HIGH. 

b) If the DEC floating-point input is a DEC-reserved operand, 
the result will be quiet NAN 7FA000016; the invalid opera­
tion and NAN flags will be HIGH. 

c) If the DEC floating-point input is 0, the final result will be 
IEEE floating-point + 0 (000000016); the zero flag will be 
HIGH. 
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APPENDICES 

APPENDIX A 

DIFFERENCES BETWEEN THE IEEE 
PROPOSED STANDARD FOR BINARY 
FLOATING·POINT ARITHMETIC AND THE 
Am29C32S'S IEEE MODE 
When operated in IEEE mode, the Am29C325 High-Speed 
Floating-Point Processor complies with the single-precision 
portion of the IEEE Proposed Standard for Binary Floating­
Point Arithmetic (P754, draft 10.0) in most respects, There are, 
however, several differences: 

Denormallzed Numbers 

The Am29C325 does not handle denormalized numbers. A 
denormalized input will be converted to zero of the same sign 
before the specified operation takes place. The operation 
proceeds in exactly the same manner as if the input were + 0 
or -0, producing the same numerical result and flags. 

If the result of an operation, after rounding, has a magnitude 
smaller than 2 - 126, the result is replaced by a zero of the 
same sign. 

Representation of Overflows 

In some rounding modes the proposed IEEE standard requires 
that overflows be represented as the format's most-positive or 
most-negative finite number. In particular: 

- When rounding toward 0, all overflows should produce a 
result of the largest representable finite number with the 
sign of the intermediate result. 

- When rounding toward _00, all positive overflows should 
produce a result of the largest representable positive finite 
number. 

- When rounding toward + 00, all negative overflows should 
produce a result of the largest representable negative finite 
number. 

The Am29C325, however, always represents positive over­
flows as + 00 and negative overflows as _00, regardless of 
rounding mode. 

Projective Mode 

The proposed IEEE standard provides only for an affine mode 
to control the handling of infinities. The Am29C325 provides 

both affine and projective modes; the desired mode can be 
selected by the user. 

Traps 

The proposed IEEE standard stipulates that the user be able 
to request a trap on any exception. The Am29C325 does not 
support trapped operation, and behaves as if traps are 
disabled. 

Resetting of Flags 

The proposed IEEE standard states that once an exception 
flag has been set, it is reset only at the user's request. The 
Am29C325's flags, however, reflect the status of the most 
recent operation. 

Generation of the Underflow Flag 

The proposed IEEE standard suggests several possible crite­
ria for determining if underflow occurs. These criteria generate 
underflow flags that differ in subtle ways. The underflow 
criteria chosen for the Am29C325 stipulaie that underflow 
occurs if: 

a) the rounded result of an operation has a magnitude in the 
range: 

0< magnitde < 2- 126, 

and 

b) the final result is not equal to the infinitely precise result. 

Since the Am29C325 never produces a denormalized number 
as the final result of a calculation, condition (b) is true 
whenever (a) is true. Note then that the operation of the 
Am29C325's underflow flag is somewhat different than that of 
an "IEEE standard" system using the same underflow criteria. 
For example, if an operation should produce an infinitely 
precise result that is exactly 2 -127, an "IEEE standard" 
system would produce that value as the final result, expressed 
as a denormalized number. Since that system's final result is 
exact, the underflow flag would remain LOW. The Am29C325, 
on the other hand, would output zero; since its final result is 
not exact, the underflow flag would be HIGH. 
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APPENDIX B 

DIFFERENCES BETWEEN DEC VAX AND 
Am29C325 DEC MODE 
Operation in DEC mode complies with most aspects of single­
precision floating-point operation outlined in the Digital Equip­
ment Corporation's VAX Architecture Manual. However, there 
are some differences that should be noted: 

Format 

The Am29C325's DEC format is: 

sign 
exponent 
mantissa 

The VAX format is: 

sign 
exponent 
mantissa 

-bit 31 
-bits 30-23 
-22-0 

- bit 15 
-14-7 
-bits 6-0, bits 31-16 

In both cases, fields are listed from MSB to LSB, with bit 31 
the MSB of the 32-bit word. The Am29C325's DEC format can 
be converted to VAX format by swapping the 16 LSBs and 16 
MSBs of the 32-bit word. 

Flags vs. Exceptions 

In DEC VAX operation, certain unusual conditions arising 
during system operation may incur an exception, or an 
indication to the operating system that special handling is 
needed. 

The VAX recognizes a number of arithmetic exceptions. The 
following exceptions are relevant to the operations supported 
by the Am29C325: 

Integer Overflow Trap: indicates that the last operation 
produced an integer overflow. The LSBs of the correct result 
are stored in the destination operand. 

Floating-Point Overflow Trap/Fault: indicates that the last 
operation produced, after normalization and rounding, a float­
ing-point number with magnitude greater than or equal to 2127. 
A trap replaces the destination operand with the DEC­
reserved operand 8000000016; a fault leaves the destination 
operand unchanged. 

Floating-Point Underflow Trap/Fault: indicates that the last 
operation produced, after normalization and rounding, a float­
ing-point number with magnitude less than 2 -128. A trap 

replaces the destination operand with zero; a fault leaves the 
destination operand unchanged. 

Reserved Operand Fault: indicates that the last operation 
had a reserved operand as an input. The destination operand 
is unchanged. 

The Am29C325 does not directly support DEC traps and 
faults. Rather, it indicates unusual conditions by setting one or 
more of the six status flags HIGH. Table 02 describes flag 
operation in DEC mode. 

Integer Overflow 

In cases of integer overflow, the VAX signals the integer 
overflow trap and stores the LSBs of the correct result. The 
Am29C325 sets the invalid operation flag and outputs the 
DEC-reserved operand 8000000016. 

Floating-Point Underflow/Overflow Operation 

The VAX Architecture Manual specifies the action to be taken 
on the destination operand when floating-point underflow or 
overflow is encountered. The Am29C325 has no immediate 
control over this destination operand, as it resides somewhere 
off-chip, either in a register or memory location. This isn't so 
much a difference between the VAX specification and 
Am29C325 operation as it is a difference in scope. 

The Am29C325 responds to floating-point underflow by pro­
ducing a final result of 0 (0000000016); the underflow, inexact, 
and zero flags will be HIGH. It responds to floating-point 
overflow by producing the DEC-reserved operand 8000000016 
as the final result; the overflow, inexact, and NAN flags will be 
HIGH. 

Handling of DEC-Reserved Operands 

If an operation has a DEC-reserved operand as an input, the 
Am29C325 will produce that operand as the final result. If an 
operation has two input arguments and both are DEC­
reserved operands, the operand on port R becomes the final 
result. For the VAX, operations with a DEC-reserved operand 
input or inputs do not modify the destination operand. As 
mentioned above, control of the destination operand is be­
yond the scope of the Am29C325's operation. 

Inexact Flag 

The Am29C325 provides an inexact flag to indicate that the 
final result produced by an operation is not equal to the 
infinitely preCise result. The VAX does not provide this flag. 
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APPENDIX C 

PERFORMING FLOATING·POINT DIVISION 
ON THE Am29C325 

While the Am29C325 does not have a floating-point division 
instruction; it can be used to evaluate reciprocals. The 
division: 

C=AlB 

can then be performed by evaluating: 

C=A*(l/B) 

Only a modest amount of external hardware is needed to 
implement the reciprocal function. 

The technique for calculating reciprocals is based on the 
Newton-Raphson method for obtaining the roots of an equa­
tion. The roots of equation: 

F(x) =0 

can be found by iteratively evaluating the equation: 

Xi + 1 = Xi - F(Xi)/F'(Xi) 

The process begins by making a guess as to the value of xi, 
and using this guess or "seed" value to perform the first 
iteration. Iterations are continued until the root is evaluated to 
the desired accuracy. The number of iterations needed to 
achieve a given accuracy depends both on the accuracy of the 
seed value and the nature of F(x). 

Now consider the equation: 

F(x) = (lIx) - B 

The root of F(x) is lIB. The reciprocal of B, then, can be found 
by using the Newton-Raphson method to find the root of F(x). 
The iterative equation for finding the root is: 

Xi + 1 = xi - F(xil/F' (Xi) 
= xi - (lIXi - B)/- (Xi) - 2 
=xi (2-B*Xi) 

It can be shown that, in order for this iterative equation to 
converge, the seed value Xo must fall in the range: 

or 
0< Xo < 2/B 
2/B < XC < 0 

if B>O 
if B<O 

For example, if the reciprocal of 3 is to be evaluated, the seed 
value must be between 0 and 2/3. 

The error of xi reduces quadraticallr; that is, if the error of Xi is 
e, the error is reduced to order e by the next iteration. The 
number of bits of accuracy in the result, then, roughly doubles 
after every iteration. While this is only an approximation of the 
actual error produced, it is a handy rule of thumb for 
determining the number of iterations needed to produce a 
result of a certain accuracy, given the accuracy of the seed. 

Example 1: 

Find the reciprocal of 7.25. 

Solution: 

The seed value must fall in the range: 

0< XC < 217.25 
or 0 < Xo < .275862 

Suppose XC is chosen to be .1: 

Iteration 1: xl = XC (2 - B *XC) 
= .1(2 - (7.25) (.1)) 
= .1275 

Iteration 2: x2 = Xl (2 - B*Xl) 
= .1275(2 - (7.25) (.1275)) 
=.1371421875 

Iteration 3: xa = X2 (2 - B*X2) 
=.1371421875* 

(2 - (7.25) (.1371421875)) 
=.1379265230 

The actual value of 117.25, to ten decimal places, is 
.1379310345. 

The error after each iteration is: 

Iteration XI Error to Ten Places 

0 0.1 - 0.037931 0345 

1 0.1275 -0.0104310345 

2 0.1371421875 - 0.0007888470 

3 0.1379265230 - 0.0000045115 

Example 2: 

Find the reciprocal of -0.3. 

Solution: 

The seed value must fall in the range: 

2/(-0.3) < xo < 0 
or -6.66 < Xo < 0 

Suppose XC is chosen to be -2.0: 

Iteration 1: Xl = XC (2 - B*xo) 
= - 2.0(2 - (- 0.3) (-2.0)) 
= -2.8 

Iteration 2: x2 = Xl (2 - B*Xl) 
= -2.8(2 - (-0.3) (-2.8)) 
=-3.248 

Iteration 3: x3 = x2 (2 - B*X2) 
= -3.248(2-(-0.3) (-3.248)) 
= -3.3311488 

Iteration 4: X4 = Xs (2 - B*xa) 
= -3.3311488* 

(2-(-0.3) (-3.3311488)) 
= -3.333331902 

The actual value of 1/(-0.3), to ten decimal places, is 
- 3.333333333. 

The error after each iteration is: 

I Xi Error to Ten Places 

0 -2.0 1.333333333 

1 -2.8 0.533333333 

2 -3.248 0.085333333 

3 -3.3311488 0.002184533 

4 -3.333331902 0.000001431 

In order to implement the Newton-Raphson method on the 
Am29C325, some means is needed to generate the seed used 
in the first iteration. One approach is to place a hardware seed 
look-up table between the R bus and the Am29C325; see 
Table C1. A more detailed diagram of the look-up table 
appears in Figure C2. 

4-110 



TABLE C1. CONTENTS OF THE SEED EXPONENT PROM 

DEC IEEE 

Address (16) Data (16) Address (16) Data (16) 

000 (Note 1) 100 (Note 1) 
001 (Note 1) 101 FC 
002 FF 102 FB 
003 FE 103 FA 
004 FD 104 F9 
005 FC 105 F8 
006 FB 106 F7 
007 FA 107 F6 
008 F9 108 F5 
009 F8 109 F4 
OOA F7 lOA F3 
OOB F6 lOB F2 
OOC F5 10C Fl 
OOD F4 10D FO 
OOE F3 10E EF 
OOF F2 10F EE 
010 Fl 110 ED 
011 FO 111 EC 
012 EF 112 EB 

OEE 13 lEE OF 
OEF 12 lEF OE 
OFO 11 lFO OD 
OFl 10 lFl OC 
OF2 OF lF2 OB 
OF3 OE lF3 OA 
OF4 OD lF4 09 
OF5 OC lF5 08 
OF6 OB lF6 07 
OF7 OA lF7 06 
OF8 09 lF8 05 
OF9 08 lF9 04 
OFA 07 lFA 03 
OFB 06 lFB 02 
OFC 05 lFC 01 
OFD 04 lFD (Note 2) 
OFE 03 lFE (Note 2) 
OFF 02 lFF (Note 2) 

Notes: 1. The reciprocals of these numbers are too large to be represented in the 
selected format. 

2. The reciprocals of these numbers are too small to' be represented in 
normalized IEEE format. 
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Figure C1_ Adding a Hardware Look-Up Table to the Am29C325 

The look-up table has two sections: a biased exponent look-up 
PROM, and a fraction look-up PROM. The seed-biased 
exponent look-up table is stored in a 512-by-8-bit PROM. This 
table consists of two sections: the DEC format section (which 
occupies addresses 000 - OFF1S), and the IEEE section 
(which occupies addresses 100 -1 FF1S. The appropriate 
table will be selected automatically if address line As is wired 
to the Am29C325's IEEE/~ pin. The equations imple­
mented by these table sections are: 

DEC table: seed biased exponent 
= 25710 - input biased exponent 

IEEE table: seed biased exponent 
= 25310 -input biased exponent 

Table Cl lists the contents of this PROM. 

The seed fraction look-up table is stored in one or more 
PROMs, the number of PROMs depending on the desired 
accuracy of the seed value. The hardware depicted in Figure 

C2 uses two 4K-bY-8-bit PROMs to implement a fraction look­
up table whose inputs are the 12 MSBs of the input argu­
ment's fraction. These PROMs output the 16 MSBs of the 
seed's fraction field - the remaining 7 bits of fraction are set 
to O. The equation implemented in this table is: 

2 
seed fraction = -1 

1 + input fraction 
where the value of the input fraction falls in the range 

o ..;; input fraction < 1 

Note that the seed fraction must also be constrained to fall in 
the range 

o ..;; seed fraction < 1 

Therefore, if the input fraction is 0, the corresponding seed 
fraction stored in the table must be .111 ... 1112, not 1.02. The 
same seed fraction look-up table may be used for both IEEE 
and DEC formats. Table C2 contains a partial listing for the 
seed fraction look-up table shown in Figure C2. 
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TABLE C2. CONTENTS OF THE SEED FRACTION PROMS 

PROM Outputs (16) 

Address (16) Value of Input Fraction (10) Value of Seed Fraction (10) R22- R15 R14 - R7 

000 0.0 0.9999999999 (see text) FF FF 
001 0.0002441406 0.9995118370 FF EO 
002 0.0004882812 0.9990239150 FF CO 
003 0.0007324219 0.9985362280 FF AO 
004 0.0009765625 0.9980487790 FF 80 
005 0.0012207031 0.9975615710 FF 60 
006 0.0014648438 0.9970745970 FF 40 
007 0.0017089844 0.9965878630 FF 20 
008 0.0019531250 0.9961013650 FF 00 
009 0.0021972656 0.9956151030 FE E1 
OOA 0.0024414063 0.9951290800 FE CO 
OOS 0.0026855469 0.9946432920 FE A1 
OOC 00029296875 0.9941577400 FE 81 

FF6 0.9975585938 0.0012221950 00 50 
FF7 0.9978027344 0.0010998410 00 48 
FF8 0.9980486750 0.0009775170 00 40 
FF9 0.9982910156 0.0008552230 00 38 
FFA 0.9985351563 0.0007329590 00 30 
FFS 0.9987792969 0.0006107240 00 28 
FFC 0.9990234375 0.0004885200 00 20 
FFD 0.9992675781 0.0003663450 00 18 
FFE 0.9995117188 0.0002442000 00 10 
FFF 0.9997558594 0.0001220850 00 08 

. 
R BUS • . 

f--. 
BIASED 

EXPONENT 
(R,.-R,,) 

12 MSSI 
OF FRACTION 

(R,,-R,,) 

IEEE/DEC ----+---, 
I 

AS A7- AO 

Am27S15 512 x 8 
SEED EXPONENT PROM 

0.,-00 

SEED SIGN SEED EXPONENT 

8 "0" 

r 
SEED FRACTION 

AF004631 

Figure C2. The Hardware Look·Up Table 

With the hardware look-up table in place, the reciprocal of 
value S can be calculated with the following series of 
operations: 

1) Place S on both the Rand S buses. The 2 : 1 multiplexer at 
the output of the hardware look-up table should select the 
output of the look-up table (see Figure C3-A). 

2) Load the seed value Xo into register R and load S into 
register S. Select the R TIMES S operation (see Figure 
C3-S). 

3) Load product S·xo into register F. Select the 2 MINUS S 
operation, and select register F as the input to the ALU S 
port (see Figure C3-C). 

4) Load 2 - S·xo into register F. Select the R TIMES S 
operation and select register F as the input to the ALU S 
port (see Figure C3-D). 

5) Load the value x1 (X1 = xo(2 - S·xo)) into registers Rand F. 
Select the R TIMES S operation (see Figure C3-E). 

6) Repeat steps 3 through 5 until the result has the accuracy 
desired. 
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Figure C3-A. Data Flow for SteP 1 of the Reciprocal Procedure 
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A tabular description of the operations above is given in Table and port S. The look-up table produces the value 
C3. The following examples, performed in IEEE format, .0395278910 (3D21 E80016). The reciprocal is 
illustrate the process. evaluated using the procedure described above; 

Example 1: register values for each step are given in Table C4. 
The expected result, to the precision of the float-

Find the reciprocal of 25.3. ing-point word, is .0395256910 (3D21E5B116). In 

Solution: The IEEE floating-point representation for 25.3 is this case the expected result is produced after the 

41CA666616. The reciprocal process is begun by first iteration. All subsequent iterations produce the 

feeding this value to both the seed look-up table same result, and are therefore unnecessary. 

TABLE C3. SEQUENCE OF EVENTS FOR EVALUATING RECIPROCALS 

Clock 
Cycle 10- 12 13 14 ENR ENS ENF Register R Register S Register F 

1 Y X 0 0 0 X - - -
2 R TIMES S 0 X 1 1 0 Xo B -
3 2 MINUS S 1 X 1 1 0 Xo B B*Xo 

4 R TIMES S 1 1 0 1 0 Xo B 2 - B*Xo 
)F;~ 

iteration 
5 R TIMES S 0 X 1 1 0 X1(= Xo(2 - B*Xo» B X1 (= Xo(2 - B*Xo)) 

6 2 MINUS S 1 X 1 1 0 X1 B B*X1 

7 R TIMES S 1 0 1 0 X1 B 2-B*X1 ) Sooood 1 iteration 
8 R TIMES S 0 X 1 1 0 X2(= X1(2 - B*X1» B X2(= X1(2 - B*X1» 

x = DON'T CARE 

TABLE C4. INPUT BUS AND REGISTER VALUES FOR EXAMPLE 1 

Clock 
Cycle R Input S Input Register R Register S Register F 

1 3D21E800 41CA666616 - - -
(.03952789) (25.3) 

2 - - 3D21E80016 41CA666616 -
(.03952789) (25.3) 

3 - - 3D21E80016 41CA666616 3F8001D316 
(.03952789) (25.3) (1.0000556) 

4 - - 3D21E80016 41CA666616 3F7FFC5A16 
(.03952789) (25.3) (.99984419) 

5 - - 3D21E5B116 41CA666616 3D21E5B116 .. Result of first 
(.03952569) (25.3) (.03952569) iteration 

6 - - 3D21E5B116 41CA666616 3F7FFFFF16 
(.03952569) (25.3) (.99999994) 

7 - - 3D21E5B116 41CA666616 3F80000016 
(.03952569) (25.3) (1.0) 

8 - - 3D21E5B116 41CA666616 3D21E5B116 .. Result of second 
(.03952569) (25.3) (.03952569) iteration 
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*: 

Example 2: 

Find the reciprocal of -0.4725. 

Solution: The I€EE floating-point representation for -0.4725 
is SEF1 EBB516. The reciprocal process is begun 
by feeding this value to both the seed look-up table 
and port S. The look-up table produces the value 
- 2.11621 0941 0 (CO07700016). The reciprocal is 

evaluated using the procedure described above; 
register values for each step are given in Table C5. 
The expected result, to the precision of the float­
ing-point word, is -2.11640210 (C007732216). In 
this case the expected result is produced after the 
first iteration. All subsequent iterations produce the 
same result, and are therefore unnecessary. 

TABLE CS. INPUT BUS AND REGISTER VALUES FOR EXAMPLE 2 

Clock 
CYllle R Input $ Input Register R Register S Register F 

COO7700016 BEF1EBB516 
(-2.1162109) (-0.4725) 

2 COO7700016 BEF1EB8516 
(-2.1162109) (-0.4725) 

3 COO7700016 BEF1EBB516 3F7FFA1416 
(-2.1162109) (-0,4725) (0.99990963) 

4 COO7700016 BEF1EB!l516 3FB002F616 
(-2.1162109) (-0.4725) (1.0000904) 

5 COO7732216 BEF1EBB516 COO7732216 ... Result of first 
(~ 2.116402) (-0.4725) (-2.116402) iteration 

6 COO7732216 BEF1EBB516 3FBOOOOO16 
(-2.116402) (-0.4725) (1.0) 

7 COO7732216 BEF1EBB516 3FBOOOO016 
(-2.116402) (-0.4725) (1.0) 

B COO7732216 BEF1EBB516 COO7732216 ... Result of second 
(- 2.116402) (-0.4725) (- 2.116402) iteration 
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APPENDIX D 

SUMMARY OF FLAG OPERATION 

Tables 01, 02, and 03 summarize flag operation for the IEEE 
mode, the DEC mode, and for the IEEE·TO·DEC and DEC·TO· 
IEEE operations. 

TABLE 01. FLAG SUMMARY FOR IEEE MODE 

Operation Condition(s) INV OVF UNF 

Any operation H L L 
listed in the 
IEEE Invalid 
Operations Table 

R PLUS S Input operands are finite L H L 
R MINUS S I rounded result I ;;. 2128 
R TIMES S 
2 MINUS S 

R PLUS S 
R MINUS S o < I rounded result I < 2- 126 L L H 
R TIMES S 

R PLUS S Final result does not equal L 
R MINUS S infinitely precise result 
R TIMES S 
2 MINUS S 
INT·TO·FP 
FP·TO·INT 

R PLUS S Final result is zero L L 
R MINUS S 
R TIMES S 
2 MINUS S 
INT·TO·FP 
FP·TO·INT 

R PLUS S Final result is a NAN L L 
R MINUS S 
R TIMES S 
2 MINUS S 
FP·TO·INT 

Notes: INV = Invalid operation flag 
OVF = Overflow flag 
UNF = Underflow flag 
INE = Inexact flag 

ZER = Zero flag 
NAN = NAN flag 

L=LOW 
H = HIGH 
• = State of flag 

depends on the 
input operands 
and the operation 
performed 
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TABLE D2. FLAG SUMMARY FOR DEC MODE 

Operation Condition(s) INV OVF UNF INE ZER NAN 

FP-TO-INT 'Rounded result> 231 _1 H L L L L H 
or rounded result < _231 

FP-TO-INT Input is a DEC-reserved L L L L L H 
operand 

R PLUS S 
R MINUS S I Rounded result I ;;;.. 2127 L H L H L H 
R TIMES S 
2 MINUS S 

R PLUS S 
R MINUS S o < I rounded result 1< 2- 128 L L H H H L 
R TIMES S 

R PLUS S Final result does not equal L H 
R MINUS S infinitely precise result 
R TIMES S 
2 MIMUS S 
INT-TO-FP 
FP·TO-INT 

R PLUS S Final result is zero L L H L 
R MINUS S 
R TIMES S 
2 MINUS S 
INT-TO-FP 
FP-TO-INT 

R PLUS S Final result is a DEC-reserved L L L H 
R MINUS S operand 
R TIMES S 
2 MINUS S 
FP-TO-INT 

Notes: INV = Invalid operation flag H=HIGH 
OVF = Overflow flag • = State of flag 
UNF = Underflow flag depends on the 
INE = Inexact flag input operands 

ZER = Zero flag and the operation 
NAN = NAN flag performed 

L=LOW 

TABLE D3. FLAG SUMMARY FOR IEEE-TO-DEC AND DEC-TO-IEEE CONVERSIONS 

Operation Condltlon(s) INV OVF UNF INE ZER NAN 

IEEE-TO-DEC Input is a NAN H L L L L H 

IEEE-TO-DEC I Input I;;;" 2127 L H L H L H 

DEC-TO-IEEE Input is a DEC-reserved operand H L L L L H 

DEC-TO-IEEE o < I rounded result I < 2- 126 L L H H H L 

DEC-TO-IEEE Final result is zero L L H L 
IEEE-TO-DEC 

Notes: INV = Invalid operation flag H=HIGH 
OVF = Overflow flag • = State of flag 
UNF = Underflow flag depends on the 
INE = Inexact flag input operands 

ZER = Zero flag and the operation 
NAN = NAN flag performed 

L=LOW 
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ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 
Storage Temperature ............................ -65 to + 150°C Commercial (C) Devices 
Case Temperature Under Bias ................ -55 to + 125°C Temperature, Case (T A) ......................... 0 to + 70°C 
Supply Voltage to Ground Potential Supply Voltage (Vee) .................... +4.75 to +5.25 V 

Continuous ...................................... -0.3 to + 7.0 V Military' (M) Devices 
DC Voltage Applied to Outputs 

for HIGH Output State ........... -0.3 V to + Vee + 0.3 V 
Temperature (T A) ............................. - 55 to + 125°C 

DC Input Voltage ........................... -0.3 to Vee + 0.3 V 
Supply Voltage (Vee) ................... + 4.5 V to + 5.5 V 

DC Output Current, into LOW Outputs ................. 30 mA 
DC Input Current ................................ -10 to + 10 mA 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA TlNGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

'Military product 100 
-55°C. 

DC CHARACTERISTICS over operating range unless otherwise 
Subgroups 1, 2, 3 are tested unless otherwise noted) 

Parameter Parameter 
Symbol Description 

VOH Output HIGH Voltage 

Ouput LOW Voltage 

VIH Guaranteed Input Logical 
HIGH Voltage (Note 2) 

Vil Guaranteed Input Logical 
LOW Voltage (Note 2) 

III Input LOW Current 

IIH Vee = Max. 
VIN = Vee - 0.5 V 

10ZH Vee = Max., Vo = 2.4 V 

10Zl Vee = Max., Vo = 0.5 V 

10l = 8 mA for 
V-BUS, 4 mA for 
All Other Pins 

lee Static Power Supply Current Vee = Max., VIN = Vee or GND, 10 = 0 !1A 

CPD Power Dissipation Capacitance 
(Note 3) 

Vee = 5.0 V, T A = 25°C, No Load 

Notes: I. VCC conditions shown as Min. or Max. refer to the commercial and military Vcc limits. 

which the 

A = + 25°C, + 125°C, and 

Min. Max. Unit 

2.4 V 

0.5 V 

2.0 V 

0.8 V 

-10 J1A 

10 !1A 

10 J1A 

-10 J1A 

lee = 30 mA 
(COM and MIL) 

pF Typical 

2. These input levels provide zero·noise immunity and should only be statically tested in a noise· free environment (not functionally tested). 
3. CPO determines the no·load dynamic current consumption: 

ICC (Total) = ICC (Static) + epO VCC f, where f is the switching frequency of the majorily of the internal nodes, normally one· half of 
the clock frequency. 
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SWITCHING CHARACTERISTICS over COMMERCIAL operating range 

29C325 29C325·1 29C325·2 
Parameter Parameter Test 

No. Symbol Description Conditions Min. Max. Min. Max. Min. Max. Unit 

I tASC Clocked Add, Subtract Time. (R 130 98 78 ns 
PLUSS, R MINUS S, 2 MINUS S) 

2 tMC Clocked Multiply Time (R TIMES S) 130 98 78 ns 

3 tcc Clocked Conversion Time (INT-TO- 130 98 78 ns 
FP, FP-TO-INT, IEEE-TO-DEC, DEC-
TO-IEEE) 

4 tASUC Unclocked Add, Subtract Time (R, S 145 125 100 ns 
to F, Flags) for R PLUS S, R 
MINUS S,and 2 MINUS S 
Instructions 

5 tMUC Unclocked Multiply Time (R, S to F, FTo = HIGH 145 100 ns 
Flags) for R TIMES S Instruction FTI = HIGH 

6 tcuc Unclocked Conversion Time (R, S to 145 100 ns 
F, Flags) for INT-TO-FP, FP-TO-
INT, IEEE- TO-DEC and DEC-TO-
IEEE Instructions 

7 tpWH Clock Pulse Width HIGH 20 15 ns 

8 tPWL Clock Pulse Width LOW 20 5 15 ns 

9 tPDOFl Clock to Fo - F3t and Flag Outputs FTo = LOW 118 94 ns 
FTI = HIGH 1I\l-

10 tpDOF2 FTI = LOW 20 16 ns 

II tPZL OE Enable Time Z 10 LOW 20 16 ns 

12 tPZH Z to HIGH, 20 16 ns 

13 tpLZ OE Disable Time LOW to Z 23 20 16 ns 

14 tpHZ HIGH to Z 23 20 16 ns 

15 tPZL16 Clock t to Fo - F15 Z to LOW S16/32 = HI 27 22 18 ns 
Enable, 16-Bit 1/0 ONE BUS = 

16 tPZH16 Mode Z to HIGH 27 22 18 ns 

17 tpLZ16 Clock j to Fo-FI5 LOW to Z 29 22 18 ns 

18 tPHZ16 
Disable, 16-Bit 1/0 

HIGH TO Z Mode 29 22 18 ns 

19 tPZL16 Clock j to F16 - F31 Z to LOW S1 30 22 18 ns 
Enable, 16-Bit 1/0 W 

20 tPZH16 Mode Z to HIGH 30 22 18 ns 

21 tPLZ16 Clock t to F16-F31 LOW to Z 25 21 17 ns 

22 tPHZ16 
Disable,16-Bit 1/0 

HIGH to Mode 25 21 17 ns 

23 tSCE Register Clock Enable Setup -LOW 15 15 15 ns 
1 = LOW 

24 tHCE Register Clock Enable FTo - LOW 0 0 0 ns 
FTI = LOW 

25 tSDl RO-R31, SO-S31 Setu FTO = LOW 15 15 15 ns 
I) 

26 tHDl Ro-R31,SO- S31 (Note I) 0 0 0 ns 

27 tSD2 RO-R31, So- (Note FTO = HIGH 136 118 118 ns 
I) FTI = LOW 

28 tHD2 Ro-R31' So Time (Note 1) 0 0 0 ns 

29 tSl02 10 12 Ins ~1Ii>lect Setup Time FT for 136 118 118 ns 
Destination 

30 tHl02 

a-"·"~ 
Register = LOW 0 0 0 ns 

31 tpDI02 10 - Select to FO - F31, FTI - HIGH 136 118 118 ns 
F 

32 tSI3 I put Select Setup Time FTI -LOW 136 118 118 ns 

33 tHI3 13 put Select Hold Time 0 0 0 ns 

34 1$14 14 R Input Select Setup FTo = LOW 15 15 15 ns 
Time (Note 1) 

35 tHI4 14 Register R Input Select Hold 0 0 0 ns 
Time 
(Note I) 

36 tSAM Round Mode Select Setup Time FT for 50 46 46 ns 
Destination 

37 tHRM Round Mode Select Hold Time Aegister = LOW 0 0 0 ns 

38 tpAF Round Mode Select to Fo - F31, Flags FTI - HIGH 64 58 58 ns 

Notes: 1. See timing diagram for desired mode of operation to determine clock edge to which these setup and hold times apply. 

, I 
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SWITCHING CHARACTERISTICS over MILITARY operating range (for APL Products, Group A, Subgroups' 

9, 10, 11 are tested unless otherwise noted) 

29C325 
Parameter Parameter Test 

No. Symbol Description Conditions Min. Max. Unit 

I tASC Clocked Add, Subtract Time (R PLUS S, 145 ns 
R MINUS S, 2 MINUS S) 

2 tMC Clocked Multiply Time (R TIMES S) 145 ns 

3 tcc Clocked Conversion Time (INT-TO-FP, 145 ns 
FP-TO-INT, IEEE-TO-DEC, DEC-TO-IEEE) 

4 tASUC Unclocked Add, Subtract Time (R, S to F, 160 ns 
Flags) for R PLUS S, R MINUS S, 
and 2 MINUS S Instructions 

5 tMUC Unclocked Multiply Time (R, S to F, Flags) FTo ~ HIGH 160 ns 
for R TIMES S Instruction FTI = HIGH 

6 tcuc Unclocked Conversion Time (R, S to F, 160 ns 
Flags) forINT-TO-FP, FP-TO-INT, IEEE-
TO-DEC and DEC-TO-IEEE Instructions 

7 tPWH Clock Pulse Width HIGH 
, 

20 ns 

8 tPWL Clock Pulse Width LOW 20 ns 

9 tpOOFl Clock to Fo - F3t and Flag Outputs FTO = 152 ns 
FTI = 

10 tpOOF2 F 30 ns 

II tPZL OE Enable Time Z to LOW 26 ns 

12 tPZH z to HIGH 26 ns 

13 tpLZ OE Disable Time LOW to Z 26 ns 

14 tpHZ HIGH to Z 26 ns 

15 tpZL1e Clock t to Fo-F15 Enable, 16- Z to LO 
, 

16/32 = HIGH 30 ns 

16 tpzHle 
Bit 1/0 Mode Z to ONEBUS= LOW 30 ns 

17 tpLZle Clock I to Fo - F 15 Disable, LOW 33 ns 

18 tPHzle 
16-Bit 1/0 Mode 33 ns 

19 tpzLle Clock I to FIe - F31 Enable, SI6/32 = HIGH 34 ns 

20 tpzHle 
16-Bit 1/0 Mode Z to H ONEBUS= LOW 34 ns 

21 tPLzle Clock t to FIe - F31 to Z 28 ns 

22 tPHzle 
Disable,16-Bit 1/0 Mode 

H to Z 28 ns 

23 tSCE Register Clock Enable FTo = LOW 15 ns 
FTI = LOW 

24 tHCE Register Clock En e FTo=LOW 0 ns 
FTI = LOW 

25 tSOl Ro-R31, So- ,Time (Note I) FTo = LOW 15 ns 

26 tHOl RO - R31, So Time (Note I) 0 ns 

27 tS02 Ro-R31' P Time (Note 1) FTo = HIGH 152 ns 

28 tH02 Ro- I Hold Time (Note I) FTI = LOW -30 ns 

29 tSI02 10- Select Setup Time FT for Destination 152 ns 

30 tHI02 I tion Select Hold Time Register = LOW 0 ns 

31 tpOI02 ction Select to Fo - F31, Flags FTI = HIGH 152 ns 

32 1s13 Input Select Setup Time FTI = LOW 152 ns 

33 tHI3 I S Input Select Hold Time 0 ns 

34 tSI4 14 Register R Input Select Setup Time (Note I) FTO = LOW 15 ns 

35 tHI4 14 Register R Input Select Hold Time (Note 1) 0 ns 

36 tSRM Round Mode Select Setup Time FT for Destination 65 ns 

37 tHRM Round Mode Select Hold Time Register = LOW 0 ns 

38 tpRF Round Mode Select to Fo-F31, Flags FTI = HIGH 80 ns 

Notes: I. See timing diagram for desired mode of operation to determind clock edge to which these setup and hold times apply. 
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SWITCHING TEST CIRCUITS 

5V 

Vee 

s, 
VOUT ~)-"""---;_--1<I---+ 

5, 

~UT~)-_~--KI----+ 

R1 = 9100 

5.0 - VSE - VOL 

VOL 
R1 =IOL +1K 

A. Three-State Outputs 

TC001104 

TC001084 

5.0 - VSE - VOL 
R1 = VOL 

IOL+­
R2 

B. Normal Outputs 

Notes: 1. CL = 50 pF includes scope probe, wiring, and stray capacitances without device in test fixture. 
2. 51, 52, 53 are closed during function tests and all AC tests except output enable tests. 
3. 51 and 53 are closed while 52 is open for tPZH test. 

51 and 82 are closed while 83 is open lor tpZL test. 
4. CL = 5.0 pF for output disable tests. 
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SWITCHING TEST WAVEFORMS 

DATA 
INPUT 

\TT"I_<TT'TT.-T"T"'I""I"''fIIII&'I'"T'TT'" ~.: v 

~ts1:::~~ 0 v 

------f ------3 V 
TI~~~~ _ --------- 1.S V 

--------------J---------------- OV 

WFR02970 

Notes: 1. Diagram shown for HIGH data only. 
Output transition may be opposite sense. 

2. Cross hatched area is don't care 
condition. 

Set-Up, Hold, and Release Times 

SAME PHASE f-------\ ____ :.SVV 

~"".~,..:'~ g:=~, " 

- F I" jc:::: 
----.'PCH? F'PHL 3V 

OPPOSITE PHASE ~ ______ __ 
INPUT TRANSITION- f\. ---- :.5

V
V 

WFR02980 

Propagation Delay 

LOW HIGH· LOW _1 ~_ 
PULSE T ~ ---- 1.5 V 

~t~~~ 
HIGH·LOW HIGH __ "'J. .. V 

PULSE ~ ~ ---- 1.5 V 

OUTPUT 
NORMALLY 

LOW 

OUTPUT 

WFR02790 

Pulse Width 

Enable Disable 
~ ___ --3V 

-----1.5 V 

-----0 V 

-1.5 V 

S3 OPEN VOL 

L--I- 'ZH 'HZ I t 
~' I,. ~VOH 

NORMALLY 1,5 V -1.5 V 

HIGH 52 OPEN 0.5 V 
---0 V 

WFR02660 

Notes: 1. Diagram shown for Input Control Enable-
LOW and Input Control Disable-HIGH. 

2. Sl, S2 and S3 of Load Circuit are closed 
except where shown. 

Enable and Disable Times 
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SWITCHING WAVEFORMS 

KEY TO SWITCHING WAVEFORMS 

OUTPUTS 

MUST BE WrlLBE 
STEADY STEADY - ~:~MC~~~~ 

WILLBE 
CHANGING 
FI'tOMHTOL 

JJJJJJ MAY CHANGE 
WILL BE 
CHANGING FROML TOH FROML TOH - DON'T CARE; CHANGING, 

ANY CHANGE STATE 
PERMITTEO UNKNOWN 

H 
CENTER 

00E8NOT LINE IS HIGH 
APPLY IMPEDANCE 

"OFF"STATE 

KSOOOO10 

<D 1-1 ---- ~ ------:-1 __ _ 
CLK __ ---IF <D --+1-- ® ===i 

Clocked Operation: FTo = LOW 
FT1 = LOW 
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elK 

x 
:x 

SWITCHING WAVEFORMS (Cont'd.) 

1---- IJ) ----t---- ® ---'--11 
@j-~@~hX 

j\ :x :x 

@) t---

'IV VALID 

~ @ 

I' 
@ 

1 

@ 

t==. @ 

Clocked Operation: FTo = HIGH 
FT1 = LOW 

,.j 
,AI\.. 

elK ____ ..... F Q) ---t--- ® ==:l 

®----

~---®----

Clocked Operation: FT 0 = LOW 
FT1 = HIGH 
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y :x 
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W 
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W' 
JI\. 

@ 

'v--
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SWITCHING WAVEFORMS (Cont'd.) 

@ 
@ 
® 

I--~~------~------------I 

Flow-Through Operation (FTO = HIGH, FT1 = HIGH) 

CLK----...I 

32-Bit, Single-Input Bus Mode 
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elK 

R INPUT BUS, 
S INPUT BUS 

14 
(NOTE 1) 

,. 

I 

SWITCHING WAVEFORMS (Cont'd,) 

. @ f-- @ 
@ @ 

\V \ HI-Z ( VALID 
I~ I 

@ f--
@ 

@ @ 

\ HI-Z 1/ 
I I\. 

VALID 

WF023810 

Note 1. 14 has special setup and hold time requirements in this mode. All other control signals have timing 
requirements as shown in the diagram "Clocked operation, FTO = LOW, FT1 = LOW." 

16-Bit, Two-Input Bus Mode 
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INPUT/OUTPUT CIRCUIT DIAGRAMS 

DRIVEN INPUT 
V~----------------~~------

OUTPUT 

P -----1 N[ 
N -~----1 

IC000860 IC000870 
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Am29C327 
CMOS Double-Precision Floating-Point Processor 

ADVANCE INFORMATION 

DISTINCTIVE CHARACTERISTICS 

• High-performance double-precision floating-point pro­
cessor 

• Comprehensive floating-point and integer instruction 
sets 

• Single VLSI device performs single-, double-, and 
mixed-precision operations 

• Performs conversions between precisions and between 
data formats 

• Compatible with industry-standard floating-point formats 
- IEEE 754 format 
- DEC F, DEC D, and DEC G formats 
- IBM system/370 format 

• Exact IEEE compliance for denormalized numbers with 
no speed penalty 

• Eight-deep register file for intermediate results and on­
chip 64-bit data path facilitates compound operations; 
e.g., Newton-Raphson division, sum-of-products, and 
transcendentals 

• Supports pipelined or flow-through operation 
• Fabricated with Advanced Micro Devices' 1.2 micron 

CMOS process 

SIMPLIFIED SYSTEM DIAGRAM 

R-Port S-Port 

Constants 

ALU Input Multiplexer 

F-Port 

DEC F, DEC D, DEC G, and VAX are trademarks of the Digital Equipment Corporation. 
IBM system/370 is a trademark of International Business Machines, Inc. 

80007470 

Publication /I Rev. Amendment 
4-133 09418 B 10 

Issue Date: November 1987 

II 



GENERAL DESCRIPTION 

The Am29C327 double-precision floating-point processor is a 
single VLSI device that implements an extensive floating-point 
and integer instruction set, and can perform single-, double- or 
mixed-precision operations. The three most popular floating­
point formats -IEEE, DEC, and IBM - are supported. IEEE 
operations comply with Standard 754, with direct implementa­
tion of special features such as gradual underflow an'd trap 
handling. 

The Am29C327 consists of a 64-bit ALU, a 54-bit datapath, 
and a control unit. The ALU has three data input ports, and 
can perform compound operations of the form (A • B) + C. 
The data path comprises two 64-bit input operand registers, 
an 8-by-64-bit register file for storage of intermediate results, 
three operand-selection multiplexers that provide for orthogo-

nal selection of Input operands, a 54-bit output register, and an 
output multiplexer that allows access to the 32 MSBs or 32 
LSBs of the result data. Control signals determine the opera­
tion to be performed, the source of operands, operand 
precision, rounding mode, and other aspects of device opera­
tion. 

Operations can be performed in either of two modes: flow-, 
through or pipelined. In the flow-through mode, the ALU is 
completely combinatorial; this mode is best suited for scalar 
operations. Pipelined mode divides the ALU into one or two 
pipelined stages, for use in vector operations, as often found 
in graphics or signal processing. 

Fabricated with AMD's 1.2 micron technology, the Am29C327 
is housed in a 169-lead pin-grid-array (PGA) package. 

This doeumAnt oont!!!ns !nw':'T'.aticn en a p.-uduct urn;,," develOpment at Advanced Micro DeviceS, Inc. The Information IS Intended to 
help you to evaluate this product. AMO reserves the right to change or discontinue work on this proposed product without notioe. 
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RELATED AMD PRODUCTS 

Part No. Description 

Am29Cl0A CMOS Microprogram Controller 

Am29C116 
CMOS Minimum Power 16-Bit 
Microprocessor 

Am29C117 
CMOS Two-Port 16-Bit 
Microprocessor 

Am29PL141 Field-Programmable Controller (FPC) 

Am29C323 CMOS 32-Bit Parallel Multiplier 

Am29C325 
CMOS 32-Bit Floating-Point 
Processor 

Am29C331 
CMOS 16-Bit Microprogram 
Sequencer 

Am29C332 CMOS 32-Bit Arithmetic Logic Unit 

Am29C334 
CMOS Four-Port Dual-Access 
Register File 

CONNECTION DIAGRAM 
169-Lead PGA* 
Bottom View 

A B C D E F G H J K L M N P R T U , .' 1 I» @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ 

2 @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ 

3 @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ 

" @ @ @ @ ** @ @ @ 

5 @ @ @ @ @ @ 

6 @ @ @ @ @ @ 

7 @ @ @ @ @ @ 

6 @ @ @ @ @ @ 

9 @ @ @ @ @ @ 

10 @ @ @ @ @ @ 

11 @ @ @ @ @ @ 

12 @ @ @ @ @ @ 

13 @ @ @ @ @ @ 

1" @ @ @ @ @ @ 

15 @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ 

16 @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ 

17 (I @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ • '" / 
CDOO9761 

·Pinout observed from pin side of package . 
•• Alignment pin (not connected internally). 
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PIN DESIGNATIONS 
(Sorted by Pin No.) 

PIN NO, PIN NAME PIN NO. PIN NAME PIN NO. PIN NAME PIN NO. PIN NAME 

A·1 C·g J·15 R·10 

A·2 C·10 J·16 R·11 

A·3 C·11 J·17 R·12 

A·4 C·12 K·1 R·13 

A·5 C·13 j(·2 R·14 

A·6 C·14 K·3 R·15 

A·7 C·15 K·15 R·16 

A·8 C·16 K·16 R·17 

A·9 C·17 K·17 T·1 

A·10 0·1 L·1 T·2 

A·11 0·2 L·2 T·3 

A·12 0·3 L·3 T·4 

A·13 0·15 L·15 T·5 

A·14 0·16 L·16 T·6 

A·15 0·17 L·17 T·7 

A·16 E·1 M·1 . T·8 

A·17 E·2 T·9 

B·1 E·3 T·10 

B·2 E·15 T·11 

B·3 E·16 T·12 

8-4 E·17 ·17 T·13 

B·5 F·1 , .. ,:" N·1 T·14 

B·6 F·2 N·2 T·15 

B·7 F·3 N·3 T·16 

B·8 F·15 N·15 T·17 

B·9 F·16 N·16 U·1 

B·10 F·17 N·17 U·2 

B·11 G·1 P·1 U·3 

B·12 

~ 
P·2 U·4 

B·13 P·3 u·s 
B·14 P·15 U·6 

B·15 I~~r 6 P·16 U·7 '.,~ 

B·16 G·17 P·17 U·8 

B·17 H·1 R·1 U·g 

C·1 H·2 R·2 U·10 

C·2 H·3 R·3 U·11 

C·3 H·15 R·4 U·12 

C·4 H·16 R·5 U·13 

C·5 H·17 R·6 U·14 

C·6 J·1 R·7 U·15 

C·7 J·2 R·8 U·16 

C·8 J·3 R·9 U·17 

~~ I 
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S/OS 
SlDF 
elK 
ENi'i 
ENS 
ENF 

ENRF 

OEF 
OES 

LOGIC SYMBOL 

RFSElO -RFSEl2 

PSElo -PSEl3 

aSELo -aSEL3 

TSELO -TSEL 3 

FSEL 

10 -1 13 

RMo-RM2 
SiJiVe 

lS003081 

ORDERING INFORMATION 

Standard Products 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by 
a combination of: a. Device Number 

b. Speed Option (if applicable) 
c. Package Type 
d. Temperature Range 
e. Optional Processing 

AM29C327 .Q. J!. L=-e. OPTIONAL PROCESSING 
Blank = Standard processing 

B = Burn-In 

d. TEMPERATURE RANGE 
C = Commercial (0 to + 70'C) 

~------------------------c.PACKAGETYPE 

AM29C327 

a. DEVICE NUMBER/DESCRIPTION 
Am29C327 
Double-Precision Floating-Point Processor 

Valid Combinations 

GC, GCB 

G = 169-lead Pin Grid Array without Heatsink 
(CGX169) 

b. SPEED OPTION 
Not Applicable 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMD 
sales office to confirm availability of specific valid 
combinations, to check on newly released combinations, and 
to obtain additional data on AMD's standard military grade 
products. 
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PIN DESCRIPTION 

CLK Clock (Input) 
Clock input to all registers. 

ENF F Register Enable (Input: Active LOW) 
When ENF is HIGH, the contents of the F register are static. 
When EiiJF is lOW, the ALU output data is clocked into the 
F register on the next lOW-to-HIGH tranSition of ClK. Note 
that the F register can be made transparent by setting the 
mode register bit M17 HIGH (as described in the Mode 
Register Description section); when the F register is 
transparent, EiiJF has no effect. 

EM Instruction Register Enable (Input; Active LOW) 
When ENI is lOW, an instruction word is clocked into the 
instruction register on the next lOW-to-HIGH transition of 
ClK. The instruction word comprises the following fields: P, 
Q, and T-multiplexer control inputs, rounding modes, AlU 
instruction inputs, and the precision of the output operand. 

ENR R Register Enable (Input; Active LOW) 
When ENR is HIGH, the contents of the R register are static. 
When ENR is lOW, new data is loaded into the R register 
on the next lOW-to-HIGH transition of ClK. 

ENRF Register File Enable (Input; Active LOW) 
When ENRF is HIGH, the contents of the register file are 
static. When ENRF is lOW, the AlU output operand is 
clocked into the register file on the next lOW-to-HIGH 
transition of ClK. 

ENS S Register Enable (Input; Active LOW) 
When ENS is HIGH, the contents of the S register are static. 
When ENS is lOW, new data is loaded into the S register on 
the next lOW-to-HIGH transition of ClK. 

Fo - F31 F Output BUB (Output) 

FLAG1 - FLAGs Flag Outputs (Output) 
The six flag outputs report the status of the last operation 
executed. 

FSEL Output Multiplexer Control (Input) 
When FSEl is HIGH, the most significant ;32 bits of the 
output register are connected to the output driver. When 
FSEl is lOW, the least significant 32 bits of the output 
register are connected to the output driver. 

10 -113 ALU'lnstruction Inputs (Input) 
10-113 select the operation to be performed by the AlU. 

MSERR Master/Slave Error Flag (Output) 
A HIGH level indicates a master/slave error on the current 
output. 

FUNCTIONAL DESCRIPTION 

Overview 

The Am29C327 is a high-performance, single-chip, double­
precision floating-point processor. 

Architecture 

The Am29C327 comprises a high-speed AlU, a 64-bit data 
path, and control circuitry. 

The core of the Am29C327 is a 64-bit floating-point/integer 
AlU. This AlU takes operands from three 64-bit input ports 
and performs the selected operation, plaCing the result on a 
64-bit output port. Thirteen AlU flags report operation status 
via the 7 -bit Flag port. The AlU is completely combinatorial for 

OEF F Output BUB Enable (Input; Active LOW) 
When W is HIGH, signals Fo - F31 assume a high­
impedance state. When W is LOW (and SLAVE is HIGH), 
the output of the F multiplexer is placed on Fo - F31. 

OES Flag Output Enable (Input) 
When OES is MIGH, outputs SIGN and FLAG1 through 
FLAGS assume a high-impedance state. When om is lOW 
(and srAVE is HIGH), these signals are enabled. 

PSELo - PSEL3 P-Multiplexer Control Inputs (Input) 
PSElo - PSELs select the data input to the AlU P-port. 

QSELo - QSEL3 Q-Multlplexer Control Inputs (Input) 
QSELo - QSELs select the data input to the AlU Q-port. 

RO - fl31 R Input BUB (Input) 

RFSELo - RFSEL2 Register File Select (InpLit) 
RFSELo - RFSEL2 select the register file location 
(RFo - RF7) to which the AlU result is to be written. Data is 
written to the register file if Ei'iIRF is lOW. 

RMo - RM2 Round Mode Control Inputs (Input) 
The Am29C327 supports six rounding modes. RMo - RM2 
select the rounding mode to be applied to the current 
operation. 

SO-S31 S Input Bus (Input) 

S/DF F Output Single/Double Control (Input) 
When S/OF is HIGH, the AlU generates a single-precision 
result. When S/OF is lOW, the AlU generates a double­
precision result. 

S/DR R Input Single/Double Control (Input) 
When S/OR is HIGH, the data loaded into the R-port is 
treated as single precision. When S/OR is lOW, the data 
loaded into the R register is treated as double precision. 

S/OS S Input Single/Double Control (Input) 
When S/OS is HIGH, the data loaded into the S-port is 
treated as single precision. When S/OS is lOW, the data 
loaded into the S register is treated as double precision. 

SIGN Sign Flag (Output) . 
If the final result of the last operation was negative, SIGN is 
HIGH. If the final result of the last operation was not 
negative, SIGN is lOW. 

SLAVE Master/Slave Mode Select (Input) 
When SLAVE is lOW, SLAVE mode is selected. In this 
mode, all outputs except MSERR are disabled. When 
SLAVE is HIGH, MASTER mode is selected. 

TSELo - TSELs T -Multiplexer Control Inputs (Input) 
TSElo - TSEl3 .select the data input to the AlU T -port. 

reduced latency; optional pipelining is available to boost 
throughput for array operations. 

The data path consists of the 32-bit input buses Rand S; two 
64-bit input operand registers; an 8-by-64-bit register file for 
storage of intermediate results; three operand-selection multi­
plexers that provide for orthogonal selection of input oper­
ands; a 64-bit output register; and an output multiplexer that 
permits the selection of 32 MSBs, or 32 lSBs of data. Input 
operands enter the processor through the Rand S buses, and 
are then demultiplexed and buffered for subsequent storage in 
registers Rand S. The operand selection multiplexers route 
the operands to the AlU. Operation results are stored in 
register F, and leave the device on the 32-bit output bus F. 
The results can also be stored in the register file for use in 
subsequent operations. 
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Instruction Set 

The Am29C327 implements 58 arithmetic and logical instruc­
tions. Thirty-five instructions operate on floating-point num­
bers; these instructions fall into the following categories: 
• Addition/subtraction 
• Multiplication 
• Multiplication-accumulation 
• Comparison 
• Selecting the larger or smaller of two numbers 
• Rounding to integral value 
• Absolute value, negation 
• Reciprocal seed generation 
• Conversion between any of the supported floating-point 

formats 
• Conversion of a floating-point number to an integer format, 

with or without a scale factor 
• Pass operand 

By concatenating these operations, the user can also perform 
division, square-root extraction, polynomial evaluation, and 
other functions not implemented directly. 

Twenty-two instructions operate on integers, and belong to the 
following general categories: 
• Addition/subtraction 
• Multiplication 
• Comparison 
• Selecting the smaller or larger of two numbers 
• Absolute value, negation, pass operand 

• Logical operations; e.g., AND, OR, XOR, NOT 
• Arithmetic, logical, and funnel shifts 
• Conversion between single- and double-precision integer 

formats 
• Conversion of an integer number to a floating-point format, 

with or without a scale factor 

One special instruction is provided to move data. 

Mixed-Precision Operations 

All Am29C327 instructions, floating-point or integer, can be 
performed with either single- or double-precision operands. In 
addition, the user can elect to mix preCisions within an 
operation. All operations are performed in double-precision 
internally; the user specifies the precisions of the input 
operands and the required precision for the output operand. 
The necessary precision conversions are made in concert with 
the selected operation, with no additional cycle-time over­
head. 

110 Modes 

The Am29C327 supports eight I/O modes that afford flexible 
interface to a variety of 32- and 64-bit systems. 

Fault Detection Features 

The Am29C327 contains special comparison hardware to 
allow the operation of two processors in parallel, with one 
processor (the slave) checking the results produced by the 
other (the master). This feature is of particular importance in 
the design of high-reliability systems. 
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ENiD-­
ENRD-­
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Ei'iD-­
EMlFD-­
FSELD--
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PSELO-3 

QSELO-3 

TESLO-3 

RMO·2 L....'",----, 

10·13 

siiiF 

FO·31 

6 

RF7 .• RFO 
REGISTER FILE 

65 

STATUS REGISTER 

IAASTERISLAVE COMPARATOR 

FLAG1·FLAGS 
SIGN 

Figure 1. Am29C327 Double-Precision Floating-Point Processor 
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Block Diagram Description 
A block diagram of the Am29C327 is shown in Figure 1. The 
Am29C327 comprises input registers, operand selection multi­
plexers, instruction register, ALU, output register/register file, 
status register, output selection multiplexer, mode register, 
and the master/slave comparator. 

Input Registers/Input Modes 

Operands enter the processor through the Rand S buses, and 
are then demultiplexed and buffered for subsequent storage in 
the 65-bit registers Rand S. Input operands may be either 
single-precision (32-bit) or double-precision (64-bit) as speci­
fied by S/DR and S/DS. Accompanying the input registers are 
two 32-bit temporary registers, R-Temp and S-Temp, that 
allow for the overlapping of operand transfers and ALU 
operations. This arrangement of temporary registers and 
demultiplexers permits data and corresponding precision bit 
S/DR or S/DS to be loaded into the 65-bit R register and 65-
bit S register via one of the eight input modes: 

1. 32-bit-bus, double-cycle, LSWs first 
2. 32-bit-bus, double-cycle, MSWs first 
3. 32-bit-bus, single-cycle, LSWs first 
4. 32-bit-bus, single-cycle, MSWs first 
5 .. 64-bit-bus, double-cycle, R first 
6. 64-bit-bus, double-cycle, S first 
7. 64-bit-bus, single-cycle, R first 
8. 64-bit-bus, single-cycle, S first 

These modes are described in detail in the Input Modes 
Description section. 

Operand Selection Multiplexers 

The operand selection multiplexers route operands to the 
ALU. These multiplexers, as well as selecting operands from 
input registers Rand S and register file locations RFO - RF7, 
also have access to a set of constants (0, 0.5, 1, 2, 3, Pi). 
These constants are double-precision preprogrammed num­
bers for use in ALU operations, and are automatically provided 
in the appropriate floating-point or integer format. 

Instruction Register 

The instruction register stores a 32-bit word specifying the 
current processor operation. Included in the instruction word 
are fields that specify the P, Q, and T multiplexer selects, the 
rounding modes; the core operation to be performed by the 
ALU; sign-change controls for ALU input and result operands; 
and the single/double-precision control for the output oper­
and. The multiplexer selects and the instruction word are 
described in detail in the Instruction Set section; Rounding 
modes are described in Appendix B. 

ALU 
The ALU is a combinatorial arithmetic/logic unit that performs 
a large repertoire of floating-point and integer operations. The 

ALU has three operand inputs, and performs operations of the 
form (P*Q) + T. Most ALU operations require only one or two 
input operands; for example, addition requires only operands 
P and T, multiplication only operands P and Q, and precision 
conversion only operand P. Many ALU arithmetic operations 
allow for the independent control of operand signs, thus 
greatly increasing the number of arithmetic expressions that 
can be evaluated in a single ALU pass. 

The ALU can be configured in either a flow-through mode, for 
which the ALU is completely combinatorial, or a pipelined 
mode, for which ALU operations incur one or two pipeline 
delays, but which results in a higher throughput than flow­
through mode. 

A detailed description of ALU operations appears in the 
Instruction Set section. 

Output Register/Register File 

The results of the operations performed by the ALU are stored 
in the 64-bit output register F. Results can. also be stored in 
the 8-by-64-bit register file for use in subsequent operations. 
Each register file location contains a 65th bit indicating the 
precision of the operand stored in that location, thus permitting 
the ALU to correctly process the operand in subsequent 
operations. 

Status Register 

The status register is a 7 -bit register that stores flags 
pertaining to the most recently performed operation. A de­
tailed description is provided in the Instruction Set section. 

Output Multiplexer 

The output multiplexer routes operation results to the F bus. 
This multiplexer selects the 32 MSBs of the output register or 
the 32 LSBs. 

Master/Slave Comparator 

Each Am29C327 output Signal has associated logic that 
compares that signal with the signal that the processor is 
providing internally to the output driver; any discrepancies are 
indicated by assertion of signal MSERR. 

For a single processor, this output comparison detects short 
circuits in output signals or defective output drivers, but does 
not detect open cirCUits. It is possible to connect a second 
processor in parallel with the first, with the second processor's 
outputs disabled by assertion of signal SCA'ii'E. The second 
processor detects open-circuit signals, as well as providing a 
check of the outputs of the first. 

Mode Register 

The mode register contains processor parameters that are 
changed infrequently. The 32-bit mode word is loaded into the 
register via the R bus. A detailed description of the mode 
register is provided in the Mode Register Description section. 
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Mode Register Description 

The "load Mode Register" instruction loads 'a 32-bit word 
appearing on the R port into the mode register. Data is 
clocked into the register on the lOW-to-HIGH transition of 
ClK. The register is organized as described below: 

MO - M3 - Floating-Point Format Select: 

Mt MO Primary Format 

0 0 IEEE 
0 1 DEC F (SINGLE), DEC D (DOUBLE) 
1 0 DEC F (SINGLE), DEC G (DOUBLE) 
1 1 IBM 

M3 M2 Alternate Format 

0 0 IEEE 
0 1 DEC F (SINGLE), DEC D (DOUBLE) 
1 0 DEC F (SINGLE), DEC G (DOUBLE) 
1 1 IBM 

Primary and Alternate Floating-Point Formats 

All floating-point operations with the appropriate precisions 
are performed in the primary format selected by mode register 
bits MO and Ml except for the two following operations: 

1. "Convert T to Alternate Floating-Point Format" in 
which the T operand is in the Primary Floating-Point 
Format selected by mode register bits MO and Ml, 
and the result generated is in the Alternate Float­
ing-Point Format specified by mode register bits M2 
and M3. 

2. "Convert T from Alternate Floating-Point Format" 
in which the T operand is in the Alternate Floating­
Point Format specified by mode register bits M2 
and M3, and the result is in the Primary Floating­
Point Format specified by mode register bits MO 
and MI. 

Conversion or Scaling from Integer to Floating-Point gener­
ates a floating-point result in the Primary Floating-Point Format 
selected by mode register bits MO and MI. 

When mode register bits M2 and M3 are not used to specify an 
Alternate Floating-Point Format, they are "don't cares". 

Floating-point formats are discussed in further detail in Appen­
dix A. 

M4 - Saturate Enable: If M4 is HIGH, overflowed results are 
replaced by the largest representable value in the selected 
format of the same sign as the overflowed result. If M4 is 
lOW, the result is not changed. If M6 is HIGH and the result 
format is IEEE, saturation is disabled. 

MS -IEEE Affine/Projective Select: If M5 is HIGH, affine 
mode is selected. If M5 is LOW, projective mode is selected. 
The interpretation of infinities is determined by M5. The only 
differences between the modes occur during the addition and 
subtraction of infinities. 

Operation Affine Mode Projective Mode 

(+ CO) + (+ CO) Output +co Output Quiet NAN, set 
invalid and reserved 
operand flags 

(_CO) + (_co) Output _00 Output Quiet NAN, set 
invalid and reserved 
operand flags 

(+ 00) _ (_00) Output +00 Output Quiet NAN, set 
Invalid and reserved 
operand flags 

(_00) _ (+ 00) Output _00 Output Quiet NAN, set 
invalid and reserved 
operand flags 

If the current floating-point format is not I EEE, this bit has no 
effect. 

M6 -IEEE Trap Enable: If M6 is HIGH and the result format 
is IEEE, IEEE trapped operation is enabled; the saturate (M4) 
arid sudden underflow (M7) bits are ignored. For an under­
flowed result, the exponent is replaced by e = e + 192 (SP), or 
e = e + 1536. (OP), with the significand unchanged. For an 
overflowed result, the exponent is replaced by e = e - 192 
(SP), or e = e - 1536 (DP), with the significand unchanged. If 
M6 is LOW and the result format is not IEEE, IEEE trapped 
operation is disabled. 

M7 -IEEE Sudden Underflow Enable: If M7 is HIGH and 
IEEE traps are disabled (M6 LOW), all IEEE denormalized 
results are replaced by a zero of the same sign, If M7 is LOW, 
a valid denormalized number will be produced. This bit has no 
effect for result formats other than IEEE. 

M8 - IBM Significance Mask Enable: If MB is HIGH, certain 
IBM operations having intermediate results of 0 will produce a 
final result of 0 with the biased exponent unchanged. If MB is 
LOW, these operations will produce a final result of true-zero. 
This bit has no effect for result formats other than IBM. 

M9 -IBM Underflow Mask Enable: If M9 is HIGH, certain 
underflowed IBM operations will produce a normalized result 
with the exponent replaced by e + 12B. If M9 is LOW, these 
operations will produce a final result of true-zero. This bit has 
no effect for result formats other than IBM. 

MtO: Reserved for future use (must be set to Logic 0) 

Mtt -Integer Multiplication Signed/Unsigned Select: If 
MIl is HIGH, the input operands are treated as two's­
complement numbers. If MIl is LOW, the input operands are 
treated as unsigned numbers. This bit has no effect for 
operations other than integer multiplication. 

M12, Ml3-lnteger Multiplication Format Adjust: Selects 
the output format for integer multiplications. The user may 
select either the MSBs or the lSBs of the result of an integer 
multiplication: 

Mt3 M12 Output Format 

0 0 LSBs 
0 1 lSBs, format-adjusted 
1 0 MSBs 
1 1 MSBs, format adjusted 

"Format-adjusted" indicates that the product is shifted left 
one place before the MSBs or lSBs are selected. 
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M14 - M16 -Input Mode: Selects the input bus mode: 

M16 M15 M14 Input Mode 

0 0 0 
32-bit-bus, single-cycle, LSW 
first 

0 0 1 
32-bit-bus, single-cycle, MSW 
first 

0 1 0 
32-bit-bus, double-cycle, LSW 
first 

0 1 1 32-bit-bus, double-cycle, MSW 
first 

1 0 0 64-bit-bus, single-cycle, R first 
1 0 1 64-bit-bus, single-cycle, S first 
1 1 0 64-bit-bus, double-cylce, R first 
1 1 1 64-bit-bus, double-cycle, S first 

Additional information on input modes can be found in 
the Input Modes section. 

M17 - F Register Feedthrough Enable: When M17 is HIGH, 
register F is made transparent. When M17 is LOW, the ALU 
output data is clocked into the F register on the next LOW-to­
HIGH transition of CLK. 

M18 - Status Register Feedthrough Enable: When M16 is 
HIGH, the status register is made transparent. When M16 is 
LOW, the output flags are clocked into the status register on 
the next LOW-to-HIGH transition on CLK. 

M19, M20 - Pipeline Mode Select: 

M20 M19 Pipeline Mode 

0 X Flow-through mode 
1 0 Single-pipeline 

mode for all opera-
tions 

1 1 Double-pipeline 
mode for multiply! 
accumulate 
Single-pipeline 
mode for other 
operations 

M21- M31 - Reserved for factory test (must be set to Logic 0) 

Input Modes 

The Am29C327 supports a total of eight input modes for 
loading data into the Rand S registers. 

The 32-bit bus modes allow the user to connect each input 
port (Ro - R31 and So - S31) to separate 32-bit buses. 64-bit 
operands can then be loaded by placing the MSBs and LSBs 
alternately on the appropriate ports. In the 64-bit bus modes, 
the two input ports are configured internally as a single 64-bit 
port. The Am29C327 may then be connected directly to a 64-
bit bus, and 64-bit operands may be loaded in single opera­
tion. Either the 32-bit bus modes or the 64-bit bus modes may 
be used regardless of the precision of the operands being 
transferred - the choice of input modes will in practice be 
determined by the system into which the Am29C327 is to be 
integrated. 

Single-cycle input modes allow two 64-bit operands to be 
loaded in a single clock cycle. This necessitates driving the 
input buses at twice the speed of the Am29C327. For systems 
when this is not practical, the double-cycle modes allow the 
loading of one 64-bit operand (or two 32-bit operands) per 
clock cycle. 

Data may be loaded from the input buses to the R register and 
S register using one of the eight input modes: 

1. 32-Bit Bus, Single-Cycle, LSWs First 
2. 32-Bit Bus, Single-Cycle, MSWs First 
3. 32-Bit Bus, Double-Cycle, LSWs First 
4. 32-Bit Bus, Double-Cycle, MSWs First 
5. 64-Bit Bus, Single-Cycle, R First 
6. 64-Bit Bus, Single-Cycle, S First 
7. 64-Bit Bus, Double-Cycle, R First 
6. 64-Bit Bus, Double-Cycle, S First 

The choice of the input modes is determined by mode register 
bits M14 - M16. 

In order to permit the loading of new operands to be 
overlapped with the execution of a current operation, tempo­
rary registers are provided within the" operand router" block 
(shown in Figure 1). The operation of these temporary 
registers is transparent to the user. The conditions under 
which they are loaded depends on the input mode selected. 

The eight input modes are described on the following pages. 
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32-Blt Bus, Single-Cycle, LSW First (M16 = 0, M15 = 0, operand similarly placed on the S-input port. After one 
M14=0) complete cycle, the Rand S registers contain the Rand S 

In this mode, the two halves of the 64-bit R operand are operands, respectively. 

placed on the R-input bus in successive half-oycles, with the S. 

<D ® 

CLKJ I I I I I 
• • • • • • • • • • • • • • • • • · , • 

~ 
, 
• 

RO-RSl 
, 
• • • , · , , , · I . • 

Y2I2I 
, , , , 

$O-Sa1 
, , , , , , , , , , , , I , 

I I , , 

X X 
I , 

INSTRUCT!QN 
I I 
I • 

LINES, SJqR, I I 

S/DS I I , I 
I , , I 
I • I I · I I , 

" V-
I , 

ENR I I 

rn I I 
I , 

ENI I I 
I I 
I I 
I I 

FO-F31 X X FLAGS,SIGN 
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Timing of Operations with Input Mode 1 
(32-Blt Bus, Single-Cycle, LSW First)* 

'Assumes flow-through operation, F register, and S register clocked. 

In this mode, the temporary registers are clocked on every register, and the most-significant 32 bits of the S operand are 
HIGH-to-LOW clock transition. loaded from ihe S-input port into the most-significant half of 

At 1, the least-significant 32 bits of the R operand are loaded the S register. 

from the R-input pori into the R-temp register, and the least- At the same time, at 2, the output· of the R-temp register is 
significant 32 bits of the S operand are loaded from the S-input loaded into the least-significant half of the R register, and the 
port into the S-temp register. Both words are loaded on the output of the S-temp register is loaded into the least-
HIGH-to-LOW transition of the clock. significant half of the S register. 

At 2, the most-significant 32 bits of the R operand are loaded If an input operand is single-precision, the 32-bit data is kept 
from the R-input port into the most-significant half of the R on the input bus for the full cycle. 

, 
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32-Bit Bus, Single-Cycle, MSW First (M16 = 0, M15 = 0, 
M14= 1) 

In this mode, the two halves of the 64-bit R operand are 
placed on the R-input bus in successive half-cycles, with the S 

0 ® 

CLKJ I I 
· · . · · , · · · · , · · 

Ro·R31 ~ , , · , · , 
, . 

SO,S31 ~ 
· , · 

X · INSTRUCTION X LINES, S/~R, 
S/DS 

, · , · 

operand similarly placed on the S-input port. After one 
complete cycle, the Rand S registers contain the Rand S 
operands, respectively. 

I I I I 
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Timing of Operations with Input Mode 2 
(32-Bit Bus, Single-Cycle, MSW First)" 

• Assumes flow-through operation, F register, and S register clocked. 

In this mode, the temporary registers are clocked on every 
HIGH-to-LOW clock transition. 

At I, the most-significant 32 bits of the R operand are loaded 
from the R-input port into the R-temp register, and the most­
significant 32 bits of the S operand are loaded from the S-input 
port into the S-temp register. Both words are loaded on the 
HIGH-to-LOW transition of the clock. 

At 2, the least-significant 32 bits of the R operand are loaded 
from the R-input port into the least-significant half of the R 

register, and the least-significant 32 bits of the S operand are 
loaded from the S-input port into the least-significant half of 
the S register. 

At the same time, at 2, the output of the R·temp register is 
loaded into the most-significant half of the R register, and the 
output of the S-temp register is loaded into the most­
significant half of the S register. 

If an input operand is single-precision, the 32-bit data is kept 
on the input bus for the full cycle. 
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32-Bit Bus, Double-Cycle, LSW First (M16 = 0, M15 = 1, 
M14=0) 

In this mode, the two halves of the 64-bit R operand are 
placed on the R-input bus in successive cycles, with the S 
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UNES,SJi;2.R, 
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X X RLSW 

----J 
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operand similarly placed on the S-input port. After two cycles, 
the Rand S registers contain the Rand S operands, 
respectively. 
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Timing of Operations with Input Mode 3 
(32-Bit Bus, Double-Cycle, LSW First)* 

* Assumes flow-through operation, F register, and S register clocked. 

In this mode, the temporary registers are clocked on every 
LOW-to-HIGH clock transition. 

At 1, the least-significant 32 bits of the R operand are loaded 
from the R-input port into the R-temp register, and the least­
significant 32 bits of the S operand are loaded from the S-input 
port into the S-temp register. 

At 2, the most-significant 32 bits of the R operand are loaded 
from the R-input port into the most-significant half of the R 

register, and the most-significant 32 bits of the S operand are 
loaded from the S-input port into the most-significant half of 
the S register. 

At the same time, at 2, the output of the R-temp register is 
loaded into the least-significant half of the R register, and the 
output of the S-temp register is loaded into the least­
significant half of the S register. 
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32-Blt Bus, Double-Cycle, MSW First (M16 = 0, M15 = 1, 
M14 = 1) 

In this mode, the two halves of the 64-bit R operand are 
placed on the R-input bus in successive cycles, with the S 
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operand similarly placed on the S-input port. After two cycles, 
the Rand S registers contain the Rand S operands, 
respectively. 
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Timing of Operations with Input Mode 4 
(32-Bit Bus, Double-Cycle, MSW First)* 

• Assumes flow-through operation, F register, and S register clocked. 

In this mode, the temporary registers are clocked on every 
LOW-to-HIGH clock transition. 

At I, the most-significant 32 bits of the R operand are loaded 
from the R-input port into the R-temp register, and the most­
significant 32 bits of the S operand are loaded from the S-input 
port into the S-temp register. 

At 2, the least-significant 32 bits of the R operand are loaded 
from the R-input port into the least-significant half of the R 

register, and the least-significant 32 bits of the S operand are 
loaded from the S-input port into the least-significant half of 
the S register. 

At the same time, at 2, the output of the R-temp register is 
loaded into the most-significant half of the R register, and the 
output of the S-temp register is loaded into the most­
significant half of the S register. 
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64-Blt Bus, Single-Cycle, R First (M16 = 1, M15 = 0, halfwords are loaded in'the first half cycle. Similarly, the two 
M14=O) halves of the S operand are loaded in the second half cycle. 

In this mode, the MSW of the 64-bit R operand is placed on After one full cycle, the Rand S registers contain the Rand S 

the R-input bus and the lSW of the S-input bus. Both operands, respectively. 
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Timing of Operations with Input Mode 5 
(64-Bit Bus, Single-Cycle, R First)* 

'Assumes flow-through operation, F register, and S register clocked. 

In this mode, the temporary registers are clocked on every register, and the least-significant 32 bits of the S operand are 
HIGH-to-lOW clock transition. loaded from the S-input port into the least-significant half of 

At 1, the most-significant 32 bits of the R operand are loaded the S register. 

from the R-input port into the R-temp register, and the least-
At the same time, at 2, the output of the R-temp register is significant 32 bits of the R operand are loaded from the S-

input port into the S-temp register. loaded into the most-significant half of the R register, and the 
output of the S-temp register is loaded into the least-

At 2, the most-significant 32 bits of the S operand are loaded significant half of the R register. 
from the R-input port into the most-significant half of the S 

I 
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64-Blt Bus, Single-Cycle, S First (M16 = 1, M15 = 0, 
M14 = 1) 

In this mode, the MSW of the 64-bit S operand is placed on the 
R-input bus and the LSW on the S-input bus. Both halfwords 
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are loaded in the first half cycle. Similarly, the two halves of 
the R operand are loaded in the second half cycle. After one 
full cycle, the Rand S registers contain the Rand S operands, 
respectively. 
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Timing of Operations with Input Mode 6 
(64-Bit Bus, Single-Cycle, S First)· 

• Assumes flow-through operation, F register, and S register clocked. 

In this mode, the temporary registers are clocked on every 
HIGH-to-LOW clock transition. 

At 1, the most-significant 32 bits of the S operand are loaded 
from the R-input port into the R-temp register, and the least­
significant 32 bits of the S operand are loaded from the S-input 
port into the S-temp register. 

At 2, the most-significant 32 bits of the R operand are loaded 
from the R-input port into the most-significant half of the R 

register, and the least-significant 32 bits of the R operand are 
loaded from the S-input port into the least-significant half of 
the R register. 

At the same time, at 2, the output of the R-temp register is 
loaded into the most-significant half of the S register, and the 
output of the S-temp register is loaded into the least­
significant half of the S register. 
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64-Blt Bus, Double-Cycle, R First (M16 = 1, M15 = 1, 
M14=O) 

In this mode, the MSW of the 64-bit R operand is placed on 
the R-input bus and the LSW of the S-input bus. Both 

CD 

I 

halfwords are loaded in the first cycle. Similarly, the two halves 
of the S operand are loaded in the second cycle. After the two 
cycles, the Rand S registers contain the Rand S operands, 
respectively. 
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Timing of Operations with Input Mode 7 
(64-Bit Bus, Double-Cycle, R First)* 

"Assumes flow-through operation, F register, and S register clocked. 

In this mode, the temporary registers are clocked on every 
LOW-to-HIGH clock transition. 

At I, the most-significant 32 bits of the R operand are loaded 
from the R-input port into the R-temp register, and the least­
significant 32 bits of the A operand are loaded from the S­
input port into the S-temp register. 

At 2, the most-significant 32 bits of the S operand are loaded 
from the R-input port into the most-significant half of the S 

register, and the least-significant 32 bits of the S operand are 
loaded from the S-input port into the least-significant half of 
the S register. 

At the same time, at 2, the output of the A-temp register is 
loaded into the most-significant half of the R register, and the 
output of the S-temp register is loaded into the least­
significant half of the R register. 
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64-Bit Bus, Double-Cycle, S First (M16 = 1, M15 = 1, 
M14 = 1) 

In this mode, the MSW of the 64-bit S operand is placed on the 
R-input bus and the LSW of the S-input bus. Both halfwords 
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are loaded in the first cycle. Similarly, the two halves of the R 
operand are loaded in the second cycle. After the two cycles, 
the Rand S registers contain the Rand S operands, 
respectively. 

® 

I I I I I , , , , , , , , 
, , , , , 

X 
, , , , , , , , , , , , , , 

X 
, , , , , , , , , , , , , , , , 

X 
, , , , , , , , , , , , , , , , , , , 

~ V-
, 

WR , , 
rm , , , , 
ENI , , , , , , , , 

Fo-F31 X X FLAGS, SIGN 

WF024942 

Timing of Operations with Input Mode 8 
(64-Bit Bus, Double-Cycle, S First)* 

'Assumes flow-through operation, F register, and S register clocked. 

In this mode, the temporary registers are clocked on every 
LOW-to-HIGH clock transition. 

At 1, the most-significant 32 bits of the S operand are loaded 
from the R-input port inot the R-temp register, and the least­
significant 32 bits of the S operand are loaded from the S-input 
port into the S-temp register. 

At 2, the most-significant 32 bits of the R operand are loaded 
from the R-input port into the most-significant half of the R 

register, and the least-significant 32 bits of the R operand are 
loaded from the S-input port into the least-significant half of 
the R register. 

At the same time, at 2, the output of the R-temp register is 
loaded into the most-significant half of the S register, and the 
output of the S-temp register is loaded into the least­
significant half of the S register. 
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Pipe lining of Operations 

The floating-point ALU of the Am29C327 may be operated in 
one of three pipeline modes: 

1. Flow-Through Mode 
2. Single-Pipelined Mode 
3. Double-Pipelined Mode 

Flow-Through Mode 

In this mode the floating-point ALU acts as a purely combina­
torial device. 

Slngle-Plpelined Mode 

In this mode the floating-point ALU contains a single pipeline 
delay for all operations; throughput is roughly double that for 
unpipelined mode. Simplified diagrams for the ALU configura­
tion for single-pipelined mode are shown in Figure 2. 

Double-Pipellned Mode 

In this mode, which applies only to the multiplication-accumu­
lation operation, the ALU contains two pipeline delays; 
throughput is roughly triple that for the unpipelined multiplica­
tion-accumulation operation. Simplified block diagrams are 
shown in Figure 3. 

Figures 4 and 5 provide timing diagrams for all operations 
except multiply-accumulate, illustrating flow-through mode and 
pipelined mode, respectively. Figures 6, 7, and B provide 
timing diagrams for multiply-accumulate, illustrating flow­
through mode, single-pipelined mode, and double-pipelined 
mode, respectively. 

a) MlJI. TIp\' Y·ACCUMULATE 

INSTRUCTION 
PATH 

The choice of pipelining mode affects only the floating-point 
ALU. Operations of other parts olthe Am29C327, such as the 
input registers, the output register, the mode register, and the 
instruction register are not affected by the choice of pipelining 
mode. However, the instruction bits are pipelined as they pass 
through the ALU. This permits instructions to be interleaved in 
pipelined mode. 

The desired pipeline mode or modes can be invoked by setting 
mode register bits M19 and M20 to the appropriate yalues. 

When using the Am29C327 in either single-pipelined or 
double-pipelined mode, two conditions must be observed: 

1. The" load mode register" instruction is not pipelined, nor 
are any of the mode register bits. When the mode register 
is loaded, any differences between the current mode and 
the previous mode take effect immediately. In single­
pipelined mode, the .user should separate the last valid 
ALU instruction and the" load mode register" instruction 
with one "NO-OP" instruction. In double-pipelined mode, 
the user should separate them with two "NO-OP" instruc­
tions. A NO-OP instruction is any instruction whose result 
is not stored in register F, or the register file. 

2. A multiplication-accumulation instruction cannot be imme­
diately followed by any other type of instruciion. This 
problem can be avoided by inserting a "dummy" multipli­
cation-accumulation instruction at the end of a multiplica­
tion-accumulation instruction. This "dummy" is any in­
struction whose results are not stored in register F or the 
register file. 

PtPEUNE 
REGISTER 

INSTRUCTION 
PATH , 

-------------------------

B) OlHEROPERATIONS 

DF006260 

Figure 2. ALU Configuration for Single-Pipelined Mode 

4-152 



P Q 

..... -- .. ----_ ..... _ .................... --

I) MUlTIPLY·ACCUIoU.ATE 

o 

PIPELINE 
REGISTER 

B) OTHER OPERATIONS 

Figure 3. ALU Configuration for Double·Plpelined Mode 
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elK 

F 0-31' R.AG'_6, SIGN X RESULT 1 X RESULT 2 X RESULT 3 X RESULT. C 
WF024960 

Figure 4. Timing for All Operations EXCEPT Multiply-Accumulate, Flow-Through Mode 

ClK 

INSTRUCTION 

FO_31 ' FlAGl -6. SIGN 

WF024971 

Figure 5. Timing for All Operations EXCEPT Multiply-Accumulate, Pipelined Mode 
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ClK J I 
RO.:!1 0 0 0 0 0 0 0 0 

'-----v------" '-----v------" '-----v------" '-----v------" 
Rl R2 R3 R4 

So.31 0 0 0 0 P--.-O 0 0 
'-----v------" '-----v------" '-----v------" 

SI S2 S3 54 

INSTRUCTION ~ a a a 
F0-31' FlAG, -6' SIGN 

X RESULT 1 X RESULT 2 X 
WF024980 I 

Figure 6. Timing for Multiply-Accumulate, Flow-Through Mode 

CLK 

INSTRUCTION a a a 'EJ a a 
F 0-31' FlAG, -6. SIGN 

X RESULT 1 X RESULT 2 X RESULT 3 X 
WF024990 

Figure 7. Timing for Multiply-Accumulate, Slngle-Plpelined Mode 

elK 

R0-31 

INSTRUCTION 

WF025001 

Figure 8. Timing for Multiply-Accumulate, Double-Pipelined Mode 
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Instruction Set 

Instruction Register Format 

The 14-bit instruction word 10 -113 comprises sign-change 
controls, integer/floating-point select bit, and the opcode. 

la 17 16 15 

I SIGN (P) I 'SIGN (0) I "SIGN (T) I SIGN (F) I INT/FP I OPCODE 

The opcode field, 14 -Ia,specifies the core operation to be 
performed by the ALU; instruction bit IS selects between 

floating-point and integer formats. The core operations and 
their corresponding opcodes are listed in Table 1. 

TABLE 1. CORE OPERATIONS/OPCODES 

15 14 13 12 11 10 Operation (floating-Point) 

0 0 0 0 0 0 P 
0 0 0 0 0 1 P+T 
0 0 0 0 1 0 P*O 
0 0 0 0 1 1 COMPARE P, T 
0 0 0 1 0 0 MAX P, T 
0 0 0 1 0 1 MIN P, T 
0 0 0 1 1 0 CONVERT T TO INTEGER 
0 0 0 1 1 1 SCALE T TO INTEGER BY 0 
0 0 1 0 0 0 (P*O)+T 
0 0 1 0 0 1 ROUND T TO INTEGRAL VALUE 
0 0 1 0 1 0 RECIPROCAL SEED OF P 
0 0 1 0 1 1 CONVERT T TO ALTERNATE F.P. FORMAT 
0 0 1 1 0 0 CONVERT T FROM ALTERNATE F.P. FORMAT 

15 14 13 12 11 10 Operation (Integer) 

1 0 0 0 0 0 P 
1 0 0 0 0 1 P+T 
1 0 0 0 1 0 P*O 
1 0 0 0 1 1 COMPARE P, T 
1 0 0 1 0 0 MAX P, T 
1 0 0 1 0 1 MIN P, T 
1 0 0 1 1 0 CONVERT T TO FLOATING-POINT 
1 0 0 1 1 1 SCALE T TO FLOATING-POINT BY 0 
1 1 0 0 0 0 P OR T 
1 1 0 0 0 1 P AND T 
1 1 0 0 1 0 P XOR T 
1 1 0 0 1 1 SHIFT P LOGICAL 0 PLACES 
1 1 0 1 0 0 SHIFT P ARITHMETIC 0 PLACES 
1 1 0 1 0 1 FUNNEL SHIFT PT LOGICAL 0 PLACES 

Core operations MOVE P and LOAD MODE REGiSTER can both be performed in either floating-point or integer format: 

15 14 13 12 11 10 Operation 

X 1 1 0 0 0 MOVE P 
X 1 1 1 1 1 LOAD MODE REGISTER 
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Slgn·Change Selects 

Each ALU input and output operand has associated hardware 
that can be used to modify operand signs (see Figure 9). 
These sign-change blocks, when applied to core operations, 
greatly increase the number of available operations. A core 
operation of P + T, for example, can be used to perform 
operations such as P - T, ABS(P + T), ABS(P) + ABS(T), and 
others, simply by modifying the signs of the input and output 
operands. 

p Q 

Using the sign-change blocks, the sign of an input operand 
may be left unchanged, inverted, set to zero, or set to one; the 
sign of the output operand may be left unchanged, set to zero, 
set to one, set to the sign of the P input operand, or set to the 
sign of the T input operand. Select decodes for the P, 0, T, 
and F operand sign-change blocks are shown in Table 2-1, 2-
2, 2-3, and 2-4, respectively. 

T 

80007600 

Figure 9. ALU Sign·Change Blocks 

TABLE 2·1. SELECT DECODE FOR P OPERAND 
SIGN·CHANGE BLOCK 

113 112 Sign (P') 

0 0 SIGN (P) 
0 1 SiGN (P) 
1 o. 0 
1 1 1 

TABLE 2·3. SELECT DECODE FOR T OPERAND 
SIGN·CHANGE BLOCK 

19 18 Sign (T') 

0 0 SIGN T 
0 1 Sirnii T 
1 0 0 
1 1 1 

TABLE 2·2. SELECT DECODE FOR Q OPERAND 
SIGN·CHANGE BLOCK 

111 110 Sign (Q') 

0 0 SIGN (0) 
0 1 SIGN (0) 
1 0 0 
1 1 1 

TABLE 2·4. SELECT DECODE FOR F OPERAND 
SIGN·CHANGE BLOCK 

Core Operation 111 110 17 16 Sign (F) 

P, 0 x 0 0 SIGN (F) 
Max P, T 0 x 0 1 SiGN (F) 

or 0 x 1 0 0 
Min P, T 0 x 1 1 1 

1 0 x x SIGN (P) 
1 1 x x SIGN (T) 

x x 0 0 SIGN (F) 
Other x x 0 1 Sirnii (F) 

x x 1 0 0 
x x ·1 1 1 
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Operand Multiplexer Selects 

Instruction fields PSElo - PSELa, aSElo - aSELs, and 
TSElo - TSELa specify the select codes for the P, a, and T 

operand multiplexers, respectively; the codes are summarized 
in Table 3. 

TABLE 3. OPERAND MULTIPLEXER SELECT CODES 

PSEL3 PSELz PSEL1 PSELo 
QSEL3 QSELz QSEL1 QSELo 
TSEL3 TSELz TSEL1 TSELo 

0 0 0 0 
0 0 0 1 
0 0 1 0 
0 0 1 1 

0 0 0 
0 0 1 
0 1 0 
0 1 1 

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

Operand Precisions 

The Am29C327 supports mixed-precision operations, so that it 
is possible, for example, for an operation to have single­
precision inputs and a double-precision output, or one single­
and one double-precision input, or any other combination. 

Precision of the operands in registers Rand S is specified by 
signals S/OR and S/OS. A logic HIGH indicates a single­
precision operand or operands; a LOW, double precision. 

Precision of an operation result is specified by signal S/OF. A 
logic HIGH indicates a single-precision operand; a logic LOW, 
double-precision. 

Operands stored in the register file are each accompanied by 
a bit indicating that operand's precision; this precision informa-

P 
Q 
T 

R 
S 
0 

0.5 (Floating Point) 
-1 (Integer) 
1 
2 
3 

Pi (Floating Point) 
Max Neg. Two's-Comp. Value (Integer) 
Register File Location 0 (RFO) 
Register File Location 1 (RF1) 
Register File Location 2 (RF2) 
Register File Location 3 (RFS) 
Register File Location 4 (RF4) 
Register File Location 5 (RF5) 
Register File Location 6 (RF6) 
Register File Location 7 (RF7) 

tion is automatically supplied to the ALU when a register file 
location is used as an input operand to an operation. 

Processor Operations 

Table 4 illustrates a number of possible ALU instructions 
comprising the opcode, integer/floating-point select, and sign­
change fields. Note that the remaining instruction bits - P, a, 
and T operand multiplexer selects; the rounding modes; and the 
output operand precision - can be specified independently. 

The user may create instructions using instruction words other 
than those listed in Table 4. For some core operations, sign­
change control settings are completely arbitrary; for others, 
only the sign-change field values shown in Table 4 are valid. 
Table 5 summarizes permissible sign-change field values for 
each core operation. 
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TABLE 4. INSTRUCTION WORDS 

Sign 

Operation P 0 T F IIF Opcode 

FP P 00 00 xx 00 0 00000 
FP -P 00 00 xx 01 0 00000 
FP ABS (P) 00 00 xx 10 0 00000 
FP Sign (T)' ABS (P) 00 11 xx xx 0 00000 

FP P+T 00 xx 00 00 0 00001 
FP P-T 00 xx 01 00 0 00001 
FP T-P 01 xx 00 00 0 00001 
FP -P-T 01 xx 01 00 0 00001 
FP ABS (P +T) 00 xx 00 10 0 00001 
FP ABS (P-T) 00 xx 01 10 0 00001 
FP ABS (P) + ABS (T) 10 xx 10 00 0 00001 
FP ABS (P) - ABS (T) 10 xx 11 00 0 00001 
FP ABS (ABS (P) - ABS (T» 10 xx 11 10 0 00001 

FP P'O 00 00 xx 00 0 00010 
FP (-P) , 0 01 00 xx 00 0 00010 
FP ABS (P , 0) 00 00 xx 10 0 00010 

FP Compare P, T 00 xx 01 00 0 00011 

FP Max P, T 00 00 01 00 0 00100 
FP Max ABS (P), ABS (T) 10 00 11 00 0 00100 

FP Min P, T 01 00 00 00 0 00101 
FP Min ABS (P), ABS (T) 11 00 10 00 0 00101 

FP Limit P to Magnitude T 11 10 10 xx 0 00101 

FP Convert T to Integer xx xx 00 00 0 00110 

FP Scale T to Integer by 0 xx 00 00 00 0 00111 

FP T+P'O 00 00 00 00 0 01000 
FP T-P'O 01 00 00 00 0 01000 
FP -T+ P'O 00 00 01 00 0 01000 
FP -T-P*O 01 00 01 00 0 01000 
FP ABS (T) + ABS (P*O) 10 10 10 00 0 01000 
FP ABS (T) - ASS (P*O) 11 10 10 00 0 01000 
FP ASS (P'O) - ASS (T) 10 10 11 00 0 01000 

FP Round T to Integral Value xx xx 00 00 0 01001 

FP Reciprocal Seed (P) 00 xx xx 00 0 01010 

FP Convert T to Alternate xx xx 00 00 0 01011 
Floating-point Format 

FP Convert T from Alternate xx xx 00 00 0 01100 
Floating-point Format 
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TABLE 4. INSTRUCTION WORDS (Cont'd.) 

Sign 

Operation P Q T F IIF Opcode 

Int P 00 00 00 00 1 00000 
Int -P 00 00 00 01 1 00000 
Int ABS (P) 00 00 00 10 1 00000 
Int sign (T)"ABS (P) 00 11 00 xx 1 00000 

Int P+T 00 xx 00 00 1 00001 
Int P-T 00 xx 01 00 1 00001 
Int T-P 01 xx 00 00 1 00001 
Int ABS (P+T) 00 xx 00 10 1 00001 
Int ABS (P-T) 00 xx 01 10 1 00001 

Int P*Q 00 00 xx 00 1 00010 

Int Compare P, T 00 xx 01 00 1 00011 

In! Max P, T 00 00 01 00 1 00100 

Int Min P, T 01 00 00 00 1 00101 

Int Convert T to Float xx xx 00 00 1 00110 

Int Scale T to Float by Q xx 00 00 00 1 00111 

Int P OR T xx xx xx xx 1 10000 

Int P AND T xx xx xx xx 1 10001 

Int P XOR T xx xx xx xx 1 10010 
Int NOT T (see Note 1) xx xx xx xx 1 10010 

Int Shlfl P Logical Q Places 00 00 xx 00 1 10011 

Int Shift P Arithmetic Q Places 00 00 xx 00 1 10100 

Int Funnel Shift PT Q Places 00 00 00 00 1 10101 

Move P xx xx xx xx x 11000 

Load Mode Register xx xx xx xx x 11111 

Notes: t. NOT T is performed by XORing T with a word containing all l' S (integer - 1). When invoking NOT T the 
user must set PSELs - PSELO to 00112, thus selecting integer constant - 1. 
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TABLE 5. ALLOWABLE SIGN-CHANGE/CORE-OPERATION COMBINATIONS 

I 11111 
Sign-Change Fields 

5 43210 Core Operation Sign (P) Sign (Q) Sign (T) Sign (F) 

o 00000 FP P V V x V 
o 00001 FP P+T V x V V 
o 00010 FP P*O V V x V 
000011 FP Compare P, T F x F F 
o 00100 FP Max P, T F F F F 
o 00101 FP Min P, T F F F F 
o 00110 FP Cvt T to Int x x F F 
o 00111 FP Scale T to Int x F F F 
o 01000 FP P*O+T V V V V 
o 01001 FP Round T x x F F 
o 01010 FP Recip Seed P F x x F 
o 01011 FP Cvt T to Alt Fmt x x F F 
o 01100 FP Cvt T fm Alt Fmt x x F F 

1 00000 Int P F F F F 
00001 Int P+T F x F F 

1 00010 Int P*O F F x F 
1 00011 Int Compare P, T F x F F 
1 00100 Int Max P, T F F F F 
1 00101 Int Min P, T F F F F 
1 00110 Int Cvt T to f.p. x x F F 
1 00111 Int Scale T to f.p. x F F F 
1 10000 Int P OR T x x x x 
1 10001 Int P AND T x x x x 

10010 Int P XOR T x x x x 
10011 Int Shift P Logical F F x F 
10100 Int Shift P Arith F F x F 
10101 Int Funnel Shift PT F F F F 

x 11000 Move P x x x x 
x 11111 Load Mode Reg x x x x 

Key: V - Variable; user can specify arbitrary sign change. 
F ... Fixed; user is restricted to sign change combinations shown in Table 4. 
x = Don't care; this field does not affect the operation or its result. 

Descriptions of Operations 

P (Floating-Point or Integer): The operand on port P is 
passed through the ALU to port F. This operation may be used 
to change the precision of an operand, negate an operand, 
extract the absolute value of an operand, or transfer the sign 
of operand T to operand P. 

P + T (Floating-Point or Integer): The addition operation 
(P + T) adds the operands on ports P and T, and places the 
result on port F. 

P*Q (Floating-Point or Integer): The multiplication operation 
(P*O). multiplies the operands on ports P and 0, and places 
the result on port F. 

COMPARE P, T (Floating-Point or Integer): This operation 
compares the operands on ports P and T, and places (P - T) 
on port F. One of four comparison flags (=, >, <, #) is set 
according to the result of the comparison. Note that the 
unordered flag (#) can be set only when the format selected 
is IEEE or DEC. 

MAX P, T (Floating-Point or Integer): This operation selects 
the most positive of the two operands on ports P and T, and 
places the result on port F. 

MIN P, T (Floating-Point or-Integer): This operation selects 
the most negative of the two operands on ports P and T, and 
places the result on port F. 

LIMIT P TO MAGNITUDE T (Floating-Point): This operation 
imposes a clipping or saturation level on operand P by 

. comparing the magnitudes of the operands on ports P and T. If 
operand P has the smaller magnitude, it is placed on port F; if 
operand T has the smaller magnitude, it is placed on port F, 
but with its sign modified to agree with that of operand P. This 
operation is equivalent to operation SIGN(P) * MIN( ABS(P), 
ABS(T) ). 

CONVERT T TO INTEGER (Floating-Point): The floating­
pOint-to-integer conversion operation takes a floating-point 
operand on port T and places the equivalent two's-comple­
ment integer value on port F. 

CONVERT T TO FLOATING-POINT (Integer): The integer­
to-floating-point conversion operation takes a two's-comple­
ment integer operand on port T and places the equivalent 
floating-point value on port F. 

SCALE T TO INTEGER BY Q (Floating-Point): This opera­
tion converts the floating-point operand T to integer format 
using the floating-point operand 0 as a scale factor. The true 
exponent of 0 is added to the true exponent of T before the 
new value T is converted to integer format. The operation 
therefore permits T to be multiplied by any power of two when 
the source format is IEEE or DEC, and by any power of 16 
when the source format is IBM. 

SCALE T TO FLOATING-POINT BY Q (Integer): This opera­
tion converts the integer operand T to floating-point format 
using the operand 0 as a scale factor, where 0 is a floating­
point operand in the destination format. The true exponent of 
o is added to the true exponent of T after T has been 
converted from integer to floating-point. The operation 
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therefore permits T to be scaled by any mulfiple of two when 
the destination format is IEEE or DEC, and by any multiple of 
16 when the destination format is IBM. 

(P*Q) + T (Floating-Point): This operation multiplies the oper­
ands on port P and Q, adds the product to the operand on port 
T, and places the result on port F. 

ROUND T TO INTEGRAL VALUE (Floating-Point): This 
operation rounds a floating-point operand to an integer-valued 
floating-point operand of the same format. A value of 3.5, for 
example, would be rounded to either 3.0 or 4.0, the choice 
depending on the rounding mode. 

RECIPROCAL SEED OF P (Floating-Point): The reciprocal 
seed of the floating-point operand on port P is placed on port 
F; the result obtained is a crude estimate of the input 
operand's reciprocal. This operation can be used as the initial 
step in performing Newton-Raphson division. A single-preci­
sion result is obtained after five iterations, and a double­
precision result after six iterations. Alternately, an external 
seed look-up table can be used for faster convergence. The 
result obtained through iteration is approximate. 

CONVERT T TO ALTERNATE FLOATING-POINT FORMAT 
(Floating-Point): This operation converts operand T from the 
primary floating-point format to the alternate floating-point 
format, thus allowing conversions among the IEEE, DEC, and 
IBM floating-point formats. 

CONVERT T FROM ALTERNATE FLOATING-POINT FOR­
MAT (Floating-Point): This operation converts operand T 
from the alternate floating-point format to the primary floating­
point format, in a manner similar to that of CONVERT T TO 
ALTERNATE FLOATING-POINT FORMAT above. 

P OR T, P AND T, P XOR T, NOT T (Integer): The logical 
operations (OR, AND, EXCLUSIVE OR) are performed on the 
operands on ports P and T, and the result is placed on port F. 
NOT T is performed by XORing T with a word containing all 
ones (integer -1). When invoking NOT T, instruction bits 
PSEL,a - PSElo must be set to 0011, thus selecting integer 
constant -1. 

SHIFT P LOGICAL Q PLACES (Integer): This operation 
logically shifts operand P by Q places. If the shift is Q places to 
the right, Q zeros are filled from the left. If the shift is Q places 
to the left, Q zeros are filled from the right. 

SHIFT P ARITHMETIC Q PLACES (Iriteger): This operatio'; 
arithmetically shifts operand P by Q places. With a right shift, 
the result is sign extended Q places. With a left shift, Q zeros 
are fiiled from the right. 

FUNNEL SHIFT PT LOGICAL Q PLACES (Integer): The 
operands on ports P and Tare concatElnated to form a double­
width operand PT, which is then shifted to the right or left by Q 
places; the 32- or 64-bit result is placed on port F. 

MOVE P (Floating-Point or Integer): The operand on port P 
is moved to port F. The operand' is left unchanged, and only 
the sign nag is set. 

Operation Flags 

For each operation, the ALU produces thirteen nags that 
indicate operation status. Of the flags produced, a maximum 
of seven are relevant to any given operation. The relevant 
flags are placed in the status register, and the other flags are 
discarded. 

The ALU nags are: 

C - CARRY: Carry-out bit produced by integer addition, 
subtraction, or comparison. 

I-INVALID OPERATION: Input operands are unsuitable for 
the operation specified (e.g., co • 0). 

R - RESERVED OPERAND: Reserved operand detected I 
generated. 

S - SIGN: Result sign. 

U - UNDERFLOW: Result underflowed the destination for­
mat. 

V - OVERFLOW: Result overflowed the destination format. 

W - WINNER: Indicates which of the two operands selected 
when performing MaxIMin operations. 

X - INEXACT RESULT: Result had to be rounded to fit the 
destination format. 

Z - ZERO: Zero result. 

>, =, <, # - GREATER THAN, EQUAL, LESS THAN, 
UNORDERED: Used to report the result of a comparison 
operation. 

Table 6 lists the nags reported for each operation. 

4-162 



TABLE 6. ORGANIZATION OF FLAGS 

Flag Register 

Opcode MSB LSB 
Operations 14-10 7 6 5 4 3 2 1 

IEEE Non-arithmetic single-operand 00000 5 Z X U V R I 
IEEE Operations using add 00001 5 Z X U V R I 
IEEE Operations using multiply 00010 5 Z X U V R I 
IEEE Compare 00011 5 = > < # R I 
IEEE Maximum, minimum, limit 0010x 5 Z W R I 
IEEE Convert/scale to integer 0011x 5 Z X V R I 
IEEE Multiply/accumulate 01000 5 Z U V R I 
IEEE Round to integral value 01001 5 Z X V R I 
IEEE Reciprocal seed 01010 5 Z U V R I 
IEEE Convert to alt. f.p. format 01011 5 Z X U V R I 
IEEE Convert from alt. f.p. format 01100 5 Z X U V R I 

DEC D Non-arithmetic single-operand 00000 5 Z X V R 
DEC D Operations using add 00001 5 Z X U V R 
DEC D Operations using multiply 00010 5 Z X U V R 
DEC D Compare 00011 5 = > < # R 
DEC D Maximum, minimum, limit 0010x 5 Z W R 
DEC D Convert/ scale to integer 0011x 5 Z X V R I 
DEC D Multiply/ accumulate 01000 5 Z U V R 
DEC D Round to integral value 01001 5 Z X V R 
DEC D Reciprocal seed 01010 5 Z U V R I 
DEC D Convert to alt. f.p. format 01011 5 Z X U V R I 
DEC D Convert from alt. f.p. format 01100 5 Z X U V R I 

DEC G Non-arithmetic single-operand 00000 5 Z X U V R 
DEC G Operations using add 00001 5 Z X U V R 
DEC G Operations using multiply 00010 5 Z X U V R 
DEC G Compare 00011 5 = > < # R 
DEC G Maximum, minimum, limit 0010x 5 Z W R 
DEC G Convert/ scale to integer 0011x 5 Z X V R I 
DEC G Multiply/accumulate 01000 5 Z U V R 
DEC G Round to integral value 01001 5 Z X V R 
DEC G Reciprocal seed 01010 5 Z U V R I 
DEC G Convert to alt. f.p. format 01011 5 Z X U V R I 
DEC G Convert from alt. f.p. format 01100 5 Z X U V R I 

IBM Non-arithmetic single-operand 00000 5 Z X V 
IBM Operations using add 00001 5 Z X U V 
IBM Operations using multiply 00010 5 Z X U V 
IBM Compare 00011 5 = > < 
IBM Maximum, minimum, limit 0010x 5 Z W 
IBM Convert/scale to integer 0011x 5 Z X V 
IBM Multiply/ accumulate 01000 5 Z U V 
IBM Round to integral value 01001 5 Z X V 
IBM Reciprocal seed 01010 5 Z V I 
IBM Convert to alt. f.p. format 01011 5 Z X U V R 
IBM Convert from alt. f.p. format 01100 5 Z X U V R I 

Integer Non-arithmetic single-operand 00000 5 Z V 
Integer 5ign transfer 00000 5 Z V 
Integer Operations using add 00001 5 Z V C 
Integer Operations using multiply 00010 5 Z V 
Integer Compare operations 00011 5 = > < V C 
Integer Maximum, minimum, limit 0010x 5 Z W 
Integer Convert to float 00110 5 Z X 
Integer 5cale to float 00111 5 Z X U V R 
Integer Logical operations 100xx 5 Z 
Integer Arithmetic shift 10100 5 Z V 
Integer Funnel shift 10101 5 Z 

Move operand 11000 5 
Load mode register 11111 

Nole: Unused flags assume Ihe LOW stale. 
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Master/Slave Operation 

Two Am29C327 processors can be tied together in masterl 
slave configuration, with the slave checking the results pro­
duced by the master. All input and output signals of the slave, 
with the exception of Si:AilE and MSERR, are tied to the 
corresponding signals of the master. The master is selected 
by asserting signal SLAVE LOW; the slave, by asserting signal 
SLAVE HIGH. 

The slave processor, by comparing its outputs to the outputs 
of the master processor, performs a comprehensive check of 
the operation of the master processor. In addition, the slave 
processor may detect open circuits and other faults in the 
,electrical path between the master processor and the system. 
Note that the master processor still performs the comparison 
between its outputs and its own internally generated results, 
and is therefore able to detect faults in its output drivers. 

4-164 



APPENDICES 

APPENDIX A - DATA FORMATS The primary and alternate floating-point formats are selected 

The following data formats are supported: 32-bit integer, 64-bit 
by mode register bits MO to M3. The user may select between 
floating-point operations and integer operations by means of 

integer, IEEE single-precision, IEEE double-precision, DEC F, instruction bit 15. 
DEC D, DEC G, IBM single-precision, and IBM double-
precision. The nine supported formats are described below: 

Integer Formats 

32-Blt Integer 

The 32-bit integer word is arranged as follows: 

Bit 31 30 29 28 'Z1 26 25 · · . 7 6 5 4 3 2 1 0 

I _231 230 229 228 2'Z1 226 225 · · . . 27~252423222120 I 
T8001030 

The 32-bit word is interpreted as a two's-complement integer. has a format similar to that of the two's-complement integer, 
For integer multiplications, the user has the option of interpret- but with an MSB weight of 231. 
ing integers as unsigned. An unsigned single-precision integer 

64-Bit Integer 

The 64-bit integer word is arranged as follows: 

Bit 63 62 61 60 59 58 57 . . . . 7 6 5 4 3 2 1 0 

I _263 262 261 260 259 258 257 · · . 2726252423222120 I 
T8001040 

The 64-bit word is interpreted as a two's-complement integer. ger has a format similar to that of the two's-complement 
For integer multiplications, the user has the option of interpret- integer, but with an MSB weight of 263. 
ing integers as unsigned. An unsigned double-precision inte-

IEEE Formats 

IEEE Single-Precision 

The IEEE single-precision word is 32 bits wide and is arranged 
in the format as follows: 

31 30 29 28 'Z7 26 25 24 23 22 21 20 19 18 . . . 3 2 1 0 

I s I 27 26 25 24 23 22 21 
20 I 21 22 2? 24 25 . . . 2"202"21 2-22 2-23 I 

sign biased exponent (e) fraction (f) 

T8001050 

The floating-point word is divided into three fields: a single-bit number is to be 2a, the value of the biased exponent is 
sign, an S-bit biased exponent, and a 23-bit fraction. a + 127, where "a" is the true exponent. 

The sign bit is 0 for positive numbers and 1 for negative 
The fraction is a 23-bit unsigned fractional field containing the 

numbers. Zero may have either sign. 
23 least-significant bits of the floating-point number's 24-bit 
mantissa. The weight of the fraction's most-significant bit is 

The biased exponent is an S-bit unsigned integer representing 
2-1. The weight of the least-significant bit is 2-23. 

a multiplicative factor of some power of two. The bias value is An IEEE floating-point number is evaluated or interpreted as 
127. If, for example, the multiplicative value for a floating-point follows: 

If e=255 and f*O ........ value = NaN Not-a-Number 
If e = 255 and f = 0 ........ value = (_1)500 Infinity 
If 0 < e < 255 ................. value = (_1)529 - 127(1.1) Normalized number 
If e = 0 and f *0 ........... value = (_1)52- 126(0.1) Denormalized number 
If e = 0 and f = 0 ............ value = (_1)50 Zero 
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Infinity: Infinity can have either a positive or negative sign. 
The interpretation of infinities is determined by the Affinel 
Projective select input AFF/llfmJ. 

NaN: A NaN is interpreted as a signal or symbol. NaNs are 
used to indicate invalid operations, and as a means of passing 
process status through a series of calculations. They arise in 

IEEE Double-Precision 

The IEEE double-precision word is 64 bits wide and is 
arranged in the format shown below: 

two ways: either generated by the Am29C327 to indicate an 
invalid operation, or provided by the user as an input. A 
signaling NaN has the MSB of its fraction set to 0 and at least 
one of the remaining fraction bits set to 1. A quiet NaN has the 
MSB of its fraction set to 1. 

The IEEE format is fully described in IEEE Standard 754. 

63 62 61 60 54 53 52 51 50 49 48 47 3 2 1 0 

sign biased exponent (e) 

The floating-point word is divided into three fields: a single-bit 
sign, an II-bit biased exponent, and a 52-bit fraction. 

The sign bit is 0 for positive numbers and 1 for negative 
numbers; zero may have either sign. 

The biased exponent is an II-bit unsigned integer represent­
ing a multiplicative factor of some power of two. The bias 
value is 1023. If, for example, the multiplicative value for a 

fraction (f) 

TB001060 

floating-point number is to be 2a, the value of the biased 
exponent is a + 1023, where "a" is the true exponent. 

The fraction is a 52-bit unsigned fractional field containing the 
52 least-significant bits of the floating-point number'S 53-bit 
mantissa. The weight of the fraction's most-significant bit,is 
2- 1. The weight of the least-significant bit is 2- 52. 

An IEEE floating-point number is evaluated or interpreted as 
follows: 

If e = 2047 and f * 0 ....... value = Reserved operand Not-a-Number 
If e = 2047 and f = 0 ....... value = (-' 1 )soo Infinity 
If 0 < e < 2047 ............... value = (_1)s2e-l023(1.1) Normalized number 
If e=O and f*O ........... value = (_l)S2'" 1022(0.1) Denormalized number 
If e=O and f=O ............ value = (_l)sO Zero 

Infinity: Infinity can have either a positive or negative sign. 
The interpretation of infinities is determined by the Affinel 
Projective select input AFF/PROJ. 

NaN: A NaN is interpreted as a signal or symbol. NaNs are 
used to indicate invalid operations, and as a means of passing 
process status through a series of calculations. They arise in 

DEC Formats 

DEC F 

The DEC F word is 32 bits wide and is arranged in the format 
shown below: 

two ways: either generated by the Am29C327 to indicate an 
invalid operation, or provided by the user as an input. A 
signaling NaN has the MSB of its fraction set to 0 and at least 
one of the remaining fraction bits set to 1. A quiet NaN has the 
MSB of its fraction set to 1. 

The IEEE format is fully described in IEEE Standard 754. 

31 30 29 2B 'Zl 26 25 24 23 22 21 20 19 18 3 2 1 0 

sign biased exponent (e) 

The floating-paint word is divided into three fields: a single-bit 
sign, an 8-bit biased exponent, and a 23-bit fraction. 

The sign bit is 0 for positive numbers and 1 for negative 
numbers; zero has a positive sign. 

The biased exponent is an 8-bit unsigned integer representing 
a multiplicative factor of some power of two. The bias value is 
128. If, for example, the multiplicative value for a floating-point 
number is to be 2a, the value of the biased exponent is 
a + 128, where "a" is the true exponent. 

The fraction is a 23-bit unsigned fractional field containing the 
23 least-significant bits of the floating-point number's 24-bit 
mantissa. The weight of the fraction's most-significant bit is 
2'"2. The weight of the least-significant bit is 2'"24. 

fraction (f) 

TB001070 

A DEC F floating-point number is evaluated or interpreted as 
follows: 

If e*O ....................... value*(-1)S2e- 128(0.1f) 
If s=O and e=O ......... value=O 
If s = 1 and e = 0 ......... value = DEC-Reserved Operand 

DEC-Reserved Operand: A DEC-Reserved Operand is inter­
preted as a signal or symbol. DEC-Reserved Operands are 
used to indicate invalid operations and operations whose 
results have overflowed the dest,ination format. They may also 
be used to pass symbolic information from one calculation to 
another. 

The DEC formats are fully described in the VAX ArChitecture 
Manual. 
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DEC D 
The DEC D word is 64 bits wide and is arranged in the format 
shown below: 

63 62 61 60 59 58 57 56 55 54 53 52 51 50 3 2 0 

sign biased exponent (e) 

The floating-point word is divided into three fields: a single-bit 
sign, an 8-bit biased exponent, and a 55-bit fraction. 

The sign bit is 0 for positive numbers and 1 for negative 
numbers; zero has a positive sign. 

The biased exponent is an 8-bit unsigned integer representing 
a multiplicative factor of some power of two. The bias value is 
128. If, for example, the multiplicative value for a floating-point 
number is to be 28 , the value of the biased exponent is 
a + 128, where "a" is the true exponent. 

The fraction is a 55-bit unsigned fractional field containing the 
55 least-significant bits of the floating-point number's 56-bit 
mantissa. The weight of the fraction's most-significant bit is 
2-2. The weight of the least-significant bit is 2-56. 

DEC G 

The DEC G word is 64 bits wide and is arranged in the format 
shown below: 

fraction (f) 

TB001080 

A DEC D floating-point number is evaluated or interpreted as 
follows: 

If e *0 ...................... value = (_1)829 - 128(0.11) 
If s = 0 and 9 = 0 ......... value = 0 
If s = 1 and e = 0......... value = DEC-Reserved Operand 

DEC-Reserved Operand: A DEC-Reserved Operand is inter­
preted as a signal or symbol. DEC-Reserved Operands are 
used to indicate invalid operations and operations whose 
results have overflowed the destination format. They may also 
be used to pass symbolic information from one calculation to 
another. 

The DEC formats are fully described in the VAX Architecture 
Manual. 

63 62 61 60 54 53 52 51 50 49 48 47 3 2 0 

sign biased exponent (e) 

The floating-point word is divided into three fields: a single-bit 
sign, an II-bit biased exponent, and a 52-bit fraction. 

The sign bit is 0 for positive numbers and 1 for negative 
numbers; zero has a positive sign. 

The biased exponent is an II-bit unsigned integer represent­
ing a multiplicative factor of some power of two. The bias 
value is 1024. If, for example, the multiplicative value for a 
floating-point number is to be 2a, the value of the biased 
exponent is a + 1024, where "a" is the true exponent. 

The fraction is a 52-bit unsigned fractional field containing the 
52 least'significant bits of the floating-point number's 53-bit 
mantissa. The weight of the fraction's most-significant bit is 
2-2. The weight of the least-significant bit is 2-53. 

fraction (f) 

TB001090 

A DEC G floating-point number is evaluated or interpreted as 
follows: 

If e * 0 ...................... value = (_1)829 -1024(0.11) 
If s=O and e=O ......... value=O 
If s = 1 and e = 0 ......... value = DEC-Reserved Operand 

DEC-Reserved Operand: A DEC-Reserved Operand is inter­
preted as a signal or symbol. DEC-Reserved Operands are 
used to indicate invalid operations and operations whose 
results have overflowed the destination format. They may also 
be used to pass symbolic information from one calculation to 
another. 

The DEC formats are fully described in the VAX Architecture 
Manual. 
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IBM Formats 

IBM Slngle·Preclslon 

The IBM single.precislon word is 32 bits wide and Is arranged 
in the format shown below: 

31 30 29 28 ~ 26 25 24 23 22 21 20 19 18 3 2 1 0 

sign biased exponent (e) 

The floating-point word is divided into three fields: a single-bit 
sign, a 7-bit biased exponent, and a· 24-bit fraction. 

The sign bit is 0 for positive numbers and 1 for negative 
numbers; a True-zero has a positive sign. 

The biased exponent is a 7 -bit unsigned integer representing a 
multiplicative factor of some power of 16. The bias value is 64. 
If, for example, the multiplicative value for a floating-point 
number is to be 16a, the value of the biased exponent is 
a + 64, where "a" is the true exponent. 

The fraction is a 24-bit unsigned fractional field containing the 
24 least-significant bits of the floating-point number's 25-bit 
mantissa. The weight of the fraction's most-significant bit is 
2- 1. The weight of the least-significant bit is 2-24. 

IBM Double·Precision 

The IBM double-precision word is 64 bits wide and is arranged 
in the format shown below: 

fraction (f) 

TB001100 

An IBM floating-point number is evaluated or interpreted as 
follows: 

value = (_1)816e - 64(0.1) 

Zaro: There are two possible classes of representations for 
zero. Since there is no leading bit In the I BM format, the range 
of the I BM fraction is equal to or greater than zero and less 
than one. If an operation causes the fraction of the result to 
cancel exactly, then the result is a floating-point zero. A True­
zero has a positive sign, a biased exponent of zero, and a 
fraction of zero. 

The IBM format is fully described in the IBM System/370 
Principles of Operation Manual. 

63 62 61 60 59 68 57 56 55 54 63 52 51 50 3 2 1 0 

sign biased exponent (e) 

The floating-point word is divided into three fields: a single-bit 
sign, a 7-bit biased exponent, and a 56-bit fraction. 

The sign bit is 0 for positive numbers and 1 for negative 
numbers; a True-zero has a positive sign. 

The biased exponent is a 7 -bit unsigned integer representing a 
multiplicative factor of some power of 16. The bias value is 64. 
If, for example, the multiplicative value for a floating-point 
number is to be 16a, the value of the biased exponent is 
a + 64, where "a" is the true exponent. 

The fraction is a 56-bit unsigned fractional field containing the 
56 least-significant bits of the floating-point number's 57-bit 
mantissa. The weight of the fraction's most-significant bit is 
2- 1. The weight of the least-significant bit is Z-56. 

fraction (I) 

TB001110 

An IBM floating-point number is evaluated or interpreted as 
follows: 

value = (_1)816e - 64(0.f) 

Zaro: There are two possible classes of representations for 
zero. Since there is no leading bit in the IBM format, the range 
of the IBM fraction is equal to or greater than zero and less 
than one. If an operation causes the fraction of the result to 
cancel exactly, then the result is a floating-point zero. A True­
zero has a positive sign, a biased exponent of zero, and a 
fraction of zero. 

The IBM format is fully described in the IBM System/370 
Principles of Operation Manual. 
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APPENDIX B - ROUNDING MODES 
The Am29C327 provides six rounding modes for floating-point 
operations, and for integer multiplication: 

RM2 RM1 RMO Round Mode 

0 0 0 Round to Nearest (IEEE) 
0 0 1 Round to Minus Infinity 
0 1 0 Round to Plus Infinity 
0 1 1 Round to Zero 
1 0 0 Round to Nearest (DEC) 
1 0 1 Round Away From Zero 
1 1 X Illegal Value 

Round to Nearest IEEE (Unbiased) 

The infinitely precise result of an operation is rounded to the 
closest representable value in the destination format. If the 
infinitely precise result is exactly halfway between two repre­
sentations, it is rounded to the representation having a least­
significant bit of zero. This rounding mode conforms to the 
"round to nearest" mode described in the IEEE Floating-Point 
Standard. 

Round to Minus Infinity 

The infinitely precise result of an operation is rounded to the 
closest representable value in the destination format that is 
less than or equal to the infinitely precise result. This rounding 
mode conforms to the "round to minus infinity" mode de­
scribed in the IEEE Floating-Point Standard. 

Rounci to Plus Infinity 

The infinitely precise result of an operation is rounded to the 
closest representable value in the destination format that is 
greater than or equal to the infinitely precise result. This round 
mode conforms to the "round to plus infinity" mode described 
in the IEEE Floating-Point Standard. 

Round to Zero 

The infinitely precise result of an operation is rounded to the 
closest representable value in the destination format whose 
magnitude is less than or equal to the infinitely precise result. 
This rounding mode conforms to the "round to zero" mode 
described in the IEEE Floating-Point Standard. 

Round to Nearest DEC (Biased) 

The infinitely precise result of an operation is rounded to the 
closest representable value in the destination format. If the 
infinitely precise result is exactly halfway between two repre­
sentations, it is rounded to the representation having the 
greater magnitude. This rounding mode is used by DEC VAX 
computers. 

Round Away from Zero 

The infinitely precise result of an operation is rounded to the 
closest representable value in the destination format whose 
magnitude is greater than or equal to the infinitely precise 
result. 

A graphical representation of these rounding modes is shown 
in Figures 91-1 and 91-2. 
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Figure 81-1_ Graphical Interpretation of IEEE Round-to-Nearest, Round-to-Minus-Infinlty, and Round-to-Plus-Infinity Rounding Modes 
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Figure 81-2_ Graphical Interpretation of Round-to-Zero, DEC Round-to-Nearest, and Round-Away-from-Zero Rounding Modes 
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APPENDIX C - ADDITIONAL OPERATION 
DETAILS 
Differences Between IEEE Floating-Point, 
Standard and Am29C327 IEEE Operation 

The IEEE floating-point standard recommends that a trapped rounded to that format. Note that trapped operation is an 
overflow on conversion from a binary format return a result in optional aspect of the IEEE floating-point standard, and as 
that or a wider format, rounded to the destination format. The such, is not necessary for compliance. 
Am29C327 returns an operand in the destination format, 

Differences Between IBM 370 Floating-Point 
Arithmetic and Am29C327 IBM Operation 

For all arithmetic operations, the Am29C327 in general will 
produce a more precise result than the IBM 370. 

Differences Between DEC Floating-Point 
Arithmetic and Am29C327 DEC Operation 

The Am29C327 and DEC VAX floating-point formats contain 
identical information, but the sub-fields of the floating-point 
words are arranged differently: 

The Am29C327 DEC F format is: The V AX format is: 
sign- bit 31 sign-bit 15 

exponent - bits 30 - 23 exponent - bits 14 - 7 
mantissa - bits 22 - 0 mantissa - bits 6 - 0, 

bits 31 -16 

The Am29C327 DEC D format is: The VAX format is: 
sign -bit 63 sign - bit 15 

exponent - bits 62 - 55 exponent - bits 14 - 7 
mantissa - bits 54 - 0 mantissa - bits 6 - 0, 

bits 31 -16, 
bits 47 -32, 
bits 63-48 
bit 6= MSB, 
bit 48 = LSB 

I 
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ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 
Storage Temperature ............................ -65 to + 150°C Commercial (C) Devices 
Ambient Temperature (T A) Temperature (T A) .................................. 0 to + 70°C 

Under Bias ...................................... -55 to + 125°C Supply Voltage (Vee) ........................... + 5 V ± 5% 
Supply Voltage to Min ...................................................... +4.75 V 

Ground Potential Continuous ............... -0.5 to + 7.0 V Max ..................................................... +5.25 V 
DC Voltage Applied to 
Outputs for HIGH State ................ -0.5 V to + Vee Max. 
DC Input Voltage ................................. -0.5 to + 5.5 V 
DC Output Current, Into Outputs ......................... 30 mA 
DC Input Current ................................ -10 to + 10 mA 

Military (M) Devices 
Temperature (TA) ............................. -55 to +125°C 
Supply Voltage (Vee) .......................... + 5 V ± 10% 

Min ....................................................... +4.5 V 
Max ...................................................... +5.5 V 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA TINGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

limits between which the 
arantsed. 

DC CHARACTERISTICS over operating 

Parameter 
Symbol 

VOH 

IOZH 

IOZl 

Ise 
(Note 2) 

lee 
(Note 3) 

lceol 
(Note 4) 

leeQ~ 
(Note 5) 

Parameter 
Description 

Output HIGH Voltage 

Output LOW Voltage 

Input HIGH Level 

Power Supply Current 

Quiescent Power Supply Current 

Quiescent Power Supply Current 

Guaranteed Input Logical·LOW 
Voltage for All Inputs 

Vce - Min. 
IIN--18 mA 

Vee -Max. 
VIN - 0.4 V 

Vee- Max. 
VIN - 2.4 V 

Vee- Max. 
VIN - 5.5 V 

Va - 2.4 V 
Vee- Max. 

VO-O.4 V 

Vee- Max. 
Vo-O V 
All Outputs 

COM'L 

MIL 

COM'L 

MIL 

eOM'L 

MIL 

Min. Max. Unit 

2.4 v 

0.5 V 

2.0 V 

0.8 V 

-1.5 V 

-0.4 mA 

75 p.A 

mA 

25 

-25 
p.A 

-3 -30 mA 

300 
mA 

350 

mA 

mA 

Notes: 1. For conditions shown as Min. or Max., use the appropriate value specified under Electrical Characteristics for the applicable device type. 
2. Not more than one output should be shorted at a time. Duration of the short·circuit test should not exceed one second. 
3. lee is measured with clock frequency - 8 MHz and with outputs disabled. Inputs should be presented with random logic·HIGHs and 

LOWs to assure the toggling of internal nodes. 
4. VIN ;;. VIH, VIN .. Vil 
5. VIN ;;. Vee - 0.2 V, VIN .. 0.2 V 
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SWITCHING CHARACTERISTICS over operating range unless otherwise specified 

No. Parameter Description Test Conditions Min. Max. Unit 
1 ClK Period (Note 1) 

Flow-Through Mode 
Multiply·Accumulate 360 DC ns 
All Other Operations 240 DC ns 

Slngle-Plpelined Mode 
Multiply·Accumulate 240 DC ns 
All Other Operations 120 DC ns 

Double·Plp.llned Mode 
Multiply·Accumulate 120 DC ns 

2 ClK lOW Time 

~ 
ns 

3 ClK HIGH Time ns 

4 ClK Rise Time (Note 2) ns 

5 ClK Fall Time (Note 2) ns 

6 Data/Instruction Setup Time (Note 3) .I·~ 15 ns 

7 Data/Instruction Hold Time (Note 3) to", 0 ns 

8 Control Lines Setup Time (Note 15 ns 

9 Control lines Hold Time (, 0 ns 

10 Fo _ 31 ClK·to·Output·Valid 20 ns 
F Register Clocked 

11 FlAGl _ 6 SIGN ClK·to·Output-Valid 20 ns 
Register Clocked 

12 FO-31 ClK-to·Output·Valid 
F Register Transparent 

Flow-Through Mode 
Multiply·Accumulate 380 ns 
All Other Operations 260 ns 

Slngle-Plpellned Mode 
Multiply·Accumulate 260 ns 
All Other Operations 140 ns 

Double-Plpellned Mode 
Multiply·Accumulate 140 ns 

13 FlAGl_6 SIGN 
ClK·to·Output·Valid 
S Register Transparent 

Flow-Through Mode 
Multiply·Accumulate 380 ns 
All Other Operations 260 ns 

Slngle·Plpelined Mode 
Multiply-Accumulate 260 ns 
All Other Operations 140 ns 

Double-Plpellned M 
Multiply·Accum 140 ns 

14 OEF,~. Disa 15 ns 
HIGH to Z 

15 OEF. ~. Disable 1lfne 15 ns 
lOW to Z 

16 OEF. ~. Enable Time 20 ns 
Z to HIGH 

17 OEF. OES. Disable Time 20 ns 
Z to lOW 

18 FSEl to FO-31 20 ns 

19 MSERR Data·te-Valid Delay 20 ns 

Notes: 1. ClK switching characteristics are made relative to 2.5 V. 
2. ClK rise time and fall time measured between 0.8 V and (Vee -1.0 V). 
3. Datallnstruction signals include RO-31. 80-31. S/DR. S/DS. SIDf'. RMO_2. PSELo_3. QSElO_3. TSELo_3 and 10-13. 
4. Control signals include ENR. ENS. ENF. ENRF. RFSELo_2. FSEL. ENI. OEF. and ~. 

Conditions: A. All inputs/outputs except ClK are TTl·compatible for VIH. VIL, and VOL. 
B. All outputs are driving 80 pF unless otherwise noted. 
C. All setup. hold. and delay times are measured relative to ClK at Vee/2 volts unless otherwise noted. 

I 

4-174 



SWITCHING TEST CIRCUITS 

Vee 

S, 

VOUT ~)-"--"--K 

~I 
TC000421 

TCR01331 

A. Three-State Outputs B. Normal Outputs 

Notes: 1. CL = 50 pF includes scope probe, wiring, and stray capacitances without device in test fixture. 
2. 51, 52, 53 are closed during function tests and all AC tests except output enable tests. 
3. 51 and 53 are closed while 52 is open for tPZH test. 
4. CL = 5.0 pF for output disable tests. 
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SWITCHING T~ST WAVEFORMS 

DATA 
INPUT 

-'.rTITTT· r:r----n.n,I"T'i'"T'TT' :.: v 

1-'"1=",-1 0 v 

~:,.: -------f ------------------------------ :.sv v 

--------------1---------0 V 
WFR02970 

Notes: 1. Diagram shown for HIGH data only. Output 
transition may be opposite sense. 

2. Cross-hatched area is don't care condition. 

Setup, Hold, and Release Times 

INM~~-I-----~ ::' 
£:.:: 

- .. ~ r=1 _I_~H<"O.:V OPPOSI.;::::;-\J _____ _ 
INPUT TflANSITION - -'f\ 

~'-----------'-~---OV 

WFR02980 

Propagation Delay 

cow HIG~C&~_ f . . ~ ---- 1.6 V 

~~---1 ;--.-'. 
H.IGH·COWHIGH ~ 1 

pULse-~ ~ ---- 1.5 V 

WFR02790 

Pulse Width 

,-____ 3 V 

-----1.5 V 

--,---0 V 

OUTPUT 
NORMAL.LV -1.5 V 

LOW 
53 OPEN VOL I---t 'ZH 'HZ I t 

OUT'UT~~-:::=:VOH 
NORMALL.V 1 !!I V ~-ISV 

HIQH S2 0PEN __ -0 v 0& V 

WFR02660 

Notes: 1. Diagram shown for Input Control Enable-LOW 
and Input Control Disable-HIGH. 

2. 51, 52 and 53 of L,oad Circuit are closed except 
where shown. 

Enable and Disable Times 
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I:' 
SWITCHING WAVEFORMS I, 

I 
I 

KEY TO SWITCHING WAVEFORMS I:, 
I 

WAVEFORM INPUTS OUTPUTS 
I', 

11 
MUSTBI!! WILLB! [': 
STEADY STEADY '. 'I 

I" 
I -- WIl.LBE MAY CHANGE 

FROM H TaL CHANGING 
FROM H TO L 

JJJJJJ MAY CHANGE WILL BE 
CHANGING FROM I. TOH FROMLTOH 

JJf/f1 DON'T CARE; CHANGING; I 
ANV CHANGE STATE 

I 
PERMITTED UNKNOWN 

l1HR 
CENTER 

DOES NOT LINE IS HIGH 
APPLY IMPEDANCE 

"()FF"STATE 

KSOOOO10 

i+---l3J--~ 

WF025010 

Input Clock Timing 
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SWITCHING WAVEFORMS (Cont'd.) 

_J CD } .1.' \ A \ I ~(!)1(Z) .. · 
ROoa' \ ..... w ".,..w l! 

/ i' 

'04' \ 
SLaW I SYSW 1I 

OISTIIUCTICH 9 UNU 

In n 
* FO-31 F_~ 

~ =t .. } 7\ 
WF025020 

Timing of Operations with F Register and Status Clocked. Assumes 32-Blt Bus, Single-Cycle, 
LSW-Flrst Input Mode and Flow-Through Operation 

I 
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SWITCHING WAVEFORMS (Cont'd.) 

~0 -I 
\ I \ / J ~ X CLK ~(!)l(!). .(!)1(!) .. 

RO•31 
\ 

RLSW 
\ I RMSW \/ 

I I \ 1\ 

\V )( SLSW I II -MaW 
'0-31 \ 

~j 
INSTRUC110N )( )( UNES 

~*(!)-
If} 

"\ 'if 

* 
@ 

X X F0-31 FMaW FLSW 

@ 

* :!i:l .. } X 
WF025030 

Timing of Operations with F-Reglster and Status Register in Feedthrough Mode. Assumes 32-
Bit Bus, Single-Cycle, LSW-Flrst Input Mode and Flow-Through Operation. 
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F0-31 

FO-S1 

SWITCHING WAVEFORMS (Cont'd.) 

eLK _1 

RFSELO_2 

WF025040 

Register File Control Timing 

/ 
/ 

\- - - - - - - - - - - - - - - - - - - - - vOH 

1\- -------- --- ------ -1.SV 

VOl 

~~ ~ HIGH LEVEL ___________________________ _ 11__ _ __ _ VOH -0.5 V 
\ , 

-®--i \-------~~~[~ . 

V -------HJGHiMPEDANc{ - - - - - - -\1 
-:-=:-::-:-=,,-____ -11 -------- ------- --- ---------\- ----. VOL +0.5 V 

LOW LEVEL 

WF025050 

Enable/Disable Timing for FO - 31 
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FLAGS, SIGN 

FLAGS,SIGN 

SWITCHING WAVEFORMS (Cont'd.) 

,j 
____ -J 

,,-------------------­
I\" ------------------ 1.5V 

~~ ~ -:H-:::IG=:H~LE=VE=:L--t--- _ _ _________________________ _ I _ _ _ _ _ VOH -0.5 V 

-®----i L----~!'~--[~1-./ 
V- -------HiGHIMPEDANCE - - - - - - - \ 

~~~~---------Jjl---------------------------~-----VOL+O~V 
LOW LEVEL 

WF025060 

Enable/Disable Timing for FLAG1_6 and SIGN 

FSEL -----'tl.......----------..-..-----
WF025070 

Output Selection Timing 

MASTER/SLAVE ERROR 

~ 
~~~s, -------~)( )(r--------

MSERR __ ~----I) ~~'----
WF025080 

Master/Slave Timing (Assumes SLAVE Mode) 
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CHAPTER 5 

Support Tools 

Advanced Micro Devices is recognized as the pioneer 
and leading supplier of fast microprogrammable bit-slice 
and related integrated circuits used in a wide variety of 
high-perlormance systems 

Because of their flexibility, these microprogrammable 
ICs require a deeper understanding of hardware than 
required by a typical MOS microprocessor. But there is 
no reason to shy away from microprogramming: it is not 
difficult, and there are several hardware and software 
tools available. 

Tools that help the systems engineer design his system 
can be in the form of hardware, software, written materi­
als, and even professional advice. The importance of 
support to any design approach, and the relative difficulty 
of microcoded design, require a detailed explanation. 

As more support is provided to the customer, ease-of­
design improves and time-to-market decreases. The 
design process becomes less tedious, risk is reduced, 
and a lower skill level is required of the designer to 
implement a successful system. In general, the more 
rigid a device family becomes (Le., fixed architecturel 
fixed instruction set), the easier it is to support. 

When assessing the support available for a design 
approach, considerations need to be givento the realities 
of the situation. For instance, building blocks offer a 
flexibility in architecture and programming that can only 
be equaled in gate arrays (which can be even more 
versatile). The informed engineer would not ask the 
question, "Can I get compiler support for what I build with 
gate arrays?" The answer would obviously be, "Only if 
you emulated something that was already supported, or 
targeted a compiler to your new creation." Until tools 
become available that automatically generate compilers, 
it will remain the case that more flexible approaches get 
you closer to the hardware and away from higher level 
language, and usually result in better perlormance. 

It is impossible to even imagine all of the various ways a 
microcoded system might be constructed. Further, since 
the architecture is not fixed, it is not possible to pre-define 
acompileror assemblerforthe system. If the full flexibility 
of the microprogrammed-building-block approach is to 
be maintained, then a penalty must be paid in terms of 
a lack of high-level language support. Fortunately, a 
good meta assembler greatly alleviates the program­
ming task. Of course, once a system is defined, a 
compiler may be developed,·but not cheaply. With these 
tradeoffs now in mind, we can present tools available to 
the Am29300/29C300 family. 

5.1 Am29C300 EVALUATION BOARD 

The Am29C300 Evaluation Board is an educational tool 
to help the user understand the Am29C300 32-bit build­
ing-block family. With all the major devices of the 
Am29C300 family and an on-board debug monitor, the 
board provides an excellent tool for those who would like 
to learn more about the Am29C300 family. A block 
diagram of the board is shown in Figure 5-1. 

The board consists of two systems: the 80188 and 
Am29C300 system. The 80188 system is a front-end 
processor which provides the necessary interlace be­
tween the board and external sources, such as a CRT 
terminal. Through a parallel interlace between the 80188 
system and the Am29C300 system, the 80188 system 
can control and monitor the activity of the Am29C300 
system, which is a 32-bit system with three major parts: 
a computer control unit, an execution unit, and memory. 

Am29C300 System 

As a standard computer architecture, the computer 
control unit provides all the control signals for the 
Am29C300 system. It includes several major hardware 
logics: sequencer (Am29C331), writable control store, 
pipeline register, interrupt controller, and macro instruc­
tion register. Its operation is a very standard procedure. 
First, it fetches and stores a macro instruction into the 
macro-instruction register; then, the opcode of the macro 
instruction is decoded to find a correct micro routine for 
the macro instruction. Finally, the selected micro-routine 
controls the operations of the execution unit and the 
memory. 

With the building blocks of the Am29C300 family, a 
powerlul execution unit has been implemented on the 
board. The execution unit is able to handle 32-bit arith­
metic and logiC operations, multi-precision multiplication 
and division, and single-precision floating-point calcula­
tions within a reasonable time period. Also, the execution 
unit has 64 32-bit registers in which to store data. The 
following Am29C300 building blocks have been included 
in the execution unit: 

• Am29C334 - 64 x 18 Bit Dual-Access Four-Port 
Register File 

• Am29C332 - 32-Bit Arithmetic Logic Unit 

• Am29C323 - 32-Bit Parallel Multiplier 

• Am29C325 - Single-Precision Floating-Point 
Processor 
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FC 95 FC 95 
ICIN 94 ICIN 94 
INT-13 93 SEQ_15 93 
INT_12 92 SEQ_14 92 
INT_11 91 SEQ 13 91 I. 

~ INT_10 90 SEQ-12 90 ') 

~ X 89 SEQ:::" 89 
(5 X 88 SEQ 10 88 
~ INTEN 87 INTEN 87 
'E DOE BB DOE BB 
0 YOE1 85 ~ YOE1 85 

<.> YOEO 84 Q) YOEO 84 

15. 
X 83 () 53 83 
X B2 c: S2 82 

::J X 81 Q) S1 81 
~ X 80 ::J SO 80 ~ 0- Sequencer .sa X 79 Q) 01S 79 & 
E X 7B (J) 014 7B Interrupt Controiler X n 013 n 

X 76 012 76 32 BITS 
.q- X 75 .... 011 75 .... X 74 M D10 74 .... X 73 M 09 73 0') X 72 <.> 08 72 C\I 07 7,1 

0') 
07 71 E C\I 06 70 E 06 70 « D5 69 05 69 

04 68 « 04 68 
03 67 D3 67 
02 66 02 68 
D1 85 D1 65 
00 84 DO 64 

AWE 3 63 
AWC2 B2 
AWE 1 61 
AWE:::O 80 
AOE 59 
ASEL 68 Register A 

~ AADR 5 57 12 BITS 

u: AAOR-4 68 

-± 
AAOR-3 55 

~ AADR-2 54 .sa AADR-1 53 
III AADR-O 52 '0, AWE 3 51 
Q) AWE:::2 50 c: AWE 1 49 

AWE:::O 46 
.q- BOE 47 
M BSEL 46 
M BADR_5 45 12 BITS 
<.> BADR 4 44 
0') BADR:::3 43 
C\I BADR 2 42 

SADR:::1 41 
BAOR_O 40 

RNO 39 IENR 39 P5 39 
~ 

FA 36 lENS 36 P4 36 
Q) PSEL1 37 IENF 37 P3 37 

g PSELO 36 RSEL(FPU_ 14/ 36 P2 36 
ACC1 35 SSEL(FPU_13 35 P1 35 
ACCO 34 FPU_12 34 PO 34 :; XSEL 33 :::J FPU_11 33 W4 33 

~ TCX 32 c.. FPU_10 32 W3 32 
FTX 31 U. RND1 31 W2 31 
IENXA 30 RNDO 30 W1 30 

M IENXB 29 FT1 29 WO 29 Execution 
C\I YSEL 2B It) FTO 2B X 2B 23 BITS 
M TCY 27 C\I X 27 BW1(ALU_18) 27 <.> FTY 2B M X 2B BWO(ALU_17) 2B 
0') IENYA 25 <.> X 25 ALU 16 25 
C\I IENYB 24 0') X 24 ALU-15 24 
E TSEL 23 C\I X 23 :::J ALU:::14 23 « lENT 22 E X 22 ...J ALU 13 22 

IENP 21 « X 21 « ~t~~1~ 21 
IENI 20 X 20 20 
FTI 19 X 19 C\I ALU_10 19 
FTP 18 X 18 M BORROW 18 
X 17 X 17 M HOLD 17 

<.> FPU_STA_LE 16 
0') X 15 
C\J X 14 

E X 13 
X 12 « IMREN 11 
801S81NT 10 

Control·2 IBSRC1 9 
IBOES 8 17 BITS 
IBSRCO 7 

~ 
IPECLR 6 
DWIDTH1 5 
DWIDTHO 4 
IMEMWE 3 
L3 2 

X: DontCa,. L2 1 
L1 0 

Oi372AS,1-2 

Figure 5-2. Am29C300 EVB Microcode BIT Map 
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The' memory architecture is very straightforward. It in­
cludes 12 static RAMs and a control PAL. Three bits of 
the microcode are decoded by the confrol PAL to gener­
ate chip selects and write pulses forthe RAMs. A register 
in the execution unit should act as a program counter to 
provide addresses for the RAMs. 

Microcode 

The 96-bit wide microcode is divided into five major 
fields: sequencer and interrupt field, register A field, 
register B field, execution field, and control field. A 
detailed microcode format is shown in Table 5-1. 

Monitor 
The monitor of the Am29C300 evaluation board is imple­
mented in C and controlled by the 80188 system. It 
provides a limited microcode assembler and disassem­
bler, a download and upload utility, and a microcode 

debugger. The debugger includes various useful fea­
tures such as single step, break point, and display of 
register contents. 

5.2 Am29300 TEST BOARD 

With the increasing complexity of integrated circuits, it is 
often necessary to check the functionality of an IC. The 
IBM PC board allows the user to functionally check any 
Am29300 family device by writing input test vectors. The 
software accompanying the board takes these input 
vectors one at a time, applies them to the device under 
test, clocks the device, and produces output vectors. 
Figure 5-3 shows the architecture of the board. As stated 
above, the intention is to allow users to familiarize them­
selves with the functionality of the part. AC specs cannot 
be verified. Sample input and output files for the 
Am29331 are also shown. 

Table 5-1 

32 Blta 

Sequencer 
& Interrupt 
Controller 
Am29C331 
Am29114 

5-4 

12 Bit. 

Register A 
(Source) 

Am29C334_A_Port 

+5 OND 

PGAZIF 
III 

(Vee, GND .... derj 

12 Blta 

Register B 
(Source & 
Destination) 
Am29C334_B_Port 

312 PGAZIF 
U2 

(DUT) 

23 Blta 

ExecutiOn 

Am29C332 
Am29C323 
Am29C325 

09372A 5.2-1 

Figura 5-3. Am29300 Te.tboard - Block Diagram 

17BII. 

Control 

Am2925 



Am29331 Input File 

socket 120 
63,76,120,96,95,83,82 
107,93,79,80,81,67 
69,94,68,62 
61,55,39,57,56,43,44,45,37,38,25,26 
65,60,48,28,64,53,40,27,58,52,41,14,59,47,42,1 
108,85,86,100,114,90,104,105,24,10,8,20,19,30,29,2 
109,98,99,88,115,103,117,106,12,23,22,33,6,18,4,15 
46,77 
97,111,113,101,102,91,92,119,13,36,35,21,7,31,17,16 
84,72,78,71 
73,74,89,34,66,75,11,3,118,110 
32,87,54,49,51,50,5,116,9,112,70; 

MMMM 
3 2 1 0 

T D 
S I I S 1 3 3 3 3 1 

I H L N I 5 3 1 - - - - 5 
R 0 A T N - 3 2 1 o -

C S F L V E T I S T D 
p T C D E N R 0 0 0 0 0 0 o 0 

:specify base for each column 

A Y 
1 1 
5 I 5 

C o -
A I E Y 
0 N D 0 

A 
I - E E 
I F RQ 
N U RUV G 
T L o A C N 
A L R L C D 

& B B B B B B B QH H HHH H H H H HHHH HHHH B B HHHH B B B B QHH OHH 

:specify pin direction for each column 

% I I I I I I I II I III I I I I IIII IIII I I 0000 0 o 0 0 000 000 
: RESET 

CHAPTERS 
Support Tools 

001 w 0 X 0 X X X xx X XXX X X X X XXXX XXXX X 0 0000 0 o 0 0 000 000 - 001 A 

: CONTINUE, BRCC_D, CONTINUE 

002 w 1 0 0 0 1 0 30 X XXX X X X X XXXX XXXX 0 0 0000 0 0 0 0 000 000 - 001 A 
003 w 1 0 0 0 1 0 00 o 001 X X X X 8971 XXXX 0 0 0000 0 0 0 0 000 000 - 001 A 
004 w 1 0 0 0 1 0 30 X XXX X X X X XXXX XXXX 0 0 0000 0 0 0 0 000 000 - 004 A 
005 w 1 0 0 0 1 0 30 X XXX X X X X XXXX XXXX 0 0 0000 0 0 0 0 000 000 - 003 L 
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Am29331 Output File 

socket 120 
63,76,120,96,95,83,82 
107,93,79,80,81,67 
69,94,68,62 
61,55,39,57,56,43,44,45,37,38,25,26 
65,60,48,28,64,53,40,27,58,52,41,14,59,47,42,1 
108,85,86,100~114,90,104,105,24,10,8,20,19,30,29,2 

109,98,99,88,115,103,117,106,12,23,22,33,6,18,4,15 
46,77 
97,111,113,101,102,91,92,119,13,36,35,21,7,31,17,16 
84,72,78,71 
73,74,89,34,66,75,11,3,118,110 
32,87,54,49,51,50,5,116,9,112,70; 

MMMM 
3 2 1 0 

T . D 
S I I S 1 3 3 3 3 1 

/ H L N I 5 3 1 - - 5 
R 0 A T N - 3 2 1 o -

C S F L VET I S T D 
PTCDENR 0 0 0 0 0 0 o 0 

:specify base for each column 

A Y 
1 1 
5 / 5 

C 0 -
A I E Y 
0 N D 0 

A 

/ - E E 
I F R Q 
N U R U V G 
T L o A C N 
A L R L C D 

& B B B B B B B QH H HHH H H H H HHHH HHHH B B HHHH B B B B QHH OHH 

:specify pin direction for each column 

% I I I I I I I II I III I I I I II II II II I I 0000 0 0 0 0 000 000 
:RESET 
001 w 0 0 0 0 0 0 00 0 000 0 0 0 0 0000 0000 0 0 0000 1 0 0 0 3FF 000 - 001 

: CONTINUE, BRCC_D, CONTINUE 

002 w 1 0 0 0 1 0 30 0 000 0 0 0 0 0000 0000 0 0 0001 1 0 0 0 3FF 000 - 001 
003 w 1 0 0 0 1 0 00 0 001 0 0 0 0 8971 0000 0 0 8971 1 0 0 0 3FF 000 - 001 
004 w 1 0 0 0 1 0 30 0 000 0 0 0 0 0000 0000 0 0 8972 1 0 0 0 3FF 000 - 001 
004 w 1 0 0 0 1 0 30 0 000 0 0 0 0 0000 0000 0 0 8973 1 0 0 0 3FF 000 - 002 
004 w 1 0 0 0 1 0 30 0 000 0 0 0 0 0000 0000 0 0 8974 1 0 0 0 3FF 000 - 003 
004 w 1 0 0 0 1 0 30 0 000 0 0 0 0 0000 0000 0 0 8975 1 0 0 0 3FF 000 - 004 
005 w 1 0 0 0 1 0 30 0 000 0 0 0 0 0000 0000 0 0 8978 1 0 0 0 3FF 000 - 003 
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5.3 Am29300 DEFINITION FILE 

Introduction 

The definition file contains the description of the micro 
machine for which assemblies are to be performed. Its 
innate flexibility allows the assemblerto be retargetted to 
support any given bit-slice microprocessor machine and 
instruction format. The definition file is composed of: 

• Instruction Definition 

• Macro Definitions 

The definition file is stored on a floppy disk and can be 
requested from your local AMD sales office. 

Instruction Definition 

The instruction definition defines a name for the instruc­
tion, the length of the instruction, the fields of the instruc­
tion and variation in format, allowable values for each 
field, and default values for each field. 

The instruction definition contains: 

• Field Definitions 

• Case Definitions 

Field Definition 

A field in a microinstruction is a group of bits that are 
logically related and are manipulated as a unit. The form 
of the field definition is: 

<fielddef 1> <descript 1> 

<descript 2> «const 1> : <id 1>, 

<const 2> : <id 2>, 

<const m> : <id m» 

dielddef i> is a name of a field definition to be defined. 
<const b is an integer-valued expression of an identifier. 
<id i> defines a name of an identifier. A descriptor 
<de script> specifies the size and location of the field and 
assigns valid values forthe field. Valid descriptors are as 
follows: 

Bits: 

Length: 

Default: 

Values: 

Bits that make up a field 

Length of a field 

Default values for a field 

Definitions of names for field values 

CHAPTER 5 
Support Tools 

Invert: One's complement field values 

Complement: Two's complement field values 

Mask: Use low bits of value, ignore high 
order bits 

Reverse: 

Valid: 

Display: 

Reverse order of bits in field 

A list of valid values for the field 

Display mode for debugging 

The following is an example of the field definition for the 
Am29332: 

Am29332:1ength (7) 
values (H'OO': ZERO-EXTA 

H'Ol': ZERO-EXTB 

H'5F': SMULFIRST) 

The name of the field may be any sequence of charac­
ters. Constants may be specified in hexidecimal, deci­
mal, octal, binary, or ASCII characters. Each of the 
'values' definitions consists of a constant followed by a 
colon and a symbol that will represent the constant's 
value when assigned to the field. 

case Definitions 

The case definition is used to describe multiple formats 
for the microinstruction word. A microinstruction may 
have different interpretations of certain fields, depending 
upon other fields. The case definition provides a way of 
making this form of differentiation formal. The specifica­
tion is such that if the selector field has a specific value, 
only one of the alternate field definitions is valid and all 
the others are undefined. 

The case statement is introduced by 'case' and followed 
by an optional field selector field name. Following this are 
one or more case entries. A case entry consists of a value 
or list of values of the selector field and a 'begin-end' 
block containing the description of the fields that are 
defined for this value. 

The form of a case definition is as follows: 

Case {<selector>1 of 
<casevalue1> :begin 

<fielddescrs> 
end; 

<casevalue2> :begin 
<fielddescrs> 

end; 
endcase; 

<selector> is an optional field that is set depending upon 
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which case branch is selected. <casevalue1> is a value 
of the selector that selects the branch and is used 
for verification. <iielddescrs> is a field definition. An 
example is: 

sel : length (1); 
case se1 of 

o : begin 
addr :length (8); 
cntrl : length (8); 

end; 
1 : begin 

data length (8); 
end 

endcase; 

This structure corresponds to the following overlayed 
microconstruction: 

I I-'_5_4_3_ct_rI2_1_0_: ... 1t_:_7_6_:d_d_:_3_2_-I' I r .. ··"J 
Macrodefinitions 

Macrodefinition is a very simple language, consisting of 

the field assignment. It is based upon the instruction defi­
nitions discussed above and is user-definable, depend­
ing upon any particular architecture. 

All instructions are a sequence of phrases, each of which 
is either a field assignment or a macro call. The following 
is the form of macrodefinitions: 

macro <op> &<var 1> &<var 2> ..... ; 
begin 

<fielddef l>=<id k>, ... ,<fielddef i> 
=&<var j> 

endm; 

<op> is a name of the macro. &<var j> is a macro variable 
that may be local to a. particular macro or accessible by 
any other macro that defines the same global macro 
name. The following is an example for the Am29331 : 

macro call &dest; 
begin 

data=&dest, Am29331=CALL 
endm; 

In this case, the Am29331 is set for a subroutine call 
instruction CALL and the microprogram branches to the 
address specified by &dest. Other conditions are default 
as given by the Am29331 instruction definition. 

AMDASM definitions for Am29114 Real Time Interrupt Contr~ller 

WORD 4 

MCLR: 
CHSR: 
CCIR: 
NOOP: 
BSMK: 
BCMK: 
LDMK: 
RDMK: 
BSSR: 
BCSR: 
LDSR: 
RDSR: 
BSIR: 
BCIR: 
LDIR: 
RDIR: 

INT.CNTL: 
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EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

DEF 

H#O 
H#l 
H#2 
H#3 
H#4 
H#5 
H#6 
H#7 
H#8 
H#9 
H#A 
H#B 
H#C 
H#D 
H#E 
H#F 

4VH#3 

Master clear 
Clear highest in service reg 
Clear highest in interrupt reg 
No operation 
Set mask reg from D-Bus 
Clear mask reg from D-Bus 
Load mask reg from D-Bus 
Read mask reg to D-Bus 
Set in service reg from D-Bus 
Clear in service reg fr D-Bus 
Load in service reg from D-Bus 
Read in service reg to D-Bus 
Set interrupt reg from D-Bus 
Clear interrupt reg from D-Bus 
Load interrupt reg from D-Bus 
Read interrupt reg to D-Bus 

Default to no operation 



AMDASM definitions for Am29331 Microprogram Sequencer 

WORD 14 

Am29331 bit fields: 

FC values: 

FCONT: 

CIN values: 

CINCR: 
CNINCR: 

a 
1 
2-7 
8 
9. 
10-l3 

EQU 

EQU 
EQU 

FC- Force continue 
CIN Increment carry in 
IO-I5 Instruction 
INTEN Interrupt enable 
OE D-Bus Output enable 
SO-S3 Test select 

BU 

BltO 
BU 

Force continue 

Increment by one 
Don't increment 

Condition control (COND) (14-15) 

TRUE: EQU BltOO Branch on true 
FALSE: EQU BltOl Branch on false 
ALWAYS: EQU BUO Branch always 

Address source (ADDR) (I2-13) 

D.BUS: EQU BltOO Address source - D-Bus 
A.BUS: EQU Blt01 Address source - A-Bus 
MULTW: EQU BUO Address source - Multiway 
STACK: EQU BU1 Address source - Stack 

Sequencer operation (SEQ) (IO-Il) 

BRA: EQU HltOO Branch 
CALL: EQU Hlt01 Call 
EXIT: EQU HUO Exit 
DJMP: EQU HUI Decrement counter and jump 

CHAPTER 5 
Support Tools 
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Sequencer special instructions (10-15) 

CONT: 
FOR.D: 
DECR: 
LOOP: 
POP.D:' 
PUSH.D: 
RESET.SP: 
FOR.A: 
POP.C: 
PUSH.C: 
SWAP: 
STACK.C: 
LOAD.D: 
LOAD.A: 
BSET: 
CLEAR: 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

Test conditions (SO-S3) 

TO: 
TI: 
T2: 
T3: 
T4: 
T5: 
T6: 
T7: 
T8: 
CARRY: 
T9: 
SIGN: 
TIO: 
OVER: 
Tll: 
ZERO: 
ULTB: 
ULT: 
LT: 
LE: 
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EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

6H#30: 
6H#3I: 
6H#32 : 
6H#33 : 
6H#34: 
6H#35: 
6H#36 : 
6H#37 : 
6H#38 : 
6H#39: 
6H#3A: 
6H#3B: 
6H#3C: 
6H#3D: 
6H#3E: 
6H#3F: 

H#O 
HU 
H#2 
H#3 
H#4 
H#5 
H#6 
H#7 
H#8 
H#8 
H#9 
H#9 
HUO 
HUO 
H#ll 
H#ll 
HU2 
HU3 
H#14 
HU5 

Continue 
For D ... 
Decrement counter 
Loop ... 
Pop stack to D 
Push D on stack 
Reset stack pointer 
For A ... 
Pop stack to Counter 
Push Counter to stack 
Exchange Ctr and TOS 
Push Ctr & Load Ctr D 
Load Ctr from D 
Load Ctr from A 
Load Comp Reg from D 
Disable Comparator 

Test TO 
Test TI 
Test T2 
Test T3 
Test T4 
Test T5 
Test T6 
Test T7 
Test T8 

Carry 
Test T9 == 

Negative sign 
Test TIO == 

Overflow 
Test Tll == 

Zero or Equal 
C+Z Uns LT, borrow 
-C+Z Uns LT 
N A V - Signed LT 
(N A V) + Z - LE 



Definitions for conditional sequencer operations 

(interrupts disabled) 

SEQ: DEF 

(interrupts enabled) 
SEQI: DEF 

BtO,Btl,2VBtll,2VBtOO,2VBtOO,BtO,Btl,4VHtO 
FC CIN COND ADDR SEQ INTEN DOE TEST 

BtO,Btl,2VBtll,2VBtOO,2VBtOO,Btl,Btl,4VHtO 
FC CIN COND ADDR SEQ INTEN DOE TEST 

Definitions for special sequencer operations 

(interrupts disabled) 

SSEQ: DEF 

(interrupts enabled) 
SSEQI: DEF 

END 

BtO,Btl,6VHt30:,BtO,Btl,4VHtO 
FC CIN 10-15 INTEN DOE TEST 

BtO,Btl,6VHt30:,Btl,Btl,4VHtO 
FC CIN 10-15 INTEN DOE TEST 

CHAPTER 5 
Support Tools 
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{***********************************************************************} 
{ } 

{ MCASM (Microtec Assembler) } 
{ Definitions for Am29323 32-bit Parallel Multiplier } 
{ } 

{***********************************************************************} 

rnd: 

format: 

psel: 

acc: 

xsel: 

tcx: 

- ftx: 

enx: 

ysel: 

tcy: 

5-12 

length (1), 
values (0 : inactive, 
default (inactive); 

length (1), 
values (0 : fractional, 
default (signed); 

length (2) , 
values (0 temp, 

1 low, 
2 high, 
3 none) , 

default (none) ; 

length (2) , 
values (0 pass, 

1 : accum, 
3 : shift) , 

default (pass); 

length (1), 
values (0 : XB, 1 
default (XA); 

length (1), 

XA) , 

values (0 : unsigned, 1 
default (signed); 

length (1), 
values (0 : registered, 
default (registered); 

length (2) , 
values (0 both, 

1 XA, 
2 XB, 
3 none) , 

default (none); 

length (1), 
values (0 : YB, 1 
default (YA); 

length (1), 

YA) , 

values (0 : unsigned, 
default (signed); 

1 
Round control 
active) , 

{ Format adjust 
1 : signed), 

Output control 
{ Temp reg 
{ Lower half 
{ Upper half 
{ No output 

{ Accumulator control 

{ Select X register 

{ X mode control 
signed), 

Feedthru control for X regs} 
1 : transparent), 

{ Load XA and XB regs 

{ Select Y register 

{ Y mode control 
1 : signed), 



fty: 

eny: 

tsel: 

ent: 

eni: 

enp: 

fti: 

ftp: 

CHAPTER 5 
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length (1), { Feedthru control for Y regs} 
values (0 : registered, 1 : transparent), 
default (registered); 

length (2) , 

values (0 both, 
1 YA, 
2 YB, 
3 none) , 

default (none) ; 

length (1), 
values (0 : low, 

1 : high), 
default (low); 

length (1), 
values (0 : load, 1 
default (hold); 

length (1), 
values (0 : load, 1 
default (hold); 

length (1), 
values (0 : load, 1 
default (hold); 

{ Load YA and YB regs 

Temporary reg load select } 
{ Lower half } 
{ Upper half } 

Load temporary reg ) 
hold) , 

Load instruction reg 
hold) , 

Load accumulator) 
hold), 

length (1), { Feedthru control for inst reg} 
values (0 : registered, 1 : transparent), 
default (registered); 

length (1), { Feedthru control for accum } 
values (0 : registered, 1 : transparent), 
default (registered); 
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{***********************************************************************} 

MCASM (Microtec Assembly) 
Macros for Am29323 32-bit Parallel Multiplier 

{***********************************************************************} 

{***********************************************************************} 

Load X Register 

{***********************************************************************} 
macro loadX &,X &mode; 

begin 
output 
end 

("enx = &X, tcx = &mode"); 

{***********************************************************************} 

Load Y Register 

{***********************************************************************} 
macro loadY &Y &mode; 

begin 
output 
end 

("eny = &Y, tcy &mode") ; 

{***********************************************************************} 

Load Temp Register 

{***********************************************************************} 
macro loadT &mode; 

begin 
output 
end 

("ent = load, tsel = &mode"); 

{***********************************************************************} 

Select X & Y registers 

{***********************************************************************} 
macro selXY &X &Y; 

begin 
output 
end 

("xsel &X, ysel &Y"); 

{********************************~**************************************} 
} 

Multiplier function } 
} 

{***********************************************************************} 
macro mul &A &mode; 

begin 
output ("ace = &A, enp load, psel &mode, eni load"); 
end 
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{***********************************************************************} 
{ } 

{ MCASM (Microtech Assembler) } 
{ Definitions for Am29332 32-bit Arithmetic Logic Unit } 
{ } 

{***********************************************************************} 

position: length (6), 
default (0); 

{ LSB Position or shift count 

width: 

case of 

length (5), 
default (31); 

{ Width of field 

0 begin 
b_width:length (2) , 

values (0 four, 
0 long, 
1 one, 
1 byte, 
2 two, 
2 short, 
3 three) , 

default (four); 

{ Byte width of data 

Am29332:length (7) , { Instruction} 
values (H' 00': ZERO-EXTA, { Zero extend A 

H' 01': ZERO-EXTB, { Zero extend B 
H' 02': SIGN-EXTA, { Sign extend A 
H' 03': SIGN-EXTB, { Sign extend B 
H' 04': PASS-STAT, { Pass status to Y 
H' OS': PASS-Q, { Pass Q reg to Y 
H' 06': LOADQ-A, { Load A into Q 
H' 07': LOADQ-B, { Load B into Q 
H' 08': NOT-A, { Not A 
H' 09': NOT-B, { Not B 
H'OA' : NEG-A, { 2's complement A 
H'OB': NEG-B, { 2's complement B 
H'OC': PRIOR-A, { Output priority A 
H' OD' : PRIOR-B, { Output priority B 
H' OE' : MERGEA-B, { Merge A with B 
H'OF': MERGEB-A, { Merge B with A 
H' 10' : DECR-A, { A - 1 
H' 11' : DECR-B, { B - 1 
H' 12': INCR-A, { A + 1 
H' 13': INCR-B, { B + 1 
H' 14': DECR2-A, { A - 2 
H' 15': DECR2-B, { B - 2 
H' 16' : INCR2-A, { A + 2 
H' 17': INCR2-B, { B + 2 
H' 18' : DECR4-A, { A - 4 
H' 19' : DECR4-B, { B - 4 
H'lA' : INCR4-A, { A + 4 
H' 1B': INCR4-B, { B + 4 
H' 1C' : LDSTAT-A, { Load A into status 
H' 1D' : LDSTAT-B, { Load B into status 
H'lE': undefined1, { RESERVED 
H' 1F': undefined2, { RESERVED 
H'20' : DN1-0F-A, { A » 1, zero fill 
H' 21': DN1-0F-B, { B » 1, zero fill 
H' 22': DN1-0F-AQ, { AQ » 1, zero fill 

} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
} 
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H' 23': DNI-0F-BQ, ( BQ » 1, zero fil1 ) 
H' 24': DNI-1F-A, ( A » 1, one fil1 ) 
H' 25': DN1-1F-B, ( B » 1, one fil1 ) 
H' 26': DN1-1F-AQ, ( AQ » 1, one fill ) 
H'27': DN1-1F-BQ, ( BQ » 1, one fill ) 
H' 28': DN1-LF-A, I A » 1, link fil1 ) 
H'29' : DN1-LF-B, I B » 1, link fil1 ) 
H'2A' : DN1-LF-AQ, I AQ » 1, linkfil1 } 
H'2B' : DN1-LF-BQ, I BQ » 1, linkfil1 } 
H'2C': DN1-AR-A, { A » 1, sign fil1 } 
H'2D' : DN1-AR-B, I B » 1, sign fill } 
H' 2E' : DN1-AR-AQ, I AQ » 1, sign fil1 } 
H'2F': DN1-AR-BQ, I BQ » 1, sign fil1 } 
H' 30': UP1-0F-A, I A « 1, zero fill } 
H' 31': UP1-0F-B, I B « 1, zero fill } 
H'32': UP1-0F-AQ, I AQ « 1, zero fil1 } 
H' 33': UP1-0F-BQ, I BQ « 1, zero fill } 
H' 34': UP1-1F-A, { A « 1, one fil1 } 
H' 35': UP1-1F-B, I B « 1, one fill } 
H' 36': UP1-1F-AQ, I AQ « 1, one fill } 
H' 37': UP1-1F-BQ, I BQ « 1, one fill } 
H' 38': UP1-LF-A, I A « 1, link fill } 

H' 39': UP1-LF-B, I B « 1, link fill } 
H'3A' : UP1-LF-AQ, I AQ « 1, link fill } 
H' 3B' : UP1-LF-BQ, I BQ « 1, link fill } 
H' 3C' : ZERO, I Zeros to Y I 
H' 3D': SIGN, I -1 to YifN==1 } 
H'3E': OR, I A or B } 
H'3F': XOR, { A exclusive or B } 
H' 40': AND, I A and B } 
H' 41': XNOR, I A exclusive nor B } 
H' 42': ADD, { A + B } 
H' 43': ADDC, I A + B + carry } 
H' 44': SUB, { A - B } 
H' 45': SUBR, { B - A } 
H' 46': SUBC, I A - B - carry } 
H' 47': SUBRC, { B - A - carry } 
H' 48': SUM-CORR-A, I Correct BCD A for add 
H' 49': SUM-CORR-B, I Correct BCD B for add 
H'4A': DIFF-CORR-A { Correct BCD A for sub 
H'4B': DIFF-CORR-B, { Correct BCD B for sub 
H' 4E' : SDIVFIRST, { First step signed 
H' 4F' : UDIVFIRST, I First step unsigned 
H' SO': SDIVSTEP, { Iter step signed 
H' 51': SDIVLAST1, I Last step signed / + 
H'52': MPDIVSTEP1, { First step multi / 
H' 53': MPSDIVSTEP3, I Last step multi signed} 
H' 54': UDIVSTEP, { Iter step unsigned / } 

H' 55': UDIVLAST, { Last step unsigned / I 
H' 56': MPDIVSTEP2, { Iter step multi / } 
H' 57': MPUDIVSTEP3, { Last step multi uns } 
H' 58': REMCORR, I Correct rem after / } 
H' 59' : QUOCORR, I Correct quo after / } 
H'5A': SDIVLAST2, I Last step signed / - } 
H' 5B': UMULFIRST, I First step unsigned * } 

H' 5C': UMULSTEP, I Iter step unsigned * I 
H' SD': UMULLAST, I Last step unsigned * } 

H' 5E' : SMULSTEP, I Iter step signed * } 
H' 5F': SMULFIRST) , { First step signed * } 

default (ADD) ; 
end; 
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borrow: 

hold: 

CHAPTERS 
Support Tools 

1 begin 
pos src:1ength (1), 

- values (0 : pins, 1 
default (pins); 

Source for position ) 

wid src:1ength (1), 
- values (0 : pins, 1 

default (pins); 

reg), 

Source for width 
reg), 

Am29332:1ength (7), Instruction 
values (H' 60': NB-SN-SHA, {A« pos, sign fill } 

H' 61': NB-SN-SHB, {B« pos, sign fill } 
H' 62': NB-OF-SHA, {A« pos, zero fill } 
H' 63': NB-OF-SHB, {B« pos, zero fill } 
H'64': NBROT-A, { Rotate A up pos, bits } 
H'6S': NBROT-B, {Rotate B up pos bits } 
H'66': EXTBIT-A, {Extract A<pos> } 
H' 67': EXTBIT-B, {Extract B<pos> } 
H' 68': SETBIT-A, {A<pos> 1 } 
H' 69': SETBIT-B, {B<pos> = 1 } 
H' 6A': RSTBIT-A, {A<pos> 0 } 
H' 6B': RSTBIT-B, {B<pos> 0 } 
H'6C': SETBIT-STAT, {STAT<pos> 1 } 
H'6D': RSTBIT-STAT, {STAT<pos> 0 } 
H'6E': NOTF-AL-B, {Comp B field } 
H' 6F': PASSF-AL-B, { Pass B, set Z flag 
H'70': NOTF-A, { Comp A field, unalgnd 
H'71': NOTF-AL-A, {Comp A field, aligned 
H'72': PAS SF-A, { Pass A field, unalgnd 
H'73': PASSF-AL-A, { Pass A field, aligned 
H'74': ORF-A, { A or B, unaligned 
H'75': ORF-AL-A, {A or B, aligned field 
H'76': XORF-A, { A xor B, unaligned } 
H'77': XORF-AL-A, {A xor B, aligned field} 
H'79': ANDF-AL-A, (A and B, aligned field) 
H'78': ANDF-A, { A and B, unaligned } 
H'7A': EXTF-A, { Extract field in A } 
H'7B': EXTF-B, { Extract field in B } 
H'7C': EXTF-AB, { Extract field in AB } 
H'7D': EXTF-BA, {Extract field in BA } 
H'7E': EXTBIT-STAT,{ Extract STAT<pos> } 
H'7F': PASS-MASK); { Generate mask pattern} 

end; 
endcase; 

length (1), 
default (0); 

length (1), 
default (0); 

{ Borrow mode 

{ Hold status & Q} 
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{***********************************************************************} 
{ } 
{ Macros for MCASM (Microtec Assembler) } 
{ Macros for Am29332 32-bit ALU } 
{ } 

{***********************************************************************} 

{***********************************************************************} 
{ } 

{ datasize - set data size for subsequent operations } 
{ } 

{***********************************************************************} 
macro datasize &sz; 

global &dsize; 
begin 
&dsize = &sz; 
end 

{***********************************************************************} 
{ } 

{ ALU - set alu operation with fixed data size } 
{ } 

{***********************************************************************} 
macro ALU &Op;. 

global &dsize; 
begin 
output ("b_width &dsize, Am29332 &Op"); 
end 

{***********************************************************************} 
{ } 

{ preg - set position source to register } 
{ } 

{***********************************************************************} 
macro preg 

begin 
output 
end 

reg") ; 

{***********************************************************************} 
{ } 
{ wreg - set width source to register } 
{ } 

{***********************************************************************} 
macro wreg 

begin 
output ("wid_src reg") ; 
end 

{***********************************************************************} 
{ } 
{ ALUv - set alu operation for variable data size 1 
{ } 

{***********************************************************************1 
macro ALUv &OP &pOS &width ; 
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output 
end 
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1************************************************************************1 
1* *1 
1* MetaStep (Step Assembler) *1 
1* Definitions for Am29325 32-bit Floating Point Processor *1 
1* *1 
1************************************************************************1 

enr: length (1) , 1* Load Register A *1 
values (0 : LOAD , 1 NOP) , 
default (NOP) ; 

ens: length (1) , 1* Load Register S *1 
values (0 : LOAD , 1 NOP) , 
default (NOP) ; 

enf: length (1) , 1* Load Register F *1 
values (0 : LOAD , 1 NOP) , 
default (NOP) ; 

length (1) , 1* R Source Select *1 
values (0 : BUS , 1 F-Reg) , 
default (BUS) ; 

length (1) , 1* S Source Select *1 
values (0 : S-Reg , 1 F-Reg) , 
default (S-Reg) ; 

Am29325: length (3) , 1* FPU Instruction *1 
values ( 0 PLUS, 1* F R + S *1 

1 MINUS, 1* F R - S *1 
2 MUL, 1* F R * S *1 
3 2MINUS, 1* F 2 - S *1 
4 FLOAT, 1* F float R *1 
5 INT, 1* F int R *1 
6 DEC, 1* F dec R *1 
7 IEEE, 1* F ieee R *1 

default (0) ; 

round: length (2) , 1* Rounding Mode *1 
values (0 NEAREST, 

1 DOWN, 
2 UP, 
3 ZERO, 

default (NEAREST) ; 
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/************************************************************************/ 
/* */ 
/* Macros for MetaStep (Step Assembler) */ 
/* Macros for Arn29325 32-bit Floating Point Processor */ 
/* */ 
/************************************************************************/ 

/************************************************************************/ 
/* */ 
/* Load R Register */ 
/* */ 
/************************************************************************/ 
macro loadr &src; 

begin 
R_select &src, enr LOAD 

endm; 

/************************************************************************/ 
/* . */ 
/* Load S Register */ 
/* */ 
/************************************************************************/ 
macro loads ; 

begin 
ens LOAD 

endm; 

/************************************************************************/ 
/* */ 
/* Load F Register */ 
/* */ 
/************************************************************************/ 
macro loadf ; 

begin 
enf LOAD 

endm; 

/************************************************************************/ 
/* */ 
/* Do all 1 operand FPU operations */ 
/* */ 
/************************************************************************/ 
macro fpu &op &s 

begin 
Arn29325 &Op, S_select &s 

endm; 

/************************************************************************/ 
/* */ 
/* Do all 0 operand FPU operations */ 
/* */ 
/************************************************************************/ 
macro fcvrt . &OP ; , 

begin 
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/************************************************************************/ 
/* */ 
/* MetaStep (Step Assembler) */ 
/* Definitions for Am29334 Four-Port Register File */ 
/* * / 
/************************************************************************/ 

Wrt_enable_A: length (4) , /* Write enable for port A */ 
values (H' 0' : double, 

H'B' 3byte, 
H'3' high-word, 
H'C' low-word, 
H'7' byte3, 
H'B' byte2, 
H'D' by tel, 
H'E' by teO, 
H'F' none) , 

default (none) ; 

OEA: length (1) , /* Port A output enable */ 
values (0 : enable, 

1 : disable) , 
default (disable) ; 

A-write: length (6) ; /* A write address */ 

A-read: length (6) ; /* A read address */ 

Wrt enable B: - length (4) , /* Write enable for port B */ 
values (H' 0' : double, 

H'B' 3byte, 
H'3' high-word, 
H'C' low-word, 
H'7' byte3, 
H'B' byte2, 
H'D' by tel, 
H'E' by teO, 
H'F' none) , 

default (none) ; 

OEB: length (1) , /* Port B output enable */ 
values (0 : enable, 

1 : disable) , 
default (disable); 

B-write: length (6) ; /* B write address */ 

B-read: length (6) ; /* B read address */ 
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/************************************************************************/ 
/* */ 
/* MACROS for MetaStep (Step Assembler) * / 
/* Macros for Am29334 Four-Port Register */ 
/* */ 
/************************************************************************/ 

/************************************************************************/ 
/* */ 
/* SrcA - select A register source */ 
/* */ 
/************************************************************************/ 
macro SrcA &n 

begin 
A-read 

endm; 
&n, OEA enable 

/************************************************************************/ 
/* */ 
/* SrcB - select B register source */ 
/* */ 
/************************************************************************/ 
macro SrcB &n 

begin 
B-read 

endm; 
&n, OEB = enable 

/************************************************************************/ 
/* * / 
/* DestA - select A register destination and size */ 
/* */ 
/************************************************************************/ 
macro DestA &n &size; 

begin 
A-write = &n, Wrt_enable_A &size 

endm; 

/************************************************************************/ 
/* */ 
/* DestB - select B register destination and size */ 
/* */ 
/************************************************************************/ 
macro DestB &n &size; 

begin 
B-write = &n, Wrt_enable_B &size 

endm; 
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5.4 MICROCODE DEVELOPMENT 

5.4.1 Step Engineering 
32-Bit Development Tools 

Step Engineering offers an integrated set of powerful 
development tools for the design and development of 
microprogram-based systems. In particular, these devel­
opment tools are well suited for use with 32-bit building 
block devices such as the Am29300 family of compo­
nents from AMO. 

Forthe 32-bit system designer, the MetaStep Language 
System provides a powerful and flexible language defini­
tion, design, and development system for the develop­
ment of customized microinstructions and micropro­
grams. An important feature of the language is the ability 
to support both high order language constructs and bit­
vector level operations. In addition, comprehensive 
source level debug facilities are inherent in the language, 
with a link to the STEP-40 SOT hardware debug stations. 

The STEP-40 SOT is Step's system-level development 
tool for Am29300 32-bit microprogram-based design. It 
offers a comprehensive array of hardware tools and user 
interface software that supports every level of the devel­
opment task. 

The MetaStep Language System 

The MetaStep Language System from Step Engineering 
is a powerful new microprogramming tool for the pro­
grammer/designer who wishes to utilize microprogram­
based devices such as the Am29300 family as well as the 
Am2901, the Am291 O,the Am29116, and many other bit­
slice or microprogram mabie units. MetaStep is a full­
featured and well-structured microprogram meta-as­
sembler with advanced features that give the program­
mer great power and flexibility. Both an elegant high 
order and a powerful bit-level language system, 
MetaStep includes five interrelated language modules 
and an AMOASM-to-MetaStep translator program. 

A unique feature of the MetaStep Language is the 
MetaStep QuickLearn Environment. This integral envi­
ronment expedites the development and debug of micro­
programs by providing a menu driven, interactive pro­
gram that gives the user instant access to a user­
selected editor, a file display program, a directory listing, 
an automated definition file generator and the MetaStep 
assembler. This program lets the user easily generate a 
definition file, assemble a program, quickly move from an 
assembly error directly to the line in his source code 
that contains the error, correct that error and return to 

Reprinted with permission from Step Engineering, Inc. 
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assembly. With single keystrokes the user can select 
from a variety of options and move quickly from one 
programming environment to another. 

These features can greatly increase the speed and 
accuracy of definition file and microprogram generation 
by eliminating much of the tedious, time-consuming and 
error-prone task of catching and correcting syntactical 
errors. 

Unlike earlier, more primitive microprogram assemblers, 
the MetaStep language system provides both high level 
and low level programming constructs for the designer/ 
programmer. For the hardware designer/debugger, 
MetaStep supports any "close to the hardware" program­
ming style with total control of bit level field constructs. 
This is termed bit vector level coding. MetaStep is also 
the ONLY microprogram meta-assembler to support true 
source level debug when linked to a STEP-40 SOT 
system. 

MetaStep supports a full range of macro instruction 
features that let the programmer easily and quickly take 
full advantage of the power inherent in devices such as 
the Am29332 ALU, the Am29331 Sequencer, the 
Am29334 Register File, the Am29C323 Multiplier and 
Am29325 Floating Point Processor. 

This flexible language provides the ability to create 
complex high level language constructs specifically tai­
lored to your application. These constructs can be of any 
complexity, up to and including those of a custom lan­
guage compiler. Of particular interest is the ability to 
intersperse bit-level instructions freely among high order 
constructs. This allows performance-critical code to be 
hand-crafted and placed within high order assembly or 
even high level language statements. 

Design rule constraint management, error checking, 
data field validation, user-defined warning messages, 
and automatic pipeline compensation mechanisms pro­
vide a rich, defensive programming environment that 
permits error detection at assembly time, rather than at 
debug or runtime. 

MetaStep features include a free-form and position­
independent syntax, informative listings of macro expan­
sions, field aSSignments, default assignments, symbol 
cross references, and symbol table listings, automatic 
hardware-to-software bit position mapping, field check­
ing facilities, pipeline delay faCilities, constraint manage­
ment, consumption of AMOASM code, 28 expression 
operators, close interface to runtime debug facilities, and 
generation of files that give runtime information in sym­
bolic form. MetaStep also supports meta-disassembly. 
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MetaStep is presently distributed for use on five different 
types of systems: CPM/SSK-based systems, MSIDOS­
based systems, VAx/UNIX-based systems, VAx/VMS­
based systems, and SUN UNIX-based workstations. 
Support for other operating systems will be added in the 
future. 

The five MetaStep language modules are called the 
Definition Processor, the Assembler Processor, the 
Linker Processor, the Format Processor and the UDS or 
User-Defined Symbolics Processor. 

The Definition processor is used to define a language for 
a given target architecture, field by field, with logical 
groupings where appropriate. The definition processor 
defines constraints over fields, groups of fields, and 
entire instructions. Included in the definition processor is 
the ability to define macroinstructions, constants, and 
variables only once, and to then make those values 
available to the entire language system. 

The Assembler processor is a macro-driven, relocating 
and constraint maintaining microprogram assembler. It 
produces relocatable object modules, error, warning, 
and user-defined messages, and symbolic output for use 
by the linker and system debuggers. 

The Linker processor generates absolute code as well as 
debug, symbol and structure tables from definition proc­
essor and assembler processor output files. 

The Formatter processor takes the absolute object file 
output of the linker and extracts several different types of 

. information. These include a binary output file loadable 
into a STEP-40 SOT development tool, a hexadecimal 
output file, a symbol file with user program global labels 
and addresses, and a debug file for on-line assemblyl 
disassembly and source level debug. 

The User-Defined-Symbolics processor automatically 
generates User-Defined-Symbolics or UDS files. This 
frees the debug engineer who wishes to perform debug 
functions at the source level from the task of redefining 
the symbolics of the language every time he does a re­
assembly. 

The AMDASM-to-MetaSteptranslatoroffers the ability to 
take current AM DASM assembly source code and auto­
matically translate that source into a syntactic form that 
is accepted by the MetaStep assembler. 

MetaStep can be configured to execute in two environ­
ments: the station model, intended for use on a STEP-40 
SDT development station; and the no-station model, 
intended for use in environments that do not use the 
STEP development stations or MetaStep language sys­
tem debug and symbol files. 
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Some of the more important features of MetaStep are: 

• Free-form, non-positional keyword syntax 

• Powerful macro facility 

• Symbolic field names 

• Data types such as strings, integer, and 
enumeration 

• If and for assembler directives 

• Case statements 

• Recursive expression facility 

• Attribute operators 

• Modular programming support 

• Design rule management 

• Automatic pipeline delay compensation 

• Relocatable object code 

• Any order bit-to-field assignments 

• Link to true source level debug 

• Easy integration to hardware debug station 

• Consumes AMDASM source code 

• Fast (10,000 fields/minute) one-pass operation 

MetaStep solves the problems associated with older 
positional microprogram assemblers; I.e., the difficulties 
in keeping track of fields and field values by rote and 
precise positioning, the lack of any value or error check­
ing mechanisms, the lack of a link to a hardware debug 
system at the symbolic level, and the lack of any means 
of reconstructing backwards from the microword to the bit 
fields that comprise it. 

MetaStep provides the non-positional capability to define 
fields in logical order rather than simply by microcode 
instruction address, and inCludes support for nested 
macros, case structures and keyword parameters. The 
following is an illustration of a partial MetaStep program. 
As can be seen below, MetaStep has the ability to 
support both bit vector and high level coding techniques. 
The upper program segment illustrates a field by field 
programming style that uniquely declares each pertinent 
field in the microinstruction word. The lower segment 
shows a second MetaStep example that uses only high 
level statements to perform the same operation! As can 
be imagined, utilizing high level language constructs 



greatly eases the programming task. For convenience 
and power, the programmer can intermix low level and 
high level program statements and/or start his program­
ming task with simplistic statements and then grow into 
more complex usages as his experience grows. 

Two illustrative MetaStep program statements: 

Should the programmer/designer wish to program at the 
bit vector level, a simple MetaStep bit vector level pro­
gram could be written like: 

OP116 = TORAA, 
SRCDST = OR, REG = Rl, 
CTLYEN = YEN_L, CCMUX = Tl, 
2910INST = CONT, TCONTROL = Nl, 
JMPADR = WALK, DLE = DLE_H, OET OET_H, 
SRE = SRE_L, IEN = IEN_L, 
OEY = OEY L 

A comparable MetaStep partial program using High 
Order language or HOl constructs would look like this: 

ACC <- ACC OR Rl 

While the previous example illustrates the simplicity of 
using MetaStep, the microprogrammer may very well 
be more concerned with power and flexibility. Devices 
like the Am29332 are complex devices with powerful in­
struction sets. To best take a dvantage of their power, 
MetaStep can incorporate all of the possilJle configura­
tions of an Am29332 instruction into one clear MetaStep 
instruction. 

For example, there are numerous options available to the 
programmer on each Am29332 instruction. Fixed length 
and variable length instructions such as MOVEs, 
SHIFTs, ADDs, SUBTRACTs, MULTIPLY/DIVIDEs, of­
fer several different source and destination locations 
depending upon the class of instruction. With MetaStep, 
a programmer need define each Am29332 instruction 
only once, using high level constructs such as the CASE 
directive to define all of the possible configurations of the 
instruction. Then throughout his program, he can utilize 
that definition with a simple high order instruction mne-
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monic that takes into account all of the various complica­
tions associated with that instruction and data and source 
combinations. 

In addition, he can prevent microprogramming errors by 
providing error checking conditions within the instruction 
definition, so that illegal conditions are flagged at the 
assembly level, not at the debug level. 

In this way, the programmer can reduce a large and 
complex instruction set to a few easy to remember 
mnemonics. This frees the programmer to concentrate 
on the logic of his program. In this way, microprogram­
mers can quickly apply all of the power of the Am29300 
family to his deSign. 

MetaStep system components share a common data­
base and utilize common control constructs. The defini­
tion processor provides the capability to define variables, 
a string facility that allows concatenation, and it supports 
cohesion operations as well as 28 expression operators. 
The definition processor's ability to nest macros, pass 
variables through macro expansions, and perform recur­
sion makes it a powerful facility for creating custom 
languages. 

Constraint management facilities include a check de­
scriptorthat may be utilized to test constraints on a single 
field, a case branch, an entire microinstruction, or be­
tween microinstructions. Most importantly, rules of the 
target architecture may be embedded in the language 
facilities to detect bugs at assembly time rather than 
debug time. This facility allows user-defined procedural­
based design rules to be enforced. 

With MetaStep, memory space controls allow code to be 
generated for not only multiple segments, but multiple 
memory segments. This allows a single program to 
generate code for modern architecture class machines 
such as Harvard class machines and data flow architec­
tures that typically contain multiple program stores. 

A significant advantage offered by MetaStep is that the 
database files generated from the definition, assernbler 
and linker are common and provide a method to pass all 
language constructs to debug tools such as the STEP-40 
SOT. This means that the STEP-40 development tools 
can now have the capability to use the language defini­
tion files and all symbol tables to create true meta­
disassembly. Powerful source level debug can greatly 
speed the development of any microprogram deSign 
and, in particular, as microprogram-based systems 
increase in complexity, true source level debug is a 
necessity. 
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MetaStep Quick Reference 

MetaStep System Overview 
• Common system elements shared between 

MetaStep processors 
Five Processors 
- Definition processor 
- Assembler processor 

Linker processor 
- Format processor 
- User defined symbolics processor 

• AMDASM to MetaStep translator program 

• COMMON ELEM ENTS: All processors share data 
files and common structures. 
- Common syntax and semantics: include forms of 

names, constants, directives and legal and 
illegal value definitions. 

- Common directives include: 

• Source Control Directives, 
- Listings - forms control, summary information, 
- Include - source inclusion, 
- Format - listing headings, trailers, and 

control, 

• Flow-of-Control Directives 
- If - fully nested conditional control 
- For - repetitive conditional control statement 

• Macro facilities, including nested macro capa­
bility and parameter passing and expansion. 
- Specification of assembly time constructs, 
- Shorthand specification of logical groupings 

of assignments. 
- Generation of warning and error messages. 

• DEFINITION PROCESSOR: accepts a definition 
of the target system architecture and develop­
ment environment. 
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- Micro-architecture description: by means of in 
struction/field formats. 

- Instruction directive: names the architecture 
and specifies instruction length. Maximum in 
struction length is 1024 bits. 

- Field Description: defines a field as a group of 
bits (not necessarily contiguous) that perform a 
common function. Each field must be given a 
field description. 

A full set of field descriptors is as follows: 

• bits - define absolute bit locations of field in 
microinstruction 

• check - constraint check on assignment to this 
field ' 

• complement - two's complement field value 
• default - provide value when field is not as­

signed 
• display - provide debugger and default radix 

information 
• invert - one's complement field value 
• length - specify length of field 
• mask - truncate values to field length 
• parity - this field is the parity field 
• reverse - reverse bits in field 
• valid - specify legal values for field 
• values - specify symbolic values for field 

VALUES, VALID, AND CHECK provide syntactic, 
semantic, and pragmatic verifications on a perfield 
basis. 

VALUES provide syntactic information indicating 
what are acceptable values for assignment to a 
field. 

VALID provides semantic information, listing all 
the acceptable values for the field. 

CHECK provides a way of examining assigned val­
ues in the context of other field values orother state 
information. 

- The Case Definition: alternative field interpreta­
tions. A case definition can be specified for each 
field. It is a powerful mechanism for defining alter­
native bit values for overlapping fields. 

- The Environment Description: allows the program­
mer to specify the development environment, with 
constraints on field values, sequences of microin­
structions, and the relationship between field 
values. ' 

Features include: 

• bitMap 
• macros 
• EQU symbols 
• variables 

- Constraints are provided in three general ways: 

• Symbolic values 
• Case branch constraints 
• Check descriptors - The check descript or asso­

ciates a constraint macro with one of the follow­
ing: 

- a single field 
- a case branch 
- the entire microinstruction 

- Validations: numerous checks performed at defi 
nition time verify that field names and values in 
case branches are consistent. 



• THE METASTEP ASSEMBLER: supports coding 
styles ranging from bit vector specification through 
high order language expression and each stage in 
between. Allows mixing of bit vector and HOl ex­
pressions during coding. 

- Instructions: a series of comma-separated 
phrases. A phrase may be a field assignment, a 
macro-invocation, or a flow-of-control directive. 

- Field Assignments: consists offield name, followed 
by an equal sign, followed by an expression. 

- Macro Phrases: a macro-invocation is a macro 
name, optionally followed by parameters. Macros 
may be nested. 

- Relocation Facilities 

• org 
• align 
• reserve 
• segment 
• entry 
• point 
• external 

• MET ASTEP LINKER: combines all system elements 
into absolute code that can be loaded into ROMs or 
simulators. It also produces debug tables. 

- Directives: 

• load 
• name 
• locate 
• reserve 
• fill 
• mapPoint 
• analyze 
• set 
• parity 

• AMDASM TO METASTEP TRANSLATOR: pro­
duces MetaStep source statements from AMDASM 
source statements. 

The Step-40 SOT 

The STEP-40 SDT is the premier hardware-based devel­
opment tool for any microprogram development task. In 
particular, it offers a comprehensive system for the 
design and debug of Am29300-based systems. It offers 
in one integrated chassis all of the development and 
debug tools needed for such an effort. With high reliability 
cabling and interconnect technology, the hardware 
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chassis permits the plug-in addition of a wide range of 
distinct but interrelated hardware tools. An IBM-PC/AT 
computer system provides the human interface, mass 
storage, and I/O devices. 

Key Features of the STEP-40 SDT: 

• Fully supports 32-bit Am29300-based system devel­
opment and debug. 

• Supports other microprogrammed products such as 
bit-slice, ASIC, DSP, or VlSI. 

• Completely integrated hardware/software develop­
ment station. 

• Powerful IBM-PC/AT-based microprogram support 
instrument. 

• Supports MetaStep, the first true high level language 
for microprogram development with in-line bit vector 
level support. 

• SOURCE lEVEL DEBUG available at all levels of 
hardware and software debug. 

• Reconfigurable, ultra-reliable 10 to 70 ns writable 
control store supports up to 64K x 512-bit arrays. 

• Real-time emulators for popular bit-slice AMD AlUs 
and sequencers. 

• logic state analysis with trace memory and sophisti­
cated multi-level control. 

• Performance analysis tools like histograms, timing 
analysis, access tracking and predicate analysis. 

• Regression Test tools for design validation. 

• Meta-Disassembly coupled with source edit, source 
management, version control, and on-line patch 
management. 

• User-Defined Symbolics allows conditional disas­
sembly of trace or any system data. 

• Sophisticated, easy-to-use screen-oriented editor 
with pop-up help menus. 

HARDWARE resources include writable control store 
modules with the widest range of speeds and widths; 
real-time emulators for popular bit-slice parts such as the 
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Am2910, and Am29116; logic state analysis trace 
memory modules with flexible clock and breakpoint 
control modules; a histogram/timing analysis module for 
performance analysis tasks; and high speed memory 
simulation modules for more than 450 popular ROMs, 
RAMs, and PROMs. With a powerful high speed bus and 
modular hardware design, the STEP-40 SDT presents 
no hardware limitations for designers utilizing the most 
advanced microprogrammed devices. 

SOFTWARE tools include a sophisticated, easy-to-use, 
screen-oriented editor; a powerful turbo programmers 
environment for fast, error free program development 
and debug; MetaStep for superior high level and bit­
vector level programming; User-Defined Symbolics for 
comprehensive on-line symbolic debug; Meta-Disas­
sembly for true interactive symbolic debug with full 
access to MetaStep symbol tables; and performance 
analysis tools like histogram and time stamping, 
regression testing and automated test suite generation 
tools. The STEP-40 SDT is the first system to offer 
source level debug throughout the development and 
debug environment. 

Because the STEP-40 SDT is an IBM-PC/AT based 
development station, it gives you the best of both worlds: 
a wide range of comprehensive hardware debug re­
sources coupled with a fast, convenient and well-sup­
ported computer system. The IBM AT, in particular, offers 
the widest range of software support of any lab-based 
system in the industry. The IBM-PC/AT workstations 
have the power to match the STEP-40 SDT debug 
station. As intelligent hosts they can support advanced 
user interfaces and control the multiple hardware re­
sources. In addition, system updates and new features 
can be added quickly thanks to the flexibility inherent in 
these standard workstations. As hardware needs 
change, the user need only add hardware modules to the 
STEP-40 SDT specialized hardware chassis. 

Hardware Tools 

Plug-in writable control store modules are available with 
flexible array configurations from 1 K x 64 to 16K x 128 per 
module. Modules can be mapped into arraysofupto 64K 
x 512 bits in size. Access times vary from 70 ns to iOns 
(and even faster when RAM technology permits). 

The Writable Control Store (WCS) is a dual-port memory 
accessible from either the STEP-40 SDT or the target 
system. Both ECl and TTL RAM are supported with the 
industry's most comprehensive array of memory emula­
tion. Having up to 16K x 128 bits on a single WCS versus 
having many small boards connected with many cables, 
dramatically improves reliability and signal integrity. The 
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user can configure to meet his design objective without 
sacrificing reliability or performance. Further, the STEP-
40 SDT can support up to 32 independent arrays con­
trolled by either a single or multiple clocks. 

Available Modules: 

• WCS-64 is the fastest STEP WCS. It uses iOns ECl 
RAMs and connects to the target via address and 
data pods containing ECl to TIL translators. Organ­
ized by 1 K x 64 or 2K x 32 bits. 

• WCS-128 provides twice the density of the WCS-64 
with iOns ECl RAMs. Organized in 2K x 64, 4K x 32, 
or8K x 16 bits. 

• WCS-256 and WSC-1 024 provide even larger memo­
ries for applications with less demanding speed re­
quirements. WCS-256 is configured as 4K x 64, 8K 
x 32, or 16K x 16. WCS-1 024 is configured as 16K x 
64, 32K x 64, or 64K x 16 bits. Interface circuitry 
matches exact user memory specifications. 

lOGIC STATE ANALYSIS (lSA) - provides trace mem­
ory modules with sophisticated clock, breakpoint and 
trace control. With true conditional bit-mapped disas­
sembler (User Defined Symbolics or UDS), the lSA 
provides real-time 3-way branching using a54-bit match­
word to trigger the 25 MHz or 50 MHz trace memory. 
Linkage is provided to the symbol table of the user's 
source code for access to symbolic debug information. 
Source code can be interleaved with trace samples for 
easy cause (microinstruction) and effect (traced sample) 
readability and comparison. 

TRACE MEMORY is provided with either 4K (TM-256) 
or 16K (TM-1024) bits of real-time trace memory at 
speeds of 16 MHz, 25 M Hz or 50 M Hz. These memories 
act as a circular buffer storing the last 4K or 16K store 
samples. Store clock filtering extends the effective buffer 
depth substantially by filtering out unwanted samples. 
Triggering and sampling is controlled by the trace 
control module. 

TRACE CONTROL modules include the sophisticated 
clock and breakpoint controls. With a screen editor 
display, the user can set up to five 54-bit (16 address, 32 
data, and 6 external qualifiers) matchwords per level to 
qualify trace memory sampling. Up to 16 independent 
levels for trace triggering or breakpoint are pOSSible, with 
each level allowing for three way branching on an IF, 
ELSE-IF, ELSE-IF basis. A delay counter can be used on 
each IF branch to count occurrences of the 54-bit match­
word or store cycles. 



IN-CIRCUIT EMULATORS permit real-time emulation of 
popular bit-slice circuits such as the Am291 0, Am29116 
and other popular devices. The user can directly observe 
the internal states of these chips as they execute his 
program. The user can examine and modify registers and 
stacks. Execution control includes single step, multiple 
step and run program commands. Multiple emulators 
can be simultaneously controlled from a single emulator 
control module. STEP in-circuit emulators will operate in 
real-time at the full rated speed of the emulated circuit. 

MEMORY EMULATOR modules support a wide range of 
RAM, ROM and PROM devices. Over 450 popular 
memory devices can be emulated. 

PERFORMANCE ANALYSIS modules provide the hard­
ware support for software features like histogram and 
time stamping. Time analysis can be performed with 12.5 
ns resolution. Histograms can be in absolute time or in 
microcycles for precise execution measurements. A 48-
bit timer/counter permits continuous analysis over hours 
and days, not just seconds. 

Software Tools 

The STEP-40 SOT fully supports METASTEP, thus 
providing the world's first truly high level microcode 
development language in a fully integrated development 
station. 

METASTEP QUICKLEARN PROGRAMMING ENVI­
RONMENT is a unique facility that speeds the develop­
ment of MetaStep programs. The user can quickly switch 
from facility to facility without lOSing his place in his code. 
This is particularly useful during program debug and 
patch. 

SOURCE LEVEL OEBUG is another unique capability of 
the STEP-40 SOT. With the MetaStep language as the 
foundation, a microcode-based project can be greatly 
speeded by utilizing symbolic information throughout the 
debug cycle. A truly interactive symbolic debug capabil­
ity, source level debug permits on-line meta-assembly, 
meta-disassembly on-line, run-time editing at the source 
level, and directly readable displays. 

All STEP-40 SOT commands can reference symbolic 
labels defined in MetaStep. Thus, the user need enter 
and define his labels only once. Later he can use them 
throughout his debug tasks without reentering or redefin­
ing them. This is a requirement for convenient debug of 
relocatable microcode. Other systems require that the 
user spend endless hours defining his symbolic informa­
tion each time he reassembles his code. Source Level 
Debug also means that he can control his hardware 
debug resources using this symbolic capability. 
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User Defined Symbolics (UDS) provides complete dis­
play and control of microcode, trace data and emulator 
data. Any arbitrary digital word can be conditionally 
disassembled into any symbolic representation. Unlike 
older systems that merely allow' permutation of some 
fields in groups of contiguous bits, UDS gives the user a 
general purpose bit mapping (binary to symbolics) capa­
bility unmatched by any other system. UOS has great 
utility in hardware trace situations. 

META-DISASSEMBLER capability allows the source 
definition to be accessed by the debug process and 
provides the user the abilities of disassembling his 
source code in-line, assembling in-line, plus insertion of 
additional microcode. 

PERFORMANCE ANALYSIS capabilities include histo­
grams and time stamping. 

HISTOGRAMS permit absolute time or microcycle 
analysis of your microcode execution. With a 48-bit 
counter, time analysis can be performed over days and 
weeks if necessary, not just seconds. This analysis can 
give you graphical information showing where code 
optimization can best help overall system performance. 

TIME STAMPING includes a 12.5 ns resolution to easily 
measure time between captured system events and 
provides both absolute and relative time stamping in both 
time and microcycles. 

QUALITY ASSURANCE TOOLS aid in redUCing overall 
system costs and in rapid test development. These 
include access tracking, predicate analysis and 
MetaStep facilities for maintenance of source and ver­
sion control. 

REGRESSION TESTS such as AUTOSTEP provide 
the capability to generate, store and reuse system vali­
dation tests from design definition throughout the life of 
the product. 

Hardware Specifications 

6-Slot Mainframe: 
6-user slots available per chassis 
Expandable backplane 

MetaMachines: 
Upto 32 per mainframe, each with separate data, ad­
dress and/or clock inputs. 

Writable Control Store: 
Total Address Space: 64K deep x 512 bits wide. 
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Modules: 

WCS-64 - 1 K x 64/2K x 32, 
10ns or 15ns RAM speed. 

WCS-128 - 2K x 64/4K x 32/8K x 16, 
15ns or 25ns RAM speed. 

WCS-256 - 4K x 64/8K x 32/16K x 16, 
25ns or 35ns RAM speed. 

WCS-512 - 4K x 128/8K x 64, 
10ns, 15ns, and 25ns RAM speed. 

WCS-1 024 - 16K x 64/32K x 32/64K x 16 
35ns or 70ns RAM speed. 

WCS-2048 - 16K x 128/32K x 64, 
25ns, 30ns or 70ns RAM speed. 

Simulation Pods: 

ECl to TTU TTL to ECl conversion 
TTL specifications 
Unlimited number of arrays 

Trace Memory: 

Sizes: 4K x 64 bits or 16K x 16 bits 
Number: up to 8 modules per trace controller. 

5-30 

Clock, Trace and Breakpoint Controller: 

16-level, 54-bit match word, conditional trace and 
break supported. 

logic State Analysis Control: 

16-states, comprehensive control through counters, 
timers, conditionals, triggers, and unlimited break­
points. 

Additional information about MetaStep, the STEP-
40 SOT and other Step tools for developing 
Am29300-based systems is available upon request 
from Step Engineering. Please contact: 

Step Engineering, Inc. 
66t East Arques Ave. 
P.O. Box 61166 
Sunnyvale, CA 94088 

(408) 733-7837 
(800) 538-1750 
TWX: 910-339-9506 



5.4.2 Microtech Research 
mcASM Structured Microcode Assembler 

The mcASM microcode assembler provides software 
support for the Am29300 family. A second generation 
Structured Microcode Assembler, mcASM was the result 
of a joint effort between Advanced Micro Devices and 
Microtec Research. Ten years of bit-slice and microcode 
assembler experience within both companies has been 
combined with the latest software technology to produce 
this advanced implementation of a relocatable microc­
ode assembler. 

Special support is provided forthe variable formats found 
in the Am29300 family. This support is an additional 
benefit as it provides constraint management for the 
entire microcode word. New features make mcASM 
faster and easier to use than previous microcode assem­
blers. These features allow the programmer to concen­
trate on the target system algorithm, thereby achieving a 
more competitive target system. 

mcASM Features 

• Am29300 family mnemonic definitions included 

• Hosted on VMSNMS and PC/DOS 

• PROM programmer, Microtec, AMD, and STEP 

output formats 

• Relocatable code segments 

• Overlay support 

• Macros with keyword parameters 

• Automatic selection of word format 

• Keyword syntax 

• Local symbols for each field 

• Fields defined with non-contiguous or contiguous 

bits 

Description 

As a meta-assembler, mcASM is used to assemble 
source programs targeted for a user defined set of 
hardware. First, a model definition program, mcDEF, is 
used to define the target mnemonics and their corre­
sponding bit patterns for the assembler, mcASM. Then, 
mcASM assembles the user's source program into mi­
croinstructions for the target. 

This meta-assembler is optimized for microcode applica­
tions where very wide word widths (up to 1024 bits) are 
not uncommon. A library of pre-defined part definitions is 
included with mcASM for the Am29300 family and other 

Reprinted with permission from Microtech Research, Inc. 
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AMD microcode driven products to help the user quickly 
build the hardware definition file. 

Four related programs make up the product: mcDEF, 
mcASM, mcLlNK, and mcPROM. 

A model of the target system is defined using the mcDEF 
definition language. The model is then compressed into 
a lookup table by the definition program, mcDEF. 

The model lookup table allows the microcode assembler, 
mcASM, to translate the user's assembly language 
source code into microcode bit patterns that drive the 
target system. Object modules generated by mcASM are 
in a relocatable format. Thus, smaller, more manageable 
source files can be generated. These can be independ­
ently updated and quickly reassembled. 

Relocatable object modules are linked together with 
mcLlNK to form an absolute executable microcode pro­
gram. The program may include overlayed segments to 
conserve target system memory. Four formats may be 
selected as the mcLlNK output format. These include 
mcFMT, AMDASM, Microtec META29, and STEP Engi­
neering GENHEX. 

A fourth program, mcPROM, converts the linker output 
into PROM files that can be downloaded into a PROM 
programmer. DATA I/O ASCII format and BNPF format 
are supported. 

Figure 5-4 shows an overview of the mcASM develop­
ment process and the following sections describe each 
component of the mcASM package. 

mcDEF - Definition Program 

The mcDEF definition program is a table builder that 
converts a model of the target hardware into a compact 
lookup table for later use by the assembler. The model is 
required by the assembler to describe how mnemonic 
names, used by the programmer, are converted into bit 
fields in a microcode word. 

mcDEF accepts an input file that describes the field 
structure of the microcode word. Each field is independ­
ently described so it can be uniquely referenced by name 
in the assembly source code. The programmer can then 
directly reference any field and assign a value without 
having to put the value in a prescribed position in a source 
statement. 

Each field can also be assigned a default value so that all 
fields do not need to be encoded in each line of source 
code. Mnemonics assigned a value for a field are local to 
that field. The same mnemonic can be aSSigned a 
different value in another field. A partial example of a 
processor model is shown in Figure 5-5. 
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DEFINITION 
LISTING 

STEP Engineering 
GENHEX Format 

AMDAMDASM 
Format 

MICROTEC mcFM 
Format 

MICROTEC 
META29 Format 

DEFINITION 
LOOKUP TABLE 

LINKER MAP 

STEP Engineering 
Development Sys. 

AMD AmSYS29/1 0 
Development Sys. 

Target System 

ASSEMBLER 
LISTINGS 

PROM 
Programmer 

• User Supplied Program 

d9372A5-4 

Figure 5-4. Overview of the Microtec Research mcASM Development Process 
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Sample Mlcroword 

Mem MAR Pes Width Am29332 

Mlcroword Definition 

Mem: bit(40), length (1), 
values (O:read, 1 :write), 

MAR: bit(38), length (2), 
values (O:nop, 

1:load, 
2:enable, 
3:ld-en); 

Position: bit(32), length(6), 
Width: bit(27), length(S), 
Am29332: bit(18), 

Borrow:bit(17), 
Hold: bit(16), 
Data bit(O), 

values(see file Am29332.def); 
length(1), 
length(1), 
length(16), 

default (read); 

default (0); 
default (31); 

default (0); 
default (0); 
default (0); 

Borrow 

Figure 5·5. Sample Mlcroword Organization 

Hold 
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Data 

In some cases fields may overlap, resulting in several 
independent formats being defined for the same bits. 
mcDEF provides a structured case statement that de­
scribes each of the formats independently. This allows 
very simple selection of the required format within the as­
sembly source code. Selection may be made by a 

specific bit setting, use of a unique field name, or assign­
ing a value unique to one of the cases. 

A case statement demonstrating field overlaying is illus­
trated in Figure 5-6. 

MICROWORD LAYOUT 

<-16-bits-> 

! MemCtrl! Addr (case 0, 2-bits MemCtrl, 14-bits Addr) 

I or 
Data . ( case 1, 16-bits of immediate Data) 

mcDEF DEFINIT10N 

case of 
0: 

1 : 

endcase; 

begin 
addr: 

MemCtrl: 

end 
begin 

( two fields) 
length(12); 

length(4); 

( or one field) 
data: bits (16) 

end 

( address field) 

( memory control field) 

( immediate data field) 

Figure 5·6. A Variable Format and Case Structure Definition 
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In the source program, the format is chosen by specifying 
'data', or by specifying 'addr' and 'MemCtrl'. Any attempt 
to select both formats will result in an error at assembly 
time. 

mcASM - Assembler Program 

Source microcode is assembled by using rncASM, a 
structured microcode macro assembler that produces 
relocatable object modules as output. mcASM reads the 
source file and the model definition table as input. Each 
statement of source code is then converted into one or 
more microcode words as defi ned by the definition table. 
The output object module format is relocatable, thereby 
allowing separate modules to be linked into a larger 
executable program. 

Microcode instructions are generated by assigning val­
uestothefields that were defined in mcDEF. Assignment 
statements are used to assign values (Le. fieldname = 
value), allowing the fields to be referenced in any order. 
Fields with acceptable default values do not need to be 
encoded. An example, using the model defined above, is 
shown below. 

loop: Am29332 = INCR-A 

MAR = enable, Addr = fetch ; 

Several features are demonstrated by this example. 

• A Single instruction can be continued on several 
lines without special notation. 

• Field references can be grouped so that they refer 
to a common device or action. Fields with accept­
able default vaiues (such as Mem = read) do not 
have to be encoded. 

• A reference to the Data field in the microword 
would generate an error because it conflicts with 
the case selection caused by the use of the Addr 
field. 

An extensive macro facility allows the userto simplify the 
coding task by representing a large collection of field 
assignments with a single name and a few parameters. 
Macros also allow several microcode words to be gener­
ated with a single macro definition. The ability of mcASM 
macros to support assignment statements allows the 
user to define a higher level language that greatly re­
duces coding errors and coding time. For example, the 
instruction in the example above can be replaced with: 

loop: ALU INCR-A; 

where ALU is the macro name. The macro ALU assigns 
the parameter INCR-A to a variable field and fixes the 
values of the rest ofthe fields such as MemCtrl and Mem. 
Macros can also test the parameter values or names and 
then conditionally generate one of several outputs. 
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rncASM allows the programmer to structure microcode 
source into segments. Labels used within a segment are 
local to that segment allowing the labels to be reused in 
other segments with new values. Individual segments 
and collections of segments (modules) are separately 
assembled so that the whole program does not have to 
be reassembled for each change in source code. 

mcLlNK - Linking Loader Program 

mcLlNK collects the separate segments generated by 
the assembler and combines them into one executable 
program module. In addition, mcLlNK supports genera­
tion of overlays that can be separately loaded into a 
common memory area. 

Four absolute output formats are provided. Standard 
formats supported by mcASM include AMD AMDASM, 
STEP Engineering GENHEX, and Microtec META29. 
These three formats allow mcASM code to be used with 
existing development systems. A fourth format, called 
mcFMT, includes complete information for implementing 
overlays and performing symbolic debugging. 

While the mcLlNK program can generate separate over­
lay files in addition to the root program files in these three 
standard formats, a single file including overlays and 
symbol information is generated when the mcFMT output 
is selected. 

mcPROM - PROM Formatter Program 

Microcode is generally stored in PROMs in target ma­
chines. mcPROM is provided to divide the absolute linker 
output into separate PROM sized files. These files can 
then be downloaded to a PROM programmer through a 
user supplied communication package. 

Program Features 

The Microtec rncASM structured microcode assembler 
system has the following features. 

Definition Program Features 

Microword lengths up to 1 Q24 bits 

Variable formats, with multiple fields, predefined in 
cases statement 

Field definition attributes: 

BIT 

LENGTH 

VALUE 

VALID 

DEFAULT 

- a field may start at any microword bit . 

- total field length (max 16-bits) is 
specified 

- local mnemonics are assigned to 
field values 

- only values in this list can be used 

- the field is assigned a default value 



Value modification operators: 

COMPLEMENT - uses two's complement of the 
value 

INVERT 

MASK 

REVERSE 

- inverts all the bits 

- removes high bits to set size 

- reverses the bit order 

Definition program directives: 

TITLE - adds text string to top of each 
page 

INSTRUCTION -defines the width of the micro­
word 

(NO)L1ST - (does not generate) generates a 
listing 

(NO)OUTPUT - (does not generate) generates 
definition table 

(NO)XREF - (does not add) adds cross refer-

EJECT 

END 

ence 

- advances listing to next page 

- marks end of definition program 

Assembly Program Features 

Symbolic addressing 
Conditional assembly facility 
Values assigned to field names 

Powerful macro definition commands: 

MACRO 

BEGIN 

LOCAL 

GLOBAL 

OUTPUT 
IF 

WARN 

ERROR 

END 

- specifies macro name and para­
meters 

- marks the start of the macro 
definition 

- defines symbols local to this macro 

- defines symbols global to program 

- outputs source code 
- processes a statement if variable 

is true 

- issues text string to output listing 
- sends text to listing, ends macro _ 

- marks end of the macro definition 

Flexible macro reference: 

Parameter may precede macro name 
(P1 macro_name P2) 

Positional parameters are assigned values 

Keyword parameters have default values 

Relocatable output with multiple segments: 

SEGMENT - starts or restarts a user-named 
segment 
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ENTRY - lists all entry points to a segment 

EXTERNAL - lists all labels defined outside the 
file 

Assembler directives: 

PROGRAM - names first segment and definition 
file 

- assigns a constant to a name EQU 

GLOBAL - defines variable available to all 
segments 

INCLUDE 

ORG 

- adds additional source file inline 

- sets location counter to new value 

TITLE - adds a text string to each listing 
page 

(NO)L1ST - (does not generate) generates 
listing file 

(NO)OUTPUT - (does not produce) produces 
output file 

(NO)XREF - (does not generate) generates 
cross reference 

EJECT - advances listing to next page 

END . - marks end of assembly source 

Link Program Features 

Combines independently assembled relocatable 
object modules 

Resolves external references 

Adjusts relocatable addresses into absolute ad­
dresses 

Versatile user commands: 

LINK - loads specified segments from 
specified file 

ORG 
ALIGN 

- changes value of location counter 
- starts next segment at an address 
module n 

OVERLAY - starts and names an overlay 

SET - defines external symbols at link time 

TRANSFER- reads commands from another file 

END - marks end of command entry 

Output listing controls: 

Load map - area and overlay name, base ad­
dresses 

Defined and undefined symbol references 

Optional symbol cross reference 
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Object module output in one of four formats 

Microtec mcFMT with overlays and symbols 

Microtec META29 

STEP Engineering GENHEX 

AMD AMDASM and AmSYS29 

Conversion Utility Features 

• Separates abslute file into PROM size modules 

• Format is DATA 110 ASCII hexadecimal or BNPF 

• Column overlaying 

• Column switching 

• Automatic parity generation 

Minimum Hardware Required 

Any Digital Equipment Corporation VAX System that op­
erates under VAX/VMS. The software product typically 
requires 450K bytes of diskstorage after installation. 

An IBM PC or compatible system that includes at least 
512K bytes of total main memory and one (1) megabyte 
of disk storage. Typically the product requires 600K bytes 
of disk space for permanent installation with additional 
disk storage required for temporary files. Size of tempo­
rary files depends on the volume of user input. 

Prerequisite Software 

For distributions pre-installed for Digital Equipment Cor­
poration computer systems, the appropriate VAX/VMS 
operating system. 

For distributions pre-installed for IBM PC or compatible 
systems PC-DOS or MS-DOS versions 2.1 and newer. 

Support Category - Microtec Research Supported 

During the warranty period, Microtec Research Inc., 
provides the following standard services if the customer 
encounters a problem with the Software Product: 

1. If Microtec Research determines the problem to be 
a defect in the software product, Microtec Research 
will provide remedial service by telephone if neces­
sary (1) to apply a temporary correction or make a 
reasonable attempt to develop an emergency by­
pass if the software is inoperable, and (2) to assist 
the customer in preparing a Software Performance 
Report (SPR). 

2. If customer diagnosis indicates the problem is 
caused by a defect in the software product, he may 
submit an SPR. Microtec Research will respond to 
problems reported in SPRs that are caused by de-
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fects in the current, unaltered release of the Soft­
ware Product via a newsletter. The newsletter 
provides notice 'of the availability of corrected code. 

Any updates to this product released by Microtec Re­
search during this warranty period will be provided to the 
customer on standard distribution media at prices speci­
fied in the prevailing Standard License Fee List. Non­
standard media can be supplied upon request for an 
additional fee. 

Service required because of customer use of other than 
the current, unaltered release of the Software Product 
operated in accordance with the Software Product De­
scription (SPD) will be provided at Microtec Research's 
current rates, terms and conditions. 

Ordering Information 

All binary licensed software, including any subsequent 
updates, is furnished under the licensing provisions of 
Microtec Research's Standard Terms and Conditions of 
Sale. These terms provide, in part, that the software and 
any part thereof may be used on only the single CPU on 
which the software is first installed, and may be copied, 
in whole or in part, (with the proper inclusion of the 
copyright notice and any proprietary notices on the 
software) only for use on this CPU. 

Refer to the Standard License Fee List for further order­
ing and media information or consult Microtec Research. 

Software Product Service 

Post warranty service for this product is available to 
licensed customers by purchasing a Software Product 
Service Agreement. 

Full Documentation 

Technical reference manuals are included as part of the 
software product. These manuals provide the informa­
tion needed to use the software product and are written 
to be used in combination with the language reference 
materials provided by the manufacturer of the micropro­
cessor. Manuals included are: 

• Microtec mcASM User's Guide 

• Microtec mcASM Reference Manual 

• Microtec mcASM Installation Guide 
For additional information contact: 

Microtec Research, Inc. 
3930 Freedom Circle, Suite 101 
Santa Clara, CA. 95054 
(408)733-2919 



5.4.3 Hilevel Technology, Inc. 
Emulyzer and Hale 

Hilevel's OS3700 Series Emulyzers provide full microc­
ode development support for Advanced Micro Oevices 
Am29300 Series building blocks. The OS3700 combined 
with HALE (an advanced retargetable Macro-Meta As­
sembler), with software for firmware integration and 
debug, and with a host computer provides a complete 
microcode development system. 

DS Series Emulyzers 

The OS3700 system employs an internal bit-slice archi­
tecture combined with ECl design to achieve high 
speed, decrease system latency, facilitate product up­
grades, and implement unique features. The OS3700 
range of features includes: 

• HALE, an Advanced Macro-Meta assembler 

• 10 ns WCS provides 25 ns access times at target 

• 50 MHz logic state analyzer 

• 50 MHz pattern generator 

• Full software support for PC or VAX based 
operation 

• Interactive source code debugging 

• Source presentation of WCS and trace 

• 16 level unrestricted triggering 

• Microcode performance analysis 

• User-defined display formats with bit permutation 
for both WCS and logic analyzer data 

• Command language and command file execution 
of system operations 

• Up to 512 bit wide WCS and trace 

The OS3700 Emulyzer is available in three different 
configurations to accommodate varied Am29300 devel­
opment needs: 

1) as an integrated microcode development system 
connecting to an IBM-PC/XT/AT or compatible 

2) as a stand-alone microcode development worksta­
tion connecting to your host computer. 

3) as an Emulyzer using a VT100 compatible terminal 
providing memory emulation and logic analysis. 

The Emulyzer can be remotely operated from virtually 
any host computer, over either the IEEE-488 or RS232 
standard interfaces. A series of specific computer com­
mands provides a high degree of Emulyzer control and 
programming flexibility, with provisions for rapid data 
transfer. 

Reprinted with permission from Hilevel Technology, Inc. 
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CHAPTER 5 
Support Tools 

The Writable Control Store (WCS) portion of the OS3700 
Emulyzer is a high-speed memory which can be written 
to or read from by the OS3700 operator, the development 
workstation, the host computer, and yourtarget machine. 
For RAM emulation, the microprogrammer may read and 
write to the WCS from the target processor. WCS 
memory options with access times of 25 ns at the target 
are ideal for high speed Am29300 operation. 

A choice of fifteen different WCS memory modules are 
available to provide the user with a selection of speeds 
and densities to fill any microprogramming application. 
Memory boards are designed to optimize access times. 
All memory modules are 16 bits wide and are available in 
depths of 1 K, 4K, or 16K. Modules may be configured in 
parallel for widths up to 512 bits. 

The OS3700 Series can support WCS arrays up to 16K 
deep or 512 bits wide. Additionally, the WCS may be 
configured to support multiple arrays with each array 
configured for a unique size and speed. 

Logic Analyzer 

The OS3700 Series logic Analyzer section is configured 
in 16 bit increments. Each increment may be clocked 
independently, or any number of these can be clocked 
synchronously. Triggerwords may be defined across the 
entire trace width and qualified with ANOs, DRs, comple­
ment, and not equal. Up to 256 trace channels are 
available in a single chassis; however, chassis may be 
chained for greater widths. Either 4K or 16K deep trace 
memories are available at 25 MHz, 35 MHz, and 50 MHz. 

Trace synchronization is nominally provided via selec­
tion of one of five clocks. Alternatively, each channel 
group (16 data channels/one clock per group) can be 
synchronized to compensate for clock delays, skewing, 
and multiple timebases. The OS3700 clocking scheme 
allows address (or data) to be delayed one clock cycle to 
align the address trace with its associated data. 

Symbols for trace disassembly and triggering are auto­
matically created by HALE (Hilevel's Assembler). Addi­
tional symbols may be defined and stored in the symbol 
table. The symbol table can be saved and restored for 
future use. 

The OS3700 has four triggering modes. 

Single Trigger: Single matchword defined across all 
address and data trace bits with don't care bits. 

External Trigger: A hardware input may be pro­
grammed to act as a trigger,conditional trigger, or arming 
condition. 
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Multi-Level Trigger: Provides 16 levels of trace control 
with up to 4 conditions per level. Multiple commands 
(thirte.en total) may be executed on the current clock 
cycle in real-time for any of the 4 conditions. Trigger 
patterns may be specified across the entire address and 
data fields including "don't care" bits. 

Unlimited Break Polnts:Provides either 16K, 64K, or 
1 M of address breakpointsltriggers. 

The DS3700 provides 16 active user-defined trace dis­
play headings and data formats. Any 4 bits of the trace 
data may be used to change display formats dynamically. 
In addition, symbols may be defined across the entire 
address and data fields and displayed along with the 
formatted data. 

Trace masking is achieved by entering mask addresses 
in a table and then toggling the trace mask function on or 
off. 

Trace permutations (as well as WCS permutations) are 
available to permute the order of display for clear presen­
tations of the data. 

During debug, using the Interactive Trace Disassembler 
with the DS3700 allows viewing of both the formatted 
trace with symbols and the related source code with 
comments. 

Additionally, trace data may be displayed graphically as 
waveforms. Movement of linear cursors permit compari­
son of waveforms and viewing of timing information. 

Microcode Performance Analyzer 

The TIM-1 E option provides an asynchronous clock for 
time-tag and performance analysis operations. Resolu­
tion of the clock may be set to either 15 ns or 250 ns in 
three operating modes: 

Absolute Time: Allows elapsed time to be measured 
from any selected event; multiple reference points may 
be defined. 

Time Interval: Provides a measurement of the time 
interval between adjacent trace data or any locations in 
the trace buffer. 

Performance Analysis: Up to 15 groups of addresses 
may be defined as performance groups. 

Performance groups of addresses can be defined to 
generate statistical performance analysis histograms, 
address vs. frequency of address and address groups vs. 
time spent in groups, to allow the engineer to measure 
firmware efficiency. For example, time spent in subrou­
tines, interrupt handlers, and in arithmetic functions can 
be measured. Dynamic graphing is available to actually 
view the performance in real time. 
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Pattern Generator 

The PG201 Option allows the Emulyzerto function as a 
digital stimulus response tester. Sequential or pro­
grammed vectors (or instructions) may be applied to the 
target and the response recorded. Using the Emulyzer 
Programming Language, the trace may be uploaded and 
compared to a known good file. The multilevel trigger 
may be used to set conditions for the pattern generator 
so that different vectors may be applied after a certain 
response has been recorded. The PG201 card also 
allows fast firmware-generated patterns to be inserted 
anywhere within the WCS. Walking ones, walking zeros, 
checkerboard, and random patterns may be merged with 
writable control store or used to fill the WCS. The PG201 
may be used to emulate a controller, such as the 
Am29PL 141, which controls or sequences the target 
hardware. 

Hale - An Advanced Retagetable 
Macro-Meta Assembler 

• Includes Am29300 Definition Files 

• Increases User Productivity 

• Allows Coding Optimization 

• Pipeline Macros Ideal for Am29300 Blocks 

• Assembles on Several Computers 

• Relocatable Linkable Code 

• Matched to Development System 

HALE provides the microprogrammer with a set of facili­
ties to rapidly create instruction sets and quickly write, 
assemble, and check his programs against design rules. 
For building custom instruction sets or emulating instruc­
tion sets, HALE increases programming efficiency and 
gets the job done fast. 

HALE supports several programming techniques to 
accommodate varied programming styles and architec­
tural requirements. Free-formatting, fixed-format instruc­
tions, position-independent code, macros, and pipeline 
macros each provide specific programming benefits. 
Techniques are often mixed in programs to provide the 
optimum control and ease of programming. 

Am29300 programmers using HALE receive the benefits 
of an assembler that allows source presentations (your 
actual instruction), comments, and symbolic debug when 
used with a HILEVEL OS Series Emulyzer. These inte­
gration tools speed development. 

HALE is easy to use and is a quickly learned assembler. 
Generating productive code with HALE begins within the 
first few minutes of use. Straight forward coding and 
simple definitions of powerful high-level macros permit 
code to be tested right away. 



Pipeline macros allow the programmer to optimize the 
utilization of his hardware resources. By permitting 
macros for fields, combinations of fields, or along func­
tional boundaries, and allowing multiple invocations of 
the macros while the earlier calls are still generating code 
allows highly overlapped, and compacted code to be 
written. 

Pipeline macros are particularly useful for the Am29300 
series since they are designed along functional bounda­
ries. Pipeline macros written for the multiplier 
(Am29C323), a floating point processor (Am29325), and 
an arithmetic logic unit (Am29332) in an architecture 
combining these resources would allow tight control and 
economy of code fortheir independent and interdepend­
ent operations. 

Pipeline macros are well suited for n-stage pipelined 
architectures, DSP algorithms, pipelined multiplier op­
erations, and adding programming elegance. Once pipe­
line macros are written for an element, they are invoked 
and closed out with two simple commands. Up to eight 
pipeline macros can be operated simultaneously. Pipe­
line macros are position independent. 

Calls to pipeline macros are limited only by the process­
ing element's latency period, allowing maximum data 
flow processing. Pipeline macros also simplify coding for 
elements that introduce pipeline delays into the target 
hardware. 

Pipeline macros may contain conditional assembly state­
ments allowing the automatic selection of microcode 
sequences for a given operation. 

User definable errors allow the microprogrammer to 
assert design rules and check his code against them. 
This saves time by catching errors during assembly 
rather than at debug and integration time. When mi­
croarchitectural constraints change, the program may be 
reassembled with new rules and checked against them. 
Instead of searching for potential errors, valuable time is 
saved by the automatic detection of errors. 

User definable warnings allow the programmer to write 
non-assembling messages at any location in the source 
program. These messages may be used to follow assem­

. bly program flows or flag untested routines. Incomplete 
cases within macros may be detected by inserting a 
warning message as the last case. If an undefined case 
is called, the warning will be displayed. Warning mes­
sages assist the programmer in directing his attention to 
areas of concern and correcting them before they show 
up as problems during firmware integration time. 

While and Endwhile looping directives allow code be­
tween these directives to be generated as long as a user 
specified boolean equation is true. While A<B, While 

CHAPTERS 
Support Tools 

A+B<C, and While A=B are examples showing the ver­
satility of this directive. "While loops" may be nested up 
to 15 levels deep. "While loops" are also particularly 
useful in pattern generation applications. 

ASCII statements convert ASCII code to its binary 
equivalent, which may then be imbedded within the 
microcode. Data may be coded directly into microcode in 
ASCII format. ASCII conversions are useful for passing 
messages, strings, or variables from one part of your 
target to another. 

Macro facilities allow the assignment of a name to either 
a single microinstruction or to a sequence of microin­
structions. Macros allow parameters to be passed to 
points within the macro body. A multiply macro may 
consist of 100 lines of code, yet may be invoked by a 
single call (i.e., Mult A,B.). Macros permit the generation 
of assembly language foryourtarget or even higher level 
languages if one builds macros from macros. Macros 
may be nested up to 15 levels deep. Macros may call 
pipeline macros to generate extremely powerful code. 

Conditional assembly statements can be used to 
generate high-order instructions that can accomplish a 
number of things based upon variable inputs: for ex­
ample, executing either signed or unsigned functions, 
selecting the correct microcode for a specific task (auto­
matic instruction selection), or interrogating the hard­
ware and conditionally executing different microcode 
sequences (context switching). Conditional assembly 
statement allows the construction of powerful macros. 

String facilities are used to identify variables and com­
pare entire or whole portions of strings with each other. 
When combined with other assembly directives, different 
routines based upon the results of the compares can be 
invoked. 

Expressions, operators, and modifiers allow versatile 
assembly program control. Addition, subtraction, muHi­
plication, division, less than, greater than, equal to, and 
combinations thereof can be used to generate and 
modify variables. Other commands available include 
shifting, negation, modulo addressing, relative address­
ing, and absolute addressing. 

HALE's PROM formatter outputs in HILEVEL ASCII, 
AMDASM, DATA 1/0, and Intellntellec Hex to adapt to 
your specific PROM programming needs. 

HALE allows the linking of relocatable code so that 
several software modules may be developed in parallel, 
allowing completion of the programming task sooner. 

Over 4000 source and definition symbols allow virtually 
unlimited amounts of code to be written. Word widths of 
up to 256 bits are supported accommodating highly 
parallel architectures. 
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Figure 5-7 

HALE runs on the IBM-PC/XT/AT, VAX, and Apollo 
computers. HALE runs all programs developed using 
AMOASM or Microtec ,Meta Assemblers, assuring the 
best possible return on your software investment. 

Software Tools for Firmware Integration 
and Debug 

Patchwork for fast effective microcode changes 

Patchwork is an interactive assembler that permits the 
user to write the patches in assembly mnemonics and 
immediately test them. Temporary patches can be easily 
made and removed based upon the date they were 
made. Patchwork records each change, comments, date 
and time. Each change that creates new object code is 
appended to the listing and source files. In addition, a log 
file maintains a complete record of the entire editing 
session. 

Alternatively, the user can utilize the object code editor in 
the OS3700 to make changes in the microcode residing 
in the WCS. In this mode, the WCS data is displayed in 
the same format as the HALE Macro-Meta Assembler 
object code listing. 

Single-Step for tough debugging problems 

The Single-Step program allows examination of the 
trace, source code, and comments together on a line by 
line basis. Each line shows what instruction was exe­
cuted and what in fact happened. Using Single-Step, 
problems stand out and solutions often become appar­
ent. Invoke patchwork, make the desired changes, and 
Single-Step again. For programmers writing code or 
maintaining it, the line byline comments allow quick 
recognition and interpretation of the instructions, thus 
reducing debug time. 
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Formatted Trace for full speed debugging 

Formatted trace helps find errors that occur during real 
time execution. After a full speed run Formatted Trace 
allows stepping through the trace buffer presenting 
source code and comments together. This allows fast 
identification of problem areas, and pOints to instructions 
causing problems. 

Trace Waveform for full logic analysis 

Trace Waveform conveys a visual historical record of 
target board operation at a glance. It allows converting all 
or any combination of trace channels into timing dia­
grams. Labels may be assigned to each trace channel for 
clarity and recognition. A label file (containing the names 
of your traces) and a setup file (which holds parameters 
such as magnifications and scroll modes) can be cre· 
ated, saved and conveniently accessed in future uses. 
Cursor controls make comparison of non adjacent wave­
form edges easy. Channel order may be permuted. 

Screen Driven 

The Hilevel Emulyzer provides screens for convenient 
system set-up and operation. Each screen may be con­
figured, saved and restored by the operator or by the 
Emulyzer Programming Language. The full range of 
Emulyzer operations are contained within the screens. 
For example, the writing of multilevel trigger programs, 
setting the logical analyzers breakpoints, running and 
tracing the microcode program, and analyzing microc­
ode performance. Each screen is designed for maximum 
utility and optimum information display. 

Automated Emulyzer Operation 

EPL (Emulyzer Programming Language) automates the 
Emulyzer operation through the use of high-level com­
mands. EPL permits the execution of command files that 
are used to setup the development environment (down­
load the WCS, download mutilevel trigger programs, 
download display format, etc.) and later save it. This 
allows multiple users fast and easy access to the devel­
opment system while managing their files safely. 

Microcode Quality Control 

Microcode Quality can be assured by repetitive testing. 
EPL provides commands that allow looping, uploading 
trace data and comparisons against known good files. 
Using EPL, extended tests can be used to catch illusive 
program bugs. 
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System Software 

Hilevel's system software allows the user to customize 
his development system. Keys may be assigned to 
invoke any program including HALE, EPL, Patchwork, 
Single Step, Formatted Trace, and Waveform. Often­
used keyboard routines may be defined as keyboard 
macros and are invoked with a single keystroke. 

All control and display capabilities necessary for compre­
hensive device emulation are designed into the EC1 000: 

In-Circuit Emulators 

• Decimal, Hex, Octal, Binary, ASCII 

• Target single step or multiple step capability 

• Displays registers whose contents match speci­
fied data 

• Allows changes to any part of any register 

HI LEVEL In-Circuit Emulators are available for a variety 
of microcoded processors and support devices. Emula­
tion is accomplished by placing the target device in a 
socket on the appropriate emulation pod and plugging 
the pod into the device socket in the system. The pod is 
controlled by the EC1000 controller, which can accom­
modate up to four pods simultaneously. The EC1000 
features a built-in keyboard and LCD display to support 
stand-alone operation. 

• Allows control to be transferred to DS3700 or 
VT100 compatible terminal 

• EEPROM allows customization of default para­
meters 

• External trigger allows external logic or test 
eqUipment to halt the Emulator 

Emulation pods currently offered by Hilevel for Advanced 
Micro Devices are the Am2910 sequencer, Am29116 
ALU, and Am29PL141 Fuse Programmable Controller. 

The EC1 000 may be connected to the DS3700 Develop­
ment System, allowing the microprogrammer to control 
the Emulyzer and review data using the development 
system console. Using the EC1000 in concert with the 
development system also takes advantage of the 
DS3700's multi-level triggering capabilities. 

For additional Information contact: 

DS3700 SERIES SPECIFICATIONS 

Writable Control Store (WCS) 
Depth: 1 K to 64K; depending on 
memory configuration. 
Array Width: 0 to 512 bits in 16-bit 
increments. 
RAM Speed: 10 ns to 120 ns; 
depending on memory module 
selected. 

System Access Time: 25 ns to 140 
ns: depending on memory module and 
pod selected. 
Number of Independent Arrays: 16 
maximum. 
Target Control: Break (Halt), clear, 
single-step, continuous slow step, full 
speed emulation, break on event(s), 
PROM enable. 
Editing Modes: 

, 053700: 5creen oriented editing with 
full search, scroll, page and window 
operation. 

DS3700/CS: Full Interactive Source 
Code Debug. 

WCS MEMORY MODULES: See 
following page. 

WCS INTERFACE PODS 

Logic Type: TTL, 10K ECL, or lOOK 
ECL. 

Hilevel Technology, Inc. 
18902 Bardeen 
Irvine, CA. 92715 
(714) 752-5215 
TLX 655-316 

POD Types: Data, Address, Master 
Pods. 
Output Signals: 

Data Pods: 16 Data bits per pod. 
Master Pods: 16 Data bits, clock 
enable, target reset, 2925 run control. 
Address Pods: Clock enable, target 
reset, ROM enable, 2925 run control. 
Signal Inputs: 
Address Pods: 16 Address bits, clock 
input. 
Master Pods: 16 Address bits, clock 
input, PROM enable. 
Target Connection: Connector or 
PROM socket. 
Type of Memories Emulated: ROM, 
PROM,5RAM. 
Additional Support: 
Registered Memories: Yes, with 
initialization. 
Chip Select/Chip Enable: Up to 3. 
Pod Size: 
Data and Address Pods: 0.75" H x 
2.75" Wx 4" L 

Master Pods: 1.5" H x 2.75" W x 4" L 

Logic State Analyzer (Trace) 
Number of Input Channels: 
053700 Mainframe. 0 to 80 channels 
in 16 channel increments. 

DT37XX Mainframes: 0 to 256 
channels in 16 channel increments. 
Maximum Clock Rate: 25 or 35 MHz; 
depending on type of trace memory 
selected. 

TRACE MEMORY MODULES: 
Model Depth Speed Width 
TRC/ML T-25 4K 25 MHz 16 bits 
TRC/ML T-35 4K 35 MHz 16 bits 
TRC16IML T-25 16K 25 MHz 16 bits 

TRIGGER, BREAKPOINT AND 
TRACE CONTROL MODES 
Modes: External trigger, single event 
trigger. Unlimited breakltrigger (UBE 
option) and Multi-level triggerltrace 
control. 
Mode Combinations: Any combina­
tion except single event trigger and 
mUlti-level trigger, can be used 
simultaneously. 

(continued on following page) 
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OS3700 SERIES SPECIFICATIONS (continued) 

External Trigger: 
Input: BNC connector 
Level: TTL 
Active State: Negative going transition 

Single Event Trigger: Single level 
condition specified across entire 
address and data fields. 

Unlimited Break/Trigger: 

Description: Address field can be 
used to specify triggerlbreakpoint 
events for simultaneous monitoring. 

Address Range: Option Range 
UBE-16 16K 
UBE-64 64K 

Type of Trigger: Any address or 
address range may be specified as a 
trigger, conditional trigger or arming 
word. 

Multl·Level TrlggerlTrace Control: 

Number of Levels: 16 independent 
levels. 

Conditional Pattems: 4 per level 
across entire address and data fields. 
Condition Formats: Bit patterns with 
user defined format, and symbols (user 
defined or assembler generated). 

Boolean combination of symbols: 
Symbols may be combined with the 
following expressions: AND, OR, 
COMPLEMENT, NOT EQUAL 
Multiple Action Commands: Up to 9 
concurrent commands per condition 

Action Commands: 13; as shown 
below. 

1. Trigger 
2. Conditional Trigger 
3. Arm Trigger 
4. Unarm Trigger 
5. Reset Trigger 
6. Disable Trace 
7. Enable Trace 
8. Override Trace Disable 
9. Disable Trace Mask 

10. Zero Timer 
11. Jump to level <N> 
12. Initialize loop/event counter 
13. Assert Pattern Generator 

Conditional Control 

Loop/Event Counter: Up to 65,535 
events 

Trigger Delay: 0 to 4095 clock cycles 

Breakpoints: Independent on/off 
control 

5-42 

TRACE MODES 

Modes: State analysis; State timing, 
absolute elapsed time; State timing, 
Interval; Performance analysis and 
Dynamic performance graphing 

State Timing (absolute and Interval): 

Resolution: 15 ns or 250 ns, selectable 

Maximum Time: 
low Resolution: 16 minutes 
High Resolution: 1 minute 
Using Trace control: <!:16 hours 

Performance Analysis (TlM·1 E and 
UBE options): 

Number of Groups: 15 

Group definition: Any subset of the 
address range. 

Address Range: Option 

UBE-16 
UBE-64 

Range 

16K 
64K 

Operation: logic analyzer stores 
group transitions. 
Display: Both histogram and absolute 
time chart. 

Histogram: Relative % of execution 
time used by each defined group. 

Absolute: Total execution time of 
each group. 

Group Name: Up to 15 characters. 

Time Resolution: 15 ns or 250 ns, 
selectable. 

Dynamic Performance Graphing 

Number of Groups: 15 

Group definition: Any subset of the 
address space. 

Address Range: 64K 

Operation: logic analyzer dynamically 
updates trace memory and displays 
graph of percentage of events within 
each group. 

Display: Histogram 

SYMBOUC TRACE 

Description: Symbols may be defined' 
using entire address and data fields. 
Display: symbols will be displayed 
along with user formatted data. 

Use: symbols may be used for trace 
display, trace controillrigger condition 
statements, searchllocate operations, 
and time interval measurements. 

Source: Symbols may be defined 
using DS3700 menu or downloaded 
from HALE definition files. 

Maximum Characters per Symbol: 
15 
Maximum Number of Symbols: 
Depends on .number of characters per 
symbol and width of data fields. ~1 000 
symbols with average of 7 characters 
when defined on address field 

TRACE MASK (UBE OPTION) 

Description: Unconditionally masks 
from trace any user specified address 
or range of addresses. 

Maximum Mask: Any subset of 
address range. 

Address Range: 

TRACE PODS 

Option 
UBE-16 
UBE-64 

Range 
16K 
64K 

Logic Type: TTL, 10K ECl, or lOOK 
ECL. 

Signal Inputs: 16 data bits, clock. 

Display Formatting 
DS3700: Any user selected combina· 
tion of hexadecimal, binary, and/or 
octal. 

DS3700/CS: Full interactive WCS and 
Trace Disassembly. 

Multiple Formats: Any 4 bits of each 
array and trace may be used to select 
between 16 user specified formats. 

User Defined Headings: 

Maximum number of characters: 256 

Multiple headings: Up to 16 to match 
multiple formats. 

Display Permutation: Any bit may be 
displayed in any position within WCS 
and Trace displays. 

OS3700 Mainframe 
WCS Size: Accepts up to 8 WCS 
memory modules (128 bits). 

Number of Arrays: One 

Trace size: Accepts up to 5 trace 
memory modules (80 channels). 

(continued on following page) 
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Interfaces: 

RS232: 3 ports 

High Speed Parallel: 1 port 

GPla (IEEE-Std-488): 1 port (Op­
tional) 

aNC Inputs: External clock, external 
trigger 

BNC Outputs: Arm output, trigger 
output. 

Annunciation: Front panel LEOs show 
status of trigger, GPIB interface, 
clocks, and operational controls. 

DT37XX Mainframe 
WCS Size: None, requires EXP3700 
for WGS operation. 

Trace Size: Accepts up to 16 trace 
memory modules (256 channels). 

WCS MEMORY MODULES 

Model Depth 
1K 4K 16K 

E1K-l0 X 
M1K-20* X 
M1K-35* X 
E4K-10 X 
E4KW-10 X 
E4K-25 X 
E4KW-25 X 
M4K-25* X 
M4K-35* X 
M4K-120* X 
E16K-25 X 
E16KW-25 X 
M16K-35* X 
M16K-70* X 
M16K-120* X 

Interfaces: 

RS232: 3 ports 

High Speed Parallel: 1 port 

GPIB (IEEE-Std-488): 1 port (Op­
tional) 

aNC Inputs: External clock, external 
trigger 

BNC Outputs: Arm output, trigger 
output. 

Annunciation: Front panel LEOs show 
status of trigger, GPIB interface, 
clocks, and operational controls. 

EXP3700 Expansion Chassis 
WCS Size: Accepts up to 16 WGS 
memory modules (256 bits). 

Number of Arrays: May be config­
ured as one or two arrays. 

Emulation 
PROM RAM 

X 
X 
X 
X 
X X 
X 
X X 
X 
X 
X 
X 
X X 
X X 
X X 
X X 

RAM Speed 
(ns) 

10 
20 
35 
10 
10 
25 
25 
25 
35 

120 
25 
25 
35 
70 

120 

*M Series memory modules requires EXP370-4 expansion chassis. 
** Access times specified at target side of pod. 

25 

X 

X 
X 
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Operating Specifications 
(083700, DT37XX, EXP3700 chassis) 

Chassis Size: 7" H x 18" W x 23" 0 

Weight: 60 to 70 Ibs depending on 
options included. 

Operating Temperature: 15°C to 
35°C 

Operating Humidity: 10 to 80 % RH 
Power Requirements: 90 to 
132 VAG, or 180 to 250 VAG; 50 or 
60 Hz. 

Warranty: 1 year limited warranty. 
For additional information contact: 

Hilevel Technology, Inc. 
18902 Bardeen 
Irvine, CA. 92715 
(714) 752-5215 
TLX 655-316 

System Speed (ns)"" 
35 40 50 90 

X 
X 

X 
X 
X 

X 

X 
X 

X 
X 

140 

X 

X 
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5.4.4 Hewett-Packard 
Microprogram Development Support 

HP 64276 Microprogram Development Subsystem 

Description 

The HP 64276 Microprogram Development Subsystem 
and the HP 64320S 25 MHz Logic State/Software Ana­
lyzer provide run control and real-time analysis for the 
AMD Am29300 family. As integrated subsystems of the 
HP 64000 Logic Development System, the HP 64276 
and the HP 64320S add the power of run control and 
analysis to a" phases of the design, development, and 
maintenance of Am29300-based products. 

The Microprogram Development Subsystem consists of 
three components: a Run Control module, a Writable 
Control Store (WCS), and a 25 MHz Logic State/Soft­
ware Analyzer. Run Control provides program flow con­
trol, clock control, and break event detection. Writable 
Control Store provides high speed RAM for storing the 
microcode to be executed. A 25 MHz LogiC State/Soft­
ware Analyzer monitors systems buses and provides 
trigger, store, and sequencing functions for locating 
problems in the microprogram. Integration of the Micro­
program Development Subsystem with other powerful 
HP 64000 analysis and emulation tools allow for interac­
tive, cross-triggered measurements in complex multi­
processor environments. 

Features 

• The choice of clock control or real-time address 
jam at break detection offers flexible target 
system control. 

• Address ranging and two-level sequencing 
provide powerful break event specification. 

• Real-time, nonintrusive analysis of micropro­
grammed system activity reduces software devel­
opmenttime. 

• Flexible user-definable microassembler provides 
support for a wide variety of Am29300-based 
designs. 

• Microcode source interleaved with analyzer trace 
data speeds software debugging. 

• Linking of separately assembled microcode 
modules accelerates software turnaround time. 

• MACRO instruction feature of the microassem­
bier improves software engineering productivity. 

• Modular architecture permits specific Writable 
Control Store configurations for customized 
development tool needs. 

• Integration of Run Control and analysis capabili­
ties simplifies operation. 
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• Interaction with other HP 64000 System Emula­
tors and analyzers provides real-time analysis in 
multiprocessor environments. 

Run Control 

Run control provides system clock control, break 
event specification, and address jamming. These im­
portant features improve debugging of Am29300-
based systems. 

Architecture 

The Run Control module taps into the clock lines on the 
target system to obtain the greatest level of clock control. 
Clock control functions allow you to start and stop the 
clock, single step, and break on a specific clock edge or 
pattern. 

The Run Control module provides 20 I/O lines to probe 
the address bus, monitor status bits, or drive control 
lines. These I/O lines are bused internally to the Writable 
Control Store and the state analysis data probe connec­
tors on the Run Control module. 

Both single lead or coaxial cable leads are supplied for 
probing the clock and control lines between the target 
system and the Run Control module. Coaxial leads are 
recommended for use with higher clock rates to ensure 
better signal quality. 

Clock Control 

Precise specification of clock edges and relationships is 
,critical for breaking or halting the clock in target systems 
with multiple clock signals. The Run Control Module 
allows you to specify complex clock signal characteris­
tics for use in break events. 

Address Jamming 

Address jamming forces program execution at a specific 
address if a starting point other than a system reset 
vector location is desired. For example, to force the 
execution of a monitor routine that displays the registers, 
an address is jammed onto the address bus, causing the 
program to jump to the monitor routine. With the HP 
64276 Microprogram Development Subsystem, you can 
jam either 8, 12, 16, or 20 address lines. 

Break Events 

The HP 64276 allows you to initiate a break event after 
the detection of any of the following occurrences: an 
address pattern (up to four can be specified), an address 
range, or a two-term sequence of an address pattern, 
range, or both. The state analysis trigger also can enable 
break event detection. When a break event occurs, an 
address can be jammed onto the address bus (e.g., to a 
monitor program) or the system clock can be stopped. 



Writable Control Store 

The Writable Control Store (WCS), the memory array for 
the system microcode, consists of a dual port RAM that 
allows easy microcode downloading from the assembly 
environment and high-speed access of the microcode by 
the microprogram target system. Target system develop­
ment and debugging is more efficient using the WCS 
instead of the target system control store. 

Architecture 

The Writable Control Store (WCS) contains either one or 
two 32 kbyte memory boards. Each board can be config­
ured into one of three array sizes: (bits wide by words 
deep) 16 by 16K, 32 by SK, or 64 by 4K. With two WCS 
boards in the subsystem, the microword widths are 
doubled. 

The WCS address is obtained from the Run Control 
module, eliminating the need to probe the target system 
a second time. By using one ofthe WCS address lines as 
an enable control to three-state the WCS output, you can 
toggle between target memory and subsystem memory. 

Load 

Once microcode has been assembled and linked, it is 
downloaded from the software development environ­
ment to the Writable Control Store for execution. Trans­
ferring microcode is fast and easy with the integrated 
development and hardware execution environments of 
the Microprogram Development Subsystem. 

List 

When debugging microcode, you can examine the con­
tents of the WCS and list them to a destination file, a 
printer, or a display. A single list command specifies from 
one to four addresses or groups of contiguous WCS 
addresses. Displaying the address ranges allows you to 
examine and compare the microcode in different subrou­
tines. 

Modify 

While debugging, you can modify the absolute code and 
continue debugging. Modify can be specified for up to 32 
bits at a time for either a single WCS address or a range 
of addresses. 

Save 

The absolute code stored in WCS can be saved to a disc 
file for later reloading or for verifying the correctness of 
changes to source microcode. 

User-defined 

You can design a custom WCS array and combine it with 
the other modules of the Microprogram Development 
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Subsystem. The combination of the HP 64000 Logic 
Development System, the HP 64276 Run Control, and 
the user-defined WCS array provides an integrated 
development solution for all Am29300 microprogram 
target systems. 

The user-defined WCS interface supports any array size 
between 16 by 512K and 1024 by SK (bits wide by words 
deep). The interface between the HP 64000 mainframe 
and the user-definable WCS consists of control lines and 
parallel address and data buses that allow data to be 
written to or read from the WCS. User-definable control 
sequences can be transmitted to the user's WCS preced­
ing and following an upload or download operation. 

25 MHz Logic State/Software Analyzer 

The HP 64320S 25 MHz LogiC State/Software Analyzer 
adds high-speed, real-time, nonintrusive software analy­
sis to the HP 64000 Logic Development System. This 
flexible analyzer works well in microprogram software 
analysis, general-purpose software analysis, and sys­
tem integration. Measurement results are displayed in 
source microcode (including MACROs and comment 
lines) or in user-defined symbols that minimize the need 
to decode captured data. The analyzer can also refer­
ence symbols from the microprogram source files for 
easy specification and interpretation. 

Architecture 

Theanalyzercanbeconfiguredfor30,60,or90channels 
of data acquisition. Each configuration must have a 
control card and from one to three data acquisition cards 
containing 30 data acquisition channels. The following 
table contains the analyzer's configurations. 

Number of Input 
Channels 

30 

60 

90 

Format Specification 

Control 
Cards 

30-Channel 
Card 

2 

3 

The Format Specification establishes the conditions and 
relationships of target system signals transmitted to the 
analyzer through the clock and data input channels. 
User-defined labels up to fifteen characters long can be 
assigned to signal groups from one to 32 contiguous 
channels wide. Saving the Format Specification to the 
disc eliminates respecifying data channel labels, thresh­
old levels, and clock characteristics each time the ana­
lyzer is used. After a label is assigned to a group of input 
channels, it also appears on the analyzer softkeys. 

5-45 



CHAPTER 5 
Support Tools 

To avoid confusion caused when both positive and 
negative true data are present in the system under test, 
the 25 MHz analyzer can automatically complement any 
group of data channels. You do not need to invert these 
signals on the target system or complement data as 
measurements are specified and results are interpreted. 

The analyzer has two separate clock inputs. Data can be 
captured on the positive and negative edges of both 
clocks. With two clocks, you can analyze systems with 
multiple CPUs by capturing data on each processor's 
address strobe signal. 

Data and clock signal switching threshold voltages can 
also be varied. Appropriate thresholds for TTL and ECl 
logic families have been preprogrammed. You can also 
select other values between -10 and +1 o volts in 100 mV 
increments for monitoring several different logic families. 
Independent threshold specifications can be made for 
each acquisition board (30 data channels). 

Map Specifications 

The Map Specification greatly simplifies measurement 
setups and trace data interpretation by replacing raw 
captured data with user-defined symbols. A "symbol 
"',lap" can be associated with any labeled input channel 
via the Format Specification. Entries in a symbol map 
appear as part of the analyzer's softkey syntax and in the 
displays of measurement results. Map symbols are de­
fined as constants, patterns, or ranges. A map symbol 
can be defined in terms of source file line numbers or 
user-symbols from microprogram source files. 

Trace Specification 

The Trigger function determines when the analyzer will 
capture data. Complex triggering conditions can be 
implemented using sequence terms. A "term" is defined 
as "AND'ed" constants and patterns. A constant can be 
an integer, map symbol, or symbol from the micropro­
gram source file. A pattern is an integer with embedded 
"don't cares" (e.g., 0100xxxxB). Four sequence terms 
(trigger being the fourth) are available. Each sequence 
term can be set up to occur from 1 to 65,536 times before 
it is satisfied. A restart term is also available for resetting 
the sequencer. 

The Trigger Enable function specifies when the analyzer 
monitors data for a trigger event. The trigger event can be 
~tored anywhere within the trace memory buffer, allow­
Ing trace data to be stored either preceding, surrounding, 
or following the trigger event. The Store function 
determines what data should be stored. You can specify 
up to four OR'ed terms with each term consisting of 
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AND'ed constants and patterns. When the restart term is 
used for sequencing, the maximum number of OR'ed 
terms is three. The optional store with "sequence protect" 

specifies that the sequence events be saved before any 
pre-trigger events are stored. 

Measurement Results 

The HP 64320S 25 MHz logic State/Software Analyzer 
provides a high degree of display flexibility. When using 
source display, the microcode is visible without having to 
probe the microword: microword fields, MACRO invoca­
tions, and comments from source files are displayed. The 
display shows these source level statements combined 
with target data probed by the analyzer. This combination 
of program and data makes microcode debug more 
productive and efficient. Displays can also include user­
defined symbols specified in the symbol maps and can 
automatically reference micro assembler symbol tables 
generated during software development. These symbols 
can be displayed in the trace listings. 

Flexible Probing Capability 

The H P 64320S analyzer's clock cable and two of its data 
probes plug directly into the HP 64276 Microprogram 
Development Subsystem to eliminate double probing of 
the Am29300-based target system. Run Control, WCS, 
and the other state analysis data probes connect to the 
target system by general-purpose wire grabbers or D­
type coaxial cables. The coaxial cables offer better high­
frequency signal quality and a more reliable connection 
to the target system. 

Measurement Involving Multiple Analyzers 

Measurements with the HP 64320S and other HP 64000 
analysis subsystems relate microcode execution to other 
software and hardware events. These interactive meas­
urements are conducted via the high-speed intermodule 
bus (1MB). The 1MB carries the following five signals 
between the analysis subsystems: 

Received by Driven by 
1MB Signal HP64320S HP64320S 

Master Enable yes yes 

Trigger Enable yes yes 

Trigger yes yes 

Storage Enable yes no 

Delay Clock no yes 



The Master Enable signal coordinates measurement 
starts with other analyzer and emulators. When the 
analyzer is set up to receive this signal and the Master 
Enable is ''false,''the analyzer is completely disabled and 
will not capture data. When Master Enable becomes 
''true,'' the analyzer begins exarnining data. 

The Trigger Enable operates in the same way as Master 
Enable by informing the receiving analysis module when 
it can begin looking for its trigger condition. 

The Trigger signal, when received, causes the analyzer 
to immediately trigger and complete its measurement. 
For example, this is valuable for using the HP 64610S 
high-speed Timing/State Analyzerin conjunction with the 
25 MHz Logic State/Software Analyzer to determine if a 
spurious signal pulse is related to a microcode event. By 
triggering the 25 MHz analyzer on a hardware event, the 
microcode execution surrounding the pulse is quickly 
pinpointed and evaluated. 

The Storage Enable signal exercises hierarchical control 
over the store specification. 

Mlcroassembler 

The HP 64276 Microprogram Development Subsystem 
includes a user-definable microassembler and linker 
capable of generating microwords up to 128 bits in width 
which support Am29300 family devices. The linker al­
lows assembly of separate modules, reducing turn­
around time for source microcode changes. 
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The definition language operates on a 32 bit, 40 register 
pseudo machine with standard instructions forthe move­
ment and manipulation of data. In addition, higher level 
commands for standard tasks are also provided (Le., 
commands such as GET_TOKEN, FIND_DELIMITER, 
and GET_OPCODE support lexical analysis). The user­
definable microassembler can also generate relocatable 
code with the use of the GEN_CODE command. The 
ERROR and WARNING commands print messages 
from a fixed table to the listing file to simplify error 
detection and correction. Field names and their values 
are easily specified (e.g., SEQ = CaNT). 

The definition language is powerful enough to allow the 
creation of a customized microassembler capable of: 

• Generating code 

• Specifying default values for missing fields 

• Issuing errors for missing fields not having a 
default value 

• Issuing errors for overlapping field definitions 

• IssuinQ errors and warnings for architectural 
inconSistencies, such as a microinstruction that 
could cause bus contention 

The resulting customized microassembler recognizes 
the syntax specified in the definition stage. Standard 
capabilities are predefined for the microassembler and 
need not be explicitly specified in the definition stage. 
For example, standard pseudo-ops are provided for 
storage allocation, location counter control, and listing 
format control. In addition, a powerful MACRO facility 
is supported. 
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5.5 SIMULATION MODELS 

Logic Automation, Inc. 
Simulation Models for Hardware and 
Software Verification 

The freedom and flexibility that have always been the 
benefits of designing with microprogrammed devices are 
now supported by a new generation of computer-aided 
design tools. 

Advanced Micro Devices, Inc. and Logic Automation 
Incorporated have entered into a Library Development 
Relationship. This agreement has made it possible to 
model many of the latest AM D devices and make them 
available to designers. Table 5-2 includes all 
theAm29300 family. 

Many other Advanced Micro Devices models are also 
available from Logic Automation; the entire AMD rnodel 
list appears at the end of this section. These simulation 
models have been developed by Logic Automation with 
the cooperation of Advanced Micro Devices. Each model 
is based on information provided by AMD and verified 

with the same vectors that are used to testthe actuill part. 
Each model is a SmartModel, capable of performing 
usage and timing checks that will significantly improve 
your ability to debug, verify, and optimize your designs. 

SmartModel Simulation Benefits 

Simulation models from Logic Automation are called 
SmartModels because they are behavioral language 
models with built-in intelligence. This concept-that in­
formation about VLSI devices is most effective when it is 
available inside the models used to simulate complex 
systems-was introduced and pioneered by Logic Auto­
mation. SmartModels allow you to use a workstation and 
logic simulatorto verify your designs at the systems level. 

Design cycles are shorter because the simulations catch 
many errors-both subtle and obvious-before the first 
prototype is built. Cycles are shortened because Smart­
Model simulations are fast. They are easy to use and they 
are designed to maximize the effects of your simulation 
runs. Simulation runs are also critical as the first step in 
developing test vectors that must be used later to verify 
production systems. 

Table 5-2 
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Description 

32-Bit Integer Multiplier 

Floating Point Processor 

16-Bit Sequencer 

32-BitALU 

Register File 

Bounds Checker 

Byte Queue 

TTL 

Am29325 

Am29331 

Am29332 

Am29334 

Am29337 

Am29338 

High Level 
Programming 

Microcode 
Development 

Hardware & 
Microcode 
Integration 

CMOS 

Am29C323 

Am29C325 

Am29C331 

Am29C332 

Am29C334 

System 
Verification 

Board/System 
Test Program 
Development 

ECl 

Am29434 

09372A 5·8 

Figure 5-8. Microprogrammed Product Development Cycle (without simulating) 

Reprinted with permission from Logic Automation, Inc. 
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Figure 5-9. Microprogrammed Product Development Cycle (with simulating) 

SmanModel Simulations Postpone Prototyping 

Without simulating, the microprogrammed product de­
velopment requires hardware prototype development 
very early in the process. As shown by the shading in the 
diagram's process blocks, Figure 5-8, only the overall 
design and hardware design (plus schematic capture) 
can be completed without breadboarding. Contrast 
this situation with the same process diagrammed in 
Figure 5-9. 

Simulating permits far more of the product development 
cycle to take place before the first hardware prototypes 
are necessary. First of all, the simulation takes the place 
of the breadboarded hardware that would have been 
necessary for integration. In addition, short sections of 
code generated in a high level language using existing 
software development tools can also be executed in the 
simulation environment to help in the initial phase of 
system verification. 

Smart Model Simulations Are Fast 

Simulations with behavioral language models run fast. 
The demonstration circuit used below is a simple graph­
ics processor designed using AMD's new 32-bit building 
block Am29300 family: the Am29331 sequencer, 
Am29332 ALU, Am29325 floating point processor, and 
two Am29334 dual-port register files. There are a total of 
39 ICs in the schematic including 4 Am29827 10-bit 
buffers, 12 Am29841 10-bit latches, and 8 Am27S35 
registered PROMs. In addition the design contains an 
abstracted behavioral language model of a display 
memory that is equivalent to eight SRAMs. 

Figure 5-10 is a screen print of a simulation running 
under Mentor Graphics QuickSim 5.1. A timing diagram 
in a trace window occupies the width of the screen at the 
top. The QuickSim menu window is below left; next is 

a list window showing a few of the circuit lines against 
simulation time. In the lower lefthand corner, there is a 
transcript window containing messages written by one of 
the Smart Models in the circuit. The lower righthand 
corner of the screen shows the schematic. 

The circuit executes microcode out of ROM to plot the 
pixels that make up a line on a display. The pseudo-code 
for the line-plotting algorithm is below. 

x, y, deltax, deltay <- FIFO (1,2,3,4) 
e <- 2 * deltay - deltax 
for i = 1 to deltax do begin 

plot (x,y) jXOR in pixel(x,y) into bitmap} 
if e > 0 then begin 

y <- Y + 1 
e <- e + (2 * deltay - 2 * deltax) 

end 
else 

e <- e + 2 * deltay 
x <- x + 1 

end for 

Run on an Apollo DNOOO with Mentor Graphics QuickSim 
Version 5.1, the circuit ran through that algorithm execut­
ing the equivalent microcode at a rate of 34 microcode 
instructions per minute at a 1 ns resolution. Note that this 
was an exercise of the entire design, a true system-level 
benchmark. 

SmartModels Are Easy To Use 

SmartModel simulations are effective because these 
models are designed to make the most of every simula­
tion run. For example, some users of simulation tech­
niques have noted that analyzing computer printouts of 
logic values is tedious and very time-consuming. Using 
SmartModels eliminates that problem. During the initial 
stages the models' functional checks pinpoint usage 
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Figure 5-10 

errors. Later in the design process, the timing checks are 
usually more pertinent. In both cases, the models use 
messages on the workstation screen to pinpoint the 
exact problem by time and schematic instance. This 
unique feature of simulation models from Logic Automa­
tion is called Symbolic Hardware Debugging. 

Symbolic Hardware Debugging is a series of checks 
which write error or warning messages in the transcript 
window during your simulation runs. There are two types: 
functional checks and timing checks. The function 
checks vary greatly with the device type, but essentially 

they help make sure a chip is being used correctly. For 
example, a DMA controller will include a check on 
whether or not all internal modes and registers were 
initialized. A DRAM check will produce a message like: 
"WE was low at the RAS falling edge." 

The timing checks can include set-up, hold, frequency, 
pulse width, recovery time, etc., as applicable to the 
component and as specified by the semiconductor 
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vendor's current data sheet. A 1 megabit x 1 DRAM 
model, for example, contains about 50 different timing 
checks. 

Both kinds of checks produce SymbOlic Hardware De­
bugging messages that are very specific. A setup time 
violation, for example, will cause an error message that 
documents: pin name; device, by instance, reference 
deSignator, and component name; sheet name; design 
name; simulation time; signals and edges, as appropri­
ate; and setup times, both as they occurred and as 
required by the vendor's data sheet. 

Symbolic Hardware Debugging means your simulation 
runs give you answers, not just binary data which you 
have to painstakingly decode and compare to the IC data 
books. 

Messages like that during your simulation runs speed 
your design debugging and verification. In this case, a 
check for an illegal operation has been built into the 
model; the operation can occur if the first instruction in an 
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Figure 5-11. Symbolic Hardware Debugging In the AMD 
32-Blt Building Block Family SmartModels 

interrupt service routine is a stack operation. Besides a 
service routine that starts with a stack operation, this 
error message might be caused by an incorrect interrupt 
vector that caused a jump to any location that contained 
a stack operation. Similarly, the Am29334 SmartModel 
will signal if the write address changes during a write 
cycle; the model will issue a warning and write the data 
to all the locations involved so that the simulation run can 
continue. Many other function checks are built into these 
models. Forthe Am29300 family SmartModels, there are 
setup and hold timing checks for each input pin except 
the clock. For the clock, there are pulse width and 
frequency checks built into the models. Pulse width 
checks for the Write Enable and Data Latch Enable pins 
are also written into the Am29334 model. 

Smart Models Make Your Simulations 
More Efficient 

SmartModels maximize your simulations because they 
are adept at handling X's (unknowns). Depending on 

. where it occurs in the circuit, one unknown can spread 
X's throughout your simulation. When that happens, your 
run is less useful than it couIdbe because later events are 
buried in X's. To gain more information, you fix the first 
problem and rerun the simulation. SmartModels are 
designed not to generate or propagate X's unnecessar­
ily-with Symbolic Hardware Debugging, the use of X's 
can be very judicious. Our engineers anticipate when an 
"X" is truly a "don't care" and keep your simulations useful 
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as long as possible while always issuing a warning 
message to document the event. 

SmartModels Are Accurate 

The Logic Automation and Advanced Micro Devices 
Library Development Relationship means that AMD 
supplies our model builders with advance information 
and with the test vectors used for the actual chips. We 
use the test vectors to certify that the SmartModels are 
accurate simulations of the AMD components. 

SmartModels Represent Good Values 

Multiple Timing Versions 

Every SmartModel includes the correct timing for all 
available speed versions. An example is the Am29C323; 
the SmartModel for that part contains the Am29C323, 
Am29C323-1, and Am29C323-2 timing versions. 

Maintenance 

A maintenance agreement will keep your models 
current automatically. When CAE companies update 
their simulators and workstation operating systems, your 
models will be updated. Because Logic Automation 
works with the CAE companies prior to the new software 
release, you will generally have new SmartModels in 
your hands before you're ready to upgrade your system. 
If you have a maintenance agreement, Logic Automation 
will also automatically update your Smart Models when 
the manufacturer changes specifications or adds new 
timing versions. 

Documentation and Support 

Smart Models are very easy to install and use. Full 
documentation is provided with each set ordered. In­
cluded are: installation instructions; SmartModel Library 
Users Guide; data sheets on each model; and relevant 
application notes. In addition, our Applications Engineers 
are ready to help you with any questions at 503-690-
6900. 

SmartModels Are Available For Designs Now 

Logic Automation has more than 250 timing versions of 
about 100 Advanced Micro Devices components that run 
on popular CAE workstations available now. 

EPROMs 

Am27128A 16Kx8 

Am27LS191, included with Am27S191 
Am27PS191/A, included with Am27S191 
Am27S191/NSA 2Kx8 
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PROMS 

Am27S19/A 32x8 
Am27S25512x8 
Am27S291 A 2Kx8 

Am27S35/A 1 Kx8 
Am27S37/A 1 Kx8 
Am27S45/A 2Kx8 

Am27S47/A 2Kx8 

Static RAMs 

Am2130 1 Kx8, dual port 

Am21684Kx4 

Am2169, included with Am2168 

Am2751964Kx1 
Am91141Kx4 

Am9124, included with Am9114 
Am91282Kx8 

Am91501Kx4 

Am91511Kx4 
Am91 L 14, included with Am9114 
Am91 L24, included with Am9114 

Am93L422 256x4 

Support 

Am29114 real-time interrupt controller 
Am2914 interrupt controller 

Am2952 8-bit bidirectional 110 port 
Am2953/A 8-bit bidirectional I/O port 
Am2965 octal driver 

Am2966 octal driver 
Am8237 A DMA controller 

Am9513A system controller 

Am9517A DMAcontrolier 

AmZ8073 system controller 

AmZ8530 serial controller 

32·Bit Building Blocks 

Am29C323 32-bit multiplier 

Am29325 floating point processor 
Am29C325 floating point processor 

Am29C331 16-bit sequencer 
Am29331 16-bit sequencer 
Am29332 32-bit ALU 

Am29C332 32-bit ALU 

Am29334 register file 
Am29434 register file 

Am29337 bounds register 
Am29338 byte queue 
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Bit·Slice Family 

Am2901 B/C 4-bit slice 

Am2902A carryllook-ahead 

Am2903A 4-bit slice 
Am2909 microprogram sequencer 

Am2910/A microprogram controller 

Am29116/A 16-bit microcontroller 
Am2911 A microprogram sequencer 

Am2940 DMA address generator 

Am2942 timer/counter/DMA address generator 
Am29520 pipeline register 

Am29521 pipeline register 

Am2960 error detection and correction 
Am29C10 microprogram controller 

Am29L116, included with Am29116/A 

Multipliers & ALUs 

Am25S557 8-bit multiplier 

Am25S558 8-bit multiplier 
Am29C323, see 32-bit building blocks category 

Am29332, see 32-bit building blocks category 
Am29516 16-bit multiplier 

Am2951716-bit multiplier 
Am29L516 16-bit multiplier 
Am29L517 16-bit multiplier 

Programmable Logic Devices 

AmPAL18P8 PAL 

AmPAL22V10/A PAL 
Am29PL 141 fuse programmable controller 

Am29800 Family 

Am29806 6-bit chip select decoder 

Am29809 9-bit equal-to comparator 

Am29818 shadow register/WCS pipeline register 

Am29821/A1Am29C821 1 O-bit register 
Am29822!A 10-bit register (inverting) 

Am29823/A1Am29C823 9-bit register 

Am29824/A 9-bit register (inverting) 
Am298251 A 8-bit register 
Am29826/A 8-bit register (inverting) 

Am298271A1Am29C827 1 O-bit bus buffer 
Am29828/A1Am29C828 1 O-bit bus buffer (inverting) 

Am29833/A1Am29C833 parity bus transceiver 

Am29834/A1Am29C834 parity bus transceiver 
(invert register) 
Am29841/A1Am29C84110-bit bus interface latch 

Am29842!A 10-bit latch (inverting) 



Am29800 Family (continued) 

Am298431A1Am20C843 9-bit latch 

Am29844/A 9-bit latch (inverting) 
Am29845/A 8-bit latch 
Am29846/A 8-bit latch (inverting) 
Am298531A1Am29C853 parity bus transceiver 
(noninverting latch) 
Am298541A1Am29C854 parity bus transceiver 
(inverting latch) 
Am298611A1Am29C861 10-bit transceiver 

Am298621A 10-bit transceiver (inverting) 
Am298631A1Am29C863 9-bit transceiver 
Am29864/A 9-bit transceiver (inverting) 
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Models are added every week, so call to get the latest 
catalog or price and delivery Information: 

Logic Automation Incorporated 

P. O. Box 310 

Beaverton, OR 97075 

Tel: (503)690-6900. Fax: (503)690-6906. 

East Coast sales office: 

Park View Office Building, Suite 400 

10480 Little Patuxent Parkway 

Columbia, MD 21044-3502 
Tel: (301)740-8704. 

5-53 



CHAPTERS 
Support Tools 

5.6 C COMPILER SUPPORT 

Introduction 

With the advent 01 the Am29300 Family, it has become 
relatively easy to design bit slice systems controlled by 
very large amounts 01 microcode. 

When it is expected that a lair amount of application 
microcode must be written, when speed 01 application 
development is important, or when some measure 01 
portability is desired, then a microcode compiler can be 
an invaluable, il not essential, tool. 

In this section, we discuss compiler implementations 
Irom two different angles. To begin with, we will discuss 
some 01 the decisions to be made when implementing a 
compiler lor a specilic architecture. Then we will discuss 
what hardware leatures are desirable to support the im­
plementation 01 a compiler. 

Belore going any further, we should note that we do not 
believe that a microcode compiler can by itsell provide a 
complete solution to the problem 01 writing code lor bit 
slice systems. II you want to implement a general pur­
pose language, you must design a general purpose 
processor. II you have not designed a general purpose 
processor, then it may be pointless to try to implement a 
compiler lor your hardware. Even il your hardware is an 
ideal target lor a compiler, there will inevitably be a need 
to code some small portion, at least, in assembler. In 
short, a microcode compiler is a tool, but not a panacea. 

The Microcode C Compiler 

The language we use is called Microcode C. It is similar 
enough to the C language that a programmer who 
already knows C can start programming in Microcode C 
after as little as one day's study. 

The Microcode C compiler must be customized, which 
basically means that we have to write a code genera­
tor lor your hardware, after making certain design deci­
sions based on your needs and the capabilities 01 your 
hardware. 

The compiler generates micro-assembler code as its 
output. II you already have a microcode assembler, then 
we can arrange to generate the mnemonics used by your 
assembler. Otherwise, we can generate code lor Bit Slice 
Soltware's standard microcode assembler. 

To date, we have developed about 12 different Microc­
ode C compilers. These have variously been installed 
under PC-DOS, VMS, and/or Unix. 
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Types 

All Microcode C compilers support a common data type 
-the signed integer whose width corresponds to the width 
01 the processor. Typically, the width is 16 or 32 bits. 
Usually the types short and long are treated the same as 
Int. Structures, unions, and arrays are supported, but 
sometimes with restrictions. 

Othertypes are supported if desired and if the hardware 
permits. The type char can be reasonably supported if 
the basic memory architecture allows byte addressing. 
Since most microarchitectures use word oriented ad­
dressing, char is most often simply treated as int. The 
type unsigned can be supported if condition codes for 
unsigned comparisons are efficiently implemented. The 
types float and double are usually implemented only if 
there is floating point hardware to support them. How­
ever, they can also be implemented if software floating 
point routines are written. 

Storage class 

All Microcode C implementations support the storage 
class static. The auto storage class is only supported if 
the hardware allows a reasonable implementation of a 
run time stack. If it is not possible to support a stack, then 
local variables (which are normally allocated on a stack) 
are treated as static and recursive calls are not allowed. 
The extern storage class is supported if the assembler 
for which the compiler is generating code supports exter­
nal references and definitions. 

Most micro-programmers lay great stress on maximizing 
their use of the machine registers. Microcode C supports 
their desires by allowing them to declare variables with 
register storage class. Microcode C allows registers to 
be declared globally, as well as locally. Local register 
variables must be saved when a function call is made. 
Global registers never need to be saved or restored. 
They can be used to pass data between procedures in 
registers. 

Initialization 

The standard C syntax for static i nitializalion of variables 
is supported. 

Expressions 

Each implementation supports all the standard C opera­
tions defined for its supported types. Binary operations 
supported include integer addition, inleger subtraction, 
logical left and right shifts, bitwise and, bitwise or, bitwise 
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exclusive or, logical and, and logical or. Unary operations 
include take address, indirect through address, one's 
complement, logical negation, integer negation, and pre­
and post- increment and decrement. Integer multiplica­
tion, division, and remainder are supported when the 
micro-architecture encourages them. 

Statements 

All of the standard C statement types are supported, 
including for, while, do, go to, switch, If, else, break, 
continue, case, and default. The switch statement will 
generate a jump table if the micro-architecture permits. 
The compiler also supports a swltchf statement, which 
is like a switch except that it does not do a bounds check 
on the switch value before passing it through the jump 
table. Use of swltchf instead of switch can save four or 
five micro-instructions if the switch value is known to be 
or forced to be in the range of the switch. For systems 
whose sequencers (such as the Am29331) have a hard­
ware loop counter, the compiler supports a loop state­
ment, which is very useful for coding fast inner loops. For 
Am29331-based systems, the compiler allows loop 
statements to be nested. 

Built-In functions 

Each micro-architecture has a unique interface to exter­
nal buses, registers, and signals. Each Microcode C 
implementation supports this interface by providing a set 
of built-in hardware functions designed specifically for 
the particular implementation. These built-in functions 
behave like macros in that they are expanded in-line. A 
basic set of built-in functions might include: 

data = input( source); - gets data from an external 
register 

output( sink, data); - sends data to an external 
register 

cc( condition_code); - tests a hardware condition 
code 

memcycle( type); - initiates a memory cycle 

In this case, "source", "sink", "condition_code", and 
''type'' would be chosen from a set of constants contained 
in a standard file supplied with the compiler. Any special 
timing constraints (such as ''you must wait two cycles to 
read back data after cycling the memory") are enforced 
automatically by the compiler. 

One of the advantages of using built-in functions, as 
opposed to adding new keywords to the language, is that 
it is possible to debug microcode programs on the host 
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system using the standard C compiler, simply by writing 
a small library of functions which are equivalent to the 
built-in ones and which Simulate the operation of the 
target hardware. 

Scratchpad RAM 

In order to allocate non-register variables, there must be 
some sort of an external scratch pad memory accessible 
to the compiler. When reference is made to a non­
register variable, the compiler automatically generates 
the micro-operations needed to set up the address and 
write out or read back the data. 

Compaction 

All microcode compilers must do some form of compac­
tion in order to take advantage ofthe parallelism usually 
inherent in the micro-architectwe. Microcode C uses 
resource-based compaction on straight line code seg­
ments. Operations are compacted in the order that they 
are generated by the compiler. An operation can be 
moved to precede a previously compacted operation if 
there is space for it and if no resource dependenCies are 
detected while trying to move it. 

In-line assembler code 

If it is necessary to code key sections of a program in 
assembler, the compiler allows the user to include as­
semblercode in-line. In order for in-line micro-assembler 
code to share data with compiled code, there is also a 
mechanism for in-line code to refer to register variables 
by the names they were declared with (rather than by 
number). 

The overall aim is to provide a compiler which is inexpen­
sive to build, simple and robust in construction, and can 
be relied upon to generate correct code. Although the 
compiler does take care of a great many housekeeping 
details (such as register number assignment and 
"constant folding"), it does not attempt to perform com­
plex global flow analysis and optimization. Instead, the 
burden of doing so is placed on the programmer. Fortu­
nately, the C language is designed to permit you to 
perform in source code the kinds of optimizations that 
optimizing compilers usually do. For instance, it is easy 
to recode array references in inner loops to use pointer 
operations instead. 

There are many advantages to using Microcode C to 
write microcode. Programs are more readable, more 
comprehensible, and more maintainable. The use of a 
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high level language dramatically increases productivity 
and makes it much, much easier to try out different 
approaches during software development. 

Hardware Design Considerations 

If you are in the fortunate position of being in the process 
of designing new hardware and you want to know how to 
make it easy for a compiler to produce code for it, here 
are a few ideas. 

ALU 

To begin with, it is always nice if the ALU supports ''three 
address code", which means you can add register A to 
register B and place the resuH in register C in one 
instruction. 

Second best, but also acceptable, is two address code, 
in which you add register A to register B and place the 
result in register B in one instruction. 

In general, it is preferable for compiling purposes if any of 
the following can be accomplished in one instruction: 

add a register to a register 
move the contents of a register to a second register 

add a constant to a register 

Although these would seem to be fairly simple things to 
do, it is suprising how many micro-architectures are 
unable to carry them out. You should not get the idea that 
it would not be possible to generate a microcode compiler 
for a given micro-architecture if it cannot perform the 
operations outlined above in one instruction. We recog­
nize that many other factors, such as cost and board 
space, must be taken into account In your particular 
design and we are well aware of the dangers of over­
specifying a design. 

For two address architectures, you should try if possible 
to avoid putting any restrictions on the second address, 
such as ''the upper two bits of the second address must 
be the same as the upper two bits of the first address". 
Such restrictions can be worked around successfully, but 
they can be a rich source of bugs and are acceptable only 
if you are sure that the saving of a couple of bits in the 
microword will be worth all the trouble it will cause to both 
compiler writer and micro-programmer! 

Constant Field 

Most micro-architectures provide at least one constant 
field In the micro-instruction word. This field is set with 
constant data forthe sequencer (jump addresses) or the 
ALU. This field should be at least as wide as the maxi­
mum of the sequencer address width and the data 
address width. In the best of all possible worlds, it should 
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also be as wide as the ALU and internal data paths. On 
a machine with a 32 bit ALU, it may be too expensive to 
reserve 32 microword bits for a constant field. One 
solution is to reserve only 16 bits and load all constants 
in two steps (load an upper data register from the con­
stant field and then source the constant field combined 
with the upper data register). This solution can be made 
somewhat more satisfactory if it were also possible to 
treat the 16 bit data field as a 32 bit number in one or more 
of the following ways: 

zero extend the 16 bit constant on the left 
zero extend the 16 bit constant on the right 
sign extend the 16 bit constant on the left 

Sequencer 

In order to implement jump tables for SWITCH state­
ments and to allow computation of addresses for indirect 
function calls, it is desirable if an address for the se­
quencer chip can be computed in the ALU. Typically this 
can be done by providing an external register which can 
be written to from the ALU's Y bus and then read into the 
sequencer using its "direct" inputs. 

Similarly, ifthesequencercontains a loop counter (as the 
Am29331 does), it would be nice if it could be loaded with 
an arbitrary value computed at run time in the ALU. This 
could be done using much the same mechanism as 
described above. 

For branching within the microprogram, it is most desir­
able if there is a field in the micro-instruction which is big 
enough to hold the maximum microcode address. It 
should be possible to branch to an arbitrary microcode 
location in one micrO-instruction. The address should be 
in one contiguous field of the micro-instruction. Although 
these ideas may seem obvious, we have seen several 
systems which ignored them. For instance, one system 
required the branch address to be loaded into a special 
register, with the actual jump in a subsequent instruction. 
Another system used a 4 bit ''page register" with a 12 bit 
sequencerto address a 16 bit microcode address space. 
Although it was feasible to develop a compi ler for both of 
these systems, the hardware design made all branches 
relatively expensive in the first case and all subroutine 
calls relatively expensive in the second case. 

In order to achieve the maximum possible instruction 
rate, most systems are designed so that a conditional 
branch in one instruction is made based on condition 
codes computed in the immediately previous Instruction. 
In some systems, all condition codes are latched in a 
register at the end of the first instruction, so that anyone 
can be tested in the second. In other systems, the 
condition code to be tested is selected at the end of the 



first instruction and only the one selected bit is latched, in 
order to save a couple of chips. A microcode compiler 
can be made to cope with either way of doing things, 
although the first is preferable. 

In general, compiled code cannot always benefit from 
this pipelining of ALU and sequencer operations. A nice 
feature, which you might consider including in your 
design, would be to have an extra bit in the instruction 
which, when set, would cause the cycle length to be 
doubled. If the condition code were available halfway 
through the double cycle, then it would be possible to 
code a conditional test and a branch in the same instruc­
tion. Although this would not save any time, it would save 
on expensive microword space. 

Floating Point 

It is a relatively simple task to generate code for low 
latency parts, such as the Am2932S. 

Integer Multiplier 

Multiplications are often generated by compilers during 
subscript calculations, if the size of the object being 
subscripted is not a power of 2. In orderof increasing cost 
and speed, there are three ways to provide for multipli­
cation in a bit slice design. The cheapest is to simply use 
the integer ALU to perform the standard shift and add 
algorithm, which costs one machine cycle per result bit 
(e.g. 32 cycles for a 32 by 32 bit multiplication). The next 
option is to provide a multiplier which can multiply ad­
dress offsets, but not data, in one cycle. For instance, if 
the data ~ths were 32 bits, but the address width was 
only 16 bits, you could provide a 16 by 16 bit multiplier. 
This would take one cycle to compute a 16 bit offset, but 
would require four cycles to compute a 32 bit result. The 
fastest option is to use a multiplier, such as the 
Am29C323, which can handle either address or data 
calculations in one cycle. 

Scratch pad Memory 

In orderto be able to declare non-register variables, there 
must be a memory somewhere to hold them. In most 
systems, this takes the form of a small, fast, local mem­
ory. In others, the bit slice processor uses memory on the 
main system bus. 

If the memory is on the main system bus (a VME Bus or 
a Multibus, for instance), then it is usually a byte address­
able memory. If your processor is to perform only word 
accesses on such a memory, then you might consider 
setting up the addressing so that the processor puts out 
a word address to the bus interface, which converts the 
address to a byte address. For instance, suppose the bus 
has 24 address lines. If you use byte addresses in the 
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processor, then any time some C code needs to do the 
subscript calculation 

a[i] , 

it has to multiply the subscript by the size of the object 
being subscripted. Although, this multiplication can be 
converted into a shift if the size is 16 or 32 bits, this 
still imposes an unecessary penalty for such a routine 
operation. A better scheme (for a processor whose word 
size is 16 bits) would be to use 23 bit addresses in the 
processor and have the bus interface in effect shift the 
address left by one and always supply a least 
significant bit of zero. For a processor which is 32 bits 
wide, you would use a 22 bit address in the processor, 
shift the address by two, and force the two least signifi­
cant bits to zero. 

Multiple Memories 

One of the fundamental features of C is that it assumes 
that all memory accesses are identical and that a pointer 
can point to any addressable memory location. This 
makes it very tricky to support a system with memories 
with overlapping address spaces. For instance, if you 
have a pointer stored somewhere and you want to 
indirect through it, there are two problems. First, you 
must identify the memory in which the pointer is stored. 
Second, you must identify the memory to. which the 
pointer points. 

In most bit slice deSigns, the problem of overlapping 
address spaces usually comes up in one of two ways. 

In the first and simplest case, memory address space 
overlap almost always occurs with control store memory 
and scratch pad memory. However, it is easy to tell which 
is which if control store memory contains only code and 
scratch pad memory contains only data (which may 
include pointers to functions in control store memory). 

In the second case, the problem may arise if the hard­
ware can operate on a host bus, such as a VME bus. 

While it is conceptually possible to support an architec­
ture featuring multiple memories of different granulari­
ties, the implementation ofthe concept would add a great 
deal of complexity to the code generator, because ob­
jects have different sizes in different memories. For 
instance a structure in one memory would have a differ­
ent set of offsets to its members than the same structure 
in a memory with different granularity. 

Usually, when Microcode C is implemented on a proces­
sor, one memory is picked to be the default system 
memory, as far as the microcode is concerned. All 
declared variables are stored in this memory. Space is 
also allocated within the memory for the run-time stack, 
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if that is required for the implementation. All addressing 
operations generate addresses in this memory. All indi­
rection operations (including array/structure/union refer­
ences) generate addresses within this memory. 

Built-In Functions 

Other memories (if any) are treated as peripheral devices 
and built-in functions are implemented to support them. 
For instance, a very common configuration might include 
a word-addressed 4K static memory and an interface to 
a byte-addressed VME bus. A Microcode C implemen­
tation for such a machine would designate the static 
memory as the main memory. The VME bus would be 
supported by a set of built-in functions, such as 

seCvme_address( expr); 

result = read_vme_bus(); r at address */ 

write_vme_bus_byte( expr); r at address */ 

write_vme_bus_word( expr ); /* at address */ 

write_vme_bus_long( expr); r at address */ 

The disadvantage of this scheme is that it makes it 
impossible to use C structure references to refer to such 
external data. However, it does make it easier to support 
some of the more esoteric interfaces, such as those 
which support pre-fetching of data through FIFOs. 

Addressing 

In general, the ALU should be at least as wide as the 
memory address register of the main system memory. If 
itis not, then it is necessary to resorttoeithersegmenting 
the address space or using very expensive double preci­
sion integer arithmetic for all address calculations. Nei­
ther of these two alternatives is very attractive! 

In some micro-architectures, the main integer ALU 
handles all the work of generating memory addresses. In 
others, there is a separate functional unit, often featuring 
pointer and offset registers. These units are usually very 
effective for the special purposes for which they are 
designed but often lack certain fundamental functionality 
which is very useful to the C compiler. 

The main deficiency, which we have seen in some 
systems, is the lack of the ability to generate an address 
based on taking a constant offset from a pointer register, 
without writing the resultant address back i nto the pointer 
register. 

Given that MAR stands for "Memory Address Register" 
and that "constant" could be negative, the basic function­
ality which is desirable for the compiler would include 

MAR = constant 

MAR = arbitrary expression result 
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MAR = pointer register + constant 

MAR = pointer register + arbitrary expression result . 

pointer register = constant 

pointer register = arbitrary expression result 

Note that this by no means excludes additional function­
ality, such as offset registers or multiple MARs. An actual 
hardware implementation could provide several vari­
ations on this scheme, such as providing operations in 
which a small constant is implicit in the operation, rather 
than having to be placed into a literal field. This allows 
certain memory addressing operations to be combined 
with operations which use the literal field. 

To efficiently support pre-increment and pre-decrement 
operations we add 

MAR = pointer register = pointer register + constant 

To efficiently support post-incremement and post-decre­
ment operations, we add 

MAR = pointer register 

pointer register = pointer register + constant 

with the sense that this is done in one operation. 

The Stack 

Since the stack pointer (SP) is simply a dedicated pointer 
register, all the operations on pointer registers described 
above also apply to the SP. 

Most modern microprocessors reserve two registers to 
control the stack: the SP (which points to the top of the 
staCk) and the Frame Pointer (FP) which points to the 
base of the current stack frame. The use of the FP allows 
a compiler to use stack offsets which are constant irre­
spective of how much has been pushed onto the stack 
(for temporaries or called function arguments). 

In the interest of avoiding extra overhead on function 
entry and exit and at the expense of some extra internal 
housekeeping, the Microcode C compiler dispenses with 
the use of an FP and uses the SP only. The disadvantage 
of not keeping a separate FP is that the task of generating 
a stack trace back becomes much more complicated. 

Bit Slice Software 
321 Auburn Drive 
Waterloo, Ontario, N2K 2X7 
(519)885-4313 
© 1987 by R. Preston Gurd 



5.7 WRITABLE CONTROL, STORE 

5.7.1 Agility 
AG-11 B Microprogram Development 

The AG-11 B combines with your IBM personal computer 
to create a complete development station for micropro­
gram-based designs. Its high performance and very low 
cost open new design opportunities for using flexible bit 
slice, ASIC, DSP, and 32-bit building block architectures. 
The AG-11 B provides high speed in-circuit emulation of 
your design target's ROM or PROM. 

Writable Control Store 

The heart of the AG-11 B is the Writable Control Store 
module (WCS) resident within your IBM PC. Each WCS 
has a memory array 96 bits wide by 4096 words deep 
which can be increased in width anellor depth with addi­
tional modules to suit virtually any size microprogram­
med application. You microcode is loaded into WCS 
memory using your personal computer and AG-11 B 
software. The WCS utilizes high-speed static RAM 
which provides a 50 ns maximum access time to your 
target. 

Conflgurable Buffer Interface and Software 

The AG-11B offers maximum flexibility in configuring 
for your particular design. The WCS interfaces to your 
target through the Target Interface Board. The hard­
ware is complemented by the AG-11 8 software, which 
allows easy software control of your configuration vari­
ables. The AG-11 B software, which is either menu­
driven or command-line driven, provides control of 
breakpoint and target control signals and complete WCS 
card diagnostics. 

mcASM Microcode Assembler 

Included optionally with the Ag-11 B is the mcASM Struc­
tured Microcode Assembler. Developed as a joint effort 
between Microtec Research and Advanced Micro De­
vices, this assembler features macro support, design 

Reprinted with permission from Agility 
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rule checking, nonpositional keyword syntax, and relo­
catable segments. mcASM lets you define your target's 
architecture and assembly mnemonics, and then pro­
duces executable microcode for your target in a format 
that is easily loaded into the WCS. 

Applications 

Microprogrammed architectures are increasingly used to 
boost performance in applications such as graphics, 
peripheral controllers, communications, military, robot­
ics, and industrial automation. The AG-11 B supports all 
architectures which use microprogramming, including bit 
slice as well as ASIC, DSP, and 32-bit building block 
devices. And since it is not designed for any specific 
architecture, the AG-11 B is adaptable to any micropro­
grammed product. 

Cost and Time Savings 

The AG-11B: 

• uses the computing power of an inexpensive 
IBM PC 

• comes at a fraction of the cost of other micro­
code development stations 

• is a cost-effective way to set up multiple 
development stations so that microcode devel­
opment work can proceed in parallel 

• lets you avoid the time and expense of burning 
new PROMs after each change to your micro­
code 

• increases the productivity and morale of 
firmware engineers 

• is available immediately and can be set up 
quickly and easily 

For more information, contact Agility, 1290 Lawrence Station 
Road, Sunnyvale, CA 94089, (408) 744-0806. 

5-59 

Ii 
, 

I 





CHAPTER 6 

Articles/Application Notes 

6.1 BIPOLAR BUILDING BLOCKS DELIVER SUPERMINI SPEED TO 
MICROCODED SYSTEMS 

6.2 Am29300 DEMONSTRATION SYSTEM APPLICATION NOTE 

6.3 THE FAST WAY TO BUILD A RISC PROCESSOR 

6.4 FAULT-TOLERANT CHIPS INCREASE SYSTEM RELIABILITY 

6.5 FLOATING-POINT MATH HANDLES ITERATIVE AND RECURSIVE 
ALGORITHMS 

6.6 FLOATING-POINT ARRAY PROCESSOR IMPROVES 
COMPUTATIONAL POWER 

6.7 FLOATING-POINT IlP IMPLEMENTS HIGH-SPEED MATH 
FUNCTIONS 

6.8 OPTIMIZE YOUR GRAPHICS SYSTEM FOR BOTH 2D AND 3D 

6.9 VARIABLE-WIDTH FIFO BUFFER SEQUENCES LARGE 
DATA WORDS 

6.10 DIGITAL SYSTEMS VME 29300-1 

6.11 BIBLIOGRAPHY 

I 
1,1, 

6-1 

6-12 

6-92 

6-97 

6-102 

6-109 

6-116 

6-123 

6-136 

6-141 

6-144 





CHAPTER 6 
Articles! Application. Notes 

Bipolar building blocks 
deliver supermini speed 
to microcoded systems 

I4CMOS processes start to encroach on the 
performance of bipolar circuits, bipolar 
technology is taking the next step to 

keep itself in the lead for the highest speed 
systems. A family of five bipolar VLSI com­
putational circuits-fabricated with a scaled, 

Dhaval Aimera, 01e Moller, and David Sorensen 
Advanced Micro Devices Inc. 
Since the beginning of last year, Dhaval Ajmera has 
been a design engineer in product planning at Ad· 
vanced Micro Devices in Sunnyvale, Calif. He holds 
an MSEE from the University of Florida. 

I1Jle Moller is also a iksign engineer in AMD's product 
planning operation. He holds an MSEE from the 
Technical University of Denmark. 

Another engineer in product planning, David Sorensen 
specializes in programmable processors. He holds a 
BSEE from Arizona State University. 

ion-implanted, oxide-isolated process and three 
levels of metal interconnections for high den­
sity-provides a set of functionally partitioned 
microprogram mabie VLSI building blocks for 
systems such as sup~rminicomputers, digital 
signal processors, high-speed controllers, and 
many others. The modularity of the system 
functions ensures that the chips can meet the 
performance requirements of a general­
purpose superminicomputer, as well as those of 
an image processor, which are radically differ­
ent from each other. 

Included in the family are three parts that 
form the core of a general-purpose micro­
programmed system: a 32-bit arithmetic and 
logic unit (ALU), a 16-bit microprogram 
sequencer, and a 64-by-18 four-port, dual­
access RAM. And, for systems that do a large 
number of multiplications or floating-point 

Reprinted with permission from Electronic DeSign, November 15, 1984. Copyright 
1984, Hayden Publishing Co., Inc. 
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operations, two performance accelerators-a 
32-by-32-bit multiplier and a 32-bit floating­
point processor will be available to tie onto the 
buses (see Design Entry, p. 246). 

The chips offer high performance, a flexible 
architecture, and microprogrammability, and 
even address the problem of fault detection for 
data integrity. These circuits can thus support 
an extremely fast microcycle-about 80 ns 
(projected). That high speed is the result of 
several design considerations: Each part is de­
signed internally with emitter-coupled logic 
but has TTL-compatible inputs and outputs. 
Second, more power was allocated to the logic 
circuits used in the critical paths than for logic 
in the noncritical paths on each chip, to max­
imize the speed. Third, by integrating highly 
specialized logic on chip it is possible to execute 
very complex operations in a single cycle. 

The microprogrammability of this chip set 
offers several benefits to the system designer. 
It provides a structured and systematic ap­
proach for implementing the control mech­
anism of the system, and like the bit slices, it al­
lows the instruction set to be customized to suit 
the designer's application (see "Architectural 
Limitations of Bit Slices," opposite). And 
several versions of the initial design can be 
tested, or current designs can be enhanced 
simply by changing the microcode. 

Thus, the functionally partitioned Am29300 
family overcomes all of the performance penal­
ties of bit-slice structures, while maintaining 
its ability to form a wide variety of architec­
tures. Even though the chips are designed to 
work together as a family, each can also be used 
independently in an application that requires 
its unique capabilities. 

Pipeline. are out 

The flexibility of the Am29300 family is 
largely due to a decision not to place pipeline 
stages within the functional blocks. Not includ­
ing the pipeline registers inside incurs some 
off-chip delays. This is a small price to pay to al­
low system designers to optimize the pipeline 
structure for their individual needs. Moving the 
register file out of the functional block for the 
ALU also slows things down. At the same time 
it does not force a fixed register size on the user, 
enabling systems to be created with dedicated 

registers, register windows, or register banks­
all with neither fixed depth nor width. 

Additionally, the high level of integration 
helps eliminate the propagation delays often 
encountered when signals must go from chip to 
chip. The use of VLSI also results in fewer parts 
at the system level, which, in turn, conserves 
power (usually many watts in the case of bi­
polar systems) and board space. Lastly, a com­
plete 32-bit solution is provided for applications 
that require increased precision for arithmetic 
operations, high memory bandwidth, and a 

Architectural limitations 
of bit slices 

The limited performance of bit-slice circuits can 
be improved by increasing the width of the slices. 
That higher level of integration results in higher 
performance by reducing the number of off-chip 
delays while preserving the flexibility that has 
made bit-slice systems so attractive. However, as 
higher levels of integration become possible, two 
inherent problems with bit-slice architectures 
will limit their ultimate speed. The first involves 
the oCC-chip delays inherent in cascading. For ex­
ample, the carry chain is usually the slowest path 
of an ALU. Breaking this chain between slices in­
troduces off-chip delays into the critical path. 

The second problem is that the functional needs 
of many systems do not slice well. Barrel shifters 
and prioritizers are especially difficult to cascade. 
Unfortunately, the ability to perform N··bit shifts 
and locate the position of leading Is are of greatest 
importance in applications that require heavy 
number crunching and manipulation of data 
fields, such as image processing, graphics, data­
base management, and controllers. These are pre­
cisely the applications whose need for speed forces 
the use of bit-slice devices. The system per­
formance is compromised not only because these 
operations must be done bit by bit, but also be­
cause many high speed algorithms cannot be effi­
ciently implemented. 

E_lronic D •• tun • November 15. 1984 
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Microprogrammable 32·bit chips 

large addressing capability (4 billion bytes) to 
support virtual memory systems (Fig.l). 

The performance of a system depends, not 
just on its raw computing speed, but on its abili­
ty to respond to events such as interrupts and 
traps. For example, the Am29331 sequencer re­
sponds to both interrupts and traps at the mi­
croprogram level very quickly, and its response 
is completely transparent to the interrupted 
microroutine. Also, the Am29332 ALU indirect­
ly supports the handling of these events by al­
lowing its internal state to be saved or restored. 

The Am29332, a noncascadable 32-bit-wide, 
ALU, provides fast number crunching, high 
data transfer rates, and powerful bit-manip­
ulation capabilities. Intended to be used with 
the Am29334 dual-ported RAM, which serves 
as an external register file, the ALU has two 

32-bit input buses (DA and DB) and one 32-bit 
output bus (Y). 

Internally, the device has a 32-bit data path 
that interconnects its various functional 
blocks. These blocks include various shifters 
and multiplexers, a mask generator, a funnel 
shifter, the ALU proper, a priority encoder, a 
parity generator and checker, a master-slave 
comparator, and the status and Q registers 
(Fig. 2). The ALU proper has three 32-bit in­
puts: R, Sand M. The R input comes from the 
funnel shifter, the M input from the mask gen­
erator, and the S inputfrom a variety of sources 
- the DA or DB buses, status register, or the Q 
register. 

The power and flexibility of the Am29332 
comes partly from its ability to perform oper­
ations on various data types. It can operate on 

--------------________________ ~-------------------Add~. 
--------~--------------------+_----1-----r_-------~. 

Am29323 
32 X 32-blt 

multiplier 
or 
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variable bytes, variable-length bi t fields, or sin­
gle bits. This is made possible by the internal 
mask generator, which creates a 32-bit mask 
for each instruction (with no time overhead). 
The mask is used as an additional operand in 
each instruction to allow the operation on only 
selected data widths. 

The type of mask generated depends on the 
type of instruction. For instructions that oper­
ate on variable bytes (1, 2, 3 or 4 bytes) the mask 
is a fence of Is (bit 0 aligned) for all low-order 
selected bytes with a fence of Os for all high­
order unselected bytes. Instructions that oper­
ate on variable-length bit fields require a mask 
that is a string of contiguous Is for all selected 
bit positions and Os for all un selected bit posi­
tions. In cases where the field exceeds the 32-bit 
boundary, the mask does not wrap around, thus 

allowing operation on a contiguous field across 
a word boundary. For instructions that operate 
on a single bit, the mask is a 1 for the selected bit 
position and Os for the other unselected bits. 

For most single-operand instructions, the 
unselected bit positions pass the corresponding 
bits of the operand unmodified. For most two­
operand instructions, the unselected bit posi­
tions pass the corresponding bits of the operand 
unmodified on the DB input. Thus, for two­
operand instructions the mask allows the 
merging of two operands in a single cycle. In ad­
dition to being used internally, the mask can be 
sent out over the Y bus, permitting the gener­
ator to be used as a pattern generator for test­
ing purposes. 

To speed various mathematical and logical 
operations, many circuits have started to in-

~------------------------------------------~ 

OE.Y 
Slave 

INST 

Hold 

CP 

2. To connecl il. various inlernallunclional block., Ihe Am29332 ALU 
employ. a 32-bil bu •. Among the chip'. major lealure. are a 84-bit lun­
nel .hilter, parity checking and generalion, and a ba.lc 32-bit ALU Ihal 
ha. Ihr .. input pori •. The proce .. or allo hal Ihr .. 32-bit porls Ihrough 
which It Iransler. dala inlo and oul 01 Ihe chip. 

Electronic Deelon • November 15, 1984 



DESIGN ENTRY 

Microprogrammable 32-bit chips 

elude a barrel shifter, which has an N-bit input 
and an N-bit output. The barrel shifter would 
be used to shift or rotate the operand either up 
or down from 0 to N bits in a single cycle. Such 
high-speed shifting is very useful in operations 
such as the normalization of a mantissa for 
floating-point arithmetic or in applications in 
which the packing and unpacking of data are 
frequent operations. 

However, a more useful circuit is a funnel 
shifter, which can be thought of as having two 
N-bit inputs and one N-bit output. Just such a 
circuit (with 32-bit-wide ports) was included on 
the 29332. The circuit can perform all the oper­
ations of a barrel shifter with capabilities ex­
tended to two operands instead of one. In addi­
tion, it can extract a 32-bit contiguous field 
across its two operands, a function very useful 
in several graphics applications. And any of its 
operations can be followed by a logical oper­
ation, with both completed in a single cycle. 

Setting the priorities 

Prioritization, useful to control N-way 
branches, perform normalizations, and in 
graphic operations such as polygon fills, can 
readily be handled by the ALU chip. The built­
in priority encoder sends out a 5-bit binary 
weighted code that signifies the relative posi­
tion of the most-significant 1 from the most­
significant bit position of the byte width se­
lected. That allows prioritization on either 8-, 
16-,24-, or 32-bit operands. The priority encoder 
outpu t can be passed on to the Y bus or stored in 
the status register. 

If, for example, prioritization is used to nor­
malize a mantissa during a floating-point 
arithmetic operation, it requires two cycles. In 
the first, the mantissa is prioritized to deter­
mine the number of leading Os that need to be 
stripped off. In the next cycle, the mantissa is 
shifted up by the amount specified by the prior­
ity encoder output. 

Relevant information for each operation per­
formed by the chip is stored in the 32-bit status 
register after each microcyele. Each byte of the 
status word holds different information. The 
least-significant byte holds the position spec­
ifier. The next most-significant byte holds the 
width specifier and three other bits that are 
used to test the comparison of unsigned and 
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signed operands. The next byte contains the 
Carry, Negative, Overflow, Link, Zero, M and S 
flags. The M flag stores the multiplier bit for 
multiply or the sign compare bit for signed di­
vision, and the S flag stores the sign of the par­
tial remainder for unsigned division. The most 
significant byte stores the nibble carries for 
BCD operations. 

The states of the Carry, Negative, Overflow, 
Link and Zero flags are available on the status 
pins, and the status multiplexer allows the user 
to select either the status of the previous in­
struction (register status) or the status of the 
current instruction (raw status) to appear on 
the status pins. The raw status could be used to 
update an external macro status register. This 
also allows branching at.either the micro- or 
macro-level. 

The Q shifter and Q register are primarily 
used to assemble the partial product or partial 
quotient in multiplication and division oper­
ations. Variable bytes of the status and Q reg­
ister can either be loaded via the DA and DB 
inputs or can be read over the Y bus. Thus sav­
ing and restoring of the registers allows effi­
cient interrupt handling after any microcycle. 
It is also possible to inhibit the update of both 
these registers by asserting the Hold pin. 

Powerful and orthogonal instructions 

The power of the ALU chip's instruction set 
comes directly from the integration of several 
functional blocks mentioned earlier. The com­
mands are symmetrical as well as orthogonal, 
to make it easier for a compiler to generate effi­
cient code. Thus, any operation on the DA input 
is also possible on the DB input, and each in­
struction is completely independent of its data 
type. 

Three-fourths of the instruction set consists 
of variable byte-width (one, two, three or four) 
operand instructions. The byte-width is se­
lected by two bits in the instruction. For these 
operands, the instruction set supports all con­
ventional arithmetic, logical and shift oper­
ations. Arithmetic operations ~an be per­
formed on both signed and unsigned binary 
integers. 

Additionally, the instruction set supports 
multiprecision arithmetic such as addition 
with carrying and subtraction with carrying or 
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borrowing. For all subtract operations it pro­
vides the convenience of using borrowing in­
stead of carrying by asserting the borrow pin. 
In this mode the carry flag is updated with the 
true Borrow. To allow efficient execution of 
macroinstructions the chip contains a Macro 
mode pin. When the chip asserts this pin, it al­
lows the external Macro-Carry and Macro-Link 
bits instead of their microcounterparts to part­
icipate inthe operation. 

Instructions that execute algorithms for the 
multiplication and division of signed and un­
signed integers are multiple cycles are also pro­
vided. For multiplication, the circuit supports 
the modified Booth algorithm, yielding two 
product bits in one cycle. Both single-precision 
and multi precision division of signed and un­
signed integers are supported at the rate of one 
quotient bit in every cycle. 

Besides binary integers the instruction set 
provides basic arithmetic operations for 
binary-coded decimal (BCD) numbers. By oper­
ating directly on the decimal numbers created 

Error 

3. To help enaure ayatem integrity, two Am29332 
proce_re cen be .. t lor maetar and alava oper­
ation. Both chipe perform'the .. me operation in par­
allel, and any difference in their, reeulta ia flallilad aa 
an error. The maatar alao checka ita internal reault 
egalnat tha data on the output bua to make aura 
that no other device (auch aa davice XI ia turnad on 
at the .. me tima. 
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in most business applications, significant pro­
cessingtime is saved by eliminating the need to 
convert from binary to BCD and vice versa. 
Also, the round-off errors involved in con­
verting from one base to the other are elimi­
nated. 

The last group of instructions was created to 
support val!iable-length bit fields (1 to 32) and 
single-bit operands. The position and width of 
the field can be specified by either the position 
and width inputs or by fields in the status reg­
ister, thereby saving bits in the microcode. 
Most of the time, the position and width are 
determined dynamically. It is therefore diffi­
cult to supply them via the microinstructions. 
For single bit operations only the position spec­
ifier is needed. 

Bit-manipulation instructions include set­
ting, resetting, or extracting a single bit of the 
operand or the status register. Logical oper­
ations on either aligned or nonaligned fields in 
the two operands include OR, AND, NOT and 
XOR. In the case of nonaligned fields it is as­
sumed that at least one of the fields is aligned to 
bit position O. I t is also possible to extract a field 
from one operand and insert it into another 
operand or extract a field across two operands. 

Enhancingayatem integrity 

The growing need for data integrity has been 
addressed at both the system and the chip level 
by including hardware for fault detection. Dur­
ingcalculations, byte-wide even parity is gener­
ated for the data result by the ALU and stored 
with the data in the external RAM. Byte-wide 
even parity is also checked at the ALU inputs 
and any error is flagged. 

Even parity is specifically used to check for a 
floating TTL bus. Thus, all interchip connec­
tions are checked out. In addition, hardware for 
functional verification is also provided on the 
sequencer and the ALU functional verification 
can be implemented by using two similar de­
vices in the master and slave mode (Fig. 3). In 
that setup, both chips perform the same oper­
ation, with any difference in their outputs being 
flagged as an error. The slave-mode chip's bidi­
reCtional buses operate in their input mode, al­
lowing the master to compare its own internal 
result with that of the slave on every cycle. Ad­
ditionally, the master checks the output bus to 
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make sure that no other device is turned on at 
the same time. 

As mentioned earlier, the ALU architecture 
was designed to use an external register file. 
Keeping the file external to the chip permits the 
user to expand it to meet any system need. The 
Am29334, a high-speed 64-word-by-18-bit dual­
access RAM, provides two independent data in­
put ports and two independent data output 
ports (Fig. 4). Each port can be read from or 
written to using the separate inputs and out­
puts. The two accesses are independent except 
for the case when simultaneous write opera­
tions are done to the same word-in which case 
the result is undefined. The read address inputs 
and the write address inputs of each side are se-

D. 0. 

weAL we~ 

WE... WEIIH 

we.. we.., ..... ..... 
~ A .. 

LE. LEo 

oe. oe. 

VA V. 

4. The dual-acce .. RAM .erv .. a. an external reg­
liter IIle for the arithmetic pr_Ior chip. The 
Am29334 holdl 84 wordl, each 18 bitl lonll. Two 
chips are often connected to build a RAM block with 
four data output., two data Inputl, and .ix addre .. 
line •• Each port of the RAM can be Independently 
acce .. ad to read or write. 
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parate in order to save the cost and time delay 
of external multiplexing between a read ad­
dress and a write address. 

The word width of 18 bits allows the RAM to 
store two bytes plus a parity bit for each. Each 
side has separate write enable for the lower and 
upper nine-bit bytes and a common write en­
able that also switches the address multiplexer. 
The actual write is delayed internally to allow 
the write address to set up internally before 
writing starts. 

It is possible to build a RAM with four data 
outputs, two data inputs and six addresses by 
using two dual-access RAMs and on each side 
connecting the data input, write address and 
write enables of one RAM in parallel with the 
corresponding inputs of the other RAM. This 
expanded RAM may be used in concurrent pro­
cessing applications in which an ALU and an 
adder (which generates the address) do their 
computations-this yields a result and an ad­
dress in parallel. The two values can then be fed 
simultaneously to the multiport memory. 

The aequencer controla the show 

The cycle time of the microprogrammed sys­
tem is dependent on both the control path (i.e., 
sequencer and microprogram memory) and the 
data path (i.e., register file and ALU). Tradi­
tionally, the system bottleneck has been the 
control path, especially the ciritical paths asso­
ciated with conditional branching. Special care 
has been taken in the design of the Am29300 
family to balance control and data-path timing. 

A key device contributing to the improved 
control-path timing is the Am2933116-bit mi­
croprogram sequencer. It is designed for high 
speed, and that speed has been attained by the 
elimination of functions that would slow down 
the microaddress selection and by including the 
test logic and the test multiplexer in the se­
quencer (Fig. 5). As in most previous generation 
sequencers, the address register, the incre­
menter, the address multiplexer, the stack, and 
the counter are standard functions. The se­
quencer has multi way branch instructions that 
allow 1 of 16 consecutive addresses to be se­
lected as the branch target in a single cycle. 

The address register in most other sequen­
cers is called a program counter, but this name 
is not correct if a strict definition is applied. In 
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the Am29331, the incrementing counter is 
. placed after the address register, which thus al­

lows for the handling of traps. The stack stores 
return addresses, loop addresses and loop 
counts. It has 33 levels to permit the deep nest­
ing of subroutines, loops and interrupts. An 
output, Almost Full (A-Full), indicates when 28 
or more of the levels are in use. 

Available for use in iterative loops, the 
counter can be loaded with an iteration count at 
the beginning of a loop, and the count is tested 
and then decremented at the end of the loop. 

Fe 0-- 12 
INTR 0--

INTENo--

iNiA 0--

Hold 0--

0E0 0--

8_0--

T.-T" 

To-T., 

8 

The loop is terminated if the count is equal to 
one; otherwise a jump to the beginning of the 
loop is executed. 

There are three buses that carry microad­
dresses. The bidirectional D bus can be con­
nected to the pipeline register, providing 
branch addresses or loop counts, or used for 
two-way communication with the data process­
ing part of the system. The A bus, called an al­
ternate bus, can be connected to a mapping 
PROM to provide starting microaddresses for 
instructions in a computer. The Y bus sends out 

5. To eid in handling trep operetion., Ihe incrementer I. placed efter the addre .. 
regi.ler in the Am29331 microsequencer. Addilionell" the chip h .. e 18-bit ad­
dre .. bu., which eneble. it to ace ... up 10 84 kworda of conlrol memory IIIId han­
dle Interrupt. end multiple-path brenche •. 
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selected microaddresses to the microprogram 
memory and accepts interrupt or trap address­
es if interrupt or trap is employed. 

Four sets of 4-bit multi way inputs provide a 
simultaneous test capability of up to 4 bits. 
And, one way to use those inputs would be to 
decode mode bits in changing positions in mac­
roinstructions. The four select lines select 1 
of 16 tests to be used in conditional instructions. 
There are twelve test inputs. Four of these may 
be used for C (Carry), N (Negative), V (Over­
flow) and ZJZero), generating internally the 
tests C+Z, C + Z, N XOR V, and N XOR V +Z, 
which are used for comparison of signed and 
unsigned numbers. 

Relative addressing was the only somewhat 
useful function that was removed in order to 
maximize speed. The sequencer supports inter­
rupts and traps with single-level pipelining, but 
may also be used with two levels of pipelining in 
the control path. It has a 16-bit-wide address 
path and cannot be cascaded, which thus limits 
the addressable memory depth to 64 kwords of 
microcode. That, however, is sufficient for the 
vast majority of applications-a typical 
computer, for instance, that has a micropro­
grammed instruction set, might use only about 
1 to 2 kwords. However, for systems in which 
the microprogram is the sole program level, its 
size is generally larger. 

Microprogram interrupts supported 

The Am29331 sequencer supports interrupts 
at the microprogram level. Like polling, inter­
rupts handle asynchronous events. However, 
polling requires explicit tests in the micro­
program for events, thus leading to long re­
sponse times, lower throughput, and larger mi­
croprograms. Interrupts, on the other hand, 
have a response time equal to the cycle time of 
the system (approximately 80 ns), measured 
from the Interrupt Request input (INTR). The 
sequencer accepts interrupts at every micro­
instruction boundary when the Interrupt En­
able input (lNTEN) is asserted. 

An actual interrupt turns off the Y bus driver 
and asserts the Interrupt Acknowledge output 
(lNTA), which should be used to enable an ex­
ternal interrupt address onto the Y bus, thus 
driving the microprogram memory. The inter­
rupt also causes the interrupt return address to 
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be saved on the stack; this permits nested inter­
rupts to be handled (Fig. 6). 

The Am29331 is also the first sequencer that 
can handle traps. A trap is an unexpected situa­
tion caused by the current microinstruction, 
which must be handled before the microin­
struction completes and changes the state of 
the system. An attempt to read a word from 
memory across a word boundary in a single cy­
cle is an example of such a situation. When a 
trap occurs, the current microinstruction must 
be aborted and re-executed after the execution 
of a trap routine, which will take corrective 
measures. 

Execution of a trap requires that the se­
quencer ignore the current microinstruction 
and push the trap return address-the address 
of the ignored microinstruction-on the stack. 
The trap address must be transferred onto the 
Y bus at the same time. All this can be accom­
plished by disabling the carry-in to the incre­
menter (Cin) and asserting the Force Continue 
input (FC) and the Interrupt Request input 
(INTR). 

Also built into the sequencer is an address 
comparator, which allows detection of break­
point in the microprogram. An output signal 
from the comparator indicates when the con­
tent of the comparator register is equal to the 
address on' the Y bus. There is an instruction 
that loads the comparator register from the D 
bus and enables the comparator, which may lat­
er be disabled by another instruction. 

Parallel microprocesses are useful when the 
system must deal with peripheral devices that 
are controlled at the microcode level. Normally 
only one processor is present and it must be 
time multiplexed between the concurrent oper­
ations that must be performed. When a process 
is suspended its private state must be saved, so 
that it can be restored when the process re­
sumes execution. That, in turn, requires that 
the state of the sequencer be saved and re­
stored, or each process must have its own 
sequencer that is active when the associated 
process is active. The first approach is the least 
expensive, but the second offers the advantage 
of shorter response time, because no time is 
spent on saving and restoring the state. 

The Am29331 supports the first approach 
with its bidirectional D bus, through which the 
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entire state, with the exception of the com­
parator register, can be saved and restored. The 
sequencer also supports the mU:ltiple sequencer 
arrangement, in which the three-state Y buses 
from the sequencers are tied together driving a 
single microprogram memory. One of the se­
quencers is active, while the remaining sequen­
cers are put on hold by asserting their Hold 
inputs. The Hold input disables most outputs 
(the D bus synchronously), disables the incre­
menter, and enables an internal Force Con­
tinue. This effectively detaches the sequencer. 

A ,CALLC 
A+1:. 

B ,CONTINUE 
8+1:, 

C , Executing al A 

C+l, . 

A 

y 

B~ 
B 

from the system and preserves its state. 
The sequencer has a 6-bit instruction input 

that is internally decoded to yield a set of 64 in­
structions. There are 16 basic branch.instruc­
tions, each in an unconditional version, a condi­
tional version, and a conditional version with 
complemented test. In addition there are 16 
special instructions like Continue and Push C 
(push counter on stack). The branching instruc­
tions handle jumps, subroutines, various kinds 
of loops and exits out of loops, and FC actually 
overrides the instruction inputs with a continue 

y 

4 
B+l 

a. Because It can accept interrupts at any micrainstructian boundary, the sequencer respands laster than 
malt ather micraprogrammed sy.t,ms. Far example, while the instructian al paint A in memary i. being 
executed, the sequencer ia directed ta paint B. The anly restrictian an the programmer is that the lirat in­
Itructian al the interrupt rautlne can nat UIB the stack, since the Interrupt return addre.s I. pushed onto it at 
the start 01 the procedure. 
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instruction. Fe is useful in field sharing and 
support for writable microprogram memory. 

The Am29331 is one of the few sequencers 
where the stack is accessible from outside 
through the bidirectional D bus. This indirectly 
allows access to the whole state of the se­
quencer except the comparator register. This is 
useful when testing the device, and during 
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system debugging, in which, for example, the 
contents of the counter and the stack may be 
examined and altered. By including the trou­
bleshooting instructions in the microcode, the 
sequencer may aid in debugging itself and the 
rest of the system. The access to the state is also 
useful for changing context or extending the 
stack outside. 0 
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By Mark McClain 

This application note describes the design of a high performance microprogrammed 
32-bit processor using the Am29300 family of 32-bit building blocks. Basic design 
philosophy for a microprogrammed processor is discussed as the design choices 
made for this system are explained. Support circuitry used with the Am29300 family 
components is also covered in detail. This circuitry includes: Writable Control Store. 
Serial Shadow Register diagnostics. and Programmable Array Logic. 
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SECTION 1 

Overview 
This application note describes the design of a high 
performance microprogrammed 32-bit processor using 
the Am29300 family of 32-bit building blocks. 

- 16-bit Address Sequencer, 

- 32-bit Arithmetic Logic Unit, 

Am29331 

Am29332 

Am29334 - 64 x 18-bit Four Port Register File, 
Basic design philosophy for a microprogrammed proces­
sor is discussed as the design choices made for this 
system are explained. Issues of microprogram sequence 
control, interrupt handling, microprogram memory op­
tions, microword layout, macroprogramming, high speed 
multiply, and clock control are covered. 

Am29C323 - 32-bit Parallel (Integer) Multiplier 
Accumulator, 

Am29325 - 32-bit Floating Point Unit, 

Am29114 -Interrupt Controller, 

Am29800 - Family of Interface and Diagnostics 
Logic Devices, Support circuitry used with the Am29300 family compo­

nents is also covered in detail. This circuitry includes: Am29PL141 - Fuse Programmable State Machine, 
Writable Control Store, Serial Shadow Registerdiagnos­
tics, and Programmable Array Logic. 

AmPAL18P8 - Programmable Output20-pin Combi-
natorial PAL, 

The use of the following Advanced Micro Devices com­
ponents is illustrated in extensively documented ex­
amples: 

AmPAL22V10 - Output Macrocell24-pin PAL, 

Am9151 

Am99C165 

- Registered RAM with SSRTM, 

-16K x 4-bit CMOS high speed 
RAM. 
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Figure 1-1. System Components 

SSR is a trademark of Advanced Micro Devices, Inc. 
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SYSTEM LAYOUT 

As with all processors, this system contains three main 
portions: Central Processing Unit (CPU), memory, and 
inputloutput(I/O) (see Figure 1-1). 

The CPU consists of a control section and a data section: 

The data section manipulates data via operations such 
as addition, subtraction, shifting, merging, multiplication, 
and division. These functions are implemented with the 
Am29332 Arithmetic Logic Unit (ALU), Am29325 Float­
ing Point Processor (FPP), and Am29C323 Parallel 
Multiplier (PM). The data section also stores operands 
and intermediate results in Am29334 register files. 

The control section directs the operations performed by 
lhe data section and determines the order in which the 
operations are performed. This section contains the 
Am29331 Microprogram Sequencer, macro opcode 
register & decode, interrupt control logic, microcode 
control store, control decoding logic, and control mUlti­
plexers for the register file and ALU. 

The memory contains a 16K word by 36-bit static RAM. 
Included as part of the memory block are two address 
registers/counters, which may be used to speed up 
sequential reads and writes made by the CPU. 

The I/O portion is a simple connection to a host system's 
addrel:;s and data bus. It is assumed that the Am29300 
demonstration system operates as a peripheral proces­
sor to a larger host system, as might be the case with an 
array or digital signal co-processor. Information to be 
processed by the d.emonstration system is loaded into 
the memory portion via Direct Memory Access (DMA). 
When processing of the data is complete, the host 
system unloads the memory portion via DMA. 

A diagnostics port is also provided as part of the I/O 
section. This port allows control over the demonstration 
system clock for single stepping, and it allows for serial 
diagnostics to display and control the state of the system. 

Throughout the remainder of this application note, it is 
assumed that the reader has some previous experience 
with microprogrammed processor design and is familiar 
with the Am29300 family data sheets. For those readers 
not familiar with microprogrammed deSign, some refer­
ence material is listed in Appendix A. 

DATAFLOW 

The system data paths are illustrated in the block dia­
gram of Figure 1-2. 
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Memory and 1/0 Sections 

Information processed by the Am29300 system is ex­
changed between the host system and the memory via 
the external bus interface. The information may be both 
data and macroinstructions. 

From the external bus, the host system is able to address 
the memory via the bus driver connected to the memory 
address bus. Data is moved over the memory data bus. 
The host system's only access to the Am29300 system 
is via these buses to the memory. Therefore, all data to 
the system flows through the memory via DMA accesses 
by the host system. 

Diagnostic control and information flows through the 
external bus interface via the host interface controller. It 
controls the clocking and single stepping of the system 
while loading and reading serial diagnostics via Serial 
Shadow Registers (SSR) that are placed in key locations 
throughout the system. 

(SSR is a trademark of Advanced Micro Devices, Inc.) 

Data Section 

Data must be moved from the memory to the register file 
to be available to the ALU and multipliers for processing. 

The register file has four access ports, two ports for 
writing data into the file and two ports for reading data out 
to the ALU and multipliers. This arrangement allows two 
operands to be read from the file in the same cycle as two 
operands are being written. The two read operands are 
usedeitherasAand BoperandsfortheALU, FPP, orPM, 
or as address and data inputs to the memory. 

To move data from the memory to the register file, an 
address to the memory is selected from the register file 
on the A read port. This address selects a word from the 
memory that is transferred on the memory data bus to the 
B write port of the register file. 

Once data is loaded into the register file, it can then be 
selected for use on either the A or B read ports for input 
to the ALU, FPP, or PM. 

Data processing results from the ALU, FPP, or PM are 
then placed on the Y bus for return to the register file A 
write port. 

Finally, processed data is moved back to the memory via 
the Bread portofthe register file, while the location to be 
written in the memory is addressed by the value on the A 
read port of the register file. 
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Figura 1·2. Am29300 Demonstration System 

(NOTE: The advantage of using both write ports on the 
register file is that it is possible to perform calculations 
and write the results via the A write port at the same time 
that new data is being moved into the register file from the 
memory via the B write port. This will be illustrated in 
more detail later in this document.) 

Control Section 

D Bus 

The 0 bus is a highway for information flow between the 
microcode control store, interrupt control sequencer, and 
data section of the CPU. . 

Branch addresses or constants from the microcode can 
pass to the sequencer via the 0 bus. The interrupt 
controller's interrupt vector base address register may 
also be loaded via the 0 bus. 

Constants from the microcode can pass to the data 
section for use in calculations via the 0 bus to A bus 
transceiver. Microcode constants can also be used as 

addresses to the memory, via a 0 bus to A bus to memory 
address bus connection. 

Variable data can be passed from the register file to the 
sequencer. The sequencer can also return data to the 
register file, via the A bus to ALU Y bus to A write port 
path. The 0 bus path to the sequencer is valuable for 
storing and retrieving the state information in the se· 
quencer when interrupts, traps, or context switches 
occur. 

Control Decode 

This section of logic expands encoded microcode fields 
into individual control lines used throughout the system. 

Interrupt Logic 

This circuit monitors interrupt and trap conditions such as 
parity errors and breakpoints. When an interrupt condi­
tion is detected, an interrupt request to the sequencer is 
made and an interrupt address vector generated. 
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Sequencer 

The sequencer is an address multiplexerwith an on-chip 
address incrementer and stack. It selects the address for 
each microinstruction word read from the control store. 
The address selected depends on the instruction to the 
sequencer and on the state of test conditions. The 
sequencer can select addresses from the branch field of 
the control pipeline register, the macro opcode map, the 
internal stack, the increment of the last microinstruction 
address, or one of four status condition driven mUlti-way 
branch inputs. 

Macro Opcode Support 

Macro vs. Micro Programs: A microprogram is the 
definition for the state of the primary system control 
signals during each system clock cycle. Each word of 
microcode usually has a large number of bits so that 
many parallel operations may be controlled simultane­
ously. Each microcode word must deal with the intricate 
details of system operation. The writing of microcode is 
a slow tedious process that must take into account every 
facet of system operation in order to provide the most 
efficient use of system resources. 

The advantage of microcode is that, very often, different 
system operations can be overlapped (done in parallel) 
since there is parallel control over all the system re­
sources. 

A "macroprogram" is a series of microcode subroutine 
calls. Each macroinstruction has anopcode field that is 
simply a value that can be translated into the starting 
address of a microcode subroutine within the system 
microprogram. The macroinstruction may include para­
meters that are passed to the microprogram. These 
parameters might be register addresses, loop counter 
values, immediate data, or memory addresses. 

The advantage of a macroprogram is that the instructions 
are very simple and require relatively few bits to define as 
compared to a microcode word. The macroinstructions 
are simpler because all the details of system operation 
are specified by the underlying microcode instructions. 
The simpler instructions allow macroprograms to be 
written much more quickly than microprograms. There­
fore; once a set of microcode subroutines are developed 
to perform the most often needed system operations, a 
wide variety of macroprogram applications can be 
quickly written. Macroinstructions remove the system 
programmer's concern over every detail of system 
operation. 

The disadvantage of a macroprogram is that each in­
struction must be fetched from memory and decoded 
(translated to a microcode subroutine address) before 
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each microcode subroutine is executed. When each 
subroutine execution is long compared to the overhead 
of fetching and decoding the macroinstruction, the 
macroprogram will run nearly as fast as an equivalent 
microprogram with the advantage being a much easier 
programming task. When the microcode subroutines are 
short compared to the macroinstruction overhead, the 
system speed can drop significantly. 

So, if macroprogramming concepts are used carefully, a 
macroprogrammed approach to system design can yield 
a significant improvement· in the ease of system use 
without a large decline in system performance. 

For that reason, the Am29300 demonstration system 
includes the features described below, which allow a 
macroprogrammed approach. These features are in­
tended to show how basic macroprogramming can be 
implemented. 

Macro Opcode Register: When macro-instructions are 
executed, the instructions are addressed in the memory 
via the A read port of the register file in the same way as 
described earlier for data. The selected instruction is 
read from the memory via the memory data bus and 
written into the macro opcode register. The instruction 
can also be written into the register file via the B write port 
in the same cycle (which may be useful for instructions 
that contain immediate operands that would be used by 
the data section). 

Macro Opcode Map RAM: The macro opcode map 
RAM is made of three Am9150 high speed SRAMs. The 
opcode portion of the macro opcode register addresses 
a microcode entry pOinttable in the map RAM. This entry 
point is then used by the Am29331 sequencer as a 
branch address to the microcode routine that performs 
the function required by the macroinstruction. 

Macro Operands: The operand portion of the macro 
opcode register is loaded into the macro operand count­
ers. The macroinstruction operands allow the direct 
specification of register file addresses, ALU shift values, 
or ALUfield masks to be used by the microcode routines. 

Register File Address, POSition, and Width 
Multiplexers: Register file addresses are passed to the 
register file via the register file address multiplexer. Po­
sition and width information for shift values and field 
masks are passed to the ALU via the position and width 
multiplexers. These multiplexers allow either the microc­
ode or the macroinstructions to control the register file 
and ALU. 
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SECTION 2 

Nomenclature 
Throughoutthe remaining figures in this application note, 
some naming and drawing conventions are used as 
noted below. 

All signal names are written as single word identifiers with 
underlines used to provide visual space between sec­
tions of a multi-word identifier. 

Signals that are active low have names that end with an 
asterisk. In some of this document's programmable logic 
definition files, this convention is not allowed. In those 
situations, the active low signal names will begin with an 
exclamation point or end with an underline character. 

Clock and qualified clock signals have names that begin 
with CLK_. 

Groups of signals that form buses are shown as single 
lines with an associated numberthat indicates how many 
lines are involved. Bus lines are drawn with 45 degree 
turns and intersections instead of the usual right angle 
turns and intersections used with individual signal lines, 
in order to highlight buses visually. Major data highways 
such as the A_BUS, B_BUS, and V_BUS have signal 
names that end in_BUS. The lines of apus are numbered 
from least significant to most significant with the least 
significant identified as line zero (0). Where a subset of 
the lines in a bus is shown, the bus signal name will be 
followed by parentheses containing numbers that show 
the range of lines in use. The numbers of a continuous 
range are separated by a colon (:), non-contiguously 
numbered lines are separated by a com'TIa (,). Where 
lines of a bus are split out to show the specific connection 
of bus lines in a circuit, a small number that indicates the 
line number within the bus will be shown near each line 
that is split off. 

Four major buses in the system share a common struc­
ture. The A_BUS, B_BUS, V_BUS, and MD_BUS all 
have the same layout. Each bus carries a 36-bit data 
word, which is arranged as four 8-bit bytes, each byte 
having its own parity bit. Byte zero (least significant) is 

located in bits 0:7; bit32isthe parity bit for byte zero. Byte 
oneis in bits8:15with its parity in bit 33. Byte two is in bits 
16:23 with parity in bit 34. Byte three is in bits 24:31 with 
parity in bit 35. 

Signals that come directly from the microcode memory 
pipeline register have signal names that begin with "P _". 

Ground symbols (zero volt points) are drawn as down­
ward pointing triangles, or the signal name GND is used. 

Points tied to +5 volts are labeled with the signal name 

VCC' 

Components are shown with pin numbers immediately 
outside the rectangle that defines the component. 
Component-specific signal names related to component 
pins may be shown immediately inside the component 
rectangle. Where there are several components shown 
on a page with very similar connections, only one of the 
components will have pin numbers and signal names 
shown. The remaining components on the page are 
wired in the same manner. 

Each component is assigned and labeled with a "U 
number" that uniquely identifies the component. This 
helps identify specific components for discussion and 
separates identical type devices in the system compo­
nent list. 

Because this demonstration system is complex by na­
ture, it must be illustrated with many figures, each focus­
ing on a different portion of the overall system. In order to 
show the signal interconnections between all parts of the 
system, each signal that leaves or enters a figure is given 
a name. Often the names are abbreviations in order to 
save space in the figures. Each name shows a relation­
ship to the Signal's use. Wherever the same signal name 
appears in different figures, a connection between the 
figures is defined. To help in identifying all the figures to 
which a signal travels, there is a signal-to-figure cross 
reference listing in Appendix B. 
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SECTION 3 

Data Section Description 
REGISTER FILE 

Two Am29334 register files are used in tandem to pro­
vide a 64-register by 36-bit wide file. This allows the 
storage of 32-bit data plus parity (1 parity bit/byte). Each 
Am29334 contains 64 registers that are 18 bits wide; see 
Figure 3-1. 

An Am29334 register file can both read and write data in 
the same cycle, but it does not perform the read and write 
simultaneously. The read must be performed during part 
of the system cycle and the write during another part of 
the cycle. Since read data is needed by the ALU and 
multipliers as early in the cycle as possible and, since 
data values to be written are only available later in the 
cycle, the reading of data is done in the first half of the 
cycle and the writing done in the second half of the cycle. 
A convenient way to separate the two parts of the cycle 
is to use the system clock !iignal to control the internal 
address mux and write enable. 

As connected in Figure 3-1, the read port latch enables 
(LEA and LEB) and write port common enables (WEAC* 
and WEBC*) are tied to the data section clock line 
(CLK_D). This causes read data to be accessed while 
CLK_D is high and read data to be latched when CLK_D 
is low. Data is written when CLK_D is low if the port write 
enables are active (WEAL* and WEAH*, orWEBL* and 
WEBH*). The high and low byte write enables for each 
port are tied together since only full 36-bit word writes will 
be done in this system. 

The various read and write addresses are provided from 
the register file address multiplexers, which will be cov­
ered later. 

The output enable (P _OEA*) and write enables 
(P _WEA* and P _WEB*) come directly from the microc­
ode pipeline register. 

ARITHMETIC LOGIC UNIT 

Am29332 
The Am29332 provides a 64-bit funnel (barrel) shifter, 
32-bit mask generator, and 32-bit ALU. The ALU can 
perform binary and BCD add or subtract, multi-cycle 
multiply or divide, and logical operations. This single, 
highly-integrated chip provides the complete function of 
the ALU block in this system. The only added component 
is an external register used to maintain status bits for the 
macroprogram separate from status information used by 
the micro program. The ALU is shown in Figure 3-2. 

Most of the control lines come directly from the microc­
ode control pipeline register. 

The ALU output enable (ALU_OE*) is decoded from the 
control pipeline register. 

The POSITION and WIDTH signals come from the posi­
tion and width multiplexers. These multiplexers select 
the position and width values from either the microcode 
pipeline or the macroinstruction in the macro opcode 
register. 

The slave mode input is tied to ground since there will be 
no use of the slave mode comparisons in this system. 

The HOLD input is used as an enable control over the 
clocking of the internal micro status register and Q 
register during times the ALU is not in use. Because the 
ALU, FPP, and PM share the same data source and 
destination buses (A_BUS, B_BUS, and V_BUS), they 
generally cannot be used simultaneously due to bus 
contention. In recognition of this, the control fields for the 
ALU, FPP, and PM have been overlapped in the microc­
ode to minimize the required width of each microcode 
word. This means that at certain times the control lines to 
the ALU will be meaningless to the ALU because the 
values on the lines are determined by the needs of the 
FPP or PM. Therefore, unless the hold input is used to 
prevent clocking of thestatus and Q register duing these 
times, the ALU status could be lost whenever the FPP or 
PM are in use. 

Note, however, that the hold input is not used as the 
general means to prevent clocking of the ALU registers 
when the whole system is halted (e.g., during single step 
mode). The data clock (CLK_D) that is distributed 
throughoulthe data section ofthe CPU is a qualified clock 
and will be used to controlthe state change of all registers 
in the data section, including those in the ALU at times 
when the whole system is halted. 

Macro Status Register 

There are two levels of status information that the pro­
grammer of a microprogrammed system must track if that 
system executes macroinstructions. These are referred 
to as the micro and macro status. The micro status of the 
system is updated at the end of each microcode step and 
is part of the system state. The macro status is partofthe 
macroprogram state as reflected at the end of each 
macro step. Since many microinstructions may be exe­
cuted to perform the function defined by a given macro­
instruction, the macro status reflects the machine state 

6-21 



Cl) 

N 
I\J 

CLK_D 

ARB 

AWB 

P_WEB" 
36 

MD_BUS C>-7' 
36 

YBUS 

""-"-"'" , , , , , , 

, , , , , , , , , , , " 

, , , , , 
~'WE.L' 

(0:17) 

~:BLi 
OM, 

. ::P 11 

~ ~LE8 LEA9LA',," F-",nE LEB , DEBi1' [: IlEA DEBi1' :, 18 18 : , , , , , , 
Ytll-----~~4----: ~ __ ~~ ________ Y. Y. Am29334 , 

DEA C> t:i;I , , , , ~ 

~------------ (18:35) (18:35) (0:17) (0:17) 

~WEA·C> •• ~I~I~I -----------------t----~------------------~ 

AWAC>,~;/~·~I+I------------------~--~----------------------~ 

ARA c>?' • I 

~DEA.C>~--•• ----------------_1----+_----------------------~ 
36 

" ;< C>B_BUS 

36 ), ,/ c::> A_BUS 

Figure 3-1 Register File 

:1>0 
;::s.::c _. » 
2.-0 
CD-l 
!!!.m 
:I>::D 
~Cl) 

~ o· 
::s 
Z 

~ 
III 



cp 
~ 

:::~ ~ :---_n_-----lnil--ln------. 
P BM C> :Borrow~ I 0 04 04 0 : 
_ 'MODE 1!'!' T ~ 

ALU_OE" 
GND 

"" " c:::> Y _BUS 
L-----------""'l5r-----<C>(NoI Used) 

L-_~ __ ' __ ' __ ~L ___________ z ___ /_' ________________ ~;~-~C>::A:US-BUS 

t~.-----------------------------~:-~-~~MA~_STA1US_BUS 
........ 

Figure 3-2 ALU Block 

~-:-,~,=,-::::~.: 

l> 
~ 
n 
ii' 

~ 
'C 
'2. 
ifo 
~:::c 0> 
:1-0 
z-t om 
jD':D 
1110> 



CHAPTER 6 
Articles/Application Notes 

from the macro program viewpoint. The macro status 
may be carried across many microinstruction cycles 
without change. This requires a separate register to 
contain the macro status independe nt of the micro status. 
The Am29332 does not have an internal macro status 
register so one must be provided externally. The loading 
of the macro status register and the use of the macro 
status information by the microprogram must be con­
trolled by microcode. The Am29332 does provide an on­
board multiplexer to select between the micro and 
macro status inputs. Only the carry and link values are 
used direclly by the Am29332 since these are the only 
status values normally used to modify data values. The 
macro stat us for the zero, sign, and overflow flags can 
be used by the sequencer as test conditions for branch 
instructions. 

The register used for holding macro status is an 
Am29818-1. The register is loaded (clocked) by a quali­
fied clock called CLK_MAC_STAT. This clock is qualified 
by the load macro status bit in the control pipeline 
register. The Am29818-1 is also used to provide a 
diagnostic ability to read and load the macro status 
register through the use of an internal serial shadow 
register (SSR). 

FLOATING POINT PROCESSOR 

Am29325 

The Am29325 Floating Point Processor (FPP) performs 
32-bit floating point multiplication, addition, or subtrac­
tion in a single cycle. Floating point division can be done 
in seven cycles using the Newton-Raphson method. The 
FPP is shown in Figure 3-3. 

All the control lines for the FPP are driven directly by the 
microcode pipeline register with the exception of the FPP 
output enable and the register flow-through enables. 
Those signals are decoded from the data path selectfield 
of the microcode pipeline register. The output enable 
decode is done by the AmPAL22V1 0 in Figure 3-3. The 
register flow through enable decode is done by the 
control decode logic which is described later. 

It should be noted that the Am29325 is not a full fledged 
member of the Am2930,0 family. It is different from the 
other Am29300 members with regard to three key char­
acteristics: it is slower, does no data bus parity checking 
or generation, and has no slave mode capability. 

The Am29325 flow through calculation time is 100 to 
125 ns rather than the 42 or 70 ns for the ALU or PM 
(the current PM is at 120 ns, bulthe fastest version will 
be at 70 ns). This requires that whenever the FPP is 
used, the system clock cycle must be extended to allow 
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for the slower propagation time. This extended clock 
timing is covered later in more detail. 

The lack of parity checking is not much of a problem f~r 
the rest of the system since it only affects the data 
integrity of information going through the FPP. The lack 
of parity generation isn't a problem as long as only the 
FPP is working on the data. The problem starts when 
floating point data is moved back to memory or Is con­
verted to integer values for use by the ALU. 

If data from the .FPP is read by the ALU or PM, parity 
errors will be detected and a system interrupt may 
result. That problem can be avoided if the system has 
kept track of which data resulted from FPP calculations 
and if the parity errors are ignored when that data is 
read. But if FPP data results are moved directly to the 
memory and then on to the host system, the parity errors 
will eventually be found. 

So some means of adding parity generation to the FPP 
should be provided. One way is to add four 8-bit parity 
generator chips to the FPP output bus. This consumes 
power and boardspace while providing a benefit onlY 
when FPP data is moved directly through the register file 
to the memory. A better way is to use the parity genera­
tors already available in the Am29332 by requiring that 
FPP data be passed through the ALU before being 
moved to the memory. Even though the data may not be 
modified by the ALU, correct parity will be generated on 
the ALU output. 

With the use of a little trick, there is a way to provide parity 
checking on the FPP data inputs. To do this, one of the 
data path select codes is used to control the output 
enables of both the ALU and FPP. This code (P _DSP = 
11) causes the FPP outputs to be disabled and the ALU 
outputs enabled, even though the data path selected is 
the FPP. By turning on the ALU outputs, the ALU parity 
error output will also be enabled and any parity error on 
the A_BUS or B_BUS will be reported. At the same time, 
the control microcode forthe FPP is still valid and may be 
used to load registers with the data present on the 
A_BUS and B_BUS. Of course the register file should not 
be loaded from the Y _BUS in the cycle where this 
scheme is used because the ALU is driving nonsense 
information onto the Y _BUS. Enabling the ALU outputs 
is only a trick used to make the ALU parity checker results 
available for this scheme. Note that the ALU hold input 
remains active even though the ALU output enable is 
active. This prevents any state change in the ALU when 
the FPP is the data path actually in use. 

Finally, the -issue of no slave error checking is unimpor­
tant, since the slave mode is not used in this system. 
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FPP External Status Register 

Status Pipeline Issue 

The FPP status flags appear at the status outputs along 
with data at the Y outputs. If the FPP "F" register is made 
transparent, the status flag register is also transparent. If 
the F register is clocked, so is the status register. In this 
demonstration system this presents a problem. 

Normally, status conditions from the data section are 
registered before being used by the control section. This 
maintains the pipelined, parallel operation of the control 
and data sections. The control section bases its testing 
on registered status from the last data section cycle 
rather than being forced to wait for status results of the 
current execution cycle before determining the next 
microinstruction to execute. 

To provide the same system for the FPP requires an 
external status register for cycles in which the F register 
is transparent to allow results to pass directly to the 
register file. In that situation the status flags are not 
registered by the FPP and thus, without an external 
register, there is no place to pipeline the status for the 
control section. 

Multiple Status Flag Test Issue 

Several of the FPP status flags signal events of equal 
importance such that it would be a convenience to be 
able to test multiple flags in a single cycle rather than 
basing branches on only one flag at a time. 

A simple way to test multiple conditions at one time is to 
execute a mUlti-way branch based on the bits being 
tested. In the case of the FPP there are six flags, too 
many for a single multi-way branch which can be based 
on only four bits. A solution is to OR some of the flags 
together as one of the mUlti-way branch bits and use the 
remaining bits directly as part of the multi-way branch 
address. In that way, one mUlti-way branch can test all 
six flags. 

When testing the status, if no flags are active, no abnor­
mal condition exists, and the zero value destination of the 
multi-way branch continues. If one or more of the direct 
flags is active, the mUlti-way branch goes straight to a 
routine to handle the problem. If one of the ORed flags is 
active, the multi-way branch destination instruction can 
either ignore the flags or take a second multi-way branch 
that is based on direct inputs of the flags that were ORed 
in the first multi-way branch (an advantage of having 
more than one source for mUlti-way branch conditions). 
The second mUlti-way branch determines which of the 
ORed flags was active in the first mUlti-way branch. 
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FPP Status RegIster ImplementatIon 

An AmPAL22V10 Programmable Array Logic device is 
used to register the FPP status flags and perform the OR 
of some of the flags. 

This external status register loads new status only as the 
result of cycles in which the FPP is the selected data path 
during an instruction execution. When the FPP "F" regis­
ter is in transparent mode, the external status register is 
loaded with the flags at the end of an FPP cycle. This 
results in a one level deep pipeline on status in the same 
way that ALU status is pipe lined one level internal to the 
ALU. When the F register is in clocked mode, the external 
status register will load in the cycle following an FPP 
cycle. This will capture the data that is loaded into the 
FPP on chip status register at the end of the FPP cycle. 
This causes the status to be double pipe lined for cycles 
in which the F register is clocked. 

The multi-way branch outputs forthe first level branch are 
the following flags: Overflow, Underflow, Invalid, and the 
OR of the Inexact, OR, NAN, and Zero flags. The multi­
way branch outputs for the second level branch are: 
Inexact, NAN, Zero, and Ground. 

These groups of four bits are substituted for the least 
significant four bits of a branch address to act as a multi­
way branch. 

In addition to the mu lti-way branch testforflags, an added 
output of the status PAL ORs together the Overflow, 
Underflow, and Invalid flags for use as an interrupt signal 
to the system interrupt controller, thus giving one addi­
tional way to monitor the FPP error flags. Using the 
interrupt approach eliminates the need to follow floating 
point operations with multi-way branches in order to test 
for error conditions. Execution of instructions can pro­
ceed, assuming no major problems exist in an FPP cycle. 
If one of the above mentioned error flags is active, the 
resulting interrupt will deal with the error. 

One last element of the status PAL is that it acts as part 
of the system control deco.de by decoding the data path 
select bits of the control pipeline to enable the FPP output 
when the FPP is the selected data path. 

The logic definition file for the status PAL is listed in 
Appendix C. 

Seed Look-Up Table 
The Newton-Raphson division algorithm does a division 
of A by 8 by finding the inverse of 8 (I.e., 1/8) and 
performing a multiply against A. This scheme works with 
the Am29325 since finding the inverse of 8 requires only 



a series of multiplies and subtracts which the Am29325 
can do in single cycles. But, these multiplies and sub­
tracts are performed only to refine the accuracy of a 
precalculated seed value (a rough approximation of the 
inverse of B). So a table of seed values must be available 
to support division with the Am29325. 

This seed table is stored in PROM memory external to the 
FPP. The B variable is used to address the seed table, 
and the resulting seed value is fed into the FPP to be 
refined. 

Placing the seed table in the path to one of the FPP inputs 
normally requires a 32-bit multiplexer to select between 
the PROM and the direct input bus for loading normal 
operands in multiply, add, and subtract operations. Build­
ing this multiplexer would require at least six hex-2-to-1 
multiplexer chips. The PROM and multiplexer would also 
increase the propagation time needed to load the FPP, 
thereby requiring the cycle timing to be extended even 
more than is already required by the FPP. 

P_IEEE/DEC* 
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A 7:0 27S25 07:0 A BU5 (30:23) REGISTERED 
PROM 
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27S43 7:0 
PROM 
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The implementation of the seed table in this system has 
been modified to save chips and cycle length. Instead of 
placing the seed table between the A_BUS and the FPP, 
it is placed to the side as an appendage of the A_BUS 
(see Figure 3-3). The inputs and outputs ofthe table are 
tied together and to the A_BUS. The internal structure of 
the table is shown in Figure 3-4. It contains three 
PROMs, each of which is followed by a three-state output 
register (the Am27S25 has an internal register). In this 
arrangement the PROMs can be accessed by the value 
present on the A_BUS in one cycle and the resulting seed 
loaded into the registers. In the following cycle the 
registers can drive the A_BUS with the seed value. This 
scheme requires three fewer chips and no extension to 
the FPP cycle time. It is true that two cycles are now 
required to load the seed value but the cycle used to 
access the seed table can be combined with the 
operation of checking for a zero divisor. This operation is 
generally done during the setup for a divide. 

UIO D7 07 
2920 ABUS(31) 

REGISTER 

A BUS (30:23) 

UII 
D7:0 2920 07:0 A...BUS (22: 15 

REGISTER 

A...BUS 

D7:0 
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2920 07:0 ABU5(147) 

REG I STER 
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D6:0 2920 06:0 A...BUS (6:0) 

REGI5TER 
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Figure 3-4. Floating Point Block Seed Look-Up Table -- Data Flow Diagram 
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The detailed connections of the seed table are shown in 
Figure 3-5. The Am27S25 contains the seed values for 
the exponent and the two Am27S43s contain the seed for 
the fraction. The seed table output enable (SEED_OE*) 
signal is a decoded output of the microcode control 
pipeline register. The output register of the seed look-up 
table is clocked by the data section clock. 

PARALLEL MULTIPLIER 

The entire Parallel Multiplier (PM) block's function is 
provided by the single chip Am29C323 Parallel Multi­
plier. This chip performs 32-bit, 64-bit, 96-bit, and 128-bit 
integer multiplies. It also can perform multiply accumu­
late using an internal 67-bit accumulator. The PM is 
shown in Figure 3-6. 
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Most of the control signals come directly from the control 
pipeline register. The Parallel Multiplier output enable 
(PM_OE*) is decoded from the data path select field of 
the microcode pipeline register. The enable and flow 
through controls for the instruction register (ENI* and 
FTI) are tied respectively to GND and vec to allow 
instructions to flow directly from the microcode pipeline 
register to the multiplier, since the microcode pipeline 
register already provides the one level of pipeline re­
quired in the system. The flow through enable on the 
product register is enabled only when the PM data path 
is selected via the control decode logic. 
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Figure 3-5. Floating Point Block Seed Look-Up Table -- Implementation 
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SECTION 4 

Memory and External System Interface 

The memory block and external system interface are 
discussed together in this chapter because of the tight 
interconnection between these areas. It is helpful to view 
the two blocks together in orderto understand the shared 
use these blocks make of the memory address bus 
(MA_BUS) and the memory data bus (MD_BUS). Fig­
ure 4-1 shows a block diagram of the data and address 
paths used in these sections. 

One thing to note is that both the memory and the 
external interface are not elaborate in design. Essentially 
the external I/O section of this system is just a second 
port on the system memory. This system does little more 
than provide a simple arbitration scheme on access to 
the memory that allows an externally supplied DMA 
device to load and retrieve data from the memory. Event 

or interrupt signaling between the CPU and host system 
is limited to a single pairof interrupt signals, one from host 
to CPU, one from CPU to host. Memory itself is only a 
simple bank of static RAM with two address counters on 
the input that help speed up array calculation. 

The reason for this simple approach is that the design to 
the CPU using the Am29300 family of building blocks is 
the focus of this application note. Every reader who may 
find the information in this application note useful will 
have different memory and I/O requirements to handle 
and will very likely design individual approachs to mem­
ory and I/O. Therefore, only this simple approach is 
covered here so that more time can be spent discussing 
the CPU design. 
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Figure 4-1. Memory and External Interface Address and Data Paths 
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EXTERNAL BUS INTERFACE CONTROL 

Host Access Definition 

A block diagram of the host interface controller and its 
connection to the MA_BUS and MD_BUS buffers is 
shown in Figure 4-2. 

The Am29300 demonstration system is treated as a co­
processor to some host system. It ultimately gets all of its 
instructions, data, and control from the external host 
system. To provide communication with the host using a 
minimum of design effort and special hardware, only two 
portals into the Am29300 system are allowed. 

One portal is the Am29300 memory, which is treated as 
a dual port memory with all words directly mapped into 
the host bus address space. With this, the host has 
complete access to macroinstructions and. data going 
into and out of the system. 

The second port is a serial diagnostics shift chain that 
runs through key control registers of the system. This 
serial pathway gives access to loading and reading the 
microcode writable control store, to the control pipeline 
register, to loading and reading the macro opcode map 
RAM, to the macro opcode register, to the macro status 
register, and to the interrupt base address register. 

Through this serial port, the microinstructions are loaded 
by the host before program execution begins. Also, the 
system clocks can be controlled by the host to allow 
diagnostics and code debugging via single stepping and 
breakpoints. 

These portals are controlled by a state machine that is 
separate from the Am29300 system. The state machine 
is referred to as the host interface controller. It constantly 
monitors the external host address bus. When the host 
presents an address that matches a preset address on 
the Am29300 system board, the host interface controller 
is selected to perform one of several interface functions. 

Any function requested by the host takes priority over 
anything that the Am29300 CPU is doing. The host 
always gains control of the memory address and data 
bu ses as soon as the CPU clocks can be stopped and the 
CPU to memory bus buffers disabled. 

The function performed is dependent on the address 
used, thus the commands from the host to the interface 
controller are memory mapped. A 24-bit address from the 
host is assumed for this design. The 6 most significant 
bits (23:18) of the address are matched to the Am29300 
system board address to selectthe host interface control­
ler. The next two most significant bits (17:16) are used to 
select a command mode. The 3 least significant bits (2:0) 
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are usedto select a specific command function within two 
of the command modes. 

Host Interface Block Diagram 

The 6 most significant bits of the host address are 
checked by the address recognition block: if the address 
matches the board address, then the match signal is fed 
into the input of a synchronizing register. Also fed into this 
register are: the external bus write enable line 
(EXT_WEN"); the external address bits 17, 16,.2:0 
[EXT_ADD(17,16,2:0)]; and the host system reset line. 

The synchronizing register is clocked by a free-running 
version of the Am29300 system clock. The register used 
has special meta-stable hardened circuitry that pre~e~ts 
the outputs from oscillating, regardless of the timing 
relationship of input data to clock. This register allows the 
entire Am29300 system to run asynchronously with 
regard to the host system clock. All the interaction be­
tween the host system and the Am29300 system is 
synchronized to the Am29300 system clock by the regis­
ter. Each command to the host interface controller is thus 
presented at the output of this register in synchronization 
with the host interface controller clock. 
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The heart of the host interface is an Am29PL 141 Fuse 
Programmable Controller. It is a microprogra.m~ed 
sequencer with on-chip microcode memory and plpel~ne 
register. This sequencer implements the state machine 
functions needed to control the interaction between the 
host and the Am29300 system. Used with the 
Am29PL141 is an Am22V10 PAL. This PAL collects 
together some glue logic functions: an interrupt signal 
latch, a multiplexer, and some encoding logic, all of which 
are described later. 

The Am29PL141 provides control signals to the clock 
gating and distribution section of the Am29300 system: It 
also controls the enabling of all the buffers and transceiv­
ers that connect with the MA_BUS and MD_BUS. The 
controller acts as a '1raffic cop" that allows only one driver 
on those buses at a time to prevent contention. The 
controller also manages the loading, reading, and shift­
ing of the Serial Shadow Register diagnostic chain. 

The Serial Shadow Register (SSR) diagnostics port is a 
32-bit-wide parallel read and write register that also 
functions as a shift register. Data to be read or written to 
the SSR diagnostic chain is loaded or read via this port. 
The port is connected to the host via the MD_BUS. The 

CC 

T5 

T4:3 

T2:O 

U16 
Reset Am29PL141 

A 
U1 06 
m29827 

Ready / 
~ 
~ 

...... 

H>-: 
....... 

4 

2 

WCSlnit' 

WCS_WR' 

DCLK_WCS 

DCLK_MOP 

DCLK_SSR 

MODE 

SDLSSR_MUX 

CPU_BUS_EN' 

EXT_BUS_EN' 

SSR_BUS_EN' 

MEM_EN* 

E_ADD (16:17) 

ANY_E' 

09856A 4-3 

Figure 4-3. Host Interface Controller 

6-33 



CHAPTER 6 
Articles/Application Notes 

portis builtfromfour Am29818-1 SSR diagnostic pipeline 
registers. These registers, like all the registers in the 
diagnostics chain in this system, contain one normal 
parallel input and output pipeline register that is backed­
up or "shadowed" by a second parallel input and output 
register that also acts as a serial shift register. The 
pipeline register can be loaded from the shadow register 
and the shadow register can be loaded from the outputs 
of the pipeline register. This gives the abilityto move data 
into or out of the pipeline regislervia the shadow register. 
Data in the shadow register can be serially shifted to 
other similar registers in the system. By connecting allthe 
diagnostic serial shadow registers together in a serial 
chain, data can be moved serially through a large number 
of key registers in the system using very few wires. 

The SSR diagnostics port is just an extra section of the 
diagnostics chain that runs throughout the Am29300 
system. This extra section is connected to the MD_BUS 
to serve as a parallel input and output port that gives 
access to the serial shadow register chain. 

CNTL_EN =====:::b==/"-..... P_INLHOST ,-_..-
PJC * --------"L.-/ 

ANY _E * --------; 

A slightly more detailed view of the Host Interface Con­
troller is shown in Figures 4-3 and 4-4. 

Event Signals 

The host and the Am29300 system need to be able to 
signal each other when important events occur, such as 
the transfer of ownership over sections of the dual port 
memory. To allow this, a simple interrupt setting and 
clearing scheme is provided. 

The host interrupts the Am29300 system with a com­
mand to the host interface controller. The controller in 
turn sets an interrupt flag in the Am29300 system inter­
rupt controller. The interrupt is cleared when the 
Am29300 services its interrupt controller. 

The Am29300 interrupts the host by using a microcode 
bitto set a latch that drives an interrupt line on the external 
bus. The interrupt is cleared whenever the host does an 
operation on the SSR port. The interrupt latch is imple­
mented in the AmPAL22V10, as shown in Figure 4-4. 
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Memory Enable 

The Am29300 system memory can be enabled by 
either the Am29300 microcode or by the host interface 
controller. A simple muHiplexer is needed to direct the 
correct control signal to the memory enable input. This 
logic is also implemented in the AmPAL22V1 0 shown 
in Figure 4-4. 

AmPAL22V10 Support Logic 

Figure 4-4 shows the logic for the AmPAL22V10 that 
integrates the interrupt signal latch, SDI multiplexer, and 
memory enable logic. The logic equation definition file for 
this PAL is listed in Appendix D. 

SSR Diagnostics 

SSR Shift Path 

Figure 4-5 shows a block diagram of how the serial 
shadow registers in the system are linked together and 
how they relate to the macro opcode map RAM, se-
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quencer, and microcode control store. Most of these 
registers are also depicted in other Figures throughout 
this application note in their roles as parallel input and 
output pipeline registers. Figure 4-5 emphasizes the 
serial in and out and control connections of the shadow 
registers also contained in these registers. 

The SSR diagnostics port is shown as the starting and 
ending point for the entire shift chain (or loop as seen 
here). Data to be loaded into the SSR loop is parallel 
loaded into this register from the MD_BUS via the bidirec­
tional outputs of the registers in this port (note: the 
shadow register in the Am29818-1 gets its input from the 
output pins of the Am29818-1 pipeline register). 

Data loaded into this shadow register is then shifted into 
one of two branches of the SSR loop. One branch flows 
through the Writable Control Store (WCS) port and the 
microcode control store pipeline shadow registers. The 
WCS port is used to address the microcode control store 
or to receive (load) data from (to) the macro opcode map 
RAM. The microcode control store shadow register is 
used to write data into the microcode writable control 
store or to read the contents of the control pipeline 
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register. The second branch flows through the macro 
opcode, macro status, and the interrupt base address 
registers. The macro opcode register is used in part to 
address the macro opcode map RAM . 

These branches are separate because it helps to shorten 
the shift chain length by using branches and because the 
shift chain clock to the writable control store and WCS 
port must be separate from the shift clocks to the rest of 
the diagnostics chain. The shift clocks must be separate 
because of the way the writable control store is loaded. 

The data outputs of the control store are connected to the 
inputs of the pipeline register as required for normal use 
in the system. To write the memory, the inputs must be 
driven with the data to be written, turning the input pins 
into outputs. In the Writable Control Store (WCS) pipeline 
register this is fine, since the memory outputs are dis­
abled during the write. 

If other diagnostic registers in the system were tied to the 
same shift clock and mode control lines as the WCS 
pipeline, there could be a problem every time the WCS is 
written. The other diagnostic registers not involved in the 
WCS write would see the same control signals as the 
WCS registers and would drive their input pins. Depend­
ing on what the other registers were connected to, this 
situation could cause serious contention problems 
through the system. 

For this reason, the SSR used to load WCS is treated 
separately from other SSR registers in the system. It is 
worth noting that the only control signal that need be 
separate is the shift clock. The mode and serial path may 
be shared with all SSR in the system. Putting the SSR 
into WCS loading mode, requires the shift clock to load an 
internal mode flip flop. If the shift clock is active only to the 
SSR used for WCS when the MODE and Serial Data In 
(SOl) signals are set high, only the WCS SSR will go into 
the input pin driving mode. 

The end of each branch in the SSR loop returns to a 
multiplexer at the serial data input (SOl) of the SSR 
diagnostics port. This multiplexer allows the selection of 
the shifted branch into the port when the SSR loop is 
being read ratherthan written. It also allows the SOl value 
to be forced when the MODE signal is high. When the 
MODE signal is high, all the SSRs in the system pass 
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their SOl directly to their Serial Data Output (SDO). This 
causes the 'SOl value forced at the input of the SSR port 
to be passed directly to all SSRs in the system (note: 
significant propagation time from SOl to SDO for each 
SSR is involved). In this way the forced value of SOl 
becomes an additional control signal to all the SSRs in 
the system. The function of this multiplexer is integrated 
into the AmPAL22V1 0 as shown in Figure 4-4. 

SSR Reading and Writing 

To read the contents of the pipeline registers in the 
Am29300 system, the host must first send a command to 
load the SSR throughout the system from the pipeline 
registers. Then the host must shift the contents of the 
SSR into the SSR port register (up to 32 bits at a time). 
The host then performs a read of the SSR port. The host 
then repeats the shifting-and-reading process until the 
entire SSR chain has been read. 

To write the system pipeline registers, the host reverses 
the above procedure. Data is first written into the SSR 
port. Then the SSR chain is shifted to move data into 
position. The SSR port loading and SSR chain shifting go 
on until the section of the SSR chain desired is filled. 
Finally a pipeline load command is issued by the host to 
load the contents of the SSR into the pipeline registers. 

To write the macro opcode map RAM and the microcode 
writable control store (note: these are treated as a single 
WCS and must be written together), an address for the 
map RAM is first loaded into the macro opcode pipeline 
register via the method described above. Then the ad­
dress forthe microcode WCS is loaded into the WCS port 
pipeline register. Next, the data to be written into the map 
RAM and into the microcode WCS is shifted into the WCS 
port SSR and WCS SSR. A load WCS command is then 
given which performs the actual write of data into the 
memories. During the write operation the output of the 
WCS port is enabled and the Am29331 sequencer output 
is disabled (via its HOLD pin). 

The only trick involved in the SSR Reading and Writing is 
knowing how much to shift the SSR during each read or 
write. The problem is that the SSR chain length in this 
system (and in nearly every real system) is not an even 
multiple of the SSR port size. During the first (or last) shift 
operation of either the read or the write of pipeline 



registers, it will be necessary to shiftfewerthan the full 32 
bits of the SSR port. The number of bits to be shifted 
depends on the chain length. One thing to note is that the 
chain length will be in a multiple of 4 bits because 
diagnostic pipeline registers are currently available only 
in 4-bit and 8-bit devices. So, when a shift operation is 
commanded by the host, the number of nibbles (4-bit 
shifts) to be shifted must be indicated. 

A final note: during the shifting of the WCS SSR, the 
Am29300 system clocks must be halted. This is due to 
the fact that pipeline clock and shift clock to the Am9151 
may not occur within 65 ns of each other. Since these 
clocks would occur within the above window in this 
system, the pipeline clock must not be active. 

Controller Description 

Function/Command Descriptions 

The following is a list of the address values for functions 
that the host interface will perform when addressed by 
the host: 

ADDRESS BITS 
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Memory Access: Reading and writing of the Am29300 
system memory is done by selecting the address for the 
Am29300 system with address bits 16 and 17 equal to 
zero. The address for the specific word in memory is 
contained in address bits 0:15. The host interface con­
troller, upon recognizing the host access, will stop the 
clocks to the Am29300 system and disable the CPU to 
MA_BUS and MD_BUS buffers. At the same time the 
external bus to MA_BUS and MD_BUS transceivers are 
enabled. This suspends the operation of the Am29300 
system and gives memory access to the external host. 
The write enable line on the external bus determines 
whether a read or write occurs. 

Note that by suspending the Am29300 system operation, 
the memory access is transparent to (or hidden from) the 
CPU. There is no action required on the part of the 
Am29300 microcode or interrupt control. 

Serial Diagnostics Port Access: This access is very 
similarto that of a memory access. The difference is that 
the SSR port register is being read or written instead of 
memory. 

FUNCTION 

Am29300 Memory Access 

Serial Diagnostics Port Access 

Illegal code 

Halt CPU 

Run CPU 

Single Step CPU 

Single Step CPU Control Section 

Single Step CPU Data Section 

Interrupt CPU 

Reset CPU 

Illegal code 

Load Pipeline Register 

Load Macro Opcode Register 

Load Writable Control Store 

Load Initialization Register 

Load Serial Shadow Register 

Shift WCS SSR Chain 

Shift Macro Opcode SSR chain 
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Halt CPU: This command throws the Am29300 system 
clocks in to a continuous stop condition until the mode is 
cleared by the RUN CPU command or temporarily over­
riden by one of the single step commands. 

Run CPU: This command starts the Am29300 system 
clocks running. 

Single Step CPU: When the CPU is halted, this com­
mand will cause all the system clocks to cycle once to 
advance the state of the CPU one step. Note that gated 
clocks will be active during this cycle only if their enables 
are active (Le., gated clocks operate as they would during 
a normal clock cycle; they are not forced to operate). 

This mode is useful during diagnostic operations to single 
step the machine between serial load and unload of the 
SSR diagnostics. 

Single Step CPU Control Section: This will step only 
the clocks in the control section of the CPU. The control 
pipeline, macro opcode, macro operand, status, se­
quencer, and interrupt registers may be affected. 

This is useful for forcing the control section into a new 
state under the control of diagnostics, such as a forced 
branch to a new location in the microcode. This is done 
by first loading the control pipeline with an instruction to 
branch via the SSR diagnostics chain. The control sec­
tion would then be single stepped to execute the branch. 

. Note that during these operations, the data section is not 
affected and no data is modified. 

Single Step CPU Data Section: This operation single 
steps the clocks only in the data section of the CPU. This 
may be useful for repetitive diagnostic operations involv­
ing only the data section. 

Interrupt CPU: This command causes the host interface 
controller to set an interrupt input to the Am29300 system 
interrupt controller. The interrupt controller in turn priori­
tizes the interrupt and causes an interrupt to the CPU 
when that type of interrupt is enabled. 

Reset CPU: This will make the reset line to the Am29300 
system active and step all the ungated system clocks. 
The clocking is required by some parts of the system to 
affect reset state changes. 

Load Pipeline Register: This command will step only 
the clock to the control pipeline and WCS port for one 
cycle wh ile fo rcing the pipe line registers to load data from 
the SSR chain. This is used to control the state of the 
pipeline through serial diagnostics. 
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Load Macro Opcode Register: This steps only the clock 
to the macro opcode, macro operand, status, and inter­
rupt base address pipeline registers while forcing the 
registers to load from the SSR chain. 

Load Writable Control Store: This command initiates a 
series of clock cycles that cause data in the SSR chain to 
be loaded into the writable microcode control store and 
the macro opcode map RAM from the SSR chain. The 
address loaded is also specified in the SSR chain. 

Load Initialization Register: Like the previous com­
mand, this operation loads the writable microcode store. 
The difference is that only the WCS (Am9151) initialize 
registers are loaded from the SSR chain. 

Load Serial Shadow Register: This causes the con­
tents of all diagnostic pipeline registers to be copied into 
the related SSR chain elements. This is used to read the 
Am29300 system state into the SSR chain so that it can 
be shifted out to the host. 

Shift WCS SSR Chain: This command shifts the con­
tents of the SSR port register into the SSR diagnostics 
chain used forthe writable control store. It also brings the 
bits at the end of the WCS SSR chain into the SSR port 
register. This is the serial read and write operation of the 
WCS SSR chain (or loop). 

Shift Macro Opcode SSR Chain: This is the same as 
the previous command but it affects the SSR chain 
associated with the macro opcode, status, and interrupt 
base address registers. 

Illegal Code: Due to the way the host interface control­
ler algorithm was implemented, this command (address 
combination) is illegal. If it is used, it will lock up the host 
interface controller in an infinite loop. 

Access Timing 

The speed of interaction between the host and the 
Am29300 system is regulated by both the host and the 
host interface controller. 

Once the Am29300 system is addressed by the host, the 
host interface controller holds the external bus by driving 
EXT_READY inactive. This continues until the host inter­
face controller completes the command requested. The 
EXT_READY signal is then made active and held active 
until the host stops addressing the Am29300 system. At 
that time, the host interface controller recognizes that the 
host .has completed the transaction and the 
EXT_READY line is again made inactive. 



In this fashion, either the host interface controller or the 
host can extend the length of the external bus transaction 
as required: The signal timing between the host and the 
host interface is treated as asynchronous. The timing of 
the host interface itself is synchronous with the Am29300 
internal clock cycle. 

An interaction diagram is shown below for a bus transac­
tion between the host and the Am29300 system. The 
single-line dividers indicate one clock cycle of the 

External Bus Activity 

Address to Am29300 is 
active on the bus. 

Address is clocked into 
the host interface 
controller synchronizing 
register. 

External bus 
transceivers are enabled 
if needed. 

If READY is inactive, 
wait for host interface 
to complete algorithm 
and make READY active. 
CPU operation is still 
suspended. 

External bus address 
no longer selects 
Am29300 system. 

Lack of external bus 
address is clocked into 
host interface sync 
register. 

External bus transceiver 
is disabled. 
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Am29300 system. The double-line dividers indicate one 
or more clocks as needed for synchronization or algo­
rithm execution. 

The length of an external bus transaction can vary from 
about 6 Am29300 system clock cycles for a memory 
access, to about 80 clock cycles for an SSR shift 
operation. Regardless of the transaction type, the 
Am29300 system looks to the host like a slave bus 
peripheral. Sometimes, as in the case of the SSR shift 
operation, it is a rather slow peripheral. 

Am29300 System Activity 

CPU is active. 
CPU owns MA and MD bus. 

CPU is still active. 
CPU still owns internal bus. 
Host interface controller 
performs branch to command 
routine. 

CPU clocks are stopped. 
CPU bus buffers are disabled. 
Host interface executes first 
instruction of command routine. 
READY mayor may not be made 
active depending on routine. 

It READY is active, then 
wait for host to 
release external bus by 
stopping selection of 
the Am29300 system. 

CPU still suspended. 
Host interface waiting to 
see host release bus. 

CPU still suspended. 
Host interface branches back 
to idle loop. 

CPU clocks are active. 
CPU has MA and MD bus access. 
Host interface waits in idle loop for next command. 
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Program Definition 

A detailed definition of the host interface controller's 
algorithm is contained in Appendix E. 

MEMORY 

Memory Components 

The memory device used to construct the 16K word x 36-
bit memory is the Am99C165. This is a 16K x 4-bit CMOS 
static RAM memory. The 35 ns access time version is 
assumed in any timing estimates for the Am29300 
demonstration system. Nine memories are used as 
shown in Figure 4-6. 

The Am99C165 is used so that an additional output 
enable is available to help prevent bus contention with 
other buffers on the MD_BUS. The memory outputs are 
disabled whenever the memory write enable line is 
active. The write enable line is also used to control the 
direction of the external bus data transceiver and the 
enable on the CPU data buffer. The delay of the inverter 
on the output enable input to the memory has been 
matched by a buffer in each of the other bus drivers just 
noted. This is so that when a write operation is signalled, 
each bus driver receives its bus enable or disable signal 
at the same time as the memory. This overlaps the turn 
off time of the memory outputs with the turn on time of the 
other bus drivers to minimize bus contention with the 
memory. 

CLK]REE_RUN 

MEM_WEN* 

SYS_MEM_EN* 
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The enable line to the memory is used to power down the 
memory when it is not being selected by the Am29300 
CPU. 

The write enable line to the memory is gated with the 
Am29300 system free-running clock. This keeps the 
write line high (inactive) until late in the cycle when all 
the control signals that feed into the memory enable 
have settled. This is important for cycles in which there 
is a change of ownership on the memory address and 
data buses. The gating with clock ensures that unin­
tended pulses on the write enable line that may occur 
early in the system cycle will not cause spurious writes in 
the memory. 

Addressing Scheme 

Description: With reference to Figure 4-1, the memory 
address bus (MA_BUS) is not only the address input to 
the memory, it is also a part of a 4 to 1 multiplexer. There 
are four address drivers tied to the MA_BUS. They are: 
the A BUS to MA BUS buffer, the External Bus address 
to MABUS buffer. and the two memory address count­
ers. Each of these sources has three-state output drivers 
and, by careful control of which source is allowed to drive 
the MA_BUS at anyone time, the sources form the 4 to 
1 multiplexer. 

In this way the memory can be addressed directly by the 
A BUS or the External Bus. The memory can also be 
addressed indirectly by the A_BUS via the memory 
addre~s counters. 

~ 

• • • 
7 Additional Memories U30 
To Form a 36-Bit Word Am99C165 
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The memory address counters are loadable up/down 
counters that can serve as address pipeline registers, 
sequencers, or stack pointers independent of the CPU's 
data section. They allow sequential reads or writes to 
memory by the CPU without requiring the CPU to calcu­
late an address on every read or write cycle. 

In fact, after loading a memory address counter with an 
initial address, the CPU can perform sequential read 
cycles while at the same time continuing to use the data 
sectionforothercalculations. This is possible because of 
the dual write port design of the CPU register file. The 
memory data is loaded into the register file via the B write 
port while calculation results on the Y _BUS are stored 
through the A write port. 

Two counters are provided to allow for consecutive A and 
B operand data fetches from two separate arrays of data 
without the need to constantly reload the counter values. 
Each counter is built from two AmPAL22V1 0 Program­
mable Array Logic (PAL) devices that act as two cas­
caded 7-bit loadable up/down counters. The counters 
are connected as shown in Figure 4-7. The logic defini­
tion file for the PALs is given in Appendix F. 

The two counters are only loaded from the A_BUS and 
not the External Bus, even though the connection of the 
counters to the MA_BUS would permit the lalter. This is 
due to the difficulty in coordinating the use of the counters 

~ 
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between the CPU and the External Bus. The counters are 
simply viewed as a resource of the CPU only. 

Why This Approach?: Why address the memory from 
the A_BUS? Doing so means that data in the memory is 
selected by an address previously stored in the register 
file. So one cycle must be used to calculate an address 
in the data section of the CPU, store the result in the 
register file, and take a second cycle to actually address 
the memory. Why not just take the address as it is 
calculated and feed it directly from the Y _BUS to the 
memory? 

First, the access time is better from the A_BUS than from 
the Y _BUS. The A_BUS address is valid 45 ns into a 
cycle which still leaves time to access a fast static RAM 
in the same time that data would normally flow from the 
A_BUS through the ALU and back to the register file. An 
address on the Y _BUS would not be valid until 87 ns 
into a cycle, which would require either that the memory 
access extend the cycle length significantly or that the 
address be pipelined into a memory address register and 
be used to address the memory in a second cycle. 

Second, since the register file can present two data 
words in one cycle it is possible to address the memory 
and provide write data in the same cycle;the address and 
data go from the registerfile to the memory. 1ft he Y _BUS 
is used as the path to the memory in a write operation, a 
second cycle must be used to provide the write data. 

7 8 9 10 11 12 13 

(( ( ( ( ( 
U33 

COUNTER A MSB 
Am22V10 

~ 

U35 
COUNTER B MSB 

Am22V10 

llllll 
7 8 9 10 11 12 13 

09856A4·7 

6-41 



CHAPTER 6 
Articles/Application Notes 

Third, the above comments are trick answers. If the two 
approaches of A_BUS orY _BUS as the memory address 
path are carefully examined it can be seen that it is really 
a situation of "six of one, or half a dozen of the other". 
Ultimately, in either case, a cycle is use to calculate the 
address and a second cycle is used to read or write the 
memory; there is only one data path in the system and 
only one calculation can occur in a cycle. Between the 
two approaches there are various ways to overlap other 
calculations with memory accesses to make the best use . 
of the system's time but either approach takes the same 
time. 

The real difference is that the A_BUS method is simpler 
from the microprogrammer's point of view. With the 
A_BUS method a memory read is done in one cycle and 
the resulting data is in the register file in the next cycle. 
With the Y _BUS approach there is a one cycle delay 
between a read access and the return of data, which 
requires that the microprogrammer ''fill in the hole" in the 
microcode with other useful work to getthe same system 
efficiency. So, as a designer's preference, the A_BUS for 
memory address approach is used. 
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CPU· Memory Buffers 

The address buffers from the A_BUSto the MA_BUSand 
the data buffers from the B_BUS to the MD_BUS are 
shown in Figure 4-8. The addre~s and data buffers are 
built from Am29827 10-bit-wide high speed buffers. 

The address bus is 14-bits wide to address 16K words of 
36-bit-wide memory. But these bits are taken from bit 
positions 2:15 of the ~BUS. This leaves the two least 
significant bits of the A_BUS unused and therefore treats 
the address as being in terms of bytes with the address­
ing restricted to four-byte (word) boundaries. This was 
done so that interface with an external host bus would be 
simpler. Many of the host systems with which this dem­
onstration system could be mated use byte addressing. 
With the above address scheme, all the address line 
numbering is consistent between the host and CPU. In 
addition, if there were a future need to allow byte ad­
dressing of the CPU memory, it would be possible with 
only a minor change to the address buffer wiring. Also, it 
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Figure 4-8. CPU to Memory Bus Buffers 
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may be noted thatthe parity bits on the A_BUS have been 
ignored in the MA_BUS since there is no parity checking 
implemented on the memory address. 

The data buffers are arranged as one buffer per byte of 
the B_BUS (with parity on each byte). Note that, since the 
B_BUS provides only write data, and read data from the 
memory is received by the register file, only a unidirec­
tional buffer is needed. 

Whenever the external bus interface does not have the 
memory buses in use, the CPU to memory buffers 
receive the CPU_BUS_EN- signal to enable the buffers. 
If the operation is a write, the CPU_WEN- signal is 
provided by the CPU. 

Note that the CPU_WEN- is routed through the address 
buffer twice and then to the data buffer to enable it on a 
write operation. This is done to help equalize the timing 
between this buffer and the output enable on the mem­
ory. Note also that the address buffers have a second 
enable input that is controlled by the control pipeline bits 
that manage whether the memory address comes from 
the A_BUS orfrom one of the memory address counters. 
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External System Buffers 

The address buffers from the External Bus to the 
MA BUS'and the data buffers from the External Bus to 
the MD_BUS are shown in Figure 4-9. The address bus 
is built from Am29827 10-bit-wide high speed buffers. 
These buffers are connected in exactly the same way as 
described above forthe CPU to memory address buffers. 

The data buffers are, however, different from the earlier 
circuit description. These buffers are Am29863 non­
inverting 9-bit high speed transceivers. The transceivers 
allow data to be both read and written by the external bus. 

When the external host system addresses the Am29300 
CPU memory, the external bus interface controller halts 
the system clocks in the CPU and disconnects the CPU 
from the MA_BUS and MD_BUS by making 
CPU BUS EN- inactive. Then the external bus is con­
nected to the memory by making EXT _BUS_EN- active 
to enable the external bus buffers. The external bus 
supplies a write enable if the operation will be a write. 
Note again that the write enable timing is equalized with 
that of the write enable to the memory. 
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SECTION 5 

Control Section Description 

MACRO OPCODE SUPPORT 

Macro Opcode Register 

In orderforthe control section of the CPUto make use of 
a macroinstruction, the instruction must be selected from 
memory and loaded into a register that is accessible to 
the control section. 

This register is called the macro opcode register. It is a 
32-bit register made from four Am29818-1 pipeline diag­
nostic registers. This register is shown in Figure 5-1. 

The most significant 14 bits (bits 31:18) of the register 
output are used as the macro opcode. Bits 31 :22 are 
connected to the address inputs of the macro opcode 
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map RAM. Bits 21 :18 are connected to one of the 
Am29331 sequencer's mUlti-way branch inputs. These 
lower four bits may thus be used as an opcode modifier 
via a multi-way branch. 

Bits 17:0 are the instruction operand register addresses. 
These bits are divided into three 6-bit fields, one for each 
register file port. Bits 17:12 are used asthe register file 'A' 
read port address. Bits 11 :6 are used as the 'B' read port 
address. Bits 5:0 are used as the register file 'A' write port 
address. These addresses are respectively referred to 
as the 'A', 'B', and 'c' operand register addresses. 

These three addresses allow macroinstructions to spec­
ify directly three address operations with two read oper­
ands and a separate write operand. Note however that 

24:31 

16:23 

8:15 

0:7 
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Figura 5-1. Macro Opcoda Register 
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that these bits are connected to the macro operand 
address counters, which in turn are used to address the 
register file. This is more fully described in a later section. 

In addition, bits 23:18 are connected to the. position 
multiplexer. This allows macro instructions to specify 
directly the ALU position input as the lower bits of the 
opcode. Taking the position information from these bits 
still leaves all of the operand register addresses free for 
use in three address operations. 

Also, bits 4:0 are connected to the width multiplexer. This 
allows macro instructions to specify directly the width 
input of the ALU for use in masked operations. Although 
this overrides this field of the opcode for use as the 'C' 
operand address, the 'C' operand address may inter­
nally be specified as the same as either the 'A' or 'B' 
operand register addresses. Thus two address macroin­
structions involving width, or width and position specifi-
ers are possible. . 

Macro Opcode Format Restrictions 

Because of the large number of possible macroin­
struction formats, this application note will not attempt to 
provide a detailed macroinstruction set definition. It is 
only important that the format restrictions imposed by the 
hardware design be stated. 

As defined by connections of the macro opcode register, 
the macro opcode must always be located within bits 

31 2221 1817 

I 

OPCODE IMODIFIER I 

31 

I 

OPCODE IMODIFIER I 

31 2423 18 17 

OPCODE I POSITION 

OPCODE POSITION 

31 :22. The size and position ofthe opcodewithin this field 
are determined by how the macro opCOde map RAM is 
set up to interpret and map the opcode. The optional 
opcode modifier (multi-way branch input) must be in bits 
21 :18 if it is used. 

The optional position field must be in bits 24:18 if used 
and the optional width field must come from bits 4:0 
when used. 

All three of the operand register addresses are optional 
and if used must come from the fields specified in the last 
section. The operand positions arefixedforthe 'A' and 'B' 
operands since they may only come from the 'A' or 'B' 
operand bits of the macro opcode register. The 'C' 
operand address may come from any of the three 
operand fields. 

The reason that the 'A' and 'B' operands do not share the 
positional flexibility of the 'C' operand is that the 'A' and 
'B' operands specify registers to be read from the register 
file. These read addresses are in the critical timing path 
for the system, and any excess delay in selecting the 
address adds directly to the system cycle time. A multi­
plexer like that used for the 'C' operand address would 
add undesired cycle lengths. The 'C' operand address 
may afford its multiplexer delay since the 'C' operand 
address is not used by the register file until late in the 
machine cycle. 
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Each operand address is optional, because the operand 
address may always be specified in the microcode. 

Any optional field, even an unused portion of the opcode 
field, may be used as a data operand. Where a field is not 
used as part of the instruction control, it may be treated 
as data by loading the macroinstruction into the register 
file. Once the instruction is in the data section of the 
system, any data field may be extracted and used in 
calculations. 

Some example macroinstruction formats are shown in 
Figure 5-2. The instructions are shown in a 32-bit word 
layout (byte parity is ignored for the moment). 

Macro Opcode Decoding Method 

The opcode portion of the macroinstruction is the index 
into the control store forthe location of the first instruction 
of a microcode subroutine. Translating the bit pattern of 
the opcode into the microcode store address may be 
done several ways. 

The opcode could be used directly to point to a table of 
first instructions at the base of the microcode store. In 
such a scheme all microcode routines longer than one 
word would require the first word of the routine to branch 
to the remaining part of the routine elsewhere in the 
microcode store. This would break up many routines into 
different parts of microcode store. It may also be ineffi­
cient, depending on what other functions the branch field 
of the microcode word could have performed if the first 
word of the routine did not have to be a branch. 

The opcode could be used directly with zeros inserted at 
the least significant end to form an address that would 
point to microcode entry points separated by 2, 4, 8, 16, 
etc. words, depending on the number of zeros appended. 
This would allow more routines to be located in contigu­
ous words. Only routines longer than the entry point 
spacing would have to be split by branching to other parts 
of microcode store. The disadvantage is that where 
routines are shorter than the entry point spacing, there 
would be unused holes in the microcode store. When 
microprograms are expanded and the microcode store 
gets full (as memories always seem to do), the micropro­
grams will be split more and more times to fit into the 
unused holes in the microcode store. This will make the 
micro program more difficult to deSign and debug as the 
microcode store fills up. 

A PAL may be programmed to decode the opcode into 
entry point addresses spaced to fit the microprograms. 
This allows the microcode words of the routines to be 
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kept together in consecutive locations, making design 
and debugging of programs easier. But each time rou­
tines are moved or expanded in size, a new program for 
the opcode mapping PAL must be defined. 

A RAM or PROM memory may be used as a look-up table 
for entry points in the microcode store. This allows the 
greatest flexibility. Microcode routines may be located 
anywhere in control store, independent of the opcode 
value. The entry points may be spaced to fit each routine. 
As routines are changed or moved, it is very easy to 
reload the look-up table with new entry points. 

The opcode mapping method chosen for this system is 
the RAM approach. 

Macro Opcode Map RAM 

The map RAM is shown in Figure 5-3. It is formed from 
three Am9150 1 K x 4 bit separate I/O high speed RAMs. 

Together, the three RAMs provide a 12-bit output which 
is used as the microinstruction decode address. The 
address is limited to 12 bits since the maximum size of 
control store provided for in this system is 4K words. 

This decode address is connected to the 'A' address 
input of the Am29331 sequencer. When this address is 
selected by the sequencer, a branch is made to the first 
microinstruction of the selected routine. 

The address input to all the Am9150s comes from the 
most significant bits of the Macro Opcode Register (bits 
31 :22). This address selects the entry point into microc­
ode control store from the map RAM when a macroin­
struction is decoded. The macro opcode register is also 
used during diagnostics and WCS loading to address the 
map RAM. 

The Am9150 RAMs are always selected and output 
enabled since no other device shares the 'A' input of the 
sequencer. Also the Am9151 has no power down mode, 
so there would be no advantage to deselecting the 
memory. Note: if lower power in the system is required, 
an alternate memory to use in implementing the map 
RAM would be the Am2148. That memory does save sig­
nificant power when deselected and would increase map 
RAM access time only slightly. 

When the Am9150 RAMs are loaded with data, they 
are written with data as though they were an extension 
of the microcode control store. The writable control 
store write enable line is connected to the Am9150's 
write enable input. 
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WCS Port 

Also shown in Figure 5-3 is the Writable Control Store 
(WCS) port. This port is formed from two Am29818-1 
pipeline diagnostics registers. The port was shown in 
block form in Figure 4-5. The port is used as part ofthe 
system serial diagnostics and writable control store load­
ing scheme. 

The bidirectional "inputs" of the Am29818-1 are con­
nected to the macro opcode map RAM data inputs. When 
placed in a special mode, the port "inputs" are driven as 
data outputs. This data is then used as input to the map 
RAM during a WCS write operation. The data comes 
from the Am29818-1 's internal shadow register. 

The outputs of the WCS port are connected to the 
microcode control store address lines. The WCS port 
may thus be used as an alternate address source for the 
microcode control store. During a diagnostic read or 
write of the control store, the WCS port provides the 
needed address. 

Note that the data forthe outputs of the WCS port comes 
from the Am29818-1's internal pipeline register. The 
pipeline register contents are independent of the shadow 
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register contents. This allows an address forthe microc­
ode control store to be in the pipeline register at the same 
time data for the map RAM is in the shadOW register. 
These separate registers allow the WCS and map RAM 
to be written in the same cycle as though they were one 
writable control store. 

Macro Operand Address Counters 

These are three identicalloadable up/down binary count­
ers made from AmPAL22V10 PALs. They are shown in 
Figure 5-4. The logic definition file for the PALs is 
shown' in Appendix G. 

One counter is used for each operand register address. 
The counters are loaded from the data outputs of the 
macro opcode register. The outputs of the counters are 
tied to the address inputs ofthe read and write ports of the 
Am29334 register file. 

The counter load, count direction, output enable, and 
count enable functions are internally decoded from in­
puts that come from the control pipeline register. These 
counters are intended for use in array processing algo­
rithms, one example being a digital signal processing 
algorithm for a filter. 
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The counters make it simple to perform the same calcu­
lation on arrays of data stored in the register file. One 
microinstruction or a short microinstruction routine can 
loop on an array calculation and at the end of each 
calculation cycle simply increment the operand address 
counters. In that way, new operands are fetched for each 
calculation on the array without the need for the microc­
ode instructions to directly specify operand addresses. 

Control pipeline bits determine whether the microcode 
operand address or the macro operand counter address 
is used. The selection is independent for each operand 
address. Thus, an example would be the operand 'A' 
address' coming from the microcode while the'S' 
operand and 'c' operand addresses come from the 
counters. 

An additional feature is that the 'c' operand counter 
address may be directed to the Am29334 register file'S' 
write port address input. This allows the 'c' operand 
address to come from microcode while the 'c' operand 
counter address is used in writing data from system 
memory into the register file via the second write port. 
This means that CPU calculations may continue 
uninterrupted while new data is being loaded into the 

P_CNTA_EN 

P_UPIDN_A 

P_ARA_MAC 

P_CNTB_EN 

P_UP/DN_B 

P_ARB_MAC 

P_CNTC_EN 

P_UPIDN_C 

P _C_SEl (0:1) 

P_LD_CNT 

CLK_CNTL 

17), 

2 

17:12 

11:6 

5:0 

r US7 
Am22V10A 

~ 

r-

I'" usa 
Am22V10A 

f- -
>--

U59 
Am22V10A 

CHAPTER 6 
Articles/Application Notes 

registerfile. Also, as long as data is coming from sequen­
tiallocations in memory and going to sequential locations 
in the register file, the memory address counter and 'c' 
operand counter may be incremented together, thus 
loading several memory words in sequence. This loading 
may be accomplished without repeated address calcula­
tion by the CPU. 

Operand Counter Use Example 

To help illustrate the use of the operand address count­
ers a typical Finite Impulse Response (FIR) digital signal 
processing filter algorithm is described here. 

An FIR digital filter takes in a stream of amplitude 
samples from an analog waveform. Each sample is 
processed through a series of calculations to produce an 
output value. The resulting stream of output amplitude 
values produces a waveform that is the result of a filter 
operation on the input waveform. 

The calculations involved are a series of multiplies be­
tween different coefficient values and several past input 
samples. The result of each multiply is accumulated to 
produce one output value. The number of coefficients 
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and retained past samples determines how selective 
the filter operation is. The values of the coefficients de­
termine the type of filter operation; e.g., bandpass vs. 
lowpass. 

The algorithm for calculating one output value would be 
the following: 

Sum:= 0; 

for n = 0 to number_oCcoefficients do 

Sum := Sum + (Sample(x - n) • Coefficient(n)); 

Each time a new input sample is acquired, the new 
sample becomes Sample(x), and all past samples shift 
down in the sample array such that Sample(x - 1) := 
Sample(x) for all x. Note that the number of retained past 
samples is equal to the number of coefficients. 

This algorithm may be implemented with two arrays of 
data and a temporary register. One array contains coef­
ficients and the other contains past input samples. 

The coefficient and sample operands may be multiplied 
in a single system cycle by either the Parallel Multiplieror 
the Floating Point Processor. The Parallel Multiplier may 
also perform an accumulate in the same cycle. The 
Floating Point Processor requires a second cycle to do 
the accumulate function. So for each multiply and accu­
mulate operation on a sample-coefficient pair, either one 
or two cycles are needed. 

Obviously the operand counters may be used to address 
the data arrays. As each coefficient-sample pair is mUlti­
ply-accumulated, the counters are incremented to point 
to the next pair of operands. This allows the inner 
multiply-accumulate loop to be only one or two microin­
structions long. 

One feature of the operand counters adds to the effi­
ciency of this algorithm. When an operand counter 
reaches either the maximum or minimum count value, 
the counter will reload the original count value from the 
macro opcode register on the next increment. This cre­
ates a counter that may treat the register file as a circular 
buffer. The length of the buffer is determined by the 
distance from the original count value to either the base 
or upper limit of the register file address. 

Note also that if one counter is always incremented while 
the other is decremented, two circular buffers may share 
the register file. One has a lower bound of zero and the 
other an upper bound of 63. With this scheme two equal 
size buffers could be up to 32 words each. 

The circular buffer approach to the arrays works well with 
the FIR filter algorithm. At the end of each output value 
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calculation, the counter addresses will point back to the 
first coefficient-sample pair, ready for the next input 
sample iteration. 

Note that if on the last multiply-accumulate cycle of an 
iteratation the sample operand counter is not incre­
mented, and the 'C' operand counter is used to load a 
new sample from memory into the oldest sample array 
location, the effect will be to shift all the samples down by 
one in the array while overlapping the new sample load 
with the last cycle of a sample iteration. 

One additional cycle at the end of each iteration may 
move the output value from the register file to the mem­
ory. No memory address calculation cycle is needed 
since the memory address counter may be used to 
address the memory. 

With this scheme only one cycle of overhead between 
iterations is needed. Therefore, assuming clocked multi­
ply operation of the PM to achieve single cycle multiply­
accumulate execution, a 31 coefficient FIR could com­
plete one output value iteration in 32 cycles. Assuming a 
100 ns cycle time (100 ns clocked multiply in the PM), 
that would allow over 312,000 samples per second or an 
input bandwidth of over 156 kHz. A 9 coefficient filter 
would have a 500 kHz bandwidth. 

This is an example of how a microprogrammed system 
may have its architecture tuned to a particular applica­
tion for the best possible performance. Much of the 
performance comes from the microprogrammed 
system's ability to control and perform several parallel 
functions at one time. 

REGISTER FILE ADDRESS MULTIPLEXER 

The Register File Address Multiplexer, shown in the 
block diagram of Figure 1-2, is made up of four sepa­
rate multiplexers. One multiplexer is used for each regis­
ter file address port; two read ports and two write ports. 

Read Ports A and B 

These multiplexers are shown in Figures 5-4 and 5-5. 
Each multiplexer is really a three-state bus that may be 
driven either from the control pipeline register via an 
Am29827 three-state buffer or from an operand counter 
output. A bit for each address from the control pipeline 
selects which source may drive each address bus. 

The Am29827 three-state buffers are needed in addition 
to the three-state outputs of the control pipeline because 
each operand address is 6 bits. This number does not fit 



23:18 

CHAPTER 6 
Articles/Application Notes 

ARA 

U60 
Am29827A 

17:14 

ARB 

U6l 
Am29827A 

09856A5-5 

Figrue 5-5. Register File Address MUX, Read Ports 

;!::::::""' P_RC 

ARA 
ARB 

AWA_MAC 

I!::::::"", 
!::::::""' 

; L-.-' 

D 

6 

6 

6 

6 

2/ 

3 

3 

3 

3 . 

3 

'3 

3 

3 

lSB 

MSB 

lSBs 

1:3 

4:6 

7'!il 

11:13 

14 

15 

MSBs 

1:3 

4:6 

7:9 

11:13 

14 

15 

U62 
3 6 AmPAL 

"'1......? 16:18 
lSPSO 

U63 

AmPAL 
3 

lSPSO 
16:18 

09856A 5-6 

Figure 5-6. Register File Address MUX, Write Port A 

well into the 4-bit boundaries of each slice of the microc­
ode control store. So to avoid wasting control store bits, 
the external three-state buffer is used to gate the control 
pipeline address onto the register file address bus rather 
than trying to use the control store's own three-state 
outputs. 

Write Port A 

This multiplexer is implemented by a pair of AmPAL 18P8 
PALs. It is shown in Figure 5-6. The logic definition file 
for the PAL is contained in Appendix H. 

It is this four input hex multiplexer that allows the 'C' 
register file operand (Le., register file 'A' write port) 
address to come from four possible sources. The ad­
dress may be provided from the 'C' operand in the control 
store, 'C' operand counter, 'A' operand final address, or 
'S' operand final address. The 'A' and'S' operand ad­
dresses are referred to as final because the multiplexer 
input is taken from the register address buses after the 
choice between control pipeline or operand counter has 
been made for the 'A' and'S' operand addresses. The 
select bits for the multiplexer come from the control 
pipeline. 
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Figure 5-8. Position and Width MUX 

Write Port B 

This multiplexer is made from an AmPAL22V10. It 
operates as a two input hex multiplexer, It is shown in 
Figure 5-7, The logic definition We for the PAL is given 
in Appendix I. 

It selects either the control pipeline 'C' operand address 
or the 'C' operand counter address as the source for the 
register file '8' write port address. The select bit comes 
from the control pipeline register. 

POSITION AND WIDTH MULTIPLEXERS 

The position and width multiplexers are implemented 
with AmPAL22V10A PALs. They are shown in Fig­
Lire 5-8. The logic definition file forthe PALs is given in 
Appendix I. 

Each is a two input hex multiplexer, identical to the 
multiplexer used for the 8 Write Port Mux, They select 
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from the Position and Width values that may be provided 
either from the control pipeline or the Macro Opcode 
Register, The select control comes from the control 
pipeline. 

'A' speed PALs are used here since these multiplexers 
are in the critical path to the ALU, They must use 7 ns 
less delay than the combined delay of the 'A' Read Port 
Mux and Register File access time. The required 7 ns 
advantage is consumed by the ALU's longer propagation 
delay from Position input to V output vs, Data input to V 
output. 

SEQUENCER 

The sequencer is a 1S-bit-wide address generator that 
controls the execution sequence of microinstructions 
stored in the microcode control store. It may handle 
interrupts or traps at any microinstruction boundary, 
An interrupt or trap is treated like an unexpected pro­
cedure call. 
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Two independent branch inputs as well as four multi-way 
branch address sources are provided. One of the branch 
address inputs is bidirectional and may be used to read 
or write information in the sequencer's internal 33-level 
deep stack. 

A 16-bit counter, test condition multiplexer, and break­
point address comparitor are also provided. The break­
pOint comparitor is used as a hardware aid to microcode 
debugging. The connections to the sequencer are shown 
in Figure 5-9. 

The sequencer's 'A' branch address input is connected to 
the Macro Opcode map RAM output and is the path 
through which the macroinstruction specifies its entry 
point into microcode .. 

The 'D' branch address input is tied to the D_BUS. 
Through this path, branch addresses or constants come 
from the control pipeline register and data may be ex­
changed with the data section of the CPU. 

D_OER' 

D_OET' 

The 'MO' multi-way branch address input is connected to 
the macro opcode register bits 21 :18. These bits may be 
used as a modifier to the macro opcode via a multi-way 
branch based on these bits. 

The 'M1' multi-way branch address inputs come from the 
Floating Point Processor (FPP) external status register. 
These bits are the overflow, underflow, invalid, and 
'extra' status flags from the FPP. The 'extra' status flag is 
the OR ofthe zero, NAN, and inexact status flags from the 
FPP. A single mUlti-way branch on these inputs may be 
'used to detect and handle quickly any of the catastrophic 
status' conditions from the FPP. If the 'extra' flag is active, 
it indicates that a second mUlti-way branch may be used 
to determine which of the 'extra' status flags is active. 

The FPP zero, NAN, and inexact status flags are con­
nected to the 'M2' mUlti-way branch input of the se­
quencer. 
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The 'M3' mUlti-way branch input is tied to the ALU 
microprogram status outputs so that an alternate means 
of checking ALU status is available. A multi-way branch 
based on these bits is able to check multiple condition 
flags in a single cycle. 

The Force Continue and Carry-In inputs of the sequencer 
are active in a trap operation to prevent state change in 
the sequencer and capture the address of the trapped 
instruction in the interrupt return address register. Carry­
in (CIN") is driven high by a trap event signal from the trap 
logic in Figure 5-11. The trap event signal is also ORed 
with a signal from the control pipeline (P _FC) so that 
either signal will cause Force Continue to go high. The 
interrupt request input comes from the Trap circuit shown 
in Figure 5-11. 

The sequencer's HOLD input is driven by the inverted 
value of the WCS_WR" signal from the host interface 
controller shown in Figure 4-3. When this signal is 
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active, the sequencer's output will be three-stated so 
the WCS Port may drive the microcode control store 
address lines without contending with the sequencer's 
output drivers. 

The Slave input is grounded since no use of the mode is 
made in this demonstration system. 

The test condition inputs of the sequencer come from 
three sources. Conditions 11 though 7 are the ALU status 
bits for zero, overflow, sign, carry, and link. Conditions 6 
through 2 come from the Macro Status Register; these 
bits are the macro version of the same ALU status bits. 
Condition 1 comes from the FPP external status register 
bit for zero. Condition 0 is unused. 

Control for the sequencer's interrupt enable, test condi­
tion select, and instruction input comes from the control 
pipeline register. 
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The sequencer's D_BUS output enable comes from the INTERRUPT CONTROL 
control decode logic. 

The sequencer A_FULL signal is used as an interrupt 
signal to the system interrupt controller. 

The Equal (breakpoint) signal is used as a trap event 
signal to the Trap Logic. 

Interrupt acknowledge goes to the interrupt controller 
and trap logic to enable the interrupt and trap vectors onto 
the microcode control store address bus when an inter­
rupt is executed. 

The 'Y' outputs of the sequencer drive the microcode 
control store address lines to select each microin­
struction. 

o BUS TRANSCEIVER 

The transceiver between the A_BUS and the D_BUS is 
shown in Figure 5-10. 

The D_BUS has no parity bits included where as the 
A_BUS does contain parity. It is therefore necessary to 
provide parity generation for the data moved from the 
D_BUS to the A_BUS. 

The D_BUS is only 16 bits wide vs. the 32-bit-wide 
A_BUS. Thus it is also necessary to provide bus drivers 
and parity generators for the upper two bytes of the 
A_BUS, even though no variable data is passed to the 
A_BUS from the D_BUS through those bits. 

The transceiver and parity generator/checker function 
are combined in a single device type: the Am29853. Four 
of these are used in addition to an Am29862 inverting 
transceiver. The inverting transceiver is used on the 
parity bits because the Am29853 uses odd parity while . 
the Am29300 system uses even parity. 

As an added convenience for when numeric constants 
are passed from the D_BUS to the A_BUS, an AND gate 
is provided to drive the inputs of the upper two bytes of 
transceiver. If the AND gate is enabled by the control 
pipeline, the most significant bit of the D_BUS will be 
copied to all the upper bits on the. A_BUS, thus perform­
ing a sign extend for two's complement numbers. If the 
AND gate is disabled, the upper bits of the A_BUS are 
forced to zero. 
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Interrupt and Trap Philosophy 

What Is a Trap? 

Traps are events that require the immediate attention of 
the CPU. The urgency of the event is so great that the 
CPU must not even complete the execution of the in­
struction in progress in the cycle that the trap request 
happens. The CPU must not change any machine state 
in that cycle; it must store the address of the instruction 
that was to have been executed and must branch to a 
routine that services the trap event. 

The implication here is that the trap will prevent some 
disastrous change in machine state from which no recov­
ery would be possible. Also implied is that the trap 
servicing routine may repair what everthe problem is and 
then return to complete the execution of the instruction 
where the trap occurred. 

One additional implication is that the trap event may be 
signaled early enough in the instruction cycle to prevent 
the clocking (change of machine state) that normally 
occurs at the end of each instruction. 

An example of a trap event could be a miss on cache 
memory access. To complete an instruction when the 
data being accessed from a cache is invalid would be a 
disaster with little chance for recovery. If a trap routine to 
update the cache may be executed instead of completing 
the instruction, the program may be saved. After the 
cache has the correct data, the trap routine may return to 
the aborted instruction to continue execution of the 
program as if no problem had existed. 

Another example of a trap would be a program break­
point. When debugging a program it is very useful to be 
able to stop execution of a program just before executing 
a particular instruction. If this is done, the state of the 
machine before executing the breakpoint instruction may 
be examined. To do this the address of the breakpoint 
instruction is recognized as the instruction is fetched from 
microcode control store. In the next cycle before the 
instruction may complete, a trap occurs which branches 
to a debugging routine. Whe n the programmer is ready to 
continue the program, a return from trap completes the 
execution of the breakpoint instruction. The breakpoint 
trap operation is easy to do, and hardware to implemerit 



it is already provided in the Am29331 sequencer. The 
breakpoint trap operation will be shown in the Trap Logic 
described later. 

What Is an Interrupt? 

Interrupts are events that require the attention of the CPU 
soon. 

"Soon" is defined as faster than might happen if the event 
were polled by a CPU program but later than a few 
microinstruction execution cycles. 

Interrupt events and the resolution of an interrupt are not 
directly tied to the CPU state. No disasters occur if a few 
cycles pass by before the interrupt may be handled. 

Examples of events handled via interrupt could be: 
external mechanical events such as switches being 
opened or closed,an impending stack-full situation, a 
message signal from another processor, or a peripheral 
delay timer indicating time-out. 

In this demonstration system one other class of interrupt 
source is included. It is the parity error. A parity error 
implies corrupted data in a program that cannot be 
corrected. Since the influence of corrupted data on the 
program is difficult to determine or correct for, the af­
fected program should be aborted. A parity error is, 
therefore, important to detect so that the program in 
which it occurs may be terminated and perhaps rerun 
with corrected data. 

Parity errors are treated as interrupts ratherthan traps for 
two reasons. The indication that an error has occurred 
comes fairly late in an instruction cycle and is therefore 
difficult to use as a trigger for a trap. When a parity error 
occurs, the program is generally corrupted and will be 
terminated; whether the termination happens in the cycle 
following the error as would be the case with a trap, or 
within a few cycles, as with an interrupt, is unimportant. 

Interrupt Operations 

There is no need to design an interrupt circuit from 
scratch when one already exists. The Am29114 interrupt 
controller is used in this system. It provides interrupt 
latching, priority, masking, and vector generation for 
eight interrupt inputs. 

Interrupt Controller 

Six interrupt sources are used in this Am29300 system; 
the two remaining interrupt source inputs are available 
for software generated interrupts. 
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The interrupt and trap circuit block diagram is shown in 
Figure 5-11. 

The three highest priority interrupts are parity error sig­
nals from the D_BUS, the Am29C323 Parallel Multiplier, 
and the Am29332 ALU. 

The next priority interrupt is a signal from the FPP 
external status PAL, which indicates that one of the 
following status flags is active: Overflow, Underflow, or 
Invalid. 

The next priority interrupt is the AJULL signal from the 
Am29331 sequencer. This interrupt indicates that the 
sequencer stack will be full if three additional stack 
pushes occur. 

The next interrupt is the external bus interrupt signal from 
the host interface controller. This is a "tap on the shoul­
der" from the host that requests the Am29300 CPU take 
some previously agreed on action, such as reading a 
message from the host out of memory. 

The two least significant interrupts are unused by hard­
ware and are available for use as software interrupts. 
These interrupts would be set by the CPU writing into the 
Am29114 interrupt register. 

The interrupt mode is setforcapturing asynchronous low 
going pulses as interrupt signals. This is done because 
most of the interrupt signals are only guaranteed to be 
active for a single clock cycle. Therefore, the interrupts 
must be latched and held by the interrupt controller until 
acknowledged by the CPU. 

The D_BUS is connected to the interrupt controller data 
pins so that the internal interrupt, mask, and in-service 
registers may be read and written. 

The interrupt controller is selected and given instructions 
via outputs of the control pipeline register. 

Interrupt Sequence 

During a given clock, one of the interrupt inputs goes 
active. At the end of that cycle (active edge of clock), the 
interrupt Signal is clocked into the interrupt register of the 
Am29114. 

During the second clock cycle, the interrupt is ANDed 
with the interrupt mask register and, if the interrupt is 
allowed, its priority is compared to any currently in­
service interrupt. If the new interrupt is of higher priority 
than any in-service interrupt, the MINTR' (interrupt re­
quest) will go active at the next active clock edge. 
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During the third clock cycle, the Am29114 interrupt 
request is externally ORed with the interrupt requestfrom 
the trap logic. The combined interrupt request is then 
loaded into a delay flip flop. The delay flip flop is needed 
to synchronize the final interrupt request with the system 
clock. The reason forthis is that the interrupt request from 
the Am29114 is stable too late (41 ns) in the third cycle 
to be useful in selecting an interrupt address. The set-up 
timeforthe microcode control store address could not be 
met if the Am29114 interrupt request were used directly 
with the Am29331 sequencer. 

The external OR and delay functions are imple­
mented in an AmPAL22V10A, whose logic is shown in 
Figure 5-12. 

During the fourth clock cycle, the INTR* (interrupt re­
quest) input of the sequencer is driven by the delay flip 
flop. The sequencer then returns INTA* (interrupt ac­
knowledge) if micro-interrupts are allowed. The INTA* 
signal enables the interrupt vector onto the microcode 
control store address lines. 

The LSB three bits of the interrupt vector are provided by 
the Am29114 interrupt priority encoder. Bit 3 of the 
interrupt vector is provided by the trap logic. The bit is low 
for an interrupt and high for a trap vector. The upper bits 
(4:11) of the vector are provided by an external 
Am29818-1 register. This register provides a variable 
base address for a nine entry point table look-up (multi­
way branch), which is based on the four bits of interrupt 
vector from the Am29114. The Am29818-1 register is 
loaded via the D_BUS or through the diagnostics SSR 
chain. The need for a nine entry point table is explained 
in the section on trap operation. 

During the fifth clock cycle of the interrupt sequence, the 
first instruction of the interrupt routine will execute. Dur­
ing this cycle the interrupt return address wi" be pushed 
onto the sequencer stack. 

In summary, from the time an interrupt signal becomes 
active until the interrupt service routine begins execu­
tion, four instructions in the main program will complete 
execution. 

CLK_CNTL-------------------------------, 

MINTR' -----<l( 
INTR 

EQUAL --..,..-t---l 

TRAP 

SEQ]C 

P]C' ----t-t-q 
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INTA' --..,...--t-<l( 

3 

2 

o 
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Figure 5-12. U75 AmPAL 22V10A Trap Logic PAL 
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Trap Operation 

Trap Issues 

A trap requires extremely fast response to the trap event 
signal. 

The ideal situation is forthe trap event signal to cause the 
abortion of the instruction in execution at the time the 
event Signal appears. 

This is extremely difficult in a high clock frequency 
system. To succeed, the trap event Signal must be stable 
at least in time to prevent clocking of the data section of 
the CPU, which would otherwise change the system 
state (I.e., complete execution of the instruction). This 
implies that the trap event signal is stable one clock 
control circuit set-up time before the high to low edge of . 
the system clock. The high-to-Iow edge of clock is signifi­
cant, because once the clock signal falls, the writing of 
any write enabled port on the Am29334 register file will 
begin. In addition, the trap event signal must be stable in 
time to cause the Am29331 sequencer force continue 
(FC), interrupt request (INTR), and carryin (CIN') signals 
to go high soon enough to disable the sequencer micro­
program address in time to meet the set-up time require­
ments of the microcode control store. 

In a 100 ns cycle time system, such as the one being 
discussed here, the trap event signal must be valid no 
later than 25 ns into the cycle. For a trap event Signal 
that is to be derived from the effects of the instruction in 
execution in that cycle, this requirement is very difficult 
to meet. 

Fortunately there are trap events that may be signalled 
on the one or two cycles previous to the cycle in which the 
trap must occur. Some examples would be: a cache miss 
that may be detected from the cache address created in 
a cycle prior to that in which the cache data is used in a 
calculation; or a breakpoint in which the breakpoint target 
instruction address is detected by the sequencer in the 
cycle priorto the instruction being loaded into the control 
pipeline for execution. 

If a an instruction is a known potential trap, it is possible 
to execute the instruction so that no critical information is 
destroyed by completing its execution. This may be done 
by writing results back to a temporary register while 
allowing no other significant system state changes, such 
as updating the ALU Q register, or doing a return from 
procedure call. The instruction may then be allowed to 
execute and generate any trap event signals that might 
result from the execution, without concern for irrevocably 
destroying data because of some error condition. 
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In the above examples, the trap event signal may be 
loaded into a delay flip flop to synchronize the trap 
request with the beginning of the following cycle. This 
causes the trap operation to occur early in the cycle 
following the event and to complete successfully. 

The only trap condition implemented in this design is the 
breakpoint. 

Trap Logic 

By definition, the response time between trap event 
signal and trap operation must be much faster than the 
four or more cycles that an interrupt takes to begin 
execution. This requires that the trap logic be different 
from the Am29114 interrupt controller .. The trap logic 
design is implemented in an AmPAL22V1 OA. The logic is 
shown in Figure 5-12. The definition file for the PAL is 
shown in Appendix J. 

The trap logic is in effect a simpler and faster interrupt 
controller. This ''trap controller" is cascaded with the 
Am29114 interrupt controller so that the same address 
vector approach used with the interrupt controller may be 
extended to trap operations. 

A trap is treated as a special form of interrupt with a higher 
priority. When a trap occurs, the trap logic generates a 
cascade out (CASOUT2) signal to the Am29114 to 
prevent any interrupt operation from beginning in the 
same cycle. 

The trap logic also generates an INTR signal to the 
Am29331 sequencer. The INTR signal in turn causes the 
sequencer to three-state its microcode address outputs 
and return an INTA signal to the trap logic. The INTA 
signal enables a four bit vector from the trap logic and the 
interrupt base address from the Am29818-1 registers as 
shown in Figure 5-11. 

The above steps essentially generate an interrupt and 
provide the interrupt vector. What makes a trap different 
is that the Trap Logic is also used to drive the Am29331 
sequencer Force Continue and Carry-In inputs. This 
causes the sequencer to ignore the instruction being 
trapped and to perform a continue instruction instead, 
which changes no state in the sequencer. The CIN' 
Signal's being high causes the trapped instruction ad­
dress to not be incremented. Therefore, the trapped 
instruction's address will be loaded into the sequencer 
interrupt return address register. In addition, the TRAP 
signal is used to prevent any state change in the system 
other than in the sequencer, effectively aborting the 
trapped instruction. 
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Following are some other features to note in the trap 
logic. 

Am29300 system RESET is used to generate the se­
quencer Carry-In signal (SEQ_CIN'). This is done to 
force SEQ_CIN' high during reset so thatthe first microc­
ode instruction executed after reset will be at address 
zero rather than one. 

In order for a trap operation to take effect, the instruction 
that is to be trapped must have its microcode interrupt 
enable bit active. This bit is used as the interrupt enable 
to the sequencer. If it is not active, then the microcode 
control store address from the sequencer will not be 
three-stated, and the interrupt vector will not be substi­
tuted. In addition, the TRAP signalwillstill occur, causing 
the trap target instruction not to execute correctly. Note 
that the interrupt enable bit could be externally forced 
active by the trap operation via an OR gate. But the added 
delay could cause the interrupt acknowledge to be too 
late to allow the interrupt vector address to meet required 
set-up times. (Of course, it is possible to design the 
system so that every trap causes all the system clocks to 
be stopped for one cycle. That would allow enough time 
for all kinds of tricks to be played. This design, however, 
will not explore that approach.) 

MICROCODE CONTROL STORE AND 
CONTROL PIPELINE REGISTER 

Control Store Function 

The microcode control store is the high speed memory 
that contains the control bits comprising the instructions 
that the system may execute. 

This system uses what is called "horizontal" microcode. 
Each microinstruction contains many control bits that 
manage a variety of different functions in parallel. "In 
parallel" is the key phrase. All the control information 
needed to manage the entire Am29300 system during 
the execution of one microinstruction is contained in one 
word of microcode control store. 

The memory must be fast because its access time must 
be significantly shorter than the cycle time of the system. 
In general the access time must be less than half the 
cycle length. This is because of the time required by the 
sequencer to generate each new address to the control 
store, which takes up the remaining time in the cycle. 

Pipeline Register Function 

At the output of the microcode control store there is a 
register to hOld the control information stable during the 
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execution of an instruction. With the control information 
held in the pipeline register, the control section of the 
CPU is free to begin reading the next microinstruction 
from the control store. In this way, the control section is 
operating in parallel with the data section. The control 
section fetches the next instruction while the data 
section executes the current instruction. This parallel 
operation, where one section of the system works on one 
step of a problem while another section works on the 
next step, is called pipe lining, hence the name for the 
pipeline register. 

Through parallel operation, pipelining nearly doubles the 
speed of the system over what might be the case if the 
control section and data section were directly tied to­
gether in a serial fashion. 

Control Store Implementation 

Because this method of pipelining the output of a mi­
crocode store is so popular, there are special memories 
available that combine a high speed memory with a 
pipeline register at its output. These combined memory 
and pipeline devices may significantly reduce the 
system parts count. 

These memories are available as either RAM or 
PROM devices. RAM versions are used to make 
writable control stores. 

These memories also include Serial Shadow Registers 
(SSR) along with the pipeline register. This allows diag­
nostic routines to read and control the pipeline register 
outputs. Where RAM versions are used, the SSR is used 
as a built in means to load the writable control store. 

This system is designed to use one of the following for 
control store: Am9151-50, lK x 4 RAM; Am27S65, 
lK x 4 PROM; Am27S75, 2K x 4 PROM; or 
Am27S85,4K x 4 PROM. These devices all share a 
similar pinout so that simple jumper connections allow 
any of them to be placed in the same sockets. 

The connections to the control store are shown in Figures 
5-13 and 5-14. 

A total of 23 memories are used to form the needed 92-
bit-wide microcode words. 

Because this system is designed to use no more than a 
4K word deep control store, only the lower 12 bits of 
microcode address from the sequencer are connected. 

The memories in the control store which provide the 
microcode branch field are connected differently from the 
remaining memories. This is because the branch field 
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outputs are connected to the D_BUS and must be three­
stated when other devices drive the D_BUS. All the other 
outputs of the control store are always output enabled. 

Figure 5-13 shows how the bulk of the control store is 
connected. 

When the Am9151-50 or the Am27S65 is used, the 
jumper at location "B" is connected. This continuously 
enables the memory. 

When the Am27S75 is used, the jumpers at locations A 
and D are connected. Also, the Am27S75 GIGs' (pin 20) 
is internally programmed as an asynchronous enable. 
Those jumper connections will always enable the mem­
ory and connect address bit 10 to it. 

When the Am27S85 is used, the jumpers at locations A 
and C are connected. The Am27S85 G/Gs/l/ls' (pin 19) 
is programmed as a synchronous initialize function. 
Those connections will always enable the memory and 
provide address bits 1 0 and 11 to it. 

Figure 5-14 shows the connection for the memories 
that support the branch field. 

When the Am9151-50 or the Am27S65 is used, the 
jumpers at location Band E are connected. This enables 
the memory when the control pipeline selects the control 
store to drive the D_BUS. 

When the Am27S75 is used, the jumpers at locations A, 
D and E are connected. Also, the Am27S75 GIGs' (pin 
20) is internally programmed as an asynchronous en­
able. Those jumper connections will enable the memory 
when the control pipeline selects the control store to drive 
the D_BUS. 

When the Am27S85 is used, the jumpers at locations A, 
C, and F are connected. The Am27S85 G/Gs/i/ls' (pin 
19) is programmed as an asynchronous enable function. 
Those connections will enable the memory when the 
control pipeline selects the control store to drive the 
D_BUS. Also, these connections imply that when the 
Am27S85 is used, the branch field of the initialize word 
will not be valid. 

CLOCK CONTROL 

In almost every complex digital system there is a need to 
control and qualify selectively the system clock. 

A register often needs a qualified clock that will clock (i.e., 
load) the register only when specified by some control 
signal. Sometimes a register will internally qualify its own 

6-62 

clock by providing a load enable input. But most often, 
registers have only data input and outpiJts, an output 
enable, and an unqualified clock input. It is up to the 
'system designer to provide a means to restrict the clock 
to the register so that it receives clock only on those 
cycles when its load enable control signal is active. 

Restricting a clock in this fashion is referred to as quali­
fying a clock. The controlling signal that enables the 
qualified clock is called the qualifier. 

Most synchronous digital systems have a system clock 
with a single active edge. This means that the system 
state will only change on either the low-to-high or high-to­
low edge of the clock. The opposite transition of the clock 
will have no state changing effect in the system. The 
opposite transition of the clock is referred to as the 
inactive edge of the clock. It should be noted, however, 
that, even though there is a single active edge for the 
clocking of registered states in the system, the level ofthe 
clock may have an effect on some multiplexers or latches 
in the system. The level of the clock may control the path 
selected by a multiplexer, whether a latch is flow-through 
or held, or the write enable of a memory. 

To qualify a clock, ther~ must be a way to prevent the 
active edge from occurring. This implies that the clock is 
held either high or low when it is prevented from cycling. 
The choice of whether the clock will be stopped (held) at 
its high level or low level may depend on what, if any, 
effect the level of the clock has on system multiplexers, 
latches, or memories. For example, if the low level of the 
clock enables a memory write line, it may be preferred to 
stop the clock at the high level rather than the low level to 
prevent any change in state of the memory. 

Clock Qualification Circuit 

In the Am29300 system described here, the system clock 
will be stopped at the high level. This is because the low 
level of the clock may start the writing of data into the 
Am29334 registerfile. The active edge of the clock will be 
the low-to-high transition. 

This method of qualifying clocks is referred to as 'OR' 
qualification. Usually with this method the free-running 
(unqualified) version of the system clock is 'ORed' with a 
low active enable signal. Thus, if the enable is active (low) 
the resulting qualified clock is allowed to track the free 
running clock. If the enable is inactive (high) the qualified 
clock will be forced high, stopping the clock, until the 
enable again goes active. Because the free running clock 
is always high during the first portion of each clock cycle, 
the clock enable signal need not be stable until just before 
the inactive edge of the free running c,lock. 



In this Am29300 demonstration system the following are 
the desired controls over the system clocks: 

1. The ability to stop all clocks to the Am29300 CPU, 
both control and data sections. This will suspend 
operation of (halt) the system. 

2. The ability further to qualify register loading 
(register clocks) with control pipeline signals. 
The controlled registers would be the Macro 
Status, Macro Opcode, and Interrupt Base 
Address register. 

3. The ability to single step all the system clocks 
when the system clocks are inthe halt mode. Note 
this implies only conditional single stepping on 
those register clocks that are further qualified by 
load enable controls. 

4. The ability to single step the data section or the 
control section independently. 

5. The ability to force the control pipeline or the 
Macro Status, Macro Opcode, and Interrupt 
Base Address registers to load. This capability 
is used to implement diagnostic control over 
these registers. 

CHAPTER 6 
Articles/Application Notes 

To implement this kind of control overthe system clocks, 
a separately qualified version of the system free running 
clock must be created for each differently handled regis­
ter. The general clock for the control section is different 
from that for the data section. Also, each qualified regis­
ter clock is different. 

The block diagram for the clock qualification circuit is 
shown in Figure 5-15. The logic equation definition file 
for the PAL in this circuit is shown in Appendix K. 

The qualifiers forthe system clocks come from either the 
control pipeline, trap logic orthe host interface controller. 
The AmPAL22V10A Programmable Array Logic (PAL) 
device is used to combine the various qualifiers into the 
appropriate clock enables for each differently handled 
set of registers. The output of the PAL is then logically 
ORed with the system free running clock to form the 
various qualified clocks in the system. 

In this system, the free running clock generator produces 
an active low clock with the enables active high. By using 
negative logic OR gates (NAND gates) the clock and 
enable signals are logically ORed together to produce 
active high qualified clocks. The negative logic OR gates 
are external to the clock qualifier PALs. 
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The NAND gates also serve as high output current 
buffers that allow the qualified clocks to drive many 
registers in the system. These NAN D buffers also cause 
the clocks to have very high speed edges. This requires 
that clock lines be handled more carefully than other 
signal lines to help prevent noise, reflections, and ringing 
on the clock lines. Preventing these problems helps to 
ensure clean clock signals free from the glitches that may 
cause missed clocking or double clocking of registers. It 
is suggested that clock lines be routed serially, kept less 
than 12 inches in length, and terminated to the printed 
circuit board's characteristic impedance at the last point 
of use on each clock line. 

Note that all the system clock lines, even the free-running 
clock line, pass through a NAND gate. This is done to 
equalize the delay of all clocks so that clock skew in the 
system is minimized. 

Clock Generator 

The unqualified (free running) source for all the clocks in 
the system comes from a clock generator implemented in 
an AmPAL 16R6B. A diagram of the logic implemented in 
this PAL is shown in Figure 5-16. The logic equation 
definition file for this PAL is shown in Appendix L. 

P·ClKlEN (1) 

P-ClK-lEN (0) 

30 MHz CLOCK 

The only reason that a clock generator PAL is used in 
addition to a simple clock oscillator module is to provide 
the ability to vary dynamically the length of each system 
clock cycle. This ability allows the system to run at the 
maximum clock rate most of the time when the fastest 
data paths are in use and to run at a slower rate only when 
s.lower system data paths are in use. By slowing the 
system cycle time dynamically only when a slow data 
path is used, the average system speed is much higher 
than would be the case if the system clock rate were fixed 
at the rate required by the slowest data path. 

A simple way to do this would be to divide the normal 
system clock by two and on each cycle select whether 
the normal length or the double length clock cycle would 
be used. 

In this system, finer control over the length·of each cycle 
is desired. Where the cycle need only be a little longer 
than usual, only a slightly longer cycle is used rather than 
doubling the cycle length. 

This is done by dividing down a high speed clock, which 
runs three times faster than the normal system clock. It is 
then possible to extend a clock cycle in increments of the 
high speed clock. A cycle then may be 1, 1 1/3, 1 2/3, or 
2 times the normal cycle length. 

elK 
Free 
Run • 
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Figure 5-16. U100 AmPAl16R6B Clock Generator 
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The Am29300 demonstration system's normal clock is 
10 MHz, or 100 ns, long. The high speed clock is then 
30 MHz and is provided by a commercially available 
clock oscillator module. 

The control overthe cycle length comes from the control 
pipeline register and may thus be specified differently on 
each instruction. Two bits are provided to select one of 
the four cycle lengths. Each instruction may thus control 
its own cycle length based on the time required by the 
data paths that are used. 

The waveform of the clock may be described in terms of 
the number of high speed clock periods during which it is 
active and then inactive. 

Note that the output of the AmPAL 16R6 is inverting. The 
logic internal to the PAL creates an "active high" clock 
with a low-to-high active edge. This waveform is inverted 
by the final output of the PAL and is later inverted once 
more in the clock qualifying circuit. The final system 
clocks are thus active high. When describing any system 
clock, it will be done in terms of an active high clock. The 
clock generator waveform is shown in Figure 5-17, 
where the outputs are shown active high, even though 
the actual PAL output is inverted. 

Each clock cycle has two or more active periods followed 
by one inactive period. 
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The clock generator PAL output is from a 0 flip flop. When 
the flip flop output is inactive (low), one term feeds back 
the inverted output. This will force the flip flop high on the 
next high speed clock. The output of this flip flop feeds a 
shift chain of four other flip flops, which act as a simple 
timer for the extended cycle lengths. 

During the first active period of the clock output, the 
output of the first flip flop in the timing chain is still inactive. 
This first flip flop's output is inverted and fed back into the 
clock output flip flop to force the clock output to remain 
high for a second active period. 

During the second active period, the clock cycle length 
bits from the control pipeline become stable and deter­
mine whether additional active periods will be inserted 
into the output clock. 

Note that since the first two periods of active clock are 
forced by the logic, the control bits need not be stable for 
two high speed clock periods minus the PAL set-up time 
(66.6 ns - 15 ns = 51.6 ns). This time margin is further 
reduced by the skew between the high speed clock and 
the qualified clock to the control pipeline which is equal to 
the clock-to-output time of the clock generator PAL plus 
the propagation delay of the qualifying NAND gate 
(51.6 ns - (10 ns +5.5 ns) = 36.1 ns). Therefore, as long 
as the control pipeline register clock·to-output time does 
not exceed 36 ns, the clock generator will work as 
described here. 
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Figure 5-17. Clock Generator Outputs (Inverted) 
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If the clock cycle length bits are zero, no additional 
feedback terms are enabled and the clock output flip flop 
will go low in the next high speed clock period. 

If the clock cycle length bits equal 1, the output of the 
second timing chain flip flop is fed back to the output flip 
flop to allow one additional active clock period. 

Similarly, when the clock cycle length bits are equal to 2 
or 3, an additional 2 or 3 active periods are inserted in the 
output clock waveform. 

When the clock output flip flop again goes inactive, its 
output will force all of the timing chain flip flops to be 
cleared, thus beginning a new Am29300 clock cycle. 

MICROCODE WORD 

This section describes the structure and function of each 
field of bits in this system's microcode word. Included are 
some comments on how functions were determined and 
how they might vary in similar systems. 

Control Philosophy 

In a microprogrammed system, each word of the microc­
ode functions as the determinate of all system action 
during one clock cycle of. system operation. Each bit 
directly affects some aspect ofthe machine. Each field of 
bits may act independent of other fields to manage 
parallel data paths and simultaneous operations. This 
ability to manage parallel activities in each machine cycle 
gives a microprogrammed system high speed and flexi­
bility. But the power of complete parallel control over 
nearly all the functions in a system comes at a cost. 

The cost is wide control memory words. Fifty- to 150-bit­
wide control words are common in microprogrammed 
systems. Three hundred-bit-wide control words have 
been used in large mainframe computers for years. 

With each machine instruction's eating up 100 or more 
bits of memory, it doesn't take long to consume signifi­
cant board space, power, and costfor high speed microc­
ode memory. 

The resulting dilemma between the need for parallel 
control and the cost, size, and power that accompanies 
it, is the basis of many a system designer's headache. 

The usual approach used to strike a balance between the 
opposing issues is to determine carefully which functions 
must absolutely be able to occur in parallel, then to limit 
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the microcode word size to that absolute minimum. 
Control over other less frequently used functions or over 
alternate operations is then overlapped with the primary 
control fields. . 

Overlapping of control fields means that during certain 
operations, the meaning of the bits in the overlapped 
control field changes. The hardware controlled by the 
primary meaning of an overlapped field must be dis­
abled during .the time that the alternative meaning is in 
effect. This of course means that the functions con­
trolled by the overlapped fields cannot occur in the 
same machine cycle. 

This results in winning a little and losing a little. More 
control and thus more functions may be managed with 
less control memory, but some operations then take 
multiple cycles to complete, due to the use of functions 
that may not be managed in one instruction. Also, the 
need to enable and disable control field meanings and 
the associated hardware, will add control bits and decod­
ing logic. The decode logic adds delay into the machine 
cycles and will cause the system to run a little slower. 

Additional savings in control word size may be made by 
encoding fields rather than having each bit directly drive 
a control signal. This again adds decoding logic and its 
associated delay. 

The job of deciding what control must be parallel and 
what must be overlapped is more art than science. No 
matter how the microcode word is defined, there will 
always be other interesting ways to rearrange and over­
lap the control fields. Each way will cost something either 
in word width or control decoding, thus providing endless 
trade-ofts. 

All these possible variations make it extremely important 
to have a thorough understanding of the algorithms to be 
handled by a particular machine. The better the under­
standing, the better the chance to optimize the system 
architecture and control to solve the problem at hand. 

Microcode Word Field Descriptions 

Throughout the figures that detail the design of this 
system, signals that travel from page to page have been 
given meaningful names that imply the function of the 
signal. This helps in understanding what is going on in 
each figure. Many of these signals are the direct outputs 
of the control store pipeline register. As it turns out, many 
of the bits in the microcode carry multiple meanings 
because the function of several fields are overlapped to 
save microcode word size. 



The result is that more that one signal name may often be 
associated with a particular bit of the control pipeline. 
Physically, of course, all signal lines that ultimately con­
nect to a particular pipeline bit are one piece of wire. The 
logical separation of lines, by using different names, only 
helps to understand the function of a given signal, when 
the hardware that uses the signal is enabled. The follow­
ing three Figures show the physical and logical relation­
ships between the microcode control store bits and the 
signal names (meanings) that are attached. 

Each Figure is split into pairs of columns preceded by 
one column that indicates the individual bit numbers for 
each signal. Each column pair contains a Field Name 
column that describes the function of the bit and a Signal 
Name column that gives the signal name used through­
out the Figures in this documentforthat meaning. The left 
most column pair shows the primary meaning of the 
control bits. Other column pairs to the right give alternate 
(overlapped) meanings forthe control bits along with the 
signal name used with each meaning. 

Unless a control bit is overlapped with an alternate 
meaning in one of the columns to the right, the function 
of the control bit is constant. 

Register File Controls 

Figure 5-18 shows the microcode word bits that affect 
the Am29334 register file. 

It was decided that a three address machine would bethe 
most appropriate way to obtain the best performance 
from the Am29300 family components. Because of the 
common three bus architecture these parts share, a 
three address register file fits nicely. Two addresses are 
used to read an A and B operand from the file while the 
third address specifies an independent write location. 
This allows writing back results without requiring the 
destruction of one of the read operands in a single cycle. 

An address multiplexer on the C operand register ad­
dress does allow for two and one address operations by 
allowing either the A or B operand address to be used for 
the write operand address in addition to its use as a read 
operand. 

Also, to support macroinstruction execution, address 
multiplexers are used on the read addresses so that 
macroprogram supplied register addresses may be di­
rected to the register file. When macroprogram supplied 
addresses are in use, the meaning of the register ad­
dress fields changes to control signals for the macro 
operand address counters. With this alternate meaning, 
the macro addresses may be incremented or decre­
mented at the end of each cycle. 
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Bits 91 and 84 selectwhetherthe microcode orthe macro 
opcode addresses are directed to the register file. If 
either bit is high, the alternate definition for the related 
address field takes effect, and the macro opcode address 
is used. 

Bits 76 and 77 are used to select one of four addresses 
to be supplied to the A write port of the register file. The 
selections are as follows: 

Bit 

77 76 

o 0 C operand microcode address used. 
o 1 A operand address, as specified by bit 91. 
1 0 B operand address, as specified by bit 84. 
1 1 C macro operand counter address used. 

When any selection other than forthe C operand microc­
ode address is made, the field assumes the alternate 
meaning for control of the macro operand counter. 

In addition to the three addresses used by the data 
section of the CPU, a fourth address is provided for the 
B write port of the register file so that data may be moved 
into the file via the second port while other calculations go 
on undisturbed. 

The address forthis fourth port comes from a multiplexer 
that may select either the C operand microcode address 
orthe C macro opcode address counter as the source. Bit 
69 is the select input for this fourth address multiplexer. 

Bit 68 enables the register file A read port onto the 
A_BUS. If this bit is inactive and if the FPP seed register 
output is also inactive, the D_BUSto A_BUS transceiver 
is enabled so that constants, masks, and variables may 
be passed from the D_BUS to A_BUS. 

Bits 67 and 66 are used as the write enable controls for 
the two write ports of the register file. 

Data Path Controls 

The data path controls are shown in Figure 5-19. 

To provide a straightforward example of the usage of the 
PM and FPP, these devices have had their input and 
output buses paralleled with those of the ALU. In this 
arrangement it is not generally feasible to make use of 
more than one module in a given cycle. This is because 
the data buses may carry useful information to only one 
device at a time (this assumes that passing the same 
data to more than one device is of limited use). Also, only 
one device may drive the Y _BUS at a time. 
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F,lgure 5·18. Am29300 Demonstration System Microinstruction Word Layout·· Register File Controls 

Control Primary Prirr.ary A1temate 1 Alternate 1 A1temate 2 
Pipeline Field Name Signal Name Field Name Signal Name Field Name 
Bit# Meaning Meaning Meaning 

P91 Reg A Macro/Micro· P_ARA_MAC 

If P91 = 0 then primary If P91 = 1 then alternate 1 

P90 Register A Address (5) P_RA (5) 
P89 Register A Address (4) P_RA (4) 
PBS Register A Address (3) P_RA (3) 
pa7 Register A Address (2) P_RA (2) 
P86 Register A Address (1 ) P_RA ( 1 ) RA Count Direction P_UP/DN_A 
P85 Register A Address (0) P_RA (0) RA Count Enable P_CNTA_EN 

P84 Reg B Macro/Micro· P_ARB_MAC 

If P84 = 0 then primary If P84 = 1 then alternate 1 

P83 Register B Address (5) P_RB (5) 
P82 Register B Address (4) P_RB (4) 
P81 Register B Address (3) P_RB (3) 
P80 Register B Address (2) P_RB (2) 
P79 Register B Address (1 ) P_RB ( 1 ) RB Count Direction P_UP/DN_B 
P78 Register B Address (0) P_RB (0) RB Count Enable P_CNTB_EN 

P77 Reg C Add Source (1) P_C_SEL (1 ) 
P76 Reg C Add Source (0) P_C_SEL (0) 

If P77:76 = 00 then primary If P77:76 = 01, 10, 11 then alternate 1 

P75 Register C Address (5) P_RC (5) 
P74 Register C Address (4) P_RC (4) 
P73 Register C Address (3), P_RC (3) 
P72 Register C Address (2) P_RC (2) 
P71 Register C Address (1 ) P_RC ( 1 ) RC Count Direction P_UP/DN_C 
P70 Register C Address (0) P_RC (0) RC Count Enable P_CNTC_EN 

P69 B Write Port Select P AWB MAC 
P68 A Bus Output Enable· P-OEA* 
P67 A Port Write Enable· P-WEA· 

P66 B Port Write Enable· P=WEB· 
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Figure 5-19. Am29300 Demonstration System Mlcrolnsturctlon Word Layout·· Data Path Controls 
I:; 
Ii 
!. 

Control Primary Primary Alternate 1 Altemate 1 Alternate 2 Alternate 2 I 
Pipeline Field Name Signal Name Field Name Signal Name Field Name Signal Name II! 
Bit # Meaning Meaning Meaning 

I;' !! 

P65 Data Path Select (1) P_DPS (1) 
~;, 
': 

P64 Data Path Select (0) P_DPS (0) 

ALU when P65:64 = 00 FPP when P65:64 = 10,11 PM when P65:64 = 01 

P63 ALU Instruction (8) P ALU INST (8) FPU Instruction (4) P FP I (4) TCX P_TCX 
P62 ALU Instruction (7) P=ALU=INST (7) FPU Instruction (3) P-FP-I (3) TCY P TCY 
P61 ALU Instruction (6) P_ALU_INST (6) FPU Instruction (2 ) P-FP-I (2) ACC (1 ) P=ACC (1) 
P60 ALU Instruction (5) P_ALUJNST (5) FPU Instruction (1 ) P=FP=I (1) ACC (0) P_ACC (0) 
P59 ALU Instruction (4) P ALU INST (4) FPU Instruction (0) P_FP_I (0) RND P RND 
P58 ALU Instruction (3) P-ALU-INST (3) ENR* P_ENR* XSEL P:::XSEL 
P57 ALU Instruction (2) P=ALU=INST (2) ENS* P_ENS* YSEL P YSEL 
P56 ALU Instruction ( 1 ) P_ALU_INST (1) ENF* P _ENF* TSEL P=TSEL 
P55 ALU Instruction (0) P_ALUJNST (0) Feed Through (1 ) P FP FT (1 ) ENXA* P_ENXA* 
P54 Position MaclMic* P_POS_MAC Feed Through (0) P=FP=FT (0) ENXB* P ENXB* 
P53 Position (5) P_POSITION (5) IEEElDEC' PJEEE/DEC' ENYA' P-ENYA* 
P52 Position (4) P_POSITION (4) Seed OUtput Enable' P_SEED_OE ENYB' P::::ENYB* 
P51 Position (3) P_POSITION (3) Projective/Affine P PROJ/AFF' ENP' P ENP' 
PSO Position (2 ) P_POSITION (2) Rounding Mode (1) P:::FP _RND ( 1 ) ENT* P:::ENT* 
P49 Position (1) P_POSITION (1 ) Rounding Mode (0) P_FP_RND (0) FA PJA 
P48 Position (0) P POSITION (0) FTX P_FTX 
P47 Width MaclMic' P:::WID_MAC FTY P_FTY 
P46 Width (4) P_Width (4) FTP P FTP 
P45 Width (3) P Width (3) PSEL ( 1 ) P::::PSEL (1) 
P44 Width (2) P-Width (2 ) PSEL (0) P_PSEL (0) 
P43 Width (1) P=Width (1) 
P42 Width (0) P_Width (0) 
P41 Macro/Micro' Status P_MIC/MAC 
P40 Register Status P_REG_STAT 
P39 Load Macro Status P _LD_MAC_STAT 
P38 Borrow Mode P 8M 
P37 Memory Add Select (3) P =MEM (3) 
P36 Memory Add Select (2) P _MEM (2 ) 
P35 Memory Add Select ( 1) P _MEM (1) 
P34 Memory Add Select (0) P _MEM (0) 
P33 Memory Write En' P_MEM_WR' 
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Figure 5-20. Am29300 Demonstration System Microinstruction Word Layout -- Control Section Controls 

Control Primary Primary Alternate 1 Alternate 1 Alternate 2 
Pipeline Field Name Signal Name Field Name Signal Name Field Name 
Bit # Meaning Meaning Meaning 

P32 Cycle Length (1) P_CLK_LEN ( 1 ) 
P31 Cycle Length (0) P_CLK_LEN (0) 
P30 I nterrupt Enable P_INT_EN 

P29 Force Continue P_FC" 
If P29 = 1 then primary If P29 = 0 then alternate 1 

P28 Seq Instruc.tion (5) P_SEQ_INST (5) Interrupt Host PINT HOST 
P27 Seq Instruction (4) P_SEQ_INST (4) Sign Extend A_BUS P:::SIG'FCEX 
P26 Seq Instruction (3) P_SEQ_INST (3) Initialize P INIT 
P25 Seq Instruction (2) P_SEQ_INST (2) Load Interrupt Base Add P:::LD_INT_BASE 
P24 Seq Instruction (1 ) P SEQ INST (1) 
P23 Seq Instruction (0) P=SEQ=INST (0) 

If P29 = 1 AND P28:27 1= 11 then primary If P29 = 0 OR P28:27 = 11 then alternate 1 

P22 Test Select (3) P TEST (3) Am29114 Instruction ( 3 ) PINT INST (3) 
1'21 Test Select (2 ) P=TEST (2) Am29114 Instruction (2) P=INT=INST (2) 
P20 Test Select (1) P TEST (1) Am29114 Instruction ( 1 ) PINT INST ( 1 ) 
P19 Test Select (0) P=TEST (0) Am29114 Instruction ( 0) P=INT=INST (0) 

P18 Load Operand Counter P LD CNT 
P17 Load Macro Op Reg P:::LD:::MAC_OP 

P16 Branch Field Enable" P _BRANCH_EN" 
P15 Branch Address (15 ) D_BUS (15) 
P14 Branch Address (14) D_BUS (14) 
P13 Branch Address (13) D_BUS(13) 
P12 Branch Address (12) D_BUS(12) 
P11 Branch Address (11) D_BUS(11 ) 
Pl0 Branch Address (10) D_BUS(10) 
P9 Branch Address (9) D_BUS(9) 
P8 Branch Address (8) D_BUS(8) 
P7 Branch Address (7 ) D_BUS(7) 
P6 Branch Address ( 6 ) D_BUS(6) 
P5 Branch Address ( 5 ) D_BUS(5) 
P4 Branch Address (4) D_BUS(4) 
P3 Branch Address (3) D_BUS(3) 
P2 Branch Address ( 2 ) D_BUS (2) 
P 1 Branch Address (1) D_BUS(l ) 
PO Branch Address (0) D_BUS(O) 

Alternate 2 
Signal Name 

If separate control bits were provided for the FPP or PM, 
they could perform multi-cycle operations such as New­
ton-Raphson division in the FPP or greater than 32 by 32 
bit multiplies in the PM, while remaining detached from 
the input and output buses during most of the multi-cycle 
operation. If this were done, the ALU could operate in 
parallel during such operations. The cost of doing this 
would be an additional 15 to 35 bits added to the microc­
ode word width. These bits would get full use only during 
those situations that parallel calculations are possible. 

Data Path Selection: Only one functional unit (data 
path) in the data section is chosen in anyone cycle. Bits 
65 and 64 select one of four options: 

For this design it was decided to use a smaller microcode 
word by overlapping control bits for each of the three 
functional units. 
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Bit 

65 64 

o 
o 

o 
1 

o 

ALU enabled 

PM enabled 

FPP enabled 

Special function 



In the special function option, the FPP is enabled for 
calculation and the control bits are assumed to be set 
correctly for use by the FPP, but the output enable of the 
FPP is inactive with the ALU output enable active. The 
ALU is not enabled for calculation in the sense that its 
hold input is made active to prevent state change in the 
status or Q registers. 

This odd-looking combination is used to provide input 
operand parity checking forthe FPP. The FPP does not 
have its own parity checking circuits, so with this arrange­
ment the ALU parity checkers will be enabled by the 
active output enable on the ALU. The FPP is still allowed 
to function and may complete its operation and store the 
result in its internal registers, while in the same cycle the 
input operand parity is checked by the ALU. The ALU 
state is left undisturbed by this operation. 

How useful is this scheme? It may save a cycle once in 
a while, but mainly it illustrates the odd sort of opportuni­
ties one may find to use up an otherwise wasted control 
code. 

ALU Path: When the data path select bits enable the 
ALU meaning for bits 63:38, bits 54 and 47 are used to 
select either the microcode or macroinstruction position 
and width fields. The macro supplied information is 
selected when these select bits are high. When the 
macro source is selected, the microcode position and 
width fields are unused. 

Bit 41 selects macro or micro status inputs for the ALU. 
Bit 40 selects whether the status output of the ALU is 
flow-through or registered. 

Bit 39 is used as a clock qualifier for the loading of the 
ALU external macro status register. 

Bit 38 directly controls the Borrow mode of the ALU. 

FPP Path: When the data path selects enable the FPP, 
the control bits shown directly manage the operation of 
the FPP as described by the Am29325 data sheet. Bit 52 
is used to enable the output of the FPP external "division 
seed" registered PROM. 

PM Path: When the data path selects enable the PM, the 
listed control bits are used as defined in the Am29C323 
data sheet. 

Data Path Enabling: What does it mean to enable or 
disable one of the functional units? The control bits that 
are shared between each functional unit are either high 
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or low every cycle, and they are connected to the ALU 
and multipliers all the time. There is no intervening logic 
that turns all the control bits "off" when a particular path 

is not selected. Each device sees ajumble of nonsense 
on its control lines whenever the control field meaning is 
intended for another device. Nonsense or not, each 
device will do whatever the control bits specify. 

Enabling a data path means making the output enable of 
the selected device active so that it drives the Y _BUS and 
is able to write calculation results back into the register 
file. In the case of the ALU, enabling also means that the 
ALU hold input will be made inactive so that state change 
of the ALU status and Q registers is allowed. Enabling 
one path implies disabling the other paths. 

For the PM and FPP, disabling means their output 
enables are inactive. It also means that the PM product 
register feed through pin is disabled by the control 
decode logic. Forthe FPP it means that both of its register 
feed through lines are disabled by control decode logiC. 
These register feed through controls are disabled be­
cause, if they are allowed to be active, it is possible forthe 
PM and FPP multipliers to feedback on themselves and 
begin to oscillate. This action would not damage the 
devices, but it could add to power consumption and 
system power plane noise. A simple prevention is just to 
disable the feed-throughs when the data paths are not 
selected. Note that the ALU has no internal feedback 
paths and does not need any similar treatment. 

Memory Control: Bits 37:33 are available at all times to 
control the Am29300 system memory. 

Bit 33 is the memory write enable control. 

Bits 35:34 select the source of the address for the 
memory. 

35 

o 

o 
1 

Bit 

34 

o No memory address or operation is 
selected 

1 A BUS data is used to address memory 
o The A memory address counter is 

selected for address 
The B memory address counter is 
selected for address 
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Bits 37:36 select the followit:lg: 

Bit 

37 36 

o 
o 
1 
1 

o 
1 
o 
1 

Load counter A 
Load counter B 
Selected counter is incremented 
Selected counter is decremented 

The increment and decrement commands have effect 
only when a counter is selected as the MA BUS source. 
The load commands have effect only when the A_BUS is 
the selected source. 

Control Section Controls 

Figure 5-20 shows the bit definitions for the control 
section. 

Pipeline bits 32:31 control the length of each machine 
cycle. 

Bit 

32 31 

0 0 Normal cycle length 
0 1 1.33 x Normal cycle length 
1 0 1.66 x Normal cycle length 
1 1 2 x Normal cycle length 

Bit 30 enables sequencer interrupts on a cycle by cycle 
basis. 

Bit 29 is the Force Continue signal for the sequencer. 
When this bit is active, the sequencer will execute a 
continue instruction regardless of the state of the se­
quencer instruction or test select lines. This effectively 
enables the alternate meaning forthe sequencer instruc­
tion and test select fields. 

Bits 28:19 are normally the sequencer instruction and 
test select inputs. When Force Continue is active, the 
sequencer instruction field meaning changes. 

When Force Continue is active, bits 28:25 are used to 
control four individual functions. Bit 28 will send an 
interrupt signal to the host system. Bit 27 will enable the 
sign extension of data going from the D_BUS to the 
A_BUS. Bit 26 will force the control pipeline register to 
load data from the control store initialize register at the 
next active system clock. Bit 25 will enable the loading of 
the interrupt base address register. 
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Bits 22:19 ar.e used to control the sequencer test selec­
tion. When an unconditional sequencer instruction is in 
effect or whenthe Force Continue bit is active, bits 22:19 
are used to control the Interrupt controller instruction. 

Bit 18 is used to load the macro operand counters from 
the macro opcode register. 

Bit 17 is used to load the macro opcode register. 

Bit 16 enables the three-state outputs on the branch field 
bits of the control pipeline register. If these outputs are 
disabled, then the sequencer,A BUS to D BUS trans­
ceiver, or Interrupt Controller may drive the D_BUS. How 
a device is chosen to drive the D_BUS is explained in the 
control decode logic description. It is only important to 
note that if bit 16 is active, the branch field outputs will be 
active and will have priority over any other driver on the 
D_BUS. 

Bits 15:0 are the branch address field to the sequencer. 
This field is also used to contain constants or masks. 
These may be used by the data section, sequencer, 
interrupt base register, or interrupt controller. It is a full 16 
bits long in order to allow for constants or masks that fill 
half of the 32-bit data path. This allows 32-bit microcode 
supplied masks to be formed with two microinstructions. 

Alternate Arrangements 

The microcode word size just defined for this system 
totals 92 bits wide. Having so many bits allows the 
flexibility to change the control over most of the 
machine's functions on any or every cycle. But, this 
degree of control flexibility is not required for every 
application. The size of the control store may be reduced 
based on how the system is used most often. Following 
are a few comments on ways to rearrange and reduce the 
control store size. 

Current Control Bit Usage 

First let's look at how the control bits are used in this 
design. 

Seven of the bits are used to control the selection of 
alternate field meanings (I.e., overlap control in bits 91, 
84,77:76,65:64, and 29). 

Eleven bits are used to control functions that are desired 
to operate in all cycles, independent of other system 
operations. These are the register file write and read 
enables (bits 69:66), memory controls (bits 37:33), and 
the cycle length controls (bits 32:31). 



Eight bits generally do not change state frequently. Their 
existence in this design is a convenience that reduces the 
need for control decode logic and adds system flexibility. 
These bits are 41:38, 30,18:16. 

Three bit fields are used only with some instruction 
types. These are the position, width, and branch fields. 
Whenever a particular instruction does not use a field, 
those bits in the field are currently wasted in that in­
struction cycle. 

Alternative Usage 

The bits that change infrequently could be replaced by . 
decode logic that provides these same control signals via 
set-reset flip flops. The flip flops would be controlled by 
overlapping set and reset commands with some other 
control store field. This would add to the decode logic 
complexity and would limit when the flip flops could be 
changed by restricting the control over them to certain 
instruction types. Since they change only infrequently, 
the requirement to use certain instruction types when 
setting or resetting them should not be a problem. 

Those bitfields that are limited to certain instruction types 
could be overlapped. An example might be to overlap the 
position and width fields with the branch address field. 
This would restrict branches to instructions that do not 
require the position or width information. 

When alternative field meanings are enabled, often the 
alternative definition does not make use of all the bits in 
the field. This presents the opportunity to overlap other 
control bits that may be valid in the same cycle as the 
alternate meaning of the field. 

For example, some of the infrequently-used control bits 
could be overlapped with the unused bits of the register 
C address when the primary meaning of the C address 
field is not active. When a two address instruction is 
executed, the address for the C register comes from the 
Aor B address, thus leaving the microcode fieldforthe C 
register address available for other functions. 

In another example, the bits in the position and width 
fields that are not used by the PM or FPP could be 
overlapped with other control functions when the alter­
nate meanings for the field are in effect. An alternate 
branch address field might be placed in those bits to allow 
branch instructions in combination with FPP or PM 
operations without the need for the currently defined 
branch field. 

Careful analysis of how each data path is used may also 
allow reductions through the elimination of controls that 
are not needed. As an example: if the PM were used 
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only in flow through mode, all the controls for register 
enables, flow through modes, and input multiplexers 
could be removed from the microcode word and those 
inputs to the PM tied to fixed voltage levels. If only two's 
complement mode is used then an additional two bits 
may be eliminated. This would leave only four necessary 
control bits, the accumulator controls, rounding mode, 
and format adjust. This reduction might allow PM 
operations to be overlapped with some multiply-accumu­
late operations in the FPP. 

By combining these reduction techniques, the following 
changes could be made: 

All of the eight infrequently used control bits could be 
moved to overlap with the C register address, with half in 
effect when the A address is substituted forthe C address 
and half in effect when the B address is substituted. 

The PM controls, except for flow though and two's 
complement mode, may be moved to overlap with the 
position, width, and memory control fields. Also, the 
fourth data path select field may be changed to disable 
the memory controls and select the ALU - minus the 
position and width fields-to be active along with the PM. 
In this mode the PM flow through and two's complement 
mode controls would be fixed with no flow through and 
two's complement mode active. The ALU position and 
width inputs would be set to 0 and 31 respectively by 
control decode logic (unless these fields were selected to 
come from the macro opcode). 

The branch address field may be moved to overlap with 
the position, width, and memory control fields. When ever 
the sequencer instruction selects a branch operation, the 
position, width, and memory fields are disabled and the 
branch address meaning substituted. 

If all of these changes are made, the currently defined 
branch address field and infrequently used control bits 
may be eliminated, which would save 24 bits of microc­
ode word width. This would reduce the word size to 68 
bits. 

This savings would come at the cost of allowing branch 
instructions only when the ALU instruction does not need 
position or width information from the microcode (this 
information may still come from the macro opcode regis­
ter) and when the system memory is not being used. 
Further, a PM operation could not occur with a memory 
access in the same cycle. Also, with these changes it 
would be possible to control the ALU and PM concur­
rently when the ALU does not need position or width 
information and when the PM operates on internally 
registered data. 
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There are many such combinations of microcode control 
field definition. Each one provides a different trade-off 
between word size and what operations may be concur­
rent. Each one requires a different degree. of complexity 
in the control decode logic. 

CONTROL DECODE 

What Is It Good For? 

The ideal microprogrammed system has a separate 
microcode control store bit for each control input that 
exists in the system. This kind of complete control over 
every aspect of the system directly from the control 
pipeline totally eliminates the need for decoding the 
meaning of any system control bits. It also requires a very 
large microcode word to manage most useful systems. 
So in the real world, most microprogrammed systems 
encode or overlap at least some control functions in the 
microcode word. 

Encoded control or not, each control input in the system 
requires valid voltage levels during each machine cycle 
if the system is to operate as expected. 

The control decode logic acts as the bridge between 
encoded or overlapped (Le., sometimes unavailable) 
microcode control fields and the related control signals in 
the system. The control decode logic continuously pro­
vides valid logic levels for those control signals that 
cannot be directly driven by the control pipeline register. 

If the control field for a particular function is encoded, the 
control logic translates the function codes into individual 
control signals. Where control fields are overlapped, the 
control logic may be used to disable logic affected by a 
control field when that field has a meaning different than 
that intended for the logic being disabled (Le., when 
overlapped control is active). 

In some cases, control logic is used to prevent harmful 
conflicts between the meaning of different control bits, for 
example when two separate control fields affect the 
three-state enables on different buffers which may drive 
the same signal line . Certain combinations of control bits 
might enable both buffers in the same cycle causing 
contention between the buffers. Allowed to continue for 
long periods, this kind of contention may destroy the 
buffers. Control logic may be used in this situation to 
disable one or both buffers when the combination of 
controls affecting them would otherwise cause damage. 
In fact it is strongly recommended that this kind of 
problem always be avoided by designing the control 
decode logic to prevent such disasters. The alternative is 
to watch hardware melt because of a software mistake. 
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Control Logic Description 

Some of the control logic function in this demonstration 
system has been distributed into the devices being 
controlled. This is done when a PAL is used to implement 
a function. A PAL generally has excess inputs and 
internal logic that may be put to use in decoding the 
meaning of encoded control fields( e.g. the memory 
address counters). The memory address counters are 
impiementedfromAmPAL22V1 0 devices and are shown 
in Figure 4-7. The control for loading, incrementing, 
decrementing, and output enabling the counters is pro­
vided directly from the encoded memory control field. 
The PALs internally decode the meaning of the control 
bits. 

When a device requires a decoded control Signal, the 
signal must come from control decode logic that takes 
control pipeline bits as input and produces the needed 
control signal. In this system, the required control logic 
has been implemented in three AmPAL 18P8B PALs. 
These PALs are fast to minimize the delay induced 
between the control pipeline register and the device 
controlled. The PALs also provide the convenience of 
having programmable output levels, either high or low 
active for each output, independent of other outputs. 

The block diagram for these PALs is shown in Figures 5-
21 and 5-22. The logic definition files for these PALs are 
in Appendix M. 

The ALU output enable, ALU hold, and PM output enable 
are all direct results of the pipeline data path select bits. 

The pipeline controls for seed register output enable, PM 
flow through, and FPP flow through are gated by the 
appropriate data path selection so that each control 
signal is active only when the related data path is se­
lected. 

The D_BUS to A_BUS direction of the D_BUS trans­
ceiver is enabled by the register file A output's being 
disabled in conjunction with the seed register output's 
being disabled. 

The A_BUS to MD_BUS buffer is enabled by certain 
codes of the memory control field. 

The control store initialize register select is enabled by 
the combination of the pipeline Force Continue and the 
pipeline control bit for the initialize select. It is also 
enabled by the WCS_INIT* signal from the host interface 
controller. Note that the initialize control is synchronous 
as used in this system so that the initialize word is loaded 
only at the next active clock. 
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The D_BUS sign extend, Sequencer output enable, 
Interrupt controller instruction and chip select enables, 
and A_BUS to D_BUS enable are all direct results of the 
pipeline sequencer instruction, interrupt controller in­
struction, branch enable, and Force Continue bits. 

The Sequencer output enable, A_BUS to D_BUS en­
able, and interrupt controller chip select are used to 
control which device is allowed to drive the D_BUS in any 
given cycle. These output enables are arranged in a 
priority with only one output allowed to be active in any 
cycle; including the branch field of the control pipeline. 

The highest priority output is the branch field. If it is 
enabled all other outputs are disabled. 

If the branch field is disabled, then the Sequencer D 
output is enabled if either a Continue or a Pop D instruc­
tion is being executed. 

If neither the branch field nor the sequencer are enabled, 
then the interrupt controller may drive the D bus if the 
interrupt controller instruction is one of three read 
operations. 

If none of the above conditions exist to enable the other 
D_BUS devices, then the A_BUS to D_BUS transceive 
path is enabled. 
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Note that the interrupt controller chip select is treated as 
both an instruction enable and as an output disable. The 
chip select is active whenever there is a valid interrupt 
instruction that would not cause a conflict with another 
driver of the D_BUS. This means that when there is a 
valid instruction, the chip select will be inactive only if a 
read instruction is selected and either the branch field or 
sequencer are already enabled on the D_BUS. If any 
other interrupt instruction is in effect, the interrupt control­
ler does not drive its outputs. 

The above scheme for managing the access rights to the 
D_BUS may seem a bit complex but it allows great 
flexibility in movement of information over the D_BUS. 
Information may be moved between the interrupt control­
ler and sequencer, interrupt controller and A_BUS, or 
sequencer and A_BUS. Information may be loaded into 
the interrupt base address register from the pipeline, 
sequencer, or A_BUS. Also, the pipeline may provide 
data to the sequencer, interrupt controller, interrupt base 
address register, or A_BUS. 
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SECTION 6 

System Timing and Critical Path Analysis 
DEFINITIONS 

The upper limit on system speed is set by the slowest 
signal propagation path in the system. 

The length of a signal propagation path is measured from 
the output of one register to the input of another register, 
where all registers are loaded by the same clock. 

The slowest signal path will be different for different 
control states. An example would be the selection of the 
ALU data path vs. the FPP data path. 

A signal path may be slower in the first cycle that control 
selects the path than it will be in a subsequent cycle that 
maintains the same path selection. This can be due to 
three-state enable or disable times being longer than 
normal propagation delays of the circuits involved. 

Register 
File 

ALU 
PM 
FPP 

CONTROL AND DATA PATHS 

In determining the maximum system speed, every signal 
path must be analyzed. This requires tracing every 
control signal and every data signal and totaling the delay 
induced by each component along the path from source 
register to destination register. Where parallel paths 
exist, the time delay for the slowest path is used. 

Most often, the critical (slowest) paths originate with the 
pipeline control register. In the data section the paths will 
end with data being loaded into the register file, an FPP 
or PM internal register, the system memory, or aD_BUS 
destination. In the control section the paths will end with 
loading of new control bits into the control pipeline 
register. 

Memory 
Address 
But/en! 

09856A6·1 

Figure 6-1. Data Section Timing Paths 
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OED D INTR INTA A 

Sequencer 

09856A 6-2 

Figure 6-2. Control Section Timing Paths 

Since the control section and data section operate in 
parallel, the slowest path in either section will determine 
the cycle length required for a specific operation. 

Figures 6-1 and 6-2 provide a block diagram view of 
significant signal pathways for both control and data lines 
in both the control and data sections. 

Referring to these figures as critical timing paths are 
discussed may help in following the timing analysis. 

In this and nearly any complex system, there are hun­
dreds of pathways that must be traced in order to ensure 
finding all the worst case delays. To go through all ofthem 
here would require too much time and space. Many ofthe 
timing paths forthis design have already been analyzed, 
and what appear to be the worst case paths will be shown 
here. 

WORST CASE PATHS 

Each case is shown in Table 6-1. The table is separated 
into several pages due to its length. It can be viewed as 
a long spreadsheet calculation in which the appropriate 
timing parameters that apply to each case have been 
selected and placed in the correct column. Only the worst 
case delay for each segment of a critical path is shown. 
Parallel but faster paths have been eliminated from each 
case so that the total of the times listed for a case 
represents the minimum time in which a path can be 
traveled. 

6-78 

Case Definitions 

1. Basic flow-through calculation, data path. 

Data is moved from the register file through the 
ALU and back to the register file. The timing path 
begins at the control pipeline where the register 
file address for the A and B read operands 
appear after the clock to output delay of the 
control pipeline register. These addresses flow 
through the Am29827 buffer that forms one side 
of the register file address multiplexer. The 
address accesses the register file and one ac­
cess time later the data operands are presented 
to the ALU. By this time the control signals forthe 
ALU instruction have been stable long enough 
that the flow through time of the data in the ALU 
will be the slower path. Once data is on the Y bus 
the last delay is the set-uptime forthe registerfile 
before clock can occur. Again, the control path to 
the register file (A port write address) is faster 
than the data path so the data path is the limiting 
factor. 

The total delay for this path is 96 ns. If the PM 
path is substituted for the ALU the delay would 
be 174 ns.lfthe FPPwere substituted, the delay 
is 179 ns. So flow through calculations with 
either of the multipliers will require extended 
cycle length. 



2. 

3. 

4. 

5. 

Basic flow-through calculation, position control. 
path. 

This case is the same as Case 1 except that a 
careful look at the control path for the position 
input to the ALU is taken. This path turns out to 6. 
be 97 ns worst case. This is an example where 
the control path is a IiUle slower than the data 
path. 

Flow-through calculation with address supplied 
by the Macro operand counter; counter output 
enabled same cycle. 

Again this path is similar to Case 1. The differ­
ence is that the read addresses are assumed to 
come from the Macro operand counters. It is 7. 
further assumed that the counters are selected 
during the cycle analyzed. This means that the 
output enable time of the counter must be added 
to the clock to output time for the pipeline bit that 
selects the macro opcode counter. 

This increases the delay path to 115 ns, indicat­
ing that during the first cycle, in which a macro 
opcode counter is used as the address source, 
the cycle length will need to be extended. 

Flow-through calculation with address supplied 
by the Macro operand counter; counter output 
enabled prior cycle. 8. 

This case is a comparison with Case 3, where 
the Macro operand counter was output enabled 
in the previous cycle. The counter delay is thus 
limited to the clock to output delay of the 
counter. This reduces the cycle time require­
ment to 90 ns. So, sequential register file 
address cycles, using an operand counter can 
be completed within the normal cycle time. 

First cycle of FPP Newton-Raphson division, 
seed value load. 

In this case the critical path starts at the control 
pipeline clock to output delay, and then goes 
through the control decode logic that enables the 
output of the Seed register. In this case it is 
assumed that the seed value is multiplied and 
stored in an FPP internal registerto complete the 
first cycle of a Newton-Raphson division. This 

9. 
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requires a total of 169 ns. Note that if the seed 
value had simply been moved into the input 
register of the FPP, the total delay would have 
only been 73 ns. 

Memory read with address from the register file, 
selected by microcode. 

This is a simple memory read with the time 
starting at the pipeline clock to output delay, 
followed by the address mux, register file ac­
cess, A_BUS to MA_BUS buffer, memory, and 
register file data set-up time. The total time 
comes in at 99 ns, just under the desired 100 ns 
basic cycle time. 

Memory read with address from a memory 
address counter. 

Here the access time of the register file is essen­
tially traded for the output enable time of a 
memory address counter. The total delay only 
improves to 94 ns, but there is a big advantage 
in the fact that for a sequential access the CPU 
did not need to calculate a memory address. 
This will save at least one cycle. Also, it is 
possible to overlap a memory read from an 
address counter with a calculation cycle in the 
CPU. 

Memory write with data from register file, se­
lected by operand counter. 

In a memory write case, time is saved by needing 
only to meet the data set-up time of the memory 
rather than the memory access time plus the 
register file set-up time, as would be the case in 
a read operation. In this case the time gained is 
traded for the time required to output enable an 
operand counter. Even so, the total time is still 
94 ns. 

Move register file data to interrupt controller or 
sequencer, data selected by operand counter. 

Here again, the long delay path of using a macro 
opcode counter as the register file address 
source is used. Even with the output enable 
delay of the counter in addition to the pipeline 
clock to output time, the total delay comes in at 
89 ns. 

6-79 



CHAPTER 6 
Articles/Application Notes 

10. Move sequencer or interrupt controller data to 
register file: 

vector then accesses the control store. The total 
for this cycle is 81 ns. 

In the reverse of the above case, the time to get 13. Sequencer branch to macro opcode specified 
instruction. 

11. 

12. 
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data from D_BUS is similar to the time in Case 9 
to access data from the register file. The big 
delay here is the need to move the data from the 
A_BUS, through the ALU and back to the regis­
terfile. Not having a direct path to the Y _BUS has 
cost a good bit of time. The total comes in at 
127 ns. Fortunately this type of data move is 
not likely to be a commonly executed cycle. 

Sequencer branch, conditional or unconditional. 

In this case much of the delay is in the pipeline 
clock to output time for the branch field enable 
bit, cascaded with the output enable time of the 
branch field in the control pipeline register. This 
is followed by the branch address flow through 
time of the sequencer and the access time of the 
control store. Even with all the delay, this path is 
significantly faster than most of the data section 
paths. The total time is 84 ns. 

Sequencer interrupt or trap cycle. 

In this case the pipeline output doesn't turn out to 
be in the main delay path. The interrupt starts at 
the clock to output delay of the trap logic where 
the interrupt request is generated. The se­
quencer then responds with interrupt acknowl­
edge, which in turn output enables bit 3 of the 
interrupt vector from the trap logic. The interrupt 

Here the initial delay is the clock to output delay 
of the macro opcode register, followed by the 
access time of the map RAM. Next is the branch 
flow through time for the sequencer and the 
access of the control store. This cycle comes in 
at 85 ns. 

FINAL RESULTS 

Several cases were shown here to help give an idea of 
how fast the system is for different instructions. These 
cases were some of the worst identified during the critical 
analysis of this design. All but three of the cases shown 
fit within the desired 100 ns basic clock cycle. Two of 
the cases would only require a cycle 1 1/3 times normal. 
Case 5 officially needs a double length cycle. 

As noted in the discussion of Case 1, both the PM and 
FPP require much longer cycles for flow through calcula­
tions. If the PM and FPP are used in clocked multiply 
mode for sequential pipelined multiplies, as would occur 
in array calculations, the cycle time can be significantly 
reduced. In clocked multiply mode the PM or the FPP 
requires only 100 ns cycle times. 

With a dynamically variable clock cycle length, this sys­
tem can run most instructions at the basic 100 ns cycle 
rate, but will still handle the occasional extended execu­
tion time instructions. 
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Am29300 Demonstration System 

Table 6-1A 

Data Path Element 
Parameter Description 

Symbol 

Control Store/Register -
Am9151-50 
Clock to Output Tpkhdqv1 
OE to Output Valid Tgldqv 
Synchronous! 
I to Clock Set-up Tivpkh 
Address to Clock Set-up Tavpkh 

Control Decode Logic -
AmPAL18P8B 
Input to Output Tpd 

Macro Opcode Register -
Am29818-1 
Clock to Output Tpd 
Input to Clock Set-up Ts 

Macro Operand Counters -
AmPAL22V10A 
Clock to Output Tco 
Input to Clock Set-up Ts 
OE to Output Valid Tea. Ter 

Reg File A or BRead 
Add Mux - Am29827 A 
Input to Output Tph 
OE to Output Valid Tzh 

Reg File C Write Add Mux -
AmPAL18PSQ 
Input to Output Tpd 

Signal Path Timing Analysis 

Worst Case Time Delay in Nanoseconds. Over Commercial Operating Range 

Value Case Case Case Case Case Case Case Case Case 
1 2 3 4 5 6 7 8 9 

15 15 15 15 15 15 15 15 15 
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Table 6-18 

Data Path Element 
Parameter Description 

Symbol 

Reg File B Write Add Mux -
AmPAL22P10AL 
Input to Output Tpd 

ALU Position & Width Mux -
AmPAL22P10AL 
Input to Output Tpd 

Register File - Am29334 
Address to Read 
Data Output Access 
OE to Output Valid Turn-on 
OE to Output Three-state Turn-off 
DataSet-up Tds 

ALU - Am29332 
Data A or B to Y Parity 
Instruction to Y Parity 
Width to Y Parity 
Position to Y Parity 

Parallel Multiplier -
Am29C323 
Unclocked Multiply X or Y 
to PParity Tmuc 
Clocked Multiply, 
Cycle Time Tmc 
Clocked Multiply, 
Data to Clock Set-up Tsxy 
Clocked Multiply, 
Clock to Output Tpdpp 

Worst Case Time Delay in Nanoseconds, Over Commercial Operating Range 

Value Case Case Case Case Case Case Case Case Case 
1 2 3 4 5 6 7 8 9 

25 

25 25 

24 24 24 24 24 24 24 
20 
16 
9 9 9 9 9 9 9 

42 42 42 42 
53 
40 
48 48 
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Table 6-1C 

Data Path Element 
Parameter Description 

Symbol 

Floating Point Processor -
Am29325 
Unclocked Operations 
Clocked Operation 
Clocked Multiply, 
Data to Clock Set-up Tsd1 
Clocked Multiply, 
Data to Clock Set-up Tsd2 

FPP Seed Register -
Am2920 & Am27S25 
OE to Output Valid Tzh 

FPP External Status 
Register -AmPAL22V10A 
Clock to Output Tco 
Input to Clock Set-up Ts 

Macro Status Register -
Am29818-1 
Clock to Output Tpd 
Input to Clock Set-up . Ts 

Memory Address or 
Data Buffer -Am29827 
Input to Output Tph 
OE to Output Valid Tzh 

Memory Address Counters -
AmPAL22V10 
Clock to Output Tco 
Input to Clock Set-up Ts 
OE to Output Valid Tea, Ter 
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Worst Case Time Delay in Nanoseconds, Over Commercial Operating Range 

Value Case Case Case Case Case Case Case Case Case 
1 2 3 4 5 6 7 8 9 

125 
100 

13 

104 104 

35 35 
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6 
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25 
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Table 6-10 

Data Path Element 
Parameter Description 

Symbol 

Memory - Am99C165-35 
Chip Enable Access Time Telqv 
Address Access Time Tavqv 
Chip Enable to 
Output Disable Thz 
Write Pulse Width Twlwh 
Data to Write End Set-up Tdvwh 
Address to Write 
End Set-up Tavwh 
Write to Output Disable Twlqz 

D BUS-A BUS 
Transceiver - Am29853 
Input to Parity Output Tpd 
OE to Output Valid Tzh 

D_BUS - A_BUS Parity 
Buffer - Am29862 

Input to Output Tpd 
OE to Output Valid Tzh 

Map RAM - Am9150-25 
Address to Data Taa 

Interrupt Controller -
Am29114 
Clock to Interrupt Request 
Instruction Enable to 
Data Output 
Data in to Clock Set-up 
MINTA' to VectorOE 

Trap Logic -AmPAL22V10A 
Clock to Output Tco 
Input to Clock Set-up Ts 
OE to Output Valid Tea, Ter 

Worst Case Time Delay in Nanoseconds, Over Commercial Operating Range 

Value Case Case Case Case Case Case Case Case Case 
1 2 3 4 5 6 7 8 9 

35 
35 35 35 

20 
30 
20 20 

30 
10 

15 15 
15 

6 
12 

25 

41 

30 
10 10 
19 

15 
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Table 6-1E 

Data Path Element 
Parameter Description Worst Case Time Delay in Nanoseconds, Over Commercial Operating Range 

Symbol Value Case Case Case Case Case Case Case Case Case 
1 2 3 4 5 6 7 8 9 

Sequencer - Am29331 
Branch Input to Y Output 19 
Instruction to Y Output 25 
Instruction to D Output 31 
Force Continue to 
YOutput 21 
Interrupt Request to 
Interrupt Ack 11 
OE D to D Valid 25 

Minimum Cycle Time 
per Case 96 97 115 90 169 99 94 94 89 
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Am29300 Demonstration System Signal Path Timing Analysis 

Table 6·1 F 

Case Definitions 

1. Basic flow through calculation, data path. 
Pipeline, Tco; Address Mux, Tpd; Register File, Tpd; ALU, Tpd; Register File, Set-up. 

2. Basic flow through calculation, position control path. 
Pipeline, Tco; Position Mux, Tpd; ALU, Tpd; Register File, Set-up. 

3. Flow through calculation with address supplied by operand counter; counter output enabled same cycle. 
Pipeline, Tco; Operand Counter, Tea; Register File, Tpd; ALU, Tpd; Register File, Set-up. 

4. Flow through calculation with address supplied by operand counter; counter output enabled prior cycle. 
Pipeline, Tco; Operand Counter, Tco; Register File, Tpd; ALU, Tpd; Register File, Set-up. 

5. First cycle of FPP Newton-Raphson division, seed value load. 
Pipeline, Tco; Control Decode, Tpd; Seed Register, Tzh; FPP Internal Register Set-up, Tsd2. 

6. Memory read with address from the register file, selected by microcode. 
Pipeline, Tco; Address Mux, Tpd; Register File, Taa; Memory Address Buffer, Tpd; Memory, Taa; Register File, Set-up. 

7. Memory read with address from a memory address counter. 
Pipeline, Tco; Control Decode, Tpd; Memory Address Counter, Tzh; Memory, Taa; Register File, Set-up. 

S. Memory Write with data from register file, selected by operand counter. 
Pipeline, Tco; Operand Counter, Tea; Register File, Taa; Memory Address Buffer, Tpd; Memory, Write Set-up. 

9. Move register file data to interrupt controller or sequencer, data selected by operand counter. 
Pipeline, Tco; Operand Counter, Tea; Register File, Taa; A to 0 Bus Xcever, Tpd; Interrupt Controller, Data Set-up. 

10. Move sequencer or interrupt controller data to register file. 
Pipeline, Tco; Control Decode, Tpd; Sequencer, OED to 0; 0 to A Bus Xcever, Tpd; Parity Buffer, Tpd; ALU, Tpd; Register File, Set-up. 

11. Sequencer branch, conditional or unconditional. 
Pipeline, Tco; Pipeline Branch Field, Tzh; Sequencer, 0 to Y; Control Store, Address Set-up. 

12. Sequencer interrupt or trap cycle. 
Trap Logic, Clock to INTR; Sequencer, INTR to INTA; Trap Logic, Tea; Control Store, Address Set-up. 

13. Sequencer branch to macro opcode specified instruction. 
Macro Opcode Register, Tco; Map RAM, Taa; Sequencer A to Y, Control Store, Address Set-up. 
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SECTION 7 

Physical Issues 

ELECTRICAL LAYOUT ISSUES FOR 
POWER SUPPLY 

The TTL compatible, bipolar, Am29300 family compo­
nents all use internal ECl circuitry with TTL compatible 
1/0 buffers. 

Each part has a large number of output buffers due to the 
32-bit output bus, plus various status outputs. 

These two facts can make the real world interesting. 

When a large number of the output buffers switch simUl­
taneously, the local Printed Circuit Board (PCB) power 
and ground, and the chip internal power supply lines can 
experience significant noise transients. 

This power supply noise can couple into the internal 
logic's ECl VCC pins. Since the internal ECl circuitry is 
referenced to the ECl VCC, the power supply noise can 
cause short duration shifts in the threshold levels of the 
internal logic. 

Due to the way ECl circuitry operates, it has much 
smaller noise margins than equivalent TTL circuits. The 
threshold shifts result in lower than normal noise margins 
in already sensitive high speed circuits. These reduced 
noise margins can result in noise-induced logic errors. 

It is, therefore, very importantto provide very good power 
distribution and decoupling in a system using the 
Am29300 family. It is strongly suggested that a mUlti­
layer PCB be used to provide power and ground planes. 
It is also important to minimize coupling between the 
TTL and ECl VCC pins of any Am29300 bipolar device. 
This can be done in part through good power supply de­
coupling. 

An additional way to decouple the ECl and TTL VCC pins 
is to introduce inductive isolation. The simplest way to do 
that is to place a cut in the VCC plane that separates the 
ECl supply pins from the TTL pins. This produces a 

longer electrical path between the pins, which adds 
inductance between the pins. This inductive isolation will 
significantly reduce noise coupling. 

Some suggested PCB layouts for use with the Am29300 
family are shown in Figures 7-1a and 7-1b. The images 
are negatives where black indicates an absence of metal 
in the VCC plane. 

Although significant noise can also occuron the TTL and 
ECl ground lines, the ECl circuits are much less sensi­
tive to this noise. Attempting to isolate the TTL and ECl 
ground pins from each other can create more problems 
than it solves. Any isolation will reduce the noise in the 
ECl circuitry and thereby make the chip internal ECl 
ground "different" from the TTL ground. This can reduce 
the noise margin in the ECl to TTL conversion logic, 
introducing potential for noise induced errors. It is recom­
mended that no isolation between grounds be used. 

DECOUPLING CAPACITORS 

An added help in providing local VCC to ground decou­
piing is available in the form of under-chip capacitors. 

Special capacitors for PGA device packages have been 
developed by Rogers Corporation, Q-PAC Div., 2400 
South Roosevelt St., Tempe, AZ. 85282. 

SOCKETS 

Whenever high pin count, expensive VlSI components 
are used in a system, many hardware designers prefer to 
have the devices in sockets. This allows easy removal for 
repairs or upgrades and provides an additional test point 
in the system. 

Sockets forthe Am29300 family are available from Augat 
Corporation, Interconnection Component Div. 33 Perry 
Ave. Attleboro, MA. 02703. 
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SECTION 8 

Conclusion 
There are many ways to skin a cat and surprisingly, 
many more ways to build a computer. This application 
note has tried to guide the reader through just one 
simple implementation. The author hopes some of the 
reasons behind the design choibes in a microprogram­
med computer design were made clear during the course 
of the description. 

Aside from some general notions about how a micropro­
grammed system works, the reader should walk away 
having noted the following thoughts: 

This design is a full 32-bit processor capable of executing 
a full 32-bit add, barrel shift, logical, integer multiply, or 
even floating point multiply every 100 ns to 133 ns. That 
is a 7 to 10 Million Instructions Per Second (MIPS) rate, 
which is (loosely) comparable to 7 times the performance 
of a VAX 11/780. 

For all that computing horsepower, the real core of this 
machine is made from only 6 chips: the Am29300 family 
of computer building blocks. That's an incredible degree 
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of integration as compared with previous approaches to 
high performance microprogrammed computer. design. 

Most of the logic surrounding the Am29300 family com­
ponents is not required. The additional logic is used to 
add system flexibility and to show off different aspects of 
microprogrammed design. Very little glue is needed to 
hold this family together. 

There is very little in the way of standard SSllogic 
used. Virtually all the MSI and SSI level logic functions 
were incorporated into Programmable Array Logic. 
This shows the versatility and integration that PALs can 
provide. 

Due to use of Serial Shadow Registers throughout the 
system, there is a reasonable hope that enough of the 
system state can be read and controlled so that debug­
ging in the factory or field will be simple. This access to 
the internal structure of the machine is gained with very 
little "excess" logic. 

This application note, augmented by 60 pages of PAL 
and Am29PL 141 definition files is available as a 
.geparate booklet; Publication No. 09856A. 
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Product Application 

(a) 

The fast way to build 
a RIse processor 

A family of 32-bit VLSI ICs yields 
reduced instruction-set computers 

with a variety of architectures 

Dhaval Ajmera and Cheng-Gang Kong 
Production Planning and Development Engineers 

Microprogrammable ProcesseS 
Advanced Micro Devices, Inc., Sunnyvale, CA 

Central processing units with re­
duced instruction sets fall into 
two categories. Single-chip ver­

sions are champion performers, but 
their fixed instruction sets mean that 
software compatibility can be a prob­
lem. Others are built from an army 
of discrete cOmponents and small-, 
medium-, and large-scale ICs (SSI, 
MSI, and LSI) and so suffer from 
high chip counts, long interchip de­
lays, and great power dissipation. 

A good compromise between the 
two is a team of a few very large-

scale Ie (VLSI) parts-namely, the 
bipolar Am29300 and CMOS Am-
29C300lfamilies of VLSI building 
blocks (see box, "VLSI RISC"). By 
using these families, it is possible to 
adapt an operating system and in­
struction set to a reduced -instruc­
tion-set computer (RISC) architec­
ture while maintaining software 
compatibility. 

As a family, the 29300 can support 
the extremely fast cycle time of 80 
ns,and both it and the29C300 group 
have a 32-bit fixed word length. That 

(b) DELAYED 
BRANCH 

Fig. 1. The RISe word for both the 
Berkeley and the AMD reduced 
instruction set is fixed at 32 bits (a). 
In the AMD RiSe hardware, the 
pipeline structure consists of a 
simple, two-level instruction-fetch­
and-execute configuration (b). 

KEY 
IF = INSTRUCTION FETCH 
EXE = EXECUTION 

Repri nted with permission Irom Electron ic Products, Vol. 29 No. 12, Novem ber 17. 
1986. Copyright 1986. Hearst Business Communications Inc. 
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word length affords high precIsIon 
for arithmetic operations as well as 
a wide bandwidth for memory and a 
llirge (4-gigabyte) addressing capa­
bility for virtual-memory operations. 

Each family member fulfills a dis­
tinct function. allowing the RISe 
designer considerable freedom to 
configure them in a variety of archi­
tectures. Because. for example. the 
Am29334 register file building block 
is functionally separate from the Am· 
29332 arithmetic logic unit (ALU). 
several Aln29334 can be used to 
vary the size of the register file as 
required. In addition. data from the 
registers can be shared by other par­
allel devices besides the ALU. 

The high level of integration of the 
29300:md 29C300familymembers fa­
vors higher performance because in­
terchip delays are shorter. Also. sys­
tems need fewer and smaller boards 
to mount a lower parts count. and 
less power is dissipated-both fac­
tors that tend to reduce costs. 

The AMD RISC architecture 
closely resembles the RISC I devel-

CHAPTER 6 
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VLSI RiSe 

A reduced-instruction-set processor 
could be designed onto a custom VLSI 
chip-for a price. Or it could be con­
structed from numerous. less integrated 
ICs-in many manhours. The golden 
mean. however. is to turn to already 
available general-purpose VLSI building 
blocks. for these simplify the design job 
yet can be obtained off the shelf. The 
Am29300 family from Advanced Micro 
Devices in Sunnyvale. CA. includes the 
32-bit arithmetic logic unit. the 32-bit 
register file. and the bounds checker 

oped at the University of California 
at Berkeley. which has 33 instruc­
tions. Basic to both architectures is 
a fixed instruction format. 

Every instruction word is 32 bits 
wide (see Fig. la) . Its op code occu­
pies a field of 7 bits. Three fields 
totaling 23 more bits specify two 
source operands and a single des­
tination. These fields are always in 
the same position in the instruction 
word-an arrangement that makes it 

needed to build the RISC described in the 
accompanying article. 

S$SSSS =========== The Am29332 ALU is housed in a 168-
pin grid array and sells lor $495 each in 
100-unit quantities. The Am29334 four­
port. dual-access register file is pack­
aged in the 120-pin grid array and sells 
for $180 each in 1 ~O-unit quantities. The 
Am29337 bounds checker comes in 28-
pin ceramic DIP and is priced at $22 in 
1 ~O-unit quantities. Other building blocks 
in the Am29300 family are available. 

relatively simple to decode the op 
code in parallel with the operand 
access. 

A two-level pipeline 
The pipeline of the AMD RISe 

is a simple. two-level structure. One 
level fetches an instruction while the 
other is executing the instruction 
fetched immediately beforehand 
(see Fig. lbl. 

INSTRUCTION REGISTER 

This concurrency. however. cre­
ates difficulties with branch instruc­
tions. A conditional branch instruc­
tion cannot make its condition avail­
able until it has been executed. 
Therefore, the instruction fetched 
during its execution might not be the 
correct one. 

rBIT INSTRUCTION 
CODE TO ALU 

DATA BUS 

To circumvent this pipeline lock­
step dependency, a method called 
delayed branch is used. A code re­
organizer (a program) rearranges 
the sequence of instructions so that 
the one immediately following the 
branch instruction is always exe­
cuted despite the branching condi­
tion (see Fig. Ib again) . In 9 out of 
10 cases, a useful operation can be 
inserted. The rest of the time a NOP 
fills in. In other words, whatever the 
result of the branch instruction. it is 
executed only after an intervening 

Fig. 2. The AMD RiSe system includes a 
set of four Am29334 registers and an 
Am29332 ALU, which derives its 7-bit 
op-code controls from a PLA. The Am-
29337 bounds checker Identifies aI/ 
memory references to the file registers. 

ELECTRONIC PRODUCTS I November 17. 1986 
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instruction has been dealt with. derived from the instruction's 7 -bit 
op code through a programmable 
logic array (PLA). The Am29332 is 
a 32-bit-wide ALU that performs all 
arithmetic and Boolean operations. 
A high data-transfer rate is provided 
by a powerful, orthogonal instruction 
set. To enhance system performance, 
the device also features a 64-bit-in, 
32-bit-out funnel shifter, as well as 
a 32-bit barrel shifter and a priority 
encoder. 

Integrated Circuits 

in the execution of high-level lan­
guages. 

Four Am29334s, with the aid of 
some SSI and MSI chips, provide 
seven register windows and 10 global 
registers. Altogether, they easily fit 
onto a standard hex card. 

One register window is allocated 
to each procedure. Each window 
consists of 32 registers; thus at any 
time just 32 registers are visible to 
the currently executing procedure. 

Exceptions are another pipeline 
hazard. When one occurs, the pipe­
line contents are duplicated by three 
registers in the program counter 
unit. This unit is routed to the ALU 
through the A multiplexer (see -Fig. 
2) -a feature that allows the return 
address to be saved when a call in­
struction is executed. During excep­
tion handling, this path also makes 
it possible to save the contents of the 
three program counter registers and 
to use them to restart the processor. PROCEDURE A PROCEDURE B PROCEDURE C 
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INCOMING 
PARAMETERS 

LOCAl 

OUTGOING 
PARAMETERS 

GLOBAL 

(a) 

Fig. 3. The register window of the 
AMD RiSe Is functionally divided 
Into four sections (a). Every proce­
dure of the program shares the 10 
global registers (b). 
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OFr 

GLOaAL I 
(SHARED BY ALL------.H ... _____ .... 

PROCEDURES' . R31A C8CJ 
The instruction set enables con­

stants to be formed through the in­
struction word directly. Before a 
constant can be fed into the ALU, 
however, some data has to be re­
routed to generate it. This rerouting 
is done by the constant genera tor, 
which in essence uses 32 two-input 
multiplexers to produce the proper 
constant. The result is then fed via 
the B multiplexer to an ALU input. 

The control section of the AMD 
RISe is relatively simple (see Fig. 
2 again) . All the control signals are 

The Am29334 register file is a 
four-port, dual-access file that can be 
used to implement a distinctive fea­
ture of the Berkeley RISe-its so­
called overlapped register windows. 
This overlapping improves the speed 
at which the procedures (or subrou­
tines) in an application program can 
pass parameters among themselves 
and the main program in a cali-re­
turn sequence. Berkeley researchers 
developed the technique after find­
ing that parameter passing is one 
of the most time-consuming events 

ELECTRONIC PRODUCTS I November 17,1986 

The 32 are functionally partitioned 
into four sections: 10 ~Iobal and 10 
local registers, as well as 6 apiece for 
incoming and outgoing parameters 
(see Fig. 3a l. lin the Berkeley 
RISe, there are 138 registers 
grouped into 8 register windows.) 

The 10 global registers (R.,. to 
R" I ) are shared by every procedure 
of the program (see Fig. 3b). They 
are used primarily for globally ref­
erenced items such as a system's 
commonly applicable constants. 

The 10 local registers (R" to 
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11 fOR RO TO Rn 
'10101 2 CWP, xxx 0000 

RS4RSO + Y yyyy 
ZZZ yyyy 

2) fOR R22 TO R3J' 

(a) 

ADDRESS TO 
REGISTER FILE 

KEY 
RS = REGISTER SPECIFIER 
CWP = CURRENT-WINDOW POINTER 

III 0000 
RS3 RSo + yyyy 

III YYYY 

MAIN MEMORY 

Fig. 4. The AMD and Berkeley RISe register numbering are 1's 
complements of each other (a). Also, either procedure can only be 
translated into the other if they are mapped one on one (b). Both the 
1's complementing and the mapping are simple operations. 

LOWER BOUND ----+1--------1 

R'5 ), dedicated to the procedure it­
self, store local variables. 

Six registers (Ro to R j ) accept 
incoming parameters from the call­
ing procedure for use by the called 
procedure, They are also used to re­
turn results from the called to the 
calling procedure. 

When the called procedure in turn 
summons another, it puts its outgo­
ing parameters in six registers (R, G 

to R 2 , I that then overlap the six in-

ON·CHIP 
REGISTER FILE 

UPPER BOUND ----+1--------..1 

coming -parameter registers of this 
last procedure. 

With such a register organization. 
parameters can be rapidly trans­
ferred between procedures, as the 
three register windows in Figure 3b 
illustrate. When procedure A calls 
procedure B, all the parameters pass 
through the outgoing-parameter reg­
isters of A to become the incoming­
parameter registers of B, which can 
operate on these parameters without 

(b) 

32·Bit Computer Performance Benchmarks 

accessing the stack memory. The 
same principle applies when B calls 
C. When C finishes, the results re­
turn through the outgoing parame­
ters of B (or incoming of C) . In turn, 
B also returns its results through the 
outgoing parameters of A. 

The register numbering used in 
the AMD RISe for the windowing 
scheme is the l's complement of its 
Berkeley RISe counterpart, a con­
vention easily implemented with 
simple address-generation logic (see 
Fig. 4al, (A one-to-one mapping still 
remains between these two proces­
sors after this numbering change.) 

AMD Rise 
Benchmark (ms) 

E-string search 0.115 

F·bit test 0.015 

H-linked list 0.025 

K-bit matrix 0.10B 

I·quicksort 12.6 

Ackerman (3.6) BOO 

Recursive a sort 200 

Puzzle (subscript) 1,175 

Puzzle (pointer) BOO 
SED (batch editor) 1,275 

Towers of Hanoi (1 B) 1,700 

Average times faster B 

Berkeley RiSe 1 
(ms) 

0.46 

0.06 

0.10 

0.43 

50.4 

3,200 

BOO 

4,700 

3,200 

5,100 

6,800 

4 

Typical 32·blt 
superminicomputer 

(ms) 

0.59 

0.29 

0.12 

1.29 

151.2 

5,120 

I,B40 

9,400 

4,160 

5,610 

12,240 

1 

The address generation logic maps 
any register number greater than 21 
into the global register. The mapping 
is done by appending the lower 4 bits 
of the register specifier to three Is. 
This operation maps it to 9. high ad­
dress in the register file. 

To generate the address of a local 
register, the pointer to the current 
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window (logically a 7 -bit register) 
is added to the register specifier. The 
current-window pointer is the base 
pointer for the currently visible reg­
isters. Ris advanced to the next win­
dow base pointer when a call instruc­
tion is executed; it is restored to the 
previous window base pointer when 
a return is executed. Since each reg­
ister window is offset from the pre­
vious window by 16 registers (due to 
the overlap illustrated in Fig. 3b), 
the lower 4 bits of the current-win­
dow pointer are always zero. There­
fore, an incrementer at the fifth bit 
position of this pointer can be used 

to add in the register specifier. Thus 
connecting the fifth bit of the register 
specifier to the carry-in of the cur­
rent-window pointer's incrementer 
generates the proper address for reg­
isters 0 to 21. 

The comparator generates the 
proper select signal to gate the ap­
propriate address (global or local) 
to the register file. With the pro­
jected 80 ns of the combined propa­
gation delay of the Am29332 and 
Am29334, a 1oo-ns system cycle time 
can be easily obtained. 

The register file, part of the sys­
tem's run-time stack, is mapped into 

Rise's minimalist philosophy 
A new style of computer architecture has 
stirred a lot of attention recently. It's 
called RISC, for reduced instruction-set 
computer. Examples of it are the Univer­
sity of California at Berkeley's RISC I 
and RISC II, IBM's 801 project, and Stan­
ford University's MIPS (for microproces­
sor without interlocked pipe stages). 

The time-honored route in system de­
Sign has been to leverage on progress in 
IC technology by increasing the complex­
ity of computer architecture, with the 
goal of narrowing the "semantic gap" 
between the high-level languages of pro­
gramming and the bit languages of ma­
chines. Complex instruction-set com­
puters, or CISCs, are one result. But the 
side effects are unpleasant-longer de­
sign times, more numerous design er­
rors, and inconsistent Implementations. 

This outcome triggered an about-turn 
in favor of simplicity. RISC designers try 
to select only the most frequently used, 
primitive Instructions and to execute 
them very fast. Some of the main archi­
tectural design principles of the RISC 
are: 
• Execute one Instruction per cycle. 

Program traces show that the most 
heavily used instructions are quite primi­
tive. They also execute in one cycle. 
Hardwlrlng Instead of microprogramming 
them enhances overall performance by 
eliminating the overhead Incurred In mi­
crocode Interpretation. The lengthy, 
highly complex, and Infrequently sum­
moned Instructions provided by the CISC 
but omitted on the RISC can be imple-

mented by software subroutines. 

• Use a fixed instruction format. 
A fixed instruction format greatly sim­

plifies instruction decoding and thus the 
hardware. Each field of the Instruction 
word is dedicated to a particular function. 
For example, a fixed field is dedicated to 
the op code, and two or three fields are 
dedicated to operand specifiers. An added 
benefit is that an instruction with this 
format may allow some signals to be de­
rived directly from it, permitting several 
operations to overlap. 

• Employ a load/store architecture. 
Memory references alone are done by 

load- or store-register operations. All the 
other operations are register-to-register. 
The simplicity of this addressing mode 
makes it easy to implement. The absence 
of complex addressing modes also makes 
It easier to restart instructions when an 
exception occurs. 
• Support high-level languages. 

The simple Instruction set supplies the 
compiler with only the most primitive op­
erations. From these the compiler can 
compose instruction sequences that are 
tailored to the exact requirements of the 
programming language. In some archi­
tectures, the hardware savings realized 
by the simple Implementation is invested 
In speeding up some of the high-level 
language's more time-consuming opera­
tions. The University of California at 
Berkeley RISC processor, for Instance, 
includes a large register file for speeding 
up the sequence of calling and returning 
from a procedure. 
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the main memory (see Fig. 4b). The 
Am29337 bound-checking facility 
detects any memory reference to this 
section and reports it to the CPU. 
The CPU can then redirect the ref­
erence to the proper data store in the 
register file. 

Performance evaluation 
Usually it is hard to compare one 

architecture to another with any ac­
curacy. The AMD RISe, though, is 
functionally compatible with Berke­
ley's RISe I, so that published pa­
rameters can serve as a basis for pre­
dicting their relative performance. 
The comparison is also predicated 
upon the following four assump­
tions: 
• A 1oo-ns cycle time. The Am29332 
and Am29334 will contribute 80 ns 
to the total cycle time, and the regis­
ter address generator and source 
multiplexer add another 20 ns (pro­
vided Schottky TTL components 
form the glue logic of the circuit). 
• A 1oo-ns instruction cache. It has 
been established that an 8-Kbyte di­
rectly mapped instruction cache can 
provide a hit ratio of 99.8~t on VAX-
11 (programs written in e and run­
ning under Unix). High-speed 
RAMs (around 45 ns) are available 
from which a 100-ns instruction­
cache memory with a good hit ratio 
can be easily constructed. 
• The execution of the same instruc­
tions as RISe I. Register renaming 
of the code is easy. 
• No adverse impact on performance 
due to the AMD's RISe having one 
fewer register window (Berkeley's 
RISe I has eight register windows 
versus seven for AMD). 

For a simulated RISe I running 
11 benchmark programs written in 
e, the system cycle time was 400 ns . 
For the AMD system running the 
same programs, it was 100 ns, or four 
times shorter. Further, as the table 
indicates, the AMD implementation 
averages about eight times faster 
than a typical 32-bit superminicom­
puter. 0 
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FAUL T·TOLERANT CHIPS 
INCREASE SYSTEM 
RELIABILITY 
Using parity checking and a master/slave duplication 
technique, a bipolar chip set provides an interlocking 
fault-detection scheme that enhances fault tolerance. 

by Tim Olson 

Fault-tolerant computers have been used in satellites, 
aircraft, and industrial control and communications 
applications. The use of fault-tolerant techniques is 
currently being extended into other arenas, includ­
ing on-line transaction processing and increasingly 
complex very large-scale integration circuitry. In 
addition, the rising cost of system maintenance and 
repair is causing a demand for fault-tolerant system 
building blocks that enhance system availability and 
reliability. 

The Advanced Micro Devices 32-bit, micropro­
grammable chip set addresses these needs. The 
Am29300 family, which consists of the Am29332 
arithmetic logic unit (ALU), Am29331 sequencer, 
Am29334 register file, Am29325 floating-point pro­
cessor and Am29323 multiplier, uses an interlock­
ing fault-detection scheme to provide fault tolerance. 
This detection scheme consists of a parity-check sys­
tem and a master/slave duplication technique. 

Add a bit 
Parity-check codes are a form of error detection 

in which a single parity bit is appended to a group 
of data bits. The addition of this single bit changes 
the number of zeros and ones within the bit group. 
If, with the addition of the parity bit, the group has 
an even number of ones, the group has even parity; 

Tim Olson is a product engineer for Advanced Micro 
Devices (Sunnyvale, CA). He holds an MS in electri­
cal engineering from the University of Arizona. 

Order # 08087 A 
Reprinted with permission from Computer Design. 

if it has an odd number of ones, the group has odd 
parity. Parity-check codes can detect all single-bit 
errors, as well as errors that involve an odd num­
ber of bits. For groups with an odd number of bits, 
even parity can detect the all-ones condition and odd 
parity, the all-zeros condition. 

To detect data-transmission errors', the Am29300 
family checks parity according to bytes. In this 
scheme, a parity bit is appended to each byte in the 
32-bit word, resulting in four 9-bit groups. Each 
group contains a single parity bit. There are three 
reasons for using byte parity: fault coverage, de­
creased cycle time and byte-write capability. Fault 
coverage is increased by providing a single parity bit 
per byte. This technique catches many faults that 
would go undetected if a single parity bit per word 
were used. , 

Decreased cycle time refers to the fact that four 
parity bytes operating in parallel can generate and 
perform a parity check faster than a single 32-bit 
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PARITY 
ERROR 

LOGIC 
CIRCUITRY 

Advaneed Micro Devices' Am29300 32-bit, bipolar, 
JDicroprogrammabie dtlp set consists of five devices 
that support fanlt-tolerant designs by providing parity 
dleeldng/generatioD (a) and master/slave duplicat!oa 
(b) as fault-detectioD tecbniques. Parity cbecking pro­
vides faldt coverage for data storage aDd iJrterchip 
coaueetions. More elaborate coverage is provided by 
master/slave checking. With this technique, two Ideu­
tical copies of a lie. are used in paralJel, with ODe 
des\g1Iated as master and the other as slave. For In· 
creased reliability, evea the CheckiDg scheme can be 

. checked. 

parity-generation system. Byte-write capability pro­
vides other advantages. In byte parity, individual 
bytes can be written back into the register file with­
out reading the rest of the 32-bit word to compute 
parity. 
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The Am29300 family uses even parity, which ex­
tends fauit coverage to include a floating input bus. 
This parity scheme includes an all-ones failure mode, 
which occurs if a failure in the source device pre­
vents it from driving the bus or if a failure in the 
control path prevents the source device from being 
accessed. Parity bits are stored in the register file, 
checked when input to the ALU and multiplier, and 
then generated as an output. If a parity error is de­
tected on either of the two input buses, the Parity­
Error output is asserted. This output is active high 
to provide fault detection for the error signals. 

This parity scheme provides fault detection on 
both the data storage and the interchip connections. 
Since the Am29332 ALU and the Am29323 multi­
plier perform operations on data that cannot carry 
parity bits, however, a more elaborate checking 
scheme is used. This system is called master/slave 
checking. 

More than one copy 
Master/slave checking uses duplication as a fault­

detection technique. Two identical copies of a de­
vice are used in parallel; one is designated as mas­
ter, the other as slave. The master device computes 
a result from the inputs and moves its result to the 
chip outputs. The slave device also computes a re­
sult from the inputs, but all of its outputs (except 
for MS-Error) are changed to inputs that carry the 
results of the master. 

The slave compares its result with the result of the 
master and signals any discrepancy on the MS-Error 
output. This output, like Parity-Error, is active high 
to provide fault detection for the error signal. Mas­
ter/slave checking can detect multiple failures in both 
the master and the slave devices, as long as at least 
one failure is nonoverlapping. This checking system 
also detects output bus contention, which is indicated 
by the MS-Error output on the master device. This 
output is activated when the master result and the 
output bus fail to match. 

For systems that must operate nonstop, master/ 
slave techniques may also be applied at the board 
level. Two sets of master/slave pairs are used; one 
is active and the other is standby. If the slave of the 
active pair signals an MS-Error, the active pair is 
turned off and the standby pair is activated. The 
standby pair may also perform transactions while 
the active pair is running, resulting in twice the 
throughput of normal operation. 

The ALU, multiplier and sequencer all have a 
master/slave operation mode. This mode, combined 
with parity checking of the data paths, provides com­
plete interlocking fault detection on a cycle-by­
cycle basis. 



The fault recovery process can identify two types 
of faults: permanent or transient. Permanent, or 
hard faults, are caused by physical changes in the 
hardware (failures), while transient, or soft faults, 
are due to unstable hardware or temporary environ­
mental conditions. Detection of a permanent fault 
may cause a standby unit to take over for the failed 
device. 

When transient faults are detected, on the other 
hand, the microinstruction that faulted will be 
restarted after the transient condition disappears. In 
either case, the faulted microinstruction must be 
aborted, so that no state change occurs to disrupt 
the restarting of the microinstruction. 

To restart the microinstruction, the sequencer per­
forms traps at any microinstruction boundary. When 
a trap condition is signaled by the simultaneous as­
sertion of the interrupt request and force continue 
signals with the Carry input (Cin) signal disabled, 
the address incrementer to pass the current address 
instead of the next address, the sequencer puts the 
Y output bus in a high-impedance state. This allows 
an external trap vector to be placed on it. The se­
quencer then pushes the trapped microinstruction 
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address onto the internal stack and starts fetching 
microinstructions, using the trap vector as the start­
ing address. The aborted microinstruction is stored 
on top of the stack and is restarted by executing a 
return instruction. When the Hold input is assert­
ed, updates of the ALU's internal state are inhibit­
ed. This ensures that the aborted microinstruction 
has no effect. 

Fault·tolerant CPU design 
In order to show how the Am29300 family mem­

bers interact to perform fault detection, recovery and 
isolation, consider a simple CPU design. In this de­
sign, the data path consists of two sets of register 
files and two ALUs in a master Islave configuration. 
Because new data may already have been written to 
the register file before a fault is signaled, two reg­
ister file sets are required. One register file set holds 
the working address and data registers, while the 
other set holds backup copies of these registers that 
are used in error recovery. 

The ALUs perform address and data calculations, 
which are used to address memory via the data-out, 
data-in and address registers. These registers are built 

r-------------------
I TRAP ROUTINE STARTS , 

B+l 

EXECUTING AT B 
TRAPPED ADDRESS ON STACK 

Errors ire signaled with Parity-Error and M8-Error outputs and prioritized by an interrupt controller. The se­
qaencers then trap the microinstruction thaUs being executed. To restart a mlcrolnstrucdonwhen a failure oc­
curs, the sequencer can perform traps at aay mlcrolastruction boundary. When a trap condition Is sigaaled, the 
sequencer changes ihe Y output bus to a hip-lmpedaace state, allowing aa external trap to be placed oa It .. 
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from Am29818 diagnostics registers that offer off­
line testing and fault diagnosis. The control path 
starts with the instruction register, which consists 
of four serial shadow registers. The instruction is 
applied to a mapping PROM to derive the starting 
microcode address for the sequencer, which is built 
from two Arn29331 sequencers in a master/slave con­
figuration. The microinstruction is fetched from the 
writable control store and loaded into pipeline reg­
isters, which distribute control throughout the CPU. 

Fault detection, recovery and isolation 
During instruction execution, errors are detected 

on a cycle-by-cycle basis by the sequencer and ALU 
master/slave pairs. They are signaled with the Parity­
Error and MS-Error outputs. These error signals are 
prioritized by a vectored priority-interrupt controller, 
which causes the sequencers to trap the microinstruc­
tion that is currently executing. The trap vector is 
then put on the Y output bus. The controller also 
asserts the Hold pin on the ALUs, which prevents 
the trapped microinstruction from updating the in­
ternal state of the ALU and disables writes to the 

a diagnostics loop. Arbitrary patterns cim be loaded 
serially through the loop, then clocked through in 
a single system cycle. The resulting state can be read 
out from the loop for use in isolating the failed 
device. 

Checking the checkers 
Failures in checking devices are even more serious. 

A failed checker can give a false indication of error 
or a no-error condition. While false indications of 
failure are tolerable, a no-error condition often re­
sults in undetected faults. 

There are three basic fault detectors in the CPU 
design: the Am29332 parity checker, the Am29332 
master/slave checker and the Am29331 master/slave 
checker. These fault-detection circuits must be veri­
fied during system initialization, and their opera­
tional status should be confirmed periodically during 
subsequent operation. 

Fault injection, which is the process of deliber­
ately causing a fault in the part of the system that 
is checked by the fault-detection hardware, can be 
used to perform this verification. The parity-check 
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backup register file. Writes to the backup register 
file are disabled, keeping the state of the ALU prior 
to the trapped microinstruction intact. 

Microinstruction processing then begins with the 
trap routine associated with the highest priority fault 
indication. This routine can determine whether the 
fault is transient or permanent. If the fault is tran­
sient, the trapped microinstruction must be restarted.' 
The trap handler first restores the state of the reg­
ister file by copying each of the registers in the back­
up register file into the working register file, restoring 
the registers to the values they held prior to the fault. 
Any other state that was saved during trap process­
ing is also restored during this process. The se­
quencers then perform a return instruction, popping 
the trapped microinstruction address from the stack. 

To increase system availability, permanent faults 
must be isolated quickly. This usually involves run­
ning a series of test patterns through the devices to 
determine which ones have failed. These patterns can 
be loaded and tested quickly using the serial shadow 
registers. All of the serial shadow registers in the 
CPU design are connected by a serial link that forms 

circuitry can be tested by loading a word with bad 
parity into the data-in register via the serial link. It 
is then loaded into the register file and used in an , 
ALU operation. This procedure should detect a par­
ity error. 

Another method of verifying the parity checker 
is to issue a microcode instruction that performs an 
ALU operation while the register-file outputs are in 
a high-impedance state. The parity checker should 
detect the all-ones condition and flag the error. 

Master/slave checking can be verified on the ALU 
by using the Hold input. The status registers in the 
master and slave are first set to a known equivalent 
state. The next microinstruction alters that state, but 
asserts the Hold input on one of the devices, inhibit­
ing the status update. A master/slave error, caused 
by the differing status outputs, should occur. Mas­
ter/slave checking can also be verified on the 
Am29331 sequencers by executing a jump instruc­
tion while' asserting the force-continue input on one 
of the parts. The part without the asserted force­
continue input executes the jump, causing a nonse­
quential address for the next microinstruction. The 
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force continue asserted on the other sequencer over­
rides the jump instruction, causing the next microin­
struction address to be sequential. This results in 
differing addresses which, in turn, causes a master/ 
slave error. 

The AMD family extends many of the concepts 
of fault-tolerant computing, including parity check­
ing and master/slave duplication into the 32-bit are­
na. This fault-detection scheme can identify both 
permanent and transient faults, ensuring broad­
based fault protection throughout the system. CD 
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Designer's Guide to: 
Floating-point processing-Part 1 

Floating-point math 
handles iterative and 
recursive algorithms 

Floating-point arithmetic gives you better dynamic 
range and precision than integer arithmetic, but it 
needs careful implementation. Part 1 of this a-part 
series discusses possible sources of error you may 
encounter when using floating-point hardware, and it 
reviews the current standards. Part 2 will describe 
the advantages of fast array processors, and part a 
will discuss algorithmic options for floating-point 
processors and considerations when implementing a 
complete system. 

Charlie Ashton, Advanced Micro Devices Inc 

Many signal-processing algorithms, such as fast Fou­
rier transforms, generate outputs whose magnitudes 
far exceed those of the inputs. Nevertheless, those 
outputs must retain the precision of the input operands 
if the accuracy of the computation is not to be so 
severely degraded as to render the results meaning­
less. For these and similar applications that use itera­
tive or recursive algorithms, true floating-point opera­
tion often furnishes the only acceptable number 
representation. 

Until recently, you needed a very good reason to give 

your system floating-point hardware. It was large, 
expensive, power-hungry, and relatively slow (al­
though faster than the software-based implementations 
needed to perform comparable operations). However, 
the introduction of fast VLSI array processors has 
changed the picture. These devices (such as Weitek's 
1032/1033 and AMD's Am29325) can stand alone and are 
implemented on one or two chips. You can now economi­
cally use floating-point hardware in applications whose 
size and budget constraints would previously have 
forced the use of fixed-point hardware or floating-point 
software. 

The new chips won't dissipate all your potential 
headaches, of course. Just one ofthe many choices you'll 
have to make is which standard to support. The four 
most commonly used standards (IEEE, DEC, IBM, 
and MIL-STD-1750A) have subtly different binary rep­
resentations of floating-point numbers. Each standard 
has advantages and disadvantages for specific types of 
computational problems. This series of articles covers 
some of the theoretical considerations you'll have to 
take into account, as well as some specifics on the 
available chips. 

The manner in which a system represents floating­
point numbers clearly affects both the dynamic range 
and the precision of the system. The most obvious way 

Reprinted with permission from EDN, January 9,1986. Copyright 1986, Reed 
Publishing USA. 
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VLSI processors now make floating-point 
hardware cost effictive in applications with 
severe budget or size constraints. 

to represent numbers is to use a signed exponent and a 
signed fraction (Table I). A large exponent field obvi­
ously supports a large dynamic range: A 2-digit expo­
nent, for example, implies a dynamic range of 10100, 

whereas a 3-digit exponent increases the dynamic 
range to 101000• Similarly, the more digits you can 
include in the fraction, the greater will be the precision 
of the number, especially if the number is normalized so 
that the left-most digit of the fraction is nonzero. 
Leading zeros in the fraction of an unnormalized num­
ber clearly reduce the precision of that number. As a 
general principle, then, the precision of a floating-point 

TABLE 1-SIGNED vs BIASED EXPONENTS 

DECIMAL SIGNED 
NUMBER EXPONENT FRACTION 

-123.45 10+3 X -0.12345 

+0.0000678 10-" x 0.678 

DECIMAL BIASED 
NUMBER EXPONENT FRACTION 

123.45 5+3-8 0.12345 

+0.0000678 5-4=1 x 0.678 

number depends on the length of its fraction, and the 
dynamic range depends on the size of the exponent and 
the radix. 

In practice, floating-point hardware generally uses a 
biased exponent for two reasons. First, use of a biased 
exponent avoids problems that follow from the need to 
handle negative numbers in the exponent circuitry. 
Second (and perhaps more important), a suitable choice 
of bias can ensure that you'll be able to compute the 
reciprocals of all the representable numbers without 
exponential overflow or underflow. You'll find that 
overflow and underflow cause plenty of problems in 
computing the fraction portion of the output (see box, 
"Dealing with underflow and overflow"). You certainly 
don't want to introduce them into exponential computa­
tions as well. 

Biased exponents and normalized fractions are the 
features that give true floating-point representation a 
clear advantage over block floating-point and integer 
formats. To double the dynamic range of an integer 
word, you have to double the number of bits in it. To 
obtain the same result in true floating-point operation, 
you need to add only one bit to the exponential field. In 
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fact, a 32-bit floating-point number in IEEE format has 
a dynamic range equivalent to that of a 276-bit 2's­
complement integer. 

Despite the high precision and large dynamic range 
of normalized floating-point numbers, floating-point 
systems do not altogether escape the effect of quantiza­
tion (rounding) errors. You can think of a floating-point 
system as producing an infinitely precise result (ie, a 
fraction of unlimited length, abbreviated "IPR"), which 
is then rounded to fit into the destination format. 
Typically, this strategy means that some of the low­
order fraction bits are lost. Consequently, whenever 
the destination format lacks enough bits to accommo­
date the IPR, rounding introduces quantization errors, 
which in turn result in system noise. Consider, for 
example, the multiplication of two numbers in a 4-digit 
decimal system: 

(0.8102x loa) x (0.8001 x 10-7)=0.6410401 x 10-'. 

The IPR is rounded to 0.6410X 10-' to fit the destina­
tion format, thus introducing a quantization error. In 
practice, quantization errors during a long computation 
will be random, and the overall effect will be analogous 
to an increase in system white noise. 'lfthe quantization 
errors are not random, they may appear as system 
nonlinearities and, as a consequence, cause serious 
problems in such applications as spectral analysis. 

Are quantization errors data dependent? 
Mathematical analysis of an integer system shows 

that quantization errors due to rounding have a mean 
value of one-quarter the value of the least significant 
bit. The relative error at each rounding thus depends 
on the magnitUde of the operand being rounded. There­
fore, as the magnitude of the operand decreases, the 
relative quantization error increases. The same is true 
of a block floating-point system, in which denormalized 
operands may contain leading zeros. In integer and 
block-floating-point systems, therefore, the errors are 
data-dependent, and for this reason error analysis is 
both difficult and time-consuming. 

In true floating-point systems, however, operands 
are generally normalized, so the relative quantization 
errors are the same, regardless of the magnitude of the 
operands. Quantization error analysis in floating-point 
systems is thus data independent and therefore doesn't 
require complicated worst-case simulations. 

Floating-point systems can suffer from a computa­
tional drawback known as the "operand ordering prob-

EDN January 9, 1986 
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lem." Consider the addition of three floating-point 
numbers: A (=1), B (=~), and C (= -~). You may find 
that (A+B)+C=O, although A+(B+C)=l. This result 
clearly violates the associative law of addition. The 
discrepancy occurs because the floating-point standard 
doesn't have enough bits to accommodate theinterme­
diate result of the first calculation (A + B). The hard­
ware has to round the IPR, ~+ 1, to the nearest 
representable number, which is~. Errors of this kind 
are inevitable whenever the IPR has to be rounded to 
fit the destination format, although they would usually 
be considered so small as to be unimportant. 

You can minimize rounding errors (although, as the 
previous example shows, you can't entirely remove 
them) by a judicious choice of rounding mode. Some 
floating-point standards allow· you to select from among 
several rounding modes the one that best suits your 
operation. All of the commonly used floating-point 
standards support one or more of four modes: 

• Round-to-nearest mode replaces the IPR with the 
closest representation that fits in the destination 
format. In the case of an IPR that falls exactly 
halfway between two representations, the IEEE 
standard rounds the IPR to the representation 

Dealing with underflow and overflow 
For the rare cases in which the 
result of a calculation is too 
large or too small to be repre­
sented, you must have previous­
ly specified the way in which 
your system will deal with that 
result. In short, your system 
must handle the related prob­
lems of underflow and overflow. 

Underflow arises when the 
rounded result of an operation is 
a number between zero and the 
smallest representable norma­
lized number. You can handle 
such a number in one of two 
ways: You can set the number to 
zero (sudden underflow), or you 
can represent the rounded result 
by a denormalized number 
(gradual underflow). 

Overflow occurs when the 
rounded result of an operation is 
greater than the largest repre­
sentable number. You can handle 
this problem by setting the re­
sult to infinity, which implicitly 
terminates a chain of calcula­
tions, or by saturating the result 
to the largest representable 
number (correctly signed). 

It's important to know which 
of the various methods your sys­
tem supports, because in BOrne 
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applications sudden underflow or 
saturated overflow can destroy 
the accuracy of an entire series 
of calculations. The IEEE stan­
dard, for example, treats under­
flows by invoking the gradual 
underflow method, while the 
IBM and DEC standards deal 
with only sudden underflow. 

Sudden underflow is generally 
the fastest method of treating 
underflows and is acceptable in 
the rngJority of systems because 
high accuracy is seldom required 
for very small numbers. Sudden 
underflow can produce quantiza­
tion errors almost as large as 
the smallest norrna1ized number, 
but usually you can treat these 
errors as insignificant. 

The gradual-underflow method 
creates much smaller errors be­
cause it rounds results to a nor­
malized number. On the other 
hand, gradual underflow is more 
difficult and more expensive to 
implement than sudden under­
flow, a drawback you'll have to 
weigh against the advantage of 
accurate results over a wider 
range of numbers. Gradual 
underflow is generally best for 
iterative applications in which 

you drive a residual value to 
zero and for which you require 
maximum possible accuracy. 
When such a residual value 
underflows gradually to zero, 
you know that it's negligible 
compared with every normalized 
number. 

For handling overflow, data­
processing applications generally 
set the result to infinity, because 
in a high-accuracy mathematical 
model a saturated result could 
destroy the accuracy of an entire 
series of calculations. In real­
time digital signal processing, 
however, it's generally prefera­
ble to saturate the result and 
continue the chain of calcula­
tions. In the analysis of radar 
returns, for example, you would 
certainly not want a single 
anomalous return to bring the 
entire processing sequence to a 
halt by introducing an operand 
(an infinity) that would be use­
less in further processing. In 
this and similar applications, it's 
often better to have an approxi­
mately correct data point than 
no data p<lint at all. 
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BIT 31 30 29 

[ S 

TABLE 2-NUMBER REPRESENTATION 
IN FOUR FLOATING-POINT STANDARDS 

IEEE FORMAT 

28 27 26 25 24 23 22 21 20 19 3 2 0 

I SISGN -+ ____ BIASED EXPONENT ----1-------- FRACTION _______ ~ r (E) (F) 

E = 0 AND F = O. . v = (_1)5·0 (-0, +0) 
E = 0 AND F * 0 . v ~ (_1)5 • O.F • 2 -126 (DENORMALIZED) 
0< E < 255 . . ...... v = (_1)5 • 1.F • ~-127 (NORMALIZED) 
E = 255 AND F = 0.. . v = (_1)5·00 (-00, +00) 
E = 255 AND F *" 0 . . v = NaN (NOT-A-NUMBER) 

(s) 

DEC FORMAT 

BIT 31 30 29 28 27 26 25 24 23 22 21 20 19 3 2 o 

S 

I SIGSN -+ ____ BIASED EXPONENT ___ ~I--------- FRACTION _______ ~ r (E) (F) 

(b) 

BIT 

S = 1 AND E = O. 
S=OANDE=O. 
E > o. 

31 30 

S 26 

29 

2" 

.. V = DEC RESERVED OPERAND 
V=O 
V = (_1)5. 0.1F • 2"-128 (NORMALIZED) 

IBM FORMAT 

28 27 26 25 24 23 22 

2- 23 22 2' 2'l 2-1 2-2 

21 

2-3 

~ SIGN + ___ BIASED EXPONENT 
S (E) 

. V = (_1)5 ·0(-0, +0) 

. V = (_1)5. O.F· 16"-·-

(e) 

MIL-STD-175OA FORMAT 

BIT 31 30 29 28 27 11 10 9 8 
._------

-2'> 2-1 2-2 2-3 2-- 2-20 2- 21 2-22 2-23 

20 19 3 2 0 

2-4 2-" 2-21 2-22 2-23 2-2• 

FRACTION 

(F) 

7 6 5 4 3 2 o 

FRACTION _________ ~------EXPONENT----~ 

(F) (E) 

.......... V = F·~ 

(d) 
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having an LSB of zero, whereas the DEC stan­
dard rounds the IPR to the representation that 
has the greater magnitude. 

• Round-to-minus-infinity mode rounds the IPR to 
the closest representable value that is less than or 
equal to the IPR. 

• Round-to-plus-infinity mode rounds the IPR to 
the closest representable value that is greater 
than or equal to the IPR. 

• Round-to-zero mode is analogous to truncation; it 
rounds the IPR to the closest representable value 
with a magnitude less than or equal to that of the 
IPR. 

As noted earlier, the various floating-point standards 
specify different binary representations of floating­
point numbers, and you'll have to match their respec­
tive advantages and disadvantages to your own compu­
tational problems. The four of the most common binary 
floating-point standards, the IEEE, DEC, IBM, and 
MIL-STD-1750A standards, all represent single-preci­
sion, floating-point numbers by means of 32-bit words 
having the formats shown in Table 2_ All four standards 
support double-precision data, and some of these stan­
dards also support other data types, such as single­
extended and double-extended data. 

The IEEE working group presented the specifica­
tions contained in proposed standard P754, draft 10.1, 
as a robust standard for portable floating-point soft­
ware. This proposed standard has received wide ac­
ceptance, and it's likely to form the basis of a large 
number of future hardware implementations. P754 has 

Biased exponents and normalized fractions 
give true floating-point systems a clear ad­
vantage over integer and block-jloating­
point systems. 

several features that aren't found in other standards. In 
particular, +0, -0, and infinities are all valid operands. 
Operations performed on infinities signal no exceptions 
unless the operation itself is invalid. The standard 
allows the use of a special operand known as NaN 
(Not-a-Number). An implementation should interpret 
NaNs as signals rather than numbers, and it should use 
NaNs to indicate invalid operations or to pass status 
information through a series of calculations. Also, the 
standard accepts denormalized numbers as a represen­
tation of a result that is less than the smallest norma­
lized number. 

The DEC standard is implemented in all DEC VAX 
minicomputers; the VAX Architecture Manual contains 
the full specifications of the standard. Conceptually 
simpler than the IEEE standard, the DEC standard 
has no provisions for infinities or de normalized num­
bers, and it has only a single representation for zero. 
The DEC standard does, however, incorporate DEC 
reserved operands, which are analogous to IEEE 
NaNs. 

An important feature common to both the IEEE and 
the DEC standards is the existence of a hidden bit. 
Both standards specify that all operands will be norma­
lized (except for denormalized numbers in the IEEE 
format). This stricture implies that the leading fraction 
bit must always be a one. This bit would not only be 
redundant if included in the 32-bit representation, but 
it would actually reduce the precision ofthe number, so 
its presence is assumed. In the case of IEEE denor­
malized numbers, the biased exponent is zero, thereby 

continued, 96-108 

TABLE 3-COMPARISON OF FLOATING·POINT STANDARDS 

IEEE DEC IBM 1750A 
LARGEST 

2'28 _2,04 2'27 _2'03 :z2S3 _2228 2'27 _2'03 POSITIVE 
NUMBER 
SMALLEST 

2-'49 2-'28 2-280 2-'29 POSITIVE 
NUMBER 
LARGEST 

_2'28 +2'04 _2'27 +2'03 _2253 +2228 _2'27 NEGATIVE 
NUMBER 
SMALLEST 

_2-'49 _2-'28 _2-280 _2-'29 . NEGATIVE 
NUMBER 
DYNAMIC 2'" 2255 2'133 2258 
RANGE 
PRECISION 2-" 2-23 2-20 2-23 
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VLSI floating-point Jl.P for recursive algorithms 
One example of floating-point 
hardware that handles recursive 
algorithms is the Am29325 from 
Advanced Micro Devices. The 
processor integrates a 32-bit 
adder/subtracter, a multiplier, 
and a data path on a single chip. 
This level of integration reduces 
the processing overhead in­
curred by chip sets comprising 
separate ALU and multiplier 
chips. The internal feedback 
paths facilitate the implementa­
tion of such recursive algorithms 
as sum-of-products and Newton­
Raphson division. 

The processor supports both 
the IEEE and DEC floating­
point formats. The instruction 
set includes instructions that 
convert data from IEEE format 
to DEC format and vice versa, 
as well as instructions that con­
vert data to and from 32-bit in­
teger format. 

Three functional blocks 
The processor has three main 

functional blocks (Fig A): a' 
floating-point ALU, a status-flag 
generator, and a 32-bit internal 
data path. The ALU is fully 
combinatorial, and it performs 
all instructions in a single cycle. 
The eight instructions handle 
floating-point R+8, R-8, Rx8, 
and 2-8 operations as well as 
the format conversions. 

The 2-8 instruction forms the 
core of the Newton-Raphson di­
vision algorithm, which performs 
division by a sequence of itera­
tions. In this and other iterative 
algorithms, intermediate results 
are retained in the R or 8 regis­
ter, thereby eliminating the 
need for any off-chip registers 
and minimizing the number of 
required data transfers. 

Three programmable I/O 
modes allow the Am29325 to in­
terface with a variety of sys­
tems. The 32-bit, 2-input-bus 
mode uses three separate 32-bit 

Ro.1, SO_31 

FOol1 STATUS FLAGS 

Fig A-This V LSI fWating-point proceuor is fut because it contains all the tnajtYr 
components!tYr 32-bit operations on a single chip. It has one input!tYr an external clock 
ami 17 inputs JOT instruction-select and control functions. 

buses (R, 8, and F) for high­
speed, nonmultiplexed operation; 
in this case, the R and S regis­
ters are configured as indepen­
dent 32-bit ports. In the 32-bit, 
l-input-bus mode, both the R 
and 8 registers are connected to 
a common 32-bit input bus; the 
host multiplexes operandI! onto 
this bus. In the 16-bit, 2-input­
bus mode, 32-bit operands are 
multiplexed onto the correspond­
ing 16-bit buses (low-order bits 
first). 

Six flags and four modes 
The status-flag generator pro­

vides six fully decoded flags. 
Four of these flags report excep­
tional conditions, as defined in 

the IEEE standard. The remain­
ing two flags identify zero-val­
ued or nonnumerical results. 

The Am29325 implements the 
four IEEE-mandated rounding 
modes: round-to-nearest, round­
to-plus-infinity, round-to-minus­
infinity, and round-to-zero. The 
same four modes are supported 
for the DEC standard, except 
that when the infinitely precise 
result is halfway between two 
representable numbers, the 
IEEE round-to-nearest mode 
rounds to the closest representa­
tion with an LSB of zero, 
whereas the DEC round-to-near­
est mode rounds to the value 
with the larger magnitude. 

EDN January 9, 1986 
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instructing the system to assume that the value of the 
hidden bit is also zero. 

The IBM floating-point standard differs from its 
IEEE and DEC counterparts in several respects. It has 
no provision for infinities or reserved operands, al­
though it does accept denormalized numbers. More 
important, however, are the absence of a hidden bit and 
the use of radix 16 rather than radix 2.' Because the 
exponent of an IBM number is expressed as a power of 
16, the standard has a large dynamic range. For the 
same reason, however, numbers are spaced farther 
apart than in the other formats. This increased gran­
ularity results in less precision than is provided by the 
IEEE and DEC formats. Also, the use of radix 16 
allows as many as three leading zeros in the binary 
fraction of a normalized number, even though the 
leading hexadecimal digit is nonzero if the number is 
expressed in hexadecimal format. The leading binary 
zeros can cause the precision to vary from one operand 
to another. This variation is known as wobbling. 

The MIL-STD-1750A standard, developed for use in 
military systems, allows no reserved operands, infini­
ties, or denormalized numbers. Furthermore, the use 
of a 2's-complement fraction, rather than a sign-magni­
tude representation as in the other three formats, 

EDN .January 9. 1986 
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requires a somewhat different hardware architecture. 
The applications to which each of the four standards 

is best suited differ quite widely. Nevertheless, you can 
make a simple comparison (Table 3) between the 
standards, based on factors such as the largest and 
smallest representable numbers, the dynamic range, 
and the precision. Such a comparison can be useful in 
selecting the most suitable format for a given applica­
tion. In most cases, however, the format to be used is 
determined by outside constraints, such as compatibili­
ty with existing hardware or software. EDII 

Author's biography 
Charlie Ashton is a senior engil/eer ill 
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Floating-point array 
• processor 1ffi roves 

• computaTIon power 
Powerful math-processing chips configured with high­
speed memories and controllers form the core of a 
floating-point math or array processor for small 
computers. This second part of EDN's 3-part float­
ing-point math series discusses the tradeojJs you 
must make to add flexibility and speed to array­
processor designs. 

Robert M Perlman, Advanced Micro Devices 

For such jobs as digital-signal processing, image pro­
cessing, graphics, and scientific calculations, an array 
processor can take over repetitive arithmetic chores 
while your host computer performs control tasks and 
retrieves information. By employing a floating-point 
array processor, you also increase the math-processing 
power of your computer system. 

The basic array-processor design (Fig 1) contains an 
arithmetic unit, a controller, data memory, program 
memory, and a host interface (see box, "Array pro­
cessor vs general-purpose computer"). If you use newer 
control, memory, and math chips, you can fit the circuit 
on a single pc board. This array-processor design uses 
an Am29325 floating-point processor chip, which oper-

ates with either IEEE- or DEC-standard single-preci­
sion data. The chip performs single-cycle floating-point 
additions, subtractions, multiplications, and format 
conversions at an 8-MHz clock frequency. 

Because the Am29325 chip contains a floating-point 
arithmetic unit (AU), three 32-bit registers, two data 
buses, and two data-selection multiplexers, you need 
only a slnall amount of external hardware to design a 
complete math- or array-processor circuit. In the 
array-processor design, the Am29325 receives oper­
ands from two high-speed memories. An 8kx32-bit 
RAM provides input data for your algorithms, and it 
stores intermediate and final results. An 8kx32-bit 
PROM provides constant values for the algorithms. 

Although you can design a circuit that specifically 
controls the math chip and its associated memory chips, 
you'll find an equivalent circuit in the 2910A micropro­
grammable controller chip. The 2910A chip is a general­
purpose controller; it's not dedicated to controlling the 
Am29325. The controller chip contains a program 
counter, a loop counter, a LIFO stack, and other 
circuits that access program instructions and control 
the array processor in the basic design. The controller 
provides an ll-bit address for the design's 2kx64-bit 
microprogram memory, which contains the instructions 
for your algorithms. Each algorithm instruction con-

Reprinted with permission from EDN, January 23,1986. Copyright 1986, Reed 
Publishing USA. 

6-109 



CHAPTER 6 
Articles/Application Notes 

A basic array processor speeds math opera­
tions by performing repetitive tasks quickly. 

tains 64 bits that the circuit divides into seven groups of 
outputs: 

• 11 jump address bits 
• one address and write-enable multiplexer bit 
• one write-enable control bit 
• 13 RAM-address bits 
• 13 PROM-address bits 
• 24 miscellaneous control bits 
• one interrupt-control line. 
The microprogram memory routes its outputs 

through an internal register and then to the rest of the 
array-processing hardware. Although it may not be 
obvious, the register at the microprogram memory's 
output helps maintain high-speed data processing. By 
using a clocked register to hold the memory's output 
bits, the controller latches a 64-bit instruction while it 

HOST PROCESSOR BUS 

I \ 
ADDRESS DATA CONTROL CLR INT INT 

13 

CLOCK 

11 

24 

MISC 
CONTROL 
SiGNALS 

CLOCK ~ CLOCK 

...... _G_E_NE_R_AT_O_R __ t1.L. SIGNALS 

addresses the microprogram memory for the next 
instruction. The memory's output register therefore 
permits the overlap of the instruction-fetch and -exe­
cute operations, which saves processing time. 

Because it holds information for a pending operation, 
the microprogram memory's output register is often 
referred to as a pipeline register. Array processors can 
contain a series of pipeline registers, the number of 
which depends on the architecture of the array pro­
cessor and the maximum processing speed you need. 

Host interface links processors 
You must carefully choose your host-computer inter­

face circuits according to the type of system bus in your 
computer. You can accommodate most general-purpose 
computers by providing bus buffers for the address, 

8k x 32-BIT 
DATA RAM 

ARITHMETIC UNIT 

·ADDR 

8k x32-BIT 
DATA PROM 

DATA OUT 

(Am29325) IO:""....L-., 
CLOCK 

32 

Fig I-The Am29325 floating-point proceBIJor used in this design adheres to IEEE and DEC floating-point standarde. 
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TABLE 1-
BENCHMARK EXECUTION TIMES 

OPERATION EXECUTION TIME 

5:rAP FIR FILTER 1.125 _SEC 

RADIX-2 FFT BUTTERFLY 

4x1 MATRIX ADDITION 

4x4 MATRIX MULTIPLICATION 14.0_SEC 

data, and control lines_ You'll also need a small amount 
of control logic to manage the flow of information to and 
from the array processor and the host computer_ For 
example, you can construct a Multibus interface by 
using octal bus buffers and PAL chips. If your host 
computer's data bus contains fewer than 32 data bits, 
you'll need to convert the data to and from the 32-bit 
format that the array processor requires. You can 
include double-buffer latch circuits for the data inputs 
to the array processor, and you can provide latches and 
multiplexers on the processor's data-output lin.es. 

The host computer's data bus provides the main link 
between the host and the array processor. Your com­
puter starts a math operation by loading the RAM with 
raw data and then signaling the array processor to 
start a math-processing algorithm. After the processor 
runs an algorithm program, your host computer reads 
the RAM's contents to obtain the results. 

To simplify the data-transfer operations to and from 
the host computer, the array processor goes into an 
idle, or standby, state when it isn't running an algo­
rithm program. Instead of controlling the processor's 
data and control lines, the microprogram controller 
continuously runs a I-microinstruction program loop. 
In addition, the idle microinstruction switches the 
RAM's address and write-enable multiplexers so that 
the RAM appears to be part of the host computer's 
main memory. The host computer loads the desired 
input data into the data RAM, and it then loads the 
microprogram controller with the starting address of 
the algorithm you want to run. The microprogram 
controller then jumps to the preprogrammed sequence 
of microinstructions for the algorithm. The algorithm's 
first microinstruction reconfigures the data RAM so 
that only the array processor can address it. When the 
algorithm completes its tasks, it sends an interrupt 
signal to the host processor, switches the data RAM 
back to the host, and executes the I-instruction standby 
loop. 

Once you're sure the array processor is operating 
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properly, you can test the operating speed of your 
circuit by using benchmark programs tailored to specif­
ic tasks (Table 1). The b~nchmark times were calcu­
lated for the array processor with an 8-MHz clock 
frequency. The basic processor performs one data­
RAM operation (read or write) per clock cycle. 

Modifications improve performance 
Although the basic array-processor circuit works 

well, you can improve its performance. The ability to 
take data addresses directly from the program memory 
in the simple array processor means that the program 
memory must contain a section of microcode for each 
iteration of an algorithm. For example, a program that 
performs 20 matrix multiplications contains a separate 
section of microprogram code for each multiplication 

PROOf:1AM '> MEMORY <; 

ITE:RATION 

~ ~ 
, ':MEM!lM<', 

ITERATION , 
ITf::RATION 

~ 
3 

REPEAT 

DATA "5- .;;. N TIMES 

ADDRESSES 

DATA 
AODRE.SSES 

,.) c;. "7 '0) 

Fig 2-You can implement the program memorg in. two wags: 
Either you cal! include steps for each iteration of your algorithm (a), 
or you cal! add an address-generator circuit (6) that lets you use only 
one section of code for all iterations. The address generator locates 
specific values and coefficients in memory automatically. 

step, Each code section contains specific addresses for 
data and coefficients (Fig 2a). The in-line coding ap­
proach therefore wastes program-memory space. 

One improvement found in virtually every array 
processor is a data-address-generator circuit that gen­
erates the necessary data and coefficient addresses 
within the array processor. The address-generator 
hardware reduces the amount of microprogram memo­
ry you'll need. for an algorithm. By using such hard­
ware, the processor performs multiple iterations of an 
operation by looping through the same section of micro­
code as many times as necessary (Fig 2b). 

Depending on your specific tasks, you can choose a 
data-address generatQr that fits a specific algorithm, 
such as the fast Fourier transform (FFT), or you can 
choose a general-purpose addressing device. Some 

continued. page 6-114 
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Array processor vs general-purpose computer 

To understand better what an 
array processor does, cQnsider 
first the strengths and short­
comings of general-purpose com­
puters. General-purpose comput­
ers Incorporate the standard Von 
Neumann architecture and per" 
form a variety of tasks. Such 
computers perform instruction­
fetch and instruction-execution 
tasks sequentially, with instruc­
tions and data available in one 
memory array (Fi, A). 

Consider the calculation of the 
sum of products, a common task 
in signal-processing and .matrix­
manipulation algorithms. The 
basic sum-of-products equation is 

where ki and Xi represent coeffi­
cients and data stored in memo­
ry, respectively. The sum-of­
products computation represents 
a large class of array-processing 
problems that share three funda­
mental characteristics: First, 
they involve repetitive computa­
tions on arrays of data. Second, 
the underlying control structure 
is simple, having many loops but 
no conditional branches. Third, 
the math steps are memory-in­
tensive-each calculation re­
quires one data point and one 
constant from memory. 
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To evaluate a product term, 
the computer fetches Xi and kit 
multiplies them, and then adds 
the result to the running total. 
Each step requires an instruc­
tion~fetch cycle and an instruc-

Fig A-A gellelYJl·pu.rpoae COIIIPuter lIIelllOrg storss instructiona and data in the same 
block. The computer must acceS8 inBtruction and data va/uss aequentiatly. 

tion-execution cycle. Although 
specific details vary from com­
puter to computer, in general 
even primitive math operations 
require many cycles. 

Overlappin, operation 
Traditionany, Von Neumann­

type computers perform each 
step sequentially. Array pro­
cessors, however,. provide a de­
gree of parallelism by doing 
more than one thing at a time. 
When data and program steps 
reside in separate memories-an 
arrangement that fits the Har­
vard-architecture model-in­
struction- and data-fetch opera­
tions can overlap (Fi, B). In the 
case of the sum-of-products op­
eration, the array processor 
fetches the input operands at the 
same time that it fetches the in­
struction that performs the mul­
tiplication. Most array proces­
sors also overlap instruction­
fetch and instruction-execution 
operations. 

For highly regular, math-in­
tensive algorithms, the overlap­
ping results in high-speed opera­
tion, but such operation can be 
inefficient when the algorithm 
includes conditional branches. If, 

for example, a program calls fpr 
a conditional branch to another 
instruction, the instruction fol­
lowing the branch instruction 
may be in the instruction queue. 
If it is in the queue, the comput­
er discards it. Array processors 
are therefore best suited to the 
many number-crunching algo­
rithms that require little or no 
conditional branchil'lg. 

Because array processors pro­
vide parallel operation, you can 
optimize them for a specific 
math process. Fbr example, an 
array processor designed for a 
sum-of-products operation may 
contain a multiplier and adder 
circuit, which evaluates a prod­
uct term in one cycle. Because 
array processors perform paral­
lel operations, programming the 
processors is more demanding 
than programming a general­
purpose computer. However, the 
resulting increase in computa­
tional power often justifies the 
additional programming effort. 
Instead of programming in Basic 
or In assembly language, you'll 
use a microcode that controls in­
dividual circuits and operations 
In the array processor. Although 
such programming is demand-
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ing, it gives you complete con­
trol of the array processor's in­
ternal operations. 

Five functional blocks 
Array processors typically re­

ceive data and instructions from 
a host machine-usually a 
general-purpose computer. Al­
though specific array-processor 
architectures vary greatly, most 
processors contain at least five 
functional blocks: an arithmetic 
unit, data memory, a controller, 
program memory, and a host 
interface. 

The heart of the processor is 
the arithmetic unit, which con­
trols the data paths and per­
forms arithmetic operations. De­
pending on your application, the 
arithmetic unit performs fixed­
point operations, floating-point 
operations, or both. For some 
high-speed, real-time applica­
tions, such as radar- and video­
information processing, array 
processors operate on 12-, 16-, 
or 24-bit fixed-point data. How­
ever, the trend is toward 32-bit 

floating-point data processing. 
The data-memory-usually 

banks of high-speed RAM or 
PROM-supplies operands to the 
arithmetic unit and stores re­
sults from the arithmetic unit. 
The data memory can have mul­
tiple data ports, depending on 
how fast the memory chips must 
supply operands and accept re­
sults. If it doesn't have enough 
ports or enough speed, the data 
memory can become a process­
ing bottleneck, leaving the arith­
metic unit starved for operands. 

Controller is simple 
The controller sequences the 

array processor through its op­
erations. Because most array­
processing algorithms have mod­
est sequencing requirements, 
the controller isn't complex. 
Controllers provide a program 
counter (PC) that you increment 
to access the next program­
memory word. You can also load 
the PC with the program memo­
ry's output to force the control­
ler to jump to a different part of 

I p~~~ rllNSTRUCTION I INSTRUCTION I INSTRUCTION r INSTRlJC11Ot! ,. 

Fig B-An arrag proce880r's memorg provides separate storage blocks for instruc· 
tions and data. The separate storage areas let the control circuits access instructions 
and data in parallel. 
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the program. The controller in­
cludes a loop counter, which 
counts repeated operations. De­
pending on the array processor's 
sophistication, the controller 
may incorporate circuits that 
control nested subroutines, jn­
terrupts, and conditional-branch 
operations. 

The program memory stores 
the array processor's microcode, 
which controls the other pro­
cessor elements. Like the data 
memory, the program memory 
can be RAM or PROM. Use 
PROMs when the algorithms are 
well-defined and unlikely to 
change. Use RAM during algo­
rithm development. The re­
sources in the array processor 
determine the microcode memo­
ry's bit width. For example, a 
6O-bit-wide program memory 
provides 30 bits that control the 
arithmetic unit, 15 bits that 
transfer information to the COll­

troller (including a 12-bit jump 
address), and 15 bits that control 
other internal array-processor 
resources. 

The host interface transfers 
. data and instructions between 
the host computer and the array 
processor-usually by DMA op­
erations. The host computer 
sends the array processor a 
block of data and an instruction 
word that selects a processing 
algorithm. After proceslling the 
data, the array processor trans­
fers the results to the host 
computer. 
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An array processor can include pipeline reg­
isters that let the circuit olJerlap tasks. 

DA,A MEMORY 

r-----+-j ~~~.'"~"'~~~~~f .. ----------------l.., 

REG 

'--___ -' Am29325 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I ___ J 

Am29325 '--___ ...J 

Fig 3-.4 6·port RAJ' speeds data transfers ,<I, thot tll'(I /l/oth­
pt'()('(','4.";OI' chips {'(III Opf'rate iurlepnldently. TIl(' ('/tips can p,'oces ... 
data .Ii'om the /1Il'1IIIH'1I or/hun one another. 

array processors provide both a general-purpose and a 
dedicated address-generator circuit. You'll find sepa­
rate address generators for data and coefficient memo­
ries in array processors that provide extremely high 
processing speeds. 

An address generator reduces the size of your array 
processor's program memory, and it increases the 
processor's speed. To increase processing speed fur­
ther, consider' adding arithmetic hardware to your 
design so the processor can do several computations in 
parallel. In the basic array-processor design, the arith­
metic unit performs one operation at a time-for exam­
ple, sums of products, which involve alternate, addition 
and mUltiplication operations. The array processor per­
forms the mUltiplication and addition operations se­
quentially. 

The throughput of the basic array processor is 250 
nsec per floating-point product term; to increase that 
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speed you can gang two 29325 floating-point math 
processors (Fig 3). The processors communicate 
through a 6-port RAM. When the circuit incorporates a 
multiport RAM, the floating-point processors can each 
access two input operands and store one result during 
each clock cycle. Because data produced by one float­
ing-point processor is accessible to the other, you can 
double the processing speed for such algorithms as 
sum-of-products: One processor produces product 
terms, while the other processor sums and accumulates 
them. Of course, you can choose other math-chip config­
urations that better suit specific array-processing 
tasks. Keep in mind, however, that although you gain 
higher-speed operations by providing parallel math 
chips, your programming tasks grow. Coordinating the 
software operations of several parallel math chips can 
be difficult. 

Memory expansion increases throughput 
When you upgrade the arithmetic unit by adding 

parallel math chips, you must improve the data memory 
as well. The data-memory configuration in the basic 
array processor limits processing speed because the 
processor only accesses one constant and only performs 
one RAM-read or -write operation per clock cycl~. To 
let the array processor perform operations that require 
two operands from RAM in the same cycle, or that 
require RAM-read and -write operations during the 
same cycle, you must upgrade the memory. Possible 
enhancements include converting the coefficient PROM 
to high-speed RAM, running the data RAM at twice 
the processor's speed to allow single-cycle reading and 
writing, or replacing the data RAM with a 2-port 
RAM. 

In addition to high processing speeds, some applica­
tions may require rapid data' transfers between the 
array processor and the host computer. There are at 
least two ways of speeding the transfer of data from the 
host to the array processor. First, you can replace the 
array processor's data RAM with a 2-section memory 
(Fig 4) that gives the host computer access to one 
section while the array processor uses the other. When 
the array processor completes its task, it switches 
between the buffers. The host obtains the results from 
the array processor's old buffer, while the processor 
operates with the data in the host's old buffer. The host 
computer's and the array processor's operations are no 
longer sequential; instead, they overlap. You'll have to 
pay careful attention to the manner in which the array 
processor controls the 2-section memory, because you 
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Fig 4-A 2-section memory offers a speed enhancement. TIIf' Iw.'lt p,'(}('e,'i.'iOI' /'('{/{{,"i or 1I"'ifes .11'0111 one ,~e('fion, while the array processor 
proCCS.'H:!S the d.(lia in the other section. 

don't want to switch buffers while the host or the array 
processor is still using one. 

A second approach involves bypassing the host com­
puter and letting the array processor take data directly 
from the data source--for example, an AID converter. 
The processor uses the data and passes results to the 
host computer. 

The 2-section-memory and direct-data-input tech­
niques aren't mutually exclusive. In a given application, 
you might send data from an AID converter directly to 
a 2-section memory. In this case, when the AID con­
verter's memory is full, it switches the memory section 
to the array processor. 

Dividing the work load 
By adding both direct-data input and output ports to 

your array-processor design, you can connect several 
processors in series, letting each one perform a subset 
of your algorithm. Mter it processes a piece or block of 
information, each processor passes results to the next 
processor in the chain. 

The basic array processor performs addition, sub­
traction, multiplication, and format-conversion opera­
tions. For complex and transcendental operations, 
you'll need specific microcode routines that offer cosine, 
sine, and other functions. Standard algorithms are 
available, so your programming tasks aren't insur­
mountable. Part 3 of EDN's floating-point series will 
explore transcendental functions and tell how to imple­
ment them. EDN 
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Floating-point ~p 
implements high-speed 

math functions 

This final article in a 3 -part series describes how to 
incorporate a floating-point processor into your sys­
tem. It discusses criteria for the selection of the algo­
rithms you'll use, and in particular it details the 
methods used to implement transcendental functions. 

David Quong, Advanced Micro Devices 

If your application must perform a variety of math 
functions at high speeds on a wide range of input data, 
consider designing a math subsystem based upon a 
VLSI floating-point processor. A floating-point pro­
cessor, a microsequencer, RAM, and ROM, configured 
as shown in Fig 1, together with the appropriate 
algorithms, will allow you to perform most math func­
tions at real-time speeds with high precision and a very 
large dynamic range. A system of this type will outper­
form even the fastest floating-point coprocessor. 

The choice of algorithms is an important step in the 
realization of your math processor. You can choose from 
a variety of methods for implementing transcendental 
and other math functions: The Taylor series, the 
Chebyshev series expansion, and the Newton-Raphson 
approximation are just a few of the many possible 
approaches. Which algorithm is the best one for your 
particular application will depend upon what functions 
you want to perform, the hardware architecture you are 

using, and the system throughput and accuracy you 
expect to receive. 

Many designers select the Taylor series for perform­
ing math functions. This well-known method allows you 
to find equations for various functions in most books of 
math tables. The Taylor series has a major drawback, 
however: It has a nonuniform convergence rate'in the 
number of terms needed to achieve a desired accuracy. 
Consider, for example, the Taylor series expansion of 
the sine function: 

. x3 x5 x7 
sm(x) = x - 3T + 51 - 7f' . . . 

For values of x near zero radians, this equation 
converges very quickly, but as x becomes larger, you'll 
need a larger number of terms to evaluate sin(x) to the 
same accuracy that you obtained for the smaller values. 

The Chebyshev expansion method; like the Taylor 
method, produces a polynomial approximation, but it's 
not so well known. The generation of the Chebyshev 
appraximation for a particular function is more complex 
than for the Taylor series, but the resulting polynomial 
is just as easy to implement. The major advantage of 
the Chebyshev method is that it has uniform conver­
gence. Moreover, for any given function, over the 
operating range of the Chebyshev series this method 
yields smaller errors than almost any other method. 
You can usually determine by inspection the upper 
bound of the error; the error of the truncated series 

Reprinted with permission from EDN, Fllbruary 6, 1986. CoPyri9ht 1986, Reed 
Publishin9 USA. 
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A math-processing subsystem incorporating 
a VLSI floating-point processor will outper­
form even the fastest available floating­
point coprocessor. 

cannot exceed the sum of the absolute values of the 
remaining Chebyshev coefficients. (For details of the 
derivation of the Chebyshev series, see box, "Deriving 
a Chebyshev series. ") 

Iteration handles simple functions 
For some simple functions such as division and 

square-root extraction, the Newton-Raphson method, 
an iterative approach for approximating such functions, 
works well. When using this or any other iterative 
method, you have to start with a seed, or initial 
approximation. The better this approximation is, the 
faster will be the convergence. You can store predeter­
mined seed values in a look-up table. This method 
usually requires extra hardware (in the form of ROMs), 
but it gives you flexibility, because you can store seed 
values that are as accurate as you want. 

The chief attraction of the Newton-Raphson method 
is its rapid convergence; the number of iterations 
required is low. The method converges quadratically, 

.... 
SYSTEM BUS 
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ie, the order of the error is squared by each iteration. 
For example, if the seed is accurate to eight bits, the 
first iteration improves the accuracy to 16 bits, and the 
second iteration improves it to approximately 32 bits 
(variance depends on the magnitude of the error). 

The math processor shown in Fig 1 evaluates 
Chebyshev and Newton-Raphson approximations very 
efficiently. The system performs transcendental (trigo­
nometric, logarithmic, and exponential) functions by 
the Chebyshev method and division and square-root 
extraction by the Newton-Raphson method. 

Understand the algorithms 
The algorithms for 10 very common math functions 

are described below. You'll need these functions for 
applications associated with navigation, guidance, 
image processing, signal processing, and many other 
areas. The algorithms for the transcendental functions 
are based on the Chebyshev method and consist of a 
3-stage process. The first stage reduces the range of 
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Deriving a Chebyshev series 
The Chebyshev series expansion 
is a procedure for generating a 
polynomial approximation for a 
given math function, f(x). To 
expand the function, you must 
express it as a Chebyshev 
series: 

for -1:5X:51, where Tn(x) is the 
Chebyshev polynomial of degree 
n given by 

Tn(x)=cos(nxacos(x» 

and Cn is a coefficient of the 
Chebyshev series. The value of 
Cn is dependent upon the 
function f(x). You can determine 
the value of Cn by evaluating the 
following relationship: 

Cn = ~ f+' f(x) Tn(x) /lx. 
7r -, ~ 

Alternatively, you can obtain the 
Cn coefficients in tabular form, 
for a wide variety of functions, 
from books on mathematical 
tables (Ref 2). 

Examples of the Tn(x) 
polynomial include the following: 

To(x) = cos(O) = 1 
T,(x) = cos(acos(x» = x 
T,(x) = cos(2acos(x» 

= 2 cos' (acos(x» 
= 2x' - 1. 

You can generate a polynomial 
equation for a function by 
combining the above equations 
and combining terms with 
common exponents. The 
accuracy of the result depends 
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upon the number of terms you 
use. (If you are interested in a 
formal derivation of the 
Chebyshev method, see Refs 1 
and 2.) 

Expansion for sine function 
If you want to find the 

Chebyshev expansion for the 
sine function, first go to the 
coefficient tables in Ref 2 and 
look up the coefficients for the 
sine function (or calculate them 
from the formula given above). 
Next, determine the number of 
coefficients required to provide 
the accuracy you want. For 
example, to achieve 24 bits of 
accuracy, the error should be no 
greater than one part in 17 
million. Compare the magnitude 
of this largest acceptable error 
with each of the coefficients. 
The first term that contains a 
coefficient that's less than the 
error can be the last term in the 
series. It's common practice, 
however, to include one extra 
term in the series. 

Using the above criteria, you 
need only six coefficients for the 
sine function using sin(Ih'l1'x) in 
order to obtain a result that's 
accurate to 24 bits. These 
coefficients are 

• CO=CsinO= +2.552557925 
• C,=C'in,=-0.285261569 
• C,=C,In2= +9.118016007 

X 10-118 
• Ca=Csin3= -1.365875135 

X 10-04 

• C4=C"n4=+ 1.184961858 
. X 10-06 

• C5=C,ln5=-6.702792xlO-09 

Substituting the Tnx 
polynomials into the Chebyshev 
series gives 

sin(Ih7TX) = 
0.5Co + C,x + C, (2x' - 1) 
+ Ca (4xa - 3x) 
+ C4 (8x4 - 8x' + 1) 
+ C5 (16x5 - 20xa + 5x). 

Simplifying the terms gives 

sin(Ih7TX) = as + a,x + a,x' 
+ aaxa + a,x4 + asx5. 

where 

• as=(0.5)CO-C2+C4 
• a,=C,-3Ca+5C5 
• a2=2C2-8C4 
• aa=4Ca-20C5 
• a,=8C4 
• a5=16C5. 

The final result for the sine 
function is a simple polynomial 
equation that you'll find easy to 
implement. You can precalculate 
the coefficients as through as and 
store them in a ROM table. You 
can apply the same procedure to 
any well-behaved function for 
which you can find or compute 
the Chebyshev coefficients. 



The Chebyshev expansion method, like the 
Taylor method, produces a polynomial ap­
proximation, but it's not so well known. 

the input arguments to values between + 1 and -I, 
because the Chebyshev expansion operates only over 
this range. The second stage evaluates the polynomial 
derived from the Chebyshev expansion. The third 
stage performs any postprocessing that may be re­
quired, such as correction of the sign. 

The detailed descriptions were developed by 
Clenshaw, Miller, and Woodger (Ref 1). They use the 
terms RND and CSERIES: RND indicates that the 
result of the operation must be rounded towards minus 
infinity, and CSERIES indicates that the Chebyshev 
series for the input must be evaluated. 

Range reduction prepares arguments 
The range-reduction steps for the sine function are 
• x=x(2hr) 
• x=x-(4(RND(O.25(x+ 1)))) 
• Ifx>l then x=2-x. 

As noted, these steps reduce the input argument to the 
range -lsxsl. You then evaluate the sine function by 
summing the terms of the following polynomial equa­
tion derived for the sine function: 

sin(x)=x(CSERIES'in(2xL 1)). 

The range-reduction steps for the cosine function are 
• x=x(2hr) 
• x=4(RND(O.25(x+2)))-x+ 1 
• Ifx>l then x=2-x. 

You then evaluate the cosine function by using the same 
polynomial equation as for the sine function: 

cos(x)=x(CSERIES'in(2x2-1)). 

The range-reduction steps for the tangent function 
are 

• x=x(2I7r) 
• x=x-(4(RND(O.25(x+ 1)))) 

• y=x 
• If x> 1 then x=2-x. 

The Chebyshev polynomial evaluation for the tangent 
function is 

tan(x)=x(CSERIEStan(2xL 1». 

You have to perform one postprocessing step: 

If y> 1 then tan(x)= 1Itan(x). 

You don't need any range-reduction steps for the 
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arcsine function, because all values outside the range 
-lsxs1 indicate an error condition. For input argu­
ments in the range x2s'h, you evaluate the arcsine as 
follows: 

asin(x)=x(Y2(CSERIES"in(4x'- 1))). 

For input arguments in the range lh<x'sl, you evalu­
ate the arcsine as follows: 

asin(x)=sign(x)(11"/2)(V2-2x2)(CSERIES" .. (3-4x'», 

where sign(x) is the sign of x. 
You use the following trigonometric identity to evalu­

ate the arc-cosine function: 

acos(x) = 11"/2-asin(x). 

The range-reduction steps for the arctangent func­
tion are 

• u=x 
• If ABS(x» 1 then X= 1Ix, 

where ABS(x) is the absolute value of x. The 
Chebyshev polynomial evaluation is 

atan(x)=x(CSERIES.t .. (2x2-l)). 

The postprocessing steps are 

Ifu>l then atan(x) = + (1T/2)-atan(x) 
and 

Ifu<-l then atan(x)=-(11"/2)-atan(x). 

The range-reduction steps for the exponentiation 
function are 

• X=X(lOg2e) 
• N=1+RND(x). 

The Chebyshev polynomial evaluation is 

exp(x)=2N(CSERIES"i2(N -x)-l)). 

Only positive values are valid input arguments for 
the natural-log function; a zero or a negative value 
should be flagged as an error: 

In(x)=(CSERIES1n(4(mant(x»-3»+(expo(x)-1)(ln(2», 

where mant(x) is the mantissa value of x, expo(x) is the 
exponent value of x, and In(2) is a constant value. 

You perform division operations by evaluating the 
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reciprocal function. For example, you can express the 
division operation C=AJB in its reciprocal form, 
C=A(lIB). By using the, Newton-Raphson method, you 
can find an iterative expression for the reciprocal 
function. This expression is 

where Xo is the initial divisor reciprocal (seed value) for 
i=O, and Xi is the ith approximation. 

The square-root function also uses the N ewton­
Raphson method. The iterative expression for the 
inverse square-root function is 

You then evaluate the square root of A by the equation 

where A is the input argument, B is the square root of 
A, >Co is the initial approximation (seed value) for i=O, 
and Xi is the ith approximation. 

The principal component of the math-processor sub­
system described here is the Am29325 floating-point 
processor. The subsystem also contains RAM, bipolar 
PROMs to store coefficients, a subsystem controller, 
and a host interface. The floating-point processor per­
forms all computations under control of the subsystem 
controller; microcoded programs to perform the func­
tions you need reside in the subsystem controller's 
PROM. If you wish to modify existing functions or add 
new functions, you merely change the microprogram­
med PROM. 

The Am29325 floating-point processor (Fig 2) pro­
vides many 'features that simplify subsystem design. 
The 3-port, 32-bit I/O structure of the Am29325 avoids 
data multiplexing and allows efficient transfer of infor­
mation. The 32-bit internal registers and data paths 
allow' the chip to store the results of intermediate 
calculations for use in subsequent operations, thereby 
avoiding the delays that transfer of these results to and 
from off-chip storage would entail. Many functions don't 
need to send data out of the chip until the final results of 
an operation are ready. 

The floating-point-processor hardware detects excep­
tional conditions and, rather than compounding the 
error until the end of the calculation, immediately 
notifies the host system. The chip notifies the host by 
means of flags that indicate underflow, overflow, inva-
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Fig 2-This VLSI floating-point processor i. faIlt because it contains 
all the major components for Ji-bit operations on a single chip. It has 
olle illpltt for all external clock and 17 inputs for instruction-select 
alld ecmtrol.!i",et;olls. 

lid operation, and other error conditions. 
Subsystem data storage consists of a high-speed, 

4-port RAM. You can load the data memory from the 
host computer (using DMA), from the floating-point 
processor, or from an integer processor. You'll need to 
process integers during operations such as isolating the 
exponent and mantissa portions of a. floating-point 
word. You can have the host processor perform integer 
processing, or you can arrange it so, that the math 
subsystem performs the required operations by incor­
porating an integer processor chip in your design. 

Learn to microprogram the processor 
Two examples of how to implement math functions on 

the Am29325 floating-point processor will give you an 
introduction to the microcoding procedures you'll use in 
the math processor. Recall, that, for a given division 
operation (C=AlB), the Newton-Raphson division algo­
rithm begins by obtaining the reciprocal of the divisor 
by means of an iterative equation. A single iteration 
requires just three arithmetic operations: 

• mUltiplication: B(x;)=u 
• subtraction: 2-u=v 
• multiplication: V(Xi)=Xi+l. 

You can microcode this procedure with a 3-instruction 
loop that you repeat until you obtain a sufficiently 
accurate value of Xi+l. You then perform a single multi-



The math processor uses the N ewton­
Raphson method to execute the division 
and square-root functions. 

plication, Axx,d, to obtain the quotient. 
The conventional way to obtain a seed is to use the 

most significant 16 or so bits of the divisor as a pointer 
into a look-up table in ROM; the contents of the address 
to which the divisor bits point become the seed output, 
which usually has approximately the same number of 
bits. You might think that use of a 16-bit address would 
require a ROM that's 64k words deep, but this is not so. 
In floating-point division, you can reciprocate the expo­
nent and significand separately, each from its own 
table, and then recombine them. Consequently, for an 
8-bit exponent and the eight most significant bits of the 
significand, you require only two tables, each just 256 
words deep. 

You can also trade ROM word width for execution 
time (ie, the number of iterations); doubling the width 
of the significand stored in ROM will reduce reciprocal 
refinement time by roughly one iteration. Convergence 
is specified by the inequality 2/B>lxol>O. 

The microcoding for the complete Newton-Raphson 
division is shown in Table 1. The operation requires six 
lines of microcode. In cycle 1, you load the seed into 
register R of the floating-point processor and load the 
divisor into register S. In cycle 2, you multiply the 
contents of registers Rand S; the result appears in 
register F. 

In cycle 3, you perform the subtraction, using the 
2-S instruction of the floating-point processor. The 
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input for port S comes from register F via the internal 
feedback path. The result of the subtraction appears in 
register F. 

In cycle 4, you perform the second multiplication. 
This operation multiplies the contents of register F (via 
port S) by x, (from register R). The result, X'"lo replaces 
x, in register R. In parallel with the mUltiplication, the 
microsequencer executes a jump back to cycle 2 to 
begin the next iteration. 

Cycle 5 begins after the last iteration of cycles 2 
through 4. In this cycle, you load the dividend (A) into 
register S and multiply it by the contents of register R 
to produce the final result. This result appears in 
register F, from which you can unload it via the F bus 
to local data storage or to the host. 

The second implementation example uses the 
Chebyshev method to perform a sine calculation. In the 
polynomial equation that evaluates the sine function, 

The range-reduction steps require eight or nine oper­
ations. Evaluation of the polynomial equation requires 
23 additional operations, including processing of the 
2x'-1 expression. One final operation multiplies the 
result of the polynomial evaluation by x. The sine 
function therefore requires 32 or 33 operations. 

You can, however, save 10 cycles in the evaluation of 

TABLE 1-INSTRUCTION SEQUENCE FOR 

NEWTON-RAPHSON DIVISION ON THE Am29325 
I 
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1 X X X X 0 0 0 x x X ? ? ? LOAD 8 AND SEED INTO Am29325 

2 0 1 0 0 X 1 1 0 X R'S X(O) B ? BEGIN FIRST ITERATION 

3 1 1 0 1 X 1 1 0 X 2-S X(O) B S'X(O) 

4 0 1 0 1 1 0 0 0 X R"S X(O) B 2-B'X(O) X(I)=X(OIl2-B·X(O)I. LOAD A 

5 0 1 0 0 X 1 1 0 X R'S X(I) A X(I) A'X(I). X(I)=lIB 

6 X X X X X X X X 0 x XII) A A'Xll) OUTPUT RESULT. AlB 

X=DON'T CARE ?=UNKNOWN 
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The floating-point processor hardware de­
tects exceptional conditions and, rather 
than compounding the error, immediately 
notifies the host system. 

the polynomial equation by applying Horner's Rule, an 
algebraic method for rearranging components in a 
polynomial. The polynomial equation then becomes 

CSERIES,in=««aox+B4)x+8;J)x+a2)x+a!lx+lIo. 

The total number of operations in the sine function then 
decreases to 22 or 23. Evaluation of the rearranged 
polynomial equation is complete in 10 clock cycles. 

In cycle 1, you load x into the S register and a, into 
the R register. MUltiply these two operands to produce 
a,Xx. In cycle 2, you load the result of the multiplication 
into the F register, load B4 into the R register, and add 
the contents of the F and R registers to yield 

(a5 xx)+B4. 

In cycle 3, you load the result of the addition into the 
R register; the S register still contains x. Perform R x S 
to obtain 

«a,xx)+B4)x. 

Cycles 4 through 10 perform similar addition and 
mUltiplication operations, progressively using the 
terms a3 through 110. The final result of evaluating the 
polynomial equation is available in the F register after 
cycle 10. 

The ability to perform both simple and complex math 
functions rapidly is critical in systems that process data 
in real time. You won't yet find many simple, compact 
solutions to this problem on the market. Math-coproc­
essor ICs are available, but they are still in the low- to 
medium-performance range, and they limit you to a 
microprocessor environment. (Table 2 shows com para-

tive timings for two floating-point coprocessor chips 
and the Am29325 floating-point processor.) 

You can design and build your own MSI chip, but such 
a product will require much development time and cost, 
and it will probably be large and consume lots of power. 
Another possible approach is to compute the values of 
the math functions you will need and to store these 
values in ROM, but such a look-up-table method is 
adequate only for small amounts of data. At the present 
time, the use of a math subsystem based upon a VLSI 
floating-point processor with a relatively small amount 
of support circuitry appears to be the most cost­
effective solution. EDN 
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TABLE 2-TIMING COMPARISON 
OF SINGLE-PRECISION FLOATING·POINT FUNCTIONS 

FLOATING·POINT SPEED ADD MULTIPLY DIVISION SQUARE ROOT SINE COSINE TANGENT 
CHIP (MHz) ("SEC) ("SEC) ("SEC) ("SEC) ("SEC) ("SEC) ("SEC) 

INTEL 8087' 8.0 12.5 18.1 25.4 23.3 NOTE 3 NOTE 3 67.5 

MOTOROLA 68881' 16.67 2.8 3.1 3.8 NIA 23.0 23.0 27.2 

AMD Am29325 8.0 0.125 0.125 1.125 1.625 2.875 3.125 4.750 

NOTES: 

NIA • TIMES NOT AVAILABLE. 

1. TIMES FOR THE INTEL 8087 WERE DERIVED ,FROM THE INSTRUCTION CLOCK COUNT GIVEN IN THE INTEL DATA PAMPHLET (1984) ALL 
TIMES LISTED ARE WORST CASE. 

2. TIMES FOR THE MOTOROLA MC68881 WERE TAKEN FROM A NEWS ITEM IN ELECTRONIC PRODUCTS. FEBRUARY 15. 1985. PG 43. 

3. THIS OPERATION IS NOT COVERED BY THE INSTRUCTION SET AND MUST BE IMPLEMENTED BY USING OTHER INSTRUCTIONS. 
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Optimize your 
graphics system 

for 2-D and 3-D 
The design of a graphics system thafs both 
2-dimensional and 3-dimensional poses 
some conflicting requirements. You can rec­
oncile some of these conflicts) huwever) 
through careful design of the frame-buffer 
structure) and you can achieve adequate 
speed for 3-D applications by using parallel 
processors for computation-intensive tasks. 

Anoop S Khurana and Olivier Garbe, 
Advanced Micro Devices Inc 

A graphics system that will handle both 2- and 3-
dimensional applications presents design requirements 
that are at odds with one another. These conflicts arise 
from the fundamental differences in the nature of the 
geometry-, pixel-, and display-processing tasks re­
quired by the two systems. A system with a micropro­
grammed architecture can help you avoid the difficul­
ties you'd encounter in reconciling these differences. 

You'd use a 2-D graphics system with such graphics 
editors as MacDraw, MacPaint, and Interleaf, or with 
CAE programs such as schematic-capture packages or 
layout editors for pc-board design. You'd need a 3-D 
system, on the other hand, to display 3-D wire-frame 

models, to model solids for mechanical design, or to 
produce visually pleasing 3-D pictures for animation. 

One of the major differences lies in the size of the 
frame buffer needed, and the speed with which the host 
computer can obtain access to it. Most 2-D systems 
need only eight bits to define a pixel color as one of 256 
simultaneously displayable colors. A 3-D system, on the 
other hand, needs eight bits each for red (R), green (Gl, 
and blue (B}-a total of 24 bits per pixel. Also, 2-D 
pixel-processing operations require fast access to multi~ 
pie pixels during the same frame-buffer cycle. In a 3-D 
system, by contrast, pixel-processing operations (such 
as Gouraud shading) are computation-intensive but 
require access to only one pixel at a time. 

Similarly, geometry-processing operations are more 
arithmetic-intensive in 3-D than in 2-D systems. Fixed­
point, 32-bit arithmetic provides adequate computa­
tional power and speed for many 2-D applications, 
whereas 3-D applications need the speed and versatility 
of fast floating-point arithmetic. 

Most of the graphics systems available today, includ­
ing engineering workstations, are optimized for 2-D 
graphics operations; if they have 3-D capabilities, they 
perform the required processing mainly in software, 
which is slow. To obtain adequate speed, then, serious 
users of 3-D graphics find that they need a separate 
system that's optimized for 3-D graphics, resulting in 
an expensive duplication of hardware and software. 

You can avoid these disadvantages by designing a 
single graphics system that provides all the features 

Reprinted with permission from EON, Vol. 32 No.6, Maroh 18, 1987. Copyright 
1987, Reed Publishing USA. 
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A 2-dimensional graphics system can han­
dle diagrams, but you need 3-dimensional 
capability for mechanical modeling. 

necessary for both 2-D and 3-D graphics. You'll find a 
microprogrammed architecture ideal for such a system, 
because such an architecture lets you customize the 
data paths and computational resources to a particular 
application and to the performance level that you want. 
It also lets you integrate both fast integer and fast 
floating-point arithmetic capabilities, both of which are 
necessary for complex graphics operations, into a single 
system. 

As an example of such a system, consider the design 
of a graphics peripheral for a conventional minicomput­
er. This peripheral can act as a bus master on the host's 
system bus, but it need not do so. The application 
program runs on the host computer and generates a 
display list, defining the image, which the CPU passes 
to the graphics peripheral via a DMA channel (or by 
any 'other appropriate means). The graphics peripheral 
processes this display list to generate the image. (The 

steps that convert a display list to an image on .the 
screen are collectively referred to as the "graphics 
pipeline"; see box, "From object to image: the graphics 
pipeline.") The three main functional blocks of the 
system are the communications and display-list han­
dier; an update processor that performs geometry and 
pixel processing; and a display controller (Fig 1). 

A conventional, general-purpose, 16- or 32-bit flP, 
which has its own memory and DMA channel, receives 
and executes commands issued by the host. This com­
munications processor can directly execute some host 
commands, such as Load Display-List. Other com­
mands, such as Render Display-List, involve the rest of 
the graphics system; the communications processor 
analyzes these commands and dispatches appropriate 
commands to the update processor, using a message­
based protocol and a fast, dual-access memory block 
that serves as a mailbox. 

From object to image: the graphics pipeline 
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The graphics pipeline is the se­
quence of operations that trans­
lates the user's description of a 
scene into a viewable image. The 
four stages in this process are 
display-list handling, geometry 
processing, pixel processing, and 
display control. 

APPLICATION 
PROGRAM 

MODEL HOUSE 

The display-list handler helps 
the user or the application pro­
gram decompose objects to be 
depicted into a display list. The 
display list is usually hierarchi­
cal, and it embodies the struc­
ture inherent in the object being 
modeled. Leaf nodes in the hier-

VIEWING 
MODEL 

GEOMETRY 
- PROCESSING 

RECTANGLE RECTANGLE PENTAGON PENTAGON RECTANGLE RECTANGLE 

DISPLAY-LIST CREATION AND TRAVERSAL 

archy are drawing primitives 
provided by the graphics 
system. 

The geometry processor per­
forms viewing- and perspective­
transformation operations on the 
display list, and it clips objects 
against the boundaries of the 

PIXEL 
PROCESSING 

DISPLAY 
PROCESSOR 

The graphic. pifH'line collllilltB oIthe proceuing .tepa needed to coovert a graphics object description, in digital form, into a viewable 
i1/UJ(Je on the screen. 
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The dual ports of the mailbox allow the update 
processor to read a command while the communications 
processor is sending a subsequent command. Sema­
phores, also located in the mailbox RAM, govern both 
command chaining and the allocation of memory to 
message buffers. 

commands that are related to geometry or pixel pro­
cessing. Such operations may update the pixel data in 
the frame buffer, or they may pass a message back to 
the communications processor. 

The frame buffer uses video RAM (VRAM) ICs, both 
to maximize bandwidth and to minimize the quantity of 
hardware needed for refreshing the image. The frame-The microprogrammed update processor executes all 

viewing volume. You can decom­
pose the complex primitives used 
by the geometry processor, such 
as patches or cubic curves, into 
simpler primitives, such as poly­
gons or lines. 

The pixel processor physically 
writes all the pixels affected by 
a primitive into their correct lo­
cations in the frame buffer. It 
also performs all operations, 
such as pixel-block transfers, 
that require pixels to be read 
from or written to the frame 
buffer. 

The display controller con­
verts the pixel values stored in 
the frame buffer into a standard 
video signal. This video signal, 
when transmitted to a suitable 
monitor, builds the desired 
image on the screen. 

A single, general-purpose pro­
cessor, such as the Intel 80286, 
along with the 80287 numeric co­
processor, can perform all the 
operations in the graphics pipe-
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line sequentially. In such a sys­
tem, the main processor writes 
the final value of each pixel to 
the frame buffer, which forms 
part of the address space of the 
main processor. This configura­
tion is relatively slow, however, 
and the speed may be inade­
quate for 3-D applications. 

You can achieve improved per­
formance by using specialized 
VLSI peripheral devices, such 
as the Am95C60 Quad Pixel Da­
taflow Manager, to speed some 
of the operations in the graphics 
pipeline. Most current graphics 
peripherals relieve the main 
processor of most of the pixel­
processing tasks. Typical func­
tions performed by such periph­
erals are line drawing, polygon 
filling, and block transfer of pix­
els. Because these tasks are rel­
atively standard and are well 
suited to implementation in 
high-performance silicon, graph­
ics peripherals yield a substan-

tial improvement in system per­
formance, You can achieve a 
similar improvement by using 
high-performance floating-point 
processors to speed the compu­
tation-intensive geometry-proc-
essing tasks. ' 

For even higher performance 
and functionality, you should 
consider the use of multiproces­
sing systems that provide one or 
more processors for each stage 
in the graphics pipeline. Two 
factors contribute to the im­
provement in performance that 
such systems yield. First, be­
cause most graphics operations 
are vector operations, the con­
current performance of several 
parts of a task can yield a speed 
increase that's proportional to 
the number of processors avail­
able. Second, you can fine-tune 
the system by customizing it for 
highest performance in just 
those operations that the appli­
cations require, 

6-125 



CHAPTER 6 
Articles/Application Notes 

A microprogrammed architecture lets you 
customize the resources of the system to the 
problem you)re trying to solve. 
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buffer controller provides all the signals needed for 
reading, writing, and refreshing the VRAMs, and for 
performing all video-refresh functions. 

You'll need to organize the structure of the frame 
buffer carefully to make the most efficient use of the 
available storage. As noted, for 2-D displays you need 
only eight bits per pixel, which allows you to display the 
pixel in one of 256 colors. For 3-D displays, you need at 
least 24 bits per pixel (eight each for the R, G, and B 
channels); you may also need, for each pixel, an addi­
tional eight bits for the alpha channel and 16 or 32 bits 
for the Z buffer (a maximum of 64 bits/pixel). 

You can reduce the total number of bits per pixel by 
mapping the Z buffer into a portion of the frame buffer. 
For example, in a 2k-pixelxlk-line buffer, you could 
map a lkx lk-pixel screen into the first lk pixels of each 
line and the Z buffer into the second lk pixels. Conse­
quently, you could access the Z value of a pixel by 
adding an offset of 1024 to the pixel address. You would 
need two memory cycles to access both the RGB and the 
Z values of the pixel. This structure, however,has the 
great advantage that no bits are irrevocably dedicated 
to the Z buffer. If you don't need a Z buffer, this 
memory becomes available for general use. 

You'll still have to resolve the discrepancy between 
the eight bits/pixel needed for 2-D and the 24 bits/pixel 
needed for 3-D. Your first thought might be to allocate a 
32-bit memory word for each pixel, but then ·you'd be 
wasting 24 bits in 2-D operations. A better solution is to 
allow each 32-bit word to be treated as four adjacent 
8-bit pixels in 2-D. You could then reorganize a 
2kxlkx32-bit memory as a frame buffer of 8kxlkx8 
bits. This organization allows you to store one 3-D 
screen with a resolution of 1024 pixels x 1024 linesx32 
planes, or several 2-D screens at once. 

The frame buffer in our example consists of 64kx4-
bit VRAMs and uses the shifter port of each VRAM for 
video refreshing; the update processor therefore has 
virtually unlimited access to the frame buffer. It's 
possible to organize each VRAM as a 256x256x4-bit 
square area of memory; using this area as a building 
block, you can create a 2kxlkx4-bit memory array 
having four rows and eight columns (Fig 2). If you want 
to extend the depth of the array to 32 bits/pixel, you'll 
need eight VRAMs in each element (called a bank) of 
the array. 

The video display controller (VDC) provides com· 
plete control of the frame buffer, both for update 
operations and for video-refresh operations. In re­
sponse to a read or write memory-cycle request from 

the update processor, the VDC generates the appropri­
ate VRAM-control signals (RAS, CAS. etc). If a dy­
namic-RAM refresh cycle or a transfer cycle for video 
refresh is already in progress, however, the VDC 
delays execution of the' update cycle until the higher­
priority cycle is finished. 

Because each access to the frame buffer read~ or 
writes a 32-bit word, the 2kxlkx32-bit framp buffer 
requires 21 address lines, of which 11 define the X 
address and the other 10 define the Y address within 
the array. In the 3-D 32-bitlpixel mode, each 32-bit 
word in the frame buffer represents one pixel. 

In the 2-D 8-bitlpixel mode, each 32-bit word repre­
sents four pixels. The 18 most significant address bits 
select the 8-bit row address, the 8-bit column address, 
and RAS strobe signals. Decoding the three' least 
significant bits yields a decode signal that select~ one of 
eight adjacent pixels. 

The capacitive loading imposed by the VRAM~ make~ 
it necessary to buffer the address and control outputs of 
the display controller. To reduce skew between signals, 
and thereby achieve a shorter memory-cycle time, you 
can buffer the address, RAS, CAS, and XF/G signals 
within a single IC package, such as the Am2976 ll-bit 
dynamic memory driver used in this example. 

Select one of eight pixels 
Each of the eight rows in the frame mem9ry receives 

a separate RAS signal. You can therefore connect to a 
common 32-bit bus the data ports of all four banks of 
VRAMs within a column. Each memory cycle now gives 
access to eight pixels, one from each column. The 
update processor operates on only 32 bits at a time, 
however, so you'll need a mechanism to select just one of 
the eight available words. 

You can perform this 8:1 mUltiplexing quite simply by 
decoding the three least significant address bits to 
obtain the CAS signal. As a result, only one bank in 
memory receives both RAS and CAS. Consequently, 
you can tie together the outpu ts of all 32 banks in 
memory, but only the selected bank will drive the bus. 
To access eight sequential pixels, then, you'd need eight 
memory cycles. 

There's another way to perform the multiplexing, 
however-one that gives the update processor very 
rapid random access to any or all of the eight adjacent 
pixels addressed in a single memory cycle. This method 
requires eight 32-bit, bidirectional, bus-interface regis­
ters. You connect the eight 32-bit words, accessed in 
parallel from the memory, independently to one port of 
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A microprogrammed graphics system acts 
as a peripheral on the host computer's sys­
tem bus. 

these registers. To the other port you tie corresponding 
bits of each register together to form a single 32-bit bus 
that leads to the update processor. You then perform 
the 8:1 multiplexing by controlling the output-enable 
signals of the registers. 

The update processor regards the registers as inde­
pendent 8-pixel input and output buffers. A memory­
read operation fills the input buffer, and the update 
processor can fetch any or all of the eight pixels much 
more quickly than if a separate memory cycle were 
required for each one. You can also provide two differ­
ent write modes. In the first mode, the update pro­
cessor writes just one pixel to the appropriate place in 
memory. In the second mode, the update processor fills 
all eight registers, and the memory cycle writes their 
contents to eight different pixels simultaneously. 

Refreshing the video display is easy when the display 

memory consists of VRAMs. At every vertical-sync 
(Vsync) pulse, the display controller resets an internal 
video-refresh counter to the address of the upper-left 
corner of the screen. At every horizontal-sync (Hsync) 
pulse, the controller initiates a transfer cycle that 
transfers data for the next scan line into the VRAMs' 
shift registers and then increments its internal address 
counter to point to the start of the data for the next 
line. You can perform panning and scrolling simply b~' 
changing the address held in the controller's top-of­
frame register. 

Given that there are eight memory banks per ro\\, 
and that each VRAM is capable of shifting at a clock 
speed of 25 MHz, a total bandwidth of 200M pixels/sec 
is possible in 3-D mode. In 2-D mode, the available 
bandwidth becomes 800M pixels/sec. The maximum 
pixel bandwidth is therefore limited mainly by the 
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characteristics of the shift registers and the associated 
D/A converter, not by those of the memory. 

In 32-bitlpixel mode, strobe signals generated by the 
video clock generator-in this example, an Am8158-­
load into the video shift registers the eight sequential 
32-bit pixels that are in parallel on the video bus (Fig 
3), The video shift registers consist of 16 dual, 8-bit, 
parallel-in, serial-out ECL shift-register ICs. These 
ICs produce serial bit streams ofthe R, G, and B values 
of each pixel and forward these bit streams to a triple 
8-bit D/A converter. 

In 8-bitlpixel mode, the 32 bits that appear at the R, 
G, and B outputs of the shift registers actually repre­
sent four pixels. Four 4-bit ECL shift registers convert 
the 32-bit data into four 8-bit pixels for use by the 
Am8151 ECL color palette. To change from one mode to 
the other, you need only make the appropriate modifi­
cations to the Shift and Load signals to the shift 
registers. 

The Am8158 generates the pixel clock pulse and some 
of the Shift and Load signals used by the shift regis­
ters. This IC also generates the Vsync, Hsync, and 
Blank pulses. The display controller uses these signals 
to initiate VRAM transfer cycles, and the D/A convert­
ers use them to force the video signals to the appropri­
ate sync or blank levels. You can program all the 
important parameters of these signals using registers 
contained in the Am8158. 

The update processor is microprogrammed 
The update processor performs all pixel- and geome­

try-processing functions for both 2-D and 3-D graphics. 
These functions require powerful and versatile data­
transfer capability coupled with fast integer and float­
ing-point arithmetic. Implementing the update pro­
cessor as a microprogrammed subsystem allows you to 
achieve the high performance that you need. 

The major functional blocks and buses of the update 
processor are shown in Fig 4. The main data path in this 
example consists of the Am29332 integer ALU, the 
Am29323 integer multiplier, and the vector floating­
point arithmetic unit, which consists of two Am29325 
ICs. Each of these units accepts data from two common 
32-bit input buses and places its results on one common 
32-bit output bus (the main data bus). 

An Am29334 register file provides storage for fre­
quently accessed data. Its read ports supply data to the 
arithmetic unit's input buses. It also has two write 
ports, one of which accepts data from the main data 
bus, while the other transfers the result of an ALU 
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operation back to the register file without using the 
main data bus. The system timing is such that the ALU 
can fetch two operands from the register file, process 
them, and write the result back to the register file 
within a single microcycle. 

The update processor addresses 64k 32-bit words of 
high-speed local data memory, which consists of static 
RAM. An Am2131 dual-port message-buffer IC occu­
pies lk words of the 64k-word address space. To allow 
the main ALU to process video data at maximum 
efficiency, an auxiliary Am29ClOl 16-bit ALU performs 
all local-memory address computation; the outputs of 
this ALU are captured in a 16-bit address register. 
Random accesses to local memory therefore take two 
microcyc\e~ne to compute and latch the address, and 
another to access the RAM. During consecutive memo­
ry accesses, however, next-word computation overlaps 
the current RAM access, so that the second and subse­
quent memory accesses are completed in a single micro­
cycle. 

The frame-buffer-address generator consists of pre­
settable up/down counters (an ll-bit counter for the X 
address and a lO-bit counter for the Y address). The 
sequencer loads these counters via the main data bus. 
Although the main ALU is primarily responsible for 
generating frame-buffer addresses, use of the counters 
speeds the critical loops in curve drawing and other 
pixel-processing functions. 

The update processor is configured with a single level 
of pipelining, so that next-address computation over­
laps execution of the current microinstruction. The 
Am29331 sequencer computes the address of the next 
instruction in response to its instruction inputs, and it 
places the result on its Y output bus. For access to 
sequential microcode addresses, this result is simply 
the contents of the program counter. The sequencer 
uses an internal stack to store count values for nested 
loops and return addresses for calls to microcode sub­
routines. 

To execute a jump to an address defined by the 
microcode, the sequencer connects the address section 
of the microinstruction word back into its program 
counter via the A bus. To allow the computation of jump 
addresses at run time, and to allow external examina­
tion of the sequencer's stack and stack pointer, the D 
bus connects to the main system bus. 

An internal condition-code multiplexer, controlled by 
microcode, selects and enables one of the condition 
inputs of the sequencer; the sequencer can then test 
that condition and jump according to the state of the 
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The o7lJanization of the frame buffer is the 
key to resolving conflicts between 2-D and 
3-D requirements. 

selected input. For testing as many as four conditions 
simultaneously, a PAL device accepts all the signals 
that need to be tested simultaneously and encodes them 
into four fields of four bits each. A base address is 
assigned to each field, and the state of the field defines 
one of 16 sequential locations as an offset from the base 
address. The sequencer can then examine one of these 
fields and jump to the location defined by the state of 
that field. You can use this capability to advantage in a 
line-clipping algorithm. 

In the 2-D mode, one of the most important pixel­
processing operations is the movemel)t of a rectangular 
block of pixels from one area of the frame buffer to 
another. This process, also known as BitBlt, may also 
require the execution of a logical operation during the 
transfer. The update processor transfers data one row 
at a time from the source block to the destination block. 
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Within a row, the processor may transfer data either 
left to right or right to left. The sole reason for 
including the feature that provides fast access to eight 
pixels in the frame buffer is to speed block transfer. In 
the 32-bit/pixel mode, the algorithm that transfers one 
row of the source block to the corresponding row in the 
destination block has four steps, as illustrated in Fig 5a 
and described as follows: 

• Read memory with X=24. This operation trans­
fers pixels 24 through 31 into the frame buffer's read 
registers. Next, read pixels 31 and 32 into the register 
file. Then read memory again with X=32. Read five 
pixels (32 through 36) into the register buffer. You have 
now transferred the first seven pixels from the source 
region into the register file (there are only seven valid 
pixels in the first destination read cycle). 

• Read memory with X=96. This operation trans-
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fers seven valid destination pixels into the frame buf­
fer's registers. 

• Read each valid destination pixel, one at a time, 
and perform any required logical operation with the 
corresponding source pixel in the register file. Write 
the resulting pixel back into the frame buffer's write 
registers. Copy each unread destination pixel from the 
input register to the output register. 

• Write the eight destination pixels in the output 
registers back to memory. Repeat the sequence until 
you have transferred the entire row. 

Assuming that a memory-read cycle takes 300 nsec 
and that each frame-buffer read or write operation 
takes 100 nsec, the total transfer time is 500 nsec/pixel. 
Using this algorithm, an average covering all possible 
alignments of source and destination turns out to be 
approximately 600 nsec/pixel. This time is a substantial 
improvement over the time of 1200 nsec/pixel for the 
case in which each memory cycle accesses a single pixel, 
and it's an acceptable data-transfer speed for 32-bit 
pixels. 

In the 8-bitlpixel mode, the block-transfer algorithm 
must take into account different alignments of the 
source and destination within a 32-bit word, and it 
requires a modification of the procedure. The modified 
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algorithm, illustrated in Fig 5b, is as follows: 
• Read source words 1 and 2 simultaneously from 

both output ports of the register file. Using the 
Am29332 funnel shifter, extract four bytes aligned with 
the destination, and write this 32-bit word back to a 
temporary location in the register file. In the example 
shown, you need to extract the last three pixels of word 
1 and pixel S2 from word 2. 

• Read this aligned source location, using one regis­
ter-file port. Read the destination pixel from the frame 
buffer via the main bus into the second register-file 
port. 

• Perform the logical operation on the aligned­
source and destination pixels, using the mask generated 
internally by the ALU; doing so leaves the first pixel 
unchanged by the logical operation. Write the result, 
which appears at the ALU's outputs, back to the frame 
buffer's input registers at the end of the cycle. 

Step 3 of the algorithm now takes three microcycles 
per word instead of two, and it changes the average 
transfer time to just over 600 nsec per word. Because 
each word contains four pixels, the average pixel­
transfer time is 600+4= 150 nsec/pixel. This pixel-trans­
fer rate allows an entire lk x lk-pixel screen to be 
updated in 150 msec, or about 10 frame times, and is 
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The update processor needs fast access to 
several pixels at a time. in the frame 
buffer. 

sufficient for displaying text and manipulating 
windows. 

It's not difficult to implement line- and circle-drawing 
algorithms, such as those of Bresenham, in microcode. 
The inner loop of Bresenham's line-drawing algorithm 
will require three microcycles. Because this time is 
equal to the time needed to access a pixel in the frame 
buffer, you can plot pixels at the pixel-access speed of 
the memory. However, because this algorithm does not 
profit from the fast access to sequential pixels, the 
plotting speed will be about the same in both the 
32-bit/pixel and the 8-bitlpixel modes. The inner loop of 
Bresenham's circle-drawing algorithm will require four 
microcycles, and because each iteration through the 
loop generates eight points that must be plotted in 
separate memory cycles, circles too are drawn at the 

32 
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rate of about one pixel in every frame-buffer access 
time. 

Typical pixel- and geometry-processing operations in 
a 3-D system are computation-intensive and Tequire 
that you carefully consider the design of the arithmetic 
unit. Integer arithmetic, although fast, is unsuitable for 
these graphics operations. Fixed-point arithmetic has 
disadvantages as well. Although you can readily per­
form most pixel-processing functions using 32-bit fixed­
point arithmetic, fixed-point· geometry-processing op­
erations require time-consuming pre- and postscaling 
operations. For this reason, floating-point operations 
are easier to develop and are more general in character. 
Furthermore, there are now many inexpensive floating­
point chips, which are almost as fast as integer units 
and provide all the computation power you need. 

y 

SECTION 

32 

SECTION 

32 

W 
SECTION 

Fig fJ-ThiB SIMD floating'point unit has four _tio"" that sllare a common control bus. All fO"T sections conclITre>ltly p<'rjimll tile sallie 
operation on different data. 
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In a graphics system, most of-the arithmetic compu­
tations are vector operations, because points, plane­
equations, transformation matrices, and other common 
data structures are all vectors. For example, you can 
represent a point in 3-D space, in homogeneous form, as 
the vector (x y z w). Although a single processor can 
perform vector operations sequentially, a multiple­
processor system that uses four ICs (in this example, 
Am29325s) is much faster. If you can distribute the 
computation tasks among the four processors in such a 
way that you keep each processor busy all of the time, 
you can expect to achieve four times the performance of 
a single processor. 

Fortunately, it's quite easy to distribute the simple 
vector operations that are useful in graphics. For exam­
ple, perspective division on a point (x y w z) in homoge­
neous coordinates yields (x/w y/w zlw 1). Consequently, 
you can perform these divisions in parallel on four 
different processors, and you can arrange for algo­
rithms that do not map onto such an architecture to run 
(though more slowly) on a single processor as a se­
quence of scalar operations. Furthermore, the fact that 
all processors perform the same operation (division, in 
this example) at the same time (but on different data) 
suggests that you should design the floating-point unit 
as a single-instruction, multiple-data (SIMD) machine, 
whose processors share a common instruction bus. 

You can see the overall structure of a 4-processor 
SIMD floating-point unit in Fig 6. Each section consists 
of a floating-point processor, a register file, and a seed 
ROM (Fig 7). In each section, a 64-word area of the 
stack constitutes the register file, and you can address 
data in the register file with a 6-bit negative displace­
ment from the stack pointer. The microcode word 
therefore contains four 6-bit fields to specify the ad­
dresses of the four ports on the register file. The 
stack-addressing capability allows microcode subrou­
tines to be completely general in character, and if you 
first load the stack pointer with zero, you can use the 
microcode-word displacement fields to specify absolute 
addresses. 

The seven instruction bits of the main microcode 
word, when decoded, provide all the output-enable and 
multiplexer-select signals needed to reflect all possible 
arithmetic-operation and source/destination combina­
tions .. Twenty-four bits specify the addresses for the 
four ports of the register file, two bits control write 
operations on the DA and DB ports of the register file, 
and one bit switches the source-select multiplexer lo­
cated at the register file's DA input. Two additional bits 
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TABLE 1-TRANSFORMATION 
OF A 3-D POINT 

EXECUTE READIWRITE 

READ: V.=R=ST(O). V.=S=ST(4) 

EXECUTE: F=R • S READ: VA-R=ST(l). V.=S=ST(5) 

EXECUTE: R=R • S 

EXECUTE: F=F+R READ: V.=R=ST(2). V.=S=ST(6) 

EXECUTE: R=R' S 

EXECUTE: F=F+R READ: VA.R=ST(3). V.=S=ST(7) 

EXECUTE: R=R' S 

EXECUTE: F=F+R 

WRITE: DA =F. OUTPUT REGISTER-F 
(OPTIONAL) 

determine whether the stack pointer is to be left 
unchanged, incremented, decremented, or loaded from 
the data bus. 

A data-access microcycle consists of three time slots. 
In the first slot, the address hardware computes regis­
ter-file addresses by adding the displacement specified 
in the microcode word to the current contents of the 
stack pointer. In the second slot, data is written into 
the register file. In the last slot, data required for the 
next execution cycle is read from the register file. 

The pipelined structure of the floating-point unit 
allows the overlapping of arithmetic operations with 
operations that access data from the register file. As a 
rule, the floating-point unit must access data from the 
register file one microcycle before using that data in an 
arithmetic operation. In many cases, however, the data 
needed for the next operation is already held in the 
Am29325's internal registers, so that a register-access 
cycle is unnecessary. Furthermore, most graphics op­
erations allow execution cycles to overlap data-access 
cycles in a similar manner. Consequently, the effective 
throughput of the floating-point unit remains close to 
one operation per microcycle. 

Guidelines for coding typical operations 
As an example of how you can distribute portions of 

an operation among the four processors, consider the 
transformation of a 3-D point in homogeneous coordi­
nates, using a x 4 matrix. The first step is to broadcast 
all four coordinates of the point to be transformed, and 
to write them into the register files of all four sections 
of the floating-point unit simultaneously. Because the 
register file also acts as the matrix stack, the transfor­
mation matrix is already established in the floating­
point unit. You then distribute the transformation 
matrix among the four sections, storing only one col­
umn of the matrix in each section. 

Assume that the point to be transformed is on top of 
the stack at [ST(O) ST(1) ST(2) ST(3)], and that the 
matrix column is at [ST(4) ST(5) ST(6) ST(7)l, where 
ST(Il) refers to the data 11 words down from the current 
stack pointer. You perform the transformation by com­
puting the dot product of the point and a column of the 
transformation matrix. You can now compute, in paral­
If!l, the four dot products needed to transform each 
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The update processor is configured with a 
single level of pipelining, so that next-ad­
dress computation uverlaps execution of the 
current microinstruction. 

component of the vector, one in each section of the 
floating-point unit. The entire transformation can com­
plete within nine microcycles (Table 1). 

You can use the same approach to perform matrix­
matrix multiplication. In this case, assume that the 
current transformation is on top of the stack, with one 
column in each section. You can now treat a row of the 
new matrix as a point and transform it by the matrix 
held on top of the stack to yield a row of the trans-

formed matrix. You repeat this procedure four times 
(once for each row) to obtain the complete result. A 
matrix-matrix multiplication therefore takes 36 micro­
cycles. 

You can also perform parallel interpolation, using 
forward differences, when drawing cubic curves such as 
splines and Bezier curves. In this case, each iteration 
requires three addition operations, and because each 
component of the vector requires an identical computa-

r-­
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I 
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tion, you can perform the four computations in parallel 
in the four sections. Consequently, you can compute a 
new point every four microcyc1es. In the computation 
shown below, Dx, D,x, and D:<x are the first-, second-, 
and third-order forward differences for the X coordi­
nate: 

Perspective division requires a division operation, 
and the normalization of an interpolated vector, in the 
inner loop of Phong shading, requires square-root oper­
ations. The Am29325 does not perform division and 
square roots directly, however. Instead, it uses New­
ton-Raphson iteration to obtain the corresponding re­
sults. The seed ROM provides the seed (or first approxi­
mation) to start the iteration procedure. Each iteration 
requires three microcyc1es for division and five micro­
cycles for square roots. Refining the seed to approxi­
mately single-precision accuracy requires another three 
microcycles. Consequently, each division operation re­
quires a total of ten microcycles, and each square-root 
operation requires sixteen microcycles. Furthermore, 
because each processor in the floating-point unit has its 
own seed table, four such computations can proceed in 
parallel. IIDfII 
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DESIGN APPLICATIONS 

Variable-width FIFO buffer 
sequences large data words 
Tim Olson 
Advanced Micro Devices Inc., 901 Thompson PI., P.O. Box 3453, Sunnyvale, CA 94088; (408) 732-2400. 

First-in, first-out (FIFO) buffers are a popular 
means of matching different data rates in large digi­
tal systems. I/O controllers for character-oriented 
devices like terminals, for example, usually return 
or receive one 8-bit byte on a slow but regular basis. 
In contrast, block-oriented devices, such as high­
speed disks, must move large chunks of data from 
peripherals to the host bus with great speed. 

The demand for larger, denser data-processing 
systems has spurred the development of FIFO buff­

ers with deeper memory 
but unchanged width. 
Cascading these buffers 
horizontally or vertical­
ly is still the most com­
mon and cost efficient 
method of expanding 
both the width and 
depth of a data queue. 

Fast systems gain 
from a cascadable 
device supporting 
everything from 
Instruction pipe­
lines to peripheral 
host adapters. 

Even this solution 
has shortcomings. 
FIFO buffers usually 

link devices of like width but do not possess the req­
uisite logic to cope with, say, transferring data be­
tween a 32-bit-wide memory, 16- or 32-bit data bus­
es, and an 8-bit peripheral bus. To further 
complicate matters, some of the newer variable­
width instruction architectures must buffer in­
struction words varying in width from 8 to 128 bits 
at any particular cycle. 

In short, as both synchronous and asynchronous 
systems push toward larger or disparate data 
widths, it becomes more difficult to cascade with 
typical 8- and 9-bit-wide FIFO buffers in a rudi­
mentary fashion. Designers are seeking an efficient 
solution for matching data widths as well as data 
rates. 

One of the best devices for such matching is the 
Am29338 Byte Queue FIFO buffer. The general­
purpose, 32-bit-wide buffer is organized as four 
dual-ported RAMs, each 9 bits (l byte plus parity) 
wide and 32 bytes deep (Fig. la). Each RAM sec­
tion ha~ its own queue (load) and dequeue (unload) 

"Reprinted with permission from Electronic Design. 
Vol. 35 No. 14, July 11, 1987. Copyright 1987 
Hayden Publishing Co., Inc." 

point~rs (Fig. Ib) and supplies byte-\:Vise (that is, 
byte-by-byte) parity checking at the buffer's input 
and output. A Byte Count output shows the current 
number of bytes in the queue. The RAMs are orga­
nized so that a variable number of bytes can be 
queued or dequeued at any cycle. The device can 
queue or dequeue from zero to four 8-bit tyes of 
data in one 80-ns cycle. Ultimately, this feature can 
be used to queue data at one width and dequeue it at 
another. For example, two 16-bit half words may be 
queued sequentially and dequeued as one 32-bit 
word. In addition, the Am29338 can be cascaded 
horizontally to release up to 16 data bytes (l28 bits) 
per cycle. 

The Am29338 also addresses the problem of byte 
ordering, a side effect of the evolution of memory 
word widths form 8 to 16to 32 bits. Byte ordering is 
simply the order in which bytes appear in a word. 
The Am29338 performs byte swapping to effect 
any type of byte-ordering scheme. Two signals, for 
example, allow bytes to be swapped within 16-bit 
half words and 32-bit half words, respectively. To­
gether, they make possible four separate byte order­
ings (Fig. 2). 

Like the rest of the Am29300 family of 32-bit mi­
croprogrammable building blocks, the Am29338 is 
implemented in ECL (packaged in a l20-pin pin­
grid-array) but is interfaced with TTL-level de­
vices. Because it is RAM-based, the buffer has an 
almost zero fall-through delay, suiting it to appli­
caitons where data must be immediately available 
after a queueing operation. 

This feature best suit systems with variable data 
widths, especially instruction-prefetching pipe­
lines, I/O peripheral buffers, and hardware 
mailboxes. 

AN INSTRUCTION-PREFETCH QUEUE 

Instruction-prefetch queues, of course, separate 
instruction fetching from instruction execution for 
parallel execution of the two tasks. Between jumps 
from one operation to the other, a sequential in­
struction stream is fetched from memory and 
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Byte 5wapo 

Byte swap, 

Empty 

A-Empty 

DQEN 

BDQo.3 o------J 

Memory 
slice 

logic 3 

Slice 

1. The Am29338 Byte Queue Irom AMD is a general­
purpose, 32-bil FIFO buffer with lour 8-by-32-bit RAM 
memory slacks. II works in either the synchronous or 
asynchronous mode, can Iransmit data blocks, and 
performs error checking at both input and output. 
Up to lour bytes can be queued or dequeued in 
one cycle (a). Each slack has ils own polnlers: 
queue and dequeue logic enabling variable-width 
dala to enler and leave the FIFO buffer (b). 
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placed in the prefetch queue. This occurs independently 
of the rate at which the instructions are decoded and exe­
cuted. Because many computer architectures work with 
variable-length instructions, the Am29338, which can re­
lease data of ditTerent widths, greatly simplifies prefetch­
queue designs. Fixed-width words can be queued from 
memory while variable-length instructions are dequeued. 

The Am29338 butTer can function as an instruction­
prefetch queue, where it is synchronized with a separate 
instruction-fetch unit (Fig. 3). In operation, sequential 
32-bit memory locations are fetched by the instruction­
fetch unit and are stacked in the byte queue. Each time 
the CPU needs an instruction, it takes the next bytes in 
the byte queue rather than addressing main memory. The 
CPU can determine the instruction length from the first 
byte of the instruction and updates the dequeue pointerin 
the byte queue; that is, it tells the byte queue which bytes 
it wants to see. The instruction length is determined by 
the 4-bit word on the Bytes Dequeued (BDQ) lines while 
the Dequeue Clock (DQCLK) line releases the bytes 
from the queue. Ifajump in the instruction sequence (the 
program) occurs, the instruction-fetch unit must flush 
the byte queue by asserting the Reset line and issuing a 
new instruction address. 

EXECUTING SMALL LOOPS 

The Byte Count (CNT) indicator can serve as a tool to 
limit the butTer's depth. For instance, jump or branch in­
structions usually account for about 20% of a typical in­
struction mix. When ajump occurs, instructions stored in 
the instruction-prefetch queue are discarded. To limit in­
struction-prefetching operations and conserve memory 
bandwidth, the user can sound an alarm when the fetch 
butTer's depth surpasses five or six instructions. 

Many operations, however, can be executed with small 
loops, which fit entirely in the prefetch queue and can be 
controlled with the assertion of the retransmit lines 
(RXMIT) and with a small amount of external hardware. 
The Am29338 butTer can rapidly retransmit stored block 
data without requeuing from main memory, assuming 
that 128 bytes or less have been queued since the last as­
sertion of a Reset command. This is done by first bringing 
the RXMIT line low. When this happens, the chip's inter­
nal dequeue pointers are directed to the first RAM loca­
tion, and the internal queue pointers are not reset. The 
data in the locations between the old queue pointers and 
the new dequeue pointers can then be unloaded. RXMIT 
is useful for redundant instruction sequences because the 
CPU can run faster without having to refetch instructions 
from memory or cache. 

New applications open the door for instructions far in 
excess of 32 bits, particularly in systems that use large, 
variable-length instructions spanning many bytes. To 
meet this challenge in the synchronous mode, up to four 
Am29338s may be cascaded horizontally to free up to 16 

consecutive bytes (one 128-bit word) for dequeueing in 
one cycle (Fig. 4a). Because each cascaded part is con­
nected to a common 32-bit input bus, each chip holds the 
same information (Fig. 4b). When the Reset (or RXMIT) 
line is asserted, however, the internal dequeue pointers 
are otTset by the value programmed on the chip's position 
inputs, POS. 

Another frequent task for first-in, first-out butTers is as 
a straightforward I/O butTer. Many processor-memory 
systems have expanded their word length from 8 to 32 
bits, though the peripheral-controller chips have for the 
most part remained at 8 bits. The Am29338 butTer sup­
plies a butTered path between peripherals and memory 
while making the necessary conversion from one word 
size to another. 

MESSAGE IN THE MAIL 

A communication mailbox usually serves to link two 
or more loosely coupled devices in a multiprogramming 
system. With the help of a first-in, first-out butTer, mes­
sages from one device to another are queued in the mail­
box. If the mailbox happens to be full, the sending process 
blocks data transfer until the mailbox has a slot free. If the 
mailbox is empty, the receiving process is blocked until 
the mailbox receives a message from the sending end. 

BSWo=O 
BSW, =0 

BSWo =1 
BSW,=O 

BSWo=O 
BSW,=1 

BSWo """ 1 
BSW,=1 

iiil ~cX ~ ~ 
ABeD BADe CDAB DCBA 

2. The data stacks make possible lour dlfferenl com· 
blnatlons 01 byte swapping. As a resul" data can be 
queued at one width and dequeued at another. 

Address bus 

Data bus 4 

Instruction­
fetch 
unit 

4 

Address 

CPU 

Instruction 

3. The FIFO buffer can lunctlon as an instructlon-pre­
fetch queue by coupling it with a separate Instruc­
lion-Ielch unit. The CPU runs laster by reading repel/­
tlve Instruction loops Irom the byte queue without 
addreSSing main memory. 

Electronic Design • June11,1987 



CHAPTER 6 
Articles/Application Notes 
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Otherwise, the sending and receiving processes run 
concurrently. 

When devices are run on separate processors in a mul­
tiprocessor system, a hardware mailbox is needed. The 

·.:Am29338 can help create such mailboxes (Fig. 5), serving 
to transfer variable-length messages from one processor 
to another. 

In this design example, two AmPALl6R4 program­
mable-logic arrays serve as the interface to the Am29338, 
one each for the sending and receiving processors. The ar­
rays serve as a conduit to examine the status of the FIFO 
buffer and also enable a programmable interrupt. In oper­
ation, the processor wishing to send a message to the 
mailbox calls a special operating-system routine. This 
routine first reads the status of the mailbox; if it is not full, 
the message is written. Then the routine returns to the 
calling process. If the mailbox is full, the operating-sys­
tem routine blocks the calling process and enables inter­
rupts from the mailbox. When a slot becomes available, 
the sending processor is interrupted. The interrupt rou­
tine sends the message, disables interrupts from the mail­
box, and blocks the sending process. The receiving side of 

Most significant 
(8) 

Least significant 

~Internal queue pointer .Q9. '" Internal dequeue pointer 

Byte queue 3 Byte queue 2 8ytequeue 1 Byte queue 0 

0 0 0 0 

F E 0 C DO F E D C F E D C F E D C 

8 A 9 , 8 A 9 , DO 8 A 9 , 8 A 9 9 

7 , 5 4 7 , 5 4 7 , 5 4 
DO 7 , 5 4 

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 
DO 

F E D C 8 A 9 , 7 , 5 4 3 2 1 0 

(b) 

4. Up to lour FIFO bullers can be horizontally cas­
caded to support large word-width computer appli­
cations. Up to lour devices can create one 128-bit 
word or a combination 01 8-blt bytes (a). Bullers are 
combined by ollselling the Internal queue and de­
queue pOinters. 
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the mailbox, of course, operates in an inverse manner. 
From the practical standpoint, the state of the mailbox 

is first examined by asserting the Chip Select (CS), Readl 
Write (R/W) and Control/Data (C/O) lines of the ap­
propriate PAL device and monitoring the buffer's Full 
flag. An interrupt enable can then be written by bringing 
the R/W line low. The actual message may be transmit­
ted from the processor to the mailbox by bringing the 
PAL's CS and R/W lines low. 

Conversely, messages from the mailbox are sent to the 
receiving end by asserting CS and R/W of the appropri­
ate PAL device, and bringing its C/O line low. The mail­
box status is examined by asserting CS, R/W and C/O. 
The interrupt-enable bit can be written by bringing CS 
and C/O high, and R/W low. 

The mailbox, finally, can be extended to operate in a 
heterogeneous multiprocessing system. In that system, 
processes with both disparate data-block widths and 
clock frequencies are interconnected-an easy task for 
this FIFO buffer. 

SYNCHRONOUS OR ASYNCHRONOUS OPERATION 

The Am29338 operates as most FIFO buffers do in the 
asynchronous mode, as well as in the synchronous mode. 
For the asynchronous mode, the Queue Clock input 
(QCLK) and DQCLK lines serve as strobes to queue or 
dequeue data and are generally independent of one anoth­
er. As a result, the buffer can connect two asynchronous 
subsystems or to an asynchronous bus such as the 
VMEbus. 

In a synchronous system, however, Enable signals are 
easier to generate than strobes. Thus, the QCLK and 
DQCLK signals may be simply derived from the com­
mon subsystem clock. Queueing and dequeueing may 
then be ordered with the Queue Enable (QEN) and De­
queue Enable (DQEN) inputs. This technique makes it 
easy to interface the buffer to a single subsystem or syn­
chronous bus, such as Multibus II. 

As long as the FIFO buffer is neither full nor empty, 
the rates at which data flows in and out of the buffer are 
independent of each other. The user stays abreast of the 
chip buffers' states by means of four status indicators: 
Full, Almost Full (A-Full), Empty, and Almost Empty 
(A-Empty). This is the role of the byte-count output. 

Besides the basic flags such as Full and Empty for indi­
cating chip state, the Am29338 supplies indicators to 
warn of the exact condition of its buffers. The A-Full and 
A-Empty outputs, for example, show that there are less 
than 4 bytes of space available, or more than 4 bytes of 
data in the buffer. These indicators, like Full and Empty, 
are valid only for synchronous operation. 

Finer control over the amount of data stored is possible 
with the 7-bit Byte Count output, which monitors the 
number of bytes currently in the buffer. Unlike the other 
status indicators, Byte Count is valid only in the synchro-
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nous mode. In asynchronous operation, Byte Count is 
undefined. 

An example of applying the Byte Count indicator is il­
lustrated by its use in control tasks. For instance, various 
system devices may need some minimum amount of data 
on hand before a given function can be carried out. In this 
particular case, an external comparator informs the sys­
tem that the required information is indeed in the buffer. 

In all operations, the chip is first initialized by bringing 
the Reset line low. In tasks like instruction-prefetch 
queues, asserting Reset flushes the queue when ajump or 
branch instruction occurs. This action discards any pre­
fetched instructions. 

DATA·BIT MECHANICS 

The number of bytes to be queued into the buffer is set 
by means of the Bytes Queued (BQ) inputs, and the corre­
sponding data is presented to the data (D) and data parity 
(PD) inputs aligned to the least significant byte. When 
the QEN line is asserted, data will be entered on the fall· 
ing edge of the QCLK input. The device's internal point­
ers will then be updated on the low-to-high transition of 
the clock. 

The number of bytes to be dequeued is determined by 
the Bytes Dequeued (BDQ) input. If the Dequeue Enable 
line (DQEN) is brought low, the state of the byte queue is 
updated and data is off-loaded on the low-to-high transi­
tion of the DQCLK signal. 

When the Output Enable line (OE) goes low, the next 
four bytes available for unloading and their correspond­
ing parity bits are brought out on the data output (Y) and 
data parity (PY) lines. When OE moves high, the D and 
PY pins assume a high-impedance state. 

Chip select 

Read/Write 

Controll Data 

Interrupt Request 

DOEN 

f-----i Empty 

As mentioned earlier, the chip relies on byte-wise pari­
ty checking for error correction. Parity bits are checked 
at the input, stored with the data, and checked again at 
the output. Dual checking lends great flexibility to the er­
ror-checking operation. In an task involving an instruc­
tion-prefetch queue, for example, the designer may 
choose to check parity only at the output. Then, only exe­
cuted instructions are checked. As a result, instructions 
that were prefetched but never used (such as those prefe­
teched after a jump operation) will not cause spurious 
interrupts. 

In typical operation, the data input parity-error output 
(PDERR) will go high if any of the bytes being queued 
have a parity error. The output parity-error line 
(PYERR) goes high if any of the bytes on the output bus 
have a parity error. Only valid bytes are checked for data 
anomolies; bytes on the data-input bus which are not be­
ing queued or undefined bytes which are sent out when 
the byte queue is almost empty are not included in the 
checking for errors. D 

Tim Olson, a senior planning engineer at Advanced Micro 
Devices, is in charge of developing microprocessor architec­
tures and Am29300 family building blocks. Olson has a 
BSEE-computer science degreefrom the University of Col­
oradoat Boulderand an MSEEfrom the University of Ari­
zona at Tucson. 
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control intormation !low: CS, R/W, and C/O. A tourth line (lREQ) indicates interrupt requests. 

Electronic Design. June 11.1987 



6.10 DIGITAL SYSTEMS VME 29300-1 

Digital Systems offers the VME-29300-1, an Am29300-
Family-based CPU, designed for those applications 
requiring the high performance 01 a 32·bit processor. 
Intended for use in emulating other computers or special­
purpose computing such as graphics, encoding/decod­
ing, and data reduction, the processor can be supplied 
with or without firmware. Its key features are: 

• 100 ns per micro-instruction 

• 4K words of Writable-Control-Storage 

• 88-bit-wide microcode loaded from 27512 
EPROM. 

• On-board firmware address lights (single-
stepping provided) 

• N-way branching up to 64 ways 

• 64 registers, 32 bits, 3-ported 

• Calculated register address to 16-way 

• Handles all seven interrupt levels 

• Under firmware control: A16/A24/A32 and D81 
D16/D32 

Introduction 

The VME-29300-1 CPU comes in a double-high two­
board set. Both boards have P1 and P2 connectors for 
backplane connections, and in addition, control lines are 
interconnected between boards using two ribbon cables. 
The Instruction Board contains the Am29331 Se­
quencer, address read-out, microprogram memory, 
pipeline registers, and writable-control-storage circuitry. 

The Arithmetic Board contains the Am29332 ALU, the 
Am29334 Register File, the calculation registers and 
latches, the constants ROM, and the address and data II 
o circuitry. Board positions and spacing within the VME 
rack can be customized. 

Am29331-Microprogram Sequencer 

The Am29331 chip is configured as a 12-bit micropro­
gram sequencer. The sequencer has multiway branch 
instructions that allow 1-of-N consecutive addresses to 
be selected as the branch target in a single cycle. The N­
way branching can be chosen as 4-way, 8-way, 16-way, 
or 64-way by the microcode. Combinations of M, A, and 
o input lines of the Am29331 are used for this choice. A 
stack within the sequencer stores return addresses, loop 
addresses, and loop counts. It has 33 levels to permit the 
deep nesting of subroutines and loops. The lower 12 
output lines address the 4096-word microprogram 
memory, each word of which has a width of 88 bits. (The 
upper 4 address bits are not used.) Output data from the 
memory are fed to the pipeline registers. 

CHAPTER 6 
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Writable-Control-Storage 

The Writable-Control-Storage (WCS) circuitry consists 
of a 27512 EPROM and the associated circuitry to control 
loading. At power-on time, the loader brings the micro­
program into the 4Kx88 random-access memory, step­
ping the Am29331 sequencer through a series of ad­
dresses. Then each word of the microprogram is 
checked back against the EPROM bit pattern. When this 
task is complete, the WCS loader is disabled and the 
sequencer takes control. For debugging purposes the 
microprogram can be single-stepped, and the WCS 
loader again controls the Am29331 sequencer. The 
address readout displays each address (in a readable 
fashion) during single-stepping. 

Am29334-Register File 

The two Am29334 chips serve as a 64x32 external 
register file for the ALU. Each of these is a high-speed, 
random-access memory configured with one write port 
(D) and two read ports (A,S). The 0 port is fed from the 
32-bit wide Y bus, while the A port feeds the MA bus and 
the B port feeds the CB bus. Control of write operations 
is done with the common write enable to each chip. This 
allows the lower-16 or upper-16 bits to be stored sepa­
rately and gives the four different write options: 

• Write no data at all 

.. Write only the lower 16 bits 

• Write only the upper 16 bits 

• Write all 32 bits simultaneously 

Read operations are controlled by a common output 
enable for reading all 32 bits to the A or B port. The A 
address bus originates in the writable control store 
(WCS) while the Band 0 address buses originate in the 
address calculation circuitry. By calculating the Band 0 
addresses the CPU achieves a high degree of micropro­
gram flexibility. 

Am29332-ALU 

The Arithmetic Logic Unit (ALU) processes 32-bit-wide 
data paths. This means that it allows one-, two-, three-, 
or four-byte data in arithmetic and logic operations as 
well as multiprecision arithmetic and multiple-bit shift 
operations. The data flow uses two input buses, MA and 
CB, and one output bus, Y. Operation on data of variable 
byte length, variable-length bit fields, or even single bits 
is made possible by the internal mask generator. This 
circuit creates a 32-bit mask for each instruction while 
using no overhead time. The mask is used as an addi­
tional operand in each instruction to allow operation on 
the selected data widths. Instructions that operate on 
variable-length bit fields require a mask that is a contigu­
ous string of 1 s for all selected bit positions and Os for all 
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unselected bit positions. In cases where the field ex­
ceeds the 32-bit boundary, the mask does not wrap 
around, allowing operation on a contiguous field across 
a word boundary. 

For most single-operand instructions, the unselected bit 
posttions pass the corresponding bits of the operand 
unmodified. For most two-operand instructions, the 
unselected bit positions pass the corresponding bits of 
the operand unmodified on the CB input. Thus, for two­
operand instructions the mask allows the merging of the 
two operands in a single cycle. In addition to being used 
internally, the mask can be sent out over the Y bus as a 
pattern for testing purposes. 

The Am29332 uses a funnel shifter with two 32-bit input 
ports and one 32-bit output port. This circuit can perform 
all of the operations of a barrel shifter (one N-bit input port 
and one N-bit output port) .extended to two operands 
instead of one. Such a circuit is used to shift or rotate the 
operand up or down from 0 to 32 bits in a single cycle. 
This is very useful in operations such as the normaliza­
tion of a mantissa for floating-point arithmetic or in 
applications where the packing and unpacking of data 
are frequent operations. In addition, it can extract a 32-bit 
contiguous field across the two operands, a function 
which is very useful in some graphics applications. Also, 
any of its operations can be followed by a logical opera­
tion with both completed in a single cycle. 
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The Am29332 easily handles prioritization which is use­
ful in controlling N-way branches, performing normaliza­
tions, and in graphic operations such as polygon fills. The 
built-in priority encoder sends out a 5-bit binary weighted 
code that signifies the relative position of the most 
significant 1 of the byte width selected. This allows 
prioritization on either 8-, 16-, 24-, or 32-bit operands. 
The priority encoder output can be passed on to the Y bus 
or stored in the status register. 

The Complete VME-29300-1 

The VME-29300-1 is a complete 32-bit processor when 
firmware is in place. It will operate on the VMEbus as a 
master or an interrupt-handler. Since it is not a fixed­
instruction-set processor, firmware must be designed for 
proper operation. However, this is its outstanding advan­
tage over other processors. Firmware options are almost 
limitless, giving the processor its high degree of adapta­
bility to virtually any computing job. Chief among the 
suitable applications of this CPU is it ability to emulate 
other computing systems. This capability is not limited to 
32-bit processors, of course. Eight-bit and 16-bit systems 
are also easily emulated. Other complex computing jobs 
are also possible such as reducing large amounts of data 
and executing graphics programs. 

Digital Systems will design the firmware and deliver it 
with your system or provide design advice at an hourly 
rate by phone call or site visit. 



12·bit Microprogram Sequencer 

• Provides 100-ns microcycle time to support 32-bit 
high performance system 

• Supports 4-way, 8-way, 16-way, and 64-way 
branching chosen by the microcode 

• Contains built-in conditional test logic for use with 
the ALU status bits 

• A 33-level stack provides support for loops and 
subroutine nesting 

• Supports single-stepping for the purpose of 
debugging 

• 12-bit address readout provided 

Microprogram Memory 

• Provides 4096-word capacity with a word width of 
88 bits of writable-control-storage 

• A 27512 EPROM allows customized firmware to 
be easily replaced or modified 

Register File 

• Two cascaded high-speed RAM chips for 64x32-
bit register capacity 

• Write control allows independent lower-16 or 
upper-16 bits of storage 

• Provides one WRITE port (D) and two READ 
ports (A, 8) and four WRITE options 

• Calculated 8 and D addresses provide high 
degree of microprogram flex,ibility 

CHAPTER 6 
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ALU 

• A combinatorial architecture with equal cycle time 
for all instructions, two input ports, and one 
output port 

• Funnel shifter allows N-bit shift-up, shift-down, 
32-bit barrel shift or 32-bit field extract 

• Supports one-, two-, three-, and four-byte data 
for all operations and variable length fields for 
logical operations 

VME Characteristics 

• Double-high, two-board set occupies 4 slots 

• Power requirements: +5 VDC @ 3 A (max), +12 
VDC@ 0 A, -12 VDC@ 0 A 

• Operating range: 0-70·C, 80% relative humidity, 
forced cooling required 

• I nterrupt handler options: 1-7 

• Requester option: R(3) used 

• Master data transfer options: A16/A24/A32 and 
D8/D161D32 

Additional information is available upon request from: 
Digital Systems Corporation 
3 Nortll Main Street 
Walkersville, MD 21793 
(301 )845-4141 
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CHAPTER 7 

Technical Information 

7.1 THE Am29300/29C300 TIMING 
ANALYSIS 

With the Am29300, you can construct a system with a 
family cycle time of 80 ns orfaster. This is especially true 
with the Am29300A. This section discusses the various 
critical paths in determining the fastest family cycle time. 
The following systems configuration was assumed: 

Control Path 

Am29331/29C331 
Am29818A 
Am99C68 

Am27S55A 

Data Path 
Am29332129C332 
Am29334/29C334 

Am29818A 

16-bit Microprogram Sequencer 
Pipeline Register 
Control Memory 

Registered PROM 

32-BitALU 
68 x 18 Dual Port Register File 

Status Register 

Non-Pipelined Operation 

The block diagram surrounding the Am29300/29C300 
family is shown in Figure 7-1 and its critical timing 
analysis is described in Tables 7-1 and 7-2. This timing 
analysis shows that a system cycle time of 75 ns is 
possible with the Am29300/29300A family, and 90 ns is 
possible with the Am29C300/29C300-1 family. The 
summary of the performance is listed in Table 7-5. 

Pipelined Operation 

With the two pipelined stages in the Am29C334 
(PIPE=HIGH), you can construct the pipe lined systems 
with the Am29C300. As an example for this operation, 
the following describes a double-pipelined system. In this 
example, the Am27S55A, the registered PROM is util­
ized to improve the control path. Figure 7-2 shows an 
example of the pipe lined system. 

Writing the Data into the Register File 

It takes two cycles to write data into the register file. In the 
first cycle, the data from the main memory is latched into 
the input pipeline register. Then in the second cycle, the 
data is written into the RAM location in the Am29C334. 
(See cycle 1-2 in Table 7-3.) 

Data Calculation and Storage 

In the first cycle, data (A 1) to be operated upon is latched 
from the RAM location onto the output pipeline registerof 
the Am29C334. In the second cycle, the operation is 
performed on the data (A 1,81) by the Am29C332. The 
result (C1) is then set up on the input pipeline register of 
the Am29C334. In the last cycle, the result is written into 
the RAM location of the Am29C334. For an example, 
refer to cycle 3-6 of Table 7-3. 

The second of the path cycles is the most critical of the 
three. The maximum propagation delay incurred on this 
timing then has to be compared with the maximum 
control path timing. The cycle time is determined by the 
longest of the two. The speed and choice of the main 
memory has to be based on the cycle time. 

It is possible to time-share the above two operations. In 
other words, data can be written into the register file at 
the same time the operation is performed on the data 
from the register file. See Table 7-3 for an example. 

Table 7-4 shows the calculation of the pipe lined 
Am29C300 system. As you notice, testing of the ALU 
status through the Am29C331 is critical for the control 
path, and the data path involving 1-Y of the Am29C332 is 
also critical. The table shows that the data path deter­
mines the cycle time. The result is shown in Table 7-5. 

It is quite possible to improve the cycle time further with 
combinations of the Am29300, Am29300A, Am29C300, 
and Am29C300-1 . 
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Table 7-1. Bipolar Am29300 Timing Analysis 

Loop Device Path Am29300 Am29300A3 

Am27S55A' Pipeline Reg. CP-Q 10 10 I 

Am29331 Sequencer D-V 19 17 

Am27S55A RPROM A-Q 2Q. 2Q. 

Total: 49 47 

2 Am27S55A Pipeline Reg. Cp·Q 10 10 

Am29331 Sequencer I·V 25 22 

Am27S55A RPROM A·Q 2Q. 2Q. 
Total: 55 52 

3 Am29818N Status Register CP-Q 11 11 

Am29331 Sequencer T-V 25 22 

Am27S55A RPROM A-Q 2.Q. 2.Q. 
Total: 56 53 

4 Am27S55A Pipeline Reg. CP-Q 10 10 

Am29332 ALU I·V 47 40 

Am29334 Reg. File D-CP ~ ~ 
Total: 66 59 

5 Am27S55A Pipeline Reg. CP-Q 10 10 

Am29332 ALU I·C,Z,N,L 48 41 

Am29818A Status Reg. V-CP ....§ ....§ 

Total: 64 57 

6 Am27S55A Pipeline Reg. CP-Q 10 10 

Am29334 Reg. File A-V 24 24 

Am29332 ALU D-C,Z,N,L 43 37 

Am29818A Status Reg. D·CP ...2 §. 

Total: 83 77 

7 Am27S55A Pipeline Reg. CP-Q 10 10 

Am29334 Reg. File A-V 24 24 

Am29332 ALU D-V 35 30 

Am29334 Reg. File D-CP ~ ~ 
Total: 78 73 

Note: 1. In this timing analysis, a registered PROM is used to store microcodes. WCS can be also implemented as 
replacement for the registered PROM. 

2. The specifications can be improved by choices of the pipeline registers. 

3. This is only applicable for the Am29331 A and the Am29332A. 
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Table 7-2. CMOS Am29C300 Timing Analysis (Non-pipe lined Mode) 

Loop Device Path Am29C300 Am29C300-1 

Am29818A2 Pipeline Reg. cp·v 11 11 

Am29C331 Sequencer O·V 22 20 ' 

Am99C68' WCS A-V 40 40 

Am29818A Pipeline Reg. O·CP .2 .2 
Total: 79 77 

2 Am29818A Pipeline Reg. Cp·Q 11 11 

Am29C331 Sequencer I·V 24 22 

Am99C68 WCS A-V 40 40 

Am29818A Pipeline Reg. O·CP .2 ..§. 

Total: 81 79 

3 Am29818A Status Reg. CP-Q 11 11 

Am29C331 Sequencer T-V 24 22 

Am99C68 WCS A-V 40 40 

Am29818A Pipeline Reg. O-CP .2 ..§. 

Total: 81 79 

4 Am29818A Pipeline Reg. CP-Q 11 11 

Am29C332 ALU I-V 66 47 

Am29C334 Reg. File O-CP ~ l.a. 
Total: 92 71 

5 Am29818A Pipeline Reg. CP-Q 11 11 

Am29C332 ALU I-C.Z.N.L 67 48 
Am29818A Status Reg. V-CP .2 ..§. 

Total: 84 65 

6 Am29818A Pipeline Reg. CP-Q 11 11 

Am29C334 Reg. File A-V 32 26 

Am29C332 ALU O-C.Z.N.L 60 43 

Am29818A Status Reg. O-CP .2 .2 
Total: 109 86 

7 Am29818A Pipeline Reg. CP-Q 11 11 

Am29C334 Reg. File A-V 32 26 

Am29C332 ALU O-V 49 35 

Am29C334 Reg. File O-CP ~ 13 

Total: 107 85 

Notes: 1. WCS is used to store microcodes. The registered PROM can be utilized as a replacement for the WCS. 

2. The specifications can be improved by choices of the pipeline register. 

3. An external register is used to store status output of the ALU. H the internal status register is used. the cycle 
time will be faster by eliminating the setup time of the external register. 
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Table 7-3. Pipe lined TIming ~equence (Data Path) 

Cycle 

Am29C334 liP 

RAM (write) 

RAM (read) 

DIP 

Am29C332 ALU 

Al' 

2 

A2 

Al 

Al/B12 

Legend: liP = Input Pipeline Register 
DIP = Output Pipeline Register 
Ci = Ai op Bi (op = Am29C332 Operation) 

3 

A3 

A2 

A2/B2 

A11B1 

4 

A4 

A3 

A3/B3 

A2IB2 

Cl 

Note: 1. For example, Al/Bl stands for (data derived from A port)/(data derived from B port). 

2. Assumption is made that data Bi is already stored in the Am29C334. 
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As/Cl AS/C2 

A4 ASIC 1 

A4/B4 As/Bs 

A3/B3 A4/B4 

C2 C3 
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Memo~ CPU 

DA DB 

r--+--t~ A Am29C334 

A 

DA DB 

Am29C332 

Figure 7-2. Block Diagram 
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Table 7-4. Pipe lined Cycle Time Calculation 

Control Path Am29C300 Am29C300-1 Data Path Am29C300 Am29C300-1 

Am29818A CP-Q 11 11 Am29818A CP-Q 11 11 
Am29C331 T-Y 24 22 Am29C332 I-Y 66 47 
Am27S55A Add. Setup 20 20 Am29C334 O-CP ~ II 
Am29818A O-CP ~ -2 Total: 92 71 
Total: 61 59 

Table 7-5. Am29300/29C300 Family Cycle Time (n8) 

Non-Pipelined 
Pipelined 

Am29300 

83 
N/A 

Am29300A 

77 
N/A 

7_2 THERMAL CHARACTERISTICS/ 
AIRFLOW 

DEFINITION OF THERMAL RESISTANCE 

The reliability of an integrated circuit is largely dependent on 
the maximum temperature which the device will attain during 
operation. Because the stability of a semiconductor junction 
declines with increasing temperature, knowledge of the ther­
mal properties of the packaged device becomes an important 
factor during device deSign. In order to increase the operating 
lifetime of a given device, the junction temperatures must be 
minimized. This demands knowledge of the thermal resistance 
of the completed assembly and specification of the conditions 
in which the device will function properly. As devices become 
both smaller and more complex and the requirement for high 
speed operation becomes more important, heat dissipation 
will become an ever more critical parameter. 

Thermal resistance is defined as the temperature rise per unit 
power dissipation above some referenced condition. The unit 
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Am29C300 

109 
92 

Am29C300-1 

86 
71 

of measure is typically °C/watt. The relationship between 
junction temperature and thermal resistance is given by: 

TJ=Tx+Po eJX 

where: TJ = junction temperature 
T x = reference temperature 
Po = power dissipation 
eJX = thermal resistance 
X = some defined test condition 

(1) 

In general, one of three conditions is defined for measurement 
of thermal resistance: 

eJA 

(still air) 

eJA 

(moving air) 

- thermal resistance measured 
with reference to the tempera­
ture at some specified point on 
the package surface. 

- thermal resistance measured 
with respect to the temperature 
of a specified volume of still air. 

- thermal resistance measured 
with respect to the temperature 
of air moving at a specified ve­
locity. 

The relationship between eJC and eJA is 

eJA = eJC + eCA 



where ()CA is a measure of the heat dissipation due to natural 
convection (still air) or forced convection (moving air) and the 
effect of heat radiation and mounting techniques. ()JC is 
dependent solely on material properties and package geome­
try; ()JA includes the influence of the surface area of the 
package and environmental conditions. Each of these defini­
tions of thermal resistance is an attempt to simulate some 
manner in which the package device may be used. 

The thermal resistance of a packaged device, however 
measured, is a summation of the thermal resistances of the 
individual components of the assembly. These in turn are 
functions of the thermal conductivity of the component mate­
rials and the geometry of the heat flow paths. Like other 
material properties, thermal conductivity is usually tempera­
ture dependent. For alumina and silicon, two common pack­
age materials, this dependence can amount to a 30% 
variation in thermal conductivity over the operating tempera­
ture range of the device. The thermal resistance of a compo­
nent is given by 

L 
()=-- (2) 

K(T)A 

where: L = length of the heat flow path 
A 
K(T) 

= cross sectional area of the heat flow path 
= thermal conductivity as a function of tem­

perature 

and the overall thermal resistance of the assembly (discount­
ing convective effects) will be: 

Ln 
()=~()n=~ -

KnAn 
but since the heat flow path through a component is influ­
enced by the materials surrounding it, determination of Land 
A is not always straightforward. 

A second factor that affects the thermal resistance of a 
packaged device is the power dissipation level and, more 
particularly, the relationship between power level and die 
geometry, i.e., power distribution and power density. By 
rearrangement of equation 1 to 

1 1 
Pd =-(Tr Tx) =-(Tr Tx) 

()JX ~()N 
(3) 

the relationship between Pd and TJcan be more clearly seen. 
Thus, to dissipate a greater quantity of heat for a given 
geometry, TJ must increase and, since the individual ()n will 
also increase with temperature, the increase in TJ will not be a 
linear function of increasing power levels. 

A third factor of concern is the quality of the material 
interfaces. In terms of package construction, this relates 
specifically to the die attach bond, and for those packages 
having a heatsink, the heatsink attach bond. The quality of the 
die attach bond will most severely influence the package 
thermal resistance as this is the area which first impedes the 
transfer of heat out of the silicon die. Indeed, it seems likely 
that the initial thermal response of a powered device can be 
directly related to the quality of the die attach bond. 
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EXPERIMENTAL METHOD 

The technique for measurement of thermal resistance involves 
the identification of a temperature-sensitive parameter on the 
device and monitoring this parameter while the device is 
powered. For bipolar integrated circuits the forward voltage of 
the substrate isolation diotle provides a convenient parameter 
to measure and has the advantage of a linear dependence on 
temperature. MaS devices which do not have an accessible 
substrate diode present greater measurement difficulties and 
may require simulation through use of a specially deSigned 
thermal test die. Choice of the parameter to be measured 
must be made with some care to ensure that the results of the 
measurement are truly representative of the thermal state of 
the device being investigated. Thus measurement of the 
substrate isolation diode which is generally diffused across the 
area of the die yields a weighted average of the condition of 
the individual junctions across the die surface. Measurement 
of a more local source would yield a less generalized result. 

For MaS devices, simulation is accomlished using the thermal 
test die. The basis for this test die is a 25 mil square cell 
containing an isolated diode and a 1 KQ resistor. The resistors 
are interconnected from cell to cell on the wafer before it is cut 
into mulitple arrays of the basic unit cell. In use the device is 
powered via the resistors with voltage or current adjusted for 
the proper level and the voltage drop of the individual diodes is 
monitored as in the case of actual devices. 

Prior to the thermal resistance test, the diode voltage/ 
temperature calibration must be determined. This is done by 
measuring the forward voltage at 1 mA current level at two 
different temperatures. The diode calibration factor is then: 

T2 -T, LlT 
K,=---=­

V2 -V, LlV 
(4) 

in units of °C/mV. For most diodes used for this test the 
voltage/temperature relationship is linear and these two 
measurement pOints are sufficient to determine the calibration. 

The actual thermal resistance measurement has two alternat­
ing phases: measurement and power on. The device under 
test is pulse powered with an ON duty cycle of 99% and a 
repetition rate of < 100 Hz. During the brief OFF states the 
device is reverse-biased with almA current and the voltage 
drop is measured. The series of voltage readings are averaged 
over short periods and compared to the voltage reading 
obtained before the device was first powered ON. The thermal 
resistance is then computed as: 

KF(VF - VI) K,LlV 
().= =-

JX VHIH Po 

where: KF = calibration factor 
VI = initial forward voltage value 
V F = current forward voltage value 
VH = heating voltage 
IH = heating current 

(5) 
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The pulsing measurement is continued until the device has 
reached thermal equilibrium and the final value measured is 
the equilibrium thermal resistance of the device under test. 

When the end result desired is OJA (still air), the device and ihe 
test fixture (typically a standard burn-in socket) are enclosed in 
a box containing approximately 1 cubic foot of air. For OJC 

measurements the device is attached to a large metal 

heatsink. This ensures that the reference pOint on the device 
surface is maintained at a constant temperature. The require­
ments for measurement of OJA (moving air) are rather more 
complex and involve the use of a small wind tunnel with 
capability for monitoring air pressure, temperature and velocity . 
in the area immediately surrounding the device tested. Stan­
dardization of this last test requires much careful attention. 

WAVEFORMS FOR PULSED THERMAL RESISTANCE TEST 

VOLTAGE 

Vf 

WF009091 

CURRENT 

WFOO90BO 
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Table 7-6. Am29300 Thermal Resistance (Oe/W)' 

Am29325GC Am29331GC Am29332GC 

SJA, Junction-to-Ambient, Still Air 19.0 21.8 15.0 

SJA, 200 Linear Feet per Minute 7.0 7.7 8_0 

SJA, 600 Linear Feet per Minute 5.5 5.1 6.0 

SJC, Junction-to-Case 2 2.5 2.5 2.5 

Notes: 1_ The air flow should be measured at the vicinity of the heatsink_ 
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7.3 CMOS/BIPOLAR RELIABILITY 

Reliability Monitor 
Program 

AMD Specification 01-011 
The Reliability Monitor Program (RMP) is an extensive 
effort to measure the reliability of all process families at 
AMD on a regular basis. Typically 7,000 to 10,000 devices 
per month are tested in a variety of environmental stresses. 

The Reliability Monitor Program has !wo purposes: 

Improved Reliability Performance: Each reject found 
undergoes failure analysis. Results are used by AMD to 
identify and establish corrective actions to eliminate failure 
mechanisms. 

Generation of Reliability Data: Reliability results are 
utilized in many ways. Typical applications include assessing 
the benefits of burn-in, providing estimates of typical life­
times, modeling field applications, and determining suita­
bility of plastic and hermetic packaging in various 
temperature and humidity environments. This information 
is available to the customer. 

The stress tests employed are listed in Table 2: 

Table 2. Reliability Monitor Stress Conditions 

STRESS DURATION SAMPLE CONDITIONS 
SIZE HERMETIC PLASTIC 

Early 160 haurs 300 125°C 125°C 
Life or 85°C 
Operating 1000 hours 120 150°C 125°C 
Life and 125°C or 85°C 
Extended 2000 hours 120 150°C 125°C 
Operoting and 125°C or 85°C 
Life (Bionnual) 
Temperature 1000 cycles 50 -65°C -65°C 
Cycle to 150°C to 150°C 
Biased 1000 hours 50 N/A 85°C & 
Temperature 85%RH 
and Humidity 5v alt bias 
Pressure 160 hours 50 N/A 121°C, 
Cooker 15 psig, 

no bios 

The results from the Reliability Monitor Program form the 
basis of the failure rate calculations presented in the 
appendix. 
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The Estimation of Field Reliability 

In this section, a modeling procedure is described for esti­
mating reliability under field conditions, based on the 
lifetest data generated in the Reliability Monitor Program. 
The summaries of the lifetest results and the actual failure 
rate projections are contained in the appendix. 

A General 
Reliability Model 
In order to evaluate the reliability of the product in the 
field, a general reliability model is utilized. The modeling 
procedure is described by authors Pdul A. Tobias and 
David C. Trindade in the text Applied Reliability (New 
York: Van Nostrand Reinhold, 1986, pp. 173-182). 

The failure probability F(t) may be viewed as the probd­
bility that a random unit drawn from the population fails 
by time t. Thus, F(t) may be represented in terms of a 
cumulative distribution function (CDF) of the times to 
failure. 

To understand the general reliability model it is useful to 
think of failures in terms of the three D's: dead, defective, 
or deficient. The general model encompasses (1) the dis­
covery of functionally dead test escapes, (2) the defective 
subpopulations, and (3) the typical competing failure 
modes of the main population, which are typically indica­
tive of design, material, or process deficiencies. 

The complete model for the field use CDF may be rep­
resented as: 

FT = aFe + ~Fd + (1-a-~)FN, 
where Fe is the discovery distribution for the proportion a 
of test escapes, F d is the life distribution for the proportion 
~ of units in the defective subpopulations, and FN is the 
life distribution derived from the N typical competing fail­
ures modes. 

For FN, the competing nature arises because a unit is 
viewed as a series system of different potential failure 
mechanisms such that the occurrence of anyone failure 
mechanism results in failure of the unit. Thus, FN = 1 -
R1R2R3 ... RN, where Ri is the reliability function for a spe­
cific failure mechanism. For the series model, failure rates 
at any point in time are additive. 

The distribution for the test escapes is not an actual life dis­
tribution, but describes the application dependent rate at 
which the escapes may be discovered in use. This category 
also includes good units daniaged in test or handling. 



Failure Distributions 
The lognormal and Weibull CDF's are the distributions 
most often used to represent reliability failure mechanisms. 
The exponential distribution, characterized by a constant 
failure rate, is a special case of the Weibull. The lognormal 
distribution is specified by two parameters: T50, the 
median time to failure, and sigma, the shape parameter. 
Similarly, the Weibull distribution, which can be written in 
closed form as F(t) = 1 - exp [-(t/c)m], is characterized by 
a characteristic life c and a shape parameter m. The value 
of the shape parameter determines whether the failure 
rate is increasing (m>l), decreasing (m<l), or constant 
(m=l). The exponential distribution, F(t) = 1 - exp [-(tic)], 
is specified completely by the one parameter c called the 
mean time to failure (MTIF). Figures below show failure 
rates for several values of the scale parameters of the log­
normal and Weibull distributions, respectively. 

Lognormal Failure Rate (Hazard) 
IT50 • 1) 

HAZARD 
5.------,------------------------~ 

." .2 

,,= .5 

a" .5 

CI'" .1 

- ~~~;;~~.;;:;;;;.;;~~:;;~~ 

TIME 

Weibull Failure Rate (Hazard) 
(Charac.teristic Life" 1) 

HAZARD 
lD.---------~--~----------------~ 

9 m = 10 m • 4 

TIME 
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For the general reliability model to be applied, the distri­
butions and associated parameters must be determined, 
either through reliability studies or a review of the relig­
bility literature. In addition, if the experimentation is 
performed under accelerated conditions, acceleration 
models are needed to relate the results to field use. For 
distributions such as the lognormal or Weibull, accelera­
tion factors are applied to the scale parameter (such as 
the median or characteristic life, resp~ctively), in order to 
generate a new scale parameter from which failure rates 
at various field conditions may be estimated. Under true 
linear acceleration, the type of distribution and the shape 
parameter do not change between stress and field 
conditions. 

Calculation of 
Failure Rates 
To estimate field failure rates from reliability studies, many 
factors must be considered. One primary requirement is 
the identification of individual failure mechanisms in order 
to ascribe the failures to the proper categories used in the 
general reliability model. 

Considerations and Assumptions 
1. The fraction of test escapes and the underlying discov­
ery distribution: 

The fraction of test escapes and contributions from dam­
age occurring as a result of testing and handling proce­
dures at the vendor or customer are estimable only from 
actual field usage, since the underlying discovery distribu­
tion is application dependent. To model these test escapes, 
a Weibull distribution with a decreasing failure rate may 
be used. In the appendix, test escapes, which represent an 
unknown early adder to the model, are assumed negligi­
ble. Temperature acceleration considerations do not apply 
to test escapes since the units are basically inoperative. 

2. The fraction of defective sub populations and the under­
lying distribution: 

The lifetimes for the fraction defective subpopulations may 
be modeled by the exponential distribution. Reliability 
results from stress testing must be carefully analyzed in 
order to identify the true defect related failure modes. 
From such studies at AMD, the mean time to failure (MTIF) 
for the defective subpopulations has been found to be 
approximately 100 hours at 125°C. The fraction ~ of 
product with defects is computed from the CDF estimate of 
defect related failures at readout time t by the following 
equation: 

~ = CDF I (1 - e-t/l00). 
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To combine the results from lifetests at different tempera­
tures or from dissimilar readout times, a pooled estimate 
of ~ may be calculated as the weighted mean of the indi­
vidual ~ estimates. Sample size is the weighting factor. 
Based on the reliability literature, an activation energy of 
0.45 eV has been chosen as representative. 

3. The distributions of the competing failure mechanisms in 
the main population: 

Competing failure mechanisms may occur during either 
early fail or long term lifetesting. The distribution of life­
times is modeled by a lognormal distribution with a sigma 
specific to each failure mechanism. The sigma value may 
be determined from the reliability literature and checked 
for reasonableness against values estimated from the 
data. Also from the reliability data giving the fraction 
failed for various mechanisms at stress readouts, the 
median time to fail (T 50) at stress conditions may be 
estimated. To combine the results for a specific mechanism 
from several lifetests, a pooled median time to fail, 
weighted by sample size, is computed from the individual 
In T 50 estimates. 

The acceleration factors specific to a failure mechanism 
may be applied to the pooled stress T 50 to estimate the 
field T50. This field median life estimate may then be used 
with the same sigma to estimate the expected CDF in the 
field for a given mechanism at a chosen time. The individ­
ual failure rates for each mechanism may be summed to 
arrive at the total device failure rate. 

4. The treatment of zero rejects for a possible failure 
mechanism: 

Just because failures for a given mechanism are not 
observed does not mean such mechanisms are non­
existent. The sample size may be insufficient or the accel­
eration may be inadequate to reveal all possible low level 
reliability concerns. In fact, if the potential failure mecha-
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nisms have low thermal activation energies, the demon­
stration of reliability performance may be limited by 
mechanisms with no observed failures! 

For example, time dependent dielectric breakdown 
(TDDB) for MOS devices has a lognormal distribution with 
sigma around 5.5 and activation energy of 0.3 eV. If no 
TDDB failures are observed in a HTOL stress, it is still pos­
sible to calcul~te a non~zero, upper confidence level for 
the CDF based on the given sample size. The use of such 
a low activation energy may be a significant factor when 
combining failure rates across all possible mechanisms 
having higher activation energies. 

5. The incorporation of unknown failure mechanisms: 

Another significant factor in calculating failure rates is the 
manner in which unidentified mechanisms {Ire incorpo­
rated into the failure rate calculations. If the failure mech­
anism is unknown, the rejects may be pooled into a 
category that uses fairly conservative activation energies 
of 0.3 eV for MOS and 0.5 eV for bipolar. Even though 
failure mechanisms are unidentified, it may still be possi" 
ble to estimate the lognormal sigmas from the data. 

6. Overall activation energies and the exponential 
distribution. 

In the reliability literature, it is common to see the use of 
overall activation energies, such as 0.7 eV for MOS and 
1.0 eV for bipolar technologies. In addition, the exponen­
tial distribution is often assumed for all mechanisms. The 
use of an overall activation energy neglects those mech­
anisms which are known to have lower activation energies 
and can result in estimates which are impressively low but 
may be misleading. Furthermore, the use of the exponen­
tial distribution for all cases may also result in inaccurate 
projections, since it is well established in the literature that 
most failure rate mechanisms have non-constant failure 
rates. 



CMOS 

Channel Length: 1.51'm Gate Oxide Thid<ness: 250A 

Product Types Tested: Sialic RAMs - Am99C68, Am99C88 

Non-Volatile Memory Division - Am27Cl024 

Microprocessor - Am29Cl0A 

Fixed Instruction Processor - Am82C288 
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Data Summary and Failure Rate Estimation for General Reliability Model 

Package Term 
Type of Model 

Hermetic 

Plastic 

Defective 
Subpopulations 

Competing 
Mechanisms 

Competing 
Mechanisms 

Teal- Result. 
Failure 168 hr. 1002 hr. 
Mechanism ~ 125'C 150'C 

Sample Size 

6,403 2,655 1,477 
Number of Reject. 

Cause not found 0 0 

Corroded Metal 0 2 0 
Cracked Oxide 0 1 1 
Ionic Contamination 1 0 0 
Charge GainlLoss 0 0 1 
Oxide Pinholes 0 0 1 
Cause not found 0 1 5 
o Rejecls 50% conf. 0 0 0 

Totals 2 4 8 

Sample Size 

516 216 0 
Number of Rejects 

o Rejecls 50% conf. 0 0 
Total. 0 0 

Reliability Modeling Averege Failure Rate (AFR) 
EA Parameter. FIT. ~ 55'C 
(eV) @55'C 0-4khrs 4-30khrs 30-100khr. 

Fraction 
MTTF Defective 
(hr.) !3 (PPM) 

0.45 1645 178 41 0 

Siima In(TSO) 

0.50 2.5 18 13 39 53 
1.00 9.0 44 9 2 1 
1.00 9.0 45 6 1 1 
0.80 9.0 44 11 2 1 
0.30 5.5 28 51 22 12 
0.30 5.5 27 94 37 19 
0.30 5.§ 28 38 t7 9 

262 120 96 

Siama In(T50) 
0.30 5.5 24 516 159 73 

516 159 73 
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Instantaneous Failure Rate at Field Conditions. 
Curves Derived from General Reliability Model. 
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Package 
Type 

HermeUe 

PI .. llc 

Siree. 

o 10 20 30 40 50 60 70 80 90 100 

TI~E (THOUSAND HOURS) 
TOTAL --HER~ETIC - -PLAST IC 

Traditional Method for Rellabllty Projection 

Sir ... 

168 hrs 125'C 
1000 hrs 125'C 
1000 hrs 150'C 
Tolala. 

166 hrs 125'C 
1 ilSIg blJ l2~'!2 
Tolal. 

Package 
Type 

Single Exponential Distribution Assumed EA. 0.7eV 
Stress Junction Temperature to Field Junction Temperature 

Equivalenl 
Sample Device Hour. Reject. 

Size at 55' C 

6,403 83,841,423 2 
2,655 206,933,299 4 
lH7 ~§4 6~6 §ZI! 8 

10,535 675,401,600 14 

516 6,756,548 0 
216 16,835,251 0 
732 23,591,799 0 

Package Related Tests 

Simple FaUure Number 0' 
Size Mechanism Rejects 

Fallur. Rale 
(60% Confidence) 

IFITSI 

23 

39 

P.rcent 
Rejecled 

Tem perllure HermeUe 150 0 0.00 
Cycle Tol.ls 0 0.00 

Pre •• ur. Pol PI .. lle 50 0 0.00 
Total. 0 0.00 
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Product Types Tested: BIpolar RAM- Am93422, Am93L412, Am93L422, Am93L425 

Field Programmable Logic-AmPAL16H8, AmPAL16HD8, AmPALI6l8, AmPALI6l8L, AmPALI6R4, 
AmPAL16R4L, AmPAL16R6, AmPAL16R6L, AmPAL16R8, AmPALI6R8L, AmPAL22Vl0 

Bipolar Prom- Am27S25, Am27S29, Am27S31, Am27S33, Am27S181, Am27PS191, Am27S191 

Interface and Logic Products- Am29827, Am29828, Am29833, Am29841 , Am29843, 
Am29844, Am29845,Am29853, Am29863, Am25LS14A 

Microprocessor- Am2901C, Am2910A, Am29705A 

Microcontroller- Am29116 

Peripheral Products- Am8177 

Data Summary and Failure Rate Estimation for General Reliability Model 

Package Term 
Type of Model 

Hermetic 
Defective 
Subpopulations 

Competing 
Mechanisms 

Plaslic 

Defective 
Subpopulatlons 

Competing 
Mechanisms 

Failure 
Mechanism 

Damaged Metal 

Ta.t Results 

168 hr. 1000 hr. 
"i2'5"c' 125'C 150'C 

Samele Size 
22,718 7,060 5,709 

Number of Rejecls 

1 0 0 
Foreign Material Oxide 3 0 0 
Wire Heel Broken 1 0 0 
Cause not Found 2 0 0 

Crystal Defects 1 0 0 
Cracked Oxide 1 0 1 
o Rejecls 50% conf. 0 0 0 
Tolal. 9 0 1 

Sam~le Size 

18,338 6,580 0 

Number of Reiects 
Glassivation Damaged 1 0 
Damaged Metal 1 0 
Wire Clearance 1 0 
Cause nol Found 3 0 

Ionic Contamination 1 0 
o Rejects 50% conf. 0 0 
Tolal. 7 0 

Reliabilily Modeling 

E A Parameter. 
(aV) @ 55' C 

Fraction 
MTTF Defeclive 
(hr.) ~ (PPM) 

0.45 848 50 
0.45 848 151 
0.45 848 50 
0.45 848 101 

Sisma In(T50) 

0.70 9.0 45 
1.00 9.0 46 
o 50 4.0 24 

Fraclion 
MTTF Defeclive 
(hr.) ~ (PPM) 

0.45 275 64 
0.45 275 64 
0.45 275 64 
0.45 275 191 

Sigma In(TSO) 

1.00 9.0 46 
o 50 4.0 23 

Average Failure Rale (AFR) 
FIT. @ 550C 

0-4khr. 4-30khr. 30-100khrs 

13 0 0 
38 0 0 
13 0 0 
25 0 0 

5 1 1 
3 1 0 
8 8 6 

103 10 7 

16 0 0 
16 0 0 
16 0 0 
48 0 0 

4 1 0 
44 34 25 

144 35 25 
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Instantaneous Failure Rate at Field Conditions. 
Curves Derived from General Reliability Model. 
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T IIAE (THOUSAND HOURS) 

TOTAL --HERMETIC --PLASTIC 

Traditional Method for Reliablity Projection 
Single Exponenlial Distribution Assumed E A = 1.0eV 
Stress Junction Temperature to Field Junction Temperature 

90 

Equlvalenl Failure Rale 

100 

Sire .. Sample Device Hour. Rejacls (60% Confidence) 
Size al 55" C (FITS) 

168 hrs 125"C 
1000 hrs 125"C 
1000 hrs 150"C 

22,718 931,618,604 9 
7,060 1,724,695,417 0 
5709 6530194964 1 

Total. 35,487 9,186,508,985 10 

168 hrs 125"0 18,338 368,584,446 7 
1000 hIS 125"C 6580 740,419.943 0 
Totala 24,9~8 1,109,004,369 7 

Package Related Tests 
Package Sample 

Type Siza 
Failure Number of Percent 
Mechanism Rejecls Rejected 

HermeUc 2,849 Lifted Metal 4 0.14 
Cracked Oxide 3 0.11 
Package Soal Cracks 1 0.04 
Package Soal Voids 1 0.04 
Cause not found 4 0.14 
Totala 13 0.46 

Plastic 2,603 Die Cracked 1 0.04 
Glasslvaticn Cracked 2 0.08 
Corroded Metal 1 0.04 
Metal-Metal Short 1 0.04 
Cracked Oxide 4 0.15 
Water In Package 2 0.08 
Wire Neck Broken 1 0.04 
Intermetallics 5 0.19 
Tolals 17 0.65 

Plaatic 2,201 Cause not found 1 0.05 

Tolals 1 0.05 

PI .. lh, 2,959 Die Cracked 1 0.03 
Corroded Leads 1 0.03 
Corroded Metal 1 0.03 
Totala 3 0.10 



7.4 CMOS LATCH-UP TEST METHODS AND 
RESULTS 

Latch-up is a phenomenon that occurs when a parasitic 
PNPN structure on an IC chip is triggered and behaves 
like an SCR between the Vee and GND rails. Once 
initiated, the latch-up condition will persist until either the 
power supply is removed or the device is destroyed. In 
virtually all cases, the device is destroyed because of the 
large current that can flow from the Vec to the ground pin 
(the ON resistance of the SCR is very low). 

Interior modes of an IC could conceivably be prone to 
latch-up, but this intrinsically rare condition would be 
found during normal device testing and screening. Circuit 
nodes interfacing with the "outside world" are much more 
susceptible to latch-up because unusual transient condi­
tions may occur - in particular, overshoot or ringing that 
pull the pin above the supply voltage or below GND. 

To induce latch-up, the conditions on these pins must 
meet two criteria: a) there must be sufficient voltage to 
forward bias-critical junctions in the SCR, and b) the 
available current must be in excess of the SCR trigger 
current. If these conditions exist, and if a suitable para­
sitic PNPN structure is connected to that pin, latch-up will 
occur. 

Some thought must be given to the test values of voltage 
and current when determining susceptibility of a part to 
latch-up. Reasonable test values would seemto be those 
experienced in an actual system under worst-case 
conditions. 

Most AMD devices are designed to work with a nominal 
+SV supply. In such a system, voltage transients result-

+5.5 V 

TEST DUT 
PIN 

300 rnA 

Figure 7-4. 
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ing from transmission line effects, etc., will not exceed 
+SV in magnitude. Therefore, testing at a + 1 OV extreme 
(Vee plus SV transient) and a -SV extreme (GND minus 
SV transient) will simulate a worst-case system environ­
ment. 

Current levels for latch-up testing are governed by the 
maximum current available from any device in the sys­
tem. The maximum drive capability of any output pin is 
approximately 100 mA; adding some margin to this, the 
test value becomes300 mAo Anycurrentderivedfromthe 
voltage transient magnitude divided by the transmission 
line impedance will be considerably less than this. 

Latch-Up Testing 

Testing was performed by forcing 300 mA into and out of 
each device pin, whether input or output, while monitor­
ing Icc for any indication of latch-up. The current sources 
were voltage-limited at +10V and -SV, perthe discussion 
above. The test configurations are shown in Figures 7-4 
and 7-S. 

Normal outputs were set to the HIGH state when current 
was forced into the pin (positive current) and set to the 
LOW state when the current was pulled out of the device 
(negative). Outputs with three-state capability were addi­
tionally tested in the high-impedance state. 

The test results are summarized in Table 7-7. Forthe test 
limits indicated, no latch-up was Induced for any pin Of 
any part of any device type tested. 

Note that there was no positive current flow into the input 
pins since the inputs remained high-impedance up to the 
+ 1 OV clamp level. 

+5.5 V 

TEST DUT 
PIN 

300 rnA 

Figure 7-5. 
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Table 7·7. CMOS Latch·Up Testing Summary 
(Am29C01, Am29C10A, Am29C1 01 ) 

Tested Pin Test Figure Max II (mA) Max VI (V) Latch·Up 

--------------------------------------
Inputs 1 0 

2 ·18 

Normal 1 +300 
Outputs 2 -300 

Three-State 1 +300 
Outputs (active) 2 -300 

Three-State 1 +300 
Outputs{High-Z) 2 -300 

7.5 TEST PHILOSOPHY AND METHODS 

The following nine points describe AMD's philosophy 
for high volume, high speed automatic testing. 

1. Ensure that the part is adequately decoupled at the 
test head. Large changes in Vee current as the device 
switches may cause erroneous function failures due to 
Vee changes. 

2. Do not leave inputs floating during any tests, as they 
may start to oscillate at high frequency. 

3. Do not attempt to perform threshold tests at high 
speed. Following an output transition, ground current 
may change by as much as 400 mA in 5-8 ns. 
Inductance in the ground cable may allow the ground 
pin at the device to rise by hundreds of millivolts 
momentarily. 

4. Use extreme care in defining point input levels for AC 
tests. Many inputs may be changed at once, so there 
will be significant noise at the device pins and they may 
not actually reach V1L or V1H until the noise has settled. 
AMD recommends using V1L ~ 0 V and V1H ~ 3.0 V for 
AC tests. 

5. To simplify failure analysis, programs should be de­
signed to perform DC, Function, and AC tests as three 
distinct groups of tests. 
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+10 No 
·5 No 

+6.5 No 
-1.4 No 

+6.6 No 
-1.8 No 

+10 No 
-1.8 No 

6. Capacitive Loading for AC Testing 

Automatic testers and their associated hardware have 
stray capacitance that varies from one type of testerto 
another but is generally around 50 pF. This, of course, 
makes it impossible to make direct measurements of 
parameters which call for smaller capacitive load than 
the associated stray capacitance. Typical examples of 
this are the so-called ''float delays,"which measure the 
propagation delays into the high-impedance state and 
are usually specified at a load capacitance of 5.0 pF. 
In these cases, the test is performed at the higher load 
capacitance (typically 50 pF) and engineering correla­
tions based on data taken with a bench setup are used 
to predict the result at the lower capacitance. 

Similarly, a product may be specified at more than one 
capacitive load. Since the typical automatic tester is 
not capable of switching loads in mid-test, it is impos­
sible to make measurements at both capacitances 
even though they may both be greater than the stray 
capacitance. In these cases, a measurement is made 
at one of the two capacitances. The result at the other 
capacitance is predicted from engineering correla­
tions based on data taken with a bench setup and the 
knowledge that certain DC measurements (lOH' IOL for 
example) have already been taken and are within 
spec. In some cases, special DC tests are performed 
in order to facilitate this correlation. 



7. Threshold Testing 

The noise associated with automatic testing (due to 
the long, inductive cables) and the high gain of the 
tested device when in the vicinity of the actual device 
threshold, frequently give rise to oscillations when 
testing high speed circuits. These oscillations are not 
indicative of a reject device, but instead of an over­
taxed test system. To minimize this problem, thresh­
olds are tested at least once for each input pin. There­
after, "hard" high and low levels are used for other 
tests. Generally this means that function and AC 
testing are performed at "hard" input levels rather than 
at V1L Max. and V IH Min. 

8. AC Testing 

Occasionally, parameters are specified that cannot 
be measu red directly on automatic testers because of 
tester limitations. Data input hold times often fall into 
this category. In these cases, the parameter in ques­
tion is guaranteed by correlating these tests with other 
AC tests that have been performed. These correla-
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tions are arrived at by the cognizant engineer by using 
precise bench measurements in conjunction with the 
knowledge that certain DC parameters have already 
been measured and are within spec. 

In some cases, certain AC tests are redundant, since 
they can be shown to be predicted by some other 
tests which have already been performed. In these 
cases, the redundant tests are not performed. 

9. Output Short-Circuit Current Testing 

When performing los tests on devices containing RAM 
or registers, great care must be taken that undershoot 
caused by grounding the high-state output does not 
trigger parasitic elements which in turn cause the 
device to change state. In order to avoid this effect, it 
is common to make the measurement at a voltage 
(VOUTPUT) that is slightly above ground. The Vee is 
raised by the same amount so that the result (as 
confirmed by Ohm's law and precise bench testing) is 
identical to the VOUT = 0, Vee = Max. case. 
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8.1 PHYSICAL DIMENSIONS· 

Plastic OIP (PO) 

P04028 

1.440 
1.480 I· ~I 

[::::::::::: ::11:: 
--+I Ii -l Ii r' 1- .005 MIN . 

. 045 .090 
~65 .110 ~15 

.ill.~~'OiO .225 -L 
.125 
.160 

~Ii 
.014 
li23 

Ceramic Sidebrazed OIP (SO) 

S04028 

~:~~~-------+l~1 
-.098 MAX. 

15 

.005 MIN'1 tE .005 

~ .1:' :~~~ 
.100 . TT ~ 
.175 r==i= 
.~~~ .lj MIN. t ·~1_'015 

Bse =-.j!..= .060 ---t .022 

• For reference only. 
NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4. 

I 

i 
i 

PID# 10124A 

PID #0793OC 
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.485 .450 
A9 .456 

Plastic Leaded Chip Carrier (PC) 

PL028 

r-.4
503D ~I .456 

~ _____ .485 

.495 

NOTE: Pack"ge dimensions "re given in inches. To convert to millimeters, multiply by 25.4, 
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Ceramic Pin-Grid-Array Packages (CG/CGX) 

CGX120 

.075 x 45' REF. 
(REFERENCE CORNER) 

PIO, 089008 

,~:~ 
"J 1 , 

1.200 l : 10 

11 

12 

1 

.030 x 45' REF. 
(3 PLACES) 

BOTTOM VIEW 

@@@@@@(i)@@@@@@ 
@6l0@@@(i)@@@O@@ 
@@@ I @@@ 

@@@ EJ@@@ @@@ I @@@ 
@)--(!H!)- - - + ---@)-@)-@- - -

@@@ I @@@ 
@@@ @@@ 
@@@ @@@ 

@@O@@@t@@@O@@ 
@@@@@@.@@@@@@ 

@@.@@.@@@ @ 

+~ .oeo 

CG 120 

BOTTOM VIEW 

.100 BSC 

.017 
"]2cj 

.oeo 

.140 
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-t -

J.2Q IJ .200 -.j 
.105 ~ 
.195 

.075 x 45' REF. 
(REFERENCE CORNER) 

PIO.07429C 

~T~ 
1.3eg 1 7 

1.200 

BlSC 1: 
11 

12 

13 

.030 x 45' REF. 
(3 PLACES) 

@@@@@@(i)@@@@@@ 
@eO@@@(i)@@@O@@ 
@@@ I @@@ 

@@@ EJ@@@ @@@ I @@@ 
@)--(!H!)- - - + ---@)-@)-@- - -

@@@ I @@@ 
@@@ @@@ 
@@@ @@@ 
@@o@@@~@@@o@@ 
@@@@@@.@@@@@@ 

@@.@@.@@@ @ 

... .060 
.oeo 

.045 

.080 
:i4o 

:055""1-_ 
t 

~J~~-I J.2Q ....... 1.420. I 
.200 

:1Q.2 ~ 
.195 

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4. 

HEATSINK 
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Ceramic Pin-Grid-Array Packages (CG/CGX) (Continued) 

CGX145 

.075 x 45' REF. 
(REFERENCE CORNER) 

BOTTOM VIEW 

· +-----1.:~:~==0 
B C DE F G J~I 
@@@)@)@@)@)@)@)@)@)@)@) 

2 @)@@)@)@)@@)<J)@)@@@@)@@) 
3 @)@@@)@@@)<J)@@)@@@)@@ 
4 @)@)@@ I @@)@) 
5 @)@@) 
6 I 

I 

@@)@ 
@)@@) 
@)@@) 7 @) @ @ --+--8 @-@)-€)­

@)@@ 
@)@@ 
@)@)@ 

-@-@-@­
@)@@) 
@)@@) 
@)@@ 

@)@@ @)@@) 
@)@@@)@)@@~@)@@)@)@)@@) 
@)@@)@@@@~@@@@)@@@ 

@)@o@)@@@)@@ @)@O 

.030 x 45' REF. 
(3 PLACES) 

+;.Q2Q 
.080 ' 

NOTE: Package dimensions am given in ir"lehes. To convert to mimmeteis, multiply by 25.4. 
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Ceramic Pin-Grid-Array Packages (CG/CGX) (Continued) 

CG 145 

BOTTOM VIEW 

.075 x 45° REF. 
(REFERENCE CORNER) 

~------------~~:~~:~g----------~~ 
14--------1.400 Bso)---------~~I 

PIO' 07321C 

C 0 E F G JKLMNPR 

@@@@@@@@@@@@@ 

2 @@@@@@@@@@@@@@@ 

3 @@@@@@@@@$@@@@@ 

4 @@@@ I @@@ 

5 @ @ @ 

6 @ @ @ 

1.540 7 @ @ @ 

1:50 8 @-@-@--

@@@ 

I 
I 

--+--
@@@ 

@@@ 

@@@ 

-@-@-@­
@@@ 

@@@ 

@@@ I ':~12 ::: 
@@@ @@@ 

13 @ @ @ @ @ @ @ ~ @ @ @ @ @ @ @ 

14 @ @ @ @ @ @ @ @, @ @ @ @ @ @ @ 

1 @@o@@@@@@ @@ • 

.030 x 45° REF. 
(3 PLACES) 

.060 

.080 

. 100 BSC 

NOTE: Package dimensions are given in inches. To convert to millimeters. multiply by 25.4. 

HEATSINK 

+-d§!! 
.420 
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CeramicPin-Grid-Array Packages (CG/CGX) (Continued) 

CGX169 

.075 x 45" REF. 
(REFERENCE CORNER) 

1.740 
1.7.80 

1.600 
BS 

BOTTOM VIEW 

1.ZiIl. J 1.780 

1+-----1.600BSC _I 
BCDEFGHJKlMNPRTk 

G)(~) Gl Gl Gl Gl Gl $ Gl G)(!) Gl Gl Gl Gl 
2 GlGlG>G>G>G>G>G>G>G>G>GlG>G>G> f)G> 

GlG>G>G>G>G>G>G>~G>G>G>G>G>G>G>G> 

4 G>G>G>Gl I G>G>G> 
5 GlGlG> GlGlGl 
6 G>GlG> 
7 GlG>Gl 
8 G>G>Gl 
9 G>-@-e--

10 
11 

12 

13 

GlGlG> 
GlG>Gl 
G>G>G> 
GlGlG> 

I 
I 

---+---
G>G>G> 
GlG>G> 
GlG>G> 

-@-@-G>- - -

GlG>G> 
G>GlG> 
G>G>G> 
GlGlGl 

14 

15 

16 

G>GlG> GlG>G> 
f)G>GlGlGlGlG>G>~@GlGlG>G>G>G>Gl 
G>G>G>G>.G>G>G>~G>G>G>G>G>G>G>G> 
GlG>Gl·G>G>Gl~G>Gl· 

.030 x 45' REF. 
(3 PLACES) +~ 

.080 

PIO .073228 

J... l-:~ 
T 
.017 
Ji2ci 

.080 
:i4o 

NOTE: Package dimensions are given in inches. To convert to millimeters; multiply by 25.4. 
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Ceramic Pin-Grid-Array Packages (CG/CGX) (Continued) 

CG 169 

.075 x 45' REF. 
(REFERENCE CORNER) 

1.740 

r:Tali 1.600 
BSC 

4 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

.030 x 45' REF. 
(3 PLACES) 

BOTTOM VIEW 

eeeeeeee$eeeeeeee 
eeee I eee 
eee eee 
eee eee 
eee I eee 
eee I eee ---+---e-@~ -0-0-@- - -
eee eee 
eee eee 
eee eee 
eee eee 
eee eee 
eeeeeeee$eeeeeeee 
eeeeeeee@eeeeeeee 

eee·eee@ee· ·eeeo 
.100 BSC 

....d!§Q 
.OBO 

Notes: 1. This dimension refers to heatsinks with only three fins. Heatsinks 
with more than three fins are as follows: 4 fins = .450/.510 

6 fins = .540/.600 
PID'09017B 7 fins = .6901.750 

.:.ill 
.020 

.080 
T40 

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4. 

.025 

.055 

HEATSINK 

l I~ r- Fo 
(Note 1) 
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8.2 ORDERING INFORMATION 

All Advanced Micro Devices' products listed are stocked locally and distributed nationally by Franchised Distributors. 
See back of this book for the location nearest you. Please consult them forthe latest price revisions. For direct factory 
orders, call your local AMD Sales Office or Sales Representative. See the back of this book for the location nearest 
you. 

Minimum Order 

The minimum direct factory order is $100.00 for a standard product. The minimum direct factory order for burn-in 
product is $250.00. 

Product Ordering, Package and Temperature Range Codes 

The following scheme is used to identify Advanced Micro Devices' Standard products; 

Am29334 C B G 

Device Number ---...... T 
Package Type --------...... 

~OPtional 
Processing 

Temperature 
Range 

Package Type 

P = Plastic DIP 
D = Ceramic DIP 
G= Pin Grid Array 
J = Plastic Leaded Chip Carrier 

Temperature Range 

C = Commercial 
(0 to +70°C) 

Optional Processing 

Blank = Standard Processing 
B = Burn-in 

The following scheme is used to identify Advanced Micro Devices' Military (APL) products; 

8-8 

Am29C334 /B Z C 

Device Number ___ J T L 
Device Class - ~ 

Lead Finish 

Package Type 

Device Class 
18 = Class B 

Package Type 
X = DIP Packages 

Lead Finish 
C = Gold 

Z = All Other Configurations 
(PGAs, etc.) 
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